$$
\frac{\text { LOG NO: }}{\text { ACTION: }}
$$

FILE NO:

LINK CLAIM

Aiken Lake Area, British Columbia
NTS: 94C/5
GEOLOGY AND GEOCHEMISTRY

Claim: Link

Omineca Mining division $56^{\circ} \mathbf{2 5} \mathrm{N}, 125^{\circ} 57^{\prime} \mathrm{W}$

Owner/ Rio Algom Exploration Inc Operator: 1650, 609 Granville Street Vancouver BC V7Y 1G5

GEOLOGICAL BRANCH ASSESSMENT REPORT

,

SUMMARY

The 20 unit (500 ha) Link Claim was staked by Rio Algom Exploration Inc to acquire an area of Takla volcanic rocks highlighted by anomalous copper-in-silt during a regional reconnaissance programme carried out by Rio in the mid 1960's. It was hoped that the anomalous copper-in-silt was derived from porphyry copper-gold mineralization.

Contour soil sampling in 1990 showed a broad area of anomalous copper and gold in the western claim area. Anomalous values, which are up to 480 ppb Au and 956 ppm Cu , occur over a still open 500 m by 500 m area. Rocks within the soil anomaly are sheared, pyritized and intensely chloritized andesite and diorite. In the southeastern claim area, contouring soil sampling over chloritized and pyritic andesite highlighted a $1,000 \mathrm{~m}$ by 500 m area of anomalous copper-in-soil.

Limited work on the property has demonstrated the presence of widespread anomalous values in copper and gold in soils overlying pyritic and strongly chloritized rocks. In 1991, closely spaced contour soil sampling, prospecting and rock sampling is recommended to define the source of the copper- and gold-in-soil anomalies. If successful, this programme will define targets for later trenching and drilling programmes.

TABLE OF CONTENTS

Page No:
SUMMARY i
1 INTRODUCTION 1
1.1 Location, Access and Physiography 1
1.2 Property 1
1.3 History 1
2 GEOLOGY 4
2.1 Regional Geology 4
2.2 Property Geology 4
3 GEOCHEMISTRY 6
3.1 Sampling Method, Preparation, Analysis 6
3.2 Results 6
4 CONCLUSIONS AND RECOMMENDATIONS 8
5 REFERENCES 9
6 STATEMENT OF QUALIFICATIONS 10
APPENDICES
1 Cost Statement
II Analytical Results
III Rock Sample Descriptions
MAPS
1 Location and Claim Map 2
2 Geological and Geochemical Compilation Map after 4

1 INTRODUCTION

The Link claim was staked by Rio Algom Exploration Inc in early 1990 to acquire an area defined as anomalous for copper during a regional reconnaissance programme in the mid 1960's. On July 23 1990, a three person crew carried out prospecting and contour soil sampling of the central area of the claim. The purpose of this work was to determine if the anomalous copper-in-silt was derived from porphyry-type copper and gold mineralization. This report discusses the results of the July 23 programme and makes recommendations.

1.1 Location, Access and Physiography

The claim lies 100 km northwest of Germansen Landing, British Columbia in the Omineca Mining Division on NTS mapsheet 94C/5. Geographic coordinates of the centre of the property are $56^{\circ} 25^{\prime} \mathrm{N}$ latitude and $124^{\circ} 24^{\prime} \mathrm{W}$ longitude (Map 1).

Access to the claim is restricted to helicopter from either Mackenzie or Smithers. The closest road is the Cheni Mine road which passes within 12 km of the claim boundary.

The topography of the claim is very rugged with razor back ridges, precipitous upper slope and moderate to steep talus covered lower slopes. Treeline is at approximately 1700 m asl, below which vegetation passes from scrub spruce through stunted fir to fir, spruce and pine in the valley bottom.

1.2 Property

The Link property consists of a single 20 unit claim having a date of record of March 11990 and record number 11496.

1.3 History

Rio Algom's first interest in the area of the Link claim was in 1965 when, as part of their exploration of the adjacent Croyden property, reconnaissance silt sampling and prospecting of the Link area was carried out. This 1960's work highlighted the central area of the Link as strongly anomalous for copper. However, prospecting of the anomalous area did not find significant copper mineralization and the area was dropped.

In the 1980's, crews employed by Fox Geological evaluated the area of the Link claim. This work was confined to the ridge tops and focussed on sampling quartz veins. The low gold values in the samples discouraged further work.

Encouraged by the high levels of copper in sediment from streams draining the area, the cursory nature of previous work and a geological setting favourable for porphyry-type copper-gold mineralization, Rio Algom staked the Link claim in late February 1990.

2 GEOLOGY

2.1 Regional Geology

The property occurs within the Quesnel Trough, a subdivision of the Intermontane tectonic belt. The Quesnel Trough is bounded on the west by Paleozoic rocks of the Pinchi Belt and, on the east, by mid to upper Paleozoic rocks of the Slide Mountain Group.

The Quesnel Trough was the site of extensive island arc volcanic and sedimentary deposition from late Triassic to early Jurassic time. These volcanic and sedimentary rocks, referred to as the Takla Group consist of a basal unit of argilite and greywacke which appear transitional into tuffs, breccias and augite porphyry flows.

Block faulting and tilting are the dominant structural styles in the belt. Faults trend in a northwest and northeast direction. Folding is restricted to the eastern margin of the belt near its structural boundary with the Omineca Crystalline Belt.

Two major episodes of granitic intrusion are recognized along a northwest trending belt slightly oblique to Quesnel Trough. The intrusive events cluster around 200 and 100 million year ages.

Gold and copper-gold deposits have an affinity for 200 million year old alkalic plutons and Triassic-Jurassic volcanic rocks. Molybdenum deposits, on the other hand, are associated with the 100 million year intrusive event.

2.2 Property Geology

The Link property straddles the contact between Takla Group rocks and granodiorite of the Jurassic age Hogem Batholith. On the claim, the Takla rocks are predominantly green coloured tuffs, breccias and flows of andesite composition with a thin sequence of argillite and limestone present in the northeastern claim area. Based on bedding attitudes in the sedimentary rocks, the Takla Group strike northwesterly with shallow to steep northeasterly dips (Map 2).

In the southwest corner of the claim, the Takla rocks are in contact with medium-grained granodiorite of the Hogem Batholith. The contact trends northwesterly paralleling the strike direction of the Takla rocks.

A second intrusive body occurs in the central claim area. Here, fine to coarse grained diorite porphyry occurs in a complex dyke swarm. These dykes appear confined to a 300 m by 300 m area, but may extend to the northwest beneath the talus cover.

Alteration of the property consists of widespread chloritization and epidote veining of the Takla Group rocks. Pyrite in amounts from 1\% to 5% and occasional magnetite occurs as disseminations and as dry fracture fillings.

Within this broad alteration envelope are narrower, 100 m or less wide, northwesterly trending zones of intense phyllic alteration. These phyllically altered zones, which have an average of 5% disseminated pyrite, are localized in shear zones.

The diorite porphyry, like the Takla Group, is also propylitically altered but contains less pyrite, while the Hogem granodiorite is relatively unaltered.

3 GEOCHEMISTRY

As a preliminary evaluation of the claim for porphyry-type coppergold mineralization, contour soil sampling was carried out within the drainage catchment area of the copper-anomalous streams. It was hoped that this contour sampling would isolate source areas of the anomalous copper-in-silt and assist in determining if gold was present on the claim.

3.1 Sampling Method, Preparation and Analysis

A three person crew spent one day collecting soil (talus fines) and rock samples from various locations on the property. Forty-five soil samples were collected at approximately 100 m intervals along traverses paralleling the 5200 ft or 5500 ft asl contour. At each site, soil or talus fines were placed in a gusseted Kraft paper envelope. The samples were shipped to Chemex Labs in Vancouver where the soil was sieved to -80 mesh. A 0.5 gram sub-sample of the -80 mesh material was analyzed for molybdenum, copper, lead, zinc, silver, nickel, cobalt, antimony, bismuth, vanadium, calcium, phosphorous, lanthium, chromium, magnesium, barium, titanium, beryllium, aluminum, sodium, potassium, uranium and tungsten by inductively coupled argon plasma methods (ICP). Gold was analyzed by atomic absorption (AA) after acid digestion of a 10 gram sub-sample of the - 80 mesh fraction. Gold results are reported in parts per billion (ppb) and have a detection limit of 5 ppb .

Rock samples consisted of 1 to 2 kg of 4 cm or smaller diameter rock chips collected over a $1 \mathrm{~m}^{2}$ area of outcrop. Rock chips were placed in plastic sample bags and shipped to Chemex Labs' North Vancouver laboratory. At the laboratory, the rock samples were air dried at less than $60^{\circ} \mathrm{C}$ then crushed in two stages to approximately -10 mesh and split using a riffle splitter to a 300 gram sub-sample. This sub-sample was then pulverized to approximately -150 mesh using a ring mill. Analysis of the -150 mesh material was then by similar analytical techniques as the soil samples.

3.2 Results

Plotting of the soil results highlighted two areas of the claim as anomalous for copper ($>100 \mathrm{ppm}$). The most prominent area is the Goat

Creek Cirque area (Map 1). Here, a 500 m by 500 m area is defined both by anomalous copper and anomalous gold (240 ppb). Within the anomalous area, copper values up to 956ppm and gold values to 480ppb were found in the vicinity of the diorite porphyry intrusives and strongly chloritized and pyritized volcanic rocks. Analysis of a sample of the altered and pyritic rock gave 413ppm copper and 60ppb gold.

The second area of anomalous copper occurs in Cairn Creek Cirque where all samples along a $1,000 \mathrm{~m}$ length of the traverse contained greater than 200ppm copper. Accompanying the anomalous copper are elevated gold and molybdenum values. The rocks in the area of this anomaly are propylitically altered and contain up to 5% pyrite as disseminations and fracture fillings. Three rock samples collected along the traverse contained from 5 to 55 ppb Au and 92 to 165 ppm Cu .

4 CONCLUSIONS AND RECOMMENDATIONS

The Link claim is underlain by sheared, pyritized and strongly chloritized andesite and diorite. Contour soil sampling has highlighted two broad areas of these altered rocks as anomalous for copper or copper and gold. The presence of a favourable geological setting, rock alteration and anomalous copper and gold confirm the property's potential for porphyry copper-gold mineralization.

The positive results of the 1990 programme fully justify on going exploration of the Link claim. To this end, it is recommended that closely spaced contour soil sampling, detailed geological mapping and rock sampling be carried out in 1991. If successful, the 1991 programme will define targets for a later programme of trenching and drilling.

5 REFERENCES

Garnett, J A (1978):	Geology and Mineral Occurrences of the Southern Hogem Batholith. BCDM Bulletin 70.
Newell, JM (1964):	Geology and Geochemistry Report on the Croyden Option, Omineca Mining Division, B C. Private Report prepared for Rio Tinto Canadian Exploration Ltd.

6 STATEMENT OF QUALIFICATIONS

I, John A McClintock do certify that:
1 | am a geologist residing at 4044 Mars Place, Port Coquitlam, British Columbia.

2 I am a graduate of the University of British Columbia with the degree of B Sc (Honors) in Geology

3 I am a registered member of the Association of Professional Engineers of the Province of British Columbia, registration 12078

4 I have practised my profession as an exploration geologist continuously for more than 17 years.

5 I supervised the exploration work described in this report on behalf of Rio Algom Exploration inc.

John A McClintock

January 1991

APPENDIXI

COST STATEMENT

APPENDIX I-COST STATEMENT

‘Labour:

J A McClintock, P Eng - 1 day @ \$300/day $\$ 300.00$
W Donaldson, Geologist - 1 day @ \$200/day 200.00
V Park, Geologist - 1 day @ \$175/day 175.00
Analysis:
Chemex Labs 45 soil samples @ \$12/sample 540.00
11 rock samples @ \$15/sample 165.00
Helicopter:
Canadian Helicopters - 4 hours @ \$650/hr 2,600.00
Report Preparation $\$ 300.00$
Total $\mathbf{\$ 4 , 2 8 0 . 0 0}$

APPENDIX II

ANALYTICAL RESULTS

10: RIU AlGOM ExrluRATIUN INC P.O. BOX 10335, PACIFIC CENTRE 1650-609 GRANVILLE ST. 1650-609 GRANV V7Y 1G5

Page rumber: I-B
Total Pages: Invoice Date:
Invoice Date: 2-AUG-90 invoice No.: I-9019606

Project:
TAKLINK
Comments: ATTN: JOHN MCCLINTOCK

CERTIFICATE OF ANALYSIS A9019606

SAMPLR DESCRIPTION	$\begin{aligned} & \text { PRRP } \\ & \text { CODR } \end{aligned}$		$\begin{aligned} & \text { Ko } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{Na} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { p } \\ \text { ppw } \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { SC } \\ \text { Pqom } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { Ti } \\ & 8 \end{aligned}$	$\begin{array}{r} \text { Tl } \\ \text { Ppm } \end{array}$	$\begin{array}{r} 0 \\ \text { pram } \end{array}$	$\begin{array}{r} V \\ \text { ppan } \end{array}$	$\underset{\operatorname{prom}}{N}$	$\begin{aligned} & \text { En } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ 8 \end{array}$;
20029	205	294	153	0.20	00	920	8	<5	10	39	0.27	<10	<10	102	<10		----	
20030	205	294	3	0.07	2	900	<2	<5	2	196	0.06	<10	< 10	29	<10	8	-----	
10031	205	294	1	0.06	8	1760	<2	5	6	94	0.28	< 10	<10	128	<10	46	---********	
10032	205	294	43	0.04	4	1830	4	< 5	6	144	0.20	<10	<10	75	<10	74	0.94	
20033	205	294	3	0.06	60	2200	52	20	15	82	0.10	<10	< 10	160	< 10	354	1.33	
20034	205	294	<1	0.10	61	2460	<2	<5	6	52	0.17	<10	<10	133	<10			
20035	205	294	2	0.01	21	630	<2	<5	1	24	0.11	<10	<10	42	<10	64	-----	
186028	205	294	1	0.03	2	690	6	<5	1	23	0.14	<10	<10	45	<10	140	--...-	
486029	205	294	1	0.03	5	660	<2	<5	1	15	0.08	<10	< 10	36	<10	66	.----*	
486030	205	294	3	0.02	5	340	<2	< 5	2	30	0.12	<10	< 10	46	<10	60	-----	
	205	294	2	0.01 0.04	29 3	540 260			4 2	22 165	0.31	<10 <10	<10 <10	67 49	< 10		------	
486032	205	294	2 <1	0.04	3 11	260	<2	<5 <5	2 3	165 32	0.14	< 10	<10 <10	49	<10 <10			
486033 486034	205	294	1 1 1	0.05 0.07	11	510 1040	<2 <2	<5 5	3 2	32 50	0.14 0.16	< 10 <10	<10 <10	71	< 10	116	----	
486035	205	294	35	0.03	15	330	12	<5	3	40	0.18	<10	<10	53	<10	16	----	
486151	205	294	7	0.05	7	2000	<2	<5	5	81	0.22	<10	<10	138	<10		----	
486152	205	294	<1	0.03	10	1390	<2	<5	9	99	0.04	< 10	<10	101	<10	72	----	
486153	205	294	<1	0.04	7	1360	<2	<5	6	77	0.14	<10	<10	108	< 10	76	-----	
486154	205	294	5	0.02	36	2260	<2	5	13	58	0.14	<10	<10	138	<10	296	----	
486155	205	294	3	0.02	7	370	<2	5	<1	15	0.04	<10	<10	22	<10	32	----	
486150	$\left\|\begin{array}{l} 200 \\ 205 \end{array}\right\|$	$\begin{aligned} & 294 \\ & 294 \end{aligned}$	4	0.04	11	590	6	<5	4	20	0.24	<10	<10	76	<10	92	$-\pi+\cdots$	

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C 1
PHONE: 604-984-0221

10: RIU ALGUM EXTLURATIUN INC.
P.O. BOX 10335, PACIFIC CENTRE 1650-609 GRANVILLE ST.
VANCOUVER, BC
V7Y 1G5

CERTIFICATE OF ANALYSIS
A9019607

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221

To: RIO ALGOM EXPLORATION INC. P.O. BOX 10335, PACIFIC CENTRE 1650-609 GRANVILLE ST. 1650-609 GRAN
VANCOUVER, BC V7Y 1 G5

Page Number : 2 -A Total Pages: Invoice Date: Invoice No.: P.O. Number :

Project: TAKんINK
Comments: ATTN: JOHN MCCLINTOCK

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221

To: RIO ALGOM EXPLORATION INC POO. BOX 10335 , PACIFIC CENTRE 1650-609 GRANVILLE ST. VANCOUVER, BC V7Y 1 G 5
Project:
Comments: TAKLLINK
ATTN: JOHN McCLINTOCK

Page Number: 2-B Total Pages: Invoice Date: 2-AUG-9 Invoice No.: 1-9019607 P.O. Number

CERTIFICATE OF ANALYSIS A9019607

APPENDIX III

APPENDIX III - ROCK SAMPLE DESCRIPTIONS

Sample No: Type
10335 Grab Weakly schistose chloritized andesite with 10% disseminated pyrite.

Bleached volcanic, gossanous weathered surface 3% disseminated pyrite.

486029	Grab	Bleached volcanic (tuff?) with 4\% disseminated pyrite, epidote veins around pyrite.
486030	Grab	Bleached aphanitic volcanic with 3% pyrite and $2 m m$ diameter chalcopyrite grain.
486031	Grab	Bleached volcanic with 3% disseminated blebs of pyrite.

Plagioclase porphyry monzonite with 3\% disseminated pyrite. Secondary kspar.

Bleached volcanic (hornblende tuff?), 3% disseminated pyrite.

Plagioclase porphyry monzonite, bleached, 3\% pyrite.

Bleached volcanics 2% disseminated pyrite, quartz veining.

Light grey volcanic flow 2-3\% disseminated and fracture controlled pyrite and rare chalcopyrite.

486156 Grab Plagioclase porphyry, strongly sericitized with 15% pyrite in disseminated grains and fractures.

Fine grained, medium grey andesite. 5\% pyrite mostly in fractures,, lesser disseminated grains.

