LOG NO: Jup 07/91	RD.	
ACTION:		
FILE NO:		,

Diamond Drilling Report on the Gaspard Lake Property

> NTS 920/7,10 51°30'N, 122°45'W

Fame 1, Fortune 1, Gas 1-9, 11, 14-20 Claims

Clinton Mining Division

Owner: B.K. Bowen, A.C. Gordon Operator: Goldsmith Minerals Limited Commodity : Au Author: D.B. Petersen, P.Eng. Date: November 1990

GEOLOGICAL BRANCH ASSESSMENT REPOPT

Table of Contents

l. Int	roduction	Page	1
2. Loc	ation and Access	Page	1
3. Тор	ography and Vegetation	Page	l
4. Reg	ional Geology	Page	1
5. Cla	im Geology	Page	3
6. His	tory	Page	3
7.199	0 Diamond Drilling Programme	Page	4
8. Res	ults of Diamond Drilling	Page	5
9. Dis	cussion	Page	5
10. Co	nclusion	Page	6
ll. Re	commendations	Page	6
12. Co	sts	Page	7
13. Cl	aims	Page	8
14. Re	ferences	Page	8
	Appendices		
Append	ix I Diamond Drill Logs		
Append	ix II Analyses		
	<u>Illustrations</u>		
Figure	l Location Map	Page 2	
Figure	2 Claim Map	Page 9	
Figure	3 Compilation Map	in pocket	
Figure	4 Diamond Drilling Plan	in pocket	
Figure	5 Diamond Drilling Section - Kelsch Zone	in pocket	
Figure	6 Diamond Drilling Section - Twilight Zone	in pocket	

1. Introduction

This report describes the diamond drilling programme that was conducted on the subject property in September and October of 1990. It describes the history of the property and the geophysical surveys that were done that lead to the decision to drill. The results of the drilling are discussed and recommendations for future work are made.

The report is intended for internal company use and as an assessment report.

2. Location and Access

The property is located in the Clinton Mining Division approximately 85 kilometres southwest of Williams Lake and 25 kilometres northwest of the Blackdome Mine. It is centred at geographic coordinates 51° 30' N, 122° 45' W. NTS is 920/7 and 10. See Fig.1, "Location Map".

Access is by highway 20 from Williams Lake to Riske Creek and then southerly by good gravel road to the Fletcher Challenge logging camp 25 km northeast of the property. From there, main and side logging roads lead to various parts of the property. See Fig. 3, "Compilation Map". An alternative route is available from Clinton via the Gang Ranch.

3. <u>Topography and Vegetation</u>

The claims cover gently rolling up-land between elevations of 300 and 1800m asl.

Vegetation consists almost exclusively of mature jack pine. Approximately one third of the area has been logged, in both selective and clear-cut manner.

4. <u>Regional Geology</u>

The property lies in a structurally controlled northwesterly trending belt of rocks known as the Intermontane Belt that extends with interruptions from the Yukon in the northwest to Mexico in the southeast. It varies from approximately 100 to 300km in width and in Canada is flanked by the Omineca Crystalline Belt to the East and the Coast Crystalline Belt to the West.

In British Columbia the rocks that comprise the belt consist essentially of Triassic volcanic rocks of intermediate composition that have been intruded by Triassic and Jurassic plutons and stocks of granitic composition. In Central British Columbia Tertiary activity is evident in the form of acidic to intermediate volcanic rocks that have been overlain by younger plateau type basalt flows.

The Intermontane Belt is of great economic importance and hosts a variety of mineral deposits. These include porphyry type copper and molybdenum (Highland Valley Copper, Brenda, Granisle, Gibralter), copper and gold (Copper Mountain, Continental Gold, Afton) and molybdenum deposits (Endako, Boss Mountain). Precious metal producers include silver and copper (Equity Silver) and several gold deposits (Bralorne-Pioneer, Silbak-Premier) and the epithermal Cheni, Baker, Dusty Mac and Blackdome mines.

5. <u>Claim Geology</u>

The property is overlain by an extensive cover of overburden. A few outcrops are exposed in rare, steep-walled creeks and in occasional logging cuts, and one area contains sharpangled float that has probably been derived from a proximal source.

Geological mapping by Harris (1988) showed that the property is overlain mainly by Middle Jurassic andesitic and pyroclastic volcanics which have been intruded by a granodiorite stock in the northern portion of the claims and by smaller bodies elsewhere. These rocks have been cut by Tertiary mafic dykes, felsic tuffs and flow-banded rhyolite dykes. A northeasterly striking fault on the Gas 18 and 16 claims separates Jurassic volcanics to the northwest from a variety of felsic to intermediate Tertiary volcanics to the southeast.

Prospecting by Bowen and Gordon (Bowen, 1989) has shown that epithermal type gold mineralization is present in vuggy quartz veins that exhibit some degree of argillic alteration and have been exposed in logging cuts and in the sides of a steep-walled creek on the Fame 1 claim.

Soil geochemistry (Harris, 1988) has defined a broad arsenic and gold anomaly some 600m by 300m in area on the Gas 9 claim immediately west of Stobie Lake.

An URP stream sediment sample analyzed 23ppm As on the Gas 18 claim.

6. <u>History</u>

Interest in the property was first generated in the area of what is now the Gas 18 claim as a result of the URP sampling high. Equinox Resources staked approximately 40 units in two claims to cover the sample area and conducted a programme of reconnaissance geochemical soil sampling and prospecting. The results failed to justify expectations and the claims were abandoned .

Separately, in 1986, B.K. Bowen discovered a gold bearing alteration zone, and follow-up prospecting in 1987 by Bowen and partner A.C. Gordon led to staking in stages of the Fame 1, Fortune 1 and Gas claims shortly thereafter. The property was subsequently optioned to Canamax Resources Inc. In 1988, they carried out a programme of additional staking, grid soil sampling, geological mapping, hand and limited backhoe trenching and 702 metres of NQ diamond drilling in 9 holes. They relinquished their option in 1989.

In early 1990 the property was optioned to Goldsmith Minerals Limited who conducted a reconnaissance VLF Resistivity and VLF EM survey on three grids, and follow-up detailed VLF Resistivity and magnetic surveys over the resistivity anomalies (Cartwright and Petersen, 1990).

7. <u>1990 Diamond Drilling Programme</u>

A six-hole 817.9m diamond drilling programme was conducted from 10th September through 22nd October 1990. The object was to test four resistivity anomalies on the Twilight, Discovery, Kelsch and Gas 18 grids.

The holes may be summarised as follows:

<u>Hole No.</u>	<u>Grid</u>	<u>Coord</u>	<u>inates</u>	Direction	Dip	Length
90-1	Twilight	OE	75S	140	-45	124.1
90-2	Twilight	OE	167S	320	-58	139.4
90-3	Discovery	7 550E	510S	320	-50	124.1
90-4	Kelsch	1500E	2555	140	-50	177.5
90-5	Kelsch	1500E	2955	320	-55	99.7
90-6	Gas 18	400W	145S	130	-50	153.1

The locations of the holes are shown on figures 3, "Compilation Map" and 4, "Diamond Drilling Plan".

Phil's Diamond Drilling conducted the drilling using a Longyear 38 drill and NQ2 wireline equipment.

The writer supervised the programme and logged the core. The core was split longitudinally into 1 metre lengths and one half bagged and sent for assaying, to Acme Analytical Labs in Vancouver. There the core was crushed to 0.5cm, split to 250g and pulverised. A l0g sample was ignited at 600 C, digested with hot regia, aqua extracted by MIBK and analysed by graphite furnace AA. The detection limit was lppb Au. The results are recorded in the diamond drill logs (Appendix I) and the assay certificates (Appendix II).

The retained half of the core is stored on the Fame 1 claim at coordinates 900E 100S on the Twilight grid, 30m South of the 2900 logging road. The costs are apportioned as follows:

Fame l	claim Ho	oles 1,2,3,4,5	665m @	\$144.72	\$96,233
Gas 18	claim Ho	ole 6	153m @	\$144.72	<u>\$22,142</u> \$118,375

8. <u>Results of Diamond Drilling</u>

The diamond drilling shows that two of the four resistivity anomalies that were tested (Twilight and Kelsch) are accountable by their high quartz content, while the Discovery and Gas 18 anomalies are unaccompanied by increased quartz. Presumably, their cause is topographic, ie near outcrop conditions under shallow overburden.

Holes 1 and 2 each intersected several zones of epithermal quartz veining with flanking stockwork. Several of these zones resemble the mineralised float that overlies the Twilight zone but exhibit a lower degree of fracturing and are not as fresh. Hole 2 intersected three epithermal vein systems carrying anomalous gold values, at 31-32m (660ppb), 57-58m (890ppb) and 79-80m (410ppb) See Fig. 6, "Twilight Zone". Hole 1, which covered the same sector as hole 2, failed to return anomalous gold values. Hole 1 is intensely fractured (faulted?) and weathered, more so than hole 2, and it is reasonable to assume that gold has been leached from the system.

Hole 4 intersected the downward extension of the Double Diamond showing, with barely perceptible increase in values. See Fig. 5, "Kelsch Zone".

9. Discussion

The diamond drilling has shown that the Twilight zone, despite the intense weathering and leaching that is evident, contains several intersections that are anomalous in gold. The relationship between holes 1 and 2 suggests that leaching of metal has taken place, but, as in these cases, calculation of the original grades is not possible.

The source of the mineralised float overlying the Twilight zone is not known with absolute certainty. It is more intensely fractured and is much fresher than any of the intersections observed in holes 1 and 2. If this float is, in fact, derived from the Twilight zone, then it must be from a portion that was not intersected in the drilling; or, alternatively, it originates from a separate zone that has not yet been discovered lying up-ice to the southwest. The Bonaparte property north of Kamloops furnishes an interesting comparison with Gaspard Lake. There, narrow quartz veins are mineralised with gold. According to A. Gourlay (pers. comm.) nugget effect results in large samples (surface panel and percussion hole samples) consistently returning much higher values than corresponding small samples (channel and diamond drilling samples). It is quite possible that nugget effect is partly responsible for the low values in holes 1 and 2 and that percussion drilling (larger samples) may obviate this effect.

At this stage, the elevations of the Kelsch and Twilight zones in the mineral column are not known. They are both devoid of sulphides and are therefore probably high-level, possibly sufficiently high as to overlie any precious metal horizons that may occur deeper in the column. Bearing in mind the vagaries of mineral deposits and the districts that host them, the likelihood of finding epithermal systems on the property under improved metal bearing conditions appears to be realistic.

10. <u>Conclusions</u>

It is concluded that:-

- 1. the VLF Resistivity is capable of successfully identifying zones of epithermal quartz veining
- 2. the geological success in the diamond drilling justifies expanded geophysical reconnaissance over the property.
- 3. the low values in holes 1 and 2 (small sample diamond drilling) may be caused by nugget effect

11. <u>Recommendations</u>

مز

It is recommended that:

- an inclined percussion hole be drilled to duplicate hole
 2.
- 2. reconnaissance VLF Resistivity of the property be continued on lines spaced 250m apart.
- 3. depending on the results of 1 and 2, above, follow-up detailing of anomalies and testing by diamond or percussion drilling be conducted.

8B Petersen

12. Costs

> The following costs were incurred in the programme: Project Preparation D.Petersen, Geologist, 4-7 September 4 Days @ \$345 1,380 Sub-Total 1,380 Field Costs Mobilisation and Demobilisation 10 Sept, 20 Oct 2 days @ \$1,125 \$2,250 11 Sept-19 Oct 39 days @ \$ 345 \$13,445 D.Petersen, Geologist T.Bains, Helper 11 Sept-19 Oct 39 days @ \$ 150 \$5,850 Meals and Accommodation 78 man-days @\$ 55 \$4,290 Truck Rental 39 days @\$ 66 \$2,574 Gasoline \$ 541 \$ 258 Supplies Assaying \$5,323 Freight \$ 572 Diamond Drilling 818m @ \$94.66 <u>\$77,424</u> Sub-Total \$112,537 Reporting D.Petersen 6 days @ \$345 \$2,070 Drafting 3 days @ \$345 \$1,035 Printing \$ 108 7 hrs Typing @ \$35 <u>\$ 245</u> Sub-Total \$4,458 Inclusive Cost is \$ 144.42 per metre drilled.

13. <u>Claims</u>

The following contiguous claims comprise the property. They are located in the Clinton Mining Division. See Fig. 2, "Claim Map".

<u>Group Name</u>	<u>Claim Name</u>	<u>Record No.</u>	<u>Units</u>	<u>Anni versary</u>
Fame 1	Fame 1	2147	20	18 Feb
Fame l	Gas 3	2553	20	10 Mar
Fame l	Gas 5	2555	16	10 Mar
Fame l	Gas 7	2557	20	10 Mar
Fame l	Gas 8	2558	12	10 Mar
Gas 9	Gas 9	2559	20	10 Mar
Gas 9	Gas ll	2561	20	10 Mar
Gas 9	Gas 15	2565	20	10 Mar
Gas 9	Gas 16	2566	20	10 Mar
Gas 14	Gas 14	2564	20	10 Mar
Gas 14	Gas 17	2567	20	10 Mar
Gas 14	Gas 18	2654	20	5 Aug
Gas 14	Gas 19	2655	20	5 Aug
Gas 14	Gas 20	2656	20	5 Aug
Gas l	Fortune 1	2489	20	10 Dec
Gas l	Gas l	2551	20	10 Mar
Gas l	Gas 2	2552	20	10 Mar
Gas l	Gas 4	2554	16	10 Mar
Gas l	Gas 6	2556	16	10 Mar
<u> </u>	Total 19		360	

14. <u>References</u>

2

Bowen, B.K., Prospecting and Soil Geochemical Surveys on the Gaspard Lake Property.

Cartwright, P.A., Petersen, D.E., 1990, Report on the Reconnaissance Geophysical Survey on the Gaspard Lake Property; Assessment Report no. 19884.

Cartwright, P.A., Petersen, D.B., 1990, Report on the Detailed Geophysical Survey on the Gaspard Lake Property.

Harris, F.R., 1988, 1988 Property Report; Canamax Resources Inc. Report.

.

<u>Appendix I</u>

.

2

Diamond Drill Logs.

		· · · · · · · · · · · · · · · · · · ·				<u> </u>			
P	ROJECT_	<u>Gaspard Lake</u> HOLE NO <u>90-1</u> LOCATION <u>Twili</u>	ight Ze	ne			PAG	EIOF_	3
D	ATE STA	RTED 17 Sept 1990 DATE COMPLETED 20 Sept 1990 CLAIM NO. FAME 1	COLL	AR LAT	<u>-75</u>	55	DEP	DE	
DF	RILLED E	BY Phil's Diamond Drilling CORE SIZE NQ W/Line	-	ELE	v	·	AZIMUTH	140	0
	OGGED E	BY D.B. Peterren DIP TESTS 124.1m = 4220		DIP	<u>-45</u>	. 0	LENGTH	124	tilm
0	BJECT	To Text VLF Registivity Anomaly	HOR.	PROJ	86.5	m	VERT. P	ia. 86	.9m
				C A 1/DI					
FROM	TO	DESCRIPTION	SAMPLE NO	FROM	TO	м	HIL		
		Queshudes					494		
	12	Over Durider							
15	19.6	Andesite Green-brown colow, H 4-5.							
		f. g (fine-grained) matrix (80%) ragged dosts (20%)							
	-	of grey felspar, from 1-6 mm. Patchy s/w (stock-							
		approx Imm thick, approx 5cm spacing							
		196-20.8 Sound							
20.8	25_1	Andesite Breccia Green HS					1		
		30°% f.g. matrix, 70% clasts of diorite, arey							
		felspar 1-9 cm size.							
25.6	295	Addarita Reercia							
~	~7.5	Green HC 30% For matrix 20% Grangents form 2- Com							
		(pale grey rounded felspar occasional fragments black homphende)							
		Occasional milky ats (quartz) strs (stringers), 2mm thick @ 80° to							
		claxis (core axis). Mod weathering along Fractures.							
29.5	50.7	Hadesite							
		Green, HI 9565.g malmx, 5-156 grey-nhite, rounded pheno's							
		iphonocrysis of relspor to 2mm.	39001	28	29	1.0			
		31.0-33.5 intlintence) weath and fact (002	3,3	34	1.0	93		
		32.5-33.5 Fault, crumbly blocky limonitised ageloone	003	37	38	1.0	4		
		33.5-33.9 Epithermal Quarts Veins, 0° to claxis, druge	Sludge		_				
		Vuggy veinlets, anastomised and laced, to 2mm	39060	29.6	32.6	3.0	26		
		@ 45° to claxis. 1-2 mm thick	001	22.0	27° D	3.0			
						1			

.

	PRC	NECT Gaspard Lake HOLE NO 90-1	L				PAGE_	<u>2</u> 0F	3
MET	ERAGE			SAMPL	ING		Au		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	ppb		
		38.6-39.5 gtz s/work (stockwork), anderite brecciated, light	39004	39	39.5	0.5	, з		
		395-400 Fault rand and 45° to claxis	200	44	45	1.0	67		
		40.0-43.5 wisps calcite, random orientation	006	47	48	1.0	2		
		43.0-43.5 brecciated, with weathered qtz filling 50.7 20cm weathered slowrk.	007	50	51	1.0	4		
50.7	53.7	53.5 20 cm Fault, crumbly weathered gge- Andente Breccia	008	53	54	1.0	ר		
		30% f.g. matrix 70° To angular and sub-rounded clasts of diorite and selspar.	009	55	56	1.0	2		
53.7	61	<u>Andenite</u>	010	58	59	1.0	1		
		green, HS, 70 h f.g matrix, 30 h felspar fheno's lo 2mm 56.3-57.2 blocky ground (fault?)	011	61	62	1.0	1		
61	63.4	Anderite alcite, random orientation	012	64	65	1.0	1		
		H6, light aren (silicitied?) 85°b light grey, figr matrix,	39082	38.7	41.7	3.0	2		
		13 To WINE FOISpar phenos to 3mm_	063	47.9	50.9	3.0	100		
		1005 recovery (faul zones!) in weathered zones as tollows:	004	53.9	57.0	3.1	10		
		57.0-60.1, 63.1-66.2. Sludge collected and sent for	065	57.0	60.0	3.0	61		
1211		assaying	067	84.5	87.5	3.1	s N	.	
65,4	15	HS arean bound 70°h fo matrix 30% claste whate and	068	99.7	102.7	3.0	ک		
		light brown felspar_ Occ qtz and calcile strs-	29013	66	67	1.0	4		
		63,4 - 72.3 broken and rubly, int weathering. Fractures	014	67	68	1.0	i		
		@ 2-5cm spacing @ 70° to claxis, limonitised.	015	68	69 70	1.0	2		
		66-67.2 50% recovery-rubble.	017	00		1.0	2		
		79-84 patchy int weathering	018	ור רר	12	1.0	5		
75	103	<u>Andesile</u>	020	73	74	1.0	i		
		HI grey vilicitied, 70% f.g dk grey matrix, 30% white	ו ב 0 ב ב ח	74	76	1.0	1		
		79-89.9 patchy rubbly int weathering	ð 13	76	רֿר	1.0	4		

PROJECT G	reard.	lake
-----------	--------	------

HOLE No 90 -1

PAGE_3_OF__3

METERAGE			SAMPL	ING		An	
FROM TO	DESCRIPTION	SAMPLE No	FROM	то	м	006	
103 124.	 78.3 - 80 Epithernal at vein system ungay veins apprendent under the with intervening stwork. 82 - 82.8 Epithernal at vein system weathered and corroded i narrow veintels and microfractures. 83.5 200m blocky int weathared. 87.5 - 88.8 Fault, crumbly clayey gge and fractured. and enter chips. H2. Numerous gtg fragments. 89.4, 90.2 gtg-cal veins D 70°, 10m wide. 90.5 - 90.8 Epithernal gts vein mystem. Unggy at units and micro stwork. 92.6 Unggy at vein @ 80° to claxis. Scm. 93.1 - 93.5 Lts stwork (aced - 95° scm unggy vein system. 96.2 - 96.6 Dts stwork. 97.7 Vuggy gts vein @ 45°, 5mm. 100.8 200m Epithermal gts vein system. Unlts and unggy @ 45° claxis. 100.8 200m Epithermal gts vein system. Unlts and stwork pithermal gts vein system. 102-102.8 broken, rubbly cove - 103-105.5 clasts red hematite. Anderite. Anderite. Anderite. Anderite. End of Hole. 	44678901234567890123 20222234567890123 39 39 39 39 39	777888888888889999999999999999999999999	778088888888899999999999999999999999999		-m474-m-m42220019m0. 422 mm22-42654 m4m	

		Gasan ad Later HOLE NO. 92-2 LOCATION TIAT	light Gu	vid.			PAG		4
		- yaspara time			167	5			
0/	ALE STA	RIED 21 JEPT 1770 DATE COMPLETED 25 JEAN NO. FRINTE I	. COLL	AK LAN	<u>_10_</u> /_	<u> </u>		<u>, C.</u>	
DR	RILLED E	BY Phil's Animond ATTILING CORE SIZE NR2/WL		ELE	V		AZIMUTH	3200) ———
LC	DGGED E	DIP TESTS 53° @ 136.3m		DIP	-58	0	LENGTH	<u> </u>	4m
0	BJECT	To test 1/1. F Resistivity Aromaly	HOR.	PROJ.	7.7	lm	VERT. PR	a. <u>111</u>	SM
MET	ERAGE			SAMPL	ING		An		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	ppb		
٥	6.5	overburden,							
	20	Sand, till -							
0.5	36	Anderile'							
		ed Felscar pheno's (okenocrusts).	39069	7	8	1	4		
		6.5-19 Int(intense) weathering on Fracture surfaces.	070	ž	و	!	3		
		9.2-12 Anderite, silicified, glassy - +	072	10			5		
		9.5-10.7 Epithermal quarts (qt3) vecn system. Vuggy qG	073	11			2		
		uith (lastice of the dust (at the width	270	13	14		1		
		10 2 Calcite vero 15 cm width @ 70° to claxis	570	15	ie		2		
		15.9 Us yrit 3mm @ 45°.		10			7		
		12-16.5 Hidesile, H5/2	079 080		18				
		16.5-17.3 Sharred broken ruther core -	000	19	20		3		
		to 3mm a con with Flanking of stationary)	082	20	20	ì	3		
		19-33 Moderate weathering on finiture suctaces	083	21	22	1	1		
		20 - Bocm broken rubbly core, corroded at veins	084	22	23	1	1		
		23-24 Anderite dk green colour,	780	23	24	- ,	1		
		14- Hadenie, palchy green-brown_	086	24	25				
		25-25-8 Approx 5 to water and and water and to 2mm	087	25	26	1			
		core badly broken and sheared -	880	26	27	1	2		
		25.8 Fault, with days gge @ 30°							
		20-21 Core Dally Orsten, int weathering, corroded at uns on	089	27	28	1	1		
		28 Fault 10 cm @ 45°, age and sand.	0 <i>9</i> 0	28	29		2		
		27-9-28.3 Badly weathered and Fractured.							
		27.7 d_{12} $\bar{\nu}nIE \oplus 30^{\circ}$.							
L	L	20.3-SI.2 MAUXIE, SINCITLED				L			

.

	PRQ	JECT GARPART. Lake HOLE NO. 90-2					PAGE_	OF	4
MET	ERAGE			SAMPL	ING		An		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	loob		
36	57.5	28.7-31.1 Epithermal qt5 vein system. 5 unqqy qt5 units To 4mm @ 70° with flanking slowork. <u>Andesite Flow Breccia</u> , Dark grey-green, H.5, 60% coarse matrix, 40% clasts ragged angular felspar phens's to 10mm and diorite to 2 cm. Faint flow banding. 33 2 qt5 Units 45°4 60° corroded menthered	29091 92 93 94 94 96 97 98	19 312 33345 35 35 37	301 334 334 367 387		4-60 2-2 450 2-2 450		
		34.2-36,2 Silicified andente'. Epithermal of zieinsystem 6 of zints @ varying angles with flanking fwork 39-42.7 Silicified, H41/2, Texture obscured 39.5 Atz vein @ 45°, Smm Thick 39.7 -40.8 Epithermal of zivein system @ 45°. Two vaggy Icm thick of ziveins with weak intervening s/WK. Upper vein corroded and weathered.	- 100 101 102	38 39 40	3 9 40 41	1 []	5 3 3		
		33-86 Weak weathering on fracture instaces. 41-41.9 Fault, rubbly, broken core, minor gge. 42.2-42.4 Epithermal gtz vein system, vuggy units @ 70° to 2 mm. 45.7-45.9 20cm anderite dyke, brown, f.g, @70°, H6 45.9 2cm unggy gtz vein, @ 70°. 47.1 10cm Epithermal gtz vein, vuggy, utreans and drusy @ 45°.	103 104 105 106 107 108 109 110 111	41 42 43 45 47 49	4 2 43 44 45 46 47 49 50) } } ! !	3 6 1 3 1 2 3		
57.5		48.6,49,49.6,49.8, "narrow, vruggy qtz vnlts, with slwork, weak silification. <u>Andesite</u> , Dark green, H6'2,65°b fg matrix, 35°b sub-angular Felspar pheno's to 2 mm. Contact @ 60° 53.9-54.5 Epithermal ats slwork system, slwork	112 113 114 115 116 117	50 51 52 53 54 55	51 52 53 54 55 56) 1 1 1	 		

•	PRC	JECT Gaspard Lake HOLE No 90-3	2				PAGE	<u>}_</u> of	4
MET	ERAGE			SAMPL	.ING		An		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	ppb		
		with no units - Minor ungs- 56.5-57 WK epithermal qt3 s/work system. 57 Fault, 30cm 57.5-58.5 Occ qt3 units, unggy. 59 30cm Epithermal qt3 vein system, unggy to the internal qt3 vein system.	39118 119 120 121 122	55 58 59 50	57 58 59 60 61	 	1 890 1 2		
		 Units to 2 mm Units and Spuols, Weakly corrected, nort weathered. 62. Fault, 10cm, dayey gge. 62. 6 10cm Epithernal qf3 vein system. &t5 unlt 3mm thick @ 45° and weak s/work. 63.6 Epithernal qf3 vein system, qf3 unlt 3mm@ 20° plus weak s/work, blocky, mod weathered. 66.5 @t5 unlt @ 45°, 2mm 68 and 69 Epithernal ats vns, vnggy, 10cm each @ 45° 72.3 &t5 unlts 10cm @ 45°, corroded. 74.5-75.6 Epithernal ats vein system vnlts to 2mm @ 45°+70° and sloort, Weakly corroded. 60 - 86 Weak weathered ats vein system. Unggy ats stirs and und internet. 78.2-78.5 Anderile Flav breacia, as 36-57.5. 78.2-78.5 Epithernal ats vein system. Unggy ats stirs and undervising sloort. Weakly weathered. 79.0 - 79.5 Fradured, blocky weathered. 81.3-81.5 Epithernal ats vein system. Unggy ats wills and sloort. Weakly weathered. 81.3-81.5 Epithernal ats vein system. Unggy ats unlts and sloort. 85-85.5 Epithernal ats vein system. 85-85.5 Epithernal ats vein system. 85-85.7 Epithernal ats vein system. 85-96 Broken rubby core - 85-97.7 Epithernal ats vein system. 91.5-91.7	39123 124 125 126 127 129 1321 1334 1320 1334 1335 13390 141 142 144 144 144 145 147 148	6 6666666777777777778888888888888888888	234567890123456789012345678901234567		- 2 22 24 24 5 - 02 828		

	PRC	JECT Gaspard Lake HOLE No. 90-2	<u> </u>				PAGE_2	4_0F_4	t
MET	ERAGE			SAMPL	ING		Au		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	100		
	139.4	96.6-103.4 Fault, HI, grey, claypy gge 103.4-108, 2 Broken, Hocky, rubbly cure 103.4-108 ac als strs approx Imm 250° 106.1 10cm als sloork 106.5 10cm als sloork 108.3-108.6 Calcite strs, no preferred prientation 109-111.5 Occ calcite strs with chlorite, Imm 113-117 Occ calcite strs with chlorite, Imm 113-117 Occ calcite strs with chlorite some rubble 108.2-118 Core fractured some solid sections some rubble 116.5-118 Fault, breten rubbly core, occ gge in patches. 118-124 Occ calcite strs 124.3-125 Fault claypy gge. 125.3-130 Broken rubbly green chloritsed. 135.8-139.4 Patches of broken, rubbly faulted rock. End of Hole	39 149 151 152 152 153 155 155 155 155 161 162 165 165 165 155 155 155 155 155 155 155	282999999999999999999999999999999999999	2010-23456789012468024680246802468024680246		3288059-845847 11 12-39-4724-9-24-59		

				~ . /					
P	ROJECT_	<u>Gaspard Take</u> HOLE No <u>90 - 3</u> LOCATION <u>_///sc</u>	overy L	1nd			PAG	EIOF_	3
D.	ATE STA	RTED 26 Jeft 1990 DATE COMPLETED 28 J20 CLAIM NO. FAME 1	. COLL	AR LAT	_ 510	<u> </u>	DEP	5501	E
DF	RILLED B	r_Phil's Diamond Dmilling CORE SIZE NR2/Wline	2	ELE	V		AZIMUTH	320	0
	OGGED B	Y D. R. Potersen DIP TESTS 124.1m = 48°		DIP	-50)°	LENGTH	124	t.Im
0	BJECT	To Text VLF Revisitivity Anomaly	HOR.	PROJ.	78n		VERT. PR	αι. <u>_9</u> 6	2m
MET	ERAGE			SAMPL	ING		Au		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	ppb		
0	20.4	Overburden,	39182	26	27	1	2		
304	27.5	Till .	183 184	27	28		3		
20,7		Broken int (intensely) weathered aravely bedrock	18.5	29	30		10		
23.5	25.8	Rubbly, broken anderite, int weathered Occ (occas-	187	31	32	<i>i</i>	4		
178		Addite Lonal [q13 (quar 13) strs(stringers).	881 9.81	52 33	33 34		9		
		investice Great silication HE-7 80% For matrix 20% sould	190 191	34 35	35 36		23		
		white cheno's to 2mm.	- 192	36	37	1	3		
		26-29 mod (moderate) weathered	193	37 38	38 39				
		29-48 service, fig, dissemilationated to 2%.	195	39	40	i			
		at units iverilets) and stis, no miphides of	196	40 41	41 42		2		
		low angle to claxis (core axis). Occ vugs.	198	42	43	ļļ			
		35.6 Occ minor ats stirs and Units	200	43 44	47 45		3		
		39.0 Fault, 20 cm crnmbly grey gge @ 450	201	45	46	1			
		45-46.3 Qlg units and stis stwork, minor epidole Flanking Units.	203	47	48	1	2		
		47-48.5 Calcite stis to Imm	204	48	49				
		48.7 Fann, Dem clayey, sandy, grey gge 49-50 Qt5 units and str stwork random orientation	205	50	51	1			
		wikepidate.	207	51	52	1	4		
1		>1,53.2,54.2 q13 units @ 40° 10 3mm, WK epidole envelope + Light green colour, silicification with	209	53	54	1	1		
		30cm wide envelopes.	, 210	54	52	1	2		
		some viggi, and swork, weak epidole	212	26	57	}	1		
		59.6, 61.4, 62.5 QG VNITS, 3MM@ 40°, Weak epidote.	213	57	78	I			

	PRC	NECT Gaspard Lake HOLE NO 90-3	3			PAGE_2	2_0F	3
MET	ERAGE		SA	AMPLING		Au		
FROM	то	DESCRIPTION	SAMPLE NO FR	ROM TO	м	1 pp6		
	124-1	 62.9 10cm crenulated, ats stis 63.4 - 64.2 &ts unit system ats units some vuggy @ 40°, intruding calcule and epidole units, often goingy - 65-67 &ts calcule fracture system. Vults and short gashes of ats and calcule @ 40° to 70°, of ten crenulated. 68.1 - 70.7 fault, grey clayed gge, H1, containing ats and calcule gashes. 70.7 - 78.0 Andente, silvined light green colour, H7, in patches, several calcule and percented gay. (H3), 79.1 - 83 Anderte, servitized H52, occ wisps and clots v.f.g. pyrile + chalcopyrile (cry). Occ strs ats calcule. 83 - 87.5 toull, grey while gge, H2, in patches. Occ wisps and clots v.f.g. pyrile, servicited, Ats - 70.5 - 100 Chlorite, perceited, Ats - 70.5 - 100 Chlorite - pyrite strs. 92.7 Epithermal ats vein system, vuggy ats units @ 40° and wask stwork. H52. 70.5 - 100 Chlorite - pyrite strs. 92.7 Epithermal ats vein system, puggy ats units @ 40° and wask stwork. 94-95 Gashes, ats and wips gathes ats - 100.7 - 102 Ats vein system, 2mm irreg creawlated ats vein, and wask stwork. 109.3 - 108.3 Occ and wips gathes ats - 105.9 - 106.5 ats strstem with a strone of some system. 109.3 - 118.2 Anderte, weakity to mod breciated, patchy light, green reliations. Ats and strate at a strate at a strate at the strate strate strate at the strate weak strate s	$\begin{array}{c} 39214\\ 5\\ 215\\ 216\\ 217\\ 219\\ 220\\ 221\\ 222\\ 225\\ 224\\ 225\\ 225\\ 225\\ 225\\ 225$	5612345677777778888888888999999999999999999999	HO 10 + 55 2 8 90-2 M456 890-2 8456 7890 - 5- 557890	ガー ー し ー ー ー ー チ イ え え ろう チ よ ろう ー く ス ー ー ち ー ー ト ー ム ろ き ろ ー う ー つ ー		

	PRC	NECT Gaspard lake HOLE NO 90-	3_				PAGE	<u>3</u> 0f	3
мете	RAGE			SAMPL	ING		Au		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	М	ppb		
			39256 257 258 259 260 261 262 263 264 265 266 267 268 270 271 273 274 275 279 279	1012345678901112345678901212123	101 102 104 1057 109 110 112 113 114 116 117 118 120 121 123 12 12 12 12 12 12 12 12 12 12 12 12 12		1427556541265412529455556		

PI	ROJECT_	Gasparry Lake HOLE No 90-4 LOCATION Kelsch	Grid 1.	500 F	265	· <u> </u>	PAG	EIOF_	4
D	ATE STA	RTED 30 Sect 1990 DATE COMPLETED 8 Oct 1990 CLAIM NO. FAME 1	COLL	AR LAT	265	5	DEP. <u>15</u>	00 E	
DF		ar <u>Phil's Diamond Drilling</u> CORE SIZE NQZ/wline	-	ELE	V		AZIMUTH	140	C
L.	OGGED E	D. B. Peterren DIP TESTS 48°@ 171.4m		DIP	-50	0	LENGTH		50
0	BJECT _	To Test Two VLF Registivity Anomalies	HOR.	PROJ.	<u>116 m</u>		VERT. PR	α. <u>/3</u>	6 m
MET	ERAGE	DECONDIAN		SAMPL	ING		An		
FROM	то		SAMPLE No	FROM	то	м	699		
0	21 50	Overburden. Sand, till, small boulders Andesite Jark green glassy, H7, 90% dark green, glassy, matrix 10% light grey felspar pheno's (phenocrusts) to 2mm- Very wit (weak) weath ering. 21.9 10cm qt3(quart3) - chlsrite vein @ 70°. 25.5 - 29.8 Willy biecciated andesite, qt3 stristrim- ers) and gashes, filling fracture planes. &t3 opaque, X-cutting relationships visible. 27.5 20cm qt3-chlorite units (veinlets) @ 70°. 29.8-36 Few opaque, qt3 stris. 36-37.5 Andesite willy biecciated. At5 s/work (stack work) system. Wall rock inclusions in Units. &t5 in gashes and irreg stro along fracture planes. 21-32.6 Gore blocky and Strature planes. 21-32.6 Gore blocky and Strature planes. 21-32.6 Gore blocky and Stratured (85%). Few (15%) solid sections. 32.6-46.0 Generally solid. Occloccarismal.) blocky fractured sections. 46.0-51 Blocky, fractured. Poor recov (recovery) 60% in worst sections. 43-51 Reddish-brown stis, H3, streak white, to imm along fracture planes (rhodocrossie?) often with calcute.	39280 281 282 283 284 285 286 287 287 299 290 291 292 293 294 295 299 291 292 293 294 295 297 298 299 300 301 302 303 304 305 308 309 310	222222222233333333333333333333333333333	234567890123456789012345678901234567890123456789012345678901234567890123456789012				

•

	PRC	NECT Gaspard Lake HOLE NO_ 90-6	<u>t_</u>				PAGE_2	OF	4
MET	TERAGE			SAMPL	ING		An		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	ррb		
STO	то 177.5	 51-59 Fault, grey clayey gge (gsuge), H 1, alternating with Very blocky broken andestie. Fault contains frags (fragments) of gts mineralisation. 51.4 Ats-chlorite Vein, 6cm @ 45" 49.7-50.7 Well developed micro-s/work ats. <u>Andesite</u>, As above, but green in colour, H7, f.grained, < 10% pheno's. s5.5 - 62.1 well developed A (breccia) s/work cut by fault. Approx 5% ats strs. s9-60 Alternate blocky and short solid sections. 60.5-61.5 Fault, sand chips of andestie with ats strs. 62.6-63.3 Fault, blocky, sandy chips of andestie. 62.1 - 65 Weak ats with minor s/work. 67 - 69.2 Fault, blocky sandy and estimation of andestie. 68 - 70.5 Well developed a fault and ats with minor s/work. 69 - 72.7 Weaker unit and s/work system 72.7 - 76 increased A, well developed s/work system 73.5 - 74 Fault, blocky, pebbly, sandy minor, gge. 74 - 72.7 Kautt, "" " ats strs. 76 - 83 Fault, Strsten, pebbly, grey gge with ats strs. 87 - 91 Mid ats with minor core, occ ggy patches with ats str. 87 - 91 Mid ats units Horky slowerk, occ ungs. 91.5 - 94.7 Blocky sonthy slowerk, occ ungs. 91.5 - 94.7 Blocky sonthy slowerk, occ ungs. 91.5 - 94.7 Blocky. 	SAMPLE No 39311 312 314 315 317 317 317 317 317 317 317 317 317 317	FROM 2334567890123456789012345678901234567890123456	TO 3456789012345678901234567890123456789012345678901234567890123456789012345678901234567		pp m - 1 - 5 1 m 5 - 3 - 244 - 2 3946243 - 121 - 2242		

ł

PROJECT Gaspard Lake

HOLE No<u>90-4</u>

. ·

page 3 of 4

		· · ·	r <u> </u>					· · · · · · · · · · · · · · · · · · ·	
METERAG	GE	DESCRIPTION		SAMPL	ING		Hu		
FROM TO	го	DESCRIPTION	SAMPLE No	FROM	то	м	696		
FROM	го	94-103 patchy weak ats units useak slowerk, occ ungay. 104-109% increase in gts units, cremulated, to 10mm, and slowerk ungay. Approx 10 h gts. 102-109 blocky, sections. 1168-117 Fault, pebbly, clayey gge. 117-120.8 Inple Andesite, H6, fg glassy matrix. 110-117 Int. silicification, uight green, H7, texture obliterated, glassy. 110-112 wk gts mineralization, units 112-116 gts-epidate units to sem and wk slowerk. 110-120 wk gts gashes @40° 120-123 v wk gts units and slowerk system, gts, opaque. 2010 dts, occ knotted, occ calcile unggy. Occ epidate strs cart by gts veins, to 2cm@ varying angles to class 125-132.5 ublocky. 126-127 blocky, some gge. 128.5 - 132.5 ublocky. 136.7 - 137 blocky. 136.7 - 137 blocky. 137.7 - 138.4 Purple Andesite, H6, purple-black colour, fine. 141.3 - 144.4 144.5 - 168.2 138.8 - 140.4 wk clayen gge and blocky. 145.5 - 162.4 164.5 - 162.2 138.8 - 140.4 wk clayen gge and blocky. 145.5 - 162.4 164.5 - 162.2 145.5 - 162.4 165.5 - 162.4 165.5 - 162.4 165.5 - 162.4 164.5 - 168.2 138.8 - 140.4 wk clayen gge and blocky. 144.5 - 147 blocky patotes	39346 39346 39346 39346 39346 3353 3555 3555 3555 3555 3555 3555 3	889999999999999999901234567890123456789012345678901234567890123456789012345678901234567890111111111111111111111111111111111111	8890123456789012345678901123456789011212		pp-32-1 M2M742-1 M- M-12M-2-21-21-2M-M4M4		
		141.3-144.4 148.7-149.2 150.2-150.5 152.8-153.3 159.5-162.4 164.5-168.2 138.8-140.4 wk clayen, age and blocky 144.5-147 blocky patches 149 - 149-6 blocky 151.6-152 153 - 159 Qtz veinlet and s/work system, approx 8% qtz,	373 374 375 376 377 378 379 380 381 382	114 115 116 117 118 119 120 121 122 123	115 116 117 118 119 120 121 122 123 124		·- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

.

|--|

HOLE No <u>90-4</u>

page_4_of__4

METERAGE			SAMPL	ING		An	
FROM TO	DESCRIPTION	SAMPLE No	FROM	то	М	ppb	
FROM TO	$\frac{45}{5} \text{ vn/ts} \text{ to } 4mm @ 70° \text{ with actinolite}(?) enveloped conterted and occ knotted$	$\begin{array}{c} 39383456789\\ 393886789012\\ 39388889012\\ 39995339995\\ 399953990122\\ 39995001223\\ 3999539901223\\ 3999539901223\\ 3999539901223\\ 440005678901123\\ 4414444444444444444444444444444444444$	$\begin{array}{c} 124\\ 125\\ 125\\ 125\\ 125\\ 125\\ 125\\ 125\\ 125$	12 5 67 8 9 0 1 4 1 4 4 5 4 5 6 7 8 9 0 1 1 6 1 5 5 6 7 8 9 0 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6		- 112238MA8222191-M44MM4+42212488	

F	ROJECT_	Gaspind Lake HOLE NO 90-5 LOCATION Kelso	h Zone	2			PAG	EIOF_	2
	ATE STA	ARTED 900+ 1990 DATE COMPLETED 12 Oct 1990 CLAIM NO. FAME 1	COLL	AR LAT	295	2	DEP/	<u>500 E</u>	<u> </u>
D	RILLED I	BY Phil's Diamond Drilling Ltd CORE SIZE NQ2/ Wline	2	ELE	v		AZIMUTH	_32(<u> </u>
ι	OGGED I	BY D. B. Petersen DIP TESTS @ 99.7 m = 53°		DIP	-55	- 0	LENGTH	99	<u>.7m</u>
c	BJECT _	To test ULF Resistivity Anomaly	HOR.	PROJ.	581	<u>m_</u>	VERT. PR	iai. <u>81</u>	_m
ME	TERAGE			SAMPL	ING		An		
FROM	то	DESCRIPTION	SAMPLE No	FROM	то	м	ppm		
0	و	<u>Overburden</u> , till	39441	10	11	!			
9		Andesite -	443	12	13				
		areanish and colour HE's Falling andial) dt dat	445	13 14	17	1	E N		
		grey matrix, 5% white felspar pheno's (phenocrysts)	446	IS	16	1	3		
		to Imm. Weakly sericitized.	448	17	18	i	3		
		9-53 core broken and rubbly, occ solid patches;	449	18	19	(11		
		9-17 int lintense) weathered on fracture surfaces	430 451	19 7 0	20	i	33	1	
		17-20 weathering decreasing in int.	452	21	22	i	5		
		16-28 At Vein Sustem. at-epidate uns(veins) to	453	22	$\frac{23}{24}$	1	N R		
		5 cm thick and vnlts(veinlets), crenulated	455	24	25	1	ηr		
		and occ Knotted with v weak swork Istock	456	25	26		8		
,	1 N.	work jun wisps - Veins + VnIIs @ Varying angles_	458	27	28	i	128		
		30-36 Qtz Vein System, qtz-chlorite veins to scm	459	28	29	ļ			
		@ varying angles, v. weak wispy s/work	460	30	30	1	5		
		alg milly, occ carcile His.	462	31	32	1	7		
		38.7-39.0 " " "	463	32	33	1	5		
		42 10cm atz-chlorite vein, milky	465	34	34	1	5		
	100	47-60 Calcite Units and strs (stringers), approx 4%	466	35	36	Ì	2		
65 0	۵۶۰۶	Pupple Andriata	467	56 37	37 38				
2,20		Pupe riversite Reprinted 95% mating 600	469	38	39	I	2		
		matrix, 5° f. gr. white pheno's_	470	39	40	1			
		65.8-72.7 weak sluck of fine calcite stis, occ q13.	471	40	41	1			

٠

.

	PRC	WECT Gaspard Lake HOLE NO. 90-5		PAGE_2_OF	2
MET	ERAGE	SAMPLING		Au	
FROM	то	DESCRIPTION SAMPLE No FROM TO	М	ррЬ	
MET FROM 72.7	ERAGE TO 72.7	DESCRIPTION SAMPLING SAMPLE NO FROM TO 67.7-68.5 Fault, clayey gge. 39473 42 43 68.7.70.7 11 broken rubbly rock, minor gge 474 43 44 Andexile, grey colour, H6'2, fgr grey matrix, 5% while 475 45 46 grey colour, H6'2, fgr grey matrix, 5% while 473 47 48 73-77 fault, broken rubbly rock, gge zones. 478 47 48 73-77 fault, broken rubbly rock, gge zones. 479 48 49 78-83.5 blocky, broken core. 480 495 51 78-82.5 blocky broken strs to 2 mm @ varying 483 51 52 82-99.7 occ single calcite strs to 2 mm 483 51 52 81-97.5 blocky 48 53 54 87-87.5 blocky 55 56 479 56 82 59.7 66 57 57 58 57 8	M / / / / / / / / / / / / / / / / / / /	Au pb 1 1 2 3 2 2 2 1 1 1 1 1 1 1 1	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9 16 410 120 4 1 1 1	

			17 (•_/					2
P	ROJECT_	$\frac{(Aaspard Lake}{2} \qquad \text{Hole No} \frac{90-6}{2} \qquad \text{Location} \frac{90}{2}$	FIX YA				PAGE	EI OF	<u> </u>
D	ATE STA	RTED <u>15001 1990</u> DATE COMPLETED <u>18000 1990</u> CLAIM NO. <u>GAS 18</u>	_ COLL	AR LAT	14,	5 2	DEP	<u> 400 \/\</u>	<u> </u>
DF	RILLED E	ry <u>Phil's Dramond Drilling LFd</u> CORE SIZE NQ2 wfLine		ELE	V		AZIMUTH	<u>140°</u>	
L	OGGED E	Y D. Potersen DIP TESTS		DIP	-50	0	LENGTH	153.	IM
0	BJECT _	To Test ULF Revistivity Anomaly on Gast& Claim	HOR.	PROJ.	94.5	<u>m</u>	VERT. PR	ω//	<u>4.0m</u>
MET	ERAGE			SAMPL	ING		An		
FROM	то		SAMPLE No	FROM	то	м	ppb		
0	7.6	Overburden.	51024	7	8				
		Sand and till	026	11	12				
7.6	110	Andesitic Agglomerate	028	12	16				
		Anderite H 6-7 colour dark aren anny 80% dark	029	17 19	18				
		grey matrix, 20° /2 grey-white felspar pheno's to 2mm	031	21	22	!			
		7.6-9 Agglomerate, 70% sub-angular to rounded clasts	032	25	26				
		12.3-13.6 of grey anderite, green and brown chert, brown f.g.	034	27	28	1	ed		
		17 - 18.2 dacile with hornblende pheno's to Imm_	036	31	32	;	shji		
		19.2- Conse agglomerale, cobles lo locm	037	33	34		Ana		
		11-2 Catale SIC 3 mm @ 20°.	030	37	38				
		21.7 $3 ato star @ 45°$	040	39	40	i	not		
		22.2 Calcile stis @ 30°	041	41	42	',			
		24.7 Qtz str, 3mm @ 10°.	043	45	46		bul		
		23.3-28.3 <u>Agglomerate</u> , coarse	044	47	48	!!			
		29 - 110 Coarse Agglomerate with short Fine grained	046	51	52		0/1		
		andente sections. Agg includes disritic febritic	047	23	54	i			
		days to 20 cm	048	27	20		940		-
		35-35 5 calito Units Origina To To 3mm	050	ŝś	60	i			
		36 knotted calute strs	051	61	62				
		46-48.4 occ cal strs and slowork to 3mm, random orients	022	65	67	1			
		40.5-49 cal strs and stwork to 4mm, 10° to 20°.	054	67	68	i			
		SU Cal Yr Smm Co JU SUS Cal Nr Zmm Zn°	055	69	70	!			
		52-66.5 occ cal stis and sluck over short intervals	057	73	74	1			
				. –		•			

t

	PRC	JECT Gaspard Lake HOLE NO 90-	-6			PAGE_2	OF	2
ME	TERAGE		SAMPL	ING		An		
FROM	то		SAMPLE No FROM	то	м	<i>م</i> م		
110	153.1	70.7-71.3 qtz-calc s/work knytted crenulated units 86.5-90.7 increasing amounts of small angular breccia including disrite clasts. 87.4-87.7 knytted contorted calcite veins. 90.7-91.5 calcite stis and usips. From 93 large clasts increasing to 110 m 110 100m knytted calcite units Anderite, Grey, H62, 60% grey, f.g matrix, 40% white febrar phens's to 2mm. 117 3 calcite veins to 3cm From 92 to 153.1, occ calc units @ 40°. 120-122 calcite stis @ 10° to 3mm, knotted, crenulated 131-131.8 calc stris @ 90° to 3mm 136.5-137.5 crenulated calcit stris 148.5-149.5 calcite wiss crenulated to 2mm 150.3-151 calcite, crenulated, sfwork and units End of Hole	51058 75 059 77 060 79 061 81 062 83 064 87 065 89 066 91 065 89 066 91 067 93 066 91 067 93 068 95 069 98 070 99 071 102 073 108 077 1120 075 1120 077 123 077 123 00	778888899999999999999999999999999999999		< Core solit but not Analysed >>		

Appendix II

Analyses

مز

DATE RECEIVED: SEP 24 1990

ŧ

 ACME ANALYTICAL LABORATORIES LTD.
 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE -

Goldsmith Minerals Limited PROJECT GASPARD LAKE FILE # 90-4732 Page 1 440 - 808 W. Hastings St., Vancouver BC V6C 2X4 Attn: D.B. PETERSEN

SAMPLE#		AU*	CANDI P#	. 3		
,		ppb	SAMPLE#	AU*	SAMPLE#	AU*
						ppp
A 39001		1	3 39037	25	3 30060	4
A 39002		93	1 20020	2.0	A 39069	4
A 39003	ļ	4	A 39030		A 39070	3
A 39004		3	A 39039	8	A 39071	1
A 39005		67	A 39040	11	A 39072	5
N 33003			A 39041	9	A 39073	2
A 39006		2				
1 39007		Ā	A 39042	3	A 39074	7
1 20000		7	A 39043	10]	A 39075	1
A 29000		<u></u>	A 39044	4	A 39076	3
A 39009		4	A 39045	2	A 39077	2
A 39010	1	1	A 39046	2	A 39078	1
2 20011		-				
A 39011	ļ		A 39047	33	A 39079	3
A 39012		L L	A 39048	3	A 39080	1
A 39013		4	A 39049	2	A 39081	3
A 39014		l	A 39050	2	A 39082	2
A 39015		2	A 39051		1 39002	1
				-	A 39083	т.
A 39016	~	2	A 39052	4	A 39084	1
A 39017		2]	A 39053	2	A 39085	1
A 39018		5	A 39054	ام	A 35005	1
A 39019		1)	A 39055	Š	A 39080	1
A 39020		1	A 59055		A 39087	T
			A 39036	4	A 39088	2
A 39021		1	A 39057	3	3 39099	1
A 39022		1	1 39058	Ā	A 39089	- -
A 39023		4	A 39050		A 39090	2
A 39024		1		500	A 39091	4
A 39025		3	SID AU-R	530	A 39092	1
		-	13. 19.		A 39093	660
A 39026		1	SAMDIF##	D TT JL		-
A 39027		1	DALLE DE #	AU *	A 39094	2
A 39028	1	Δ		aqq	A 39095	1
A 30020	1	7			A 39096	2
A 39029	Į		A 39060	26	A 39097	45
A 39030		4	A 39061	25	A 39098	6
3 20023	1	-	A 39062	2	· · ·	
A 39031	Į	1	A 39063	100	A 39099	2
A 39032	[3	A 39064	16	A 39100	5
A 39033		1			A 39101	3
A 39034	ł	3	A 39065	61	A 39102	2
A 39035	1	5	A 39066	5	· 3 30102	ມ ເ
			A 39067	2	N 22102	3
A 39036	1	20	A 39068	2	2 20204	~
STANDARD	AU-R	520	STANDAD ALL-D	250	A JYIU4	6
			DIANDARD AU-R	250	STANDARD AU-R	520

- SAMPLE TYPE: P1 TO P2 CORE P3 SLUDGE

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

.

DATE RECEIVED: SEP 27 1990

DATE REPORT MAILED:

O.t. 1/90

GEOCHEMICAL ANALYSIS CERTIFICATE

Goldsmith Minerals Limited PROJECT GASPARD LAKE FILE # 90-4843 Page 1 440 - 808 W. Hastings St., Vancouver BC Vóc 2X4

	,,				
SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	AU*
	dqq		ppb		ppb
A 39105	1	A 39141	410	A 39162	7
A 39106	3	A 39142	57	A 39163	11
A 39107	1	A 39143	19	A 39164	11
A 39108	1	A 39144	10	A 39165	2
A 39109	2	A 39145	2	A 39166	1
A 39110	3	A 39146	8	A 39167	3
A 39111	1	A 39147	32	A 39168	3
A 39112	1	A 39148	28	A 39169	1
A 39113	1	A 39149	3	A 39170	4
A 39114	4	A 39150	12	A 39171	7
A 39115	1	A 39151	28	A 39172	2
A 39116	1 1	A 39152	8	A 39173	4
A 39117	1	A 39153	6	A 39174	1
A 39118	2	A 39154	5	A 39175	3
A 39119	890	A 39155	3	A 39176	1
A 39120	1 1	A 39156	1	A 39177	2
A 39121	1 1	A 39157	8	A 39178	4
A 39122.	2	A 39158	14	A 39179	1
A 39123	1	A 39159	5	A 39180	5
A 39124 .	2	A 39160	38	A 39181	3
A 39125	1	A 39161	14	A 39182	2
A 39126	1	STANDARD AU-R	540	A 39183	3
A 39127	1	······································	اليبا	A 39184	3
A 39128	1			A 39185	10
A 39129	2			A 39186	1
A 39130	2			A 39187	4
A 39131	1 1			A 39188	9
A 39132	1			A 39189	1
A 39133	1			A 39190	5
A 39134	2			A 39191	3
A 39135	4			A 39192	3
A 39136	1			A 39193	1
A 39137	1			A 39194	1 1
A 39138	7			A 39195	1
A 39139	1			A 39196	17
A 39140	2	•		A 39197	2
STANDARD AU-R	540			STANDARD AU-R	480

- SAMPLE TYPE: P1 TO P2 CORE P3 SLUDGE AU* AMALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

SIGNED BY.

., D.YOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

ANCOUVER B.C. V6A 1R6 AX(604)253-1716 DATE RECEIVED: OCT 3 1990

DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

Goldsmith Minerals Limited PROJECT GASPARD LAKE FILE # 90-4996 Page 1 440 - 808 W. Hastings St., Vancouver BC V6C 2X4 Attn: D. PETERSEN

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU*
A 39198 A 39199 A 39200 A 39201 A 39202	1 2 3 1 1	A 39223 A 39224 A 39225 A 39226 A 39227	4 2 2 3 5	A 39259 A 39260 A 39261 A 39262 A 39263	7 5 6 5
A 39203 A 39204 A 39205 A 39206 A 39207	2 1 1 1 4	A 39228 A 39229 A 39230 A 39231 A 39232	3 2 4 2 3	A 39264 A 39265 A 39266 A 39267 STANDARD AU-R	46 120 6 510
A 39208 A 39209 A 39210 A 39211 A 39212	1 1 2 2 1	A 39233 A 39234 A 39235 A 39236 A 39237	1 1 2 2 1		
A 39213 A 39214 A 39215 A 39216 A 39217	1 3 1 1 1	A 39238 A 39239 A 39240 A 39241 A 39242	1 3 1 2 1		
A 39218 A 39219 A 39220 A 39221 A 39222	2 1 1 1	A 39243 A 39244 A 39245 A 39246 A 39247	2 1 1 2		
STANDARD AU-R	510	A 39248 A 39249 A 39250 A 39251 A 39252	2 3 3 1 1		
		A 39253 A 39254 A 39255 A 39256 A 39257	1 9 1 1 5		
		A 39258 STANDARD AU-R	2 480		

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY.

- SAMPLE TYPE: CORE

<u>.</u>..

-11

D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

O.t. 9/90

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

DATE RECEIVED: OCT 9 1990

DATE REPORT MAILED: Out . 12/.99

GEOCHEMICAL ANALYSIS CERTIFICATE

Goldsmith Minerals Limited PROJECT GASPARD LAKE FILE # 90-5127 Page 1 440 - 808 W. Hastings St., Vancouver BC V6C 2X4 Attn: D. PETERSEN

SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	AU*
	ddd		ppp		pbn
A 39268	14	A 39304	2	A 39318	5
A 39269	11	A 39305	2	A 39319	2
A 39270	2	A 39306	1	A 39320	3
A 39271	5	A 39307	1 1	A 39321	3
A 39272	2	A 39308	1	A 39322	5
A 39273	3	A 39309	2	A 39323	1
A 39274	4	A 39310	1	A 39324	3
A 39275	51	A 39311	1	A 39325	1
A 39276	13	A 39312	1	A 39326	2
A 39277	5	A 39313	3	A 39327	4
A 39278	3	A 39314	1	A 39328	4
A 39279	6	A 39315	2	A 39329	1
A 39280	1	A 39316		A 39330	2
A 39281	1	A 39317	1	A 39331	3
A 39282				A 39332	9
A 39283	1			A 39333	4
A 39284	1			A 39334	16
A 39285	1			A 39335	2
A 39286	1			A 39336	4
A 39287				A 39337	3
A 39288	2			A 39338	1
A 39289	2			A 39339	2
A 39290	1			A 39340	2
A 39291	1			A 39341	1
A 39292	2			A 39342	2
A 39293	2			A 39343	2
A 39294	1			A 39344	4
A 39295	1			A 39345	2
A 39296	1			A 39346 ·	1
A 39297	1 1			A 39347	3
A 39298	1			A 39348	2
A 39299	3			A 39349	1
A 39300	3			A 39350	1
A 39301	2			A 39351	3
A 39302	2			A 39352	2
A 39303	1 1			A 39353	3
STANDARD' AU-R	540			STANDARD AU-R	530

- SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

SIGNED BY. D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS ~~~~

.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

DATE RECEIVED: OCT 11 1990

DATE REPORT MAILED:

Oct 15/20

GEOCHEMICAL ANALYSIS CERTIFICATE

Goldsmith Minerals Limited PROJECT GASPARD LAKE FILE # 90-5201 Page 1 440 - 808 W. Hastings St., Vancouver BC V6C 2X4 Attn: D. PETERSEN

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
A 39354 A 39355 A 39356 A 39357 A 39358	7 4 2 1 1	A 39378 A 39379 A 39380 A 39381 A 39382	4 3 4 9 1	A 39414 A 39415 A 39416 A 39417 A 39418	3 1 1 1 1
A 39359 A 39360 A 39361 A 39362 A 39363	3 1 1 3 1	A 39383 A 39384 A 39385 A 39386 A 39387	1 11 11 2 2	A 39419 A 39420 A 39421 A 39422 A 39423	1 1 3 1
A 39364 A 39365 A 39366 A 39367 A 39368	1 2 3 1 2	A 39388 A 39389 A 39390 A 39391 A 39392	3 8 3 2 8	A 39424 A 39425 A 39426 A 39427 STANDARD AU-R	2 1 1 1 540
A 39369 A 39370 A 39371 A 39372 A 39373	1 1 2 1 1	A 39393 A 39394 A 39395 A 39396 A 39397	2 2 12 1 3	· ·	
A 39374 A 39375 A 39376 A 39377 STANDARD AU-R	2 3 1 3 520	A 39398 A 39399 A 39400 A 39401 A 39402	11 1 3 4 5		
	·	A 39403 A 39404 A 39405 A 39406 A 39407	3 3 4 1 4		
	·、	A 39408 A 39409 A 39410 A 39411 A 39412	2 2 1 2 1		
		A 39413 STANDARD AU-R	6 520		

- SAMPLE TYPE: CORE

SIGNED BY.

AU® ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

DATE RECEIVED: OCT 16 1990

.....

DATE REPORT MAILED: O.C. 19/90.

GEOCHEMICAL ANALYSIS CERTIFICATE

Goldsmith Minerals Limited PROJECT GASPARD LAKE FILE # 90-5307 Page 1 440 - 808 W. Hastings St., Vancouver BC V6C 2X4 Attn: D. PETERSEN

SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	AU*
			aqq		aqq
A 39428	6	A 39464	6	D 51001	6
A 39429	3	A 39465	5	D 51002	9
A 39430		A 39466	2	D 51003	16
A 39431		A 39467	1	D 51004	410
A 39432	4	A 39468	2	D 51005	120
A 39433	3	A 39469	2	D 51006	4
A 39434		A 39470	1	D 51007	1
A 39435	1	A 39471	2	D 51008	1
A 39436		A 39472	1	D 51009	1
A 39437		A 39473	1	D 51010	1
A 39438	1	A 39474	1	D 51011	1
A 39439	1	A 39475	2	D 51012	1
A 39440	1	A 39476	3	D 51013	1
A 39441	1	A 39477	1	D 51014	. 1
A 39442	3	A 39478	2	D 51015	6
A 39443	1	A 39479	2	D 51016	1
A 39444	2	A 39480	2	D 51017	ĩ
A 39445	3	(A 39481	1	D 51018	1
A 39446	3	A 39482	1	D 51019	3
A 39447	3	A 39483	1	D 51020	1
A 39448	3	A 39484	1	D 51021	1
A 39449	11	A 39485	ī	D 51022	1
A 39450	3	A 39486	1	D 51023	1
A 39451	3	A 39487	1	STANDARD AU-R	510
A 39452	5	A 39488	1	· · · ·	<u>. </u>
A 39453	8	A 39489	1		
A 39454	3	A 39490	2		
A 39455	3	A 39491	1		
A 39456	8	A 39492	2		
A 39457	3	A 39493	1		
A 39458	28	7 30404			
A 39459	5	1 39494	2		
A 39460		A 39496	1 î		
A 39461	5	A 39497	2		
A 39462	7	A 39498	3		
A 39463	5	2 30/00		١	
STANDARD AU-R	530	A 39500	1 1		
		STANDARD AU-R	500		

- SAMPLE TYPE: CORE AUT ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

GO	LDSMITH	MINERALS	LIMITED
	GASPARD	LAKE CLINTON M.D.	PROJECT
	DIAMON	D DI	RILLING
		SECTIONS	
-	and the second		