LOG NO:	Jub 13/91	RD.
ACTION:	/	
FRE NO.		
FTLE NO:		

U M

ZO

< ₽ 2

22

 \mathbf{z}

) and the second \bigcirc \mathcal{O}

0 0

~ … 00 **国** の **9** <

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL ASSESSMENT REPORT

on the

TAM CLAIM GROUP (TAM, HAM, REM & TAM 90 Claims)

located in the

OMINECA MINING DIVISION 56 degrees 00'N and 125 degrees 30'W N.T.S. 93N/13E, 14W & 94C/3W, 4E

owned by:

MAJOR GENERAL RESOURCES LTD. #1000 - 900 W. Hastings Street Vancouver, BC V6G 1E5

operated by:

VARITECH RESOURCES LTD. #401 - 325 Howe Street Vancouver, BC V6C 1Z7

managed by:

MINCORD EXPLORATION CONSULTANTS LTD 🛶 🛏 #110 - 325 Howe Street < Z Vancouver, BC V6C 1Z7 \bigcirc

written by:

Peter Peto, Ph.D., F.G.A.C. January 9, 1991

Table of Contents

Page No.

1.0	Introduction
2.0	Location and Access1
3.0	History
4.0	Property Definition4
5.0	Regional Geology
6.0	Property Geology6
6.0a	Boundary Grid - Geology and Mineralization6
6.0b	Slide Grid - Geology and Mineralization9
7.0	Geochemical Surveys10
8.0	Geophysical Surveys13
9.0	Interpretation15
10.0	Conclusions16
11.0	Recommendations

Appendices

- 2. Itemized Cost Statement
- 3. . Author's Certificate
- 4. Revised Core Logs
- 5. Geochemical & Assay Certificates
- 6. Geophysical Survey Report Scott Geophysics

Tables

Table	1:	TAM	Claim	Stati	ls
Table	2:	TAM	Drill	Hole	Summary

Figures

Figure 1:	Property Location Map (Approx. 1:7.4 million)
Figure 2:	Claim Map (1:50,000)
Figure 3:	Regional Geological Setting (1:10 million)
Figure 4:	Regional Geology Map (1:100,000)

Attachments

Geology Maps

Figure 5: Generalized Property Geology Map (1:10,000) Figure 6: Geology of Boundary Grid (1:2,500) Figure 7: Geology of Slide Grid (1:2,500)

Geochemistry Maps

Figure 8: Copper Gold Geochemistry, Boundary Grid (1:2,500) Figure 9: Copper Gold Geochemistry, Slide Grid (1:2,500)

Geophysical Maps

Figure 10a: Magnetics, Boundary Grid (1:2,500) Figure 10b: Magnetics, Slide Grid (1:2,500) Figure 11a: VLF-EM Filtered Data, Boundary Grid (1:2,500) Figure 11b: VLF-EM Raw Data, Boundary Grid (1:2,500) Figure 12a: VLF-EM Filtered Data, Slide Grid (1:2,500) Figure 12b: VLF-EM Raw Data, Slide Grid (1:2,500) Geophysical Maps Cont.

Figure 13a: Chargeability, Boundary Grid (1:2,500) Figure 13b: Resistivity, Boundary Grid (1:2,500) Figure 14a: Chargeability, Slide Grid (1:2,500) Figure 14b: Resistivity, Slide Grid (1:2,500) Figure 15: I.P. Pseudosections (14 Sheets 1:2,500)

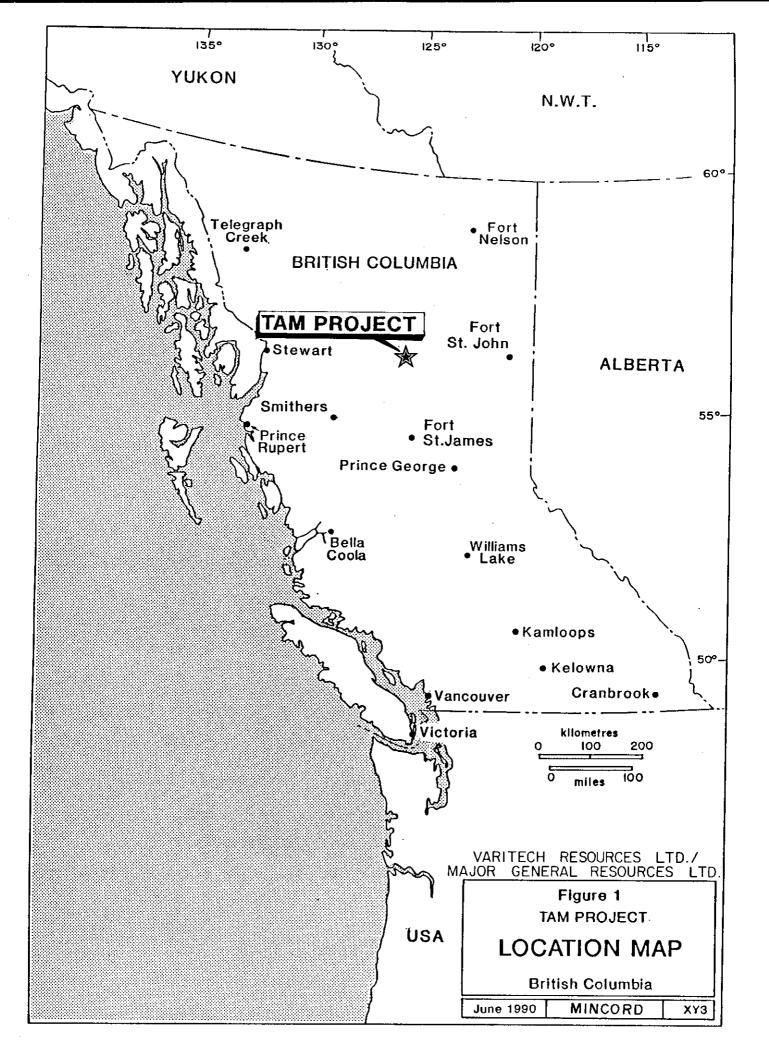
1.0 INTRODUCTION

Varitech Resources Ltd. optioned the Tam Cu-Au property from Major General Resources Ltd. and commissioned Mincord Geological Consultants to carry out a preliminary surface exploration program recommended by Orequest Consultant Ltd. (Chapman, 1990). The bulk of the exploration program was carried out over two separate grids which are largely coincident with grids used by Union Miniere Exploration Ltd. (UMEX) in the early seventies (Burgoyne & Pauwels, 1974). The present day exploration program is briefly summarized below with further elaboration given within the text of this report.

Boundary Grid: Line cutting 15 kilometers, soil sampling: 505 samples analyzed for Ag, Au, As, Cu, Mo and Zn. Rock chip sampling: 69 samples (as above); geological mapping of 2 square kilometers on 1:2500 scale; Induced polarization, Magnetometer and VLF-EM surveys on 17 line kilometers.

<u>Slide Grid:</u> Line cutting 11.6 kilometers; soil sampling: 228 samples; 44 Rock chip samples; geological mapping of 1.1 square kilometers on 1:2500 scale and; 9.2 kilometers of I.P., 10.7 kilometers of magnetometer and 5.2 kilometers of VLF-EM surveys.

In addition, 277 core samples were taken over selected intervals from old UMEX core and analyzed for gold and copper. An addition, 26 soils and silts and 25 rock samples were collected from the TAM 90 claims as part of a prospecting program covering some 25 square kilometers.


2.0 LOCATION AND ACCESS

The Tam property is situated within the Omineca Mountains some 200 kilometers NNE of the town of Smithers (Figure 1). Access to the property is via Uslika Lake by float plane or by road to the Osilinka River from Fort St. James and by helicopter from there to a tent camp on Haha Creek. A logging road is projected to reach the property, some 12 kilometers distant, in the near future. An alternate land route to the claim area is via a bulldozer road from the 'Lorraine' Copper prospect, situated to the south of the property.

The claims straddle the glacially scoured, east trending valley of Haha Creek which rises from 1025 to 1800 meters above sea level. Ridges north of the valley are more rugged than those located to the south. Tree line ends at about 1500 meters above sea level. The property was actively explored by UMEX from 1969 to 1975 resulting in the diamond drilling of some 2871 meters in 24 holes (see Table 2 and Appendix 12).

3.0 HISTORY

The following excellent summary of the exploration history of the Tam property has been excerpted, with the permission of the author, from a report by J. Chapman (1990).

"The original showing on the claim block was discovered during the late 1940's when reconnaissance exploration of the Duckling Creek area by Kennco Explorations (Western) Ltd. uncovered copper mineralization along a north facing cirque wall overlooking the Haha Creek Valley. Recent exploration commenced on the Tam property in 1969 with the staking of the original Tam claims. the period 1969 through 1972 During reconnaissance style exploration was carried out by Dolmage Campbell and Associates on behalf of UMEX. This work was directed at evaluating the Hogem Batholith, and the Duckling Creek Syenite Complex, in a search for porphyry type deposits. A large block of ground covering the northern quarter of the Duckling Creek Syenite Complex, in a search for porphyry type deposits. A large block of ground covering the northern quarter of the Duckling Creek Syenite Complex was staked as a result of these programs. The new claims were then mapped, prospected, soil and sediment sampled to various degrees. Numerous small copper showings and prospects were located as a result of this work however apart from the Tam project none received any significant follow up."

"In 1973 UMEX assumed direct control of the program and concentrated on evaluating the Tam property which at that time consisted of the Tam and Ham claims. Only approximately \$35,000 was expended between 1973 and 1976 on exploration of the remainder of the Duckling Creek Syenite Complex outside the Tam property."

"Under the supervision of Dolmage Campbell and Associates, five drill holes totalling over 762 meters were completed (holes 72-1 through 5) in the area of the Cirque and Fault showings. No drill logs were available to the author for this work, however the 1973 Summary Report for UMEX indicates intervals of 60 feet grading 0.31% copper and 20 feet of 0.64% copper in two holes near the Cirque showing."

"A soil sampling program over the Jo Ann claims, on the southeast border of the Tam, defined a large and significant copper anomaly which resulted in them being optioned by UMEX in 1973."

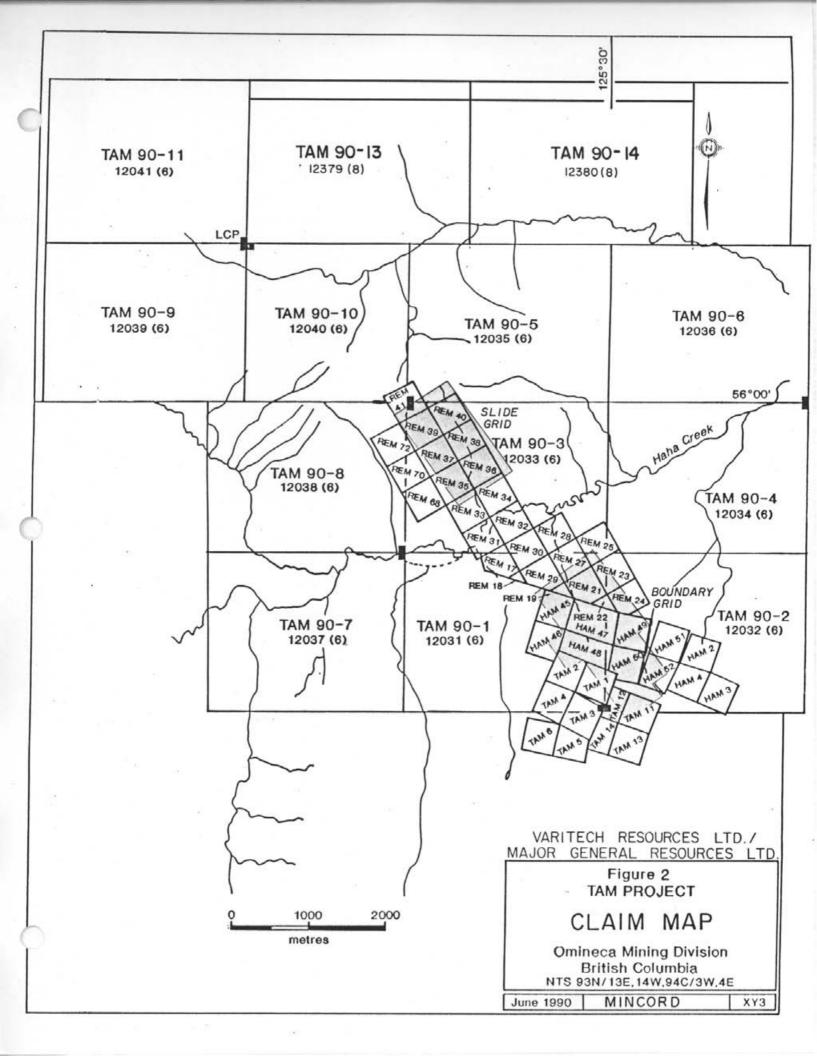
"The 1973 exploration program included staking the Tam claims to cover the projected northwesterly extension of the mineralization Work included soil encountered on the Tam and Ham claims. geochemistry (analyzed for copper and silver), ground magnetic surveys and geologic mapping on the Rem claims. This work was concurrently with the geologic mapping, out carried soil geochemical surveys (analyzed for copper and silver), magnetic, electromagnetic and Induced Polarization surveys (Jo Ann claims only), trenching and diamond drilling on the Tam and surrounding Ham claims. Diamond drilling amounted to 183.8 meters in 4 holes, TR-73-1 and 2 on the Boundary showing, and JA-73-1 and 2 on the Jo Ann claims, which are no longer part of the property."

"The 1974 program concentrated on the area of the boundary and Midway showings and consisted mainly of drilling, induced polarization and magnetic surveys, soil geochemistry, geologic mapping and trenching. In addition 68 peripheral claims were staked and received varying degrees of reconnaissance exploration before being allowed to lapse. The drilling program amounted to 13 holes totalling 2184.1 meters predominantly on the Boundary and Midway showings, but with one hole each on the Slide and Fault showings."

DRILLING SUMMARY 1973-1976

			Bearing			
<u>Hole</u>	Year	Location	Degrees	Depth	Angle	Target
TR-1	1973	L59+90S/59E		198'4"	-90	Boundary
TR-2	1973	L58S/56E	060	49'	-45	Boundary
JA-1	1973	L8/8N		202'	-	Jo Ann
JA-2	1973	L0/5N		154'	-	Jo Ann
TR-3	1974	BL0/38E	025	281'	-45	REM (Slide)
TR-4	1974	IP 12+90S/	220	300'	-45	Midway
		1+06W				-
TR-5	1974	T97N/98W	360	198'	-45	Fault
TR-6	1974	L0/3E	232	676'	-45	Boundary
TR-7	1974	L2N/3E	232	678'	-45	Boundary
TR-8	1974	L2N/3E	232	157'	-45	Boundary
TR-9	1974	L2N/5E	232	848'	-45	Boundary
TR-10	1974	L2N/4E	232	435'	-45	Boundary
TR-11	1974	L16+80S/2+30E		597'	-45	Midway
TR-12	1974	L20S/4+50E	232	600'	-45	Midway
TR-13	1974	L0/7E	232	1078'	-45	Boundary
TR-14	1974	L0/2W	232	678′	-45	Boundary
TR-15	1975	L6N/3E	232	698'	-45	Boundary
TR-16	1975	L4S/2W	232	121.3m	-45	REM
TR-17	1975	L5+50N/1W		119.3m	-90	REM
TR-18	1975	L1ON/1E	232	122.6m	-45	Boundary
TR-19	1975	L10N/1W	232	121.9m	-45	Boundary

"Work performed during the 1975 field season included Induced Polarization and magnetic surveys, soil geochemistry, geologic mapping and diamond drilling. The work program was directed principally at the Rem claims which cover the area northwest of the Boundary deposit, however some soil sampling was carried out over the End claims, staked north of the Boundary deposit on the east side of the Rem claims. A grid based magnetic, IP and soil sampling survey was conducted over the Rem 17-41, 68, 70 and 72 claims followed up by two diamond drill holes, (T-75-16, 17). Two additional holes were drilled to test the northwest extension of the Boundary deposit however no significant mineralization was encountered in T-75-16, 17, 18 and 19."

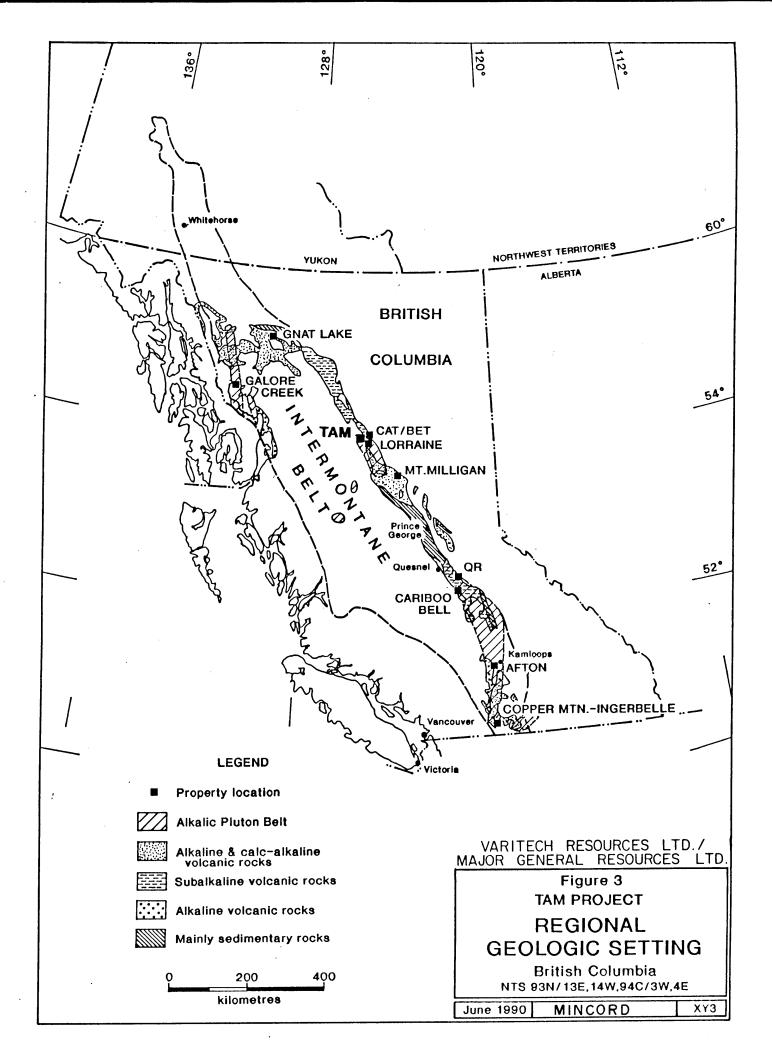

"During the 1976 work program soil geochemical sampling was carried out over the ND claims which were staked to the northwest of the Slide showing. A maximum value of 511 ppm copper was received from this work and these claims were allowed to lapse." "Other significant projects in the area include the Lorraine Deposit (Kennco/Granby), the Misty property (El Paso Mining and Milling Co.) and the Cat/Bet project (BP Resources/Lysander Gold Corp.). Extensive exploration programs are under way by numerous companies stretching over a 150 kilometers long block of claims between the Tam project and the Mt. Milligan Deposit to the southeast."

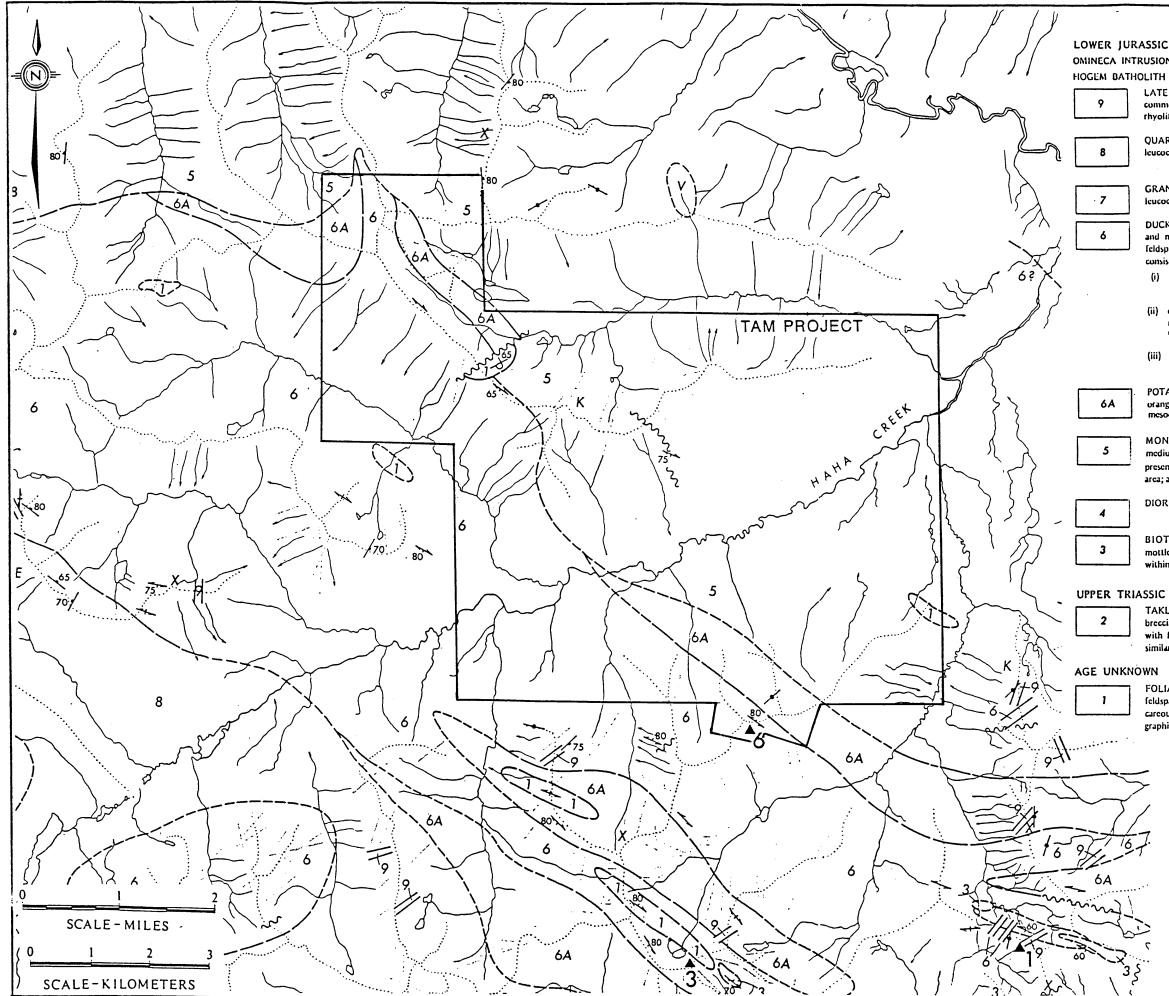
4.0 PROPERTY DEFINITION

The Tam property consists of 10 modified grid claims comprising some 216 units which partially overlap a contiguous block of two post claims originally recorded between August, 1969 and February, 1973. The initial recorded positions of the TAM, HAM and REM two post claims were misplaced on the government claim maps but are correctly positioned in Figure 2. The current claim status of the property is shown in Table 1.

Claim	Date of	Record	Mining	Expiry
Name	Record	No.	District	Date
Ham 2	08/04/72	114155	Omineca	08/04/91
Ham 3	08/04/72	114156	Omineca	08/04/91
Ham 4	08/04/72	114157	Omineca	08/04/91
Ham 45	08/04/72	114198	Omineca	08/04/91
Ham 46	08/04/72	114199	Omíneca	08/04/91
Ham 47	08/04/72	114200	Omineca	08/04/91
Ham 48	08/04/72	114201	Omineca	08/04/91
Ham 49	08/04/72	114202	Omineca	08/04/91
Ham 50	08/04/72	114203	Omineca	08/04/91
Ham 51	08/04/72	114204	Omineca	08/04/91
Ham 52	08/04/72	114205	Omineca	08/04/91
Rem 17	02/02/73	119782	Omineca	02/02/91
Rem 18	02/02/73	119783	Omineca	02/02/91
Rem 19	02/02/73	119784	Omineca	02/02/91
Rem 20	02/02/73	119785	Omineca	02/02/91
Rem 21	02/02/73	119786	Omineca	02/02/91
Rem 22	02/02/73	119787	Omineca	02/02/91
Rem 23	02/02/73	119788	Omineca	02/02/91
Rem 24	02/02/73	119789	Omineca	02/02/91
Rem 25	02/02/73	119790	Omineca	02/02/91
Rem 27	02/02/73	119792	Omineca	02/02/91
Rem 28	02/02/73	119793	Omineca	02/02/91
Rem 29	02/02/73	119794	Omineca	02/02/91
Rem 30	02/02/73	119795	Omineca	02/02/91
Rem 31	02/02/73	119796	Omineca	02/02/91
Rem 32	02/02/73	119797	Omineca	02/02/91
Rem 33	02/02/73	119798	Omineca	02/02/91
Rem 34	02/02/73	119799	Omineca	02/02/91
Rem 35	02/02/73	119800	Omineca	02/02/91
Rem 36	02/02/73	119801	Omineca	02/02/91
Rem 37	02/02/73	119802	Omineca	02/02/91

TABLE 1 - CLAIM STATUS


Claim Name	Date of Record	Record No.	Mining District	Expiry Date
Rem 38	02/02/73	119803	Ominoza	02/02/01
	• •		Omineca	02/02/91
Rem 39 Rem 40	02/02/73 02/02/73	119804 119805	Omineca	02/02/91
	• •		Omineca	02/02/91
Rem 41 Rem 68	02/02/73 02/02/73	119806 119833	Omineca Omineca	02/02/91
				02/02/91
•••••	02/02/73	119835	Omineca	02/02/91
Rem 72	02/02/73	119837	Omineca	02/02/91
Tam 1	08/25/69	79224	Omineca	08/25/91
Tam 2	08/25/69	79225	Omineca	08/25/91
Tam 3	08/25/69	79226	Omineca	08/25/91
Tam 4	08/25/69	79227	Omineca	08/25/91
Tam 5	08/25/69	79228	Omineca	08/25/91
Tam 6	08/25/69	79229	Omineca	08/25/91
Tam 11	08/25/69	79234	Omineca	08/25/91
Tam 12	08/25/69	79235	Omineca	08/25/91
Tam 13	08/25/69	79236	Omineca	08/25/91
Tam 14	08/25/69	79237	Omineca	08/25/91
Tam 90-1	06/10/90	12031	Omineca	06/10/91
Tam 90-2	06/10/90	12032	Omineca	06/10/91
Tam 90-3	06/11/90	12033	Omineca	06/11/91
Tam 90-4	06/10/90	12034	Omineca	06/10/91
Tam 90-5	06/12/90	12035	Omineca	06/12/91
Tam 90-6	06/11/90	12036	Omineca	06/12/91
Tam 90-7	06/12/90	12037	Omineca	06/11/91
Tam 90-8	06/12/90	12038	Omineca	06/12/91
Tam 90-9	06/13/90	12039	Omineca	06/13/91
Tam 90-10		12040	Omineca	06/12/91
Tam 90-11	06/13/90	,12041	Omineca	06/13/91
Tam 90-13	07/27/90	12379	Omineca	07/27/91
Tam 90-14	07/27/90	12380	Omineca	07/27/91


5.0 REGIONAL GEOLOGY

The property is situated within the Hogem Batholith, an Upper Triassic to Lower Cretaceous composite intrusion emplaced into volcanic rocks of late Triassic age known as the Takla Group. The Takla Group is part of a larger tectonic assemblage known as the 'Quesnel Trough' which hosts several economically significant copper-gold alkaline porphyry deposits such as those shown on Figure 3.

The Hogem Batholith is an elongate, north west trending, semiconcordant synorogenic, composite, mesozonal, plutonic complex. Peto (1971) recognized 17 distinct plutonic varieties on the bases of mineralogical, textural and field relation criteria. Garnett (1978) subdivided the southern Hogem Batholith into three rock suites: an early Phase I "Hogem" suite of Upper-Triassic to Lower Jurassic age, Phase II "Duckling Creek Syenite Complex" of Lower to Middle Jurassic age and Phase III, "Granites" of early Cretaceous age. The Tam property is situated along the eastern margin of the Duckling Creek Syenite Complex as shown in Figure 4.

- 5 -

LEGEND

LOWER JURASSIC (?) TO LOWER CRETACEOUS OMINECA INTRUSIONS [3 (?) to 9]

LATE DYKES, light brown, orange, grey, aphanitic to fine grained, commonly porphyritic; mainly latite, less commonly dacite, rhyoducite, rhyolite, fine-grained granite

QUARTZ MONZONITE, pink to white, medium to coarse grained, leucocratic to holofelsic; porphyritic; grades into granite in some areas

GRANODIORITE, light grey to white, medium to coarse grained, leucocratic

DUCKLING CREEK SYENITE COMPLEX, great variety in texture and mafic content; contains both magmatic and metasomatic potash feldspar-rich rocks; although not mapped separately, the Complex consists of three main divisions

(i) brown to orange, medium to coarse-grained, leucocratic to holofelsic intrusive rocks, quartz veins occasionally cut these rocks - 1

-

þ

- (ii) dark grey-pink mottled, fine to medium-grained meso- to melanocratic hybrid potash feldspar rock, generally foliated appearance.
- (iii) brown to orange, pegmatitic to aplitic dykes and stringers cutting the above divisions as well as Units 2 to 5

POTASH FELDSPAR ENRICHED HYBRID MONZONITE, pink to orange/black mainly fine to medium grained, leucocratic to mesocratic:

MONZODIORITE-MONZONITE, grey/black mottled, fine to medium-grained, mesocratic ; quartz-bearing varieties are present; dykes of this unit cut Unit 2 along the Hogem-Takla contact area; accessory magnetite is common in Units 3, 4, and 5

DIORITE, dark grey to black, medium-grained

BIOTITE-POTASH FELDSPAR PYROXENITE, dark green/black mottled, coarse grained; occurs as lenses and irregularly shaped blocks within Units 6 and 6A

UPPER TRIASSIC TO LOWER JURASSIC

TAKLA GROUP VOLCANIC ROCKS, mainly dark green tuffs and breccias of andesitic to basaltic composition; occasionally interbedded with flow rocks and cut by pyroxene and feldspar porphyry dykes of similar composition; interbedded dolomites were noted at one locality

FOLIATED 'BASEMENT' ROCKS, mainly amphibole-biotite-potash feldspar foliates, gneisses, and schists; some garnetiferous and calcareous mica schists have been noted; this unit appears at topographically lower levels enveloped and cut by Unit 6 foliates

767. 1	VARITECH RESOURCES LTD./ MAJOR GENERAL RESOURCES LTD.
	Figure 4
A	TAM PROJECT Omineca Mining Division
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PROPERTY GEOLOGY (After J.A.Garnett, Preliminary Map No.5)
35.	British Columbia NTS: 93 N/13E, 14W & 94 D/3W, 4E
$\backslash$ , $\langle$	JUNE 1990 MINCORD DRAFTING: RWR

Garnett (1978) divides the Duckling Creek complex into two regional units: (Unit 6) a dark grey to pink, fine to medium grained, foliated syenite and (Unit 7) a pink texturally variable, leucocratic syenite. In actual fact Garnett (1974) recognized four distinct varieties within the complex (see Figure 4), namely: Unit 6i - a brown to orange, medium to coarse grained leucosyenite; Unit 6ii - a mottled dark grey-pink, fine to medium grained mesocratic syenite; Unit 6iii - a brown to orange, aplitic to pegmatic textured, holofelsic syenite occurring as dykes, veins and stringers; and 6A - a mottled, pink to orange black, fine to medium grained, streaky, gneissose to schistose "potash enriched hybrid monzonite". These are the rock units which also underlie the Tam claims.

## 6.0 PROPERTY GEOLOGY

A generalized geological map of the claim area showing claim boundaries and grid layouts is given by Figure 5. On this map rock units are defined as follows: Unit 1, a mottled, grey-red, medium to grained, massive to foliated monzodiorite coarse or syenodiorite. It occurs along the eastern portion of the claims and represents an early (Phase I) mafic differentiate of the Hogem Unit 2 consists of an undifferentiated assemblage of Batholith. foliated boarder facies or epizonal roof rocks consisting of greenstones, greenschists, micaschists (paragneiss) and deformed volcaniclastics which probably represent Takla Group roof pendants. These are intruded by well foliated, fine grained monzonites and . syenites which are said to consist of potash feldspar, plagioclase, biotite, muscovite, quartz, magnetite with variable amounts of accessory pyrite, chalcopyrite, calcite and hematite (Pauwels and Burgoyne, 1976).

Unit 3 is a mottled grey/pink/red, medium to coarse grained, equigranular to porphyritic, massive to foliated strongly magnetic, mesocratic syenite. Mafic minerals, consisting of pyroxene, amphibole and biotite, are interstitial to coarser grained feldspar crystals which become megacrystic in porphyritic varieties. Unit 4 is pink, brown, orange, medium to very coarse grained, massive to weakly foliated, weakly magnetic leucocratic syenite. It consists largely of alkali feldspar with interstitial sericite and minor chloritized mafics, usually biotite or hornblende. Both Units 3 and 4 belong to Phase II of the Hogem suite which are known to host low grade copper prospects throughout the Duckling Creek complex.

Unit 5 is a speckled, grey to brown, medium grained, equigranular, uniformly textured quartz monzonite. It probably belongs to Phase III of the Hogem suite and is found mostly in the northern portions of the property.

# 6.0a BOUNDARY GRID - GEOLOGY AND MINERALIZATION

The Boundary Grid (Figure 6) covers an intrusive contact zone of northwest trending, vertically dipping septum of Unit 2 foliates which have been intruded by a plug of leucosyenite and its associated dykes (Unit 4). Remnants of altered mesocratic syenite (Unit 3) intrude and are preserved within Unit 2 foliates. Several localized areas of copper mineralization are observed to occur within Unit 2 foliates adjacent to the leucosyenite plug. These are known as the "Boundary", "Midway", "Creek" and "Ridge" prospects.

The "Boundary" deposit, centred around 0+00N and 0+50E, was estimated to have possible geologic reserves of 7.2 million tons averaging 0.55% Cu and 0.12 oz/ton silver (Dyson, 1974). Copper mineralization occurs both as fine grained disseminations and as fracture fillings. (quartz +/- pyrite, quartz +/- chalcopyrite, biotite +/-chalcopyrite, K-spar +/- chalcopyrite, magnetite +/chalcopyrite and chalcopyrite +/- pyrite veins, veinlets, stringers and discontinuous seams). Some mineralized fractures show reddish K-spar +/- pyrite +/- sericite alteration envelopes; guartz vein stockwork is poorly developed. Chalcopyrite to pyrite ratios are very high near the core of the deposit but an outer pyrite halo is either weak or poorly preserved. No propylitic (clinozoisite +/epidote +/- calcite) alteration assemblages were observed within or marginal to the deposit but the strongest copper mineralization was clearly coincident with strong potassic (secondary K-feldspar + biotite) alteration. Gold values based on re-assaying of copperrich sections in 11 drill holes are generally erratic and low in comparison to other economically viable Cu-Au deposits.

The "Midway" showing, situated near the base line at 4+50S, consists of sparsely disseminated chalcopyrite in dark, fine grey foliated monzonite. The 'Ridge' showing, situated on a steep west facing slope, beyond the west end of the grid, appears to be a small erosional remnant of a gneissic roof pendant cut by chalcopyrite bearing leucosyenite dykes. Mineralization consists of malachite stained, highly fractured (N50 degrees E/ 80 degrees NW) schistose monzonite over an area limited to some 50 meters across.

The "Creek" showing also occurs on the same ridge face just to the north of the 'Ridge' showing, and consists largely of disseminated fine grained blebs of chalcopyrite within schistose to gneissic monzonites largely exposed along talus slopes just above the creek. Some fracture controlled chalcopyrite associated with secondary biotite was found but fracture densities are low. Malachite stain is rare.

The "Sam" zone is another area of weak or spotty copper mineralization, consisting of malachite and azurite stain, is observed in talus on the south end of the Boundary Grid. The area is near a contact zone between Units 2 and 4 wherein rocks are rusty, sheared and show argillic (clay) or phyllic (sericite and pyrite) alteration. In addition several prominent, north trending quartz veins, crop out just east of the base line and may represent a single en echelon vein system. The "Cirque" showing is situated on the Tam 3 and 4 claim (Figure 5), west of the Boundary grid, and consists of disseminated chalcopyrite (0.31% Cu/19 meters) in magnetite rich biotite syenite intruded by leucosyenite dykes.

The "Fault" showing situated on the Tam 5 and 6 claims, to the south of the "Cirque" showing, consists of disseminated chalcopyrite and bornite in iron stained foliated monzonites exposed in a prominent N 50 degrees W trending lineament. Surface sampling (Burgoyne and Pauwels, 1974) yielded a weighted average of 0.65% Cu and 0.2 oz/ton Ag over 36 meters but the best drill hole intercepts were limited to only 0.64% Cu over 6 meters.

The presence of faults on the Boundary Grid are indicated in drill core, however due to a lack of good rock exposure it is difficult to ascertain the attitude and extent of even the most obvious faults. As observed in core, faults are post-mineral and are accompanied by strong argillic alteration. The Boundary grid is dissected by several east trending lineaments, evident as draws, gaping chasms or scarps, which probably represent subsidiary faults paralleling a master fault underlying the valley of Haha Creek. Several drainages have a northerly orientation also suggesting they may be controlled by underlying faults. A series of several steplike tilted blocks evident along the southern portion of the grid also suggest that a rectilinear array of north and east trending normal faults have disrupted the intrusive complex.

A survey of joint patterns over the grid area appears to support this view which was also found to hold at the Lorraine Cu deposit (Garnett, 1972). Burgoyne and Pauwels (1975) speculate that a strong "northwest" trending zone truncates the Boundary deposit to the southeast with possible right lateral displacement to the If one interpolates fault-zones observed in DDH 74-9 northwest. and 74-13 one obtains a vertically projected fault trace trending N 75 degrees W, which also coincides with a sharp resistivity contrast, suggesting a fault bounded cut off of the copper deposit. Similarly a prominent east trending scarp, just south of DDH 73-1 may represent a fault trace also observed in core from DDH 74-10. Further, drill holes 74-6, 7 and 8 consist largely of mineralized foliates (91%, 82% and 68% respectively) to a vertical thickness of some 175 meters; whereas drill holes 9, 10, 13 and 14 consist largely of unmineralized intrusive (49%, 80%, 64% and 63% respectively) with a correspondingly lesser thickness of foliates (25-111 meters) largely diluted by barren dyke rocks (see Table 2 and Appendix 12). These would seem to indicate that the Boundary deposit is almost entirely enclosed within a down faulted fault block or the keel shaped protuberance of a roof pendent engulfed by intrusions. In either case there is little scope for increasing tonnage unless it is drilled to test for a northwesterly extension which is largely precluded by Induced polarization data (see Figure 13a).

## 6.0b SLIDE GRID - GEOLOGY AND MINERALIZATION

The "Slide" Grid is situated on a steep (average 28 degrees) south facing slope, largely covered by colluvium and a secondary growth of slide alder, willow and scrub spruce. Outcrop is largely confined to the northern most and east central portions of the Present mapping (Figure 7) and reference to maps produced grid. by Burgoyne and Pauwels (1973) and Pauwels and Burgoyne (1975) indicates that the grid is largely underlain by northwest trending Takla and Duckling Creek type foliates (Unit 2), well exposed above 5400 feet elevation and perhaps 1000 meters wide. These are intruded by medium to coarse grained, largely megacrystic, magnetic mesosyenite (Unit 3) to the east and northwest, which in turn are intruded by pink coarse grained leucosyenite (Unit 4) cropping out to the south and southwest. The foliates tend to be well bedded, with gneissic to schistose textures trending N 45 degrees W to westerly with near vertical dips. Pauwels and Burgoyne (1975) depict the pendent as progressively thinning southward, downslope, to a thickness of less that 50 meters along line 5+00S.

Angular talus blocks of gneissic monzonite or greenschist carrying disseminated chalcopyrite are scattered over the grid area. Strong malachite stain is observed in a hand dug trench cutting greenschist near 6+00N and 0+50E which is referred to as the "Slide" showing. Several areas of localized copper mineralization were observed to occur in sygnitic gneisses immediately north of the grid area. In addition, mesosyenite cut by thin. discontinuous, drusy quartz veinlets carrying disseminated bornite were observed to the northwest of the grid area. Rock chip sampling of these areas outside the grid are shown in Figure 5. Prospecting in these areas indicates that the roof pendent also thins and pinches out northward. The bedrock source of mineralized float is however probably located just south of the "Slide" showing as indicated by geophysical and geochemical surveys.

# Table 2: TAM PROPERTY DRILL HOLE SUMMARY

DDH #	LOCATION	LENGTH NETERS	Cu %/ INTERVAL (=)	<u>% FOLIATES</u>	<u>&amp; LEUCOSYN</u>	<u>% NRSOSYN</u>	SHOWING
72-1	Off Grid	-	0.31/18.3	8.4	•	-	Cirque
72 <b>-2</b>	Off Grid	145.5	<0.01	0	-	-	Cirque
72-3	Off Grid	146.8	<0.01	0	-	-	Fault
72-\$	Off Grid	161.8	<0.01	0	-	-	Fault
72-5	Off Grid	153.1	0.64/6.1	9.0	•	-	Fault
73-1	0+00	60.5	0.55/58.25	50.5	8.8	27.0	Boundary
73-2	0+61N/0+60W	14.9	0.146/12.5	25.0	75.0	-	Boundary
74-3	2+25\$/2+40¥	85.7	No Assays	0	23 <b>.2</b>	73.0	Haha Ck.

DDH 🛔	LOCATION	LENGTH METERS	Cu %/ INTERVAL (m)	¥ FOLIATES	& LEUCOSYN	<u> </u>	SHOWING
74-4	3+40S/0+25W	91.5	0.2/2.13	0	41.0	59.0	Hidway
74-5	?	60.4	No Assays	100.0	-	-	No Core
74-6	0+00N/0+85E	208.4	0.75/178.4	91.2	8.8	-	Boundary
14-7	0+50N/1+00E	206.7	0.37/91.5	82.0	11.4	6.5	Boundary
74-8	0+50N/1+00E	47.0	0.19/9.15	68.0	22.0	9.8	Boundary
74-9	0+85N/1+50B	458.6	0.29/98.8	50.6	46.9	2.5	Boundary
74-10	0+45N/1+25B	132.7	<0.01/33.5	19.7	76.3	4.0	Boundary
74-11	4+40S/0+80K	182.1	0.16/18.3	60.0	40.0	-	Midway
74-12	5+358/1+75B	183.0	0.22/9.15	56.0	41.8	1.2	Midway
74-13	0+00N/2+10E	310.5	0.25/9.15	36.0	51.8	12.2	Boundary
74-14	0+00 <b>N/0+60R</b>	206,6	Spot Assays	37.2	55.5	7.3	Boundary
75-15	1+75N/1+00E	212.8	Spot Assays	36.4	63.6	-	Boundary
75-16	5+75\$/1+25W	119.4	0.31/6	36.0	63.3	0.7	Slide
75-17	0+508/0+30W	117.3	0.43/3.0	46.0	12.0	42.0	No Core
75-1B	2+55N/0+55E	122.6	No Assays	16.8	26.8	40.6	Boundary
74-19	2+85N/0+45K	120.0	0.1/5.3	14.3	57.6	6.8	Boundary

# 7.0 GEOCHEMICAL SURVEYS

Cut grid lines were systematically soil sampled at 25 to 50 meter intervals and sent to MIN-EN laboratories for 7 element I.C.P. analyses (Ag, Au, As, Cu, Mo, Pb, Zn). Soil samples were collected from the 'B' horizon where ever possible; the -70 mesh silt fraction was digested and treated by standard rapid geochemical methods and the results are listed in Appendix 12.2. Copper and gold values from soils collected from the Boundary grid are plotted in Figures 8a and b respectively whereas those from the Slide grid in Figures 9a and b. Copper and gold values from rocks collected within these grid areas are also plotted on these figures. Sample locations of those collected beyond the grid areas are plotted on Figure 5 and values are given in the Appendix 12.2.

Soil horizons appear to be relatively well developed over the Boundary Grid with a greyish zone of eluviation overlying a rust zone of accumulation giving way to a rocky regolith. However, most soil samples are an admixture of both 'A' and 'B ' horizons depending upon the ease with which the sampler could dig down through a rocky mantle of soil. Soil values are taken to be reliable indicators of bedrock mineralization given allowances for downslope dispersion and sample contamination.

The Boundary copper deposit is overlain by an in situ copper and silver soil anomaly, marked as (A) on Figure 8a, which is greatly amplified by a downslope dispersion apron. Results from drill holes 74-13, 15 and 18 suggest that the dispersion apron is underlain by weakly mineralized bedrock.

Copper anomaly (B), immediately south of (A), probably originates from near surface copper mineralization associated with the contact zone between Units 2 and 4 close to 1+00S and 2+00W. Anomaly (C) occurs along the observed surface trace of the 'Creek' zone, an area of disseminated chalcopyrite mineralization observed largely in talus. Anomaly (D) is a large area, situated near the southwest corner of the grid, and probably reflects low grade copper mineralization associated with a contact zone between Units 2 and 4 observed at 14+00s and 2+50W. The size of the anomaly is deceptive due to downslope colluvial dispersion. A smaller anomaly (E) is associated with rusty scree slopes of schistose syenite and mesosyenite. Anomaly (F) is situated along a prominent northwest trending lineament; whereas anomaly (G) is a small dispersion apron derived from a weakly mineralized septum of schistose syenites enveloped by leucosyenite.

Several smaller spot copper anomalies are located elsewhere on the grid in areas of extensive overburden and cannot be readily explained but in view of their small size and magnitude they are not considered to be significant. Gold soil values are generally spotty and rather low. Values above 20 ppb are considered anomalous; about 4 times background. The highest gold values are found within copper anomalies (C) and (D) with an outstanding spot gold anomaly of 2,900 ppb occurring at 12+00S and 1+00W the source of which is presently unknown.

Several copper soil anomalies also occur on the Slide Grid (Figure the largest of which (A) is situated along the lower 9a); The focal point of the anomalies seems to be avalanche slopes. near DDH 74-3 which however, encountered only weakly mineralized syenites. Higher copper values below this hole may be due to organic adsorption since the soil there tends to be boggy (humus-Anomaly (B) is associated with the main 'Slide' showing rich). near 5+75N and 0+50E, which is underlain by variably mineralized Takla metasediments carrying disseminated chalcopyrite. A similar anomaly (C) occurs to the west where copper mineralization was also observed in scree and talus. Anomaly (D), situated near 4+00S and 1+50E could be due to mineralization associated with an intrusive contact zone between Units 3 and 4. Similarly leucosyenite dykes cutting mesosyenite near 1+00S and 1+00E may be responsible for Anomaly (F) is no doubt derived from downslope anomaly (E). dispersion of isolated copper mineralization observed along a ridge

to the north of 9+00N and 0+50W. Although other spot copper anomalies occur on the slide grid these are not thought to be significant exploration targets. Again gold soil values are low throughout the grid (Figure 9b) with the possible exception of spot anomalies at 3+00S and 2+00W, 5+00S and 3+50W which are perhaps also due to organic adsorption.

A total of 165 core samples (#21501 to 21665) taken from old UMEX core, stored in Vancouver, were collected in late July and assayed for copper and gold, in accordance with Chapman's (1990) Assay values for samples 21501 to 21665 are recommendations. listed in Appendix 12.2 and sample intervals are stated on revised drill logs given in Appendix 12.1. Most samples were taken over 3 meter intervals and yielded modest gold values. An additional 93, eight inch "character", samples were collected from previously unassayed core stored on the property. These were taken from DDH's 73-3 and 4, 74-13, 14, 15 and 16. Results for these samples (49001 to 49012 and 49017 to 49093) are listed in Appendix 12.2 and sample locations are given in drill logs.

Some systematic rock chip sampling was also undertaken in selected areas to establish the tenor of bedrock copper mineralization in the vicinity of soil anomalies. Rock samples 21666 to 21681 represent thin, discontinuous, drusy quartz veinlets carrying disseminated bornite, chalcopyrite and galena collected from mesosyenites underlying the Tam 90 numbers 5, 8, 9, 10 and 11 claims. Samples 21689-91 represent small scattered occurrences of disseminated chalcopyrite associated with a small plug of quartz monzonite cutting mesosyenite on the Tam 90-5 claim. Samples 21695 and 6 represent selected grabs from the "Ridge" showing and sample 49101 a selected chip sample from the "Midway" showing.

A total of 39 rock samples were collected from the "Creek" showing (#21682, 83, 95-21702; #14923-37; #49161-49171 and 49214-21) suggesting that it represents a widespread but erratically mineralized area (0.1 to 1.4% Cu).

Some 34 rock chip samples were collected from the ridge bordering the southern end of the Boundary grid (#49095-49100; #49123-49145 and #21684-88) but, these did not yield any significant copper or gold values. Samples 21684-88 were collected from large quartz As it stands at present, the source of the copper soil veins. anomaly (D) in this area is unaccounted for. Some 40 rock samples were collected from the 'Slide' grid area (#21692-94, 21703, 49013-16, 49020-22, 49146-60, 49251-58 and 49201-49213, see Figure 5). samples collected from malachite stained or veined mesosyenites yielded modest copper and gold values (#49201-13 and 49251-58) however those collected from Unit 2 foliates were mineralized (#49013, 14, 16, 20, 21, 22, 157, 158 and 159; were better 21692, 93, 94 and 21703). In particular, #21692 a 10 meter random chip from the Slide trench yielded 1.3% Copper whereas samples #49153, 54, 58 and 59 yielded 7200, 1540, 4430 and 9600 ppm copper from random chips over sparsely disseminated chalcopyrite in gneissic syenites northwest of the grid area. Samples #49120, 21 and 22

represent well mineralized gneissic syenite float yielding 9000, 6250 and 8800 ppm copper respectively, which no doubt represents the tenor of mineralized bedrock underlying soil geochemistry and I.P. anomalies upslope.

# 8.0 GEOPHYSICAL SURVEYS

Induced polarization, magnetometer and VLF-EM surveys were carried out by Scott Geophysics Ltd. A description of the techniques and equipment used is given in a report by A. Scott (see Appendix 4). These geophysical data are plotted in Figures 10 to 14 and discussed below.

The Boundary grid is a relatively featureless magnetic landscape with the exception of:

1) a 2500 gamma magnetic dipole at L1N 000-250W, possibly reflecting a west-trending, south-dipping, faulted western margin of the Boundary deposit;

2) a 1000 gamma magnetic high at L5S 000, possibly reflecting a potassic core? to the Midway zone;

3) a 2000 gamma magnetic dipole at L12S-000, possibly reflecting a faulted eastern margin of the Sam prospect.

A north trending high situated at the east end of the grid is probably due to underlying sympodiorites (Unit 1). This magnetic high is offset by west trending breaks, perhaps due to faulting. Magnetic features do not correlate clearly with areas of copper mineralization nor to bedrock lithology.

The Slide grid (Figure 10b) is punctuated by four conspicuous magnetic highs centred on 4+00N/1+75E, 4+00N/2+25W, 2+00S/1+25E and 1+00S/1+50W. These areas are covered in colluvium and it is thus difficult to identify their bedrock source. In general, those areas underlain by mesosyenite are more magnetic than those underlain by leucosyenite and Unit 2 foliates. The geological contact between Units 2 and 4 in Figure 7 is largely drawn on this premise. Magnetic highs (>60,000 gammas) also appear to coincide with high bedrock chargeability. Magnetic lows (<58,000 gammas) occur along the southern grid in areas of leucosyenite and glacial drift.

Several west to northwest trending VLF-EM conductors transect the Boundary grid (Figure 11a) and some occur near the Boundary, Midway and Ridge copper showings. A fairly strong conductor (A) at 10+00S and 4+50E is coincident with a gaping chasm perhaps indicating the presence of a fault zone. A moderate conductor (B) near 14+00S and 2+50W is probably due to a faulted contact between Units 2 and 4. The moderate conductor (C) between 1+00S and 4+00W and 4+00S and 2+50W broadly coincides with the Creek zone and perhaps represents a resistivity contrast between these units. A similar explanation might also be made for the rather weak conductor (D) whereas conductor (E) appears to coincide with faults which truncate the Boundary deposit. The strong conductor (F) is largely coincident with a north trending lineament (fault?) and conductor (G) is underlain by a rusty scree slope also thought to represent a fault scarp. Al Scott (personal communication) has suggested that those conductors cutting through high chargeability zones might represent mineralized fracture systems.

Several VLF-EM conductors are apparent on the slide grid (Figure 12a) but due to the incomplete nature of the survey and the lack of geological control it is difficult to assess their significance. The present induced polarization survey has essentially reconfirmed those anomalies detected by UMEX using a dipole - dipole survey (Burgoyne and Pauwels, 1974). Chargeability anomalies, based on first separation readings (Figure 13a) clearly delimit the Boundary copper deposit and the broader but weaker Midway prospect. Twentyfive meter station separations is best for anomaly definition in view of the limited size of mineralized areas on this property. I.P. pseudosections are illustrated in Figure 17 (attached). Both the Boundary and Midway anomalies have been drill tested and chargeability is due to fracture controlled and disseminated However, in view of the presence of disseminated chalcopyrite. chalcopyrite throughout the Creek zone it is somewhat puzzling that it does not show a distinct chargeability anomaly with perhaps the possible exception of a small anomaly located at 3+00S and 5+25W. This observation perhaps lends further verification to the idea advanced by Barr et al (1975) that alkaline porphyry deposits do not generally have a clear I.P. signature. Modest west-trending chargeability lows lend credence to the interpretation of westtrending faults offsetting northwest-trending stratigraphy.

By comparison the distribution of resistivity values (Figure 13b) indicate that the Boundary and Midway showings are underlain by rocks with high resistivity. In the case of the Boundary deposit a central resistivity low is surrounded by a resistivity high. Since high resistivity indicates poor ionic conduction or absence of pore fluid a decrease in resistivity might perhaps indicate increased porosity due to more intense fracturing of igneous bedrock. Again no clear relationship between resistivity and copper mineralization is apparent on the Boundary grid. Modest, west-trending resistivity lows support the interpretation of westtrending faults.

Several distinct chargeability anomalies have however been delineated on the Slide grid (Figure 14) and these were observed to be proximal to copper mineralization. A strong anomaly near 4+00N and 1+75E is underlain by avalanche debris but the bedrock under this area is most likely an intrusive contact between Units 2 and 3 impregnated with sulphides and/or magnetite. A similar west trending anomaly is situated southwest of the base line and pseudosections suggest that these two anomalies probably coalesce at depth beneath lines 4+00N and 0+25E and B.L. at 3+00N. In fact Another strong chargeability appears to increase with depth. chargeability anomaly centred on 1+00S and 2+25W, is immediately upslope from a 1000 ppm copper soil anomaly. The presence of strongly mineralized gneissic syenite float in the vicinity of these anomalies make it very likely that these chargeabilities are due to the presence of disseminated chalcopyrite.

A moderate, north trending anomaly straddles the base line at 0+00 and 1+00S near DDH 75+17. This area is covered by glacial drift but the above drill hole indicates foliates are cut by syenitic intrusions. The core from DDH 75-17 is unavailable for assay but UMEX logs indicate it was largely unmineralized hence the cause of the anomaly is uncertain. A conspicuous west trending anomaly centred on 6+00S and 2+50W, 5+00S and 3+00W and 4+00S and 3+25W broadly coincides with a break in slope below a prominent scarp believed to represent a fault plane. However DDH 75-16 was terminated in unmineralized foliates and it is still possible this anomaly might be due to sulphides since the hole did not go far enough to test the anomaly. Finally, in the case of the Slide survey, resistivity lows broadly coincide with chargeability highs.

### 9.0 INTERPRETATION

Generalized geological, geochemical and geophysical data from the Boundary grid have been plotted in Figure 15 for comparative In the writers view late stage feldspathic magmatic purposes. differentiates (Unit 4) intrude older intrusive phases (Units 2 and 3) of the Duckling Creek complex. Unit 2 monzonites and syenites represent protoclastic border facies or chill zones of the complex which are locally impregnated with primary hypogene disseminations of chalcopyrite. Subsequent intrusion of Unit 3 mesosyenite, and introduced particularly Unit leucosyenite, secondary, 4 hydrothermal fracture controlled chalcopyrite +/- pyrite +/magnetite accompanied by secondary k-feldspar, biotite and later quartz fissure fillings. The boundary, Midway, Creek, Ridge, Sam, Cirgue and Fault copper showings are adjacent to and associated with a central leucosyenite plug and its derivative dykes.

Mineralized rocks tend to be overlain by soils anomalous in copper and silver. Gold values are weakly correlative with copper. Boundary and Midway copper showings are characterized by lower gold values than those found in the Sam prospect near the southern ridge area and this is probably due to vertical zoning where higher gold have been concentrated into hydrothermally altered values (argillic) holofeldspathic syenite dykes and drusy milky quartz Normal faulting has truncated the Boundary deposit which veins. faulted block. largely preserved in a down Copper is mineralization along the Creek zone is controlled by the leucosyenite - foliate contact zone. Mineralized areas do not have unequivocal electromagnetic or magnetic signatures. VLF-EM conductive fault gouge or conductors are probably due to resistivity contrasts between foliates and younger intrusives.

Similar data for the Slide grid are shown in Figure 16. The Slide grid is probably underlain by a Takla roof pendant which also incorporates early protoclastic foliates of the Duckling Creek complex which has been invaded by mesosyenite to the north and east and by later leucosyenite to the south and west. The roof pendant probably thins southward or is truncated at depth by subsequent intrusions. The pendant is locally mineralized by disseminated chalcopyrite perhaps by impregnation and replacement from mineralized hydrothermal fluids emanating from syenitic magmas. Mineralized gneissic syenite float and a marginal I.P. anomaly rimming the roof pendant suggests that the pendant is probably well mineralized along its outer intrusive margins. High chargeability and low resistivity anomalies tend to be associated with magnetic highs indicating that magnetite and/or pyrrhotite may be associated with copper soil anomalies downslope or overlying these I.P. anomalies.

#### 10.0 CONCLUSIONS

The preliminary surface exploration program carried out on the Tam property by Varitech Resources Ltd. in 1990 was successful in outlining several mineralized copper-gold porphyry zones. Not only were Umex's old Boundary, Slide, Midway and Ridge zones redefined in greater detail, the discovery of the new Creek and Sam prospects plus many other smaller showings and anomalies suggests that the Tam property has significant porphyry copper-gold potential.

The abundant mineralization, favourable geology, large geochemical anomalies, and partly coincident geophysical anomalies all support the need for further work. The most significant features that enhance the exploration and mining potential of the Tam property are as follows:

1) The Tam property is well located for exploration and mining, situated approximately 200 kilometers from both Fort St. James and Smithers and 150 kilometers northwest of Mt. Milligan in the Omineca Mining Division, north-central British Columbia. Road access is available along the Osilinka River to within 12 kilometers east of the claims. Findlay Forest Products have proposed a spur road along the north side of Haha Creek for 1991, with some clear cutting to occur on the Tam claims south of Haha Creek.

2) The Omineca Belt was initially explored for porphyry coppergold deposits in the 1960's and 1970's, when Umex's Boundary deposit and the nearby Lorraine deposit of Kennecott Copper were discovered. In the last two years, the belt has seen a renewed level of exploration activity due largely to the success of Continental Gold in outlining a large, low grade, copper-gold porphyry deposit at Mt. Milligan, which dramatically improved the risk/reward ratio for porphyry exploration in the Omineca camp.

3) Tam property is largely underlain by the Duckling Creek Complex of the Triassic Hogem Batholith. These syenitic intrusive rocks are favourable for alkaline porphyry deposits on a regional basis, as shown by the many copper showings in Duckling Creek rocks. On the Tam claims, the late stage leucosyenites appear to be the most favourable mineralizing source rocks and the early stage, foliated syenites (digested roof pendants of Takla Group volcanics) appear to be the most prolific mineralized host rocks. The mineralized zones tend to be contact - or fault - related disseminations and fracture fillings of chalcopyrite, K-spar and biotite with lesser bornite, chalcocite, malachite, azurite, magnetite, quartz, sericite and chlorite. As such, they belong to the potassic assemblage of porphyry alteration, with much lesser amounts of phyllic and argillic alteration and no propylitic assemblage. These deposits tend to be smaller, higher grade endo-porphyries compared to the larger, lower grade exo-porphyries at Mt. Milligan, and they have more modest geophysical and geochemical signatures.

4) Of the many geochemical copper-gold soil anomalies on the property, the most important are the Sam (BD), Creek (BC), Lower Slide (SA) and Upper Slide (SB) prospects. Each of them occupy a surface area exceeding 50,000 square meters, with copper high's up to ore grades (0.2% Copper or higher) and sporadic gold values up to ore grades (0.01 oz/ton gold or higher). The best gold values occur in the Sam prospect, coincident with anomalous lead and molybdenum values, overlying leucosyenites rather than foliates, containing abundant quartz veinlets in bedrock and float.

Several geophysical techniques are useful in detecting buried 5) mineralization in alkali porphyry systems but there is no rule of thumb as to which technique is the best. Induced polarization and resistivity surveys display anomalies of up to five times background in the Boundary, Midway and Slide zones, but give poor responses of less than two times background in the Creek Ridge and Sam prospects. Magnetic surveys show a moderate association of up to 2500 gamma highs with the Boundary, Slide and Midway zones, but they show little relationship with the Creek, Ridge and Sam prospects. VLF-EM anomalies tend to trace faults and have only an indirect relationship to any mineralization related to faulting. The lack of a strong IP anomaly in a mineralized alkali endoporphyry zone is not negative because these systems tend to be low sulphide, lacking the pyrite halo typical of other exo-porphyry systems.

### 11.0 RECOMMENDATIONS

Several mineralized zones on the Tam property require further work, the most important of which are the Sam, Creek, Lower Slide and Upper Slide. Other zones of lesser priority that should be explored further include the Boundary and Midway prospects, as well as the many anomalous rocks found north of Haha Creek.

A program of road building, backhoe trenching, diamond drilling and reverse circulation drilling is proposed to further test the top priority zones. More reconnaissance prospecting, mapping, (including the assaying of old Umex samples for gold) and sampling are recommended to follow up on the anomalous rocks and to explore other areas of the claim group.

1) A two phase \$ 308,467.00 work program is recommended to test the porphyry copper-gold potential of the Tam property. Phase 3 (continuing from the first two phases of work last year) calls for \$ 143,797.00 to be spent from June to August. Phase 4 (which can overlap with Phase 3) will require \$ 163,570.00 in expenditures from July to October.

2) Phase 3 consists of co-operating with Findlay Forest Products on pushing a spur road along Haha Creek in May-June; building roads as far up the Slide grid as possible for trenching and drilling, and accessing the Boundary grid for trenching and drilling if possible; trenching of the Boundary, Creek, Midway Sam, Lower Slide and Upper Slide prospects; assaying of old Umex rock, silt and soil samples for gold and for trace metals; prospecting to follow-up on anomalous samples and explore the property on a reconnaissance basis; and mapping and sampling to further define reconnaissance anomalies.

3) Phase 4 is comprised of 5000 feet of drilling in about 12 holes, RCH where road access is possible and DDH elsewhere, to test the Creek, Sam, Lower Slide and Upper Slide prospects; a formal budget, more detailed trenching, drilling and prospecting locations will be prepared prior to commencing Phase 3.

# Phase 3 - Expenditure Estimate

Program: Property access road building; grid access road building; backhoe trenching on the Boundary, Creek, Midway, Sam, Lower Slide and Upper Slide prospects; reanalysing old Umex sample rejects (pulps) for gold; reconnaissance prospecting, mapping and sampling.

Personnel: Project Manager/Senior Geologist:	
35 days x \$350/day	\$ 12,250.00
Field Assistants/Samplers: 2 men x 35 days x \$200/man/day Cook: 35 days x \$200/day Prospector/Junior Geologist: 35 days x \$275/day Supervision: 5 days x \$350/day	14,000.00 7,000.00 9,625.00 1,750.00
Road Building: (Assuming cost sharing with Findlay Forest Products; estimate only) Backhoe: (Including operator and fuel)	15,000.00
\$100/hr x 250 hrs + mobilization & demobilization	28,000.00
Analyses: 500 samples x \$15/sample	7,500.00
Camp & Equipment Costs: (Camp, generator, etc.)	8,000.00
Vehicle Rental: 35 days x \$60/day + fuel Communication:	2,500.00 1,000.00
Transportation: (airfares, expenses, mobilization & demobilization, etc.)	6,000.00
Expediting: Helicopter: 6 hrs x <b>\$</b> 650/hr	4,000.00 3,900.00

Food: 35 days x 6 men x \$20/day/man	4,200.00
Fuel:	1,000.00
Report Preparation and Drafting:	5,000.00
Sub Total	130,725.00
10% Contingency	13,072.00
Total Estimated Expenditures	\$143,797.00

# Phase 4 - Expenditure Estimate

Program: 5,000 foot (1524 m) drilling program to utilize reverse circulation drilling if road access is available and diamond drilling if helicopter support is required (estimate is based on road access availability).

Personnel:	
<pre>Sr. Geologist/Project Manager:</pre>	
40 days x \$350/day	\$ 14,000.00
Sampler: 30 days x \$200/day	6,000.00
Cook: 30 days x \$200/day	6,000.00
Supervision: 10 days x \$350/day	3,500.00
Camp Equipment Costs:	7,000.00
Vehicle Rental & Fuel:	2,500.00
Communication:	1,000.00
Expediting:	3,500.00
Transportation: (Mobilization & Demobilization,	
Airfares, expenses, etc.)	6,000.00
Fuel:	1,000.00
Food: 7 men x 30 days x \$20/man/day	4,200.00
Drilling: 5,000 ft. x \$14/ft.	70,000.00
Drill Site Preparation and	,
Trenching: 100 hrs x \$100/hr	10,000.00
Analyses: 600 samples x \$15/sample	9,000.00
Report Preparation & Drafting:	5,000.00
Report reparation a prateing.	
Sub Total	148,700.00
10% Contingency	14,870.00
Total Estimated Expenditures	\$163,570.00

(Note: diamond drilling utilizing helicopter support could add \$60,000 to \$70,000 to the Phase 4 estimate).

Total estimated expenditures: Phase 3 and Phase 4: \$307,367.00

- 19 -

APPENDIX 1

REFERENCES CITED

# Appendix 1

# REFERENCES CITED

- Barr, D., Fox, P., Northcote, K., and Preto, V. (1976): The Alkaline Suite Porphyry Deposits, CIM Special Vol. 15, pp 359-367.
- Burgoyne, A. and Pauwels, A. (1974): Summary Report 1974 Exploration Program, UMEX Ltd., 8p.
- Chapman, J. (1990): Summary Report on the TAM Project, Orequest Consultants Ltd., 20p.
- Dyson, C. (1974): Report on a Preliminary Feasibility and Financial Analyses of the Boundary Deposit, Tam Property, B.C., UMEX, 7p.
- Garnett, J. (1972): Preliminary Geological Map of Part of the Hogem Batholith, Duckling Creek Area, B.C. Department of Mines and Petrographic Resources, Map #9.

(1973): Lorraine, B.C. Department of Mines and Petroleum Resources, GEM, pp 370-378.

(1978): Geology and Mineral Occurrences of the Southern Hogem Batholith, B.C. Department of Mines and Petroleum Resources, Bull 70, 75P.

Pauwels, A. and Burgoyne, A. (1975): Assessment Report on Drilling and Mapping, UMEX, 4p.

(1976): Summary Report, UMEX, 6p.

Peto, P. (1971): Report on Hogem Batholith, Amoco, company files, 98p.

APPENDIX 2

;

ITEMIZED COST STATEMENT

# Appendix 2

Itemized Cost Statement

Itemized Cost State		
Professional Fees: J. W. Morton G. L. Garratt A. Buskas	4 days @ \$350/day 7 days @ \$350/day 3 days @ \$300/day	\$ 1,400.00 2,450.00 900.00
Field Personnel Fee J. Campbell A. Fahlman N. Coopey K. Harris J. McConville I. Hayton W. Kahlert D. Goudie M. Vandenbeld	s: 29 days @ \$200/day 48.5 days @ \$200/day 48 days @ \$200/day 35 days @ \$200/day 13 days @ \$200/day 13 days @ \$200/day 45 days @ \$200/day 9 days @ \$200/day	5,800.00 9,700.00 9,600.00 7,000.00 2,600.00 2,600.00 9,000.00 6,000.00 1,800.00
Camp Equipment & Re Truck Rental: Core Splitter Renta	ntal: 48 days @ \$250/day 5 days @ \$60/day l: 1 week @ \$26.5/wk	12,000.00 300.00 26.50
Transportation: Fixed Wing - Chart Helicopter - 63.2 Scheduled Flights Bu <b>s</b>		11,053.50 41,034.32 9,747.15 17.50
Travel Expenses: Fuel: Field Equipment:		1,924.02 1,691.44 6,256.20
Sub Contractor: Geological	P. Peto - 68.5 days @ \$300/day D. Hammer - 30 days @ \$225/day J. McDonald - 4 days @ \$200/day E. McCrossan - 8.5 days @ \$200/day	
Expediting Geophysical	6 days @ \$140/day	840.00 28,079.38
Analyses: Assay Geochemical	342 samples @ \$15.18/sample 1,028 samples @ \$9.86/sample	5,190.25 10,141.00
Communication:	Telephone Radio Rental Courier/Fax	125.74 50.00 69.84
Freight: Reproduction: Secretarial: Drafting: Food: Miscellaneous	Maps	1,915.75 361.69 100.00 394.82 6,433.74 4,139.46
TOTAL		\$230,542.30

.

# APPENDIX 3

.

# AUTHOR'S CERTIFICATE

# Appendix 3

#### AUTHOR'S CERTIFICATE

I, Peter S. Peto, of 125 Bassett Street, Penticton, British Columbia, hereby certify that:

I have obtained B.Sc. and M.Sc. degrees in geology from the University of Alberta in 1968 and 1970 respectively and that I obtained a Ph.D. in geology from the University of Manchester in 1975.

I am a practising mineral exploration geologist with relevant experience within the mining industry of British Columbia since 1969.

I am a Fellow of the Geological Association of Canada.

The information contained in this report was obtained in the course of exploration survey carried out on the TAM property between July 26, 1990 and October 9, 1990, under my personal supervision.

I have no interest, direct or indirect, in the securities of Varitech Resources Ltd. or those of Major General Resources Ltd.

I consent to and authorize the use of the TAM project report or of contents therein as a Statement of Material Facts or in any other public document.

Peter S. Peto, Ph.D., F.G.A.C.

Dated at Penticton, B.C. this // day of January, 1991.



# APPENDIX 4

# REVISED CORE LOGS

APPENDIX 12.1

# MAJOR GENERAL RESOURCES LTD. DIAMOND DRILL HOLE LOG

3

				1							Page 1
PROPERTY: TAM	LATITUDE:	STARTED:		Footage	Corn	octod	DIP	TEST	rocted	Footage	Corroct
HOLE NO.: 72 -1	DEPARTURE:	FINISHED:	16 Aug 1972								
BEARING: 130°	ELEVATION:	LENGTH:	151.3m								
DIP COLLAR: -45°5E	SECTION: CIRQUE	C LOGGED BY	P.Peto								
FOOTAGE	DESCRIPTI			SAMPLE		FOOTAG	E (M)			ASSAYS	
From To Ineters)	18 Boxes	ION BQ (	lore	<u>NO.</u>	From	To	Length	Au	Ag.	Cu	
0 11.0 overburd	len										<u> </u>
	on 24.2+0 23.5			(2)							
	stavits from 24.										
39.8 49.7 Barrey Imin	& spickled mesos	ratic syen		51519				67		0.326	
mintor co	, bio wacs mo	d. magnetic	/	51520	46.6	49.7	3.1	75	3.2	0.390	
49.7 59.0 (3) In to me	dar, mod. mac	. , bio clots	Ksparvits,	51521	49.7	52.2	2.5	56			
diss.en				21222	22.2	-22.5	3.0	10		0.312	
59.0 63.0 hyprid z	one of (218(4) b	leached, wea	kmag, Nocp	51523	55.2	58.2	3.0	50	2.5	-173c	
63.0 67.5 (2) weakly	matutic, make	ic clots	0, ,								
67.5 72.0(B)pink speck	cled BIK, med cril	, mod magne	tic, KSpur V	145.							
72.0 80.2 (Z) Lol. n	wonz. lol goor cA	KSOW VIS	mod mas.								
80.2 82.0 (3)dk grey	massile, melano	cratic mapi	c) monzonite								
80.2 82.0(3)dk aven 82.0 104.0(3) aven 1 ps K-spart VI	ink med gr. mas	sive syent	e, few								
Kspar VI	ts, bleached call	Wd from	82-83.9m								
104.4 103.3 (G) -uncost											
105.5 122 (3) gray (	med. cr. syenis zone, arciplic	te conterstit	ial mafics)								
122 124.5 fam Ut	zone, arciflic o	ouce in (3)	V								
124.5 130.3 22 grey m ent by fer	hed gr. strongly	magnetic fol	· syndiorite								
cut by few	Ksparvits, Fo	1 90°ACA	0								
130.3 131.8 (4) lunco	Sen. dyke										
	I matic syenit	fe									
137.5 138 (4) lunco	sen blacks										
138 151.3 (1) med.g.	r. mad. magnetic	c, fol. syen	odiorite								
lut by luce	osim dykes (4) @	144.8-143.3	8 143.5-								
138 151.3 ( <b>1</b> ) med.g. Lut by luce 145 m.	- 0 1										
Note: (1) = symodion	$\overline{Z}$ (3) = manutchic s	in the function	Sina 12]=	12.1	c. (	mores	mite				

# MAJOR GENERAL RESOURCES LTD. DIAMOND DRILL HOLE LOG

•

· · · · · · · · · · · · · · · · · · ·	T			· · · · · ·			·				Page I
PROPERTY:	LATITUDE:	STARTED:			·			TEST			
				Footage	Сот	octod	Footage	Cor	Trocted	Fooure	Corrocted
HOLE NO.: 72 - 2	DEPARTURE:	FINISHED:	21 Aug 1972								
BEARING: 130°	ELEVATION:	LENGTH:	145.5m								
DIP COLLAR: -45SE	SECTION: CIRQUE	LOGGED BY:	P. Peto					1			
FOOTAGE	DESCRIPTION	 N _		SAMPLE		FOOTAG	E(m)			ASSAYS	 `
From To (m) 19 BO	xes	BQ	Core	NO.	From	To	Length	Au	cu.	Ae	
0 9.4 overburg	den										
9.4 36.0 (4) med. gr.	rusty & bleached	sycnite, 1	in. coats,	21524	9.4	12.4	3.0	140	107	0.7	
serici te a	It's, K-spur vits, l'eontact to mo	weakly	magnetic	21525	12.4	15.4	3.0		131	0.7	
-26 36.8 gradiand	l contact to mo	d. magne	ic monzoclio	rite 26	15.4	18.4	3.0	5	223	0.7	
36.8 52.2 (1) clark, me	ed. ev. fol. Syeno	diorite er	t bu linco								
Syn VNIS	Atrongly magne	fic, late wi	ite east vite								
52.2 54.5 (1) dk green	Atrone ly maisne	a Hered, t	E cliss m/ep	21527	52.2	54.5	2.3	160	7z	1.4	
54.5 58.2 (1) clk sye	inadiorite, chi	site slips, a	early vites.	21528	54.5	57.0	2.5.	2	43	0.8	
58.2 58.5 (4) luncose	m dyke										
58.5 73.0 (1) dk gre	y blotchy med-c	gr. strong	ly magnetic								
sycnodlori	te cut the dyklet	cof 485 4	dischemation	ti							
73.0 74.0 Shear zor	re chlor Slips	F-1 45°1C	A. east- coat	·							
74.0 82.0 (1) chlorif	ic blactry symod	diorite									
92.5 93.3 fault 30	ne, aletted										
93.3 108 (1) dark to	in sychodiorite	,									
108 109.5 (4) lucos	en dyke										
109.5 112 (1) med.	gro gre, udyenno	diovite									
112 115.7 (4) linco	Syn dy lee										
	med av. dkgrey	blotchy,	mod mas.								
123 135 (4) pr to	med av. , vuster ll	uco sent a	Lyke El								
disk	hund tite specks		1								
135 145 (4) med to	c. qv., qvin, prit	lucosyn	cuthy								
EOH. state	C. gr. gruy prik	0	0								
Summary: 1	harren magnetic		osite cut								
lus los co	Granite/symite du	ykes sults	; faults								
at 73,893		/	<i>' U</i>								

# MAJOR GENERAL RESOURCES LTD. DIAMOND DRILL HOLE LOG

.

4

-----

2

	<u> </u>		T	<u>.</u>	<u></u>					Page I
PROPERTY: TAM	LATITUDE:	STARTED:	Footage				TEST			
	DEPARTURE:	FINISHED: 17 Aug 1977			rocted	Footage	Cor	rocted	Fooure	Corrocte
12-5										
BEARING: 90°	ELEVATION:	LENGTH: 146.8								
DIP COLLAR: $-45^{\circ}$	SECTION: "Fault"	LOGGED BY: P. Peto								
FOOTAGE (M) From To 18 BO	DESCRIPTIO	N BQ CORE	SAMPLE NO.	From	FOOTAC To				ASSAYS	i
From To 18 20 O 10.7 overbur			<u> </u>	<u>From</u>	10	Length	Au	J	- cu	
		argillic, nonmagneti	21570	10.7	151	4.4	1	1.0	442	
			1		4	3.5	2	0.8	226	
FAULT ZONG LUCOSU	enite à chlorite à	ips, couce e) 19:5- 2m. lete carbonate	21531				5	1.0	382	
51.2 59.0 (4) pink u	sorrengez vn at 30	, diss hematite, avgilli	21522				43	0.5		
BILL STO CUIPME	53.7-56.8m	, all sa retricterite, regint	21533	17.5	32.3		120		67	
	pink, fn=Med cr.	Puncosan intection	21534	32.3		3.7	350	1.6	56	
macneti			21535			4.)	40	0.7	32	
85 88 (4) sink, me	der. lucosan E a	s liss hematite specks	21536				-		-	
88 91.5 10% may		t by white K-sparvits								
91.5 -91.8 Shear 2										
		requestic luncosep. det	e							
96. 97 (1) aver the gr.	diosite inclusion									
97 98.5 (3) metocs	atic syenite gr	med or.								
	med qu. divrite p	sphyry inclusion								
100 107 (4) pinE,	mad gr. weak to hu	d. magnetic bleached luc								
107 113 (4) as abo	ve chilor slips, w	hite K-spin VIts.	21537	108	110.7		205	1.0	52	
113 116 (4) bleac	hed lucosyn		21538	117.9	121.2		280	1.4	71	
116 130 Jan 120		illic fructured luncosyn			124.2	3.0	310	0.8	17	
	hed angillic lunce	Syn	21540		130.1	3.7		0.6	23	
	ssic monzonite in	dusion	21541	139.2	141.4	2.2	2	0.8	814	
1358 137 (3) grey	med qv. syenite									
137 140.6 (5) pinck	poliated, Jugr.	lucosyndyke, disslin	mite							
140.6 144.7 13 grey	olled gr. Sycult									
144.7 1468 (5) Jul		ucosyn dytein							·	
EOH Sümmary:		ybrid intusive zon		-14	of h	nerod	rati	<u>c Sel</u>	enete	whith
<u>diorete</u>	1 monzonite screen.	I cut ly med to Jon of	V. lea	cost	picty	ICes -	<u>× (</u> 4	<u>le</u> "	argli	

.

3.

4.4

PROPERTY:	LATITUDE:	STARTED:					DIP	TEST				
PROPERTY: TAM				Footage	Con	bohod	Footage	C	procted	Foota	10	Corroctor
HOLE NO.: 72-4	DEPARTURE:	FINISHED: 14	Aug 1972									
BEARING: 900	ELEVATION:		161.8m			-						
DIP COLLAR: _ 450	SECTION: "Fault'	LOGGED BY:	P.Peto									
FOOTAGE	DECON			SAMPLE	1	FOOTAC	ЭЕ ЭЕ	1		4564	ve	
From To(m) 21 Bo;	xes	BQC	eore	NO.	From	To	Length	Au	1 cu	ASSA		
0 8.8 overbur	rden											••
8.8 16.8 (4) Wacher	red, oxidized	Ank. C. Sv.	non mas.									
luncos	un, limonite	eoats ascillie	a 1/2		ĺ							1
16.8 21.3 (4) pink, n	med. gr. non mag	. syenite cut le	apliteves									
	med av. porphy											
24.4 25.5 (2) In av.		60 ACA SPA VILS, SH										
25.5 28.1 (482) hy hi	il some folmorra								1			1
28.1 38.7 (3) mks	syren el.gr. me		diss m									1
P- 16.58		it, interstitial							1		1	1
38.7 50.3 (3) pink/grey	med ar. mesociati	c sugnite mino	residite	21505	40.9	43.9	3.0	20	78	0.7		1
enidote.	magnetite & pyrite	foliate monz sc	reens	21506	43.9	46.9	3.0	32	585	0.9		
variably	incontic (2)monz ingr. gniessic m	. screen from 4	10.9to 48.0	21507	46.9	48.8	1.9	18	11	0.5		
60.3 61.5 (2) gren f	iecr. quiessic m	ionzonite weak	ly mag									
ent lun	med et. lucose	m. dukes	5 0									
61.5 62.5 (5) luncolog	n. dute.	/ /										
62.5 75.0 (2) Gran +	to pink, fugr.	aniessic monzon	ite,									
clipp. 6	wacs, limonite	eacts, weak ina	s. occ									
ctz+carl	+ cp vits to 5 mm	minor cliss. ci	I 'his frace									
75.01 80.0/151 luncos	yn dyke, pervai	give sericite al	tin									
BoxIIN	MSSING		f									
80 84.2 (4) c.gr. g	rey/mik symite	sericite bio chi	! traces									
diss chi	8 mg Bein State	<u>- p vite 82.3m.</u>										
84.2 91.5 (2) gran C	· c. weak mac	. Sychete										
91.5 96.4 (4) pink	C.cr. Symite	alles dial l	matite									
- fracs	cliss sericite	rare stavits bi	o segregation	$\sim$								
96:4 99.3 (Z) gray	mik fol. mon	. weakly may	netic.									
		· U 0										

		LATITUDE:	STARTED:		<u> </u>			קזרו	TEST			Page Z
PROPERTY: TAM	l	Diriti 002.	UTARIED.		Footage	Corr	octod	Footage	-	mocied	Footage	Corroc
HOLE NO .: 72-	4	DEPARTURE:	FINISHED:	16 Aug 72								
BEARING:	90°	ELEVATION:	LENGTH:	161.8 m					•			
DIP COLLAR:	450	SECTION:	LOGGED BY	· P. Peto	•							
FOOTAGE		DESCRI	PTION		SAMPLE		FOOTAG				ASSAY	S
From To	metrs	• / 1		10101	NO. m		To	Length	Au_	<u>a</u>	Ag	
-		nite, strong ser	. /							<u> </u>		
100.5 108.5			dissem. so		21509				ļ	94	0.5	
	& some c		late carle v		21510	105.5	108.5	3.0		473	0.7	
108.5 116.5	(4) gray-pin		genite lim		•				ļ	ļ		
116.5 121.2	(4) med. gr	1. Symite E	chlorite sli	ns					<u> </u>			
121.2 125	(4) gray	e.g. Syenite										
125 131	(4) bink	, symite, ch		wthin stavill								
131 131.8		(4), (bioclots,	milky cush of	equecutions								
131.8 137	(384) gray m	ud c. que hy	brid eyenite	mafic								
	segregatio	us, minor &	z vits.	· (/								
137 141		e crumbly	pink sylni	te, chlor +								
	argillit	altin	·									
141 148.5		ed, rustys or	gillic Symil	e Non. Mag.								
148.5 152.5	las abor		0 0	, 0								
152.5 158.8	(4) Cogeprint	c syenite are	illication n	on magnetic.								
158.8 162.0	(4) e. gr. 1	Lucosyenite ,	non maqueti	c. 0								
	0	-0 /	0									
	Summary:	hole encount	ered fol. to	swiessic								
		e O 21.3-28.1										
	lincosner	uite dykes 8	enveloped b	n luco to								
	mesocratic	- sugnite. My	the loute	at 12/137-								
	141m. weak	ed mineraliza	tim in luce	sacuité e								
	62.5-75.0	ed mineralize \$ 80 - 84.2.		0								
			<u></u>									
	No core ph	otos										
	· ·		· ·									

Page 7.

· b

;

÷.

	····	· · · · · · · · · · · · · · · · · · ·	- <u></u>							Page I
PROPERTY: TAM	LATITUDE:	STARTED:				the second s	TEST			
			Footage	Cor	Tocked	Footage	<u> </u>	rrocted	Footage	Corrocted
HOLE NO.: 72-5	DEPARTURE:	FINISHED:								
BEARING: 90 °	ELEVATION:	LENGTH: 153.11								
DIP COLLAR: $-45^{\circ}$	SECTION: "Fault"	LOGGED BY: P. Peto								
FOOTAGE meters		0N 2	SAMPLE		FOOTA	GE (m)	+		ASSAVS	1
	alsplit) DESCRIPTION	BQEORE	<u>NO.</u>	From	To	Length	Au	Cu	ASSAYS	
0 8.5 overhur					· .				5	· ·
8.5 16-3 (2) grey, 4	m gr. fol monz.	highly practured, weat may								
oxiblize	d to 50.5m, lin	white coats. diss								
- Chalco fro	m 13.5-14.4m cor	re loss 14.6-16.5m (faul	ŧ)							
cut by les	cosyn-dyles (5)									
16.3 20.0 (2) fresh a	very him : er. non	2								
20.0 41.0 HI lucos	entite dy lee	J								
41.0 46.5 R) gran	v. h. gr. fol monzo	nite, diss cp, mod	21511	4/	44	3.0	120	0.77	4.0	
macnetti	c deen stavi	15.	21512		47.4					
465 58.0 (5) mink	m. g. syenite	ent by c. gr. lucosyn						2310		
dykes.	non maco chlor	ite steps, four speck cp	21514	50.6	54.6	4.0	32	2600		
58.0 69-2 (3) mink /	speckled blk C.S.	1. metocratic sysmite								
		vite interstitial mafics								
69.2 74.1 (4) med. sr.	· lucosum. ceric	ite alt'm disse frace	21515	69.2	71.8	2.6	80	0.348	21.8	
mod. m	nagnetic	) ) 7	21516	71.8	74.8	2.4	960	0.421	6.8	
		yenite, post mineral costs								
77.1 81.5 141 med e										
81.5 87.7 141 45 6	bove hemalites	liss weak mag., few st								
87.7 101.5 (4) mik	med. ov. lucosum	mod may, cutby								
Icw stz+	covits py+co+	Sty VEIN (TEMSE) 90.6m								
43.2 4/18 (5) In ctt. to	ficted Sparto	with Strong Appicitualty	21517	94.8	97.8	3.0	37	28	0.7	
101.5 116.5 147 crew 1 mi	its med and leurore	En mod liac. Levet 1	<u>ح</u>		¥		- <u>-</u>	¥		
101.5 116.5 (4) gran 1 pm 107.8 108.3 (5) sericit	e vich lucos	dute.	-							
116.5 117.0 Fault =	zone , chlorite	slips.								
117 121 (4) gren l.	CV. lucosen.	non mas. limonite e 117.	7							
121 122 (1) dask g										
	Ley , med gr. no									

	<u>г</u>	······	1		- <u>-</u>				·	Page 2
PROPERTY: TAM	LATITUDE:	STARTED:					TEST		·	······································
	DEPARTURE:	FINISHED:	Footage	Correc	100	Footage	<u> </u>	rroctod	Fooure	Corrocted
$\frac{1}{72-5}$ BEARING: 90	ELEVATION:	LENGTH: 153.11m	·							
	SECTION:									
DIP COLLAR: $-450$		1.1210	Cu) (T) T	ļ			ļ			<u> </u>
FOOTAGE meters	DESCRI		SAMPLE NO.	From	00TAC To	Length	Au	r	ASSAYS	
122 133 (4) printe/gr altri fe 133 141.5 (4) as al	in gt g v Its.	eucosynite, bleached								
141.5 153.1 (1) gw-g	med. av. mode	rately magnetic 30%	6							
mafic	monzodior.	rately magnetic, 30%								
	. 0									
Summary:	cuts prigr.	foliated monzonite	<u> </u>	<b> </b>  -		ļ			ļ	
		vom 8.5 - 58 m with		┠────┨-						
supergene Ce		n & diss. cp from 32.	4							
		ith stavite & sericite								
		58.cp. v. fn. gv. in lunco								
Gun Lom	60,5 to 75.6 m.	Ecultaria putlingor	n							
from 117	E assillic alt	· Bottom of hole 121- ocliorite cut lu lucosy								
( 153. ENC	renters monz	ocliorite cut lu lucosy	n.							
		V								
LEGEND: ROCK Units		······································								
<u> </u>	. ev. sonicitie	syenite cuplific)								
<u> </u>	<u>accelatic med</u>	syenite caplific) .gr. gr. syenite								
<u>3 : me</u>	socratic yence	· · · · · · · · · · · · · · · · · · ·								
	ated syenite/u	j								
	nzocliou te									
	····									

Page 2

j,

;

PROPERTY:	TAM (HAM45)	LATITUDE: 595	STARTED: 2 Aug 73				DIP	TEST			
	IAM (14M45)	373		Footage	Corr	rected	Footage	Con	rocted	Footage	Corre
HOLE NO.:	73-1	DEPARTURE: 59+90E	FINISHED: ? Aug 73								
BEARING:		ELEVATION:	LENGTH: 60.5 m								
DIP COLLAR	<i>"</i> −90°	SECTION: Boundary	LOGGED BY: P.Peto								
FOOT	AGE METERS	DESCRIPTION	· · · · · · · · · · · · · · · · · · ·	SAMPLE		FOOTAG	E (M)		•	ASSAY	/S
From	То			<u>NO.</u>	From	<u> </u>	Length	Au	Cu.	Ag	
0	2.13 overburg	den						<u> </u>			÷.
2.13	9.0 12 avenish m	ink has care hal mon	romite explets	21502	2.3	5.3	3.0	62	3.12	2.1	
		ik for ex. fol. Mon eakly magnific, Fo	170° A C A . K+ DUD +	21503			3.8		1.795		
		any magnetic, re	1 10 A C.A. , ESpace	21504					0.48		
	cpvits.	······		×1304	7.1		<u> </u>		0.78	5.0	
	9.15 Kspart c	2 Ven	le la ile								
9.15	12.8 - Jol. mon 201	nite, cpblebs, bic	+ cp gracs, pink_								
	KSpar VI	s mod magnetic									
12.8	16.5 (4) pint, fr	gr. lucosyn. dyke	sericite altri diss	ļ							
	cp & bi	Step fraks post	mineral carb vits.								
16.5	17.4 (2) gneissic	mong - diss. cpbl	ebs py weak mag.								
17.4	22.0 fol monz	mool. mas. line	tracs minor cp.								
		mafic sydnite en									
		spalt cp ults fol								Ì	
28.4	47.17(7) (1)	r fol monzonite s	choose = incur Line op	1							
	The fight of the	The second contract is	Cherry B Warte cp								
	- Cut by K	sport cp vits, weakle	magnetic out m								
	- Curco Sign V	NS., course Biot	p segregatione 43.6								
47.0	30.2 (A) pink lue	cosyn. dyke E diss	ep er y s. Sm								
50.2	56.3 (2) mod. mag	ulie fol. monz. sp	surce diss cp, bio fracs								
56.3	58.2 (4) med . cv.	lucosyn clyke	0								
			2, weak mineralization								
	- (			1 1							
	XRICOVELOU	eave salit in 8 Bar	PL ]								
<u> </u>	Summar i	here file statist	I manzanita p.t								
}	li hitting.	Provide To Charles	es] [ monzonite ent kes, well mincralized								
-	in med or	<u>r xun co segun ce dq</u>	es, we mineralized								
	10 17.6 m.										
	<u>Unit 2 = 30.58</u>	8m (50.5%) Unit 4	= 8.8m (14.5%)		ł						
	1 unit 3 = 16.4	m (27.%n)	·							1	

.

		•	T		1		1							Page	e 1
PROPERTY:	TAM	(HAM45)	LATITUDE:	585	STARTED:	? Aug1973	Footage	- C	roctod	DIP	TEST				
HOLE NO.:	73-		DEPARTURE:	56E			roours			roours		mocted	Footage		Corrocted
BEARING:	N6		ELEVATION:	002	LENGTH:	28 Aug 73 14.9m									
DIP COLLAR			1	WINDARY	LOGGED BY:	and the second									
FOOT		45°NE				1.1210	SAMPLE	<u> </u>	FOOTAG						
Contraction of the local division of the loc	AGE To	meters		DESCRIPTION 5	plit. xR-	TLORE	NO.	From		Length	Au	Cu	ASSA	′S	
0	2	overburde	m				21501	7.8	11.75	3.7	40	0.303	3.8		1,
2	5.8	(4) pink c.c. non mass	N. ma	lic monzo	nite/sy	enite,									
5.8	14.0	non magsi	itic !		<u></u>	lies									
<u></u>		(4) as above altered f gtz vits cp string	La cheliait	ep tra	<u>accuis</u>	marics					<u> </u>	1			
		staults	linoni	te stame	d fracs	some						1			
		ch string	urs/secu	no to Imm	<u>n.</u>	/									
		1 0											·		
		<u> </u>		·											
				·											
														·	
		·····													
			;	·											
					·····										
				- <u> </u>											
					<u></u>										
			·												
		<u> </u>													
		· · · · · · · · · · · · · · · · · · ·	·												
															]
		· · · · · · · · · · · · · · · · · · ·													

.

PROPERTY:	LATITUDE:	STARTED:				DIP TE	ST		
PROPERTY: TAM	LATITODE.	STACIED.	5 June 74	Footage	Corrocted	Footage	Corrected	Footage	Cor
HOLE NO.: 74 - 3	DEPARTURE:	FINISHED:	18 June 74						
BEARING: N25°E	ELEVATION: 3750'	LENGTH:	85-7						
DIP COLLAR: - 45E	SECTION: HAHA CK	LOGGED BY	· P.Peto						
FOOTAGE M	CIDENTY CAMP DESCRIPTION		WE GO CO	SAMPLE		AGE(M)		ASSAYS_	
			AXT Core	NO.	From To		<u>Au (dop)</u>	Culppm	
0 8.8 overbur					(500+)	8.8			
8.8 12.2 (4) pink	medium ev. sesicit	ic kunco	sescuite	49083	12.2 m	3.4	4	60	
	I sink med - c. sr.	mesocra	fic symite	49084	19.8 m	26.5	3	0/	
	of matics out le	Quincos	in dutes	49085	24.Hm		5	40	5
	2.2, 13.7-14.2, 16		- 37.8 m.	49086	32. 3 m		5	Ø	0
		co suen te		49087	39.6 m	11.6	4	50	
minor		·+.	1 marca ce	49088	50.9 m		- 4	130	
argillic	lault zone 0, 42.9			49089	61.6		5	140	
50.3 77.5 (3) med	-c.sv. mesocsatic		e.fla	49090	68.6	27.2	Y Y	40	
	A	te s mas	1 /	49091	71. 6m		4	20	
hractu		1		49092	?		6	320	
77.5 85.7 (4) med.			minor	49093	91.5 m	8.2	5	130	
	tite dissem. m. &	lew specs							
Euf loca	My lug druses begit	ic ste vlt	s E sericitic						
envelop	res.	70							
v									
		·							
		-							
7.	··· · · · · · · · · · · · · · · · · ·								

.

										Page 1
PROPERTY:	TAM	LATITUDE:	STARTED: 20 June 74			·	DIP	TEST		
	· · · · · · · · · · · · · · · · · · ·	DEPARTURE:	FINISHED: 3 July 74	Footage	Cor	rocted	Footage	Corrocted	Footage	Corrocto
	74-4				ļ					
BEARING:	N 25°E	ELEVATION:	LENGTH: 91.5m							
DIP COLLAR:	- 45°E	SECTION:	LOGGED BY: P.Peto							
FOOTAGE (	m) charle Duf:	WAY CAMP DESCRIPT		SAMPLE			GE M		ASSAYS	_ <b>I</b>
From To		A	AXT CORE	<u>NO.</u>	From	<u> </u>	Length.	Au pob)	1	
0 2.7			n	49076	1		2.71			<u>.</u>
2.74 10.7	7 (4) Just	pink med . gr.	lucose en le	49077			8.0	4	1 1	20
	1 (3) follo	ted mesocratic	Sylmite	49078			3.0	6		70
13.7 14. 14.6 29.	6 avgil	lic fault zone	a finder of the P	49079			0.9	4		00
11.6 31.	5 (5) moti	Vits asgillie	Mesosyn cut lufen	49080	1	m	17.7	7		80
.74.3 57.			n dyke traces ep	49082			1.7	- 5		70
		from 49.4 - 50.	h and praces ep	11000	•	<u> </u>	21.1			20
57.0 78.	1 (3) Lotta	ted over more	cratic symmete cut by				1			
	then sea	ms of Kapar	milley staveins &				T T			
	lucosu	enite dykelet.	milley stavens &							
	opsmt"	73.2-74.4 m.								
78.1 84.	2 (4) C.g.	lucosin 2	escite alter traces				6.1			
	- of cps	De between 78.1	- 81.5 , st z + cp Vin							
84.2 91	5 (3) yvery p	resocratic gyenit	te, chloriteslips E				7.3			
	fot mon	3 seseons , en	umbly & argillic mean							
	bottomof	interval. Stz	+cp ving e 86.3.8						<u>  </u>	
	_ Jummary: [4	(41%) = 37.9  m (41%) (2) = 0	(3) = 32.3m(35.3%)						<u> </u>	
		,							┼┼	
		<u></u>				· · · · · · · · · · · · · · · · · · ·				
		·····				- ·			┼───┤──	
		·····								
									1	

÷

.

2

		r	1	<u> </u>			· · · · · · · · · · · · · · · · · · ·	P	age 1
	PROPERTY: TAM		STARTED: 5 July 74	Footage	Corrocted	DIP	TEST Corrected	Footage	Corrocios
	HOLE NO.: 74-6	DEPARTURE: 3E	FINISHED: 10 July 74		Guine			1 voia fo	Conocida
	BEARING: N52°G	ELEVATION: 4500'	LENGTH: 208.2						
		SECTION: "Boundary"	LOGGED BY: P. Peto						
	FOOTAGE	DESCRIPTION		SAMPLE	FOOTA			ASSAYS	
	From To meters 3 0 3.7 overburden	o Boxes	Bacove (allsplit)	NO.	From To	Length	Au Cu	Ag	~
45.8	3.7 45.8 (2) aver.	h. cv. Jol. monzi	mite limonite	21631	3.7 6.7	3.0	128 1.27	\$ 8	
	frac's fer		to smm, ep+biotit		6.7 9.8	3.1	170 1.715	T	
	Elotz & Sea	1 7	cp seams to 3mm.	33	9.8 12.8		180 2.30		
<i>~</i> ,	45.8 51.4 (4) pink , n		sem dyke Non magnet		12.8 15.8 15.8 18:		173 2.39		
5.6 14.9	51.4 66.3 12 Gren 1 nu	nk oniessic lol win	2 dischier. Putite		lucosen	duke		7.3	
6.3	66.3 72.6 (2) Grey / pr	ik griessic fonger.	Ouronzonite, disc	21630	18.8 21.8	3.0	70 1.11	5.3	
	ny huihor	cp, cut by few ftz	+ Kspan VIts lucosen	ndyke	67-67.5n	1	20 0000		_
2.4	72.6 75.0 (4) Puncosa	Fault ancillic a	115 sericité /ehlos	39	<u>21.8 24.8</u> 24.8 27.8	3.0	28 0.985	14.3	
18	75.0 93.0 (2) pink/g			40	27.8 30.8	3.0	522 1.84	21.6	
-	magnetic n	nonzonite, ftz±cp	+py vits E K-spar	41	30.8 33.9	3.1	234 1.83	5.4	
	envelopes,	diss up blebs, then	cp+py fracs 8		<u>33.9 36.9</u> 36 <i>.</i> 9 39.9	3.0	139 0.86	7.2	·
12.0	93.0 105 as about	seunis. e, strong co int	tuval.	<u> </u>	<u>39.9 42.9</u>	3.0	68 0.69	1.3	
- 1			nite, non mag	45	42.9 45.9		40 0.30		
	thin Ks		o securs epsplashes	46	51.7 54.7	3.0	3 0.00		_
5.0	112-117 FALLTZON		135-139.7m	47	<u>54.7 57.7</u> 71.7 74.7	3.0	30 495	3.3 2.0	
18.3	139.7 158.0 (2) pink, cut hy mee	Las Pellante alute	monz/syemite	LG		3.0	101 2300 37 0.681		
25.a	158 183 (2) us above,	170.2-178 for monzo to non may he k for monzonite, red-c.gr. lancosy	mite chlorglips.	216507			166 0.653	4.0	
	diss pyri	to, non magnetic		518	0.8 83.9	3.1	160 0.81	5.1	
	183 198 (2) gren/ min	k Jol. monzonite,	arcillicat 183m	528	3.9 86.9	3.0	173 1.11	3.1	
8-2	198 206.2 (4) pink w	- Ken + al. In ? +	nº diss cpe (80m)		6.7 07.9 14 97	3.0	21 3150 34 3950	1.1	
ŀ	mafiles atte	- Kspan+chlori?) + pr vecto chlorite, mi	Lordissem. Dyrete .	21655	17 100	3.0	83 0.60	3.1	
			10						

.

r		T		1								Page 2
PROPERTY: TA	M	LATITUDE:		STARTED:	P			DIP	· · · · · · · · · · · · · · · · · · ·			
HOLE NO .: 74	-6	DEPARTURE:		FINISHED:	Footago	Corrocto		00488	Con	rocted	Footage	Corrocte
BEARING:		ELEVATION:		LENGTH:								
DIP COLLAR:		SECTION:		LOGGED BY:								
FOOTAGE		DE	SCRIPTION	1	SAMPLE		OTAGE				ASSAYS	
From To	Summari	· lada in	tersects	every / mile,	NO. 21656	From /00 /		Length.		<u>Cu</u> 0.324	Ag 0.3	
	pliate	I to bande	4	Hy monzonit	011 -					0.324	7.3	
	variably	minevalize		Wells, Seam				3.2		0.137		
	fructure	fills m	ilky ft	ztept my vit				3.0		0.907		
	from 4.	<u>suenite</u>	etchs &	KSpar VIS	21660			3.0 3.0		2.23	<u>17.1</u> 18	
	ma or fee	ult e 112	-117 m					3.0	1	2.60	6.0	
	inuntu	inevalized	med.c.c.		21663	151 1	54 3	3.0	58	3150	2.6	
		0	0	0	21664			3.0		5900	3.2	
	limiter 190	m 91.2%	11 . + 11 - 9		21665	203.2 2	06.2	3.0	27	880	0.8	
			11111	<u></u>								
			····									
				· · · · · · · · · · · · · · · · · · ·								
			<u></u>									
										<u> </u>		
i												
	I				1	1	1	1	1	1	,	1

	<u>}</u>		·····					P	age I
	PROPERTY: TAM (REH21)	LATITUDE: 2N	STARTED: 14 July 74		<b></b>		TEST		
		/		Footage	Corrected	Footage	Corrected	Foouro	Corroctee
	HOLE NO.: 74-7	DEPARTURE: 3E	FINISHED: 17 July 74						
	BEARING: N52°E	ELEVATION: 4410	LENGTH: 206.7m						
	DIP COLLAR: -45°W	SECTION: Boundary	LOGGED BY: P. Peto						
	FOOTAGE METERS	DESCRIPTIO		SAMPLE		OTAGE (M)		ASSAYS	
		29 8018	BQ core (allsplit	<u>NO.</u>	From	To Length	1 1 1 7	ASSAYS	
	0 4.3 overburder			21594	8.1 1	1.0 3.1	3	0.45	
ll.o	4.3 11.0 (Z) pink	fn.gr. fol. n	onzonite, currys dissen	21542	11.0 1	4.6 3.6	215	0.37	
	ep thin s	Falt cotton vits.	limonite coats chlor	21596	H.6 1	7.6 3.0	27	0.30	
8.5	11.0 19.5 (2) man	to pink, fol. non	zonite diss put cp.	21597	28 3	1 3.0		1.155	
	weaklyn	nametic alen T	hin stavits	98		34 3.0		0.505	
6.1	19.5 25.6 (2) as abo	ve wealche ma	enefic bio + cp tracs	99		37 3.0		0.780	
6.4	25.6 32.0 (2) dk green	n / sink enliessic	monzonite, diss put			40 3.0		1.09	
- 1	CP chil	mitic	person - Janua pg	01		43 3.0		0.43	;
0.3		C.gr. lucosyn.	dyke py+sericite	02		46 3.0		0.247	
101.07	32.3 138.5 (Z) gven	sink fol. mon?		03		49 3.0		0.765	
1000	Sudnith	VIts. KEPart Ch				52 3.0		0.371	
	some ep + her	natite frac lills	cphlebs milky stauth	05		5 3.0		0.332	
4.0	2	med. c. mon ma		06		58 3.0		0.513	
1 -		+2+ minor purite		07		61 3.0		0.670	
6.3			nonzonite/Sylenite	08		54 3.0		0.463	-
	left, Kot		ic's diss pr scp	09		7 3.0		0.465	
2.7	148.8 151.5 (4) Aink		sun duke I toliated	21610		2.3 2.3		1850	
<b>x</b> •/	monzonit				92.4 9.	5.6 3.0			
25								1900	
<b>X</b> 7		unte, med-finer	ol monzonite cuth					1460	
17			acfillep, weak mag	13		24 3.0		0.335	
1.7	176.5 178.2 (4) pink c	. qv. lincosyn d	yke statep + py VIt	14		27 3.0		0.272	
2.8						30 3.0		0.502	
	181.0 186.0 (3) as abo	ve cut ly lucoso	n dyker, some(2) 2 cp.			33 3.0		1670	
	186.0 192.0 (3) strong	y magnette e.g.	Symite, enthy (4) VNS			6 3.0		0.424	
5.0	192.0 207. (4) pind	med-caro Servit	ic linco sign cut by			39 3.0		0.730	
	grey gtz.	+ chlor & stat	py vits.			2.6 3.6		405	
		0 0	V	21620	142.6 1	45.6 3.0		0.574	

Page 1

.

- 1

				····		· · · · · · · · · · · · · · · · · · ·		F	Pagel
PROPERTY:	Λ	LATITUDE:	STARTED:			DIP	TEST		
	· · · · · · · · · · · · · · · · · · ·			Footago	Corrocted	Footage	Corrocted	Footuge	Corrocte
HOLE NO .: 74-	- 7	DEPARTURE:	FINISHED:						
BEARING:	/	ELEVATION:	LENGTH:						
DIP COLLAR:		SECTION:	LOGGED BY:						
FOOTAGE		DESCRIPTI	I	SAMPLE	FOOT	AGE(M)		ASSAVS	
From To	,			<u>NO.</u>	From T				
	Summary:	hole cuts dk	grey to pinkish	21621	145.6 14		J	0.2/6	
	0	fine cr. fol	isted monzonite	22	155 15			0.59	
	a	ind sylemite es	ut his lucogram	ite 23	158 16	13.0		0.413	
	dyke	es. c. r. mesc	ut lus luce ogvann egatic segente	te 24	161 16	4 3.0		0.62	
	is found	d from 178.2 - 1	92. Dm. Copper	25	164 16	7 3.0		0.995	
	isforma	las dissincph	deta frucs e in sta	26	167 17	0 3.0		0.905	
	M KSAC	n vits. cp>>	pr. potamici -	27	170 17	3 3.0		0.231	
	alterno	ation - bio frad	SORK-Spenvits	28	173 176	.53.5		1.78	
4.3 176.5	m - Monzoni	te / syenite ±		29	176.5 179	32.8		0.061	
176.5 207 m	- luco	8 metocratic sy	enite weak prineval	li- 21630	203.9 206	93.0			
	zation	0	/ ~						
	0								
	Unit 2 = 16	9.5m 82%							
	" 3 = 12	3.8m 6.6%							
	<u> </u>	11.4%							
	<del>.</del>								
					•				
								T	
		· · · · · · · · · · · · · · · · · · ·							
		۰,						1	
			•						
	· · · · · · · · · · · · · · · · · · ·								

.....

			γ <u> </u>							Page I
PROPERTY:	LATITUDE: 2N	STARTED: 21 July 74				DIP			Farmer	Corrocto
TAM			Footage	Corr	octed	Footage	Con	rocted	Footage	Contocto
HOLE NO.: 74-8	DEPARTURE: 3E	FINISHED: 22 July 74								
BEARING: N52°E	ELEVATION: 4410	LENGTH: 47.0m								
DIP COLLAR: $-1/50$	SECTION:	LOGGED BY: P.Peto								
FOOTAGE (Meters)	DESCRIPTION	20.	SAMPLE		FOOTAG				ASSAYS	
From To	oxes	BQ Love	NO.	From	<u> </u>	Length	Au	He	cu	
			0.70	2.1		20			1 200	
6 3.4 25.6 (Z) rus	y, fractured, fr. gr	. fol monzonite	21591	3.4	1.4	3.2	25	1.6	0.223	
ر م ل م ا	I have milker staulte	Dimonite blobs &	21592	7.9	11.6	3.7	4		1050	
hac. e	paties, traces ep	8 bn. (oxidized zone)	21593	11.6	14.6	3.0	_/		1150	
5 25.6 27.1 (3) mes	ven Motchen e.gr.	you'te sericite /earbalt	h							
1 27.1 30.2 U) dkg	wey Motchy e.gr.	monzocliorite cut								
luy c.(	gr. pink (lucosy	mite dytes at							<u> </u>	
28.4-7	8.7m, 26.2-27.2m,	non indenetic								
0 30.2 34.215 pink +	o Kuff., v. fr gr. folia	ted leve oseps dyke								
Stons	sericite altr									
3 34.2 40.5 (Z) ende	y fn. gr. foliated	monzonite (basen)								
- 11- 5 117 0 CC	tonite frees.	as ditai								
.5 40.5 47.0 (5) Juin	e tobaff, friger. hu	cosin and								
Summa	ry: In w. Joln	wnzonite 3.4-25.6								
and	- 34.21 to 40.5 m. ea	error ep (imonite)								
wom	3.4 to 12.5m, en	+ by frer. luco-								
Sull	ite dykes with a	monzodidrite							-	
Scree	n at 127-30 m.	δ								
Unit (2)	=31.9 m 68 %									
	1.5m 3.2%								-	
	10.5m 22%									
	= 3.1 m 6.6%									

Page 1

.

	p			1	1	<u>-</u> -		·····		<del></del>		Page .	<u> </u>
	PROPERTY: TAM REM	LATITUDE:	45'	STARTED: 24 July 74				DIP '	TEST				
	PROPERTY: TAM REM		<u> </u>	~7+uly74	Footage	Cor	rected	Footage	Cor	rocted	Footage		Corroctor
	HOLE NO .: 74 - 9	DEPARTURE:	5E	FINISHED: 1 Aug 74									
	BEARING: N52°E		4335'	LENGTH: 258.6m									
	DIP COLLAR: -45°W	SECTION: "B	oundary"	LOGGED BY: P. Peto									
	FOOTAGE (MERVS)		DESCRIPTION		SAMPLE		FOOTA	GE (M)			ASSA	/5	
	FOOTAGE (Meters) From To 35	Boxes		BQCore	NO.	From	To	Length.	Au	Ag	ASSA		
	D 6.7 overburg	den								U			~
	6.7 18.3 (4) rusty	fractured	In. cv. le	ucosyenite									
	18.3 21.3 (4) ruster	Q. Gr. syen	Q La	0									
	21.3 23.5 (4) rust	her. my	enite									·	
24.0		C. ch. M	jenite										
9.6	24.0 33.6 (2) fn (	er. Lol. mot	nz, weakly	magnetic limon fre	d's								
	33.6 39.9 far	It zone	ancillic V	line sugarte									
	39.9 41.2 (2) pin	K for gr. f	ol. Syenit	e, non magnetic	ļ								
	cut by st.	+ Scriditel +	- pyrte V	lts		L							
		e + Kspar	vein	•									
0.6	41.5 44.2 (2) fol	iated pint	K syenite	for gr. Streaky,									
3.4	442 47.6 (4) C.S.	1. sericitic	syenite,	minordise proti	2								
1.0	47.6 48.6 (2) 10	liated for g	r. sejenite	straky.									
0.3		tz + pa veil	te co sal	veges.	<u> </u>								
0.5		der. Quic	osin duke	E diss M&CD.	•								
6.9	49.4 56.3 (2) fin	ugr. Pol	monzonite	, cliss py, Centby (4) VI	K21564	53.7	56.9	3.2			1495		
0.6	1 76.21 76.7 1 (77 000	W. LUCOSI	midule		21565	56.9	59.9	3.0			550		
0.5	56.9 57.4 (2) fin	ie qr. mor	zonite		21566	59.9	62.9	3.0			2280		
1.5	57.4 58.9 (4) C.	gri lucose	mdyke										
3.9	58.9 62.8 (2) 10	4. nonzol	ite										
0.6	62.8 63.4 (4) (1	incosing of	yke										
<i>ÿ</i> .0	63.4 71.4 (2) fr	gr. fol. no	nzonite dis	scpe66.8,62.8-64.3									
1.2	62.8 63.4 (4) (2) 63.4 71.4 (2) Pn 71.4 72.6 (4) lu	acosyn dys	14 /-	<del></del>									
7.4													
0.6	82.0 82.6 (4) m	el gr. ardill	ic Quicos	in lyke, stavits									]
o.s	82.6 87.4 (2) Gra	ey frage of	ol. monz.	un dyke, stz vits weat mas, K-span									]
	1 + m	UV145 Ho 220	m.	<u> </u>				l					
	' ()												

Page 1

•

	PROPERTY:	LATITUDE:	STARTED:				DIP	TEST			
	PROPERTY: TAM			Footage	Con	octod	Footage	<u>~</u>	orrocted	Foouro	C
ь	HOLE NO.: 74-9	DEPARTURE:	FINISHED:								
þ	BEARING:	ELEVATION:	LENGTH:								
	DIP COLLAR:	SECTION:	LOGGED BY:								
ŀ	FOOTAGE METERS	DESCRIPTIO	ON	SAMPLE NO.	From	FOOTAC	E(M) Length		l eu	ASSAYS	
ŀ	From To 87.4 87.8 (4) leucos	ign dyke	<u></u>		PIOII				1-24		$\uparrow$
ŀ	87.8 92.4 (Z) Green	strongly foliated	1 monz lew stavits	21567	89.4	92.4	3.0		2250		
	dissen. c	e 91.8 - 92.4 n		21568		95.8	3.4		0.732		
	92.4 94.2 (4) C. gr.	sheared lunco	syenite, chloritic go	93	<u> </u>			<u> </u>	ļ		
Ļ	94.2 96.4 Fault 35	e in fol. mon	2°, early vits					<u> </u>			
ŀ	<u>96.4 97.3 (z) frig</u>	x. fol monz.									
1	97.3 98.0 (4) p. cv.	pink lucosin									
-	98 107.4 (4) Fault 20		ugouse ascillic alt					┼───		<b> </b>	+
1			dite chlor clayalty K-s	_		120 7	20	+	2430		+
$\mathbf{F}$	119.0 130 (Z) may	ner, fol monz. f	-ault @ 122.6m sericitic from 118 - 122.	21569	11.1.1	120.1	20		2220		+
$\left  \right $	130 131 (4) luncosys	SN BAGY PURITICS	Source from 113 122.	7 21310	120.1	1201	3.0		220		+
	131 133.7 (2) gray for	cr. Isl. mm. 2. E dis	8 m 8 cp, lucosyn VI	k				1			
1	133.7 134.2 Kt) c. c. l	unco sim duke E		21571	133.7	136.7	3.0		2410		
	134.2 141.4 (2) Dink	Ingr. Jol. mon?		21572		139.7			0.310		
Γ		sim dyke	/							· ·	
ļ	141.8 142.4 (4) "			21573	141.5	144.9	3.4	1	595		
5		r. syenite E di	sem m & cp	21574	144.9	148.2	3.3	2	0.211		
ł	-148.2 175.7 (2) Grey/pr		nz cut by Kspar vits,	21575	1482	151.2	3.0	3	0.96		
Ί	disserco & m		5 7 7 7	21576	151.2	154.2	3.0	40	1.125		
[	175.7 179.3 (9) C. Sr. 4	bink miessic m	mz, K-sparvits faulti	19.3 21577	1542	157.2	3.0	2	0.84		
	1702 1000 (1) 0:11	0		+ 21578	157.2	160.2		2	0.452		
T	lun sta =	ned - Cigr Lucos	cite envelopes martics	21579	160.2	1640	3.8	1	1500		
	to chlorite	- GIZ+GALLAVI	USE MAN A TTIAM	21580	164	167			0.575		
1	199.8 220.5 (4) Dink C.	er chloritic lene	cosyn sericite & mgillic	alt-81	167	170	3.0		0.66		
Γ		· · · · · · · · · · · · · · · · · · ·	0					1			

.

Page

			STARTED:	1		פזרו	TEST			<u> </u>
	PROPERTY: TAM	LATITUDE:	SIAKIED:	Footage	Corrocted	Footage	Y	rocted	Footage	Corrected
	HOLE NO .: 74-9	DEPARTURE:	FINISHED:							
	BEARING:	ELEVATION:	LENGTH:							
	DIP COLLAR:	SECTION:	LOGGED BY:							
	FOOTAGE meters	DESCRIPTION		SAMPLE NO.		TAGE (M)		<b>A</b>	ASSAYS	
100	$\begin{array}{c c} From & To \\ \hline 72D \bigcirc 733.3 (2) & G_{2}(2) \\ \hline \end{array}$	la antel mono con	0) 771.4 8 779.7 - 231:	21582	170 17	3 3.0				
(2.8	220.5 233.3 (2) grey 233.3 235.1 (4) luncas	in della		21583	173 1-	16 3.0				
2.2	235.1 237.3 (2) Lol. ms	ot son it a		21584	176 1	19 3.0	1			
1.5	237.3 238.8 (4) lucose	n dy ke				0.7 3.1	408	245		
3.0	128.8 141.8 (2) laling	at a second		1 1	220.5 22		2	1210		
2.2	241.8 244 (4) luncos 244 248.7 (2) fol. m 248.7 258.6 (4) luncos	syn dyke, diss cp	0 225-226.5m	21587						
4.7	244 248.7 (2) fol. m	onzonite, minor cr	0 e 245m		228 22					
9.9	2.48./ 258.6 (4) Vluce	Sandyke c.cr.	Non magnetic	21587	228 2	3/3.0	2			
	en by	1e.b gtg+cp+hemal	ric Vits, service all	21570	23562	20.6 2.0		210		
	Summary:	Hole cuts variably	mineralizeda							
		frac's & stytepville								
		2) cut ling numeroi								
	dykes(4).	Hicher grade min	revalization occurs							
	lie fiveen 1	18 & 180 meters. Fau	its occur at							
		94.2-96.4, 988107.4								
	lenco sitne	te dykes carry stat	= ep + py 7 galena as							
	well as dis	sem blebs repueces	ting a sugnific							
		ig magna im pregne							·	_
		nonzonitas (protoc								_
	bourder	(chill) zones to Duck	ding CK Symite Comp	ex.						
	(Init 12)130.9	m · 50.6%								
	Unit (2) 130.9 Unit (4) 121.2	2m 46.9%								
		······································								
		•								

•

.

	<b>.</b>	T				1						Page I
ROPERTY:	TAM (Rem22)	LATITUDE:	zś	STARTED:	3 Aug 74	Footage	Corre	med 1	DIP 7	Corrected	Footage	Соггос
OLE NO.:		DEPARTURE:		FINISHED:			Conte		100480	Cuntur	- Foodle	
	74-10		46		4 Aug 74							
EARING:	NSZE	ELEVATION:	4540'	LENGTH:	132.7m							
IP COLLAR	" −45°W	SECTION: B	DUNDARY	LOGGED BY:	P. Peto							
	AGE M ZOBOXES	(7 distroyed)	DESCRIPTION	<b>0</b> 1		SAMPLE		FOOTAC	GE (M)		ASSAYS	
From	To STORED & MID	where camp.	<del></del>	<u> </u>	2 core	<u>NO.</u>	From	To	Length.	Au		
	3.05 Cusing		<b>(</b>						3.05			
3.05	18.0 (4) rusty med	-frigr. l dissem e	<u>ucosgenil</u>	te, cut	<u>maplific</u>				15.0			
18.0	20.1 (2) dk aven, a	aistem e	poleos						2.1			
	20.1 2) dk aven, g	ALESSIC X	sporting for u	wh3, w	carmas,				<u>a.</u> 1			
20.1	24.7 Sault a	also in	4						4.6			
24.7	45.7 (4) Vusty (	chand of	scillic o pl	Insition "	hode of				21.0			
× /• /	1) 17/ work y	lice	1 36.6 - 40	2/2	J.				200			
45.7	61.9 (4) segice to	lucos	106-6 40	-20 -					16.2			
61.9			angillic al	h					7.3			
69.2	830 (4) lencosny	P. 50(.)	pink ses	icitic th	in its vite				13.8			
	dissem on	n E ain	K-SPAN	har's	Partt							
	dissem p gouce @	(81.4 m -	0	/	/ <del></del> /				14.6			
83					art outby				6			
	statph vei	< R K-SK	ant py vite	s & seg	icitic U							
	Pencosyi	nite du	Kele K (96.									
97.6	101.0 (2) in the	ne gfs	+ Du blein		tesk-sparence	elopes			3.4			
101.0	104.3 (3) merocs	atic arjen	ite		•,				3.3			
104.3	109.2 12, Apolty	Ingr Iga	liessic su	enite Imo	nzonite E				4.9			
	Kennin	no later			0							
106.7	109.2 (4) Lucos	yenite d	ute Caplit	ic textar	2]				2.5			
109.2	111.3 (3) mesocol	tic mi	aite						2.1			
	114.4 (2) for gr		l'Syenite	Ethinc	yacs,				1.1			
	1 & mill	cyligtz Ve	in Kets.	/	/ /							
114.4		llucosy		ecciated	in part				4.2			
	121.7 Janelt	cone, atg		, pink k-	sant in frac	<u>s</u>			3.1	· .	<u>_</u>	
121.7	132.6 (4) lencos	yende e.	Sr. diss p	n etz+	pyvit				10.9			

Unit 2 = 26.1 m 19.7% unit 3= 5.4 m 4% unit 4 = 76.3%

PROPERTY:	- 2.02	LATITUDE:	16+605	STARTED:	16 Aug 74		<u> </u>			TEST			
	TAM					Footage	Corn	octed	Footage	Corn	ected	Footage	Corrocte
IOLE NO.: $74$	4-11	DEPARTURE:	2+30E	FINISHED:	8 Aug 74								
EARING: እ	152°E	ELEVATION:		LENGTH:	182.1m								
	- 45°W	SECTION:	1DWAY	LOGGED BY	:								
	and the second se					SAMPLE	1	FOOTAC	GE(m)			ASSAYS	
From To	22 alumin Be	oxs Q HIDWX	y	B	2 Cove	NO.	From	To	Length	Au			
0 3.35	Casing								3.35				
3.35 5.5	(Z)weathoved ep seams	h. h. cr.	, aver mo	nzonite.	mod. mag				R.15				
	PO Seams	to zmm	cut politi	ic VNS .	<u> </u>								
5.5 23.8	(2) Medium Go	1. doliate	d monzon	ite min	ior dissem				18.3				
	ci, the	in K-span 1	rac's lime	nite frac	s. cut ly								
	lucosm	duke let	frac's lime	0									
23.8 24.7		nik lu	icosin dy	ke					0.9				
24.7 39.4					, sugniter 1ts				4.7				
	K- KOC	n f pin t	vac's lu	cusen duk	e e 39.5 m				4.2				
39.4 43.6	(2) 6(4)		1.1.1. diel		strong								
	(2) grey, mag	out len &	lucosyn d	incee									
43.6 52.1			<b>v</b>		dyke.				8.5				
52.1 56-1	(4) C. er. (4) us al (2) Gray mode	one lin	mitic the	ac's	7				4.0				
56.1 59.8	12-1 Gram	tol has ca	monsorlit	e serici	tic K-spart	state	2+12	1 vits	3.7				
	mode	Acti ma	anotiz	,	·	82	1 4	J	IDE				
59.8 79.3	(Z) whi	to bac	2 plicles	1 Sacarita	diss py	C ()	nias	netic	Puth	n e.	cr.le	ucosan	detee
79.3 94.6	(2) $(3)$	e cal	oliated l	rip fite 1	ich suchi	to	U		15.3	11 9		9	
	1 1 4/	Siker In Co	n. no bi		d. maneti								
94.6 132.7	1 (7) 000	have her-	t no hel	alicles Vi	sille				38.1				
132.7 182.		P En A	luco sul	it.					50.0				
102. 1 102.	pm is		unce sign										
	Summary:	225 1121	m conf	al 100 ma 2 m	ile 43.6-5	6.1 1	with	ic li	11050	anit	c du	ke	
	<u>Summary</u> .	7 $M: t$	still grey	6 week	Anonito me	c klas u	, i e	(cline	1 wit	h. n.		unit V	$c \rho < c$
	$\frac{1}{122} \frac{1}{122} \frac{1}$	67 1 2 ALA	· progra	ant. h	syenite, we	0		5		- 100	Jrs a		
	132.1 = 0	ce ma	m acucose	und de	jung								
	Unit 2 = 109.3	Sun (Dº/	Havit H = 1100									i	
			yvm 1 40										
						<u> </u>	·						

Page 1

į

PROPERTY: TAM	LATITUDE: 205	STARTED: 17 Aug 74			D	P TEST		
IHICI	•		Footage	Corrocte	d Footage	Corrocted	Footage	Corrocted
HOLE NO.: 74-12	DEPARTURE: 4+50Ê	FINISHED: 24 Aug 74						
BEARING: N52°E	ELEVATION: 4800 1	LENGTH: 183m						
DIP COLLAR: -45° W	SECTION: HIDWAY	LOGGED BY: P. Pelo						
FOOTAGE M		(after A. Panguels.) BO core	SAMPLE	F	DOTAGE (m)	9	ASSAYS	
From To Storede Hide	WOOD DESCRIPTION WAY (Boxes distroyed)	BO corl	<u>NO.</u>	From	To Leng	th Au Co	<	
0 6.1 CASING		······································			6.1			
6.1 13.1 (2) pink my	ed. w. symite Est.	vits , soor recovery			7.0			
13.1 15.25 12; linzoni	ed. av. sycnite Est- tic fol. sycnite				2.15			
			1		0.2	5		
15.55 19.3 (2) aven av	een fn cv. fol mon. Sep clipto let.	20nite fol SSAC.A.	stat	24 Vil	$\pm cp e^{3/2}$	7.1m.		
19.3 19.5 (4) Product.	sen blackelet.	<u> </u>	182.	0	0.2			
19.5 23.5 (2) fol A	ejemite				4.0			
23.5 24.1 (4) privi-	Fic lucoson dyke.				0.0	5		
24.1 37.2 (2) gren	to white formed	er. fol. sucrite	eta 11-	k. do				
37.2 38.1 (4) Ce.	. lucoson dyke	<u>y</u>	80	271	Y 0.0			
38.1 47.6 (2, Pol	· friger. sejenite				9.5			
47.6 50.0 (4, e. Galer	in se al al al a	· · · · · · · · · · · · · · · · · · ·			2.4			
50.0 55.5 (Z) Ifn		dise pro 0 c D			5.5		5	
	gr. lucoson dyle	E SAUDO CARAM	weak	Mac	[.]	< 0.1		
	Sycaite cut ly felds		us as	0	1.0	< 0.0	79;	
57.7 62.5 (2) "	" no stavi	te o		¥	4.8			
62.5 64.0 (4) med:	Tarevo lincosyn E.	trace co			1.5		03	
64.0 66.2 (21 fol.	- quenite	ruce (p			2.7			
	egatic signite sche				1.5			
	sychite traces CP				2.3			
70.1 70.8 (3, me	peratic sunite				0.7			
	· Suchite				2.4	····		
					1.0			
	ossenite Ven	R Kappen ulk			24.0			
74.2 98.2 (2) finis	e qu'ilot sachite cut	ly Kepar VIK						
	cosin dykelet.	it dime in Pie II	12 105	- =	0.6			
94.8 107.7 (2) GVL	y to tolite fol sum	ite, dissemp from 11	$\frac{1}{1}$	•Jm		0.3		
		·	1L			1,		

Page 1 - Z

.

•			Pag.										
PROPERTY: TAM	LATITUDE:	STARTED:	Footage	Corrected	DIP Footage	TEST Corre	veted T	Footage	Corrocte				
HOLE NO.: 74-12	DEPARTURE:	FINISHED:	100460		1			100260	Context				
BEARING:	ELEVATION:	LENGTH:											
DIP COLLAR:	SECTION: MIDWAY	LOGGED BY: A. Panwels											
FOOTAGE M	DESCRIPTION		SAMPLE	FOC	TAGE (m)			ASSAYS	<b>.</b>				
From To		······································	NO.	From	To Length	Au	Cu.						
107.7 108.0 (4) Purcose	m Verkelet.				0.3				`				
108.0 115.3 (2) fn-n	and gr. fol symite,	CP @ 112.2m			7.3								
115.3 115.6 (4) leve	cosyn blykelet	l			0.3								
115.6 116.5 (2) Ju.c.	. fol sim, magnet	bic, hemapite minorco.	8,24		0.9		0.02						
116.5 116.8 sta ven	E py & magneti	te hematite minorcp.	<u>' ()</u>		0.3								
116.8 119.2 (2) In cr	. 12 desenite				2.4								
119.2 125.9 (2) and	lifone O	-			6.7								
125.9 127.5 (2) 45	above ently luco:	sim Veins			1.6								
127.3 128.4 (4) lene	cosin cluke	0			0.9								
128.4 183.0 (4) med	. to man. Quicosceni	te white - prink, E Sn	nall a	mounts	J biotil	tes c	hlos	te ·					
<b>U</b>	. 0 0	/ / /			0 54.6								
Unit 2 102.7	5m 56% Unit 3 2	.2 m 1.2% Unit 4 = 41.8%											
	·												
		•											
	· · ·												
	٠												
	<u></u>												
	, ( ), ( ) =												
	······································												

PROPE			TAM	_
DRILL			74-13	_
DRILL	TYPE_		Longycar 34	_
DATES	2	5-A	hus - 3 Sept 74	_
-			//	-

	LOG & ASSAYS
LOCATION	0587E
ELEVATION_	44751
BEARING	NSZOE
DIP	-45°W

. . . .

LENGTH	310.5m
% RECOVERY	V. 900d.
LOGGED BY	P.Peto
PAGE / OF	TWO

SAMPLE	FROM	то	LENGTH	NOTES		ASSAY			1.04
DANE DE					oz Au	oz Ag	meter	Copper	6Gold
	0	6.4	6.4	Caping				(Pfm)	i ppla
	6.4	14.3	7.9	(4) sericitic luncospende med. C. gr.					
49075	14.3	31.7	17.4	(4) faultzone, hematite slickenslides, stzvits			30.5	38	5
				Clay gouge e 14.3- 16.5 m, 17.7 - 20.4 m, 26.5 - 28.7 m					
	31.7	38.3	7.6	(4) med. yr. Lucogyenite					
	39.3	51.5	12.2		sto chile	site			
49074	51.5	53.1	1.6	(3) gven mesocratic sycnite gtz vik	JIO CALL		51.5	10	5
49073	53.1	59.5	6.4	(2) foliated Symite med. gr. argillic, stavits,	lay 14+	aced		m 26	5
49072	59.5	67.7	8.2	(4) e. gr. lucosyn dyke	<i>f</i>		52.5	15	5
49071	67.7	74.4	6.7	(3) serven merocratic symite a diss mouth stavils			442	141	10
49070	74.4	82.0	- 7.6		) 81.7m		61.0	61	340
49069	82.0	85.4	3.1		<u> </u>		75	24	5
49068		89.4	4.3				54.8	6	5
			4.3				114.4	14	414
49067	1		1			120 0			
	103.7	132.4.				130.8-			
49066		139.4	7.0	(2) fol for gr syenite fol 45° A c.A., minor disseq	<u> </u>	· · · · · · · · · · · · · · · · · · ·	107-4	15	5
49065				fault zone 129. 3-132.7 m			98.5	, ,	5
49064		140.3	0.9	(3) mesocentic symite, gtz vite, argillication			129.3		80
: 49063	140.3	142.1	1.8	(4) lucosyn dyke.			137,6	106	5
49062	142.1	181.5	39.4	(2) med to finger fol mionzonite/signite, spotty			146.4	17	5
49061				to gniessic, trace my locally argillic, primary			152.	- 14	5
				biotite clots @ 178.4 - 182.4 m cut by stavits				,	

PROPE			TAM
DRILL	HOLE	NO.	74-13
DRILL	TYPE		Longyear 34
DATES		25	Aug - 9 Sept74
-			

DDTTT UOTD	
LOCATION	LOG & ASSAYS
ELEVATION	44751
BEARING	NSZOE
DIP	- 45°W

m
to

•

SAMPLE	FROM	TO	LENGTH	NOTES		ASSAY		1	
	181.5	191.8	10.3		oz Au	oz Ag		100 1	% Cu
	191.8	195-2	3.4	4) med C. gv. leucosen Edvury stavits solissem pr					0.06
	1 11.0			(2) gasiessic fagr. syenite à recordan protite clots, dissem cp.			[72]	195.2	0.29
49060,	195.2	198.2	3.0	(4) lucosyn dyke			195.2.	-198.2	0-33
\$		215.9	-	(2) fol. fn gr. mon2/signite, scricific in pa	+		163.2		10
49059				histite seams, of frac fills gtz+py=cpv1ks			160.1		5
49058	215.9	217.1	1.2	(4) lucosyn dyke			150.7	11	2
49057		238.2	21.1	(2) gniessie gry fon gr. nonzonite, locally argit	lic		Z00./	15	5
490 56				near fault traces of 222.7m & 239.4 - 243m			177.2	29	15-
49055	1			et3+12+cp VNe. 237.3m			245.8	258	155
490 54		246.1	7.9	(3) mesocratic spenite			251.6		60
490 53	246.1	251.6		(2) fn gr. fol. monzonite cut bio-rich trapa	yke .	M	257.7		135
490 20	251.6	258.0		(4) V.C. Gr. lunco syn dyke out by etz vits		Mo = 440;pm	292.8	44	45
49051	258	265.3	7.3	2) fr gr. for mon z.			30/.3	17/	10
49050		289.8	23.5	(4) c. qr. sericitic Euroscenite, fault 20ne 283-6	-285.8	m	310.5	68	
49049	288.8	291.6	2.8	(3) serven merosyente			208.3	382	I
49048	291.6	295.2	3.6	(4) luncosyndyke c stat patop VNE 10°A cA, chlore	tic		211.4	17	10
49041	295.2	299.8	4.6	(3) mesosycnite screen, sericitic E Star py vits, diss			222	139	5
· 49046	299.8	310.5	10.7		VIAS		225.	87	5
49043	-		· ·	trace diss. cp.			233.9	14	5
49044	<u> </u>			Unit 2= 1124 m 36% Chuit 4 = 160.8m 51.8% Unit 3=12	.2%		236-	14	300

PROPE			TAM	
DRILL	HOLE	NO.	74-14	_
DRILL	TYPE	BQ	CORE	_
DATES	10-	13 Se	ot 1974	_

	LOG & ASSAYS
LOCATION	01(82W
ELEVATION_	45101
BEARING	NS2°E
DIP	-45°W

LENGTH <u>ZO6.65</u> % RECOVERY <u>v.g.od</u>. LOGGED BY <u>P.Peto</u> PAGE <u>1</u>OF <u>Two</u>

CORE stored on dvillsite

SAMPLE	FROM	TO	LENGTH	NOTES		ASSAY			
					oz Au	oz Ag	Meter	Copper	Gold
	0	1.83	1.83	overhurden				ppm	<u>q</u> qq
	1.83	6.1	4.27	(2) rusty friendon to diss py lineouts fol 25	CA.				
49043	6.1	12.2	6.1	(2) strongly besicitic, 1-2% diss py, shear @12m			7.6	87	80
	12·2	14.9	2.7	(3) med.gr. mesosign, bio-vich, py fracs					
	14.9	15.9	1.0	(2) grey for ex. privitic mone their K-sportep Ults	weak	uag			
49042	15.9	17.7	1.8	(3) med gr. meno syn, minor diss eps m	/	0	17.1	43	5
	17.7	19.5	1.8	121 gren friger. fol. nonz. scricite alter few st	vits a	inor A			
	19.5	21.0	1.5	(4) C. Er. lincosyn dyke		0			
49041	R1.0	38.4	17.4	(2) In gr. gry, fol monz, Non-mas, cuthy leuc	-e 1/	<i>l</i> s.	ZZ.9	66	5
	38.4	39.7	1.3				22.7		
49040		, , , , , , , , , , , , , ,	7.0				46.7	609	వ
11040	39.7	46.7	1	(2) gray he ar fol nonz, strong sericite enon-me (4) pinked-c.gr. lineosyn dyke, stytep vits, diss	16/	, soici			3
	46.7	60.4	13.7		figr p	, souce	le al	<u> </u>	
			· · · · · · · · · · · · · · · · · · ·	drusy K-spm-scricite VIt's (1/m)					
	10.4	67.1	6.7	(4) C.G. lincosyn, my fracs, diss sericite, K-spur.	+ py+cp	VIts	69.5	-	
49039	67.1	73.2	6.1	(2) contact zone for frequencing à diss cp 3 m <1%	<u> </u>	My V/ts	(3/m	) ²⁸²	5
49038				& lucosyn dyke lets.	0-	0	72.L	270	10
49037	73.2	81.1	7.9	(4) pink c-med. gr. lucosyn cut by thingtz+e	puts		75.6	24	5
49033				diss py, minor cp lileles, sericite alti			72.		
	\$1.1	83.6	2.5	(2) fol gray friger mong scien fol 45° CA.					
	83.6		4.2	(4) pink v. c. cr. lucoson z sociate					
49036			4.3				93	63	10
10.00		1.4.11	T	(2) med qv. pint lucosyn, raregtz vits.			<u> _'`</u>		<u> </u>
L			<u> </u>	<u>1</u>	<u> </u>	l			L

PROPE	RTY	11	m
DRILL DRILL DATES		NO	74-14

	DRILL HOLE LOG & ASSAYS
	LOCATION
14	ELEVATION
	BEARING
	DIP

LENGTH	
% RECOVERY	
LOGGED BY	
PAGE 20F	TWO

.

· ·

				· · · · · · · · · · · · · · · · · · ·					•
SAMPLE	FROM	TO	LENGTH	NOTES	0.7. 411	ASSA			010
··	92.1	94.2	2.1	contactzone (4)\$(2) sericite alter, K-sparvits, diss	oz Au		B Meter	Copper	<u>Cole</u>
49035	94.2	99.1	<b>A</b> .9	(4) med ev. funcosan duke diss m			96.1	62	5
49034	<u>99.1</u>	122.0		(2) even for ev. fol mond. cut by leucosyn VIE, V.	bry		985	38	10
+9033	· · · ·			Coarse cliss py, milky stavits, ep-fracs, dissep.,			102.6	170	5
49032				also bio + cp + my fracs, fault trace 115.3m (angi	llic)		?	306	5
<u>+9031</u>	122.0	126.0		(2) gniessic monz, lie fracis, K-spacults			1092	1862	30
19030	126.0	128.1	2.1	(4) C. gr. sericitic lucosyn et aults, fractured.				2560	
49029	128.1	193.7	58	(4) pink, med-c.gr. serilitic lucoson E			115.3		5 5
49028				fin bio clots argillic slips, statch ults,			118.3 121.4		っ ふ
<u>49026</u>				K-span frac fills, cp ult e 166.5m hecomes folicited hetween 185.4-193.7m			124.7		<u> </u>
490 25	193.7	203:1	9.4	16) gray play-hbl posphyry dylee, argillic schear	el soon	CA.	146.7		15
49024	203.1	203-7	0.6	(6) plag porphyry & v. course diss pyrite (labite	?)			1502	55
49023	203.7	206-8	3.1	(4) grayphile, felsic lencosychite cut by	•	ł	164	933	40
+ 9022	173.2			dissempy, argillic altri	80		(3.1)	1380	4-
19021	179.3			Summary: weakly numeralized folmonz cut &	key		179.3	153	25
49020		 		lucosin dykes + cp & dissen py. holofelsie	Soice	hic_	185.4	811	255
490 19		<u> </u>		lucosyn eut hy plag posphyrydyke. N	peore	assa	7ed.	247	85
49018					<u> </u>				85
49017				Unit 2= 77m (37.2)%, 1.8m = Q.2%), Unit 4 55.5m (26.9%	)		203.7	42/	20
<u></u>				Unit 5-6.8%					
				L	l	1			

unit 2= 77.4 m 36.4% Unit 4= 63.6

PROPE	RTY		TI	AM
DRILL	HOLE	NO.		74 - 15
DRILL	TYPE	2	BR	
DATES_	14-	-17	Ser	of 1974

	LOG & ASSAYS
LOCATION	6N8.3E
ELEVATION_	4300'
BEARING	NSZOE
DIP	- 45°W

. . . .

LENGTH	212.8m
% RECOVERY	
LOGGED BY	P. Peto
PAGE / OF	one

(after: D. christic)

FROM			And the Price distance of			
•••••••••	TO	LENGTH	27 Boxes (10 Boxes distroyed)		ASSAYS	
		(m)	cove stored 2 drill site NOTES (No eore split or sampled)	oz Au	oz Ag	%Cu
0	6.1	· · · · · · · · · · · · · · · · · · ·	overburden			
6.1	11.3	5.2	(4) pink. e. gr. lucosyenite, scricitic, few this	4		
(59	0T) _10.0		ep frac's K-spar Vits, limonite coatings.	0.001	0.02	0.013
11.3	88.4	77.1				
/5	m			0.002	0.05	0-165
22	m			0.002	0.04	0.066
31	m		35.7-42.1 m)-sericitic V. M. pytcp Pracs (42.1-47.3m)-	0.002	0.05	0.020
38	m		St2+ My VIts E pink envelopes, thight In fraces (Box 8) K-spart	0.001 cp frue	5 0.05	0.015
43	m			0.002	0.05	0030
নি	m			0.002	0.06	0.061
27	т			0.001	0.01	0.014
65	m			0.001 diss M	K-Span VIts	0.002
88.4	91.5	3.1 (28		conite	<u> </u>	
91.5-	(26.0	``		ite		
75	m			0:001	0.01	0.014
81	m			0.00/1	0.02	0.018
87	m				0.04	0.015
126 10	742.1	16.1		0.006	0.08	0.052
142.1	151.9	9.8	(4) C. q. lucosperite duke dissem m	0.003	0.18	0-364
151.9	155.8	3.9	internitant	m 0.001	0.04	0.058
155.8	163.8	8.0		0.001	0.02	0.034
163.8	169.9	6.1	(4) C. gr. Rucosun duke	0.002	0.11	0.004
169.9	184.8	3 14.9	(2) for gr. fol. symite/nion3 cut ly lucosyn VIts, millay \$1	3 UNS, M	mor pro	liss py magne 0.004
	$6 \cdot 1$ $(5^{2})$ $11 \cdot 3$ 15 22 31 38 43 51 57 65 $88 \cdot 4$ $91 \cdot 5^{-1}$ 75 81 87 $126^{10}$ $142 \cdot 1$ $151 \cdot 9$ $155 \cdot 8$ $163 \cdot 8$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 6.1 0verburden 6.1 11.3 5.2 (4) pink. e. gr. lucosyenite, sericitic few third (507) 11.3 5.2 (4) pink. e. gr. lucosyenite, sericitic few third (507) 11.3 E8.4 77.1 (4) pink, med-c.gr. lucosyenite, sericitic few for frew stavits, v. fn. spieks of dissem CP & p. 22 m nome starcp try vits & partop frue fills 31 m 35.7-42.1 m) wieitic U. fn. partop frees (42.1-47.3 m) 35 m starp vitk & pink envelopes, thight on frees (Box8) K-spent 43 m (35.7-42.1 m) wieitic U. fn. partop frees (Box8) K-spent 43 m (35.7-42.1 m) wieitic U. fn. partop frees (Box8) K-spent 43 m (35.7-42.1 m) wieitic U. fn. partop frees (Box8) K-spent 43 m (35.7-42.1 m) wieitic U. fn. partop frees (Box8) K-spent 43 m (35.7-42.1 m) wieitic U. fn. partop frees (Box8) K-spent 43 m (36x9) diss. fn gr. cp. starcp vits, Kspentpavol @ 66.5m 51 m (Box10) - sericitic starp vits & fn frees (Box8) as above 57 m (acusion of gwiessic mongonite with diss. partie (Box12) 65 m (green fink griessic mongonite with diss. partie (Box12) 65 m (green fink griessic mongonite with diss. partie (Box12) 65 m (green fink griessic mongonite with diss. partie (Box12) 65 m (green fink griessic mongonite with diss. parter (Box12) 65 m (green fink griessic mongonite with diss. parter (Box12) 65 m (green fink griessic mongonite with diss. parter (Box12) 65 m (green fink griessic mongonite with green vits few start 91.5 (26.0 34.5 (2) green for the mongonite with disseminated (green fill) 75 m (dissemi from for fill) for the rick fol mongonite for the second for the	0 6.1 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0       6:1       0:0000 buckbucklen         6:1       11.3       5:2       (4) pink. e. gr. lincosygenite, scricific few thight         (500)       ep frac's K-span 11ts, limionite ecations. 0:001       0:02         11.3       88.4       77:1       (4) pink, med-c.gr. lincosymite, scricific f.a.         15m       few sty vits V.fn. speeks of dissem cp & p. 0:002       0:05         22m       20me sty + cp + m. vits & py + cp frace fills       0:002       0:05         38m       sty + cp + m. vits & py + cp frace fills       0:002       0:05         38m       sty + cp + m. vits & py + cp frace (H2:1-47.3m)       0:002       0:05         38m       sty + cp + m. vits & py + cp fraces (Boxt) & spont cp fraces (0:05       0:05         58m       sty + py vits to pink envicepes, studit 2: fraces (Boxt) as above 0:002       0:05         57m       Baxa) diss. frage. cp, sty + cp vits, kspan py vid & 66.5m       0:002       0:06         57m       Baxa) diss. frage. cp, sty + cp vits, kspan vits, faxes (Boxt) 0:001       0:01         652m       gaxa) diss. frage. cp, sty + cp vits, kspan vits, faxes (Boxt) 0:001       0:01         657m       Baxa) diss. frage. cp, sty + cp vits, kspan vits, faxes (Boxt) 0:001       0:01         652m       gaxa) frage. frage. dissty manglegan, kspan vits, faxes (Boxt) 0:02       0:02 </td

PROPER	RTY	-	TAM	
DRILL	HOLE	NO.	75-16	_
DRILL	TYPE_	'A'	eore	_
DATES_	10 J	ine	- 4 July 1975	
-				

DRILL HOLE LOG & ASSAYS LOCATION <u>45 22 W (Sli</u>de) ELEVATION BEARING <u>N52°E</u> DIP <u>-45° SW</u>

.....

LENGTH	119.4m
% RECOVERY	Vigood
LOGGED BY	P. Reto
PAGE OF	one

SAMPLE	FROM	TO	LENGTH		NOTES	L 5N 500W slide Grid		ASSAY			
				16 core hoxes		stored e old UMEX CAMP.	oz Au	oz Ag	meter		Auget
	0	2.7	2.7	Casing						ррт	J]
49012	2.7	38.1	35.4	(4) pink e.gr. u	reakly foliate	d'hucosgenite, Hb/			83	80	20
49011				altered to chlorite	few epidote	hac fills, few diversy la	monite +	24 vite	86	73	10
49010	38.1	40.3	2.2.	(4) pink e.gr.	sericitic ho	lofelsic dyke trace v. fr	purite	0	90	480	5
49009	40.3	43.3	3.0	(4) sink but	over lucos		py fra	ćs	93	84	5
49008	43.3	44.2	0.9		, od	mesosan inclusion, u			95.8	120	5
49007	44.2	49.4	5.2			chlos pruces, chlos makies		0	99.1	510	170
49006	49.4	50.6	1.2			ucosin dyke E dissen		alachit	102.6	5230	50
49005	50.6	78.4	27.8			8 aplite dykes ec.			//	363	40
49004						e scricific dyke cut	les purit	ic cpli			
6				66.5-72.6m- C			ų · J		108.3	414	120
49003				/		leucosen dy/ce, minor	2 & weak	sericit			
49002	78.9	84.5	5.6		- ()	assillic holofelsic que	Υ Λ	ł	113.5	192	25
	54.5	85.1	0.6	(4) C. gr. lunco					116.5		10
	85.1	96.4	(1.3		(1)	Par folyamapit	PLIK-S	20,100	vits	0-10	
49001	103.1	107				n gr. fol monzonite, j				469	5
1001				Strong mag,		m clyte e 86.5-8/.2 m	S holo	elsic	120	701	
		1.50	9.4	syn dyte a	10	- 1. 1.+ -					<u>n</u>
	96.4	105.8	<u> </u>			<u>c monz è biofite seur</u>	up, V. fr	gr. diss	/ ² 'J	Mod	mae
	99.1	116.5	17.4	Aleas zone		limonite coats lucose	p.:	<b> </b>			
				dyce quacture		106.7 m					
	116.5	121.4	4.9	(2) grey for go	r.folmonz,m	unorcliss my fole	15°AC.A	· , Core	1088	a and	ofhole
			<u> </u>	12 m 2 4 2 m 3/2				l			

PROPE	RTY	-	AM	(REM)
DRILL	HOLE	NO.	75	-17
DRILL	TYPE_	A	CORE	Longuear 24
DATES	STu	14-	Aug 1ª	Longyear 24
-		- 1	0	

DRILL HOLE LOG & ASSAYS LOCATION 12.8182.1W "slide" ELEVATION BEARING _____900 DIP_____

LENGTH	117.3m	
% RECOVERY		
LOGGED BY	P. Peto	(after Pauwel
PAGE OF	one	

.

SAMPLE	FROM	TO	LENGTH (meters)	NOTES (Ve enterpretation of Los)	0 <i>7</i> A11	ASSAY	3	<del></del>
	0	12.0	12.0	overherden				1
	12.0	15.0	3.0	(3?) foliated mongodiosite, dissem pyschalong foli	al			
	15.0	18.9	3.9	(2) for to med. gr. weakly fol symite, trace of pyrit				
	18.9	21.6	2.7	(3)? medium gr, equi granulor monzodiorite; ch/+ep	a/pi			
	21.6	21.9	0.3	(4) lucosyn dyke i hematite?) slips				T
<u></u>	21.9	28.8	6.9	(3)? with for gr & foliated intervals				1
	28.8	29.1	0.3	(2) med. qv. sericitic monzonite				
	29.1	41.7	12.6	(2) every for ev. fol symite, specs of cp, py & hemchile				
				for a 450A c.A. entry numerous dykelits of lucosyn				
	41.7	43.5	1.8	med. gr. granodiorite dyke E inclusions of above				
	43.5	49.2	5.7	(2) Monzonite E Stz+galena VN				
	49.2	66.0	16.8	(3) Monzodiosite, gray med to c. gr., fol 45°ACA				_
	66·D	90.0	24	(2) grades nito pink monzonite Expidote & bio,				
				py+ hematite? fracs, traces of ep 0 82.2				
<u></u>	82.2	85.2	3.0	Eaultzone E stz + py UNS.				
<u> </u>	90.0		7.2	(2) Honzonite & crystalloblast of pik K-spar,				
·	10 -			statgal vite.				
	97.2	106.8	9.6	13) Honzoclierite, med-fngv., ep, small stava	5 0/05			
	106.8	117.3	10.5	13, Monzochiovite, becomes coarser grained E 2-				1
				K-spin megaciysts, only trace ep.				
	-							
		1		1, 1 27:2.7, -45.7% m=42% min 2%				1

٠, .

Unit 1 = 49.8m 40.4 Unit 2= 20.6m 16.8% Unit 5 = 32.8m 26.8%

PROPERTY: TAM (RE	LATITUDE:	7410 N	STARTED:	12 Aug 75	Footage	1	roctod		TEST			
						Con		Footage	Con	Tocked	Fooure	
HOLE NO.: 75-18		1+50E	FINISHED:	3 Sept 7	5				<u> </u>			
BEARING: N52°E	ELEVATION:		1	122.6m								
DIP COLLAR: - 45°SW	SECTION:"BOU	indare "	LOGGED BY	· P. Pet	0							
FOOTAGE Meters		DESCRIPTION			SAMPLE		FOOTAC	JE			ASSAYS	<u></u> ;
FOOTAGE meters From To O 11.9 Averbu	15 Boxes		AX	cove	NO.	From	<u> </u>	Length.	Au	Ay.	Cu	
0 11.9 overbu	rden					ļ			!	<u> </u>		
11.9 13.1 (4) med.	W. lucosy	п						ļ			<u> </u>	
13.1 19.8 (Z) grey + m v H	I pink fol.	nonzonite,	hematit	slips K-S	nos 21542	13.1	16.	3.0		0.7	42	
+ pu v H	5	/			21543	16.1	19.1	3.0	21	0.8	150	
19.8 21.3 (5) whi	to lucosur	1. duke	chloriti.	د								
21.3 22.0 121 Lol	. monzonito	, non inc	constic_									
22.0 25.0 (1) me	d. cr. meso	cratic me	madio	ite weakly	mad.							
1 25.01 28.5 (1)	aliano Denco	ines .	v	U	Y							
28.5 52.0 (1) fr. 51.5 52.5 (5) leve	to c. c. gra	in spotted k	alk, biot	ite rich								
foliat	ed montod	torite a	Alu lu	100 sendy	ces							
51.5 52.5 (5) luc	o syn. Lyke	٤	Ú	J	21544	52.3	55.3	3.0				
52.5 53.6 (1) med 53.6 54.8 (5) lu	la monzo	diosite.	ct + serie	ite VN 53.6	- 54.0							
53.6 54.8 (5) lu	et som duk	2	8 3									
54.8 62.8 (1) C. 62.8 64.0 (5) lu	er. monzol	iorite 6mg	esoesat	· minorc	P 21545	55.3	58.0	2.7				
62.8 64.0 (5) lu	committe a	lyke		1059.3	m 21546	58	61	3.0				
$ _{L^{4,0}} _{70,3} (1)$ C.	sv. weakle	macutic	mon200	lionite	21547	62.8	64	1.2				
70.3 71.4 (5) le	licoseps dyks	, scricite	2 alth						1			
-1 + 1 + -1 + -1 + -1 + -1 + -1 + -1 +		A survey of the			21548	71.4	74	2.6	1			
74.0 86.0 (2) fr.	CN. highit	: rich Lol	iated m	onzorito.								
Ain Ain	cr. hiofit	akles ulace	ific									
86.0 91.5 (2) min	Ic Iques, fr.	ca. Jol. m	warnit	e/sugnito	21549	90.1	93.1	3.0				
91.5 93.3 (1) me	socratic c.g.	1 automatic	nito ruf l	++Ksou	V11-21550	93.1	96.1	3.0				
93.3 94.5 (5) ~ lu	100 Sugarite	Liko Sis	iciti	gizi spa	21551	96.1	99.1	3.0				
94.5 97.6 (2) × qu	in her Call	l'an Sart	il-						1			
97.6 98.5 (5) le	in for gr. for	10										
98.5 122.6 15) più	te, inejuisa	mular P:	I.C. Caric	tic Puncos	icolo							
10-5 122.6 (5) JA	un mastichic	line to	) Alte	#21552	119.6	1224		3.0				
Summary: 11.9 - 22.0	1 Proventiente	100 70	dular		aparadi.	L'TO	enth	a Dere	ne	and.	had	

.

PROPERTY: TAM	(REMZI)	LATITUDE:	STARTED:	3 Sept 75		· · · · · · · · · · · · · · · · · · ·			TEST				
					Footage	Con	rected	Footage	<u> </u>	rrocted	Foour	<u>•</u>	Corr
HOLE NO.: 75 -	!9	DEPARTURE:	FINISHED:	28 Sept 75					.				
BEARING:	152°E	ELEVATION:	LENGTH:	120m									
DIP COLLAR:	-45°5W	SECTION: "Boundary"	LOGGED BY	· P.Peto									
	Moture	DECONTROL	λ (		SAMPLE		FOOTAG				ASSA	YS	
From To	15 Bo	A	AW		NO.	From	<u> </u>	Length.	Au	Cu.	[Ag]		
0 15.0	overburd					ļ			ļ	<b></b>	ļ!		
15.0 32.2	(2) highly fre	actured, weathered	for h	ser monzou	Q 21553	22.5	27.6	5.1	/	297	0.6	L	
	30°Rc.Ale	ut ly lucosyndyke	25 weak	ly mag.	21554	27.6	32.2	4.6		191			
	Primary K-2	pus (-biolite - scrici	te - hem	chite alfn	21555	32.2	35.4	3.2	<u> </u>	226			
32.2 77.1	(4) pink.	. gr. strongly seri	atic a	Lucosen,									1
	weakle	magnetic Chemo		ucks 4cm									
	milky et	Veine, 75m occ.	stating	thin vits.									
77.1 81.6	(6) gregitte	eveen, he eve wear		agnetic									
	plusio	lase - hombel. ne		u dulce .							1		
81.6 82.6	(6) as al	oue underite sor											
	(4) Derici	tic lucosen dyk	ett										
84.0 86.7		te sorphy ry dyle		•									
86.7 99.9	(4) Dink		lucas	genite,	21556	88.0	91.0	3.0		93			
	dice.	hemafite, Non magn											
49.9 100·5	(1) MANZA	diorite screen.		a my gran page a	21557	G1.0	94.0	3.0		530			
100.5 100.65	let.	vanocliosite duke	(0)(1)	:- )	10.337	11.0	110	- 2.0		00			
	(4) Dinte e												
100.65 114.0		A		. dy/ce	21558	1010	1011	2 0		14			
	Fault 202 (4) C.GN. M							3.0					
115.7 122.01	<del>7/ C. gr Ja</del>	nk lucosyn cut	() m	(1) 3 VIIS				3.0		18			
		15 22 2 9 8			21560			3.0		121		<u> </u>	
		15-32.2m fol. we						3.0		206			
-	ent by len	<u>cosyndyker. 32.2</u> 17.1 - 82.6 late ar	- 77.1	sericific	21562	116.7	119.7	3.0		1000	<u>+</u>	<del> </del>	
	lucosin -	17.1- 82.6 late an	<u>sclinte</u>	withy dyk	2563	119.7	/22	2.3		985			
	82.6-122 5	ericitic lucosyn	cut by	fault zone									
	<u>e 115 m 8</u>	esicitic lucosan with monzoclidrit	i screen	12 at 100 m.									
	unminerali	'zecl. throughout)	mans	un .									

Unit 2=14.3% Unit 4 69.1m = 57.6% unit 6 = 6.8%

#### APPENDIX 5

#### GEOCHEMICAL & ASSAY CERTIFICATES

.

MIN ALLER A

.

والارتجار والمتحاص

÷.

#### Certificate Assay

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

· ENALSER PERSONALE FERS

LABORATORIES

(DIVISION OF ASSAYERS CORP.)

1.

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Company:	MINCORD EXPLORATIONS				Date: SEP-11-90
Project:				Copy 1	. MINCORD, VANCOUVER, B.C.
Attn:	B.KAHLERT/B.MORTON	•	•	· 2	2. B.KAHLERT, VANCOVUER, B.C.
		· .			

He hereby certify the following Assay of 14 ROCK samples submitted SEP-04-90 by B.KAHLERT.

	CU %	AU oz/ton	AU g/tonne	iample lumber
 ang pagin ang bang bang ban ngan tang tang bang pang ban ana ana ana ana ana ang bang ban	.405	an a	ngen dan dan dan kana dan dan dan dan dan dan dan dan dan	4918
	.910	.018	.62	4922
	.510	.001	.01	4923
		.001	.03	4924
	1.430			4925
	.498			4927
	.376			4930
	.360			4931
	1.190	.001	.01	4932
	.403			4933
	1.180	.005	. 19	.4936
		.001	.02	4937
		.001	.03	4938
	1.063	.010	.34	4939

States and the second second والمتحدين فالمتحد والمتحد والمتحد والمتحول والمحد والمتحد والمتحد and the second second

Ű Certified by

MIN-EN LABORATORIES

0V-1351-XA1



### LABORATOR (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Certificate Assay

**VANCOUVER OFFICE:** 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

0S-0440-RA1

Company:	VARITECH
Project:	TAM
Attn:	B.COOK/P.PETO/G.GARRETT

Date: SEP-08-90 Copy 1. VARITECH, VANCOUVER, B.C. 2. MINCORD, VANCOUVER, B.C.

.

He hereby certify the following Assay of 7 ROCK samples submitted SEP-04-90 by B.KAHLERT.

Sample Number	-		2	AG oz/ton	CU %	
21697	മതാന് നാമത്തിന് നാത്താന് താന് "34	.010	1.7	.06	.345	
21698	.08	.002	1.7	.05	.283	
21699	.06	,002	0.4	.01	.136	
21700	.06	.002	0.6	.02	.172	
21701	.06	.002	0.8	.02	.082	
21702	.07	.002	4.0	. 12	.615	
21703	.08	.002	4.1	.12	620	

Certified by

MIN-EN LABORATORIES



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Assay Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

0S-0669-RA1

Company:	MINCORD EXPLORATION	· · · ·	Date: OCT-16-90
Project:	TAM	1. (C. 1997) - 1997) 1. (C. 1997) - 1997)	Copy 1. MINCORD EXPLORATION, VANCOUVER, B.C.
Attn:	G.GARRETT/B.KAHLERT/B.COOKE		2. VERITECH, VANCOUVER, B.C.

He hereby certify the following Assay of 26 ROCK samples submitted OCT-10-90 by G.GARRETT.

Sample Number	AU~FIRE g/tonne	AU-FIRE oz/ton	AG oz/ton	AG oz/ton	CU . %	
49093	.09	.003	0.6	.02	.029	
49095	.14	.004	2.2	<b>"</b> 06	.002	
49096	.40	.012	0.5	.0i	1004	
49097	.20	,005	0.3	.01	.078	
47078	. 29	.003	2.1	.06	.015	
47077	.05	.002	0.4	.01	.014	
49100	.09	.003	1.3	. O4	. <u>018</u>	
49101	.07	.003	4.1	.12	0452	
49120	.09	.003	6.0	. 18	, 900	
49121	.11	.003	4.2	. 12	. 625	
49122	.09	.003	7.8	.23	, 980	
49123	" O4	.001	0.7	.02	.015	
49124	.04	.001	0.4	, 01	.004	
49125	<u>, 04</u>	.001	0.3	.01	. O1 4	
49126	.10	.003	0.2	.01	.018	-
49127	,05	.002	0.3	.01	.013	
49128	<b>"</b> 09	.003	0.5	.01	.021	
49129	.20	.006	1.7	.05	.008	
49130	.35	.010	0.6	.02	,008	
49131	.09	.003	0.4	.01	.019	
49132	.09	.003	0.3	.01	.013	
49133	. 40	.012	1.9	<b>.</b> 06	.018	
49134	.09	.003	0.2	.01	.022	
49135	.06	.002	0.2	.01	" <u>00</u> 7	
49136	.04	.001	0,2	.01	.001	
49137	.06	.002	0.2	.01	.002	· · · · · · · · · · · · · · · · · · ·

Certified by_

MÍN-EN LABORATOPIES



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Assay Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB .: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB .:

TELEPHONE/FAX (604) 847-3004

0S-0669-RA2

Date: OCT-16-90

Company:	MINCORD EXPLORATION		Date: OCT-16-90
Project:	TAM	Сор	y 1. MINCORD EXPLORATION, VANCOUVER, B.C.
Attn:	G.GARRETT/B.KAHLERT/B.COOKE	•	2. VERITECH, VANCOUVER, B.C.

He hereby certify the following Assay of 23 ROCK samples submitted OCT-10-90 by G.GARRETT.

Sample Number	AU-FIRE g/tonne	AU-FIRE oz/ton	AG oz/ton	AG oz/ton	CU %	
49138	.03	.001	0.6	.02	,002	
49139	.07	.002	0.2	.01	.001	
49140	.03	.001	0.4	.01	.001	
49141	.08	.002	0.5	.01	.001	
49142	.04	.001	0.2	.01	.003	
47143	.04	.001	0.2	.01	.002	
49144	.04	.001	1.7	. 05	.002	
49145	.04	.001	1.6	.05	.001	
49146	.05	.001	1.3	.04	.003	
49147	.23	.007	2.4	.07	.003	
.49148	.04	. 901	0 <b>.</b> 8	.02	.024	
49149	.07	. 002	0.5	.01	.002	
49150	.05	.001	0.6	.02	.012	
49151	<u>,</u> 04	.001	0.2	.01	.001	
49152	.15	.004	1.7	.05	.005	
49153	. 17	.005	11.4	.33	.720	
49154	,05	.001	1.8	.05	.154	
49155	.04	.001	2.3	.07	.016	
49156	.04	.001	0.3	.01	, 004	
49157	.04	.001	0.2	.01	.002	
49158	.18	.005	1.8	.05	.443	
47159	.09	.003	1.9	. 06	.960	
47150	• .06	.002	0.7	.02	.074	

Certified by

MIN-EN LABORATORIFS



# EN MERCENERATION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

#### Assay Certificate

VALICUUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB .: TELEPHONE/FAX (604) 847-3004

0S-0669-RA3

	Company:	MINCORD EXPLORATION
	Project:	TAM PERSON AND A CONSISTENCE OF A DESCRIPTION OF A DESCRIPT A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A
•	Attn:	G.GARRETT/B.KAHLERT/B.COOKE

Date: OCT-16-90 Copy 1. MINCORD EXPLORATION, VANCOUVER, B.C. 2. VERITECH, VANCOUVER, B.C.

He hereby certify the following Assay of 13 ROCK samples submitted OCT-10-90 by G.GARRETT.

Sample Number	AU-FIRE g/tonne		AG g/tonne	AG oz/ton	CU %	
49201	.0:	.001	1.3	.04	.005	
49202	.0.	.001	0.2	.01	.004	
49203	. 04	.001	Ŭ.4	.01	.104	
49204	. 17	.004	0.6	.02	.013	
49205	. 14	.004	1.3	.04	.158	
49206	.70	.020	9.7	. 28	.016	
49207	. 16	.005	3.8	.11	.008	
49208	.03	.001	7.9	.23	.164	
49209	" Q3	.001	0.4	.01	.004	
49210	. 02	2 .001	3.0	.09	.002	
49211	.07	.002	1.7	.05	.122	
49212	. 59	.017	4.2	.12	.019	
49213	.06	.002	1.6	.05	.003	

Certified by

MIN-EN LABORATORIES



1000 m

#### ENMOOMARNES LABORATORIES (DIVISION OF ASSAYERS CORP.)

Section States

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

<u>Assay Certificate</u>

VALICOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

0S-0669-RA4

Company:	MINCORD EXPLORATION		Date: OCT-16-90
Project:	a TAM	Сору	1. MINCORD EXPLORATION, VANCOUVER, B.C.
Attn:	G.GARRETT/B.KAHLERT/B.COOKE		2. VERITECH, VANCOUVER, B.C.

He hereby certify the following Assay of 30 ROCK samples submitted OCT-10-90 by G.GARRETT.

Sample Number		AU-FIRE g/tonne	AU-FIRE oz/ton	AG g/tonne	AG oz/ton	CU %	، همه چوه هوه های الله رایز دول شو الله و در الله و
49076	· .	.05	.001	0.8	.02	,050	
49077		<u>,</u> 04	.001	0.4	.01	.012	
49078		.06	.002	1.6	.05	.007	
49079		. 04	.001	1.2	.04	.010	
49080		.07	.002	0.6	.02	.018	
49081		.05	.001	0.3	.01	.007	
49082		.05	.001	1.7	.05	.006	
49083		.04 '	.001	0.4	.01	.005	
49084		03	.001	0.2	.01	.001	
49085		.05	.001	0.3	.01	.004	
47086		.05	.001	0.3	.01	.010	
49087		.04	.001	0.2	.01	.005	
47088		.04	.001	0.4	.0i .	.013	
49089	·	.05	.001	0.5	.01	.014	
49090		.07	.002	0.2	.01	.004	
49091		,04	.001	0.4	.01	.002	
49092		" 06	.002	<b>0.</b> 4	.01	.032	
49094		.05	.001	0.6	.02	.013	
49102		.05	.001	0.9	.03	.096	
49103	· · · · ·	,06	.002	1.8	.05	.165	
49104		.07	.002	1.2	.04	.065	
49105		.07	.002	1.6	. 05	.020	
49106		.05	.001	1.8	.05	.015	
49107		.06	.002	1.7	.05	.030	
49108		.07	.002	2.2	.06	. 061	
49109		.05	,001	0.4	.01	.014	
49110	• • • •	.03	.001	0.3	.01	.002	
49111		.04	.001	0.5	:01	.014	
49112		.03	.001	0.8	.02	.018	
49113		.05	.001	1.3	.04	.015	

Certified by

MIN-EN LABORATORIES

MIN LEGENSE

۰.

#### SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

FNARSHORMANNA

LABORATORIES

(DIVISION OF ASSAYERS CORP.)

١.

VALLCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB .: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

#### Certificate Assay

Company:	MINCORD EXPLORATION		OCT-16-90
Project:	TAM	Copy 1. NINCORD EXPLORATION, VA	NCOUVER, B.C.
Attn:	G.GARRETT/B.KAHLERT/B.COOKE	2. VERITECH, VANCOUVER, B.	С.

He hereby certify the following Assay of 6 ROCK samples submitted OCT-10-90 by G.GARRETT.

Sample Number	AU-FIRE g/tonne	AU-FIRE oz/ton	AG g/tonne	AG oz/ton	CU %	
49114	.17	.006	2.8	.08	.052	
49115	.09	.003	6.2	.18	.364	
49116	.03	.001	1.5	.04	,058	
49117	.04	.001	0.6	.02	÷039	
49118	.08	.002	3.9	.11	.004	
49119	.03	.001	1.4	.04	.004	

0S-0669-RA5

! U Certified by

MÍN-EN LABORATORIES

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Certificate</u> Assay

Company:	VARITECH			Date: OCT-13-90
Project:	TAM		Copy 1. VARITECH,	VANCOUVER, B.C.
Attn:	BRAD COOK/	P.PETO, G. GARRETT	2. MINCORD,	C/O TUNDRA, SMITHERS, B.C.

He hereby certify the following Assay of 27 ROCK samples submitted OCT-12-90 by MINCORD.

Sample	AU					•
and a second sec	· · · · · · · · · · · · · · · · · · ·	AU oz/ton	AG g/tonne	AG oz/ton	CU %	
Number	g/tonne		g/ come		و میں برک محمد بارز کم کرتی برزن میں اور بنان میں ا	المحتية الترحيد الحق التناحية معاطية مطاعب فكالمجار الالكام حسبية قل
49161	.06	.002	5.7	.17	.115	
49162	.06	.002	1.6	.05 ;	.021 <	
49163	.07	.003	1.8	.05	.034	i
49164	.10	.003	1.7	.05	.032	4
49165	.04	.001	1.4	.04	.010	
49166	.09	.003	2.0	,06	.098	
49167	.04	.001	1.2	_ ()4	.010	
49168	.12	.004	3.4	.10	.154	
49169	.05	.001	2.0	.06	.012	
49170	.09	.003	2.1	.06	.038	
49171	.04	.001	1.2	. 04	.004	
49214	.05	.001	1.5	<b>.</b> 04	.004	
49215	. 04	.001	.5	.01	.003	
49216	. 04	.001	1.3	.04	.045	
49217	.40	.012	4.9	.14	.356	
49219	.05	.001	. ά	.02	,020	
49219	.30	.009	5.8	.17	.194	
49220	.12	.004	4.7	.14	.420	
49221 -	.05	.001	<b>.</b> 6	.02	.008	
49251 Alto Alto Alto Alto Alto Alto Alto Alto	<u>.</u>	•.; <b>.001</b> ;	<b>1 . 1</b>	. 03.	. 1907	د من همه منه بند بند الله منه بند الله بند الله منه من من منه منه منه منه من م
49252	.05	.001	1.9	.06	.058	
49253	.08	.002	1.2	.04	.044	
49254	.05	.001	.3	.01	.004	
49255	.09	.003	6.8	.20	.163	
49256	.09	.003	1.7	.05	.008	
49257	. 10	.003 -	.3	.01	.003	
49258	.06	.002	1.8	. 05	.013	

MIN-EN LABORATORIES

Certified by

0S-0668-RA1

MIN GRADING LABORATORIES (DIVISION OF ASSAYERS CORP.)

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

COMP: MINCORD EXPLORATION CONSULT. PROJ: TAM

,•

ATTN: B.MORTON/G.CURRATT

-----

ø

#### MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1341-RJ1 DATE: 90/09/05 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB		
21689 21690 21691 21692 21693	3.7 108.0 5.2 4.8 7.2	38 1 48 38 46	4128 24092 7703 12687 9378	4 61 37 3 2	36 29 26 31 33	44 18 38 510 385	141 441 248 95 268		
21694 21695 21696	7.4 21.0 15.2	35 28 6	9624 38307 19752	2 1 1	26 68 37	546 312 380	216 427 511	 	
		<b>,</b>				-			
							•		
				-				 - <u></u>	
	· · ·								

ATTN: B.MORTON/G.GARRATT/B.COOKE

SAMPL F

NUMBER

MIN-EN LABS - ICP REPORT

FILE NO: 0V-1341-SJ1+2 DATE: 90/09/09

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 * SOIL * (ACT:F31) AG AS CU MO PB ZN AU PPM PPM PPM PPM PPM PPB PPM S.L1S-0+50E 1.4 S.L1S-1+00E 2.1 S.L1S-1+50E 1.0 S.L1S-2+00E .8 S.L1S-2+50E 1.2 S.L1S-3+50E 1.6 S.L1S-4+00E 2.1 S.L1S-4+50E 2.1 S.L2S-0+50E .7 .7 S.L2S-1+00E S.L2S-2+00E .4 S.L2S-2+50E .6 S.L2S-3+00E .5 .4 S.L2S-3+50E S.L2S-4+50E 1.4 S.L2S-0+50W .6 S.L2S-1+00W 1.5 S.L3S-BL0+00 1.3 S.L3S-0+50E .8 .5 S.L3S-1+00E S.L3S-1+50E .5 S.L3S-2+00E .3 S.L3S-2+50E .1 S.L3S-3+00E .9 S.L3S-3+50E .9 1.2 S.L3S-4+00E S.L3S-4+50E 1.7 .8 S.L3S-0+50W S.L3S-1+00W .6 S.L3S-1+50W .8 S.L3S-2+00W 3.8 2.2 S.L3N-0+50E 1.5 S.L3N-1+00E 1.2 S.L3N-1+50E .8 .9 S.L3N-2+00E S.L3N-2+50E 1.2 S.L3N-3+00E 1.3 S.L3N-3+50E 1.6 

# S.L4S-4+50W

S.L3N-BL

S.L3N-4+00E

S.L3N-4+50E

S.L4S-0+50E

S.L4S-1+00E

S.L4S-1+50E

S.L4S-2+00E

S.L4S-2+50E

S.L4S-3+00E

S.L4S-3+50E

S.L4S-4+00E

S.L4S-4+50E

S.L4S-0+50W

S.L4S-1+00W

S.L4S-1+50W

S.L4S-2+00W

S.L4S-2+50W

S.L4S-3+00W

S.L4S-3+50W

S.L4S-4+00W

S.L4S-BL

1.4

1.5

2.6

1.5

1.0

1.0

1.1

1.6

1.6

1.7

1.0

1.2

1.5

1.8

1.0

.9

1.6

1.5

1.8

.7

.7

r*

٠

4

ATTN: B.MORTON/G.GARRATT/B.COOKE

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1341-SJ3+4 DATE: 90/09/09 * SOIL * (ACT:F31)

SAMPLE	AG	AS	CU	MO	РВ	ZN	AU	·······
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPB	·
S.L4N-BL S.L4N-0+50E	1.1	1 6	409 186	8 8	40 33	134 122	10 10	
S.L4N-1+00E	1.1	9	231	3	42	108	5	
S.L4N-1+50E	.4	1	71	1	39	88	10	
S.L4N-2+00E	.8	1	220	3	38	113	. 5	
S.L4N-2+50E S.L4N-3+00E	1.3 1.1	3	213 346	2 1	24 40	107 110	5 5	
S.L4N-3+50E	.9	13	98	i	27	89	5	
S.L4N-4+00E	1.2	21	96	1	21	98	5	
S.L4N-4+50E	1.2	17	110	1	17	91	5	
S.L4N-0+50W S.L4N-1+00W	1.4	6 9	115 163	2 3	32 34	73 134	10 5	
S.L4N-1+50W	1.2	14	73	2	40	80	5	
S.L4N-2+00W	.5	1	38	3	32	57	5	
S.L4N-2+50W	1.0	13	201	1	29	169	5	······································
S.L4N-3+00W S.L4N-3+50W	.2 .5	1 10	161 66	2 1	39 32	115 81	10 5	
S.L4N-4+00W	1.1	20	227	ż	38	136	5	
S.L4N-4+50W	1.2	1	37	2	24	58	10	
S.L5S-BL	1.0	19	119	6	19	35	5	······································
S.L5S-BL DUPLICATE S.L5S-0+50E	1.4 .9	27 1	451 72	1 6	23 14	166 43	5 5	
S.L5S-1+00E	1.6	43	420	12	25	89	10	
S.15S-2+00E	.4	1	20	1	17	26	5	
S.L5S-2+50E	.5	5	29	1	15	44	5	
S.L5S-3+00E S.L5S-3+50E	.8 1.1	1 1	145 131	6 12	39 27	96 36	5 5	
S.L5S-4+00E	.9	1	52	4	24	42	5	
S.L5S-4+50E	1.1	8	193	5	31	129	5	
S.L5S-1+00W	1.0	1	66	7	19	30	5	
S.L5S-1+50W S.L5S-2+00W	1.9 1.7	21 12	406 110	10 6	26 30	64 65	5 5	
S.L5S-2+50W	2.4	1	239	1	24	218	5	
S.L5S-3+50W	2.2	19	1153	19	25	166	170	
S.L5S-4+00W	1.3	1	312	10	35	410	5	······································
S.L5S-4+50W S.L5N-0+50E	1.8 .9	1 25	619 254	10 2	31 17	354 137	5 5	
S.L5N-1+00E	1.2	18	186	3	15	153	5	
S.L5N-1+50E	1.1	13	107	1	32	107	5	
S.L5N-2+00E	.5	1	55	1	36	88	5	
S.L5N-2+50E	1.6 1.5	39 23	74 74	1	18 30	103 88	5 5	
S.L5N-3+00E S.L5N-3+50E	1.7	18	81	1	27	95	5	
S.L5N-4+00E	1.6	28	177	1	34	115	5	
S.L5N-4+50E	1.5	1	81	11	23	140	5	
S.L5N-0+50W	1.4	22	200	2	19 25	112	5 5	
S.L5N-1+00W S.L5N-1+50W	1.3 1.1	30 8	251 195	3 4	25 18	133 125	5 10	
S.L5N-2+00W	1.4	51	116	1	24	140	10	
S.L5N-2+50W	1.0	3	99	1	23	90	5	
S.L5N-3+00W	1.4	19	181	11	49	203	10	
S.L5N-3+50W S.L5N-4+00W	1.4 1.1	26 14	121 95	7 2	48 26	95 99	5 5	
S.L5N-4+00W S.L5N-4+50W	1.1	35	81	3	35	79	5	
S.L6S-BL	1.3	1	72	11	23	66	10	
S.L6S-0+50E	1.2	2	35	9	17	36	5	
S.L6S-1+00E	1.2 .7	2 13	16 41	1 11	9 20	32 93	5 5	
S.L6S-1+50E	./	12						
S.L6S-2+00E	.7	9	86	6	15	41 21	5 5	

•

e

ATTN: B.MORTON/G.GARRATT/B.COOKE

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1341-SJ5+6 DATE: 90/09/09 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB	
S.L6S-3+00E S.L6S-3+50E S.L6S-4+00E S.L6S-4+50E S.L6S-0+50W	.6 .6 1.0 1.1	1 1 1 1 5	13 7 61 12	3 1 9 1	33 22 26 19	29 20 83 32	5 5 5 5	
S.L6S-1+00W S.L6S-1+50W S.L6S-2+00W S.L6S-2+50W	1.3 .4 1.2 1.6 1.1	14 1 17 17	182 295 25 199 303	18 5 1 1 6	26 23 18 23 20	46 56 79 88 72	5 5 5 5 10	
S.L6S-3+00W S.L6S-3+50W S.L6S-4+00W S.L6S-4+50W S.L6N-BL	.5 1.2 .4 .2 .3	1 27 1 1 18	51 67 39 62 211	2 1 1 2 2	18 18 16 21 29	75 114 124 105 119	5 5 5 5 5A	
S.L6N-0+50E S.L6N-1+00E S.L6N-1+50E S.L6N-2+00E S.L6N-2+50E	.5 .5 1.1 1.5 1.3	1 13 6 32	175 150 283 170 68	1 3 3 1 1	22 26 26 38 17	136 137 145 100 78	5 10 5 25 5	
S.L6N-3+00E S.L6N-3+50E S.L6N-4+00E S.L6N-4+50E S.L6N-0+50W	1.3 .9 1.0 .8 1.0	34 39 1 10 29	50 100 108 57 261	1 1 1 1 1	18 19 27 31 19	56 108 133 114 155	20 5 5 5 5 5	
S.L6N-1+00W S.L6N-1+50W S.L6N-2+00W S.L6N-2+50W S.L6N-3+00W	.8 .9 1.4 1.6	9 1 1 27 30	27 67 49 104 247	2 3 2 2 2 2	19 21 28 30 26	106 135 155 167 153	5 5 5 5 5 5	
S.L6N-3+50W S.L6N-4+00W S.L6N-4+50W S.L7N-0+50E S.L7N-0+50E S.L7N-1+00E	1.4 1.1 .9 1.4 .9	6 1 1 2	133 106 139 6092 233	1 2 2 1 1	21 34 32 25 12	117 130 87 290 106	5 5 10 5 5	
S.L7N-1+50E S.L7N-2+00E S.L7N-2+50E S.L7N-3+00E S.L7N-3+50E	1.2 1.4 1.2 1.1 .9	1 9 1 18	1367 236 192 163 117	1 1 1 1 1	23 21 32 33 16	136 83 84 88 100 75	5 10 5 5 5 5	
S.L7N-4+00E S.L7N-4+50E S.L7N-0+50W S.L7N-1+00W S.L7N-2+00W S.L7N-2+50W	.4 .3 .7 .2 .3 .8	11 7 15 1 1 1	90 115 93 45 31 695	1 1 1 1 1 2	32 27 38 31 33 28	97 110 169 205 154	5 20 5 5 5 5	
S.L7N-2+30W S.L7N-3+00W S.L7N-3+50W S.L7N-4+00W S.L7N-4+50W B.L5S-5+00W	1.2 1.3 1.0 .6 1.9	15 25 17 1	407 519 158 77 837	2 1 3 1 32	27 28 34 26 50	158 155 110 98 53	40 5 5 10 45	
B.L5S-5+50W B.L5S-6+00W B.L5S-6+50W B.L5S-7+00W B.L5S-7+50W	.8 .1 .9 .1 .5	1 1 1 1 1	140 35 578 66 32	4 2 8 6 3	24 12 18 16 20	108 26 80 45 23	5 5 10 10 5	
B.L8S-0+50E B.L8S-1+00E B.L8S-1+50E B.L8S-2+00E B.L8S-2+50E	.7 .4 .2 .1 .6	1 1 1 1 22	30 13 17 28 92	3 1 3 2 37	19 14 16 13 24	30 16 24 27 116	5 10 5 5 5	

٠

r.

ATTN: B.MORTON/G.GARRATT/B.COOKE

#### MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1341-SJ7+8 DATE: 90/09/09 * SOIL * (ACT:F31)

SAMPLE	AG	AS	CU	MO	PB	ZN	AU	
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPB	
B.L8S-3+00E	1.5	11	68	6	49	91	5	
B.L8S-3+50E	1.8	16	70	7	26	51	5	
B.L8S-4+00E	1.9	23	34	3	27	40	10	
B.L8S-4+50E	1.1	27	22	2	22	27	20	
B.L8S-3+00W	1.4	42	88	3	27	50	25	
B.L8S-3+50W B.L8S-4+00W B.L8S-4+50W B.L9S-0+50E B.L9S-1+00E	1.0 .8 .4 .6 .4	22 8 5 1 4	26 62 65 25 40	3 3 2 3 3 3	14 21 22 17 20	31 56 65 30 33	25 55 40 5 15	
B.L9S-1+50E	.3	10	55	4	26	43	40	
B.L9S-2+00E	1.1	47	76	9	26	136	5	
B.L9S-2+50E	2.0	13	11	1	9	100	5	
B.L9S-3+00E	.9	15	83	5	21	58	5	
B.L9S-3+50E	1.0	48	147	6	41	88	10	
B.L9S-4+00E	.7	34	136	4	20	55	55	
B.L9S-4+50E	1.1	20	44	3	16	75	5	
B.L10S-0+50E	.9	18	75	7	21	76	10	
B.L10S-1+00E	2.0	16	449	17	52	130	110	
B.L10S-1+50E	.4	19	383	31	46	227	50	
B.L10S-2+00E B.L10S-2+50E B.L10S-3+00E B.L10S-3+50E B.L10S-3+50E B.L10S-4+00E	1.2 .1 .5 .7 .8	43 1 24 32 1	76 41 97 146 58	1 6 5 4 4	10 19 18 16 18	96 40 81 78 40	5 15 5 5 30	
B.L10S-4+50E	1.2	50	53	3	11	60	5	
B.L10S-1+00W	.6	23	44	3	27	38	5	
B.L10S-1+50W	1.2	12	84	4	18	63	15	
B.L10S-2+00W	.6	24	94	5	28	80	20	
B.L10S-2+50W	.1	1	69	5	20	56	10	
B.L10S-3+00W B.L10S-3+50W B.L10S-4+00W B.L10S-4+50W B.L10S-4+50W B.L11S-0+50E	.7 .5 .3 .3 .8	1 5 18 1 1	36 37 13 21 48	11 5 3 2 3	35 30 21 17 17	60 69 123 43 54	15 5 5 5 10	
B.L11S-1+00E B.L11S-1+50E B.L11S-2+00E B.L11S-2+50E B.L11S-2+50E B.L11S-3+00E	1.9 .8 .7 1.0 .5	24 1 21 34 3	115 89 101 98 57	8 7 5 13 3	30 27 33 23 22	88 65 68 75 31	5 5 5 10 5	
B.L11S-3+50E	.4	16	205	3	32	69	5	
B.L11S-4+00E	.2	1	63	3	25	50	5	
B.L11S-4+50E	.7	27	191	9	17	80	5	
B.L11S-0+50W	.2	1	50	5	25	84	5	
B.L11S-1+00W	.9	14	63	5	20	32	5	
B.L11S-1+50W	.9	1	55	5	21	39	10	
B.L11S-2+00W	.9	16	139	5	23	78	5	
B.L11S-2+50W	1.2	1	45	4	15	31	5	
B.L11S-3+00W	1.7	12	49	5	18	23	10	
B.L11S-3+50W	1.3	30	242	16	40	126	25	
B.L11S-4+00W	.7	11	35	6	24	68	15	
B.L11S-4+50W	.6	20	46	10	23	97	35	
B.L12S-0+50E	.5	11	319	19	38	109	40	
B.L12S-1+00E	.1	15	41	4	25	52	5	
B.L12S-1+50E	.1	32	56	5	20	46	5	
B.L12S-2+00E B.L12S-2+50E B.L12S-3+00E B.L12S-3+50E B.L12S-3+50E B.L12S-4+00E	.7 .6 .8 1.3 .6	20 31 39 10 3	95 82 126 38 82	5 4 3 2 7	20 25 22 16 30	52 53 52 27 101	5 5 10 5 5	-

r^{*}

ν.

.

ATTN: B.MORTON/G.GARRATT/B.COOKE

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1341-SJ9+10 DATE: 90/09/09 * SOIL * (ACT:F31)

•

SAMPLE	AG	AS	CU	MO	PB	ZN	AU	
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	· PPB	
B.L12S-4+50E	.8	22	86	5	22	56	5	
B.L12S-0+50W	.8	3	110	16	34	101	80	
B.L12S-1+00W B.L12S-1+50W	10.7	1	528 215	69	109	249	2900	
B.L125-2+00W	.4	1	66	12 6	36 22	· 117 71	110 10	
B.L12S-2+50W	1.3	22	396	6	39	194	60	
B.L12S-3+50W	.6	15	112	6	15	58	40	
B.L12S-4+00W	2.4	14	180	6	27	123	120	
B.L12S-4+50W	.6	15	27	3	21	61	20	
B.L13S-0+50E	.8	26	43	4	17	70	5	
B.L13S-1+00E	-4	47	75	5	17	74	50	
B.L13S-1+50E B.L13S-2+00E	.3 .8	5 2	69 - 91	5 4	12 16	55 57	5 5	
B.L13S-2+50E	.8	33	55	6	17	64	5	
B.L13S-3+00E	.6	3	136	4	16	72	5	
B.L13S-3+50E	.4	15	69	8	19	54	5	
B.L13S-4+00E	.8	27	89	32	34	93	5	
B.L13S-4+50E	.5	15	35	4	14	39	5	
B.L13S-0+50W	2.5 1.5	5 28	193 134	271	80 57	121 148	275	
B.L13S-1+00W				34			20	
B.L13S-1+50W B.L13S-2+00W	.7	1	66 123	13 25	15 38	55 75	5 10	
B.L13S-2+50W	.9 4.0	21 67	459	9	271	71	300	
B.L13S-3+00W	1.7	3	663	23	50	83	200	
B.L13S-3+50W	1.4	1	753	23	34	76	400	
B.L13S-4+00W	1.0	21	480	17	41	73	200	
B.L13S-4+50W	1.7	10	298	7	19	128	60	
B.L14S-0+50E	.7	8	50	5	14	47	10	
B.L14S-1+00E B.L14S-1+50E	.5	10 26	94 71	8 8	21 15	67 59	5 [.] 5	
							10	
B.L14S-2+00E B.L14S-2+50E	1.3 .9	12 26	51 74	11 5	34 20	72 55	10	
B.L14S-3+00E	.9	28	91	6	17	62	5	
B.L14S-3+50E	9	23	82	6	17	59	5	
B.L14S-4+00E	.6	7	67	9	14	63	5	
B.L14S-4+50E	.4	4	72	4	20	58	5	
B.L14S-0+50W	.4	1	28	4	13 126	40 127	5 150	
B.L14S-1+00W B.L14S-1+50W	.9 1.1	4 25	283 199	26 16	45	84	35	
B.L14S-4+00W	1.5	27	533	6	34	39	130	
т#27	2.3	46	549	12	33	127	5	
T#28	1.8	37	247	5	36	102	40	
т#29	1.2	44	267	28	21	55	5	
T#30	1.0	61	545	10	34	72	5	
	<u></u>							
				<u></u>				
				. <u></u>	<u>.</u>			
		_						

COMP: VARITECH PROJ: TAM ATTN: B.COOK/P.PETO/G.GARRETT

r

### MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0440-SJ2 DATE: 90/09/08 * SOIL * (ACT:F31)

SAMPLE	AG	AS	CU	MO	PB	ZN	AU		 
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPB		
L0+005 0+50W	1.6	18	239	10	46	93	5		
L0+00S 1+00W L0+00S 1+50W	1.6 1.5	15 1	81 67	2 1	31 37	98 63	10 5		
L0+00S 2+00W	.9	9	45	3	34	41	5		
L0+00S 2+50W	1.3	7	53	11	38	126	5		 
L0+00S 3+00W L0+00S 3+50W	.9 1.4	15	23 50	1	26 28	46 56	5 5		
L0+00S 4+00W	.9	13	22	i	18	31	5		
L0+00S 4+50W L1+00S 0+50W	1.4 .9	28 1	122 44	3 1	24 22	32 67	10 5		
L1+00S 1+00W	4.6	<u> </u>	4902	3	31	459	200		 
L1+00S 2+00W	.6	14	109	6	29	50	5		
L1+00S 2+50W L1+00S 3+00W	.6 1.4	5 22	120 193	3 11	42 38	71 114	5 10		
L1+0CS 3+50W	.8	1	64	9	22	76	5		
L1+00S 4+00W	.9	1	220	10	52	358	5		
L1+00S 4+50W BL 1+00S	.8 1.3	18 1	35 61	1	19 26	38 147	5 5		
L0+00N 1+00E	2.3	9	94	1	26	166	5		
L0+00S 1+00E	1.4	33	101	1	21	207	5		 
	•				<u></u>				 
		٠							,
								<u></u>	 <u> </u>
					<u> </u>			. <u></u>	 
						<u></u>	·		 
									 ······

COMP: MINCORD EXPLORATION PROJ: TAM

£

BL L16 5+50W

BL L16 6+00W

BL L16 6+50W

BL L16 7+00W

BL L16 7+50W

ATTN: G.GARRETT/B.KAHLERT/B.COOKE

#### MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 05-0669-5J6+7 DATE: 90/10/16 * SOIL * (ACT:F31)

ATTN: G.GARRETT/B.KAH	LERT/B.COOKE		(604)9	280-5814 C	)R (604)98	38-4524		* SOIL *	(ACT:F
SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB	······································	
S BL LIN 0+00W	1.2	1	42	2	35	51	3		
S BL L1N 0+50W	1.5	1	93	1	22	51	1		
S BL L1N 1+00W	1.3	1	172	14	62	166	10		
S BL L1N 1+50W	1.4	1	60	1	24	49	12		
S BL LIN 2+00W	1.6	1	61	1	23	50	33		
S BL L1N 2+50W	1.5	1	48	1	22	61	21		
S BL L1N 3+00W	1.1	1	33	1	26	45	20		
S BL L1N 3+50W S BL L1N 4+00W	.9 1.0	1	26 22	1 1	· 19	52 40	10 12		
S BL L1N 4+50W	1.1	1	24	1	21	40	3		
S L2N 1+00W			32				1		
S L2N 1+50W	1.2	1 1	52 79	1	21 36	36 79	52		
S L2N 2+00W	.9	1	110	i	25	86	1		
S L2N 2+50W	.9	i	134	5	20	105	32		
S L2N 3+00W	2.1	1	655	1	45	229	23		
S L2N 3+50W	1.0	1	131	1	30	86	13		
S L2N 4+00W	1.2	1	58	1	25	68	1		
S L2N 4+50W	.7	1	33	1	26	57	8		
SBL L3N 0+00W	2.1	1	331	1	30	164	2		
SBL L3N 0+50W	1.2	1	29	1	32	32	27		
SBL L3N 1+00W	1.5	1	45	3	37	64	1	,	
SBL L3N 1+50W	1.6	1	44	1	30	63	2		
SBL L3N 2+00W	1.0	1	39	1	34	52	1		
SBL L3N 2+50W	1.1	1	58	1	30	68 5 (	1		
SBL L3N 3+00W	.9	1	50	1	38	56	22		
SBL L3N 3+50W	.9	1	59	1	33	94	3		
SBL L3N 4+00W	.7	1	38	1	17	41	1		
SBL L3N 4+50W	1.3	1	245 141	1	23 36	121 68	2 30		
BL L15S 0+00W BL L15S 0+50W	.4	1	116	2 7	21	56	32		
								<u></u>	
BL L15S 1+00W BL L15S 1+50W	1.1	1 1	211 63	7 3	29 32	73 36	1		
BL L15S 2+00W	.0	1	108	35	57	55	82		
BL L15S 2+50W	1.5	1	328	48	62	33	108		
BL L15S 3+00W	1.0	1	126	36	41	38	92		
BL L15S 3+50W	.5	1	147	12	38	32	50	······································	
BL L15S 4+00W	.9	1	152	2	39	78	20		
BL L15S 4+50W	.7	1	105	5	28	61	52		
BL L15S 5+00W	.7	1	34	2	26	35	18		
BL L15S 5+50W	.9	1	30	1	26	73	1		
BL L15S 6+00W	.1	1	23	1	33	41	1		
BL L15S 6+50W	.2	1	31	1	24	56	1		
BL L15S 7+00W	.3	1	18	3	26	31	1		
BL L15S 7+50W	.2	1 -	19	1	27	32	3		
BL L16 0+00W	.6	1	51	7	26	32 .	2		
BL L16 0+50W	1.0	1	154	1	23	83	15		
BL L16 1+00W	1.1	1	95	7	30	57	20		
BL L16 1+50W	1.9	1	93	13	36	54	19		
BL L16 2+00W	1.2	1	319	7	32	104	51		
BL L16 2+50W	.1	1	41	77	23	23	64		
BL L16 3+00W	.6	1	54	9	20	27	74		
BL L16 3+50W	.6	3	317	38	32	60	64		
BL L16 4+00W	.9	1	109	11	39	40	260		
BL L16 4+50W BL L16 5+00W	.3	1	76 56	40 5	28 23	47 53	31 21		

34

.1 .5 .2 .1

.3

COMP: MINCORD EXPLORATION PROJ: TAM

Ċ,

ATTN: G.GARRETT/B.KAHLERT/B.COOKE

r

MIN-EN LABS ---- ICP REPORT 705 West 15th st., North Vancouver, B.C. V7M 112

(604)980-5814 OR (604)988-4524

.

FILE NO: 0S-0669-SJ8 DATE: 90/10/16 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB		
SL9N 0+00W SL9N 0+50W SL9N 1+00W SL9N 1+50W SL9N 2+00W	1.9 2.0 2.9 2.3 1.5	1 1 1 1	84 1538 257 1265 104	1 1 1 1 1	57 41 27 60 48	123 191 127 162 128	20 45 1 37 1		
SL9N 2+50W SL9N 3+00W SL9N 3+50W SL9N 3+50W SL9N 4+00W SL9N 4+50W	1.4 1.3 1.7 1.0 1.6	1 1 1 1 1	100 296 431 398 198	4 1 4 7 1	40 43 68 37 33	115 125 164 134 96	1 1 35 1 2		
S L9N 0+50E S L9N 1+00E S L9N 1+50E S L9N 2+00E S L9N 2+50E	1.3 1.7 2.2 1.6 1.4	1 1 1 1	91 75 198 177 101	1 1 1 1	39 21 15 27 38	123 123 111 101 84	6 17 2 20 31		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							1, <u>.</u>	
									<b>k</b>
					<del> </del>				

COMP: VARITECH PROJ: TAM

ATTN: BRAD COOK/ P.PETO, G. GARRET

r

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0668-SJ2+3 DATE: 90/10/14 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB	
BL1+00S 5+00W BL1+00S 5+50W BL1+00S 6+00W BL1+00S 6+50W BL1+00S 7+00W	1.5 1.2 1.2 .9 .7	13 3 1 1 1	12 8 8 11 14	2 1 1 1 1	27 14 20 16 11	17 12 23 20 18	10 10 5 5 10	
BL1+00S 7+50W S-L2N 0+50E S-L2N 1E S-L2N 1+50E S-L2N 2E	.5 1.3 .9 1.4 1.6	1 1 1 1 1	8 69 52 56 50	1 2 1 3 1	7 40 27 31 34	14 47 57 88 84	10 5 5 10 5	
S-L2N 2+50E S-L2N 3E S-L2N 3+50E S-L2N 3+50E S-L2N 4E S-L2N 4+50E	1.9 1.2 1.9 1.9 1.4	1 1 1 1 1	184 131 106 227 57	1 1 1 1 1	29 48 33 28 36	117 98 99 102 79	5 5 10 10 5	
BL2S 4+50W BL2S 5+00W BL2S 5+50W BL2S 6+00W BL2S 6+50W	1.2 .9 .9 .8 1.4	1 1 4 1 1	57 38 15 24 20	1 1 2 1 1	29 26 18 17 15	37 21 15 24 27	5 5 10 10 5	
BL2S 7+00W BL2S 7+50W BL3S 5+00W BL3S 5+50W BL3S 6+00W	.8 1.0 2.0 .8 1.0	1 1 2 1 3	14 11 11 46 9	1 1 1 3 1	14 13 11 28 13	17 12 8 31 16	20 15 5 10 10	
BL3S 6+50W BL3S 7+00W BL3S 7+50W BL4S 5+00W BL4+00S 6+00W	.6 .5 .4 1.7 1.0	1 17 2 1 1	18 9 13 737 39	2 2 1 7 14	16 17 15 44 29	20 12 29 64 50	5 20 5 35 10	
BL4+00S 6+50W BL4+00S 7+00W BL4+00S 7+50W	.8 1.0 .8	1 1 4	30 34 118	8 3 21	15 26 29	25 53 52	10 5 10	
						-		
	<u></u>			,1. <b> , h</b> 11 <b></b>				



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Geochemical Analysis Certificate

**0V-0985-RG1** 

Company: VARITECH Project: TAM Attn: B.COOKE/B.KAHLERT Date: JUL-27-90 Copy 1. VARITECH, VANCOUVER, B.C.

2. MAJOR GENERAL RES., VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 24 CORE samples submitted JUL-23-90 by P.PETO.

Sample Number	PPB	AG PPM	CU PPM	
21501	40	3.8		
21502	62	21.0		
21503	41	9.3		
21504	57	3.0		
21505	20	0.7	78	
21506	32	0.9	 585	
21507	18	0.5	11	
21508	NO	SAMPLE		•
21509	1	0.5	94	
21510	1 3	0.7	473	
21511	120	4.0	6300	
21512	290	4.9	7150	
21513	124	1.6	2310	
21514	32	1.7	2600	
21515	80	21.8	3350	
21516	 960	 6.8	4170	
21517	37	0.7	28	
21518	5	1.3	1320	
21519	67	2.6	3100	
21520	75	3.2	3740	
21521	 56	3.3	3060	
21522	76	3.5	3050	
21523	50	2.3 .	1730	
21524	140	0.7	107	
• •				

• EN LABORATORIES (DIVISION OF ASSAVERS CORP.)

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-962 1

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Assay Certificate</u>

<u>NV-0985-RA1</u>

Company: VARITECH Project: TAM Attn: B.COOKE/B.KAHLERT Date: JUL-28-90 Copy 1. VARITECH, VANCOUVER, B.C. 2. MAJOR GENERAL RES., VANCOUVER, B.C.

He hereby certify the following Assay of 30 ROCK samples submitted JUL-23-90 by P.PETO.

*****	Sample Number	CU 	
	21501	.303	
	21502	3.120	
	21503	1.795	
	21504	.418	
	21511	.770	
	21512	.840	
	21515	.348	
	21516	. 421	
	21519	.326	
	21520	. 390	
	21521	.318	
	21522	.312	
	21568	.732	
	21572	.310	· · · · · · · · · · · · · · · · · · ·
	21574	.211	
	21575	.960	
	21576	· 1.125	
	21577	.841	
	21578	.425	
	21580	.575	•
	21581	.660	
	21582	.690	
	21583	<b>.</b> 461	
	21584	.420	
	21591	.223	
	21594	.450	
	21595	.371	
	21596	.300	
	21597	1.155	
	21598	.505	

- et Certified by 0 MIN-EN LABORATORIES



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Geochemical Analysis Certificate</u>

Date: JUL-26-90

Company: VARITECH Project: TAM Attn: B.COOKE/B.KAHLERT

Copy 1. VARITECH, VANCOUVER, B.C. 2. MAJOR GENERAL RES., VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 24 CORE samples submitted JUL-23-90 by P.PETO.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	
21525	aparaus na mitoria di si	0.7	131	
21526	5	0.7	223	
21527	160	1.4	72	
21528	2	0.8	43	
21529	1	1.0	442	
21530	2	0.8	226	
21531	5	1.0	382	
21532	43	0.5	48	
21533	120	0.8	67	
21534	350	1.6	56	
21535	40	0.7	32	
21536	60	0.8	21	
21537	205	1.0	52	
21538	280	1.4	71	
21539	310	0.8	17	
21540	632	0.6	33	
21541	2	<b>0.8</b>	814	
21542	1	0.7	42	
21543	2	0.8	150	
21544	1	1.0	211	
21545	2	1.3	42	
21546	50	1.9	421	
21547	2	0.4	131	
21548	1	0.6	35	

Certified by

0V-0985-RG2



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Analysis Certificate Geochemical 0V-0985-RG3

Company: VARITECH Project: TAM Attn: B.COOKE/B.KAHLERT

Date: JUL-28-90 Copy 1. VARITECH, VANCOUVER, B.C. 2. MAJOR GENERAL RES., VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 24 CORE samples submitted JUL-23-90 by P.PETO.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	
21549		0.4	13	
21550	2	0.4	20	
21551	1	0.4	16	
21552	3	0.2	73	
21553	1	0.6	297	
21554	2	0.7	191	
21555	2	0.6	226	
21556	1	0.6	93	
21557	4	0.8	530	
21558	2	0.6	14	
21559	1	0.5	18	
21560	2	0.9	121	
21561	1	0.7	206	
21562	3	1.1	1000	
21563	2	1.2	985	·
21564	 5	1.5	1495	
21565	1	0.8	550	
21566	2	1.4	2280	
21567	4	1.6	2550	
21568	2	3.8	7350	
21569	i .	1.1	2430	
21570	5	1.4	2220	
21571	2	1.5	2410	
21572	. 1	1.7	3050	
ماند الله الله الله الله الله عنه الله الله الله الله الله الله الله ال				

A elen Certified by



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

0V-0985-RG4

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Geochemical Analysis Certificate</u>

Company:	VARITECH	
Project:	TAM	
Attn:	B.COOKE/B.KAHLERT	

Date: JUL-28-90 Copy 1. VARITECH, VANCOUVER, B.C.

2. NAJOR GENERAL RES., VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 24 CORE samples submitted JUL-23-90 by P.PETO.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	
21573	<u></u>	1.0	595	
21574	2	1.6	0,0	
21575	3	6.6		
21576	40	9.6		
21577	2	7.4		
 21578	 2	 5.4		
21579	1	1.5	1500	
21580	- 3	3.2		
21581	125	3.2		
21582	57	5.7		
21583	60	3.0		
21583	17	3.0	4200	
21585	408	14.0	245	
21585		1.2	1210	
21588	40	1.2	1040	
21588	3	 0.8	725	
21589	2	1.1	1120	
21590	1	0.6	210	
21591	25	1.6	210	
21592	4	1.4	1050	×
 21593	1	1.2	1150	
21593	3	2.1	1100	
	215	2.2		
21595	215	2.2		
21596	27	2.0		

elle



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

0V-0985-RG5

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Geochemical Analysis Certificate</u>

Company: VARITECH Project: TAM Attn: B.COOKE/B.KAHLERT Date: JUL-28-90 Copy 1. VARITECH, VANCOUVER, B.C.

2. MAJOR GENERAL RES., VANCOUVER, D.C.

He hereby certify the following Geochemical Analysis of 24 CORE samples submitted JUL-23-90 by P.PETO.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	
21597	44	5.7		
21598	3	2.4		
21599	2	3.2		
21600	87	5.2		
21601	1	3.0		
21602	2	1.6		
21603	80	5.6		
21604	40	3.8		
21605	7	2.2		
21606	2	3.8		
21607	4	5.0		
21608	99	5.3		
21609	10	4.0		
21610	12	1.9	1850	
21611	2	1.4	1900	
21612	1	1.5	1460	
21613	2 3	2.0	3250	
21614	3	3.9		
21615	4	3.4		
21616	2	1.6	1670	
21617	1	3.0		
21618	22	3.8		
21619	1	0.4	405	· · · · · · · · · · · · · · · · · · ·
21620	3	4.2		
کر جار جو جا این میں جا این کے دی این کے این جو بری ہے				

Lielean

MIN-EN LABORATORIES

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB .: TELEPHONE/FAX (604) 847-3004

.ABORATORIES

(DIVISION OF ASSAYERS CORP.)

VARITECH

B.COOKE/B.KAHLERT

TAM

E

3	5	5	a.	¥.	 2	<u>e</u>	2	<u>t</u> :	Ż	£	Ź	<u></u>	a	<u>t</u> :	E	

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

Date: JUL-28-90 Copy 1. VARITECH, VANCOUVER, B.C. 2. MAJOR GENERAL RES., VANCOUVER, B.C.

He hereby certify the following Assay of 26 SOIL samples submitted JUL-23-90 by P.PETO.

	Sample	CU	
	Number	%	
* * <b>V</b> .C	and and a second se In the second	a a construction de la construcción de la construcción de la construcción de la construcción de la construcción A Calendra en la conferencia de la construcción de la construcción de la construcción de la construcción de la c	
	21599	.780	·
	21600	1.088	
•	21601	.430	
	21602	.247	
	21603	.765	
	21604	.371	
	21605	.332	
	21606	.513	
	21607	.670	
	21608	. 463	
	21609	.675	
	21613	.335	
	21613	.333	
	.21615	.502	
	21617	. 424	•
	2101/	T - ۵۵ T - ۲۰۰۲ ۲۰۰۲ ۹ • ۳۵ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰	
	21618	.730	
	21620	.574	
	21621	.216	
	21622	.590	
	21623	. 413	
	21624	.621	·
	21625	.995	
	21626	.905	
	21627	.231	
۰.	21627	1.780	
-			
	21629	.061	

Here Carry Certified by____

MIN-EN LABORATORIES

<u>0V-0985-RA2</u>



.

Company:

Project:

Attn:



......

## **ABORATORIES** (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB .: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Geochemical Analysis Certificate

0V-0985-RG6

Date: JUL-28-90

Company:	VARITECH	Date: JUL-28-9
Project:	ТАМ	Copy 1. VARITECH, VANCOUVER, B.C.
Attn:	B.COOKE/B.KAHLERT	2. MAJOR GENERAL RES., VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 10 CORE samples submitted JUL-23-90 by P.PETO.

Sample Number	AU-FIRE PPB	AG PPM	CU FFM	
21621		1.4		
21622	2	3.8	5750	
21623	3	3.9		
21624	1	4.0	9650	
21625	1	5.2		
21626	4	4.7	, ang ang ang anti ang anti ang dip dap dag	
21627	2	1.5		
21628	60	19.7		
21629	7	1.8		
21630	2	0.5	70	

Certified by_ 9/2.É

MIN-EN LABS VANC.



EN
 EN
 COVISION OF ASSAYERS CORP.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYS'IS + GEOCHEMISTS 562 P02 VAINOUUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA: V7M(1T2 1ELEPHONE (804) 980-5814 OR (804) 988-4524 FAX (804) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (804) 847-3004

# Geochemical Analysis Certificate OV-0996-RG1

Company:	VERITECH	
Project:	TAM	Date: JUL-30-90
-		Copy 1. VERITECH, VANCOUVER, B.C.
Attn:	B.COOKE/B.KAHLERT	
	•	2. HAJOR GENERAL RESOURCES, VANCOUVER, B.C.

# He hereby certify the following Geochemical Analysis of 30 CORE samples submitted JUL-24-90 by P.PETO.

Sample Number	AŲ-FIRE PPB	AG PPM	CU PFM	0K	
21631	128	8.0	معقد بينا يتقريب العاشير التراحية مناحلة الم التراحية	ن من من من الله الله الله المراجعة و من منه منه المراجع عن المعالية المناصرة الله . 	ستدكره سيدجي فكلاعت فية مقرطح وجامعوه
21632	170)	9.6			
21633	180	14.0			
21634	17.3	13.1			
21,635		9.5			:
21636	70	7.3		, an ann ann ann ann ann ann ann ann ann	
21638	28	5.3			
21639	237	14.3			
21640	522	12.0			
21641	, 239	21.6			
21642	139	5.4		an ann ann ann ann ann ann ann ann ann	
21643	272	7.2			
21644	68	4.0			
21645	40	1.3			
21,646	<u>,</u> 3	0.3		•	
21647	30	3.3	4950		
21648	101	2.0	2300		:
21649	: 37	4.8			
21650	166	4.0			
21651	160	5.1			
21652	173	3.1	ana ana amin'ny dia dia dia dia 400 amin'ny dia 400 amin'ny dia	* *** =** *** ==* *** ==* *** =** *** *	
21653	21 /	2.0	3150		
21654	34	1.1	3950		
21655	83	3.1			
21656	_# 21	0.3			ı
21657	348	7.3	ده هند بيش بالد خليا شار الي اينا دياه دي مي مي اين بين بين بين بين بين ا		
21658	130	1.2			
21659	61	1.8			
21660	160	i7.1			
21661	91	18.0			

Certified by__

MIN-EN LABORATORIES

1

----

~~



#### ABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCUUVER UFFICE: WEST 15TH STREET 1H VANCOUVER, BC CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 **SMITHERS LAB.:** 

TELEPHONE/FAX (604) 847-3004

#### 0V-0996-RA1 Certificate Assay

Company: VERITECH Project: TAM Attn: B.COOKE/B.KAHLERT

Date: JUL-30-90 Copy 1. VERITECH, VANCOUVER, B.C. 2. MAJOR GENERAL RESOURCES, VANCOUVER, B.C.

He hereby certify the following Assay of samples submitted JUL-24-90 by P.PETO.

Sample Number	CU %	·
21631	1.275	
21632	1.715	
21633	2.300	
21634	2.390	
21635	1.515	
21636	1.110	
21638	.958	
21639	2.790	
21640	1.840	
21641	1.835	
21642	.860	
21643	1.200	
21644	. 690	
21645	.300	•
21646	.001	
21649	. 581	
21650	.653	
21651	.810	
21652	1.110	
21655	. 500	
21656	. 324	
21657	.903	
21658	.137	
21659	.907	
21660	2.230	
21661	2.600	
21662	1.055	

Certified by_

MIN-EN LABORATORIES



EN LABORATORIES (DIVISION OF ASBAYERS CORP.)

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTO - ASSAYERS - ANALYSTS - GEOCHEMISTS

MIN-EN LABS VANC.

562 P03 VAIVEOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.: TELEPHONE (807) 022-8958 FAX (807) 623-5831 SMITHERS LAB.: TELEPHONE/FAX (804) 647-3004

Geochemical Analysis Certificate 0V-0996-RG2

Company:VERITECHDate:JUL-30-90Project:TAMCopy 1. VERITECH, VANCOUVER, B.C.Attn:B.COOKE/B.KAHLERT2. MAJOR GENERAL RESOURCES, VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 4 CORE samples submitted JUL-24-90 by P.PETO.

Sample Number		AU-FIRE PPB	AG PPM	CU PPm		:
				بمبيحه وينتبع فتعانيتها للامتلا منافقا كالتاء	and the second sec	
21562 21563 21664 21665		59 58 89 27	6.0 2.6 3.2 0.8	3150 5900 880	- - -	· · · · · · · · · · · · · · · · · · ·
	· .	i			7	

Certified by_

COMP: MINCORD EXPLORATION PROJ: TAM HAHA CREEK

1.0

.3

.8

.5

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 05-0618-RJ1+2 DATE: 90/10/07

TTN: P.PETO	LN .	705 .		980-5814			V/M 116	* ROCK * (ACT:F3
SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB	
49001 49002	2.8	45 33	469 298	32	45 36	100 84	5 10	
49003	1.6	15	192	4	32	99	25	
49004	3.5	2	414	141	53	70	120	
49005	1.1	25	363	10	36	79	40	
49006 49007	1.3 5.9	1 1	230 510	12 1	27	112 577	50 170	
49008	.8	10	120	5	237 23	42	170 5	
49009	1.8	6	84	1	42	136	5	
49010	1.5	5	480	í	26	120	5	
49011	.9	9	73	1	26	96	10	
49012 49013	.7	14	80	1	18	37	20	
49013	3.4	34	3620	3	24	305	25	
49015	5.4 5.7	1 6	6431 7979	7 1	28 26	356 347	120 35	
49016	3.7	1	3418	4	24	102	15	
49017	1.3	1	421	1	21	122	20	
49018	1.5	18	249	1	30	53	85	
49019 49020	.6 .7	1	67	1	17	47	5	
49020		1	811		44	47	255	
49022	.4 2.2	3	153	2	22	66	25	
49022	1.9	25 3	1380 933	1	22 30	64 24	45 40	
49024	1.7	24	1502	2 1	19	24	55	
49025	.9	10	306	ź	14	19	15	
49026	1.5	8	82	2	22	84	55	
9027	1.0	17	40	1	24	88	5	
9028	1.1	17	83	3	18	68	5	
49029	.6	6	105	1	17	45	5	
49030	2.6	57	2560	2	26	158	10	
9031	3.8	16	1862	Z	37	93	30	
9032	1.9	38	306	1	27	92	5	
9033	1.7	45	170	1	· 18	65	5	
49034 49035	1.3	31 35	38 62	2 2	19 17	23 47	10 5	
9036	1.0	36	63	1	23	106	10	**
9037	1.0	20	24	16	15	12	5	
9038	1.0	43	270	1	17	22	10	
9039	1.0	1	282	1	18	129	5	
9040	1.9	8	609	77	28	104	5	
9041	1.0	2	66	1	24	74	5	
9042	2.1	1.	43	16	30	107	5	
9043	2.6	19	87	2	98	85	80	
9044 9045	3.8	27 10	14 14	9 3	147 26	53 63	300 5	
9045	.5	36	87	1	18	35	5	<u> </u>
9048 904 <b>7</b>	.7	25	139	i	20	46	5	
9047	.6	21	17	1	25	66	10	
9048 9049	.6	50	382	1	17	57	5	
9049	.5	20	68	3	15	29	5	
2051	2.0	28	171	4	133	17	10	
9052	1.1	29	44	440	64	8	45	
9053	2.8	58	82	1473	84	104	135	·
9054	6.6	13	63	51	473	78	60	
9055	2.4	12	258	23	39	157	155	
					20	00	15	

26 50

67

14

20

COMP: MINCORD EXPLORATION PROJ: TAM HAHA CREEK ATTN: P.PETO

-

r

### MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0618-RJ3 DATE: 90/10/07 * ROCK ** (ACT:F31)

SAMPLE NUMBER 49061 49062 49063 49064 49065 49066 49067 49068 49069 49069 49070 49071 49072 49073	AG PPM 2.6 1.8 1.3 1.8 1.0 .6 .8 1.2 1.1 4.6 1.1 .9 .7	AS PPM 29 29 32 32 21 18 14 9 51 43 24 26	CU PPM 14 17 106 79 24 15 14 6 24 61 141 15 7	MO PPM 2 2 2 8 3 1 2 2 4 568 18 11 5	PB PPM 34 25 19 44 19 14 14 23 23 85 28 22 22	2N PPM 97 63 65 138 97 34 17 75 30 83 62 65 66	AU PPB 5 5 5 80 5 5 5 5 5 340 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		 	
49074 49075	.8 1.0	3 45	10 38	3	28 17	105 39	5	. <u></u>	 	

COMP: MINCORD EXPLORATION 'PRÖJ: TAM HAHA CREEK ATTN: P.PETO rⁱ

#### MIN-EN LABS --- ICP REPORT 705 West 15th st., North VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0S-0618-SJ4+5 DATE: 90/10/07 • SOIL • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB	 	
BL 0+00N L0+00N 0+50E L0+00N 1+00E L0+00N 1+50E L0+00N 2+00E	1.6 1.8 3.2 2.0 2.4	1 1 1 1	116 224 239 225 283	2 1 1 5	36 29 36 36 93	62 210 185 257 141	5 5 10 10	 	
L0+00N 2+50E L0+00N 3+00E L0+00N 4+00E L0+00N 4+50E BL 1+00N	.9 1.0 1.3 1.4 1.3	1 1 1 1 1	54 62 39 39 50	4 1 1 1 1	44 36 47 23 28	107 115 116 91 62	5 5 5 5 5		
L1N 0+50E L1N 1+00E L1N 1+50E L1N 2+00E L1N 2+50E	1.2 1.5 1.2 1.0 1.4	1 1 1 1	48 13 57 61 106	1 1 1 1 1	29 19 28 31 20	73 26 80 134 84	50 5 5 10 5		
L1N 3+00E L1N 3+50E L1N 4+50E BL2N 0+00W BL2N 0+50W	2.3 1.5 1.2 .9 1.0	1 1 1 1	113 52 45 64 31	1 1 1 2	25 22 20 20 21	113 112 103 60 40	5 5 10 5 5		
BL2N 1+50W BL2N 2+00W BL2N 2+50W BL2N 3+00W BL2N 3+50W	3.8 1.9 .7 .7 1.2	1 1 1 1	1757 381 92 72 315	4 4 2 26	28 47 28 34 58	96 842 123 95 123	30 10 5 10 10		
BL2N 4+00W L2S 4+50W L3S 2+00W L3S 2+50W L3S 3+00W	1.4 1.2 4.1 1.0 .9	1 1 1 1	85 34 3397 348 153	1 1 18 9 3	41 19 32 34 17	149 55 92 172 165	5 5 95 5 5		
LN3S 3+50W LN3S 4+00W LN3S 4+50W	2.0 1.3 1.0	1 1 1	98 33 79	3 3 2	31 23 27	58 41 39	5 5 5		
								-	
		-1							
	<u></u>							 	

به

• DC	T 29 '90 10:53	MIN-EN	LABS VANC.			573 FØ6	
	別記記言語の		•		• 7	ANCOUVER OFFICE:	
	EN MARCON	ORIES			• N T F	ORTH VANCOUVER, B.C. CANADA V7M 11; ELEPHONE (604) 980-5814 OR (804) 988- XX (604) 990-9821	2 4524
					ר ז	HUNDER BAY LAB .: ELEPHONE (BOZ) 822-8858	
		IS IS IN MINEH Its - Assayers - An	AL ENVIRONN ALYSTS • GEOCHEMIS	IENTS ITS	· 5	W (807) 823-5931 MITHERS LAB.: ELEPHONE/FAX (804) 847-3004	
· · · · ·	ASSBY	Cert	<u>ifica</u>	te	-	05-0669-RA	4
[®] Companys	MINCORD EX	PLORATIO	N	•	•	Dates OCT-16-5	an :
Project: Attn:	TAM G.GARRETT/B.	KAHLERT/B.	CODKE	•	Capy 1. MINC - 2. VERJ	JAD EXPLORATION, VANCOUVER, B.C. Tech, Vancouver, B.C.	
<i>He her</i> submit	<i>eby certify</i> ted OCT-10-	an på a'e	GARRETT.	say of 3	0 ROCK sa	nples	
Sample	: ·	AU-FIRE	AU-FIRE	AG .	AG		··· •
Number		g/tonne	oz/ton	g/tonne	az/ton	χ χ	
49076		• • • • • • • • • • • • • • • • • • •	. 001	0.8	. 02	. 050	
49077		.04	.001	0.4	.01	.012	
49078		.06	.002	1.6	. 05	:007	
49079		.04	.001	1.2	.04	-010	
47080	ا همه قبله شده الحار بإذل إلياء معه حمر إليار فيك إليه هذه إل	.07	. 002	0.6	.02	.018 	na kana kata ka 🐇
49081		.05	.001	. 5.0	*بەلىتى <u>تە</u> بىرىدەت 10 <b>.</b>	- مرضيل مستخدي بي مرضي من	دي هذ ينه وله توارف بر
49082		• 05	.001	1.7	.05	. 006	
49083		.04	.001	0.4	.Ŭ1	.`006	
49084		.03	.001	0.2	•Q1	<b>.</b> QQ1	
49085	د سے سیک چندہ ایس بیش دہت جب ایس دیس پیش پندر دیش	.05		0.3	•01	. 004	
49086	•	.05	.001	0.3	01	.010	
49087	•	.04	.001	Q.2	.01	.005	
47083	•	.04	.001	0.4	.01	.013	•
49089 49090		.05	.001 .002	0.5 0.2	.01	.014	
الله ويبعد معند علي الله والله والله عليه عليه الله الله الله الله الله الله الله ا	به مده سب باز الارد است هند مین کرد کرد سه مینا منه سرد	د هکه هما مرد اس کمه همه محد مده محد هک در هم مرد مرد مرد مرد محد مده محد محد محد م	ويرد وهد همه علم کور وه دهه هم هم کار		نىلوسى بېرىبىر سىمى بۇرغە مەرسىپ	مرتبة كالمرتبة أكثب تترتب فأفحر تبريت بأشريت أخرائه ومرور	
49091	• • •	.04	.001	0.4	.01	.002	
49092		.04 .05	.002 .001	0.4 0.6	.01 :,02	.032 .013	
49094 49102	•	05	001 .001	0.0 0.9	.02	.076	
47102		, .06	.002	1.8	.,05	.165	
	سه واق ۱۹۹۰ که دهه بیمه ویو ۱۹۹۶ میه مید ویو ویو می	د دمان دان منه منه منه وا انتا مه منه م برای انتاز منه منه منه منه وا	ماها، الله مين مين مين الله الله عليه من الله الله الله الله الله الله الله الل			ﯩﯩﺪﯨﺪﯨ ﺋﯘﻧﺪﯨﺪﯨﺪﯨﺪﯨﺪﻩ ﺋﯘﻧﺪﯨﺪﯨﺪﻩ ﺋﯘﻧﺪﯨﺪﻩ ﺋﯘﻧﺪﻩ ﺑﻪ ﺋﯘﻧﺪﻩ ﺑﻪ ﺋﯘﻧﺪﻩ ﺑﻮﻧﺪﻩ. 1. 1. 1. 1.	
47104		.07	.002	.1.2.	.:04 .	.066 .020	
49105 49106		.07 .05	.002	1.6 1.8	.05 .05	.020	
49108		.05	.002	1.7	05	.010 .030	
49108		.07	.002	2.2	.06	.051	• • •
49109	ین جو رو او	.05	.001		بنىيەت سىيەسەسىسە 01 .	ﺧﯩﺴﯩﻤﻪ ﺑﻪﺋﯘ/ﺋﯩﻨﯩﻨﯘﺑﯩﺪﯨﺪ ﺋﻪﻗﯘﻣﯩﺪ ﺋﯩﻨﯘ، ﺋﯩﺪﺑﯩﺪ. • 114	
49110		.03	.001	0.3	.01	.002	
				0.5	.01	.014	
47111		.04	.001	v.J			
		.04 .03 .05	.001	0.9 1.3	.02	.018 .015	

Certified by

		'90 10:54	4 MIN-EN	LABS VANC	•		573 FØ7	
	• EN	NH ROS	·····································	•		• 709	NCOUVER OFFICE: WEST 15TH 9/REET	
		BORA ON OF ASBAYERS	TODIES	•		FAX	TH VANCOUVER, B.C. CANADA V71 EPHONE (604) 980-5814 OR (804) (804) 980-981	M 112 988-4524
		SPECIA	LISTS IN MINER	AL ENVIRONI	MENTS	FAX	UNDER BAY LAB .: EPHONE (807) 822-8958 (807) 823-5931	
<u>~</u>			ISTR . ASSAYERS . AN	ALYST8 • GLUCHEM		. SM TEL	ITHERS LAB.: EPHONE/FAX (604) 847-3004	
	<u></u>	75534	Cert	ifica	te		05-0669-	RAS
Compar Projec Attna	ti TAM	1	XPLORATIO .KAHLERT/B.		•	Copy 1. MINCOR 2. VERITE	Date: OCT-16 D Exploration, vancouver, b CH, vancouver, b.C.	;-90 .C.
He H subn	b <i>ereby</i> nitted	certify OCT-10-	/ the fol: -90 by G.(	lowing A. GARRETT.	ssay of 6 ]	ROCK samp]	les	
l Sampl Numbe	le er	15-413-41-491 - 11	AU-FIRE g/tonne	AU-FIRE oz/ton	AG: g/tonne	AG oz/ton	CU X	· :
49114	•		. 17 . 09	.006	2.8	. 03	. 052	
49114	,		.03	.003	6.2 1.5	.18	.364 1058	
47118		-	.08	.001	0.6 3.7	- 02 - 11	-037 -004 	
47117	•		.03	.001	1.4	••••••••••••••••••••••••••••••••••••••	<u>،</u> 004	
			·. •				ş · · ·	
1 <b></b>			· · ·			÷ .	Visionalistasi su	
-				این چندر مدر من مان از ای وجه مده مان ای ای	g gran man tadê biyîn sina delê delê pişî girmî dele dike dike	••• •• •• •• •• •• •• •• •• •• •• ••	ىلىنىڭ بىڭ <del>بارىخى بۇ</del> يۈپىمىيەن بېزىنىيە ھەرىكى بىلىنىڭ مەلىپىلىرىنى بىلىنىڭ ھەر	پنج نب ک من میزمن میگر ک
							· . ,	•
							·读:"建了和小子题:"是	
							•	
			•				1	
		•	•			e S Alexandre alexan	. In a feat to an elister an	·安东省 医子宫子
				•			• •	
						· .	1. 小聚一次 截分 新加水 化化化 法推进系统 网络	
			τ			•• • • • • • • • •	an	
				:		<b>.</b>	a nga bala sa kini dari ika ika an	
	·					-		
					: • • • • • •		en elle sin tre en treven	. A. A
	•							
						H.C	mails	
				Certi	ified by	103mg	(May)	
						111		

	CT 29 '90 10:51	MIN-EN	I LABS VANC.	· · · · ·		573 FØ3			
	EN LABORA (DIVIBION OF ABBAYERS SPECIAL	IORIES		ICNTO		VANCOUVE 705 WEST 15TH NORTH VANCOU TELEPHONE (60 FAX (604) 800-80 FAX (604) 800-80 THUNDER 1 TELEPHONE (80 FAX (807) 623-56	STREET IVER B.C. ( )4) 980-58 821 BAY LAI 7) 822-89	CANADA V7M 1T2 14 OR (604) 988-4524 R •	4
	CHEMIS	ATS . ASSAYERA . AN	ALYSIS - GEOCHEMIS	ienis Gra		SMITHERS	LAB	7-3004	
	Assay	Gert	ifica	te			05	-0669-RA1	
⁺ Companys Project: Attns	MINCORD EX TAM 5.GARRETT/B.	KAHLERT/B.	CDOKE		2. VER.	CORD EXPLORAT Itech, Vancou	ION, VAL	DCT-16-90 ICDUVER, B.C.	
He her submit	<i>eby certify</i> ted OCT-10-	the fol: 90 by G.(	lowing As GARRETT.	say of 26	5 ROCK sa	mples			
Sample Number	لىمىزىلەر بىلەر بىلەر ھەر بىلەر مەر بىلەر مەر بىلەر ھەر بىلە مەر بىلەر مەر بىلەر ھەر بىلە ھەر بىلە ھەر بىلە ھە *	AU-FIRE g/tonne	AU-FIRE oz/ton	AG oz/ton	AG oz/ton	CU X	· ·	• •	
49093		07	. 903	Ú.6	, 02	. 029	<b></b>		
49095		. 14	.004	2.2	.06	.002			
49096		- 40	.012	0.5	. 01	.004			
47097		.20	.006	0.3	.01	.078			
49098	ماله محمد معد المرد المرد المرد محمد معم المرد المرد المرد محمد مرد	, · . 29	.008	2.1	. 04	.015			
49099		.06	.002	0, 4	.01	.014	مۇر ئىر ۋە ئ		
49100		09	.003	1.3	.04	.018		•	
47101		. 09		4.1	.12	0452			
49120		.09	.003	6.0	.18	.900			
49121		.11	.003	4.2	.12	. 625			
49122		.07	,003	7.8	.23	• 880			<b>T T M</b>
49123		.04	.001	0.7	.02	.015	•		
49124		.04	.001	0.4	.01	.006			•
49125		.04	.001	0.3	.01	.014			
49126	، هذه چنه اين ايل ايل جن خت خت کا دي ايل دي خت خت ه	.10	.003	0.2	.01	.015			
49127	•	.06	.002	0.3	.01	.013			
49128		. 09	.003	0.5	.01	.021			
49129	•	.20	.003	1.7	.05	.008			
49130		35	.010	0.6	.02	•00B			
49131	معد محد شور (۱۹۹ مید معد معد مدر اور اور اور اور اور اور اور اور اور او	109	.003	0.4	.01	.019			
49132		.07	,003	0.3	.01	.013	. <b>1</b> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	and an and an	
49133		.40	.012	1.9	.06	.018			
49134		.09	.003	0.2	.01	.022			
49135		.06	.002	0.2	.01	.007			
49134		.04 ·	.001	0.2	.01	.001		·	
	•	•••							

5.

1 .. . . 1.

. Certified by

00	CT 29 '90 10:5	2 MIN-EN	LABS VANC.			573 FØ4	
	MIN • EN LABORA (DIVISION OF ASSAVENS SPECIA	TORIES	AL ENVIRONM ALYSTS -GEOCHEMIS	ENTS 18	7 N T T T S S	ANCOUVER OI D5 WEST 15TH STREI ORTH VANCOUVER, B ELEPHONE (1004) 980- AX (804) 980-8821 HUNDER BAY I ELEPHONE (807) 622 AX (807) 623-5931 MITHERS LAB ELEPHONE/FAX (804	T C. CANADA V7M 112 -5814 OR (804) 988-4524 LAB.: -8958
	Assay	( Cert	ifica	te		(	DS-0669-RA2
Company: Froject: Attn:	MINCORD E TAM G.GARRETT/B	•				Date DRØ EXFLORATION, TECH, VANCOUVER,	
<i>He her</i> submit	r <i>eby certif</i> ted OCT-10	y the fol -90 by G.(	lowing As GARRETT,	say of 2	3 ROCK sa	nples	
Sample Number	∦	'AU-FIRE g/tonne	AU-FIRE oz/ton	AG pz/ton	: AG s±/ton	: CU %	
49138		.03	•001	Ú.6	. 02	, 002	
47139		.07	.002	0.2	-01	.001	
47140	·	.03	,001	0.4	.01	:001	
49141		.08	,002	0.5	• Q1	.001	
49142	مر الله وي مدر مير بلي إير (به مدر بلي الله الله الله الله الله الله الله ال	.04.	.001	0.2	.01	.003	· ·
47143		.04	.001	0.2	-01	.002	ن هند هي بيد من بينه بيه بيه مي مي عن يه عن مي مي الم 
47144		.04	.001	1.7	.05	.002	•
49145		.04	.001	1.6	.05	.001	
47146		<b>.</b> 05	.001	1.3	.04	.003	
49147		. 23	.007	2.4	.07	.008	
 49148	مد شرو خان والله والله الم الله الله الله الله الله الله ا	 .04	.001	0.8	.02	.024	يا هڪ سبب جي پي من مين مين مين مين مين مين مين هي هو. م
49149		.07	.002	0.5	.01	.002	
49150	÷	.05	.001	0.6	.02	.012	• •
49151		<b>.</b> 04	.001	0.2	÷01	.001	
49132		.15	.004	1.7	.05	.005	
49153	ے میں طالع ہوتے ہوتے ہیں۔ میں میں 1915 ایلڈ، میں نظار اور ہے۔	.17	.005	11.4	•33	.720	4
49154		.05	001	1.8	. 05	<b>.</b> 154	
49155		<b>"</b> 04	.001	2.3	.07	016	
49156		.04	.001	0.3	.01	.004	
49157		.04	.001	0.2	.01	.002	مد هند نزام چه بخه مدر برد می بیان بیان وی برای بی بی بی بی بی ا
49158	ه میں بہتر ہوتا ہوتا ہے۔ میں میں بلیا ہوتا ہوتا ہوتا ہے ۔	. 19	,005	1.8	•05	• 443	····
49159			.003	1,9	.06	960	
47107 47160		.04	,002	0.7	. 02	074	
47100			<b>•</b> • • • • •		· · · · ·		
•	•	•			<u>.</u>		مى يىلى ئۇرۇر ئۇرۇر ئۇرۇر ئۇرۇر ئۇرۇر ئۇرۇر ئۇرۇر ئۇرۇ ئ
	به الحد عنه دورا البار يزان جمه من وجز غنيَّ إزارة وجرَّ عن .	سے بیٹ اے آئے۔ جس میں میں اور اور اور میں میں ا	د بها انه هد ده هد به او او هد او ه	بو بینو می می می ملط اول می می می می واد ر			•

and the second second

[Hu

Certified by

1

			LABS, VANC.			515 FB2	
	MIN • EN LA OVVIBIO	BORATORIES N OF ASSAYERS CORP.) SPECIALISTS IN MINEF CITEMINITS - ARSAYERR - AN	, RAL ENVIRONM	¥8.	70 NC FA FA TH TE FA SI	LEPHONE (804) 980- X (604) 980-9821 HUNDER BAY L LEPHONE (807) 822- X (807) 623-5931 MITHERS LAB. LEPHONE/FAX (604)	T D. CANADA V/M 1T2 58 14 OR (604) 988-4524 AB:: 8958
L				······································			
	Project: TAM	RITECH D COOK/ P.PETO, G.	GARRETT	•		ECH, VANCOUVER, RD, E/O TUNDRA,	
		certify the fol OCT-12-90 by MI		ssay of 2	7 ROCK san	nples	
	Sample	; AU	 · AU	AG	AS	cu	· .·
	Number	g/tonne	oz/ton	g/tonne	oż/ton	%	
••	49161	.05	, 00 <u>/</u> 1	5./7	.17	-115	
	49162	.04	.002	1.5	.05	.021	
•	49163	.07	. 003	1.8	. 05	.034	
	47164	.10	.003	1.7	.05	,032	
	49165	.04	.001	1.4	.04	• .010	÷ چېۋلى ^ن ىنى بى ئەتىرىم مەمەمەم
	49166	.09	.003	2.0	.06	.095	•
	49167	.04	.001	1.2	.04	.010	
	49169	.12	.004	• 3.4	.10	.154	
	49169	.05	,001	2.0 .	<b>.</b> 06	.012	
	49170	.07	,003	2.1	.05	.038	
	49171		.001	1.2	.04	<b>.</b> 006	
-	49214	.05	.001	1.5	.04	.004	
	49215	.04	.001	.5 1.3	.01 .04	.003	•
	49216 49217	.04 .40	.001 .012	4.9	. 14	.356	
	47217	الله مربع الله الله الله الله الله الله الله الل	ه که جد عله سب بید (بزرجه هم هد عنه م	د مانغ جمع بروی میک میک میک میک کرد. م		······································	
	49218	<b>、</b> 05	.001		.02	.020	
•	49219	.30	009	5.8	.17 · .14	A20	
	49220	.12	. 004	. 4.7		.008	
	49221	.05	.001 .001	1.1	· . 03	.007	
	49251	.04	• • • • • • • • • • • • • • • • • • • •				
	49252	.05	.001	1.5	.06	058	
	49253	.08	.002	1.2	.04	044	
	49254	.05	.001	.3	.01	. 004	
	49255	.07	.003	6.8		.163	
	49256		.003	1.7	.05	800 <b>.</b>	
		. 10	.003	.3	.01	.003	
	49257 49258	.06	.002	1.8	.05	.013	
	7/44						

Certified by

NEEN INDAVOUTED

 $\checkmark$ 

	. <b>U</b> C	1 29 '90 10:52	МІЙ-ЕИ	LABS VHIN.		ومغيار فتركر بالمشري الإكران الرو	رابا د
		NIN EN LABORAT (DIVISION OF A98AVER8 OF SPECIALI CHEMIS	ORIES	AL ENVIRONN	AENTS STB	70: NO FAX TH TEL FAX SM	NCOUVER OFFICE: WEST 15TH 91 HEET RTH VANCOUVER B.C. CANADA V7M 1T2 LEPHONE (904) 980-5814 OR (804) 988-4524 ( 6001 980-9621 HUNDER BAY LAB.: LEPHONE (807) 622-8958 ( 607) 623-5931 MITHERS LAB.: LEPHONE/FAX (804) 847-3004
		Assay	Gert	<u>ifica</u>	te		05-0669-RA3
•	Company: Froject: Attn:	MINCORD EX TAM G.GARRETT/B.	•				Date: OCT-16-90 RD EXPLORATION, VANCOUVER, B.C. ECH, VANCOUVER, B.C.
	<i>He her</i> submit	<i>eby certify</i> ted OCT-10-	the fol: 90 by G.(	lowing A: GARRETT.	ssay of 13	ROCK sam	ples
	Sample Number	4 ·	AU-FIRE g/tonna	AU-FIRE oz/ton	AG `g/tonne	AG oz/ton	CU %
•	49201 49202 49203 49204 49205		.03 .03 .04 .13 .14	.001 .001 .001 .004 .004	1.3 0.2 0.4 0.6 1.3	.04 .01 .01 .02 .04	.005 .004 .104 .013 .158
	49206 49207 49208 49209 49209	•	.70 .16 .03 .03 .02	.020 .005 .001 .001 .001	7.7 3.8 7.9 0.4 3.0	.29 .11 .23 .01 .09	.016 .008 .164 .004 .002
، مس	49211 49212 49213		.07 .59 .06	.002 .017 .002	1.7 4.2 1.6	.05 .12 .05	. 122 . 019 . 003
	:	·	•				
				•	• ·		· · · · · · · · · · · · · · · · · · ·
	:		•		· · · · · · · · · · · · · · · · · · ·		, ene electronic linked a comparent contra
·	:		•				
			•				
·	:		1				e literation de Santa en

Certified	Бү	Burnenb

. COMP: MINCORD RES/MAJOR GENERAL PROJ: TAM

*d**

ATTN: P.PETO/B.KAHLERT

#### MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0S-0344-SJ1+2 DATE: 90/08/29 • SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB	
BL 0+00N BL L0+00N 0+25W BL L0+00N 0+50W BL L0+00N 0+75W BL L0+00N 1+00W	.9 1.1 .9 1.2 1.3	- 1 1 1 1	622 365 41 33 43	1 1 1 1	19 26 13 12 10	40 39 30 59 29	5 5 10 5	
BL L0+00N 1+25W BL L0+00N 1+50W BL L0+00N 1+75W BL L0+00N 2+00W BL L0+00N 2+25W	1.0 1.0 1.3 1.9 1.3	1 1 1 1	63 40 223 172 141	1 1 5 1 1	12 15 46 63 19	31 23 43 37 54	5 10 5 5 5	
BL L0+00N 2+50W BL L0+00N 2+75W BL L0+00N 3+00W BL L0+00N 3+25W BL L0+00N 3+50W	1.3 1.0 1.1 1.2 1.0	1 1 1 1 1	914 45 27 27 16	2 1 1 1 1	15 10 16 10 7	109 49 26 40 22	5 5 10 5 5	
BL L0+00N 3+75W BL L0+00N 4+00W BL L0+00N 4+25W BL L0+00N 0+25E BL L0+00N 0+50E	.6 1.0 1.1 1.6 2.6	1 1 1 1 1	34 21 29 302 48	4 1 1 1	13 13 15 15 15	29 31 27 23 29	5 10 5 5 5	
BL L0+00N 0+75E BL L0+00N 1+00E BL L0+00N 1+25E BL L0+00N 1+50E BL L0+00N 1+75E	3.9 1.0 1.0 1.5 .9	· 1 1 1 1 1	374 171 119 1661 161	1 1 1 1	22 17 11 28 15	88 30 30 90 38	5 10 5 5 5	
BL L0+00N 2+00E BL L0+00N 2+25E BL L0+00N 2+50E BL L0+00N 2+75E BL L0+00N 3+00E	1.0 1.5 .9 .8 .9	1 1 1 . 1	74 88 30 8 23	1 1 1 1 1	14 14 12 11 10	31 53 42 16 30	5 5 5 5 5 5 5	
B L0+00N 3+25E B L0+00N 3+50E B L0+00N 3+75E B L0+00N 4+00E B L0+00N 4+25E	.8 .3 .5 1.1 .7	1 1 1 1 1	62 33 58 58 58 55	1 1 1 1 1	11 13 15 10 9	42 24 33 35 30	5 10 10 5 20	
B L0+00N 4+50E BL L1N BL L1N 0+25W BL L1N 0+50W BL L1N 0+75W	.8 1.4 1.1 .9 1.3	1 1 1 1 1	63 21 42 19 33	1 1 1 1 1	12 13 15 11 16	35 29 35 19 19	5 5 5 5 10	•
BL L1N 1+00W BL L1N 1+25W BL L1N 1+50W BL L1N 1+50W BL L1N 1+75W BL L1N 2+00W	1.0 1.2 1.1 .8 1.2	1 1 1 1 1	52 21 55 48 21	1 1 1 1 1	12 11 11 11 13	22 18 29 20 26	5 5 5 10 5	
BL L1N 2+25W BL L1N 2+50W BL L1N 2+75W BL L1N 3+00W BL L1N 3+25W	1.6 1.2 1.1 1.1 .9	1 1 1 1 1	148 17 19 18 21	1 1 1 1 1	13 7 8 12 12	54 23 26 26 12	5 5 5 5 5 5	
BL L1N 3+50W BL L1N 3+75W BL L1N 4+00W BL L1N 4+25W BL L1N 4+25W BL L1+00 0+00	.7 .9 .8 .7 1.1	1 1 1 1 1	35 72 10 15 27	4 3 1 3 1	13 15 9 13 13	40 62 16 24 29	5 5 35 5 5	
BL L1+00 0+25E BL L1+00 0+50E BL L1+00 0+75E BL L1+00 1+00E BL L1+00 1+25E	1.0 .9 .9 1.8 1.3	1 1 1 1 1	26 25 12 71 50	1 1 1 1 1	8 14 12 14 11	25 35 14 26 30	5 5 5 5 5 5	

. COMP: MINCORD RES/MAJOR GENERAL PROJ: TAM

.

*

ATTN: P.PETO/B.KAHLERT

#### MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0S-0344-SJ3+4 DATE: 90/08/29 * SOIL * (ACT:F31)

NUMBER         PPM         PPM<		·			·····						
B LN H-25E       1.3       1       3007       2       30       72       5         B LN H-25E       1.4       23       424       3       19       88       10         B LN H-25E       1.4       23       424       3       19       88       10         B LN H-25E       2.7       23       225       4       25       87       5         B LN H-25E       2.7       16       52       1       16       10       5         B LN H-25E       1.7       16       213       140       44       5         B LN H-25E       1.3       8       50       14       44       5         B LN H-25E       1.3       8       50       14       44       5         B LN H-25E       1.1       18       18       16       5       5         B LN H-25E       1.1       18       20       5       24       22       5         B LN H-25E       1.2       18       215       26       1       23       5         B LN H-25E       1.2       15       56       1       12       26       5         B LN H-25E       1.2	SAMPLE NUMBER										
B LIM 1+25E       1.3       1       3007       2       30       72       5         B LIM 1+75E       1.4       23       424       3       10       88       10         B LIM 2+75E       1.4       23       424       3       10       88       10         B LIM 2+75E       1.4       23       424       3       10       88       10         B LIM 2+75E       2.7       23       225       6       25       87       5         B LIM 2+75E       1.7       16       33       16       13       64       5         B LIM 3+75E       .8       10       13       1       9       19       5         B LIM 3+75E       .8       9       11       1       8       16       13         B LIM 4+75E       .8       9       11       1       8       16       16         B LIM 4+75E       .8       9       11       1       8       16       16         B LIM 4+75E       .8       9       11       1       8       16       16         B LIM 4+55E       .9       1.3       21       42       23       40 <td< td=""><td>BL L1+00 1+50E</td><td>1.1</td><td>14</td><td>44</td><td>1</td><td>16</td><td>38</td><td>5</td><td></td><td></td><td></td></td<>	BL L1+00 1+50E	1.1	14	44	1	16	38	5			
B LIN 1+75E       1.4       23       424       3       19       80       10         B LIN 2+25E       2.7       23       255       4       25       87       5         B LIN 2+25E       2.7       16       52       16       105       10         B LIN 2+25E       1.2       16       213       1       15       84       5         B LIN 2+25E       1.2       16       213       1       14       41       5         B LIN 2+25E       1.2       16       213       1       14       41       5         B LIN 3+55E       .8       10       13       1       9       19       5         B LIN 4+400E       .9       2       119       6       18       51       5         B LIN 5+75E       .8       10       13       24       24       23       33       40       10         B LIN 5+75E       .9       21       28       13       32       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5		1.3	1		2		72				
B LW 2400E         1.1         19         116         1         16         56           B LW 2450E         2.7         23         255         4         25         67         5           B LW 2450E         1.7         16         235         1         15         84         5           B LW 2450E         1.7         16         235         1         14         44         5           B LW 3450E         1.3         3         16         23         50         5           B LW 3450E         1.3         1         9         19         5         5           B LW 4452E         .8         9         11         1         8         18         10           B LW 4452E         .8         9         11         1         8         18         10           B LW 4452E         .1.2         21         24         2         33         40         10           B LW 1450E         1.3         1         121         5         5         90         5           B LW 1450E         1.3         1         131         5         5         90         5           B LW 15450E         1.3											
B         LH         LH <thlh< th="">         LH         LH         LH<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlh<>											
B LIN 2+50E       1.7       16       52.       1       16       105       10         B LIN 3+50E       .9       1       345       16       23       50       5         B LIN 3+50E       .3       8       10       13       1       9       19       5         BL IN 3+57E       .8       10       13       1       9       19       5         BL IN 4+52E       .8       10       13       1       9       19       5         BL IN 4+52E       .8       9       11.1       1       8       18       10         BL IN 6+52E       .1.1       16       20       5       24       22       5         BL LIS 0+52E       1.2       14       4       2.2       5       5         BL LIS 1+500E       1.3       1231       5       9       0       5         BL LIS 1+525E       1.2       15       56       1       12       28       5         BL LIS 2+525E       1.7       24       406       3       24       96       5         BL LIS 2+55E       1.0       19       65       11       25       5       5											
B LTN 2475E BL LTN 3400E BL LTN 3400E BL LTN 3450E BL LTN 3450E BL LTN 3450E BL LTN 3450E BL LTN 3450E BL LTN 3450E BL LTN 4400E BL LTN 4400E BL LTN 4450E BL LTN											
B L1N 3400E B L1N 3475E BL N 3475E BL N 3475E BL N 4425E BL N 4400E L1N 4425E BL N											
B.L       H. 3475E       B.B.       10       13       1       0       10       5         B.L       H.425E       B.B.       9       11       1       8       18       10         B.L       H.425E       B.B.       9       11       1       8       18       10         B.L       H.425E       B.C.       9       11       1       8       18       10         B.L       H.425E       1.4       21       44       24       233       40       10         B.L       15 0+55E       1.4       21       41       4       24       90       5         B.L       15 0+55E       1.2       15       56       11       2       28       5         B.L       15 1+55E       1.2       15       56       11       2       28       5         B.L       15 1+55E       1.2       1       23       29       90       5       5         B.L       15 2+50E       1.7       24       406       3       24       96       5         B.L       15 2+50E       1.7       24       405       14       25       5       <		.9						5			
BL IN 4400E		1.3	8	50	1	14	41		<u> </u>	<u></u>	
BL IN 4425E       1.4       21       84       1       1       8       18       10         BL IN 6450E       1.3       21       42       2       33       40       10         BL 115 0+50E       1.4       21       42       2       33       40       10         BL 115 0+50E       1.4       21       42       2       33       40       10         BL 115 0+50E       1.4       21       42       2       33       40       5         BL 115 1+50E       1.2       15       56       1       12       28       5         BL 115 1+73E       .9       21       28       21       13       26       5         BL 115 1+73E       .9       15       38       1       5       22       5         BL 115 2+75E       1.2       14       18       50       1       14       25       5         BL 115 2+75E       1.4       18       50       1       14       25       5         BL 115 2+75E       1.4       18       50       1       14       25       5         BL 115 3+50E       1.3       16       76       1											
BL M 4450E       1.4       21       84       1       14       31       5         BL L15 00       1.3       21       42       2       33       40       10         BL L15 00+25E       1.1       18       20       5       24       22       5         BL L15 00+75E       1.4       21       48       22       33       32       5         BL L15 10+75E       1.2       15       56       1       12       28       5         BL L15 10+75E       1.2       15       56       1       12       28       5         BL L15 14-75E       .9       13       38       1       5       22       5         BL L15 2+00E       1.1       15       54       1       15       30       10         BL L15 2+50E       1.0       10       63       2       17       67       5         BL L15 2+50E       1.3       16       76       1       4       25       5         BL L15 3+50E       1.6       24       40       1       9       25       5         BL 15 3+50E       1.5       23       27       1       128       28 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-						
BL L18 0-25E       1.1       18       20       5       24       22       5         BL L18 0-75E       1.4       21       41       4       24       90       5         BL L18 10-75E         21       24       22       5       5         BL L18 1+50E       1.2       15       56       1       12       28       5         BL L18 1+50E       1.3       1       1231       5       95       90       5         BL L15 1+75E         1       15       33       1       5       22       5         BL L15 1+75E         1       15       30       10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0											
BL 15 0+50E       1.4       21       24       26       90       5         BL 15 0+57E       .9       24       25       1       13       26       5         BL 15 1+57E       1.2       15       56       1       12       28       5         BL 15 1+57E       .9       13       38       1       5       22       5         BL 15 1+75E       .9       13       38       1       5       22       5         BL 15 2+75E       1.0       19       63       2       17       67       5         BL 15 2+75E       1.4       18       50       1       16       25       5         BL 15 2+75E       1.4       18       50       1       16       25       5         BL 15 3+75E       1.5       13       16       13       40       10       25       5         BL 140 3+57E       1.5       23       27       1       11       28       5         BL 15 4+75E       .7       1       63       19       35       5       5         BL 1400 50+75W       .6       1       26       10       .5       5       5	BL L1S 00	1.3	21	42	2	33	40	10			
BL LIS 0+75E       .9       21       28       2       13       32       5         BL LIS 1+00E       .9       24       25       1       12       28       5         BL LIS 1+25E       1.2       15       56       1       12       28       5         BL LIS 1+75E       .9       13       36       1       59       90       5         BL LIS 1+77E       .9       13       36       1       52       5         BL LIS 2+75E       1.4       15       54       1       15       30       10         BL LIS 2+75E       1.4       18       50       1       14       25       5         BL LIS 2+75E       1.4       18       50       1       14       25       5         BL LIS 3+75E       1.5       19       13       19       19       5       5         BL 1405 0+75W       1.6       1       28       1       31       25       5         BL 14005 0+75W       .6       1       28       1       13       25       5         B 14005 0+75W       .6       1       28       1       13       25       5					5						
BL L15 1+00E											
BL L18 1+25E       1.2       15       56       1       12       28       5         BL L18 1+50E       1.3       1       123       5       90       5         BL L18 1+57E       .9       13       38       1       5       22       5         BL L18 2+00E       1.1       15       54       1       15       30       10         BL L18 2+525E       1.7       24       406       3       24       96       5         BL L18 2+55E       1.0       19       63       2       17       67       5         BL L18 3+25E       1.0       26       47       2       7       33       10         BL L18 3+25E       1.0       26       47       2       7       33       10         BL L18 3+50E       1.5       23       27       1       11       28       5         BL 154 4+25E       .7       1       60       1       9       38       5         BL 1+005 0+25W       .3       1       8       1       9       32       5         B 1+005 0+25W       .5       1       9       15       5       5       5     <											
BL L1S 1+50E       1.3       1       1231       5       95       90       5         BL L1S 1+75E       .9       13       38       1       5       22       5         BL L1S 2+00E       1.1       115       54       1       15       30       10         BL L1S 2+25E       1.7       24       406       3       24       96       5         BL L1S 2+25E       1.0       19       63       2       14       25       5         BL L1S 2+25E       1.0       26       47       2       7       33       10         BL L1S 3+50E       1.5       19       13       1       9       19       5         BL 1S 4+25E       1.7       1       63       1       9       38       5         BL 1S 4+25E       .7       1       63       1       9       32       5         BL 14005 0+25W       .6       1       28       1       13       25       5         B 1+005 0+25W       .6       1       28       1       13       25       5         B 1+005 0+25W       .6       1       28       1       13       26											
BL 115 1475E       .9       13       38       1       5       22       5         BL 115 2450E       1.7       24       406       3       24       96       5         BL 115 2450E       1.0       19       63       2       17       67       5         BL 115 2450E       1.0       19       63       2       17       67       5         BL 115 3475E       1.4       18       50       1       14       25       5         BL 115 3475E       1.5       19       13       1       9       19       5         BL 115 3475E       1.5       23       27       1       11       28       5         BL 115 3475E       1.5       23       27       1       11       28       5         BL 15 3475E       1.5       23       27       1       11       28       5         BL 15 3475E       1.7       40       1       9       25       5         BL 15 3475E       7       1       63       1       33       5         BL 16005 0425W       .3       1       8       1       33       25         BL 14005 1425W											
BL L1S 2+00E       1.1       15       54       1       15       30       10         BL L1S 2+52E       1.0       19       63       2       17       67       5         BL L1S 2+50E       1.4       18       50       1       14       25       5         BL L1S 3+00E       1.3       16       76       1       13       40       10         BL L1S 3+50E       1.0       26       47       2       7       33       10         BL L1S 3+55E       1.5       23       27       1       11       28       5         BL 15       4+50E       .7       1       63       1       9       25       5         BL 1400 50+25W       .7       1       20       1       6       19       38       5         BL 1+005 0+25W       .6       1       28       1       13       25       5         B L1+005 0+25W       .6       1       28       1       13       25       5         B L1+005 0+75W       .6       1       28       1       10       25       5         B L1+005 0+75W       .6       1       28       1					1						
BL L1S 2+50E       1.0       19       63       2       17       67       5         BL L1S 2+75E       1.4       18       50       1       14       25       5         BL L1S 3+75E       1.0       26       47       2       7       33       10         BL L1S 3+75E       1.5       23       27       1       11       28       5         BL 1S 3+75E       1.5       23       27       1       11       28       5         BL 1S 4+50E       1.7       1       20       1       6       19       5         BL 1S 4+50E       .7       1       63       1       9       38       5         BL 1+00S 0+75W       .6       1       28       1       13       25       5         B 1+00S 0+75W       .6       1       28       1       13       25       5         B 1+00S 1+25W       .9       1       37       2       18       32       5         B 1+00S 1+25W       .6       1       538       3       178       50       5         B 1+00S 1+25W       1.6       1       538       3       74       13					i						
BL L1S 2475E       1.4       18       50       1       14       25       5         BL L1S 3400E       1.3       16       76       1       13       40       10         BL L1S 3450E       1.5       19       13       1       9       19       5         BL L1S 3450E       1.5       23       27       1       11       28       5         BL 1S 3450E       1.5       23       27       1       11       28       5         BL 1S 4455E       .7       1       63       1       9       35       5         BL 1400S 0425W       .3       1       8       1       9       32       5         B L1400S 0475W       .6       1       28       1       13       25       5         B L1400S 0475W       .6       1       28       1       13       25       5         B L1400S 1475W       .6       1       28       1       13       25       5         B L1400S 1475W       1.6       1       538       178       50       5         B L1400S 2425W       1.3       1.92       1       13       30       5      <		1.7	24	406	3	24	96				
BL L1S 3400E 1.3 16 76 1 13 40 10 BL L1S 345E 1.0 26 47 2 7 33 10 BL L1S 345E 1.5 23 27 1 11 28 5 BL L1S 345E 1.5 23 27 1 11 28 5 BL 15 445E 7.7 1 63 1 9 25 5 BL 15 445E 7.7 1 20 1 6 19 5 BL L10S 045W B L1400S 145W B L140S 145W B L105 11 22 5 B L20 45W B L140S 145	BL_L1S_2+50E	1.0	19	63	2	17	67	5			
BL L1S 3+25E       1.0       26       47       2       7       33       10         BL L1S 3+50E       1.5       19       13       1       9       19       5         BL L1S 3+75E       1.5       23       27       1       11       28       5         BL 15 4+00E       1.2       1       40       1       9       25       5         BL 15 4+25E       .7       1       63       1       9       38       5         BL 15 4+25E       .7       1       63       1       9       32       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 1+75W       1.6       1       36       1       14       34       5         B L1+00S 1+75W       1.6       1       538       3       178       50       5         B L1+00S 2+25W       1.3       1       9       22       5       5 </td <td>BL L1S 2+75E</td> <td></td> <td>18</td> <td><b>50</b> ·</td> <td>1</td> <td></td> <td>25</td> <td></td> <td></td> <td></td> <td></td>	BL L1S 2+75E		18	<b>50</b> ·	1		25				
BL LIS 3+50E       1.5       19       13       1       9       19       5         BL LIS 3+75E       1.5       23       27       1       11       28       5         BL 15 4+00E       1.2       1       40       1       9       25       5         BL 15 4+50E       .7       1       63       1       9       38       5         BL 15 4+50E       .7       1       20       1       6       19       5         B L 1+00S 0+25W       .3       1       8       1       9       32       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 0+75W       .6       1       28       1       11       32       5         B L1+00S 1+75W       1.6       1       538       3       178       50       5         B L1+00S 1+75W       1.6       1       538       3       178       50       5         B L1+00S 2+25W       .8       1       1       1       33       5					-						
BL       1.5       23       27       1       11       28       5         BL       15       4400       1       9       25       5         BL       15       4425E       .7       1       60       19       5         BL       15       4450E       .7       1       20       1       6       19       5         BL       15       4450E       .7       1       20       1       6       19       5         BL       1400S       0425W       .3       1       8       1       9       32       5         BL       1400S       0475W       .6       1       28       1       33       25       5         BL       1400S       14       34       5       5       5       5       5         BL       1400S       1.2       1       49       1       44       41       10         BL       1400S       1.52       1       35       178       50       5       5         BL       1400S       2400W       .8       1       31       10       25       5         BL       <					2					•	
BL       1       2       1       40       1       9       25       5         BL       15       4+55E       .7       1       63       1       9       38       5         BL       15       4+50E       .7       1       20       1       6       19       5         BL       1500       0+75W       .3       1       8       1       9       32       5         B       1+00S       0+75W       .6       1       28       1       13       25       5         B       1+100S       0+75W       .6       1       28       1       32       5         B       1+100S       0+75W       .6       1       28       1       33       25       5         B       1+100S       1+25W       .9       1       37       2       18       32       5         B       1+00S       1+6       1       538       3       178       50       5         B       1+00S       2+00W       .8       1       31       10       25       5         B       1+00S       2+75W       .8       1					1						
BL 15 4:25E       .7       1       63       1       9       38       5         BL 15 4:50E       .7       1       20       1       6       19       5         BL 14:00S 0+25W       .3       1       8       1       9       32       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 1+75W       .6       1       28       1       14       34       5         B L1+00S 1+75W       1.6       1       37       2       18       32       5         B L1+00S 1+75W       1.6       1       538       3       178       50       5         B L1+00S 1+75W       1.6       1       33       18       25       5       5         B L1+00S 2+25W       1.3       1       10       25       5       5         B L1+00S 2+75W       .8       1       31       1       10       25       5         B L1+00S 3+25W       3.9       1       1250       3       74       135       20<					1						
BL 14:450E       .7       1       20       1       6       19       5         B L1+00S 0+25W       .3       1       8       1       9       32       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 0+75W       .6       1       28       1       13       25       5         B L1+00S 1+25W       .9       1       36       1       14       34       5         B L1+00S 1+25W       .9       1       36       1       14       34       5         B L1+00S 1+25W       1.6       1       538       3       178       50       5         B L1+00S 2+25W       1.3       1       10       25       5       5         B L1+00S 2+25W       1.3       1       1       24       5         B L1+00S 2+25W       .8       1       17       1       22       5         B L1+00S 3+25W       3.9       1       1250       3       74       135       20         B L1+00S 3+25W       3.9       1       1250       3       74       135       20         B L1+00S 4+25W		.7			i			5			
B       L1+00S       0+50W       .5       1       9       1       9       24       10         B       L1+00S       0+75W       .6       1       28       1       13       25       5         B       L1+00S       1+00W       1.2       1       36       1       14       34       5         B       L1+00S       1+2SW       .9       1       37       2       18       32       5         B       L1+00S       1+2SW       .9       1       44       41       10         B       L1+00S       1+7SW       1.6       1       538       3       178       50       5         B       L1+00S       2+50W       .8       1       31       1       10       25       5         B       L1+00S       2+50W       .8       1       54       1       13       24       5         B       L1+00S       2+50W       .8       1       17       1       22       5       5         B       L1+00S       3+50W       2.0       1       304       1       17       87       30         B       L1+00S<		.7	1		1			5			
B       L1+00S       0+75W       .6       1       28       1       13       25       5         B       L1+00S       1+25W       .9       1       37       2       18       32       5         B       L1+00S       1+50W       .2       1       49       1       44       41       10         B       L1+00S       1+75W       1.6       1       538       3       178       50       5         B       L1+00S       2+25W       1.3       1       92       1       13       35         B       L1+00S       2+50W       .8       1       54       1       13       24       5         B       L1+00S       2+50W       .8       1       17       1       9       22       5         B       L1+00S       2+50W       .8       1       17       1       9       22       5         B       L1+00S       3+25W       .8       1       17       1       30       5         B       L1+00S       3+25W       .9       1       76       1       12       34       35         B       L1+00S <td></td> <td>.3</td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		.3	-		1						
B L1+00S 1+00W       1.2       1       36       1       14       34       5         B L1+00S 1+55W       .9       1       37       2       18       32       5         B L1+00S 1+55W       1.2       1       49       1       44       41       10         B L1+00S 1+75W       1.6       1       538       3       178       50       5         B L1+00S 2+00W       .8       1       31       1       10       25       5         B L1+00S 2+50W       .8       1       54       1       13       24       5         B L1+00S 2+50W       .8       1       17       1       9       22       5         B L1+00S 2+50W       .8       1       17       1       9       22       5         B L1+00S 3+25W       .8       1       17       1       30       5         B L1+00S 3+50W       2.0       1       304       1       17       87       30         B L1+00S 3+75W       .9       1       76       1       12       34       35         B L1+00S 4+25W       1.1       1       588       4       18       59											<u> </u>
B       L1+00S       1+25W       .9       1       37       2       18       32       5         B       L1+00S       1+25W       1.2       1       49       1       44       41       10         B       L1+00S       1+75W       1.6       1       538       3       178       50       5         B       L1+00S       2+25W       1.3       1       92       1       11       33       5         B       L1+00S       2+25W       1.3       1       92       1       13       35         B       L1+00S       2+25W       .8       1       54       1       13       24       5         B       L1+00S       2+5W       .8       1       17       1       9       22       5         B       L1+00S       3+25W       .8       1       17       1       30       5         B       L1+00S       3+25W       .3.9       1       1250       3       74       135       20         B       L1+00S       3+25W       .9       1       76       1       12       34       35         B       L		.6	1								
B       1.2       1       49       1       44       41       10         B       L1+00S       1+75W       1.6       1       538       3       178       50       5         B       L1+00S       1+75W       1.6       1       538       3       178       50       5         B       L1+00S       2+25W       1.3       1       1       10       25       5         B       L1+00S       2+55W       1.3       1.92       1       11       33       5         B       L1+00S       2+55W       .8       1       17       1       9       22       5         B       L1+00S       2+55W       .8       1       17       1       9       22       5         B       L1+00S       3+25W       .8       1       17       1       9       22       5         B       L1+00S       3+25W       .8       1       17       1       13       20       8         B       L1+00S       3+25W       .9       1       76       1       12       34       35         B       L1+00S       4+25W       1.1			1								
B       L1+00S       1+75W       1.6       1       538       3       178       50       5         B       L1+00S       2+00W       .8       1       31       1       10       25       5         B       L1+00S       2+50W       .8       1       31       1       10       25       5         B       L1+00S       2+50W       .8       1       54       1       33       24       55         B       L1+00S       2+50W       .8       1       74       13       24       55         B       L1+00S       3+00W       .7       1       32       1       13       30       5         B       L1+00S       3+25W       3.9       1       1250       3       74       135       20         B       L1+00S       3+75W       2.0       1       304       1       17       87       30         B       L1+00S       3+75W       .9       1       76       1       12       34       35       38       40         B       L1+00S       4+25W       1.1       1       588       4       18       59			i								
BL1+005 $2+25W$ 1.31 $92$ 111 $33$ 5BL1+005 $2+50W$ .81 $54$ 113 $24$ 5BL1+005 $2+75W$ .81 $17$ 1 $9$ $22$ 5BL1+005 $3+0W$ .71 $32$ 1 $13$ $30$ 5BL1+005 $3+25W$ $3.9$ 1 $1250$ $3$ $74$ $135$ $20$ BL1+005 $3+25W$ $2.0$ 1 $304$ 1 $17$ $87$ $30$ BL1+005 $3+75W$ .91 $76$ 1 $12$ $34$ $35$ BL1+005 $4+25W$ .91 $76$ 1 $12$ $34$ $35$ BL1+005 $4+25W$ 1.11 $71$ 1 $13$ $38$ $40$ BL1+005 $4+25W$ 1.11 $588$ $4$ $18$ $59$ $5$ BL1+005 $4+25W$ 1.21 $138$ $8$ $19$ $48$ $5$ BL1+005 $4+25W$ 1.31 $590$ $31$ $38$ $217$ $20$ BL1+005 $4+25W$ 1.31 $240$ 2 $13$ $68$ $5$ BL2N.81 $47$ 1 $10$ $20$ $10^{2}$ BL1+50W1.01221 $10$ $23$ $5$ BL21351<	B L1+00S 1+75W		-1	538	3	178	50	5			
B       L1+00S       2+25W       1.3       1       92       1       11       33       5         B       L1+00S       2+25W       .8       1       54       1       13       24       5         B       L1+00S       2+75W       .8       1       17       1       9       22       5         B       L1+00S       3+50W       .7       1       32       1       13       30       5         B       L1+00S       3+25W       3.9       1       1250       3       74       135       20         B       L1+00S       3+50W       2.0       1       304       1       17       87       30         B       L1+00S       3+75W       .9       1       76       1       12       34       35         B       L1+00S       4+25W       1.1       1       71       1       3       38       40         B       L1+00S       4+50W       1.2       1       138       8       19       48       5         B       L1+00S       4+50W       1.3       1       590       31       38       217       20 </td <td>B L1+005 2+00W</td> <td>.8</td> <td>1</td> <td>31</td> <td>1</td> <td>10</td> <td>25</td> <td>5</td> <td></td> <td></td> <td></td>	B L1+005 2+00W	.8	1	31	1	10	25	5			
BL1+00S2+75W.811719225BL1+00S3+00W.7132113305BL1+00S3+25W3.91125037413520BL1+00S3+50W2.013041178730BL1+00S3+75W.91761123435BL1+00S4+00W1.11711133840BL1+00S4+25W1.11588418595BL1+00S4+50W1.21138819485BL1+00S4+50W1.31590313821720BL1+00S4+50W1.31240213685B2N 0+75W.81471102010B2N 1+50W1.0122110235B2N 2+25W1.411511225B2N 2+25W1.2135134610B2N 2+25W1.2135134610B2N 2+25W1.2135134610B2N 3+00W.9185317415	B L1+00S 2+25W	1.3	-	92	-						
B       L1+00S       3+00W       .7       1       32       1       13       30       5         B       L1+00S       3+25W       3.9       1       1250       3       74       135       20         B       L1+00S       3+50W       2.0       1       304       1       17       87       30         B       L1+00S       3+50W       2.0       1       304       1       17       87       30         B       L1+00S       3+50W       2.0       1       76       1       12       34       35         B       L1+00S       4+00W       1.1       1       71       1       13       38       40         B       L1+00S       4+25W       1.1       1       588       4       18       59       5         B       L1+00S       4+25W       1.2       1       388       8       19       48       5         B       L1+00S       4+25W       1.3       1       590       31       38       217       20         B       L1+00S       4+3       1       47       1       10       20       10'	B L1+00S 2+50W		1								
B L1+005 3+25W       3.9       1       1250       3       74       135       20         B L1+005 3+50W       2.0       1       304       1       17       87       30         B L1+005 3+50W       2.0       1       304       1       17       87       30         B L1+005 3+75W       .9       1       76       1       12       34       35         B L1+005 4+00W       1.1       1       71       1       13       38       40         B L1+005 4+25W       1.1       1       588       4       18       59       5         B L1+005 4+50W       1.2       1       138       8       19       48       5         B L1+005 4+50W       1.2       1       138       8       19       48       5         B L1+005 4+50W       1.3       1       540       2       13       68       5         B 2N 0+25W       1.3       1       240       2       13       68       5         B 2N 0+50W       1.3       1       240       2       10       10       10         B 2N 1+50W       1.0       1       22       1       10			1		•						
B       L1+00S       3+50W       2.0       1       304       1       17       87       30         B       L1+00S       3+75W       .9       1       76       1       12       34       35         B       L1+00S       3+75W       .9       1       76       1       12       34       35         B       L1+00S       4+00W       1.1       1       71       1       13       38       40         B       L1+00S       4+25W       1.1       1       588       4       18       59       5         B       L1+00S       4+50W       1.2       1       138       8       19       48       5         B       L1+00S       4+50W       1.2       1       138       8       19       48       5         B       L1+00S       4+50W       1.3       1       590       31       38       217       20         B       2N       0+50W       1.3       1       240       2       13       68       5         B       2N       0+75W       .8       1       47       1       10       23       5											
B L1+00S $3+75W$ .9       1       76       1       12       34       35         B L1+00S $4+00W$ 1.1       1       71       1       13       38       40         B L1+00S $4+25W$ 1.1       1       588       4       18       59       5         B L1+00S $4+25W$ 1.2       1       138       8       19       48       5         B L1+00S $4+50W$ 6.9       25       4000       6       38       227       5         B L12N       6.9       25       4000       6       38       217       20         B 2N 0+25W       1.3       1       240       2       13       68       5         B 2N 0+50W       1.3       1       240       2       13       68       5         B 2N 0+75W       .8       1       47       1       10       20       10         B 2N 1+50W       1.0       1       22       1       10       23       5         B 2N 2+25W       1.4       1       15       1       11       22       5         B 2N 2+75W       1.2       1       35       1       13			1		3						
B L1+00S 4+00W       1.1       1       71       1       13       38       40         B L1+00S 4+25W       1.1       1       588       4       18       59       5         B L1+00S 4+25W       1.1       1       588       4       18       59       5         B L1+00S 4+50W       1.2       1       138       8       19       48       5         B L1+00S 4+50W       1.2       1       138       8       19       48       5         B L12N       6.9       25       4000       6       38       227       5         B 2N 0+25W       1.3       1       590       31       38       217       20         B 2N 0+50W       1.3       1       240       2       13       68       5         B 2N 0+75W       .8       1       47       1       10       20       10         B 2N 1+50W       1.0       1       22       1       10       23       5         B 2N 2+25W       1.4       1       15       1       11       22       5         B 2N 2+75W       1.2       1       35       1       13       46			1		1						
B       L1+00S       4+25W       1.1       1       588       4       18       59       5         B       L1+00S       4+25W       1.2       1       138       8       19       48       5         B       L1+00S       4+50W       1.2       1       138       8       19       48       5         B       L1+00S       4+50W       6.9       25       4000       6       38       227       5         B       L1.2       1.3       1       590       31       38       217       20         B       2N       0+25W       1.3       1       240       2       13       68       5         B       2N       0+50W       1.3       1       240       2       13       68       5         B       2N       0+75W       .8       1       47       1       10       20       10         B       2N       1+50W       1.0       1       22       1       10       23       5         B       2N       2+25W       1.4       1       15       1       11       22       5       5       5			1		1						
B BL L2N       6.9       25       4000       6       38       227       5         B 2N 0+25W       1.3       1       590       31       38       217       20         B 2N 0+50W       1.3       1       240       2       13       68       5         B 2N 0+75W       .8       1       47       1       10       20       10         B 2N 1+50W       1.0       1       22       1       10       23       5         B 2N 1+50W       1.4       1       15       1       11       22       5         B 2N 2+25W       1.4       1       35       1       13       46       10         B 2N 2+75W       1.2       1       35       1       13       46       10         B 2N 3+00W       .9       1       85       3       17       41       5	B L1+00S 4+25W		1								
B BL L2N       6.9       25       4000       6       38       227       5         B 2N 0+25W       1.3       1       590       31       38       217       20         B 2N 0+50W       1.3       1       240       2       13       68       5         B 2N 0+75W       .8       1       47       1       10       20       10         B 2N 1+50W       1.0       1       22       1       10       23       5         B 2N 1+50W       1.4       1       15       1       11       22       5         B 2N 2+25W       1.4       1       35       1       13       46       10         B 2N 2+75W       1.2       1       35       1       13       46       10         B 2N 3+00W       .9       1       85       3       17       41       5	B L1+00\$ 4+50₩	· 1.2	1	138	8	19		5			
B 2N 0+25W       1.3       1       590       31       38       217       20         B 2N 0+50W       1.3       1       240       2       13       68       5         B 2N 0+75W       .8       1       47       1       10       20       10         B 2N 1+50W       1.0       1       22       1       10       23       5         B 2N 2+25W       1.4       1       15       1       11       22       5         B 2N 2+75W       1.2       1       35       1       13       46       10         B 2N 3+00W       .9       1       85       3       17       41       5	B BL L2N			4000	6	38	227	5			
B       2N       0+75W       .8       1       47       1       10       20       10 ⁻ B       2N       0+75W       .8       1       47       1       10       20       10 ⁻ B       2N       1+50W       1.0       1       22       1       10       23       5         B       2N       2+25W       1.4       1       15       1       11       22       5         B       2N       2+25W       1.4       1       15       1       11       22       5         B       2N       2+75W       1.2       1       35       1       13       46       10         B       2N       3+00W       .9       1       85       3       17       41       5	B 2N 0+25W		-								
B 2N 1+50W       1.0       1       22       1       10       23       5         B 2N 2+25W       1.4       1       15       1       11       22       5         B 2N 2+25W       1.4       1       15       1       11       22       5         B 2N 2+75W       1.2       1       35       1       13       46       10         B 2N 3+00W       .9       1       85       3       17       41       5											
B 2N 2+25W       1.4       1       15       1       11       22       5         B 2N 2+75W       1.2       1       35       1       13       46       10         B 2N 3+00W       .9       1       85       3       17       41       5											
B 2N 2+75W 1.2 1 35 1 13 46 10 B 2N 3+00W .9 1 85 3 17 41 5			1								
B 2N 3+00W .9 1 85 3 17 41 5			1								
	B 2N 3+00W	.9	i	85	3	17	41	5			
B 2N 3+50W 1.0 1 15 1 10 23 3	B 2N 3+50W	1.0	1	15	1	10	23	5			

, COMP: MINCORD RES/MAJOR GENERAL PROJ: TAM

1

ATTN: P.PETO/B.KAHLERT

.

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0344-SJ5+6 DATE: 90/08/29 * SOIL * (ACT:F31)

SAMPLE	AG	AS	CU	MO	PB	ZN	AU	
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPB	
B 2N 4+25W	.7	7	12	1	10	19	5	
B 2N 4+50W	.8	1	20	1	11	14	10	
B L2N 0+25E	2.5	14	2235	5	24	217	5	
B L2N 0+50E	1.6	7	919	12	41	151	10	
B L2N 1+25E	.3	1	52	1	11	42	5	
B L2N 1+50E	.8	3	139	1	16	98	5	
B L2N 1+75E	.7	14	442	1	18	56	10	
B L2N 2+00E	.4	1	77	1	8	29	5	
B L2N 2+25E	.6	2	79	2	18	37	5	
B L2N 2+50E	.4	2	151	2	14	66	5	
B L2N 2+75E	.8	4	29	1	16	47	5	
B L2N 3+00E	.4	9	56	2	11	38	10	
B L2N 3+25E	.6	7	92	2	13	74	5	
B L2N 3+50E	.8	21	89	4	13	70	5	
B L2N 3+75E	.8	9	107	3	12	56	5	
B L2N 4+00E	1.0	21	138	2	12	65	5	
B L2N 4+25E	.8	15	63	3	15	34	5	
B L2N 4+50E	.7	12	42	1	10	40	5	
B L2S BL	1.1	10	46	1	14	31	5	
B L2S 1+00W	.7	2	15	1	18	14	5	
B L2S 1+50W B L2S 2+00W B L2S 2+50W B L2S 3+00W A B L2S 3+00W B	1.1 .3 .7 .6 .5	1 11 14 14 10	139 31 54 46 310	2 1 1 1 1	14 7 14 17 15	37 17 26 18 43	10 5 5 5 5 5	·
B L2S 3+50W	.9	18	134	1	21	36	5	
B L2S 3+75W	.7	12	31	1	12	41	10	
B L2S 4+00W	.9	14	216	5	26	46	5	
B L2S 4+25W	2.1	13	108	3	41	162	10	
B L2S 4+50W	.7	8	93	2	16	36	5	
B L2S 0+50E B L2S 1+00E B L2S 1+50E B L2S 2+00E B L2S 2+50E	.7 .6 1.3 2.5 .5	1 1 1 1	18 9 25 33 8	1 1 1 1 1	12 8 6 12 8	19 20 15 39 17	5 5 5 5 5	
B L2S 3+00E B L2S 3+50E B L2S 4+00E B L2S 4+50E B L2S 4+50E B L3S 0+00E	.5 1.5 1.0 .7 1.0	1 1 1 1 1	42 131 91 78 207	1 1 1 2 2	12 11 13 13 21	82 36 29 26 59	5 5 10 80 5	
B L3S 0+50E B L3S 1+00E B L3S 1+50E B L3S 2+00E B L3S 2+50E	1.3 1.3 .9 .7 1.1	1 1 16 2	13 22 20 10 119	1 1 1 3	12 15 6 7 21	38 22 15 10 44	5 45 5 10 85	
B L3S 3+00E	2.7	1	1869	11	37	146	15	
B L3S 4+00E	.6	1	10	1	6	17	30	
B L3S 4+50E	.8	2	10	1	6	21	20	
B L3S 0+50W	.8	3	77	3	11	33	5	
B L3S 1+00W	2.5	1	19	1	17	66	5	
B L3S 1+50W	2.4	1	21	1	9	34	5	
B L3S 2+00W	1.1	1	184	1	42	12	30	
B L3S 2+50W	1.0	19	108	4	10	27	5	
B L3S 3+00W	.7	9	48	1	7	12	5	
B L3S 3+25W	1.1	3	113	1	14	40	5	
B L3S 3+50W B L3S 3+75W B L3S 4+00W B L3S 4+25W B L3S 4+25W B L3S 4+50W	.6 1.7 .8 1.0 1.1	14 23 10 1 1	28 385 89 370 1340	1 2 1 4 7	10 31 6 32 109	19 37 24 75 61	10 165 5 5 5	

COMP: MINCORD RES/MAJOR GENERAL PROJ: TAM

1

ATTN: P.PETO/B.KAHLERT

# FILM-EIN LABS ICP REPORT FILE NO: 0S-0344-SJ7+8 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 DATE: 90/08/29 (604)980-5814 OR (604)988-4524 * SOIL * (ACT:F31)

.

SAMPLE	AG	AS	CU	MO	PB	ZN	AU	
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPB	
B L3N 0+00E	1.2	1	171	2	18	73	5	
B L3N 1+00E	1.9	1	3435	1	28	209	5	
B L3N 1+50E	1.2	1	112	1	13	39	40	
B L3N 2+00E	1.2	1	53	1	12	22	5	
B L3N 2+50E	1.1	1	12	1	8	11	5	
B L3N 3+00E B L3N 3+50E B L3N 4+00E B L3N 4+50E B L3N 0+50W	1.2 1.0 1.0 .9 .8	1 1 1 1	66 53 59 64 9	1 1 3 2 1	12 13 11 13 6	42 40 34 32 14	5 10 40 5 10	
B L3N 1+00W B L3N 1+50W B L3N 2+00W B L3N 2+50W B L3N 3+00W	.9 1.4 1.2 1.3 1.7	1 1 1 1	58 17 40 20 561	1 1 1 1 6	8 7 20 10 22	20 26 40 23 126	5 5 5 5 5 5	
B L3N 4+00W	1.0	1	11	1	9	12	10	
L3+50S 1+50W	1.2	1	74	1	24	57	5	
L3+50S 1+75W	1.6	1	235	1	18	20	20	
L3+50S 2+75W	1.1	1	33	1	15	27	10	
L3+50S 3+25W	.6	1	52	1	8	30	5	
L3+50S 3+50W L3+50S 3+75W L3+50S 4+00W L3+50S 4+25W L3+50S 4+25W L3+50S 4+50W	.5 .5 1.0 .8 .9	1 1 1 1 1	23 31 41 115 52	1 1 1 2 1	11 8 11 21 12	16 27 23 40 24	5 5 10 10 5	
L3+50S 4+75W	.8	1	63	3	8	26	5	
L3+50S 5+00W	1.3	1	230	2	8	38	200	
L3+50S 5+25W	.9	1	51	4	13	29	25	
L3+50S 5+50W	.7	1	53	3	13	27	30	
B L4N 0+00E	.8	1	41	1	13	35	5	
BL 4N 0+50E BL 4N 1+00E BL 4N 1+50E BL 4N 2+00E BL 4N 2+50E	.9 .8 1.1 .8 1.2	1 1 1 1 1	45 22 201 29 43	2 1 1 1	11 9 16 16 13	35 22 56 20 34	5 10 5 5 10	_
BL 4N 3+00E	.9	1	33	1	8	22	5	
BL 4N 3+50E	1.0	1	27	1	5	16	5	
BL 4N 4+00E	.8	1	5	1	8	8	5	
BL 4N 4+50E	1.0	1	60	2	6	33	5	
BL 4N 0+50W	1.1	1	74	1	14	38	5	
BL 4N 1+00W BL 4N 1+50W BL 4N 2+00W BL 4N 2+50W BL 4N 2+50W BL 4N 3+00W	.9 1.2 1.3 1.4 1.2	1 1 1 1 1	40 23 60 7 16	1 1 1 1 1	12 13 13 8 9	43 23 26 14 21	5 5 5 10 5	
BL 4N 3+50W A BL 4N 3+50W B BL 4N 4+00W BL 4N 4+50W BL 4S 0+50E	1.5 1.0 1.4 1.1 1.0	1 1 1 1 1	574 20 26 46 99	6 1 1 1 1	29 10 13 16 15	135 24 45 45 51	5 5 5 10	
BL 4S 1+00E	1.0	1	10	1	11	10	10	
BL 4S 1+50E	.8	13	4	1	6	8	5	
BL 4S 2+00E	1.0	1	28	1	12	19	10	
BL 4S 2+50E	1.3	1	1758	31	134	215	5	
BL 4S 3+00E	.6	1	56	3	9	37	5	
BL 4S 3+50E	.9	1	155	5	28	64	20	
BL 4S 4+00E	.5	1	94	7	14	39	10	
BL 4S 4+50E	.6	9	76	6	16	37	20	
BL 4S 0+00	.5	1	22	1	8	26	5	
BL 4S 0+50W	2.8	1	98	1	31	83	10	

. COMP: MINCORD RES/MAJOR GENERAL PROJ: TAM

11*

ATTN: P.PETO/B.KAHLERT

.

ł

÷

i

.

.

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

•

(604)980-5814 OR (604)988-4524

FILE NO: 0S-0344-SJ9+10 DATE: 90/08/29 * SOIL * (ACT:F31)

SAMPLE	AG	AS	CU	MO	PB	ZN	AU	
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPB	
BL 4S 1+00W	.5	1	28	2	16	32	5	
BL 4S 1+50W	.4	1	37	2	10	22	10	
BL 4S 2+00W	.4	19	1	1	6	7	5	
BL 4S 2+50W	.6	11	13	1	13	8	5	
BL 4S 3+00W	.6	9	13	1	9	11	5	
BL 4S 3+50W	.9	7	14	1	14	17	10	
BL 4S 4+00W	.5	2	104	3	14	36	5	
BL 4S 4+50W	1.1	20	332	9	43	165	85	
BL 5N 0+50W	.8	5	11	1	10	15	5	
BL 5N 1+00W	.6	5	17	1	15	25	5	
BL 5N 1+50W BL 5N 2+00W BL 5N 2+50W BL 5N 3+00W BL 5N 3+50W	.5 .4 .7 1.1 1.0	1 18 2 11 8	2 7 4 11 11	1 1 1 2	8 8 8 9 9	13 16 13 13 20	5 5 5 5 5	
BL 5N 4+00W	1.0	1	3	1	13	13	40	
BL 5N 4+50W	1.0	15	53	3	19	51	5	
BL 5S 0+50E	1.0	17	70	3	12	41	5	
BL 5S 1+00E	.8	16	30	1	10	25	10	
BL 5S 1+50E	.6	14	73	1	11	33	5	
BL 5S 2+50E	.4	15	411	10	30	99	20	
BL 5S 3+00E	.3	18	91	3	9	61	10	
BL 5S 3+50E	.8	22	64	1	10	40	5	
BL 5S 4+00E	1.2	39	62	8	22	71	5	
BL 5S 4+50E	1.1	11	85	3	16	58	5	
BL 5S 0+50W	.9	20	21	1	10	30	20	
BL 5S 1+00W	1.6	1	30	6	26	88	5	
BL 5S 1+50W	.8	16	22	2	9	21	5	
BL 5S 2+00W	.7	16	40	1	11	33	10	
BL 5S 2+50W	.7	1	24	1	13	18	20	
BL 5S 3+00W	1.9	19	258	49	43	58	225	~
BL 5S 3+50W	1.3	1	28	1	13	25	5	
BL 5S 4+00W	1.3	1	49	4	23	33	40	
BL 5S 4+50W	1.0	1	33	25	20	28	20	
BL 5S 5+00W	.9	1	21	7	11	27	5	
BL L6S BL 6S 0+50E BL 6S 1+00E BL 6S 1+50E BL 6S 2+00E	1.1 1.1 .9 1.0 1.1	1 1 1 2	35 46 187 84 27	2 3 6 3 1	13 14 23 20 6	27 30 53 35 14	5 10 65 40 20	
BL 6S 2+50E BL 6S 3+00E BL 6S 3+50E BL 6S 4+00E BL 6S 4+50E	.9 1.1 1.4 1.3 1.3	31 1 1 1	12 93 80 133 79	1 3 14 8 1	7 14 22 22 12	6 53 114 62 50	5 10 10 5 5	
BL 6S 0+50W	.9	1	19	1	10	8	10	
BL 6S 1+00W	1.2	1	35	2	14	15	5	
BL 6S 1+50W	, 1.3	1	43	1	12	17	5	
BL 6S 2+00W	.9	1	59	1	14	25	10	
BL 6S 2+50W	1.6	1	78	4	27	40	10	
BL 6S 3+00W	2.3	1	34	1	12	72	5	
BL 6S 3+50W	1.0	1	250	1	27	58	5	
BL 6S 4+00W	1.2	1	62	1	25	40	215	
BL 6S 4+50W	.9	1	84	3	15	57	10	
BL 7S 0+00	2.0	1	1421	5	31	62	10	
BL 7S 0+50E	1.1	1	76	1	18	17	5	
BL 7S 1+00E	1.5	1	53	2	14	22	20	
BL 7S 1+50E	1.7	1	16	1	9	8	5	
BL 7S 2+00E	1.0	5	10	1	9	6	20	
BL 7S 2+50E	.9	1	18	2	15	22	5	

COMP: MINCORD RES/MAJOR GENERAL PROJ: TAM

م

.

ATTN: P.PETO/B.KAHLERT

• • • • • • •

:

Ì

.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 05-0344-5J11+12 DATE: 90/08/29 • SOIL • (ACT:F31)

			(0047)	00 0014 0		N 4524		• 501L •	(AUT:F31
SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB	 	
BL 7S 3+00E BL 7S 3+50E BL 7S 4+00E BL 7S 4+50E BL 7S 0+50W	1.6 2.3 .9 1.0 .5	21 68 18 17 2	105 351 75 8 12	18 10 6 1 1	20 30 13 6 12	123 65 78 14 18	5 5 10 20 30		
BL 7S 1+00W BL 7S 1+50W BL 7S 2+00W BL 7S 2+50W BL 7S 3+00W	.8 .8 .9 .8	6 26 14 21 11	16 45 22 49 71	1 2 1 8 3	11 10 10 25 19	16 32 24 55 33	5 5 5 10 25		
BL 7S 3+50W BL 7S 4+00W BL 7S 4+50W T#16.8.90 BL 7+50S BL 8+00S	.9 .9 1.3 1.3 .8	22 20 21 28 8	23 15 30 328 59	1 1 1 8 4	9 10 11 30 19	17 14 63 144 54	35 5 5 20 10		
BL 8+25S BL 8+50S BL 8+75S BL 9+50S BL 9+50S 1+50E	.9 .7 1.1 1.3 1.7	31 18 8 27 49	65 33 173 125 295	3 4 52 26 21	18 15 32 31 43	75 35 75 154 111	5 20 5 10 90		
BL 9+50S 2+00E BL 9+75S BL 10+00S BL 10+00S 1+25E BL 10+25S	.7 3.5 .9 2.0 1.1	17 51 19 33 27	174 205 86 598 62	8 17 10 30 9	32 17 10 80 12	106 126 58 151 55	5 5 10 130 5	 	
BL 10+50S BL 10+75S BL 11+00S BL 11+00S 0+52W BL 11+25S	.9 .5 .8 .8 1.2	17 23 1 12 3	62 52 149 31 96	12 13 50 2 5	11 11 44 10 13	68 56 159 46 244	70 20 40 5 5		
BL 11+50S BL 11+50S 2+25W BL 12+00S L12S 2+25W BL 13+00S	.8 1.1 1.1 .1 1.0	21 . 9 1 1 1	85 148 285 426 75	25 6 17 6 62	34 22 75 31 53	89 108 180 135 113	5 10 80 10 5		÷
L13S 2+30W BL 13+25S BL 13+50S BL 13+75S BL 13+70S BL 14+00S	.7 1.6 .4 1.5 .6	1 7 11 2 14	643 233 74 124 213	5 3 4 31 8	31 22 10 392 21	165 196 67 127 94	50 325 40 575 10		
L14S 1+50W L14S 1+75W L14S 2+00W L14S 2+25W L14S 2+50W	1.1 .1 1.1 .7 1.6	2 8 1 10 32	318 251 187 269 512	19 10 45 8 34	53 19 96 18 60	81 77 71 67 36	20 5 250 60 135		
L1+50S 1+25W L1+50S 3+25W L1+50S 3+50W L1+50S 3+75W L1+50S 4+00W	.5 2.5 1.4 1.1 .7	1 24 4 5 4	115 390 90 459 82	17 3 3 1 8	26 24 15 24 20	60 61 37 39 61	20 30 10 5 5		
L1+50S 4+50W L1+50S 4+75W L1+50S 5+00W L1+50S 5+25W L2+50S 3+50W	.3 1.0 .7 .4 .9	7 21 1 1 27	33 154 46 73 94	3 8 1 2 2	8 39 8 10 11	30 163 29 54 35	5 80 5 5 85		
L2+50S 3+75W L2+50S 4+00W L2+50S 4+25W L2+50S 4+50W L2+50S 4+50W L2+50S 4+75W	1.3 1.5 .8 .6 .4	10 3 2 17 2	227 68 16 56 6	1 1 1 1	14 16 24 8 5	75 98 13 44 13	5 5 5 5 5		

. COMP: MINCORD RES/MAJOR GENERAL PROJ: TAM

ď

ATTN: P.PETO/B.KAHLERT

;

ł

MIN-EN LABS - ICP REPORT 705 WEST. 15TH ST., NORTH VANCOUVER, B.C. V7M 112

١

(604)980-5814 OR (604)988-4524

FILE NO: 0S-0344-SJ13+14 DATE: 90/08/29 * SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	MO PPM	PB PPM	ZN PPM	AU PPB		
L2+50S 5+00W L2+25S 2+50W B 2N 1+00W B 2N 1+25W	.8 7 1.0 1.2	14 13 18 15	7 71 158 249	1 1 2 3	14 8 7 16	16 19 39 89	5 5 5 5	 	
B 2N 1+75W	1.0	1	21	1	12	33	10	 <u> </u>	
B 2N 2+00W B 2N 2+50W B 2N 3+25W B 2N 3+75W B 2N 4+00W	1.1 1.1 .6 .8 1.4	1 1 1 8	24 13 8 69 12	1 1 7 1	12 4 6 21 10	26 23 14 81 22	5 5 10 5		
B L3N 0+50E L1+50S 3+00W B L1N 3+50W B L25 0+50W T-90 A	.9 1.6 1.7 .8 1.2	1 1 8 13 1	20 82 40 8 644	1 1 4 2 1	6 13 11 8 4	22 41 37 6 99	5 40 5 5 10		
T5-4 T-90 T-2 T-3 4 T-90 T4-4 T-6-4	1.1 .7 1.4 1.1 1.2	10 16 9 1 12	58 30 212 55 54	1 1 1 1 1 1	11 4 15 6 8	56 24 89 52 52	5 5 5 5 5 5	 	
T-7-4 T-8-12-8-90 T-9-12-8-90 T-10-12-8-90 T-11-12-8-90 T-11-12-8-90	.6 1.5 .5 1.3 .2	1 1 1 19 1	46 224 252 446 72	. 1 1 2 1 1	3 29 24 31 31	49 95 179 166 81	5 25 5 5 5 5		
T-12-12-8-90 T-13-12-8-90 T-14-12-8-90 T-15-12-8-90 T-15-12-8-90 T-16-12-8-90	.5 .6 1.5 1.2 1.7	1 7 8 18 1	63 182 175 178 147	1 1 1 1 1	34 30 20 27 28	100 100 87 109 83	5 5 5 5 5		
T-17-12-8-90 T-18-12-8-90 T-19-12-8-90 T-20-12-8-90 T-20-12-8-90 T-21-12-8-90	6.5 1.5 1.6 1.2 1.5	1 1 1 1 1	60 68 59 178 112	1 1 1 1 1	303 72 57 39 48	97 35 65 137 80	15 5 5 5 10		-
T-22-12-8-90 T-23-12-8-90 T-24-12-8-90 T-25-12-8-90 T-25-12-8-90 T-26-12-8-90	1.8 1.2 .6 .6 .1	1 1 1 6 1	32 269 95 89 92	1 1 1 2 1	33 29 41 35 24	42 85 59 35 37	5 5 5 10 5		
<u> </u>					<u></u>		<u></u>		
						<u> </u>	<u></u>	 	
<u></u>								 	

## APPENDIX 6

÷

## GEOPHYSICAL SURVEY REPORT - SCOTT GEOPHYSICS

.

.

.

#### LOGISTICAL REPORT

*,*'

#### INDUCED POLARIZATION, MAGNETOMETER, AND VLF SURVEYS

#### TAM PROJECT

#### SLIDE MOUNTAIN GRID

#### OMINECA AREA, BRITISH COLUMBIA

on behalf of

VARITECH RESOURCES LTD. 4th floor - 325 Howe Street Vancouver, B.C. V6C 1Z7

Field work completed: October 1 to 6, 1990

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

October 22, 1990

#### TABLE OF CONTENTS

.

.

		page
1	Introduction	1
2	Claims Location and Access	1
3	Survey Grid and Survey Coverage	1
4	Personnel	1
5	Instrumentation and Procedures	2
6	Recommendations	2

r

:

#### 1. INTRODUCTION

Induced polarization, magnetometer, and VLF surveys were conducted over portions of the Slide Mountain Grid, Tam Project, Omineca Area, B.C., within the period October 1 to 6, 1990. The work was conducted by Scott Geophysics Ltd. on behalf of Varitech Resources Ltd. The work was an extension of a similar survey performed in the period August 18 to 30, 1990, which covered portions of the Slide Mountain and Boundary Grids.

The pole dipole electrode array was used on the induced polarization survey, with an "a" spacing of 50 meters and "n" separations of 1 to 4. Total field magnetometer and VLF readings were taken at 25 meter intervals.

This report describes the instrumentation and procedures, and presents the results of the surveys.

#### 2. CLAIMS LOCATION AND ACCESS

The Tam Project is located in the Haha Creek watershed, 10 kilometers west of its outlet into the Osalinka River. The town of Fort St. James is some 200 kilometers to the southsouth east. Access was by helicopter from the Osalinka logging road.

#### 3. SURVEY GRID AND SURVEY COVERAGE

A total of 5.4 line kilometers of induced polarization survey, magnetometer, and VLF survey completed on the present survey of the Slide Grid. Readings were attempted at the north end of the Boundary Grid, but winter conditions rendered that attempt impractical. Details of lines surveyed are given in the production reports.

The results of the previous survey on the Slide Mountain Grid (August, 1990) have been incorporated on the accompanying maps. That previous survey covered lines 0, 100S, 500N, 600N, and 700N.

#### 4. PERSONNEL

Ken Moir, geophysical technician, was the party chief on the survey. Peter Peto, geologist, was the Varitech representative for the survey.

#### 5. INSTRUMENTATION

A Scintrex IPR11 time domain, microprocessor based receiver, and a Scintrex 2.5 kw IPC7 transmitter were used for the induced polarization survey. Readings were taken using a 2 second alternating square wave. The chargeability for the eighth slice (690 to 1050 milliseconds after shutoff; midpoint at 870 milliseconds) is the value that has been plotted on the accompanying plans and pseudosections.

Two Scintrex IGS total field magnetometers were used for the magnetometer survey. One unit was used as a fixed base station, cycling at 15 second intervals, and the other as the survey unit.

The Scintrex IGS field unit was also used for the VLF survey. Readings were taken using station NSS (Annapolis, Maryland transmitting at 21.4 kHz) as the primary VLF field. Readings of in-phase, quadrature, and field strength were taken at 25 meter intervals. The Fraser filtered in phase values were calculated using a filter width of 15 meters.

The survey data was archived, processed, and plotted using a Toshiba T1200 microcomputer running Scintrex Soft II and proprietary software. All chargeability responses were analyzed for their spectral characteristics (cole-cole intrinsic chargeability, time constant, and frequency dependence) using Johnson's curve matching procedure (Scintrex Soft II). In areas of low amplitude chargeability response, the spectral parameters are often relatively poorly defined.

#### 6. RECOMMENDATIONS

A preliminary examination of the results of the induced polarization survey indicates the presence of weak to moderate chargeability highs that merit further investigation. The strong magnetic highs on the Slide grid appear to correlate directly with higher chargeability, suggesting those chargeability highs may be caused at least in part by magnetite.

A detailed interpretation of these results, and correlation to geological and geochemical information, is required before any specific recommendations could be made.

Respectfully Submitted,

Alan Scott, Geophysicist