

ASSESSMENT REPORT
ON DIAMOND DRILLING

LOG NO: Feb $13 / 91$
ACTION:
RD.

FILE NO:

ON THE BERESFORD LAKE CLAIM GROUP

CLAIM NAME	RECORD NO.	
		UNITS
ADD \#2	8948	
ADD \#3	8949	1
ADD \#4	8950	1
ADD \#10	8956	12
ADD \#11	9026	
RICH	7896	4

[Notice to Group No.]

KAMLOOPS MINING DIVISION
BERESFORD LAKE AREA, BRITISH COLUMBIA NS 92I/ 9

LOCATION: 11 Km SOUTH OF KAMLOOPS, BC
LATITUDE: 50 MinG. $33^{\prime} \mathrm{N}$ LONGITUDE: 120 VEG. $15^{\prime} \mathrm{W}$

FIELD WORK PERIOD: MAY 11, 1990 TO JULY 22, 1990

CLAIM OWNERS: NAXOS RE, SOURCES LTD. 206-856 HOMER STREET VANCOUVEIP, BC. V6B 3W5 (604) 663-8078

DAVID WEAKER \#6-1299 TRANQUILLE RD. KAMLOOFS. $B C$. V2B 1×6

OPERATOR: NAXOS RESOURCES LTD. 206-856 HOMER STREET VANCOUVFIP, BC. V6B 3W5 (604) 669-8078

REPORT DATE: JANUARY 28, 1991.

TABLE OF CUN'TENTS

Page
SUMMARY 1
LOCATION 1
ACCESS 1
TOPOGRAPHY AND CLIMATE 2
WATER, POWER AND TIMBER 2
TRANSPORTATION AND SUPPLIES 2
PROPERTY 2
OWNERSHIP 2
GENERAL GEOLOGY 3
PROPERTY GEOLOGY 4
1990 FIELD PROGRAM 4
CERTIFICATE 5
MAP INDEX
MAP NAME
SCALE
Location Map and Claims Map Showing Drill Hole Locations BAR
APPENDIXDiamond Drill Logs DDH\# 90-1 and 90-2 by E. Lambert.Cross Section DDH 90-1 by E. Lambert.Cross Section DDH 90-2 by E. Lambert.Percussion Drill Logs IF-1 and IF-2 by W. Thompson.Metallurgical Test Data - Nesmont Precious Metals Corp. Certificate \#12140-1 \& -2, Dated July 3 \& 4, 1990.Total Gold Determination Tests \& Results - Casmyn Research \&Engineering, Dated October 2, 1990.

```
DRILIIING REPORT ... ! \0) FIELD SEASON
    on th.
BERFSFORD LAAKE :AIM GROUP
    KAMI,OOPS MININ!: DIVISION
    for
    NAXOS RESOURUBS LTD.
```


SUMMARY

The ADD \#2, 3, 4, 10, 11 and RICH claims, 51\% held by Naxos Resources Ltd. and 49\% held by International Fowis Resources Inc., consist of 20 units situated approximately 12 kilometres south of the city of. Kamloops within the Kamloops Mining Division, south-centiral British Columbia.
'rhe property is accessible by the gravelled Beresford Lake Road east: from Highway No. 5 some four kilometrac south of Knutsford.

The topography is gently undulating rith elevations ranging from 670 metres to 914 metres above sea level.

Sufficient water is available for all phases of exploration and development.

Diesel electric power would be required for initial phases of development and hydro-electric power would be available if future requirements warrant.

Railroad and good daily trucking farilities are located in Kamloops where most supplies are obtainable.

The property appears to be underlain by volcanics of the Kamloops and Nicola Groups.

LOCATION

The claims are located approximately 12 kilometres south of Kamloops within the Kamloops Mining Division in south-central British Columbia.

ACCESS
The property is accessible by automobile southeasterly for three kilometres along the gravelled Beresford Lake Road some four kilometres south from Knutsford on Highway No. 5.

TOPOGRAPHY AND CLIMATE

The main topographic Eeatures of the area are broad upland areas separated by deeply incised valleys. The property is located on the north east flank of the Nicola platea; which forms part of the belt of Interior plateaux. The elevations within the property boundaries varies between 670 metres and 914 metres, gising relief of 245 metres.

The Kamloops area is semi-arid and experiences moderate to severe winters, and hot dry summers.

WATER, POWER AND TIMBER

Sufficient water is available for all phases of exploration from streams, ponds and lakes which axe licated on or near the property. Diesel electric power will be ramired for initial phases of development and hydro-efertric pown tould be available if future requirements warrant. Timber on the rimehland area is sparse. Finished lumber is available from local sawmil. .

TRANSPORTATION AND SUPPLIES

Railroad and daily trucking facilitie: are available in Kamloops where most supplies are obtainable.

PROPERTY

The property is comprised of six mineral claims consisting of 20 units. They are as follows:

Claim Name	Record Number	Units
ADD \#2	8948	
ADD \#3	8949	1
ADD \#4	8950	1
ADD \#10	8956	1
ADD \#11	9026	12
RICH	7896	1
		4

OWNERSHIP

The claims are owned by Naxos Resources Ltd. (51\%) of Vancouver, and David Decker (49\%) of Kamloops, British Columbia.

GENERAL GEOLOGY

The geology of the area is shown on H1p 886A Nicola (East Half) of the Geological Survey of Canada. The araz is underlain by the volcanic sequences of the Miocene Kamloops Group and the Upper Triassic Nicola Group which have been intruded by the elliptical-shaped Iron Mask Batholith. The rocks comprising the batholith are generally mediumgrained, grey, greenish grey to very dark, with ferromagnesium-rich phases and exhibit considerable alteration. They occur as microdiorite, micromonzonite, gabbro, diorite, pyroxenite, monzonite and syenite. The batholith appears to be intruded into the limb of a northwesterly trending syncline and is exposed some 19 kilometres long and four kilometres wide.

Two younger intrusives of post Iron Mask Batholith age occur in contact with the periphery if the Iron Mask intrusive to the north, west and south. They are the Cherry Creek and Sugarloaf intrusives. The Cherry Creek intrusives are comprised of porphyritic microdiorite, latite, trachyte porphyry, igneous breccia, minor porphyritic microquartz monzonite, and micro-granodiorite. Tho Sugarloaf intrusive consists of porphyritic microdiorite.

The Nicola rocks of Upper Triassic age are mainly a grey-green to bright green, fine-grained, nearly aphanitic to coarsely porphyritic basalt with lesser amounts of other coloured flows. Associated with the basalts are tuffs, breccias, and ag̣lomerates of various colours and appearance.

Alteration of the rocks is to chlorite, calcite, albite and epidote. Feldspars show advanced alteration with secondary calcite and deuteric quartz. Hornblende phenocrysts, probably derived from the uralization of augite, have been partially chloritized.

The rocks, sometimes referred to as Nicola Greenstones, are presumably the alteration product of hornblende and augite basalts.

There are also labradorite and augite porphyries and fine-grained to porphyritic amygdaloidal lavas conlaining amygdules of chlorite, calcite, quartz and chalcedony.

Mineralization in the Iron Mask Balholith area generally occurs as copper sulphides, oxides and carbonal as in veins, as impregnations, in shear zones, stockworks and brecci?s. The principal minerals are chalcopyrite, bornite and native opper with lesser amounts of chalcocite, cuprite, azurite, malacilite, and chrysocolla. There are also minor amounts of gold and silyer present. Alteration products associated with the mineralized rines are pink potash feldspar, sercite, sausserite, carbonate, epidole, albite and hematite.

PROPERTY GEOLOGY

The property is underlain by volcanic rocks of Kamloops and Nicola Groups. There is no known mineralization on the property except for very minor pyrite.

1990 FIELD PROGRAM

Between May 11 and July 22 , 1990 two $N Q$ diamond drill holes were drilled on the ADD 10 claim. The holes were drilled to test for the possible northern extension of the basaltic sill that has been the focus of extensive drilling by Naxos Resources Ltd. on the east side of Shumway Lake.

Hole DDH (90-1 was drilled approximately 500 metres east of the collar of DDH *90-2 on the ADD \#10 claim. The hole was drilled at an angle of -45 degrees, at an azimuth of 094 degrees, and to a depth of 84 metres.

Hole \quad 90-2 was drilled approximately 300 metres northeast of the southwest corner post of the ADD \#10 claim. The hole was drilled at an angle of -45 degrees, at an azimuth of 061 degrees, and was terminated at a depth of 83.5 metres.

A total of 360 feet (109.7 m) of percussion drilling was drilled in two holes; If-1 was drilled to a depth of 160 feet (48.8 m) and $1 \mathrm{~F}-2$ to a depth of 200 feet (61 m).

No significant gold values were encountered.

Respectfully submitted,

Thomas R. Tough, PEng. Consulting Geologist.

CERTIFICATE

I, Thomas R. Tough, of the city of Richmond, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and the principal of T. R. Tough \& Associates Ltd., with offices located at 5580 Gibbons Drive, Richmond, British Columbia and at 110 , 12761-] fth Avenue, White Rock, British Columbia.

I further certify:

1. That I am a Graduate of the Univaisily of British Columbia (1965) and hold a B. Sc. degree in Geology,
2. That I have been practising my profession for the past 25 years.
3. That I am registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
4. That this report is based on information received from Naxos Resources Ltd. pertaining to drilling carried out by the Company on the property discussed in this report and from personal visits to the property during 1990 and from personal experience in, and knowledge of the area.
5. That I did examine the sites of DDH's \#90-1 and \#90-2 although I did not personally supervise the drill program nor did I log or sample the drill core.

White Rock, B.C.
January 28, 1991.

SUMMARY LOG FOR DRILL HOLE 90-1

Property:	AD 10 Claim	Azimuth:	94°
Dates Drilled:	May 11-14, 1990	Dip:	-45°
Dates Logged:	May 15, 1990	Depth:	276 ft.
Logged By:	Ellen Lambert	Core Size:	NQ

$\frac{\text { INTERYAL }}{(\text { feet })}$	DESCRIPILION
0-22	OVERBLRDIEA - 20^{\prime} of casing
22-68	GABRPO TUFF/ARGIHAITR - Intexbodded dark green to black argillite and dark green, fine to undium grained gabbroic tuff. Argillite is smooth textured on core surface, whereas tuff is slightly pitted. Gralational contacts are cormon. The two units are intimate? ${ }_{3}$ mixed, probably a result of contemporaneous deposillon. Tuff consists of chlorite, reddish mica and dark ol sen amphibole crystals (after pyroxene). Axgillite (rmsists of dark green to medium green chloritized fine-grainol material interbedded with ultrafine grained black mater lal. Weakly to moderately developed bedding at 90° to core axis, coincident with a foliation development. Tuff and rgillife are non-magnetic and are cut by quartz and calclle veinlets at all angles to the core axis. Calcite veinlets are commonly deformed whereas quartz and calcite stringers cot: across deformation. Trace sulphides are visible ard are very fine grained, consisting of pyrite and chalcopyrit:e (py>cpy).

68-69 FALT ZORT - core in intact breccia texture is well developed, cemented with quartz and calcite. Fault cuts core at $15-25^{\circ}$ to core wis.

69-87 COARSR GRAINED EXBRES - bluish-green gabbro consisting of euhedral augite crystals to 3 nm in width (65\%), reddish mica? (25\%), tiny white crystals of feldspar (2\%) and a groundmass (8\%). Rock is basically unfoliated. Rare calcite veinlets. Tiny specks of sulphides are disseminated throughout the gabbro (<18) and appear to be chalcopyrite.

- 76-77 = strong fracturing recemented with calcite.

87-109 GNBRRO TUFF - Interbedded fine grailned and medium grained basic tuff. Disseminated pyrite locally to 1-2\%. Minor chalcopyrite.

109-113 ARGILLITE - mainly black and medium green argillite

113-126.5 GABPRO TUPF/ARGILLITE - fine-grained tuff that grades into coarsegrained gabbro from 117-120'. Sharp contact with underlying argillite.

- 120-121.5 = mixed argillite and siltstone. Minor tuff
126.5-140 COARSR GRANED GABRRO - rare py + cpy in tiny quartz + calcite veinlets.

140-140.5 QURRIZ VEIN - complex quartz vein that has been fractured and rehealed by quartz at least twice. Minor pyrite. Vein is enveloped by a carbonaceous siltstone.
140.5-171 GABHRO TLPF - fine grained turf with local pockets of coarse grained crystals. Minow. siltstone-argillite lenses.

- 147.5-148.7 = coarse-grajned gabbro
- 151-156 = coarse-grained qabbro
- 158.5-165.5 = mixed fine irained and coarse grained gabbro (tuff) with local pale green to cream coloured cherty fragments; possibly a lithic tuff.

171-177 FNLLT ZONE - multiple fractiy ing and recementation with calcite. Local clay alteration es host rock. Core mainly intact.
 Variably thick "beds" of gabbro tuff in association with narrow lenses of argillite and local beds of coarse grained gabbro. Often see individual augite crystals within overlying argillite units above coarse grained gabbro. Coarse grained gabbro commonly has sharp lower contacts.

- 180-183 = lost core
- 185-196 = mixed argillit: and tuff; strongly laminated at 75 to core axis.
$-202=$ quartz + pyroxene , chlorite + sulphide vein (1-2 cm) cutting core axi: at 35°; host rock is bleached for 510 mm on each sile of vein. Sulphides are pyrrhotite and chalcopyrite (pycr>cpy).
- 200-202 = coarse grained gabbro
- 203-208 = $\quad \cdots \quad n$
$\begin{array}{rlll}-219-221 & = & " & " \\ -224-227= & " & " & " \\ -242-246= & " & " & "\end{array}$
- 244-246 = local quartz veins with pyrrhotite and chalcopyrite
- $269=3 \mathrm{~cm}$ wide quartz veln with pyrite, pyrrhotite and chalcopyrite.

276 EOH

$A z: \quad 94^{\circ}$
Dip: -45°
Depith: 276°

Gabbro Tuff outcrop

AD-10 CLAIM

CROSS SECTIUN
DDH 90-1

	By: E Lanber
Scale:	Figure $\quad 1$
Dote: $5 / 90$	

${ }_{90}-x+1$
DIAMOND DRE L RECORD

$$
\text { HOLE No. } \frac{1-2}{\text { Sheet of } 3}
$$

$$
\begin{aligned}
& \text { Date Begun } \frac{\text { may } 15,1770}{\text { Date Ended }} \\
& \text { Date Logged } \\
& \text { May } 17,1970 \\
& \text { Mas } 12,17
\end{aligned}
$$

Footage		Meterage			DESCRIPTION	S A M PLE.				ASSAY	
From	To	From	To			No.	From	To	Width	Cu	Au
0	18		oxidume	$\begin{gathered} 20-30 \% \\ 1001 \\ 10 \end{gathered}$	overburden						
18	59		$\underline{3}{ }^{\circ}$	$\begin{gathered} 30-40= \\ 100 \% \end{gathered}$	Argillite /Norite Tuff $=$ intersalated black argillik +						
				[边 40.50%	at arwen, fine to nod peameé norte to ff. Stronth						
				50-60\% 6%	laminoted at 45° to CA. Lots of avilitite fragiments						
			n, ${ }^{2}$?	$\begin{array}{\|c\|} 60-70 \% \\ 67 \% \\ \hline \end{array}$	(flationed) in pleve of for ${ }^{\prime \prime}$ = neale lonk like a						
				$\begin{gathered} 70-50 \% \\ \hline 100 \% \\ \hline 0000 \end{gathered}$							
				$\begin{array}{r} 80-90: \\ 100 \% \\ \hline 9.000 \end{array}$	fractures t as ting specks in the cock, cbout $1-4 \%$						
				$\begin{array}{\|c\|} \hline 90-100 \% \\ 1007 \\ \hline \end{array}$	Local $Q+c e$ veintet. Tr cpy socui Coreloselly						
				100-110: 98%	strongly frocered, but usu-icy woathy fractuced						
				$\begin{array}{\|c\|} 110-120 . \\ 1000 \end{array}$							
				$\begin{array}{\|c} 120-130 \\ 108 \% \\ \hline 120 \end{array}$							
				$\begin{array}{r} 130-140 \% \\ 100 \% \\ \hline \end{array}$	$-23-24^{\prime}=$ cose strong, broken						
				$\begin{array}{\|c} 140-150! \\ 150.100! \\ \hline 100 \end{array}$	-41^{\prime} - Silics flooding ouor 1-2" with pyppyre	Py					
				$\begin{array}{\|r\|} 150 \% \\ 160 \% \\ \hline \end{array}$	diseminated i, siliea.						
				$\begin{array}{\|r\|} \hline 160-170 \% \\ 100 \% \\ \hline 106 \\ \hline \end{array}$	-50-77' = core moderately loken up isome lost						
				$\begin{array}{\|r\|} \hline 170-180: \\ 100 \% \\ \hline \end{array}$	core betw 5a-69' (4'total).						
				$\begin{array}{\|c\|} \hline 180-190 \% \\ 100 \% \\ \hline \end{array}$	-65-68', Strongly b-kare coue, brown soloning (altan						
				[$\mid 190-200 \%$ 100\%	$-81^{\prime}=$ see bialer of a white mineral (up to I cm in						
				$\begin{array}{\|r\|} \hline 200-2 / 0 \% \\ 1001 \\ \hline \end{array}$	length) = barite (1)						
				$\begin{array}{\|r\|r\|} \hline 210-220 \% \\ 100 \% \\ \hline \end{array}$	-80-85' $=$ local zanes of whit yeuom zilica w/hwer						
				$\begin{array}{\|r\|} \hline 220-200 \\ \hline \end{array}$	- sulplide.						
				$\begin{array}{\|cc\|} \hline 230 & -2 y_{0} \\ 100 \% \\ \hline \end{array}$	Argillit becoins douky green iorkad of black.						
				$\begin{array}{\|cc\|} \hline 240 & 250 \\ 107 \% \\ \hline \end{array}$	Also sec lome lameri of cog norite						
				250-260							

$260-270=100 \%$

EOU

NE

AD-10 CLAIM	
CROSS SECTIDN	
DDH 90-2	
Scale:	By: E. Lonbert
Date: $5 / 90$	FIgure: 2

```
Cust:mer: Hesect: frecous %etals Erre
```



```
    Manloops, P.C. vate: Hil.aE
    phcae: 376-2792 eatpleted: #/3/G0
are: Yesa<0.1 12140 i
Connents:Head Sample from Drilled Product
\[
? 12140-1 \in 12140-2
\]
Quaritity:48.65kg. 48.7kg.
```


 Collect tails, fan, filter, Dry, Conc \& fails, Size on pan fails, Bag. Assay Head. Pan fails, Plot and Pan docs.

fiecoupry:
: Mas Distributice:
601:
24.72 Sone Ratio 1: 24.24 Float Cote:
,
Bloat conc
4.13
Pan Conc: $\quad 5.26$ Conc Ratio 1: i.39 Pan Conc: 0.56

Pan Tails: 89.10 Pan Pails: 90.38

;

FLORARION: gran Total

Comments: Mill time 2 hrs., Condition time . 5 hrs., float time . 3 B hrs.

Metallurgy tloatatinn reagents br a.
Grind, size fact hrs. 0.5
final Report P. 0

Cocents:Head Sample from Drilled Product
I 12140-1 G 12140-2
Quantity: $48.05 \mathrm{~kg} . \quad 48.7 \mathrm{~kg}$.

Direction high total ore, Split 24 -Save, Split 40kg, Grind to 100: -200 resh, Float, Collect tails, Pan, filter, Dry, Conc \& Pails, Size on pan tails, Bag.
Assay Head, fan Mails, Plot and Pan Cones.

Fnemery: i kiss distribution: ;
Gold Plat Conc: 34.68 Conc fiction: 1t.33 Float Conc: 6.13
Pan Conc: 23.01 Conc Patio $1: 3.27$ Pan Conc: 1.88
Pan Tails: 88.21 Pan Tails: 17.63
Fetal: $\quad 122.89$ Slives/Water Soluble Component* $\quad 16.38$
Total: 10e.ag
i
Grind: $\quad 0$ grans +0 mesh 0.00
0 grans $-30+60$ mesh 0.00 8 grams $-6 \theta+100$ nest 0.00
0 grams $-100+140$ usb 0.00
0. 2 gram e $-140+200$ nest 0.33
91.8 grate -200 mesh 99.67
92.1 Total sample Weight (g)

```
RCTeTlM: g/ion fital
fagents:Arec 250 C le neeied ymes Conditene:
    C4. ceil is6 {.60 t: .5 l Conditioner
    MH CuSth-BN S0 S.2% Eall Mill
    8.15 34184-ifl! 25 %,i0t. .5 1. conditmoner
    Ar=0 2e8 BH 30 1.32 to 5 L Ball kjll
```


Metallurgy flotation matatit hr as
Grind. size tract bis.
Final Report

Supervised and spotted by: Andy Babie Logged By: W Thompśon.

This drill was drilled using a $2^{\prime \prime}$ star type percussion drill. Essentially a large air-track. The drill hole intersected a sequence of volcanic ashes, tuffs, lapilli tuffs and possibly pillowed volcanics. The pillows are porphyritic and are logged as porphyritic volcanic. They contain phenocrysts of augite as large as 1 cm. long. The composition of the volcanic sequence ranges from intermediate to basic. Minor sulphides (pyrite, chalcopyrite) are mainly associated with hairline veins that occur throughout the hole. Minor sulphides are also found disseminated in the core.

Due to the powdered nature of the drill cuttings visulal logging of the core is difficult at the least. The samples were idividually panned and a note of the sulphide content was made also the water table was evident as a result of wet samples. NoTE: W Thompson was not at the site during the drilling, but was asked to log the samples after the holes were drilled. (Which is not standard proceedure).

$0-05 \mathrm{ft}$	Casing
$5-60 \mathrm{ft}$	Minor silvery sulphides (py-s)
$60-70$ ft	Significant bronze sulphides (py-b). 2%.
\% $0-80$ ft	1\% py-s
80-90 ft	1/4\% py-5
90-100 ft	$11 / 2 \%$ py-s
$100-110 \mathrm{ft}$	2\% py-b
$110-120 \mathrm{ft}$	$11 / 2 \%$ py-b. Samples wet to 160 ft .
120-150 ft	no samples recovered.
150-160 ft	2\% py-b.

Minor chalcoprite was observed alons with minor magnetite

Supervised and spotted by: Andy Babir Logged By: W Thompson.

This drill was drilled using a z" star type percussion drill. Essentially a large air-track. The drill hole intersected a sequence of volcanic ashes, tuffs, lapilli tuffs and possibly pillowed volcanics. The pillows are porphyritic and are logged as porphyritic volcanic. They contain phenocrysts of augite act large as 1 cm. long. The composition of the volcanic sequence ranges from: intermediate to basic. Minor sulphides (pyrite, chalcopyrite) are mainlu associated with hairline veins that occur throughout the hole. Minor sulphides are also found disseminated in the core.

Due to the powdered nature of the drill cuttings visual logging of the samples is difficult. The samples were idividually pannet and a note of the sulphide content was made also the water table was evident as a result of wet samples.

NOTE: W Thompson wa not at the site during the drilling but was asked to log the samples alter the holes were drilled. (Which i. not standard proceedure).

```
0-10 ft Casing
10-100 ft Minor silvery pyrite (py-5).
80-100 ft The samples were oxidized with significant
carbonate cuttings possibly indicating a fault zone.
90-100 ft The samples were wet indicating either that
the fault zone affected sample recovery so water was added
to assist in recovery or water was intersected in the dril
hole. (All the samples to 200 ft were wet from g0 ft.)
100-200 ft
Significant bronze purite (py-b). Up to 2 1/2% py.
```

110-120 ft.....No sample.
150-16Ø ft....No sample.
minor magnetite and traces of cpy were observed in the
samples throughout the lenght of the hole.
2DO ft end of hole.

Mineral Processing \& Environmental Specialists

October 2, 1990

Mr. Robert Fedun
president
International Focus
Suite 910
Home 011 Tower
$3248^{\text {qh }}$ Avenue southWest
Calgary, Alberta
T2P 222
Dear Robert:
Re: Total Gold Determination Teats - shumway Lake
We are pleased to report that the total gold determination tests for the first two holes from shumway Lake have been completed.

Each sample was tested in accordance with the following procedure:
(a) crushing to 10 mesh
(b) fine grinding to over 80\% minus 200 mesh in a closed system ball mill, in the presence of a $10 \mathrm{~g} / 1 \mathrm{it} \mathrm{NaCN}$ solution, maintained at a pH of 10.5 to 21 . The continuous grind-18ach method represents the most severe from of cyanidation. All coarbe, fine and physically refraotory gold is readily dissolved in cyanide as a result of the continuous iiberation by attrition. Kerosene is added to the process to suppress the "gold-robbing" carbonaceous species in the ore
(c) Eiltration at the end of the 72 hour leach cycle
(d) analyeis of the gold content of the solution phase by atomio absorption and the solids phase by fire assay
(e) computation of the total gold content of the sample via a metallurgical balance

Table 1 shows a summary of the resulte. Table 2 presents the detailed test parameters for each sample.

A total of 20 sample splits were taken for acid treatment prior to leaching. The results will be available shortly.

Mr. Robert Fedun
October 2. 1990
page 2
Table 1 shows that there is a sporadic gold occurrence in the holes. The are substantial sections in each hole which appear to be barren with respect to gold. This is confirmed by both the low solution and solid residue assays. The higher grade sections in the holes should help in the development of a comprehensive exploration strategy. This is an aspect that 1 would like to disouss with you in further detail. A meeting with your geologists at that time would be appropriate.

As you can see, Hole \#l shows an interesting uptick in assays in the 193 to 208 ft sections. There is another one in the 266 to 276 ft section. Hole \#2 shows a value of 0.011 oz/t in the 28 to 38 ft section. The 88 to 98 ft section also shows values. This Ia indicative of gold occurance closex to surface in the area where Hole \#2 was drilled. Hole \#2 also shows higher values in the 163 to $173 \mathrm{ft}, 232$ to 238 ft and 258 to 261 ft sections. This data at depth could indicate a relationship with the Hole \#1 data at similar depths.

The percussion drilling samples axe currently in process. We should be getting some results in the near future. our experience With the shumway Lake deposit indicates that there is gold present. We have encountered some fairly high values from this deposit. However, correct spotting of the drill holes (or surface trenches) is most important. our grindweach technique successiully overcomes the nugget effect in the sample. But, that is only one half of the battle!

Please give me a call after you have reviewed the enclosed data.

Yours very truly,

President
sc/asd
enclosures

TABLE 1 : SUMMARY OF RESULTS
CLIENT : INTERNATIONAL POCUS

SAMPLE N	MBER	$\begin{aligned} & \text { CALC. } \\ & \text { HEAD } \\ & A B S A X \\ & (\dot{g} / t) \end{aligned}$	$\begin{aligned} & \text { CALC. } \\ & \text { HEAD } \\ & \text { ASSAY } \\ & \text { (OZ/t }) \end{aligned}$	COMMENT
1-022-034	SPT A	0.027	0.001	
1-022-034	SPT B	0.023	0.001	
1-022-034	SPT C	0.030	0.001	
1-034-039	8PT A	0.034	0.001	
1-034-039	SPT B	0.168	0.005	
1-039-049	SPT A	0.070	0.002	
1-039-049	SPT B	0.045	0.001	
1-039-049	SPT ${ }^{\text {C }}$	0.041	0.001	
1-039-049	SPT D	0.040	0.001	
1-039-049	SPT	0.040	0.001	
1-046-060	SPT ${ }^{\text {A }}$	0.036	0.001	
1-046-060	SPT B	0.035	0.001	
1-046-060	SPT C	0.039	0.001	
1-046-060	SPT D	0.035	0.001	
1-046-060	SPTE	0.03:;	0.001	
1-060-070	SPI A	0.036	0.001	
1-060-070	SPT B	0.050	0.001	
1-060-070	Str C	0.037	0.001	
1-070-087	SPT C	0.024	0.001	
1-087-097	SP'A	0.030	0.001	
1-087-097	SPX B	0.039	0.001	
1-087-097	SPI C	0.124	0.004	
1-087-097	8PT D	0.045	0.001	
1-087-0.97	SPT E	$0.05 r$	0.002	
1-097-122	SPI A	0.020	0.001	
1-112-120	SP' A	0.20 ,	10.006	
1-112-120	Spry ${ }^{\text {B }}$	0.234	0.007	
1-112-120	8PM ${ }^{\text {c }}$	0.25%	0.007	
1-120-127	SPT A	0.027	0.001	
1-120-127	SPI B	0.000	0.000	AWAITING ASSAYS
1-127-140	SPT 4	0.027	0.001	
1-127-140	SPT B	0.026	0.001	
1-127-140	SPT C	0.027	0.001	
1-140-147	SPT A	0.036	0.001	
1-140-147	SPT B	0.036	0.001	
1-140-147	GPT ${ }^{\text {C }}$	0.036	0.001	
1-147-156	SPT B	0.032	0.001	
1-147-156	SPP ${ }^{\text {C }}$	0.026	0.001	
1-156-165	SPT A	0.031	0.001	
1-156-165	SP'T B	0.03 ?	0.001	

TABLE 1 ：BUMMARY OF RESUYITY
CLIENT ：INTERNATIONAL FOCIS

SAMPLE NU	BER	$\begin{aligned} & \text { CALC, } \\ & \text { HEAD } \\ & \text { ASSAY } \\ & (\mathrm{g} / \mathrm{t}) \end{aligned}$	$\begin{aligned} & \text { CALC. } \\ & \text { HEAD } \\ & \text { ASSAY } \\ & \left(\begin{array}{c} \text { oz } / t) \end{array}\right. \end{aligned}$	COMMENT
1－156－165	SPT C	0.0311	0.001	
1－165－175	SPI＇A	0.07%	0.001	
1－165－175	8PT B	0.078	0.001	
1－165－175	SPI C	0.030	0.001	
1－175－183	SEI ${ }^{\text {S }}$	0.051	0.001	
1－175－183	SFT B	0.051	0.001	
2－175－183	SPT C	0.04%	0.001	
1－183－193	SPT A	0.035	0.001	
1－183－193	SPT B	0.039	0.001	
1－183－193	SPY C	0.078	0.001	
1－189－196	SPT A	0.001	0.000	AWAITING AgSAYS
1－189－196	SPT B	0.000	0.000	AWAITING ASSAYB
1－189－196	SPPC	0.0011	0.000	AWAITING ASSAYS
1－193－203	SPFA	0.07%	0.001	
1－193－203	SPI 8	0.67%	0.019	
1－193－203	SPP C	0.04%	0.001	
1－203－208	SPI A	1.08%	0.032	
1－203－208	EPT B	2.033	0.030	
1－203－208	SPI C	0.86%	0.025	
1－208－217	SPT C	0.109	0.003	
1－208－217	SPT D	0.039	0.001	
1－217－227	SPT A	0.030	0.001	
1－217－227	SPT B	0.023	0.001	
1－227－236	SPT A	0.025	0.001	
1－227－236	BPT B	0.028	0.001	
1－227－236	EPT C	0.026	0.001	
1－236－246	SPT A	0.028	0.001	
1－236－246	SPT B	0.046	0.001	
1－236－246	SPT C	0.027	0.001	
1－246－256	SPT A	0.040	0.001	
1－246－256	SPT B	0.183	0.008	
1－246－256	SPT C	0.065	0.002	
1－246－256	SPI D	0.039	0.001	
1－256－266	SPT A	0.000	0.000	AWAITING ASSAYS
1－256－266	SPS B	0.032	0.001	
1－256－266	89\％C	0.030	0.002	\cdots
1－266－276	SPI A	0.435	0.013	
1－266－276	SPT B	0.397	0.012	
1－266－276	SPT C	0.477	0.014	
2－018－028	SPT A	0.047	0.001	
2－018－028	SPT B	0.045	0.001	

TABLE 1 : SUMMARI OF RESUTiG
CLIENT : INTERNATIONAL FOCUS

SAMPLE NUMBER		$\begin{aligned} & \text { CALC. } \\ & \text { HEAD } \\ & \text { ASSAY } \\ & (g / t) \end{aligned}$	$\begin{aligned} & \text { CALC. } \\ & \text { HEAD } \\ & \text { ASSAY } \\ & \text { OZ/t }) \end{aligned}$	COMMENT
2-018-028	8PT C	0.043	0.001	
2-018-028	GPT D	0.051	0.001	
2-018-028	SPT E	0.046	0.001	
2-028-038	SPT A	0.121	0.004	
2-028-038	SPT B	0.365	0.011	
2-028-038	SPT C	0.04\%	0.001	
2-028-038	SPT D	$0.04 ?$	0.001	
2-038-048	SPT A	0.038	0.001	
2-038-048	SPT B	0.037	0.001	
2-038-048	SPT C	0.037	0.001	
2-048-058	8PT A	0.043	0.001	
2-048-058	SPT B	0.031	0.001	
2-048-058	SPT C	0.035	0.001	
2-058-068	SPT A	0.047	0.001	
2-058-068	SPT B	0.048	0.001	
2-068-078	SPT B	0.023	0.001	
2-078-088	SPT C	0.195	0.006	
2-078-088	SPT D	0.229	0.007	
2-088-098	SPT A	0.698	0.020	
2-088-098	8PT B	0.928	10.027	
2-088-098	SPT C	0.380	0.011	
2-098-108	8FT ${ }^{\text {c }}$	0.044	0.001	
2-098-108	SPT D	0.053	0.002	
2-108-113	SPT A	0.039	0.001	
2-108-113	SPT B	0.036	0.001	
2-113-117.5	SPT A	0.036	0.001	
2-113-117.5	8PT 8	0.048	0.001	
2-117.8-129	SPT A	0.022	0.001	
2-117.5-129	SPT B	0.025	0.001	
2-129-136	SPT A	0.029	0.001	
2-129-136	SPT B	0.032	0.001	
2-136-143	6PT ${ }^{\text {A }}$	0.043	0.001	
2-136-143	GPT B	0.039	0.001	
2-136-143	SPT ${ }^{\text {c }}$	0.044	0.001	
2-136-143	8PT D	0.000	0.000	AWAITING ASSAYS
2-143-153	8PT λ	0.030	0.001	
2-143-153	SPP C	0.035	0.001	
2-153-163	SPT A	0.027	0.001	
2-153-163	6PT C	0.030	0.001	
2-153-163	SPT D	0.023	0.001	
2-163-173	SPT A	0.085	0.002	

TABLE 1 : SUMMARY OF RESULIS CLIENT : INTERNATIONAL FOCUS

TABLE 1 : SUMMARY OF RESULITS
CLIENT : INTERNATIONAL FOCUS

TMELE 2 : TOTAL GOLD TEST RESURTS

CLIENT : immenational focus

!	swaple mamer		Semple fS	\|S020trow	s	\|socierion]	\|solution	\|Sourriom	S	SOL LDS]	\| COLD	1 0010	1 total	calc. 1	cme.		
1			1 Exami \|	\| weignt		\| Lerimit		\| assay	\| Assay	a	\|assay \mid	1 IN 1	1 E	1 cosd	HEAD	mend	COMNE WT
1			1 PP	\|Pass $\mathrm{HI}^{\text {\| }}$ \|	\|PRASS起		[0ass	\|Pass \%			\|scumian)	Sor.ios 1	1	\| x ssin \mid	Asshy	1	
1			(13	(6) 1	(1) 1	(ppm)	(prob	(appb)	(0°) 1	1 51	1 (9)	\| Wat jk	ceft 3	1			
1	1-209-196	SPT ${ }_{\text {S }}$	\| $3079.0 \mid$	\| 3000			1	11	1	\| $0.0000 \mid$	\| $0.2000 \mid$	10.0000	\| 0.030		0.000	\|avaitike assats ${ }^{\text {a }}$	
1	1-180-196	SPT 6	13099.0	30001		1	11		$10.0900 \mid$	10.30001	10.0000	0.0001	0.000	\|Aunitine assars!			
1	1-993-215	SPTA	\| $2749.4 \mid$	140001	110001	10.02	10.021	131	\| 0.0001	\| 0.00001	10.0007	0.0391	0.001				
1	1-893-203	Spt	$\|2769.4\|$	140001	1 1000 \|	10.40	10.021	1501	\| 0.0016	0.0081	0.0078	0.3391	0.0191				
1	1-193-2013	SPT 6	\| 2762.6		\| 6000		110001	10.02	10.041	121	\| 0.0001		\| 0.2000	0.0009	$\mid 0.045$ \|	0.001	
1	1-203-208	SPT A	\| $2000.0 \mid$	125001	11000 I	10.73	10.331	171	0.00221	18.000	10.0022	1.085	0.052 !				
1	1-205-200	SPT	\| 2000.31	125001	120001	10.59	13.33	1 5	3 mm	1.003	, -, m2:	: Ex	:,20				
;	1-203-208	SPT C	\| 1909.3		1 25001	11008 !	10.51	10.25	5	3.2055	3.04	3.2016	J.364	0.0251			
1	1-208-217	ait C	\| 2249.6		\| $3000 \mid$		0.08	1	$12!$	0.30021	10.5000	0.3002	0.1091	0.905			
1	1.208-217	SPT	\| 2149.6		\| 3000		110001	10.02	1 0.02 i	121	\| 0.3001		10.neco	\| 0.0001	0.0391	0.001	
1	1-217-227	STT A	\| 2859.8		140001		10.02	1	121	10.0001 \|	$\|0.0000\|$	\| 0.0009	0.0301	0.001			
1	1-217-227	SPT E	\| 3890.0		\| 40001		0.02	!	21	\| 0.0001	$\|0.0000\|$	\| 0.0009	0.0231	0.0011			
1	1-227-236	SFIA	\| 1729.3		\| 20001		0.02		21	\| 0.00000	$\|0.0000\|$	\| 0.0000	0.0251	0.001			
I	1-228-236	SPT	\| $3520.0 \mid$	140001		0.021		51	\| 0.00381	\|0.0000		\| 0.0001	0.0281	0.001			
1	1-224-236	spt C	$\mid 3361.2$ \|	\| 4000 1		0.02	11	121	10.0001	10.0030	0.0001	$\mid 0.0261$	0.001				
1	1-236-266	SPT \quad A	\| 1533.8		120001		0.02	11	121	10.00001	\|0.0060	10.0000	$\mid 0.028$ \|	0.007			
1	1-236-206	SPP 8	\| 3728.6		140001		0.02	11	1251	\| 0.0009		\| 0.0×11	10.0002	0.0461	0.009		
1	1-236-26s	SPT C	\| 3225.3		140001		0.021	1	121	\| 0.0009	10.0000 1	10.0001	10.0271	0.009	1		
1	1-266-25	Spt A	13369.4 \|	135001	$11000 \mid$	10.02	0.021	21	10.0001	$\|0.0050\|$	0.0001	10.0801	0.0011				
1	1-266-256	SPP B	\| 2369.4	135001	\| 1000		10.10	$\|0.08\|$	121	[0.0004	$\mid 0.0001$	10.0004	0.1881	0.005			
1	1-266-256	spt C	\| 2369.4		13500 \|	110001	\| 0.02	10.081	121	$10.0002 \mid$	10.00001	10.0002	10.0651	0.0021			
1	1-266-256	SPT D	\| 2407.2		135001	1 1090 \|	10.02	\| 0.021	121	\| 0.0001	0.0500	10.0001	10.0591	0.909	I		
1	1-256-256	spt λ	\| 3518.6		140001		11			10.00001	10.000 \mid	10.0000	10.0001	0.000	[maniting assars]		
1	1-256-256	SPI 8	\| 3468.5		! 40001		0.02	11	191	$10.0001 \mid$	\|0.000		10.0001	\| 0.0321	0.001	1	
1	1-256-266	spt C	\| 212050	140001		0.02	11	21	10.0008	0.0001	10.0001	10.0351	0.0011				
1	1-266-276	sita	$\|2500.0\|$	120001	100001	10.28	10.251	1551	10.0080	0.00091	10.0071	10.4351	0.013	I			

TAELE 2 : TOTAL COLD TEST RESUKTS

CLIEMT : TMTEMATIONAL FOCUS
cliens : imbenational focus

thele 2 : torm ond test results

CLIETT : IMTERMATRONAL FOCUS

