SUB-RECORDER RECEIVED		LOG NO: Jeb 13/91 RD.
FEB - 5 1991		AUTION.
.R. #\$	ASSESSMENT REPORT	FILE NO:

M ON DIAMOND DRILLING

ON THE BERESFORD LAKE CLAIM GROUP

CLAIM NAME	RECORD No.	UNITS
ADD #2	894 8	1
ADD #3	8949	1
ADD #4	895 0	1
ADD #10	89 56	12
ADD #11	9026	4
RICH	7896	$\tilde{4}$
[Notice	to Group No.]

KAMLOOPS MINING DIVISION BERESFORD LAKE AREA, BRITISH COLUMBIA NTS 921/9

LOCATION: 11 Km SOUTH OF KAMLOOPS, BC

LATITUDE: 50 DEG. 33'N LONGITUDE: 120 DEG. 15'W

FIELD WORK PERIOD: MAY 11, 1990 TO JULY 22, 1990

CLAIM OWNERS: NAXOS RESOURCES LTD. 206-856 HOMER STREET VANCOUVER, BC. V6B 3W5 (604) 669-8078

> DAVID DECKER #6-1299 TRANQUILLE RD. KAMLOOPS, BC. V2B 1X6

ヨア

5 2 ZO

A A

2 20 22

ショー

< Z

Ú 第

- 2 S S o s 1 1 \circ 20 2 -

OPERATOR: NAXOS REBOURCES LTD. 206-856 HOMER STREET VANCOUVER, BC. V6B 3W5 (604) 669-8078

REPORT DATE: JANUARY 28, 1991.

TABLE OF CONTENTS

	Page
SUMMARY	1
LOCATION	1
ACCESS	1
TOPOGRAPHY AND CLIMATE	2
WATER, POWER AND TIMBER	2
TRANSPORTATION AND SUPPLIES	2
PROPERTY	2
OWNERSHIP	2
GENERAL GEOLOGY	3
PROPERTY GEOLOGY	4
1990 FIELD PROGRAM	4
CERTIFICATE	5

MAP INDEX

MAP NAME SCALE

Location Map and Claims Map Showing Drill Hole Locations BAR

APPENDIX

Diamond Drill Logs DDH# 90-1 and 90-2 by E. Lambert. Cross Section DDH 90-1 by E. Lambert. Cross Section DDH 90-2 by E. Lambert. Percussion Drill Logs IF-1 and IF-2 by W. Thompson. Metallurgical Test Data - Nesmont Precious Metals Corp. Certificate # 12140-1 & -2, Dated July 3 & 4, 1990. Total Gold Determination Tests & Results - Casmyn Research & Engineering, Dated October 2, 1990.

DRILLING REPORT - 1000 FIELD SEASON on the BERESFORD LAKE (GAIM GROUP KAMLOOPS MINING DIVISION for NAXOS RESOURCES LTD.

SUMMARY

The ADD #2, 3, 4, 10, 11 and RICH claims, 51% held by Naxos Resources Ltd. and 49% held by International Focus Resources Inc., consist of 20 units situated approximately 12 kilometres south of the City of Kamloops within the Kamloops Mining Division, south-central British Columbia.

The property is accessible by the gravelled Beresford Lake Road east from Highway No. 5 some four kilometres south of Knutsford.

The topography is gently undulating with elevations ranging from 670 metres to 914 metres above sea level.

Sufficient water is available for all phases of exploration and development.

Diesel electric power would be required for initial phases of development and hydro-electric power would be available if future requirements warrant.

Railroad and good daily trucking facilities are located in Kamloops where most supplies are obtainable.

The property appears to be underlain by volcanics of the Kamloops and Nicola Groups.

LOCATION

The claims are located approximately 12 kilometres south of Kamloops within the Kamloops Mining Division in south-central British Columbia.

ACCESS

The property is accessible by automobile southeasterly for three kilometres along the gravelled Beresford Lake Road some four kilometres south from Knutsford on Highway No. 5.

1

TOPOGRAPHY AND CLIMATE

The main topographic features of the area are broad upland areas separated by deeply incised valleys. The property is located on the north east flank of the Nicola Plateau which forms part of the belt of Interior Plateaux. The elevations within the property boundaries varies between 670 metres and 914 metres, giving a relief of 245 metres.

The Kamloops area is semi-arid and experiences moderate to severe winters, and hot dry summers.

WATER, POWER AND TIMBER

Sufficient water is available for all phases of exploration from streams, ponds and lakes which are located on or near the property. Diesel electric power will be required for initial phases of development and hydro-electric power would be available if future requirements warrant. Timber on the reachland area is sparse. Finished lumber is available from local sawmille.

TRANSPORTATION AND SUPPLIES

Railroad and daily trucking facilities are available in Kamloops where most supplies are obtainable.

PROPERTY

The property is comprised of six mineral claims consisting of 20 units. They are as follows:

<u>Claim Name</u>	Record Number	<u>Units</u>
ADD #2	8948	1
ADD #3	8949	1
ADD #4	895 0	1
ADD #10	8956	12
ADD #11	9026	1
RICH	7896	4

<u>OWNERSHIP</u>

The claims are owned by Naxos Resources Ltd. (51%) of Vancouver, and David Decker (49%) of Kamloops, British Columbia.

GENERAL GEOLOGY

The geology of the area is shown on Map 886A Nicola (East Half) of the Geological Survey of Canada. The area is underlain by the volcanic sequences of the Miocene Kamloops Group and the Upper Triassic Nicola Group which have been intruded by the elliptical-shaped Iron Mask Batholith. The rocks comprising the batholith are generally mediumgrained, grey, greenish grey to very dark, with ferromagnesium-rich phases and exhibit considerable alteration. They occur as microdiorite, micromonzonite, gabbro, diorite, pyroxenite, monzonite and syenite. The batholith appears to be intruded into the limb of a northwesterly trending syncline and is exposed some 19 kilometres long and four kilometres wide.

Two younger intrusives of post Iron Mask Batholith age occur in contact with the periphery if the Iron Mask intrusive to the north, west and south. They are the Cherry Creek and Sugarloaf intrusives. The Cherry Creek intrusives are comprised of porphyritic microdiorite, latite, trachyte porphyry, igneous breccia, minor porphyritic microquartz monzonite, and micro-granodiorite. The Sugarloaf intrusive consists of porphyritic microdiorite.

The Nicola rocks of Upper Triassic age are mainly a grey-green to bright green, fine-grained, nearly aphanitic to coarsely porphyritic basalt with lesser amounts of other coloured flows. Associated with the basalts are tuffs, breccias, and agg/omerates of various colours and appearance.

Alteration of the rocks is to chlorite, calcite, albite and epidote. Feldspars show advanced alteration with secondary calcite and deuteric quartz. Hornblende phenocrysts, probably derived from the uralization of augite, have been partially chloritized.

The rocks, sometimes referred to as Nicola Greenstones, are presumably the alteration product of hornblende and augite basalts.

There are also labradorite and augite porphyries and fine-grained to porphyritic amygdaloidal lavas containing amygdules of chlorite, calcite, guartz and chalcedony.

Mineralization in the Iron Mask Batholith area generally occurs as copper sulphides, oxides and carbonates in veins, as impregnations, in shear zones, stockworks and breccips. The principal minerals are chalcopyrite, bornite and native copper with lesser amounts of chalcocite, cuprite, azurite, malachite, and chrysocolla. There are also minor amounts of gold and silver present. Alteration products associated with the mineralized zones are pink potash feldspar, sercite, sausserite, carbonate, epidote, albite and hematite.

PROPERTY GEOLOGY

The property is underlain by volcanic rocks of Kamloops and Nicola Groups. There is no known mineralization on the property except for very minor pyrite.

1990 FIELD PROGRAM

Between May 11 and July 22, 1990 two NQ diamond drill holes were drilled on the ADD #10 claim. The holes were drilled to test for the possible northern extension of the basaltic sill that has been the focus of extensive drilling by Naxos Resources Ltd. on the east side of Shumway Lake.

Hole DDH #90-1 was drilled approximately 500 metres east of the collar of DDH #90-2 on the ADD #10 claim. The hole was drilled at an angle of -45 degrees, at an azimuth of 094 degrees, and to a depth of 84 metres.

Hole #90-2 was drilled approximately 300 metres northeast of the southwest corner post of the ADD #10 claim. The hole was drilled at an angle of -45 degrees, at an azimuth of 061 degrees, and was terminated at a depth of 83.5 metres.

A total of 360 feet (109.7 m) of percussion drilling was drilled in two holes; IF-1 was drilled to a depth of 160 feet (48.8 m) and IF-2 to a depth of 200 feet (61 m).

No significant gold values were encountered.

Respectfully submitted,

Thomas R. Dough

Thomas R. Tough, P.Eng. Consulting Geologist.

CERTIFICATE

I, Thomas R. Tough, of the City of Richmond, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and the principal of T. R. Tough & Associates Ltd., with offices located at 5580 Gibbons Drive, Richmond, British Columbia and at 110, 12761-16th Avenue, White Rock, British Columbia.

- I further certify:
- That I am a Graduate of the University of British Columbia (1965) and hold a B.Sc. degree in Geology.
- 2. That I have been practising my profession for the past 25 years.
- 3. That I am registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. That this report is based on information received from Naxos Resources Ltd. pertaining to drilling carried out by the Company on the property discussed in this report and from personal visits to the property during 1990 and from personal experience in, and knowledge of the area.
- 5. That I did examine the sites of DDH's #90-1 and #90-2 although I did not personally supervise the drill program nor did I log or sample the drill core.

Showar R. Do

Thomas R. Tough, P.Eng. Consulting Geologist.

White Rock, B.C. January 28, 1991.

SUMMARY LOG FOR DRILL HOLE 90-1

94° Property: AD 10 Claim Azimuth: -45° Dates Drilled: May 11-14, 1990 Dip: 276 ft. May 15, 1990 Depth: Dates Logged: Ellen Lambert Core Size: NO Logged By:

INTERVAL DESCRIPTION

(feet)

- 0 22 OVERBURDEN 20' of casing
- 22 68 GABBRO TUFF/ARGILLITE - Interbodded dark green to black argillite and dark green, fine to medium grained gabbroic tuff. Argillite is smooth textured on core surface, whereas tuff is slightly pitted. Gradational contacts are common. The two units are intimately mixed, probably a result of contemporaneous deposition. Tuff consists of chlorite, reddish mica and dark open amphibole crystals (after pyroxene). Argillite consists of dark green to medium green chloritized fine-grained material interbedded with ultrafine grained black material. Weakly to moderately developed bedding at 90° to core exis, coincident with a foliation development. Tuff and argillite are non-magnetic and are cut by guartz and calcite veinlets at all angles to the core axis. Calcite veinlets are commonly deformed whereas quartz and calcite stringers cut across deformation. Trace sulphides are visible and are very fine grained, consisting of pyrite and chalcopyrite (py>cpy).
- 68 69 FALLT ZONE core in intact both breccia texture is well developed, cemented with quartz and calcite. Fault cuts core at 15-25° to core points.
- 69 87 COARSE GRAINED GABBERO bluish-green gabbro consisting of euhedral augite crystals to 3 mm in width (65%), reddish mica? (25%), tiny white crystals of feldspar (2%) and a groundmass (8%). Rock is basically unfoliated. Rare calcite veinlets. Tiny specks of sulphides are disseminated throughout the gabbro (<1%) and appear to be chalcopyrite.

- 76-77 = strong fracturing recemented with calcite.

87-109 GABERO TUFF - interbedded fine grained and medium grained basic tuff. Disseminated pyrite locally to 1-2%. Minor chalcopyrite.

Summary Log DDH 90-1 Page 2

109-113 ARGILLITE - mainly black and medium green argillite

113-126.5 GABBRO TUFF/ARGILLITE - fine-grained tuff that grades into coarsegrained gabbro from 117-120'. Sharp contact with underlying argillite.

- 120-121.5 = mixed argillite and siltstone. Minor tuff

126.5-140 COARSE GRAINED GABBRO - rare py + cpy in tiny quartz + calcite veinlets.

140-140.5 **QUARTZ VEIN** - complex guartz vein that has been fractured and rehealed by guartz at least twice. Minor pyrite. Vein is enveloped by a carbonaceous siltstone.

- 140.5-171 GABBRO TUFF fine grained tuff with local pockets of coarse grained crystals. Minor siltstone-argillite lenses.
 - 147.5-148.7 = coarse-grained gabbro
 - 151-156 = coarse-grained gabbro
 - 158.5-165.5 = mixed fine grained and coarse grained gabbro (tuff) with local pale green to cream coloured cherty fragments; possibly a lithic tuff.
- 171-177 FAULT ZONE multiple fracturing and recementation with calcite. Local clay alteration of host rock. Core mainly intact.

177-276 GABERO TUFF locally mixed with ANVILLITE and COARSE GRAINED GABERO Variably thick "beds" of gabbro tuff in association with narrow lenses of argillite and local beds of coarse grained gabbro. Often see individual augite crystals within overlying argillite units above coarse grained gabbro. Coarse grained gabbro commonly has sharp lower contacts.

-180-183 = 10st core

- 185-196 = mixed argillite and tuff; strongly laminated at 75° to core axis.
- 202 = quartz + pyroxene + chlorite + sulphide vein (1-2 cm) cutting core axis at 35°; host rock is bleached for 5-10 mm on each side of vein. Sulphides are pyrrhotite and chalcopyrite (pyrr>>cpy).
- -200-202 = coarse grained gabbro

- 203-208 = " "

Summary Log DDH 90-1 Page 3

- 219-221 = " " " " - 224-227 = " " " " - 242-246 = " " " " - 244-246 = local guartz veins with pyrrhotite and chalcopyrite - 269 = 3 cm wide guartz vein with pyrite, pyrrhotite and chalcopyrite.

276 BOH

	-		۰، م	2-12-1	DIAMOND DRI L RECORD				ر ۱)-J	
PROP	RTY -	ADI	0		Length $\frac{2711}{}$ Bearing $\frac{61}{}$			Sheet	;	of	3
Locat Core	ion Size.	300 m at NC	۲ <u>۲</u> ۲ ۲ ۲ ۲	<u>from AD10</u> (35	OF V. Comp Logged By E Lambert		Date Date Date	e Begun Ended Logge	May May d may	15,1° 17,19 17,19	$\frac{17n}{176}$
Foot	age	Mete	rage	X	DESCRIPTION		SAMI	PLE.		ASS	AY
From	To	From	To	Recovery	JEJGKIFTION	No.	From	То	Width	Cu	Au
0	18		oxidation]	20-30': (10'(·	overburden	_					
18	59		¥35'	30-40 = 100%	Argillite / Norite Tuff = intercalated black graillife +		1				
				40-50 = 100 %	at arrich. fire to not grance por te toff. Strongly						
			5	50-60: 68%	laminated at 45° to CA. Lots I anguillite fragments						
			Notes (60 - 70 = 67%	(Flattened) in slowe of fol = noache looks like a						
				70-80: 100'l.	deformed condemante. Pa is common along						
ļ				80-90:	Fractures + as ting specks in the rock, about 1-4%.	•					
ļ				90-100 : 100 1.	Local Q+CC veisters. Tr cpy secre Core locally						
				160 -118 : 987.	Strengly firetured, but usually weakly fractured.						
				10 -120 -	Oridation why to about 35. This 20 is throughout						
				100-130-	Thouse & - mayor . Probably throw pyrations is a well.						
				107.	-23-24' = Cae strongly boken						L
				100/	-41' - Silica Flooding over 1-2" with Pyppyre	· cpy					
				100%	disseminated in Silica.						
				100 /.	- 50-77'= core moderately broken up = some lost						
				100%	core betw 52-69 (4' total).						
				100'1.	-65-68'= strongly br ken core, brown coloning (altra	?)					
				100 -210:	-Bi' = see blacks of a white mineral (up to Icm in				1		
				100 %	length) = barile (?)						
				100%	- 80-85' = local zones of while y arom silica w/ minor						
				100 1. 230 -240:	sulphide.						[
				100%	Argillit becames dartes green instead of black.						
				101. 252 -260:	Also se lord layers of O.g. norike						
L	1			100%	100 /.						

gou

					diamodů úki je kesúků)-2	
PROPERTYAOO			Length Bearing		ł	IOLE No Shee	o. —		3		
Locat	: i o'n				H. Comp Dip		Date	Begur			
Core	Size				V. Comp Logged By		Date Date	Ended Logge	d		
Foot	age	Meter	rage	%	DESCRIPTION	1	SAMF	LE		ASS	AY
From	То	From	To	Recovery	DESCRIPTION	No.	From	То	Width	Cu	Au
59	74				Ultrafg angillik, black & brown laminated						
					minor tuff - flinty in nature. Ger noter on previous	page fr	+ this	Sect	ion)		
74	141				Mainly fig tuff with some local segments of						
					aggillite. (See notes on previous by for 1st part of	this 5	ection)				
				ļ	Local cq sections as well-						
	L	ļļ			-77-79': ultra fg engillite	ļ					
141	157				Black + med green any like with minor tuff.	.					
		 			-143-149' = Zone of mod Silica veining =						
		 			Swirly. Lord abrendant pyre + Cpy (pyre	>>> <<	5)				
		┠───┼			in host rock.						
					whereas there is an in the second of						
•		<u> </u>			supplies in adjacent host out						
157	165	┝──┤			Eq tuff - always see some py + tr cpy in all						
	 	├ ────┣			these rocks.						
165	176	<u> </u>			Blackish angillite with mittor full. Locally mg.						
176	202	 			Fg to mg tuff.						
					- 195' = Texture here resembles accretionery lapilli,						
		┟───┼			zoned in coloration, round pollet-like shapes,			<u></u>			
					diffuse texture						
					Becomes my in lower half at section, with a sharp	·····					
					Contact with underlying angillite. Contact @ 13. A	o cA					
202	206.5	<u> </u>		·	Blackish angillite becoming mixed with to full near						
701 -	2-11	┝───┼			bottem d section		$\left \right $				
06.J	007	L		<u> </u>	ry rug variably miles with argillite. Local rug tull section	ه	<u> </u>				

ł

DIAMOND DRI L RECORD

24

PROPERTY <u>AD 10</u> Location		AD Length Bearing H. Comp Dip V. Comp Logged By				HOLE No. <u>90-2</u> Sheet <u>3</u> of Date Begun Date Ended Date Logged							
Foot	age	Meter	age	%		1	SAM	PLE		ASS	AY		
From	To	From	To Re	covery	DESCRIPTION		From	То	Width	Cu	Au		
	T				Med grained version is foliated with arean +								
	1				" aray matter seconated from each other by firthened						<u> </u>		
					red inica () diamica or gray, hocal			1			<u> </u>		
					Q + cc blacks with assoc pyrr + cpy								
224	234				Predominantly ma full with weak for development,								
					Malier area in cafer, no obvious red mica,								
					trav subhides (including cow). Most other								
					tull wants have the red thinge								
234	274				mixed full + angellite								
	EoH				-234-239 = tult (mg)								
ļ					-239- Ener Engillie								
					-241-2425 = tuff (mg)								
					-242.5-245 = argillite grading in to had down hate.								
					-245-249 = mg huff	L							
					-249-253 = argillite grading in to till some hole								
					-253-254 = mg tull								
					-254 - 257: assilide								
					-257-262 = mg tuff ; nanow fault zone at bottom con	tact							
					-262-266.5 = blackish brown angillike								
					* note: pytroy occurs in these "angillite" units	<u>_</u>							
					as tiny flattened flecks. Thereas Ilits could be real fig. to	q.							
					* note: py is common in cross-cutting conventets.				<u> </u>				
					- 266.5-271 = Fy to my tiff				ļ				
					-271-274 = vSa toff to angillite.								

•

1

Resmont Frequous Retals Corp. Custoner: Goldbar Resources - Andy Eably 7333 River Ed. Rane: Ladner, B.C. V4G 1E1 Address: 1065 Singh St. Kamloops, B.C. Date: 6112,98 376-2792 113190 Completed: Phone: 014: Nesmont # 12140 Connents:Head Sample from Drilled Product P 12140-1 G 12140-2 Quantity:48.05kg. 48.7kg. Float Fan/FilteDry/Clean Assay Crush Grind Frocess: 35 35 160 35 35 25 2 0.5 2 ! €.25 4 \$768.75 Equipment Hours: DirectionWeigh total ore, Split 24-Save, Split 40kg, Grind to 100% -200 mesh, Ploat, Collect tails, Pan, Filter, Dry, Conc & Fails, Size on pan tails, Bag. Assay Head, Pan Fails, Flot and Fan Concs. Analysis: Au oz. Au 0.003124 Quantity: 0.044 Tons/Kg. 40 Head: 0.071 oz (T)/Top Ploat Con 0.438 oz [T]/Top 0.000772 0.001815 Tons/Kg. 1.65 0.000245 Tons/Kg. 0.22313 Pan Conc 0.659 oz (f)/Ton 0.000164 2.039765 Tons/Kc. 36.15 Tails: 0.07 oz [f]/fon 0.002783 \$ Recovery: Hass Distribution: ş Gold Plost Conc: 24.72 Conc Ratio 1: 24.24 Ploat Conc: 4.13 0.56 5.26 Conc Ratio 1: 7.39 Pan Conc: Pan Conc: Pan Tails: 89.10 Pan Tails: 90.38 113.82 Slimes/Water Soluble Component"" Total: 4.94 Yotal: 100.00 1 0 grams +30 resb 0.00 Grind: 0 grams -30+60 mesh 0.00 0 grams -60+100 mesh 0.00 0 grams -100+140mesh 0.00 0.9 grams -140+200mesh 1.03 98.97 87.2 Total Sample Weight (g) g/Ton Total FLOTATION: Conditioner Reagents: Areo 250 C As needed grams 6.60 to k5 L. Conditioner FAT - ceil 150 Ball Mill CuSO4 -BH 50 2.20 рĦ 1.10 to 35 L Conditioner 8.35 3418A -cell 25 1.32 to -5 L Ball Mill Areo 209 BN 30 Comments:Hill time 2 hrs., Condition time .5 hrs., Ploat time .33 hrs. 0.5 Metallurgy floatation reagents br Grind, size fract hrs. ŵ. 5

0.5

Pinal Report

0855

Customer:		Nesmont Precious Retals Corp.	
Name:	- Goldbar Resources - Andy Bab	iy 7333 River Rd.	
Address:	1065 Singh St.	Ladner, E.C. V4G 1E1	
- 1	Kamloops, B.C.	Date: 6/12/90	
Phone:	376-2792	Completed: 7/4/90	
Ore:	Nesmont # 12140	2	
Comments:Head Samp F 12140-1	le from Drilled Product G 12140-2		
Quantity:48.05kg.	48.7kg.		
Frocess:	Crush Grind Float.	Pan/FilteDry/Clean Assay	
Equipment Hours:	0.5 2	i 6.25 3 4 (\$768.75	\rightarrow
DirectionWeigh tot: Collect t	al ore, Split 2‡-Save, Split 4 ails, Pan, Filter, Dry, Conc &)kg, Grind to 100% -200 mesh, Float, Tails, Size on pan tails, Bag.	
Assay nead	1, Pan Tails, Flot and Pan Con-	55. An	
Head A 0 02	02. 07 (T)/Top 0 6669	AU 8 Guantity, 6 044 Fors/Ko 40	CALC. HOAD 0.0322
Ploat Con 0.13	a oz (T)/Ton 0.0003	5 0.002695 Tons/Kg. 2.45	Alex
Fan Conc 0.2	loz (T)/Ton 0.0002	2 0.000825 Tons/Kg. 0.75	
fails: 0.02	5 oz (T)/Ton 0.0008	3 0.034155 Tons/Kg. 31.05	
Fectovery: Gold Ploat Cond Pan Conc: Pan Tails: Tctal:	 Kass Distribution: 34.68 Conc Ratio 1: 16 23.01 Conc Ratio 1: 3.1 88.21 122.89 Slimes/Water Science 	3 Float Conc: 6.13 7 Pan Conc: 1.88 Pan Tails: 77.63 Puble Component*** 14.38 Total: 100.00	
		٢	
	Grind:	6 grams +30 mesh 0.00 0 grams -30+60 mesh 0.00 0 grams -60+100 mesh 0.00 0 grams -100+140mesh 0.00 0.3 grams -140+200mesh 0.33 91.8 grams -200 mesh 99.67	
		52.1 19681 Semple Weigut (g)	
FLOTATION:	g/fon Tetal		
Enagents:Arec 250 C	As needed press	Conditioner	
FAX - ceil	. 150 6.60 to .5 1	Conditioner	
ри СОБОД -ВМ опроление	50 2.20 3 55 1.14 - 53	Canditanaa	
0.17 39185 -CE1	1 20 1.10 to .5 1	E CONVICIONET Dall Will	
Areo 200 E Compents:Mill time	A SO 1.32 to 15 2 brs., Condition time .5 bis	, Float time .33 hrs.	Bott Hours Juli
			Arrive

1

Hetallurgy floatation reagents hr = 0.5 Grind, size fract brs. = 0.5 Final Report = 5

-

.

Drill Hole: IF - 1.

International Focus

Supervised and spotted by: Andy Babie

This drill was drilled using a 2" star type percussion drill. Essentially a large air-track. The drill hole intersected a sequence of volcanic ashes, tuffs, lapilli tuffs and possibly pillowed volcanics. The pillows are porphyritic and are logged as porphyritic volcanic. They contain phenocrysts of augite as large as 1 cm. long. The composition of the volcanic sequence ranges from intermediate to basic. Minor sulphides (pyrite, chalcopyrite) are mainly associated with hairline veins that occur throughout the hole. Minor sulphides are also found disseminated in the core.

Due to the powdered nature of the drill cuttings visual logging of the core is difficult at the least. The samples were idividually panned and a note of the sulphide content was made also the water table was evident as a result of wet samples. NOTE: W Thompson was not at the site during the drilling, but was asked to log the samples after the holes were drilled. (Which is not standard proceedure).

0-05 ft	Casing
5-60 ft	Minor silvery sulphides (py-s)
60-70 ft	Significant bronze sulphides (py-b). 2%.
7ø-80 ft	1% py-s
80-90 ft	1/4% py-s
90-100 ft	1 1/2% py-s
100-110 ft	2% ру-в
110-120 ft	1 1/2% py-b. Samples wet to 160 ft.
120-150 ft	no samples recovered
150-160 ft	2% ру-Ь.

Minor chalcoprite was observed along with minor magnetite

Drill Hole: IF - 2.

International Focus

<u>Supervised and spotted by: Andy Babie</u> Logged By: W Thompson.

This drill was drilled using a 2" star type percussion drill. Essentially a large air-track. The drill hole intersected a sequence of volcanic ashes, tuffs, lapilli

tuffs and possibly pillowed volcanics. The pillows are porphyritic and are logged as porphyritic volcanic. They contain phenocrysts of augite as large as 1 cm. long. The composition of the volcanic sequence ranges from intermediate to basic. Minor sulphides (pyrite, chalcopyrite) are mainly associated with hairline veins that occur throughout the hole. Minor sulphides are also found disseminated in the core.

Due to the powdered nature of the drill cuttings visual logging of the samples is difficult. The samples were idividually panned and a note of the sulphide content was made also the water table was evident as a result of wet samples.

NOTE: W Thompson war not at the site during the drilling but was asked to log the samples after the holes were drilled. (Which i not standard proceedure).

Ø-10 ft Casing

10-100 ft Minor silvery pyrite (py-s).

80-100 ft The samples were oxidized with significant carbonate cuttings possibly indicating a fault zone. 90-100 ft The samples were wet indicating either that the fault zone affected sample recovery so water was added to assist in recovery or water was intersected in the dril hole. (All the samples to 200 ft were wet from 90 ft.) ft Significant bronze pyrite (py-b). Up to 2 1/2% py.

100-200 ft

110-120 ft....No sample. 150-160 ft....No sample.

minor magnetite and traces of cpy were observed in the samples throughout the lenght of the hole.

200 ft end of hole.

OCT 03 '90 10:03 CASMYN CORP. 416 847 0748

CASMYN Research & Engineering A division of Casmyn Corporation Mineral Processing & Environmental Specialists

October 2, 1990

Mr. Robert Fedun President International Focus Suite 910 Home Oil Tower 324 8th Avenue SouthWest Calgary, Alberta T2P 222

Dear Robert:

Re: Total Gold Determination Tests - Shumway Lake

We are pleased to report that the total gold determination tests for the first two holes from Shumway Lake have been completed.

Each sample was tested in accordance with the following procedure:

- (a) crushing to 10 mesh
- (b) fine grinding to over 80% minus 200 mesh in a closed system ball mill, in the presence of a 10 g/lit NaCN solution, maintained at a pH of 10.5 to 11. The continuous grind-leach method represents the most severe from of cyanidation. All coarse, fine and physically refractory gold is readily dissolved in cyanide as a result of the continuous liberation by attrition. Kerosene is added to the process to suppress the "gold-robbing" carbonaceous species in the ore
- (c) filtration at the end of the 72 hour leach cycle
- (d) analysis of the gold content of the solution phase by atomic absorption and the solids phase by fire assay
- (e) computation of the total gold content of the sample via a metallurgical balance

Table 1 shows a summary of the results. Table 2 presents the detailed test parameters for each sample.

A total of 20 sample splits were taken for acid treatment prior to leaching. The results will be available shortly. OCT 03 '90 10:04 CASMYN CORP.416 847 0748

Mr. Robert Fedun October 2, 1990 Page 2

Table 1 shows that there is a sporadic gold occurrence in the holes. The are substantial sections in each hole which appear to be barren with respect to gold. This is confirmed by both the low solution and solid residue assays. The higher grade sections in the holes should help in the development of a comprehensive exploration strategy. This is an aspect that I would like to discuss with you in further detail. A meeting with your geologists at that time would be appropriate.

As you can see, Hole #1 shows an interesting uptick in assays in the 193 to 208 ft sections. There is another one in the 266 to 276 ft section. Hole #2 shows a value of 0.011 oz/t in the 28 to 38 ft section. The 88 to 98 ft section also shows values. This is indicative of gold occurance closer to surface in the area where Hole #2 was drilled. Hole #2 also shows higher values in the 163 to 173 ft, 232 to 238 ft and 258 to 261 ft sections. This data at depth could indicate a relationship with the Hole #1 data at similar depths.

The percussion drilling samples are currently in process. We should be getting some results in the near future. Our experience with the Shumway Lake deposit indicates that there is gold present. We have encountered some fairly high values from this deposit. However, correct spotting of the drill holes (or surface trenches) is most important. Our grind-leach technique successfully overcomes the nugget effect in the sample. But, that is only one half of the battle!

Please give me a call after you have reviewed the enclosed data.

Yours very truly,

Amyn 5. Dahya, P.Eng. President

sc/asd

enclosures

ı

1

OCT 03 '90 10:04 CASMYN CORP. 416 847 0748

TABLE 1 : SUMMARY OF RESULTS

CLIENT : INTERNATIONAL FOCUS

1	CATC	CATC	1 1
SAMDLE NUMBER	HEAD	HEAD	COMMENT
	ACCAV	ASSAV	
		ADDAI	1 1
	1(9/2)	(02/)	1 . 1
		0 000	
1-022-034 SPT A	0.027	0.001	
1-022-034 SPT B	0.023	0.001	
1-022-034 SPT C	0.030	0.001	1
1-034-039 SPT A	0.034	0.001	
1-034-039 SPT B	0.168	0.005	1
1-039-049 SPT A	0.070	0.002	
1-039-049 SPT B	0.045	0.001	1
1-039~049 SPT C	0.041	0.001	1
1-039-049 SPT D	0.040	0.001	
1~039-049 SPT E	0.040	0.001	· ·
1-046-060 SPT A	0.036	0.001	
1-046-060 SPT B	0.035	0.001	
1-046-060 SPT C	0.035	0.001	
1-046-060 SPT D	0.035	0.001	1
1-046-060 SPT E	0.035	0.001	
1-060-070 SPT A	0.036	0.001	1
1-060-070 SPT B	0.050	0.001	
1-060-070 SPT C	0.037	0.001	
1-070-087 SPT C	0.026	0.001	
1-087-097 SPT A	0.038	0.001	
1-087-097 SPT B	0.033	0.001	
1-087-097 SPT C	0.124	0.004	
1-087-097 SPT D	0.045	0.001	
1-087-097 SPT E	0.056	0.002	
1-097-112 SPT A	0.029	0.001	
1-112-120 SPT A	0.203	10.006	
1-112-120 SPT B	0.236	0.007	
1-112-120 SPT C	0.257	0.007	
1-120-127 SPT A	0.028	0.001	J i
1-120-127 SPT B	0.000	0.000	AWAITING ASSAYS
1-127-140 SPT A	0.027	0.001	
1-127-140 SPT B	0.026	0.001	
1-127-140 SPT C	0.027	0.001	1
1-140-147 SPT A	0.036	0.001	
1-140-147 SPT B	0-036	0.001	
1-140-147 RDT C	0.036	0 001	
1-147-1KK CDM D	0.030	0.001	ł
1-147-186 800 C	0.026	0.001	1
1-156-166 60T A	0.025	0.001	
1-165-165 0F4 A	0.037	0.001	
4-194-103 SLI D	1 0.036	0.001	1

P.4

.

÷.

and the second second second

1

P.5

OCT 03 '90 10:05 CASMYN CORP.416 847 0748

TABLE 1 : BUMMARY OF RESULTS

CLIENT : INTERNATIONAL FOCUS

SAMPLE NUMBER	CALC. HEAD ASSAY (g/t)	CALC. HEAD ASSAY (oz/t)	COMMENT
1-156-165 SPT C 1-165-175 SPT A 1-165-175 SPT B 1-165-175 SPT C 1-175-183 SPT A 1-175-183 SPT A 1-175-183 SPT C 1-183-193 SPT C 1-183-193 SPT B 1-183-193 SPT C 1-189-196 SPT A 1-189-196 SPT B 1-189-196 SPT B 1-193-203 SPT B 1-193-203 SPT A 1-193-203 SPT A 1-203-208 SPT A 1-203-208 SPT C 1-208-217 SPT C 1-208-217 SPT C 1-208-217 SPT D 1-217-227 SPT A 1-217-227 SPT B 1-227-236 SPT A	0.030 0.026 0.028 0.028 0.053 0.053 0.053 0.046 0.035 0.035 0.039 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.030 0.043 1.083 1.033 0.043 1.083 1.033 0.043 1.033 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.045 0.045 0.020 0.035 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.035 0.020 0.020 0.020 0.020 0.020 0.020 0.035 0.039 0.020 0.0000 0.000 0.0000 0.0000 0.0000 0.000000	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.019 0.001 0.001 0.025 0.003 0.001 0.0000 0.00000 0.00000 0.000000 0.00000 0.00000000	AWAITING ASSAYS AWAITING ASSAYS AWAITING ASSAYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.028 0.026 0.028 0.046 0.027 0.040 0.183 0.065 0.039 0.000 0.032 0.030 0.435 0.397 0.477 0.047 0.045	0.001 0.001 0.001 0.001 0.005 0.002 0.001 0.001 0.001 0.013 0.012 0.014 0.001 0.001	AWAITING ASSAYS

. 18

,

1

1

с, UD

OCT 03 '90 10:06 CASMYN CORP.416 847 0748

TABLE 1 : SUMMARY OF RESULTS

CLIENT : INTERNATIONAL FOCUS

1	CALC.	CALC.	
	HEAD	HEAD	COMMENT
SAMPLE NUMBER	ACCAV	ASSAV	
	ABOAL	(07/+)	
	(3/ 5)	(02/ C)	
		0.001	
2-018-028 SPT C	0.043	0.001	
2-018-028 SPT D	0.051	0.001	
2-018-028 SPT E	0.046	0.001	
2-028-038 SPT A	0.121	0.004	
2-028-038 SPT B	0.365	0.011	
2-028-038 SPT C	0.042	0.001	
2-028-038 SPT D	0.042	0.001	
2-038-048 SPT A	0.038	0.001	
2-038-048 SPT B	0.037	0.001	
2-038-048 SPT C	0.037	0.001	
2-048-058 SPT A	0.043	0.001	
2-048-058 SPT B	0.031	0.001	
	0.035	0.001	
	0.047	0.001	
	0 049	0.001	
	0.023	0.001	•
	0.023	0.006	
	0.135	0 007	
	0.649	0.007	
	0.020	V 0 027	
2-088-098 8FT B	0.369		
2-088-098 SPT C	0.300		
2-098-108 SPI C	0.044	0.001	1
2-098-108 SPF D	0.053	0.002	
2-108-113 SFI A	0.039	0.001	1
2-108-113 SPT B	0.036	0.001	}
2-113-117.5 SPT A	0.036	0.001	1
2-113-117.5 SPT B	0,048	0.001	
2-117.5-129 SPT A	0.022	0.001	
2-117.5-129 SPT B	0.025	0.001	
2-129-136 SPT A	0.029	0.001	
2-129-136 SPT B	0.032	0.001	
2-136-143 SPT A	0.043	0.001	
2-136-143 SPT B	0.039	0.001	1
2-136-143 SPT C	0.044	0.001	
2-136-143 SPT D	0.000	0.000	AWAITING ASSAYS
2-143-153 SPT A	0.030-	0.001	
2-143-153 SPT C	0.036	0.001	
2-153-163 SPT A	0.027	0.001	1
2-151-163 SDM 0	0.030	0.001	
2-167-162 COM N	0.028	0 001	
6-100-100 DEL U	0.086	0.002	
6-T02-T12 25. 4	1 4.463	1 0.002	ŧ (

P.6

1

P.7

OCT 03 '90 10:06 CASMYN CORP.416 847 0748

.

TABLE 1 : SUMMARY OF RESULTS

CLIENT : INTERNATIONAL FOCUS

SAMPLE NUMBER	CALC. HEAD ASSAY (g/t)	CALC. HEAD ASSAY (o2/t)	COMMENT
2-163-173 SPT B 2-163-173 SPT C 2-163-173 SPT D 2-163-173 SPT D 2-163-173 SPT E 2-173-183 SPT A 2-173-183 SPT B 2-173-183 SPT C 2-183-189 SPT A 2-183-189 SPT A 2-196-208 SPT A 2-196-208 SPT C 2-208-216 SPT A	0.439 0.116 0.039 0.085 0.109 0.132 0.000 0.035 0.035 0.037 0.054 0.037 0.085 0.022	0.013 0.003 0.001 0.003 0.004 0.000 0.001 0.001 0.001 0.002 0.001 0.002	AWAITING ASSAYS
2-208-216 SPT B 2-216-224 SPT A 2-216-224 SPT B 2-216-224 SPT C 2-224-232 SPT A 2-232-238 SPT B 2-232-238 SPT B 2-232-238 SPT C 2-238-248 SPT A 2-238-248 SPT B 2-238-248 SPT B	0.030 0.029 0.034 0.110 0.035 0.081 0.424 0.045 0.061 0.023 0.027 0.035	0.001 0.001 0.003 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001	
2-248-258 SPT B 2-248-258 SPT C 2-248-258 SPT C 2-248-258 SPT D 2-258-261 SPT A 2-258-261 SPT B 2-261-274 SPT A 2-261-274 SPT B 2-261-274 SPT C ACID TREATED	0.038 0.038 0.042 0.478 0.321 0.035 0.046 0.024	0.001 0.001 0.001 10.014 0.009 0.001 0.001 0.001	AWAITING ASSAYS AWAITING ASSAYS
AW-1-060-070 SPT A1 AW-1-070-087 SPT A1 AW-1-070-087 SPT A2 AW-1-070-087 SPT B1 AW-1-070-087 SPT B1 AW-1-097-112 SPT A1 AW-1-097-112 SPT B1	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	IN PROGRESS IN PROGRESS IN PROGRESS IN PROGRESS IN PROGRESS IN PROGRESS IN PROGRESS

.

The not FUELOUUTE

- I

-

OCT 03 '90 10:07 CASMYN CORP.416 847 0748

TABLE 1 : SUMMARY OF RESULTS

____· •

CLIENT : INTERNATIONAL FOCUS

				ت بسر میا رو وی کی این کر این اس مدا می برد این این مد
		CALC.	CALC.	
SAMPLE NUMBE	R	HEAD	HEAD	COMMENT
	-	ASSAY	ASSAY	
		(a/t)	(oz/t)	
AW-1-097-112 S	PT B2	0.000	0.000	IN PROGRESS
AW-1-127-140 8	PT A1	0.000	0.000	IN PROGRESS
AW-1-147-156 S	PT AL	0.000	0.000	IN PROGRESS
AW-1-147-156 S	PT A2	0.000	0.000	IN PROGRESS
AW-1-156-165 S	PT AL	0.000	0.000	IN PROGRESS
AW-1-165-175 S	PT A1	0.000	0.000	IN PROGRESS
AW-1-208-217 S	PT A1	0,000	0.000	IN PROGRESS
AW-1-208-217 S	PT A2	0.000	0.000	IN PROGRESS
AW-1-208-217 \$	PT B1	0.000	0.000	IN PROGRESS
AW-1-208-217 S	PT B2	0.000	0.000	IN PROGRESS
AW-1-227-236 S	PT A1	0.000	0.000	IN PROGRESS
AW-1-236-246 5	PT A1	0.000	0.000	IN PROGRESS
AW-2-038-048 5	PT A1	0.000	0.000	IN PROGRESS
AW-2-068-078 S	PT AL	0.000	0.000	IN PROGRESS
AW-2-068-078 S	PT A2	0.000	0.000	IN PROGRESS
AW-2-078-088 S	PT A1	0.000	0.000	IN PROGRESS
AW-2-078-088 5	FT A2	0.000	0.000	IN PROGRESS
AW-2-098-108 S	PT A1	0.000	0.000	TN PROGRESS
AW-2-098-108 S	PT A2	0.000	0.000	IN PROGRESS
AW-2-098-108 S	PT B1	0.090	0.000	TN PROGRESS
AW-2-098-108 S	PT 82	0.000	0.000	TN PROGRESS
AW-2-108-113 S	PT AI	0.000	0.000	TN DROGRESS
AW~2-117.5-129	SPT C1	0.000	0.000	TN DDOCDESS
AW-2-117.5-129	SPT C2	0.000	0.000	TN PROGRESS
AW-2-129-136 S	PT C1	0.000	0.000	IN PROCRESS
AW-2-129-136 SI	PT C2	0.000	0.000	TH PROGRESS
AW-2-143-153 S	DT BI	0.000	0.000	TN DDOCREGG
AW-2-143-163 g	PT B2	0.000	0,000	TH PROURESD
AW~2~153-163 8	PT R1	0.000	0.000	TN DDOCDBCC
AW-2-153-763 S	DT R2	0.000	0.000	TH PROGRESS
AW-2-196-208 51	PT AI	0.000	0.000	IN PROGRESS
AW-2-208-216 81	וג דס	0.000		IN PROGRESS
AW-2-238-248 SI	DT A1	0.000		IN PROGRESS
AW-2-261-274 81	DT 11	0.000		IN PROGRESS
CONTROL		0.000		TH LKACKESS
C-1-208-217 SI	PTA	0.022	0,001	
C-1-208-217 S	PTB	0.022	0.001	
C-2-078-082 SI	PTÀ	0.073	0.001	(
C-2-098-108 SI	PTA	0.025	0.001	1
C-2~098-108 SI	PT B	0.027	0.001	ng in the second se
	/			

TABLE 2 : TOTAL GOLD TEST RESULTS

ŝ

CLIENT : INTERNATIONAL FOCUS

1

1			1	SAMPLE	50	UTIC	R.	sour	TION	150	LUTION	SOLDI	ton	SOLIDS	6010	GOLD	TOTAL		CALC.	CAL	Ċ.	1
i	SAPPLE BUNKE	R	Ì	NEIGHT	Į M	EJGHT	Ì	MET	GHT	A	SSAY	ASSA	Y	ASSAY	t N 🕴	IN	TOLD	L I	HEAD	Her	D	COMMENT
I	:		1		[PA	55 #1	p	PASS	#2	P.M	SS #1	PASS	#2	1	SOLUT ION	SOLIDS	1	1	ASSAY	ASS	AY	1
1			١	(9)	15	9)	ł	(9	2		(ppm)	(pp	m)	(ppb)	(2)	183	(9)		(1/2)	(02/	2)	i
		~ ~ ~ ~ ~	-1		· [- -	****		1							- + • • • • • •			}		
1			I		1		1			ł		1		1	1	[1	1				l
1	1-022-034 SP	t A	I	3178.7	1	4000	1			L	8.02	1		2	0.0001	0.0300	0.000	11	0.027	0.	001	1
1	1-022-034 SP	ТВ	1	3792.1	1	4000	1			1	0.02	1		2	0.0001	0_0000	1 0.000	n	0.023	0.	001	ł
1	1-022-034 SP	τc	1	2875.9	I	4000	ł			1	0.02	1		2	0.0001	6.0000	0.000	n	0.030	0.	001	Į.
1	1-034-039 SP	T A	1	1849_4	L	3000	1			1	0.02	1		2	0.0001	0.0000	0.000	n j	0.034	0.	001	l
1	1-034-039 SP	ΥB	1	1566_8	Ŧ	3000	1	1	000	l	80.0	0.	02	2	0,0003	0.0000	1 0.000	13	0.168	0.	005	1
ļ	3-739-349 SP	T A	1	2349.4	1	4000	1	1	000	1	0.02	j 0.	3 8	2	0.0002	0.0000	1 0.000	32	0.270	0.	200	•
1	1-039-049 SP	TB	1	2349.4	1	4000	1	1	000	!	4.02	j 0.	92	2	0_0001	0.0000	0.000	1	0.045	0.	001	1
1	1-039-049 SP	TC	I	2583,4	1	4000	1	1	000		0.02	1 0.	02	2	0.0001	0.0000	1 0,000	И	0.041	Į D.	001	1
1	1-039-049 sp	T D	I	2399,4	Ł	3500	1	1	000	Ł	0.02	[0.	02	2	0.0001	0.0000	0.000	11	0.040	0.	001	1
1	1-039-069 SP	T E	I	2387.4	1	3500		1	000	1	0.02	į 0.	0Z	2	0.0001	0.0000	0.000	1	0.048	0.	001	1
I	1-046-060 SP	¥ A -	ł	2409.4	1	3000	1	T	000	l	0.02	1 0.	02	3	0.0001	0.0000	1 0.000	1	0.036	0.	001	1
1	1-046-060 SP	TB	I	2349.4	Ł	3000	1	ļ	500	I	0.0Z	0.	02	5	0.0001	0.0000	0.000	n	0.035	0.	001	1
ŀ	1-046-060 SP	T C	1	2399.4	1	3000	1	1	000	1	0.02	0.	02	2	0.0001	0.0000	[0.000	ומ	0.035	1 0.	001	1
1	1-046-060 57	T D	1	2599,4	I	3000	Į	1	000	1	0.02	0.	02	2	0.0001	0.0000	0.00	n	0.035	0.	001	I
Ļ	1-046-060 SP	T E	1	2399.4	Ł	3000	1	1	000	1	0.02	0.	02	2	0.0001	0.0000	0.00	n i	0,035	0.	001	1
1	1-060-070 SP	T A	}	1186.7	1	2000				Ĺ	0.02	ł		2	0.0000	6.0000	1 0.000	0	0.036	1 0.	001	
1	1-960-070 57	T B	1	1676.3	1	4000	1			l	0.02	t		2	0.0001	0.0000	1 0_000)1 -	0.050	[0.	001	I
1	1-060-070 SP	T C		2258.1	I	4003	1			I .	0.02	i		2	0_0001	0.0000	1 0.000	И	0.037	į 0.	001	1
1	1-070-087 SP	T C	1	3466.0	t –	4000	1			1	0.02	i i		3	0.0001	0.9000	0.000)1	0.026	0.	0 D1	1
1	1-087-097 \$2	Т.А.	1	2249.4	1	3000	ł	10	000	1	0.02	[0.	.02	2	0.0001	0.0000	0.00	11	0.038	0.	001	1
1	1-087-097 SP	T 8	I	2249.4	I	3000	1		500		0.02	0.	.02	2	0.0001	0.0000	1 0.000	n	0.033	0.	001	i
1	1-087-097 SP	TC	Ī	2249.4		3000	ł	1	000	I	0.96	0.	02	1 8	0_0003	0.0000	1 0.000	B	0.124	0.	004	1
1	1-087-097 SP	t P	1	1849_4	I.	3000	1	1	000	l	0_02	1 0.	02	2	0.0001	0.0000	1 0-000	1	0_045	0.	001	1
ľ	1-057-097 \$9	T E	1	1487.6	1	3000	1	11	000	1	0.02	0.	92	2	0.0001	0.0000	0.000	1	0.056	0,	002	1
ł	1-097-112 SP	T A	ł	5922.8	Į.	8006	ł			1	Ø_02	l		2	0.0002	0.0000	0.00	12	0.029	0.	001	1

OCT 03 '90 10:07 CASMYN CORP.416 847 0748

ξ

נ ג ג

₹ L

C

ć

۲. vu

TABLE 2 : TOTAL GOLD TEST RESULTS

CLIENT : INTERNATIONAL FOCUS

7

.

i

1			SAMPLE	SOLUTION	SOLUTION	SOLUTION	SOLUTION	SOLIDS	6010	GOLD	TOTAL	CALC.	CALC.	s í
i	SANPLE	HUMBER	NEIGHT	HEIGHT	WETGHT	ASSAY	ASSAY	ASSAY	IR	IN	GOLD	HEAD	HEAD	COMMENT
I			1	PASS #1	PASS #2	PASS #1	PASS #2	1	SOLUTION	SOLIDS	l	ASSAT	ASSAY	I I
1			(e)	[(0)	(8)	(ppm)	(ppm)	(ppb)	(g)	(2)	F (@)	(s/t)	(oz/t)	E I
	- • • • • • • •							{			[
1	1-112-1	20 SPT A	3170.0	3000	1000	0_18	0_02	24	0.0006	0.0001	0.0006	0,201	0.006	
l	1-112-1	20 SPT B	3170.0	3000	500	0.22	0_03	15	0.0007	0.0000	0.0007	0.236	0.007	l I
1	1-112-1	20 SPT C	3170.0	3000	500	0.21	. 0.17	1 31	0.0007	0.0001	0.0005	0,27	0.007	
	1-120-1	27 SPT A	3116.8	4000	I	0.02		2	D.00 01	0.0000	0.0001	0.028	0,001	
ł	1-120-1	27 SPT B	3511.4	4000	1	I	I		0.8000	0.0000	0.0000	0.000	0,000	AMAITING ASSAYS
	1-127-1	40 SPT A	1616.2	2000]	1 0.02	I	2	0.0000	0.0000	0.0000	0.027	0.001	
	4 - 727 - 3	40 °P* 3	1205.7	4000	-	1.32	•		3,3001	9_0000	9.9001	9.926	0,001	
i	1-127-4	au spi c	3193.2	4000	l.	0.82	1	2	0.0001	0.000	0.0001	0.027	0.001	
I	1-140-1	47 SPT A	2349.4	3000	1000	0.02	0_32	2	0.0001	0.0000	0.0001	0.036	0.001	
I	1-140-1	47 SPT 8	2349.4	3000	1000	0.02	0_02	2	0.0001	0.0000	0.0001	0.036	D.001	
I	1-140-1	47 SPI C	2349.4	3000	1009	0.02	0_02	2	0.0001	0.0000	0.0001	0.036	0.001	
[1-147-1	56 SPT B	2706.8	4000	1	0.02	1	2	0.0001	0.0000	0.0001	0.032	0.001	1
	1-147-1	56 SPT C	3333.7	4000	1	0.02	1	2	0.0001	0.0000	0.0001	0.026	0_001	I [
1	1-156-1	65 SPT A	1387.2	2000	1	0.02		2	0.0000	0.0000	0.0000	0.031	0,001	I
1	1-156-1	65 SP18	2636.4	4000	I	0.02		Z	0.0001	0.0000	10.0001	1 0.032	0.001	l .
ł	1-156-1	5 SPT C	2819.7	4000	1	0.02	1	2	0.0001	0.0000	0.0001	0.030	0.001	I
l	1-165-1	75 SPT A	1691.0	2000	1	0.02	1	2	0.0000	0.0000	0.0000	0.026	0.001	1
1	1-165-1	75 591 9	3122.0	4000	1	0.02	1	2	0.0001	0.0000	1 0.0001	0.028	0_001	1
1	1-165-1	75 SP1 C	3060.6	4000	1	0.02	1	2	0.0001	0.0000	100010	0.025	0.001	I I
ł	1-175-1	83 SP1 A	1649.4	3000	1000	0.02	0.02	2	1000.0	0_0000	10001	0.051	0_001	1
1	1-175-1	83 591 8	1649.4	3000	1000	0.02	0.02	(2	0.0001	0.0000	0.0001	0.051	0_001	E i
•	1-175-1	83 SPT C	1503.4	3000	(. 500	0.02	[0.02	1 7	0.0001	0.0000	[0.0001	0.066	0_001	
1	1-185-1	93 SP1 A	3410.0	4009	1000	0.02	0.03	3	0.0001	0.0000	10.0001	0.035	0_001	1 1
1	1-183-1	93 SPT 8	3410.0	4000	10 00	0.02	J 0.04	4	0.0001	0.0000	100001	0.039	0,001	1 1
ł	1-183-1	93 SPT C	3410.0	4000	1000	0.02	0.01	2	1 0.0001	0.0000	0.0001	0.025	0_001	1
1	1-189-1	96 SPT A	3079.0	3000	1	t	1	1	0.0000	0.0000	0_0000	0.000	0.000	AWAITING ASSAYS

TABLE 2 : TOTAL DOLD TEST RESULTS

CLIENT : INTERNATIONAL FOCUS

1				I	SHIPLE	ţs	OLUTION	ı įs	iolan Ion	SOLUTION	SOLUTION	(SOLIDS	GOLD	GOLD	TOTAL	I	CALC_	ŧ	CM.C.	[1
Ī	SMPLE	NUMBER		Ì	VELCHT	1	WEIGHT	Ì	LEIGHT	ASSAY	ASSAY	ASSAY	1 2N -	1 13	COLD	İ	HEAD	İ	NEND	COMNENT	Ì
İ		:		I		1P	ASS #1	12	****	PASS #1	PASS #2	I	SOLUTION	SOLIDS	i	Ì	ASSAY	Ī	ASSAY	1	İ
İ				ſ	(a)	Ł	(2)	I	(a)	(ppm)	(ppm)	(Cppb)	()	(2)	(1)	10	g/t 3	ic	oz/t >	1	
Į				-1-		-1-		-		Į	}	1]]	1	-		- 1 -]	l
I	1-189-19	76 SPT	8	I	3079.0	t	3009	L		ł	{	Į	0.0000	0.000	0.0000	I	0_000	۱	0_000	AVAITING ASSAYS	l
1	1-189-15	76 SPT	3	ł	3079_0		3000	ł		l	1	1	0.0000	0_2008	0.0000	t	0.000	ſ	0,000	AWAITING ASSAYS	ł
1	1-193-21	15 SPT	A	1	2749_4	ł	4000		1000	0.02	1 0.02	3	0.0001	0.0000	0.0001	1	9.039	ł	0.001	1	I
1	1-193-20	13 SPT	B	1	2749.4	l	4000	ł	1000	0.40	0.02	50	0.0016	0.0001	0.0018	ł	0.539	1	0.019	1	l
i	1-195-20	ns spi	C .	1	2762.6	1	4000	I	1000	0.02	0.04	1 2	1 0.0001	0.0000	0.0001	1	0.045	I	0,001	I	Į
Ł	1-203-20	18 SP1	A	1	2000.0	1	2500		1000	0.73	0.3 3	7	0.0022	9.0000	0.0022	I	1.085	ļ	0.032	[l
Ł	1-203-20	DE SPT	8	I	2000_3	1	2500	I	2000	0.59	0.33	136	3. MAR	1.0703	, 07965.	Ţ	1_0 30	ţ	3,370	ŧ	2
1	1-203-21	98 SPT	C	i.	1909.5	i	2500	l	1000	0.51	1 0.25] 55] 0.0015	0.0001	0.0016	1	J.J64	ì	0.025	1	1
1	1-208-21	17 SPT	C	I	2249.6	t	3000	I		0_08		1 2	9,0092	0.0000	0,0002	ſ	0.109	i	9,903	1	Ĩ
1	1-208-21	1 7 SPT	D	ł	2149_6	I	3000	ſ	1000	50.0	0.02	1 2	0.0001	0.00 00	0.0001	ŧ	0,039	1	0.001	l .	I
ł	1-217-22	17 SPT	A	1	2859.8	l	4000	I		0.02	ł	1 5	0.0001	0.0000	0.0001	1	0.030	I	0_001	!	1
1	1-217-22	27 SPT	B	t	3890.0	1	4000	I		0.02	t	1 2	0.0001	0.0000	0.0001	I	0.023	ł	0.001	1	ł
1	1-227-23	56 SPT	8	ł	1729.3	ſ	2000	1	:	0-05	1	2	0.0000	0.0300	0.0000	Ì	0.025	Î	0.001	1	Ì
I	1-227-23	6 SPT		[3520.0	E	4000	ł	!	0_02	1	1 5	0.0001	0.0000	0.0001	İ.	0.028	Ì	0_001	1	ł
1	1-227-23	16 SPT	C	1	3361.2	ſ	4000	ŧ		0.02	1	1 Z	0.0001	0.0000	0.0001	Ĺ	0.026	Ì	0.001	1	ĺ
I	1-256-26	6 SPT	A	1	1533.8	1	2000	1		0.02	ſ	{ 2	0.0000	0.0000	0.0000	Ì	0.028	Ī	0.001	1	ĺ
ĺ.	1-236-24	6 SPT	8	1	3728.6	l	4000	Į.	I	0.02	ļ	25	0.0001	0.0001	3-000Z	1	0.046	Ì	0_001	}	ł
1	1-236-24	6 SPT	C	1	3225.3	I	4000	i		0.02	j	1 2	0.0001	0.0000	0.0001	Ē	0.027	t	0.001	1	l
1	1-266-25	ið spt	A	1	2369.4	I	3500	l	1000	0.02	0,02	1 2	0.0001	0.0000	0.0001	l	0_040	Ì	0.001	1	ľ
1	1-246-25	i6 SPT	8	1	2369.4	L	3500	ţ	1003	0.10	0.08	2	0.0004	0.000	0.0004	I	0.183	I	0.005	l .	1
1	1-246-25	ig spt	С	F	2369.4	I	3500	Ł	1000	0.02	0.08	1 2	0.0002	0.0000	1 0.0002	ŧ	0.065	ł	0,002	}	İ
2	1-246-25	ig spt	D		2407.2	Ł	3500	1	1000	0.02	0.02	2	0.0001	0.0000	0,0001	1	0.039	1	0.901	1	ł
1	1-256-26	ið spt	A	1	3318.6	ł	4000	I		1	1	1	0.0000	0.0000	0.0000	I	0.000	ſ	0.000	ANALTING ASSAYS	l
1	1-256-26	6 SPT	8	1	3468.5	Ł	4000	L		50-05	!	1 9	0.0001	0.0000	0.0001	I	0.032	ł	0.001	1	I
ł	1-256-26	ig spt	C	1	2823.8	I	4000	ł		0.02	1	2	0.0001	60000	0.0001	ł	0.039	4	0,001	1	l
1	1-266-27	76 SP T		1	2500.0	ì	2500	۱	1000	0.28	0.25	55	0.0010	0.0001	0,0011	ł	0.435	1	0.013	3	1

Š

ι

: TOTAL GOLD TEST RESULTS TABLE 2

: INTERNATIONAL FOCUS **CLIENT**

1	~	SAMPLE	SOLUTION	150LUTION	SOLUTION	SOLUTION	SOLIDS	0100	COLD	TOTAL	CALC.	CALC.	1
1	SAMPLE MURBER	MEIGHT	L NETCHI	HEIGHT	ASSAY	ASSAY	ASSAT	f in i	NI JR	ເພນ	HEAD	HEAD	COMMENT
1			PASE #1	PASS #2	PASS #1	PASS #2	t	SOLUTION	SOLIDS]	ASSAY	ASSAY	[
1			i(g)	(g)	(ppm)	(ppm)	(ppb)	(9)	(9)	[(g))(9/t)	(oz/t)	}
		1	1			1	1				1		
1	1-266-276 SPT B	2500.0	2500	1000	0.24	0.25	57	0.0009	0.0001	1 0.0010	0_397	0,012	5
ł	1-266-276 SPT C	2559.4	2500	1000	0.41	0.17	10	0.0012	0.0000	0.0012	0.477	0_014	l
ł	2-018-028 SPT A	2351.6	1 4000	1000	1 0.02	; 0.02	1 4	0.0001	0.0000	0.0001	0.047	0.001	1
1	2-018-028 SPT 8	2351.6	4000	1000	0.02	0.02	2	0.0001	0.0000	0.0001	0.045	0.001	
1	2-018-028 SPT C	2449.6	4000	1 1000	1 0.02	0.02	2	0_0001	0_8000	0.8001	0.043	0_001	1
	2-018-028 SPT D	1 1779.4	1 3009	1 1000	0.02	0.02	1 6	1 3.0001	0,3000	1 0.0001	0.051	2 0.001	
	2-010-028 SPT F	1 1854.2	3000	1000	56.1	9.02	1 2	1005.6	م درمین می می از ا م استفاد می می از ا	1 10004 1 100055	1.040	9.401	1
	2-0128-0138 SOT &	1 2199.4	i 3080	1000	1 0.08	0.02	3	0.0003	1 0.0000	0.0003	0.121	0.004	1
	2-028-038 597 8	1 2199.4	1 3000	1000	1 0.17	0.27	1 10	8000_0	0.0000	1 0.0008	0.365	0_911	1
	7-028-038 SPT C	1 2059.4	3000	1000	1 0.02	0.02	1 3	0.0001	0.0000	0.0001	1 0.042	} 0.001	l l
	2-028-058 SPT D	2069.4	3000	1000	1 0.02	0.02	3	0.0001	1 0.0000	0.0001	0.042	0.001	1
	2-020-008 SPT A	1123.2	2000	i	0.02	i	2	0.0000	0.0000	0.0000	0.038	0.001	1
-	2-038-048 SPE 8	2262.5	4000	;	0.02	i	1 2	0.0001	1 0.0000	0.0001	0_037	0.001	1
	2-030-040 JFT 6	2817 1	1 4000	1	0.02	i	1 2	1 0.0001	0.0000	0.0001	0.037	0.001	1
1	2-030-040 SPL 6	1 3/40 4	1 3000	1 500	0.02	0.08	1 2	0.0001	0.0000	0.0001	1 0.043	j 0 .001	1
		1 2440 4	1 3000	1 500	1 0.02	1 0.02	1 2	0,0001	0.0000	0.0001	0.031	0.001	
		1 2447 44	1 3000	1 2000	1 0.02	1 0.02	1 2	0.0001	0.0000	0.0001	0,035	0_001	1
	2-068-038 571 6	1 7740 4	1 4000	1 9000	1 0.02	0.02	1 4	10.0001	0.0000	0.0001	1 0.047	0.001	1
	2-035-068 591 8	1 2/02 8	1 4000	1 1000	1 0.02	1 0.02	1 6	0.0001	0.0000	0.0001	1 0.048	0.001	4
	2-030-068 SPI 8	1 3735.3	1 4000	1 1000	0.02	1	i 2	0.0001	0.0000	0.0001	0.023	0.001	1
	2-000-070 5P1 9	1 4320 L	1 3000	1 1000	0.08	6.02	2	1 0.0003	0.0000	0.0003	0.195	0.006	5
	2-010-000: 571 0	1 1144 5	1 3000	1 1000	1 0.05	1 0.02	2	0.0003	0.0000	9.0003	1 0.229	0.007	1
		1 2510 4	1 2500	1 1000	0.53	0.25	73	1 0.0016	0.0002	0.0018	0.698	1 0.020	1
-		1 2400 A	1 2500	1 500	0.75	0.50	78	0.0021	0.0002	0.0023	1 0.928	0.027	!
1		1 2588 4	1 2500	1 1000	0,31	1 0.08	1 50	1 0.0009	1 0.0001	0.0010	0.380	0.011	1
	2-000-095 371 0	1 1011 4	1 2000	1 1000	1 0.00	0.02	2	1 0.0001	1 0.0000	1 0.0001	0.044	0.001	1
	2-970-108 SPT C	1 1711-4	ູ້ລາກຄຸ	1 1000	1	- 1				•	•	-	-

TABLE 2 : TOTAL GOLD TEST RESULTS

CLIENT : INTERNATIONAL FOCUS

1

t			SANPLE		SOLUT ION	SOLUTION	SOLUTION	SOLIDS	{ GOLD	60LD	TOTAL	CALC.	CALC.	I
Ì	STIPLE	NUMBER	VEIGHT	MEIGHT	SEIGHT	ASSAY	ASSAY	ASSAT]]]]	214	GOLD	READ	HEND	CONHENT
Ì.			Ì	PASS #1	PASS #2	ipass in	PASS #2	1	SOLUTION	SOLIDS	1	ASSAT	ASSAY	1 1
1			(g)	(8)	1(g)	(ppm)	(ppm)	(ppb)	(3)	(2)	(g)	(s/t)	(oz/t)	1 1
1			*	1							•••••			{
1	2-098-10	B SPT D	1576.1	3000	1000	j 0.02	0.02	2	1000.0	0.0000	102020	0.053	0.002	1 1
l	2-108-11	3 SPT A	1087.1	2000	1	I 0.02	1	[2	0.0000	0.0000	0.0000	0_039	0.001	1 1
ł	2-108-11	3 SPT 8	2352.6	4000	1	9,02	1	2	0.0001	0.0000	0.0001	0.036	0_001	f i
1	2-113-117	LS SPTA	2349.6	3000	1000	0.02	0.02	[2	0.0001	0.0000	0_0001	0.036	0_001	1 1
I	2-113-117	15 SPT #	1728.2	3000	1000	0.02	0.02	2	0_0001	0.0000	0.0001	0,048	8.001	1 1
1	2-117.5-1	29 SPT A	4048.7	4000	1	0.02		2	§ 0.0001	0_0003	0.0001	0.022	3.001	1 0
1	2-117.5-1	29 SPT a	3546.7	4000	1	0.02	1	į 2	0.0001	9.0000	0.0001	0.025	1.301	: 1
I	2-129-13	6 SPT A	2934.8	4000	1	0.02	1	2	0.0001	0.0000	0.0 001	0.029	0.001	1 1
ł	2-129-13	6 SPT B	2684.0	4000	1000	0.02	1	2	0.0001	0.0000	0.0001	0.032	0.001	1 1
ł	2-136-14	3 SPT A	1969.4	3000	1000	0.82	0.02	2	0.0001	0.0000	0.0001	0.063	0.001	1 1
1	2-136-14	3 SPT B	2149_4	3000	1000	0.02	0.02] 2	0.0001	0.0000	1 0.0001	0.039	0.001	1
1	2-136-14	3 SPTC	1969.4	3000	1000	0.02	0.02	3	0,0001	9.0000	0.0001	1 0.044	0.001	1 1
F	2-136-14	3 SPTD	1899.4	3000	1 1000	1	1	ŧ –	0.0000	0.0000	0.0000	0.000	608.0	AWAITING ASSAYS
1	2-143-15	3 SPT A	3220.9	4000	1	0.02	1	1 5	0.0001	0.0000	1000.0	j 0.03 0	0.001	1 1
1	2-143-15	3 SPTC	3678.7	4000	1	0.03	l	2	0.0001	0.8000	0.0001	0.036	0.001	I I
1	2-153-16	3 SPT A	3281.6	4000	1	0.02	1	3	0.0001	0_0000	0.0001	0.027	0.001	1 1
1	2-153-16	3 SPTC	3019.9	4000	1	0.02	1	4	0.0001	0_0000	D.0001	0.030	6,001	1
1	2-153-16	3 SPT D	3172.2	4008	1	0.02	ŧ	3	0.0001	0.0000	0.0001	0.028	0.001	1 1
L	2-163-17	3 SPT A	2309.4	3008	1000	0.02	0.02	[51	0.0001	0.0001	0.0002	0.086	0.002	1 1
l	2-163-17	3 SPIB	2309.4	j 300 0	1000	0.33	0.02	2	0.0010	0.0000	0.0010	0.439	0.013	1
Ł	2-163-17	3 SP1 C	2309.4	3000	0001	0.05	0.02	3	0.0003	8.0000	2000.0	0.116	0.003	1 1
1	2-163-17	3 SPT 0	2149.4	3000	1008	50-0	9.02	2	0.0091	0.0000	0.0001	0.039	0.001	1
1	2-163-17	3 SPT E	952.1	3000	1000	50.0	0.02	2	0.0001	0.0000	10.0007	0.086	0.003	1
t	2-175-18	5 SPT A 1	3369.2	4000		0.09	t	2	0.0094	0.0000	0.0004	0.109	0.003	1 1
L	2-175-18	3 SPT 8	3139.4	4000	!	6_07	ł	43	0,0003	0.0001	0.0004	1 0.132	0.004	1 1
1	2-173-18	3 ѕартс	3726.6	4000	1	1	(1	9.0000	0.0000	0.0000	0.000	0,000	ANAITING ASSAYS

OCT 03 '90 10:10 CRSMYN CORP.415 847 0748

÷.

רחא ואהי אחשלטשמשןא

۲. IZ P. 13

														****************	-
		SIN	LE	SOLUTION	SOLUTION	(SOLUTION	SOLUTION	1501.10 5	0010	GOLD	TOTAL	CALC.	CALC.	1	1
1	SANPLE NUMBER	I VEIC	II.	WEIGHT	NETCHT	ASSAY	ASSAY	ASSAY	i ini	L KK	SOLD	MEAD	MEAD	COMMENT	1
		I		PASS #1	PASS #2	PASS #1	PASS #2	Ī	SOLUTION	SOLIDS	}	ASSAT	ASSAY	1	1
}		1 (9	>	(())	(8)	(ppm)	(ppm)	(ppb)	(9)	(2)	(9)	(=/1)	C oz/t)	1	1
					{		}						i		ł
	2-183-189 SPT A	2399	2.4	3000	1000	0.02	0.02	2	0.0001	0.0000	0.0001	9.035	0_001	ł	1
	2-183-189 SPT B	2399	-4	3000	1000	0.02	0.02	4	0.0001	0.0000	0.0001	0.037	0.001	1	1
ł	2-196-208 BPT A	1 1531	.2	2000	l	0.04	1	1 2	10.0001	0.0000	0.0001	0.054	0.002)
	2-196-208 SPT B	2637	.9	4000	1	0.02	I	7	0.0001	0.0000	0.0001	0_037	0.001	1	I
	2-196-208 SPT C	2901	.5	4000	1	80.5	1	2	0.0002	0.0000	0.0002	0.085	0.002	1	[
	2-208-216 SPT A	202	8.1	2000	1	0.02	1	2	0.0000	1 0.0000	9.0000	0.022	1 0_001		1
l	2-208-216 SPT B	3262	.1	4000	1	1 0.02]	5	1 0.0000	1.00	0. 07 0 *]] 37320] 3. 357	1	i
1	2-216-224 SPT A	2800	10	3000	500	0.02	0.02	4	0.0001	0.000	0.0001	0.029	0.001	1	1
}	2-216-224 SPT B	2500	.0	3000	1 1000	0.02	0.02	1 2	1 0.0001	0.0000	0.0001	0.034	0.001	1	
ĺ	2-216-224 SPT C	287	.5	3000	1 1000	0.02	0,20	20	0.0003	0_0001	0.0003	0_110	0.003	1	1
	2-224-232 SPT A	2399	7,4	3000	1000	0_02	0.02	2	0.0001	0.0008	1000.0	0.035	0.001	1	1
	2-224-232 SPT 8	2399	-4	3000	1000	0_02	0_08	23	0.0001	D.0001	0.0002	0.081	0.002	1	1
	2-232-238 SPT A	1849	.4	3000	1000	0.02	0.02	381	0.0001	0.0007	0.0008	0.424	0.012		1
!	2-232-238 SPT B	1 1845	.4	3000	1000	50.0	0.0Z	2	0.0001	0.0000	0.0001	0.045	0.001	1	I
	2-232-238 SPT C	1359	4	3000	1000	0.02	0.02	2	0.0001	0.0000	10.0001	0.061	0.002	1	I
	2-238-248 SPT A	1863		2000	1	0.02	1	2	0.0000	0.0000	0.0000	0.023	0.001	ŧ	L
	2-238-248 SPT B	3223	3.	4000	1	0.02	1	1 2	0.0001	0.0000	D.0001	0.027	0.001	1	Ł
	2-248-258 SPT A	2349	-4	3000	1003	0.02	0.02	1 2	100010	0.0000	0.0001	0.036	0.001	1	1
	2-248-258 SPT 8	2345	.4	j 3000	1000	0.02	0.02	[4	0_0001	0.000	1 0.0001	820.0	0.001	1	l
	2-248-258 SPT C	2265	1.4	3000	1000	0.02	0.02	2	1 0,0001	0.0000	0.0001	0.038	0_001	1	1
	2-248-258 SPT D	1995	4	3000	1000	0.02	0.02	1 2	0.0001	0.0000	0.0001	0.042	0_001	t	Į
	2-258-261 SPT A	1284	-0	1500	1000	0.35	0.02	54	0.0005	0.0001	0.0006	0.478	0.014	1	1
	2-258-261 SPT B	1280	.0	1 1500	1000	0.26	50.0	2	0.0004	0.0000	0.0004	0.321	0.009	Į	!
	2-261-274 SPT A	1465	1.5	2000	1	0.02	I	9	0.0000	0.0000	0.0001	0.036	0.031	1	Į
	2-261-274 SPT 8	3442	L1	200A 5	ł	0_04	1	1	0.0002	0.0000	2000.0	0.046	0.001	AUAITING ASSAYS	1
	2-261-274 SPT C	3265	.9	4000	\$	1 0,02	1	1	0.0001	0000.0	100001	1 0.026	0.001	AUAITING ASSAYS	1

CLIENT : INTERRATIONAL FOCUS

THELE 2 : TOTAL GOLD TEST RESULTS

007- 3-90 WED 8:51 OCT 03 '90 10:10 CASMYN CORP.415 847 0748

P. 13

P.14

TABLE 2 : TOTAL GOLD TEST RESULTS

OLIENT : INTERNATIONAL FOCUS

.

ł		(SANPLE	 SOLUTI O	N SOLUTION	SOUTION	SOLUTION	SOLIDS	GOLD	GOLD	TOTAL	CALC.	CALC.		1
I	SAMPLE NUMBER	[WEIGHT	WEIGHT	WE I GHT	ASSAY	ASSAY	ASSAY	IN	3M	GOLD	HEAD	KEAD	COMMENT	1
1		ŧ	PASS #1	PASS #2	PASS #1	PASS #2	1	SOLUTION	SOLIDS	1	ASSAY	ASSAY		1
1		[(g)	(g)	(2)	(ppm)	(ppm)	(ppb)	(9)	(g)	(9)	(g/t)	(oz/t)	l	1
ŀ		[• • - • • • • •	-										-1
I	ACID TREATED	}			ł	1	1	{	ļ	9			l	1
ł	AU-1-060-070 SPT A	it	1		[I	0.0000	0.0000	0.0000	I 1	0,000	IN PROGRESS	ł
ł	AW-1-070-087 SPT /	1 2517.1	2000	1	1	1	1	0.0000	0.0000	0.00000	0.000	0.000	IN PROGRESS	I
l	AN-1-070-087 SPT A	2 1996.2	2000	1	1	l	ł	0,0000	0.000	0.0000	0.000	0.000	IN PROGRESS	I
I	AN-1-070-087 SPT 8	1 2323.8	2000	1	1	ŧ	1	0.0000	0.0000	0.0000	0.000	0.000	IN PROGRESS	I
1	AN-1-070-087 SPT E	2 2518.5	2000	1	1	[0.0000	0.0000	0,0000	0.000	0.000	IN PROGRESS	-
I	AN-1-097-172 SPT #	11	1	1	1	1	1	0.0000 (9,0000	0.0000	4	9,000	IN PROGRESS	ľ
ŧ	AN-1-097-112 SPT 8	1 1820.0	2000	1	1	i)	0.0000	0.0000	0.0000	1 0.000	J.000	14 PROGRESS	ł
ł	AN-1-097-112 SPT 8	2 1353.6	2000	1	1	2	1	0_0000	8,0000	0.0000	0.000	0,000	IN PRODRESS	1
ł	AW-1-127-140 SPT /	1]	1	1	1	1	9.0000	0.0000	0.0000	1	0.000	IN PROGRESS	1
ļ	AV-1-147-155 SPT /	1 1768.2	2000	1		1	l	0_0000	0.0000	0.0000	0.000	0.000	IN PROGRESS	1
ŧ	AV-1-147-156 SPT /	2 1064.6	2000	1	1	1	!	0.0000	0.0000	0.0000	0.000	0.000	IN PROGRESS	1
I	AV-1-156-165 SPT A	1	I	l		1	ļ	0.0000	9.0000	0.0000	1	0_000	IN PROGRESS	1
ł	AV-1-165-175 SPT A	1	I	1	1	1	1	0.0000	0.0000	0.0000	1	0_000	IN PROGRESS	ł
ł	MI-1-208-217 SPT A	1 455.6	1000	ł	1	1	ł	0.0000	0.0000	0.0000	0.000	0.000	IN PROGRESS	1
Ł	M-1-208-217 SPT A	2 473.9	1000	1	1	l	Į	0.0000	0.0000	0.0000	0.000	0,600	IN PROGRESS	ł
1	AM-1-208-217 SPT 8	1 466.0	1000	1	1	1	1	0.0000	0.0000	0.0000	0.00	0.000	IN PROGRESS	1
ł	AV-1-208-217 SPT 8	2 474.5	1000	1	1	1	I	0.0000	0.0000	0.0000	0.000	0.000	IN PROGRESS	ł
I	AV-1-227-236 SPT A	1	1	1	I	1	1	0.0000	0.0000	0.0000	1	0.000	IN PROGRESS	1
1	AV-1-236-246 SPT A	1	1	1	1	1	I	0.0000	9.0000	0.0000	1	0.000	IN PROGRESS	1
1	AV-2-038-048 SPT #	s (1	1	I .	1	1	0.0000	0.0000	0.0000	1	0.000	IN PROGRESS	1
1	MI-2-068-078 SPT A	1 1879_7	2000	1	1	1	1	0.0000	0.0000	0_0000	0.000	0.000	IN PROGRESS	1
ł	MI-2-068-078 SPT A	2 1968_2	2000	1	1	1	t	0.0000	0.0000	0.0000	0.000	0_000	IN PROGRESS	1
ł	AN-2-078-085 SPT A	1 457.1	1000	t	I	1	1	0.0000	0.0000	0.0000	0,000	0.000	IN PROGRESS	1
1	AV-2-078-088 SPT A	Z 465.3	100 0	E	1	1	1	0.0000	0,0000	0.0000	0.000	0.000	IN PROGRESS	I
Ł	AV-2-098-108 SPT A	1 460_4	1000	I I	1	1	1	0.0000	0.0000	0.0003	0.000	0.000	IN PROGRESS	I

OCT 03 '90 10:11 CASMYN CORP.416 847 0748

ç

(

ć

י ר ג

() [

.

1211 1141

P.15

יריה אדא היי

ξ

OCT 03 '90 10:12 CASMYN CORP.416 847 0748

1 DA INV. HUVEUGOGIH

r. 10

P.16

TABLE 2 : TOTAL GOLD TEST RESULTS

CLIERT : INTERNATIONAL POCUS

	SAMPLE NUMBER	SKOPLE VENGRT	(SOLUTION VEIGHT	Solution Height Mass #2	(SOLUTION ASSAY MASS #1	(SOLUTION ASSAT PASS #2	SOL FDS ASSAY 	(201.0 IN SOLUTION	GOLD IN SOLIDS	TOTAL GOLD	CALC.	CALC. HEAD ASSAY	i Conhent	1
Ī			(0)	(2)	(ppra)	(ppm)	(ppb)	(1)	(9)	(8)	(g/t)	(oz/t)	1	1
1							Į							-]
1	AH-2-098-108 SPT A2	467.7	1000	1	1	J	E .	0.0000	9.0000	0.0000	0.000	0.000	IN PROGRESS	Ì
1	AN-2-098-108 SPT 81	463.7	1000	1	4	!	I	0.0000	0.0000	0.0000	10.000	0.000	IN PROGRESS	ł
l	AV-2-098-108 SPT 82	455.8	1 1008	1	1)	i	0.0000	0.0000	0.0000	0.000	0.000	IN PROGRESS	1
l	AV-2-108-113 SPT A1	1	1	1	ł	1	l	0.0000	0.0000	0.0000	1	0.000	IR PROGRESS	1
l	AN-2-117.5-129 SPT C1	1514.3	2000	t	1	1	1	0.0000	8_0000	0.0000	0.000	0.000	IN PROGRESS	I
۱	#1-2-117.5-129 SPT C2	1710.0	2000	1	1		ł	0.0000	0.0000	0.0000	0.000	0.000	IN PROGRESS	1
1	AN-2-129-136 SPT C1	1447.5	2000	ļ		1		0.0000	9.0000	3 3,9000	3,300] 3. 200		i
I	AN-2-129-136 SP1 C2	1883.0	2000	1	1	1	1	0.0000	0_0000	0.0000	0.000	0.000	IN PROGRESS	1
l	AH-2-143-153 SPT 81	1837.4	2000	1	1	I	1	0.0000	0.0000	1 0.0000	0.000	0.000	IN PROGRESS	Į
Į	AN-2-143-153 SPT 82	1 1527.6	1 2000	1	t i	I	1	0.0000	6,0000	0.000	0.000	D.000	IN PROGRESS	I
I	AV-2-153-163 SPT \$1	1693.4	2000	ł	1	I	1	0.0000	0.0000	0.0000	0_800	0.000	IN PROGRESS	l
1	AH-2-153-163 SPT 82	1341.1	2000	1	l	1	1	0.0000	0.0000	0.0000	0.000	0,000	IN PROSNESS	1
l	AH-2-196-208 SPT A1	t	1		I	1	I	0.0000	0.0000	0.0000	l	1	IN PROGRESS	l
1	AU-2-208-216 SPT A1	1	1	1	1	1	}	0.0000	0.0090	0.0000	Į	!	IN PROGRESS	
1	AN-2-238-248 SPT A1	1	l	[1	1	1	0.0000	0.0090	0_0000	1	1	IN PROGRESS	
I	AN-2-261-274 SPT A1	1	1	1		1	1	0.0000	0.0000	0.0000	1	l	IN PROGRESS	1
1	C-1-208-217 SPT A	1000_8	1000	1	0,02	1	2	0.0000	0.0000	0.0000	0-055	9,601	1	I
1	C-1-208-217 SPT B	1008_8	1000	1	0.02	1	1 2	0.0000	0.0000	0.0000	0_022	0.001	1	l
l	C-2-078-082 SPT A	1000_0	1000	1	0.07	1	3	10.0001	0.0000	0.0001	0.073	0.002	1	1
	C-2-098-108 SPT A	862.6	1 1000	1	0.02	1	2	a.2000 [4_0000	0.0000	0.025	(0_001	1	1
ł	C-2-098-108 SPT B	785.1	1000	1	0.02	1	1 2	0.0000	0.0000	0.0000	0.027	0.001	1	1