REPORT

1990 EXPLORATION PROGRAMMES

GAB 11 & 12, MON 1 & 2, WEI AND ZEL MINERAL CLAIMS

ISKUT RIVER AREA

LIARD MINING DIVISION

NTS: 104B15W

Latitude: 56°50'N

Longitude: 130°56'W

for

SUB-RECORDER RECEIVED		
FEB - 7 1991		
M.R. # \$		

BRYNDON VENTURES INC. 1340 Tower 1, Scotia Place 10060 Jasper Avenue Edmonton, Alberta T5J 3R7 Telephone: 403-423-3661

LOG NO: Jub 13/91	RD.
ACTION:	
FILE NO:	

by

Brian D. Game, Bsc. & Chris J. Sampson, P.Eng.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Vancouver, B.C. 31 November 1990 20,928

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 216

CONTENTS

1. SUMMARY AND CONCLUSIONS 2. RECOMMENDATIONS AND COST ESTIMATES	1 6
 3. INTRODUCTION 4. PROPERTY: 4.1 Location 4.2 Access 4.3 Topography 4.4 Climate 4.5 Claim Details 	8 10
5. HISTORY 6. REGIONAL GEOLOGY	12 15
6.1 Stratigraphy 6.2 Intrusive Rocks 6.3 Mineral Deposits	
7. EXPLORATION OF THE BRYNDON/SEA GOLD CLAIMS	18
7A <u>1990: Exploration Programmes</u> 7A1 General	18
7A2 North Grid: Geochemical Sampling, Mapping, Trenching, C 7A3 Sampling: Skarn Zone, Rust Shear, Boulder Train, and W 7A4 Arseno Sulphide Zone: Trenching and Drilling 7A5 Airborne Geophysics	Geophysics 7. of Arseno
78 <u>Property Geology</u> 7B1 North Grid 7B2 Gulf Minerals Northwest Zone 7B3 Arseno/Sulphide Zone 7B4 Boulder Train 7B5 Other Areas	23
8. REFERENCES	34 38
9. CERTIFICATES 10. COST STATEMENT FOR ASSESSMENT WORK CREDITS	40
LIST OF FIGURES	ollows Page
1. Location Map	8
2. Claim Map	10 15
3a. Regional Geology 3b. Simplified Regional Geology	15
3c. Stratigraphy	15
3d. Schematic Stratigraphy Column 3e - Geology Map of Forrest Kerr Map Sheet	15

3e. Geology Map of Forrest Kerr Map Sheet 3f. Schematic Stratigraphic Sections for Forrest Kerr Map Area 3g. Sketch of Gulf Mineral North West Zone 18 18

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

CONTENTS - Cont'd

4. 5.	Geology Map - North Grid Detailed Geology - North Grid	In	Pocket
6.	Trench Plan - BRY TR90-4 North Grid		u
7.	Soil Geochemistry Au, Cu, Ag Results - North Grid		65
8.	Soil Geochemistry Pb, Zn Results - North Grid		44
9.	Detailed Geology - Arseno/Sulphide Zone		н
10.	Trench Plans - Arseno/Sulphide Zone		11
11.	Arseno/Sulphide Zone - Drill Hole X Sections		11
	(116)		
	(11c)		
	(11d)		
	(11e)		
12.	Property Geology and Sample Location Maps (1:5000) 12a North Sheet 12b South Sheet		u
APPE	INDICES		
-			
1.	Petrographic Analyses		
2.	North Grid		
	Geochemical Soll Analyses		
3.	Sampling Programmes		
	J.I JKarn Lone		

- 3.2 North Grid
- 3.3 Arseno/Sulphide Zone 3.4 Rust Shear Zone 3.5 Boulder Train

- Drill Logs: Arseno/Sulphide Zone and Assays 4.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

1. SUMMARY AND CONCLUSIONS

- 1. Bryndon Ventures Inc. hold the 120 unit Gab 11 & 12, Mon 1 & 2, Wei and Zel mineral claims under an option agreement with Sea Gold Resources Inc.
- 2. The claims are situated in the Iskut River district of northwestern British Columbia. This area has undergone extensive exploration for gold deposits during the past several years and two gold mines, the Cominco-Prime Snip mine, which is expected to commence production at 300 tons per day in January 1991, and the Prime (formerly Calpine and Consolidated Stikine Silver) Eskay Creek deposit. There are in addition numerous other gold deposits such as the Inel, Kerr, Sulphurets, which are at advanced stages of exploration.
- 3. Access to the Iskut River area and to the Bryndon/Sea Gold claim group in particular is currently by means by fixed wing aircraft to either the Bronson Creek or Forrest Kerr airstrips and then by helicopter to the property, or by helicopter from Bob Quinn Lake or Bell 2 on the nearby Stewart-Cassiar highway.
- 4. The B.C. Government, in partnership with Cominco and Prime, is currently building an access road to the district which will initially service the Eskay Creek and Snip deposits. Completion of this access road in 1991 should substantially reduce the cost of exploration in the district.
- 5. Bryndon field crews carried out programmes of prospecting, trenching, geological mapping, geochemical soil sampling, magnetometer and UTEM ground geophysics, and diamond drilling on the Bryndon/Sea Gold claims during the 1990 field programme. 106 kms of airborne Dighem Mark IV and magnetometer geophysics was flown over the central part of the claim group.

.../2

- 6. The claim group is underlain by Mississipian and Permian volcanics and sediments which have been intruded by Jurassic monzonites, syenites and diorites. The property is crossed by several major faults, the principal one of which is the McLymont fault, which strikes approximately 030 and is considered to be the western boundary fault of the Newmont Lake Graben (see figure 3e).
- 7. Five known areas of gold showings occur on the property from north to south as follows:
 - a. Skarn Zone on Matterhorn Mountain
 - b. North Grid area immediately adjoining Gulf Minerals North West Zone
 - c. Arseno/Sulphide Zone
 - d. Rust Shear Zone
 - e. Boulder Train

The 1990 exploration programmes explored each of these areas, as follows:

a. The Skarn Zone, on the west side of Matterhorn Mountain is situated in terrain which is too steep for geochemical sampling or geophysics. Geological mapping and grid sampling of the area would need to be done by experienced mountaineers using rock climbing equipment. Exploration in 1990 was thus limited to grab sampling of accessible showings within the Skarn Zone. One sample assayed 2.085 oz/ton gold, others yielded 0.123 and 0.356 oz/ton gold.

b. North Grid area. A grid with 045 trending base line and 100 or 200 metre spaced cross lines, depending on local topography, was laid out in the northeast corner of the Gab 12 claim. Geological mapping, prospecting, geochemical soil sampling, UTEM and magnetometer ground geophysical surveys were done on this grid in an attempt to locate extensions of the Gulf Minerals North West zone which is situated less than 200 metres east of the edge of the grid area. Core from Gulf's 1987, 1988, and 1989 drilling programmes was examined with the Gulf

2

personnel, and also the showings that were exposed by Gulf during the course of the season. The Gulf North West zone appears to be of a vein and manto type, i.e. a principal feeder shear zone cuts through underlying Mississipian volcanics (unit Mv) and replaced and mineralizes a sequence of alternating Mississipian limestones and siltstones (units Mc, Detailed mapping of the North Grid area indicates that the Mss). Bryndon/Sea Gold ground is underlain in this area principally by the Mississipian volcanic sequence, which on the eastern part of the Grid area contains mineralized fractures and alteration, related to the main feeder zone of the Gulf system. Unfortunately, however, the overlying limestones and siltstones do not appear to occur on the North Grid in the vicinity of the mineralized feeder zone and thus deposits similar to the Gulf Minerals North West zone are probably not present on the Bryndon/Sea Gold North Grid.

The Arseno/Sulphide Zone, which is situated in the centre of the c. property, was covered by small grid with 25 metre spaced NW/SE lines, and the geology mapped in detail. A series of trenches were blasted over known showings, which were further explored by drilling 7 holes totalling 2095 feet. The showings consist of two principal mineralized shears which strike 030 and dip vertically. They vary in width from a few centimetres to up to 1.5 metres, and contain varying amounts of quartz veining with pyrite, arsenopyrite and chalcopyrite, which can be locally massive. The situated in Mississipian siltstones and volcanic shear zones are The zones are surrounded by areas of intense wall rock conglomerates. alteration (principally carbonates) for up to 10 to 15 metres on either side of the zone.

Extensive cross faulting is present and this caused considerable difficulties with the drilling, leading to abandonement of two holes, 90-5 and 90-7, before they had reached their targets. The best intersection was in hole 90-6, which intersected 88.39 to 90.59 m. (i.e. 2.5 metres or 7.3 feet, which assayed 0.148 oz gold). The Mississipian limestone unit (Mc) which is the host rock for the Gulf Minerals North West zone is seen

3

SAMPSON ENGINEERING INC. 2695 West, 11th Avenue Vancouver, B.C., V6K 216 in outcrops to the southwest of the Arseno/Sulphide Zone and it is quite probable that this unit underlies the Arseno/Sulphide showing. The 1990 drilling shows that the Sulphide Zone is widening at depth at least in the vicinity of hole 90-6.

d. The Rust Shear Zone, which is situated in the south central part of Gab 12 claim consists of a zone of intense carbonate alteration, containing numerous stringers and veins of ankerite, developed along a major fault sub-parallel with the McLymont fault. Pervasive carbonate alteration has generally destroyed the original country rock textures, but in some places fragmental textures indicate that the host rock is the polymictic volcanic conglomerate (Mcg). Mineralization consists of fine grained pyrite and arsenopyrite within iron carbonate veins, which generally strike 270, dip south and vary in width from a few centimetres to 50 cms. Because of the very rugged local topography, it was not possible to grid, map or sample the zone in a systematic manner, but some grab samples were collected from the various carbonate stringers, one of which assayed 0.116 oz per ton gold.

e. The gold bearing boulder train, situated between the Arseno/Sulphide Zone and the eastern boundary of the property was prospected and sampled during the 1990 field programme. The work identified presence of three principal types of gold bearing sulphide boulder:

A. Massive sulphide or Sedex type, the origin of which is unknown

B. Arsenopyrite-pyrite-chalcopyrite-quartz vein material, which resembles the mineralization seen in the Arseno/Sulphide zones

C. Arsenopyrite and pyrite in veins in carbonate altered country rock, which resembles mineralization seen in the Rust Shear Zone.

The type A boulders, range in composition from pyrite to pyrite+ arsenopyrite, to pyrite+ arsenopyrite+ chalcopyrite to pyrite with varying amounts of sphalerite and galena. The sphalerite and galena rich boulders contain appreciable amounts of silver but only low gold values. It was not certain from results of sampling the boulders in 1987 and 1988 whether the gold values which had been obtained in those programmes which ranged as high as almost 3 oz per ton were in the Sedex type boulders or in boulders of the B and C type. Attempts were therefore made during the 1990 field season to locate boulders from previous sampling programmes and also sample the Sedex type boulders extensively. These sampling programmes established that some of the Sedex type boulders, which carry visible chalcopyrite and arsenopyrite are indeed rich in gold. Values up to 1.663 oz/ton gold were obtained from boulders of this type.

The massive sulphide (Sedex) type boulders were traced up the valley on the south side of Glacier A and up the valley containing the Rust Shear They do not occur in the Boulder Train further to the northwest Zone. of this area, and are apparently derived from a source underneath the ice field which occupies the 350 metre diameter corrie above the Rust Shear Zone valley. Because this ice field contains numerous crevasses, it was not possible to carry out programmes of ground geophysics, but an airborne VLF-EM and Mag survey consisting of 106 line kilometres on a grid using 100 metre spaced NW/SE lines was flown by Dighem Surveys over this area on 24 August 1990. The helicopter mounted survey used a transmitter (Bird) at 30 metres above the ground. Dighem indicated that this system should pick-up massive sulphide conductors at 80 to 100 metres below the Bird, i.e. this survey would be penetrating 50-80 metres below ground surface, but unfortunately no electromagnetic responses were detected in the area of the ice field. The depth of ice is not currently known, and it is possible that below the ice field the bedrock surface is beyond the range of the airborne VLF-EM survey equipment. The survey did locate one strong magnetic anomaly in the northern part of the ice field. Dighem have indicated that this could represent the source of the massive sulphide boulders, but it is at sufficient depth to be beyond the detection range of the VLF-EM equipment.

Type B and C boulders closely resemble mineralization seen in the Arseno/Sulphide Zone and Rust Shear zones respectively and are considered to be derived from these particular zones.

2. RECOMMENDATIONS AND COST ESTIMATES

1. Skarn Zone

10 days mapping and sampling by mountaineering geologists	\$
10 days field work at \$1000 per day 10 days accomodation at \$250 per day Analyses, assays, etc.	10,000 2,500 500 7,250
Travel, freight, etc.	4,750

25,000

50,000

150,000

2. North Grid

Drilling 3 holes on geochemical anomalies A and B	
3, NQ holes 100 m. each, 50° dip (price includes board set ups, helicopter, accomodation for drillers, fuel, core boxes - based on 1990 drill costs) -	
300 m. at \$45 (per foot)	45,000
Geological Supervision - 12 days at \$250/day Assays, accomodation, field supplies	3,000 2,000

3. Arseno/Sulphide Zone

Deep drilling of gold bearing structures

3, NQ holes, 75° dip, total 900 m.
at \$45/ft. (price includes board set ups, helicopter, accomodation for drillers, fuel, coreboxes - based on 1990 costs)
Geological supervision - 15 days at \$250/day
Accomodation, travel, etc.
Analyses, assays, field supplies

4. Sedex Boulder Train

In order to locate the source of this boulder train, programmes of ground geophysics comprising deep penetrating E.M. (such as UTEM) ground radar (to measure ice depth) and magnetometer should be run over the ice field above the Rust Shear Zone.

6

Since the ice field is 400 m. diameter, geophysical lines at 50 m. spacing would be 500 m. length i.e. 10 lines at 500 m. or 5 kms. coverage, which would take approximately one week.

If these programmes are successful, a follow-up programme of diamond drilling from set-ups on the ice field would be done.

One week UTEM, ground radar and Magnetometer	\$30,000
Accomodation Travel, freight, etc.	5,000 5,000
	\$40,000
Diamond drilling would be approx. 900 m. at similar cost to Arseno/Sulphide Zone drilling, i.e.	<u>\$150,000</u>
TOTAL: SEDEX BOULDER TRAIN	<u>\$190,000</u>
TOTAL FOR ALL FOUR AREAS GEOLOGICAL SUPERVISION AND REPORT	\$415,000
PREPARATION AT 108	<u>45,000</u>
	<u>\$400,000</u>

7

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

3. INTRODUCTION

Bryndon Ventures entered into an option agreement with Seagold Corporation late in 1989, concerning the Gab 11 & 12, Mon 1 & 2, Wei and Zel claims, which are situated on the west side of Gulf Mineral's McLymont Creek property in the Iskut River area of northwestern British Columbia. Work by Pamicon Development on behalf of Seagold Corporation in 1986, 1987 and 1988 had located five areas of gold showings on the property, as follows:

- 1. A gold bearing skarn zone in the northeast corner of the Mon 2 claim.
- 2. Fracture filling mineralization in the northeastern corner of the Gab 12 claim, immediately adjoining the Gulf Minerals northwest zone.
- 3. The Arseno zone, consisting of gold bearing fracture filling mineralization situated in the west central part of the Gab 12 claim.
- 4. The Rust Shear Zone in the south centre of the Gab 12 claim.
- 5. A boulder train containing both massive sulphide and other sulphide bearing boulders, many of which contain gold, which trends approximately east-west across the southern part of the Gab 12 claim.

A two phase programme was planned for 1990. Phase 1 was to establish line grids, and carry out ground geophysical surveys, such as UTEM and Mag, geochemical soil sampling, geological mapping and prospecting in order to define targets for the Phase 2 programme of drilling, which was to be carried out in the latter part of the season.

The work was done under the overall supervision of Chris J. Sampson, P.Eng. with much of the field work, core logging, etc. handled by Brian D. Game, BSc.

8

R.W.R. MINERAL GRAPHICS LTD.

The phase 1 work programmes were operated out of Kodiak Camp on the Iskut River. Field personnel supplied by International Kodiak Resources carried out programmes of boulder train sampling, pitting, blasting, and geochemical soil sampling. UTEM and Mag surveys were done by personnel from S.J. Geophysics.

The phase 2 programme, which consisted of diamond drilling (by J.T. Thomas) of the Arseno/Sulphide Zone was based out of Kestrel Resources Forrest Kerr Camp since it is closer to the property and helicopter time was thus reduced.

During the course of the field season, visits were made by the writers of this report to various other properties of significance in the district, notably the Gulf Minerals McLymont property, where the core and showings comprising the Northwest Zone were examined, and also Skyline Explorations Johnny Mountain Cold Mine, the geology of which bears some resemblance to the type of fracture filling mineralization found in the Arseno/Sulphide Zone. In addition, various exploration personnel from other companies active in the district visited the property during the course of the field season. Among these were Victor Jaramillo, the geologist currently in charge of the Gulf Mineral's McLymont property; Ian Patterson of Cominco who has been responsible for their exploration programmes on the Formore, where Cominco are trying to locate the source of a massive sulphide boulder train which shows similarities to the boulder train present on the Bryndon-Seagold ground; Don Penner who is in charge of technical matters for the group of companies of which Seagold is part; Elmer Deboc, prospector, who was responsible for the discovery of the boulder train and other showings on the property, and was also the discoverer of the boulder train which lead to the discovery of the Gulf Mineral's Northwest zone on the McLymont property, and H. Neville Rhoden, vice-president of Minerex, a noted international consultant, with broad experience of sedimentary exhallative massive sulphide deposits.

The writers wish to thank the various personnel of International Kodiak particularly John and George Nicholson and Tim Termuende, Kestrel Resources - Ian Hagaemon, Robin Forshaw, Stu Tennant and Lex Wohlers, our helicopter pilot from Northern Mountain for the excellent service and assistance they provided during what was a most enjoyable field season.

4. PROPERTY

4.1 Location

The claim group is located 115 kms north of Stewart, B.C. and 100 kms northeast of Wrangell, Alaska on the eastern edge of the Coast Range mountains. The two glaciers which cross the property are the source area for McLymont Creek which is a subsidiary of the Iskut River. There are no highways in the area. The closest road is the Stewart-Cassiar Highway 37. Bob Quinn Lake on the Stewart-Cassiar highway is approximately 45 kms northeast of the property. Bob Quinn is used as a convenient staging point for supplies and personnel trucked up from Smithers or Terrace.

The closest air strips to the property are those at Bronson (which services the Snip deposit and Skyline Johnny Mountain Mine), situated 17 kms to the south of the claim group, and the Forrest Kerr strip of Kestrel Resources, situated 12 kms to the northeast. Coordinates of the claim group are 56°50'N latitude and 130°56'W longitude. The claims are in the Liard Mining Division.

4.2 Access

The B.C. Government, in partnership with Cominco and Prime, is currently constructing a highway into the Bronson Creek/Iskut area which will service the Snip and Eskay Creek mines. It will also facilitate further exploration of the currently closed Johnny Mountain Mine area. It is possible that at some future date a branch road may be built from the new highway into the McLymont Creek area, but this would mean crossing the Iskut River and would require construction of a major bridge. It is likely, therefore, that access to the property will remain for many years, as it is currently, by helicopter from either the Bronson or Forrest Kerr airstrips. Scheduled flights operate from Smithers and Terrace, using a variety of fixed wing aircraft to the Bronson strip.

4.3 Topography

The claim group is in an area of rugged terrain, which ranges in altitude from a low point of 680 metres on Glacier B (on the southern part of the Gab 11 claim) to a high point of 2020 metres on top of the mountain (named the Matterhorn by field staff), situated in the northeast corner of the Mon 2 claim.

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver B.C. V6K 2L6

Σر ...

.

Prepared by: RWR MINERAL GRAPHICS LTD.

The property lies on the eastern side of one of the largest ice fields in northwestern British Columbia, which is approximately 25 kms in diameter. Two glaciers (designated A and B) which are derived from this ice field flow across the central and southern part of the property, dividing it into two islands of rock. Only the southern facing slopes of these two areas carry developed soils and vegetation, such as grasses, shrubs and stunted evergreen trees. The uppermost part of the two areas and north facing slopes consist of rock outcrops, steep bluffs and areas of scree or boulder moraine. Northern slopes are usually steeper than south facing slopes. Much of the top of the broad ridge, which is situated between the two glaciers, is covered by an old ice field, containing numerous crevasses.

The country is crossed by steep sided ravines, developed along faults and shear zones. These ravines effectively prevent running lines for ground geophysics. Ground geophysics can thus only be done successfully on the top of the ridge between the two glaciers, and would need to be done in spring when the crevasses are sealed by snow.

4.4 Climate

Due to the northern location of the property, the elevation and proximity to the coast (Wrangell on the sea coast of Alaska is only 100 kms to the southwest) the area experiences relatively moderate temperatures in both winter and summer, but precipitation is in excess of 200 cms, much of which falls as snow during the period October through May. Geological mapping, prospecting, geochemical soil sampling, etc. can thus only be done during the period mid-June to mid-October on the lower, south facing, slopes. On northern facing slopes, such exploration programmes are restricted to shorter periods (depending on elevation).

4.5 Claim Details

Claim <u>Name</u>	Record <u>Number</u>	No. of <u>Units</u>	Record Date	Expiry
Gab 11	3825	20	December 22, 1986	December 22, 1991
Gab 12	3824	20	December 22, 1986	December 22, 1991
Mon 1	3940	20	March 20, 1987	March 20, 1992
Mon 2	3941	20	March 20, 1987	March 20, 1992
Wei	3942	20	March 20, 1987	March 20, 1992
Zel	3943	20	March 20, 1987	March 20, 1992

120

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

11

5. HISTORY

The first recorded exploration work in the Iskut region occurred in 1907 when a prospecting party from Wrangell, Alaska staked 9 claims north of Johnny Mountain. The Iskut Mining Company subsequently worked Crown granted claims along Bronson Creek and on the northern slope of Johnny Mountain. By 1920 a 9 metre adit had explored a series of veins and stringers, hosting galena and gold-silver mineralization.

In 1954, Hudson Bay Mining & Smelting located the Pickard showing and high grade gold-silver-lead-zinc float on the upper slopes of Johnny Mountain which today forms part of the Skyline property.

During the 1960s, several major mining companies conducted helicopter borne reconnaissance exploration programmes in searches for porphyry-coppermolybdenum deposits. Several claims were staked on Johnny Mountain and on Sulphurets Creek.

Between 1965 and 1971, Silver Standard Mines and later Sumitomo worked the E & L prospect on Nickel Mountain at the head waters of Sulphurets Creek. Work included trenching, drilling and 460 metres of underground development. Quoted reserves include 3.2 million tons of 0.8% nickel and 0.6% copper.

In 1969, Skyline Exploration staked the Inel property after discovering massive sulphide float originating from the head of Bronson Creek glacier.

During 1972, Newmont Mining carried out field programmes west of Newmont Lake on the Dirk claim group. Skarn mineralization was the exploration target. Work consisted of airborne and ground magnetic surveys, geological mapping and diamond drilling. 1.5 metres grading 0.220 oz gold per ton and 15.2 metres at 1.5% copper was intersected at the Ken showing.

12

In 1980, DuPont Canada Exploration staked the Warrior claims south of Newmont Lake on the basis of a regional stream sediment survey. In 1983, Skyline Exploration and Placer Development optioned the Warrior claims from Efforts were directed at sampling and extending several narrow DuPont. guartz-pyrite-chalcopyrite veins with values ranging from 0.1 to 3 oz per ton Geophysics and coincident geochemical values indicated a significant gold. strike length to the mineralized structure. The Warrior claims were allowed to lapse in 1986 at which time Gulf International Minerals Limited acquired the McLymont claims covering much of the same area. Gulf International Minerals has carried out major programmes of diamond drilling (in 1987, 1988, 1989, 1990) on the original gold vein showings (now called the Camp Zone) located on McLymont Creek in the centre of the claim group and on the Northwest zone which is situated in the northwest corner of the McLymont claims immediately adjoining the Bryndon/Sea Gold ground.

In 1986, drilling and 460 metres of underground development on the Stone House gold zone at Skyline's Johnny Mountain property confirmed the presence of high grade gold mineralization with additional values in silver and copper over mineable widths. Production at the property commenced in August 1988, but the mine closed due to exhaustion of reserves in August 1990. During the two year period of production the mine produced 255,000 tonnes grading 0.55 oz/tonne gold (personal communication Dave Yeager, senior geologist).

Other significant gold prospects in the district have undergone extensive drilling and underground test work in the past 3 or 4 years. These include the Inel deposit which was explored initially by underground drifting and diamond drilling in 1987. Further underground exploration and drilling was carried out in 1988 and in 1990 under the direction of Gulf/Avondale.

Western Canadian Mining Corporation in 1987 tested the Khyber Pass massive sulphide showing on their Gossan claims in the Iskut area and in 1988 did drilling on the Kerr project which is a copper-gold-porphyry deposit in the Sulphurets Camp, just to the southeast. This property was subsequently purchased by Placer Dome, who carried out extensive exploration programmes on the property in 1990.

On the Cominco-Prime Snip claims immediately north of the Johnny Mountain property extensive programmes of drilling and underground exploration were carried out in 1987, 1988 and 1989 leading to a production decision in July 1990, whereby the mine is to commence production at an initial rate of 300 tonnes per day in January 1991 with annual gold production exceeding 93,000 troy ounces gold and a capital cost of \$65 million.

The mine is based on a diluted ore reserve of 936,000 tonnes grading 30 grammes of gold per tonne (0.87 oz/ton) with minor silver and copper values. Gold values will be recovered in bullion form from a gravity separation circuit (40%) and in a sulphide flotation concentrate (48.5%). The concentrate will be shipped offsite to a custom smelter for recovery of the contained gold, silver, and copper values.

The other future major producing gold mine in the area is the Eskay Creek project which was explored by several programmes of surface diamond drilling in 1988, 1989 and 1990 under the direction of Calpine Resources/Consolidated Stikine Silver. Major intersections in 1988, such as C88-6 which intersected 96.5 feet grading 0.73 ounces per ton gold, were overshadowed by hole 109 drilled in August 1989. This reported a 682 foot section which assayed 0.875 oz/ton gold and included a 200 foot section assaying 2.877 oz/ton gold. Preliminary ore reserve calculation and feasibility studies were carried out during the winter of 1989-90. Subsequent programmes of further surface drilling, underground exploration and drilling have established a current reserve figure of 4.36 million tons grading 0.77 oz/ton Au, 29.12 oz/ton Ag (at a cutoff grade of 0.10 oz/ton Au - Northern Miner 24 September 1990).

BAMPSON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 216

6. **REGIONAL GEOLOGY**

6.1 Stratigraphy

The Bryndon/Sea Gold claims are situated on the west side of Forrest Kerr map area (Logan at al, 1990) and are underlain by rocks which form part of the Stikine arch (figure 3) which is located on the boundary between the Intermontaine and Coast Tectonic belts of British Columbia. The Stikine terrain consists of a series of mid Paleozoic to Mesozoic island arc successions, which are in turn overlain and partially interfingered by middle to late Jurassic sediments of the Bowser Basin (figure 3).

Our present understanding of the geology of the Iskut-Stewart area has resulted from the work of many geologists from both the Geological Survey and B.C. Department of Mines, such as McConnell (1911), Schofield and Hanson (1922), Hanson (1929), Grove (1986) and more recently Alldrick and Britton (1988) and Alldrick et al (1989) plus numerous other workers. The present understanding of Mesozoic stratigraphy in the Iskut River area has been summarized by Anderson and Thorkelson (1990). Since their paper is concerned with Mesozoic stratigraphy, the reader is referred to Grove (1986), Britton et al (Unuk Map Area, 1989), Logan et al (Geology Forrest Kerr Creek area), and Britton et al (Snippaker map area, 1990), for details of the mid to upper Paleozoic island arc successions in the Iskut district.

The Stikine assemblage of northwestern British Columbia (Monger 1977) includes Paleozoic rocks of early to middle Devonian, Mississipian and Permian age (Pitcher 1960, Logan and Koyanagi 1989, Anderson 1989, Read et al 1989). In the Forrest Kerr map area Logan et al (1990) divided the Paleozoic-Stikine assemblage into an eastern and western assemblage. The eastern assemblage occupies a north trending belt west of the Forrest Kerr fault as well as small inliers east of the fault. Rocks in this belt young southwards. In the north is a metavolcanic package (Pmv) ranging from middle Devonian to early Mississipian age (Read at al 1989). This is overlain southward by a metasedimentary (Pms) and siliclastic package of early Permian age, cut by Permian platformal limestones (Pc). Early Permian metatuffs and interbedded limestones (Ptc) outcrop east of Forrest Kerr fault. The western assemblage is

15

SAMPSON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 2L6

Prepared by: RWR MINERAL GRAPHICS LTD.

Prepared by: RWR MINERAL GRAPHICS LTD.

- 7. SNIP
- 4. STONEHOUSE

Approximate orientation for stratigraphic transect

3C: STRATIGRAPHY FROM ANDERSON AND THORKELSON, G.S.C.PAPER 90-1F pages 131-139

Prepared by: RWR MINERAL GRAPHICS LTD.

well exposed north of the Iskut ice field and Newmont Lake and separated from the eastern assemblage by a Jurassic composite plutonic body. Mississipian reefal limestone (Mc) and underlying pillowed basalt (Mv) are the oldest known rocks. A polymictic volcanic conglomerate (Mcg) separates Mississipian limestone (Mc) from lower Permian limestones (Pcl). Intermediate volcanics (Pvb); a medial limestone (Pc2); and felsic tuffs (Pvt) comprise the uppermost section. The western assemblage rocks are not penetratively deformed, not metamorphosed and the limestones are rarely recrystalized.

The Mesozoic stratigraphy in the Iskut River map area starts with the bimodal or intermediate to mafic upper Triassic Stuhini group volcanics which change to basinal dun felspathic greywacke and siltstone to the east and northeast. The upper Triassic Stuhini group grades into lower Jurassic Hazelton group near Treaty Creek.

The Hazelton group comprises 3 heterogeneous volcanogenic formations. Unuk River formation composed of andesitic breccia, tuff and marine siliceous siltstone is the oldest. Heterogeneous maroon to green volcanic conglomerate breccia and greywacke of the Betty Creek formation overlie it and this is in turn overlain by the youngest member of the Hazelton group, the Mount Dillworth formation, which consists of felsic tuffs and tuff breccias, and represents an important regional marker representing the climactic volcanic event of Hazelton volcanism.

The Hazelton group is in turn overlain by Lower Middle Jurassic Salmon River formation (of Bajocian age) which is divided into three facies: the eastern Troy Ridge facies consists of siliceous shale and tuff turbidite; the Medial Eskay Creek facies of felsic and mafic pillowed lava, shale and limestone that hosts the Eskay Creek deposit; and a speculative western facies (Snippaker, Mountain Facies) of andesitic, calcalkaline volcaniclastic rocks.

The middle and upper Jurassic Bowser Lake group facies overlies the Salmon River formation. Pencil shale generally occurs at the base of the Bowser Lake [•] group along the Bowser River, but between Mount Dillworth and Troy Ridge basal greywacke and shale turbidite form the basal beds. These grade up section to pencil shales and siltstones. The majority of the Bowser Lake group consists, however, of a monotonous sequence of middle and upper Jurassic greywacke and shale with some rare felsite quartz and chert bearing pebble conglomerates.

6.2 Intrusive Rocks

Intrusive rocks are common throughout the Iskut River area and have recently been extensively K-Ar dated by Anderson and Bevier (1990). They summarized their findings as follows:

Late Triassic (213-226 M.A.) Early Jurassic (189-196 M.A.) Middle Jurassic (175-180 M.A.) Tertiary (44-62 M.A.)

Plutonism is widespread in the Iskut River map area. Mesozoic plutonism accompanied late Triassic (Stuhini group), early Jurassic (Hazelton group) and middle Jurassic (Salmon River formation, Eskay Creek facies) volcanism. The regional green schist facies metamorphic events (Alldrick et al 1987) seems to have had minimum effect on horneblende and biotite dates from the Mesozoic plutons.

6.2 Mineral Deposits

The precious and base metal veins which have todate been either explored or mined in the area occur at various levels within the stratigraphy. The Kerr, Doc, Inel, Snip and Stonehouse (Johnny Mountain) deposits occur within the upper Triassic Stuhini groups and are principally hosted within sediments. The Premier and Sulphurets deposits are hosted in the lower Jurassic rocks; Eskay Creek deposit is in rocks of the middle Jurassic Salmon River formation. For many deposits, e.g. Premier, Kerr, Inel and Snip proximity to early Jurassic calcalkaline to alkaline plutonic and porphyritic intrusions, especially the alkaline felspar porphyry variety (Premier porphyry) seems to be the main control. The host strata are apparently of secondary importance. An important exception is the Eskay Creek deposit. It appears to be strata bound within the siliceous to limey sedimentary rocks and pillowed lava sequence of the Eskay Creek facies of the Salmon River formation. The back arc basin environment inferred for the Eskay facies rocks may be important in localization of Eskay Creek type precious metal mineralization.

7. EXPLORATION OF THE BRYNDON/SEA GOLD CLAIMS

7A. 1990: Exploration Programmes

7A.1 General

The geology of Bryndon/Sea Gold claim group had been mapped on a reconnaissance basis at 1:10,000 scale by Pamicon personnel in 1988 (Todoruk 1988). During the 1990 field season Bryndon field crews ran a line grid (the North grid) over the northern part of the Gab 12 claim in the area immediately adjoining the Gulf Minerals Northwest zone. Original plans were to cover the ridge situated between glaciers A and B with a grid with NW/SE trending lines at 200 metres spacing. This line grid would have been used for collecting geochemical soil samples, UTEM and magnetometer geophysics and geological mapping. The north part of the ridge was found to have very steep slopes and is crossed by steep sided ravines formed along the McLymont, Boundary and Rust Shear zone faults and other lesser fault structures. Much of the top of the ridge is covered by an ice field and thus the attempt to construct a grid was abandoned as impractical. Reconnaissance geological traverses were made along the north slope of the ridge, on the ridge top and also in the area of the Skarn zone developed on the slopes of the «Matterhorn» in the northeastern corner of the Mon 2 claim. Unfortunately, the only airphoto coverage which was available for the first part of the field season was enlargements taken from old B.C. Government coverage of the area which was 20 years out of date and of little use in locating outcrop in the Plans were therefore made for Eagle Mapping to carry out an airborne field. photographic survey which would provide detailed colour photography at 1:10,000 scale from which 1:2,500 scale enlargements could have been used in Unfortunately, the weather did not stabilize sufficiently in the field. September to permit this survey to be carried out and the photography is not therefore available. It was however established that Gulf Minerals had flown similar photography in August 1988 along flight lines paralleling the McLymont fault. This photography had covered the Skarn zone, North grid,

LEGEND	PALEOZOIC	131'00
QUATERNARY	Pqd DEFORMED HOMHBLENDE QUARTZ DIORITE	57'00
Oel TIL ALLARDA	UNKNOWN	Ny Ny I Jo
STRATIFIED ROCKS	A ALTERED DIORITE	My June 1 June 1
MIDDLE TO UPPER JURASSIC BOWSER LAKE GROUP		MV AND
JBP SLITSTONE, SANDSTONE, MINOR CONGLOMERATE		
JURASSIC		MV - Pyb
Ju UNDATOED VOLCANICS AND SEDIMENTS		MV Mc1 MV Pc1/ June June June June June June June June
JTW SILCEOLS WACKE, TUFF, CONGLOMERATE		MV
JMD PALOW BASALT, BRECCH FLOWS, SELCEOUS SEDMENTS		Mcg
LIPA SHULE, SANOSTONE, LESSER LIMESTONE, TUFF		Pc1
UPPER TRIASSIC STUHINI GROUP		My And And
UTINA MARCON AND GREEN EPICLASTICS, AUGITE AND PLAGOCLASE-PHYRIC VOLCANC BRECCIAS		Pet
UTRYP DARK GASEN PLAGOCLASE-PHYRIC FLOWS		
UTAVE GREY-GREEN APHANTIC TUFF		Mcg Newmont Lake
UTW TUFFACEOUS WACKE, ANGELITE, LIMESTONE, CONSLOMERATE WITH LIMESTONE CLASTS, PLAG OCLASE FOR PHYRITIC ANDESITE		Mto Io Pvo // Mc1
MIDDLE TRIASSIC		
mins Chasonaceous chicareous si tstone		Mcg
		Pc1 Mcg
		PM ISTA Jo
		Mtp Mcg Pu Pc2 Pg
WESTERN ASSEMBLAGE		S VISION 44/1 Cash / 2
PM FELSC WEDED THE VOLCANC SMOSTONE AND SETSTONE REVOLTE FLOWS		Mict AL ABUT PYDY AMCO
PC2 THINLAMMUTED, GREY ALGAL LIMESTONE		Jd Jd
PVD INTERMEDIATE TUPE AND EPICLASTICS, MARDON LAWR, BRECCIA FLOWS		Mcg / Lk.Syncline Jg
PC1 MEDIAN-BEDDED BIOCLASTIC LIMESTONE WITH CHEATY INTERBEDS		PU Mrs Volument
MISSISSIPPIAN		PROPERTY VIII VIII CON
MIP SETSTONE, SANDSTONE, TURBOITES, LESSER LAPILLI TUFF		2 7 Mtp?/
MCT POLYNECTIC VOLCANIC CONGLOMERATE		JeJm Jelm Jg Worthow
MC1 INTERAEDOED SUCEOUS SUTSTONE AND UMESTONE, THICK BEDDED CANNODAL CALCULATION		- Jung
MV PELOW BASALT, HYALOCLASTITE, ASHFILOW FELSC TUFF		
EASTERN ASSEMBLAGE		
PERMIAN		Verrett
PIC INTERMEDIATE TO MARIC META-TUFF, THIN-BEDDED LIMESTONE AND METASEDIMENTS		
PC MEDIAN-BEDDED BIOCLASTIC UMESTIONE		Pmv /
PERMIAN AND OLDER		et V et l
Pms SLICEOUS TURBIOITES, PHILLITES, LESSER CHERTY TUFFS		56'45 MV Prod IDC /
MAPE TO FELSE METAVOLOWICS, METASEDIMENTS, LIMESTONE LENSES		Scale (kilome
LOWER DEVONIAN		2 1 6 1 2
LIMESTONE, SUCCOUS TUFF		
INTRUSIVE ROCKS		
CRETACEOUS AND YOUNGER (?)		
KP PLAGOCLASE QUARTZ POAPHIRY		
JUBASSIC		
Jam OLARIZ MONZONTE		
Jd HORNBLENDE DORTE HOANNI ENDE CHIMETE DORTE		
EARLY JURASSIC		
	-	

Prepared by: RWR MINERAL GRAPHICS LTD.

3f: SCHEMATIC STRATIGRAPHIC SECTIONS FOR THE EASTERN AND WESTERN PORTIONS IN THE FOREST-KERR MAP AREA.

(FROM LOGAN et al BCDEMR GEOLOGICAL FIELD WORK 1989, PAPER 1990-1 pages 127-139)

3g: SKETCH OF GULF MINERALS NORTHWEST ZONE (FROM H.NEVILLE RHODEN AUGUST 1990) Arseno/Sulphide zone and most of the ice field on top of the ridge. Gulf Minerals gave permission to release this 1:10,000 scale photography to Bryndon and enlargements at 2:2,500 were made. Unfortunately, these arrived too late in the field season to permit location of outcrops in the field using this accurate photography. Detailed study of the geology of the claim group was thus limited to mapping the North grid and Arseno/Sulphide area, and studies of the Rust Shear zone, Boulder Train and a few other localities.

Due to problems with snow cover the field season did not start until early It finished at the end of September. The phase 1 programmes which Julv. consisted of geochemical soil sampling, geological mapping, rock chip sampling, Boulder Train sampling, UTEM and magnetometer geophysics and blasting and trench sampling were done in July and the first half of August, by field crews operating out of Kodiak camp situated on the Iskut River, close to the confluence with Forrest Kerr Creek, using a Hughes 500 helicopter from Northern Mountain Helicopters. Geophysical work was contracted by S.J. Geo-Drilling, blasting, trench sampling, geochemical soil sampling and physics. boulder train sampling was done by personnel supplied by International Kodiak Resources under the field supervision of Brian Game, BSc and Chris J. Descriptions of the programmes carried out on each of the Sampson, P.Eng. target areas is as follows:

7A.1 <u>North Grid Geological Sampling, Mapping, Geophysics and Trenching</u> During the first two weeks of July 1990, a base line trending 045 was cut across the northeast corner of the Gab 12 claim and cross lines either at 200 or 100 metre spacing, depending on topography, were cut across the area. Most of this area is south facing mountain slopes and poorly developed soils are present which support some vegetation mostly grasses, heather and shrubs but some stunted trees are present. Outcrop is extensive, permitting fairly detailed mapping of the grid area to be done during the latter part of July. The results of the mapping programme are discussed in Section 7B.

> SAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 2L6

Also in late July geochemical soil sampling was done where possible. A total of 102 samples were collected, and sent to Min-En Laboratories in North Vancouver for analysis by ICP for six elements: silver, arsenic, copper, lead, antimony and zinc and for gold by wet geochemical digestion and analysis by AA Unit. Statistical analyses of the results were also carried out by Min-En Laboratories assuming a log normal distribution. Results are shown in Appendix 2. Results for arsenic and antimony showed no anomalous values at all. Results for gold, copper and silver are plotted on Figure 7; results for lead and zinc are shown on Figure 8. Distribution of gold, silver and copper values indicate the presence of an anomalous area designated A, which trends approximately east-west across the eastern part of line 5N and line 6N. Field examination of the location of this anomaly indicates that it probably derives from float which had come downslope from the Gulf Minerals Northwest zone. The anomaly occurs in a steep gulley, in which outcrop is sparse and gives no clue to the reason for the anomaly. The anomaly could be derived from a faulted offset of the Gulf Northwest zone.

During 11 July to 18 July, S.J. Geophysics did approximately 8 days magnetometer and 5 days UTEM survey over the North grid. Results of this survey are given in a separate report. Following the UTEM coverage of the Bryndon/Sea Gold North grid, S.J. Geophysics carried out orientation surveys over the Gulf Northwest zone. These successfully indicated the presence of the mineralization and UTEM surveys were then carried out over other parts of the Gulf property. The UTEM coverage of the Bryndon/Sea Gold North grid did not locate conductors of significance despite proximity of this area to the Gulf Northwest zone (see figure 4).

Late in July a blasting crew, using a Pionjar gasoline drill, drilled and blasted trench BRY90-4 across 3 mineralized shear zones which had been initially located from float found during the geological mapping of the grid area. The results of assays taken from grab samples from the float are shown in Appendix 3.2 (Min-En assay certificate OV-0956RA1). Results of the sampling programme in trench 90-4 are given in Min-En ICP report file OV1113RJ12. Both gold and arsenic values are low, highest gold value being 105 ppb.

20

BAMPSON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 216

7A.3 Sampling Skarn Zone and Boulder Train

Field crews spent 3 days in late July grab sampling the various showings which comprise the Skarn zone on thelowerslopes of the «Matterhorn» in the northeastern part of the Mon 2 claim. Results of the geochemical analyses and assays are shown in Appendix 3.1. They indicate presence of high copper, gold and silver values. Samples 210106, for example, returned 14.6 ppm Ag, 10,977 ppm Cu and 2.085 oz/ton gold. 21017 gave 25.0 ppm Ag, 98,279 ppm Cu and 0.356 oz/ton Au. The area is, however, very steep and would require personnel with mountaineering experience and equipment to properly map and sample the showings. The terrain is too rugged for geophysical or geochemical methods. Now that 1:2,500 scale airphoto coverage is available of this location, further more accurately located sampling could be considered for the Skarn zone in 1991.

The Boulder train which extends along the valley on the south side of Glacier A was sampled at various times during the field season. As indicated in section 7B describing the geology of the property, the writers concluded that at least three different types of sulphide bearing boulder are present in the train. Boulders seen above the Rust Shear zone are generally small, i.e. less than 20 cms in diameter and resemble mineralization seen in the Arseno and Sulphide zones from which they are probably derived. Boulders observed between the Rust Shear zone and the property boundary are predominantly of Sedex, i.e. massive sulphide type, and these are mostly massive pyrite with variable amounts of galena and sphalerite. The initial boulder sampling programme, which was done in early August, consisted of drilling and blasting open massive sulphide boulders which varied from 50 cms to 3 metres in diameter. Assay results of this programme are given in Appendix 3.5 (Min-En ICP report file No. OS311RJ1). Since these boulders all proved to be of the Sedex type, further boulder sampling was carried out in early September to establish whether gold values located by the Pamicon sampling programmes in 1988 had all come from non Sedex type boulders, i.e. from boulders whose mineralogy, texture, etc. resembled either the Arseno/Sulphide zone or the Rust Shear zone, or whether in fact elevated gold values do occur in the Sedex type boulders. Twenty-nine boulders of the Sedex type, Samples 24601

through 24629, were therefore grab sampled in the area between the Boundary fault and Rust Shear zone. Analytical results for these are shown in Min-En ICP report file No. 0B1382RJ1&2, Appendix 3.5. Boulders which were not obviously of Sedex type were also sampled in the area close to the eastern boundary of the property. These were resamplings of boulders which had been sampled by Pamicon in 1988.

Further boulder train sampling was carried out at the end of September in an effort to locate the two highest grade gold bearing boulders found by the 1988 field work (Pamicon samples 22002 and 21904, both of which had returned assays of almost 3 oz/ton gold). Unfortunately, neither of these two boulders were found. Analytical results for the six samples collected at this time, 137184-137192, are given in Appendix 3.5.

7A.4 Arseno/Sulphide zone: Mapping, Trenching, Sampling, Drilling

In early August a grid using 25 metre spaced NW/SE lines was established over the Arseno/Sulphide zone, and the geology was then mapped at 1:500 scale (Figure 9). A series of trenches BRY90-1,2,3 & 5 were blasted to explore the mineralized zones where accessible.

During the period 24 August to 2 September 1990, J.T. Thomas drilled 7 BQ diameter holes totalling 2095 feet, using a JT600-2 machine on 3 board set-ups which had been constructed by Rob Pearson Construction. Ground conditions proved to be difficult due to presence of open fractures, particularly a fault (which has been named the McGilivray Fault). This resulted in loss of return and damage to the drill bit, core barrel, etc. Two of the holes (90-5 and 90-7) had to be abandoned before reaching their target due to problems with caving ground, etc.

7A.5 Airborne Geophysics

Since the terrain over most of the ridge between glaciers A & B proved to be too rugged for coverage by ground geophysics, an airborne EM and Mag survey was flown over the area using 100 metre spaced flight lines on a bearing of 330°. The survey was done on 24 August by Dighem Limited using their Mark IV airborne electromagnetic and Mag systems. The results of the survey are given in a separate report.

> SAMPSON ENGINEERING INC. 2596 West 11th Avenue Vancouver, B.C. V6K 216

7B. PROPERTY GEOLOGY

7.1 <u>North Grid</u>

The North grid area of the Bryndon/Sea Gold ground is underlain by Mississipian volcanics and sediments, which belong to the Western assemblage of the Paleozoic Stikine assemblage as defined by Logan et al (BCDM Paper The North grid area is predominantly underlain by Mississipian 1990-1). volcanics (Mv) which consist predominantly of pillowed basalts, hyaloclastites, ashflows, and andesitic tuffs. As observed in the field (and according to Logan et al), the Mississipian volcanics are overlain by a series of interbedded siliceous siltstones and limestones, which include thick bedded crinoidal calcerenite limestone horizons (Mc1). These crinoidal limestone horizons are the marble units which host the mineralization in Gulf Minerals Northwest zone. The Mc1 sediments are in turn overlain by a thick polymictic volcanic conglomerate (Mcg) which outcrops in the northernmost part of the grid area, but is exposed over a very large area immediately north of the grid. Overlying this unit are a series of a siltstone, sandstone turbidites and lesser lapilli tuffs (Mtp) which are in turn overlain by Permian age medium bedded bioclastic limestones with cherty interbeds (Pc1).

By far the majority of the grid area is underlain by the basal Mississipian volcanics (Mv) which in the outcrops examined on the grid consist mostly of basaltic, andesitic or dacitic pillow lavas, flow breccias, ashflow tuffs and stratified tuffs. Flows vary texturally from aphanitic to porphyritic and are commonly amygdaloidal. Plagioclase porphyritic flows are more common than augite plagioclase porphyries. Basaltic andesite flows are characterized by In detail, amygdules are distributed parallel with the scoríaceous fragments. borders of clasts and are often concentrically zoned about the clasts. Hyaroclastite debris flows contain sparse pillows. Massive flows have brecciated tops and bottoms. Light purple to pink dacite flow breccias are spatially related to ashflow and welded tuff. These flows and tuffs contain angular lapilli averaging 1 to 10 cms across and pinkish gray porphyritic feldspars often in clusters of 3 to 4 crystals. Logan et al attributed the irregular distribution of quartz, epidote and chlorite amygdules to propylitic alteration rather than regional greenschists metamorphism.

23

The fragmental rocks are dominated by heterolithic lapilli tuffs. Dark green to grey angular to subrounded densely amygdaloidal fragments are diagnostic of interbedded with pillowed flows and scoriaceous hyaloclastites. tuffs, Dominantly green, orange weathering ashflow and welded lapilli tuffs are distinctive units. The lapilli are pale grey, pink and purple, aphyric lithic and crystal fragments. A third variety consists of thin planar bedded siliceous dust tuffs. These are interbedded with graded and crossbedded crystal and lapilli volcaniclastics. Logan et al interpreted this volcanic sequence to represent submarine volcanism from a seamount (pillows and hyaloclastite) with atoll-fringing reefs (Reefal limestone Mc) which over time became emmergent (ashflow and welded ashflow tuffs) and evolved from basalt through dacite to rhyolite.

Late Mississipian reefal limestones, reef-flank carbonates and cherty siltstones overlie the volcanic sequence. The lower limestone unit is a bioclastic calcarenite with characteristic coarse (up to 5 cms diameter) crinoid columns (this limestone is not seen in outcrop on the Bryndon/Sea Gold North grid, but was seen in core examined on the Gulf Minerals property). The carbonates interpreted to be coralline reef mounds, slope-front block breccias and graded reef-flanked deposits interbedded with silicious siltstones, comprise an aggregate thickness of 50 metres at most. The limestone members are comformably overlain by a coarsening upward sequence of silicious siltstones and volcanic conglomerate. The cherts and siltstone units are exposed in a relatively small area in the northern part of the North grid, but are well exposed over a much larger area on the adjoining Gulf Mineral's McLymont ground.

At least 300 metres of cherty siltstones and maroon polymictic volcanic conglomerate overlie the Mississipian limestone in the area immediately north of the North grid. Dark grey and black cherty siltstones and interbedded bioclastic limestone shale-out up section: followed by thinly laminated rusty weathering cherty siltstones, which in turn are comformably overlain by maroon conglomerates. Dark purple and green pyroxene porphyritic and horneblende
plagioclase porphyritic andesites, scoriacious basalt and grey fossiliferous limestone clasts form up to 70% of the rock in a plagioclase crystal rich tuffaceous matrix. In general, the conglomerates are massive to thickly bedded, making it difficult to determine bedding attitudes. Angular blocks of limestone up to several metres across are common. Near the top of the conglomerates, angular limestone clasts increase in abundance near the Permian limestone contact.

7B.2 Gulf International Minerals Northwest Zone

The main reason for exploring the area of the North grid in some detail was the expectation that the gold bearing Northwest zone, which Gulf International Minerals have been drilling since 1987, would strike onto the Bryndon/Sea Gold ground. The following description of the geology of the Gulf deposits is based on a visit which the writers, accompanied by Dr. H. Neville Rhoden, made to the Gulf property on 1 August 1990. At that time, core from the 1987-1989 drill programmes was examined together with maps and sections. The geology of the deposit was discussed with Victor Jaramillo, the project geologist, and Paul Carter, project manager. The 1987-1989 drill programmes had intersected good, but scattered, values in various host rocks which had defied correlation into any form of rational deposit. Victor Jaramillo had, following extensive relogging of the core, proposed that the ore occurs a) along and up principal fractures cutting the underlying andesitic units (Mv) and the siltstones and marbles (Mc1); b) spreading sideways and along the marble horizons (these are interpreted by the writers as simply recrystallized crinoidal limestone units) by replacement, i.e. the Northwest zone represents a vein and manto situation.

Mineralization seems to be controlled by small fractures between the McLymont fault (strike 040) and a series of normal 025 faults. Mineralization is possibly strongest at the intersection of these fractures, but the host rock sediments and the ore plunge gently deeper towards the NNE. A stockwork in the underlying andesitic conglomerates has low values and may be the feeder zone

> SAMPSON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 216

to higher grade mineralization in overlying siltstones and marbles. (The sketch cross sections and long section are taken from a report by Dr. H. Neville Rhoden, 10 August 1990.)

The principal ore comprises magnetite, pyrite, chalcopyrite and black chlorite set in a matrix of recrystallized limestone, i.e. the mineralization is replacing the limestone away from the steep standing feeder fractures. Gulf had found the presence of crinoids very useful in identifying those areas where replacement of the original limestone has completely changed the mineralogy. The crinoid textures remain, in some cases, either completely replaced by chlorite or pyrite. Jaramillo believes as a rough guess that Gulf may have a deposit of +1 million tons grading 0.4 to 0.6 oz/ton gold, 0.2% copper with magnetite content approximately 10-20%. However, the ore zones are so irregular that Gulf are still experiencing great difficulty in intersecting them Besides chloritic alteration the limestones do show on a systematic basis. appreciable dolomitization with the dolomite replacing calcite. There is no appreciable arsenopyrite or stibnite content. The zone has an approximate 025 strike over a length of less than 300 metres and dips overall at 65° towards the McLymont fault. Some minor sphalerite and galena mineralization was seen in the core examined, but lead-zinc values are generally low. Antimony, manganese and arsenic values are very low, there is no pyrrhotite.

With regard to the Bryndon/Sea Gold North grid, the extensive areas of outcrop on the eastern ends of lines 4, 5 and 6 north were prospected in detail and several 040 to 060 striking mineralized fractures were located together with blocks of pyritic float, up to 50 cms in diameter. Trench BRY90-4 was blasted to explore these mineralized shears and investigate the source of float found in this area which is now believed to be locally derived from the mineralized shears. The mineralized shears are exposed in a cliff face immediately above the creek. These showings were extensively grab sampled (see figures 5 & 6). The results of the geochemical analyses and assays are given in Appendix 3.2. Unfortunately, gold values obtained are

very low. The writers have concluded that the extensive mineralized fracture system in the volcanics in this part of the grid and occurring in the gossanous outcrops which are situated immediately to the east on the Gulf Minerals ground, represent the feeders for the mineralization developed in the overlying crinoidal limestone and siltstone units (Mc) at the Gulf Minerals Northwest zone, i.e. although the feeder zone appears to be present on the Bryndon/Sea Gold ground, because the crinoidal limestone and siltstone units are not present on the Bryndon/Sea Gold ground in the location of the feeder zone, ore grade mineralization has not been developed.

7B.3 The Arseno/Sulphide Zone

The Arseno/Sulphide zone showings are situated on a large rock bluff located on the south side of glacier A in the western part of the Gab 12 claim. The Arseno zone was prospected and explored by drilling 4 holes (88-1 to 4) in The location of the zones and geology of the country rock is shown in 1988. In 1990, Bryndon field personnel did programmes of trenching on figure 9. both the Arseno zone and the Sulphide zone, which was followed by drilling 7 holes (90-1 to 90-7). As shown by figures 9, 10, 11a to 11e, the Arseno and Sulphide zones consist of two subparallel mineralized fractures, which strike 030 and dip vertically. They vary in width from a few centimetres to up to Both zones consist essentially of strong shears carrying quartz 1.5 metres. veining with variable amounts of pyrite, arsenopyrite and chalcopyrite which can be locally massive. The shear zones are surrounded by areas of intense wall rock alteration, which consists principally of carbonate alteration of the country rocks for 10 to 15 metres on either side of the principal shear zone. Due to the very rugged topography, it was not possible to examine these zones over much of their strike lengths. Figure 10 shows the trenches that were excavated on the Sulphide zone.

The detailed mapping (figure 9) indicates that the two zones are situated in siltstones and volcanic conglomerate (units Mss and Mvp) which are also exposed on the northern side of glacier A on the North grid. Since the Mississipian crinoidal limestone is exposed on the south side of glacier A, it is possible that this unit (Mc) occurs at depth below the Sulphide/Arseno zone.

It is the main ore host rock at Gulf's Northwest zone and the diamond drill programme in 1990 was thus planned to partially explore the Sulphide/Arseno zone at depth and establish whether the Mississipian limestone is present. The Sulphide zone is cut by a 060 striking fault which has been called the McGillivray fault. This caused considerable problems with drilling and lead to abandonment of holes 90-5 and 90-7. The fault offsets the Sulphide zone at its southern end south of trench BRY90-1. It is possible that the mineralized vein, which is situated about 40 metres east of this locality is the faulted extension of the Sulphide zone.

Results from the drilling were not particularly encouraging: the intersection in hole 90-1 between 10.66 and 11.16 m., i.e. 0.50 m., assayed 0.106 oz/ton gold.

Holes 90-2 and 90-3 did not intersect significant mineralized structures and although hole 90-4 intersected 2.54 metres of mineralization, in the Sulphide zone (64.0 to 66.54 m.) as is shown by the values for arsenic, copper, lead and zinc (samples 13072 to 137075), only one very short section of this structure (64.0 to 64.3 m.) contains gold at a low level of 0.048 oz/ton. Hole 90-5 was abandoned due to drilling problems and 90-6 was drilled on the same structure but at lower elevation. It intersected mineralization over in excess of 25 feet, i.e. 81.99 m. to 90.59 m. (8.6 m. samples 137164 to 137172). This section of the hole showed heavy to massive arsenopyrite, pyrite and chalcopyrite on the hanging wall side (samples 137164 to 137172) with a zone of fracture filling mineralization in between. Unfortunately, however, gold values are not particularly high. The best intersection in the hanging wall material was 137164, 81.99 to 82.12 m., i.e. 0.20 m. assaying 0.090 oz/ton gold. The lower intersection was as follows:

HOLE 90-6

<u>Sample No</u> .	From	<u>To</u>	<u>Widths</u>	<u>Au(oz/t)</u>
137168	88.39	89.29	0.90m.	0.203
169	89.29	89.59	0.30m.	0.290
170	89.59	90.59	1.0 m.	0.057
	88.39	90.59	(2.2m. or 7.3ft.	0.148)

Hole 90-7 was drilled to explore this intersection further along strike, but was abandoned due to caving ground. Although the gold values are considerably below ore grade for the Iskut area, the drilling from the lowest set-up has shown mineralization over better widths than had previously been seen in surface trenching, and the 1988 drilling.

7B.4 Boulder Train

Prospecting in 1987 and 1988 located numerous sulphide bearing boulders along the valley on the south side of glacier A, principally between the Arseno/Sulphide zone and the east boundary of the claim. The area contains thousands of boulders which form the morainic material left by the conraction of glacier A. Since there are no soils or vegetation developed in this area, it is relatively simple to locate the sulphide bearing boulders because they weather intensely and are coated with dark red, brown iron oxides and hydroxides. This pervasive coating completely masks the texture of the rock and it is only by breaking the boulder to expose a fresh surface that the type of sulphide mineralization can be examined. Since many of the boulders are very rounded by glacial action, breaking them open proved difficult and time consuming. Some were drilled using a Pionjar gasoline drill and blasted open.

The sulphide bearing boulders belong to three principal types:

a) massive sulphide - Sedex type;

b) arsenopyrite-pyrite-chalcopyrite-quartz vein material, which resembles mineralization seen in the Arseno/Sulphide zones;

c) arsenopyrite and pyrite in veins in carbonate altered country rocks which resembles mineralization seen in the Rust Shear zone.

Each of these sulphide boulder types is described in more details as follows:

a) Massive Sulphide-Sedex Boulders

These vary in size from a few centimetres to up to 3x2x2 metres, and extend in a well defined train along the valley on the south side of glacier A. They have been traced from the boundary with the Gulf property west to the Rust Shear zone and up the southeastern side of the Rust Shear ravine to the edge of the ice field. They do not occur to the northwest of the Rust Shear ravine indicating that their probable origin is from a source beneath the ice field on They range in composition from massive pyrite to the top of the ridge. massive pyrite and arsenopyrite with some chalcopyrite and massive pyrite, arsenopyrite with varying amounts of sphalerite and galena. The gold content established by the 1990 sampling programmes varies from a few parts per billion (ppb) to as high as 1.663 oz/ton. The 1988 sampling programmes located two boulders which ran almost 3 oz per ton gold (22002 assayed 2.978 oz/ton gold, and 21904 assayed 2.917 oz/ton gold). Attempts were made to locate these boulders in the field in order to establish whether they are of the Sedex type, but this proved unsuccessful. It appears that the Sedex boulders with highest gold content are principally pyrite, arsenopyrite with some chalcopyrite. The boulders which contain significant sphalerite and galena are correspondingly low in gold. Some of the boulders also contain appreciable amounts of pyrrhotite making them magnetic and thus the source of the Sedex boulders would be expected to be a good target for electromagnetic and magnetic geophysical methods.

Tracing the boulders up the Rust Shear zone indicates that they should originate from a source underneath the ice field on the ridge top. When the snow finally cleared from the surface of this area in September, it was apparent that the ice field represents a large corrie of approximately 350 metres diameter. Ice flow out of the corrie is down the Rust Shear ravine and causes formation of concentric crevasses in the ice field. There was originally a side valley glacier which flowed down (and excavated) the Rust Shear ravine. It must have been similar to the remaining side valley glacier, situated just over a kilometre to the northwest. Although at present the ice field is a discrete bowl, surrounded by outcrop, in the past it was connected to the major ice fields which lie to the west.

Most of the boulders examined consist of almost 100% sulphide minerals, and only rarely contain any wall or host rock and even when this is present it is so intensely chloritized that the original composition is obscured.

Examination of the outcrop around the corrie shows presence of the same sequence that is seen on the north side of glacier A, i.e. a typical rift sequence, namely andesites and andesitic conglomerate, mixed beach pebble conglomerates, volcaniclastic sandstones, siltstones, cherts and some limestone (Mvp, Mss, Mc and Mcg units). The outcrops on the southeast side of the corrie, immediately south of the top of the Rust Shear zone valley, contain extensive narrow fractures, containing pyrite and arsenopyrite.

b) Arseno/Sulphide Zone Type Boulders

Much smaller than the Sedex type, they rarely exceed 20 cms in diameter. A few of the boulders are composed of almost 100% sulphide mineralization, but most consist of pyrite, arsenopyrite and chalcopyrite with varying amounts of quartz, filling veins from 2 to 3 cms to 20 cms width occurring in host rock of siltstone or andesitic conglomerate, which are usually well altered either by chloritization or carbonitization. and frequently contain appreciable The boulders are found principally around the pyrite. disseminated Arseno/Sulphide zone and down the valley towards the Rust Shear zone. They are almost certainly derived from the Arseno/Sulphide zone and from possibly other similar as yet undiscovered fractures.

c) Rust Shear Zone Type

In the southeast corner of the Gab 12 claim, in the vicinity of the east boundary of the Bryndon/Seagold ground, the glacier A valley contains a sharp bend which was caused by glacier A turning to the northeast, due to a large rock bluff (Syenite intrusive) which occurs on the Gulf ground. Glacier A thus deposited extensive morainic material at this point which includes many sulphide boulders. Besides the numerous Sedex types and pyrite, arsenopyrite types derived from the Arseno/Sulphide zone, some boulders

> SAMPSON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 216

occur which consist of pyrite and arsenopyrite bearing stringers of 1 mm to 1 cm width, occurring in an extensively altered host rock which weathers orange-brown. Intense carbonate alteration has generally obliterated the original texture of the country rock, but in some places fragmental textures can be identified which suggest that the host rock is the polymictic volcanic conglomerate (Mcg).

78.5 Other Areas

a) <u>The Skarn Zone</u>

The Skarn zone showings are located on the west half of a precipitous peak (the «Matterhorn») situated in the northeast corner of the Mon 2 claim. Grab sampling by previous operators had confirmed the presence of anomalous In 1990, Bryndon field crews did a limited copper and gold mineralization. programme of prospecting and grab sampling along accessible areas of the The Skarn zone consists of a large area of Skarn zone showings. mineralization where original rock textures have been completely obliterated and replaced by a skarn mineral assemblage consisting primarily of calcite and specular hematite. Within this large area of skarn mineralization are numerous very irregular mineralized fractures which strike and dip at various They vary in width from a few centimetres to up to 1 metre. orientations. These fractures carry heavy to locally massive sulphides consisting primarily of pyrite and chalcopyrite with minor malachite and arsenopyrite. The wall rock for several metres on either side of the mineralized fractures exhibits a very visible 'paint' caused primarily by oxidation of the mineralized fractures. Due to the extremely rugged terrain, it was not possible to grid, map or sample these showings in a systematic manner. Figure 12 shows approximate sample location taken on the Skarn zone.

b) Rust Shear Zone

The Rust Shear zone is located within a prominent ravine developed along a major fault in the south centre of the Gab 12 claim. The Rust Shear zone was prospected and explored by drilling 3 holes (88-5 to 7) in 1988. A small programme of prospecting, grab sampling and blast trenching was performed in

1990 by Bryndon field crews. A grab sample from a carbonate stringer zone assayed 0.116 oz/ton gold. The mineralization is also anomalous in arsenic and The Rust Shear zone is an area of intense carbonate alteration with zinc. numerous stringers and veins of iron carbonate developed along a major fault roughly parallel to the McLymont fault. Pervasive carbonate alteration has generally destroyed the original country rock texture, but in some places fragmental textures are evident which suggest that the host rock is the polymictic volcanic conglomerate (Mcg). Mineralization occurs as fine-grained pyrite and arsenopyrite within iron carbonate veins which generally strike at 270° and dip at 85°S. They vary in width from a few centimetres to 0.50 As well, 1 cm to 5 cm wide stringers of medium to coarse grained metre. arsenopyrite and brown sphalerite occur in extensively carbonate pyrite, altered volcanic conglomerate, which weathers orange-brown. Due to the very rugged topography, it was not possible to grid, map or sample this zone in a systematic manner. Figure 12 shows appoximate sample locations taken on the Rust Shear zone.

8. REFERENCES

Alldrick, D.J., Britton, J.M., Webster, I.C.L. and Russell, C.W.P. (1989): Geology and Mineral Deposits of the Unuk Area; B.C. Ministy of Energy, Mines and Petroleum Resources, Open File 1989-10.

Anderson, R.G. (1989): A Stratigraphic, Plutonic and Structural Framework for the Iskut Map Area, Northwestern B.C.; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pages 145-154.

Anderson, R.G., and Bevier, M.L. (1990): A Note on Mesozoic and Tertiary K-Ar Geochronometry of Plutonic Suites, Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-1E, (in press).

Anderson, R.G. and Thorkelson, D.J.: Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut River Map Area, N.W. B.C., in Current Research, Geological Survey of Canada, Paper 90-1F, pp. 131-139, 1990.

Britton, J.M., Webster, I.C.L. and Alldrick, D.J.: Unuk Map Area in B.C.M.-M.P.R.; Geological Field Work 1988 Paper 1989-1.

[•] Britton, J.M. and Alldrick, D.J. (1988): Sulphurets map area (104A/05W, 12W; 104B/08E, 09E); in Geological Fieldwork, 1987, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, pp. 199-210.

Britton, J.M., Fletcher, B.A., Alldrick, D.J.: Snippaker Map Area, in B.C.M.E.M.P.R. Geological Fieldwork 1989, Paper 1990-1.

Brown, D.A. (1987): Geological setting of the volcanic-hosted Silbak Premier Mine, northwestern British Columbia (104 A/4, B1); unpublished M.Sc. thesis, University of British Columbia, 216 p.

Brown, D.A. and Gunning M. (1989): Geology of the Stikine River Area, Northwestern British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1, pages 251-267.

Costin, C.P. (1973): Assessment Report 4150, Dirk Claims, Newmont.

de Carle, R.J. (1988): Report on a Combined Helicopter-Borne Magnetic, Electromagnetic and VLF Survey, Iskut River Area, Liard Mining Division, British Columbia.

Delaware Resources Corp.: Progress Report, Snip Prospect, November 19, 1987.

Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C. Ministry of of Energy, Mines and Petroleum Resources, Bulletin 63, 152 pages.

(1987): Geological and Drilling Report and Work Summary on the Gulf International Minerals Ltd. McLymont Creek Property; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 16932.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6 Geological Report and Development Proposal for Gulf International Minerals McLymont Creek Property, September 5, 1989.

(1971): Geology and mineral deposits of the Stewart area, British Columbia; British Columbia Department of Mines and Petroleum Resources, Bulletin 58, 219 p.

Gulf Internatinal Minerals Ltd.: Annual Report, 1987.

Gulf International Minerals Ltd.: Annual Report, February 1988.

Hanson, G.

- 1929: Bear River and Stewart map areas, Cassiar District, B.C.; Geological Survey of Canada, Memoir 159, 84 p.
- 1935: Portland Canal area, British Columbia; Geological Survey of Canada, Memoir 175, 175 p.

Holbek, P.M.

1988: Geology and mineralization of the Stikine Assemblage, Mess Creek area, northwestern B.C.; (abstract), Smithers Exploration Group-G.A.C., Cordilleran Section, Program and Abstracts, p. A50-51.

Kerr, F.A.

1948: Lower Stikine and western Iskut River areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 p.

Kowalchuk, J. (1982): Assessment Report 10,418, Warrior Claims, Dupont Exploration.

Logan, J.M. and Koyanagi, V.M. (1989): Geology and Mineral Deposits of the Galore Creek Area, Northwestern B.C. (104G/3, 4); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1; pages 269-284.

Logan, J.M., Koyanagi, V.M. and Drobe, J.R.: Geology of the Forrest Kerr Creek area, Northwestern B.C. in B.C.G.S.B., Paper 1990-1.

Macintyre, D.G.

1984: Geology of the Alsek-Tatshenshini rivers area (114 P); in Geological Fieldwork 1983, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1984-1, p. 173-184.

McConnell, R.G. 1910: Portland Canal District; Geological Survey of Canada, Summary Report 1910, p. 59-90.

1911: Salmon River district, B.C.; Geological Survey of Canada, Summary Report 1911, p. 50-56.

Monger, J.W.H.

- 1977: Upper Paleozoic rocks of the western Canadian Cordillera and their bearing on Cordilleran evolution; Canadian Journal of Earth Sciences, v. 14, p. 1832-1859.
- 1980: Upper Triassic stratigraphy, Dease Lake and Tulsequah map areas, northwestern British Columbia; in Current Research, Part B, Geological Survey of Canada, Paper 80-1B, p. 1-9.

Monger, J.W.H. (1970): Upper Paleozoic Rocks of the Stikine Arch, British Columbia; in Report of Activities, Part A, Geological Survey of Canada, Paper 70-1, Part A, pages 41-43.

O'Neill, J.J.

1919: Salmon River district, Portland Canal mining division, B.C.; Geological Survey of Canada, Summary Report 1919, p. 7-11.

Pitcher, M.G. (1960): Fusulinids of the Cache Creek Group, Stikine River Area, Cassiar District, B.C.; unpublished M.Sc. thesis, Brigham Young University, 64 pages.

Read, P.B., Brown, R.L., Psutka, J.F., Moore, J.M., Journeay, M., Lane,L.S. and Orchard, M.J. (1989): Geology of Parts of Snippaker Creek (104B/10), Forrest Kerr Creek (104B/15), Bob Quinn Lake (104B/16), Iskut River (104G/1), and More Creek (104G/2); Geological Survey of Canada, Open File 2094.

Read, P.B.

1983: Geology, Classy Creek (104J/2E) and Stikine Canyon (104J/1W), British Columbia; Geological Survey of Canada, Open File 940.

Rhoden, H.N.: Memo to R.N. Duncan, 10 August 1990.

Schofield, S.J. and Hanson, G.

1922: Geology and ore deposits of Salmon River District, British Columbia; Geological Survey of Canada, Memoir 132, 81 p.

Souther, J.G.

- 1971: Geology and mineral deposits of the Tulsequah map area, British Columbia; Geological Survey of Canada, Memoir 362, 84 p.
- 1972: Telegraph Creek map-area; British Columbia; Geological Survey of Canada, Paper 71-44, 38 p.

Souther, J.G. and Armstrong, J.E.

1966: North central belt of the Cordillera of British Columbia; in Tectonic History and Mineral Deposits of the Western Cordillera; Canadian Institute of Mining and Metallurgy, Special Volume 8, p. 171-184. Thomson, R.C., Smith, P.L., and Tipper, H.W.

1986: Lower to Middle Jurassic (Pliensbachian to Bajocian) stratigraphy of the northern Spatsizi area, north-central British Columbia; Canadian Journal of Earth Sciences, v. 23, p. 1963-1973.

Tipper, H.W. and Richards, T.A.

1976: Jurassic stratigraphy and history of north-central British Columbia; Geological Survey of Canada, Bulletin 270, 73 p.

Todoruk, S.L. (February 1988): Geological report on Gab 11, 12, Stu 8, 9 Mineral Claims for Con. Sea. Gold Corporation.

Todoruk, S.L. and C.K. Ikona (1987): Geological report on the Gab 11 & 12 Mineral Claims and Stu 8 & 9 Mineral Claims.

Todoruk, S.L. and C.K. Ikona (1989): Geological report on the Gab 11,12, Mon 1,2, Wei, Zel, Stu 8 & 9 claims.

Wheeler, J.O. and McFeely, P.

1987: Revised tectonic assemblage map of the Canadian Cordillera and adjacent parts of the United States of America; Geological Survey of Canada, Open File 1565.

Wheeler, J.O., Brookfield, A.J., Gabrielse, H., Monger, J.W.H., Tipper, H.W. and Woodsworth, G.J. (1988): Terrane Map of the Canadian Cordillera; Geological Survey of Canada, Open File 1894.

2696 West 11th Avenue Vancouver, B.C. V6K 216

9. CERTIFICATE

1, Brian D. Game, of 302-2225 West 7th Avenue, Vancouver, B.C. hereby certify that:

- 1. I am a graduate (1985) of the University of British Columbia with a Bachelor of Science degree in Economic Geology.
- 2. I have practised mining exploration for five years, most of which was based in the province of British Columbia.
- 3. This report entitled "Report on 1990 Exploration Programmes Gab 11, 12, Mon 1,2, Wei, Zel Claims" is based on the supervision of field programmes in 1990.
- 4. I have not received, nor do I expect to receive any interest, direct or indirect, in the properties or securities of Bryndon Ventures Inc. or in those of its associated companies.
- 5. I have no interest in any other property or company holding property within 10 kms of the Grab, Mon, Wei, Zel property.

Vancouver, B.C. 31 November 1990

l En. - 9

Brian D. Game, B.Sc. Geologist

BAMPBON ENGINEERING INC. 2696 West 11th Avenue Vancouver, B.C. V6K 216

CERTIFICATE

I, Christopher J. Sampson, of 2696 West 11th Avenue, Vancouver, B.C., V6K 2L6, hereby certify that:

- 1. I am a graduate (1966) of the Royal School of Mines, London University, England with a Bachelor of Science degree (Honours) in Economic Geology.
- 2. I have practised my profession of mining exploration for the past 25 years in Canada, Europe, United States and Central America. For the past 15 years I have been based in British Columbia.
- 3. I am a consulting geologist and a registered member in good standing of the Association of Professional Engineers of British Columbia.
- 4. I have not written previous reports on the Gab 11,12, Mon 1,2, Wei, Zel claims but have written reports on other properties within 10 kms. of the claims.
- 5. The present report is based on supervision of work programmes in 1990 and study of published and unpublished reports.
- 6. I have not received, nor do I expect to receive any interest, direct or indirect, in the properties or securities of Bryndon Ventures Inc. or in those of its associated companies.
- 7. Bryndon Ventures Inc. and its affiliates are hereby authorized to use this report in, or in conjunction with, any prospectus or statement of material facts.
- 8. I have no interest in any other property or company holding property within 10 kilometres of the Gab 11,12, Mon 1,2, Wei and Zel.

Chris J. Sompson

Christopher J. Sampson, P.Eng. Consulting Geologist

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

10. COST STATEMENT FOR ASSESSMENT WORK CREDITS

During the 1990 field season, Bryndon Ventures Inc. spent over \$300,000 on programmes of geological mapping, prospecting, geochemical soil sampling, UTEM and Magnetometer ground geophysics, Dighem Mark IV and Magnetometer airborne geophysics and diamond drilling.

Assessment work requirements on the 120 unit claim block are \$2,400 work each year and therefore only the cost of diamond drilling is submitted for assessment work credit as follows:

2095 ft., (7 holes) BQ drilling by J.T. Thomas DD. Ltd., from 24 August to 2 September 1990 at \$18.70/ft. plus Mob/Demob, Equipment damaged, coreboxes, fuel, etc. \$53,229.74

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, 8.C. V6K 2L6

APPENDIX 1

Petrographic Analyses

.

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist

P.O. BOX 39 8080 GLOVER ROAD. FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

Sampson Engineering Inc. 2696 West 11th Avenue Vancouver, .C. V6K 2L6 Tel 736-7284 FAX 734-7837

August 9, 1990 JOB #32

Dear Chris:

Re: Petrographic descriptions Samples 1 to 6 (North GRID)

Petrographic descriptions have been completed on the six samples from McLymont Creek, Iskut. The report is attached and the results are summarized as follows:

Sample #1 Altered porphyritic andesite with a fine felted matrix.

Sample #2 Dacite crystal (lithic tuff, hematitic.

Sample #3 Polymictic volcanic lithic breccia.

Sample #4 Altered layered (waterlain) tuff. Original textures are obscured by alteration. Bedded, waterlain. Probably volcanic origin, tuffaceous feldspathic. Carbonate coalescing spotted, appears to be an alteration product rather than originally a limy sediment.

Sample #5 Feldspar crystal tuff. Hematitic.

Sample #6 Weakly porphyritic and amygdaloidal andesite.

Yours very truly,

-Kin Voithate

K.E. Northcote (604) 796-2068

MCIYMONT CREEK, ISKUT AREA, B.C. Sample #1 Altered porphyritic andesite with fine felted matrix **General Description** Altered plagioclase and lesser altered (chloritic) mafic in a fine felted matrix of altered feldspar with disseminated interstitial chlorite, disseminated opaque/semi-opaque granules and aggregates. Spotted by diffuse alteration dusting. Weakly magnetic Stained slab indicates no K-feldspar Microscopic description Phenocrysts Plagioclase (altered); 25%, subhedral, (0.2 mm to >2.0 mm), single grains and clusters of grains. Strong sericite, weaker carbonate alteration. Small albitic patches. Chlorite replacement in fractures. Altered augite; <<5%, subhedral, (0.1 to 0.5 mm), chloriteepidote alteration. Altered mafic (chlorite); 10%, anhedral, (0.05 to 0.3 mm), bright green, pleochroic fine felted internal texture in most grains. Groundmass Plagioclase (altered); 40%, subhedral, (<.05 to 0.2 mm), felted laths, sericitic and light brownish dusting of alteration. Chlorite; 15%, anhedral, (<.01 to 0.1 mm) interstitial grains and Opaque/semiopaque <10% Weak magnetic; clusters of minute grains disseminated throughout groundmass. Coarser irregular grains associated with chlorite. Some associated hematite. Alteration Sericite Carbonate Chlorite Epidote Jarosite Diffuse clouded alteration of groundmass Veinlets Chlorite Carbonate Jarosite (iron oxide) Epidote

Dacite crystal tuff(?), hematitic.

General description

Coarse and fine to medium grained plagioclase, and <u>fine grained</u> quartz and plagioclase in a very fine feldspathic granular (tuffaceous) weakly felted groundmass. Suggestion of crystal tuff lithic fragments. Mafics negligible.

Alteration very weak, few diffuse sericitic patches. Scattered euhedral, iron-stained carbonate (siderite(?)) rhombs. Clouded network of minute opaque/semiopaque grains throughout matrix and concentrated in crushed/brecciated zones. Veinlets of quartz and very minor sericite. Some iron staining in veinlets and crushed zones.

Stained slab indicates no K-feldspar content.

Microscopic description

Fragments

(a) Lithic fragments, vague outlines of angular patches of finer or coarser grain-size of crystal tuff indicating lithic fragments.

(b) Coarse fragments

Plagioclase; 20%, fragmental, (0.3 to >2.0 mm), single fragments and fragment clusters, virtually unaltered, very weakly sericitic. Twinning indicates composition in low andesine range. Sharp angular shape of many grains indicates suggests fragmental origin.

(c) Fine fragments

- Flagioclase; 15%, fragmental, (<.05 to 0.3 mm), generally sharp angular grains, some diffuse contacts with groundmass. Plagioclase > quartz.
- Quartz; >10%, fragmental, (<.05 to 0.3 mm), very irregular grains, sharp angular.

Groundmass: granular to weakly felted.

- Plagioclase; 50%, anhedral, (.01 to .05 mm),granular/lath-like, interlocking to felted
- Opaque (hematitic); <5%, very fine to microgranular dusting throughout groundmass showing some concentration around fine and coarser crystal fragments.

Sample #2 Continued

Alteration

•

.

Sericite; very weak alteration of plagioclase. Few diffuse clusters.

Carbonate (siderite(?)) rhombs

Iron staining/jarosite; in fractures and in crushed zones. Associated with carbonate rhombs.

Veinlets Quartz Sericite Opaque (hematitic); fine to microgranular dusting in irregular fractures and crushed zones.

Polymictic volcanic lithic breccia

General description

Polymictic volcanic breccia with lithic fragments ranging from a fraction of a mm to several cms. All lithic fragments of volcanic origin with some diversity in colour but wide variation in textures ranging from flows to pyroclastic. Show both red (hematitic) and green (unoxidized) fragments. Few coarse feldspar (plagioclase) crystal fragments. High fragment to matrix ratio. Matrix fine tuffaceous with high microgranular opaque content.

Sericitic alteration of feldspathic tuffaceous fragments, lesser chlorite. Chlorite-filled amygdules.

Stained slab shows no K-feldspar content.

Microscopic description: A polymictic lithic volcanic breccia.

Lithic clasts; 80%, varied colours hematitic and unoxidized and textures, all of volcanic origin. Includes tuffs, crystal tuffs, feldspar foliated/felted amygdaloidal flows. Some with high microgranular (hematite) content.

Crystal fragments;

Plagioclase; <5% fragmental, (<.05 to >1.0 mm)

Groundmass; 20%

- Plagioclase; 10%, anhedral fragmental, (microgranular), tuffaceous sericitic alteration.
- Opaque; microgranular dusting (hematite); 10%, in groundmass and crushed zones.

Alteration Sericite Chlorite

Altered layered tuff (waterlain)

General description

In thin section original textures obscured by alteration. Feldspathic layered groundmass very fine (tuffaceous) granules and laths. Sericitic alteration. Superimposed irregular shaped carbonate spots.

Hand specimen shows strong layering with pale cream green finer grained layers interbedded with pale cream slightly coarser grained layers.

Stained slab indicates no K-feldspar

Microscopic description

Groundmass

Feldspar; 30%; anhedral, (<.01 to <.05 mm), tuffaceous, elongate grains show preferred orientation, layering.

Alteration

- Sericite 10%; anhedral (<.01 to <.05 mm), alteration of feldspathic groundmass.
- Carbonate; 60%, anhedral, (<.01 to 0.05 mm) aggregates forming irregular spots (to 0.2 mm) which coalesce. The spotty nature suggests "alteration" rather than initial calcareous sediment.

Feldspar crystal tuff

General description

Fine/medium grained plagioclase, suggestion of lithic tuff fragments in a microgranular/weakly felted feldspathic tuffaceous matrix. Layered showing two distinct tuffaceous grain sizes. No K-feldspar present. Pale pink colour results from finely disseminated hematite throughout groundmass. Disseminated carbonate rhombs. Iron staining.

Microscopic description

Fragments

- Plagioclase; 20%, fragmental, (<0.1 to 2.0 mm), many grains sharp angular fragmental, others subhedral. Very weak sericitic alteration. R.I.> epoxy and < quartz in veinlets). Twinning indicates composition in oligoclase range.
- Quartz; suspected but not detected. All grains tested are biaxial (+).
- Carbonate; <10%, euhedral/anhedral, (<.05 to 0.1 mm), disseminated and clusters of euhedral or anhedral grains.

Groundmass

Plagioclase; >60%, anhedral/microfragmental (<.01 to .05 mm), tuffaceous, granular to felted texture.

Opaque/semiopaque

Hematite; 10%, anhedral, microgranular, disseminated and filling crackles and crushed zones.

Minor iron staining.

Veins

Quartz-calcite

. . . .

Weakly porphyritic and amygdaloidal andesite

General description

Widely scattered fine to medium plagioclase and altered mafic phenocrysts in a felted matrix of fine-grained plagioclase laths with interstitial chlorite. Speckled by carbonate. Widely scattered amygdules of chlorite, epidote, quartz, (actinolite), opaque, jarosite.

Stained slab indicates diffuse concentrations of K-feldspar in groundmass.

Microscopic description

Phenocrysts

Plagioclase; <5%, subhedral, (0.2 to >1.5 mm), as single grains and glomerophenocrysts.

Groundmass

- Plagioclase; 55%, subhedral, (<.05 to 0.8 mm), laths, felted weakly foliated.
- K-Feldspar, <10%?, anhedral, (<.05 to .01 mm) ? Indicated by stained slab. Not confirmed in thin section.
- Chlorite; 20%, anhedral, (<.05 to 0.5 mm), some associated carbonate and epidote. Similar to amygdules but interstitial to plagioclase laths. Not obviously an alteration product of mafic grains.

Alteration

Carbonate; 5%, anhedral, (<.01 to .05 mm), clusters of grains disseminated throughout groundmass.

Epidote; 5%, anhedral, (<.01 to .05 mm), clusters of grains disseminated throughout groundmass.

Amygdules

Chlorite-epidote-quartz-(actinolite)-opaque-jarosite. Occur singly or as combinations of minerals.

Opaques; 5%

(a) Aggregates of minute grains in groundmass.(b) Coarser grains, very irregular shaped aggregates to >1.0 mm in chlorite-quartz-epidote amygdules with associated hematite.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

Chris J. Sampson Sampson Engineering Inc. 2696 West Eleventh Avenue Vancouver, B.C. V6K 2L6

Our file: JOB 89 October 31, 1990

Dear Mr Sampson, Re: Mineralized samples 137185,7,9 and Fossiliferous samples 137193,4,5.

Samples 137185, 87, 89 have been examined under transmitted and reflected light.

The massive mineralized samples represent multistage veining, brecciation, late crushing and fracturing filled with one or two generations of quartz, at least three generations of (ankeritic?) carbonate. Late voids and fractures contain calcite and 137187 contains lesser chlorite. Mineralization appears to have accompanied quartz and carbonate in early fracturing and brecciation stages. Sulphide minerals in approximate order of abundance, include pyrite, arsenopyrite, sphalerite, galena and chalcopyrite.

Although gold or silver-bearing minerals were not detected in the polished sections the samples require analyses for at least gold and silver (if not already done).

Suggested paragenesis is as follows:

Pyri	te	
~		

Arsenopyrite _____

Sphalerite

Chalcopyrite

Galena

Samples 137193, 94 and 95 Fossiliferous limy sediments.

These specimens contain bivalves (brachiopods?) and possible <u>Fusulinidae</u>. I suggest that they be sent to W.R. Denner at U.B.C. for identification.

C. Sampson October 31/90 Page 2

If the attached photomicrographs are of Fusulinidae, Ted would best be able to comment on them. They were most abundant in Pennsylvaian-Permian but were probably present in Mississippian as well.

The length of this specimen is about 3 mm and is from Sample 137194. Other examples range up to 1 cm(+).

Yours very truly,

.

Jun V.

K.E. Northcote Ph.D., P.Eng.

(604) 796-2068

137185

Mineralized quartz-carbonate breccia/vein system

Transmitted light

Multigenerations veining, brecciation, localized crushing

Carbonate; three varieties

(a) coarse crystalline, higher relief than other varieties, strong hematitic stain. Esiderite and ankerite?]

(b) coarse crystalline, lower relief, higher birefringence, strong microgranular dusted appearance. Iron stained but less intensely than (a). Forms breccia fragments and early veinlets. Associated with opaques. [ankerite?]

(c) late variety, clear, filling fractures filling late veins/veinlets, effervesces with cold HCl [calcite].

Quartz: broken grains, aggregates of irregular grains forming breccia fragments among carbonate.

Reflected light

Pyrite; >25%, euhedral/anhedral, pale colour.

(a) clots of separated, fine (<.01 to 0.2 mm) euhedral grains in carbonate matrix. Associated with arsenopyrite grains.

(b) coarser irregular grains, (to 0.6 mm), forming clusters with carbonate among quartz grains. Arsenopyrite/arsenical pyrite inclusions.

- Arsenopyrite/arsenical pyrite; >5%, euhedral/subhedral, (<.05 to 0.15 mm)
- Chalcopyrite; <<1%, anhedral, (<.05 mm), interstitial to pyrite grains and in fractures in pyrite with sphalerite, and galena. Beaded fracture fillings in gangue.
- Sphalerite; traces, anhedral, (<.05 to 0.6 mm), in fractures in pyrite associated with chalcopyrite and galena. Coarser grains interstitial to carbonate and quartz gangue contain minute chalcopyrite blebs.
- Galena; trace, anhedral, (<.05 mm), in fractures in pyrite associated with chalcopyrite and sphalerite.

137187

Mineralized carbonate-quartz-chlorite breccia (vein) system

A vein/breccia system composed of one or two generations of quartz, massive sulphide mineralization and several of carbonate filling successive episodes of fracturing and brecciation (crushing). Some late voids filled with calcite and chlorite.

Transmitted light

Carbonate: 35%, two varieties

(a) Ankerite(?); crushed/brecciated, weak iron stain, moderate alteration dusting. Intermixed with brecciated quartz, interstitial chlorite. Associated with opaques (pyrite).

(b) late coarse zoned calcite, breccia void infilling.

- Quartz; 30%, annedral, (to several mm, generally finer crushed), aggregates and clusters of grains forming large irregular masses. Intimately mixed with early generation carbonate and opaques.
- Chlorite; <10%, anhedral, fine felted bladed interstitial to carbonate and quartz filling voids.

Sphalerite; 10%, see Reflected light section

Reflected light

Opaques (sulphides); >25%, breccia infilling, fracture fillings. Veined by late calcite.

- Pyrite; <10%, euhedral/subhedral, (<.01 to >1.0 mm), fracture controlled aggregates of grains, <u>commonly segregated</u> but also associated with arsenopyrite and lesser amounts incorporated in sphalerite, associated galena, chalcopyrite.
- Arsenopyrite; 5%, euhedral/subhedral, (<.01 to 0.1 mm), clusters and beaded strings of euhedral grains with interstitial sphalerite and galena.
- Sphalerite; 10%, anhedral, (<.05 to generally coarser, to several cms), irregular masses to coarse networks in gangue. Contains irregular blebs of chalcopyrite and blebs and larger clusters and rims.
- Galena; <5%, anhedral, (<.01 to >1.0 mm), generally as very irregular aggregates in or closely associated with sphalerite and lesser chalcopyrite. Some clusters of very irregular grains in gangue.

137187 Continued

٤

Chalcopyrite: 1%, anhedral, (<.01 to 0.3 mm) generally as small irregular grains and scattered clusters of microgranules in sphalerite.

137189

Massive mineralized quartz-carbonate breccia

Several periods of brecciation of quartz-carbonate vein-breccia system. Several generations of carbonate. Minor late cataclasis. Massive mineralization most closely associated with quartz and early carbonate.

Transmitted light

Carbonate; 35%, two or more generations

(a) Ankerite?; dark alteration dusted, swirled plumose texture cut by:

(b) Ankerite?; coarse bladed, very weak dusted in cavities

(c) Calcite; late vernlets cutting (a) and (b) Effervesce=calcite

- Quartz; 25%, aggregates of euhedral and anhedral crystals, (<.05 to several mm) brecciated. Two generations?
 - (a) Early brecciated carbonate-quartz-sulphide vein system
 - (b) Euhedral breccia void infilling with carbonate (b)

Reflected light

Opaques; >35%, euhedral/subhedral, (<.01 to >1.5 mm). Aggregates of grains forming irregular masses to several cms. Locally grains are dislocated by crushing. Interstitial quartz and carbonate. [ankerite?]

Pyrite; >35%, euhedral/subhedral, (<.05 to >1.5 mm), aggregates of grains with interstitial quartz and carbonate gangue.

Note: arsenopyrite/arsenical pyrite not noted in this section.

Sphalerite; <<<1%, interstitial to pyrite in gangue.

Galena; traces, interstitial to gangue. One minute inclusion noted in pyrite.

Chalcopyrite: traces.

APPENDIX 2

North Grid: Geochemical Soil Analyses

.....

.

.

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 216 COMP: BRYNDON VENTURES INC. PROJ: SEA GOLD ATTN: P.MANSON/C.SAMPSON

•

~~

· 1

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: OV-1025-SJ1+2 DATE: 90/08/08 * SOIL * (ACT:F31)

-

		AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB	
I IN-R/I	0	1	55	17	1	66	2	
L 1N-0+25E	.9	1	98	18	1	71	2	
L1N-0+50E	1.1	1	92	19	1	77	1	
L1N-0+75E	1.1	1	83	20	1	79	3	Man - 1 the second mater
L1N-1+00E	.8	1	81	16	1	78	1	MORTH GRIDI DUDLO
L1N-1+25E	1.0	1	62	21	1	87	4	
L1N-1+75E	1.0	1	69	20	1	72	2	
L1N-2+00E	1.0	1	63	13	1	63	2	
L1N-2+25E	.8	1	64 42	14	1	70	2	
	.0	4				/ L		
L2N-8/L	.,,	1	7.5 80	20	1	70	1	
12N-0+50E	1.1	1	88	22	1	75	ż	
L2N-0+75E	.8	1	69	23	1	54	2	
L2N-1+25E	.8	1	81	20	1	67	5	
L2N-1+50E	1.2	1	96	17	1	77	1	
L2N-1+75E	1.1	1	82	18	1	72	2	
L2N-2+00E	.9	1	79	12	1	73	21	
L2N-2+25E	1.0	1	75	16	1	62	3	
LZN-Z+DUE	1.1	1	09	14		00		
L2N-2+75E		1	57	17	1	60 47	2	
		4	27 57	10	1	74	2 6	
1 2N-3+50E	1.0	1	65	16	1	62	3	
L2N-3+75E	1.1	i	49	14	i	58	ī	
L2N-4+00E	1.2	1	53	19	1	59	2	
L2N-4+25E	1.3	1	43	15	1	55	3	
L2N-4+50E	1.1	1	67	14	1	53	2	
L2N-1+75W	1.0	1	93	15	1	80	1	
L2N-2+00W	1.0	1	88	15	1		1	
L2N-2+25W	.5	1	80	10	1	72	2	
	1.5	1	11	10	1	40	1	
L4N-U+/JE	2.4	1	20	10	1	82	2	
L4N-1+50E	.3	1	9	10	i	44	1	
1 4N-1+75E	.2	1	32	11	1	68	1	<u> </u>
L4N-2+00E	2.9	1	16	17	1	70	3	
L4N-2+25E	1.6	1	24	13	1	61	1	
L4N-0+50W	.1	1	6	13	1	63	2	
L4N-0+75W	.1	1	14	10	1	41	2	
L4N-1+00W	1.4	1	11	13	1	39	1	
14N-1+25W	.3	1	9 24	18	1 4	112	2	
L4N-2+00W	27	4	4 I 22	20	1	112	د ح	
L4N-2+50W	2.1	1	12	10	1	60	1	
L4N-3+25W	_5	1	79	21	1	85	1	
L4N-3+50W	.2	1	46	27	1	66	2	
L4N-4+00W	.7	1	45	10	1	67	2	
L4N-4+25W	.7	1	57	11	1	77	4	
L4N-5+00W	.8	1	29	10	1	69	1	
L4N-5+25W	.7	1	92	14	1	62	3	
	1.9	1	19	15	1	01 01	1 7	
	1.5	1	1/	10	1	71	2	
L5N-0+75E	1.3	1	10	10	1	65	1	
15N-1+00F	2.6	1	20	10	1	69	2	
L5N-1+25E	1.0	1	43	12	1	101	4	
L5N-1+50E	.7	1	134	20	1	113	2	
L5N-1+75E	.6	1	63	13	1	67	59	
1 12N-2+00E	.4	1	282	15	1	82	3	

COMP: BRYNDON VENTURES INC. PROJ: SEA GOLD ATTN: P.MANSON/C.SAMPSON

.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1025-SJ3+4 DATE: 90/08/08 • SOIL * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB . PPM	ZN PPM	AU PPB			
L5N-2+25E L5N-2+50E L5N-3+00E L5N-3+25E	.9 .7 .8 .8	1 1 1 1	73 55 75 54	13 9 9 13	1 1 1 1	62 72 64 59	2 1 16 3			
L6N-0+00 L6N-0+50E L6N-0+75E	.2 .8 1.1	1 1 1	29 18 51	11 12 9	1 1 1	51 80 122	1 1 2	<u>, , , , , , , , , , , , , , , , , , , </u>	- <u></u>	
L6N-1+00E L6N-1+25E L6N-1+50E	1.0 1.4 1.7	1 1 1	37 30 10	18 20 9	1 1 1	99 74 78	5 3 2			
L6N-1+75E L6N-2+00E L6N-2+25E L6N-2+50E L6N-2+75E	1.3 2.2 2.6 1.8 1.1	1 1 1 1 1	15 32 11 13 48	9 17 17 10 9	1 1 1 1 1	62 84 84 66 89	4 3 17 38 14			
L6N-3+00E L6N-3+25E L6N-0+50W L6N-1+00W	1.1 1.3 2.2 4.0	1 1 1 1	27 23 15 17	23 12 13 23 12	1 1 1 1	62 58 73 90	3 2 2 1 2			
L6N-2+00W L6N-2+75W L6N-3+00W L6N-4+00W	2.6 .9 2.7 .8	1 1 1 1	14 26 16 37	12 9 24 44	1 1 1 1 1	30 48 45 48 71	1 2 1 18 3			
L7N-0+25E L7N-1+00E L7N-1+50E L7N-1+55E L7N-1+75E	2.7 .3 .9 .7	1 1 1 1 1	13 34 6 17 14	21 10 13 15	1 1 1 1 1	41 67 18 43 18	19 1 4 17 3			
L8N-0+50E L8N-0+75E L3S-0+00.8/L L3S-0+25E L3S-0+50E	1.3 1.6 1.4 1.7 .6	1 3 1 · 1 1	24 73 20 12 9	19 24 25 25 29	1 1 1 1 1	50 75 46 49 75	1 4 2 1 1			
L3S-0+75E L3S-1+00E L3S-1+25E L3S-1+50E L3S-1+50E L3S-1+75E	2.7 1.5 1.0 1.0 .5	1 1 1 1 1	16 46 16 18 14	11 22 9 12 8	1 1 1 1 1	69 79 54 49 55	4 1 3 1 2	<u></u>	<u>,</u>	
L3S-2+00E NO NUMBER	.7 .4	1 1	41 5	16 16	1 1	63 23	2 1			
							<u> </u>			

MIN-EN LABORATORIES LID. SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER. S.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604) 780-5814 DR (604) 788-4524

CORRELATION COEFFICIENTS

- DITEAN DERENDLIN VEN TURES (INC.) NTTEC DERENDER/IDEENPERA HAREND BEA GOLD Filerio**v-io25**

Ą.

DANE:SEFT 7 1990 Samfle (YPE:ddil Analysis Tyme:seddhem

THE TABLE BELOW REPRESENTS THE PEARSON CORRELATION MATRIX SHOWING THE INTER-ELEMENT CORRELATION COEFFICIENTS. THOSE VALUES THAT EXCRED THEIR ORITICAL VALUE FOR .01 LEVEL OF SIGNIFICANCE ARE SHOWN IN DAMAGE PRINT AND UNDERLINED.

	Ad	ńΞ	(CL)		S8	ZN	AU	
1 =) :::	1.00	0.05	<u>-0.31</u>	-0.09	-0.07	0,20	0.00	
1.43		1.00	008	(), ()4	0.O1	$O_{\mu}O_{\Phi}$	-0,00	,
201			i.OO	0.03	<u>0.35</u>	<u>0,32</u>	-0.00	·
100				<u>,</u> . 00	\bigcirc , \bigcirc]	<u>0.23</u>	-0.OS	
					1.00	-0.06	-0.07	
2.3						1.00	-0.03	
é d	i.						i, oo	
•	;							

1	SPECI 775 #55 76LEX:	ALISTS IN MI T 15TH STREET NORTH USA 760167 PHOME:	NERAL ENVIRON VANCOUVER, B.C. CANADA (604,780-5814 GR (604)	MENTS V7M 1T2 789-4524	
s	<u>tatist</u>	<u>ical s</u>	UMMARY	<u>on ag</u>	
an an an mainteacha	en Selveren Son S	, weight		[][[] : : : : : : : : : : : : : : : : :	$\int_{\Omega} \left[-\frac{1}{2} \partial \left[\frac{\partial \left[\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
alemana, smenada	v.C. 544-588			SAMPLE YFER	will a la
FCCEDANEA EC	<u>)()</u>			ANALYSIS TYP	ERGECHEM
TEE=: 0V-1025					
, , , , , , , , , , , , , , , , , , ,	9	1997 (april 2004) and a second second and a second	in in contrast contrast and the Contrasting of the contrasting states of the states and the states of the state Ministration of the states of the		an 1997 na 1998 na 1998 na 1997 na 1997 1997 a 1997 na 1998 na 1998 na 1998 na 1997 na
NUMBER OF S	AMPLES: 1	02	5 816	HEST AG VALUE	n (m.) Song (t) Song (t)
ada taga VAL	16 <u>8</u> 1	.2 PPN	<u>(</u> 41)-0	+75E	
alainin VA	Et i O	. 1 PPM	L6N-1	$\leftrightarrow () () ()$	فعاصب بني المي
	i	.2 PPM	L4N-2	+006	
BID. DEVIAT	TON: O	.8 PPM	L7N-0	(+())	
COMPR. OF N	ARIATION: O	a 7	L4N-2	+25w	2. J. Frank
	ar 10	11 Januari - Jan Jon Janes Merzen bila eratika kuri - A sakata aku muru ha kuru ta kata ara			
		r, ago 1632			
 Constraint and the second s	. 899123		an a	1	
tio Cuaée	0				
<u>1964</u>	<u> </u>				
e 6.20	5 m 17 <i>5</i> 2	and the complete statistic the second statistic	ukkananit tana sinfarta tana t		
13. AQ	4.90	and the second	an na ann an tha tha ann an 1886 an 1887. Anns		
(). A7	2.92	ann comacan acana acan BRA 60:580:880 alstairteacht			•
	17.45		en ander andere and Andere andere	ine anvinantauxen mi	
1.03	22.55		artal la companya de la companya da se	eneren en dan berenden bereiten bereiten bereiten bereiten bereiten bereiten bereiten bereiten bereiten bereiten Erste Bereiten	
N. 21	2.94		ntan international tertes confirm (), das liets interes termulations and an order of the	na, mengementen an er en en die staar en die staar en die staar en die staar en die sekaarde. Een die	- PGL - MACTO
: , , , , , , , , , , , , , , , , , , ,	8.A2	indentional interview			
	4.90		for control of non-Avitantian cont		
1.74	2.94	Mana Stranger			
195	0.98	Hadib			
2.11	0.98	man and a second se			
 ▲ 2.29 	2,94	1999.000 (Contraction of the contraction of the con			2.10
2.47	0.98	Turne average and an		~	C. WU
	6.86				
2. 23	1.96		a angerne angel		
3.01	0.00	etane ata materi			
X.19	0.00				
5.37	0.00				
	0.00				
and the second	0.00	+. 			
5.9)	0.00				
ture n = 2 − 10 La La L	0.93	1975) 1			
6 12 J. 12	nen en nez		80 ∳1079-101 700-101 18		
		0,00%		• 	12. 5 85%
		a gara dan dan kar	1 / main 1 / 1		a mana di buar tuar a M

.

.
MIN-EN LABORATORIES LTD.

SFECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET WORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604) 980-5814 OR (604) 988-4524

	CUMMU	<u>LATIVE</u>	<u>PROB</u>	AB11		<u>FY</u> 1007		<u></u> 		<u>.</u>	- ، پن ست ې
an an an Na sa sa	 A state of the sta	(1) A substitution of Administration (1) Appendix Adjustitution				1. 27 년 24.43 - 1	nia mui Pri jar	in e v	san ya	uf.	
n e Li giu gii	······································	and state of a state of the state of the				<u>ANA</u>	, γ.Ξ.Τ	S TYP	en e	ener Nord General	W
en dar e	0V-1025							1997 - 1 I	1		
				()_()m))#			• • • • • • • • • • • • • • • • • • •		****	*****	
PER				· · · ·			-				
511) Carl	FKEW.										
5794 20											
। ३१ उन	4 66										
,70 13	0.98										
.83	2,94										
.57	9.80	i r									
.33	10.78	j j									
	13.75	αų́α. į π									
.91	14,71	*4** 									
.73	16.67	4. 								•	
.57	21.57 }										
.47	23.53										
.27	32.33)		T								
.17	35.29		T								
.08	46.08		1	t t							
95	57.84			t.	-+- -{-						
.97	43.69)					+					
.79	75.49					:	-+ +				
.72	75.49						-+	··\$··			
. 65	82.38							-+- - [*			
.59	84.31										
23. 15	84.32							1			
,48 ал	6/.20 nt n=										
. 44 AO	07.20								+		
. 77 . 47	99.22								ŧ		
. 33	89.72								4		
.30	92.16								÷	· [-	
.27	92.16										
.24	92.16								·	··[
.22	72.16									··•	
. 20	96.05										
.18	96,08										
,16	76.08)										
.15	76.08										11.
•1 <u>-</u>	76.08										1
.12	76.08										
.11	44.72										
2.10	78.V4										Ē

<u>.</u>

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604)980-5814 OR (604)988-4524

CUMMULATIVE PROBABILITY PLOT ON AS

L COMPANY: BRYNDON VENTURES INC. After: Prodect: Sea GOLD FILE#:0V-1025 DATE:SEPT 7 1990 SAMPLE TYPE:SOIL ANALYSIS TYPE:GEOCHEM

OFFER	CUMMUL.	
LINIT	FRED.	
(PPM)	(%)	
1.00	0,00	
1.00	0.00	
1.00	0,00	
1.00	0,00	
1.00	0.00	
1.00	0,00	
1.00	0,00	
1.00	0,00	
1.00	0.00	
1.00	0,00	
1,00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1,00	0.00	
1.00	0.00	
1.00	0.00	
1,00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	· ·
1,00	0.00	
1.00	0.00	
1.00	0,00	
1,00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0,00	
1.00	0.00	
1,00	0.00	
i.00	0.00	
1.00	0.00	
1.00	0.00 	
1.00	0.00	
1,00	0.00	
1,00	98.04	โม่ โม่มีความหายและการการการการการการการการการการการการการก

DIALISE SAMPLES: 102 MAXIMUM VALUE: 282.0 PPM MEAN: 44.7 PPM	DATE:SEF SAMPLE T ANALYSIE SAMPLE T ANALYSIE SAMPLE T ANALYSIE SAMPLE T ANALYSIE LSN-2+00E	T 7 1990 YFE:SOUL TYPE:GEOCHEM
NUMBER OF SAMPLES: 102 MAXIMUM VALUE: 282.0 PPM MINIMUM VALUE: 5.0 PPM MEAN: 44.7 PPM	SAMPLE T ANALYSIE • • • • • • • • • • • • • • • • • • •	YPE:SOIL TYPE:GEOCHEM
NUMBER OF SAMPLES: 102 MAXIMUM VALUE: 282.0 PPM MINIMUM VALUE: 5.0 PPM MEAN: 44.7 PPM	ANALYSIE	TYPE: GEOCHEM
NUMBER OF SAMPLES: 102 MAXIMUM VALUE: 282.0 PPM MINIMUM VALUE: 5.0 PPM MEAN: 44.7 PPM	S HIGHEST CU-V L5N-2+00E	ALLEC.
NUMBER OF SAMPLES: 102 MAXIMUM VALUE: 282.0 PPM MINIMUM VALUE: 5.0 PPM MEAN: 44.7 PPM	S HIGHEST CU -V	
NUMBER OF SAMPLES:102MAXIMUM VALUE:282.0 PPMMINIMUM VALUE:5.0 PPMMEAN:44.7 PPM	SHIGHEST CU-V	ALLES.
MAXIMUM VALUE: 282.0 PPM Minimum value: 5.0 PPM Mean: 44.7 PPM	L5N-2+00E	F1L
MINIMUM VALUE: 5.0 PPM Mean: 44.7 PPM	}	282.0 PPM
MEAN: 44.7 PPM	L5N-1+50E	IS4.0 PPM
	L1N-0+25E	98.0 PHM
STD. DEVIATION: 37.3 PPM	L2N-1+50E	96.0 PPM
CUEFF. OF VARIATION: 0.8	L2N-1+75W	93.0 FFM
ISTOGRAM FOR CU CLASS INTER	VAL = 6.30	
	aar aarigan ah ahay ah galaa mariyaana ah ya mariyaana ku ku ya) he and (), can use that the () of () and ()
n na sa		
n na	al	in an
	an and the the the theory of the second of the theory of the theory of the second of the	istan Shahimtati
	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	annan marananananan J
	ncoanguna ncoangunati	τ. T
	Geruphini Nikolaytonakusa	
	Regulation and the	
	ui 117	
	KA HAT WAR KATANI KATANI KATANI KATA	
	nna an	
	584 11 1	
	7(# 95]	
	341 429 DE 14 SUNDU 22 D'S UNITES	
	20296109803623794288026 -	
	> 120	
at and the state of the state o		

.

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604)980-5814 GR (604)980-4524

CUMMULATIVE PROBABILITY PLOT ON CU

COMPANY:BRYNDON VENTURES INC. A:IN:P.MANSON/C.SAMPSON PROJECT:SEA GOLD DATE:SEPT 7 1990 SAMPLE TYPE:SOIL ANALYSIS TYPE:GEOCHEM

`	775 WES TELEX:	T 15TH STREET NORTH VAN USA 760167 PHONE: (604	COUVER, B.C. CANADA V7M 1T2 1)980-5814 DR (604)988-4524	
SCP PANY: BRYNDO ATTM: P. MANSON/ PROJECT: SEA GO FILE#: 0V-1025	TATIST N VENTURES C.SAMPSON LD	<u>ical su</u> Inc.	MMARY ON F DATE:SEI SAMPLE ANALYSI	PT 7 1990 Type:Soil S Type:Geochem
NUMBER OF S MAXIMUM VAL MINIMUM VAL MEAN: STD. DEVIAT COEFF. OF V	AMPLES: 1 UE: 179 UE: 8 17 10N: 17 ARIATION: 1	02 .0 PPM .0 PPM .3 PPM .0 PPM .0	5 HIGHEST PB L4N-2+00W L6N-4+00W L3S-0+50E L4N-3+50W L3S-0+00.B/L	VALUES: 178.0 PPM 44.0 PPM 29.0 PPM 27.0 PPM 25.0 PPM
HISTOGRAM FOR	PB	CLASS INTERV	AL = 1.80	
MID CLASS	CLASS			NT-SAM SAMMAMMAN ALSO ALSO ALSO ALSO ALSO ALSO ALSO ALSO
8.90 8.90 10.70 12.50 14.30 14.30 16.10 17.90 19.70 21.50 23.30 25.10 26.90 28.70 30.50 32.30 34.10 35.90 37.70 <u>39.50</u> 41.30 43.10	9.80 14.71 15.69 12.75 6.86 12.75 10.78 5.88 4.90 1.96 0.98 0.98 0.98 0.98 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
> 44.00	0.98		มกระการ และประเทศ และและและและและประเทศ ผู้และและการการการการการการการการการการการการการก	

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604) 980-5814 OR (604) 988-4524

TELEX: 00H /0VI0/ FRUNCI/00H//0V-0014 ON (0V4//

CUMMULATIVE PROBABILITY PLOT

COMPANY: BRYNDON VENTURES INC. Attn:P.MANSON/C.SAMPSON

PROJECT: SEA GOLD

DATE: SEPT 7 1990 SAMPLE TYPE: SOIL ANALYSIS TYPE: GEOCHEM

ON

PB

·	SPECIALI 775 WEST 15 TELEX: USA	ISTS IN MINE TH STREET NORTH VAN 760167 PHONE: (60	ERAL ENVIRONMEN COUVER, B.C. CANADA V7N 4)980-5814 DR (604)988-4	ITS 112 524	
STAT COMPANY:BRYNDON VE ATTALE.MANSOM/C.SA PROJECT:SEA GOLD FILE#:0V-1025	FISTI(NTURES INC MPSON	<u>CAL SU</u>	IMMARY Q DA SA AN	N <u>SE</u> Te:SEPT 7 1990 Mple (Ype:Soil Alysis type:Geuch	EN
NUMBER OF SAMPL MAXIMUM VALUE: MEAN: STD. DEVIATION: COEFF. OF VARIA	ES: 102 1.0 1.0 1.0 1.0 0.0 0.0	PPM PPM PPM PPM	5 HÌGHES L1N-0+25 L1N-0+50 L1N-0+75 L1N-0+75 L1N-1+00 L1N-1+25	DT SB VALUES: 1.0 E 1.0 E 1.0 E 1.0 E 1.0 E 1.0	РРМ РРМ РРМ РРМ РРМ
HIS/DGRAM FOR SB	C	LASS INTERV	'AL = 0.00		
MID GLASS C PPM	LASS %				
<pre>< 1.00 0 1.00 0</pre>	.93 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0				
i an	• · · · · · · · · · · · · · · · · · · ·		49.51%	99.02%	

:..

.

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHONE: (604)980-5814 GR (604)988-4524

(* 20K (DVIC) - (HONELIDVI)/DV 2014 DN (DVI)/DV 44

CUMMULATIVE PROBABILITY PLOT ON SB

COMPANY:BRYNDON VENTURES INC.

ATIN: P. MANSONZC. SAMPSON I PROJECT: SEA GOLD

FILE#:0V-1025

DATE:SEPT 7 1990 SAMPLE TYPE:SOIL ANALYSIS TYPE:GEOCHEM

UPPER	CUMMUL.	
LIMIT	FRED.	proving the second state of the second state of the second state of the second state of the second second state
(PPM)	·* · (%) =	
1.00	0,00	
1.00	0.00	
1.00	0.00	
1,00	0.00	
1.00	0.00	
1.00	0.00	
1,00	0.00	
1,00	0.00	
1.00	0,00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1,00	0.00	
1.00	0.00	
1,00	0.00	
1.00	0.00	
1.00	0.00	
1,00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	V.VV A AA	
1.00	0.00	
1.00	0.00	
1.00	0.00	
1.00	V.VV	
1.00	00.01	
1.00	70,94	fartum menungan men
		2% 5% 10% 15% 20% 30% 40% 50% 60% 70% 80% 85% 90% 93% 98% CUMMULATIVE PROBABILITY

<u>MIN</u> SPEC , 775 TELE	EN LABORA CIALISTS IN MINEF WEST 15TH STREET NORTH VANCO X: USA 760167 PHONE: (604)	STORIES LTI RAL ENVIRONMENTS 1000000000000000000000000000000000000	<u>).</u>
STATIS COMPANY:BRYNDON VENTURE Alin:H.MANSON/C.SAMPSON PROJECT:SEA GOLD FILE#:0V-1025	TICAL SUI Ding.	MMARY ON ZI DATE: SEPT SAMPLE TY ANALYS (S	¥ 7 (990 72:30il Type:geochem
NUMBER OF SAMPLES: MAXIMUM VALUE: 11 MINIMUM VALUE: MEAN: 0 SID. DEVIATION: 0 COEFF. OF VARIATION:	102 22.0 PPM 8.0 PPM 57.7 PPM 8.1 PPM 0.3	5 HIGHEST ZN V4 L6N-0475E L5N-1450E L4N-2400w L5N-1425E L6N-1400E	ALUES: 122.0 PPM 113.0 PPM 112.0 PPM 101.0 PPM 59.0 PPM
HESTOGRAM FOR ZN	CLASS INTERVA	NL = 3.15	
MID CLASS CLASS PPM %			
< 30.00 16.67 51.57 2.94 54.72 3.92 57.87 3.92 61.02 7.84 64.17 5.88 67.32 9.80 70.47 13.73 73.62 6.86 76.77 6.86 79.92 4.90 83.07 3.92 86.22 2.94 87.37 2.94 92.52 2.94 92.52 2.94 95.67 0.00 98.82 0.98 101.97 0.98 105.12 0.00			
108.27 0.00 111.42 0.98 > 113.00 0.98		· · · · ·	· · · · · · · · · · · · · · · · · · ·

FREQUENCY (%)

•

MIN-EN LABORATORIES LTD.

SFECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEX: USA 760167 PHDNE: (604)980-5614 OR (604)988-4524

CUMMULATIVE PROBABILITY PLOT ON ZN

L COMPANY: BRYMDON VENTURES INC. ATTN:P.MANGONZC. SAMPSON ARGJECT: SEA GOLD FILE#:0V-1025

Ē

DATE: SEPT 7 1990 SAMPLE TYPE: SOIL ANALYSIS TYPE: GEOCHEM

UFFER	CUMMUL.(
LINIT	FREG.(• •	•	-	مهي جيار ^{الج} ار ا		e i i		· ·	
(PPM)	(%)	El se a se el se		÷						
110.27	1.96									
104.99	1.76									
99 .97	2.94									
95.20	3,92									
90,64	6.86	ĩ								
86.31	10.78		। -नी⊶ ्रर्जुल							
82.15	14.71		` *	-i-						
78.25	21.57			· +						
74,51	31.37			ť	{ {#					
70.95	43,14				ا مابہ مابہ					
67.56	50.00					-+- -+-				
64.33	60.78					י- <u>ו</u>				
61.26	70.59					·	+ .↓			
58.33	74.51)						'+r			
55.54	76.47						+			
52,88	81.37)						' - 4 - -4-			
50.36	82.35)						- - -#-			
47.95	87.25)						1	+		
45.66	88.24				•			`-⊧- -{-		
43,47	90.20							`+ +		
41.39	91.18 }								į	
39.42	94.12								+ +	
37.53	95.10								*) 	
35.74	95.10 }								+	
34.03	95.10								+	
32.40	95.10)								-i- -t-	
30.85	95.10								+	
29.38	96.08								+	
27.97	96.08								+	
25.54	76.08								Ŧ	
23.38 Di ie	75.08								1	
24.13 87 AA	75.08 j								1	
Z3.00	97.00 }									
21.90 20.05	77.06]									-
20.80	77.V6 67 A									
17,80	77.VO)									
18.7V	77.06)									T
18,00	. 78.04 }		**************************************		į					•

, ·	MIN-E SPECI 775 #ES TELEX:	N LABC ALISTS IN M T 15TH STREET NORTH USA 760167 PHONE	DRATORIE INERAL ENVIRON VANCOUVER, B.C. CANADA E: (604)980-5814 OR (604)9	ES LTD. MENTS V7M 1T2 198-4524	-
SUMPANY: BRYNDD ATTN:P. MANSON PROJECT: SEA GO FILE#: OV-1025	FATIST N VENTURES 70. SAMPSON 11D	ICAL S	BUMMARY	DATE: SHPT 7 SAMPLE TYPE ANALYSIS TY	' 1990 BESOIL 'PE:GEOCHEM
NUMBER OF S MAXIMUM VAL MINIMUM VAL MEAN: STD. DEVIAT COEFF. OF V	AMPLES: 1 UE: 59 UE: 1 4 ION: 7 ARIATION: 1	02 .0 PPB .0 PPB .0 PPB .7 PPB .9	5 HIG L5N-1 L6N-2 L2N-2 L7N-0 L6N-4	HEST AU VALU +75E +50E +00E +25E +00W	JES: 59.0 PPB 38.0 PPB 21.0 PPB 19.0 PPB 18.0 PPB
HISTOGRAM FOR	AU	CLASS INT	ERVAL = 0.8		
MID CLASS	CLASS 7				
<pre>< 1.00 1.42 2.27 3.12 3.97 4.82 5.67 4.82 5.67 6.52 7.37 8.22 9.07 9.92 10.77 11.62 12.47 13.32 14.17 15.02 15.87 16.72 17.57 18.00</pre>	0.98 32.35 32.35 16.67 6.86 1.96 0.98 0.00 0			> A.oo.	
		0.00%	16.187 FREGUENCY	(%)	32.35%

•			; 1	75 WEST 1 ELEX: USA	STH STREET 760167	NORTH YANCOU PHONE:(604)9	VER, B.C. CA 80-5814 OR (NADA V7N 1T2 604)988-4524		
	CU	MMU		TIV	<u>e p</u>	ROBA	BIL	ITY_	PLOT C	<u>IN AU</u>
COMPAN	iY:BRY	NDON V	'ENTUF	RES IN	С. <i>и</i>			DATE	:SEPT 7 1990)
à7 aN d ≊	AAN	ISON/C.	SAME	"GUN				SAME	ur syffessouth Van se stude	
rhiuu teli Turu teri	ilistaf all sa	i tolili Ann						ANAL.	Yoto (Yrz.teb	uu marii
-16443	0V-10	20	«	*****					****	******
UPPER	CUMMUL.	l.								
" LIMIT	FREQ.		•			entre de la Alexandre de la Ale Alexandre de la Alexandre de la				
(PPB)	(%)				1. A. A.	1 - A				
36.20	0,98									
32,85	0.98									
29.82	0,98									
27,06	0,98									
24.56	0.98									
22.29	0.98									
20.23	1.96									
18.36	2.94	ļ., -†••								
16.66	5.88		- -							
15.12	6,86		+							
13.72	7.84	}								
12.45	7.84		1							
11.30	7,84		4							
10.26	7.84		1	•						
5.31	7,84		7	-						
8.45	7,94		1	•						
7.67	7.84		7	•						
6.96	7.84	1	1	•						
6.32	7.94		T T T							
5.73	8, 82		1	- -+-						
5.20	8.82			-}- - -						
4.72	10.78			-i- -						
4,28	10.78									
3.89	17.65			ч г .	t				· .	
3,53	17.65	}			Ŧ					
3.20	17.65				Ŧ					
2.91	34.31				Т					
2.64	34.31									
2.39	34,31	}				- 1- -4				
2.17	34.31									
1.97	66.67					. т.		- }-		
1.79	66.67							1 		
1.62	66.67							т. 		
1.47	66.67									
1,34	56.67	}						- f=- f=-		
1.21	66.67							ᠥ -!•		
1.10	66.67									
1.00	78.04							- i -		

APPENDIX 3

Sampling Programmes

- 3.1: SKARN ZONE
- 3.2: NORTH GRID
- 3.3: ARSENO/SULPHIDE ZONE
- 3.4: RUST SHEAR ZONE
- 3.5: BOULDER TRAIN

1.1

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 216

3.1: Skarn Zone

,

.

......

.

.

م روم مراجع

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6 COMP: BRYNDON VENTURES CORP. PROJ: SEA GOLD ATTN: P.MANSON/C.SAMPSON

1.5

v

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1113-RJ1+2 DATE: 90/08/18 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPN	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB			
21012 		11	<u>572</u>	23	<u>6</u> 1			an an an Ariana An Ariana	1 •	
21014	2.4	1	21	28	1	39	4210	, , <u>,</u>		
21016	14.8	405	10977	12	1	36	70000	Skam.		
21017	25.0	228	98279 2004	113	88	32	12000			
-21024	1.3		1749				<u> </u>			
	<u> </u>			<u></u>	<u> </u>	<u> </u>	<u>230</u> - : 2650 ;		, 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	t de
21027	4	1	- 280		1	90	16		•••	
21028	2.1 6.3	1 376	1153 644	5 603	1 16	48 137	165 15	Skarn		
21030	3.4	100	517	164	1	461	10 -	1. 1.		
									`	
n an		- 17 -	1							
							÷ ÷			
			ļ					<		
			ļ					1		
	<u>-</u>							<u>/</u>		
-										
•			:							
								ļ		
· -				÷						
			;					; 		
•				•			set.			
									.	· · · · · · · · · · · · · · · · · · ·
	••••••••••••••••••••••••••••••••••••••									

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.:

TELEPHONE/FAX (604) 847-3004

<u>Assay Certificate</u>

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

Date: AUG-18-90

Copy 1. BRYNDON VENTURES, VANCOUVER, B.C. 2. C.SAMPSON, VANCOUVER, B.C.

Company: BRYNDON VENTURES CORP. Project: SEA GOLD Attn: P.MANSON/C.SAMPSON

LABORATORIES

(DIVISION OF ASSAYERS CORP.)

He hereby certify the following Assay of 8 ROCK samples submitted AUG-18-90 by B.GAME.

21014 4.20 .123 21016 71.50 2.085 21017 12.20 .356 SKARN	Sample Number	AU g/tonne	AU oz/ton			
	21014 21016 21017	 4.20 71.50 12.20	. 123 2.085 . 356	} SKARN	ಯಾವಾರ್ಡದ್ರೆಯಾದಿದ್ದಾರೆ.	
					•	

Cartified by

HN

0V-1113-RA1

3.2: North Grid

~

BAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 216 • EN LABORATORIES (DWISION OF ASSAVERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay Certificate

0V-0956-RA1

Company: SAMPSON ENGINEERING Project:

Date: JUL-20-90 Copy 1. SAMPSON ENGINEERING, VANCOUVER, B.C.

ittn: C.SAMPSON

He hereby certify the following Assay of 7 ROCK samples submitted JUL-19-90 by C.SAMPSON.

Sample	AU	AU	
Number	q/tonne	oz/ton	
20601 20602 20603 20604 20605	.06 .35 .02 .21 .01	.002 GRAN .010 .001 .006 .001	B SAMPLE: RUSTY FRACT LIN 3+25 E GRAB SAMPLES FROM MINERALIZED SHEARS - TRENCH 90-4 AREA [FIGURES 5 AND 6]
20606	.16	.005	GRAB SAMPLES FROM FLOAT
20607	.19		ABOVE TRENCH 90-4

Certified by

LABORATORIES MIN

OJ: TN: C.SAMPSON		705 WE	ST 15TH S (604)9	T., NORTH 80-5814 C	VANCOUVE R (604)98	R, B.C. V 8-4524	7 H 1T2	DATE: 90/07, • ROCK * (ACT:F
SAMPLE NUMBER 20601	AG PPM .1	AS PPM 1	CU PPM 18	PB PPM 28	SB PP H 1	ZN PPM 18	GRAS SAMPLES	FROM
20602 20603 20604 20605	.1 .1 .1	49 1 142 87	34 31 59 35	38 37 36 25	1 1 1	5 19 11 7	MINERALIZED ABOVE CREEK	SHEARS - TRENCH 90
20606 20607	.1 .1	242 284	14 22	31 36	1 1	12 11	FLOAT DBOVE	trench qo-
		 .	· <u> </u>					
		<u></u>						
		. <u>.</u>						
								<u></u>

COMP: BRYNDON VENTURES CORP. PROJ: SEA GOLD ATTN: P.MANSON/C.SAMPSON

.

-

~ ~ •

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOLVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1113-RJ1+2 DATE: 90/08/18 • ROCK • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	P B PPM	SB PPM	ZN PPM	AU PPB	· · ·
- 4								
							,	
21044 21045 21046 21047 21047 21048	.5 .4 .2 .2 .2	1 79 1 1 1	91 37 73 70 108	11 15 8 5 5	1 1 1 1	25 24 23 28 26	80 78 16 2 20	TTE 90-4
21049 21050 21051 21052 21052 21053	.1 .1 .2 .1 .2	1 1 6 141 1	165 75 15 21 31	13 5 10 19 7	1 1 1 1	30 23 16 10 23	12 25 105 1	(SEE FIGURE 6) FOR LOCATION
21054 21055 21056 21057 21058	1.3 .7 .5 .5 .3	1 1 1 1	75 19 8 56 109	23 10 17 11 7	1 1 1 1	39 22 20 18 19	42 2 2 1 5	TR 90-4
21059	.3	1	114	4	1	17	14	•
				· · · · · · · · · · · · · · · · · · ·	·····			
					š			

3.3: Arseno/Sulphide Zone

11

.

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6 COMP: BRYNDON VENTURES CORP. PROJ: SEA GOLD ATTN: P.MANSON/C.SAMPSON

.....

FILE NO: 0V-1027-RJ1 DATE: 90/08/04 * ROCK * (ACT:F31)

SANPLE NUMBER	AG PPM	AS CU PPN PPM	PB PPM	SB PPM	ZN PPN	AU PPB	
21001	1.2	28 88	13	1	81	2 -	Namen strate what of
21002	1.0	51 26 28 300	15 18	1	68 11	1]	Sulphide (posene) zonen.
21004 21005	7.9	1 62150 1 820	64	57	34	3	Sal candle from
21006	_5	43 202	18	1	2		Municipality at at
21007	1.0	21 58 112 86	19 17	1	1	1	west of Asero
21009	2.1	20 1991	23	3	23	24	(R)
21010	1.7	37 1871	18		10	578	Companyale son is
21040	2.1	24 2392	17	2	24	11	
21042	2.4	23 5333	26 22	5	14 9	56	
21043	2.3	20 2670	20	2	16	169 🤳	
•							
L.	G .0	1.404.	1 -		_	_	
	5.3	I ARSE	NOS	ULPHI	de 2	ONE	
							9
	······						
	· ·· · ·· ·· ·· ·· ··						
			•	- F	•		
				6.64	3. 	5 - 134	
	······································						<u> </u>
				• • • • • • • • • • • • • • • • • • • •			
							÷
							
i							1

COMP: BRYNDON VENTURES CORP. PROJ: SEA GOLD ATTN: P.MANSON/C.SAMPSON

.

1 .

٠

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1113-RJ1+2 DATE: 90/08/18 • ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB		
21023 21024		1 581	2094 1749	7 54	1	54 227	240 4 340		
21025 21026	.6 5.9	167 2234	1326 1385	38 164	1 7	214 497	230 2650	TR 90-1	ARSOND ZONE
21027 21039	.4	1	280	11	1	90	¹⁶ ¥		
21031	15.6	2027	1393	250	8	302	10900	í	
21032 21033 21034 21035 21036	1.2 .9 15.4 .5 27.8	7 1 1829 1 1598	113 77 915 46 207	22 15 143 5 204	1 5 1 21	28 35 179 67 413	2 50 5500 2 5800	TR 90-3	Arseno zonfe
			1 //						
				<u> </u>					

1 Si.e.		IN EN LABORATORIES (DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINER. CHEMISTS + ASSAYERS + ANA	AL ENVIRONMEN	VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004
		<u>Assay Cert</u>	ificat.	<u>e</u> 0V-1113-RA1
~	Company: Project: Attn:	BRYNDON VENTURES C SEA GOLD P.MANSON/C.SAMPSON	ORP.	Date: AUG-18-90 Copy 1. BRYNDON VENTURES, VANCOUVER, B.C. 2. C.SAMPSON, VANCOUVER, B.C.
	<i>He her</i> submit	eby certify the folted AUG-18-90 by B.	lowing Ass GAME.	ay of 8 ROCK samples
-	Sample Number	AU g/tonne	AU az/ton	
	21024 21026	.35 2.24	.010	
-	21031 21034 21034 21036	12.60 5.62 5.93	.348 .164 .173	ARSENO ZONG

Certified by

MIN-EN LABORATORIES

3.4: Rust Shear Zone

¥.

-

-

_

,

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 216 , B

MP: BRYNDON VENTURES (ROJ: SEA GOLD (TN: P.MANSON/C.SAMPSO)	CORP. N	MI 705 WE	N-EN J ST 15TH S (604)9	LABS - T., NORTH 80-5814 0	- ICP VANCOUVI R (604)98	REPO ER, B.C. 3 58-4524	RT V7N 112		FILE N * ROCK	IO: 0V-1114-1 DATE: 90/08 (• (ACT:F
SAMPLE NUMBER 21037 21038 21060 21061	AG PPN 4.0 3.1 .1 .1	AS PPM 9352 13372 3865 2196	СU РРМ 10 25 207 236	P8 PPM 46 363 28 13	SB PPM 29 38 1 1	2N PPM 26 17536 391 225	AU PPB 241 199 1640 4000	GRAB RUST GRAB ZONG	SOMPLES SIGAR FROM STR IN RUST	FROM. ZONG WGER SHEAK.
		···								
-										
							<u></u>			
										

SAMPLE DESCRIPTION: Trenches 90-8,9, Rust Shear Zone

Trench 90-8: 1 m. chip samples

21062 - (0-1m.)	Sample of wallrock with strong quartz-carbonate
	(2-10% pyrite trace - 1% arsenopyrite). Some argillic
	alteration of fsp.
21063 - (1-2m.)	As sample 21062 (2-10% pyrite trace arsenopyrite)
21064 - (2-3m.)	As sample 21062 (2-10% pyrite)
21065 - (3-4m.)	As sample 21062 with a 6 cm. wide fracture fill of
	fine grain (0.1mm-1mm) pyrite.
21066 - (4-5m.)	As sample 21062 (approx. 1-5% pyrite)
21067 - (5-6m.)	As sample 21062 (approx. 1-5% pyrite and trace - 2%
	arsenopyrite)
21068 - (6-7m.)	As sample 21062 (approx, 1-5% pyrite)
21069 - (7-8m.)	As sample 21062 (approx. 1-5% pyrite)
21070 - (8-9m.)	As sample 21062 (approx. $1-5$ pyrite and trace
	arsenopyrite) note calcite stringers.

Trench 90-9: 1m. chip samples

.

21080 - (0-1m.)	Sample of grey brecciated (faulted) carbonate altered chert. Note calcite veins (1mm10mm.) cutting chert (1-2% pyrite (blebs) and 1-2% arsenopyrite)
21081 - (1-2m.)	As sample 21080
21082 - (2-3m.)	As sample 21080
21083 - (3-4m.)	As sample 21080

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-56 14 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Assay Certificate</u>

0V-1114-RA1

Company:	BRYNDON VEN	TURES COR	P.		1	Date: AU	G-18-	90 🦗 🕬
Project:	SEA GOLD		an a	Сору	L. BRYNDO	IN VENTURES, VANCOUVER	, Β.C. ∙	
Attn:	P.MANSON/C.SA	MPSON			Z. C.SAMP	SON, VANCOUVER, B.C.		

We hereby certify the following Assay of 2 ROCK samples submitted AUG-10-90 by B.GAME.

		AU oz/ton	AU g/tonne	Sample Number
n - 1980 Market Brandston og som en som en som som som en som	INGER ZONE IN RUST SHEAK .	.043 }	1.48	
		.116)	3.99	21061

Certified by_

MIN-EN LABORATORIES

ROJ: SEAGOLD TTN: P.MANSC	I VENTURES))N/C.SAMPSO	N						M: 705 W	EN-1 EST 1 (EN L2 5TH ST. 604)980	ABS - , NORTI -5814 (1 H VANC DR (60	CP R OUVER] 4)988-4	EPC B.C. 4524	O RT V7M 1	112								FILI	ENO: DAT DCK •	OV E
SAMPLE NUMBER	AG PPM P	AL AS PM PPM	B PPM	BA PPM	BE PPM	BI (PPM PI	A CO M PPN	CO PPM	CU PPM	FE PPM	K PPM I	LI PPM	MG M PPM PP	MN PM P	MO NA PM PPM	A NI A PPM	P PPM	PB PPM P	SB SR PM PPM	TH PPM F	U PPM PP	V ZN M PPM	GA PPM	SN PPM pi	W CR PM PPM	t t
21062 21063 21064 21065 21066	2.2 198 1.8 216 1.1 248 .1 113 1 7 152	80 68 30 1 70 1 60 1022 10 386	9 10 12 13 7	55 94 70 22 76	1.5 1.2 1.3 .8	4 8292 4 8992 4 6192 8 2994 4 941	0 .1 0 .1 0 .1 0 1.6 0 1.6	20 19 22 183 17	108 83 185 124 54	93280 90750 120560 211340 54790	1460 1190 1440 720 970	52 7 58 8 65 7 28 3 35 6	7860 161 220 152 7060 123 300 94 480 171	18 21 34 46 19	1 290 1 240 1 160 1 160 1 80		570 560 570 320 560	53 35 49 49 37	1 76 1 40 1 11 1 18 1 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 50. 1 65. 1 64. 1 32. 1 53.	3 43 2 32 3 17 1 1 1 39	5 5 4 1 5	1 2 2 3 7	1 24 1 3 1 16 1 1 1 14	2
21067 21068 21069 21070 21080	1.2 94 .9 136 .3 233 .7 158 .6 107	00 137 10 142 70 1 10 1 90 1	10 10 10 13	83 156 30 58 310	.8 .9 1.3 1.1	2 474 5 708 3 377 3 760 1 373	0.6	20 18 27 21 12	51 68 74 45 58	43020 94400 140660 91450 40160	1690 1230 1020 2060 2430	18 3 39 6 66 8 37 7 5 10	620 112 450 176 890 214 920 201 830 56	20 51 53 11 58	1 280 1 200 1 160 1 310 1 300		740 640 580 670 1090	35 108 49 32 26	1 30 1 54 1 1 1 35 1 10		1 36. 1 50. 1 61. 1 52. 1 78.	7 113 9 39 1 20 2 35 6 30	3	2 6 1 3	2 29 1 22 1 1 1 28 1 28	
21081 21082 21083	1.1 90 .9 128 1.3 142	90 62 80 1 50 48	9 13 11	210 54 48	.7 .9 1.2	1 472 1 372 1 394	0.1	16 9	77 32 95	40960 30090 46500	2080 2910 2410	5 5 7 6 14 11	330 64 970 52 540 70	43 26 02	1 250 1 380 1 350		990 1340 1030	26 24 54	1 19 1 12 1 17	1	1 66. 1 96. 1 84.	5 26 5 16 4 389	324	1 1 1	4 80 2 32 2 39)
		Sm	የ ዮ ርሪ	ŧS	21	062	- 21	070	» :	Im	сн	(PS	ALC	SNG	γ	Re	₩C1	ન	٩0.	- 8						
												_														•
	1				21	080	- ~	108.	5 !	<u> </u>		SA	MPLE	5	A	<u> </u>	<u>e T</u>	Re	124	1 4	0-4					
														<u></u>									· · · ·			
					çı		•• ••••• •••••	,																		
																							· · · · · · · · · · · · · · · · · · ·			

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay	Cer	セヹ	f z	cate	
					•

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

OV-1145-RA1

He hereby cert	tify the follow B (lowing Assa	y of 1	ROCK samp	les	
adputted A00.		JATIE.			* <u>.</u>	
Sample	AU	AU				
Number <u>Composition de Loope</u> r	g/tonne	oz/ton		an and a star free and a star star and a star star and a star star star and a star star star star star star sta		
21065	2.80	. 082				
065	2.80	.082				

1

K.SARKK

MINERAL

ENVIRONMENTS LABORATORIES

(DIVISION OF ASSAYERS CORP.)

Certified by

MIN-EN LABORATORIES

COMP: SAMPSON ENGINEERING INC PROJ: ATTN: CHRIS SAMPSON MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1570-RJ1 DATE: 90/10/17 * ROCK • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	BA PPM	CU PPN	PB PPM	ZN PPM	AU PPB	
137184 137186 137188 137190 137191	23.0 24.2 62.9 1.7 3.2	3478 13663 6198 204 46	4 17 19 65 158	1100 637 774 55 279	198 4779 12519 233 62	85 12041 32263 354 311	35 630 10 30 5 7	RUST SHEAR
137192	2.5	5	122	22	59	330	کہ 10	ZONE GRAS
•••••								
	2					·		

3.5: Boulder Train

-

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 216

DESCRIPTION OF BOULDER, ROCK CHIP SAMPLES

Boulder samples: 21072-21079: All Sedex type i.e. massive py+aspy and sphal. and gal.

21072 - 60% pyrite, 40% combined lead-zinc 21073 - 95% pyrite (5% lead-zinc) 21074 - 95% pyrite (5% lead-zinc) 21075 - 95% pyrite (5% lead-zinc) 21076 - 80% pyrite, 20% lead-zinc 21077 - 90% pyrite, 10% lead-zinc 21078 - 80% pyrite, 20% lead-zinc 21079 - 70% pyrite, 30% lead-zinc

Grab sample

21071 - Light green/grey argillically altered volcanic (possibly crystal tuff) 1-3% arsenopyrite

Samples 24601 to 24629: located between Rust Shear Zone and Boundary Fault Zone. All are massive sulphide (Sedex) type containing varying amounts of galena and sphalerite.

Sample 24630: Resample of 21911 (1988). Carbonate altered andesitic agglomerate containing quartz stringers and pyrite (i.e. Rust Shear Zone type)

Sample 24631: Resample of 21910 (1988). Massive pyrite probably of Arseno/Sulphide Zone type.

- Sample 24632: Massive arsenopyrite/pyrite boulder near 21908 (1988 programme)
- Sample 24633: Resample of 21908 Sedex type with massive pyrite, some galena and sphalerite.
- Sample 24634: Disseminated pyrite and arsenopyrite in quartz vin matrix. Taken from previously sampled boulder - No tag.

Sample 24635: From massive arsenopyrite/pyrite boulder near 21908.

Sample 137184: Massive sulphide Sedex type

- 137185: Sent for petrographic analysis probable felspar or ankerite, plus quartz in fractures. Cross cut by 1mm. calcite or ankerite veins with galena, sphalerite, pyrite.
- 137186: Sample sample as 137185 sent for geochem. analysis.
- 137187: From similar boulder but containing appreciable chlorite (?) for petrographic analysis.
- 137188: From same boulder as 137187 but sent for geochem. analysis.
- 137189: Resample of 21929 (1988) for petrographic analysis.
- 137190: Not a massive sulphide type. Contains dissem. medium grained pyrite in a felsic (?) matrix possible Arseno Zone type.
- 137191,2: Grab samples from Rust Shear Zone.

2696 West 11th Avenue Vancouver: B.C.: V6K 2L6 COMP: BRYNDON VENTURES PROJ: SEA GOLD ATTN: P.MANSON/C.SAMPSON

• •

₹ Ē

ł

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0S-0311-RJ1 DATE: 90/08/24 • ROCK • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB	
21071 21072 21073 21074 21075	1.0 26.2 57.6 17.2 20.8	65 10574 11104 3328 6643	180 773 1339 1000 1097	51 3817 1667 465 1259	1 65 63 1 13	41 10156 20331 1369 4156	19	- GRAB : GREY ALT YOLC . MASSIVE SULPHIDE
21076 21077 21078 21079	16.6 34.6 33.1 36.9	1435 7996 17117 18512	545 822 1055 1088	1014 1516 742 1445	1 17 5 206	2410 2255 3796 6044	162 272 83 362	Boulders,
	3.	5 ! Ba)VLD7	er tr	AIN S	5 AMEL	me.	-
J.								
-								
-								

.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Assay Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.:

TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB .: TELEPHONE/FAX (604) 847-3004

OS-0311-PA1

4

Company: BRYNDON VENTURES

Project: SEA GOLD Attn: P.MANSON/C.SAMPSON Date: SEP-01-90 Copy 1. BRYNDON VENTURES, VANCOUVER, B.C. 2. SAMPSON ENGINEERING, VANCOVUER, B.C.

He hereby certify the following Assay of 8 PULP samples submitted AUG-17-90 by C.SAMPSON.

Sample Number	AG g/tonne	AG oz/tor:	CU %	PB %	ZN %	
21072	- ···· 54 Ω		Maaringe op alle			allan an - Cardona an San Cardana an
21073	85.4	2.49	. 157	.28	3.04	
21074	25.7	.75	.112	- 08	. 10	
21075	33.8	.99	.118		.61	
21076	36.0	1.05		.21	.50	
21077	59.3	1.73		. 28	 .38	
21078	42.4	1.24	109		.59	
21079	50.2	1.46	.117	.23	.92	

Certified by MIN EN LABORATORIES
COMP: BRYDON VENTURES * PROJ: SEA GOLD

1

...

MIN-EN LABS - ICP REPORT

FILE NO: 0V-1382-RJ1+D1+2 DATE: 90/09/18 • ROCK • (ACT:F31)

ATTN: P.MANSON/C.SAMPSON

705 WEST 15TH ST., NORTH VANCOUVER, 8.C. V7N 112 (604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AG PPM	AS PPN	CU PP N	PB PPM	SB PPM	ZN PPM	AU PPB	
24601	17.1	1755	842	243	15	107	1050	f
24602	7.6	821	795	63	<u> </u>	360	400	
24603	31.7	2834	1135	656	18	1305	25	
24604	13.4	2336	702	1024	22	2712	60	
24605	35.0	10358	1157	506	126	814	400	
24606	25.6	6633	914	1405	61	7576	300	
24607	11.7	8663	2181	102	128	67	35000	
24608	78.0	1093	941	196	1	449	170	
24609	13.1	433	800	140	1	174	1100	
24610	30.7	1505	865	326	4	108	10	
24611	22.9	795	710	316	1	275	170	
24612	33.7	580	777	188	1	55	195	<i>u s</i>
24613	31.2	5663	1113	305	35	67	50	5 SEDEX BOUDERS
24614	1.0	391	986	61	1	30	40	
24615	28.1	21663	589	320	83	668	285	BETWEEN BOUNDARY
24616	52.5	10325	550	1500	87	10364	390	FAULT ANT BIST
24617	21.0	1426	963	172	4	159	165	
24618	72.0	7924	1390	1817	79	62562	860	SHEAR ZONE
24619	23.7	16211	978	739	142	3953	175	
24620	40.7	10769	1043	636	79	- 313	245	
24621	8.9	1249	1104	56	1	177	830	
24622	12.9	1313	697	731	11	2904	385	
24623	3.5	419	2995	70	1	48	15	
24624	31.4	7249	1128	2276	61	5527	315	
24625	8.1	938	1028	553	17	1057	370	
24626	19.2	7900	666	1147	71	22968	630	
24627	10.9	1054	1345	1072	60	3919	65	
24628	51.3	28561	500	5277	255	21089	820	· · ·
24629	42.5	11112	1234	13306	122	34374	110 🖕	
24630	15.0	1107	140	119	6	173	8750 -	- RESAMPLE 21911
24631	8.0	1	390	56	1	31	1200 -	- 11 21910
24632	19.6	2600	564	1078	40	1831	8500	- ARSEND FLOAT NEAR 21908
24633	178.5	890	717	674	1	227	650 -	RESAMPLE 21908 (SUDGY)
24634	8.2	775	745	458	45	182	40 -	- PY ASPY FLOOT
24635	3.9	1515	1037	197	40	5	8000	MASS ASPY NEAR 21908
					Ì		÷	х • •

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Assay Certificate</u>

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

0V-1382-RA1

company:	BRIDON VENTURES
Project:	SEA GOLD
Attn:	P.MANSON/C.SAMPSON

LABORATORIES

(DIVISION OF ASSAYERS CORP.)

MIN ËN

> Date: SEP-18-90 Copy 1. BRYDON VENTURES, VANCOUVER, B.C. 2. SAMPSON ENGINEERING, VANCOUVER, B.C.

He hereby certify the following Assay of 30 ROCK samples submitted SEP-06-90 by P.MANSON.

Sample Number	AU g/tonne	AU oz/ton			
24601 24607 24609 24630 24631	1.18 57.00 1.26 8.70 1.64	.034 1.663 .037 .254 .048	BOULDER TRAIN .	.	
	10.20 10.10	.298			
				. . .	
				·	!

Certified by

COMP: SAMPSON ENGINEERING INC PROJ: ATTN: CHRIS SAMPSON

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1570-RJ1 DATE: 90/10/17 * ROCK • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	8A PPM	CU PPM	P8 PPN	ZN PPM	AU PPB	
137184 137186 137188 137190 137191	23.0 24.2 62.9 1.7 3.2	3478 13663 6198 204 46	4 17 19 65 158	1100 637 774 55 279	198 4779 12519 233 62	85 12041 32263 354 311	35 630 10 30 5	Sedex Barbler : Grab.
137192	2.5	5	122	22	59	330	10	
	 				*******			i
			P. 1980-1011 - 51-2					
			;					

APPENDIX 4

Drill Logs and Assays

ARSENO/SULPHIDE ZONE

م بهمين

SAMPSON ENGINEERING INC.

2696 West 11th Avenue Vancouver, B.C. V6K 2L6

	PROPERTY 5				L Gold				HOLE No.	BRY	90-1		
			<u>P TEST</u>	Ingle							- 7, _		١
ŀ	Foo	otag e	Reading	Corrected	Hole No. <u>40-1</u> Sheet No. <u>01</u>	Lat				Total Depti	76.20	<u>m (250)</u>	<u>)</u>
F			- 450		Section	Dep Depsing	<u>بنانې</u> ۲۱۰	 ۲۰		Logged By.	<u>0.</u>	ame	<u> </u>
F					Date Finished Aug 25 190	Elev Colle					Ba		
[Date Logged Aug 25 190	-	¥1		<u> </u>	Au Au	Ag	AS	Cu
DE FROM	РТН ТО	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				Per-
0	1.72		C	ising and	broken rock						_		
6	4.0)			5				Ι		1			
										1	• • • •		1
1.22	30,17	90-95%	U	alconic Cor	slowerte (Agglamente?)		-						
(4.0	99.0)		- 0	yedium aree	n andesitic matrix with oranka								
			te	sub-an	wher fragments of intermediate to								
			5	afit volce	nic and intermediate intrusive.								
				withing stair	to the product of the the								
				arous orig	entations.		1			·····			1
			- ~	1º10 Rr	e to med- around discerning ted								
			01	A Amothure	- Filled purit.								
_			_ iq.u	12m - 6.55m	: ~ 1°/0 chalcoourite as med- grained	136701	4.42	5.42	1.0m	١5	۰٦		1107
				Fracture - 6	Minas along margins and within	136702	5.42	6.55	1.13m	10	.9	24	438
				andam g	to stringers to Icm- wide. Trace_								
		<u>.</u>		malachik	on fractured surfaces.							_	
			- 9.911	m- 10.66m i	weakly silvei Red and Feldspatniged zone.	136703	9.91	10.66	0.75m	340	1.0	1106	219
			1	Ungan where	rarbonate has leached out. Somewhat	······							
				rusty Boxw	ork' take where fire to med-grained								
				Parite has	leached,								
			- 10.	66m - 11.16m	: Shear zone, Core broken, Somewhat	136704	10.66	11.16	0.50	(0.106)	4,3	27751	709
				oxidines.	at a componate winne with disseminated								

. .

1

		PR	OPER	τΥ	Sea Gold				HOLE No.	90-	- 1		
[0	IP TEST	<u>r</u>									
ļ	For		Readin	Angle Corrected	Hole No 90-1 Sheet No 02	Lat				Total Den	th		
ļ					Section Order Har	Dep				Logged B	y	······································	
ļ			- ५८०		Date Begun	Bearing_	``			Claim			
Ļ	· · · · · · · · · · · · · · · · · · ·	_			Date Finished	_ Elev. Coll	ar			Core Size			
L		L		l	Date Logged	_				Au	Ag	As	Cu
DE FROM	РТН ТО	RECOVE	22		DESCRIPTION	SAMPLE No	FROM	то	WIDTH OF SAMPLE				PPM_
				to locally	massive and banded. Bre grained								
				prite t	arsens porrite. Banding and weining						-	<u> </u>	ļ
				approx 60	to C.A.	 	ļ			ļ	<u> </u>		
	İ		<u> </u>	remains slighty	exidized with carbonate and pyrithe	136 705	11.16	11.89	0,73~	10	.1	244	27
			F	inactures to	11. 87m.								
			- 1	4.44m - 15.95m	weaks, carbonate altered. Core is								
				broken and e	ilightly governed (fault?)								
 .			_	17.52m - 19,01m	; increase in swirling while calcite	136706	17.52	18.30	0.76m	5	.7	161	u
				stringers.	- 2% disseminated fire - grained porit.	136707	18.30	19.01	0.71~	20	.9	16	20
				+ trace	chalcopyrit.		 	ļ				_	<u> </u>
				·18.17~	: 0.12m- wide preciated calcite vein						ļ		ļ
					€ 60° to c.A.							<u> </u>	
			. 2	7.43m- 30.17m	: Rusty (oxidized) carbonate altered	136708	27.43	28.43	1.0m	5	,7	20	15
			_	shear zone	. Core somewhat broken and goinged	136709	28.43	29.43	lion	5	1.1	31	ч
				on broken	surfaces. Heavily carbonate altered	136710	29.43	30,17	0.741m	10	1.1	21	94
				agglomera	e (?.) No visible sulphide.								
				· ·									
30.17	50.29	95~100*/0	<u> </u>	Dnolomerate.							, .	L	ļ
(99.0	165.0)			volcanic conglo	nerate. Medium green, andesitic		<u> </u>					┟	
				vatrix with	1-10cm sub-rounded to vounded								

NEVILLE CROSBY IND-TELEPHONE: USE-4343

ļ

			RIT					HOLE No.	<u>} \</u>	<u> </u>	_ _		
	For		Read	ST Angle ting Corrected	Hole No. <u>90-1</u> Sheet No. <u>03</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Colle	ar			Total Dep Logged E Claim Core Size Au	Ag	As	
DE FROM	PTH TO	RECOVE	27		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
				ingments of swirling whit Q. which or - 1% dissu grained porite 41.87m - 42.27m weak Fel	intermediate to make volcanic, ksser strusive and rare reddish chart. e calcike with minor quarty isotations to c.A. minated and Fracture- Filled Fru- m: Zone of carbonate alteration and deget trigation @ 45° to c.A. < 1°/0	136711	41.83	42.2.3	0.40m	5	2.0	34	9
				<u>disser pyr</u>	·*								
<u>50,29</u> (165.0	67.3L 221.0)	95°/0		Tuff andesite tuff; swirling white to c.A. ~ 1°10 disser 64.0 - 64.75m contect wide co	grodes to agglomerate locally. Calcik Stringers at all angles minated Fre-grained pyrite: Section of Fre-grained andesite - 1 to C.A. Increase of 0.5-2.0cm alloik uniteds @ 50-70° to C.A. thru								
				JNAS 5	TE. 1-2% dissen for gooined provik	136712	66.36	67.36	lion	5	.9	56	44

7/

		PRO	PERTY		Seo Gold					HOLE No.	90-	<u>/</u>		
	Foo	Di ntag +	P TEST An Reading ~ 45°	gle Corrected	Hole No. <u>90-1</u> Sheet No. Section Date Begun Date Finished Date Logged		Lat. Dep Bearing Elev. Collic	ағ			Total Depi Logged By Claim Core Size Au	h / Ag		
DE FROM	РТН ТО	RECOVER	r	<u></u>	DESCRIPTION		SAMPLE No.	FROM	то	WIDTH OF SAMPLE				ppm -
67.36 (221.0	76.20 250)	90°%	- Volco - very - nec	icoclastic chaotic dium gran ists of ic	Sandstone voit sandy matrix with sub trmediate volcanic, chert and	angula								
			- 67.	<u>illite, Cor</u> <u>36m-67.76</u> <u>in large</u> <u>disseninet</u>	e very broken and tractured. mi much swirling white calcite y black argillitic matrix. I- d fine-grained purite.	· with-	136713 136714	67.36	69.76 68.76	0.40m 1.0m	5	1.4	<u>чь</u> \	<u>३</u> 7 ५।
			- 69.40 - 70.6	1m - 69.85m C.A. 20m - 70.80 Section.	: Sillstone; bedding @ 040 	s to illici Red	136715	70.60	70.80	0.20m	\$	2.0	2169	45
			- 73.0	15m - 73.49 broken. 55m: 10cm-	m: Cherty black angillite. Cont 	ta cts								
				Ę	ND OF HQE 76.20m (250')									

ļ

۰.

_

_

		PRC	PERTY		Sea Gold				HOLE No	BRY	90-2	<u> </u>	
		Di	P TEST Ang	gle									
	Foc	otage	Reading	Corrected	Hole No. <u>90-2</u> Sheet No. <u>61</u> Section	Lat				Total Dep	th <u>100.58 m</u> B. C	n (330) cance	
			- 50°		Date Begun Aug 2-5 /90	Bearing	12	ວິ		Ciaim	Gabi	2	
ł					Date Finished Aug 26 190	Elev. Coll	lar			Core Size	Ba		
l			1		Date Logged Aug 26/90					Au	Ag	As	<u>د</u> بر
DE FRON	PTH TO	RECOVER	r		DESCRIPTION	SAMPLE No	FROM	то	WIDTH OF SAMPLE				
0	0.61		Casi.	ng & bro	ken rock		İ						
(0	2.0)												
	_		-										ļ
(0.61	22.86	90-95%	- Volca	nic <u>Congl</u>	omerate (Agglomerate?)		_						
(2.0	75.0)		mea	dium gre	en, ordesitic matrix with sub-rour	-dad						<u> </u>	
			to	angular	fragments of intomediak to not	<u>,'¢_</u>	<u> </u>						
			1001	canic in	termidiate intrusive and rare		<u> </u>				<u></u>	<u> </u>]
			red	chert.									
	 		- <u>swi</u>	rling stri	ngers of white and brown (oxidize	ed)(69		L					
	L		<u> </u>	cite at	various or instations to c.A.		<u> </u>				ļ		
			- <u>-</u>	1. <u>dis</u>	seminated fire-granized pyrite		<u> </u>				ļ		ļ
	L	····	<u> </u>	thin Errog	ments,								
			- 14.0	13m 1 0.20	m- wide carbonate ven @ 45° to	136716	14.63	15.24	0.61m	١5	1.8	49	101
				C.A. ~	1% dissen Figid pyrite.							<u></u>	
				weakly o	arbonate a Hered and meakly feldspath	uzet							[
				to 15,24,	<u>M </u>							<u> </u>	
			- 17.2	-1m - 18.29w	: Core broken and slightly yourd.	136717	17.29	19.29	1.0m	01	.8	15	18
				Carbonat	altered (shear zone)				· · · · ·				· · · · · · · · · · · · · · · · · · ·
			<u> </u>				∔—	<u> </u>			<u> </u>	<u>+</u>	
12.96	24.06	95-100%	<u>Vol</u>	<u>caniclastic</u>	Sandstone.		╂──				<u> </u>	+	
(1 5.0	79.0)		- med	him gree	my grit' matrix with < 1 cm								

NEVILLE CROSBY IND TELEPHONE: USE-4343

1

.

	PROPERTY				ea Gold				HOLE No.	90	-2		
[011	P TEST	J									
	Foo	otage	Angle Reading Corre - 50 •	ected	Hole No. <u>90~2</u> Sheet No. <u>02</u> Section Date Begun Date Finished	Lat, Dep, Bearing_ Eley Col				Total Dep Logged B Claim	th y		**
[<u>I</u>]	Date Logged	_				Au	Ag	As	Cu
DE FROM	PTH TO	RECOVER	·		DESCRIPTION	SAMPLE N	. FRON	то	WIDTH OF SAMPLE	- <u>666</u>	- fem		ppm -
			Subargula	es to	angular Fragments of pale						, ,		
24.06	67.81	95-100%	Uol Camir	Concle	mente (Andonemite?)	-		}					
(79.0	222.5)	- medium green,		green,	andositic matrix with sub-rounded					-			
			to angul	lar frag	ments of intermediate to make			 			+		
			volcania	and	intermediate jotrusive			 		· · ·	<u> </u>	-	
			- Swirling	string	jets of white calcik at all	<u> </u>	-				 		
			orientati	ions to	<u>ζ.</u> Υ.						+		
			- 30.89m-	- 31.45m	: 3-re of carbonate alteration	136718	30.89	31.48	. 0.60m	25	1.6	32	45
-		<u> </u>	and	Logale 2 rourbon	Aldepathization. At 30.88 m; 10cm	^	- <u> </u>						
			- 32.08 m;	; scm.	wide to vuggy calcite ven o					-			
			70%	<u>+0 C</u>	.A					ļ			<u> </u>
			- 35.20m;	30	wide sillstone band + to C.A					ļ	_		
			- 38.0m-	38.70m;	0.70m wide zone with trace	136719	39.0	38,70	0.70m	60	1.1	5	50
			منعنو	minaled	chalcopyrite and trace malachite				· · · ·	 			ļ
			00	broken	Surfaces.		<u> </u>	<u> </u>			<u> </u>		
			- 55.58m -	66.14.	30m of weals to moderate	136720	55.58	56,58	lion		ļ		
			fold	spathizat	ion. Increase in switting white						<u> </u>		

Į

: 1

.

Ε		DI	IP TEST Angle Reading Corrected										
	Foot		An Reading - So*	gle Corrected	Hole No. <u>90-2</u> Sheet No. <u>-</u> Section Date Begun Date Finished	<u></u> Lat. Dep. Bear Eley.				Total Dept Logged By Claim Core Size	h		
Ĺ	· · · · · ·				Date Logged					Au	Ag	As	 Cu
DEI	РТН ТО	RECOVER	Y	·····	DESCRIPTION	SAMPL	E No. FRC	мто	WIDTH OF SAMPLE				
			-									<u> </u>	<u> </u>
				calcile u	whether and shringers at various			8 50 58	1.0 m			 ```	14
				this set	$\frac{1}{100}$ $\frac{1}$	/ 13672	2 58.5	59.58	Lon	5	1.0	+ <u>`</u>	1,5
				dissemina	Kd Fre- amined purik.	13672	4 59.5	\$ 60.58	Lom	5	1.0		10
				62.50m - 66	i.14m : occassional discrete bands	of 13672	15 60.5	8 61.58	1.00	5	.9		63
				silt a	a sande material. Argula fran	rents 1367	26 61.5	1 62.50	0.92m	5	.٦		17
				of bl	ack giltstone fargillite. Numerous	1367	27 62.5	63.50	1.0m	10	',	1	114
				Stringers	and veinlets of calcite at va	rious 1367:	28 63.9	6 64.50	lion	5	.ч	\\	20
				orientit	ions, but generally ~450 to C.	A. 1367	29 64.5	65.50	lion	s	.7	3	59
				~ \ %_	(locally to 2%) disseminated fine	10 1367	30 65.50	66.14	0.64m	10	_۲،	<u>\</u>	48
				Coarse-	gravined pyrite.	136=	731 66.14	67.14	lion	5	1.2		31
17.81	73,85	95%	Volce	aniclastic	Sandstone								
2772	242,3)		- m	colium gree	in sardy matrix with cic	<u>~</u>					ļ	ļ	
		<u> </u>	5	bargular_	to angular clusts of intermedi	ate		. <u> </u>		<u> </u>	ļ	<u></u>	<u> </u>
			+ +	o matic	volcanic and chant + arguillite?			_				<u> </u>	4
		·····	- 00	cassional_	narow 1-Sem- wide bands of	· · · · · · · · · · · · · · · · · · ·		<u> </u>		l			<u> </u>
		<u></u>	Si	10 everter	sondatione, generally + to c	.A.			<u> </u>	<u> </u>		<u> </u>	<u> </u>
			- 0	crassional	stringers of white calcite at							<u> </u>	<u> </u>
			1		abative to co								

NEVILLE CROSBY IND TELEPHONE: USE-4343

		PRO	PERTYSe	a Gold				HOLE No.	90-	2		
I		018	TEST									
			Angle									
	Foo	otage	Reading Corrected	Hole No Sheet No 04	Lat			·	Total Depti	h		
	·			Section	Dep.				Looged By			
			- 50*	Date Begun	- Poprine							
ļ			······								·····	······
}				Date Finished.	Elev. Colle	ar		<u> </u>	Core Size			<u> </u>
•				Date Logged	_				AL.	Ha	HS	Cu
DE FROM	PTH	RECOVERY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				pom _
				·								
73.85	77.20	95-100%	Combonerate									
(242.3	253.3)		- medium gree	andesitic matrix with subrounded								
			to rounded	clasts of volconic, intrusive							<u> </u>	
	Ļ		and some	chent,							ļ	
			- stringers of	Swirling white qty								L
			- < 1º/0 du	seen F.g. d pyrite particularity with-					1		ļ	
			in clasts.									
			- 75.17m - 75.67	m: weakly carbonate altered and	136732	75.17	75.67	0.50m	10	1.6	39	22
			weakly F	Idspathized. At 75.17m; 7cm-wide		<u> </u>						
	 		Corbonate	vein & 40° to C.A.		L			<u>_</u>	 		ļ
L		·	- 75.67m- 77.20	in: numerous silty and sandy bands		ļ	[ļ		<u> </u>	
			generally	1 to c.A.		<u> </u>			+			<u> </u>
			· · · · · · · · · · · · · · · · · · ·			ļ						ļ
77.20	84.10	95-100°/1	Volcaniclastic "	Sandstone.							<u>+</u>	<u> </u>
2533	275.9)		- Licm anon	an fragments of various volcanic,		┣—				<u> </u>	+	
			intrusive, a	d sidimentary rocks,		<u> </u>						
	 	<u> </u>	- 'mottled'	tex wire		┣──		· · · · · · · · · · · · · · · · · · ·			<u> </u>	ļ
			· occassional	stringers of calcite.						· · · · · · · · · · · · · · · · · · ·	+	
	 		- occassional	discrete bands of siltstone or		 		ļ			<u> </u>	<u> </u>
			Sandstone ;	generally 1 to C.A.								

		PRO	PERT	YSeo	6010				HOLE No.	90-1	2		
F	DIP TEST Angle Footage Reading Corrected			ngle									
F	Foo	egoto	Reading	Corrected	Hole No. <u>90-7</u> Sheet No. <u>05</u>	Lat				Total Dept	h		
F			- 50		Section	_ Dep	<u> </u>			Logged By	/		
ļ					Date Begun	Bearing_			_	Claim	·	······	<u> </u>
E					Date Logged	_ Elev. Collo	ar			Core Size Au 005	Ag	As	Cu som
DE	РТН ТО	RECOVER	Y		DESCRIPTION	SAMPLE Na	FROM	то	WIDTH OF SAMPLE				
24.50	91.92	95-100%		iten / co	ade to a		<u> </u>						
2.75.9	284.8)	10 10-76		Itomating	bands of light to med green								
	ļ		S	Itstone u	Scadstore.					ļ			
			ł	anging wall	contact (sharp) @ 70° to c.A.								
			- 4	pands 1	to 70° to c.A.								
			-	aradational	Footwell Contact.								
				J									
86.80	100.58	<u> 95-100%</u>	00	Laniclastic	Sandstone.		[
<u>2949</u>	330)		<u>· <</u>	1cm angu	la fragments of of various					<u> </u>			<u>-</u>
				<u>pleanis</u> , intr	usice & sedimentar, rocks,								
			- `	mottled'	texture . weakly feldspathingod .								
				Decassional	stringers of calcite								
			- 89	.19m - 91.13m	Feldspathized section. Slightly	136733	89,19	90.19	lion	5	1.3	25	4
			_	'tally on	n broken surfaces, ~ 10% dissen	136734	90.19	91,13	0.94m	5	1.1	43	5
		· · · · · · · · · · · · · · · · · · ·		F.g. d pyri	e	136735	92.65	93.65	lion	5	1.1	20	15
			- 92.	65 m - 94.18m	: As above	136736	93.65	94.18	0.53~	10	1.5	54	28
			- 94	18m: 3cm-1	vide fault gover @ 045° to c.A.	136737	94,18	95.18	lion	5	1.0	13	36
]				Followed	by 0.18m - wide carbonate vein.	136738	95.18	96.31	1,13m	5	1.2	١	١٩
				Numerous	0.5- 1.0 m wide white calcile								
				veing	generally 30° - 50° to C.A.								

TELEPHONE: USE-4343

ł

to 96.31m END OF HOLE 100.58m (330')

	PROPERTY	Sea	Gold
--	----------	-----	------

HOLE No. BRY 90-3

.

	DIP TEST Angle		P TEST									
-	For		Angle Reading Correcte	d Hole N. 90-3 Shoet N. Ol	i et				Tetel Des	• 128.n	1420	<u>، ا</u>
				Section	Lui	,		·····	Longed D	<u> В</u>		
ł			- 600	Date Begun Aue 26 /90	Deprime	110	•	<u> </u>	Claim	<u>y</u>	Zarrin	
•				Date Finished Aug 27/90	Elev Coll		······			<u> </u>	·	
]				Date Logged Aug 27 190		ur		·······	Au	Ag	As	Cu
DE FROM	РТН ТО	RECOVER	Y	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				- per-
0	1.52		Casing 4	broken rock.								
(0	5.0)											
1.52	39.62	95%	Nolconic Ce	nglomerate								1
(5.0	130)		- medium	reen andesitic matrix with								
		<u>-</u>	Bub - angu	las to rounded fragmants of		<u> </u>	 		Ĺ			
			intermediate	to matic volcanic, intermediate intrusile								
			and rare	red chart.								
			- Swirling S	ringers and veinlets of calcite at		ļ		· .				
			Usrias ori	relations to C.A.								
			- occassional	1- same wide "siltetone" sections,			L					
			generally_1	to 60° to (;A.						<u> </u>		
		·····	- 6 10/0	isseninated Fig.id pyrite.		L						
			- 17,29m- 19.2	Im: ~ 1% disseminated Figid pyrite w	136739	17.29	18.29	1.0m	10	.7	\ <u>\</u>	201
			trace m	slachith on fractured surfaces.					L	<u> </u>		
		·	- 36.57m- 37.	S: Rusty (carb altered), weak	136740	36, 57	37:95	1.38~	10	-7.	<u>\</u>	11
			sheering		<u></u>	ļ						
			_			L		ļ	 	ļ		
39.62	45.41	90-95%	Sandstone			 				· ·	<u> </u>	
, 130	149)		- occassional	bands and fragments of pale	L	L	<u>_</u>	,			ļ	
]			I green sile	stone and black argillik.								

Ţ

.

		ום	PTEST										
	For	otage	An Reading	gle Corrected	Hole No. <u>90-3</u> Sheet No. <u>02</u> Section	Lat Dep	! <u>``</u>			Total Dep Logged B	th y		
			- 60		Date Begun Date Finished Date Lagged	Bearing Elev. Colic 				Cialm Core Size	A.g	As	
DE FRON	РТН ТО	RECOVER	/		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE		- tem-		
			- mot	tled textur	e in places (weak Eldspathization)								
		·····	- 43.4	9m - 45,16m	: Feldspatninged section with 1-5cm	136741	43.49	44.49	1.0m	20	1.7	158	206
<u></u>			. ·	wide colcite	veing 50-80° to c.A. Brecciated	136742	44.49	45.16		5	1.6	45%	146
			ì	n places, -	~ 1% disseminated figid sulphide.		 						
45.41	49.22	95°/2	<u>(</u> 01	glomerate									
(149	161.5)		- rum	erous band	is and swirling areas of			L					<u> </u>
	ļ		Silts	tone ound	sandstore.		 	[
	L		sw	trling which	e stringues of calcute.		ļ			-	ļ		ļ
			- 90	adotional	Contacts.						· · · · · · · ·		
19. <u>2</u> 2	6A.10	90-95%	<u>Vo/ca</u>	niclastic ·	Sandstone	- <u>,</u>				<u></u>			
(161.5	226.7)		- med	ium green	sandy matrix with mostly & Icm								
			angu	Jar fragment	rs, Occassional larger 'swirts' .r					ļ			
<u></u>			angi	las fragme	nts OF siltstave & argillite.	L							<u> </u>
			- <u>s</u> w	irling string	yrs of white calcit.								
			~ 51.2	om- 55.47m	: Core Practured and broken. Rusty						<u> </u>		
				on fracture	d surfaces.					<u> </u>		<u> </u>	L
			- 57.3	9m- 58.01m ;	Rusty, consonate altered zone. 1-3cm-	136743	574.34	58.01	0.63m	10	١.3	92	45
				wide carbo	mate verifiets @ ~ 060° to C.A.								

ł

.

•••••

PROPERTY Sea Gold

Fault.

60°%

DIP TEST

HOLE	N-	90-3	

As

ppm

ч

3

X

١

١

١

24

1

X

58

1

3

Cu

pom

36

42

104

39

25

54

81

133

27

<u>|||</u> 37

ł	Foo	otaae	Angle Reading Correc	ed Hole No Sheet No	_ Lat		_		Total Dep	th
ļ				Section	Dep	ts			Loaged B	v
E			-60*	Date Begun	Bearina				Claim	
ŀ		<u> </u>		Date Finished	Elev. Collo	ar.			Core Size	
				Date Logged	-				Au	Ag
DE FROM	ртн то	RECOVER	77	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE		
69.10	110.94	90%	Siltstone	(Aco:mir						<u> </u>
226.7	364)		- mixed si	itstore and minor sandstone with ansular				· · · · · · · · · · · · · · · · · · ·		
			frequents,	bands and 'swirle' of black argillit.						
			- numerous	0.5 to 3.0cm - wide calcute verns		ļ	<u> </u>			
			generally	060° to C.A.	136744	68,90	69.80	1.0m	5	٩.
			- 69.80 m - 70.	ssm: light grey, feldspathized section	136745	69.80	70.55	0.75m	5	١.٦
			with su	irling calcite veinlets. ~ 1% disseminated	136746	70.55	71,55	1.0m	S	٦.
			ond fro	ture- filled Figurd pyrite,	136747	71.55	72.55	1.0m	5	١.٥
			- ~ 1010 p	seik throughout, (locally to 20%) Sulphike	136748	72.55	73.55	1.0m	١٥.	.1.2
			occurs a	s Figid disceninations and fracture	136 749	73.55	74.53	1.0m	5	1.0
			Fillings.		136750	74.55	75.55	lion	5	.9
			- some disc	rete sandstone / voiconiclastic Sandstone	137051	75.55	76.55	1.00	s	-f,
			Sections (ucakly feldspatnized)	137052	74.55	77.07	0.52m	<u> </u>	.s
			- 77.07m-	77.37m: Calcite veining, 1 10 070°	137053	77.07	77,37	0.30m	40	1.3
			to	C.A. 2-3% disseminated and firely	137054	77.37	748,37	liom	5	.8
			band	at a oto to c.A) pyrik.	137055	78.37	79.07	1.00	5	- 1.1
			- calcite vei	sing and pyrite mineralization dies out						
		<u> </u>	at 79.24m.						· ·	<u> </u>
			- 82.29m - 9	filtm ; core very broken. Recovery ~			ļ	[

,								HULE No.				
	PTH RECOVERY		P TEST Angle Reading Corrected	Hole No. <u>90-3</u> Sheet No. <u>D4</u> Section Date Begun Date Finished Date Logged	Lat Dep Bearing Elev. Colle				Total Dep Logged B Claim Core Size Au	1h iy , Ag	As	
DE FROM	PTH TO	RECOVER	Y	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLI		ppm	eem	
			- from 87.17m 11ery ' block.	to end of hole, ground is								
			- 101.70m - 102.	ion: Rusty, 'grit' section with	137056	101.70	102.10	0.40~	5	1.7	154	643
			- Sections Leco	arite. mes progressively more 'chenty'							<u> </u>	
110.94	125.27	90-95%	Chert 1 silts	tore								
(364	411)		= grey chent	Isiltatore alternating bands.								
		=	- bands over	enally 070° to C.A.							<u> </u>	
			- < 10/0 dise	ieminated and fracture- filled figid								
			p-grite	······································								
			- CORE SHILL	very practored and broken.						<u> </u>		
<u> </u>			- Occassional	Stringer Of Faicin								
125,27	129.01	50%	Augillike Isilts	tone								
<u>(</u> 411	420)		- banded angilli	K (sillistone. Ground us, broken; recours	· · · ·					<u> </u>		· .
			~ 50%			 					<u> </u>	
			- sheared, with	rusty, carsonate bands.						+		
			FND	LE HOLE 120.01 (4201)	- 1			1	1		1	

	<u> </u>	~ • •
PROPERTY	<u> </u>	<u>_6018</u>

HOLE No. BRY 90-4

		D	IP TEST									
	Angle Footage Reading Correc		Angle Reading Corrected	Hole N. 90-4 Sheet N. O.	1.04				Tatal Dapth	99,97,	~ (328')
				Section		``````````````````````````````````````			Looped By	B. C	ja me	
			↑ (op*	Date Begun Aus 27 190	Bearing	0.8	 >°		Claim	Gab 12		
				Date Finished Aug. 28 190	Elev. Colla	ar.			Core Size	Ba		
l				Date Logged Aug. 28, 29 190	-				Au	Ag	"As	Cu
DE FRON	PTH TO	RECOVER	Y	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				ppm_
<u>o</u>	1.52		Casing & bu	oken rouk				[
(0	5)	l								L		
1.52	36.06	95%	Volconic con	lonerate								
<u>(5</u>	118.3)		- medium gree	en andesitic matrix with sub-								
			argular to r	ounded Fragments of intermediate to		L						
			matic volcanic	, intermediate intrusice and rare								
			red chent.	· .								
			- stringers of	white calcite at various								
			orales to	C.A.								
			- <u>6 1%</u> dissen	inated Figid pyrite		ļ						
			- occossional	discrete sandy classic sandstone	<u> </u>	ļ		<u> </u>	<u> </u>		ļ	
			sections	· · · · · · · · · · · · · · · · · · ·							ļ	
			- 15,95m - 16.40m	- i Rusty carbonate veining at	137057	15.95	16,40	0.45m	5	1.4	24	18
			various or	ignations to C.A. ~ 100 disseminated				 				
		<u></u>	Figid Par	; te								
			- discrete section	is of clastic sondistone become								
			more rommon	down three section.								
			_			<u> </u>			<u>.</u>		ļ	
36.06	42.55		Volcaniclastic	Sandstone			L					
118.3	139.6)		- medium area	Sond motion with most kich	}	ļ						ļ · ·
	/			where the second s		•		•·			<u> </u>	

ł٨

1

· .

	PROPE		OPERT	Y	Sea Gold				HOLE No.	- 20	>-4		
F		<u></u>	DIP TEST	ingle	8 . u								
	Foo	otage	Reading	Corrected	Hole No. <u>70-9</u> Sheet No. <u>02</u> Section	Lat Dep				Total Dep Logged B	th Y		<u>-</u> -
L			- 60°		Date Begun	Bearing_	<u> </u>			Claim			
E					Date Finished Date Logged	Elev. Coli	dr		<u></u>	Core Size	Ag	As	 Cu
DE I ROM	РТН ТО	RECOVE	RY		DESCRIPTION	SAMPLE No	FROM	то	WIDTH OF SAMPLE				
											,	<u> </u>	
			<u>angu</u>	lan Fragme	nts. Occassional discrete sections			[
			of.	Coralomero	. .								
			- 00	cogrional s	stringers of calcite.								
			37	.70- 38.70n	- i Numerous ving a carbonate Stringers	137058	37.70	38.70	1.0m	5	,7		\5
			_ ~	10/2 disce	- figid parite.								
			- 40,	75- 42.55-	: As above ; with minor fracture.	~ 137059	40.75	41.75	1.an	10	, 7	s	12
				Filled her	natite	137060	41.75	42.75	1.0m	5	.4		9
													_
2.55	.66.14	90-95%	· Cor	glanerate.]				
139.6	2(7)	· · · · · · · · · · · · · · · · · · ·	- to	<u> </u>	minor carbonate stringers < 1%	137061	42,75	44.19	1.44m	5	.6		16
			مد	seconinated	Parite	137062	44.19	45.19	1.0m	S	1.2		207
			- 44.	19m - 46.63mi	weaking to stronging Ridspathinged.	137063	45.19	46.19	1.on	5	.8	_ q	31
			C	scinel 4	cutures Still evident.	137064	46.19	46.63	0.44~	s	۱.2	19	40
				- 1% duiss	eminated Figid and Fracturer Filled	137065	46.63	47.53	0,90m	10	1.1	\	60
				Phrite.	· · · · · · · · · · · · · · · · · · ·	137066	47.53	48.53	lion	10	1.0		143
				- stringers	and swirling areas or calcite.	137067	48.53	49.53	lion	5	.9	12	112
				· 46.63m - 4	17.52 : Feldspathized banded siltstone /	137068	49.53	50.53	1.0m	5	1.0		98
				arallit	1-2.% dissem Figid pyyik						· ·		
			- fr	on \$0.40m	to 66.14m; mixed constancest								
							T				1		

with sections of voiconiclastic sundatione.

ł

	DIP TEST				Sea Coold				HOLE No.	90	-4		
	DIP TEST Angle Footage Reading Corrected												
	Fo	otage	Reading	Corrected	Hole No. <u>90 - 4</u> Sheet No. <u>03</u> Section	Lat				Total Depti)		
			- 60°		Date Begun	Bearing				Claim	<u> </u>		
					Date Finished Date Logged	Elev. Colle 	or		<u> </u>	Core Size_	Ag	As	Cu
DE FRON	PTH TO	RECOVERY	/	-,.=	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
	<u> </u>			nch je	madenately Coldmant ind with				<u> </u>				
	- 55.99m - 56.6		nottled '	texture in places		[1		
			.99m - 56.6	Im: Feldspothinged section with numerous	137069	55.99	56.69	O,70m	5	1.0	22	46	
				rusty, br	own corbonate verinvers.	<u></u>							
	<u> </u>		- 62.	48m - 64.0r	n: weakly to moderately carbonate	137070	62.45	63.48	1.0 -	ऽ	, 7	1	28
	<u> </u>		<u> </u>	altered.	with rusty boxwork! texture	137071	63.48	64.0	0.52	5	.7	9	30
	<u> </u>		ļ	From lead	-d py-ik	<u> </u>	 		ļ				
	 		- 64.	.00- 64.30m	: Broken, rusty shear zone with	137072	64.0	64.30	0.30m	(0.048)	10.9	9810	2094
	<u> </u>	[signinat	d to bounded and massive pyritet		}					<u> </u>	
	<u> </u>		- 64.	90m: trove s	the Banding of suppride @ 045° to C.A.	137073	64.30	65.10	0.80m	5	. 3	271	78
			- 65.	10m - 65.45	m: Rusty, broken mineralized sheap	137074	65.10	65.45	0.35m	375	1.9	2678	369
<u> </u>	 			with dis	seminated to locally massive blebby							<u> </u>	
	<u>}</u>			pyrite	- arenopyik.								
<u>_</u>			<u>- 65.</u>	93m- 66.14m	: relaspatinged with stringers of calcule.	15+0+5	65.45	66.54	1.09m	2	1.3	> 50	215
				_ nusry o		·		<u></u>				†	
66.14	77.12	90-950%	Sar	ulstone a.	Acoluik.	<u> </u>					·	1	
(217	253)		- me	edium area	n- area sandstone with such -			· · · · ·				<u> </u>	
			Gr	guin frag.	ments and switching awas of block								
			ara	aillite.	,								

ι

[DIP TEST Angle Footage Reading Corrected		TEST									
	Foo		Angle Reading Corrected Hole No Section Date Begun Date Date Date Mode No	_ Sheet No <u>이닉</u>	Lat Dep Bearing				Total Dept Logged By Claim	h /		
t			Date Logged	· · · · · · · · · · · · · · · · · · ·	. Elev. Colla	rr			Core Size.	Ag	As	 Cu
DE FROM	РТН ТО	RECOVERY	DESCRIPTION	· · · · · · · · · · · · · · · · · · ·	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
			- 66.14m - 66.54m; Uuna, calcuite : 10:04+5	' cust eo								
			broken surfields	<u> </u>	·····			·	1	·····		
			- 70.10m - 72.10m Carbonak altered shear	-zene in	137076	70.10	71.10	lion	5	1.7	337	142
	 		banded argillik / siltstore section	. 1-2010	137077	71.10	72.10	lion	s	1.1	76	42
			discemented Figid sulphide. Stri	mours and								
			Swithing areas of calcite. Core	somewhat								
			broken			<u></u>			 			
77. 12	92.35	90-95%	Sandstone								<u>+</u>	
(253	303)		- pale green to brown sondstone	with								
			occassional silty and argillitic sect	hons								
			- occassional stringers of white co	late at						<u> </u>		
			uprious angues to C.A.									
			- <u>C 19/2</u> disser F.g.d pyrik.					· ·				
			- 81.38m - 81.88m; Black argillike is minor	giltstore.	137078	81.38	81.88	0.500	5	1.4	13	113
			Stringers and velocets of calcite.	Minor brecciation.							<u></u>	
			1-2% disseminated Figid pyrit	•	137079	81.88	82.69	0.81m	5	1.1	1	86
			- 82.69m - 84.77m - numerous carbonak 9	thingers at	137080	82.69	93.UA	1.0~	10 .	<u>i.o</u>	267	121
			all orientations to C.A. Weakly fe	Uspathized.	137081	83.69	84.77	1.05~	5	.5	1	28
			1-7.21 desceningthe and forsture.	GIVN meto								

NEVILLE CROSBY IND TELEPHONE: USE-4343

[DI	PTEST										
	Foc	otage	Ar Reading	corrected	Hole No. <u>90-4</u> Sheet No. <u>05</u> Section	Lat Dep Regring		<u></u>		Total Dept Logged By	th y		
					Date Finished Date Logged	_ Elev. Collo _)r			Core Size	Ag.	As	
DE FROM	РТН ТО	RECOVER	r	- · · ·	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
			med-	- around p	.rik	137082	84.77	85.95	1.18m	5	.2	142	179
	<u> </u>		- 85.0	15m - 86.10m	: 40-50% massive pyrite	137083	85.95	86.10	0.15m	850	2.8	2488	2135
				t minor a	ments. Hanging all contact broken;	137084	86.10	87.10	1.0~.	15	.6	88	75
				Frotwall co.	stact ~ 1 to C.A.		<u> </u>	L		<u> </u>	<u> </u>		
			- 89.6	11m- 92,35m	: Mixed unit of sondstone and	137085	89.61	90.61	1.00	10	.9	1	52
				siltatore la	millite. Stringers and 'swirle' of	137086	90.61	91.61	lion	s	1.0	<u> </u>	22
				while cal	cite. 1-2010 disseminated and Fracture-	137087	91.61	92.75	0.74~	5	.9		41
			+	Filed Fig	d porit.		<u> </u>				<u> </u>		<u> </u>
92.35	99.97	95%		HStone / Arai	11,14					<u></u>			
(303	32.8)			tornation b	ands of rely arean siltstone	137088	92.35	93.35	1.000	5	. Տ	1	50
<u></u>				black o	raillite	137069	93,35	94.35	1.0~	S	. 8	1	60
		·	- bo	ndira - 1	to 070° to C.A.	137090	94.35	95.75	liom	5	1.1	1	83
			_ \-	-2°15 disser	inated and Fracture- filed fine &	137091	95.35	96.35	1.0m	5	1.0	1	92
				rained curite									
			- 00	cassional st	ringers of calcult]		
			- 97	.23m - 99.97m	: Core very broken and around :								
				Fault 300	. Hole terminated due to tightening						<u>`</u>		
				OF rods	, carl etc.						<u> </u>		
					·								

NEVILLE CROSBY IND-TELEPHONE: USE-4343

Ţ

END OF HOLE 99.97m (328')

ì

		PRO	PERTY	·	Sea Gold				HOLE No.	BRY	90-5		
f		DI	P TEST Ar	ngle	Hole N 9055 Sheet N 01	1				Total Dan	\$2.29	m (270	ı
ŀ			Redding	Contected	Hole No Sheet No	Lar, Den	·.			Jonned B	R.G	ine	
Ŀ			-600		Pate Begun Ava 29 /90	Bearina_		35°			Gab	12	
Ŀ					Date Finished Aug 30 190	Elev. Coll	ar			Core Size	BQ		
L			· · · · · · · · ·	لـــــــــــــــــــــــــــــــــــــ	Date Logged Aug 30,31/90	_				An	A.	As	<u>ر</u> بر
DE FROM	РТН ТО	RECOVER	Y		DESCRIPTION	SAMPLE No	FROM	то	WIDTH OF SAMPLE				
0	0.61		C	asing an	d broken rock				<u></u>		1	<u> </u>	<u></u>
<u>(o</u>	2)									<u> </u>		_	
	ļ						_				ļ		<u> </u>
0.61	43.89	90-95%		glomerate.			ļ						ļ
(2	(1414)		- me	<u>dium gre</u>	en andesitic matrix with sub		1	<u> </u>		.		<u></u>	
		· · · · · · · · · · · · · · · · · · ·	ang.	ular to	rounded closts of intermediate					<u> </u>			<u>_</u>
		·····	to.	matic vol	conic, intermediate intrusive and	<u> </u>	<u></u>]		<u> </u>			+
			Vari	ious sedi	wents.		-						ļ
			- 50m	e discrete	sections of <u>clastic</u> sondstore.								
			- stri	ropers and	swirls' of white calcite.	_ <u></u>							_
		<u> </u>	- < 1	% dissen	inated figid pyrite		<u> </u>		<u> </u>				
		·	- 7.96	m - 8.90m	: Uslcaniclastic sondatone, Contacts gradotion	al	<u> </u>	ļ	<u> </u>	ļ	ļ	- 	ļ
			- 13,9	56m - 14.06m	r: several 1 to 4 cm - wide calcite			 			ļ		
				veinlets e	prevally I to 070° to C.A. NO							+	
				vicibu s	ulphide				 			<u> </u>	<u> </u>
		<u> </u>	- 14,2	.0m - 16.60m	: Volconiclastic sondstone. (ontacts		+					┥───	
		·		gradational.		<u></u>		-	 				
			-	15.24m - 15.7	thm: Slightly broken section with vulgary	137092	15.24	15.74	0.50m	10	1 14	+ `	27
				fractur	es Filled by cortanele and fine to						<u> </u>	+	<u> </u>
				rr+9 -	grained pyrit.		+			<u> </u>		· · ·	<u> </u>
			- 17.7	9m-18.59m	: Feldsoathised consomerate with	137093	17.79	18.59	0.80m	5	1.1	10	374

100

٦.

1

ì

		PR	OPERT	YSea	Gold				HOLE N.	90-	5		
[Di	P TEST										
ļ			A	ngle	20 m 20 m 20 m 20 m 20 m 20 m 20 m 20 m								
	100	otage	Reading	Corrected	Hole No Sheet No	Lat,				Total Dep	oth	· · · · · · ·	
ļ	ŗ		- (Section	Dep	<u>k</u>			Logged E	Зу		<u> </u>
t			- 00		Date Begun	Bearing_	· · · ·		<u> </u>	Claim			
ŀ					Date Finished	Elev. Collo	0 <i>r</i>			Core Siz	e		
					Date Logged	-				Hu opb	Ha pom _	HS Dom	Cu pom
DE FROM	РТН ТО	RECOVER	Y		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
				Stricopys	and weinverts of corbonnet. 1-2%								
				figid pyt	ile + trace malachile on fractured							ļ	
	ļ			Surfools_	t trace chalcopperite		ļ			ļ		<u> </u>	
			- 18	.59m- 19.59m	: 1-2°/o disseminated and fracture-	137094	18,59	19.59	1.9	5	.8	\\	225
	[filled fig	id purite in conglement with numerous	ļ	ļ	 					
			<u> </u>	Girma y	de calcile stringers	<u> </u>	 					ļ	<u> </u>
			- 29.	05- 29.95m:	Fractured conglomerate with stringers	1370 95	29.05	29.95	0.90m	5	.6	<u> `</u>	11
				of care	enall and rusty (pyritic?) Fracture			ļ				ļ	
			- 41.0) - 42.36m :	Weaking Ridspathized and carbonate	137096	41.0	42.36	1.36m	5	.5	2	13
		· · · · · · · · · · · · · · · · · · · ·	_	altered 3	one. 1-2°10 fine to med-grained		ļ			ļ			
				dissuinate	d and Fracture - Rilled pyrile	-	ļ					ļ	ļ
<u>.</u>						<u> </u>	ļ			ļ			
43.89	53.03	95%	1010	aniclostic So	noistone	L						<u> </u>	
(144	174)		- me	dium geren	to gray clastic sandstone with		<u> </u>		· · · · · · · · · · · · · · · · · · ·				
			5:14	y and chy	the sections.							ļ	1
			- str	ingers and	swirling white calcite.					ļ			
			- 46.	82m- 52.11m	: weakly to moderately feldspathized	137097	46.82	47.82	liom	5	.8	15	88
		<u> </u>		with se	ections of intense carbonate stringers	137098	44 82	48.82	1.0m	10	<u> </u>		70
		<u>.</u>		and all	ration. ~ 196 disseminated and fractor.	137099	48.92	49.82	1.0m	5	1.1	44	75
				Filled	Fraid parite.	137100	49.52	50.82	1.00	5	.8	19	63

NEVILLE CROSBY IND TELEPHONE: USE-4343

]

)

١

DIP TEST Foologe Reading Corrected Section Dep. Lat. Total Depth. foot Dep. Logged By. Claim. Date Begun Bearing Claim. Claim. Date Begun Bearing Claim. Claim. Date Logged Date Inited. Elev. Collar. Claim. Date Logged Date Logged Per Per PROM TO RECOVERY DESCRIPTION SAMPLE Na FROM TO Provember 2000 State Logged - - - - - - State Logged - - - - - - State Logged - - - - - - - State Logged -		PR	PERTYSeo Gold	1			HOLE N.	90	~5		
Image: Image:		D Footage	P TEST Angle Reading Corrected Hole No. 90-5 Sheet No. 03 Section	Lat Dep				Total Depi Logged Bj	th		
DEPTH FROM RECOVERY DESCRIPTION SAMPLE No. FROM TO WIDTH OF SAMPLE PP			Date Begun Date Finished Date Logged	Bearing Elev. Collo 	Bearing Elev. Collar				Claim Core Size Au Ay As Cole com		
- -	DE FROM	PTH RECOVER	r DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
53.03 (A.42 95% Conglemonate (174 224.5) - wrokly cortionate altered and wrakly foldspathized	:		- gradational contacts	137151	50,82	52.11	1.29~	5	.9	5	30
throughout - occassional stringers of nelectr - occassional stringers of nelectr - c 1% disseminated F.g.d pyrite - c 1% - c 1% disseminated F.g.d pyrite - c 1% - c 1% disseminated F.g.d pyrite - c 1% - c 1% - c 1% - c 1%<	53.03 (174	(x.42 95% 224.5)	Conglomerate - weakly carbonate altered and weakly feldspathinge								
68.42 71.52 95% Siltstone & Sandstone.			- occassional stringers of relait				:				
(224.5/234.7) - mixed sittstop and sondstone. - 69.42m-71.52m; weakly to moderately Ridspathized 137152 69.42 69.42 1.0m 5 1.2 1	68.42	71.52 95%	Siltstone & Sandstone.								
	(224.5	234.7)	- mixed siltstop and sondstore. - 69.42m-71.52m; weakly to moderately Ridspothized	137152	69.42	69.42	1.0m	5	1,2	<u> </u>	33
with numerous calcite stringers. Occassion 10-20cm. 137153 69.42 70.42 1.0m 5 1.5 100 wide russey, carbonate altered yone, ~ 19/5 137154 70.42 71.52 1.10m 5 1.1 1			with numerous calcite stringers. Accassion 10-2020. wide russt, carbonate altered yone, ~ 10/5	137153 137153	69.42 70.42	70.42 71.52	1.10m	5 5	1.1	100	83
From 70.62m to 71.52m; irregular bands and			From 70.62m to 71.52m; irregular bords and				· · · · · · · · · · · · · · · · · · ·				
$\frac{5 \text{ with } \text{ of } \text{ bath } \text{ angullite}}{2 \text{ so } \text{ for a non-line } for $		79. 411 9'0 [°] /	Swichs of black anguillite								
(234.7 ~ 259) - light gran to brown sendstone	(234.7	~ 259)	- light gran to brown sundstone			: :		· ·		, , ,	· · · · · · · · · · · · · · · · · · ·

NEVILLE CROSBY IND TELEPHONE: USE-4343

PROPERTY Sen Gold

HOLE No. 90-5

· }

1

)

	Angle					
Footage	Reading	Corrected				
	-600					

Hole No Sheet No4	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		An Ag As cu

								005	0000	eem	ppm
DE	РТН ТО	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
			generally in to 070° to C.A.								
			- C 10% disseminated in Fracture - Filled figid pyrit.	137155	71.52	72.52	1.00	5	.9	2	34
			- core prochard and broken from 73.15m to 76.18m	137156	72.52	73.52	1.00	5	. 5	١	19
 	 		Somewhat rugty, corbonate a pyrite, on Fractured	137157	73.52	74.52	1.0m	5	.7	1	54
L	<u> </u>		surfaces.	137158	74.Sr	75.28	O.76m	30	.4	75	238
			- 75.28 m - 76.18 m; 5-7% disceminated and Fracture-	137159	75,25	76.18	0,90m	590	1.0	528	442
			Filled Fr-grand pyrit.	<u> </u>							
			- 76.18m - 79.24m : Fault. Core very broken.	137160	76.18	79,24	3.06m	10	1.2	56	69
			Pecoury ~ 30%								
			·								
79.94	82.29		Siltstone (Argillite.								
(~259	270)		- from ~ 78.94m to 82.29m; core very around								
			and broken. Recowny ~ 75°6. Hole cauld								
			rods stuck. Hole terminated at 85.34m			_					
			(280') NO recours from 82.29 to 85.34m								
			END OF HOLE 82.29m (270')								
1 .1)	1							1	I	1 1

1

		PRO	PERTY Sea Gold					HOLE No.	BRY 90	0-6	<u> </u>	
F		<u>10</u>	Apple	а. И							(`
- - -	Foo	otage	Reading Corrected Hole No. 90-6 Section	Sheet No01	Lat Dep				Total Depth Logged By.	B. G.	n (380'). 2me	<u>) </u>
			Date Begun Hy	$\frac{13}{190}$	Bearing Elev: Calle	270)°		Claim	<u>Cab 12</u> Ba	<u> </u>	<u></u>
t	<u></u>		Date Logged	pt 01 190		I r			Core Size_	Ag	As	Cu
DE FROM	РТН ТО	RECOVER	DESCRIPTION		SAMPLE No.	FROM	то	WIDTH OF SAMPLE		ppm	P#	
0	8.94		Casing and broken rock									
(•	29)		0									
(કક્રમ	115.92	90%	Siltstone / Araillite									
(29	390)		- bended pole arean siltstore and b	lack anillite								
			- core which for cluned and knower	to 26m								
			to them, munerais accord (sent) or					· · · ·				
			a since a score of a start of the s									
		<u></u>	- 24.38m - 75.18m : numerout irregular	stringers and	137161	24.38	2.5.18	0.80	5	1.2	2	65
			which the her wide of all	1-7%								
			lice is the band of build								<u> </u>	
			disian north rigid sufficient						1		 	
		<u></u>	- generally 2 170 disseminated and to	acture - hilled								
			t gid prite	··••								
			- bedding - 45 to Citt	· · · · · · · · · · · · · · · · · · ·					1			
			- Decessional stringers and ulinets	st- white				· · ·	1		1	
			calcite at various angles to	<u>CIA.</u>							;	
			- 51.41m - 51.61m ; 1 cm - wide fract	re - Filed with	137162	51.41	51.61	0.20m	2	2.1	272	388
			pyrik run approx parallel +	A, 2 0							 	
			- 54.86m-64.61m: Core very fractu	red and broken						• ••• • • • • •		
			Several 10cm - wide gouged 1	(fan 1+)					<u> </u>			
			30~5.									

PROPERTY Sea Gold

HOLE	N.	90-6

i.

. ·

	¥.+
Reading	Corrected
- 50	
	Reading

Hole No Sheet No	Lat	Total Depth
Section	Dep	Logged By
Date Begun	Bearing	Claim
Date Finished	Elev. Collar	Core Size
Date Logged		Au Ag As

L		Date Logged	-				Au (pr/ton)	Ag	As	<u> </u>
DEPTH FROM TO	RECOVERY	DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
			137163	80.99	81.99	1.0m	5	.8	20	185
		- 81.99m - 92.19m: Mineralized usin @ ~ 30" to	137164	81.99	82.19	0.20~	(0.090)	3.1	19623	6131
		C.A. Massive pyrite is argenopyrite + trace								<u>_</u>
		chalcopyrite, malachite & realgan?								L
	90-90%	- 82.19 m - 87.53 m: numerous 0.5cm - wide Fractures	137165	82.19	83,53	1.34 m	185	۰ ۲	882	816
		of pyrit running @ ~ 020° to c.A.	137166	83.53	84.53	1.0m	s	.5	· ·	154
		trace malachite on Fracture. Sur Faces, Weakly								L
·		carbonate altered. Recovery - 80% thru this section.	137167	87.39	98.39	liom	10	.6	3	39
		- 83.53m - 88.39m; Fractured; weakly carbonate altered								
		thru this section with ~ 1° to disseminated							ļ	
		and Fracture- Filled F.g.d pyrite.								
		- 88.39 m - 91.94 m : Weakly to modera tely carbona te	137168	88.39	89.29	0.90~	(0.203)	1.1	8630	52
		altered some silicification numerous consonale							ļ	
		stringers @ various prientations. Numerous								
		1-10 cm - wide Fractures at various prientations	 						.	ļ
		to c.A. Filled with pyrite & ase Features								
		of note are as follows:								
	80-90%	39.29m- 89.59m: 1-5cm- wild marst vuggy massive	137169	81.21	89.59	0.30m	0.290)	1.2	30299	726
		pyrile + asp veins @ ~ 070° to C.A.	137170	89.59	90.59	l.om	(<u>0.057</u>)	1.0	3040	90
		91.33 - 91.73 m: In Kige calcik wining with many	137171	90.59	91.33	0.74m	550	1.2	152	92
		irregular 1-3cm wide pyrik tasp vaniets.	137172	91,35	91.73	0.40~	380	1.5	449	356

F			DIP TEST										
Footage Reading Corrected			Reading		Hole No. <u>90-6</u> Sheet No. <u>03</u> Section Date Begun Date Einished	Lat Dep Bearing Eley. Colli				Total Dept Logged By Claim	 		
E	Date Logged				Eler. com	JI		<u></u>	Au pob	Ag	As	 Cu	
DEP	<u>тн</u> то	RECOVE	RY		DESCRIPTION	SAMPLE No.	FROM	то	WIDTH OF SAMPLE				
				1.94m - 102.80m	Corbunate a Hered with stringers	137173	91 72	97.73).em	20	.5	12	22
		·····		urd 'swi	1's' of cutain. Acarox 1-2"/0 discum	137174	92.73	93.73	Lor	40	.5	15	22
				and fract	wre- Filled Faid Paril + ago	137175	93.73	94.73	lom	30	.6	1,	31
				h trace	chalcompite.	137176	94,73	15.73	1.0m	10	ماد	N	45
				A+ 97m:	carbonale alth becomes more	137177	95.73	96.73	1.0m	5	.5	1	66
				intense u	with on increase in stringers and	137175	96.73	97.33	1.0~	10	, 7	98	45
				swirks of	= calcit.	1377179	97.73	98.97	1.20m	30	1.0	561	58
				98.93m - 0	19.83m: Intensely carbonate a litered	137180	98.93	99.83	0.90m	s	.8	60	84
				with	stringers and swirls of calcult	137181	99.83	160.83	1.0m	5	-۲,	1132	40
				and	Stringers of med-green chlorite	137182	100.83	101.83	1.0~	25	1.1	2659	47
		·		3-5	10 Facture - Rilled pyrite tasp?	137183	101.83	102.90	0.97m	2.5	1.6	3238	50
				102.30m - 10	02.30m; Brecciated with stringers								
				of	calculte at various orientations								
				to	C.A.								
			- 103	.63m-115.82	m: Core very Fractured and					ļ		¹	ļ
				broken:	recovery ~ 50%0.						ļ		ļ
				108,20m	- 109.70m : Mud Seam.					ļ	 		ļ
				Rods the	ght and styck. Hole terminated.						· ·	<u> </u>	
					F HOLE $1(5,82m(380'))$								· · · ·

ł

Sea Gold PROPERTY____

HOLE No. BRY 90-7

Angle						
otage Reading						
- 50°						
	An Reading - 50°					

Hole No. 90-7 Sheet No. 01 Section Date Begun Sept 01 90 Date Finished Sept 02 90 Date Logged Sept 02 90

Lat		
Dep	<u></u>	
Bearing	3\5°	
Elev. Colla	r	

Total Depth	36.57m (120")
Logged By_	B. Game
claim	Gab 12
Core Size	Bo

DEI	этн	BECOVERY			Γ	r –	WIDTH	T		
FROM	то	RECOVERT	DESCRIPTION	SAMPLE No.	FROM	то	OF SAMPLE			
o	7.62		Casing and broken rock.							
(0	25)			[[
								 1		
7.62	3/0.57	65%	Siltstone / Araillite							
(25	120)		- bonded black orgillite and palo green							
			siltstore							
			- banding ~ 45-60° to C.A.							
			- core very Fractured and broken to 24.38m.					 ļ	 	
			Recovery ~ 50%, Hole caved numerous peoples					 ļ		
			of privatic material from overburden			_		 		
			- 24.38- 32.60m: Recarcy ~ 100% siltstone/					 		
			argillite. Occassional stringers of calcite					 [
			at various prientations to C.A.			 		 		
			< 1010 disseminated and fracture- filled		Ĺ			 		
			Figid pyrik.					 ļ		
			Occussional discrete sections of Sand stort.					 		
			- 32.60m - 36.57m; Core very fractured and broken					 		
			Recovery ~ 50%, Lose return: have rade	· · · · · · · · · · · · · · · · · · ·				 		
			tighter and stuck. Hole terminated					```		
		ľ	END OF HOLE 36.57 (1201)							

COMP: BRYDON VENTURES

PROJ: SEA GOLD

,*

r,

ATTN: P.MANSON/C.SAMPSON

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1382-RJ1+D1+2 DATE: 90/09/18 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPN	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB	
		·						
	194 - 194							
		• •				- · ·	-	
	<u> </u>	:					ŗ	
-		• • •						
	1			ti n	:		X	
· . • •.	· · · · · · · ·			- -		:		· · · · · · · · · · · · · · · · · · ·
136701 136702 136703 136704 136705	.7 .9 1.0 <u>4.3</u> -1	1 24 1106 27751 244	1107 438 219 709 27	13 23 14 79 6	1 1 1 34	52 34 47 2063 52	15 10 340 2700 10	
136706 136707 136708 136709 136710	.7 .9 .7 1.1 1.1	161 16 20 31 21	11 20 15 11 94	15 15 17 29 20	1 1 1 1 1	61 24 29 11 30	5 20 5 5 10	7 DDH 90-1
136711 136712 136713 136714 136715	2.0 .9 1.4 .6 2.0	34 56 46 1 2169	9 44 37 41 45	18 36 29 14 27	1 1 1 66	8 85 47 61 53	5 5 10 5	
136716 136717 136718 136719 & 136720 136720	1.8 .8 1.6 1.1 NO SAMPLE	49 15 32 5	101 18 45 50	19 20 23 15	1 1 1 1	13 28 75 31	15 10 25 60	
136721 136722 136723 136724 136725	.8 1.0 1.0 1.0 .9	1 1 1 1	17 15 15 10 63	20 6 6 8 13	1 1 1 1 1	17 22 31 36 37	5 5 5 5 5	> DDH 90-2

COMP: BRYDON VENTURES

PROJ: SEA GOLD

_____/

Ē

ATTN: P.MANSON/C.SAMPSON

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1382-RJ3+4 DATE: 90/09/18 • • (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PP8	
136726	.7	1	17	6	1	26	5 7	
136727	.7	1	114	6	1	32	10	
136728	.4	1	20	6	1	40	5	
136729	.7	3	59	10	1	33	5	
136730	./	1	48	10	1	50	10	· · · · · · · · · · · · · · · · · · ·
136731	1.2	1	31	11	1	43	5	Dent on -7
136732	1.6	39	22	13	1	12	10	> DOH 40-L
136733	1.3	25	4	28	1	.7	5	
136735		43	2 15	17	1	12	2	· · ·
130735			15	12		12		
136736	1.5	54	28	11	1	6	10	
136738	1.0	13	20 10	12	1	110	2	
136739	.7	1	201	9	1	40	10 -	
136740	.7	1	11	12	i	32	10	
136741	1.7	158	206	26	3	70	20	
136742	1.8	458	146	43	2	80	5	
136743	1.3	92	45	20	ī	24	10	
136744	.9	4	36	6	1	61	5	
136745	1.7	3	42	14	1	49	5	
136746	.7	1	104	6	1	48	5	
136747	1.0	1	39	6	1	36	5	5 DDH 90-3
136748	1.2	1	25	7	1	60	10	ſ
136749	1.0	1	54	7	1	60	5	
00/00	.9	24	81	16	1	56	5	
137051	.7	1	133	8	1	68	5	
137052	.5	1	27	11	1	48	5	}
137054	1.3	58	111	18	1	64	40	
137055	1.1	י ז	46	15	1	97 62	. 5	
177054	1.1		40			02		
137057	1.4	2/	04.3 1.8	22 22	1	43	2	
137058	.7	1	15	6	1	53	5.5	
137059	.7	5	12	4	1	30	10	
137060	.4	1	9	3	1	36	5	
137061	.6	1	16	6	1	43	5	
137062	1.2	1	207	12	1	25	5	
137063	.8	9	31	7	1	28	5	
137064	1.2	19	40	11	1	23	5	
137065	1.1	1	60	14	1	- 44	10	
137066	1.0	1	143	6	1	99	10	
157067	.9	12	112	11	1	17	5	
137069	1.0	1	98 77	12	1	20	5	
137070	.7	1	÷⊳ 28	22	1	42 50	5	
137071	7	· •	70		4			
137072	10.0	9810	2006	1306	ו 10	82 610	5 1100	
137073	.3	271	78	130	1	626	5	> DDH 90-4
137074	1.9	2678	369	59	1	332	375 /	
137075	1.3	530	215	212	1	415	5	
137076	1.7	337	142	57	1	149	5	
137077	1.1	76	42	20	1	156	5	
137078	1.4	13	113	46	1	207	5	
137079	1.1	1	86	41	1	102	5	
15/080	1.0	267	121	13	1	26	10	
137081	.5	1	58	7	1	36	5	
15/082	.2	142	179	20	1	84	5	
13708/	2.8	2488	2155	165	25	, -	850	
137085	.0	00	() 52	0 19	1	41 74	15	
.51005	.7	<u> </u>	24	10	I	<u></u>	<u> </u>	

COMP: BRYDON VENTURES

,_ et . .

4

MIN-EN LABS --- ICP REPORT

FILE NO: 0V-1382-RJ5+6 DATE: 90/09/18 • ROCK • (ACT:F31)

ATTN: P.MANSON/C.SAMPSON

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	AU PPB	
137086 137087 137088 137089 137090	1.0 .9 .8 .8 1.1	1 1 1 1	22 41 50 60 83	9 12 16 19 22	1 1 1 1	39 50 114 80 73	5 5 5 5 5 5	> DDH 90-4
137091 137092 137093 137094 137095	1.0 .4 1.1 .8 .6	1 1 10 1 1	92 27 374 225 11	13 6 15 14 10	1 1 1 1	60 56 17 50 37	5 10 5 5 5	
137096 137097 137098 137099 137100	.5 .8 .4 1.1 .8	2 15 1 44 19	13 88 70 75 63	6 4 6 9 7	1 1 1 1	38 136 92 81 44	5 5 10 5 5	> PD14 90 - S
137151 137152 137153 137154 137155	.9 1.2 1.5 1.1 .9	5 1 100 1 2	30 33 83 26 34	19 7 22 8 6	1 1 1 1	20 33 37 40 129	5 5 5 5 5 5	
137156 137157 137158 137159 137160	.8 .7 .4 <u>1.0</u> 1.2	1 1 75 <u>528</u> 56	19 54 238 <u>442</u> 69	6 7 6 <u>8</u> 12	1 1 1 <u>1</u>	89 107 104 <u>60</u> 39	5 5 30 <u>590</u> 10	
137161 137162 137163 137164 137165	1.2 2.1 .8 <u>3.1</u> .5	2 272 20 <u>19623</u> 882	65 388 185 <u>6131</u> 816	21 24 7 6 17	1 1 7 1	210 24 25 1 27	5 5 <u>2150</u> 185	
137166 137167 137168 137169 137170	.5 .6 <u>1.1</u> <u>1.2</u> 1.0	1 3 <u>8630</u> <u>30299</u> 3040	154 39 52 726 90	4 9 4 11 7	1 1 1 27 1	24 23 11 18 8	5 10 6400 8500 1600	
137171 137172 137173 137174 137175	1.2 1.5 .5 .5 .6	152 449 12 15 1	92 356 22 22 22 31	8 10 2 3 10	1 1 1 1 1	8 7 37 35 26	550 380 20 40 30	DDH 90-6
137176 137177 137178 137179 137180	.6 .5 .7 1.0 .8	1 1 98 561 60	45 66 45 58 84	2 2 5 4 10	1 1 1 1 1	30 19 9 16 7	10 5 10 30 5	
137181 137182 137183	.7 1.1 1.6	1132 2659 3238	40 47 50	7 11 16	1 23 21	12 5 6	5 25 25	J
		_	_	_		_	_	
					1 1 21 2 2			

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB .: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB .: TELEPHONE/FAX (604) 847-3004

Assay Certificate

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

Date: SEP-18-90

0V-1382-RA1

Company: BRYDON VENTURES Project: SEA GOLD Attn: P.MANSON/C.SAMPSON

LABORATORIES

(DIVISION OF ASSAYERS CORP.)

• EN

Copy 1. BRYDON VENTURES, VANCOUVER, B.C. 2. SAMPSON ENGINEERING, VANCOUVER, B.C.

He hereby certify the following Assay of 30 ROCK samples submitted SEP-06-90 by P.MANSON.

Sample Number		AU g/tonne	AU oz/ton	
			~	
 136704 137072 137164	- 	3.62 1.64 3.10	106 - ⊅ 048 - ⊅ 090 ℃	DH 90-1 DH 90-4
137168 137169 137170		6.97 9.95 1.95	. 203 2 . 290 . 057	DI+ 90-6] 88:39-90:59 (2.2m 7:3FE) 0.148 02/5 An.

Certified by

LEGEND: A JASPEROID MISSISSIPPIAN-PENNSYLVANIAN 1 CHERT 2 ARGILLITE 3 SILTSTONE 4 MASSIVE ANDESITE / GREENSTONE 5 AMYGDALOIDAL ANDESITE / BASALT FLOWS 6 PORPHYRITIC ANDESITE / BASALT FLOWS 7 DACITE PORPHYRY FLOWS 8 ANDESITE AGGLOMERATE 9 ANDESITE TUFF _____, ____ CONTACT, ASSUMED BEDDING STRIKE/DIP ____ SCHISTOCITY حسب STRIKE/DIP OF SHEAR OR VEIN ~~~ BLAST TRENCH \geq x²⁰⁶⁰² ROCK SAMPLE LOCATION CARBONATE ALTERED carb ANKERITE ank SILICEOUS sil EPIDOTE еp HEMATITE hem ARSENOPYRITE asp PYRITE РУ GEOLOGICAL BRANCH ASSESSMENT REPORT BRYNDON VENTURES INC. OF

BRITISH COLUNBIA NGINEER Sources Sourc

CHRIS J. SAMPSON

- BRYNDON VENTURES INC. GAB 12 CLAIM LIARD MINING DIVISION, B.C. NTS: 104 B/15 DETAILED GEOLOGY 'NORTH GRID' 0 10 20 30 40 SCALE 1: 500 DATE: AUGUST 1990 BY: BDG/rwr FIGURE No. 5
 - Prepared by: RWR MINERAL GRAPHICS

OF CHRIS J. SAMPSON BRITISH

• .

*

■ ANOMALOUS Au≥14 ppb

♦ ANOMALOUS Cu ≥120 ppm

■ ANOMALOUS Ag≥ 2.6 ppm

Prepared by: RWR MINERAL GRAPHICS LTD.

•

				72	77	80			
L 2+00N	r	1	 1	10	15	15	1	 <u>. </u>	Т

•

.

.

.

,

-44

GEOLOGICAL BRANCH

20,928

BRY 90-7 BRY 90-6

4

** **

.

MISSISSIPPIAN-PENNSYLVANIAN

2 VOLCANICLASTIC SANDSTONE

3 VOLCANIC CONGLOMERATE

1 SILTSTONE

4 AGGLOMERATE

ank. ANKERITE

asp ARSENOPYRITE

CHALCOPYRITE

mai MALACHITE

py PYRITE

corb CARBONATE ALTERED

LEGEND:

	CONTACT, ASSUMED
	BEDDING STRIKE/DIP
444	SCHISTOCITY
~~~~~	STRIKE/DIP OF SHEAR OR VEIN
-	FRACTURE
<b></b> 4	BLAST TRENCH
O	DIAMOND DRILL HOLE
x ²¹⁰⁰¹	ROCK SAMPLE LOCATION
~~~	SHEAR
~~~	FAULT

•

BRYNDON VENTURES INC. GAB 12 CLAIM LIARD MINING DIVISION, B.C. NTS: 104 B/15W DETAILED GEOLOGY ARSENO SULPHIDE ZONE 0 10 20 30 40 SCALE 1:500 DATE: AUGUST 1990 BY: BDG/rwr FIGURE NO. 9



## ---- BRANCH TOPREMENT DEPORT



LEGEND: MISSISSIPPIAN-PENNSYLVANIAN 1 SILTSTONE BEDDING STRIKE/DIP 2 VOLCANICLASTIC SANDSTONE SCHISTOCITY 3 CONGLOMERATE STRIKE/DIP OF SHEAR OR VEIN 4 AGGLOMERATE FRACTURE ----BLAST TRENCH carb CARBONATE ALTERED DIAMOND DRILL HOLE ank ANKERITE

PYRITE РУ

asp ARSENOPYRITE

ROCK SAMPLE LOCATION Rock Sampie No. ppn No. Ag As Cu Pb Sb Zn Au 21036 - 27.8, 1598, 207, 204, 21, 413, 0.173 *5800* ppb BRYNDON VENTURES INC. GAB 12 CLAIM NTS: 104 B/15W TRENCH PLANS ARSENO SULPHIDE ZONE 

SCALE 1:100

DATE: AUGUST 1990

BY: BDG/rwr

OF CHRIS J. SAMPSON Sampson

Prepared by: RWR MINERAL GRAPHICS LTD.

FIGURE No. 10











$\frown$	$\bigcap$	
	Y	X
U,		U
• /	·	

QROFESSION PROVINCE T
Rever NGINE E Range
Chris. J. Sampson
C

LEC	END: Au (oz/t), Au	y (ppm <del>)</del> , As	(p̃pm), Cu (p	opm)
	/ SAMPLE LE	NGTH IN ME	TRES	
		, Kerini I.	, en l'hatta	
BR	TNDUN	VENIC	JRES II	NC.
	GAB	12 C		
LIARD MIN	ING DIVISION,	, В.С.	NTS: 1	04 B/15W
ΔF	SENO S	SULPH	DE ZO	NE
		F CROSS	S SECTIO	N
0	10	20	30	40
	SCALE	: 1:500 <b>(M</b>	ETRES)	
DATE: SE	PT1990			
BY BD	: /rwr		FIGUR	E No. 11e



