ESSM EPORT

LOG NO: Jeb 14/91	RD.
ACTION:	
FTLE NO:	

ASSESSMENT REPORT

ON DIAMOND DRILLING, CONTOUR SOIL SAMPLING

AND GEOPHYSICAL SURVEYS OF THE

GJ PROPERTY

Liard Mining Division, British Columbia NTS 104G/9E and 9W Latitude: 57° 39' N Longitude: 130° 14'W

on behalf of

ASCOT RESOURCES LTD. Vancouver, B.C.

by

David T. Mehner, M.Sc., FGAC KEEWATIN ENGINEERING INC. #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

FEE 0 3 1091

Gold Committationer's Cifice VANCOUVER, B.C. January 29, 1991

TABLE OF CONTENTS

,

Page No.

NTRODUCTION	1
Location and Access	1 2 2
Previous Work	3
EOLOGY	4
Regional Geology Property Geology	4 5
Lithology	5 6 6
Mineralization	7
EOCHEMISTRY	8
Sampling	8 8 9
EOPHYSICS	10
IAMOND DRILLING	11
Results	12
ONCLUSIONS	14
EFERENCES	15

LIST OF FIGURES

Following Page No.

Figure 1.	Location Map	1
Figure 2.	Regional Location Map	1
Figure 3.	GJ Property Claim Map	2
Figure 4.	Regional Geology/Bowser Basin	4
Figure 5.	Regional Geology	4

LIST OF MAPS

Map 1.	Cu-Au Soil and Silt Geochemistry	in pocket
Map 2.	Pb-Zn Soil and Silt Geochemistry	in pocket
Map 3.	Ag-Mo Soil and Silt Geochemistry	in pocket
Map 4.	As-Hg-Sb Soil and Silt Geochemistry	in pocket
Map 5.	Geophysics and Rock Geochemistry	in pocket
Map 6.	I.P. Chargeability Plan	in pocket
Map 7.	I.P. Resistivity Plan	in pocket
Maps 8 - 11.	Chargeability and Resistivity Pseudosections	in podets
Map 12.	Ground Magnetics Plan	in pocket
Map 13.	Cross Section 4E	in pocket
Map 14.	Cross Section 16E	in pocket
Map 15.	Cross Section 34E	in pocket
Map 16.	Cross Section 1120, I.P. Grid	in pocket
Map 17.	Cross Section 1600, I.P. Grid	in pocket

LIST OF APPENDICES

APPENDIX I	Statement of	Expenditures
------------	--------------	--------------

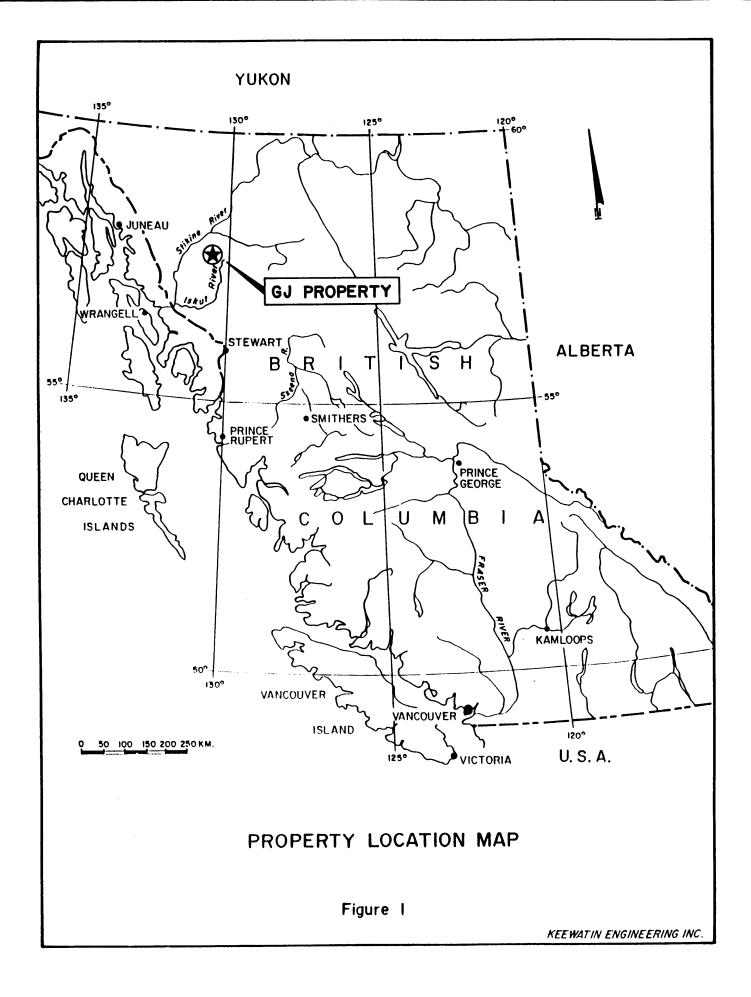
- APPENDIX II Summary of Personnel
- APPENDIX III Analytical Procedures Used by Min-En Laboratories Ltd.
- APPENDIX IV Soil Geochemistry Results
- APPENDIX V Soil Sample Descriptions
- APPENDIX VI Rock Geochemistry Results
- APPENDIX VII Rock Sample Descriptions
- APPENDIX VIII Silt Geochemistry Results
- APPENDIX IX Silt Sample Descriptions
- APPENDIX X Geophysical Report, Induced Polarization and Magnetometer Surveys, GJ Property, Dease Lake Area, B.C. by A. Scott
- APPENDIX XI GJ Property Diamond Drill Logs
- APPENDIX XII GJ Property Drill Core Geochemistry Results
- APPENDIX XIII Statement of Qualifications

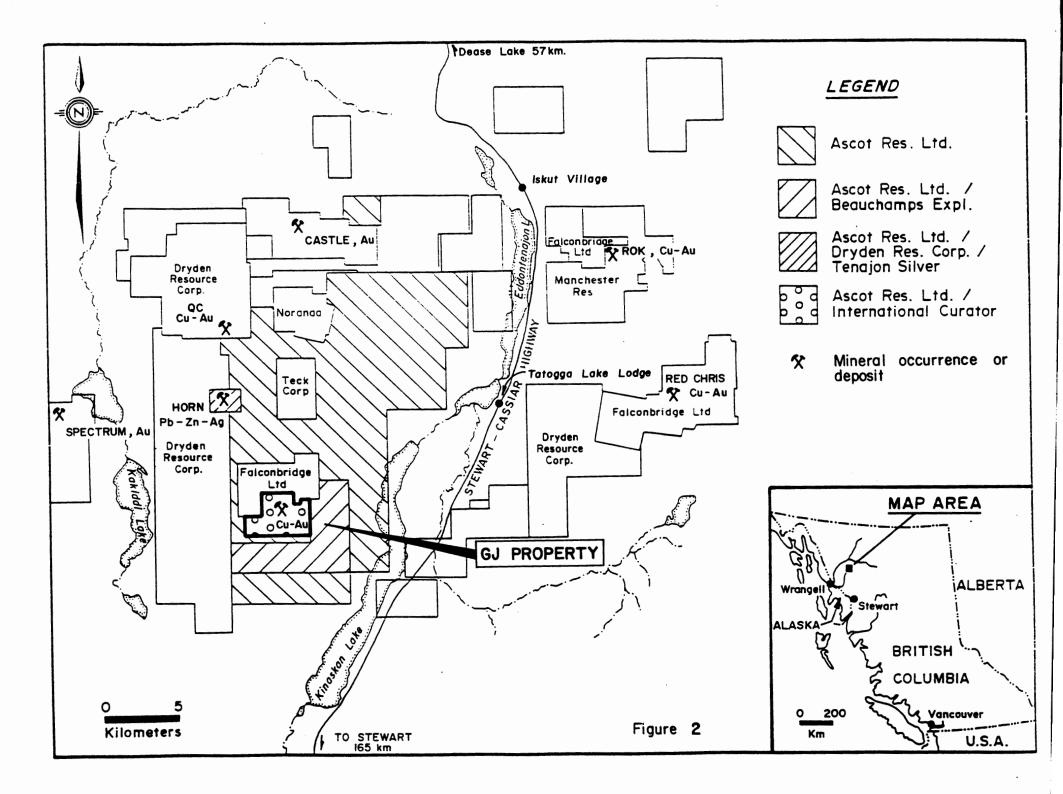
1

INTRODUCTION

The GJ property is located on the Klastline Plateau within the Stikine Arch of northwestern British Columbia. The property was optioned by Ascot Resources Ltd. in 1989 from International Curator Resources Ltd. as a prime porphyry Cu-Au prospect with the added potential for hosting precious metal rich veins which commonly occur peripheral to these deposits.

Initial exploration carried out on the property in 1989 included wacker drilling over much of the old grid atop the plateau to test bedrock mineralization and alteration below a fairly extensive overburden cover, detailed silt sampling, prospecting and geological mapping. Old drill core was partially re-logged and sampled and the presence of significant porphyry copper style mineralization with appreciable gold values (i.e. 0.46% Cu; 0.028 oz/ton Au; 0.27 oz/ton Ag over 100.6 m in DDH 70-2) confirmed.


In 1990, Keewatin Engineering Inc. was contracted by Ascot Resources Ltd. to carry out further exploration on the GJ porphyry copper-gold system. To meet this objective existing mineralized zones were tested along strike, previously untested targets were drilled, areas with indications of higher grade material were examined and new targets were identified. Field work included ground magnetics and I.P. surveys, extensive contour soil sampling along the banks of Groat Creek, prospecting and rock sampling and drilling nine diamond drill holes totalling 1,656 metres.


Field work was carried out from a camp established on the Klastline Plateau 1.6 km south of the property.

Location and Access

The GJ property is located in the Stikine region of northwestern British Columbia approximately 190 km north of Stewart, B.C. (Figure 1). It is centred 6 km west of Kinaskan Lake and 26.5 km southwest of Iskut Village at about 57°39' North latitude and 130°14' West longitude on NTS map sheet 104G/9E and 9W (Figure 2).

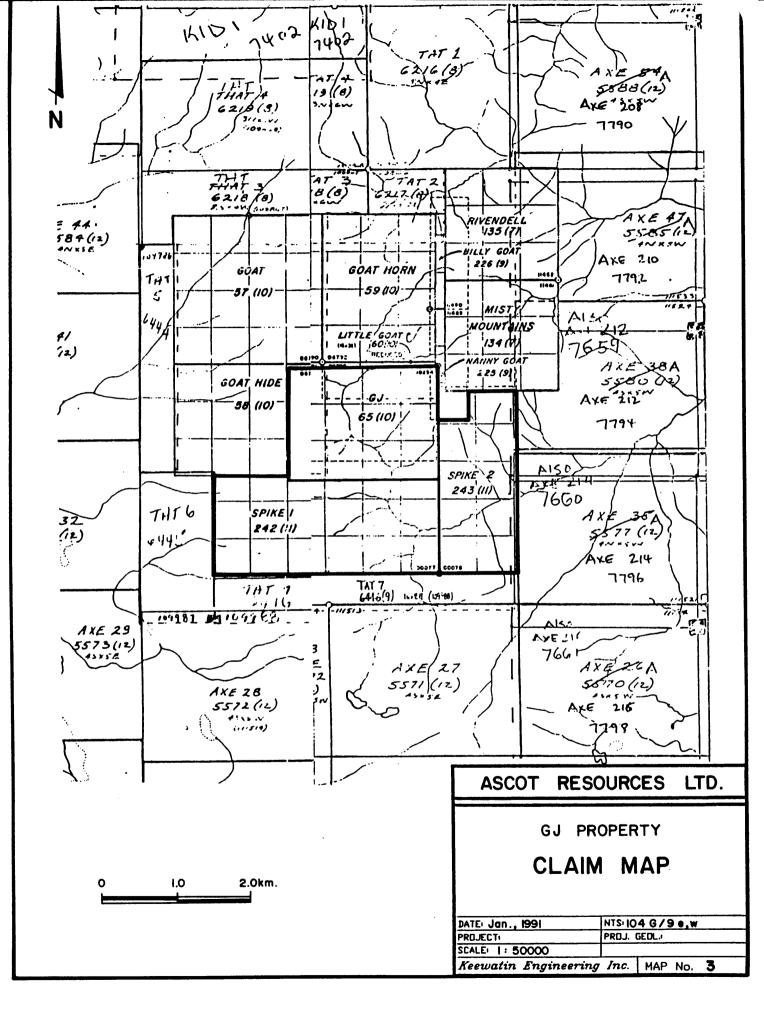
Access is via helicopter from Canadian Helicopter's base station at Tatogga Lake Lodge, a resort located 14 km south of Iskut Village and 15 km northeast of the property. Both the lodge and Iskut Village are situated on the Stewart-Cassiar Highway. The proposed B.C. Rail extension to Dease

Lake is about 32 km east of Kinaskan Lake. Scheduled air service is available from Smithers to Iskut during the summer months.

Topography and Vegetation

The property is situated on the southern end of the Klastline Plateau, an area characterized by gently rolling hills with elevations varying between 5000 ft (1524 metres) and 5500 ft (1676 metres) above sea level. The Groat Creek Valley cuts deeply through the centre of the property, producing steep south facing slopes and more subdued north facing slopes. Elevations on the property vary from 5400 feet (1646 metres) above sea level at the northeast corner of the GJ claim to 3800 ft (1158 metres) above sea level along Groat Creek at the extreme east end of the Spike 2 claim (Map 1).

Atop the Plateau, vegetation consists of alpine grasses and flowers. Drainage is poor and much of the area, particularly the northern half of the GJ claim is boggy. Sub-alpine scrub meanders through the property between the 4300 and 4500 foot levels. Lower elevations are covered by spruce and fir with alder common along creek valleys.


Precipitation is moderate averaging 100 cm per year. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

Property and Ownership

The GJ property is located in the Liard Mining Division of British Columbia (Figure 3) and consists of the following claims:

Claim Name	Record No.	No. of Units	Date Recorded	Due Date
GJ	65	12	October 29, 1975	October 29, 2000
Spike 1	242	18	November 25, 1976	November 25, 2000
Spike 2	243	10	November 25, 1976	November 25, 2000

The claims are owned 100% by International Curator Resources Ltd. with offices at Suite 380, 789 West Pender Street, Vancouver, B.C. V6C 1H2.

Previous Work

The area covered by the GJ and Spike claims was originally examined by prospectors including Mr. Groat after whom the creek containing the discovery showing is named. The first recorded work by a company was 1964, when Conwest Exploration Co. Ltd. carried out a regional evaluation of the Klastline Plateau. That program led to staking of the 196 claim GJ group across the southern portion of the Klastline Plateau. Preliminary mapping/prospecting and stream silt and soil geochemical sampling followed. This identified the GJ prospect as the principal target within the claim group.

In 1965 Conwest carried out limited ground magnetometer and IP surveys over two perpendicular lines centred on the GJ showing in Groat Creek. Subsequent blasting and sampling of three trenches and analysis of 150 rock chip samples yielded values averaging between 0.5% and 0.6% copper. Following this early work all but 4 claims covering the showing were allowed to lapse.

Amoco Canada Petroleum Co. Ltd. optioned the 4 claims and staked a further 180 claims around the showing in 1970. A grid of eight, 4,000 ft. lines was established and geologically mapped and covered with a ground magnetometer survey. Soil geochemical and IP surveys were conducted over part of the grid. A drill-access road was constructed from the west shore of Kinaskan Lake and five B.Q. diamond drill holes totalling 1,520 metres were drilled (one vertical and one each to the north, south, east and west) in Groat Creek over the showing. In 1971 Amoco carried out further mapping and drilled an additional 14 B.Q. holes totalling 2,465 metres. The option was subsequently dropped and Conwest allowed all the claims to lapse. In the fall of 1975, Mr. R. Dickinson staked the present GJ claim for Dimac Resource Corp. Within a month, Texasgulf Inc. (now Falconbridge Ltd.) staked the surrounding ground to the north, northeast and west.

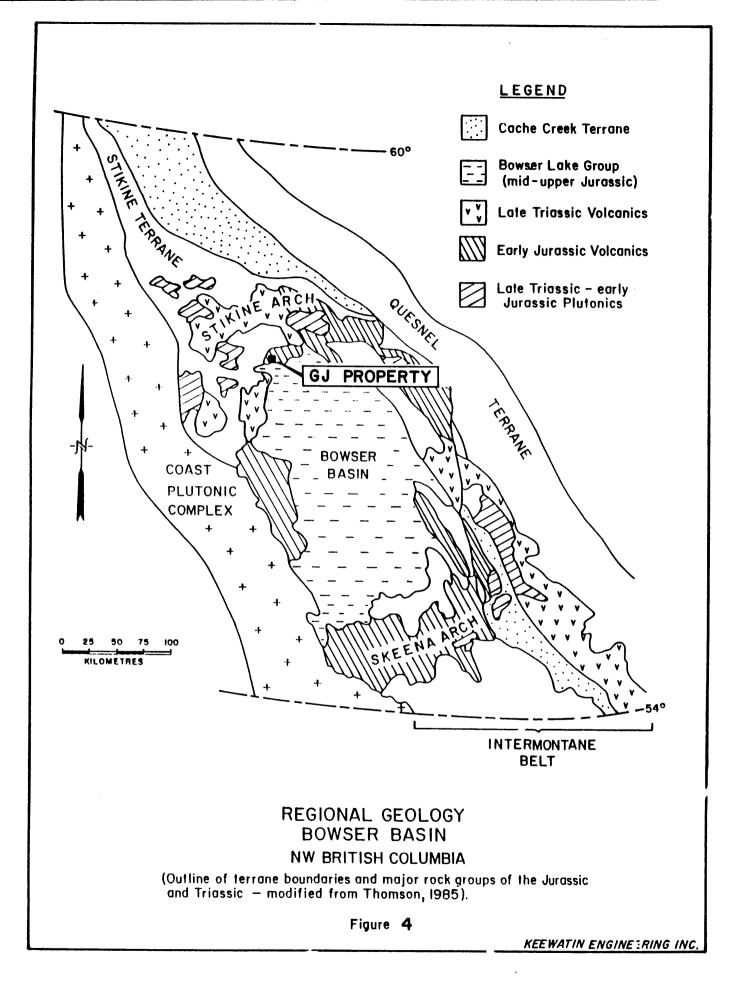
In 1976, Great Plains Development Co. of Canada Ltd. optioned the ground and established a grid over the property. This was mapped at 1:4,800, soil sampled and covered with a ground magnetometer survey. Amoco's drill core was re-logged and the Sun claim was staked north of the Texasgulf property. The Spike 1 and 2 were staked south and east of the GJ claim.

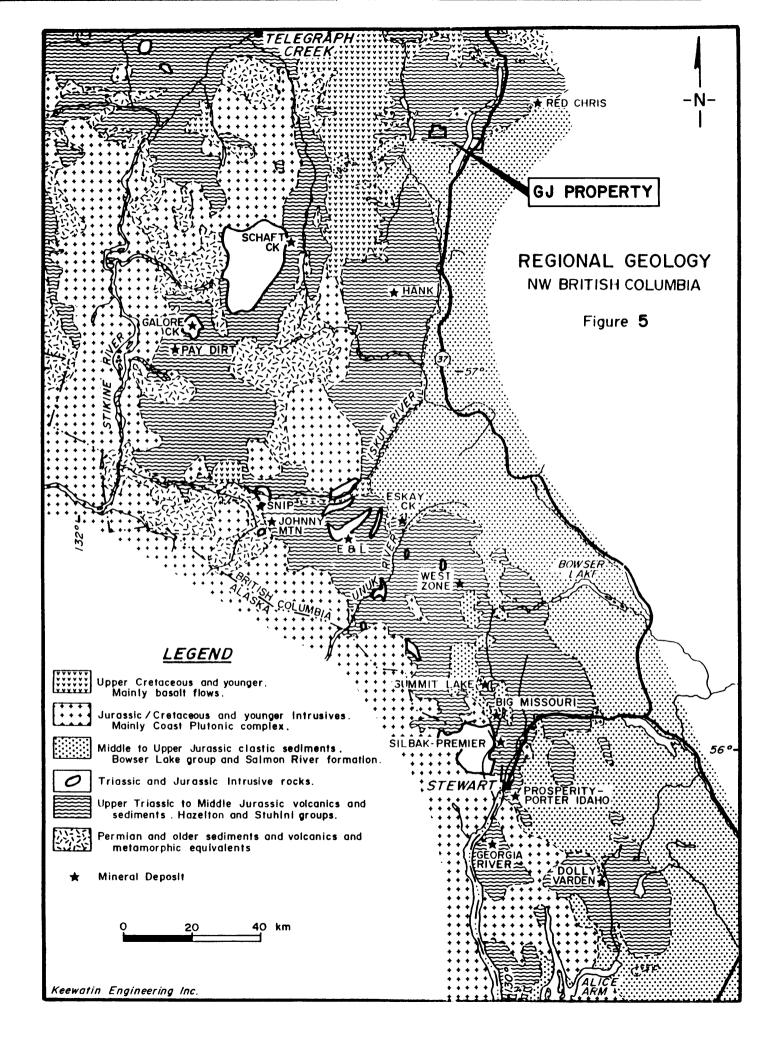
The following year, Norcen Energy (formerly Great Plains Development) conducted an IP survey over the entire grid, systematic bedrock geochemical sampling over part of the grid and limited trenching. The property option was then dropped by Norcen. In 1981, Canorex Minerals Ltd. optioned the ground form Dimac Resource Corp. and after drilling seven NQ holes totalling 1,779.4 metres, earned a 50% interest in the property. The Dimac interests were acquired by International Curator Resources Ltd. (formerly Canorex Minerals Ltd.) in the early 1980's from the Royal Bank after Dimac Resource Corp. declared bankruptcy.

The area remained relatively inactive until 1988 when the G.S.C. carried out a regional stream silt sampling program (National Geochemical Reconnaissance, 1988).

In 1989, Ascot Resources Ltd. optioned the GJ property from International Curator Resources Ltd. Systematic exploration of the property including compilation of all existing data, detailed stream silt sampling, overburden drilling, contour soil sampling, ground magnetics and I.P. geophysical surveys and diamond drilling have been carried out since then.

GEOLOGY


Regional Geology


The GJ property is located on the southwest portion of the Klastline Plateau within the Intermontane-Tectono-Stratigraphic Belt of the Canadian Cordillera (Figure 4). The claims lie within the northeast half of the Stikine Arch near the contact with the unmetamorphosed sediments of the Bowser Basin.

The northern half of the Klastline Plateau has been mapped (Figure 5) as Upper Triassic augite-andesite flows, pyroclastics and derived volcaniclastics ranging from conglomerates down to siltstones (Souther, 1971). Minor limestone and chert occur within the stratigraphy. Related coeval intrusives cut all rock types. A regional fault trending northeasterly passes through the centre of Kakiddi Lake and intersects the Iskut Valley fault zone at the north end of Kinaskan Lake. To the south of the fault, Souther (1971) mapped the rocks as a downthrown sequence of Middle Jurassic basalt pillow lavas, fragmentals and proximal volcaniclastic rocks intruded by coeval plutons. Subsequent K-Ar and Rb-Sr age dating (Schmitt, 1977) has yielded intrusive ages of 185 to 195 million years for the intrusive rocks south of the fault, suggesting the volcanic rocks are similar in age to the Upper Triassic stratigraphy north of the fault.

South of the volcanic units are chert pebble conglomerate, grit, greywacke and siltstone of the Middle and Upper Jurassic Bowser Group.

4

Intruding Upper Triassic volcanics are massive and flow banded rhyolite, orbicular rhyolite and massive felsite of Upper Cretaceous to Lower Tertiary age. Capping the southern portion of the Plateau are Upper Tertiary basalt and olivine basalt flows, often exhibiting excellent columnar jointing.

Property Geology

Owing to the extensive overburden cover on the property, geological mapping is largely restricted to traverses along creeks and examination of rock chips from the Wacker drilling, bedrock sampling program. Outcrops, drill holes and geological interpretation are plotted on Plate 1 and Wacker Drill Hole sample descriptions are given in Appendix B.

Lithology

The northern half of the GJ property is underlain by massive to well bedded to laminated black and white cherts, light green to grey cherty siltstones, quartzite and one outcrop of orange weathering dolomite. Minor greywacke beds are evident in portions of less altered cherty siltstone. Upper Triassic hornblende diorite, biotite \pm hornblende diorite, quartz diorite and porphyritic monzodiorite intrude the siliceous sediments in a very irregular pattern suggesting the sediments are a thin roof pendant atop a large intrusive mass. Quartzites and some of the cherty siltstones are likely contact metamorphically altered phases of chert and siltstone and not primary lithologies. Latite and andesite dykes and sills are likely later, finer-grained phases of the diorite and monzodiorite intrusives.

Wrapping around the siliceous sediments to the southeast, south and southwest are well bedded siltstones, greywackes and minor interbedded black and white chert and one outcrop of white limestone. These less siliceous, less altered rocks have also been identified over portions of the plateau north of the property. Conforming to and overlying the siltstones and greywackes to the southeast, south and west are maroon to grey-green andesite and possibly basalt flows. The contact between the sedimentary rocks and volcanic flows is marked locally by polymictic andesite rich conglomerate and coarse wackes units. Two lenses of lapilli-tuff and tuff breccia have been mapped within the clastic unit as well.

This overlying sequence of Triassic volcanic stratigraphy which occurs mostly to the south and west of Groat Creek contains a few plugs of diorite to porphyritic monzodiorite but the amount of

intrusive rocks present and the extent of alteration is significantly less than that seen in the northern portion of the property.

Unconformably overlying the Triassic andesite to basalt flows on the far west side of the property are Upper Tertiary and Pleistocene basalt and olivine basalt flows.

Structure

Bedding measurements taken over the GJ property suggest stratigraphy has been uplifted and moderately folded into a broad, anticlinal fold, open to the north and plunging at 55° to 75° to the southwest.

A fault, possibly a "scissor fault" is thought to trend north-south through the upper reaches of Groat Creek. Uplift along the fault is believed partly responsible for exposing cherts, cherty siltstones and siltstones, rock units which are thought to be the oldest in this portion of the Klastline Plateau.

Alteration

As is typical with most alkalic porphyry copper-gold prospects, alteration is very erratic in intensity and irregular in distribution. Propylitic alteration is widespread and covers much of the property. It consists of fracture and vein controlled chlorite, epidote and calcite. Near the contact of the diorite to monzodiorite stocks, irregular, potassic alteration consisting of vein and fracture controlled K-feldspar is common.

In the most intensely altered areas such as the main target along Groat Creek, potassic alteration is substantially more intense with irregular zones being pervasively flooded by secondary K-feldspar. Typically these areas contain significant quartz veining along with appreciable pyrite, magnetite, chalcopyrite and weak specular hematite (<1%). Sedimentary units are commonly silicified.

Argillic alteration, identified by varying degrees of clay replacement of plagioclase feldspars and leaching or pyrite replacement of mafic minerals occurs between the propylitic and potassic zones. The discontinuous nature of the alteration zones observed on the GJ property is likely a function of the geometrically complex intrusive contacts, pre-alteration faulting, and post alteration normal faults. These irregular alteration patterns are features common to most alkalic, porphyry copper-gold systems.

Mineralization

The most significant mineralization on the property occurs along Groat Creek where strongly developed quartz veining containing significant chalcopyrite with associated gold values occurs in pervasive, K-feldspar altered diorite to monzodiorite and cherty siltstone. Drilling beneath this target in 1970 yielded encouraging results in all five holes including:

Drill Hole	Interval	Cu	Au	Ag
No.	Length (m)	%	oz/ton	oz/ton
70-1	119.5	0.25	0.008	0.10
70-2	162.2	0.36	0.021	0.24
70-3	114.6	0.25	0.018	0.10
70-4	119.5	0.17	0.011	0.08
70-5	211.8	0.27	0.005	0.10

Subsequent diamond drilling has tested 800 metres to the east, and 300 metres to the west of the 1970 holes. Erratic mineralized intervals were encountered, with the two best holes, 81-5 and 81-7 summarized below:

Drill Hole	Interval	Cu	Au	Ag
No.	Length (m)	%	oz/ton	oz/ton
81-5	103.6	0.32	0.018	0.34
81-7	155.4	0.25	0.025	0.20

An interpretation of the existing drill data suggests that mineralization is related to an eastwest structure, likely associated with emplacement of diorite to monzodiorite dykes or possible sills. The mineralized zone varies from 20 to 140 metres wide (typically 100 metres?) and dips at 70° to 80° north. Mineralization is known to extend from the Plateau top (approximately 5,200 feet ASL) to 4,150 feet ASL in hole 70-2, a vertical distance 1,050 feet (320 metres).

8

In addition to the main mineralized zone discussed above stream silt and rock geochemical sampling located other mineralized targets on the property. These include:

- a) Extension of the Groat Creek mineralization 200-300 metres south of the 1970 drill holes. Rock samples in this zone have returned up to 1,300 ppm Cu and 736 ppb Au.
- Extension of the mineralized system to the northwest and northeast from drill holes 70-1 to 70-5. Rock sampling from both locations returned anomalous values including 660 ppm Cu and 464 ppb Au.
- c) A potential gold zone centred on Groat Creek 800 to 1,100 metres southeast of the 1970 drill holes. Highly elevated gold values in silts combined with two rock samples of pyrite filled fractures that yielded 2,660 and 592 ppb gold provides the encouragement.

Each of these targets was tested without success in 1990. The results are discussed under rock geochemistry results and diamond drilling elsewhere in this report.

GEOCHEMISTRY

Sampling

During the 1990 field season, 274 soil, 3 silts and 12 rock samples were collected from the property. Soils were taken at 50 metre intervals along flagged contour lines with a mattock and collected in brown, kraft sample bags. Wherever possible, the samples were taken from the "B" soil horizon.

Rock samples include grabs and chips from prospective looking bedrock within the claims.

<u>Analysis</u>

All samples were sent to Min-En Laboratories Ltd. in Smithers, B.C. where they were processed and analyzed for gold. Pulps were forwarded to Min-En Laboratories in Vancouver, B.C. for 7 element ICP plug HG analysis. Any samples yielding \geq 1,000 ppb Au were then re-analyzed for gold by the one ton, fire assay procedure.

9

Analytical procedures used by Min-En are outlined in Appendix C. Soil geochemistry results are listed in Appendix IV and sample descriptions are in Appendix V. Sample locations and results are plotted on Maps 1 to 4. Rock geochemistry results are listed in Appendix VI and sample locations are shown on Map 5. Descriptions are in Appendix VII. Silt sample results are plotted on Maps 1 to 4. Results are listed in Appendix VIII and sample descriptions are in Appendix IX.

<u>Results</u>

1) Soil Sampling: Contour soil sampling was carried out over both banks of Groat Creek as a means of following up on highly anomalous stream silt samples that were obtained over the entire length of the creek during 1989 exploration work.

The soil sampling located a substantial copper anomaly (>200 ppm) with significantly elevated gold values (to 1,225 ppb) immediately north of the main GJ target. The anomaly covers the area from lines 4E to 22E between 1100N and 200S. This anomaly was tested by drill holes 90-1, 90-2 and 90-11 and 90-12 with discouraging results.

A second copper anomaly with elevated gold values to 495 ppb was identified between lines 14E and 26E covering the area of 12S to 18S. This target lies immediately south of the zone tested by hole 90-3. It has not been drill tested.

Aside from one sample "spot" highs, no other anomalies were identified.

A summary of soil geochemical results follows:

Copper:	Range 11 - 1,394 ppm	Gold:	Range 1 - 1,225 ppb
Lead:	Range 8 - 223 ppm	Arsenic:	Range 1 - 1,300 ppm
Zinc:	Range 13 - 1,646 ppm	Mercury:	Range 5 - 1,100 ppb
Silver:	Range 0.1 - 4.5 ppm	Antimony:	Range 1 - 29 ppm
		Molybdenum:	Range 1 - 137 ppm

ii) Rock Sampling: Rock samples were taken of pyritic material around drill holes 90-1 and 90-3 and over the area tested by holes 90-11 and 90-12 where a significant coppergold soil anomaly was identified. The samples taken near holes 90-1 to 90-3 returned low values with the highest from sample AA-4 which returned 372 ppm Cu and 191 ppb Au.

Samples taken within the Cu-Au soil anomaly near holes 90-11 and 90-12 returned results as high as 655 ppm Cu and 96 ppb Au.

Sample AA-05 was a resample of pyritic veins and fracture fillings in sediments along Groat Creek where 1989 sampling yielded a value of 2,660 ppb Au. The follow-up sampling returned a value of 43 ppb Au.

A single rock sample (DPR-01) taken from pyritic rocks south of the property yielded an anomalous Hg value of 3,000 ppb.

iii) Silt Sampling: Three silts were taken from small drainages at the southeast corner of the property where a prominent iron stained bluff overlooks Groat Creek. Results for all elements were low.

GEOPHYSICS

A total of 20.7 line kilometres of induced polarization survey and 19.3 line kilometres of magnetometer survey were carried out by Scott Geophysics over the northern half of the property. The survey was conducted using a pole dipole electrode array with "a" spacings of 25 and 75 metres and "n" separations of 1 and 2. Coverage was on flagged grid lines 120 metres apart that were established concurrently with the I.P. survey.

The ground magnetometer survey measured total magnetic field with readings taken at 25 metre intervals.

The I.P survey was carried out to establish limits on the sulphide system over the plateau area where outcrop exposure is minimal, as well as to verify and extend chargeability highs indicated from a 1977 survey. The survey was also designed to test the property to a greater depth than the 1977 program.

The induced polarization survey results show large areas of the GJ property exhibit chargeability, resistivity and magnetic patterns that are typical of porphyry systems. Subsequent diamond drill testing demonstrated "typical", porphyry style sulphide mineralization is associated with moderate resistivity and moderate to strong total magnetic field. Those areas with high chargeability but weak or low resistivity and low magnetic field were underlain by graphitic and carbonaceous sediments.

The location of the grid lines surveyed and the chargeability anomalies are plotted on Map 5. A contour plan of chargeability results is shown on Map 6 and contoured resistivity results are plotted on Map 7. Chargeability and resistivity pseudosections are portrayed on Maps 8 to 11. A contour plan of the ground magnetics survey is plotted on Map 12. A copy of the Geophysical Report provided by Scott Geophysics is included as Appendix X.

DIAMOND DRILLING

Nine diamond drill holes totalling 1,656 metres were drilled across five separate sections over an east-west distance of 2,300 metres. The helicopter supported drill program was contracted out to Falcon Drilling of Prince George, B.C., and was completed between August 28 and October 12, 1990.

Core size is BGM. All sulphide bearing or favourably altered core was split in 3.0 metre intervals and geochemically analyzed. The better looking intersections were sampled at 1.50 metre intervals. All samples yielding 1,000 ppb Au or better were resubmitted for 1 ton fire assays. All the core is stored on the property, immediately east of the main Groat Creek target on top of the Plateau. Core from Canorex's 1981 drill program is stored in the same location.

The location of all holes on the GJ property to date are plotted on Maps 1 to 5. The position of the 1970, 1971 and 1981 holes with the exception of holes 71-9, 71-13 and 71-15 were surveyed in by Frank Ferguson of Keewatin Engineering Inc. Hole locations were tied into the GJ, legal corner post. Due to a lack of hole markers or hole casing, hole positions are only accurate to within 2.0 metres. Elevations are relative and can be considered accurate to within 1.5 metres.

Holes 71-9, 71-13 and 71-15 were located from old property maps. 1990 drill holes (90-G01 to 90-G07, 90-G11 to 90-G12) were located by topochain, compass and altimeter.

Cross sections of all GJ holes complete with geology and geochemical results are plotted on Maps 13 to 17. Drill logs are included in Appendix XI and geochemical and assay results are in Appendix XII. <u>Results</u>

Four of the drill holes intersected narrow; weakly mineralized intervals yielding low coppergold values. None of the holes intersected porphyry copper-gold mineralization comparable to previous drill results. The following table summarizes the significant results from the 1990 drilling:

Hole No.	Location	Azimuth	Dip	Length	Sigr	lificant Re	sults
90-01	14E/9.00S	360°	-45°	178.9 m	12.0 - 21.0 81.0 - 108.0	9.0 m 27.0 m	0.12% Cu 0.013 opt gold 0.18% Cu 0.012 opt gold
90-2	14E/4.00S	360°	-45°	181.0 m	54.0 - 57.0 76.5 - 79.5	3.0 m 3.0 m	0.15% Cu 0.010 opt gold 0.40% Cu 0.052 opt gold
90-4	34+20E/13S	360°	-45°	196.0 m	186.0 - 187.5	1.5 m	0.40% Cu 0.175 opt gold
90-5	34+80E/17S	360°	-45°	182.6 m	51.0 - 57.0	6.0 m	0.025% Cu 0.051 opt gold

The objectives and results of the nine drill holes are summarized by cross section as follows:

Section 16E: Drill holes 90-1, 90-2 and 90-3. The holes were drilled to test the continuity of mineralization between holes 70-2, 70-3 and 71-15 to the west and 81-7 to the east. The target area was defined by an I.P., chargeability high which was partially (northern part) within a coincident copper-gold soil anomaly.

The holes intersected strongly altered, pyritized sediments and diorite intrusives. Encouraging, albeit weak copper-gold values were encountered in hole 90-01. The best individual values obtained from drill core samples include:

90-1:	3,957 ppm Cu (3.0 metres); 958 ppb Au (3.0 metres)
90-2:	4,764 ppm Cu (1.5 metres); 2,300 ppb Au (1.5 metres)
90-3:	894 ppm Cu (3.0 metres); 585 ppb Au (3.0 metres)

Section 34E: Drill holes 90-4 and 90-5. The holes were drilled to test a moderate I.P. chargeability high and projected coincident copper-gold bedrock anomaly. A rock grab taken in the target area yielded 450 ppm Cu. Visible chalcopyrite had been noted on fractures in strongly oxidized, limonitic rocks on surface.

Carbonaceous sediments interbedded with weak to moderately altered and pyritized sediments and minor diorite to monzodiorite dykes were intersected. Chalcopyrite veining was noted in hole 90-4 between 183.4 and 188.10 metres. Arsenopyrite was noted in hole 90-5 between 50 and 59 metres. Best values obtained include:

90-4:	3,977 ppm Cu and 6,000 ppb Au (1.5 metres)
90-5:	731 ppm Cu and 3,500 ppb Au

Section 1600E (1990 Recce I.P. Grid): Drill hole 90-6. The hole was drilled to test a strong I.P. chargeability high and resistivity low 2,100 metres east-southeast of the Groat Creek mineralization. The magnetic background is low.

Carbonaceous sediments and unaltered to weakly altered and mineralized siltstones and greywackes were encountered. The best copper value is 813 ppm. The highest gold is 818 ppb.

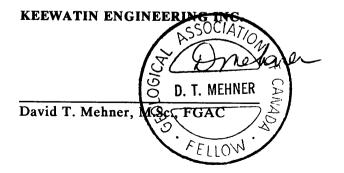
Section 1120E (1990 Recce I.P. Grid): Drill hole 90-7. The hole was drilled to test a strong I.P. chargeability high and resistivity low 1,700 metres southeast of the Groat Creek mineralization. The magnetic background is low.

Carbonaceous sediments cut by diorite dykes were intersected. Alteration and pyritization is patchy and weak to moderate. The best copper is 155 ppm. The highest gold is 40 ppb.

Section 4E: Drill holes 90-11 and 90-12. The holes drill tested a strong, coincident copper-gold soil anomaly and magnetic high from the 1976 geophysical survey. The area is

midway between the main Groat Creek mineralization (southeast) and highly anomalous copper-gold bedrock values (wacker drilling) and soil geochemical results (old survey) in the extreme northwest corner of the property.

Altered and pyritized sediments and diorite dykes and sills occur in both holes. No significant quartz veining or mineralization was encountered in either hole. The highest copper and gold values include:


90-11:	728	ppm	Cu;	510	ppb	Au
90-12:	279	ppm	Cu;	537	ppb	Au

CONCLUSIONS

Diamond drill testing of the most promising targets on the property including the area between drill holes 70-2 (0.36% Cu, 0.021 oz/ton Au over 162.2 metres) and 81-7 (0.25% Cu, 0.025 oz/ton Au over 155.4 metres) and between 70-2 and the extreme northwest corner of the property failed to intersect copper-gold mineralization comparable to that obtained in the earlier drilling. These results combined with alteration patterns observed in bedrock and drill core strongly suggest the GJ porphyry system is a relatively "tight", structurally controlled mineralized zone consisting of discontinuous areas of higher grade mineralization. Copper and gold values appear intimately associated with clay altered, potassium feldspar veined or flooded diorite to latite dykes and sills. The irregular nature of the mineralization seems directly related to the irregular distribution of intrusive bodies and pre- and post-mineralization fracture (fault) zones.

Induced polarization, chargeability high anomalies located southeastward from the Groat Creek mineralization are related to carbonaceous sediments not porphyry style mineralization.

Respectfully submitted,

REFERENCES

- Forsythe, J.R., Peatfield, G.R., Gasteiger, W.A. and Donnelly, D.A. 1977. Report on Geochemical and Geophysical Surveys, Diamond Drilling and Supporting Work on the Groat Creek Claims, Liard Mining Division. B.C. Dept. of Mines and Petroleum Resources, Assessment Report 6541.
- McInnes, M.D. 1981. Drilling Report on the GJ and Spike 1 and 2 Claims. B.C. Department of Mines and Petroleum Resources, Assessment Report 9773.
- Mehner, D.T. 1990. Assessment Report on Overburden Drilling, Geological Mapping, Prospecting and Stream Silt Sampling on the GJ Property, Liard Mining Division, B.C.
- National Geochemical Reconnaissance, 1:250,000 Map Series, 1988. Geological Survey of Canada, Open File.
- Nichols, R.F. 1989. Geological Report on the GJ Property, Liard Mining Division. Unpublished Company Report for Ascot Resources Ltd.
- Schmitt, H.R. 1977. A Triassic-Jurassic Granodiorite Monzodiorite Pluton South-East of Telegraph Creek, B.C. Unpublished B.Sc. Thesis, University of British Columbia, Vancouver, 91 pp.
- Souther, J.G. 1971. Telegraph Creek Map-area, British Columbia. Geological Survey of Canada, Paper 71-44.
- Winter, C.Q., Good, D.R. and McInnes, M.D. 1976. Year-end Report on GJ Claim, British Columbia, NTS 104G/9E. B.C. Department of Mines and Petroleum Resources, Assessment Report #6095.

APPENDIX I

.....

-

Statement of Expenditures

.

STATEMENT OF EXPENDITURES

GJ. Spike 1 and 2 Mineral Claims

<u>Salaries</u>

.

R. Nichols, Project Supervisor	5.0 days @ \$425/day	\$ 2,125.00	
D. Mehner, Senior Geologist	25.0 days @ \$400/day	10,000.00	
M. Bobyn, Project Geologist	2.5 days @ \$325/day	812.50	
J. Miller, Geologist	32.5 days @ \$275/day	8,937.50	
B. Ryziuk, Geological Technician	5.0 days @ \$275/day	1,375.00	
F. Ferguson, Surveyor	3.0 days @ \$325/day	975.00	
D. Perrett, Prospector	1.5 days @ \$275/day	412.50	
M. Skeoch, Prospector	5.0 days @ \$240/day	1,200.00	
B. McIntyre, Prospector	1.0 days @ \$300/day	300.00	
E. Birkeland, Sampler	1.0 days @ \$300/day	300.00	
G. Nagy, Sampler	2.5 days @ \$250/day	625.00	
C. Kauss, Sampler	18.0 days @ \$225/day	4,050.00	
C. Anderson, Sampler	2.0 days @ \$225/day	450.00	
C. Creelman, Sampler	1.0 days @ \$225/day	225.00	
A. Hark, Sampler	6.0 days @ \$175/day	1,050.00	
K. Louis, Sampler	3.0 days @ \$175/day	525.00	
J. Tashoots, Sampler	37.5 days @ \$175/day	6,562.50	
T. Shepard, Sampler	3.5 days @ \$175/day	612.50	
N. Carlick, Sampler	1.0 days @ \$175/day	175.00	
V. Jordan, Cook/First Aid	17.0 days @ \$250/day	4,250.00	
C. Brodhagen, Cook/First Aid	1.0 days @ \$250/day	250.00	
			\$45,212.50
<u>Accommodation and Food</u> (includes Keewatin personnel, Scott and Falcon Drilling personnel)	310 man days @ \$60/man da t Geophysics crew, pilot	ay	18,600.00
(includes Keewatin personnel, Scott	•		18,600.00 2,535.00
(includes Keewatin personnel, Scott and Falcon Drilling personnel)	Geophysics crew, pilot		
(includes Keewatin personnel, Scott and Falcon Drilling personnel) <u>Equipment Use</u> <u>Transportation</u>	Geophysics crew, pilot		
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter	Geophysics crew, pilot 169 man days @ \$15/man da	ay	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation <u>Helicopter</u> Hughes 500	Geophysics crew, pilot 169 man days @ \$15/man d 63.2 hrs @ \$ 670/hour	ay \$42,344.00	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation <u>Helicopter</u> Hughes 500 Bell 206	Geophysics crew, pilot 169 man days @ \$15/man da	ay	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) <u>Equipment Use</u> <u>Transportation</u> <u>Helicopter</u> Hughes 500 Bell 206 <u>Truck & Motorbikes</u>	Geophysics crew, pilot 169 man days @ \$15/man d 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour	ay \$42,344.00 5,580.00	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter Hughes 500 Bell 206 Truck & Motorbikes 2 - 4 x 4 motorbikes	Geophysics crew, pilot 169 man days @ \$15/man d 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour 45 days each @ \$35/day	ay \$42,344.00 5,580.00 3,150.00	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter Hughes 500 Bell 206 Truck & Motorbikes 2 - 4 x 4 motorbikes 1 - motorbike	Geophysics crew, pilot 169 man days @ \$15/man d 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour	\$ 42,344.00 5,580.00 3,150.00 th 500.00	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter Hughes 500 Bell 206 Truck & Motorbikes 2 - 4 x 4 motorbikes 1 - motorbike 1 - 4 x 4 truck (with fuel)	Geophysics crew, pilot 169 man days @ \$15/man d 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour 45 days each @ \$35/day	\$ 42,344.00 5,580.00 3,150.00 th 500.00 1,265.00	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter Hughes 500 Bell 206 Truck & Motorbikes 2 - 4 x 4 motorbikes 1 - motorbike	Geophysics crew, pilot 169 man days @ \$15/man d 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour 45 days each @ \$35/day	\$ 42,344.00 5,580.00 3,150.00 th 500.00	
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter Hughes 500 Bell 206 Truck & Motorbikes 2 - 4 x 4 motorbikes 1 - motorbike 1 - 4 x 4 truck (with fuel) Fixed Wing/Airline	t Geophysics crew, pilot 169 man days @ \$15/man da 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour 45 days each @ \$35/day 1 mon. @ \$500/mont	\$ 42,344.00 5,580.00 3,150.00 th 500.00 1,265.00	2,535.00 53,928.75*
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter Hughes 500 Bell 206 Truck & Motorbikes 2 - 4 x 4 motorbikes 1 - motorbike 1 - 4 x 4 truck (with fuel)	t Geophysics crew, pilot 169 man days @ \$15/man da 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour 45 days each @ \$35/day 1 mon. @ \$500/mont	\$ 42,344.00 5,580.00 3,150.00 th 500.00 1,265.00	2,535.00
(includes Keewatin personnel, Scott and Falcon Drilling personnel) Equipment Use Transportation Helicopter Hughes 500 Bell 206 Truck & Motorbikes 2 - 4 x 4 motorbikes 1 - motorbike 1 - 4 x 4 truck (with fuel) Fixed Wing/Airline	Geophysics crew, pilot 169 man days @ \$15/man da 63.2 hrs @ \$ 670/hour 3.1 hrs @ \$1800/hour 45 days each @ \$35/day 1 mon. @ \$500/mont ound Magnetics Survey	\$ 42,344.00 5,580.00 3,150.00 th 500.00 1,265.00	2,535.00 53,928.75*

<u>Geochemistry</u>

6.

<u>Soils</u> 274 samples @ \$10.00 ea.	\$ 2 740 00	
(includes sample prep, Au fire geochem, Hg analysis and 7 element ICP)	• 2,740.00	
<u>Silts</u> 3 samples @ \$10.00 ea.	30.00	
(includes analysis as for silts) <u>Rocks</u> 12 samples @ \$12.50 ea.	150.00	
(includes sample prep and analysis as for soils)		
<u>Drill Core</u> 506 samples @ \$12.50 ea. (includes analysis as for rocks)	6,325.00	
Gold Fire Assays (1 Ton) 8 samples @ \$ 9.75 ea.	<u> </u>	
		9,323.00*
<u>Camp Construction and Maintenance</u> - includes radios, heating fue	l. generator.	
chain saws, etc.)	-, 8,	4,749.52*
Field Supplies - pickets, topo thread, flagging, etc.		1,095.75*
Expediting - contract charges		1,660.30*
Freight - samples and equipment		1,003.03*
Miscellaneous		
Core Splitter 30 days @ \$10.00/day	\$ 300.00	
Fax machine, photocopier (pro-rated)	120.00	
Airphotos	125.00	
		545.00*
Office		
Office		
<u>Pre-Field</u> - map preparation, drill data, compilation, drafting	\$1,900.00	
<u>Pre-Field</u> - map preparation, drill data, compilation, drafting <u>Post-Field</u> - report preparation	·	
<u>Pre-Field</u> - map preparation, drill data, compilation, drafting <u>Post-Field</u> - report preparation D. Mehner 5 days @ \$375/day	1,875.00	
<u>Pre-Field</u> - map preparation, drill data, compilation, drafting <u>Post-Field</u> - report preparation	·	6,380.00
<u>Pre-Field</u> - map preparation, drill data, compilation, drafting <u>Post-Field</u> - report preparation D. Mehner 5 days @ \$375/day	1,875.00	6,380.00 283,703.85
Pre-Field - map preparation, drill data, compilation, drafting Post-Field - report preparation D. Mehner 5 days @ \$375/day Drafting, typing, blueprints, binding Sub-Total: 3rd Party Invoices - 10% charged by Keewatin Engineering	1,875.00	283,703.85
<u>Pre-Field</u> - map preparation, drill data, compilation, drafting <u>Post-Field</u> - report preparation D. Mehner 5 days @ \$375/day Drafting, typing, blueprints, binding Sub-Total:	1,875.00	

APPENDIX II

.....

Summary of Personnel

SUMMARY OF PERSONNEL

Name	Position	Sampler Code	Dates Worked
David Mehner	Senior Geologist	"AA"	July 29, 30 ($\frac{1}{2}$ day); Aug. 3, 14, 20, 23, 24, 26, 27, 29; Aug. 6, 7, 15, 16, 21, 22, 28 and 30 (all $\frac{1}{2}$ days); Sept. 1, 4, 12, 13; Sept. 3, 9, 10, 17, 18, 21, 29 (all $\frac{1}{2}$ days); Oct. 18, 21; Oct. 4, 9, 12, 13, 24 (all $\frac{1}{2}$ days).
Marty Bobyn	Project Geologist	"F"	July 21 (½ day); Aug. 14, 16 (½ day); Sept. 10 (½ day).
Jason Miller	Geologist	"O"	June 20, 21; July 2; Aug. 14, 20, 25, 29, 30; Aug. 16 and 31 $(\frac{1}{2} \text{ days})$; Sept. 1, 2, 6-11, 12 $(\frac{1}{2} \text{ day})$, 16-22; Oct. 8 $(\frac{1}{2} \text{ day})$, 9-14, 15 $(\frac{1}{2} \text{ day})$.
Bob Ryzi uk	Geological Technician	"BR"	Sept. 20 and 24 (½ days); 30; Oct. 2, 8, 12, 14 (all ½ days), 15.
Frank Ferguson	Surveyor		June 22; July 29, 30.
Dan Perrett	Prospector	"DP"	August 18, 31 (½ day).
Mike Skeoch	Prospector	"U"	June 22, 23; July 29, 16 (½ day); August 18, 31 (½ day)
Brian McIntyre	Prospector		June 23.
Eric Birkeland	Sampler		October 5.
Grant Nagy	Sampler	"NN"	June 21; July 16 (½ day); Sept. 13.
Kurt Kauss	Sampler	"Y"	June 22; July 24-29, 31 (½ day); August 18, 25, 27, 28, 21 (½ day); September 1-6.
Colin Anderson	Sampler		June 23; October 5.
Steve Creelman	Sampler		October 12.
Alex Hark	Sampler	"AH"	Sept. 14-18; August 18.
Keith Louis	Sampler	"CL"	July 22, 23; August 18.

Name	Position	Sampler <u>Code</u>	Dates Worked
James Tashoots	Sampler	"JT"	July 22-29; 31 (½ day); Aug. 18, 28-31; Sept. 1, 7-13, 15- 22; October 6, 9-15.
Trevor Shepard	Sampler	"V"	July 10, 16 (½ days); Aug. 18, 19, 21 (½ day).
Newton Carlick	Sampler		August 18.
Verna Jordan	Cook/First Aid		June 21; July 23-24, 26-29; Aug. 20, 30, 31; September 1, 4, 9, 11; October 10-12.
Cindy Brodhagen	Cook/First Aid		June 29.

e.

APPENDIX III

-

Analytical Procedures Used by Min-En Laboratories Ltd.

ANALYTICAL PROCEDURES USED BY MIN-EN LABORATORIES

<u>Hg Analysis</u>

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, B.C., employing the following procedures.

After drying the samples @ 30°C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for two hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable dilutions made if necessary.

ICP Analysis for Cu, Pb, Zn, Ag, As, Sb, Mo

After drying the samples at 95°C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for two hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

Au Fire Geochem

A suitable sample weight; 15.00 or 30.00 grams is fire assay pre-concentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

Ag. Cu, Pb, Zn

Samples are dried @ 95°C and when dry are crushed on a jaw crusher. The - $\frac{1}{4}$ inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram subsample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays are digested using a HNO3-KCL04 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The nature standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

APPENDIX IV

-

~

.....

the second

Soil Geochemistry Results

COMP: KEEWATIN ENGINEERING PROJ: GJ 153 ATTN: R.NICHOLS/M.BOBYN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: OS-0113-SJ1+2 DATE: 90/07/10 * SOIL • (ACT:F31)

NUME AU AG CU PB PVN PVN PPN	IIIN. K.NICHOLS/H.BOBI	•			00-3014 0	K (004/70	• •• ••				JUIL	(ACT.15
90° 153 002 2 2.5 35 2.4 79 1 1 1 105 90° 1538 0.04 1 .5 36 23 71 1 1 105 90° 1538 0.04 1 .5 36 23 71 1 1 105 90° 1538 0.06 2 .7 27 25 65 12 1 1 105 90° 1538 0.06 2 .7 27 25 65 12 1 1 105 90° 1538 0.07 3 .5 80 33 109 1 2 155 90° 1538 0.12 6 .5 55 29 79 28 1 1 60 90° 1535 0.16 34 1.0 65 31 12 15 15 12 45 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>												
907 153 002 2 2.5 35 2.4 79 1 1 1 105 907 1535 004 1 .5 36 23 71 1 1 105 907 1535 006 2 .7 27 25 65 12 1 1 105 907 1535 006 2 .7 27 25 65 12 1 1 105 907 1535 006 2 .7 27 25 65 12 1 1 105 907 1535 010 3 .5 80 33 100 1 2 155 907 1535 012 6 .5 52 79 28 1 1 60 907 1535 013 1 .4 64 1 2 15 907 1535 013	90Y 153S 001	1	.2	34	21	64	1	1	1	100		
907 1535 004 1 1.5 36.6 23.7 71 1 1 1 1.65 907 1535 006 2 .7 27 25 65 12 1 1 1.65 907 1535 006 2 .4 54 33 83 10 1 3 70 907 1535 009 6 1.5 60 33 138 109 1 60 907 1535 010 3 .5 80 33 138 109 1 90 907 1535 014 2 .3 108 35 106 37 1 1 60 907 1535 014 2 .3 108 35 106 37 1 1 60 907 1535 016 34 1.0 63 36 100 57 1 1		2				79	1	1	1	80		
907 153 005 4 .6 27 24 64 1 1 1 85 907 153 060 2 .7 27 25 65 12 1 1 2 95 907 1535 006 2 .4 54 33 83 10 1 2 155 907 1535 010 3 .5 80 33 138 109 1 2 115 907 1535 011 10 .6 .5 55 29 79 28 1 1 55 907 1535 013 1 .4 41 26 61 3 1 2 55 907 1535 016 34 108 35 106 37 1 1 45 907 1535 016 34 44 1 1 25 155 <		1	.4	59			2	1	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-			
907 153 027 1 1 5 32 26 77 17 1 2 95 907 1535 009 6 1.5 92 52 183 51 1 2 115 907 1535 010 3 .5 80 33 138 109 1 9 907 1535 012 6 .5 55 29 79 28 1 1 55 907 1535 015 1 .4 41 26 61 3 1 2 95 907 1535 016 34 1.0 63 34 100 57 1 1 25 907 1535 016 34 1.0 65 32 17 2 15 907 1535 021 1 .5 87 30 78 14 1 1 25 <td>90Y 153S 005</td> <td>4</td> <td>.6</td> <td>27</td> <td>24</td> <td>64</td> <td>1</td> <td>1</td> <td>1</td> <td>85</td> <td></td> <td></td>	90Y 153S 005	4	.6	27	24	64	1	1	1	85		
90° 1535 006 2 .4 54 33 83 10 1 3 70 90° 1535 000 3 .5 80 33 138 100 1 9 95 90° 1535 010 3 .5 80 33 138 100 1 2 115 90° 1535 012 6 6 4 28 79 28 1 1 60 90° 1535 014 2 .3 108 35 106 37 1 1 45 90° 1535 016 34 1.0 6.3 34 100 57 1 1 40 90° 1350 016 34 1.0 5 77 1.0 1 10 75 90° 1530 021 1 .5 87 30 78 14 1 1	90Y 153S 006	2	.7	27	25	65	12	1	1			
907 153 0.0 3 1.5 90 133 010 1 2 115 907 1535 011 10 .6 64 28 77 28 1 1 60 907 1535 013 16 .5 80 78 28 1 1 60 907 1535 013 1 .4 51 29 79 28 1 1 60 907 1535 016 34 1.0 63 34 100 57 1 1 25 907 1535 016 34 1.0 63 34 100 57 1 1 25 907 1535 018 1 1 1 50 133 134 12 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td>.5</td> <td></td> <td></td> <td>77</td> <td>17</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>			.5			77	17	1				
907 135 010 3 .5 80 33 158 109 1 9 95 907 1535 011 10 .6 64 28 79 28 1 1 60 907 1535 012 1 .4 44 26 61 37 1 295 907 1535 016 34 1.0 63 34 100 57 1 1 25 907 1535 016 34 1.0 63 34 100 57 1 1 25 907 1535 016 1 .4 65 32 90 25 1 2 45 907 1535 021 1 1 50 33 16 14 1 1 25 907 1535 022 2 7 56 30 84 5 1 2												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.5									
907 153 012 6 .5 55 29 79 28 1 1 55 907 153 1 .4 41 26 61 3 1 1 45 907 153 016 34 108 35 106 37 1 1 45 907 153 016 34 100 57 1 1 45 907 153 017 2 .6 65 21 77 18 1 1 140 907 153 018 1 1 55 77 1 1 40 907 153 021 1 .5 87 30 78 14 1 1 25 907 153 022 1 .6 42 112 71 1 2 15 907 153 022 1 .6 30 <td></td> <td></td> <td></td> <td></td> <td></td> <td>158</td> <td>109</td> <td>1</td> <td><u> </u></td> <td></td> <td></td> <td></td>						158	109	1	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.6						1			
90Y 1535 014 2 .3 108 35 106 37 1 1 45 90Y 1535 015 1 .3 42 26 77 18 1 1 10 90Y 1535 016 34 100 57 1 1 25 90Y 1535 017 2 .6 45 32 90 25 1 2 45 90Y 1535 012 1 1.6 63 34 100 57 1 1 46 90Y 1535 021 1 1.6 63 34 14 1 1 25 90Y 1535 022 2 7.7 64 32 88 35 1 2 40 90Y 1535 025 2 .9 66 42 117 1 2 15 90Y 1535 027 2 .5 73 31 13 34 1 2 15												
907 133 42 26 77 18 1 1 110 907 1535 016 34 1.0 63 34 100 57 1 1 25 907 1535 017 2 6 45 32 90 25 1 2 45 907 1535 018 1 .4 65 21 72 23 1 1 40 907 1535 021 1 .5 87 30 78 14 1 1 25 907 1535 022 2 .7 56 30 84 5 1 2 15 907 1535 025 2 .9 66 42 112 71 1 2 15 907 1535 026 1 .8 53 30 83 35 1 2 40 907 1535 027 2 .2 41 28 11 31 10			.4						-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	901 1535 014							-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1				
90° 1535 020 2 .8 70 34 84 22 1 2 30 90° 1535 021 1 .5 87 30 78 14 1 1 25 90° 1535 022 2 .7 56 30 84 5 1 2 15 90° 1535 023 1 .9 74 27 89 22 1 1 55 90° 1535 024 36 1.0 60 35 83 35 1 2 40 90° 1535 026 1 .8 53 30 83 35 1 2 40 90° 1535 027 2 .2 1 31 13 34 15 1 3 10 90° 1535 032 1 .3 10 73 1 1 140 10 110 90° 1535 033 1 2 1 <												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				_								
90° 1535 022 2 .7 56 30 84 5 1 2 15 90° 1535 024 36 1.0 60 35 83 44 1 2 5 90° 1535 025 2 .9 66 42 112 71 1 2 15 90° 1535 026 1 .8 53 30 83 35 1 2 40 90° 1535 026 2 .5 73 31 113 34 1 2 15 90° 1535 028 1 .5 73 31 113 34 1 2 15 90° 1535 029 2 .2 .41 28 11 1 140 1 2 5 90° 1535 031 1 .1 .1 .1 1												
907 1 .9 74 27 89 22 1 1 5 907 153 024 36 1.0 60 35 83 44 1 2 5 907 153 026 1 .8 53 30 83 35 1 2 40 907 153 026 1 .1 54 33 11 13 34 1 2 15 907 153 026 1 .1 54 33 134 15 1 3 10 907 153 020 2 .2 44 28 11 1 1 1400 90 153 33 1 1 140 10								-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
900 1535 025 2 .9 66 42 112 71 1 2 15 907 1535 026 1 .8 53 30 83 35 1 2 40 907 1535 027 2 .5 73 31 113 34 1 2 15 907 1535 028 1 .1 54 33 134 15 1 3 10 907 1535 030 1 .1 14 2 5 90 90 153 1 1 1 100 90 100 1 1 1 100 90 100 1 1 1 100 90 153 034 1 1 1 100 1								-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										-		
907 1535 027 2 .5 73 31 113 34 1 2 15 907 1535 028 1 .1 54 33 134 15 1 3 10 907 1535 029 2 .2 41 28 111 4 1 2 5 907 1535 031 1 .1 .1 31 19 73 1 1 1 100 907 1535 032 - 2 .2 48 19 81 1 1 1 100 907 1535 035 - 1 .3 42 28 88 1 1 3 105 907 1535 035 - - .1 46 31 133 1 1 4 130 907 1535 037 2 .1 46 31 133 8 1 2 105 907 1535 037						······································						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
90Y 133 029 2 .2 41 28 111 4 1 2 5 90Y 1535 030 1 .8 42 25 94 5 1 2 5 90Y 1535 031 1 .1 .1 1												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
907 1535 033 1 .3 42 28 88 1 1 3 105 907 1535 034 (2 1 1 1 4 115 907 1535 035 4 .4 41 23 88 5 1 2 115 907 1535 036 2 .1 46 31 133 1 1 4 130 907 1535 036 2 .4 52 27 133 8 1 2 105 907 1535 037 2 .4 52 27 103 8 1 2 105 907 1535 039 7 .7 52 27 105 1 1 1 75 90 15 .5 79 26 99 12 1 3 100 90 15 11 146 34 1 2 50 90 15 14 10 10 10 10	004 4570 072 .											
90r 153s 034 1 1 56 25 140 1 1 4 115 90r 153s 035 2 1 46 31 133 1 1 4 115 90r 153s 036 2 1 46 31 133 1 1 4 130 90r 153s 037 2 .4 52 27 133 8 1 2 105 90r 153s 038 3 .4 37 28 132 8 1 3 90 90r 153s 039 7 .7 52 27 105 1 1 1 75 90 90r 153s 041 1 .5 42 25 102 7 1 2 50 90r 153s 042 15 .5 79 26 99 12 1 3 10 90r 153s 044 142 .8 139			. 2				1					
90Y153s0354.441238851211590Y153s0372.1463113311413090Y153s0372.4522713381210590Y153s0383.437281328139090Y153s0397.752271051117590Y153s0401.33523831125090Y153s0411.542251027125090Y153s0411.542251027125090Y153s0436.9553114634127590Y153s044142.81393016233176590Y153s04521.310932172521411090Y153s0461.4452410922123090Y153s0476.62323958126090Y153s05421.09334138131122590Y153s051	90Y 153S 034 (1						1	1				
90715350362.1463113311413090715350372.4522713381210590715350383.437281328139090715350397.752271051117590715350401.335238311215090715350411.542251027125090715350411.57926991213130907153504215.579269912131309071535044142.813930162331765907153504521.310932172521411090715350461.4452410922123090715350461.44524109221230907153504821.09334138131122590715350505.94822771811359071535 <t< td=""><td>90Y 153S 035</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>1</td><td></td><td></td><td></td><td></td></t<>	90Y 153S 035						•	1				
90Y 153S 037 2 .4 52 27 133 8 1 2 105 90Y 153S 038 3 .4 37 28 132 8 1 3 90 90Y 153S 039 7 .52 27 105 1 1 1 75 90Y 153S 040 1 .3 35 23 83 1 1 2 150 90Y 153S 041 1 .5 42 25 102 7 1 2 50 90Y 153S 042 15 .5 79 26 99 12 1 3 130 90Y 153S 043 6 .9 55 31 146 34 1 2 75 90Y 153S 043 6 .9 55 31 146 34 1 2 75 90Y 153S 044 142 .8 139 30 162 33 1 7 65 90Y 153S 046 1 .4 45 24 109 22 1 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
907 153s 038 3 .4 37 28 132 8 1 3 90 907 153s 039 7 .7 52 27 105 1 1 1 75 907 153s 040 1 .3 35 23 83 1 1 2 150 907 153s 041 1 .5 42 25 102 7 1 2 50 907 153s 042 15 .5 79 26 99 12 1 3 130 907 153s 043 6 .9 55 31 146 34 1 2 75 907 153s 044 142 .8 139 30 162 33 1 7 65 907 153s 046 1 .4 45 24 109 22 1 2 30 907 153s 046 1 .4 5 24							•	-				
90Y153S0397.7522710511117590Y153S0401.335238311215090Y153S0411.542251027125090Y153S04215.5792699121313090Y153S0436.9553114634127590Y153S044142.81393016233176590Y153S04521.310932172521411090Y153S0461.4452410922123090Y153S0461.4452410922123090Y153S0461.4452410922123090Y153S0461.4452410922123090Y153S04821.099269721116090Y153S051421.09334138131123590Y153S051421.09334138131123590Y <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_									
90715350401.335238311215090715350411.5422510271250907153504215.5792699121313090715350436.9553114634127590715350436.9.95311463412759071535044142.8139301623317659071535044142.81393016233176590715350461.4452410922123090715350461.4452410922123090715350476.623239581260907153504821.0992697211160907153504821.0933413813112359071535051421.09334138131123590715350549.74121712112459071535 <td></td>												
90Y 153S 0411.542251027125090Y 153S 04215.5.792699121313090Y 153S 0436.9.95.31146.3412.7590Y 153S 044142.8.139.30162.33.1.7.6590Y 153S 04521.3.109.22.72.52.1.4.1090Y 153S 0461.4.45.24.109.22.1.2.3090Y 153S 0461.4.45.24.109.22.1.2.3090Y 153S 0461.4.45.24.109.22.1.2.3090Y 153S 047.6.6.23.23.95.8.1.2.6090Y 153S 048.2.1.0.99.26.97.21.1.1.6090Y 153S 048.2.1.0.93.34.138.131.1.2.2590Y 153S 050.5.9.48.22.77.18.1.1.3590Y 153S 051.42.1.0.93.34.138.131.1.2.3590Y 153S 053.2.9.5.67.27.103.37.1.3.6590Y 153S 054.9.7.7.21.1.2.5.590Y 153S 055.2.7							•					
90Y153S 042 15.5792699121313090Y153S0436.9553114634127590Y153S044142.81393016233176590Y153S04521.310932172521411090Y153S0461.4452410922123090Y153S0461.4452410922123090Y153S0461.4452410922126090Y153S0476.62323958126090Y153S04821.099269721116090Y153S0505.948227718113590Y153S051421.09334138131123590Y153S0521.836217023123090Y153S05521.2612411130138590Y153S05626.7272310215124590Y153S<							7	4		50		
90Y 153S 0436.9553114634127590Y 153S 044142.81393016233176590Y 153S 04521.310932172521411090Y 153S 0461.4452410922123090Y 153S 0461.4452410922123090Y 153S 0476.62323958126090Y 153S 04821.099269721116090Y 153S 0491.536238615122590Y 153S 051421.09334138131123590Y 153S 0521.836217023123090Y 153S 0549.74121712112590Y 153S 05521.2612411130138590Y 153S 05626.7272310215124590Y 153S 05626.7272310215124590Y 153S 05710.628269421124590Y 153S 0584.25828100291870 <td></td>												
90Y153S044142.81393016233176590Y153S04521.310932172521411090Y153S0461.4452410922123090Y153S0476.62323958126090Y153S04821.099269721116090Y153S0491.536238615122590Y153S0505.948227718113590Y153S051421.09334138131123590Y153S0521.836217023123090Y153S053291.5672710337136590Y153S0549.74121712112590Y153S05626.7272310215124590Y153S05626.7272310215124590Y153S05626.7272310215124590Y153S <td>90Y 153S 043</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i</td> <td></td> <td></td> <td></td> <td></td>	90Y 153S 043							i				
90Y 153s 045 2 1.3 109 32 172 52 1 4 110 90Y 153s 046 1 .4 45 24 109 22 1 2 30 90Y 153s 047 6 .6 23 23 95 8 1 2 60 90Y 153s 048 2 1.0 99 26 97 21 1 1 60 90Y 153s 049 1 .5 36 23 86 15 1 2 25 90Y 153s 050 5 .9 48 22 77 18 1 1 35 90Y 153s 051 42 1.0 93 34 138 131 1 2 35 90Y 153s 052 1 .8 36 21 70 23 1 2 30 90Y 153s 053 29 .7 41 21 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>								1				
90Y 153s 046 1 .4 45 24 109 22 1 2 30 90Y 153s 047 6 .6 23 23 95 8 1 2 60 90Y 153s 048 2 1.0 99 26 97 21 1 1 60 90Y 153s 049 1 .5 36 23 86 15 1 2 25 90Y 153s 050 5 .9 48 22 77 18 1 1 35 90Y 153s 051 42 1.0 93 34 138 131 1 2 35 90Y 153s 051 42 1.0 93 34 138 131 1 2 35 90Y 153s 052 1 .8 36 21 70 23 1 2 30 90Y 153s 054 9 .7 41 21								1				
90Y 153S 047 6 .6 23 23 95 8 1 2 60 90Y 153S 048 2 1.0 99 26 97 21 1 1 60 90Y 153S 049 1 .5 36 23 86 15 1 2 25 90Y 153S 050 5 .9 48 22 77 18 1 1 35 90Y 153S 051 42 1.0 93 34 138 131 1 2 35 90Y 153S 051 42 1.0 93 34 138 131 1 2 35 90Y 153S 052 1 .8 36 21 70 23 1 2 30 90Y 153S 053 29 1.5 67 27 103 37 1 3 65 90Y 153S 055 2 1.2 61 24 </td <td></td> <td></td> <td></td> <td>45</td> <td>24</td> <td>100</td> <td>22</td> <td>1</td> <td>2</td> <td>30</td> <td></td> <td><u></u></td>				45	24	100	22	1	2	30		<u></u>
90Y153S04821.099269721116090Y153S0491.536238615122590Y153S0505.948227718113590Y153S051421.09334138131123590Y153S0521.836217023123090Y153S053291.5672710337136590Y153S0549.74121712112590Y153S05521.2612411130138590Y153S05626.7272310215124590Y153S05626.7272310215124590Y153S05626.7272310215124590Y153S0584.25828100291870	90Y 153S 047							_				
90Y153S0491.536238615122590Y153S0505.948227718113590Y153S051421.09334138131123590Y153S0521.836217023123090Y153S053291.5672710337136590Y153S0549.74121712112590Y153S05521.2612411130138590Y153S05626.7272310215124590Y153S05626.7272310215124590Y153S0584.25828100291870	90Y 153S 048											
90Y 153s 050 5 .9 48 22 77 18 1 1 35 90Y 153s 051 42 1.0 93 34 138 131 1 2 35 90Y 153s 052 1 .8 36 21 70 23 1 2 30 90Y 153s 053 29 1.5 67 27 103 37 1 3 65 90Y 153s 054 9 .7 41 21 71 21 1 2 5 90Y 153s 055 2 1.2 61 24 111 30 1 3 85 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 057 10 .6 28 26<												
90Y 153s 051 42 1.0 93 34 138 131 1 2 35 90Y 153s 052 1 .8 36 21 70 23 1 2 30 90Y 153s 053 29 1.5 67 27 103 37 1 3 65 90Y 153s 054 9 .7 41 21 71 21 1 2 5 90Y 153s 055 2 1.2 61 24 111 30 1 3 85 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 057 10 .6 28 26 94 21 1 2 45 90Y 153s 058 4 .2 58 28<			.9					1				
90Y 153S 052 1 .8 36 21 70 23 1 2 30 90Y 153S 053 29 1.5 67 27 103 37 1 3 65 90Y 153S 054 9 .7 41 21 71 21 1 2 5 90Y 153S 055 2 1.2 61 24 111 30 1 3 85 90Y 153S 056 26 .7 27 23 102 15 1 2 45 90Y 153S 057 10 .6 28 26 94 21 1 2 45 90Y 153S 058 4 .2 58 28 100 29 1 8 70		42		50	34	138	131	1	2	35		
90Y 153s 053 29 1.5 67 27 103 37 1 3 65 90Y 153s 054 9 .7 41 21 71 21 1 2 5 90Y 153s 055 2 1.2 61 24 111 30 1 3 85 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 057 10 .6 28 26 94 21 1 2 45 90Y 153s 058 4 .2 58 28 100 29 1 8 70							23					
90Y 153s 054 9 .7 41 21 71 21 1 2 5 90Y 153s 055 2 1.2 61 24 111 30 1 3 85 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 057 10 .6 28 26 94 21 1 2 45 90Y 153s 058 4 .2 58 28 100 29 1 8 70	90Y 153S 053						37		3			
90Y 153s 055 2 1.2 61 24 111 30 1 3 85 90Y 153s 056 26 .7 27 23 102 15 1 2 45 90Y 153s 057 10 .6 28 26 94 21 1 2 45 90Y 153s 058 4 .2 58 28 100 29 1 8 70	90Y 153S 054		.7		21	71	21	1	2	5		
90Y 153s 057 10 .6 28 26 94 21 1 2 45 90Y 153s 058 4 .2 58 28 100 29 1 8 70	90Y 153S 055	2	1.2	61	24	111	30	1		85		
90Y 153s 057 10 .6 28 26 94 21 1 2 45 90Y 153s 058 4 .2 58 28 100 29 1 8 70	90Y 153S 056	26	.7	27	23	102	15	1	2	45		
90Y 153S 058 4 .2 58 28 100 29 1 8 70												
								-				
90Y 153S 059 21 1.2 42 27 135 48 1 8 180	90Y 153S 059		1.2		27	135	48	1		180		
90Y 153S 060 9 .3 35 20 66 24 1 6 45			.3	35			24	1	6	45		

COMP: KEEWATIN ENGINEERING PKOJ: 152

ATTN: R.NICHOLS/M.BOBYN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 (604)980-5814 OR (604)988-4524

FILE NO: OV-1111-SJ11 DATE: 90/08/21

.

	ATTN: R.NICHOLS/M.BOBY	l'	(604)980-5814 OR (604)988-4524							•	* SOIL • (ACT:F:			
	SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB				
67 151	90v152s192 90v152s193 90v152s194 90v152s194 90v152s195 90v152s196	1 3 1 2 1	.8 1.1 1.0 .6 .8	37 46 32 50 58	49 37 29 24 26	96 101 93 99 100	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	260 575 240 235 275				
ซี (90v152s197 90v152s198 90F152s003	1 1 3	1.1 .7 1.0	49 41 178	30 27 342	108 96 51	1 1 1	1 1 75	1 1 33	250 260 4650				
	·													
·														
					. <u></u>									
			<u></u>											
					<u>,</u>									
	· · · · · · · · · · · · · · · · · · ·													

COMP: KEEWATIN ENGINEERING PROJ: 152

ATTN: R.NICHOLS/M.BOBYN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1111-SJ9+10 DATE: 90/08/21

* SOIL * (ACT:F31)

SAMPLE	A11	AU AG CU PB ZN AS SB							HC.	HG		
NUMBER	PPB	PPM	PPN	PB PPM	PPM	PPM	SB PPM	MO PPM	PPB			
90v152s105	2	.5	132	45	83	1	1	1	220		·	
90v152s106	1	.9	9 0	27	83	1	1	1	160			
90v152s107	1	.2	109	34	76	1	1	1	270			
90V152S108	2	.4	66	23	93	1	1	1	240			
90v152s109	4	.5	71	17	64	1	1	1	195			
90v152s110	1	.6	120	22	60	1	1	1	250			
90v152s111	3	.1	151	33	65	1	1	1	155			
90v152s112	2	.5	553	36	57	1	1	1	220			
90V152S113	1	.1	110	32	37	1	1	1	400			
90v152s114	2	.3	76	23	38	1	1	1	170			
90V152S115	5	.4	123	26	75	1	1	1	310			
90V152S116	3	.2	90 .	22	79	1	1	1	250			
90V152S117	1	. 1.3	116	26	91	1	1	5	380			
90V152S118 90V152S119		.3 .9	173 55	37 24	87 71	1	1	1	260 200			
90V152S120	1	1.0	69	27	137	1	1	1	215			
90V152S121	2	.1	157	47	62	1	1	1	180			
90V152S122 90V152S123	2	1.5	82	18	98 82	1	1	1	140			
9001525125	1	1.5 1.5	74 67	20 23	82 79	1	1	1	170 185			
								•				
90V152S125 90V152S126	2	.8	71	19 25	86 80	1	1	1	225 155			
9001525126	2	.9 .5	69 105	25 34	89 68	1	1	1	185			
90V152S128	1 1	.7	79	27	72	1	i	1	195			
90v152s129	2	1.6	85	33	90	i	1	i	165			
90v152s130	1	1.2	109	38	58	1	1	1	195			
90v152s131	2	.1	120	44	54	1	1	1	180			
90v152s132	3	.2	125	32	56	i	1	i	165			
90v152s133	2	.5	93	41	66	1	1	1	155			
90v152s134	2	.6	78	30	94	1	1	1	185			
90V152S135	1	.4	57	38	87	1	1	1	205			
90v152s136	2	.2	74	34	93	1	1	1	175			
90v152s137	14	.1	64	24	104	1	1	1	180			
90v152s138	2	.2	96	18	53	1	1	1	140			
90V152S139	11	.2	47	30	70	1	1	1	210			
90v152s140	1	.1	98	29	66	1	1	1	110			
90V152S141	2	.7	80	32	71	1	1	1	185			
90V152S142	1	.9	83	23	75	1	1	1	170			
90V152S143	5	.8	57	23	96 75	1	1	1	230			
90V152S144	1	1.0	68	25	75	1	1	1	170			
90V152S145	1	1.3	44	18	87	1	1	1	175			
90V152S146	2	2.1	61	18	65	1	1	1	215			
90V152S147	2	2.3	37	29	91 0/	1	1	1	165			
90V152S148 90V152S149		1.3 1.6	39 64	24 24	94 77	1	1	1	205 210			
			42	27	87	1	1	1	205	•••••		
90v152s150 90v152s151	1 2	2.1 .9	42 57	27 29	87 82	1	1	1	175			
90V152S152	3	1.8	324	32	120	1	1	1	165			
90V152S153	1	2.5	45	22	125	1	1	i	155			
90v152s154	i	1.6	89	29	95	i	i	i	220			
90v152s155	1	2.3	71	19	103	1	1	1	165			
90V152S156	1	.9	68	29	83	1	1	1	215			
90v152s157	i	.5	82	37	74	1	1	1	145			
90v152s158	Ż	1.6	47	28	75	1	1	1	210			
90V152S187	1	1.1	61	29	105	1	1	1	225			
90v152s188	1	1.3	52	25	102	1	1	1	220			
90v152s189	22	1.2	62	29	110	1	1	1	260			
90v152s190	2	1.7	102	34	106	1	1	1	300			
90v152s191	1	.9	47	27	95	1	1	1	205			

COMP: KEEWATIN ENGINEERING PROJ: 151

ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1393-SJ1 DATE: 90/09/07 * SOIL * (ACT:)

SAMPLE NUMBER AU PPB AG PPM CU PPM PB PPM ZN PPM AS PPM SB PPM MO PPM HG PPM 90 V 151 \$066 1 .8 39 22 99 49 1 1 110 90 V 151 \$067 3 1.0 42 20 106 42 1 2 105 90 V 151 \$068 1 1.0 68 16 77 49 1 2 85 90 V 151 \$069 1 .6 11 18 52 9 1 1 105 90 V 151 \$071 3 .6 21 29 94 1 1 4 120 90 V 151 \$073 1 .8 22 22 84 12 1 3 160 90 V 151 \$073 1 1.1 35 34 70 6 1 3 130 90 V 151 \$075 1 1.1 39 25 60 55 1	
$90 \vee 151 \ s067$ $3 \ 1.0$ $42 \ 20$ $106 \ 42$ $42 \ 1$ $2 \ 105$ $90 \vee 151 \ s068$ $1 \ 1.0$ $68 \ 16$ $77 \ 49$ $1 \ 2 \ 85$ $90 \vee 151 \ s069$ $1 \ .6$ $11 \ 18 \ 52 \ 9$ $1 \ 1 \ 105$ $90 \vee 151 \ s070$ $1 \ .6 \ 18 \ 27 \ 125 \ 8 \ 1$ $3 \ 135$ $90 \vee 151 \ s071$ $3 \ .6 \ 21 \ 29 \ 94 \ 1$ $1 \ 4 \ 120$ $90 \vee 151 \ s072$ $1 \ .8 \ 22 \ 22 \ 84 \ 12 \ 1$ $3 \ 160$ $90 \vee 151 \ s073$ $1 \ 1.1 \ 35 \ 34 \ 70 \ 6 \ 1$ $3 \ 130$ $90 \vee 151 \ s073$ $1 \ 1.1 \ 35 \ 34 \ 70 \ 6 \ 1$ $3 \ 130$ $90 \vee 151 \ s073$ $1 \ 1.1 \ 35 \ 26 \ 72 \ 43 \ 1$ $3 \ 230$ $90 \vee 151 \ s075$ $1 \ 1.1 \ 39 \ 25 \ 60 \ 55 \ 1$ $1 \ 205$ $90 \vee 151 \ s076 \ 1 \ 1.1 \ 39 \ 25 \ 108 \ 62 \ 1$ $2 \ 145 \ 90 \ 151 \ s077 \ 5 \ 1.0 \ 51 \ 25 \ 108 \ 62 \ 1$ $2 \ 145 \ 90 \ 151 \ 5078 \ 2 \ 77 \ 59 \ 25 \ 70 \ 49 \ 1$ $1 \ 180 \ 90 \ 151 \ 8079 \ 1$ $90 \vee 151 \ s078 \ 2 \ .7 \ 59 \ 25 \ 70 \ 49 \ 1$ $1 \ 180 \ 90 \ 151 \ 8079 \ 1$ $1 \ 85 \ 90 \ 151 \ 8079 \ 1$ $90 \vee 151 \ s079 \ 3 \ .4 \ 78 \ 28 \ 61 \ 76 \ 1$ $1 \ 185 \ 90 \ 11 \ 185 \ 90 \ 151 \ 8079 \ 1$ $90 \vee 151 \ 8079 \ 3 \ .4 \ 78 \ 28 \ 61 \ 76 \ 1$ $1 \ 1 \ 85 \ 90 \ 11 \ 1.5 \ 90 \ 151 \ 8079 \ 10 \ 11 \ 1.5 \ 107 \ 11 \ 1.5 \$	
P0 V 151 S068 1 1.0 68 16 77 49 1 2 85 P0 V 151 S069 1 .6 11 18 52 9 1 1 105 P0 V 151 S070 1 .6 11 18 52 9 1 1 105 P0 V 151 S070 1 .6 18 27 125 8 1 3 135 P0 V 151 S071 3 .6 21 29 94 1 1 4 120 P0 V 151 S072 1 .8 22 22 84 12 1 3 160 P0 V 151 S073 1 1.1 35 34 70 6 1 3 130 P0 V 151 S074 1 1.1 39 25 60 55 1 1 205 20	
90 V 151 \$069 1 .6 11 18 52 9 1 1 105 90 V 151 \$070 1 .6 18 27 125 8 1 3 135 90 V 151 \$071 3 .6 21 29 94 1 1 4 120 90 V 151 \$071 3 .6 21 29 94 1 1 4 120 90 V 151 \$072 1 .8 22 22 84 12 1 3 160 90 V 151 \$073 1 1.1 35 34 70 6 1 3 130 90 V 151 \$074 1 1.0 50 26 72 43 1 3 230 90 V 151 \$075 1 1.1 39 25 60 55 1 1 205 90 V 151 \$077 5 1.0 51 25 108 62 1 2 145 90 V 151 \$078 2 .7 59 25 70 49 1	
90 V 151 \$070 1 .6 18 27 125 8 1 3 135 90 V 151 \$071 3 .6 21 29 94 1 1 4 120 90 V 151 \$072 1 .8 22 22 84 12 1 3 160 90 V 151 \$073 1 1.1 35 34 70 6 1 3 130 90 V 151 \$073 1 1.1 35 34 70 6 1 3 130 90 V 151 \$074 1 1.0 50 26 72 43 1 3 230 90 V 151 \$075 1 1.1 39 25 60 55 1 1 205 90 V 151 \$076 1 .7 65 20 81 74 1 1 165 90 V 151 \$077 5 1.0 51 25 108 62 1 2 145 90 V 151 \$078 2 .7 59 25 70 49 1 <td></td>	
90 V 151 \$072 1 .8 22 22 84 12 1 3 160 90 V 151 \$073 1 1.1 35 34 70 6 1 3 130 90 V 151 \$073 1 1.0 50 26 72 43 1 3 230 90 V 151 \$075 1 1.1 39 25 60 55 1 1 205 90 V 151 \$076 1 .7 65 20 81 74 1 1 165 90 V 151 \$077 5 1.0 51 25 108 62 1 2 145 90 V 151 \$078 2 .7 59 25 70 49 1 1 180 90 V 151 \$079 3 .4 78 28 61 76 1 1 85 90 V 151 \$080 1 .3 95 22 74 81 1 2 110	
90 v 151 s073 1 1.1 35 34 70 6 1 3 130 90 v 151 s074 1 1.0 50 26 72 43 1 3 230 90 v 151 s075 1 1.1 39 25 60 55 1 1 205 90 v 151 s076 1 .7 65 20 81 74 1 1 165 90 v 151 s077 5 1.0 51 25 108 62 1 2 145 90 v 151 s078 2 .7 59 25 70 49 1 1 180 90 v 151 s079 3 .4 78 28 61 76 1 1 85 90 v 151 s080 1 .3 95 22 74 81 1 2 110	
90 v 151 s074 90 v 151 s075 1 1.0 50 26 72 43 1 3 230 90 v 151 s075 1 1.1 39 25 60 55 1 1 205 90 v 151 s076 1 .7 65 20 81 74 1 1 165 90 v 151 s077 5 1.0 51 25 108 62 1 2 145 90 v 151 s078 2 .7 59 25 70 49 1 1 180 90 v 151 s079 3 .4 78 28 61 76 1 1 85 90 v 151 s080 1 .3 95 22 74 81 1 2 110	
90 V 151 \$075 1 1.1 39 25 60 55 1 1 205 90 V 151 \$076 1 .7 65 20 81 74 1 1 165 90 V 151 \$077 5 1.0 51 25 108 62 1 2 145 90 V 151 \$078 2 .7 59 25 70 49 1 1 180 90 V 151 \$079 3 .4 78 28 61 76 1 1 85 90 V 151 \$080 1 .3 95 22 74 81 1 2 110	
90 V 151 \$077 5 1.0 51 25 108 62 1 2 145 90 V 151 \$078 2 .7 59 25 70 49 1 1 180 90 V 151 \$079 3 .4 78 28 61 76 1 1 85 90 V 151 \$080 1 .3 95 22 74 81 1 2 110	
90 V 151 \$078 2 .7 59 25 70 49 1 1 180 90 V 151 \$079 3 .4 78 28 61 76 1 1 85 90 V 151 \$080 1 .3 95 22 74 81 1 2 110	
90 V 151 \$079 3 .4 78 28 61 76 1 1 85 90 V 151 \$080 1 .3 95 22 74 81 1 2 110	
90 V 151 S080 1 .3 95 22 74 81 1 2 110	
90 V 151 S081 2 7 72 21 73 63 1 2 90	
90 V 151 S082 1 .5 74 28 58 38 1 1 160	
90 V 151 S083 1 .8 68 29 82 42 2 2 60 90 V 151 S084 2 .7 64 31 75 51 1 1 115	
90 V 151 S085 1 .6 78 33 76 60 1 2 105	
90 V 151 \$086 1 .3 67 28 101 58 1 1 75	
·	

.

COMP: KEEWATIN ENGINEERING PROJ: 153

ATTN: R.NICHOLS/M.BOBYN

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: OV-1111-SJ14+12 DATE: 90/08/21 * SOIL * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90V153S200 GJ	2	.5	28	22	76	1	1	1	195	
90v153s201	1	1.3	48	21	122	1	1	1	320	
90v153s202	1	.6	38	22	65	1	1	1	205	
90v153s203	1	.6	25	28	54	1	1	1	200	
90V153S204	22	1.2	16	30	32	1	1	1	165	
90v153s205	1	.7	40	25	116	1	1	1	235	
90v153s206	8	.3	15	26	36	1	1	1	.200	
90V153S207	1	.7	32	33	60	1	1	1	295	
90V153S208	16	1.2	48	34	92	1	1	1	350 210	
90v153s209	1	1.0	36	36	107	1	1	1		
90V153S210	1	1.4	43	29	75	1	1	1	345	
90V153S211	1	1.7	48	26	56	1	1	1	370	
90V153S212	16	1.6	57	31	21	1	1	1	505 245	
90V153S213 90V153S214	2 2	.9 .9	24 58	31 26	90 80	1	1	1	395	
90v153s215 90v153s216	1	.6	38	30	54 87	1	1	1	265 390	
90V153S216	5 1	1.4	87 26	33 35	83 58	1 1	1 1	1	215	•
90V153S218	6	.9 1.3	20 56	32	58 85	1	1	1	315	
90V153S219	3	1.4	32	31	78	1	1	1	165	
							1	<u> </u>	200	
90v153s220 90v153s221	2 1	.8	21 37	34 26	45 84	1 1	1	1	200	
90V153S222	3	.8 .6	16	20 31	64 44	1	1	1	145	
90V153S223	3	.8	13	30	44 66	1	1	1	205	
90V153S224	1	.0	22	31	77	1	1	i	185	
90v153s225	1	.8	24	23	67	1	1	1	180	
9001535225	2	1.1	24 28	23	70	1	1	1	235	
90v153s227	16	1.5	27	26	70	1	1	1	150	
90v153s228	3	1.4	29	26	83	1	i	i	175	
90v153s229	4	.6	27	27	73	1	1	1	150	
90V153S230	117	1.4	21	30	52	1	1	1	210	
90v153s231	1	1.7	46	33	78	1	1	1	475	
90v153s232	1	1.6	26	28	64	1	1	i	180	
90V153S233	1	.1	14	65	13	1	2	4	280	
·										
				<u>. </u>						
								·····		 ·····

COMP: KEEWATIN ENGINEERING PROJ: 151 ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: OS-0470-SJ1 DATE: 90/09/13 * SOIL * (ACT:F31)

SAMPLE	AU	AG	CU	PB	ZN	AS	SB	MO	HG	<u></u>	
NUMBER 909151 S-050	PPB 1	.3	PPM 33	PPM 34	<u>РРМ</u> 97	 30	PPM 2	PPM 5	PPB 110		
90Y151 S-051	3	.4	64	32	98	35	1	3	215 125		
90Y151 S-052 90Y151 S-053	2	.1 .1	36 36	24 26	79 82	26 43	1	4	165		
90Y151 S-054	1	.1	31	28 26	<u>88</u> 98	12 43	1	3	110 125		{
90Y151 S-055 90Y151 S-056	2 1	.2 1.8	26 93	34	253	71	5	7	155		
90Y151 S-057 90Y151 S-058	1 636	.1 1.3	31 439	24 87	57 850	6 124	1 19	4 15	180 185		
90Y151 S-059	495	2.7	1394	204	325	57	10	16	80		
90Y151 S-060 90Y151 S-061	181 31	1.1 .2	651 73	67 30	298 105	68 56	12 2	23 8	135 125		
90Y151 S-062 90Y151 S-063	105 4	.6 .4	338 29	39 21	270 79	157 25	17 1	20 5	140 220		
90Y151 S-064	3	.8	74	30	104	44	1	5	150	<u></u>	
90Y151 S-065 90Y151 S-066	1	.5 .7	31 19	26 27	75 191	39 48	1 1	3 4	125 100		
90Y151 S-067 90Y151 S-068	1	.6 1.0	41 22	32 22	98 92	65 40	1	4 3	160 95		
90Y151 S-069	Ī	.4	27	24	80	41	1	4	155		
											1
	1										
					·····						
								<u> </u>			
	1										

COMP: KEEWATIN ENGRG.

PROJ: 151

ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0446-SJ2+3 DATE: 90/09/11

• SOIL * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90 JT 1515-001	1	.4	56	24	102	1	3	1	145		
90 JT 1515-002	1	.8	54	33	111	48	3	4	320		
90 JT 151S-003	204	1.4	57	46	167	379	10	3	225		
90 JT 151S-004 90 JT 151S-005	1	1.2 .7	67 35	68 24	190 163	143 73	9 2	3 4	410 125		
90 JT 151S-006	1	.5	69	20	162	133	11	3	185		·····
90 JT 151S-007	1	.8	151	45	608	133	12	5	135		
90 JT 1518-008	1	1.0	73	30	192	74	5	. 3	110		
90 JT 1515-009	12	2.1	78	32	165	100	1	3	145		
90 JT 1515-010	20	2.0	114	82	642	1300	15	2	340		
90 JT 1515-011	215	.8	149	67	263	187	9 4	4 5	95 275		
90 JT 151S-012 90 JT 151S-013	2 28	.9 .5	122 132	45 34	211 205	51 160	8	9	155		
90 JT 151S-014	1225	4.5	567	74	573	469	26	16	85		
90 JT 1518-015	182	1.7	662	82	517	153	15	8	185		
90 JT 151S-016	74	.6	374	29	95	112	1	6	120		
90 JT 151S-017	1	3.1	677	28	105	40	3	6	640		
90 JT 151S-018 90 JT 151S-019	448	2.8 .9	825 281	59 20	238 98	183 87	23 6	16 6	145 100		
90 JT 151S-020	144	.8	291	36	150	109	12	5	105		
90 JT 1515-021	160	.4	287	94	474	184	14	29	85		
90 JT 1515-022	1	.6	210	25	110	11	3	9	110		
90 JT 1518-023	1	.7	151	32	131	208	6	10	115		
90 JT 1518-024 90 JT 1518-025		.1 .9	45 68	47 52	181 305	1 26	1	7 5	75 225		
										<u> </u>	
90 JT 1518-026 90 JT 1518-027	80 1	.7 1.2	303 172	49 25	237 94	62 17	4	6 3	390 195		
90 JT 1515-028	1	.9	125	27	98	40	i	4	55		
90 JT 1518-029	41	1.2	162	25	119	41	1	4	155		
90 JT 1515-030	1	2.2	194	47	165	23	3	5	275		
90 JT 1518-031	1	1.8	166	42	151	62	6	21	195		
90 JT 1518-032 90 JT 1518-033	47	3.0 1.8	402 326	38 30	201 107	81 81	28 11	12 13	180 510		
90 JT 1518-034	36	1.0	148	26	114	35	3	8	220		
90 JT 1515-035	3	.9	156	27	152	53	2	9	130		
90 JT 1518-036	932	2.7	445	35	63	86	13	7	125		
90 JT 1515-037	234	1.4	528	29	51	47	3	7	55		
90 JT 1518-038 90 JT 1518-039	219	1.7	372 422	24 26	48 57	50 34	1	3 2	125 140		
90 JT 1515-039	343	1.2 1.8	607	20	69	39	1	4	80		
90 JT 151S-041	62	1.8	187	27	74	41	1	5	105		
90 JT 1518-042	30	1.3	322	22	96	34	3	5	145		
90 JT 1518-043	166	1.6	763	28	38	35	2	8	140		
90 JT 1518-044	373	.6	560	25	81	30	1	11	105		
	-										
	1										
	1										

COMP: KEEWATIN ENGINERING PROJ: 0291 ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1243-SJ1+2 DATE: 90/08/31 • SOIL • (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90 V 151 S 033 90 V 151 S 034 90 V 151 S 035 90 V 151 S 035 90 V 151 S 036	2 2 1 2	.1 .1 .3 .5	45 64 35 49	32 24 26 25	227 106 121 174	21 1 6 7	1 1 1 1	2 3 1 3	120 50 165 125	
90 V 151 S 037 90 V 151 S 038	1	2.8	<u> </u>	21 22	219 144	<u> </u>	<u>i</u> 1	<u>12</u> 4	<u>95</u> 75	
90 V 151 S 039 90 V 151 S 040 90 V 151 S 041 90 V 151 S 042	1 1 22 13	.3 .6 .9 .5	34 23 31 63	15 13 11 20	91 103 97 164	19 25 32 45	1 1 1 1	4 1 1 4	90 120 105 90	-
90 V 151 S 043 90 V 151 S 044 90 V 151 S 044 90 V 151 S 045 90 V 151 S 046	4 18 1 3	1.1 .9 .5 1.4	34 64 36 67	12 18 14 16	145 140 105 109	22 51 35 51	1 1 1 1	2 2 1 3	130 110 150 360	
90 V 151 S 047 90 V 151 S 048 90 V 151 S 049 90 V 151 S 050 90 V 151 S 051	1 3 2 1 1	.9 .3 .1 .5 .1	30 28 183 124 240	13 8 31 19 27	83 92 189 164 118	55 39 38 42	1 1 2 1 1	3 3 5 4 2	155 140 130 225 215	
90 V 151 S 052 90 V 151 S 052 90 V 151 S 053 90 V 151 S 054 90 V 151 S 055	1 2 1 2	.6 .2 .4 .6	73 80 63 40	18 26 17 18	91 128 129 106	57 57 42 50	1 1 1 1	1 3 4 4	250 130 95	
90 V 151 S 056 90 V 151 S 057 90 V 151 S 058	14 10 24	.5 .8 2.0	86 65 98	19 30 23	107 173 171	53 61 39	1 4 3	3 2 18	70 130 115	
90 V 151 S 059 90 V 151 S 060 90 V 151 S 061 90 V 151 S 061 90 V 151 S 062	5 1 2 3	.4 .5 .2 .1	39 31 33 54	15 18 14 26	111 111 110 161	32 32 36 40	1 1 1 1	4 3 3 4	105 100 105 165	
90 V 151 S 063 90 V 151 S 064 90 V 151 S 065	3 2 2	.4 .4 .9	101 41 31	27 23 24	152 136 104	53 47 56	1 1 1	3 2 2	155 150 180	
				,						
			5-14-14-18-18-18-18-18-18-18-18-18-18-18-18-18-					<u></u>		
· · · · · · · · · · · · · · · · · · ·						<u></u>	<u>.</u>			
					·		·			
	L									

COMP: KEEWATIN ENGRG.

PROJ: ATTN: D.MEHNEE

.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0342-SJ1+2 DATE: 90/08/27 * SOIL * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90 V 151 S 001	3	1.1	87	46	177	11	3	10	140	·	
90 V 151 S 002	22	.6	55	29	177	1	1	1	150		
90 V 151 S 003	14	.3	43	24	130	1	1	4	90		
90 V 151 S 004	2	.4	30	22	105	1	1	1	95		
90 V 151 S 005	1	.7	42	25	91	1	1	1	100		
90 V 151 S 006	1	.8	60	22	309	83	1	1	80		
90 V 151 S 007	1	.1	40	37	146	1	1	1	85		
90 V 151 S 008	19	.6	58	17	116	1	1	1	75		
90 V 151 S 009 90 V 151 S 010	22	1.1 .9	66 49	20 17	109 102	1	1	1	95 85		
							1				
90 V 151 S 011	3	1.5	79	33	183	1	1	1	160		
90 V 151 S 012 90 V 151 S 013	1	.8 1.1	44 38	13 21	104 175	1	1	1	110 75		
90 V 151 S 014	1	.7		32	172	1	1 1	1 1	100		
90 V 151 S 015	Ż	.6	44	29	256	i	1	i	105		
90 V 151 S 016	1	.7	59	22	179	1	1	1	110		
90 V 151 S 017	i	.6	52	30	199	i	1	1	95		
90 V 151 S 018	1 i	.8	38	34	263	1	i	i .	85		
90 V 151 S 019	10	.5	38	27	161	1	i	3	110		
90 V 151 S 020	3	.8	24	21	225	1	1	5	190		
90 V 151 S 021	2	.5	32	19	173	1	1	1	85	,	
90 V 151 S 022	5	.7	49	25	160	i	1	· 4	135		
90 V 151 S 023	1	1.0	29	15	118	1	1	1	160		•
90 V 151 S 024	2	.9	55	21	107	1	1	2	195		
90 V 151 S 025	1	.5	38	31	216	1	1	4	100		
90 V 151 S 026	1	.1	42	27	141	1	1	1	75		
90 V 151 S 027	1	.2	46	48	161	1	1	1	95		
90 V 151 S 028	1	.8	45	31	185	1	1	1	95		
90 V 151 S 029	3	.3	74	35	152	1	1	1	100		
90 V 151 S 030	2	.2	60	27	140	1	1	2	120		
90 V 151 S 031	2	.4	58	33	132	1	1	2	120		
90 V 151 S 032	1	.4	54	26	123	1	1	2	90		
									· ·		
							·····				
· ·											
······································	+										
	1										
	}										
											-

COMP: KEEWATIN ENGINEERING PROJ: 151 ATTN: R.NICHOLS/D.MEHNER

• _

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 DR (604)988-4524

FILE NO: 0S-0335-SJ3+4 DATE: 90/08/23 * SOIL * (ACT:F31)

			•••••		• • • • •						
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90DP 151 S 029	4	.3	80	19	69	46	2	1	220		
90DP 151 S 030	44	.6	91	149	202	1	1	2	180		
90DP 151 S 031 90DP 151 S 032	6 89	1.3 1.2	173 134	25 40	41 109	1 4	1	1	175 230		
900P 151 S 032	248	3.0	170	82	338	612	16	7	235		
90DP 151 S 034	21	.5	84	45	138	1	1	2	180		
90U 151 S 001	20	.8	117	32	122	3	2	4	170		
900 151 S 002	25	.8	87	31	138	18	10	3	145 190		
90U 151 S 003 90U 151 S 004	6	.7 .3	91 63	24 30	70 80	44 1	4 2	1 2	145		
90U 151 S 005	10	.4	72	29	194	1	4	17	175		
90U 151 S 006	93	1.2	166	28	159	3	6	4	225		
90U 151 S 007	2	1.0	155	39	117	1	1	1	1100		
900 151 S 008 900 151 S 009	10	1.8 1.3	227 204	25 34	108 102	1	1 1	1	260 400		
90U 151 S 010	4	1.6	210	24	113	1	1	1	505		
90U 151 S 011	15	2.1	160	17	894	1	1	1	150		
90U 151 S 012	6	1.2	104	27	159	1	1	1	180	•	
90U 151 S 013 90U 151 S 014	5	.8 .8	61 64	34 29	165 135	1	2 3	3 4	135 100		
90U 151 S 015	5	.7	75	37	192	1	3	5	140		
90U 151 S 016	40	1.4	202	40	275	33	11	. 6	235		
90U 151 S 017	60	.8	125	109	467	406	14	11	135		•
90U 151 S 018	18	1.0	104	44	183	79	5	7	165		
90U 151 S 019	190	1.7	480	63	297	131	16	31	175		
90U 151 S 020 90U 151 S 021	45 78	2.0 3.1	249 364	46 44	222 351	119 191	15 29	13 29	200 195		
90U 151 S 022	70	2.0	188	83	391	52	7	11	170		
90U 151 S 023	41	.3	125	66	341	99	14	30	345		
90U 151 S 024	10	.4	140	58	238	61	13	22	155		
90U 151 S 025	48	1.2	132	68 50	235	54	6	8	170		
90U 151 S 026 90U 151 S 027	174	3.6 1.2	266 157	59 39	973 129	45 1	13 2	9 3	280 165		
90U 151 S 028	266	5.0	514	47	236	131	18	9	225		
90U 151 S 029	24	2.0	86	37	171	57	9	8	185	•	
90CL 151 S 001	18	2.1	131	47	213	2	5	7	180		
90CL 151 S 002 90CL 151 S 003	34 20	1.5 1.1	146 136	101 62	247 260	84 1	1 4	3 3	215 155		
90CL 151 S 004	1	2.3	137	50	228	i	3	7	255		
90CL 151 S 005	16	1.6	180	31	126	1	1	3	260		
90CL 151 S 006	8	1.7	142	53	263	1	5	7	165		
90CL 151 S 007	16	.8	70	34	161	13	1	2	135		
90CL 151 S 008 90CL 151 S 009	10	1.0 1.2	57 73	45 29	263 140	3	2	4	120 115		
90CL 151 \$ 010	14	1.3	72	43	218	1	1	í	600	•	
90CL 151 S 011	2	.9	148	43	111	1	1	1	185		
90CL 151 S 012	5	1.4	60	27	102	1	2	1	300		
90CL 151 S 013 90CL 151 S 014	6	1.4 1.4	66 144	28 36	57 84	1	2 1	1	305 155		
90CL 151 S 014	8	.8	104	38	85	1	1	1	145		
90CL 151 S 016	12	.6	89	53	121	1	2	1	175		<u> </u>
90CL 151 S 017	14	.4	84	39	98	1	3	1	145		
90CL 151 S 018 90CL 151 S 019	2	.5 1.7	55 143	36 33	128 96	1	1	2 1	245 150		
90CL 151 S 019	25	2.3	145	33 39	128	1	1	2	145		
90CL 151 S 021	4	.5	84	192	506	1	3	5	175		
90CL 151 S 022	2	.8	52	37	136	1	2	2	150		
90CL 151 S 023	20	1.0	96	53	215	44	4	3	135		
· · · · · · · · · · · · · · · · · · ·	- <u> </u>										

COMP: KEEWATIN ENGINEERING PROJ: 151 ATTN: R.NICHOLS/D.MEHNER

•

MIN-EN LABS - ICP REPORT

, B.C. V7M 1T2

FILE NO: 0S-0335-SJ1+2 DATE: 90/08/23 ** SOIL ** (ACT:F31)

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

-			• • • •		w (004)90						:131,
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90Y 151 S 001	4	.1	40	37	112	1	1	4	125		
90Y 151 S 002	2	.1	47	29	126	1	1	2	160		
90Y 151 S 003	3	.1	69	48	129	i	i	2	165		
90Y 151 S 004	8	.2	194	38	129	1	2	1	230		
90Y 151 S 005	1	.3	47	31	93	1	1	1	120		
90Y 151 S 006	5	.6	53	39	100	1	1	11	400	·· • • • • • • • • • • • • • • • • • •	
90Y 151 S 007	2	.5	154	33	127	61	13	12	130		
90Y 151 S 008	5	.1	74	36	111	1	1	2	115		
90Y 151 S 009	4	.1	109	50	167	1	4	6	130		
90Y 151 S 010	2	.1	58	43	137	1	3	8	140		
90Y 151 S 011	2	.5	57	29	122	20	7	21	110		
90Y 151 S 012	62	.1	60	48	157		2	6	135		
90Y 151 S 013	12	.4	44	39	150	1	4	10	145		
90Y 151 S 014	5	.6	35	34	108	1	1	6	145		
90Y 151 S 015	2	.4	64	37	155	1	4	5	120		
90Y 151 S 016	5	.8	77	39	117	1	2	4	210		
90Y 151 S 017	1	.3	55	39	143	1	5	8	140		
90Y 151 S 018	2	.6	40	37	115	1	2	3	145		
90Y 151 S 019	5	1.0	38	31	80	10	4	7	150		
90Y 151 S 020	1	.6	71	32	51	21	9	15	320		
90Y 151 S 021	2	.7	42	31	56	4	4	13	135		
90Y 151 S 022	3	.4	66	38	103	12	8	14	140		
90Y 151 S 023	2	.8	62	32	110	47	14	32	195		
90Y 151 S 024	4	.5	63	36	128	6	18	45	180		
90Y 151 S 025	5	.3	70	47	110	22	17	35	200		
90Y 151 S 026	2	.7	60	51	87	2	9	30	175		
90Y 151 S 027	4	.3	232	51	116	31	8	3	165		
90Y 151 S 028	25	.3	62	31	100	13	3	5	205		
90Y 151 S 029	4	.6	77	20	103	34	3	1	145		
90Y 151 S 030	2	.2	52	30	92	1	1	1	155		
90Y 151 S 031	6	.4	105	53	115	1	2	1	130		
90Y 151 S 032	8	.3	118	35	97	1	3	1	125		
90DP 151 S 001	12	.4	64	40	104	1	1	1	155		
90DP 151 S 002	4	.1	112	52	185	1	5	2	150		
90DP 151 S 003	5	.5	98	39	79	1	3	12	155		
90DP 151 S 004	4	.1	108	38	83	53	4	1	130		
90DP 151 S 005	5	.1	84	30	61	39	5	3	85		
90DP 151 S 006	3	.4	231	24	67	57	4	2	200		
90DP 151 S 007	4	.1	103	54	310	1	2	1	145		
90DP 151 S 008	15		265	29	89	1	3	1	195		
90DP 151 S 009	2	.1	64	27	75	1	4	2	160		
90DP 151 S 010	3	.3	67	35	122	1	1	4	155		
90DP 151 S 011	2	.5	84	60	111	1	1	1	150		
90DP 151 S 012	4	.4	84	29	76	1	1	2	95		
90DP 151 S 013	182	2.1	70	223	362	909	12	1	185		
90DP 151 S 014	5	.6	44	39	50	1	1	3	215		
90DP 151 S 015	65	3.8	127	175	1646	103	6	1	145		
90DP 151 S 016	2	.7	37	35	140	1	1	2	130		
90DP 151 S 017 90DP 151 S 018	6	.7	40	23	86	1	2	1	105		
		1.1	62	41	95	1	1	1	170		· · · ·
90DP 151 S 019	3	.6	42	33	99	1	1	1	110		
90DP 151 S 020	10	.9	56	34	162	1	3	1	105		
90DP 151 S 021 90DP 151 S 022	4	.6	51	29	99	1	1	1	155		
900P 151 S 022	5	.9 .8	98 128	38 33	147 99	1 47	4 5	2 4	120 495		
									·····		
90DP 151 S 024	7	1.8	103	44	169	12	8	4	200		
90DP 151 \$ 025 90DP 151 \$ 026	2	1.7	82	35	188	39	9	11	230		
900P 151 S 028	10	1.1	175	49 5/	142	13	9	6	155		
90DP 151 S 027	22 5	.7 3.0	121 116	54 53	216 543	19 278	5 20	14 137	115 335		
	l					270	20	1.51			

APPENDIX V

Soil Sample Descriptions

Keewatin Engineering Inc.

SOIL SAMPLES

Project: _	G,)																	-	
Area (Grid): BEAL	JCHNMP					Map	:		1.		N	I.T.S.	.:						
Collectors	: <u> </u>	<u> </u>					Date	e	24	0/6	>				-					
	Sample L			То	pogr	aphy				eget		n				Soi	1	Dot	0	
Somple			Notes	Bottom	of slope		Ground	Wooded	Wooded			pu		Sampled	Depth ta Harizan Sample	Horizon	Develop - ment	Parent	Material	
Number	Line	ELEVAT		Volley B	Direction	Hill Top	Level G	Heavily	Sparsely	Burnt	Logged	Grassland	Swompy	Horizon		Good	Poor	Drift	Bedrock	Colour
904153	5001	5350	silt, marking, sand				V					V		B	30 40	V		V		DB
	2	>		_			V				-	V		B	40	V		V		DB LB RB
	3		sitt \		-		V					V		B	40			レレ		LB
	4-		Silt				V,				<u>. 17</u>	V		B	30	X		~		K/D
	5					-	14	-			-	V		B	20	V	-	V		RR
	7	+/	silt			-	V		1			1/		B	30	V		V		B
	0	-/	sit /			-	V					V		13	30	V		V		LB
	9		sitt /			1	V					V		13	30	V		V		DB
4+505	OIC		silt				V					V		BBR	30	\checkmark		V		RB
	11	$\langle \rangle$	pilt				V					1		B	30	V		V		LB
	12		silt				V		-			V		B	30	\checkmark		1		DB
	13		silt				V		-			12		B	30	~	-	V		BEBBB
	14-		will				V	-				V		B	50220	Y		×		DB
	15		silt 1				V				-	V		B	EQ	_		V		103
	16		silt \				V				-	14		BB	142	2	_	~		UB
	17		pilt \				K					V		B	140	T		V		KB
	18		pilt \			-	V	-				V		A	110		-	V		12
(NLC OC	19		out -		-		1				-	V		AB	40	5		5		J B B B
9+505	21		sit			-	V	-	1			V		B	30	11		V		43
	22		ailt /		10.00		V					L		B	35	2		V		DR
	23	Í	Silk /		-		V					V		B	40	V		V		IB
			silf 1				1	1				V		R	50 30	~		V		DB
	24	V	sill V				V					V		B	30	~		V		12B
	26	5300	silt daysand		SE							V		B	3029	V		~		BEBERER BEBERE
	27	5320	isilf 1				V		-			V		B	20	V	-	2		DB
	28	5350	wift-				1					V		A	40		V	4		LUB
	-251	5350	silt			-	5					V		B	4	K		~		UB

SOIL SAMPLES	
erie erini LLe	Deville Distant D

Project:	CIJ	153		AWIF	LES		Res	ults	Plot	ted a	By: _									
Aren (Grid)	: Bea	uchan																		
							Date		57	.11	-		1.1.0							
Collectors	;			,			Date	e										_		
	Somple L	ocotion	_	Te	pogr	aphy			v	eget	otio	r				So	i I	Dol	0	
Sample			Notes	Bottom	of slope		Ground	Wooded	Wooded			pu		Sampled	Depth to Harizon Sample	Horizon	Develop - ment	Parent	Material	
Number	Ladiate	ELEV. S ponto n		Volley 6	Direction	Hill Top	Level (Heavily		Burnt	Logged	Grassland	Swampy	Horizon	Depth to Sam	Good	Poor	Drift	Bedrock	Colour
904 15	3 5030	53:50	put theand and in				V					V		B	30 30	V		1		LB
	031						V					V		E	30		V	V		LI3.
	28-2	1-1			-		V				-	V		13	40		V	4		UB
	33	1-1					V				-	V		B	40	V		1.		DB
	34			-			2					L		B	30	V	\vdash	V		43
	35	+	/			_						レレ		B	40	10	\vdash	L		UB
	37	1	<u> </u>	-			2			-	-	V		B	30	V	\vdash	VV		LJ3 RB
	30						V					V		B	40	K		V		
	31				-		L			-		V		B	40	V		U		4B
							17					1		B	30	V		. 1		RB
	49	V					V						-	B	30	V		11		RR
	42	1070	will sand lang was		36			V				-		B	30	V		V		KB LB DB
	43	1060			SU			~						4	20	V			V	DB
	44-	1070	L'		1.	1		V						B	10	V		~	-	IB
	4-5	1060	sill sand lang for					V						1	70		V		V	LB
	4.6	1070	sill sand alva kin	1	SC			V						B	20	~		V		REE REE
	47	1070			SE			~						B	10	V		V		RB
	49	1070			SE			V	1.0					B	36		V	V		LB
	-1-1	1010			SE			V						B	20	~		~		1233
	<u></u>	1060			SC:			V						BB	30	V		4		RB
	<u>.]:</u>	1060			ناز.			V							30	V		V		RB
	52	10/0			-36-			V						13	30	V		~		
	-53	1000	sill band / day		بخاخ			V						B	30	-	\vdash	~		13
	<u>54</u> -55	1055	silt found and from		5			V						B	30	~		V		TEBBBBE
	-56	1060	all providay 1		50			E						B	30	1		2		<u>PB</u>
	- 157	1055			-L									BB	20	11	\vdash	2		병
	-53	1050			E	-		ビレ		-				B	30	2		V		KIX KIX
		1000			-		-	-			-	-		12	~	-	\vdash	-		1213

SOIL S	AM	PL	ES
--------	----	----	----

Project:	GJ				3475-353		Resu	ults	Plott	ed B	y:					•			_	
Area (Grid)	:151	1430 co	INTOUR				Мар	:				N	I.T.S	. •						
Collectors	:!	<					Dote													
	Somple L			Te	pogr	ophy			v	egeta	otton					Sol	1	Dolo	,	
Somple Number			Notes	Bottom	n of slope	Top	Ground	Heavily Wooded	ly Wooded		р	and	ру .	n' Sampled	Depth to Horizon Somple	Horlzon	Develop - ment	Parent	k Material	
	Line	Station		Valley	Direction of	ни т	Level	Heavil	Sporsely	Burni	Loged	Grassland	Swampy	Horlzoi	Depth	Good	Poor	Oritt	Bedrock	Colour
90 7 151	3050	1420m			E				V					BA	40	~		V		RAL
	51	1420			11		-		14	•				A	30	V		5		LA
	. 52	1420			11			-	14		•			B		V		1-		38
	53	1415			11			<u> </u>	V.					ABB	30	-	4		V	08
	:54	1420			11	-		-	~	·		-		10	40	~		1-		LB
	55	1420	*		1	-	-		14	-				13	40	V		1		023
	56	1420	· ·		3	-	-	-	2					B	40		-	V		DEC
		1405			17			-	V.	-				B	30	5	\vdash	2	· ·	PB PB
	58	1985			11-				12		-			B	30	1. H. C		5		140
204 151:		1400	(-	-	-	1.	-		-	-	B	30		-	-		RB
21 31.	61	1400			11			-	15					B	30		-	1		5 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3
	62	1400			tt	-		-	12				<u> </u>	6	36	V	-	V		20
	63	1405	:		1t	-	t		1-		-		-	_	40	r	12			OB
	64				1J	•	1		1-	-	-		-	AB	40	V		1.		MA
	65	1400			Ē	-	-	-	10						40	-	V	1	11	16
	66	1405			11				1.		-	-	-	BA	40	V	t	V	-	na
	67	1405			15	1		-	12		-	-		B.		V		V	-	IR
	63	1400			11	1	-	1	1.	-			-	A	40	10	1-		V	A
	101	1400			4	-	-		V	-			0	ß	40		\vdash	V	É	89990
	·				•	-						_		-			\vdash	\vdash		
· · ·						-					-	-	-	-	-	\square	F	-	-	-
					-	-		-	-	-	_	-	-	1	-		1	\vdash		
			·····								-						\perp			
						1				1		1 1	1				1			

Project: _	6	15 31	100 TS	DIL SA	MP	LES		Res	ults	Plot	ed E	y:								
Area (Grid):							Мар	:				N	I.T.S.	:					0.200
Collectors	JAME	5 TAS	toeTs									Ξ, .								
	Somple L				To	pogr	aphy			v	eget	otlon					Sol		Dal	0
Sample Number 9º -5 -15/ -5	ELEV	Station	Notes	*	Voltey Bottom	Orection of slope	HIII Top	Level Ground	Heavily Wooded	Sparsely Wooded	Burnt	Logged	Grassland	Swampy	Harlzon' Sampled	Depth to Horizon	Good Horlzon	Poor Develop-	-	Bedrock Material
0::	1520	0-06	5: 51720-08 + 2 FRAM 20 5= MD										1/			35	V			-
102	15 0 C	0150	50 5= NE 30 -08 9 20 SIIT								•		4			30	Y			
003	1510	1+00	40 SAND 20 SHT 20 FRE -5 10-5 RG	,									Y			25	1			
004	1510	1+50	SU SHAD 15 FRAG 25 ONG									• •	1			35	1.1			-
005	1510	2+00	75 SITT 10 SANG 13-ORG 5 FRA	+ GS							·		V			30	1			
206	1510	2+50	50 5 7 20-08 6 20 SPRA 18 FRAG	\$									V			25	V		1	
007	1520	3100	50 SAND 34 SITT 20 FRAGS							-			12			25	+	1		
008	1520	3+50	50 SIIT 20-ORG 10 FRE 3320 SI	AL; D									V			35	V			1
009	152.0	4+00	50 51 H 40-0 R & 10 FR = 35										V			20	V			
010	1530	4+50	35 5117 25 SANA 20 - ORG										V			25	V			
011	1536	5+00	45 511T 10-DRG 20 SAME 15 FRA	55									1			35	V	1		
012	1520	5+50	50-282 303117 20 5ANd								1.		11			25	V			Τ
:13	1540	6200	40 5117 30 5ANA 20-01 910 FRI	F 35.									·V			30	V			T
014	1540	6+50	50511- 40 5ANA 10 FRAG.	5 "	1								1	1		25	V	1		
015	1570	7+00	50 5ANd 1031175 FR. 55 50	RS			1			•			V			35	V	1		
016	1520	7+50	SO ST T JOSAND IN-ORGIN FRA	95	T.								V	1		30	V	1		
017	1520	8 + 00	505117 40-086 10 \$RA 55	5									V	1		55	V	1		T
8	1520	8+50	505117 30-059 10 FRY 35							•			4	+		30	V			T
1. 9	1520	9+00	40 SAPAS 40-DRG JOFRHAN F										V	Ť		35				T
320	1520	9+50	40 SAND 40 SITTIO-BRE TOFRE	59									V	-		35		1		T
12.1	.52.0	10+00	30 SITT TO SANG 20 DATE 20 CM	i a l									V			30				
0.11	1520	10 250	40 541130 511720 -ORG 10 FR/							5			L	-		35				1
1:3	1520	11+00	4054 pid 40.0RG 10 FRE =5 16 51	1									L	1		30	L	1		T
024 225	1520	11+50	10 SAMA - SIT 10 FAST 10.	- 2.5 -									L	1		30	L	1		T
2:5	1520	12+00	5051 730-01 : CH FA	2/- 1.5									1 1			195		1		T
<u>0:0</u> 0:0 0:0	1710	12+50	40-CLAV 30 5-00 1 F1 03:20-0										1 3			15				T
2:	1510	13+00	56 52 A 403 1 1 A B 1						1				12	1	1	30		_	1-	1
1.8	7520	3:56	J: 511 - 40-082 2- 511.										12	1		2:		1		T
1. 1	1515	14+56	Jo Seria 2 1 2 The	国家交									1			120		T		1

DB DB FB

J

130

Colour

RB RB RB RB RB

BI

RI

6.

SOIL SAMPLES

Project: _					177 - 17. 7		Resi	ults I	Plott	ed B	y:									
Area (Grid	1):						Мар	:				N	.T.S.	·						
Collector	s: JAME	<u>5 7751</u>					Date	à.	- 9	4	-	14	j							
		Location		T	pogr	aphy			v	egeta	otion					501	ı	Dat	0	
Somple Number	ELEV Line	Station	Notes 	Volley Bottom	Orection of slope		Level Ground	Heavily Wooded	Sparsely Wooded	Burnt	Logged	Grassland	Swampy	Harlzon' Sampled	Depth to Horizon Sample	Good Horizon	Poor Develop-		Bedrock Material	Colour
130	1524	14+50	50 SIT 50 SANA									2			135	V				PB
130	1515	15-1013	WE Same you The set of							•		2			30	1				RB.
072	.1516	15+50	50 500 2051 80									V			35	12				RE
032 033 034	152 1.	164.0	40 CIM 40 5 24 FRAS									1	2		35	2				RP,
0:4	1520	4+56	40 SITT HOSANGIN FRIMIN ORA									Y			36					RB
135	1520	17+00	46 3ARA SU 51 - 3083 5 78 194						•	<u> </u>		V			35	1				P.F.
036	1520	17+51	46 CHE. 30 Strin 2014 11-186	-								V			23	4				P.K.
037	52.6	18+ 00	50 Show to FAR by AL THE M									V			35	12	1			LB
038	1525	18+50	50 SINT 50 SANA									V			35	4				21
039	1520	19 + 68	50541/4 46 FRAQTS 5 41	-								Y			35	~				PR
140	15-15	19+50	50 Shrid YO FRAMS 10 STIT								. 4.	V			35					I.P.
040	1520	20+05	8: 5: 5 405ANA 10 FR # 35							1.		V			30	2				DR
142	1524	70+50	40 Stud 40 5117 10 FRA3510-04	i.c								·V			35					28
043	1520	21+00	80 5ANA 10 5117 10 FR 195	•								12			30					RP
044	1520	21+50	10 FRADS 80 SAND 10 30 T	-	-	-		-	-	-		V		-	25	12	-	-	-	DR RP RB
					-		-				_	-		-	-	E		÷	-	E
				1	-	-		-		-	-				-		F	1	+	
					1.	-	-	+		-	-		-	-	-	1-	+	+	+	-
					1	-	-	1	1-	-				-			+	+	+	+
	_			-	-	-	+	-	-	-	-	-	-	-	-	-	+	+	+	+
					-	1	+	-	-	-	1	1	-	-		+	+	+	+	+-
					1	-	1-	-	1	-			1	1	1		+-	+	+-	+-
				-	-		1-	-	1	1		-	-	1	+	+	+	+-	1	1
					-	-	+	+	1	+	+	-	-	-	-	+-	+	+-	+	+
							-			-			1			1	+-	+	+	1
									<u>'</u>		8	1	<u> </u>							×

Sample Number	omple Lu						To			Date			<u> </u>				_	-	-		-	
Number L 90 <u>DP1515001570</u> 002 002 002 005 005 005 005 005 005 005		5					1	pogre	ophy			v	geto						Soll	1	Doto	_
90 DP 15 1500 5,0 002 002 005 006 006 006 006 006 007 007 007 007				Notes		:	ey Bottom	tion of slope	Top	el Ground	Heavily Wooded	sely Wooded	5	ged	Grassland	Swompy .	zon' Sampled	Depth to Horizon Sample	T	-		ock Material
002 002 005 005 006 006 006 007 007 007 007 007 007 007		Station	Soud	20 Tines	Orece	Э.,	Voiley	Direction	Ħ	Level	Heav	Sporsely	Burnt	Logged	Gros	S¥O	Hork	Depti	Good	Poor	Drift	Bedrock
002 002 005 005 006 006 006 007 007 007 007 007 007 007	000'		45	1501	5 1			11							1		B	0.33	~	-		V
002 : 005 : 005 : 006 : 006 : 007 : 079 : 071 : 07	1		45	150	5			W					•		1			0.45	1			1
005 005 006 006 007 007 007 007 007 007 007 007	1		45	150	5			3							V		Bh					
006 	1		55	44	1			5						1 :	V			0.35				1
2077 0758 			55	44	1			E							V			0.33				1
019 019 110 01. 01.			50	45	5			E					· .	-	~		1h	0.70				1
070 170 171 174			50	47	3			É							V		ß	0.35				
-70 177. 1774			90	9	1.			1							V		B	0.20	T			
01. C48			86	91	5 1										1		0	01.0				
:72	i		50	48 1	2										1		1	0.75				Τ
			20	78	2										V	1	13h	0.40	V			T
012			89	10	1							5	4		1			0.14		1		Τ
			10	89	1			. [•			1			۰.		BA	0.25	V			T
A14			25	50	25	••		14				V					BIA	1222		V		Τ
015			50	50	0			w							V		A	0.20		V		
<u>ci</u>			40	58	2			5					_		1		Bh	0.55	V			T
57.7		1	50	48	2			5							V			0.45				1
.2/8			20	65	5			E				•			V		C.	0.30	1			1
019			32	65	3			E							V		Sh	0.45	1			1
0.20			45	52	2			5							1			015		V		
	-		45	52	0			S	-			-			V.			0.42	V			
022			50	48	2		-	E							V		B	0.40	V			
131			85	14	1	1	-	E							1		CIA	0.35		V		1
0.20			60	39	1			E						_	V		Bh	0.20	V			I
025	_		85	5	0		_	V							V			0.15		V		1
026			50	48	1	1		4							V			0.22	1			1
- 027			15	80	5		_	14					•		V			040				1
039		- here and a second	45	52	22	I	1.000	w		1				D 11	1		B	030	V.	1 1		11

A	Area (Grid)	<u>G</u> <u>M</u> : <u>We:</u> T : <u>D</u> . Ce	or 50	utra Cr	SOIL S	AMP	LES		Resu Map Date	ilts 	Plott	ed B	y: _	D.0	<u>Рег</u> 1.Т.S. 2	, ;	ī					
		Somple Lo	cation			To	pogr	phy			v	egeta	1101					Sol	I.	Dol	0	
	Sample Number			Notes	۵ ۱	Bottom	of slope	•	Level Ground	Wooded	Wooded	Burnt		pu		Sampled	Depth to Horizon Sample	Horizon	Develop -	Parent	Material	
0	900×151	Line	Station	70 Soud Fines Dras 50 48 2 53 45 2		Valley	Direction of	HIII TOP	Level	Heavily	Sporsely	Burnt	Logged	Grossic	Swomp	Horlzon	Depth t San	G ood	Poor	Drift		-
	5030	5,800'		50 48 2		-	W							V		B	0.25	VV			1	Brn
173	31			55 40 5			E							V			0.15	V	V		1	+
170	33.			30 62 8			E						t, t	V		A+C	0.25		1		1	H
24	34	N		30 62 8		-	E							1		B	230	1			1	V
-																		-		-		-
-																			-	-	-	\vdash
E																						
-							-		-	-	-	-					 		+	-	-	+
F						-						1.	-	-		-		-	+-	\vdash	\vdash	\vdash
											1			•								
				1												_						
ŀ						-	-			<u> </u>	-	-	-	-		-	-		+-		_	1
-						-	-		-	-			-	-		-	-		+	\vdash	+	+
																			T	1.		
						_		_			_					_						
ŀ							-			-	-	-			-		-	-	+-	+-	-	+
-								-	-	-		-	-	-	-		1		+	+	\vdash	+
E			•																T			T
							-									-			F			L
-							-				-	-	-	-		-		-	+-	+-	+	+
							+	-				-	-			-			+-			+
L.		·																		1		
																			T			T

Project:	GJ	Γ	1525 m 2007002	SAMP	LES		Resu	ults	Plot	ed E	}y:_	C.k	<u> </u>				â			
Aren (Grid)	: 151	G.J.	1525 m CONTOJA																	
Collectors	. CK						Date		19/	03/	90									
Conectors				1-																
	Somple L	ocation		Te	opogr	ophy			v	eget	otlor	•				Sol	١	Dot	0	
Sample Number			Notes	Bottom	of slope	•	evel Ground	Wooded	Mooded			puc	Υ	Sampled	Depth to Horizon Somple	Horizon	Develop -	Parent	Material	
	Line	CLHV Stotion-	••	Vailey	Direction	HIII To	Level	Heavily	Sporsely	Burnt	Logged	Gressland	Swompy	Horlzon	Depth t Son	Good	Poor		Bedrock	
90Y151 9		1525	Dan 130 at War 10 Carr	_	17							1	_	B	30	~		V		RP
	02		50 mild in an Daily low of		1	-		-	-	·		5		A	40	~	\square		V,	DB.
	. 03		408283000 000 200044		in.			-	-		<u> </u>	5		B	30	~	4	-	~	DB
	04-		Would 30 mil Under our		1.10	<u> </u>		-		-		2		B	30 30	1	\vdash	5		23
	05		Hower Duran 22. Happilogend		-	-		-				V		A	40	V		1		RB DF
	07	1923	50,-12 20,21 10, 9, 222072		-	-		-			· ·	1		B	30	-12-	V		12	28
	0.2	1515	Schard 10,00 - come 10019									V		A	30	~	1	11		LB
	09	1520	40, 47 Hours 102 May 102 mg		-			1				L		B	40	V		V.	-	LAP
	10	1	12 And 20 - 1 Tores an 100-19	-	1	-	-	-	1		-	V		A	40	1	-	1	-	DB
	11	1	12- 430 sord 221 honor									5		B	40	1		V		DB
	12	1520	1. Derick? 2. Mar 1. 192 192 19 10 101	- 1						1		~		A	40	10		1		DR
	13	1525	40 well in which is an 200-9			1						2		A	40	V		12		1-1
	14	1525	10 sult comment 10 and									V		B	30	.~		V		194
	15	1520	60x 110 min 1 102 mi 2020 A sin			·						V		B	30	V		V		DB
	16	1525	30 14 1 brand 20 know									レ		A	40	V		in		DB
	:7	1520	ののおはないというのになってい									V		B	40	V		12	*	03
	18	1515	40x2430x1 1 200 20 4 1 1 00							-	-	2		A.	12	V		10		DB
	19	1970	Dealthous Linnes & my		-	-	-	-	-	-	-	12	-	B	40	4	-	V		UB
	20	1-122	63 x 11 10 sur Da 24 10 chas	4				-	1	_	-	V		B	50	5	1	V		GR
	21	1520	102 - 12 - 10 - 4 Song	-	_	_	-	-	-	-	-	12		A	60	V	-	10		UB
	22.	1515	HULLY 30XALIZOLIZOLIZOL			-	-	-		-	-	V	-	B	40	V	1	4		88
	23	1520	22 All Decentration 12 611		-			-	-		-	5	_	B	40	V	+	V	-	128
	24	1322	120 and Or an Elian	4	-	-	-	-	-	-	-	5	-	B	40	1-	-	14	-	RB
	25		HONDAHO A STATE	_		1-						2	-	12	20	~	+-	1	1	RA
	26		50 - 1 Day 2200 Dont		-			-	-		-	12	-		40	1	+	1	1	38
	1.28	1520	Complexit to pract		-	-		-	+	-		5	-	ß	40		+			22
	4.65	1920	Ward to Ar 20- A	1	-	-	1	-	1	-	1-	1	-	8	40	~	+	1-	+	13

SOIL SAMPLES	5
--------------	---

roject: (Grid)	:151	152	Sm					·							e.					
ollectors	Somple L			To	pogr		Date			egeta						Sol	1	Dol	0	
Sample			Notes	Bottom	of slope		sround .	Wooded	Wooded			pu		Sampled	Depth to Harizon Sample	Horlzon	Develop - ment	Parent	Material	
Number	Line	ELEV . Station	**	Valley 8	Direction	HIII TOP	Level Ground	Heavily Wooded	Sporsely	Burnt	Logged	Grossland	Swampy	Horlzon	Depth to Som	Good	Poor	Drift	Bedrock	Calour
904151	5029	1520	Will 20 janut 20 ang		53							V		A	140	V		V		DB
	30	1535	10 alt man a common	_	·sw					·		2		A	\$	V		V		DC
	. 31	1525	how 1 20 and 100 g 10 ing		SW				-			V		3	30			V		PB
	32	1520	Saria 30 m allong 124 ser		SN							V		B	40	~		5		CU
												-						-		-
				-	-	-			-	-			-	-			-			-
			* •		-				-			-				-	-			-
						-		-	-	-										
														-			-			
					-	-			-	-	10			-		-	-	-		1
					-				1					-						1
					1										-		-		-	-
				1										1			1			+
						•					1000									1.
																				1
									ŀ.											T
					_	-									_					
				-	-					-			_							
					·	-		-					-	-	-					
				_	-	-			-	-	_			-	-		-	-		
•				-						-	-	-				-			-	1
		-			-	-				-	-	-	-	-			-		-	+-
					-	-		-	-		-		-		-	-	-	-		
				-	+		-					-	-	-				-	-	
West and the state														-			+		-	+

		-	SOIL S												240					
Project:	Gu	>	501E 3/	- 1011			Resu	ults	Plot	ted E	y: _	C								
Area (Grid)	. 15	51					Мар				ň.,	A	TS							
	-								2	2/	30	0								
Collectors		. –					Date	-			- / .	-	_		_					
	Somple	Location		To	pogr	aphy			v	egete	otion					Sol	1	Dold	0	
			1														1			-
								_						2	Depth to Horizon CmSomple	Horizon	8_	=	Material	
			5 A	Bottom	slope		Ground	Wooded	Wooded					Sampled		2	15	-		
Somple			Notes		1 mar 1		2	00	ŝ					50	Ť.	I	a E	\$	ž	
Number			2	æ	0	Top	ō	2			1	Grassland	2		2 È				-	
	ELEV			~	tion		-	E		1 2	ged	-	Ē	207	E S	v	-	-	8	5
	Line	Station		ī	Direction	Ē	Level	Heavily	öd	Burnt	Logged	2	Swampy	for	30	8	Poor	Oritt	Bedrock	Colour
9002-151-5-00		· · · · · · · · · · · · · · · · · · ·	FIRST SAMPLE TAKEN AT CREEK BANK	>		-	1-	×	Ņ	-	-		~		0	-	-	-		-
19	1370	0100	So SAND LOSUE 20PUS FRASE LOCIAY IS GREAT		SW	-						V		B	20		~			MB
02		0150	40 SAND 40 ANS PRASS 10 SHIT 10 BRG		SW				-			5		B	15		4			MR.
>3		1400	50 SAND 30 ANS FRASS 10 ORG 10 SILT		Sw	-	-					7		B	20		V			MB
10		1+50	100 ORGANIC	-	Su,	-	-	-	-	-	1.4	1		A	5	V	H			Ple
05		2100	60 SAND 10 SILT 20 ANG FRAT 10 OKG		SW							V		B	20	~	\vdash		1	me
06		3+02	60 SAND 10 SILT 10 GRAVEL INNO FRAS 10 OPG		S	-	-	-	-			Ĵ		A	50	~				DB
01		3+50	50 SAND LOTHE TRESS TO SILT 15 OKG		3					-		1	-	A	35	~			_	
60		4+00	So SAND 20 OPG		S			1-				V		8	40	~	\square		1	BLA
10		4450	80 ORG 2 DANGULAR FRAGE	-	S	-	-	-		-		V		A	45	V			_	LB BLACT
		5400	SO ORS SO AND FRASS		SE	-	-	-	-			V		A	50	~			1	LB
12		5+50	TO DESENIE SO ANGULAR FRASS		SE	-	-		1			1		A	10		1		V	LB
13		6+00	50 ORGANIE SO ANGULAR FRAGE .		SE		1			-		·V		A	10		1		1	LB
14		6+50	60.5AND 20 ANG FRASS 10 SILT 10 ORG	·	SE	1	1					V		B	20	V			1	me
15		1100	30 SAND 30 ORG 30 ANG FRASS 10 SILT		SE	1.						1		B	30	1			V	LR
		7+50	SO ORGANIC SO ANG FRAGS		NE							1		A	10		2	-	V	LB
17		8+00	60 DREAMIC ID SAND 30 ANGULAR FRAGS		NE			1		1				A	15		1		V	18
18		8+50	100 DRGANIC		NE			\checkmark	•					A.	15		1		1	BLA
19		9 too	SO ORGANIS SO ANGULAR FRAKS		5			1						A	25	1				PLA
20		9+50	SO ANGULAR FRAGS SO ORGANIC		S			V				4		A	25		~			DB
21		10+00	50 ORGANIC SO ANGULAR FRASS		E			V						' A	10		1		V	DB
22,		10+50	SOORGANIC SO ANGULAN FRASS		E			1						A	30		V		V	PR.
23		11100	SO ANGULAR FRAGE SO ORGANIS		NE	-	-	V	-	-	_			A	30	V			1	CLA
·				-	-	-		-	-	-	-		-		-					
				-	-	-	-	-	-	_		-			-	-				
					-			-	-	1				-	-					
				1	-	-		-	-		-		-	-	-	-				
				+	+									-	-					-
the second s	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	The subscription of the second s	and a second	1	1	1	1.		- C		10				4	4 C	1. 17	10 - P	a - **	10 million (1990)

SOIL SAMPLES

Pro	act	:	• •	1	5.	
110	100	-		_	_	

900,151307

Results	Plotted	By:	Michar -	222	 э.,	

25 . 26

Area (Grid):

Map: _____ N.T.S. : ____

Collectors: Date ______. Vegetotion Somple Location Topography Soll Doto Derelop -ment Harizon Sampled Depth to Harizon Sample Horizon Moterial slope Parent Sporsely Wooded Heavily Wooded Bottom Level Ground - 1 Somple Notes Grassland Direction of HIII TOP Swampy Number Burnt Logged Bedrock . . Volley Colour Good Oritr Poor Line Station ۲. 1 Any isteri · 2 · • 17. 5.3 2 ... 4 ... • 3 . . -4.0 V . .2 2.14 6.9 .1 1 ~ 1 1 -> . . 1. 5 ~ 1.5 r 9 1.00 1 -3.9 1 2.11 2. P. P. 15 1 . . 1 :• 9.14 . --./ ... 1. 1 ~ Q.2 ÷ 1 2. 54 V 0.0 10 v 2.5 .1 1.5 5 1.1 2 1.5 5 3 2 1 8 1 ... H Control I 10 1 3 1 ~ · . . . 12 1 0.5 -2-1 Sec. 1. 11/ ~ . 1-5 3 1 ~ ٠.٠ ~ 1 2 51 w. ./ 8 ۰. v 10 and second D.2

B - Ermit 3- 31-11 ar - Mante 6. 10 A S. (50%.00

Project: _ Area (Gric Collector	1):		GJ SOIL S.	AMP	LES		Map					N S4	.T.S.	:						
Conector	Somple L		A angula	To	pogr	100	Duie			egeta						Sol	1	Dolo	,	
Sample Number	5.121		S.A. S.A. S.A. S.A. S.A. S.A. S.A. S.A.	Bottom	of slope		Ground	Wooded	Wooded			pu		Sompled	Depth to Horizon Sample (c, v,	Horizon	Develop - ment	Parent	Material	
VISIS	melars, tetne	meters Station		Volley	Direction	HIII TOP	Level	Heavily	Sporsely	Burnt	Logged	Grossland	Swampy	Horlzon	Depth t San	G ood	Poor	Drift	Bedrock	Colour
001	1376	04.00	Sill Isted Sections 1 Gas 1 42 5 A		W			V						A	30		1	-		MI
007	1375	0.150	Silling 12 can 70 110/20 SA		W			1		· .					25	V			V	M
003	17.17	1-1 000	anticipal in Change States and SA		ŵ			1						B	20	1				M
004		12.25	A Goldan A		W			1			· · ·			B	20	~	\square			m
005	1-75	212	Sillisand 15m. 60 holds SA		12			V						B	30	~				m
006	1310	2124	Sile sand / Grad by 2 Jolan 100 A.		NU			V	•	12 - A	1			2	30		1		1	M
007	1370	14.20	Sill ben isian So 140140 A		W			V						B	30		V		1	D
004	13:1-5	1.701.35	5111/56h 115, an 60/20/20 A		W.			V						B	30	<			1	11
009	1375	·	Silt I sand I frace 60/20120 A		N							~		B	25	V			1.	LI
· · · · · ·	12.7.	1	5117 15 and 1 Grad 60/20120 A		N							V		B	20				1	m
	1375	** Josto	Sill Isral Scan Solzolan A		N						- 4	~		B	30		V		1	10
0.5	1.25	5150	sullished frag 50/20120 A		W			1						B	20	V			1	~
013	1375	6400	Sill Isiand I Scan 0 60/20/20 SP, A 511 Isian 15, an 40/30/30 A."		N			V					10	B	25	V			1	12
017	1375	f_{a}	5.12/5 15 15 15 40/30/30 A "		N			1.						B	25		~		T	1
015	1375	-1.1 5 0	S. 4 Sand Frag Solasta A		N	ľ		11.						B	25					14
(it is	17, 75	7.150	Sille/S. Alline Mallalin SA	_	N	-	-	12	_					B	25		V		1	14
213	1.200	11:00	sill Isand S. & ISias Scin /20150		N	-		11						B	25		1		1	E
	137	8450	sill Sandling Solaolao		NW		-	1						B	25	1			1	1
	1275	9120	Sill Sandling Soloolyo A Sill and San Boloolyo A Sill and San Boloolyo A		NW							~		B	30		V		1	ľ
120	1370	(145 ·	Sill clay 1 City 20/10/17 SA	-	NW	-	-	V	-					G	25	14	-			C
021	1370	1.9.4	Sill 15, 20 1010 70/20/10	-	WW		-	1						B	25	1				M
022	13:15	1	Silliclarit Side 60/20120 SA		NW			V						B	20	V				1
023	1375	· · · · · ·	Sill leby Fran Sulzulau SA	_	NW	1	-	-		_	-	V		B	25	V				ľ.
	1372	ē.	sillicity iset 60/20120 SA		NW		-	-	-	-		V		O.	25	V	-			
025	1335		Silver Can Sol 30/20 SA Silver Can Soloriso SA Silver Can Soloriso SA	-	NW		-		-	-		1			-	-	-			1
026	13.80		silling 1 Gen Soloolau 3A		11	-			-	-		1		-	-		1			1
027	1375		Sullas I they have a A		++-		-	V,			1			<u> </u>	-	-	1	-	1	+
028	1370	122.9.8	sillion The Trend Holowisho SA sillion day Igan and the A	-	1	-		1	-	-						-	+	-	-	+

			KEEWATIN EN												12					
Project:	#	151	SOIL S	АМР	LES		Resu	ults I	Plott	ed B	y: _	7	5	5						
Aren (Grid):						Map	:				N	I.T.S.	·						
Collectors	n1	Frend	Sirephond .				Date				A.	• 113	1	1	·? p.					
	Somple L	ocation	A angula Sa sin mpir	To	pogr	aphy			v	egeta	otlan	6				Sol	n	Dot	a	
Somple			Notes	Bottom	of report		Ground	Wooded	Wooded			Q		Sompled	Depth to Horizon Sample ()	Horizon	Develop - ment	Parent	Material	
Number	ti devi 1971 - 1972 1966 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1	p 465 Station		Valley B	Direction	HILI TOP	Level G	Heavily	Sparsely	Burnt	Logged	Grassland	Swampy	Horizon	Depth to Same	Good	Poor	Drift	Bedrock	Calour
030	1380	14+50	Sulfismed Page 60120100 SA		NW	ŀ						1			30	V			2	M
031	1385	15100	ni- indloralfrag 3012010000 A		NW							V			20	V			~	M
032	. 1360	15150	Sillismalling From Usianil 30120120120 A		NU			~							25	1			10	m
033	1360	5700	SHISSENTING GAR Volastistas A		\mathcal{N}			~						B	25		V		T	n
034	1370	3157	Soll /Spellogr. / Chu. Holzo'n in A		N			V		•				B	30	V			T	M
035	1380	104.00	A A A A A A A A A A A A		N			V	· .	·					25	V.			1	M
033	1370	104 5.5	sill hand fails 60/20120 A		N			1						B	25	V			1	M
037	1375	2119	5/1 /San 180/20 A		N			~						B	20	V			1	M
037	1375	11-55	SITTISONY ISTAL GUILDON A		N			1						13	25	1			1.	11
0.32	1370	10+3	Silt Isonall Gad Solaria A		NE			5						B	25		2			M
0'40	1375	***55	SIHISANI Sale Soloin A		F			V			12			B	25		V		1	M
00.	1370	20+01	Silt is soil = See 10 who A		E			ic						B	25	V			1	DI
.).;	1370	うちょう	Sill Isand 15 de Colooloo A.		1.5			1				•		B	20	V				1
247	1370	2:400	Sill I sind 12/11. 52 20/20 A."	•	E			V.						B	20	V.			I	M My
2.11	1070	might	SIHISANI/ Frate 130/40/20 54		F			10.						B	30	V			1	M
2.17	202	2 1 1 25	Sillisond Frank bubalan A		E			1						B	40	V			1	14
046		191524	Sillicand Stan, bulintan A		1			1						B	30	V			1	M
- 54 - 7	1	23400	sillismidicial polying a		E			× .						13		V			1	м
1.14		1.5155	SILLISON / Ste Desision Spass		r			1						13	28	V			i	L
jera.		24400	SIH/GAR. 20930 _A		SU			1				1		B	10	10	112			M
2.35		24-55	1:1-12 Yan. 20/80 A		155			1						ľ	20	15	145		Π	M
:051	1370	25+33	SILA / Stan Gines 30/50/20 SA		N			1	÷					B	35	\checkmark			T	M
0.52	1376	12 5455	Silt Icha Cash 60/20 SA		N			1						R.		V			T	4
053 .	13:25	76+25	Sill Isand I Gal potention		N			1						13	20	1.			T	14
120	1770	24489	Silf/Send/Gere 6012, bo Star		N			1						E	14.	V			1	M
055	13.275	27459	All ford Walk Sylender		1.1			1						12	1.1	1.1			T	M
056	1. 1. 1. 1. 1.	7-10 84	50/30/20 4		1.1			1						Ľ	2	1.1				M
057	1. 12.55	28-15	111/423 30/70 +		N			~						B	30	V			Ň	MM
059	1365	1 8:50	20/SD A		N			1	1					B	30		V			13

			KEEWATIN EN	GIN	EE	RIN	IG	INC												
Project:	G	5 # !	51 SOIL S	AMP	LES		Resu			• d 19		م ند. ا								
							Nesi	11.2 1	-1011	eu D	y									
Area (Grid)	·	T. A. M.	Jeaka !				Map			-		$\overline{\mathcal{O}}$								
Collectors		Trevor					Date				100	5		1.	,				_	
	Somple Lo	ocation	A write	To	pogr	aphy			V	geta	otion	6				Sol	1	Dot	0	
Sample	Elev		site staff so my h Site staff so my h Site staff Notes	Bottom	of slope		Ground	Wooded	Wooded			q		S am pl ed	Depth to Horizon Sample Corr	Horizon	Develop - ment	Parent	Material	
Number	returs	metrs		Y B	5	Top	-		e y	+	2	lor	νpγ	Ś	÷ E				t,	-
lovisis	tefne	Station		Valle	Direction	- TIH	Level	Heavily	Sparsely	Burnt	Logged	Grassland	Swan	Horlz	Depth	G ood	Poor	Drift	Bedrock	Colour
059	1340	0100	Silf Band/ Second Spin and A		W			~						0	35	~			5	MB
060	1335	0150	Stillsand Gar tow Solonizatio SP		W			ς						ß	30	V			V	MB
DG 1	. 1340	14:00	51171 SANA/ C. & 12.5 30/20/20/00 SP		W			~						B	25	V			1	LB
06? .	1345	450	SILF Sand / Glacking 10/20120105 X SILF Sand / Glacking 10/20120133 A SILF Lang 10/40 SILF Sand / Grag 10/2014 SILF Sand / Grag 10/2014 SILF Sand / Grag 10/2014 SILF Sand / Grag 50/2014 SILF Sand / Grag 50/2014 A		W		-	V			• •				25	V			10	LB
197	1350	2.00	SILF/ Eag 20160		W.	-	<u> </u>	V						B	30	V		-	~	LB
	13.50	2:57	Sullisand I San Ablaching A		W	-	-	14		-	-			B	25	V.	-	-		Mic
	1350	5:22	SILLSand Jacage Totolto A		W	-	<u> </u>	1				-		B	25	r		-		Mri
1	1340	0-100	silf (clay 1 Gai Goldoloo SP	<u> </u>	2	-		-	V	-				B	25	-	1		1	NE.
	13.	0.150	silf lelay 198. 50/30 00 SPOSA				-	-	V				-	15	25	-	14		~	DE
	1 200 2	100	sillelan ICon Solasia DELSA Sill (Sand Gan Tolao 110	-	3	-	1	-	V	-				13	25	V,	+-		V	OB
	1400 Dias		Silt 152121 2735 10120110	<u> </u>	5				1					B	110	1	+		V	M
	1425	1.150	514/500 1/00 80/5/15 514/5000/000 80/5/15	-	-	-		·	5			l		B	23	Y.	–	<u> </u>	V	LB
	1425	34.95	Silt Sand Gray 101515		15	-		-	-	-				B	25	1	+	+		CB
· · · ·	1430	3450	Silt Sound Groby 10170100 SAT				-	· · ·	1.		-			B	20		17	+	2	ME
1.14	1430	14.00	5,14 (2'2) (2:2. 50' 40/13.		15		<u> </u>		10					A	35	-	1¥	+	1°	SI:
	1430	U.Sn	silf leloy loig Sol spish	-	1			-	-	-	12			A	40	-	-	+	12	Bla Bla
	1440	Silas	Silf / Clay 50/50	-	1	1	-	-	+)		1.			B	30	11	~		12	
	1445	5150	silficia / Gas Enizolas SA	-	1	-	-	-	-	-	1×		-	B	30	12	+	+ ·-	1.7	MB
	1440	6125	silt I clay 32 boliche and		1	-	-		-		1	1	-	A	30	X	+-		1	MB
1	1440	6154	silt I clay 11, the option A	-		-	-		-	-	~					_	+	+	1.	nB
1000	1440		SIA Isend 1 Stans 60/2010 SA	-	ŀ	1	-			-	1	-		_	25		+	-	-	142
1	1440	· · · · · · · · · · · · · · · · · · ·	silflera bolino A	-	1.	1	-	1	-	-	10	-		B	20	Ž	1-	1-	-	m
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1445	·	S14/00 75/30 A		1		-				~			B	30	i-	12	1-	È	CC
i	144.5	_	CALCS Tim Lollabo St	-	1			1			1				30		_	1	1.	MA
11.5	140.		with the line Splanto A		1			1		-	V						1	1-		MB
· · · · ·	1430	1	Sililo. 15,28 40/20140 A		V						V			E	30		1.1	1-	1.1	OP.
	1430	1.1.1.1.	Sillican Kas Unloolyn Sp						1		V			C.				T	T	MB
			L		1	1	1	1										1	1	

HI

TS. SOIL SAMPLES 1 . Results Plotted By: _____ Project: _____ ___ N.T.S. : __ Area (Grid): _ Map: ____ Ken Asia 11.0 Date -Collectors: _ Somple Location Topography Vegetation Soll Data Develop -ment Material Depth to Horizon Sample Horizon Wooded S ampled Parent slope Wooded Ground Bottom Somple Notes 5 Grassland Swampy HILL TOP Number Sporsely Horizon Bedrock yn lys Direction Heavily Logged Nele Valley Burnt Level Colour G ood Drite Poor Line Station 337 4 B 25 3850 . . . CLAY 20% 1 Silt 60% SAND 20% V 6 2 B 25 3850 FRAAS 3000 1 SILT Son CLAY 20% LR 1.12 Silt 20% CLAY 60% FRASS 20% в 20 V LR 3850 35 ROUNCED TSR FRAGS 20% SILTHAND TO % FRAGS 20% B 1 3850 MH. 3850 2+00 B 30 V 191 SILF 20% CLAY 60% FRAG 20% ARAH MB 20 516+ 50% CLAY 3090 FRAGS 20%0 V R 2850 2+50 1 192 LB V 15 B 193 SILT 4090 CLAY 40010 FRAGS 20% DGANY 3850 3+00 V B 55 3+50 SILT 30% CLAY 500'S FRAG 20%0 194 3850 GRAY 30 3850 4100 SILT 30% SANH 30% CLAY 20% FRAG 200 2 195 GRAY SILT 60% SAND 20 MO FRAG 20% 25 R 196 3850 4+50 LR CLAY SO "10 CLAY 20" O FRAG 30"10 5700 1 B ~ 20 19: 1170 GRAY 30 SAND 600104 FRAS 20010 SILT 20010 1170 5+50 R LB 198 stin 190 SRIFFAGS TOTO SAND 20% CLAY 10% 1 ~ 200 6100 B 30 MRE 1170 201 SILT 30% SAND 30% CLAY 20% FRAG 20 20 GRAN 1170 6+50 R SILT 50% 5AND 300'S CLAY 10% FRAG 10% 202 7+00 1 R 20 1170 1 MRB SILT 60% SAND 20% ORGANIC 20% V B 30 202 1170 7+50 MRP 20 1170 8+00 SILT TO TO ORGANIC 20010 FRAG 10% ø V 204 MRR 30 1170 8150 SILT 60% SANDIONS CLAY 20% FRAS 10% 205 R mB 35 1175 9+00 SILT GOLORGANIS 30% FRAG 10% R MR 200 ß 207 9450 30 1170 SILT 80% ORGANIC 10% FRAG 10% MRE 30 208 1170 10+ 00 SILT 60% CLAY 30% ROCKS 10% R DRUNG Por 10+50 V R 30 1170 SILL TOND SANDIONO FRAG 20010 DBURK 11+00 2:0 SILT 60% CLAY 20% ORSANICZO 5 в 30 1170 DBLACE 30 B 2 .. 1170 11+50 SILT 50% ORGANIC 50%)0 DRUNCH 12+00 SILT 50% ORGANIC 53% B 212 1170 25 1 V Decha 212 1170 12+50 SILL 50% ORSANIC 40% CLAY 10 % 30 R / DBL AC 214 1170 13+00 SILT SOYO CLAY SOYIO 30 BLACE 0 1 215 1170 13:30 514 10% SANDION FRAG 30%10 35 MRB ß

KEEWATIN ENGINEERING INC.

S-J PROPERTY

APPENDIX VI

t i

. .

-

-

Rock Geochemistry Results

Keewatin Engineering Inc.

COMP: KEEWATIN ENGINEERINGMIN-EN LABS --- ICP REPORTFILE NO: 0S-0444-RJ1PROJ: GJ #151705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2DATE: 90/09/11ATTN: R.NICHOLS/D.MEHNER(604)980-5814 OR (604)988-4524* ROCK * (ACT:F31)

1

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90M 151 R11201 90M 151 R11202	93 166	1.2	246 363	32 71	30 56	38 33	5	5	80 165	
90M 151 R11203	182	.3	882	60	218	17	4	6	95	
90M 151 R11204	451	1.4	1107	43	683	45	6	8	140	
90M 151 R11205	319	1.8	979	77	269	53	7	3	70	
90M 151 R11206 5 90M 151 R11207 5	534	2.8	1481	44	519	37	8	23	145	
90M 151 R11207 C5	92	2.0	415	31	138	29	5 4	47 60	195 160	
90M 151 R11208 (90M 151 R11209 Q	119 107	3.1 3.6	641 451	61 67	302 2898	69 59	4	26	650	
90M 151 R11210 5	58	1.6	295	38	276	39	3	9	100	
90M 151 R11211	49	1.2	210	20	72	37	1	3	65	
90M 151 R11212	69	1.0	243	22	158	31	2	2	50	
90M 151 R11213 90AA-151C-001	87 23	2.4 .6	415 65	41 16	597 32	76 44	4 2	2 4	320 60	
90AA-151C-002	15	.5	67	13	31	33	3	7	65	
90AA-151C-003	17	.1	74	16	35	27	1	4	75	<u></u>
	······									
					·					
							<u> </u>			
						<u> </u>				
	· · · · · · · · · · · · · · · · · · ·									

COMP: KEEWATIN ENGRG. PROJ: 151 ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: OS-0446-RJ1 DATE: 90/09/13 * ROCK * (ACT:F31)

				00 3014 0							
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90AA 151C-004 90AA 151C-005	191 43	1.2	372 39	15 11	35 63	38 33	6 5	10 6	405 55	·	
	<u> </u>					,		·····			
						•					
	·····				· · · <u>- · · · · · · · · · · · · · · · ·</u>						
		• <u></u>									
			·	···- <u>·</u> ································							
											<u> </u>
				. <u></u>							<u></u>
			•								

COMP: KEEWATIN ENGINEERING PROJ: 151

R.

a a hana da anna an

í

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0571-RJ1 DATE: 90/09/27 * ROCK * (ACT:F31)

AMPLE	AU	AG	CU	PB	ZN	AS	SB	MO	HG	
UMBER 0-0-151R-001 0-0-151R-002 0-0-151R-003 0-0-151R-004	96 38 7 25	.9 .5 1.8 1	РРМ 153 127 64 75	РРМ 37 19 13 17	РРМ 170 58 112 79	999 39 1 1 1	9 9 1 1 4	РРМ 12 1 1 44	PPB 75 135 80 165	
0-0-151R-005	43	.1 .7	329	19	33	i	1	1	165	
0-0-151R-006	52	5.2	655	44	34	65	5	1	90	
	<u> </u>									
						·				
	-									
· · · ·										
					<u></u>	<u></u>	<u></u>	<u></u>		

COMP: KEEWATIN ENGRG. PROJ: GJ 151

ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0611-RJ1 DATE: 90/10/09 • ROCK * (ACT:F31)

TTN: R.NICHOLS/D.MEHN	ER		(604)9	280-5814 C	R (604)98	8-4524			•	ROCK *	(ACT:F
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
20 0 151 R007	1	1.5	168	32	44	7	2	2	35		
·····				<u> </u>	<u></u>						
								,			
					· <u></u>		<u></u>				
				···							
										<u></u>	

COMP: KEEWATIN ENGRG.

PROJ: 151

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1317-RJ3 DATE: 90/09/05 * ROCK * (ACT:F31)

SAMPLE	AU	AG	CU	PB	ZN	AS	SB	MO	HG	
IUMBER	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPB	
20 DP 151 R001	1	2.7	11	65	139	57	16	22	3000	
					<u></u>	<u></u>			- <u>-</u>	
			<u>-</u>	· <u> </u>						 ··
			<u> </u>				<u></u>			
								<u></u>		 ······································
		, , ,, , ,, , ,, , ,, , , , , , , , , , , , , , , , , , , ,				. <u> </u>	<u></u>			
						<u></u>				
										 <u>,_</u>
		- <u></u>			 	. <u></u>				
		a.								

APPENDIX VII

100 C

• ----

Rock Sample Descriptions

Keewatin Engineering Inc.

KEEWAT	TIN E	NGINE	ERIN	G INC.

aiect:	A 151					R	OCK	SAMPLES	Results Plotted By:
eo (Grid):_	Spike 1 Clai. D. Perpati	~~y							Map: NTS: Date: <u>\$1351152</u> Surface / Undergrou
SAMPLE	LOCATION NOTES	REP. SAMPLE NUMBER	AB	LE T	CHANNEL 4	LENG 3800	LOAT (H1	ROCK TYPE	SAMPLE DESCRIPTION
<u>- N.F.151</u> K.001	ar on the for the state of the second		0	0	CHA	0	< FL	<u>A.e. serre _</u>	the second of the second or and
30-AA-151	4925ft; 20m SE of		-	ZM		-		CHERT /	LIGHT GREEN TO BUFF: < 1% fract +
R-001	HOLE 90-3					-		CHERTY SILTST.	
10-AA-151 R-002	1 10 M south of 90-3			1.2 M				CHERT / Charty siltst.	as above but 1% veinlet pyrite;
<u>°0-AA-151</u> R-003	4938 ft; Gully Balow hole 71-13;		X					seltstono; andesetic	Random chips over 2 minterval; arange linionite on fractures; << 190 Pyrite.
70-AA-151 8-004	1424 m. 20-25 m north of hole 71-98 30 M Below it			1: 75 M				siltstone; cherty siltstone	2% diss Py : < 1% pyrite on fractives & rais fracture Malachike & agurite.
	1 Main Groat Create where 1989 sample fielded 2660 pp b			IM				siliceous siltstone	≤ 1% fracture pyrite ;
	Au		\vdash		·				·
					-	1	1		
			-			-			
1						-			

f. T		350					1		
iject:G 20 (Grid): 1ectors:	J-ASCOT (#151) WEST OF CORE SHACK JASON MILLER	K		KE	E W /				NG INC. Results Plotted By: <u>JASON MILLER</u> Map: <u>NTS:</u> Date: <u>SEPTEMISER</u> , 1990 Surface Underground
SAMPLE NUMBER	LOCATION NOTES	REP. SAMPLE NUMBER	SAMP CKAB	CHIP CHIP	CHANNEL H	CORE	FLOAT (H	ROCK TYPE	SAMPLE DESCRIPTION
).1).151R-001	At soil hole number 90.JT-1515-014. Angular talus in hole LED. 5120'		V					Ailicitied	Representative, axab of angular matria
0.0.151K- 002	Below 90.JT-1515-014 BEV. 51.10		V					to diorite	torite to discipe will 24% Hissen-
10.0.151R- 003	20 m south of R-002 ELEN. 5110'							Black Norite	Rep. Trab of dc. Rlack, magnetic, porphyr thic, lawaranylar, meduux, grained digrite with trace gyrite as vientes (=0.38)
<u>10.0.151R-</u> 004	1405/0pe). 0/c. ELEV 5120							silicified silfstore	purite (mostly allered to limouite).
100.151R- 005	Near soil 90-JT-1515- 016 ELEV. 5130'							to diovite	de la
10.0.151R- 006	R-005 U ELEV 5200'	2						granodion to to diorite as above	= > 10% diffeminated pyrite. FLAT.
007	10 m South of soil 90. JT. 1515-041 ELEV. 5070							monzodion	interstitial libro Representative grab.
				1-					

APPENDIX VIII

Silt Geochemistry Results

Keewatin Engineering Inc.

COMP: KEEWATIN ENGRG. PROJ: 151

ł

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0S-0446-SJ4 DATE: 90/09/11 * SILT * (ACT:F31)

-

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90 DP 151L-003	1	1.4	79	34	118	16	7	2	165	
	<u></u>									
	·····			<u></u>		······				
								<u></u>		<u> </u>
										······

							<u></u>			<u></u>
									·····	
										·
	·····									
•										
	<u> </u>				<u> </u>	<u></u>	<u></u>		<u>-</u> .	

COMP: KEEWATIN ENGINEERING PROJ: 151 ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0V-1392-LJ1 DATE: 90/09/07 * SILT * (ACT:)

MODE S11 L001 4 .8 64 24 97 4 1 1 120 90 P 151 L001 2 .7 66 24 116 45 1 3 200 90 V 151 L001 1 .6 77 28 82 79 1 3 170	SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
	90 DP 151 L001 90 DP 151 L002	4 2		44	24 24	97 116	47 45	1	1 5	120 220		
											<u> </u>	
					<u> </u>							
											<u></u>	-
					<u> </u>						_ <u></u>	
		<u></u>				we				<u> </u>	<u></u>	
												<u> </u>
								<u></u>	<u></u>			
								<u> </u>				

APPENDIX IX

Silt Sample Descriptions

. .

Keewatin Engineering Inc.

Project:	G I KEEWATIN E	NGI SED		TS	Resu	lts Pl	otted	By: .	_6	2.0	Per	. + i	1				
Area (Grid): Collectors :	Gid Stream Spike 122000000 D. Verrett				Map Date	;	91	18	19	N	.T.S.:						
Sample Number	NOTES	Gravel	SEDI			Organid	Bank	Active Active	Width D	ATA Depth	Velo- city	SPRING	DRY GULLY	1.	AL	do.	As
1000151 2001 2002	Small or an and at Grader (spike2) Cratical E and at Grader (spike2)		75 75	25%				V	1 2	•3 •4				11 44 66 79	42	PIN	47 47 45 16
										•							
											·						
																	¥
		-				-			-	-	-						'

	KEEWATIN E	NGI	NEE		IG I	NC.					T. 9	5					
Project :	# 151 GJ (TAT). STREAM	SLU		115	Resul	Its P	lotted	By: .	-						-		
Area (Grid):_					Map			-		N	.T.S.:						
Collectors :	Trevor Chephand															_	
		L	SEDI	MENT	DAT	A	5	TRE	AM D	ATA		ġ.	>				
Sample Number	NOTES	Gravel	Sand	Silt	Clay	Organi	Bank		·				DRY GULLY				
90V1514	-001 1 Her 1440 m. +aken 10m		50	50				V	204,-	1cm	low	~					
						·											
	south of Gront creek.								-		_						
;		<u> </u>											·				
		1			-						-			-+		+	
		-														+	
																+	
		1														-	
																-	
į									-								
1															_		
+	•						I		-		_						
		<u> </u>		-				-	-		-					\rightarrow	
			-					-	-	-		 				_	
		-						-			<u> </u>					\rightarrow	
		ŀ					<u> </u>		<u> </u>		1	⊢				+	
						-										+	
		-		-					-							+	
																-	
						•					-	·					
														•			
					_				_		-				_		
							-	-		-							
	······································			-	-			-	-	-						+	
	· · · · · · · · · · · · · · · · · · ·	+		-		-		-		-	+					+	
		-				-			-	-	+					+	
		1	1	-	-	-	1-		1-	-	1					+	<u> </u>
and the second second			-	S	a	3	50	X4	·	č		1	S				

APPENDIX X

.....

<u>Geophysical Report, Induced Polarization and Magnetometer Surveys</u> <u>GJ Property, Dease Lake Area, B.C. by A. Scott</u>

GEOPHYSICAL REPORT

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS

GJ PROPERTY

DEASE LAKE AREA, BRITISH COLUMBIA

on behalf of

KEEWATIN ENGINEERING INC. 800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

Field work completed: July 22-28, August 18, 1990

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

December 18, 1990

TABLE OF CONTENTS

.

page

1	Introduction	1
2	Claims Location and Access	1
3	Survey Grid and Survey Coverage	1
4	Personnel	1
5	Instrumentation and Procedures	2
6	Discussion of results	2
7	Recommendations	3

Appendix

Production report	4
Statement of qualifications	5

Accompanying Maps

	map pocket
Chargeability/resistivity pseudosections	1
Chargeability contour plan (a=75 meters/n=1)	2
Resistivity contour plan (a=75 meters/n=1)	2
Magnetometer contour plan	2

1. INTRODUCTION

Induced polarization and magnetometer surveys were conducted over portions of the GJ Property, Dease Lake Area, B.C., within the period July 22-28 and on August 18, 1990. The work was conducted by Scott Geophysics Ltd. on behalf of Keewatin Engineering Inc.

The pole dipole electrode array was used on the induced polarization survey, with "a" spacings of 25 and 75 meters, and "n" separations of 1 and 2. The current electrode was to the north of the receiving electrodes on all north/south survey lines, and to the east of the receiving electrodes on the east/west survey line.

Total field magnetometer readings were taken at 25 meter intervals.

This report describes the instrumentation and procedures, and presents the results of the surveys.

2. CLAIMS LOCATION AND ACCESS

The GJ Property is located some 80 kms south of Dease Lake, B.C. Access to the survey area was by helicopter from a camp established by Keewatin.

3. SURVEY GRID AND SURVEY COVERAGE

A total of 20.7 line kilometers of induced polarization survey and 19.3 line kilometers of magnetometer survey were completed on the GJ Property. The grid lines were established concurrently with the induced polarization survey. Details of lines surveyed are given in the production report.

4. PERSONNEL

Jim Hawkins, geophysicist, was the party chief on the survey. Dave Mehner, geologist, was the Keewatin representative for the survey.

5. INSTRUMENTATION AND PROCEDURES

A Scintrex IPR11 time domain, microprocessor based receiver, and a Scintrex 2.5 kw IPC7 transmitter were used for the induced polarization survey. Readings were taken using a 2 second alternating square wave. The chargeability for the eighth slice (690 to 1050 milliseconds after shutoff; midpoint at 870 milliseconds) is the value that has been plotted on the accompanying plans and pseudosections.

The array used for this survey is a variation of the pole dipole array, using "a" spacings of 25 and 75 meters at "n" separations of 1 and 2. The array is designed to provide rapid coverage on widely spaced lines, with the objective of detecting large scale features that may merit more detailed followup. On the GJ Property, the line spacing was relatively close, but the array was used in any event as the exploration target is a large porphyry system, and the array is somewhat more efficient than standard pole dipole.

Two EDA OMNI total field proton precession magnetometers were used for the magnetometer survey. One unit was used as a fixed base station, cycling at 15 second intervals, and the other as the survey unit. Readings were taken concurrently with the induced polarization survey, during moves between stations. A noise envelope of less than plus/minus 10 gammas could be present for any readings that may have been taken when the transmitter was on.

The survey data was archived, processed, and plotted using a Toshiba T1200 microcomputer running Scintrex Soft II and proprietary software.

6. DISCUSSION OF RESULTS

The chargeability and resistivity results are presented in standard pseudosection form, and as contour plans for the a=75/n=1 values on the accompanying maps.

Chargeability highs detected on the survey have been defined on the accompanying pseudosections and plan maps as follows:

 strong chargeability high
moderate chargeability high
weak chargeability high
 weak, poorly defined, chargeability high

The magnetometer survey results are contoured at a 500 gamma contour interval on the accompanying plan map. No useable magnetometer data was collected for lines 1840E and 1960E.

Chargeability highs detected on the survey have been grouped into four general areas as outlined by the heavy dashed lines on the plan maps. They are labelled as areas A to D.

Area A, which is open to the southwest, contains weak to strong chargeability responses that tend to be associated with relatively high resistivity. A magnetic high lies along, and occasionally within, the north flank of area A.

Areas B and C contain weak to strong chargeability highs that tend to be associated with relatively low resistivity. Except for on line 260W, they lie within a region of relatively low magnetic field strength.

Area D, at the north end of lines 880E and 1000E, is associated with relatively high resistivity and lies within a region of relatively high magnetic field strength.

6. RECOMMENDATIONS

The induced polarization survey on the GJ Property detected large areas exhibiting weak, moderate, and strong chargeability response, which have been defined on the pseudosections and plan maps accompanying this report. The overall response is consistant with that of a large sulphide system, and further work to determine the source of these chargeability highs is warranted.

Correlation of these results to geochemical and geological information is required to define specific sites for testing by trenching and/or diamond drilling. Any chargeability highs that do not have their strongest response at the a=25/n=1 reading, may have too much cover to allow testing by trenching.

Respectfully Submitted,

Alan Scott, Geophysicist

(604) 228 0237

SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

GEOPHYSICAL SURVEY PRODUCTION REPORT

page___of____

IPR11 Survey: pole dipole array a=25 and 75, n=1 and 2

Project No.: 9031 Client: KEEWATIN ENG. INC. Area: GJ, DEASE LAKE, B.C.

Date	Lines surveyed and comments	Production
	IP/mag L1000E/0-1600S	3125 meters IP
July 22	L880E/0-1525S	3125 meters mag
_		
Mon	IP/mag L760E/0-1525S	2575 meters IP
July 23	L640E/0-1050S	2575 meters mag
_	1	
Tues	IP/mag L1120E/375S-1850S	2025 meters IP
July 24	L1600E/375S-925S	2025 meters mag
	1	1
Wed	IP/mag L1600E/925S-1475S	2025 meters IP
July 25	L1840E/375S-1425S	625 meters mag
	IP L1960E/375S-800S	
Thurs	IP/mag L1240E/375S-1800S	2700 meters IP
July 26	L1360E/375S-1650S	2700 meters mag
		1
Fri	IP/mag L1480E/375S-975S	2950 meters IP
July 27	L1720E/375S-1425S	2950 meters mag
	L520E/0-1300S	
Sat	IP/mag L400E/0-1175S	2475 meters IP
July 28	L280E/0-1300S	2475 meters mag
		1

Sat		IP/mag	L600S/400E-1100W	1	2775 meters IP
Aug	18		L260W/0-1275S	1	2775 meters mag
		1		Totals	20650 meters IP
Rema	rks:				19250 meters mag
				1 1 1	
				Personnel:	S M T W T F S S
				Jim Hawkins	<u>r r r r r r r </u> <u>r</u>
				Scott Benson	ticiticiticiti ic
				Scott Bainbridge	
				Mitch Davies	<u> </u>
				Keewatin Personne	el:
				James Tashoots	p p p p p p p
				Kurt Kauss	p p p p p p
				Newton Carlick	
				1	
				r = receiver	t = transmitter
				p = pots	c = current
				s = standby	m = mob/demob
				d = data proc.	
Sign	ed:		adde	Date: Der	18/90

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I, Alan Scott, hereby certify the following statements regarding my qualifications and involvement in the program of work described in this report.

- 1. The work was performed by individuals sufficiently trained and qualified for its performance.
- 2. I own no interest in the property under consideration in this report, nor in the company on whose behalf this report has been written.
- 3. I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970, and with a Master of Business Administration degree in 1982.
- 4. I am a member of the B.C. Geophysical Society and of the Society of Exploration Geophysicists.
- 5. I have been praticing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

Alan Scott

APPENDIX XI

× ---

.

,.....

-

ν.

GJ Property Diamond Drill Logs

Keewatin Engineering Inc.

LOCATION:	KLASTINE PLATE 130°14'W 57°39'1			DRILL	HOLE LOG					HOLE N DDH-90-	÷.	PAGE N	NO. 1 of 9	
AZIM: 000 DIP: -45°		ELEV: 1514.86m/4970 (ft) LENGTH: 178.92m (587 ft)	r					PROPERTY: ASCOT GJ (INTERNATIONAL CURATOR OPTION)						
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO	D: GJ : L14E/9+	-00S				
STARTED: Augus COMPLETED: Au PURPOSE: Drill s I.P. anomaly and bedrock geochem	gust 30, 1990 ection through west of Cu-Au		93.57 178.92	000° 000°		-44.5° -41.5°		DATE LO		gust 28, 19 CON DRILL				
CORE RECOVERY		r						r			<u></u>			
METF	EAGE			SAMPLE	MET	REAGE	LENGTH		1	1	SAYS	T	r	
FROM	то	DESCRIPTION		NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)	
0.00	3.70	Casing												
3.70	5.45	Grey chert, crackled ≤1% plagioclase veining. : pyrite; fracture limonite common. Brecciated to interval.		GJ11201	3.70	6.00	2.30	246	32	30	1.2	93	38	
5.45	13.92	Brecciated; 80% sand; fault zone; intense orang clay; 10% brecciated grey chert with 1% fracture		GJ11202 GJ11203 GJ11204	6.00 9.00 12.00	9.00 12.00 15.00	3.00 3.00 3.00	363 882 1107	71 60 43	56 218 683	1.0 0.3 1.4	166 182 451	33 17 45	
13.92	17.10	Pervasive clay altered diorite (?); 4 - 5% dissem after mafics; limonite stained fractures; brecciat quartz and pyrite (15%). Veining @ 15.2 - 15.45 foliation @ 25° to Core Axis; (pyrite veining).	ed. Plagioclase -	GJ11205	15.00	18.00	3.00	979	77	269	1.8	319	53	
17.10	18.48	Brecciated grey chert; contact with intrusive is o @ 25° to Core Axis; quartz-plagioclase veining interval; approximately 4 - 5% pyrite as dissemi veins. Limonite stained fractures. Trace dissem in clay altered zone 17.10 - 17.60m. Dark mine hematite (red streak).	throughout nations and ninated malachite											
18.48	19.95	Clay altered diorite (as above); pinkish hue loca Limonite staining and minor disseminated mala fractures (limonite is pervasive adjacent to fract pyrite occurs mostly as veinlets with plagioclase also disseminated after mafics. Pyrite veining a (18.48 - 18.58m) @ 53° to Core Axis.	chite along ures). 3 - 4% selvages, but	GJ11206	18.00	21.00	3.00	1481	44	519	2.8	534	37	

. .

		DRILL HOLE L	.OG							E NO. 90-G01	PAGE	2 OF 9
METRE	AGE			MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
19.95	25.00	Clay altered siltstones with plagioclase/Kfeldspar veining. Bedding is 25° - 32° to Core Axis. Some laminae are pink (Kfeldspar altered?) and some are white (clay altered). Approximately 2 - 3% chalcopyrite/pyrite occur with a pink dolomite vein (selvages) @ 24.0m. Approximately 2 - 3% pyrite occurs throughout interval as fine disseminations and veinlets. Light olive green clay (23.00 - 23.90m) = sericite (?). NOTE: Tops are Up (sst ball and pillow into siltstone).	GJ11207	21.00	24.00	3.00	415	31	138	2.0	92	29
25.00	25.20	Clay altered diorite dyke. Mafics have altered to hematite and pyrite. Felsic grains have been altered to sericite. Approximatel y 2% pyrite occurs after mafics mostly, but also as veinlets. Dolomite vein @ 18° to Core Axis (barren).										
25.20	52.50	 Grey chert. Sericite alteration (25.20 - 25.40m) at contact with intrusive. Pink dolomite veins (1.0cm wide X 2) with approximately 5% chalcopyrite and approximately 7% pyrite occurring in the selvages and disseminated internally. Veins are 70° to Core Axis. Generally either mottled, bedded or brecciated. Very siliceous. Limonite stained fractures. 2% pyrite throughout. 27.3m = dolomite veins @ 52° to Core Axis. Minor pyrite 28.00-28.20m = dolomite vein (3mm wide) with 6% pyrite over this interval with hematite (cubic) 29.50-29.60m = open space dolomite vein. Trace malachite along fracture 30.10-30.30m = bedding @ 20° to Core Axis. Pyrite veinlets along it with dolomite selvages. Clay altered laminae 30.30-30.50m = dolomite breccia. Trace pyrite 33.50m = 2mm wide Kfeldspar vein @ 15° to Core Axis with dark envelopes 33.50-41.80m = abundant Kfeldspar vein gifts to core Axis, pyrite veinlets cross cut Kfeldspar veins (approximately 3 - 4% pyrite) 36.60m = dolomite vein (1cm) @ 70° to Core Axis, banded, but barren 42.0m = dolomite vein (1cm) @ 73° to Core Axis, banded, but barren 	GJ11208 GJ11209 GJ11210 GJ11211 GJ11213 GJ11214 GJ11215 GJ11216	24.00 27.00 30.00 33.00 39.00 42.00 45.00 48.00	27.00 30.00 33.00 39.00 42.00 45.00 48.00 51.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	641 451 295 210 243 415 336 322 337	61 67 38 20 22 41 5439 4534 24	302 2898 276 72 158 597 63 38 22	3.1 3.6 1.6 1.2 1.0 2.4 0.9 0.3 0.1	119 107 58 49 69 87 44 53 75	69 59 39 37 31 76 43 31 1

		DRILL HOL	E LOG			•				E NO. 90-G01	PAGE	3 OF 9
METRE	AGE		SAMPLE	MET	REAGE	LENGTH			ASS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm
25.20	52.50 Cont.	 45.10m = clay/Kfeldspar shear (0.5cm) @ 10° to Cc Axis. Quartz/pyrite veinlet cross cuts @ 29° Core Axis. Rock adjacent to these shears pervasively Kfeldspar altered. 45.30m = clay/Kfeldspar shear @ 15° to Core Axis (10° 46.30m = clay/Kfeldspar shear @ 8° to Core Axis (20° wide) 49.30m = clay/Kfeldspar shear @ 8° to Core Axis (21° wide) 49.70m = quartz/pyrite veinlet @ 30° to Core Axis (21° wide) 50.70m = clay shear @ 41° to Core Axis 51.88-52.00m = dolomite breccia with minor disseminat pyrite 	to is m m m									
52.50	60.58	Intrusive breccia and grey chert with small intrusive dykes (≤1c along shears (57.00 - 60.58M). Grey chert is brecciated fro 52.50m to 53.90m with an intrusive (diorite) matrix which is broc (clay and chlorite alteration). Approximately 1 - 2% pyrite occi as fine veinlets and disseminations, only in the chert fragment throughout the interval (52.50 - 60.58m). 54.20m = clay/pyrite shear (minor pyrite) @ 20° to CA Axis. Intrusive dykelets along same orientati (≤1cm wide) 54.50m = pyrite veinlet with quartz selvages (2mm wide) 64.55-55.15m = Brecciated grey chert with intrusive matrix Chloritized mafics and clay altered fels (flesh-coloured). 2 phases of pyrite:dolom vein @ 54.60m and 45° to Core Axis h disseminated pyrite and cross cuts pyr veinlets (approximately 2% of total) ± qua selvages 55.20m = 3cm wide dolomite vein with dark grey cl gouge and approximately 5 - 6% disseminate and blebby pyrite 55.20-60.58m = clay altered intrusive along shears (≤1cm wide with minor brecciation. Dolomite/pyrite a quartz/pyrite veins occur as follows: 57.95m = dolomite yein @ 36° to Core Axis 58.15m = dolomite yein @ 36° to Core Axis	m GJ11218 wn GJ11219 urs GJ11220 tts on ee ix. cs ite as ite rtz ay ed le) nd	51.00 54.00 57.00 60.00	54.00 57.00 60.00 63.00	3.00 3.00 3.00 3.00	202 411 318 681	10 31 15 15	24 52 13 16	0.3 0.9 0.4 0.7	46 268 71 98	15 85 14 47

		DRILL HOLE L	.OG	<u> </u>						E NO. 90-G01	PAGE	4 OF 9
METR	EAGE		SAMPLE	MET	REAGE		L		AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
52.50	60.58 Cont.	 59.00m = quartz/dolomite/pyrite vein @ 27° to Core Axis which cross cuts a 35° to Core Axis clay foliation 59.25m = dolomite/pyrite vein (2 - 3mm wide) @ 23° to Core Axis cross cuts a 49° to Core Axis clay foliation 59.60-59.90m = a pyrite/dolomite vein (6mm wide) is approximately 80% disseminated pyrite and occurs 7° to Core Axis 59.95m = clay foliation @ 34° to Core Axis 										
60.58	64.80	Grey silicified siltstone (quartzite). Displays a very mottled texture. Contains approximately 2 - 3% pyrite which occurs predominantly as veinlets ± quartz selvages. Later barren dolomite veins cross cut these. Pyrite ± quartz veinlets. The pyrite ± quartz veinlets cross cut another phase of pyrite veinlets which occur along bedding. The dolomite ± calcite veins cross cut bedding as well. Structural measurements are as follows: 62.10m = bedding at 8° to Core Axis 63.20m = quartz/pyrite (2mm wide) veinlet at 42° to Core Axis 64.20m = a dolomite vein at 37° to Core Axis (2mm wide) cross cuts and displaces a quartz/pyrite veinlet (3mm wide) which is @ 79° to Core Axis 60.90m = dolomite vein at 45° to Core Axis (2 - 3mm wide)	GJ11221	63.00	66.00	3.00	488	20	17	0.9	79	33
64.80	70.40	 Clay altered diorite (?) brecciating the quartzite (INTRUSIVE BRECCIA (?)). Clay altered intrusive dyke from 65.60-65.70m. Intrusive matrix is altered to clay (±sericite) and chlorite (mafics) except where sheared, then the mafics have altered to a soft brown mineral (clay + hematite?). Dolomite brecciates to quartzite as well locally. Dolomite veins cross cut all shearing and other veining. Structural measurements are as follows: 66.50m = dolomite/calcite vein (barren) is 3mm wide @ 38° to Core Axis 69.60m = quartz/pyrite veinlet (2mm) @ 65° to Core Axis. Overall approximately 2% pyrite occurs as dissemination and veinlets 	GJ11222	66.00	69.00	3.00	390	18	22	1.3	56	32

		DRILL HOLE L	.OG				•		1	E NO. 90-G01	PAGE	5 OF 9
METF	REAGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS	<u></u>	
FROM	то	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
70.40	77.15	Quartzite (siliceous/siltstone). Alteration minerals include clay, brown, grey (?), sericite, chlorite, quartz (chert). Pyrite veinlets occur along bedding. Dolomite veins (barren) cross cut all other veining and bedding. Minor clay altered intrusive bands along bedding. Approximately 2% pyrite overall as veinlets predominantly (some dissemination). Structure as follows: 70.50m = pyrite veinlet (1mm wide) cross cut by dolomite vein (2mm wide). Pyrite @ 17° to Core Axis; dolomite @ 30° 70.80m = dolomite/calcite vein (3 - 4mm wide) @ 32° to Core Axis 71.25-71.85m = small quartz/pyrite stockwork @ 20°/45° to Core Axis (barren) 72.10m = dolomite vein (26° to Core Axis (barren) 72.60m = pyrite veinlet (1mm wide) @ 22° to Core Axis, to Core Axis, etc. Average width = 2 - 3mm 72.10m = dolomite vein (26° to Core Axis (barren) 72.60m = pyrite veinlet (1mm wide) @ 22° to Core Axis 73.40m = quartz/dolomite/pyrite (approximately 5% pyrite) vein is 4 - 8mm wide and is @ 28° to Core Axis 73.70m = bedding @ 29° to Core Axis 75.20m = pyrite veinlet along foliation 73.70m = bedding @ 29° to Core Axis 75.30m = dolomite vein (3mm wide) cross cuts pyrite veinlets. It is 24° to Core Axis 76.55m = bedding 40° to Core Axis 76.55m = bedding 40° to Core Axis (hematite, green clav chlorite)	GJ11223 GJ11224 GJ11225	69.00 72.00 75.00	72.00 75.00 78.00	3.00 3.00 3.00	484 537 518	16 20 21	21 39 29	1.1 0.7 1.0	64 77 73	13 31 9
77.15	81.50 NOTE: oxid/reduct interface	Grey chert; crackled; minor brecciation locally with clay altered intrusive or dolomite (77.70 - 78.12m). No limonite staining below 81.80. Oxidation/reduction interface. Approximately 1 - 2% pyrite occurs as blebs,but more commonly as veinlets (≤1mm wide).	GJ11226	78.00	81.00	3.00	398	19	9	1.0	18	9

•

and the second second

		DRILL HOLE L	OG							E NO. 90-G01	PAGE	6 OF 9
METRE	AGE			METF	REAGE				ASS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
81.50	90.25	 Diorite dyke. Moderate sericitic alteration with minor to moderate Kfeldspar alteration (81.50 - 85.00m). Intense Kfeldspar alteration (85.00 - 86.95m). Intense biotite alteration, magnetite, ± chlorite (86.95 - 97.77m). Clay altered with mafics ~ biotite and felsics to sericite (87.77 - 90.25m). Quartz veins occur with pyrite veinlet cores; these are cross cut by dolomite veins (barren). Structural measurements are as follows (average = approximately 3% pyrite disseminated and veins): 82.50m = dolomite vein (2 - 3mm) @ 360 to Core Axis 83.90-84.00m = quartz/dolomite/pyrite vein (10cm wide) with approximately 5% blebby pyrite occurs @ 35° to Core Axis 85.05m = dolomite vein @ 75° to Core Axis (2mm) cross cuts a 2mm wide quartz/pyrite vein @ 36° to Core Axis 86.70m = a 3mm dolomite/chlorite vein @ 47° to Core Axis 87.77m = 5 - 6mm wide quartz veins with pyrite veinlet cores @ 20° to 38° to Core Axis 88.84m = dolomite vein (3mm) @ 50° to Core Axis 89.55m = pink dolomite vein (10cm) 	GJ11227 GJ11228 GJ11229	81.00 84.00 87.00	84.00 87.00 90.00	3.00 3.00 3.00	1535 1276 2456	22 19 12	16 22 27	1.3 1.3 2.0	352 288 590	14 1 6
90.25	100.65	Grey chert, mottled. Some potassic altered zones (Kfeldspar, biotite). Moderate Kfeldspar alteration (90.25 - 96.15m) and intense to moderate biotitic alteration (96.15 - 100.65m). Quartz/pyrite veins are cross cut again by dolomite veins (barren). Approximately 5% pyrite occurs throughout the interval mostly as veinlets but also as disseminations. Structural measurements are as follows: 91.75m = quartz/pyrite vein (4mm) @ 37° to Core Axis 92.20m = dolomite vein (1cm) @ 22° to Core Axis 92.55m = quartz/dolomite/pyrite vein (6mm) @ 14° to Core Axis 98.25m = dolomite vein (2mm) @ 39° to Core Axis 98.70m = bedding @ 14° t Core Axis	GJ11230 GJ11231 GJ11232 GJ11233	90.00 93.00 96.00 99.00	93.00 96.00 99.00 102.00	3.00 3.00 3.00	1049 834 965 807	27 29 24 17	37 93 45 33	1.2 1.3 1.4 1.5	190 136 204 133	29 58 75 30

A set of the maximum set of the set of the

1

1

٦.

		DRILL HOLE L	OG				,			E NO. 90-G01	PAGE	7 OF 9
METRE/	AGE		SAMPLE	METF	REAGE	LENGTH			ASS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	TO	LENGIH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppr
100.65	108.00	FAULT ZONE = abundant clay gouge. Grey chert fragments brecciated by dolomite from 101.75 to 102.62m and 104.00 to 106.30m. Intrusive fragment (?) or dyke (?) from 107.20 to 107.67m. Chalcopyrite approximately 1.0% (0.3% copper) from 104.00 - 106.30m. Abundant grey clay (sulphide rich pyrite?) and local green clay (fuchsite? maripozite?) from 106.30m to 107.15m (approximately 8 - 10% pyrite). Also grey clay from 100.65 - 101.30m. Fault is @ 54° to Core Axis at the beginning of the interval. Fault is 52° to Core Axis @ 112.80m and 48° to Core Axis @ end of interval (108.00m)	GJ11234 GJ11235	102.00 105.00	105.00 108.00	3.00 3.00	3957 3409	21 20	25 38	3.4 3.6	865 958	26 15
108.00	128.40	Grey and pink silicified siltstone (quartzite). Approximately 2% pyrite as veinlets, minor disseminated. Crackle breccia with dolomite from 108.00m to 108.83m. Some laminae altered by Kfeldspar; mottled (108.83 - 111.55m) = intense Kfeldspar alteration. Minor Kfeldspar alteration from 111.55 - 114.65m. Fault breccia from 113.73m to 114.00m. Bedded with moderate to intense Kfeldspar alteration (114.00 - 120.40m) Mottled grey and pink chert with low to moderate potassic alteration (Kfeldspar, biotite). Dolomite veins cross cut quartz/pyrite veining again. Structural measurements as follows: 109.15m = bedding (Kfeldspar bands) @ 39° to Core Axis 111.00m = bedding (Kfeldspar bands) @ 52° to Core Axis 112.50m = bedding @ 30° to Core Axis 116.90m = bedding @ 30° to Core Axis 116.90m = bedding @ 46° to Core Axis 119.50m = Kfeldspar bands @ 54° to Core Axis 125.40m = bedding @ 46° to Core Axis 126.10m = dolomite vein along foliation @ 40° to Core Axis 126.80m = bedding @ 45° to Core Axis 126.80m = bedding @ 45° to Core Axis 128.30m = dolomite veinlet with 4mm wide Kfeldspar selvages (1cm total) @ 41° to Core Axis	GJ11236 GJ11237 GJ11238 GJ11240 GJ11241 GJ11212	108.00 111.00 114.00 120.00 123.00 126.00	111.00 114.00 117.00 123.00 126.00 129.00	3.00 3.00 3.00 3.00 3.00 3.00	751 528 636 684 1029 1024 731	15 13 17 29 19 22	36 19 48 93 55 26 37	1.1 1.1 0.7 1.8 3.0 1.5 1.0	95 30 43 38 67 71 26	35 67 64 41 66 49 59

and the second second

1

]

		DRILL HOLE L	.0G							E NO. 90-G01	PAGE	8 OF 9
METRE	AGE		SAMPLE	METI	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm
128.40	129.90	DIORITE DYKE with Kfeldspar alteration. Mostly primary Kfeldspar. Approximately 0.5 - 1.0% chalcopyrite occurs in quartz veinlets @ 40° to Core Axis (128.80m). Minor chlorite altered fragments. Upper contact @ 56° to Core Axis. Lower contact @ 42° to Core Axis. Approximately 2% pyrite occurs as blebs and veinlets.										
129.90	178.96 EOH	 Grey quartzite; mottled Kleidspar bands (after beds). Varying degrees of potassic alteration (Kfeldspar, biotite). 129.90-136.48m = Kfeldspar bands along bedding @ 55° to Core Axis. @ 134.00m Pyrite vein (3mm wide) @ 75° to Core Axis. @ 132.00m and 134.40m. Another pyrite/dolomite vein (5mm) @ 82° to Core Axis. @ 136.00m approximately 2 - 3% pyrite mostly as veins and blebs; minor dissemination throughout, 129.90 - 136.48m 136.48-136.70m = Intense Kfeldspar alteration along bands of varying orientations (approximately 45° to Core Axis). Approximately 3% pyrite, disseminated 136.70-144.10m = grey chert; minor bedding approximately 2% pyrite as fine disseminations and veinlets. 138.30 - 138.45m = dolomite brecciation. 141.10m = dolomite pyrite vein (4mm wide). Quartz/pyrite veinlet (1mm) at 77° to Core Axis @ 141.75m. 142.40 - 142.55m = dolomite/chlorite vein @ 46° to Core Axis 144.10-149.10m = Abundant Kfeldspar alteration bands. Approximately 1 - 2% pyrite as veinlets and disseminations. Dolomite vein @ 12° to Core Axis @ 147.00m (5mm wide). Quartz/pyrite vein (1mm wide) @ 15° to Core Axis @ 148.50m 149.10-153.35m = grey chert; slightly mottled by minor Kfeldspar bands. 3cm wide clay zone (sericite + green clay (maripozite? fuchsite?) @ 152.00m. ≤1% pyrite. 	GJ11243 GJ11244 GJ11245 GJ11247 GJ11247 GJ11248 GJ11250 GJ11251 GJ11252 GJ11253 GJ11254 GJ11255 GJ11256 GJ11257 GJ11258 GJ11259	129.00 132.00 135.00 141.00 144.00 150.00 156.00 156.00 162.00 165.00 168.00 171.00 174.00 177.00	132.00 135.00 138.00 141.00 147.00 150.00 153.00 156.00 165.00 165.00 168.00 171.00 174.00 177.00 178.96 EOH	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	907 509 681 1388 792 986 1014 823 889 354 482 537 697 379 541 255 165	24 52 19 22 18 15 18 21 18 16 15 19 17 11 14 11	28 39 37 38 33 44 24 87 43 28 24 30 27 30 36 38 48	1.6 1.5 2.8 1.5 0.8 0.8 1.0 1.2 0.5 1.1 1.1 1.1 0.7 1.1 0.8 0.4	92 72 65 79 37 68 60 37 107 32 85 73 101 39 77 36 18	131 63 29 38 39 22 10 15 28 21 31 44 37 29 25 30 1

		DRILL HOLE L	0G							E NO. 90-G01	PAGE	9 OF 9
METRE	AGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm
129.90	178.96 EOH Cont.	 152.85-153.00m = dolomite breccia with dark bands of graphite (?) and minor pyrite veinlets (70° to Core Axis) 153.00-178.92m = low to moderate Kfeldspar alteration; moderate to intense biotite alteration (or carbon ?) producing a mottled grey/black chert. Some chlorite is associated with the biotite. Approximately 1% pyrite occurs disseminated and as veinlets. 1cm wide dolomite vein @ 59° to Core Axis @ 158.80m. Cuartz/pyrite (3% pyrite) vein (5mm wide) @ 18° to Core Axis @ 161.20m. This is cross cut by a dolomite vein which runs @ 40° to Core Axis (2 - 3mm wide). Dolomite vein (1cm wide) @ 47° to Core Axis. (164.30m. 168.80m = dolomite/pyrite vein @ 33° to Core Axis. 172.70 - 172.80m = brown clay and chlorite with slickensides also occur @ 172.20 - 172.30m, 173.70 - 173.85m and 174.10 - 174.25m. A 2mm dolomite vein occurs @ 45° to Core Axis at 173.90m. A quartz/dolomite/pyrite vein occurs at 55° to Core Axis (0.5cm wide) @ 175.00m. Pyrite vein (3mm) at 86° to Core Axis at 175.20m. EOH at 178.96m 		12.00 81.00 102.00	21.00 93.00 108.00	9.00 12.00 6.00	1189 1579 3683		490 26 32	2.0 1.5 3.5	435 355 912	45 13 21
				120.00	126.00	6.00	1027	24	41	2.3	69	58

the second s

) ·

LOCATION:	KLASTLINE PLATI 130°14'W 57°39'N			DRILL	HOLE LOG					HOLE NO		PAGE	NO. 1 of 7
AZIM: 000 DIP: -45°		ELEV: 1,554.48m 5,100 ft. LENGTH: 181.05m (594 ft.)						PROPERT	Y: ASCOI	r gj (intef	RNATIONAL		R OPTION)
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO		GJ L14E/4+00	S		
STARTED: COMPLETED: PURPOSE:	August 31, 1990 September 2, 199 Drill section throu Geochern High	0 gh I.P. Anomaly & West of Cu-Au Bedrock	94.18 179.53	000 000		-43.5° -44.0°		LOGGED DATE LOO DRILLING ASSAYED	GED: S CO: I	D. MEHNEF September FALCON DI MIN-EN LAI	3, 1990 RILLING		
CORE RECOVER		I											
METR	EAGE	DESCRIPTION		SAMPLE	MET	REAGE	LENGTH		r	AS	SAYS		<u> </u>
FROM	то			NO.	FROM	TO		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
0.00	5.79	Casing											
5.79	6.63	Equigranular, medium grained biotite diorite; pen replacement of feld; bio primary (?) = 10-15%; ve strong orange limonite colour; 3% QV up to 7mm to core axis; trace disseminated Pyrite + Chalcop 1-3mm calcite veins cross-cut QV	ry blocky core; wide @ 7-10°	GJ11260	5.79	9.00	3.21	306	21	33	0.5	70	1
6.63	16.12	Equigranular monzodiorite; 5-8% mafics appear c indistinct (crystal shapes) as opposed to above; s tinge to groundmass; strongly magnetic; 20-25%, crystals set in pink groundmass; trachytic; 5% cal 30°-60° to core axis up to 7mm; typically ≤2mm; chalcopyrite; trace fracture hematite; trace dissen pyrite; < < 1% quartz veins; trace fracture malachi	trong "pink" 1-2mm plag cite fracture @ trace fracture ninated chalco-	GJ11261 GJ11262 GJ11263	9.00 12.00 15.00	12.00 15.00 18.00	3.00 3.00 3.00	259 467 173	18 22 15	22 34 46	0.2 0.8 0.8	45 89 2	1 23 1
16.12	23.47	Core broken and very blocky; orange limonite cor Note contact is fault zone; covers core from appro 15.37-16.33; diorite pebbles in clay matrix. Mediu equigranular biotite diorite (as 5.79-6.63); some cl mafics (retrograde?); 3-5% calcite fractures usuall to core axis; typically ≤1mm; strongly magnetic; e filling and veinlets with 2-4mm Kfeldspar envelope 18.35-21.50m (≤2%); before epidote/Kfeldspar vei pervasively clay attered; where Kfeldspar epidote	oximately Im grained, nlorite alt. of y @ 35° to 50° upidote fracture es occur at ns, rock is	GJ11264 GJ11265	18.00 21.00	21.00 24.00	3.00 3.00	208 339	23 22	47 30	1.1 1.2	38 306	3

KEEWATIN ENGINEERING INC.

			OG							E NO. 90-G02	PAGE	2 OF 7
METRE	AGE	DESCRIPTION	SAMPLE	METR	REAGE	LENGTH			ASS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	(m)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppn
16.12	23.47 Cont.	start getting less distinct mafics, some plag phenos and pink groundmass - appears to be either secondary Kfeldspar alt or gradational to monzodiorite to 23.47m. <1% pyrite disseminated throughout. Fault @ 21.42-23.47m; clay gouge, calcite veins and cave; fault @ 05° to core axis; weak limonite confined to fracture.										
23.47	26.78	As above; medium grained pervasively alt. equigranular diorite but with ½% disseminated and fractured pyrite, chloritized mafics, thin chlorite selvages on some fractures and 5% fracture; vein and disseminated calcite; weak fracture limonite.	GJ11266	24.00	27.00	3.00	273	19	28	1.4	1500	6
26.78	37.31	Hornblende monzodiorite (?); chloritized mafics (50%); medium grained porphyritic; pink tinge to groundmass; gradational from diorite(?); plag phenos ≤11½mm; 20%-25% of rock; rock very magnetic, plag phenos altered to clay; < 1% disseminated and fractured pyrite with trace of disseminated Chalcopyrite; fractures @ 45° to core; some with weak limonite; Kfeldspar envelopes on 1 calcite-chlorite-pyrite vein.	GJ11267 GJ11268 GJ11269 GJ11270	27.00 30.00 33.00 36.00	30.00 33.00 36.00 39.00	3.00 3.00 3.00 3.00	333 345 386 235	19 19 19 20	27 30 38 26	0.9 0.8 0.7 0.6	104 121 135 76	1 10 1 29
		 @ 29.61m, got 7mm quartz vein @ 48° to core axis; it contains 5% Pyrite, trace chalcopyrite and 1-2% calcite. NB: @ 33.22-34.3°, feldspars show trachytic texture and are perpendicular to core axis. 3.7mm calcite vein @ 58° to core axis @ 34°30'; shows tylotic texture, fracture chlorite and hematite = ≤1% but is evident throughout. 										
37.31	40.55	As above but core crackled, broken with 3-5% calcite fracture filling; 1% quartz veining; >1% pyrite; rare traces Chalcopyrite; @ 39.65-39.69 is brecciated, bedded/vein pyrite (70%) - Calcite (25% - chlorite (5%) @ 60° to core axis; calcite fracture cut quartz veins - ground limonite stained core @ 40.26 to 40.55 - base of oxide (limonite) is 40.55	GJ11271	39.00	42.00	3.00	228	25	24	0.7	47	1

-

KEEWATIN ENGINEERING INC.

		DRILL HOLE L	.OG							E NO. 90-G02	PAGE	3 OF 7
METRE	AGE			MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH (m)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
40.55	42.37	Same medium grained, weakly porphyritic, relatively equigranular, hornblende monzodiorite with pink groundmass, chloritized mafics, highly magnetic; 3% calcite fractures and 1% calcite in groundmass; calcite fracture typically @ 75° to core axis.										
42.37	49.69	As above but crackled with 5-7% irregular calcite vein filling and 1- 2% local calcite flooding of groundmass. 43.02-43.19 is fault gouge/clay; becomes weakly to non-magnetic to 49.15, then strongly magnetic; pink tinge of groundmass is reduced; trace of disseminated pyrite.	GJ11272 GJ11273 GJ11274	42.00 45.00 48.00	45.00 48.00 51.00	3.00 3.00 3.00	328 539 519	20 20 18	26 29 34	1.1 1.4 1.0	84 52 54	4 1
49.69	54.19	Medium grained, equigranular to porphyritic hornblende monzodiorite; strongly magnetic; <<1% hematite on fractures; local (<<1% overall) vein epidote	GJ11275	51.00	54.00	3.00	704	24	40	4.4	498	43
		51.57-52.40 = 50% irregular calcite veining; <<1% disseminated pyrite										
54.19	57.55	Broken, blocky core with light grey-white clay with bluish tinge along fractures; quartz veining <1%. Same monzodiorite but mafics largely indistinct; strongly magnetic; - ½ to 1% fracture/vein chalcopyrite occurs with quartz veining and along hairline fractures @ 035° to core axis; also in 2-4mm calcite veins and in fractures with hematite-pyrite (<1%) having 2-4mm K-spar envelopes; < <1% fractured pyrite.	GJ11276 GJ11277	54.00 55.50	55.50 57.00	1.50 1.50	1925 1043	17 14	27 29	0.9 0.8	426 295	1 1
		Calcite fractures with chalcopyrite @ 10-30° to core axis; some of these veins reach up to 0.5cm and contain hematite and actinolite (?).										
		53.40 to 54.20 = 10% calcite veins with 3% chalcopyrite; <1% hematite, <1% pyrite, 15% actinolite and ±2-4mm K-spar envelopes.										
		Common rock fractures at 060° and 040° to core axis.										
57.55	62.87	Same unit as above but with only traces of chalcopyrite; calcite fracture filling is ≤2%; equigranular, partly porphyritic hornblende monzodiorite; very magnetic; < <1% fractured pyrite; trace of epidote along fractures; trace disseminated pyrite and rare speck chalcopyrite; @ 60.10-60.66 get 1cm wide pyrite vein with accessory chlorite (3%), calcite (5-10%) and red hematite; cuts core @08° to core axis; non-magnetic. Ground core @ 61.60-61.80	GJ11278 GJ11279 GJ11280 GJ11281	57.00 58.50 60.00 61.50	58.50 60.00 61.50 63.00	1.50 1.50 1.50 1.50	831 572 786 903	18 13 21 14	26 32 38 44	0.7 0.7 1.7 2.0	202 173 121 118	1 1 1

		DRILL HOLE L	OG							E NO. 90-G02	PAGE	4 OF 7
METRE	EAGE		0000	METR	EAGE				ASS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	TO	LENGTH (m)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
62.87	72.00	 62.28 -62.87 = 15% pyrite veining; 3 to 5mm with calcite and chlorite; cutscore @ 10° to core axis; pink tinge to groundmass is less common. Broken core (along calcite fracture) @ 62.87-64.25. Calcite veining irregular to 1.5cm @ 64.60-67.00 = 8%. Equigranular diorite??; pink tinge in groundmass could be Fe stain; strongly magnetic; Blocky, well fractured with 5% calcite fracture @ 58° to core axis; trace disseminated/fractured pyrite and rare disseminated chalcopyrite; unit is more "patchy" in its pink colour; feldspars to clay and chloritization of mafics; gradational change from monzodiorite (?) or variation in alteration 	GJ11282 GJ11283 GJ11284	63.00 66.00 69.00	66.00 69.00 72.00	3.00 3.00 3.00	478 452 654	22 22 19	45 33 38	1.7 1.1 0.8	74 16 118	1 1 1
72.00	81.37	intensity; red hematite on fractures. Occasional quartz veins at 25-35° to core axis; ≤3mm wide; contain traces of pyrite and chalcopyrite; unit appears to be medium grained equigranular diorite; chlorite after mafics and on fracture; distinct calcite-chlorite fractures with envelopes of Kfeldspar @ 35° to core; trace of disseminated and fractured pyrite; rare fractured/disseminated chalcopyrite; very magnetic. 1 to 2% epidote veinlets; pyrite veinlets are either with calcite/	GJ11285 GJ11286 GJ11287 GJ11288 GJ11289 GJ11290	72.00 73.50 75.00 76.50 78.00 79.50	73.50 75.00 76.50 78.00 79.50 81.00	1.50 1.50 1.50 1.50 1.50 1.50	529 760 550 4764 3332 721	14 26 25 23 17 22	42 66 41 75 238 38	0.6 1.3 0.8 3.8 7.0 1.6	103 225 135 2300 1300 217	27 89 1 5 9
		Kfeldspar fractures or epidote. @ 77.7, get 11mm chalcopyrite vein (95%) with quartz cutting rock @ 035° to core axis; parallel to quartz veins and Kfeldspar-chlorite- calcite fractures; later calcite fractures cross-cut quartz veins. From 77.7 to 81.37 unit becomes increasingly crackled with depth; irregular "crackle" calcite ~8-10%; 2% quartz veining; 1-2% fracture and breccia infill, fine grained pyrite.										
81.37	83.82	Fault; brecciated, clay gouge, ground core; calcite fracture filling common (5%)	GJ11291	81.00	84.00	3.00	570	21	35	1.1	41	9
83.82	96.50	Medium grained equigranular diorite; 10% calcite "crackle", fracture filling and 5% quartz and plag feldspar and chlorite salvages; veining to 85.0.	GJ11292 GJ11293 GJ11294 GJ11295	84.00 87.00 90.00 93.00	87.00 90.00 93.00 96.00	3.00 3.00 3.00 3.00	266 237 260 281	15 17 22 17	45 45 80 48	1.2 1.2 1.7 0.9	37 29 62 31	1 1 21

))

		DRILL HOLE L	.OG							E NO. 90-G02	PAGE	5 OF 7
METRE	AGE		SAMPLE	MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH (m)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
83.82	96.50 Cont.	Very magnetic; clay altered feldspars, chloritized mafics; trace of disseminated pyrite and fractured red hematite.										
		Original (relict) mafics were partly biotite (?). Weak, patchy epidote.										
		88.08-96.50 increasing "crackle", fracturing with 10% quartz-feldspar vein filling and 5% calcite filling; associated with << 1% vein pyrite.										
		<<1% fracture and disseminated pyrite; weak but local vein Kfeldspar and fracture chlorite.		- - - -								
		Fault gouge and clay @ 92.80-92.96.										
96.50	100.74	Light grey quartzite, 6-8%, 1-2mm white calcite filled fractures sub- parallel and at 35° to core axis; includes inlier or raft of diorite @ 97.56-97.85.	GJ11296 GJ11297	96.00 99.00	99.00 102.00	3.00 3.00	734 519	26 24	249 279	1.7 1.7	90 72	53 1
		< < 1% fracture pyrite and trace of disseminated chalcopyrite.										
100.74	105.90	Medium grained equigranular diorite-hornblende ± biotite; mottled; patchy chlorite-epidote alteration; 8-10% crackle/fracture calcite; magnetic; < < 1% fractured/disseminated pyrite.	GJ11298	102.00	105.00	3.00	719	15	61	0.7	245	1
105.90	110.03	Light grey quartzite; mottled, fractured; hint of bedding; common fracture @ 55° to core axis.	GJ11299 GJ11300	105.00 108.00	108.00 111.00	3.00 3.00	809 193	22 21	95 47	1.2 0.7	76 2	20 75
		Core blocky @ 108.90-110.03.										
110.03	117.00	Some quartzite but definite bedding; blocky core; trace pyrite; bedding @ 040° to core axis. It consists of brown siltstone beds with more massive but fractured quartzite.	GJ11301 GJ11302	111.00 114.00	114.00 117.00	3.00 3.00	226 211	25 16	89 59	1.0 1.2	6 4	55 78
		115.26-115.32 - brecciated quartzite with 30% creamy feldspar veining and 1% pyrite veining.										
117.00	120.42	As above; bedded siltstones with massive but fractured light grey quartzite; bedding @ 030° to core axis; core very fractured with 6-8% cream to cream pink feldspar filling fractures; most fractures \leq 4mm and @ 60-70° to core axis; locally brecciated. < 1% fracture and vein pyrite.	GJ11303	117.00	120.00	3.00	173	20	55	1.1	3	69

		DRILL HOLE L	.0G				``````````````````````````````````````			E NO. 90-G02	PAGE	6 OF 7
METRE	AGE	DESCRIPTION	SAMPLE	METR	EAGE	LENGTH			ASS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	TO	(m)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
120.42	121.36	Brecciated, mottled limestone skarn; silicified; feldspar and late calcite veining; 3-5% bedded and vein pyrite. Margins of interval are siliceous.	GJ11304	120.00	121.50	1.50	919	24	104	2.0	36	33
121.36	123.55	Similar to 117.00-120.42; bedded; more chert with change to pale grey with cream-green tinge; <1% fractured pyrite; still quartzite. 1 to 2% calcite veining; 1% feldspar fractured filling.	GJ11305	121.50	123.00	1.50	121	14	51	1.3	4	32
123.55	129.03	35% pale cream feldspar veining, the follopal machine during (?), often bedding parallel and up to 15cm wide; traces of pale green clay or mica within these zones (fuchsite) - crackled.	GJ11306 GJ11307	123.00 126.00	126.00 129.00	3.00 3.00	165 229	10 21	67 60	1.2 0.4	2 1	1 46
129.03	155.83	Grey quartzite; well bedded (grey-brown siltstones ≤6cm beds) @ 53° to core axis; blocky broken core; crackled locally; ≤1% calcite fracture filling; traces of fracture pyrite. Weak "mottling"; clay is common on fractures; by 149, bedding is	GJ11308 GJ11309 GJ11310 GJ11311 GJ11312 GJ11313	129.00 132.00 135.00 138.00 141.00	132.00 135.00 138.00 141.00 144.00 147.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00	205 154 171 147 178 154	10 11 15 11 12	106 47 61 38 43 31	1.3 0.7 0.6 0.7 0.3 0.5	94 1 3 2 2	1 43 1 28 18 20
		absent.	GJ11313 GJ11314 GJ11315 GJ11316	144.00 147.00 150.00 153.00	147.00 150.00 153.00 156.00	3.00 3.00 3.00 3.00	211 276 505	19 17 17	20 32 36	0.3 0.9 1.5	8 2 1	20 27 42 49
155.83	157.00	Medium grained, porphyritic diorite; 2-3mm "acicular" hornblende phenocrysts, plag crystals are corroded; groundmass is pink; magnetic; <1% pyrite on fractures; weakly to moderately trachytic; seems "relatively" fresh.	GJ11317	156.00	159.00	3.00	350	16	34	1.2	4	29
157.00	176.33	Some grey quartzite; massive; common fracture @ 045° to core axis; bedding not evident; core broken and blocky. @ 160.00, start developing faint pink colour to quartzite locally (secondary K-spar alteration??). Pyrite increases to ½% locally.	GJ11318 GJ11319 GJ11320 GJ11321 GJ11322	159.00 162.00 165.00 168.00 171.00	162.00 165.00 168.00 171.00 174.00	3.00 3.00 3.00 3.00 3.00	733 339 271 252 299	19 15 16 12 24	62 48 47 44 37	2.0 1.1 0.7 0.9 1.8	488 16 2 1 2	42 47 20 2 108
		@ 160.90, get fractured chalcopyrite (5% over 10cm). Bedding starts again @ 166m with brown, biotite(?) rich siltstone interbedded with grey to pinkish chert quartzite; bedding @ 040° to core axis; rock mottled and fractured with white/cream feldspar fracture filling (3%).										

لىكە بىرىمە دەپىرە بەر بەرۇلەر بەرۇرىيە بەرەپىرىيە بىرى بەرۇپىيە بەرەپىيە بەرەپىيە بىرى بەرەپىيە بەرەپىيە بەرە

}

		DRILL HOLE L	.OG							E NO. 90-G02	PAGE	7 OF 7
METRE	AGE	DECODIDION	SAMPLE	MET	REAGE	151051			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	TO	LENGTH (m)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppn
176.33	181.05	 @ 176.33-176.92 is pervasively altered diorite porphyry dyke; feldspar phenos show trachytic texture, are ≤1½mm and are totally altered to clay; no mafics; most leached, some to chlorite (<3%). Dyke contains trace to ½% chalcopyrite disseminated and 1-2% disseminated and fractured pyrite. 1½mm chalcopyrite-pyrite veinlet @ 180.60m; after dyke, unit is grey quartzite with ≤½% fractured pyrite; get olive green clay (1%) 	GJ11323 GJ11324 GJ11325	174.00 177.00 180.00	177.00 180.00 181.05	3.00 3.00 1.05	538 439 369	18 19 14	79 31 18	1.3 1.4 1.1	2 10 2	26 21 45
176.33	181.05 Cont.	on fractures and locally carbon on fractures; no bedding. Crackled with <1% fracture calcite and 3% fracture feldspar filling or veining. Weakly mottled. End of hole.										
		<u>ASSAYS</u> :	GJ11266 GJ11288 GJ11289	24.00 76.50 78.00	27.00 78.00 79.50	3.00 1.50 1.50					0.045 oz/t 0.064 oz/t 0.037 oz/t	
		SIGNFICANT MINERALIZED INTERVALS		54.00 76.50	57.00 79.50	3.00 3.00	1484 4084	16 20	28 157	0.9 5.4	361 800	1 3

1

KEEWATIN ENGINEERING INC.

37

and the second second

LOCATION:	KLASTLINE PLATE 130°14'W 57°39'N			DRILL	HOLE LOG					HOLE N DDH-90-		PAGE	NO. 1 of 10
AZIM: 000° DIP: -45°		ELEV: 1472.18m/4830 (ft) LENGTH: 188.67m (619 ft)		(DIP TEST			PROPERI	TY: ASCO	ſ GJ (INTEI	RNATIONAL		₹ OPTION)
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO	D: GJ : L14E/14	+00S			
STARTED: Septer COMPLETED: Se PURPOSE: Drill se geochem high.	ptember 5, 1990	anomaly and west of Cu-Au bedrock	94.18 185.62	000° 000°		-45° -45°		DATE LO		ptember 6, CON DRILL			
CORE RECOVERY					METREAGE			r	- 4. <u>.</u> .				
METR	METREAGE DESCRIPTION			SAMPLE	MET	REAGE	LENGTH		r	AS	SAYS	1	
FROM	то			NO.	FROM	то		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
0.00	5.79	Casing											
5.79	23.73	Grey chert contains pyrite veinlets and cross-cuttin veinlets. Dolomite brecciation from 10.35m to 10. clay altered albite vein from 13.45m to 14.15m wit contacts as veins as well as throughout this sub-in (approximately 5% pyrite). Sericite alteration foun 20.30m to 21.03m. Abundant limonite along fracti throughout the main interval as well as approxima pyrite as veinlets mostly structural measurements $8.95m =$ dolomite veinlets ($\leq 1mm$) @40 13.55m = U. contact with albite vein @1 13.75m = pyrite vein (1-7mm) @46° to C 14.34m = L. contact with albite vein @1 15.70m = 15° bedding to Core Axis with 20.90m = 1cm brxx. dolomite vein @ 60	70m. Slightly h pyrite at terval d locally from ures tely 2-3% as follows:) ^o to Core Axis i ^o to Core Axis core Axis j ^o to Core Axis pyrite veins	GJ11326 GJ11327 GJ11328 GJ11329 GJ11330 GJ11331	5.79 9.00 12.00 15.00 18.00 21.00	9.00 12.00 15.00 18.00 21.00 24.00	3.21 3.00 3.00 3.00 3.00 3.00	124 100 111 152 187 176	14 17 19 17 15 11	55 35 49 64 40 65	.7 .8 1.1 .9 1.0 1.1	43 67 45 38 49 182	31 36 38 43 38 24
23.73	34.40	Silicified siltstone (quartzite). Alteration minerals in dolomite, sericite, clay minerals, pyrite and K-felds vein selvages). Approximately 6-7% pyrite occurs veins throughout the interval. Limonite occurs on fractures. Dolomite occurs along bedding; dolomi cross-cut bedding. Approximately 8-12% pyrite oc from 30.30m to 30.60m. K-feldspar occurs as selv	spar (as pyrite as blebs and most ite veins also scurs as blebs	GJ11332 GJ11333 GJ11334 GJ11335	24.00 27.00 30.00 33.00	27.00 30.00 33.00 36.00	3.00 3.00 3.00 3.00	96 44 82 83	14 17 8 23	135 62 128 119	1.5 1.0 1.2 1.3	164 96 117 141	15 9 1 24

and the second second

.

KEEWATIN ENGINEERING INC.

	DRILL HOLE L	.OG				_				PAGE	2 OF 10
EAGE		CAMPLE	MET	REAGE			.	AS	SAYS		
то	DESUMPTION	NO.	FROM	то		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppn
34.40 Cont.	veins. Structural measurements are as follows: 24.50m = 1cm wide dolomite/pyrite vein @22° to Core Axis 25.80m = bedding (sericite/dolomite/pyrite) @0-5° to Core Axis 30.75m = albite/sericite ??? @16° to Core Axis (with pyrite veins ≤2mm) 31.80m = pyrite/K-feldspar vein along ??? @22° to Core Axis 32.90m = 4mm wide dolomite vein @36° to Core Axis 33.60m = sericite/dolomite/pyrite altered ??? @19° to Core Axis										
37.70	Grey chert. Minor dolomite/pyrite veining. Approximately 2% pyrite as veinlets throughout interval. Abundant limonite along fractures. Minor biotite alteration (pervasive, fine grained) from 36.27m to 37.70m. Very broken; low RQD, making structural measurements difficult.	GJ11336	36.00	39.00	3.00	98	13	74	1.0	60	19
43.72 NOTE: Oxide/ reduction zone interface @43.00m	Brecciated grey chert. Mostly a crackle breccia with a dolomite matrix (fragments are in situ-no rotation). Minor foliation where not brecciated. Oxid/reduction zone interface is @43.00m due to the absence of limonite staining below this depth. Approximately 3% pyrite occurs throughout the interval as veins and blebs. 38.25m = 3cm wide foliated sericite zone @22° to Core Axis 39.20m-39.40m = intense pervasive biotite alteration 42.00m = bedding with pyrite veins parallel @ 60° to Core Axis	GJ11337 GJ11338	39.00 42.00	42.00 45.00	3.00 3.00	69 129	18 14	29 49	1.0 0.9	39 120	81 23
81. 9 9	 Pink to grey, altered intrusive (monzodiorite). Grain size ranges from fine to coarse (intrusive breccia) to undistinguishable (mottled attered). Alteration types include K-feldspar/clay; biotite; and quartz/carbonite/pyrite. Moderate dolomite veining occurs with and without pyrite. 43.72-56.82m = K-feldspar and clay altered zone (moderately altered) approximately 2% pyrite as veins and dissemination 	GJ11339 GJ11340 GJ11341 GJ11342 GJ11343 GJ11344 GJ11345 GJ11346 GJ11347	45.00 48.00 51.00 57.00 60.00 63.00 66.00 69.00	48.00 51.00 54.00 57.00 60.00 63.00 66.00 69.00 72.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	97 107 149 171 147 140 151 149 158	15 11 13 13 11 18 19 23 10	21 21 22 17 50 317 149 22	0.9 0.8 0.8 0.8 0.7 1.1 1.2 0.9	235 218 246 164 98 71 70 73 80	1 17 1 1 8 1 1 2 1
	34.40 Cont. 37.70 37.70 NOTE: Oxide/ reduction zone i n t e r f a c e @43.00m	TO DESCRIPTION 34.40 veins. Structural measurements are as follows: 24.50m = 1cm wide dolomite/pyrite vein @22° to Core Axis 25.80m = bedding (sericite/dolomite/pyrite) @0-5° to Core Axis 30.75m = albite/sericite ??? @16° to Core Axis (with pyrite veins 52mm) 31.80m = pyrite/K-feldspar vein along ??? @22° to Core Axis 32.90m = 4mm wide dolomite vein @36° to Core Axis (with pyrite veins 52mm) 31.80m = pyrite/K-feldspar vein along ??? @19° to Core Axis 33.60m = sericite/dolomite/pyrite altered ??? @19° to Core Axis 37.70 Grey chert. Minor dolomite/pyrite veining. Approximately 2% pyrite as veinlets throughout interval. Abundant limonite along fractures. Minor biotite alteration (pervasive, fine grained) from 36.27m to 37.70m. Very broken; low ROD, making structural measurements difficult. 43.72 Brecciated grey chert. Mostly a crackle breccia with a dolomite the active double alteration (pervasive, fine grained) from 36.27m to 37.70m. Very broken; low ROD, making structural measurements difficult. 43.72 NOTE: Oxide/ reduction zone in t e r f a c e @43.00m Brecciated grey chert. Mostly a crackle breccia with a dolomite matrix (fragments are in situ-no rotation). Minor foliation where not brecciated. Oxid/eduction zone interface is @43.00m due to the antrix (fragments are in situ-no rotation). Minor foliation where not brecciated. Oxid/eduction zone interface is @43.00m due to the aspyrite occurs throughout the interval as veins and blebs. 38.25m = 3cm wide foliated sericite zone @22° to Core Axis 39.20m-39.40m = intense pervasive biotite alter	TO DESCRIPTION SAMPLE NO. 34.40 Cont. veins. Structural measurements are as follows: 24.50m = 1cm wide dolomite/pyrite vein @22° to Core Axis 25.80m = bedding (sericite/dolomite/pyrite) @0-5° to Core Axis 30.75m = albite/sericite ??? @16° to Core Axis (with pyrite veins s2mm) 31.80m = pyrite/K-feldspar vein along ??? @22° to Core Axis 32.90m = 4mm wide dolomite vein @36° to Core Axis 33.60m = sericite/dolomite/pyrite altered ??? @19° to Core Axis 33.60m = sericite/dolomite/pyrite altered ??? @19° to Core Axis 37.70 Grey chert. Minor dolomite/pyrite veining. Approximately 2% pyrite as veinlets throughout interval. Abundant limonite along fractures. Minor biotite alteration (pervasive, fine grained) from 36.27m to 37.70m. Very broken; low ROD, making structural measurements difficult. GJ11336 43.72 Brecciated grey chert. Mostly a crackle breccia with a dolomite matrix (fragments are in situ-no rotation). Minor foliation where not brecciated. Oxid/reduction zone interface is @43.00m due to the brecciated. Oxid/reduction zone interface is @43.00m due to the 2.00m = bedding with pyrite veins parallel @ 60° to Core Axis GJ11337 81.99 Pink to grey, altered intrusive (monzodiorite). Grain size ranges from fine to coarse (intrusive breccia) to undistinguishable (mottled altered). Atteration types include K-feldspar/day, biotite; and quartz/carbonite/pyrite. Moderate dolomite veining occurs with and without pyrite. GJ11334 GJ11341 GJ11342 GJ11344 GJ11345 GJ11345	EAGE DESCRIPTION SAMPLE NO. MET TO DESCRIPTION SAMPLE NO. FROM 34.40 Cont. veins. Structural measurements are as follows: 24.50m = tem wide dolomite/pyrite vein @22° to Core Axis SAMPLE NO. FROM 30.05m = bedding (sericite/dolomite/pyrite) @0-5° to Core Axis Core Axis Guita Structural pyrite vein s 22nm) Guita Structural 31.80m = pyrite //Fidbpar vein along ??? @22° to Core Axis Guita Structural 33.60m = cericite/dolomite/pyrite altered ??? @19° to Core Axis Guita Structural Guita Structural measurements difficult. Guita Structural Guita Structural gravite for course functupenture the interval as veins and blebs. Guita Structural Guita Structural gravite for Course Axis Structural measurements are in sub-no rotation. Approximately 3% Guita Structural gravite for Course Axis Structurate the interval as veins and blebs. Guita Structural Guita Structural gravite for Course Axis Structurate the course functupentute in interval as veins and bl	EAGE DESCRIPTION SAMPLE NO. METREAGE TO DESCRIPTION SAMPLE NO. FROM TO 34.40 Cont. veins. Structural measurements are as follows: 24.50m = 1 cm wide dolomite/pyrite or @22° to Core Axis SAMPLE FROM TO 34.40 Cont. 24.50m = 1 cm wide dolomite/pyrite in @22° to Core Axis Software Software	BEAGE DESCRIPTION SAMPLE NO. METREAGE LENGTH TO 0 0 0 TO TO LENGTH 34.40 Cont. veins. Structural measurements are as follows: 24.50m = 1cm wide dolomite/pyrite vein @22° to Core Axis 0 TO TO LENGTH 34.40 Cont. veins. Structural measurements are as follows: 24.50m = bedding (sericite/dolomite/pyrite) @0.5° to Core Axis 0 5 1 TO LENGTH 30.75m ablic/sericite 777 @16° to Core Axis (with pyrite serients difficult. 0 Core Axis 5 </td <td>DESCRIPTION SAMPLE NO. METREAGE LENGTH TO DESCRIPTION SAMPLE NO. METREAGE LENGTH 34.40 Cont. veins. Structural measurements are as follows: 24.50m = 1 ton wide dolomite/pyrite vein @22° to Core Axis SAMPLE NO. TO LENGTH 35.40 Cont. 24.50m = 1 ton wide dolomite/pyrite vein @22° to Core Axis Status Status Status Status 30.75m abbit/selosite ??? @15° to Core Axis Status Status Status Status Status 37.70 Grey chert. Minor dolomite/pyrite veining. Approximately 2% pyrite as veinlets throughout interval. Abundant limonite along fractures. Minor boitoits altereation (peravise, ince grained) from 38.27m to 37.7m. Very broken; low FQD, making structural measurements difficult. GJ11336 36.00 39.00 3.00 99 NOTE: Oxide/ i n t ef a c e @43.00m Brecciated grey chert. Mostly a crackle breccia with a dolomite write coarse intraces and blobs. GJ11337 39.00 42.00 3.00 129 81.99 Pink to grey, altered intrusive (monzodiorite). Grain size ranges from fine to coarse (nitrusive brocciated ondistinguishable (mottled altered). Approximately 3% pyrite occurs altow (seclider) veining accurs with quarty/carbonite/pyrite. GJ11339 45.00</td> <td>EAGE DESCRIPTION SAMPLE NO. METREAGE LENGTH Current Current pm Current pm Pb ppm 34.40 Cont. veins. Structural measurements are as follows: 24.50m = 1 cm wide dolomite/pyrite wing 022° to Core Axis 30.75m = abity beins 277 015° to Core Axis (with 31.80m = prints X-fieldspar vein along 77? 022° to Core Axis 33.60m = sericity/dolomite/pyrite veining. Approximately 2% pyrite as veines throughout interest. Abundant limonte along fractures. Minor botime attered 777 015° to Core Axis GJ11335 36.00 39.00 3.00 98 13 37.70 Free Coaled graduates. Minor botime attered on thread. Abundant limonte along fractures. Minor botime attered from disc27m to 37.70m. Veg broken, low ROD, making structural matrix (figments are in situ-no rotation). Minor foliation where not botime is along 30.00 30.00 98 13 MOTE: Oxide/ reduction zone graduate Same of informite staring boty this degrad. Approximately 3% pyrite occurs throughout the interval. Abundant limonte along fractures. Minor botime atternis devent interval. Abundant limonte along fractures. Minor botime atternis devent limonte along with pyrite winis parallel @ 60° to Core Axis GJ11337 39.00 42.00 3.00</td> <td>DDH- DEXCRIPTION METREAGE DDH- METREAGE TO METREAGE LENGTH Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan= forma </td>	DESCRIPTION SAMPLE NO. METREAGE LENGTH TO DESCRIPTION SAMPLE NO. METREAGE LENGTH 34.40 Cont. veins. Structural measurements are as follows: 24.50m = 1 ton wide dolomite/pyrite vein @22° to Core Axis SAMPLE NO. TO LENGTH 35.40 Cont. 24.50m = 1 ton wide dolomite/pyrite vein @22° to Core Axis Status Status Status Status 30.75m abbit/selosite ??? @15° to Core Axis Status Status Status Status Status 37.70 Grey chert. Minor dolomite/pyrite veining. Approximately 2% pyrite as veinlets throughout interval. Abundant limonite along fractures. Minor boitoits altereation (peravise, ince grained) from 38.27m to 37.7m. Very broken; low FQD, making structural measurements difficult. GJ11336 36.00 39.00 3.00 99 NOTE: Oxide/ i n t ef a c e @43.00m Brecciated grey chert. Mostly a crackle breccia with a dolomite write coarse intraces and blobs. GJ11337 39.00 42.00 3.00 129 81.99 Pink to grey, altered intrusive (monzodiorite). Grain size ranges from fine to coarse (nitrusive brocciated ondistinguishable (mottled altered). Approximately 3% pyrite occurs altow (seclider) veining accurs with quarty/carbonite/pyrite. GJ11339 45.00	EAGE DESCRIPTION SAMPLE NO. METREAGE LENGTH Current Current pm Current pm Pb ppm 34.40 Cont. veins. Structural measurements are as follows: 24.50m = 1 cm wide dolomite/pyrite wing 022° to Core Axis 30.75m = abity beins 277 015° to Core Axis (with 31.80m = prints X-fieldspar vein along 77? 022° to Core Axis 33.60m = sericity/dolomite/pyrite veining. Approximately 2% pyrite as veines throughout interest. Abundant limonte along fractures. Minor botime attered 777 015° to Core Axis GJ11335 36.00 39.00 3.00 98 13 37.70 Free Coaled graduates. Minor botime attered on thread. Abundant limonte along fractures. Minor botime attered from disc27m to 37.70m. Veg broken, low ROD, making structural matrix (figments are in situ-no rotation). Minor foliation where not botime is along 30.00 30.00 98 13 MOTE: Oxide/ reduction zone graduate Same of informite staring boty this degrad. Approximately 3% pyrite occurs throughout the interval. Abundant limonte along fractures. Minor botime atternis devent interval. Abundant limonte along fractures. Minor botime atternis devent limonte along with pyrite winis parallel @ 60° to Core Axis GJ11337 39.00 42.00 3.00	DDH- DEXCRIPTION METREAGE DDH- METREAGE TO METREAGE LENGTH Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan="6" Colspan= forma		

i.

METREAGE FROM TO 43.72 81.99 Cont		DESCRIPTION	SAMPLE NO.		REAGE				AS	SAYS		
43.72 81.99	-	DESCRIPTION						-				
		An ·		FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppi
	43.72-50.85m = 49.15m = 50.85-56.82m = 53.60m = 55.80m = 56.82-66.00m = 56.82-66.00m = 63.35m = 64.05m = 65.15m = 65.40-65.50m = 66.70m = 66.00-69.20m =	matrix (plag phenos) = intrusive breccia. Fragments have altered to K-feldspar clay or sericite. 2cm wide dolomite/pyrite vein (30% pyrite) @ 31° to Core Axis medium grain monzodiorite with moderate secondary K-feldspar. Approximately 4-5% pyrite occurs as veins and blebs. Minor fragments. dolomite vein (3mm wide) @ 43° to Core Axis dolomite vein (3mm wide) @ 43° to Core Axis dolomite vein (3mm wide) @ 43° to Core Axis dolomite vein (4mm) and K-feldspar bands @ 32° to Core Axis pink and dark grey diorite with patch K- feldspar alteration (low to moderate). Plagoclasts has altered to clay minerals (sericite?). Patchy alteration along with patches of quartz/dolomite/pyrite produces a "pseudo-fragmental" appearance. Approximately 3-4% pyrite occurs as fine disseminations and veinlets as well as blebs with quartz/dolomite/pyrite patch (approximately 6-8% pyrite/10cm) dolomite veinlets (\$1.5mm) @ 80° to Core Axis 1cm wide fault gouge with 50% pyrite @ 81° to Core Axis dolomite/pyrite patch with 10% pyrite/10cm 3mm wide dolomite/pyrite vein @ 15° to Core Axis	GJ11350 GJ11351	78.00 81.00	81.00 84.00	3.00	198 219	16 13	16 26	1.1 1.1	63 118	1 4

			DRILL HOLE LO	OG							E NO. 90-G03	PAGE	4 OF 10
METRE	AGE		DESCRIPTION	SAMPLE	MET	REAGE				AS	SAYS		
FROM	TO .			NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	A: PP
43.72	81.99 Cont.	NOTE: 67.50m = 67.70m = 69.10m = 69.20-74.80m = 70.30m = 74.60m = 74.60m = 74.80-81.99m = 75.40m = 76.20-76.30m = 76.70m = 76.70m = 77.80m = 79.50m = 81.20m =	Approximately 4-5% pyrite, overall as disseminations and in veins dolomite vein (3mm) @ 52° to Core Axis pyrite veinlets along foliation @ 14° to Core Axis cross cut by dolomite vein (8mm) @ 79° to Core Axis (57mm wide) over 7cm (25% veining) pink and dark grey altered diorite (patchy). Quartz/dolomite/pyrite patches occur with K-feldspar selvages. Dolomite/pyrite veins cross cut barren dolomite veins. Plag has altered to clay minerals (sericite?). Approximately 4-5% pyrite as disseminations and veining as well as blebs in patches (dolomite/quartz). dolomite/pyrite vein (2mm) @ 67° to Core Axis dolomite/pyrite vein (2mm) @ 67° to Core Axis dolomite/pyrite vein (2mm) @ 16° to Core Axis is cross cutting barren dolomite veins @ 74° to Core Axis dolomite/pyrite. Alteration is pervasive (not patchy) and is mostly clay alteration with local sericitic alteration. Minor K-feldspar secondary after fragments (?) and as selvages to dolomite/pyrite/sericite/feldspar patch (parallel to Core Axis?) dolomite/pyrite veins are cross cut by barren dolomite veins. dolomite/pyrite sericite/feldspar patch (parallel to Core Axis?) dolomite vein (3mm) @ 20° to Core Axis dolomite/pyrite set well dolomite vein (3mm) @ 43° to Core Axis dolomite vein (4mm) @ 15° to Core Axis dolomite vein (4mm) @ 15° to Core Axis dolomite vein (4mm) @ 15° to Core Axis dolomite vein (4mm) @ 60° to Core Axis dolomite vein (4mm) @ 60° to Core Axis dolomite vein (2m) @ 60° to Core Axis										

		DRILL HOLE L	.OG							E NO. 90-G03	PAGE	5 OF 10
METR	EAGE			MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
81.99	100.20	Light pink to grey altered monzodiorite. Clay alteration is less intense, but is pervasive (plag → clay). Mafics have altered to chlorite. Small patches of K-feldspar resemble a fragmental appearance but are most likely just zones of complete replacement. 94.00 - 97.00m = very minor K-feldspar, mostly altered to clay, chlorite and calcite. Approximately 3-4% pyrite as v e in lets and blebs/disseminated patches of pyrite/dolomite/quartz/epidote/calcite occur from 81.99-88.25m. Structural orientations as follows: 82.30m = dolomite veins (2-5mm) @ 22° and 42° to Core Axis 82.45m = dolomite veins (2-5mm) @ 22° to Core Axis 82.45m = dolomite breccia vein (2mm) @ 76° to Core Axis (minor pyrite) 86.30m = pyrite/dolomite/quartz/pyrite vein (approximately smm) @ 7° to Core Axis 87.00m = dolomite vein (approximately 1cm) @ 20° to Core Axis 87.30m = dolomite vein (2mm) @ 32° to Core Axis 87.30m = dolomite vein (2mm) @ 32° to Core Axis 87.30m = dolomite vein (2mm) @ 32° to Core Axis 87.30m = dolomite vein (2mm) @ 32° to Core Axis 93.25m = dolomite vein (2mm) @ 32° to Core Axis 93.25m = dolomite vein (2mm) @ 32° to Core Axis 93.25m = dolomite vein (2mm) @ 32° to Core Axis 93.25m = dolomite vein (2mm) @ 49° and 65° to Core Axis 94.00m = dolomite vein (2-4mm) @ 49° and 67° to Core Axis 99.50m = dolomite vein (2-4mm) @ 49° and 67° to Core Axis 99.50m = dolomite vein (2-4mm) @ 49° and 67° to Core Axis 99.50m = dolomite vein (2-4mm) @ 49° and 67° to Core Axis 99.50m = dolomite vein (2-4mm) @ 49° and 67° to Core Axis	GJ11352 GJ11353 GJ11354 GJ11355 GJ11356 GJ11357	84.00 87.00 93.00 96.00 99.00	87.00 90.00 93.00 96.00 99.00 102.00	3.00 3.00 3.00 3.00 3.00	237 222 236 152 573 424	11 8 19 16 13 10	30 19 16 21 24 26	0.7 1.0 0.8 1.0 1.3	64 62 109 97 558 398	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100.20	109.50	Pink, K-felspar altered monzodiorite/diorite (?). Intense K-feldspar flooding with mafics altered to pyrite. Approximately 5-6% pyrite as disseminated blebs (after mafics) and as minor interstitial blebs/veinlets. A fault zone occurs from 103.95m to 106.18m which contains abundant grey clay gouge and dolomite/pyrite veining (approximately 6-7% pyrite). Green clay occurs along fractures from 106.30m to 108.50m. Structural measurements are as follows:	GJ11358 GJ11359 GJ11360	102.00 105.00 108.00	105.00 108.00 111.00	3.00 3.00 3.00	830 344 292	9 10 12	10 10 18	1.4 1.6 1.6	585 183 113	1 1 9

;

1

		DRILL HOLE L	.OG				,	<u> </u>		E NO. 90-G03	PAGE	6 OF 10
MET	REAGE		SAMPLE	MET	REAGE	LENGTH	L		AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppr
100.20	109.50 Cont. NOTE: Cpy	102.40m = 1mm wide dolomite veinlet @ 40° to Core Axis 106.18m = lower contact of fault @ 43° to Core Axis 106.30-106.40m = intense sericitic alteration 106.42m = 3mm wide dolomite vein @ 62° to Core Axis 108.25m = 25cm dolomite vein @ 52° to Core Axis 108.80m = dolomite vein at 30° to Core Axis with minor cpy (.5%/10cm) ≤7mm width each (2); barren dolomite vein (1cm) @ 54° to Core Axis										
109.50	129.30	 Pink to dark green altered sandstone (?). 111.35 - 111.90m is a propyliticly altered (chlorite/calcite) diorite dyke (non-foliated). 109.50 - 114.30m is intensely altered by K-feldspar (exluding above dyke). From 114.30 to 118.60m is moderately propyliticly altered mostly by K-feldspar (chlorite, pyrite, calcite). Dolomite veining occurs (barren) as well as interstitial dolomite/pyrite. Structural measurements are as follows: 110.90m = dolomite vein (4mm) @ 75° to Core Axis 111.00-111.10m = green clay (Mariposite/Fuchsite?) approximately 80% 113.30m = dolomite/pyrite vein (2mm) @ 33° to Core Axis; pyrite vein (1-2mm) @ 26° to Core Axis; 113.60m = 28° bedding (K-feldspar/chlorite bands); dolomite/pyrite vein (2mm) @ 44° to Core Axis 113.90m = bedding @ 190° to Core Axis 114.20m = calcite/chlorite/pyrite vein (4mm) @ 43° to Core Axis 115.60m = dolomite vein (3mm) @ 63° to Core Axis 115.60m = dolomite vein (3mm) @ 53° to Core Axis 117.15m = dolomite vein (3mm) @ 54° to Core Axis; bedding @ 23° to Core Axis (chlorite/K-feldspar) 118.40m = dolomite vein (3mm) @ 42° to Core Axis NOTE: Diorite dykes at the following intervals: 120.5 - 121.0m; 113.55-113.70m; 126.25 - 127.90m. Moderate propylitic alteration (chlorite and calcite and pyrite) and secondary K-feldspar from 118.60m to 129.30m. Approximately 2-3% pyrite occurs from 109.50 to 129.30m (entire interval) as fine disseminations mostly as well as veins. 	GJ11361 GJ11362 GJ11363 GJ11364 GJ11366 GJ11366 GJ11367	111.00 114.00 120.00 123.00 126.00 129.00	114.00 117.00 120.00 123.00 126.00 129.00 132.00	3.00 3.00 3.00 3.00 3.00 3.00	272 311 255 333 255 325 403	11 10 16 12 9 22 13	19 22 24 26 33 25 22 22	1.1 1.2 1.1 0.8 0.8 1.0	109 104 58 108 94 64 75	1 21 1 6 1 2 4

and the second secon

. 1

		DRILL HOLE L	.OG							E NO. 90-G03	PAGE	7 OF 10
METRE	AGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM	TO	DESCRIPTION	NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppi
109.50 129.30	129.30 Cont. 129.68	 120.75m = dolomite vein (2mm) @ 46° to Core Axis 119.4-119.6m = dolomite brecciation; minor pyrite 121.80m = dolomite vein (1.5cm) @ 60° to Core Axis 122.75m = dolomite vein (3mm) @ 67° to Core Axis 124.00m = dolomite vein (3mm) @ 67° to Core Axis 124.35m = dolomite vein (1mm) @ 45° to Core Axis 125.00m = bedding (chlorite/K-feldspar) @ 0° to Core Axis 125.26m = 1cm wide dolomite vein @ 55° to Core Axis 126.50m = dolomite veins (5 X 1-4mm) @ 60° to Core Axis 127.30m = pyrite/dolomite veins (2 X 1mm) @ 35° and 17° to Core Axis Propyliticly (calcite, mafics → hematite and chlorite) altered and K-feldspar altered monzonite dyke. Medium grained; subequigranular (grains approximately 0.5-1.0mm). Approximately 3-4% pyrite occurs as fine disseminations and disseminations in dolomite veins. 129.50 = 4mm dolomite/pyrite vein @ 32° to Core Axis with a 1.0mm dolomite vein. This dyke contains 0.5- 										
129.68	141.95	 1.0% magnetite. Pink to dark green altered sandstone (?). Fine grained; equigranular zones of intense K-feldspar alteration alternating with propylitic alteration (chlorite, dolomite, calcite and pyrite). Dolomite brecciates intensely K-feldspar altered, intrusive from 133.00 to 133.30m. Fault gouge from 133.01 - 133.90m + (grey). Intensely K-feldspar altered from 135.40 to 136.80m. Dolomite veining occurs ± pyrite. Structural measurements are as follows: 30.10m = quartz/pyrite veins (3mm) @ 29° displaced by dolomite veins 132.17m = 5mm dolomite vein @ 52° to Core Axis 137.30m = 2mm dolomite vein @ 49° to Core Axis 139.15m = 25° to Core Axis orientation of bedding 140.40m = quartz/pyrite vein (3mm) @ 10° to Core Axis 	GJ11368 GJ11369 GJ11370 GJ11371	132.00 135.00 138.00 141.00	135.00 138.00 141.00 144.00	3.00 3.00 3.00 3.00	431 894 859 559	17 19 21 12	22 20 19 21	1.5 1.3 1.2 1.1	103 230 167 146	1 14 1 12

.

1 1 1

.

		DRILL HOLE L	.OG			·	.			E NO. 90-G03	PAGE	8 OF 10
METREA	GE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
129.68	141.95 Cont.	141.90m = bedding @ 190° to Core Axis NOTE: Aproximately 1-2% pyrite throughout interval as disseminations and veinlets.										
141.95	157.70	Altered sandstone with bands of chlorite and K-feldspar. Fine grained; equigranular. Abundant fine grained, equigranular, propyliticly altered, magnetic, diorite dykes. Propylitic alteration consists of chlorite, carbonate and pyrite. These dyke intervals are: 142.2 - 142.85m; 143.5 - 148.9m; 151.9 - 151.45m. Structural measures are as follows: 143.50m = 3mm dolomite vein @ 47° to Core Axis 144.00m = 2mm dolomite vein @ 68° to Core Axis 146.00m = 1mm dolomite/pyrite vein @ 26° to Core Axis 146.70m = 4-5mm quartz/pyrite vein @ 72° to Core Axis 146.70m = aclite/pyrite vein @ 17° to Core Axis 148.40m = calcite/pyrite vein @ 18° to Core Axis 150.15m = K-feldspar/chlorite (bedding) @ 38° to Core Axis 151.40m = calcite/pyrite vein @ 48° to Core Axis 153.64m = 1cm wide dolomite/chlorite vein @ 59° to Core Axis 153.90m = 2mm wide dolomite/chlorite vein @ 59° to Core Axis 157.40m = dolomite/pyrite vein (3mm) @ 19° to Core Axis	GJ11372 GJ11373 GJ11374 GJ11375 GJ11376	144.00 147.00 150.00 153.00 156.00	147.00 150.00 153.00 156.00 159.00	3.00 3.00 3.00 3.00 3.00	385 507 444 387 350	13 15 19 18 8	23 25 28 26	0.9 1.3 0.5 0.9 1.2	139 192 140 85 52	3 9 1 19 1
157.70	158.65	Off-white granodiorite (?) dyke with approximately 25% quartz and abundant plagioclase (tonalite?); Very unaltered with minor clay alteration of plag and minor secondary chlorite. Approximately 1% finely disseminated pyrite occurs. A slight pinkish hue locally suggests minor K-feldspar alteration. Upper contact @ 13° to Core Axis; lower contact @ 27° to Core Axis.										
158.65	175.66	Pink to dark grey altered microdiorite. Zones of intense K-feldspar alteration occur as well as zones of intense propylitic alteration (chlorite, carbonate, pyrite ± epidoe, ± hematite). Sericite/K- feldspar alteration at contact from 158.65m to 159.30m. Propylitic alteration from 159.30m to 166.70m with minor local K-feldspar	GJ11377 GJ11378 GJ11379 GJ11380 GJ11381	159.00 162.00 165.00 168.00 171.00	162.00 165.00 168.00 171.00 174.00	3.00 3.00 3.00 3.00 3.00 3.00	259 282 156 550 346	9 16 18 16 25	29 26 41 61 182	1.0 1.1 1.3 1.5 1.6	44 23 20 59 108	1 1 6 1 70

the second se

1

•

		DRILL HOLE	LOG			I				E NO. 90-G03	PAGE	9 OF 10
METRE	AGE	DESCRIPTION	SAMPLE	METF	REAGE	LENGTH			AS	SAYS		
FROM	то		NO.	FROM	то	LENGIA	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppi
158.65	175.66 Cont.	alteration. Intense K-feldspar alteration from 166.70m to 168.25m. Patchy and locally foliated K-feldspar and propylitic alterations from 168.25m to 175.66m with approximately 4-5% pyrite mostly finely disseminated (minor pyrite as veins and interstitial blebs). The first part of the main interval (158.65m to 168.25m) contains approximately 2% pyrite mostly occurring as fine disseminations (minor veins.) Pyrite occurs in quartz/calcite and dolomite veins; dolomite veins (barren) cross cut both of the above. Structural measurements as follows: 160.75m = 3mm pyrite vein @ 24° to Core Axis 161.50m = dolomite veins (1mm, 7mm) @ 43° to Core Axis 165.05m = 2mm dolomite vein with chlorite selvages @ 53° to Core Axis 168.35m = pyrite/calcite vein (2mm) @ 25° to Core Axis 169.40-169.65m = patch of prophylitic alteration = abundant calcite/pyrite (10-12%)/dolomite/chlorite 170.65m = 3cm quartz/calcite/pyrite vein @ 49° to Core Axis 173.80m = quartz/calcite/pyrite vein @ 49° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.50m = 2mm quartz/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis 175.40m = 2cm dolomite/pyrite vein @ 26° to Core Axis		174.00	177.00	3.00	500	20	83	1.4	130	8
175.66	177.70	Pink, white and black speckled propyliticly altered quartz, monzodiorite (?) with moderate secondary K-feldspar. Propylitic assemblage includes chlorite, carbonate and pyrite. This intrusive (zenolith) is likely a boulder consummed by the rising pluton at depth. The unit is equigranular, medium grained (approximately 1-3mm). Chill margins are slightly noticeable in the surrounding intrusive. Approximately 6-7% pyrite occurs as disseminated blebs mostly (minor veins). Some pyrite has pseudomorphed augite and plag phenos. Secondary K-feldspar has pseudomorphed as well. Veining is as mentioned previously. Structural measures are as follows: 176.15m = 1mm dolomite vein @ 58° to Core Axis 177.40m = 5mm dolomite vein @ 71° to Core Axis 177.70m = 3mm calcite/pyrite vein @ 34° to Core Axis										

· · · · · ·

	<u>.</u>	DRILL HOLE L	.0G							E NO. 90-G03	PAGE	10 OF 10
METRI	EAGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	·	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
177.70	188.67 EOH	Light pink to dark green intensely altered microdiorite. Local zones of K-feldspar and propylitic alteration (chlorite, calcite, pyrite, and epidote) occur. Abundant dolomite veining occurs with some local brecciation at these intervals: 178.85 - 179.00m; 179.90 - 180.00m; 180.70 - 180.85m; 185.65 - 185.85m. A zenolith occurs from 179.00 to 179.90m as described above (175.66 - 177.70m). Structural measures are as follows: 178.90m = dolomite breccia and veins (5cm) @ 71° to Core Axis 180.30m = dolomite/pyrite/hematite vein (5mm) @ 7° to Core Axis displaced by a barren dolomite vein (5mm) @ 62° to Core Axis 183.65m = quartz/pyrite/dolomite vein (4mm) @ 66° to Core Axis 187.00m = dolomite vein (0 - 8mm) @ 0° to Core Axis 188.20m = quartz/pyrite vein (2mm) @ 33° is displaced by dolomite vein (3mm) @ 35° to Core Axis NOTE: Approximately 2% pyrite throughout as fine dissemination and in veins. END OF HOLE @ 188.67M CASING PULLED NO SIGNIFICANT MINERALIZED INTERVALS	GJ11383 GJ11384 GJ11385 GJ11386	177.00 180.00 183.00 186.00	180.00 183.00 186.00 188.67	3.00 3.00 3.00 3.00	388 333 257 248	33 25 16 19	445 548 29 40	2.3 3.1 1.3 0.9	102 182 63 40	81 32 1 2

LOCATION:	KLASTLINE PLATE 130°14'W 57°39'N			DRILL	HOLE LOG					HOLE N DDH-90-		PAGE	NO. 1 of 7
AZIM: 000° DIP: -44°		ELEV: 1563.62m/5130 (ft) LENGTH: 195.99m (643 ft)	,					PROPERT	Y: ASCO	r gj (intei	RNATIONAL	. CURATOR	OPTION)
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.				+00S			
STARTED: Septem COMPLETED: Sep PURPOSE: To test	tember 8, 1990	ur anomaly and copper showing	97.23 192.94	000° 000°		-43° -43.5°		DATE LO	GGED: Se CO: FAL	ptember 12 CON DRILL			
CORE RECOVERY: METRE			<u> </u>		MET	REAGE		1		AS	SAYS		
FROM	то	DESCRIPTION		SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ац ррб	As ppm
0.00	5.18	Casing		0.1									
5.18	28.05	Grey quartzite with minor local bedding. Abundar veining with some brecciation zones. ≤0.5% pyrite as fine disseminations; abundant limonite staining fractures. Foliated from 13.36m to 14.32m by albi (approximately 6-7% pyrite along bedding). Dolor zone from 16.17 to 17.33m. Crackle breccia (dolo from 17.33 to 28.05m. Structural measurements a 9.25m = bedding (dolomite/sericite/chi 35° to Core Axis 11.70m = dolomite veins (2 X 4mm) @ 2 Axis 12.00m = 2.5mm pyrite vein @ 8° to Coi 19.60m = 3mm dolomite vein @ 33° to G 27.10m = 3mm dolomite vein @ 66° to G	e throughout a along ite/pyrite mite breccia mite matrix) is follows: lorite/pyrite) @ 29° to Core re Axis Core Axis	GJ11387 GJ11388 GJ11389 GJ11390 GJ11391 GJ11392 GJ11393 GJ11394	5.18 9.00 12.00 15.00 18.00 21.00 24.00 27.00	9.00 12.00 15.00 21.00 24.00 27.00 30.00	3.82 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Cu Pb ppm pm pm< pm< pm< pm< <thp< td=""><td>153 26 22 56 17 44 39 43</td><td>1.0 .8 .5 1.3 1.4 1.2 1.3 1.0</td><td>2 5 2 1 2 2 24</td><td>52 7 18 1 24 24 24 24 24</td></thp<>	153 26 22 56 17 44 39 43	1.0 .8 .5 1.3 1.4 1.2 1.3 1.0	2 5 2 1 2 2 24	52 7 18 1 24 24 24 24 24	
28.05	49.80	Brecciated grey quartzite with a dolomitic matrix. breccia in places. ≤0.5% pyrite as blebs or veins; limonite on most fractured surfaces. Local areas been sericiticly altered and chloriticly altered. Fau occurs from 43.30 - 43.50m and 47.45 - 47.50m. / monzodiorite dyke (?) occurs from 48.20m to 48.4 measurement as follows: 31.75m = 8mm dolomite vein @ 25° to 0 40.55m = 3mm dolomite vein @ 15° to 0	moderate (minor)have It gouge (grey) A clay altered 5m. Structural Core Axis	GJ11395 GJ11396 GJ11397 GJ11398 GJ11399 GJ11400 GJ29001	30.00 33.00 36.00 39.00 42.00 45.00 48.00	33.00 36.00 39.00 42.00 45.00 45.00 51.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00	103 72 108 79 107	10 24 19 12 17	122 72 34 31 39 50 89	1.3 1.2 1.8 2.1 2.2 1.8 1.8	18 28 12 2 6 4 30	1 35 1 1 33

		DRILL HOLE L	.0G							E NO. 90-G04	PAGE	2 OF 7
METF	REAGE			METF	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
49.80	64.05 N O T E : oxidation zone limit @ 58.9m	Grey quartzite; some occurs as a dolomitic crackle breccia and there are minor bedded sections found locally. Beds altered by clay minerals and pyrite (approximately 5%) from 52.00 to 52.73m. Abundant limonite along fractures until 58.09m = oxidation/reduction interface. 20.5% pyrite occurs mostly as veinlets (trace disseminated). Slight pinkish and light green hues suggest some low intensity Kfeldspar or seriticized alteration found locally. Structural measurements as follows: 52.50m = pyrite/clay foliation @ 20° to Core Axis 54.88m = dolomite vein @ 22° to Core Axis (3mm) 58.00m = dolomite vein @ 22° to Core Axis (3mm) 58.00m = dolomite vein (1 - 8mm) at 55° to Core Axis 60.05m = pyrite/dolomite vein (1 - 8mm) at 55° to Core Axis is cross cut by a barren dolomite vein @ 28° to Core Axis 63.50m = dolomite vein (3mm) @ 52° to Core Axis 63.60m = dolomite vein (3mm) @ 37° to Core Axis 63.75m = pyrite veining (1mm) @ 45° to Core Axis 63.75m = pyrite veining (1mm) @ 45° to Core Axis 54.60m = minor Kfeldspar intrusive 52.50m = no Kfeldspar. Bedded with pyrite/clay 54.60m = moderate Kfeldspar ateration bands	GJ29002 GJ29003 GJ29004 GJ29005 GJ29006	51.00 54.00 57.00 60.00 63.00	54.00 57.00 60.00 63.00 66.00	3.00 3.00 3.00 3.00 3.00	142 97 63 321 223	26 13 16 19 29	102 47 29 41 98	1.9 1.7 1.8 1.5 1.4	4 42 16 51 2	26 1 7 15 12
64.05	67.73	Clay altered intrusive dyke (diorite?). Non-magnetic. Alteration products other than clay occur in minor amounts and include: chlorite, sericite, Kfeldspar. Minor dolomite veining occurs at the following orientations: 64.15m = pyrite vein @ 53° to Core Axis (1mm) 65.30m = dolomite vein @ 78° to Core Axis (4mm) 66.90m = dolomite vein @ 66° to Core Axis (5mm) Cobaltonitrate stain results are as follows: 64.15m = minor Kfeldspar (secondary). Intrusive 64.75m = moderate Kfeldspar (secondary). Intrusive 66.70m = moderate Kfeldspar (secondary) along fractures. Intrusive. Approximately 2% pyrite as fine dissemination throughout the interval (minor veins occur).	GJ29007	66.00	69.00	3.00	312	24	327	1.9	10	9

HOLE NO. DRILL HOLE LOG PAGE 3 OF 7 DDH-90-G04 METREAGE ASSAYS METREAGE DESCRIPTION SAMPLE LENGTH Ζn FROM TO NO. FROM то Cu РЪ Ag Αц As ppm ppm ppm ppm ppb ppm GJ29008 69.00 72.00 3.00 181 8 45 2.1 17 67.73 92.35 Crackle brecciated grey quartzite (dolomite matrix). ≤0.5% pyrite 1 GJ29009 72.00 75.00 3.00 121 8 18 1.5 1 occurs as fine disseminations (minor vein occurrences). A clay 4 altered intrusive, as described above (64.05 - 67.73m), occurs from GJ29010 75.00 78.00 3.00 77 8 21 2.1 5 1 93 32 74.27m to 75.10m and 83.21 - 84.56m. Fault rubble with minor GJ29011 78.00 81.00 3.00 8 1.9 9 1 18 22 gouge occurs from 85.80m to 89.31m (most of which is a dolomite GJ29012 81.00 84.00 3.00 156 1.8 3 13 23 3.00 124 2.3 14 breccia). Structural measurements are as follows: GJ29013 84.00 87.00 8 1 GJ29014 3.00 97 16 21 1.7 2 upper contact with intrusive is @ 53° to Core 87.00 90.00 1 74.27m = GJ29015 90.00 93.00 3.00 152 26 43 1.3 3 14 Axis lower contact with intrusive is @ 21° to Core 75.10m = Axis upper contact with intrusive is @ 56° to Core 83.21m = Axis lower contact with intrusive is @ 4° to Core 84.56m = Axis Cobaltonitrate stain results are as follows: 74.30m = moderate Kfeldspar as intrusive groundmass 83.40m = moderate Kfeldspar as intrusive groundmass 92.20m = minor Kfeldspar bands as alteration Very altered sandstone (bedded). Secondary Kfeldspar, chlorite GJ29016 93.00 96.00 3.00 111 23 52 1.0 4 1 92.35 98.38 GJ29017 96.00 99.00 3.00 267 16 82 1.0 2 1 and pyrite occur along the bedding. Dolomite veining occurs at a low to moderate intensity. ≤0.5% pyrite occurs as fine disseminations (trace veinlets), except for subinterval 85.80m to 96.00m where approximately 4 - 5% pyrite occurs as blebs with chlorite halos. Structural measurements as follows: dolomite vein @ 62° to Core Axis (2mm) 95.88m = 96.00m = 32° to Core Axis = chloritized laminae 97.05m = dolomite vein (1 - 3mm) @ 38° to Core Axis 97.30m = 33° to Core Axis foliation (clay, chlorite, biotite?) 102.00 3.00 129 12 35 0.7 14 Dark grey chert. From 98.38 to 105.34m the chert is non-magnetic GJ29018 99.00 120.20 98.38 0.7 45 GJ29019 102.00 105.00 3.00 55 12 30 and contains a very fine grained, black mineral (biotite? carbon?); 108.00 3.00 69 16 34 0.8 20 GJ29020 105.00 4 abundant dolomite veining. From 105.34 to 120.20m, the chert is 45 2 much darker with minor magnetite and more intense secondary GJ29021 108.00 111.00 3.00 94 11 0.9 1 114.00 3.00 87 21 31 0.5 12 1 GJ29022 111.00 biotite (?), graphite (?). This subinterval is bedded locally as well. 117.00 237 17 43 0.8 30 GJ29023 114.00 3.00 1 Dolomite veining is much lower in intensity in this subinterval. 1.50 192 21 36 0.5 24 1 Magnetite must be secondary as it increases to a few % close to GJ29024 117.00 118.50 49 0.9 1 the contact with the intrusive (120.20m). Trace pyrite (≤0.3%) GJ29025 118.50 120.00 1.50 113 14 8 occurs throughout the interval as fine disseminations. Structural measurements are as follows: dolomite vein (3mm) @ 62° to Core Axis 103.00m =

1

· 1

1

1

KEEWATIN ENGINEERING INC.

		DRILL HOLE L	.OG							E NO. 90-G04	PAGE	4 OF 7
METR	REAGE			MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	РЪ ррт	Zn ppm	Ag ppm	Ац ррб	As ppm
98.38	120.20 Cont.	103.25m =dolomite vein (2mm) @ 55° to Core Axis104.05m =dolomite vein (2mm) @ 49° to Core Axis106.10m =bedding @ 26° to Core Axis (chlorite, biotite, graphite?)106.25m =dolomite vein (2 - 6mm) @ 52° to Core Axis108.90m =quartz vein (1.5mm) @ 47° to Core Axis114.15m =dolomite vein (4mm) @ 13° to Core Axis116.50m =bedding @ 20° to Core Axis (chlorite, biotite, graphite?)117.30m =dolomite vein (4 - 10mm) @ 0° to Core Axis										
120.20	123.93 * N O T E : Chalcopyrite in Kfeldspar veins and as massive vein (1mm)	Altered diorite or monzodiorite (?) dyke. Mafics have altered to chlorite and felsics have altered to clay minerals. Kfeldspar veining occurs with or without Chalcopyrite (±0.5% in total, approximately 0.1% Copper). Approximately 0.5% pyrite occurs as disseminated cubes along fractures with chlorite or pervasive. Dolomite veins cross out the Kfeldspar/Chalcopyrite veins. Structural information is as follows: 120.80m = dolomite vein (2 - 4mm) @ 46° to Core Axis 121.90-122.0m = cobaltonitrite identifies Kfeldspar only as veins (not in groundmass - diorite) 122.25m = 3 episodes of veining. (1) Kfeldspar veining (± Chalcopyrite) (5mm) @ 69° to Core Axis and (2) Chalcopyrite veining (1mm) @ 78° to Core Axis are contemporaneous with (3) dolomite veining (2mm) @ 19° to Core Axis cross cutting both (1) and (2) 122.45m = dolomite selvaged chlorite vein (2mm) at 86° to Core Axis 123.15m = dolomite veinlet (0.5m) @ 78° to Core Axis MOTE: This intrusive may be auriferous due to the contents of Kfeldspar veining, Chalcopyrite, and magnetite (±2% magnetite; detected by magnet only)	GJ29026 GJ29027	120.00 121.50	121.50 123.00	1.50 1.50	561 825	18 18	34 38	0.9 0.8	106 180	1
123.93	139.00	Trachytic flow of dacitic composition (?) or possibly a foliated sediment with bands of secondary Kfeldspar/chlorite. NOTE: This unit has been logged as an altered sandstone previously. Dark bands contain chlorite and biotite (?) graphite (?). Light bands are slightly clay altered. Dolomite veins occur with or without pyrite at a low to moderate intensity. Both types of dolomite veining cross cut each other. Approximately 2% pyrite occurs mostly in veins/minor disseminated). Structural measurements as follows:	GJ29028 GJ29029 GJ29030 GJ29031 GJ29032 GJ29033 GJ29034	123.00 124.50 126.00 129.00 132.00 135.00 138.00	124.50 126.00 129.00 132.00 135.00 138.00 141.00	1.50 1.50 3.00 3.00 3.00 3.00 3.00 3.00	332 226 247 310 262 120 110	14 14 13 12 27 23 18	40 38 40 49 67 22 30	0.6 0.8 0.4 0.7 1.7 1.0 0.7	45 22 17 34 1020 35 42	1 1 1 34 1 1

KEEWATIN ENGINEERING INC.

		DRILL HOLE L	.OG							_E NO. -90-G04	PAGE	5 OF 7
METRE	AGE	DESCRIPTION	SAMPLE	MET	REAGE				AS	SAYS		
FROM	TO	DESCRIPTION	NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
123.93	139.00 Cont. 139.60	 125.10m = dolomite veins (3mm) @ 19° to Core Axis 126.75m = 4mm dolomite vein @ 14° to Core Axis 127.50m = dolomite vein (3mm) @ 30° to Core Axis 128.24-128.44m = Kfeldspar altered monzodiorite dyke. Upper contact @ 51° to Core Axis 129.30m = quartz vein with dolomite selvages (1cm) @ 12° to Core Axis 129.70m = cobaltonitrite stain defining trachytic flow. Kfeldspar bands @ 29° to Core Axis 130.55m = dolomite/pyrite vein (3mm) @ 30° to Core Axis 131.90m = quartz vein (2mm) @ 30° to Core Axis 132.16m = flow bands @ 25° to Core Axis 133.50-134.16m = Approximately 6 - 7% pyrite as veins with dolomite and pseudomorphing fragments in breccia (134.00 - 134.16m) 136.00m = flow bands @ 14° to Core Axis 137.40m = dolomite vein (2mm) @ 15° to Core Axis Clay altered monzodiorite (?) dyke. Mafics have altered to chlorite and felsics have altered to other clay minerals. Minor dolomite veinte and sequery dots and a core and a conserve dots and a con										
139.60	155.60	veinlets occur. Approximately 0.5% pyrite as disseminated blebs. Upper contact is @ 11° to Core Axis and lower contact is @ 22° to Core Axis. Intensely altered chert (with minor interbedded siltstone); grey, pink, green. The interval contains mostly beds altered by the following minerals: chlorite, clay minerals, pyrite and Kfeldspar. Approximately 3 - 4% pyrite occurs as wispy lineations along the bedding as well as minor veins and interstitial blebs. Structural measurements are as follows: 141.60m = pyrite vein (4 - 6mm) @ 65° to Core Axis. Chlorite selvages (≤0.5mm) 141.80m = clay/chlorite after beds @ 13° to Core Axis 144.40m = clay/chlorite after beds @ 16° to Core Axis 146.00m = clay/Kfeldspar altered beds @ 22° to Core Axis 148.00m = dolomite vein (3mm) @ 17° to Core Axis 149.10m = chlorite on fracture @ 25° to Core Axis 152.20m = dolomite vein (2mm) @ 74° to Core Axis	GJ29035 GJ29036 GJ29037 GJ29038 GJ29039	141.00 144.00 147.00 150.00 153.00	144.00 147.00 150.00 153.00 156.00	3.00 3.00 3.00 3.00 3.00	101 110 123 217 193	23 16 24 20 34	45 68 96 99 161	0.8 1.1 2.0 2.4	40 34 18 9 33	1 6 1 26

		DRILL HOLE L	.OG		······································					E NO. 90-G04	PAGE	6 OF 7
MET	REAGE		0.000	MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ац ррб	As ppm
155.60	180.45	Grey chert, massive to bedded with interbedded carbonaceous (?) chert might be biotite altered chert (?). Pyrite limitations occur parallel to bedding (?). Beds are 2cm ≤bed ≤20cm in width. Approximately 1 - 2% pyrite occurs as lineations along bedding and as minor fracture fill and blebs. Dolomite veining occurs at low to moderate intensity. Minor clay alteration and patchy Kfeldspar alteration occur (cobaltonitrite stain @ 158.30m) Structural information: 155.70m = dolomite/pyrite (10%) vein (2cm) @ 64° to Core Axis 156.90m = dolomite vein (1-2mm) @ 73° to Core Axis 157.45m = dolomite vein (along bedding?), 1.5cm wide, @ 20° to Core Axis 162.80m = dolomite vein (3mm) @ 40° to Core Axis 164.65m = bedding in siltstone @ 17° to Core Axis 166.40m = clay/dolomite shear (5mm) @ 15° to Core Axis 168.70-169.10m = dolomite vein (2mm) @ 72° to Core Axis 171.50m = dolomite vein (2mm) @ 72° to Core Axis 171.60m = pyrite vien (1.5cm) with green clay selvages (Mariposite? Fuchsite?) @ 67° to Core Axis 176.80m = pyrite ineations (bed?) @ 49° to Core Axis 177.00-177.20m = dolomite beccia	GJ29040 GJ29041 GJ29042 GJ29043 GJ29045 GJ29045 GJ29047 GJ29048	156.00 159.00 162.00 168.00 171.00 174.00 177.00 180.00	159.00 162.00 168.00 171.00 174.00 177.00 180.00 183.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	124 128 71 89 163 155 102 97 83	31 30 29 26 20 36 25 27 21	183 117 121 141 139 58 59 56 57 57	2.9 2.5 2.6 2.1 2.6 2.1 2.1 2.4	51 20 11 17 28 278 16 2 8	76 45 14 21 399 27 24 1
180.45	196.99 NOTE: Chalcopyrite with massive pyrite vein	As above, except brecciated by dolomite from 180.45 to 181.10m and 182.00 - 184.00m. Moderate dolomite veining throughout. Massive pyrite veins occur at 183.40m and 188.10m. Chalcopyrite occurs with pyrite/minor dolomite veins at 187.10m (3cm) and 187.20m (14cm). $\leq 0.40\%$ Chalcopyrite/1.5m occurs = 0.1% Copper/1.5m. Structural data is as follows (w.r.t. to Core Axis): 183.40m = massive pyrite vein (4mm) @ 25° 183.75m = dolomite vein (3mm) @ 35° 186.00m = dolomite vein (3X 2mm) @ 36° 186.10m = dolomite vein (3X 2mm) @ 36° 186.10m = dolomite vein (2cm) @ 32° 187.10m = massive pyrite vein (3cm) with minor dolomite, trace Chalcopyrite @ 53° 187.20-187.40m = massive pyrite vein (3cm) @ 15° 188.05m = siltstone bed @ 17° (4cm wide) 195.25m = dolomite vein (3 1 mm) @ 31°	GJ29049 GJ29050 GJ291518 GJ291528 GJ291528 GJ291548 GJ291558 GJ291558 GJ291558 GJ291578	183.00 184.50 186.00 187.50 189.00 190.50 192.00 193.50 195.00	184.50 186.00 187.50 190.50 192.00 193.50 195.00 195.99	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	195 218 3977 235 119 107 104 90 88	25 32 84 30 21 19 17 22 20	43 42 214 58 69 55 84 31 39	2.4 2.1 13.6 1.8 1.7 2.0 1.5 1.5 1.2	43 28 6000 142 27 8 4 5 4	7 15 115 46 1 18 16 27 45

 Comparison of the second s Second se Second sec second sec

I,

KEEWATIN ENGINEERING INC.

		DRILL HOLE L	.OG			,				.E NO. 90-G04	PAGE	7 OF 7
METR	REAGE			MET	REAGE				AS	SAYS		_
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
		END OF HOLE @ 196.99M CASING PULLED										
					<u>Signifi</u>	CANT MINERA	IZED INTE	RVALS				
			29151B	186.00	187.50	1.50	3977	84	214	13.60	6000	115
		ASSAYS	290328	132.00	135.00		0.030	oz/ton	Au			
			29151B	186.00	187.50	1.50	0.146	oz/ton	Au			

LOCATION:	KLASTLINE PLATI 130°14'W 57°39'N			DRILL	HOLE LOG					HOLE N DDH-90-		PAGE	NO. 1 of 6
AZIM: 000° DIP: -44°		ELEV: 1572.77m/5160 (ft) LENGTH: 182.58m (599 ft)						PROPERT	Y: ASCO	r gj (inte	RNATIONAL	. CURATOR	
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO	D: GJ : L34+208	E/17+ 0 0S			
STARTED: Septer COMPLETED: Se PURPOSE: Comp Line 34E through	ptember 11, 1990 blete Section on		94.18 181.05	000° 000°		-43° -45°		DATE LO	BY: David GGED: Se CO: FALO BY: MIN-	ptember 1: CON DRILL			
CORE RECOVER	Y: 91%	<u> </u>						.					
METF	REAGE	DESCRIPTION		SAMPLE	MET	REAGE	LENGTH		. <u> </u>	AS	SAYS	-	
FROM	то			NO.	FROM	то	22.000	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
0.00	6.10	Casing											
6.10	10.39	Blocky, black carbonaceous chert; brecciated cr calcite; clay seams along fractures. 10.14 - 10.3 grey clay; traces of disseminated and fracture pr fracture red-brown to yellow iron stain.	9 = fault gouge;	GJ29101 GJ29102	6.10 9.00	9.00 12.00	2.90 3.00	44 21	22 32	19 52	1.0 .4	6 4	57
10.39	13.45	Biocky, grey massive chert; crackled with 10% b carbonaceous (?) material along irregular crackli ≤0.5% disseminated and fracture pyrite; yellow i common on fractures; less limonite than above.	e fractures; ron limonite	GJ29103	12.00	15.00	3.00	39	23	60	.2	2	20
13.45	17.34	Black carbonaceous chert; patchy; light grey che brecciated; can have light grey silty matrix supp chert fragments; minor bedding displayed throu Core Axis; extremely weak to rare limonite stain; seen @ 15.94m. ≤0.5% disseminated and fractu	orting black ghout @ 35 ^o to ; last limonite	GJ29104	15.00	18.00	3.00	53	26	40	.1	5	1
17.34	19.34	Medium to light grey chert; very blocky with mir fractures; chert conglomerate from 17.34 - 17.98 chert fragments (light to medium grey) in light g angular pebble chert breccia from 18.57 - 19.34r medium and light grey chert, siltstone and black chert; clay matrix; common fractures @ 45° to C	Bm; rounded grey siltstone; m; includes < carbonaceous	GJ29105	18.00	21.00	3.00	41	17	39	.3	6	1
19.34	21.33	Bedded light grey to dark grey siltstone; very dis blocky; "Wavy" textures disrupting bedding; clay ≤0.5% disseminated and fracture pyrite.											

Ĩ

KEEWATIN ENGINEERING INC.

		DRILL HOLE L	.0G							E NO. 90-G05	PAGE	E 2 OF 6
METRE	AGE		SAMPLE	METR	EAGE			v	AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
21.33	28.33	Light to medium grey chert with minor cream green siltstone (siliceous); bedded @ 45° to Core Axis; beds infrequent. Very Block; clay on some fractures; interval is crackled and cut by ≤2mm (usually ≤1mm) feldspar fractures; approximately 5 - 8%. Clay fault gouge @ 24.64 - 24.93m; clay fault gouge (?) @ 27.70 - 27.77m. 0.5 - 1.0% disseminated and fracture pyrite; mainly in siliceous clastic sections.	GJ29106 GJ29107 GJ29108	21.00 24.00 27.00	24.00 27.00 30.00	3.00 3.00 3.00	64 61 139	21 24 54	64 35 127	1.1 1.2 2.0	25 18 67	7 54 52
28.33	41.07	Cream green to grey siltstone, siliceous siltstone, white siliceous siltstone (coarser) and minor (≤15%) interbedded grey chert; some silicified sections. Blocky core. Dendritic texture with fracture pyrite in siltstone beds. Fracture/disseminated pyrite @ 28.33-33.32m is 2%; trace chalcopyrite with fracture pyrite. Feldspar (plag?) veining with pyrite blebs as envelopes are sub-parallel @ 65° to Core Axis. Overall <<1% fracture and disseminated pyrite	GJ29109 GJ29110 GJ29111 GJ29112	30.00 33.00 36.00 39.00	33.00 36.00 39.00 42.00	3.00 3.00 3.00 3.00	731 63 52 62	180 17 29 72	500 25 31 115	8.5 0.6 0.8 1.2	330 6 31 72	72 1 25 164
41.07	50.56	Black, carbonaceous siltstone (60%) with interbedded, black carbonaceous chert. Bedded disseminated and fracture pyrite ≤1; crackled; dolomite fracture filling = 3 - 5%. Quartz veining = <1%; feldspar veining (plagioclase). Bedding @ 30° to Core Axis.	GJ29113 GJ29114 GJ29115	42.00 45.00 48.00	45.00 48.00 51.00	3.00 3.00 3.00	77 147 82	25 22 25	34 55 29	1.0 2.1 1.9	16 315 193	36 62 140
50.56	52.10	Black, carbonaceous siltstone and interbedded carbonaceous chert as above; ≤2cm wide pyrite vein runs sub-parallel to Core Axis; rare trace Chalcopyrite and arsenopyrite occur with pyrite; crackle- fractured with dominant fractures sub-parallel to Core Axis; 3 - 5% white (plagioclase) feldspar fracture filling; pyrite = 20 to 25%.	GJ29116	51.00	52.50	1.50	706	43	27	13.4	3500	2350
52.10	66.90	Black to dark grey carbonaceous chert with 30% bedded, black siltstone; crackled with 3 - 5% feldspar fracture filling; locally brecciated. bleached, pink feldspar veining with olive 54.95-55.08m = } green clay ± sericite envelopes and with trace 56.77-57.25m = } amounts of disseminated arsenopyrite with 58.23-58.48m = } trace fractures/vein pyrite Some local foliation including pyrite + feldspar veins @ 35° to Core Axis; fracture and disseminated pyrite throughout is ≤0.5%; core is fairly blocky. Bedding @ 60.5m is 36° to Core Axis; @ 69m is 60° to Core Axis.	GJ29117 GJ29118 GJ29119 GJ29120 GJ29121 GJ29122 GJ29122 GJ29123 GJ29124	52.50 54.00 55.50 57.00 58.50 60.00 63.00 66.00	54.00 55.50 57.00 58.50 60.00 63.00 66.00 69.00	1.50 1.50 1.50 1.50 1.50 3.00 3.00 3.00	71 106 111 50 62 86 86 81	30 27 130 28 25 26 27 21	34 32 914 30 31 43 55 28	0.8 1.8 2.0 1.3 1.4 1.2 1.1 1.3	273 2600 655 206 98 12 29 2	293 762 1673 645 146 51 46 9
66.90	69.50	Black carbonaceous siltstone and interbedded chert, approximately 50:50. Very crackled brecciated. 8% feldspar (?) fracture filling (plagioclase); <0.5% pyrite.	GJ29125	69.00	72.00	3.00	58	20	31	1.3	17	39

		DRILL HOLE L	OG			·				E NO. 90-G05	PAGE	3 OF 6
METRE	AGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppn
69.50	72.11	 Brecciated silicified grey to dark grey siltstones; cherty; 5% matrix/fracture filling feldspar; clay seams; 0.5% to disseminated and fracture pyrite. 71.77 - 72.11m is pervasive clay altered porphyritic diorite to latite, feldspar phenocrysts are 1 - 2mm and trachytic interval contains 1 - 2% disseminated pyrite (after mafics?) and possible trace disseminated Arsenopyriterite; trace fuchsite. 										
72.11	76.30	Interbedded, carbonaceous chert and grey chert and siltstone; crackled, siliceous flooding; 3% feldspar fracture filling; ≤0.5% pyrite; Breccia (fault) with gouge @ 73.10 - 73.54m 73.66 - 73.85m 74.60 - 75.04m	GJ29126 GJ29127	72.00 75.00	75.00 78.00	3.00 3.00	38 86	17 18	19 20	0.7 0.7	28 3	1 8
76.30	78.42	Grey light grey silicified mudstone (?); trace bedding; weakly mottled; light green grey colour; <1% quartz veining. Blocky core; 2 - 4% disseminated and fracture pyrite. Brecciated with sand matrix fragments.										
78.42	85.40	Grey chert; cream coloured sittstone/mudstone beds @ ≤2cm; hairline fractures with 2 - 4% fracture pyrite; 15% siltstone; 85% chert. Brecciated @ 79.49 - 81.50m with chert fragments in sandy matrix. Cream feldspar fracture filling @ 83.40 - 84.00m.	GJ29128 GJ29129 GJ29130	78.00 81.00 84.00	81.00 84.00 87.00	3.00 3.00 3.00	94 92 114	18 13 20	26 19 23	1.1 1.0 0.6	60 37 124	1 12 1
85.40	86.75	Porphyritic diorite dyke (?) totally replaced by clay; relict feldspar phenocrysts ≤2mm; 8% disseminated pyrite after mafics.										
86.75	89.95	Grey chert; ≾5% mudstone seams; crackled local brecciation; race fuchsite (2mm vein) 89.17m = ≤0.5% fracture pyrite 88.55-88.68m = feldspar veining; some pink colour in clay and 8% disseminated + vein pyrite.	GJ29131	87.00	90.00	3.0	106	19	16	0.5	80	4
89.95	95.06	Grey chert with streaky, cream coloured feldspar alteration (?) patches/flooding; display a "llowage" texture; locally (≤1%) feldspar is pink; interval contains 4 - 5% fracture and disseminated pyrite.	GJ29132 GJ29133	90.00 93.00	93.00 96.00	3.00 3.00	78 67	20 12	18 21	0.8 0.7	4 2	1 29

KEEWATIN ENGINEERING INC.

		DRILL HOLE L	OG							E NO. 90-G05	PAGE	4 OF 6
METRE	AGE		0000	METR	EAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
95.06	98.80	Similar to above but less feldspar flooding, more chert (≥85%) and ≤1% fracture pyrite.	GJ29134	96.00	99.00	3.00	54	23	16	0.8	9	38
98.80	102.25	As 89.85 - 95.06m; foliated with brecciation parallel to foliation @ 18° to Core Axis; cream alteration patches could be altered siltstone which is "remobilized"; light green, pink and grey colours related to foliation and pyrite veining which is parallel. 4 - 5% vein/fracture pyrite. 60% chert; 40% altered mudstone/siltstone.	GJ29135	99.00	102.00	3.00	107	15	12	0.8	19	1
102.25	106.22	As above but ≤1% pyrite; local brecciation with cream coloured feldspar fracture filling. Change to 50% chert, 50% altered mudstone/siltstone (siliceous); bedding @ 40° to Core Axis.	GJ29136 GJ29137	102.00 105.00	105.00 108.00	3.00 3.00	88 93	18 12	21 22	0.9 0.6	18 21	33 1
106.22	135.30	 Unit appears to be mainly siliceous mudstone with minor chert (≲15%); has grey, grey-brown and blue-grey colour with suggestion of bedding and foliation. Bright blue-green-grey colour due to minor chromium rich mica (?). 108.26-111.39m = polymictic breccia of chert and siliceous mudstone of all types; interval very hard and siliceous; ≤1% chlorite locally, weakly mottled. ≤0.5% pyrite; generally trace and then only on fractures; also as wispy lineations at irregular orientations (≲25mm). 	GJ29138 GJ29139 GJ29140 GJ29141 GJ29142 GJ29143 GJ29143 GJ29144 GJ29145 GJ29146	108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00	111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	83 54 25 28 19 62 150 104 106	24 10 13 13 17 22 36 43 29	25 32 40 23 19 53 82 189 34	1.0 0.6 0.4 0.5 0.5 0.9 1.4 1.2 1.1	16 3 9 2 15 52 31 9	1 1 1 30 51 59 60
135.30	155.53	Dark carbonaceous siltstone and grey siltstone (70%); well bedded with 30% dark carbonaceous and grey chert (could be just more intensely silicified siltstone). 1% dolomite veining occurs throughout the interval. Beds average 0.5cm to 10cm thick. Some grey siltstone has been altered to brown clay (5% of rock). ≤1% pyrite occurs finely disseminated along bedding. pyrite occurs finely disseminated along bedding. Structural measurements w.r.t. the Core Axis are as follows: 140.70m = pink dolomite vein (22cm) @50° 142.30m = dolomite vein (1.5mm) @ 53° 141.00m = bedding @ 31° 148.30m = bedding @ 45° 154.13m = bedding @ 24° 155.10m = bedding @ 30°	GJ29147 GJ29148 GJ29149 GJ29150 GJ29051 GJ29052 GJ29053	135.00 138.00 141.00 144.00 147.00 150.00 153.00	138.00 141.00 144.00 147.00 150.00 153.00 156.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00	86 61 57 66 73 61 84	31 18 22 17 25 23 23 23	81 42 47 51 56 52 205	2.0 2.0 1.4 1.5 2.5 1.9 2.4	27 41 9 25 190 23 26	105 47 85 72 68 69 29

i.

)

		DRILL HOLE L	OG							E NO. 90-G05	PAGE	5 OF 6
METRE	AGE		SAMPLE	METR	EAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
155.53	167.55	Dark carbonaceous siltstone with minor interbedded, clay altered grey siltstone (≤15%). 2% dolomite veining (minor brecciation locally). 2% pyrite throughout (locally ≤5%) occurring as veins with dolomite and disseminated along bedding/foliation. A mottled foliation occurs from 161.90m to 162.80m consisting of dolomite/pyrite/hematite/clay/silicified siltstone. The foliation is 24° to Core Axis. Structural information w.r.t. Core Axis is as follows: 156.15m = dolomite veins (4 X 1mm) @ 42° 156.55m = dolomite/pyrite vein (4mm) @ 44° 156.80m = dolomite veins (3 X 1mm) @ 45° 159.00m = pyrite and sph (?) and hematite along bedding/foliation @ 28° 161.30m = pyrite/dolomite vein (2mm) @ 25° 161.60m = pyrite selvaged dolomite vein (8mm) @ 33° 162.63m = dolomite vein (1mm) @ 26°	GJ29054 GJ29055 GJ29056 GJ29057	156.00 159.00 162.00 165.00	159.00 162.00 165.00 168.00	3.00 3.00 3.00 3.00	108 99 112 73	18 18 16 30	2825 1914 7993 400	4.9 4.1 4.7 3.2	455 164 1050 41	52 107 53 112
167.55	172.20	Interbedded black carbonaceous and grey siltstone. Bedding is mottled in places due to silicification. 2 - 3% dolomite veining and brecciation occurs along fractures which show ≤1cm displacement (left-lateral). ≤1% pyrite occurs as veins with dolomite and along bedding. Clay coats ≾30% of the fractures. The unit is 50% black siltstone and 50% grey siltstone. Structural information w.r.t. the Core Axis is as follows: 168.05m = bedding @ 32° 168.70m = dolomite/pyrite (10%) vein (20cm) @ 48° 171.40m = dolomite breccia veins (3 X 1cm) @ 65° 171.90m = dolomite veinlet (1mm) with left-lateral displacement (1cm) @ 58°	GJ29058 GJ29059	168.00 171.00	171.00 174.00	3.00 3.00	105 106	16 20	144 928	2.3 1.5	54 37	35 59
172.20	179.53 EOH	Light blue-grey, intensely silicified siltstone (<0.5% carbonaceous siltstone). A quartzite in places. Some beige clay beds/foliations (<5%). 1% dolomite veining occurs with/without pyrite. 2% pyrite occurs along bedding and in veins. Pyrite occurs along bedding @ 22° to Core Axis. @ 178.75m one quartz veining has been identified 55° to Core Axis. @ 176.60m (1 - 2mm) wide.	GJ29060 GJ29061	174.00 177.00	177.00 179.53 E.O.H.	3.00 2.53	55 45	16 21	62 77	1.0 1.0	12 22	71 33

4

KEEWATIN ENGINEERING INC.

ł . .

		DRILL HOLE I	LOG						HOL DDH-	E NO. 90-G05	PAGE	6 OF 6
METR	EAGE		0.000	MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
		ASSAYS 03/ton Au - 03/ton Ag	GJ29116B GJ29118B GJ29056	51.00 54.00 162.00	52.50 55.50 165.00	1.5 1.5 3.0			0.093 0.082 0.030			0.13
		Significant Mineralized Intervals		51.00	55.50	4.50	294	33	31	5.3	2124	1135

.

and the state of the second seco

LOCATION:	KLASTLINE PLATI 130°13'W 57°39'N			DRILL	HOLE LOG					HOLE N DDH-90-	• ·	PAGE	NO. 1 of 5
AZIM: 000° DIP: -45°		ELEV: 1527.05m (5010 ft.) LENGTH: 178.92m (587 ft.)						PROPERT	TY: ASCO	t gj (inte	RNATIONAL	. CURATOR	R OPTION)
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.): SPIKE 2 : L1600E/	2 '9+65S (I.P	. GRID)		
	otember 13, 1990 t the I.P. anomaly of	on line 1600E, I.P. grid.	89.46 178.92	000° 000°		-45.5° -43°		DATE LO	GGED: Se	CON DRILL	7 - 19, 1990 JNG		
					MET	REAGE	LENGTH	<u> </u>		45	SAYS		
				SAMPLE NO.			LENGIN	 Cu	Рю	Zn	Ag	Au	As
FROM	<u>TO</u>	DESCRIPTION		NO.	FROM	то		(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppm)
0.00	2.74	CASING - NO CORE											
2.74	14.07	Silicified black carbonaceous siltstone with minor grey, silicified siltstone. Minor to moderate dolom occur throughout the interval. Limonite along frac common. <0.5% pyrite occurs finely disseminated silicification (light grey quartz flooding). Structure follows: 4.50 = dolomite veinlet (1mm) @ 45 ⁶ 7.90 = dolomite vein (1mm) @ 36 ⁶ to 9.20 = dolomite veins (2 x 2mm) @ 3 Core Axis	hite veinlets ctures is d with the data is as to Core Axis o Core Axis	GJ29158 GJ29159 GJ29160 GJ29161	2.74 6.00 9.00 12.00	6.00 9.00 12.00 15.00	3.26 3.00 3.00 3.00	41 26 73 37	33 32 18 27	35 38 46 34	.3 .4 .5 .6	3 4 2 4	27 30 71 70
14.07	16.70	FAULT ZONE = grey to brown clay gouge, rubble limonite stained fractures ≥60% core loss. Fragm grey and black siltstone occur. No visible sulphid	ents of silicified	GJ29162	15.00	18.00	3.00	40	21	55	.2	8	5
16.70	20.42	Silicified grey siltstone occurs from 16.70 to 18.20 18.20 to 19.00m, two small (20cm) dykes occur (c diorites?). Abundant limonite stained fractures oc frequently near the intrusive contacts. No visible : Dolomite veining is minor and one vein 5mm wide to the Core Axis.	lay-altered cur most sulphide.	GJ29163	18.00	21.00	3.00	33	60	248	1.0	95	46
20.42	34.38	Black carbonaceous siltstone, massive. Minor, gr occurs with finely disseminated pyrite (~1% throu first metre (20.42 to 21.42m) contains more silicifi veining, pyrite and limonite staining than the rest Minor dolomite veinlets occur throughout. Abund local clay gouge indicates some fault activity betw and 27.50m. There are only three pieces ≥10cm to 21.00m and 27.50m. Limonite staining ends at 25	ghout). The cation quartz of the interval. ant rubble with yeen 21.00m here between	GJ29164 GJ29165 GJ29166 GJ29167 GJ29168	21.00 24.00 27.00 30.00 33.00	24.00 27.00 30.00 33.00 36.00	3.00 3.00 3.00 3.00 3.00	72 72 48 154 64	94 35 31 52 40	743 106 156 1943 78	2.9 2.0 1.5 2.1 1.2	818 23 14 14 18	252 78 66 30 4

1

· 7

		DRILL HOLE L	OG							E NO. 90-G06	PAGE	2 OF 5
METF	EAGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
20.42	34.38 cont. NOTE: No limonite after 23.65m-oxid- ized/reduction interface	Veining occurs at the following angles to the Core Axis: 20.50 = dolomite/pyrite vein (≤1cm) @ 45° 20.75 = quartz/minor pyrite vein (3mm) @ 78° 20.80 = quartz, pyrite vein (30% pyrite) @ 63° (2cm) 32.05 = dolomite vein (2mm) @ 52°										
34.38	41.75	Green plagioclase porphyritic clay/chlorite altered diorite dyke (34.38-37.10m); black carbonaceous siltstone with intense dolomite veining (37.10-37.40m); and clay/sericite? altered sandstone (fine grained) with minor chert clasts (well rounded, s4mm diameter) occurring from 37.40m to 39.35m. The diorite at the beginning of the interval is porphyritic, fine grained and equigranular. Bedded siltstones (black, grey) occur from 39.35m to 41.75m with minor pale coloured sandstone clasts. Clay alteration here (39.35-41.75m) is intense with minor rubble (fault?).	GJ29169 GJ29170	36.00 39.00	39.00 42.00	3.00 3.00	67 49	26 34	145 118	0.8 2.9	13 26	1
41.75	51.40	Black carbonaceous siltstone. Chalky, flat colour when dry. Extremely low grade bitumen (?). Minor dolomite veining occurs. Abundant rubble from 41.75m to 46.00m due to the brittleness. Slightly phyllitic along fractures. Dolomite vein @ 69° to the Core Axis (1mm) @ 46.60m. 49.50 = pyrite along bedding @ 35° to Core Axis (-3% pyrite/10cm) NOTE: There is 2% pyrite finely disseminated throughout.	GJ29171 GJ29172 GJ29173	42.00 45.00 48.00	45.00 48.00 51.00	3.00 3.00 3.00	73 87 63	40 37 25	175 288 87	4.5 3.9 0.5	24 15 29	43 58 1
51.40	89.45	Grey fine grained massive sandstone; immature with plagioclase grains ≤ 1 mm; pervasive clay alteration. Contains 5% black siltstone clasts (1-10mm) as well as ≤ 20 cm fragments of bedded siltstone. Carbon occurs along fractures (upgraded to graphite in some cases) throughout the interval. Pyrite occurs with calcite veins from 75.40m to 81.30m (2% veined pyrite). Structural measurements as follows (w.r.t. the Core Axis): 59.75 = calcite/pyrite vein (5% pyrite), 1.5cm, @ 86° 61.15 = calcite vein (1mm) @ 50° 61.65 = calcite vein (2mm) @ 47° 61.75 = calcite vein (2mm) @ 33° 62.70 = calcite vein (3mm) @ 65°	GJ29174 GJ29175 GJ29176 GJ29177 GJ29177 GJ29178	73.50 75.00 76.50 78.00 79.50	75.00 76.50 78.00 79.50 81.00	1.50 1.50 1.50 1.50 1.50	53 148 120 355 79	23 119 114 120 31	69 261 699 239 164	0.9 2.8 2.8 4.5 0.8	1 151 81 101 1	1 24 294 13 1

		DRILL HOLE L)G							E NO. 90-G06	PAGE	3 OF 5
METREAGE			SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM TO		DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm
89.45	8.80	 63.00 = calcite vein (3mm) @ 26° 72.24 = calcite/chlorite breccia (7-10cm) @ 36° 75.60 = 40% calcite/pyrite veining over 12cm @ 50° average 12-15% pyrite/12cm 76.20 = 7cm wide calcite/pyrite vein (212% pyrite) @ 57° 79.90 = calcite/pyrite vein (2mm) @ 67° 81.05 = calcite/pyrite vein (6mm) @ 32° 84.50 = calcite vein (1mm) @ 35° 89.45 = calcite vein (2mm) and graphite at contact @ 29° Green. fine grained bedded sandstone with interbedded black siltstone; graded bedding occurs with flame structures indicating tops when bedding is >0% to Core Axis). Bedding is parallel to Core Axis from 89.45m to 101.90m. The green sandstone is very immature, well consolidated, plagioclase grains are euhedral and clay altered. The sediments are often dislocated by calcite veining (pink, white) which totals ~1.0-1.5% throughout the interval. Carbon, chlorite, and graphite (?) occur along fractures. Displacement is predominantly right-lateral slip. A calcite breccia occurs from 118.60m-118.80m with 5-6% pyrite is absent in the rest of the interval. Bedding form 101.90m to 118.80m ranges from 22° to 65° to Core Axis. Pyrite is absent except for 103.50m to 103.70m (5%) where it occurs as blebs along bedding (primary?). Structural data is as follows (w.r.t. the Core Axis): 92.05 = 3 calcite veins (1mm true thickness) @ 37° 92.20 = calcite vein (3mm) @ 50° 98.30 = 4 calcite veins (15mm (2.5mm) @ 61° 109.20 = calcite vein (3mm) @ 60° 99.95 = calcite vein (3mm) @ 60° 99.95 = calcite vein (3mm) @ 61° 109.20 = calcite vein (3mm) @ 65° 114.00 = calcite vein (2-3mm) @ 55° 114.95 = calcite vein (6-7mm true thickness) @ 35° 117.00 = calcite vein (6-7mm true thickness) @ 42° 	GJ29179	102.00	105.00	3.00	129	16	66	0.5	18	1

÷.

and the second second

1

1

		DRILL HOLE L	.OG							E NO. 90-G06	PAGE	4 OF 5
METRE	AGE		SAMPLE	METR	REAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm
118.80	122.20	Interbedded black carbonaceous siltstone and grey fine grained sandstone; exhibits graded bedding, cross-bedding, and very thin laminae (≤1mm). Contains clasts of augite porphyry (3mm = average phenos) and plagioclase porphyry (≤1mm phenos). Clasts are ≤10cm. Finely disseminated pyrite occurs throughout interval as well as with calcite after clast phenos totalling 5% pyrite throughout. Bedding ranges from 48°-57° to Core Axis. A calcite breccia occurs from 121.70-122.20m (15% calcite).	GJ29180	118.00	121.00	3.00	124	24	1416	1.5	31	1
122.20	122.40	Fault gouge - grey to black with fragments of the above rock type. 5% calcite veining.										
122.40	149.60	Grey, immature, fine grained sandstone with interbedded black carbonaceous siltstone as described between 89.45m and 118.80m. Contains approximately 1% carbonate veining (dolomite and calcite). 1 - 2% pyrite occurs as veinlets and veins with carbonate from 122.40m to 135.50m. \$0.3% pyrite occurs finely disseminated from 135.50 - 149.60m. Structural measurements (w.r.t. the Core Axis) are as follows: 123.70m = bedding @ 45°; tops = up-hole defined by graded bedding 127.00m = pyrite vein (2mm) @ 58° 127.40m = pyrite/carbonate vein @ 43° (2cm wide); 60% pyrite 134.50m = bedding @ 19° to Core Axis 134.75m = pyrite/carbonate vein @ 43° (3cm wide); 60% pyrite 136.50m = calcite vein (2mm) @ 48° 137.50m = calcite vein (2mm) @ 35° 139.15m = calcite vein (3mm) @ 50° 146.90m = bedding @ 35°	GJ29181 GJ29182 GJ29183 GJ29184 GJ29185 GJ29186 GJ29187	121.00 124.00 127.00 130.00 133.00 136.00 149.00	124.00 127.00 130.00 133.00 139.00 152.00	3.00 3.00 3.00 3.00 3.00 3.00	66 68 104 813 154 87 68	28 36 28 26 39 14 36	61 92 133 76 230 85 45	1.1 0.8 1.0 2.5 1.9 0.8 0.9	1 3 25 108 141 3 1	1 1 1212 362 1 1
149.60	152.00	Polylithic clastic breccia with sedimentary clasts = chert, siltstone and sandstone; fragment supported with sandy matrix. Sandstone bed (massive) from 149.80m to 150.50m. Clasts average from 3mm - 30mm in size and are sub-rounded to angular. 1% pyrite occurs as fine disseminations and veins. 1% calcite veining occurs at the following orientations w.r.t. the Core Axis: 15° (5mm); 43° (4mm); 30° (3mm) and 28° (1mm).										

1

KEEWATIN ENGINEERING INC.

١

١

: : :

		DRILL HOLE L	OG							E NO. 90-G06	PAGE	5 OF 5
METRE	EAGE		SAMPLE	MET	REAGE	LENGTH		·	AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm
152.00	178.92 EOH	Grey, immature sandstone, fine grained with interbedded black carbonaceous siltstone as described previously (89.45 - 118.80m). 90% sandstone, 10% siltstone from 152.00 - 161.80m. Clay altered plagioclase porphytritic dyte (diorite?), light green (sericite?) occurs from 161.80 - 162.20m. 90% siltstone, 10% sandstone occurs from 162.20 - 178.92m. 1 - 2% calcite veining occurs throughout with minor dolomite veining (\$0.5%). Trace pyrite (\$0.3%) occurs with calcite veining. Structural information is as follows (w.r.t. the Core Axis): 152.40m = calcite vein (3mm) @ 38° 153.10m = calcite veins (2 X 1mm) @ 37° 154.15m = bedding @ 33° 153.10m = calcite vein (2mm) @ 33° 163.00m = calcite vein (2mm) @ 13° 167.00-167.50m = bedding @ 34° 168.25m = calcite vein (1 - 7mm) @ 13° 167.00-167.50m = bedding @ 35° 168.80m = calcite vein (10 X 1mm) @ 74° 169.95m = calcite vein (3mm) @ 18° 174.25m = bedding @ 31° NOTE: Ball and pillow structures indicate tops direction is up- hole. EOH @ 178.92m - Casing Pulled. NO SIGNIFICANT MINERALIZED INTERVALS	GJ29188	161.00	164.00	3.00	50	20	31	1.0	1	1

1

1

- 1

LOCATION:	KLASTLINE PLAT 130°13'W 57°39'			DRILL	HOLE LOG					HOLE N DDH-90-		PAGE N	NO. 1 of 5
				l. I	DIP TEST			PROPER	TY: ASCC	T GJ (INTE	RNATIONAL	CURATOR	
AZIM: 340° DIP: -45°		ELEV: 1,475m/4,839 (ft) LENGTH: 184.40 m (605 ft)CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.			O: SPIKE ↓: 1120E/*	2 15+10S I.P.	GRID		
STARTED: Septem COMPLETED: Sep PURPOSE: To test	tember 16, 1990 t colour and I.P. an	iomaly on Line 1120E, I.P. Grid	92.96 181.36	340° 340°		-44.5° -44.5°		DATE LO	GGED: S	.CON DRILL	9 - 21, 1990		
METRE			.l		MET	REAGE		l l		AS	SAYS		
FROM	то	DESCRIPTION		SAMPLE NO.	FROM	то	LENGTH	Cu	Pb	Zn	Ag	Au	As
0.00	3.05	Casing											
3.05	11.80	White to dark blue quartzite (possibly silicified se evidence of bedding). All fractures are limonite s mottled blue to white colour is dominant. Very c with carbon and graphite from 11.00m to 11.80m throughout, very fractured. No visible sulphide of	tained. A arbonaceous . Low RQD	GJ29189 GJ29190 GJ29191	3.05 6.00 9.00	6.00 9.00 12.00	2.95 3.00 3.00	49 55 52	25 26 23	66 53 39	.1 .2 .7	1 1 1	12 12 6
11.80	14.50	Light green, clay altered, plag porphyritic intrusive Fine grained with needle-like plag laths (0.25mm Green clay occurs (1-2%) which could be maripos All fractures share limonite stains which penetrate the country rock on either side. Clay alteration is intense (+ sericite?). 0.5% dolomite verining occu following angles to Core Axis: 32° (1.5mm wide) (2.5mm). No visible sulphides.	X 1.0mm). site or fuchsite. up to 1cm into pervasive and urs at the	GJ29192	12.00	15.00	3.00	46	23	47	.6	1	12
14.50	61.90	Light blue to dark blue mottled quartzite. There is evidence of bedding, suggesting that these are si recrystallized sediments (siltstone/sandstone). Fi very carbonaceous with carbon and graphite. Lin common on fractures as well until 25.70m. Brecc quartzite (<3%) occurs with a carbonaceous matri occurs along fractures with carbon/graphite (<0. dolomite veining occurs at the following angles to	licified and ractures are nonite is riation of the x. Pyrite 5%). ½%	GJ29193 GJ29194 GJ29195 GJ29196	15.00 18.00 57.00 60.00	18.00 21.00 60.00 63.00	3.00 3.00 3.00 3.00	58 94 33 68	18 22 20 6	41 40 41 42	.4 .5 .9 1.1	1 1 1	17 1 1
		$24.10 =$ 70° (2mm) $22.10 =$ 35° (2mm) $42.50 =$ 35° (4mm) $46.60 =$ 66° (4mm) 60.50 (1-4mm) = 13°											

1

KEEWATIN ENGINEERING INC.

		DRILL HOLE L	.OG							.E NO. 90-G07	PAGE	2 OF 5
METRE	EAGE			MET	REAGE				AS	SAYS		-
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
14.50	61.90 cont.	Pyrite occurs as fracture fill @ 42.25 (28° to C.A.). Bedding at 27.50m was 24° w.r.t. C.A. NOTE: No limonite past 25.70m = oxidation/reudction interface. The unit becomes a lighter green-grey colour from 58.55-61.90m. This is due to less carbon content distributed pervasively throughout the rock (still along fractures).										
61.90	78.75	Propyliticly altered, medium-grained, porphyritic monzodiorite. Green colour with speckled dark and pink grains (chlorite and KF respectively). Grain size average is 1-4mm. Matic phenos have altered to chlorite, primary KF phenos compose ~ 10% of the rock. Plag phenos have been altered by chlorite and clay minerals. Carbon/graphite along fractures occurs but is less common than above (14.50-61.90m). 2% dolomite veining occurs throughout the interval. No visible sulphide. Structural measurements are as follows (w.r.t. the Core Axis):	GJ29197 GJ29198 GJ29199 GJ29200 GJ29501	63.00 66.00 69.00 72.00 75.00	66.00 69.00 72.00 75.00 78.00	3.00 3.00 3.00 3.00 3.00	153 154 143 155 110	6 8 6 4 3	71 74 53 77 55	1.2 1.2 1.4 1.1 1.3	1 2 3 1 1	1
		$\begin{array}{rcl} 62.85 &=& dolomite vein 3mm wide @ 17^{\circ} \\ 62.95 &=& dolomite vein 4mm wide @ 33^{\circ} \\ 63.40 &=& dolomite hematite vein (2mm) @ 40^{\circ} \\ 71.00 &=& hematite/dolomite vein (2mm) @ 16^{\circ} \\ 70.10 &=& carbon on fractures @ 38^{\circ} \\ 72.40 &=& dolomite vein 5mm wide @ 15^{\circ} \\ 74.00 &=& dolomite vein 3mm wide @ 28^{\circ} \\ 77.60 &=& dolomite vein 3mm wide @ 50^{\circ} \\ 77.80 &=& dolomite vein 3mm wide @ 47^{\circ} \end{array}$										
78.75	102.60	Light green-grey to dark grey foliated sediments. Low grade metamorphism with clay minerals producing a foliation parallel to original bedding. Light grey laminae are clay altered sandstone. Dark grey laminae are less altered carbonaceous siltstone. Some siltstone fragments exhibit stretching or elongation along the foliation. Contorted from 78.75-85.2. 0.5-1.0% dolomite veining occurs along the foliation as well as	GJ29502 GJ29503 GJ29504	78.00 81.00 99.00	81.00 84.00 102.00	3.00 3.00 3.00	65 42 39	11 16 16	49 44 61	0.7 0.8 0.6	1 1 1	1 1 1
		obliquely cross-cutting. No visible sulphides. ≥80% carbonaceous siltstone occurs from 78.75m to 85.00m and 102.40-102.60m (90%). A slight greenish hue to some clay suggests sericite. Structural information is as follows (w.r.t. the Core Axis): 85.60 = foliation/bedding @ 40° 89.60 = foliation/bedding from 31°-47°										

CONTRACTOR OF A CONTRACTOR OF A

		DRILL HOLE L	OG	r · · · · · · · · · · · · · · · · · · ·						.E NO. 90-G07	PAGE	3 OF 5
METRE	EAGE	DECODICTION	SAMPLE	MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
102.60	108.00	92.05 = foliation/bedding @ 48° 93.50 = bedding at 55° 94.88 = foliation @ 40° 97.80 = foliation @ 35° Pink and turquoise, mottled trachytic flow (?) or possibly an	GJ29505	102.00	105.00	3.00	46	14	62	0.8	1	1
102.00	100.00	intensely altered sediment package. Minerals include KF (85%), quartz/sericite = green (10%) and clay ≤0.5% pyrite as massive veinlets. 5% quartz veining throughout. Structural measurements w.r.t. the Core Axis are as follows: 105.50 = flow bands @ 38° 106.80 = quartz vein along flow bands @ 54°	GJ29506	105.00	108.00	3.00	30	16	38	0.7	1	20
		Other notes: Quartz occurs as flooding mostly. No carbonate veining (Post-carbonate-veins).										
108.00	142.02	Mottled light blue quartzite; probably silicified and recrystallized sediments (sandstone and siltstone) as described from 14.50 to 61.90m. 5% is sandstone laminae, which has been altered to clay minerals. Primary chert occurs (not mottled; no bedding). Carbon and graphite occur on most fractures. Very carbonaceous (≥50%) from 108.00 to 110.00m, 0.5% dolomite veining occurs. 1% cubic pyrite occurs along fracture bedding and in veins. Structural measurements are as follows (w.r.t. the Core Axis):	GJ29507 GJ29508 GJ29509 GJ29510	108.00 111.00 138.00 141.00	111.00 114.00 141.00 144.00	3.00 3.00 3.00 3.00	37 23 51 35	32 15 22 9	70 50 82 65	1.2 0.5 0.7 0.4	13 1 40 1	40 18 53 1
		113.10 = bedding @ 58° 116.10 = bedding @ 52° 118.40 = dolomite vein (2mm) @ 27° 118.70 = dolomite vein (2mm) @ 52° 119.05 = dolomite vein (4mm) @ 59° 119.70 = pyrite along bedding (1-3mm) @ 38° 121.55 = pyrite along bedding (10 x .5mm) @ 35° 122.00 = bedding @ 18° 124.50 = bedding @ 52° 124.80 = pyrite along fracture @ 13° 125.55 = quartz vein (chert band?) @ 40° (1cm) 127.00 = bedding @ 33° 128.60 = bedding @ 38°										

1 1 1

		DRILL HOLE L	.OG							E NO. 90-G07	PAGE	4 OF 5
METR	EAGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS	_	
FROM	то	DESCRIPTION	NO.	FROM	то		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
142.02	162.10	Interbedded altered siltstone and sandstone (average thickness of laminae = 0.5cm). Good bedding is exhibited throughout the interval. Carbonaceous siltstone occurs with clay altered sandstone as well as quartzite (silicified sandstone or primary chert?). Band black and light blue colour. Carbon and/or graphite is common on fractured surfaces. ≤0.5% dolomite veining occurs throughout. ≥50% carbonaceous siltstone occurs from 147.30m to 150.30m and 151.75m-157.25m. 1% pyrite occurs as disseminations and along bedding which appears to be more common in the carbonaceous siltstone. Abundant rubble, fracturing, minor clay occur from 154.00 - 157.00m = possible fault. Structural measurements are as follows (w.r.t. the Core Axis) (tops = uphole):	GJ29511 GJ29512 GJ29513 GJ25914 GJ29515 GJ29516	144.00 147.00 150.00 153.00 156.00 159.00	147.00 150.00 153.00 159.00 159.00 162.00	3.00 3.00 3.00 3.00 3.00 3.00	47 62 58 74 45 29	13 17 14 21 16 16	60 146 95 207 115 58	0.5 1.6 0.7 1.2 0.8 0.8	1 1 1 1 3	11 61 63 66 1 40
		149.90 = dolomite veins (3 x 1mm) @ 20° 150.75 = bedding @ 52° (with 0.5mm pyrite bed) 151.50 = bedding with 104mm pyrite bed @ 34° (also graphite along fracture) 151.80 = bedding @ 38° 157.25 - pyrite along fracture @ 72° 158.10 = bedding @ 58°										
162.10	173.21	Brecciated and well fractured plag-augite porphyry andesite flow. Fragments are light brown with clay and sericite alteration as opposed to the black matrix which is carbonaceous material (25%). 2% dolomite veining occurs at the following angles (w.r.t. the Core Axis): 166.66 = dolomite vein (2mm) @ 35° 166.86 = dolomite vein (1mm) @ 55° 169.20 = dolomite vein (2mm) @ 36° 169.50 = dolomite vein (3mm) @ 14°	GJ29517 GJ29518 GJ29519 GJ29520	162.00 165.00 168.00 171.00	165.00 168.00 171.00 174.00	3.00 3.00 3.00 3.00	42 117 118 108	23 13 10 19	84 54 56 80	1.2 1.4 2.0 1.6	21 3 2 3	97 29 1 14
173.21	179.31	Dark grey altered sediments (siltstone, sandstone, ±chert?); carbonaceous. 1% dolomite veining. Contorted and brecciated in places. Carbon and graphite are common along fractures as well as trace pyrite (≤0.3% pyrite).	GJ29521 GJ29522	174.00 177.00	177.00 180.00	3.00 3.00	52 55	16 29	74 60	0.9 1.1	94	17 12

		DRILL HOLE L	.0G							E NO. 90-G07	PAGE	5 OF 5
METRE	AGE	DECODIDE ON	SAMPLE	MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppn
179.31	184.40 E.O.H.	Light green-grey clay altered sediments (sandstone and siltstone). Green clay (mariposite? tuchsite?), chlorite, sericite, and other clay minerals are common. 180.94-184.40m ≤5% altered. ≥30% altered from 179.31-180.94m. No visible sulphide. One quartz/hem vein occurs (8mm) but at an irregular orientation. ≤0.5% dolomite veining is present. Massive chlorite bands (no slickensides) occur at 33° and 64° to the Core Axis (2cm wide each). NO SIGNIFICANT INTERVALS	GJ29523 GJ29524	180.00 182.00	182.00 184.40 E.O.H.	2.00 2.40	63 43	27 14	66 75	0.8 0.6	4 4	1

LOCATION:	KLASTLINE PLAT 130°14'W, 57°39			DRILL	HOLE LOG					HOLE N DDH-90-		PAGE	NO. 1 of 5
AZIM: 180° DIP: -45°		ELEV: LENGTH: 183.49m						PROPERT	Y: ASCO	T GJ (INTE	RNATIONA		R OPTION)
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO					
STARTED: Octobe COMPLETED: Oc PURPOSE: Test (geochem anomaly Groat Cr, N.W. of (tober 10, 1990 Cu-Au soil y on west side of		91.44 183.49	180 180		-44° -42°		DATE LOO DRILLING		tober 9-Oc CON DRILL		990	
CORE RECOVERY	′: 93%							·					
INTE	RVAL	DESCRIPTION		SAMPLE	INT	ERVAL	LENGTH		r	ANA	LYSES	·	1
FROM	то	DESCHIFTION		NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
0.00	4.57	Casing											
4.57	11.89	Hornblende porphyritic diorite intrusive. Hornblen to chlorite. Fine grained plagioclase laths comp mass (5% clay/calcite alteration). 5% mafics are igneous texture is somewhat mottled by the clay/cc Intense iron stained fractures occur from 4.57-6 patchy K-feldspar occurs as well as ~2% epidote a selvages (0.5% calcite veining). Some of the larg (3-4mm) occur at 38°, 54°, 32°, 34°, and 15° to cor occurs finely disseminated and with calcite veinle preferred orientations 28° and 58° to core axis.	ose the ground oresent and the alcite alteration. 5.50m. ~6-7% as calcite veinlet er calcite veins e axis 3% pyrite	GJ31248 GJ31249 GJ31250	4.57 6.00 9.00	6.00 9.00 12.00	1.43 3.00 3.00	193 138 140	20 13 20	94 79 68	1.5 1.1 1.0	85 23 13	282 35 4
11.89	43.55	Hornblende porphyritic diorite intrusive as a clay/calcite alteration. Equigranular except for smaphenocrysts (\leq 1.0mm). 1-2% magnetite occurs for The rock is composed of 20-25% mafics and 70% p 7% secondary K-feldspar occurs altering plag Mafics have altered to chlorite. 1% calcite veini \leq 0.5% quartz veining, both of which contain py occurs in these veins as well as dissemination measurements with relation to the core axis are a 14.50m = calcite vein (3mm) @ 26° 16.20m = calcite/pyrite veins (2x1mm) @ 17.45m = calcite/chlorite vein (3mm) @ 20° 17.90m = calcite/pyrite vein (3mm) @ 20.25m = calcite/pyrite vein (2mm) @ 20.25m = calcite/pyrite vein (8-10mm) @ 20.25m = quartz/pyrite vein (8-10mm) @ 20.25m = qua	atler hornbiende cally (primary). lagioclase. 5%. ing occurs and rite. 5% pyrite on. Structural s tollows: @ 38° ⊇ 14° 25° 5°	GJ31251 GJ31252 GJ31253 GJ31254 GJ31255 GJ31256 GJ31256 GJ31257 GJ31258 GJ31259 GJ31260	12.00 15.00 24.00 27.00 30.00 33.00 36.00 39.00	15.00 18.00 21.00 24.00 27.00 30.00 33.00 36.00 39.00 42.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	95 95 728 250 427 181 162 190 204 234	14 22 21 20 9 12 11 38 11 16	27 25 232 67 36 23 32 72 43 60	1.2 1.0 3.3 1.4 1.8 1.2 0.8 1.5 1.6 1.7	4 3 180 21 28 24 28 113 36 22	1 302 60 1 1 15 15 1 13 1

I

KEEWATIN ENGINEERING INC.

1.1.1.1.1.1.1.1.1

i

1

]

		DRILL	HOLE LOG							E NO. 90-G-11	PAGE	E 2 OF 5
INTERV	/AL	DESCRIPTION	SAMPLE	INT	ERVAL	LENGTH			ANA	LYSES		
FROM	то	DESCHIPTION	NO.	FROM	то	LENGIN	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppr
11.89	43.55 Cont.	20.00m =quartz/pyrite veins (2x2mm) @ 33° 21.50m =calcite/pyrite vein (2mm) @ 28° 22.05m =calcite/pyrite vein (2mm) @ 35° 22.05m =calcite/pyrite veins (2x1mm) @ 35° 22.70m =calcite vein (1mm) @ 44° 23.70m =pyrite vein (1mm) @ 44° 23.70m =pyrite/calcite vein (1mm) @ 25° crocalcite veinlet (0.5mm) @ 6° 24.30m =calcite veinlet (0.5mm) @ 33° 24.35m =pyrite/chlorite vein (1mm) @ 18° 25.20m =pyrite/chlorite vein (1mm) @ 18° 25.20m =calcite vein @ 25° (4mm)28.00m =calcite vein (3-4mm) @ 26° 28.55m =calcite/pyrite vein (1mm) @ 14° 30.20m =calcite/pyrite vein (1mm) @ 43° 38.50m =calcite/pyrite vein (7mm) @ 43° 38.70m =calcite/hematite vein (2mm)38.70m =calcite/hematite vein (1mm) @ 23° 40.00m =pyrite/calcite vein (1mm) @ 33° 41.70m =pyrite/chlorite vein (1mm) @ 33°	ss-cut by in (2mm) 45° is cross-) @ 9° (1-2mm)									
43.55	65.75	Hornblende porphyritic diorite intrusive as above, except blurred and less distinct due to 5% K-feldspar as selvage pervasive silicification. Mafics have altered to chlori Slightly magnetic (\$1.0% mgt). Quartz veining has incr <2.0%, but vein contacts are not sharp due to silica	s and 5% GJ31262 te again. GJ31263 eased to GJ31264 flooding. GJ31265 rtz veins. GJ31266 entations GJ31267 GJ31268 3mm) @ 4mm) @	42.00 45.00 51.00 54.00 57.00 60.00 63.00	45.00 48.00 51.00 54.00 57.00 60.00 63.00 66.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	428 218 296 208 227 218 143 174	17 37 22 13 11 13 16 22	79 96 84 32 27 25 41	1.9 1.9 1.3 1.2 1.0 0.8 1.4	57 42 40 236 38 27 44	23 10 1 9 76 126 41 37

		DRILL HOLE L	.0G							E NO. 90-G-11	PAGE	3 OF 5
INTER	/AL	DESCRIPTION	SAMPLE	INTE	RVAL	LENGTH			ANA	LYSES		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppn
43.55	65.75 Cont.d	53.40m =quartz veins $(34mm) @ 20^{\circ}$ 53.70m =quartz veins $(6mm) A 15^{\circ}$ 54.90m =calcite/pyrite/chlorite $(1mm) @ 17^{\circ}$ 55.30m =calcite vein $(2mm) @ 50^{\circ}$ 55.60m =calcite veins $(1,2mm) @ 35^{\circ}$ 57.75m =calcite/chlorite vein $(2mm) @ 25^{\circ}$ 59.30m =calcite/chlorite vein $(2mm) @ 37^{\circ}$ 63.70m =calcite/chlorite vein $(1mm) @ 30^{\circ}$ 65.50m =calcite/chlorite vein $(2mm) @ 18^{\circ}$										
65.75	76.30	Hornblende porphyritic diorite with intense clay alteration ($\geq 20\%$). The rock contains ~10% patchy K-feldspar and ~10% chlorite altered mafics. 2% calcite fracture filling occurs throughout. Calcite veining crosscuts earlier dolomite veins (0.5%) with K- feldspar selvages. ~3-4% disseminated pyrite occurs as dissemination and vein selvages. Slightly magnetic.	GJ31269 GJ31270 GJ31271	66.00 69.00 72.00	69.00 72.00 75.00	3.00 3.00 3.00	82 206 379	21 6 23	42 46 127	1.3 1.3 2.4	6 184 61	28 20 62
76.30	82.97	Hornblende porphyritic diorite intrusive with much less intense clay alteration (5-10%). Slightly magnetic. 5% K-feldspar as alteration patches and calcite/pyrite vein selvages; 10% chlorite altered mafics. 2% calcite veining. 2-3% disseminated pyrite and with calcite/K-feldspar veins @ 28° to core axis. Other calcite vein orientations are 22°, 42°, and 52° to core axis.	GJ31272 GJ31273 GJ31274	75.00 78.00 81.00	78.00 81.00 84.00	3.00 3.00 3.00	212 374 133	15 14 17	128 54 19	2.1 2.0 1.3	26 17 4	33 32 41
82.97	89.58	As above (76.30-82.97m) except contains calcite and chlorite slickensides. Clay alteration increases downhole from 5% to ≥50% in the last meter. Calcite veining averages 5%. Slides are @ 10-18° to core axis. Clay gouge occurs from 88.00-89.58 = faulted contact. Pyrite as above.	GJ31275 GJ31276	84.00 87.00	87.00 90.00	3.00 3.00	269 246	16 22	24 26	2.5 2.4	36 32	48 46
89.58	119.27	Quartzite = intensely silicified bedded sediments (black carbonaceous siltstone and grey, fine grained sandstone). Crackle breccia from 89.58-95.35m with a matrix composed of calcite (10%) and clay (5%). Bedding is mottled in this subinterval. 2% calcite veining occurs in the rest of the interval. These sediments pre-date the intrusive due to the hornblende-porphyritic diorite dykes occurring @ 102.20-102.42m, 105.50-106.27m, and 107.30-107.75m. Hornblendes are altered to chlorite. ≤1.0% veined and disseminated pyrite occurs throughout. Bedding and conformable dyke contacts (sills) range from 67° to 77° with relation to the core axis. A calcite vein ≥1cm occurs from 118.34 to 118.82m @ 0° to	GJ31277 GJ31278 GJ31279 GJ31280 GJ31281 GJ31282 GJ31283 GJ31283 GJ31284 GJ31285 GJ31286	90.00 93.00 96.00 99.00 102.00 105.00 108.00 111.00 114.00 117.00	93.00 96.00 99.00 102.00 108.00 111.00 114.00 117.00 120.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	190 174 95 243 154 109 126 198 175 224	14 9 12 11 10 13 10 10 17 6	39 62 75 51 71 84 70 81 105 121	2.1 2.0 1.3 1.7 1.6 1.8 1.3 1.1 1.5 2.1	34 97 2 210 24 12 1 2 3 1	98 69 76 53 53 60 46 39 85 64

		DRILL HOLE L	OG							E NO. 90-G-11	PAGE	4 OF 5
INTER	VAL			INTE	RVAL				ANA	LYSES		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
119.27	123.10	Augite-plagioclase porphyritic andesite flow; coarse grained (grains are 2-4mm). 15% calcite pseudomorphs, phenocrysts. Non-magnetic. Mafics have altered to chlorite. 2% calcite veining occurs except from 122.60m-123.10m = calcite breccia (\geq 75% calcite). 3% pyrite occurs as dissemination and with early calcite veinlets (\leq 2mm). Calcite vein orientations range from 40° to 70° with relation to core axis. Moderate brown clay alteration occurs pervasively in the first meter.	GJ31287	120.00	123.00	3.00	252	7	76	3.2	12	44
123.10	154.97	Equigranular monzodiorite with grains of plagioclase, hornblende, and 25-30% K-teldspar (primary?). Slightly magnetic (s1.0% magnetite) This could be a K-feldspar altered diorite. Mafics have altered to chlorite -5% K-feldspar as veins and envelopes to calcite veins. ≤1.0% calcite veining throughout. Trace epidote as envelopes to calcite/pyrite veins (s0.1% epidote). Trace pyrite with calcite and K-feldspar veins (s0.2%) - rarely disseminated locally, up to 2% pyrite with veins. Structural measurements are as follows (with relation to the core axis): 124.40m = K-feldspar/pyrite vein (4mm) @ 68° 125.00m = calcite vein (2mm) @ 16° 127.65m = calcite vein (1-5mm) @ 50° 132.15m = calcite vein (2mm) @ 50° 133.50m = calcite vein (2mm) @ 00° 134.30m = calcite vein (2mm) @ 00° 134.30m = calcite/chlorite vein (4-5mm) @ 65° 144.02m = calcite/chlorite vein (4-5mm) @ 66° 140.25m = calcite/chlorite vein (4mm) @ 16° 140.25m = calcite vein (2mm) @ 23° 143.85m = K-feldspar veins (2mm, 12mm) @ 60° and 75° 144.05m = 3mm K-feldspar/pyrite vein @ 62° crosscut by a calcite/chlorite vein (2mm) @ 37° 146.45m = calcite vein (2mm) @ 37° 146.60m = calcite/chlorite vein (2mm) @ 23° 146.60m = calcite/chlorite vein (2mm) @ 23°	GJ31288 GJ31289 GJ31290 GJ31291 GJ31292 GJ31293 GJ31294 GJ31295 GJ31296 GJ31297	123.00 126.00 132.00 138.00 141.00 144.00 147.00 150.00	126.00 129.00 135.00 138.00 141.00 144.00 147.00 150.00 153.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	163 440 84 160 174 109 73 104 180 97	14 14 15 9 17 6 13 6 17 7	33 34 69 47 44 55 44 87 44	1.5 2.3 1.5 1.3 1.5 1.3 1.1 1.2 1.6 1.3	12 58 2 2 16 2 62 2	2 54 13 32 24 53 26 5 53 8

]

		DRILL HOLE L	.OG							E NO. 90-G-11	PAGE	5 OF 5
INTER	/AL		0.000	INTE	RVAL				ANA	LYSES		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As pprr
154.97	180.45	Intensely K-feldspar altered, plagioclase porphyry andesite flow. Plagioclase are altered by clay (10% of rock) and calcite (5% of rock). K-feldspar alteration is pervasive and intense; also ≤ 0.5 % K- feldspar veins occur with disseminated pyrite. Pyrite also occurs with calcite veins. 10% chlorite blebs occur throughout. Trace epidote patches occur (≤ 0.5 %) with K-feldspar haloes. Total pyrite is ≤ 1.0 % as dissemination and in veins. Total calcite veining is ≤ 1.0 %. Structural measurements with relation to the core axis are as follows: 156.60m = quartz/calcite vein (3mm) @ 17° 159.25m = 2 K-feldspar/pyrite veins (2.5mm, 6mm) @ 75° 160.05m = calcite vein with pyrite selvages (4mm) @ 58° 162.60m = calcite vein (2mm) @ 47° 169.50m = calcite vein (2mm) @ 38° 172.00m = calcite vein (1.5mm) @ 50° 172.05m = K-feldspar/pyrite vein (3mm) @ 65° 173.00m = pyrite/calcite vein (2mm) @ 67° 175.25m = cal/chlorite foliation/shear @ 35° 177.25m = calcite vein (2.5mm) @ 48°	GJ31298 GJ31300 GJ31300 GJ31302 GJ31303 GJ31304 GJ31305 GJ31306	153.00 156.00 162.00 165.00 168.00 171.00 174.00 177.00	156.00 159.00 162.00 168.00 171.00 174.00 177.00 180.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	151 93 195 111 98 122 129 102 84	15 15 16 17 8 16 21 16 20	62 41 44 52 30 30 29 26	1.2 1.1 1.5 1.3 1.4 1.4 1.3 1.3 1.1	23 29 510 35 9 19 2 21 1	25 6 55 7 28 26 18 40 34
180.45	183.49	Intensely clay/chlorite altered version of the rock type described above. 2-3% calcite fracture-fill veining, and brecciation. Fault gouge from 180.79m-181.01m. Up to 5% dissemination and blebs of pyrite locally (\$1.0% overall). Fault contacts (180.79-181.01m) are 30-35° with relation to the core axis. E.O.H. @ 183.49m (602') NO SIGNIFICANT MINERALIZED INTERVALS	GJ31307	180.00	183.49	3.49	150	24	24	1.8	26	30

1

]

LOCATION:	KLASTLINE PLAT 130° 14'W 57° 39			DRILL	HOLE LOG					HOLE N DDH-90-		PAGE	NO. 1 of 4
AZIM: 220° DIP: -45°		ELEV: LENGTH:182.27m			DIP TEST			PROPERT	TY: ASCO	GJ (INTE	RNATIONAL	CURATO	
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO					
STARTED: Octob COMPLETED: Oc PURPOSE: Test (geochem anomaly groat Cr. NW of 8	tober 12, 1990 Cu-Au Soil y on west side of		90.83 182.58	220° 220°		-45.5° -43.0°		DATE LO	BY: Jasor GGED: Oc CO: FAL BY: MIN-	tober 12-0 CON DRILL	ctober 14, ' ING	1990	
CORE RECOVERY	f: 95%				-								
INTE	RVAL	DESCRIPTION		SAMPLE	INT	ERVAL	LENGTH			ANA	LYSES		
FROM	то	DESCRIPTION		NO.	FROM	то	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
0.00	3.05	Casing										<u> </u>	
3.05	28.45	Intensely altered sediments (siltstone and sandstor Very colorful = pink, brown turquoise, black and v 3% black carbonaceous siltstone occurs. Go exhibited throughout. Sandstone layers have be maroon clay (28%) and siltstone layers have b sericite and a lighter colored clay (10% each). Pe stain occurs from 3.05m-11.70m. Below 11.70m ab occurs on fractures with clay and calcite. 1.0% p filling and veins (with calcite) 0.5% calcite vei measurements are as follows (with relation to the 6.50m = bedding @ 27° 8.20m = calcite vein (3mm) @ 22° 9.70m = bedding @ 30° 12.60m = bedding @ 32° 15.65m = bedding @ 33° 19.80m = bedding @ 17° 23.60m = bedding @ 26° 28.15m = bedding @ 28°	white striped. 2- od bedding is een altered to a been altered to rvasive limonite undant limonite yrite as fracture ns. Structural	GJ31308 GJ31309 GJ31310 GJ31311 GJ31312 GJ31313 GJ31314 GJ31315	3.05 6.00 9.00 12.00 15.00 18.00 21.00 24.00	6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00	2.95 3.00 3.00 3.00 3.00 3.00 3.00	70 55 59 62 55 50 45 43	23 19 15 14 28 19 16 12	96 178 57 40 67 47 63 80	1.6 1.4 0.9 0.7 1.3 1.0 0.7 0.9	4 6 12 1 3 3 1	105 65 58 42 86 20 36 64
28.45	85.45	Black carbonaceous siltstone, grey chert, and interbedded sandstone. The chert could be a sandstone) ≤1.0% calcite veining occurs oblique t clay sericite alteration occurs after sandstone. indicated by flame or ball and pillow structures. Abundant limonite on fractures. 2% pyrite occurs veining as well as along fractures. The rock carbonaceous siltstone and ~60% grey silicifi	quartzite (after o bedding. 5% Tops uphole, Non-magnetic. with carbonate is ~40% black	GJ31316 GJ31317 GJ31318 GJ31319 GJ31320 GJ31321 GJ31322 GJ31323	27.00 30.00 33.00 36.00 39.00 42.00 45.00 48.00	30.00 33.00 39.00 42.00 45.00 48.00 51.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	69 40 75 195 115 85 48 63	8 30 25 18 20 18 23 20	85 105 67 61 63 87 74 85	1.6 1.9 2.4 1.1 1.1 1.0 1.0	5 5 34 122 3 3 1 2	62 71 230 369 62 67 68 95

) **)** ()

		DRILL HOLE	LOG			•				.E NO. 90-G-12	PAGE	E 2 OF 4
INTER	VAL	DESCRIPTION	SAMPLE	INT	ERVAL	LENGTH		.	ANA	LYSES		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGIN	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
28.45	85.45 Cont.	Structural measurements with relation to the core axis are a follows:28.45m =bedding @ 27° 28.65m =quartz vein with minor pyrite (10mm) @ 59° 30.60m =bedding @ 14° 36.40m =massive arseno and pyrite vein (3mm) @ 3° 41.00m =bedding @ 17° 45.20m =pyrite along bedding @ 19° 48.25m =bedding @ 17° 50.00m =bedding @ 17° 56.15m =calcite vein (3mm) @ 14° 56.35m =bedding @ 16° 58.40m =calcite vein ($3-4mm$) @ 40° 60.00m =calcite vein ($2-3mm$) @ 19° 61.80m =calcite vein ($3-4mm$) @ 55° 65.10m =bedding @ 47° 61.80m =calcite vein ($3mm$) @ 55° 65.10m =bedding @ 24° 75.15m =bedding @ 24° 76.80m =bedding @ 24° 79.00m =calcite veins ($6x12mm$) @ 48° 80.90m =calcite vein ($3mm$) @ 54° 81.40m =bedding @ 32° 84.00m =bedding @ 28°	GJ31325 GJ31326 GJ31327 GJ31328	51.00 54.00 57.00 63.00 66.00 69.00 72.00 75.00 78.00 81.00	54.00 57.00 63.00 66.00 69.00 72.00 75.00 78.00 81.00 84.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	49 61 59 51 58 52 55 50 54 63 149	29 29 18 20 25 18 13 18 26 19 20	108 86 79 60 64 85 38 92 58 46 47	1.4 1.6 1.3 1.5 1.1 0.7 1.3 1.4 1.6 1.3 1.3	2 6 2 1 12 26 21 1 3 11	63 54 58 72 81 35 96 49 84 47 98
85.45	86.67	Course plagioclase crystal tuff (2-3mm average). Intense alteratic consisting of 5% sericite, 5% calcite, and 10% clay. This unit doe not appear to be intrusive. 4-5% pyrite occurs as disseminate blebs. 3% calcite occurs as veins and fracture filling.	s	84.00	87.00	3.00	129	26	132	1.9	22	58
86.67	121.18	Black siltstone (70%) with grey quartzite (30%) (after siltstone ar sandstone ? laminae). Good bedding is exhibited throughout th interval except where grey quartzite mottles it. 2% calcite veinin occurs with pyrite in some cases (1% pyrite). Minor bedded pyrit (≤0.2%) structural measurements with relation to the core axis an as follows: 86.85m = bedding @ 23° 88.65m = calcite vein (2-8mm) @ 26° 91.90m = calcite vein (3mm) @ 48° 93.70m = bedding @ 15° 94.20m = calcite along bedding @ 24°	e GJ31337 g GJ31338 e GJ31339	87.00 90.00 93.00 99.00 102.00 105.00 108.00 111.00 114.00 117.00	90.00 93.00 99.00 102.00 105.00 108.00 111.00 114.00 117.00 120.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	121 126 87 94 133 111 156 99 118 67 111	25 25 30 30 30 32 26 28 26 28 26 20 21	314 261 356 331 984 943 350 74 84 27 26	1.8 2.1 1.7 1.8 2.4 2.2 2.3 1.6 1.5 1.2 1.2	39 82 22 31 38 32 37 24 60 38 45	91 92 132 65 103 92 83 99 85 88 55

1

]

		DRILL HOLE	LOG				<u></u>			E NO. 90-G-12	PAGE	3 OF 4
INTER	VAL			INT	ERVAL	151070			ANA	LYSES		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	тө	LENGTH	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppm
86.67	121.18 Cont.	105.00m = bedding @ 5° 112.60m = pyrite along bedding @ 27° 113.50m = calcite/pyrite veins parallel to bedding @ 32° 115.90m = bedding @ 5° 118.75m = bedding @ 29° Note limonite stain to 108.00mm = oxidation/reduction interface										
121.18	135.33	Medium grained, equigranular plagioclase biotite diorite intrusive dyke. Various types of alteration present locally. 121-18-124.80m = pervasive clay alteration (55%) and calcite after plagioclase (5%). 124.80m-128.76 = sericitic alteration after plagioclase (5%) and calcite (5%). 128.76-131.30m = fresh intrusive with clay alteration (pervasive) increasing downhole to $\geq 10\%$. 131.30m 135.33 = pervasive K-feldspar ($\leq 5\%$) alteration, pervasive clay alteration (2%), and sericitic altered after plagioclase (2%). 2% calcite veining occurs throughout (sometimes with pyrite). Pyrite ranges from 5% (near the contacts) to 1% in the middle (3% average) and is mostly veined (some dissemination). A grey clay gouged fault zone occurs from 134.30-134.50m. Structural measurements with relation to the core axis are as follows: 121.30m = 50% pyrite/50% calcite vein (45mm) @ 64° 121.55m = calcite vein (2-3mm) @ 40° 122.70m = 20% pyrite/80% calcite vein (65mm) @ 76° 122.90m = pyrite vein (2.3mm) @ 23° 129.50m = calcite vein (3mm) @ 23° 129.50m = calcite vein (5mm) @ 34° 130.00m = calcite vein (5mm) @ 45° 132.10m = 50% pyrite/50% calcite vein (5mm) @ 52° 133.80m = calcite vein (2-5mm) @ 48°	GJ31348	120.00 123.00 126.00 129.00 132.00	123.00 126.00 129.00 132.00 135.00	3.00 3.00 3.00 3.00 3.00	252 125 123 232 279	15 21 11 19 20	43 67 59 54 49	1.8 1.7 2.2 1.4	67 40 18 44 136	26 1 11 9
135.33	182.27	Grey quartzite (silicified siltstone). Bedding becomes less defined downhole. Plagioclase - biotite diorite dyke (as described above @ 131.30-135.33m) occurs from 137.12-138.64m. Upper contact is @ 30° with relation to the core axis ≤5% K-feldspar alteration occurs as bands along bedding from 135.33-141.50m. 2% calcite veining and minor brecciation occurs throughout. 2.0% fracture pyrite occurs. Structural measurements with relation to the core axis are as follows: 136.50m = bedding @ 56° 142.25m = calcite veins (3x5mm) @ 60° 151.60m = bedding @ 7°	GJ31353 GJ31354 GJ31355 GJ31356 GJ31356 GJ31357	135.00 138.00 141.00 144.00 150.00 153.00 156.00 159.00 162.00 165.00	138.00 141.00 144.00 150.00 155.00 156.00 159.00 162.00 165.00 168.00 171.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	151 123 72 113 148 143 143 103 102 90 171 175	14 20 22 15 10 13 22 21 14 19 23 17	35 38 31 66 60 32 67 63 83 83 80 21	1.5 1.2 1.3 1.3 1.1 1.4 0.8 1.3 1.2 1.2 1.2 1.4	17 6 1 19 537 142 41 58 33 21 6 20	45 59 40 59 75 68 57 51 65 80 45 61

•

KEEWATIN ENGINEERING INC.

ן ו<u>רי</u>ן וי

		DRILL HOLE LO	OG			.				E NO. 90-G-12	PAGE	4 OF 4
INTE	IVAL	DESCRIPTION	SAMPLE	INT	ERVAL	LENGTH			ANA	LYSES		
FROM	то		NO.	FROM	то		Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	As ppr
135.33	182.27 Cont.	152.65m = bedding @ 8° cross-cut by a calcite vein (8mm) @ 40° 154.44m = bedding @ 6° 156.65m = calcite vein (3-6mm) @ 70° 161.30m = calcite vein (4mm) @ 52° 173.20m = calcite veins (10x≤1mm) @ 52° 176.45m = bedding @ 34° Local clay/sericite altered zones occur (≤2% of the interval). E.O.H. @ 182.27m NO SIGNIFICANT MINERALIZED INTERVALS	G.J31364 G.J31365 G.J31366 G.J31367	171.00 177.00 180.00 EOH	174.00 177.00 180.00 182.27	3.00 3.00 2.27	80 112 128 97	20 22 10 15	26 22 23	1.5 1.3 2.1 1.4	4 14 22 2	76 58 61 73

APPENDIX XII

.

-

-

GJ Property Drill Core Geochemistry Results

Keewatin Engineering Inc.

COMP: KEEWATIN ENGINEERING PROJ: GJ #151

ATTN: R.NICHOLS/D.MEHNER

ġ.

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: OS-0444-RJ1 DATE: 90/09/11 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90M 151 11201	93	1.2	246	32	30	38	5	5	80		
90M 151 11202 90M 151 11203	166 182	1.0 .3	363 882	71 60	56 218	33 17	3 4	5 6	165 95		
90M 151 11203	451	1.4	1107	43	683	45	6	8	140		
90M 151 11205	319	1.8	979	77	269	53	7	3	70		
90M 151 11206 0	534	2.8	1481	44	519	37	8	23	145		
90M 151 11207	92 119	2.0 3.1	415 641	31 61	138 302	29 69	5 4	47 60	195 160		
90M 151 11209 Q	107 -	3.6	451	67	2898	59	4	26	650		
90M 151 11210 0	58	1.6	295	38	276	39	3	9	100		
90M 151 11211	49	1.2	210	20	72	37	1	3	65		
90M 151 11212 90M 151 11213	69 87	1.0 2.4	243 415	22 41	158 597	31 76	2 4	2 2	50 320		
90AA-151C-001	23	.6	65	16	32	44	2	4	60		
90AA-151C-002	15	.5	67	13	31	33	3	7	65		
90AA-151C-003	17	.1	74	16	35	27	1	4	75		
							`				
					<u></u>						
						<u></u>		·····			
			·····								
		······································									·····
						- <u></u>	······			. <u></u>	······
+	<u></u>	······································							·		···-
			······			······································					

COMP: KEEWATIN ENGINEERING PROJ: GJ 151

ATTN: R.NICHOLS/D.MEHNER

- -

بلكت مفتحدة ويتحافظت كالمتكل

i,

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0549-RJ3+4 DATE: 90/09/28 • ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU	PB PPM	ZN	AS PPM	SB PPM	MO PPM	HG PPB	- <u></u>
90 151GJ R29132B 90 151GJ R29133B 90 151GJ R29133B 90 151GJ R29135B 90 151GJ R29135B 90 151GJ R29136B (h	4 2 9 19 18	.8 .7 .8 .8 .9	78 67 54 107 88	20 12 23 15 18	18 21 16 12 21	1 29 38 1 33	1 1 1 1 1	1 1 1 1 1	65 50 45 80 65	
90 151GJ R29137B 90 151GJ R29138B 90 151GJ R29138B 90 151GJ R29139B 90 151GJ R29140B 90 151GJ R29141B	21 16 3 5 9	.6 1.0 .6 .4 .5	93 83 54 25 28	12 24 10 13 13	22 25 32 40 23	1 1 1 1	1 1 1 1 1	1 1 1 1	35 55 65 60 55	
90 151GJ R29142B 90 151GJ R29151B 90 151GJ R29152B 90 151GJ R29153B 90 151GJ R29153B 90 151GJ R29154B	2 6000 142 27 8	.5 13.6 1.8 1.7 2.0	19 3977 235 119 107	17 84 30 21 19	19 214 58 69 55	1 115 46 1 18	1 22 8 4 5	1 4 8 36 19	45 70 65 125 140	
90 151GJ R291558 0 90 151GJ R291568 0 90 151GJ R291568 9 90 151GJ R291578 9 90 151GJ R291588 90 151GJ R291598	4 5 4 3 4	1.5 1.5 1.2 .3 .4	104 90 88 41 26	17 22 20 33 32	84 31 39 35 38	16 27 45 27 30	1 2 2 1 1	2 4 1 2 1	115 85 125 150 65	
90 151GJ R29160B 90 151GJ R29161B 90 151GJ R29162B 90 151GJ R29163B 90 151GJ R29164B	2 4 8 95 818	.5 .6 .2 1.0 2.9	73 37 40 33 72	18 27 21 60 94	46 34 55 248 743	71 70 5 46 252	1 1 1 1 5	3 1 1 21	70 125 110 245 545	
90 151GJ R29165B 90 90 151GJ R29166B 90 90 151GJ R29166B 9- 90 151GJ R29167B 9- 90 151GJ R29168B 9- 90 151GJ R29169B -	23 14 14 18 13	2.0 1.5 2.1 1.2 .8	72 48 154 64 67	35 31 52 40 26	106 156 1943 78 145	78 66 30 4 1	3 1 1 1 1	21 37 37 13 4	305 410 1285 210 400	
90 151GJ R29170B 90 151GJ R29171B 90 151GJ R29172B 90 151GJ R29172B 90 151GJ R29173B	26 24 15 29	2.9 4.5 3.9 .5	49 73 87 63	34 40 37 25	118 175 288 87	1 43 58 1	1 1 1 1	5 12 14 1	280 385 455 390	

COMP: KEEWATIN ENGINEERING PROJ: GJ 151

ATTN: D.MEHNER/R.NICHOLS

4 m

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: OS-0467-RJ1+2 DATE: 90/09/14 * ROCK * (ACT:F31)

(604)980-5814 OR (604)988-4524

ATTN: D.MERNER/K.NICHULS			(0047)	960-3614 U	K (004770	0-4724			" RUCK "	(AUT:PST
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90 GJ 151 R11214	44	.9	336	5439	63	43	7	3 .	150	
90 GJ 151 R11215	53	.3	322	4534	38	31	4	6	120	
90 GJ 151 R11216	75	.1	337	24	22	1	1	1	130	
90 GJ 151 R11217	46	.3	202	10	24	15	1	2	135	
90 GJ 151 R11218	268	.9	411	31	52	85	1	3	170	
90 GJ 151 R11219	71	.4	318	15	13	14	1	19	160	
90 GJ 151 R11220	98	.7	681	15	16	47	1	9	125	
90 GJ 151 R11221	79	.9	488	20	17	33	1	3	155	
90 GJ 151 R11222	56	1.3	390	18	22	32	1	2	125	
90 GJ 151 R11223	64	1.1	484	16	21	13	1	18	100	
90 GJ 151 R11224	77	.7	537	20	39	31	2	36	175	
90 GJ 151 R11225	73	1.0	518	21	29	9	4	79	120	
90 GJ 151 R11226	18	1.0	398	19	9	9	ż	8	85	
90 GJ 151 R11227	352	1.3	1535	22	16	14	3	7	150	
90 GJ 151 R11228	288	1.3	1276	19	22	1	2	6	140	
90 GJ 151 R11229	590	2.0	2456	12	27	6	1	12	120	·····
90 GJ 151 R11230	190	1.2	1049	27	37	29	1	15	150	
90 GJ 151 R11231	136	1.3	834	29	93	58	4	26	125	
90 GJ 151 R11232	204	1.4	965	24	45	75	5	336	135	
90 GJ 151 R11233	133	1.5	807	17	33	30	3	109	120	
90 GJ 151 R11234	865	3.4	3957	21	25	26	7	4	95	
90 GJ 151 R11235	958	3.4	3409	20	38	15	7	2	140	1
90 GJ 151 R11236	956	1.1	751	15	36	35	3	3	75	1
90 GJ 151 R11237	30	1.1	528	13	19	67	2	6	115	
90 GJ 151 R11238	43	.7	636	17	48	64	1	6	130	
								••••		
90 GJ 151 R11239	38	1.8	684	22	93	41	5	14	185	
90 GJ 151 R11240 S 90 GJ 151 R11241 S	67	3.0 1.5	1029	29 19	55	66 49	6 3	12 5	155 115	
	71 26	1.0	1024 731	22	26 37	49 59	1	5	60	
90 GJ 151 R11242 8 90 GJ 151 R11243	92	1.6	907	24	28	131	4	3	95	
		<u></u>						·····		
90 GJ 151 R11244	72	1.6	509	52	39	63	3	3	135	
90 GJ 151 R11245	65	1.5	681	19	37	29	3	6	120	
90 GJ 151 R11246 90 GJ 151 R11247	79 37	2.8 1.5	1388 792	22 18	38 33	38 39	4 3	3 2	115 115	
90 GJ 151 R11248	68	.8	986	15	44	22	5	8	110	
90 GJ 151 R11249	60	.8	1014	18	24	10	4	4	140	
90 GJ 151 R11250	37	1.0	823	21	87	15	1	3	90 95	
90 GJ 151 R11251	107	1.2	889 75/	18	43	28 21	1	2 1	95 90	
90 GJ 151 R11252 90 GJ 151 R11253	32 85	.5 1.1	354 482	18 16	28 24	31	1	1	120	
90 GJ 151 R11254	73	1.1	537	15	30	44	1	1	105	
90 GJ 151 R11255	101	1.1	697 770	19	27	37	1	1	75	
90 GJ 151 R11256	39 77	.7	379	17	30	29 25	1	1	125	
90 GJ 151 R11257 90 GJ 151 R11258	77 36	1.1 .8	541 255	11 14	36 38	25 30	1	1	115 120	
90 GJ 151 R11259	18	.4	165	11	48	1	1	1	105	
90 GJ 151 R11260	70	.5	306	21	33	1	1	3	135	
90 GJ 151 R11261	45	.2	259	18	22	1	1	3	110	
90 GJ 151 R11262	89	.8	467	22	34	23	1	4	215	
90 GJ 151 R11263	2	.8	173	15	46	1		1	195	
90 GJ 151 R11264	38	1.1	208	23	47	3	1	1	115	
90 GJ 151 R11265	306	1.2	339	22	30	1	1	3	165	
90 GJ 151 R11266 rs	1500	1.4	273	19	28	6	1	1	140	
90 GJ 151 R11267 O	104	.9	333	19	27	1	1	1	105	
90 GJ 151 R11268	121	.8	345	19	30	10	1	2	130	
90 GJ 151 R11269	135	.7	386	19	38	1	1	9	150	
90 GJ 151 R11270	76	.6	235	20	26	29	1	1	85	
90 GJ 151 R11271	47	.7	228	25	24	1	1	2	145	
90 GJ 151 R11272	84	1.1	328	20	26	4	1	1	200	
90 GJ 151 R11273	52	1.4	539	20	29	1	1	1	210	

COMP: KEEWATIN ENGINEERING PROJ: GJ 151

ATTN: D.MEHNER/R.NICHOLS

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: OS-0467-RJ3+4 DATE: 90/09/14 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90 GJ 151 R11274 90 GJ 151 R11275 90 GJ 151 R11275 90 GJ 151 R11276 90 GJ 151 R11277 90 GJ 151 R11278	54 498 426 295 202	1.0 4.4 .9 .8 .7	519 704 1925 1043 831	18 24 17 14 18	34 40 27 29 26	1 43 1 1 1	1 3 1 1	1 1 1 1 14	195 145 160 100 155	
90 GJ 151 R11279 90 GJ 151 R11280 90 GJ 151 R11281 90 GJ 151 R11281 90 GJ 151 R11282 90 GJ 151 R11283	173 121 118 74 16	.7 1.7 2.0 1.7 1.1	572 786 903 478 452	13 21 14 22 22	32 38 44 45 33	1 1 1 1	1 1 1 1 1	1 1 1 2	110 130 110 125 120	
90 GJ 151 R11284 90 GJ 151 R11285 90 GJ 151 R11285 90 GJ 151 R11286 90 GJ 151 R11287 90 GJ 151 R11288	118 103 225 135 2300	.8 .6 1.3 .8 3.8	654 529 760 550 4764	19 14 26 25 23	38 42 66 41 75	1 27 89 1 1	1 1 1 3	3 2 1 1 1	70 75 145 85 125	
90 GJ 151 R11289 G 90 GJ 151 R11290 G 90 GJ 151 R11290 G 90 GJ 151 R11291 J 90 GJ 151 R11292 O 90 GJ 151 R11293 O	1300 217 41 37 29	7.0 1.6 1.1 1.2 1.2	3332 721 570 266 237	17 22 21 15 17	238 38 35 45 45	5 9 1 1	5 1 1 1	2 1 1 1 1	250 230 135 150 95	
90 GJ 151 R11294 90 GJ 151 R11295 90 GJ 151 R11295 90 GJ 151 R11296 90 GJ 151 R11297 90 GJ 151 R11298	62 31 90 72 245	1.7 .9 1.7 1.7 .7	260 281 734 519 719	22 17 26 24 15	80 48 249 279 61	21 1 53 1 1	1 1 7 6 1	1 2 1 2 1	275 155 305 280 155	
90 GJ 151 R11299 90 GJ 151 R11300 90 GJ 151 R11301 90 GJ 151 R11302 90 GJ 151 R11303	76 2 6 4 3	1.2 .7 1.0 1.2 1.1	809 193 226 211 173	22 21 25 16 20	95 47 89 59 55	20 75 55 78 69	180 28 24 12 10	6 77 40 37 33	215 230 225 170 120	
90 GJ 151 R11304 90 GJ 151 R11305	36 4	2.0 1.3	919 121	24 14	104 51	33 32	27 5	22 7	36 4	

COMP: KEEWATIN ENGINEERING PPOJ: GJ #151

ATTN: R.NICHOLS/D.MEHNER

. .

-

بة مرجو

. .

ŕ

_

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: OS-0499-RJ1+2 DATE: 90/09/21 * ROCK * (ACT:F31)

.

12111-01	.,	1/10001LN/ 010	
(604)98	0-5814 OR	(604)988-4524	

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	<u> </u>
90 GJ151 R11306 90 GJ151 R11307	2	1.2	165 229	10 21	67 60	1 46	13 40 7	1 36 3	125 175 110	
90 GJ151 R11308 90 GJ151 R11309 90 GJ151 R11310	94 1 1	1.3 .7 .6	205 154 171	10 11 11	106 47 61	1 43 1	21 5	45 4	160 85	
90 GJ151 R11311 O 90 GJ151 R11312 J 90 GJ151 R11313	3 2 2	.7 .3 .5	147 178 154	15 11 12	38 43 31	28 18 20	19 8 7	4 2 3	125 65 70	
90 GJ151 R11314 0 90 GJ151 R11315 0	8 2	.3 .9	211 276	19 17	20 32	27 42	5 11	4 5	65 90	
90 GJ151 R11316 90 GJ151 R11317 90 GJ151 R11318 90 GJ151 R11318	1 4 488 16	1.5 1.2 2.0 1.1	505 350 733 339	17 16 19 15	36 34 62 48	49 29 42 47	7 5 6 5	3 1 2 2	55 70 75 80	
90 GJ151 R11320 90 GJ151 R11321 90 GJ151 R11322	2	.7 .9 1.8	271 252 299	16 12 24	47 44 37	20 2 108	<u> </u>	1 7 4	110 80 95	
90 GJ151 R11323 90 GJ151 R11324 90 GJ151 R11325	2 10 2	1.3 1.4 1.1	538 439 369	18 19 14	79 31 18	26 21 45	28 53 18	2 2 4	95 100 70	
90 GJ151 R11326 90 GJ151 R11327 90 GJ151 R11328 90 GJ151 R11329	43 67 45 38	.7 .8 1.1 .9	124 100 111 152	14 17 19 17	55 35 49 64	31 36 38 43	2 3 1 3	7 4 6	65 40 50 35	
90 GJ151 R11330 90 GJ151 R11331 90 GJ151 R11332 90 GJ151 R11333 90 GJ151 R11333	49 182 164 96	1.0 1.1 1.5 1.0	187 176 96 44	15 11 14 17	40 65 135 62	38 24 15 9	1 2 3 2	6 7 18 18	45 40 65 75	
90 GJ151 R11334 90 GJ151 R11335 90 GJ151 R11336	117 141 60	1.2 1.3 1.0	82 83 98	8 23 13	128 119 74	1 24 19	4 3 3	11 7 6	45 50 110	
90 GJ151 R11337 90 GJ151 R11338 90 GJ151 R11338 90 GJ151 R11339 90 GJ151 R11340	39 120 235 218	1.0 .9 .9 .8	69 129 97 107	18 14 15 11	29 49 21 21	81 23 1 17	6 4 1 1	9 7 1 1	80 135 65 100	
90 GJ151 R11341 90 GJ151 R11342 90 GJ151 R11343 90 GJ151 R11343 90 GJ151 R11343 90 GJ151 R11344	246 164 98 71 70	.8 .8 .8 .7 1.1	149 171 147 140 151	13 13 11 18 19	21 22 17 50 317	1 1 8 1 1	1 1 1 1	6 1 1 1 1	65 70 50 65 135	
90 GJ151 R11346 M 90 GJ151 R11347 O 90 GJ151 R11347 O 90 GJ151 R11348 O 90 GJ151 R11349 O	73 80 58 59	1.2 .9 1.1 1.2	149 158 115 184	23 10 8 10	149 22 24 19	2 1 1 1	1 1 1 1	1 1 1 1	95 50 40 85	
90 GJ151 R11350 6 90 GJ151 R11351 1 90 GJ151 R11352 1 90 GJ151 R11353 1 90 GJ151 R11353 1 90 GJ151 R11353 1	63 118 64 62 109	1.1 1.1 .7 1.0 .8	198 219 237 222 236	16 13 11 8 19	16 26 30 19 16	4 1 1 1	2 1 1 2 1	1 1 1 1 1	65 100 90 70 80	
90 GJ151 R11355 90 GJ151 R11356 90 GJ151 R11357 90 GJ151 R11357 90 GJ151 R11358 90 GJ151 R11359	97 558 398 585 183	.8 1.0 1.3 1.4 1.6	152 573 424 830 344	16 13 10 9 10	21 24 26 10 10	1 1 1 1 1	1 1 2 2	1 5 24 5	65 85 60 70 80	
90 GJ151 R11360 90 GJ151 R11361 90 GJ151 R11362 90 GJ151 R11363	113 109 104 58	1.6 1.1 1.2 1.1	292 272 311 255	12 11 10 16	18 19 22 24	9 1 21 1	1 1 1 1	1 1 1 1	50 70 65 75	
90 GJ151 R11364 90 GJ151 R11365	108 94	.8 .8	333 255	12 9	26 33	6 1	1 1	3 7	110 50	

COMP: KEEWATIN ENGINEERING PPOJ: GJ #151 ATTN: R.NICHOLS/D.MEHNER

A STATE OF STATE -

110.00

MIN-EN LABS — ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 05-0499-RJ3+4 DATE: 90/09/21 * ROCK * (ACT:F31)

·····								~		
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90 GJ151 R11366	64	.8	325	22	25	2	1	6	100	
90 GJ151 R11367 90 GJ151 R11368	75 103	1.0 1.5	403 431	13 17	22 22	4	1	9 5	120 115	
90 GJ151 R11369	230	1.3	894	19	20	14	1	10	110	
90 GJ151 R11370	167	1.2	859	21	19	1	1	7	70	
90 GJ151 R11371	146	1.1	559	12 13	21	12	1	5 4	80 65	
90 GJ151 R11372 J 90 GJ151 R11373 J	139 192	.9 1.3	385 507	15	23 25	3 9	1	6	105	
90 GJ151 R11374 ᄋ	140	.5	444	19	25	1	1	6	75	
90 GJIJI KIIJIJ	85	.9	387	18	28	19	1	25	80	
90 GJ151 R11376 90 GJ151 R11377	52 44	1.2 1.0	350 259	8 9	26 29	1	1	72 6	100 65	
90 GJ151 R11378	23	1.1	282	16	26	i	i	8	40	
90 GJ151 R11379 90 GJ151 R11380	20 59	1.3 1.5	156 550	18	41 61	6	1	11	85 105	
90 GJ151 R11380	108	1.5	<u>346</u>	16 25	182	1 70	<u>1</u>	<u>8</u>	105	
90 GJ151 R11382	130	1.6	540 500	20	83	70 8	1	2	65	
90 GJ151 R11383	102	2.3	388	33	445	81	5	2	195	
90 GJ151 R11384 90 GJ151 R11385	182 63	3.1 1.3	333 257	25 16	548 29	32 1	12 1	1 3	264 85	
90 GJ151 R11385	40	.9	248	19	40	2	1	<u>_</u>	80	·····
90 GJ151 R11387	40 2	1.0	80	25	153	52	5	46	90	
90 GJ151 R11388	5	.8	144	14	26	7	1	17	65	
90 GJ151 R11389 90 GJ151 R11390	3 2	.5 1.3	119 86	13 8	22 56	18 1	1 1	15 4	35 100	
90 GJ151 R11391	1	1.4	73	11	17	1	1	4	45	
90 GJ151 R11392 g	2	1.2	63	23	44	24	1	2	80	
90 GJ151 R11393 J 90 GJ151 R11394 Q	2 24	1.3 1.0	52 120	15 15	39 43	24 24	2 1	3 4	60 75	
90 GJ151 R11395	18	1.3	198	8	122	1	3	10	80	
90 GJ151 R11396	28	1.2	103	10	72	1	4	1	115	
•										
		<u></u>				<u>. </u>				
				•	<u> </u>	<u> </u>		·····		
										<u> </u>

COMP: KEEWATIN ENGINEERING PROJ: GJ 151

ATTN: R.NICHOLS/D.MEHNER

[-

Second Second

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 05-0549-RJ1+2 DATE: 90/09/28 * ROCK * (ACT:F31)

			<u></u>					NO			
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90 151GJ R29022B	12	.5	87	21	31	1	1	8	45		
90 151GJ R29023B 90 151GJ R29024B	30 24	.8 .5	237 192	17 21	43 36	1	1	37 2	50 65		
90 151GJ R29024B	24	.9	113	14	30 49	1	1	1	95		
90 151GJ R29026B	106	.9	561	18	34	1	1	1	195		
90 151GJ R29027B	180	.8	825	18	38	1	1	6	90		
90 151GJ R29028B	45	.6	332	14	40	1	1	1	130		
90 151GJ R29029B 90 151GJ R29030B	22 17	.8 .4	226 247	14 13	38 40	1	1	1 2	240 125		
90 151GJ R29031B	34	.7	310	12	49	1	1	3	160		
90 151GJ R29032B	1020	1.7	262	27	67	34	7	1	140		
90 151GJ R29033B 90 151GJ R29034B	35 42	1.0 .7	120 110	23 18	22 30	1	2 1	2 3	45 75		
90 151GJ R29035B	20	.8	101	23	45	1	1	1	120		
90 151GJ R29036B 🗸	34	1.1	110	16	68	1	1	3	165		
90 151GJ R29037B O	18	1.4	123	24	96	6	3	5	215		
90 151GJ R29038B	9	2.0	217	20	99	1	1	5	180		
90 151GJ R29039B 90 151GJ R29040B	33 51	2.4 2.9	193 124	34 31	161 183	26 76	3 9	7 9	265 240		
90 151GJ R29041B	20	2.5	128	30	117	45	6	4	210		
90 151GJ R29042B	11	2.6	71	29	121	14	6	10	225		
90 151GJ R29043B	17	2.1	89	26	141	21	6	17	180		
90 151GJ R29044B	28	2.6 2.8	163 155	20	139	1 399	7 11	5	240 125		
90 151GJ R29045B 90 151GJ R29046B	278 16	2.0	102	36 25	58 59	27	5	6 6	160		
90 151GJ R29047B	2	2.1	97	27	56	24	5	12	245		
90 151GJ R29048B	8	2.4	83	21	57	1	4	6	185		
90 151GJ R29049B	43	2.4	195	25	43	7	9.	4	120		
90 151GJ R29050B	28 6	2.1 1.0	218 44	32 22	42 19	15 57	4 2	4 2	125 105		
90 GJ151 R29102B	4	.4	21	32	52	1	1	1	70		
90 GJ151 R29103B	2	.2	39	23	60	20	1	4	80		
90 GJ151 R29104B	5	.1	53	26	40	1	1	9	110		
90 GJ151 R29105B 90 GJ151 R29106B	6 25	.3 1.1	41 64	17 21	39 64	1 7	1	1 3	65 95		
90 GJ151 R29107B	18	1.2	61	24	35	54	5	1	80		
90 GJ151 R29108B	67	2.0	139	54	127	52	3	1	85		
90 GJ151 R29109B	330	8.5	731	180	500	72	5	16	65		
90 GJ151 R29110B 90 GJ151 R29111B	6 31	.6 .8	63 52	17 29	25 31	1 25	1	1	45 70		
90 GJ151 R29112B	72	1.2	62	72	115	164	3	4	185	<u> </u>	
90 GJ151 R29113B	16	1.0	77	25	34	36	4	10	125		
90 GJ151 R29114B	315	2.1	147	22	55	62	10	7	140		
90 GJ151 R29115B 90 GJ151 R29116B 90 GJ151 R29118B 90 GJ151 R291	193 3500	1.9 13.4	82 706	25 43	29 27	140 2350	12 95	6 1	150 65		
90 GJ151 R29117B ()	273	.8	71	30	34	293	10	3	130		
90 GJ151 R29118B Q	2600	1.8	106	27	32	762	17	5	75		
90 GJ151 R29119B	655	2.0	111	130	914	1673	12	3	135		
90 GJ151 R29120B 90 GJ151 R29121B	206 98	1.3 1.4	50 62	28 25	30 31	645 146	7 8	6 7	170 190		
90 GJ151 R29122B	12	1.2	86	26	43	51	9.	17	145		
90 GJ151 R29123B	29	1.1	86	27	55	46	5	10	150		
90 GJ151 R29124B	2	1.3	81	21	28	9	5	19	125		
90 GJ151 R29125B 90 GJ151 R29126B	17 28	1.3 .7	58 38	20 17	31 19	39 1	6 1	9 6	116 75		
	3	.7	<u></u>	17	20	8	2	6	60		
90 GJ151 R29127B 90 GJ151 R29128B	60	. <i>r</i> 1.1	80 94	18	20	8 1	4	о З	60 145		
90 GJ151 R29129B	37	1.0	92	13	19	12	2	7	120		
90 GJ151 R29130B	124	.6	114	20	23	1	1	4	110		
90 GJ151 R29131B	80	.5	106	19	16	4	1	34	70		

COMP: KEEWATIN ENGINEERING PROJ: 151

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: R.NICHOLS/D.MEHNER

بالأتعاد والمتكلم والمتكلم

j.

(604)980-5814 OR (604)988-4524

FILE NO: 0S-0526-RJ1 DATE: 90/09/22 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90 151 R11397 90 151 R11398 90 151 R11399 90 151 R11399 90 151 R11400 90 151 R29001	12 2 6 4 30	1.8 2.1 2.2 1.8 1.8	72 108 79 107 217	24 19 12 17 39	34 31 39 50 89	35 1 1 1 33	5 5 4 4 8	1 1 5 4 6	155 140 130 110 125	
90 151 R29002 90 151 R29003 90 151 R29004 90 151 R29005 90 151 R29006	4 42 16 51 2	1.9 1.7 1.8 1.5 1.4	142 97 63 321 223	26 13 16 19 29	102 47 29 41 98	26 1 7 15 12	6 5 4 4 4	1 1 1 3 2	175 125 145 170 165	
90 151 R29007 A 90 151 R29008 0 90 151 R29009 - 90 151 R29010 0 90 151 R29010 0 90 151 R29011 0	10 17 4 5 9	1.9 2.1 1.5 2.1 1.9	312 181 121 77 93	24 8 8 8 8	327 45 18 21 32	9 1 1 1 1	2 6 1 1 1	1 1 1 1	175 105 135 65 110	
90 151 R29012 90 151 R29013 90 151 R29014 90 151 R29015 90 151 R29016	3 14 2 3 4	1.8 2.3 1.7 1.3 1.0	156 124 97 152 111	18 8 16 26 23	22 23 21 43 52	13 1 1 14 1	1 1 3 2 2	1 1 1 1	135 100 60 115 175	
90 151 R29017 90 151 R29018 90 151 R29019 90 151 R29020 90 151 R29021	2 1 1 4 2	1.0 .7 .7 .8 .9	267 129 55 69 94	16 12 12 16 11	82 35 30 34 45	1 14 45 20 1	1 1 1 1	1 1 1 1 1	135 70 85 90 160	
							·			
			<u> </u>							
					<u>,</u>					

COMP: KEEWATIN ENGRG. PROJ: GJ 151 ATTN: R.NICHOLS/D.MEHNER

C. MARTINE

MIN-EN LABS — ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0636-RJ1 DATE: 90/10/09 * ROCK * (ACT:F31)

ATTA: K.AICHOLS/D.ALIAL			•	00-2014-0						NUCK	(ACT.) 512
SAMPLE .	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90 GJ 151 R29051 G	190	2.5	73 61	25 23	56 52	68 69	3	20 15	90 105		
90 GJ 151 R29052 Q 90 GJ 151 R29143 O	23 15	.9	62	22	53	30	1	1	65		
90 GJ 151 R29144 0 90 GJ 151 R29145 0	52 31	1.4 1.2	150 104	36 43	82 189	51 59	1 2	9 11	100 115		
90 GJ 151 R29146	9	1.1	104	29	34	60	3	24	110		
90 GJ 151 R29147	27	2.0	86	31	81	105	9	12	120		
90 GJ 151 R29148 90 GJ 151 R29149	41 9	2.0 1.4	61 57	18 22	42 47	47 85	7	3 2	95 80		
90 GJ 151 R29150 V	25	1.5	66	17	51	72	4	10	85		
90 GJ 151 R29516 90 GJ 151 R29517	3 21	.8	29 42	16 23	58 84	40 97	1	1 3	100 165		
90 GJ 151 R29518 N-	3	1.2 1.4	117	13	54	29	1	1	120		
90 GJ 151 R29519 O 90 GJ 151 R29520 O	2 3	2.0 1.6	118 108	10 19	56 80	1 14	1 1	1	65 40		
90 GJ 151 R29521	9	.9	52	16	74	17	1	1	45		
90 GJ 151 R29522 🐨 🛛	4	1.1	55	29	60	12	1	1	30		
90 GJ 151 R29523 90 GJ 151 R29524	4	.8 .6	63 43	27 14	66 75	1	1 1	1 3	30 25		
		<u></u>					· <u> </u>				
			· · · · · · · · · · · · · · · · · · ·			<u> </u>					
			· ·								
	<u></u>	·····				· · · · · · · · · · · ·					

COMP: KEEWATIN ENGRG. PROJ: GJ 151 ATTN: R.NICHOLS/D.MEHNER

į

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0572-RJ1+2 DATE: 90/10/02 • ROCK * (ACT:F31)

SAMPLE	UA	AG	CU	PB	ZN	AS	SB	MO	HG PPB	
NUMBER 90 GJ151 R29174 B	PPB 1	.9	PPM 53	23	69	<u>РРМ</u> 1	PPM 1	<u>РРМ</u> 1	265	
90 GJ151 R29175 B 90 GJ151 R29176 B	151 81	2.8 2.8	148 120	119 114	261 699	24 294	1	1 1	230 430	
90 GJ151 R29177 B	101	4.5	355	120	239	13	1	1	250	
90 GJ151 R29178 B	1	.8	79	31	164	1	1	1	175	
90 GJ151 R29179 B 🌖 90 GJ151 R29180 B 🍳	18 31	.5 1.5	129 124	16 24	66 1416	1	1 1	1 1	75 585	
90 GJ151 R29181 B	1	1.1	66	28	61	1	1	1	105	
90 GJ151 R29182 B 90 GJ151 R29183 B	3 25	.8 1.0	68 104	36 28	92 133	1	1 1	1 1	95 140	
90 GJ151 R29184 B	108	2.5	813	26	76	1212	1	1	120	······
90 GJ151 R29185 B 90 GJ151 R29186 B	141 3	1.9 .8	154 87	39 14	230 85	362 1	1 1	1	170 100	
90 GJ151 R29187 B	1	.9	68	36	45	1	1	1	185	
90 GJ151 R29188 B 90 GJ151 R29189 B	1	<u> </u>	<u> </u>	20 25	<u> </u>	1	1 1	3	65 	
90 GJ151 R29190 B	1	.2	55	26	53	12	1	1	65	
90 GJ151 R29191 B 90 GJ151 R29192 B	1	.7	52 46	23 23	39 47	6 12	1 1	1 1	70 195	
90 GJ151 R29192 B	1	.6 .4	58	18	41	17	1	1	75	
90 GJ151 R29194 B	1	.5	94	22	40	1	1	1	65	
90 GJ151 R29195 B 90 GJ151 R29196 B	1	.9 1.1	33 68	20 6	41 42	1	1	1 1	210 105	
90 GJ151 R29197 B	1	1.2	153	6	71	1	1	1	85	
90 GJ151 R29198 B 90 GJ151 R29199 B	2	1.2	154	<u> </u>	 53	1	1	1	115 70	
90 GJ151 R29200 B	1	1.1	155	4	77	1	1	1	80	
90 GJ151 R29501 B	1	1.3 .7	110 65	3 11	55 49	1	1 1	1 1	60 75	
90 GJ151 R29502 B 6 90 GJ151 R29503 B 6	i	.8	42	16	44	i	i	1	50	
90 GJ151 R29504 B	1	.6	39	16	61	1	1	1	45	
90 GJ151 R29505 B 90 GJ151 R29506 B	1 1	.8 .7	46 30	14 16	62 38	1 20	1 1	1 1	65 60	
90 GJ151 R29507 B 90 GJ151 R29508 B	13 1	1.2 .5	37 23	32 15	70 50	40 18	2 1	18 1	180 95	
90 GJ151 R29509 B	40		51	22	82	53	1	4	70	
90 GJ151 R29510 B	1	.4	35	9	65	1	1	1	40	
90 GJ151 R29511 B 90 GJ151 R29512 B	1	.5 1.6	47 62	13 17	60 146	11 61	1	1 9	20 105	
90 GJ151 R29513 B	1	.7	58	14	95	63	1	7	80	
90 GJ151 R29514 B 90 GJ151 R29515 B	1 1	1.2 .8	74 45	21	207 115	66 92	2 1	27 9	165 105	
90 GJ ISI K295 IS K	I	•0	45	16	115	92	I	Y	105	
									<u></u>	
			·							

COMP: KEEWATIN ENGINEERING PROJ: 151 MIN-EN LABS --- ICP REPORT

ATTN: R. NICHOLS/ D. MEHNER

ŗ

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: OS-0703-RJ1+2 DATE: 90/10/26 * ROCK * (ACT:F31)

··· · · · ·					• •						
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90GJ 151 R29053 M	26	2.4	84	23	205	29	5	7	455		
90GJ 151 R29054 Q	455	4.9	108	18	2825	52	14	12	235		
90GJ 151 R29055	164	4.1	99	18	1914	107	13	37	365		
90GJ 151 R29056	1050	4.7	112	16	7993	53	14	79	535		
0001 151 020057	41	3.2	73	30	400	112	7	11	240		
N											
90GJ 151 R29058	54	2.3	105	16	144	35	2	16	150		
90GJ 151 R29059	37	1.5	106	20	928	59	2	18	255		
90GJ 151 R29060	12	1.0	55	16	62	<u>71</u>	1	4	125		
90GJ 151 R2906 <u>1</u>	22	1.0	45	21	77	33	1	7	200		
90GJ 151 R31248	85	1.5	193	20	94	282	1	4	150		
90GJ 151 R31249	23	1.1	138	13	79	35	1	2	160		
90GJ 151 R31250	13	1.0	140	20	68	4	1	5	125		
90GJ 151 R31251	4	1.2	95	14	27	1	1	5	115		
90GJ 151 R31252	3	1.0	95	22	25	1	1	3	125		
90GJ 151 R31253	180	3.3	728	21	232	302	1	5	95		
90GJ 151 R31254	21	1.4	250	20	67	60	1	1	155		<u></u>
90GJ 151 R31255	28	1.8	427	9	36	1	1	4	110		
90GJ 151 R31256	24	1.2	181	12	23	1	i	2	160		
					32	15		3	175		
90GJ 151 R31257	28	.8	162	11			1	3	165		
90GJ 151 R31258	113	1.5	190	38	72	1	1	3			
90GJ 151 R31259	36	1.6	204	11	43	13	1	1	135		
90GJ 151 R31260	22	1.7	234	16	60	1	1	2	125		
90GJ 151 R31261	57	1.9	428	17	79	23	1	2	115		
90GJ 151 R31262	42	1.9	218	37	96	10	1	4	135		
90GJ 151 R31263	40	1.9	296	22	84	1	1	13	195		
90GJ 151 R31264	60	1.3	208	13	54	. 9	1	6	205		
90GJ 151 R31265	236	1.2	227	11	32	76	1	10	160		
90GJ 151 R31266	38	1.0	218	13	27	126	1	10	185		
90GJ 151 R31267	27	.8	143	16	25	41	1	4	160		
90GJ 151 R31268	44		145	22	41	37	1	3	185		
90GJ 151 K31200		1.4									
90GJ 151 R31269	6	1.3	82	21	42	28	1	4	120		
90GJ 151 R31270	184	1.3	206	6	46	20	1	12	155		
90GJ 151 R31271	61	2.4	379	23	127	62	1	7	405		
90GJ 151 R31272 🍣	26	2.1	212	15	128	33	1	1	325		
90GJ 151 R31273 🔥	17	2.0	374	14	54	32	1	2	190	_	
90GJ 151 R31274	4	1.3	133	17	19	41	1	2	120		
000 151 P31275	36	2.5	269	16	24	48	1	6	85		
90GJ 151 R31276	32	2.4	246	22	26	46	1	6	230		
90GJ 151 R31277	34	2.1	190	14	39	98	1	2	135		
90GJ 151 R31278	97	2.0	174	9	62	69	4	4	165		
			05	12	75	74	1	/	175		
90GJ 151 R31279	2	1.3	95 27 7	12	75	76 53	1	4	135		
90GJ 151 R31280	210	1.7	243	11	51	53	1	8	140		
90GJ 151 R31281	24	1.6	154	10	71 8/	53	3	13	125		
90GJ 151 R31282	12	1.8	109	13	84 70	60 76	1	15	200 175		
90GJ 151 R31283	1	1.3	126	10	70	46	1	22			
90GJ 151 R31284	2	1.1	198	10	81	39	1	52	165		
90GJ 151 R31285	3	1.5	175	17	105	85	2	37	130		
90GJ 151 R31286	1	2.1	224	6	121	64	1	25	225		
90GJ 151 R31287	12	3.2	252	7	76	44	1	1	195		
90GJ 151 R31288	12	1.5	163	14	33	2	1	3	150		
90GJ 151 R31289	58	2.3	440	14	34	54	1	3	100		
90GJ 151 R31290	2	1.5	84	15	69	13	i	3	165		
90GJ 151 R31291	8	· 1.3	160	9	47	32	1	5	125		
90GJ 151 R31292	32	1.5	174	17	47	24	i	2	150		
90GJ 151 R31293	2	1.3	109	6	44	53	1	2	120		
90GJ 151 R31294	16	1.1	73	13	55	26	1	1	145		
90GJ 151 R31295	2	1.2	104	6	44	5	1	3	135		
90GJ 151 R31296	62	1.6	180	17	87	53	1	1	160		
90GJ 151 R31297	2	1.3	97	7	44	8	1	3	200		
90GJ 151 R31298	23	1.2	151	15	62	25	1	1	185		
have a second											

COMP: KEEWATIN ENGINEERING PROJ: 151 ATTN: R. NICHOLS/ D. MEHNER

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0703-RJ5 DATE: 90/10/26 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90GJ 151 R31359 90GJ 151 R31360 90GJ 151 R31361 90GJ 151 R31361 90GJ 151 R31362 90GJ 151 R31363	58 33 21 6 20	1.3 1.2 1.2 1.3 1.4	103 102 90 171 175	21 14 19 23 17	67 63 83 80 21	51 65 80 45 61	3 2 4 5 1	33 5 18 7 6	1840 2450 2270 1785 1730		
90GJ 151 R31364 / 90GJ 151 R31365 0 90GJ 151 R31366 0 90GJ 151 R31367 1	4 14 22 2	1.5 1.3 2.1 1.4	80 112 128 97	20 22 10 15	26 22 22 23	76 58 61 73	4 2 3 1	12 18 15 10	1985 1330 1790 1635		
	<u> </u>										
							-=				
											<u></u>
	<u> </u>										
	<u></u>			,		<u> . </u>					
			<u></u>				······			<u></u>	
		·,		A., 444	, 						
								·			
	-							<u></u>			

COMP: KEEWATIN ENGINEERING PROJ: 151 ATTN: R. NICHOLS/ D. MEHNER MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, 8.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: OS-0703-RJ3+4 DATE: 90/10/26 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG - PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MÓ PPM	HG PP S	
90GJ 151 R31299 90GJ 151 R31300	29 510	1.1 1.5	93 195	15 16	41 44	6 65	1	4 2	255 145	
90GJ 151 R31301	35	1.3	111	17	48	7	1	2	155	
90GJ 151 R31302 90GJ 151 R31303	9 19	1.4	98 122	8 16	52 30	28 26	1	6	145 150	
90GJ 151 R31304	2	1.3	129	21	30	18	1	4	175	
90GJ 151 R31305 90GJ 151 R31306	21	1.3 1.1	102 84	16 20	29 26	40 34	1	3 4	130 110	
90GJ 151 R31307	26	1.8	150	24	24	30	1	Ž	145	
90GJ 151 R31308	4	1.6	70	23	96	105	7	5	170	
90GJ 151 R31309 90GJ 151 R31310	6 12	1.4	55 59	19 15	178 57	65 58	3 1	5 3	135 245	
90GJ 151 R31311	2	.7	62	14	40	42	ź	5	195	
90GJ 151 R31312	1	1.3	55	28	67	86	2	10	275	
90GJ 151 R31313 90GJ 151 R31314	3	1.0	50	19	47	20	1	4	200	
90GJ 151 R31315	3	.7 .9	45 43	16 12	63 80	36 64	1	1 3	240 245	
90GJ 151 R31316	5	1.6	69	8	85	62	i	5	215	
90GJ 151 R31317 90GJ 151 R31318	5 34	1.9	40	30 25	105	71	2	3	155	
90GJ 151 R31319	122	1.9	75 195	18	67	230	<u> </u>	4	220	.
90GJ 151 R31320	3	2.4	115	20	61 63	309 62	6 2	4 8	245 235	
90GJ 151 R31321	3	1.1	85	18	87	67	ī	7	215	
90GJ 151 R31322 90GJ 151 R31323	1	1.0 1.0	48 63	23 20	74 85	68 95	4 5	9	275 265	
90GJ 151 R31324	2	1.4	49	29	108	63		12	305	·····
90GJ 151 R31325	2	1.6	61	29	86	54	7	12	285	
90GJ 151 R31326	6	1.3	59	18	79	58	2	14	295	
90GJ 151 R31327 90GJ 151 R31328	2	1.5 1.1	51 58	20 25	60 64	72 81	3 1	15 12	265 305	
90GJ 151 R31329	12	.7	52	18	85	35	5	11	155	··· ·····
90GJ 151 R31330	26	1.3	55	13	38	96	4	5	145	
90GJ 151 R31331 90GJ 151 R31332	21	1.4 1.6	50 54	18 26	92 58	49 84	4 3	5 8	185 145	
90GJ 151 R31333	3	1.3	63	19	46	47	3	22	120	
90GJ 151 R31334	11	1.3	149	20	47	98	3	36	195	
90GJ 151 R31335 90GJ 151 R31336	22 39	1.9 1.8	129 121	26 25	132 314	58 91	2	16	225	
90GJ 151 R31337	82	2.1	126	25	261	92	2 8	49 101	200 395	
90GJ 151 R31338	22	1.7	87	. 30	356	132	3	109	410	
90GJ 151 R31339	31	1.8	94	30	331	65	5	159	405	
90GJ 151 R31340 90GJ 151 R31341	38 32	2.4 2.2	133 111	30 32	984 943	103 92	7 9	107 92	635 695	
90GJ 151 R31342	37	2.3	156	26	350	83	7	104	495	
90GJ 151 R31343	24	1.6	99	28	74	99	5	99	365	
90GJ 151 R31344 90GJ 151 R31345	60 38	1.5 1.2	118 67	26 20	84 27	85	7	112	305	
90GJ 151 R31346	45	1.2	111	21	26	88 55	2	44 33	230 160	
90GJ 151 R31347	67	1.8	252	15	43	26	Ī	48	155	
90GJ 151 R31348	40	1.7	125	21	67	1	1	1	165	
90GJ 151 R31349 90GJ 151 R31350	18 44	1.7 2.2	123 232	11 19	59 54	1 11	1	1 3	150 135	
90GJ 151 R31351	136	1.4	279	20	49	9	1	3 1	140	
90GJ 151 R31352 90GJ 151 R31353	17	1.5 1.2	151 123	14	35	45	1	10	205	
90GJ 151 R31354				20	38	59	1	3	185	
906J 151 R31355	1	1.3 1.3	72 113	22 15	31 47	40 59	1 3	17 18	180 195	
90GJ 151 R31356	537	1.1	148	10	66	75	2	10	300	
90GJ 151 R31357 90GJ 151 R31358	142	1.4	143 143	13 22	60 32	68 57	6	61	400	
1. 2000 121 121 2000	4 I	.0	(43	٤٢	26	57	2	23	225	

COMP: KEEWATIN ENGINEERING PROJ: 151 ATTN: R. NICHOLS/ D. MEMNER

-

.

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 112 (604)980-5814 OR (604)988-4524

FILE NO: 0\$-0703-RJ5 DATE: 90/10/26 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPN	AS PPM	SB PPM	MO PPM	HG PP S		
90GJ 151 R31359 90GJ 151 R31360 90GJ 151 R31361 90GJ 151 R31362 90GJ 151 R31363	58 33 21 6 20	1.3 1.2 1.2 1.3 1.4	103 102 90 171 175	21 14 19 23 17	67 63 83 80 21	51 65 80 45 61	3 2 4 5 1	33 5 18 7 6	1840 2450 2270 1785 1730		
90GJ 151 R31364 90GJ 151 R31365 90GJ 151 R31366 90GJ 151 R31367	4 14 22 2	1.5 1.3 2.1 1.4	80 112 128 97	20 22 10 15	26 22 22 23	76 58 61 73	4 2 3 1	12 18 15 10	1985 1330 1790 1635		
									<u> </u>		
	-								.		
									Vo tion	. <u></u>	<u></u>
											••••••••••••••••••••••••••••••••••••••
				<u> </u>							<u></u> ,
	<u> </u>	•									

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Assay Certificate</u>

OS-0549-RA1

Company: KEEWATIN ENGINEERING Project: GJ 151 Attn: R.NICHOLS/D.MEHNER

LABORATORIES

(DIVISION OF ASSAYERS CORP.)

MIN

• EN

Date: SEP-28-90 Copy 1. KEEWATIN ENGINEERING, VANCOUVER, B.C. 2. KEEWATIN ENGINEERING, C/D JAYCOX

He hereby certify the following Assay of 4 ROCK samples submitted SEP-20-90 by D.MEHNER.

Sample Number	*AU g/tonne	*AU oz/ton	
90 151GJ R29032B	1.04	.030	
90 1516J R29116B	3.20	.093	
90 1516J R29118B	2.82	.082	
90 1516J R29151B	5.02	.146	

*AU - 1 ASSAY TON

Certified by

MÍN-EN LABORATORIES

TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB .: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB .: TELEPHONE/FAX (604) 847-3004

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

Assay Certificate

Company: KEEWATIN ENGINEERING Project: GJ 151 D. MEHNER/R. NICHOLS Attn:

LABORATORIES

(DIVISION OF ASSAYERS CORP.)

IN

Date: SEP-14-90 Copy 1. KEEWATIN ENGINEERING, VANCOUVER, B.C. 2. KEEWATIN ENGINEERING, C/O MIN-EN LABS

He hereby certify the following Assay of 3 ROCK samples submitted SEP-08-90 by D.MEHNER.

Sample Number	*AU g/tonne	*AU oz/ton
90 GJ 151 R11266	1.54	.045
90 GJ 151 R11288	2.20	,064
90 GJ 151 R11289	1.26	.037

*AU - 1 ASSAY TON

Certified by

MIN-EN LABORATORIES

0S-0467-RA1

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

<u>Assay Certificate</u>

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Date: OCT-26-90 Copy 1. KEEWATIN ENGINEERING, VANCOUVER, B.C. 2. KEEWATIN ENGINEERING, VERNON, B.C.

Project: 151 Attn: R. NICHOLS/ D. MEHNER

He hereby certify the following Assay of 1 ROCK samples submitted OCT-18-90 by BOB RYZIUK.

Sample	*AU	¥AU	AG	AG
Number	g/tonne	oz/ton	g/tonne	oz/ton
906J 151 R29056	1.02	.030	4.6	.13

*AU = 1 ASSAY TON

Certified by 11

MÉN-EN LABORATORIES

0S-0703-RA1

Company:

LABORATORIES (DIVISION OF ASSAYERS CORP.)

KEEWATIN ENGINEERING

APPENDIX XIII

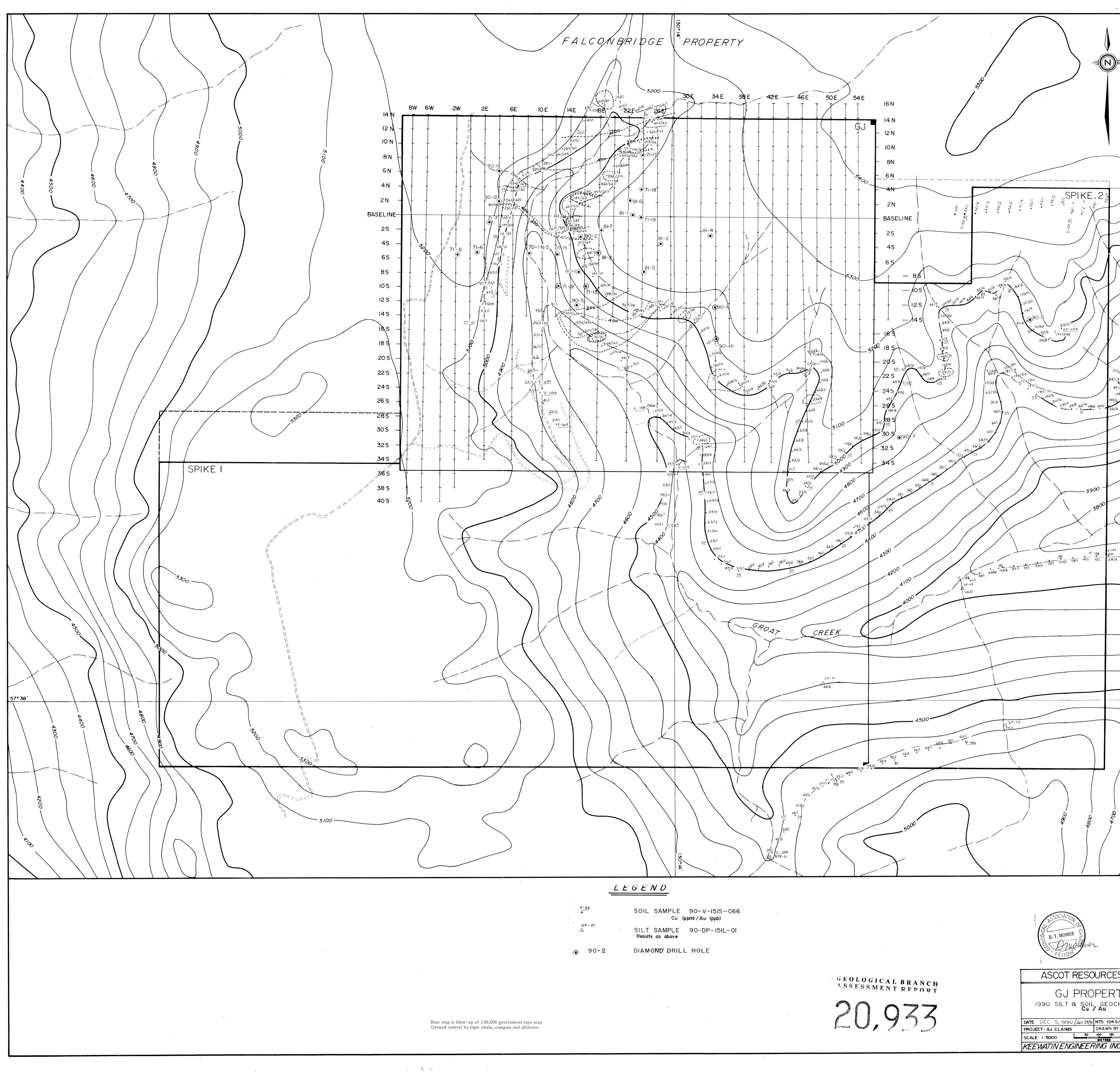
-

§ –

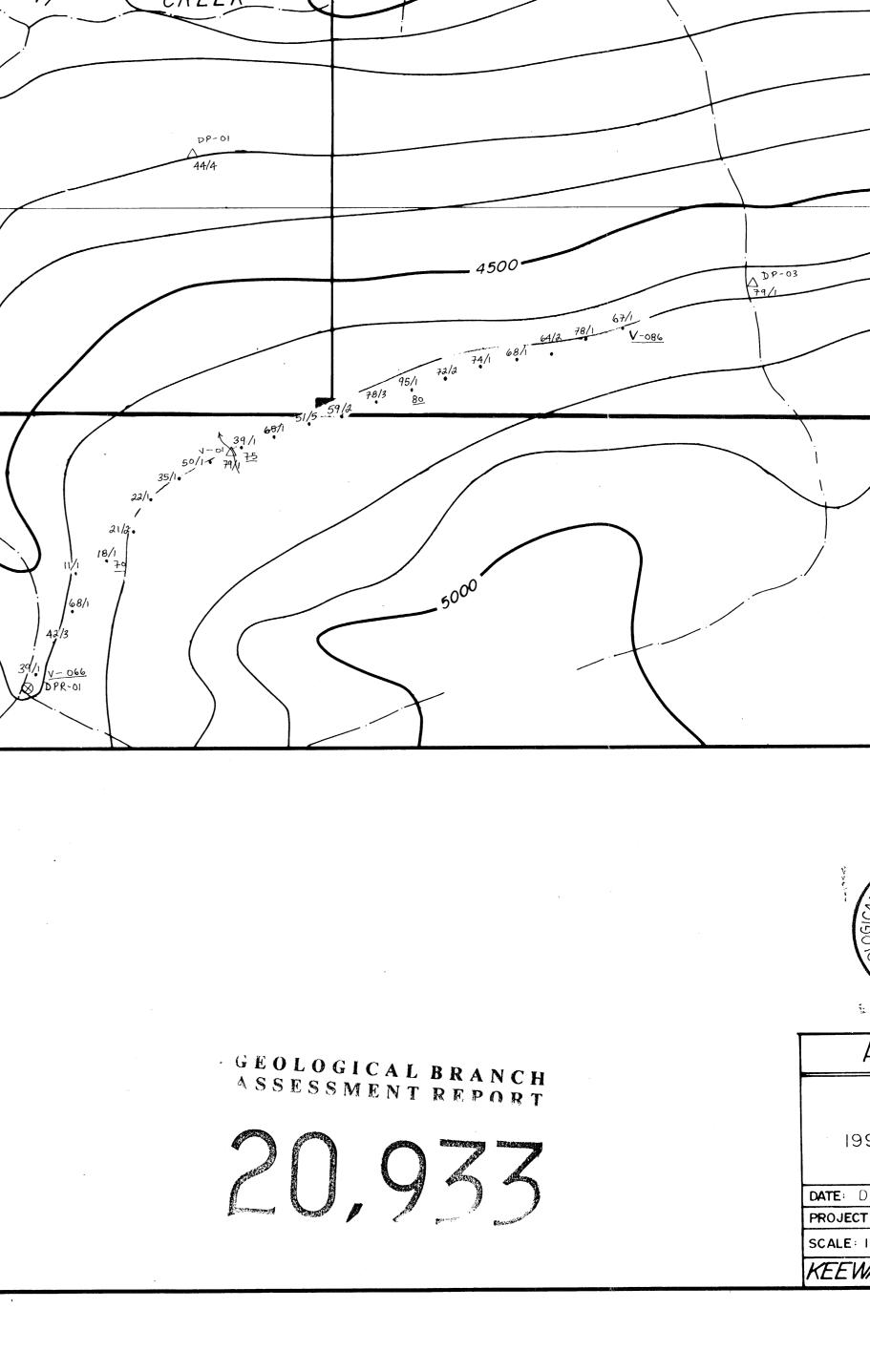
Statement of Qualifications

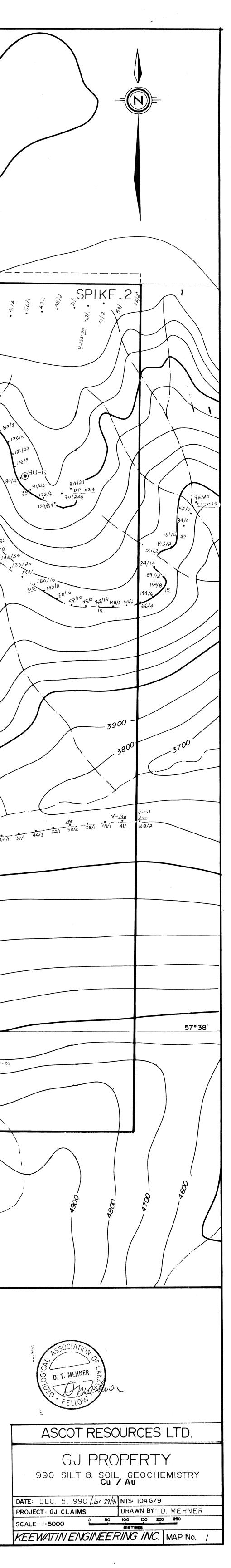
Keewatin Engineering Inc.

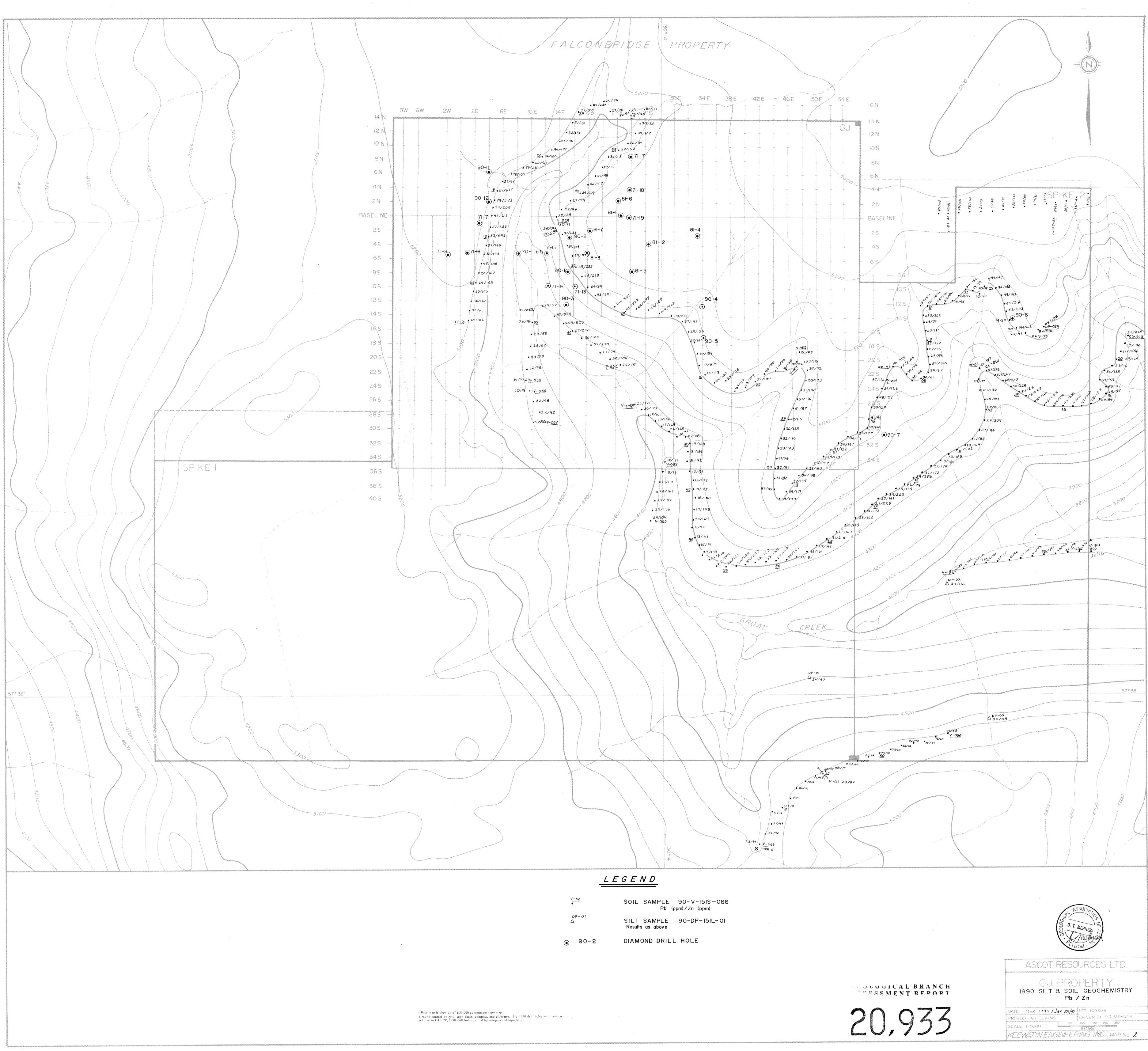
STATEMENT OF QUALIFICATIONS

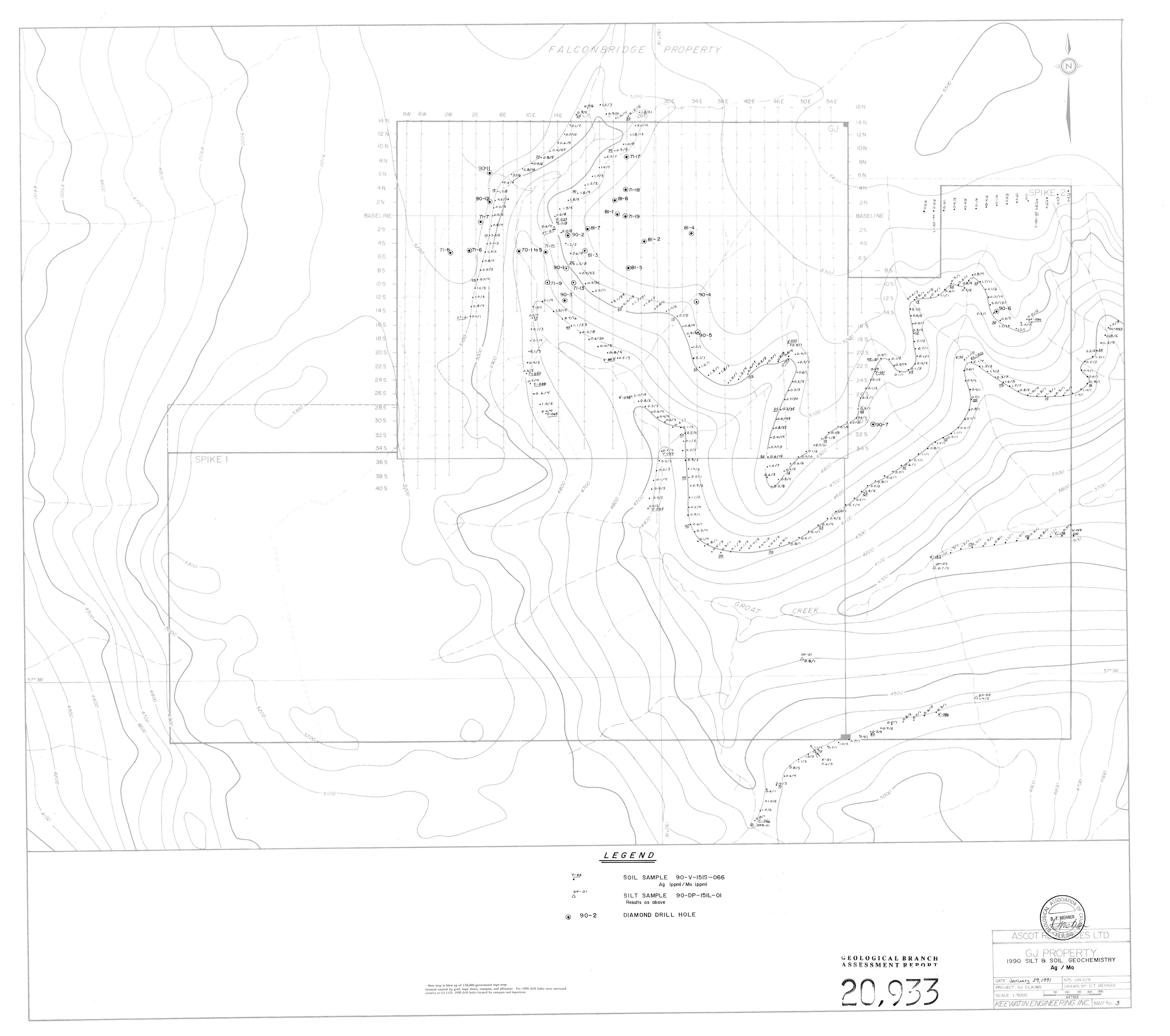

I, DAVID T. MEHNER, of 333 Scenic Drive, in the Municipality of Coldstream, in the Province of British Columbia, do hereby certify that:

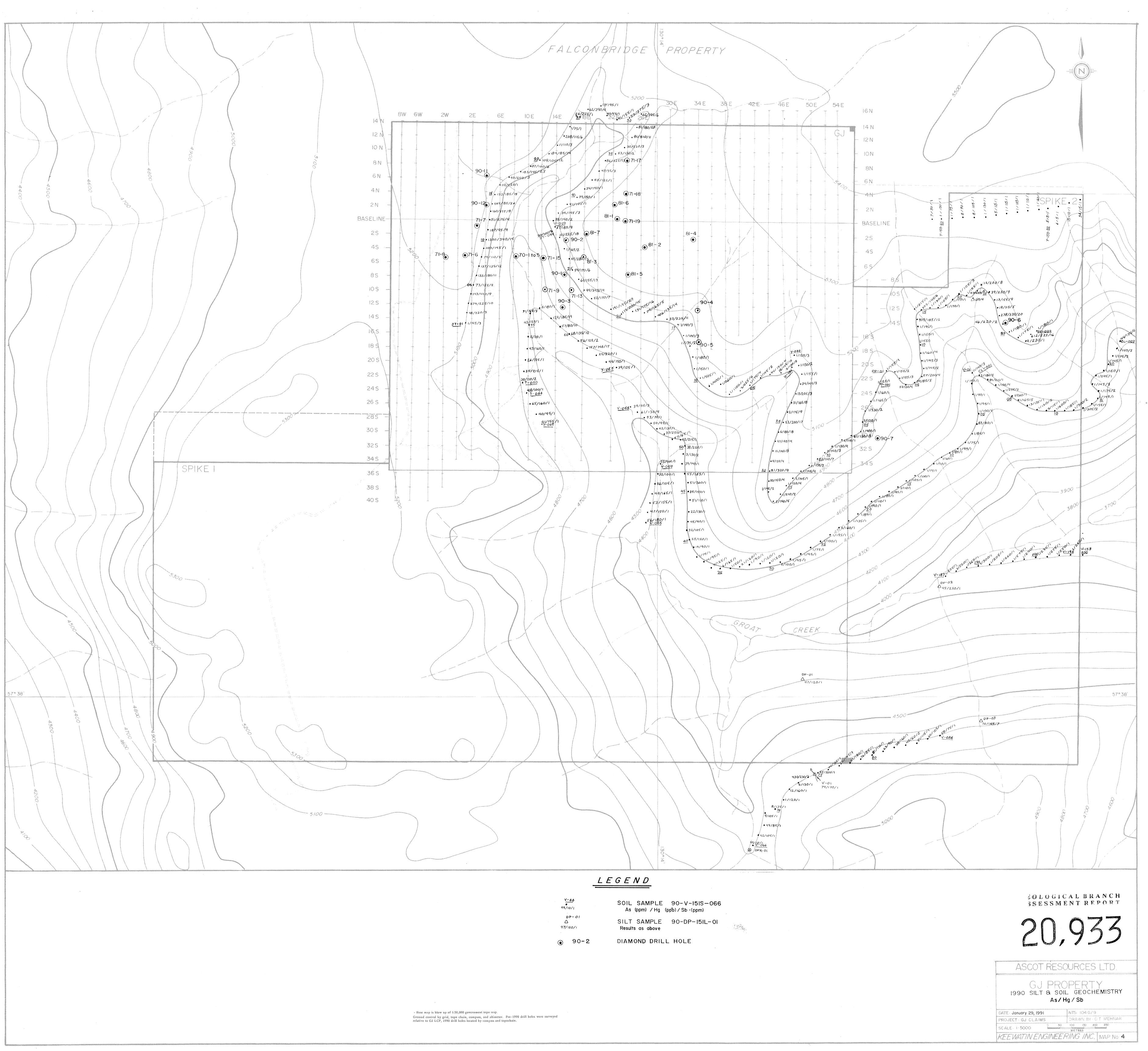
- 1. I am a Consulting Geologist with Keewatin Engineering Inc., with offices at 800 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I am a graduate of the University of Manitoba, B.Sc. Honours, 1976, M.Sc. Geology, 1982.
- 3. I have practised my profession continuously since 1979.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. During the period of July to October, 1990, I managed and carried out the exploration program on the GJ Property claims near Kinaskan Lake on behalf of Ascot Resources Ltd.
- 6. I do not own or expect to receive any interest (direct, indirect or contingent) in the properties described herein, nor in the securities of Ascot Resources Ltd. in respect of services rendered in the preparation of this report.

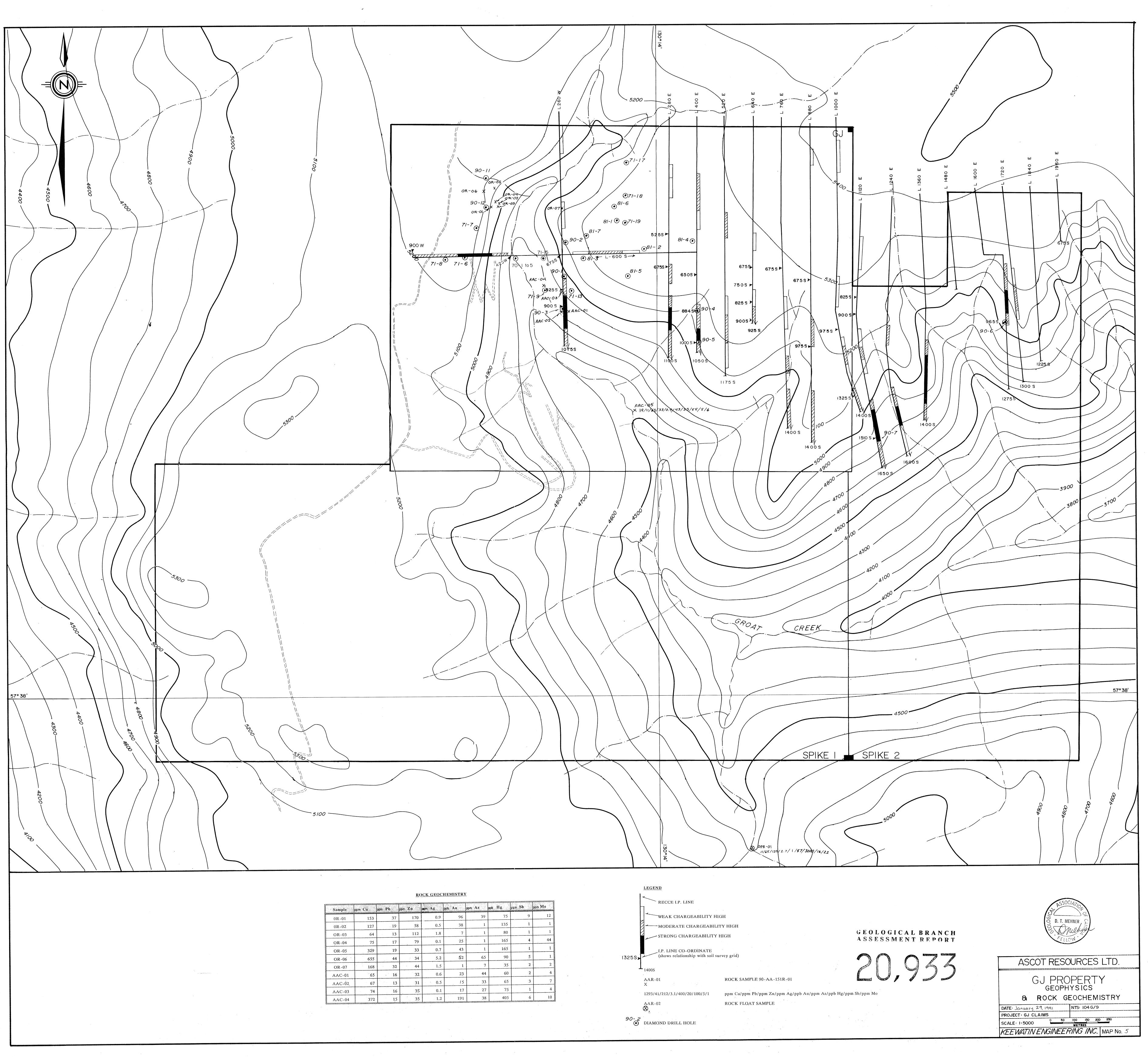

Dated at Vancouver, British Columbia, this 29th day of January, A.D. 1991.

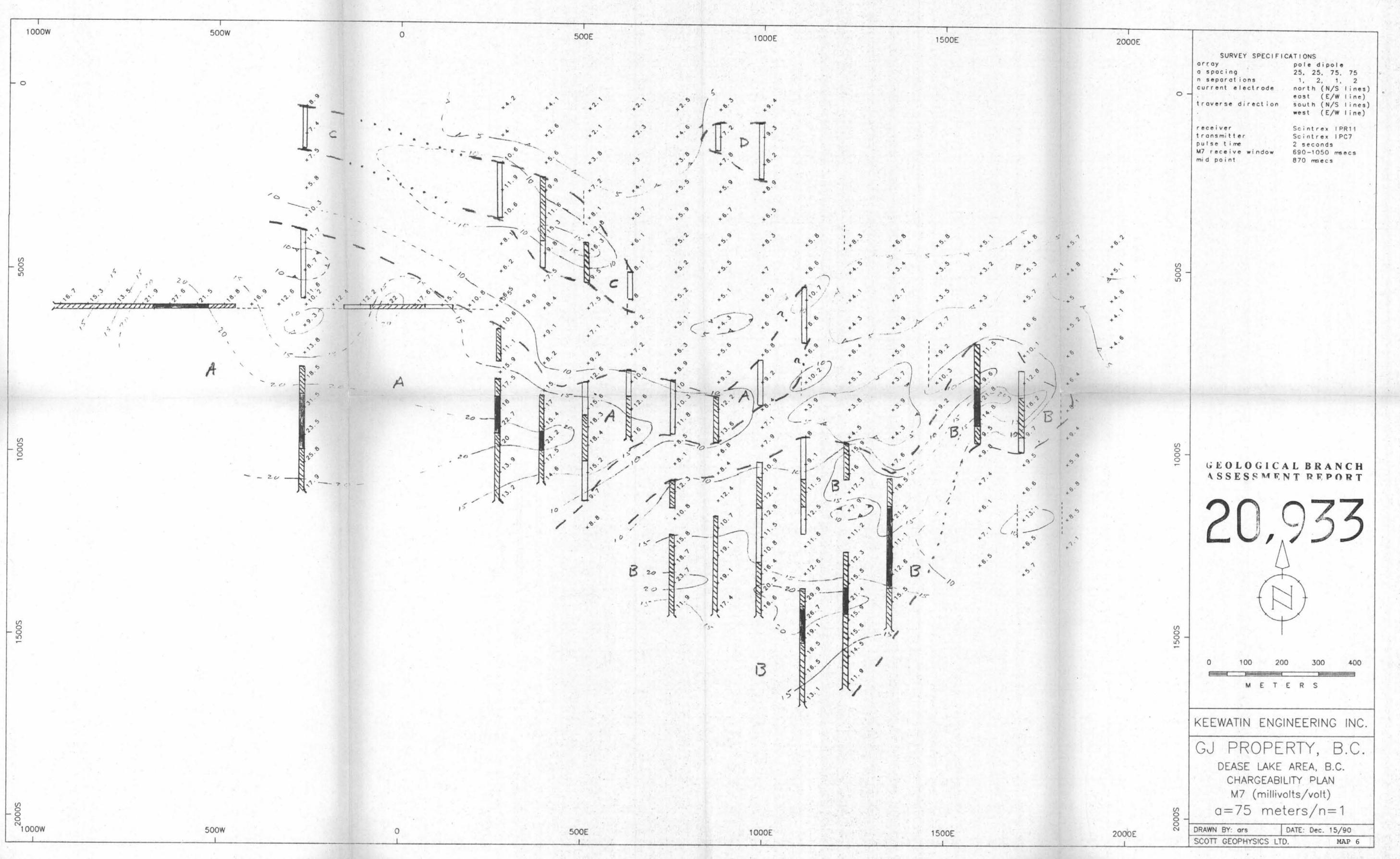

Respectfully submitted, PSSOCIATION
D. T. MEHNER
3. Mets
David T. Mehner, M.S. FGHOW

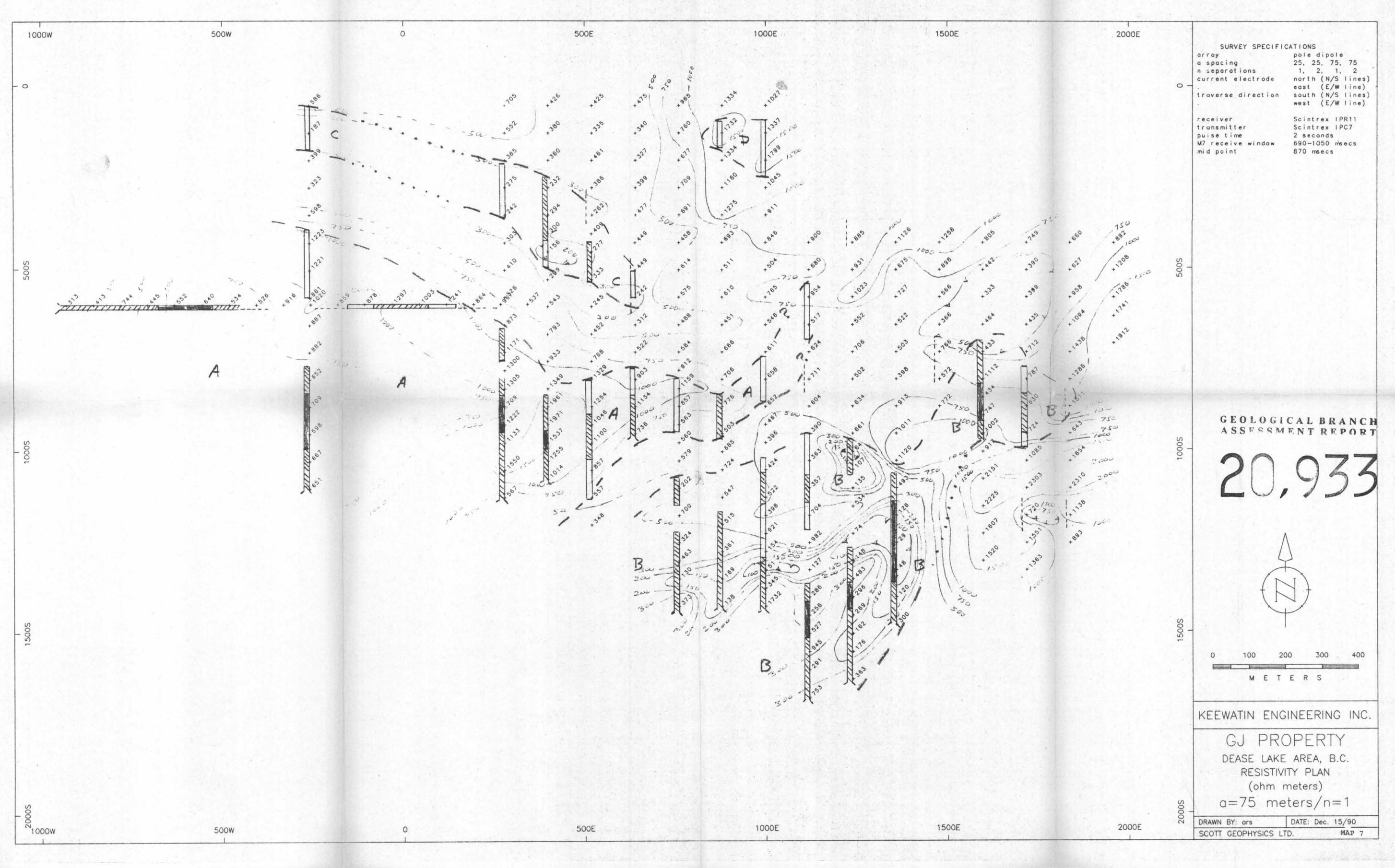

Keewatin Engineering Inc.

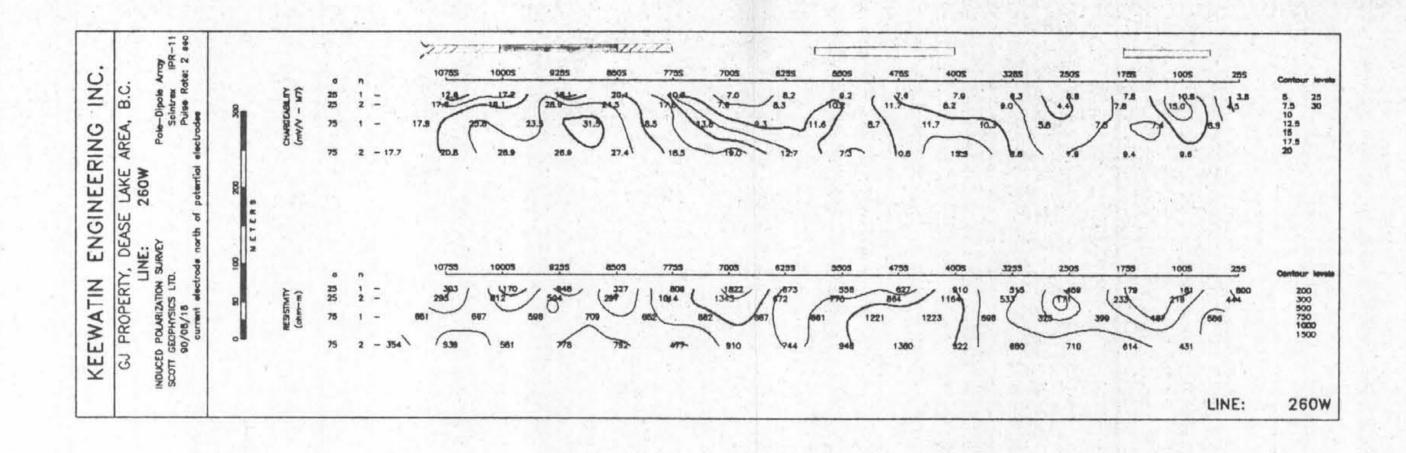


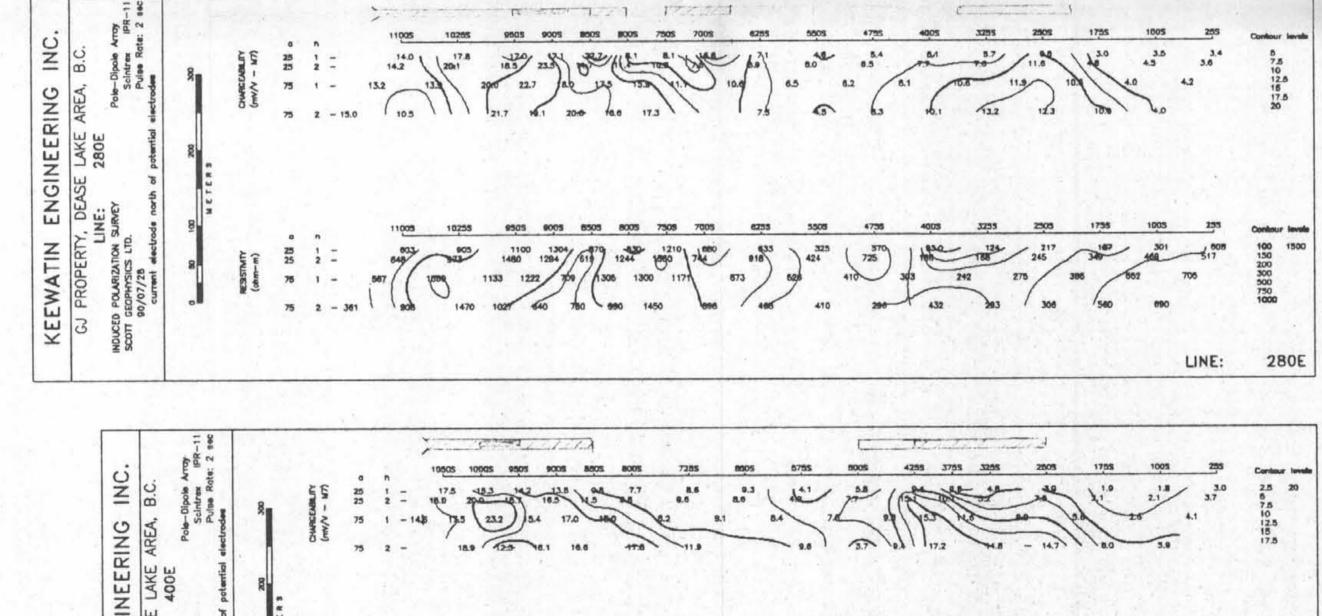

,

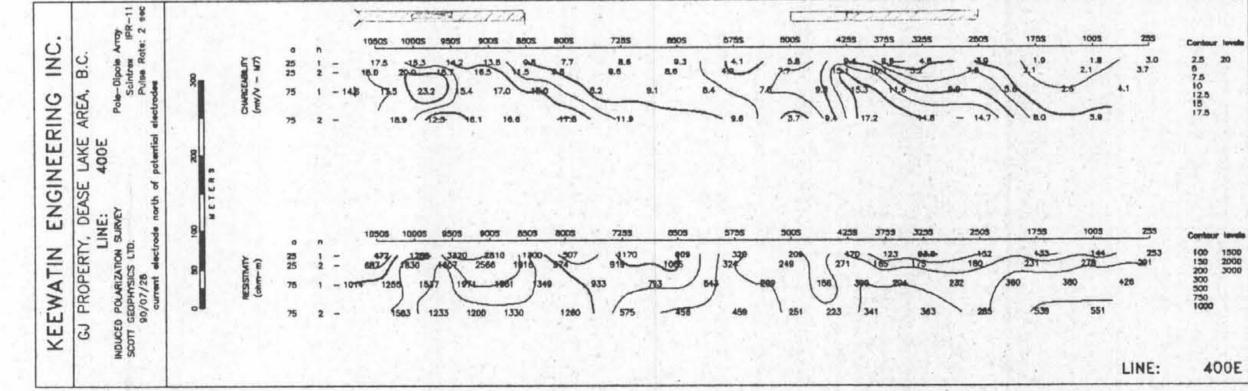


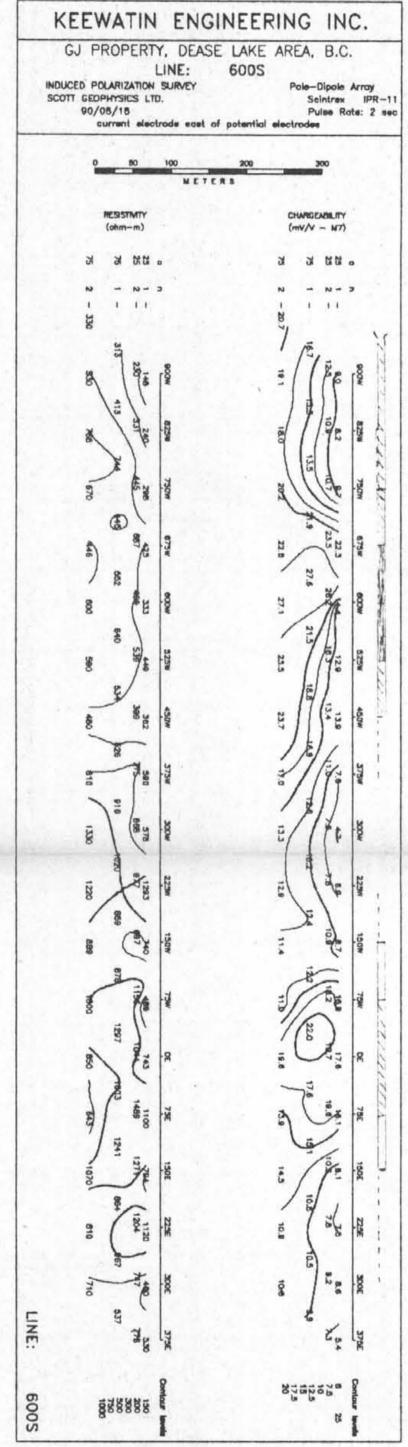


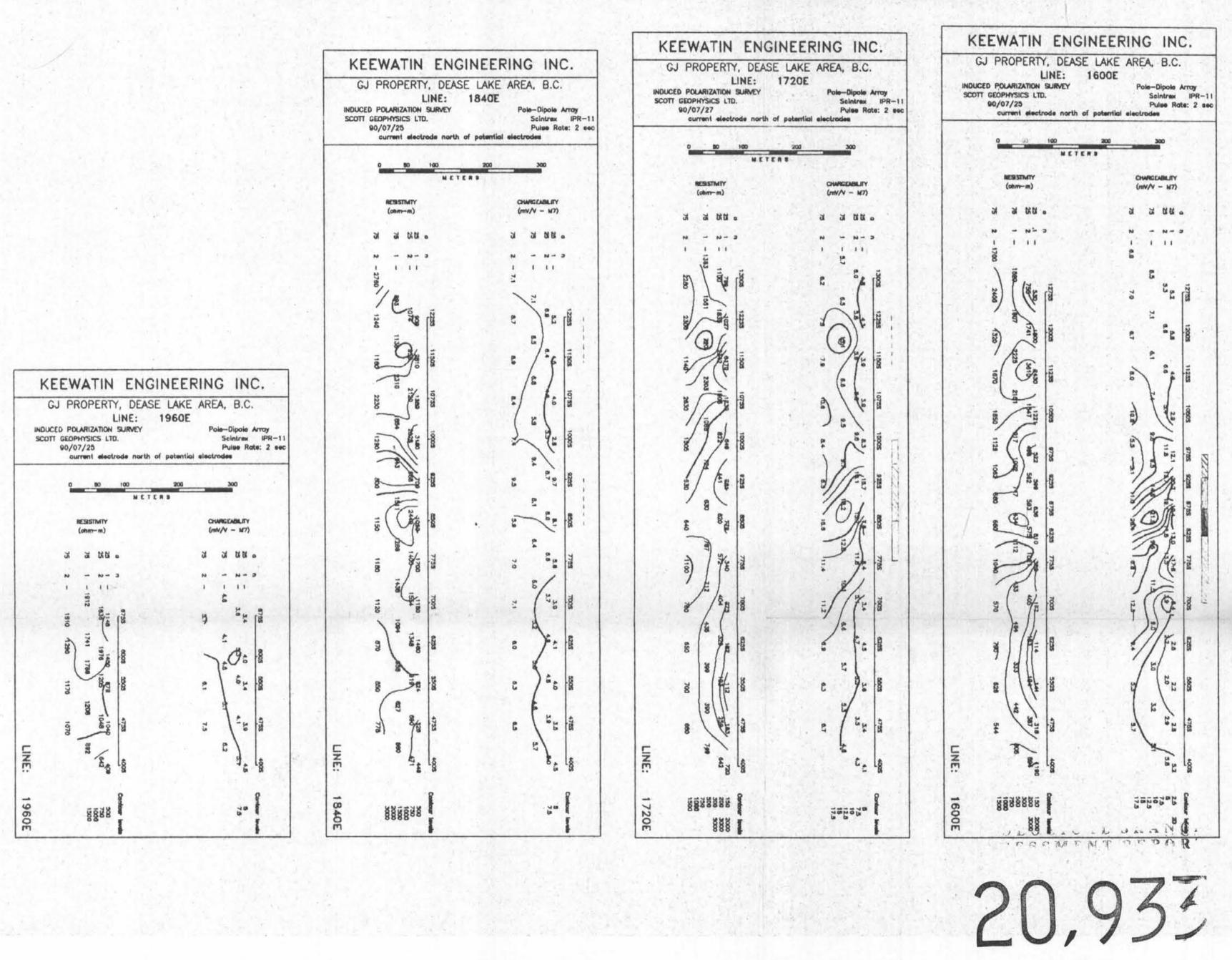


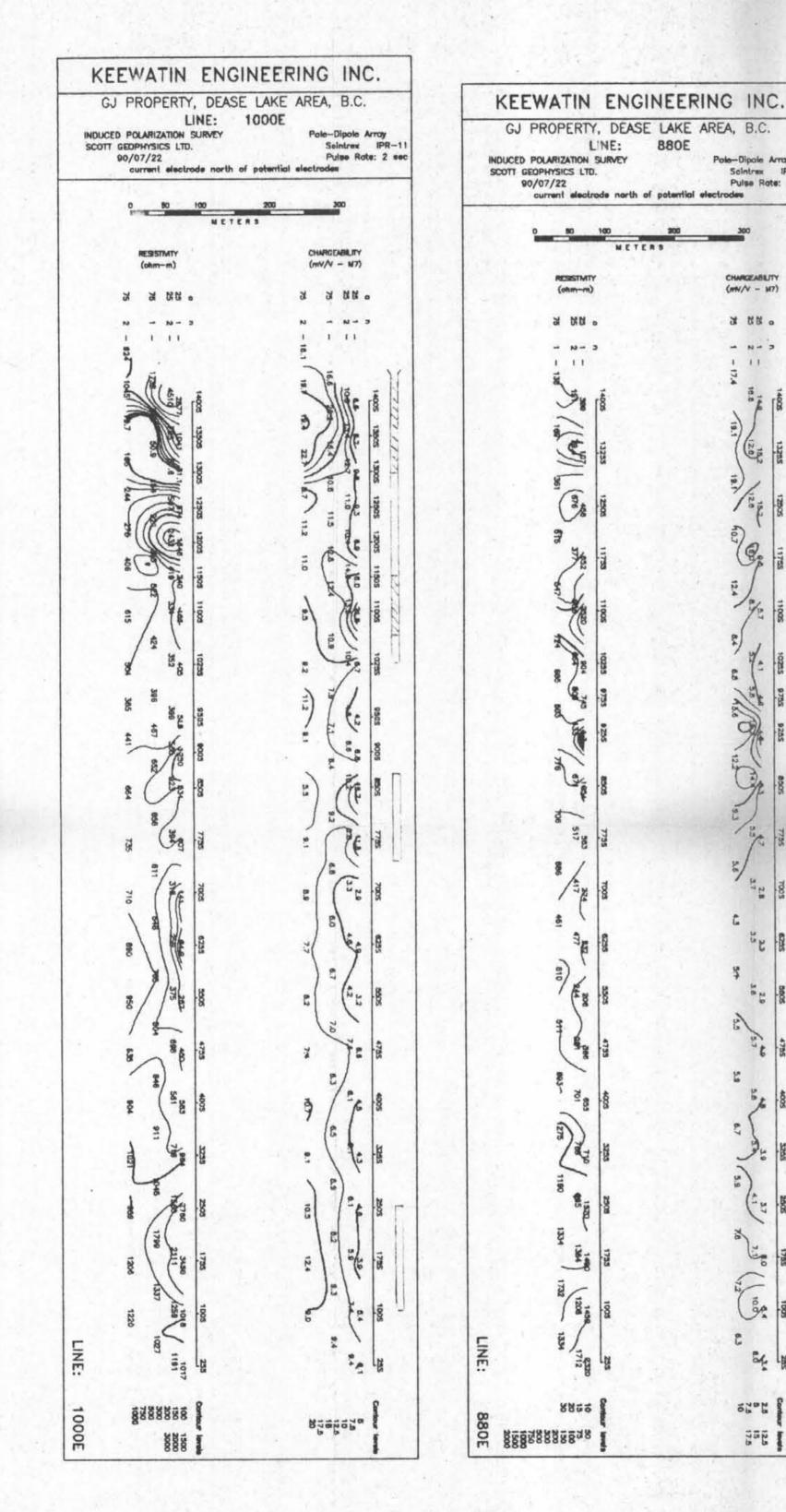


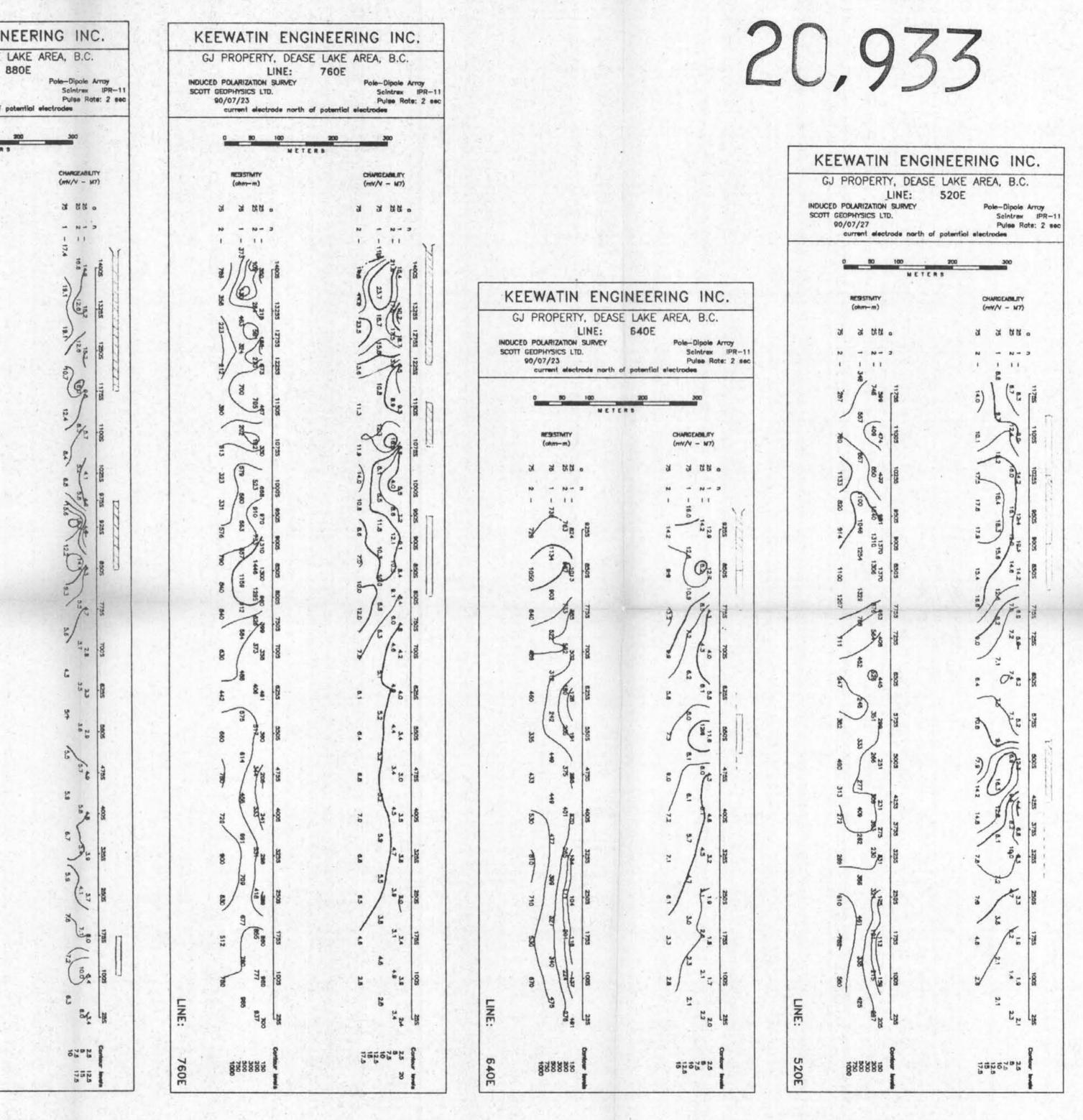

14 115











GEOLOGICAL BRANCH ASSESSMENT REPORT

MAP 8

LANS STATE

MAP 10

THUL GICAL BRANC

JOJEUGICAL BRANCH

20,933

LINE: 1480E

NETERS

a

1

10.4

in the

25

2

2

INDUCED POLARIZATION SURVEY

RESISTMTY

(ohm-m)

1 NN .

1 11

572

•A

200

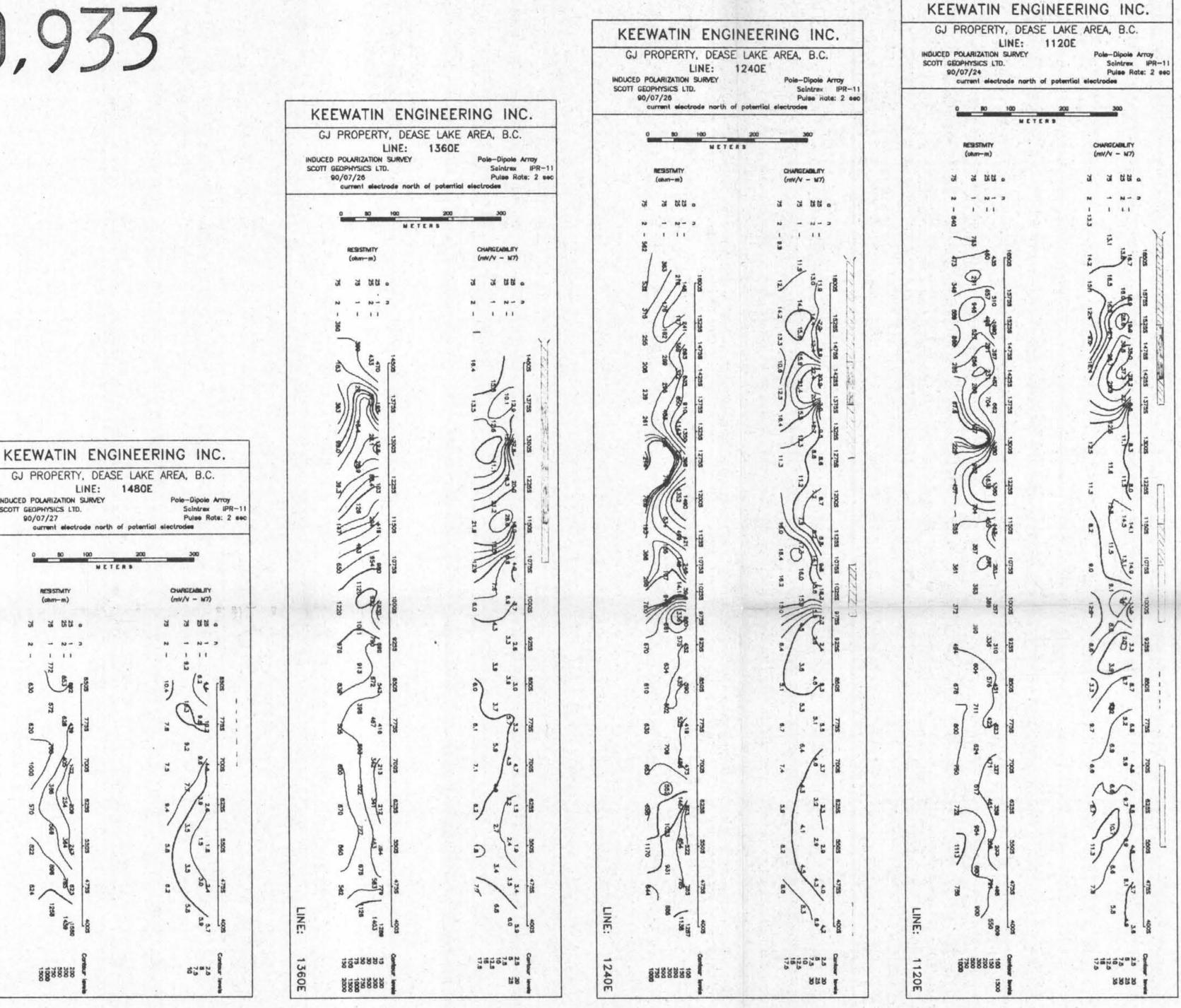
2

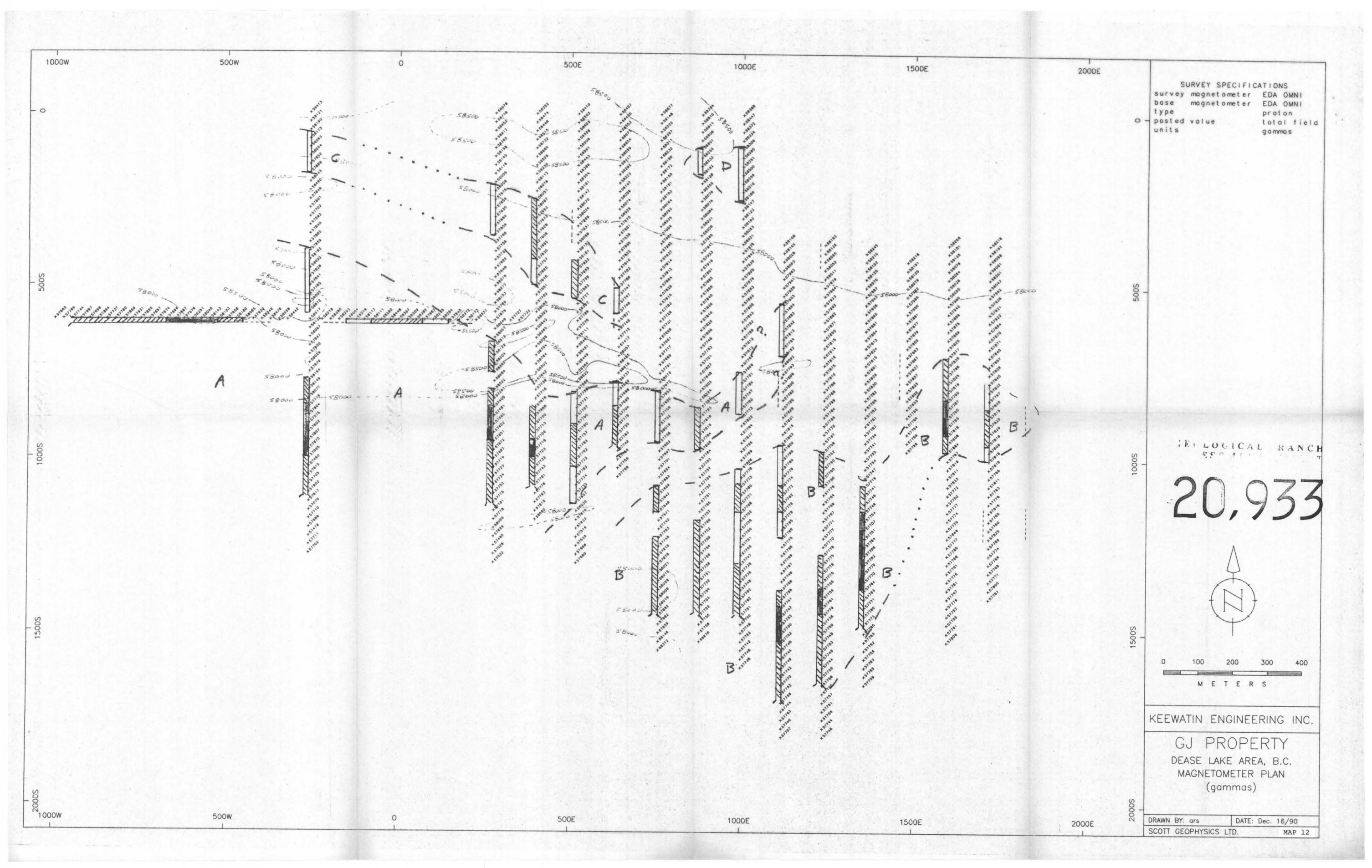
1250

1300

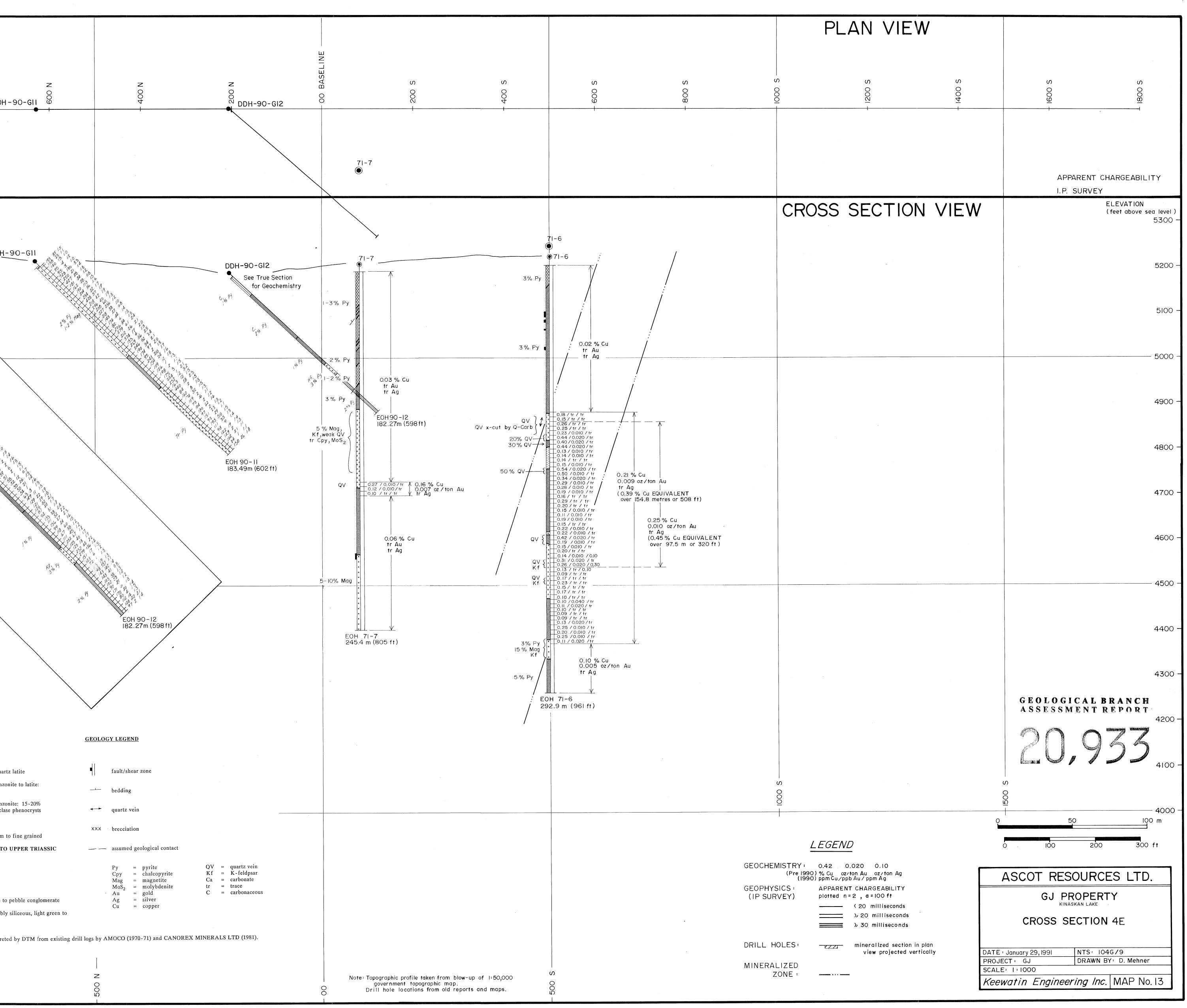
8

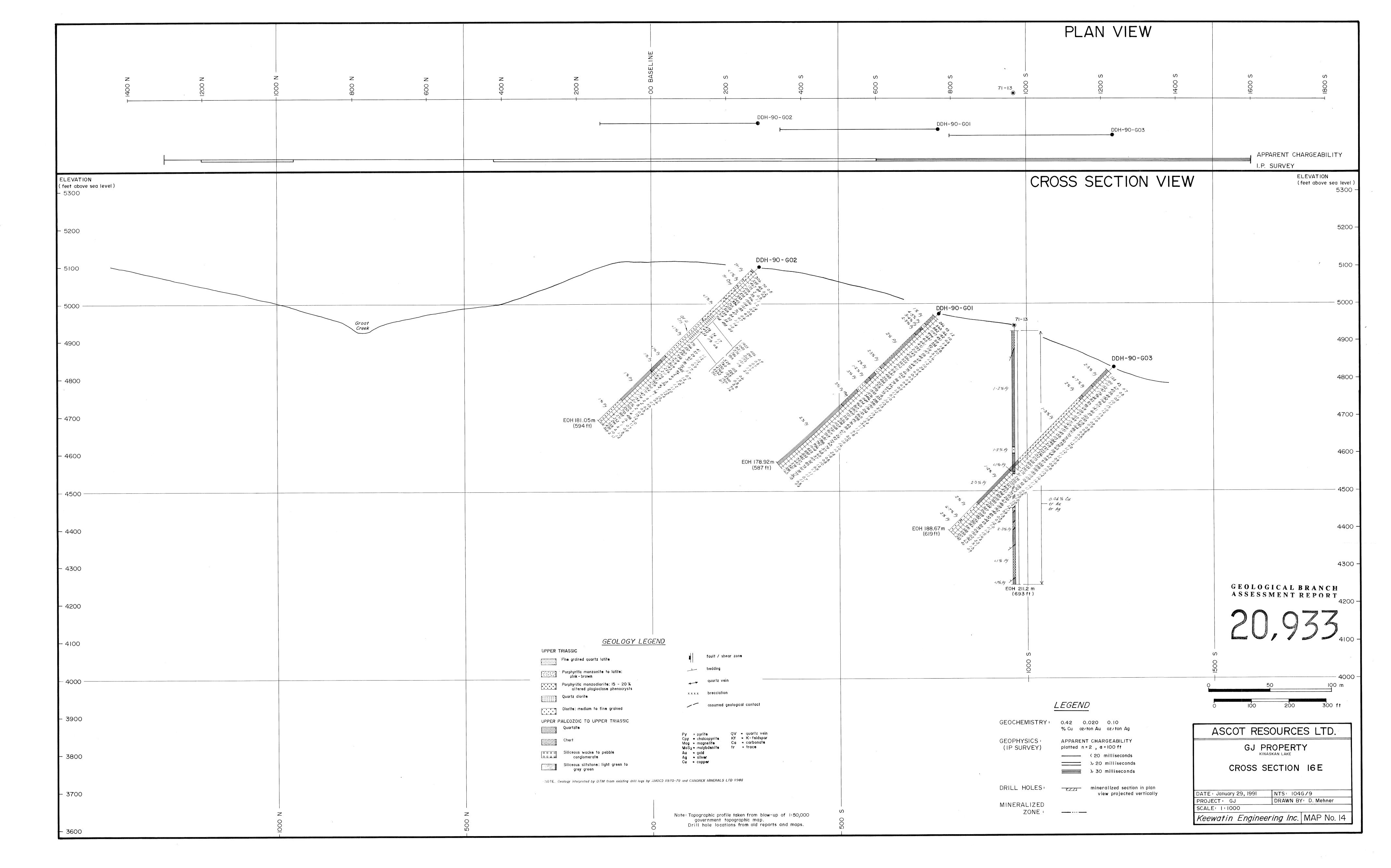
8


824

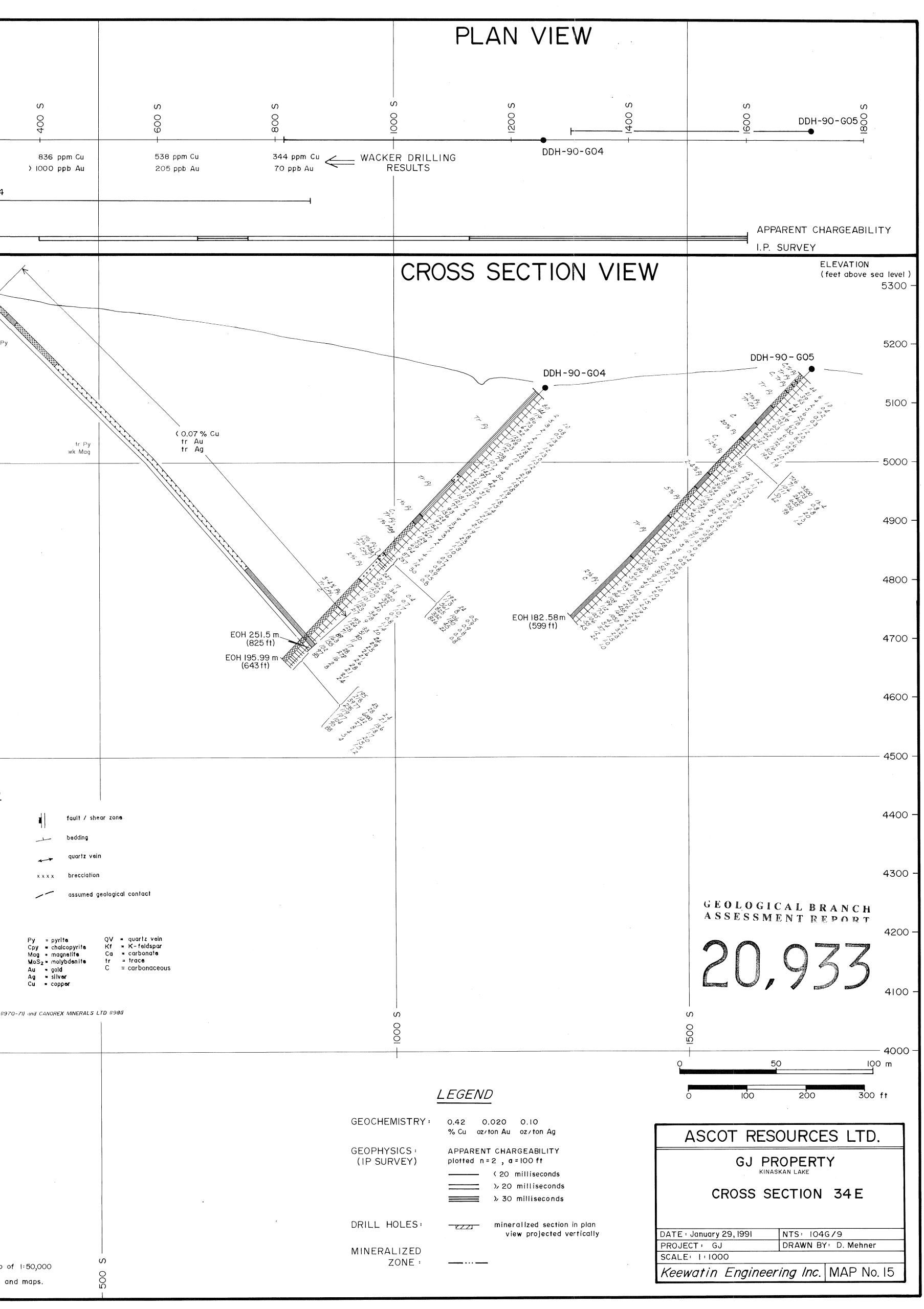

LINE:

1480E


SCOTT GEOPHYSICS LTD.


90/07/27

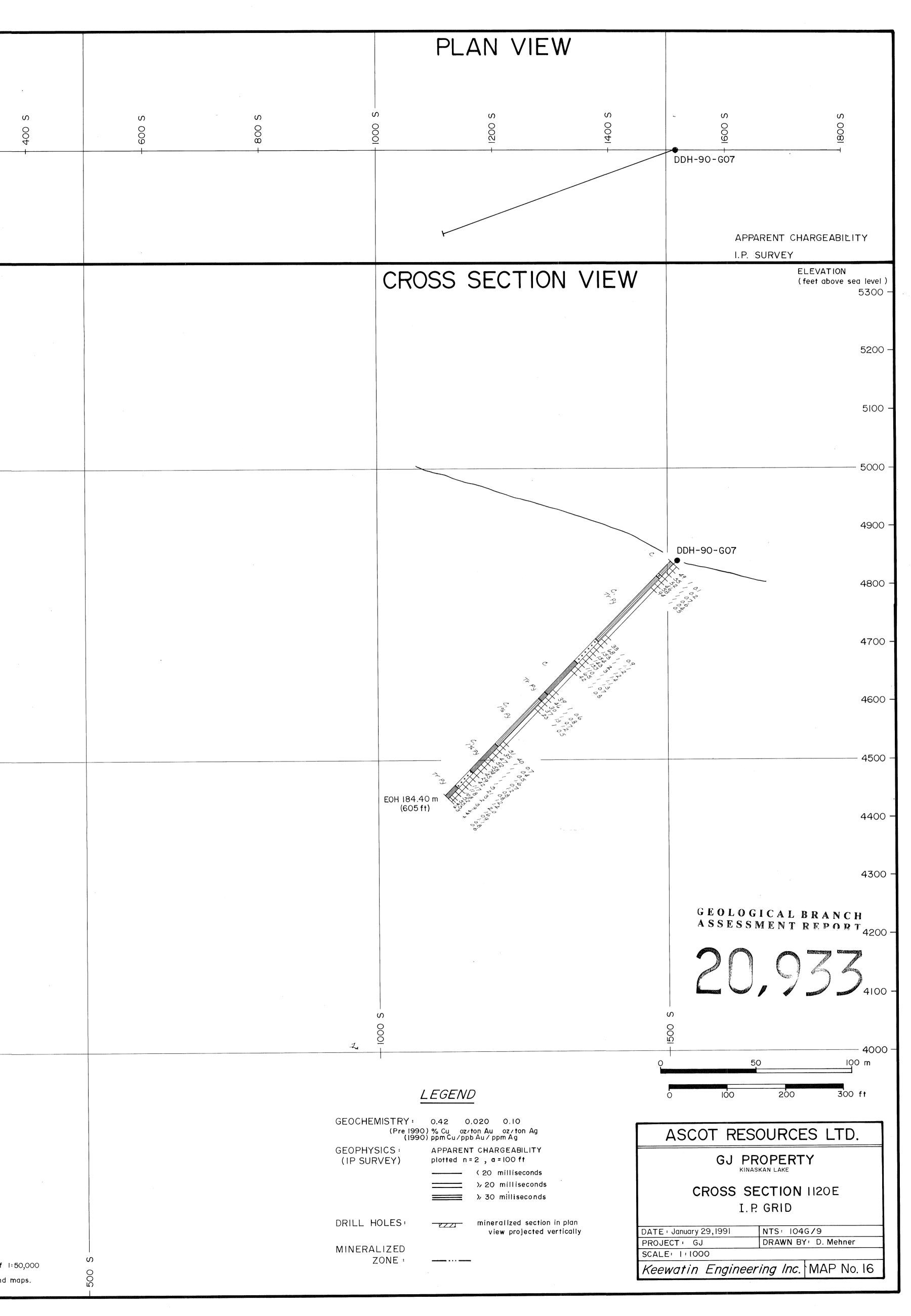
	a Nama Marana Manaka wa mwana kata kata ili Manda wa minina kata kata kata kata kata kata kata ka	a di matani mangangan kati panga kati na pangan na pangangan na pangangan na pangangan na pangangan na pangan s	to general grant general statement in the second statement of the second statement of the second statement of t
	M 0041	 N 0001	2 00 8 DDH
ELEVATION (feet above sea leve - 5300	91)		DDH-
- 5200			
- 5100	-		
- 4900		True Se DDH-9	ection O-GI2 $\frac{105}{9}$ $\frac{105}{9}$ $\frac{105}{10}$ $\frac{105}{9}$ $\frac{105}{10}$ $\frac{105}{10}$
- 4800			C ¹ ,0 ¹ 0 ¹
- 4700			C'Jop By
- 4600 - 4500			
- 4400			
- 4300			
- 4200			URDER MELLOC ~
- 4100			UPPER TRIASSIC Fine grained quar Fine grained quar Porphyritic monzo pink-brown
- 4000 - 3900			UPPER PALEOZOIC TO Quartzite Chert
- 3800			Siltstone: variably grey green
- 3700			Note: Geology interpret
- 3600		0001 -	



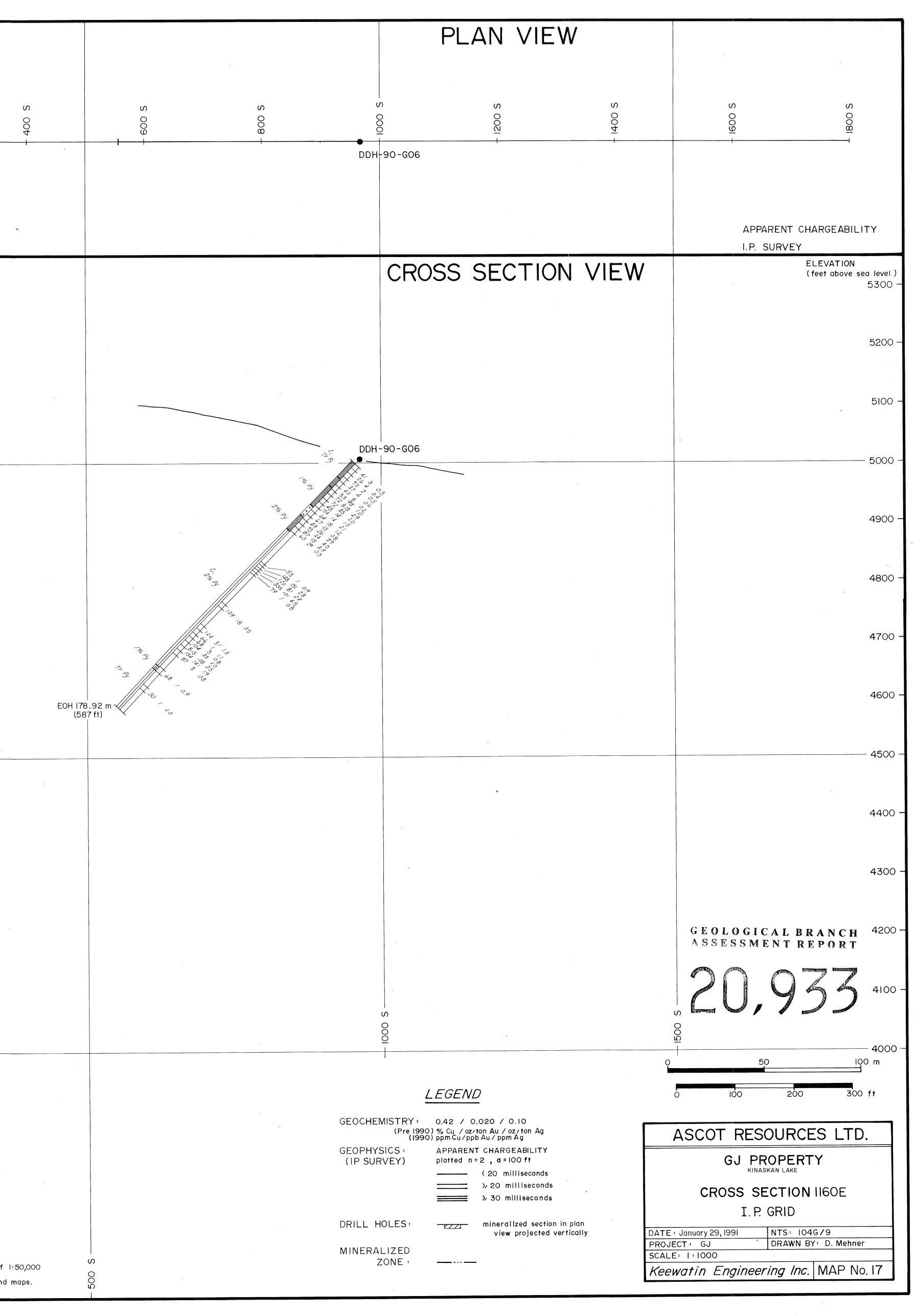
	·			
	N 0041	1200 N	N 0001	800 N
	⊢ 66 ppm Cu 6 ppb Au	53 ppm Cu 4 ppb Au	46 ppm Cu 8 ppb Au	58 ppm Cu 8 ppb Au
	[
ELEVATION (feet above sea lev - 5300	/el)			
- 5200				
- 5100				
- 5000				
- 4900				
- 4800		Υ.		
- 4700				
- 4600				
- 4500				
- 4400				
- 4300	,			
- 4200				
- 4100				
- 4000				
- 3900				
- 3800				
- 3700			Z O	
- 3600			0001 -	

. ₽

I.


			Ш Ц	
600 N	004 N	Z00 N	00 BASELINE	200 S
43 ppm Cu 6 ppb Au	I28 ppm Cu I6 ppb Au	61 ppm Cu 6 ppb Au	 38 ppm Cu 90 ppb Au 	l83 ppm Cu 45 ppb Au
				81-4 •
				81-4 tr diss Py
				·
		·		
				,
				GEOLOGY LEGEND
4			Porphyritic m altered	nonzonite to latite: own nonzodiorite: 15 - 20% plagioclase phenocrysts
			UPPER PALEOZOIC T Quartzite	um to fine grained
, ,,			Siliceous we conglor Siliceous sil grey gr	tstone: light green to
	200 21		Note: Topo g O Dril	ographic profile taken from blow-up of overnment topographic map. I hole locations from old reports and

	1400 N	1200 N		N 0001		800 8	
	۲ 4	<u>.</u>				00 	
ELEVATION		annan da ann an an an an an ann an an an an an	ang taun makapatan kanaké déba kanan manga (kinasia		gen yn en en de fan in de fan de f E	nanga ang kanang mangang kanang kanang kanang mangang kanang kanang kanang kanang kanang kanang kanang kanang k	
(feet above sea level) — 5300							
- 5200						` .	
- 5100						·	
- 5000							
- 4900							
- 4800							
- 4700							
- 4600							
- 4500							
- 4400							
- 4300							
- 4200							
- 4100	r					UPPER TRIASSIC Fine grained quartz Porphyritic monzon pink-brown	ite to lati
- 4000						Porphyritic monzon altered plagioclase	fine grai
- 3900						Quartzite Chert Sandstone	
- 3800						Siliceous wacke to p Siliceous wacke to p Siltstone: variably s grey green Note: Geology interpreted	siliceous,
- 3700							
- 3600				0001			


•

Z 009 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 200 N	- 200 Sabeline
quartz latite onzonite to latite: onzonite: 15-20% oclase phenocrysts um to fine grained 2 TO UPPER TRIASSIC ke to pebble conglomerate iably siliceous, light green to preted by DTM from existing dri	GEOLOGY LEGEND Image: fault/shear zone Image: bedding Image: guartz vein XXX brecciation Image: assumed geological contact Py = pyrite Cpy = chalcopyrite Mag = magnetite Mag = molybdenite Au = gold Ag = silver Cu = copper Il logs by AMOCO (1970-71) and CANOREX MINE	f = K-feldpsar a = carbonate = trace = carbonaceous	
	200 N		Note: Topographic profile taken from blow-up of 1 government topographic map. Drill hole locations from old reports and r

		ne sue sue sue substanting en anna en al serie de substant provent à journe constraind de substant substant su		
	N 0041	1200 N	N 0001 -	N 008
ELEVATION (feet above sea leve - 5300	el)	gener 1874 maar van die klaamse maak kan kaar van die kaar kaar kaar kaar kaar van die kaar die kaar die klaam		
- 5200				
- 5100				
5000				
- 4900				·. ·
- 4800				
- 4700				
- 4600 - 4500				
- 4400				
- 4300	÷			
- 4200				
- 4100				UPPER TRIASSIC Fine grained quartz latite Porphyritic monzonite to pink-brown
- 4000				Porphyritic monzonite: 1 altered plagioclase phene view view view view view view view view
- 3900				Quartzite Chert Sandstone Siliceous wacke to pebble
- 3800 - 3700				Siltstone: variably siliceo grey green Note: Geology interpreted by D
- 3600			N 0001 -	

P 00 9	- 400 N	200 N	00 BASELINE	S 00 -
		· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·		
	<u>GEOLOGY LEGEND</u>			
rtz latite conite to latite: conite: 15-20%	fault/shear zone bedding quartz vein			
ase phenocrysts to fine grained O UPPER TRIASSIC	 quartz veri ××× brecciation assumed geological contact Py = pyrite Cpy = chalcopyrite Mag = magnetite MoS₂ = molybdenite 	QV = quartz vein Kf = K - feldpsar Ca = carbonate tr = trace	-	
to pebble conglomerate ly siliceous, light green to eted by DTM from existing dri	MoS ₂ = molybdenite Au = gold Ag = silver Cu = copper	tr = trace C = carbonaceous REX MINERALS LTD (1981).		
	200 N		Note: Topo ga O Dril	graphic profile taken from blow-up of overnment topographic map. I hole locations from old reports and

-