RD. LOG NO: NTS 82K / 3W ACTION: 50° 07'N Lat 117° 16'W Long FILE NO:

HH U M ZC < ₽ 2 8 2

₹Z

GEOLOGICAL and GEOCHEMICAL SAMPLING REPORT on the LEIF PROPERTY Slocan Mining Dvision

for

#### BLACK TUSK EXPLORATIONS LTD 241 East 1st Street **U** E North Vancouver, B.C. V7L 1B4 <u>- 2</u> Tel: (604) 988-4653 Fax: 988-4653 S S

by

ASSOC Roger Kidlark, B.Sc., F.G.A.C. Peter D. Leriche, B.Sc., F.G.A.C. RELIANCE GEOLOGICAL SERVICES INC. CANA 241 East 1st Street P. D. LERICHE ō North Vancouver, B.C. V7L 1B4 Tel: (604) 984-3663 Fax: (604) 988-4653 FELLON 14 November 1990

# Table of contents

| 1.0  | Introdution                                   | 1     |        |
|------|-----------------------------------------------|-------|--------|
| 2.0  | Location, Access and Physiography             | 1     |        |
| 3.0  | Property Status                               | 2     |        |
| 4.0  | Area History                                  | 3     |        |
| 5.0  | Previous Work                                 | 7     |        |
| 6.0  | Regional Geology                              | 7     |        |
| 7.0  | 1990 Exploration Program                      | 8     |        |
|      | 7.1 Methods and Procedures                    | 8     |        |
|      | 7.2 Property Geology                          | 9     |        |
|      | 7.3 Rock Geochemistry                         | 11    |        |
| 8.0  | Discussion                                    | 13    |        |
| 9.0  | Conclusions                                   | 14    |        |
| 10.0 | Recommendations                               | 15    |        |
| 11.0 | Proposed Budget                               | 16    |        |
|      | Itemized Cost Statement                       | 17    |        |
|      | Certificates                                  | 18&19 |        |
|      | References                                    | 20    |        |
|      | Appendix A Rock Sample Descriptions           |       |        |
|      | Appendix B Analytical Results and Techniques  |       |        |
|      | List_of_Figures                               |       |        |
|      | Figure 1 General Location Map                 | la    |        |
|      | Figure 2 Claim Location Map                   | lb    |        |
|      | Figure 3 Regional Geology                     | 7a    |        |
|      | Figure 4 Goat Range Thrust Belt Compilation   | In    | Pocket |
|      | Figure 5 Geology and Rock Sample Location Map | lla   |        |

-----

-

.

### 1.0 INTRODUCTION

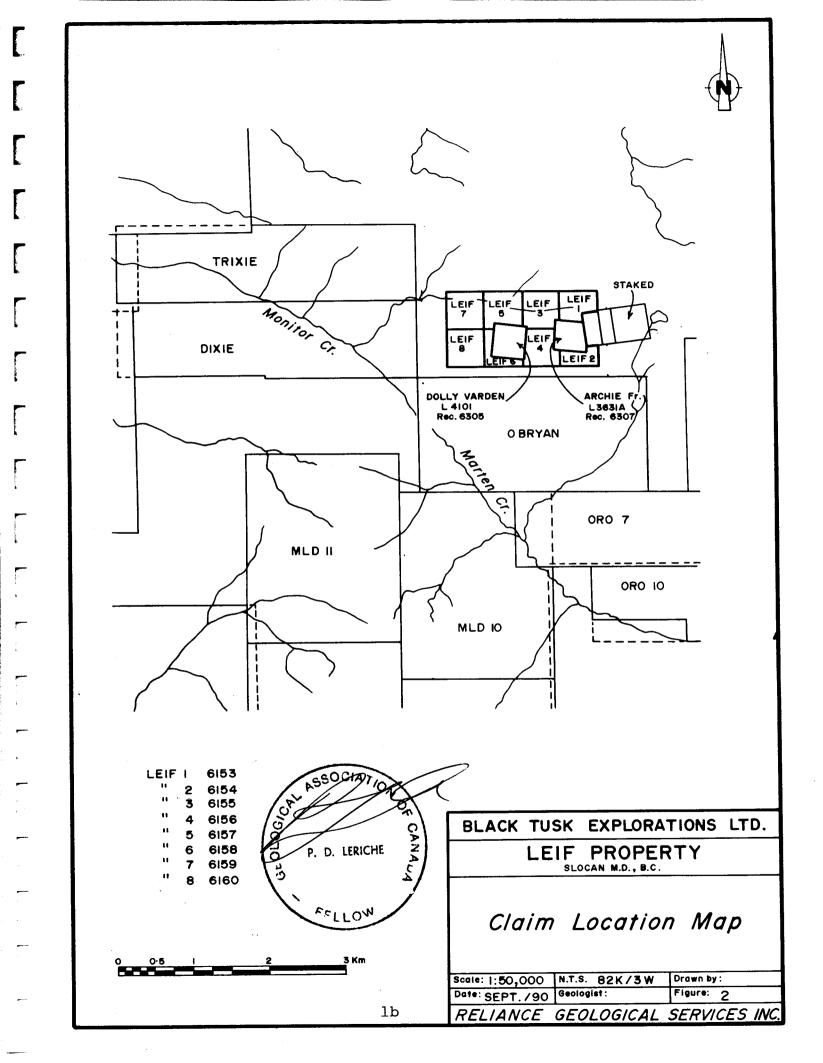
This report was prepared at the request of Black Tusk Explorations Ltd to describe and evaluate the results of a geological and geochemical sampling program carried out by Reliance Geological Services Inc on the Leif Property, Slocan Mining District, southeast British Columbia. The field work, which was undertaken to evaluate the mineral potential of the property, was carried out on September 15 and 16 by Roger Kidlark (project geologist), Gordon Addie (geologist), Dan Atkinson (geologist), John Fleishman (prospector) and Christine Meyers (geotechnician).

The purpose of the program was to evaluate the precious metal potential of the property.

# 2.0 LOCATION, ACCESS AND PHYSIOGRAPHY


The Leif property is situated in the Slocan Mining Division in south-east British Columbia, approximately 15 kilometers northeast of New Denver, B.C. (Figures 1 and 2).

The claims lie within Map Sheet NTS 82K/3W, at latitude  $50^{\circ}$  07' North, longitude  $117^{\circ}16'$  West, and between UTM 5,551,000m and 5,553,000m North and 478,000m and 481,000m East.


Road access is from New Denver, following Highway 6, northwest for 6 km to the village of Rosebury. From Rosebury, follow the Wilson Creek logging road north for approximately 12 km to the Monitor Creek road, which leads to the Mt. Dolly Varden area and crosses the southwest corner of the claims. Four-wheel drive vehicles are recommended.

Alternate access is via helicopter from the base at Nakusp.

- 1 -



**© ₩**.G.I.



Total relief is 710 meters, from 1859 m to 2569 m at the peak of Mt. Dolly Varden. Slopes are moderate to steep, dipping in all directions. The property is above treeline. Recommended field season is mid-May to mid-October.

# 3.0 **PROPERTY STATUS** (Figure 2)

The property consists of eight contiguous two post mineral claims surrounding and including two reverted Crown grants, covering an area of approximately 175 hectares, or 432 acres. The claims are 100% owned by Black Tusk Explorations Ltd.

| <u>Claim</u> | Record<br><u>Number</u> | <u>Units</u>      | Record Date | Expiry Date |
|--------------|-------------------------|-------------------|-------------|-------------|
| Leif 1       | 6153                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Leif 2       | 6154                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Leif 3       | 6155                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Leif 4       | 6156                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Leif 5       | 6157                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Leif 6       | 6158                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Leif 7       | 6159                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Leif 8       | 6160                    | 1                 | 16 Oct 1989 | 16 Oct 1991 |
| Archie       |                         |                   |             |             |
| Fraction     | 6307                    | 1                 | 15 Mar 1989 | 15 Mar 1991 |
| Dolly        |                         |                   |             |             |
| Varden       | 6305                    | <u>    1     </u> | 15 Mar 1989 | 15 Mar 1991 |
|              | Total                   | 10                |             |             |

The area is not subject to any particular problems regarding Indian land claims or environmental issues.

- 2 -

#### **4.0 AREA HISTORY** (Figure 4)

The Whitewater-Retallack-Sandon areas (collectively known as the Slocan Mining Camp) have a long production history, from the late 1800's to the 1980's. Deposits are mainly silver-lead-zinc-gold within veins and as replacements within the Slocan Group sediments. Approaching the Goat Range thrust faults, the mineral occurrences are generally more enriched in gold.

Mineral occurrences specifically associated with the Goat Range Thrust Belt (from BCMEMPR Minfile), from the southeast (Mt. Jardine area) to the northwest (Mt. Dolly Varden area) include:

| <u>Name</u>                  | <u>Minfile No.</u> | <u>Commodities</u> | <u>Geological Comments</u>                                                             |
|------------------------------|--------------------|--------------------|----------------------------------------------------------------------------------------|
| Empire                       | 82KSW169           | Ag, Pb, Zn, Au     | 32 tonnes mined in 1960<br>producing 31 g Au, 9330<br>g Ag, 4411 kg Pb, 4380 kg<br>Zn. |
| Voyageur<br>Emerald          | 82KSW048           | Pb,Zn,Cu,Ag        | Hosted by greenish<br>coloured Kaslo Group<br>volcanic rocks.                          |
| Hill                         | 82KSW045           | Ag, Pb, Zn, Cu     | Shear zone in Kaslo<br>Greenstone. Limited<br>production, 1907, 1953,<br>1979.         |
| Beaver                       | 82KSW046           | Ag, Pb, Cu         | Mineralized fractures in<br>Kaslo Greenstone.                                          |
| Hecla                        | 82KSW047           | Pb, Ag             | Fissure vein in Kaslo<br>Greenstone.                                                   |
| Iron Cro<br>Kenneth<br>Mount | own                |                    |                                                                                        |
|                              | 82KSW149           | Ag, Pb, Zn         | No description available                                                               |

- 3 -

| Name                             | <u>Minfile No.</u> | <u>Commodities</u>    | <u>Geological Comments</u>                                                                                                                                                                                        |
|----------------------------------|--------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eureka                           | 82KSW038           | Ag, Pb, Au            | Hosted by Kaslo<br>Greenstones and basic<br>Intrusives. Carbonate<br>veins are anomalous in<br>gold and copper. 273<br>tonnes mined, producing<br>311 g Au, 697080 g Ag,<br>166060 kg Pb.                         |
| JK Nico                          | 82KSW101           | Cu, Ni                | Quartz veins, at the<br>contact of volcanics and<br>a serpentinized<br>peridotite, mineralized<br>with galena, sphalerite<br>and chalcopyrite.<br>Pyrrhotite and pyrite are<br>disseminated in the<br>peridotite. |
| Highland<br>Surprise             | 82KSW037           | Au, Ag, Pb, Zn        | Mineralized quartz veins<br>and shear zones near<br>contact with a serpentin-<br>ite. 1903 tonnes mined<br>from 1938-42, producing<br>50947 g Au and 29645 g Ag.                                                  |
| Fletcher                         | 82KSW143           | Au                    | No description available.                                                                                                                                                                                         |
| Phoenix                          | 82KSW144           | Au, Talc              | Large serpentinite body<br>largely altered to talc<br>and carbonate.                                                                                                                                              |
| Ohio                             | 82KSW036           | Pb, Zn, Cu            | Shear zone in sediments.                                                                                                                                                                                          |
| Charlest<br>Keystone<br>Colorado | 82KSW031           | Ag, Pb, Zn,<br>Au, Cd | Hosted by Slocan Group<br>slates and intruded by<br>"green spotted" dykes.<br>2324 tonnes mined spor-<br>adically from 1898-1966,<br>producing 155 g Au,<br>1038621 g Ag, 80871 kg Pb,<br>87445 kg Zn.            |
|                                  |                    |                       |                                                                                                                                                                                                                   |

----

-----

ĺ.

-----

- 4 -

| <u>Name</u>     | <u>Minfile No.</u> | <u>Commodities</u>        | <u>Geological Comments</u>                                                                                                                                                                  |
|-----------------|--------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gold<br>Quartz  | 82KSW032           | Au, Ag, Pb,<br>Zn, Cu     | Quartz veins and<br>stringers, hosted by Kaslo<br>greenstone contain<br>disseminated sulphides.                                                                                             |
| White-<br>water | 82KSW033           | Ag, Pb, Zn,<br>Au, Cd, Cu | Vein and replacement<br>deposit associated with<br>faults in Slocan Group<br>sediments. 436543 tonnes<br>mined from 1892-1980<br>producing 52395 g Au,<br>106171566 g Ag plus Pb and<br>Zn. |
| Sure<br>Thing   | 82KSW085           | Pb                        | Slocan Group slates and<br>limestone host siderite<br>and galena.                                                                                                                           |
| May-<br>flower  | 82KSW078           | Au, Ag, Pb,<br>Zn, Cu     | Quartz veins at Kaslo<br>greenstone - Slocan slate<br>contact host sulphide<br>mineralization and free<br>gold.                                                                             |
| Garnet          | 82KSW076           | Au, Ag, Pb,<br>Zn, Cu     | Same as Mayflower                                                                                                                                                                           |
| Robin           | 82KSW077           | Au, Ag, Pb,<br>Zn, Cu     | Same as Mayflower                                                                                                                                                                           |
| Tom             | 82KSW139           | Ab, Cu                    | Chrysotile in thin<br>veinlets within a<br>serpentinite.                                                                                                                                    |
| Tom 3           | 82KSW069           | Cu                        | Mineralization along fault<br>between chlorite-biotite<br>schist and ultramafics.                                                                                                           |
| EK              | 82KSW066           | Pb, Ag                    | Sulphide-carbonate vein<br>in Slocan quartzites.                                                                                                                                            |
| SB<br>Betty Jo  | 82KSW064           | Nİ                        | Sulphides along shear zone<br>in serpentinized peri-<br>dotite.                                                                                                                             |

to the second second

- 5 -

| Name                                    | <u>Minfile No.</u>          | <u>Commodities</u> | <u>Geological Comments</u>                                                                                                                                      |
|-----------------------------------------|-----------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB Pam                                  | 82KSW68                     | Cu                 | Disseminated sulphides in<br>fault zone within Kaslo<br>ultramafics. Areas of<br>intense shearing altering<br>to picrolite and<br>chrysotile.                   |
| Alp-                                    |                             |                    | -                                                                                                                                                               |
|                                         | 82KSW049<br>boundary<br>as) | Sb, Au, Ag         | Mineralization occurs in<br>a shear and alteration<br>zone in metamorphosed<br>sedimentary and igneous<br>rocks. Over 14000 kg of<br>antimony produced in 1916. |
| Dolly<br>Varden<br>(subject<br>property |                             | Ag, Au             | Quartz vein (0.60-3.66 m)<br>striking for at least of<br>1600 m and hosting pyrite,<br>tetrahedrite and native<br>Ag.                                           |

The following general observations are made from the above descriptions:

- (a) Almost all showings are associated with fault structures, usually at lithological contacts;
- (b) Mineralization is hosted by quartz veins and shear zones;
- (c) At least 7 occurrences are associated with ultramafic rocks.
- (d) Terms such as carbonate, talc, "green spotted rocks", chrysotile and asbestos imply that listwaenite alteration occurs along the belt.
- (e) Thirteen out of twenty-six showings contain known gold values;
- (f) A variety of metals and minerals occur along the belt including gold, silver, copper, lead, zinc, antimony, nickel, cadmium, asbestos and talc.

- 6 -

#### 5.0 PREVIOUS WORK

The Dolly Varden showing (on Dolly Varden claim, L4101) was discovered about 1900, and approximately 35 meters of cross-cutting and drifting was completed at that time.

No further work is reported until 1981 when geological mapping was performed for M. McCrory (Assessment Report 9067). Snell (1981) observed an east-west trending quartz vein (0.66 to 3.66 m wide) striking for at least 1600 meters at the fault contact of the Slocan sediments and Kaslo volcanics. A hydrothermal alteration envelope 30 meters wide occurs adjacent to the vein. One dump sample assayed 1.3 g/tonne (0.08 opt) gold and 1595.79 g/tonne (97.4 opt) silver (Assessment Report 9067).

The Alps-Alturas showing occurs on 3 Crown Grants at the eastern boundary of the Leif property. Over 14,000 kg antimony was produced in 1916, from a shear in highly metamorphosed rock.

No other work has been documented.

# 6.0 **REGIONAL GEOLOGY** (Figure 3)

The Goat Range has been mapped by D.W. Klepacki: (1982-84; G.S.C. Open File 1148).

The dominant structural features of the subject area are the northwest trending Whitewater and Stubbs thrust faults. The Permian Kaslo Group, consisting of tholeiitic porphyry flows, pillow lavas, tuff, argillite, phyllite and ultramafic serpentinite, have been overthrust upon each other. Thrusting occurred mainly along the ultramafic units.

- 7 -

#### LITHOLOGICAL LEGEND

#### QUATERNARY

- Qsc Landslides, rockslides
- Qms Tufa, rare travertine (mineral spring deposits)
- Qol Glacial, fluvial, lacustrine sediments (gravels to clays)

#### JURASSIC

- Jbg Blue Ridge Intrusives: feldspar porphyry, biotite hornblende leucogranite
- Jg Kuskanax Intrusives: augite, leucogranite to quartz monzonite

#### TRIASSIC

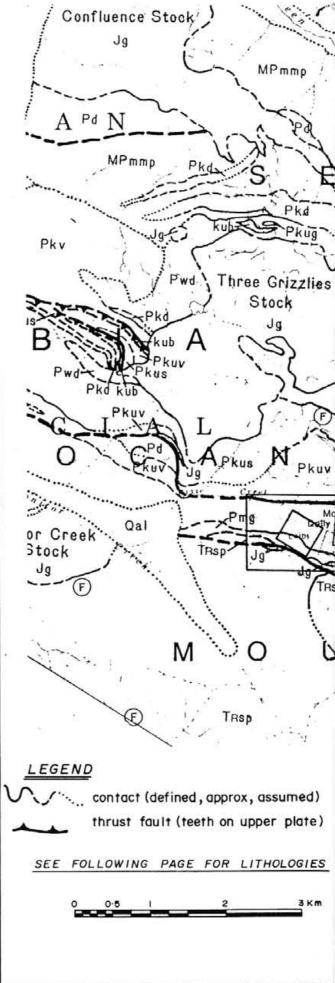
TRsp Slate & phyllite rhythmically bedded with sandstone/calcarenite

#### PERMIAN

- Pmg Marten Conglomerate: polymictic conglomerate with grey to green matrix. Rare serpentinite, locally calcareous and/or pyritic
- Pwd White Water Diorite: coarse grained hornblende diorite, locally intensely sheared

Pkuv

- Pkd Kane Creek Diorite: hornblende diorite, locally foliated with chlorite & sausserite alteration
- Pd Undifferentiated hornblende diorite




WE'rs

#### MISSISSIPPIAN TO PERMIAN

MPmmv Siliceous Argillite Member: siliceous argillite & chert bedded grey calcschist

- Upper Plate Volcanic Member: tholeiitic pyroxene to plagioclase porphyry pillow basalt, greenstone, breccia
- Pkuvf Pink felsic tuff Pkus Upper plate
- Pkus Upper plate Sedimentary Members: cherty tuff, wacke, volcanic conglomerate
- Pkug Volcanic conglomerate
- Pkub Ultramafic Member: serpentinite, talc schist, talc-chlorite schist, locally intensely brecciated and/or foliated



3

MPmk STUBBS MPmm G19 Mount Pd Stubbs MPmmp MPmmp Cooper C (Z) 180±7M MPmmp Qa MPmmp Pwd MPmma wd Pkus Marten MPmmo (Ub Pkuv kub nverness Marten Creek Stock BLACK TUSK EXPLORATIONS LTD. LEIF PROPERTY SLOCAN M.D., B.C. Regional Geology Scale: 1: 50,000 N.T.S. 82K/3W Drown by: Date: SEPT./90 Geologist: Figure: 3 RELIANCE GEOLOGICAL SERVICES INC.

Serpentinization is likely associated with fault movement. Bedding dips gently to moderately to the southeast.

After Kaslo Group deposition and subsequent structural deformation, the area was overlain by Upper Triassic Slocan Group slates and phyllites. Exposures of the Slocan Group occur southeast of the thrust faults.

Intruding the above-described strata are the Kuskanax Intrusives which consist mainly of leucogranite and leucoquartz monzonite. Stocks and batholiths occur in the northern part of the belt, and have bent and deformed the thrust faults and Kaslo Group rocks. These intrusions could be the heat source for mineralizing hydrothermal solutions, which have also caused listwanite alteration in the serpentinites.

# 7.0 1990 EXPLORATION PROGRAM

# 7.1 Methods and Procedures

During September 1990, a field crew of two geologists, a prospector and a geotechnician performed a geological mapping and rock sampling program on the Leif property. The purpose of this program was to evaluate the precious metal potential of the claims. Control for all surveys was established using topographic features, hipchain, altimeter, and compass. Geological mapping was carried out using a scale of 1:10,000. Forty samples were collected and sent to International Plasma Laboratories Ltd. of Vancouver, B.C., for gold fire assay and multi-element ICP analysis. See Appendix A for sample descriptions, and Appendix B for analytical results and techniques.

- 8 -

# 7.2 **Property Geology** (Figure 5)

Outcrop is exposed over approximately 50% of the claim area. The northern portion of the property is underlain by the Lower Permian Whitewater diorite unit, which contains large rafts and zenoliths of the volcanic member of the Lower Permian Kaslo Group. Volcanic rocks generally consist of undifferentiated tholeiitic flows, pillow lavas, tuffs, argillites, phyllites, and ultramafics.

On the claim area, the contact between the Kaslo Group and Whitewater diorite is unclear. The rocks have been mapped as diorite with minor volcanics (Unit 2).

The lower member of the Kaslo Group consists of a serpentinized ultramafic unit (Unit 1) which is exposed along the northeastern edge of the property. It is at least 50 meters wide, strikes approximately east-west, and is in contact with the diorite along a large scale regional thrust fault.

To the south, the Whitewater diorite is in fault contact with the Upper Triassic Slocan Group of metasediments (Unit 3). This fault, which strikes approximately east-west across the claim area, is called the Whitewater Fault.

The youngest rocks on the property are the Blue Ridge Intrusives (Unit 4) which appear to be spatially limited to the Whitewater Thrust Fault. These rocks have been mapped as feldspar porphyries.

#### Unit 1: Ultramafics

These rocks are very fine-grained to aphanitic, equigranular, magnetic, waxy, and black to dark green in color. Serpentinization and degree of serpentinization is probably due to

- 9 -

fault movement. Locally, talc-chlorite-carbonate-mariposite alteration has been reported and may be the result of listwanite hydrothermal activity.

Unit 2: Whitewater Diorite

The diorite is medium to coarse grained, generally equigranular, intensely sheared, and foliated along shear zones. The most abundant mafic material is horneblende. Kaslo Group volcanics are generally fine grained to asphanitic, dark green in color, and pillowed.

#### Unit 3: Slocan Group

These rocks consist of undifferentiated grey slate, phyllite, and argillite, with minor interbedded limestone.

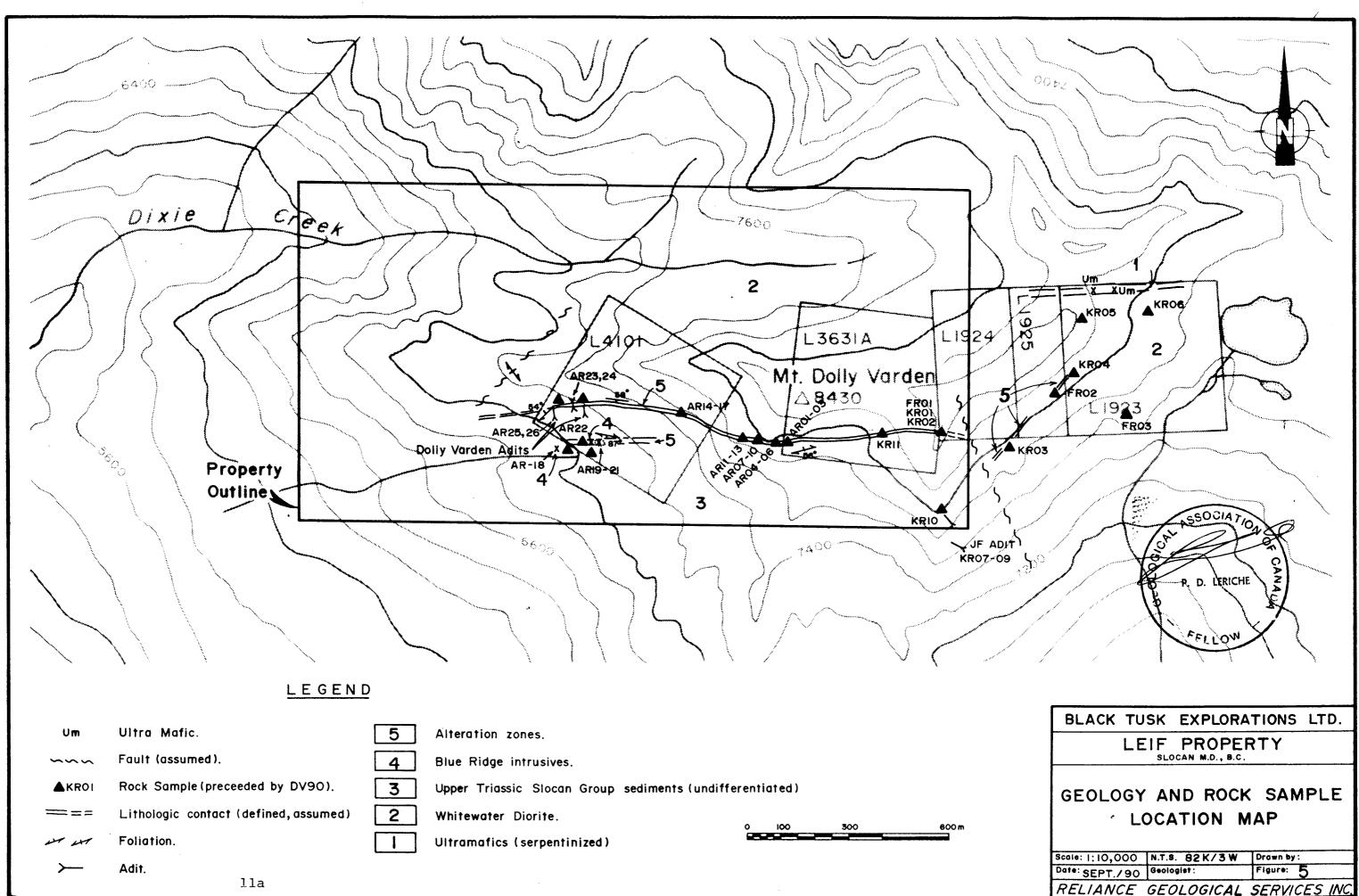
Unit 4: Blue Ridge Intrusives

This unit consists of a leucocratic medium grained feldspar porphyry. It is generally composed of 60-80% euhedral plagioclase crystals and 20-40% subhedral quartz crystals. Locally, it is intensely altered to sericite and chlorite, and varies in width from 0.5 meters to 6.0 meters.

#### Structure

The most prominent structural features are parallel east-west trending thrust faults. A thrust fault is associated with the ultramafic unit at the northeast edge of the property. The Whitewater thrust fault is located along the southern portion of the property at the contact between the diorite and Slocan sediments. Later northeast and northwest striking faults locally crosscut and offset the Whitewater Fault.

All the rock formations have been lifted and tilted during periods of plutonic activity and now dip moderately to the southeast at 50° and strike northwesterly and southeasterly. Variations in attitude are due to local folding and faulting. Mineralization and Alteration


A continuous quartz vein approximately 1.0 meter wide occurs along the 1500 meter strike length of the contact between the Whitewater diorite to the north and Slocan Group shales and argillites to the south.

The vein is surrounded by a 20 to 30 meter wide alteration halo consisting of strong sericite-carbonate-limonite and minor chlorite alteration. Mineralization within the alteration zone consists of 2-3% euhedral pyrite and local stibnite within pods and fractures. Minor chalcopyrite and tetrahedrite with associated malachite and azurite was observed in dump material outside the Dolly Varden adits.

On the Alps-Alturas crown grants, located just off the east boundary of the claims, serpentinized ultramafics were observed to be locally altered to listwanite (quartz-carbonatemariposite).

7.3 Rock Geochemistry (Figure 5, Appendices A and B) The following rock sample results are considered significant: Number Width Type Results DV90-AR14 Chip 1000cm 80 pb Au, 251 ppm As Description: Sericite schist with quartz stringers. Mariposite and 1-2% disseminated pyrite. DV90-AR15 Chip 600cm 55 ppb Au Description: Feldspar porphyry with irregular guartz veinlets. 1% pyrite. DV90-AR17 Chip 200cm 95 ppb Au, 203 ppm As Description: Sericitic shear zone with 1-2% pyrite. DV90-KR9 150cm Chip 125 ppb Au, 211 As Description: Quartz vein in a quartz-sericite-carbonate alteration zone. 2% pyrite. DV90-KR10 Select >1000 ppm Sb Description: Adit dump sample with coarse grained stibnite in quartz vein.

- 11 -



N 

<u>Number Type Width Results</u>

DV90-KR11 Chip 300cm >1000 ppm Sb Description: Limonitic quartz vein with disseminated pyrite and stibnite.

The following sample results were from rocks collected within 500 meters of the eastern property boundary:

DV90-FR3 Chip 100cm 14.8 ppm Ag, 1711 ppm Cu, >1000 ppm Sb Description: Limonitic quartz vein.

DV90-KR5 Chip 60cm 6.6 ppm Ag, 8039 ppm Cu Description: Limonitic quartz lens with minor pyrite, chalcopyrite, malachite.

Anomalous gold values (>50ppb) show a positive correlation with higher arsenic values, indicating that arsenic may be a good pathfinder for finding gold mineralization.

The limited sampling also shows an association between silver, copper and antimony, likely due to tetrahedrite mineralization.

Two individual antimony anomalies (>1000ppb Sb) are from rocks mineralized with stibnite.

The sampled zones were strongly oxidized, indicating that metal values lower than expected may be due to surface leaching.

#### 8.0 DISCUSSION

The target deposit on the Leif property is a mesothermal gold vein deposit similar to those found in the Bralorne, Rossland, and Erickson camps in B.C. (over 7 million ounces gold mined with an average grade of 0.5 oz Au/ton) and the Mother Lode-Alleghany gold belt in California. Mining in each of these camps was from high grade quartz veins showing a distinct spatial relationship with listwanite altered ultramafic rocks (quartz-carbonate-talclimonite-mariposite).

The Goat Range thrust belt, including the Leif property, is in a similar geological setting to the above camps. Gold mineralization along the belt is associated with fault structures, quartz veins, shear zones, and often with listwanite altered ultramafic rocks. The geology, mineralization, and alteration on the Leif property is therefore judged favorable for hosting a similar mesothermal gold vein deposit.

#### 9.0 CONCLUSIONS

As the geological environment includes altered metasedimentary and metavolcanic rocks along structural zones, and

as the geological setting is very similar to the established Bralorne, Rossland, and Erickson gold camps, and

as the subject property lies close to the historically productive Whitewater-Retallack-Sandon mining camps, and

as the 1990 exploration program outlined an east-west trending contact zone containing quartz veins and stringers, strong sericite-carbonate-limonite alteration, and anomalous values in gold, silver, copper, antimony, and arsenic,

the writers conclude that the Leif property has potential to host a mesothermal vein style deposit, and therefore recommend further exploration work.

#### 10.0 RECOMMENDATIONS

- 1) Layout approximately 20 kilometers of gridline for survey control.
- 2) Geologically map and sample the whole property including underground chip sampling at the Dolly Varden showing.
- 3) Blast and sample trenches along the main contact-alteration zone.
- 4) Perform a magnetometer and VLF-EM survey on the grid line to outline further mineralized altered zones.

Contingent on drill targets being established, the follow-up phase would consist of diamond drilling to test the targets at depth.

11.0

#### PROPOSED BUDGET

**Project** Preparation \$ 250. Mobilization & demobilization: (includes food & acc, transportation, wages) \$ 2,700. Field Crew: Project Geologist \$ 360/day x 10 days \$ 3,600 Prospector/Blaster \$ 280/day x 10 days \$ 2,800 Geotechnicians(2) \$ 225/day x 20 days \$ <u>4,500</u> \$ 10,900. Field Costs: Helicopter allowance ( 3 hrs @ \$735) \$ 2,205 \$ 70/day x 40 days \$ 30/day x 10 days Food & Accomm \$ 2,800 Communications \$ 300 Supplies & eqpt \$150/day x 10 days \$ 1,500 \$ Rock drill \$ 75/day x 10 days 750 Vehicle: \$120/day x 10 days \$ <u>1,200</u> 8,755. \$ Assays & Analysis: 50 rock samples @ \$18/sample 900. Ŝ-<u>Geophysics:</u> Mag-VLF \$335/km x 20 line km 6,500. Ŝ Report: Drafting and map prep Report wrting and editing Word processing, copying, binding 4,000. Ŝ Administration, incl Overheads & Profit 3,400. Sub-total \$ 37,405. plus 7% G.S.T. \$ 2,618. TOTAL \$ 40,023. P. D. LERICHE FFLLON

- 16 -

ITEMIZED COST STATEMENT LEIF Project, Slocan Mining Division

and and a second

Ę.

i.

È

Ē

| Project Preparation                                                                                                                                                                                                                                                            | \$<br>275.    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Mobilization & demobilization:<br>(includes food & acc, transportation, wages)                                                                                                                                                                                                 | \$<br>2,550.  |
| <u>Field Crew:</u><br>Project Geologist \$ 325/day x 2 days \$ 650<br>(R Kidlark Sep 15,16/90)                                                                                                                                                                                 |               |
| Field Geologist\$ 275/day x 2 days\$ 550                                                                                                                                                                                                                                       |               |
| (D Atkinson Sep 15,16/90)<br>Prospector \$ 250/day x 2 days \$ 500<br>(J Fleishman Sep 15,16/90)                                                                                                                                                                               |               |
| Geotechnicians(1) \$ 210/day x 2 days \$ 420<br>(C Meyers Sep 15,16/90)                                                                                                                                                                                                        | \$<br>2,120.  |
| Field Costs:Helicopter allowance (2.5 hrs @ \$705)\$ 1,762Food & Accomm\$ 70/day x 8 days\$ 560Communications\$ 10Supplies & eqpt\$ 60/day x 2 days\$ 10Handheld radios\$ 50/day x 2 days\$ 100Vehicle:\$110/day x 2 days\$ 220Assays & Analysis:40 rock samples @ \$17/sample | 2,772         |
| (FA/AA for Au and multielement ICP)                                                                                                                                                                                                                                            | \$<br>680.    |
| Report:<br>Drafting and map prep<br>Report wrting and editing<br>Word processing, copying, binding                                                                                                                                                                             | \$<br>1,805.  |
| Administration, incl Overheads & Profit                                                                                                                                                                                                                                        | \$<br>1,133.  |
| TOTAL                                                                                                                                                                                                                                                                          | \$<br>11,335. |

### CERTIFICATE

I, PETER D. LERICHE, of 3125 West 12th Avenue, Vancouver, B.C., V6K 2R6, do hereby state that:

- 1. I am a graduate of McMaster University, Hamilton, Ontario, with a Bachelor of Science Degree in Geology, 1980.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I have actively pursued my career as a geologist for eleven years in British Columbia, Ontario, the Yukon and Northwest Territories, Arizona, Nevada and California.
- 4. The information, opinions, and recommendations in this report are based on fieldwork carried out under my direction, and on published and unpublished literature. I have not visited the subject property.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Black Tusk Explorations Ltd.
- 6. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

GEOLOGICAL SERVICES LIC. RELIANCE Peter D. Leriche, B.SC. LERICHE, A. Dated at North Wancouver, B.C this 10th day of November 1990. FELLOW

- 18 -

#### CERTIFICATE

I, ROGER G. KIDLARK, of #303 - 9110 Halston Court, Burnaby, B.C. do hereby certify that:

- 1. I am a graduate of the University of Toronto with a Bachelor of Science Degree in Geology, 1974.
- 2. I am a Fellow in good standing with the Geological Association of Cananda.
- 3. I have practised my profession as a geologist for sixteen years in the Yukon and Northwest Territories, British Columbia, Ontario, Nova Scotia, Montana, and Arizona.
- 4. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence or under my direction, and information derived from published and unpublished literature. I was present on the subject property on September 15 and 16, 1990.
- 5. I am presently employed by Reliance Geological Services Inc. and have no interest, direct or indirect, in the subject claims or the securities of Black Tusk Explorations Ltd.
- 6. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

RELIANCE GEOLOGICAL SERVICES INC.



Roger G. Kidlark, B.Sc., F.G.A.C.

Dated the 10th day of November 1990, at North Vancouver, B.C.

- 19 -

#### REFERENCES

ASH, C.H., ARKSEY, R.L., 1989 The Atlin Ultramafic Allochthon:Ophthiolitic Basement Within The Cache Creek Terrane; Tectonic and Metallogenic Significance (104N/12). B.C.M.E.M.P.R. Geological Fieldwork 1989, Paper 1990 - I.

ASH, C.H., ARKSEY, R.L., 1989 The Listwanite-Lode Gold Association in British Columbia. B.C.M.E.M.P.R. Geological Fieldwork 1989, Paper 1990 - I.

BUISSON, G., LEBLANC, M., 1985

Gold-bearing Listwanites (Carbonatized Ultramafic Rocks) From Ophiolite Complexes. In Gallagher, Ixer, Neary, Prichard Edit. Metallogeny of Basic and Ultrabasic Rocks, Institute of Mining and Metallurgy, pp 121 - 131.

KLEPACKI, D.W., 1982-1984 Goat Range, British Columbia, Map 1, Lithostratigraphic Distribution, Geology, G.S.C. Open File 1148, 1982-1984

SNELL, J., 1981

Geological Report On The Dolly Varden Property, Slocan Mining Division, British Columbia, Assessment Report 9067.

# APPENDIX A

.

1

# ROCK SAMPLE DESCRIPTIONS

600 DV90AR01 Continuous chip across strongly sheared strongly sericitic schist. Weakly calcitic with minor 2 cm wide quartz veins paralleling foliations. Dark gray green altering rusty brown. Trace disseminate pyrite. 50 **DV90AR02** Continuous chip across white quartz vein. 10-15% crystalline feldspar porphyry, 65% white quartz, 2-4% mariposite, 5% rustv limonite after filling possibly vugs, sulphides. Trace sulphides. 700 **DV90AR03** Continuous chip across sericite schist. Strong foliation, strongly sericitic and chloritic. 5% white quartz veins, 4 mm width filling tension fractures or parallel foliation. Moderately calcitic. trace mariposite, trace to 28 disseminate pyrite. 850 DV90AR04 Continuous chip across sericite schist. Strong foliation. Strongly sericitic, weak to moderate calcification, weakly chloritic. Trace to 1% disseminate pyrite. Light to mid gray altering rusty brown. **DV90AR05** Continuous chip across feldspar 50  $\mathtt{cut}$ porphyry 20-35% by white irregular quartz veinlets. Trace mariposite, 65-80% feldspar medium porphyry, 2-3% grained disseminate pyrite. DV90AR06 -Continuous chip across sericite 200 schist. Strong foliation, strongly sericitic, weakly to moderately calcitic, weakly chloritic. 5% white quartz veinlets, 2-4% medium grained disseminate pyrite. Gray green altering rusty brown.

i.

.....

| DV90AR07 | Continuous chip across sericite<br>schist. Strong foliation, strongly<br>sericitic, weakly to moderately<br>calcitic, weakly chloritic. 5%<br>irregular quartz veinlets parallel<br>foliation. 2-4% medium grained,<br>disseminate pyrite. Gray green<br>altering rusty brown.          | 400 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DV90AR08 | Continuous chip across white,<br>altering off-white feldspar porphyry<br>cut by 10% quartz stringers. 2-3%<br>medium grained disseminate euhedral<br>pyrite.                                                                                                                            | 700 |
| DV90AR09 | Continuous chip across gray,<br>altering rusty brown sericite<br>schist. Strong foliation, strongly<br>sericitic, weakly chloritic with<br>weak to moderate calcite alteration.<br>Trace to 1% quartz blebs 3 cm by 10<br>cm in size. Trace mariposite and 2-<br>3% disseminate pyrite. | 300 |
| DV90AR10 | Select sample across dark gray<br>altering light gray calcite bed,<br>paralleling foliation. 2-4%<br>disseminate pyrite.                                                                                                                                                                | 10  |
| DV90AR11 | Continuous chip across medium gray<br>altering light gray sericite schist.<br>Strong foliation, strongly<br>sericitic, weakly chloritic with 5%<br>quartz stringers sub parallel<br>foliation. Trace to 2% disseminate<br>pyrite.                                                       | 500 |
| DV90AR12 | Continuous chip across feldspar<br>porphyry quartz stringers cut by 15-<br>20% irregular quartz veinlets, 2-3%<br>fine to medium grained disseminate<br>pyrite. Trace chlorite and calcite<br>alteration with minor (<1%)<br>sericite.                                                  | 600 |

And the second second

(1. L.)

| DV90AR13 | Continuous chip across from gray<br>green altering gray to rusty brown<br>sericite schist. Strong foliation,<br>strongly sericitic, weakly to<br>moderately chloritic, weakly<br>calcitic. 2-3% irregular quartz<br>stringers up to 5 cm wide. 4-5%<br>mariposite, 1-2% disseminate pyrite. | 500  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| DV90AR14 | Continuous chip across gray, altering<br>rusty brown sericite schist. Strong<br>foliation, strongly sericitic,<br>weakly calcitic, weakly chloritic.<br>Rare quartz veins filling fractures.<br>2-3% medium grained disseminate<br>pyrite.                                                  | 1000 |
| DV90AR15 | Continuous chip across feldspar porphyry<br>Rare irregular quartz veins with<br>trace to 1% medium grained pyrite.<br>White altering off-white or rusty<br>brown where mineralized.                                                                                                         | 600  |
| DV90AR16 | Continuous chip across white quartz<br>vein parallel general foliation.<br>Minor sericite alteration adjacent<br>shear.                                                                                                                                                                     | 100  |
| DV90AR17 | Continuous chip across light brown<br>to gray altering rusty brown<br>sericite shear. Weak foliation,<br>weakly chloritic, weakly to<br>moderately sericitic, trace calcite.<br>1-2% medium grained disseminate<br>pyrite.                                                                  | 200  |
| DV90AR18 | Continuous chip across feldspar porphyry<br>cut by 15% irregular white quartz<br>veins. Weak to moderate foliation<br>and sericitization. 1% medium<br>grained disseminate pyrite.                                                                                                          | 400  |

-iii-

Γ

Antonio 😹

| DV90AR19 | Continuous chip from light gray<br>green altering rusty brown sericite<br>schist. Strong foliation, moderately<br>to strongly sericitic, weakly<br>chloritic. Trace calcite alteration,<br>trace mariposite. 1-2% fine grained<br>disseminate pyrite. | 400 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DV90AR20 | Continuous chip from light gray<br>green altering rusty brown sericite<br>schist. Moderate foliation,<br>moderately sericitic. 1% fine<br>grained disseminate pyrite.                                                                                 | 100 |
| DV90AR21 | Continuous chip from light green<br>altering rusty brown sericite<br>schist. Strong foliation, moderately<br>to strongly sericitic. 1-2%<br>disseminate pyrite, trace<br>mariposite.                                                                  | 300 |
| DV90AR22 | Continuous chip from feldspar porphyry.<br>White altering off-white or rusty<br>brown (where mineralized). Trace to<br>1% disseminate pyrite. 5-10% quartz<br>veins filling sub-horizontal<br>fractures.                                              | 500 |
| DV90AR23 | Continuous chip across white quartz<br>vein paralleling foliation. Trace<br>sericite, trace fine grained<br>disseminate pyrite.                                                                                                                       | 100 |
| DV90AR24 | Continuous chip across gray green<br>altering gray sericite schist. Trace<br>calcite, trace disseminate pyrite<br>within strongly foliated, strongly<br>sericitic rock.                                                                               | 400 |
| DV90AR25 | Continuous chip across white quartz<br>vein. Trace sericite, trace chlorite<br>along fractures.                                                                                                                                                       | 100 |

in the second 
| DV90AR26 | Continuous chip across gray green<br>altering rusty brown sericite<br>schist. Moderate to strong foliation<br>and sericitization. 10% irregular<br>quartz stringers. Trace to 1%<br>disseminate pyrite. | 400 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DV90KR01 | Select chip sample across a white<br>quartz vein. Traces of medium<br>grained disseminated pyrite.                                                                                                      | 160 |
| DV90KR02 | Select chip sample across an<br>alteration zone. Altered<br>andesite(?). Alteration consists of<br>quartz-sericite-chlorite-pyrite.                                                                     | 660 |
| DV90KR03 | Select chip sample across altera-<br>tion zone. Quartz-sericite-<br>carbonate-chlorite alteration<br>(andesite). Discontinuous quartz<br>veins in alteration zone contain<br>disseminated pyrite.       | 500 |
| DV90KR04 | Select chip sample across altera-<br>tion zone. Discontinuous quartz<br>veins up to 100 cm wide within a<br>quartz-sericite-carbonate-mariposite<br>alteration zone.                                    | 500 |
| DV90KR05 | Select chip sample from a limonitic<br>quartz lens. Lens contains traces of<br>pyrite, chalcopyrite and malachite.                                                                                      | 60  |
| DV90KR06 | Select chip sample from a porphyritic<br>quartz-feldspar dyke. Disseminated<br>coarse-grained pyrite.                                                                                                   | 60  |
| DV90KR07 | Select chip sample across a quartz<br>carbonate vein in the J.F. adit.<br>Averaging 2% fine grained<br>disseminated pyrite.                                                                             | 60  |
| DV90KR08 | Select chip sample across a quartz-<br>carbonate vein in the J.F. adit.<br>Averaging 2% fine grained<br>disseminated pyrite.                                                                            | 96  |

WIDTH (Cm) SAMPLE NO. DESCRIPTION DV90KR09 Select chip sample across an alter-150 atiion zone in the J.F. adit. Discontinuous guartz vein within a quartz-sericite-carbonate alteration zone. Averaging 2% fine grained disseminated pyrite. DV90KR10 Select sample from dump of Upper adit. Massive coarse grained stibnite in a yellow coloured quartz vein. DV90KR11 Select chip sample from a yellow, 300 limonitic quartz vein with disseminated pyrite and stibnite. DV90FR01 Select chip sample from a feldspar porphyry dyke. Averaging 1% fine grained disseminated pyrite. 500 DV90FR02 Select chip sample from a quartzsericite-carbonate-mariposite alteration zone. DV90FR03 Select chip sample from a limonitic 100 quartz vein.

# APPENDIX B ANALYTICAL RESULTS AND TECHNIQUES

÷



----

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

| REPORT SUMMARY                                                                                                                                                                                                                                                                     | Report:[ 9000889 R ]                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                    | CAL REPORT                                                                                                     |
| Origin                                                                                                                                                                                                                                                                             | Inception Date: [ Sep 19, 1990 ]                                                                               |
| Client:[ 200   Reliance<br>Contact:[ Peter Le<br>Project:[ 0 647<br>Amount/Type:[ 40 Rock<br>[                                                                                                                                                                                     | e Geological Services Ltd. ]<br>eriche ]<br>-Rock Reject Stored 3 Mon ]<br>-Soil Reject Discarded ]            |
| Analytical Requisition                                                                                                                                                                                                                                                             |                                                                                                                |
| Geochemical:[ ICP(AqR)30<br>Assay:[ Au(FA/AAS 20g)<br>Comments:[ None                                                                                                                                                                                                              | ]<br>] ICP:[ 3 ]<br>]                                                                                          |
| Delivery Information<br>                                                                                                                                                                                                                                                           |                                                                                                                |
| Address:[ 241 East 1st 2<br>City/Province:[ North Vancouve<br>Country/Postal:[ V7L 1B4<br>Attention:[ Peter Leriche<br>Fascimile:[ (604)988-4653                                                                                                                                   | Street ]                                                                                                       |
| Address:[ 241 East 1st 3<br>City/Province:[ North Vancouv<br>Country/Postal:[ V7L 1B4<br>Attention:[ Peter Leriche                                                                                                                                                                 | Street ]<br>er, B.C. ]<br>]<br>]                                                                               |
| Address:[ 241 East 1st 3<br>City/Province:[ North Vancouve<br>Country/Postal:[ V7L 1B4<br>Attention:[ Peter Leriche<br>Fascimile:[ (604)988-4653                                                                                                                                   | Street ]<br>er, B.C. ]<br>]<br>]                                                                               |
| Address:[ 241 East 1st 3<br>City/Province:[ North Vancouve<br>Country/Postal:[ V7L 1B4<br>Attention:[ Peter Leriche<br>Fascimile:[ (604)988-4653<br>Secondary Destination (Hardcopy<br>Company:[<br>Address:[<br>City/Province:[<br>Country/Postal:[<br>Attention:[                | Approved by:                                                                                                   |
| Address:[ 241 East 1st 3<br>City/Province:[ North Vancouve<br>Country/Postal:[ V7L 1B4<br>Attention:[ Peter Leriche<br>Fascimile:[ (604)988-4653<br>Secondary Destination (Hardcopy<br>Company:[<br>Address:[<br>City/Province:[<br>Country/Postal:[<br>Attention:[<br>Fascimile:[ | Street    <br>er, B.C.    <br> |

---

1

٦

\*

.....

•

1.00

)

1

1.1

1

.

٦

ĮΣ

٦

5

| amala Nama       | T    | ۸         |           | ۲۸             | ۸-        | De        | D <i>:</i> | <u>^-</u> | ۲ <b>۰</b> | 0-        | <b>^</b>  | ~         | r.      | `u        |        |           |
|------------------|------|-----------|-----------|----------------|-----------|-----------|------------|-----------|------------|-----------|-----------|-----------|---------|-----------|--------|-----------|
| ample Name       | Туре | Au<br>ppb | Ag<br>ppm | A1<br><b>%</b> | As<br>ppm | Ba<br>ppm | Bi<br>ppm  | Ca<br>%   |            | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | Hg<br>ppm | к<br>% | La<br>ppr |
| V90 AR01         | Rock | 5         | 0.2       | 1.44           | 22        | 20        | <2         | 5.51      | 0.2        | 27        | 32        | 71        | >5.00   | <3        | 0.09   | <2        |
| V90 AR02         | Rock | 20        | 1.3       | 0.06           | 34        | 8         | <2         | 0.03      | 0.2        | 4         | 199       | 12        | 0.76    | <3        | 0.02   | 2         |
| V90 AR03         | Rock | 15        | 0.2       | 0.51           | 65        | 13        | <2         | >10.00    | <0.1       | 21        | 56        | 19        | 3.93    | <3        | 0.13   | <2        |
| V90 AR04         | Rock | 5         | 0.1       | 1.33           | 36        | 13        | <2         | 6.57      | <0.1       | 25        | 40        | 107       | >5.00   | <3        | 0.10   | <         |
| V90 AR05         | Rock | 25        | 0.2       | 0.27           | 50        | 6         | 3          | 3.65      | 0.2        | 19        | 119       | 14        | 3.61    | <3        | 0.02   |           |
|                  |      | _         |           |                |           |           |            |           |            |           |           |           |         | -         |        |           |
| V90 AR06         | Rock | 5         | <0.1      | 0.52           | 29        | 4         | <2         | 8.66      | 0.1        | 33        | 42        | 31        | >5.00   | <3        | 0.11   | <2        |
| V90 AR07         | Rock | 5         | <0.1      | 1.87           | 31        | 20        | <2         | >10.00    | <0.1       | 24        | 47        | 118       | >5.00   | <3        | 0.11   | 2         |
| V90 AR08         | Rock | 10        | 0.1       | 0.19           | 22        | 5         | <2         | 0.15      | 0.1        | 3         | 69        | 13        | 2.33    | <3        | 0.01   | ç         |
| V90 AR09         | Rock | 5         | 0.1       | 1.61           | 43        | 6         | <2         | 6.65      | 0.3        | 39        | 97        | 26        | >5.00   | <3        | 0.13   | <2        |
| V90 AR10         | Rock | 5         | 0.2       | 0.25           | 7         | 37        | 5          | >10.00    | <0.1       | 3         | 11        | 12        | 1.29    | <3        | 0.01   | 13        |
| /90 AR11         | Rock | 5         | 0.3       | 0.40           | 15        | 16        | <2         | 9.27      | <0.1       | 16        | 42        | 66        | 4.23    | <3        | 0.09   | <2        |
| V90 AR12         | Rock | 10        | 0.3       | 0.15           | 27        | 13        | 3          | 0.57      | 0.2        | 2         | 125       | 13        | 1.70    | <3        | 0.01   | 10        |
| /90 AR13         | Rock | 10        | <0.1      | 0.92           | 30        | 12        | <2         | 5.49      | 0.1        | 27        | 90        | 72        | 4.79    | <3        | 0.10   | <2        |
| /90 AR14         | Rock | 80        | 0.1       | 0.43           | 251       | 13        | <2         | 4.18      | 0.2        | 25        | 57        | 107       | >5.00   |           |        | <         |
|                  | -    | 55        |           |                | 95        | 51        | <2         |           |            | 23        | 48        |           |         | <3        | 0.11   |           |
| /90 AR15         | Rock | 55        | 0.2       | 0.31           | 95        | 51        | <۷         | 0.06      | 0.2        | 3         | 40        | 9         | 2.24    | <3        | 0.09   | 19        |
| /90 AR16         | Rock | 25        | 1.2       | 0.04           | 23        | 7         | 3          | 0.01      | 0.2        | 2         | 203       | 19        | 0.41    | <3        | 0.01   | <         |
| /90 AR17         | Rock | 95        | 0.1       | 0.76           | 203       | 10        | <2         | 4.78      | 0.2        | 31        | 48        | 63        | >5.00   | <3        | 0.15   | <         |
| /90 AR18         | Rock | 10        | 0.6       | 0.15           | 20        | 9         | 3          | 0.11      | 0.5        | 2         | 154       | 5         | 1.08    | <3        | 0.02   | -         |
| /90 AR19         | Rock | 15        | 0.3       | 0.90           | 159       | 25        | <2         | 6.41      | 0.3        | 31        | 44        | 64        | >5.00   | <3        | 0.14   | <2        |
| /90 AR20         | Rock | 5         | 0.5       | 1.62           | 80        | 27        | <2         | 6.58      | 0.2        | 27        | 70        | 57        | 4.85    | <3        | 0.14   | <         |
| /90 AR21         | Rock | 30        | 0.1       | 0.76           | 236       | 31        | <2         | 6.30      | 0.3        | 33        | 59        | 60        | >5.00   | <3        | 0.16   | <2        |
|                  |      | 40        | 0.3       | 0.29           | 63        | 18        | 6          | 0.05      | 0.3        | 2         | 135       | 14        | 2.22    | <3        | 0.03   | 16        |
| /90 AR22         | Rock |           |           |                |           |           |            |           |            |           |           |           |         |           |        |           |
| /90 AR23         | Rock | <5        | 0.1       | 0.24           | 5         | 11        | 5          | 0.10      | 0.2        | 5         | 263       | 22        | 0.93    | <3        | 0.03   | <2        |
| /90 AR24         | Rock | <5        | 0.1       | 3.52           | 21        | 22        | <2         | 3.08      | 0.6        | 24        | 141       | 22        | 4.99    | 3         | 0.11   | <2        |
| /90 AR25         | Rock | <5        | 0.1       | 0.11           | 6         | 7         | <2         | 0.05      | 0.2        | 3         | 276       | 13        | 0.83    | <3        | 0.01   | <2        |
| /90 AR26         | Rock | <5        | 0.1       | 1.20           | 14        | 10        | <2         | >10.00    | <0.1       | 20        | 83        | 42        | 4.81    | <3        | 0.05   | <2        |
| /90 FR01         | Rock | 20        | <0.1      | 1.04           | 298       | 12        | <2         | 7.86      | 0.1        | 29        | 141       | 189       | 4.52    | <3.       | 0.12   | <2        |
| /90 FR02         | Rock | <5        | 0.2       | 0.44           | <5        | 16        | 6          | 8.06      | <0.1       | 5         | 24        | <1        | 0.64    | <3        | 0.17   | <2        |
| /90 FR03         | Rock | 45        | 14.8      | 0.07           | 25        | 15        | 4          | 0.90      | 0.5        | 4         | 238       | 1711      | 0.71    | <3        | 0.03   | <2        |
| /90 KR01         | Rock | 5         | 0.1       | 0.61           | 9         | 17        | <2         | 5.06      | 0.1        | 15        | 124       | 9         | 4.83    | <3        | 0.25   | <2        |
| 100 KD02         | Peol | 5         | 0 1       | 0.58           | 10        | 14        | 2          | 8.18      | 0.2        | 29        | 27        | -1        | >5.00   | <3        | 0 15   |           |
| /90 KR02         | Rock |           | 0.1       |                |           |           |            |           |            |           |           | <1<br>16  |         |           | 0.15   | <2        |
| /90 KR03         | Rock | <5        | 0.1       | 0.30           | 23        | 10        | 5          | 9.46      | <0.1       | 15        | 106       | 16        | 2.19    | <3        | 0.08   | <2        |
| /90 KR04         | Rock | <5        | 1.0       | 0.54           | 101       | 5         | 3          | 5.85      | 0.3        | 26        | 304       | 48        | 2.09    | <3        | 0.03   | <2        |
| /90 .KR05        | Rock | 20        | 6.6       | 1.76           | 30        | 2         | <2         | 3.84      | 3.5        | 59        | 103       | 8039      | 3.76    | <3        | 0.01   | 2         |
| /90 KR06         | Rock | 5         | 2.0       | 0.15           | <5        | 34        | 8          | 1.17      | 0.3        | 2         | 63        | 77        | 2.13    | <3        | 0.01   | 7         |
| /90 KR07         | Rock | 10        | 0.1       | 0.31           | 108       | 8         | 6          | >10.00    | <0.1       | 29        | 36        | 66        | 3.11    | 3         | 0.10   | 2         |
| /90 KR08         | Rock | 30        | 0.8       | 0.29           | 209       | 6         | <2         | 6.55      | 0.2        | 33        | 103       | 37        | 4.23    | 5         | 0.14   | <2        |
| /90 KR09         | Rock | 125       | 2.6       | 0.30           | 211       | 11        | 6          | 5.85      | 0.2        | 23        | 113       | 9         | 3.14    | 4         | 0.15   | <2        |
| /90 KR10         | Rock | 35        | 1.7       | 0.05           | <5        | <2        | 3          | 0.33      | 0.3        | 3         | 78        | 175       | 0.24    | <3        | 0.01   | <2        |
| inimum Datastics |      | F         | 0 1       | 0.01           | 5         | 2         | 2          | 0.01      | 0.1        | 1         | 1         | 1         | 0.01    | 3         | 0.01   | 2         |
| inimum Detection |      | 10000     | 0.1       |                |           |           | 10000      |           |            | 10000     | 10000     | 20000     | 5.00    | 10000     | 10.00  | 10000     |
| aximum Detection |      | 10000     | 100.0     | 5.00           | 10000     | 10000     | 10000      |           | 10000.0    |           | 10000     |           |         |           | ICP    |           |
| ethod            |      | FA/AAS    | ICP       | ICP            | ICP       | ICP       | ICP        | ICP       | ICP        | ICP       | ICP       | ICP       | ICP     | ICP       | 100    | ICF       |

·

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

.

Report: 9000889 R Reliance Geological Services Ltd. Project: 647 Page 1 of 2 Section 2 of 2 Mg Sample Name Mn Na Ni P Mo ΡЬ SЬ Sc Sr Th Τi ν W Zn Zr Ž 7 7 ppm ppm ppm 2 ppm ppm ppm ppm ppm ppm ppm ppm ppm DV90 AR01 2.46 1270 2 0.07 29 0.04 <2 11 19 105 <10 <0.01 50 <5 56 <1 DV90 AR02 0.02 126 5 0.04 26 56 <0.01 22 2 1 <10 <0.01 <5 <5 6 1 DV90 AR03 3.73 1293 26 0.04 71 0.01 18 474 17 11 <10 <0.01 14 <5 42 <1 DV90 AR04 3.35 1379 3 0.05 30 0.04 <2 11 15 163 <10 <0.01 40 <5 53 <1 DV90 AR05 0.68 770 15 0.06 45 0.04 77 19 153 9 <10 <0.01 12 <5 30 1 DV90 AR06 2.25 1713 2 0.04 42 0.05 <2 12 25 136 <10 <0.01 38 <5 82 <1 DV90 AR07 2.15 1558 0.05 29 0.05 6 10 10 17 662 <10 <0.01 62 <5 65 <1 DV90 AR08 0.04 312 0.03 22 5 0.11 9 <5 2 20 <10 <0.01 <5 <5 25 5 DV90 AR09 3.71 1246 3 0.01 86 0.04 3 194 8 11 <10 <0.01 54 <5 53 <1 DV90 AR10 0.24 1978 19 0.05 5 0.03 54 6 8 4244 <10 <0.01 <5 12 <5 1 DV90 AR11 1404 1.58 3 0.02 21 0.03 6 9 11 555 <10 <0.01 17 <5 51 <1 DV90 AR12 0.05 278 4 0.11 8 0.03 23 10 55 <10 <0.01 <5 38 1 <5 5 DV90 AR13 1030 3.21 0.05 61 0.02 9 4 13 19 131 <10 <0.01 45 <5 48 <1 DV90 AR14 2.11 1127 0.06 35 0.04 4 <2 46 20 139 <10 <0.01 31 <5 55 <1 DV90 AR15 0.05 237 1 0.08 5 0.03 15 17 18 1 <10 <0.01 55 <5 <5 2 DV90 AR16 0.01 72 1 0.02 4 <0.01 13 35 <1 1 <10 <0.01 <5 <5 16 <1 DV90 AR17 2.31 1055 2 0.05 35 0.03 <2 22 26 154 <10 < 0.01 43 <5 58 <1 DV90 AR18 0.02 351 5 0.11 6 0.03 54 28 9 1 <10 <0.01 <5 <5 44 1 DV90 AR19 4.14 1337 2 0.04 41 0.01 <2 37 30 347 <10 <0.01 40 <5 74 <1 DV90 AR20 1339 4.43 2 0.02 40 0.01 <2 26 26 302 <10 <0.01 55 <5 47 <1 DV90 AR21 4.02 2 1391 0.04 53 0.01 <2 324 36 31 <10 <0.01 32 <5 59 <1 DV90 AR22 0.10 115 0.12 5 0.03 22 7 13 6 10 <0.01 <5 22 1 <5 1 DV90 AR23 0.16 186 0.02 13 <2 6 0.01 8 1 5 <10 <0.01 7 <5 6 <1 DV90 AR24 3.11 1052 3 0.01 45 0.02 <2 8 8 44 <10 <0.01 69 51 <5 <1 DV90 AR25 0.05 241 1 0.02 9 <0.01 <2 307 2 2 <10 <0.01 <5 <5 10 <1 DV90 AR26 2.54 1592 8 0.04 37 0.01 2 55 12 234 <10 <0.01 29 <5 47 <1 DV90 FR01 4.30 1230 2 0.04 76 0.01 <2 105 21 256 <0.01 <10 40 <5 45 <1 1.21 290 33 2 DV90 FR02 1 0.06 <0.01 <2 9 76 <10 <0.01 <5 <5 6 <1 DV90 FR03 0.42 187 1 0.02 15 0.01 1025 >1000 2 .43 <10 <0.01 7 <5 45 <1 DV90 KR01 1.78 844 7 0.04 20 0.04 8 20 8 294 0.02 43 <10 28 <5 <1 DV90 KR02 3.74 1047 3 0.06 48 0.09 <2 9 15 198 <10 <0.01 34 32 <5 <1 47 DV90 KR03 1.59 716 2 0.04 0.01 <2 5 181 <0.01 5 17 4 <10 <5 <1 DV90 KR04 3.99 480 4 0.04 123 <0.01 <2 15 10 95 <10 <0.01 14 <5 15 <1 DV90 KR05 220 2 94 <2 29 0.74 0.01 0.03 6 1 <10 0.01 10 <5 55 1 0.08 352 DV90 KR06 6 0.04 19 235 13 2 0.11 11 1 <10 <0.01 <5 <5 1 DV90 KR07 2.22 1189 11 0.02 160 0.06 6 90 9 1058 <10 <0.01 7 <5 48 <1 DV90 KR08 4.63 822 3 0.02 175 0.01 3 49 14 536 <10 <0.01 23 <5 51 <1 DV90 KR09 3.59 655 4 0.02 80 0.01 76 173 13 476 <10 <0.01 16 <5 52 <1 91 >1000 206 DV90 KR10 0.03 44 0.02 26 15 <5 <1 <0.01 <1 <10 <0.01 <5 <1 0.01 0.01 0.01 2 10 0.01 5 5 Minimum Detection 1 5 1 1 - 1 1 1 1 10000 1000 10000 20000 1000 10000 10000 1000 10000 1000 20000 10000 10.00 5.00 5.00 Maximum Detection 1.00 Method ICP -- = Not Analysed unr = Not Requested ins = Insufficient Sample

1

۱

1

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

| Report: 9000889 R | Reliance Geologi | cal Servio | es Ltd.   |         | Pro       | ject: 6   | 47        |         |           |           | Page      | 2 of      | 2       | Section   | 1 of   | 2         |
|-------------------|------------------|------------|-----------|---------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|--------|-----------|
| Sample Name       | Туре             | Au<br>ppb  | Ag<br>ppm | A1<br>% | As<br>ppm | Ba<br>ppm | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | Hg<br>ppm | K<br>% | La<br>ppm |
| DV90 KR11         | Rock             | 10         | 0.9       | 0.12    | 22        | 6         | 7         | 0.12    | 0.3       | 1         | 132       | 37        | 1.45    | <3        | 0.01   | 4         |

1

1

1

**₽**-++

••••

÷ ---

1

| Minimum Detection 5 0.1 0.01 5 2 2 0.01 0.1 1 1 0.01   Maximum Detection 10000 100.00 5.00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 <th>3 0.0<br/>10000 10.0</th> <th></th> | 3 0.0<br>10000 10.0 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|

.

Method FA/AAS ICP ICP ICP -- = Not Analysed unr = Not Requested ins = Insufficient Sample

1 1

1

.

1

1

.

,

1 1

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

| Report: 9000889 R | t: 9000889 R Reliance Geological Services Ltd. |           |           |                |           | Project: 647 |           |           |           |           |           | Page 2         | Section 2 of 2 |          |           | 2         |  |
|-------------------|------------------------------------------------|-----------|-----------|----------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|----------------|----------------|----------|-----------|-----------|--|
| Sample Name       | Mg<br>%                                        | Mn<br>ppm | Mo<br>ppm | Na<br><b>%</b> | Ni<br>ppm | P<br>%3      | РЬ<br>ppm | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | Th<br>ppm | Ti<br><b>%</b> | V<br>ppm       | W<br>ppm | Zn<br>ppm | Zr<br>ppm |  |
| DV90 KR11         | 0.01                                           | 89        | 13        | 0.08           | 9         | 0.05         | 38        | >1000     | 1         | 14        | <10       | <0.01          | <5             | <5       | 12        | 1         |  |

| Minimum Detection | 0.01  | 1     | 1    | 0.01 | 1     | 0.01 | 2     | 5    | 1     | 1     | 10   | 0.01 | 5     | 5    | 1     | 1     |  |
|-------------------|-------|-------|------|------|-------|------|-------|------|-------|-------|------|------|-------|------|-------|-------|--|
| Maximum Detection | 10.00 | 10000 | 1000 | 5.00 | 10000 | 5.00 | 20000 | 1000 | 10000 | 10000 | 1000 | 1.00 | 10000 | 1000 | 20000 | 10000 |  |
| Method            | ICP   | ICP   | ICP  | ICP  | ICP   | ICP  | ICP   | ICP  | ICP   | ICP   | ICP  | ICP  | ICP   | ICP  | ICP   | ICP   |  |

Method ICP ICP ICP ICP ICP ICP -- = Not Analysed unr = Not Requested ins = Insufficient Sample

•

1

1

ì

<del>.</del>...

٦

• / - -

1

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

IONAL PLASMA LABOR

1

1 ]



2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of Gold analysis by Fire Assay / AAS

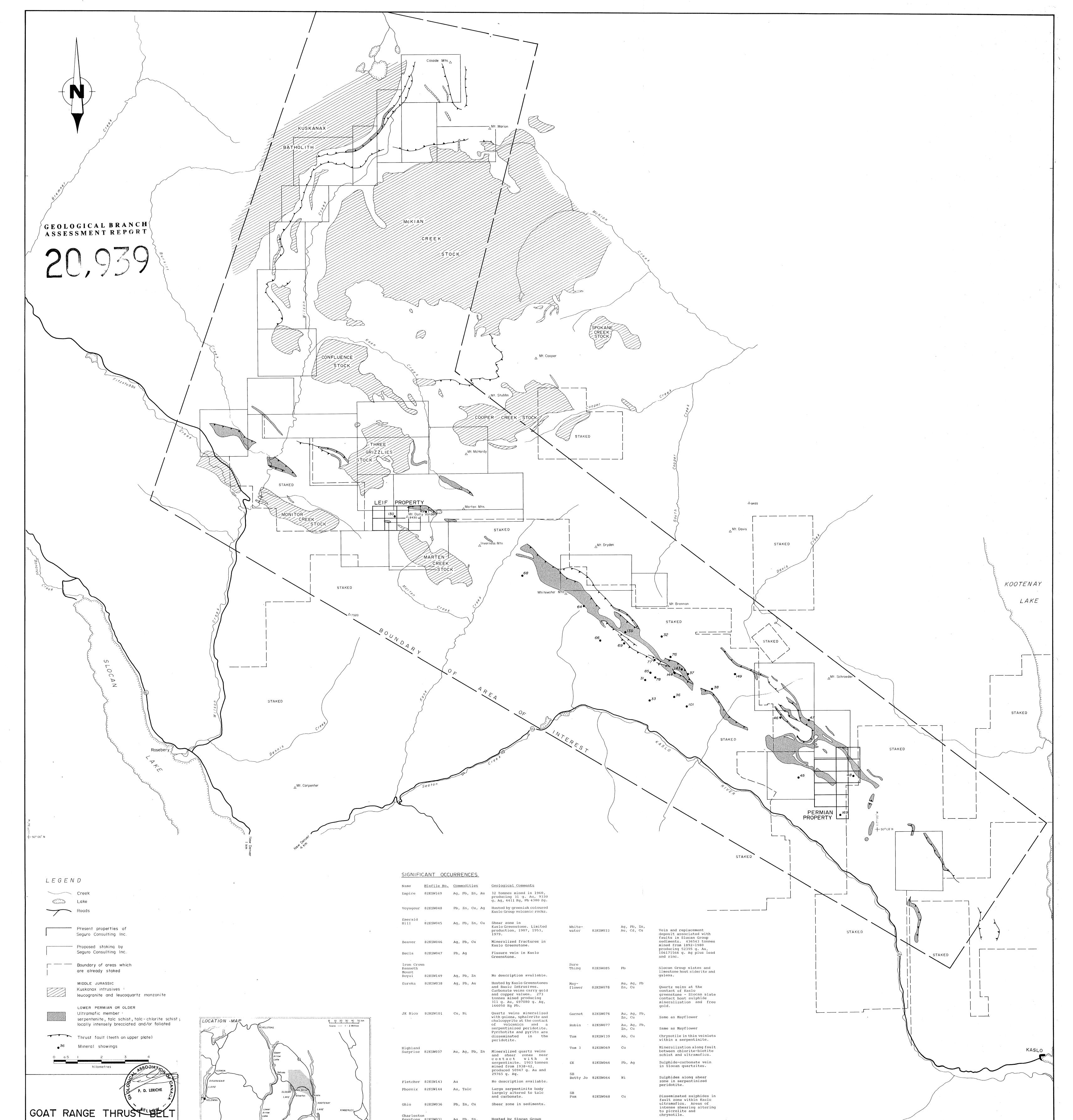
- (a) 20.0 to 30.0 grams of sample is mixed with a combination of fluxes in a fusion pot. The sample is then fused at high temperature to form a lead "button".
- (b) The precious metals are extracted by cupellation. Any Silver is dissolved by nitric acid and decanted. The gold bead is then dissolved in boiling concentrated aqua regia solution heated by a hot water bath.
- (c) The gold in solution is determined with an Atomic Absorption Spectrometer. The gold value, in parts per billion, is calculated by comparision with a set of known gold standards.

# QUALITY CONTROL

ł

Every fusion of 24 pots contains 22 samples, one internal standard or blank, and a random reweigh of one of the samples. Samples with anomalous gold values greater than 500 ppb are automatically checked by Fire Assay/AA methods. Samples with gold values greater than 10000 ppb are automatically checked by Fire Assay/Gravimetric methods.



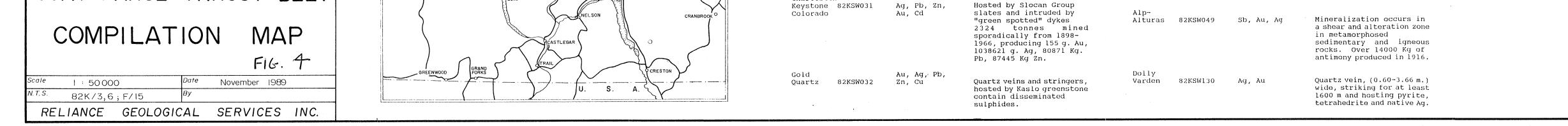

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Method of ICP Multi-element Analyses

- (a) 0.50 grams of sample is digested with diluted aqua regia solution by heating in a hot water bath for 90 minutes, then cooled, bulked up to a fixed volume with demineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Argon Plasma spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored onto computer diskette.
- \* Aqua regia leaching is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

#### QUALITY CONTROL

The machine is calibrated using six known standards and a blank. Another blank, which was digested with the samples, and a standard are tested before any samples to confirm the calibration. A maximum of 20 samples are analysed, and then a standard, also digested with the samples, is run. A known standard with characteristics best matching the samples is chosen and tested. Another 20 samples are analysed, with the last one being a random reweigh of one of the samples. The standard used at the beginning is rerun. This procedure is repeated for all of the samples.




|                                                                                                  |              |                                            | SIGN                            |
|--------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|---------------------------------|
| D                                                                                                | a            |                                            | Name                            |
| Creek                                                                                            |              |                                            | Empir                           |
| Lake                                                                                             |              |                                            | -<br>                           |
| Roads                                                                                            | ,            |                                            | Voyag                           |
|                                                                                                  |              |                                            | 17                              |
|                                                                                                  |              |                                            | Emera<br>Hill                   |
| Present properties of<br>Seguro Consulting Inc.                                                  |              | ·                                          |                                 |
| Proposed staking by<br>Seguro Consulting Inc.                                                    |              |                                            | Beave                           |
|                                                                                                  |              |                                            | Hecla                           |
| Boundary of areas which<br>are already staked                                                    |              |                                            | Iron<br>Kenne<br>Mount<br>Royal |
| MIDDLE JURASSIC                                                                                  | a            |                                            | Eurek                           |
| Kuskanax intrusives                                                                              |              |                                            |                                 |
| leucogranite and leucoquartz monzonite                                                           |              |                                            |                                 |
| LOWER PERMIAN OR OLDER<br>Ultramafic member :                                                    |              |                                            | JK Ni                           |
| serpentenite, talc schist, talc-chlorite schist;<br>locally intensely brecciated and/or foliated | LOCATION MAP | 0 10 20 30 40 50 km<br>Scale 1 + 2 Million |                                 |
| Thrust fault (teeth on upper plate)                                                              |              |                                            |                                 |
| Mineral showings                                                                                 |              |                                            | Highl                           |
| 2 3 4                                                                                            |              |                                            | Surpr                           |
| kilometres ASSOCIAT PA                                                                           | VERNON Nok   |                                            |                                 |
|                                                                                                  | Оканадан     |                                            | Fletc                           |
| P. D. LERICHE                                                                                    |              | SLOCAW                                     | Phoen                           |

ø

•

| Name                                    | <u>Minfile No.</u> | Commodities    | Geological Comments                                                                                                                                                                 |                    |          |                           |                                                                                                        |
|-----------------------------------------|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|---------------------------|--------------------------------------------------------------------------------------------------------|
| Empire                                  | 82KSW169           | Ag, Pb, Zn, Au | 32 tonnes mined in 1960,<br>producing 31 g. Au, 9330<br>g. Ag, 4411 Kg, Pb 4380 Zg.                                                                                                 |                    |          |                           |                                                                                                        |
| Voyageur                                | 82KSW048           | Pb, Zn, Cu, Ag | Hosted by greenish coloured<br>Kaslo Group volcanic rocks.                                                                                                                          |                    |          |                           |                                                                                                        |
| Emerald<br>Hill                         | 82KSW045           | Ag, Pb, Zn, Cu | Shear zone in<br>Kaslo Greenstone. Limited<br>production, 1907, 1953,<br>1979.                                                                                                      | White-<br>water    | 82KSW033 | Ag, Pb, Zn,<br>Au, Cd, Cu | Vein and replace<br>deposit associat<br>faults in Slocan                                               |
| Beaver                                  | 82KSW046           | Ag, Pb, Cu     | Mineralized fractures in<br>Kaslo Greenstone.                                                                                                                                       |                    |          |                           | sediments. 4365<br>mined from 1892-<br>producing 52395                                                 |
| Hecla                                   | 82KSW047           | Pb, Ag         | Fissure vein in Kaslo<br>Greenstone.                                                                                                                                                |                    |          |                           | 106171566 g. Ag<br>and zinc.                                                                           |
| Iron Crown<br>Kenneth<br>Mount<br>Royal | n<br>82KSW149      | Ag, Pb, Zn     | No description available.                                                                                                                                                           | Sure<br>Thing      | 82KSW085 | Pb                        | Slocan Group sla<br>limestone host sic<br>galena.                                                      |
| Eureka                                  | 82KSW038           | Ag, Pb, Au     | Hosted by Kaslo Greenstones<br>and Basic Intrusives.<br>Carbonate veins carry gold<br>and copper values. 273<br>tonnes mined producing<br>311 g. Au, 697080 g. Ag,<br>166050 Kg Pb. | May-<br>flower     | 82KSW078 | Au, Ag, Pb<br>Zn, Cu      | Quartz veins at<br>contact of Kaslo<br>greenstone - Slo<br>contact host sul<br>mineralization<br>gold. |
| JK Nico                                 | 82KSW101           | Cu, Ni         | Quartz veins mineralized<br>with galena, sphalerite and<br>chalcopyrite at the contact                                                                                              | Garnet             | 82KSW076 | Au, Ag, Pb,<br>Zn, Cu     | Same as Mayflowe                                                                                       |
|                                         |                    |                | of volcanics and a<br>serpentinized peridotite.<br>Pyrrhotite and pyrite are                                                                                                        | Robin <sup>.</sup> | 82KSW077 | Au, Ag, Pb,<br>Zn, Cu     | Same as Mayflowe                                                                                       |
|                                         |                    |                | disseminated in the peridotite.                                                                                                                                                     | ΊOM                | 82KSW139 | Ab, Cu                    | Chrysotile in thi<br>within a serpent                                                                  |
| Highland<br>Surprise                    | 82KSW037           | Au, Ag, Pb, Zn | Mineralized quartz veins<br>and shear zones near<br>contact with a                                                                                                                  | Tom 3              | 82KSW069 | Cu                        | Mineralization a<br>between chlorite<br>schist and ultra                                               |
|                                         |                    |                | serpentinite. 1903 tonnes<br>mined from 1938-42,<br>produced 50947 g. Au and<br>29765 g. Ag.                                                                                        | EK SB              | 82KSW066 | Pb, Ag                    | Sulphide-carbona<br>in Slocan quartz                                                                   |
| Fletcher                                | 82KSW143           | Au             | No description available.                                                                                                                                                           | Betty Jo           | 82KSW064 | NÍ                        | Sulphides along<br>zone in serpenti                                                                    |
| Phoenix                                 | 82KSW144           | Au, Talc       | Large serpentinite body<br>largely altered to talc<br>and carbonate.                                                                                                                | SB<br>Pam          | 82KSW068 | Cu                        | peridotite.                                                                                            |
| Ohio                                    | 82KSW036           | Pb, Zn, Cu     | Shear zone in sediments.                                                                                                                                                            |                    |          |                           | fault zone withi<br>ultramafics. Ar<br>intense shearing<br>to picrolite and                            |
| Charleston<br>Keystone                  |                    | Ag. Pb. Zn.    | Hosted by Slocan Group                                                                                                                                                              |                    |          |                           | chrysotile.                                                                                            |



•