SUB-RECORDER

FEB 15 1991

M.R. # \$

VANCOUVER, B.C.

LOG NO: Jub 19/91	RD.
ACTION:	
FILE NO:	

ASSESSMENT REPORT ON DIAMOND DRILLING ON THE PHIL A CLAIM GROUP AHDATAY LAKE, B.C.

Omineca Mining Division

NTS: 93N/7W

Latitude 55°20'N Longitude 124°53'W

GEOLOGICAL BRANCH ASSESSMENT REPORT

BPVR 90-6

W. Paterson C.T. Barrie

February, 1991

TABLE OF CONTENTS

		PAGE NO.
i.	SUMMARY	1
2.	INTRODUCTION	3
	A. Location and AccessB. Topography and VegetationC. Claims StatusD. History	3 3 4
3,	REGIONAL GEOLOGY	6
4.	PROPERTY GEOLOGY	7
	A. Rock typesB. StructureC. Alteration and MineralizationD. Rock Chip Sampling	7 8 9 9
5.	DIAMOND DRILLING	10
	A. 345° Fault ZoneB. Aplite Creek ZoneC. Magnetic/I.P. Anomaly	11 14 18
6.	CONCLUSIONS AND RECOMMENDATIONS	20
	REFERENCES	21

LIST OF FIGURES

FOLLOWING PAGE NO. 1. Location Map and Regional Geology 3 2. Claim Map 3 3a. Property Geology and Rock Chip Sample Locations 7 3b. Property Geology and Rock Chip Sample Locations In Pocket 4. Location of 1990 Grid, Drill Holes and Core Storage 10 5. Drill Hole Plan (UTM Coordinates) 10 Cross-section: 6. DDH AH90-1 12 7. Geochemical Profile: DDH AH90-1 12 8. Cross Section: DDH AH90-3 14 9. Geochemical Profile: DDH AH90-3 14 10. Cross Section: **DDH AH90-2** 15 Geochemical Profile: 11. DDH AH90-2 15 12. Cross Section: DDH AH90-5 16 13. Geochemical Profile: DDH AH90-5 16 Cross Section: 14. **DDH AH90-6** 18 15. Geochemical Profile: DDH AH90-6 18 16. Cross Section: **DDH AH90-4** 19 Geochemical Profile: 17. **DDH AH90-4** 19 18. Geological Cross Section: DDH AH90-3 and 90-4 20 LIST OF APPENDICES FOLLOWING PAGE NO: APPENDIX NO. I: STATEMENT OF QUALIFICATIONS 21 H: STATEMENT OF COSTS 21 III: DIAMOND DRILL LOGS: AH90-1 TO 90-6 21 IV: DRILL HOLE ANALYTICAL RESULTS 21 V: **ROCK CHIP GEOCHEMISTRY** 21

1. SUMMARY

The PHIL A claim group, comprising 48 units within the PHIL 2-10 claims, is located approximately 5 km east of Ahdatay lake and 115 km north of Fort St. James, in north-central British Columbia. The property was the focus of a 1990 exploration program by BP Resources Canada Limited that included 1067.8 m of drilling in 6 holes.

The property lies immediately east of the Hogem Batholith and within the Quesnel Terrane, a northwest trending, fault-bounded belt underlain by Upper Triassic - Lower Jurassic Takla Group volcanics and related alkalic intrusions. The property is underlain by latitic to andesite augite porphyry flows and lapilli fragmentals, crystal/lithic ash tuffs, and related subordinate augite-plagioclase hypabyssal sills. Intrusive rocks consist of dykes of monzonite to aplitic syenite which are localized along subvertical faults that trend north-northwest and east-northeast. The aplitic syenite dykes are chemically distinct from and younger than the other rocks on the property. Outcrop is sparse in the northern two-thirds of the 1990 grid but is abundant in the southern one-third along deeply-incised creeks. Bedding attitudes strike north-northwest and have steep dips to the east at one locality. Two main fault trends are characterized by deeply-incised topography, presence of dykes, and occurrence of hackly-fractured iron-oxidized volcanic rocks.

All rocks encountered display slight to moderate propylitic and subordinate potassic alteration, increasing in intensity toward the fault zones. Sulfide mineralization consists of pyrite, pyrrhotite, chalcopyrite, and molybdenite. This is commonly accompanied

by malachite, magnetite, jarosite and Fe oxides. Mineralization is principally found on fractures with lesser amounts disseminated in altered rocks. Copper and molybdenum are only locally enriched. Previous soil geochemistry suggests that the mineralization may extend to the north uphill from the Aplite Creek zone.

Highlights from the 1990 drill program are: DDH# AH90-3, 40-50 m (10 m) @ 0.4 g/t Au, 0.07% Cu; DDH# AH90-4, 60-64 m (4 m) @ 1.7 g/t Au, 0.004% Cu; 76-82 m (6 m) @ 0.4 g/t Au, 0.08% Cu; 106-112 m (6 m) @ 6.4 g/t Au, 0.098% Cu. These drill holes were collared in an area with a strong magnetic signature. The IP anomaly and the strongest airborne magnetic anomaly extend from this area in the Aplite Creek zone for two km to the north-northwest into untested ground. Both these holes intersected relatively hybridized intrusion and latite-andesite flows. Most of the alteration is propylitic but moderate potassic alteration is seen both in the intrusion and immediately adjacent.

Work recommended for the 1991 program is as follows:

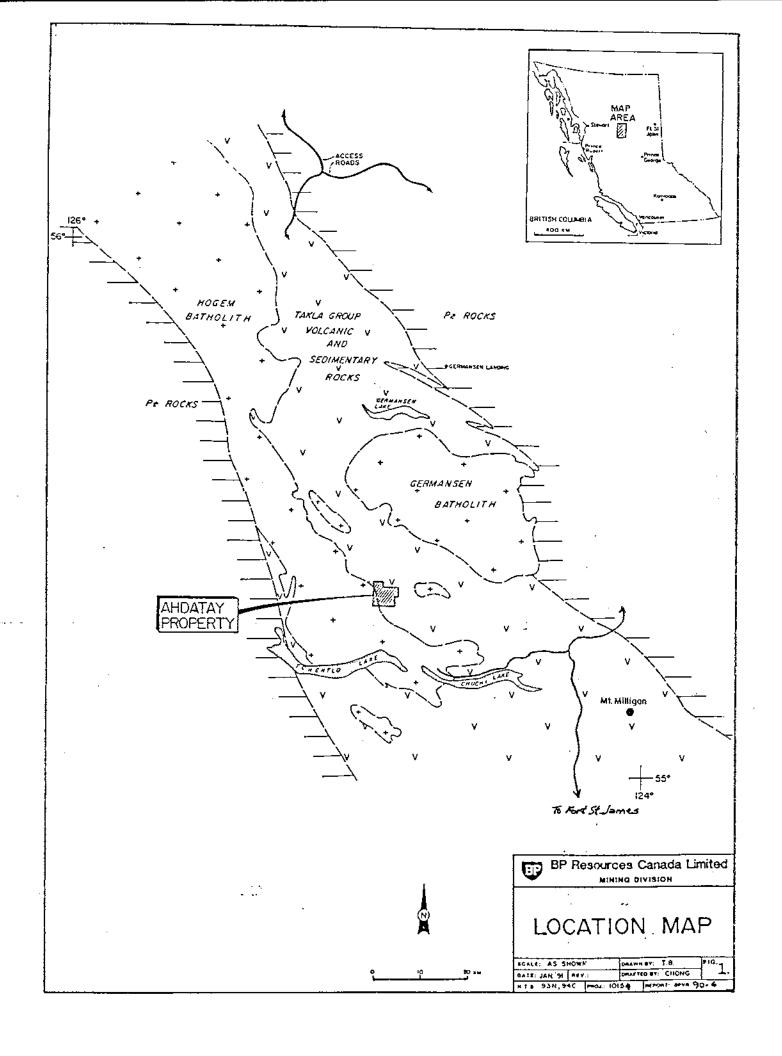
- cover the "missing" southwest quadrant of the grid with line cutting (25 line-km), ground IP and magnetics (25 line-km), geological mapping and bedrock sampling;
- 2) test the north-northwest trending IP and magnetic anomaly with approximately 1,200 m of diamond drilling in 6 drill holes.

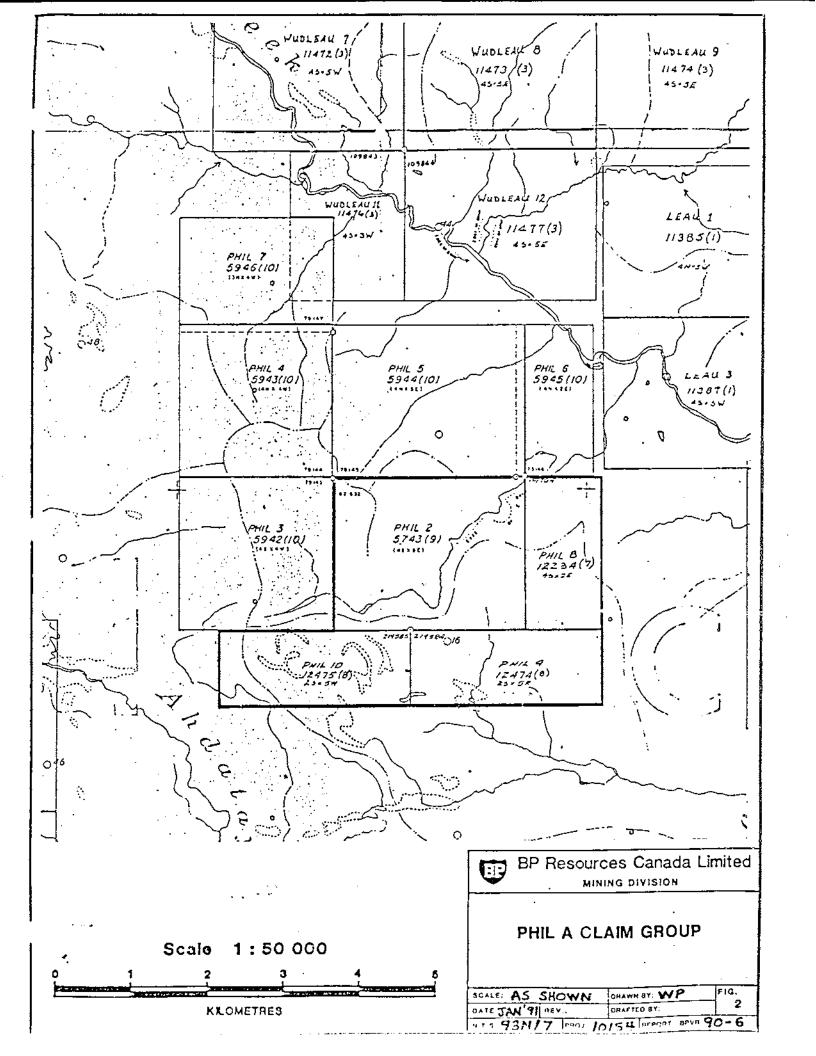
2. INTRODUCTION

A. Location and Access

The PHIL A claim group within the PHIL 2-10 claims is located 115 km north of Ft. St. James, B.C., 5 km east of Ahdatay Lake at latitude 55°20'N and longitude 124°53'W (NTS map 93N/7W).

Access to the claims is by helicopter from a staging area on the main logging road which follows the north side of Chuchi Lake. Distance from the staging area to the property is approximately 20 km (Fig. 1).


B. Topography and Vegetation


Elevations range between 1150 and 1400 m above sea level. Topography is gentle to moderate with the claims being roughly centred on a well rounded hill. On the southern third of the property the creeks have been incised up to 15 m deep.

Vegetation is mixed, and consists of jackpine in well-drained areas with abundant spruce and balsam in moist areas. Underbrush is variable, ranging from none to dense thickets of willow or alder.

C. Claims Status

The PHIL A claim group (Fig. 2), wholly-owned by BP Resources Canada Limited, consists of 4 claims comprising 48 units listed in the following table:

Claim	<u>Units</u>	Record #	Recording Date	Expiry Date
PHIL 2	20	5743	01/09/83	01/09/91
PHIL 8	8	12234	22/07/90	22/07/91
PHIL 9	01	12474	18/08/90	18/08/91
PHIL 10	10	12475	18/08/90	18/08/91

D. History

The claim area has been mapped in a reconnaissance manner by the Geological Survey of Canada (Armstrong, 1949) and by the B.C. Department of Mines (Garnett, 1978). Additional work was carried out by industry in the early 1970's and 1980's during which time portions of the PHIL 2-7 claims were held by several companies searching for copper-molybdenum porphyry deposits, and later, for copper-gold porphyry deposits.

Early work included geological mapping, soil geochemistry and I.P. by the Luc Syndicate, 1970 and Chalico Silver Mines, 1972. Noranda and Pechiney Development also held ground in 1970-72 which was later contained within the PHIL 2-7 claims. Pechiney also diamond drilled four holes totalling 230 m. Brief geological mapping, aeromagnetics and soil sampling were undertaken by BP/SELCO in 1983 on the PHIL 2-7 claim group (A.R. #12149).

The 1983 BP/SELCO soil geochemical survey yielded copper and gold anomalies that correspond to deeply-incised creeks trending 070° and 345° in the southern third of the

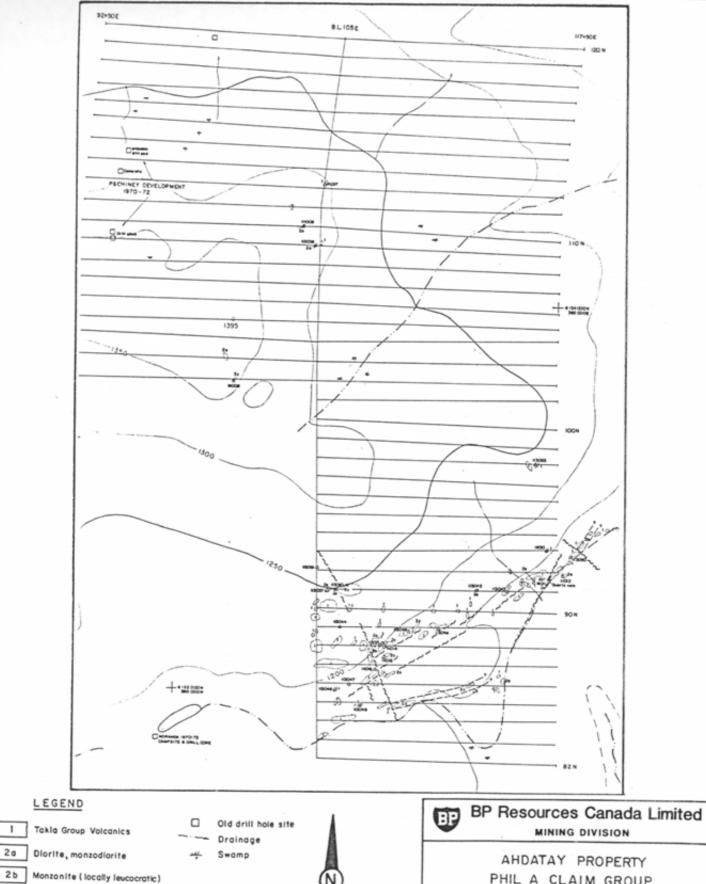
property. Weaker copper and gold anomalies are present uphill to the northwest, and copper anomalies are present uphill to the north and northeast. Forty-one rock samples were taken during this program and analyzed for copper and gold. One rock chip sample contained 9,450 ppb Au and 6,600 ppm Cu and 15 samples had >200 ppm Cu and/or >100 ppb Au. Most of these samples were taken near the intersection of the two deeply-incised creeks.

3. REGIONAL GEOLOGY

The property is underlain mainly by volcanics of the Upper Triassic Takla Group near the eastern margin of the Triassic-Cretaceous Hogem Batholith (Fig. 1).

The Takla Group is mainly comprised of andesite and basalt tuffs, flows, breccias and coarse volcaniclastic breccias. Pyroxene porphyritic units are common. Many small co-magmatic alkaline stocks intrude the volcanics.

Garnett (1978) states that the Hogem Batholith differs in two significant ways from other Upper Triassic batholiths in the Quesnel Trough. The Hogem Batholith was emplaced episodically from Late Triassic to Cretaceous, rather than being confined to a short interval near the Triassic-Jurassic boundary. Unlike other batholiths such as the Guichon or Iron Mask Batholiths, which are calc-alkaline and alkaline respectively, the Hogem Batholith is comprised of four phases which alternated from alkaline to calcalkaline, with each phase becoming increasingly felsic.


The region hosts numerous copper, copper-molybdenum and copper-gold prospects, most notably the Lorraine copper deposit and the Mt. Milligan copper-gold deposit.

4. PROPERTY GEOLOGY

A. Rock Types

The 1990 grid on the Ahdatay property is underlain by andesitic to latitic Takla Group volcanic rocks (>90%), and dykes (<10%) that range in composition from monzonite/monzodiorite to aplitic syenite (Fig's, 3a,3b). The Takla Group rocks include: augite porphyry latite/andesite flows and lapilli fragmentals, crystal-lithic ash tuffs, and augite-plagioclase hypabyssal sills. One calcareous interflow sedimentary unit (limestone (?)) was mentioned in a previous internal report but was not located during this program. The dykes are divided into three groups: diorite-monzodiorite, monzonite-leucocratic monzonite, and aplite-syenite-quartz monzonite. Outcrops are abundant in the southern third of the grid along the deeply incised creeks where there is abundant aplitic rock. This area is termed the "Aplite Creek Zone". Outcrop is scarce to the north where a 5-25 m thick veneer of boulders (predominantly derived from the Hogem Batholith) cover the bedrock. There is little geological or geophysical evidence for a monzonite/diorite stock previously shown to occur in the northern portion of the grid area (Fig's, 3a,3b).

The Takla Group volcanic rocks are predominantly augite porphyry latite/andesite flows and fragmental rocks. Medium-grained and rarely coarse-grained, euhedral augite phenocrysts comprise 10-35% of the rock, with an aphanitic or fine-grained trachytic, plagioclase - augite matrix. Fragmental textures are observed in Pechiney 1972 drill core from the northwest part of the grid, and in the southern third of the grid. Hypabyssal sills with greater than 60% augite are present and apparently interdigitate

LEGEND

1 Takla Group Volcanics

2c Syenite, quartz monzonite (locally aplitic)

Outcrop

Contact - definite, assumed

∼ ∼ Fault

∆ moos Rock chip sample site & Nº.

500 Metres

PHIL A CLAIM GROUP PROPERTY GEOLOGY

SCALE: AS SE	HOWN	DRAWN BY: CTB, RB, WP	FIG.
DATE: JAN. 91 REV.:		DRAFTED BY: Chong	3a
N.T.S. 93N/7	PROJ.: 10	154 REPORT: BPVR	90-6

with the flows and fragmental rocks. At the eastern end of the southern third of the grid, plagioclase-rich diorite/monzodiorite appears to represent the upper portions of the hypabyssal sills. Nearly aphyric latites are observed locally. Bedding and facing directions for the volcanic rocks have not been observed. Previous mapping indicated a north-northwest strike with steep dips and facing directions to the east, consistent with airborne and ground magnetic trends.

The intrusive rocks are located along sub-vertical faults, one with a 340°-345° trend, and others with an 070° trend. Fine-grained monzodiorite and aplitic syenite are present near the junction of two faults at 86+40N, 103+20E. The monzodiorite is strongly magnetic and is interpreted to extend for 1.8 km to the north-northwest from this junction, as shown by a coincident strong ground magnetic anomaly. Mediumgrained syenite and syenite breccia are present 350 m north of the junction, and medium-grained leucocratic monzonite, monzonite breccia and aplitic syenite occur sporadically for over 110 m to the east-northeast of this junction.

B. Structure

The fault zones are characterized by hackly-fractured, iron-oxidized volcanic rocks, the presence of dykes, and deeply-incised topography. Several fault zones correspond to linear features on topographic maps and air photos. Linear features are most prominent in the vicinity of the Aplite Creek Zone and extend to the west off the gridded area. A preliminary interpretation of the linear features in the Aplite Creek Zone and to the west is that, in general, they correspond to a conjugate fracture set for

a north-northwest-oriented stress field, with the 340°-345° fault representing a dilatant fracture. The prominent northeast-trending linear feature to the north may represent a different tectonic event.

C. Alteration and Mineralization

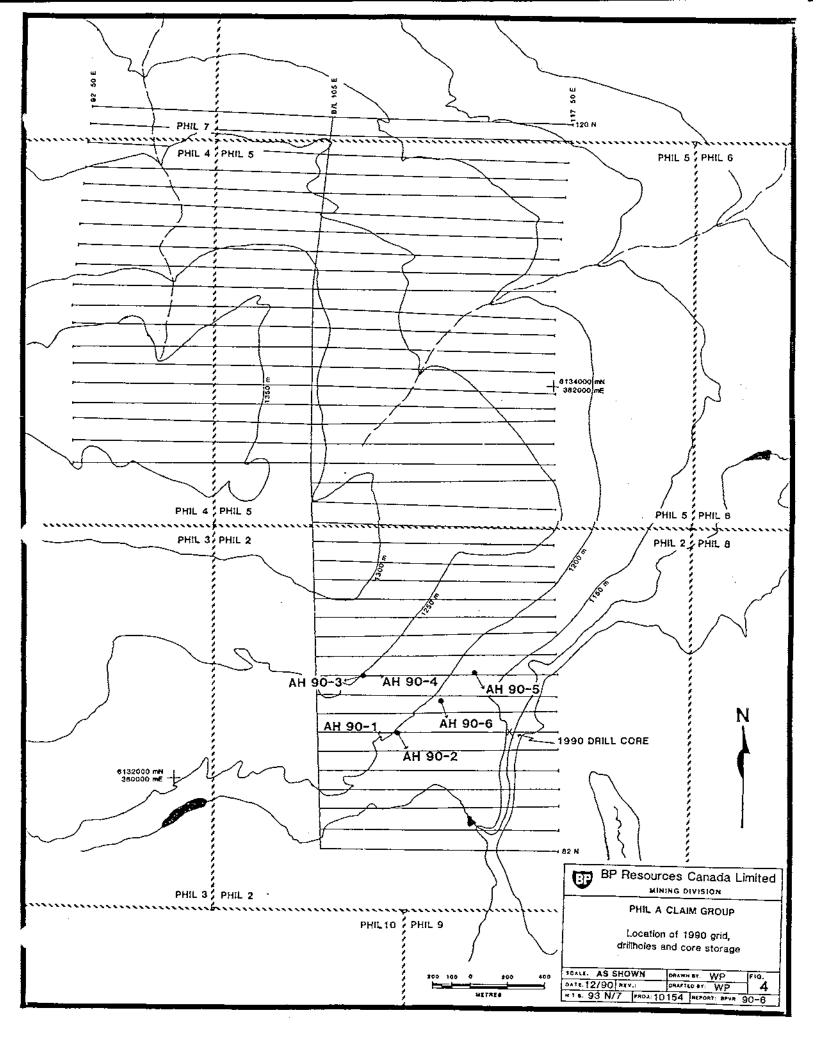
Both intrusive and extrusive rocks have slight to moderate pervasive propylitic alteration, which increases in intensity toward the 070° and 345° faults. Potassic alteration is moderate to intense within 25-50 m of these faults, and is generally weak to absent elsewhere. Aplitic syenite dykes are interpreted to post-date alteration.

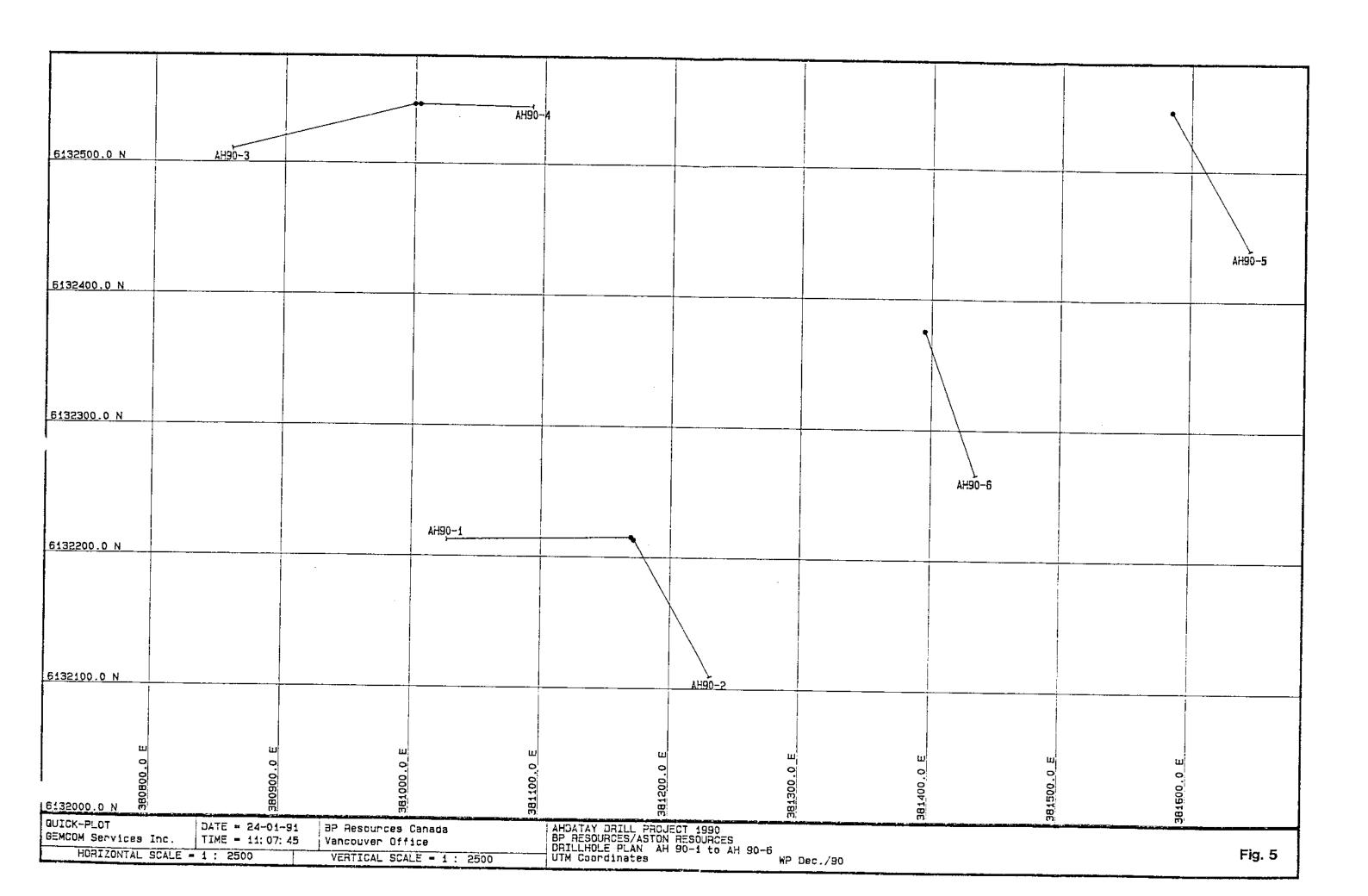
Mineralization is most abundant in and adjacent to faults, but is present locally up to 100 m away from the principal faults. Pyrite, pyrrhotite and chalcopyrite are the only sulfide minerals noted. They are accompanied by malachite, magnetite (hydrothermal), calcite, jarosite (?) and iron oxides locally. Mineralization is present principally along fractures and as the matrix of breccias in altered volcanic and intrusive rocks. It is also present within quartz veins up to 4 cm thick, and with local disseminations of epidote and K-feldspar.

D. Rock Chip Sampling

The 1990 mapping and rock chip sampling program collected 21 samples from the southern third of the grid and 13 samples from the northern two-thirds. The latter samples include drill core from Pechiney and Noranda drilling. The sample locations are shown in Figure 3a,3b with analytical results found in Appendix V.

5. DIAMOND DRILLING


From September 11 - September 27, 1990, Boisvenu Drilling Ltd. of Langley, B.C., completed 1067.8 m of BQ drilling in 6 holes at a total cost of \$95,338. All drill holes are located within the PHIL 2 claim (Fig. 4).


Four helicopter/drill pads were prepared by Hewitt Co & Associates in early September.

Drill core was split, logged and stored on the property in racks located at at 88N/114+75E. All holes were continuously and completely split and sampled over 2 m intervals. Drill logs and summaries are included in Appendix III. Results for 30 element ICP and geochemical Au analysis, conducted by Acme Analytical Laboratories in Vancouver, are given in Appendix IV.

The six urill holes (Figure 5) were located to test copper-gold mineralization in three zones along two prominent fault trends. The first trend at 345° is highlighted by topographic and coincident magnetic and I.P. features that correlate with rock and soil Cu and Au anomalies. The second trend at 070° is delineated by aplitic rocks along the Aplite Creek Zone.

The drilling encountered andesite/latite tuffs and flows and related hypabyssal sills, a suite of aplitic syenite and monzonite dykes, and sub-vertical faults, all delineated by previous geological mapping. In the subsurface, the rocks have pervasive moderate.

and locally strong propylitic alteration (chlorite, epidote, lesser carbonate), and slight to moderate potassic alteration (k-feldspar) locally. Hydrothermal magnetite and biotite were not observed.

All drill holes encountered minor copper mineralization, and AH 90-3 through AH 90-6 encountered minor molybdenum mineralization. The levels of visible chalcopyrite and molybdenite are low. The best intersections are:

Drill Hole	<u>Interval(m)</u>	Length(m)	Cu ppm	<u>Au ppb</u>
AH 90-1	0.801-0.88	20.0	1018	73
AH 90-3	40.0- 50.0	10.0	700	400
AH 90-4	60.0 -64.0	4.0	46	1725
	76.0- 82.0	6.0	806	413
	106.0-112.0	6.0	981	6420
AH 90-6	82.0- 90.0	8.0	700	34

A. 345° Fault Zone

Drill Hole AH 90-1 was drilled -45° west, just south of line 88N, to test the intersection of the 345° fault and the Aplite Creek zone where malachite is exposed on surface. The drill hole cut mainly latitic to andesitic lapilli tuffs (Figure 6). One intrusive unit of aplitic syenite was intersected at 153.3-163.7 m in the approximate area of the projected structural intersection. Only one other 10 cm dyke of intrusion was encountered at 11.0 m. A small (40 cm) zone of possible hybrid rock was intersected

at 20.6 m and contained "swirls" of chloritized Takla volcanic in a shattered felsic intrusion.

K-feldspar is extremely variable (<3% to 60% locally) in the volcanics with the bulk of it considered primary. Upon staining, the k-feldspar is seen to be confined to the groundmass and rarely in phenocrysts, and is patchy when in smaller amounts. Some secondary k-feldspar occurs near the contact with the aplitic intrusion. Very little k-feldspar occurs as fracture-fillings or veinlets.

Biotite hornfels is weak to moderate on either side of aplitic syenite and extends to the bottom of the hole.

Analytical results for gold and copper show only sporadic anomalous values (Figure 7). The greatest gold value is 380 ppb and coincides with the greatest copper value of 2937 ppm. The mean values for gold and copper, respectively, are approximately 50 ppb and 600 ppm. The best intersection in this hole, a 20 m zone from 88.0-108.0 m, contains 1018 ppm copper and 73 ppb gold. This zone is weakly stockworked with moderate propylitic alteration. Recoveries average ~90% in this zone and the lower portion contains a section of chalcopyrite-bearing quartz veining immediately adjacent to a clay gouge fault.

Drill hole AH 90-3 was drilled -45° at 256° azimuth on line 91N to test the same fault zone approximately 350 m along strike. It would appear that the target was hit before

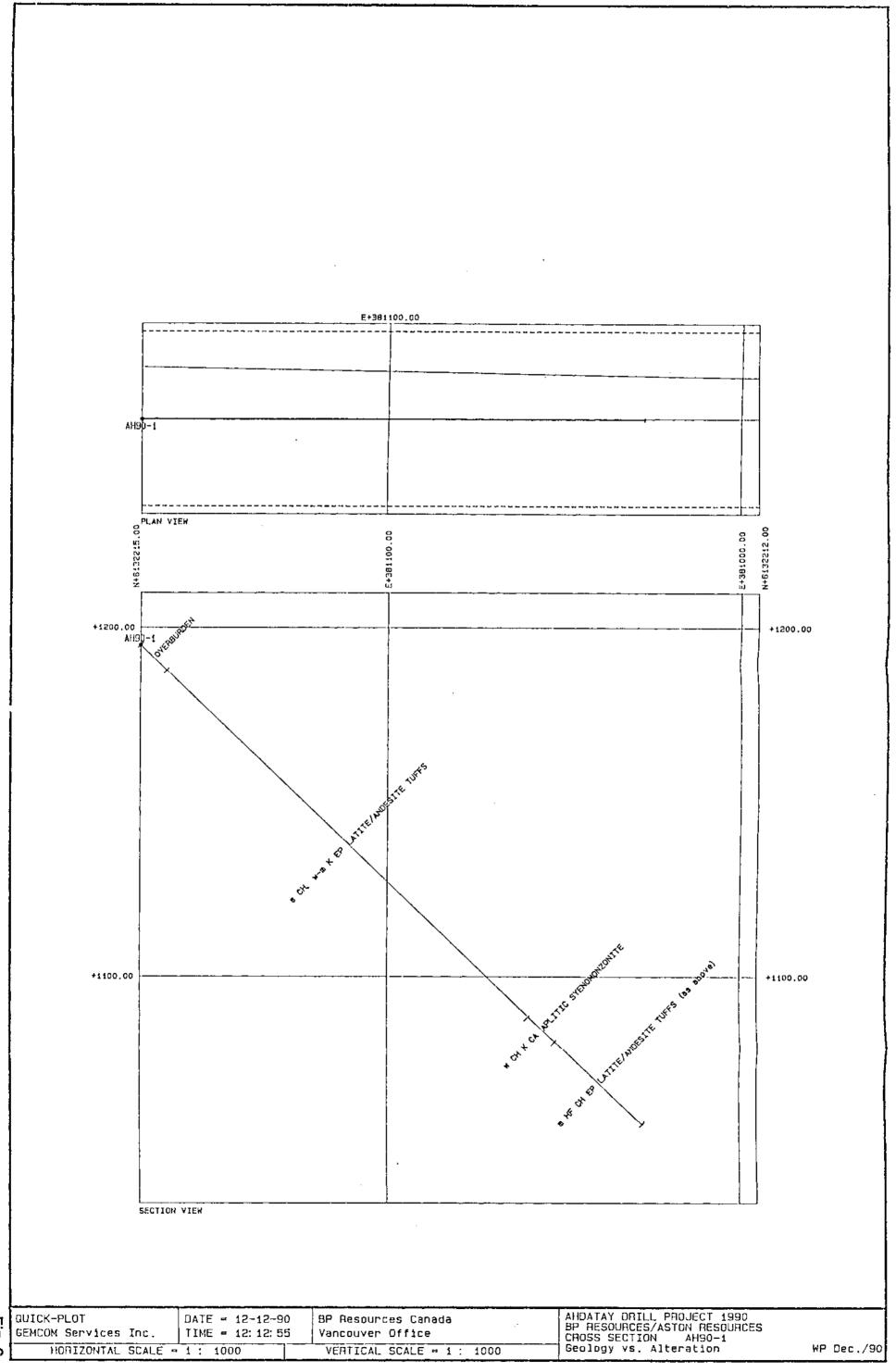
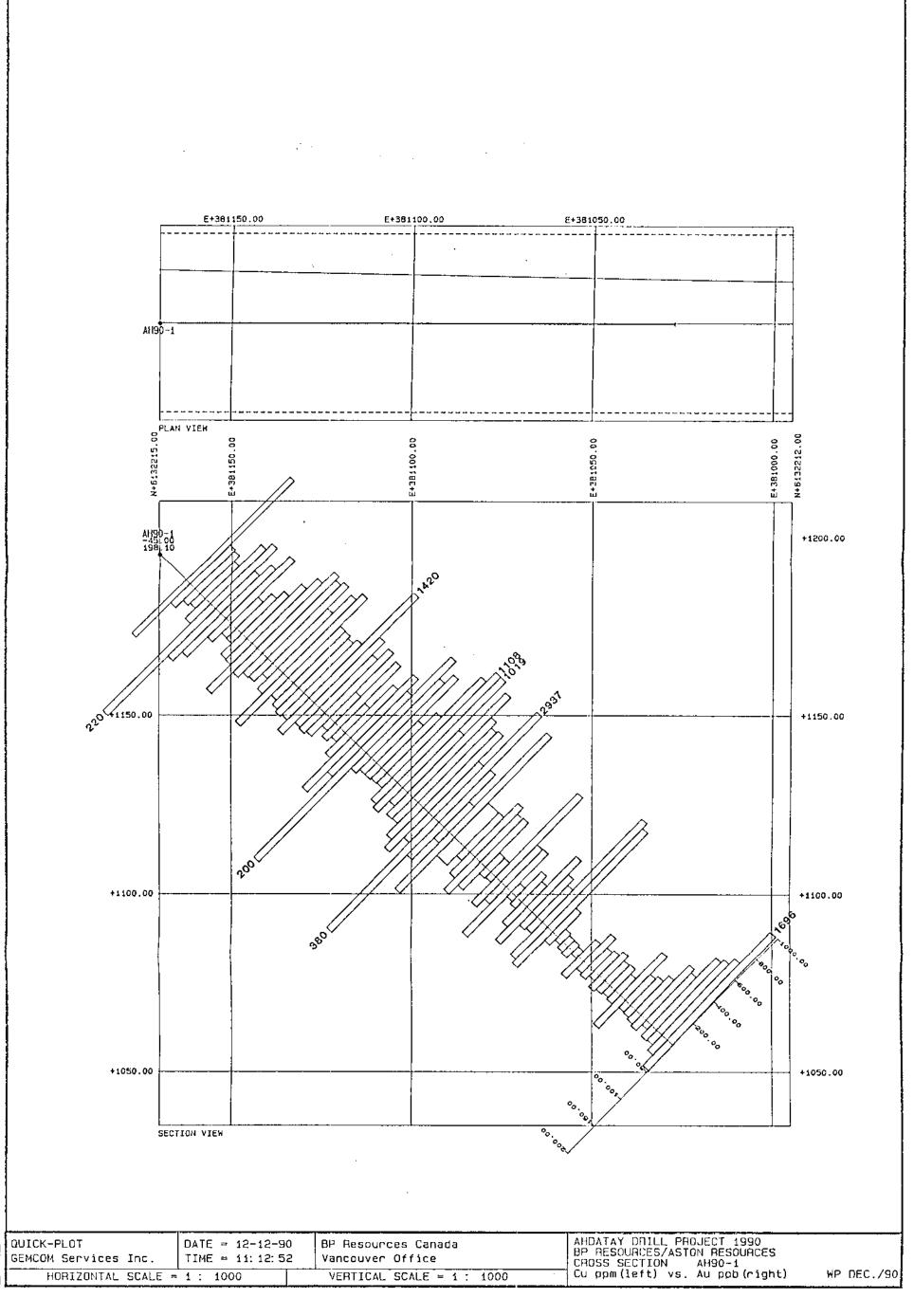



Fig. 6

the anticipated depth (approximately 125.0 m) indicating a possible easterly dip or a slightly curvi-linear strike (Figure 8). From 115.9-137.7 m, a highly-altered hybrid zone with numerous clay shears was intersected with intense shearing from 124.5-128.4 m.

From the bottom of casing at 3.1 m to 20.6 m is a weakly altered crowded porphyry monzonite. The mafic content (1-15%) appears to be almost entirely biotite. The core is blocky and rubbly with numerous (50-150/m) irregular microfractures. The occasional quartz vein contains coarse clotty chalcopyrite but overall only trace chalcopyrite exists. Alteration increases with depth to a moderately altered augite-phyric latite/andesite with relatively strong k-feldspar alteration at 20.6-23.8 m.

From 23.8 to 40.7 m is a hybrid zone of k-feldspar-altered augite-phyric latite/andesite and aplitic syenite. Chlorite alteration increases and k-feldspar alteration decreases with depth.

From 40.7 to 43.5 m is a very chlorite- and pyrite-rich shear zone at 20° to the core axis. Moderate biotite alteration is also present. Molybdenite (0.1% to 0.5%) and clotty chalcopyrite (0.1% to 0.4%) are found with up to 30% pyrite.

From 43.5 to 95.5 m, a mixed, crowded porphyry monzonite/syenite, similar to above, with moderate k-feldspar alteration was intersected. Traces of chalcopyrite and molybdenite mineralization persist.

From 95.5 to 137.7 m is a hybrid zone, similar to above, corresponding to the projected strike of the 345° fault. The centre of this zone (124.5-128.4 m) is very strongly sheared and altered. Clay gouge zones and alteration decrease with distance from the zone. There is also moderate brecciation immediately below this zone. No economic mineralization is visible over this interval and the analytical results substantiate this observation.

From 137.7 to the end (202.7 m) the drilling intersected weakly to moderately altered augite-phyric latite tuffs. K-feldspar in the volcanics is seen to be both primary and secondary upon staining, occurring pervasively in the groundmass and as fracture envelopes.

Analytical results for gold and copper show one 10 m zone from 40.0-50.0 m of 700 ppm copper and 400 ppb gold. Included in this interval is a single assay of 440 ppm molybdenum (Figure 9).

B. Aplite Creek Zone

Drilling in the Aplite Creek zone was intended to test for possible mineralization associated with the aplitic dykes.

Drill hole AH 90-2 was collared from the same site as AH 90-1 and drilled -46° at 150° azimuth. From the bottom of casing at 3.6 m to the end of the hole (164.0 m), the drilling cut a repetitive series of andesitic lapilli fragmentals and crystal ash tuffs

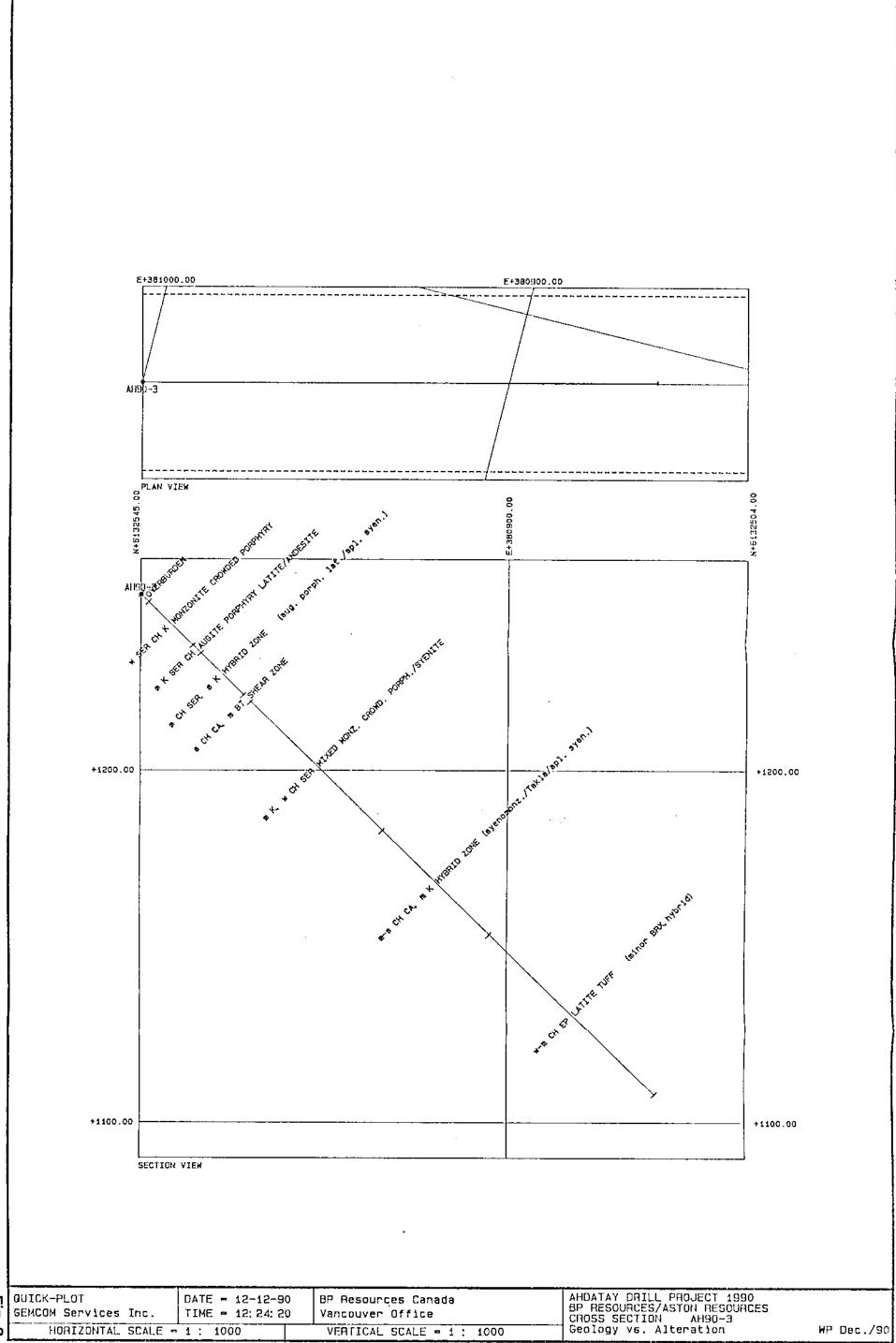


Fig. ω

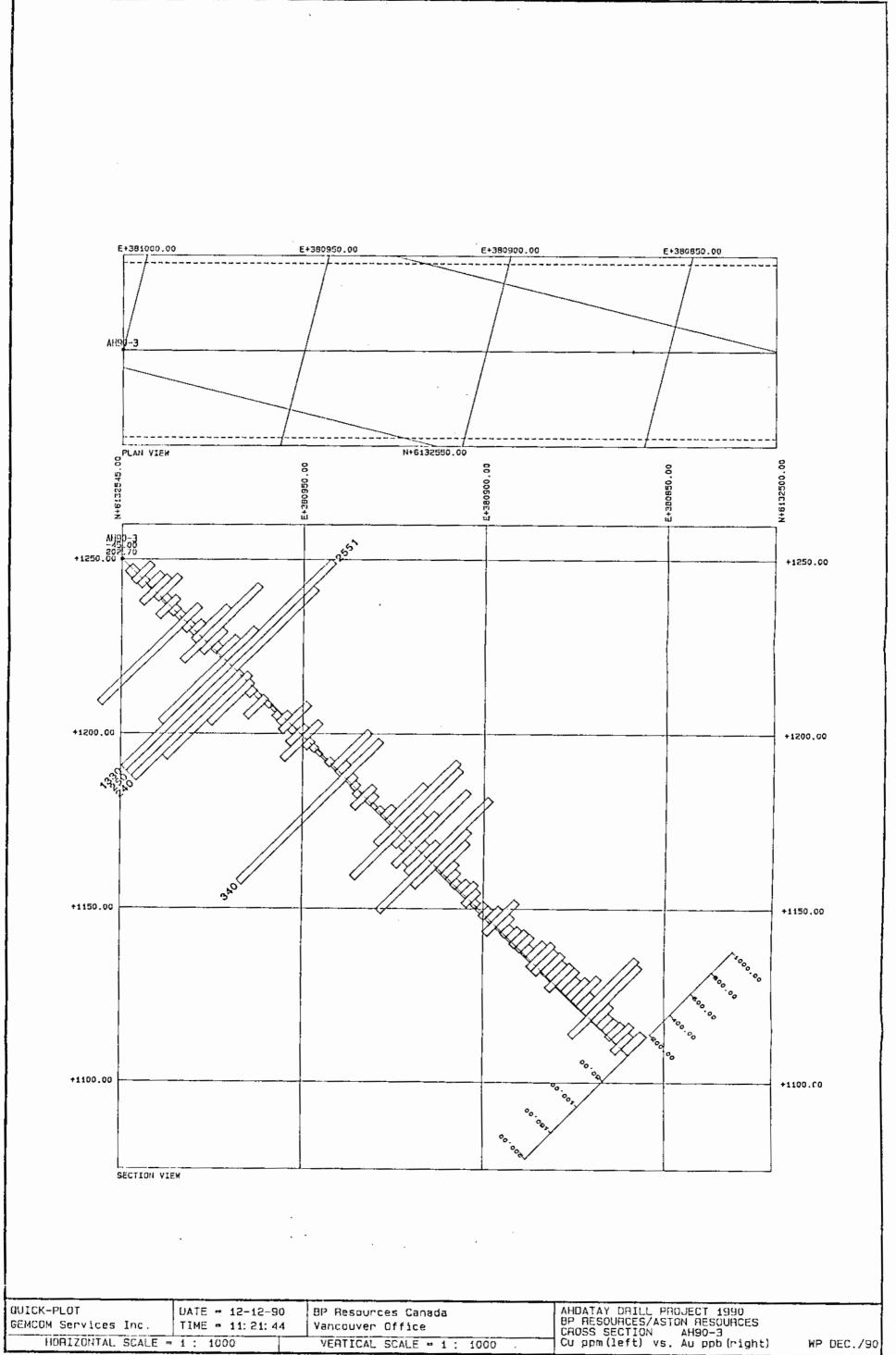


Fig. 9

(Figure 10). Comparison with AH 90-1 indicate that this hole was probably drilled across stratigraphy, whereas AH 90-1, for the most part, paralleled stratigraphy. Block faulting could account for this apparent change in regional strike. Occasional brecciated and faulted zones are found throughout the hole. One large dyke of aplitic syenite was cut from 84.4-86.5 m. It is moderately propylitically altered and rubbly.

Except for the intrusion, moderate to strong oxidation of iron is present throughout the hole with brecciated zones being more strongly oxidized. Staining of the core revealed most of the k-feldspar ($\leq 5\%$ in total) to be secondary in nature, occurring as fracture-fillings and envelopes.

Analytical results show low gold and copper values. The best intersection is from 126.0 to 142.0 m where values of 77 ppb gold and 500 ppm copper over 16 m were returned with slightly elevated molybdenum values (Figure 11). This zone is within a section of propylitically altered, brecciated, andesitic lapilli tuffs with occasional quartz veinlets.

Drill hole AH 90-5 was drilled -45° at 150° azimuth approximately 530 m along strike from AH 90-2 to test the same aplitic intrusion zone. From the bottom of casing at 1.9 m to 148.0 m the drill hole intersected augite porphyry flows and hypabyssal sills (Figure 12). The flows are latitic in composition with 15-60% augite phenocrysts and 5-30% subordinate plagioclase. The core has moderate to strong propylitic and moderate potassic alteration. Primary and secondary k-feldspar alteration is apparent

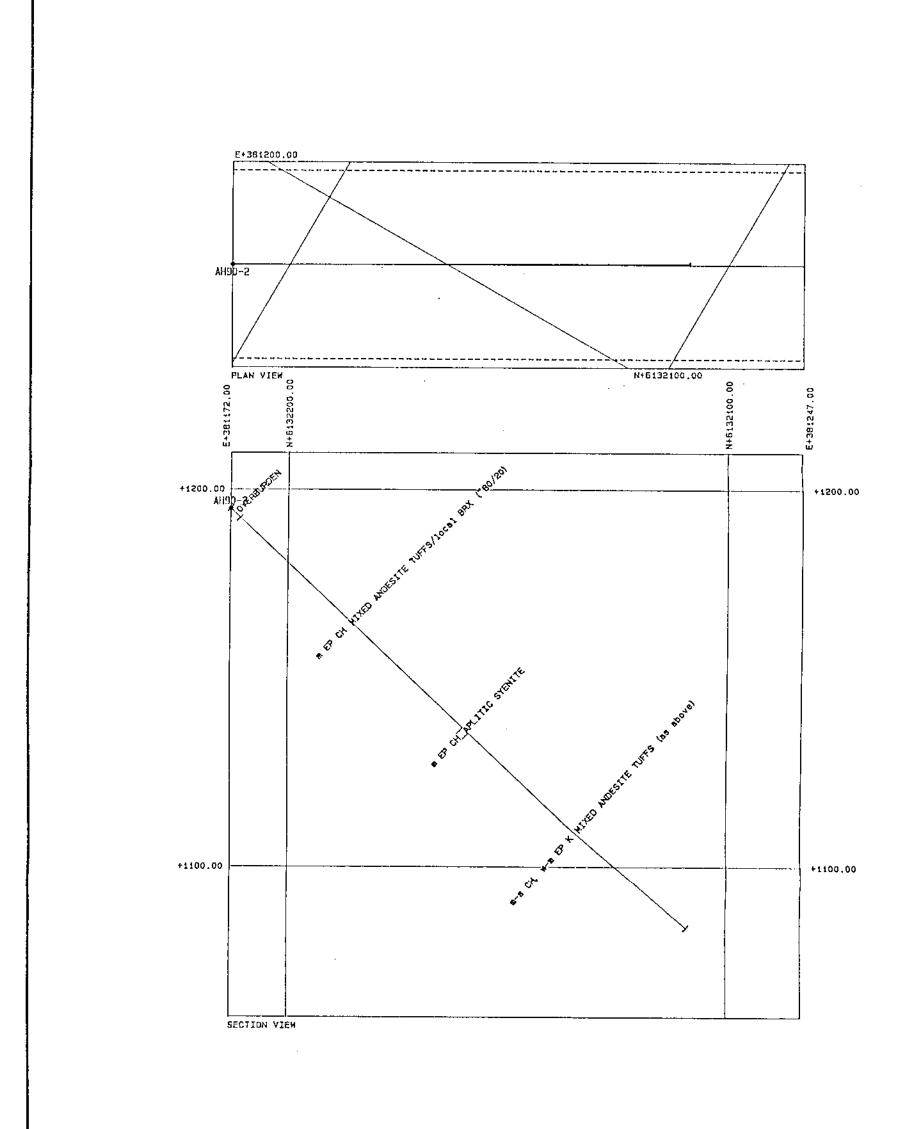
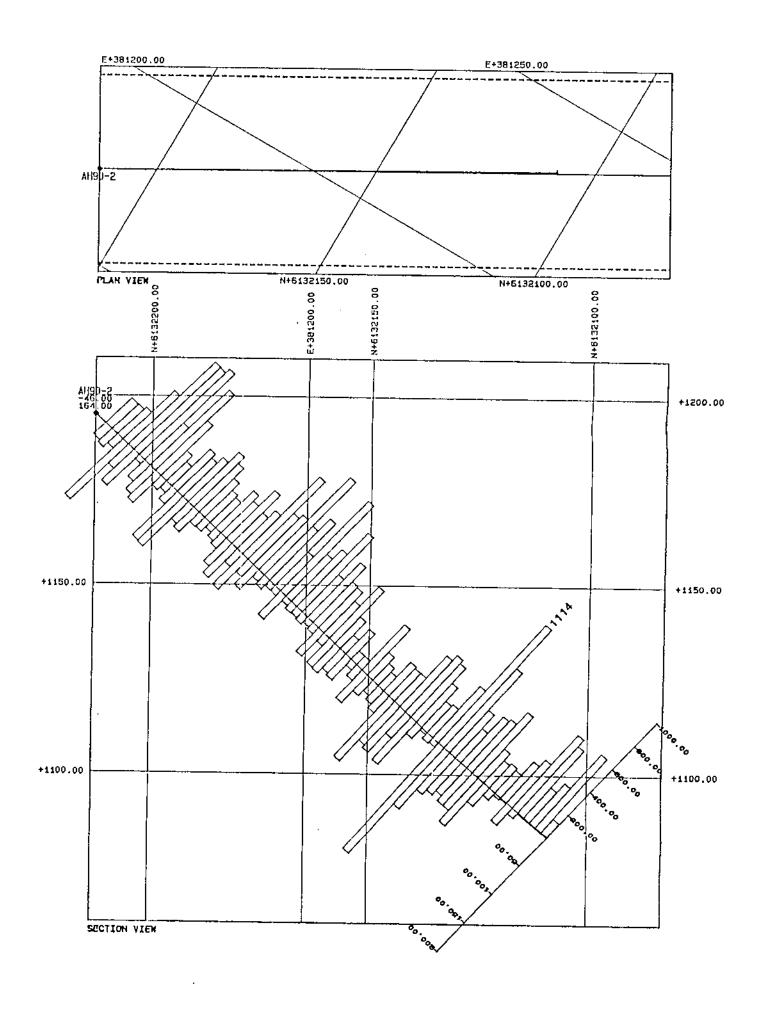



Fig . 10

QUICK-PLOT DATE = 12-12-90 BP Resources Canada
GEMCOM Services Inc. TIME = 12: 18: 00 Vancouver Office
HORIZONTAL SCALE = 1: 1000 VERTICAL SCALE = 1: 1000

AHDATAY DRILL PROJECT 1990
BP RESOURCES/ASTON RESOURCES
CROSS SECTION AH90-2
Geology vs. Alteration

WP Dec./90

GUICK-PLOT
GEMCOM Services Inc.

DATE = 12-12-90
TIME = 11: 05: 02

PORTICAL SCALE = 1: 1000

BP Resources Cenade
Vancouver Office

VERTICAL SCALE = 1: 1000

AHDATAY DRILL PROJECT 1990
BP RESOURCES/ASTON RESOURCES
CROSS SECTION
AH90-2
Cu ppm (left) vs. Au ppb (right)

WP DEC./90

visually in the volcanic rocks.

The hypabyssal sills are monzonitic with up to 60% primary k-feldspar comprising 100% of the groundmass. They are orthocumulate and locally pyroxenitic. Moderate propylitic and weak potassic alteration exists but sulfide mineralization is sparse.

From 148.0 to the bottom of the hole at 170.0 m is medium-grained syenite cut by aplitic syenite, and quartz veins. This section is commonly brecciated.

Analytical results show consistently low copper and gold values with averages of approximately 200 ppm copper and approximately 20 ppb gold over the entire hole (Figure 13).

Drill hole AH 90-6 was oriented -45° at 160° azimuth and located midway between AH 90-2 and AH 90-5. The hole intersected a series of andesitic to latitic crystal ash tuffs and flows intruded by dioritic to monzodioritic hypabyssal sills (Figure 14). From 2.4 m to 28.5 m is an augite-plagioclase porphyritic hypabyssal sill. From 28.5 to 30.5 m is a crystal ash tuff. These units are repeated at 30.5 and 37.0 m. The hypabyssal sills are subporphyritic with moderate propylitic alteration. Mineralization consists of <1.5% pyrite with amounts of trace chalcopyrite locally. The tuffs are sparsely phyric and are also moderately propylitically altered. They contain less than 0.5% pyrite with no visible chalcopyrite.

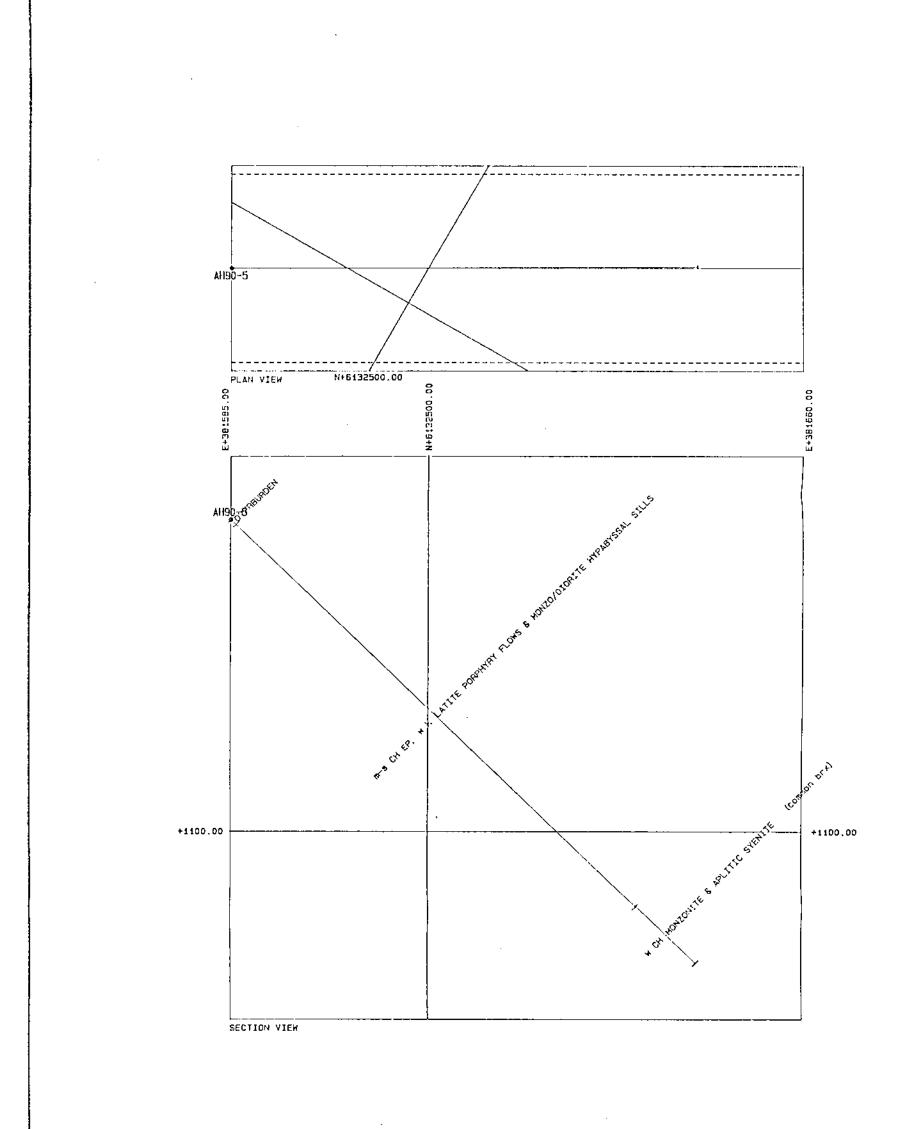


Fig. 12

QUICK-PLOT

GEMCOM Services Inc.

HORIZONTAL SCALE = 1 : 1000

DATE = 12-12-90

TIME = 14: 34: 19

BP Resources Canada
Vancouver Office

VERTICAL SCALE = 1: 1000

AHDATAY DRILL PROJECT 1990
BP RESOURCES/ASTON RESOURCES
CAOSS SECTION AH90-5
Geology vs. Alteration

WP Dec./90

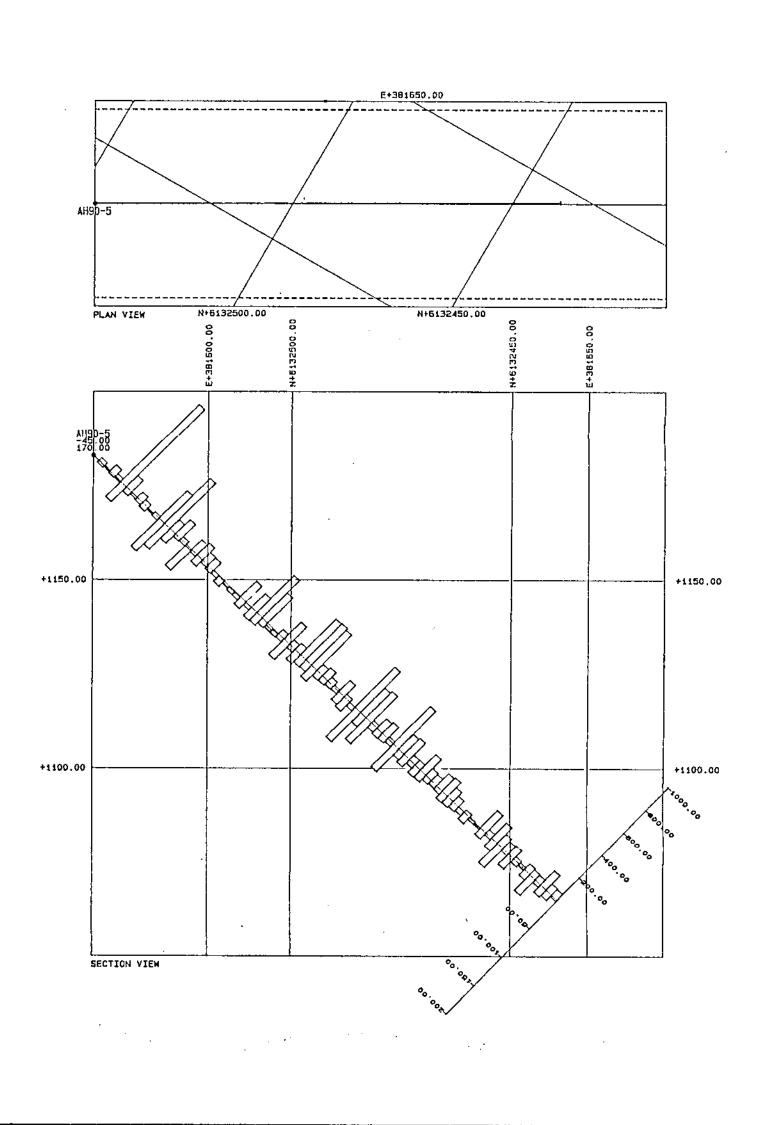


Fig. 13

GUICK-PLOT
GEMCOM Services Inc.

OATE = 12-12-90
TIME = 11: 44: 24

Vancouver Office

HORIZONTAL SCALE = 1: 1000

BP Resources Canada
Vancouver Office

VERTICAL SCALE = 1: 1000

AHDATAY DAILL PROJECT 1990
BP RESOURCES/ASTON RESOURCES
CROSS SECTION AH90-5
Cu ppm (left) vs. Au ppb (right)

WP DEC./90

From 40.4 to 44.5 m is a faulted, brecciated and sheared intermediate volcanic with some k-feldspar aplitic syenite. The zone is moderately propylitically altered and contains 5% pyrite in the breccia matrix.

From 44.5 to 66.5 m is andesite with moderate propylitic and weak potassic alteration. A crystal ash tuff was cut from 66.5 to 78.6 m and displays moderate potassic alteration locally. It exhibits mm-scale layering and up to 8% pyrite. From 78.6 to 93.0 m is a deformed and moderately to strongly propylitically and potassically-altered andesite similar to above. Pyrite is present from 0.5 to 8.0%.

A plagioclase phyric andesite with common faulted zones up to 80 cm in length was intersected from 93.9 to 100.5 m. The unit is moderately propylitically altered and sulfide mineralization is sparse.

From 100.5 to 143.6 m a section of andesite containing crystal-ash tuff horizons occurs. The tuffs show moderate propylitic and weak potassic alteration, while the andesite exhibits epidote hornfels alteration. Pyrite is present to 1% in the tuffs and up to 7% in the andesite.

From 143.6 to 162.0 m is an augite-plagioclase porphyritic hypabyssal sill with slight to moderate propylitic alteration. Minor pyrite is present.

At the bottom of the hole (162.0-164.1 m) is a faulted, brecciated and sheared volcanic

unit with minor quartz/carbonate/aplitic syenite veining. The zone is moderately propylitically altered.

Analytical results show low values for copper and gold with the best intersection averaging 700 ppm copper and 34 ppb gold over 8 m from 82.0 to 90.0 m (Figure 15).

C. Magnetic/I.P. Anomaly

Drill hole AH 90-4 was drilled -59° to the east to test coincident north-northwest-trending magnetic and I.P. anomalies. From the bottom of casing at 3.7 m to 31.5 m is a hybrid zone of augite-plagioclase porphyritic andesite flow and subporphyritic monzonite. Both have moderate propylitic alteration and very minimal pyrite. The flow has a trachytic texture locally (Figure 16).

From 31.5 to 67.5 m is an andesite-latite. Strong propylitic alteration and numerous rubbly zones are seen. Pyrite to 8% and chalcopyrite to 0.1% occur.

A hybrid zone was cut from 67.5 to 86.3 m. It contains the same lithologies as above but has moderate potassic and propylitic alteration. Chalcopyrite comprises up to 0.3% locally. Again, there are many rubbly sections.

From 86.3 to 126.0 m is a monzonite that is slightly to moderately sericitized and potassically altered. Within a deformed and chloritized inclusion is trace chalcopyrite and molybdenite.

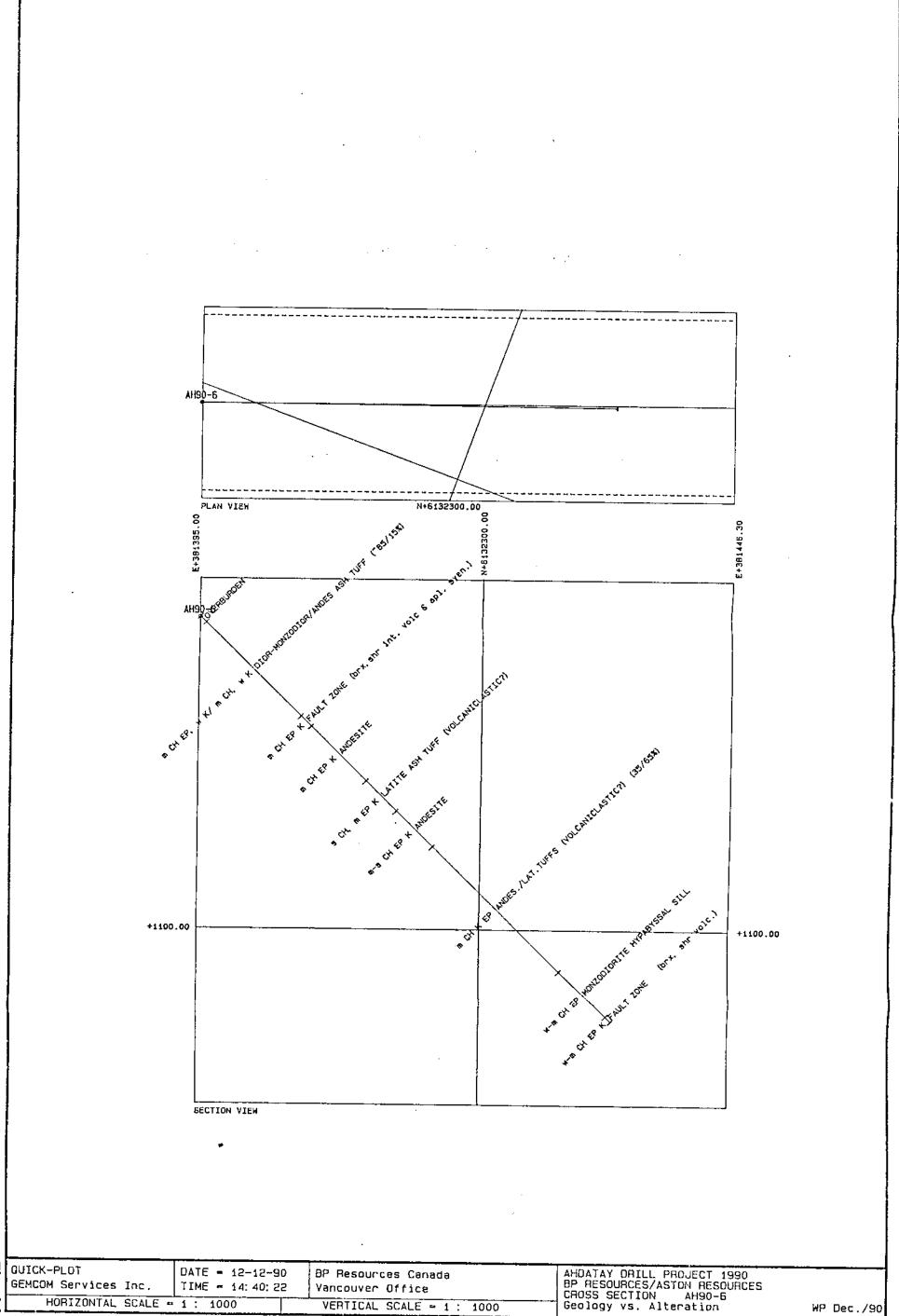
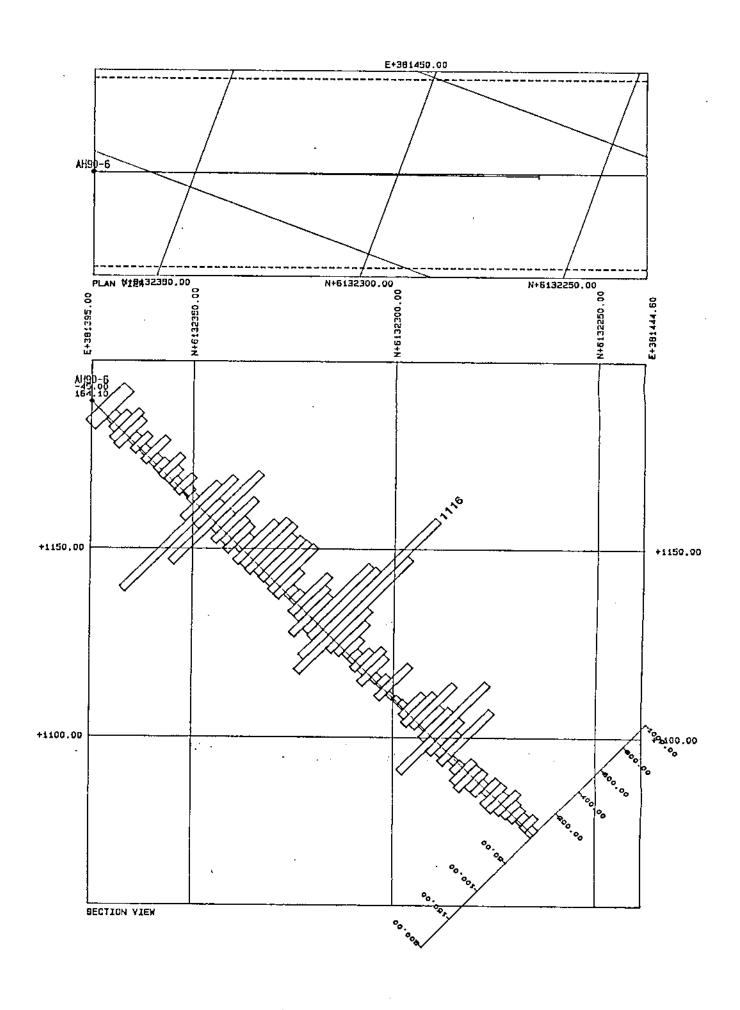



Fig.

VERTICAL SCALE = 1 : 1000

QUICK-PLOT GEMCOM Services Inc. HORIZONTAL SCALE = 1 : 1000

DATE = 12-12-90 TIME = 11:51:05

BP Resources Canada Vancouver Office

VERTICAL SCALE - 1 : 1000

AHDATAY DAILL PROJECT 1990 BP RESOURCES/ASTON RESOURCES CROSS SECTION AH90-6 Cu ppm (left) vs. Au ppb (right)

A fault zone from 126.0 to 130.6 m contains brecciated and sheared intermediate volcanics with strong propylitic alteration.

Below the fault to 143.5 m is an augite porphyritic latite flow with strong propylitic alteration. Pyrite to 3% and trace chalcopyrite are present.

A quartz-aplite vein with weak epidote and carbonate alteration was intersected from 143.5 to 145.3 m. The unit has chloritized latite inclusions and trace pyrite. Staining reveals 40% k-feldspar.

From 145.3 to the bottom of the hole at 168.9 m is an augite porphyry latite flow as above but with both brittle and ductile deformation. The unit is moderately to strongly propylitically altered. Mineralization includes 3% pyrite and trace chalcopyrite.

This drill hole displays the most alteration of the six holes and combined with the visible mineralization, indicates a greater potential for exploration. Analytical results from this hole show encouraging values with one main copper/gold intersection (rechecked by fire assay) of 981 ppm Cu/6420 ppb Au over 6 m from 106.0 to 112.0 m. Other isolated "spikes" occur occasionally for both copper and gold (Figure 17). This main intersection occurs within rubbly monzonite. A 6 cm quartz/pyrite vein was also noted in this interval.

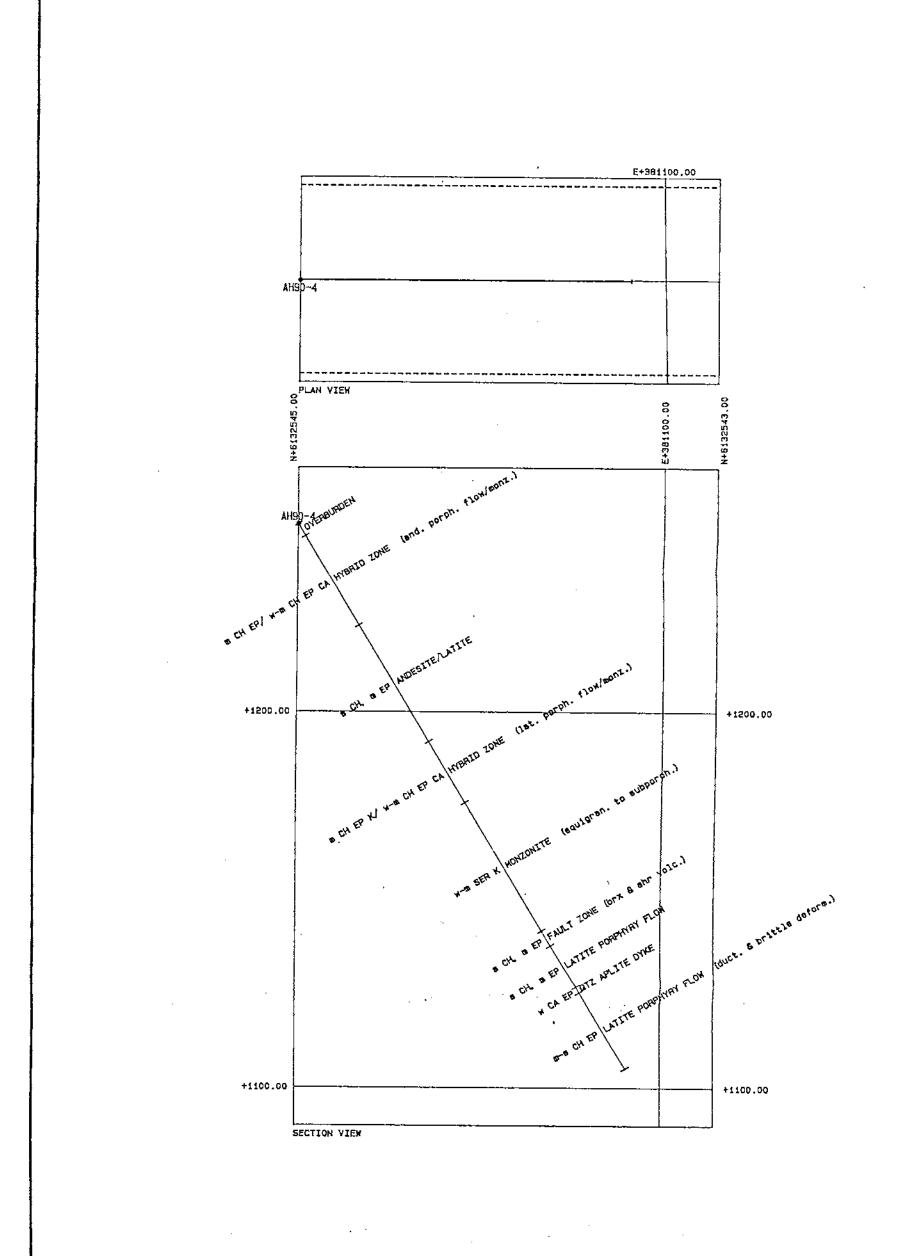
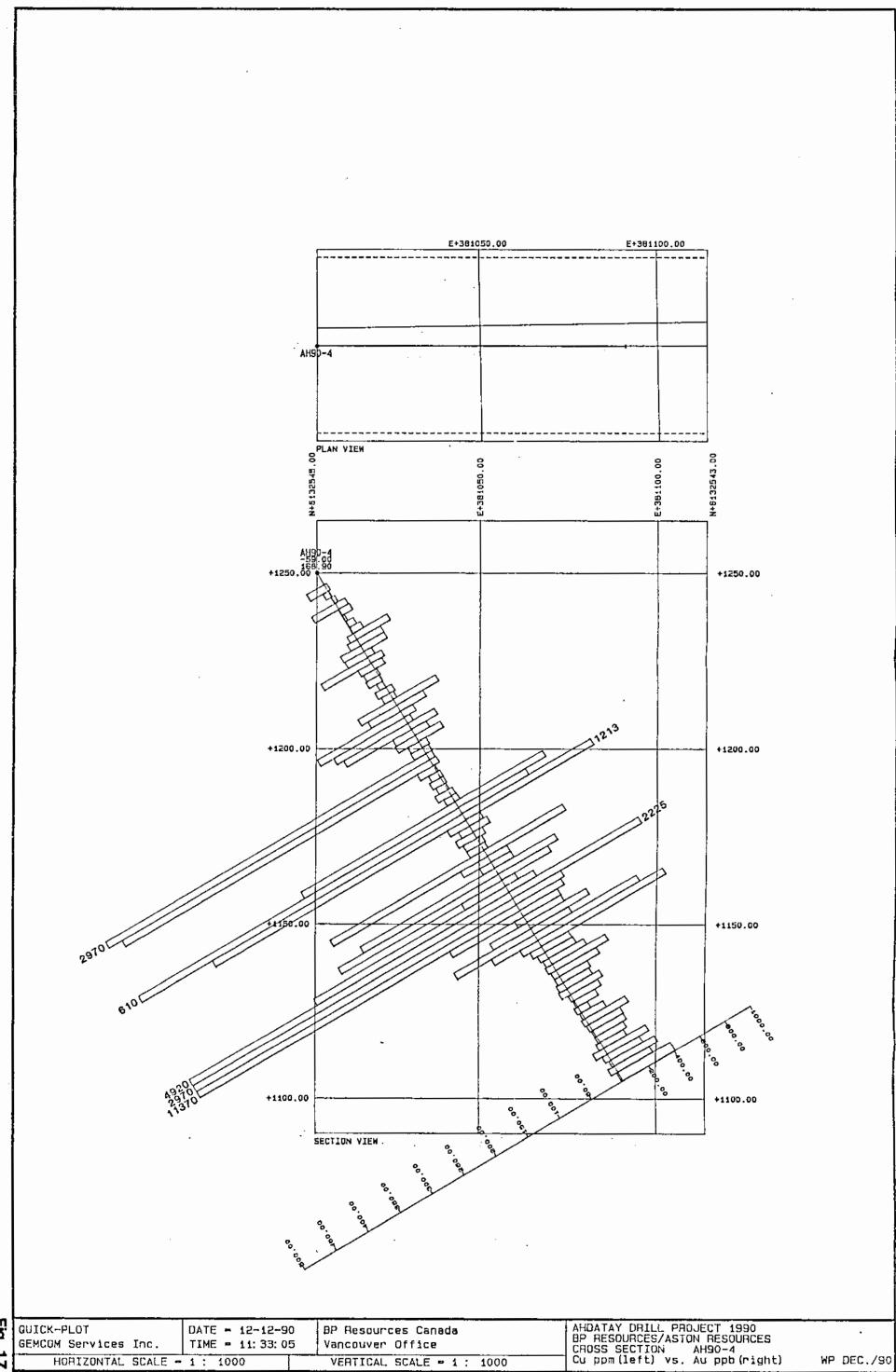
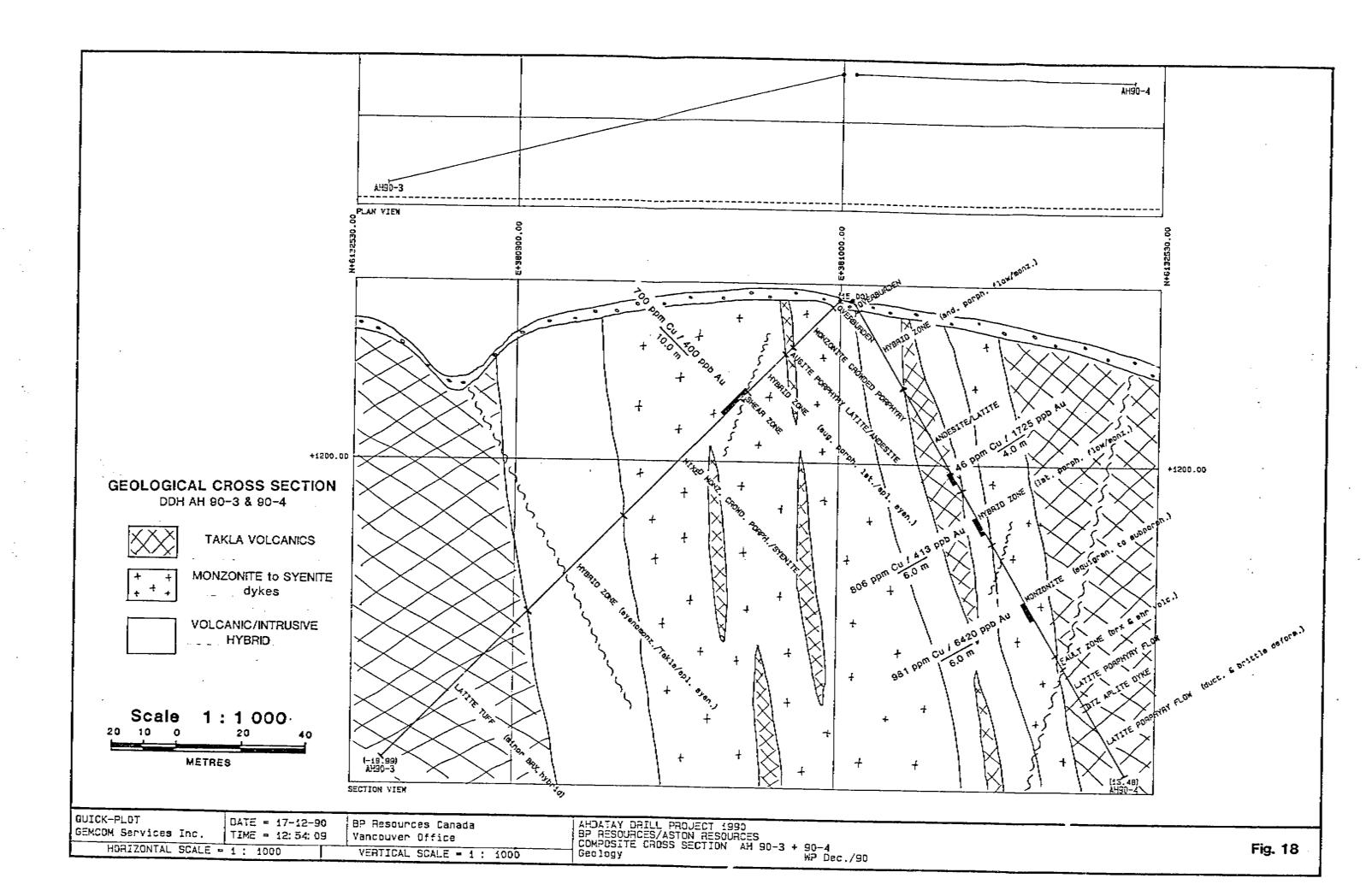



Fig. 16

QUICK-PLOT DATE = 12-12-90 BP Resources Canada AHDATAY DRILL PROJECT 1990 BP RESOURCES Inc. TIME = 12:32:17 Vancouver Office BP RESOURCES/ASTON RESOURCES CROSS SECTION AH90-4 Geology vs. Alteration

WP Dec./90

6. CONCLUSIONS AND RECOMMENDATIONS


The 1990 drill program tested three targets with six holes totalling 1067.8 m on the PHIL 2 claim. Of the three targets, the 345°-trending fault and its associated IP and magnetic anomalies appears to show the greatest potential for further exploration. This structure appears to separate a moderately altered, subporphyritic monzonite intrusion, on the east, from zones of moderately to strongly-hybridized volcanic rocks on the west.

The two holes testing this zone (AH90-3 and AH90-4) returned significant assays warranting further work (Figure 18). The structure continues untested a possible 2 km along strike to the north northwest.

Rock chip sampling in 1990 and previous work by Noranda indicate a potential for exploration to the west and southwest of the 1990 grid.

Recommendations for a 1991 program are:

- extend the existing grid to the west and southwest (25 line-km) with linecutting, ground IP, magnetics and geological mapping and sampling;
 and
- drill six holes (1200 m) to test the extension of the north northwest trending IP and magnetic anomaly with its gold mineralization.

<u>REFERENCES</u>

Armstrong, J.E., (1949) Fort St. James ma

Fort St. James map area, Cassiar and Coast

Districts, British Columbia. G.S.C. Memoir 252,

210 pp.

Garnett, J.A., (1978) Geology and Mineral Occurrences of the southern

Hogem Batholith. B.C. Department of Energy.

Mines and Pet. Res. Bull. 70, 75 pp.

ASSESSMENT REPORTS

LUC Syndicate; (1970) LUC Claims, Assessment Report #2430.

Noranda; (1972) Sooner Claims, Assessment Report #'s 3962,

4431.

Pechiney Development Ltd.;

(1972) IAN Claims. Assessment Report #4430.

(1973) Assessment Report #4653.

(1974) Assessment Report #'s 5148, 5212.

BP-Selco Inc. (1983) Assessment Report #12149 PHIL 2 Claim Group.

BP Resources Canada

Limited (1984)

Assessment Report #13342 PHIL 2 Claim Group.

APPENDIX I STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

- 1. William Paterson of #1103 1905 Robson Street, Vancouver, in the Province of British Columbia, do hereby state:
- I) That I am a graduate of Queen's University, Kingston Ontario, where I obtained an Honours B.Sc., in Geology in 1989.
- 2) That I have been active in mineral exploration since 1986.

WILLIAM PATERSON

Geologist

January, 1991 Vancouver, B.C.

STATEMENT OF QUALIFICATIONS

I, C. Tucker Barrie of #700 - 890 West Pender Street, Vancouver in the province of British Columbia, do hereby state:

- 1) That I have a Doctor of Philosophy in Economic Geology from the University of Toronto, Ontario, where I graduated in 1990;
- 2) That I have been active in mineral exploration since 1980.

C. TUCKER BARRIE

C. Trela Barne

January, 1991 Vancouver, B.C.

APPENDIX II STATEMENT OF COSTS

STATEMENT OF COSTS

I) DRILLING

Drill site preparation	\$	3,924.00
(Hewitt Co. & Assoc.)		

1067.8 m BQ @ \$61.77/m	65.960.00
(F. Boisvenu Drilling Ltd.)	

Mobilization/Demobilization	4,600.00
Move costs	16,713.00

Miscellaneous costs:

acid tests	\$ 358.00	
materials	5,637.67	
camp charges	1,200.00	
other	<u>858.59</u>	
•		8,065.00

2) **GEOCHEMICAL ANALYSIS**

518 core samples, ICP and geochem Au @\$12.50	6,475.00
(Acme Analytical Laboratories Ltd.)	

TOTAL EXPENDITURES: \$105,737.00

APPENDIX III

DIAMOND DRILL LOGS: AH90-1 TO 90-6

DRILL SUMMARY DDH AH90-1

UTM N: 6132215mN UTM E: 381170mE GRID N: 87+96N GRID E: 109+18E ELEV.: 1195 m DEPTH:198.1 m ORIENT.: -45°/269°

Metres (m)

0.0 - 10.4 OVERBURDEN

10.4 - 153.3 LATITE/ANDESITE AUGITE CRYSTAL/LITHIC LAPILLI TUFF

Up to 10% augite crystals, numerous rubbly zones, strong chlorite and weak-moderate epidote, k-spar and FeOx alteration; trace-0.5% PY, trace-0.1% CP (locally to 0.5%), minor and sporadic PO.

- 10.4-21.5 healed breccia moderate-strong convoluted and mottled chlorite, epidote, k-spar and FeOx alteration; same sulfide content
- 11.0-11.1 aplitic syenite dyke
- 65.8-66.4 augite porphyry andesite
- 86.3-100.2 weak stockworking with moderate epidote, albite, chlorite and FeOx alteration; 0.5%-2.5% PY, 0%-0.1% CP
- 108.8-109.2 2 x 3 cm quartz veins; 2% PY, 1% CP 151.0-153.3 weak hornfels
- 153.3 163.7 APLITIC SYENOMONZONITE

 Pinkish grey, well fractured and rubbly; 0.2% PY,

 0.3% PO.
- 163.7 198.1 LATITE/ANDESITE CRYSTAL/LITHIC LAPILLI TUFF
 Same as above, moderate hornfels, chlorite, epidote and
 FeOx alteration, rubbly and blocky to E.O.H.; 0.4% PY,
 trace CP (locally), trace PO (locally).
 - 188.3-198.1 very broken and blocky: 1.5% PY, 0.2% CP (0.4% locally)

198.1 E.O.H.

: m = 1 = 1 = 1				···	CID		-1 -:			· • non + •	HOLE NO. <u>AH 90+1</u>
HILLING CO 1	Boisvenn	LOCATION SKETCH			ANGLE	AZIMUTH,			S Supt./90	PROJECT N.T.S.:	10154
		- 11 - 1		LAR U S		769	i		7 Sept./90	<u>.</u>	93~/7
			191	4m -4.	8				5 m	LOCATION	
		1				1	NORTH	6136	215mN JUTH	87-	+96N7 grid
		· · ·					EASTIN	391170		109	+18E)
							AZIMU	267			
	· .						DEPTH	198	il m	DATE LOC	17-17/7/70
HE TYPE C	PDH					<u> </u>	CORE S	BIZE: BQ		LOGGED	ex: UP
INTE	RVAL	ROCK TYPE		ALTERATION		MINERALIZAT	riou —	Fr/m.	STAUCTUR	· E	AEMARKS
FROM	τo	(composition, colour, lexture, grain size)		ALIEMANON	•	MINEHALIZA			(fractures, leuts, tolding, be	dding, etc.)	Mineralization, type, age relations
0	7.0	CASING									
7.0	10.4	OVERBURDEN									
		- Loulders of granitie	4.								
		gabbrois intrusives and all	well								
		Greccialed Tabla flows Asa	ment of s								
		· ·							·		
10.4	153.3	LATITE AUGITE CRYSTAL/L	THIC	CH/PA/8		PY/OHFF/TO	5%	10-30/m	FR/430/1		Some lapille have EP reaction cin
		LAPICLI TUFF + MINIOR flows.		FeOx/FF/5		CP/D+FF/T		!		- /	talt2 generally assoc forward E clots + 68 cich segments
		dk mottled green w/ up to /	1% au	EP/PA/4				[clots + CP cick segments
	ļ	thero's wy some areas devoid	<u>•t </u>	K/FE+BA/2				<u> </u>			
- ,,- ,		pheno's generally for		CA+FeCx/FF/	<u></u>						0% of FR Lane thick muddy
	<u> </u>	- numerous rubbly gones and	<u> </u>	·				ļ		ς,	ed/brown FOOX coating
		some small (< 20 cm) zone st c	a								
		gouge -> I large section of con	ا شقه					ļ			
		to -21.5m is well boxx + leal	ed e					ļ			
	<u> </u>	FOX + CA/EP						<u> </u>			
	@10.B	Int wilt in boil rode (?) or boulders	النسما	?) K/PA/B		PY/08/54 A PO/08/7%	15/105/57	1		-could	be part of come-in - anomalous 3
	G (0.8	aplific signile dyke (10-15cm	CHANGE	K/P+FE/		PY/D/. 2%		+			y solmon-pink colour

.....

INTERVAL		ROCK TYPE (composition, calour, lexture, grain size)	ALTERATION	MINERALIZATION	Fstm	STRUCTURE	ļ
10M ·	10	(composition, colour, texture, grain size)	AZ (EAX)	WINE-PER INST	ļ <u> </u>	(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	10.4-21.5	hooled breecia ->	EP/PA+FF/7	PY/DIFF/Tr-140	2015	FR/subparallel/I -= slick/45/3	sulfides tind take asso
		r. convoluted + notflect afteration	CHLP/8	CP/DB+FF/Tr5%		FR/subparallel/ 7 - slick/45/3	Wy strong FOOX/HEY/FF
		-majority of fracture surfaces have	K/FE+PA/S	HEN/FF + DE/TE-2%	<u> </u>	FR/400/2 - slick/-901/2	If preferentially w/ EP
		slickensides in Feox	FEOX/FF/6.		ļ	-HE-1 also in FF W/	
			CA/FF/4		 	<u> </u>	
	20.6- 21.0	hybrid zne? Mux of gts aplile? +	CH/PA+FF/7	PY/08+FF/3%	<u> </u>	vgc/15./2	
		volc .	CA/FF/4	HEH /FF + OB/14		Let e indistinct indistinct due -	to numerous Xcirtling fraston
		-swirts of chloritized Takla in a		, ,	<u> </u>		
		well fractured /shattered felsic intrusion			 -	<u> </u>	
	25.8 - 26.0	faultzone w/ garger	CH/P/9			FLT/rubbly/3 -peb	bly chlorific Tabla in a white matrix we some clay pofa 50cm section of rubb
-			CASPA+FF/7		ļ	Ca	natrix we some day
-			FECK/FF/5		ļ <u> </u>	a te	pota soon section of rubb
							COSP
	31.3-36.7	→	CA+FOOx/FF/6_	PY/FF+D/Tr-2% (3)	1)	FR/45%	has appearance of a who
•			CH/P/8	CP/D/01% (Tr.	k	- some PROTAU &'s	/ CA matrix
					 -	-nu	merous small Micro strongers
	38.7-39.4	~->	OP/PHECHEF/7	PY/FF+0/1% CP/0/-1%			
			K/FE/S	CP/0/-1%			
			CA+FEOx/FT/5				
	039.0	· ·	CH/P/5			- CH a	H = decreases + con fas
	5-2-15					frech	ir appearance + is fiver 500

PAGE 7 OF 12

DRILL HOLE NO. AH 90-1

INTE	INTERVAL	FLOCK TYPE			Frim	STRUCTURE	_
NOM	10	ROCK TYPE (composition, colour, texture, grain size)	ALTERATION	MINERALIZATION		' (Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	339.9	10 cm solid EP zone @ 90° to C.A. ad+Bex by a CA+ &Ox/FR	EOx+CA/FF/7	PY/#F+D/.5% CP/D/.2%		FR/subparallel/3	-sulfides assoc, W/ EP+K aft
		ad + Bex by a CA+ BOX/FR	EP/P/9	CP/D/.2%			combined
	<u> </u>		K/FE/3		, <u> </u>		
			SUC/P/6				
	10.3-65.0	->		PY/FF+ D/1,3% (u. f.	3.5%)		
				PY/FF+0/1.3% (up to			
	45.6-52.5		EP/PAIFFIFE/6	PY/FF+D/2%		FR*/25°/2 * PY	+CP filled FR
			k/FE/5	PY/FF+D/2%. CP/D/.1%.		-	+CP filled FR at + are out by CA+FEOx/FF
			C4/P/5				3
			CA+FEON/FF/3				
	-70 7/7						
	57.3 <i>-</i> 7(.7	<u> </u>	CA+/- FOX/FF/S	-	25-50/m	- Hock	ns to -67.5m
				-		9ctio	as to -67.5m
			<u> </u>	- 		•	les decrease in more than + CA
						gone	
	65.8-66.4	proxente inc (?) - up to 25% embedral px crystals (2 mm - 1cm) - poss. augite porph.	CH/P/7			- contac	Is indistruct but seem to be n 30° of C.A.
	ļ <u>.</u>	subcdral px crystals (2 mm - 1cm)				Lithe	n 30° of c.A.
-		-poss. augite perph.				<u> </u>	
@	67.0	->		MT/DB/34. W/ CP/	19.	- Lyd	rothermal MT

PAGE _ 3 OF _ 12

DRILL HOLE NO. AH 90-1

INTE	RVAL	ROCK TYPE			Fron	STRUCTURE	T
MOR	10	(composition, colour, texture, grain size)	ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	67.5-81.0	_		PY/FF+D/<1%			-sullider decrease
			<u> </u>	CP/D/01%			
	@68.S			10/17/.1%			
	75.3 - 79.6		EP/PA+FE+FF/6	PY/FF+0/ <1%			· · · · · · · · · · · · · · · · · · ·
	·		K/TE/4	CP/D/.1% - 0			
	. <u></u>		CH[P]4	80/FF/.14.			
	<u> </u>		Feox /FF/4	CP/D/.1% - 0 PO/FF/.1%. HT/FF+DB/-2%			
	@ 81.2	-		Po/FF/3%		-in a	other excaver unit subparell
	- -			PY/FF/14.		<i>t.</i>	C.A. → core just shaved it.
	<u> </u>			CP/FF/1%			
				MT/FE/1%			
	<u>અ.૧- અ.૩</u>	→	CA + E Ox /FF/S	PY/FF+D/1.4%	10-50/m	- V. Isray	lar CA Filled FR
	-		EP/FF+FE/4	CP/D/./4.		- CA 400	us to fill in tousion gasher 1
	 						Mini brx
	86.3-100.2	weak stockwork ->	EP+ AB?+CH/FE/6	PY/FF+D/.5%-2.5% CP/D/.1%-0	25.50/m	FR/20-45-/1 - weakla	mineralized in moner & but
	- -			CP/0/./%-0		lower	mineralized in upper & but a contains more PY but no
		. <u></u>	<u> </u>				tal CP - FE's only 2-10 mms
	91.2-94.3	-9	@/M+FF/6	PY/FF+0/1.5%		-more alter	red appearance W/ some 10-3 of appearing while BRX W/CA -> sullider assic. W/EP aff-
	1		K+AB/FE/S	CP/D/.1%		cm section	S GORDANA WALL BRY LICA
			CA FFE OX /FF/4		1	Fully work!	- Se Color OSSY IN FO - OF

INTERVAL		ROCK TYPE			Film	STRUCTURE	
FROM	10	ROCK TYPE (composition, colour, texture, gram size)	ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	95.6-96.5	same as above 91.2-94.3 m					
	100.2-107.2	traces of 1. WK. stockwork same	- Aug.	less FR + thinks	FE'S &	less alta	
	ļ						
	(c8.3-/∞.7	fault some w/ clay gouge	CH/PT/8			<u>-a</u>	40 cm wide zone of liney clay a 11 pebbles of solid CH affored rock
			CA /FLT/4	ļ		5 mai	peblics a solid CH offered rock
	 		CL/FCT/7			1217 . 2	/:
		· · · · · · · · · · · · · · · · · · ·	FUOX/FF/5				TC contains 2×200 mide Office / inclusions of wall cock
	108.8-104.7-	2 Aty wins - 3 cm wide		PY/FF/2%		VN/201/3	
				CP/14/14.		-	
	110.8-120.7		02 Q1 /PA, FF/6	PY/FF+0/-6%		- qf, a	pears as truncated unlls in the
			GATEON/TF/4	CP/D/.1%		€P rie l	pears as trungated untils in the somes - andy a tem sections he
·			K/FE/3			<u> </u>	<u>-</u>
	121.3-133.3		CP/FF/3	14/FF+0/.4%	25-30/m	FR/30=70*/, -th	in stringers of CA
	<u> </u>	<u> </u>	 	CP/D/Tr	<u> </u>	,	
	125.8-126.5	rubbly some				- doe	s not book like a fauth
	127.2-153.3	V. Groben + Hocky core					

6P 84-7

PAGE 5 OF /2

DRILL HOLE NO. AHGO-1

INTE	ERVAL	ROCK TYPE	ALTERATION		Frim	STRUCTURE	
FROM	10	(composition, colour, texture, grain size)	ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	129.6-130.0	SHE ZONE	CH/P/1	PY/FE+D/1.8%		SHR/30°/2	v. soft by a convoluted mixture of
			CA/ FE/6				CA+CH+K +wallack
	-		K/FE/3				
	13-6-13.7	fault zone w/ gouge	CH +CA+ TOOx/FLT/7			FLT/60°/2	
	139.2-140.4	 	Er/PA+TEHT/6	PY/F 10/.5%			· · · · · · · · · · · · · · · · · · ·
			CAFROX/FF/5				
	@ (40.0	10 cm of picrobox due to numerous El	Filled FR.				
	149.9-150.2	Mineralized CA+EP Juin	EP/PAFF/6	84/FF +D/24.	-	FR/55'/2	nojerity of sulfides in 3 cm "ve in center to possibly also present.
	<u>-</u>		CA/FF/4	PO/FF+0/31/1			in center
	-		EP+ K+AB/FE/4	CP/b/Tr		-3	z possibly also present.
	151,0-153.3	<u> </u>	HF/P/2	PY/FF+0/.7%		- pa	ssible V. weak HF from intrusive
3.3	/63.7	APLITIC SYENTE .	CA/FF/2 (locally 6)	PY/0+FF/.2%		UCTC/501/3 CTC	is sharp but irregular
	<u> </u>	-aphanitic, pinkish grow, v. hard well fractured - mostly rubbly +	CH/PA/2	PO OFF 1.3%.	ļ, <u>.</u>	LCTC rubble	
	<u> </u>	mull fractured - mostly rubbly +					
	-	blocky work section 40cm of godlere					
	14.8-162.2	Fault zone w/ liney clay gouge	CA/FF/7			FLT/rubble/2 wt	Bex of CA matrix
	<u> </u>				ļ		

PAGE 6 OF 12

DRILL HOLE NO. 4490-1

INTE	INTERVAL , ROCK TYPE				Frim	STAUCTURE	
ясы	10	(composition, colour, texture, grain size)	ALTERATION	MINERALIZATION		(Fractures, faults, loiding, bedding, etc.)	Mineralization, type, age, relations
.7	198.1	LATITE CRYSTAL/LITHIC LAPICLI	CH/P/5	PY/FF+0/.4%	10/m		
		TUFF	160x /FF/4	CP/ D/Tr (locally)	, <u> </u>		
		< 10% augite stals in some sections	EP/MIFFIFE/4	PO/ OFFF/ Tr (localy)			
		-same as above 10.4-153.3 HF adjacent	CA/FF/3	MT/D+FF/.14.(/cally)			
		fo CTC, HOCK & + ENGLY to EOH	HF/PA/S				
	NH.2-168.2		SILIC/P/7				-v. hard.
	166.8-67.3	fault your w/ clay gouge	CH+CL/P/9 CA/P/1			FLT/rubble/2	
			\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>				
	0171.1	1cm 84/HT un		PY/FF/4%		VW/30°/3	
				MT/FF/10%			
	174.7 -175.2	fault zone w/ Mirror 10cm goinge	CH/P/7			F2T/rubble/1	
	180.7 -184.4	>	SILIC/P/6	1			BT HE is weaking
			HF/PA/3				
	183.5- 183.9	Lik BRX (crumble BRX)	EP/PA/S			BRX /50°/2	-BRX due to numerous small FR
			CA + FOOX /FF/6				
			CH/P/7				
	@157.6	V. L.K. BRX	CAF TOX /FF/7			8Ex/80/1	
			EP/PA/4				
			CH/P/7				

PAGE 7 OF 12

DANL HOLE NO. AH90-1

					нс	DLE NO. AH 90-1
RVAL	BOCK TYPE	hi temation		Frim	STRUCTURE	
10	1				(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, mations
180.3 -198.1	V. broken blocky + rubbly wy occasional		PY/FF+0/65%			
	small gover of foull garge		CP/01-2754%	-> at both	m of hola.	
195.5-198.1	- >	SILIC / P/L			-fa	of the in case we suffice
		HF/PA/3	-		incl	e 9/3 + HF in core w/ sulfide licule a poss. intr. nearby.
	E.O.H.					
ļ				 -		
						
			_			·
						
ļ. — —				· · · · · ·		
					· · · · · · · · · · · · · · · · · ·	
		<u> </u>	<u> </u>	<u> </u>	· ————————————————————————————————————	
 		ļ		1		
	10	10 (composition, colour, texture, grain size) 180.3 -190.1 V. broken blocky & ruckly by occasional SMALL gree of fault grager. 195.5-198.1 ->	10 (composition, colour, texture, grain size) ALTERATION 180.3 -190.1 V. broken blocky & ruckly by occasional SMALL gree of fault grage. 195.5-198.1 —> SILIC/P/6 HF/PA/3	10 (composition, colour, texture, grain size) ALTERATION MINERALIZATION 180.3 -190.1 Y. broken, blocky t rubbly by occasional SMALL gaze of fault gazge CP/0/.2%4% 195.5-198.1 E.O.H.	10 (composition, colour, texture, grain size) ALTERATION MINERALIZATION PY/FF+D/1,5% SMAll gree of fourth grange. PSSS-198:1 E.O.ff. ALTERATION MINERALIZATION PY/FF+D/1,5% CP/D/.2%4% -> of bottom HF/PA/S E.O.ff.	ROCK TYPE 10 (composition, colow, texture, gain size) ALTERATION MINERALIZATION Frim STRUCTURE (Fractures, faults, folding, bridding, etc.) PY/FF+D/155% SMAll give of fould gauge CP/0/1.2%4% -> at lost on of hold. 4555-198.1 E.O.H.

The second secon

PAGE _ 8 _ OF _ 12

A CONTRACTOR OF THE PARTY OF TH

DRILL HOLE HO. AH 90-1

AH -90-01

				-		PC	ILL I	_ D G		8	amp	le d	ata	
	SAN	IPLE			CORE	RECOVERY	VISUAL ESTIMATES		A	SSAY	RESU	ΤS		
NUMBER	FROM	T O	METHES	. M S.	*/•	AMT, LOST	(% ORE MINERALS)		<u> </u>	<u> </u>			}	
31001	10.4	12.0m			81	0.3m			<u> </u>	<u> </u>	 	ļ	 	
002	12.0	14.0	2.0		85	0.3		;	.		-	 	·	}
003	14.0	16.0	20		95	<u> </u>				.		.	·	
004	160	18.0	2:0		-25	0:1				·	·	- 	 	
005	180	30.0	2.0		_35	0.1			-}		-}	-[-
000	20.0	22.0	2.0		85	0.3			-\	}	-	-	 	
007	22.0	24.0	2.0		_90_	0.1			-{	}	-	-\	 	-
008	24.0	260	20	ļ	95	0.1				 	_		·	
009	260	280	20		85	0.3			ļ		-	-		-
<u> </u>	280	30.0	_20	-	95	0.1	·					-	 	1-
011_	30.0	32.0	20	<u> </u>	90	0.2				-\		-}	<u> </u>	
012	320	340	2.0	-	90_	0.2	<u> </u>	—- -			-	-	- 	
013	31.0	360	2.0		_70_	06	-	~	-	-			 	
014	36.0	_360_	2.0		_90_	0.2	- - 		_			- -	-	<u> </u>
015	38.0	<u>40D</u>	2.0	<u> </u>	100	0.0		— <u>-</u> -1	-}	-		-		\neg
016	400	420	20_		95_	0.1						-}		1
017	42.0	44.D_	20	-i	_ _8@_	0.4	_			-	-	-		-
018	<u> 44.D</u>	460	2.6	-}	<u> </u>	0.2	-		-}		_	_		-
<u>0a</u>	46.0	480	2.0	_\	95	0:1		<u> </u>			 			
020	48.0_	50.0	2.0	_	35	03	<u> </u>		_	-[-
021	_501	2			90	0.2				_			 	
_022	52.0		_20	_	95	0.1		— -				_	_	
023	54.0		20	-		0.3			_				-	
624_	56.0	58.0	2.0		85	0.3	<u> </u>							
-025 026	58.0 50.0	62.0	2.0	_ 	- 40 85	0.3							411-91	

PAGE _9 __ OF _12_

DRILL HOLE NO. AH -90-01

T.O.						DR	1 L L	OG		58	ampl	e d	ata	
	SΛM	PLE			CORE	RECOVERY	VISUAL ESTIMATES		ASS	AY	RESULT	5		···-
NUMBER	FROM	т о	TOTAL	. M.S.	7.	AMT. LOST	(% ORE MINERALS)							<u> </u>
1027	62.0m	64.0~	2.0 m		85	0.3		_	{					
028	64.0	66.0	20n		95	0.1		_ _		·				
^29	66.0	680	2.0		90_	0.2		_ }						
030_	68.0	70.0	2.0		90_	0.1		_					<u> </u>	├
031	70.0	720	2.0		90	0.1	·	_						
032	720	740	2.0		85	<u>0.3</u>		-					<u> </u>	-
033	74.0	76.0	2.0		95	0.1	<u></u>	_]_						-
034	76.0	780	2.0	ļ <u>.</u>	_95_	0.1		-	}_					
035	79.0	800	2.0		90	0.2		_ -						}
036	80.0	82.0	2.0		100	O.D		_		i			ļ	
037	82.0	840	20	ļ	95	0.								-
C)38	84.0	860	20	İ	90	0,2		_ _					ļ	┧──
039	860	88.0	2.0	·	95_	<u> </u>		_ _	\-					-
040	88.0	90.0	2.0	<u> </u>	95	0.1		_					ļ	-{
041	900	920	2.0	<u>!</u>	85	0.3	<u> </u>							
CH2.	920	940	2.0	<u> </u>	90_	0.2		_			 {		·	-}
093	94.0	960	20		95	0.1	<u> </u>	_ -			 -			-
044	960	98.0	10	<u> </u>	85_	0.3	<u> </u>	_ -						
045	95.0	100.0	2.0		95	0.1		_					·}	
046	100.0	102.0	2.0		95	0.1	·	[<u> </u>		<u> </u>		-	-
047	102.0	104.0	2.0		100	0.0	<u> </u>	-						-
048	104.0	106.0	20		95	0.1	<u> </u>				 			
049	104.0	108.0	2.0		90	0.2	<u> </u>							
09	108.0	1100_	20		85_	0.3	<u>-</u>	-						-
رون	ico.o	112.0	2.0		9 <u>5</u> 85	0.)	-							
052	1712.0	1/4.0	2.0		1 85	0.3							AH-80	-01

PAGE 10 OF 12

DRILL HOLE NO. ______

	 -					DF	ILL L	06		5	ampl	e c	lata	
1	S A 2	WPLE			CORE	RECOVERY	VISUAL ESTIMATES		Α:	SSAY	RESULT	\$		
NUMBER	FROM	τ 0	TOTAL METRES	, M.S.	%	AMT. LOST	(% ORE MINERALS)							
		:		· ·				.						<u> </u>
053		118	4 m	<u></u>	90			_			<u> </u>		ļ	ļ <u>.</u> .
054		_120	2.00		90	0.2		-		<u> </u>			·	ļ
055		122			95	0.1	.	-			-ll			ļ
056	122	12.4	<u> </u>	ļ	90	0,2		_[<u>}</u>	<u> </u>			ļ
057	124	126_			৪০	0.4	<u> </u>	_]			_ _			ļ
058	126	_128	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ļ	8,5	0.3	<u>-</u>	_			_ _		-{	ļ <u>.</u>
059	128	120	<u> </u>	ļ	7.5	0.3	<u> </u>			ļ	<u> </u>			ļ
060	130	132_			85	0.3		<u>-</u>			- -			<u> </u>
06/	_/32	134	<u> </u>		75	0:1	<u> </u>				_{		<u> </u>	
062_	134	136_		<u> </u>	70	ე.ს	<u> </u>	_[- 		<u> </u>		_	
063	136	138_	<u> </u>	İ	ზo	0.4	` <u></u>	_{			_		_	
064_	138	140	<u> </u>	<u> </u>	90	0.2					_		_	<u> </u>
065	140	142_]	- E - Z	0.3				.				<u> </u>
066		144	.]		90	0.2	<u> </u>	_					_{	ļ. —
067	144	146	<u> </u>		475	0.1		_		\	- -		<u> </u>	ļ
068	146	148.		<u>}</u>	70	0.6			ļ	. <u> </u>	_	<u> </u>	<u> </u>	
061_	148	150	<u> </u>	<u> </u>	95	O-}		_	ļ	·	_ _			
070_		152	_		91	0.18		_		.				<u> </u>
071_	152	154			90	0.2				.				<u> </u>
072	154	156_		·	53	0.94			l <u>.</u>					
0 73	156_	158_]		90	0.2	· · · · · · · · · · · · · · · · · · ·	_	L		_		_	
034	158	160			15	0.5					<u> </u>			
075	160	162		<u> </u>	63	0.74		_]	 	.	_ .			-
61 076	162	164	<u> </u>	 	70	0.6		_	ļ	-[_		_	
81 077	164	Mele	<u> </u>		78	0.44	<u> </u>		_	1	<u> </u>		111-90	ـــر ـــ ـــ

DRILL HOLE NO. AH-90-01

080 081 082 083 084	5 A M FROM 166 168 170 172 174	164 170 172	TOTAL METRES	. м.s.	008E % 84	RECOVERY.			A S	S A Y	8 F S II I T	S		
51078 079 080 081 082 083 084	166 168 170 172 174	164 170 172		. M S.	–∦	AMT LOST	VISUAL ESTIMATES }		ASSAY RESULTS					
079 080 081 082 083	168 170 172 174	170 <u> </u>			91/	l .	(% ORE MINERALS)							
079 080 081 082 083	168 170 172 174	170 <u> </u>			107	.32								
080 081 042 083 084	172 <u> </u>	172]		95	.1								
081 082 083 084	172 <u> </u>		اا		98	.04								
082 083 084	174	174	V		80	. 40								
084		176			75	, 50								_
084	176_	178			78	04								<u> _</u>
095	178_	180	}	-	95	- 1								_
<u> </u>	180	182			95	- 1								
086	182	184			୫୫	. 24			 					
087	184	_146_		•	95	-1						_		1_
088_	186	188	}		90	.2_								<u> </u>
089	188_	Y()			85	. 3		·						
090	190	_192			80	-4								_
091	199	199_			85	• 3			ı i					1_
092	194	M6.			95	-			<u></u>					\downarrow _
1093	196	198.1	2.1m.		85	-3								↓_
					<u>.</u>					·				
			, ,							·—. ——				_
							_		}	. _				
						_	'							<u> </u>
														_
							,							1_
														1
									ļ]]			4—
		L	<u>L</u>	1		1	<u> </u>		<u>L_</u>	<u> </u>	<u> </u>		111-6	_ئے
PAGE	_'Z '	of 12	-								DRILL H	IOLE NO. Z	ttl YO	/

DRILL SUMMARY DDH AH90-2

UTM N: 6132213mN UTM E: 381172mE GRID N: 87+94N GRID F: 109+20F ELEV.: 1195 m DEPTH: 164.0 m ORIENT.: -46°/150°

Metres (m)

0.0 - 3.6 OVERBURDEN

3.6 - 84.4 MIXED ANDESITE TUFFS

Fine grained, medium green, 1-15% augite phenocrysts,

strong FeOx, moderate epidote and chlorite alteration,
occasional brecciated zone; 0.2%-2% PY, 0-0.1% CP,
trace PO.

4.7-5.4 brecciated: possible albite alteration; 2% PY

11.2-12.6 brecciated: 0.2% PY

18.8-28.0 brecciated: 0.3% PY, trace CP, 0.1% magnetite

56.2-56.5 poss. shear zone: strong k-spar, quartz, epidote and carbonate alteration; 1% PY, 0.4% magnetite

72.5-84.4 weak stockwork: similar to AH90-1; 0.5% PY, trace CP

82.3-84.4 brecciated contact zone

84.4 - 86.5 APLITIC SYENITE

Aphanitic, salmon-pink, well fractured, propylitic alteration; 0.2% PY, trace MoS_2 .

86.5 - 164.0 MIXED ANDESITE TUFFS As above.

86.5-93.2 brecciated contact zone

95.6-97.0 micromonzonite (anealed tuff?)

106.1-106.6 fault with clay gouge

108.6-109.4 fault with clay gouge

116.1-116.7 quartz vein (subparallel to C/A); 1.2% PY, 0.2% CP

123.2-130.1 brecciated: strong chlorite, carbonate, FeOx and moderate k-spar and epidote alteration; 1% PY,

155.1-164.0 weak stockwork (as above); 0.6% PY, 0.5% PO, trace CP

161.5-164.0 weak hornfels

164.0 E.O.H.

										HOLE NO. AH90-2
PRILLING CO	BOISVENU	LOCATION SKETCH	DEPTH	TESTS DIP ANGLE	AZIMUTH	1	STARTED: /	3/9/90	PROJECT:	10154
		· • · · ·	COLLAR	-46	150-	DATE (COMPLETED:	19/9/90	N.T.S.:	93N/7
		'	121.3	-41		COLLA		1195m	EOCATION.	
						NORTH	ING: 613	2213mN2 STM	87	+94 N sgrid
						EASTIN	38	1172 ME S		+20E
,						AZIMU		ດ *		
						DEPTH	<u>/64</u>	om	DATE LOGO	10-12/9/90
OLE TYPE	DD H					CORE	SIZE: BQ		LOGGED 8	ν: ωρ
INTE	AVAL	AOCK TABE		ALTERATION	MINERALIZATK	· ·	Felm	STAUCTURE		REMARKS
FROM	10	(composition, colour, texture, grain size)			MINCHALIZATIO	,n 	<u></u>	(fractures, faults, folding, beddi	ng, elc.)	Mineralization, type, age relations
0	3.6	OVERBURDEN			•					
٥	5.5	CASING					<u> </u>			
3.6	84.4	LATTE TAKLA TUFFS (tixed_CII/I				30-100/m	FR/all angles/3		
	·	-numerous thin fragmental/full	Aceau Feor	FF 7			<u> </u>			
		funits with the occasional breezis	ted CA/F	F/3			<u> </u>			
<u></u>	 	some by strong Feax		AIFE/3			<u> </u>			
	·	-blocky + rubbly core wy occasi	onal	·			-	-		•
·		small some of clay-rich you	<u>ge_</u>				 			
	3.6-4.7			(-	01/57 / 7	.,	 			
	3.6-4.1	LATITE AVOIDE OF LAMILLE FIXE.		FIPAIS	PY/FF10/.2:	/,	 	-		· · ·
 -	-	- med. green far 2-15 Yo (2-5mm			CPY DJ (C		 . 	 		
	 	angite pheno's noccosmal lay	CH/P		 		 			
	1	sized frag. of aug. 17		146/5	 		 			
	1	· · · · · · · · · · · · · · · · · · ·	- PEOX	7775	 	· 	·	·		<u>·</u>
	47-5.4	BRX LATITE LAPILLI FRAGNE	UTA / FP /PA	vec/1	PY/FF 10/2	9-	 	Bex/-/2		
		-civiler act dies to above tout a	MYO PHIA	<u> </u>	1,1/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ •	 		Δ.	8? = cloar/greyis/white hard
·····		-similar exchanges of above but a little	leally Fenry	FE/S	 		†			or 1 grey s x/ orace , more
	'	Tarter - I high later - And II at time	CA FI				<u> </u>	<u> </u>		DRILL HOLE NO. AH 90-2

羅剛						ł K	DLE NO. AH 90-2
INTE		AOCK TYPE (composition, colour, texture, grain size)	ALTERATION	MINERALIZATION	Film	SIRUCTURE	Mineralization, type, age, relations
FROM	10		7.2			(Fractures, faults, lolding, bedding, etc.)	
ļ <u>.</u>	5.4-6.7	LATITE AWDITE CRYSTAL TUFF	FEOX /FF/3	PY /FF/.3 %.		at icto	PY/4% CP/1% in CP rich
		-f-ngr, ned green 1-7% (2-5mm)	EP/PA/I		 		bout on EP un subparated foc. A
<u> </u>	ļ	augite plano's - rel. Fresh appearance	Q1/P/5		 		
	6.7-7.1	LATITE FS + AUG. CRYSTAL TUFF	EP/FE/2	PY/0/.2%	\	OCTC /35 / 3 - SOME	is are pinkis (-red (Feox slain or topa-
		similar to above 54-6.7 m but w/ 5-10	Teox /FF/3			LCTC/85 / 3 - SOME (
		fs (zoned) stals (plag?) 1-4mm.	CH/P/5		[
	7.1-7.3	LATTE AUGITE CRYSTAL/LITTHIC TUF	<u> </u>	PY/0/1%			
		-similar to 5.4 - 6.7m but by vecasional					
		lithic fragment					
	7.3-7.B	LATITE FS + AUGITE (RUSTAL TUFF					
		-same as also we @ 6.7 - 7.1 m.					
	7.8-11.2	CATTLE AUG. & LAPILLI FRAG. TUFF	EP /FE +PA/3	PY/FF/.4%			
		-Mod. BRX in some agens	CH/P/7				
		- v. similar to above 3.6-4.7 m	FOON/FF/3				
		- lapille of ong it + little logilli					
·	11.2-126	BRX LATTIE AUG. TO LAPILLI FRAG.	EP/PALFELFE/6	PY/0+FF/ . 2%		FR/60°/2	
			Feox/FF/5			BRX/-/2	
			K/FE/4				
			CA/FF/4				
a			CH/1/B				
g E]			<u> </u>	

· .·

PAGE 2 OF 13

DRILL HOLE NO. AH 90- 2

INTE	NVAL.				1	STAVCTURE	Γ
ROM	10	AOCK TYPE (composition, colour, texture, grain size)	ALTERATION	MINERALIZATION	Fr/m	(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	12 6-16. Z	CATITE CRYSTAL TUFF	EP/PA/1	PY/D+FF/. 2%	<u> </u>		<u> </u>
		fgr. smilarto 5.4-6.7 m but no aug.	CH/P/5	, , , , , , , , , , , , , , , , , , , ,			
	ļ <u> </u>	enytals - V. rubly + blocky	FeOx1CA/FF/3				
	14.6-15.6	· · · · · ·	CL/FF/3			-rubble	w/ abunchingt CL FR coating
	16.2-18.8	LATTIC AUG. TI CAPILLY FRAG. TUFF	CH/8/7	PY/FF/. 2%.			
		same as 7.8-162 m - Y. Why BRXX	CA/FF/3				
	-	, , , , , , , , , , , , , , , , , , ,	EP/PA/Z	1	. 		
	18.8 - 28.0	BRX LATITE AUQ. TI LAPILLI FRAQ	EP/PAIFE+FF/6	PY/FF+0/.3%.		BRX/-/2	
		-same as above 0 11.2-12.6	fH/P/8	SP/0/Tr			
			(<u>H) P/8</u> K/FC/Y	Ct/0/Tr MT/0+FF/11%			
	- 		CA IFEOx /FF/4	<u></u>			
	28.0-37.6	LATTE AUG CRYSTAL LAPILLI FRAG.	CH/P/7	PY/FF+D/.3% -	locally	2%	
		-same as 16.2 + 18.8 m	CA+FOX/FF/5		/		•
		U. Willy brox W/ some gones of far	EP/PALFF/S	T	1		·
		v. why bree w/ some gover of for xtal tuff w/ no any plano's or bree	R/FE/4				
. .	32.1-32.4	rubble zone of gts/AB Ly some incl.	Q+ A8/P/9	PY/0/.4%		rueble	-poss. dyke
		& TAKLA			ļ		·
	**	NB. * * ALL ROCKS NOW					
		BUNG CLASSED AS UNDIFF. TAKLA					
		TUFFS w only alt + structure					
]	being differentiated - same unit fr	pm 3.6 m.				

PAGE __3 or __13

DRILL HOLE NO. AH90-2

INTE	NVAL	ROCK TYPE			Film	STRUCTURE	<u> </u>	
FROM	10	(composition, colour, lexture, grain size)	ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)		Mineralization, type, age, relations
	37.5-37.6	>	Ot3/FF/5	PY/FF+0/.4%	ļ			
	ļ		EP/8A/5	PO/01FF/ .1%				· ····
			CH/P/G					
	42.2-43.0	→	CP/PALFELFE/S	PY/FF+0/1%		FR/10°/3	- on K/	FR w/ sulfide + other Fe
			K/FF/4	MT/FF+D/.3%				AND THE SECTION OF TH
			FeOx + CA FF/3	CP/O/Tr.				
			C4/1/5		·			
			BL/P/2					
	45.2-52.9	altered core or patches of Minor box	EP/PAIFF/5	PY/FF+D/1%	 	Brx/-/,	BRX male	ix orchides all all-numera
	 		CH/8/6	CP/FF/.190 -> to:	ards bot	for of interval in large spars	e elots	->Ef + K also in frage.
	<u></u>		K/FE+M+FF/S	80/FF10/Tr	<u> </u>		- loc	ally ale in BRX matrix
			012 FF/2					
	548-52-7	rubbly + blocky						
	56.2-8.5	slear some w/ all?	K+4, +EP/FF+FE/8	N/FF+D/1%		SHR/50"/2	- no fabric	but all FR + valt at
			CA/P/7	MT/FF/-4%			Same	
			FeOx/FF/5					
	@ 57.1	good lapilli fragmental (aug Ti) kerture		PY/FF+D/.3%	 			
	ļ	, , , , , , ,		PO/FF+0/1%				
	ļ			<u> </u>	<u> </u>	}		

PAGE 4 OF 13

DRILL HOLE NO. AH90-2

会等と							HOLE NO. 4490-2
	ERVAL	ROCK TYPE (composition, colour, lexture, grain size)	ALTERATION	MINERALIZATION	Film	STRUCTURE	
FROM	10	<u> </u>				(Fractures, faults, folding, bedding, etc.	c.) Mineralization, type, age, relations
 -	61.0-66.2	<u>→</u>	EP/RE+FF/5	PY/FF+D/1.2% PO/FF+D/.7%			- Most sulfide FF are @0-30' foc.
<u></u>	-		K/FE+FF/3	PO/FF+D/ .7%			
	- 		AB(BL?)/FE/3	CP/ D/Tr			
	-		reox/FF/z				
	68.5-72.1	blocks, due to fracture	TeOx/FF/S			FR/10-60°/2	
	72.5-84.4	WE Stockwork (similar to Allgo-1)	CH/P/5	PY/FF+0/.5%.	-50/m	FR/5-60./2	FE's up to lan.
	-		EP/PA/3	CP/O/Tr			
	<u> </u>		EP+AB/FE/4				
	-		CA+FeOx/FF/2				
	76.6-79.8	>	EP/FF/6		~/03/m		-sullide content seems to drop
			K/FE'/5				THE TOTAL PASSES AND AND AND AND AND AND AND AND AND AND
	82.3-84.4	v. allored ct BRX zou	сн/р/в	PY/01FF/.34.	 	BRX /-/2 -F	eOx/CL FF an up to 1 cm thick
	- 	- (ubby + blocky	CA+ FOX +FF/6	10/AT/19.			orasinal man of Table mills
	ļ		CL MATRIX/4			640	y occusional 10 cm of Table pebble. an Feox/CL Matrix
<u> </u>	- 	<u> </u>	K/FE/4]		C. CH + GL Near CTC.
	-		CA/P/3				
84.4	86.5	APLITIC SHENITE	EP+CL/FF/5	PY/0/.2%		UCTC /904/3	
		-aphanitic, salmon-pink (mod. dk)	CA/FF/2	HOS2 10/Tr		LCTC /701/3	
	-	-well fractured + rubbly					
		-promilitically aftered		1	1	 	

DRILL HOLE NO. 1490-2

PAGE __S___OF __/3

INTER	RVAL	ROCK TYPE			Film	STRUCTURE	
FBO#	10	(composition, colour, texture, grain size)	ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
6.5	164.0	MIXED TAKLA VOLCANICS	CH/e/6	PY /FF10/.67.) CP/FF10/.1% \(\) MT/FF+0/.2%)			
	. 	-same as 3.6-84.4m - + tulfaceous	TEOXICA/FF/4	CP/FF10/.1% >1.	cally gie	Ver %	
			EP/PAHFF/3	HT/FF +0/.2%)	, ,		
		<u> </u>	K/FE+FF/Z				
	•65-93.2	altered de brx zona				SUCK/90°/on FR & 75° to C.A.	- cubble + bhate
		-sme as above @ 82.3-84.4m.					
	95.6-97.0	micro diaritic locking no medles /25.	CH/6/3	PY/0/.1%	<u> </u>		
		micro district looking my medles (25- 35 %) of matrics (66?) + the other	Fe0,/FF/3			<u> </u>	
		65-75% white fs/plag?) - no cles ->				- 1056-	white know + BT offer N
		arealed Slow/atal tuff from center					white keper + BT offer p
		of unit? - v. weakly perphyrilic					
		-poss. a felice tuff, rel. Larre					
<u></u> [·
	96.0.97.0	rubbly	<u> </u>	· ·	<u> </u>	ļ	
 [983-986	>	CP+AB/PNFC/4				
	103 10.3		CALED / LEE / 3			 	
			CA+FECX/FF/3 slightly Wacked.				
	101.1-101.5	BRX 7012	Feox + CA/FF/6	PY/ FF/. 2%.		Rx/-/2	
 !	-		CH /P/8				
<u>-</u>	104.7	good lithis lapille orgetal tuff			 		

PAGE 6 OF 13

DRILL HOLE NO. 1190-2

INTE	RVAL	ROCK TYPE (composition, colour, tenture, grain size)	ALTERATION	hallage to the time of	Film	STAUCTURE	
пом	to			MINERALIZATION		(Fractures, laulis, folding, bedding, etc.)	Mineralization, type, age, relations
	105.2-105.6	WE BEX wringular patchy all-	EP/PA/S K/IE/3			Bex/-/1	
	. ;	<u> </u>	K/1E/3		ļ <u></u>		
···-	ļ <u> </u>		FEOX+CA/FF/2				
	106.1-106.6	FLT zone w/ clay gonge -> WK BRX	CHICL/P/9	NONE		F4T/-/2	-no distinct gouge zone -ju
	<u> </u>	+ pebblic	CATEON/FF/6		ļ		pervasine clay wy pellles.
	1086-109.4	FET zom (save as above)	CH+CL/P/B	PY/D/Tr		FLT/-/2	-clay gonge 109.0-109.1 m.
			CATEOX/FF/6				
			EP/IM+FE/3				
	@110.0	colute + brown carb. vn.		NONE		VW/45/3	- brown carb = siderite? (Fe carbon
	113.7-115.2	->	CH/1/8	PY/MID/.2%			
			CH/1/8 EP+AB?/M/L	HT/O/TC.			
<u> </u>	·		FOOD + CA/FF/3		<u> </u>		
	115.6-116.0	rubble zone	CH/0/6	PY/FF/.3%		FLT/-/1	-occasional petale of gly present
	-	,	CP/FF1FE/4		· · · · ·		
	116.1-116.7	gtz 4n (2cm)	TEOX + CA /FF/4	PY/1710/1.2%	 	VN /15/3	-white/clear + a BT/Ot, mix
			CH/P/5	CP/D/-7.%	}		
				CP/D/-7.% HT/FF+D/.3%	-		
	- 				 		

PAGE 7 OF 13

ORILL HOLE NO. AH 90-Z

INTE	RVAL	NOCK TYPE			Film	STRUCTURE	
FROM	10	(composition, colour, lexture, grain size)	ALTERATION	MINERALIZATION		{Fractures, laults, loiding, bedding, etc.}	Mineralization, type, age, relations
	16.7-118.2	tubble + clay	CH/P/B	PY/FF+0/.7%		- la	the recovery in clay zone.
		0	FEORT CA/FF/3 EP/PN/3	CP/p/.15%			7 -13
	-		EP/PN/3	CP/D/.15% MT/D/.2%			
	119,0-123. 2		CH/P/7	PY/FF+0/.5%	<u> </u>	- 9(2	assimply to + ca @ 35 h.C.
	<u> </u>		EP/PALFE/4	CP/O/Tr			
			CA+FEOX/FF/5	CP/ 0/Tr HT/0/.1%	 		
·	@(22.3	good augile To flow (?)	CH/P/7		<u> </u>		
	 	-large enhadral pyroneus					
	123.2734.	where Bex w/ alt =	Сн/р/8	PY/FF+0/1%		BRX/-/I	-pelly appearance w/ 60x+Cx
	<u> </u>		EP/PAIRE/4	CP/0/.15%		Suck/30/2 on FRE 20 to C.A.	matric
	<u> </u>		CALFEDY/FF/6	MT/FF+D/. 2%		Suce/90/2 on FRE 65° to CA.	-occusional of +cam as al
	ļ	<u> </u>	K/FE/4				
	(26.9-127.3	str. BRX + clay subble				Brx /- /3	
	132.2-155.1	relatively unaffered except for short	CH/p/4	PY/FF+0/.5%	20-40/1	-100	ally sulfides greater except
	.ļ. <u> </u>	relatively unaffered except for short same FE's.	CA+Frox/FF/1	CP/0/.1%		for	ully sulfides greater except
	<u> </u>		EP/PAIFFIFE/4-9	PO/04FF/.4%	\		
		<u> </u>	AB/FE/Z_	ATT/ DIFF/.1%		Y	
	-		K/FF/2				
	140,4-141.5	→	EP/MIFE/9	PY/FF/.1%			
	(KICA/FF/2	PO/FF/TY	1		

PAGE _8. OF 13

DRILL HOLE NO. AH 90-2

哪個							HOLE NO	
INTERVAL		BOCK TYPE	ALTERATION	MINERALIZATION	Felen	STRUCTURE		
FROM	10	(composition, colour, facture, grain size)	<u> </u>	_		(Fractures, faults, folding, bedding, etc.) Mineralization, Type, ago	ige, relations
	145.2445.9	similar to EP rich zone @	EP/PA+FE/B	FY/FF10/.8%	<u> </u>			
	<u> </u>	140.4-141.5m.	9/2 /FF/2	PO/FF+D/TE	<u> </u>]		
			CA/FF/I	MT/0/.2%				
	\ <u>-</u>		CH/P/3					
	155.1-164.0	-more altered section - similar	CH/P/5	PX/FF10/.6%	50-75/m	FR/10-800/2	-aug. Ti flow (poss.	frag.)
	.]	to 132,2-155,1m but more affored	EP/PAIFFIFE/6	PO/FFAD/.5%	<u> </u>			
		similar to we stockwork in AH90-1		CP/D/Te				
	<u> </u>		K/FEIFF/2	HT/0/-2%				
	<u> </u>		AS/FE/L					
	161.5-164.0	→	HF/PA/I				-v. wh. patch IV and	ded fo
764.0		€.0.1						
	· 				-			
	*	NB * This hole seems to be	cross-autling sta	Vigraphy selatin	to AHT	9-/		
					 			
							······································	
	<u> </u>			<u> </u>	1	§		

PAGE 9 OF 13

DAILE HOLE NO. AH 90+ 2

S A M P L E					DRILL LOG				sample 'data					
					CORE	RECOVERY	VISUAL ESTIMATES		ASSAY RESULTS					
NUMBER	FROM	10	TOTAL	M.S.	%	AMT. LOST	(% ORE MINERALS)							
31094	3.6	6.0	2,4m		95	• [
095	6.0	8,0	2.0		95	• (
096	න	10			90	٠ ٦								
<i>০</i> ৭γ	10	12-			90	+ 2								
098	12	74			85	• 3	,							
099	14	16	Ψ		80	. 4								
31100	16	18			හිර	• 4								
10 [/8	20			95	ا د								
102-	20	22			90	• 2								
103	22_	24		<u> </u>	90	, 2								
104	24	26	<u> </u>		90	. 2								
105	26	2.8			90	. 2								
106	2.8	30			90	• 2_								
107	30	32_			90	12			ļ					
108	32_	34			90	. 2								
109	34	36			90	12								
Billo	36	38			95	• 1								
_ 117 _	38	40			95	. 1								
112-	40	42_			/∞_	0								ļ <u></u>
113	42_	44	_		/∞	0								
114	цу	46			90	. 2		,]						ļ
115	46	48_			100	o								<u> </u>
116	48	50			95	• ,		<u> </u>						
	50	52			85	• 3								ļ
llg.	SZ	54		<u> </u>	95	11		 				ļ	ļ	
8) 119	54	56	_i	<u> </u>	100		<u> </u>					<u> </u>	L	

. .

.

PAGE 10 OF 13

DRILL HOLE NO. ---

						DR	ILL LO	G		sa	mple	data	
	SAN	PLE	·-·-·		CORE	RECOVERY	VISUAL ESTIMATES		A S S	Y R	ESULTS		
NUMBER	FROM	70	TOTAL	. M.S.	7.	AMT, LOST	(% ORE MINERALS)						
S/170	560	<u>58-0</u>	2.0m		95								-
121	5%0_	60-0			/00	0							ļ
.122	(0.0	(50			100					i_			
	67.0	_ଧ୍ୟେତ			95								lacksquare
124	_6ત.૦_	66.0			100	o	,	-				<u></u>	-l
125	_((G_	_680_			/00	0							<u> </u>
138	(8.0				95	./				_			
(27	_70.0	72.0			100		·	<u> </u>					.
128	77.0	_74.0_			100	0		- -	·				-
	74.0	760			/00		<u> </u>	ļļ_					
130	760	780			100	0							- _—
131	78-0	20.0			700	0							<u> </u>
737	_80.0	-25.0-			75	./							
3_	\$7.0	84.0			70	•2							
	54.0	86.0			80	.4							
135	-86-0	58-0	-		85	.3							
134	88.0	1			100	0	,						↓
	90.0	92.0			70	,2							_
138_	92.0	94.0			100	0							
139_	94.0	96.0		-	95								_
121	9(.()	98.0			90	.2							
	98.0	1000		<u> </u>	100	0					,		
142	100.0	(07.0		- 	100	0							
143		1	- 	1	90	1 2							ļ. ·
199					100	0							_
81 145		10.8-9	1		95	او	3	<u> </u>		i.		AU COS	

PAGE 11 0F 13

DRILL HOLE NO. 14.90-2

AD						HO	ILL	LOG		samp	le	data	
	SAN	PLE			CORE	RECOVERY	VISUAL ESTIMAT	E S	A S S A	Y RESU	LTS		
NUMBER	FROM	т о	METRES	. M.S.	7/.	AMT. LOST	1% ORE MINERAL	. s)					
81141	1080	_110.Q_	20m		700							i	
147		1120			100		· · · · · · · · · · · · · · · · · · ·						
148		14.0		ļ	/00								
149	1140	1160	<u> </u>	<u> </u>	100	<u> </u>							
	11(0	1180			80	4	<u></u>				_[
151		120.0	_		100	<u> </u>					<u> </u>		, ,
157	120,0	1270		<u> </u>	/00	0	.,]	
(23)	_122-6	124.0			90	2	.,. <u></u>				<u> </u>		
154		124.0		ļ	100	<u> </u>							
122	-1260_	128.0	<u> </u>		/00	0	·						<u> </u>
		130.0	<u> </u>]	95	9/	<u> </u>				_		<u> </u>
	130-0	_/37.0_		<u></u>	100	<u> </u>							
3	_/37.Q.				100	_ 6							
127		1360	<u> </u>	<u> </u>	9.5	_•/							<u> </u>
160	1360	<u> </u>	<u> </u>	ļ	100	0							
[6]	/38/0	1400	·		/00								
167.	1400	1920			/00	_0_							
163			.\ <u></u>		100	<u> </u>							
164	1440	1960	<u> </u>		95	• /							
165	_1460	1480	<u></u>	ļ	100	0							
165					100	0							
(C7					100	٥							
168	7250	1240	ļ		95								
169	1540	1500			100	0							
	128-0-	1.58.0	<u> </u>	<u> </u>	_75_		· .				_[<u> </u>
C 171	11580 - 12	160.0			1,/00	0	<u>.l</u>					0//800=	<u> </u>

PAGE 12-___ OF _13___

						DR	1	LOG		eample	data	
	S A	мρцε			COHE	RECOVERY	VISILAL ESTIMATE	5	A S S A Y	RESULTS		
NUMBER	FROM	TO	TOTAL METRES	. M S.	7.	ANT, LOST	VISUAL ESTIMATE 1% ORE MINERAL!	s)				
81/72	1.600	1620.	7:0	ļ	/00	0						
81/13	162.0_	1610	_2.0	<u> </u>	95							ļ
			.							_		ļ
	 -,	ļ 	 			-			· · · · · · · · · · · · · · · · · · ·			-
	<u> </u>				-							 -
		· .	 		H		<u> </u>			_		+-
	-		 		·					<u> </u>		
			-		 		- -			_		\dagger
			1		 							1
· · · · ·				,			-					
	·											
			<u> </u>									↓
			<u> </u>	ļ 								
			<u> </u>		· 				i	_		
·= -	ļ	<u> </u>	 	ļ <u>-</u>	 			-				┼
	<u> </u>	ļ	·	 	· 		-	 -				- -
	· - 	 - · · · · · ·	-	 	<u> </u>			- -		- 		╂─
 :	 	 		-	<u> </u>	-		 -		_		+-
		 	-		-						-	1
	ļ	\ 	 	 	1	<u> </u>				_		\dagger
	·			1			-					
				1	1	1		İ				

PAGE 13 OF 13

DRILL SUMMARY DDH AH90-3

UTM N: 6132545mN UTM E: 381000mE GRID N: 90+99N GRID E: 107+46E

ELEV.: 1250 m
DEPTH: 202.7 m
ORIENT.: -45°/256°

Metres (m)

- 0.0 3.1 OVERBURDEN
- 3.1 20.6 MONZONITE CROWDED PORPHYRY

 Medium grained, medium grey, blocky and rubbly,
 sections of syenite to syenomonzonite, weak sericite,
 chlorite and k-spar alteration, occasional quartz vein
 with coarse clotty CP; 2-5% PY, trace CP.
 - @ 11.6 quartz vein: 2% PY, 5% CP
 - 12.3-14.0 fault zone: 3-6% PY
 - @ 14.9 pegmatitic quartz/k-spar/chlorite vein: 3% PY
 - @ 15.5 1.5% CP over 10 cm
- 20.6 23.8 AUGITE PORPHYRY LATITE/ANDESITE
 Light creamy green, fine grained, moderate k-spar,
 sericite, chlorite and carbonate alteration: 2% PY
- 23.8 40.7 HYBRID ZONE

 K-spar altered augite porphyry latite and aplitic syenite, moderate chlorite, sericite and carbonate and strong k-spar alteration, occasional purplish mineral in fractures with calcite (fluorite?); 0.2-7% PY (avg. = 2%), 1% PO (locally).
- 40.7 43.5 SHEAR ZONE Strong chlorite and carbonate alteration; 20% PY, 0.1% MoS₂ (locally 0.5%), 0.1% CP (locally 0.4%)
- 43.5 95.5 MIXED MONZONITE AND SYENITE CROWDED PORPHYRY Similar to above, moderate k-spar and weak sericite and chlorite alteration; 3% PY, trace CP, trace MoS₂ (locally).
- 95.5 137.7 HYBRID ZONE

 Irregular mix of above syenomonzonite, Takla (aphanitic and black) and aplitic syenite, moderate k-spar and moderate-strong chlorite and carbonate alteration;
 0.2-3% PY.
 - 124.5-128.4 shear zone: strong chlorite, carbonate and clay alteration, no visible sulfides
 - 128.4-131.2 brecciated
- 137.7 202.7 AUGITE PORPHYRY LATITE/ANDESITE TUFFS
 Minor brecciation and hybridization; 0.1-8% PY,
 0.1% CP (locally).
 - 181.0-181.8 shear zone: 8-10% PY, trace CP(?)

語し									HOLE NO. <u>AH 90 - 3</u>
HILLING CO	BOILVEND	LOCATION SKETCH	DEPIH	TESTS DIP ANGLE	1	ATE STARTED: 19	/04/90	PROJECT:	10154
			COLLASI	-45	256°		21/09/90	N.T.S.:	13.0/7
		<u>'</u> [4.191	-440			250m.	LOCATION	
		[,		2545MN ZUTM	9019	19 N) CRIN
							xomE }	107+9	19 N 3 CRID.
		[ZIMUTH: 256			
					1		7m.	DATE LOGO	BED: 72-24/9/90
OLE TYPE 5	ÞИ					XORE SIZE: 138		LOGGED B	
INTE	ЛVAL	ROCKTYPE		VATION	100000000000000000000000000000000000000	Fefm	STRUCTUR	E	REMARKS
FROM	70	(composition, colour, texture, grain size)	ACIEN	UK STON	MINEPALIZATION		(fractures, faults, folding, bed	Sding, etc.)	Anneralization, type, age refations
	3.1	OVERBURDEN	-						
0	3.7	CASING							
3:	20.6	CROWDED PORPHYRY MONZON	ME SER/P/		14/0/2-5%	50.75/m		-0 <i>cca</i> ;	ional ytz un of coarse do
		- med grey wk seriate texture 10-15% matrice (BT)	MC CH/P/1		GP/D/Tr				
		10-15% Malics (BT)	K/FE/I					-all-	increases w/ dorth.
		two sericite all? of class opens	s CA/FF/1						
		non-magnetic blocky + fully . Numerous small irregular microfile	ω <u>/</u>						<u> </u>
		Memerous small irregular Microfile	reluce						
		- most bealed.							
	ļ <u>-</u>	- more aftered sections (40 cm-1 m)	2.			.			
	ļ	secuite + symmenzonite.			· · · · · · · · · · · · · · · · · · ·			<u>-</u> -	
	011.6	3 cm gty vn.			CP /FF/5%	-	1/0/450/3		
		83	·		PY/FF/2 %.				
	12.3 -14.0	FLT gone , cubbby	SER/r/2		PY/FF+0/3-64	100 150/m			
		, , , ,	CH/P +FF		1				
			CA+CL/F						

PAGE ______ OF _______

INTE	RVAL	AOCK TYPE			Frim	STRUCTURE	
FROM	10	(composition, tologra tenture, grain size)	NOTARBIJA	MINERALIZATION		(Fractures, faults, folding, bedding, etc) Mineralization, type, age, relations
	14.0-20.6		CHICR/P/2		25-100/m		- more altered appearance - mostly Fi
	·[K/FE/1	<u> </u>			+ assec, alta
	ļ <u> </u>		CA/FF/2		<u> </u>		
		\			<u> </u>		
	@14.9	Q13/ksper/CH regnatite un (sen)		PY/FF+0/3%	-	VN/50°/3	CH affer HB?
	@ 15.0	irregular Icm clot of BICHAPY			- 		-aller HB?
		-poss. Als as well.					
	@15.5	large clots of CP again		CP/DB/1.5% Com	ar locm		
	(seperation crowded perphyry		PY/D/4%			
	·	- some testures - slightly more fractured.	<u>-</u>	_			
@	19.6	large (4 x1cm) Not of Kapar					
		-pors. red_oxide_staining.					
	19.6-20.6	sycumon zo mile -> pinhis & green, aphtic	CH+K/P/4	PY/0/1.5%	100-150/-		
		-poss. 2° Espar all 5	CA/FF/3				
0.6	23.8	AUGITE & LATITE	k/p/7	PY/FF+0/2%		cres are v. indistinct	-pervasine kall- grob. dea to
		-light creamy ageen for mod CA all	41/8/4				coalescing tracture envelopes.
		-light creamy green, far, mod. CA after 5-12% (1-2mm) ausile pheno's.	SERICA/P/S				
	<u> </u>	-well fractured + Lealed W/ CA	CA/FF/3		1	1	

PAGE _ 3 OF /3

DRILL HOLE NO. <u>AH 90-3</u>

							HOLE NO. <u>Aft 90-3</u>
	AVAL	ROCK TYPE	ALTERATION	MINERALIZATION	Fi/m	STAUCTURE	
FROM	10	(composition, colour, texture, grain size)	ALIECTION	MINERACIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
<u> </u>	40.7	HYBRID ZOWE	k/P/8	PY/.2-7% (2%)			-ellorite alt= incr. + kspar aft=
	<u> </u>	- Kaltered aug. Flatile + aplitic siprile	CH /P/2	PO/0/1% (locally)	<u> </u>		decreases by depth
	<u> </u>	-similar colour to above 20.6-23.8 m	SER/1/4			-{	om ~35.0. fH -> 7
	.	- It creamy pink/green.	CAFFIPS			- py	uple nemeral in FRQ 24.9 +39.9m
	ļ	far to a planeter.	Feox/FF/2 -	- towards bottom of	interval		
		- Sejentic comes could be V. Kallered					
	<u> </u>	latiles					
		well fractured + healed - one your					
		(sen) \$25.2m of liney clay pelbles in					
		a fault gouge					
		local purple unital in fractures w	·	· .			
		collecte - Lander than CA but scrutch	`				
		→ fluorite?					
40.7	43.5	SHEAR ZONE	CH/P/9	54/0/20% (up to 1052/0/.1% (locals,	30%)	SHR/201/2	-BT assoc. W CH in large
		- v. chloritic + sulfide rich w/ large	CA/P/7	11052/01.1% (10	cally to s	7%)	-BT assoc. W CH in large
		closs of CH - poss. aftered latite		CP/D/.1% (localL	t. 4%in	clots)	
		-str. pervasine CA alta				LCTC/25 1/3	
43.5	95.5	HIXED HONSONIE CRONDED BRAHYRY +	k/FE/3-6	PY/D+FF/3-5% -	s fo . 2-	1% from 51.0m	-SER all = come to incr. shel
		SHEWITE CROWDED PORPHYRY.	CH/FF/I	CP/D/TC			-SER all seems to incr. shifty near bottom of interval.
		-sadatunal cic's blun kspar	SER/P/I	CP/D/Tr MoSz/D/Tr. (loc	16		
		allered mongonites mangonites +sipulti			1.7,2		
		(v. kspar alleved?)	, , ,			LCTC/50°/2 in	distinct
		similar seriale texture as abone			<u> </u>		
		-pinkish grey mgr			· · · · · · · · · · · · · · · · · · ·	1	

•

•

PAGE 4 OF 13

				•			HOLE NO. <u>A 1/90 - 3</u>
	AVAL	ROCK TYPE (composition, colour, texture, grain size)	ALTERATION	MINERALIZATION	Fr/m	STAUCTURE	
FROM	10					(Fractures, laulis, lolding, bedding, etc.)	Mineralization, type, age, relations
		(43.5-95.5 cont.)				<u> </u>	
		-occasional Table nonolith inclusion up					
	-	to 15 cm (most small)		ļ	-		·····
	-	portion -> ~ 51.00 syemite		-			
]	- 	portion -> ~ 51.00 symitic		-	 		
		become more promisent		-	. 		
ļ	-	-well fractured + Lealed woccosions	1	-			
		subly section			 		
	52.8-53.1	-brx by many, clasts in a CH+CA			 	Bex/-/2	
		"SER? matrix					
	@57.8	-10 cm examite dyke of diffuse but definite che's -> same seriate			-	VN/40°/2	
		but definite che's - same seriate					
<u> </u>	-	lexture as host -s late stage (?)			ļ		
· · · · · · · · · · · · · · · · · · ·	62.6-95.5	rudby + booky core	EP/?/1				er eplacing - 0.5% of plag.
	@ 71.1	- →>	EN/FF/I		<u> </u>		
95.5	137.7	HYBRID ZONE					
		-irregular mix of signomons, of					
		above Tasla volc Caphanitic + Was					
 		HYBRID ZONE -iregular mix of sequences, of alone, Taska volc. (aphanitics Was and aphtic signific	<u> </u>				
				ļ			
		<u> </u>	<u> </u>		1		. <u> </u>

-

PAGE 5 OF 13

The second secon

.

k ep						н	OLE NO. Att90-3
INTE	RVAL	ROCK TYPE	ALTERATION	A STATE OF THE STA	Felm	STAUCTURE	
FROM	70	(composition, colour, feature, grain size)	ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	95.5-101.3	generally a discrete my of crowded	CH/P/2-7	PY/0/·2-3%.			1/3% in CH rich porphyry
		perphysy + Table w recognizable	CA/FF/3-7		<u></u>		
		CTC's -> porph is kaltered w	SER/1/1				
	<u> </u>	CHISER + CA - Takla's black +			<u> </u>		
	<u> </u>	appainter of numerous irregulars			<u> </u>		
	 	discontinions CA/FR.					
	@98.6					SHR/20/1(11/0 vn) - CH	I rich porph. w aphte spente
	101.3-115.9	a more "smeared" mixture of golitiz	CH/P/2-6	N/FF10/2-3%	100-200/m	-Cit incr.	until 2/05.5 where ever looks
		sepuite + Talla (latite?) -> similar to				like u.	all allered crowded people (V
	İ	about hybrid zone 023.8-40.7 m.	SER/P/2-4			+ k also) -> dk green.
		- ninor brax + clay gonge	CA/FF/4				
	105.4-1056	clay zones (1.3 cm wide)	CAICH/P/8			SHR/90°/3	
	107.3-1076					- purp(a mineral in FF W/ LA aga
	en.5	-5				SUCK/75" on FR@ 50" fo C.A.	· · · · · · · · · · · · · · · · · · ·
	112.8-112.9	SHE W/ BRX + clay (lines)	CA/P/9	84/2/1%		SHR/601/3 -6R	x forgs of Lybrid comp.cy.Ca.
	 		CH/P/7		ļ	8Cx/60°/3	, 3
	115.9-137.7	1. alterest hybrid of numerous clay shears (10-30 cm wide)	C4/P/7-9	PY/FF+D/-2%		- Ca (elta assoc, up CH alta
		slears (10-30 cm wide)	CA/P/S-8	CP/O/Tr (locally)]		

.

PAGE _ 6 OF _ 13

.

INTE	RVAL	ROCK TYPE			Frim	STRUCTURE	
FROM	10	(composition, colour, texture, grain axes)	ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, retations
	124.5-128.4	SHR SOME W/ Strong CHICL	CH/P/4-10	NONE VISIBLE		SHR/801/3	- mon-magnetic
	<u> </u>	black my 1-2cm "scians" + clasts of	CL/1/8-9				-mod, Bex helow
	<u> </u>	lighter open chloritic signile + Tabla.	CA/PIFF/8	-		ļ	<u> </u>
	123.4-137.7	EP alls introduced.	EP/PA+FF/5				
	128.4 -131.7	mad . BRX my some shearing + CL some				SR×/-/1	
31.7	202.7		c4/P/4	P1/FF+0 .1% -> Te	10-30/m		
	<u> </u>	-occasional lithic fragment	EP/PA+FE+FF/3	MT/0/-2%			
		-1-5% (1-3 mm) aug. pheno's, mard.	CALFF/2 FeOx /FF/1				
	.	to olk green, who to made mag	FeOx /FF/1	<u> </u>	 		·
		some ections appear v. willy foliated		<u> </u>			
	137.7 -/67.5	stronger alta	ED/PAREAFF/S	PY/FFID/Tr			-Otz sometimes assoc. w EPall=
			K/PAITT/2				occasional patch of kall-
			CA/FF/2				
	144.8-154.8	wh BRX Moccosional mod, BRX come	EP/PAIFFIFE/6	PY / FF10 /5-1.54.		8RX/-/1+2 -st	ronger CA + more PY in wad ARX zon
	ļ. <u> </u>		CA/FF+M/2-5				
· · <u>- · · · · · · · · · · · · · · · · ·</u>				<u> </u>	<u> </u>		······································
	153.4	EP allored is show trackylic					
		texture @ -50° t. c.A.	ļ	ļ		·	
	 	ļ		<u> </u>			

			•				HOLE NO. <u>AH90-3</u>
INTER	JAVE	ROCK TYPE	ALTERATION	MINERALIZATION	Felin	STRUCTURE	
FROM	10	(composition, colour, texture, grain size)	ALTERNICA			(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
!	156.4-2027			PY/FF+0/1% (2.5%)	rally)	-there so	ems to be a str. pref. orient ay Es
				(P/FF+D/-1%			@ 30-40" but xentling each other.
		· · · · · · · · · · · · · · · · · · ·		MT/FF+0/-4%			· · · · · · · · · · · · · · · · · · ·
	(68.2-/69.7	WE BRX W/ both Tadla + aphile squite	CA18/6			6RX/- / 1	, ,,,,
		Frags (or. y. Kallered ToNa?)					
	(68.7-182.3	hit hybrid zone (?)	EP/FE+PA+FF/4	PY/FF+0/1-3%	20-30/m.		·
<u>. </u>		-mostly Tabla but occasional patch +	EP/FE+PA+FF/4 K/FE+FF/3	MT/FF/.7%			
 -		some of k alt + sejentic dyking > occasional frag. of intrusine - loading	CH /P /4				
		Doccasional frag. of intrusing looking	CA/FF/1				
		material -> stock working similar to					
		AH90-1 but more kall? around TR					
		Talla is poss. a lapith fragmental.			<u></u>		
	181.0-181.8	Mieralized str zone wy glz -v.uni Go	CH+K/P/4	PY/P/8-10% CP?/D/Tr		SHR/60°/3	
		+ v. Sf rong	SER/ P/2	CP?/0/Tr			
		- aphiliz signife & Talla bands are	CA/FF/2		<u> </u>		
		barely recognizable	ai,/P+FF/3				
			EP/FEIFF/I		 		
e	/84. 0	CTC blum xtap tuff + aug. Tiflow(?) flow is x for y 2-5% plew's				CTC/50-700/2	-3-5% PY in flow unit
		flow is x far of 2-5% plens's				- v. urregular but sharp	-no amyqdules
		-tuffit for w/ 30-40% aug. playo's					
	ļ	possibly flowing an inclusion /frag.			\		

PAGE 8 OF 13

				·		HO	LENO. AH90-3
INTE		ROCK TYPE (composition, colour, texture, grain size)	AL TERATION		Erim	STRUCTURE	
FROM	TO		ALTERATION	MINERALIZATION		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	@ [87.0	good lapille fragmental					
	201-2027	good lapilli fragmental broken + blocky core	<u>-</u>	<u></u>			<u>-</u>
		I					
202.7		E.O.H.		<u> </u>	<u> </u>		
<u> </u>					_		
					- -		
					· -	<u> </u>	
					ļļ		
				ļ	. i-		
					_ -		· · · · · · · · · · · · · · · · · · ·
	.				-l		
					<u> </u>		
	·			J			
				<u></u>	_		
	<u> </u>		ļ		_}		
				<u>·</u>			

PAGE 9 DE

						DP	1 L L	LOG		8	ampl	e d	ata	
	5 A	MPLE			CORE	RECOVERY	VISUAL ESTIMA	76.6	A S	SAY	RESUL	1 \$		
IU#BER	FROM	то	METRES	M.S.	7.	AMT. LOST	1% ORE MINER				Ţ I		I	T
81174	3.1	6.0	2.9		75	.7								
175	6.0	8,0	2.0		90	.2-								
176_	ප	10			90	. 2-								
177	10	12_		<u> </u>	65	- 7		<u>'</u>	<u> </u>					
178	12	14			85	, 3					<u> </u>			
179	14	16			90									
31180	15	18	<u> </u>		80	,4]_
181	18	20	Ψ		100	o								
182	20	22_			Joo	6								
183	22	24			90	.2								_[_
184	24	2.6			95	- !			<u> </u>					
185	26	28		<u> </u>	90	٠2_								
186	2.8	30			90	-2								
187	30	32_			96	2								
188	12	34			90	• 2						,		
189	34	3 4			95	• 1					}			
81190	36	3.6	_		75	.5							}	
191	38	40		<u> </u>	100	0					_			_[
192_	40	42_			95	-1								
193	42	44			90	. 2.					}			
194	44	46		}	95	•1								
195	46	48		}	80	.4								
196	48	50			95	•]								
	50	52			95	• }								
198	52	54	_	-	85/	•3			_		_			- -
81 199	54 . /o	Sb /3			70	L6	<u> </u>				<u> </u>		4H 90-3	Щ.

the state of the s

PAGE 10 OF 13

						DA	ILL L	OG		sample	data	
		M P L E		·	CORE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESULT	S	· -=-
NUMBER	FROM	10	TOTAL METHES	. M.S.	7.	AMT. LOST	(% ORE MINERALS)					Τ
81200	56.0	58,2	2.0m		100	_ 0						┪━
201	58	_6a			90			_ -				
202_	60	62			100	0		_ -				
203	62	64			85	3						+
204	64	66			85	3	· · · ·					+
205	66	68			85	• 3						-
206	_66	_70			85	•3		_ -			 -	-
2.07	70	72.		·	_85	• 3		_	-	-		-
708	72	74			90	. 2_	****	_		— -		·-
7.09	74	76			75	•5		-				
8/2/0	76	78			95	• 1						-}
7.11	78	80			80	4		. -		 		
212	80	82	·		95	-1	· · · · · · · · · · · · · · · · · · ·		-·			
217	82	84	- 		90	• 2.	<u> </u>			 -		
214	84	86	·		70	.6		_			· - · · - · · · · · · · · · · · · · · · · · · ·	-}
215	86	88]		75	.5		-				
216	88	90			95	-,-		- -				
217	90	92	 		90	.2.		- ¦···- -				-
2/8	92	94	 		85	-3		-[
219	94	96	· — · · · · · · · · ·		100		·	- -		—		-
81220	96	78			/00		•	- 				
221	98	100			96		<u> </u>	- -				
212	100	102			100		·		<u> , _</u>	_		
213	102	104	-		75		<u>-</u>			_		-
224_	104	101			85	. 3	ļ .	-	-			
215	106	108	 		90	.2		-				-

DRILL HOLE NO. All 90.3

						DA	ILL	LOG		8	ampl	e d	ata	
	SAA	A P L E			CORE	RECOVERY	. VISUAL ESTIMA	TES	A 5	SAY	RESUL	T S		
NUMBER	FROM	τo	TOTAL METRES	. M.S.	7.	AMT LOST	L% ORE MINER	AL 51						
81226	108.0	110.0	2.0 m		100	0				•				
227	110	112			90	. 2								
228	112	114			100	•								
229	пу	_1(6			85	- 3								
8/270	116	118			85	•3.							I	
231	118	12-0			eo	- 4	- -							
171	12.0	122	<u>_</u>		90	<u> </u>								
233	122_	124	<u> </u>		80	• 4								
234	124	126			95	•							····	
235_	126	128			85	3								
236	12.8	/3 0			95	-1								
237	130	_172_			90	• 2								
738	132	134			90	• 2.	<u> </u>							
239_	124	136			85	.3								
81 २५०	136	138			100	Ó								
241	178	140			95	_ •)								
242	140	142			100	0						_		
247	142	144			100	0								
244	144	146			95	•1								
245	146	148			95	•1								
246	148	150			80	.4			!				<u> </u>	
247	150	152			95	. • 1					<u> </u>			
248	Isz	154			. 95	,]	<u> </u>							<u> </u>
249	154	156			95	1								
81 250 251	156	158			95	-1								
	158	/60	<u> </u>		95	}	<u> </u>			<u> </u>				

PAGE 12 OF 13

ORILL HOLE NO.

(III)			·			PO	ILL L	O G	5	ample	data	
	SAL	4 P L E			COHE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESULTS		
NUMBER	FROM	10	TOTAL METHES	. M.S.	7.	AMT. LOST	(% ORE MINERALS)					
81252	160.0	162.0	2.0 m		100	0	•					
253	162	164			95	.1						
254	164	166			95	1						
7.55	_166	168			100	0						
2.56		/70			95	• 1						
257	170	172			-95	-1_						
258_	172	174	V		100	0						
259	114	176			90	•2					_	
81 260	/76	178			95	. }						
26!	178	180			100	_ 0						
262	/80	182]	100	D						
263	_162_	lay			75	- }				}		
264	184	186			100	0						
765	186	881			95	• 1						<u> </u>
266	_/88	140			100	D					•	
267	691	192			95	-1						-
268	192	194			/00	0		- <u> </u>				
269	194	196			100	_ 0						
8(270	196	118			100	0						
2-71	198	700			90	-2						
81 272	200.0	202,7	2.7 11.		90	•3						
	,											
					1							
				<u>. </u>			<u> </u>	L				<u> </u>

PAGE 13 OF 13

DRILL HOLE NO. ______

DRILL SUMMARY DDH AH90-4

UTM N: 6132545mN UTM E: 381004mE GRID N: 90+99N GRID E: 107+50E

ELEV.: 1250 m DEPTH: 168.9 m ORIENT.: -599/0919

Metres (m)

0.0 - 3.7 OVERBURDEN

- 3.7 31.5 HYBRID ZONE

 Augite plagioclase andesite porphyry flow with medium grained phenocrysts 30-60%, moderate chlorite and epidote alteration; and medium grained, equigranular to subporphyritic monzonite, slight to moderate propylitic alteration; 0.4% PY.
- 31.5 67.5 ANDESITE/LATITE

 Aphanitic to medium grained, moderate-strong chlorite and moderate epidote alteration; 0.2-8% PY, 0.1% CP (locally).
- 67.5 86.3 HYBRID ZONE
 As above, also moderate potassic alteration locally;
 1.2% PY, 0.3% CP (locally).
- 86.3 126.0 MONZONITE

 Medium grained, equigranular to subporphyritic, slight to moderate sericite and potassic alteration,
 0.2-2% PY; with deformed and chloritized intermediate volcanic (93.2-102.2m), 0.5% PY, trace CP and
 trace MoS₂.
- 126.0 130.6 FAULT ZONE

 Brecciated and sheared intermediate volcanic, strong chlorite and moderate epidote alteration; 0.2-2% PY.
- 130.6 143.5 AUGITE LATITE PORPHYRY FLOW

 Medium grained augite phenocrysts 15-35%, strong chlorite and moderate epidote alteration; 2.5% PY, trace CP (locally).
- 143.5 145.3 QUARTZ APLITE DYKE
 Aphanitic, weak carbonate and epidote alteration;
 0.4% PY.
- 145.3 168.9 AUGITE LATITE PORPHYRY FLOW

 As above, ductile and brittle deformation common,
 moderate to strong propylitic alteration; 3% PY,
 trace CP (locally).
- 168.9 E.O.H.

								•		н	OLE NO. AH 90-4
DRILLING CO	Bois VEDU	LOCATION SKETCH		DEPTH COLLAR 8.9	TESTS DIP ANGLE -S9 *	AZIMUTH ESS* CP()*	DATE O	OMPLETED: ELEV.: /- NG: 6/37 3: 38/6	1/9/40 22/9/90 250m 2545m N J UTM DO4m E	PROJECT: N.T.S.: 9 LOCATION:	10154 13N/7 9N GRID
HOLE TYPE	D DH						DEPTH:	168.9) m	DATE LOGGE LOGGED BY:	23/ // /0
	RVAL	ROCK TYPE (composition, coldur, lexistre, grain size		AL.	TERATION	MINERALIZATK	ON .	Film	STRUCTURE		REMARKS
FROM	3.7	OVERBURDEN	*)	<u>-</u>					(fractures, faults, folding, bedding	, etc }	Mineralization, type, age relations
3.7	31.5	VOLCANIC-INTRUSING tilythe -aug. plag latite porph. Flowid Mag. plano's 30-60%, mad. CH non to mad. magnetic + mag. equiscanular to subporph mongonite, slight to mod. per alta, non magnetic; all w	?) W/ ! +EP	C: CB/1	4FG+DB/4 FE+FF/7	A: PY/DIFF/	7.2%				
	3.7 -13.1	Honzomite, as deserbed ab	pire.	A: CH/P B: EPIC	/¥ ::B/FF/3	A: PV/0/.2%			-Broken core : 3.7-5.8 -CB vn Zem there /30	6.4-67	7.7 - ? .2m .
	13.1-22.3	Latite porphyty, as described		A: CU/ B: CP/F C: CB/F	6105/4	A: PY 0/.2 %			CB with along brithe	Fracturas	randomly oriented, common
	22.3-23.6	Honzonite, as abone							fault gouge at cont	acts.	

PAGE | OF 10

DRILL HOLE NO. 1490-4

			,			H	DLE NO. AH 90-4
INTE	RVAL	ROCK TYPE (composition, colour, lexture, grain size)	ALTERATION .	MINERALIZATION	Fifm	STAUCTURE	
FROM	10					(Fractures, faults, lolding, badding, etc.)	Mineralization, type, age, relations
	28.6 -25.1	catite porphyry as abone	<u></u>	PY/DHEF/1%		-mostly broken core - LCTC after	ed gradational over 4cm
	· 		·			Trachitic locally /50-80/2 -	touture
	25.1-31.5	Hybrid zone, 70% Monz / 30% lat		PY/0+FF/.7%		Otz un zem thick /050/3 at	29.5m w/ 4% PY along
	-	- both P	ļ		<u></u> _	FR parallel to un.	
31.5	67.5	ANDESITE - LATITE	A: CH/P/7	A: PY/ D+V /1.2%		PY> 7%: 37.2-37.7 m (3%, FF)	
		ANDESITE - LATITE - CAY Strong propylitic alta	B. EP/PIFE+DB/6	6: CP/DB/-1%/xal	<u> </u>	(2% W/ .4% CP), 46.8-47.3m	(5%, V+D) 65.3-65.4m(5%, D)
	.	- aphanitic to Mgc, generally equigran.	CICB/PIFF/5		,	66.4 -66.5 m (5%,D)	
		mod to str. CH mod pervasing EP				-broken we /rubble: 54.3-54.5 S	5.8-56.3, 57.2-57.6,58.5-58.8
	ļ <u>.</u>	mal magnetic, .2-8% Pr w/ local				60.4-60.6.61.2-62.4.65	.7-662 67.0-67.5.
	-	concentrations (10%, . Sm) in +					
	-\	adjacent to CB/FR, 1% CP locally	<u> </u>	<u> </u>	-		
	42.5-48.2		A: CH/P/7	A: PY/0/2%		CP assoc. W EP.	,
·	-		B: EP/ DBIFF/7	8: CP/08/-4%	 		· · · · · · · · · · · · · · · · · · ·
	46.8-47.3	CB- 9/3-grante vos W Pr.	A: CB/V/8	A PY/D+V/8%		Vns /45 /3	
67.5	86.3	VOLCAUIC-INTRUSIVE HYBRID	A. CH/P/6	A: PY/DIFF/12%		-PY>2%: 77.2-78.5 (4%, 3	17. cp. n),79.0-79.9 (15%.V)
	\ <u>—</u>	as above, marang. plag. latite	B: EP/OBIFF/5	B:CP/D+FF/3% 1	calle		
		porph. + mgr monzomte mod.	C: CB/F6+FF/4			-broken core/rubble: 71,2-71.6.7	73.8 -74.4, 74.7 -76.7 ,78.4-74.4
		locally, mod magnetic locally		<u> </u>		- purple-real colouring to CB+ Fs	locally - fluorite?
		1.240 PY 3 Yo CP (locally, race)					
l			I	<u> </u>	L .	!	A110- 11

. . .

PAGE _ 2 ____ OF _/O

然即							DLE NO. <u>AH 90-4</u>
181	RVAL	ROCK TYPE	ALTERATION	MINERALIZATION	Film	STAUCTURE	
FROM	10	(composition, colour, texture, grain size)	ALTERATION	i		(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	77.2-78.5	<u>-</u>		A: PY/D+FF/4%			
	_			13: CP/D/-3%			
36.3	126.0	HONZONITE					
		-mgr, equigram. to sub porph, slight to mod. SCR + K all non-magnition of 2-2% PY/D; local inclusion of	A: &R/P/4	A: PY/DIFF/ .7%	,	fuldspars zoned locally	
		to mod. SER + K all non-magnitic	B: K/FE/4 locally	5: CP/DIDB+FF/.3%	(oceth,		
		.2-2% PY/D; local inclusion of	C: CHIPHFE/2				
	<u> </u>	int. volc. rock W/ str. CH all=	 				
		+ str. ductile deformation; also				_	
	<u> </u>	culfide vn (see be (ow), P+HoS,			<u> </u>		
	-	present up to .3% locally	 -	-			
	86.3-92.4	Monzonite, as above.	A: 502/P/T	A. PY/0/2%			
		3	B: K/FE/2		ļ		· · · · · · · · · · · · · · · · · · ·
	92.4-93.2	Honzonite, slightly foliated, which	A:SCR/P/Y	PY/0+FF/2%		siz-CA Filled FR/05°,15°/2,	assoc. w/ CP.Mos, auting for
			B5 CH/P/3	CP/ DIFF /.3%		at 4872	·
	_		CK/FE/Z	HOS2/FF/-14.			
	93.2-102.2	Deformed + alleged int. volc.	A: CH/p/7	A: PY/O+V/.5%		-foliation/45°-50%2: CB-gh clearly cutting foliation	unlls .5-1.5cm. thelpso
••••		xenolite or screen mod may.	B: CB/V/4	B: CP/V/Tr		clearly cutting foliation	assoc. W/ CP+ Hosz
		,	C K/P/3	C: Hose/V/Tr	ļ	, , ,	
· - ··	102.2-111.1	Mongonite , as abone	A. 5ER/P/4	AL PY/DIFF/15%		locally Kspar porphyritic	
			8: K/FE/3	B: CP/FF/TC		- brukencon /rubble:102.3-102.7	106.0-106.2, 106.4-106.5, 107
			C: CB/FF/3			107.9,101.0-107.5,110.0-	110.5. CP: .5%. @108.1m

INTE	RVAL	ROCK TYPE		}	Film	STAUCTURE	Ì
FROM	то	(composition, colour, texture, grain stee)	ALTERATION	MINERALIZATION		(Fractures, laults, folding, bedding, etc.)	Mineralization, type, age, setations
	$(a_{i}, j - t\eta_{i}, 3)$	PY vn, 6 cm thick	A: CB/V/7	A: PY/V/60%		PY-CB-Qtz vn/40-/2	
	111.3-1260		A: SCR/P/4	A: 87/01FE/ 1%		-broken core /rubble: 14.7-111.9, 14	5.0-14,4
	ļ	rubble; more aplifie near LCTC	B: K/P/3	B: CI/V/Tr		dete South anna	
	ļ		C. CB/b/3			-cp in . sem thek gh-aph6 un	1201/3 (1.5% CA 120.9-121
				_		-CP in . Scm these gh-aphilo vi- -CCTC : chill of monzonite dyk	ر؟
126.0	130.6	FAULT ZONE		·			
	ļ <u></u>	Executed + sheared inter. volc. str	A: CH/P/9	A: PY/D+FF/1%	<u> </u>	- 18-aplite un 3.5cm thick /40	0°/2 @ 130.2
		CH + Mod. EP alla non + shitty	B: EP/+/6				
		CH + Mod. EP all non + shiftly	C: (8 /8+FF/3				
130.6	143.5	AUGITE LATITE PORPHYRY FLOW(?	A: (H/P/B	A: PY/D+F/3%		Play apparent in groundar	ass locally not acconfuated
	<u> </u>	mar augite 15-35%, str. CH & macl.		8: CP/DB/Tr		by alt?	
		EP alt - non magnetic 2.5% PY,					<u> </u>
	· 	Tr. CP locally = rase					
	135.7-1358	<u> </u>	A: EP/U/7	A: PY/D/.4%		EP vn /em /05°/3	
	 	· · · · · · · · · · · · · · · · · · ·	S: (4/P/7	8: CP/ 18/TT.			
143.5	145.3	QUARTE-APLITE VEW	A: CB/FF/3	A. PY/b/.4%		Chloritic latile inclusions 14	5.7-143.75 143.9-144.2
		white-gink apparitie, slight	B: EP/DB/3	, , , , , , , , , , , , , , , , , , , ,			
	<u> </u>	fractured winelusions of latite (as					
	<u> </u>	above) un regretic . 4% W diss.	<u> </u>				

PAGE 4 OF 10

						но	LE NOAH 90-4
INTE	4	ROCK TYPE (composition, colour, taxture, grain size)	ALTERATION	MINERALIZATION	Frim	STRUCTURE	<u> </u>
FROM	10	[MINEMACEATION		(Fractures, faults, lolding, bedding, etc.)	Mineralization, type, age, relations
145.3	168.9	AUGITE LATITE PORPHYRY FLOW (?)	A: CH/P/7	A: PY/D1 Fr/3%		213-aplity-CB VIS: 135.6-135.65,	
	ļ	commin, malitoste. propylitic ultimore	K: EP/DIDBIFC/5	B: CP/DB/Tr	<u> </u>	brille fractures randomly oriente	1 4 4 4 4 4 4
	, 	commin, mal to str. propylitiz ult? non	C: CB FF/4	— — — — — — — — — — — — — — — — — — —		FP was 1 at 1	" Comman
		magnetic, 3% 18 diss. + alone fractures			\ <u> </u>	EP vns & pateles common 160,0	~/68/0
		magnetic, 3% 17 cliss + along features			 		
		_	·	 	\ 		
168.9		E.O.H.			·		
· - •					 -	<u> </u>	
				 	- -		
				 	<u> </u>		
- -				ļ <u>.</u>	· .		
			·		ļ		-
			<u> </u>			·	
						-	
							
	- 				·		· · · · · · · · · · · · · · · · · · ·
·	· · · · · · · · · · · · · · · · · · ·						
				·	·		
	_					<u> </u>	
					 	·	
				 	 		
				<u> </u>			
							····
	·		<u> </u>				
 ,					<u> </u>	<u> </u>	
						<u> </u>	

PAGE <u>S</u> OF /O

AHSO.	١
-------	---

	AH50-	4				DF	I	LOG		sam	ple	data	
	SAM	PLE			CORE	AECOVERY	. VIŠUAL ESTIMAT		A 5 S	AY RES	VLTS		
NUMBER	FROM	10	TOTAL METRES	. M S.	9/.	AMT LOST	(% ORE MINERA	LS]					
8/273	3. 8	6	2.2		80	0.4	-						,
274	6	В	7	[.	38	0.3						· - · · · · · · · · · · · · · · · · · ·	
2.75	_ 8	10]		85	0.3							
2.76	10	_12			10	٥٦							
272		<u></u>			50	0.2					_		
278	. 14	16	<u> </u>	<u></u>	35	0.3							
279	<u>{_b</u>	18	<u> </u>		85	03							
81280	8	_70	<u> </u>	ļ	50	0.2							
281	_20_	72			30	Qျ							
282	٦.١	كإ	_	<u> </u>	છુડ	0.4	<u> </u>		<u> </u>				
283	24	76	<u> </u>		75	<u> </u>							
784	76	_ Z.X	.		10	0.ጉ							
<u> 285</u>	23	30	<u> </u>		85	u3							
286	30	35	<u> </u>		טר	<u>0.٦</u>						1	
2a7	32	34	<u> </u>		15	<u>aı</u>							
288	31	76			50	U.L							
289	36	<u> 38</u>			10	<i>0.</i> 2							
81290	38	4 p	<u> </u>		65	<i>U</i> .3							
291	40	4૨	 		90	ሀ.ጌ							
292	<u> 42 </u>	५५	 		55	ULI							
293	ધ્યુ .	46	<u> </u>		w	U							
294	4 6 th	48		<u> </u>	_w_	0			<u> </u>				
275	48:	. 50	<u> </u>		55	0.1							
296	50_	_2.5_	-	ļ	50	ur.							
297	5° 2	<u>54</u>	<u>"</u>	ļ	30 30	0.4			<u> </u>	·			- <u></u>
81273	- 7	1.36	<u> </u>	<u> </u>		0,4	<u> </u>		<u>l. </u>	<u> </u>		110 - 1	<u> </u>

PAGE _______ OF ______ 10

ORILL HOLE NO. AH'10-1

A	IJ	Ç,	n-	4
73.	7	Э.	630	7

(ED)	AH90-	4				DR	ILL L	OG	5	ample	data	
 		PLE			CORE	RECOVERY	VISUAL ESTIMATES		ASSAY	RESULTS		
NUMBER	FROM	10	METHES	. M S.	7.	AMT LOST	(% ORE MINERALS)					
81299	56	55	7.		ခွဲပ	QY				·		
81500	_58	60			130	હ્ય						
301	_60	62			87	0.3		.				
302	_ <i>b</i> .7	64	.		75	08		_				
303	64	_64_	<u> </u>	ļ <u>.</u>	Bo	<u>a`i</u>	<u> </u>	-		<u> </u>		
304	<u> 66</u>	68			છ૦	a4		_				
305_	_68	_7o	<u> </u>	ļ 	85	رن		_				
306	_70	_72_		İ	40		<u> </u>	_			[
307	72_	_73	<u> </u>		40	az	·	_		<u> </u>		
348	74	76	. [કું	<u> </u>	·					
329_	76	78		 	55	0.1	<u> </u>	-				
_a1310	78	_ 80 	_	[75	0.5	·	-[
311	<u> 60 </u>	हर	- -		75	0.5		-				
312	82_	- ६५	-		160	0.7_	<u></u>	-		<u> </u>		
313	8·c	86	-	<u> </u>	100			_		\\		ļ
3,4	86	88	-{	<u> </u>	IND	. 0	·	_\		 		
315	ନ୍ଥ	40	- -		70	0.6	-	_	[ļ . — — · ·
3/6	90	52	-		90	<u> </u>	- 	_		·		
	<u> </u>	94	-		90	0.2	_ 	_		 -		-
5/8	94	96	-	ļ-—	85	0.3	·	_		 		
319	46	_52		İ	80	0,4	- 			 		
81 320	98	100	_	\ <u></u> -	45	0.1	-	-		 		
321	100	102		·[45	0.3	-[
327_	102	104	-}}		95	0.1		-		 		
325 81324	106	Log		·	35	0.3				-{		

PAGE __ 8 __ 0F _ /0

DRILL HOLE NO ANGO-4

AHGOY	
ata	

	AH90-	4				DR	ILL L	DG	5	ample	data	
		PLE		_	CORE	RECOVERY	VISUAL ESTIMATES		A 5 S A Y	RESULTS		
NUMBER	FROM	10	METRES	MS.	%	AMT. LOST	(% ORE MINERALS)					
81325	108	110	2.		90	0.2						
81326	110	112			90	0.2						
81327	112	114	. _	. <u></u>	55	0.1						
81218	114	116	ļ		90	0.2						
81749	116	118	.		55	<u>0. </u>]	<u> </u>		<u> </u>
81770_	118	120	.		্ বন্ধ	0.1		}				
33i	120	1.5.5			40	0.7		·				
3.3%	122_	154	.		45	0.1		<u> </u>		ļ		
333	(ЪЧ	126	ļ[·	95	0,[_				
734	159	เรย			80	0,4	·	·				
335	128	130	.		85	0.3		_		.		<u> </u>
316	130	132			95	0.1	<u> </u>	-		<u></u>	<u> </u>	<u> </u>
7371	135	134			55	0.1 .		- ` -		. <u></u>		
738	134	136	<u> </u>		90	0.2		_		.		<u> </u>
335	136	13 6	ļ <u> </u>		90	0,2_		- -		.		
340	เรช	140	 		90	0.2	\ <u></u>	-		ļ		<u> </u>
341	140	145		-	90	0,2	·			 		<u> </u>
745	142	144	 	ļ	95	0.1	·	-\- 		·		
3 43	144	146	- ├		95	0.1	ļ	- 	· · · · · -	·		
349	146	148	·\\-		95	01		_		<u> </u>		
· — · — · · · ·	148	150	-	ļ_ 	100			-ł		-		ļ
346	150	125			85	0.3	-	_		- 		
317	124:	154	 	ļ 	90	0.2-		_		- 		<u> </u>
\$	156	156	 	 	85	0.3		-		<u> </u>		
81350	123	160	1-1-	<u> </u>	50.	<u>g3</u>	<u> </u>	-}	<u> </u>	-		·]

PAGE 9 0F 10

DRILL HOLE NO. AMGO-4

						·					<u> </u>		ANGO	ч
2 (m)	C 11613	"				DR	ILL	LOG		8	ample		ita	
7000	AHGO	M P L E			CORE	RECOVERY	VISUAL ESTIMATE	s	ASS	AY	RESULT	<u> </u>		
NUMBER	FROM	70	TOTAL	. M.S.	7.	ART, LOST	VISUAL ESTIMATE [% ORE MINERALS	3)				- 		
81351	160	162	2		85	03			-					
352	162	164	-		40	0.1_ 0.3			\ <u></u> -		ļ	 }-		
353	164	166	-		85	0.3			.		{			
८।उऽप	166	168.9	1.9m		95	0.1	<u> </u>	{	.		ļ			
0173	<u> </u>	+ '	-	}									——-}	
		† -·												
	 										·		—— -	
			-				<u> </u>		. -		 -	———-}-		
	<u> </u>	-									-	}-		—
			-						<u>-</u>		-			
		-}							_		-			
	-{				-1	\					<u> </u>			_
	- 	-		-	_						_}	 -		
		-							_ .		_			 -
			-						_		_		· · · · ·	-
			-	-	-								 	
		_	_	-	-						_ -			
	-	_	_	-	-∤						_			- -
·-·	 		_			-	-				_			
		_					-i							
	_}	_\		_{			-							 —
	_}				_		-					_		1_
				_										1_
							_							-\-
	_				⊪								<u> </u>	
					∦—		_						·	

PAGE 10 OF 10

DRILL HOLE NO. ANSO-1

DRILL SUMMARY DDH AH90-5

UTM N: 6132545mN UTM E: 381585mE GRID N: 91+13N GRID E: 113+30E ELEV.: 1183 m DEPTH: 170.0 m ORIENT.: -45°/150°

Metres (m)

0.0 - 1.9 OVERBURDEN

1.9 - 148.0 AUGITE PORPHYRY ANDESITE/LATITE FLOWS & DIORITE/MONZODIORITE HYPABYSSAL SILLS Medium grained augite phenocrysts 15-60% and subordinate plagioclase 5-30%, moderate-strong propylitic alteration, minor fault zones with brecciated ± sheared, chloritized volcanic/intrusive rock; 0-5% PY, up to 0.4% CP (locally).

148.0 - 170.0 MONZONITE AND APLITIC SYENITE

Fine grained, grey-green biotite(?) syenite and
aphanitic, pink k-spar aplitic syenite, commonly
brecciated and cut by quartz veins containing minor PY
(1%), CP (0.1%) and MoS₂ (0.1%,locally).

170.0 E.O.H.

				•	T	· , 					NO. AH90-5
DRILLING CO	BOISVENO	LOCATION SKETCH	1 	DEPTH	TESTS DIP ANGLE	AZIMUTH	l		23/9/90		16/54
		• 1	ľ	OLLAR	-45	150*	COLLAF		24/9/90	LOCATION:	3N/7
			170	N 0.0	-113		HTRON		183 m		
		ļ.		 	ļ	-	EASTIN		132545MN SUTM		113 N GRID
			}		ļ —	-	AZIMUT	28	81585 ME	1/3	730 6
			<u> </u>		·		DEPTH:		70.0 m	DATE LOGGED:	26/9/90
HOLE TYPE	PPtl					_	CORE		3 là	LOGGED BY:	CTB
 · ·	ERVAL			1	<u>'</u>	l		Fr/m	STRUCTURE	<u> </u>	REMARKS
FROM	10	, ROCK TYPE (composition, colour, texture, grain s	ze)	∥ ~	TERATION	MINERALIZA	TION		(fractures, faults, folding, bedding,	elc.)	Mineralization, type, age relations
<u>ک</u>	1.9	OVERBURDEN		1							
1.9	148.0	ALCO ME LATTIE PORPHYRY	FLOWS	A: CH	/P/7	A: PY/DIFF	+DR/1.5%				
		4 HYPA BUSSAL SILLS .			PIDR+FE/5	B: CP/DIDE			1 40 low .		
·		ugr ang. pheno's 15-60%.	t sub -	c: cs	144/3				<u> </u>		
		ordinate play 5-30%, mal.		D: K/	FE/3						· · · · · · · · · · · · · · · · · · ·
		propulitic alta (cu, EP. 6 sser		 					1		
		shightly to mod magnetic.	local						<u> </u>		
		Mines brecciaters /shear zones	,tr =			ļ					
	<u> </u>	5% PY up to .4% CP locally	-rare	ļ						<u></u>	
	1.9-36 0	Auxite divide - avandincit	٠ - ١١/٠	A: CH	le 16	A: PY/OIF	11%		-CP > . 2% : 73-7.4(.	4%) 75.0-	29.0(.3%)
	777 2-19	Mar atthornulate Incall	. AUCOV	8: 0	/FE/6	8: CP/DIDE	1.2%		MINOR CH Shr. Pones 1/	aplite uns	: 12.2 12 6 m 20.4-20.6 , Z3
		enitie moderate propulitie	+ wends	C: K/	FE/4	C: H.S./V	1/tr. 10	kath,	29.0 (W brittle + a	luctile def	: 12.2 12 % m, 20.4-20.6 , 23 crnation)
		potassic alt 1% PY . 1%	CP.						- hypobyssal sill or +	Lick flow	
		Augite divide-mongodiarit mgr, orthocumulate, localle entre, moderate propylite potassic all 19, PY, 2% trace HoSz locally							31.		
				.		ļ			ļ		
		_		 		 :					
	1	1		II				Ţ	ì		

総回						HC	NENO. AH90-5
INTE		HOCK TYPE (composition, colour, lexture, grain size)	ALTERATION	MINERALIZATION	Frim	STRUCTURE	
FROM	10		ļ		.	(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
	360-43.2	Augite latite parphyry: may augite	A : CH /P/6	A: PY/D+FF/.7%		-Qtz vn 3cm/55/2 @ 38.2	
		plemo's 15-30%, mad propylitic+	B. EP/FE+DB/5	3: (P/DR/ .14. /04	/	potassic all adjacent to shear	red fractures + pervasine locally
		potassic all -, non to slightly majortic	C: K/FE+D/4				
	43.2-52.5	Augile diorils-mongadiorile as abour	A: c11/P/5	A: PY/FF+D/1%		- hypathyssal sill or + Liet flow	
		4 Howanulate	6: EP/PIDGIFF/4 C: K/PIFF/3				
	52-55 <u>-</u> 9	Augile latile perphyry, as above	A:CH/P/6 B: GP/P4FE/G	PY/FF+0/-8%			
	55.9-65.3	Fault game: chloritic, sheared + brecciated latite paptyrey, 19614	A: CH/P/8 B: EP/FE/6	A1 PY/0/.1%			
	<u> </u>		C: CR/V/4			-	
	65.3-135.5	Asigile diorite-Monzonile, as abone,	A: CH/P/5	A PY/DIFF/.7%		>2% PY: 73.6-74,5 (3%), 121.1-12	1.2(2.5%, FF) 121.7-121.8(3%, FF)
		orthocumulate, moclerately magnetic	B: EP/P/4				131.2(5%, 11) 1725-135.5(44, 11)
	-	Mod. propylitic alt fr - 3% PY	C: CB/V/3			-Minor shr/brx zones: 73.0-73.1 (seel Lematite along Lawline	
						- locally sub-ophitic	
	<u> </u>	<u></u>				<u> </u>	

PAGE 2 OF 7

ORILL HOLE NO. AK90-5

						н	OLE NO. <u>AH90-5</u>
FROM	TO	ROCK TYPE (composition, colour, texture, grain size)	ALTERATION	MINERALIZATION	Frim	STRUCTURE (Fractures, faults, folding, bedding, etc.)	Mineralization, typė, age, relations
	35.5-148.0	Augite latite perphyry flow?). brax + steared, mod. CH+ EP all2, gfg-CB In + FF, 2% PT predom. in brx matrix	A: CHIP/6 8: EP/P+FE/5 C: CB/FF/4 D: K/FF/2	PS/FEID/3%		PY> ? % · 136.5-136.8(DB117in brx Me CH str/45/2 . W rock flour + (see below)	elrix, 8%). Grayments of applies symmite
148.0_	170.0	STENTE APPLITIC SYENTE BT, Grey-grown BT(?) Syswile, + aphanitic pink typar aphtic symile, commonly bexx + out by gty vas by minor PY(1%), CP(.1%) 1 lb 2 (1% locally	As: CU/FF/3 B: CB/FF/3	A: PY/D/.2% 8: CP/FF/.1% loca C: 11052/V+FF/.1%	(by cathy	- Host prominent fracturing 160% - Kspar aplitic execute cut so + brxx.	/2 jenite: both out by g/3 vns
	159.0-159.6			A: PY/0/. 2%. B: CP/FF(.1%. C: HS. / VIFF/.14.			
	165.0-165.7			A: PY/0/5%. B: Hosz/V/Tr.		-chloritic shear "mineralized"	
	165.8-16.2		EP/P/S			CA un 2 cm/60/2 166.0	
	168.0-168.5	118 syemily -grante -5% q1, as primary constituent					
170.0		E.O.H.					

PAGE _ 3____ OF _ 7____

ORILL HOLE NO. __AH90-5

Α	HS	,	~
/1	/ I E	$^{-}$,

	Anno					DA	1 L L	06		s	ample	•	ata	
	SAN	PLE			CORE	RECOVERY	VISUAL ESTIMATES		A \$ 5	S A Y	RESULTS	\$		
NUMBER	FROM	10	TOTAL METRES	. M S.	٧.	AMT. LOST	(% ORE MINERALS)							
<u>81355</u>	1.5	Ч	2,1		80	2.4	`							
356	4	6	2.		80	0.4								
357	6	8	1		100	O								
358	8	(O)			85	03								
359	i0	1,5			50	0.2								
340	1,5	14			45	0,1_								
361	14	_16			ເບວ	0								
7(2	1 <u>6</u>	18			90	0.2					-			
363	18	าอ			45	04								
364	مر_	77			95	0.1								
365	27_	건		ļ <u>-</u>	८८	03								
364	7.4	26			81	0.3								
767	26	25			100	0 ·							ï	
318	7.8	30			15	_0.[
365	30	3ኒ			45	0.i								
370	32	34		<u> </u>	40	0.2	···							
371	34	36			40	0.2						}		
372	36	38			25	0.3				•				
373	78	40			85	0.3								
374	40	42_			৭০	0.7-								
375	ዛኒ	44			75	0.1								
376	ધવ	46			ıω	0	·							
337	૫6	૧ ર			10	0.7_								
378	_ 48	50			95	0.1								
335	50	25-	<u> </u>		95	Oil								
81 330	52_	5 1	V	<u> </u>	(00)	- O	<u> 1 </u>	l						

PAGE_4__ OF_7__

DRILL HOLE NO. ALTGO-5"

	ANSO-5		·			DR	ILL L	oe		S	ampl	e d	ata	
		IPL E	·		CORE	RECOVERY	VISUAL ESTIMATES		A S S	AY	RESULT	s		
NUMBER	FROM	t o	METRES	. M S.	7.	AMT, LOST	(% ORE MINERALS)							
81381	54	56	2.		Įω	0								
382_	56	58			45	0,1								
383	28_	_60			90	0,2]				
384	ω	62_			85	<u> 0.3</u>								
385	62	6'[. 55	<u>0.1</u>								
386	64	_66			Įω						<u> </u>			
387	66	_6°			85	0.3								
398	6g	_70	<u> </u>		55	_01								
384	70	72			15	_ O.i					<u> </u>]
340	72	74			95	0.1								
391	<u> </u>	76			100	0		{						
342	76	78_			45	0,[
393	78	_80_			95			_						
394	go	82			{vo	O		_				····		
345	_3z	84]	50	0.2	·	_ _]			
3 46	84	86			85	0.3								
397	- ଅଟ	88			40	_0.2_								
358	88	90			90	0.7_		<u> </u>						
345	50	<u>92</u>	_		100	_ O		_						
81400	42	44			95	0.1								
401	94	96			100	0								
402	વા	មខ្			40	0.2_]			
403	18	100			100	0								
<u> 404</u>	160	tor		<u> </u>	45	OI								
81 406		101		 	100	<u></u>	<u> </u>	_{						
81 406	101	106	1 7		45	0.1	<u> </u>		<u> </u>		<u> </u>		<u></u>	<u>. </u>

PAGE _ 5 OF _ 7

DRILL HOLE NO -

	AH SU-S	-				DR		OG		5	ample	data	
	5 A M	PLE			CORE	RECOVERY	VISUAL ESTIMATES		A 9	SAY	RESULTS		
NUMBER	FRDM	T O	TOTAL METRES	. M.S.	%	AMT, LOST	(% ORE MINERALS)						
61407	106_	_108_	2		95_	0.1							
પળ્ટ	IUB	110			35	0.3							
404	110	112			45	0.1							
니어	m	пЧ			التا								
477	114	116			100	_ \							
4iz	116	_ 118			40	0.2							
413	118	120			lan			1					
414	120	122			100	0 .	,	1					
415	122	124			45	0.1							
416	124	176			40	0.2-							
417	126	าวช			UN	0							
418	120	130			100	0		,					•
सार्	130	132			رين ا	Ô							
420	132	134			100	Ó	,						
421	134	136			(00	0							
42ጌ	136	138			100	0							
423	138	140			100	0			,				
424	140	147_			45	21							
435	142	[44]			פטו	0							
416	144	146			100	(7							
47.7	146	148			טיטן	0							
428	148	120			(10	0							
429	150	125		1	40	02							
430	152	154		1	40	0.2-		-					
	154	156			[100]	0							
4 <u>31</u> (31432	156	123	1		45	αį							

PAGE 6 OF 7

DRILL HOLE NO _____

	AH50-5	-				RQ	ILL LO) G		8	ampi	e d	ata	
<u> </u>		A P L E	······································		CORE	RECOVERY	VISUAL ESTIMATES		A 5 5	AY	RESUL	T S		
NUMBER	FROM	10	TOTAL METRES	M.S.	7.	AMT, LOST	(% ORE MINERALS)							
લાના	158	160	2-		95	0.1								
<i>(</i> 3) 434	160	162			ſω	0								
()143r	162	164			ιω	0								
छ। ५३३	167	166			[ω]	0			l_					
81437	166	168			100	<u> </u>							,	
ધું ૧૫૩૪	168	170894	<u> </u>		55	01			. <u></u>					
	,									<u> </u>				
	· <u> </u>													
				ļ	<u> </u>									
				<u> </u>	<u> </u>									<u> </u>
					.			<u> </u>	-					
									i_					
		<u> </u>	<u> </u>	,							<u></u>			
					.									
	ļ				<u> </u>			.	ļ .		<u> </u>		l	
								<u> </u>	<u> </u>					
					<u> </u>			.						·
	ļ <u></u>		<u></u>		- II				.					ļ
	ļ				_				<u> </u>					
=		<u> </u>		<u> </u>	<u> </u>			<u> </u>						ļ
	<u> </u>						.							
	<u> </u>				_						<u> </u>		<u> </u>	
													<u> </u>	
		-	ļ	<u> </u>	_	 	<u> </u>	-1	.l		ļ		ļ	ļ
	<u> </u>	<u> </u>	1		<u> </u>	<u> </u>	<u> </u>	1			1	<u> </u>		<u> </u>

PAGE 7 OF 7

DRILL HOLE NO. _____

DRILL SUMMARY DDH AH90-6

UTM N: 6132375mN UTM E: 381395mE GRID N: 89+68N GRID E: 111+50E ELEV.: 1189 m DEPTH: 164.1 m ORIENT.: -45°/160°

Metres (m)

- 0.0 2.4 OVERBURDEN
- 2.4 28.5 AUGITE PLAGIOCLASE DIORITE-MONZODIORITE Hypabyssal sill, medium grained, subporphyritic, moderate propylitic alteration; 1.5% PY, trace CP (locally).
- 28.5 30.5 CRYSTAL ASH ANDESITE/LATITE TUFF
 Sparsely phyric with 5-15% medium and coarse grained augite phenocrysts, moderate propylitic alteration; 0.5% PY.
- 30.5 37.0 AUGITE PLAGIOCLASE DIORITE-MONZODIORITE As above, intrusive into tuff.
- 37.0 40.4 CRYSTAL ASH ANDESITE/LATITE TUFF
 As above.
- 40.4 44.5 FAULT ZONE

 Brecciated and sheared intermediate volcanic and k-spar aplitic syenite, moderate propylitic alteration; 5% PY in breccia matrix.
- 44.5 66.5 ANDESITE

 Aphanitic to medium grained, moderate propylitic

 alteration, weak potassic alteration locally; 2.5% PY.
- 66.5 78.6 CRYSTAL ASH ANDESITE/LATITE TUFF or FINE-GRAINED VOLCANICLASTIC Aphanitic to fine grained, mm-scale layering locally, moderate potassic alteration locally; 3-8% PY.
- 78.6 93.0 ANDESITE

 Deformed and altered, fine grained, moderate-strong propylitic and potassic alteration; 0.5-8% PY.
- 93.0 100.5 PLAGIOCLASE PORPHYRITIC ANDESITE

 AND FAULT ZONES

 Medium to coarse grained plagioclase 30-40%, moderate chlorite alteration, 30-80 cm thick fault zones common; 0.2% PY.
- 100.5 129.0 CRYSTAL ASH ANDESITE/LATITE TUFF or FINE GRAINED VOLCANICLASTIC

 As above, moderate propylitic and weak potassic alteration locally, minor fault zones; 1% PY.

AH90-6 cont.

- 129.0 139.2 INTERMEDIATE VOLCANIC

 Plagioclase phyric locally, pervasive moderate chlorite
 and spotted epidote hornfels alteration, moderate
 potassic alteration locally; 0.2-7% PY.
- 139.2 143.6 CRYSTAL LITHIC ANDESITE/LATITE TUFF

 Fine and medium grained augite and plagioclase
 phenocrysts, subangular lithic fragments of
 intermediate composition 0.3-5 cm, moderate propylitic
 alteration, minor potassic alteration locally; 0.5% PY.
- 143.6 162.0 AUGITE PLAGIOCLASE DIORITE-MONZODIORITE
 Hypabyssal sill, as above, slight-moderate propylitic
 alteration; trace-1% PY.
- 162.0 164.1 FAULT ZONE

 Brecciated and sheared volcanic rock, moderate propylitic alteration, minor quartz/carbonate/aplitic syenite veins; 1% PY.
- 164.1 E.O.H.

DRILLING CO	<u>.</u> .	LOCATION SKETCH	DEPTH	TESTS DIP ATIGLE	AZIMUTH	DATE S	ARTEO:	24/SEPT/90	PROJECT:	AHOATAY
Boisvenu	1	 { - 4.	COLLAR	- 45.	1600	DATE C	OMPLETED:	25/SEPT/90	N.T.S.:	93NU7
Doi: 45.44	•	ļ ·	164.14	- 		COLLAR	ELEV.:	1189m	LOCATION:	6132375N (UTM)
			100		1	NORTH	NG:	89 + 68 N (GRIO)		38.13.95 E
						EASTIN		111 + 50 É		
						AZIMUI				
						DEPTH			DATE LOGGED	27.28 / SEPT / 90
OLE TYPE	DDH.			<u> </u>		CORE S	#ZE:	BQ	LOGGED BY:	
3 T 1912	RVAL	ROCKTYPE		ALTERATION	MINERALIZA	t ios	Frim	STAUCTURE		REMARKS
FROM	to	(composition, colour, texture, grain size)		ACTOR TO STATE OF THE STATE OF				(fractures, faults, folding, bedding, etc.	<u>, </u>	Minerelization, type, age relations
0	2.4m	Overburden.	∦		 			<u> </u>		
					1 2 1					
_2.닉	28.5 m			J/P/5	A: Py/FF+D	5 / 1.5%		Broken core lo 7.6m.	ω/mmc	or Febran Fracture
	 	MONSCONDENTE: DATA phisor sil		P/ FE . DB 15	8: Cpy/DB/1	iace Iccally		Surfaces	11	
	 	minhum - grunned Sub-perphyritic		arb/FF/2	} -	1002.19		Intrusive, strong lower		1 (201. 5)
		materate propulite alleration	<u>₽</u>	/ FE /2 locally	 			> 2% pyrile: 20.5.	- 31.2 w	(3% 0)
	·	slightly magnetic 15% pyrile			<u> </u>			-		· · · · · · · · · · · · · · · · · · ·
		trace chalcopycite touly	—-∦					· · · · · · · · · · · · · · · · · · ·		
23.5	30.5m	CRYSTAL ASH LATHTE TUFF : SP	acselu A: Ch	1+Fo/8/5	A: Py/DIFF	105%		Shorp contacts with a	diamit	meks
		physic medium to coorse gra		/FE/3 keally	137	V V IV	_		-Jenear	
		Ovaile crustals 5-15%, mode	rale	0						
···_		propy his alligation, non magnet	16							
	-	0.5 % pyrile				·	·			
	37.0 m	AIKSTE PLAGIOPLASE DIDRITE	_		A: Py /D 10	5%			··	
30.5		1		-	U		1	ļ		
30.5	40.400	MONTOPIORITE, as above			<u> </u>		<u> </u>			

,

DRILL HOLE NO._____

							HOLE NO
IN T E	TVAL	ROCK TYPE (composition, colour, texture, grain size)	ALTERATION	MINERALIZATION	Fslm	STRUCTURE (Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
40.4	44.5m	intermediate whene and K-spor	A: CH /P/6 B: EP/P-08/4 C: K/FF/2	A: Py / FF / 5%		Numerous minor quarte - a. randomly oriented.	orbunale veinlets
<u>44.5</u>	1665 m	Interneouste Voicsonic appropria to medium-granel, makerale propriation alteration, weak putossic alteration locally, non to slightly magnetic, 25% pyrile	4: CH /P/6 B Ep/08.FE/4 C: K/DB/3 O Corb/V/2	A: Pg /D+V+ FF/259		Textures generally masked by local minor breccialed roc pyrite matrix pyrile pyrile > 2010 500 - 50.3 m	k with epiclole - corbonale 4% of rock. (3% D), 57.5-62.8m (6%, 0)
lola 5	78.6m	THE COMMED MACAUGUASTIC CONCRET	B: Ep / P2084FF/6 C: K / D8 + FF /4	A Py/DIFF / 5%		Epidale and polassic coinci alteration: 711:71.5m Primary layering 145013. Pyrile classiminated, and brecciation locally Minur sheer zones 72.8	68.0-70.0 m os matrix to minor
F1 6	93.0 m	INTERMEDIATE VOICANCE, DEFORMED AND ALTERED fire grown rock with a which of leatures obx to medicate to strong propylitic, and locally moderate to strong potential alteration, non majoratic 0.5 - 8 % pyrite	A: Chl /P /6 Β: Ερ / 08 τ FE /6 C: K / FE /5	A: Py / D: FF - D8 3º/		Primary feature obscured alteration and deform	or obliterated by

PAGE ______ OF _____

					H	OLE NO
RVAL	ROCK TYPE	ALTERATION	MINERALIZATION	Film	STRUCTURE	
1					(Fractures, faults, folding, bedding, etc.)	Mineralization, type, age, relations
82.lom	1	·	4. Py/D. FF/15%			
930m	Emgments 2cm to 30cm of k-feldspar	C K /OB · FE /3	A: fy/DB · D/2%			
	VCICANIC AND FAULT FONES! mychum to	B: Ep / DB+ FE /4	A: Py 10/0.2%		ON W 4% pg 2cm thick 165 Squeezing Tault gouge of 9	° 13 , 96 Cm 9.0 · 998m
	GRAINED VOICANICLASTIC ROCK: 45 above	B' ED / DB+FE/4	A Py/D.FE. D8/196		Princip loyering 135°13 will Timing up bale - upri	h gruded beelding ghd stratigraphy.
	930m -100.5m	930m FAULT ICHE BRECCIA (?) with subanquilar Fragments 2cm to 30cm of k-feldspar ophilic Syende, internecha k visiconic and oughte charte monochicine, with neclesale propyting and prassic alteration, pyrite 0.3% to 3% in blood 1005m. PLACICLASE PORPHYRITIC INTERMEDIATE VARANIC AND FAULT ZONES! medium to rearse grained plugioclase 30.46% in an ophenific grandmiss, and 20 to 90cm segments of fault going, makingle chibride and epichile alteration. 129.0m. Intermediate Cristal ASH JUSE / FINE- GRAHIEO VOLCANICLASTIC ROCK: as above	Acteration 82.60 A: /C/P/FE/6 8 Ep/P.FE/6 ALTERATION MINERALIZATION 82.60 m. A: IC/P/FE/6 B: Ep/P:FE/6 C: Chi/P/5 93.0 m. FAULT ICNE BRECCIA (?) unlk subanqular A: Chl/P/5 Prognents 2cm to 30cm of K-Peldspar B: Ep/08:FE/5 aphitic Syende, internectiae victoric and C: K/08:FE/3 augile charite: ministaline, unlti inclerate propythe and putassic alleration, pyrite 0.37: to 37: in blets 100.5 m. PIMICLIASE PORPHYRITIC INTERMEDIATE VICLANIC AND FAULT ZONES: include to B: Ep/DB+FE/4 rearse grained plugioclase 30:46/6 in an appearine growthmiss, and 20 to 30cm signeric growthmiss, and 20 to 30cm signeric alleration. 129.0 m. INTERMEDIATE CRYSTAL ASH THEF/FINE- A: Chl/P/5 A: Py/D:FE: DB/176	10 (composition, colour, texture, grain size) 82 form. A: /C/P/FE/6 A: Py/D. FF/15% B: Ep/P. FE/6 C: Chi /P/5 93 Om FAULT ZONE BRECCIA (?) unth subangular frequents 2rm to 30cm of K. Feldspar of the formatic 2rm to 30cm of K. Feldspar of the Cyange, internetias k. volcance and augile charte propagation, with replectate propylishe and pulsance aftersion, pyrite 0.37% to 3% in block 100.5m. PLKYCLASE PORPHYRITIC INTERMEDIATE VOLCANIC, AND FAULT JONES: michium to coasse grained plagioclase 30.46% in an uppenific growinius, and 20 to 30 cm xgment of lault gover, makenete chibrite and epichle afterstion. 129.0m. Intermediate CRISTAL ASILTUFF/FINE A: Chi /P/5 A: Py/D. FE. DB/1% GRANIEO WICANICLASTIC ROCK: as above B: Eq/DB+FE/4	ALTERATION MINERALIZATION From STRUCTURE (composition, colour, lesture, grain size) A 1/C/P/FE/6 A Py/D. FF/15% G Ep/P. FE/6 C: Chi/P/S A: Py/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FF/15% GED/D. FE/1	

PAGE __3__ OF __9___

ORILL HOLE NO. AH - 90 - 06

INTE	RVAL	ROCK TYPE			Fr/m	STAUCTURE	
FROM	70	(composition, colour, texture, grain size)	ALTERATION	MINERALIZATION		(Fractures, (aults, folding, bedding, etc.)	Mineralization, type, age, relations
100.5	_109.3m	<i>→</i>	A: Ep/FE+DB/6 B: Ch1/P/5 C: K/FE/2	A. P., 157.08.0/2%		- Graded bedding locally / 30°/2 - Pyrile >270: 1030 - 1033m (15 108.6 - 1093 (375, 06	170, 06 · FE, ω/ερ) 1 ω/ερ)
109.3	115.5m	->	A: CN /P/5 B: Ep/DB+FE/4	A. Py / BD . FF / D.5%		- Eyerle with epidule Following	Inflactions (;) peckling
115.5	_122.5m	-2	A Ep / DB • FE / T B: Ch / P / 5 C: K / FE / 5	A: Py 10B . FF /25°/.		K-spar aplitic syenile veins and buth associated with epiclote	polossic atteration Flooding, and pyrite (24%): 18.2-118.7, 119.0-1193.m
122.5		FAVET ZONE: breccinted and stranged volunic rack, maderale propylitic and pulsasic alleration minor quarte-carbonate ventels, 2% pyrile.	A: CN /P/5 B: Ep /FE+DB/4 C: K/FE+D/5	1: Py 10 · FF 1270		Predominant Tracture / stear or	entation 150°/3
125.5	129.0 m		-0	A: Py 10. FF 12%			
129.0	139.2m	Intermediate volcanic: locally playioclass phyric, righted e pervisive chloritic and spetted epidote bointels alkintion, mickiale pollusic alteration locally, non mugnitic, 0.2-7% pyrite	1: Ep/OB+FE/6 13: Ch1/P/5 C: K/FE/4 locally	A: Py 108 + D+FF /35%		- K alteration predominant: 131.5 - Fyrite > 3%: 130.7 - 133.6 - Fac. w/ 7% py and Ep/F: - Frac. w/ Ep/FE/7, 1% p	(4-7°10)

PAGE __4 __ OF __7 ___

DRILL HOLE NO. 11- 90 - 06

						*HC	DLE NOA11 - 90 - 06
FROM	TO	FIOCK TYPE (composition, colour, texture, grain size)	ALTERATION	MINERALIZATION	Film	STAUCTURE (Fractures, laults, folding, bedding, etc.)	Mineralization, type, age, relations
_139.2		CRYSTAL LITTHE ANDESITE/LATITE TUFF: Fine and medium-grouped anythe and plagnorlase phenocrysts and subangular lithic tragments of intermobale composition 03.5 cm, moderate propertie alteration, minor plassic alteration locally non-magnetic, 05% pyrite.	A: Ch / P / 4 B: Ep / 00 · Fe / 4 C: K / FE / 2 locally.	A: Py 10. FF + 00/ 0.5%			
143.6		Austre Plagiociase Diorite - Monzodiorite: hypobyssol sill, medium grained, equipmoular la subperphyrite slight la materate prepylitic alleration, slightly mognetic, trace to 1610 pyrite.	A: Ch1/0/4 6: Ep/08+5=/2 C: Carb/V/2	A. P., 10+FF 10.5%.		Minor shear zones: 55°/3, at 35°/2 158.1 - 158.8 m	153.8 - 153 9, w/ 3 % py;
162.0	1641 m	TAULT ZONE: brecciated and showred volconic rock, mederate propylitic alteration, minur quartz rarbonate aplitic syenile weins, 1% pyrite.	1. Ch / P/5 B Ep/ FE/4 C: K/V/3	A Py /P/19.			
	164.1m.	ECH					

page <u>5</u> of <u>9</u>

DRILL HOLE NO. 414 - 90 - 06

A490-6

						DR	ILL L	o G		S	ampl	e d	lata	
	5 A H	PLΕ			CORE	RECOVERY	VISUAL ESTIMATES		A S	SAY	RESUL	ΓS		
NUMBER	FROM	ΤO	TOTAL METRES	, M.S.	*/.	AMT LOST	(% ORE MINERALS) .							
61439	2.4	6	36		80_	0.4								
५५०	6	8	20m		ु १०	0.4								
५५१	8	<u>10</u>			95	0.1								
<u> </u>	10	ī			50	0.2								
443	١٦	14			ועס	O								
પ્પ્	14	_14			95	0.1								
445	16	18			100	0						•••		
५ ५५	18	ዀ			40	0.2								
447	70	<u>ጉ</u>			Įω	0								
448	ひし	24			رتن	0								
441	ᄱ	<u>ک</u> ال			45	0.1								
450	zi.	ા ક			נענן	0								
451	าร	30			100	0					}			
452	30	32			100	Ď			-]
443	32	34			45	0.1								
प्रथ	34	3%			10	0,1.								
५४%	36	28			45	0.1				· .				
456	38	૫૦			90	07								
dU	40	:45			70	٥٧					[
458	५२	५५			90	0.2								
५४९	- ५५	પૃદ			45	0.1								
460	46	118			55	0,1					1			
461	પક	50			90	0.2		-		<u>;</u>				1
982	50	52	_	ļ	100	0		-			1			
4:3	25	54			10	0.2								
চ। ५६५	54	2.8	20m	L	80	<u>04</u>							a second	<u> </u>

PAGE __ 6 _ 0F ____9_

DRILL HOLE NO. AISSUE

						DF	HLL L	OG		samp	le	data	<u> </u>
	SAA	APL E			CORE	RECOVERY	VISUAL ESTIMATES		ASSA	Y RESUL	. TS		
NUMBER	FROM	T O	METRES	M.S.	%	AMT LOST	(% ORE HINERALS)				Ţ	1	
81465	S&	28	2.0m		45							_	- -
464	58	િ			45	0,3							
<u> </u>	હિ	62			100	0							ļ — · —
118	62	67			ios								-
મુહ	- ६५	<u> </u>			(W								1
470	<u>56</u>	48			्र उप	0							
471	৮৪	ોઇ			IVU	0							1
<u> </u>	70	72			100	0							
473	77	74			'१ई	0.1					Ţ <u></u>		
474	74	16	.		(2)								
475	76	78			(50	0							
<u> </u>	าย	දිප			25	0							1
437	80	કર			95	0-1					1		
478	ું છેંદ	84	<u> </u>		lov.	Ö							
باغذاء	84	86	<u> </u>		٦٢	al							
<u> </u>	- 86	80	<u> </u>		įDo	U						1	
<u> </u>	88	50	.		45	0.1							}
૫૭૨	90	_٩٤_	<u> </u>		100								
<u> 483</u>	G ₁	94_	<u> </u>		45	0.1					,		i
<u> </u>	14	56	<u> </u>	 	Įνν	U							
485	76	58	<u> </u>		נטן								
486	98	100	<u> </u>		- 35	<u>ai</u>							
437	100	100	<u> </u>		45	0.1							
488	100	104	<u> </u>		40	0.7_]
484	104	106	1		40	<i>0:</i> 2_]		
वापुर्व	- :7	108	2.0m	_	90	0.2	<u> </u>	_i			<u> </u>	4.36.5	

PAGE __ 7_ OF 9____

DRILL HOLE NO. AHOU-6

198(P)						DR	ILL L	OG		sam	ple d	ata	
	SAM	Рίξ			CONE	RECOVERY	VISUAL ESTIMATES		A 5 S A	Y RES	ULTS		
NUMBER	FROM	T Q	TOTAL METRES	. M.S.	٧.	AMT LOST	(% ORE MINERALS)						
81451	60)	110	2-Om		95	0.1		_				J———	
ዛ ናኒ	טוו	112			95	21		_\			_	-	
453	117	117			85_	0.3						-l -	
Կ ጎዛ	ur				5٢_	0.1		_				-	
455	116	_ ս &			<u> ۲</u> ۲	0.1						- 	
446	118	ŗω			100	0						-{	
447	ıw	122			55	O,1		_				<u>-</u>	
५ ኅ냥	m	iz ⁱ (טטן	0.7.	<u></u>						
459	124	izi			90	0.7-		_				_	
টা গ্র	126	128			95	0.1		_				<u> </u>	<u></u>
દા ડા	11%	130			20	0.2							
ያሆ	130	(12	\\		धर	0.3		_					
503	132	134			100	00		_				.}	ļ
504	124	13\$			80	0.2		_				-{	<u> </u>
505	134	,78			100	0		_					<u> </u>
50%	138	140			100	0			ļ				!
54	140	142	<u> </u>		15	0.1							
ZD8	142	ાપય		. 	15	0/1	<u> </u>	_	ļ			_	 -
501	144	196	<u> </u>		95	0.1			<u> </u>				
21D	146	146			৭৩	0.2		_					
511	ાપદ્	150			85	0.3			<u> </u>			<u> </u>	-
512	150	ist			15	0.1		_					·[
\$13	172	ાદપ			95	0,1						-	
214	154	176			<u> 40</u>	0.2	-{- 		 -				
515	158	158	1 <u>1</u>		100	0			ļ -			· - · · · · · · · · · · · · · · · · · · 	
BI 816	136	160	20m	I	Iw	<u> </u>			<u>.i</u>			AHM-6	٠

PAGE 8 0F 9

DRILL HOLE NO. ANTO-6

AD.			- <u></u>		0		ILL L	OG	 	58	mple	data	а
		PLE				RECOVERY	VISUAL ESTIMATES		A 5 5	AY	RESULTS		
UMBER	FROM	T 0	TOTAL METHES	M.S.	7.	AMT. LOST	(% ORE MINERALS)						\neg
81517	I NO	[12	2		৭5	ai							
ફારાઇ	เы	164,L_	2,1		46	Opt							
						<u> </u>		-{					
								- -					- -
					·			· -			j		
					∦			~ -					
						ł		- -					
					· !			-[
					 	<u> </u>							
]							}
				ļ				_[]_		1		
								-					
								-[-					 -
					-			-				-	
					 			- [] -				—	
				- -	∥			-	-			- -}	
,					 	· · · · · · · ·		-}		-			_
			<u> </u>		·			_)					
{					 								
								-					_
					·					——— <u> </u> -			
								· [}	

APPENDIX IV DRILL HOLE ANALYTICAL RESULTS

GEOCHEMICAL ANALYSIS CERTIFICATE

PHARTAY.

H90-1

BP Resources Canada Ltd. PROJECT 10154 File # 90-4713 Page 1

																	•										- 1
SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	Ni ppm	Ço ppm	Mn ppm	Fe As	bbu n	Au	Th ppm	\$r ppm	; Cd	d2 mqq	81 ppm	V C		La Pçm	Cr ppm	H g X	8a ∵Ti p∣xn : X	B POII	Al X	Ha %		W Au*
1-0FHA 1 10018 3	18	975	2	40	1.5	21	25	804	7.24 - 3	5	ND	1	173	.5	3	2	111 3.1	1 124	3	58	2.28	3823		2.01	.04	.25	2 100
c 81002 V	2	376	7		1.0	11	16	862		5	ND			2	3	2	106 3.2		3		2.13	11 .19		2.05	.03	.05	1 35
C 81003	33	365	5	35	,9	15	17	822	2.1 (2.3)	5	ND	1		.8	2	2	120 3.7		3		2.35	9 .22		2.01	.03	.04	5 21
C 81004	11	313	2	27	. в	8	18	677		5	HD	1	141		2	ž	108 2.6		2		1.88	35 .20		1.63	.05	.12	4 17
C 81005	19	522	5	32	.8	9	19	679		5	ND		139		3	Ž	99 3.4				1.99	20 .21		1.84	.03	.12	2 36
C 81006	6	578	3	25	.9	11	20	676	5.17 9	5	ИD	1	156	.2	2	2	94 3.3	117	2	24	1.58	13 ,20	,	1.55	.04	.10	1 220
C 81007	3	364	4	34	. 9	15	20	719		5	ND	i	140	.2	2	2	116 2.9		2		2.12	95 - 22		2.09	.05	.25	1 88
C 81008	18	468	2	33	1.0	14	23	910		5	ND	i	229	.3	3	3	119 4.1		Ž		2.16	28 .20		2.26	.04	.21	1 71
C 81009	28	597	3	39	1.0	17	28	815		5	КD	1	205	.2	2	Ž	126 3.3	-	2		2.17	31 .19		2.20	.04	.16	1: 33
C 81010	23	259	2	24	.6	11	18	72 Z	5.21 6	5	KD	1	207	.2	2	ž	107 3.3				1.84	28 .19		1.91	.06	,12	1 16
C 81011	26	338	4	32	8	20	20	713	5.16 5	5	КО	1	195	.2	2	2	112 2.7	174	2	44	2.22	26 .19	•	1.98	.08	.16	3 17
C 81012	7	407	6	33	.8	15	22	861		5	KD	1	253	.2	ž	2	117 3.3				2.31	41 .19		2.12	.04	.23	2 37
C 81013	23	522	4	44	9	17		912		5	kO	i	248	.4.	Ž	2	125 3.9				2.28	19 .16		2.27	.04	.21	1 38
C 81014	9	622	3	40	1.0	21	24	890		5	· ND	i	256	. 2	2	2	131 3.6	1			2.46	36 ,19		2,20	.06	.09	1 83
C 81015	6	729	3	31	.9	6	20	682	4. <i>7</i> 5 5	5	ND	1	216	.2	3	3	94 2.8		2		1.64	18 .19		1,55	.05	.12	1 43
C 81016	14	698	6	28	. 9	6	20	581	4.99 5	5	ND	t	134	.2:	3	2	114 2.0	205	3	10	1.57	66 .22	,	1.65	.09	.43	3 34
C 81017	12		2	25	ģ	7	24		4.95 0 3	5	ND	•	177	.6	2	2	102 2.3				1.71	1218		1.60	.04	.09	2 32
C 81018	9	529	2		9	Ś	21		6.00 4	5	ND	•	.150	ž	5	2	115 2.9		ž		2.06	45 .16		2.15	.05	.29	1 17
C 81019	37		2	28	. 9	7	21		5.42 2	5	ND	į	216	.2	4	2	119 3,1		-		2.05	34 20		2.02	.06	.30	1 36
C 81020	5	759	3	22	.9	9	21		4.70 2	5	ND		175	.2	2	2	103 2.3		3		1.45	3322		1.48	.06	.22	1 87
C B1021	7	504	4	24	.7	9	20	626	5.15 6	5	ND	1	193	.2	3	2	106 3.2	185	3	18	1.55	17 .16		1.58	.06	,11	2 29
C 81022	12		ġ	29	. 8	Ź	23		6.37 2	ŝ	NO	i	238	.2	. 2	2	138 3.2				2.02	30 .19		1.68	.05	.22	2 37
C 81023	ة ا		2	35		11	19		5.82 3	Ś	NO	- 1	247	.2	Ž	Ž	120 3.5				1.92	53 .20	. –	1.78	.05	.24	2 41
C 81024	l š		2	26		11	17		5.11 2		ND	i	218	ž	3	2	107 2,9				1.78	24 .19		1.64	.06	17	1 38
C 81025	_	1420	7	32	1.4			844	1100	5	ND	i	254	.2	2	2	110 4.0				1.78	13 .16		1,70	.04	.11	2 56
C 81026	۱ 4	633	3	28	.9	14	22	414	5.06 3	5	NO		157	.2	2	2	105 2.4	4 150	3	TO	1.66	50 1.22		1.63	.06	.31	1 33
C 81027	7		2	32	. 9	24	24		5.80 4		KO.	1			4	2	126 4.4		3		2.27	53 .19		2.17	.06	.20	2 35
C 81028	20		ž	29	.8	_	19		4.82 2	ś	ND	i		.2	3	4	115 3.3				2.03	61 .23		2.26	.14	.24	2 31
C 81029	3		2	24	5		17		5.24 Z	5	ND	í		.2	ž	2	116 3.2		_		1.99	31 .21		1.81	.06	.13	1 11
C 81030	8	591	3	29	.8	17	23		5.65 3	5	ND		214	.2	3	2	115 3.1				1.84	21 .20		1.76	.05	.11	1 21
c 81031	15	249	4	23	.6	13	16	643		c	ND	4	204		3	-	110 7 4	7 101		70	. 7.	(0 : 20		. 42	00	٠,٠	1 13
C 81032	1 11		2	16	.7		22		4.00 Z	5 5	טא Dא	1		.2	4	2	110 3.1		_		1.71	40 : .21		1.62	.09	.21	3 34
C 81033	'		4				26				ND UK	-	140	.2	3	2	89 2.6 84 1.9				1.34	18 : .22		1.45	.08 .10	. 15 . 25	4 88
C 81034	11		2	21	.7		23		3.97 4 4.66 4		HD HD	i		.3	3	2	107 2.2		_		1.20	32 .24 38 .25		1.33		10.0	2 50
C 81035	22		3		1.2		23		4.38 Z		ND.	1		.2	5	2					1.55		. –	1.50	.08	.20	
01033	''	000	3	20	1.2	E.I	2.3	246	*.30 % Z	כ	K())	137		•	4	109 2.1	148		01	1,88	53 . 26	. 2	1.68	.08	.31	3 200
RE C 81032	11		2	19			22	473			ND	1		.2	3	2	89 2.6	4 . 166		20	1.32	18 .22	2	1.44	.08	.15	2 41
C 81036	18	712	5	33			26		5.54 3	-	ND	1	274	.2	4	2	127 3.3	7 - 157	2	37	1.95	16 : .20	: 3	1.81	.05	.10	4 25
STANDARD C/AU-R	18	62	43	128				1105				37		18.8	16	17		0 100		60	.93	185 .08	31	1.97	.06		11 520
STANDARD C	18	60	41	131	7.2	70	32	1057	3.97 41	17	8	36	53	18,9	16	22	56 .5	0 .097	36	59	.91	180 .08	35	1.90	۵0.	.13	12 •

1CP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR HG BA TI B W AND LIMITED FOR NA K AND AL AU DETECTION LIMIT BY 1CP IS 3 PPM.
- SAMPLE TYPE: CORE

/																											
SAMPLE#	Но	Ctr	Pb	Zn	- Ag-	Ni	Co	Иn	Fe A	sì U	ЬĀ	Th	Sr	Cd	Śb	8 i	٧	Ça	ρ	Le	כר א	lg .	Ba Ti	B AL	Na	K	¥: Au*
	ppm	ppm	bba	ppm	bbm	ppm	ppm	ppn	X pp	л ррп	ppm	ppm	ppm	рρπ	ррт	ppm	ppm	×	X	ppm	ppm	X	ррп 7			X pp	m ppb
A11-10-1	· · · -				:				1					: .	•	• •				• •				- · · · · · · · · · · · · · · · · · · ·			 -
C 81037 /.	67	793	2	53	.6	5	35	854	5.76	2: 5	KD	1	284	.6	2	4	154	4.73	171	3	10 1.8	35	13 🖟 12	2 1.87	.03	.09	2 18
C 81038 🖞	8	413	2	51	.2	8	23	738	5.38 🔭	Z: 5	КD	1	248	.5	2	4	156	3.21 .	185	3	9 1.7	70	25 5.17	2 1.82	.06	14	1 18
C 81039	24	535	2	38	.4.	5	24	582	5.05 %	2: 5	GM	1	173	.2	2	2		2.17		3	6 1.6	55	34 : .22				1: 16
RE C 81044	8	914	2	52	6	7	27	749			КD	1	216	4	2	2		2.72 .		´ 2	6 1.8		3119				18 35
C 81040	6	911	2	26	. 4	7		459		3 5		i	193	,2	2	Ž		2.05		2	4 1.2		28 .20				2 15
			_		(i - 7 ii	-			;	-: -		-	.,,		-	-				-	* ***			- ''-'	•••		ি ''
C 81041	15	1108	2	49	8:	9	30	723	5.00	5 5	КD	1	278	.4	2	4	140	3.33	182	3	13 1.9	37.	26 .21	2 1.81	.04	.15	1 36
C 81042		1019	3	37	.7.	ź	27	709		ź: 5		i	264	.2	ž	2		3.45		3	1 1.7		30 .21		-		3 42
C 81043	- 4	555	2	39	.2	ã	25	745		4 5		i	225	.2	ž	7		3.52		ž	1 1.8		21 .19		-	5.5	3 21
C 81044	8	947	4	53	.7	7	29	773		4 5		1	222	2													1
C 81045	24	764	2	60	.5	7		905				ì		.2	2	2		2.81		3	7 1.8		35 .19				0 36
0,0-3	24	104	-	50		,	27	703	0.4/	2 5	KU	•	264	.8	2	2	112	3.35	172	3	8 2.1	13	20 .15	2 2,19	.04	.14	1 35
C 81046	5	715		41	_		24	902	E /7	, .			257		-	-	***	7 60	457	-		-	20 2			26	ا رہا
C 81047	18	730	2	47	.5 .7	2	26	802 782		2 5 2 5		1	254	.3	2	2		3.59		2	1 1.7		29 .22				3 56
C 81048												1	240	4	2	2		2.87		2	2 1.7		23 .20				2 70
	3	497	5	47	.7	6	21	901		6: 5		1	260	3 .4:	2	2		3.61		3	10 2.1		27 . 25				2 43
C 81049		2937	3		3.4	9~	27	938		5 5		1	217		2	2		4.50		3	5 2.6		41 .25				3 380
C 81050	15	509	2	44	5	7	23	961)•/) ·/	3 5	AD	1	323	.2	2	2	141	4.35	214	4	4 2.1	18	39 .24	2 2.14	.07	.22	2 57
- 01054	_		_		S :										_	_		}	1	_		_					
C 81051	8	260	2	47	.3	6		993		3 5		1	288	.7	2			4.65 .		3	3 2.2		5623			:	1: 16
C 81052	26	946	2	55	1.0	9	23	949	:	5 5		1	239	.8	2	2		3.29		4	3 2.2		65 1.27				2 100
C 81053	5	341	6	44	.3	6	19	895		2 5		1	239	.3	2	2		3.12		4	2 2.1	16	87 .28	3 2 2.10	80.	.37	1 30
C 81054	11	344	2	38	ું.5	8	20	824		5 5		1	248	. 9	2	2	121	3.71	201	5	3 1.8	36	40 .20	2 1.96	.06	.24	2 12
C 81055	10	476	2	38	-4	12	18	812	5.28	6 5	ИÐ	1	240	.2	2	2	140	3.67	174	5	14 1.8	30	83 . 19	2 1.87	.06	-26	1 35
					št.				- § √	ē.				1.19				i i	11				£.			80.1	i :
C 81056	33		2	43	6	9		916		5 5		1	224	.2	2			3.46	234	4	5 2.2	27	14 .22	2 2.08	.04	.10	2 56
C 81057	7	428	2	45	5	11		988		7: 5	ND	1	199	.5	2	2	154	3.07	234	4	7 2.3	39	57 🖟 .27	. 2 2.13	.07	.41	19 39 ;
C 81058	6	152	2	47	.4	9	22	1081	5.76 💮	7: 5	ИD	1	227	.5	2	2	134	5.74 .	235	4	5 2.0	9	11 .15	2 2.29	.05	.13	1 8
C 81059	9	150	2	47	.4	10	25	1168	5.95 🦰 1	0: 5	ND	1	230	.8	2	2	136	5.72 .	217	5	5 2.0	07	13 .15	2 2.32	-04	.21	1 6
C 81060	7	797	6	51	.9	9	33	993	4.80 🕟 1	2: 6	ND.	1	198	. 4	2	2	152	4.16	230	5	7 2.4	41	30 .22	2 2,49	.05	.18	1 43
					1. 1					é				tad.									- 1	:		\$ 4.4	s ĝ
C 81061	5	364	3	44	.5	13	21	861	5.41	8; 5	ND	1	168	.3	2	2	139	3.26 .	238	4	8 2.2	20	51 .20	2 2.21	.08	.46	Z 28
C 81062	30	369	2	44	.6	6	25	956	6.18	6 5	NO	1	334	. 9	2	2	160	3,66	233	3	7 2.2	23	21 .2	2 2.28	.10	.16	2 80
C 81063	4	98	5	49	.3	8	22	1073	6.01	4: 5	ND	1	368	.3	2	2	152	4.15	219	3	5 2.3	38	24 .20	2 2.33	.10		1. 5
C 81064	5	254	2	51	.3	10	23	1101	6.01	5: 5	ND	1	418	.5	2	2		5.36 .		3	5 2.		8 .2				1 9
C 81065	ة ا	208	2	41	.4	Ä		960		5 5		1	283	.7	Ž	_		5.08		3	5 2.0		17 .2				2 34
	` `		_			-						•			-	_				•		• •				**************************************	ें र
C 81066	13	486	2	36	.6	10	22	687	4.55	2 5	ND	1	160	.2	2	2	110	2.21 .	235	3	4 1.7	70	33 .2	2 1.69	. 12	.31	1 57
C 81067	7 7		B	37	.7		22	642		8 5		i	133	.6	ž	2		2.28		4	5 1.0		50 .20				1 21
C 81068	30	308	5	34	.5	4	17			6 9		i	170	.2	2			2.84		7	5 1.5		3725				1 18
C 81069	47		5	48	1-1	11	25	824		8 5		i	180		ź	ž	-			-							
C 81070	70		2		1.5	12						_		.4				3.45		5	5 1.4		53 .20				
2 01010	۰, ا	723	~	96	1.2	14	23	934	0.04	0 5	KD	1	168	1.3	2	2	133	2.47	220	4	5 2.4	47	66 .3	2 2.22	.06	.45	1 65
C 91071	22	23/	•	70	્રું ક		47	022	. 07		bir.	-	340		-	-	407	7 47	140	-		,,	70			70	4 47
C 81071	23	234	2	38	.7	9		822	11	0 5		7	218	.5	2	2		3.63		5	5 1.4		39 .20			4.51	1 13
C 81072	3		8	47.	.2	7	2	112		3: 33		29	23	.2	2	2	. 7	:	.005	8	- •	07	3 .0			.07	1 3
STANDARD C/AU-R	20		38	136	8.0	72		1144		0: 22		40		18.1	14	17	61		.094	40		98	190 .0				1: 530
STANDARD C	18	62	37	_ 131	6.8	68	31	1045	3.93 🗀 4	2: 20	7	38	. 52	18.3	15	19	55	.45	.092	37	56 .	87	181 .0	34 1.87	.06	. 14 1	1: -

541.04.54	41																			 -		-						***		
SAMPLE#	Mo	€u ppm	Pb ppm	Zra - POM	. Ag ppπ	Nî ppm	Co ppm	Mn ppm	fe As: X⊹ppπ:		Αu ppπ	th ppm	Sr ∷ ppm:∣		Sb pom	B i ppm	Ppm ppm	Ca		la xomi≕	Cr pom	Нg		። ነነ ኤ	D-Drift B	Αl	Na Y	K	pom	Au*
44235-1	p-p-rr	PA-III	PPMII	P	My Au	PP	PTAIL	Popul	4 · pp	17	PP"	M~"	PP-III		Private .	24-11	17411		7; P	7-4	Phan		Paris		17011				ly-"	سبر
c 81073 A170-1	11	74	9	3 .	3	4	1	156	.52 : 2	30	ND	24	49	.2	2	2	3	1.06 .0	02	7	3	.05	4	.01	2	.18	.04	.07	1	8
C 81074	2	71	11	3	.3	4	1	93	.55 2	29	NO	25	21	.2	2	2	2	.29 .0	10	7	3	.05	4	.01	3	.18	.04	.08	1	10
C 81075	2	59	7	2	2	3	1	212	.48 2.	27	NO	21	65	.2	2	2	2	1.69 .0	02:	6	3	.04	3	.01	3	.15	.03	.06	. 1	2
C 81076	3	173	6	9	.5	5	4	208	1.28 : 2	25	ND	20	65	.2	2	2	24	1,12 .0	29	6	5 '	.27	10	.03	3	.43	.04	.11	1	31
C 81077	14	269	2	37	.5	9	17	583	4.29 2	5	ND	1	230	.2	2	2	111	2.03 .1	49	5	9	1.63	79	.20	4	1.74	.05	.59	1	12
C 81078	5	183	2	34	.5	8	14	623	4.08 2	5	ND	1	302	.2	2	2	113	1.85	53	٦.	A	1.66	118	.26	5	1.78	.07	.69	- 1	15
C 81079	3	202	2	29	.4	7	14	490		Ś	HD	i	319	.2	5	5		1.26 .1		3		1.34		.26		1.48	.07	.68		.8
C 81080	10	236	5		. 4	Ŕ	21	461		5	סא	i	93	- 2	2	2		1.05 .1		3		1.26	79			1.40	.07	.61	1	19
C 81081	2	196	2	34	. 5	8	14	656		5	HD	1	127	2:	2	· 2		2.09 .1		3		1.37		.22		1.47	.06	.31	1	15
C 81082	20	204	2	30		6	15		4.26 Z	5	ND	1	162	.2	2	Ž		2.53 .1		3		1.19		.20		1.41	.07		i . 10	
									i i										3						_				114	
C 81083	3	159	2	27		7	15	528		5	ND	1	140		2	2		1.54 .1		3		1.21	35			1.32	.08	.33	• 1	15
RE C 81080	10	238	2	28	.5	8	21		4.00 2	5	КD	1	94	.2	2	2		1.07 -1		3	-	1.28		. 26		1.42	.08	.62	- 1	
C 81084	8	408	2	31	.5	8	14	615		5	KD	1	108	.2	2	2		1.72 1		3		1,48		_23		1,56	.06	.34	. 1	51
C 81885	7	247	2	22	.3	7	13	475		5	KD	- 1	123	.2	2	2		1.52 ,1		3		1.10		.20		1.37	.11	.34	. 1	12
C 81086	4	271	2	26	4	7	15	531	3.64 6	>	КĎ	1	144	. Z	2	2	89	1.86 .1	59	3	٥	1,20	16	.19	5	1.24	.08	.23	10	13
C 81087	7	323	2	25	.5	7	14	425	3.30 3	5	ND	1	83	.2	2	2	96	1.29 1	66	3	5	1.18	24	.21	6	1.26	.07	.31	٠ ١	16
C 81088	16	469	2	31	.5	6	18	541	3.82 2	5	ND:	. 1	166	2	2	2	94	2.14 .1	57:	. 3	4	1.22	40	.20	5	1.50	.08	.24	. 1	19
C 81089	4	439	2	28	5	7	19	410	3.93 " 2,	5	HD	1	135	.2	2	2	89	1.08 .1	67	3	6	1.08	65	.23	6	1.26	.07	.52	1	8
¢ 81090	5	626	2	24	6	8	16		3.57 2	5	HD	1	73	,2	2	2		1.48 -1		4		.97	14	-18		1.11	.06	.14) 1	20
¢ 81091	4	653	2	24	.7	19	19	427	3.89 6	5	ND	1	125	.2	2	2	89	2.01 .1	48	3	46	1.44	17	. 14	5	1.45	.06	.12	, 1	18
C 81092	10	707	2	30	.7	17	22	483	4.20 2	5	NO	1	128	.2	2	2	105	2,04 .1	46	3	43	1,53	14	.17	4	1.47	.06	. 13	3	28
C 81093	28	1696	2		1.3	11	29	488		Ś	KD	i	116	.2	2	2		1.98 .1		4		1.35	11	.17		1.44	.05	.15	- ž	47
STANDARD C/AU-R	17	57	38		6.6	65	30	997		16	7	37		8.0	15	19	54			39	52	.86		.08		1.79	.06	.14	11	530
STANDARD C	18	57	38	131	:	70			3.95 36	18	7	39	53 1		15	19	57			38	58	.90		.08		1.91	.06	.13	12	

GEOCHEMICAL ANALYSIS CERTIFICATE

BP Resources Canada Ltd. PROJECT 10154 File # 90-4860 Page 1 (17)

SAMPLE#	Ho	Cu sppm	Pb pom		Ag		Co pom	Mn ppm		As ppm	IJ þpm		Th ppm		Çd ppm	Sb ppm	8 i ppm	V ppm		P **		Cr ppm	Hg X	8a : pom :		pjom B	Al X	Na X		Spm Spm	Au*
C 81094 AH90-2 C 81095 \$\int \text{C 81096} C 81097 C 81098	3 8	232 236 257 456 762	6 6 5 2 2	31 24 29 35 25	.9 .7 .9	24 16 21	22 14 17 17 14	616 524 616 799 545	4.89 3.82 4.71 5.23	3 4 3 2 4	5 5 5 5 5	ND ND ND ND	\$ \$ 1	139 140 138 163	.3 .5 .4 .9	4 4 4 2	2 2 7 2 2	114 97 111 119	2.94 2.53 3.12 3.55 2.52	.118 .134 .150	3 2 2 3 2	74 47 56 41	2.46 1.87 2.24 2.34 1.50	33 26 61	.21 .20 .21	3 1. 3 1. 2 1. 2 2. 2 1.	.43 .67 .07	.06 .06 .04	.10 .14 .16 .13	3 2 3 2	20 23 15 98 32
C 81099 C 81100 C 81101 C 81102 C 81103	7 3 3 14 6	760 796 354 703 472	3 6 2 5 5	38 30 22		14 11	15 14 15 14 15	673 680 740 638 830	4_49 5.66 4.62	3 2 2 2 4 2	5 5 5 5 5	ND DK DK OK OK	1 1 1 1	109 138 146 147 187	1.1 .6 .4 .5	4 6 6 6 3	3 3 2 3 2	114 132 110	2.81 3.01 3.19 3.55 4.08	.146 .139 .117	3 3 4 3	37 34 28	2.01 1.91 1.84 1.46 2.09	39 20 13 7 10	.19 .18 .14	2 1. 2 1. 2 1. 2 1. 2 1.	.51 .63 .40	.06 .03 .03	.16 .14 .11 .06	4 2 1 3 3	53 4 26 39 45
C 81104 C 81105 C 81106 RE C 81111 C 81107	44 37 6 4	247 197 357 337 325	2 2 6 3 2	39 33 31 35 38	.7 .8	17 14 8	17 16 18 18	868 862 834 644 802	6,03 6,34 5,34	2 6 4 5 2	5 5 5 5	ND NO NO ND	3 1 1 1	179 167 181 94 153	.3 .4 .2 .4 .2	3 5 5 5 5	2 2 2 2	136 138 126	3.79 4.60 4.28 1.95 3.68	140 183 199	2 4 4 3 3	47 32 12	2.50 2.45 2.45 1.76 2.46	31 59	.10 .11:	3 2. 2 2. 2 2. 3 1. 2 2.	.23 .41 .71	.02 .02 .10	.19 .09 .27 .52 .43	2 1 2 3 3	12 7 18 9 74
C 81108 C 81109 C 81110 C 81111 C 81112	2 3 4 3 2	378 472 419 334 272	2 2 2 2 2	30 38 33 34 31	8. 8. 8. 8.	10 5	18 17 18	668	5.95 5.10 5.46	6 4 5 2 3	5 5 5 5	MD OH OH OK	1 1 1 1	171 183 138 95 76	.4 .6 .4 .5	5 5 5 3	5 5 5 5	133 116 127	5.10 5.77 2.97 1.95 1.68	.151 .178 .200	5 3 4 3 3	42 17 14	1.73 2.16 1.83 1.76 1.44	9 10	.09 .16 .16 .23	2 1. 3 1. 2 1. 2 1. 2 1.	.87 .64 .70	.04 .04 .10	.12 .08 .13 .52 .47	1 2 1 3 3	75 25 30 11 10
C 81113 C 81114 C 81115 C 81116 C 81117	3 13 6 8 1	461	2 2 2 4 2	22 32 44	6. 6. 8.	8 7 9	17 14 15	629 571 707 937 893	4.64 5.14 5.91	2 5 6 3 9	5 5 5 5	ND ND ND	1 1 1 1	172 146 156 193 146	.6 .4 .2 .2	5 4 6 4 5	2 3 2 2 2	109 120 139	2.59 2.48 2.66 3.65 2.83	.209 .179 .174	3 4 4 5 4	16 17 22	1.43 1.23 1.60 1.77 1.82	11	.23 .21 .16 .09 .17	3 1. 4 1. 2 1. 2 1. 3 1.	. 22 . 61 . 78	.08 .08 .07 .04 .06	.16 .18 .18 .15	4 5 4 2 2	2 8 12 34 45
C 81118 C 81119 C 81120 C 81121 C 81122	2 8 45 3 3	718 440 472	2	37 30	.7 .7	15 14 14	20 25 18	648 478 624 514 508	3.98 5.48 4.01	2 4 3 2 2	5 5 5 5	40 0 0 40 40 40	1 1 1 1	163 101 154 122 111	.5 .7 .4 .7	4 5 4 7 6	2 2 2 2 2	103 125 102	2.60 2.00 2.86 2.44 2.36	,167 ,156 ,169	3 2 2 2 2	54 35 47	1.58 1.50 1.71 1.42 1.47	21 34 35 16 17	.18 .23 .20 .23 .24	3 1. 2 1. 2 1. 2 1. 3 1.	.39 .70 .40	.07 .14 .08 .11	.22 .33 .28 .17	3 3 6 4 2	16 47 15 28 5
C 81123 C 81124 C 81125 C 81126 C 81127	26 23 2	328 820	3 4 2	19 33 37	.7 .5	10 12 4	27 15	529 492	4.40	2 8 8 5 3	5 5	HD DH DH DH	1 1 1 .1	61 63 91 89 107	.2 .7 .5 .5	4 3 4 2 4	2 2 2 2 4	91 111 97		.161	3 3 3 2 2	27 33	1.00 1.01 1.38 1.06	14 15 23	.24 .24 .22 .18 .15	3 1: 3 1: 3 1: 3 1: 2 1	.07 .45 .29	.12 .10 .09 .11	.26 .17 .17 .24 .19	3 2 2 2 2	9 2 2 34
C 81128 C 81129 STANDARD C/AU-R STANDARD C	21 18 19	58	2 35	35 135	.8	8 74	17 31	410 542 1052 1054	4.33	6 2 42 44		ON QN 8 8	1 40 39			2 4 19 18	2 19 21		.44	.181 .156 .096			.93 1.38 .92 .90		-	3 1 2 1 33 1 38 1	.57 .92	.15 .12 .06 .07	.20 .27 .14 .14		5 4 490

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 MCL-NNO3-M20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL., AU DETECTION LIMIT BY ICP IS 3 PPH.
- SAMPLE TYPE: CORE

SAMPLE#	Но род	Cu	Pb pon		Ag	¥i ppm	Co Ergq	Mn pom	Fe A			u Ih	\$r	Сd	Şb	Bi	V ropq		P	Ls	Cr	Hg	Ba .	7i X	B AL		K U	
C 81130 AVF10- Z			<u></u>					-	8		411 14	ait bhait	bian	bbur	pon	bica		 :	72.3	bou	bba		bba	-	ppm X		X (pepun	ppb
10 01130 , 1	_	357	13	52	.5	7	50	748				D t	199	. 5	3	2	121	3,29	161	2	14	1.83	14	10	3 1.87	.05	.09 2	6
C 81131 J	3	505	9	37	. 4	10	18	471	3.75 💥	2	5 H	D 1	127	. 7	2	2	75	1.83	166	2	11	1.35	11	.12	2 1.38	.04	.07 3	2
C 81132	7	384	5	53	3.4	9	20	777	5.73 🐘	8:	5 H	D 1	199	2	3	2	120	3.18	.177	3	17	1.76	16	.11	2 1.85	.05	.10	5
c 81133	2	377	5	43	.5	10	22	806	5.68	6	5 N	D 1	215	4	2	2	117	3.50	158	2	16	2.10	9	.08	3 1.99		.09	
C 81134	23	306	9	13	.4	3	8	342	2.20	4	7 k	D 18	124	.2	2	3	33	1.47	.040	6	8	.49		.01	3 .78		.10 1	
	~		,			4.0	-4			<u></u>	. .				_	_				_								
C 81135	7	475	*	50	.6	10	21	927	2, 12			iD 1		.2	3			6.13		3		2.21	6	.04	3 1.97	•	.07 2	
C 81136	. 1	259	2	45	-4		22	976				ID 1	324	2	2	2		4.02		4		2.43	24	.08	3 2.45		.21 📒 1	37
C 81137	1	144	. Z	54	-4	8	13	861	600000	1.0		ID 1	185	5	3	2		3.56		5		1.59		.11	4 1.52		.12 1	
C 81138	38	241	7	58	. 4	12		912				1D 1		.2	3	2		4.35		4		1.83	16	.10	2 1.71	.03	.13	31
C 81139	4	96	7	53	-1	5	10	812	3.60	2	5 1	10 2	119	2	2	2	79	2.03	100	4	10	1.08	17	.08	3 1.04	.05	.06 1	5
C 81140	2	96	6	56	.2	7	10	687	الله ده ۵	5	5 1	1D 3	60	.2	2	2	9.0	1.38	108	6	1/	1.07	38	.12	2 1.09	.06	.19 1	14
C 81141	22	411	7	38	.5	12	17	674	7/05/5	7		iD 1	151	.6	2	2		2.05		3		1.66		.15	3 1.57		.22 1	44
C 81142	2	215	3	~ 29	.4	11	14		1 T L LY	, 5	-	D 1	144	. 4	2	3		2.30		ž		1.59			3 1.50			
C 81143	2	166	ē	32	.3	16	14	768		2		ID 1		.2	4	2		2.69		2		1.84		.18			.17 2	
C 81144	1	135	ž	32	.2	10	13	777		7		D 1			3	ź				ž				-15	3 1.51		.14 2	
C 01144		1.1.2	•	32		14	13	***	4.33 (c. 4.35)		,	יט ני	208	1.1	3	-	100	3.12	143	۲	20	1.80	11	-17	3 1.48	.07	.13 2	20
C 81145	1	263	2	37		11	21	833	6.22	4	5 1	ro 1	193	.4	2	2	137	3.57	139	2	30	2.09	39	. 16	2 2.07	.05	.32	26
C 81146	2	252	9	33	.45	16	18	816	5.76	43		10 1		.5	2	2		4.27		2		2.37	29	.17	2 2.14		.23 1	100
C 81147	4	254	2	19	2	10	14	473	3.45	2	-	iD 1		.5	4	2		3.28		Ž		1.06		.18	2 1.04		.21 1	64
C 81148	4	445	2	27	6	10	14		3.96	4		D 1		.в	4	2		2.44		ž		1.51	_ :	.20	2 1.25		.15 - 2	
C 81149	2	490	5	49	.6	12	19	671	9.75	3		iD 1		.2	3	ž		2.53		2		2.17		.20	3 1.90		.18 1	
- ****						_				<u>V</u>	_				_	_				_			:	}			\$ 10	
C 81150	17	465	6	59	.6	9		851		3		/D 1	194	7	5	2		5.31		3		1.83		.15	2 1.77		.18 58	
RE C 81146	2	258	8	33	4	17	19		5.92	4		/D 1	222	.6	2	Z		4.32		2		2.40		. 17	3 2.17		24 💯 .1:	
C 81151	1	239	4	45	.4	12		746	2	6		10 1	190	-4	3	2		4.76		3		2.09		. 17	2 1.99		.16 📒 1	18
C 81152	1	228	5	30		30	19		3.88	5		10 1		6	2	2		3.26		2	81	2.60		. 19	3 2.50	.14	.40 , 2	3
C 81153	1	243	10	39	- 5	35	15	731	3.90	3	5 1	iD 1	337	-7	3	2.	115	5.32	.057	2	96	2.61	72	.15	3 2.36	.10	.37	9
C 81154	4	442	3	37	5	13	17	B14	5.18	2	5 H	10 1	280	.5		,	127	5.60	121	2	30	2.09	17	. 15	3 1,92	.06	.16 1	7
C B1155	94	1114	5	40	:		20		6.15	2		iD 1		.7	2	5		4.52		Š		2.12		.17	2 1.98		.23	
C 81156	10	676	6	30	7		19		4.65	2		10 1		.7	3	ž		2.56		2	_	2.17		. 19				
C 81157	ĺž	364	3	24	200		15		3.33	3		iD 2		.7	2	2		1.45		2		1.17			3 1.45		.24	95
C 81158	ءَ ا	252	2	16	3			388	200.00	-		10 2		.8	2									.22	4 1.33		.39 Z	
01130	ľ	236	_	10		y	14	300	J.J4 :::	٠.	> 1	10 2	101		2	4	00	1.83	104	2	23	1.11	24	.20	2 1.30	-11	.32 2	54
C 81159	14	395	2	23	.4	7	16	411	4.39	4	5 1	RD 1	71	4	5	2	90	1.80	168	3	16	1.20	72	.24	4 1,38	80.	.51	47
C 81160	43	414	2	19	.4		14	414	3.79	3	5 1	ro 1	106	.7	3	2	81	1.70	.180	3	20	1.10	40	.23	2 1.30		.33 2	55
C 81161	4	517	2	18	.7	- 11	16	315	3.50	4		iD 2		.8	2	2		1.53		2	23	.93		.22	2 1.16		.29 4	
C 81162 .	13	249	6	12	.2	8	11	251	2.27	3	5 1	iD 2		. 9	2	2		1.61		2	12	.62	-	.20	2 1.10	-	.21 2	
C 81163	3	192	2	17		7		379		S		ND 1		1.1	3	Ž		1.54		Ž	26	.97		.22	2 1.2		.24 2	
	١	20.0				_		la de c	👸	<u></u>	_				_	_		!		_		_		(44)			2 000	
C 81164	21	209	- 4	16				338		2		ND 2		.7	2	2		2.18		2		.73		.19	2 1.08		.13	
C 81165	} .1	195	11	18				443		2		40 1	143	.6	2	2		2.11		2		1.21		.21	2 1.30		.15 🚉 2	
STANDARD C/AU-R	18		35								16	7 37		17.9	15	19	55	.46	.090	37	58	.84	168	.0B	32 1.77	.06	.14 13	520
STANDARD C	19	61	37	131	6.9	70	31	1057	3.95	14 1	17	7 39	53	18.5	15	22	55	.47	.094	38	58	.90	181	.07	35 1.89	.07	.14 11	-

SAMPLE#	Но	€u	Рb	Zn	'Ag'	Hí	Co	Mл	fe ;	As	U	Au	Th	S۳	. Cd:	Sb	Bi	٧	Ça	₽.	Į.a	Çr	Нg	Ba :	Ti	В	AL	Кa	ĸ	ų:	Au*
AH90; Z	bbu	bix	bbu	bba	bbm	ppm	bbut	ppm	×.	bbu.	ppm	Þβm	ppm	ppm	bbu.	bbus	Þþan	ppm	x	X .	ppm	bba	X	ppm	. %	ppm	x	X	X p	ζn,	pob
C 81166	1	310	5	21	.6	11	15	558	4.40	- 5	5	מא	1	122	9	4	2	94	2.42	158	3	22 :	1.35	17	.23	2 1	1.45	.08	.21	1	1
C 81167	2	368	2	28	.6	8	14	384	3.53	- 2	5	ND	1	103	1.0	3	2	72	1.78	.159	2	15	.83	13	.22	2 1	.03	.10	.19	1	29
C 81168	4	619	3	22 :	9	12	17	356	3.07	. 3:	5	КĎ	1	186	. 1.1:	4	2	69	2,21	.162	2	33 1	1.05	12 /	.12:	2 1	1.21	.10	.10	1.	9
C 81169	2	567	2	18	.8	13	17	337	2.96	. 2	5	ИĎ	1	116	.9	3	2	68	2.17	. 160-	2	30	.89	16	-12	2 1	.02	.10	.11 🎉	112	- 1
C 81170	19	259	2	20	.5	12	15	391	2.66	5	5	מא	1	217	.9	3	2	દક	2.74	170	2	35 '	1.23	8	-11	2 1	.30	.08	.08	1	1
C 81171	13	336	3	22	7	12	16	492	3.43	4	5	NO	1	162	.8	3	2	80	4.21	.148	3	37 1	1.26	14	.12	3 1	1.22	.08	.10	- 1	- 1
C 81172	3	625	3	31	.8	20	23	459	4.12	7	5	ND	\$	185	.8	4	2	79	2.86	.168	2	44	1.83	10	.14	4 '	.75	.07	.09	~ 1	1
C 81173	2	120	2	19	. 3.	11	11	330	2,19	. 3	5	NO	1	325	1.0	2	2	57	2.64	.156	3	26	.92	12	.20	2 1	.73	_12	.12	2	1

ACKE ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE PHACATOR

BP_Resources Canada Ltd. PROJECT 10154 File # 90-4952 Page 1 700 - 890 W. Pender St., Vancouver BC V68 4V3 Submitted by: W. PATERSON

SAMPLE#	Ко	Сл	₽b		λg	Ni	Сo	Hn		As	U	Au	Th	Sr C			٧	Co P		Cr	Мg		11.	ВА			
11002 2	bbu	bbm	ppm	ppm	bou	ppm	ррп	þрm		ppm	- bba	56m	ppm	bbu bb	us bbu	bbu	bba	X E X	ppm	þþm	<u> </u>	ppm	X	ppm	<u> </u>	X X } j	pp pp
C 81174 AH40-3	3	29	3		٥٠ .١ .	4	12	558	2.19	2	5	ND	1	43				.47 .064	5	8	1.00		.10	3 1.2			
(C 81175 V		126	. 5)/ :1 ;	7	14		2.39	2	5	ND	1		5 2	2		.58 .064	6	10	.97	89	-08	2 1,2			. 1: 11
C 81176	2	31	14	44	- 1	6			2.30	16	5	ND	!		5 4	2		.70 .065	7	7	.78	66	.06	12 .9			. 1. 9
C 81177	1	127	3	44	.3 .3	5 5	18		2.19	4 5	5	ND ND	!		4 3 7 5	2		1.62 L062 1.75 .062		6	.84	70 74	.07	3 1.0 18 1.1			∵1∵ 1 ″1: 24
C 81178	١.	144	7	47	· • • • • • • • • • • • • • • • • • • •	3	12	492	2.33) - -	,	ND	'	34	2	2	44	.73 .002		ь	.71	/4	.05	16 1,1	٠. ر	, ,,,,	1. 24
C 81179	. 2	198	220	175	1.3	3	13	677	2.44	13	5	ND	1	50 3.	2 3	3	34 2	.28 .058	7	4	.73	57	.05	18 .9	٥. ۵	4 .40	1 6
C 81180	1	51	8	50	.1	5	11	536	2.37	11.	5	ND	1		7 2	2	37 1	.75 .061	7	6	.73	61	.05	2 .9			1 2
C 81181	1	87	5	52	.1	4	11		2.26	2	5	ND	1		4 2			.49 .064	8	5	.75	51	.02	2 1,0			1 21
C 81182	!	43	5	23	1	3	.6		1.25	3	5	ND	!		2 2			1.52 .064	9	Ş	-31	36	.01	2 .7			1 6
C 81183	1	41	,	31	. 4	5	11	717	1,65	ે 2	>	ND	1	. 78	4 4	2	10 4	.07 .058	10	3	.36	37	.01	2.7	3 .0	.21	1 4
RE C 61188	3	523	81	116	2.5	6	16	703	2.61	23	5	ND	1	59 1.	8 5	4	27 2	2.17 .062	4	5	.76	47	.07	10 1.0	3 .0	4 .40	1 37
C 81184	ī	149	489	402	10.0	7		1259		46	5	ND	1	76 12	-	2		.02 .056		3	.75		.01	8 .9		17. 50	1 160
C 81185	1	37	134	98	7.7	5	6	1020	1.87	6	5	ND	1	76 1.				160. 28.	5	7	69		.05	2 .9			11] 9
C 81186	1	91	2	47	.2		5		1.92	6	5	HD	1	74		_		2,66 .061		5	.70		.04	2,1.0			1 5
C 81187	1	281	2	64	-2	5	7	857	2.16	3	6	HD	1	67	5: 2	2	23 2	2,41 ,063	4	4	.84	207	.08	3 1.2	7 _0)4 .5 0	1 10
C 81188	4	536	86	116	2.7	6	17	710	2.68	26	5	ND	•	59 2	.0 4	. 2	27 2	2.20 .062		5	.76	46	.07	2 1.0	3 1	3 .39	2 41
C 81189	} ;	155	8	49	.,3		25		4.42	7	ś	NO	i	143		_		5.28 1,152		_	2.91		.11	3 2.2		2 .46	1 14
C 81190	Į į	63	2	43			35		5.94	8	5	KD	ì	297 1				5.42 .228			4.95	525	. 20	6 3.9		2 1.34	1 2
C 81191	1	180	6	46	.2	77	28	877	5.59	8	5	КĐ	1	231 1.		2	140 8	3.63 .192			3.91	185	1.15	2 3.2		02 .53	1 1
C 81192	[1	309	2	53	.3	68	24	953	5.50	7	5	КĐ	1	197 1.	.0 2	2	151 8	3.70 -187		303	3.85	284	.14	2 3.6	۱. ک	1.02	1 120
C 81193	1,,,	2551	16	124	4.1	/2	40	D75	8.81	20	5	2		99 2	.; .2 2	, ,	122 1	3.58 .157		224	2.76	44	.08	2 2.9	1 1	2 .83	1 1330
C 81194	3	787	40	90	4		15		2.95	13	5	ND	·	56 1				2.09 .073			.96	34	.01	2 .9		04 .17	1 250
C 81195	6	26	10	36			12		2.84	7	5	ND	i	:-	.2 2			2.14 .062	:			41	.02	2 1.0		03 .26	1 240
C 81196	2	57	2	45	.2		15		3.03	6	5	ND	1	63				2,21 ,064		44	1.33	104	.06	2 1.4	7 .0	04 .57	1 150
C 81197	1	32	412	632	1.1	5	11	483	2.65	42	5	HD	1	57 15	.3; (2	38	1.99 .064	9	8	.69	35	.01	2 .8	3 .	05 .15	ी 75
	١.		_		7.2						_											**				AP 44	્યું .,
C 81198 C 81199]	12 10	2 132	27 189	.1		7 9	+	2.44	7 17	5 7	ND ND	1	81 55 4	.5 2		_	2.13 .067 1.80 .064		-	.87 .87	38 30	.01			05 .16 § 05 .11 §	1 12
C 81200	Ż	23	32.1	25	.1	: :	9		2.42	ີ່ 2	Ś	ND.	- 1		3			2.15 .063				25	.01			04 .09	1 34
C 81201	4	18	9				-		1.91	. 4	5	ND	i		.2			2.39 .057		-	.79	29	.01		-	04 .08	1 4
C 81202	1	15	4	30			8	403	2.35	. 2	5	ND	1		.5		46	1.89 .063	9	11	.77	32	.01	2 .	. 50	05 .11 }	1 2
			_		17.12	_	_			9.1.	_		_		_				<u> </u>				À	_		š	
C 81203	1 1	17	3	23	្រះ្ម		-		2.37	<u> 3</u>	5	HD	1		.2	-		1.95 .060		6		30	.02			05 .20	ິ1 8 ິ1 9
C 81204 C 81205	2	60 195	74 37	31 28	.2		_		2.34	2 2	7 7	NO NO			.4			2.06 .067 1.77 .066				32 42		. – .		04 .20 05 .35	1 15
C B1205	1	133							2.38	5		םא סא	1			2 2		1.54 .066		7		34	7	3 .		05 .13	i 'i
C 81207	ز ا								2.49	2		ND	1		4			1.98 .06				26				05 .08	1 20
1 3/2	1		-											(· .:	•		\$	4								
C 81208	1	161	2	29			-		2.60	2	5	ИD	-	53	•	2 2		1.99 .06			1.00			2 1.		04 .17	1 40
C 81209	2	37	_						2.39	2	7	ND			• • •	2 2		2.17 .070			1.01					05 .08	11 8
STANDARD C/AU-R	19								3.89	38	17	6 7	37 39					.44 .09					.08			06 .14	13 500
STANDARD C	19	- 59	<u> 39</u>	122	े7.1	70	25	ווכטו	3.95	- 42	19		7,4	52 19	.0: 1	18		.45 .09	39	29	.89	103	₹,08	34 1.	. 00	06 .13	13:

1CP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH//A FROM 10 GM SAMPLE.

SAMPLE#	Мо ррли	Cu	Pb ppm		. Ag	Xî PÇM	Ço	Mn. ppm		As pon	U ppnt	Au ppn	Th ppm	Sr. ppms≍		SP SP	Bi ppm	V ppm	Ca :	P	La pom	DEW C.L	Kg %	Be Be	τi χ.	ppm B	Al X	Ka %	K K	Þ6ш N	Au*
C 81210 C 81211 C 81212 C 81213	1 11 1 3	28 19 11 39	2 16 2 2	31 60 32 34	1 1 1	4 11 4 7	8 7 6 5	435 425 407 358	2.01 2.24	2 14 6 2	5 5 5	ND ND ND	1 1 1	69 64 72 60	.6	2 2 2	6 2 2 2	48 45	2.40 . 2.26 . 2.27 .	.062 .063	5 5 8 9	6 19 8 21	1.01 .76 .88	28 26	.02 .01 .01	2 2 3 3	.99 .84 .96	.03 .04 .04	.11 .17 .09	1:	4 2 1 3
C 81214	4	351	5	28 27	.2	5	. 6	360 401		2 3	5	ND ND	. 1	62 (1) 70	.2	.2	3		1.69 2.08	, . · ·	8	8 21	.84	:	.01 .01	4	.87 .85	.05	.08	1	1
C 81215 C 81216 C 81217 C 81218 C 81219	5 7 17 2	360 70 47 14	1292 283 29	238 222 126 87		6 11	6 7 9 8	509 604 497 716	1.92 2.02 2.65	26 16 14 7	5 5 5 5	ND ND ND	1 1 1	64	5.6 3.2 .6	5 5 5	2 2 6	29 32 31	1.98 2.53 2.19 3.45	.068 .065 .077	6 6 4 5	6 20 4	.80 .94 .94 1.81	21 17 28	.01 .01 .01	2 3 3	.90 1.12 1.08 1.83	.04 .04 .03	.14 .18 .14	1 1 1	340
C 81220 C 81221 C 81222 C 81223 C 81224	1 6 1 53	107 77 22 42 103	5 14 8 9	91 83 92 72 937	.4 .6 .3 .6	9 8 8	13 17 8 6	1008 524 480 446 670	2.99 2.32 1.42	3 2 8 2 14	5 5 5 5	ND ND ND	1 1 1 2	99 87 77 91 108 13	1.2 .5 .2 .2	2 2 2 2 2	3 5 2 3 3	48 33 21	4.32 3.07 2.36 3.15 4.40	.073 .062 .067	2 5 6 5 4	20 9 16	3.11 .98 .81 .56 1.72	43 23 19	.15 .01 .01 .01	2 4 3	3.14 1.20 .97 .74 1.85	.02 .04 .04 .04	.57 .14 .09 .09	1 1 1 1	20 2 1 1
C 81225 C 81226 C 81227 C 81228 C 81229	6 1 2 2 3	624 598 209	4 10 7 7 6		5	3 7		876 666 534 771 432	5.50 5.43 5.05	25 2 4 6 2	5 5 5 5	KD KD KD	1 1 1 1	127 155 153 213 161	.8 1.4 .7 .9	2 2 2 2 2	6 2 2 2 2	69 57 67	5.88 6.00 4.02 7.87 3.77	.141 .160 .132	4 8 9 6 8	13 2 16	2.91 1.92 1.62 1.88 1.50	123 77	.01 .01	2 3 5	3.10 2.19 2.09 2.27 2.02	.01 .02 .02 .02	.12 .15 .18 .14	1 4 1 1	1 33 88 18
C 81230 C 81231 C 81232 C 81233 C 81234	13 6 8 51	85 139 594	3 6	19	.3 .3	2	7 7	314 497	2.26 2.40 4.88	6 3 5 6 7	5 5 5 5	0H 0H 0H 0H	1 1 1	191 151 91 180 446	.5 .2 .2 .9	2 2 2	2 2 2 3	21 28 37	4.68 3.58 2.14 3.72 8.03	.068 .071 .139	8 9 10 7 6	11	1,27	216 31 33	.01 .01 .01 .01	3 3 4	1.87 1.04 1.07 1.89 1.42	.02 .03 .04 .02	.19 .16 .11 .15	1 1 1	37 25 32 96 39
C 81235 C 81236 C 81237 C 81238 C 81239	3 1 1 1	94 54	6	30 40	.4	7 6 7	18 14 15	636 704	5.06	2 3 2 6 2	5 5 5 5	40 64 64 64 64 64 64	1 1 1 1	224 180	.9 .9 1.3 .5	2 2 2 2	2 2 5 4 2	103 97 87	4.97 2.91 2.46 4.26 2.66	.173 .160 .157	6 4 4 4 3	8 8 5	2.16 2.12 1.84 1.79 1.96	16 13 10	.04 .16 .14 .08	7 2 2	2.74 2.43 2.19 2.04 2.25	.02 .04 .04 .03	.16 .08 .09 .09	1 1 1 1	1 1 2 1
RE C 81236 C 81240 C 81241 C 81242 C 81243	3 3 2 9 2	120 96	7 2 3	39 41 35	.2 .1 .1	10 7 6	15 16 15	834 825 861	5.03 4.25 4.09 3.79 4.57	2 2 2 2 2 4	6 5 5 5	ND ND ND ND ND	1 1 1 1	257	.8 .6 1.2	3 2 2 2 2	2 2 2 2 2	82 90 83	2,86 4,34 3,39 4,17 3,31	.155 .160 .150	4 3 3 3	12 9 15	2.12 1.71 1.69 1.66 1.90	29 22 12	.16 .09 .16 .16	3 5 2	2.40 2.03 1.88 1.91 2.13	.04 .03 .04 .04	.08 .11 .08 .07	. 1	1 9 2 2
C 81244 C 81245 STANDARD C/AU-R STANDARD C	16 16 19	118	3 37	130		67	19 32	787 730 1044 1051	4.68 3.89		5 5 17 20	ND ND B 7	1 39 38		.8 .9 18.7 19.1		4 3 23 19	105 56	3.76 4.26 .46 .45	.159 .092	38	-		15 171	.11 .12 .08	34	2.25 2.12 1.80 1.89	.03 .03 .06	.10 .09 .14	1 11	5 2 520

SAMPLE#	No ppm	Cu	Pb pon	Zn	Ag:	Ni ppm	Co	Kn pon	fe %		Ų ppm	Au ppm	Th ppm		Cd.	Sb	8í ppin	bixu A			La ppm	Cr ppm	Hg	Ba pom :	T (btay B	۸l	Ne %	X X	PPM V	Au* dqq
C 81246 C 81247 C 81248 C 81249 C 81250	9 4 2 6 2	225 132 82 107 126	12 8 4 9	34 35 31 34 35	.6 .1 .1	9 8 9 10 8	24 18 15	791 711 705 646 663	5.01 5.22 4.98 4.90	4 7 2 6 6	5 5 9 5 5	ND ND ND ND	3 1 2 2 2		1.3	2 2 2 3	2 2 2 3 5	97 100 104	3.88 4.82 3.58	.144 .155 .150 .161 .159	3 3 3 3	8 7 11 :	1.83 1.92 1.76 2.01		.12 .08 .16	2 2 2	2.12 2.16 2.00 2.22 2.15	.03 .04 .03 .04	.14 .16 .09 .14 .12	1 2 2 1 1	17 1 2 1 3
C 81251 C 81252 C 81253 C 81254 C 81255	16 4 4 8 52	131 80 159 191 173	2 8 5 6 9	39 32 30 44 39	.1 .3 .2	14 7 11 11 10	16 20 21	582 817 580 843 772	5.15 4.26 5.23	5 4 3 6 3	5 5 5 5	ND HO HO	1 1 1 1	168	1.0 .8 1.1 1.0	2 2 2	2 2 4 3 7	119 91 103	3.43 2.03 3.53	.158 .164 .158 .129	2 3 2 2 3	13	1.94 1.84 1.49 1.85 1.77	27 22 13	.20 .21 .25 .14	2 4 2	2.21 1.95 1.69 2.06 1.98	.04 .05 .07 .04	.15 .16 .17 .17	1 1 1 5	2 1 1 9 9
C 81256 C 81257 C 81258 C 81259 RE C 81264	85 7 13 12 19		10 2 5 6 7	39 19 26 28 23	.3 .3	9 7 6 6 10	19 13 23 16 32	835 422 524 546 492	3.10 4.30 4.46	6 2 3 2 3	5° 5 5 5	ND ND ND ND	1 1 1 1	125	.5 .4 .8 .8	2 2 2 2	2 2 4 2	64 79 82	2.22 2.05 2.31	.151 .144 .130 .132 .168	3 2 2 3 2	10 4 . 8	1.75 .88 1.02 1.16 1.16	13 8 6	.15 .21 .19 .19 .27	5	1.92 1.15 1.20 1.30 1.35	.04 .05 .05 .06	.11 .06 .10 .09	1 B 1 1	1 1 12 1
C 81260 C 81261 C 81262 C 81263 C 81264	32 18 6 3	183 244 135	3 8 8 13 5	29 28	.2 .2 .3	7 11 9 10 7	14 15 20 18 29	535 528 815 743 464	4.70 4.71 4.94	2 2 3 2 2	5 5 5 5	ND ND ND ND	1 1 1 1	104 106 108 141 116	.4 .8 .2 1.2	2 2 3 2	3 2 8 7 2	103 108 134	1.77 2.68 4.34	.150 .143 .124 .122 .165	2 2 2 . 2	16 7 15	1.31 1.44 1.66 1.94 1.13	12 19 26	.22 .25 .22 .22	5 5	1.41 1.57 1.90 2.01 1.31	.06 .06 .05 .05	.12 .11 .19 .13	1 1 1 1	1 1 1
C 81265 C 81266 C 81267 C 81268 C 81269	32 10 21 36 8	114 118	9 3 5	15 28 22 22 28	3 .1 2 .1 2 .1	7 6 7	12	340 542 529 512 596	4.48 3.40 3.46	2 3 2 2 2	5 5 5	ND ND ND ND ND	1 1 1	107	.5 .3 .6 .3	2 3 2 2 3	2 3 7 2 2	101 77 79	1.93 1.87 2.08	171 3 .163 7 .178 3 .170 5 .157	2 2 2 2 2	10 6	.70 1.51 1.23 1.13 1.45	33 15 11	.25 .24 .23 .22 .23	2 4 2	.97 1.65 1.38 1.27 1.54	.09 .06 .08 .07		1	1
C 81270 C 81271 C 81272 C 81273 AH90-4 C 81274	3 1 2	114	11 2 12	3° 2°	1 .2 9 .1 6 .1	12	17 16 12	579 510	4.28 4.38 4.48 2.32 2.36	2 2 2 2 2	5 5	ND ND ND	1 1 2 . 1	146 160 40	.6 .4		6 2 3 2 7	108 97 37	2.59 2.4 1.7	4 .154 7 .150 1 .157 1 .059 6 .061	2	26 17.	1.70 1.79 1.72 .76	20	.23 .24 .25 .07	2 5 2	1.75 1.85 <u>1.76</u> 1.01 .97		.42	1 1 2 1	
C 81275 C 81276 C 81277 C 81278 C 81279	1 1	24 75 82 1 14	9	3	2 .3 7 .1 0 .1	- 58	15	579 790 849	2.33 2.08 4.93 6.29 6.66	2 2 2 2	5 5	ND ND ND	1 2 1 1	81	.2 .8 .8	2 2 3	2 2	37 126 152	3.3 3.3 2.7	7 .063 5 .058 8 .085 8 .099 4 .096	2	5 58 107	.75 .74 2.76 3.77 3.93	53 387 509	.06 .06 .21 .27	2	.99 .95 2.82 3.62 3.95	.02		1	1
C 81280 C 81281 STANDARD C/AU-R	18		2 4	5 12	2 .5 4 6.4	102	21	889 999	5.32 4.93 3.88 3.95	2 2 38 39	5 19	ND 7	2 1 37 40	137		2 16	19	126	3.5	3 123 9 171 6 086 5 092	35	184 52	3.42 3.79 .84	496 170	24	3 34	3.63 3.85 1.77 1.88	.02	2.06 1.72 .14	1 11	10 530

BP Resources Canada Ltd. PROJECT 10154 FILE # 90-4952

SAMPLE#	Мо ррл	Cu ppn,	Pb ppm		Ag.	N S	Со	Ил Ррп		. As	U ppm		Th ppm	n2 mqq		da	Bí ppm	V ppm		P		Er ppm	Иg	Ва	Ti-	B ppm	Al X	Жe	Κ % :	Pou N	Au* ppb
C 81282 A.M. 172-17 C 81283 4 C 81284 C 81285 C 81286	1 4 6 1	183 182 57 105 82	4 6 247 44	39 35	.1 .3 .3 1.1	14 38 6 8 14	27 25 21	667 : 767 : 535 : 748 : 938 :	4.00 2.46 2.50	7 8 6 94 22	5 5 5 5	ND ND ND	1 1 1	69		2 2 2 3	2 2 2 4 2	92 44 33	3.54 3.26 1.98 2.30 2.13	.096 .05B	4 3 6 7 4	64	1.74 2.04 .81 .80 2.41	48 67	.11 .14 .06 .04	2 1 2 2 2 2 3 2	.11 .99 .90	.03 .02 .03 .02	.54 .88 .55 .41	1 1 1	15 31 30 73 21
C 81287 C 81288 C 81289 C 81290 C 81291	1 1 1 1	13 7 1 43 30	22 2 5 10 4	95 36 39 47 34	.1 .3 .1 .1	21 21 20 20 19	16 14 13	1071 : 790 : 701 : 801 : 657 :	5,02 4.54 5.14	82 22 21 14 8	5 5 5 5	ND ND ND	1 1 1 1	118 127 111 105 128	.8 .5 1.4	2 5 3 2 2	2 2 2	124	2.63 1.74 1.85	.093 .098 .097	2 2 2 2 2	41 36 39		468		2 2 2 2 5 2	.09 .88 .72 .93	.02 .03 .03 .03	1.48	1 1 1 1 1	18 20 9 17 13
C 81292 C 81293 C 81294 C 81295 C 81296	2 1 1	328 201 95 44 205	4 7 6 2	34 40 71 56 49	.4 .3 .5 .1	19 23 19 21 16	22	693 779 842 964 820	6.32 8.91 6.66	9 10 16 2 4	5 5 5 5	ND ND ND ND	1 1 1	63 104	1.8	4 3 2 2	2 2 2	150	2.07 1.75 4.40	.100 .092 .093	2 2 2 2	37 34 36	3.16 2.64 2.79	295 392 49 716 401	.24 .26 .24	5 3 6 3 7 3	.63 .05 .17 .21 .68	.03 .03 .02 .03	1.30 1.87 1.72	. 1.	55 45 130 110 100
C 81297 C 81298 C 81299 C 81300 C 81301	1 1 1	114 194 56 47 43	2 2 2 4 7	44 50 36 49 85	.1 .2 .1 .1	20	29 19 20	774 800 730 945 1074	8.04 6.10 6.30	7 6 3 4 11	5 5 5 5	OK OK OK OK	1 1 1 1	66 76 117 130 137	1.1 .9 .4 1.2	2 2 2 2 2	2 2 2 2 2	164 138 149	2.83 3.53	.096 .093 .090 .090	2 2 2 2 4	32 31 34		796 613 267	22	8 3 2 3 2 3	.68 i.88 i.22 i.18 i.33		2.07	1 1 1 1	29 31 17 18 2970
C 81302 C 81303 C 81304 C 81305 C 81306	1 1 1	49 11 22 21 12	7 4 8 6 5	73 118 90 65 54	.1 .1 .2 .2	13 6	37 23 21	1106 1352 1223 844 984	8.24 5.79 3.78	9 8 5 7 2	5 5 5 5	ND ND ND	1 1 1 1	131 88 111 53 76	.2 .8 .3 .4	2 2 2 2 2	2 2 2 2 2	109 86 39	2.11 3.46 1.87	.097 .092 .089 .061	9 5 8 9	7	3.00 2.04	140 98 33	.07 .10 .05 .01	7 3 3 2 2 1	2.02 3.39 2.34 1.12 .92	.02 .02 .02 .01	.47 .86 .47 .10	1 1 1	480 25 13 17 13
C 81307 C 81308 C 81309 C 81310 C 81311	1 19 23 35	40 683	8 32	91 149 299		14 21 34	18 25 29	1043 1319 1775 1454 1083	6.83 7.18 7.94	5 4 7 71 71	5 5 5 5	OM OK OM OM	1 1 1 1	155 140	.2 .9 4.1 1.1	2 2 2 2 2	· 7 2 2 2 2 2	126 134 115	2.51 5.98 4.75	.068 .097 .095 .133 .171	9 5 6 5 3	8 23 76	1.13 2.62 2.40 2.57 3.70	33 67 84 38 202	.01 .03 .05 .03	5 i	1.24 2.54 2.61 2.83 3.37	.02 .02 .02 .01	.09 .24 .38 .25	1 2 1	12 240 610
C 81312 C 81313 C 81314 C 81315 C 81316	1 1			32 32 28	.2 .2 .1 .1	83 41 6	23	546 625 618 454 419	3.89 3.66 2.60	7 6 8 2 4	5 5 5 5	ND ND ND ND	1 1 1 1	241	.6 .5 .7 .2	2	2 2 2 2 2	97 89 43	4.68 4.27 1.73	.193 .194 .128 .063	2 3	285	3.22 1.97 .98	181	.13 .10	2 2	2.11 2.19 1.75 .98 .81	.01 .03 .04	.77 .67 .71 .18		29 17 27 21 21
RE C 81312 C 81317 STANDARD C/AU-R STANDARD C	10 18 18	609 58	2 36	25 126	.3	13 68	12 29	563 521 937 1051	1.95 3.99	4 3 40 43	5 18	ND HD 7 7	1 1 36 39	91 50	.3 17.8 18.9	2 17 15	2 3 20 20	53 55	3.86	.202 .075 .087	2 3 37 39	31 55		71 172	.14 .05 .08	33	2.21 1.04 1.77 1.89	.02 .03 .05	.45	1 1 11 12	

SAMPLE#	Мо	Cu	Pb	Zn		Жi	Co	Mn		As	U		Th	Sr		Sb	Bi		. P		Cr	Hg	Ba :		B A			. µ pp⊪	Au*
	bbu	bim	bbu	ppm	: ppn	bbu	bbau	bbu	_ 1	€ pbur	bbm	btau	bbu	bba	ppm	рря	bbm	biou	X : X	: ppm	bbu	¥	bbu :	. *	bbin			1744	1744
C 81318 FHT10-4	2	150	235	210	. 4	86			5.03		5	ND	1	203		2	2	127 5.2	-				383		2 3.7		3 2.07 1 1.64	ୀ :	42 18
C 81319 🖖 🕴	1	151	8	52		96	25		6.04		5	ИD	2	347		2	2		210			4.66 3.37		.20:	2 4.7		2 1.72	1	210
C 81320	2	462	106		.8	45	23		5.72	5	5	КD	1	232		2	7	133 6.0	54 ≒,154 No. 150				450		3 3.4	_	2 1.68	1	250
C 81321	. 2	384	9	51		45	22	872		2	5	ΝĎ	1	226		2	6 7		20 .055	: .	19	3.13	45		2 1.1				12270
RE C 81326	7	341	27	73	2.7	10	47	733	5.15	6	5	8	1	65	-6	2	ľ	22 2.0		•	"	.,,	72 }						
C 81322	2	100	28	68	.2	14	21	698	3.69	2	5	ND	4	134	1.4	2	2	75 3.8	88 .110	15		1.47	221	1	2 1.8		;	. 1	63
C 81323	3	216	15	54		6	20	509	2.84	. 3	5	ND	1	71	.5	3	4	39 2.0			8	.89		.04	2 1.0			- 1	300
C 81324	9	2225	1341	377	7.8	11	40	598	5.93	7	5	3	1		13.0	4	7		78 :051		15	.52	22		5 .7				4920
C 81325	. 2	373	12	43	1.6	5	18	736	3.12	2	5	ND	1	88	-2	2	5		69 .062		- 5	.63	37		2 .9				2970
C 81326	8	346	22	74	2.5	8	48	747	5.29	2	5	8	1	67	.6	2	10	22 2.	24 .056	4	19	.78	47	•03	2 1.	0. 9	1 .48	٠.	1370
c 81327	١,	292	7	53	.5	6	22	545	2.22	5	5	ND	1	77	.5	2	2	30 2.	33 .067	. 7	5	.76	43	.03	2 .9	7 .0	4 .32	•	110
C 81328	Ιż	290	ż	36		8	19		2.14	2	5	ND	1	64	2	2	2	43 2.	20 .068	6	18	.89	57	.05	3 1.0			1:	14
C 81329	23	456	10	33		6			1.41	3	5	MD	1	60	.2	2	2	43 2.	34 [.071		6	.87		.D3:	2 .			1	58
C 81330	27	295	12	67		9	16	490	2.01	ેં 3:	5	КĐ	1	78	.2	2	2	36 2.	55 .070		19	.83	38		5 .9			1,	120
C 81331	6	790	16	73	1.4	5	15	481	2.10	- 5	5	HD	1	81	1.0	2	2	34 2.	69 .069	5	δ	.83	42 {	-03	2.	25 .0	4 .22		67
	١,	965	δ	57	1.5	10	14	666	771	3	5	ND	1	193	1.6	2	2	83 4.	48 .118	5	19	1,58	34	.07	3 1.	8 .0	3 .41	1	28
C 81332	3	209	4	22		68			2.92	5	5	ND	i	303	.6	2	2		68 .099			2,47	9	.10	6 1.	69 .0	.05	1	18
C 81333 C 81334	13	215	2						3.26	2	5	סא	1	388	_2	2	Ž		02 .097		114	2.35	22	.14	3 1.	74 .0	8 .07	1	12
C 81335	3	268	2						3.04	2	5	ND	1	581	.5	2	2	72 4.	53 :.076	. 2	35	1,36	22	-17	2 1.	27 .0	7 .05	. 1	9
C 81336	21		2						4.04	3	5	КĐ	1	708	1.0	2	2	102 7.	41 .070	2	58	1.96	8	.18	2 1.	57 .0	.03	1	11
	١.				, ,	: 22	26	//3	3.45	12	5	מא	,	604	.3	3	2	70 2	90 .134	2	30	1.31	56	.15	2 1.	58 .4	11 .09	1	В
C 81337	. 8		2						3.62	5	5	ND	, i		.3	ž	2		67 .12			1.62		.19	2 1,		10 .14	∮ · 1	8
C 81338	15	200	2						2.72	Pr . T 1	š	ND	- 1	250	.4	2	Ž		92 .08	: =		1.24		.19			06. 01	- 1	11
C 81339 C 81340	14		3						3.44	11	5	ND	1		.7	2	4		37 .08	_		1.72		.20	. 21.		12 .11	11	13
C 81341	15		2						3.26	4.	5		1	370	.4	2	2	78 2.	83 .07	7 2	51	1.82	66	.20	2 1.	70 .	09 .15	1	4
	١.,		-			. ,,		424		7		KD	1	317	1.1	2	6	107 3	14 .06	5 2	R.O.	2.48	57	.20	2 2.	01 .	07 .16	1	2
C 81342	24		2		_ ,				4.10	****	5 5				۵.՝	. 2	7		97 .04			1.24	19	.12			07 .04	1	6
C 81343	۱.:				- :				3.64		5	KD.			.3	· 2	ž		64 07			2.86		.21			07 .25	1	3
C 81344	111								4.40	X					. 6	. –	2		79 .06	-, -		2.31		.18			06 .09	1 1	6
C 81345	22					:			3.08	5	5				.5		2		88 .10			1.92	10	.15	2 1.	85 .	06 .05	() 1	4
L 01340	"	£42	-	_		,		,,,,	3.00		_		•	107	(·		_												_
C 81347	7		_		- 5				4.05	27	5				1.4		2		49 .08			2.30		.18			07 .07 05 .03		2
C 81348	8								5,51					423	4	_	2		.52 .07	- 1		1.90		.21			09 .04	្ំាំ	_
C 81349) 6								3.82		5			478	1.0		2		.37 .08			1.61		.17			08 .04	1	
C 81350	1 5								3.32		5			425	.6	. =	2		.69 .06 .63 .07			1.79		.18			06 .04	1	
C 81351	10	249	, ,	5 5	5 .4	51	1 24	615	3.00	3	5	ND	1	426	.6	2	2	04 3.	,0, .0,	ું '	. ,,	1.17	,,						Ū
C 81352	17	2 337	, :	5 2	9 .4	5	1 28	687	7 3.60) 6	5	NC	1	303	.9	:	5		.06 .07			1.92		.17			20. 20	2	
C 81353		7 271	1 7	2 4	4 .2	33	3 20	962	2 3.47	7 4	5		1		.4		2		.87 .19			2.28		.12			04 .04		
C 81354	19			2 2	7 .3	5 18	8 19	590	3.25	4	5						3		.28 .37			7 1.19		.10			80. 80	Sec. of	
STANDARD C/AU-R	19								3.9						19.9		18	-	.46 .09					.08			06 .14		
STANDARD C	19	9 58	3 3	5 13	1 7.3	5 71	0_32	1058	3 3.90	38	19) 1	7 39	52	19.1	: 18	19	57	.46 .09	4 38	358	. 85	169	U	35 1.	D.	06 .14	3 11	

GEOCHEMICAL ANALYSIS CERTIFICATE

BP Resources Canada Ltd. PROJECT 10154 File # 90-5019 Page 1 CUDATRY LAKE

SAMPLE#	Ко	Cu Span	Pb ppm	Zn ppm	Ag	Ní ppm		Mn		As ppm			th pon	Sr ppm		Sb ppm	Bí ppm	V ppm	Co	P		Çr ppm	Hg %	8e ppm			Жа %	K	? ?	Au*
C 81355 A1170-S		26	2	46	.2	27		588		,	5		· · ·		·					1 4	<u> </u>			94	-	2 2.04	-06		,	3
	1	20	2	53	.2	32	33			2	5	KO	1.	88	.4	5	2		1.28		2		2.18				-		•	- 31
	1		_					462				ND	1	126	-3	2	_		1.24			112		82		3 1.59	.06	.87	- 41	- 11
C 81357	1	59	2	59	.2	40		624		3	5	ND	. !	164	.5	2	_		2.21			133		119		3 1.90		1.01		- {}
C 81358	1	26	2	39	.2	47	9	637		9	5	HD	1	123	.5	2	2		1.99			176		62		3 1.83	.05		1	- 1
C 81359	1	694	5	35	.6	48	13	752	4.49	5	5	ND	1	137	.5	2	2	101	2.68	.182	2	169	2,49	69	.17	4 1.98	.06	.83	1	26
C 81360	1	106	2	37	.2	51	12	830	4.95	2	5	ND	1	231	.3	2	2	124	5.02	.171	2	180	2.67	59	.12	2 2.23	.03	.71	1	6
C 81361	1	5	2	25	.3	39	9	667	3.55	2	5	ND	1	175	.3	2	2	77	2.78	. 189	2	161	2.52	72	.16	3 1.76	.04	.93	11	5
C 81362	1	54	2	28	.2	42	11	747	3.71	∵3.	5	ND	1	178	.2	2	2	88	3.52	.188	2	166	2.42	59	.16	3 1.79	.03	.73	1	3
C 81363	1	32	2	24	.1	45		631		7	5	ND	1	139	. 2	2	2		3.06			161			-17	3 1.73	.03	.97	1	5
C 81364	1	3	2	45	.2	62		1059		7	7	ND	1		.5	2	2		6.36			217		53		2 2.65	-01	.45	1	- 1
C 81365		77	•	36	.3	35		*17*	, ,,	,	12			TOO		,	2	445		.,	-	474	3 F.A	/1	17	2 4 04	02	71	(اہ
C 81366	;	22 256	2	50	.4	30		1131 ·		. 7	12 5	ND OM		309 246	.4	2			8.40			121		41 77		2 1.96	.02 .08		1 1	2 48
	;	413		46	: .			794		17	5		- 1		.5	2				.135	2	_	3.03	:	-16:	3 2.24			Ç. 19	
C 81367	;		ζ,		.6	30				<i>(</i>		ИD	- :	197	-2	5	S		3.13		2		3.08		.17	2 2.47). X	35
C 81368	!	91	2	42	.4	20		886		12	7	ND	1	160	. 4	2	2		3.37		2		2.56		.19	3 2.45	.08		1	15
C 81369	1	140	4	59	.3	15	13	907	5.3>	4	5	ND	1	134	.4	2	2	241	1.93	. 155	2	40	2.93	114	.21	5 2.98	.12	1.36	1	2
RE C 81374	1	79	Ż	39	.2	22	22	776	5.32	2	5	RD	1	247	.6	2	2	153	2.55	.106	3	52	3,18	47	.19	2 2.88	.05	.48	1	- 1
C 81370	1	33	2	53	1	10	. 10	779	5.68	. 3	5	NO	1	153	.4	2	2	179	1.62	.148	3	15	2.79	70	.18	2 2,69	.08	.75	11	1
lc 81371	1	2	2	47	1	8	11	694	4.33	9	5	ЖD	1	213	.2	2	2	171	2.22	.156	2	16	2.74	54	.18:	3 2.31	.12	.26	(1	35 l
C 81372	1	100	2	39	3	15	22	965	5.19	Z	5	ND	1	286	. 4	2	2	134	3.53	.118	3	28	3.14	141	.22	2 2.98	.06	.84	ា្រ	- 1
C 81373	1	119	2	36	.4	22	21	703	4.61	4	5	ND	1	- 8	.3	2	2			.111			Z.95		.27	_		1.18	. 1	9
C 81374	1	81	2	40	.2	23	22	784	5 40	2	5	ND	1	247	.3	2	2	156	2.57	108	3	54	T 20	48	.19	2 2.92	.05	.48		ار
C 81375	•	79	3	36	.2	36	25	619		6	5	ND	· i	158	.2	2	ž		1,98			117			.19	2 2.42				ŧΙ
C 81376	1	17	ž	34	.1			538		11	5	ИD	i	249	.3	ž	ž			.174		217			.18	3 1.81		1.03	1	2
C 81377	;	16	ž	31	.2	46	19	546		4	ś	ND	i	188	.2	ž	2		2.26			212		;	.19	3 1.73		.96		7
C 81378	;	2	2	47	.1			722		10	Ś	ND.		172	.2:	2	2			110				233				1.47	1 h	- il
0.570	l '	-	-	7,	•	-	• • •	124	7,72		,	~~	•	116		-	•	,0,	1.10	8 8	-	٠,	2.,2	ودع		2 6.01				'1
C 81379	1	10	2	52	.1			781		6	5	ND	1	187	.2	2	2			.112					.27	2 2.87		1.41	1	3
C 81380	1	31	2	59	1			1032		2	5	ND	1	266	.2	5	2			.104	2		3.06		. 19-	2 3,17		1.22	į. : 1	3
C 81381	1	155	2	61	1	23	21	967	5.90	. 2	5	ND	1	197	.2	2	. 2	139	2,34	.106	2	49	3,24	219	17:	2 3.27	.05	.89	[3] 1]	9
C 81382	1	13	2	52	2	34	19	917	5.87	. 2	5	МÐ	1	285	.3	2	2	132	3.82	-103	2	59	3.41	70	.16	2 3.05	.04	.41	ે 14	2
C 81383	1	138	6	49	.4	45	20	1141	5.84	4	13	NO	1	692	.3	2	8	151	9.34	-148	3	162	3.57	51	.10	2 2.69	.05	- 19	1	11
C 81384	۱ ،	346	2	51	.5	60	42	1136	6.17	2	10	ND	1	674	.3	2	2	154	8.73	160	2	201	4.40	50	.15	2 3.02	.06	.13	1	10
C 81385	} i	237	2	49	.3		25	987		Ž	5	ND	í	528	.2	2	5			.162	_	277			.17	2 3.06			100	, š
C 81386	ĺi	1	5	36	.1			684		7	-	ND		356	.2	2	2			171		241			.18	2 2.28			12:11	3
C 81387	Ιί	10	3	26	1			513		8	5	ND	1	283	.2	2	2			163	_	190				4 1.83		1.02		3
C 81388	Ιi	56	2	26	.2			443		9	5		:	197		2									.19				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
01300	Ι'	30	2	40		58	13	443	3.51	y	,	ND	1	IA1	.2	2	. 2	81	1.0/	.178	2	209	2.21	67	.19	4 1.81	.07	1.00	1	ا '
C 81389	1	168	2	29	.4	57		480		5	5	ND	1	199	.2	2	2		2.03	. 184	2	212	2.51		. 18	5 2,00		1.22	1	24
C 81390	1	56	2	31	.2	42	19	571		2	5	ND	1	207	.2	2	2	111	3.05	.141	2	137	2,33	101	.23	3 2.08	.07	1.33	1.	2]
STANDARD C/AU-R	19	58	37		7.4		32	1062	3.96	44	24	8	40	52 1	9.7	17	19	59	.46	.092	41	60	.88	189	.08	33 1.97	.07	.13	119	540
STANDARD C	18	58	37	130	7.1	73	31	1053	3.96	39	19	7	40	52 1	9.5	15	19	59	.46	.096	40	61	.89	187	.08	35 1,90	.06	.13	115	-

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR HN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SAMPLE#	Mo ppm	Çи ррп	Pb ppm	Zn ppm		Ni ppm	Co	Mn ppm	Fe %	As ppm	L Design	Au	Th ppm	\$r ppm		Sb ppm	8i ppm	V ppm	Ca X	P	La ppn	Cr ppm	Mg X		Ti X				M Au*
C 81391 AIHO-S	•	73	10	27	.1	53	28	386	T 21	2		סא	1	165	.2	2	2	79	1.83	166		177	1 71	41	.19	2 1.53	.03	.95 <	1. 13
C 81392	;	333	ž	24	1	53	11	462		- 5	5	ND	i	235		2			2.43		2		1.76	44	18	2 1.68		1.05	1 9
			_			-		_		~ ~	-		- 1		-2	_	٤.				_								· .
C 81393	. !	339	2	28	.2	58		605		5	6	ND	- 1	429	.3.	2	2		3.81			204		40	.17	2 1.80			1 8
C 81394	. 1	328	2	29	.2	40	47	506		. 2	5	ИD	1	538	.2	2	2		2.40			142			-21	2 1.65			1 16
C 81395	1	72	2	25	- 3	49	14	481	3.55	2	5	ND	1	263	.2	2	Z	84	2.18	.164	2	199	1.90	39	.17	2 1.62	.04	. 93	1: 5
C 81396	2	89	2	36		44	34	538	3.69	2	5	КD	1	222	.2	2	2	85	1.96	142	2	145	2.17	38	.22	2 1.87	.03	1.05	1, 4
C 81397	1	53	2	28	1	53	20	423	3.44	. 2	5	ИD	1	188	.2	2	2	84	1,62	165	2	194	1.98	35	.19	3 1.76	.03	1.12	1 2
C 81398	1	29	2	32	.1	46		463		2.	5	KD	1	170	.2	Ž	3		1.15			146		35	.23	2 2.04		71	1 1
C 81399		118	Ž	38		47	_	431		3	5	КD	i	193	.2	2	2		1.51		Ž	169			.18	2 1.87	_		2 10
C 81400	1 1	41	3	40	1	50		441		8	5	ИD	i	168	.2	2	5		1,47			166			.18	2 1.90		1.27	1: 13
6 81400	' '	*'	,	40		20	10	441	4.04		,	KD	'	100	••	ř.	4	103	1,41	-201	4	100	6.44	40	. 16	2 1.70	.03	1.61	. 13
C 81401	1	17	2	37	.1	51		432		2	5	ND	1	177	.2	2	2		1.55			170			.18	2 1.94			.1 3
C 81402	1	373	5	34	.2	50	18	465	4.10	- 5	5	ND	1	255	.2	2	2	103	2.29	.198	2	164	2.18	54	.17	2 1.70	.04	1.03	1: 49
C 81403	1	235	2	27	j1,	44	19	476	4.33	2	5	ND	1	319	.3	Z	. 5	100	2.20	.214	2	147	1.87	72	.17	2 1.59	.04	.91	1. 13
C 81404	1 1	251	2	26	.1	46	19	467	4.45	6	5	ND	1	257	3	2	2	104	1.98	.207	2	154	1.95	69	.18	2 1.63	.04	.99	1: 34
C 81405	2	38	2	18	.1	35	17	555	3.02	2	Ś	ND	1	508	.2	ž	2		5.14		2	130	1.31	45	.15	2 1.11			1 4
					ļ., .															100								2, 1	
C 81406	1	101	2	35	1.1	51		564		· 5	5	КD	1	335	2	2			2.25			168			.19	2 1.97		1.15	1 6
C 81407	ו ן	114	Z	28	.1	36	17	493	4.47	2.	5	КD	1	324	.2	2	2		2.40		2	107	1.99	81	.17	2 1.61	.04	.82	1 5
C 81408	1	32	2	32	11.18	50	14	565	4.67	7	5	ND	1	284	2	2	2	105	1.92	209	2	181	2.46	72	.17	2 1.91	.04	.94	1 2
C 81409	1 1	349	2	33	.2	46	12	452	4.13	2	5	ND	1	237	.2	2	2	89	1.83	.198	2	170	1.94	66	. 15	2 1.58	.04	.83	1: 37
C 81410	1	147	2	33	-1	47	15	671	4.64	4	5	RD	1	368	.2	2	2	111	3.72	204	2	166	2.56	45	.16	2 1.82	.04	-47	1 7
C 81411	١,	158	z	31	.1	52	26	803	7.38		5	ND	1	455	.z	2	2	108	5.94	180	,	162	2 /5	29	.14	2 1,72	.01	.23	1 10
C 81412	j 3	55	ž	27	1.1	43		498		ĺ ž.	5	NO	i	204	.2	2	2		1.64	- 4	ž		1.96		.18	2 1.58			1 3
1	;						-	. –	-	y - ;	-						_												:
C 81413	1 !	57	2	43		55		1051		2	5	ND	1	458	.3	2	2		6.00			184		34	.17				1: 10
C 81414	1	153	2	32	.1	56	51	739		6	5	НQ	1	278	.2	2	2		4.04		2		2.09	49	.19	2 1.69			1. 9
C 81415	1	75	2	35	.1	49	24	711	4.27	5	5	ND	1	255	-2	Ż	2	109	2.79	.211	2	163	2.42	65	.20	2 1.98	.04	.76	[1] 4
C 81416	1	69	2	48	.1	53	25	1134	5.65	. 5	5	ND	1	369	.3	2	2	155	5.77	.197	2	197	3.25	59	.19	2 2.59	.03	.46	1 2
C 81417	1 1	122	2	50	1	51	19	1125	5.50	- 6	5	ND	1	392	.3	2	2	140	6.55	.193	2	184	3.17	66	.19	2 2.64	03	-54	1 3
RE C 81413	1 1	42	2	44	.1	57		1046		2	5	ND	1	456	.2	2	2		5.98		2		2.93		.16	2 2.18		3 .33	2 11
C 81418	Ιi	132	Ž	55	.1			1037		2		ND	í	211	.2	2	2		4.70		2		3.20		.26	2 3.13		1.04	1 9
C 81419	l i	92	2	56		29		1035		Ž	5	KD	i	157	.5	2	ž		4.24		2		3.15	226		2 3.26		1.25	1 8
	1 .	,	•	-	•			,	J		•	NO.	•	171		-	-	176	7.27		•	-	3.,,	200	: ••··				
C 81420	1	62	2	61	.1	20		1004		4	5	ND	1	158	.2	5	2		6.74		2		2.30		.20	2 2.7		2 1.09	1 6
C 81421	2	14	2	50	୍ 👭	12	38	721	4.65	2	5	ND	1	106	.2	2	2	111	2.70	. 122	3	7	1,89	138	₹.21	2 2.27	7 .04	.87 🐖	1 4
C 81422	6	33	2	47		61	35	954	5.72	3	5	KD	1	310	.2	2	2	126	6.04	,151	2	177	2.34	70	.19	2 2.16	.02	2 .45	1 9
C 81423	1 1	15	2	55	.1	51	33	1090	5.40	- 6	5	ND	1	404	.2	2	2		6.72		2			252	.17	2 2.89	.0	1 .28 🦠	1. 1
C 81424	1	5	2	63			14	953		2	5	ND	1	163	.2	S	Ž		1.69		Ž		4,01		.20	2 3.60			1 1
C 81425	2	163	2	47		23	/2	884	5 27	 	5	ND	1	209	,	2	2	1/0	7 80	100	2	7.4	2.73	107	.23	2 2.84	.02	> 71	1 9
	1				.1					ે 5		ND			.2	2	5		3.80		2					:			
C 81426		40	_2	49	:	23	16	915		2	- 5	ND	. 1	180	2	ż	2		2.15	;	2		3.57		.27				1 1
STANDARD C/AU-R	19		37	125		72		987		35	22	7	41		18.4	17	19	58		.093	41	58	.82		.08				11 540
STANDARD C	19	60	40	134	7.1	. 73	32	1051	3.95	40	20	7	. 40	53	19.0	15	19	60	.45	.099	. 42	61	.89	191	.08	34 1.89		7 -14	11' -

SAMPLE#	Но ррп	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Со	Mn ppm	Fe X ;		U ppm	Au ppm	Th	Sr pom	Çd ppm	Sp ppm	8 i pom	V		P		Cr ppm	Hg X	Ba ppm	Ti X	B ppm	Al X	NB X	Κ X PI	M. Yn,
c 81427 AH70-S	 5	145	2	30	.2	16	15	958	4 47	2	5	ND	٠,	336		2	2	92	 5 RO	116	- 6	31	1.9t	56	.09	2	2.46	.02	.20	2: 1
C 81428 ↓	116	90	4	16	. 2	9	Ĭ.	458		2	5	ИD	2	224	.2	2	ź			-064	8	3	.79	106	.01		1.08	.02	.19	1: 3:
C 81429	29	70	3	9	.1	Ś	_	342		2	5	ИĎ	1	156	.2	ž	2			.059	Ö	6	.60	74	.01	_	.93	.03	.18	1
C 81430	80	77	11	ó	. 9	7	6	330		Ž	5	ИD	i	177	.2	ž	Š			.042	7	6	.38	80	.01	ž	.63	.02		3 1
C 81431	43	27	2	11	.1	6	5	365		3	5	ИD		140	.2	2	ź			.061	9	7	.60		.01	2	.93	.03	.19	1
c 81432	50	17	2	11	.1	6	5	405	1.65	2	5	ND	2	122	.2	2	2	24	2.96	.056	9	7	.61	58	.01	2	.88	_03	.15	1
C 81433	16	54	3	14	-1	5	6		1.84	3	5	KD	3	108	.2	ž	2			.050	à	6	.61	42	.01	ž	.84	_03	.11	1 .
C 81434	7	47	6	2	.2	6	Ž	112	.69	2	6	ИD	20	45	.2	2	ž			.007	6	6	.09		.61	Ž	.21	.03	.07	2 2
€ 81435	16	44	5	1	. 2	5	1	129	.53	5	6	ND	22	67	.2	2	Ž			.006	6	5	.03	150		Ž	-37	.03	.11	2
C 81436	44	128	4	21	.3	8	-	394		3	5	ND	ž	170	.2	2	2	_		.071	5	8	.80	102		_	1.26	.04	. 19	1 1
			Ĺ		8 - 1				3 3	. [-		_			-	•				_	_	-					_		
C 81437	14 8	57 53	3	21 22	-1	12	10 8	429		2	5	ND	2	176	.2	2	2			070	5		1.22		.09		1.37	.03	.09	1
C 81438	- 	227	-3-	-55	. 2	<u>11</u> 25	21	455 639		-3	3	ND.		<u> 174 </u>		- 2	 -			054	. 5		1.00	135	25		1,06	<u> 94</u>	.07	1 2
C 81439 AH90-6	i	68		35	1	20	16	594			5	ND ND		47	.3	2	2			.097	2		2.27	204 312			2.61 2.80	•	1.47	
C 81441 /	1	118	2	28		19		514		5	5	ND	- 1	94	.2	2	2			094	2		2.07	102			2.15	-	1.20	2 1
1 oran	•	1 10	4	20		17	10	214	3,03 (c) (c)	: ? :	•	AU	'	Y4 ;	- 2	4	۷	103	1.11	UY4	2	42	2.u/	102	.23	2	2.13	.04	1.20	
c 8142 r	2	179	2	28	-1	20	14	515	ፕ ፈስ	E	5	ND	1	146	-3	2	2	05	1 38	.096	2	41	1.95	9.7	.23	2	2.07	n/	1.22	1 1
C 81443	1	155	5	35	1	23	21	632		2	ś	ND	i	147	.3	ź	2			.091	2		2.70	109			2.70		1.77	2 1
C 81444	1	63	2	30	1	21		576		2	5	NO.	i	125	.2	2	2			.092	ź		2.48		.23		2.44	_	1.59	1
C 81445	i	113	2	28	6.1			592		2	5	KD	i	145	.2	2	ž			.090	Ž		2.25		.23		2.19	-	1.42	1
C 81446	i	50	5	36				719		6	5	ND		180	.3	ź	2			.093	ž		3.00		.19		2.76		1.25	1
C 0,440		- 50	•	30		4.0	10	117	J. 1J	ੱ	•	A.V	'	100		-	-	15-4	2.00	3	-	,,	3.00	٠,	. 17	-	2.10	.02	1.27	
C 81447	5	176	2	29	.1	23	16	823	5.44	17	5	GM	1	275	.5	2	2	152	5.33	.085	3	53	2,24	21	.09	2	2.22	,02	.19	1
C 81448	1	60	2	26	.1	21	17	578	4.23	4	5	NO	1	130	3.	3	2	128	2.18	.089	2	45	2.29	31	.22	2	2.01	.02	-69	1
€ 81449	1	74	2	29	.1	21	16	543	3.89	9	5	NO	1	131	.2	3	2	120	1,91	.094	2		2,19		.24	2	2,16	.03	1.00	1
C 81450	1	164	2	28	% .1	20	24	531	4.15 🛞	12	5	ND	1	106	.2	2	2			.102	2		1.84	154	.25		2.15	.05	1,14	1
C 81451	1	99	3	38	2	11	19	573	4.04	5	5	ND	1	143	.2	5	2	89	1.44	.116	3	14	1.91	186	.20	2	2.29	.05	.77	1
C 81452	1	47	2	42	.1	14	11	780	4.67	3	5	WD	1	157	.2	2	2	114	2.68	.097	2	31	1.82	148	.19	2	2.10	.05	.68	1
C 81453	1	123	2	35	1 .1	18	15	622	4.17	8	5	ND	1	- 77	.2	2	2	113	1.21	.096	2	38	2.25	146	.23	2	2.34	.04	.90	1
C 81454	t	67	2	32	2.1	20	18	578	3.57	7	5	ND	- 1	129	.2	2	2	100	1.60	.092	2	39	2.04	76	.20	2	1.95	.03	.40	11
C 81455	1	51	2	40	_2	15	20	729	4.57	9	5	ND	. 1	141	.2	2	2	111	1.73	.099	2	31	2.57	71	.18	2	2,58	.03	.38	1
C 81456	2	201	5	48	.2	17	28	814	6.33	24	5	КD	1	155	.4	2	2	136	2.95	.100	4	30	2.82	67	,11	2	3.15	.02	.49	1 2
c 81457	1	298	8	51	.8	19	27	678	7,29	208	5	ND	1	106	.5	2	2	151	3.61	.077	3	46	1.93	52	.04	2	2.23	.02	_21	1 14
C 81458	2	134	12	100	3	19	15	873	6.20	40	5	ND.	1	100	.3	2	2			.090	2		2.56		.14		2.94	.03	.44	1 1
C 81459	2	432	42	271	1.0	10	15			71	5	ND	ì	85	3.7	2	2			.117	- 3		1,91		.07		2.48	,02		1 7
C 81460	7	135	2	35	.1	7	22	529	5.60	4	5	ND	1	80	. ,2	2	2			.113	2		2,22		.26		2.85	-	1.72	1
C 81461	1	293	13	77	.7		53		6.53	26	5	HD	2	81	.5	2	ž			-107	2		1.65		.21		2.58		1.24	1 1
RE C 81457	1	311	7	51	.8	19	-26	679	7.26	199	5	ИD	1	106	.3	-2	2	151	3.64	.079	3	46	1.95	51	.04	,	2.24	-02	.20	1 1 15
C 81462	Ì	169	ż	45	.3	. '8		542		12	5	ND	· i		.2	2	ž			.111			1,86				2.85	-	1.90	1 - 2
STANDARD C/AU-R	18	57	37	_		66	29	988		41	19	~~	38		18.5	15	18	56		.087		55			.08		1.76	.06		12 53
STANDARD C	18	60	39		3:	73			3.95		21	7	40		19.8	15	19	60		.094		60	.89	187			1.89		.15	

SAMPLE#	Mo	Cu	Pb ppm	Zn :	Ag:	Ni ppm	Co	nK mgg	fe ;		Ü	Au	Th pom	Sr ppm	Cd ppn	Str	Bi ppm	V ppm	Ca Y	P X	La	Cr ppm	Hg X	8s ppm	T	B	Al X	Na X		N ppm	Au* ppb
C 81463 AH70-6 C 81464 C 81465 C 81466 C 81467	3 14 1 1	163 112 283 346 351	5 2 2 2 2	88 40 35 33 27	.1 .1 .1	3 7 9 8 11	30 14 48 58 40	441 461 418	3.75 4.95 5.65 6.50 5.97	5 9 13 19 14	5 5 5 5	NO NO NO ON ON	t 1 1 1	43 136 126 50 83	.5 .2 .2 .2 1.2	2 2 2 2 2 3	3 2 2 2 2 6	104 125	.97 3.09 2.67 1.08 1.92	-124 -121 -128	2 2 2 2 2 2	3 5 5	1.00 1.46 1.78 1.88 1.59	167 89	.17:	2 1. 2 2. 2 2. 2 2. 2 2.	14 38 73	.03 .04 .03 1 .05 1	.70	1 1 1 1 1 1	15 4 16 13 14
C 81468 C 81469 C 81470 RE C 81474 C 81471	2 24 7 1	301 327 336 86 348	2 7 3 3	32 31 25 35 25	.1 .1 .1 .1	10 13 12 10 20	37 32 14	431 412 399 568 430	6.23 6.55 5.47 4.78 6.77	14 13 14 12 25	5 5 9 5	NO NO NO NO	1 1 1 1	101 72 111 207 143	.2 1.2 .5 .6	2 2 2 2	5 5 5	129 105 111	2.02 1.20 2.12 2.56 2.98	.124 .120 .125	2 2 2 3 2	7 7	1.66 1.90 1.59 2.20 1.59	74 102 237	.25 .28 .24 .17	2 2. 2 2. 3 2. 5 2. 6 2.	71 28 51	.04 1 .05 1 .05 1 .04	.41	2 1 1 1	8 9 7 1
C 81472 C 81473 C 81474 C 81475 C 81476	6 8 1 2	176 79 88 279 217	2 2 2 2 2	26 34 37 26 23	.2 .3 .2 .3	14 9 11 10 4	12 15	628	4.40 4.74 4.97 5.43 4.11	13 13 9 29 14	5 8 12 6 10	ND ND ND ND	1 1 1 1	157 230 215 226 111	.2 .3 .3 .5 .5	3 3 4 2 3	2 2 2 2 5	110 115 98	2.82 3.58 2.72 3.58 2.78	. 127 . 128 . 128	2 3 3 3 3	7 4	1.75 2.22 2.30 1.70 1.26	386 248 157	.17 .18	2 1. 2 2. 2 2. 2 2. 2 1.	67 58 26		.68 .05 .68 .60	1 1 1 1	11 2 2 13 13
C 81477 C 81478 C 81479 C 81480 C 81481	40 3 67 9 4	192 505 520 1116 709	4 4 6 2 2	33 40 30 42 38	.3 .4 .3 .5	9 37 38 39 15	16 57 86 129 87	766 611 7 2 9	4.72 7.21 7.23 10.62 7.66	10 26 22 25 21	5 5 5 5	ND NO NO ND	1 1 1 1	93 254 119 213 105	.4 .2 .4 1.3	2 2 2 2 2	2 3 5 2 2	124 120 132	1.45 3.90 2.27 2.20 1.67	-177 -156 -128	5 3 2 2 2	154 129 98	1.62 2.29 1.95 2.42 1.81	142 67 64	.17 .12 .17 .14 .22	2 2. 2 2. 2 2. 2 2. 2 2.	65 23 74	.04 .03 .08 .03 .04	.93 .66 .76 .50	10 11 11 11 11 11	31 16 18 43 60
C 81482 C 81483 C 81484 C 81485 C 81486	2 8 1 6 2	303 233 139 75 129	10 3 2 2 7	26 29 35 39 40	.4 .1 .4 .1	9 8 12 13 9	46 28 24 21 21	492 481 708 636 553	5.06 5.68 6.32 5.86 4.84	13 14 9 9	6 5 5 5 5	NO NO NO	1 1 2 1 1	172 140 223 213 212	.2 .7 .7 .8 .2	4 2 5 2 2	2 2 3 2 2	112 160 148	2.66 2.01 4.78 3.43 3.59	.267 .333 .356	4 4 5 5 5	6 5 4	1.59 1.86 2.12 2.10 1.66			2 2. 2 2. 2 3. 2 2. 2 2.	69 13 98	.03 1 .02 1	.55	11	13 9 4 4 9
C 81487 C 81488 C 81489 C 81490 C 81491	8 1 2 4 14	189 164 51 86 229	2 2 3 2 4	33 33 27 33 26	.1	8 8 8 9	14 26 17 18 12	538 480 488 519 452	5.63 5.50 3.97 5.23 4.98	12 15 7 11 15	5 5 5 5	ND ND ND ND	1 1 1 1	183 158 182 160 191	.4 .5 .2 .2	2 2 2 2 2	2 3 2 2 9	122 107 122	2.73 2.14 2.28 2.29 2.70	.121 .111 .120	3 3 3 3 2	4 2 2	2.02 1.88 1.78 2.16 1.67	167	.20 .20 .17	3 2. 2 2. 2 2. 4 2. 2 2.	.55 .16 .47		.89 1.15 .92 .46 .63	1 1 2 1 1	5 15 2 1 13
C 81492 C 81493 C 81494 C 81495 C 81496	3 2 1 2 6	25 38 46 161 212	7 2 2 2 2	32 36 42 32 26	.1 .1 .1 .1	9	23 27 20 25 51	465 517 566 473 531	4.43 5.44 5.82 5.88 6.11	13 9 13 15 29	5 5 5 5	40 40 40 40	1 1 1	129 114 125 108 187	.4 .2 .5 .2	5 2 3 2 5	7 2 2 3 .2	152 141 134	1.05 .95 1.48 1.65 3.57	.120 .118 .126	2 2 2 3 4	2 2 2	2.21 2.76 2.65 1.94 1.67	365 201	.26 .28 .22 .15 .08	5 2. 2 2. 4 3. 4 2. 4 2.	.86 .15 .65	.05 .04 .03 .03	1.50	1 1 1 1	2 1 1 8 13
C 81497 C 81498 STANDARD C/AU-R STANDARD C	3 5 20 20	338 184 60 63	2 2 36 38	131	.4 .3 7.3 7.3	18 18 74 72	32	486 524 1053 1054	6.19 5.84 3.88 3.96	18 12 42 42	5 5 22 18	В 7	1 1 41 40		.5 .3 18.1 18.3	3	2 2 20 23				4 40 40			79 190	.11 .16 .08	4 2. 3 2. 34 1. 34 1.	45 84	.02	-14	1 1 12 13	8 1 520

SAMPLE#	Но	Çu	Рb	Zn	, Ag.	Ní	Co	Mn	Fe A		, Au	Th	S٢	Cd.	sъ	B i	٧	Ca	Ą	Le	Сг	Ħg	Ba	Ti	В	AL	Na	K	2	Au*
	bba	bba	bba	bout	: ppm	ppm	ppm	ppm	X ⊹ pp	u; bébu	i bbu	- Spail	БЬСП	ppn	btzw	bbul	bbm	<u> </u>	7	btxu	bbw	X	ppm	X	bķm	<u> </u>	*	_ x	ppm	ppo
C 81499 AH90-6	35	212	2	43	.2	45	32	615	5.80 1	7 5	סא	1	132	.4	2	2	178	2.89	.098	2	101	2.51	119	.16	2 2	.72	.03	.89	. 1	11
C 81500 V	2	486	2	48	.5	79	54	926			QN .	1	253	.7	2	2	137	7.03	.126	2	187	2.86	118	.15	2 3	. 18	.01 1	1.22	1	60
C 81501	20	214	2	48	.3	28	23	692		7 5	ND	1	153	. 4	Ž	. 5	124	4.63	. 108	4	87	2.19	160	.09	2 2	.71	.02	.82	1	17
C 81502	3	145	2	26	.2	8	15	420			ND	i	311	.4	2	2	108	1.91	.101	3	4	1.54	131	.10	2 2	. 17	.02	.66	1	11
C 81503	13	381		20	3	15	98		5.99 2	4	ND.	i	167	.3	2	2		3.25		3	10	1.30	79	.11	2 1	.81	.04	.44	1:	16
C 81303		501	-				/-	4	····			•			_	-													Š.,	
C 81504	1	18	2	37	1	14	20	602	5.55	9 5	מא פ	1	146	5	2	2	147	1.84	.093	3	-17	2.92	155	.15	2 2	.96	.03	1.10	1	. 6
C 81505	1	26	5	31	1	12	19	573			ND.	i	140		2	2		1.94		3	12	2.36	183		2 2	2.36	.04	.67	1	13
C 81506	1	84	5	31	1	12	19	563		6	HD.	i	152	.2	- 5	2		1.54		Ž		2.25	234			2.41	.05	1.07	1	23
C 81507	4.	79	5	34	1	11	17		5.37 1	•	, ,D	i	155	7	5	5		1.93		3		2.59				.77	.04			26
	[84	5	29	.2	24	18			2	ND	- 1	190	.3	5	2		1.65		5		2.22		.22		2.17	.03			16
C 81508	Ι'	-	-	۲,	-		10	242	,,,,	1	, 110	•	170	•	•	-	•••	••••	•	-	٠.			:		•••	•		1 - 11	:
C 84500	١.	43	,	26	7	49	18	421	3.40	4 5	ND	,	205	.2	τ	2	81	2.48	149	2	200	2.25	33	.15	2 1	1.82	.03	.88	1	16
C 81509	¦	102		23		42	14	393		6	סא כ		166	.2	- ž	5		2.95				1.76		,15		1.55	.03	.84	1	6
C 81510	;	105		22		44	15	389		7	S NO		182	.2	5	2		2.62				1.93		.15		1.64	.03	.93	1	18
C 81511	:							422			ם א		380	.2	,	5		3.69		_		2.10		.14		1.58	.03	.72		18
C 81512	¦	73	- 4	23	3. 3:	48	16 27			2	סא ל		213		5	2		2.82				1.91		.16		.67	.03	.94		13
C 81513	, ,	132	•	25		47	41	482	2.24	6	, NU	,	613	16	~	Č	,,	2.00	.140	4	100				-		,	.,,		
	1 .		_			,,	10	/ 07	T AC		5 NO		221	,	,	2	72	2.21	157	2	147	1.71	29	.15	2	1.52	.03	.07		10
C 81514	!	84		22	.3	45	18	403		6				. 5	4	5		1.49				2.05		.17		1.83	20.			R
C 81515	!	76		25	1 -1	50	16	393		4	5 NO		161	.2		4						2.06		.19		1.89	.03			
C 81516	1	65	2	23	. 1	49	19	460		<u> </u>	S HD		166	-4	۷.			3.10									-		: :	
C 81517	2	95	2	23	y 1	44	16	409		5	S ND		183	2	2	- 2		1.97				2,12		.15		1.77	.03			. 2
C 81518	1	42	2	32	2	28	14	572	4.36	4	5 NO	1	199	, Z	3	2	113	2.56	. 12U	2	95	2,70	88	.22	۷,	2.57	.03	1.21	3	, ,
i			_			_			💥	95 -										~-									3	
STANDARD C/AU-R	18	57	38	131	7.2	27	31	1050	3.95 3.4	1: 2	57	39	52	19.4	14	18	58	.45	.093	39	59	89	183		34	1.89	00	-14	<u> </u>	. 240

$\begin{array}{c} \text{APPENDIX V} \\ \\ \hline \text{ROCK CHIP GEOCHEMISTRY} \end{array}$

ACHE ANALYTICAL LABORATORIES LTD.

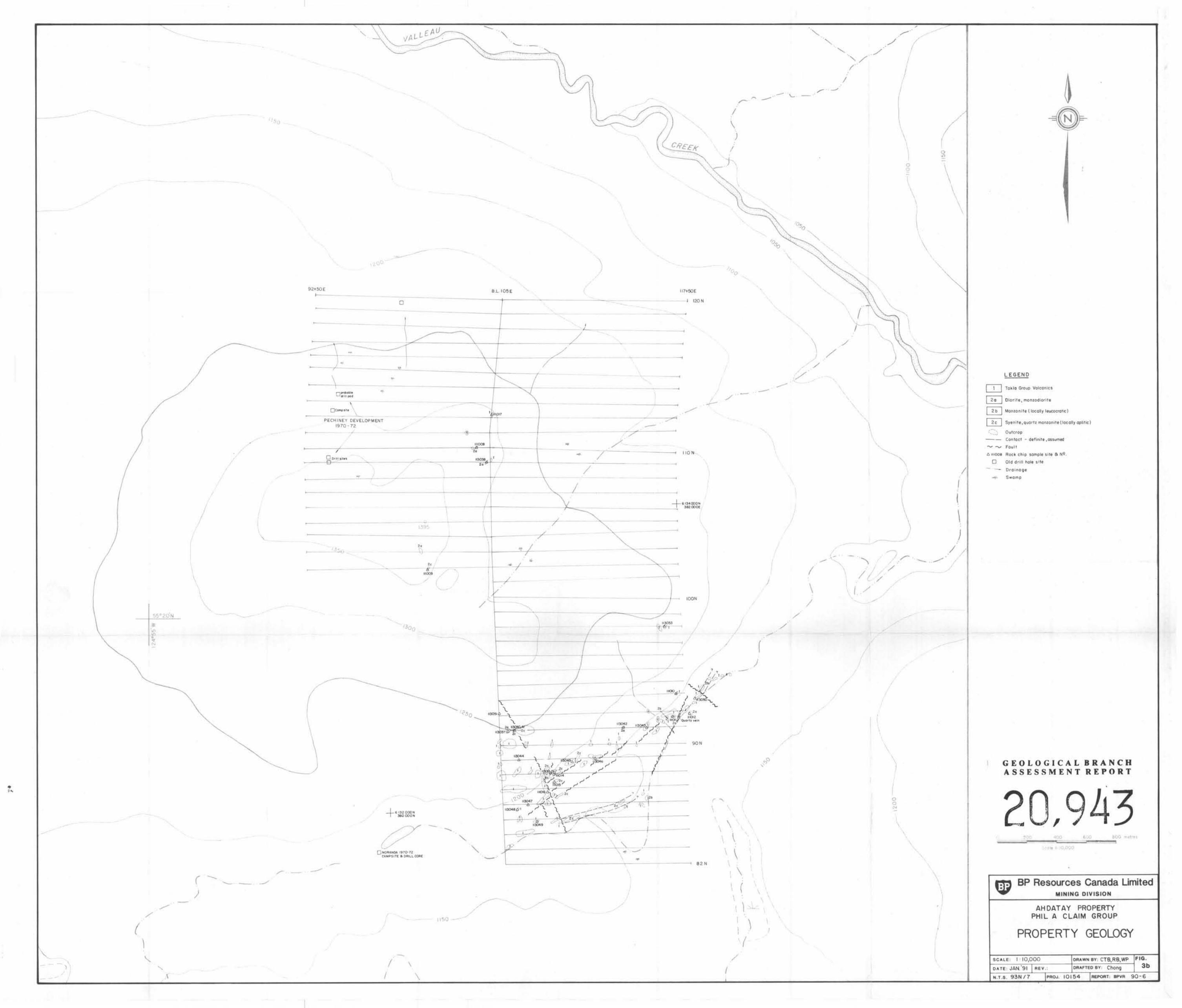
852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158" FAT (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

<u>IP Resources Canada Ltd.</u> File # 90-3494 700 - 890 W. Pender St., Vencouver BC V68 4u3 File # 90-3494 (aldoty)...

.4HPLE#	Жо þþri	bbs Cn		Den Di			Иn Ppn	Fe As X pps		Yra Yra	th ppm	Sr Cd				Co P				PÇIII		Al X	Ha X	Κ υ Χ pps	
111005	1	11	Z	34		11	593	7.24 1:13	5	ЖO	1	44 🖟 .2	2	5	52	.58 .066	5	13	.77	138 % . 07	7 . 2 1.	,45	.06	34 1	5
:11009	1	13	2	27			338	2.11 🙀 6	5	HD	1	40 .2	2	2	42	.78 .065	5	14	.68	61 🖔 .00	5 2 .	.87	.04 .	.14	3
111010	1	104	16	69				4.89 10		ND	1	286	5	2		1.12 -144		12	1.74	348 2.29	2 2,	.31	.09 1.	.11 2	9
111011	t	23	2	21		-		1,70 } 12			1	502	2	2		1.17 .068		13	.68	53 1.07	7 21.	.09	.05 ,	.37 1	7
111012	1	126	. 2	36	17	15	450	2.30 113	5	ND	1	. 178	4	. 2	72	2.64 .094	5	30	1.35	9 . 10	21.	.68	.01	.01	3
111013	20	19	2	21	ş <u> </u>	14	97	4.22 21	5	ЖD	1	9 1.1	2	2	13	.05 .053	2	1	-19	83 .01	2.	.42	.01 .	18	300
111014	1	435	2	21	1	8	515	1.43	5	NO.	1	43 .2	2	2		1.46 1079		5	.32	228 .0	1 2	49	.04	10	260
:11015	3	9209	5	59 4.	2 6	18	784	5.73 10	5	ИD	1	24 2.2		2	18	1.56 .039	3	4	.20	.0	1 [[] 2 .	.42	.01	16 1	32
111016	1	332	6	91 8.	11 6	17	654	4.66 13	5	ЯĐ	1	54 1.6				1.65 .123			1.39	14 -1			.04		1780
:11017	1	81	2	98	5 4	15	935	4.77	5	ND	1	29 .2	5	2		1.18 .166			2.01				.06 1		: _ 1
:13030	١,	96	0	65	13	17	779	4.57 7	5	ИD	4	63 1.0	Z	,	124	1.69 167	2	24	1.88	58 .2	4 4 22	40	.16	.92 1	15
:13031	l i	61	ź	40				3.74 10		ИD	i	303!	ž			1.60 .164		_	1.67		,		-	.75 1	
113032	و ا		3	26				4.42 27	: -	HD	i	68 .51	ž			2.13 171			1.08	2821			-	22 1	
113033	li	159	2		2 12		495	3.77		_	- ;	35 .6				1.33 .184			1.42	37 .2				78 1	
FE 113038		132	Ž		2: 22			4.28		KD	- ;	84 .2		_		2.58 .237			1.20	25			-	.36 1	
11,1000			~		1	• • • • • • • • • • • • • • • • • • • •	71.2			~~	•		•	•		1.70	-	100	1,20		'	• . ,	.00	.30	ŧ '
113034	5	226	Z	43	4 3	16	1078	4.42 24	5	RD	1	147 .9	3	2	123	9.33 .151	2	15	1.50	84 (11)	9 21	.89	.04	.61 2	11
113035	1	785	13	46 .	9 5	20	728	5.27 616	5	HО	1	67 1.3	3	3	125	2.63 .179	3	14	1.33	94 82	6 22	.05	.69		
113036	1	188	6	51 .	3 5	26	796	7.13 24	. 5	ND	1	51 .2	5	2	148	1.50 .170	3	20	1.77	15a3	2 2 2	.58	.08 1	. 29 1	63
:13037	. 1	157	2	62 .	ti 33	28	663	5.18	5	ND	1	124 .6	2	2	116	1.90 .222	. 5	115	2.14	20 8.1	9 22	.03	.06	.45	5
113058	Į į	124	2	46 .	3 23	16	457	4.03	5	ND	1	80 🛗 .2	2	2	84	2.45 .224	Z	104	.1.14	23 🚉 1	4 3 1	. 14	.05	.34 2	8
113039	١,	111	12	88 .	z	19	881	5.31	5	ND	1	88 .7	2	,	124	1.02 .157	3	26	2.25	144 .3	2 2 2	.36	.04 1	.19 1	16
15040	1	-	ž		3 2				5		i	126				3.87 -177			2.21				.02		
113641	1 ;	15	14	68				2.38	, -		- 1	22 .2		_		.97 .088			.82	** .		91		.07	;
113042	li		ž		3 18			3.94			i		_			3.54 ,160			1.25		-	.28	.01		
113043	li		ž		2 8			5.00			i		-			2.66 -159			2.25				.02 1		,
	'	• •	-	14.	į.			L)	•		•		•	•	,	3	•		,		Ϊ	• • •			· -
113044	į 1	66	2	97 🗀 .	2 27				i} 5	מא	1	349			152	1.31 .154	7 2	44	2.35	188 .3	2 2 2	.77	.11 1		
113045	141	1185	20	3t [S.		19	521	10.87 🖑 1	5	ИD	1	902	5	16	357	1.46 .117	2	39	1.76	80	7 2 1	, 9B	.02	.20 . 2	144
11304&	5	1173	2	30 - 2,	2: 2:	32	376	3,90 👰 16	5	ИD	- 4	123 🗀 .6	3	2	103	1.70 :117	2	49	1.69	78 .2	1 2 1	, 85	.04	,52 📑 1	§ 57
113047	1	1548	2	21 6.	3 9	7 14	310	2.32	i 5	ИD	- 1	278 3.2	2	5	67	1,90 .127	2	12	.52	8 % . 2	0 2 1	.45	.01		,
113048	1	243	8	31 .	7 28	3 34	482	6.71	5	KD	1	33 1.2	5	2	146	.81 .173	2	52	2.08	115 .3	5 2 2	.52	.05 \$.63 2	62
113049	,	79	2	18	1	5 10	220	3.27	7 5	HD		171 .2	2	. 5	g O	1.67 .179		22	1.34	37 .2	, ,	.88	.02	.34 27	6
113050	1 :	18	2	2 1. *					5		;	362		_			•		1.01			.37		.56 1	2
113051	1 4	77	Ž		i i			7 3			,	36 .2				.78 .110			1.38				.03	*	3 . T
113052	13		_		7				5 5		,					2.17 .144			1.26			.54	.05	411 12	
113053	'2		_	30					5		•					2.57 .219				12	4			21.15	2
בנטבוו	'	110		. ا د	11. 1.		10)	*.3y	• • •	, MO	,	1362	-		119	2.37 .219	,	31	1.66	332	4 21	.88	.06	. 14 () () ()	} 4
STANDARD C/AU-R	20		38					4.02			33									172				.14 12	
STANDARD C	19	63	42	135 : 7,	5 7.	3 32	1055	3.97 1 4	15 18	7	36	53 18.4	14	21	57	.52 .09!	37	61	88	180 * .0	7: 35 1	.89	.06	<u>.14 (* 11</u>	ļi -


1CP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 MCL-MHO3-M20 AT 95 DEG. C FOR ONE MOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMITERY ICP IS 3 PPH.

SAMPLE TYPE: Rock AU- ANALYSIS BY ACID LEACH/AA FRON 10 GM SAMPLE.

DATE RECE DE AUG ES 1990 DATE REPORT HAZZEDE AND 20/40. BIOHED

Control of Total Caleong, J. Wang; CERTIFIED B.C. ASSAYERS

