ASSESSMENT REPORT ON THE 1990 DIAMOND DRILLING PROGRAM								
DRILL HOLES CH90-115 AND CH90-131								
	GROUP CHEM-90A							
SUB-RECORDER RECEIVED	CHEMAINUS PROJECT							
FEB 1 3 1991 M.R. #	PROJECT 116 LOG NO: Jeb 20/91 RO.							
VANCOUVER, B.C.	ACTION:							

Situated 20 kilometres west of Chemainus, B.C.

FILE NO:

R H F

A N O A

ALBR NTRE

N N N N N

GEOL ASSE

0 C S S J

in the Victoria Mining Division

48°53'N, 123°50'W NTS 92B/13 and 92C/16

Falconbridge Ltd. 202-856 Homer Street Vancouver, B.C.

February, 1991 Chemainus, B.C. Robert Stewart and Gordon Allen

SUMMARY

This assessment report describes CH90-115 and CH90-131 drilled in the period from March 2, 1990 to November 10, 1990 on the CHIP 1, CHIP 2 and CHIP 12FR claims.

Hole CH90-131 tested favourable stratigraphy informally known as the Anita active tuff within the McLaughlin Ridge Formation. Hole CH90-115 tested a stratigraphically higher section in the Mississippian Fourth Lake Formation sediments and Triassic (?) gabbros.

The best mineralization within the Anita active tuff is the Anita mineralized horizon which generally occurs within 15m north of the Anita felsic tuff-mafic tuffaceous sediment contact. This mineralized horizon, which has been traced discontinuously along a 3.3 km strike length of over 3km, generally consists of a 1 to 10m wide zone of disseminated to massive pyrite in foliation-parallel bands or beds up to 0.5m thick with traces to a few percent of associated chalcopyrite and sphalerite.

Our exploration target is a volcanogenic massive sulphide deposit with significant tonnage. Base metal grades with significant precious metal credits are expected for such a deposit based on the grade of the small lenses found to date within the Cowichan and Buttle Lake Uplifts.

Hole #	Purpose	From	<u>n To</u>	Lengt	<u>h</u> <u>Cu</u>	<u>Zn</u>	<u>Ag</u>	<u>Au</u>	<u>Pb</u>	Remarks
CH90-115	I,S	74.38	74.88	0.50m	0.16%	0.01%	27.8 ppm25	0 ррь	15ppm	Rhodonite bed
CH90-131	A,S	70.34	74.70	4.36m	0.44%	0.14%	5.1 ppm40	1 ppb	<0.01%	Anita Horizon
PURPOSE: A: Anita Active Tuff B: Borehole EM Target E: Followup Hole H: Horizontal Loop-EM Target I: IP Target R: Randy Trend S: Stratigraphic Hole X: Sharon Trend										

SUMMARY OF SIGNIFICANT RESULTS

TABLE OF CONTENTS

.

.

ii

._____

SUMMARY	i
LOCATION, ACCESS AND PHYSIOGRAPHY	1
CLAIM STATUS	5
EXPLORATION HISTORY	6
REGIONAL GEOLOGY Stratigraphy for the Cowichan-Horne Lake Uplift	9 11
PROPERTY GEOLOGY	14
Devonian Nitinat Formation McLaughlin Ridge Formation	14 15
Mississippian Fourth Lake Formation	17
Triassic Karmutsen Formation	17
Post-Triassic Intrusive Rocks	18
Cretaceous Nanaimo Group, (Comox Formation, Haslam Formation) Metamorphism	18 18
1990 EXPLORATION PROGRAM DRILLING RESULTS	19 22
REFERENCES	24

LIST OF APPENDICES

Appendix A : Summary Drill Logs

Appendix B : Section Summaries with 1:5000 Cross-sections

Appendix C : Drill Logs and Analytical Results

Appendix D : Geochemical Certificates

Appendix E : Personnel and Statement of Costs

Appendix F : Statements of Qualifications

LIST OF TABLES

Page

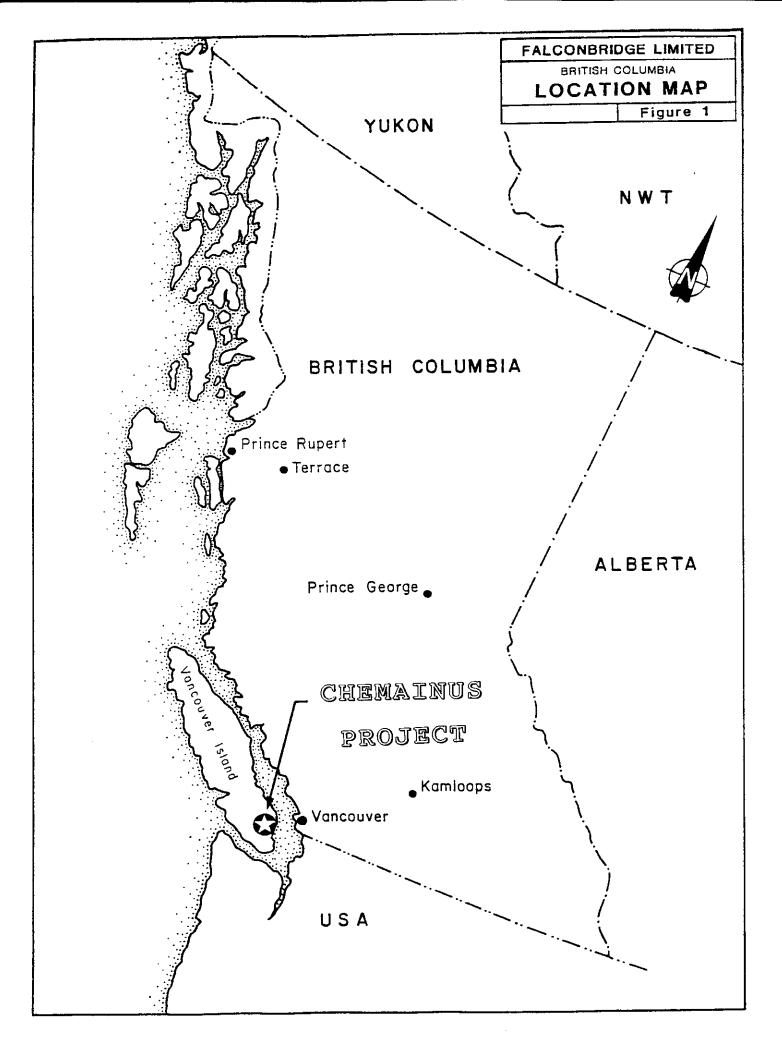
Page

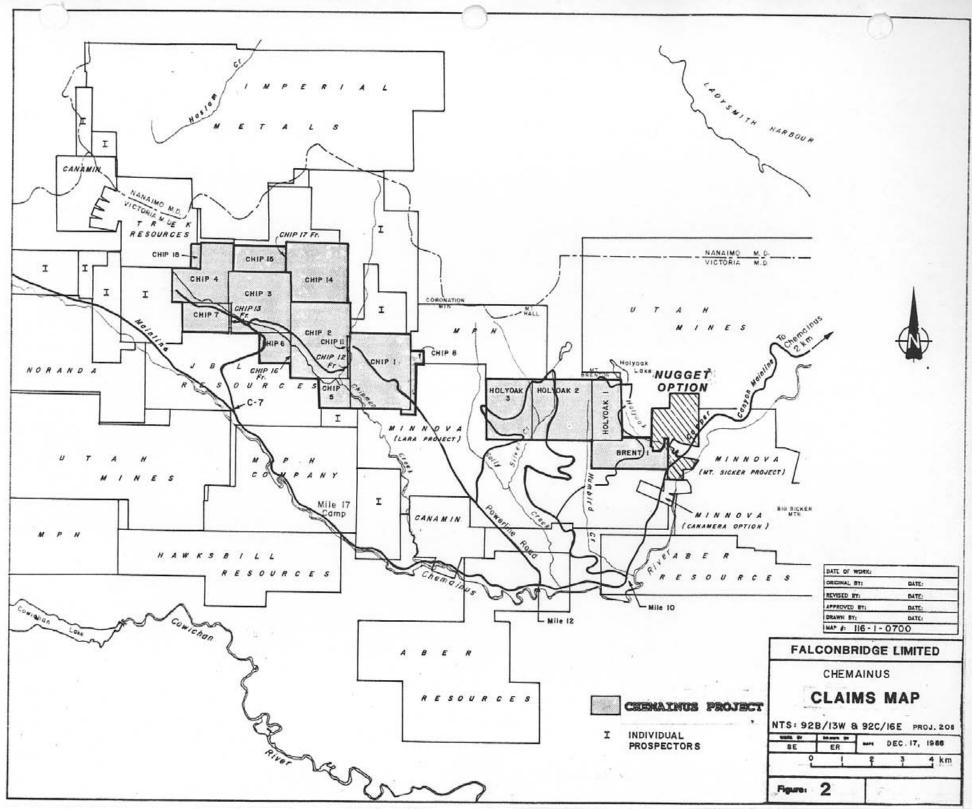
Table 1 : Stratigraphic Comparison Between the Cowichan-Horne Lake Uplift and the Buttle Lake Uplift13

LIST OF FIGURES

Figure Figures Figure Figure	1 : Location of Chemainus Project 2 : Claim Map 3d: Revised Geology Plan (1:5,000) 4 : Regional Geology 5 : Drill Hole Locations	3 4 in pockets 10 21
-	<pre>6 : Anita Area Section 27+00E (1:1,000), CH90-131 7 : Anita Area Section 28+00E (1:1,000), CH90-115</pre>	in pocket in pocket

LOCATION, ACCESS AND PHYSIOGRAPHY


The Chemainus Project is located on southeast Vancouver Island about 10 to 25km west of Chemainus or 70km north of Victoria (Figure 1). On June 23,1989, Esso Resources share of the joint venture was purchased. The project is now wholly owned by Falconbridge Limited.


The project occurs in two separate claim groups totalling 20 claims. The 16 CHIP claims are to the west and the 4 BRENT-HOLYOAK claims are to the east. CHIP 1 to 8 and CHIP 11 to 18 comprise 119 units and 4 fractions covering 2638.3 hectares. The BRENT-HOLYOAK claims comprise 46 units (1103.8 hectares) in the BRENT 1 and HOLYOAK 1 to 3 claims (Figure 2). These two claim groups cover a 15 km strike length of Sicker Group stratigraphy and are separated by a 2.5 km wide property presently held under a Minnova Inc./Laramide Resources joint venture. This latter claim group hosts the Coronation deposits (Bailes et al, 1987).

Access to the property is along dirt roads and abandoned railway grades which are part of the Mt. Brenton Forest Service Road network, the B.C. Hydro access road and logging road networks maintained by Canadian Pacific Forest Products Limited and MacMillan Bloedel Limited. These interlocking roads can be reached from MacMillan Bloedel Limited's Copper Canyon Mainline haulage road by the Mile 10 access road, the Mile 12 access road and by the C-7 access road which intersects the Copper Canyon Mainline 5km west of the gate at MacMillan Bloedel's Copper Canyon Camp.(Figure 2). Road use is subject to annual permits and/or notice with BC Hydro, the forestry companies and the Ministry of Forests. Timber and surface rights for the claims are held by the Crown, Canadian Pacific Forest Products Limited and MacMillan Bloedel Limited.

Annual notification of programs and ongoing contact throughout the year is maintained with the landowners. Compensation for damages to surface and timber rights are made annually following field inspections. Topography is relatively gentle overall with many local steep sections along deeply incised stream valleys and on hillsides in the northern parts of CHIP 1 to 4, the western part of HOLYOAK 3 and eastern part of BRENT 1. Elevations range from between 500 and 1100 metres, with higher elevations encountered along the northern margin of the property.

The climate is quite mild with winter temperatures in the -5 to +5 degree range and summer temperatures in the 15 to 25 degree range. A few predictable extremes that can affect programs are dry, sunny conditions that cause bush closures in mid-June to late-September and difficult ice and snow conditions above 700m between January and April. Periods of persistent showers and rain in the fall through spring may turn access roads into badly rutted mud tracks. Optimum periods for heavy equipment programs are in April-June and October-November. Heavy rains in November produce flash flooding conditions and the opportunity for washouts of culverts and small bridges. At present, all the property's roads are accessible in spite of 3 major storms in November, 1990.

CLAIM STATUS

There are 20 claims comprising 165 units and 4 fractions covering 3724.9 hectares. Claims are well located, without internal missing fractions. Upon acceptance of three assessment reports on 1990 programs, the claims will be in good standing until at least February 27, 2000. All claims are wholly owned by Falconbridge Limited.

CLAIM	RECORD #	UNITS	AREA	STAKING DATE	EXPIRY DATE
CHIP 1	720	20	500.0h	Nov. 11,1982	Dec. 7,2000
CHIP 2	721	20	500.0h	Nov. 13,1982	Dec. 7,2000
CHIP 3	722	16	400.0h	Nov. 13,1982	Dec. 7,2000
CHIP 4 *	723	16	315.0h	Nov. 15,1982	Dec. 7,2000
CHIP 5	920	4	72.4h	May 16,1983	May 24,2000
CHIP 6	921	4	100.0h	May 17,1983	May 24,2000
CHIP 7	922	6	138.8h	May 18,1983	May 24,2000
CHIP 8	1424	4	31.5h	Feb. 22,1985	Feb.27,2000
CHIP 11	1526	1	0.7h	May 31,1985	Jun.17,2000
CHIP 12Fr	1608	Fr.	1.4h	Dec. 11,1985	Dec.12,2000
CHIP 13Fr	1609	Fr.	30.5h	Dec. 11,1985	Dec.12,2000
CHIP 14	2092	16	376.4h	Feb. 16,1988	Feb.29,2000
CHIP 15	2093	8	149.8h	Feb. 16,1988	Feb.29,2000
CHIP 16Fr	2185	Fr.	3.2h	Jul. 5,1988	Jul.13,2000
CHIP 17Fr	2186	Fr.	1.4h	Jul. 8,1988	Jul.13,2000
CHIP 18**	2230	4	0.0h	Sep. 28,1988	Sep.28,2000
BRENT 1	1630	10	250.0h	May 5,1978	May 11,2000
HOLYOAK 1	1598	8	178.8h	Oct. 22,1985	Oct.31,2000
HOLYOAK 2	1599	16	400.0h	Oct. 23,1985	Oct.31,2000
HOLYOAK 3	1600	12	275.0h	Oct. 24,1985	Oct.31,2000
TOTALS:		169	3724.9h		

Claim data is summarized below.

This assessment report is for claim group CHEM-90A which is composed of the CHIP 1, CHIP 2, CHIP 4, CHIP 11, CHIP 12FR, CHIP 14, CHIP 15, CHIP 17FR and CHIP 18 claims.

EXPLORATION HISTORY

Early property history was described by Everett and Cooper (1984) as follows:

"The CHIP claims have seen sporadic periods of exploration activity since the early 1900's. The oldest recorded work was in 1915 with the sinking of a 50 foot shaft on a weak chalcopyritebearing pyrrhotite vein (part of the Anita Showing). Interest in the Sicker Group schists intensified in 1944 with the development of the Twin J massive sulphide-precious metal deposit, 15km to the southeast. The volcanic belt has undergone several periods of staking and prospecting.

In recent years, development of Westmin's deposit at Buttle Lake has renewed exploration interest in the Chemainus area. An induced polarization survey was completed by Cominco in the vicinity of the CHIP 4 claim in 1966 and a soil survey was completed by UMEX in the vicinity of the CHIP 1 claim in 1978."

Early property history on the BRENT-HOLYOAK claims has been described by Britten (1984):

"The BRENT 1 mineral claim overlies what is believed to have been the PAUPER C.G. claim (L31G) crown granted in 1903. The BCDM Annual reports for 1924 and 1927 report underground development of a pyritized schist belt 60 feet wide. An updated map by Sharon Copper Mines Limited shows three parallel adits.

In 1966 and 1967 Cominco Ltd. carried out geological mapping, a geochemical soils survey and an induced polarization (Tikkanen, 1966) on the TOT and RUM claims, for which the base metal rights were optioned from Canadian Pacific Oil and Gas Limited, who at that time controlled the E&N Railway Land grant.

Imperial Oil Limited staked the MONS 4 mineral claim in 1976 and upon surrender of the E&N mineral rights to the Crown in 1978 this claim was abandoned and restaked as the BRENT 1 Claim. The OAK 1, 2 and 3 claims were staked at the same time to cover anomalies outlined by a Scintrex airborne EM and magnetic survey. Imperial Oil carried out minor geological mapping, a self potential survey and drilled four holes on this block of claims now known as the OAK Group. Traces of copper in pyritic quartz-sericite schists were noted on the BRENT claim (Somerville, 1979)."

In 1983, Esso conducted a field program on the CHIP claim group. Their work included 2500 scale geologic mapping, soil and stream sampling, line cutting, HLEM and magnetometer surveys of the CHIP1 and 2 and part of the CHIP 3 claims. Part of the favourable felsic volcanic lithology was defined by mapping and several weak, copper-zinc soil anomalies and two weak conductors were identified on the CHIP 1 claim. Several whole

rock analyses suggest the presence of Na2O depletion on the CHIP 1 claim. Esso conducted geological mapping in 1984 on the Oak Group and applied this work for assessment.

Kidd Creek Mines Ltd. entered into an option agreement for a joint-venture with Esso Minerals in August 1984. The entire Chemainus property (BRENT-HOLYOAK and CHIP claims) was flown with Questor's Mark VI helicopter INPUT system in September 1984.

In 1985 the OAK 1,2 and 3 claims were abandoned and restaked as the HOLYOAK 1,2 and 3 claims. Ground follow-up of selected airborne anomalies was started using time domain IP (Schlumberger array), VLF and magnetometer surveys. Geological mapping lithogeochem sampling and soil sampling along grid lines was focused on the BRENT 1 and HOLYOAK 1, 2 and 3 claims and culminated with a 7 hole drill program totalling 1534.5 metres. Two holes intersected significant sulphides. Geophysical surveys also covered selected parts of the CHIP claims.

In 1986, exploration focused on the CHIP claims. Work included 5,000 scale mapping of most of the claims and expansion of the grid to cover the entire CHIP claim block on a 200 metre line spacing with IP, VLF and magnetometer surveys. Selected areas were covered with a deep penetrating gradient array IP survey, results of which guided the late fall drilling program. A total of 1845.4 metres were drilled in six widely spaced holes, four of which intersected significant sulphides. The Anita shaft area was trenched with an excavator, mapped in detail and the exposed pyrrhotite lens was chip sampled. Falconbridge Limited continued exploration on the BRENT-HOLYOAK claims with geological mapping, soil geochemistry and induced polarization, magnetic and VLF surveys.

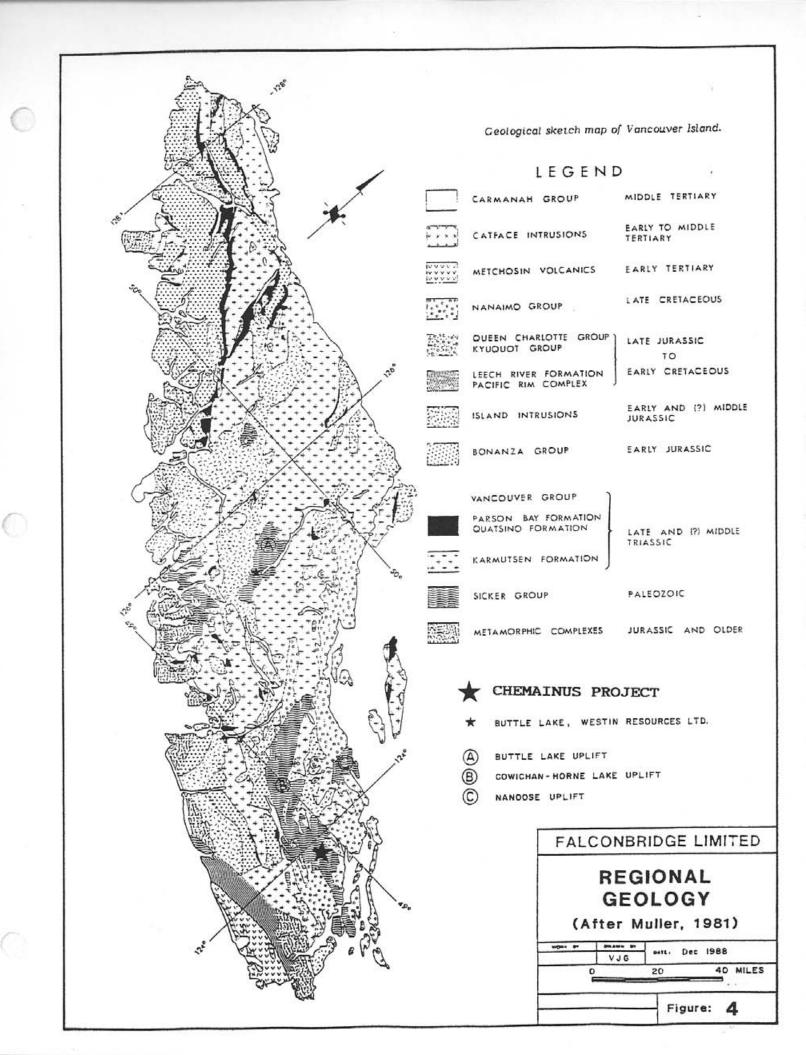
In 1987, an 18 hole drill program for 6753.7 metres traced a pyritic felsic tuff unit across the CHIP 1 claim. Hole CH87-37 discovered a significant pyritic felsic tuff intersection containing 2.37% Cu, 2.74% Zn, 0.73% Pb 41.8g/t Ag, 0.7g/t Au and 0.95% Ba over 2.5 metres. All holes were tested with the Crone Pulse EM system. Further gradient array IP

surveys were completed over the CHIP claims and additional magnetic, IP and VLF surveys were carried out on the BRENT-HOLYOAK claims.

In 1988 a comprehensive exploration program was carried out. Forty-six holes were completed for 13,578.1 metres. The property was remapped and resampled geologically at 5,000 scale (Figures 3a to 3i). Bedrock trenching totalling 2270 linear metres was completed in four areas. IP, VLF and magnetometer surveys totalling 112km completed coverage of the felsic volcanics to a 100 metre line spacing. Other geophysical surveys included 65km of gradient IP, a Max-Min orientation survey over the Anita mineralization and frequency domain REMI EM borehole surveys down 34 drill holes. The property's baselines, drill holes and legal corner posts were surveyed to provide accurate locations for the geological and geophysical data which was compiled onto 5,000 scale orthophoto-controlled contoured base maps.

The 1989 exploration program focused on testing chargeability anomalies in altered McLaughlin Ridge Formation felsic volcanics. Secondary targets were chargeability anomalies in the Fourth Lake Formation or near its transition with the McLaughlin Ridge Formation. Thirty-one diamond drill holes (10853.7m) were completed on broadly spaced sections across the entire property. Borehole EM surveys were completed on 29 holes to extend the effective range of the drill holes. Sulphidic sections were test by multi-element analysis (1947 samples) and a further 341 samples were tested by whole rock analysis.

In 1990, emphasis was placed upon evaluating untested primary and secondary targets and extending previously drill tested mineralization. This evaluation was accomplished through diamond drilling (23 holes, 7201.8m), borehole EM (19 holes), 5 grid extensions (32.2 km), geological mapping and geophysical surveys (MAXMIN-MAG-VLF: 53.4 km; PROTEM 37: 10.8 km). Sulphidic sections were tested by multi-element analysis (1159 samples) and a further 252 samples were tested by whole rock analysis.


REGIONAL GEOLOGY

On a regional scale, the area underlain by the Chemainus Project is included in government maps and reports by Muller (1980), Massey and Friday (1988) and Massey et al (1988).

Vancouver Island is underlain by a diverse assemblage of lithologies, which, with the exception of the extreme southern tip of the island, belong to Wrangellia, an allochthonous terrain that was accreted to the continental margin of North America during the Cretaceous (eg. Muller, 1977; Jones et al, 1977). Paleozoic Sicker Group volcanics and sediments are the oldest rocks within Wrangellia. They occur in several structural culminations, the largest of which are the Cowichan-Horne Lake, Buttle Lake, Tofino and Nanoose uplifts (Figure 4). The Chemainus Project occupies a portion of the southeast part of the Cowichan-Horne Lake uplift (Figure 4).

Most of our understanding of the Sicker Group derives from recent geological studies within the Buttle Lake (Juras, 1987) and Cowichan-Horne Lake (Massey and Friday, 1987, 1988; Sutherland Brown et al, 1986; Muller, 1980) uplifts. While there are striking geological similarities between the two uplifts, there has been no concentrated effort on correlating units. Each uplift has its own set of formational names.

A tentative correlation of lithologies between the two uplifts is presented in Table 1. Of prime importance in this correlation is the presence of volcanic-hosted massive and semimassive sulphide deposits within the McLaughlin Ridge Formation in the Cowichan-Horne Lake Uplift (Twin J, Coronation, Anita, 900 Zone) and the Myra Formation of the Buttle Lake uplift (Lynx, Myra, Price, H-W). Caution is required in embracing this correlation due to several factors that include the facies changes which characterize volcanic stratigraphy and environments, the great distances over which these correlations are made, and the rather poor age constraints on lithologies of the two uplifts.

Stratigraphy for the Cowichan-Horne Lake Uplift

Within the Cowichan-Horne Lake uplift the Sicker Group has been subdivided into three formations (Table 1) which overlain by the Buttle Lake Group comprised of two sedimentary formations that prior to 1990 were assigned to the Sicker Group. From oldest to youngest these are the Duck Lake, Nitinat, McLaughlin Ridge Formations of the Sicker Group and the Fourth Lake and Mount Mark Formations of the Buttle Lake Group.

The Duck Lake Formation is exposed in the northwest part of the Cowichan-Horne Lake uplift, near Port Alberni. This formation comprises a monotonous sequence of variolitic pillowed and massive basalts (Massey, 1989). The Duck Lake Formation is overlain by the Nitinat Formation, a fairly homogeneous sequence of mafic clinopyroxene +/- plagioclasephyric flows and pyroclastics of calcalkalic to alkalic (shoshonitic) affinity. Flows and individual clasts are typically highly vesicular. The Nitinat Formation is overlain by the McLaughlin Ridge Formation, a heterolithic sequence of calcalkalic to alkalic (shoshonitic) felsic, intermediate and mafic volcanics, and derived sediments. Felsic volcanics are quartz +/- plagioclase-phyric pyroclastics, flows and subvolcanic intrusions. The Saltspring Intrusion, centred in southern Saltspring Island, may represent an intrusive phase (volcanic centre?) related to McLaughlin Ridge felsic volcanism. Intermediate and mafic volcanics are aphyric to clinopyroxene +/- plagioclase phyric pyroclastics, flows and subvolcanic intrusions, texturally and geochemically similar to lithologies within the Nitinat Formation. The McLaughlin Ridge Formation is overlain, apparently conformably, by the Buttle Lake Group's Fourth Lake Formation, a dominately epiclastic and chemical sedimentary package composed of thinly bedded cherts, argillites, siltstones and wackes. The uppermost formation within the former Sicker Group of the Cowichan-Horne Lake uplift is the Buttle Lake Group's Mount Mark Formation. This formation, not exposed in the Chemainus Project, is composed of massive and laminated crinoidal calcarenites and argillites (Massey and Friday, 1987).

The Sicker Group has been intruded by gabbro and diorite sills and dykes which fed Karmutsen Formation volcanics of the overlying Vancouver Group, in response to Late Triassic crustal dilation (Massey and Friday, 1988). In the Chemainus Project area, the Sicker Group and Karmutsen intrusions are overlain unconformably by clastic sediments of the Late Cretaceous Nanaimo Group.

Available age constraints on various formations within the Sicker Group are summarized in Brandon *et al* (1986) and Juras (1987). The best estimate for the age of the Saltspring Intrusion is a U-Pb zircon date of 393Ma (estimated error is +25Ma to -10Ma; Early Devonian). A U-Pb zircon age of 370Ma (estimated error is +18Ma to -6Ma; pre-Late Devonian) is the best estimate for the age of the Myra Formation at Buttle Lake. Faunal data indicate that the Fourth Lake Formation is Early to early Late Mississippian. The Mount Mark (Cowichan-Horne Lake uplift) and Buttle Lake (Buttle Lake uplift) Formations contain early Middle Pennsylvanian through Early Permian conodonts.

Table 1. Stratigraphic Comparison between the Cowichan-Horne Lake and Buttle Lake Uplifts.

AGE	LITHOLOGY	COWICHAN-HORNE LAKE UPLIFT	BUTTLE LAKE
E.Per-Penn Penn or Miss E.Miss? E.Miss	Limestone Ves.MV V,S,G S,G	Mount Mark Fourth Lake	Buttle Lake Flower Ridge Thelwood
L.Dev. L.Dev. Devonian?	M,I,FV,MS MV MV	McLaughlin Ridge Nitinat Duck Lake	Myra Price

Formation names from Sutherland Brown and Yorath (in preparation) and Juras (1987), except Duck Lake Formation from Massey and Friday (1989) and Fourth Lake Formation (Massey, 1989).

Ages from Brandon, et al, 1986, Juras, 1987.

Abbreviations: E.-Early, L.-Late, Per-Permian, Penn-Pennsylvanian, Miss-Mississippi, Dev-Devonian, Ves-vesicular, V-volcanic, S-sediment, G-gabbro, M-mafic, I-intermediate, F-felsic, MS-massive sulphides.

PROPERTY GEOLOGY

Property-scale geological mapping of the Chemainus claim group was by Britten (1984), Everett and Cooper (1984), Enns and Hendrickson (1986), Mallalieu et al (1987) and Morrice (1989). Surveys prior to 1988 focused on specific regions of the property. Dr. M.G. Morrice reviewed the previous mapping in 1988 and completed the first property wide geological compilation and interpretation. The following geological discussions are taken with minor revisions from Morrice (1989)

The geological interpretation of the CHIP claims and the BRENT-HOLYOAK claims is shown on 1:5,000 maps revised to reflect results from the 1989 drill programs (Figures 3a to 3i). The Chemainus Project is underlain by about 57% McLaughlin Ridge Formation (units 2,3 and 4), 23% Fourth Lake Formation (unit 5), 17% Karmutsen gabbro and diorite (units 7 and 8), and 3% Nanaimo Group (unit 11). Nitinat Formation lithologies are not exposed within the confines of the Chemainus Project but outcrop immediately east of the property.

Lithologies within the Chemainus Project trend west-northwest. Bedding attitudes are difficult to discern for most of the property. Those that were observed have dips which vary from 20 degrees to vertical. Virtually all lithologies are characterized by a steeply dipping, variably intense schistosity. Mineral and stretch lineations are shallow plunging within the plane of schistosity.

Devonian

Nitinat Formation

The following discussion is based on observations of Nitinat lithologies east and south of the property (Massey et al, 1987).

Lithologies within the Nitinat Formation are mafic flows, pyroclastics and subvolcanic intrusions, characterized by the presence of up to 50% large (0.25-1.5 cm) calcic clinopyroxene phenocrysts. Lesser (0-15%) plagioclase phenocrysts are present locally. Flows are massive or pillowed; pillow breccia is present on Panorama Ridge, 2 km northwest of

Chemainus. Pyroclastics, which dominate the Nitinat Formation, comprise monolithic tuff breccia, lapilli tuff and lesser tuff. Clasts are invariably vesicular, with up to 65% calcite, quartz or chlorite-filled amygdules. The monolithic nature of the pyroclastics and their high vesicularity are consistent with near-vent deposition in a shallow marine to subaerial environment, perhaps in tuff or cinder cones.

McLaughlin Ridge Formation

The McLaughlin Ridge Formation is the lithologic package of exploration interest, hosting massive and semi-massive sulphide deposits in the Cowichan-Horne Lake uplift and being remarkably similar to the massive sulphide-hosting Myra Formation in the Buttle Lake uplift. The McLaughlin Ridge Formation occurs, uninterrupted, along the entire length of the claim group with an average exposed width of 2 km. The McLaughlin Ridge Formation is composed of varying proportions of felsic, intermediate and mafic volcanics and subvolcanic intrusions and lesser clastic and chemical sediments. Felsic volcanics dominate the central part of the claims, decreasing in abundance, at the expense of mafic and intermediate volcanics, to the northwest and southeast.

Classification in the field is based on colour index (CI) (% mafic minerals); mafic volcanics have CI>35, intermediate volcanics 15-35 and felsic volcanics <15. The quartz-phyric nature of felsic volcanics distinguishes them from the more felsic intermediate volcanics. These colour indices correspond approximately with SiO2 contents of 53%, 53-70% and >70%, respectively.

Mafic, and lesser ultramafic volcanics (Units 1 and 2) are the main lithologies in the western, eastern and northern parts of the property. The distinction between mafic and ultramafic volcanics is not readily made in the field, but is based on geochemical criteria with ultramafic volcanics containing <53% SiO2 and >10% MgO. Thus defined, only a small proportion of ultramafic compositions and no mappable units of ultramafic volcanics occur on the property. In the central part of the property, mafic volcanics occur as thin, continuous units interbedded with felsic volcanics.

Intermediate volcanics (Unit 3) occur throughout the property intimately associated with mafic volcanics. They attain their greatest abundance towards the east end of the property on HOLYOAK 2 and BRENT 1. In addition, a distinct suite of intermediate volcanics are sandwiched between the mafic volcanics of the McLaughlin Ridge Formation and Fourth Lake cherts along the northern part of the property, from CHIP 1 to CHIP 4.

Felsic volcanics (Unit 4) are the dominant lithology of the McLaughlin Ridge Formation on the Chemainus Project. They are the main lithology in the central part of the claims, decreasing in abundance both east and west at the expense of mafic and intermediate volcanics.

Within the McLaughlin Ridge Formation, sediments (Unit 5) are a minor component, occurring as thin (<10 m thick) units of argillite, siliceous argillite, and chert.

The general stratigraphic picture that has emerged is of a basal member dominated by felsic volcanics which is overlain by a mafic and intermediate volcanic-dominated sequence which is subsequently overlain, apparently conformably, by sediments of the Fourth Lake Formation. The mafic Nitinat Formation is not exposed on the claim group but is inferred to underlie the McLaughlin Ridge Formation. The basal felsic volcanic member is estimated to be a maximum of 600 metres thick based on the maximum exposed width, in the central part of the belt, assuming a simple anticline with axial fold trace bisecting the belt. This member is composed dominately of felsic pyroclastic flows which are variably quartz +/- plagioclase-phyric. Alteration within the felsic member, manifest as sericite +/pyrite mineral assemblages, occurs throughout the member, but appears to be especially prominent near its upper contact with the mafic member. Thin interbeds of mafic volcanics interrupt the otherwise monotonous felsic succession. These mafic units may represent "background" volcanism which accumulated during lulls in the outpouring of the felsic pyroclastic flows. Alternatively these thin mafic units may be infolded or infaulted portions of the upper mafic member. The mafic volcanic-dominated member that overlies the felsic member is estimated to be <400 metres thick. These upper mafic volcanics are texturally and compositionally similar to the thin mafic interbeds in the felsic member and to the mafic units in the Nitinat Formation. Alteration, in the form of hematitization, is prevalent near the top of the mafic member. Thin jasper units are associated with these hematitically altered mafic volcanics. The mafic member is overlain directly by Fourth Lake Formation sediments on most of the property. However, along the north margin of the McLaughlin Ridge Formation, in the CHIP claims, a unit of plagioclase-phyric intermediate volcanics occurs between hematitized mafic volcanics and Fourth Lake Formation sediments.

Mississippian

Fourth Lake Formation, Buttle Lake Group

The Fourth Lake Formation is defined by the presence of thick accumulations of sedimentary rocks (Unit 5) which bound the McLaughlin Ridge Formation along its northern and southern margins. On the Chemainus Project, the Fourth Lake Formation is composed mainly of cherts with lesser, but significant, siltstones and wackes. Bedding is well developed, ranging in thickness from 0.1-5 cm. Grading is locally present.

Triassic

Karmutsen Formation

Mafic intrusive rocks (Unit 7) related to Late Triassic Karmutsen volcanism, are ubiquitous throughout the property. Individual intrusions vary from several cm to 400 m wide and have been traced along strike for up to 6.5 km. In a gross sense most mafic intrusions are sill-like, appearing to have intruded along lithologic contacts in many instances. Crosscutting relationships are present locally. Attitudes range from vertical to near-horizontal.

Intermediate intrusive rocks (Unit 8) are restricted to one sill-like diorite exposed at the east end of the property. This very magnetic diorite is medium-grained equigranular with a CI of 20-30.

Post-Triassic Intrusive Rocks

Late, post-metamorphic and post-deformational intrusive rocks (Unit 10) are a very minor component of the Chemainus claim group. All clearly crosscut prexisting schistosity and are themselves nonfoliated. All are thin (<2 m wide) equigranular intermediate dykes. Colour indices average about 35-40.

Cretaceous

Nanaimo Group (Comox Formation, Haslam Formation)

Clastic sediments of the Nanaimo Group (Unit 11) unconformably overlie or are in fault contact with older volcanic, sedimentary and intrusive rocks. In the Chemainus Project area the fining upward sequence comprises basal conglomerates and sandstones of the Comox Formation overlain by rusty weathering argillite and siltstone of the Haslam Formation (Muller and Jeletzky, 1970). Conglomerates include non-transported lithified regolith, little transported lithified talus and well transported boulder and cobble conglomerates. Clast types exhibit reasonably close correlation to underlying lithologies. Conglomerate matrix and overlying sandstone units are dominately composed of immature wacke.

Nanaimo Group sediments unconformably overlie older lithologies along the south margin of the property. A sliver of Nanaimo sediments, encountered in drill core in the Anita area, is in fault contact to the north with McLaughlin Ridge volcanics. Its southern contact, again with McLaughlin Ridge volcanics, is unconformable in places and a fault in places (Money et al., 1988).

Metamorphism

With the exception of Late Intrusive rocks (Unit 10) and Nanaimo sediments (Unit 11), all lithologies have been metamorphosed. The presence of abundant calcite, actinolitic amphibole and chlorite in mafic volcanics indicate that peak metamorphic conditions reached greenschist facies. The presence of hornblende in mafic volcanics in the Watson Creek area indicates slighter higher metamorphic conditions have developed locally.

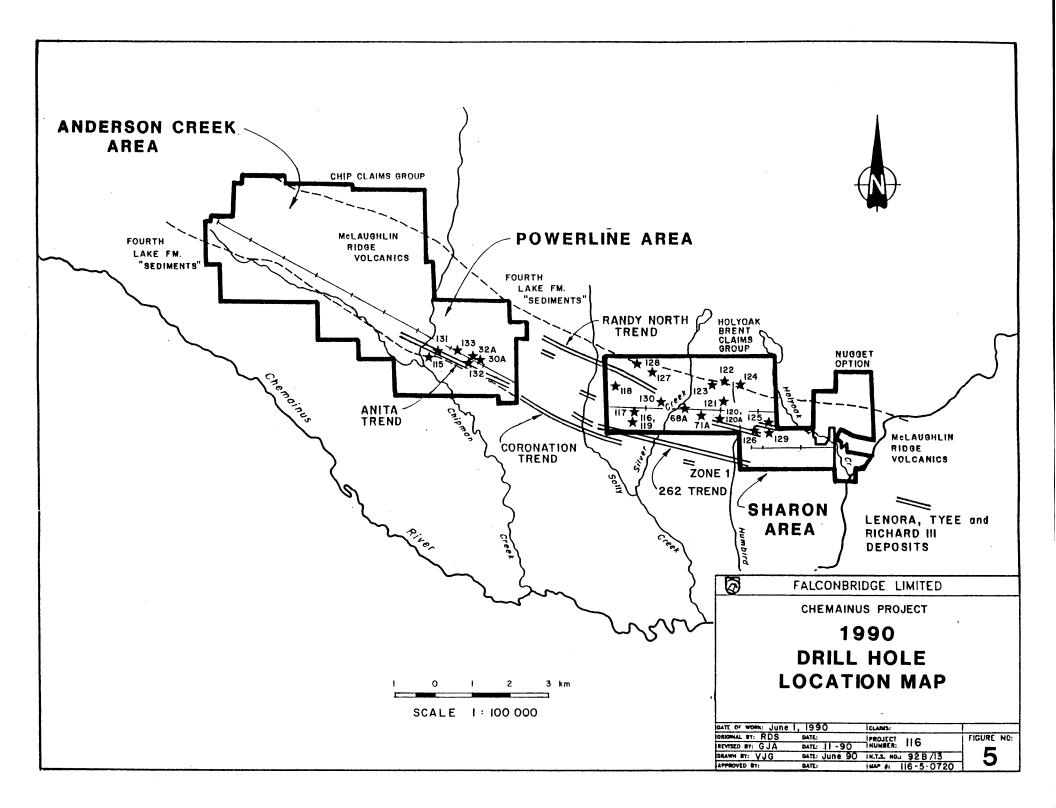
1990 EXPLORATION PROGRAM

The portion of the 1990 exploration program covered by this report consisted of diamond drilling. Reclamation of all 1990 drill sites was completed except for the sowing of grass seed.

All work in this program was permitted with certain specific conditions under Annual Work Approval Number NAN 90-208-140 from the Ministry of Energy, Mines and Petroleum Resources. Timber use/road access permits were obtained from MacMillan Bloedel, Canadian Pacific Forest Products Ltd., B.C. Hydro and the Ministry of Forests. Plans for new roads and off-road machinery access were reviewed by the Ministry of Environment . A water permit was not required since all water sources used are unscheduled.

Diamond drilling site preparation and reclamation was completed by Ellison Excavating Limited using a John Deere 490 excavator. All damaged timber from site preparation and road building was either buried into the construction, properly stacked for removal or taken under permit for firewood. Roads, sumps, drill pads and trenches were recontoured and revegetated with particular attention to minimizing erosion through the use of water bars, culverts cross drains and ditches.

The drill holes were completed under contract by Burwash Contract Drilling of Cobble Hill, B.C. during the period from March 2, 1990 and November 10, 1990 on the CHIP 1, CHIP 2 and CHIP 12FR claims. A unitized Longyear Super 38 drill equipped with air cooled diesel engines was used to drill the NQ-sized core. Drill core was placed in wooden trays marked by metric/imperial tags. Sperry-Sun orientation tests were taken by the drill crew at approximately 100 metre intervals. Core was delivered at the end of each shift to the Falconbridge field office in Chemainus. Drill core was logged by hand. Data was subsequently transferred into Progigraph Inc.'s PRGLOG 1G drill log system on a Toshiba 3200 computer and plotted using TRALOG, AUTOCAD and hand drafting.


Significantly mineralized core was split or sawn in intervals generally less than 1.5m long and sent to Bondar-Clegg And Company Ltd. in North Vancouver. Samples were digested with hot aqua regia (HNO3-Hcl) and then analyzed for 29 elements using ICP. Gold was determined using a 10 gram fire assay with an AA finish. Complete barium results were obtained using an XRF analysis. Automatic assaying was triggered for Cu, Pb or Zn values greater than 3000ppm, Au values greater than 1000ppb or Ag values greater than 30ppm. Complete results were generally available within 6 to 10 days by modem access to their computer. Geochemical results at or above the following thresholds were considered to be anomalous.

	Elements of	f Primary Inter	est		
Cu > 500pp	$m \qquad Zn > 100$	0ppm Ag >	2.Oppm	Au >	100ppb
Pb > 35pp	m As > 50	Oppm Co>	20ppm	Mn >	400ppm
Ni > 45pp	m Ba(XRF)> 200	0ppm Ba(ICP)>	300ppm	Sc >	10ppm
	Elements of	Secondary Inte	rest		
Cr > 150pp	m Ga > 100	Oppm Be>	20ppm	Li >	20ppm
Nb > 30pp	m Rb > 500	Oppm Sb >	50ppm	V >	100ppm
Bi > 40pp	m Cd > 30	Oppm Ce>	30ppm	La >	30ppm
Mo > 30pp	m Sn> 50	Oppm Sr >	50ppm	Ta >	50ppm
Te > 50pp	m Y>3	30ppm Zr	> 20ppm		

Samples for whole rock analyses (16 element whole rock, and copper, zinc and nickel package; Cominco Exploration Research Laboratory, Vancouver) were collected as 30cm composites from intervals up to 3m long with a spacing of less than 30m. Whole rock analyses were done in an attempt to identify zones of alteration which typically occur near volcanogenic massive sulphide deposits. Samples with less than 1.2% Na₂O are considered to be possibly altered.

Drill hole locations are shown on Figures 3 and 5. Results for each area are discussed below. Drill hole summaries are given in Appendix A, section by section descriptions in Appendix B, and complete drill logs with analytical results in Appendix C.

All drill core from 1985 to 1990 Chemainus Project programs is stored at the Falconbridge Limited's Chemainus field office, 9382 Trans Canada Highway, Chemainus, British Columbia.

DRILLING RESULTS

A summary of drill results is given below. A discussion of the geology follows.

SUMMARY OF SIGNIFICANT RESULTS									
Hole #	Purpose	<u>From</u> <u>To</u>	Length Cu	<u>Zn</u>	<u>Ag</u> <u>Au</u>	Рь	Remarks		
CH90-115	I,S	74.38 74.88	0.50m 0.16%	0.01%	27.8ppm 250 ppb	15ppm	Rhodonite bed		
CH90-131	A,S	70.34 74.70	4.36m 0.44%	0.14%	5.1ppm 401 ppb	<0.01%	Anita Horizon		
PURPOSE:	A: Anita Acti I: IP Target	ve Tuff B: R: Randy	Borehole EM Ta Trend S: Sta	rget atigraphic	E: Followup Ho Hole X: Sharon J		I: Horizontal Loop-EM Target		

South of Anita Area

Hole: CH90-115 Section: 28+00E Depth: 200.0m

Hole CH90-115 (Figure 7) was drilled to test IP and airborne EM anomalies in Fourth Lake Formation sediments south of the Anita Trend. It was also drilled to test a geological theory. If McLaughlin Ridge Formation volcanic rocks and the Fourth Lake Formation sediments are conformable, epithermal activity related to volcanism may have continued during the later sedimentary regime. It is possible, therefore, that breaching of the sedimentary cover by metal-bearing solutions may have given rise to the formation of epigenetic base metal deposits within the sediments.

A jasper-rhodonite horizon with elevated base and precious metal values was intersected in an otherwise monotonous sequence of relatively undeformed cherty sediments. The IP anomaly may have been caused by thin films of pyrite on fracture surfaces.

The difference in metamorphism between the volcanic rocks and the overlying sedimentary rocks suggests that the two formations are in unconformable or fault contact. It is improbable, therefor, that a metallic deposit as described above would occur in the Fourth Lake Formation sediments.

Anita Area

Hole No.	Section	Depth (m)
CH90-131	27+00E	380.09

The geology of the Anita area is somewhat complex. The north part of the area consists of a series of intercalated felsic to mafic volcaniclastics. This sequence is truncated in the south by the steeply north-dipping Fulford splay thrust fault which has placed Sicker Group rocks overtop of younger Cretaceous Nanaimo Group sediments. The Nanaimo Group sediments unconformably overlie a steeply south-dipping sequence of felsic to mafic tuffs (including the Anita active felsic tuff and the target Anita horizon) and gabbroic intrusives. The Anita tuff appears to be unconformably overlain by relatively fresh mafic tuffaceous sediments. To the south of and in obscure contact with this unit are sediments of the Fourth Lake Formation and gabbroic intrusives. It is possible that the mafic tuffaceous sediments overlying the Anita active tuff are transitional between the predominantly volcanic rocks of the McLaughlin Ridge Formation and the sediments of the Fourth Lake Formation.

The best mineralization within the Anita active tuff is the Anita mineralized horizon which generally occurs within 15m north of the Anita felsic tuff-mafic tuffaceous sediment contact. This mineralized horizon, which has been traced discontinuously along a 3.3 km strike length of over 3km, generally consists of a 1 to 10m wide zone of disseminated to massive pyrite in foliation-parallel bands or beds up to 0.5m thick with traces to a few percent of associated chalcopyrite and sphalerite.

Drilling in this area was designed to provide deep intersections (as low as 50m above sea level or 600m below surface) of the Anita mineralized horizon along the projected rake of a better mineralized zone (fold hinge?) between 27+00E and 38+00E. Most holes were drilled subparallel to and commonly largely within the 'Anita active' tuff to provide maximum access for testing of the favorable horizon with a downhole pulse EM system. Drilling down the dip of the horizon also gave the maximum chance of hitting a kink or minor fold which could have localized mineralization.

Drilling intersected zones typical of the Anita horizon elsewhere and were only moderately enriched in base and precious metals. The drilling confirmed the continuity of the mineralized horizon but did not hit any significant sulphide lenses as was hoped. Due to flattening of the holes, the expansion of the coverage of the horizon was also less than was planned.

REFERENCES

- Brandon, M.T., Orchard, M.J., Parrish, R.R., Sutherland Brown, A. and C.J. Yorath;1986: Fossil Ages and Isotopic Dates from the Paleozoic Sicker Group and Associated Intrusive Rocks, Vancouver Island, British Columbia, in Current Research, Part A, Geological Survey of Canada, Paper 86-1A, p 683-696.
- Deighton, J.R.;1977: Geological report on the Margie, Mollie, Mollie Fr. and Yankee Claims., Victoria Mining Division, NTS 092B/13W. Assessment report #06602, 6p.
- Fisher, R.V.;1966: Rocks composed of volcanic fragments and their classification; Earth Science Reviews, Vol. 1, p.287-298
- Hoy, T.; 1989: The age, chemistry and tectonic setting of the Middle Proterozoic Moyie Sills, Purcell Supergroup, southeastern British Columbia. Can. J. Earth Sci., v.26: 2305-2317.
- Jones, D.L., Silberling, N.J. and Hillhouse, J.;1977: Wrangellia-a displaced terrane in northwestern North America. Can.J.Earth Sci.,v.14: 2565-2577.
- Juras, S.;1987: Geology of the Westmin Resources Myra Falls Mine-area, Vancouver Island, British Columbia. Unpublished PhD. Thesis, The University of British Columbia. 279pp.
- Massey, N.W.D. and Friday, S.J.;1987: Geology of the Cowichan Lake Area, Vancouver Island (92C/16). British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1986, Paper 1987-1: 223-229.
- Massey, N.W.D. and Friday, S.J.;1988: Geology of the Chemainus-Duncan Area, Vancouver Island (92C/16;92B/13). British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1: 81-91.
- Massey, N.W.D. and Friday, S.J.,1989: Geology of the Alberni-Nanaimo Lakes area, Vancouver Island (92F/1W, 92F/2E and part of 92F/7). B.C., Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1989, Paper 1989-1: 61-74.
- Massey, N.W.D., Friday, S.J., Tercier, P.E. and Rublee, V.J.;1987: Geology of the Cowichan Lake area, NTS 92C/16, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987-2.
- Massey, N.W.D., Friday, S.J., Tercier, P.E. and Potter, T.E., 1988: Geology of the Duncan and Chemainus River area, NTS 92B/13 and 92C/16E, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1988-8.
- Muller, J.E.;1977: Evolution of the Pacific margin, Vancouver Island and adjacent regions. Can.J.Earth Sci.,v.14: 2062-2085.
- Muller, J.E.;1980: The Paleozoic Sicker Group of Vancouver Island, British Columbia, Geological Survey of Canada, Paper 79-30, 23 pp.
- Muller, J.E. and Jeletzky, J.A.;1970: Geology of the Cretaceous Nanaimo Group, Vancouver Island and Gulf Islands, British Columbia, Geological Survey of Canada, Paper 69-25, 77 pp.

- Ronning, P.A.;1980: Geology and soil geochemistry, Mount Sicker property, Victoria Mining Division, British Columbia. Assessment report # 7875, 38 p.
- Schmid, R;1981: Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the I.U.G.S. Subcommission on the Systematics of Igneous Rocks; Geology, Vol. 9 p.41-43.
- Sorbara, J.P.;1983: Geochemical and geological report for Yankee, Mollie, Mollie Fr., Margie reverted crown grants, Victoria Mining Division. Assessment report #11328. 3p.
- Sutherland Brown, A., Yorath, C.J., Anderson, R.G. and Dom, K.;1986: Geological Maps of Southern Vancouver Island, LITHOPROBE 1, Geological Survey of Canada, Open File 1272, 10 sheets.
- Sutherland Brown, A. and Yorath, C.J.;1985: LITHOPROBE Profile across Southern Vancouver Island: Geology and Tectonics, in Field Guides to Geology and Mineral Deposits in the Southern Canadian Cordillera, Geological Society of America, Cordillera Section Meeting, Vancouver, B.C., May, 1985.
- Sutherland Brown, A., and Yorath, C.J.; in press: Stratigraphy, C.J.Yorath, Editor, in, LITHOPROBE Phase 1, Southern Vancouver Island: Geology and Geophysics, Geological Survey of Canada, Bulletin.

APPENDIX A

.

Summary Drill Logs

SUMMARY LOG AND DESCRIPTION CH90-131 (PROPOSED HOLE F-16)

LOCATION: 27+00E, 2+03S, 470m asl.; Chip 1 AZIMUTH: 2090DIP: -71.5° TOTAL DEPTH: 380.09m PROPOSED DEPTH: 525m STARTED: Nov. 6, 1990 COMPLETED: Nov. 10, 1990 REVISED: November 30, 1990 LOGGED BY: G. Allen

- **PURPOSE:** Hole CH90-131 was designed to drill down the 'Anita active tuff' to provide access for continuous geophysical testing of the mineralized horizon to a depth of approximately 550m below surface. Drilling down the dip of the horizon would also give the maximum chance of hitting a kink or minor fold which could localize mineralization. The stratigraphy in this area is folded and it was possible that the hole could have penetrated the same mineralized horizon in three locations.
- **RESULTS:** Hole CH90-131 collared in the 'Anita active felsic tuff' and intersected the Anita mineralized horizon sooner than expected between 70.34 and 74.70m. The zone consists of bands (beds?) up to 50cm thick of massive fine to medium-grained pyrite, minor sporadic chalcopyrite and traces of sphalerite in a sericite schist host. The mineralization lies within 10m of the south side of the Anita active tuff as is typical of the horizon.

Between 87.13 and 380.09m (E.O.H.) the hole penetrated intermediate to mafic tuff, tuffaceous sediment, siltstone and chert. Due to flattening, the hole apparently subparallelled the 'Anita active tuff' within a few metres (probably within 20m) of its southern contact below 87.13m and did not repenetrate the mineralized horizon as planned. The hole should, however, provide access for geophysical (PEM) testing of the horizon to a depth of approximately 400m below surface.

Bedding to core axis angles in the tuffaceous sediments and sediments are consistent and project into the postulated Anita felsic tuff contact at an angle of approximately 30°. This suggests that either the 'Anita active tuff'-tuffaceous sediment contact is at least partly fault controlled or that the contact actually dips steeply to the north rather than to the south.

DIRECT DRILLING COSTS: \$20,239 or \$53.25/m

SAMPLES:

Geochemical Samples: 65 Whole Rock Samples: 17 Thin Sections: 0

CH90-131 SUMMARY LOG:

$0.0 \leq 10m$	losing
0.0 - 6.10 m C	Felsic Tuff/Lapilli Tuff
8.71 - 11.90m l	
11.90 - 49.00m	
	Feldspar Phyric Felsic Lapilli Tuff
53.40 - 70.34m	
	Anita Sulphide Zone
74.70 - 87.13m	
87.13 - 111.22m	
	Feldspar Phyric Mafic Tuff
	Mafic Tuffaceous Sediment
	Feldspar Phyric Mafic Tuff
	Mafic Tuffaceous Sediment
	Feldspar (+Mafic?) Phyric Mafic Crystal Tuff
	Siltstone, Cherty Siltstone (Tuffaceous Sediment?)
	Feldspar Phyric Mafic Tuff (?) (Intrusive?)
	Feldspar Phyric Mafic Crystal Tuff to Lapilli Tuff
	Siltstone, Cherty Siltstone/Tuffaceous Sediment
	Feldspar Phyric Mafic Crystal Tuff
	Feldspar Phyric Mafic Lapilli Tuff
	Mafic Tuff, Tuffaceous Sediment
	Feldspar Phyric Mafic Tuff
210.80 - 211.60m	
211.60 - 211.95m	Mafic Tuff
211.95 - 216.85m	Amygdaloidal Mafic Flow
216.85 - 238.15m	Interbedded Siltstone And Sandstone/ Tuffaceous Sediment
238.15 - 247.00m	Mafic Tuff
247.00 - 248.53m	Siltstone
248.53 - 252.37m	Mafic Tuff
252.37 - 255.12m	Feldspar Phyric Mafic Dyke
	Intercalated Mafic Tuff And Feldspar Phyric Mafic Dykes
	Feldspar Phyric Mafic Dyke
259.00 - 260.65m	
	Feldspar Phyric Mafic Dyke
263.80 - 269.55m	
	Lithic - Feldspar Phyric Mafic Crystal Tuff
	Feldspar Phyric Mafic Tuff To Lapilli Tuff
	Siltstone, Cherty Siltstone, Tuffaceous Sediment
	Lithic - Feldspar Phyric Mafic Crystal Tuff
	Siltstone, Cherty Siltstone And Tuffaceous Siltstone
	Feldspar Phyric Mafic Tuff
	Cherty Feldspar Phyric Tuffaceous Sediment
	Lithic - Feldspar Phyric Mafic Crystal Tuff To Lapilli Tuff
	Tuffaceous Sediment
324.12 - 323.13III	r anacous scament

- 325.15 346.64m Lithic Feldspar Phyric Mafic Crystal Tuff
- 346.64 352.30m Mafic Flow
- 352.30 354.72m Mafic Tuffaceous Sediment
- 354.72 358.85m Mafic Flow
- 358.85 380.09m Mafic Tuffaceous Sediment

380.09m - End Of Hole. Hole lined with plastic pipe.

CH90-131 ALTERED WHOLE ROCK SAMPLES

Sample	From	То	SiO ₂	CaO	Na ₂ O	к ₂ о	MgO	Zn	Cu
VB02699	6.1	8.7	74.06	2.27	0.68	2.91	0.90	20	26
VB02700	9.0	11.9	47.33	9.85	0.79	0.45	4.69	66	221
VB02701	34.7	37.0	69.40	1.92	1.01	2.85	1.49	20	63
VB02702	64.0	67.0	68.69	0.29	1.13	2.87	0.17	20	64

CH90-131 SIGNIFICANT GEOCHEMICAL ANALYSES (Au-ppb, other elements - ppm)

a 1	P	m	T ()	~	Di	7			ъ
Sample	From	To	L(m)	Cu	Pb	Zn	Ag	Au	Ba
VB00932	7.45	8.77	1.32		<i>C</i> 1				2000
VB00935	11.90	13.28	1.38		61 75				2200
VB00936	13.28	14.74	1.46		75				
VB00937	14.74	15.64	0.90		51				
VB00938	15.64	16.15	0.51		72				0000
VB00940	17.60	18.97	1.37		48		0.1		2200
VB00941	18.97	20.30	1.33		67		2.1		2200
VB00945	24.06	25.60	1.54		000		• •	104	2500
VB00946	25.60	25.70	0.01		392		2.0	104	2400
VB00947	25.70	26.82	1.12		43				2400
VB00948	26.82	27.73	0.91		130			201	2600
VB00949	27.73	27.90	0.17		256			284	0500
VB00950	27.90	29.06	1.16		81				2500
VB00951	29.06	30.46	1.40		60				3100
VB00952	30.46	31.50	1.04		102				3300
VB00954	32.87	34.15	1.28					211	
VB00963	54.56	55.45	0.89						2300
VB00968	59.50	60.11	0.61						2700
VB00969	60.11	60.60	0.49						2000
VB00970	60.60	62.03	1.43						2300
VB00972	63.00	63.88	0.88						4100
VB00973	63.88	64.40	0.52					176	4200
VB00974	64.40	65.25	0.85					124	3300
VB00975	65.25	65.85	0.60						2500
VB00976	65.85	66.35	0.50						3100
VB00977	66.35	67.80	1.45						2000
VB00978	67.80	69.05	1.25						2500
VB00979	69.05	70.34	1.29						2800
VB00980	70.34	71.40	1.06	935	29		2.7	174	4000
VB00981	71.40	71.76	0.36	1085	132	0.76%	3.9	102	7700
VB00982	71.76	72.50	0.74	1030					11700
VB00983	72.50	72.96	0.46 0	.71%		7.4	390	4100	
VB00984	72.96	73.97	1.01 0	.57% 6 1	1420	7.6	785	3400	
VB00985	73.97	74.70	0.73 1	.07%		7.5	694	3400	
VB00986	74.70	76.00	1.30	1198	56				4600
VB00987	76.00	77.40	1.40	566					3800
VB00988	77.40	78.90	1.50	516					8000
VB00989	78.90	79.75	0.85	1178					7900
VB00990	79.75	80.16	0.41	1249					8000
VB00991	80.16	81.72	1.56	2880					6100
VB00992	81.72	83.30	1.58						5000
VB00993	83.30	84.70	1.40	1681					4900
VB00994	84.70	85.90	1.20		67				4300
VB00995	85.90	87.13	1.23	748	45	1445			2200

SUMMARY LOG AND DESCRIPTION CH90-115 (PROPOSED HOLE D1)

LOCATION: 28+00E, 6+87S, 497m asl.; Chip 2 Claim
AZIMUTH: 030° DIP: 50°
TOTAL DEPTH: 199.95m PROPOSED DEPTH: 200m
STARTED: April 19, 1990 COMPLETED: April 22, 1990
REVISED: August 7, 1990
LOGGED BY: Gord Allen
PURPOSE: Hole CH90-115 was designed to test Fourth Lake Formation (?)baritic and argillaceous felsic tuffs cut by gabbros which host INPUT Trend A-31 and

- argillaceous felsic tuffs cut by gabbros which host INPUT Trend A-31 and IP Trend CN-2. IP Trend CN-2 has a very weak metal factor value. A source for a Schlumberger IP anomaly was expected 55m downhole and the Gradiant IP/INPUT anomaly source was expected from 125 to 140m downhole. These anomalies lie 300m south of the Anita Trend where CH87-37 intersected anomalous base metals (2.4% Cu, 2.7% Zn/2.5m).
- **RESULTS:** The hole was predominantly in cherty siltstones for its entire length. Argillaceous sediments with 1-2% pyrite in thin films on fracture surfaces were intersected from 63.2 to 64.97m. This unit may be the source for the Schlumberger IP anomaly. A jasper-rhodonite horizon was intersected from 73.90-75.29m. At 80.50m a 1cm zone contained 10% each of fine-grained disseminated sphalerite and pyrite. Thin pyrite films on fracture surfaces may be the source for the Gradient IP/INPUT anomaly although no outstanding mineralization was noted in the target area.

DIRECT DRILLING COSTS: \$11,360 or \$56.80/m

- 0.00 3.80m Casing
- 3.80 63.20m Cherty Sediments
- 63.20 64.97m Argillaceous Sediments
- 64.97 73.90m Cherty Sediments
- 73.90 74.38m Jasper-Bearing Cherty Sediments
- 74.38 74.88m Rhodonite
- 74.88 75.29m Jasper Breccia
- 75.29 189.10m Cherty Sediments
- 189.10 194.20m Gabbro
- 194.20 199.95m Cherty Sediments

199.95m End of Hole. Hole lined with plastic pipe.

Geochemical Samples: 31, Whole Rock Samples: 5, Thin Sections: 0

CH90-115 SIGNIFICANT GEOCHEMICAL ANALYSES (Au-ppb, other elements - ppm)

Sample	From	То	L(m)	Cu	Pb	Zn	Ag	Au	Ba
VB00001 VB00002	62.00 63.20	63.20 64.97	1.20 1.77						2900 3300
VB00003 VB00004	64.97 72.50	66.37 73.90	1.40						2500 2000
VB00006 VB00007	74.38	74.88	0.50	0.16%		2	27.77g/T 2.7	250	2000
VB00011	75.19	80.20	1.05				2.1		2100
VB00015 VB00017	92.42 100.81	92.97 101.64	0.55						3000 2100
VB00018 VB00019	101.64 134.95	102.41	0.77						2700 3500
VB00020 VB00021	136.44 137.95	137.95 138.10	1.51 0.15						3600 2300
VB00022 VB00023	138.10 142.76	139.63 144.05	1.53 1.29						3500 3800
VB00024 VB00026	146.16 179.25	146.76 180.36	0.60 1.11						3800 2800
VB00028 VB00029	180.87 182.15	182.15 183.56	1.28 0.85						2800 2400
VB00030	183.00	183.56	0.56						2500

CH90-115 ALTERED WHOLE ROCK SAMPLES

Sample	From	То	sio_2	CaO	Na ₂ 0	к ₂ 0	MgO	Zn	Cu
VB002501	4.0	7.0	75.41	0.82	1.04	2.70	1.91	42	34
VB002502	36.0	39.0	80,80	0.75	0.88	1.74	1.63	56	194
VB002503	67.5	70.0	80.31	2.59	0.65	1.15	1.53	49	27

APPENDIX B

Section by Section Descriptions with 1:5,000 Cross-Sections

See also:	
Figure 6 : Anita Area	
Section 27+00E (1:1,000), CH90-131	in pocket
Figure 7 : Anita Area	•
Section 28+00E (1:1,000), CH90-115	in pocket

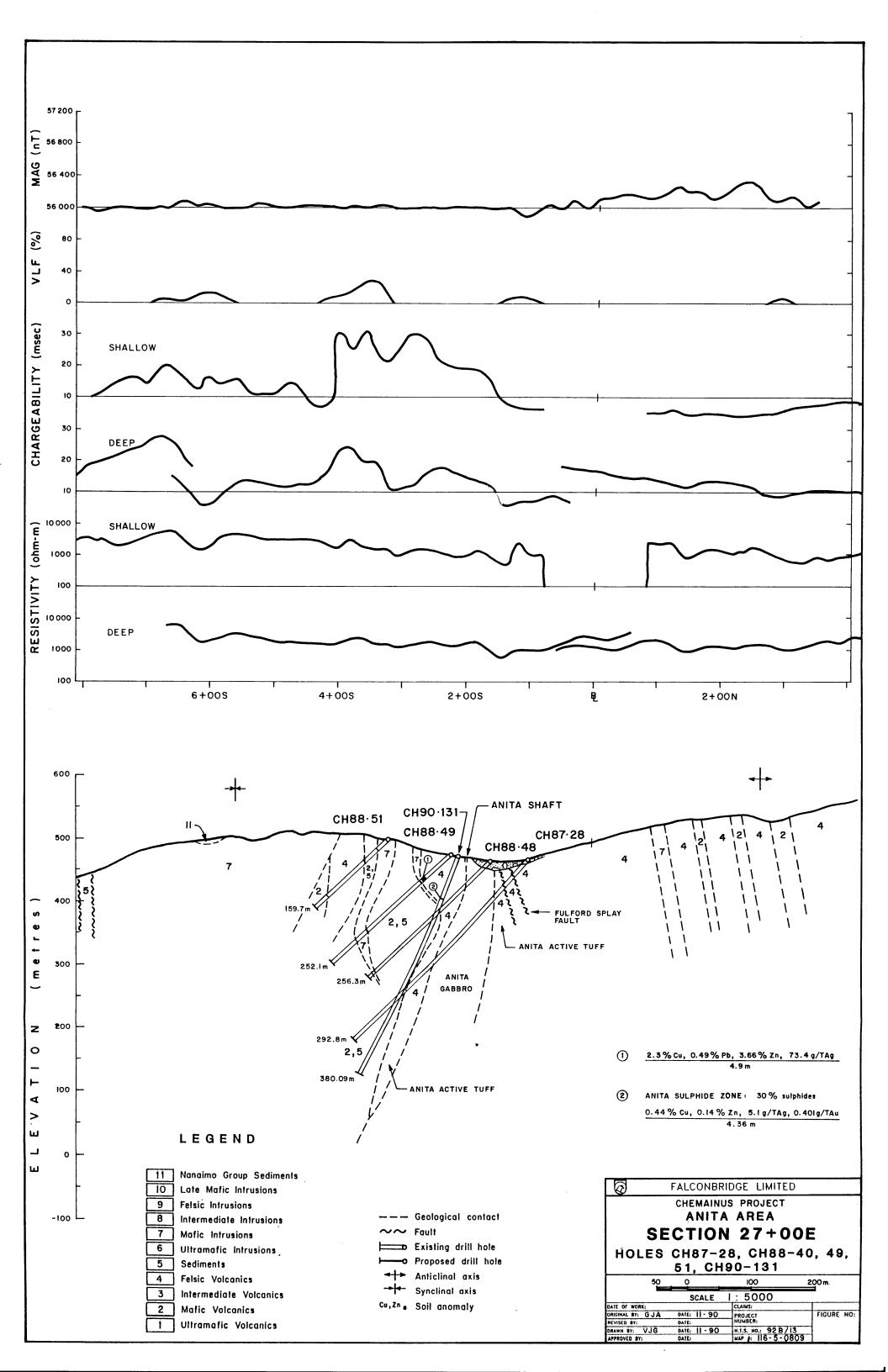
ANITA AREA SECTION 27+00E

OBJECTIVE/TARGET: CH90-131 - To test the Anita horizon at depth.

HOLE #	LOCATION	AZIMUTH	DIP	LENGTH
CH87-28	26+85E, 1+00S	210°	-50°	382.8m
CH88-48	27+00E, 1+61S	210°	-45°	256.3m
CH88-49	26+98E, 2+18S	210°	-45°	252.1m
CH88-51	26+92E, 3+10S	210°	-45°	159.7m
CH90-131	27+00E, 2+03S	209°	-71.5°	380.1m

RESULTS:

Drilling on this section was targeting the Anita mineralized horizon and its host the Anita active felsic tuff/lapilli tuff, a pyritic sodium depleted quartz sericite schist.

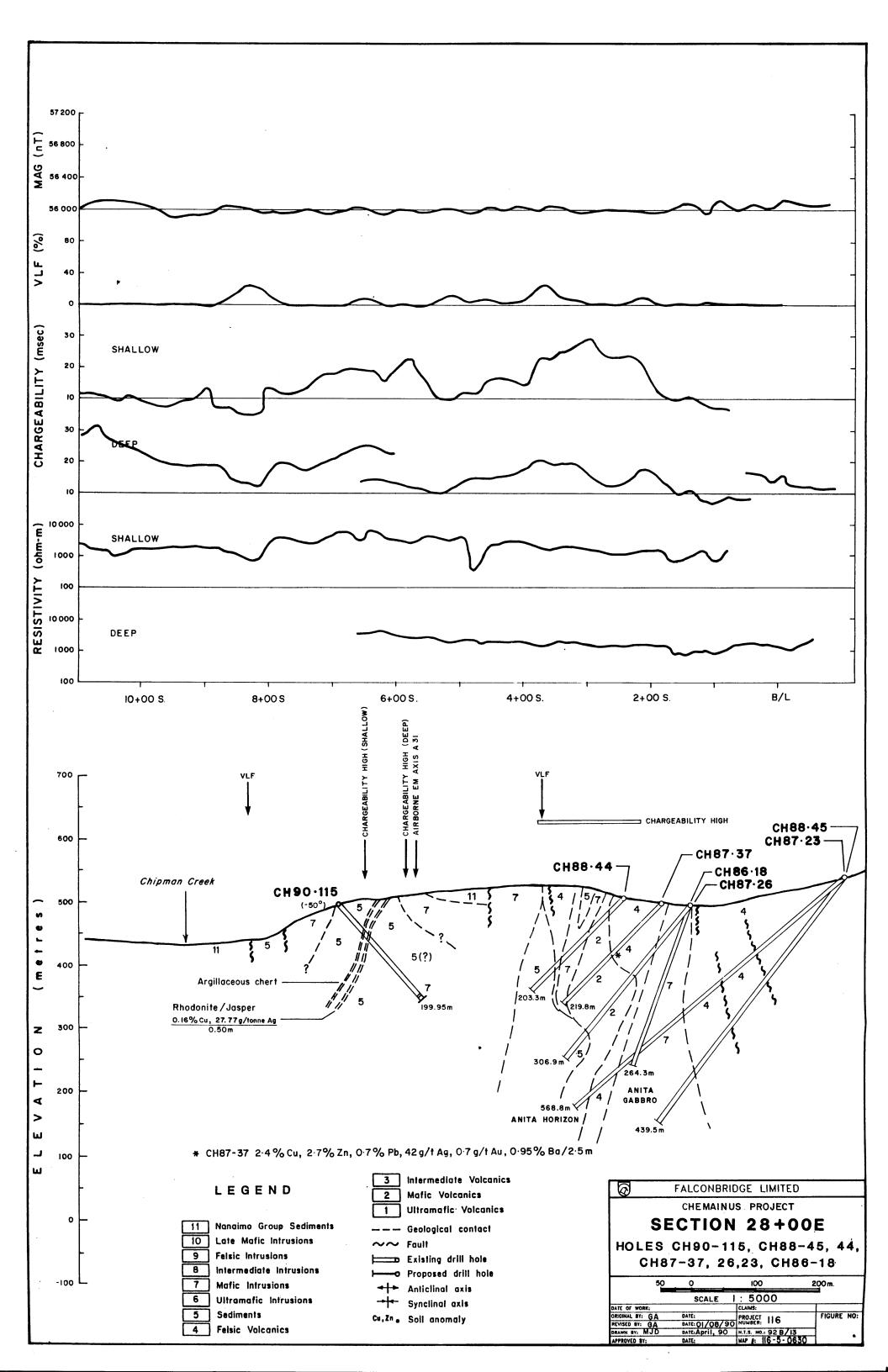

In the north part of the section steeply north-dipping intercalated mafic tuffs, felsic tuffs and gabbroic sills occur. These are truncated in the south by the steeply north-dipping Fulford splay fault. South of this fault is the steeply south-dipping Anita active tuff and an associated thick (up to 100m) gabbroic dyke.

The Anita mineralized horizon, which generally consists of a 1-4m wide zone of disseminated to massive pyrite with associated chalcopyrite and sphalerite, is located within 10m of the south margin of the Anita felsic tuff. A +/-20m zone immediately north of the sulphide horizon is generally pyritic and sporadically sodium depleted. If a volcanogenic exhalative model is used to explain the mineralization this would suggest that stratigraphic tops are to the south with a sodium depleted zone underlying a sulphide cap.

South of the Anita felsic tuff is an intercalated sequence of relatively fresh mafic flows, mafic tuffaceous sediments and sediments. Bedding to core axis angles indicate that the beds are consistently trending into the apparent mafic tuffaceous sediment-Anita felsic tuff contact at approximately 30° suggesting that the two are in fault or unconformable contact. The fresh appearance of the mafic units suggest an unconformable contact, supporting a southward stratigraphic-up interpretation.

To the south, the mafic tuffaceous sediments and flows (and some felsics) are in obscure contact with intercalated gabbroic intrusives and sediments of the Fourth Lake Formation.

Drill hole CH90-131 intersected the Anita sulphide horizon as expected and passed into relatively fresh bedded mafic tuffaceous sediments and flows. The Anita horizon is interpreted to have a fold or minor roll where CH90-131 passed through. This fold may have caused upgrading of the mineralization at this point. The interval between 70.34 and 74.70m in hole CH90-131 assayed 0.44% copper, 0.14% zinc, 5.1 g/T silver and 0.401 g/T gold across 4.36m.


SOUTH OF ANITA AREA SECTION 28+00E

OBJECTIVE/TARGET: To test INPUT trend A-31 and IP Trend CN-2.

HOLE #	LOCATION	AZIMUTH	DIP	LENGTH
CH90-115	28+00E, 6+87S	030°	-50°	199.95m

RESULTS:

The hole was predominantly in cherty siltstones of the Fourth Lake Formation for its entire length, well south of the McLaughlin Ridge Formation volcanics which host the Anita horizon mineralization. Argillaceous sediments with 1-2% pyrite in thin films on fracture surfaces were intersected from 63.2 to 64.97m. This unit may be the source for the Schlumberger IP anomaly. A jasper-rhodonite horizon was intersected from 73.90-75.29m. At 80.50m a 1cm zone contained 10% each of fine-grained disseminated sphalerite and pyrite. Thin pyrite films on fracture surfaces may be the source for the Gradient IP/INPUT anomaly, although no outstanding mineralization was noted in the target area.

APPENDIX C

.

Drill Logs and Tabulated Analytical Results

IOLE NUMBER: CH90-11				L HOLE RECORD			IMPERIAL UNITS:		IC UNITS:
PROJECT NAME: CHE PROJECT NUMBER: 116 CLAIM NUMBER: LOCATION: ANI	6 CHIP 2	PLOTTING CO	ORDS GRID: CHIP NORTH: 687.00S EAST: 2800.00E ELEV: 497.00	ALTERNATE COORDS	GRID: NORTH: O+ EAST: O+ ELEV:			COLLAR DIP: OF THE HOLE: START DEPTH: FINAL DEPTH:	199.95m 0.00m
		COLLAR ASTRONOM	IC AZIMUTH: 30° O' O"	GRID ASTRONOMIC A	ZIMUTH: 30°	0'0"			
DATE STARTED: DATE COMPLETED: DATE LOGGED:	April 19, 1990 April 22, 1990 April 23, 1990	COLLAR SURVEY: NO MULTISHOT SURVEY: YES RQD LOG: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ			CONTRACTOR: BURWASH CASING: 3.05m NW CORE STORAGE: CHEMAINUS		

. . .

DIRECTIONAL DATA:

e

)epth (m)	Astronomic Azimuth	Dip degrees		FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
0.00	30° 0'	-50 0'	SING.SHOT	OK	······································	-	-		•	•	
78.30	31° 0'	-49°30'	SING.SHOT			-	•	-	-	-	
157.60	35° 0'	-47°30'	SING.SHOT	OK		-	•	-	•	•	
-	-	-	•	•		-	•	-	-	•	
-	-	-	-	-		-	-	-	•	•	
-	-	-	-	-		•	-	-	-	•	
-	-	-	-	•		•	-	-	-	-	
•	•	-	-	•		-	-	-	-	-	
-	•	-	-	-		-	-	•	-	-	
•	-	-	-	-			-	-	-	•	
•	-	-	-	•		-	•	•	•	•	
-	-	-	-	-		-	-	•	-	•	
	•	-	-	-		-	-		-	-	
-	-	-	-	•			-	•	-	-	
_	-	-	•					:	-		
	-	-		-				-		-	
	_	-	-	-			-	-	-	-	
	_	-	-	-			-	-	_	_	
	-		-				-		-		
-	-	-	-			-	-	-	-	-	
-	-	-	-	-			-		-		
-	-	-	-	-		-	•	-	-		
-	-	-		-		-	-	•	-		
-		-	-			- 1	-	-	-		
	-	-					-			-	

-

HOLE NUM	BER: CH90-115			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 27-July-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 3.80	CASING «iobi»					
3.80 T0 63.20	CHERTY SEDIMENTS «5rpk»	 Light grey to dark brown or greenish-grey fine-grained thinly bedded (<1mm - several cm) sandstone, siltstone (about 30%) and chert or cherty sediment (about 70%). Sandstone beds are moderately soft and in coarser-grained beds composed of about 25% vaguely bounded light grey grains (feldspar ?) Some thinly bedded intervals appear to have primary sedimentary features (see remarks). 2.80 - 7.62 Dark grey to brown 7.62 - 26.78 Medium greenish-grey 26.78 - 26.96 Fine-grained mafic dyke 26.96 - 45.00 Dark greenish-grey to ruddy brown cherty sediments with about 5% fine-grained epidote as irregular 'knots' and beds. 50.62 - 50.78 Medium grey medium-grained calcareous horizon parallel to bedding. 56.10 - 56.33 Pale greenish-grey relatively soft fine-grained groundmass with 10% rounded epidote masses to 2mm. Epidote concentrated along contacts at 40° to CA. Possibly an altered dyke. 62.00 - 63.20 Distinct colour difference from rest of unit. Interbedded medium greenish-grey and dark blue-grey siliceous siltstone. 		29.60 - 45.00 About 5% epidote replacing narrow beds up to 1 cm wide.	26.90 - 63.20 Trace to 2% (average <1%) fine to medium- grained crystalline disseminated and fracture - related pyrite. Pyrite on hairline fractures which parallel faulting. Rare coarse- grained pyrite cubes up to 5 mm in diameter. Minor pyrrhotite on some fractures.	15.25 - Possible ripple marks. Wavelength about 1.5 cm. 35.60 - 35.70 Graded bedding (2 sets) and flame structure. Tops up hole. CORE RECOVERY: 27.43 - 28.96 1.1/1.58 = 72%

-

• •

LE NUMBER	: CH90-115			DRILL HOLE RECORD		DATE: 27-July-1990
ROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		BEDDING: 2.80 - 10.70 55-60°CA 10.70 - 40.00 80° CA AVERAGE 40.00 - 50.50 50-55°CA 50.50 - 54.00 65-75°CA 54.00 - 63.20 60-65°CA				
		FAULT ZONES:				
		 7.10 - 7.62 Slickensided fractures at 35° CA 7.83 - 8.53 Slickensides 90° CA 10.67 - 11.28 Fractures about 0°CA 11.73 - 13.72 Fractures about 30° CA intersecting bedding at about 90° 13.65 1 cm gouge 14.40 - 14.85 Badly broken. Minor gouge. 15.50 - 16.05 Broken core. Fractures at 30° CA 15.85 - 16.00 Gougy 18.30 - 19.20 Broken core. Fractures 0 - 30°CA 21.40 Broken core. Fractures 0 - 30°CA 23.00 - 25.00 Broken core. Fractures 30-35° CA 24.94 - 24.97 3 cm gouge. 26.00 - 26.80 Badly broken. Fractures 10 - 30° 				
		 CA. 27.80 - 32.90 Broken, blocky core. Fractures 10 - 30° CA. Minor calcite stringers along fractures. 35.90 - 36.27 Broken core. 42.40 - 42.70 Broken core. Fractures about 25° CA, intersecting bedding at about 40°. 46.05 - 46.10 Gouge and pulverized rock. 90° CA 52.08 - 52.14 As above. Parallel bedding at 		Υ.		
		 75°CA. 53.70 - 54.00 Fracture zone. Fractures about 30° CA. < Imm calcite stringers. 56.40 - 57.00 Fracture zone and pulverized rock Fractures at 30° CA. 61.20 - 62.20 Weak fracture zone subparallel to CA to 30° CA. Fracture filled with vuggy quartz - calcite stringers. 				
		VEIN: 43.55 - 2 cm white calcite vein at 55° CA,				

HOLE NUMBER: CH90-115

FALCONBRIDGE LTD DRILL HOLE RECORD

*

DATE: 27-July-1990

÷.,

PAGE: 3

DLE NUMB	BER: CH90-115			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 27-July-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		parallel to bedding.				
63.20 TO 64.97	ARGILL- ACEOUS SEDIMENTS «5rop»	Thinly interbedded medium grey fine-grained siltstone and black cherty argillite. 63.20 - 63.95 Shattered and flooded with 10 - 20% white calcite stringers up to 2 mm wide. Fracture surfaces throughout unit coated with soft black powder. Carbonaceous (?).			63.20 - 64.97 1 - 2% pyrite as thin films on fracture surfaces.	Possibly the source for the Schlumberger IP anomaly. The unit is nonconductive except on pyrite films.
		STRUCTURE				
	-	BEDDING: 63.20 - 63.90 75° CA 63.90 - 64.97 40 - 45°CA				
		CALCITE STRINGERS Subparallel and at 70°CA.				
		SHEAR 63.86 - 3 mm gouge at 70°CA.				
64.97 TO 73.90	CHERTY SEDIMENTS «Srpk»	Medium grey to dark greenish-grey, fine-grained thinly bedded (<1 mm to 2 cm) cherty siltstone. 2 - 3% sporadic epidote as irregular rounded knots up to 1 cm, thin horizons and alteration haloes around hairline fractures.		Sporadic epidotization.	1 - 2% fine-grained crystalline disseminated and fracture coating pyrite. Pyrite commonly associated with epidote.	
		STRUCTURE				
		BEDDING: 50 - 60 CA				
73.90 TO 74.38	JASPER- BEARING CHERTY SEDIMENTS «Srpk, jasp»	Dark grey to dark red-brown fine-grained thinly interbedded cherty sediment and jasper. 1 - 2% epidote along fractures and replacing thin beds up to 2 mm thick.		Sporadic epidotization.	5% disseminated medium-grained magnetite. <1% disseminated pyrite	Strongly magnetic.
	· • • • • • • • • •	STRUCTURE				
		BEDDING: 60° CA				

....

1.4

.

IOLE NUM	BER: CH90-115			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 27-July-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
74.38 TO 74.88	RHODONITE «5, rhodon.»	Pale pink rhodonite and irregular patches of a light yellowish-brown fine-grained hard material (combined about 50%) cut by white calcite stringers and lastly fractured and flooded by grey chalcedonic quartz.			1 - 2% disseminated Chalcopyrite. 5% disseminated 1 - 2 mm blebs of MnO.	Sharp contacts parallel to bedding at 60° CA. Probably stratiform.
74.88 TO 75.29	JASPER BRECCIA «5,jasp.bx»	Bright red to dull purplish-grey fine-grained angular jasper fragments up to 2 cm in diameter in a matrix of medium grey very thinly banded chalcedonic quartz.			3 - 5% fine-grained magnetite along fractures. 1 - 2% fine-grained crystalline pyrite along fractures and disseminated. <1% fine-grained disseminated Chalcopyrite.	Unit is moderately magnetic.
75.29 TO 189.10	CHERTY SEDIMENTS «Srpk»	Predominantly dark grey with lesser amounts of medium brownish to greenish-grey fine-grained thinly (<1 mm - 10 cm) bedded cherty siltstone. Bedding is commonly slightly crenulated. These may be soft sediment features but many of the small-scale folds have well healed crosscutting hairline fractures. 75.29 - 80.90 Predominantly dark greenish-grey. 188.85 - 189.10 Light grey quartz vein or silicified zone adjacent to gabbro contact.		75.29 - 80.90 Sporadic weak epidotization.	 75.29 - 189.1 Ubiquitous sporadic pyrite as thin films on fracture surfaces. Less than 1% overall. 80.50 - 10% each of pyrite and red-brown fine-grained Sphalerite across 1 cm, associated with 5 mm diameter quartz - epidote knot. 92.66 - 92.75 2 - 5mm calcite stringer at 20° CA with 5% pyrite and traces of chalcopyrite. 100.40 - 100.50 2-3% fine-grained disseminated and fracture-related pyrite in a 10cm quartz-flooded zone. 101.93 - 101.95 5-8% fine-grained fracture-related pyrite in a narrow quartz-flooded zone. 135.61 - 1 mm mass of reddish-brown Sphalerite on hairline fractures. Associated with pyrite. 135.94 - Sporadic pyrite (About 15%) along 3 mm wide calcite flooded fracture at 15° CA. 137.60 - 1 cm wide quartz-flooded 165.40 - 1 cm quartz-flooded 	 85.40 - 2 sets of graded bedding. Tops up hole. 130.60 - Graded bed. Tops up hole. No conductive zones found in deep IP target area. 152.62 - Graded bed. Tops up hole. 172.00 - Two sets of graded bedding. Tops up hole. 186.30 - 186.40 2 sets of graded bedding. Tops up hole.

÷.,

*

OLE NUMB	ER: CH90-115			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 27-July-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		85.00 - 85.09 5 cm quartz 35° CA. 86.00 - 86.27 Barren white quartz (85%) and calcite (15%) vein at 42° CA. 81.50 - 81.90 Carbonate-quartz stringer zone 30° CA.		180.40 - 180.80 Silicified to a medium blue-grey.	fracture zone at 15° CA. 20% fine-grained crystalline pyrite. 180.51 - 1 cm wide zone of 1 mm pyrite stringers at 50° CA.	
		ZONES OF BROKEN CORE: 92.97 - 93.30 Fractures 50° and subparallel to CA. 98.10 - 98.60 Fractures subparallel to CA. Minor gouge. 135.94 - 138.69 Badly broken. 140.30 - 143.70 Fractures 30° to subparallel to CA. 143.50 - 143.70 5 cm wide breccia zone with 20% calcite cement. Barren. 149.00 - 150.30 Broken core. 156.40 - 157.60 Broken core 30° to subparallel to CA. 163.90 - 168.00 Broken core 15 - 30° to CA. Bedding to fracture angle about 65°. 146.48 - 146.58 Irregular white 3 - 5 cm quartz vein about 30° CA with 2 - 3% pyrite. 171.80 - 172.21 1 mm - 3 cm white calcite stringer at 10° CA.			183.32 - 2, 1 - 3 mm wide bedding parallel (90° to CA) band of fine-grained crystalline pyrite in a cherty grey host.	
189.10 TO 194.20	GABBRO «75b»	Dark green fine to medium-grained feldspar glomerophyric (phenocrysts up to 4 mm, average 1 - 2 mm) weakly to moderately foliated gabbro Sharp contacts at 30° and 25° CA. 189.10 - 190.35 Chill margin. 193.50 - 194.20 Chill margin. 192.10 - 194.20 5% prominent leucoxene suggesting possible reaction with sediments. STRUCTURE FOLIATION: 35 to core axis. STRINGERS: Irregular 1 mm - 1 cm white guartz-calcite				192.10 - 194.20 5% leucoxene suggesting possible reaction with host sediments.

• • • •

HOLE NUME	ER: CH90-115			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 27-July-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
194.20 то 199.95	CHERTY SEDIMENTS «5rpk»	As above gabbro. STRUCTURE				
		BEDDING: Average 70° to core axis. 199.95 E.O.H.				
199.95 TO 199.95	END OF HOLE	Lined with plastic pipe.				

• •

SAMPLE NUMBER	FROM	ŤO	BA (ppm)	CU (ppm)	ZN (ក្រុm)	AG (ppm)	AU (բրե)	СО (ррт)	N] (ppm)	PB (ppm)	А5 (ррт)	CD (ppm)	НN (µрт)	N N N N N N N N N N N N N N N N N N N	ers	ROICK
VB00001	62.00	63.20	2900.0	70.0	151.0	1.1	2.5	8.0	20.0	9.0	9.0	0.5	455.0	32.	1.	SWUB
VB00002	63.20	64.97	3300.0	117.0	189.0	ι.2	2.5	35.0	117.0	9.0	82.0	5.0	569.0	38.	2.	SAUBG
VB00003	64.97	66.37	2500.0	39.0	66.0	0.5	2.5	7.0	15.0	7.0	6.0	0.5	612.0	37.	1.	SIUB
VB00004	72.50	73.90	2000.0	5.0	59.0	0.3	8.0	12.0	21.0	5.0	5.0	0.5	1544.0	8.	ι.	SHUB
VB00005	73.90	74.38	950.0	34.0	104.0	0.7	2.5	25.0	70.0	5.0	7.0	0.5	4857.0	25.	1.	SOUB
VB00006	74.38	74.88	110.0	1600.0	85.0	27.8	250.0	14.0	101.0	15.0	48.0	0.5	32705.0	95.	2.	SHU
VB00007	74.88	75.29	70.0	407.0	33.0	2.7	52.0	5.0	48.0	4.0	6.0	0.5	4103.0	93.	2.	S0
VB00008	75.29	76.50	1700.0	46.0	121.0	0.4	8.0	5.0	101.0	3.0	2.5	0.5	2168.0	28.	1.	SHUB
VB00009	76.50	77.72	1800.0	38.0	118.0	0.7	2.5	6.0	78.0	3.0	6.0	0.5))96.0	21.	1.	SHUB
VB00010	77.72	79.15	1800.0	25.0	126.0	1.0	2.5	6.0	61.0	4.0	2.5	0.5	1186.0	.7.	1.	SHUB
VB00011	79.15	80.20	2100.0	32.0	314.0	1.3	2.5	7.0	64.0	6.0	2.5	0.5	1143.0	22.).	SHUB
VB00012	80.20	80.77	1800.0	40.0	326.0	1.1	14.0	8.0	69.0	6.0	2.5	0.5	1090.0	τι.	1.	SHUB
VB00013	80.77	82.22	950.0	79.0	53.0	1.3	30.0	6.0	37.0	4.0	2.5	0.5	694.0	60.	1.	SHUB
VB00014	84.89	86.40	1700.0	31.0	48.0	0.6	7.0	10.0	28.0	5.0	10.0	0.5	620.0	39.	ι.	SHUB
VB00015	92.42	92.97	3000.0	55.0	256.0	0.8	13.0	7.0	21.0	7.0	12.0	0.5	430.0	19.	1.	SHUB
VB00016	100.00	100.81	1800.0	42.0	58.0	0.5	13.0	5.0	9.0	10.0	2.5	0.5	370.0	42.	2.	SHUB
VB00017	100.81	101.64	2100.0	48.0	59.0	0.5	39.0	7.0	13.0	7.0	9.0	0.5	458.0	45.	0.	SKUB
VB00018	101.64	102.41	2700.0	29.0	55.0	0.6	12.0	7.0	13.0	6.0	6.0	0.5	406.0	35.	2.	SHUB
VB00019	134.95	136.44	3500.0	33.0	59.0	0.6	17.0	8.0	19.0	5.0	7.0	0.5	498.0	36.	1.	SHUB
VB00020	136.44	137.95	3600.0	35.0	46.0	0.6	35.0	6.0	16.0	2.0	2.5	0.5	191.0	43.	ι.	SHUB
VB00021	137.50	138.10	2300.0	46.0	45.0	0.7	14.0	8.0	16.0	4.0	10.0	0.5	575.0	5).	1.	SHUB
VB00022	138.10	139.63	3500.0	41.0	59.0	0.6	10.0	8.0	. 27.0	4.0	6.0	0.5	652.0	41.	1.	SHUB
VB00023	142.76	144.05	3800.0	40.0	80.0	0.5	134.0	10.0	17.0	27.0	2.5	0.5	1200.0	33.	l.	SHUB

.....

1

Sample Number	FROM	TO	BA (ppm)	CU (ppm)	ZN (ppm)	AG (ppm)	AU (թբե)	ԸՕ (թթո)	NJ (ppm)	թե (բրտ)	AS (prm)	CD (ppm)	HN (pրm)	CUZN	ETS	RUCK
VB00024	146.16	146.76	3800.0	40.0	81.0	0.4	7.0	9.0	18.0	5.0	2.5	0.5	1300.0	33.	1.	SHUB
VB00025	165.40		1600.0	41.0	39.0	0.4	58.0	9.0	10.0	15.0	6.0		400.0	51.		SHUB
VB00026	179.25	180.36	2800.0	47.0	57.0	0.4	2.5	8.0	13.0	5.0	2.5	0.5	600.0	45.	1.	SHUB
VB00027	180.36	180.87	1300.0	64.0	64.0	0.5	34.0	7.0	16.0	10.0	9.0	0.5	500.0	50.	1.	SHUB
VB00028	180.87	182.15	2800.0	31.0	64.0	0.3	2.5	8.0	12.0	10.0	2.5	0.5	500.0	33.	1.	SHUB
VB00029	182.15	183.00	2400.0	24.0	46.0	0.2	12.0	6.0	8.0	9.0	2.5	0.5	400.0	34.	ι.	SHUR
VB00030	183.00	183.56	2500.0	71.0	85.0	0.4	9.0	10.0	25.0	10.0	5.0	0.5	500.0	46.	1.	SHUB
VB00031	183.56	184.84	1600.0	34.0	60.0	0.3	25.0	7.0	9.0	11.0	2.5	0.5	500.0	36.	1.	SHUB

.

. ب ł

. . .

Sample Number	FROM	1:0	% \$102		ZCAO	2KGO	%NA20	ZK20	%FE203	27102	ZP205	ZKNO	ZJ.O I	ទបអ	AI	NACA	ALUH
VB02501	4.00	7.00	75.41	10.81	0.82	1.91	1.04	2.70	3.97	0.35	0.10	0.12	2.23	99.46	71.	2.	237.
VB02502	36.00	39.00	80.80	8.39	0.75	1.63	0.88	1.74	3.04	0.30	0.07	0.08	1.67	99.35	67.	2.	249.
VB02503	67.50	70.00	80.31	6.75	2.59	1.53	0.65	1.15	3.86	0.30	0.12	0.)5	2.31	99.72	45.	з.	154.
VB02504	96.32	98.60	77.19	9.85	ι.59	2.18	1.53	1.31	3.68	0.13	0.11	0.08	2.23	100.18	53.	3.	222.
VB02505	185.63	188.52	77.79	9.06	1.64	1.64	2.23	1.16	3.65	0.35	0.12	0.07	1.90	99.6)	42.	4.	180.

1

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MAJOR ELEMENTS)

SAMPLE NUMBER	FROM	ĩo	RB (ppm)	SR (ppm)	BA (ppm)	Y (ppm)	2.R (ppm)	NB (ppm)	CU (ppm)	2.N (ppm.)	N] (µpm)	 ROCK	ALT	MIIN
VB02501	4.00	7.00	69.0	145.0	3156.0	20.0	101.0	20.0	34.0	42.0	20.0	SHUR		DRP
VB02502	36.00	39.00	44.0	120.0	2522.0	20.0	85.0	20.0	194.0	56.0	20.0	SHUB		DBP
VB02503	67.50	70.00	31.0	177.0	2098.0	20.0	49.0	20.0	27.0	49.0	20.0	SHUR		DBP
VB02504	96.32	98.60	37.0	162.0	2149.0	25.0	83.0	20.0	37.0	61.0	20.0	SILUB		DBP
VB02505	185.63	188.52	35.0	182.0	3252.0	21.0	94.0	20.0	23.0	59.0	20.0	SHUB		DBP

1

DIAMOND DRILL CORE LITHOGEOCHEMICAL RECORD (MINOR ELEMENTS)

HOLE NUMBER: CH90-131		ONBRIDGE LTD HOLE RECORD	DATE: 8-December-1990 IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: CHEMAINUS PROJECT	PLOTTING COORDS GRID: Chip	ALTERNATE COORDS GRID:	COLLAR DIP: -71°30' O"
PROJECT NUMBER: 116	NORTH: 203.00S	NORTH: 0+ 0	LENGTH OF THE HOLE: 380.09m
CLAIM NUMBER: CHIP 1	EAST: 2700.00E	EAST: 0+ 0	START DEPTH: 0.00m
LOCATION: Anita	ELEV: 470.00	ELEV: 0.00	FINAL DEPTH: 380.09m
	COLLAR ASTRONOMIC AZIMUTH: 209° 0' 0"	GRID ASTRONOMIC AZIMUTH: 30° 0' 0"	
DATE STARTED: November 6, 1990	COLLAR SURVEY: YES	PULSE EM SURVEY: YES	CONTRACTOR: Burwash Contract Drilling
DATE COMPLETED: November 10, 1990	MULTISHOT SURVEY: YES	Plugged: No	CASING: 6.1m NW
DATE LOGGED: November 12, 1990	ROD LOG: NO	Hole Size: Nq	CORE STORAGE: Chemainus

.

PURPOSE: To test the Anita horizon and to provide deep access for a PEM survey.

.

,

DIRECTIONAL DATA: UTM Coordinates: 5,416,920N 429,962E

Depth (m)	Astronomic Azimuth	Dip degrees		FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
0.00	0° 0'	0. 01	SING.SHOT				-				· · · · · · · · · · · · · · · · · · ·
154.53	0. 0.	0. 01	SING.SHOT		Blank	-			-	-	
172.21	214°30'	-66° 0'	SING.SHOT	OK		-	-	-	-		
227.08	216°30'	-65° 0'	SING.SHOT			- 1	-	-	-	-	
380.09	219°30'	-61° 0'	SING.SHOT			-	-	-	-	-	
•	-	-	-	•			-	-	-	-	
-	-	-	•	•		-	-	-	-	•	
•	•	-	-	•		-	-	-	-	•	
-	-	-	-	•		-	•	-	•	-	
•	-	-	-	•		-	•	-	-	•	
•	-	•	-	•		-	•	-	-	•	
-	-	-	-	•		- 1	•	-	-	-	
•	•	•	-	-		-	-	-	-	-	
•	•	•	-	-		- 1	-	-	-	-	
•	•	-	-	•		- 1	•	-	-	•	
-	-	-	-	•		-	•	-	-	-	
-	•	-	-	-		- 1	•	-	-	-	
-	-	•	•	-		-	-	-	-	-	
•	-	-	•	-		-	-	-	-	•	
•	•	-	•	•		-	-	-	-	-	
	-	-	-	•		-	•	-	-	•	
	-	-	-	-		-	•	-	-	•	
-		-		•		-	-	-	-	•	
		-	-				•	-	-	-	
-			-						-	•	
:	:	-	-	•		-	-		-	-	

DLE NUME	BER: CH90-131			DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
0.00 TO 6.10	CASING «Iodi»					
6.10 TO 8.71	FELSIC TUFF TO LAPILLI TUFF «4a,4b»	Mottled medium to light blue-grey fine-grained sericite schist with vague lithic fragments (?) up to 1 cm x 2 cm flattened parallel to foliation. STRUCTURE: FOLIATION: 25 - 35° CA.			3-4% fine-grained disseminated pyrite. Sporadic distribution.	
8.71 TO 11.90	MAFIC DYKE «7r»	Medium greenish-grey to pinkish-grey very fine- grained aphanitic homogeneous massive to banded mafic (intermediate?) dyke. Upper contact: Sharp at 50° CA. Lower contact: Sharp at 65° CA. Quartz-calcite stringer along contact. STRUCTURE: <1 mm to 1 cm colour banding and stringers 25 - 45° CA.			5 - 6% fine-grained pyrite, disseminated and in bands/stringers up to 1 cm wide. Traces pyrrhotite and CHALCOPYRITE.	
11.90 TO 49.00	FELSIC TUFF «4a»	Mottled medium to light bluish-grey fine-grained sericite schist. 23.20 - 23.35 - Mafic dyke parallel to foliation. 35.0 - 35.66 - Lapilli tuff. 38.0 - 49.0 - Alteration zone. Sporadically sili- ceous weak stringer zone, with quartz-carbonate stringers and veins up to 10 cm wide in a stockwork. Foliation less pronounced. Vague feldspar phenocrysts up to 2 mm. Stringers crosscut and parallel foliation. STRUCTURE: FOLIATION: 35 - 40° CA.		16.4 - 17.4 - Weak to moderate sporadic silicification. 38.0 - 49.0 - Weak sporadic silicification.	 11.9 - 38.0 - 3-8% (average 5%) fine- grained sporadically distributed pyrite; disseminated and concentrated in discontinuous foliation - parallel bands and lenses up to 3 mm wide. 15.6 - 16.15 - 8-10% pyrite. 25.60 - 25.70 - 30-40% fine to medium- grained pyrite in a calcareous groundmass. 27.73 - 27.90 - 40-50% fine to medium- grained pyrite. 38.0 - 49.0 - Sporadic 2-4% pyrite. 	Sulphide content drops in silicified zones.

HOLE NUMBER: CH90-131

.

.

4

FALCONBRIDGE LTD DRILL HOLE RECORD

.

DATE: 8-December-1990

HOLE NUMBER: CH90-131

FALCONBRIDGE LTD DRILL HOLE RECORD

DATE: 8-December-1990

JLE NUME	BER: CH90-131			DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
49.00 TO 53.40	FELDSPAR PHYRIC FELSIC LAPILLI TUFF «4bb»	Mottled medium to light blue-grey fine-grained sericite schist with up to 30% slightly darker than groundmass flattened lithic fragments up to 1 cm x 5 mm, and clusters of feldspar phenocrysts up to 2 cm in diameter which probably define lithic fragments. Contacts gradational. STRUCTURE: FOLIATION: 35 - 45° CA.		50.9 - 53.4 - Weak to moderate sporadic silicification.	3-5% fine-grained disseminated pyrite with local concentrations along 1-2 cm bands parallel to foliation.	
53.40 TO 70.34	FELSIC TUFF «4a»	Interbanded (generally 1-5 cm) light and medium to dark grey very fine-grained ash tuff. The darker bands or beds are hard and could be cherty in nature. They are commonly discontinuous and appear to be breaking up in the lighter sericitic groundmass. 56.3 - 56.5 - Fine-grained pinkish-grey intermediate dyke parallel to foliation. 60.27 - 60.4 - Dyke as 56.3 - 56.5 - 7-8% fine- grained pyrite. 63.2 - 63.9 - Very soft dark grey to light blue- green soapy sericitic ash tuff. SIRUCTURE: FOLIATION: 53.4 - 58.0 - 45° CA. 58.0 - 63.0 - 50 - 60° CA. 63.0 - 66.0 - 35 - 40° CA. 66.0 - 70.34 - 45° CA. FAULT: 63.0 - 2 cm gouge/crush zone.			 1-4% very fine-grained disseminated pyrite with local concentrations up to 7-8%. 54.27 - 54.56 - 5-7% fine-grained disseminated pyrite. 58.57 - 59.50 - 5-7% fine-grained pyrite concentrated along 1 mm - 1 cm bands parallel to foliation. 59.50 - 63.0 - 3-4% pyrite as above. 63.0 - 64.4 - 5-8% fine-grained disseminated pyrite. 64.4 - 70.34 - 3-5% fine-grained disseminated pyrite. 	
70.34 TO 74.70	ANITA SULPHIDE ZONE «4a, Sulphide Zone»	Blue-grey fine-grained sericite schist (felsic tuff) with 50% beds of massive fine to medium- grained pyrite up to 50 cm thick. Upper contact appears to be conformable. Lower contact along a chloritic shear parallel to foliation. STRUCTURE: BEDDING/BANDING AND FOLIATION: 50° CA.			72.50 - 72.80 - 20% fine-grained pyrite in bands up to 2 cm thick with 5% CHALCOPYRITE in irregular masses up to 1 cm wide. 72.96 - 73.97 - Core of zone. 70% fine-grained massive pyrite. Traces CHALCOPYRITE.	

HOLE NUM	BER: CH90-131			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		FAULT: 70.86 - 71.40 - Broken core, gouge, sheared 80° CA. Chunks of massive pyrite in zone.			73.97 - 74.70 - 30% fine-grained massive pyrite in beds/bands up to 15 cm thick. Traces CHALCOPYRITE.	
74.70 TO 87.13	FELSIC TUFF «4a»	Medium to light blue-grey fine-grained sericite schist. STRUCTURE: FOLIATION: 35 - 45° CA.			74.70 - 83.3 - 3-5% fine-grained pyrite; disseminated and concentrated in discontinuous foliation - parallel bands up to 1 cm wide. Traces to 1% CHALCOPYRITE in masses up to 5 mm wide. 83.3 - 84.7 - 3-4% each of pyrite and pyrrhotite and 1-2% CHALCOPYRITE disseminated and in bands and irregular masses up to 1 cm in diameter in a felsic host. Possible SPHALERITE (?). 84.7 - 87.13 - as 74.7 - 83.3. Traces pyrrhotite.	
87.13 TO 111.22	MAFIC TUFF «2a»	Medium to dark green fine-grained massive to thinly bedded sandy to ash tuff with rare 1-2 mm lithtic fragments. Poorly foliated, homogeneous. Upper contact abrupt, conformable. Rock is cut by abundant hairline stringers and fractures at all angles to core axis with associated bleaching of host to lighter greenish- grey. 109.25 - 111.22 - Greenish to brownish-grey thinly bedded feldspar phyric mafic tuff. STRUCTURE: BEDDING: 40° CA. FAULTS: 101.0 - 101.2 - Broken core. Sheared 40° CA. 106.4 - 107.29 - Broken core. Sheared 20° CA.			101.75 - 101.95 - Light greenish-grey fine-grained feldspar phyric zone (fragment?) with 5% fracture-related pyrrhotite. 107.29 - 107.4 - 2 cm wide quartz- flooded zone adjacent fault. 30% pyrite.	

HOLE NUM	BER: CH90-131			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
111.22 TO 113.60	FELDSPAR PHYRIC MAFIC TUFF «2ab»	Medium to dark greenish-grey fine-grained massive groundmass with 20% 1-3 mm subhedral light greenish-grey stubby feldspar crystal fragments and rare feldspar phyric lithic fragments up to 5 mm in diameter. Massive, homogeneous.				
113.60 TO 113.87	MAFIC TUFFACEOUS SEDIMENT «2qk»	Medium greenish-grey thinly bedded fine-grained sediment. STRUCTURE: BEDDING: 45° CA.				
113.87 TO 116.41	FELDSPAR PHYRIC MAFIC TUFF «2ab»	Medium greenish-grey massive homogeneous sandy tuff with 20% <1 mm stubby dark green feldspar crystals (mafics?)				
116.41 TO 118.08	MAFIC TUFFACEOUS SEDIMENT «2qb»	Dark brownish-grey fine-grained massive homogeneous sandy tuff with 5% stubby feldspar crystals up to 1 mm.			118.88 - 118.95 - 8% fracture-related pyrite. Traces CHALCOPYRITE.	
118.08 TO 152.08	FELDSPAR (+MAFIC?) PHYRIC MAFIC CRYSTAL TUFF «2ab»	Medium bluish to greenish-grey fine-grained groundmass with 30 - 40% 1-2 mm stubby subhedral to rounded dark green feldspar crystals and chloritic pseudomorphs after feldspar or mafic crystals. Massive. Homogeneous. Rare lithic fragments up to 5 mm. The rock is cut by hairline fractures at all angles to core axis with associated light green alteration.				
		149.93 - 150.35 - Medium greenish-grey fine- grained massive to thinly bedded tuffaceous sediment.				The rock is very fresh in appearance and may not be part of the McLaughlin Ridge Formation.
		150.35 - 152.08 - Coarse-grained sandy feldspar phyric crystal mafic massive tuff with 5% fine- grained lithic fragments up to 1.5 cm x 5 mm.				•
		STRUCTURE: 137.40 - 137.86 - Quartz vein zone at 40° CA in a chloritized host.				

FALCONBRIDGE LTD

.

HOLE NUMBER:	CH90-131	
--------------	----------	--

FALCONBRIDGE LTD DRILL HOLE RECORD

DATE: 8-December-1990

				DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		FOLIATION: Weak. 45° CA. 149.93 - 150.35 - Bedding: 35° CA.				
152.08 TO 160.52	SILTSTONE, CHERTY SILTSTONE (TUFFACEOUS SEDIMENT?) «5jkp(2q?)»	Medium to dark greenish to brownish-grey thinly bedded (<1 mm - 20 cm) siltstone (tuffaceous?) and cherty siltstone. Very fresh in appearance. Fourth Lake Formation? STRUCTURE: BEDDING: 40° CA.				
160.52 TO 162.50	FELDSPAR PHYRIC MAFIC TUFF(?) (INTRUSIVE ?) «2ab»	Medium to dark greenish-grey fine-grained equigranular groundmass of feldspar and chlorite (?) with 5% =1 mm stubby feldspar crystals.<br Massive. Homogeneous. Conformable.			3-4% fine-grained disseminated pyrite.	
162.50 TO 170.24	FELDSPAR PHYRIC MAFIC CRYSTAL TUFF TO LAPILLI TUFF «2ab,2bb»	Medium greenish-grey fine-grained groundmass hosting 30% <1 - 3 mm feldspar crystal fragments and 5-10% indistinct feldspar lithic fragments up to 2 cm in diameter.		Spotty epidotic alteration.		
170.24 TO 171.55	SILTSTONE, CHERTY SILTSTONE/ TUFFACEOUS SEDIMENT «5 jp, 2q»	Interbedded brownish thinly bedded cherty siltstone and fine-grained sandy greenish-grey massive tuffaceous sediment. STRUCTURE: BEDDING: 40° CA.				
171.55 TO 203.07	FELDSPAR PHYRIC MAFIC CRYSTAL TUFF «2ab»	Medium greenish-grey fine-grained groundmass hosting 20% =1 mm feldspar crystal fragments.<br Massive. Homogeneous. 171.55 - 182.4 - 5-10% quartz stringers up to 5 cm wide at 60° CA.				-

HOLE NUM	BER: CH90-131			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
203.07 TO 207.45	FELDSPAR PHYRIC MAFIC LAPILLI TUFF «2bb»	Medium brownish to greenish coarse-grained sandy feldspar phyric (25% 1-2 mm) lapilli tuff with aphanitic and feldspar phyric lithic fragments up to 2 cm x 1 cm. Massive. Homogeneous. Fresh in appearance. 203.5 - 203.73 - Fine-grained bed. Some lithic fragments are amygdaloidal. STRUCTURE: BEDDING: 203.5 - 203.73 - 40° CA.				This unit is similar to volcanic units drilled on the north part of the holyoak grid.
207.45 TO 210.10	MAFIC TUFF, TUFFACEOUS SEDIMENT «2a,2q»	Interbedded greenish-grey medium-grained feldspar phyric sandy, massive crystal tuff and dark grey thinly bedded siltstone or tuffaceous sediment.				
210.10 TO 210.80	FELDSPAR PHYRIC MAFIC TUFF «2ab»	Dark grey fine-grained groundmass hosting 15-20% white stubby 1-2 mm diameter subhedral feldspar crystals. Siliceous groundmass.				
210.80 TO 211.60	CHERT «5mk»	Medium bluish to brownish-grey thinly bedded to massive chert. Fractured and flooded by quartz- carbonate stringers. STRUCTURE: BEDDING: 40° CA.				
211.60 TO 211.95	MAFIC TUFF «2a»					
211.95 TO 216.85	AMYG- DALOIDAL MAFIC FLOW «2df»	Medium greenish-grey fine-grained massive flow with 15% calcite amygdules up to 1.5 cm x 5 mm (average 2-5 mm). Broken core along both contacts. Appears to be conformable. Fresh appearance.				

HOLE NUMBER: CH90-131

DATE	8-December-1990	

1917 - 19

HOLE NUM	BER: CH90-131			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 8-December-1990
FROM	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
216.85 TO 238.15	INTERBEDDED SILTSTONE AND SANDSTONE/ TUFFACEOUS SEDIMENT «5jk,2q»	Medium brownish-grey fine-grained sandy tuff and siltstone. Thinly bedded to massive. Massive parts up to 1 m wide. Poorly foliated. STRUCTURE: BEDDING: 35 - 40° CA. SHEAR ZONE: 221.7 - 222.10 - Broken core. Sheared 10° CA.				
238.15 TO 247.00	MAFIC TUFF «Zak»	Medium greenish-grey fine-grained massive to thinly bedded sandy mafic tuff. Differentiation from unit above based largely on colour. STRUCTURE: BEDDING: 55 - 60° CA.				
247.00 TO 248.53	SILTSTONE «5jk»	Thinly bedded light to dark brown siltstone. Gradational contact with unit above. STRUCTURE: BEDDING: 45° CA.				
248.53 TO 252.37	MAFIC TUFF «2ab»	Medium to dark greenish-grey fine to medium- grained sandy feldspar crystal tuff. Massive. 249.9 - 250.1 - Thinly bedded cherty tuff. STRUCTURE: BEDDING: 249.9 - 250.1 - 40 - 45° CA.				
252.37 TO 255.12	FELDSPAR PHYRIC MAFIC DYKE «7rb»	Medium to dark green fine-grained massive crystalline aggregate of feldspar and chloritized mafics hosting 5% =2 mm stubby white feldspar<br phenocrysts commonly in clusters up to 5 mm in diameter. Typical fine-grained Karmutsen intrusive.				
255.12 TO 256.20	INTER- CALATED MAFIC TUFF AND FELDSPAR	Mafic dykes as above with intervals of fine- grained chloritic mafic tuff (?). Tuff intervals: 255.12 - 255.40 255.67 - 255.76 255.84 - 256.2				

HOLE NUM	BER: CH90-131			FALCONBRIDGE LTD DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
	PHYRIC MAFIC DYKES «2a,7rb»	STRUCTURE: Contacts sharp 30 - 70° CA.				
256.20 TO 259.00	FELDSPAR PHYRIC MAFIC DYKE «7rb»	As 252.37 - 255.12. Slightly coarser-grained. 257.42 - 257.84 - Fine-grained chloritic foliated mafic tuff.				
259.00 TO 260.65	MAFIC TUFF? «2a?»	Dark green fine-grained chloritic massive mafic tuff with irregular epidotization in thin stringers and brecciated intervals.		Irregular epidotization.		
260.65 TO 263.80	FELDSPAR PHYRIC MAFIC DYKE «7rb»					
263.80 TO 269.55	FAULT ZONE «FZ, 2a»	 263.8 - 264.15 - Mafic chloritic tuff. Broken core. Sheared subparallel CA. 264.15 - 268.0 - Broken core. Appears to be drilling along contact between mafic dyke and tuff. Sheared subparallel to core axis. 268.0 - 268.6 - Light greenish-grey massive fractured cherty tuff in contact with dark greenish-grey fine-grained mafic dyke or tuff. Contact subparallel to core axis. 268.6 - 269.55 - Sheared gougy dark greenish-grey mafic dyke or tuff. STRUCTURE: Sheared subparallel CA. 				
269.55 TO 286.00	LITHIC- FELDSPAR PHYRIC MAFIC CRYSTAL TUFF «Zabrs»	Medium greenish-grey medium to coarse-grained sandy tuff with 30% =2 mm dark green chloritic<br pseudomorphs after feldspar (mafics?, lithics?) and rounded lithic fragments up to 4 mm. Massive. Homogeneous. Cut by hairline calcite stringers and fractures at all angles to core axis with associated light green alteration.				-

HOLE NUM	BER: CH90-131			DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		STRUCTURE: 273.25 - 275.0 - Broken core. Fractured subparallel to core axis.				
		279.2 - 280.0 - As above. 285.0 - 286.0 - As above.				
286.00 TO 294.75	FELDSPAR PHYRIC MAFIC TUFF TO LAPILLI TUFF «2ab,2bb»	Tuff as 269.55 - 286.0 with up to 20% rounded feldspar phyric lithic fragments up to 1 cm in diameter. Massive. Upper contact: Shear at 20° CA. Lower contact: Sharp. 55° CA.				
294.75 TO 300.50	CHERTY	Dark brown to medium greenish-grey thinly bedded siltstone and cherty siltstone interbedded with mafic tuffaceous sediment in massive beds up to 30 cm thick. STRUCTURE: BEDDING: 45 - 50° CA. 294.75 - 295.0 - Sheared parallet to bedding.				
		Broken core.				
300.50 TO 304.35	LITHIC- FELDSPAR PHYRIC MAFIC CRYSTAL TUFF «2abs»	Medium greenish-grey coarse-grained massive crystal tuff with 20 - 25% =2 mm feldspar<br crystal fragments and flattened lithic fragments up to 1 cm x 2 cm. STRUCTURE: FOLIATION: Weakly foliated 45° CA.				
304.35 TO 308.74	CHERTY	As 294.75 - 300.50. Conformable contacts. STRUCTURE: Bedded: 40° CA.				-

HOLE NUMBER: CH90-131

FALCONBRIDGE LTD DRILL HOLE RECORD

. . . .

DATE: 8-December-1990

HOLE NUM	BER: CH90-131			DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
308.74 TO 310.84	FELDSPAR PHYRIC MAFIC TUFF «2ab»	Medium greenish-grey fine to medium-grained massive sandy feldspar crystal tuff.				
310.84 TO 312.30	CHERTY FELDSPAR PHYRIC TUFFACEOUS SEDIMENT «2qbp»	Medium greenish-grey to brown cherty equivalent of unit above. Poorly bedded. STRUCTURE: Bedding: 40° CA.				
312.30 TO 324.72	LITHIC- FELDSPAR PHYRIC MAFIC CRYSTAL TUFF TO LAPILLI TUFF «2abs,2bbs»	Medium greenish-grey fine-grained massive groundmass hosting 25% =3 mm subhedral feldspar<br crystal fragments and rounded feldspar phyric to aphanitic lithic fragments averaging <3 mm but ranging up to 1 cm in diameter. Homogeneous. Massive. Fresh appearance.				
324.72 TO 325.15	MAFIC TUFFACEOUS SEDIMENT «2qk»	Medium greenish-grey fine-grained silty to cherty thinly bedded tuffaceous sediment. STRUCTURE: BEDDING: 45° CA.				
325.15 TO 346.64	LITHIC- FELDSPAR PHYRIC MAFIC CRYSTAL TUFF «Zabrs»	Medium greenish-grey fine to medium-grained massive, homogeneous sandy feldspar crystal tuff with rounded lithic fragments up to 4 mm in diameter. Fresh in appearance. 339.55 - 339.95 - Cherty tuff. 341.95 - 342.65 - Medium greenish-grey thinly bedded silty tuffaceous sediment. 344.06 - 344.58 - Thinly bedded to massive cherty tuff. 344.58 - 344.70 - Amygdaloidal fragment (?). STRUCTURE: 341.95 - 342.65 - Bedded 25° CA.		Pervasive weak epidotic alteration.		

FALCONBRIDGE LTD

ē

1990 - N. 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19

HOLE NUM	BER: CH90-131			DRILL HOLE RECORD		DATE: 8-December-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
346.64 TO 352.30	MAFIC FLOW «2df»	Medium greenish-grey fine-grained aphanitic massive +/- mafic phyric (chloritic pseudomorphs) volcanic flow with sporadic calcite and epidote amygdules up to 5 mm.				
352.30 TO 354.72	MAFIC TUFFACEOUS SEDIMENT «Žqk»	Dark brownish-grey thinly bedded to massive fine- grained sandy tuff. STRUCTURE: Bedded: 40 - 45° CA.				
354.72 TO 358.85	MAFIC FLOW «2df»	Medium to dark greenish-grey fine-grained massive flow with flattened calcite amygdules up to 5 mm x 1 cm. Sharp conformable contacts. STRUCTURE: FOLIATION/ Flattened amygdules 55° CA.				
358.85 TO 380.09	MAFIC TUFFACEOUS SEDIMENT «2qk» E.O.H.	Dark greenish-grey to brownish-grey fine-grained massive to thinly bedded weakly foliated tuffaceous sediment. STRUCTURE: FOLIATION/BEDDING: 45 - 50° CA. 380.09 E.O.H.				

FALCONBRIDGE LTD

---- - -.

Sample Number	FROM	20	អ្នក (កំព័យ)	CU (ppm)	2.N (ppm)	AG (opma)	AU (ypti)	CO (ppm)	(<u>в</u> рм)	PR (<u>o</u> om)	AS (ppm)	C)i (ppm)	(ค้กษ) พพ	CUZN	ers	ROCK
VB0093)	6.10	7.45	1700.0	56.0)11 .0	0.1	67.0	7.0	3.0)5.0	9.0	0.5)38.0	34.	4.	TFA-
VB00932	7.45	8.77	2000.0	17.0	24.0	0.1	10.0	6.0	1.0	18.0	2.5	0.5	121.0	41.	4.	TFA-
VB00933	8.77)0.22	760.0	272.0	81.0	0.7	2.0	32.0	10.0)).0	35.0	0.5	696.0	77.	5.	РМА
VB00934	10.22	11.90	480.0	278.0	89.0	0.9	6.0	32.0	8.0	11.0	10.0	0.5	789.0	76.	5.	PMA
VB00935	11.90	13.28	2200.0)1 2.0	385.0	0.3)6.0	8.0	0.5	61.0	2.5	0.5	164.0	23.	5.	TFA
VB00936	13.28	14.74	1700.0	148.0	433.0	0.6	25.0	9.0	0.5	75.0	2.5	0.5	50.0	25.	5.	TFA
VR00937	14.74	15.64)800.0	45.0	35.0	0.9	12.0	0.0	0.5	51.0	6.0	0.5	102.0	56.	5.	TFA
VB00938	15.64	16.15	1700.0	163.0	33.0	1.0	31.0	12.0	0.5	72.0	9.0	0.5	50.0	83.	8.	TFA
VR00939)6.15	17.60)700.0	5).0)7.0	0.2	8.0	7.0	0.5	.7.0	2.5	0.5	50.0	75.	1.	TFA
VB00940	17.60	18.97	2200.0	55.0	20.0	0.3	14.0	8.0	5.0	48.0	i4.0	0.5	50.0	73.	5.	TFA •
VB00941	18.97	20.30	2200.0	25.0	0.0	2.))2.0) 0.0	0.5	67.0	7.0	0.5	50.0	61.	5.	TFA
VB00942	20.30	21.75	1800.0	21.0	11.0	0.4	6.0	9.0	0.5	32.0	5.0	0.5	50.0	66.	5.	IFA
VR00943	21.75	22.74	1900.0	33.0	20.0	0.5	2.5	9.0	0.5	24.0	6.0	0.5	50.0	62.	5.	TFA
VB00944	22.74	26.06	1300.0	36.0	37.0	0.7	6.0	12.0	3.0	16.0	8.0	0.5	215.0	49.	5.	TFA
VB00945	24.06	25.60	2500.0	43.0	24.0	0.3	22.0	11.0	0.5	27.0)4.0	0.5	50.0	64.	5.	TEA
VB00946	25.60	25.70	1000.0	209.0	54.0	2.0	104.0	24.0	0.5	392.0	167.0	0.5	110.0	79.	35.	TFA
VB00947	25.70	26.82	2400.0	17.0	23.0	0.2)2.0	8.0	0.5	43.0	2.5	0.5	50.0	43.	4.	TFA
VB00948	26.82	27.73	2600.0	24.0	29.0	0.6	15.0	9.0	0.5	130.0	6.0	0.5	30.0	45.	4.	TFA
V800949	27.73	27.90	800.0	453.0	130.0).0	284.0	58.0	0.5	256.0	243.0	0.5	127.0	78.	45.	TFA
VB00930	27.90	29.06	2500.0	184.0	201.0	0.7	38.0	7.0	0.5	81.0	29.0	0.5	50.0	48.	5.	TFA
VR00953	29.06	30.46	3100.0	65.0	27.0	0.8	54.0	10.0	0.5	60.0)9.0	0.5	50.0	71.	6.	TFA
VB00952	30.46	31.50	3300.0	48.0	175.0	0.6	56.0	6.0	0.5	102.0	29.0	0.5	50.0	22.	5.	TFA
VB00953	31.50	32.87	3900.0	35.0	24.0	0.3	20.0	6.0	0.5	16.0	5.0	0.5	50.0	59.	3.	TFA

.

Sample NLMBER	FROM	ro	BA (opm)	CU (ppm)	ZN (ppm)	AG (ورس)	AU (opti)	(:0 (ppm)	N1 (p <u>o</u> m)	[.b (ūhw)	AS (pom)	CJI (ppm)	(ยุกุฑ) (พุท	CUZN	el:s	ROCK
VR00954	32.87	34.15	1400.0)5.0)5.0	0.3	2)1.0	R.0	0.5	12.0	2.5	0.5	50.0	50.	5.	IFA
VB00955	34.15	35.66	(200.0	11 7.0	11.0	0.5	23.0	7.0	0.5	18.0	12.0	0.5	50.0	91.	5.	TFA
VB00956	35.66	36.60	1200.0	255.0	37.0	0.9	36.0	14.0	0.5	11.0	13.0	0.5	124.0	94.	6.	IFA
VB00957	36.60	37.92	1900.0	122.0	17.0	0.3	45.0	11.0	0.5	5.0	13.0	0.5	50.0	88.	5.	IFA
VB00958	37.92	39.62	930.0	130.0)8.0	0.6	28.0	13.0	ĩ.0	7.0)4.0	0.5	150.0	88.	5.	TFA
VB00959	39.62	41.13	720.0	52.0	15.0	0.5	12.0	8.0	0.5	9.0	9.0	0.5	143.0	78.	5.	IFA
VB00960	41.13	42.37	1100.0	30.0)3.0	0.3	2.5	8.0	0.5	6.0	2.5	0.5	203.0	70.	5.	TFA
VB00961	12.37	43.78	1200.0	342.0	13.0	0.8	10.0	10.0	0.5	5.0	2.5	0.5	142.0	96.	4.	TFA
VB00962	54.27	54.56	3800.0	83.0	34.0	0.7	23.0	22.0	11.0)4.0	23.0	0.5	50.0	86.	8.	TEA
VB00963	54.56	55.45	2300.0	51.0	8.0	0.2	21.0	8.0	0.5	3.0	2.5	0.5	50.0	86.	4.	TFA •
VB00964	55.45	56.53	1600.0)) 2.0	24.0	0.4	21.0	20.0	19.0	24.0	12.0	0.5	170.0	82.	5.	TFA
VB00963	56.53	57.91	1800.0	129.0	24.0	0.3	12.0	14.0	6.0	7.0	2.5	0.5	.48.0	84.	з.	IFA
VB00966	57.91	58.57	900.0	115.0	3.0	0.5	0.0	12.0	4.0	3.0	2.5	0.5	50.0	97.	3.	TFA
VB00967	58.57	59.30	1900.0	100.0	6.0	0.4	12.0	12.0	2.0	5.0	2.5	0.5	50.0	94.	5.	IFA
VB00968	59.50	60.13	2700.0	37.0	34.0	0.2	12.0)0.0	4.0	3.0	2.5	0.5	50.0	73.	2.	TFA
VB00969	60.ll	60.60	2000.0	128.0	54.0	1.1	39.0	28.0	23.0	11.0	18.0	0.5	264.0	70.	5.	TFA
VB00970	60.60	62.03	2300.0	56.0	4.0	0.5	19.0	15.0	8.0	1.0	9.0	0.5	50.0	93.	5.	IFA
VB00971	62.03	63.00	1900.0	73.0	1.0	0.1	23.0	18.0	7.0	2.0	10.0	0.5	50.0	99.	5.	TFA
VB00972	63.00	63.88	4)00.0	234.0	5.0	0.6	94.0	21.0	8.0).0	18.0	0.5	50.0	98.	7.	TFA
VB00973	63.88	64.40	4200.0	155.0	10.0	0.6	176.0	18.0	7.0	3.0	23.0	0.5	50.0	94.	7.	IFA
VB00974	64.40	65.25	3300.0	72.0	5.0	0.4	124.0	14.0	6.0	1.0)5.0	0.5	50.0	94.	4.	TFA
VB00975	65.25	65.85	2500.0	51.0	0.5	0.1	18.0	14.0	5.0	1.0	5.0	0.5	50.0	99.	з.	TFA
VR00976	65.85	66.35	3100.0	199.0	8.0	0.8	38.0	32.0)7.0	J .0	26.0	0.5	50.0	96.	6.	TEA

Sample Number	FROM	ro	BA (ppm)	CU (pom)	2.N (ppm)	AG (ppm)	AU (ppb)	CO (ppm)	N <u>I</u> (<u>o</u> o ma)	РН (ppm)	AS (ppm)	CD (pµm)	КN (ррт)	CUZN	ers	ROCK
VR00977	66.35	67.80	2000.0	79.0	5.0	0.6	23.0	13.0	4.0	1.0	9.0	0.5	50.0	94.	з.	TFA
VB00978	67.80	69.05	2500.0	97.0	4.0	0.5	20.0	15.0	6.0	1.0	8.0	0.5	50.0	96.	2.	TFA
VB00979	69.05	70.34	2800.0	80.0	4.0	0.6	30.0	35.0	6.0	8.0	11.0	0.5	50.0	95.	э.	TFA
VB00980	70.34	71.40	4000.0	935.0	722.0	2.7	174.0	87.0	44.0	29.0	36.0	0.5	267.0	56.	20.	IFA
VB00981	73.40	71.76	7700.0	1085.0	7600.0	3.9	102.0	9.0	5.0	332.0	40.0	29.0	50.0	12.	15.	TFA
VB00982	71.76	72.50	11700.0	1030.0	575.0	1.9	68.0	11 .0	3.0	9.0	26.0	0.5	50.0	64.	8.	TFA
VB00983	72.50	72.96	4)00.0	7100.0	742.0	7.4	390.0	9.0	17.0)1 .0	220.0	0.5	50.0	91.	20.	IFA
VB00984	72.95	73.97	3400.0	5700.0	1420.0	7.6	785.0	9.0	9.0	61.0	115.0	3.0	50.0	80.	70.	IFA
VB00985	73.97	74.70	3400.0	10700.0	546.0	7.5	694.0	4.0	9.0	12.0	72.0	0.5	50.0	95.	30.	TFA
VB00986	74.70	76.00	4600.0	1198.0	89.0	1.3	22.0	11.0	16.0	56.0	12.0	0.5	50.0	93.	4.	TFA •
VB00987	76.00	77.40	3800.0	566.0	82.0	0.7	10.0	11.0	5.0	3).0	8.0	0.5	50.0	87.	4.	IFA
VB00988	77.40	78.90	8000.0	516.0	40.0	0.8	18.0	14.0	5.0	10.0	19.0	0.5	30.0	93.	4.	IFA
VB00989	78.90	79.75	7900.0	1178.0	42.0	1.4	29.0	1).0	5.0)3.0	17.0	0.5	50.0	97.	4.	TFA
VB00990	79.75	80.16	8000.0	1249.0	42.0	1.2	42.0	13.0	5.0	17.0	12.0	0.5	50.0	97.	8.	TFA
VB00991	80.16	81.72	6100.0	2880.0	84.0	3.1	60.0	19.0	7.0	28.0	26.0	0.5	50.0	97.	5.	TEA
VB00992	81.72	83.30	5000.0	282.0	125.0	0.6	65.0	12.0	4.0	28.0	17.0	0.5	50.0	69.	4.	IFA
VB00993	83.30	84.70	4900.0	1681.0	72.0).6	85.0	10.0	3.0	20.0	38.0	0.5	50.0	96.	10.	TFA
VB00994	84.70	85.90	4300.0	343.0	731.0	0.8	62.0	10.0	2.0	67.0	8.0	2.0	50.0	32.	3.	IEA
VR00995	85.90	87.13	2200.0	748.0	1445.0).0)4.0	15.0	22.0	45.0	12.0	6.0	127.0	34.	4.	TFA

•

Sample Number	ERON	νœ	%\$102	ZAL203	%CA0	XNGO	XNA20	ZK20	%FE203	XT 102	ZF205	ZMNO	XLOJ	รบห	AI	NACA	ALUM
VR02699	6.)0	४. 70	74.06	12.59	2.27	0.90	0.68	2.91	2.34	0.29	0.04	0.01	2.92	99.01	56.	3.	215.
VB02700	9.00	11.90	47.33	15.50	9.85	4.69	0.79	0.45	11.14	2.14	0.35	0.13	4.38	96.75	33.	11.	140.
VB02701	34.70	37.00	69.40	15.49).92	1.49).0)	2.85	3.07	0.36	0.04	0.01	3.8)	99.45	60.	3.	268.
VB02702	64.00	67.00	68.69	17.62	0.29	0.17	1.13	2.87	3.97	0.47	0.04	0.01	4.17	99.43	68.	1.	411.
VB02703	75.00	78.00	80.))	10.36	0.46	0.)4).38	۵.79	2.63	0.26	0.05	0.01	1.96	99.15	53.	2.	285.
VB02704	83.00	91.00	48.18	14.23	10.41	7.87	2.53	0.20	12.15	1.29	0.13	0.21	2.06	99.26	38.	13.	108.
VB02705		123.00	49.26).4.31)).83	8.71	2.46	0.24	9.79	0.55	0.)0	0.18	2.08	99.5)	39.	14.	98.
VB02706		149.00	53.89	16.78	5.75	4.09	4.37	0.52	8.46	0.87	0.31	0.12	4.11	99.27	31.	10.	158.
VB02707		185.50	49.13	.4.65	10.79	8.66	2.35	0.46	9.85	0.58	0.31	0.16	3.04	99.78	41.	13.	108.
VB02708		206.00	46.09	16.81	(1.63	4.89	1.92	1.59	10.02	0.73	0.15	0.16	5.64	99.63	32.	14.	111:
VR02709	212.00		47.47	12.80	9.88	9.66	3.)0	0.47	9.87	0.64	0.15	0.19	5.64	99.87	44.	13.	95.
VB02710		243.00	50.90	16.44	5.43	7.02	4.17	1.72	3.97	0.71	0.17	0.14	3.64	99.31	48.	10.	145.
VB0271)	270.00	273.00	47.6)	12.46	13.34	9.52	3.74	0.28	9.50	0.50	0.)0	0.)5	4.79	99.99	39.	15.	81.
VB02712		303.50	50.74	16.73	8.55	4.00	3.78	0.78	8.24	0.83	0.28	0.15	5.56	99.64	28.	12.	128.
VB02713		333.00	50.18	13.93	10.13	8.49	3.14	0.3)	9.67	0.56	0.)]	0.15	3.22	99.89	40.	13.	103.
VB02714	355.00	358.00												99.35	41.	13.	95.
																	159.
VB02714 VR02715		358.00 380.00	48.28 50.31	12.85 17.24	9.45 5.68	8.92 7.27	3.68 4.26	0.33 0.90	9.60 10.27	0.63 0.83	0.16 0.)8	0.17 0.)9	5.28 2.86	99.35 99.99	41. 45.	13. 10.	

Sample Number	FROM	ro	RB (pom)	SR (ppm)	ВА (рр м)	Ү (ррва)	7.R (وبريm)	NB (ppm)	(:U (ppm)	2.N (ppm)	NI (ppm)	ROCK	ALTE	MINE
VB02699	6.10	8.70	52.0	114.0	1853.0	20.0)23.0	20.0	26.0	20.0	20.0	TFA		DCP
VB02700	9.00	11.90	21.0	306.0	488.0	37.0	174.0	20.0	221.0	66.0	20.0	рна		DOP
VB02701	34.70	37.00	55.0	225.0	3481.0	20.0	148.0	20.0	63.0	20.0	20.0	TFB		DDP
VB02702	64.00	67.00	55.0	142.0	3139.0	20.0	136.0	20.0	64.0	20.0	20.0	TEA		DCP
VB02703	75.00	78.00	31.0	13).0	6175.0	20.0	109.0	20.0	731.0	49.0	20.0	TFA		DCP
VB02704	88.00	91.00	20.0	271.0	329.0	20.0	85.0	20.0	108.0	36.0	03.0	THA		A
VB02705	120.00	23.00	20.0	383.0	215.0	20.0	52.0	20.0	174.0	20.0	20.0	TIA		A
VB02706	146.00	149.00	20.0	305.0	204.0	20.0	93.0	20.0	46.0	67.0	20.0	T (A		D8P
VB02707	082.50	85.50	20.0	423.0	411.0	20.0	48.0	20.0	93.0	22.0	20.0	TIA		DBP
VB02708	203.07	206.00	20.0	329.0	745.0	24.0	60.0	20.0	72.0	54.0	20.0	T I B		D8P *
VB02709	2)2.00	2)5.00	20.0	243.0	342.0	20.0	50.0	20.0	114.0	31.0	32.0	VMAY		A
VB02710	240.00	243.00	20.0	275.0	698.0	20.0	71.0	20.0	101.0	53.0	22.0	TTA		OBP
VB0271J	270.00	273.00	20.0	338.0)5).0	20.0	50.0	20.0	79.0	2).0	20.0	TIAF		DBP
VB02712	300.50	303.50	26.0	340.0	406.0	25.0	81.0	20.0	45.0	63.0	20.0	T (AF		DBP
VB02713	330.00	333.00	20.0	333.0	172.0	20.0	65.0	20.0	117.0	20.0	20.0	TIAF		DBP
VB02714	355.00	358.00	20.0	226.0	283.0	20.0	41.0	20.0	95.0	27.0	30.0	VHAY		A
VB02715	377.00	380.00	20.0	28] .0	391.0	20.0	72.0	20.0	124.0	40.0	20.0	TIA		DBP

APPENDIX D

.

Geochemical Certificates

XRF - Analysis

Job no. X90-74 From : Cominco Lab. : Falconbridge Ltd. Project name Chemainus no. 605-608-116 То 7° samples Shipped from Gord Allen Shipment no. COM90-1

\$

Reported 06-21-1990

Page 1

										Pa	ge 1			
	Field number	CaO X	K20 Z	P205 X	SiO2 %	A1203 X	MgC X	Na20 X	Fe203 X	TiO2 %	MnO X	LOI Z	Total I	
			2.70		H 75.41	10.81	1.91	1.04	3.97	0.35	0.12	2,23	99.47	
1	VB02501 CH 90-115	0.82	1.74		# 80.80	8.39	1.63	0.88	3.04	0.30	0.08	1.67	99.35	
2	VB02502		1.15		+ 80.31	6.75	1.53	0.65	3.86	0.30	0.15	2.31	99.72	
3	VB02503	2.59	1.13		₩ 80.31 ₩ 77.19	9.85	2.18	1.53	3.68	0.43	0.08	2.23	100.18	
4	VB02504	1.59	1.16		×77.79	9.06	1.64	2.23	3.65	0.35	0.07	1.90	99.61	
5	VB02505 VB02506 CH 90-11 5	1.64	2.69		69.57	14.01	1.14	1.87	2.50	0.29	0.08	4.14	99.71	
6		3.33 4.02	1.70		70.50	11.89	1.32	2.45	2.97	0.24	0.12	3.57	98.87	
7	VB02507	4.02 2.50	2.84		÷ 70.79	12.75	1.50	1.33	2.47	0.25	0.09	3.38	97.99	
8	VB02508		2.81		r 71.99	12.26	2.10	1.28	2.63	0.26	0.09	3.53	99.56	
9	VB02509	1.92	2.60		re 72.80	12.00	2.70	0.89	3.69	0.25	0.09	2.86	99.06	
10	VB02510	1.02			r 71.26	13.47	2.33	1.79	2.82	0.27	0.14	2.66	98.75	
11	VB02511	1.33	2.58		70.97	13.66	2.67	1.65	2.91	0.27	0.13	2.91	98.94	
12	VB02512	0.99	2.69		73.32	13.50	2.29	2.71	1.98	0.27	0.07	2.28	99.22	
13	VB02513	0.46	2.26		73.32	13.05	3.00	2.18	2.72	0.25	0.22	2.86	99.33	
14	VB02514	1.51	2.11			14.20	2.73	1.59	3.36	0.31	0.09			
15	VB02515	0.81	3.19		69.67	12.88	3.25	2.46	3.61	0.25	0.13	3.10	99.08	
16	VB02516	2.09	1.82		69.37	12.00	4.17	0.46	4.19	0.34	0.10	3.94	99.74	
17	VB02517	0.54	3.48		# 68.54	13.85	9.17 8.43	1.78	9.91	0.61	0.26	6.28	98.89	
18	VB02518	1.12	1.54		Th 52.85	18.60	1.75	3.81	7.57	0.56	0.25	2.61	99.81	
19	VB02519	7.98	1.17		PI 54.92	16.20	6.51	2.02	10.92	0.63	0.48	4.33	99.42	
20	VB02520	6.89	0.44		m 50.36			1.42	7.53	0.03	0.24	3.34	100.14	· · -
21	VB02521 CH90-117		0.44		r 45.56	13.04	6.17	2.03	5.66	0.51	0.13	3.18	97.91	
22	VB02522	5.77	1.67		PF 59.79	15.16	2.80		9.35	0.76	0.13	3.08	99.30	
23	VB02523	11.60	0.80		PF 47.27	17.82	5.44	2.71	2.73	0.78	0.07	1.73	98.74	
24	VB02524	1.97	1.40		PF71.30	13.29	1.32	4.63	2.84	0.23	0.07	2.32	99.22	
25	VB02525	1.77	1.74		τε 72.40 βε 70. ΔΕ	12.87	1.48	3.44	2.34	0.21	0.05	3.23	99.53	
26	V302526	2.59	2.55		^{re} 72.05	12.75	1.31	2.46	2.24	0.24	0.03	1.56	99.51	
27	VB02527	1.11	1.59	and the second s	re 72.78	13.69	1.38	4.48	2.07 5.97	0.24	0.04	5.21	99.53	
28	VB02528 CH Pro - 113		3.75		тм57.55	18.10	1.14	3.07		0.30	0.19	4.88	99.75	
29	VB02529	3.78	2.78		1461.95	15.38	1.37	2.67	5.82	0.21	$0.13 \\ 0.14$	4.88 5.86	98.84	
30	VB02530	5.62	0.99		тт47.01	19.02	4.12	4.05	10.60	0.44	0.10	5.68	99.82	
31	VB02531	4.52	1.16		т. 61.66	15.44	2.33	3.22	5.06		0.10	5.95	99.03	
32	VB02532	6.54	0.92		TF 64.33	11.72	1.59	2.10	5.22	0.36			99.54	
33	VB02533	8.64	1.16		TF 52.05	16.29	2.08	2.21	7.23	0.65	0.15	8.88 12.93		
34	VB02534	12.91	1.09		TM43.03	14.87	3.63	2.17	8.72	0.58	0.18		100.22	
35	VB02535	3.19	2.27		Tr 68.31	15.30	1.56	2.42	2.94	0.24	0.07			
35	VB02536	2.39	1.25		тм 69.54	13.13	1.20	3.55	4.43 2.46	0.32 0.24	0.03 0.05-		100.08	
37	VB02537	2,58	1.90		rf 71.48	14.53	1.26	2.81	2.46		0.08	2.62-	99.47	
38	VB02538	2.68	2.21		FF 70.91	14.17	1.72	1.98	2,81	0.23				
33	VB02539	2.86	1.90		rf 71.87	13.27	0.67	4.10	1.68	0.16 0.23	$0.06 \\ 0.06$	3.09 3.35	99.54	
40	VB02540	2.16	3.69		TF 69.32	14.85	1.20	2.10	2.49				99.52	
41	VB02541	3.87	1.48		TF 70.60	11.90	1.07	3.42	2.48	0.18	0.11	4.33	99.38	
42	VB02542 CH90-119		2.82		TF 68.82	14.12	1.93	1.15	3.18	0.29	0.07	4.25		
43	VB02543	3.04	2.22		TF 70.04	13.14	1.61	2.26	2.95	0.29	0.03	4.10	99.83	
44	VB02544	0.95	2.71		* 72.58	14.05	1.43	2.22	2.95	0.28	0.05	2.54	99.84	
45	VB02545	3.07	2.16		** 69.40	12.72	1.68	2.60	3.06	0.25	0.15	4.16	99.33	
۴6	VB02546	0.87	2.51		TF 70.30	14.81	2.24	3.06	3.01	0.29	0.07	2.67	99.92	
47	VB02547	2.40	1.48		1773.10	10.85	1.33	2.96	2.64	0.21	0.09	3.50	98.64	
48	VB02548	0.84	2.09		1:71.75	13.64	2.46	3.14	3.14	0.30	0.09	2.24	99.80	
49	VB02549	1.52	2.28		TE 71.41	13.67	1.94	2.66	3.45	0.25	0.14	2.21	99.62	
50	VB02550	2.14	2.25	0.13	vh 66:58	15.12	1.73	4.01	4.50	0.43	0.10	1.79	99.78	

XRF - Analysis

: Cominco Lab. Job no. X90-74 Reported 06-21-1990 : Falconbridge Ltd. Project name Chemainus no. 605-608-11 From : Cominco Lab. То

no. 605-60**8-116**

79 samples Shipped from Gord Allen Shipment no. COM90-1

										Pag	e 1
	Field number	Ba ppm	Cu ppm	Zn ppm	Ni ppm	R6 Ppm	Sr ppc	Y ppm	Zr ppm	Nb ppm	· · · · · · · · · · · · · · · · · · ·
1	VB02501 CH 90-115	3156.	34.	42.	20.	 69.	 145.	 20 .	101.	20.	
2	VB02502	2522.	194.	56.	20.	44.	120.	20.	85.	20.	
3	V802503	2038.	27.	49.	20.	31.	177.	20.	63. 49.	20.	
4	VB02504	2149.	37.	61.	20.	37.	162.	25.	83.	20.	and the standard
5	VB02505	3252.	23.	59.	20.	35.	182.	21.	94.	20.	
6 -	VB02506 C1+90-116	846.	20.	44.	20.	51.	192.	20,	136.	20.	
7	VB02507	770.	20.	50.	20.	30.	167.	20.	138.	20.	
8	VB02508	934.	20.	38.	20.	52.	107.	20.	122,	20.	
9	VB02509	718.	20.	92.	20.	46.	90.	22.	122.		
10	VB02510	796.	185.	120.	20.	51.	56.	20.	115.	20.	
11	VB02511	1520.	26.	460.	20.	48.	102.	20.		20.	
12	VB02512	1718.	49.	151.	20.	54.	86.	20.	119.	20.	
13	VB02513	1776.	20.	50.	20.	43.	106.		114.	20.	
14	VB02514	1216.	46.	93.	²⁰ .	42.	90.	20. 20	134.	20.	
15	VB02515	2218.	131.	78.	20.	45.	77.	20. 20	125.	20.	
16	VB02516	674.	296.	64.	20.	31.	114.	20.	122.	20.	
17	VB02517	1575.	35.	64.	20.	52.	25.	20.	104.	20.	
18	VB02518	827.	426.	123.	20.			20.	100.	22.	
19	VB02513	1497.	166.	50.	20.	33.	60. 069	20.	59.	20.	
20	VB02520	533.				29.	268.	25.	141.	20.	
20 21	VB02521 CH90-117	282.	214.	226.	25.	20.	184.	20.	56.	20.	• • • • • •
21 22			20.	98. 05	20.	26.	314.	20.	57.	20.	
22	VB02522	717.	114.	95.	24.	33.	254.	20.	91.	20.	
	VB02523	311.	<u>99</u> .	65.	41.	24.	298.	20.	86.	24.	
24	VB02524	1201.	24.	29.	20.	23.	225.	20.	114.	20.	
25	VB02525	939.	20.	28.	20.	34.	73.	20.	121.	20.	1995 - 1996 - 1
26	VB02526	1266.	20.	20.	20.	54.	37.	20.	111.	20.	
27	VB02527	701.	20.	27.	20.	32.	153.	20.	121.	20.	
28	VB02528 CH90-118		20.	75.	20.	77.	273.	20.	147.	20.	
29	VB02529	803.	20.	78.	20.	61.	209.	20.	162.	20.	
30	VB02530	160.	20.	139.	20.	32.	291.	29.	66.	25.	
31	VB02531	558.	20.	72.	20.	34.	264.	23.	123.	20.	
32	VB02532	475.	25.	102.	20.	31.	230.	20.	81.	20.	
33	VB02533	500.	71.	87.	53.	33.	315.	23.	94.	20.	
34	VB02534	242.	64.	79.	20.	29.	251.	20.	63.	20.	
35	V802535	1077.	20.	41.	20.	51.	385.	20.	142.	20.	
36	VB02535	616.	20.	57.	20.	22.	134.	42.	157.	20.	
37	VB02537	1186.	20.	39.	20.	37.	395.	20.	153.	20.	
33	VB02538	1099.	20.	40.	20.	51.	342.	20.	138.	20.	
39	VB02539	584.	20.	41.	20.	31.	164.	20.	141.	20.	
40	VB02540	1140.	20.	23.	20.	74.	109.	20.	119.	20.	
41	VB02541	572.	20.	40.	20.	34.	142.	20.	101.	20.	
12	VB02542 CH90-119	782.	26.	46.	20.	57.	129.	21.	145.	20.	ingen - Af
43	VB02543	651.	20.	38.	20.	36.	149.	20.	136.	20.	
14	VB02544	1150.	20.	56.	20.	53.	112.	20.	130.	20.	
15	VB02545	853.	20.	54.	20.	46.	:13.	20.	136.	20.	
16	VB02546	890.	97.	50.	20.	47.	78.	20.	145.	20.	
17	VB02547	734.	76.	27.	20.	28.	109.	20.	117.	20.	
8	VB02548	853.	20.	47.	20.	47.	51.	20.	128.	22.	tan
	VB02549	896.	20.	41.	20.		~ 85.	20.	117.	20.	
19	YDVZJ93	0,00.									

XRF - Analysis

: Fai sampl	conbridge_L es Shipped	from (Gord Al	len	Sh	ipm⊚	nt no	. CUM	90-1 çe 2		
Field	number CaO Z	K20 7	P205 Si Z Z	ž	MgO X	7.	Fe203 %	7.	MnO X	LOI X	Total Z
51 VB025	51 2.43	1.53	0.11 TO 68.	74 14.57	1.97	3.67	3.77	0.33	0.11	1.78	99.01
52 VB025	52 1.55	2.05	0.12 .70.	12 14.59	2.13	4.00	3.01	0.32	0.07	1.80	99.76
53 VB025	53 8.28	2.95	0.39 © 44.	43 19.89	3.11	0.75	14.15	0.69	0.16	5.05	99.86
54 VB025	54 2.36	1.92	0.11 770.		2.20	2.80	3.54	0.30	0.08	1.93	99.70
55 VB025	55 2.19	1.33	0.14 765.		3.26	4.64	4.32	0.36	0.14	2.19	99.62
56 VB025	56 1.20	2.58	0.14 TF68.		1.41	5,28	2.21	0.38	0.06	1.57	99.83
57 VB025	57 5.44	0.40	0.14 + 55.		5.31	4.27	8.28	0.58 -		2.98	99.77 -
58 VB025	58 4.76	0.23	0.13 m53.	BE 15.00	7.71	3.22	9.05	0.50	0.23	3.79	99.58 -
59 VB025	59 7.11	0.34	0.17 - 47.	09 14.66	6.34	2.04	12.17	1.25	0.20	6.94	98.91
60 VB025	50 1.22	1.70	0.05 TF 71.		4.57	1.50	3.58	0.16	0.07		99.96
61 VB025	61 4.39	0.34	0.12 т.53.	19 17.39	7.14	3.08	9.14	0.66	0.22	4.05	
62 VB025	62 1.53	1.25	0.13 53.	20 16.20	9.46	2.17	9.34	0.55	0.20	5.42	99.47
63 VB025	63 0.83	2.34	0.10 TFE9.	35 14.43	3.08	2.91	3.71	0.27	0.07	2.33	99.43
64 VB023	54 4.77	0.24	0.14 m55.	21 16.15	6.91	4.04	5.07	0.52	0.17	3.16	99.39 -
65 VB02	65 5.68	2.62	0.18 7459.	99 17.68	2.51	1.73	5.95	0.23	0.07	2.78	99.53
66 VB025	66 2.82	1.07	0.16 TF58.	08 16.69	4.86	3.99	7.26	0.55	0.20	3.68	99.26
67 VB02	67 4.78	0.52	0.16 ⊤м46.	92 17.15	6.22	4.25	11.53	0.72	0.25	5.48	97.98
68 VB02	68 8.87	0.38	0.17 TM50.	58 16.49	5.19	2.91	11.16	0.67	0.33	2.80	99.55
69 V802	69 1.63	0.93	0.03 TF 69.		2.57	3.77	4.84	0.25	0.11	2.52	99.45
70 VB02	70 2.85	1.03	0.15 TF 57.		4.54	3.98	7.47	0.47-	0.14	3.62	99.02
71 V802	9.21	0.41	0.57 ru52.		2.58	3.32	9.72	0.78	0.12	2.50	98.84
72 VB025	72 1.31	3.12	0.07 TF72.		1.32	2.20	2.27	0.23	0.03	2.24	99.07
73 VB02	3.26	1.74	0.14 TMEE.		2.45	3.21	4.65	0.33	0.06	2.73	99.66
74 ¥802	2.64	1.37	0.15 TF61.	89 14.54	4.10	3.15	7.53	0.41	0.12	3.56	99.51
75 VB02	6.87	1.34	0.13 TM53.	28 16.19	6.05	2.18	3.63	0.57	0.19	3.27	39.74
75 VB02		0.86	0.22 7152.	45 17.55	4.50	3.58	9.62	0.52	0.14	3.09	99,94
77 ¥B02		1.57	0.20 TM55.	64 15.82	5.08	2.76	8.83	0.56	0.18	2.79	99.26
78 VB02		0.67	0.17 7054.	09 17.23	4.61	4.03	8.43	0.64	0.13	3.12	99.76
79 V802		0.14	0.17 TM45.	19 16.70	4.50	0.73	13.99	0.65	0.14	3.34	99.89

-

XRE

, ·

From : Cominco Lab. Job no. X90-74 Reported 06-21-1990 To : Falconbridge Ltd. Project name Chemainus no. 605-608-116 79 samples Shipped from Gord Allen Shipment no. COM90-1 Page 2

										Page	2		
	Field number	Ba ppm	Cu ppm	Zn ppm	Ni ppm	Rb ppm	Sr ppm	Y PPm	Zr ppa	Nb ppa			
51	V802551	676.	20.	55.	20.	32.	180.	20.		20.			
52	VB02552	1139.	20.	46.	20.	35.	124.	20.	114.	20.			
53	VB02553	1401.	475.	98.	20.	53.	417.	20.	117.	20.			
54	VB02554		44.	62.	20.	39.	175.	20.	120.	20.			
55	VB02555	841.	20.	59.	20.	26.	122.	20.	94.	24.		•	
56	VB02556	975.	20.	20.	20.	50.	125.	20.	105.	20.			
57	VB02557	206.	90.	98.	20.	24.	162.	20.	83.	20			
58	VB02558	102.	557.	149.	20.	20.	135.	20.	52.	20.			
59	VB02559	158.	110.	147.	42.	20.	147.	20.	94.	21.			
60	VB02560	667.	20.	25.	20.	27.	74.	20.	135.	20.			
61	VB02561	143.	98.	107.	20.	20.	159.	20.	50.	20			
62	VB02562	572.	159.	131.	29.	32.	66.	20.	63.	20.			
63	V802563	826.	20.	27.	20.	40.	77.	20.	90.	20.			
64	VB02564	237.	100.	79.	21.	20.	183.	20.	78.	20. —			
65	V802565	1020.	66.	20.	20.	49.	248.	20.	153.	20.			
66	VB02566	637.	125.	335.	20.	24.	125.	20.	53.	20,			
67	VB02567	360.	355.	118.	20.	20.	95.	20.	60.	20.			
68	VB02568	146.	346.	54.	25.	20.	267.	20.	76.	20.			
69	VB02569	974.	30.	32.	20.	23.	116.	20.	95.	20.			
70	VB02570	593.	47.	52.	20.	21.	141.	20.	62.	20.		4 - 14 · ·	
71	VB02571	189.	137.	31.	20.	20.	433.	32.	140.	20.			
72	VB02572	1512.	33.	20.	20.	57.	89.	20.	127.	20.			
73	VB02573	1252.	70.	22.	20.	35.	151.	20.	108.	20.			
74	VB02574	582.	36.	54.	20.	25.	130.	20.	95.	20.			
75	VB02575	625.	258.	45.	20.	24.	245.	20.	84.	20.			
76	VB02576	.471.	120.	42.	20.	20.	348.	20.	107.	20.			
77	VB02577	749.	433.	44.	20.	43.	251.	20.	79.	20.			
73	VB02578	430.	20.	33.	20.	20.	274.	20.	68.	20.			
79	VB02579	63.	20.	34.	20.	20.	639.	20.	84.	20.			

Certified by

Chemist (X-Ray analyst.

						LEN		-	nt no		age l		
	Field number	Ca0. %	K20 %	P205	SiO2	Al 203 %	Mg0 %	Na20 %	Fe203	TiO2 %	MnO %	LOI %	Total %
1	VB02679	3.97	2.99	0.19	60.31	16.08	0.98	3.06	5,73	0.26	0.16	4.31	98.04
2	VB02680	4.58	1.02	0.24	57.24	17.68	2.84	3.70	8.04	0.76	0.18	3.27	99.55
3	VB02681	1.59	2.52	0.10	66.80	15.40	1.82	1.84	4.83	0.35	0.06	3.24	98.55
4	VB02682	5.18	2.50	0.30	53.03	17.74	2.39	2.49	8.27	0.84	0.14	6.65	99.53
5	VB02683	6.08	2.81	0.03	69.62	11.92	0.77	0.30	0.99	0.17	0.09	6.53	99.31
6	VB02684	9.12	1.26	0.57	47.59	15.75	3.58	1.53	10.01	0.74	0.15	9.21	99.51
7	VB02685	1.58	1.77	0.04	71.90	14.44	1.49	3.50	2.55	0.22	0.05	2.49	100.03
8	VB02686	3.66	1.55	0.04	70.90	13.60	1.41	2.05	2.51	0.23	0.06	3.55	99.56
9	VB02687	2.00	2.56	0.04	73.03	13.25	1.25	1.84	1.81	0.19	0.04	3.26	99.27
10	VB02688	3.55	2.46	0.03	70.87	12.74	0.77	2.33	2.30	0.21	0.06	4.10	99.43
11	VB02689	2.11	2.71	0.02	73.26	12.90	1.00	1.99	2.08	0.22	0.05	3.02	99.38
12	VB02690	2.96	3.34	0.03	71.04	12.54	1.45	0.01	3.30	0.21	0.05	4.41	99.34
13	VB02691	2.52	1.85	0.03	71.53	12.45	1.38	3.03	2.46	0.21	0.03	4.46	99.96
14	VB02692	2.76	2.25	0.05	71.31	13.04	1.15	2.42	2.52	0.23	0.04	4.17	99.95
15	VB02693	1.38	1.70	0.03	73.98	12.88	1.46	3.32	2.57	0.22	0.04	2.35	99.94
6	VB02694	5.28	0.43	0.06	61.97	14.54	2.61	3.27	7.84	0.35	0.13	3.61	100.09
17	VB02695	2.08	2.30	0.03	72.33	13.10	1.64	2.22	2.26	0.21	0.04	3.36	99.58
18	VB02696	11.60	0.02	0.12	40.37	9.00	17.12	0.01	9.42	0.45	0.19	11.25	99.55
19	VB02697	2.15	1.74	0.03	72.41	13.09	1.32	3.40	2.67	0.22	0.04	2.86	99.93
20	VB02698	2.02	1.88	0.04	73.01	12.95	1.57	3.09	2.53	0.20	0.04	2.84	100.19
21 22	VB02699 VB02700	2.27	2.91	0.04	74.06	12.59	0.90	0.68	2.34	0.29	0.01	2.92	99.02
23	VB02701	9.85 1.92	0.45	0.35	47.33	15.50	4.69	0.79	11.14	2.14	0.13	4.38	96.77
24	VB02702	0.29	2.85 2.87	0.04	69.40	15.49	1.49	1.01	3.07	0.36	0.01	3.81	99.45
25	VB02703	0.46	1.79	0.04 0.05	68.69	17.62	0.17	1.13	3.97	0.47	0.01	4.17	99.45
26	VB02704	10.41	0.20	0.03	80.11 48.18	10.36	0.14	1.38	2.63	0.26	0.01	1.96	99.15
27	VB02705	11.83	0.24	0.13	40.10	14.23	7.87	2.53	12.15	1.29	0.21	2.06	99.26
8	VB02706	5.75	0.52	0.31	53.89	14.31 16.78	8.71 4.09	2.46	9.79	0.55	0.18	2.08	99.52
9	VB02707	10.79	0.46	0.11	49.13	14.65	8.66	4.37	8.46	0.87	0.12	4.11	99.28
0	VB02708	11.63	1.59	0.15	46.09	16.81	4.89	2.35	9.85	0.58	0.16	3.04	99.79
1	VB02709	9.88	0.47	0.15	47.47	12.80	9.66	1.92	10.02	0.73	0.16	5.64	99.63
2	VB02710	5.43	1.72	0.13	50.90	12.00	7.02	3.10 4.17	9.87	0.64	0.19	5.64	99.87
3	VB02711	13.34	0.28	0.10	47.61	10.44	9.52	4.17 1.74	8.97 9.50	0.71	0.14	3.64	99.32
4	VB02712	8.55	0.78	0.28	50.74	12.40	9.52 4.00	1.74 3.78		0.50	0.15	4.79	99.99
5	VB02713	10.13	0.31	0.11	50.18	13.93	4.00	3.14	8.24 9.67	0.83	0.15	5.56	99.64
6	VB02714	9.45	0.33	0.16	48.28	12.85	8.92	3.68	9.60	0.56 0.63	0.15	3.22	99.89
37	VB02715	5.68	0.90	0.18	50.31	17.24	7.27	4.26	10.27	0.83	0.17	5.28	99.36
18	VA13227	0.56	7.25	0.02	75.93	11.01	0.50	4. 20 0.80	2.35	0.85	0.19 0.03	2.86 0.85	99.99 99.55

XRF - Analysis

From : Cominco Lab.Job no. X90-190Reported 11-29-1990To : Falconbridge Ltd. Project name CHEMAINUSno. 605-608-116 38 samples Shipped from GORDON ALLEN Shipment no. COM90-8 Page 1

	Field number	Ba	Cu	Zn	Ni	Rb	Sr	 Ү	 Zr	Nb	·
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	·
1	VB02679	747.	20.	61.	20.	75.	204.	26.	146.	20.	
2	VB02680	465.	27.	85.	20.		553.	20.		20.	
3	VB02681	1354.	25.	39.	20.	58.	287.	20.	90.	20.	
4	VB02682	504.	33.	102.	20.	49.	219.	31.	80.	20.	
5	VB02683	1128.	20.	20.	20.	54.	177.	20.	92.	20.	
6	VB02684	1467.	51.	110.	20.	38.	312.	26.	68.	20.	
7	VB02685	771.	20.	27.	20.	37.	203.	20.	148.	20.	
8	VB02686	792.	20.	22.	20.	20.	350.	20.	129.	20.	
9	VB02687	776.	20.	33.	20.	52.	146.	20.	137.	20.	
10	VB02688	826.	59.	26.	20.	51.	147.	20.	116.	20.	
11	VB02689	841.	97.	25.	20.	54.	74.	20.	127.	20.	
12	VB02690	1467.	79.	25.	20.	66.	88.	20.	123.	20.	
13	VB02691	741.	20.	20.	20.	39.	213.	20.	119.	20.	
14	VB02692	807.	23.	20.	20.	34.	195.	20.	118.	20.	
15	VB02693	1193.	20.	23.	20.	34.	132.	20.	96.	20.	
16	VB02694	223.	29.	111.	20.	20.	217.	21.	101.	23.	
17	VB02695	946.	20.	21.	20.	46.	118.	20.	106.	20.	
18	VB02696	31.	65.	30.	217.	20.	152.	20.	20.	20.	м. М
19	VB02697	775.	43.	20.	20.		174.	20.	106.	20.	
20	VB02698	870.	20.	20.	20.	43.	184.	20.	123.	20.	
21	VB02699	1853.	26.	20.	20.	52.	114.	20.	123.	20.	
22	VB02700	488.	221.	66.	20.	21.	306.	37.	174.	20.	
23	VB02701	1481.	63.	20.	20.		225.	20.	148.	20.	
24	VB02702	3139.	64.	20.	20.	55.	142.	20.	156.	20.	
25	VB02703	6175.	731.	49.	20.	31.	131.	20.	109.	20.	
26	VB02704	329.	108.	36.	33.	20.	271.	20.	85.	20.	
27	VB02705	215.	174.	20.	20.	20.	383.	20.	52.	20.	
28	VB02706	204.	46.	67.	20.		305.	20.	93.	20.	
29	VB02707	411.	93.	22.	20.	20.	423.	20.	48.	20.	
30	VB02708	745.	72.	54.	20.	20.	329.	24.	60.	20.	
31	VB02709	342.	114.	31.	32.	20.	243.	20.	50.	20.	
32	VB02710	698.	101.	53.	22.	20.	275,	20.	71.	20.	
33	VB02711	151.	79.	21.	20.	20.	338.	20.	50.	20.	
34	VB02712	406.	45.	63.	20.	26.	340.	25.	81.	20.	
35	VB02713	172.	117.	20.	20.	20.	333.	20.	65.	20.	
36	VB02714		95.	27.	30.	20.	226.	20.	41.	20.	
37	VB02715	391.	124.	40.		20.	281.	20.	72.	20.	
38	VA13227	771.	20.	104.	20.	130.	27.	125.	278.	30.	

Certified by

Ind (1.). Le Chemist ,X-Ray analyst.

Geochemical Lab Report

A DIVISION OF ESCHEAPE PSSPECTRUK V and the contractes

ROJECT: 6		RIDGF LIMITED				SUBMITTED BY: R. CALON Date Printed: 7-Jun-90				
ORDER		ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METH	OD			
1	Ag	Silver	23	0.2 PPM	HN03-HC1 Hot Fx	tr. Ind.	Coupled Plasma			
2	Cu	Copper	23	1 PPM	HN03-HCI Hot Ex		Coupled Plasma			
3	Pb	Lead	23	2 PPM	HN03-HC1 Hot Ex	tr. Ind.	Coupled Plasma			
4	Zn	Zinc	23	1 PPM	HN03-HC1 Hot Ex	tr. Ind.	Coupled Plasma			
. 5	Mo	. Nolybdenum .	23	1 PPM	HN03-HC1 Hot Ex-	tr. In d .	Coupled Plasma			
6	Ni	Nickel	23	1 PPM	HN03-HC1 Hot Ex		Coupled Plasma			
7	Co	Coba I t.	23	1 PPM	HN03-HC1 Hot Ex	tr. Ind.	Coupled Plasma			
8	Cd	Cadmium	23	1 PPM	HN03-HC1 Hot Ex	tr. Ind.	Coupled Plasma			
9	Bi	Bismuth	23	5 PPM	HN03-HC1 Hot Ex		Coupled Plasma			
10	As	Arsenic	23	5 PPM	HN03-HC1 Hot Ex		Coupled Plasma			
11	Sb	Antimony	23	5 PPM	HN03-HC1 Hot Ex		Coupled Plasma			
12	Fe	Iron	23	U.01 PCT	HN03-HC1 Hot Ex	tr. Ind.	Coupled Plasma			
13	ňn	Manganese	23	100 PPM	HN03-HC1 Hot Ex	tr. Ind.	Coupled Plasma			
14	Te	Tellurium	23	10 PPM	HN03-HC1 Hot Fx		Coupled Plasma			
15	Cr	Chromium	23	1 PPM	HN03-HCT Hot Fx		Coupled Plasma			
16	V	Vanadium	23	1 PPM	HN03-HC1 Hot Ex		Coupled Plasma			
17	Sn	Tin	23	20 PPM	HN03-HC1 Hot Fx		Coupled Plasma			
18	W	Tungsten	23	10 PPM	HN03-HC1 Hot Ex	tr. Ind.	Coupled Plasma			
19	La	Lanthanum	23	1 PPM	HN03-HC1 Hot Ex		Coupled Plasma			
20	AI	Aluminum	23	0.02 PCT	HN03-HC1 Hot Ex		Coupled Plasma			
21	ňg	Magnesium	23	0.05 PCT	HN03-HC1 Hot Fx		Coupled Plasma			
22	Ca	Calcium	23	U.05 PCT	HN03-HCI Hot Ex		Coupled Plasma			
23	Na	Sodium	23	0.05 PCT	HN03-HCI Hot Fx	tr. Ind.	Coupled Plasma			
24	ĸ	Potassium	23	11.05 PC1	HN03-HC1 Hot Ex		Coupled Plasma			
25	 Sr	Strontium	23	1. PPM	HN03-HC1 Hot Ex		Coupled Plasma			
26	Y	Yttrium	23	1 PPh	HN03-HC1 Hot Ex		Coupled Plasma			

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V90-U0559.1 (COMPLETE)		RFFFRENCE INFO: SHIPMENT #90-1	s
CLIENT: FALCONBRIDGE LIMITED PROJECT: 605-116		SUBMITTED BY: R. CALOH Datf Printfd: 7-jun-90	
SAMPLE TYPES NUMBER	SIZE FRACTIONS	NUMBER SAMPLE PREPARATIONS NUMBER	ic .
D DRILL CORE 22 P PREPARED PULP 1	2 -15N 4 AS REC'D	22 SAMPLES FROM STORAGE 23 1	
REMARKS: THIS IS A CORRECTION The PI Asma data Repor Please note the origin to an error in Calibr	TED ON REPORT 559.0. NAL ICP DATA WAS SUBJECT		
REPORT COPIE S TO: MR. NILS VON MR. BOB STEW MR. GORD ALL	ART	INVOICE TO: MR. NIL <u>S</u> VON FERSEN MR. BOB STEWART	
· · · · · · · · · · · · · · · · · · ·			

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

]					IE PRINIE				
REPORT: V9D-D	0559.1			¥			PR	OJECT: 60	5-116		PAGE '1A	eb
SAMPLE NUMBER	ELFMENT UNITS	Ag PPN	Cu PPM	Pb PPM	Zn PPM	Mo PPM	NT PPM	Co PPM	Cd PPM	Bi PPN	As PPN	Sb PPN
D2 VB00001		1.1	70	9	151	<1	20	8	<1	<5	9	6
D2 VB0000 2		1.2	117	9	189	19	117	35	2	8	82	8
D2 VB00003		0.5	39	7	66	<1	15	7	<1	<5	6	<
D2 VB00004		0.3	5	5	59	<1	21	12	<1	6	5	<
D2 VB00005		0.7	34	5	104	<1	70	25	<1	9	7	•
D2 VB00006		30.0	1483	15	85	<1	101	14	<1	33	48	3
D2 VB00007		2.7	407	4	33	1	48	5	<1	7	6	<
D2 VB00008		0.4	46	3	121	<1	101	5	<1	18	<5	<
D2 VB00009		0.7	38	3	118	1.	78	6	<1	<5	6	<
D2 VB000010		1.0	25	4	126	<1	61	6	<1	10	<5	<
D2 VB000011		1.3	32	6	114	<1	64	7	<1	6	<5	<
D2 VB000012		1.1	40	6	326	<1	69	8	<1	7	<5	<
D2 VB000013		1.3	79	4	53	<1	37	6	<1	<5	<5	<
D2 VB000014		0.6	31	5	48	<1	28	10	<1	5	10	
D2 VB000015		0.8	55	7	256	<1	21	7	<1	6	12	<
D2 VB000016		0.5	42	- 10	58	<1	9	5	<1	6	<5	 K
D2 VB000017		0.5	48	7	59	<1	13	7	<1	<5	9	<
D2 VB000018		0.6	29	6	55	<1	13	7	<1	6	6	<
D2 VB000019		0.6	33	5	59	<1	19	8	<1	5	7	<
D2 VB000020		0.6	35	2	46	1	16	6	<1	6	<5	<
D2 VB000021		0.7	46	4	45	<1	16	8	<1	<5	10	<
D2 VB000022		0.6	41	4	59	<1	27	8	<1	6	6	<
P4 VA09963		0.6	323	181	78	3	5	2	<1	<5	9	1

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & HISTORISH GUIDES

			······				DA	IE PRINTE	D:7-JU	1-911		·····
REPORT: V90-U	1559.1						PR	OJFCT: 60	5-116		PAGE 1B	
SAMPLE NUMBER	ELEMENT UNITS	Fe PCT	Mn PPM	Te PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	AI PCT	Ng PCT	Ca PCT
D2 VB00001		2.40	455	<10	61	57	<21)	<10	11	1.40	0.93	1.70
D2 VB00002		2.39	569	<10	100	48	<20	<10	7	1.18	0.83	1.59
D2 VB00003		2.48	612	<10	76	32	<20	<10	7	1.27	0.94	1.34
D2 VB00004		1.36	1544	<10	102	22	<20	<10	3	1.22	1.18	0.62
D2 VB00005		6.81	4857	18	90	99	<20	<10	3	1.11	1.04	1.4
D2 VB00006		2.10	32705	24	33	133	<20	<10	3	N.85	0.56	8.7
D2 VB00007		5.51	4103	14	144	118	<20	<10	<1	0.30	0.22	0.6
D2 VB00008		2.68	2168	11	77	26	<20	<10	3	1.33	1.27	0.3
D2 VB00009		3.44	1196	13	96	29	<20	<10	2	1.42	1.29	0.4
D2 VB000010		4.86	1186	15	89	34	<20	<10	3	1.96	1.51	0.4
D2 VB000011		3.96	1143	<10	72	63	<20	<10	3	1.99	1.38	0.8
D2 VB000012		4.81	1090	14	53	80	<20	<10	2	2.19	1.54	0.7
D2 VB000013		1.96	694	··· <1N	88	34	<20	<10	2	1.09	0.69	2.9
D2 VB000014		3.38	620	11	81	40	<20	<10	4	1.70	1.15	1.4
D2 VB000015	<u></u>	3.55	430	12	65	44	<20	<10	4	1.75	1.23	1.4
D2 VB000016		2.03	370	<10	103	31	<20	<10	4	1.26	1.06	1.0
D2 VB000017		2.50	458	<10	76	45	<20	<10	4	1.34	1.15	0.9
D2 VB000018		2.49	406	<10	102	56	<28	<10	3	1.20	1.08	0.9
D2 VB000019		3,39	498	<10	72	51	<20	<10	5	1.54	1.36	0.6
D2 V8000020		3.24	494	12	102	55	<20	<10	4	1.39	1.18	0.5
D2 VB000021		3.76	575	13	84	55	<20	<10	5	1.51	1.23	0.7
D2 VB000022		3.99	652	13	61	44	<20	<10	3	1.87	1.54	0.5
P4 VAN9963		1.20	242	<10	269	5	25	<10	4	2.57	0.11	0.4

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TENTING SERVICES

NUMBER D2 VB00001 D2 VB00002 D2 VB00003 D2 VB00004 D2 VB00005 D2 VB00006 D2 VB00007	FI FMENT UNITS	Na PCT <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	K PCT 0.16 0.14 0.11 0.23 0.36	Sr PPM 40 45 49 35 56	Y PPM 17 14 11 9 14	PROJECT: 605-116	PAGE 1C
NUMBER D2 VB00001 D2 VB00002 D2 VB00003 D2 VB00004 D2 VB00005 D2 VB00006 D2 VB00007	UNITS	PCT <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	PCT 0.16 0.14 0.11 0.23	40 45 49 35	PPH 17 14 11 9		
D2 V800001 D2 V800002 D2 V800003 D2 V800004 D2 V800005 D2 V800006 D2 V800006 D2 V800007		<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	0.16 0.14 0.11 0.23	40 45 49 35	17 14 11 9		na na na
D2 VB00002 D2 VB00003 D2 VB00004 D2 VB00005 D2 VB00006 D2 VB00007		<0.05 <0.05 <0.05 <0.05	0.14 0.11 0.23	45 49 35	14 11 9		na
D2 VB00003 D2 VB00004 D2 VB00005 D2 VB00006 D2 VB00007		<0.05 <0.05 <0.05	0.11 0.23	49 35	11 9		na na na
D2 VB00004 D2 VB00005 D2 VB00006 D2 VB00007		<0.05 <0.05	0.23	35	9		
D2 VB00005 D2 VB00006 D2 VB00007		<0.05			-		
D2 VB00006 D2 VB00007			0.36	56	16		
D2 VB00007		20.05			14		
		70.00	0.06	263	7		
		<8.05	<0.05	29	3		
D2 VB00008		<0.05	0.29	30	8		
D2 VB00009		<0.05	0.14	39	8		
D2 VB000010		<0.05	0.27	40	10		
D2 VB000011		<0.05	0.48	32	12		
D2 VB000012		<0.05	0.43	27	11		
D2 VB000013		<0.05	0.16	30	9		
D2 VB000014		<0.05	0.33	58	13		
D2 VB000015		<0.05	0.13	34	15		
D2 VB000016		<0.05	0.14	35	9		
D2 VB000017		<0.05	0.11	20	9		
D2 VB000018		<0.05	0.07	15	7		
D2 VB000019		<0.05	0.09	25	10		
D2 VB000020		<0.05	0.05	21	8		
D2 VB000021		<0.05	0.08	21	9		
D2 VB000022		<0.05	0.16	20	8		
P4 VA09963		0.38	1.23	19	10		

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V90-00559.2 (COMPLETE)		REFERENCE INFO: SHIPMENT #90-1						
CLJENT: FAICONBRIDGE LIMITED PROJECT: 605-116			SUBMITTED BY: R. CALON Date Printed: 12-Jun-90					
ORDER ELEMENT	NUMBER OF Analyses	IOWER DETECTION LIMIT	EXTRACTION	METHOD				
1 Cu Copper 2 Pb Lead	23 23	1 PPM 2 PPM	HN03-HC1 Hot HN03-HC1 Hot					
SAMPLE TYPFS NUMBE		ACTIONS		SAMPLE PREPARATIONS NU	JMBER			
D DRIIL CORF 22 P PREPARED PULP 1	2 -15	n	22 1	SAMPLES FROM STORAGE	23			
V90-DD559.1. Data ma Russ Calow. RUSS Calow. REPORT COPIES TO: MR. NILS VO MR. BOB STI MR. GORD AL	DN FERSEN FWART		INVOIC	E TO: MR. NILS-VON FERSEN MR. BOB STFWART	4			

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

			······	DATE PRINTED: 12-JUN-90
REPORT: V9N-DI	1559.2			PR0JECT: 605-116 PAGE 1
SAMPLE	ELEMENT	Cu	Pb	
NUMBER	UNITS	PPM	PPM	
D2 VB00001		67	9	
D2 VBONND2		118	9	
D2 VB0U((103		41	5	
D2 VB00004		7	3	
D2 VB00005		33	6	
D2 VB00006		1508	12	
D2 VB0007		385	4	
D2 VB0NNN8		49	3	
02 VB00009		38	4	
D2 VB000010		25	4	
D2 VBUUIN11		31	5	
D2 VB000012		41	4	
D2 VB000013		74	4	
D2 VB00014		32	7	
D2 VB000015		55	6	
D2 VB00016		41	8	
D2 VB000017		68	4	
D2 VB000018		28	6	
D2 VB000019		31	4	
D2 VB0nnn20		32	2	
D2 VB000021		45	3	
D2 VBONNO22	-	40	5	
P4 VA09963		347	162	

· · ·

Certificate of Analysis

REPORT: V90-00559.6 (COMPLETE) REFERENCE INFO: SHIPMENT #90-1 . ------CLIENT: FALCONBRIDGE LIMITED SUBMITTED BY: G. ALLEN PROJECT: 605-116 DATE PRINTED: 11-MAY-90 NUMBER OF LOWER ORDER ELEMENT ANAL YSES DETECTION LIMIT EXTRACTION METHOD 1 Silver Aa 1 U.02 OPT HCL-HN03-HF Atomic Absorption 2 Cu Copper 1 0.01 PCT HCL-HN03-HF Atomic Absorption SAMPLE TYPES NUMBER SAMPLE PREPARATIONS NUMBER SIZE FRACTIONS NUMBER -----D DRILL CORE 1 2 -150 1 SAMPLES FROM STORAGE 1 REPORT COPIES TO: MR. NILS VON FERSEN INVOICE TO: MR. NILS VON FERSEN MR. BOB STEWART MR. BOB STEWART MR. GORD ALLEN

...

Certificate of Analysis

				DATE PRINTED: 11-MAY-90
REPORT: V90-	-00559.6			PROJECT: 605-116 PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Ag Opt	Cu PCT	
D2 VB00006		0.81	0.16	

.....

Registered Assayer, Frovince of British Columbia

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V90-DD618.D (COMPLETE)

REFERENCE INFO: SHIPMENT #90-3

CLIENT: FALCONBRIDGE LIMITED PROJECT: 605-116 SUBMITTED BY: G. ALLEN DATE PRINTED: 14-MAY-90

			NUMBER OF	LOWER		
ORDER	EL	ENENT	ANALYSES	DETECTION LIMIT	EXTRACTION	NETHOD
1	Au 10g	Gold - Fire Assay	118	5 PPB	Fire-Assay	Fire Assay AA
2	Ag	Silver	118	0.2 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
3	Cu	Copper	118	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
4	РЬ	Lead	118	2 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
5	Zn	Zinc	118	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
6	No	Nolybdenum	118	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
7	Ni	Nickel	118	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
. 8	Co .	Cobalt	118	1 PPN	HN03-HCI Hot Extr.	Ind. Coupled Plasma
9	Cd	Cadmium	118	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
10	8i	Bismuth	118	5 PPN	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
11	As	Arsenic	118	5 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
12	Sb	Antimony	118	5 PPN	HN03-HCI Hot Extr.	Ind. Coupled Plasma
13	Fe	Iron	118	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
14	វីភ	Nanganese	118	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
15	Te	Tellurium	118	10 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
16	Ba	Bariu	118	20 PPN		X-Ray Fluorescence
17	Cr	Chromium	118	1 PPM	HN03-HCI Hot Fxtr.	Ind. Coupled Plasma
18	Ų	Vanadium	118	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
19	Sn	Tin	118	20 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
20	W	Tungsten	118	10 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
21	La	Lanthanum	118	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
22	AI	Aluminum	118	0.02 PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
23	líg	Magnesium	118	0.05 PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
24	Ca	Calcium	118	0.05 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
25	Na	Sodium	118	0.05 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
26	κ	Potassium	118	0.05 PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
27	Sr	Strontium	118	1 PPN	HN03-HCI Hot Extr.	Ind. Coupled Plasma
28	Y	Yttrium	118	1 PPN	HN03-HCI Hot Extr.	Ind. Coupled Plasma

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

RE	PORT: V90-00618.0 (COM	PLETE)			REFERENCE INFO: SHIPMENT #90-3
	IENT: FALCONBRIDGE LINI DJECT: 605-116	TED			SUBHITTED BY: G. ALLEN DATE PRINTED: 14-MAY-90
	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
	D DRILL CORE P PREPARED PULP	117 1	2 -150 4 AS REC'D	117 1	CRUSH, PULVERIZE -150 118
	REMARKS: Assay of Cu	1 >3000 ppm to 1	follow on V90-00618.6.		
	REPORT COPIES TO: MR	. NILS VON FERS		INV	DICF TO: MR. NILS VON FERSEN MR. BOB STEWART
		. GORD ALLEN			
					s ages
		······································			
	· ·		•		
		·····			
					an a

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TENTING SERVICES

							DATE PRINTED: 14-MAY-90 PROJECT: 605-116 PAGE 1A					
REPORT: V90-006:	18.0	<u></u>		_			PR	UJFC1: 60	5-116	•	PAGE 1A	
Sample Number	ELEMENT A UNITS	u 10g PPB	Ag PPM	Cu PPN	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPN	Bi PPN	As PPM
D2 VB00023		134	0.5	4Ŋ	27	80	<1	17	10	<1	<5	<5
D2 VB00024		7	0.4	40	5	81	1	18	9	<1	<5	<5
D2 VB00025		58	0.4	41	15	39	<1	10	9	<1	<5	6
D2 VB00026		<5	0.4	47	5	57	<1	13	8	<1	<5	<5
D2 VB00027		34	0.5	. 64	10	64	2	16	7	<1	<5	.9
D2 VB00028		<5	0.3	31	10	64	<1	12	8	<1	<5	<5
D2 VB00029		12	0.2	24	9	46	<1	8	6	<1	<5	<5
D2 VB00030		9	0.4	71	10	8 5	4	25	10	<1	<5	
D2 VB00031		25	0.3	34	11	60 ()	<1	9	7	<1	<5 (5	<
D2 VB00032		<5	0.4	28	6	62	<1	<1	4	<1	<5	<
D2 VB00033		14	0.4	21	10	37	5	3	11	<1	<5	<
D2 VB00034		9	0.5	24	10	46	3	3	13	<1	<5	
D2 VB00035		<5	0.3 0 (49	6	73	<1	1	4	<1	<5 (5	<
D2 VB00036 D2 VB00037		<5 10	0.6 0.2	36 22	8 8	209 87	<1 <1	4 3	22 10 -	<1 <1	<5 <5	<br (
D2 VB00038 D2 VB00039		<5 <5	<0.2 <0.2	11 34	4	59	<1	<1	5	<1	<u><5</u>	<5
D2 VB00040		18	1.0	278	18	116 365	2 5	2 19	5 24	<1 <1	<5 <5	12
D2 VB00041		75	3.9	3964	91	112	21	8	24	2	6	34
D2 VB00042		47	1.9	1666	29	352	6	22	35	<1	13	26
D2 V800043		<5	0.2	147	7	78	<1	<1	6	<1	<5	<5
D2 VB00044		<5	0.5	366	2	59	<1	<1	9	<1	<5	<
D2 VB00045		<5	0.3	252	4	67	<1	<1	5	<1	6	<
D2 VB00046		<5	0.7	560	2	106	7	<1	8	<1	<5	Ċ.
D2 VB00047		<5	0.2	110	3	85	<1	<1	6	<1	11	<
D2 VB00048		<5	0.3	237	4	75	<1	<1	5	<1	9	</td
D2 VB00049		<5	0.4	120	6	69	3	<1	12	<1	9	1
D2 VB0005 0		<5	0.2	43	<2	61	<1	<1	6	<1	6	<
D2 VB00055		<5	<0.2	9	4	69	<1	1	4	<1	<5	<
D2 VB00056		15	0.8	232	62	376	2	2	15	<1	12	<
D2 VB00057		<5	8.5	41	6	252	<1	<1	15	<1	7	1
D2 VB00058		18	0.6	129	9	1533	2	<1	6	11	5	10
D2 VB00059		14	0.5	85	40	127	<1	<1	3	<1	5	1
D2 VB00060		9	0.2	117	17	143	<1	<1	3	<1	7	
D2 VB00061		8	0.5	137	2	208	<1	<1	8	<1		<5
D2 VB00062		10	1.0	1100	8	261	<1	1	7	<1	10	(
D2 VB00063		8	0.8	258	5	180	<1	<1	5	<1	10	1
02 VB00064		13	0.7	139	5	137	<1	<1	7	<1	7	19
D2 VB00065		6	0.5	35	1	120	<1	<1	6 r	(1	9	
D2 VB00066		<5	0.3	12	15	113	<1	<1	5	<1	6	

441 A.I.

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

	00/40 0	· · · · · · · · · · · · · · · · · · ·]					TE PRINTE				
REPORT: V90-	-00618.0						PR	OJECT: 60	5-116		PAGE 1B	
SAMPLE	ELENENT	Sb	Fe	Mn	Te	Ва	Cr	V	Sn	H	La	AI
NUMBER	UNITS	PPN	PCT	PCT	PPN	PPM	PPM	PPM	PPM	PPN	PPN	PCT
D2 VB00023	· · ·	<5	4.09	0.12	14	38(1()	83	81	<20	<10	6	2.17
D2 VB00024		<5	4.34	0.13	12	3800	71	86	<20	<10	5	2.27
D2 VB00025		<5	3.34	0.04	<10	1600	94	47	<20	<10	4	1.36
D2 VB00026		<5	3.48	0.06	11	2800	93	62	<20	<10	5	1.64
D2 VB00027		<5	3.43	0.05	<10	1300	94	45	<20	<10	6	1.43
D2 VB00028		<5	3.44	0.05	<10	2800	62	45	<20	<10	6	1.7
D2 VB00029		<5	2.53	0.04	<10	2400	72	29	<20	<10	6	1.52
D2 VB00030		<5	4.02	0.05	10	2500	90	53	<20	<10	5	1.4
D2 VB00031		<5	2.99	0.05	<10	1600	85	31	<20	<10	7	1.56
D2 V800132		<5	2.06	0.06	<10	990	31	7	<20	<10	, 7	1.74
D2 VB00033		<5	2.77	0.07	<10	800	47	6	<20	<10	6	1.1
D2 VB00034		<5	3.71	0.09	11	650	41	6	<20	<10	4	1.24
D2 VB00035		<5	2.14	0.08	<10	860	35	6	<20	<10	8	1.7
D2 VB00036		<5	6.72	0.09	16	1300	33	32	<20	<10	16	3.3
D2 VB00037		<5	3.06	0.09	<10	780	123	14	<20	<10	17	1.7
D2 VB00038	·····	<5	1.60	0.07	<10	860	52	7	/20	/10		4 3
D2 V800039		<5 <5	1.63	0.05	<10	990	45	5	<20 <20	<10 <10	10	1.3
D2 VB00040		<5	6.92	0.08	16	1100	45 89	60 61	<20	<10	11	1.5
02 VB00041		5	7.51	0.10	18	1300	38	15	<20		3	4.0
D2 VB00041		-8	8.71	0.14	22	1300 800	-30 73	15 84	<20	12 12	2 <1	1.5 4.6
D2 VB00043		6	2.57	0.08	<10	760	41	5	<20	<10	5	1.4
D2 VB00044		<5	2.70	0.07	<10	780 780	43	5	<20	<10	6	1.4
D2 VB00045		<5	2.41	0.11	<10	770	4J 54	ן ר	<20	<10	5	1.4
D2 VB00046		<5	3.87	0.07	11	890	24	6	<20	10	8	2.3
D2 VB00047		<5 <5	2.91	0.07	<10	880	44	5	<20	<10	9	2.0
D2 VB00048		<5	2.72	0.08	<10	710		5	<20	<10	8	1.7
D2 VB00049		<5	4.12	0.08	13	670	66 29	5	<20	<10		
02 VB00050		<5	1.90	0.07	<10	640	36	4 ./.	<20	<10	3 10	1.6 1.4
D2 VB00055		<5	1.78	0.06	<10	1400	63	4	<20	<10	6	1.4
D2 VB00056		<5 <5	5.46	0.26	15	1400	27	27	<20	<10	4	3.6
D2 VB00057		<5	4.61	0.13	12	2100	18	15	<20	<10	10	2.8
D2 VB00058		<5	2.35	0.07	<10	1500	38	3	<20	<10	5	1.6
D2 VB00059		<5	3.21	0.14	10	2000	56 54	2	<20	<10	2	1.0
D2 VB00060		<5	2.62	0.14	<10	2000	54 46	2	<20	<10		1.1
D2 VB00061	99 a. 107	<5	2.62	0.08	12	2300	46 60	2 4	<20 <20	<10 <10	4 10	2.0
D2 VB00062		<5	3.50	0.18	11	1500	25	17	<20	/10	2	20
D2 VB00063		<5	3.30	0.10	<10	2200				<10	3	2.9
D2 VB00064							35 20	4	<20	<10	2	1.7
D2 VB00064		<5 (3.93	0.14	14	1600 1400	30 40	8	<20	<10	2	1.7
		6	3.42	0.14	<10	1600	40 20	3	<20	<10	2	2.0
D2 VB00066		<5	3.23	0.12	<10	1600	29	2	<20	10	2	1.8

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPOR	RT: V90-00618	1.0							NINTED: 14-MAY- 1: 605-116	PAGE 1C
SAMPL Numbe		LEMENT	- Ng PCT	Ca PCT	Na PCT	K PCT	Sr PPN	y PPN		
					141		ГГ IJ	rr 11		
	00023		1.87	1.09	0.06	0.19	30	10		
	300024		1.99	1.19	<0.05	0.21	31	11		
	800025		1.00	0.67	<0.05	0.14	16	7		
	300026		1.26	0.79	<0.05	0.10	27	7		
02 90	800027		1.06	0.85	<0.05	0.10	35	8		
	300028		1.29	0.65	<0.05	0.39	24	12		
	800029		0.99	0.76	<0.05	0.38	39	12		
	300030		0.97	1.21	<0.05	0.12	40	9		
	800031		1.07	1.01	0.06	0.20	40	12		an an t
D2 V 8	300032		1.03	2.14	<0.05	0.25	38	4		
D2 VB	800033		0.65	3.11	<0.05	D.23	40	4		
D2 VB	300034		0.84	3.94	<0.05	0.18	59	5		
D2 VB	800035		1.29	2.91	<0.05	0.19	39	4		
D2 VB	300036	17 a. a.	2.30	2.21	<0.05	8.29	45	5		
D2 VB	800037		1.09	3.29	<0.05	0.23	56	5		
D2 UB	300038		0.74	2.93	<0.05	0.27	41	4		
	800039		1.11	0.91	<0.05	0.29	18	3		
	300040		4.10	0.70	<0.05	0.24	24	3		
	800041		1.45	1.35	<0.05	0.34	37	3		
	300042		5.35	1.06	<0.05	0.13	35	3		
D2 UR	800043		1.34	0.98	<0.05	0.18	25	3		
	BD0044		1.34	0.90	<0.05	0.24	29	2		
	800045		1.54	1.60	<0.05	0.18	34	4		
	800046		2.23	0.59	<0.05	0.18	19	3		
	300047		1.85	0.65	<0.05	0.21	23	2		
D2 /#	B00048		1.72	D .8 4	<0.05	0.17	<u>ר</u>	<u>م</u>		
	300049		1.62	0.99	<0.05	0.17	25 31	2		6 m
	BD0050		1.22	1.10	<0.05	0.10	31 39	2 3		
	300055		1.01	0.98	<0.05	0.19	16	3		
	BD0056		3.94	4.58	<0.05	0.19	77	5		
										······································
	300057		2.71	1.45	<0.05	0.26	45	3		
	B00058		1.59	0.62	<0.05	0.20	18	2		
	300059 800060		0.99		<0.05	0.20	25	4		
	B00061		1.16 1.80	0.47 3.30	<0.05 <0.05	0.23	12	2		
U2 V 0			1.00	J. JU	NU.U0	0.24	48	6		
	B00062		4.01	0.83	<0.05	0.13	12	3		
	800063		1.80	0.64	<0.05	0.19	15	2		
	B00064		1.94	1.09	<0.05	0.16	18	3		
	800065		2.23	0.89	<0.05	0.19	15	2		
UZ VE	B00066		2.03	0 .8 0	<0.05	0.18	16	2		

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & (FESTING SERVICES)

REPORT: V911-02742.0 (COMPLETE)

REFERENCE INFO: SHIPMENT #911-14

CLITENT: FALCONURIDGE LIMITED PROJECT: 605-116 SUBMITTED BY: G. ALLEN

DATE PRINTED: 28 NOV-90

ORDER	EI.	EMENT	NUMBER OF ANALYSES	LOWER Defection limit	FXTRACTION	METHOD
1	Διι 1ίο	Gold - Fire Assay	911	5 PPB	Fire-Assay	Fire Assay AA
2	Ag	Silver	911	11.2 PPM	HN03-HC1 Hot Fxtr.	Ind. Coupled Plasma
3	Cu	Copper	9(1	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
4	Pb	Lead	911	2 PPN	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
5	Zn	Zinc	90	1 PPM	HN03-HC1 Hot Fxtr.	Ind. Coupled Plasma
6	∾ No	Nolybdenum	9 11	1 PPN	HN03-HC1 Hot Extr.	End. Coupled Plasma
1	NI	Nickel	9(1	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
8	Co	Cobalt.	90	1. PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
· 9	Cd	Cadmium	911	1 PPM	HN03-HC1 Hot Fxtr.	Ind. Coupled Plasma
10	Bi	Bismuth	911	5 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
11	As	Arsenic	911	5 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
12	Sb	Antimony	911	5 PPM	NN03-HC1 Hot Fxtr.	Ind. Coupled Plasma
13	Fe	Iron	911	(1.11) PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
14	Nn	Manganese	911	100 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
15	Te	lellurium	90	10 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
16	Ba	Barium	90	21) PPM		X-Ray Flu orescence
17	Cr	Chromium	9(1	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
18	V	Vanadium	91)	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
19	Sn	lin	9(1	20 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
20	W	lungsten	90	1.0 PPN	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
21	La	lanthanum	911	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
22	AI	Aluminum	911	11.112 PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
23	lig	Magnesium	911	0.05 PCT	HN03-HC1 Hot Fxtr.	Ind. Coupled Plasma
24	Ca	Calcium	9 0	0.05 PC1	HN03-HC1 Hot Extr.	Ind, Coupled Plasma
25	Na	Sodium	911	0.05 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
26	ĸ	Potassium	90	0.05 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
27	Sr	Strontium	911	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
28	Y	Yttrium	911	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma

.

Geochemical Lab Report

	A DP	VISION OF INCHCAPE INSPECTIO	DNA HISTING SERVICE:	5	
REPORT: V90-112742. 11 (COM	PLETE)			REFERENCE INFO: SHIP MENT #90-14	
CLIENT: FALCONBRIDGE LINT PROJECT: 605-116	TED			SUBNITTED BY: G. ALLEN DATE PRINTED: 28-NOV-90	
SAMPLE TYPES	NUMBER	STZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER	
P PREPARED PULP D DRILL CORF	1 89	4 AS REC'D 2 -150	t 89	CRUSH, PULVERTZE -150 89 AS RECETVED, NO SP 1	
NOTES: = indicates	see remarks				
REMARKS: =Ba - inter	ference noted	due to Fe.			
Assay of hi V90-02742.6	gh Cu and ZN t •	o fallow on	****		
REPORT COPIES TO: MR	. NTILS VON FER	SEN	INV	OTCE TO: MR. NILS VON FERSEN	
	. GLEN FLETT				
				6 - 49 ⁺	
				and the second sec	

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TEST PRODUCTIONS OF MULTINE 28-NOU-91

SAMPLE FITRINT Au Illig PB PB PCH PB PPH PH PH <th< th=""><th>A.</th><th>PAGE 1A</th><th></th><th></th><th>11 PRINTE</th><th></th><th></th><th></th><th></th><th></th><th></th><th>2762 11</th><th>REPORT: V911-11</th></th<>	A.	PAGE 1A			11 PRINTE							2762 11	REPORT: V911-11
NUMBER UNITIS PPB PPN P	•	HOI, I LH		.)-1.10	901.01.01	r N							
D2 VB00931 67 <01.2 56 15 111 3 3 7 <01 <05 D2 VB00932 111 01.7 277 11 81 <1 111 32 <1 <55 D2 VB00934 6 01.7 2778 111 89 <1 81 <11 32 <1 <55 D2 VB00934 6 01.3 112 61 385 <1 <1 81 <1 <1 81 <1 <1 81 $<1 <1 81 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 $	A PP										-		
D2 V800932 11 <td>1</td> <td><5</td> <td>1</td> <td>4</td> <td>16</td> <td>11</td> <td>119</td> <td>25</td> <td>18</td> <td><0.2</td> <td><5</td> <td></td> <td>P4 VA13501</td>	1	<5	1	4	16	11	119	25	18	<0.2	<5		P4 VA13501
D2 VB00933 12 0.7 277 11 81 <1 10 32 <1 <5 D2 VB00934 6 0.7 278 11 87 <1 83 32 <1 <5 D2 VB00935 16 0.3 117 61 385 <1 <1 8 <1 <1 <5 D2 VB00937 12 0.9 45 51 35 <1 <11 11 <1< <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td></td><td><5</td><td><1</td><td>7</td><td>3</td><td>3</td><td>111</td><td>15</td><td>56</td><td><0.2</td><td>67</td><td>·</td><td>D2 VB00931</td></t<>		<5	<1	7	3	3	111	15	56	<0.2	67	·	D2 VB00931
D2 VB00934 6 II.9 778 11 89 <1 8 32 <1 <5 D2 VB00935 16 II.3 112 61 385 <1	<	<5	<1	6	1	2	24	18	17	<11.2	10		D2 V800932
D2 VB00935 16 0.3 112 61 385 c1 c1 8 c1 c5 D2 VB00936 25 0.6 148 75 433 c1 c1 9 c1 c5 D2 VB00937 12 0.9 45 51 35 c1 c1 111 c1 c5 D2 VB00938 31 1.0 163 72 33 c1 c1 12 c4 c5 D2 VB00940 14 0.3 55 48 20 5 5 8 c1 c5 D2 VB00941 12 2.1 25 67 16 c1 c1 11 c1 c5 D2 VB00942 6 0.4 2 32 11 c1 c1 9 c1 c5 D2 VB00945 22 0.3 43 27 2 c1 11 </td <td>1</td> <td></td> <td><t< td=""><td></td><td>10</td><td><1</td><td></td><td>11</td><td></td><td></td><td>12</td><td></td><td></td></t<></td>	1		<t< td=""><td></td><td>10</td><td><1</td><td></td><td>11</td><td></td><td></td><td>12</td><td></td><td></td></t<>		10	<1		11			12		
D2 V800936 75 0.6 148 75 433 <1	1	<5	<1	32	8	<1	89	11	278	(1.9	6		D2 VB00934
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<		<1	8	<1								
D2 VB00938 31 1.0 163 72 33 c1 c1 12 c1 c5 D2 VB00939 8 0.2 51 17 17 c1 c1 7 c1 c5 D2 VB00940 14 0.3 55 48 20 5 5 8 c1 c5 D2 VB00941 12 2.1 25 67 16 c1 c1 10 c1 c5 D2 VB00942 6 0.4 21 32 11 c1 c1 9 c1 c5 D2 VB00943 c5 0.1.7 36 16 37 c1 3 12 c1 c1 c5 D2 VB00945 22 0.3 43 27 74 2 c1 11 c1 c5 D2 VB00945 22 0.2 1.7 43 23 c1	<												
D2 VB00939 8 II.2 51 17 17 <1 <1 7 <1 <5 D2 VB00941 14 II.3 55 48 20 5 5 8 <1													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
D2 VB00941 12 2.1 25 67 16 c1 c1 10 c1 c5 D2 VB00942 6 II.4 21 32 11 c1 c1 9 c1 c5 D2 VB00943 c5 II.5 33 24 20 c1 c1 9 c1 c5 D2 VB00944 6 II.7 36 16 37 c1 3 12 c1 c5 D2 VB00945 22 II.3 43 27 24 2 c1 11 c1 c5 D2 VB00946 1114 2.0 219 392 54 19 c1 24 c1 c5 D2 VB00947 12 II.2 17 43 23 c1 c1 9 c1 c5 D2 VB00948 15 II.6 24 130 29 c1 c1 58 c1 27 D2 VB00951 38 II.7 184 81 2011 7 c1 c1 c5 D2	<	<5	<1	7	<1	<1.	1.7	1.7	51	0.2	8	<u> </u>	D2 VB00939
D2 VB00942 6 II.4 21 32 11 <1 <1 9 <1 <5 D2 VB00943 <5 II.5 33 24 20 <1 <1 9 <1 <5 D2 VB00944 6 II.7 36 16 37 <1 3 12 <1 <5 D2 VB00945 22 II.3 43 27 24 2 <1 11 <1 <5 D2 VB00945 22 II.4 21 219 392 54 19 <1 24 <1 <5 D2 VB00946 114 2.0 17 43 23 <1 <1 81 <5 <5 D2 24 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	1	<5	<1	8	5	5	28				14		
D2 VBD0943 <5 II.5 33 24 21 <1 <1 <1 9 <1 <5 D2 VBD0944 6 II.7 36 16 37 <1 3 12 <1 <5 D2 VBD0945 22 II.3 43 27 24 7 <1 11 <1 <1 <5 D2 VBD0945 22 II.3 43 27 24 7 <1 11 <1 <1 <5 D2 VBD0946 1114 2.0 117 43 23 <1 <1 24 <1 <5 D2 VBD0948 15 0.6 24 1311 29 <1 <1 9 <1 <5 D2 VBD0948 15 0.6 24 1311 29 <1 <1 9 <1 <5 D2 VBD0951 38 0.7 184 81 2111 7 <1 7 <1 <5 <1 27 <1		<5	<1	1.0	<1	<1.	16	67			12		
D2 VB00944 6 II.7 36 16 37 <1 3 12 <1 <5 D2 VB00945 22 II.3 43 27 24 2 <1		<5	<1	9	<1	<1					6		
D2 VB00945 22 II.3 43 27 24 2 11 41 45 D2 VB00946 1114 2.0 2/19 392 54 19 41 24 41 45 D2 VB00947 12 II.2 17 43 23 41 41 8 41 45 D2 VB00948 15 II.6 24 1311 79 41 45 45 50 1301 17 41 58 41 27 D2 VB00949 284 1.01 453 256 1301 17 41 58 41 27 D2 VB00950 38 II.7 184 81 201 7 41 41 45 D2 VB00951 54 II.8 65 610 27 1 41 111 41 45 D2 VB00953 20 II.3 3													
D2 VB00946 1114 2.0 2119 392 54 19 <1		<5	<1	12	3	<1	37	16	36	0.7	6		D2 VB00944
D2 VB00947 12 II.2 17 43 23 <1 <1 8 <1 <5 D2 VB00948 15 II.6 24 130 29 <1 <1 9 <1 <55 D2 VB00949 284 1.0 453 256 130 17 <1 9 <1 <55 D2 VB00950 38 II.7 184 81 201 7 <1 58 <1 27 D2 VB00951 38 II.7 184 81 201 7 <1 58 <1 27 D2 VB00951 38 II.7 184 81 201 7 <1 <1 11 <1 <58 <1 <57 <1 <1 <1 <55 <1 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51 <51	1	<5	<1	11	<1	7	24						
D2 V800948 15 1.6 24 130 29 <1 <1 9 <1 <5 D2 V800949 284 1.0 453 256 130 17 <1 58 <1 27 D2 V800950 38 0.7 184 81 201 7 <1 71 <1 <58 <1 27 D2 V800951 54 0.8 65 60 27 1 <1 10 <1 <55 D2 V800952 56 0.6 48 102 175 2 <1 6 <1 <55 D2 V800953 20 0.3 35 16 24 <1 <1 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <1 <1 <1 <1 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <1 <5 <5 <5 <5 <5 <5 <5 <td>16</td> <td><5</td> <td><1</td> <td>24</td> <td><1</td> <td>19</td> <td></td> <td>392</td> <td>2119</td> <td></td> <td>1114</td> <td></td> <td></td>	16	<5	<1	24	<1	19		392	2119		1114		
D2 VB00949 284 1.11 453 256 1311 17 <1 58 <1 27 D2 VB00950 38 11,7 184 81 211 7 <1	<												
D2 VB00950 38 II.7 184 81 2II1 7 <1 7 <1 <51 <55 <56 II.8 <55 <51 27 1 <1 111 <1 <55 <56 II.8 <55 <51 27 1 <1 111 <1 <55 <56 <56 <56 <56 <56 <56 <56 <56 <56 <56 <56 <57 <7 <1 <57 <6 <56 <57 <57 <57 <1 <56 <57 <57 <57 <51 <57 <57 <51 <57 <57 <51 <57 <57 <51 <57 <57 <51 <57 <57 <51 <57 <57 <51 <57 <57 <51 <57 <51 <57 <51 <57 <51 <57 <51 <57 <51 <51 <57 <51 <51 <51 <51 <51 <													
D2 VB00951 56 II.8 65 6II 27 1 <1 1II <1 <5 D2 VB00952 56 II.6 48 1II2 175 7 <1 6 <1 <5 D2 VB00953 2II II.3 35 16 24 <1 <1 6 <1 <5 D2 VB00954 211 II.3 35 16 24 <1 <1 6 <1 <5 D2 VB00954 211 II.3 35 16 24 <1 <1 6 <1 <5 D2 VB00955 23 II.5 117 18 11 <1 <1 7 <1 <5 D2 VB00956 36 0.9 255 11 17 <1 <1 11 <1 <5 <5 17 <1 <1 11 <1 <5 <5 <5 17 <1 <1 11 <1 <5 <5 <5 <5 <5	24	2.7	<1	.58	<1	1/	1.30	256	453	1.11	284		D2 VBUU949
D2 V800952 56 0.6 48 102 175 7 <1 6 <1 <55 D2 V800953 20 0.3 35 16 24 <1 <1 6 <1 <55 D2 V800954 211 0.3 15 12 15 <1 <1 6 <1 <55 D2 V800955 23 0.3 15 17 18 11 <1 <1 8 <1 <55 D2 V800956 36 0.9 255 11 17 <1 <1 14 <1 <55 D2 V800956 36 0.9 255 11 17 <1 <1 14 <1 <55 <52 5 5 <77 <1 <1 11 <1 <55 <52 <5 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57 <57	2		<1	7	<1	7							
D2 V800953 211 II.3 35 16 24 <1 <1 6 <1 <5 D2 V800954 211 II.3 15 12 15 <1 <1 6 <1 <5 D2 V800955 23 II.5 117 18 11 <1 <1 7 <1 <5 D2 V800956 36 0.9 255 11 17 <1 <1 <1 <1 <1 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 </td <td>1</td> <td></td> <td><1</td> <td>1.0</td> <td></td> <td>1.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1		<1	1.0		1.							
D2 V800954 211 II.3 15 12 15 <1 <1 8 <1 <5 D2 V800955 23 II.5 117 18 11 <1	2			6									
D2 VB00955 23 II.5 117 18 11 <1 <1 7 <1 <5 D2 VB00956 36 II.9 255 11 17 <1													
D2 V800956 36 0.9 255 11 17 <1 <1 14 <1 <5 D2 V800957 45 II.3 122 5 17 <1 <1 11 <1 <5 D2 V800958 28 II.6 130 7 18 <1 1 13 <1 <5 D2 V800959 12 II.5 52 9 15 <1 <1 13 <1 <5 D2 V800959 12 II.5 52 9 15 <1 <1 8 <1 <5 D2 V800960 <5 II.3 30 6 13 <1 <1 8 <1 <5 D2 V800961 10 II.8 342 5 13 <1 <1 8 <1 <5 D2 V800961 10 II.8 342 5 13 <1 <1 10 <1 <5 D2 V800962 23 II.7 83	<	<5	<1	8	<1	<1	15	12		U.3	211		UZ VBUU954
D2 VB00957 45 II.3 122 5 17 <1 <1 11 <1 <5 D2 VB00958 28 II.6 1311 7 18 <1 1 13 <1 <5 D2 VB00959 12 II.5 52 9 15 <1 1 13 <1 <5 D2 VB00959 12 II.5 52 9 15 <1 <1 13 <1 <5 D2 VB00960 <5 II.3 30 6 13 <1 <1 8 <1 <5 D2 VB00960 <5 II.3 30 6 13 <1 <1 8 <1 <5 D2 VB00961 10 II.8 342 5 13 <1 <1 8 <1 <5 D2 VB00962 23 II.7 83 14 14 1 11 27 <1 <5	1					<1							
D2 V800958 28 II.6 1311 7 18 <1 1 13 <1 <5 D2 V800959 12 II.5 52 9 15 <1 <1 13 <1 <5 D2 V800959 12 II.5 52 9 15 <1 <1 13 <1 <5 D2 V800960 <5 II.3 30 6 13 <1 <1 8 <1 <5 D2 V800961 10 II.8 342 5 13 <1 <1 11 <1 <1 <5 D2 V800962 23 II.7 83 14 14 1 11 22 <1 <5	1												
D2 VB00959 12 0.5 52 9 15 <1 <1 8 <1 <5 D2 VB00960 <5 0.3 30 6 13 <1 <1 8 <1 <5 D2 VB00960 <5 0.3 30 6 13 <1 <1 8 <1 <5 D2 VB00961 10 0.8 342 5 13 <1 <1 10 <1 <5 D2 VB00961 10 0.8 342 5 13 <1 <1 10 <1 <5 D2 VB00962 23 0.7 83 14 14 1 11 22 <1 <5	1												
D2 VB00960 <5 0.3 30 6 13 <1 <1 8 <1 <5 D2 VB00961 10 0.8 342 5 13 <1	1							•					
D2 VB00961 10 0.8 342 5 13 <1 <1 10 <1 <5 D2 VB00962 23 0.7 83 14 14 1 11 22 <1 <5			5	A-1									
D2 VB00962 23 (1,7) 83 14 14 1 11 22 <1 <5	<												
	<												
	2												D2 VB00962
D2 VB00963 21 0.2 51 3 8 <1 <1 8 <1 <5 D2 VB00964 21 0.4 112 24 24 <1 19 20 <1 <5	< 1												
D2 VB00965 1.2 I.3 129 7 24 <1 6 14 <1 <5 D2 VB00966 111 II.5 115 3 3 4 4 12 <1 <5	< <												
D2 VB00967 12 0.4 100 5 6 3 2 12 <1 <5	<												
D2 V800968 12 11.4 1111 5 6 5 2 17 Ct C5	۲ ۲												
	1												
D2 VB00969 39 1.1 128 11 54 7 23 28 <1 <5		<5	<1	28	23	7	54	11	128	1.1	39		D2 VB00969

Geochemical Lab Report

	2742.0						PR	OJECT: 60	5-116		PAGE 1B	
SAMPLE NUMBER	FI FHENT UNETS	Sb PPM	Fe PCT	Mn PPM	le PPM	Ba PPM	Cr P PM	V PPN	Sn PPN	H PPN	la PPN	A PC
P4 VA13501		<5	1,75	2117	<10	7411	21	18	<20	<10	44	0.4
D2 VB00931		<5	2.00	1,38	<10	1.700	51	7	<20	<10	4	1.0
D2 VB00932		<5	1.49	121	<10	2000	53	7	<211	<10	<1	1.1
D2 VB00933		< 5	7.84	696	13	760	18	103	<211	<10	<1	3.4
D2 VBDD934		<5	7.73	789	<111	4811	16	104	<20	<10	<1	3.5
D2 VB00935		<5	2.23	164	<1.0	2200	.54	6	<211	<10	<1	1.1
D2 VBD0936		<5	2.39	<100	<10	1700	411	2	<20	<10	<1	1.0
D2 VB009 37		<5	2.51	1,112	<18	1800	48	2	<21)	<10	<1	1.0
02 VB00938		<5	4.82	<100	<10	1710	48	1	<2 11	<10	<1	0.8
D2 VB00939	····	<5	1.50	<1	<111	1700	49	4	<211	<10	<1	1.0
D2 VB00940		<5	2.33	<100	<111	22111	48	6	<2(1	<111	4	0.9
D2 VB00941		<5	2.02	<1.00	<10	221111	411	2	<20	<10	<1	0.9
D2 VBU0942		<5	1.93	<100	<111	18111	53	4	<20	<10	<1	0.9
02 VB00943		<5	1.65	<1.00	<10	1900	38	3	<20	<10	<1	1.1
D2 VB00944		<5	2.91	215	<111	1500	46	34	[]</td <td><10</td> <td><1</td> <td>1.7</td>	<10	<1	1.7
D2 VB00945		<5	3.56	<1.00	<1.0	2500	35	5	<211	<10	<1	1.0
D2 VB00946		<5	>10.00	1111	<10	1000	54	3	<20	<10	<1	0.8
D2 VB00947	·	< 5	1.76	<1.1111	<111	24111	411	2	<20	<10	<1	1.0
D2 VB00948		<5	2.93	<11111	<10	26111	52	2	<211	<18	<1	0.9
D2 VB00949		14	2.12	127	<10	81111	35	7	<211	<10	<1	1.1
D2 VB00950		<5	4.94	<100	<11	2500	48	6	<211	<18	<1	1.1
D2 VB00951		<5	5.83	<100	<1.0	31.00	39	<1	<20	<10	<1	0.9
D2 VB00952		<5	5.05	<100	<10	3300	48	<1	<28	(10	<1	0.9
D2 VB00953 D2 VB00954		<5 <5	1.64 3.02	<100 <100	<1B <10	1900 1400	37	2.	< <u>21)</u>	<10 <10	<1	1.2
02 9000734		<u></u>	5.02	NIU	<10)4(11)	34	4	<211	<10	<1	2.2
D2 VB00955		<5	3.36	<1.00	<111	1200	28	5	<211	<10	<1	2.4
D2 VB00956		<5	5,89	124	10	1200	35	11	<2[]	<10	<1	2.4
D2 VB00957		<5 (5	4.42	<100	<10 (10	1900	26	6	<211	<10	<1	1.9
02 VB00958 D2 VB00959		<5 <5	4.52 2.61	150 143	<10 <10	930 720	30 24	46 19	<20 <20	<10 <10	<1 <1	4.4 5.2
D2 VB00960		<5	2.27	203	<10	11111	25	16	<21	<10	1	5.0
D2 VB00961		<5	2.86	142	<10	1200	24	16	<211	<10	1	4.1
D2 VB00962		<5 75	7.61	<100	<10	1811()	47	21	<211	<10	<1	2.9
D2 VB00963		<5 75	2.95	<100 170	<18 <10	2300 1400	36	7	<20	<10	<1	1.8
D2 V800964		<5	4.36	17()	<10	161111	113	411	<211	<10	<1	2.4
D2 VB00965		< 5	2.30	- 148	<10	1800	59	14	<21)	<10	<1	1.9
02 VB00966		<5 75	2.77	<110	<10 <10	191111 4900	69 50	7	<211	<10 <10	2	1.2
D2 VB00967		<5 75	2.84	<100	<1I) <10	1900 2700	52	7	<20	<10	2	1.2
D2 VB00968 D2 VB00969		ংচ ংচ	1,39 6,116	<100 264	<111 13	27111 211111	61 154	6 77	<211 <211	<10 <10	5 3	1.0 3.3

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & LES LENG SERVICES

							DATE PRINTED: 28-NOV-9	
REPORT: V911-1	12742.0						PROJECT: 605-116	PAGE / 1C
SAMPLE	FI EMENT	fig	Са	Na	K	Sr	V	
NUMBER	UNETS	PCT	PCT	PCT	PCT	PPM	PPM	
P4 VA13501		11.27	fl .38	<11.115	().()8	13	16	
D2 VB00931		0.35	1.53	<0.05	0.26	24	10	
D2 VB00932		0.50	1.06	<0.85	11.24	17	10	
D2 VB00933		2.41	3.61	11.118	0.10	.58	14	
D2 VB00934		2.61	3.27	0,117	0.07	70	14	
D2 VB00935		11.52	1.19	<0.85	0.28	211	10	
02 VB00936		11.34	(1,86	<#.U5	0.27	18	8	
D2 VB00937		11.31	1.40	0.05	0,30	23	12	
D2 V800938		0.30	11.48	<11.115	11,26	18	10	
D2 VB00939		11.28	1.17	<0.05	0.27	18	9	
D2 V80094N		11.26	1.09	<[1,115	(1.31	26	10	
D2 V800941		0.21	1.41	<0.85	D.29	1.7	9	
D2 VB00942		11,28	1.80	<11,115	11.26	18	1.1	
D2 VB00943		11,39	1.27	<0.05	0,25	21	9	
D2 VB00944		11.98	1.81	<11,115	11.24	25	8	
D2 VB00945		11.36	N.8N	<11.05	0.26	1.7	7	
D2 VB00946		11.42	1.62	<0.05	11.14	12	11	
D2 VB00947		11.34	1.25	<0.05	0.26	19	7	
D2 VB00948		11,35	1.43	<11.115	0.25	15	7	
D2 VB00949		11,63	1.21	<0.05	0.09	9	10	
D2 VB00950		11.48	(1.98	<11,115	(1.23	12	8	
D2 VB00951		0.30	0.61	<0.05	0.22	9	8	
02 VB00952		11.28	1.01	<0.05	0.24	12	9	
D2 VB00953		11.34	1.63	<0.05	0.23	26	10	
D2 VB00954		(1,38	2.84	<0.05	0.19	58	1.1.	
D2 VB00955		0.50	2.84	11.14	0.17	75	8	
02 VB00956		11.68	2.98	11.19	(1,18	75	12	50 S
D2 VB00957		11.74	1.52	0.07	0.18	44	8	
D2 VB00958		1.17	3.84	11.37	11.12	151	11	
D2 VB00959		1.11	5.58	11,311	0.09	1.67	11	
D2 V800960		1.26	6,113	11.47	11.14	183	11	·······
D2 VB00961		1.22	4.18	11.46	0.14	224	11	
D2 VBU0962		11.38	1.88	0.30	8.12	117	11.	
D2 VB00963		11.19	1.14	0.13	8.15	1.08	7	
D2 V800964		11.55	2.98	11.14	0.13	92	7	
D2 VB00965		0.50	1.88	11.15	0.12	62	9	
D2 VB00966		11.116	11.97	11,118	11.16	47	5	
D2 VB00967		11.116	0.76	11,116	0.15	40	4	
D2 VB00968		11.14	1.39	0,05	11.24	28	8	
D2 VB00969		11.93	2.11	0.19	D.26	81	8	

Geochemical Lab Report

A DIVISION OF INCHCAPTERNSPECTION & TESTER OF REVICES

REPORT: V9D-I	12742.11							TE PRINTE OJECT: 611			PAGE .2A	
							· · · · · · · · · · · · · · · · · · ·					
SAMPLE NUMBER	ELEMENT UNETS	Au 111g PPB	Ag PPN	Cu PPN	РЬ РР М	Zn PPM	Ma PPN	NI PPM	C.o PPM	Cd PPN	BT PPN	As PPI
D2 VB00970	· · · · · · · · · · · · · · · · · · ·	19	0.5	56	</td <td>4</td> <td>5</td> <td>8</td> <td>15</td> <td><1</td> <td><5</td> <td>9</td>	4	5	8	15	<1	<5	9
D2 VB00971		23	11.4	73	2	1	4	7	1.8	<t< td=""><td><5</td><td>10</td></t<>	<5	10
D2 VB00972		94	fl.6	214	</td <td>5</td> <td>4</td> <td>8</td> <td>21</td> <td>(1)</td> <td><5</td> <td>11</td>	5	4	8	21	(1)	<5	11
D2 VB00973		1,76	11.6	155	3	1,1)	7	7	18	<1	<5	23
D2 VB00974		124	11.4	7?	</td <td>5</td> <td>6</td> <td>6</td> <td>14</td> <td><1</td> <td><5</td> <td>1!</td>	5	6	6	14	<1	<5	1!
02 VB00975		18	11.4	51	<2	<1	4	5	14	<1	<5	
D2 VB00976		38	11.8	199	</td <td>8</td> <td>6</td> <td>17</td> <td>32</td> <td><1</td> <td><5</td> <td>20</td>	8	6	17	32	<1	<5	20
D2 VB0097 7		23	11.6	19	<2	5	3	4	13	<1,	<5	
D2 VBU0978		20	0.5	97	4	4	3	6	15	<1	<5	1
D2 VB00979		30	11.6	811	8	4	3	6	15	<1	<5	1
D2 VB00980		174	2.7	935	29	722	4	44	87	<1	5	3
D2 VB00981		1,112	3.9	1.085	132	81196	18	5	9	29	18	4
D2 VB00982		68	1.9	1030	9	575	9	3	11	<1	6	2
D2 VB00983		3911	7.4	6963	11	742	16	17	9	<1	46	22
D2 VB00984		785	7.6	5150	61	14211	18	9	9	3	55	11
D2 VB00985		694	7.5	10212	12	546	311	9	4	<1	34	7
D2 VB00986		22	1.3	1198	56	89	5	16	11	<1	<5	1
D2 VB00987		10	0.7	566	31	82	5	5	11	<1	<5	
D2 VB00988		18	0.8	516	18	411	3	5	14	<1	<5	1
D2 VB00989		2.9	1.4	1178	1.3	4?	5	5	1.1	<1	<5	1
02 VB00990		42	1.2	1249	17	42	5	5	13	<1	<5	1
D2 VB00991		61)	3.1	2881)	28	84	5	7	19	<1	7	2
02 VB00992		65	1.6	282	28	125	3	4	12	<1	<5	1
D2 VB00993		85	1.6	1681	211	77	3	3	1.0	<1	<5 (5	3
D2 VB00994		67	11.8	343	67	731	3	?	111	?	<5	
D2 VB00995		1.4	1.0	748	45	1.445	7	22	15	6	<5	1
D2 VB00996		- 23	0.8	274	13	68	3	9	26	<1	<5	1
D2 VB00997		<5	0.3	411	4	99	<1	3	11	<1.	<5	<
02 VB00998		36	N.6	27	15	50	4	7	13	<1	<5	2
D2 VB00999		19	0.7	42	99	463	3	6	111	3	<5	1
D2 VB01UIIN		56	fl.6	75	244	763	3	111	18	5	<5	2
D2 VB01001		19	0.5	144	32	980	4	4	8	4	<5	1
D2 VB01002		29	(1.4	130	17	1390	7	4	7	6	<5	
D2 VB01003		26	11.4	1,119	13	975	5	4	8	4	<5	1
02 VB01U04		21	0.3	93	14	736	4	4	8	3	<5	1
D2 VB01005		25	0.6	86	127	1116	2	4	7	4	<5	<
D2 VB01U06		19	8.9	250	74	1833	3	4	7	8	<5	1
D2 VB01007		31	11.5	94	57	1478	3	4	7	6	<5 15	
D2 VB01008		55	0.5	89	72	1436	2	3	7	5	<5 (5	
D2 VB01009		23	0.4	139	36	1174	3	4	7	4	<5	<

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & HISTING SERVICES

REPORT: V911-1	2742.11							DATE PRINTED: 28-NOV-90 PROJECT: 605-116 PAGE 28				
]							······································		
SAMPLE	FLEMENT	Sb PPM	Fe PCT	Mn PPN	Te PPM	fla PPN	Cr PPN	V PPN	Sn PPN	N PPN	l a PPN	A PC
D2 VB0097N		< 5	2.61	<1[]]]	<1	2300	61	8	<211	<10	6	1.2
D2 VB00971		<5	2.22	<1.00	<111	19111	61	5	<211	<10	5	0.6
D2 VB00972		<5	6.34	<11111	<10	41111	30	3	<20	<10	<1	0.9
D2 VB00973		<5	6.02	<1,110	<10	4200	49	4	<211	<10	2	0.0
D2 VB00974		<5	3.63	<1110	<111	3300	45	4	<20	<10	3	0.0
02 VB00975	**************************************	<5	2.66	<100	<10	2500	.36	4	<211	<10	2	0.
D2 VB00976	•	<5	7.92	<100	111	31111	42	13	<211	<10	<1	0.
D2 VB00977		<5	3.88	<11111	<10	2000	39	5	<20	<10	3	0.
D2 VB00978		<5	3.91	<1U0	<111	2500	42	5	<211	<10	3	0.
D2 VB00979		<5	3.37	<100	<11)	281111	50	6	<211	<10	5	0.
D2 VB00980		<5	>10.00	267	16	4000	121	45	<2fl	<10	<1	2.
D2 VB00981		<5	7.47	<100	17	77 nn	611	6	<20	<10	2	0.
D2 VB00982		<5	6.22	<1110	<1(I	11700	37	3	<20	<10	4	0.4
D2 VB00983		8	>10.00	<1.00	16	41.90	911	7	27	<10	<1	0.
D2 VB00984		18	2.28	<100	<10	34110=	54	6	<20	<10	<1	0.3
D2 VB00985		<5	>10.00	<1.00	21)	3400	105	9	39	<10	<1	0.
D2 VB00986		<5	2.51	<100	<111	46111	145	13	<211	<10	3	0.
D2 VB00987		<5	2.00	<100	<10	3800	1.39	6	<20	<10	5	0.
D2 VBN0988		<5	4.69	<11111	<111	811111	78	5	<20	<10	3	0.0
02 VB00989		<5	2.57	<1,111	<11)	7900	85	4	<21}	<10	4	0.
02 VB009911		<5	2.53	<1111	<18	811111	84	4	<211	<10	5	0.
D2 VB00991		<5	6.36	<1.000	<1))	61.00	76	4	<211	<10	<1	0.
D2 V800992		<5	3.50	<1111	<10	5000	54	6	<211	<10	6	0.
D2 VB00993		<5	>10.00	<100	<111	49111	411	8	<211	<10	1	0.
02 VB00994		<5	4.68	<1110	<111	4300	41	5	<211	<10	9	0.
D2 VB00995		<5	3.34	127	11	221111	78	211	<211	<10	9	1.
D2 VB0 099 6		<5	5.16	192	11	1200	66	18	<20	<111	4	1.
D2 VB00997		<5	2.07	252	<10	1,1,01	53	13	<211	<10	6	1.
D2 VB00998		<5	3.41	397	<11	9811	611	8	<211	<1(I	1	0.
D2 VB00999		<5	3.112	493	<11)	941)	611	7	<211	<10	2	0.
D2 VB01000		<5	3.86	400	11	88()	5(1	10	<211	<10	3	1.
D2 VB01001		< 5	2.72	338	<1B	1200	57	8	<20	<10	5	1.
D2 VB01002		<5	2.65	255	<10	1100	60	5	<2()	<1()	5	1.
D2 VB01003		<5	2.60	1611	<1.0	1200	58	6	<20	<10	4	1.
D2 VB01004	·······	<5	2.42	310	<10	1200	6?	7	<211	<1()	6	1.
D2 VB01005		<5	3.114	674	<1.0	1.1.00	56	7	<20	<10	5	1.
D2 VB01UN6		<5	2.83	288	<10	1200	62	6	<20	<10	5	1.
D2 VB01007		<5	2.82	312	<10	1200	55	5	<20	<10	5	1.
D2 VB01008		< 5	2.89	536	<10	1300	56	6	<20	<10	5	1.
D2 VB01009		<5	2.65	492	11	1.300	63	7	<28	<10	6	1.

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V911-11	2742.11)ATE_PRINTED: 28-NOV-9 PROJECT: 605-116	PAGE 2C
SAMPLE	FLEMENT	Ng	Ca	Na	K	Sr			
NUMBER	UNETS	PCT	PCT	PCT	PCT	PPM	РРИ		
D2 VB00970		0.05	(1.73	(1,118	0.21	47	4		
D2 VB00971		<0.05	0.19	11.116	0.19	24	2		
D2 VB00972		<0.05	(1.26	11.13	0.16	28	3		
D2 VB 0097 3		<0.05	0.19	0,07	0.20	1.6	4		
D2 VB00974		<11.115	(1.15	0.07	0.20	16	3		
02 VB00975		<0.05	0.09	1).1)8	0.17	14	3		
02 VB00976		<0.05	[].21	11.07	0.23	11	2		
D2 VB00977		<0.05	0.10	0.07	0.22	13	2		
D2 VB00978		<11,115	0.10	11,115	11.20	10	3		
D2 VB00979		<0.05	N.44	1).118	0.24	.3N	2		
D2 VB00980		1.39	1.(14	<11,115	0.20	14	8		·····
D2 VB00981		0.11	0.72	<0.05	0.23	7	7		
D2 VB00982		<11,115	0.11	<0.105	0.21	4	5		
D2 VB00983		<0.05	N.35	<d.85< td=""><td>0.08</td><td>3</td><td>6</td><td></td><td></td></d.85<>	0.08	3	6		
D2 VB00984		<11.115	0.37	<11.115	0.07	2	10		
D2 VB00985		0.05	0.11	<0.05	N.N8	2	9		
D2 VBU0986		0.31	11.74	<11.115	IL.13	12	2		
D2 VB 0098 7		<0.05	0.19	<0.85	0.16	8	2		
D2 V800988		<0.05	(1,23	<11.115	11.25	7	5		
D2 VB00989		<0.05	0.12	<0.05	0.19	7	3		······································
D2 V80099N	**ti.	<0.05	0.13	<11,115	(1.22	8	3		
D2 VB00991		<0.05	0.19	<0,85	0.18	4	4		
02 VB00992		<11.115	(1.14	11.119	11.19	29	4		
D2 VB00993		<0.0 <u>5</u>	0.12	0.11	0.20	28	7		···
D2 VB00994		11.13	0.14	<8.405	11.29	11	7		
D2 VB00995		11.66	N.73	<0.05	N.37	13	9		
D2 VB00996		11.47	11.61	<0.05	11.29	18	6		
D2 VB00997		11.69	0 .8 0	<0.05	0.35	41	7		
D2 VB00998		(1.31	2.00	<11.115	0.30	22	6		
D2 VB00999		0.41	1.95	<0.05	D.34	26	1		
D2 VB01000		8.56	2.18	<11.115	0.39	26	8		
D2 VB01001		11.66	1.75	<0,05	0.44	23	7		
D2 VB01002		11.59	1.06	<il.115< td=""><td>0.40</td><td>17</td><td>5</td><td></td><td></td></il.115<>	0.40	17	5		
D2 VB01003		0.42	N.49	<0.05	0.43	9	3		$G = O_{1}^{-1}$
D2 VB01004		11.61	1.07	<11.115	(1.47	15	5		·····
D2 VB01005		1.90	1.76	<0.05	0.42	20	5		
02 VB01006		11.64	0.58	<11.45	0.45	10	3		
02 VB01007		0.55	0.72	<11,115	0.40	11	5		
D2 V801008	10 and 11	0.75	1.13	<0.105	0.43	14	6		
D2 VB01009		0.81	1.42	<0.05	N.46	17	4		

.

A DIVISION OF INCHCAPE INSPECTION & RESERVACES.

CLIENT: FALCOMBRIDGE LIMITED BY: 6. ALLEN DATE PRIMED: 4-DEC-90 RODER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION METHOD 1 Co Copper 3 U.NI PCI HCL-HN03-HF Atoxic Absorption 2 Zn Zin: 1 0.01 PCI HCL-HN03-HF Atoxic Absorption SAMPLE TYPES NUMBER 512F FRACTIONS NUMBER 4 SAMPLES FROM STORAGE 4 REPORT COPIES TO: RR. NILS VON FERSEN INVOICE TO: RR. NILS VON FERSEN RR. GORD ALLEN RR. GLEN FLETT	REPORT: V90-	-02742.	6 (COMPI	LETE)		R	EFERENCE INFO: SHIP MENT #90-14	<u></u>
NUMBER OF ANALYSES DEECTION LINIT EXTRACTION HETHOD 1 Cu Copper 3 0.01 PC1 HCL-HN03-HF Atosic Absorption 2 Zn Zinc 1 0.01 PC1 HCL-HN03-HF Atosic Absorption SamPLE TYPES NUMBER SIZE FRACTIONS NUMBER SamPLE TYPES Atosic Absorption J D RILL CORE 4 2 -150 4 SamPLE FREPARATIONS NUMBER D D RILL CORE 4 2 -150 4 SamPLE FREPARATIONS NUMBER REPORT COPIES TO: NR. NILS VON FERSEN NR. GUED ALLEN NR. GUED ALLEN NR. GUED ALLEN NR. GUED FLETT INVOICE TO: NR. NILS VON FERSEN NR. GUEN FLETT INVOICE TO: MR. NILS VON FERSEN NR. GUEN FLETT			SE LIMITE	Đ				
2 Zn Zinc 1 0.01 PCT HCL-HN03-HF Atomic Absorption SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER SAMPLE TYPES NUMBER D DRILL CORE 4 2 -150 4 SAMPLE TYPES FROM STORAGE 4 REPORT COPIES TO: MR. NILS UON FERSEN INVOICE TO: MR. NILS UON FERSEN INVOICE TO: MR. NILS UON FERSEN INVOICE TO: MR. NILS UON FERSEN			ENENT	~		EXTRACTION	METHOD	
D DRILL CORE 4 2 -150 4 SAMPLES FROM STORAGE 4 REPORT COPIES TO: MR. NILS VON FERSEN MR. GORD ALLEN NR. GLEN FLETT								
0 DRILL CORE 4 2 -150 4 SAMPLES FROM STORAGE 4	SAMPLE	TYPES		NUMBER	SIZF FF			
RR. GORD ALLEN NR. GLEN FLETT	D DRIL	L CORE		4	2 -15			
	REPORT	COPIES	MR.	GORD ALLEN	SEN	INVOIC	E TO: MR. NILS VON FE rsen	
							8- N	
	·					 		
		-		• **				

,

Certificate of Analysis

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

				UHIE-	PRINTED: 4-DEC-9		
REPORT: V90-	02742.6			PROJE	CT: 605-116	PAGE 1	
SAMPLE	ELEMENT	Cu	Zn				
NUMBER	UNITS		PCT				
D2 VB00981			.76				
D2 VB00983 D2 VB00984		0.71 0.57					
D2 VB00985		1.07					
				 ······			
						$a_{i}=a_{i}+a_{i}$	
		······					
					_		
	······································				-		
					1/1		
					IA://	/ _	

Registered Assayer. Province of British Columbia

.

Certificate of Analysis

.

t-/C

p,

A DIVISION OF INCHCAPE INSPECTION & TENTES OF A RVICES

REPORT: V90-I				DATE PRINTED:4-DEC-9 PROJECT: 6(15-116	0 PAGE 2
SAMPLE NUMBER	ELEMENT UNITS	Cu PCT	Zn PCT		
VBDD981 Duplicate			0.76 0.76		
VB00985		1.07			
Duplicate		1.06			
·····					5

APPENDIX E

,

Statement of Costs

STATEMENT OF COSTS

Drilling Costs			
Burwash Contract Drilling		\$ 31,819	9.08
Site Preparation and Reclamation			
Ellison Excavating		\$ 1,500	.00
Analytical			
Bondar Clegg		\$ 1,632	.00
Cominco		\$ 462	.00
Personnel			
R. Stewart Project Geologist	2 days	\$ 500	.00
G. Allen Geologist	10 days	\$ 2,000	.00
R. Barrick Technician	5 days	\$ 450	.00
B. Cochrane Technician	2 days	\$ 220	.00
Vehicle			
3/4 ton truck 10 days		\$ 450	.00
Office Overhead			
Rent, utilities, report costs		\$ 850	.00
ACTUAL TOTAL:		\$ 39,883	.08
TOTAL REPORTED ON STATEMENT	ſ OF WORK:	\$ 35,000	.00

APPENDIX F

.

.

Statements of Qualifications

STATEMENT OF QUALIFICATIONS

I, Robert D. Stewart, an employee of Falconbridge Limited, with offices at 202 - 856 Homer Street, Vancouver, British Columbia, V6B 2W2, do hereby certify that:

- I. I hold a B.Sc. (Hon.) in Geology from Mount Allison University, Sackville, New Brunswick, having graduated in 1975 and a M.Sc. in Geology from Carleton University, having graduated in 1979.
- 2. I reside at 2621 Bruce Road, R.R. #7, Duncan, B.C., V9L 4W4.
- 3. I have been continuously engaged as a geologist since 1979 with Newmont Exploration of Canada Limited (1979-1980) and Texasgulf/Kidd Creek Mines/Falconbridge (1980 to present).
- 4. I am a Fellow in the Geological Association of Canada.
- 5. I am the project geologist for the Chemainus Project and that the work was completed under my direction.

Dated at Chemainus, B.C.

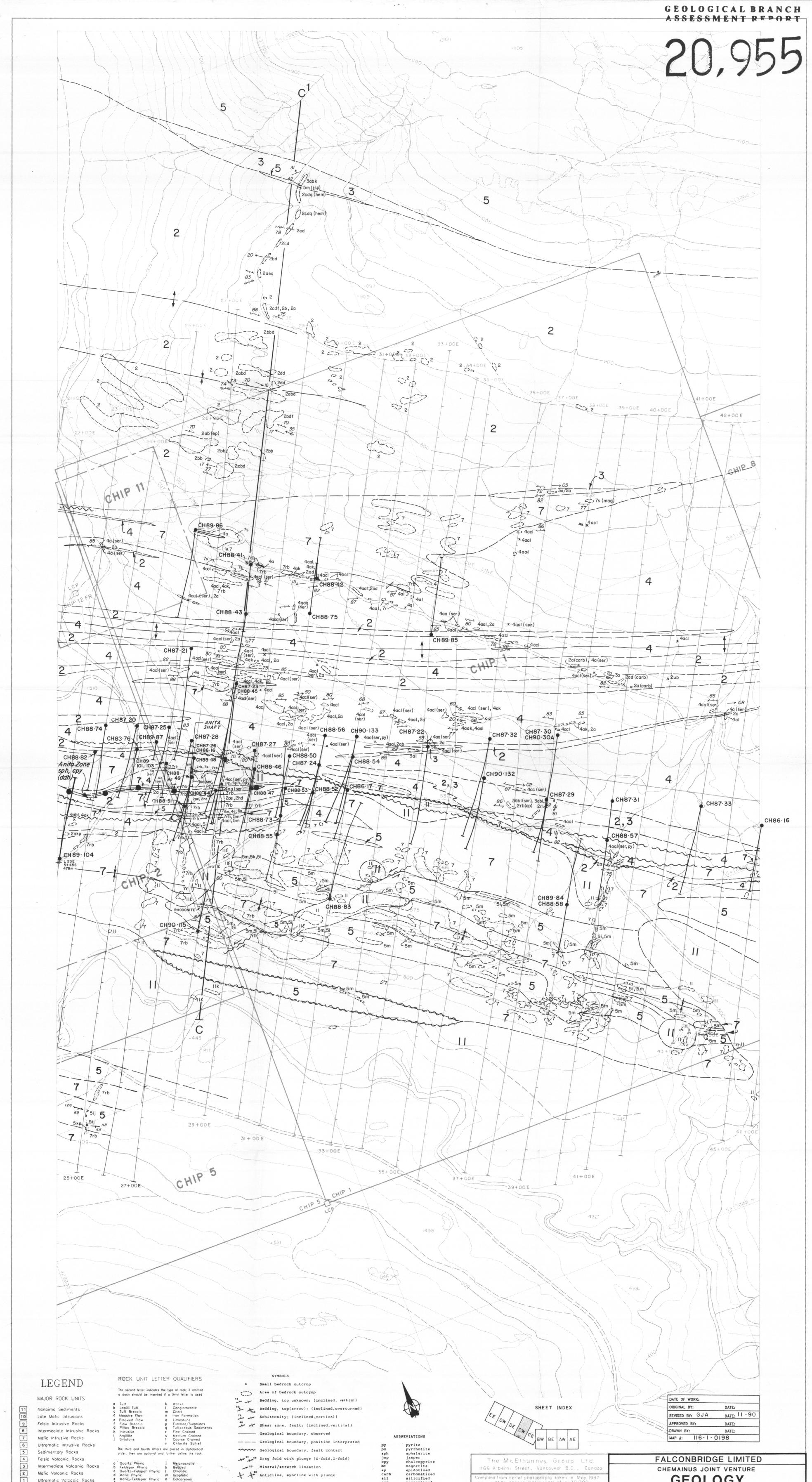
February 8, 1991

Kolut Stewat

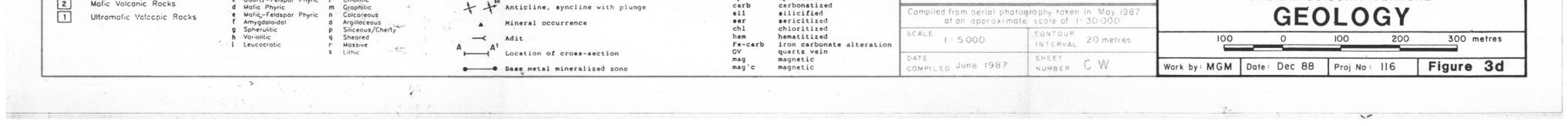
Robert Stewart Senior Project Geologist

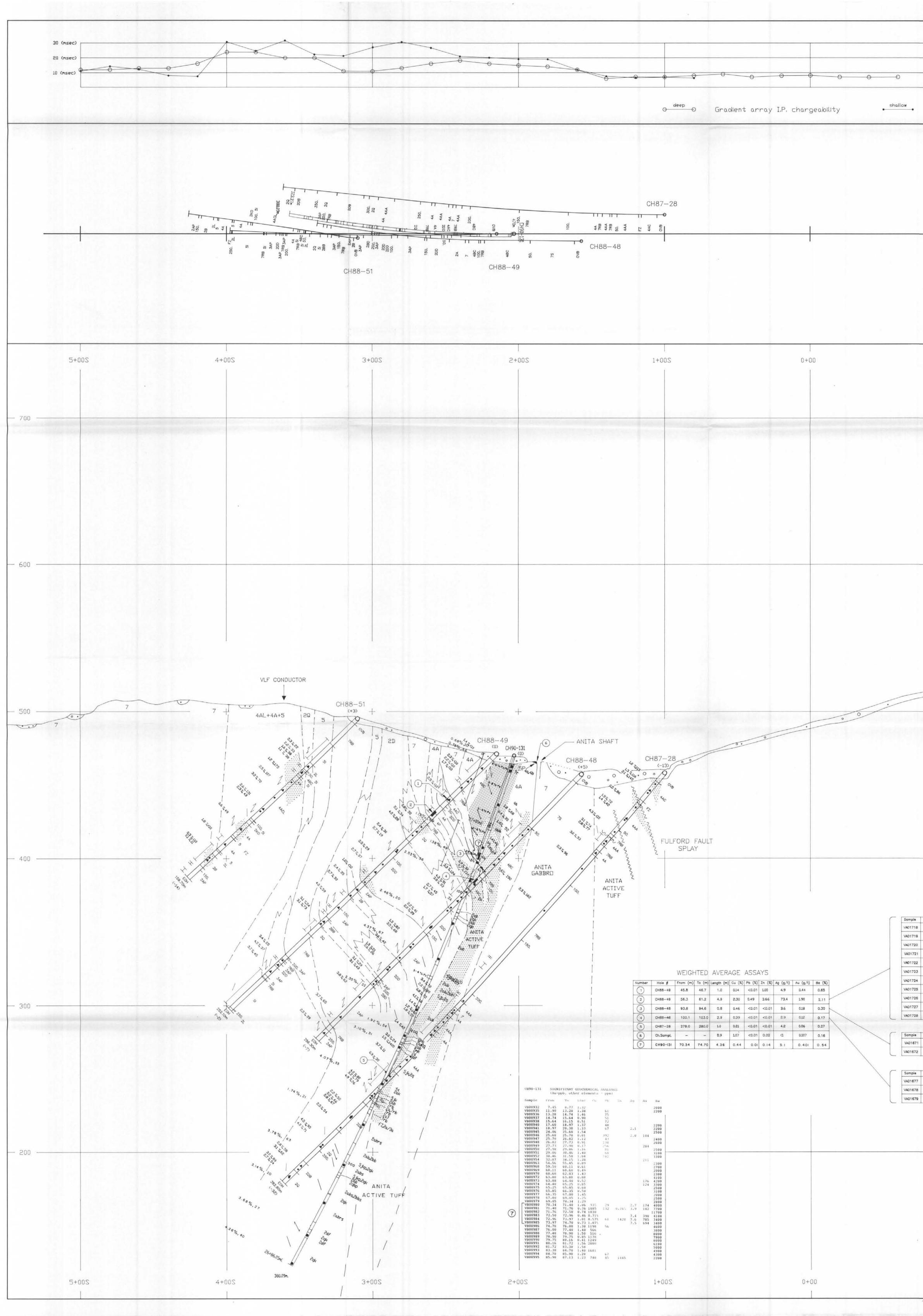
STATEMENT OF QUALIFICATIONS

I, Gordon J. Allen, an employee of Falconbridge Limited, with offices at 202 - 856 Homer Street, Vancouver, British Columbia, V6B 2W2, do hereby certify that:


- 1. I hold a B.Sc. (Hon.) in Geology from the University Of British Columbia, having graduated in 1975.
- I reside at 2475 Jackson Valley Road, R.R.1, Duncan, B.C., V9L 1M3.
- 3. I have practised as a geologist in mineral exploration for fifteen years.
- 4. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.

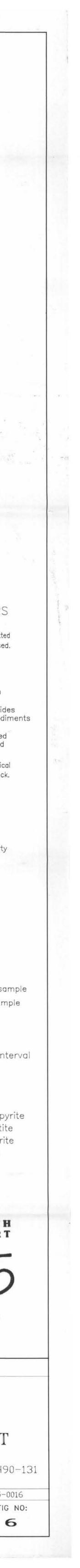
Gordon J. Allen

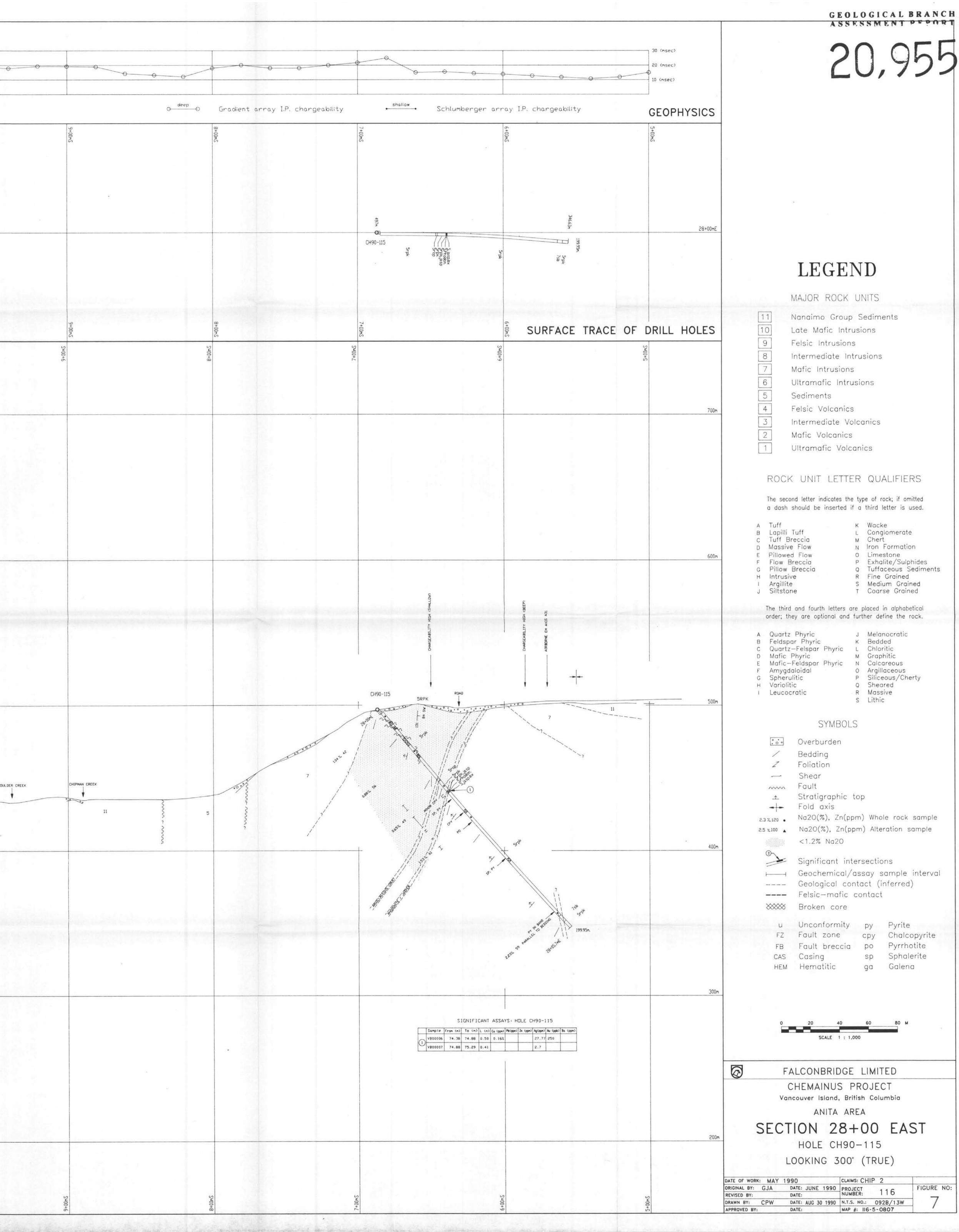

Gordon J. Allen, P. Geol.

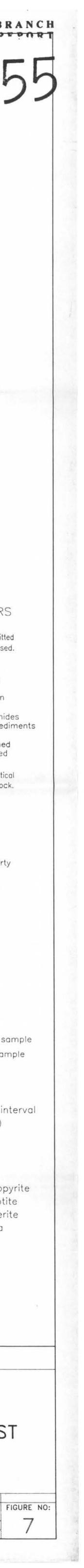

Chemainus, B.C.

Due. 21, 1990

m Graphilic




30 (Msec)	
20 (msec)	
10 (msec)	
Schlumberger array I.P. chargeability GEOPHYSIC	S
	LEGEND
CUREAGE TRACE OF RRUL HOLD	MALOD DOOK LINITS
SURFACE TRACE OF DRILL HOLE	11 Nanaimo Group Sediments
1+00N 2+00N	10Late Mafic Intrusions9Felsic Intrusions
	8Intermediate Intrusions7Mafic Intrusions
70	6 Ultramafic Intrusions 5 Sediments
	4Felsic Volcanics3Intermediate Volcanics
	2Mafic Volcanics1Ultramafic Volcanics
	ROCK UNIT LETTER QUALIFIERS
	The second letter indicates the type of rock; if omitted a dash should be inserted if a third letter is used.
60	A Tuff K Wacke
	с Tuff Breccia м Chert D Massive Flow N Iron Formation E Pillowed Flow O Limestone
	F Flow Breccia P Exhalite/Sulphides G Pillow Breccia Q Tuffaceous Sedim H Intrusive R Fine Grained I Argillite S Medium Grained
	J Siltstone T Coarse Grained The third and fourth letters are placed in alphabetical
• • • O	order; they are optional and further define the rock. A Quartz Phyric J Melanocratic
· · · · ·	B Feldspar Phyric K Bedded C Quartz-Felspar Phyric L Chloritic D Mafic Phyric M Graphitic
50	H Variolitic Q Sheared
	I Leucocratic R Massive S Lithic
	SYMBOLS Overburden
	 Bedding Foliation
	∽ Fault ↑ Stratigraphic top
	2.3 %,120 Na2O(%), Zn(ppm) Whole rock sam 2.5 %,100 Na2O(%), Zn(ppm) Alteration samp
40	00 - <1.2% Na20 Significant intersections
SIGNIFICANT ASSAYS	⊢ Geochemical/assay sample inte — — Geological contact (inferred)
Hole # From (m) To (m) Length (m) Cu (%) Pb (%) Zn (%) Ag (g/t) Au (g/t) Ba (%) CH88-49 56.3 55.6 0.3 1.56 1.38 19.85 74 1.95 0.71	— — Felsic-mafic contact u Unconformity py Pyrite
CH88-49 57.0 57.4 0.4 1.43 2.36 4.60 145 5.07 0.72 CH88-49 57.4 57.8 0.4 2.39 0.63 3.80 80 1.89 2.60	FZ Fault zone cpy Chalcopyr FB Fault breccia po Pyrrhotite CAS Casing sp Sphalerite
CH88-49 57.8 58.2 0.4 2.04 0.21 10.55 68 1.06 3.20 CH88-49 58.2 58.6 0.4 4.75 0.18 1.77 119 2.57 2.90 CH88-49 58.6 59.0 0.4 6.40 0.03 2.60 136 0.96 2.50	CAS Casing sp Sphalerite ga Galena
	00 —
CH88-49 60.8 61.2 0.4 1.60 0.03 0.18 33 0.34 1.70 Hole # From (m) To (m) Length (m) Cu (%) Pb (%) Zn (%) Ag (g/t) Au (g/t) Ba (%)	GEOLOGICAL BRANCH
CH88-48 93.8 94.2 0.4 0.58 <0.01 5 0.19 0.44 CH88-48 94.2 94.6 0.4 0.33 <0.01	ASSESSMENT REPORT
Hole # From (m) To (m) Length (m) Cu (%) Pb (%) Zn (%) Ag (g/t) Au (g/t) Bo (%) CH88-48 100.1 101.4 1.3 0.16 <0.01	20,955
CH68-48 102.2 103.0 0.8 0.38 <0.01 <0.01 4 0.12 0.13	0 20 40 60 80 M
NOTE:	SCALE 1 : 1000
SURVEYED COORDINATES FOR HOLES DRILLED IN 1989,	00 - 🕢 FALCONBRIDGE LIMITED CHEMAINUS JOINT VENTURE
COLLAR LOCATIONS ARE BASED ON CHAINED FIELD COORDINATES	Vancouver Island, British Columbia ANITA AREA
• <	SECTION 27+00 EAST
	Holes CH87-28, CH88-48,-49,-51, CH90
	WORK BY: GJA CLAIM: CHIP 1 DWG.#116-5-00 DATE OF WORK: DEC 10 1990 PROJECT NO: FIG
1+00N 2+00N	DRAWN BY: I.P.S. 116



DATE DRAWN: DEC 10 1990 N.T.S. NO.: 0928/13W

		4	
	30 (msec)	0 0 0 0	0 0 0 0 0
	10 (msec)		
	12+00mS	11+00mS	10+00mS
8+00mE			
	12+00mS	11+00mS	10+01
	12+00mS	Sw00+11	10+00mS
00m			
10m			
)0m			
Om			
0m			
00m			
	12+00mS	11+00mS	Sm00+01

