SUB-RECORDER								
FEB 1 9 1991								
M.R. # \$								
VANCOUVER, B.C.								

LOG NO: Jeb 27/91	RD.
ACTION:	
FILE NO:	

DIAMOND DRILLING REPORT

on the

SAM GROUP OF CLAIMS

KAMLOOPS MINING DIVISION

NTS 82M/4W

Lat 51°08'N

Long 119°49'W

Operator:

Minnova Inc. 3-311 Water Street. Vancouver, B.C. V6B 1B8

GEOLOGICAL BRANCH ASSESSMENT REPORT

20.984

Alan R. Hill Febuary, 1991.

TABLE OF CONTENTS

Page No.

Introduction 1
Location and Access 1
Topography, Climate, and Vegetation 1
Property 2
History 2
Regional Geology 4
Property Geology 4
Diamond Drilling 5
Conclusions and Recommendations 8

LIST OF FIGURES

Figure	1	:	Location	n map	(follow	ing po	g. 1)		
Figure	2	:	Claim co	onfig	uration	map (followi	ing pg	. 2)
Figure	3	:	Property	g Geo	logy (fo	llowi	ng pg.	4)	
Figure	4	:	Cross-se	ection	n 96+50W	, DDH	RG391	(back	pocket)
Figure	5	:	**	"	100+50W	, DDH	RG392	(back	pocket)
Figure	6	:			121+00W	, DDH	RG393	(back	pocket)

LIST OF APPENDICES

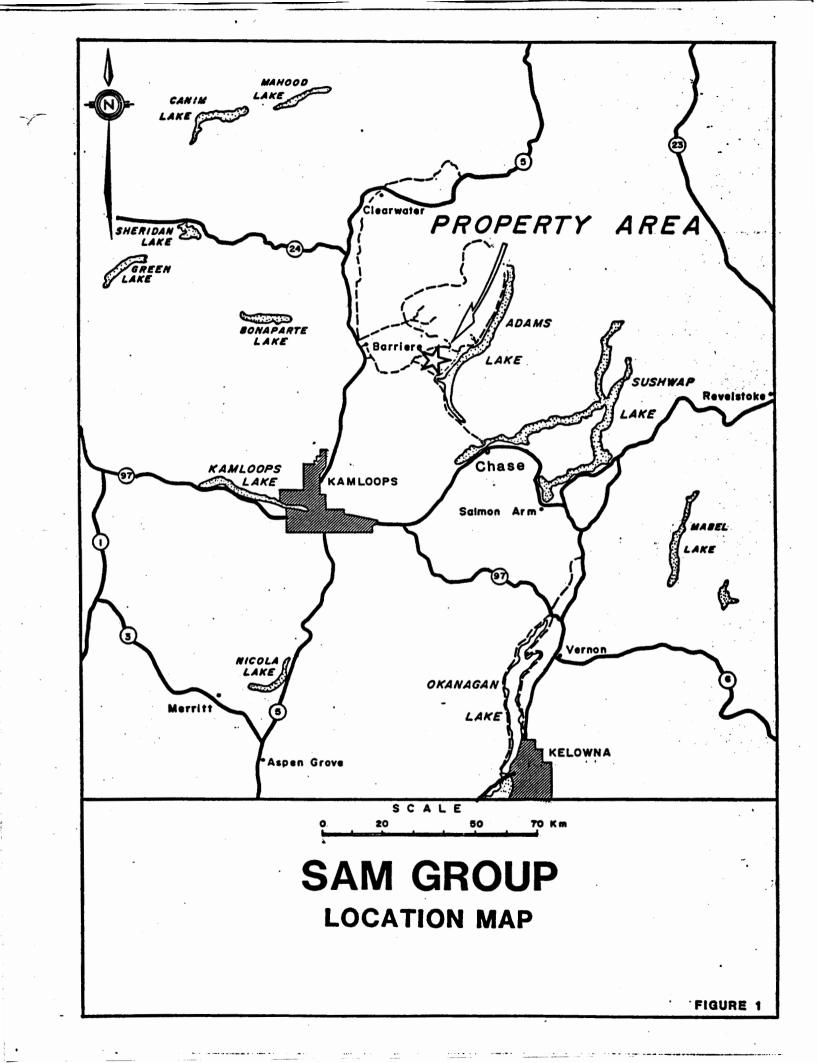
Appendix 1 : Statement of Costs Appendix 2 : Diamond drill Logs and Analytical Results Appendix 3 : Statement of Qualifications

INTRODUCTION

The Sam Group of claims encompasses some 2000 hectares of rolling highlands on the Adams Plateau, including the northern flanks of Samatosum Mountain and parts of the Johnson Creek valley, about 30 km east of Barriere, B.C. The property includes the Samatosum Mine, which began extracting polymetallic ore in June 1989, from a deposit with reserves estimated at 634,984 tonnes grading 1035g/t Ag, 1.2% Cu, 1.7% Pb, 3.6% Zn, 1.9 g/t Au.

This report summarizes the results of three diamond drill holes, RG391 to RG393, drilled in the fall of 1990, which fulfill the exploration requirements to keep the mineral claims in good standing as shown in Table 1.

LOCATION AND ACCESS


Located approximately 100 km northeast of Kamloops, the Sam property is easily accessible by highways and good quality gravel roads. Forest service access roads cross near the centre of the property (fig.1) and provide routes from both the west and southeast.

The town of Barriere (pop. 2000) lies 30 km to the west on the Yellowhead highway, and can provide all necessary services. Alternatively, the town of Chase is 45 km to the south of the property, on the Trans-Canada highway.

TOPOGRAPHY, CLIMATE, AND VEGETATION

Physiographically, the claim area lies within the Adams Plateau, an area typified by well forested, rolling mountain terrain. Elevations on the property range from approximately 1100m at Johnson Lake to 1400m at the peak of Samatosum Mountain.

The climate is moderate with temperatures ranging from extremes of -25 degrees Celsius in winter to 30 degrees Celsius in the summer. Precipitation is semi-arid to moderate, with a snow free period from May to November.

Vegetation on the property consists of stands of balsam, fir, pine, cottonwood, birch and cedar. The claim area has been extensively clear-cut by logging companies, and is currently part of the summer range for cattle from ranches in the Sinmax Valley to the south.

PROPERTY

The ownership of the Sam Group of claims is part of a joint venture agreement with Rea Gold Corporation (Minnova 70%, Rea Gold 30%), where Minnova Inc. is the operator. The claim group consists of a Mining Lease, and ten claims as shown below in Table 1 and in Figure 2. The drilling was carried out on the mining lease exclusively.

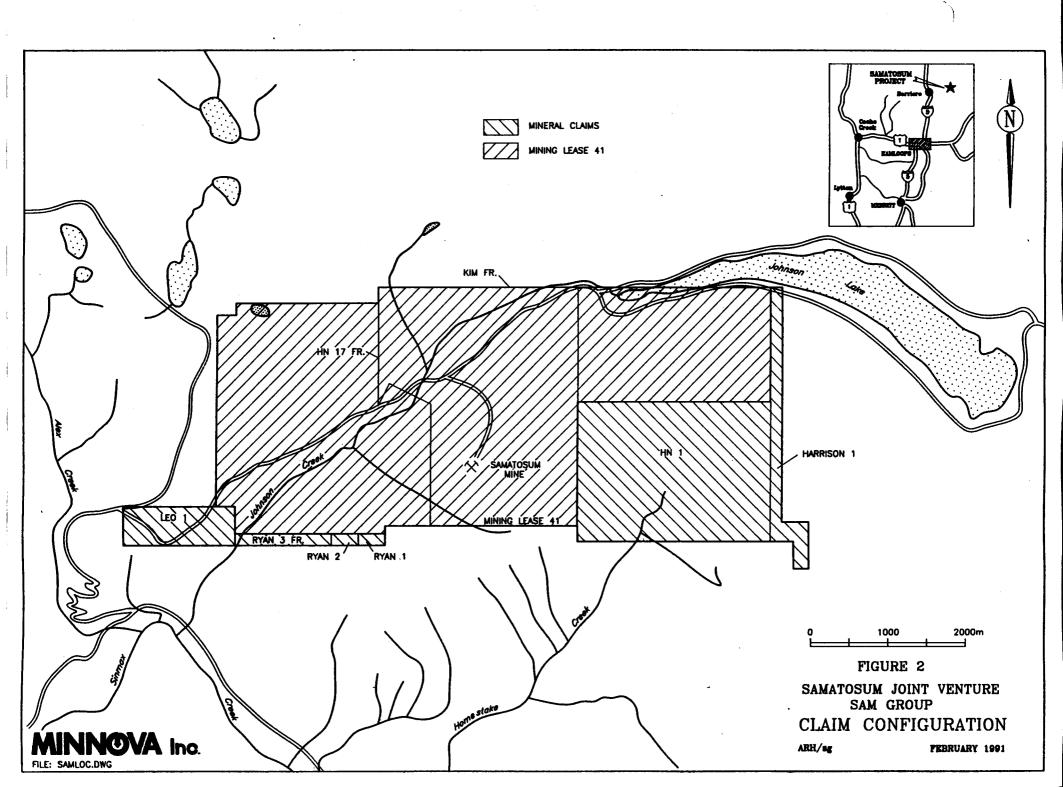

CLAIM	REC #	UNITS	CURRENT EXP.DATE	NEW EXP.DATE
HARRISON 1	8011	8	09/06/93	09/06/2000
HN-1	4802	20	10/07/92	10/07/1994
HN-12 Fr.	5031	1	11/22/92	11/22/2000
HN-17 Fr.	5036	1	11/22/92	11/22/2000
HN-19 Fr.	5038	1	11/22/92	11/22/2000
LEO 1	7931	4	07/28/93	07/28/2000
RYAN 3 Fr.	7957	1	08/12/93	08/12/2000
RYAN 1	7958	1	08/12/93	08/12/2000
RYAN 2	7959	1	08/12/93	08/12/2000
KIM Fr.	7961	1	08/12/00	same
Mine Lease	#41	1*	10/03/2019	(30 yr. lease)

TABLE 1. SAM GROUP OF CLAIMS

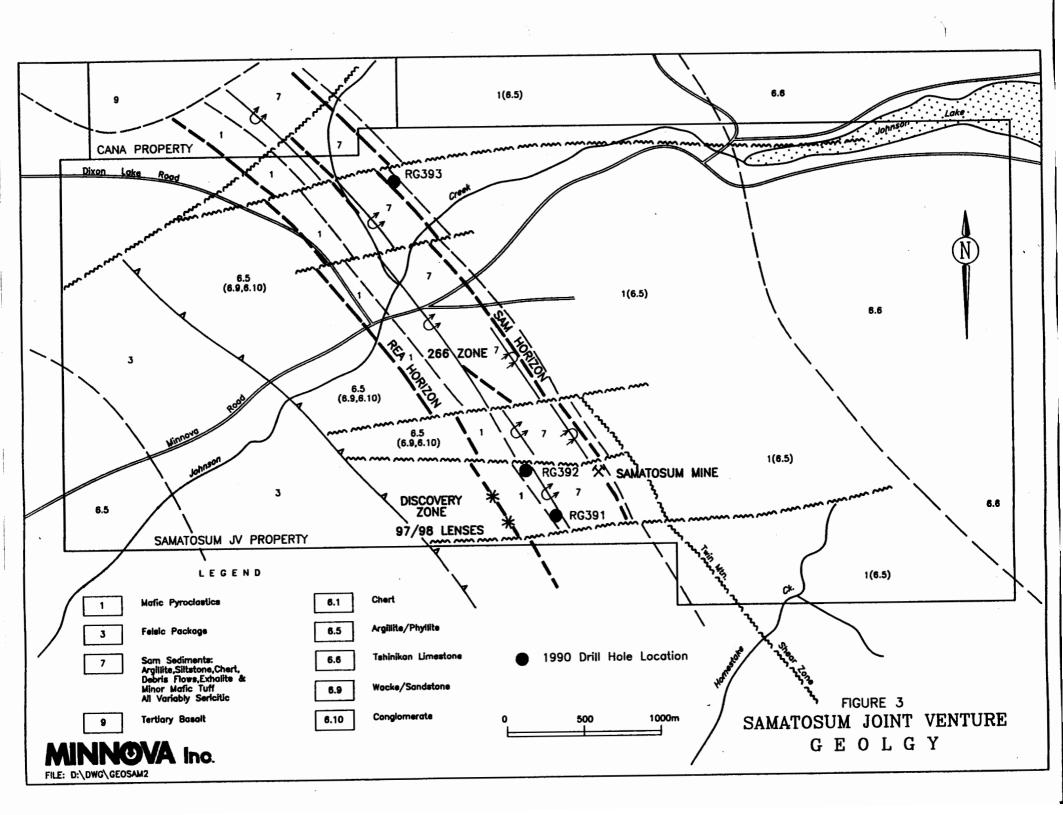
*Considered one unit for grouping purposes.

HISTORY

The Adams Plateau on the west side of Adams Lake has received intermittant exploration activity since the 1920's, due to the presence of several large rusty rock exposures and numerous small base and precious metal occurences. Only the

Homestake Mine, in the Sinmax Valley, reported minor production prior to the discoveries on Mt. Samatosum.

In 1983, Mr. Al Hilton of Kamloops located and staked a hematitic gossan that had been recently uncovered by active logging on the NW flank of Mt. Samatosum. He had been drawn to the area by anomalous soil and silt samples collected during a two year prospecting program utilizing a field geochemical kit. Trenching revealed thepresence of gold-bearing massive sulphides, which would become known as the Discovery Zone. The Sam property was optioned by Rea Gold Corporation who in turn optioned it to Minnova Inc. (then named Corporation Falconbridge Copper). Exploration drilling outlined a total of three small, metallurgically difficult massive sulphide pods containing significant amounts of gold. Sub-economic reserves were estimated at approximately 150,000 tonnes of of arsenical mineralization grading 7.2 g/t Au, 85.7 g/t Ag, 0.6% Cu, 2.5% Pb, and 2.6% Zn. Exploration of other targets on the property by Minnova Inc., utilizinq geochemistry, geophysics, and sound geological thinking, led to the 1986 discovery of the "Sam Deposit" by diamond drilling. Geological reserves were calculated at 634,984 tonnes containing 1035 g/t Ag, 1.9 g/t Au, 1.2 % Cu, 1.7% Pb, 3.6% Zn. Production began in June, 1989, from a small open pit at a rate of about 450 tonnes per day.


Exploration has since been ongoing on the mine property (Sam Group), primarily in the form of diamond drilling.

REGIONAL GEOLOGY

The area comprises a package of structurally complex lowgrade metamorphic rocks which lie along the western margin of the Omineca Belt. The package is flanked to the east by the highgrade metamorphic rocks of the Shuswap Complex and to the west by rocks of the Intermontaine Belt. It includes an assemblage of metavolcanic and metasedimentary rocks of the Paleozoic (Cambrian to Mississippian) Eagle Bay Assemblage. These have undergone several phases of deformation involving folding and thrust faulting, and producing a moderate to strong foliation in most of the units. Deformation generally increases eastward towards the margin of the Shuswap Complex. To the north the Eagle Bay Assemblage is intruded by granite and quartz monzonite of the Cretaceous Baldy Batholith.

PROPERTY GEOLOGY

The Sam property is entirely underlain by Eagle Bay rocks. They consist of principally northwest trending, northeast dipping rock-type assemblages of: limestone marble, mafic volcanics, mixed cherty argillaceous sediments (including debris flows and exhalative horizons), black distal turbidites, and felsic volcanics. The rocks display a strong NW regional axial planar foliation (dip 55° E) with tight overturned folding and accompanying thrust faulting. The Samatosum sulphide deposit sits at a particular horizon in cherty mixed sediments near a major volcanic-sedimentary break. This "Sam Horizon", although highly

deformed, can be traced across the entire property. The Discovery Zone ("Rea Deposit") sits in a similiar package of rocks some 500 metres to the southwest of the Sam Deposit and can also be traced across the property. Mineralogically the two deposits are out very different with Sam dominated by coarse grained tetrahedrite, sphalerite, galena, chalcopyrite and quartz while Rea is dominated by fine grained arsenopyrite, pyrite, sphalerite, galena, quartz and barite. The relationship between the two deposits remains uncertain, but the stratigraphic setting has led variously to speculation that the two deposits sit on structural repititions of the same horizon and are correlative, or rather they represent the stacking of deposits from different levels in a changing and long-lived hydrothermal system.

DIAMOND DRILLING

In late September of 1990 three holes were diamond drilled to test favourable stratigraphy in previously untested areas. The detailled logs for drillholes RG391, RG392, and RG393 appear in appendix 1, and they are plotted in cross-section in figures 4, 5, and 6. The results are discussed below.

DDH RG391 - RESULTS

Hole RG391 was drilled to test the Rea Horizon on section 96+50W at a depth of 260 metres below surface. The hole collared in mixed cherty argillaceous sediments displaying tectonic brecciation and disharmonic small scale folding attributable to a brittle-ductile fault structure, probably a thrust, which

culminates with 2.3m of friable graphitic gouge (from 75.5 - 77.8 m). Once past the fault, the hole encountered a thick pile of ferrodolomitized mafic volcanics, with subordinate amounts of silty argillaceous interflow sediments. From 265.7 - 273.3 the amount of pyrite increased from trace levels to 15% with associated silicification and sericitization of the mafics. The target stratigraphy followed and consisted of thinly bedded "ribbon" chert and cherty argillite that was highly deformed, and contained 5-7% disseminated and fracture filling pyrite. Base metal sulphides were present only in crosscutting quartz stringers, and assayed .15% Cu, 1.2% Zn, 1.2% Pb, 12.8 g/t Ag, .45 g/t Au over 2.5m (286.9 - 289.4m). The hole then proceeded through relatively barren intermediate pyroclastics, argillite, and lithic wacke to a final depth of 488.9 metres.

RG392 - RESULTS

Hole RG392 was drilled on line 100+50W to intersect the Rea Horizon at a depth of 225 metres below surface. The hole also collared in graphitic breccia interpreted to be the same thrust fault, followed by a thick interval of ferrodolomitized mafics (80.5 - 221.8 m). The target stratigraphy followed conformably and consisted of weakly pyritic chert and argillite, with some of the pyrite occuring in thin laminations. Assaying returned no significant values in base or precious metals. The hole continued through weakly silicified and brecciated lithic wacke, argillite, and siltstone to a final depth of 371.2m. Some of these mixed

sediments were also suspected to contain a tuffaceous component, based on colour and patchy carbonatization. Slightly elevated levels in arsenic and gold at a geochemical level were attributable to the alteration associated with fault brecciation.

RG393 - RESULTS

This hole targeted a different package of rocks than the previous two holes. It was drilled on line 12100W to intersect the "Sam Horizon" in the northwest portion of the property. The hole collared in relatively undeformed laminated distal turbidites which gradationally gave way to coarser arenaceous to conglomeratic rocks downhole. At the 82.5m mark carbonatized mafic volcanics were encountered, and this lithology continued to 130.0m. Light grey chert and argillite, in highly deformed and brecciated textures followed, and hosted 10% white guartzcarbonate veins. This was thought to represent the Sam Horizon. One of these veins contained 5% sphalerite, minor galena and chalcopyrite, and trace amounts of tetrahedrite. Assays returned from this interval (139.8 - 140.6m) were .19% Cu, 1.61% Zn, .65% Pb, 55.7g/t Ag, and 1.39g/t Au over 0.8m. More carbonatized mafics followed from 172.4 - 198.2m, and 231.9 247.1m ---alternating with intervals of mixed sediments containing 5-10% disseminated pyrite. The only significant intersection was again associated with quartz-carbonate flooding (227.4 - 227.9m) and assayed .833% Cu, 1.14% Zn, .24% Pb, 69.7g/t Ag, and 1.64g/t Au. The hole ended at 261.2 metres.

CONCLUSIONS AND RECOMMENDATIONS

None of the three holes, RG391-RG393, encountered economic mineralization, but two of them did intersect significant polymetallic grades over narrow widths, while the other (RG392) encountered geochemically anomalous levels in arsenic and gold. The targeted horizons, namely the Sam and Rea, were found to be recognizable even in the presence of intense deformation. Indeed sufficient evidence exists to suggest that a hydrothermal system was once active and extended to include the vicinity of the three holes. Exhalative rocks were scarce, however, and represented only by minor ribbon cherts, and thin pyrite laminae, indicative of a distal enviroment.

It should be noted that the three holes discussed above are part of an ongoing drill program, expected to continue through the life of the Samatosum mine. Further drillholes are recommended on both the Sam and Rea horizons, both up and down dip, as well as along strike. It is hoped that this will enable trends to be delineated, which could lead to the discovery of new centres of mineralization, and hopefully add to the reserves currently being mined on the property.

APPENDIX I STATEMENT OF COSTS

STATEMENT OF COSTS

up to Oct.7 post Oct.7

DIAMOND DRILLING

Direct Drilling Costs (1121.3m @ \$77/m) (Frontier Drilling Ltd.)..... \$86,340.10

ANALYTICAL COSTS

Min-En Labs, North Vancouver, B.C: (155 Assays @ \$19.07/sample)..... \$2,955.61

PERSONNEL

A. Hill - Project Geologist Sept 18-Oct 7 (20 days @ \$200/day) \$4000 Oct 8-Oct 15 (8 days @ \$200/day)	\$1600
A. French - Geologist Sept 18-Oct 7 (20 days @ \$150/day) \$3000 Oct 8-oct 15 (8 days @ \$150/day)	\$1200
S. Fraser - Field Technician Sept 18-Oct 7 (20 days @ \$100/day)\$2000 Oct 8-Oct 15 (8 days @ \$100/day)	\$ 800

LOGISTICS

Vehicles:	\$ 585	\$ 360
Food and Accomodation:	\$2400	\$ 480

MISCELLANEOUS COSTS

Drafting,	comp	uter, s	supplies	5	• • •		\$ 800
			BEFORE AFTER		-	\$98,325.10	\$8195.61
	5,	IUIMI	AFILK	001	1750.		\$0193.01

GRAND TOTAL (A+B) : \$106520.71

APPENDIX II DIAMOND DRILL LOGS AND ANALYTICAL RESULTS

HOLE NUMBER: RG391	-	MINNOVA INC. LL HOLE RECORD	IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: SAN	PLOTTING COORDS GRID: est	ALTERNATE COORDS GRID: est.	COLLAR DIP: -70°30' 0"
PROJECT NUMBER: 240	NORTH: 299.00N	North: 2+99N	LENGTH OF THE HOLE: 488.90m
CLAIM NUMBER:	EAST: 9650.00W	EAST: 96+50W	START DEPTH: 0.00m
LOCATION: Beneath Rea Conc.	ELEV: 1360.00	ELEV: 1360.00	FINAL DEPTH: 488.90m
	COLLAR GRID AZIMUTH: 180° 0' 0"	COLLAR ASTRONOMIC AZIMUTH: 225° 0' 0"	
DATE STARTED: September 17, 1990	COLLAR SURVEY: NO	PULSE EM SURVEY: NO	CONTRACTOR: Frontier Drilling
DATE COMPLETED: September 24, 1990	MULTISHOT SURVEY: NO	PLUGGED: NO	CASING: pulled
DATE LOGGED: September 24, 1990	ROD LOG: NO	HOLE SIZE: NQ	CORE STORAGE: Samex Camp

PURPOSE: To test the Rea horizon in vicinity of RG-43, whichwas abandoned short of target. Laid out by survey

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
20.70	•	-72* 01	ACID	OK		•	-	-	•	•	
71.90	-	-71* 0*	ACID	OK		-	•	•	-	-	
129.20	•	-71° 0'	ACID	OK			•	-	-	-	
188.70	•	-70° 0'	ACID	OK		•	•	•	-	-	
236.80	•	0* 01	ACID		BAD ETCH	-	• .	•	-	-	
310.00	•	-67° D'	ACID	OK		-	•	-	-	-	
364.20	•	-65* 0'	ACID	OK		•	-	-	-	-	
426.70	•	-63° 0'	ACID		WEAK ETCH	•	-	•	-	-	
462.40	-	-62° 0'	ACID	OK		-	•	-	-	-	
458.40	209 01	-62* 0*	TRO-PARI	OK	TROPARI	•	-	-	•	•	
-	•	-	-	•		-	•	•	•	-	
-	-	•	-	-			•	•	-	-	
•	•	-	•	-		•	-	-	•	•	
•	-	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	•	•	-	-	
-	-	-	•	-		•	•	-	-	-	
-	•	-	-	-		•	-	-	•	•	
•	•	-	-	-		1 -	•	•	-	-	
-	•	-	-	-		1 •	-	-	•	-	
-	-	-	-	•		•	•	•	-	-	
-	•	-	-	-		•	-	-	-	-	
-	•	•	-	•			•	-	-	-	
-	•	-	-	•		-	-	-	-	-	
•	-	-	-	-		-	•	-	•	-	
•	-	-	-	-		-	•	•	•	-	
-	-	-	-	-		-	•	-	-	•	
-	-	-	. •	-		· ·	•	-	-	•	
•	-	-	•	-		•	•	-	-	-	

HOLE NUM	BER: RG391	DATE: 29-October-1990				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERAL IZATION	REMARKS
0.00 TO 19.50	«CS(i/WSTE DUMP»	Triconed through the waste dump. No return to sample and no recovery			· ·	
19.50 TO 21.80	«CHERT»	Colour: pale grey Grain Size: aphanitic Styloitic argillaceous partings, in dense white to pale grey chert Core is broken, about 80% recovery Weak foliation/parting @	60	Hazy bordered qtz veinlets throughout, probably just sweats. Unit is a cherty argillite over last 15 cm and ends in a gouge	1% py as fracture fillings	Also traces of silver sericite on some fractures
21.80 TO 30.10	«SER/ARG FL T BX»	Colour: yellow, black Grain Size: fine Interval contains numerous fault gouges, and consists of yellow sericite and black argillite contorted bands cut by qtz veinlets and banding foliation	65	Yellow sericitic alteration of argillite and silt? assoc. with qtz veinlets and pre-faulting	3% wispy py	· · · · · · · · · · · · · · · · · · ·
30.10 TO 30.60	«QT?/DOL VE IN»	Colour: white Grain Size: coarse Bully white vein with broken contacts, containing carbonaceous stylolites		Minor sil. of wallrock	Mostly barren except for 1% coarse brown sphalerite near upper contact	
30.60 TO 51.60	«ARG/CHT TE CT» "Tectonite»	Colour: white, grey, black Grain Size: fine Strongly flattened, boudined and brecciated black arg and grey chert in thin contorted beds or fragments. Flattening foliation becomes a spaced cleavage locally in "hinge zones" of cherty material	65	Minor silicification assoc. with widely spaced qtz veins 1425-48.01 «str. flt. gouge»	2% diss. py.	

DLE NUME	BER: R4391			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
51.60 TO 75.50	«YELLOW SER /ARG»	Colour: yellow, black, pale grey Grain Size: fine Compositionally bended yellow sericitic rocks, with a strong schistose fabric, locally displaying kink folding, boudin, and tectonic brecciation. Intensity increases downhole, along with friable 465.8-75.5 d «fault breccia» Shearing/foliation	75	Selective alteration to yellow sericite schist of probable tuffaceous /volcaniclastic? interbeds. Patchy dolomitization also restricted to these beds. Widely space qtz-dol veins up to 20 cm also present	2-3% py mostly dissem. in sericitic portions but also along margins of qtz veins. Exception is: 174.0-74.6} «7% py» -in strong schist	
5.50 TO 7.80	«GR. ARG FL T BX»	Colour: black and grey Grain Size: fine Friable, graphitic fault breccia, containing abundant broken qtz-dol veinlets				?middle fault?
77.80 TO 04.90	«DOL MAFICS »	Colour: green, brown, black Grain Size: fine Although faultad, the upper contact contains thinly interbedded black argillite. Unit comprised of brown sericitic Fe-dol altered mafic pyroclastics? and flows. Intensity of fabric decreases downhole, where relict porphyritic (feldspar?) textures are visible, now replaced by carbonate [85.8-86.3] warg» Interbed of argillite. A few ghosted lapilli visible downhole. Foliation	60	Intense Fe-dol with brown sericite after chlorite; Dol veinlets and segregations common	2X-dissem. py	Rea mufics?
04.90 TO 44.20	«ARG/SILT TECT»	Colour: black and grey Grain Size: aphanitic to fine Conformable contact at thinly bedded argillite and silitatone, highly contorted and intraformally	65	Fe-dol alteration of more porous beds is moderate to intense. Dol-qtz	1% fracture filling pyrite	

IOLE NUM	BER: RG391			MINNOVA INC. DRILL HOLE RECORD		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERAL 1ZATION	REMARKS
		brecciated. Numerous hinge areas present where the foliation		veinlets from 1 cm to 10 cm are common and also deformed		
		becomes a spaced cleavage almost perpendicular to bedding		130.9-144.2 -a coarse qtz-dol vein snakes in and out of the hole at low angles to c.a.		
144.20 TO 147.90	«DOL/MAF V- CLASTICS» "volcani- clastics"	Colour: brown and grey Grain Size: Conformable knife sharp contacts expressed by change in alteration mineralogy. Faint banding possibly relict bedding?	60	Intense Fe-dol in patches surrounded by wispy brown sericite. Traces of talc.	3% dissem. py as alteration assemblage	
147.90 TO 151.00	«ARG/SILT TECT»	Colour: black and grey Grain Size: Interbed of similar material to 104.9-144.2 Sharp contacts marked by veinlets Cleavage	65	Dol veining flooding, hydro-breccia common	2% dissem. py	
151.00 TO 265.70	«DOL MAF FLOUS»	Colour: green, grey, brown Grain Size: Monotonous pile of mafic volcanics with faint ghosted lapilli textures rare but pseudomorphed porphyry common. Probably blocky porphyritic flows. Mostly chloritic but intensely carbonatized. Sericite is pale green to brown in patches		Brown sericite development is only patchy, except for first 5 m which are moderately brown sericitic throughout Pervasive Fe-dol alteration through-out interval with numerous deformed veinlets	1-2% dissem. pyrite	See the series of lithogeochem samples
265.70 TO 267.90	«SIL/PY MAFICS»	Colour: olive green to brown Grain Size: Distinctive coloured, pyritic, silicified interval of mafics. Appears to be silicification over- printing typical brown sericitic to olive green dol mafics. Quartz occurs in a few bully boudins but is mostly pervasive or in patches with coarse cataclastic hydrobrecciated pyrite		Brown to olive sericite overprinted by qtz flooding and pyrite. Qtz pyrite stringers, patches and boudins now semi-conformable to foliation. A few relict lapillis visible	15% coarse broken pyrite euhedra asso. With qtz flooding and veinlets. Also a small proportion of dense fine grained py assoc. With brown sericitic patches	

HOLE NUM	BER: RG391			DRILL HOLE RECORD		DATE: 29-October-1990		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS		
		Lower contact is marked by 1 cm of fault gouge Wavy foliation	70					
267.90 TO 273.30	«ARG/SER TUFF?»	Colour: black, brown, green, yellow Grain Size: fine Interbanded interval of black cherty argillite tectonite and mafic tuff? altered to sericite schist. Banding is on a 0.5-1.0 m scale Cleavage Lower contact marked by 2 cm fault gouge	75	Entire interval is silicified and cut by deformed thin qtz veinlets. The mafic tuff bands are variously brown, pale green or yellow sericitic Proportions are 30% arg and 70% schist	2-3% py occuring as fine dissem, in the argillite and in kink-banded wisps within the sericite schist			
273.30 TO 289.80	«CHERT/CHTY ARG»	Colour: black and grey Grain Size: aphanitic Contorted and tectonically brecciated ribbon chert and lesser cherty argillite. Breccias are well- healed by silica. Local spaced cleavage From about 281 m to end of interval, a qtz stock- work is present that is well mineralized 280.6-281.4 -qtz stockwork with hazy borders has 3% aspy and 2% py 282.4-288.1 -a dense black cherty argillite hosts clearly crosscutting qtz veinlets at low angeles to c.a. (10-30 deg) which are rich (10%) in py-sp-cp-aspy and in decreasing order of abundance. Veinlets are 1 to 10 cm wide irregular and deformed	70	Silicification assoc. with stockwork veinlets and flooding	5% medium to coarse grained py fracture fillings with notable exceptions of mineralized qtz stockwork [280.6-288.1] «qtz stwk, 3% bm, tr. as» Best sample is from 286.9-288.1 where a rich veinlet snakes along the core axis with 5% sp, 5% py, 2% cp and tr. gn and aspy as coarse clotty sulphides			
289.80 TO 305.60	«SER/PY SILT?& ARG»	Colour: yellow and black Grain Size: Conformable contact with yellow sericite, pyrite, argillite schist. Strong fabric best expressed by wispy, stylolitic to kinked pyrite bands only a few mm wide. Argillite occurs as common bands and as a few angular clasts within sericite matrix.		Silicification assoc, within boudined qtz veinlets is patchy. Sericite is pervasive through all but the black argillaceous portions of the core. Qtz veins with trace aspy dominate the	7% py overall as wispy bands #296.5-295.4# «10% py, 2% sp, 1% asp» -assoc. within gtz veining and flooding	Quite possibly the yellow sericitic alteration could be silty sediments		

MINNOVA INC.

HOLE NUME	ER: KG391			MINNOVA INC. DRILL HOLE RECORD		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	NINERALIZATION	REMARKS
		Relict fragmental texture visible but only locally		interval 300.0-300.8		
				298.0-298.5 «flt. gou.+bx»		
305.60 TO 336.70	«ARG/LITHIC WACEE»	Colour: black and grey Grain Size: Dense, black, argillite, medium bedded with alternating sandy to conglomeratic lithic wacke Clast types include argillite, silt, wacke, chert, mafics, and py in decreasing order. Very conform- able upper contact Bedding Top direction indeterminant 330.7-331.7 -contains minor yellow sericitic bands [331.5-336.7] efit. gou.+bx> Grading and inverse grading present in wacke beds	60	Fresh to begin with, becomes weakly phyllitic at 316.0 m, in an envelope about a thick silicified wacke bed at 323.0-324.6. This envelope also contains elevated, finely disseminated pyrite	3% dissem. pyrite, except from 316-332 contains 5% py	Compare unaltered bimodal seds. to weakly "mutized" seds in two litho samples, respectively
336.70 TO 352.00	«DOL MAFICS »	Colour: brown and grey Grain Size: Strongly faulted upper contact with typical strongly dol mafics, probably pyroclastic flows Foliation is all over, but mostly at Conformable lower contact	60	Wispy brown sericite bent around grey dolomite patches	3% dissem. py except 350.8-352 which has 10% diss. py	·
352.00 TO 356.20	≪SIL ARG/ CHT BX≫	Colour: black and grey Grain Size: Very chaotic, intensely silicified interval of tectonic breccia, well healed except for: 4354.8-356.2 # «flt. gou+bx» Probably some primary ribbon chert component, but alteration too intense to be sure		Intense silicification, with qtz veins from 354.3-354.8 and fragments in the flt gouge	10% fracture filling py with a couple of 1 cm "seams" possibly primery Tr. sphalerite	· · · · · · · · · · · · · · · · · · ·

,

HOLE NUME	IER: RG391			MINNOVA INC. DRILL HOLE RECORD		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
356.20 TO 382.20	«INTERMED. TUFF?»	Colour: green grey Grain Size: Correlative lithology to that intersected in deep hole RG256. Clearly a pyroclastic interval with internal fragmental texture, but gradationally becomes a finely bedded ash and crystal tuff by 367 m. Bedding Foliation is parallel to bedding, warped and poorly developed. Feldspar (?) crystals are now replaced by carbonate. Quartz eyes are rare	70	Intense pervasive ferrodolomitization but brown sericite is notably absent. Pervasive sericite is pale green to grey and yellow	3% pyrite overall, occuring as disseminations and along thinly spaced bedding planes in the ash tuff	
382.20 TO 388.30	«QTZ DOL VE IN»	Colour: white Grain Size: coarse Milky white and completely barren of sulphides. Contacts are sharp, irregular, but roughly parallel to foliation		A few wallrock inclusions are strongly sericitic {388.0-388.3} «FLT BX»	· · ·	
388.30 TO 391.30	«SIL CHTY Arg»	Colour: grey and black Grain Size: fine Strongly silicified grey cherty rock with black argillaceous material and pyrite along connected fracture system. Gradational lower contact		Hazy bordered qtz veinlets and silica flooded patches, pervasive silicifi- cation	3% fracture filling pyrite	
391.30 TO 441.90	«Intermed Tuff»	Colour: pale green Grain Size: Interval begins with qtz-dol veined, yellow to brown sericitic volcanics, but by 400.7 has gradationally become a monotonous pile of pale green "greenstone". Fine grained to aphanitic. No bedding or internal structures apparent. When stained a granular texture with Fe-calcareous grains in dol. matrix is visible.		Pervasive ferrodolomitization and minor bleaching along fractures. Internal textures largely "Washed out" by alteration	tr. diss. py	

LOGGED BY: A. Will

HOLE NUM	BER: 6391			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK 1YPE	TEXTURE AND STRUCTURE	ANGLE To ca		MINERALIZATION	REMARKS
441.90 TO 453.70	«ARG»	Colour: black and green Grain Size: aphanitic Gradational interbedded contact with thinly bed- ded black argillite. Thin beds of above lithology occur throughout, but most commonly near upper and lower contacts. Bedding is warped and locally contorted but averages	60	Fe-dolomitic tuff interbeds	Disseminated pyrite euhedra up to 1 cm comprise 2% of interval	
453.70 TO 488.70	«INTERMED. TUFF/PYRO»	Colour: pale green to grey Grain Size: fine to med. Similar to 356.2-382.2, pyroclastic interval with wispy pyrite, pseudomorphed grains, etc. Foliation	60	Strong pervasive carbonitization pale green sericitization	Wispy fracture fillings and along bedding planes which parallel foliation 3% pyrite	∮484.0-484.6∲ «arg. flt. bx »
488.70 TO 488.90	«ARG»	Colour: black and grey Grain Size: Interbedded, gradational contact, as above		· ·		

LOGGED BY: A. Hill

.

ASSAY SHEET

DATE: 29-October-1990

							SAYS									GEOCHEM	TCAI					_	COMMENTS
Sample	from (m)	To (m)	Length (m)	CU X	ZN X	PB X	AG G/T	AU G/T	SB X	AS X	CU PPM	ZN PPM	PB PPM	S.G.	AG OZ/T	AU OZ/T	AS PPH	BA PPM	BA X	SB PPM	AG PPM	AU PPB	
27076 27079 27080 27081 27082	30.10 74.00 74.60 76.10 77.80	30.60 74.60 76.10 77.80 79.30	0.50 0.60 1.50 1.70 1.50	.020	.07	.02	1.8	.14			200 109 73 69 104	663 116 119 73 113	239 49 62 52 41				976 100 21 74 171	41 113 88 140 55		5 6 1 3 2	1.8 1.8 1.1 1.8 2.6	140 40 6 1	,
27089 27090 27091 27092 27034	264.20 265.70 266.80 267.90 273.30	266.80 267.90 269.40	1.50 1.10 1.10 1.50 1.20	.004	.01	.02	0.6	.03			122 89 88 53 43	165 110 131 68 123	93 39 44 48 173				106 76 83 58 125	78 101 135 87 129		5 2 1 1 3	2.8 0.6 0.5 0.6 0.6	1 3 18 30	
27093 27094 27095 27096 27097	274.50 275.50 276.60 278.10 279.60	276.60 278.10 279.60	1.00 1.10 1.50 1.50 1.00	.010	.08	.04	1.0	.14			87 36 98 51 87	540 526 798 101 398	210 232 432 165 279				332 81 2502 257 581	95 98 93 79 153		5 2 15 7 6	0.8 0.5 1.0 0.7 0.9	56 15 138 23 66	
27098 27099 27100 27026 27027	280.60 281.40 282.40 283.20 284.00	282.40 283.20 284.00	0.80 1.00 0.80 0.80 1.00	0.8 1.0 0.8 0.8 1.0	.031 .029 .192 .023 .021	.33 .21 .59 .20 .08	.24 .13 .41 .08 .04	3.8 2.0 4.3 1.9 2.2	.56 .08 .03 .23 .07														
27028 27029 27030 27031 27032	285.00 285.40 286.90 288.10 289.40	286.90 288.10 289.40	0.40 1.50 1.20 1.30 0.40	0.4 .064 .147 .158 .027	.040 .29 1.54 .70 .41	.15 .07 .58 1.73 .18	.25 2.0 9.7 15.9 2.1	2.6 .09 .40 .48 .20	.02														
270 33 27035 27037 27038 27042	289.80 294.50 296.90 300.00 350.80	295.40 298.00 300.80	1.00 0.90 1.10 0.80 1.20	.006 .009 .018 .014 .014	.04 .56 .01 .05 .01	.01 .12 .02 .03 .01	0.3 2.1 0.7 0.9 1.7	.04 .06 .06 .12 .02			60 88 176 144 141	412 5625 96 523 146	122 1218 160 293 36				113 2177 1509 4934 139	129 31 78 100 100		3 1 8 12 3	0.3 2.1 0.7 0.9 1.7	40 61 62 126 21	
27043 27044 27045 27046	352.00 353.50 354.80 356.20	354.80 356.20	1.50 1.30 1.40 1.00								26 45 59 21	28 79 121 145	40 106 132 43				123 105 210 92	54 49 83 62		5 5 8 1	0.7 1.3 1.1 1.6	10 27 20 20	

HOLE NUMBER: RG391

HOLE	AN IMPORT	:D.	KG391
			80.371

ł

GEOCHEN. SHEET

DATE: 29-October-1990

Sample	From (m)	To (m)	Length (m)	\$102 X		CAO X	NGO X	NA2O X	K20 X	FE203 X	MNO2	1102 X	BA X	ZR X	CU PPM	ZN PPN	PB X	TOTAL X	AU PPB	BA PPN	AG PPM	PB. PPN	P205 X	SR X	s X	TOTAL X	AS PPM	SB PPN
27077 27078 27083 27084 27086	31.00 55.00 90.50 108.00 114.00	34.00 58.00 93.50 111.00 117.00	3.00 3.00 3.00 3.00 3.00 3.00	81.76 60.54 35.92 64.35	17.36 11.95	1.65 .50 14.18 2.05	1.57 2.04 7.04 5.14	.01 .25 1.65 .25	0.01 3.40 0.55 2.37	3.97 6.66 10.43 5.91	.01 .25 1.65 .25	.32 .80 1.22 0.56			49 47 88 49	63 60 64 83			10 5 5 10	111 52 16 74	0.7 0.1 2.5 1.2	43 54 39 30	.01 .27 .72 .65		0.79	84.05	67 31 168 74	4 1 1
27087 27085 27086 27087 27088	117.00 151.00 163.00 218.50 261.00	154.00 166.00 221.50	3.00 3.00 3.00 3.00 3.00	37.17 47.10 46.04 37.08	12.25 15.10	10.50 7.22 6.69 10.87	8.23 14.75 4.56 8.60	.25 .85 1.05 1.26	3.15 0.64 3.41 2.34	7.58 9.84 8.67 9.92	.25 .85 1.05 1.26	1.53 1.66 1.41 1.20			63 64 80 104	70 59 47 73			5 10 5 10	58 40 40 31	2.4 2.1 1.7 2.1	18 14 35 40	.99 1.04 .57 .84		0.21 4.73	81.90 95.77 92.47 88.00	147 29 41 136	1 1 5 7
27039 27040 27041 27047 27048	339.00 371.00	319.00 342.00 374.00	3.00 3.00 3.00 3.00 3.00	47.40 52.58 40.84 57.27 80.15	15.02 10.82 17	1.66 1.01 11.32 4.30 0.51	12.74 7.62 8.26 2.31 0.96	.11 .29 .11 2.54 .01	1.58 1.81 2.42 2.59 .01	8.71 10 9.10 6.49 4.69	.11 .29 .11 2.54 .01	1.20 1.03 1.19 .63 .51			48 33 67 21 29	188 69 57 49 17			20 25 5 5 10	19 47 31 120 70	2.2 0.9 2.1 1.3 0.6	136 94 21 43 31	.79 .56 .70 .20 .01		6.31 2.61 2.68	92.94 96.35 87.69 96.24 98.08	39 101 127 52 72	1 1 4 2 3
27049 27050	410.00 469.00		3.00 3.00	60.07 61 .38	19 17.59	1.93 2.32	2.01 2.12	6.80 .45	.01 2.78	5.02 5.30	6.80 .45	.70 .64			13 26	74 55			5 10	113 161	0.7 1.1	29 67	.01 .01			95.95 96.13	42 97	1 3

HOLE NUMBER: RG392		MINNOVA INC. Ill Hole Record	INPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: SAM	PLOTTING COORDS GRID: est.	ALTERNATE COORDS GRID: est.	COLLAR DIP: -80° 0' 0"
PROJECT NUMBER: 240	North: 288.00N	NORTH: 2+88N	LENGTH OF THE HOLE: 371.20m
CLAIM NUMBER:	EAST: 10050.00W	EAST: 100+50W	START DEPTH: 0.00m
LOCATION: Beneath Rea Conc.	ELEV: 1308.00	ELEV: 1308.00	FINAL DEPTH: 371.20m
	COLLAR GRID AZIMUTH: 180° 0' 0"	COLLAR ASTRONOMIC AZIMUTH: 225° 0' 0"	
DATE STARTED: September 19, 1990	COLLAR SURVEY: NO	PULSE EM SURVEY: NO	CONTRACTOR: Frontier
DATE COMPLETED: September 24, 1990	Multishot Survey: No	Plugged: No	CASING: pulled
DATE LOGGED: September 24, 1990	RQD Log: No	Hole Size: Ng	CORE STORAGE: Samex Camp

PURPOSE: Laid out by survey

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees		FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees		FLAG	Comments
83.20	•	-79* 01	ACID	OK		-	-	•	•	•	
150.20	•	-75* 0'	ACID	OK			•	-	-	-	
192.90	•	-68• 01	ACID	OK	weak etch		•	•	-	-	
237.70	-	-66* 0'	ACID	OK	v. bad etch, est. result		•	-	-	-	
294.70	-	-63* 0'	ACID		v. bad etch, est. result	•	• .	•	•	-	
365.80	•	-63° 0'	ACID	OK			-	•	-	•	
304.20	227.501	-63° 0'	TRO-PAR1	OK	Tropari	1 -	•	-	-	-	
365.20	227 • 50 ·	-63" 0'	TRO-PARI	OK	Tropari	-	•	•	-	•	
-	-	-	-	-		•	•	-	-	-	
•	-	-	-	-	•		•	•	-	-	
•	•	-	-	-		•	-	-	-	•	
•	-	-	-	•		- 1	•	-	-	•	
•	-	-	-	•			•	•	-	-	
•	•	-	-	-			-	-	-	-	
•	-	-	-	-		-	•	•	-	-	
•	•	•	•	•		1 •	•	-	-	-	
•	-	-	-	•		-	-	-	-	-	
-	•	-	-	-		-	-	-	-	•	
•	•	-	-	-			-	•	-	•	
-	-	-	-	-		-	-	•	-	•	
-	-	•	•	-		- 1	•	•	-	•	
•	-	•	-	-			•	•	-	-	
-	-	-	•	-		•	•	•	-	-	
-	-	-	-	-		•	•	-	-	-	
•	-	-	-	•		1 -	•	-	-	-	
-	•	-	-	-			-	•	•	•	
-	-	-	•	-		-	•	•	-	•	
-	•	-	-	•		4 -	-	-	-	•	

_	BER: RG392			DRILL HOLE RECORD		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 64.00	«CSG/WASTE»					
64.00 TO 80.50	≪CHT ARG TE CT≫	Colour: grey, black Grain Size: fine Folded; stretched boudined interval of graphitic argillites and chert which have been intensely broken and brecciated by later faulting. Approx. 55% of core is brecciated. Grey white quartz dolomite veining and flooding occupies 5% by volume. Phyllitic foliation well developed in blocks of cht/arg parallel to compositional layering. Folded pyrite, argillite and chert from bullseye structure at 70.2		Cherts (and siltites) show moderate dolomitization due to QDV and flooding Intense graphitic alteration of argillite	5-10% of pyrite visible in remnant chert argillite blocks as 1-5 mm fine grained bands, disseminated grains and blebs	Friable core
80.50 TO 221.80	+DOL MAF VO	Colour: greyish, white-light green & browny-yellow Grain Size: The contact with the structurally overlying unit is faulted. The interval comprises a thick pile of altered mefic flows and volcaniclastics. Original textures are generally destroyed, with the exception of ghost lapilli are visible (eg at 93.0 m) and relict porphyritic flows can be interpreted eg dolomite pseudomorphs 119.7-121.5 Phyllitic foliation is consistent around angle #203.5-204.3# wODV Maf Fit-Bx>	70	Intense ferro-dolomitization through- out the interval. Intense development of yellow brown sericite in Laminee and bands parallel to foliation. Brown sericite and quartz dolomite show well developed compositional layering between 141.0-145.0. Quartz dolomite veining and silcification of the host rock eg. 99.7-101.6	Pyrite appears throughout the interval, distributed as bands and lamine perallel to foliation; disseminated grains and blebs and blebby aggregations. The latter is often associated with QDV, the range in pyrite concentration is approx. 1-20% Base metals occur in the bleached zone 199-2-101.61 <<0.5% Gn, 7% Pym	
221.80 TO 234.50	«SER CHT AR G»	Colour: yellow grey and black Grain Size: fine The interval is mainly sedimentary in conformable contact with the structurally overlying mafic volcanics. Black graphitic argillites, light and dark grey cherts, pale yellow sericite and patchy QDV are mixed, folded and foliated at angle to c.a. 40-80 deg. A minor interval of dol. mafic volcanics (tuff)		Pale yellow sericite is intermittently well developed as compositionally layers within the chert argillite mixed sediments	2-5% pyrite, locally 20% over 2-3 cm is distributed as diss. grains and blebs, and occasional bands and laminae	

٠.,

LE NUME	IER: KG392			MINNOVA INC. Drill Nole Record		DATE: 29-October-1990
ROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		is mixed with argillite between:				
		229.6-230.8 + «Dol Maf Arg»				
		The interval is intermittently faulted, with blocky broken core and 5-15 cm sections of breccia and gouge				
54.50 TO 54.50	«ARG CHT»	Colour: dark grey, black Grain Size: fine				
		Laminated to deformed and faulted dark grey cherts and black graphitic argillites. The contact with the overlying sericitic unit is marked by a minor fault. The chert varies from a massive ribboned texture with thin (<1 mm) graphitic argillite partings, to a comparatively finely laminated chert (1-3 mm) with similar width graphitic argillite laminae. The latter breaks easily along bedding at angle to c.a. Locally chert laminae have been stretched and boudined		Quartz dolomite verning parallel to and crosscutting the compositional layering has locally bleached the cherts. QDV occupy 1-3% of the interval	1-3% pyrite is distributed in thin bands (<1mm) parallel to argillite laminae; as dusty bands following folds in black silicified cherty argillite and as occasional blebs associated with QDV	Laminated argillite and chert breaks easily into discs.
44.50 TO 68.90	«ARG QTZ SE R»	Colour: gray, black, greenish yellow Grain Size: fine Minor faulted contact with the above unit. However argillite and minor chert do persist into the interval. Grey white patchy quartz and dolomite have rough compositional layering with pale greenish yellow sericite wisps and laminae 60-70 deg. The concentration of quartz dolomite flooding has locally formed patchy QDV up to 70 cm e.g. 266.5-267.2. Creamy white dolomite lathes crystals well developed. Cherty argillite (unaltered remnants) occupy approx. 5% of the		Intense development of pale greenish yellow sericite. Patchy spotted dolomitization and thin wispy flakes of brown sericite suggest a mafic component {252.5-254.6} «DOL MAF VOLC?»	2-7% pyrite with up to 15% locally developed over 2-3 cm. Pyrite is distributed as laminae and bands (<1 mm - 4 mm) disseminated grains and bloke. The greater % pyrite occurs as blokey concentrations associated with patchy GDV	
68.90		interval			_	
10 50.90 10 94.70	«ARG LITHIC WACKE»	Colour: greenish grey Grain Size: fine to coarse The contact with the overlying unit is conformable		Staining outlines locally well	Pyrite is very variable to its dis-	The lithology is similar to the

١.

HOLE NUM	BER: kG392			DRILL HOLE RECORD	DATE: 29-October-1990				
FROM TO	ROCK 1 YPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS			
		The interval is dominated by greenish grey, angular to subrounded, sand to pebble size (debris flow), conglomerate/braccia. Black argillite (and minor siltite) are occasionally lithic wacke (conglomerate) is also transitional to a cherty/arg het. frag?/tectonite? interval with pyritic argillite matrix between 283.9-291.0 The section from 268.9-273.8 shows downhole coarsening of the wacke from fine matrix and granule size clasts to fine matrix and granule to pebble size clasts. The latter comprise flattened, elongate black argillite, subrounded, pale grey yellow siltstone, greyish chert and occasional rip-up clasts of fine pyrite		developed dolomite nodules within the wacke ranging from coarse sand to granule size. The sub-interval from 283.0-294.7 appears to silicified to a greater extent than the overlying wacke. This may be due to a greater primary chert component in the rock rather than secondary silicification	tribution throughout the interval. The green lithic wacke tends to be pyrite poor, with occasional patches of fine disseminated pyrite up to 7% over 2-10 cm. There is some increase in pyrite to the bottom of the interval particularly within the cherty/arg het frag/tect between \$288.3-288.8\$ w10-15% Pys where it is concentrated in blebs	"JOHNSON PYROCLASTICS"			
294.70 T0 297.50	diacke py a RG»	Colour: dark brown, black grey Grain Size: fine The contact with the above is not clear however if there is discontinuity, it is minor. The interval comprises argillite, wacke? and pyritic argillite, with the latter dominating between 295.9-297.5 (57% of the interval). The pyritic argillite has been partly faulted and therefore is very friable. Quartz dolomite has invaded part of the fault and a drusy cavity is encrusted with subedral pyrite. Clasts within the wacks have been flattened and stretched parallel to foliation		The wacke has been very weakly dolomitized. Graphitic alteration of argillite	The 50 cm section of wacke contains <1% pyrite in local, patchy fine disseminations & blebs. The pyritic argillite contain 20% pyrite as very fine "dusty" grains disseminated throughout the subinterval				
297.50 TO 303.90	«SIL WACKE»	Colour: greenish grey to grey Grain Size: fine, coarse Minor faulted contact represented by overlying broken graphitic argillite. The interval comprises whitish grey silicified wacke, (silicified after dolomitization) with flakey grey sericite laminae. Foliation is well developed at angle to c.a. Sericite encloses or wraps around the silicified fragments which have been stretched and boudined parallel to foliation The bottom 2-3 m from 301.6-303.9 is invaded by	70	Weak spotted to locally well developed dolomitization within the wacke sed. Silicification is moderate to intense but there is doubt as to whether all of the silicification is secondary alteration. Protolith may be cherty in part, cherty fragments? The bottom 2.3 m is intensely silicified owing to the quartz dolomite veining and flooding	2-3% pyrite is distributed throughout as patchy disseminations, bands (2-3 mm) and occasional blebs. Local concentration 7-10% occurs at 299.6 m Trace galena occurs in association with the GDV at \$301.6-302.6\$ «Tr. Gn, 1% Py»				

MINNOVA INC. DRILL HOLE RECO

HOLE NUM	BER: 4G392			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		cross-cutting quartz dolomite veins The 20 cm section 303.7-303.9 comprises pyritic argillite		Intense sericitic alteration		
303.90 TO 305.40	«PY ARG WAC KE»	Colour: greyish brown Grain Size: fine to medium The upper and lower contacts of the interval are conformable, with the exception of 10 cm of graphitic argillite from 303.9-304.0 m the interval comprises a homogeneous pyritic greyish brown fine to medium grained, argillic sandy wacke. Minor coarse grains are also visible. Weak foliation is developed and grains tend to show flattening parallel to foliation at angle to c.a. 80-90 deg.			The pyrite content is difficult to extimate, but could be in range 15-20%. The density of the rock feels too low for the pyrite content to be greater. The pyrite is evenly distributed as very fine "dusty grains	
305.40 TO 315.20	«DOL SEDS P Y ARG»	Colour: brown grey, black Grain Size: fine to medium A mixed interval of black to brown pyritic arg to black "shiney" graphitic argillite, dark greyish brown pyritic wacke (arentie?) and lighter greyish dolomitic sediments (siltites and wackes) The litholgies are modertely faulted and some- what tectonised. Folding, stretching and boudinage are exhibited. Commpositional layering and foliation 70-80 deg. Quartz dolomite veining occurs parallel to and cross cutting commpositonal layering but only occupies 1-2% of the interval		Dolomitization has preferentially altered non argillite lithologies with the exception of sericite. Staining outlines spotted dolomite alteration texture. Grey sericite is well developed	7-12% pyrite is mainly concentrated as zones, bands laminae and wisps of fine "dusty grains". Coarser grained pyrite in blebs is associated with GOV and sections showing greater strain.	
315.20 TO 331.30	«DOL SEDS»	Colour: grey Grain Size: fine to medium A minor (1 cm) zone of fault gouge marks the contact with the overlying unit. The interval is dominated by grey spotted, nodular, dolomitized sediments, probably of wacke origin 60-70 deg. Original textures are virtually destroyed in the zones of intense		Grey sericite is well developed forming the planes of foliation. Overall, intense dolomitization	Pyrite content has decreased in relation to the above unit. The dolomitization zones have less than 1% Py, whereas the argillite has bands (1-4 mm) contain up to 15% Py over 10 cm e.g. 325.0 m.	

.

HOLE NUM	BER: RG392	DATE: 29-October-1990				
FROM TO	ROCK 1 YPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		dolomitization The dolomitized intervals are occasionally tran- sitional and interbedded with black argillites. The latter sections combined occupy approx. 10% of the interval. A minor mafic volcaniclastic sub-interval occurs [328.0-328.3] «MAF VOLC» evidenced by the characteristic dark yellow brown sericite. White GDV cross-cut foliation and occupy 2-3% of the interval			Occasional blebs pyrite are associated with QDV. Similarly one 2 mm bleb of chalcopyrite at 324.7 m	Argillite intervals are quite friable due to faulting
331.30 TO 339.10	«SEDS QTZ V N FLT BX»	Colour: white grey Grain Size: fine to coarse Interval comprises white quartz dolomite veins, dolomitized sediments and graphitic argillite in ratio 55:20:25, which have been faulted to breccia and graphitic gouge.		Intense graphitic alteration of arg. Non argillite sediments intensely dolomitized. Quartz breccia locally healed with quartz dolomite matrix	<1% pyrite occurs, unevenly distributed as coarse blebs associated with QDV fregments. Trace chalcopyrite in two blebs at 334.2 (blebs, 1-2 mm diameter)	The fault appears to have moved parallel to the foliation as evidenced by contact of gouge and foliated dolomitic sediments. (60 deg to c.a.)
339.10 TO 342.30	«ARG SILT W ACKE»	Colour: black, grey Grain Size: fine, medium Black fine grained argillite and minor grey siltite wacke interbeds are fractured and broken due to their proximity to the above major fault Minor QDV <1%		Porous, siltite and wacke preferentially dolomitized.	1% pyrite distributed as fine grained blebs in silicified and dolomitized siltite and wacke and bordering QDV contact with argillite	
342.30 TO 361.80	«ARG SILT W AKE QTZ VN»	Colour: grey, black, white Grain Size: Intensely quartz dolomite veined argillite siltite and wacke. The veining has locally altered the host rock to a green sericite and talc. The alteration is probably confined to the more porous siltite and wacke. 90V occur parallel to and crosscutting compositional layering, occasionally trending parallel to core axis		Siltite and wacke interbeds dolomitized In addition to the sericte/talc contact alteration zones patchy dark green talc up to 30-40%, over 10 cm occurs in mixed argillite and quartz veln, giving a mixed black green and white coloured texture	1-2% pyrite occurs as coarse grained blebs and occasional euhedral crystals. Minor sections (2-3 cm) have 7-10% pyrite as fine to blebby patches and aggregations. A single chalcopyrite bleb (3 mm diameter) occurs on the edge of an argillite clast in GDV at 351.1 m.	

MINNOVA INC.

.

٦,

HOLE NUMB	ER: R4392			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		From 342.5-343.4 the core is broken and blocky indicating fracturing and faulting From [345.5-349.0] «Otz-dol vn» the sub-interval is entirely ODV (Otz>dol in ratio 65:35). The orientation is difficult to determine as the upper and lower contacts are hazy. It appears parallel to foliation 40-50 deg.			3 blebs of galena occur in quartz vein stylolites 361.7-361.8 «0.5% Gro»	
361.80 TO 367.10	«ARG SILT W ACKE»	Colour: grey, black Grain Size: fine to coarse Bedded sequence of black argillites, grey fine grained siltites and dark grey black fine to coarse, sand and pebbly wacke. Granules and pebbles are oriented parallel to foliation. Two intervals of granule/pebble wacke, 23 cm and 80 cm width, occur at the following intervals 364.27-364.50 366.3-367.1 Crosscutting QDV occpy 1% of the interval		Greater porosity, siltite and sandy wacke beds are moderately to intensely dolomitized and partly silicified	<1% pyrite as dispersed grains, blebs and patches. Blebby aggregations and fine grained patches occur close to QDV	Rip-up clast of argillite in pebbly wacke at 364.3 suggests tops downhole
367.10 TO	«ARG SILT»					
371.20	•	Colour: grey, black Grain Size: fine, medium Conformable interval to the overlying generally coarser grained unit. Banded to laminated black argillite and grey siltite to arenite. Siltite/ arenite > argillite in ration 55:45. Laminae and bands show same deformation (stretching) parallel to compositional layering. Occasional crosscutting QDV are folded.	80	Coarser grained lithologies dolomitized	<1% pyrite in patchy bends, blebs and occasional euhedral crystals	
	E.O.H.					

MINNOVA INC.

•

.

HOLE NUMBER: RG392

1

ų ``

HOLE NUMBER: \$6392

.

-

:

ASSAY SHEET

DATE: 29-October-1990

Sample	Frum (N)	To (m)	Length (m)	ເມ ະ	ZN X	AS PB X	SAYS Ag G/T	AU G/T	SB X	AS X	CU PPM	ZN PPM	PB PPN	S.G.	AG OZ/T	GEOCHEMI AU OZ/T	ICAL AS PPM	BA PPM	BA X	SB PPM	AG PPM	ÂU PPB	CONNENTS
27119 27122 27123 27124 27125	99.70 220.30 221.80 225.80 229.60	221.80 223.30 227.30	1.90 1.50 1.50 1.50 1.20	.012 .009	.10 .01	.11 .02	4.6 2.0	.05 .16			123 86 63 48 91	1020 95 96 174 106	1121 151 64 58 61				3 179 55 71 195	33 23 60 54 67		34 12 4 3 8	4.6 2.0 1.1 0.9 1.7	53 161 30 1 23	
27126 27127 27128 27129 27130	230.80 234.50 243.00 244.50 249.00	236.00 244.50 246.00	1.50 1.50 1.50 1.50 1.50								24 21 23 30 31	105 23 28 84 54	58 39 46 34 41				85 61 62 97 58	79 89 84 119 129		4 4 2 3	0.7 0.6 0.5 0.7 1.2	1 62 50 1 100	
27131 27133 27134 27136 27137	266.50 278.50	263.40 267.30	0.90 1.60 0.80 1.50 1.50	.004	.64	.16	2.0	.03			42 39 46 11 36	201 152 94 14 6395	51 116 47 97 1622				49 23 8 27 117	104 117 148 102 99		6 3 1 1 6	2.5 2.1 1.4 0.6 2.0	53 2 18 21 30	
27138 27139 27140 27141 27142	293.20 294.70	297.50	1.50 1.50 1.20 1.60 1.00	.003 .003 .005 .005 .003	.03 .02 .02 .01 .01	.02 .01 .01 .01 .01	0.9 1.3 1.6 1.3 3.2	.06 .08 .24 .26 .22			30 30 49 48 30	255 169 164 147 27	216 67 64 72 140				41 51 72 60 31	139 156 63 56 243		3 3 4 8	0.9 1.3 1.6 1.3 3.2	57 79 240 259 220	
27143 27144 27145 27146 27148	304,00	306.90 308.40	1.30 1.40 1.50 1.50 1.60	.002 .067 .009 .022 .009	.01 .11 .03 .07 .02	.01 .08 .02 .02 .01	2.5 9.6 3.4 12.6 2.7	.93 .24 .49 .11 .12			21 665 89 220 85	69 1101 308 726 203	63 782 162 223 136				86 325 259 194 139	118 56 125 54 123		5 109 19 55 9	2.5 9.6 3.4 12.6 2.7	930 241 486 107 123	
27149 27150 27151 27152 27153	332.80 334.30	315.20 325.60 334.30 335.80 337.00	2.12 -1.10 1.50 1.50 1.20	.009 .007	.03 .01	.01 .01	3.2 0.9	.02 .01			85 65 75 61 42	312 94 98 575 18	135 57 508 114 32				148 27 86 54 69	140 69 107 108 211		12 3 3 3 1	3.2 0.9 1.8 1.2 0.7	21 1 1 1	
27154 27155 27156 27157 27158	345,50 348,60 350,20	343.80 347.00 350.20 351.70 353.20	1.50 1.50 1.60 1.50 1.50								22 13 66 55 40	26 22 56 89 126	19 237 50 312 43				95 86 92 82 83	172 61 81 89 97		1 1 1 1	1.1 2.1 1.1 2.7 1.1	6 1 7 3	
27159 27160 27161	358.30	356.30 359.80 361.30	1.10 1.50 1.50								44 58 24	160 111 53	52 45 34				89 33 72	128 79 58		1 1 1	0.7 1.1 1.2	1 1 1	

HOLE NUM	HOLE NUMBER: RG392													T			DATE: 29-October-1990								
Sample	From (m)	To (m)	Length (m)	ດ. *	Z	1	PB X	AG G/T	AU G/T	SB X	AS X	CU PPM	ZN PPM	PB PPN	\$.G.	AG OZ/T	AU CZ/T	AS PPM	BA PPN	BA X	SB PPM	AG PPN	AU PPB		
27163	361.80	363.40	1.60									22	66	24				59	108		1	1.1	1		1

1

-

GEOCHEM. SHEET

DATE: 29-October-1990

Sample	From (m)	To (m)	Length (m)	\$102 X	AL203 X	CAO X	MGO X	NA20 X	K20 X	FE203 X	MNO2 X	۲102 ۲	BA X	ZR X	CU PPM	ZN PPM	РВ Х	TOTAL X	AU PP8	BA PPM	AG PPM	PB PPN	P205 X	SR X	s X	TOTAL X	AS PPH	S8 PPM
27118	80.50	83.50	3.00	42.48	12.44	6.54	11.81	.01	.98	10.02	.20	1.46			128	157			10	37	2.3	163					54	2
27120	141.10			42.37		5.89	3.84	3.19	2.05	9.27	.24	1.50			79	50			5	22	1.8	43					53	6
27121	207.60	210.60	3.00	42.23	13.57	7.93	7.04	1.38	1.80	9.05	.38	1.54			92	60			5	23	1.9	25					43	5
27132	258,20	261.20	3.00	52.39	17.47	1.66	6.14	.50	2.98	7.98	.13	.79			77	92			5	157	1.0	21					61	1
27135	270.40	273.40	3.00	48.71	17.66	3.64	7.19	.51	1.98	9.85	.03	1.25			62	64			5	170	1.7	40					1	1
27147	308.40	311.40	3.00	51.08	18.05	2.27	1.87	1.06	3.85	9.34	.06	1.11			122	376			330	66	7.2	218					189	26
27162	361.30	361.80	0.50	78.22	3.13	4.44	1.80	.35	1.13	3.70	.12	0.16			34	85			5	67	2.0	494					82	2
27164	364.00	367.10	3.10	71.00	9.54	3.18	2.11	.37	2.77	3.92	.05	0.46			19	51			5	76	1.0	31					70	2

HOLE NUMBER: RG393	DR	MINNOVA INC. Rill Hole Record	IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: SAM	PLOTTING COORDS GRID: est.	ALTERNATE COORDS GRID: est.	COLLAR DIP: -55° 0' 0"
PROJECT NUMBER: 240	North: 885.00N	North: 8+85N	LENGTH OF THE HOLE: 261.20m
CLAIM NUMBER:	EAST: 12100.00W	EAST: 121+ OW	START DEPTH: 0.00m
LOCATION: Sam Horizon	ELEV: 1063.00	ELEV: 1063.00	FINAL DEPTH: 261.20m
	COLLAR GRID AZIMUTH: 180° 0' 0"	COLLAR ASTRONOMIC AZIMUTH: 225° 0' 0"	
DATE STARTED: September 22, 1990	COLLAR SURVEY: NO	PULSE EN SURVEY: NO	CONTRACTOR: Frontier Drilling
DATE COMPLETED: September 26, 1990	Multishot Survey: No	PLUGGED: NO	CASING: pulled
DATE LOGGED: September 26, 1990	RQD Log: No	HOLE SIZE: NG	CORE STORAGE: Semex

PURPOSE:

i.

DIRECTIONAL DATA:

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
35.70	-	-57* 0'	ACID	OK		-	•	-	-	•	
69.20	-	-56" 0'	ACID	OK		•	-	-	-	•	
133.20	-	-56* 0*		OK		-	-	-	•	•	
157.60	•	-55* 0'	ACID	OK		-	-	-	-	•	
197.20	-	-55* 0'	ACID	OK		• •	• ·	-	-	•	
-	•	-	•	-		-	•	-	•	•	
•	•	-	-	•		•	•	•	•	•	
-	-	•	•	-		-	•	•	•	•	
	•	-		-		•	•	-	-	•	
-	-	-		-			•	-	•	•	
-	-	-	-	-				-	-	•	
-		-	-	•			-	-	-	•	
-	•		-	-				-	-	-	
-	-	-	-	-			-	-		-	
•	-	-	-	•		-	-	-	-	•	
-	-	•	-	•			•	-	-	•	
-	-	•	-	•		-	-	-	-	•	
-	-	•	•	-		- 1	-	-	•	•	
-	•	-	•	-		-	-	•	•	•	
-	-	•	-	•		•	•	-	-	•	
•	-	-	•	-		· ·	-	•	•	•	
-	-	-	-	•		-	-	-	-	•	
•	•	•	•	•		-	-	-	•	•	
•	-	-	-	•		•	•	-	•	•	
-	•	-	-	•		•	•	-	•	•	
•	•	-	•	•		· ·	•	• .	•	•	

χ.

ole nume	BER: NG393			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 33.50	«CSG»					
33.50 TO 45.40	«SILT ARG W ACKE»	Colour: grey, black Grain Size: fine to medium Grey and black laminated argillite, siltite and fine to medium grained sandy wacke. Laminae and bands are variable in width: argillite 1 mm - 8 cm and siltite/wacke 1 mm - 20 cm. 75-80 deg Cleavage weakly developed at 20-25 deg The upper 3-4 m of the interval, 33.5-37.5 show minor deformation, stretching of siltite and distortion of bedding. The section 33.7-33.9 is very deformed and partly silicified, probably due to quartz vein injection. Intermittent sections of broken core and fault gouge. A minor fault marks the contact with the underlying interval but overall the lithology is gradational		Siltite and wacke interbeds are preferentially dolomitized owing to their greater porosity	Trace pyrite, except for deformed section 33.7-33.9 where large blebs (5x7 mm) developed in QDV	Core breaks easily along foliated/ bedding surfaces
45.40 TO 50.20	«LITHIC WAC KE»	Colour: grey, black Grain Size: fine to coarse Repetative sequence of lithic wacke (conglomerate/ breccia) and fine to coarse sandy wacke. Sections are akin to a heterolithic fragmental. Clasts tend to be flattened and oriented parallel to bedding and weak phyllitic foliation. Clastic fragments comprise quartz, dolomite argillite and yellow sericitized siltites?	80	Light coloured silty and sandy grains and clasts show weak to moderate dolomitization	3-10% pyrite is disseminated through- out as fine cubic grains. The greater abundance occurs in the sandy sub- intervals eg. 46.9-47.2; 48.5-48.9	
50.20 TO 58.90	«AREN ARG»	Colour: black Grain Size: fine The contact with the overlying unit is faulted parallel to foliation 80-90 deg. Black, graphitic silty argilite and black graphitic fine grained, well sorted arenite. The sandy beds are a fine mixture of white dolomitic grains in a black graphitic argillite matrix.		The sand intervals have been preferentially dolomitized with alteration of non argillite lithologies Dolomitization weak to moderate, suggesting grains are partly siliceous.	3-5% pyrite overall with argillite hosting the greater %. Pyrite is distributed mainly as bands (1-10 mm) within the argillite. Fine disseminated pyrite occurs in some sandy beds	

DLE NUM	BER: 88393			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		Black, dolomitic arenite occupies approx. 35% of the interval with the principle sub-interval 52.0-54.9. Intermittent faulting represented by broken core and graphitic gouge		Dolomite also occurs as concentric nodular growths (1-2 mm)		
58.90 TO TO 69.20	«ARG DOL AR Entite»	Colour: grey, black Grain Size: fine, medium Lithologically similar to the overlying unit but the interval is characterized by a greater % of dolomitized grey arenite. (to 50%). Intermittent fault gouge and breccia, with mein zones as follows: 463.4-64.2 «Fit Gou/Bx» 466.8-67.3 «Fit Gou»	70	Nodular dolomitic growths are abundant in the sub interval 58.9-61.9, av. 40% by volume. The conc. may be related to a vein-like structure at 60.8-60.9	Pyrite occurs as folded bands in argillite (1-4 mm) occasional blebs associated with dolomite (qtz) patches, and fine grained disseminations. Overall 3-5% pyrite	
69.20 TO 80.00	«SIL SEDS C HT»	Colour: grey, black Grain Size: fine The contact with the overlying sediments is faulted but there is no immediate variation in lithology. The change appears gradational. The interval comprises silicified grey, fine grained arenite/silitic; black, pyritic argillite and grey chert with fine black argillite partings (<1 mm) The lithologies tend to be gradational with the exception of the pyritic argillite between 70.9-72.1 m. The cherts (+ silicified silitie?) dominate the lower part of the interval from 76.2- 80.0 and are gradational with the underlying het frag. Bedding is poorly defined but weak phyllitic foliation is developed at 70-80 deg. Faulting is confined to the upper 0.8 m of the interval 69.2-70.0 (strained sediments and graphitic gouge)		Silicification increases downhole, due to primary chert rather than secondary silicification	Pyrite generally occurs as fine grained bands and patches with occasional coarse grained blebs. Overall 2-7% pyrite with concentration within black argillite [70.9-72.1] «7-10% Py» Several blebs (1-2 mm) of sphalerite occur over 10 cm at [75.6-75.7] «1% Sp» associated with minor patchy quartz dolomite	
80.00 TO 82.50	«HET FRAG»	Colour: grey, white, black Grain Size: fine to coarse Grey, black, chert, quartz dolomite, granules to		Locally silicified	7-10% pyrite occurs as fine "dusty"	

HOLE NUME	BER: R1393			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		pebble size, subrounded to subangular clasts form a heterolithic fragmental. The Het frag varies from clast, to argillite matrix supported			disseminations in irregular patches, coarser grains in blebs and occasional cubic crystals	
82.50 TO 124.60	«DOL MAF»	Colour: grey to greenish yellow and brown Grain Size: Although a 2-3 cm interval of fault gouge marks the contact with the Het frag. The lithologies appear gradational. The mafic interval has been intensely altered, such that no relict textures are visible. Greyish white quartz and dolomite with yellow brown sericite and green talc form a generally chaotic mixture of lithologies Folded, mottled grey white QDV crosscut foliation. Faulting is concentrated towards the lower contact as follows: 108.0-108.2 116.0-117.9 blocky, broken core and gouge The lower sub interval from approx. 119.0-124.6 appears strained with generally friable core. The contact with the underlying interval appears lithologically gredational		Yellow brown sericite alteration forms patches and lammellae with foliation developed at 70-80 deg to c.a. Green talc and fuchsite are often associated with the zones of sericite alteration Intense dolomitization	Pyrite content decreases downhole from 7-10% near the Het frag. contact to 1-2% at the lower contact. Pyrite occurs as fine disseminations in patches, fine grains parallel to sericite laminae and disseminated fine grains and occasional blebs	
124.60 TO 130.00	«MAF VOLC A RG»	Colour: light to dark grey and black Grain Size: fine Transitional interval comprising dolomitized mafic volcanics and black argillite Interval shows deformation with stretching parallel to foliation and folding of cross-cutting QDV. Faulted contact with underlying argillites and cherts		Weak to moderate development of yellow brown sericite as fine Laminae (< 1mm) Green talc and fuchsite well developed adjacent ot fault at 130.0 m. Mod. to intense dolomitization of volcanic component	<1% disseminated pyrite	
130.00 TO 172.40	«ARG CHT»	Colour: light to dark grey, and black Grain Size: fine Interval dominated by light to dark grey cherts with graphitic argilite partings (<1 mm) and argillite interbeds (1-10 cm).		A minor interval of quartz and pale yellow sericite occurs between 138.1-138.6	Overall the interval is relatively pyrite poor with est. 1-4% py. However locally pyrite and base metal sulphides	

-

.

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
2		The lithologies are generally deformed and faulted. The upper sub-interval 130.0-142.5 exhibits tectonised texture and structure with folded stretched and boudined argillite and chert Ribbon cherts are well developed from 142.5-148.0 152.6-158.6 and 168.0-171.6 Quartz dolomite veining and flooding appears as more than one phase of intrusion but overall is estimated at 10% of the interval		Chert appears to have been locally bleached by QDV at 145.0 m and 159.0. Quartz dolomite veining and flooding has also caused local silicification of argillite interbeds	of greater conc. do occur. [139.8-140.6] +5% Sp,<1% Gn Cp, Tr Tt» and 8% pyrite. Sugary brown irregular blebs of sphalerite have intimately associated grains and small blebs (1-2 mm) galena and tetrahedrite. Chalco- pyrite is associated with blebby aggregations of pyrite. All occur within an irregular folded patchy grey white GDV which crosscuts foliation and essentially floods the host arg and chert	
		Faulting has resulted in up to 25% of the interval being broken and brecciated. The more significant zones are as follows: 140.6-142.3: 148.2-150.7: blocky 162.0-163.4: blocky 162.0-163.4: blocky 166.4-168.0: gouge+blocks The lower contact with dolomitized mafics is faulted, with 30 cm of gouge and infilling QDV	3% com in a wi yellow- in faul at 162. Pyrite patchy [166.4- as fine		3% combined Sp.Gn.Cp (tr. Tt?) occur in a white GDV between 141.1-141.2, yellow-green arsenic? staining occurs in faulted, broken GDV + Arg/Cht at 162.5 Pyrite is locally concentrated in patchy GDV + Arg/Cht at {166.4-167.4} = 20-30% Pys as fine grained semi-massive bands and coarse cubic aggregations	Graphitic argillite and chert provides the right host rock chemistry for the precipitation of BMS boom from silica rich fluids
72.40 TO 98.20	«DOL MAF VO	Colour: brown to grey Grain Size: Intensely altered mafic volcanics. No remnant textures visible. Texture is characteristically called a whitish grey to grey and yellow brown patchy mixture with locally well developed mottled grey and white dolomite zones		Intense dolomitization throughout and locally well developed yellow brown sericite alteration Fuchsite and green talc occur in close association with sericite particularly in zones of faulting	Trace to 4% pyrite	
198.20 10 209.40	«MAF ARG CHT FLT BX»	Colour: grey, white and black Grain Size: fine Nainly a faulted interval of mixed, altered mafic volcanics, grey cherts and black graphitic argillite. Approximately 25% of the interval is not brecciated with the lower 1.1 m to 209.4 m		Intense dolomitization of mefic sub- intervals and intense local develop- ment of yellow brown sericite. Gouge is highly graphitic	3-5% pyrite occurs as disseminations or blebby aggregations associated with quartz dolomite veins and fragments	203.3-205.4 -20% core loss

MINNOVA INC

.

.

ŀ

HOLE NUM	BER: 86393			MINNOVA INC. Drill Hole Record		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA		MINERALIZATION	REMARKS
		relatively competent Quartz dolomite veining and flooding occupy 10% of the interval either as competent blocks or broken fragments				
209.40 TO 212.70	«LITHIC WAC KE»	Colour: grey, brown, black Grain Size: fine to coarse Gradational contact with the overlying unit. Greyish, fine to coarse grained, pyritic (arenite) wacke grades into coarser granule to pebble, clast supported (conglomerate/bx) wacke. Grains and clasts tend to be flattened parallel to foliation at	80	Light coloured grains and clasts have been dolomitized	7-10% pyrite is disseminated through- out as fine grains and cubic grains with occasional coarse blebs to 3-4 mm diameter. Fine dusty pyrite in bands (3-4 mm), parallel to foliation also occurs locally	
212.70 TO 221.40	≪MAF ARG CH T≫	Colour: grey, greenish-brown and black Grain Size: fine to coarse Conformable contact with overlying wacke. The interval comprises deformed, folded mixed argillite, chert and dolomitized mafic. A minor sub-interval of (conglomerate/bx) wacke occurs between [218.2-218.6] «WACKE» Cherty zones display bullseye folds e.g. at 213.3 and 214.0. Foliation developed at Patchy GOV and zones of flooding occupy 10-12% of the interval	65	Intensely dolomitized and sericitized mafic sub-intervals. Green talc and fuchsite locally developed along foliation parallel to sericite	5% pyrite occurs in a variety of forms -disseminated grains and blebs assoc. with QDV and argillite interbeds -fine disseminated grains in bands or patches	
221.40 TO 231.90	«LITHIC WAC KE»	Colour: grey, brown and black Grain Size: fine to coarse Contact relationship uncertain as quartz dolomite floods the zone where the lithologies merge. The interval is dominated by a variably coloured pebble to cobble (conglomerate/breccia) wacke Clast sizes range up to 6 cm in diameter and vary in composition from mafic to sedimentary. Zones have been flooded with quartz dolomite creating		Mafic clasts are intensely dolomitized and sericitized. Lighter coloured clasts of sedimentary origin show weak patchy to overall intense dolo- mitization	5-10% pyrite is distributed as fine disseminated grains and coarser blebs patches and bands. Concentrated zones of pyrite and base metals occur as follows: [227.4-227.9] «3%Cp, 3%SpGn,<0.1%Tt» Within a zone of quartz dolomite	

.

-

i

	IER: 1,G393			MINNOVA INC. DRILL HOLE RECORD		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		a patchy grey white matrix to argillite, chert and mafic clasts. A 30 cm zone from 225.2-225.5 m is distinctly Net frag in nature comprising clasts supported in a black argillite matrix. The contact with the underlying mafics is marked by a minor zone of fault gouge, however the lithological change appears gradational. GOV and pyrite complicate the location of the contact point			flooding, Cp intimately associated with blebby aggregations of pyrite. Galena similarly related Sp. A single irregular blebby aggregation of tetrahedrite (3x6 mm) occurs with py and galena. From 227.9-228.4 in the zone of QDV persists but BMS diminish with <1% Sp observed. Pyrite increases overall to the contact overall to the contact with the under- lying mafics, with the underlying mafics, with the minor subinterval 231.7-231.9 having 15% pyrite by volume	
231.90 TO 247.10	+OOL MAF VO LCS+	Colour: grey and brown Grain Size: fine Intensely altered interval of mafic volcanics. No relict textures are visible. Foliation well developed with sericite at:	70	Intense grey dolomitization and yellow brown sericitization. Talc and fuchsite developed in faulted zones at 246.0	Overall 2-3% pyrite occuring as fine disseminations and occasional blabs. The upper 1.0 m is more concentrated in pyrite and contains a 2cm wide zone of disseminated to blabby Sp and Gn 4231.9-232.9 k <1% Sp+Gn, 10% Pys within qtz-dol flooding	
247.10 TO 261.20	«ARG CHT WA CKE»	Colour: grey, black, brown, white, green Grain Size: fine to coarse Contact with the above mafics appears gradational. the interval comprises a complex mixture of argillite, chert and well developed (conglomerate/ breccia) wacke. QDV and flooding complicate the overall lithological picture, and similary faulting and stretching distort any bedding structures. Altered mafic (dolomite+sericite), argillite, chert (and siltite), clasts, brown grenule to pebble size from the wacke. Intermittent faulting occurs with a principal zone between 258.2-259.2		Dolomitizationn is evident throughout all light coloured clasts. Yellow brown sericite is well developed with mafic fragments/clasts. Green talc and fuchsite occur with sericite	7-10% pyrite distributed in grains, blebs, patches and bands. A concentrated zone of pyrite with BMS occurs as follows: [258.1-258.2] «20% Py, <1% SpGn» associated with a cross-cutting vein of white quartz dolomite	
	E.O.H.					

MINNOVA INC.

ł į

HOLE NUME	BER: RG393			MINNOVA INC. DRILL HOLE RECORD		DATE: 29-October-1990
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS

l

LOGGED BY: A. G. French

.

:

į

ASSAY SHEET

DATE: 29-October-1990

							SAYS									GEOCHEMIC								CONNENTS
Sample	From (M)	To (m)	Length (m)	ເບ *	ZN X	98 X	AG G/T	AU G/T	SB X	AS X	CU PPM	ZN PPM	P8 PPN	\$.G.	AG OZ/T	AU OZ/T	AS PPM	BA PPM	BA X	SB PPN	AG PPM	AU PPB		
27165 27166 27167 27168 27169	45.40 46.90 48.50 55.50 58.90	46.90 48.50 50.20 57.00 60.50	1.50 1.60 1.70 1.50 1.60	.015 .038 .018 .007 .006	.05 .11 .05 .02 .01	.04 .06 .02 .01 .01	3.0 3.8 3.1 1.9 2.8	.02 .03 .04 .01 .01			154 379 183 70 56	532 1069 492 198 140	355 574 208 58 42				107 137 87 39 1	152 120 109 147 123		4 2 27 7 10	3.0 3.8 3.1 1.9 2.8	22 30 39 9 4	. <u></u>	_
27170 27171 27172 27173 27174	67.30 70.90 75.30 78.30 80.10	68.80 72.50 75.90 80.10 81.10	1.50 1.60 0.60 1.80 1.00	.003 .004 .009 .003 .004	.01 .01 .14 .09 .04	.01 .01 .02 .02 .02	2.7 1.6 16.0 5.4 2.9	.01 .37 .34 .61 .57			29 37 93 34 38	54 26 1392 854 428	20 58 153 203 168			1	1 425 649 1581 1921	87 134 71 77 68		1 13 86 26 20	2.7 1.6 16.0 5.4 2.9	5 371 336 608 570		
27175 27176 27177 27178 27179		82.50 84.00 85.50 124.60 126.10	1.40 1.50 1.50 1.50 1.50	.010 .010 .058 .010 .011	.05 .01 .06 .01 .01	.02 .01 .02 .01 .01	2.9 1.8 9.9 1.6 1.8	.36 .16 .12 .01 .01			102 97 583 103 122	536 104 579 120 147	175 78 237 31 30			2	2541 2006 519 1 10	73 89 84 78 66		31 21 191 1 17	2.9 1.8 9.9 1.6 1.8	363 162 118 2 3		
27181 27182 27183 27184 27185	130.00 138.60 139.80 140.60 141.30	139.80 140.60	1.60 1.20 0.80 0.70 1.40	.017 .004 .191 .076 .005	.01 .01 1.61 .16 .04	.01 .02 .65 .14 .02	2.8 2.1 55.7 21.4 1.4	.01 .01 1.39 .17 .03			169 39 1906 758 54	49 144 16065 1563 434	47 230 6471 1365 184				144 127 587 189 113	155 73 42 49 75		39 7 682 205 10	2.8 2.1 55.7 21.4 1.4	10 5 1320 170 28	н 	
27186 27187 27188 27189 27190	155 <i>.</i> 30 158 <i>.</i> 60	152.60	1.50 1.40 0.50 1.50 1.60	.005 .007 .018 .005 .003	.01 .03 .12 .01 .03	.01 .01 .02 .01 .01	1.3 1.8 7.5 0.9 0.8	.01 .06 .14 .01 .01			46 72 182 45 28	130 315 1171 90 284	80 95 220 45 75				72 126 208 79 106	83 191 166 69 114		8 40 14 10	1.3 1.8 7.2 0.9 0.8	2 57 140 2 1		
27192 27193 27194 27195 27196	166.40 167.40 170.90 172.40 196.70	168.90 172.40 173.90	1.00 1.50 1.50 1.50 1.50	.011 .027 .007 .010 .006	.06 .02 .02 .02 .02	.04 .05 .01 .02 .01	2.2 2.3 2.3 1.1 1.6	.12 .03 .01 .01 .01			113 267 68 98 62	630 221 227 230 136	432 548 122 183 93				170 129 145 151 39	47 74 146 41 76		15 86 18 1 1	2.2 2.3 2.3 1.1 1.6	122 27 8 2 1		
27197 27198 27199 27201 27202	207.90	205.40 209.40 219.40	1.50 2.10 1.50 1.60 1.50	.002 .006 .006 .009 .002	.01 .01 .02 .13 .01	.01 .02 .01 .07 .01	0.6 1.1 0.9 2.7 0.3	.02 .01 .03 .02 .01			18 61 59 91 24	99 147 238 1267 107	87 168 122 694 59				94 194 46 188 99	76 109 51 95 116		2 2 1 3 1	0.6 1.1 0.9 2.7 0.3	21 5 25 24 2		
27203 27204 27205	221.40 225.90 227.40	227.40	1.50 1.50 0.50	.003 .010 .83	.01 .08 1.14	.01 .04 .24	0.8 2.2 69.7	.02 .02 1.64			27 100 8326	56 811 11399	85 362 2373				85 123 808	155 143 88		1 1 310	0.8 2.2 69.7	16 24 1600		

ASSAY SHEET

DATE: 29-October-1990

Sample	Fróm (m)	To (m)	Length (m)	CU X	ZN X	PB X	AG G/T	AU G/T	SB X	AS X	CU PPM	ZN PPM	P8 PPN	\$.G.	AG OZ/T	AU OZ/T	AS PPN	BA PPN	BA X	SB PPM	AG PPH	AU PPB
27206 27208	227.90 231.40			.047	.29 .03	.09 .05	10.0 2.5	.31 .09			471 79	2917 258	872 462				302 266	112 119		83 2	10.0 2.5	310 90
27209 27210	231.90 232.90		1.00 1.50	.007	.08 .02	.06 .01	2.3 1.5	.11			67 34	821 191	614 115				348 243	110 147		3	2.3 1.5	110 25
27212 27214	247.10 252.20	248.60	1.50	.002	.01 .02	.01 .01	1.3	.02 .03			24 32	82 213	1 38 103				198 170	188 260		1	1.3	20 29
27215		256.60		.007	.06	.04	2.4	.06			70	627	408				, 138 247	164		1	2.4	57
27216 27217 27218	256.60 258.20 259.70		1.50	.007 .010 .006	.01 .10 .02	.01 .05 .01	1.0 1.9 1.3	.25 .76 .06			73 95 64	102 1030 159	114 453 90				263 365 177	186 23 236		6	1.0 1.9 1.3	245 761 60

2

GEOCHEM. SHEET

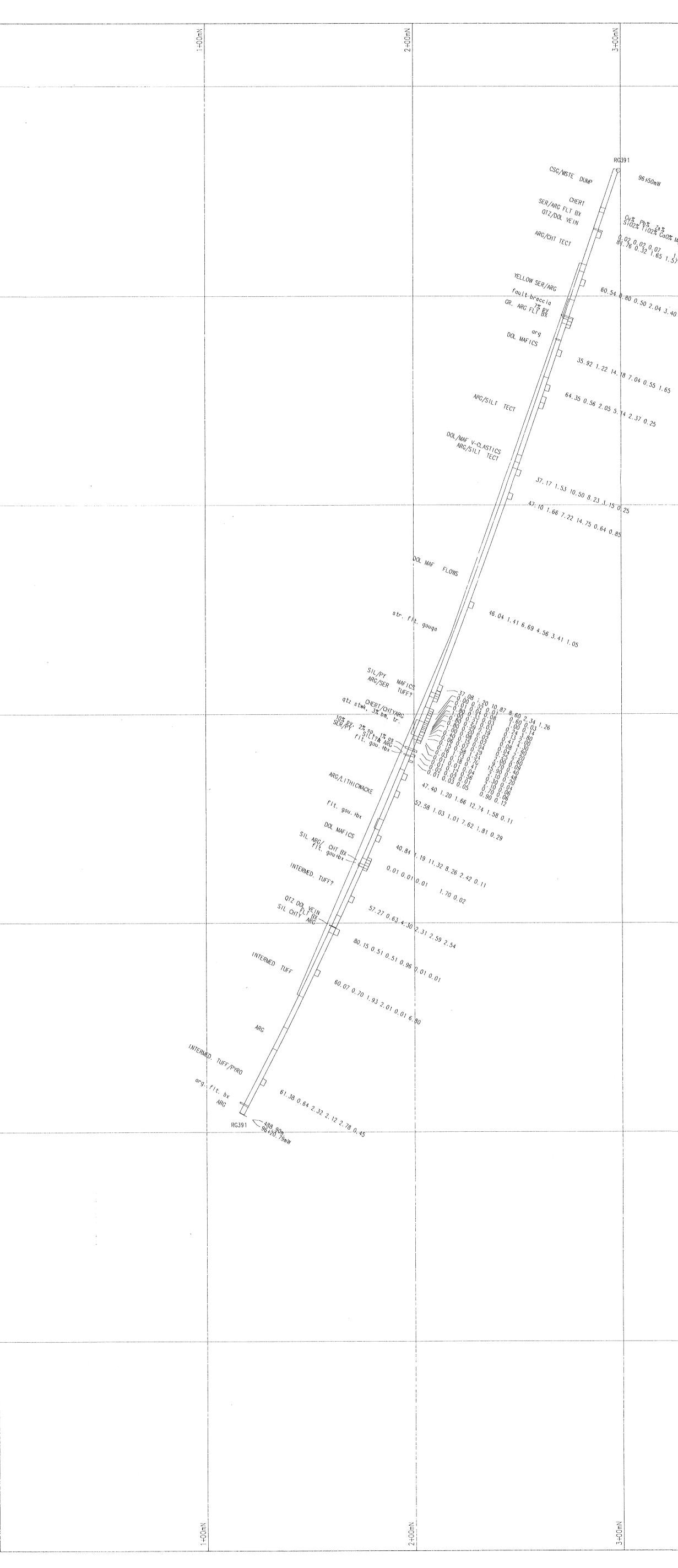
DATE: 29-October-1990

Sample	From (m)	To (m)	Length (m)	\$102 X	AL203 X	CAO X	MGO X	NA20 %	K20 X	FE203 X	MN02 %	T102 X	BA X	ZR X	CU PPN	ZN PPN	PB X	TOTAL X	AU PPB	BA PPN	AG PPM	PB . PPN	P205 X	SR X	s X	TOTAL X	AS PPN	S8 PPM
27180 27191 27200 27207 27211	102.70 • 163.40 209.40 228.40 239.90	166.40 212.40 231.40	3.00 3.00 3.00	81.47 54.10 57.27	9.10	3.81 0.70 2.97 6.83 9.06	0.27 5.78 4.72	.24 .03 .25 .56 .56	1.85 1.45 0.87 1.10 0.84	5.38 14.45	.28 .01 .25 .25 .34	.86 .38 .79 1.14 1.65			135 123 88 85 29	162 468 138 865 78			60 200 10 25 5	80 152 68 152 94	2.5 3.5 1.6 2.7 1.7	33 275 197 667 79	.01 .05 .09 .08 .01		4.55 8.78 4.62	86.34 98.40 96.60 94.83 87.70	84 344 115 157 148	6 39 1 1
27213	249.20	252.20	3.00	67.42	10.25	3.77	3.53	.11	1.69	5.76	.22	.59			31	99			35	261	1.0	77	.01		2.91	94.85	130	1

APPENDIX III STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Alan R. Hill hereby certify that:


1) I hold a Bachelor of Science degree (Geology Major) obtained in 1984 from the University of Western Ontario, in London.

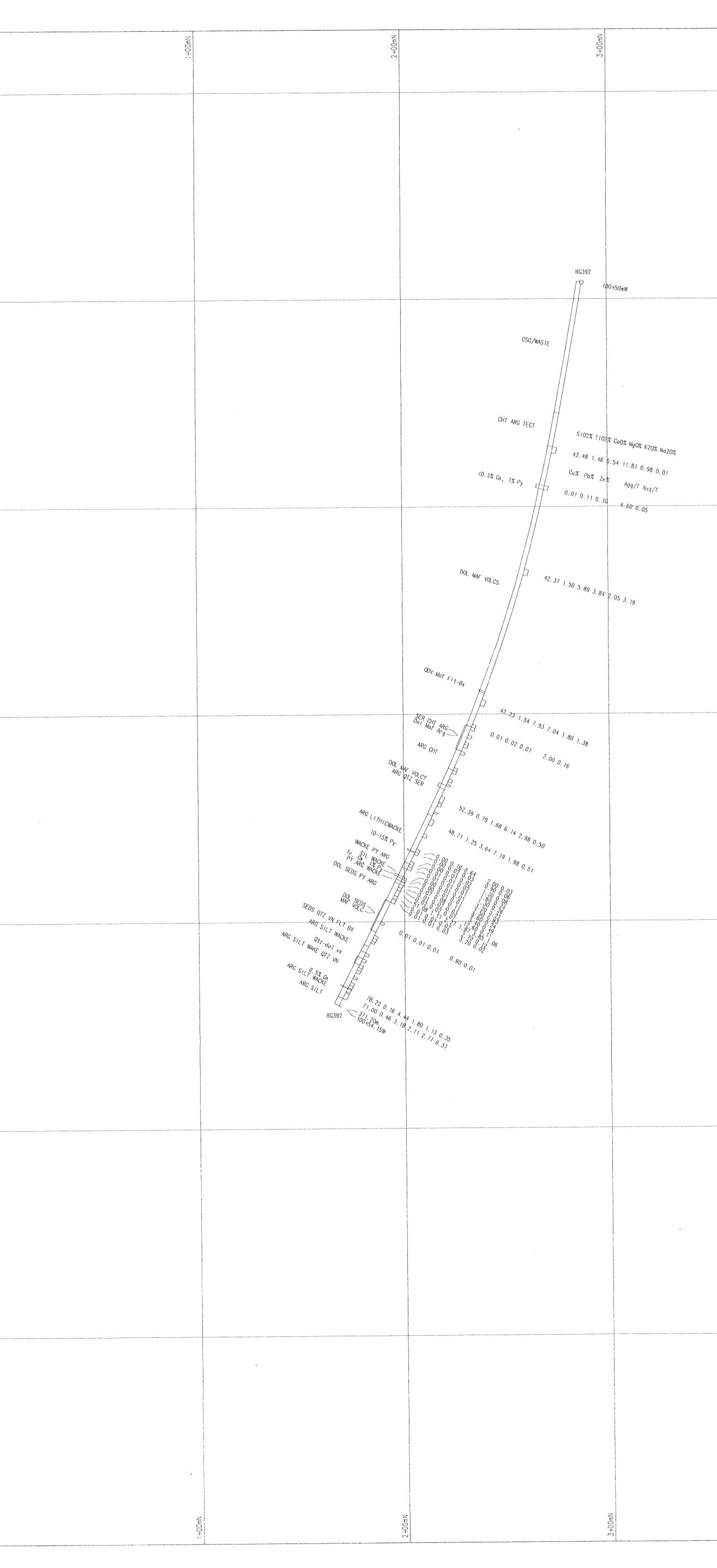
2) I have practised my profession in minerals exploration continuously since graduation.

3) I have personally supervised the work reported herein, in the field, and have based my recommendations on that work, my knowledge of the area, and previous experience in the area.

Alan R. Hill, B.Sc. Vancouver, B.C.

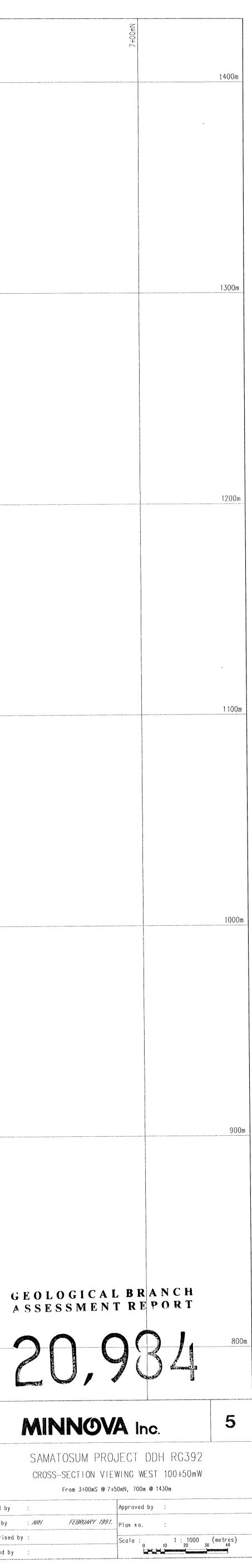
		NE000+0
1400m		Ġ
1300m		
1200m		
1100m		
1000m		
900m		
800m		
	2	Nm00 00+0

`

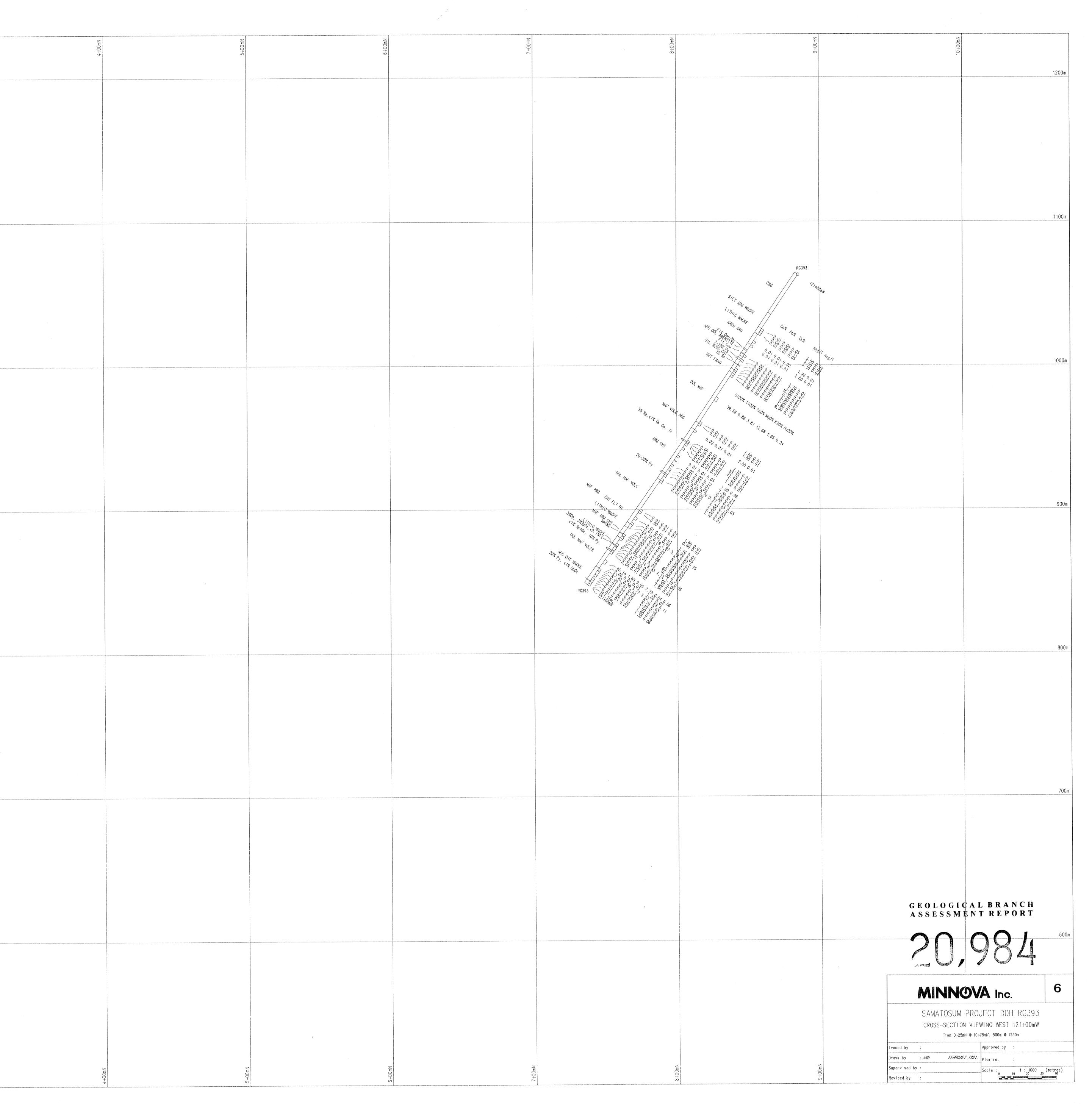

N#00++	NEOO+ G	N #000+00	
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$			
^{3.} 40 0. 25			
65			
		· · ·	
			· · · · · · · · · · · · · · · · · · ·
			GEOL ASSE
			2
			M
			SAMA CROS Traced by : Drawn by : ARH

				7+00mN				
		10 au 11 11 11 11 11 11 11 11 11 11 11 11 11		AND 1 - Doc 17		• 10.10. • • • • • • • • • • • • • • • • • • •		1400m
								1300m
	n maan anno 1 meerin aan aan aan aan	10000 - 10000 - 10000 - 10000 - 10000						1200m
		Autoria di manananana a						1100m
							ak synamical aktivation an	1000m
	99 (Long at St. (199) - 1997 (B) (199			11 - 1 1 - 11 - 11 - 11 - 11 - 11 - 11				900m
GEO ASS) L C 5 E S) G I (S M I	CAL ENT	BR RE	ANC POI	C H R T		
\frown								800m
Frank					52			
	A 1 A		(A)	×		<u>.</u>	МАР	No.
		NN						4
		OSUM -sectio						
dby :		From 3+00	mS @ 7+5	OmN, 700m Approved				
by : Ah vised by :	24	FEBRUAR	27 1991.	Plan no. Scole :		: 1000 20 30	(metr	es)
ed by :	-					20 30		j

\$


1400m	2 +00mS	1+00 9 1+00	Z E O O + O
1300m			
		·	
1200m			
1100m			
1000m			
900m			
		·	
800m			
	2+00mS		1+00mS 0+00mN

,



	Zug	Z E		
	N#000++	ли 100ш 2) - - - -
		· · ·		
0% _{Na20%} ⁸ 0.01 1/T				
·				
				G A
	,			
				Traced by
		NE00++	N =00 00+ 9	Drawn by Supervised by 우 요 Revised by

•

	2+00m	Z E C C T T	
1200m			
1100m			
1000m			
900m			
800m			
700m			
600m			
,			
	Z E 	7 + C	N#00+0

