# D. L. COOKE AND ASSOCIATES LTD.

MINERAL EXPLORATION CONSULTANTS

| SUB-RECORDER<br>RECEIVED |
|--------------------------|
| FEB 2 1 1991             |
| M.R. #\$                 |

| LOG NO: Jeb 27/91 | RD. |  |
|-------------------|-----|--|
| ACTION            |     |  |
|                   |     |  |
|                   |     |  |
| FILE NO:          | _   |  |

1990 RECONNAISSANCE GEOLOGY

# AND GEOCHEMISTRY OF

THE LAC 1 - 4 CLAIMS

Mt. Milligan Area NTS 93 O / 4 W

Latitude: 55° 06' North Longitude: 123° 50' West Omineca M.D.

by

DAVID L. COOKE, Ph.D., P.Eng. D.L. COOKE AND ASSOCIATES LTD. 811 - 675 West Hastings Street Vancouver, B.C. V6B 1N2



Work Done: June 2-8, 1990

•

6

# Claims on which work was done:

| <u>Claim</u> | Units | Record No. | Month of Record |
|--------------|-------|------------|-----------------|
| Lac l        | 20    | 11722      | March 28, 1991  |
| Lac 2        | 20    | 11723      | March 28, 1991  |
| Lac 3        | 18    | 11724      | March 27, 1991  |
| Lac 4        | 12    | 11725      | March 27, 1991  |

January 29, 1991

# TABLE OF CONTENTS

τ

|                                     | Page |
|-------------------------------------|------|
| Summary                             | 1    |
| Introduction                        | 2    |
| 1990 Exploration Program            | 3    |
| Location and Access                 | 3    |
| Property and Ownership              | 4    |
| Regional Geology and Mineralization | 4    |
| Property Geology and Mineralization | 5    |
| Geochemistry                        | 6    |
| Sample Preparation and Analysis     | 6    |
| Discussion of Results               | 6    |
| Conclusions and Recommendations     | 8    |
| References                          | 9    |

# ILLUSTRATIONS

| Figure 1: | Location Map, Lac Claims<br>Mt. Milligan Area                                  |
|-----------|--------------------------------------------------------------------------------|
| Figure 2: | Claim Map, Lac Claims, 1:50,000                                                |
| Figure 3: | Reconnaissance Geology and Sample Locations,<br>Lac Claims; 1:10,000           |
| Figure 4: | Reconnaissance Geochemistry, Lac Claims, Gold,<br>Arsenic and Copper; 1:10,000 |

# APPENDICES

| Appendix I   | Statement of Expenditures   |
|--------------|-----------------------------|
| Appendix II  | Statement of Qualifications |
| Appendix III | Analytical Results          |

### SUMMARY

The Lac property consists of the Lac 1 to 4 mineral claims which total 70 claim units. These claims are located in the Mt. Milligan area and may be reached by road 85 kilometres southwest of McKenzie, B.C.

The Mt. Milligan area is rapidly becoming a new camp for porphyry coppergold deposits. Placer Dome Inc. recently acquired the Mt. Milligan coppergold deposit from Continental Gold Corp. The deposit is covered by glacial drift which also obscures a great portion of the surrounding areas. The host rocks consist of Takla volcanic flows and tuffs and coeval alkaline intrusions of monzonitic composition.

The mineralization occurs in typical porphyry copper style and consists mainly of pyrite and chalcopyrite stockwork and disseminations. Gold occurs in the free state and in association with the sulphides. Gold-bearing quartz carbonate veins also commonly occur peripheral to the porphyry copper-gold mineralization and are localized by fault zones.

The Lac claims are partially covered by glacial drift. Rock exposures consist of strongly sheared and carbonatized Takla volcanic rocks containing abundant disseminations of pyrite. There is also evidence of quartz-carbonate stockwork and veins within the sheared and altered volcanic rocks. Minor amounts of black pyritic argillites occur within the volcanic assemblage.

Reconnaissance prospecting, geological mapping, rock and soil sampling were done over portions of the property during the periods June 2-8, 1990. Anomalous values for arsenic in soils were found in the northwest corner of the property where the glacial cover is shallow. Rock geochemistry within this area also returned anomalous results for arsenic, copper and silver. A few strongly anomalous values for gold in soils appear to be randomly distributed across the property. These anomalous results are sufficiently encouraging to warrant further exploration of the Lac claims. Additional geological mapping, soil and rock geochemistry are recommended, together with VLF-EM, magnetometer and induced polarization surveys to detect disseminated sulphides below the glacial cover.

#### INTRODUCTION

The Lac claims were staked in a drift-covered area over the eastern portion of a small boomerang-shaped aeromagnetic anomaly which occurs approximately 3.5 kilometres east of the Mt. Milligan copper-gold deposit of Continental Gold Corp. The Lake 1-5 claims cover the western portion of this aeromagnetic anomaly. The Mt. Milligan deposit lies on the southeast margin of a large aeromagnetic anomaly which reflects an underlying diorite - syenodiorite - monzonite intrusive complex. Detailed low-level airborne and ground magnetic surveys define the Mt. Milligan zones of mineralization as small satellite magnetic anomalies caused by sulphide-bearing monzonitic dikes and plugs.

The claims were examined for their porphyry copper-gold and gold vein potential during the period June 2-8, 1990. The results of this exploration work forms the subject of this report. A total of \$7,725.00 was spent in the exploration of the Lac 1 to 4 mineral claims. This report is submitted for assessment credits to maintain the Lac 1 to 4 claims each for a period of one year.

### 1990 EXPLORATION PROGRAM

There is no record of prior exploration work in the area of the Lac claims. The current reconnaissance program consisted of prospecting, geological mapping, soil and rock geochemistry along logging roads and logged off areas. Soil samples were collected every 100 metres along the traversed areas. Rock samples were collected for assay at irregular intervals. Data was blotted on 1:10,000 topographic maps. Sample control was provided by topofil chain from known points. This work was done by David L. Cooke, Ph.D., P.Eng., geologist, and M.A. Cooke, field assistant.

### LOCATION AND ACCESS

The Lac claims are situated in the Omineca Mining Division, approximately 35 kilometres southwest of McKenzie, B.C. (Figure 1). The claims lie 4.5 kilometres east of the Continental Gold Corp. / Placer Dome deposit. Access to the claims is from McKenzie by 85 kilometres of good logging roads operated by Fletcher Challenge Ltd. The area is one of active logging operations, and there are numerous clear-cut areas on the Lac property.

The property area is generally gently rolling. Elevations on the claims range from 992 metres at the level of Philip Lakes to 1,300 metres in the northeast section. Vegetation is primarily a mixture of spruce, fir and lodgepole pine. The underbrush is very dense in areas of secondary growth, which consist of young spruce and fir.



![](_page_6_Figure_0.jpeg)

1.01

#### PROPERTY AND OWNERSHIP

The Lac 1 - 4 mineral claims are owned by D.L. Cooke, 10667 Arbutus Wynd, Surrey, B.C. The pertinent claim data is as follows:

|       | Units | Record No. | Due Date       |
|-------|-------|------------|----------------|
| Lac l | 20    | 11722      | March 28, 1991 |
| Lac 2 | 20    | 11723      | March 28, 1991 |
| Lac 3 | 18    | 11724      | March 27, 1991 |
| Lac 4 | 12    | 11725      | March 27, 1991 |

#### REGIONAL GEOLOGY AND MINERALIZATION

Mt. Milligan occurs roughly at the core of an area of porphyry copper-gold mineralization which runs northwesterly from Carp Lake to the Nation River in the Omineca Mining Division of B.C. This area is part of the Quesnel Trough of Upper Triassic rocks, which extend northwesterly from the U.S. border through B.C. to the Yukon.

The Upper Triassic rocks in the Mt. Milligan area belong to the Takla Group and consist mainly of andesitic and basaltic flows and pyroclastics. Minor amounts of black argillites have been noted locally. Older metamorphic rocks of the Slide Mountain and Cache Creek Groups occur to the east of the Takla rocks. The Takla volcanic rocks are intruded by calcalkaline and alkaline plutons of Upper Triassic to Cretaceous ages.

The geology of the Mt. Milligan area is mainly obscured by glacial drift. The Mt. Milligan porphyry copper-gold deposit which is currently being developed by Placer Dome Inc. contains 385 million tons of probable ore with a grade of 0.22% copper and 0.016 ounce gold per ton. The mineralization consists of pyrite, chalcopyrite and free gold within Takla volcanic rocks and in coeval alkaline intrusions (monzonite, diorite, etc.) of Triassic age. The sulphides occur as disseminations and stockworks in both intrusive and volcanic host rocks.

The intrusions are characterized by abundant disseminations of magnetite, which make them detectable by airborne and ground magnetic surveys. Sulphides are concentrated in the intrusive margins and adjacent volcanic rocks and may be traced under the glacial cover by induced polarization methods.

In addition to the disseminated and stockwork habit of sulphide mineralization, there are fault-controlled gold veins which occur peripheral to the porphyry mineralization. The veins contain quartz, carbonate, pyrite, chalcopyrite and gold which in some cases is of economic interest.

### PROPERTY GEOLOGY AND MINERALIZATION

The Lac claims lie over the eastern portion of a small boomerang-shaped aeromagnetic anomaly which lies to the southeast of the larger Mt. Milligan aeromagnetic anomaly. These claims have potential for the occurrence of mineralized satellitic alkaline intrusions similar to the Mt. Milligan intrusions. The property, however, is extensively covered by glacial drift material of unknown thickness. Some rock exposures occur in the northwestern parts of the claim group (Figure 3) which suggests that the area is underlain by sheared and altered Takla volcanic flows and fragmentals. Minor amounts of black, pyritic argillites occur in the southwest corner of the property.

Various amounts of pyrite occur in the sheared volcanic rocks. Alteration consists of silicification and carbonatization. In the northwest part of the property, carbonatized rocks contain quartz, carbonate and pyrite veinlets. The silica and carbonate alteration zone is anomalous in arsenic and copper. Although the dimensions are not known, it appears to be trending to the northeast and appears to be fault-controlled.

D. L. COOKE AND ASSOCIATES LTD.

#### GEOCHEMISTRY

#### Sample Preparation and Analysis

Soil samples were taken with a shovel from depths of 15-30 centimetres along the major and minor logging roads at 100 metre intervals. Soil samples were placed in numbered Kraft sample bags and shipped to Min-En Laboratories in North Vancouver, B.C. for analysis. Rock samples and stream silt samples were occasionally collected in the course of soil sampling, prospecting, mapping, etc. The sample location sites and numbers are indicated on Figure 3.

The soil samples were dried at approximately  $60^{\circ}$ C and then sieved to minus 80 mesh. A 1.0 gram sample was then digested with HN0<sub>3</sub> and HCL0<sub>4</sub> mixture. These samples were then diluted to standard volume after cooling, and the solutions analyzed for 30 elements by computer operated Jarrell Ash 9000 Induction Coupled Plasma (ICP) Analyzer. Gold was determined on separate solutions by atomic absorption spectrophotometry. Rock samples were crushed and treated in a similar geochemical fashion.

### **Discussion of Results**

The analytical results are presented in Appendix III. Significant values for copper, gold and arsenic in rocks and soils are plotted on Figure 4. Although there were some high values for silver and copper, there seems to be no clustering of these values together. Because of the small sample population, statistical treatment of the data was not attempted. By inspection and experience, the following values were assumed to be anomalous:

| gold    | : | + 10 ppb  |
|---------|---|-----------|
| silver  | : | + 1.0 ppm |
| arsenic | : | + 20 ppm  |
| copper  | : | + 100 ppm |

It can be seen from the plot of arsenic in soils and arsenic and copper in rocks that the larger number of the anomalous values occur within the northwest area. This is also the area of strong silica and carbonate alteration in rocks. The apparent irregular distribution of anomalous gold in soils may be due to the irregular distribution and variable depth of the glacial gravel, sand and clay cover which may be masking the underlying bedrock source. Alternatively, this distribution may be the result of glacial transport of mineralized material from the west.

### CONCLUSIONS AND RECOMMENDATIONS

The reconnaissance prospecting, geological mapping, soil and rock geochemistry of the Lac claims indicated the presence of anomalous and altered zones permissive for the occurrence of porphyry copper-gold as well as fault-controlled gold-quartz mineralization.

The extensive nature of glacial drift cover in the low-lying areas is probably masking most of the geochemical response from the underlying bedrock. Geophysical methods will be required to further evaluate the property. Additional soil sampling, rock geochemistry and geological mapping are recommended for the more elevated parts of the property.

A program of magnetometer, VLF-EM and IP surveys is recommended for further evaluation of the Lac claims especially in the extensively covered areas.

Report by: D.L. COOKE AND ASSOCIATES LTD.

P

David L. Cooke, Ph.D., P.Eng. January 29, 1991

![](_page_11_Picture_7.jpeg)

- 8 -

#### REFERENCES

Cooke, D.L., 1989: Summary Report, Lac 1-4 Mineral Claims, Mt. Milligan Area, 3 pp.

- Geophysical Paper, 1961: Philip Lakes, British Columbia, Map 1573G, Geological Survey Canada.
- Geophysical Paper, 1961: Wittsichica Creek, British Columbia, Map 1584G, Geological Survey Canada.
- Muller, J.E., 1961: Geology, Pine Pass, British Columbia, Map 11-1961, Geological Survey Canada.
- Rice, H.M.A., 1948: Smithers Fort St. James, British Columbia, Map 971A; 1 inch to 8 miles.

- 9 -

# APPENDIX I

# STATEMENT OF EXPENDITURES LAC 1-4 MINERAL CLAIMS OMINECA M.D.

## Salaries

| \$ 2,450.00 |                                                                                       |
|-------------|---------------------------------------------------------------------------------------|
| 875.00      | \$ 3,325.00                                                                           |
|             |                                                                                       |
|             |                                                                                       |
| 350.00      |                                                                                       |
| 288.00      | 743 00                                                                                |
| 107.00      | 745.00                                                                                |
|             |                                                                                       |
|             | 2,082.00                                                                              |
|             |                                                                                       |
|             |                                                                                       |
|             | 700.00                                                                                |
|             |                                                                                       |
|             |                                                                                       |
| 700.00      |                                                                                       |
| 175.00      | 875.00                                                                                |
|             | <b>\$</b> 7,725.00                                                                    |
|             | \$ 2,450.00<br><u>875.00</u><br>350.00<br>288.00<br>105.00<br>700.00<br><u>175.00</u> |

Statement Prepared by: D.L. COOKE AND ASSOCIATES LTD.

Dake 1 David L. Cooke, Ph.D., P.Eng.  $C^{({\mathbb Z})}$ January 29, 1991 D.L. COOKE BRITISH

# APPENDIX II

### STATEMENT OF QUALIFICATIONS

I, DAVID LAWRENCE COOKE, of the Municipality of Surrey in the Province of British Columbia, hereby certify:

- 1. That I am a Consulting Geologist, residing at 10667 Arbutus Wynd, Surrey, B.C., V3R 0B5, with a business office at 811 - 675 West Hastings Street, Vancouver, B.C., V6B 1N2.
- 2. That I graduated with a B.Sc. degree in Geology from the University of New Brunswick in 1959, and with a M.A. degree and Ph.D. degree in Geology from the University of Toronto in 1961 and 1966 respectively.
- 3. That I have practised my profession as an exploration geologist from 1959 to the present time in Canada, the U.S.A., Mexico, the Caribbean and South America.
- 4. That I am a Registered Member of the Association of Professional Engineers of the Province of British Columbia.
- 5. That I personally performed the exploration work on the Lac 1-4 claims described herein.
- 6. And that I am the author of this report on the Lac 1-4 mineral claims, dated January 29, 1991.

DAVID L. COOKE, PH.D., P.ENG. January 29, 1991

![](_page_14_Picture_11.jpeg)

# APPENDIX III

.

# ANALYTICAL RESULTS

COMP: CROSS LAKE MINERALS/D.L.COOKE

v

#### MIN-EN LABS --- ICP REPORT

#### 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 0V-0711-SJ1+2

ATTN: R.S.MIDDLETON/D.L.COOKE

PROJ: LAC

(604)980-5814 OR (604)988-4524

\* SOIL \* (ACT:F31)

DATE: 90/06/28

| SAMPLE<br>NUMBER                                                   | AG AL AS B B<br>PPM PPM PPM PPM PP                                                                                                                                                                                                                                 | BA BE BI CA CD<br>PM PPM PPM PPM I                                                                                                                                                                                                                                                          | CO CU FE K<br>PPM PPM PPM PPM P                                                                                                                                                                           | LI MG MN MO<br>PPM PPM PPM PPM                                                                                                                                                                                                          | NA NI P PB SB SR<br>PPM PPM PPM PPM PPM PPM PPM                                                                                                                                                                                                                                                                                                     | THU V ZN GA SN W CR AU<br>PM PPM PPM PPM PPM PPM PPM PPM PPM                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L90-1S<br>L90-2S<br>L90-3S<br>L90-4S<br>L90-5S                     | 1.0 22690 1' 4 11<br>.6 17250 1' 4 8<br>.9 20070 1' 5 8<br>.7 16920 1' 4 7<br>1.1 16720 1, 4 8                                                                                                                                                                     | 17       1.0       6       10020       .8         87       .7       6       9050       .1         81       .8       8900       .1         78       .7       7       8830       .3         87       .7       7       9960       .1                                                           | 15 119-37560 1170<br>14 62-30430 1170<br>16 54-33610 1140<br>13 40-27910 1190<br>14 45-31430 1400                                                                                                         | 16         9040         726         1           13         8570         506         1           17         8820         384         1           13         7910         463         1           12         8240         493         1   | 210         40         600         20         1         18           200         23         870         16         1         20           230         22         1350         14         1         29           200         17         1150         14         1         23           230         21         1220         16         1         28   | 1       1       111.2       60       2       1       2       49       3         1       1       92.6       53       1       1       1       39       2         1       1       92.6       53       1       1       1       39       2         1       1       106.0       63       2       1       2       36       2         1       1       89.8       49       2       1       1       36       1-         2       4       98.0       49       4       1       2       42       2. |
| L90-6S<br>L90-7S<br>L90-8S<br>L90-9S 45M<br>L90-10S                | .8 14340 1. 5 6<br>.7 18510 1' 4 9<br>.8 15750 1/ 4 7<br>.9 23210 1/ 5 15<br>1.0 20870 1- 5 11                                                                                                                                                                     | 58       .7       6       9860       .1         99       .6       5       10730       .1         72       .8       7       10060       .1         52       1.0       6       9760       .2         15       .8       8       10100       .1                                                 | 14 49 35890 1110<br>12 51-29060 1220<br>14 38-40630 1040<br>15 99-35360 1900<br>15 52-36410 1400                                                                                                          | 11         7100         496         1           12         8030         492         1           11         6950         453         1           16         9640         742         1           17         9930         579         1   | 230         21         1050         18         1         23           230         20         1080         14         1         21           230         14         1100         16         1         23           200         40         800         15         1         20           240         22         1290         16         1         29  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L90-11S<br>L90-12S<br>L90-13S<br>L90-14S<br>L90-15S                | .7 15270 1- 3 9<br>.6 18030 1- 4 10<br>.6 16130 1- 5 8<br>1.2 17710 1- 5 12<br>1.2 17600 1- 4 10                                                                                                                                                                   | 91       .6       7       8850       .1         04       .8       6       8880       .1         185       .6       7       9060       .3         22       .7       9       9870       .1         09       .8       7       8860       .3                                                    | 12 33~28680 1140<br>13 65~31220 1680<br>12 44~28030 1130<br>14 26~31080 1330<br>14 38~34000 980                                                                                                           | 11         7770         478         1           15         9090         527         1           13         8310         464         1           12         7750         552         1           12         8190         615         1   | 220         16         1160         17         1         27           280         25         1110         17         1         24           250         17         1110         16         1         24           200         17         1470         20         1         30           180         22         950         16         1         24  | 1       1       94.0       47       2       1       1       37       6         1       1       91.8       50       1       1       1       38       6         1       1       88.6       44       1       1       1       36       1-         2       3       100.4       65       4       1       2       43       5-         2       6       117.1       50       5       1       2       48       9-                                                                               |
| L90-16S<br>L90-17S<br>L90-18S<br>L90-19S 45M<br>L90-20S            | .4 13810 1~ 3 6<br>.6 15810 1~ 4 7<br>.7 16480 1~ 3 9<br>.9 24970 1~ 5 13<br>1.0 17470 1~ 4 10                                                                                                                                                                     | 63         .6         5         8790         .1           73         .5         5         7830         .1           90         .5         7         8290         .1           39         1.0         6         10360         .1           07         .7         7         10660         .2  | 11         30~25290         900           10         36~24260         850           11         26~24370         920           16         81~38180         1690           13         44~29840         1290 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                    | 160         13         720         13         1         21           170         14         770         16         1         21           190         15         700         15         1         22           230         30         1000         19         1         23           220         22         1180         17         1         26    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L90-21S<br>L90-22S<br>L90-23S<br>L90-24S<br>L90-25S                | .9 25400 1- 5 14<br>.9 26220 1- 5 14<br>.8 15170 1- 5 8<br>.7 15750 1- 3 6<br>.5 18540 1- 3 9                                                                                                                                                                      | 42         1.0         6         10550         .1           48         1.1         6         8790         .1           84         .5         11         8590         .1           57         .5         6         7870         .2           90         .7         6         6680         .1 | 16 67-35670 1520<br>16 87-37330 1750<br>11 24-24380 2710<br>10 29-24670 880<br>11 28-25720 870                                                                                                            | 19         8990         585         1           20         10340         811         1           14         7670         323         1           14         7540         268         1           17         6660         425         1  | 180         34         900         21         1         25           190         32         730         19         1         24           2300         15         990         23         1         25           170         12         890         12         1         22           150         13         820         15         1         17     | 1       1       102.8       58       3       1       2       46       4-         1       1       107.8       63       4       1       2       50       1-         1       1       84.1       45       2       2       23       3-         1       1       79.3       51       1       1       1       31       1-         1       1       83.2       68       2       1       1       30       2-                                                                                     |
| L90-26S 45M<br>L90-27S<br>L90-28S<br>L90-29S<br>L90-30S            | .4 15490 1 ~ 3 7<br>.7 20370 1 ~ 4 8<br>.5 12050 1 ~ 2 6<br>.5 16810 1 ~ 3 5<br>.4 17320 1 ~ 2 6                                                                                                                                                                   | 70 .7 5 9310 .4<br>84 .8 7 8300 .1<br>64 .3 5 6090 .1<br>59 .5 5 6730 .1<br>63 .6 6 4670 .1                                                                                                                                                                                                 | 13 50-28470 1320<br>12 41-30390 1250<br>7 13-19130 800<br>11 27-25410 850<br>11 20-25180 550                                                                                                              | 16         9080         412         1           17         7820         331         1           10         3720         210         1           16         7490         284         1           14         4290         211         1   | 210         20         1070         12         1         24           200         17         1540         16         1         25           120         6         610         16         1         16           150         15         1140         13         1         17           120         8         1660         13         1         13    | 1       1       87.1       49       1       1       1       38       6         1       1       96.6       72       3       1       1       36       1         1       1       66.8       50       2       1       1       22       154 <sup>-1</sup> 1       1       81.3       48       1       1       1       30       3-1         1       1       74.1       78       1       1       1       29       1                                                                          |
| L90-31S<br>L90-32S<br>L90-33S<br>L90-34S<br>L90-35S                | .5 19940 1- 4 8<br>.2 15160 1- 3 7<br>.7 20250 1- 3 7<br>.4 13580 1- 2 6<br>.4 16900 1- 3 9                                                                                                                                                                        | 80         .7         6         5700         .1           73         .5         5         6350         .1           77         .7         7         7290         .1           67         .4         5         7200         .1           96         .6         7         7480         .1     | 12 29-29270 740<br>11 36-26670 860<br>13 36-29380 720<br>9 24-21680 540<br>13 34-31420 720                                                                                                                | 18         5850         235         1           15         7490         350         1           13         8580         311         1           12         6420         237         1           14         6600         339         1   | 130         19         1370         19         1         16           130         14         1250         14         1         15           150         19         1280         15         1         19           140         15         850         14         1         16           180         19         910         18         1         19   | 1       1       80.8       84       1       1       1       30       1-         1       1       76.9       60       1       1       1       28       2-         1       1       86.6       50       1       1       2       2-         1       1       71.3       40       1       1       27       8         1       1       102.9       42       1       1       1       38       6                                                                                                 |
| L90-36S<br>L90-37S<br>L90-38S<br>L90-39S<br>L90-40S                | .7 14680 1~ 3 7<br>.6 18490 1~ 3 8<br>.7 20370 1~ 4 12<br>.8 16880 1~ 3 12<br>1.1 16910 1~ 4 14                                                                                                                                                                    | 71 .5 6 7130 .2<br>83 .8 7 7110 .1<br>20 .8 7 9400 .1<br>27 .6 8 8110 .2<br>42 .8 7 11620 .7                                                                                                                                                                                                | 10 22-22990 870<br>12 26-27010 690<br>14 40-33110 810<br>13 34-27380 740<br>14 38-33030 920                                                                                                               | 13         6420         326         1           14         6320         383         1           14         7310         439         1           13         8320         567         1           11         9000         1551         1  | 150         14         660         16         1         17           140         17         570         17         1         18           180         20         660         19         1         22           140         18         1130         22         1         21           230         22         910         23         1         33     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| L90-41S 45M<br>L90-42S<br>L90-43S<br>L90-44S<br>L90-44S<br>L90-45S | 1.2 17340 1- 4 9<br>1.1 17760 1- 4 9<br>.5 14530 1- 3 7<br>.8 17400 1- 3 10<br>.1 12150 1- 2 5                                                                                                                                                                     | 90         .9         8         11470         .1           92         1.0         7         12070         .1           72         .4         7         7790         .1           02         .7         6         7770         .2           55         .3         5         6900         .1  | 17         52-37970         780           14         64-32260         700           11         22-23550         620           12         27-26410         680           7         15-16550         460    | 11         9360         498         1           15         7360         698         1           13         7110         408         1           12         8130         539         1           9         5610         199         1    | 190         20         830         22         1         30           170         22         910         24         1         30           160         13         460         15         1         16           160         18         660         18         19           140         8         370         14         1         13                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L90-46S<br>L90-47S<br>L90-48S<br>L90-49S<br>L90-50S                | .9 15290 1- 3 7<br>.8 15680 1- 3 9<br>1.7 24230 1- 5 8<br>.4 20510 1- 4 7<br>.9 19440 1- 4 7                                                                                                                                                                       | 72         .6         8         7440         .1           93         .7         7         7050         .2           82         1.3         8         6440         .1           75         .6         7         6520         .1           77         .8         8         5870         .1    | 12 22-28130 730<br>11 25-32610 530<br>20 46-49150 680<br>10 34-24690 460<br>12 16-32660 570                                                                                                               | 11         6530         358         1           13         5580         236         1           17         6130         869         1           14         5250         210         1           14         4050         280         1   | 130         11         1050         24         1         20           130         13         1020         15         1         17           120         15         2590         25         1         19           140         11         500         16         1         13           110         11         1850         19         1         18  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L90-51S<br>L90-52S<br>L90-53S<br>L90-54S<br>L90-55S                | 1.1         18570         1-3         7           1.4         17630         1-4         4         8           .6         24870         1-5         5         12           1.2         26640         1-5         8         1.3         22410         1-4         10 | 70 .8 8 6610 .1<br>86 .8 9 8010 .1<br>29 1.0 6 4950 .1<br>84 1.3 10 7140 .1<br>09 .8 9 7040 .1                                                                                                                                                                                              | 12 28 <sup>-</sup> 31540 590<br>14 37-31060 780<br>18 69-41720 2590<br>22 77-58890 1140<br>20 50-47330 1330                                                                                               | 13         6050         277         1           11         6990         311         1           19         8430         708         1           31         17030         509         1           16         11960         518         1 | 120         16         1400         20         1         20           140         18         1490         22         2         26           110         14         1390         23         1         16           90         20         1580         24         1         33           100         16         1940         26         1         27  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L90-56S<br>L90-57S<br>L90-58S<br>L90-59S<br>L90-60S                | 1.1 19400 116- 5 7<br>1.4 22430 1- 4 6<br>1.2 17230 1- 3 9<br>1.1 14030 6- 3 13<br>1.2 19930 30- 4 12                                                                                                                                                              | 74 1.2 7 12390 .3<br>65 1.0 10 7370 .4<br>91 .8 8 8270 .1<br>35 .7 7 5680 .8<br>24 1.3 8 7700 .6                                                                                                                                                                                            | 22 72-46590 1100<br>20 55-44320 660<br>15 39.38390 830<br>11 32-30140 1250<br>21 67-55300 2030                                                                                                            | 17 14000 1288 1<br>24 12110 505 1<br>18 8920 432 1<br>12 5150 421 1<br>21 11950 938 2                                                                                                                                                   | 150         21         1580         27         4         33           100         19         1770         22         1         28           100         10         2080         19         1         39           100         13         1130         24         2         22           160         16         1370         27         3         24 | 1 1 115.0 53 3 1 3 75 2-<br>1 1 131.2 68 3 1 4 82 1-<br>1 1 122.5 76 2 1 3 54 1-<br>1 1 109.3 125 3 1 2 35 2-<br>1 1 159.9 118 2 1 3 34 6-                                                                                                                                                                                                                                                                                                                                            |

COMP: CROSS LAKE MINERALS/D.L.COOKE

v

#### MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 0V-0711-SJ3+4 DATE: 90/06/28

ATTN: R.S.MIDDLETON/D.L.COOKE

PROJ: LAC

(604)980-5814 OR (604)988-4524

\* SOIL \* (ACT: F31)

| - |                                                                      |                   |                             |                                           | -                                        |                       |                             |                               |                       |                                       |                            |                            |                                         |                                           |                                    |                            |                                      |                                  |                  |                                 |                            |                                      |                            |                                        |                            |                       |                                                   |                              |                         |                       |                       |                            |                          |
|---|----------------------------------------------------------------------|-------------------|-----------------------------|-------------------------------------------|------------------------------------------|-----------------------|-----------------------------|-------------------------------|-----------------------|---------------------------------------|----------------------------|----------------------------|-----------------------------------------|-------------------------------------------|------------------------------------|----------------------------|--------------------------------------|----------------------------------|------------------|---------------------------------|----------------------------|--------------------------------------|----------------------------|----------------------------------------|----------------------------|-----------------------|---------------------------------------------------|------------------------------|-------------------------|-----------------------|-----------------------|----------------------------|--------------------------|
|   | SAMPLE<br>NUMBER                                                     |                   | AG<br>PPM                   | AL<br>PPM                                 | AS<br>PPM I                              | B<br>PPM              | BA<br>PPM                   | BE<br>PPM                     | BI<br>PPM             | CA<br>PPM                             | CD<br>PPM                  | CO<br>PPM                  | CU<br>PPM                               | FË<br>PPM                                 | K<br>PPM                           | L I<br>PPM                 | MG<br>PPM                            | MN<br>PPM                        | MO<br>PPM        | NA<br>PPM                       | NI<br>PPM                  | P<br>PPM                             | PB<br>PPM                  | SB S<br>PPM PF                         | SR<br>PM P                 | TH<br>PPM PP          | U V<br>M PPM                                      | ZN<br>PPM                    | GA<br>PPM               | SN<br>PPM             | W<br>PPM              | CR<br>PPM F                | AU                       |
|   | L90-61S<br>L90-62S<br>L90-63S<br>L90-64S<br>L90-65S                  |                   | .2<br>.3<br>.4<br>1.1<br>.7 | 10810<br>13720<br>16150<br>12030<br>16100 | 67 /<br>24 -<br>46 -<br>1 -<br>1 -       | 43323                 | 89<br>74<br>76<br>74<br>40  | 1.4<br>1.1<br>1.0<br>.5<br>.7 | 23364<br>4            | 7220<br>3920<br>3930<br>4660<br>7460  | .5<br>.1<br>.1<br>.1       | 18<br>15<br>13<br>9<br>10  | 67<br>52<br>45<br>21<br>22              | 65960<br>44820<br>40050<br>25150<br>29700 | 1070<br>1000<br>1380<br>890<br>810 | 9<br>9<br>16<br>9<br>13    | 3770<br>3090<br>3150<br>3010<br>3310 | 1143<br>657<br>576<br>532<br>276 | 1<br>1<br>1<br>1 | 100<br>90<br>80<br>90<br>230    | 3<br>9<br>7<br>6<br>9      | 1570<br>1390<br>1090<br>790<br>2500  | 31<br>26<br>28<br>27<br>20 | 6 1<br>2 1<br>2 1<br>1 1               | 17<br>12<br>10<br>13<br>23 | 1<br>1<br>1<br>1<br>1 | 1 53.3<br>1 67.0<br>1 74.5<br>1 72.0<br>1 83.9    | 109<br>78<br>105<br>86<br>46 | 1<br>1<br>1<br>1        | 3<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 3<br>13<br>20<br>24<br>25  | 2 17                     |
|   | L90-66S<br>L90-67S<br>L90-68S<br>L90-69S<br>L90-70S                  |                   | .7<br>.8<br>.7<br>.4        | 17000<br>18710<br>19130<br>17170<br>16040 |                                          | 23633                 | 62<br>101<br>88<br>77<br>59 | .7<br>.8<br>.9<br>.8<br>.7    | 56556                 | 4350<br>4790<br>6120<br>4870<br>6820  | .1<br>.1<br>.1<br>.1<br>.1 | 10<br>11<br>13<br>12<br>13 | 30 -<br>31 -<br>39 -<br>30 -<br>42 -    | 29440<br>34560<br>40810<br>34580<br>31240 | 610<br>860<br>1120<br>730<br>700   | 16<br>23<br>24<br>25<br>11 | 4290<br>5370<br>5890<br>5330<br>5870 | 273<br>293<br>277<br>242<br>329  | 1<br>1<br>1<br>1 | 100<br>120<br>130<br>110<br>150 | 12<br>11<br>12<br>9<br>15  | 1670<br>1510<br>2100<br>500<br>990   | 18<br>20<br>21<br>18<br>19 | 1 1<br>1 1<br>1 1<br>1 1               | 2<br> 4<br> 9<br> 4        | 1<br>1<br>1<br>1      | 1 76.6<br>1 79.5<br>1 100.4<br>1 81.6<br>1 92.3   | 53<br>67<br>76<br>79<br>32   | <b>1</b><br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 25<br>25<br>34<br>24<br>30 | 2<br>6<br>15<br>3        |
|   | L90-71S<br>L90-72S<br>L90-73S<br>L90-74S<br>L90-74S<br>L90-75S       | 45M               | .9<br>.8<br>.9<br>.9        | 19960<br>16810<br>15650<br>21570<br>15330 | 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/ | 333333                | 88<br>72<br>87<br>96<br>68  | .6<br>.7<br>.6<br>.8<br>.5    | 7<br>6<br>6<br>5      | 6510<br>6260<br>6860<br>6220<br>6690  | .1<br>.1<br>.5<br>.1<br>.1 | 11<br>12<br>9<br>13<br>9   | 26<br>32<br>35<br>45<br>23              | 28810<br>29210<br>24160<br>31830<br>23990 | 1010<br>740<br>1000<br>1090<br>680 | 18<br>13<br>14<br>16<br>13 | 6170<br>5900<br>6770<br>8100<br>5600 | 252<br>290<br>355<br>707<br>241  | 1<br>1<br>1<br>1 | 180<br>150<br>170<br>160<br>160 | 14<br>17<br>15<br>20<br>11 | 740<br>1450<br>1060<br>1030<br>1370  | 19<br>21<br>19<br>18<br>18 |                                        | 7<br> 6<br> 8<br> 4        | 1<br>1<br>1<br>1      | 1 90.5<br>1 91.6<br>1 75.5<br>1 95.3<br>1 75.8    | 49<br>41<br>81<br>75<br>53   | 1<br>1<br>1<br>1        | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1<br>1 | 31<br>35<br>33<br>42<br>29 | 16<br>1<br>1<br>2<br>11  |
|   | L90-76S<br>L90-77S<br>L90-78S<br>L90-78S<br>L90-79S<br>L90-80S       |                   | .9<br>1.1<br>1.2<br>1.0     | 14620<br>13810<br>24070<br>22040<br>17940 | 1 5 1 1 1                                | 2<br>3<br>4<br>4<br>3 | 97<br>58<br>99<br>66<br>66  | .5<br>.7<br>.9<br>1.0<br>.6   | 6<br>7<br>7<br>6      | 6740<br>8580<br>8970<br>6830<br>6700  | .1<br>.1<br>.1<br>.1       | 10<br>11<br>14<br>14<br>11 | 15-<br>35-<br>43-<br>30-<br>27-         | 22870<br>29610<br>33830<br>44800<br>26650 | 610<br>810<br>860<br>710<br>600    | 11<br>13<br>18<br>22<br>20 | 3640<br>7080<br>6870<br>6040<br>6200 | 461<br>311<br>265<br>287<br>326  | 1111             | 150<br>200<br>170<br>120<br>130 | 9<br>14<br>22<br>13<br>16  | 1830<br>710<br>1290<br>3720<br>600   | 18<br>25<br>21<br>25<br>21 | 1 1<br>1 2<br>1 2<br>1 1               | 19<br>20<br>21<br>21       | 1<br>1<br>1<br>1      | 1 75.0<br>1 93.7<br>1 103.9<br>1 134.0<br>1 90.3  | 64<br>38<br>46<br>80<br>46   | 1<br>2<br>2<br>2<br>1   | 1<br>1<br>1<br>1      | 1<br>2<br>2<br>3<br>1 | 27<br>41<br>45<br>50<br>34 | 47<br>2<br>10<br>1       |
|   | L90-81S<br>L90-82S<br>L90-83S<br>L90-84S<br>L90-84S<br>L90-85S       |                   | 1.0<br>.8<br>.7<br>1.0      | 19480<br>19230<br>16170<br>15100<br>13390 | 1 1 1 1                                  | 44333                 | 86<br>50<br>59<br>59<br>64  | 1.0<br>.7<br>.6<br>.5<br>.4   | 7<br>7<br>7<br>5<br>7 | 6750<br>4820<br>6240<br>7390<br>8790  | .1<br>.1<br>.1<br>.1       | 15<br>11<br>10<br>9<br>9   | 28-<br>23-<br>25-<br>36-<br>30-         | 42940<br>36370<br>26500<br>22250<br>22280 | 710<br>600<br>470<br>480<br>610    | 22<br>22<br>13<br>13<br>11 | 5470<br>5180<br>6480<br>6790<br>6730 | 293<br>281<br>230<br>249<br>303  | 1<br>1<br>1<br>1 | 130<br>130<br>140<br>170<br>200 | 7<br>9<br>12<br>15<br>13   | 870<br>1270<br>520<br>590<br>1010    | 21<br>16<br>19<br>16<br>18 | 1 1<br>1 1<br>1 1<br>1 1               | 5<br>2<br>7<br>8<br>3      | 1<br>1<br>1<br>1      | 1 130.9<br>1 115.1<br>1 84.9<br>1 76.6<br>1 72.5  | 44<br>61<br>37<br>29<br>29   | 2<br>2<br>1<br>1        | 1<br>1<br>1<br>1      | 2<br>1<br>1<br>1      | 36<br>32<br>33<br>30<br>33 | 1 27 21                  |
|   | L90-86S<br>L90-87S<br>L90-88S<br>L90-89S<br>L90-89S<br>L90-90S       |                   | 1.1<br>1.2<br>1.1<br>1.0    | 11200<br>13840<br>14160<br>11340<br>12240 | 17<br>17<br>17<br>17<br>17<br>17         | 3<br>4<br>3<br>2<br>2 | 54<br>70<br>75<br>89<br>43  | .4<br>.6<br>.7<br>.6<br>.5    | 8<br>7<br>6<br>5      | 8790<br>10030<br>8620<br>8910<br>6620 | .1<br>.1<br>.1<br>.2       | 10<br>12<br>11<br>10<br>8  | 25<br>43-<br>33<br>28-<br>21-           | 22510<br>27970<br>25810<br>25990<br>23840 | 480<br>620<br>510<br>560<br>410    | 9<br>11<br>9<br>8<br>9     | 6140<br>7990<br>6780<br>6810<br>5180 | 343<br>441<br>307<br>1613<br>190 | 11131            | 200<br>260<br>170<br>200<br>120 | 13<br>17<br>16<br>18<br>10 | 960<br>1230<br>1120<br>1230<br>1230  | 20<br>18<br>20<br>23<br>19 | 1 2<br>1 2<br>1 2<br>1 2<br>1 2<br>1 1 | 25<br>25<br>21<br>21       | 1<br>1<br>1<br>1      | 1 75.1<br>1 89.0<br>1 88.7<br>1 86.5<br>1 75.1    | 26<br>35<br>28<br>28<br>25   | 1<br>2<br>2<br>1<br>1   | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>2<br>1 | 33<br>40<br>38<br>39<br>27 | 2<br>2<br>57<br>2<br>1   |
|   | L90-91S<br>L90-92S<br>L90-93S<br>L90-94S<br>L90-94S<br>L90-95S       |                   | .3<br>.4<br>.8<br>1.0<br>.7 | 10580<br>14060<br>10920<br>17390<br>19830 | 1-<br>1<br>1<br>1<br>1                   | 22233                 | 55<br>56<br>52<br>70<br>82  | .5<br>.6<br>.5<br>.8<br>.8    | 4<br>5<br>7<br>6      | 7060<br>5730<br>7800<br>7060<br>6410  | .3<br>.1<br>.2<br>.1<br>.1 | 9<br>9<br>10<br>12<br>13   | 27-<br>24-<br>25-<br>30-<br>46-         | 23010<br>22390<br>22920<br>34240<br>33380 | 470<br>400<br>410<br>560<br>860    | 10<br>12<br>10<br>14<br>18 | 5980<br>5290<br>6400<br>7790<br>8460 | 341<br>206<br>350<br>336<br>341  | 1<br>1<br>1<br>1 | 200<br>150<br>190<br>160<br>160 | 12<br>14<br>14<br>17<br>18 | 930<br>670<br>1130<br>1250<br>1200   | 15<br>13<br>17<br>18<br>18 | 1 1<br>1 1<br>1 2                      | 4<br> 2<br> 8<br> 7        | 1<br>1<br>1<br>1      | 1 72.0<br>1 68.8<br>1 72.8<br>1 100.2<br>1 94.4   | 25<br>37<br>27<br>41<br>49   | 1<br>1<br>1<br>2<br>1   | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>1      | 28<br>27<br>31<br>37<br>37 | 82214                    |
|   | L90-965<br>L90-975<br>L90-985<br>L90-995<br>L90-1005                 |                   | .7<br>.5<br>.7<br>.9        | 11760<br>12620<br>14050<br>14880<br>15710 | 1 -<br>1•<br>1 -<br>1 -<br>1 -           | 22322                 | 52<br>58<br>50<br>51<br>60  | .6<br>.7<br>.7<br>.7          | 5<br>56<br>57         | 7700<br>6640<br>6210<br>6330<br>6220  | .3<br>.1<br>.1<br>.1<br>.1 | 10<br>11<br>11<br>8<br>10  | <b>33</b> -<br>24-<br>23-<br>20-<br>20- | 23520<br>32250<br>33640<br>24960<br>34230 | 590<br>540<br>380<br>300<br>460    | 11<br>11<br>12<br>11<br>12 | 7040<br>5210<br>5030<br>4750<br>4740 | 308<br>244<br>227<br>169<br>200  | 1<br>1<br>1<br>1 | 190<br>140<br>130<br>110<br>150 | 17<br>10<br>11<br>9<br>9   | 900<br>1780<br>650<br>610<br>1110    | 17<br>17<br>15<br>17<br>17 | 1 1<br>1 1<br>1 1<br>1 1               | 6<br>7<br>5<br>0           | 1<br>1<br>1<br>1      | 1 76.9<br>1 108.3<br>1 110.1<br>1 76.3<br>1 106.3 | 29<br>41<br>36<br>27<br>34   | 11111                   | 11111                 | 1<br>2<br>2<br>1<br>2 | 34<br>40<br>39<br>33<br>39 | 24<br>2<br>3<br>2-<br>1- |
|   | L90-101S<br>L90-106S<br>L90-107S<br>L90-108S<br>L90-108S<br>L90-109S |                   | .7<br>.8<br>1.0<br>.7       | 13680<br>17350<br>15610<br>21240<br>16970 | 1-<br>1-<br>13-<br>1-<br>1-              | 23343                 | 39<br>121<br>85<br>90<br>60 | .6<br>.8<br>1.0<br>1.1<br>.8  | 5<br>4<br>4<br>5      | 5980<br>3430<br>12910<br>6810<br>6860 | .1<br>.7<br>.2<br>.1<br>.1 | 9<br>14<br>12<br>15<br>11  | 24-<br>50-<br>83-<br>44-<br>35-         | 29710<br>33630<br>31210<br>39340<br>30450 | 430<br>1670<br>1060<br>1540<br>940 | 12<br>13<br>19<br>18<br>15 | 4870<br>7350<br>6330<br>6560<br>5880 | 184<br>1873<br>455<br>355<br>317 | 1<br>1<br>1<br>1 | 140<br>140<br>180<br>150<br>170 | 10<br>14<br>18<br>15<br>10 | 1730<br>1450<br>1020<br>2730<br>730  | 16<br>30<br>25<br>22<br>15 | 1 1<br>1 1<br>1 3<br>1 2               | 6<br>1<br>8<br>3<br>8      | 1<br>1<br>1<br>1      | 1 92.9<br>1 88.8<br>1 70.9<br>1 93.3<br>1 81.1    | 34<br>63<br>55<br>90<br>36   | 1<br>1<br>1<br>1        | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1      | 34<br>39<br>33<br>32<br>26 | 21231                    |
|   | L90-110S<br>L90-111S<br>L90-112S<br>L90-113S<br>L90-114S             |                   | .7<br>1.0<br>.6<br>.7       | 19480<br>20400<br>17010<br>16560<br>18990 | 1 -<br>1<br>1<br>1 -                     | 33333                 | 78<br>83<br>65<br>77<br>73  | .9<br>.8<br>.9<br>.8<br>1.0   | 6<br>6<br>5<br>5<br>6 | 4560<br>5040<br>5810<br>4740<br>6500  | .1<br>.1<br>.1<br>.1       | 14<br>14<br>13<br>11<br>14 | 26-<br>40-<br>52-<br>28-<br>48-         | 36430<br>33820<br>30260<br>33670<br>34320 | 770<br>870<br>980<br>930<br>1210   | 17<br>14<br>12<br>19<br>14 | 4610<br>6400<br>6810<br>4680<br>7570 | 311<br>265<br>351<br>394<br>284  | 1<br>1<br>1<br>1 | 140<br>180<br>170<br>150<br>190 | 9<br>14<br>17<br>11<br>17  | 1860<br>1440<br>1310<br>1350<br>1240 | 22<br>17<br>17<br>19<br>19 | 1 1<br>1 1<br>1 1<br>1 1               | 3<br>5<br>5<br>3<br>7      | 1<br>1<br>1<br>1      | 1 92.8<br>1 97.7<br>1 83.6<br>1 95.5<br>1 95.6    | 88<br>68<br>39<br>38<br>34   | 1<br>1<br>1<br>1<br>1   | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1      | 31<br>39<br>33<br>30<br>34 | 1-2-1-4                  |
|   | L90-115S<br>L90-116S<br>L90-117S<br>L90-117S<br>L90-118S<br>L90-119S |                   | .3<br>.4<br>.3<br>.8        | 18280<br>10930<br>19800<br>15880<br>18340 | 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1 | 3<br>2<br>3<br>2<br>4 | 60<br>56<br>71<br>58<br>70  | .8<br>.5<br>.9<br>.6<br>.8    | 4444<br>447           | 4730<br>3600<br>4950<br>4100<br>7910  | .1<br>.1<br>.1<br>.9       | 11<br>7<br>13<br>9<br>14   | 41<br>14<br>57<br>21-<br>47-            | 32130<br>23540<br>35500<br>23410<br>34910 | 1060<br>780<br>1130<br>680<br>870  | 20<br>7<br>19<br>21<br>19  | 6160<br>2970<br>6760<br>4560<br>8270 | 247<br>171<br>241<br>246<br>391  | 1<br>1<br>1<br>1 | 140<br>140<br>150<br>140<br>210 | 12<br>5<br>14<br>7<br>16   | 1200<br>700<br>1820<br>990<br>1840   | 15<br>18<br>16<br>12<br>22 | 1 1<br>1<br>1 1<br>1 2                 | 1<br>8<br>4<br>8<br>4      | 1<br>1<br>1<br>1      | 1 85.0<br>1 80.0<br>1 99.1<br>1 59.9<br>1 90.7    | 37<br>24<br>49<br>69<br>108  | 1<br>1<br>1<br>1        | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 28<br>20<br>32<br>20<br>33 | 23162                    |
|   | L90-120S<br>L90-122S<br>L90-14ST<br>L90-14ST<br>L90-16ST<br>L90-28ST | 45M<br>45M<br>45M | .6<br>.6<br>.7<br>.6        | 23520<br>15330<br>13140<br>11530<br>11770 |                                          | 43222                 | 96<br>68<br>67<br>47<br>58  | 1.2<br>.7<br>.7<br>.8<br>.8   | 4<br>6<br>6<br>5<br>5 | 4210<br>6210<br>7420<br>8350<br>8210  | .2<br>.1<br>.1<br>.9<br>.1 | 16<br>12<br>14<br>12<br>14 | 59<br>37<br>47-<br>38<br>41-            | 43340<br>27410<br>28810<br>27200<br>36150 | 1280<br>580<br>1170<br>620<br>710  | 28<br>12<br>12<br>12<br>12 | 6680<br>7420<br>7430<br>7310<br>7110 | 379<br>235<br>661<br>547<br>601  | 1<br>1<br>1<br>1 | 150<br>170<br>210<br>170<br>140 | 13<br>25<br>21<br>14<br>15 | 2110<br>1020<br>1060<br>870<br>1020  | 20<br>12<br>20<br>18<br>22 | 1 1<br>1 1<br>1 1<br>1 1<br>1 1        | 3<br>2<br>3<br>5<br>4      | 1<br>1<br>1<br>1      | 1 101.1<br>1 81.7<br>1 90.4<br>1 90.8<br>1 116.2  | 118<br>33<br>53<br>44<br>48  | 1<br>1<br>1<br>1        | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2      | 29<br>36<br>39<br>32<br>53 | 1<br>1<br>2<br>1<br>2    |

COMP: CROSS LAKE MINERALS/D.L.COOKE

#### MIN-EN LABS - ICP REPORT

FILE NO: OV-0711-SJ5

DATE: 90/06/28
\* SOIL \* (ACT:F31)

ATTN - R S MIDDLETON/D L COOKE

PROJ: LAC

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (606)080-5816 OP (606)088-6526

| ATTN: R.S.MIDDLET                                         | : R.S.MIDDLETON/D.L.COOKE (604)980-5814 OR (604)988-4524 * S |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           | * so                                 | IL *                               | (ACT                     | :F31)                                 |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|-------------|---------|----------------------------|-----------|------------------|---------------------------------------|----------------------|----------------------------|-------------------------------------------|--------------------------------------|------------------------------------|--------------------------|---------------------------------------|----------------------------------|------------------|---------------------------------|----------------------------|------------------------------------|----------------------------|-------------|----------------------------|------------------|----------------------------------------|---------------------------------|-----------------------------|-----------------------|------------------|--------------------------------------|---------------------------|
| SAMPLE<br>NUMBER                                          | AG<br>PPM                                                    | AL<br>PPM                                | AS<br>PPM P | B<br>PM | BA<br>PPM                  | BE<br>PPM | BI<br>PPM        | CA<br>PPM                             | CD<br>PPM            | CO<br>PPM                  | CU<br>PPM                                 | FE<br>PPM                            | K<br>PPM                           | LI<br>PPM                | MG<br>PPM                             | MN<br>PPM                        | MO<br>PPM        | NA<br>PPM                       | NI<br>PPM                  | P<br>PPM                           | PB<br>PPM                  | SB<br>PPM P | SR<br>PM P                 | TH<br>PPM PP     | U<br>Mir Hi                            | V<br>PPM F                      | ZN<br>PPM P                 | GA<br>PPM P           | SN<br>PM PP      | √ CR<br>M PPM                        | AU<br>PPB                 |
| L90-29ST<br>L90-48ST<br>L90-90ST<br>L90-93ST<br>L90-103ST | .4<br>.9<br>.6                                               | 9880<br>10990<br>16110<br>15310<br>17290 |             | 34434   | 49<br>48<br>58<br>69<br>93 | .557.67   | 7<br>7<br>8<br>8 | 9090<br>9160<br>9810<br>9190<br>10050 | .1<br>.2<br>.4<br>.1 | 10<br>11<br>17<br>14<br>16 | 17-24<br>25-24<br>46-36<br>37-29<br>53 36 | 4160<br>4210<br>5790<br>9440<br>5450 | 550<br>630<br>1140<br>1010<br>1440 | 7<br>7<br>13<br>10<br>15 | 6080<br>5990<br>11100<br>7520<br>8990 | 476<br>456<br>966<br>542<br>2287 | 1<br>1<br>1<br>1 | 170<br>170<br>200<br>200<br>260 | 15<br>12<br>21<br>18<br>20 | 1070<br>940<br>1150<br>930<br>1170 | 15<br>20<br>18<br>16<br>24 | 1111        | 24<br>26<br>24<br>27<br>27 | 1<br>1<br>1<br>1 | 1 85<br>1 85<br>1 114<br>1 97<br>1 100 | 5.9<br>5.3<br>5.3<br>7.9<br>0.0 | 33<br>30<br>125<br>35<br>51 | 1<br>2<br>3<br>3<br>1 | 1<br>1<br>1<br>1 | 1 34<br>1 33<br>2 40<br>2 43<br>1 36 | 1-<br>2-<br>4-<br>1-<br>1 |
| L90-104ST<br>L90-119ST                                    | .7<br>.7                                                     | 15540<br>16790                           | 1-          | 4<br>5  | 72<br>180                  | .7<br>.8  | 8<br>8           | 9180<br>12040                         | .1<br>.5             | 17<br>18                   | 50-32<br>66-39                            | 2080<br>9560                         | 1200<br>1950                       | 11<br>13                 | 8770<br>7790                          | 725<br>3683                      | 1<br>1           | 210<br>200                      | 19<br>21                   | 1080<br>1490                       | 20<br>31                   | 1<br>1      | 26<br>53                   | 1<br>1           | 1 104<br>1 81                          | 8<br>1.2                        | 45<br>93                    | 22                    | 1                | 2 43                                 | 1-<br>2-                  |
|                                                           |                                                              |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             | <u></u>                    |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|                                                           |                                                              |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  | <b></b>                              |                           |
|                                                           |                                                              |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|                                                           |                                                              |                                          |             |         |                            |           | ·                |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
| •                                                         |                                                              |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|                                                           |                                                              |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|                                                           |                                                              | ,, <u>_</u> ,                            |             |         |                            |           |                  |                                       |                      | -                          |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            | ··          |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|                                                           |                                                              |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|                                                           |                                                              |                                          |             |         |                            | <u> </u>  |                  | <u> </u>                              | <u>.</u>             |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             |                       |                  |                                      |                           |
|                                                           |                                                              |                                          |             |         |                            |           |                  |                                       |                      |                            |                                           |                                      |                                    |                          |                                       |                                  |                  |                                 |                            |                                    |                            |             |                            |                  |                                        |                                 |                             | . <u> </u>            |                  |                                      |                           |

COMP: CROSS LAKE MINERLAS/D.L.COOKE

#### MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: OV-0711-RJ1

DATE: 90/06/26

ATTN: R.S.MIDDLETON/D.L. COOKE

PROJ: LAC

\_\_\_\_

(604)980-5814 OR (604)988-4524

\* ROCK \* (ACT:F31)

| SAMPLE<br>NUMBER                                    | AG AL AS                                                               | 5 B BA BE<br>1 PPM PPM PPM                                                                                                                                                                               | PPN PPM PPM                                                           | PPM PPM PPM PPM                                                                                                                                                                                                    | LI MG MN MU<br>PPM PPM PPM PPM                                                      | J NA NI P<br>M PPM PPM PPM                                                      | PPM PPM PPM PPM PPM                                                                                                                                                                                                                                                                                                      | V ZN GA SN W CR AU<br>PPM PPM PPM PPM PPM PPB                                                                                                                                                                                                  |
|-----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L90-3R<br>L90-19R<br>L90-21R<br>L90-24R<br>L90-28R  | 1.9 29790<br>.6 6200<br>2.2 17870<br>2.4 22970<br>1.6 8270             | 7         22         .7           1         1         56         .7           1         5         47         .6           1         5         226         .9           1         1         .1         .4 | 11 25660 .1<br>6 2830 .6<br>12 39330 .1<br>16 11860 1.0<br>7 17500 .1 | 21         238         41080         1010           8         47-28550         1710           22         80-43570         460           26         115-70420         700           19         274-28600         90 | 32 9640 504 1<br>4 5400 156 1<br>11 13470 1110 1<br>27 24830 1105 1<br>1 2220 317 1 | 1 700 11 1380<br>1 490 1 1220<br>1 180 12 1480<br>1 380 15 1480<br>1 70 46 1060 | 19         1         12         1         1         1           17         1         17         1         1         9           32         1         224         1         1         14           27         1         24         1         1         25           19         1         55         1         1         4 | 9.8 28 3 1 3 25 4-<br>8.7 11 1 1 3 39 11-<br>3.9 40 5 1 6 68 6-<br>6.3 71 4 1 8 85 2-<br>2.1 6 1 1 4 64 2-                                                                                                                                     |
| L90-55R<br>L90-57R<br>L90-60R<br>L90-61R<br>L90-63R | .9 7690 25<br>2.3 18680 1<br>.7 7370 45<br>.3 11160 128<br>1.2 3600 45 | 5-4 56 1.0<br>1-3 19 .4<br>5-6 112 1.0<br>$3 \approx$ 10 131 1.4<br>5-4 36 .9                                                                                                                            | 2 26410 1.9<br>12 30180 .1<br>2 20610 1.4<br>1 9150 .4<br>2 55110 1.9 | 16         93-37610         2730           22         133-38890         1250           23         122-45940         4210           23         124-49160         6470           18         155-40410         2380   | 6 6660 889 1<br>15 16440 775 1<br>4 3160 914 1<br>5 2660 288 1<br>1 9520 1308 2     | 1 160 3 2600<br>1 170 20 1550<br>1 200 4 2090<br>1 340 6 3230<br>2 330 11 2370  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                     | 3.3     56     4     1     2     25     1-       9.4     35     4     1     8     107     2-       9.5     54     1     1     1     3     8-       7.6     47     1     1     2     29     1-       3.8     45     4     2     3     32     3- |
| L90-75R<br>L90-102R<br>L90-105R<br>L90-118R         | 2.1 20650 42<br>2.1 26640 1<br>2.1 18880 1<br>.9 12140 7               | 2 14 243 .6<br>1 7 330 1.3<br>1 4 76 .4<br>7 6 158 .8                                                                                                                                                    | 14 12880 .2<br>10 59290 .6<br>12 18770 .1<br>3 23440 .3               | 23 97-54470 3480<br>31 137 62860 1720<br>15 42-35160 1900<br>19 87 38020 4410                                                                                                                                      | 27 17990 546 1<br>25 33430 1439 1<br>14 12730 883 1<br>7 4140 1159 1                | 1 200 4 2030<br>1 540 30 1270<br>1 300 10 700<br>1 180 7 1720                   | 23         1         74         1         1         11           19         1         77         1         1         21           20         1         41         1         1         7           31         1         44         1         1         3                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                           |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    | <u></u>                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                    |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
|                                                     |                                                                        |                                                                                                                                                                                                          |                                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                             |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |
| L                                                   |                                                                        |                                                                                                                                                                                                          | ······                                                                | <u> </u>                                                                                                                                                                                                           |                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |

![](_page_20_Picture_0.jpeg)

![](_page_21_Picture_0.jpeg)