	LOG NO: <u>Jeb 28/91</u> RD. ACTION:
1990 Summary Report	FILE NO:
on the	LOG NO: OCT 1 1 1991 RD.
Ket 1 Group (Ket 1, Ket 2, and Ket 3 Cl	ACTION DOCK TOTOS
Greenwood Mining Divisi	on
British Columbia	FILE NO:
North Latitude 49°01′ West Longi	tude 118°58'

NTS 82E/2W

Prepared for

Crown Resources Corp. Seventh Street Plaza 1225 17th Street, Suite 1500 Denver, Colorado 80202 U.S.A.

Prepared by

Bob Miller B.Sc in Geol Eng Crown Resources

&

W.R. Kushner B.Sc Coast Mountain Geological Ltd. P.O. Box 11604 820-650 West Georgia Street Vancouver, B.C. V6B 4N9

February 1991

HH SN ZO A A 2 2 20 22 16 Z > **U** B <u>,</u> 2 S C S O 00 30 3 🗸

TABLE OF CONTENTS

` —

÷

Ê

۴

3

_

.....

_

.....

1.0	INTRO	ODUCTION	Page
	1.1	Summary	1
		Location and Access	1 . 1 ./ 3 / 3 /
	1.3	Physiography & Climate	3 /
		Property Description	3 /
		Property History	5 /
	1.6	1990 Work Program	6 /
2.0	GEOL	OGY, GEOCHEMISTRY & GEOPHYSICS	7 /
	2.1	Regional Geology	7 /
	2.2	Property Geology	7 9 9
	2.3	Structure	9.2
	2.4	Mineralization and Associated Alteration	9 /
	2.5	Geochemistry	10
	2.6	Geophysics	11 /
3.0	DISC	USSION	15 /
4.0	RECO	MMENDATIONS	16 /

APPENDICES

Appendix A		Statement of Qualifications /
Appendix H	В	Statement of Expenditures
Appendix (2	References
Appendix I	D	Certificate of Analysis 🗸 🎽
Appendix H	Ξ	Rock Sample Descriptions
Appendix H	F	Sampling and Analysis Procedures 🗸

LIST OF ILLUSTRATIONS

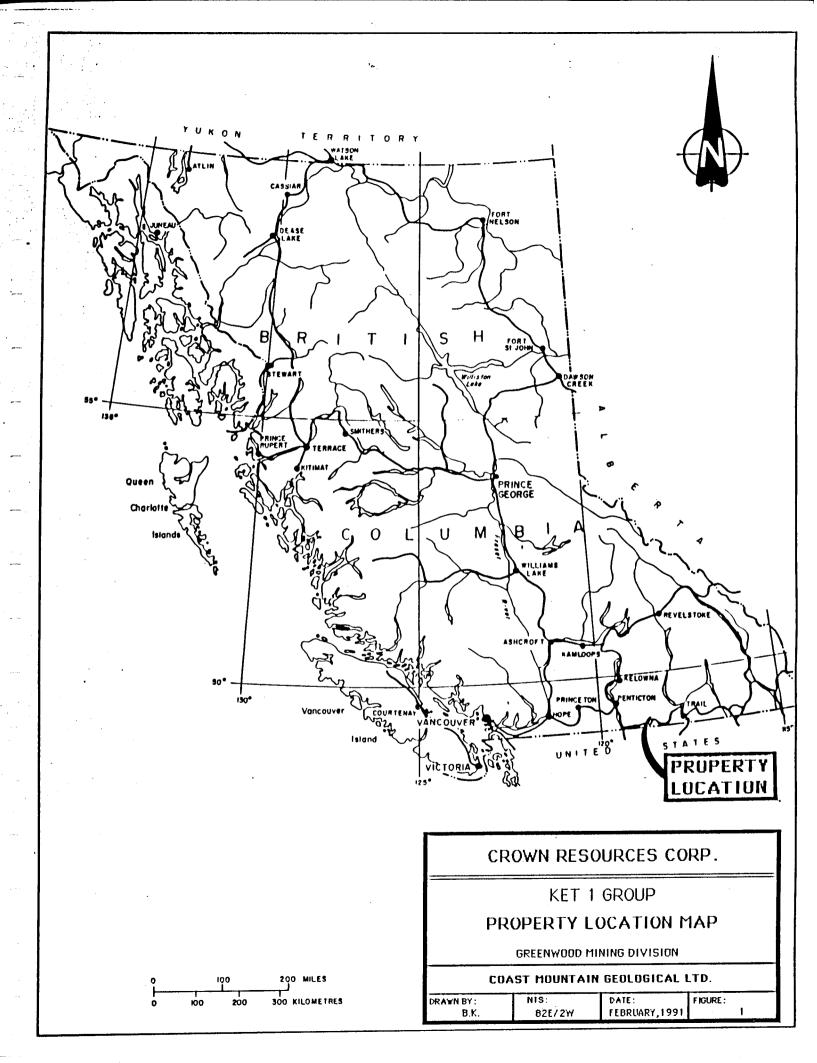
Figure	1	Property Location Map	2 /
Figure	2	Claim Map	4/ mis,
Figure	3	Regional Geology Map	8/
Figure	4	Ket 1 - Ground Magnetics	12
Figure	5	Ket 2 - Ground Magnetics	13
Figure	6	Ket 3 / Ket 2 - Ground Magnetics	14 -
Figure	7	General Geology	in pocket /
Figure	8	Geochemistry Value Map	in pocket /
Figure	9	Airborne Magnetic Data	in pocket
Figure	10	Airborne Magnetic & VLF-EM Interpretation	in pocket /

1.0 INTRODUCTION

1.1 Summary

The 1990 exploration program on the Ket 1 group (Ket 1, Ket 2 and Ket 3 claims), was conducted between June and November 1990. Initially, exploration was directed towards locating on surface the airborne geophysical anomalies deduced from the 1989 Terraquest airborne geophysical survey flight data (Basil, 1990).

Three broad anomaly types were located: total field magnetic, VLF-EM conductors, and faults. These anomalies were investigated on the ground by visual geologic interpretation based on a gold skarn model, reconnaissance and fixed line magnetometry, and rock chip sampling.


In addition, because of similar geology at the Buckhorn gold skarn deposit in Washington, USA, approximately four kilometres south of the Ket 1 claim, the granodiorite-hornfelsic metasediment contact was traced across the southwestern quarter of Ket 1. Mineral assemblages in the granodiorite contact aureole were noted, specifically those calc-silicate and sulphide minerals that were thought to be related to gold skarn model.

Additional exploration work and drilling is recommended.

1.2 Location and Access

The Ket 1 group of claims is located between the Edelweiss Motel at

- 1 -

Rock Creek, British Columbia, and the Canada-USA border due south of the motel. The claims are centred at approximately 49°01' north latitude and 118°58' west longitude in the extreme southwest corner of the NTS 82E/2 mapsheet (Figure 1).

Access is via the Starr Anchor Ranch Road, Dolomite Quarry Road, Myers Creek Forest Service Road, or the Harpur Ranch Road.

1.3 Physiography and Climate

Myers Creek flows in an easterly direction, dividing the claim group into two sections. South of Myers Creek is a conifer covered mountainous terrain sloping south. To the north of Myers Creek the claims open up to a high grass covered meadow area developed on rolling hills.


The climate is characterized by hot, dry summers and mild winters with little precipitation.

Local relief varies from an elevation of 700 meters at the motel near the Kettle River to approximately 1400 meters at a peak five kilometres south of the motel near the southern border of the Ket 1 claim.

1.4 Property Description

The Ket 1 group is located within the Greenwood Mining Division of southern British Columbia (Figure 2). It is comprised of three

- 3 -

claims totalling 49 units, and covers an area of approximately 1225 hectares.

Crownex Resources Canada Ltd., a subsidiary of Crown Resources Corp. of Denver, Colorado, USA, is the owner of the claims.

Table 1 summarizes the pertinent claim data.

Table 1 : Claim Status - Ket 1 Group

<u>Claim Name</u>	Record No.	<u>Units</u>	<u>Expiry Date</u> *
Ket 1	5315	9	29/11/91
Ket 2	5316	20	29/11/91
Ket 3	5317	20	30/11/91

* Pending acceptance of this report.

1.5 Property History

Dolomite is presently being mined at the Mighty White Dolomite quarry located just outside of the eastern boundary of the Ket 2 claim.

The area in the vicinity of the claim group has a record of exploration dating back to the turn of the century. Many trenches, shafts and adits were dug by independent prospectors, and most are without any record of work. The most significant work in the area were the placer deposits the McKinney Creek and the mines of Camp McKinney, located north of the subject property, and worked from 1894 to 1962. In the 1960's and 1970's numerous magnetometer, VLF-EM and soil geochemistry surveys were carried out, concentrating primarily on Cu-Ni deposits. Later surveys in the area concentrated on attempting to locate and delineate potential vent areas in the Kettle River Volcanics as a possible site for mineralization.

In the late 1980's, exploration in the Buckhorn Mountain skarn system, to the south of the claims in Washington State, produced significant results. In 1989 a regional airborne magnetometer and VLF-EM survey was conducted over the area by Terraquest Ltd. of Toronto, for Crown Resources Corp. of Colorado (Basil, 1990 -Assessment Report #19737).

No extensive metallic mines or prospects were noted on the claims, and the authors are not aware of any records of such. The closest workings, known as the Bob Cowan prospects, are west of Ket 1 to the east of the Harpur Ranch headquarters. Five kilometres south of Ket 1, on the American side of the border, lay the Magnetic Mine and the Crown Jewel gold skarn deposits.

1.6 1990 Work Program

Fifteen field days were spent on the Ket 1 group performing the following work:

a. Locating on surface the airborne magnetic and VLF-EM anomalies from the 1989 Terraquest programs.

b. Investigation of the magnetic and VLF-EM anomalies on

- 6 -

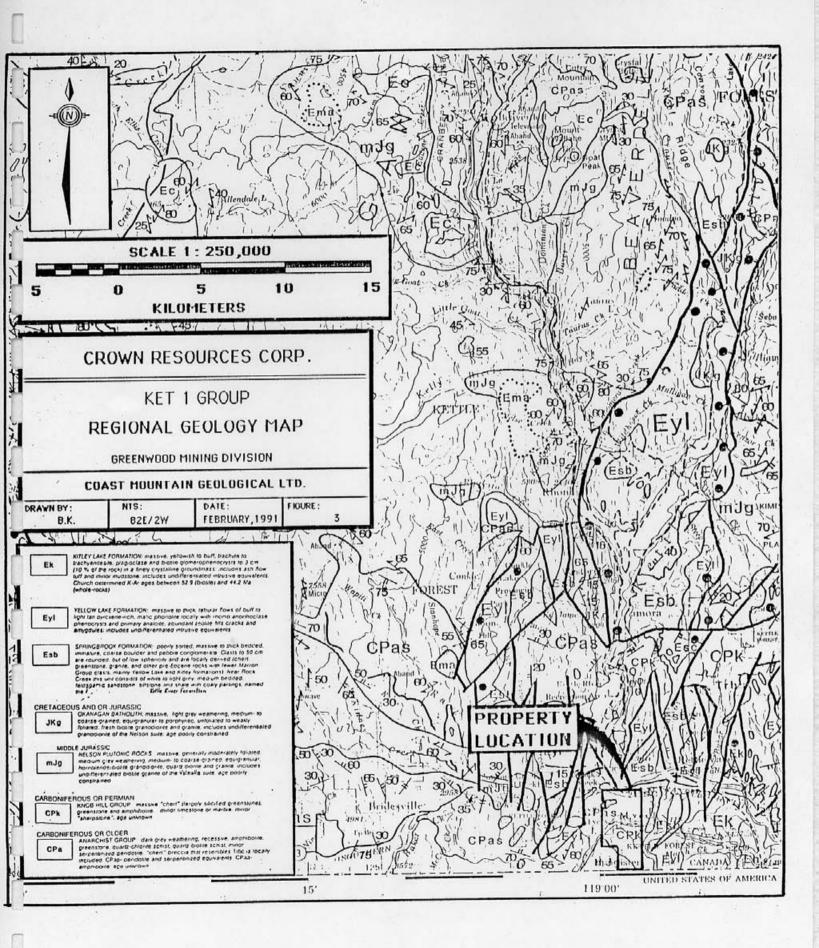
surface by geologic interpretation, reconnaissance magnetometry, fixed line magnetometry and rock chip sampling.

c. Locating and investigating the granodiorite-metasediment contact related to the Buckhorn gold skarn south of Ket 1 by utilizing observational geology to identify the nature of the metasomatic mineral suites, along with reconnaissance and fixed line magnetometry.

During the work program 49 rock chip samples and 2 stream sediment samples were collected. A total of 3.9 kilometres of fixed ground magnetometer lines were also completed.

2.0 GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS

2.1 Regional Geology


Metasedimentary, intrusive, and extrusive igneous rocks are found regionally ranging in age from late Palaeozoic to middle Eocene (Figure 3). Pleistocene and Recent till, sand, gravel, and silts are well developed in valley floors.

The Carboniferous (Permian?) rocks are tightly folded and faulted along a regional northwest to northeast trend that is terminated, at times, by strong east-west faulting.

2.2 Property Geology

Greenstone, amphibolite, massive chert, argillite, quartzite, siltstone, dolomitic marble and minor conglomerate all belonging to

- 7 -

the Carboniferous(?) -Permian(?) Knob Hill Group make up most of the rocks in the Ket 1 group (Figure 7). The Knob Hill group is cut by a Jurassic-Cretaceous granodiorite intrusion referred to as the Nelson Batholith.

Minor outcrops of Eocene age Marron Formation intrusive rocks are observed on the claims. The intrusives tend to be mainly alkaline syenite, locally referred to as rhomb-porphyry. In addition, conglomerates of the Eocene age Kettle River Formation were noted in Ket 3.

2.3 Structure

The predominant structural feature is the fairly consistent northerly dip of the Knob Hill Group rocks. The dip tends to be steep near the granodiorite contact

and becomes less steep to the north away from the contact. Minor faulting can be observed in a north south drainage west of the dolomite quarry.

Based on the available geology south of the international boundary on Buckhorn Mountain, the Ket 1 group may cover the north dipping end of an antiform structure.

2.4 Mineralization and Associated Alteration

Disseminated and veinlet pyrite and/or pyrrhotite appears to be associated with silic greenstone and metasiltstones. Magnetite

- 9 -

occurrences correlate fairly well with rhomb-porphyry intrusives. Disseminated pyrite is found in close proximity to the granodiorite contact aureole as mostly euhedral grains usually but not exclusively in the hornfels.

Silicification along the granodiorite-metasediment contact and minor skarn development along the north west side of the dolomite quarry were noted.

2.5 Geochemistry

Stream sediment samples were collected from active parts of major streams. They were collected in kraft gusseted paper bags and sent to Chemex Labs Ltd. of North Vancouver, B.C., for analysis. At Chemex, the samples were oven dried at approximately 60 degrees Celsius, sieved to minus 80 mesh and analyzed geochemically for 32 elements by the induced coupled plasma (ICP) technique, and for gold by the atomic absorption (AA) technique.

Rock samples were collected in plastic bags and also sent to Chemex. Samples were then crushed to 3/16 of an inch, and then about .25 kg was pulverized to minus 100 mesh. A 0.5 gram sample of the minus 80 fraction of the samples was digested in hot, dilute aqua regia in a boiling water bath and then diluted to 10 milliliters with distilled water. Samples were analyzed for a group of 30 elements by ICP technique. In addition, gold was analyzed from a 10 gram fraction by AA.

- 10 -

Rock chip samples were collected from outcrops with mineralogy, geology or geophysical signature similar to those found in the vicinity of known gold skarns.

Samples taken from the hornfelsic metasedimentary section of the granodiorite-metasediment contact, 90CM158R through 161R and 90CM184R, show a low level gold signature in weakly mylonitic and very fine crystalline clinopyroxene hornfels. Low level geochemical gold skarn indicators from mylonites and hornfels are very similar to the geochemical signatures obtained from mylonites and hornfels at the Crown Jewel gold skarn deposit on Buckhorn Mountain some four to six kilometres south on the American side of the border.

Additional rock chip samples were taken from sulphide and/or magnetite bearing outcrops and skarn. The highest gold value was 40 ppb which came from an iron oxide stained argillite at the west edge of the dolomite quarry (Figure 8).

2.6 Geophysics

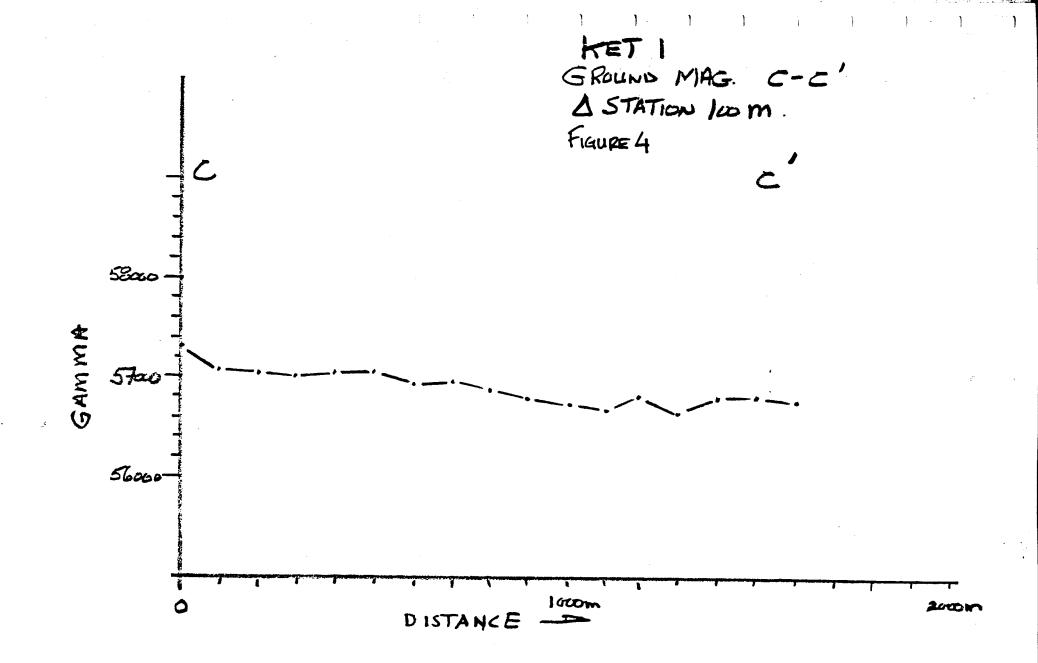
A Geometrics magnetometer, (model 816/826) was used in the handheld position on reconnaisance traverses as an aid in geologic interpretation and to locate, on the ground, airborne magnetometer highs generated by Terraquest.

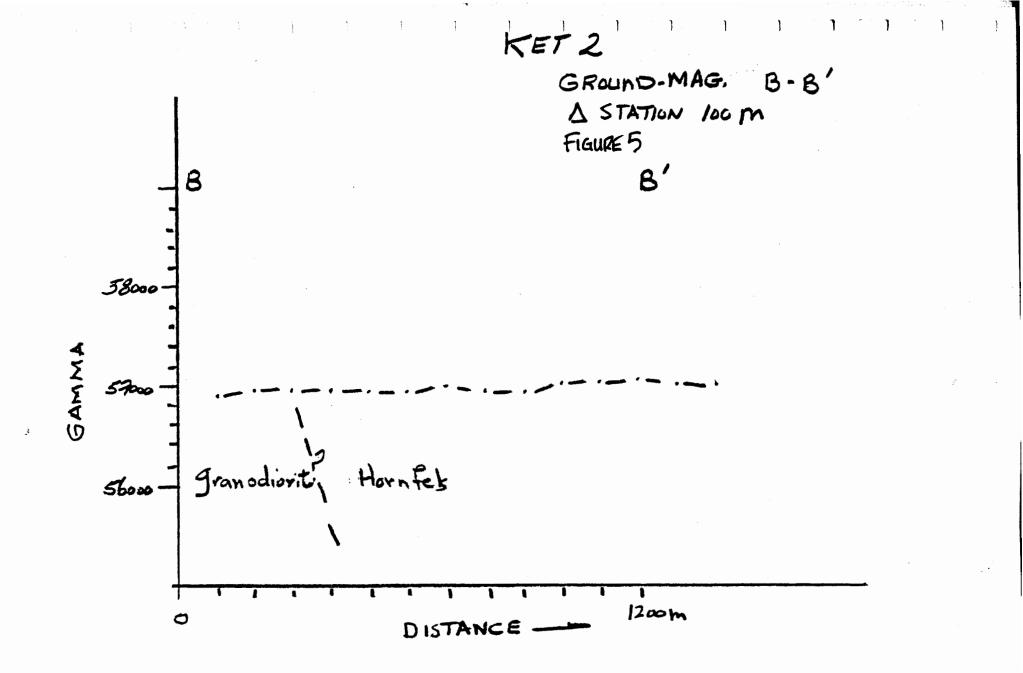
A total of 3.9 kilometers of fixed ground magnetometer lines were

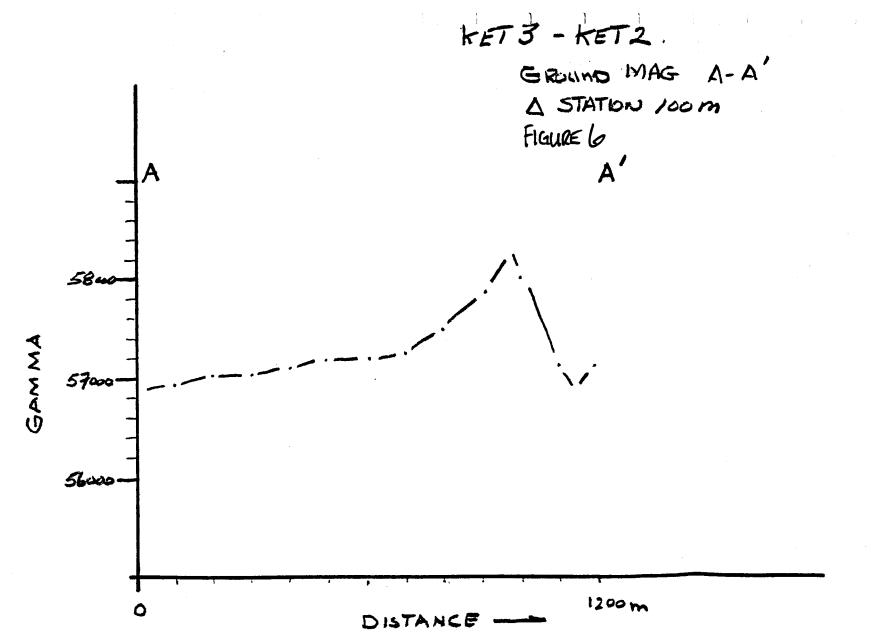
- 11 -

completed. A three-point running average (over 75 metres) method was used to eliminate spurious local highs and to delineate larger scale magnetic structures.

Magnetics: Total field magnetic readings were obtained in a reconnaissance program to locate the magnetic units and iron formations as shown on the Terraquest Airborne Interpretation map (Figures 4, 5 & 6).


Conductors: All of the airborne VLF-EM conductors projected to occur on the Ket 1 group were located on surface and could be explained as geologic contacts and/or wet areas (Figures 9 & 10). The large split conductor that trends north west from Ket 1 and the conductor in the south west quarter of Ket 2 are related to the granodiorite-metasedimentary contact and are weakly enriched in sulphides, mainly pyrite. The conductor parallel to the international boundary in Ket 1 appears to lie in a small drainage in the granodiorite.


Field investigation indicated that there were three main geologic relationships that accounted for the magnetic anomalies:


i. alkaline syenite-rhomb-porphyry intrusives and associated contact zones.

ii. magnetite bearing greenstone.

iii. magnetite, sulphide bearing greenstone and metasediments.

The large high amplitude magnetic anomaly in the south east quarter of Ket 3 is related to an alkaline sympite intrusive.

Although general reconnaissance didn't show an obvious magnetic high along the granodiorite-metasedimentary contact, fluctuations of 100 plus gammas did occur.

Fixed line ground magnetics generally supported the airborne magnetics with the exception that higher isolated ground magnetic signatures were obtained from areas where the airborne magnetic signatures were relatively uniform, suggesting that maybe deep seated magnetic bodies with low magnetic surface profiles could lie at depth within areas shown to be fairly uninteresting based on the airborne magnetics.

3.0 DISCUSSION

Although the initial reconnaissance program didn't generate an obvious starting point for a continuing exploration program, it did demonstrate that the geology and geologic relationships at the Crown Jewel deposit on Buckhorn Mountain, some four to six kilometres south of the Ket 1 group, extend onto the Ket 1 group claims.

Therefore a typical pre-drilling program of geochemistry and geophysics should be conducted over the granodiorite-metasediment contact. Exploration targets would include gold skarn and/or gold replacement type deposits at depth along the granodiorite contact aureole.

4.0 RECOMMENDATIONS

Soil geochemistry and ground magnetics along grid points that cover the granodiorite-metasedimentary contact, followed by drilling to test any anomalies uncovered by the grid program.

STATEMENT OF QUALIFICATIONS

APPENDIX A

STATEMENT OF QUALIFICATIONS

I, ROBERT E. MILLER, of Oroville, Washington, DO HEREBY CERTIFY THAT:

- 1. I am a geologist with Crown Resources Corporation, with a business address of Star Route 85, Oroville, Washington 98844.
- 2. I am a 1962 graduate from Brigham Young University with a Geological Engineering degree.
- 3. I have practised my profession continuously since graduation.
- 4. I personally conducted the 1990 exploration program discussed in this report.

Dated this 12th day of February, 1991.

ile Е. Mil'

Geological Engineer

STATEMENT OF QUALIFICATIONS

I, WILLIAM R. KUSHNER, of 1942 East 2nd Avenue, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Coast Mountain Geological Ltd. with offices at 820-650 West Georgia Street, Vancouver, British Columbia.
- 2. THAT I am a graduate from the University of Alberta with a bachelor of Science degree in Geology (1987).
- 3. THAT my primary employment since graduation has been in the field of mineral exploration.
- 4. THAT this report is based on field work conducted by Crown Resources Corporation on the subject property between June and November, 1990, and on information from government publications and reports filed with the Government of British Columbia.
- 5. THAT I did not visit the subject property.
- 6. THAT I do not own or expect to receive any interest in the property described herein, nor in any securities of any company rendered in the preparation of this report.

DATED at Vancouver, British Columbia, this 20 day of Horuny, 1991.

William R. Kushner, B.Sc. Geologist

APPENDIX B

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

-

Rock Sample Assays 49 samples @ \$11.00/sample	\$539.00
Stream Sediment Sample Assays 2 samples @ \$8.00/sample	\$16.00
Magnetometer Survey 3.9 km @ \$125/km	\$487.50
Vehicle 6 days @ \$75.00/day	\$450.00
Senior Geologist 1 day @ \$400/day	\$400.00
Geologist 6 days @ \$285/day	\$1710.00
Geotechnician 4 days @ \$250/day	\$1000.00
Geotechnician 4 days @ \$250/day	\$1000.00
Room and Board 15 days @ \$120/day	\$1800.00
Miscellaneous (Shipping, Field Expendables, etc.)	\$75.00
Subtotal:	\$7477.50
Management Fee (13.5%)	\$1009.46
Report and Drafting	\$500.00
- TOTAL:	\$8986.96

APPENDIX C REFERENCES

•

REFERENCES

- Basil, Chris, 1990. Airborne Magnetic and VLF-EM Survey Report on the Ket 1-22 and Ket 24-32 Mineral Claims, Assessment Report for Crown Resources Corp.
- Geological Survey of Canada, Map 15-1961, Kettle River, British Columbia, Sheet 82E West Half Scale 1:253,440.
- Miller, B. and W. Kushner, 1991. 1990 Summary report on the Homestake and Daisy Fraction Claims, Assessment Report for Crown Resources Corp.
- Templeman, Kluit, D.S., 1989. Geology, Penticton, British Columbia, Geological Survey of Canada, Map 1736A, 1:250,000 Scale.

APPENDIX D

CERTIFICATE OF ANALYSIS

1 _ROWN RESOURCE CORPORATION

1

ł,

e Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE . NORTH VANCOUVER BRITISH COLUMBIA CANADA V7J-2C1

PHONE (694) 984-0221

820 16TH ST., STE. 415 DENVER, COLORADO 80202
Project : MIDWAY
Comments: ATTN: CHR1S HERALD CC: J. SHANNON **Page No. 1-A Tot. Pages: 1 Date : 31-MAY-90 Invoice #: I-9015923 P.O. # :NONE

CERTIFICATE OF ANALYSIS A9015923

	SAMPLE DESCRIPTION	PREP CODE	Au ppb FAHAA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М д %	Ma ppn
	90 CM 151 R	205 294	55	< 0.2	0.61	160	80	< 0.5	< 2	8.49	< 0.5	15	153	8	2.82	< 10	< 1	0.26	< 10	4.30	86
	90 CM 152 R 90 CM 153 R	205 294 205 294	< 5 25	< 0.2 0.8	0.89 0.09	20 15	110 < 10	< 0.5 < 0.5	< 2	8.60 0.11	< 0.5 20.0	18 9	173 303	11 13	3.18 1.46	< 10	< 1	0.31	< 10	4.30	62
	90 CM 154 R	205 294	10	< 0.2	1.51	5	100	< 0.5	< 2	2.09	< 0.5	6	303 92	13 51	1.46	< 10 < 10	< 1 < 1	0.01 0.59	< 10 20	0.05 0.87	5
Ţ	90 CM 155 R	205 294	40	< 0.2	2.48	5	20	< 0.5	< 2	1.16	< 0.5	26	135	、 74	4.46	< 10	< i	0.18	10	2.71	5
	90 CM 156 R	205 294	5	< 0.2	1.60	< 5	60	< 0.5	< 2	13.05	< 0.5	28	336	94	2.13	< 10	< 1	0.27	< 10	2.16	4
	90 CM 157 R 90 CM 158 R	205 294	< 5	< 0.2 < 0.2	0.27 2.32	< 5 60	< 10 100	< 0.5 < 0.5	< 2 :	>15.00	< 0.5	6 2	11	9	0.67	< 10	< 1	0.04	< 10	0.30	2
	90 CM 159 R	205 294	25	< 0.2	2.89	180	340	< 0.5	2	0.19 0.17	< 0.5 < 0.5	7	69 91	39 48	4.08 4.68	< 10 < 10	< 1 < 1	0.14 0.71	10 20	1.41	2
	90 CM 160 R	205 294	< 5		3.48	25		< 0.5	< 2	0.51	< 0.5	16	120	24	5.53	< 10	< 1	0.71	10	2.37	5
	90 CM 161 R	205 ' 294	30	< 0.2	3.33	10		< 0.5	< 2	0.81	< 0.5	17	107	35	5.49	< 10	< 1	0.54	10	2.33	5
	90 CM 162 R 90 CM 163 R	205 294 205 294	10	< 0.2	3.47	10	50	< 0.5	< 2	1.42	< 0.5	30	113	35	6.58	< 10	< 1	0.21	10	2.36	14
	90 CM 163 R 90 CM 164 R	205 294	< 5 10	< 0.2 < 0.2	0.89 0.30	15 15	90 30	< 0.5 < 0.5	< 2 < 2	0.22	< 0.5 < 0.5	3	186 230	18 29	1.60 1.95	< 10 < 10	< 1 < 1	0.28 0.02	10 < 10	0.44	1
بر	90 CM 165 R	205 294	iõ	< 0.2	0.35	15	510	< 0.5	< 2	0.02	< 0.5	1	279	13	1.14	< 10	< 1	0.02	< 10	0.12	
2	90 CM 166 R	205 294	< 5	< 0.2	0.81	10	90	< 0.5	< 2	1.42	< 0.5	10	139	27	1.59	< 10	< 1	0.20	10	0.65	
5	90 CM 167 R 90 CM 168 R	205 294 205 294	10	< 0.2	2.05	5	10	< 0.5		12.60	< 0.5	9	141	15	3.47	< 10		< 0.01	< 10	0.25	10
)	90 CM 168 R	205 294	5	< 0.2 < 0.2	1.79 Q.59	< 5	350 < 10	< 0.5 < 0.5		>15.00	< 0.5	10 4	121	8	2.57 0.51	< 10 < 10	< 1	0.01 < 0.01	< 10 < 10	0.41 9.26	11
	90 CM 170 R	205 294	5		1.06	15		< 0.5	< 2	1.80	< 0.5	21	142	111	3.75	< 10	< 1	0.17	< 10	1.03	2
- U	90 CM 171 R	205 294	< 5	0.4	0.28	< 5	60	< 0.5		>15.00	< 0.5	3	17	1	0.34	< 10	< 1 <	< 0.01	< 10	6.10	4
č	90 CM 172 R 90 CM 173 R	205 294 205 294	< 5	< 0.2	1.06	5	50	< 0.5		>15.00	< 0.5	15	125	22	1.27	< 10	< 1	0.03	< 10	1.56	(
-	90 CM 173 R 90 CM 174 R	205 294	< 5 < 5	< 0.2 < 0.2	0.31 0.77	< 5 5	10 20	< 0.5 < 0.5	< 2	>15.00	< 0.5 < 0.5	3 29	3 92	< 1 151	0.21 3.60	< 10 < 10	<1 <	< 0.01 0.05	< 10 < 10	0.81 0.40	1
	90 CM 175 R	205 294	< 5		0.28	5	970	< 0.5	< 2	0.08	< 0.5	1	348	10	0.97	< 10	< 1	0.09	< 10	0.13	
	90 CM 176 R	205 294	< 5	0.6	0.53	10	1 540	< 0.5	4	0.06	< 0.5	2	310	15	1.46	< 10	< 1	0.16	10	0.31	
•	90 CM 177 R 90 CM 178 R	205 294 205 294	15 < 5	1.2 0.6	0.71 0.12	< 5 25	2490 2830	< 0.5 < 0.5	< 2	0.05	< 0.5	I I	365	7	1.89	< 10	< 1	0.45	< 10	0.16	
-	90 CM 178 R	205 294		< 0.0	2.36	23	2830	< 0.5	< 2 4	0.02	< 0.5 < 0.5	< 1 13	309 127	33 174	4.25	< 10 < 10	< 1 <	< 0.01 0.47	< 10 20	0.01	
	90 CM 180 R	205 294	< 5	< 0.2	2.22	15	130	< 0.5	< 2	0.61	< 0.5	4	108	91	7.61	< 10	< i	0.24	20	1.32	
Г	90 CM 181 R	205 294	< 5		1.20	25		< 0.5	4	0.07	< 0.5	1	273	64	6.82	< 10	< 1	0.14	< 10	0.91	2
¥	90 CM 182 R 90 CM 183 R	205 294 205 294	15	< 0.2 < 0.2	0.58 3.16	5 15	80 300	< 0.5	< 2 < 2	0.01 3.59	< 0.5	< 1	112 447	< 1	0.42	< 10	< 1	0.36	20	0.03	
2	90 CM 183 R	205 294	15	< 0.2	2.53	15	2 50	< 0.5	2	0.44	< 0.5	. 28 19	447 69	60 126	4.63 6.10	< 10 < 10	< 1 < 1	0.83 0.43	10 10	4.35	
	90 CM 185 R	205 294	< 5		3.12	< 5	180	< 0.5	< 2	0.17	< 0.5	18	116	40	5.30	< 10	< i	0.20	< 10	2.08	
	90 CM 186 R	205 294	< 5	< 0.2	3.31	10	120	< 0.5	2	0.30	< 0.5	18	194	118	6.80	< 10	< 1	0.09	10	2.30	
	90 CM 187 R	205 294	< 5	< 0.2	3.68	40	200	< 0.5	< 2	0.12	< 0.5	19	132	57	6.36	< 10	< 1	0.19	10	2.42	4
	1																		. 0		

CERTIFICATION :

HET /

Chemex Labs Ltd.

212 BROOKSBANK AVE. NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984→0221

820 16TH ST., STE. 415 DENVER, COLORADO 80202 Project : MIDWAY Comments: ATTN: CHRIS HERALD CC: J. SHANNON **Page No. . 1-B Tot. Pages: 1 Date : 31-MAY-90 Invoice #: I-9015923 P.O. # :NONE 1

CERTIFICATE OF ANALYSIS A9015923

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni p p m	P	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppn %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm			
90 CM 151 R 90 CM 152 R 90 CM 153 R 90 CM 153 R 90 CM 154 R 90 CM 155 R	205 294 205 294 205 294 205 294 205 294 205 294	1 2 5 1 2	0.01 0.02 < 0.01 0.03 0.09	175 207 7 4 43	340 370 160 840 280	2 < 2 14 8 < 2	< 5 < 5 < 5 < 5 < 5 < 5	5 7 < 1 3 9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	29 39 2 38 116	10 10 < 10 10 < 10	18 16 1990 50 42			
90 CM 156 R 90 CM 157 R 90 CM 158 R 90 CM 159 R 90 CM 160 R	205 294 205 294 205 294 205 294 205 294 205 294	1 2 1 2 2 2 2 2 2 2	0.06 < 0.01 0.01 0.02 0.07	241 8 6 23 29	1 70 1 80 3 80 5 50 6 20	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 5 5 < 5 < 5 < 5	3 1 2 5 11	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 10 < 10 < 10 < 10 < 10	10 10 < 10 < 10 < 10	34 8 49 71 163	< 10 < 10 < 10 10 10	162 4 78 98 120	 		
90 CM 161 R 90 CM 162 R 90 CM 163 R 90 CM 163 R 90 CM 164 R 90 CM 165 R	205 294 205 294 205 294 205 294 205 294 205 294		0.06 0.19 < 0.01 < 0.01 0.01	30 37 12 6 6	590 770 160 840 160	< 2 < 2 < 2 < 2 < 2 < 2 2	< 5 < 5 < 5 < 5 < 5	1 1 2 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 10 10	186 277 24 50 30	10 20 < 10 < 10 < 10 < 10	102 90 32 8 6			
90 CM 166 R 90 CM 167 R 90 CM 167 R 90 CM 168 R 90 CM 169 R 90 CM 170 R	205 294 205 · 294 205 · 294 205 · 294 205 · 294 205 · 294	< 1 2 1 < 1 2	0.03 0.02 0.02 < 0.01 0.13	23 10 17 5 58	690 240 240 580 980	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5	2 11 12 1 6	32 0.11 45 0.12 75 0.16 265 0.01 20 0.59	< 10 < 10 < 10 10 < 10	< 10 < 10 10 < 10 10	35 72 76 8 82	< 10 10 < 10 10	26 22 16 26 44			
90 CM 171 R 90 CM 172 R 90 CM 172 R 90 CM 173 R 90 CM 174 R 90 CM 175 R	205 294 205 294 205 294 205 294 205 294 205 294	< 1	< 0.01 0.10 < 0.01 0.08 0.01	3 110 1 110 5	410 370 310 980 50	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 5 5 < 5 < 5	1 3 1 3 1	$\begin{array}{c} 443 < 0.01 \\ 682 & 0.09 \\ 1115 & 0.01 \\ 41 & 0.72 \\ 15 < 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	5 29 5 45 10	< 10 < 10 < 10 10 < 10	4 20 4 32 6			
90 CM 176 R 90 CM 177 R 90 CM 177 R 90 CM 178 R 90 CM 179 R 90 CM 180 R	205 294 205 294 205 294 205 294 205 294 205 294	3 < 1 4 14 3	0.02 0.02 < 0.01 0.03 0.07	10 6 46 14	70 70 530 520 290	< 2 4 < 2 10 < 2	< 5 < 5 < 5 < 5 < 5 < 5	3 4 1 4 7	$ \begin{array}{c} 18 < 0.01 \\ 33 & 0.01 \\ 19 < 0.01 \\ 35 & 0.34 \\ 30 & 0.25 \end{array} $	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 32 25 116 177	< 10 < 10 < 10 20 20	22 14 20 52 78	 		<u> </u>
90 CM 181 R 90 CM 182 R 90 CM 182 R 90 CM 183 R 90 CM 184 R 90 CM 185 R	205 294 205 294 205 294 205 294 205 294 205 294	10 11 2 3 1	0.01 0.09 0.19 0.03 0.02	4 < 1 146 20 48	190 40 1780 1070 490	4 22 < 2 4 < 2	< 5 · < 5 · < 5 · < 5 ·	3 < 1 14 3 5	$\begin{array}{cccc} 3 & 0.09 \\ 11 < 0.01 \\ 234 & 0.27 \\ 17 & 0.15 \\ 55 & 0.04 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	85 3 141 48 77	< 10 < 10 < 10 20 10	46 4 56 92 1 50	 <u> </u>		
90 CM 186 R 90 CM 187 R	205 294 205 294	5	0.03 0.02	30 48	480 4 50	< 2 < 2	< 5 < 5	5 6	35 0.06 9 0.02	< 10 < 10	< 10 < 10	91 87	20 20	158 184	 	· · · ·	

.J: CROWN RESOURCE CORPORATION

1

Page Number : 1-A Total Pages : 2 Invoice Date: 11-JUN-90 Invoice No. : I-9016313 P.O. Number :

 $(-\alpha)$

CERTIFICATION:

Project : MIDWAY

Comments: ATTN: CHRIS HERALD CC: J. SHANNON CC: R. MILLER

1

	_									CE	RTIFI	CATE	OF A	NAL	YSIS		A9016	313		
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd PPm	Co ppm	Cr ppm	Cu ppm	Fe *	Ga ppm	Hg ppm	K f	La ppm	Mg t	Mn ppm
90 CM 188 R 90 CM 189 R 90 CM 190 R 90 CM 191 R 90 CM 191 R 90 CM 192 R	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.66 1.36 2.72 3.33 3.22	< 5 5 5 5 5 5 5	20 20 40 70 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 < 2 < 2 < 2 < 2	6.04 8.84 2.61 5.16 2.63	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	37 23 38 39 44	530 321 125 63 72	39 56 49 57 53	3.99 2.48 8.01 8.14 8.40	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.11 0.28 0.30	< 10 < 10 < 10 < 10 < 10 < 10	3.73 1.95 2.26 3.11 2.80	515 635 995 1210 1060
90 CM 193 R 90 CM 194 R 90 CM 195 R 90 CM 195 R 90 CM 196 R 90 CM 197 R	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.59 0.16 0.34 3.46 3.98	< 5 15 < 5 < 5 < 5 < 5	120 1530 240 50 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.89 0.05 0.07 4.70 5.96	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 1 1 34 46	20 159 165 94 417	30 11 6 35 27	8.54 0.62 0.64 6.81 6.25	20 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.39 0.05 0.10 0.11 0.04	50 < 10 < 10 < 10 < 10	2.57 0.05 0.12 2.19 5.03	1615 40 95 1060 995
90 CM 198 R 90 CM 199 R 90 CM 200 R 90 CM 201 R 90 CM 202 R	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.45 1.14 3.03 0.02 0.05	< 5 < 5 25 5 < 5	40 40 300 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5		8.94 3.19 2.12 >15.00 >15.00	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	25 21 33 2 2	133 236 28 < 1 < 1	23 36 56 < 1 < 1	3.86 2.86 7.53 0.06 0.08	< 10 < 10 < 10 < 10 < 10 < 10		0.36 0.11 0.24 < 0.01 < 0.01	< 10 < 10 10 < 10 < 10	2.21 1.30 2.41 0.10 0.13	985 475 935 55 75
90 CM 203 R 90 CM 204 R 90 CM 205 R 90 CM 205 R 90 CM 206 R 90 CM 207 R	205 294 205 294 205 294 205 294 205 294 205 294	< 5 10	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.90 3.24 2.11 3.30 2.78	< 5 10 < 5 5 < 5	410 10 80 130 130	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 2 < 2 < 2 < 2 < 2	1.28 2.74 0.59 0.19 1.61	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 13 12 18 12	274 80 97 137 92	39 13 28 20 25	2.29 0.72 2.64 4.11 3.13	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.76 0.04 0.70 1.12 0.89	10 < 10 20 50 30	1.71 1.55 0.81 1.16 1.01	285 200 495 610 645
90 CM 208 R 90 CM 209 R 90 CM 210 R 90 CM 211 R 90 CM 211 R 90 CM 212 R	205 294 205 294 205 294 205 294 205 294 205 294	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.07 2.01 1.69 2.25 1.69	< 5 < 5 < 5 < 5 < 5	< 10 60 100 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 3.62 3.10 1.88 5.34	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 1 39 33 25 22	167 97 99 36 10	< 1 58 28 78 26	0.49 7.95 7.77 5.10 8.03	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.51 0.75 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	0.03 1.78 1.54 1.32 1.44	380 560 755 420 1335
90 CM 213 R 90 CM 214 R 90 CM 214 R 90 CM 215 R 90 CM 216 R 90 CM 217 R	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	1.80 3.46 1.96 0.20 0.85	5 < 5 < 5 < 5 5	70 50 110 20 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2	2.80 2.40 1.03 0.06 0.02	< 0.5 < 0.5 < 0.5 1.5 < 0.5	21 21 8 2 < 1	96 97 45 110 160	41 42 8 77 12	3.74 3.11 2.68 0.58 2.48	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.44 0.03 0.30 0.03 0.44	< 10 < 10 10 < 10 20	1.37 2.65 0.88 0.09 0.36	360 555 495 70 130
90 CM 218 R 90 CM 219 R 90 CM 220 R 90 CM 221 R 90 CM 222 R	205 294 205 294 205 294 205 294 205 294 205 294		0.8 0.8 < 0.2 < 0.2 < 0.2 < 0.2	2.69 3.88 2.05 1.58 1.87	10 5 < 5 < 5 < 5 < 5	180 700 40 80 80	0.5 2.0 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.76 1.95 0.12 0.76 0.77	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	11 16 16 14 12	24 46 73 106 80	18 58 19 5 10	3.31 3.66 3.78 2.72 3.36	20 20 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.27 0.79 0.28 0.30 0.26	170 200 40 50 40	0.86 1.49 1.09 0.98 1.05	640 630 625 645 690
90 CM 223 R 90 CM 224 R 90 CM 225 R 90 CM 225 R 90 CM 226 R 90 CM 227 R	205 294 205 294 205 294 205 294 205 294 205 294		< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.98 1.54 0.88 1.73 4.14	<pre>< 5 < 5 < 5 < 5 < 5 10</pre>	50 30 980 350 920	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.42 0.28 0.20 0.90 2.19	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	13 12 3 9 11	105 104 387 82 67		2.74 2.95 3.60 >15.00 >15.00	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.77 0.06 0.10 0.33 1.28	10 10 10 10 20	0.88 1.33 0.23 0.39 1.05	775 485 115 545 475
								· · · ·									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	<u> </u>	0.

٩

Chemex Labs Ltd.

1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

1

1

.J: CROWN RESOURCE CORPORATION

Page Number : 1-B Total Pages : 2 Invoice Date: 11-JUN-90 Invoice No. : I-9016313 P.O. Number :

A9016313

Project : MIDWAY Comments: ATTN: CHRIS HERALD CC: J. SHANNON CC: R. MILLER

CERTIFICATE OF ANALYSIS

														<u> </u>				
	SAMPLE DESCRIPTION	PREP CODE	Mo	Na t	Ni ppm	P PPm	Pb	Sb ppa	Sc ppm	Sr ppm	Ti %	T1 ppm	U Ppm	V Ppm	W	Zn ppm		
	90 CM 188 R 90 CM 189 R 90 CM 190 R 90 CM 191 R 90 CM 191 R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 1	0.07 0.02 0.10 0.16 0.06	272 129 58 32 42	640 250 1050 1010 1160	2 < 2 < 6 < 2 2	< 5 5 < 5 < 5 < 5	3 4 11 14 14	184 367 70 185 126	0.61 0.21 0.99 0.36 1.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	69 48 161 185 182	< 10 < 10 < 10 10 10	44 26 110 102 106		
	90 CM 193 R 90 CM 194 R 90 CM 195 R 90 CM 195 R 90 CM 196 R 90 CM 197 R	205 294 205 294 205 294 205 294 205 294 205 294	1 10 3 1 < 1	< 0.01 0.01 0.01	11 4 2 47 225	2540 720 150 1320 890	< 2 8 4 < 2 < 2	< 5 < 5 < 5 5 < 5	9 1 < 1 6 14	30 31 5 102 182	0.11 0.01 < 0.01 0.13 0.49	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 73 22 104 140	< 10 < 10 < 10 < 10 10 < 10	144 8 92 72		
	90 CM 198 R 90 CM 199 R 90 CM 200 R 90 CM 201 R 90 CM 201 R 90 CM 202 R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 1 < 1	< 0.01 0.02 0.08 < 0.01 < 0.01	109 115 23 < 1 < 1	520 570 1820 < 10 10	< 2 2 4 < 2 < 2	5 < 5 < 5 5 < 5	8 2 7 < 1 < 1		0.01 0.39 0.77 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 66 141 1 2	10 < 10 20 < 10 < 10	38 24 106 < 2 < 2 < 2		2
Ł	90 CM 203 R 90 CM 204 R 90 CM 205 R 90 CM 205 R 90 CM 206 R 90 CM 207 R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.20 0.06 0.09 0.12	51 54 23 34 27	1350 30 260 310 320	6 < 2 22 8 14	< 5 < 5 < 5 < 5 < 5 < 5	5 2 2 6 5	70 57 28 18 58	0.24 0.02 0.11 0.13 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 16 27 51 40	< 10 < 10 < 10 < 10 < 10 < 10	32 10 70 82 64		
dna	90 CM 208 R 90 CM 209 R 90 CM 210 R 90 CM 211 R 90 CM 211 R 90 CM 212 R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1 < 1	0.16	3 37 38 20 4	200 1180 1200 2050 3130	< 2 6 4 4	< 5 < 5 < 5 < 5 5	< 1 21 12 10 9	1 - 52 84 33 60	< 0.01 0.81 0.84 0.31 0.33	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	2 213 219 123 74	< 10 20 10 < 10 20	2 84 86 78 106		
	90 CM 213 R 90 CM 214 R 90 CM 215 R 90 CM 216 R 90 CM 217 R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 15 < 1		38 40 4 21 2	1150 150 760 90 260	12 8 2 4 10	< 5 < 5 < 5 < 5 < 5 < 5 < 5	10 16 5 < 1 1	41 52 59 3 9	0.42 0.13 0.17 0.01 0.02	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	124 144 77 158 20	< 10 < 10 < 10 < 10 < 10 < 10	52 28 44 176 22		
-	90 CM 218 R 90 CM 219 R 90 CM 220 R 90 CM 221 R 90 CM 222 R	205 294 205 294 205 294 205 294 205 294 205 294	< 1 < 1 < 1 < 1 < 1 < 1	0.69 1.89 0.02 0.07 0.03	8 20 27 30 30	2190 3010 380 440 470	24 42 26 8 6	5 < 5 < 5 < 5 < 5 < 5	4 4 3 7 4	1050 1270 15 19 30	0.29 0.27 0.04 0.06 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 107 32 62 50	< 10 < 10 < 10 < 10 < 10 < 10	80 90 70 52 78		
1_	90 CM 223 R 90 CM 224 R 90 CM 225 R 90 CM 225 R 90 CM 226 R 90 CM 227 R	205 294 205 294 205 294 205 294 205 294 205 294	1 < 1 10 < 1	0.07 0.01 0.01 0.05 0.09	26 45 9 10 6	510 420 640 1720 6100	16 12 12 < 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5 < 5	5 5 1 4 11	90 17 48 27 123	0.18 0.03 0.02 0.11 0.23	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 36 32 202 110	< 10 < 10 < 10 10 30	82 64 16 52 128		
	· · · · ·	<u> </u>	<u> </u>											(CERTIFIC	CATION :	B.C.	pl.

Chemex Labs I td. Analytical Chemists * Geochemists * Registered Assayers

}

1

1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATION :_

8²0 16TH ST., STE. 415 DENVER, COLORADO 80202

---- .b. Tot. Pa Date -+1 5-JUN-90 Invoice # : I-9016590 P.O. # :NONE

Project : MILWAY

1

Analytical Chemists * Genetic-mista * Registered Assayers

21.2 BROOKSBANK AVE NEW VANCOUVER BRITISH COLUMBLA, CANADA VIJ-2C1

PHO49 for 1: Did to all

1

Comments: ATTN: CHRIS HERALD CC: J. SHANNON C: R. MILLER

CERTIFICATE OF ANALYSIS A9016590

DESCRIPTION C	PREP CODE	Ац ррб F A+A A	Ag ppm	A1 °į	At. ppni	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М а %	Ma ppm
90CM 12SS 20 90CM 13SS 20 90CM 14SS 20	01 202 01 202 01 202 01 202 01 202 01 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1 05 1 22 0 77 0 48 0 93	25 10 10 5 < 5	120 100 180 150 170	< 0 5 < 0 5 < 0 5 < 0 5 < 0 5 < 0 5		0.63 14.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 4 3 4	22 25 61 18 17	29 43 19 24 30	1.49 1.59 1.21 0.79 1.22	< 10 10 < 10 < 10 < 10		0.13 0.16 0.12 0.08 0.13	40 40 < 10 < 10 10	0.40 0.38 0.81 0.67 0.34	505 205 270 255 490
90CM 17SS 20 90CM 18SS 20 90CM 19SS 20	01 202 01 202 01 202 01 202 01 202 01 202 01 202	< 5 10 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	() 78 () 70 () 83 () 91 () 90	16 5 10 < 5		< 0 5 < 0 5 < 0 5 < 0 5 < 0 5	< 2 < 2 < 2 < 2 < 2 < 2	10.70 10.30 8.05 0.70 0.84	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 5 5	26 32 55 39 40	20 19 15 32 13	1 18 1 47 1 76 2 29 2 17	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.11 0.10 0.12 0.08 0.09	< 10 < 10 < 10 30 20	0.43 0.41 0.50 0.38 0.39	305 290 250 230 225
	ļ																		2	
	•																		-	
	•																			
	1																			
	, ,																			
	:																			

CERTIFICATION :

I're lescond con unition

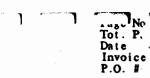
\$20 16TH SI , SIE. 415 DENVER, COLORADO 80202

Tot. P. Date 15-JUN-90 Invoice 1:1-9016590 P.O. # :NONE

Project : MIDWAY

1 1

212 BROOKSBANK AVE - NORTS VANCOUVER BRITISH COLUMNIA - CANADA - V7.0-2C1 PHINE L.


Analytical Chemists * Generations - Repotened Assayers

Chemex

Comments: ATTN: CHRIS HERALD CC: J SHANNON CC: R MILLER

CERTIFICATE OF ANALYSIS A9016590

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppin	P ppin	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm				
900M 11SS 900M 12SS 900M 13SS 900M 13SS 900M 14SS 900M 15SS	201 202 201 202 201 202 201 202 201 202 201 202	< < < < <	0.07 0.06 0.05 0.04 0.03	15 11 18 18 14	820 440 730 820 1180	17. 4 2 4 4	<pre> </pre> </th <th>2 2 2 1 2</th> <th>293 328 780 897 205</th> <th>0.07 0.09 0.05 0.03 0.05</th> <th>< 10 < 10 < 10 < 10 < 10 < 10</th> <th>< 10 < 10 < 10 < 10 < 10 < 10</th> <th>42 38 32 22 29</th> <th>< 10 < 10 < 10 < 10 < 10 < 10</th> <th>46 36 36 34 54</th> <th></th> <th></th> <th></th> <th></th>	2 2 2 1 2	293 328 780 897 205	0.07 0.09 0.05 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 38 32 22 29	< 10 < 10 < 10 < 10 < 10 < 10	46 36 36 34 54				
900M 165S 900M 175S 900M 185S 900M 185S 900M 195S 900M 205S	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1</pre>	0.03 0.02 0.02 0.02 0.02 0.02	20 26 27 20 21	930 1110 1240 600 610	6 12 8 < 2	< 5 < 5 < 5	2 2 2 2 2	279 280 234 58 64	0.04 0.05 0.08 0.12 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	29 44 43 61 58	< 10 < 10 < 10 10 < 10	48 46 38 38 38		•	. ,	
															-			2	
																			÷.
																			. •.
l		_					<u> </u>						CEI	TIFICAT	10N :	3.	Ca	-gl	?

APPENDIX E

<u>___</u>

-

.....

_

_

-

,

-

ROCK SAMPLE DESCRIPTIONS

mpler	R.E.r	<u>1.</u>			N Lat 1-2 N	TS	
nte <u>S</u> e	pt	<u> </u>		Property Muc	Way Ket 1-3N		SAYS
SAMPLE			DESCRIPT			PPETT	
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	An	
105m/551				Ferr	Minion Aneristan- Schiet	10	
ocmisbr		Bunded		Feox Fes	Argelie parting	5	
rm1572		cr. blk				25	
			mulaili	tr. pynta		5	
NCM15012			1	tr pyrite	flat shearing	25	
loem Ilon		1		to printe	Epz?	<5	
	ł	1	Skurn?		home felsic, VUEN Eps and gametista	<u>"30</u>	
		1	Stienn "		abundant activation along Contact / devil		
<u>am 163n</u>	1		1		greenstime?	<5	
Pocm/b4n				turn to	greenstone?	10	<u> </u>
locm/65n		1		tr pyrite	green stone?	10	
icom 166n		bancled homfels		tr pyritic		2.5	
locm 167		Martile Skarn	Skurn		uto viline gament / epidate	10	
torn lear		dolomité		tr pyrite	VEN villing cornet/epidete, showed?	5	
Pormilean Pormilean		dolom.T	wky	tr pyrite		K5	

C-CHIP G-GRAB F-FLOAT

ote	ept.	<u> 41</u>			Way Ket 1-3		ASSAYS
SAMPLE	G		DESCRIPT		l i i i i i i i i i i i i i i i i i i i	<u> </u>	61ACCA
NO.	Vidth	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	
Form 1700	C	Mylonite	Silie	topo, topy		5	
HOCM 1712				. 9	vufn xiliwe Epx banded	15	
Form 1722						<5	
102m17312		Cr. XIIine	V Wkly Skamed			<5	
90cm 1742		•		abun pyrit-		25	
gacm175~				Feox Fes	miner Bre, week ribbon structure	2	
Porm 17612				Feex Fes	highly franct.	25	
90cm 1772				mod. pyrita		15	
90cm 1782				Feox Fes		. 5	
•					·		
90cm 182n	z	gtzite		Feox	bx, sheared, slicken sided	15	
HOCM 18312		, ,	2	brinx lo \$man		15	
90cm 184n				Frox	2	15	

4

C-CHIP G-GRAB F-FLOAT

Date _S	ept.	91	•	Property Mi	dway tret 1-3_	NTS			
SAMPLE Sumple DESCRIP			DESCRIPT	TION			ASSAYS		
ND.	¥idth	Rock Type	Alteration	Hineralization	ADDITIONAL OBSERVATIONS	Ppb Au			
<u>90cm 203 R</u>	د	Meta	blehid	Tr py		<5			
90cm 20412	c	Andort ?		Теру	minun dur tie texture	5	+ + + + + + + + + + + + + + + + + + +		
90Cm 20512	2	9+3,Ta			Shere argillic parting: Alsa'E - 16. N	15			
90cm 20612					w/minor etzite becks ?	10			
Joem 2072	e	Argulite/			why mylonitic	25	+ + +		
90cm 2082	ح	gtz to	blebid			25			
Gorm 20912	ح	Sittstone		Tr. Po? Py? Muy	calcite, epidote, act? Unlet x-cutting	25	┥┥┥		
90cm 21012	C	Siltstone			abundant epidates	25			
90cm 2112				Mary		<5			
90 CM 21212	c	Shuley Limestone	WKSKan	med. Mag		<5			
8 cm 2132					Ealcite UN.	K5			
10cm 21412	حر	grow stome	-			25			
90cm 21512	c	JENS Stone		ter py	in contact w/ for alling discrite	<5			
90cm 216n	e	blk Ara.		MNO E MINUT PY	X-Cutting of VNS	10			
90cm 21712		Itzite		Feox		25			

C-CHIP G-GRAD F-FLOAT

ampler_ <u>í</u> ate _5		L		Property Mulu	lay_het1-3_	NTS _		
	•	n	DESCRIPTION		J	L	ASSAYS	
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	PP6 Au		
locm 2181	F?	Vale?	•	tr mag		25		
OCM 214K				tr++ mag		25		
lucm 220r				Feox		<5		
						15		
<u>Porm 22/12</u>		5		tr. py + Feor trpy + Feox		15		
90cm 222a 90cm 223a				Erpy + FEOX		45		
POLM 2242						45		
100m 224a		to, te		Feox				
·		· · · ·						
				· · · · · · · · · · · · · · · · · · ·				
<u></u>								

C-CHIP G-GRAB F-FLOAT

APPENDIX F

~

.....

SAMPLING AND ANALYSIS PROCEDURES

SOIL SAMPLING and PREPARATION

The soil grid was measured using hip chains and topo-fill thread. It was not slope corrected. A mattock was used to dig a hole in the soil at each station; soil samples were taken from the 'B' soil horizon (approximately 10 - 15 centimetres deep) unless otherwise stated. The samples were collected in kraft gusseted paper bags and sent to Chemex Labs of North Vancouver, B.C., for analysis. At Chemex, the samples were oven dried at 60°C and sieved to minus 80 mesh.

ROCK SAMPLING and PREPARATION

Rock samples were chipped from bedrock, except in cases where the sample is identified as a float sample. In all cases, the rocks sampled were done as 'grab' samples. The rock chips were collected in plastic bags and also sent to Chemex Labs, where they were crushed to 3/16 of an inch. A 250 gram speciman was split out and pulverized to 99% minus 100 mesh using a ring mill pulverizer.

ANALYSIS

The following pages from Chemex Labs Ltd., describe the procedures performed by the lab to analyze the rock samples.

CHEMEX LABS

Chemex Labs Ltd.

Analytical Chemists

Geochemists

Registered Assayers

212BrooksbankAve.NorthVancouver,B.C.CanadaV7J 2C1Phone:(604)984-0221Telex:04-352597Fax:(604)984-0218

32-Element Geochemistry Package (32-ICP)

Inductively-Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (0.5g) is digested with concentrated nitric and aqua regia acids at medium heat for two hours. The acid solution is diluted to 25ml with demineralized water, mixed and analyzed using a Jarrell Ash 1100 plasma spectrometer after calibration with proper standards. The analytical results are corrected for spectral inter-element interferences.

Chemex Codes	Element	Detection Limit	Upper Limīt
921	* Aluminum	0.01 %	15 %
922	Silver	0.2 ppm	0.02 %
923	Arsenic	5 ppm	1 %
924	* Banum	10 ppm	1%
925	* Beryllium	0.5 ppm	0.01 %
926	Bismuth	2 ppm	1 %
927	* Calcium	0.01 %	15 %
928	Cadmium	0.5 ppm	0.01 %
929	Cobalt	1 ppm	1 %
930	* Chromium	1 ppm	1 %
931	Copper	1 ppm	1 %
932	Iron	0.01 %	15 %
933	* Gallium	10 ppm	1 %
934	* Potassium	0.01 %	10 %
935	* Lanthanum	10 ppm	1%
936	* Magnesium	0.01 %	15 %
937	Manganese	5 ppm	1%
938	Molybdenum	1 ppm	1%
939	* Sodium	0.01 %	5%
940	Nickel	1 ppm	1 %
941	Phosphorus	10 ppm	1 %
942	Lead	2 ppm	1%
943	Antimony	5 ppm	1 %
944	* Strontium	1 ppm	1%
945	* Titanium	0.01 %	5%
946	* Thallium	10 ppm	1%
947	Uranium	10 ppm	1%
948	Vanadium	1 ppm	1%
949	* Tungsten	10 ppm	1 %
950	Zinc	2 ppm	1%
951	Mercury	1 ppm	1%
958	Scandium	1 ppm	1%

* Elements for which the digestion is possibly incomplete.

CHEMEX LABS

Chemex Labs Ltd.

C

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

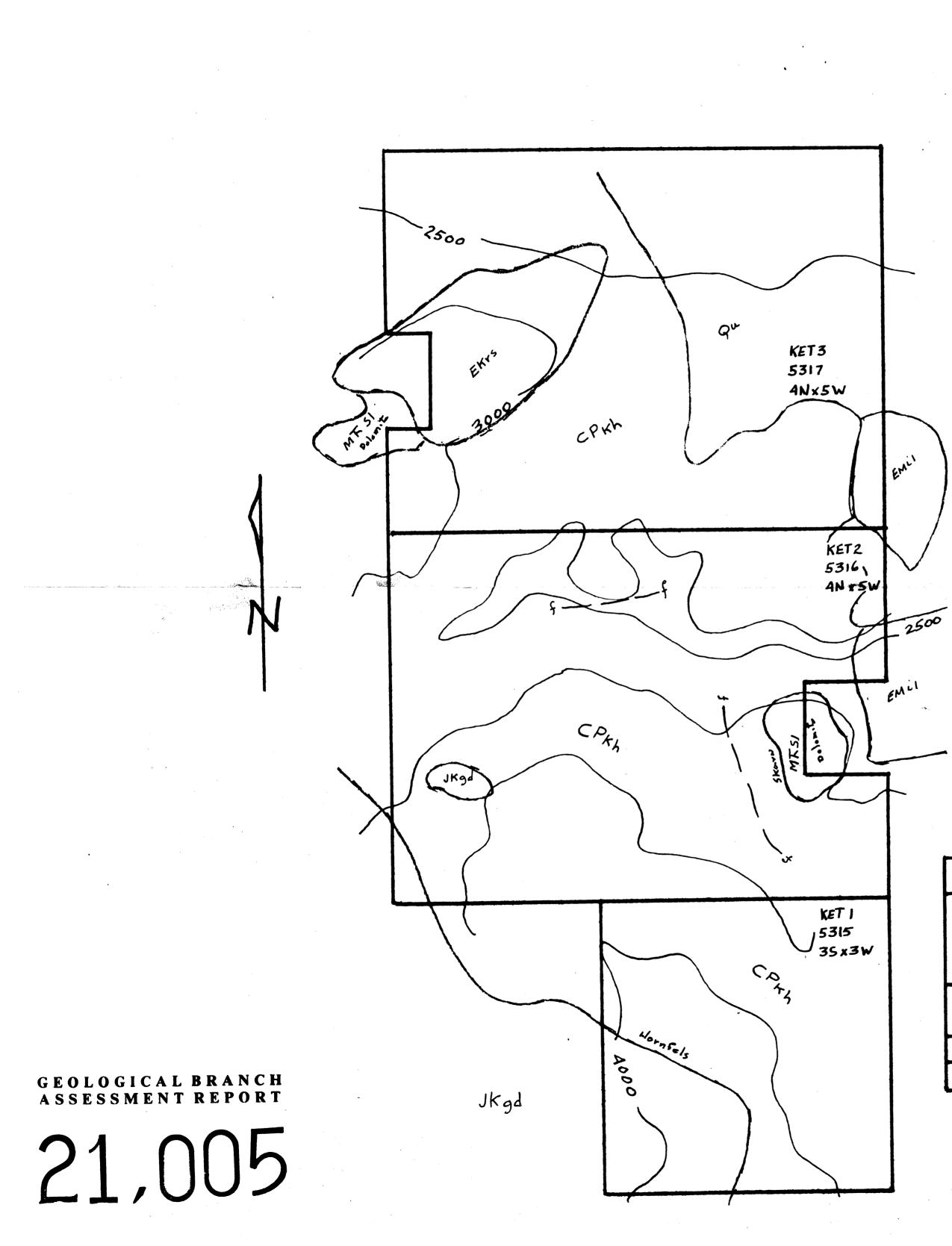
 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

Au Fire Assay - AA finish (oz/T) : Chemex Code 998


Gold analysis is carried out by standard fire assay techniques. In the sample preparation stage the screens are checked for metallics which, if present, are assayed separately and calculated into the results obtained from the pulp assay.

A 1.0 assay ton sample is fused with a neutral flux inquarted with 2 mg of Au-free silver and then cupelled.

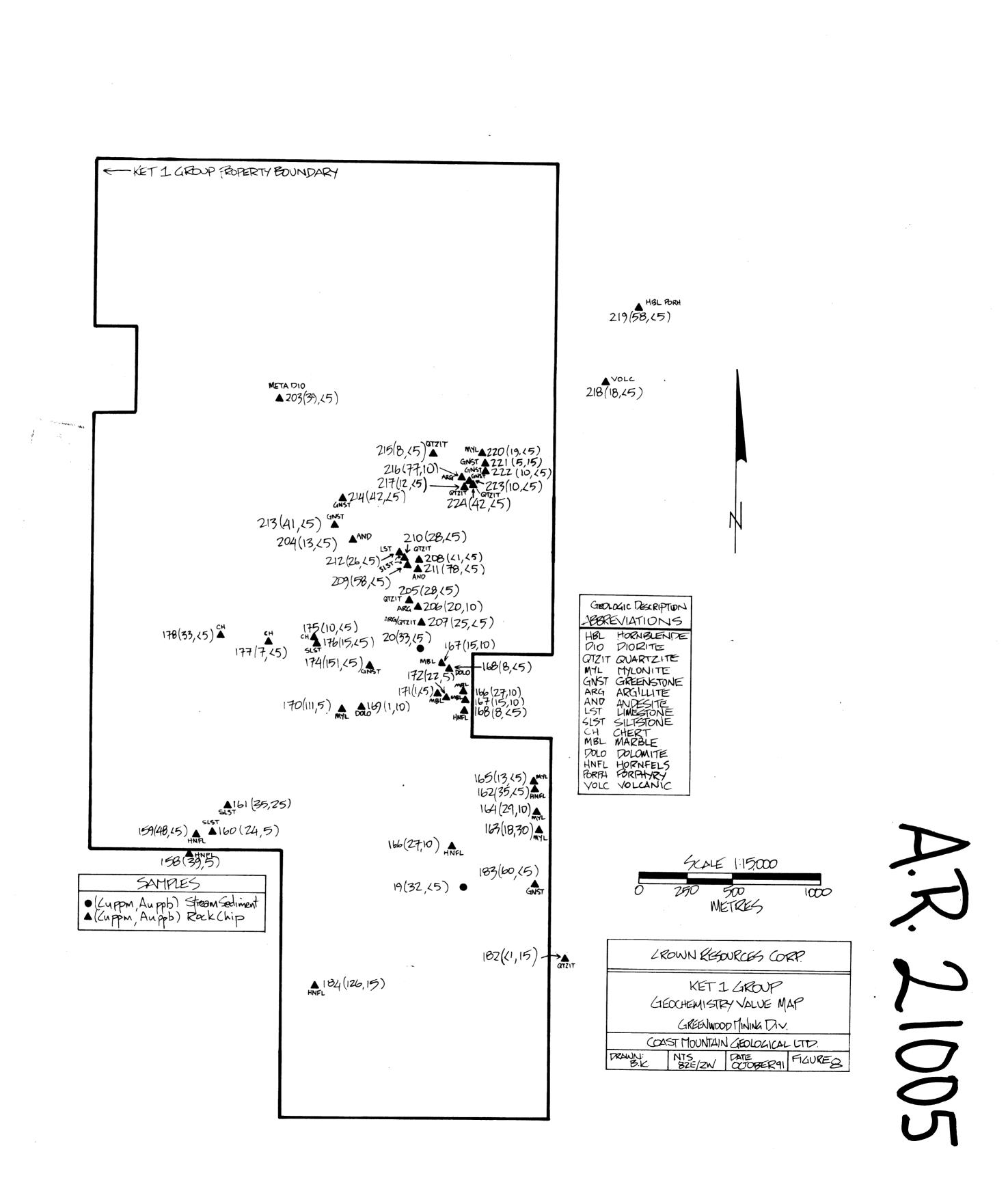
Silver beads for AA finish are digested for 1/2 hour in 1 ml HNO3, then 3 ml HCl is added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and run on the AAS with background correction.

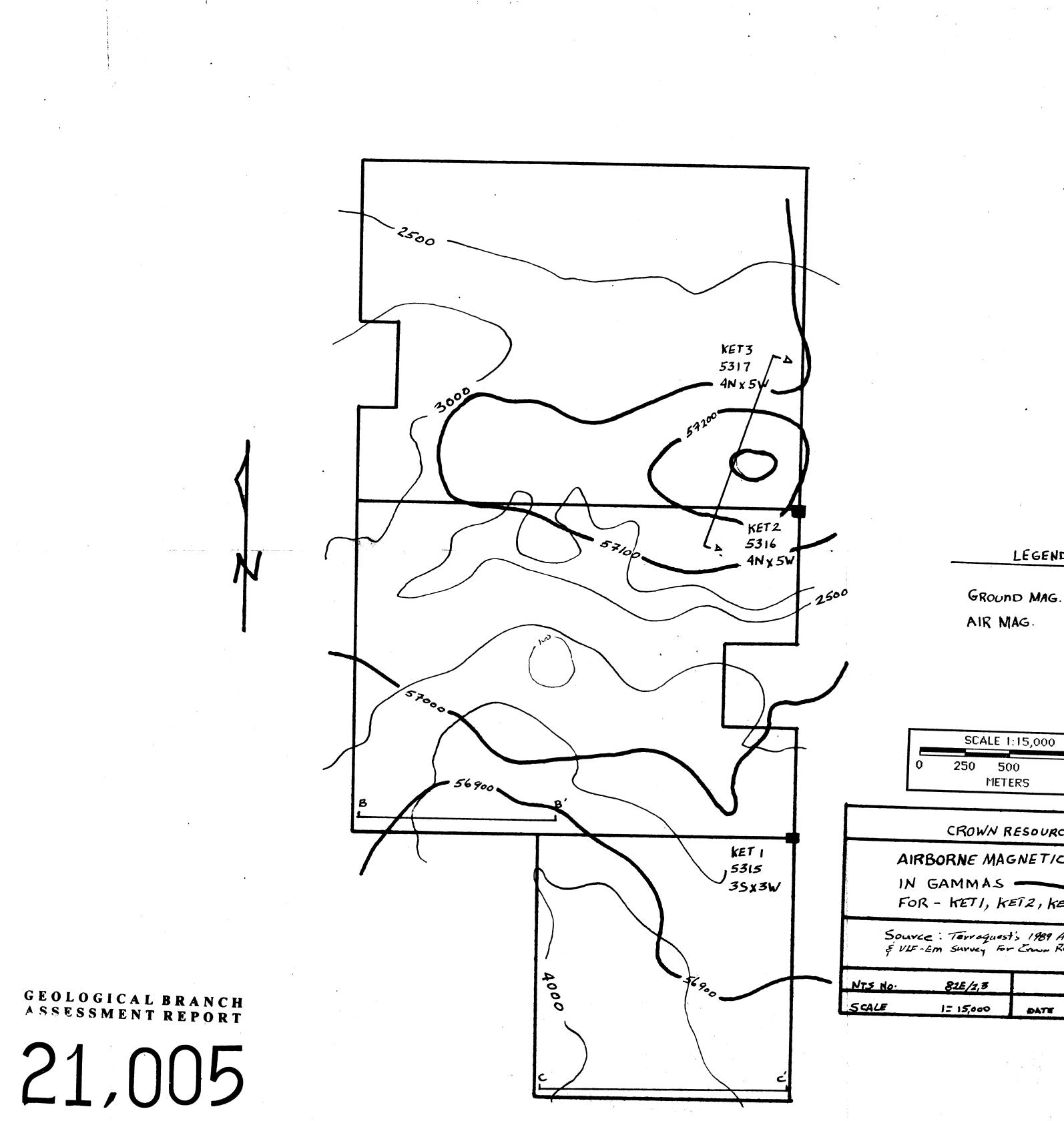
Detection Limit - 0.001 oz/T

Upper Limit - 20 oz/T

LITHOLOGY
Qu - Quaternary, Unconsolutated sediments; ±111
TERTIARY Eocene
EML - MARRUN FM. Intrusive rocks
EKrs · KETTLE RIVER Fm.
JURASSIC and for CRETACEOUS
JKgd - NELSON INTRUSIONS granderite
TRIASSIC ?
mTSI - BROOKLYN FM.
Sharpstone Congl,
Munble, del-mite Skurn
CARBONIFEROUS OF PERMIAN
CPKh - KNUB HILL GROUP
chart, greenstone, amphibolite,
mutic, Limestone, quartzic
APPROX GELOGIC: CONTACTS
FALILT TRACE
CROWN RESOURCES
CENERAL CEOLOGY
GENERAL GEOLOGY
KET I, KET 2, KET 3
Figure 7
Source: Map 1500 A Green wood - Little H.W. R.M. Ner Field notes
NTS NO: 82E/2,3 REM.
SCALE 1 = 15,00
SCALE 1:15,000

250 500 METERS


0


1000

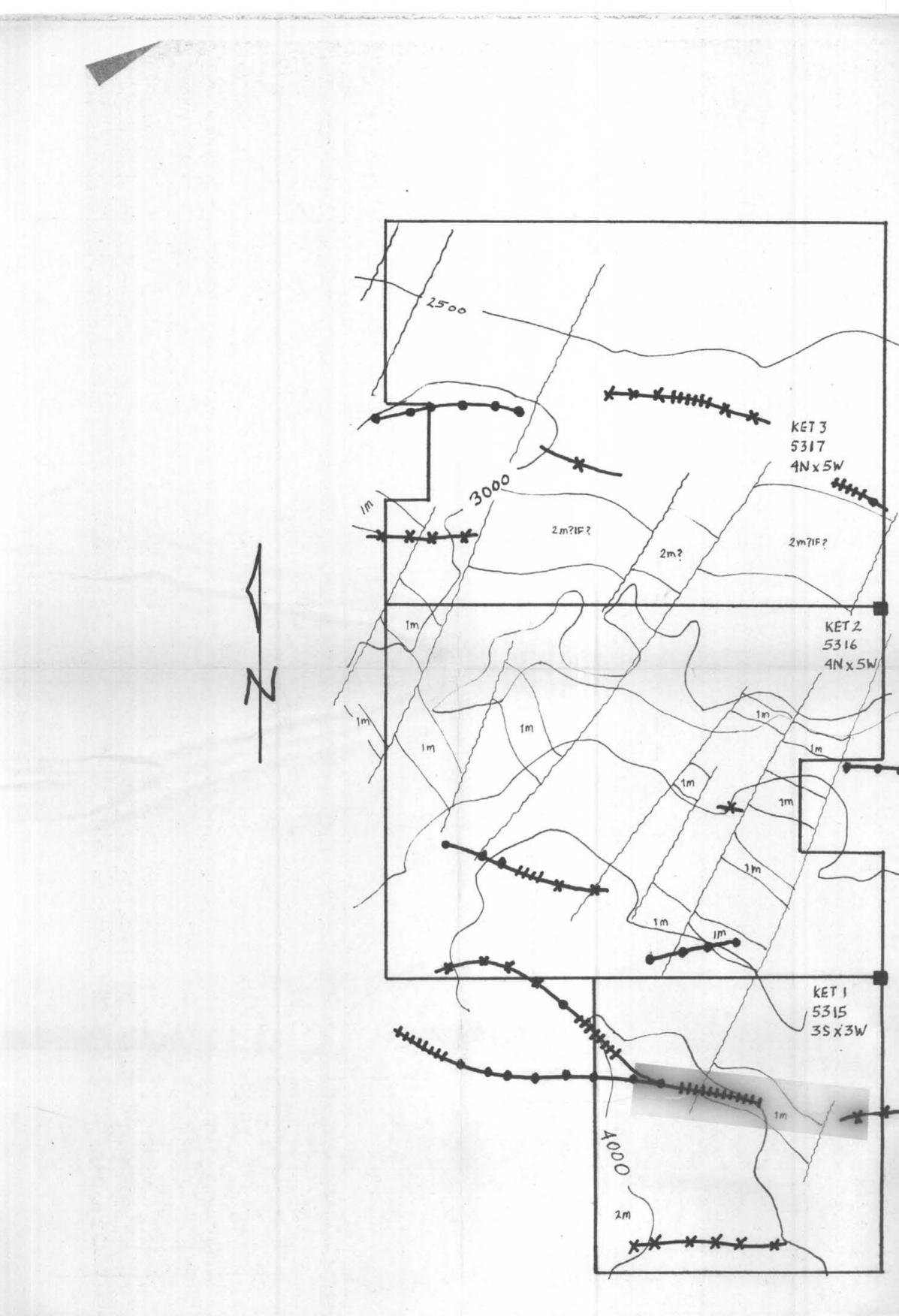
- 2

- _

فالمعاشفة الدوري

t e =

				•	
1		:			
\mathbf{H}					
N					
> N					
y					
1					
			•		
7					
Y					
Λ					
4					
			LEGEND		
Ŵ					
2500		GROUT	D MAG.	LINES A A	,
125					
		AIR M	AG.	57,000-	gammas
1					
				·	,
-1	r-				
+		SCALE I	:15,000		
	0	0 250 50	00	1000	
		MET	ERS		
		CROWN F	2 E E O LIPOL	50	
₽ ト		CHUWA			
	AIF	RBORNE MAG	GNETIC	DATA	
	IN	GAMMAS			
		R - KETI, K	EÎZ, KE		
		- / - /	, , ,		
	Sour	ce: Terraques	t's 1989 An	borne Maynetic scent ces.	
	Ę VLF	-EM Survey To	- Crewn Re	FIGURE 9	
	National and		1		
	NTS No.	81E/2,3		Kem	-
	SCALE	1= 15,000	DATE	JAN-1991	
- 1 					 •
1					


المستشرف ومحارب والمحاد فجوا الأنفاذ

.

.

Δ.

. **r**

/	
	LITHOLOGY
	MIDDLE JURASSIC
	2m Magnetic Unit
	CARBONIFEROUS
	Im Magnetic Unit IF Iron Formation
	LEGEND
.2500	INTERPRETATION Outline of contact at depth Contact Fault VLF-EM Conductor Axes Normal Quadrature Reverse Quadrature Total Field only SCALE 1:15,000 0 250 500 1000 METERS
	CROWN RESOURCES
	AIRBORNE MAGNETIZ & VLF-EM INTERPRETATION - 1989 KETI, KET2, KET3
	Magnetic & VLF. EM Survey For Erown Resources. FIGURE 10
-	NT.S. NO. 92E/2,3 REM
	SCALE. 1 = 15,000 DAME JAN. 1991
	GEOLOGICAL BRANCH ASSESSMENT REPORT
	21,005