LOG NO:	March 5/9/ RD.
ACTION:	/
FILE NO:	

.

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

GOLDEN LOON CLAIM GROUP I TO IX CLAIMS (Inc.) 9 Claims, 176 Units Kamloops Mining Division 51°25'N 120°21'W

NTS 92 P/8

for

CORONA CORPORATION 1440-800 West Pender Vancouver, British Columbia

PROPERTY OWNER:

MINETA RESOURCES LTD.

OPERATOR:

REPORT AUTHORS:

December 24, 1990

CORONA CORPORATION

R.C. Wells, B.Sc., F.G.A.C. J.R. Bellamy, B.Sc. E.G.A.C. GEOLOGICAL BRANCH ASSESSMENT REPORT

F2

PAC03-1064-06-014

SUMMARY

The Golden Loon Property of Mineta Resources Ltd. is located at the edge of the Thompson Plateau, 6 kilometres west of Little Fort, British Columbia. The property is comprised of 18 contiguous mining claims totalling 185 units.

Corona Corporation has an option on the property from Mineta dated April 9, 1990. The exploration target is porphyry hosted and structurally controlled precious metal mineralization located on the northeastern edge of the Thuya Batholith (Dum Lake area).

The 1990 exploration program on the property by Corona consisted of the following surveys:

- 1. 5.4 km of access road construction
- 2. 21.15 km of survey control grid known as the Dum Lake grid
- 3. Reconnaissance geological mapping covering the entire property
- 4. Detailed geological mapping within the Dum Lake grid
- 5. Two phased trenching programs on the Dum Lake grid (29 trenches)
- 6. Soil geochemical surveys on the Dum Lake grid
- 7. Prospecting and rock geochemistry
- 8. A test, induced polarization and resistivity survey was conducted on selected lines on the Dum Lake grid
- 9. A diamond drilling program consisting of 7 holes for a total of 691.0 metres. This program is the subject of a separate report by G.Evans BSc.

The property lies in a zone of complex faulting at the northern edge of the Thuya Batholith (Jurassic). On the property, the faulting affects various alkalic marginal

i

PAC03-1064-06-014

phases to the Thuya Batholith (Dum Lake area), the Nicola Group volcanics and sediments as well as a large ultramafic unit of unknown age and association.

The geochemical programs outlined a number of strong gold anomalies on the Dum Lake grid. In the east part of the grid, the gold anomalies were coincident with lead and local copper values. Prospecting and geological mapping in the eastern part of the grid discovered mineralized (Au, Ag, Cu, Pb) quartz veins and vein float. The veins fill northerly trending faults in monzonitic to dioritic intrusive rocks. In the western grid area, gold and copper mineralized float and bedrock were discovered near Dum Creek. This mineralization is associated with structurally controlled, propylitic and silicified alteration systems hosted by monzonitic intrusive rocks.

The better soil, float and bedrock gold anomalies, near Dum Lake, were tested by trenching wherever possible. Gold mineralized quartz vein systems with silver, lead and copper values were uncovered in the eastern part of the grid. A well mineralized quartz vein on Line 1700E yielded average gold values in the 6 to 7 g/t range over a 1 to 1.5 metre width. In the western part of the grid, the Dum Creek alteration zone could not be trenched because of difficult topography. Another strong alteration zone was exposed in Trench 19. The zone, which is heavily silicified, contains disseminated pyrite, specular hematite and gold values in the 1 to 3 g/t range. A test I.P. survey conducted in this area indicated a small, weak chargeability anomaly.

Further trenching and sampling of the silicified zone indicated the area had the best gold potential within the Dum Lake grid. The zone was tested by six diamond drill holes late in 1990. An I.P. target in the western part of the grid was tested by one drill hole.

PAC03-1064-06-014

December 24, 1990

TABLE OF CONTENTS

			Page No.		
	SUM	IMARY	i		
1.0	INTH	INTRODUCTION			
	1.1	Location and Access	1		
	1.2	Property	1		
	1.3	Physiography and Vegetation	3		
	1.4	History and Previous Work	5		
	1.5	Regional Geology and Mineralization	11		
2.0	THE	E 1990 EXPLORATION PROGRAM ON THE PROPERTY	11		
	2.1	Introduction	11		
	2.2	Physical Work	12		
		2.2.1 Road Construction	12		
		2.2.2 Survey Control Grid	12		
3.0	PRC	OPERTY GEOLOGY	13		
	3.1	Introduction	13		
	3.2	Distribution	13		
	3.3	Lithology	15		
		3.3.1 Thuya Batholith and Related Intrusions	15		
		3.3.2 Nicola Group	18		
	3.4	Structure	19		
	3.5	Alteration	19		
	3.6	Mineralization	20		
		3.6.1 Dum Lake Grid	21		
		5.0.2 Other Milleralization			

ł

!

÷

20 20

4.0	TRENCHING PROGRAMS	24
	4.1 Phase I Trenching	24
	4.2 Phase II Trenching	25
5.0	GEOCHEMISTRY	27
	5.1 Soil Geochemistry Surveys	27
	5.2 Prospecting	29
	5.3 Rock Geochemistry	29
6.0	GEOPHYSICS	30
	6.1 Induced Polarisation and Resistivity Survey	30
7.0	CONCLUSIONS	31
8.0	RECOMMENDATIONS	32
	REFERENCES	33
	STATEMENT OF QUALIFICATIONS	34
	STATEMENT OF EXPENDITURES	36
	STATEMENT OF WORK	40

PAC03-1064-06-014

APPENDICES

LABORATORY ANALYTICAL PROCEDURES APPENDIX A

APPENDIX B

GEOCHEMICAL DATA

- Certificates for Analyses Soils **B.1**
- Certificates for Analyses Prospecting Samples **B.2**
- Certificates for Analyses Whole Rock **B.3**
- Geochemical Diagrams **B.4**

APPENDIX C

GEOPHYSICAL DATA

Pseudosections: I.P. Survey, Scott -Geophysics

APPENDIX D

TRENCHING PROGRAM

- Certificates for Analyses **D.1**
- Maps (Trenches Figures 11 26) D.2

APPENDIX E MAPS

V

PAC03-1064-06-014

LIST OF FIGURES

		Page No.
Figure 1	Regional Geology with Location Map	4
Figure 2	Golden Loon Property - Data Compilation 1	6
Figure 3	Golden Loon Property - Data Compilation 2	7
Figure 4	Golden Loon Property - Data Compilation 3	9
Figure 5	Compilation Map - Mineta Data	Appendix E
Figure 6	Geology Map - Golden Loon Property	Appendix E
Figure 7	Geology Map - Dum Lake Grid	Appendix E
Figure 8	Regional Magnetic Map - Little Fort Area	14
Figure 9	Total Alkalis-Silica Diagram for Golden Loon Rock Ty	pes 17
Figure 10	Sampling Location Map - Dum Lake Grid	Appendix E
Figure 11	Trenching program May, 1990 (Trenches 1 - 7)	Appendix D
Figure 12	Trench 8 and 9	Appendix D
Figure 13	Trench 10	Appendix D
Figure 14	Trench 11	11
Figure 15	Trench 13	**
Figure 16	Trench 14	"
Figure 17	Trench 15	n
Figure 18	Trench 19	**
Figure 19	Trench 21	**
Figure 20	Trench 23	**
Figure 21	Trench 24	**
Figure 22	Trench 25	81
Figure 23	Trench 26	**
Figure 24	Trench 27	11
Figure 25	Trench 28	
Figure 26	Trench 29	**
Figure 27	Dum Lake Grid - Soil Geochemistry: Gold	Appendix E
Figure 28	Dum Lake Grid - Soil Geochemistry: Copper	Appendix E
Figure 29	Dum Lake Grid - Soil Geochemistry: Lead	Appendix E
Figure 30	Dum Lake Grid (West Ext) - Soil Geochemistry: Gold	*1
Figure 31	Dum Lake Grid (West Ext) - Soil Geochemistry: Coppe	er "
Figure 32	Dum Lake Grid (West Ext) - Soil Geochemistry: Lead	11

LIST OF TABLES

Table 1

Phase II Trenching Summary

Page No. 27

vi

1.0 **INTRODUCTION**

This report presents the results of a 1990 exploration program, conducted by Corona Corporation on the Golden Loon Property. The property is located in the Kamloops Mining Division. The exploration target is porphyry hosted and structurally controlled (quartz stockwork and vein) precious metal mineralization.

The report describes the geological, geochemical, geophysical and trenching programs undertaken on the Golden Loon mineral claims. The results from a drill program, completed in November 1990, are detailed in a separate diamond drilling report by G. Evans B.Sc. All the 1990 exploration on the property was under the direction of R. C. Wells B.Sc. FGAC, Regional Geologist for Corona Corporation based in Kamloops B.C.

The cost of the program outlined in this report was \$157,792.00 and excludes the expenditures incurred in the 1990 drilling program.

1.1 Location and Access

The Golden Loon claim group is covered by NTS sheet 92P/8 and is centered six kilometres west of Little Fort, B.C. Little Fort is a small settlement on Highway 5, a hundred kilometres north of Kamloops. A network of well travelled forestry and logging roads affords good access to most parts of the property from both Little Fort to the east and Thuya Lakes Resort to the west (Figure 1).

1.2 **Property**

The property described in this report consists of nine contiguous mineral claims (modified grid), plus nine 2 post claims totalling 185 units located in the Kamloops Mining Division (Figure 2). The claims are:

1

ł

ł

PAC03-1064-06-014

÷

<u>Claim Name</u>	<u>Units</u>	Record Number	Expiry Date
Golden Loon I	20	5541	9 March 1991
Golden Loon II	20	5542	9 March 1991
Golden Loon III	20	5543	9 March 1991
Golden Loon IV	20	5544	9 March 1991
Golden Loon V	20	6539	7 March 1992
Golden Loon VI	20	6540	7 March 1991
Golden Loon VII	16	6549	14 March 1991
Golden Loon VIII	20	6550	14 March 1991
Golden Loon IX	20	6556	27 March 1991
Dum 1	1	9284	9 May 1991
Dum 2	1	9285	9 May 1991
Dum 3	1	9286	9 May 1991
Dum 4	1	9287	9 May 1991
Dum 5	1	9621	26 July 1991
Dum 6	1	9622	25 July 1991
Dum 7	1	9623	25 July 1991
Dum 8	1	9624	25 July 1991
Dum 9	1	9625	25 July 1991

The property is owned by Mineta Resources Ltd., 415-470 Granville Street, Vancouver, British Columbia. An option agreement was made on April 9, 1990 between Mineta Resources Ltd. and Corona Corporation. Corona, by paying Mineta an aggregate of \$220,000 and incurring a minimum of \$1,200,000 in exploration expenditures by July 31,1995 could earn a 75% undivided interest in the claims.

Mineta Resources Ltd. owns an adjoining claim block, the LUC 1 - 14 minerals claims - Kamloops Mining Division, in which Corona Corporation has a first right of refusal to option from Mineta. In consideration of Mineta giving Corona the first right of refusal, Corona will apply one year of assessment credits to each of the LUC 1 - LUC 14 mineral claims. The claims are:

2

PAC03-1064-06-014

1

<u>Claim Name</u>	<u>Units</u>	Record Number	Expiry Date
Luc 1	1	8053	9 September 1991
Luc 2	1	· 8054	9 September 1991
Luc 3	1	8055	9 September 1991
Luc 4	1	8056	10 September 1991
Luc 5	1	8057	10 September 1991
Luc 6	1	8058	10 September 1991
Luc 7	1	8059	10 September 1991
Luc 8	1	8060	10 September 1991
Luc 9	1	8061	10 September 1991
Luc 10	1	8062	10 September 1991
Luc 11	1	8063	10 September 1991
Luc 12	1	8064	10 September 1991
Luc 13	1	8065	10 September 1991
Luc 14	1	8066	10 September 1991

1.3 **Physiography and Vegetation**

The property, which lies to the south of Eakin Creek gorge occupies an undulating plateau region between 1100 and 1400 metres elevation. The eastern part of the property covers the edge of the plateau and the western valley slopes of the North Thompson River (440 metres elevation).

Vegetation on the property is generally thick with stands of mature pine and/or poplar. Large parts of the western area have thick alder growth on gravel ridges which are separated by low swamps. The higher ground within the claims was partially logged ten to fifteen years ago and there has been some recent logging activity (1989-1990), south of Montigny Creek.

ł

1.4 History and Previous Work

During the early 1920's, interest was generated in the placer gold deposits of Eakin Creek. Gold was discovered in Lemieux and Eakin Creeks, as well as in some western tributaries. In 1923, placer claims were held on 1.5 miles of Eakin Creek (just north of the property), upstream from its junction with Lemieux Creek. (Figure 5). Coarse gold was found in the higher bench gravels but not in significant commercial quantities. The source of the placer gold in Eakin Creek has never been located.

Noranda Exploration (Kira group) explored the property area in the 1960's with copper as the main target. Following stream and lake silt sampling, the area was covered by a large soil grid with 800 foot spaced lines and 200 foot sampling intervals. Samples were run for Cu, Ni, and a few for Mo. A series of strong nickel anomalies in the 100 to 2000 ppm range trend northwest and lie to the south of Dum Lake (Figure 2). No detailed follow up on any of the anomalies is recorded.

The western part of the property was covered by the Minerva claims held by Teck Corporation in 1980 and 1981 with copper again as the target (Figure 3). A 60 kilometre flagged grid was used for soil geochemistry (Cu, Ag, Mo), reconnaissance geological mapping and ground magnetic surveys. A series of strong positive, magnetic anomalies trending northwest were found to cover Noranda's nickel in soil anomalies. Teck's mapping indicated this was a large ultramafic body of pyroxenite to peridotite composition. A number of coincident Cu and Ag soil anomalies were outlined, many of which are located close to the edge of the magnetic anomalies (ultramafic intrusive) as shown in Figure 3. Teck's report by P.G. Folk (No. 9061, 1981) recommended running soils for gold and further work on coincident Ag-Cu soil anomalies south of Dum Lake. Neither was done.

An airborne magnetic survey (DEMR 1968 Airborne Magnetic Survey Series 52249) shows a strong, positive, magnetic anomaly of greater than 3000 gammas relief

5

ł

trending northwest across the northern part of the property (Figure 5). This feature coincides with Teck's ground magnetic anomalies (ultramafic unit). It is probable that the ultramafic body is located within the 4500 gamma contour shown in Figures 2, 3, and 5.

The Golden Loon VII claim covers the western half of the previous Fir Group (1980's, De Bock brothers). This two claim group (30 units) covered part of a major north-westerly trending fault (Figures 2, 3, and 4). Old trenches near the western edge of the claim expose strongly silicified, ultramafic rocks with much chalcedony, quartz and disseminated magnetite, pyrite and minor galena.

The Golden Loon Property was staked by L. Lutjen between 1984 and 1986 with gold and platinum as the targets. During 1984 and 1985, work by Barnes Creek Minerals on the property consisted of prospecting and sampling in favourable areas defined by previous surveys (Noranda, Teck). In 1986, a 7.0 kilometre grid on was cut on the Golden Loon VII claim to cover old trenches exposing silicified ultramafics. The grid is shown in Figure 4 and covers one of the nickel in soil anomalies outlined by Noranda. Soil geochemical (Au, Ag, and As), magnetic and VLF surveys were conducted over the grid. Anomalous gold values (up to 110 ppb) cluster in the northwestern part of the grid. Magnetics suggest that the grid is underlain by ultramafics. Variations within the more magnetic areas may be explained by alteration of the ultramafics (silicification). The VLF survey indicated two northwesterly trending fractures cutting the ultramafics (Figure 4). The more easterly of these may also coincide with the eastern margin of the ultramafics (fault contact?). Most of the higher gold in soil values (750 ppb) occur close to the VLF features which suggests that structures parallel to the Loon VII fault may be mineralized.

Mineta Resources optioned the Golden Loon property from Larry Lutjen in 1987. There were two main targets that were addressed by Mineta's 1987 exploration program: 1) platinum group elements and chromite within the main ultramafic unit; and 2) precious metals, gold and silver in structures/veins at the margins of the ultramafic. A large grid, with 500 metre spaced lines, was cut to cover the ultramfic unit and an area to the north. Geochemical surveys were conducted over the grid and in all drainages on the property. These surveys outlined a number of gold and silver

anomalies south of Dum Lake which occur along an interpreted structural break (east trending, fault-zone). Weakly anomalous platinum values were obtained from lithogeochemical samples taken from pyroxenitic bands in the ultramafic unit.

Phase I, of Mineta's 1988 exploration program (Figure 4) on the property consisted of detailed follow-up line cutting and geochemical and geophysical surveying on the 1987 geochemical anomalies located south of Dum Lake. A wide belt of gold in soil anomalies some 1200 metres long by 800 metres wide containing local `spothighs' greater than 1000 ppb was outlined by the surveys. The anomalous area correlates well with a magnetic `low' north of the main ultramafic unit. A sample taken from a quartz boulder very near a high gold in soil value (>1000 ppb) and on a short VLF anomaly yielded a gold value of 1.1 oz/t with highly anomalous lead and silver.

Phase II, 1989 exploration by Mineta (Figure 4) concentrated on two main areas; Montigny Lake (central, Grid 2) and Montigny Creek (Grid 4) to the southeast. Both areas had been previously explored by Mineta in 1987 and were subject to further detailed grid and soil geochemical surveys in 1988. Magnetic and VLF surveys were conducted only on Grid 2 by White Geophysical Services of Vancouver.

On the Montigny Lake Grid(2), a number of weak to moderately strong Cu, Ni and Cr geochemical anomalies trend northwest and appear to be stratigraphically controlled by certain ultramafic units. A similar control is suggested for VLF and magnetic anomalies with the same trend (higher magnetite concentrations).

On the Montigny Creek Grid (4) a number of strong copper (locally with coincident gold) geochemical anomalies were identified. These anomalies overlie uncertain geology. The source for the gold in Montigny Creek is unknown.

The results from the 1988-89 geochemical and geophysical surveys by Mineta are compiled in Figure 5.

In 1989, a number of small programs were conducted on the property. Mineta extended the Dum Lake Grid (No.3) to the east (Grid 5) 1.5 km and completed a soil sampling program on the irregular spaced lines. The gold anomalies on Grid 3 do not extend very far eastward onto Grid 5. A ground magnetic and VLF survey (by White Geophysics) outlined a number of weak anomalies.

Placer Dome Inc conducted a geological survey and checked soil lines on Grid 3. Mineta's (1988) soil values were basically reproduced. Grab samples taken from mineralized quartz float yielded a number of gold values in the 3 to 6 g/t range, and one of 49 g/t (Line 1700E at 3+25S).

White Geophysics conducted another magnetic and VLF survey for Mineta on Montigny Creek Grid 4. No strong anomalies were detected.

1.5 **Regional Geology and Mineralization**

The regional geology of the Little Fort area, which is largely based on GSC Map 1287A accompanying the Bonaparte Lake Memoir 363 by Campbell and Tipper (1971), is illustrated in simplified form in Figure 1.

The North Thompson Valley lies along a major (regional) northerly trending fault system marking the boundary between the Omineca Belt (to the east) and Intermontane Belt (to the west). South of Little Fort, the fault zone separates deformed Fennel (Mississippian) and Eagle Bay Formation (Palaeozoic) volcanics and sediments to the east from less deformed Nicola group Volcanics (Triassic) and Mesozoic intrusive rocks (Thuya Batholith) to the west. At Little Fort the fault zone splays to the northwest into a wide zone of complex faulting (fault duplex!) north of the Thuya Batholith.

The Golden Loon Property covers the northeastern margin of the Thuya Batholith and its contact with strongly faulted Nicola Group volcanics. A northwesterly trending zone of ultramafic rocks occurs along a fault zone (deep seated?) near the contact.

A number of gold and base metal occurrences are known in the area. The majority of these are located in the zones of complex faulting northwest of Little Fort. Many of the occurrences can be related to relatively small alkalic and calc-alkalic intrusives. Five kilometres north of the Golden Loon Property (on the Cedar Claim Group), copper mineralization with gold and silver values is associated with a narrow skarn zone developed at the margins of a dioritic dyke.

The northern part of the Golden Loon Property could be a source area for the gold placers in Eakin Creek which is located 1.5 kilometres northeast of Dum Lake.

2.0 THE 1990 EXPLORATION PROGRAM ON THE PROPERTY

2.1 Introduction

The 1990 exploration program on the Golden Loon Property was conducted and financed by Corona Corporation. This work was completed between May 15 and the end of the year.

ł

Previous exploration programs on the property indicated a good potential for porphyry hosted and structurally controlled (quartz-stockwork and vein) precious metal mineralization in the Dum Lake area. The 1990 exploration program was designed to improve and test existing targets as well as develop new ones.

The integrated exploration program consisted of road construction, grid preparation, geological, geochemical and geophysical surveying and follow up trenching. The various programs are discussed in the following sections. The 1990 drill program, completed during October is detailed in a separate report by G. Evans, B.Sc.

2.2 **Physical Work**

2.2.1 Road Construction

Before 1990, it was difficult to access the area south of Dum Lake. A rough 10 kilometres long 4 X 4 trail accessed the north side of Dum Lakes via the Thuya logging road. From Dum Lake southward travel, by foot only, involved crossing wide swampy areas.

In May 1990, a 4 kilometres long 4 X 4 road was constructed from the Thuya logging road into the Mineta grid located south of Dum Lakes (Figure 6). A Hitachi 200 excavator from Cam Mac was used for this work. The first 1.3 kilometres of road upgraded an old north trending logging trail.

In September, the road was extended a further 1.4 kilometres to the west to access targets requiring trenching and/or drilling. A bridge was built to cross Dum Creek (Figure 6).

2.2.2 Survey Control Grid

As part of the 1990 exploration program a new cut grid was established over the area south of Dum Lakes. This new grid covers the same area as Mineta's 1988 Grid 3 (Dum Lake).

All the lines were cut out by chain saw, drag chained and picketed to I.P. standard. Turning boards were used for survey lines cut perpendicular to the baseline. Many of the new cut survey lines, including the baseline, do not follow those of Mineta's even though both grids have the same orientation. The reason for this is that the variable strong magnetics in the area make compass lines inaccurate (Mineta 1988) and turning boards have to be used with line of sight picketing.

PAC03-1064-06-014

All line cutting was by Peripheral Exploration Ltd of Kamloops and was completed in two phases (Figure 6). Phase 1 in June consisted of a 1.3 kilometre baseline and 12.5 kilometres of survey lines (Lines 600E to 1800E). Phase 2 in September extended the grid to the west with a further 1.35 kilometres of baseline and 6 kilometres of survey line (Lines 0 to 500E). The final grid covered the same area as Mineta's 1988 Grid No. 3. The new grid was used for all 1990 geological, geochemical and geophysical surveys.

3.0 **PROPERTY GEOLOGY**

3.1 Introduction

In 1990, two geological surveys were conducted by Corona Corporation on the Golden Loon Property. Reconnaissance geological mapping at 1:10,000 scale was conducted by R.C. Wells over large parts of the property between May and October. This mapping utilized the extensive road and trail system in the area as well as the old Mineta grids. During the same period detailed geological mapping at 1:2500 scale was conducted by I. Mitchell BSc. over the Dum Lake grid.

3.2 **Distribution**

The geological reconnaissance mapping is shown in Figure 6. The detailed geological mapping within the Dum Lake grid is illustrated in Figure 7.

Regional geological mapping by the GSC (Campbell and Tipper 1971, Map 1278A) is summarized in Figure 1. As shown in Figure 6, much of the southern and western parts of the property is underlain by Thuya Batholith granitic rocks. Outcrops are sparse as much of this area is covered by thick glacial sands and gravels.

A northwesterly trending ultramafic unit up to 1.5 kilometres wide forms a prominent ridge across the mineral claims. It is a continuous body (Figure 6) and not a series of lenses as shown on the GSC map (Figure 1). The ultramafic unit stands out on regional airborne magnetic maps as a positive feature 2000 to 3000 gammas above background (Figure 8, GSC series 5244G). Geological traverses over the ultramafic indicate it is compositionally layered with thick bands of dunite, peridotite, pyroxenite and gabbro.

ł

In the Dum Lake area north of the ultramafic unit, Nicola Group volcanics and sediments are intruded by a mixed group of rocks ranging in composition from syenogabbro to quartz monzonites. These may represent contaminated, satellite intrusive bodies to the Thuya Batholith and were not recognized by the GSC mapping (Figure 1).

The area north of the Thuya Batholith lies in a complex fault zone (splays) which displace all the major rock units. Brief descriptions of the observed geological units can be found in the following section on lithology.

3.3 Lithology

3.3.1 <u>Thuya Batholith and Related Intrusions (Triassic or Jurassic)</u> - Map Units 5, 6, 7)

Unit 7 - Quartz Monzonite, Minor Granodiorite

The Thuya Batholith south of the main ultramfic unit (1) consists of fairly monotonous medium to coarse grained, quartz monzonites and granodiorites. These are equigranular leucocratic rocks with quartz, plagioclase >k-spar, and between 5 and 10% mafic minerals (hornblende, biotite, chlorite). Porphyritic varieties have large K-spar phenocrysts. Mafic granodiorites are less common and occur as sparse outcrops in the southwestern part of the property.

On the eastern margin of the batholith, close to the North Thompson Fault, Unit 7 granodiorite is locally foliated and gneissic. On the Golden Loon VII claim, a northwesterly trending dyke-like body or fault block of equigranular quartz monzonite (+200 metres wide) outcrops east of a major splay fault (Figure 6).

North of the ultramafic unit (1), mineralogically and chemically similar rocks outcrop on the western part of the Dum Lake grid and are grouped in Unit 7 (Figure 9). These quartz monzonites are more altered (propylitic, locally silicified) and contain more k-spar (k-spar and plagioclase roughly equal amounts) and less than 10% mafic minerals. To the east these rocks grade into monzonites, quartz diorites and diorites (Units 5 and 6). Units 5 and 6 have so far only been recognized in the Dum Lake area (Figure 7) on the property.

Unit 6 - Monzonite, Quartz Monzonite

This unit underlies much of the Dum Lake grid area (Figure 7) and has gradational contacts with Unit 7. In the field this unit can be distinguished from 7 by the lack of quartz, high total feldspar, higher k-spar content and is generally finer grained (medium to medium-coarse grained) with equigranular textures. The mafic minerals (biotite, rare coarse hornblende) are commonly chloritized.

Chemically, Unit 6 is more alkali rich than Unit 7 (quartz monzonites, granodiorites) (Figure 9).

Unit 5 - Diorite, Monzonite

Small zones of more mafic rich diorites and monzonites occur within Unit 6 on the Dum Lake grid. Extensive areas of diorite occur north of Dum Lake. In the field these diorites are distinguished from Unit 6 by their high mafic mineral content (greater than 10%, commonly 20%). Chloritization is common with rare remnant biotite and hornblende. Chemically, Unit 5 rocks are quartz diorites to quartz sygenodiorites and monzonites (Figure 9).

Unit 4 - Gabbro, Syenogabbro

Outcrops of magnetic gabbro and syenogabbro are restricted to a small area at the south end of Line 900E. A gabbro dyke cutting Unit 1 ultramafic rocks was intersected in DDH GL-90-03. The dyke is clearly younger than Unit 1 and could be an ultramafic contaminated variety of Unit 5 or 6.

The gabbroic rocks are dark coloured, medium to coarse grained equigranular and locally foliated. Plagioclase and k feldspar content varies from 5 to 30%. Hornblende and chlorite are the predominant mafic minerals.

Chemically, these rocks contain high total alkalis and range from syenodiorites to syenogabbros with (Figure 9). The more mafic, alkali poor varieties occur closer to the ultramafics and are another indication of contamination.

FIGURE 9. TOTAL ALKALIS-SILICA DIAGRAM FOR GOLDEN LOON ROCK TYPES

Irvine and Baragar (1971) Fields for alkaline, sub-alkaline

PAC03-1064-06-014

3.3.2 <u>Nicola Group (Triassic)</u> - (Map Units 2,3)

Nicola Group volcanics and sediments outcrop in the northeastern and eastern parts of the property and appear to be two distinct rock packages. The sediments appear to underlie the volcanics. This relationship is not clear cut as complex faulting is common.

Unit 3 - Volcanics (predominantly flows, minor volcaniclastics)

These are dark green, fine grained volcanic flows with minor interflow fragmental units. Locally, these units are schistose and chloritic, especially in the vicinity of stronger fault zones. Close to the intrusive rocks the effects of thermal metamorphism are clear with significant epidote, metamorphic segregation of layers and recrystallization and partial melting (irregular diorite pods and sweats). Chemically, the volcanics appear to be tholeiitic.

Unit 2 - Sedimentary Rocks

These rocks are poorly exposed on the property and predominantly consist of dark coloured siltstones, shales, mudstones and dirty limestones (calcareous mudstones). as well as their more metamorphosed equivalents; slates and phyllites. Sericitic phyllites are fine grained, light coloured rocks composed of quartz, sericite and chlorite. They outcrop along the power line east of the property boundary.

The shales and slates are shattered and quartz veined (irregular), when close to major structures such as splay faults.

Unit 1 - Ultramafic Rocks (Age Unknown)

A distinct group of fine to coarse grained, brown weathering, ultramafic rocks form the main northwesterly trending ridge on the property. These rocks have been variably (pervasively) serpentinized and range from coarse olivine (remnant) rich dunites through pyroxenites, peridotites and gabbros. Serpentine veinlets with magnetite are common to all the units. Olivine grains can be distinguished through the serpentine alteration.

Along the northern margin of the ultramafics there are a few outcrops of gabbro and pegmatitic gabbro (1a). These are distinct from Unit 4 in their darker colour, variable grain size, lack of feldspar (plagioclase when present), serpentine alteration

ł

of pyroxenes and locally abundant biotite. Biotite occurs both in the groundmass and as coarse flakes in pegmatitic veins and pods.

Geochemically, the ultramafics and gabbros are a distinct group. The gabbroic marginal phase appears to have had a later introduction of potassium (biotite). A significant amount of gabbroic float was found along the northwestern margin of the ultramafic unit (Figure 6). Potassium introduction is a strong argument for a Pre-Thuya age for Unit 1.

3.4 Structure

The property covers an area of complex splay and block faulting at the north end of the Thompson-Louis Creek fault system.

Some of the major faults on the property are shown on the geology map (Figure 6). Major splay faults from the Thompson system trend westerly to northwesterly and are in the Nicola Volcanics are marked by wide zones of chloritic schist. Structural measurements and displacements indicate these are dextral shears with a large dipslip component. Similar splay faults probably form the boundaries to the main ultramafic unit as is indicated by strong shearing and brecciation in a number of outcrops.

Between the main splay faults, especially in intrusive rocks, there are numerous faults with variable orientations and senses of movement. On the Dum Lake grid (Figure 7) the most common orientations are N, NE, E and SE. The N and NE set dip steeply to the east and southeast while the SE set dip steeply to the southwest. Lineations indicate both dip and strike slip components to these faults.

A northeasterly trending fault system appears to follow the Dum Creek valley and across the ultramafic. West of this interpreted structure, the ultramafic unit appears to have been rotated to a more northerly trend.

Faulting in the area clearly post dates the Thuya Batholith (Early Jurassic?) as all the main rock units have been displaced to varying degrees. Brecciated quartz veins along some structures indicate (reactivation) more than one period of deformation and post mineralization faulting.

3.5 **ALTERATION**

This section deals mainly with the alteration of intrusive rocks in the Dum Lake area; outside this area, there has not been any detailed alteration mapping. Detailed

mapping on the Dum Lake grid by I. Mitchell (Figure 7) distinguished a number of alteration zones within the intrusive rocks (Units 5, 6 and 7). Alteration is to a large extent controlled by the structures described in the previous section and in some cases is closely related to base and precious metal mineralization.

Propylitic alteration is widespread. Generally, in the less fractured intrusives, it is very weak with epidote or chlorite alteration of mafic minerals and local introduction of carbonate. Stronger propylitic alteration (Units c, d) with significant chlorite, epidote and carbonate, 1 pyrite and hematite, tends to occur along north to northwesterly trending structural zones and as haloes to quartz veins or silicified zones (Unit a).

The most prominent zones of propylitic alteration occur along Dum Creek (Figure 7) and on the baseline at 800E (1990 drilling). Within these propylitic zones are structures (core zones) that are either:

- 1. Strongly silicified (Unit a) with weak quartz vein stockworks, pyrite, hematite (specular) and local disseminated or veinlet chalcopyrite, 1 galena; or
- 2. Quartz veined with local galena, chalcopyrite and pyrite.

Both of these locally yield significant Au, 1 Ag, 1 Pb, 1 Cu values.

East of Dum Creek, milky quartz veins were found along northerly and easterly trending structures. The veins cut monzonitic (Unit 6) and dioritic (Unit 5) rocks and yield gold values where mineralized with disseminated to lensy galena and pyrite, 1 chalcopyrite. Propylitic alteration haloes to these veins may extend outward for many metres and where well developed, commonly contain areas with fracture controlled k-spar veinlets. Narrow silicified zones adjacent to the veins contain disseminated pyrite, local magnetite and k-feldspar.

The other prominent alteration type in the Dum Lake area, is the strong chloritization (Unit b) of east and northwest trending structures. These zones may be tens of metres wide and rarely contain gold values where there is no strong propylitic alteration (epidote, carbonate, pyrite).

3.6 Mineralization

Since 1986, a number of mineralized areas have been found on the property either by prospecting or follow-up to soil geochemical surveys (prospecting and trenching

ł

anomalies). The styles of mineralization found on the Dum Lake grid during recent programs will be discussed first.

3.6.1 Dum Lake Grid

Virtually all the known bedrock mineralization in this area was found during the 1990 exploration program. In 1989, quartz float and subcrop with gold, silver, lead and copper values was found on Mineta's grid (No. 3) by Corona and Placer Dome geologists during follow-up prospecting of soil anomalies.

Mineralized bedrock and float locations, found during the 1990 Dum Lake grid surveys, are shown in Figure 10. Bedrock mineralization within the grid area consists of:

(i) <u>Ouartz veins</u> with \pm galena, pyrite, chalcopyrite and variable wallrock silicification, k-feldspar and propylitic alteration. These veins occur throughout the grid area and in most cases follow northerly trending structures. The more prominent mineralized veins with their grid locations and representative values are as follows:

L1700E @325S. (Trenches 1 to 7) The trenches expose a north trending west dipping milky quartz vein system up to 1.5 metres wide. Gold values average between 5 and 7 g/t over a width of 1.5 metres (vein + mineralized wallrock). Higher values include 22.3 g/t Au, 162 g/t Ag, 1.29% Pb and 0.16% Cu over 0.6 metres. Gold values to 0.4 g/t were obtained from propylitic alteration five or more metres away from the vein.

L965E @150S. A poorly exposed north trending quartz vein up to 0.7 metres wide in bleached, silicified intrusive. Gold up to 8.3 g/t, 66.7 g/t Ag, 0.5% Pb, low Cu. Silicified wallrock can yield up to 2 g/t Au.

L1495E @095N. (Trench 10 and outcrop) Narrow north trending quartz vein 0.1 to 0.4 metres wide. Gold up to 5.6 g/t, Ag 75.6 g/t and 0.8% Pb, low Cu.

A large amount of polymetallic, quartz vein float has been found between L1500E and L1800E (Figure 10). Au values in the 0.6 g/t to 3 g/t range are quite common.

(ii) <u>Structurally controlled alteration zones</u>. Alteration zones consisting of silicified cores with wide propylitically altered haloes are well exposed along Dum Creek. They also occur to the west beneath deeper overburden. One such area on L80E was trenched and drilled in 1990. Polymetallic quartz veins do not appear to be common in these systems.

The Dum Lake alteration system between L900E and L1100E and 100N to 400S appears to be structurally controlled by a fault complex consisting of intersecting northeast and northwest trending (steeply dipping) components. The northwest set control a number of silicified zones exposed in the valley. These are between 1 and 2 meters wide and yield gold values up to 4.6 g/t. Silver, copper and lead values can be quite anomalous but are highly variable. Copper mineralization occurs within the propylitic haloes to these systems (but so far appears to be weak and patchy) and consists of lensy to disseminated, fine to medium grained chalcopyrite. Pyrite occurs along fractures.

The mineralized, Trench 19 alteration zone was found by a combination of geochemistry, prospecting and trenching. A wide zone (minimum width 6 metres) of strong pervasive silicification is exposed in this trench. Late quartz carbonate veins are locally aligned in a northerly and northwesterly direction. Some later structures also have these orientations. Silicification and pyritization are later than the chloritic alteration. Disseminated and fine fracture controlled specular hematite and pyrite are widespread and in concentrations ranging from 1 to 7%.

Gold values in the 0.5 to 2.5 g/t range occur throughout the trench and average 1.17 g/t for all samples. Values greater than 2.00 g/t are associated with strong silicification, higher veinlet density and higher pyrite content.

3.6.2 Other Mineralization

The Loon VII Fault Zone. A northwesterly trending splay fault crosses the Golden Loon VII mineral claim (Figure 6). Narrow quartz veins with galena and pyrite are fairly common in the Nicola volcanics near the structure. Many of these were sampled during the earlier Mineta surveys and yielded, over narrow widths, silver values up to 30 g/t and lead values to 0.4%.

Spokane Creek Fault Zone. This is a major splay fault which trends westerly and passes through Dum Lakes (Figure 6). In the upper reaches of Spokane Creek a number of quartz veins were discovered during the 1990 mapping. The veins are up to 50 cm wide and cut the schistose (Nicola) volcanics adjacent the fault zone (Golden Loon II claim). Veins with disseminated to blebby galena and pyrite yielded low Ag and Pb values.

Silicified Ultamafics with Chalcedony. A series of old trenches in the southern part of the Golden Loon VII claim expose strongly brecciated, silicified and

ł

chalcedony veined ultramafics. Where the chalcedony veining is better developed, minor disseminated pyrite, galena and magnetite may be present. Sampling of this material by Mineta (1986) yielded anomalous gold values to 0.3 g/t.

Silicified Monzonite Float. During regional mapping in 1990, two areas with highly siliceous float were found outside the Dum Lake grid (Figure 6). In both areas the float consisted of heavily silicified quartz-carbonate veined monzonite with up to 10% disseminated pyrite and local specular hematite. This material is very similar to the silicified zones outcropping in the Dum Creek area.

The first area is found on the 1990 access road within the Golden Loon III mineral claim (road station 1900E). Anomalous gold values to 200 ppb were obtained from large (1 2 metres) angular subcropping boulders.

The second area lies along the old logging trail on the Golden Loon IX claim. Large angular boulders, identical to the above mentioned ones, were discovered near the interpreted ultramafic contact with the Thuya intrusive rocks. A few samples yielded gold values up to 300 ppb.

4.0 TRENCHING PROGRAMS

In June and September 1990, the geochemical, geophysical and geological targets on the Dum Lake grid were tested by trenching using a Hitachi 200 excavator provided by Cam-Mac Construction and Management Ltd of Kelowna.

4.1 Phase I Trenching

During June, two days were spent trenching a strong soil anomaly and mineralized subcrop (quartz veins with Au, Ag, Pb and Cu) in a small area centred on Line 1700E at 325S. Seven short trenches averaging 1.5 metres in width and totalling 126 linear metres were excavated in this area.

Figure 11, a trench plan, shows all the trenches, sample locations and analyses for the phase 1 trenching. The trenching exposed a 60 metre strike length of a north trending quartz vein system cutting variably silicified and propylitically altered (chlorite, epidote, carbonate) monzonite to quartz diorite.

In the northern trenches (2 and 5), the vein is between 0.5 and 1.3 metres wide, dips 50° west and exhibits strong wallrock silicification with disseminated pyrite and patchy K feldspar alteration with magnetite. Heavy galena, chalcopyrite and pyrite mineralization occurs within the vein along margin parallel fractures. The vein, with a minor amount of clay gouge, follows a brittle fracture in the diorite.

To the south and uphill (Trenches 1 and 7), the vein system splays and weakens. In the most southerly trench (1), there are two 5 metre wide zones of silicified and carbonated diorite containing local epidote and K feldspar. The zones are separated by 4 metres of weakly altered diorite. Within the stronger alteration, milky quartz veins up to 20 cm wide locally contain significant galena and pyrite (up to 30%).

Gold values occur over the entire 60 metres of exposed quartz veining. Better mineralization was found in the northern trenches with values from 2 to 12 g/t Au over 1.5 metres (vein plus silicified wallrock) being obtained. The quartz vein yielded gold values to 22.3 g/t over a 60 cm width with Ag to 162 g/t, 1.29% Pb and 0.16% Cu. In the southern trenches, lower gold values are spread over greater widths (vein plus silicified wallrocks), for example: 0.41 g/t Au over 5.5 metres in trench 1. Some individual veins do carry similar Au, Ag, Pb and Cu values to those in the northern trenches but do so over much narrower widths.

4.2 **Phase 2 Trenching**

During September, two weeks were spent trenching a number of geochemical, geophysical and geological targets within the Dum Lake grid. Twenty one trenches and pits with a combined length of 539 metres were excavated on the targets. Most averaged between 1.5 and 2.0 metres in width. Pit 19 was wider, due largely to deeper overburden. The location of all pits and trenches is shown on Figure 11. Table 1 gives a summary of the trenching with significant assays. Individual trench plans with analyses are available in Appendix D Figures 12 to 29.

Two significant new gold showings were exposed by the September trenching program.

(a) Baseline, 8+00E Area

Prospecting in this area discovered a large amount of siliceous float containing pyrite and specular hematite and gold values in the 1 to 5 g/t range. The mineralized float combined with strong gold soil anomalies and a weak chargeability anomaly made this area a priority target for trenching. Deep trenching (13, 14, 15, 17, 18, 20) in this area did not expose very much bedrock. Trenches 13 and 14 exposed small subcrops of silicified bedrock containing disseminated pyrite and anomalous gold values. Trench 19 (benched) managed to expose a ridge of strongly silicified bedrock but failed to define the zone margins.

The zone consists of pervasively silicified intrusive rocks (quartz-monzonite, monzonite) cut by quartz veining (weak stockworks) with variable orientations. Specular hematite and up to 8% fine to medium grained disseminated pyrite flood the zone. Gold values are anomalous throughout the zone and range up to 2.90 g/t; the average being 1 g/t. Continuous chip sampling yield averages up to 1.8 g/t Au over 6.20 metres. One 2.1 metre section yielded 2.74 g/t. Associated copper, lead and zinc values are generally low. Silver values to 5.9 g/t were obtained.

(b) 15+25E, 3+25S Area

This area lies 170 metres west of the polymetallic (north trending) quartz vein exposed during the June trenching program. A plus 1 g/t gold soil anomaly was trenched (23, 24, 25, 26, 27 and 28) revealing a number of strong easterly trending, steeply dipping structures which host broken quartz veins and lenses of pervasive strong silicification. Samples from the veined and altered material yielded up to 2.5 g/t gold and significant lead and silver (23 g/t). One 2.90 metre sample section averaged 2.03 g/t Au.

GOLDEN LOON PROJECT (1064) PHASE II TRENCHING SUMMARY

TRENCH NO.	GRID LOCATION	AZIMUTH	DIMENSIONS	SIGNIFICANT ASSAYS (Au gt/length m)	COMMENTS
8	17+90 5 0+10 K	160	4 X 1.5	NONE	Narrow NE fault.
9	16+75 E 0+60 S	280	11 % 1.5	NONE	Propylitic alteration zone.
10 .	15+00 E 0+90 N	273	38.5 X 1.5	5.60 Au, 75.6 Ag 0.77 Pb/0.1 m	Narrow north trending gtz vein.
11	8+60 E BL	172	57 X 1.5	NONE	Testing beneath silicified float found along road.
12	9+00E 0+30 S	231	8.7 X 3.5		No bedrock.
13	7+90 E 0+10 S	273	42.0 X 1.5	0.34/1.0 m	Silicification of west edge of bedrock exposure.
14	7+50 E 0+10 S	271	33.0 X 1.5	0.30/2.10 m	Strongly weathered, silicification with Py.
15	8+30 E 0+60 S	272	31.9 % 1.5		Deep overburden .
16	7+10 E 2+60 S	240	25.0 X 1.5		Deep overburden/sand. Testing I.P. anomaly.
17	6+70 E BL	210	10 X 1.5		•••
18	6+70 E 0+15 S	210	10 X 1.5		• •
19	7+80 E 0+15 S	350	19 X 8	1.10 gt/6.80m 1.80 gt/6.20m Inc 2.74 gt/2.10m	Pit on silicified zone. Edges of zone not apparent in pit (1
20	8+60 E 0+38 N	270	5 X 1.5	NONE	Pit on soil anomaly.
21	16+15 B 0+70 N	270	76.5 X 1.5	NONE	Long trench in area with much " guartz float with Au values.
22	16+38 E 2+95 S	088	13.0 X 1.5		Deep overburden. N. extension `high grade' quartz vein.

ł.

GOLDEN LOON PROJECT (1064)

PHASE II TRENCHING SUMMARY

TRENCH NO.	GRID LOCATION	AZIMUTH	DIMENSIONS	SIGNIFICANT ASSAYS (Au gt/length m)	COMMENTS
23	15+25 E 3+25 S AREA	275	35.5 ¥ 1.5	0.63 gt/2.05m	Mineralized structure Az 070.
24	• •	028	20 X 1.5	No sampling	Unmineralized.
25	••	161	22.3 X 1.5	7.08 gt/1.0m (To be checked)	Poorly exposed 160 Az structure.
26	15+25 E 3+25 S AREA	211	17.5 X 1.5	Low gold values in walls to structures.	Cross trench.
27	• •	156	15 X 1.5	2.03/2.90m	Mineralized structure 071 Az.
28	• •	137	19 X 1.5	NONE	
29	18+14 E 2+90 S	287	25 X 1.5	NONE	Trench on mineralized quartz subcrop.

ĩ.

538.9 linear m.

.....

PAC03-1064-06-014

December 24, 1990

The new gold showing is significant in that it is hosted by an easterly trending structure (Az 70°. Many other interpreted and poorly exposed structures on the Dum Lake grid have this trend and locally coincident gold anomalies.

ŧ

(c) Other Targets

Trenching on a number of other targets within the Dum Lake grid met with limited success.

Trench 16, on the main I.P target near line 700E, failed to reach bedrock. In this area bedrock is overlain by in excess of 5 metres of unconsolidated sand and coarse boulders.

Trench 22 tried to uncover the northward extension of the polymetallic quartz vein exposed in the June program (Trenches 1 to 7) but encountered deep overburden and did not reach bedrock.

Trenching polymetallic soil anomalies and mineralized float locations between L1500E and L1600E, north of the Baseline (Trenches 10 and 12), exposed a number of narrow, northerly trending structures; some of which host small quartz veins. In Trench 10, a 10 cm wide vein containing galena and pyrite yielded 5.6 g/t Au, 75.6 g/t Ag and 0.8% Pb.

5.0 **GEOCHEMISTRY**

5.1 Soil Geochemical Surveys

Geochemical soil sampling was conducted over the Dum Lake grid during June and October 1990. The main grid (Lines 6+00E to 18+00E) was sampled during June; the grid extension (Lines 0+00E to 5+00E) in October.

The 1988 Mineta soil geochemical survey covered the Dum Lake grid area with samples taken along lines trending N30E while those by Corona (1990) were collected along lines trending N120E (perpendicular). In both surveys the sampling interval was 25 metres. The object of changing the line orientation was to increase the number of data points in order to more clearly define base and precious metal soil anomalies.

PAC03-1064-06-014

December 24, 1990

(a) Method

Soil samples were taken from the 'B' soil horizon using narrow shovels. Brief survey notes were made at each sample station regarding topography, vegetation, horizon, colour, drainage etc. Throughout much of the grid area, the 'B' soil horizon underlies a narrow but well developed leached horizon (E). Boulder concentrations on surface often made sampling difficult; hence soil pits often had to be dug to depths greater than 50 cm.

The soil samples were collected by Corona personnel. A total of 637 soils were taken from 25 metre spaced stations on 100 metre spaced topofil lines running parallel to the grid base line (Az 300°). The samples were placed in kraft paper envelopes, field dried and sent to Eco Tech Laboratories Ltd. in Kamloops B.C. Samples taken from the main grid (June) were geochemically (A.A.) analyzed for gold, silver, copper and lead. Those taken from the grid extension (October) were analyzed by the same method for gold, copper and lead. The laboratory methods are detailed in Appendix A and the certificates for analyses in Appendix D.

(b) Results - Main Grid

The soil geochemical data from the Mineta and Corona surveys are combined in three maps showing gold (Figure 27), copper (Figure 28) and lead (Figure 29). The various classes and anomaly thresholds were defined using histograms and cumulative frequency plots.

In the eastern half of the Dum Lake grid gold, copper and lead anomalies tend to cluster and align in a northerly direction. One concentration of strong gold and lead anomalies (weak Cu) occurs between Lines 1500E and 1700E at 300S to 400S. A second weaker concentration of gold and copper anomalies (local Pb) is centred on Line 1500E at 100N.

In the western half of the grid, a cluster of moderate to strong gold anomalies (local Cu) is centred on the Base Line between 700E and 1100E and extends locally from 100N to 300S.

(c) Results - West Grid Extension

The Corona and Mineta soil geochemical data covering the West grid extension are combined in three maps; Gold (Figure 30), Copper (Figure 31) and Lead (Figure 32). The anomaly classes are the same as for the Main Grid.
A number of moderate to strong gold anomalies occur in the northern part of the grid (north of 500N). These are all single station anomalies and do not correlate with copper or lead.

Stronger copper anomalies occur in the southern part of the grid. A cluster on Line 500E at 100 to 200S produced the three highest grid copper values; the highest being 1800 ppm.

Pb values are low throughout this grid and only two, weak single station anomalies were obtained.

5.2 **Prospecting**

Between May and October 1990, Corona personnel prospected intermittently for mineralized float and outcrop in the Dum Lake grid area. All sample sites were flagged and tied into the grid. these are shown in Figures 6 and 10. The survey results are discussed in this report under mineralization.

(a) Method

The general rule when sampling mineralized float was that the boulder should not be smaller than 20cm (long axis) and have some degree of angularity. These boulders were considered to have originated locally. Rock samples sent for analyses weighed in the 4 to 8 kg range. All samples were sent to Eco Tech Laboratories (Kamloops) and geochemically (A.A.) analyzed for gold, silver, copper and lead. Follow-up assays were completed on samples where Au>2 g/t, Ag>30 g/t and Cu and Pb>6000 ppm. The certificates of analyses can be found in Appendix B.

5.3 Rock Geochemistry

A number of representative rock samples were taken from the main rock units during geological mapping and are described in the geology section. Eighteen of these were submitted to Eco Tech Laboratories for whole rock analyses. The analytical method is detailed in Appendix A and certificates of analyses in Appendix B. Major elements were plotted on two main types of variation diagram, Total Alkalis - Silica (Figure 9) and AFM.

PAC03-1064-06-014

December 24, 1990

6.0 **GEOPHYSICS**

6.1 Induced Polarization and Resistivity Survey

This survey, conducted by Scott Geophysics Ltd from July 30 to August 2nd 1900, is detailed in a separate report (August 12, 1990) by Alan Wynn B.Sc. The geophysical survey consisted of a number of test lines.

The main aim of this survey was to develop drill targets in the western half of the Dum Lake grid. A significant amount of angular, silicious float with up to 7% disseminated pyrite yielded gold values to 4 g/t in the base line area (8+00E). This disseminated mineralization is a good target for I.P.

(a) Method

The program consisted of 5.3 kilometres of pole-dipole I.P. using 25 metre 'A' spacing and N=1 to 5. Lines 700E, 800E, 900E, 1000E and the base line were run using the above array while lines 100N and 100S and the base line were run using a reconnaissance array.

The survey was performed utilizing a Scintrex IPR11 receiver, a Scintrex 2.5 kw transmitter and an array of A=25, N=1. The reconnaissance array used was N=1 and 2 at A=25 meters and N=1 and 2 at 75 meters. Readings were taken in the time domain utilizing a 2 second on/2 second off alternating square wave.

Chargeabilities (mv/v) were measured at 10 delay times after cessation of the current pulse. These values, along with the apparent resistivity, the primary voltage during the current on time, the self potential gradient and the line and station number are presented as summary data listings.

The results are presented in posted and contoured pseudosection form of apparent resistivity and M7 chargeability (Appendix C).

(b) Results

A weak, narrow chargeability anomaly was outlined on the base line at 800E in the area of auriferous float. The anomaly was not present or recognizable on Lines 700E and 900E nor on reconnaissance lines 100N and 100S.

One anomalous zone was located on the south end of lines 700E to 1000E, just north of a small lake. The I.P. profiles indicated the overburden in the anomaly area was

PAC03-1064-06-014

in the order of 5 to 15 metres deep. The anomaly width was 1 to 2 'A' spacings (25 to 50 metres) and its trend was parallel to the Base Line (Az 300°). Mineta's ground magnetic data (1988) strongly suggested that the anomaly was near the margin of the main ultramafic unit.

7.0 <u>CONCLUSIONS</u>

The Golden Loon Property covers the northeastern part of the Thuya Batholith and to the north an area of complex faulting in Nicola volcanics and sediments. In the Dum Lake area, intrusive rocks ranging in composition from quartz monzonites to syenogabbros, possibly represent more alkalic marginal phases to the Thuya Batholith.

Gold mineralization in the Dum Lake area is closely related to these alkalic intrusive rocks and occurs in two distinct environments:

1. North and locally east trending quartz veins containing pyrite, galena and some chalcopyrite. The veins often yield gold values in the 1 to 30 + g/t range with significant lead and silver values. Silicification, k-feldspar and propylitic alteration form narrow haloes to these veins.

2. Large structurally controlled alteration zones with highly siliceous cores and wide propylitic haloes. The silicious cores feature pervasive strong silicification, weak quartz-carbonate veinlet stockworks and disseminated and fine fracture controlled specular hematite and pyrite. Two zones have been identified; one at Dum Creek and a second in Trench 19. The latter yielded gold values in the 1 to 3 g/t range from a northwesterly(?) trending silicified core with a width in excess of 10 metres. The Dum Creek zones occur on the sides of a steep valley and are poorly exposed. They have yielded gold values up to 4.6 g/t over narrow widths.

The auriferous gold veins offer some potential for higher grade-small tonnage deposits. The alteration zones, to the west, offer lower grade-larger tonnage targets, containing possibly smaller higher grade core zones. In 1990, Corona developed and partly tested these targets in the Dum Lake area. The most promising alteration zone (Trench 19) and an interesting I.P. target were tested by a short diamond drilling program in October (see drilling report). The heavily silicified core of the Trench 19 zone yielded wide drill intersections (up to 14.3 metres) with gold values in the 1 to 2.7 g/t range. The better mineralization, based on limited drilling, appears to be confined to the trench area. Intersecting fault zones may control the better gold mineralization (north east, north west, and north trending sets).

8.0 **RECOMMENDATIONS**

The 1990, Corona exploration program on the Golden Loon property, tested the better gold targets developed in the Dum Lake area. The potential exists, east and west of the Dum Lake grid, for large alteration related gold zones. In these areas, overburden is deeper and soil geochemistry may have limited use. Geological, geophysical and geochemical surveys combined with prospecting and drilling is required to develop these targets. The 1990 program did not drill test any of the vein targets within the Dum Lake grid. If this style of mineralization is considered an economic target, some drilling should be completed on the Line 1700E zone. Potential exists for similar veins throughout much of the northern part of the property.

PAC03-1064-06-014

December 24, 1990

<u>REFERENCES</u>

í

CAMPBELL, R.B. and H.W. TIPPER (1971) Geology of Bonaparte Lake Map Area, British Columbia. GSC Mem. 363.

DEPARTMENT OF ENERGY MINES AND RESOURCES (1968) Airborne Magnetic Survey, Chu Chua Sheet, Series 52249.

LUTJEN, L.J. and LODMELL, R.D. (1985) Prospecting Assessment Report on Golden Loons I to IV.

Assorted maps, diagrams and assays for the Golden Loon Property.

NORANDA EXPLORATION CO. LTD. (1967) Assessment Report No. 1055. Geochemical Soil Survey of the Kira Mineral Claims.

TECK CORPORATION (1981) Assessment Report No. 9061. Minerva Claims Geochemical and Geological Report.

WELLS, R.C. (1987) Assessment Report. Geochemical Report on the Golden Loon Claim Group.

WELLS, R.C. (1988) Assessment Report. Phase 1 and 2 Exploration on the Golden Loon Claim Group.

YORSTON, R. and IKONA, C.K. (1985) Geological Report on the Cedar I to IV Mineral Claims, Kamloops Mining Division for Craven Resources.

ł

PAC03-1064-06-014

STATEMENT OF QUALIFICATIONS

I, Ronald C. Wells of the City of Kamloops, British Columbia do hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada.
- 2. I am a graduate of the University of Wales, U.K. B.Sc in Geology (1974), did post graduate (M.Sc) studies at Laurentian University, Sudbury, Ontario (1976-1977) in Geology.
- 3. I am presently employed by Corona Corporation as a Regional Geologist based in Kamloops, B.C.
- 4. I have practised continuously as a geologist for more than eleven years throughout Canada and have past experience and employment as a geologist in Europe.

PAC03-1064-06-014

December 24, 1990

STATEMENT OF QUALIFICATIONS

I, JOHN R. BELLAMY of the City of Vancouver, British Columbia do hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada.
- 2. I am a graduate of the University of Calgary in 1970 with a Bachelor of Science Degree in Geology.
- 3. That I am presently employed as a Senior Geologist with Corona Corporation, 1440 800 West Pender Street, Vancouver, B.C. V6C 2V6.
- 4. That I have prospected and actively pursued geology prior to my graduation and have practiced my profession since 1981 as follows:

1988 - Present	Senior Geologist Corona Corporation Vancouver, British Columbia
1985 - 1988	Senior Geologist Mascot Gold Mines Limited Vancouver, British Columbia
1981 - 1985	Senior Geologist E & B Explorations Inc. Vancouver, British Columbia

- 5. That I have no interest, direct or indirect, in the property discussed in this report, nor do I expect to receive any.
- 6. This report may be used for the development of the property, provided that no portion may be used out of context in such a manner as to convey meanings different from that set out in the whole.

Signed and dated in Vancouver, British Columbia this /9 day of \mathcal{F}_{eff} 1991.

An R. Bellans

J. R. Bellamy. B.Sc., F.G.A.C.

PAC03-1064-06-014

f

STATEMENT OF EXPENDITURES

The following expenses were incurred by Corona Corporation in carrying out the exploration program described in this report by R.C. Wells. This program was conducted between May 15 and December 20, 1990.

1. Access Preparation Can Mac Construction & Management Ltd Kelowna, B.C.	\$ 22,411
Corona Corporation Seasonal & contract Labour Technical Salaries	3,250 975
Field Expenses	<u>1,859</u> Sub Total 28,495
2. Grid Preparation	11 316
Kamloons BC	11,510
Other Costs	227
	Sub Total 11,534
3. Geology and Trenching	
Corona Corporation	
Seasonal & Contract Labour	26,250
Technical Salaries	10,441
Field Expenses	19,441
Equipment Rental Analyzes Eco Tech Laboratories	6 051
Can Mac Construction & Management Ltd	12.100
Can Mae Constitución de Management Eta	Sub Total 80,286
4. Geophysics. IP Survey	
Scott Geophysics	<u>8.611</u>
	Sub Total 8,611

36

5. (Geochemistry	·
	Corona Corporation	
	Seasonal & Contract Labour	5,250
	Technical Salaries	650
	Field Expenses	913
	Peripheral Exploration Ltd	600
	Analysis Eco Tech Labs	<u>10,003</u>
	,	Sub Total 17,416
6. I	Report Preparation	
	Corona Corporation	
	Seasonal & Contract Labour	4,800
	Technical Salaries	3,650
	Expenses, maps, reproduction etc.	3.000
		Sub Total 11.450

TOTAL COST \$157,792

ł

Apportionment: \$128,100 is being applied to the Golden Loon and Luc mineral claims as outlined in the Statements of Work #624 and #625 with the balance to the account of Corona Corporation (F.M.C.# 290675).

PAC03-1064-06-014

December 24, 1990

STATEMENT OF EXPENDITURES DETAILED TIME/COST DISTRIBUTION OF CORONA STAFF SALARIES

DESCRIPTION	DATE	SALARY RATE TOTAL
1. Access Preparation		
Seasonal & Contrac	t Labour	
Ian Mitchell	Sept. 6-9	4 days @ \$250/day 1000
Paul Watt	May 1,2,7,15,17,18,	6 days
	May 21-24,26,28-31	<u>9 days</u>
		15 days @ \$150/day 2250
		Subtotal \$3,250
Technical Salaries		
Ron wells	May 23,25,31	3 days @ \$325/day <u>9/5</u> Subtotal \$975
3. Geology and Trenching		
Seasonal & Contrac	t Labour	
Ian Mitchell	May 18,25, June 1,3,5-10	10 days
	June 12,13,16-22,25,28-30	13 days
	July 1-6,8-15,16-20,24,25,27-31	26 days
	Aug. 1-3, Sept. 10-15,16-30	24 days
	Oct. 1-5,9-13, Nov.2	$\frac{11 \text{ days}}{84 \text{ days}} = \frac{8250 00}{21000}$
	64 10 10 01 06 00 00	$64 \text{ days} \oplus 5250.00 21,000$
G. Evans	Sept. 10,18,21,20,28,29	6 days @ \$300/day 1,000
Paul watt	June 4,8,10,18-20 $I_{12}I_{12} = 10,20$ Aug 27.28.20	0 days
	July 10-13,19,20, Aug. 27,20,30	9 days
	Sept. 4-7,14,15, Oci. 4,5	$\frac{0}{23} \text{ days}$ (150/day 3.450)
		25 days @ \$150/day <u>5,450</u> Subtotal \$26,250
Technical Salaries		
Ron Wells	May 14-16 29	4 days
	June 5 6 12 20	4 days
	July 9.12.13.16-19.24.26.30	10 days
	Aug. 7-9.20.27.28	6 davs
	Sept. 7,9,11-14,16-19,23,26,28	13 days
	Oct. 12,15, Nov. 5	<u>3 davs</u>
		40 days @ \$325/day 13,000
J. Bellamy	Sept.12,13	2 days @ \$350/day 700
D. Lewis	Sept. 26, Aug. 8,9	3 days @ \$350/day 1,050
C. Edmunds	July 30	1 Day @ \$250/day <u>250</u>
		Subtotal \$15,000

ł

-

PAC03-1064-06-014

DESCRIPTION	DATE	SALARY RATE TOTAL
5. Geochemistry		
Seasonal & Contrac	t Labour	
Ian Mitchell	June 26,27	2 days @ \$300/day 600
Paul Watt	June 1,5-7,12,13,15,21,22,25-28	13 days
	July 1,2,9, Oct. 1,2,11-13,15	9 days
	Oct. 17,19,21,23,25,27,29	<u>7 days</u>
		29 days @ \$150/day 4,350
G. Evans	Oct. 1	1 day @ \$300/day <u>300</u> Subtotal \$5,250
Technical Salaries		
Pon Wells	May 30 June 10	2 days @ \$325/day 650
NOII WEIIS	May 50, June 19	
6. Report Preparation		
Seasonal & Contrac	et Labour	
K. Gerke	May 23-25, June 1,13,19-21	8 days
	July 12,18-20,25-27	7 days
	Sept. 11.12.14	3 days
	Oct. 8-11.24-26.30.31	8 days
	Nov. 569.13	4 days
	1011 0,0,0,0	30 days @ \$150/day 4,500
D. 1 W-44		2 days @ \$150/day 200
Paul watt	May 8,9	2 days @ \$130/day <u>500</u> Subtotal \$4800
Technical Salaries		
Ron Wells	Nov. 16.19-23.29.30	8 days @ \$325/day 2600
I. Bellamy	Dec. 12.13.20	3 days @ \$350/day 1.050
	, ,	Subtotal \$3,650

39

PAC03-1064-06-014

APPENDIX A

LABORATORY ANALYTICAL PROCEDURES

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloope, B.C. V2C 2J3 (804) 573-5700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

1.	Soil or Sediment:	Samples are dried and then sieved through 80 mesh nylon sieves.
2.	Rock, Core:	Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.

METHODS OF ANALYSIS

All methods have either known or in-house standards carried through entire procedure to ensure validity of results.

1. Multi-Element Cd, Cr, Co, Cu, Fe (acid soluble), Pb, Mn, Ni, Ag, Zn, Mo

Digestion

Hot aqua-regia

<u>Finish</u>

Atomic Absorption, background correction applied where appropriate

A) Multi-Element ICP

Digestion

Hot aqua-regia

2. Antimony

Digestion

Hot aqua regia

3. Arsenic

Digestion

Hot aqua regia

4. Barium

Digestion

Lithium Metaborate Fusion

<u>Finish</u>

ICP

<u>Finish</u>

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S.

Finish

Atomic Absorption

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioope, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

5. Beryllium

Digestion

Hot aqua regia

6. Bismuth

Digestion

Hot aqua regia

7. Chromium

Digestion

Sodium Peroxide Fusion

8. Fluorine

Digestion

Lithium Metaborate Fusion

9. Mercury

Digestion

Hot aqua regia

10. Phosphorus

Digestion

Lithium Metaborate Fusion

11. Selenium

Digestion

Hot aqua regia

12. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion

<u>Finish</u>

Atomic Absorption

Finish

Atomic Absorption

<u>Finish</u>

Atomic Absorption

<u>Finish</u>

Ion Selective Electrode

<u>Finish</u>

Cold vapor generation - A.A.S.

<u>Finish</u>

I.C.P. finish

Finish

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (804) 573-5700 Fax 573-4557

13. Tin

Digestion

Ammonium Iodide Fusion

14. Tungsten

Digestion

Potassium Bisulphate Fusion

15. Gold

Digestion

Fire Assay Preconcentration followed by Aqua Regia

<u>Finish</u>

Finish

Colorimetric or I.C.P.

Hydride generation - A.A.S.

<u>Finish</u>

Atomic Absorption

16. Platinum, Palladium, Rhodium

Digestion

Finish

Fire Assay Preconcentration followed by Aqua Regia

Graphite Furnace - A.A.S.

FROM ECO-TECH KAMLOOPS

11.26.1990 17:09

ECO-TECH LABORATORIES LTD.

ASSAYING ~ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (004) 573-5700 Fax 573-4667

WHOLE ROCK ANALYSIS

PROCEDURE:

Preheat muffler to 1050°C.

Weigh 0.10 g of sample into a test tube.

Add 0.50 g of Lithium Metaborate (L1BO2).

Vortex.

WR STANDARD #1

Transfer samples to graphite crucibles.

Fuse samples for 30 minutes. While samples are fusing - prepare plastic containers by adding 100 ml of 4% HNO3.

After samples are fused, pour them into the labelled plastic containers.

Shake on the soil shaker for 30 minutes or until sample is dissolved, some black residue (graphite) will remain.

Make sure the silica is dissolved (Silica looks cloudy and slimy).

**

Add 1 ml Hydrofluoric Acid (HF). Swirl.

Add 4 ml of 30% Boric Acid (H_3BO_3) . Swirl and let sit a few minutes.

Be sure to prepare a blank with the same acid matrix as the samples.

REAGENTS:

Lithium Metaborate (LiBO₂) Hydrofluoric Acid (HF) 30% Boric Acid (H₃BO₃) (Prepare Boric Acid ahead of time - it takes awhile to dissolve).

ICP SET UP:

WR STANDARD #2

Si 250 ppm = 53.47% SiO₂ Na 50 ppm = 13.48% Na₂O Al 100 ppm = 18.89% Al₂O₃ K 50 ppm = 12.05% K₂O Fe 150 ppm = 21.45% Fe₂O₃ Mg 150 ppm = 19.99% MgO Ca 300 ppm = 41.97% CaO Ti 50 ppm = 8.34% TiO₂ P 10 ppm = 2.29% P₂O₅ Mn 50 ppm = 6.46% MnO FROM ECO-TECH KAMLOOPS

ECO-TECH LABORATORIES LTD.

ASSAYING • ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloopa, B.C. V2C 2J3 (604) 673-5700 Fax 573-4557

TROUBLE SHOOTING:

Measure HF using plastic test tube, don't let it come in contact with glassware.

Be sure samples are vortexed before transferring to graphite crucibles.

Make sure samples have been fused properly.

ł

Be sure to replace all tubing and clean the spray chamber, nebulizer and torch completely <u>after</u> analysis. (rinse with reagent alcohol then plenty of distilled H₂O and blow dry)

All the percentages added together for each sample should equal 100%. If results are out +/- 10% the numbers can be adjusted. If results are out by more than 10% - run again.

F. 3

ł

ECO-TECH LABORATORIES LTD.

ASSAYING .*ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

L.O.I. - LOSS ON IGNITION

PROCEDURE:

Preheat muffle to 1050°C.

Put weigh boats in preheated muffle for 20 minutes to burn off any volatile residue and put in desicator till the boats have gone back to room temperature (approximately 2 hours).

Record the weight of the boat, add approximately 1.0 grams of sample weigh again and record. (use analytical balance to nearest .0001 g)

DO NOT TOUCH THE WEIGH BOATS WITH YOUR HANDS.

Put in preheated muffle for 1 hour.

Transfer to desicator - put the lid on but leave a small opening so the vacuum effect isn't too strong. Leave for the same length of time as the first weigh.

Weigh samples.

** Always use the same desicator **

CALCULATION:

<u>wt. of Boat & Sample - wt. after Ignition x 100%</u> = % LOSS ON Sample Wt. IGNITION

REFERENCE STANDARD: MGR-1, SY-1, SY-2

122 - 12

PAC03-1064-06-014

APPENDIX B

GEOCHEMICAL DATA

PAC03-1064-06-014

APPENDIX B.1

CERTIFICATES FOR ANALYSES - SOILS

į

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 17, 1990

CERTIFICATE OF ANALYSIS ETK 90-283

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

	SAMPLE	IDE	NTIFICATION:	141	SOIL sa	imples rece	ived JULY	10, 1990	
			х. -		P.O. NO.	: 900080	SHIPMENT	NO.: 002	
						AU	Cu	Pb	
	ET#	ſ	Description			(ppb)	(ppm)	(ppm)	
	=======	====:	*************	====	========	=========================	=========		=====
	283 -	1	BL 6+	00	E	15	43	19	
	283 -	2	BL 6+	25	E	10	77	20	· · ·
	283 -	Э	8 L 6 +	50	Ε	25	45	17	
	283 -	4	BL 6+	75	Ε	40	38	20	
	283 -	5	BL 7+	00	E	5	17	19	
	283 -	6	BL 7+	25	Ε	5	29	16	
	283 -	7	BL 7+	50	ε	10	16	15	
	283 -	8	BL 7+	75	E	40	18	16	
	283 -	9	BL 8+	00	ε	50	23	19	
	283 -	10	8 L 8 +	25	Ε	15	26	21	
	-283 -	11	BL 8+	50	E	85	8	18	
	283 -	12	BL 8+	75	E	10	13	16	
	283 -	13	BL 9+	00	E	15	29	18	
	283 -	14	BL 9+	25	E	85	81	14	
	283 -	15	BL 9+	50	E	45	58	17	
	283 -	16	BL 9+	75	E	170	235	43	
	283 -	17	BL 10+	00	ε	75	- 17	24	· :
	283 -	18	BL 10+	25	Ε	105	36	24	
	283 -	19	BL 10+	50	ε	3405	123	35	
	-283 -	20	BL 10+	75	E	10	16	9	
	28 <u>8</u> -	21	L 1 +00N (6 +	00 E	10	22	13	
	283 -	22	L 1 +00N 6	6 +	25 E	65	41	15	
	283 -	23	L 1 +00N (6 +	50 E	- 35	35	10	
	283 -	24	L 1 +00N 6	6 +	75 E	10	50	15	
	283 -	25	L 1 +00N 7	7 +	00 E	100	20	11	
	283 -	26	L 1,/+00N 7	7 +	25 E	60	91	26	
	283 -	27	L 1 +00N 7	7 +	50 E	15	24	14	
•	283 -	28	L 1 +00N 7	7 +	75 E	10	37	15	
	283 -	29	L 1 +00N 8	8 +	00 E	15	32	17	
	283 -	30	1 1 +00N 8	8 +	25 E	20	22	15	

Page i

ł

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 17, 1990

			Au	Cu	Pb	
ET#	Description)	(ppo)	(ppm) 	(ppm)	
283 -	31 1 1 +00	N 8 + 50 F	10	. 28	16	
283 -	32 L 1 +00	N 8 + 75 E	10	16	14	• ·
283 -	33 L 1 +00	ON 9 + 00 E	15	21	17	
283 -	34 L 1 +00	DN 9 + 25 E	35	39	30	
283 -	35 L 1 +00	ON 9 + 50 E	40	71	22	
283 -	36 L 1 +00	DN 9 + 75 E	30	35	16	
283 -	37 L 1 +00	ON 10+ 00 E	35	48	22	
283 -	38 L 1 +00	DN 10+ 25 E	95	262	38	
283 -	39 L 1 +00	DN 10+ 50 E	15	29	14	
283 -	40 L 1 +00	DN 10+ 75 E	20	26	13	
283 -	41 L 1 +00	JN 11+ 00 E	115	68	18	
283 -	42 L I +00		5	23	12	
283 -			10	10	15	
283 -			15		15	
203 -			20	24	22	
283 -		157+25F	10	23	22	
283 -	48 1 1 +00	057 + 50E	15	16	14	
283 -	49 L 1 +00	DS 7 + 75 E	5	24	9	
283 -	50 L 1 +00	DS 8 + 00 E	30	.38	11	
283 -	51 L 1 +00	DS 8 + 25 E	15	31	7	
283 -	52 L 1 +00	DS 8 + 50 E	70	16	6	
283 -	53 L 1 +00	DS 8 + 75 E	25	39	8	
283 -	54 L 1 +00	DS 9 + 00 E	45	24	8	
283 -	55 L 1 +00	DS 9 + 25 E *	N	0 SAI	1 P L E	
283 -	56 L 1 +00	DS 9 + 50 E	5	24	11	•
283 -	57 L 1 +00	JS 9 + 75 E	10		17	
283 -	58 L I +00	JS 10+ 00 E	23	130	7	
203 -		104 20 E	25	44	14	
283 -		DS 10+ 75 F	10	16	10	•
283 -	62 1 2 +00	00.6 + 00.E	25	55	12	
283 -	63 L 2 +00	ON 6 + 25 E	30	27	8	
283 -	64 L 2 +00	ON 6 + 50 E	25	23	12	
283 -	65 L 2 +00	ON 6 + 75 E	15	61	10	
283 -	66 L 2 +00	ON 7 + 00 E	10	16	9	
283 -	67 L 2 +00	ON 7 + 25 E	5	13	11	
283 -	68 L 2 +00	ON 7 + 50 E	5	34	16	
283 -	69 L 2 +00	ON 7 + 75 E	5	21	6	
283 -	70 L 2 +00	UN 8 + 00 E	10	12	/	
283 -	/1 L 2 +00	UN 8 + 25 E	55	29	15	
283 -	72 L 2 +00		25	11	10	
283 -	73 L 2 +00		10	17	0 0	
283 -			10	- 30 45	0 9	
283 -	75 L 2 +00	UN 7 7 23 E	10	00	7	

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 17, 1990

			Au	Cu	Pb	
ET#	Descrip	otion	(ppb)	(ppm)	(ppm)	
=======	==========================	.======================================	=======	=========	===========	=======
283 -	76 L 2	2 +00N 9 + 50 E	15	34	7	
283 -	77 L 2	2 +00N 9 + 75 E	25	' 33	12	
283 -	78 L 2	2 +00N 10+ 00 E	5	.24	11	
283 -	79 L 2	2 +00N 10+ 25 E	5	25	10	•
283 -	80 L 2	2 +00N 10+ 50 E	5	14	14	
283 -	81 L 2	2 +00N 10+ 75 E	5	38	16	1
283 -	82 L 2	2 +00S 6 + 00 E	5	32	8	
283 -	83 L 2	2 +00S 6 + 25 E	5	23	13	
283 -	84 L 2	2 +00S 6 + 50 E	5	21	13	
283 -	85 L 2	2 +00S 6 + 75 E	5	6	10	
283 -	86 L 2	2 +00S 7 + 00 E	105	38	19	
283 -	87 L 2	2 +00S 7 + 25 E	10	20	16	
283 -	88 L 2	2 +00S 7 + 50 E	5	9	11	
283 -	89 L 2	2 +00S 7 + 75 E	15	16	19	
283 -	90 L 2	2 +00S 8 + 00 E	5	34	16	
283 -	91 L 2	2 +005 8 + 25 E	10	7	13	
283 -	92 L 2	2 +00S 8 + 50 E *		NO SA	MPLE	
283 -	93 L 2	2 +00S 8 + 75 E	60	15	27	
283 -	94 L 2	2 +00S 9 + 00 E	30	26	45	
283 -	95 L 2	2 +00S 9 + 25 E	10	9	15	
283 -	96 L 2	2 +005 9 + 50 E	5	9	21	
283 -	97 L 2	2 +005 10+ 00 E	65	44	14	
283 -	98 L 2	2 +00S 10+ 25 E	10	24	12	
283 -	99 L 2	2 +00S 10+ 50 E	215	20	14	
283 - 1	100 L 2	2 +00S 10+ 75 E	25	14	13	
283 - 1	101 L 3	3 +00N 6 + 00 E	15	22	15	•
283 - 3	102 L 3	3 +00N 6 + 25 E	5	31	14	: *
283 - 3	103 L 3	3 +00N 6 + 50 E	5	48	14	
283 - 3	104 L 3	3 +00N 6 + 75 E	10	34	15	
283 - 3	105 L 3	3 +00N 7 + 00 E	10	46	13	. :
283 - 3	106 L 3	3 +00N 7 + 25 E	5	22	16	
283 - 3	107 L 3	3 +00N 7 + 50 E	50	86	<u> </u>	
283 - 3	108 L 3	3 +00N 7 + 75 E	10	21	6	
283 - 3	109 L 3	3 +00N B + 00 E	275	59	37	
283 - 1	110 L 3	3 +00N 8 + 25 E	5	40	7	
283 - 1	111 L3	3 +00N 8 + 50 E	5	27	13	
283 -	112 L 3	3 +00N 8 + 75 E	. 5	39	12	
283 -	113 L 3	3 +00N 9 + 00 E	5	68	8	
283 -	114 L:	3 +00N 9 + 25 E	10	85	9	
283 -	115 L 3	3 +00N 9 + 50 E	15	32	8	
283 -	116 L 3	3 +00N 9 + 75 E	5	20	7	
283 -	117 L:	3 +00N 10+ 00 E	5	51	6	
283 -	118 L :	3 +00N 10+ 25 E	5	30	4	
283 -	119 L 3	3 +00N 10+ 50 E	5	9	6	
283 -	120 L 3	3 +00N 10+ 75 E	5	10	9	

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 17, 1990

					Au	Cu	Pb	
ET#	Descript	tion			(ppb)	(ppm)	(ppm)	
======	=========================	*********	====	=======	=======	============		
283 - 1	L21 L3	+00N 11+	00	E	15	į 13	12	
283 - 1	122 L 3	+005 6 +	00	E	5	18	7	
283 - 1	123 L 3	+005 6 +	25	E	10	12	4	
283 - 1	124 L 3	+005 6 +	50	ε	10	. 7	2	
283 - 1	125 L 3	+00S 6 +	75	Ε	10	8	5	,
283 - 1	126 L 3	+00S 7 +	00	Ε	5	6	5	:
283 - 1	127 L 3	+005 7 +	25	ε	5	7	4	
283 - 1	128 L 3	+005 7 +	50	E	15	14	4	
283 - 1	129 L 3	+005 7 +	75	E	15	171	12	
283 - 1	130 L 3	+005 8 +	00	E	10	144	9	
283 - 1	131 L 3	+005 8 +	25	£	5	88	8	
283 - 1	132 L 3	+005 8 +	50	Ε	10	23	10	
283 - 1	133 L 3	+005 8 +	75	E	10	12	6	
283 - 1	134 L 3	+005 9 +	00	E	10	69	3	
283 - 1	135 L 3	+00S 9 +	25	E	55	122	1	
283 - 1	136 L 3	+005 9 +	50	E	55	81	7	
283 - 1	137 L3	+005 9 +	75	E	10	30	4	
283 - 1	138 L 3	+005 10+	00	ε	1,5	10	8	
283 - 1	139 L 3	+005 10+	25	E	5	20	6	
283 - 1	140 L 3	+00S 10+	50	E	20	19	6	
283 - 1	141 L3	+00S 11+	75	E	110	122	26	

NOTE: * = NO SAMPLE

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE | B.C. CERTIFIED ASSAYER

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 3, 1990

ł

ET# Description	Au	Cu	Pb
	(ppb)	(ppm)	(ppm)
ET#Description231 - 121L 2 + 00 S 12 + 00 E231 - 122L 2 + 00 S 12 + 25 E231 - 123L 2 + 00 S 12 + 50 E231 - 124L 2 + 00 S 12 + 75 E231 - 125L 2 + 00 S 13 + 00 E231 - 126L 2 + 00 S 13 + 50 E231 - 127L 2 + 00 S 13 + 50 E231 - 128L 2 + 00 S 13 + 50 E231 - 129L 2 + 00 S 13 + 50 E231 - 128L 2 + 00 S 14 + 50 E231 - 130L 2 + 00 S 14 + 50 E231 - 131L 2 + 00 S 14 + 50 E231 - 132L 2 + 00 S 14 + 50 E231 - 134L 2 + 00 S 15 + 00 E231 - 134L 2 + 00 S 15 + 25 E	Au (ppb) (5 15 5 10 15 (5 65 10 10 10 15 5 15 10 (5 5	Cu (ppm) 20 50 49 24 30 36 32 30 31 36 18 28 25 67	Pb (ppm) 11 9 12 6 5 7 65 24 13 9 7 8 8 8 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	28	6
	10	43	2
	5	28	14
	(5	36	10
	75	41	30
	25	40	24
	40	46	20
	55	30	42
	95	119	29
	15	27	12
	295	19	21
	5	42	10
	20	43	7
	55	42	8
	5	22	7
	15	33	6
	20	64	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 NO SAMPLE RECEIVED 15 35 35 35 15 30 15 1055 20 25	48 121 32 21 12 22 10 11 38 32 13 17 14	15 11 8 9 22 12 10 7 12 8 23 15 13

Page 4

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 3, 1990

ET#	Description		uA (dqq)	Cu (ppm)	09 (ppm)
======					
231 -	166 L 3 + 00 S 16 + 00 L 3 + 167 L 3 + 00 S 14 + 25 E	:	20	∠8 14	12
231 -	168 3 + 00 S 16 + 50 E		35	63	23
231 -	169 L 3 + 00 S 16 + 75 E		5	19	14
231 -	170 L 3 + 00 S 17 + 00 E		25	19	12
231 -	171 L 3 + 00 S 17 + 25 E		<5	16	25
231 -	172 L 3 + 00 S 17 + 50 E		15	32	13
231 -	173 L 3 + 00 S 17 + 75 E		20	41	39
231 -	174 L 3 + 00 S 18 + 00 E		25	45	16
231 -	175 L 4 + 00 S 11 + 00 E		<5	16	13
231 -	176 L 4 + 00 S 11 + 25 E		<5	8	8
231 -	177 L 4 + 00 S 11 + 50 E		5	18	
231 -	170 + 4 + 00 + 11 + 73 = 179 + 4 + 00 + 12 + 00 =	• •	(5	33	10
231 -	180 + 4 + 00 + 12 + 25 F		60	24	14
231 -	181 L 4 + 00 S 12 + 50 E		5	29	16
231 -	182 L 4 + 00 S 12 + 75 E		40	52	26
231 -	183 L 4 + 00 S 13 + 00 E		25	35	21
231 -	184 L 4 + 00 S 13 + 25 E		5	22	15
231 -	185 L 4 + 00 S 13 + 50 E		<5	21	14
231 -	186 L 4 + 00 S 13 + 75 E		<5	22	15
231 -	187 L 4 + 00 S 14 + 00 E		<5	9	13
231 -	188 L 4 + 00 S 14 + 25 E		<5	15	14
234 -			, 75		19
231 -	$170 \ L 4 + 00 \ S \ 14 + 75 \ E$		30	52	113
231 -	192 + 4 + 00 + 15 + 25 = 192		/U (5	40	. 0
231 -	193 L 4 + 00 S 15 + 50 E		10	24	é.
231 -	194 L 4 + 00 S 15 + 75 E		70	212	89
231 -	195 L 4 + 00 S 16 + 00 E		25	41	17
231 -	196 L 4 + 00 S 16 + 25 E		5	23	12
231 -	197 L 4 + 00 S 16 + 50 E	· .	<5	33	11
231 -	198 L 4 + 00 S 16 + 75 E		<5	17	8
231 -	199 L 4 + 00 S 17 + 00 E		10	. 35	13
231 - 1	200 L 4 + 00 5 17 + 25 E		(5	32	16
231 - 1	201 L 4 + 00 S 17 + 50 E		30	43	24
231 -	203 + 4 + 00 + 18 + 00 = 1		10	37	22
231 -	204 L 5 + 00 S 11 + 00 E	NO SAMPLE RE	CEIVED		
231 - 3	205 L 5 + 00 S 11 + 25 E		10	25	15
231 - 3	206 L 5 + 00 S 11 + 50 E		15	19	7
231 - 3	207 L 5 + 00 S 11 + 75 E	NO SAMPLE RE	CEIVED		
231 - 3	208 L 5 + 00 S 12 + 00 E		۲5	26	9
231 - 3	209 L 5 + 00 S 12 + 25 E		5	39	3
231 - 3	210 L 5 + 00 5 12 + 50 E		(5	29	9

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 3, 1990

	Au	Cu Pb
ET# Description	(ppb)	(ppm) (ppm)
======================================		
231 - 211 L 5 + 00 S 12 + 75 E	(5	15 3
231 - 212 L 5 + 00 S 13 + 00 E	<5	136 8
231 - 213 L 5 + 00 S 13 + 25 E	55	36 3
231 - 214 L 5 + 00 S 13 + 50 E	15	27 6
231 - 215 L 5 + 00 S 13 + 75 E	40	34 7
231 - 216 L 5 + 00 S 14 + 00 E	15	22 3
231 - 217 L 5 + 00 S 14 + 25 E	• 5	24 5
231 - 218 L 5 + 00 S 14 + 50 E	(5	11 8
231 - 219 L 5 + 00 S 14 + 75 E	105	21 20
231 - 220 L 5 + 00 S 15 + 00 E	5	24 12
231 - 221 L 5 + 00 S 15 + 25 E	35	19 69
231 - 222 L 5 + 00 S 15 + 50 E	20	48 16
231 - 223 L 5 + 00 S 15 + 75 E	5	31 17
231 - 224 L 5 + 00 S 16 + 00 E	(5	35 43
231 - 225 5 + 00 S 16 + 25 E	5	42 16
231 - 226 5 + 00 S 16 + 50 E	<5	15. 5
231 - 227 + 5 + 00 + 16 + 75 =	260	178 89
231 - 228 + 5 + 00 + 17 + 00 = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 10	60	89 17
231 - 229 + 5 + 00 + 17 + 25 =	15	16 7
231 - 230 + 5 + 00 + 17 + 50 = 10	30	23 17
231 - 231 + 5 + 00 + 17 + 75 =	30	49 16
231 - 232 L 5 + 00 S 18 + 00 E	120	96 8
	Audla pulace	

ÉCO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C./ CERTIFIED ASSAYER

cc: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/CORONA-1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

OCTOBER 31, 1990

CERTIFICATE OF ANALYSIS ETK 90-692

CORONA CORPORATION 1440, BOO WEST PENDER ST. VANCOUVER B.C. V6C 2V6

SAMPLE IDENTIFICATION: 268 SOIL samples received OCTOBER 16, 1990 PROJECT :1064

							AU	CU CU	PB	
ET#			Descriptio	on			(ppb)	(ppm)	(ppm)	
====	===	====	=============	====	===	===	=======================================	=======	=======	
692	-	1	L0+00	0+	00		(5	30	34	
692	-	2	L0+00	0+	25	Ε	15	17	20	
692	-	3	L0+00	0+	50	E	(5	21	22	
692	-	4	L0+00	0+	75	ε	(5	18	19	
692		5	L0+00	1+	00	Ε	(5	23	16	
692	-	6	L0+00	1+	25	£	(5	26	18	
692	-	7	L0+00	1+	50	Ε	5	22	13	
692	-	8	L0+00	1+	75	ε	10	26	16	
692		9	L0+00	2+	00	E	(5	22	11	
692		10	L0+00	2+	25	Ε	(5	12	8	
692	-	11	L0+00	2+	50	ε	(5	28	14	
692		12	L0+00	2+	75	Ε	5	144	12	,
692	-	13	L0+00	3+	00	Ε	10	31	- 13	
692	-	14	L0+00	3+	25	Ε	(5	18	14	
692	-	15	L0+00	3+	50	E	(5	47	13	
692	-	16	L0+00	3+	75	Ε	10	28	14	
692	-	17	L0+00	4+	00	Ε	5	33	14	
692	-	18	L0+00	4+	25	Ε	. (5	19	17	
692		19	L0+00	4+	50	Ε	(5	43	23	
692	-	20	L0+00	4+	75	Ε	(5	16	18	
692	-	21	L0+00	5+	00	Ε	10	38	.14	
692	-	22	L0+00	5+	25	Ε	85	20	15	
692		23	L0+00	5+	50	Ε	35	57	53	
692	-	24	1_0+00	5+	75	Ε	5	32	10	
692	-	25	L1+00	0+	00		(5	16	11	
692		26	L1+00	0+	25	Ε	10	25	18	
692	-	27	L1+00	0+	50	ε	15	26	19	· •
692	-	28	L1+00	0+	75	ε	5	80	13	
692	-	29	L1+00	1+	00	ε	20	114	14	
692	-	30	1.1+00	1+	25	F	(5	30	12	

Page 1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

									AU	CU	PB	
	ET#			Descripti	on				(ppb)	(ppm)	(ppm)	
	====	===	===	==================	====	===	===	============	========	======	======	=============
	692	-	31	L1+00	1+	50	Ε		(5	198	8	
	692	-	32	L1+00	1+	75	Ε		5	41	17	
	692		33	L1+00	2+	00	Ē		5	30	12	
`	692		34	L1+00	2+	25	E		(5	14	11	
	692	-	35	L1+00	2+	50	Ε		(5	32	12	
	692	-	36	L1+00	2+	75	Ε		(5	27	13	
	692	-	37	L1+00	3+	00	E		(5	12	9	
	692	-	38	L1+00	3+	25	Ε		10	34	13	
	692	-	39	L1+00	3+	50	E		5	24	10	
	692		40	L1+00	3+	75	Ε		(5	37	8	
	692	_	41	L1+00	4+	00	E		15	50	10	
	692	-	42	L1+00	4+	25	Ε		50	78	14	
	692	-	43	L1+00	4+	50	Ε		20	38	15	· · ·
	692		44	L1+00	4+	75	Ε		< 5	12	13	
	692	-	45	L1+00	5+	00	Ε		5	13	- 10	
	692	-	46	L1+00	5+	25	Ε		(5	15	6	
	692	_	47	L1+00	5+	50	Ε		10	32	11	
	692	-	48	L1+00	5+	75	Ε		5	16	11	
	692	-	49	L1+00S	0+	00			N O S	AMP	LΕ	
	692	-	50	L1+00S	0+	25	Ε		20	15	17	
	692	-	51	L1+00S	0+	50	ε		10	26	9	
	692	-	52	L1+00S	0+	75	Ε		5	18	10	
	692		53	L1+005	1+	00	Ε		(5	74	9	
	692		54	L1+00S	1+	25	E		10	38	10	
	692	-	55	L1+005	1+	50	Ε		15	24	30	N 1
	692		56	L1+00S	1+	75	Ē		5	16	10	
	692	-	57	L1+00S	2+	00	E		(5	32	11	
	692	-	58	L1+00S	2+	25	Ε		10	22	14	
	692	-	59	L1+00S	2+	50	E		15	11	8	
	692	-	60	L1+005	2+	75	ε		10	13	7	
	692		61	L1+00S	3+	00	Ε		(5	11	8	
	692		62	L1+00S	3+	25	Ε		10	14	10	
	692		63	L1+00S	3+	50	Ε		15	3	7	
	692	-	64	L1+00S	3+	75	Ε		15	15	10	
	692	-	65	L1+00S	4+	00	Ε		5	6	7	
	692	-	66	L1+00S	4+	25	Ε		5	44	10	
	692	-	67	L1+00S	4+	50	Ε		(5	3	4	
	692	-	68	L1+00S	4+	75	Ε		5	19	9	
	692	-	69	L1+00S	5+	00	Ε		10	198	13	
	692	-	70	L1+00S	5+	25	Ε		(5	5	8	
	692	-	71	L1+00S	5+	50	Ε		15	45	12	
	692	-	72	L1+00S	5+	75	Ε		(5	10	10	
	692		73	L2+00N	0+	00	-		5	21	13	
	692	-	74	L2+00N	0+	25	E		5	8	7	
	692	-	75	L2+00N	• 0+	50	Ē		<5	8	11	
	-		_			-						

ł

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

								CH	PR	1
ET#		Descriptio	on			(ppb)	(ppm)	(ppm)	
=====	=======		======	===	=======	:===	======		:=====;:	
672	- /6	L2+UUN	0+ 75	12 -		N	0 5	A M P	LE	-
692	- //	L2+UUN	1+ 00	E			25	1/5	10	
692	- 78	L2+00N	1+ 25	E			5	50	6	
692	- 79	L2+00N	1+ 50	<u>ک</u>			15	26	10	
692	- 80	L2+00N	1+ 75	E			5	25	11	
692	- 81	L2+00N	2+ 00	E			25	34	12	
692	- 82	L2+00N	2+ 25	E			(5	5	3	
692	- 83	L2+00N	2+ 50	E			<5	6	3	
692	- 84	L2+00N	2+ 75	Ε			25	39	7	
692 -	- 85	L2+00N	3+ 00	Ε			15	241	16	
692	- 86	L2+00N	3+ 25	Е			10	10	5	
692	- 87	L2+00N	3+ 50	Ε			- (5	85	12	
692	- 88	L2+00N	3+ 75	Ε			25	19	11	
692	- 89	L2+00N	4+ 00	Ε			15	2.4	12	
692	- 90	L2+00N	4+ 25	Ε			40	23	12	
692	- 91	L2+00N	4+ 50	Ε			5	4	5	
692	- 92	L2+00N	4+ 75	Ε			25	24	14	
692	- 93	L2+00N	54 00	Ε			35	22	14	
692	- 94	L2+00N	5+ 25	ε			15	27	8	
692	- 95	L2+00N	5+ 50	£			10	13	11	
692	- 96	L2+00N	5+ 75	Ε			5	8	10	
692	- 97	L2+00S	0+ 00			N	0 Ś	AMP	LΕ	
692	- 98	L2+00S	0+ 25			N	0 S	AMP	LΕ	
692	- 99	L2+00S	0+ 50			Ν	0 S	AMP	ι. E	
692	- 100	L2+00S	0+ 75				(5	31	23	
692	- 101	L2+00S	1+ 00	Ε			10	60	24	
692	- 102	L2+00S	1+ 25	Ε	*		45	28	27	
692	- 103	L2+00S	1+ 50	Ε			(5	11	20	
692	- 104	L2+00S	1+ 75	ε			<5	12	13	
692	- 105	L2+00S	2+ 00	Ε			30	18	10	
692	- 106	L2+00S	2+ 25	Ε			5	3	8	
692	- 107	L2+00S	2+ 50	Ε			30	345	15	
692	- 108	L2+00S	2+ 75	£		Ν	0 S	AMP	LE	
692	- 109	L2+00S	3+ 00	Ε		Ν	0 S	AMP	LE	
692	- 110	L2+005	3+ 25	ε			15	27	18	
692	- 111	L2+00S	3+ 50	Ε			5	38	18	
692	- 112	L2+00S	3+ 75	Ε			10	24	19	
692	- 113	L2+005	4+ 00	Ε			(5	13	17	
692	- 114	L2+005	4+ 25	Ε			10	8	10	
692	- 115	L2+00S	4+ 50	Ε			30	34	8	
692	- 116	L2+00S	4+ 75	Ε			20	20	11	
692	- 117	L2+00S	5+ 00	Ε			40	1800	9	
692	- 118	L2+00S	5+ 25	Ε			5	36	11	
692	- 119	L2+00S	5+ 50	E			(5	20	8	
692	- 120	L2+00S	5+ 75	Ε			20	16	8	

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

ETHDescription (ppb) (ppm) (ppm) 692-121L3+00N0+0015207692-123L3+00N0+25E5249692-124L3+00N0+75E55210692-126L3+00N1+00E(5118692-126L3+00N1+50E(53412692-127L3+00N1+75E52812692-128L3+00N1+75E52812692-120L3+00N2+50E(5139692-130L3+00N2+50E(51811692-131L3+00N2+50E(51811692-132L3+00N3+00E1067692-132L3+00N3+50E102614692-134L3+00N3+50E102614692-134L3+00N3+50E102614692-134L3+00N3+50E102614692-138L3+00N4+50E(51512692-138L3+00N4+50E(51311692-140L3+00N5+50E102214692-140L3+00N5+50E10						AU	CU	PB	2 •
692 - 121 L3+00N 0+00 15 20 7 692 - 123 L3+00N 0+25 E 5 24 9 692 - 124 L3+00N 0+75 E 5 52 9 692 - 125 L3+00N 1+00 E (5 11 8 692 - 126 L3+00N 1+75 E 5 28 12 692 - 128 L3+00N 2+75 E (5 13 9 692 - 130 L3+00N 2+75 E (5 18 11 692 - 132 L3+00N 3+05 E 10 26 7 692 - 134 L3+00N 3+75 E (5 13 11 692 - 134 L3+00N 4+75 E (5 13 11	ET#	(Descripti	ori		(ppb)	(ppm)	(ppm)	
692- 121L3+00N0+ 0015207 692 - 122L3+00N0+ 25E5249 692 - 124L3+00N0+ 75E55210 692 - 125L3+00N1+ 00E(5118 692 - 126L3+00N1+ 50E(51415 692 - 127L3+00N1+ 50E(51415 692 - 128L3+00N1+ 75E52812 692 - 128L3+00N2+ 00E(5139 692 - 130L3+00N2+ 25E(51811 692 - 131L3+00N2+ 50E(51811 692 - 133L3+00N3+ 50E10 6 7 692 - 134L3+00N3+ 55E(51311 692 - 136L3+00N3+ 55E(51311 692 - 136L3+00N4+ 25E(51311 692 - 138L3+00N4+ 55E(51311 692 - 138L3+00N4+ 55E(51311 692 - 138L3+00N4+ 55E(51311 692 - 140L3+00N5+ 55E52212 692 - 140L3+00N5+ 55E522<	====	=======	========	=======	===		=======	==========	
692-122L3+00N0+25E5249 692 -123L3+00N0+75E55210 692 -124L3+00N1+75E55210 692 -125L3+00N1+25E(53412 692 -126L3+00N1+75E52812 692 -129L3+00N2+25E(5139 692 -131L3+00N2+25E(51811 692 -132L3+00N2+25E(51811 692 -134L3+00N2+25E(51811 692 -134L3+00N3+25E535 692 -134L3+00N3+25E51311 692 -134L3+00N3+25E51311 692 -134L3+00N3+25E(51311 692 -134L3+00N3+75E(51311 692 -134L3+00N4+50E(5710 692 -134L3+00N4+50E(5710 692 -140L3+00N	692	- 121	L3+00N	0+ 00		15	20	7	:
$\begin{array}{llllllllllllllllllllllllllllllllllll$	692	- 122	L3+00N	0+ 25	Ε	5	24	.9	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	692	- 123	L3+00N	0+ 50	Ε	(5	24	9	
692125LCS3412 692 -127LL1+25EC53412 692 -127LL1+00EC51415 692 -129LL3+00N1+75E52812 692 -130L1+00N2+25EC55513 692 -131L1+00N2+25EC5513 692 -132L1+00N2+75EC51811 692 -134L3+00N2+75EC51311 692 -134L3+00N3+25E535 692 -134L3+00N3+50E102614 692 -136L1+00N3+50E102614 692 -136L1+00N4+50EC51311 692 -136L1+00N4+50EC5513 692 -140L1+00N4+50EC5513 692 -140L3+00N4+50E102	692	- 124	L3+00N	0+ 75	Ε	5	52	10	
692126E(53412 692 -127L3+00N1+50E(51415 692 -128L3+00N2+00E(5139 692 -130L3+00N2+25E(55513 692 -131L3+00N2+25E(51811 692 -131L3+00N2+75E(51811 692 -133L3+00N3+00E102614 692 -134L3+00N3+25E535 692 -135L3+00N3+75E(51311 692 -137L3+00N3+75E(51311 692 -137L3+00N4+75E(51512 692 -140L3+00N4+50E(5513 692 -140L3+00N4+50E(5710 692 -141L3+00N5+55E52212 692 -141L3+00N5+55E52212 692 -142L3+00N5+55E55710 692 -143L3+00N5+ <td>692</td> <td>- 125</td> <td>L3+00N</td> <td>1+ 00</td> <td>Ε</td> <td>(5</td> <td>11</td> <td>8</td> <td></td>	692	- 125	L3+00N	1+ 00	Ε	(5	11	8	
692-127L3+00N1+50E(5)1415 692 -129L3+00N2+25E(5)5513 692 -131L3+00N2+25E(5)5513 692 -131L3+00N2+25E(5)1811 692 -132L3+00N2+25E(5)1811 692 -133L3+00N3+00E1067 692 -134L3+00N3+25E535 692 -135L3+00N3+50E102614 692 -136L3+00N3+75E(5)1311 692 -137L3+00N4+00E51512 692 -137L3+00N4+25E(5)1311 692 -141L3+00N4+25E(5)1311 692 -142L3+00N5+50E102212 692 -142L3+00N5+50E102212 692 -142L3+00N5+50E102214 692 -142L3+00N5+50E102212 692 -144	692	- 126	L3+00N	1+ 25	£	(5	. 34	12	
692-128L3400N1+75E52812 692 -130L3400N2+00E(5139 692 -131L3400N2+25E(55513 692 -132L3400N2+75E(51811 692 -133L3400N3+00E1067 692 -134L3400N3+25E535 692 -134L3400N3+25E(51311 692 -136L3400N3+55E(51514 692 -136L3400N4+00E(51512 692 -138L3400N4+25E(51512 692 -140L3400N4+25E(51512 692 -141L3400N5+00E(5710 692 -143L3+00N5+00E102214 692 -144L3+00N5+05E102214 692 -143L3+00N5+05E102214 692 -144L3+00N0+05E55912 692 -147L4	692	- 127	L3+00N	1+ 50	Ε	(5	14	15	
692-129L3+00N2+25E(5139 692 -130L3+00N2+25E(55513 692 -132L3+00N2+75E(51811 692 -133L3+00N3+00E1067 692 -134L3+00N3+25E535 692 -135L3+00N3+50E102614 692 -136L3+00N3+75E(51311 692 -137L3+00N4+25E(51512 692 -139L3+00N4+50E(56513 692 -139L3+00N4+75E(5810 692 -140L3+00N5+50E102214 692 -141L3+00N5+50E102214 692 -143L3+00N5+50E102214 692 -143L3+00N5+50E102214 692 -143L3+00N5+50E102214 692 -143L3+00N5+55E55912 692 -144L	692	- 128	L3+00N	1+ 75	Ε	5	28	12	
692- 130L3+00N $2+$ 25E(5)5513 692 - 131L3+00N $2+$ 25E(5)4812 692 - 133L3+00N $3+$ 25E535 692 - 134L3+00N $3+$ 25E535 692 - 135L3+00N $3+$ 25E535 692 - 135L3+00N $3+$ 25E5102614 692 - 136L3+00N $3+$ 75E(5)1311 692 - 137L3+00N $4+$ 00E51514 692 - 138L3+00N $4+$ 25E(5)1512 692 - 140L3+00N $4+$ 75E(5)810 692 - 141L3+00N5+ 00E(5)710 692 - 142L3+00N5+ 05E102214 692 - 143L3+00N5+ 05E102214 692 - 143L3+00N5+ 05E102214 692 - 144L3+00N5+ 05E55912 692 - 144L4+00N0+ 00101914 692 - 144L4+00N0+ 05E55912 692 - 147L4+00N1+ 00E55413 692 - 151L4+00N1+ 00 <td< td=""><td>692</td><td>- 129</td><td>L3+00N</td><td>2+ 00</td><td>Ε</td><td>(5</td><td>13</td><td>9</td><td></td></td<>	692	- 129	L3+00N	2+ 00	Ε	(5	13	9	
692-131L3+00N2+75E(5)4812 692 -133L3+00N3+00E1067 692 -134L3+00N3+25E535 692 -135L3+00N3+25E102614 692 -136L3+00N3+75E(5)1311 692 -137L3+00N4+25E(5)1514 692 -138L3+00N4+25E(5)1512 692 -140L3+00N4+25E(5)710 692 -141L3+00N5+00E(5)710 692 -142L3+00N5+25E301618 692 -143L3+00N5+50E102214 692 -143L3+00N5+50E101214 692 -145L4+00N0+00101914 692 -146L4+00N0+00101914 692 -148L4+00N0+50E55912 692 -146L4+00N1+25E53710 692 -146L4+00N1	692	- 130	L3+00N	2+ 25	ε	(5	55	13	
692-132L3+00N2+75E(5)1811 692 -133L3+00N3+00E1067 692 -135L3+00N3+25E535 692 -135L3+00N3+50E102614 692 -136L3+00N3+75E(5)1311 692 -138L3+00N4+00E51514 692 -139L3+00N4+25E(5)6513 692 -140L3+00N4+75E(5)810 692 -141L3+00N5+00E(5)710 692 -143L3+00N5+05E102214 692 -144L3+00N5+05E102214 692 -144L3+00N5+75E301618 692 -144L4+00N0+00101914 692 -147L4+00N0+05E55912 692 -148L4+00N1+05E55912 692 -149L4+00N1+05E1012212 692 -150L4+00N<	692	- 131	L3+00N	2+ 50	Ε	(5	48	12	
692-133L3+00N3+00E1067 692 -134L3+00N3+25E535 692 -135L3+00N3+75E102614 692 -136L3+00N3+75E151311 692 -137L3+00N4+00E51514 692 -138L3+00N4+25E1514 692 -134L3+00N4+50E1512 692 -140L3+00N4+75E102214 692 -141L3+00N5+25E52212 692 -143L3+00N5+50E102214 692 -144L3+00N5+75E301618 692 -145L4+00N0+00101914 692 -145L4+00N0+75E102212 692 -146L4+00N1+25E55710 692 -149L4+00N1+25E55413 692 -151L4+00N1+25E53710 692 -150L4+00N1+75E301911 692 -151L4+00N2+25E51113 </td <td>692</td> <td>- 132</td> <td>L3+00N</td> <td>2+ 75</td> <td>Ε</td> <td>(5</td> <td>18</td> <td>11</td> <td></td>	692	- 132	L3+00N	2+ 75	Ε	(5	18	11	
692- 134L3+00N $3+ 25$ E535 692 - 136L3+00N $3+ 50$ E102614 692 - 136L3+00N $3+ 75$ E(51311 692 - 137L3+00N $4+ 25$ E(51514 692 - 139L3+00N $4+ 25$ E(51512 692 - 140L3+00N $4+ 50$ E(56513 692 - 141L3+00N $5+ 50$ E102214 692 - 142L3+0N $5+ 25$ E52212 692 - 143L3+0N $5+ 50$ E102214 692 - 144L3+0N $5+ 50$ E102214 692 - 144L3+0N $5+ 50$ E102214 692 - 144L3+0N $6+ 50$ E52212 692 - 144L3+0N $6+ 50$ E52212 692 - 144L4+0N $0+ 25$ E(52212 692 - 144L4+0N $0+ 25$ E55912 692 - 147L4+0N $1+ 50$ E102212 692 - 151L4+0N $1+ 50$ E102212 692 - 152L4+0N $1+ 50$ E53115 692 - 154L4+0N $2+ 55$ <	692	- 133	L3+00N	3+ 00	Ε	10	6	7	
692 -135 $L3+00N$ $3+50$ E 10 26 14 692 -136 $L3+00N$ $4+00$ E 5 15 14 692 -137 $L3+00N$ $4+00$ E 5 15 14 692 -138 $L3+00N$ $4+25$ E 5 15 12 692 -139 $L3+00N$ $4+25$ E 5 65 13 692 -140 $L3+00N$ $4+75$ E 5 8 10 692 -141 $L3+00N$ $5+25$ E 5 22 12 692 -143 $L3+00N$ $5+50$ E 10 22 14 692 -144 $L3+00N$ $5+50$ E 10 22 14 692 -144 $L3+00N$ $5+50$ E 10 22 14 692 -144 $L4+00N$ $0+75$ E 5 59 12 692 -144 $L4+00N$ $0+75$ E 5 57 10 692 -147 $L4+00N$ $1+75$ E 5 57 10 692 -148 $L4+00N$ $1+25$ E 5 37 10 692 -149 $L4+00N$ $1+75$ E 30 19 11 692 -155 $L4+00N$ $1+75$ E 30 19 11 692 -153 $L4+00N$ $2+75$ E 5 31 15 </td <td>692</td> <td>- 134</td> <td>L3+00N</td> <td>3+ 25</td> <td>Ε</td> <td>5</td> <td>3</td> <td>5</td> <td></td>	692	- 134	L3+00N	3+ 25	Ε	5	3	5	
692-136L3+00N3+75E(S1311 692 -137L3+00N4+00E51514 692 -138L3+00N4+25E(S6513 692 -140L3+00N4+75E(S810 692 -141L3+00N5+00E(S710 692 -142L3+00N5+00E(S710 692 -142L3+00N5+50E102214 692 -144L3+00N5+50E10101914 692 -144L3+00N5+50E(S2212 692 -144L3+00N00101914 692 -144L3+00N00101914 692 -147L4+00N0+25E(S1715 692 -147L4+00N1+25E53710 692 -148L4+00N1+25E53710 692 -150L4+00N1+25E53710 692 -151L4+00N1+25E(S1113 692 -152L4+00N2+55 <td>692</td> <td>- 135</td> <td>L3+00N</td> <td>3+ 50</td> <td>ε</td> <td>10</td> <td>26</td> <td>14</td> <td></td>	692	- 135	L3+00N	3+ 50	ε	10	26	14	
692 -137 L3+00N $4+$ 00 E 5 15 14 692 -138 L3+00N $4+$ 25 E $(5$ 15 12 692 -140 L3+00N $4+$ 75 E $(5$ 8 10 692 -141 L3+00N $5+$ 50 E $(5$ 7 10 692 -141 L3+00N $5+$ 25 E 5 22 12 692 -142 L3+00N $5+$ 25 E 5 22 12 692 -144 L3+00N $5+$ 50 E 10 22 14 692 -144 L3+00N $5+$ 50 E 10 22 14 692 -144 L3+00N $6+$ 55 59 12 $6+$ 692 -144 L3+00N $0+$ 00 10 19 14 692 -144 L3+00N $0+$ 55 57 12 692 -144 L4+00N $0+$ 50 E 55 59 692 -144 L4+00N $1+$ 25 E 53 17 692 -149 L4+00N $1+$ 25 E 53 10 692 -150 L4+00N $1+$ 25 E 53 11 692 -153 L4+00N $2+$ 25 E 53 11 692 -155 L4+00N $2+$ 55 21 17 </td <td>692</td> <td>- 136</td> <td>L3+00N</td> <td>3+ 75</td> <td>Ε</td> <td>(5</td> <td>13</td> <td>11</td> <td></td>	692	- 136	L3+00N	3+ 75	Ε	(5	13	11	
692-138L3+00N4+25E(5)1512 692 -139L3+00N4+50E(5)6513 692 -140L3+00N4+75E(5)810 692 -142L3+00N5+00E(5)710 692 -143L3+00N5+25E52212 692 -143L3+00N5+50E102214 692 -144L3+00N5+75E301618 692 -145L4+00N0+00101914 692 -146L4+00N0+25E(5)2212 692 -147L4+00N0+55E5912 692 -148L4+00N0+75E(5)1715 692 -148L4+00N1+25E53710 692 -150L4+00N1+25E102212 692 -153L4+00N1+25E53710 692 -154L4+00N2+25E(5)1113 692 -155L4+00N2+25E(5)1113 692 -156L4+00N	692	- 137	L3+00N	4+ 00	Ε	5	15	14	
692-139L3+00N4+50E(5)6513 692 -140L3+00N4+75E(5)810 692 -141L3+00N5+00E(5)710 692 -142L3+00N5+25E52212 692 -144L3+00N5+75E301618 692 -144L3+00N0+00101914 692 -144L4+00N0+25E(5)2212 692 -146L4+00N0+50E55912 692 -148L4+00N0+50E55413 692 -148L4+00N1+00E55413 692 -150L4+00N1+25E53710 692 -151L4+00N1+50E102212 692 -152L4+00N1+75E301911 692 -153L4+00N2+25E(5)1113 692 -154L4+00N2+25E(5)1113 692 -155L4+00N3+00E52117 692 -156L4+00	692	- 138	L3+00N	4+ 25	Ε	(5	15	12	
692-140L3+00N4+75E(5)810 692 -141L3+00N5+00E(5)710 692 -142L3+00N5+25E52212 692 -143L3+00N5+50E102214 692 -144L3+00N5+75E301618 692 -144L3+00N0+00101914 692 -146L4+00N0+25E(5)2212 692 -148L4+00N0+75E(5)1715 692 -149L4+00N1+05E53710 692 -150L4+00N1+25E53710 692 -151L4+00N1+25E102212 692 -152L4+00N1+75E301911 692 -153L4+00N2+25E(5)1113 692 -154L4+00N2+25E(5)1113 692 -155L4+00N2+25E(5)1113 692 -155L4+00N3+25E(5)1217 692 -158	692	- 139	L3+00N	4+ 50	ε	(5	65	13	
692-141L3+00N5+00E (5) 710 692 -142L3+00N5+25E52212 692 -143L3+00N5+50E102214 692 -144L3+00N5+75E301618 692 -145L4+00N0+00101914 692 -146L4+00N0+25E(52212 692 -147L4+00N0+25E(51715 692 -148L4+00N0+75E(51715 692 -149L4+00N1+20E55413 692 -150L4+00N1+25E53710 692 -151L4+00N1+50E102212 692 -153L4+00N2+25E(51113 692 -153L4+00N2+25E(51113 692 -154L4+00N2+75E(52215 692 -153L4+00N2+75E(52117 692 -156L4+00N3+05E53115 692 -157L4+00	692	- 140	L3+00N	4+ 75	Ε	(5	8	10	
692-142L3+00N5+25E52212 692 -143L3+00N5+50E102214 692 -144L3+00N5+75E301618 692 -145L4+00N0+00101914 692 -146L4+00N0+25E $(5$ 2212 692 -147L4+00N0+50E55912 692 -148L4+00N0+75E $(5$ 1715 692 -149L4+00N1+25E53710 692 -150L4+00N1+25E301911 692 -151L4+00N1+75E301911 692 -152L4+00N1+75E301911 692 -153L4+00N2+25E $(5$ 1113 692 -154L4+00N2+25E $(5$ 1113 692 -155L4+00N2+55E $(5$ 1113 692 -154L4+00N2+75E $(5$ 2117 692 -156L4+00N3+25E $(5$ 1516 692 -159<	692	- 141	L3+00N	5+ 00	ε	(5	7	10	
692-143L3+00N5+50E102214 692 -144L3+00N5+75E301618 692 -145L4+00N0+00101914 692 -146L4+00N0+25E(52212 692 -147L4+00N0+25E(52712 692 -148L4+00N0+75E(51715 692 -149L4+00N1+00E55413 692 -150L4+00N1+25E53710 692 -151L4+00N1+75E301911 692 -152L4+00N1+75E301911 692 -153L4+00N2+25E(51113 692 -153L4+00N2+25E(51113 692 -155L4+00N2+25E(51113 692 -156L4+00N3+00E52117 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(51614 692 -159L4+00N<	692	- 142	L3+00N	5+ 25	Ε	5	22	12	
692-144L3+00N5+75E301618 692 -145L4+00N0+00101914 692 -146L4+00N0+25E(52212 692 -147L4+00N0+50E55912 692 -148L4+00N0+75E(51715 692 -149L4+00N1+00E55413 692 -150L4+00N1+25E53710 692 -151L4+0N1+25E102212 692 -152L4+0N1+75E301911 692 -153L4+0N2+00E101814 692 -155L4+0N2+25E(51113 692 -155L4+0N2+55211717 692 -156L4+0N3+00E52117 692 -158L4+0N3+25E(51914 692 -159L4+0N3+25E(51614 692 -160L4+0N3+75E(51013 692 -161L4+0N4+2	692	- 143	L3+00N	5+ 50	Ε	10	22	14	х.
692-145L4+00N0+00101914 692 -146L4+00N0+25E $(5$ 2212 692 -147L4+00N0+50E55912 692 -148L4+00N0+75E $(5$ 1715 692 -149L4+00N1+00E55413 692 -150L4+00N1+25E53710 692 -151L4+00N1+50E102212 692 -152L4+00N1+75E301911 692 -153L4+00N2+25E $(5$ 1113 692 -154L4+00N2+25E $(5$ 1113 692 -155L4+00N2+25E $(5$ 2117 692 -156L4+00N2+75E $(5$ 2117 692 -158L4+00N3+25E $(5$ 1914 692 -160L4+00N3+75E $(5$ 1013 692 -160L4+00N3+75E $(5$ 1412 692 -161L4+00N4+25E $(5$ 1412 692 - <t< td=""><td>692</td><td>- 144</td><td>L3+00N</td><td>5+ 75</td><td>Ε</td><td>30</td><td>16</td><td>18</td><td></td></t<>	692	- 144	L3+00N	5+ 75	Ε	30	16	18	
692-146L4+00N0+25E(52212 692 -147L4+00N0+50E55912 692 -148L4+00N0+75E(51715 692 -149L4+00N1+00E55413 692 -150L4+00N1+25E53710 692 -151L4+00N1+75E301911 692 -152L4+00N2+00E101814 692 -153L4+00N2+25E(51113 692 -154L4+00N2+25E(51113 692 -155L4+00N2+25E(52215 692 -155L4+00N2+75E(52215 692 -156L4+00N2+75E(51217 692 -158L4+00N3+25E(51914 692 -160L4+00N3+75E(51614 692 -160L4+00N3+75E(51614 692 -163L4+00N4+25E(51412 692 -163	692	- 145	L.4+00N	0+ 00		10	19	14	
692 -147 $L4+00N$ $0+50$ E 5 59 12 692 -148 $L4+00N$ $0+75$ E (5) 17 15 692 -149 $L4+00N$ $1+00$ E 5 54 13 692 -150 $L4+00N$ $1+25$ E 5 37 10 692 -151 $L4+00N$ $1+25$ E 5 37 10 692 -152 $L4+00N$ $1+75$ E 30 19 11 692 -152 $L4+00N$ $2+00$ E 10 18 14 692 -153 $L4+00N$ $2+25$ E (5) 11 13 692 -154 $L4+00N$ $2+50$ E 5 31 15 692 -155 $L4+00N$ $2+75$ E (5) 21 17 692 -156 $L4+00N$ $3+00$ E 5 21 17 692 -157 $L4+00N$ $3+25$ E (5) 16 14 692 -159 $L4+00N$ $3+50$ E (5) 16 14 692 -161 $L4+00N$ $4+25$ E (5) 14 12 692 -163 $L4+00N$ $4+50$ E (5) 14 12 692 -164 $L4+00N$ $4+75$ E 5 12 14 692 -165 $L4+00N$ $5+00$ E 25 46 <td>692</td> <td>- 146</td> <td>L4+00N</td> <td>0+ 25</td> <td>E.</td> <td>(5</td> <td>22</td> <td>12</td> <td></td>	692	- 146	L4+00N	0+ 25	E.	(5	22	12	
692-148L4+00N0+75E(5)1715 692 -149L4+00N1+00E55413 692 -150L4+00N1+25E53710 692 -151L4+00N1+50E102212 692 -152L4+00N1+75E301911 692 -153L4+00N2+00E101814 692 -154L4+00N2+25E(5)1113 692 -155L4+00N2+25E(5)1113 692 -156L4+00N2+25E(5)1113 692 -156L4+00N2+75E(5)2215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(5)1914 692 -160L4+00N3+75E(5)1013 692 -161L4+00N4+25E(5)1412 692 -163L4+00N4+25E(5)1412 692 -164L4+00N4+55E51214 692 -	692	- 147	L4+00N	0+ 50	Ε	5	59	12	
692-149L4+00N1+00E55413 692 -150L4+00N1+25E53710 692 -151L4+00N1+50E102212 692 -152L4+00N1+75E301911 692 -153L4+00N2+00E101814 692 -154L4+00N2+25E(51113 692 -155L4+00N2+50E53115 692 -156L4+00N2+75E(52215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(51914 692 -160L4+00N3+75E(51013 692 -161L4+00N3+75E(51013 692 -163L4+00N4+25E(51412 692 -163L4+00N4+25E(51412 692 -163L4+00N4+50E(527 692 -164L4+00N4+75E51214 692 -165	692	- 148	L4+00N	0+ 75	Ε	(5	17	15	
692-150L4+00N1+25E53710 692 -151L4+00N1+50E102212 692 -152L4+00N1+75E301911 692 -153L4+00N2+00E101814 692 -154L4+00N2+25E(51113 692 -155L4+00N2+25E(52215 692 -156L4+00N2+75E(52215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(51914 692 -159L4+00N3+50E(51516 692 -160L4+00N3+75E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+25E(51412 692 -163L4+00N4+50E(527 692 -163L4+00N4+50E(51214 692 -165L4+00N5+00E254615	692	- 149	L4+00N	1+ 00	ε	5	54	13	
692-151L4+00N1+50E102212 692 -152L4+00N1+75E301911 692 -153L4+00N2+00E101814 692 -154L4+00N2+25E(51113 692 -155L4+00N2+25E(53115 692 -156L4+00N2+75E(52215 692 -157L4+0N3+00E52117 692 -158L4+0N3+25E(51914 692 -159L4+0N3+50E(51516 692 -160L4+0N3+75E(51013 692 -161L4+0N4+00E(51013 692 -163L4+0N4+25E(51412 692 -163L4+0N4+50E(527 692 -163L4+0N4+75E51214 692 -165L4+0N5+00E254615	692	- 150	L4+00N	1+ 25	ε	5	37	10	
692-152L4+00N1+75E301911 692 -153L4+00N2+00E101814 692 -154L4+00N2+25E (5) 1113 692 -155L4+00N2+25E (5) 1113 692 -156L4+00N2+75E (5) 2215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E (5) 1914 692 -159L4+00N3+50E (5) 1516 692 -160L4+00N3+75E (5) 1013 692 -161L4+00N4+00E (5) 1013 692 -163L4+00N4+25E (5) 1412 692 -163L4+00N4+75E51214 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 151	L4+00N	1+ 50	Ε	10	22	12	
692-153L4+00N2+00E101814 692 -154L4+00N2+25E(51113 692 -155L4+00N2+50E53115 692 -156L4+00N2+75E(52215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(51914 692 -159L4+00N3+50E(51516 692 -160L4+00N3+75E(51614 692 -161L4+00N4+00E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+50E(527 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 152	L4+00N	1+ 75	ε	30	19	11	
692-154L4+00N2+25E(51113 692 -155L4+00N2+50E53115 692 -156L4+00N2+75E(52215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(51914 692 -159L4+00N3+50E(51516 692 -160L4+00N3+75E(51614 692 -161L4+00N4+00E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+75E51214 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 153	L4+00N	2+ 00	Ε	10	18	14	
692-155L4+00N2+50E53115 692 -156L4+00N2+75E(52215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(51914 692 -159L4+00N3+50E(51516 692 -160L4+00N3+75E(51614 692 -161L4+00N4+00E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+75E51214 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 154	L4+00N	2+ 25	Ε	(5	11	13	
692-156L4+00N2+75E(52215 692 -157L4+00N3+00E52117 692 -158L4+00N3+25E(51914 692 -159L4+00N3+50E(51516 692 -160L4+00N3+75E(51614 692 -161L4+00N4+00E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+75E51214 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 155	L4+00N	2+ 50	Ε	5	31	15	
692-157L4+00N3+00E52117 692 -158L4+00N3+25E(51914 692 -159L4+00N3+50E(51516 692 -160L4+00N3+75E(51614 692 -161L4+00N4+00E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+75E51214 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 156	L4+00N	2+ 75	Ε	(5	22	15	
692-158L4+00N $3+$ 25E(51914 692 -159L4+00N $3+$ 50E(51516 692 -160L4+00N $3+$ 75E(51614 692 -161L4+00N4+00E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+50E(527 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 157	L.4+00N	3+ 00	Ε	5	21	17	
692-159L4+00N3+50E(51516 692 -160L4+00N3+75E(51614 692 -161L4+00N4+00E(51013 692 -162L4+00N4+25E(51412 692 -163L4+00N4+50E(527 692 -164L4+00N4+75E51214 692 -165L4+00N5+00E254615	692	- 158	L4+00N	3+ 25	E	(5	19	14	
692 - 160 $L4+00N$ $3+75$ E $(5 16 14)$ $692 - 161$ $L4+00N$ $4+00$ E $(5 10)$ 13 $692 - 162$ $L4+00N$ $4+25$ E $(5 14)$ 12 $692 - 163$ $L4+00N$ $4+50$ E $(5 2 7)$ 7 $692 - 164$ $L4+00N$ $4+75$ E 5 12 14 $692 - 165$ $L4+00N$ $5+00$ E 25 46 15	692	- 159	L4+00N	3+ 50	Ε	(5	15	16	
692 - 161 L4+00N 4+ 00 E (5 10 13 692 - 162 L4+00N 4+ 25 E (5 14 12 692 - 163 L4+00N 4+ 50 E (5 2 7 692 - 164 L4+00N 4+ 75 E 5 12 14 692 - 165 L4+00N 5+ 00 E 25 46 15	692	- 160	L4+00N	3+ 75	E	(5	16	14	
692 - 162 L4+00N 4+ 25 E (5 14 12 692 - 163 L4+00N 4+ 50 E (5 2 7 692 - 164 L4+00N 4+ 75 E 5 12 14 692 - 165 L4+00N 5+ 00 E 25 46 15	692	- 161	L4+00N	4+ 00	ε	(5	10	13	
692 - 163 L4+00N 4+ 50 E (5 2 7 692 - 164 L4+00N 4+ 75 E 5 12 14 692 - 165 L4+00N 5+ 00 E 25 46 15	692	- 162	L4+00N	4+ 25	Ε	<5	14	12	
692 - 164 L4+00N 4+ 75 E 5 12 14 692 - 165 L4+00N 5+ 00 E 25 46 15	692	- 163	L4+00N	4+ 50	Ε	(5	2	7	
692 - 165 L4+00N 5+ 00 E 25 46 15	692	- 164	L4+00N	4+ 75	E	5	12	14	
	692	- 165	1_4+00N	5+ 00	Ε	25	46	15	

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

ET#		Descripti	on		<i>ہ</i> ppt)	AU 5)	CIJ (ppm)	PB (ppm)	<u>-</u>
692	- 166	L4+00N	5+ 25	 Е		15	18	17	
692.	- 167	L4+00N	5+ 50	E		10	19	18	
692	- 168	L4+00N	5+ 75	Ε		5	55	12	•
692	- 169	L4+00N	6+ 00	E		10	43	18	
692	- 170	L5+00N	0+ 00			5	22	13	
692	- 171	L5+00N	0+ 25	Ε		10	31	14	
692	- 172	2 L5+00N	0+ 50	Ε		5	1	10	
692	- 173	L5+00N	0+ 75	Ε		5	5	12	
692	- 174	L5+00N	1+ 00	Ε		(5	16	14	
692	- 175	L5+00N	1+ 25	Ε		(5	28	16	
692	- 176	L5+00N	1+ 50	Ε		5	10	17	
692	- 177	L5+00N	1+ 75	Ε		20	36	20	
692	- 178	L5+00N	2+ 00	E		۲5	3	10	
692	- 179	L5+00N	2+ 25	Ε		5	4	11	
692	- 180	L5+00N	2+ 50	ε		10	16	17	
692	- 181	L5+00N	2+ 75	ε		(5	35	21	
692	- 182	L5+00N	3+ 00	Ε		< 5	20	15	
692	- 183	L5+00N	3+ 25	Ε		<5	16	11	
692	- 184	L5+00N	3+ 50	Ε		5	16	10	
692	- 185	L.5+00N	3+ 75	Ε		5	13	13	
692	- 186	L5+00N	4+ 00	Ε	4	45	28	15	
692	- 187	L5+00N	4+ 25	Ε		(5	11	12	
692	- 188	L5+00N	4+ 50	Ε		10	48	13	
692	- 189	L5+00N	4+ 75	Ε		5	7	12	
692	- 190	L5+00N	5+ 00	Ε		<5	2	5	
692	- 191	L5+00N	5+ 25	Ε		(5	76	10	
692	- 192	L5+00N	5+ 50	Ε	(30	68	11	
692	- 193	L.5+00N	5+ 75	Ε	NO	S	AMP	LΕ	
692	- 194	L5+00N	6+ 00	Ε	,	< 5	8	8	
692	- 195	L6+00	0+ 00		1	10	28	10	
692	- 196	L6+00	0+ 25	Ε		35	29	7	
692	- 197	L.6+00	0+ 50	E		(5	9	8	
692	- 198	L6+00	0+ 75	E		10	25	7	
692	- 199	L6+00	1+ 00	Ł		(5	1	8	
692	- 200	L6+00	1+ 25	F		5	21	12	
692	- 201	L6+00	1+ 50	E		10	15	16	
692	- 202	L6+00	1+ /5	E		5	25	16	
672	- 203	L6+00	2+ 00	E		(5	34	14	
072	- 204		21 23	د ۲		1U 6	21	13	
072	- 205		2+ 50	E C) /5	17	13	
072	- 206		2+ /3	L r		<u>رى</u>	20	 ر ج	
672	- 207		31 00	E F	NU	ა -	АПР	ι: τ	
072 200	- 208		31 23	E		С С	1	6	
072 200	- 207		טר דט זי די	C C		ן גר	4	7	
072	- 410		JT /J	C		<u>ل</u> ،	17	14	

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

OCTOBER 31, 1990

ŧ

- 5

			AU	CU PE	3
ET# Descr	ription	(aq) (dag	mad) (wa)
=======================================				===========	*********
692 - 211 L6	5+00 4+ 00 E	-	<5	3 12	2
692 - 212 L6	5+00 4+ 25 E		< 5	23 19)
692 - 213 L6	5+00 4+ 50 E	<u> </u>	5	13 14	1
692 - 214 L6	5+00 4+ 75 E		(5	38 18	3
692 - 215 L6	5+00 5+ 00 E		<5	37 18	3
692 - 216 L6	5+00 5+ 25 E		(5	16 11	l
692 - 217 L6	5+00 5+ 50 E		5	25 13	3
692 - 218 L6	5+00 5+ 75 E		< 5	15 11	ł
692 - 219 L7+	100N 0+ 00		(5	48 12	2
692 - 220 L7+	00N 0+ 25 E		<5	36 12	2
692 - 221 L7+	00N 0+ 50 E	<u> </u>	5	16 1	l
692 - 222 L7+	-00N 0+ 75 E	E N	0 SAN	1 P L E	
692 - 223 ·L7+	-00N 1+ 00 E		10	3 0	5
692 - 224 L7+	00N 1+ 25 E		5	23 1	
692 - 225 L7+	100N 1+ 50 E		15	15 9	- 7
692 - 226 L7+	+00N 1+ 75 F	-	10	9 42	>
692 - 227 L7+	HOON 2+ 00 E	-	5	20 12	2
692 - 228 L7+	00N 2+ 25 F		(5	26	-
692 - 229 17+	100N 2+ 50 E	-	5	17 14	1
692 - 230 L7+	00N 2+ 75 E	-	(5	20 14	4
692 - 231 L7+	100N 3+ 00 E	-	15	36 15	5
692 - 232 17+	100N 3+ 25 F	-	5	37 16	5
692 - 233 L7+	HOON 3+ 50 E	-	(5	44 15	5
692 - 234 L7+	00N 3+ 75 E	-	(5	50 14	4
692 - 235 L7+	100N 4+ 00 E		15	41 12	2
692 - 236 L7+	00N 4+ 25 E		(5	77 12	- 7
692 - 237 L7+	00N 4+ 50 E		5	36 13	3
692 - 238 L7+	OON 4+ 75 E		5	41 14	4
692 - 239 L7+	OON 5+ 00 E		115	57 19	7
692 - 240 L7+	00N 5+ 25 E	Ξ	65	48 18	3
692 - 241 L7+	00N 5+ 50 E	E	10	57 1-	4
692 - 242 L7+	00N 5+ 75 E		(5	102 13	7
692 - 243 L7+	00N 6+ 00 E		5	47 13	3
692 - 244 L8+	100N 0+ 00		(5	20 13	2
692 - 245 L8+	100N 0+ 25 E	-	5	11 1.	4
692 - 246 L8+	00N 0+ 50 E	-	10	36 13	3
692 - 247 L8+	100N 0+ 75 E	-	(5	6 1	2
692 - 248 L8+	HOON 1+ 00 E		(5	16 1	3
692 - 249 L8+	100N 1+ 25 E	-	(5	12 1	2
692 - 250 L8+	100N 1+ 50 E		(5	6 10	0
692 - 251 1.8+	HOON 1+ 75 E		(5	18 1	5
692 - 252 18+	100N 2+ 00 F	- 	(5	13 1	2
692 - 253 1.8+	HOON 2+ 25 F		(5	13 1	5
692 - 254 1.8+	HOON 2+ 50 F		5	28 1	5 .
692 - 255 L8+	HOON 2+ 75 E		(5	16 1	4

1

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy, Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

OCTOBER 31, 1990

ET#	[)escripti	0N	 AU (ppb)	CU (ppm)	PB (ppm)	
==== 692 692 692 692 692 692 692 692 692 692	- 256 - 257 - 258 - 259 - 260 - 261 - 262 - 263 - 264 - 265 - 265 - 266 - 267 - 268	L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N L8+00N	3+ 00 3+ 25 3+ 50 3+ 75 4+ 00 4+ 25 4+ 50 4+ 75 5+ 00 5+ 25 5+ 50 5+ 75 6+ 00	 <pre></pre>	16 62 50 29 37 44 29 32 6 37 21 81 15	17 19 13 13 14 16 15 15 12 16 17 16 11	

NOTE: < = LESS THAN

...

ECO-TECH LABORATORIES B.C. Certified Assayer

SC90/1064#2

December 24, 1990

PAC03-1064-06-014

APPENDIX B.2

CERTIFICATES FOR ANALYSES - PROSPECTING SAMPLES

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JUNE 25, 1990

CERTIFICATE OF ANALYSIS ETK 90-188

. . . .

CORONA CORPORATION #1440, BOO WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE	IDENTIFICATION:	17 ROCK samples received June 20, 1990	
		PROJECT: 1064	
		P.O. NO.: 900058	
		Au Ag Cu Pb	
FTH	Description		

	ET#			Description	(666)	(ppm)	(ppm)	(ppm)	
	====	===	====			=======================================	=========================		============
	188		1	104951	180	.9	6	3	
~~	188		2	104952	70	<.1	6	4	
	188	~	3	104953	40	20.2	5	4763	
	188	-	4	104954	585	· 1.9	8	268	
	188	-	5	104955	200	.4	24	23	
	188		6	104956	640	5.0	5	1242	
	188	-	7	104957	120	.4	76	11	*
	188	-	8	104958	> 2000	>30.0	454	3685	
	188		9	104959	385	5.1	10	388	
	188	-	10	104960	260	1.3	11	30	
	188	-	11	104961	90	1.1	6	162	
	188		12	104962	630	8.8	18	1486	• :
	188	~	13	104963	130	3.6	8	582	: *
	188		14	104964	155	1.4	16	156	
	188	-	15	104965	15	.1	3	4	
	188	-	16	104966	30	. 1	30	.8	
	188	-	17	104967	145	.5	38	41	••

NOTE: < = LESS THAN > = GREATER THAN

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE/ B.C. CERTIFIED ASSAYER

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/CORONA 1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JUNE 25, 1990

CERTIFICATE OF ANALYSIS ETK 90-188 A

CORONA #1440, VANCOUV V6C 2V6	CORPORATION 800 WEST PENDER VER, B.C.	STREET	•	ASSAY	S	•
ATTENT	ION: JOHN BELLA	MY				!
SAMPL	IDENTIFICATION:	17 ROCI	K samples PROJECT: P.O. NO.: Au	received 1064 900058 Ag	June 20, 1990	
ET#	Description	(g/t)	(oz/t)	(g/t) =========		===========
188 -	8 104958	4.85	.141	41.2		

Miles. ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

۰.

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/CORONA 1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 5, 1990

CERTIFICATE OF ANALYSIS ETK 90-232 A ________________________________ ÷ CORONA CORPORATION #1440, BOO WEST PENDER STREET ASSAYS VANCOUVER, B.C. V6C 2V6 JOHN BELLAMY ATTENTION: 5 ROCK samples received June 28, 1990 SAMPLE IDENTIFICATION: 1064 PROJECT: P.O. NO.: 900058 SHIPMENT NO.: GL F1 Au Au (oz/t)(g/t) Description ET# ______ _______ .071 2.44 5 104972 232 -ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE CERNFLED ASSAYER B.C. RON WELLS cc: KAMLOOPS, B.C KAMLOOPS FAX: SC90/CORONA-1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 5, 1990

CERTIFICATE OF ANALYSIS ETK 90-232

1

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE	IDENTIFICATION:	5 ROCK samples PROJ	received ECT: 100	j June 28, 64 SH	1990 IPMENT NO.:	GL F1
ÈT#	Description	P.O. Au (ppb)	NO.: 90 Ag (ppm)	00058 Cu (ppm)	Pb (ppm)	Zn (ppm)
232 - 232 - 232 - 232 - 232 - 232 - 232 -	1 104968 2 104969 3 104970 4 104971 5 104972 > = GREATER THAN	======================================	.1 2.3 1.0 1.0 2 11.6	6 24 10 33 340	4 12 9 10 140	5 25 21 23 61
	$\langle \zeta \rangle$	ECO B.C	TECH LAB TÀ JEALOU . CERTIFI	ORATORIES I SE ED ASSAYER	TD.	
CC: R K FAX: SC90/C	CON WELLS		•			· · · ·

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hyy, Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 18, 1990

CERTIFICATE OF ANALYSIS ETK 90-282

ł

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE	IDE	NTIFICATION:	7 ROCK sample PROJECT: P.O. NO.:	s received 1064 900080	H JULY 10,	, 1990	
			Au	Ag	Cu	Pb	
ET#	[Description	(ppb)	(ppm)	(ppm)	(ppm)	
282 -	1	104701	225	1.8	162	14	
282 -	2	104702	> 1000	6.7	39	10	
282 -	З.	104703	>1000	22.8	526	1650	
282 -	4	104704	240	3.5	71	502	
282 -	5	104973	50	<.1	3	13	
282 -	6	104974	180	.9	31	11	
282 -	7	104975	15	.2	52	8	
ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C./CERTIFIED ASSAYER							
CC: R(DN WE			\checkmark			. •

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 18, 1990

ASSAYS

CERTIFICATE OF ANALYSIS ETK 90-282

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION:	7 ROCK samples received JULY 10, 1990
	PROJECT: 1064
	P.O. NO.: 900080
	Au Au
ET# Description	(g/t) (oz/t)

ŧ

====	====	===	=======================================	=======================================	
282	-	2	104702	3.03	.088
282	-	3	104703	4.57	.133

Cose ECONTECH LABORATORIES LTD. JUTTA JEALOUSE CERTIFIED ASSAYER R.C

cc: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 31, 1990

CERTIFICATE OF ANALYSIS ETK 90-345

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

.

ATTENTION: JOHN BELLAMY

SAMPLE ID	ENTIFICATION: 3	35 ROCK sample	es received	JULY 24	, 1990	
		PROJECT:	1064 GL.			
		P.O. NO.:	900080			
		Au	Ag	Ęu	Pb	
ET#	Description .	(ppb)	(ppm)	(poų)	(ppm)	
=======================================		=======================================		<u> </u>	=========	
345 - 1	104705	> 1000	3<1	- 24	12.	
345 - 2	104706	355		23	9	
345 - 3	104707	345	1.9	38	11	
345 - 4	104708	270	1.7	✓22	13	
345 - 5	104709	600	V 2/2	24	7	
345 - 6	104710	29	(.1	4	6	
345 - 7	104711	20	.2	21	19	
345 - 8	104712		2.3	397	- 11	
345 - 9	104713	() 65	• .8	461	- 12	
345 - 10	104714		.2	47	10	
345 - 11	104715	1000	22.2	30	4810	
345 - 12	104716	1000	> 30.0	13	2190	• •
345 - 13	104717	>1000	14.2	7	301	
345 - 14	104718	/ 40	.7	8	22	
345 - 15	10 719	630	4.5	27	51	-1
345 - 16	104720	340	.8	42	10	
345 - 17	104721	360	. 9	8	12	
345 - 18	104722	40	.6	3	9	
345 - 19	104723	>1000	6.3	14	8	
345 - 20	104724	>1000	2.3	43	11	
345 - 21	104725	60	.9	216	10	
345 - 22	104726	65	.2	23	8	
345 - 23	104727	95	1.3	29	9	
345 - 24	104728	- 35	.2	201	11	
345 - 25	104729	35	<.1	122	10	
345 - 26	10976	>1000	10.4	13	1760	
345 - 27	. 10977	15	. 4	113	12	
345 - 28	10978	565	2.0	/ 37	116	
345 - 29	10979	> 1000	10.8	31	16	
345 - 20	10980	155	17	22	202	

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA COP	PORATION		JULY 31, 19	990		
ET# =*==========	Description	Au (ppb)	Ag (ppm) 1	Cu (ppm)	РЬ (ррм)	
345 - 31 345 - 32 345 - 33 345 - 34 345 - 35	10981 10982 10983 10984 10985	750 > 1000 60 555 20 ECO-TECH JUTTA JEA B.C. CERT	17.3 .8 (.1 4.5 (.1 LABORATORIE LOUSE IFIED ASSA)	431 14 7 12 5 	2930 19 21 80 71	
CC: RON W KAMLO FAX: KAM SC90/1064	UELLS IOPS, B.C. ILOOPS					

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 31, 1990

CERTIFICATE OF ANALYSIS ETK 90-345

Ŧ

ASSAYS

CÒRONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

I

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

METALLIC CALCULATION

SAMPLE NUMBER	-140 VALUE	+140 VALUE	CALCULATED VALUE
345-12	8.53	3.190678	8.285911

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 15, 1990

CERTIFICATE OF ANALYSIS ETK 90-407

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE	I DEN	TIFICATION:	18 ROCK sample PRO	s received a JECT: 1064	August 3, SH	1990 IPMENT NO.:	:
			P.0	. NO.: 90-	0114	1	
			Au	Ag	Cu	Pb	
ET#	D	escription	(ppb)	(ppm)	(ppm)	(ppm)	
407 -	1	104731	25	.5	<u></u> 92	13	
407 -	2	104732	305	.2	52	<u> </u>	
407 -	3	104733	55	2-	50	9	
407 -	4	104734	125	.3-	/74	13	
407 -	5	104735.	<5	<.1 ¹	26	8	
407 -	6	104736	45	~\.7 <	428	35	
407 -	7	104737	5	121	20	6	
407 -	8	104738	20	\ k.\/	37	6	
407 -	9	104739	1 15) k.1	9 2	. 7	
407 -	10	104740	-1 12	/ /<.1	14	· 7	
407 -	11	104741	1000	26.7	334	2300	
407 -	12	104742	~ 1250	1.9	2	29	
407 -	13	104743	55	.3	3	8	
407 -	14	10474	/ 295	.4	a 3	5	
407 -	.15	104745	<5	<.1	31	22	
407 -	16	104946	35	.3	18	43	
407 -	17	104747	<5	<.1	15	14	
407 -	18	104748	20	.7	21	9	

NOTE: > = GREATER THAN

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/CORONA-1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 15, 1990

CERTIFICATE OF ANALYSIS ETK 90-407A

ASSAYS

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

18 ROCK samples received AUGUST 3, 1990 SAMPLE IDENTIFICATION: PROJECT: 1064 _____ P.O. NO.: 90-0114 AU AU (oz/t) Description (g/t) ET# ;pć≥s ______ ______ €__06 .060 407 -104741 11 ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER cc: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/CORONA-1064

۰. ۲

ECO-TECH LABORATORIES LTD.

4

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 3, 1990

C 198Description(tppd)(tppd)(tppd)(tppm)(tppm)231- 76L1+ 00\$15 + 25 E152916231- 77L1+ 00\$15 + 75 E204737231- 78L1+ 00\$16 + 00 E703717231- 80L1+ 00\$16 + 25 E(53517231- 80L1+ 00\$16 + 75 E(51716231- 81L1+ 00\$17 + 00 E355522231- 84L1+ 00\$17 + 75 E757017231- 84L1+ 00\$17 + 75 E757017231- 86L1+ 00\$17 + 75 E757017231- 87L2 + 00N 11 + 25 E(51015231- 89L2 + 00N 11 + 25 E(51015231- 90L2 + 00N 12 + 25 E1603726231- 92L2 + 00N 12 + 25 E1203114231- 92L2 + 00N 12 + 25 E16013726231- 94L2 + 00N 13 + 25 E51726231- 94L2 + 00N 13 + 50 E159316231- 97L2 + 00 <th></th> <th></th> <th>Au</th> <th>Cu</th> <th>Pb</th>			Au	Cu	Pb
231-76L1+00S15+25E152916231-77L1+00S15+75E204737231-80L1+00S15+75E251714231-80L1+00S16+75E451716231-81L1+00S17+75E451716231-83L1+00S17+75E171618371231-84L1+00S17+75E757017231-86L1+00S17+75E757017231-87L1+00S17+75E757017231-87L2+00N11+25E151515231-91L2+00N11+25E161518231-91L2+00N12+25E1616172	ET#	Uescription	(ppp) ==========	(ppm) ==========	(ppm)
231-77L1+00\$15+50E204737231-78L1+00\$16+75E(51914231-79L1+00\$16+50E(51614231-80L1+00\$16+50E(51614231-81L1+00\$17+25E(51716231-83L1+00\$17+25E175183371231-84L1+00\$17+25E175183371231-84L1+00\$17+75E757017231-86L2+00N11+25E1015231-87L2+00N11+25E1015231-87L2+00N11+25E1612231-87L2+00N12+25E1613231-97L2 <t< td=""><td>231 -</td><td>76 L 1 + 00 S 15 + 25 E</td><td>1 5</td><td>29</td><td>. 16</td></t<>	231 -	76 L 1 + 00 S 15 + 25 E	1 5	29	. 16
231 $- 78$ L1 $+ 00$ S15 $+ 75$ E (5) 19 14 231 $- 80$ L1 $+ 00$ S16 $+ 25$ E 70 37 17 231 $- 80$ L1 $+ 00$ S16 $+ 25$ E (5) 16 14 231 $- 83$ L $1 + 00$ S 16 $+ 75$ E (5) 17 16 231 $- 83$ L $1 + 00$ S 17 $+ 25$ E 17 183 371 231 $- 84$ L $1 + 00$ S 17 $+ 25$ E 75 70 17 231 $- 85$ L $1 + 00$ S 17 $+ 75$ E 75 70 17 231 $- 86$ L $1 + 00$ S 17 $+ 75$ E 75 70 17 231 $- 87$ L $2 + 00$ N 11 $+ 25$ E 75 70 17 231 $- 87$ L $2 + 00$ N 11 $+ 25$ E 52 10 15 231 $- 97$ L $2 + 00$ N $12 + 25$ E 120 31 14 231 $- 97$ L $2 + 00$ N $12 + 25$ E 16 137 26 231 $- 97$ L $2 + 00$ N $12 + 75$ E 40 43 24 231 $- 97$ L $2 + 00$ N $13 + 25$ E<	231 -	77 L 1 + 00 S 15 + 50 E	20	47	37
231 -79L1 +00S16 +00E703717231 -80L1 +00S16 +50E(5)3517231 -81L1 +00S16 +50E(5)1714231 -83L1 +00S17 +25E(5)1714231 -84L1 +00S17 +25E17183371231 -86L1 +00S17 +75E757017231 -86L1 +00S17 +75E757017231 -88L2 +00N11 +25E(5)1015231 -88L2 +00N11 +25E(5)1015231 -90L2 +00N11 +75E52514231 -91L2 +00N11 +75E52514231 -92L2 +00N12 +75E404324231 -92L2 +00N12 +75E404324231 -94L2 +00N13 +75E101726231 - <td>231 -</td> <td>78 L 1 + 00 S 15 + 75 E</td> <td><5</td> <td>19</td> <td>14</td>	231 -	78 L 1 + 00 S 15 + 75 E	<5	19	14
231-80L1+00S16+50E(5)1614231-82L1+00S16+75E(5)1614231-83L1+00S17+100E355522231-84L1+00S17+50E258722231-86L1+00S17+50E258722231-86L1+00S18+75E757077231-87L2+00N11+50E1015231-90L2+00N11+50E151015231-90L2+00N11+75E52514231-90L2+00N12+251214231-91L2+00N12+251414231-92L2+00N12+251414231-92L2+00N1	231 -	79 L 1 + 00 S 16 + 00 E	70	37	17
231-81L1+00S16+755512231-83L1+00S17+00E355522231-84L1+00S17+25E175183371231-86L1+00S17+75E757017231-86L1+00S17+75E757017231-87L1+00S17+75E757017231-87L1+00S17+75E757017231-88L2+00N11+20E107217231-98L2+00N11+25E1015231-91L2+00N12+25E1613726231-92L2+00N12+25E1613726231-92L2+00N12+25E101518231-92L<	231 -	80 L 1 + 00 S 16 + 25 E	<5	35	17
231 -82L1+ 00516 + 75E(5)1716231 -83L1+ 00517 + 25E175183371231 -84L1 + 00517 + 75E258722231 -86L1 + 00517 + 75E757017231 -88L2 + 00N11 + 75E757017231 -88L2 + 00N11 + 25E(5)1015231 -90L2 + 00N11 + 25E(5)1015231 -90L2 + 00N11 + 50E(5)2221231 -91L2 + 00N12 + 55E52514231 -92L2 + 00N12 + 55E16013726231 -93L2 + 00N12 + 25E16013726231 -94L2 + 00N13 + 25E51726231 -97L2 + 00N13 + 25E101518231 -97L2 + 00N13 + 25E103715231 -98L2 + 00N13 + 25E103612231 -98L2 + 00N13 + 25E <t< td=""><td>231 -</td><td>81 L 1 + 00 S 16 + 50 E</td><td>(5</td><td>16</td><td>14</td></t<>	231 -	81 L 1 + 00 S 16 + 50 E	(5	16	14
231-83L1+00S17+00E353532231-85L1+00S17+55E1718371231-87L1+00S17+75E7017231-87L1+00S17+75F7017231-88L2+00N11+100E305926231-88L2+00N11+50E107217231-90L2+00N11+75E1015231-90L2+00N12+75E1015231-91L2+00N12+75E404324231-93L2+00N12+75E404324231-94L2+00N13+75E101518231-96L2+00N13+75E101516231-97L2+<	231 -	82 L 1 + 00 S 16 + 75 E	(5	• 17	16
231 -85L1+ 00S17+ 25E17/518337/1231 -86L1+ 00S17+ 75E757017231 -87L1+ 00S17+ 75E757017231 -87L1+ 00S17+ 75E305926231 -88L2+ 00N11+ 25E(51015231 -90L2+ 00N11+ 75E52514231 -91L2+ 00N11+ 75E52514231 -92L2+ 00N12+ 25E16013726231 -93L2+ 00N12+ 25E16013726231 -94L2+ 00N12+ 75E101518231 -94L2+ 00N12+ 75E101518231 -97L2+ 00N13+ 75E101518231 -97L2+ 00N13+ 75E103715231 -98L2+ 00N13+ 75E101818231 -<	231 -	83 L 1 + 00 S 17 + 00 E	35	55	22
231-86L1+50L258722231-86L1+00S1775E757017231-87L1+00S18+00E305926231-87L2+00N11+20E107217231-89L2+00N11+20E107217231-90L2+00N11+75E52514231-91L2+00N12+75E1613726231-91L2+00N12+75E1613726231-94L2+00N12+75E101518231-94L2+00N13+25E51726231-97L2+00N13+25E101518231-97L2+00N13+25E101212231-100L2+0	231 -	84 L 1 + 00 S 17 + 25 E	175	183	3/1
231 - 86 $L 1 + 00$ $S 17 + 75$ $L - 75$ 70 17 $231 - 87$ $L 2 + 00$ $N 11 + 00$ E 30 57 26 $231 - 87$ $L 2 + 00$ $N 11 + 25$ E 10 72 17 $231 - 90$ $L 2 + 00$ $N 11 + 25$ E 5 22 21 $231 - 91$ $L 2 + 00$ $N 11 + 75$ E 5 25 14 $231 - 92$ $L 2 + 00$ $N 12 + 25$ E 160 137 26 $231 - 93$ $L 2 + 00$ $N 12 + 25$ E 160 137 26 $231 - 94$ $L 2 + 00$ $N 12 + 25$ E 160 137 26 $231 - 94$ $L 2 + 00$ $N 12 + 25$ E 10 15 18 $231 - 97$ $L 2 + 00$ $N 13 + 25$ E 5 17 26 $231 - 97$ $L 2 + 00$ $N 13 + 50$ E 10 37 15 $231 - 97$ $L 2 + 00$ $N 13 + 55$ 10 37 15 $231 - 100$ $L 2 + 00$ $N 14 + 25$ E 10 18 $231 - 103$ $L 2 + 00$ $N 14 + 25$ E 10 9 $231 - 103$ $L 2 + 00$ $N 15 + 50$ E 5 32 $231 - 104$ $L 2 + 00$ $N 15 + 55$ E 5 32 $231 - 106$ $L 2 + 00$ $N 15 + 55$ 5 32 16 $231 - 107$ $L 2 + 00$ $N 15 + 55$ 5 32 16 <	231 -	85 L 1 + 00 S 17 + 50 E	23	8/	22
231 -88L2 + 00N11 + 00E303728231 -89L2 + 00N11 + 25E(51015231 -90L2 + 00N11 + 75E(52221231 -91L2 + 00N11 + 75E52514231 -92L2 + 00N12 + 75E16013726231 -94L2 + 00N12 + 75E16013726231 -94L2 + 00N12 + 75E101518231 -94L2 + 00N13 + 75E101518231 -96L2 + 00N13 + 25E51726231 -97L2 + 00N13 + 25E51726231 -98L2 + 00N13 + 25E103715231 -99L2 + 00N13 + 50E103715231 -100L2 + 00N14 + 25E101818231 -101L2 + 00N14 + 75E101917231 -102L2 + 00N15 + 75E101917231 -104L2 + 00N15 + 75E1014	231 -	86 L I + 00 S I/ + /5 E	-75	70 50	17
231 -89L2 +00N11+30E157217231 -90L2 +00N11+50E(51015231 -91L2 +00N11+75E(52221231 -92L2 +00N12 +75E16013726231 -93L2 +00N12 +25E16013726231 -93L2 +00N12 +25E16013726231 -94L2 +00N12 +75E404324231 -96L2 +00N13 +75E101518231 -97L2 +00N13 +75E103715231 -98L2 +00N13 +75E103715231 -98L2 +00N14 +75E103715231 -101L2 +00N14 +75E10917231 -104L2 +00N15 +755333313231 -104L2 +00N15 +755328<	231 -	87 L 1 + 00 S 18 + 00 E	30	57 77	17
231-90L2+00N11+25L1011231-91L2+00N11+75E52514231-92L2+00N11+75E52514231-92L2+00N12+552514231-93L2+00N12+551726231-94L2+00N12+75E404324231-95L2+00N13+75E101518231-96L2+00N13+75E103715231-97L2+00N13+75E103715231-100L2+00N14+25E101726231-101L2+00N14+25E101716231-102L2+00N14+25E10171717181231612312316 <td>231 -</td> <td></td> <td>10</td> <td>10</td> <td>15</td>	231 -		10	10	15
23191L2 $+$ 00N11 $+$ 75E52514231-92L2 $+$ 00N12 $+$ 25E1203114231-93L2 $+$ 00N12 $+$ 25E16013726231-94L2 $+$ 00N12 $+$ 25E16013726231-94L2 $+$ 00N12 $+$ 75E404324231-95L2 $+$ 00N13 $+$ 00E101518231-97L2 $+$ 00N13 $+$ 25E51726231-98L2 $+$ 00N13 $+$ 50E159316231-98L2 $+$ 00N13 $+$ 50E159316231-100L2 $+$ 00N14 $+$ 25E103715231-100L2 $+$ 00N14 $+$ 25E101818231-102L2 $+$ 00N15 $+$ 25E10917231-103L2 $+$ 00N15 $+$ 25E10917231 <td>231 -</td> <td>90 + 2 + 00 + 11 + 50 E</td> <td>(5</td> <td>22</td> <td>21</td>	231 -	90 + 2 + 00 + 11 + 50 E	(5	22	21
231-92L2+00N12+00E1203114231-93L2+00N12+25E16013726231-94L2+00N12+50E404324231-95L2+00N13+75E404324231-97L2+00N13+75E101518231-97L2+00N13+50E159316231-98L2+00N13+50E159316231-98L2+00N13+50E159316231-100L2+00N14+50E655819231-101L2+00N14+75E10917231-104L2+00N15+7553238231-104L2+00N15+75E533216231-	231 -	91 2 + 00 N 11 + 75 E	. 5	25	14
231-93L2+00N12+25E16013726231-94L2+00N12+75E404324231-95L2+00N12+75E404324231-96L2+00N13+75E101518231-97L2+00N13+75E103715231-98L2+00N13+75E103715231-100L2+00N13+75E101818231-101L2+00N14+25E101818231-102L2+00N14+25E101818231-103L2+00N15+25E101818231-103L2+00N15+25E101717231-104L2+00N15+7553313231316<	231 -	92 + 2 + 00 + 12 + 00 = 00	120	31	14
231-94L2+00N12+50E(5)3811231-95L2+00N12+75E404324231-96L2+00N13+00E101518231-97L2+00N13+50E159316231-98L2+00N13+75E103715231-100L2+00N13+75E101818231-101L2+00N14+50E655819231-102L2+00N14+75E101818231-103L2+00N15+50E5532331231-104L2+00N15+50E(5238231-106L2+00N15+50E(53013231-107L2+00N15+50E(53216	231 -	93 L 2 + 00 N 12 + 25 E	160	137	26
231 - 95 L $2 + 00$ N $12 + 75$ E 40 43 24 $231 - 96$ L $2 + 00$ N $13 + 00$ E 10 15 18 $231 - 97$ L $2 + 00$ N $13 + 25$ E 5 17 26 $231 - 98$ L $2 + 00$ N $13 + 55$ E 15 93 16 $231 - 98$ L $2 + 00$ N $13 + 75$ E 10 37 15 $231 - 100$ L $2 + 00$ N $14 + 25$ E 10 18 18 $231 - 101$ L $2 + 00$ N $14 + 25$ E 10 18 18 $231 - 102$ L $2 + 00$ N $14 + 75$ E 10 9 17 $231 - 104$ L $2 + 00$ N $15 + 75$ E $(5$ 23 8 $231 - 105$ L $2 + 00$ N $15 + 25$ E $(5$ 23 8 $231 - 106$ L $2 + 00$ N $15 + 75$ E $(5$ 31 16 $231 - 107$ L $2 + 00$ N $16 + 25$ E 5 32 16 $231 - 108$ L $2 + 00$ N $16 + 25$ E 5 32 16 $231 - 109$ L $2 + 00$ N $16 + 75$ E 5 37 26 $231 - 110$ L $2 + 00$ N $17 + 55$ 5 35	231 -	94 L 2 + 00 N 12 + 50 E	<5	38	11
231 - 96L $2 + 00$ N $13 + 00$ E101518 $231 - 97$ L $2 + 00$ N $13 + 25$ E51726 $231 - 98$ L $2 + 00$ N $13 + 25$ E159316 $231 - 99$ L $2 + 00$ N $13 + 75$ E103715 $231 - 100$ L $2 + 00$ N $14 + 25$ E101818 $231 - 101$ L $2 + 00$ N $14 + 25$ E101818 $231 - 102$ L $2 + 00$ N $14 + 75$ E655819 $231 - 103$ L $2 + 00$ N $15 + 50$ E655319 $231 - 104$ L $2 + 00$ N $15 + 50$ E(5238 $231 - 104$ L $2 + 00$ N $15 + 55$ E(5238 $231 - 106$ L $2 + 00$ N $15 + 75$ E(56116 $231 - 107$ L $2 + 00$ N $16 + 00$ E254022 $231 - 109$ L $2 + 00$ N $16 + 75$ E(53726 $231 - 111$ L $2 + 00$ N $16 + 75$ E(53726 $231 - 112$ L $2 + 00$ N $17 + 50$ E(52118 $231 - 113$ L $2 + 00$ N $17 + 50$ E252118 231	231 -	95 L 2 + 00 N 12 + 75 E	40	43	24
231 - 97L $2 + 00$ N $13 + 25$ E 5 17 26 $231 - 98$ L $2 + 00$ N $13 + 50$ E 15 93 16 $231 - 99$ L $2 + 00$ N $13 + 75$ E 10 37 15 $231 - 100$ L $2 + 00$ N $14 + 25$ E 10 18 18 $231 - 101$ L $2 + 00$ N $14 + 25$ E 10 18 18 $231 - 102$ L $2 + 00$ N $14 + 75$ E 65 58 19 $231 - 103$ L $2 + 00$ N $15 + 50$ E 65 58 19 $231 - 104$ L $2 + 00$ N $15 + 75$ E 65 23 8 $231 - 105$ L $2 + 00$ N $15 + 75$ E $(5$ 23 8 $231 - 106$ L $2 + 00$ N $15 + 75$ E $(5$ 30 13 $231 - 107$ L $2 + 00$ N $16 + 25$ E 5 32 16 $231 - 108$ L $2 + 00$ N $16 + 25$ E 5 32 16 $231 - 110$ L $2 + 00$ N $16 + 75$ E $(5$ 20 18 $231 - 111$ L $2 + 00$ N $17 + 25$ E 15 43 21 $231 - 112$ L $2 + 00$ N $17 + 25$ E 15 43 21 <tr< tbody=""></tr<>	231 -	96 L 2 + 00 N 13 + 00 E	10	15	18
231 - 98 L $2 + 00$ N $13 + 50$ E 15 93 16 $231 - 99$ L $2 + 00$ N $13 + 75$ E 10 37 15 $231 - 100$ L $2 + 00$ N $14 + 00$ E 60 36 12 $231 - 101$ L $2 + 00$ N $14 + 25$ E 10 18 18 $231 - 102$ L $2 + 00$ N $14 + 75$ E 65 58 19 $231 - 103$ L $2 + 00$ N $15 + 50$ E 65 58 19 $231 - 104$ L $2 + 00$ N $15 + 25$ E $(5 - 23)$ 8 $231 - 105$ L $2 + 00$ N $15 + 25$ E $(5 - 30)$ 13 $231 - 106$ L $2 + 00$ N $15 + 75$ E $(5 - 61)$ 16 $231 - 107$ L $2 + 00$ N $16 + 25$ E 5 32 16 $231 - 107$ L $2 + 00$ N $16 + 25$ E 5 32 16 $231 - 107$ L $2 + 00$ N $16 + 75$ E $(5 - 20)$ 18 $231 - 110$ L $2 + 00$ N $16 + 75$ E $(5 - 37)$ 26 $231 - 111$ L $2 + 00$ N $17 + 25$ E $15 - 43$ 21 $231 - 112$ L $2 + 00$ N $17 + 75$ E $10 - 46$ 12	231 -	97 L 2 + 00 N 13 + 25 E	5	17	26
231 - 99 $L 2 + 00$ $N 13 + 75$ E 10 37 15 $231 - 100$ $L 2 + 00$ $N 14 + 00$ E 60 36 12 $231 - 101$ $L 2 + 00$ $N 14 + 25$ E 10 18 18 $231 - 102$ $L 2 + 00$ $N 14 + 50$ E 65 58 19 $231 - 103$ $L 2 + 00$ $N 14 + 75$ E 10 9 17 $231 - 104$ $L 2 + 00$ $N 15 + 00$ E 85 75 53 $231 - 105$ $L 2 + 00$ $N 15 + 25$ E $(5$ 23 8 $231 - 106$ $L 2 + 00$ $N 15 + 75$ E $(5$ 30 13 $231 - 107$ $L 2 + 00$ $N 15 + 75$ E $(5$ 30 13 $231 - 107$ $L 2 + 00$ $N 16 + 00$ E 25 40 22 $231 - 107$ $L 2 + 00$ $N 16 + 50$ E $(5$ 20 18 $231 - 110$ $L 2 + 00$ $N 16 + 75$ E $(5$ 37 26 $231 - 111$ $L 2 + 00$ $N 17 + 50$ E $(5$ 37 26 $231 - 113$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $S 11 + 00$ E 70 28 12 $231 - 11$	231 -	98 L 2 + 00 N 13 + 50 E	15	93	16
231 - 100 $L 2 + 00$ $N 14 + 00$ E 60 36 12 $231 - 101$ $L 2 + 00$ $N 14 + 25$ E 10 18 18 $231 - 102$ $L 2 + 00$ $N 14 + 50$ E 65 58 19 $231 - 103$ $L 2 + 00$ $N 14 + 75$ E 10 9 17 $231 - 104$ $L 2 + 00$ $N 15 + 50$ E 85 75 53 $231 - 104$ $L 2 + 00$ $N 15 + 25$ E 5 23 8 $231 - 104$ $L 2 + 00$ $N 15 + 50$ E 5 30 13 $231 - 106$ $L 2 + 00$ $N 15 + 75$ E 5 30 13 $231 - 107$ $L 2 + 00$ $N 16 + 00$ E 25 40 22 $231 - 107$ $L 2 + 00$ $N 16 + 50$ E 5 32 16 $231 - 107$ $L 2 + 00$ $N 16 + 50$ E 5 37 26 $231 - 110$ $L 2 + 00$ $N 16 + 75$ E 5 37 26 $231 - 111$ $L 2 + 00$ $N 17 + 25$ E 15 43 21 $231 - 114$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 117$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 117$ <	231 -	99 L 2 + 00 N 13 + 75 E	10	37	15
231 - 101 L $2 + 00$ N $14 + 25$ E 10 18 18 $231 - 102$ L $2 + 00$ N $14 + 50$ E 65 58 19 $231 - 103$ L $2 + 00$ N $14 + 75$ E 10 9 17 $231 - 104$ L $2 + 00$ N $15 + 50$ E 85 75 53 $231 - 104$ L $2 + 00$ N $15 + 25$ C 23 8 $231 - 104$ L $2 + 00$ N $15 + 50$ C 530 13 $231 - 106$ L $2 + 00$ N $15 + 75$ C 530 13 $231 - 107$ L $2 + 00$ N $16 + 25$ E 5322 16 $231 - 108$ L $2 + 00$ N $16 + 25$ E 5322 16 $231 - 110$ L $2 + 00$ N $16 + 75$ E 5377 26 $231 - 111$ L $2 + 00$ N $17 + 25$ E 15 43 21 $231 - 112$ L $2 + 00$ N $17 + 25$ E 15 43 21 $231 - 114$ L $2 + 00$ N $17 + 75$ E 10 46 12 $231 - 116$ L $2 + 00$ S $11 + 25$ E 35 43 4 $231 - 117$ L $2 + 00$ S $11 + 25$ E 35 43 4 $231 - 118$ <t< td=""><td>231 -</td><td>100 L 2 + 00 N 14 + 00 E</td><td>60</td><td>36</td><td>12</td></t<>	231 -	100 L 2 + 00 N 14 + 00 E	60	36	12
231 - 102L $2 + 00$ N $14 + 50$ E 65 58 19 $231 - 103$ L $2 + 00$ N $14 + 75$ E 10 9 17 $231 - 104$ L $2 + 00$ N $15 + 00$ E 85 75 53 $231 - 105$ L $2 + 00$ N $15 + 25$ E 5 23 8 $231 - 106$ L $2 + 00$ N $15 + 25$ E 5 30 13 $231 - 106$ L $2 + 00$ N $15 + 75$ E 5 61 16 $231 - 107$ L $2 + 00$ N $16 + 75$ E 5 32 16 $231 - 107$ L $2 + 00$ N $16 + 25$ E 5 32 16 $231 - 107$ L $2 + 00$ N $16 + 75$ E 5 32 16 $231 - 110$ L $2 + 00$ N $16 + 75$ E 5 37 26 $231 - 112$ L $2 + 00$ N $17 + 50$ E 5 21 18 $231 - 113$ L $2 + 00$ N $17 + 55$ E 10 46 12 $231 - 116$ L $2 + 00$ N $17 + 75$ E 10 46 12 $231 - 116$ L $2 + 00$ S $11 + 00$ E 20 15 8 $231 - 117$ L $2 + 00$ S $11 + 25$ E 35 43 4 $231 - 117$ L $2 + 00$ <td< td=""><td>231 -</td><td>101 L 2 + 00 N 14 + 25 E</td><td>10</td><td>18</td><td>18</td></td<>	231 -	101 L 2 + 00 N 14 + 25 E	10	18	18
231 - 103 $L 2 + 00$ $N 14 + 75$ E 10 9 17 $231 - 104$ $L 2 + 00$ $N 15 + 00$ E 85 75 53 $231 - 105$ $L 2 + 00$ $N 15 + 25$ E $(5$ 23 8 $231 - 106$ $L 2 + 00$ $N 15 + 50$ E $(5$ 30 13 $231 - 107$ $L 2 + 00$ $N 15 + 75$ E $(5$ 61 16 $231 - 107$ $L 2 + 00$ $N 16 + 00$ E 25 40 22 $231 - 108$ $L 2 + 00$ $N 16 + 25$ E 5 32 16 $231 - 107$ $L 2 + 00$ $N 16 + 75$ E $(5$ 20 18 $231 - 110$ $L 2 + 00$ $N 16 + 75$ E $(5$ 37 26 $231 - 111$ $L 2 + 00$ $N 17 + 00$ E 35 66 18 $231 - 112$ $L 2 + 00$ $N 17 + 50$ E $(5$ 21 18 $231 - 113$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 114$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $S 11 + 00$ E 70 28 12 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 119$ $L 2 + 00$ $S 11 + 75$ E 25 25 8	231 -	102 L 2 + 00 N 14 + 50 E	65	58	19
231 - 104L2+00N15+00E857553 $231 - 105$ L2+00N15+25E(5238 $231 - 106$ L2+00N15+50E(53013 $231 - 107$ L2+00N15+75E(56116 $231 - 108$ L2+00N16+75E53216 $231 - 109$ L2+00N16+25E53216 $231 - 110$ L2+00N16+55E53726 $231 - 111$ L2+00N17+55E154321 $231 - 112$ L2+00N17+55E154321 $231 - 114$ L2+00N17+55E154321 $231 - 116$ L2+00N17+75E104612 $231 - 117$ L2+00S11+75E35434 $231 - 117$ L2+00S11+25E35434 $231 - 117$	231 -	103 L 2 + 00 N 14 + 75 E	10	9	17
231 - 105 $L 2 + 00$ $N 15 + 25$ E (5) 23 8 $231 - 106$ $L 2 + 00$ $N 15 + 50$ E (5) 30 13 $231 - 107$ $L 2 + 00$ $N 15 + 75$ E (5) 61 16 $231 - 108$ $L 2 + 00$ $N 16 + 00$ E 25 40 22 $231 - 109$ $L 2 + 00$ $N 16 + 25$ E 5 32 16 $231 - 110$ $L 2 + 00$ $N 16 + 25$ E 5 32 16 $231 - 111$ $L 2 + 00$ $N 16 + 75$ E (5) 37 26 $231 - 112$ $L 2 + 00$ $N 17 + 00$ E 35 66 18 $231 - 113$ $L 2 + 00$ $N 17 + 25$ E 15 43 21 $231 - 114$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 115$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $S 11 + 00$ E 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 117$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 119$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 120$ $L 2 + 00$ $S 11 + 75$ E 5 28 6	231 -	104 L 2 + 00 N 15 + 00 E	85	/5	53
231 - 106 $L 2 + 00$ $N 15 + 50$ E (5) 30 13 $231 - 107$ $L 2 + 00$ $N 15 + 75$ E (5) 61 16 $231 - 108$ $L 2 + 00$ $N 16 + 00$ E 25 40 22 $231 - 107$ $L 2 + 00$ $N 16 + 25$ E 5 32 16 $231 - 110$ $L 2 + 00$ $N 16 + 50$ E (5) 37 26 $231 - 111$ $L 2 + 00$ $N 16 + 75$ E (5) 37 26 $231 - 112$ $L 2 + 00$ $N 17 + 00$ E 35 66 18 $231 - 113$ $L 2 + 00$ $N 17 + 25$ E 15 43 21 $231 - 114$ $L 2 + 00$ $N 17 + 50$ E (5) 21 18 $231 - 115$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $N 18 + 00$ E 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 120$ $L 2 + 00$ $S 11 + 75$ E 5 28 6	231 -	105 L 2 + 00 N 15 + 25 E	. (5	23	. 8
231 - 107 $L 2 + 00$ $N 15 + 75$ E (5) 61 16 $231 - 108$ $L 2 + 00$ $N 16 + 00$ E 25 40 22 $231 - 107$ $L 2 + 00$ $N 16 + 25$ E 5 32 16 $231 - 110$ $L 2 + 00$ $N 16 + 50$ E (5) 20 18 $231 - 111$ $L 2 + 00$ $N 16 + 75$ E (5) 37 26 $231 - 112$ $L 2 + 00$ $N 17 + 00$ E 35 66 18 $231 - 113$ $L 2 + 00$ $N 17 + 25$ E 15 43 21 $231 - 114$ $L 2 + 00$ $N 17 + 50$ E (5) 21 18 $231 - 115$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $S 11 + 00$ E 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 120$ $L 2 + 00$ $S 11 + 75$ E 5 28 6	231 -	106 L 2 + 00 N 15 + 50 E		30	13
231 - 108 $L 2 + 00$ $N 18 + 00$ E 23 40 22 $231 - 109$ $L 2 + 00$ $N 16 + 25$ E 5 32 16 $231 - 110$ $L 2 + 00$ $N 16 + 50$ E $(5$ 20 18 $231 - 111$ $L 2 + 00$ $N 16 + 75$ E $(5$ 37 26 $231 - 112$ $L 2 + 00$ $N 17 + 00$ E 35 66 18 $231 - 113$ $L 2 + 00$ $N 17 + 25$ E 15 43 21 $231 - 114$ $L 2 + 00$ $N 17 + 50$ E $(5$ 21 18 $231 - 115$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $N 18 + 00$ E 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 120$ $L 2 + 00$ $S 11 + 75$ E 25 25 8	231 -	107 L 2 + 00 N 15 + 75 E	10	61	10
231 - 107 $L 2 + 00$ $N 16 + 23$ E 32 18 $231 - 110$ $L 2 + 00$ $N 16 + 50$ E $(5$ 20 18 $231 - 111$ $L 2 + 00$ $N 16 + 75$ E $(5$ 37 26 $231 - 112$ $L 2 + 00$ $N 17 + 00$ E 35 66 18 $231 - 113$ $L 2 + 00$ $N 17 + 25$ E 15 43 21 $231 - 114$ $L 2 + 00$ $N 17 + 50$ E $(5$ 21 18 $231 - 115$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $N 18 + 00$ E 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 120$ $L 2 + 00$ $S 11 + 75$ E 25 25 8	231 -	108 L 2 + 00 N 16 + 00 E	20	40	16
231 - 110 $L 2 + 00$ $N 18 + 30$ E 10 $231 - 111$ $L 2 + 00$ $N 16 + 75$ E $(5 37)$ 26 $231 - 112$ $L 2 + 00$ $N 17 + 00$ E 35 66 18 $231 - 113$ $L 2 + 00$ $N 17 + 25$ E 15 43 21 $231 - 114$ $L 2 + 00$ $N 17 + 50$ E $(5 21)$ 18 $231 - 115$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $N 18 + 00$ E 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 00$ E 70 28 12 $231 - 118$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 120$ $L 2 + 00$ $S 11 + 75$ E 5 28 6	231 -	107 L 2 + 00 N 16 + 25 L	J (5	20	10
231 - 111 $L 2 + 00$ $N 10 + 75$ $L 2 + 00$ $R 10 + 75$ $R 10 + 15$ <td>231 -</td> <td>110 L 2 + 00 N 16 + 30 L</td> <td>(5</td> <td>37</td> <td>26</td>	231 -	110 L 2 + 00 N 16 + 30 L	(5	37	26
231 - 112 $L 2 + 00$ $N 17 + 25$ $I5$ $I6$ $I6$ $231 - 113$ $L 2 + 00$ $N 17 + 25$ $I5$ $I5$ $I3$ 21 $231 - 114$ $L 2 + 00$ $N 17 + 50$ $I7$ $I5$ $I5$ 21 18 $231 - 115$ $L 2 + 00$ $N 17 + 75$ $I6$ $I0$ 46 12 $231 - 116$ $L 2 + 00$ $N 18 + 00$ $I6$ 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 00$ $I1$ 20 15 8 $231 - 118$ $L 2 + 00$ $S 11 + 25$ $I1$ 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 50$ $I1$ 25 25 8 $231 - 120$ $L 2 + 00$ $S 11 + 75$ $I1$ 5 28 6	231 -	112 + 2 + 00 + 12 + 00 = 112	35	57	18
231 - 114 $L 2 + 00$ $N 17 + 50$ $L 2$ 10 10 10 $231 - 115$ $L 2 + 00$ $N 17 + 75$ E 10 46 12 $231 - 116$ $L 2 + 00$ $N 18 + 00$ E 20 15 8 $231 - 117$ $L 2 + 00$ $S 11 + 00$ E 70 28 12 $231 - 118$ $L 2 + 00$ $S 11 + 25$ E 35 43 4 $231 - 119$ $L 2 + 00$ $S 11 + 50$ E 25 25 8 $231 - 120$ $L 2 + 00$ $S 11 + 75$ E 5 28 6	231 -	112 + 2 + 00 + 17 + 25 E	15	43	21
231 - 115 L 2 + 00 N 17 + 75 E 10 46 12 231 - 116 L 2 + 00 N 18 + 00 E 20 15 8 231 - 117 L 2 + 00 S 11 + 00 E 70 28 12 231 - 118 L 2 + 00 S 11 + 25 E 35 43 4 231 - 119 L 2 + 00 S 11 + 50 E 25 25 8 231 - 120 L 2 + 00 S 11 + 75 E 5 28 6	231 -	114 + 2 + 00 + 17 + 50 = 114	(5	21	18
231 - 116 L 2 + 00 N 18 + 00 E 20 15 8 231 - 117 L 2 + 00 S 11 + 00 E 70 28 12 231 - 118 L 2 + 00 S 11 + 25 E 35 43 4 231 - 119 L 2 + 00 S 11 + 50 E 25 25 8 231 - 120 L 2 + 00 S 11 + 75 E 5 28 6	231 -	115 + 2 + 00 + 17 + 75 =	10	46	12
231 - 117 L 2 + 00 S 11 + 00 E 70 28 12 231 - 118 L 2 + 00 S 11 + 25 E 35 43 4 231 - 119 L 2 + 00 S 11 + 50 E 25 25 8 231 - 120 L 2 + 00 S 11 + 75 E 5 28 6	231 -	116 L 2 + 00 N 18 + 00 E	20	15	8
231 - 118 L 2 + 00 S 11 + 25 E 35 43 4 231 - 119 L 2 + 00 S 11 + 50 E 25 25 8. 231 - 120 L 2 + 00 S 11 + 75 E 5 28 6	231 -	117 L 2 + 00 S 11 + 00 E	70	28	12
231 - 119 L 2 + 00 S 11 + 50 E 25 25 8. 231 - 120 L 2 + 00 S 11 + 75 E 5 28 6	231 -	118 L 2 + 00 S 11 + 25 E	35	43	4
231 - 120 L 2 + 00 S 11 + 75 E 5 28 6	231 -	119 L 2 + 00 S 11 + 50 E	25	25	છ.
	231 -	120 L 2 + 00 S 11 + 75 E	5	28	6

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

CORONA CORPORATION

JULY 3, 1990

ET#	Descripti	on	Ац (ppb)	Cu (ppm) ====	Pb (ppm)
231 -	31 1 1 + 00	N 11 + 25 F	110	275	33
231 -	32 L 1 + 00	N 11 + 50 E	145	194	· 26
231 -	33 L 1 + 00	N 11 + 75 E	(5	12	13
231 -	34 L 1 + 00	N 12 + 00 E	<5	11	· 23
231 -	35 L 1 + 00	N 12 + 25 E	15	110	· 20
231 -	36 L 1 + 00	N 12 + 50 E	<5	12	: 23
231 -	37 L 1 + 00	N 12 + 75 E	۲۵ (۲	15	22
231 -	38 L 1 + 00	N 13 + 00 E	5	62	28
231 -	39 L 1 + 00	N 13 + 25 E	10	18	17
231 -	40 L 1 + 00	N 13 + 50 E	45	124	16
231 -	41 L 1 + 00	N 13 + 75 E	10	38	23
231 -	42 L 1 + 00	N 14 + 00 E	30	27	21
231 -	43 L 1 + 00	N 14 + 25 E	20	27	17
231 -	44 L I + 00		165	42	14
231 -		N 14 + 75 E	105	190	37
231 -	46 L I + 00	N 15 + 00 E	355	54	18
231 -	47 L I + 00	N 15 + 50 F \sim	15	76	17
231 -	40 L 1 + 00	N 15 + 75 F	10	67	18
231 -	50 + 1 + 00	N = 16 + 00 = 100	10	59	25
231 -	51 L 1 + 00	N 16 + 25 E	5	84	19
231 -	52 L 1 + 00	N 16 + 50 E	5	35	16
231 -	53 L 1 + 00	N 16 + 75 E	40	49	15
231 -	54 L 1 + 00	N 17 + 00 E	25	41	41
231 -	55 L 1 + 00	N 17 + 25 E	· 60	63	22
231 -	56 L 1 + 00	N 17 + 50 E	20	18	14
231 -	57 L 1 + 00	N 17 + 75 E	5	37	17
231 -	58 L 1 + 00	N 18 + 00 E	10	44	. 14
231 -	59 L 1 + 00	S 11 + 00 E	35	30	13
231 -	60 L 1 + 00	5 11 + 25 E	+ () . 5	10	17
231 -	61 L 1 + 00	5 11 + 50 E	115	27	10
231 -	42 L I + 00	5 11 + 75 E	115	26	14
231 -	$63 \ 1 \ + \ 00$	5 12 + 25 F	25	27	16
231 -		5 12 + 25 E S 12 + 50 E	5	21	22
231 -	$66 \ 1 \ 1 \ + \ 00$	S 12 + 75 E	5	114	24
231 -	67 L 1 + 00	S 13 + 00 E	10	36	21
231 -	68 L 1 + 00	S 13 + 25 E	110	35	. 43
231 -	69 L 1 + 00	S 13 + 50 E	10	. 20	16
231 -	70 L 1 + 00	S 13 + 75 E	5	49	9
231 -	71 L 1 + 00	S 14 + 00 E	25	46	16
231 -	72 L 1 + 00	S 14 + 25 E	10	31	21
231 -	73 L 1 + 00	5 14 + 50 E	10	27	15
231 -	74 L 1 + 00	5 14 + 75 E	<5	39	20
-231 -	75 L 1 + 00	5 15 + 00 E	5	24	1/

Page 2

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 3, 1990

CERTIFICATE OF ANALYSIS ETK 90-231

1

CORONA CORPORATION #1,440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION:	232 SI	OIL samples	received	June 28	1990	
		PROJECT:	1064 SHI	PMENT NO).: GL	SOILS 1
		P.O. NO.:	900080)		
				Au	Ċu	РЬ

			Au	Cu	Pb.
ET#	Description		(ppb)	(ppm)	(ppm)
======			=======================================	===================	======
231 -	1 BL 0 + 00	11 + 00 E	215	139	33
231 -	2 BL 0 + 00	11 + 25 E	65	38	23
231 -	3 BL 0 + 00	11 + 50 E	10	37	16
231 -	4 BL 0 + 00	11 + 75 E	25	31	18
231 -	5 BL 0 + 00	12 + 00 E	- 10	40	10
231 -	6 BL 0 + 00	12 + 25 E	15	19	17
231 -	7 BL 0 + 00	12 + 50 E	30	56	14
231 -	8 BL 0 + 00	12 + 75 E	60	230	32
231 -	9 BL 0 + 00	13 + 00 E	. 45	111	41
231 -	10 BL 0 + 00	13 + 25 E	65	51	15
231 -	11 BL 0 + 00	13 + 50 E	5	34	12
231 -	12 BL 0 + 00	13 + 75 E	• 10	. 48	23
231 -	13 BL 0 + 00	14 + 00 E ·	30	73	15
231 -	14 BL 0 + 00	14 + 25 E	· 20	23	17
231 -	15 BL 0 + 00	14 + 50 E	25	19 .	13
231 -	16 BL 0 + 00	14 + 75 E	NO SAMPLE RECEIVED		
231 -	17 BL 0 + 00	15 ₽-00 E	30	64	55
231 -	18 BL 0 + 00	15 + 25 E	55	48	21
231 -	19 BL 0 + 00	15 + 50 E	90	319	31
231 -	20 BL 0 + 00	15 + 75 E	20	27	33
231 -	21 BL 0 + 00	16 + 00 E	65	48	42
231 -	22 BL 0 + 00	16 + 25 E	(5	14	18
231 -	23 BL 0 + 00	16 + 50 E	15	42	22
231 -	24 BL 0 + 00	16 + 75 E	(5	27	13
231 -	25 BL 0 + 00	17 + 00 <u>E</u>	15	27	20
231 -	26 BL 0 + 00	17 + 25 E	10	26	19
231 -	27 BL 0 + 00	17 + 50 E	15	31	27
231 -	28 BL 0 + 00	17 + 75 E	80	158	131
231 -	29 BL 0 + 00	18 + 00 E	_5	5	10
231 -	30 L 1 + 00 N	11 + 00 Ę	75	60	30

Page 1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 12, 1990

7 :

.

1

CERTIFICATE OF ANALYSIS ETK 90-549

CORONA CORPORATION \$1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION: 10 ROCK samples received SEPTEMBER 10, 1990 PROJECT: 1064 -590 P.O.# 90-0142

ET	ł	De	scription	BaO	P205	Si02	MnO	Fe203	Mg0	A 1203	Ca0	TiO2	NaQ2	K20	L.O.I.
3823		*****	======================================	12228222222	*****		22222	******			******	******	daa k aa		222223
549	-	6	RW1	<.01	.02	37.81	.17	11.61	44.78	. 29	.45	.03	.13	.32	4.12
549	-	7	RW2 [.]	<.01	.14	42.31	.16	10.85	26.80	2.15	10,96	~16	.42	.04	5.11
549	-	8	RW3	.01	.07	45.17	.15	8.35	21.65	1.29	15.61	.12	.18	2.30	5.03
549	-	9	20	.15	.33	61.54	.11	5.79	3.19	16.49	6.45	~_52	. 33	.40	3.74
549	-	10	21	.02	.12	46.75	.23	12.72	21.58	13,52	12.25	. 39	ં દર્શ, નુ	.26	.91

NOTE: VALUES EXPRESSED IN PERCENT

CC: ROB WELLS KAMLOOPS, B.C. FAX: KAMLOOPS

SC90/1064

C.C.

ECO-TECH-LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

10041 EAST TRAMS CAMADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

SEPTEMBER 7, 1990

VALUES IN PPH UNLESS OTHERWISE REPORTED

PROJECT: 1064 7 ROCK SAMPLES RECEIVED AUGUST 29, 1990

CORONA CORPORATION ETK90-506

\$1440, 800 WEST PENDER STREET

VANCOUVER, B.C.

V6C 2V6

ETA		DESCRIPTION AU	ppb)	AG	AL(\$)	AS	8	8A	81 0	CA(X)	CD	CO	CR	CU	FE(X)	'K(X)	LAN	G(X)		NO N	A(X)	NI.	P	P8	S8	SN	SRì	I(X)	U	V	W 	۲ 	ZN
506	- 1	93760	15	.2	.02	5	(2	60	(5	.76	(1	1	205	7	.33	.01	(10	.01	248	13	.03	3	40	202	(5	(20	39	(.01	(10	4	(10	1	97
506	- 2	93761	5	.2	1.18	5	{2	335	(5	.33	(1	12	115	24	2.28	.68	10	.87	428	6	.09	12	740	74	(5	(20	26	.12	(10	79	(10	2	79
506	- 3	93762	(5	.2	1.40	5	(2	35	(5	2.72	(l)	25	112	91	3.05	.09	(10	1.28	599	3	.05	31	1150	30	(5	(20	24	.11	(10	68	(10	3	67
506	- 4	93763	20	5.2	.0?	5	(2	10	(5	.89	(1	S	184	14	1.14	.01	(10	.02	487	23	.04	7	90	1286	(5	(20	106	(.01	(10	5	(10	2	90
506	- 5	93764	S	.2	.75	S	(2	75	(5	.52	(1	1	60	5	1.58	.61	(10	.67	280	4	.05	3	1030	22	5	(20	28	.08	(10	50	(10	2	42
506	- 6	93765	10	4.0	.21	5	(2	15	(5	2.34	(1	9	88	19	1.34	.12	(10	.28	392	5	.04	4	220	560	(5	(20	84	.01	(10	27	()0	2	11
506	- 1	93766	10	7.4	.15	S	(2	15	10	2.28	(1	6	135	9	1.15	.08	(10	.30	337	6	.05	12	50	1408	5	(20	18	.01	(10	17	(10	3	9

;

N

NOTE: (= LESS THAN

C.C: R.WELLS, KAMLOOPS ECD TECH LABORATORIES LAD. JOITA JEAL DUSE B.C. CERTIFIED ASSAYER

SC90/K1

10041 EAST TRANS CANADA HWY. Kahloops, B.C. V2C 2J3 Phome - 604-573-5700 Fax - 604-573-4557

SEPTEMBER 17, 1990

VALUES IN PPH UNLESS OTHERWISE REPORTED

CORONA CORPORATION - ETK 90-549

81440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLANY

PROJECT:1064 - 590 10 ROCK SAMPLES RECEIVED SEPTEMBER 10, 1990

	ET#		DESCRIPT	ION AUG	(ppb)	AG	AL(Z)	AS	B	BA	BI CA	(1)	CD	CO	CR	CU	FE(1)	K(Z)	u	HG(2)	HN	NO NA	(1)	NI	P	P8	SB	SN	SR	11(1)	U	۷	¥	Y	ZN
1t float	549	- 1	93767	west	185	<.2	. 26	<pre><5 </pre>	<2 /2	75	<pre> <5 2</pre>	.53	<1 /1	12	35	43	3.00	. 16	<10 /10	.64 72	1016	S. <	.01	17	1068	9.	<5 /5	<20 (20	93 07	<.01	14	6	(10	4	30
ytz frat	549 549	- 3	1900A	food	160	<.2 <.2	. 20 . 39	(5	<2 (2 (2	48 27	(5 3	.07		14	40 87	.94 .52	4.03	.25	11	1.08	1046	3 (.01	9	1424	<u>109</u>	(5	<20 (20	144 185	.02	16	33	<10 <10	6	38
,, ,,	549 549	- 5	19000	,. ,.	165	<.2 (.2	.34	(5 7	<2 27	28 (5	<53 <53	.75		10	58	64	3.63	.20	12 (10	.86	997 451	4 (.01	8 390	1308	76	<5 (5	<20 (20	144	.03	13 14	53 2	<10 <10	9 (1	31
, , , , , , , , , , , , , , , , , , ,	549	- 7 - R	RW2 RW3		5	<.2 (.2	.56	<s 14</s 	17	67 38	(5 (5	.27	(1 (1	67 64	284	6 11	5.08	.14	<10 <10	5.77	493 414		(.01 (.01	342 292	217	2 (2	(5 (5	(20 (20	16 5	.02	12 <10	25 19	<10 <10	(1 (1	22 17
	549 549	- 9 - 10	20 21		5	<.2 <.2	1.12	<5 <5	9 16	124 71	(5 (5	.67	(1 (1	10 54	75 504	15 51	2.46	.78	11 (10	.87 5.65	395 659	5 (1	.04	10 302	1059 206	2	(5 (5	<20 <20	38 10	.15 .05	<10 <10	65 67	<10 <10	7	36 38

NOTE: < = LESS THAN

3 lause ECO-TECH LABORATORIES ITO. JUTTA JEALOUSE CERTIFIED ASSAVER

SC90/CORONA#1064

10041 EAST TRANS CANADA NVY. RAMLOOPS, B.C. V2C 233 PHONE - 604-573-5700 PAX - 604-573-4557

1

1

1

CORONA CORPORATION - ETK 90-669

11440, SOO VEST PENDER STREET VANCOUVER, B.C. VGC 2V6

.

OCTOBER 12, 1990

VALUES IN PPN UNLESS OTHERWISE REPORTED

PROJECT: 1064 P.6. # 90-0142 1 ROCK SAMPLE RECEIVED OCTOBER 4, 1990

669 - 1 93801 45 .4 1.21 5 198 115 <5 .82 <1 15 50 53 3.25 1.21 26 1.11 654 7 .05 11 1260 80 <5 <20 43 .14 <10 96	• • ••
669 - 1 93881 45 .4 1.21 5 198 115 <5 .82 <1 15 50 53 3.25 1.21 26 1.11 654 7 .05 11 1260 80 <5 <20 43 .14 <10 96	**************
	(10 6 62

BOTE: < = LESS THAN

CC: RON VELLS KANLOOPS, B.C. ECOTECE LABORATORIES VTD. JUTTA JEALOUSE B.C. CERTIFICO ASSATER

SC90/1064 #1

December 24, 1990

APPENDIX B.3

CERTIFICATES FOR ANALYSIS - WHOLE ROCK

PAC03-1064-06-011

November 24, 1990

1

LIST OF ROCK SAMPLES TAKEN FOR WHOLE ROCK ANALYSES

SAMPLE NO.	UNIT NO.	COMMENTS
1	5, 6	Equigranular monzonite, Trench 2
2	5, 6	Equigranular monzonite, Trench 1
3	5, 6c	Strongly carbonated and K-spar altered above Tr.1
4	5, 6c	Finer grained, K-spar altered above Tr.1
9.1	4	Coarse grained, hornblende gabbro, <10% feldspars (P+K)
9.2	4,5	Foliated monzodiorite, diorite >50% feldspars (P+K)
9.3	5	As 9.2 coarser grained
9.4	1	Serpentinized, FM grained ultramafic
9.5	1	Brown weathered, coarse grained peridotite/dunite
RW1	1, 1a	Fine grained peridotite? with biotite
RW2	1	Pegmatitic gabbro, peridotite with biotite
RW3	1a	Coarse grained, gabbro with biotite
20	7	Coarse grained, quartz monzonite with hornblende
21	1a	Coarse grained leucogabbro with biotite
93761	7	Monzonite, granodiorite east of fault

١

93762	3	Basaltic-andesite. Dum Lake road
93764	7	Foliated granodiorite, Thuya logging road
104730	7/6	Monzonite L600E 155S

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 20, 1990

ŧ

CERTIFICATE OF ANALYSIS ETK 90-281 A

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION: 5 ROCK samples received JULY 10, 1990 PROJECT: 1064 P.O.# 900080

et i	Des	cription		BaO	P 206	SiO2	MnO	Fe203	MgO	
===== 281 -	===== 1	9.1	===================	. 21	. 41	41.09	~~16	12.21	13.71	
281 -	2	9.2		.36	. 48	44.04	< .12	11.29	4.79	
281 -	3	9.3		. 44	.32	53.76	12	7.29	2.34	
281 -	4	9.4		.31	.06	28.89	.12	. 05	40.58	
281 -	5	9.5		.24	.11	33.51)	j .15 [`]	10.92	42.59	
					<	\mathbf{N}				
et#	Des	cription		A1208	CaO	Tioz	NaO2	K 20	,L.O.I.	=
ET# ====================================	Des ====== 1	cription ====================================	==========	A1208	Ca0	.97	NaO2 ======= 2.15	K2O ======== 1.81	,L.O.I. 	=
ET# ====== 281 - 281 -	Des ====== 1 2	cription 9.1 9.2		A1208	Ca0 13.88 10.05	.97 1.01	NaO2 2.15 3.97	K20 1.81 2.54	L.O.I. 1.10 1.60	#
ET # ====== 281 - 281 - 281 -	Des ====== 1 2 3	cription 9.1 9.2 9.3		A1208 12.14 19:37 19.07	Ca0 13.88 10.06 5.14	.97 1.01 .75	NaO2 2.15 3.97 4.00	K2O 1.81 2.54 3.23	L.O.I. 1.10 1.60 1.44	=
ET# 281 - 281 - 281 - 281 - 281 - 281 -	Des ====== 1 2 3 4	9.1 9.2 9.3 9.4	(A1208 12.14 19:37 19.07 .10	Ca0 13.98 10.06 5.44 1.24	.97 1.01 .75 <.01	NaO2 2.15 3.97 4.00 .14	K20 1.81 2.54 3.23 .02	L.O.I. 1.10 1.60 1.44 17.80	=

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/1070

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

10041 EAST TRANS CANADA HHY. Kamlodps, B.C. V2C 2J3 Phone - 604-573-5700 FAI - 604-573-4557

• •

CORONA CORPORATION - ETK 90-281

\$1440, BOO WEST PENDER STREET VANCOUVER, B.C. VGC 2V6

.*

ATTENTION: JOHN BELLAMY PROJECT: 1064 P.O. N.: 900080 5 RDCK SAMPLES RECEIVED JULY 10, 1990

ETH	DESCRIPTION	AG AL(Z)	AS	8	BA	BI CA(Z)) CD	CO	CR	CU FE	(%) K(%	0	LA MG(X)	MN	HO N	A(Z)	NI	P	PB	58 	SN	SR I	(<u>(</u>)	U 	۷ 	¥ 	1 =======	(K ====
*****	*****************	========================	******	22222	======	====================	*======	******	1212222										******									
201		1 2 1 29	10	6	255	(5 1.05	R (1	22	265	64 2	.53 .8	57	(10 2.03	377	2	. 08	103	1800	6	5	<20	45	.12	<10	95	<10	2	23
191 .		1.6 1.63	10	v	290		• ••											-	•		100	1 45		••	157	/10		S 1
201 .	. , , ,	(2150	5	4	220	<5 1.06	5 (1	23	51	20 4	.61 .7	11	(10 1.55	495	- 2	.04	- 12	2286	8	()	(20	102	• i D	10	135	716	•	11
201	2		•									n 0	10 1 91	707	e	63	•	1470	10	c	1.00	67	15	/10	99	/10	2	74
281		(.2 1.28	10	2	160	<5.84	4 (1	18	61	22 3	i.b/ .t	58	10 1.21	/8/	3	.03	- 4	14/0	10		120	0/	.13		- 11	114		
201	5 715								A0	~ F	- n/ /		/10 14 15	1062	2	A1	1064	40	0	5	(20	10	(01	(10	R .	210	(1	15
281	. 4 9.5	(.2 .02	15	- 14	5	(5.16	5 (1	113	78	23	1.30 .1	21	(10 14.12	1003	3	. 01	1004	40	6	J	120	10	1101	V10	v	\ • ¥		
201					-				~ ^	/1 6	- DE 1	A 4	/10 116	1102	Ę	61	1605	40	0	5	(20	•	2 01	10	7	<10	(1	- 22
281	· 5 9.6	(.2 .01	5	12	5	<2 '0	ડ હા	147	68	(I) 0		01	10 /13	1102	J		1003	V	0	J	150	4		1.4		× • •	· ·	
	v																											

NOTE: (= LESS THAN

JULY 16, 1990

VALUES IN PPN UNLESS OTHERWISE REPORTED

cc.: RON WELLS KAMLOOPS

FAX: RON WELLS

cuno SCO-TECH LABORALORTES LTD. JUTTA JEALOUSE CERTIFIED ASSAYER

SC30/1064

٩

1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

ł

AUGUST 3, 1990

CERTIFICATE OF ANALYSIS ETK 90-366B

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

÷

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION: 8 ROCK samples received JULY 25, 1990 PROJECT: 1070 MAG P.O.# 900086

BaO P205 **SiO2** Mn0 Fe203 Mg0 A1203 Ca0 **T**102 NaO2 K20 L.O.I. BT# Description 8.12 1.36 3.69 18.43 .71 1.01 1.85 104882 .16 .56 53.16 .19 10.42 366 -8 NOTE: VALUES EXPRESSED IN PERCENT CC: GRAEME EVANS KAMLOOPS, B.C. rens FAX: KAMLOOPS DECH LABORATORT SC90/1070 ECO. JUTTA JEALOUSE CERTIFIED ASSAFER B.

***/

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

AUGUST 3, 1990

CERTIFICATE OF ANALYSIS ETK 90-344

CORONA	CORI	PORAT	ION	
\$1440 ,	800	WEST	PENDER	STRBET
VANCOU	ver,	B.C.		
V6C 2V	5			

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION: 1 ROCK sample received JULY 24, 1990 PROJECT: 1064 - G.L. P.O.# 900080

et f	Description	BaO P2C		05 SiO2 M		Fe203	Mg0	A 1203	Cap	T ã02	NaO2	K 20	L.0.I.		
344 -	1 104730	.17	. 33	63.23	.10	5.30	1.70	16.05	4.21	. 59	3.17	2.73	1.80		
							A.R. C. C. C. C.		A State of the life	i, S					
·						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AND THE STATE		v ,	arran a					
NOT	E: VALUES EXPRESSED I	N PERCI	SNT		A STATE OF THE OWNER	>/		A ROAD AND A							
cc: RO	N WELLS			1				>							
KA Fax: 1	MLOOPS, B.C. KAMLOOPS			$\langle \rangle$	Alc)	<u></u>	0.02	· · ·						
SC90/10	64			CO-TECH UTIN VE	LABORA ALOUSE	TORIES I	LTD.								
		((KC. CER	TIFIED	ASSAYER									
													· •		

a sit to · <u>.</u> ·

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

١

SEPTEMBER 11, 1990

CERTIFICATE OF ANALYSIS ETK 90-506

CORONA	COR	PORAT	LON	
1440,	800	WEST	PENDER	STREET
VANCOUT	ver,	B.C.		
V6C 2V0	5			

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION: 7 ROCK samples received AUGUST 29, 1990 PROJECT: 1064 - G.L. P.O.# 900080

.

BTł	Description	BaO	P205	S102	MnO	Fe203	NgO	A1203	Ca0	TiO2	Na02	K20	L.O.I.
506 - 506 -	2 93761 3 93762	.12	. 20	67.00 51.35	.09	4.34	2.77	15.60 14.19	4.02 16.81	1.35	1.12	.98	1.00
506 - NOT CC: RO KA PAX: 5 SC90/10	5 93764 B: VALUES EXPRESSED N WELLS MLOOPS, B.C. KAHLOCPS 64	.13	.23	BC. C	.08 H LAB EALOU RTIFI	4.65	Z.ST	10 AS		- 2 3		1.25	.03

1

1

1

1

}

1

10041 EAST TRANS CANADA HWY. Kamlddps, B.C. V2C 2J3 Phone - 604-573-5700 FAI - 604-573-4557

SEPTEMBER 7, 1990

VALUES IN PPH UNLESS OTHERWISE REPORTED

CORONA CORPORATION ETK90-506

· · · ·]

#1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

- n

PROJECT: 1064 7 ROCK SAMPLES RECEIVED AUGUST 29, 1990

ETŧ		DESCRIPTION	AU(ppb)	AG	AL(2)	AS	8	BA	BE CA(Z)	CD	CO	CR	CU FI	E(1)	K(Z)	LA	M6(Z)	MN	10	NA(Z)	NI	P	PB	58	SX	SR	[[(])	IJ	٧	W	Y	ZX
506	- 1	93760	15	.2	.02	5	<2	60	<5.76	(1	1	205	7	.33	.01	(10	.01	248	13	.03	3	40	202	<5	<20	39	<.01	<10	4	<10	1	97
506 ·	- 2	93761	5	.2	1.18	5	(2	335	(5.33	<1	12	115	24	2.28	. 68	10	.87	428	6	.09	12	740	74	<5	<20	26	.12	<10	79	(10	2	79
506 -	- 3	93762	(5	.2	1.40	5	<2	35	(5 2.72	<1	25	112	91 :	3.05	. 09	<10	1.28	599	3	.05	34	1150	30	<5	<20	24	.11	(10	68	<10	3	67
506 ·	- 4	93763	20	5.2	.07	5	<2	10	(5.89	(1	5	184	14	1.14	. 01	<10	.02	487	23	.04	7	90	1286	<5	< 20	106	(.01	<10	5	(10	2	90
506	- 5	93764	5	.2	.75	5	<2	75	(5.52	<1	1	60	5	1.58	.61	<10	.67	280	4	.05	3	1030	22	5	(20	28	. 08	<10	50	(10	2	42
506 ·	6	93765	10	4.0	.21	5	<2	15	(5 2.34	(1	9	88	19	1.34	.12	<10	. 28	392	5	.04	4	220	560	<5	(20	84	.01	<10	27	<10	2	11
506 ·	• 7	93766	10	7.4	.15	5	<2	15	10 2.28	(1	6	135	9	1.15	. 08	<10	.30	337	6	.05	12	50	1408	5	<20	t 8	.01	<10	17	<10	3	9

NOTE: < = LESS THAN

C.C: R.WELLS, KAMLOOPS

SC90/K1

ttU ouse ECO-JECH LABORATORIES CTO. JUNTA JEALOUSE B.C. CERTIFIED ASSAVED

December 24, 1990

PAC03-1064-06-014

ŧ

APPENDIX B.4

GEOCHEMICAL DIAGRAMS

FIGURE 9. TOTAL ALKALIS-SILICA DIAGRAM FOR GOLDEN LOON ROCK TYPES

Irvine and Baragar (1971) Fields for alkaline, sub-alkaline

.

4

December 24, 1990

PAC03-1064-06-014

APPENDIX B.5

SOIL GEOCHEMICAL MAPS

December 24, 1990

PAC03-1064-06-014

APPENDIX C

GEOPHYSICAL DATA

PSEUDOSECTIONS - I.P SURVEY SCOTT GEOPHYSICS

LOGISTICS REPORT

INDUCED POLARIZATION SURVEY

GOLDEN LOON PROJECT CORONA CORPORATION

Kamloops, B.C.

Ву

SCOTT GEOPHYSICS LTD 4013 W 14th Ave Vancouver, B.C. V6R 2X3

AUGUST 12,1990

Alan Wynne Geophysicist
INSTRUMENTATION AND PROCEEDURE

The survey was performed utilizing the Scintrex IPR11 receiver. The survey was completed with a Scintrex 2.5 kw transmitter and an array of A=25, N=1 to 5. The recce array used was n=1 and 2 @ 25Meters and n+1 and 2 @ 75 Meters Readings were taken in the time domain utilizing a 2 second on/2 second off alternating square wave.

Chargeabilities (mv/v) were measured at 10 delay times after cessation of the current pulse. These values, along with apparant resistivity, primary voltage during the current on time, the self potential gradient and the line and station number are presented as summary data listings.

The results are presented in posted and contoured psuedosection form of apparent resistivity and M7 chargeability.

Spectral analysis of the decay curves for time constant, frequency dependance, Mo, and fit to the theoretical decay curve are presented as data listings.

RECCOMENDATIONS

One anomalous Zone was located on the South end of lines 700-1000E. Bearing in mind the the interest in the property is to the north of this, no further Geophysics is Reccomended. Ground truth of the anomalous zones is warranted.

STATEMENT OF QUALIFICATIONS

- I, Alan J Wynne, do hereby certify:
- That I am a consulting Geophysicist with business offices at 1255 Maple Road RR#3, Sidney, B.C. V8L 3X9
- That I am a graduate in Geology/Geophysics from the University of British Columbia, B.sc., 1976
- 3. That I have practised my profession for 13 years.
- 4. That the opinions, conclusions and recommendations contained herein are based on fieldwork supervised by me.
- 5. That I own no direct nor indirect interests in the subject property, or shares of CORONA Corporation.

Sidney, B.C. August 12, 1990

Alan Wynne, B.Sc.

December 24, 1990

PAC03-1064-06-014

APPENDIX D

TRENCHING PROGRAM DATA

December 24, 1990

ł

PAC03-1064-06-014

APPENDIX D.1

CERTIFICATES FOR ANALYSES

TREN	CH-	02
------	-----	----

i

SAMPLE #	INTERVAL (m)	WIDTH (m)	AU ppb	AU g/t	AG ppm	AG g/t	PB ppm	PB %	CU ppm
81401	 0-1.2	1.20	110		0.1		9		36
81402	1.2-2.2	1.00	125		0.1		19		38
81403	2.2-2.35	0.15	445		2.2		59		86
81404	2.35-2.85	0.50		2.4		19.6	60		18
81405	2.85-3.0	0.15		0.47		1.3	5170	;	196
81406	3.0-4.1	1.10	345		1.2		289		76
81407	4.6-5.6	1.00	50		0.2		73	,	106
81408	6.9-8.0	1.10	5		0.1		35		40
81409	11.1-12.1	1.00	40		0.1		27		45
81410	12.1-13.1	1.00	20		0.1		10		52
81411	13.1-14.1	1.00	60		0.2		12		68
81412	14.1-14.4	0.30	5		0.1		7		46
81413	14.4-15.4	1.00	155		0.2		22		9
81414	15.4-16.8	1.40	60		0.2		19		48

TRENCH-03

SAMPLE #	INTERVAL	WIDTH	AU	AU	AG	AG	PB	PB	60
	(m)	(m)	Ppp	g/t	PP n	g/t	ppm	\$	20
81479 81480	7.9-8.1 8.1-9.1	0.20 1.00	160 30		(.1 (.1		80 16		26 63

1RI	ENCH	-0	5
-----	------	----	---

SAMPLE #	INTERVAL (m)	WIDTH (m)	AU ppb	AU g/t	AG ppm	AG g/t	PB ppm	PB %	CU PP n
81415	ŧ0.5	0.63		2.12		10.5	2590		544
81416	1.3	0.40		11.02		41.6	5060		246
81417	1.3	0.84		0.29		0.4	287		67
81418	2.1	0.68		3.08		12.9	1820		594
81419	2.6	0.38		0.85		0.3	16	1	29
81420	3.2	0.70		5.63		50.8	< 9000	0.94	1410
81421	3.7	0.34		0.61		2.5	257		136
81422	4.25	0.57		22.29		161.8	<9000	1.29	1590
81423	5.0	0.77		10.33		67.8	<9000	1.30	893
81424	6.0	1.00		1.96		12.5	3830		303
81425	7.2	0.32		2.29		14.6	3500		118
81426	7.2	0.48		0.93		3.7	852		49
81427	7.2	0.28		30.95		249.8	>9000	1.13	1680
81428	8.3	1.25		0.25		0.7	41		38
81429	8.3	0.46		2.03		9.9	1950		44
81430	8.3	0.70		0.12		0.3	143		70
81431	8.3	0.32		1.04		7.3	1610		141

ŧ

TRENCH-06

SAMPLE #	INTERVAL (m)	WIDTH (m)	AU ppb	AD g/t	AG ppm	AG g/t	PB ppm	PB	С0 рр в
81475	4.55-5.3	0.75	30		1.7		55		299
81476	4.4-4.55	0.15	<1000	2.10	14.8		821		86
81477	3.25-4.4	1.15	100		0.5		28		59
81478	1.75-2.0	0.25	60		0.2		25		32

TRENCE-07

SAMPLE #	INTERVAL (b)	WIDTH (m)	AU ppb	AU g/t	AG ppm	AG g/t	PB ppm	PB \$	CU P PB
81450	2.33-2.65	0.25	85		0.6		58		64
81451	2.75-3.40	0.65	<2000	3.06	18.3		1070		191
81452	2.90-3.90	1.00	930		4.1		585		272
81453	3.90-4.95	1.05	25		0.2		76		64
81454	4.95-5.25	0.30	620		3.1		375		48
81455	5.25-6.00	0.75	370		0.1		29		48

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 19, 1990

CERTIFICATE OF ANALYSIS ETK 90-570

ASSAYS,

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION: 24 ROCK CHIP samples received SEPTEMBER 14, 1990 PROJECT: 1064 - 45 P.O. NO.: 90 - 0142

				AU	AU	
ET#	De	escription		(g/t)	(oz/t)	
*******	====		**************	***********	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
570 -	1	80032		.95	028	
570 -	2	80033		. 80	.023	
570 -	3	80034		1.10	032	
570 -	4	80035		-85	.025	
570 -	5	80036	<	(J. J. C /	.034	
570 -	6	80037		.56	.016	
570``-	7	80038			.014	
570 -	8	80039		1.55	.016	
570 -	9	80040		25	.007	
570 -	10	80041		/ .85	.025	
570 -	11	80042		.33	.010	
570 -	12	80043		1.20	.035	
570 -	13	80044	\sim \sim \sim	.58	.017	
570 -	14	80046	r /	1.43	.042	
570 -	15	80046		1.85	.054	
570 -	16	8004ሺ		1.29	.038	- <u>1</u>
570 -	17	80048 🔪	Martin Contraction of the	.98	.029	
570 -	18	80049		1.45	.042	
570 -	19	80050		2.64	.077	
570 -	20	80051		1.57	.046	
570 -	21	80052		1.43		,
570	22	80053		1.69	.049	•
570 -	23	80054		1.68	.049	
570 -	24	80055		1.72	.050	
				dr		

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC90/1064

. . .

· · · · .

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C, V2C 2J3 (604) 573-5700 Fax 573-4557

OCTOBER 1, 1990

CERTIFICATE OF ANALYSIS ETK 90-606

ASSAYS

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION: 50 ROCK samples received SEPTEMBER 20, 1990 PROJECT: 1064 - 2 P.O. NO.: 90-0142 AU · AU AG~~ AG PB (oz/t) (g/t)(oz/t)ET# Description (g/t)i (%) ______ _____________________________ ==== .163 606 -6 83809 5.60 * 75.6 ን~ 21 77 1.03 .030) 606 -31 104661 .010 .35 606 -32 104662 75 .022 606 -33 104663 606 -34 104664 .15 .004 .10 606 -35 003 104665 1.03 .050 606 -36 104666 1.38 .040 606 -104669 39 .096 606 -40 104670 30 .032 606 -42 8+50 101 8+50 102 2.85 .083 606 -43 .046 606 -44 8+50 103 1.59 NOTE: * = SAMPLE SCREENED & METALLICS ASSAYED CC. RON WELLS VIC US2E

> ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

> > ť

SC90/1064

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

METALLIC CALCULATION

SAMPLE NUMBER	-140 VALUE	+140 VALUE	CALCULATE	D VALUE
606-6	5.4	10.08769	5.60	13846
		;		
			. 31	
			and the second sec	
			And the second sec	
			A CONTRACTOR OF	
		C C		
	and the second se			
) /		
. (

1

CORONA CORPORATION - ETK 90-606

.

VANCOUVER, B.C.

V6C 2V6

\$1440, 800 WEST PENDER STREET

10041 EAST TRANS CANADA HNY. KANLOOPS, B.C. V2C 233 PHONE - 604-573-5700 FAX - 604-573-4557

1

.....

SEPTEMBER 28, 1990

VALUES IN PPM UNLESS OTHERWISE REPORTED

]

1

1 . 1

} .

PAGE 1

PROJECT: 1064 - 2 SO ROCK SAMPLES RECEIVED SEPTEMBER 20 , 1990

818	DESCRIPTION	AU(ppb)	AG	AL(1)	AS	8	8A	81 CA(1)	CD	CO	CR	CU	FE(3)	K(1)	LA	MG(1)	MN	NO I	NA(%)	NI	P	P8	\$8	SN	SR T	1(1)	U	۷	W	¥	ZN
606 ·	93801	20	(.2	1.85	23	2	162	(5.92	()	18	57	64	4.61	1.24	33	1.34	965	4	.03	3	1432	62	(5	(20	46	.24	(10	121	(10	14	91
606 - 1	93803	30	(.2	1.87	23	2	157	(5.77	0	17	49	67	4.41	1.13	32	1.34	955	5	.03	3	1468	35	(5	(20	36	.21	(10	99	(10	13	11
606 -	83806	5	(.2	2.00	27	(2	135	(5 1.03	()	14	41	96	4.05	.83	31	1.37	621	- 4	.03	3	1502	6	(5	(20	27	.17	(10	99	(10	1	27
606 ·	I 83807	50	(.2	1.94	26	(2	129	(5 1.01	0	12	33	34	3.01	. 58	21	1.70	631	2	.03	3	1677	8	(5	(20	23	.17	(10	98	(10	11	36
606 -	5 83808	170	1.4	1.75	22	2	137	(5.68	(1	23	61	105	5.58	.49	39	1.11	1992	7	.02	5	1429	46	(5	(20	31	.07	(10	97	(10	15	58
606 ·	5 83809	>1000) 30.0	.04	5	(2	233	21 .62	2	2	205	158	.58	(.01	12	,03	323	15	(.01	0	53	7530	(5	(20	61	(.01	(10	5	(10	9	4
606 -	7 83810	140	2.1	1.64	22	2	155	(5.89	()	17	69	109	4.21	1.20	32	1.15	862	5	.03	3	1369	109	(5	(20	39	.19	(10	84	(10	13	67
606	8 83811	35	.4	1.86	28	2	142	(5.79	11	15	37	57	3.65	1.16	30	1.25	774	4	.02	2	1331	28	(5	(20	44	. 20	(10	11	(10	12	69
606 -	83812	80	(.2	.93	13	(2	58	(5 3.22	()	6	31	15	1.89	.25	17	1.10	608	2	(.01	- (1	1286	7	(5	(20	148	.02	(10	48	(10	5	39
606 -1	83813	100	.4	.90	11	(2	171	(5 2.44	()	14	47	47	3.15	.42	22	.92	826	5	(.01	0	1273	20	(5	(20	138	.03	110	41	(10	5	47
606 -1	83814	5	(.2	1.33	15	(2	65	(5 3.06	(1	8	35	6	2.55	.31	25	1.30	558	3	(.01	- (1	1282	8	(5	(20	122	.04	`(10	64	(10	5	38
606 - 1	83815	15	(.2	611	14	(2	97	(5 2.71	0	10	36	24	2.82	.26	21	1.11	545	4	(.01	(I	1233	7	(5	(20	97	.03	(10	50	(10	4	46
606 -1	3 83816	50	(.2	.87	13	(2	109	(5 3.38	()	13	18	40	3.13	. 18	21	1.08	713	3	(.01	(1	1329	8	(5	(20	168	.03	(10	59	(10	5	47
606 -1	83817	335	.4	.92	18	(2	122	(5 2.71	(1	13	56	64	3.33	.26	22	1.03	853	6	(.01	- (1	1297	7	(5	(20	147	.02	(10	45	(10	5	47
606 -1	5 83818	125	.2	1.14	16	(2	63	(5 2.86	(1	17	20	68	4.12	.12	25	1.43	878	4	(.01	- (1	1298	8	(5	(20	142	.03	(10	69	(10	4	49
606 -1	5 83819	200	.1	1.30	20	(2	90	(5 3.46	1	12	28	42	3.47	.12	24	1.50	974	- 4	(.01	2	1267	6	(5	(20	176	.04	(10	69	(10	1	50
606 -1	7 83820	400	.6	1.05	21	(2	54	(5 2.81	(1	15	25	69	3.79	.06	24	1.36	907	4	.01	a	1232	1	(5	(20	_124	.03	(10	56	(10	6	43
606 -1	83821	25	(.2	1.13	14	(2	76	(5 3.29	9	13	40	40	3.00	.20	23	1.08	924	5	(.01	- (1	1135	5	(5	(20	138	.03	(10	49	(10	6	48
606 1	9 83822	6	(.2	2.06	27	(2	130	(5 1.33	(1	32	40	32	3.86	.65	26	1.69	803	4	.02	- (1	. 1355	5	(5	(20	67	.17	(10	84	(10	9	45
606 - 2	83823	(5	(.?	1.14	18	(2	43	(5 1.29	(1	10	41	18	1.83	.15	25	.95	355	3	.02	- (1	1322	4	(5	(20	44	14	(10	53	(10	12	19
606 -2	83824	(5	(.2	.96	14	(2	40	(5 2.30	(1	5	23	5	1.20	.21	- 14	.89	284	1	(.01	0	1340	4	(5	(20	33	.13	(10	46	(10	12	16
606 - 2	83825	(5	(.?	1.34	18	(2	40	(5 1.11	(1	19	29	27	2.27	.14	20	1.23	394	1	.02	0	1300	5	(5	(20	59	.13	(10	66	(10	10	27
606 -?	3 83826	(5	(.?	1.61	20	(2	96	(5 1.41	(1	13	27	39	2.99	.52	23	1.23	471	- 4	.01	- (1	1224	5	(5	(20	57	.12	(10	59	(10	9	40
606 - ?	83827	(5	(.?	1.10	16	(?	62	(5 1.69	(1	9	22	38	2.75	.23	25	.43	578	4	(.01	(1	1231	8	(5	(20	14	.02	(10	58	(10	11	31
606 -2	5 83828	(5	(.2	.76	14	(2	19	(5 1.37	(1	2	27	- 4	.89	.08	13	.80	196	1	.02	(1	1374	4	(5	(20	20	.10	(10	43	(10	12	12
606 -?	5 83829	. (5	(.2	1.11	17	(2	73	(5 .94	- (1	5	43	10	1.48	.09	17	.85	306	4	.03	()	1343	6	(5	(20	40	.12	(10	56	(10	11	21

CORONA CORPORATION - ETK 90-606

ECO-TECH LABORATORIES LTD.

PAGE 2												_																		
ETH	DESCRIPTION	AU(ppb)	AG	AL(\$)	AS	8	BA	BI CA(I)	CD	CO	CR	CU FE(1) K(X)	LA	MG(%)	MN	h0 I	IA(X)	NI	P	P8	S8	SN	SR I	1(1)	U	۷	W	Y	ZN
104 .23	92920	::::::::::: ۱۲	·····	1 77	 74	·····	147	/5 1 00	212222 //	·····		21 21	S 03	222222 24	1 25	561	2222223 2		·····	1199	••••••••••••••••••••••••••••••••••••••	 ۱۲	200 /20	11	17	(10	95	(10	11	13
404 -20	82020	13	1.2	1.77	20	12	10/	15 1.00		ii.	20	21 2 1	9 17	22	1.55	594	2	.07	ä	1149	ő	3	(20	13	14	(10	~~	(10	10	54
101 -20	000001	15	·.2	1.77	15	0	149	22 1 01	17	17	12	82 21	9 QS	25	1.15	458	š	.02		1218	á	6	(20	107	13	(10	-5	00	9	40
404 -21	03032	() ()		1 47	24	2	01	15 1.01	ä	15	22	77 7	4 79	21	1 16	457	2	.00	ä	1190	4	š	(20	29	16	(10	78	(10	ģ	43
107 -31	101441	990	2.9	1.07	21	ö	75	(5 2 84	ä	12	37	11 3.3	2 01	16	1 12	1094	61	.02	0	1080	٠ş	15	(20	89	.01	(10	12	(10	á	27
107 - 30	104607	135	2.,/ R	18	<u></u>	ö	131	(5 1 43	ä		134	8 1.4	4 (.01		.38	749	15	(.0)	ä	383	,	6	(20	160	.00	(10	4	(10	0	17
LUC - 1	104663	755	.0	21	Å	ö	490	(5 3.46	a	10	62	29 3.0	0 .07	18	.94	1089	5	(.0)	(1	1222	5	6	(20	121	.04	(10	57	(10	4	25
606 -3	104664	100	1.1	.18	9	(?	110	(5 3.70	ä	20	29	107 3.4	4 .06	19	1.17	1023	29	(.01	- d	1195	8	Ś	(20	142	.03	(10	50	(10	2	26
606 - 3	104665	35	(.2	.22	8	(?	288	(5 3.93	0	n	24	17 4.0	0.05	21	.73	663	5	(.0)	đ	1196	6	(S	(20	180	.07	(10	101	(10	3	18
606 -3	104666	820	.1	.15	8	(2	226	(5 3.94	()	11	38	93.	4 .05	12	1.05	909	4	(.01	0	1147	5	(5	(20	177	.05	(10	70	(10	3	25
606 -3	104667	5	(.2	.19	(S	3	36	(5 .61	9	2	11	16	4 .11	23	.10	154	5	.02	()	90	4	(5	(20	10	.04	(10	10	(10	7	8
606 -3	104668	Ś	.?	. 38	8	(2	75	(5 1.72	4	13	38	61 3.3	9 .24	22	.42	696	8	.02	(1	878	8	(5	(20	52	02	(10	20	(10	4	38
606 - 3	104669) 1000	5.7	. 48	42	(2	63	(5.89	()	6	70	105 2.	9 .14	18	.45	385	4	.03	()	1365	5	(S	(20	61	.01	(10	35	(10	3	19
606 -4	104670	>1000	5.1	.95	143	(2	34	(5 2.8)	(1	14	65	21 4.3	2 (.01	24	1.12	1229	5	(.01	- (1	1061	6	(5	(20	142	.01	(10	49	(10	2	32
606 -4	8+50 100	20	(.2	.82	14	(2	210	(5 3.47	a	16	28	31 3.1	.57	26	. 9,8	1165	2	(.01	a	1409	1	(S	(20	181	.07	(10	49	(10	4	59
606 -4	8+50 101)1000	1.3	.22	21	(2	46	(5 2.90	(]	26	40	46 4.	4 .09	22	.34	982	3	.01	(1	1287	10	(5	(20	55	.02	(10	18	(10	1	28
606 -43	8+50 102)1000	6.7	. 18	99	(?	41	(5 1.67	()	13	48	22 4.1	.03	24	.25	523	4	.03	a	1478	7	(5	(20	69	.01	(10	17	(10	(1	17
606 4	8+50 103)1000	3.1	.22	30	(?	61	(5.95	(1	27	94	11 3.	95 .07	21	.14	814	1	.03	()	1010	6	(5	(20	39	.02	(10	28	(10	()	24
606 -4	1900-D	70	(.2	. 55	9	(2	108	(5 2.43	(1	17	51	59 3.	11 .41	25	.87	1101	3	(.0)	4	1308	10	(5	(20	124	.04	(10	26	00	5	44
606 -4	5 1900-E	15	(.2	.53	11	(2	69	(5 2.36	(1	20	51	75 4.	7.39	26	.88	1176	5	(.01	3	1332	8	(5	(20	132	.04	(10	37	(10	5	46
606 -4	1900-F	15	(.2	.54	13	(2	103	(5 2.75	()	15	45	57 3.	3 .42	23	.93	1070	3	(.01	3	1272	11	(5	(20	139	.04	(10	24	(10	4	44
606 -4	1900-G	60	.2	.11	10	(2	88	(5 1.68	4	17	61	81 4.	.62	31	.91	924	4	.02	5	1200	18	S	(20	68	.07	(10	/4	(10	6	54
606 -4) 1900-н	30	.1	.44	8	(2	87	(5 1.77	0	18	43	87 3.	.32	26	.62	1208	j	.01	2	· 1291	9	()	(20	8/	.04	(10	29	(10	2	44
606 -5) KEL - I	(5	(.?	.18	(5	(?	8	(5 1.39	1	2	176	8.	6 .02	4	. 10	316	30	(.0)	Q	200	8	(5	(20	22	(.01	(10	6	(10	2	13

NOTE: CITILESS THAN

CC. RON WELLS

lause ECO-TECH LABORATORIES . I JUITA JEALOUSE B.C. CERTIFIED ASSAYER

10041 EAST TRANS CANADA HNY. KANLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

OCTOBER 1, 1990

VALUES IN PPH UNLESS OTHERWISE REPORTED

CORONA CORPORATION - ETK 90-627

1

1

\$1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

1

l

ATTENTION: JOHN BELLANY

PROJECT: 1064 -3 P.0.# 90-0142 26 ROCK SAMPLES RECEIVED SEPTEMBER 25, 1990

ET#	DESCRIPTION	AU(ppb)	AG	AL(I)	AS	8	8 A	81 CA	(1)	CO	CO	CR	CU	FE(X)	K(X)	LA	NG(%)	IN	10	NA(X)	NI	P	P8	S8	SN	SR I	(1)	Ű	V	¥	Y	ZN
627 - 1	93808	60	(.2	1.52	(5	(2	107	18 l	.05	(1	27	72	40	3.97	.95	25	1.31	986	5		<u>-</u> 12	1300	20	===== (S	(20	28	.16	(10	96	21	17	63
627 - 2	93834	460	.6	.29	ંડ	(2	38	(5 4	.95	1	11	40	3	2.94	.09	13	1.32	1454	2	(.01	14	1355	20	(5	(20	215	.01	50	5	(10	5	20
627 - 3	93835	775	2.3	.26	(S	(2	49	(5 . 5	.39	1	13	50	2	2.95	.07	13	1.29	1427	2	(.01	19	1097	113	(S	(20	187	.01	(10	10	(10	5	24
627 - 4	93836	115	7.3	.33	(5	(2	18	14 4	.60	1	21	179	4	5.61	.22	20	1.30	1239	2	(.01	37	369	1389	5	(20	101	.02	(10	121	(10	(1	28
627 - 5	93837	380	1.2	.19	(S	(2	20	(S 3	.23	(1	17	36	,	3.89	.04	16	.91	874	2	(.01	12	1048	75	(5	(20	72	.01	(10	11	(10	(1	15
627 - 6	93838	20	(.2	1.11	(5	(2	78	(5	.80	(1	13	47	62	3.40	.41	21	1.00	932	- 4	.03	5	1150	16	(5	(20	26	.10	(10	83	(10	5	48
627 - 7	93839	15	(.2	1.14	(5	(2	69	(5	.68	(1	12	50	42	3.49	.59	21	1.10	760	3	.05	5	1109	13	(5	(20	19	.13	(10	. 90	(10	1	46
627 - 8	93840	85	(.2	.95	(5	(2	46	(5	.64	(1	13	42	27	3.45	.43	18	1.08	889	3	.04	5	1202	46	(5	(20	14	.07	(10	80	(10	5	41
627 - 9	93841	85	(.2	.99	(S	(2	n	(S	.74	a	12	45	46	3.55	.50	21	.99	1112	3	.03	6	1165	24	(S	(20	18	.08	(10	11	(10	S	45
627 -10	93842	100	.8	.65	(5	(2	47	(5 1	.01	a	20	177	32	4.59	.33	20	.85	1279	4	.02	25	1104	159	(5	(20	23	.03	(10	62	(18	3	35
627 -11	93843	35	(.2	1.58	(S	(2	78	(S	.66	a	16	71	36	3.71	1.08	21	1.63	885	1	.01	21	1135	14	(5	(20	9	.16	(10	101	(10	5	50
627 -12	93844	15	(.2	1.77	(5	(2	123	(5	.68	a	14	23	25	4.62	1.08	24	1.53	859	2	.01	- 4	1104	6	(5	(20	13	.16	(10	90	(10	.4	61
627 -13	93845	230	.8	1.50	(S	(2	107	(S	.61	a	17	88	34	4.30	.76	22	1.77	1179	2	.02	28	1136	8	(5	(20	12	.10	(10	102	(10	3	59
627 -14	93846	35	(.2	1.16	(5	(2	.69	(5	.59	a	12	48	26	3.46	.67	20	1.09	808	2	.03	10	1080	37	(5	(20	12	.09	(10	72	(10	2	46
627 -15	93847	390	1.3	.40	(5	(2	71	(5 1	.40	a	13	67	16	3.28	.07	15	.68	1093	3	.01	17	900	84	(S	(20	34	.02	(10	22	(10	1	26
627 -16	93848	380	.8	.41	(5	(2	32	(53	.43	a	12	25	6	2.87	.03	12	.99	1061	1	(.01	9	1166	36	(5	(20	99	.01	11	27	(10	5	25
627 -17	93849	365	1.0	.28	(S	(2	44	(53	.10	a	14	25	15	3.37	.08	- 14	.80	1246	2	(.01	6	1148	8	(5	(20	76 -	01	(10	20	(10	1	25
627 -18	93850	745	3.1	.95	(5	(2	35	(5 4	.16	a	26	324	10	4.61	.71	19	2.15	1598	3	(.01	62	818	88	(5	(20	83	.06	(10	88	14	3	64
62/ -19	93851	590	.9	.36	(5	(2	93	(53)	.75	a	12	37	1	3.35	, .14	15	1.24	1363	2	(.01	15	1296	12	(5	(20	154	.01	(10	22	(10	(1	23
62/ -20	93852	170	(.2	.22	(5	(2	157	6 1	.38	a	13	34	13	3.08	.11	16	.26	1258	4	.01	8	1155	6	(S	(20	22	.02	(10	27	(10	1	21
62/ -21	93853	35	(.2	.22	(S	(2	119	6	.9/	a		22.	45	3.17	.07	72	.13	985	3	.02	3	1487	9	(S	(20	13	.05	(10	59	(10	4	17
627 -22	93854	20	(.2	.85	0	2	/0	<u> </u>	.67	<u>a</u>	11	23	26	3.00	.50	17	.6/	821	3	(.0)	3	1307	9	6	(20	9	.0/	(10	43	()0	2	46
627 -23	7,5833	20	(.2	1.02	0	2	67	01	.21	a A	13	35		3.25	.42	22	.82	746		.01	3	124/	12	0	(20	23	.05	(10	41	(10	3	45
021 -24	93836	15	(.2	1.04	()	.(2	84	0		a	13	38	2/	3./1	.28	22	.71	781	4	.01	13	1165	8	0	(20	8	.03	(10	45	(10	1	46
021 -23 127 -21	7383/	10	(.2	.38	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	78	()	.//	u //	11	22	24	3.37	.1/	21	.24	1125	2	.02	•	1348	10	0 "	(20	y 2	.03	(10	3/	(10	2	24
021 -70	73636	15	(.2	.50	0	Q	243	0	.1/	vi	12	$\tilde{}$		3.51	."	\ ^	.33	1113	3	.01	3	1 2 7 1	13	0	(20	26	.03	(10	32	(10	4	30
NOTE: (=	LESS THAN										Æ	<u> </u>	<u>Xu</u>	Ha	f,	p_{i}	Na	se-	-													
											Ē		HILABO	RATOR	HES LTD	6																
											Å	UTTA J	LEAL OUS	¥ /	7	-																
SC90/CORO	NA\$1064										S	re. te	RTIFIC	D ASS	AYER																	

. . .

1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

ASSAYS

OCTOBER 2, 1990

CERTIFICATE OF ANALYSIS ETK 90-651

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: JOHN BELLAMY

SAMPLE IDENTIFICATION:

26 ROCK samples received SEPTEMBER 28, 199 PROJECT: 1064 - 3 P.O. NO.: your reference

		-	AU	AU	1
ET#		DESCRIPTION	(g/t)	` (oz/t)	
651 -	.1	93910	.48	.01	\sim
651	2	93911	2.21	064	
651	3	93912	.80	.028	
651	4	93913	.06	1002	
651	5	93914	.86	().026	v
651	6	93915	.09	03	
651	7	93916	.05	\ (.001)	
651	8	93866	- 87	\\ \ 025	
651 -	9	93867		001	
651	10	93868	1.79	.052	
651	11	93869		.059	
651	12	93872	1.43	.042	
651	13	93873	,35	.010	
651	14	93874	1.12	.033	
651	15	93875	.93	.027	
651	16	93836	.95	.028	
651 -	17	73879	.99	.029	
651	18	73880	1,34	.039	
651	19	73881	1.56	.045	
651 -	20	73882	1.80		•
651	21	73883	.96	.028	
651 -	22	73884		,010	
651 -	~23	93886	1.56	.045	
651 -	24	93887	.19	. 006	
651	25	93889	.26	.008	
651	26	93891	.10	.003	

LABOBATORIES LTD. JUTTA JEALOUSE CERTIFIED/ASSAYER

B/C.

cc: RON WELLS KAMLOOPS, B.C. KAML00PS

FAX:

. :

CORONA CORPORATION - ETK 90-651

÷Ł

10041 EAST TRANS CANADA HNY. KANLOOPS, B.C. V2C 2J3 PHOME - 604-573-5700 FAX - 604-573-4557

OCTOBER 2, 1990

VALUES IN PPH UNLESS OTHERWISE REPORTED

PROJECT: 1064 - 3 26 ROCK SAMPLES RECEIVED SEPTEMBER 28, 1990

€T#		DESCRIPTION	AG A	r(2)	AS	8	8A	81 0	:A(1)	CD	C0	CR	CU	FE(\$)	K(\$)	LA	NG(%)	HN	10	NA(1)	NI	₽	P8	S8	SN	SR (TI (S)	U	¥	¥	۲	ZN
=====				*****	******	2222		******	******	122222	222222	122223		*****	2,222222	*****	2222222				*****	111111	222123					212222	*****	2222523		
651	- 1	93910	1.8	.29	15	(2	11	(\$	3.94	a	3	42	6	2.06	.03	10	1.26	955	2	(.01	3	1116	S	6	(20	80	.01	12	17	(10	a	21
651	- 2	93911	.7	.64	(5	(2	12	(5	3.23	(1	6	73	33	2.38	.03	11	.86	800	- 5	{.01	2	715	4	(5	(20	106	.01	(10	17	(10	3	17
651	- 3	93912	1.7	.62	(S	(2	19	(S	2.31	a	19	41	173	4.56	.16	16	1.11	702	49	(.01	t	1361	4	(S	(20	71	.01	(10	35	(10	a	23
651	- 4	93913	(. 2	.34	(5	(2	71	(5	2.75	0	7	37	61	2.05	. 18	10	.80	666	3	{.01	2	1044	2	(5	(20	63	.01	(10	13	(10	(1	17
651	- 5	93914	(.2	.24	(5	(2	124	(5	3.38	4	S	39	17	1.98	.15	(10	.81	829	2	(.01	2	1014	3	(S	(20	106	.01	(10	14	(10	2	19
651	- 6	93915	(.2	.29	(S	(2	51	(5	3.10	(1	n	38	86	·2.46	.20	10	.71	666	7	(.01	2	1044	6	(5	(20	86	.01	(10	10	(10	1	31
651	- 7	93916	(.2	.32	(5	(2	34	(5	2.37	a	12	24	179	2.84	.23	10	.87	472	24	(.01	0	1223	3	s	(20	38	.01	(10	H	(10	a	23
651	- 8	93866	۰.2	.77	(5	(2	29	(5	2.54	(1	3	24	13	1.47	.15	10	.84	441	2	(.01	2	9 79	2	(5	(20	78	.01	(10	34	(10	1	27
6S1	- 9	93867	(.2	.84	(5	(2	28	(5	2.81	a	6	16	- 14	1.95	.26	12	.81	460	1	(.01	2	949	3	(5	(20	87	.02	(10	26	(10	2	28
651	-10	93868	.3	.41	11	(2	21	(5	3.05	4	3	28	10	1.74	.06	(10	.65	518	1	(.01	2	832	4	(S	(20	143	.01	(10	25	(10	1	17
651	-11	93869	1.3	.45	32	(2	19	(S	2.13	a	6	53	36	2.42	.07	10	.60	621	4	(.01	2	865	3	(S	(20	85	.01	(10	28	(10	2	24
651	-12	93872	.6	.\$\$	18	(2	53	ß	2.39	a	6	35	40	2.24	.18	11	.66	492	3	(.0)	2	1103	4	5	(20	100	.02	(10	30	(10	2	28
651	-13	93873	(.2	.50	6	(2	31	(S	1.87	(1	4	39	13	1.97	.08	10	.79	\$73	3	(.01	3	1061	3	(S	(20	51	.02	(10	45	(10	1	28
651	-14	93874	.2	.30	15	(2	49	(5	3.53	a	5	52	15	2.31	.06	10	1.07	843	12	(.01	2	935	3	5	(20	.98	.01	(10	24	(10	2	22
651	-15	93875	.7	.80	(S	(2	59	(S	2.72	(1	7	55	23	2.41	.07	- 11	1.06	669	- 14	(.01	1	746	4	(5	(20	112	.01	(10	34	(10	1	2/
65 1	-16	93876	1.1	.86	(5	(2	104	(S	2.63	4	S	42	11	2.32	.04	12	1.14	671	3	(.01	2	1104	3	CS	(20	106	.01	(10	33	(10	1	25
651	-17	73879	2.9	.66	25	(2	28	(S	2.96	4	13	36	16	3.21	.00	12	1.17	963	36	(.01	2	920	6	(S	(20	127	01	(10	1/	(10	a	23
651	-18	73880	1.3	.97	12	(2	34	(5	3.51	a	9	29	11	2.91	01	- 11	1.41	839	34	(.01	2	834	5	5	(20	179	.01	(10	24	(10	a	26
651	-19	73881	.5	.35	8	(2	61	(S	2.56	a	6	41	36	2.34	.06	10	.87	646	н	(.01	3	958	3	(S	(20	- 60	.01	(10	25	(10	a	1/
651	-20	73882	.8	.22	27	(2	37	(5	4.22	0	11	34	24	2.36	.03	(10	./5	83/	- II	(.0)	2	680	1	0	(20	118	(.01	(10	y m	(10	a .	13
451	-21	73883	1.7	.31	(S	(2	84	6	2.41	4	11	30	50	3.62	.14	14	./1	8/4	2	(.01	2	1094	4	0	(20	6/	.02	43	22	(10		28
651	-22	73884	.7	.34	(S	(2	84	(5	3.11	a	11	38	43	3.60	.12	13	./4	870	3	(.0)	2	1022	3	0	(20	/3	.01	40	28	(10	4	16
651	-23	93886	1.1	.22	6	(2	54	30	2.96	0	19	54	- 72	3.12	.09	13	./3	992	4	(.0)	3	1026	4	()	(20	113	.02	64 20	23	43	1/	23
651	-24	93887	.2	.2/	S	(2	89	10	2.81	a	8	49	42	2.53	.15	10	.65	666	3	(.01	4	662	4	()	(20	100	.01	28	10	17	2	21
651	-25	93889	./	.24	(5	(2	73	9	2.22	(1	9	38	43	2.89	.15	10	.52	620		(.01	2	920	4	0	(20	12	.01	24	14	10	4	18
651	-26	93891	.3	.45	S	(2	129	/	2.49	0	/	43	~ 26	2.66	.25	<u></u> 11	//	638	4	(.01	1	982	2	()	(20	14	.02	20	19	14	2	34
NOTE	: (=	LESS THAN										1)	utta)pd	bus	e-														
												J	ECO-11	ech lai	IORATOR	IE\$ LI	0.															
CC.	RON W	ELLS											NITA	JEALD	ISE IEN ACP	YER															•	
												- C - S	yru i	LUCIT I	مروب																	

1

1

ł

#1440, BOO WEST PENDER STREET

VANCOUVER, B.C. V&C 2V6

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

OCTOBER 4, 1990

CERTIFICATE OF ANALYSIS ETK 90-661

CORONA #1440, VANCOU V6C 2V	CORPORA BOO WES IVER, B.(6	ATION ST PENDER C.	STREET	ASSA	Y:S	
ATTENT	ION:	JOHN BELLA	AMY .		·	• •
SAMPLE	IDENTIF	ICATION:	25 ROCK samples PROJECT: 1064	received	OCTOBER 1,	1990 ł
ET# =====	Desc	ription	AÙ (g/t)	AU (oz/t)		
661 -	1	93870		.029		
661 -	2	93871	1.63	.048	- A CONTRACT	
661 -	3	93877	2.90	.085		
661 -	4	93878	2.59	.976	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
661 -	5	93885	.31			
661 -	6	93888	.27	.008	and maker with the state	
661 -	7	93890	.77	.022		
661 -	8	93892	.47	.920	з.	
661 -	9	93893	1.68	.049		
001 ~	10	93894	1.17	.034		
661 -	11	93895	.13	.004		
661 -	12	73876	.43	.013		
661 -	13	7387/		.012		
661 -	15	93898		.003		
661 -	16	93900	1 10	.038		
661 -	17	93901	.10	.003		:
661 -	18	93902	.97	.028		
661 -	19	93903	.76	.022		
661 -	20	93904	.58	.017		• :
661 -	21	93905	.54	.016		
661 -	22	93906	.19	.006		
661 -	23	93907	.89	.026		
661 -	24	93908	.61	.018		
661 -	25	93909	.05	.001		

CC: RON WELLS KAMLOOPS, B.C. ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

SC90/1064 #1

1

CORONA CORPORATION - ETK 90-661

1

10041 EAST TRANS CANADA HWY. KAHLOOPS, B.C. V2C 2J3 PHOME - 604-573-5700 FAX - 604-573-4557

1

1

OCTOBER 5, 1990

;

)

2

5

VALUES IN PPH UNLESS OTHERWISE REPORTED

PROJECT: 1064

11440, BOO WEST PENDER STREET

VANCOUVER, B.C.

V6C 2V6

25 ROCK SAMPLES RECEIVED OCTOBER 1, 1990

ET#	DESCRIPTION	AG AL(X)	AS	8	8 A	BI CA(S)	CO	CO	CR	CU FE(%)	K(X)	LA NG(I)	MN	HO NA(S)	NE	P	P8	S8	SN	SR TI(X)	U	V	¥	Y	ZN
	1 93970	· · · · · · · · · · · · · · · · · · ·	18 18	:::::: (7		31 2 84	::::::: 1	20	30	37 5.59	.47	18 1	.17	749	3 (.01	::::::: 1	1263	1	 (5	(20	141 .04	(10	40	21	11	44
441 -	2 93971	1 1 75	15	ö	90	12 2 52	ä	14	37	50 2.58	39	16	98	61A	3 (.01	3	1252	Å	Ğ	(20	120 .04	00	38	(10	6	12
441 -	2 93977	13 18	85	0	27	(5 1.72	ä	22	27	20 2.68	.08	13	.63	571	2 (.01	2	1067	3	65	(20	79 (.01	(10	8	(10	a	17
441 -	J 93979	59 20	75	0	Š	20 2 45	ü	14	18	107 5 56	.00	14	.67	530	7 (.01	,	1044	Ĭ	i.	(20	308 (.01	(10	10	35	4	17
441 -	s 97995	7 45	15	ö	114	11 3 04	ï	12	27	17 1.20	10	12	.93	844	3 (.01	a	1128	2	ïs	(20	88 (.0)	(10	15	12	Å	22
441 -	1 93888 -	9 22	ŝ	0	34	22 3 43	i	21	18	17 6 18	15	15 1	.06	948 .	2 (.01	ä	1282	2	6	(20	99 C.01	(10	10	15	Ĩ	19
441 -	7 92090	10 12	š	b	Š	21 2 53	i	22	25	12 7 14	14	12	R7	781	7 (.01	,	1233	à	ĸ	(20	74 (01	(10		12	3	17
441 -	a asaas	1.7 .10	15	ö	29	23 2 93	á	12	18	154 5 88	16	14	98	698	8 (.0)	a	1249	i	ß	(20	108 (.0)	(10 -	ÿ	(10	3	29
441 -	0 02902	1.5 .22	15	0	13	22 3 45	ï	is	24	91 5.78	.16	13 1	.13	786	20 (.0)	ï	1207	3.	Ğ	(20	117 (.0)	(10	8	14	3	36
441 -1	n 93994	1 1 18	.5	0	18	18 3 39	ġ	13	13	126 5.56	.14	12 1	.00	774	22 (.0)	a	1249	3	Ġ	(20	92 (.01	(10	ž	11	2	19
441 -1	1 93995	1.0 26	15	ö	29	16 3 20	ä	is	20	138 5.27		13	.87	751	31 (.01		1159	3	Ğ	(20	63 (.0)	(10	,	(10	3	20
441 -1	2 93994	2 49	5	0	71	17 2 84		12	16	29 4.59	39	14	RA	900	3 (.0)	ä	1120	2	Ğ	(20	78 .03	(10	19	(10	Š	37
441 -1	2 92997	.5 .00	š	0	12	(5 1 89	ď	n	17	26 2 IR	.25	13 1	.04	691	2 (.01	3	1121	2.	G	(20	70 .03	(10	40	(10	ì	39
441 -1	1 02000	2 1 24	15	0	17	20 3 25	ÿ	12	15	25 4 81	18	16 1	04	594	2 (0)	ī	1128	ō	15	(20	105 04	(10	28	37	Å	35
441 -1	< 02000	17 74	25	10	28	14 2 74	i	i.	25	18 4 14	18	12	95	545	2 (.01	;	1119	2	Ğ	(20	94 .01	(10	25	(10	i	25
441 -1	L 92900	2 1 02	ŝ	0	25	14 2 R4	i	ž	22	14 3.60		12	.92	441	2 (.01	. ī	1099	ò	Ğ	(20	97 .01	(10	29	13	Ś	32
441 -1	7 92901	4 14	15	0	29	14 2 49	i	Ŕ	23	34 3.72	.19	10	.88	581	5 (.0)	a	1058	2	(S	(20	101 _01 _	_ (10	14	(10	1	30
441 -1	8 93902	15 12	20	ö	70	15 2 35	i	Å	18	34 3.83	:07	(10	.73	723	6 (.01	1	936	2	(S	(20	54 (.0)	(10	ŝ	(10	2	19
ALI -	Q 93903	9 14	ŝ	17	5	20 3 54	i	25	36	16 5.99	.10	13 1	.08	928	5 (.01	2	914	2	(S	(20	120 .(.01	(10	9	22	3	17
641 -2	n 93984	1.1 .15	ß	ö	10	19 2.71	i	18	17	29 5.36	.11	12	.86	726	4 (.01	ī	992	2	(S	(20	86 (.0)	(10 *	· 6	14	2	18
A41 -2	1 93905	7 14	ŝ	ö	24	18 1.86	à	15	17	71 4.42	.09	10	.61	555	7 (.01	a	973	3	(S	(20	66 (.01	(10	6	17	3	19
M1 -2	2 93904	4 10	ĸ	ò	25	17 3.27	ä	10	ü	82 4.43	.08	10	.84	767	10 (.01	<u> </u>	990	2	(5	(20	83 (.01	(10	1	12	3	16
M1 -2	3 93907	10 .14	10	0	3	22 2.80	ä	15	14	98 5.72	.12	12	.87	636	24 (.01	(1	1011	3	(5	(20	78 (.01	(10	5	(10	2	16
661 -2	4 93908	1.5 .24	ŝ	0	29	21 2.08	1	10	14	40 4.12	.16	(10	.66	596	15 (.01	a	875	2	(S	(20	73 .01	(10	10	(10	2	22
661 -	5 93909	.2 .89	Ğ	Ö	67	(5 1.97	à	11	19	31 2.10	.54	14	.95	577	2 (.01	2	1090	2	(5	(20	55 .07	(10	30	(10	2	45
				••	•••	•	••	••	-/-		<u>.</u>		-			-		-								

1 1 1

NOTE: (= LESS THAN cc: RON WELLS

KANLOOPS, B.C.

ECO-TECH LABORATORIES LTD. 1 LAL JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

. . X .

SC90/1064 #1

APPENDIX D.2

TRENCH PLANS. FIGURES 11 TO 26

ORPORAT	N. CON PROJECT	oost of paractical decignation	E T E N S CHARGENBRUTY (mV/V - M7)	on 252 751 752	s <u>tor</u> - 5.7 - 5.8 - 7.0 - 5.9	628E 5.7 5.8 5.7 6	6756 7256 5.0 5.7 3.7 5.9	E 775E	850E 1 0 2. 4.6	9255 23 9 2.6	1000E 2.6 3.1 1.3 2.8	1075E 5.2 2.8 1.9	1150E 3.7 3.9 4.7 4.8	12 3.1 4.4
CORONA O	GOLDEN L B NEUKED PRAMINANS LIN. SOOT OCOMMENSE LID.		N NEW YORK	e n 25 1 25 2 75 1 75 2	55 <u>06</u> - 4658- - 5290 - 3600	625E 3979 4133 1960 2530 15	6735 7255 1082 97 112 1490	E 775E 9 920 800 1050	630E 348 07 662 662	925E 701 591	1000E 990 93 474	1075E 588 782 730	1150E 573 556 930 1240	12
		CORONA CORPORATION GOLDEN LOON PROJECT	LINE: 100N INDUCTD PERMISSARONI SURVEY POIN-DEPOINT AN SCOTT GEORMANICS LTD. FORM AND BOLINE AND	Current machines rout of soundful electrones 0 20 100 200 200 M C T C M C	RESUSTIANTY CHARGEARE ITY (MAYA - MZ)	0 n 25 2 76 1 75 2 0 n 25 2 25 2 75 1 25 2 75 1 75 2 75 2 75 2 75 2	700E 3.3 4.6 4.8 700E 1208 1050 700E	775E 3.8 3.0 4.0 3. 4.3 775E 664 643 940 940	850E 2.7 3.0 3.5 850E 839 839 1000	925E 1.8 2.2 3.2 925E 670 3 9	1000E 3.0 1000E 1000E 341 73 596	1075E 4.1 3.9 3.7 1075E 1075E 1130 240 1290	1180E 3.7 4.2 5.0 1150E 1283 1 1350	12: 3.3 3.7 12: (10 ⁷ 230
		CORONA CORPORATION GOLDEN LOON PROJECT	LINE: 100S ACED POLANEXANDON SURVEY COTT OCOMMENSIENCY BOAR OFFICES LED. Reference Polar Anny Statime Polar 10 Polar Anny Statime Polar 10 Polar 10	0 50 100 200 200 200 200 200 200 200 200 20	RESISTANTY COMPOSINE ITY (dever-m) (meV/V - W7)	a n 25 1 - 25 2 - 76 1 - 75 2 - 75 2 - 75 2 - 75 1 - 75 1 - 75 2 -	700E 4.7 5.6 5.1 700E 1606 1003 11 2080	775E 3.4 3.7 4.9 3. 4.6 775E 2860 2834 383 959	850E 2,7 4.2 4.2 830E 1470 430	9258 3.1 9258 9258 9258 428	1000E 3.0 3.2 4.5 4.5 1000E 425 608	10766 3.1 4.1 4.2 10756 10 956	1150E 3.8 5.0 4.1 3.8 1150E 1321 1550	12 4.1 12 12 12

DESCRIPTION	CORO	NA CORPO	DRATION	GOLDEN LO INDUCED P PSEUDO	OLARIZATIO
857 595 862 552 891	946 759 599 893 926 1270	2 1558 1501 1242 1860 1458	1257 40 709 1190 119	2010 2830 1800 1157 Taz e10 7	LINE: 1000
05 755 505 255 0H 25H 1884 541 540 1610 1698 828 557 850 555 1112 593 198 70 860 740 335 480 591 838 950 342 894	SON 75N 100N 125N 150N 17 549 633 577 474 700 1034 643 888 483 491 700 1034 766 851 643 420 745 134 765 851 643 420 745 134	75N 200N 225N 250N 275N 300 9 1242 1670 1490 2080 1240 1248 1914 1199 2026 1202 20 1817 1258 1840 1230 1980 1773 1251 1468 1120 2090 20	N 325N 350N 375N 400H 43 -4370 810 595 413 245 105 907 587 408 1590 1000 10 585 970 330 1280 792 670 376	13N 450N 475N 500N 525N 550N 575N 	BOON BION BION BION Comfour Comfour <thcomfour< th=""> <thcomfour< th=""></thcomfour<></thcomfour<>
3.6 3.0 3.2 2.6 3.8 3.4 3.4 3.1 3.2 4.3 2.8 3.8 3.7 3.1 4.4 3.6 3.5 4.4 3.7 4.7 4.1 3.7	2.8 2.9 3.1 3.6 3.8 3.2 2.9 3.7 3.8 3.1 2.7 2.9 3.4 4.1 3.4 23 3.3 4.0 4.5 3.8 2.7 3.0	3.6 4.2 3.3 3.1 3.4 3 3.4 3.8 3.8 3.8 4.3 2.8 3.1 3.6 3.6 4.3 3 3.1 3.9 6.5 8.5 4.1	18 3.2 3.8 3.3 26 3.3 3.4 3.4 2.9 2.9 18 3.6 2.8 3.1 3.0 3.5 3.6 4.5 3.2 4.4	24 3.2 3.2 3.5 2.8 3.4 2.8 3.6 3.7 3.6 2.7 3.1 2.6 3.4 3.6 3.7 3.6 2.7 3.1 2.6 3.4 3.6 3.7 3.0 2.9 2.2 1.7 3.7 4.1 3.1 3.0 1.8 2.3	2.6 206 7.5 10 2.8 12.5 2.8 15 2.8 20 0
28 3.2 2.7 3.3 3.0 1	80N 75N 100N 125N 150N 17	75N 200N 225N 250N 275N 300P 4.1 3.6 2.9 3.5 2.9	N 325N 350H 375N 400H 43	200 450N 475N 500N 525N 550N 575N 2.0 2.7 2.9 3.7 3.0 3.4 2	800H 825H 850H Contour
42 405 365 370 568 819 484 340 402 549 558 545 401 342 589 624	608 872 588 900 830 850 621 1144 591 943 473 374	405 352 560 720 14 437 498 410 766 1330	1840 1249 840 1300 1440	1720 1599 2000 1031 2210 2340 2090 1820 1550 1520 1375 2090 2210 15	LINE: 900
55 1505 1255 1005 755 505	255 ON 25N 5ON 75H 10 573 566 0240 1250 824 183 597 789 1218 903 1485	00N 125N 150N 175N 200N 225 000 405 379 338 664 338 0088 385 328 418 021 8	N 250N 275N 300N 325N 35	10N 375N 400N 425N 450N 475N 500N 1430 840 2560 2500 1430 1820 17 1802 1918 1578 2437 1848 2290 982	<u>325N 550N 575N</u> Centeur 730 1050 052 300 983 1099 750 1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 3.0 3.0 2.5 3.7 2.6 7.5 10 19 2.9 12.3 2.6- 1.3
<u>55 1505 1255 1005 755 505</u>	255 OH 25N 5ON 754 11	00N 125N 150N 175N 200N 225	N 250N 275H 300N 325H 3	50N 378N 400N 425N 480N 475N 800N	526N 550N 575N Centour
1976 2900 1995 589 457 ++0 500 1995 589 526 524 2460 1997 712 663 594	540 610 970 1040 587 542 74 1408 1180 768 565 704 1194 1395 602 702 502	505 44 (230) 740 870 460 527 762 947 963 6 521 897 818 1192 670	400 120 780 860 161 42 875 687 778 1240 1708 704 718 1234 1770	2176 2410 272 4102 3311 3770 54 2332 1738 2395 3398 3111 2877 8893 7779 1986 2939 2800 2890 4090 36	4143 1500 3913 3000 117 LINE: 801
55 1505 1255 1005 755 505 136 1490 2880 410 - 428 822 1499 5350 474 472	255 0N 25N 50N 75N 10 449 645 653 547 720 486 496 892 238 810 514	00N 125N 150N 175N 200N 225N 358 548 456 552 374 550 408 808 928 832 8	471 1927 - 1010 1175 1171 471 1927 - 1010 1175 1171 627 - 1010 1175 1174	00N 375N 400N 425N 450N 475N 500N 9 1910 2490 2687 2419 4602 3680 24 1843 2480 2684 2834 3972 4208 3431	<u>525N 550N 575N</u> Contour 512 4591 4349 300 5635 3175 750 1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array} $	32 18 3.1 28 24 28 3.4 42 3.1 28 24 22 2 28 3.4 42 3.1 2.2 2 3.5 3.2 4.8 3.4 2.9 22 2 3.5 1.0 3.2 4.4 3.1 4.0 2 1.0 4.8 4.3 2.7 1.2 3.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38 55 58 51 44 38 3 41 64 62 61 60 46 47 53 38 36 5 55 55 57 40 34 47 44 60 84 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15 1505 1255 1005 755 505	255 ON 25N 50N 75N 10	<u>XON 1254 1504 1754 2004 2254</u>	4 250N 275H 300N 325H 33	ION 375N 400N 425N 450N 475N 50DN	525N 550N 575N Contour
097 1280 1980 1790 1740 1240 1080 1484 1840 2250 7204	1400 1220 1060 1580 1920 1950 1958 1188 1318 1773 105	200 1790 1790 1860 1350 12 - 231 2660 1690 1402 1832	210 1128 1210 1310 1470 ~1427 1140 1580 1820 1358	110 697 572 701 698 905 1080 771 667 691 701 874 1222 10	(944 52 LINE: 700
35 1505 1255 1005 735 505 3120- 2620 2250 985 737 1502 1960 2158 1090 126 1391 1640 1670 160 1320 1700	225 0N 25N 50N 75N 10 854 565 1190 1229 1260 3960 818 978 1285 1228 1978	00N 123N 150N 175N 200N 225M 0 3180 1660 1185 1083 784 3830 198 1435 1848 1187 1 2080 1579 1790 1810 1020	N 250N 275N 300N 325N 30 629 551 575 542 714 27 880 858 789 891 900 1160 920 1160 1210	0N 375N 400N 425N 450N 475N 500N 856 976 727 597 588 532 6 40N 81 535 683 730 588 734 930 480 604 740 710 780 00	<u>525N 550N 575N</u> Contour 63 695 999 500 901 880 1000 1500 270 971 2000
35 1405 1255 1005 755 505 4.4 4.1 4.1 6.1 5.5 6.2 5.3 5.4 5.6 7.1 6.8 5.7 5.4 5.4 5.7 4.2 6.7 7.8 7.1 6.8 5.7 6.1 6.7 4.7 7.7 2.0 5.9 7.2 5.9 7.2	255 0/4 25N 50N 75N 11 5.8 6.2 4.8 3.6 3.3 3.8 7.0 6.7 50 4.3 4.6 8.3 6.0 6.2 5.8 5.8 6.1 6.2 5.8 5.8 5.8 6.1 6.6 5.0 7.5 5.9 5.3	48 3.5 4.3 4.3 4.4 48 3.5 4.3 4.3 4.4 49 4.6 4.8 4.4 4 5.2 6 4.7 4.9 4.7 4.8 5.2 5.9 5.4 5.4 8.5 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ON 375N 400N 425N 450N 475N 500N 3.4 4.1 2.8 2.0 1.6 1.8 2 4.6 4.3 3.1 2.9 2.4 2.2 2.3 0 3.8 3.4 3.1 2.8 2.7 2 5 4.4 3.3 3.7 3.4 3.3 2.7 3.3 4.1 3.8 4.9 4.0 3.6 4	525H 550H 575H Contour 3 1.7 1.7 2.5 2.5 2.3 7.5 7 3.1 12.5 3.2 17.5 1 1
1150E 1175E 1200E 1225E 1250E 1 2 771 845 1140 607 505 785 1219 1204 786 587 85 0 900 1420 1280 818 748 1028 1050 1268 047 83 1284 805 1539 1556 1363	275E 1300E 1325E 1350E 1378E 1400	E 1425E 1450E 1475E 1500E 1525E 84 531 847 1470 858 786 1480 1776 1925 2182 180 2260 2530 2370 1429 790 2500 2640 2750 031 900 53 2820 3580 2084 1900 900	1550E 1575E 1600E 1625E 1650 1068 1360 1470 1699 11 1347 1252 584 139 370 150 1540 1940 1770 24 1520 1765 1590 2330 2 62 1520 1659 2010 24	E 1875E 1700E 1725E 1750E 1775E 1800E 18 28 2330 2070 2035 1720 1620 1008 1987 2148 2220 1640 1592 1790 48 100 2390 2200 1690 1220 100 200 2300 2206 850 1215 1169 1450 1450 140 1770 1900 1414 1152 1178 1153	25E 1850E 1875E Contour 1 1440 2520 1436 500 1074 1237 1000 107 841 3000 519 BL (
7 34 35 32 36 4.8 3.8 3.8 42 40 3.9 3.1 1 3.9 4.3 42 3.9 3.1 4.0 4.1 4.2 4.0 3.5 3.1 4.1 3.5 3.8 3.5 3.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3 3.3 3.6 3.2 3 3.4 3.2 3.1 3.7 3.6 3.5 3.7 3.2 3.6 4.2 3.3 3.0 3.4 4.2 4.9 3.6 3.5 3.3 4	1 28 3.1 3.3 4.1 3.8 3.3 3.6 3.5 3.8 3.7 3.2 3.6 3.6 5 4.0 4.2 3.7 3.1 3.1 3.8 3.9 4.0 3.5 3.0 4.0 3.0 4.0 2 4.2 3.7 3.0 3.0 4.0 3.8	3.1 3.3 3.1 2.3 3.2 2.8 7.5 3.7 2.7 3.2 3.6
1150E 1175E 1200E 1226E 1250E /	275E 1300E 1325E 1350E 1375E 1400	E 1425E 1450E 1475E 1800E 1525E	1850E 1575E 1600E 1625E 1650	E 1875E 1700E 1725E 1750E 1775E 1890E 18	125E 1850E 1875E Contour

As Shown

MAP INDEX NUMBER SCALE

DEPARTMENT

OFFICE

21014

×	Vein orientation
5	Shear orientation
5	Shear with vein orientation
-	Dominant fracturing
<u>⊢ 05</u> - I	Chip sample location
0 0 0	Overburden

GL- TR-90-03 BEARING: 119° TOTAL LENGTH: 15.4m

SAMPLE # INTERVAL WIDTH AU AU AG AG PB PB CU (m) (m) ppb g/t ppm g/t ppm t ppm

16

4.1

(.1

Scale 1:100

.

ANALYSES TRENCH 8 & 9

SAMPLE NO.	Au gt	Åg pp∎
TRENCH 9		
93802	<.03	5.00
IKENUN B		
93801	<.03	<.20

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

· ` à

. . .

ALTERATION

	٥	
	b	
	с	
Γ	d	٦

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

. - - - .

- - - -

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

7	
6	
5	
4	

ALTERATION

٥	
b	
с	
d	

S _

٠

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

, <u> </u>
0 0 0
\bigcirc

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

GEOLOGICAL BRANCH **ASSESSMENT REPORT**

	ANALYSES TRENCH 11		
SAMPLE NO.	Au gt	Ag ppm	Pb 8
93822	<.03	<.20	
23	<.03	<.20	
24	<.03	<.20	
25	<.03	<.20	
26	<.03	<.20	
27	<.03	<.20	
28	<.03	<.20	
29	< 03	< 20	
30	< 03	< 20	
21	< 03	< 20	
22	2.03	0.40	
32	<.U3 < 03	0.40	
33	<.03	<.20	

WIDTH 1.10 0.90 1.05 1.20 1.45 1.55 1.60 1.45 1.55

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

03

SYMBOLS

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

GEOLOGICAL LEGEND

Microdiorite dyke

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

Ь С đ

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification. GEOLOGICAL BRANCH

ASSESSMENT REPORT

,

0.08 0.10 <.03 <.03 0.05 0.34 <.20 <.20 <.20 0.40 16 17 FLOAT SAMPLES 104661 x 662 x 663 x 664 x 665 x 665 x 0.98 0.14 0.76 0.10 0.35 0.82

0.70

. ..

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

.

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Vein orientation

Fault orientation

GEOLOGICAL BRANCH **ASSESSMENT REPORT**

•

GEOLOGICAL BRANCH ASSESSMENT REPORT 21,0]Rord 1 of 2

1 2 **3** 4 5 metres

1:100

<u>3</u> 🚡

••

rich

l-4 cm clay 130/40 SW

GEOLOGICAL LEGEND

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite,

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

ALTERATION

7

6

5

4

minor quartz.

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

0 5

00

· . O

SYMBOLS

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

 $\boldsymbol{\mathcal{O}}$

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

Ο b С d Ø. 0

0

0

.

•

.

ANALYSIS TRENCH 15

GRAB	Au	Ag	
Sample No.	gt	ppm	
104667	<.03	<.2	
104668	<03	.2	

. .

.

.

	7
	6
[5
ſ	4

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

ALTERATION

	٥	
	b	
	с	
Γ	d	

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Chip sample location

Overburden

Pit, trench outline

Fault orientation

Vein orientation

Fault with vein orientation

Dominant fracturing / jointing

Ľ

PPOPUN

C

Highly silicified, pale greyish, with local milky gtz veinlets or stockwork. Generally 4-7% Py. Local Tr-3% sp. hem. Tr-2% mgte. Fractures typically chloritic, sometimes limonitic. Sulphides locally thinly banded 3-5mm. Locally chloritic. Fracture mosaics common. Local br. Original textures mostly lost.

Moderate to high chlorite alteration. Sulphides and silicification variable. 1-7% Py, weak to intense silicification to none. Local chlorite foliation.

D 0 0 0 0 0 0 D 1 93 0 92 S 0 0 0 SI 0 0 0 0. 0 C+S 0 * = 32.3 m, Tr #13 0 0 D 0 . 0 0 0 . . 0. 0

(N)

ALTERATION

	o	
	b	
	с	
Γ	d	7

Dominant shearing throughout trench 090/45 S Calcite veinlets 1-3mm cormon, often 1 per 5-10 cm as 17-19 m: Calc fracts 104/ 80 S. also 010-015/90-75 W 3 m vertical face at 18.6 m. N has multiple E-W shearing with gouge. Footwall highly chloritic but mineralized - 3% Py.

Dominant fracturing 150-165/71-78 W 022-030/85 W - 80 W

0

0

0

0

0

0

0

1

0

0

0.0

0

D

0

0

0

0

Dominant fracturing 012/80 E to 023/85 W.

> 1 2 3 4 5 metres 1 100

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

0 0 0	, <u>03</u>	
0 0	0.	0.0
	0	0

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

GEOLOGICAL BRANCH ASSESSMENT REPORT

CORONA CORPORATION

GOLDEN LOON PROJECT TRENCH TR. 19

SEPTEMBER 1990

I. M / K.G.	SCALE:	PREJECT NO : 1064
NT.S. 92 P/8	DATE Nov. 1990	MAP 10 18

,

, ··· , ··· ,

3 /

) , , , , ,

.

- 1 - 1

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, sychogabbro. Medium to coarse grained with alkali feldspars and local bintite

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

H-03

SYMBOLS

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

0 0 Overburden Pit, trench outline EULOGICAL BRANCH - SEFSSMENT REPORT CORONA CORPORATION GOLDEN LOON PROJECT TRENCH TR21
 SEPTEMBER
 1990

 PREPARED BY:
 BCALE:
 PROLECTIND:

 I.M./K.G.
 1:100
 1064

 N.T.B.:
 92 P/8
 DATE:
 Nov. 1990
 MAP HD:
 19

Chip sample location

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz. Monzonite, quarta-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz. Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

Š

_

Vein orientation

0.00 0 0

0 3

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

Fault with vein orientation

Dominant fracturing / jointing

SEOLOGICAL BRANCH SSESSMENT REPORT

21,014Portiofa

GEOLOGICAL LEGEND

7	
6	
5	
4	

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz. Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite,

minor quartz. Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

ALTERATION

1

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

GEOLOGICAL LEGEND

7	
6	
5	
4	

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz. Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz. Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

ALTERATION

bPervasive moderate to strong chloritization.cModerate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.dWeak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification	Q	Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.
cModerate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.dWeak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification	b	Pervasive moderate to strong chloritization.
d Weak to moderate propylitic alteration, commonly patchy. Variable hematite and	С	Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.
Silicitication.	d	Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Ś	
ý	

Fault orientation

Vein orientation

Fault with vein orientation

Dominant fracturing / jointing

Chip sample location

Overburden

Pit, trench outline

Bedrock exposed in trench

GEOLOGICAL BRANCH SSESSMENT REPORT

1:100

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz. Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz. Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized. 1. 1. 1. 1. 1.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite. 1. !

ALTERATION

0	
b	
С	
d	

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Chip sample location

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

Overburden

Pit, trench outline

Bedrock exposed in trench

SSESSMENT REPORT

2

21,014Aut 10f a

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

ALTERATION

O	Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.
b	Pervasive moderate to strong chloritization.
с	Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.
d	Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

C	7
5	
S	

WIDTH ■ 1.50 1.50 1.00 1.90 1.25 1.00

GEOLOGICAL L	EGEND
--------------	-------

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured

(with quartz.
6	Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.
5	Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.
4	Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.
LTERATION	
O	Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.
b	Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

SYMBOLS

Chip sample location

0 0 0 Overburden 0 0

- 03

Pit, trench outline

Bedrock exposed in trench GEOLOGICAL BRANCH SSESSMENT REPORT

7

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

GEOLOGICAL LEGEND

Quartz-monzonite, minor granodiorite. Predominantly fresh and light coloured with quartz.

Monzonite, quartz-monzonite. Less than 10% mafics, feldspar rich, local biotite, minor quartz.

Diorite, monzonite. Greater than 10% mafic minerals, commonly chloritized.

Gabbro, syenogabbro. Medium to coarse grained with alkali feldspars and local biotite.

ALTERATION

Silicified, commonly with significant pyrite and or specular hematite. Local chalcopyrite and galena. Late quartz veinlets and weak stockworks common.

Pervasive moderate to strong chloritization.

Moderate propylitic alteration, epidote, chlorite, carbonate, variable silicification with pyrite and hematite.

Weak to moderate propylitic alteration, commonly patchy. Variable hematite and silicification.

5	
J.	

Vein orientation

Fault orientation

Fault with vein orientation

Dominant fracturing / jointing

SYMBOLS

Overburden

Chip sample location

Pit, trench outline

Bedrock exposed in trench

GEOLOGICAL BRANCH ASSESSMENT REPORT

Au	Ag	Pb	WIDTH
gt	ppm	\$	
0.37 1.56 0.10 0.19 0.31 0.17 0.04	6.4 23.0 1.0 5.2 6.8 3.2 0.4	0.09 0.30 0.07 0.19 0.02	$1.00 \\ 1.00 \\ 0.90 \\ 1.30 \\ 1.30 \\ 1.50 \\ 1.45$

