Di rict Geologist, Victoria Off Confidential: 92.03.06			
ASSESSMENT REI	PORT 21053 MINING DIVISION: Nanaimo		
PROPERTY: LOCATION:	Wanda, Stat LAT 50 37 00 LONG 127 40 00 UTM 09 5607827 594329 NTS 092L12W		
CLAIM(S): Stat 1-2			
OPERATOR(S): AUTHOR(S):	Maraga Res. Dasler, P.G.;Sutton, G.		
REPORT YEAR: COMMODITIES	1991, 149 Pages		
SEARCHED FOR: Copper			
KEYWORDS:	Jurassic,Bonanza Group,Andesites,Quartz monzonites Argillic alteration,Propyllitic alteration		
ROTI	lling,Geochemical D 1749.6 m 17 hole(s);ME P 559 sample(s) ;ME		

9 Ministry of **Province of** ASSESSMENT REPORT Energy, Mines and **British Columbia** MARO 6 TOTAL PAGE AND SUMMARY Petroleum Resources COV MENT AGENT TYPE OF REPORT/SURVEY(S) TOTAL COST 72 Keverse_ $\mathcal{P}^{\mathsf{I}}\mathcal{H}$ 121 40 24 ten TAX AUTHOR(S) SIGNATURE(S DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILED Worda, Sta PROPERTY NAME(S) Comer. COMMODITIES PRESENT . B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN Nanaimo MINING DI ISION LATITUDE LONGITUDE NAMES and NUMBERS of all mineral tenures in good standing (when work was done) that form the property [Examples: TAX 1-4, FIRE 2 (12 units); PHOENIX (Lot 1706); Mineral Lease M 123; Mining or Certified Mining Lease ML 12 (claims involved)]: (2322-2324) Hew 1-8 (423-430) Squeeze lez (3744 3 3745 ... Bunny .. 3794 ..., WEnda 20-30 ((1474-83) OWNER(S) (2) (1) MAILING ADDRESS Cl-1030 bog Granulle St. Vancalver BC V741GS OPERATOR(S) (that is, Company paying for the work) Maraga Mesources L (1) (2) MAILING ADDRESS C-1032 609 Granullest Encouver BC 174195 SUMMARY GEOLOGY (lithology, age, alteration, mineralization, size, and attitude): Volcanico are ... qualtz ... Muzante and ج ہ dionte advarced agillic *Extensive* propullitic 0 infusive Centres. Chalconyute rund in the centres of the al zyrophillite . found zancs. ar. oid REFERENCES TO PREVIOUS WORK

TYPE OF WORK IN THIS REPORT	EX (IN	TENT OF WORK METRIC UNITS)			0	N WHICH CLAIMS		COST
GEOLOGICAL (scale, area)		· · · · · · · · · · · · · · · · · · ·						
Ground	• • • • • • • • • • •			• • • • • • • • • • •			1	
Photo							• • • • • • •	•••••
GEOPHYSICAL (line-kilometres)							•••••	•••••
Ground]					
Magnetic								
Electromagnetic		* * * * * * * * * * * * * * * * * * * *			•••••••••••		· · • • • • • [• • • • • • • • • • • • •
Induced Polarization		* * * * * * * * * * * * * * * * * * * *						• • • • • • • • • • • • • •
Radiometric		* * * * * * * * * * * * * * * * * * * *			•••••••••			• • • • • • • • • • • • • •
Seismic		* * * * * * * * * * * * * * * * * * * *			• • • • • • • • •		• • • • • • •	
Other		* * * * * * * * * * * * * * * * * * * *					• • • • • • •	• • • • • • • • • • • • • •
Airborne				•••••	• • • • • • • • • •		• • • • • • • [• • • • • • • • • • • • •
GEOCHEMICAL (number of samp	oles analysed for			•••••	• • • • • • • • • •		• • • • • • •	• • • • • • • • • • • • •
Soil								
Silt	•••••			• • • • • • • • •	• • • • • • • • • •			
Rock	• • • • • • • • • • •		••••	• • • • • • • • •		••••••••••••••••••		
Other	•••••			• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	(
DRILLING (total metres; number	of bolon simely	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	• • • • • • • • •			
	of noies, size)							
Core	1.50.51		ير				[
Non-core	···:190.1W	ener llevere circl		?すきす.1,	. Stat 2			12140972
RELATED TECHNICAL				/				••••••
Sampling/assaying	• • • • • • • • • •							
Petrographic	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	[
Mineralogic	· · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •						
Metallurgic	• • • • • • • • • •							
PROSPECTING (scale, area)	• • • • • • • • • • •							•••••••••••••••••
PREPARATORY/PHYSICAL								•••••
Legal surveys (scale, area)								
Topographic (scale, area)				• • • • • • • • • •		••••••••••		• • • • • • • • • • • • • •
Photogrammetric (scale, area)		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •				· · · · · · · · · · · · · · ·
Line/grid (kilometres)				• • • • • • • • • •	••••••	•••••••••••		
Road, local access (kilometres)		• • • • • • • • • • • • • • • • • • • •		•••••				
Trench (metres)	••••••		••••	• • • • • • • • • •	•••••••			
Underground (metres)	• • • • • • • • • • • •			•••••				
Chacigiouna (metrea)	• • • • • • • • • • •			• • • • • • • • •				• • • • • • • • • • • • • •
						тот	AL COST	1.21,409,72
FOR MINISTRY USE ONLY		NAME OF PAC ACCOUN	<u></u>	DEBIT	CREDIT	REMARKS:	<u>_</u>	
Value work done (from report) .				1				
Value of work approved	****							
Value claimed (from statement)			••••	• • • • • • • • •				
Value credited to PAC account			••••	• • • • • • • • •				

.

.

Value credited to PAC account

Value debited to PAC account

Daiwan Engineering Ltd. 1030-609 Granville Street, Vancouver, B.C. Canada. V7Y 1G5 Phone: (604) 688-1508

LOG NO: March	12/91	RD.
ACTION:	7	

FILE NO:

ASSESSMENT REPORT OF

REVERSE CIRCULATION DRILLING

ON THE

WANN PROPERTY

NORTH VANCOUVER ISLAND, BRITISH COLUMBIA

NTS: 92L/12

Latitude: 50° 37' Longitude: 127° 40'

For

Moraga Resources Ltd. 1030 - 609 Granville Street Vancouver, B.C. V7Y 1G5

By

Peter G. Dasler, M.Sc., F.G.A.C.

Gary A. Sutton, B.Sc.

January 11, 1991

20 24

リア

< Z **U** E Σ

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
LOCATION AND ACCESS	2
TOPOGRAPHY AND VEGETATION	2
PROPERTY	3
HISTORY	4
REGIONAL GEOLOGY	5
REGIONAL MINERALIZATION	7
PROPERTY GEOLOGY	8
DRILL PROGRAM	8
SAMPLE PROCESSING	9
DISCUSSION OF RESULTS	10
CONCLUSIONS	11
RECOMMENDATIONS	11
STATEMENT OF COSTS	12
CERTIFICATE OF QUALIFICATIONS	13
BIBLIOGRAPHY	15

Figures

•

Figure 1 - Location Map	Following Page 2
Figure 2 - Claim Map	Following Page 3
Figure 3 - Regional Geology	Following Page 6
Figure 4 - Regional Mineralization	Following Page 10
Figure 5 - Property Geology Summary	Following Page 10
Figure 6 - Drill Hole Location Map	Following Page 10

Appendices

Appendix I - Assay Certificates

18

Page

SUMMARY

Moraga Resources Ltd. optioned the WANN property from Acheron Resources Ltd. in May 1990. The property adjoins the Expo property of Moraga Resources and the Apple property of BHP-Utah Mines Ltd. Both of these properties are currently being explored for porphyry copper-gold mineralization.

The WANN property formed part of the Expo property until 1982, and then was staked by the current owner, an ex-BHP geologist.

The property overlies a significant airborne magnetometer anomaly, similar in size and intensity to that over the nearby Island Copper mine. Fieldwork by BHP-Utah in the 1970's identified significant copper in soils and two zones of high IP response adjacent to inferred intrusive dykes. These responses are similar to local models for porphyry copper style mineralization.

Two drill holes were completed on the property in 1974, both were on the eastern half of the property. Both holes, though not adjacent, showed strong argillic-phyllic alteration, and are indicated to be within the alteration halo of a porphyry copper deposit.

Recent exploration by Moraga has focused on reconnaissance soil geochemistry for assessment purposes, and the assembly of the property data. This data suits a model of copper mineralization adjacent to a porphyry dyke system(s) in the centre and northeast of the property. Outcrop in these areas is sparse, however the soil geochemistry, IP and magnetometer surveying indicate significant sulphide mineralization at depth.

A program of 1867 metres of reverse circulation drilling was undertaken in September 1990 to test the bedrock mineralization in the areas of most significant anomalous copper geochemical and geophysical responses. This program, costing \$120,909.72, is detailed in this report.

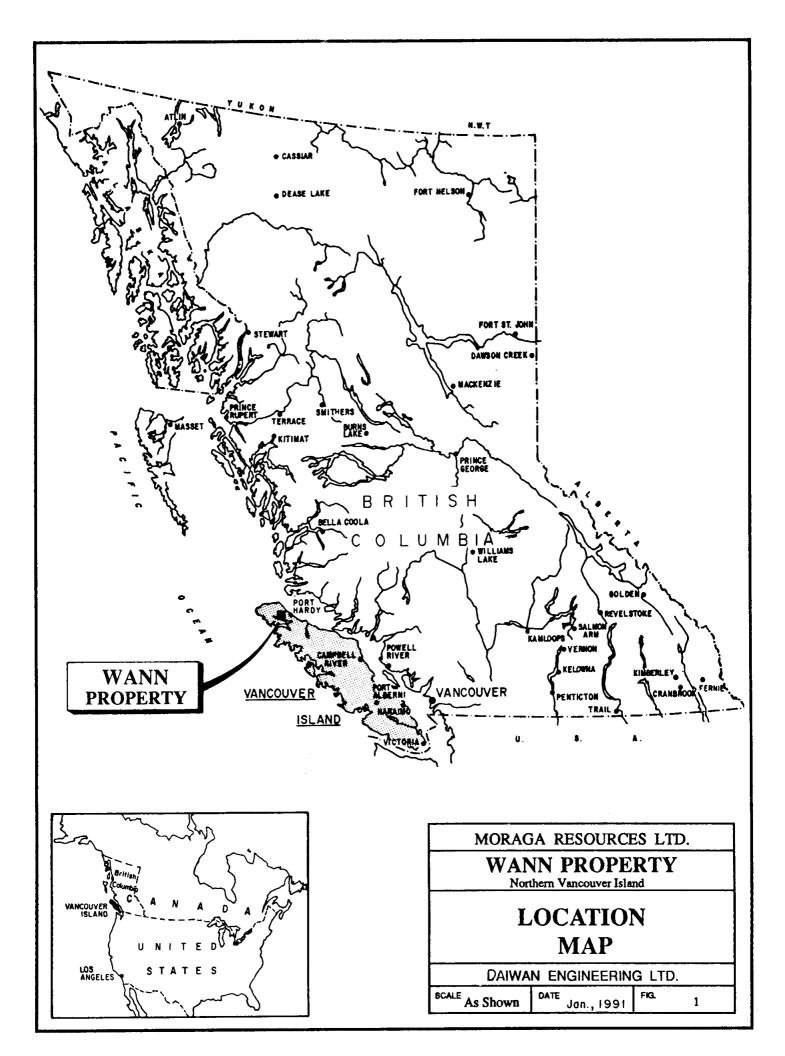
INTRODUCTION

At the request of Mr. Maurice Young, President of Moraga Resources Ltd., a program of reverse circulation drilling was completed on the WANN property. This program began on September 21 and was completed on October 24, 1990.

LOCATION AND ACCESS

The WANN property is located on northern Vancouver Island, approximately 360 km (225 miles) northwest of Vancouver, British Columbia, Canada (Figure 1). Locally this claim group on the north side of Holberg Inlet on N.T.S. topographic map 92L/12 consists of 29 contiguous claims (see Figure 2). Most areas of the property can be reached by well maintained logging roads and forest tracks. The main access to the claim block is by forest road "P Main" a branch of "Wanokana Main" which commences on the outskirts of Coal Harbour.

Regular air service is provided by both Air B.C. and Time Air from Vancouver to Port Hardy, each on a twice daily schedule. Alternately, there is good highway access, with travel from Vancouver taking 7 hours.


Port Hardy is the local commercial centre, but there are forestry and fishing centres at Coal Harbour and Holberg.

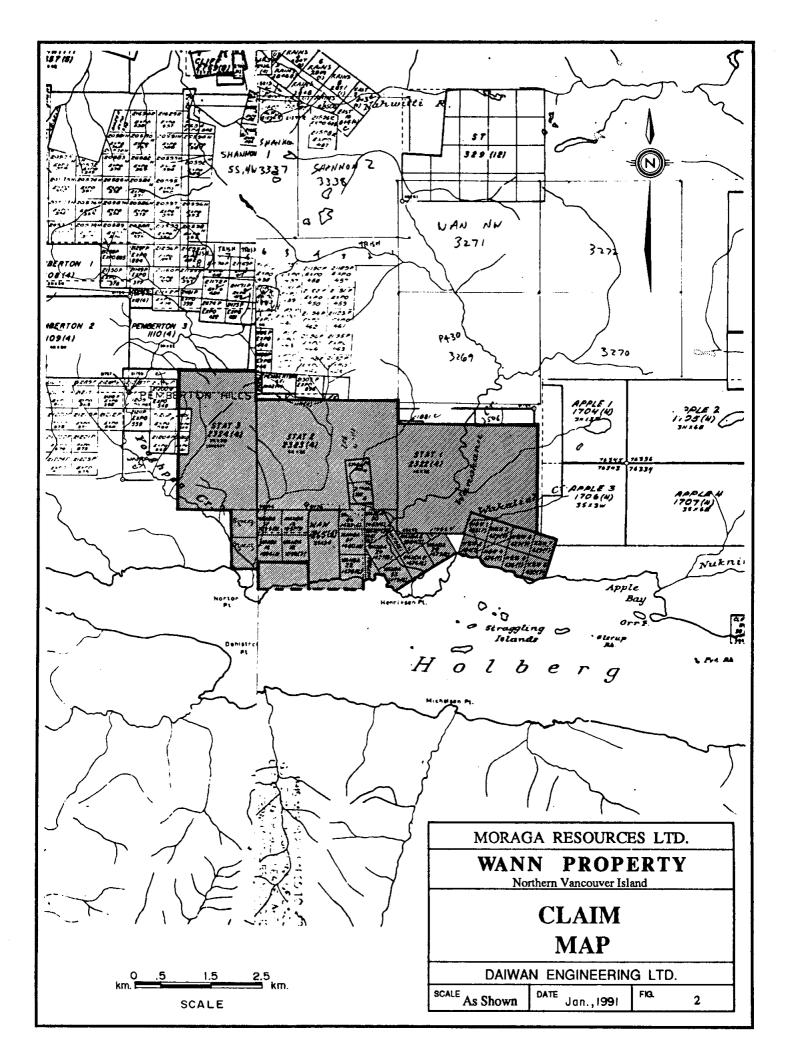
TOPOGRAPHY AND VEGETATION

The property is characterized by a central plateau-like area, deeply incised by the Wanokana River Valley, rising steeply to the north, and dropping approximately 150 metres in the south to sea level. Elevations range from sea level to over 300 metres (1,000 ft).

The claims are located within an active logging area, consequently forest cover varies from mature stands of fir, hemlock, spruce and cedar to dense second growth or to large open clear-cut areas of recent logging. Low areas, especially along creeks, have thick brush and berry bushes. The Wanokana and Youghpan Creek drainages are deeply incised into the local topography. These creeks form steep sided canyons along most of their length.

2

Rock exposure is well defined in the areas of high relief, and on the higher ridges. However, thick humus development on the forested and logged slopes and scattered residual glacial gravels in the valley bottoms restrict geological mapping in these areas to the logging roads and the creek gulleys.


PROPERTY

	Rec. No.	<u>Units</u>	Expiry	Owner
Wanda 16-19	1094-1097	4	23 March 91	B. Pearson
Wanda 20-30	1473-1483	11	2 June 91	M. Pearson
Stat 1	2322	20	14 April 91	M. Pearson
Stat 2	2323	20	14 April 91	M. Pearson
Stat 3	2324	15	14 April 91	M. Pearson
H & W 1-8	423-430	8	19 July 91	R. McBean
Bunny	3796	12	17 April 91	Daiwan Engineering Ltd.
P. Main	3745	12	15 March 92	B. Pearson
Squeeze 1	3746	1	15 March 92	B. Pearson
Squeeze 2	3747	<u> </u>	15 March 92	B. Pearson
		92		

The WANN property consists of the following contiguous claims:

Acheron Resources optioned the property from Western Pocasset Resources Ltd., and subsequently entered into an exploration agreement with Moraga Resources Ltd. The detail of these agreements is beyond the scope of this report. The P. Main and Squeeze and Bunny claims were staked after the signing of the exploration agreement with Acheron Resources Ltd., to cover adjacent mineralized claim blocks, and to consolidate the claim group.

The drilling program referred to in this report will be filed as assessment to allow 5 years to be applied to all of the current claims. It is proposed however that the Wanda 16-30 claims be allowed to lapse into the overlying Bunny and P. Main claims.

HISTORY

In 1963, the B.C. Department of Mines published the results of a recently completed aeromagnetic survey covering the northern end of Vancouver Island.² Since porphyry deposits were of interest at this time, considerable exploration activity was generated in the area examining all magnetic anomalies of interest.

One magnetic anomaly of fairly large areal extent was recorded on the eastern end of Rupert Inlet. Diligent prospecting in this area located a number of poorly exposed copper occurrences. A large number of claims were located in 1966 and subsequently the property was acquired by Utah Construction and Mining Company, now BHP-Utah Mines Ltd. Over the years, they added to the claim block and conducted extensive geological-geochemical-geophysical surveys and diamond drilling throughout the claim block. This work resulted in locating the large copper-molybdenum deposit which was developed into Island Copper Mine (Figure 4). The mine commenced production in October 1971. Production to 1987 has been in excess of 200 million tonnes milled, for concentrate sales of 753,000 tonnes of copper, 23.1 million grams gold, 168 million grams silver, and 15.3 tonnes molybdenum¹⁴.

With the discovery of significant copper mineralization on the Utah property, a great deal of interest was generated in the area by individuals and companies searching for copper. Many copper occurrences were located but none were found to be economic.

During the height of the exploration activity, Utah Mines Ltd. controlled most of the ground extending from the east end of Rupert Inlet to the west end of Holberg Inlet. Their properties included the large block of claims covering the Island Copper deposit, as well as the favourable geology on trend to the northwest (most of the present Expo group). After exploring the area extensively to 1975, Utah dropped some of the claims. This release included the WANN group.

BHP-Utah and Moraga Resources have continued to develop the Hushamu copper-gold porphyry which is 8 km northwest of the WANN property, along the regional geological trend.

The Hushamu deposit, and the other alteration zones along a northwest trend from the WANN property are the targets for gold and copper exploration. The urgency for developing a further copper deposit in the area is prompted by the expected closure of the Island Copper Mine in 1996 due to the exhaustion of the pit reserves.

Work on the current WANN property has consisted of prospecting, mapping at 1:200' scale, and some IP and magnetometer surveying by Utah Mines in the early 1970s, when it was part of the Expo group. In late 1982 the claims lapsed and Mr. Pearson, an ex-Utah employee staked the ground. He has maintained the ground by limited geological prospecting of the areas surrounding the anomalies found by Utah Mines.

In 1987 Searchlight Resources Ltd. on behalf of Rochester Minerals Ltd. conducted reconnaissance sediment sampling on the property to locate epithermal type gold mineralization. Three zones of significant gold mineralization were identified from the program.

Since 1984 the majority of the property has been clear cut logged, providing excellent access and several road cuts and pits which reveal the extensive zones of clay and silica alteration.

REGIONAL GEOLOGY

Vancouver Island, north of Holberg and Rupert Inlets, is underlain by rocks of the Vancouver Group. These rocks range in age from Upper Triassic to Lower Jurassic. They are intruded by rocks of Jurassic and Tertiary age and are disconformably overlain by Cretaceous sedimentary rocks. Figure 3 shows the geological mapping of the northern part of the Island.

Faulting is prevalent in the area. Large-scale block faults with hundreds to thousands of metres of displacement are offset by younger strike-slip faults with displacements up to 750 metres (2,500 feet).

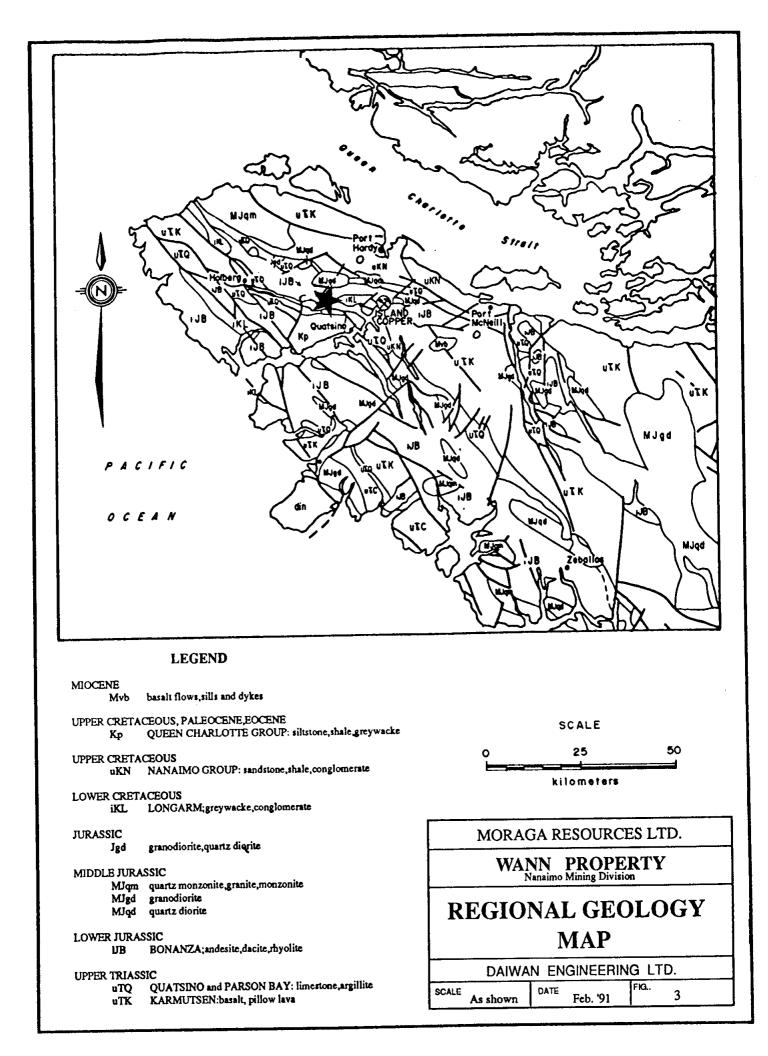
The Vancouver Group is composed as follows:⁶

- (a) Basal Sediment Sill Unit: Middle and Upper Triassic Age
- (b) Karmutsen Formation: Upper Triassic Age
- (c) <u>Quatsino Formation: Upper Triassic Age</u>
- (d) <u>Parson's Bay Formation: Upper Triassic Age</u>
- (e) <u>Harbledown Formation</u>: Lower Jurassic Age
- (f) Bonanza Formation: Lower Jurassic Age

Cretaceous Sediments

The Vancouver Group is unconformably overlain by non-marine Cretaceous sediments of the Longarm Formation which are estimated to be about 300 metres (1,000 feet) thick in the Port Hardy area. These sediments, consisting of conglomerate, sandstone, greywacke, and siltstone and some carbonaceous and impure coal seams, occupy local basins. Early coal mining in the district was from several of these basins.

Intrusive Rocks


The Vancouver Group rocks are intruded by a number of Jurassic-aged stocks and batholiths. In the Holberg Inlet area a belt of northwest-trending stocks extend from the east end of Rupert Inlet to the mouth of Stranby River on the north coast of Vancouver Island¹⁵.

Quartz-feldspar porphyry dikes and irregular bodies occur along the south edge of the belt of stocks. Dykes are characterized by coarse, subhedral quartz and plagioclase phenocrysts set in a pink, very fine grained, quartz and feldspar matrix. They are commonly extensively altered and pyritized. At Island Copper Mine, these porphyries are enveloped by altered, brecciated, mineralized Bonanza wallrocks. The porphyries, too, are cut by siliceous veins, pyritized, extensively altered, and are mineralized where they have been brecciated. The quartz-feldspar porphyries are thought to be differentiates of middle Jurassic, felsic, intrusive rocks.

Other intrusive rocks of lesser significance include felsic dykes and sills around the margins of some intrusive stocks; dykes of andesitic composition, which cut the Karmutsen, Quatsino and Parson's Bay Formation, and represent feeders for Bonanza volcanism; and Tertiary basalt-dacite dykes intruding Cretaceous sediments.

Structure

The structure of the rocks north of Holberg and Rupert Inlets is that of shallow synclinal folding along a northwesterly fold axis. The steeper southwesterly limbs of the folds have apparently been truncated by faults roughly parallel to the fold axis. Failure of limestone during folding may have influenced the location of some of the faulting as indicated by their proximity of the Dawson and Stranby River Faults to the Quatsino horizon. Transverse faulting is pronounced and manifested by numerous north and northeasterly trending faults and topographic lineaments.

The northeasterly trending faults comprise a subordinate fault system. In some cases, apparent lateral displacement, in the order of a several hundred metres, can be measured on certain horizons. Movement, however, could be entirely vertical with the apparent offset resulting from the regional dip of the beds.

Recent computer modelling of the airborne magnetometer data has provided a very clear understanding of the relationship of secondary conjugate sets of northeast and north westerly faults related to the major west-northwest trending breaks.⁷ These conjugate fault sets appear to relate directly to the significant mineralization at the Island Copper, Hushamu, Hep and Red Dog copper/gold deposits, and are present on the WANN property.

Generally, regional dip of the bedding is gentle to moderate southwesterly. Locally, in the area west of Holberg, dips are much steeper, but these are in close proximity to major faults. There is little folding or flexuring of bedding visible, except along loci of major faults where it is particularly conspicuous in thinly bedded sediments of Lower Bonanza. Bedding is generally inconspicuous in massive beds of Karmutsen, Quatsino and Bonanza rocks, particularly inland where outcrops are widely scattered.

REGIONAL MINERALIZATION

A number of types of mineral occurrences are known on Northern Vancouver Island. These include:

- 1. Skarn deposits: copper-iron and lead-zinc skarns
- 2. Copper in basic volcanic rocks (Karmutsen): in amygdules, fractures, small shears and quartzcarbonate veins, with no apparent relationship to intrusive activity
- 3. Veins: with gold and/or base metal sulphides, related to intrusive rocks
- 4. Porphyry copper deposits: largely in the country rock surrounding or enveloping granitic rocks and their porphyritic phases.

PROPERTY GEOLOGY

The property is underlain by Bonanza Series volcanics, intruded by stocks of quartz monzonite or granite (inferred from the geophysical information and mapping in the Wanokana drainage), and bounded on the southwest side by a major zone of hot spring(?) silica deposits with associated bedded pyritic horizons, and re-mobilized pyrite in veins. A large portion of the central part of the property is low lying, or covered by significant overburden. A summarized geological map (Figure 5) has been prepared for this report from 1:2400 scale base mapping.

There are large alteration zones - silica and pyrite replacement in the volcanics, and clay alteration alongside highly silicified zones in volcanics, the intrusive to the north, and in Wanokana Creek Canyon. The rock alteration is typical of zonation (phyllic) within a porphyry copper system, with further imprints of late epithermal re-mobilization.

DRILL PROGRAM

Hole	Angle	Depth	Co-ordinates*
Wan-C	-90	500	227295 265557
Wan-E	-90	350	227524 265557
Wan-G	-90	420	228049 267033
Wan-H	-90	370	227672 267000
Wan-J	-90	200	228820 268656
Wan-K	-90	260	228328 268689
Wan-L	-90	360	227852 269000
Wan-M	-90	170	227377 268836
Wan-N	-90	270	227000 268459
Wan-O	-90	320	226606 267934
Wan-P	-90	460	225688 269672
Wan-Q	-90	410	227787 272000
Wan-R	-90	380	227361 271689
Wan-S	-90	330	226951 272262
Wan-T	-90	255	227820 26043

Summary of Reverse Circulation Drill Holes

Hole	Angle	Depth	Co-ordinates*
Wan-U	-48	200	223000267426228082273476
Wan-V	-90	485	

TOTAL 6125 (1867m)

Holes abandoned due to overburden

Angle	Depth	Co-ordinates*
-90		226885 261606
-90		227131 261557
-90		227394 261557
-90		227410 262115
-90	20	227377 262591
-90	60	226410 262738
-90	70	226312 263246
	-90 -90 -90 -90 -90 -90	-90 -90 -90 -90 -90 -90 -90 20 -90 60

* Co-ordinates from Western Forest Products Imperial grid.

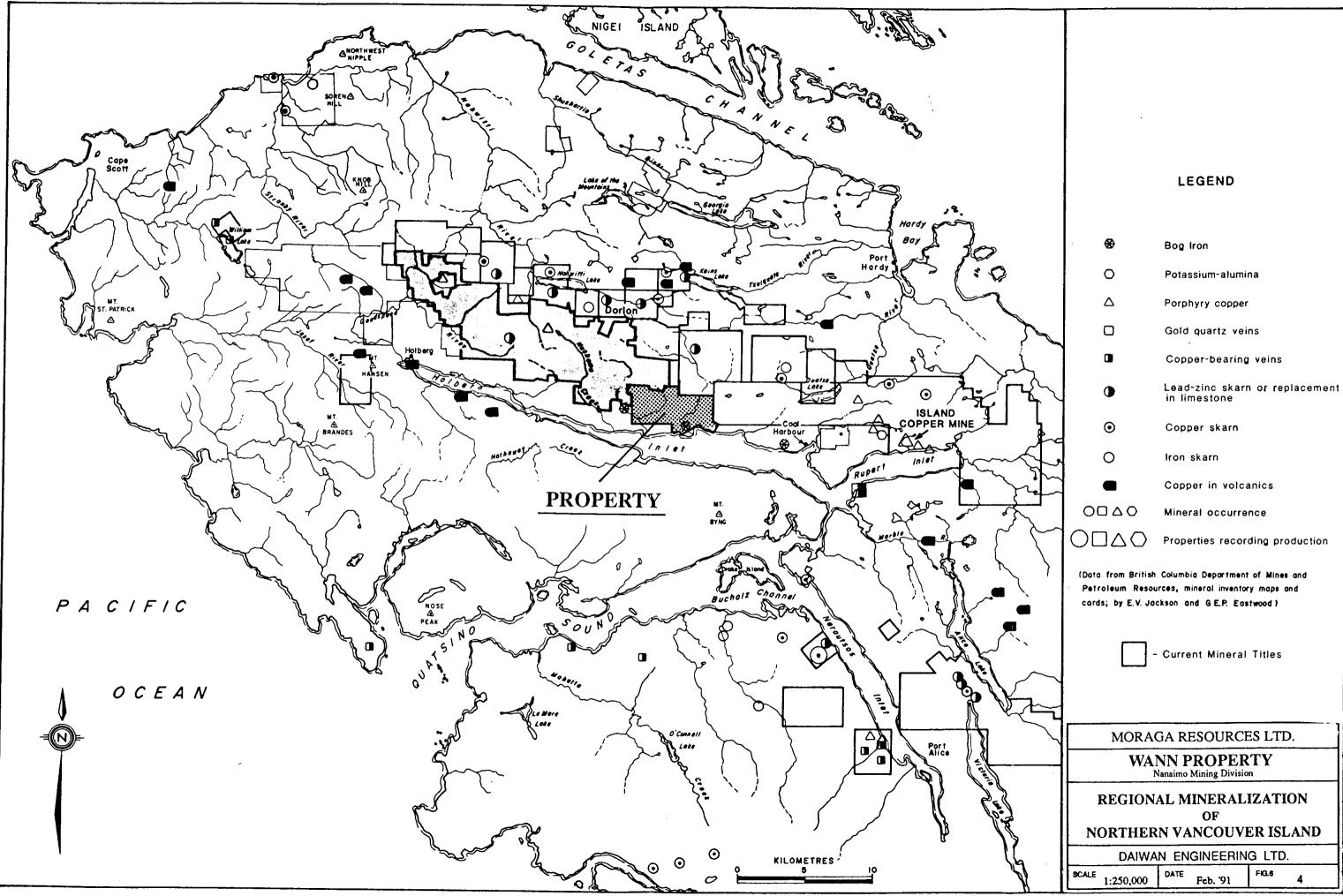
The drill program was not completed as originally conceived. It was proposed that three fences of drill holes be completed across the magnetics high, immediately west of Wanokana Creek, and that a further three holes would be drilled on the east side of the creek in an IP-mag anomaly. Five drill holes were not able to be accessed by the track mounted drill rig, and there was substitution for drill targets on the eastern side of Wanokana Creek.

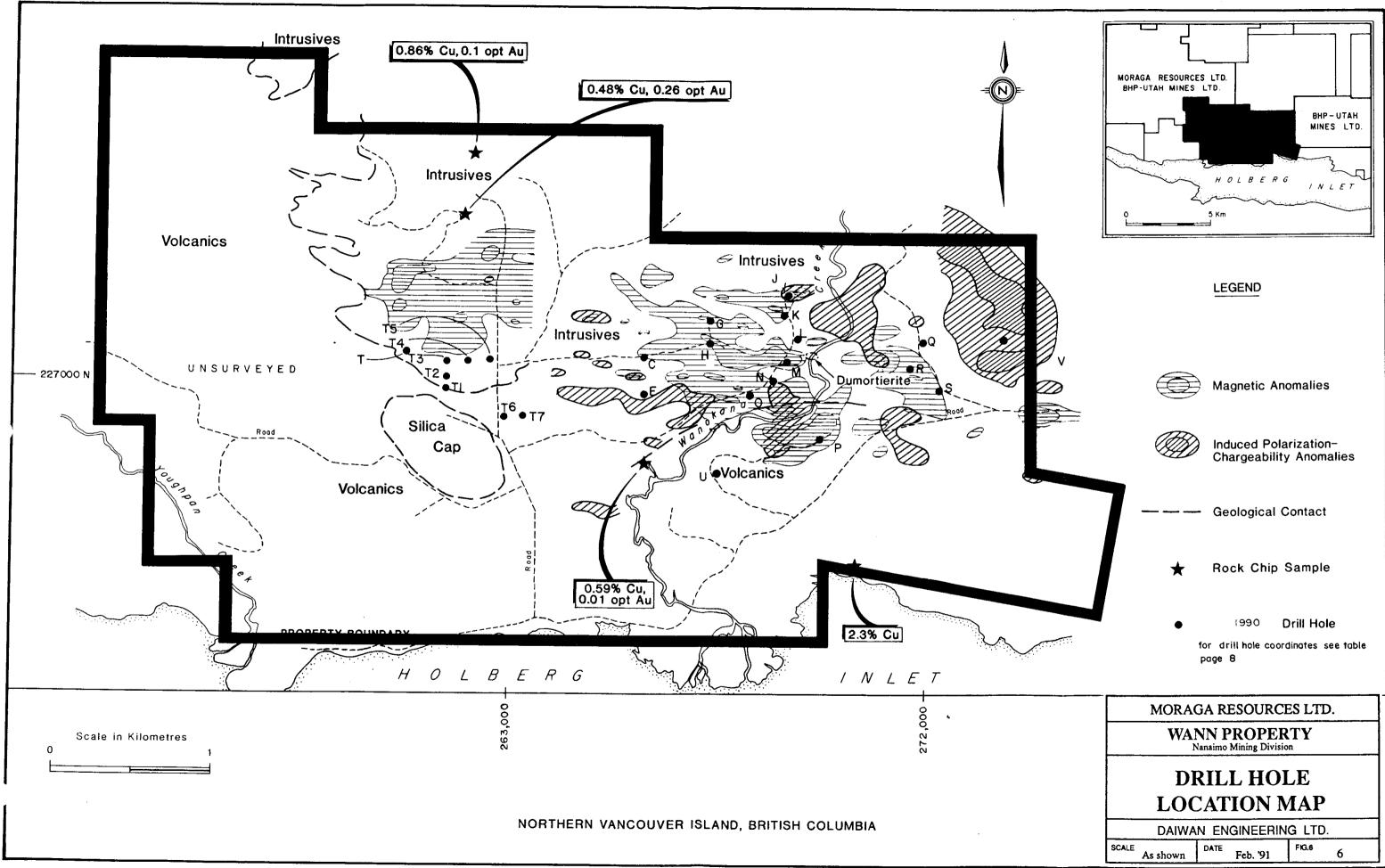
SAMPLE PROCESSING

All samples were collected at 10 foot intervals and riffled on site to obtain approximately $2^{1}/_{2}$ kilograms of representative sample chips which was put into cloth bags. A duplicate sample of similar weight was also prepared and left at the drill site in plastic bags for possible later use. (These samples have now been discarded at the request of the resident Inspector of Mines.)

The sample for analysis was inspected with a binocular microscope and hand lens for the mineralogy recorded in the drill hole records. The samples were then shipped to Chemex Labs Ltd., North Vancouver for gold analyses by standard 10 gm fire assay methods (AA finish), and for analysis for Ag, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn by acid dissolution and ICP analysis (ICP-9 standard analysis). All results are in ppm except FE (%) and Au (ppb).

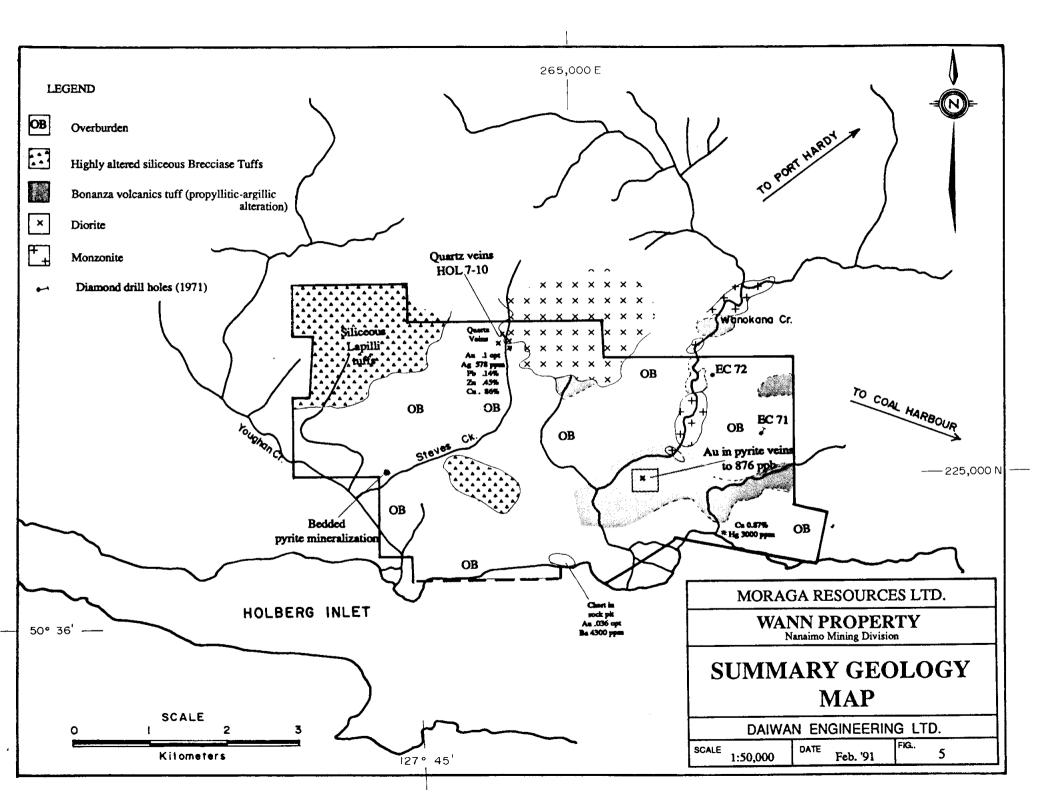
In the latter half of the program assays of each 10 foot interval was discontinued, and only alternate sample intervals were assayed for the ICP-9 package. Gold was assay over all intervals however.


DISCUSSION OF RESULTS


No significant copper mineralization was encountered in any of the drill holes. This was a surprise, as in the vicinity of holes L, M, N there is visible chalcopyrite in the road cut material.

It is possible that the inferred copper mineralization in this area is located further to the north of the current drilling. Two drill sites were located in this area originally, but were not drilled because of access problems.

The extreme thickness of silica pyrophyllite rock encountered in RDH #V explains the large IP response in the northeastern portion of the property. This silica zone is similar to that found overlying the Hushamu copper deposit.


Hole T on the western portion of the property also drilled silica cap, but penetrated through the cap at 120 feet. The underlying andesitic tuff unit was not mineralized with copper, but should be tested further. Drill holes T1-T7 were attempts at penetrating the overburden near the original proposed drill locality. Typically the drill could not penetrate the overburden where it was over 60 feet in thickness. This area deserves further evaluation.

.

MORAGA RESOURCES LTD.				
WANN PROPERTY Nanaimo Mining Division				
DRILL HOLE				
LOCATION MAP				
DAIWAN ENGINEERING LTD.				
SCALE As shown	DATE Feb. '91	^{FIG.6} 6		

CONCLUSIONS

- 1. The reverse circulation drill program was not successful in defining extensions of the surface copper mineralization.
- 2. A silica pyrophyllite cap over 480 feet thick was encountered on the eastern portion of the property, and this may overly a buried Hushamu style porphyry copper-gold deposit.
- 3. A number of significant drill sites could not be accessed because of ground conditions.
- 4. Hole T on the western side of the property penetrated the silica cap at 120 feet. This appears to show significant regional vertical fault block movement across the Wanokana Creek area.

RECOMMENDATIONS

- 1. Further drilling should be attempted across the centre of the high magnetic zone west of Wanokana Creek, following a re-run of the ground magnetics survey to re-establish the location of the most anomalous zones.
- 2. Further diamond drill holes should be attempted across the low ground immediately north of the silica knobs south of RDH #T.
- 3. Detailed magnetometer surveying should be carried out east of Wanokana Creek north and east of the Dumortierite showing. This should extend across to the large IP anomaly.
- 4. Further diamond drilling should be used to evaluate the mineralization under the northeast silica cap.

STATEMENT OF COSTS

The following expenses were incurred on the WANN project for the proposal of the reverse circulation drill program:

Personnel

P. Dasler, M.Sc Senior Geologist - 10.4 days @ \$280/day	\$ 3,952.00	
R. Husband, B.Sc Geologist - 2.75 days @ \$260/day	715.00	
G. Sutton, B.Sc Geologist - 40.6 days @ \$250/200/day	10,050.00	
K. Bilquist - Linecutter/Prep 3.5 days @ \$200/day	700.00	
R. Bilquist - Linecutter/Prep 4.5 days @ \$260/day	1,170.00	
D. Pawliuk, B.Sc Geologist - 20.6 days @ \$340/day	7,004.00	
T. Sheridan - Draftsperson - 1.5 Days @ \$220/day	392.00	\$ 23,920.00
Field Costs		
Food and Accommodation - 60 days @ \$29.73/day	\$ 1,783.82	
Field Supplies	1,415.30	
Equipment Rental - microscope, radio	503.65	
Vehicles - 1 4x4 - 50 days @ \$93.44/day	4,672.26	
Airline	584.00	
Drafting - supplies	118.06	
Office/Secretarial - report	562.50	
Telephone	171.57	
Assays		
Miscellaneous	174.42	
Heavy Equipment	297.50	
Drilling Cost (including mobilization)	76,768.75	
Disbursement Fee	_2,635.72	<u>\$ 97,489.72</u>

TOTAL

<u>\$121,409.72</u>

٠

CERTIFICATE OF QUALIFICATIONS

- I, Peter G. Dasler, do hereby certify that:
- 1. I am a geologist for Daiwan Engineering Ltd. with offices at 1030-609 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of Canterbury, Christchurch, New Zealand with a degree of M.Sc., Geology.
- 3. I am a Fellow of the Geological Association Of Canada, a Member, in good standing, of the Australasian Institute of Mining and Metallurgy, and a Member of the Geological Society of New Zealand.
- 4. I have practised my profession continuously since 1975, and have held senior geological positions and managerial positions, including Mine Manager, with mining companies in Canada and New Zealand.
- 5. This report is based on a personal fieldwork and supervision of the work programmes on the property since 1987, and from reports of Professional Engineers and others working in the area.
- 6. I have a part interest in 15000 shares of Moraga Resources Ltd.
- 7. This report has been prepared for B.C.D.M. assessment purposes only.

Peter G. Dasler, M.Sc., FGAC January 11, 1991

CERTIFICATE OF QUALIFICATIONS

- I, Gary Sutton, do hereby certify that:
- 1. I am a geologist for Daiwan Engineering Ltd. with offices at 1030-609 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of British Columbia in Vancouver, British Columbia with a degree of B.Sc., Geology.
- 3. I have practised my profession as an exploration Geologist since 1986.
- 4. I supervised the reverse circulation drill program on the WANN property during September and October 1990.
- 5. I have no interest in the property of shares of Moraga Resources Ltd. or in any of the companies with contiguous property to their claim blocks, nor do I expect to receive any.
- 6. This report has been prepared for B.C.D.M. assessment purposes only.

January 11, 1991

BIBLIOGRAPHY

1.	Jones, H.M. (1988)	A report on the Expo property Holberg Inlet for Moraga Resources Ltd. Filed V.S.E. Qualifying Report.
2.	(1963)	G.S.C. Geophysics Paper 1734 incl. maps 1734G, 1738G.
3.	Gableman, J.W. (1982)	Geological Occurrence of Gold at Island Copper Internal Report for Utah Mines, Dec. 1982.
4.	Pickering, Schmidt	Ore Reserve Hushamu. Internal report for Island Copper Mines (1983) Ltd.
5.	Northcote, K.E.	(1970) - Rupert Inlet - Cape Scott Map - Area in B.C. Dept. of Mines Petrol. Res. G.E.M. 1970, pp. 250-278.
		(1972) - Island Copper, In B.C. Dept. Mines Petrol. Res. G.E.M. 1972, pp. 293-298.
6.	Muller, J.E., Northcote, K.E. Carlisle, D. (1974)	Geology and Mineral Deposits of Alert Bay - Cape Scott Map - and Area, British Columbia, Geol. Surv. Canada Paper 74-8
7.	Dasler, P.G. (1989)	Report on the Expo Claim Group, Moraga Resources Ltd, private company files.
8.	Kesler, S.E. (1985)	Report on Geological Review of the MacIntosh - Pemberton Precious Metal Exploration Area. Private Report to BHP-Utah Mines Ltd., June 1985.
9.	Magnum, C. Von Einsiedel (1988)	Summary report and proposed exploration program Dorlon project. February 15, 1988. VSE listing report for Silver Drake Resources Ltd.
10.	Magnum, M. (1988)	V.S.E. Listing Report Silver Drake Resources Ltd July 12, 1988

11.	1988	V.S.E. News Release January 4, 1989 - Crew Natural Resources Ltd., George Cross News Letter - November 23, 1988.
12.	Adamson, R. (1989)	Correspondence to Daiwan Engineering Ltd., and personal discussions April 1989.
13.	Sillitoe, R.H. (1980)	Styles of low-grade gold mineralization in Volcano-plutonic areas.
14.	McMillan et al (1986)	Mineral Deposits in British Columbia - A review of their Tectonic settings. Paper in Geoexpo conference Vancouver, B.C. 1986.
15.	B.C.D.M. Records	Island Copper Statistics, B.C. Dept. of Mines records to 1984 with estimates to end of 1986.
16.	Carson DJT 1972	The plutonic rocks of Vancouver Island - Page 72-44
17.	Woods, D.V. (1987)	Geophysical Report on Reconnaissance Surface and Bore Hole Pulse Electro, magnetic Survey on the Expo Project, Vancouver Island, report for Moraga Resources Ltd.
18.	Holcapek, F. (1975)	Progress report for Acheron Mines Ltd. Assessment report #5758 on the Ti Mo and Bud claims.
19.	Young, M.(1969)	Geological and Geochemical Assessment Report on the Expo Claim Group for Utah Mines Ltd Assessment Report #2190
20.	Motterhead, B. (1968)	Geological and Geochemical Report on the Ti, Mon and Bud claims, North Vancouver Island, for Acheron Mines Ltd.
21.	Taylor, D.P. (1973)	Report on the Geochemical, Magnetometer and Geological Surveys on the Ti, Mon, Mo, and Bud claims of Acheron Mines Ltd.
22.	Sutherland, R. (1966)	Report on the Reconnaissance Exploration program, Nahwitti Lake Area, Assessment Report #870, for Giant Explorations Ltd.
23.	B.C.D.M. Records	Minfile #92L-069, 074-079, 098, 181, 200, 241-245.

24. Dasler, P.G. (1987) Lithogeochemical Assessment Report for Rochester Minerals Ltd. August 1987. B.C.D.M. Report #16139. 25. Dasler, P.G. (1987) Internal Report for Rochester Minerals Ltd. August 1987. Report for Western Pocasset Resources Ltd. 26. Dasler, P.G. (1987) 27. Husband, R.W. (1990) Geochemical Assessment Report on the Wan '90 property for Acheron Resources Ltd. May 3, 1990. 28. Pearson, B.D. (1984) Rock geochemistry of Wanda claims B.C.D.M. Assessment Report December 10, 1984. 29. Pearson B.D. (1983) Geology petrography silt and rock geochemistry of Wanda claims B.C.D.M. Assessment Report March 22, 1983. 30. Clouthier G. (1971) B.C.D.M. Assessment Report #3402. 31. Prior, G. (1984) Lithogeochemical Report on the Wan claim. Homestake Mineral Development Co. B.C.D.M. Assessment Report #13739. 32. Pearson, B.D. (1987) Rock and soil geochemistry stat - Wanda claims March 14, 1987. B.C.D.M. Report #15876. 33. Pearson, B.D. (1984) Geology magnetometery and gradiometry Wanda claim March 20, 1984. B.C.D.M. Report #12302.

APPENDIX I

ASSAY CERTIFICATES

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 Page Number : 1 Total Pages : 1 Invoice Date: 3-OCT-90 Invoice No. : I-9023774 P.O. Number :

a-6

Project : WAN 90 Comments: ATTN: PETER DASLER

						CERTIFIC	ATE OF A	NALYSIS	A90	23774	
SAMPLE DESCRIPTION	PREF	F.F	Ag ppm	Co ppm	Cu ppm	Fe t	Mn ppn	Mo ppm	Ni ppm	Pb ppm	Zn ppm
50301 50302 50303 50304 50305	205 29 205 29 205 29 205 29 205 29	4 15 4 60 4 5	< 0.5 < 0.5 2.0 < 0.5 < 0.5	22 20 14 14 17	57 81 102 87 79	5.19 5.37 5.11 4.93 5.02	665 655 860 585 630		15 19 11 10 9	6 < 2 18 < 2 2	36 34 70 30 30
50306 50307 50308 50309 50310	205 29 205 29 205 29 205 29 205 29	4 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 13 15 17 14	55 54 56 94 105	5.10 4.61 4.78 4.99 5.26	520 625 625 680 625	< 1 2 1 < 1 1	7 8 12 13 13	< 2 2 2 < 2 < 2 < 2	30 36 36 44 40
50311 50312 50313 50314 50315	205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 17 13 7 11	34 107 62 21 81	4.73 4.95 3.88 3.38 4.08	490 625 670 720 975	< 1 < 1 3 2 4	12 15 10 3 5	< 2 < 2 8 2 14	38 40 50 40 84
50316 50317 50318 50319 50320	205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 9 7 7 7	15 24 15 22 25	3.32 3.64 3.18 3.21 3.29	770 730 515 500 560	2 2 2 1 1	3 2 1 1 2	2 < 2 < 2 2 4	94 58 46 36 52
50321 50322 50323 50324 50325	205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 8 6 6	24 24 32 12 20	2.89 3.17 3.69 3.14 3.32	395 470 495 430 405	2 2 4 2 1	1 1 2 2 2	4 < 2 2 4 < 2	42 30 34 34 32
50326 50327 50328 50329 50330	205 29 205 29 205 29 205 29 205 29	4 < 5 4 < 5 4 < 5	<pre>< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	7 7 7 7 7 7	30 62 29 26 20	3.37 3.05 3.27 3.25 3.28	390 510 710 735 500	1 2 3 4 1	2 2 2 2 2 2	< 2 44 < 2 < 2 2 2	20 74 114 288 40
50331	205 29	4 < 5	< 0.5	7	94	3.45	535	1	2	< 2	40

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 1 Invoice Date: 08-OCT-90 Invoice No. : I-9023882 P.O. Number :

Project : WAN 90 Comments: ATTN: PETER DASLER CC: DAVID PAWLIUK

.

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	Coppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	bb bp	Zn ppm
50332 50333 50334 50335 50335 50336	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5</pre>	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 13 15 18 21	65 61 36 50 20	3.41 3.55 4.79 5.62 6.02	495 500 270 210 165	1 < 1 3 1 < 1	28 27 9 8	2 < 2 < 2 < 2 < 2 < 2 < 2	54 60 21 24 22
50337 50338 50339 50340 50341	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.5 0.5 0.5 0.5 0.5	19 12 19 20 15	37 37 38 34 23	6.69 4.32 4.69 4.68 4.19	270 390 360 380 445	< 1 < 1 < 1 < 1 1 < 1	10 7 12 9 6	<pre></pre>	2 3 2 2 2
50342 50343 50344 50345 50346	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5</pre>	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	14 16 15 18 15	21 112 62 54 44	4.32 4.85 4.96 5.90 4.73	500 345 335 420 560	1 1 3 7 2	7 20 27 27 18	< 2 < 2 2 < 2 < 2 36	2 3 4 3 11
50347 50348 50349 50350 50351	205 29 205 29 205 29 205 29 205 29	<pre>< 5 < 5 < 15</pre>	0.5 0.5 0.5 < 0.5 < 0.5 < 0.5	14 16 18 14 18	25 35 163 56 106	4.48 4.93 5.37 5.50 4.31	435 440 395 375 550	2 5 1 6 < 1	20 18 21 27 10	< 2 2 < 2 2 2 2 2 2 2 2 2 2	3 4 3 2 3
50352 50353 50354 50355 50356	205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 </pre>	< 0.5 < 0.5 0.5 0.5 < 0.5 < 0.5	16 13 20 13 14	63 40 113 43 68	4.40 4.16 4.16 4.17 3.87	490 540 590 515 460	< 1 < 1 < 1 < 1 < 1 < 1 < 1	9 6 7 7 5	< 2 < 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 4
				-							
								-			

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 Page Number : 1 Total Pages : 1 Invoice Date: 08-OCT-90 Invoice No. : I-9024069 P.O. Number :

Project : WAN-90

Comments: ATTN: PETER DASLER CC: DAVID PAWLINK

٠

		_				CERTIFIC	ATE OF A	NALYSIS	A90	24069	
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe f	Mn ppm	Mo ppm	Ni PPM	Pb ppm	Zn ppm
50357 50358 50359 50360 50361	205 294 205 294 205 294 205 294 205 294 205 294	10 < 5 < 5 < 5 < 5 < 5	1.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 16 12 14 20	59 57 42 38 35	4.27 4.43 4.14 4.89 4.47	685 530 480 345 385	1 1 < 1 2 < 1	6 6 7 7 6	< 2 < 2 < 2 < 2 < 2 < 2	52 40 52 40 52
50362 50363 50364 50365 50366	205 294 205 294 205 294 205 294 205 294 205 294	5 < 5 < 5 < 5 < 5 < 5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 14 11 6 10	54 17 14 30 36	4.01 4.21 3.63 2.13 3.31	450 575 355 310 475	2 2 < 1 3 1	7 3 2 3 4	<pre>< 2 < 2</pre>	50 42 30 28 36
50367 50368 50369 50370 50371	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 10 < 5 < 5 < 5 < 5</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 11 9 10 11	50 45 43 35 50	3.32 3.44 3.24 3.29 3.54	540 330 260 280 305	< 1 1 1 < 1 < 1 < 1	5 6 5 6 6	<pre>< 2 2 2 < 2</pre>	52 34 26 28 30
50372 50373 50374 50375 50376	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 12 10 10 15	46 46 32 51 72	3.35 3.56 3.40 3.43 4.33	310 325 270 285 1180	< 1 < 1 1 1 6	5 6 5 5 8	<pre>< 2 < 8</pre>	34 38 28 26 156
50377 50378 50379 50380 50381	205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5</pre>	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	13 10 10 12 11	41 32 39 56 38	4.05 3.79 3.70 3.99 4.08	985 500 560 470 490	2 1 1 < 1 1	6 5 4 5 5	6 8 6 4 4	110 78 84 68 62
					<u> </u>						

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 Page Number : 1 Total Pages : 2 Invoice Date: 10-OCT-90 Invoice No. : I-9024349 P.O. Number :

Project : WAN-90

Comments: ATTN: PETER DASLER CC: DAVID PAULIUK

						CERTIFIC	ATE OF A	NALYSIS	A90)24349	
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pp ppm	Zn ppm
50382	205 294	< 5	< 0.5	10	32	3.86	515	2	5	< 2	58
50383	205 294	< 5									
50384	205 294	< 5	< 0.5	10	36	3.89	505	1	5	2	62
50385 50386	205 294 205 294	< 5	< 0.5	9	34	3.61	525	1	4	6	56
20386	203 234		< 0.5			3.01	525	-	-	0	50
50387	205 294	< 5									
50388	205 294	< 5	< 0.5	9	50	3.54	430	2	4	6	56
50389	205 294	< 5									
50390	205 294	< 5	< 0.5	9	53	3.26	555	1	4	2	80
50391	205 294	< 5									
50392	205 294	< 5	< 0.5	11	95	3.61	655	12	4	4	146
50393	205 294	< 5									
50394	205 294	< 5	< 0.5	9	57	3.62	395	3	3	< 2	44
50395	205 294	< 5									
50396	205 294	< 5	< 0.5	10	52	3.78	435	5	5	< 2	58
50397	205 294	< 5									
50398	205 294	< 5	< 0.5	8	41	4.35	410	2	3	2	66
50399	205 294	< 5									
50400	205 294	< 5	< 0.5	7	40	3.93	345	3	4	< 2	34
50401	205 294	< 5									
50402	205 294	< 5	< 0.5	7	31	3.47	450	2	4	4	62
50403	205 294	< 5									
50404	205 294	< 5	< 0.5	10	20	3.99	440	< 1	5	< 2	50
50405	205 294	< 5									
50406	205 294	< 5	< 0.5	7	23	2.76	310	1	3	< 2	26
50407	205 294	< 5									
50408	205 294	< 5	< 0.5	10	36	3.94	535	2	5	2	52
50409	205 294	< 5									
50410	205 294	< 5	< 0.5	10	54	4.26	555	2	4	4	114
50411	205 294	< 5									
50412	205 294	< 5	< 0.5	13	35	4.17	580	1	10	4	70
50413	205 294	< 5					,				
50414	205 294	< 5	< 0.5	14	167	4.41	780	1	10	24	138
50415	205 294	< 5									
50416	205 294	< 5	< 0.5	11	41	3.77	575	< 1	7	2	60
50417	205 294	< 5									
50418	205 294	< 5	< 0.5	13	101	4.68	860	1	9	< 2	76
50419	205 294	< 5									
50420	205 294	< 5	< 0.5	5	27	2.41	395	1	4	4	34
50421	205 294	< 5									
				L	1						
									1.	·	

CERTIFICATION: HartBuchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	DAIWAN ENGINEERING LTD.
	ATTN: PETER DASLER
	1030 - 609 GRANVILLE ST.
	VANCOUVER, BC
	V7Y 1G5

Page Number : 2 Total Pages : 2 Invoice Date: 10-OCT-90 Invoice No. : I-9024349 P.O. Number :

Project : WAN-90 Comments: ATTN: PETER DASLER CC: DAVID PAULIUK

٠

							CERTIFIC		NALYSIS	A9()24349	
SAMPLE DESCRIPTION		rep Ode	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe t	Mn ppm	Mo ppm	Ni ppm	bpur bp	Zn ppm
50422 50423 50424	205	294 294 294	< 5 < 5 < 5	0.5	4 11	32 34	1.84 3.97	505 1385	< 1	2	22 < 2	72 176
50425 50426	205	294 294	< 5 < 5	0.5	10	47	3.86	635	< 1	24	< 2	60
										-		
												_
· · · · · · · · · · · · · · · · · · ·												
								(CERTIFICATIO	N: Ita	Ansie	hler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouvor British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 Page Number : 1 Total Pages : 1 Invoice Date: 10-OCT-90 Invoice No. : I-9024350 P.O. Number ;

<u> 5. Cargli</u>

Project : WAN-90 Comments: ATTN: PETER DASLER

							CERTIFICATE OF ANALYSIS A9024350									
SAMPLE DESCRIPTION	PRE		Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm				
50427		294	< 5	< 0.5	10	39	4.12	605	1	4	< 2	70				
50428		294	< 5													
50429	205 2	294	< 5	< 0.5	10	32	4.16	575	< 1	4	< 2	64				
50430 50431		294	< 5 < 5	0.5	5	33	2.56	320	1	3	< 2	22				
50432	205 2	294	< 5													
50433	205 2	294	< 5	0.5	6	33	2.62	320	1	4	< 2	20				
50434		294	< 5													
50435		294	< 5	0.5	5	27	1.79	255	< 1	2	2	18				
50436		294	< 5													
50437		294	< 5	< 0.5	6	36	2.81	275	1	7	< 2	20				
50438		294	< 5													
50439	205 2	294	< 5	0.5	7	38	3.49	295	1 1	9	< 2	20				
50440 50441		294	< 5 < 5	< 0.5	5	32	2.45	245	1	3	< 2	16				
50442	205 2	294	< 5													
50443		294	< 5	0.5	5	30	2.46	250	1	2	< 2	16				
50444	205 2	294	< 5													
50445		294	< 5	< 0.5	8	30	3.84	410	1	4	< 2	30				
50446		294	< 5													
50447		294	< 5	< 0.5	6	15	2.88	300	< 1	2	< 2	26				
50448		294	< 5													
50449		294	< 5	< 0.5	8	20	3.91	410	1	5	< 2	28				
50450		294	< 5													
50451	205 2	294	< 5	< 0.5	9	14	4.30	370	1	5	2	24				
50452		294	< 5													
50453		294	< 5	< 0.5	10	44	4.01	405	2	5	< 2	24				
50454		294	< 5													
50455 50456		294	< 5 < 5	< 0.5	10	39	4.06	425	1	6	< 2	30				
50457	205 2	294		< 0.5	10	36	3.75	500	1	6	< 2	28				
50458		294	< 5						·	·	·	20				
50459		294	< 5	0.5	9	41	3.75	440	1	4	< 2	22				
50460		294	< 5						·*							
50461		294	< 5	0.5	12	37	3.83	300	1	4	< 2	20				
50462		294	< 5	-												
50463		294	< 5	< 0.5	9	43	3.84	445	< 1	5	< 2	24				
50464		294	< 5													
50465	205 2	294	< 5	< 0.5	12	67	4.20	415	1	6	2	28				

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 1 Invoice Date: 10-OCT-90 Invoice No. : I-9024449 P.O. Number :

Project : WAN-90 Comments: ATTN: PETER DASLER

						CERTIFICATE OF ANALYSIS A9024449						
SAMPLE DESCRIPTION		ep De	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe t	Mn ppm	Mo ppm	Ni ppm	bbw 5p	Zn ppm
50466 50467		294 294	< 5 < 5	0.5	11	71	4.29	645	1	8	10	56
50468 50469 50470		294 294 294	<pre>< 5 < 5 < 5 < 5</pre>	< 0.5 < 0.5	11 15	42 64	4.18 4.62	465	2	8 8 9	22	26 36
50471	205	294	< 5									
50472 50473 50474		294 294 294	< 5 < 5 < 5	< 0.5 < 0.5	 10	58 46	4.09 3.93	505 345	2 2 1	6 6 4	6 6 < 2	38 22
50475	205	294 294	< 5	< 0.5	9	40						
50477 50478	205 205	294 294	< 5 < 5	< 0.5	8	40 47	3.65	320	¹ 1	3	2 2 < 2	36 24
50479 50480		294 294	< 5 < 5	< 0.5	7	34	3.32	310	1	3	< 2	22
50481 50482 50483	205	294 294 294	< 5 < 5 < 5	0.5	10	43	3.95	505	4	3	< 2	32
50484 50485	205	294 294	< 5 < 5	< 0.5	9	28	3.33	425	1	4	< 2	28
50486	205	294	< 5	< 0.5	8	34	3.59	375	. 1	3	2	28
•												
												:
					II		<u> </u>	L	I	۲	B. Ca	L
								(CERTIFICATIO	N:	<u>). (a</u>	-gr-

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 Page Number : 1 Total Pages : 1 Invoice Date: 14-OCT-90 Invoice No. : I-9024577 P.O. Number :

and

Project : WAN Comments:

	_					CERTIFIC	ATE OF A	NALYSIS	A90)24577	
SAMPLE DESCRIPTION	PRE		Ag ppm	Coppm	Cu ppm	Fe t	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
50487 50488 50489 50490 50491	205 2 205 2 205 2	94 < 5 94 < 5 94 < 5 94 < 5 94 < 5 94 < 5		9 8 9	29 40 27	3.63 3.35 3.43	485 355 330	3 ² ²	4 4 3	⁸ ⁴ 4	48 32 24
50492 50493 50494 50495 50496	205 2 205 2 205 2	94 < 5 94 < 5 94 < 5 94 < 5 94 < 5 94 5	< 0.5	 9 9	32 32	3.51 3.39	320 355	 1 	4 3	2 4	22 26
50497 50498 50499 50500 50501	205 2 205 2 205 2	94 < 5 94 < 5 94 < 5 94 < 5 94 50 94 < 5	< 0.5	9 10 11	36 48 53	3.62 4.17 3.75	460 605 545	1 2 1	3 5 4	2 2 4	26 38 38
50502 50503 50504 50505 50505 50506	205 2 205 2 205 2	94 10 94 5 94 5 94 10 94 25	< 0.5	8 14	 24 74	4.64 3.47	 790 570	 1 	13 10 10	6 2	86 100
50507 50508 50509 50510 50511	205 2 205 2 205 2	94 5 94 5 94 < 5 94 < 5 94 < 5 94 10	< 0.5	15 13 15	79 44 56	3.74 3.27 4.68	555 465 850	1 2 5	12 5 5 5	2 4 8	80 60 98
50512 50513 50514 50515 50516	205 2 205 2 205 2	94 5 94 10 94 < 5 94 < 5 94 < 5	< 0.5	11 14	 28 60 	4.61 4.57	610 675 	4 4 4	 8	 12 4	138 82
					 	ļ					

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 1 Invoice Date: 16-OCT-90 Invoice No. : I-9024633 P.O. Number :

Project : WAN-9 Comments: ATTN:PETER DASLER

				.		CERTIFIC	ATE OF A	NALYSIS	A90	24633	
SAMPLE DESCRIPTION	PRE	· · · · · ·	Ag ppm	Co ppm	Cu ppm	Fe t	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
50517 50518		94 10 94 15	< 0.5	7	26	4.82	730	3	5	< 2	48
50519	205 2	94 < 5	< 0.5	13	58	3.74	500	1	8	< 2	28
50520 50521		94 < 5	< 0.5	6	55	3.68	455	3	10	2	36
50522 50523		94 < 5 94 < 5	< 0.5	4		3.73		2			
50523		94 < 5	< 0.5	4	43	3.73	450	Z	13	< 2	22
50525 50526	205 2	94 < 5 94 < 5	< 0.5	7	36	3.60	535	2	10	< 2	28
50527		294 < 5	< 0.5	7	11	4.46	565	2	8	< 2	44
50528 50529	205 2	294 < 5	< 0.5	7	7	4.24	495	1	7	< 2	48
50530 50531		294 < 5 294 < 5	< 0.5	5	8	3.53	460	1	5	< 2	36
50532 50533		294 < 5 294 < 5	< 0.5	8	86	4.19	750	3	3	< 2	
50534	205 2	294 < 5									
50535 50536		294 < 5 294 < 5	< 0.5	10	39	3.94	580	1	22	< 2	68
50537 50538		294 < 5 294 < 5	< 0.5	12	7	3.71	370	1	8	< 2	38
50539		294 < 5	< 0.5	8	11	3.73	435	1	8	< 2	46
										hV	

Ē

*

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 Page Number : 1 Total Pages : 1 Invoice Date: 16-OCT-90 Invoice No. : I-9024714 P.O. Number :

a

Project : WAN-10 Comments: ATTN: PETER DASLER

						CERTIFIC	ATE OF A	NALYSIS	A90)24714	
SAMPLE DESCRIPTION	PRE: COD		Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	PD PDm	Zn ppm
50540		94 < 5 94 < 5	< 0.5	7	21	3.65	430	1	7	4	84
50541 50542	205 2	94. < 5	< 0.5	6	10	3.52	410	1	6	< 2	80
50543 50544		94 < 5 94 < 5	< 0.5	7	21	3.08	495	1	6	4	56
50545		94 < 5 94 15		7							
50546 50547		94 15 94 < 5	< 0.5	'	33	3.62	505	1	6	< 2	26
50548 50549		94 < 5 94 < 5		6	5	3.30	490	1	8	2	
50550 60151		94 < 5 94 10		6	9	2.73	420	1	9	< 2	22
60152	205 2	94 < 5	< 0.5	9	27	4.44	485	1	54	2	16
60153 60154		94 5 94 < 5		38	46	4.58	395	1	58	< 2	10
60155 60156		94 10 94 10		14	52	4.55	450		16	2	
60157	205 2	94 < 5						^		2	14
60158 60159	205 2 205 2	94 < 5 94 < 5	< 0.5	7	13	3.73	445	1	8	2	32
60160 60161		94 < 5 94 5		13	44	4.44	415	1	16	< 2	18
60162	205 2	94 < 5	< 0.5	21	62	5.21	370	1	57	2	10
60163 60164		94 < 5 94 < 5		18	65	4.24	380	1	41	2	14
60165 60166		94 < 5 94 < 5	< 0.5		31	3.34	380	2	22	2	
60167	205 2	94 < 5									
60168 60169		94 < 5 94 < 5		11	50	4.54	435	1 ¹	10	2	22
60170 60171		94 < 5		13	42	3.87	500	2	9	4	32
60172	205 2	94 < 5	< 0.5	18	68	3.48	535	1	9	6	48
60173 60174	205 2 205 2	94 10 94 < 5		14	21	2.90	580	2	15	6	30

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 2 Invoice Date: 21-OCT-90 Invoice No. : I-9024989 P.O. Number :

Project : **WAN-11** Comments:

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe t	Mn ppm	Mo ppm	Ni ppm	PD PD	Zn ppm
60175	205 294	< 5	< 0.5	13	36	4.93	580	< 1	6	< 2	24
60176 60177	205 294	< 5 15	< 0.5	13	78	5.07	660	1	10	< 2	34
60178	205 294	< 5									
60179	205 294	< 5	< 0.5	11	36	4.45	810	< 1	13	< 2	40
60180	205 294	< 5									
60181 60182	205 294	< 5	< 0.5	13	58	4.39	750	3	14	< 2	38
60183	205 294	10	< 0.5	12	51	4.01	450	< 1	15	< 2	34
60184	205 294	< 5									
60185	205 294 205 294	< 5	< 0.5	15	49	4.67	505	2	17	2	34
60186 60187	205 294	< 5	< 0.5	14	29	4.14	425	< 1	15	< 2	26
60188	205 294							·			
60189	205 294	< 5	< 0.5	15	21	4.49	525	< 1	17	< 2	34
60190 60191	205 294 205 294	< 5 < 5	< 0.5	14	52	4.30					
60192	205 294		< 0.5	14	52	4.30	470	1	16	< 2	32
60193	205 294	< 5	0.5	21	49	3.59	155	14	26	16	44
60194	205 294	< 5									
60195 60196	205 294 205 294	< 5 < 5	< 0.5	11	44	3.98	325	2	6	12	50
60197	205 294		< 0.5	11	55	4.77	695	1	7	< 2	
60198	205 294	< 5						·	'		46
60199	205 294	< 5	< 0.5	12	57	4.49	525	1	9	< 2	30
60200 60201	205 294 205 294	< 5 < 5	< 0.5								
60202	205 294	< 5	< 0.5	11	59	4.33	335	1	8	< 2	24
60203	205 294	< 5	< 0.5	12	84	3.65	360	3	5	< 2	34
50204	205 294	5									
50205 50206	205 294 205 294	< 5 < 5	< 0.5	10	25	3.99	545	1	5	2	34
60207	205 294		< 0.5	11	57	4.12	765	< 1	4	< 2	64
60208	205 294	< 5						1		·	
60209	205 294	5	< 0.5	14	27	3.96	735	< 1	4	< 2	62
50210 50211	205 294	< 5	< 0.5								
60211 60212	205 294		< 0.5	11	64	4.06	665	< 1	2	< 2	44
60213	205 294	< 5	< 0.5	13	25	3.66	820	< 1	4	< 2	72
60214	205 294	< 5									
								<u> </u>		\perp_{n}	

*

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 2 Total Pages : 2 Invoice Date: 21-OCT-90 Invoice No. : I-9024989 P.O. Number :

Project :	WAN-11
Comments:	

60216 60217 60218 60219 60220 60221 60221 60223 60223 60224 60225 60226 60227 60228 60229 60229	PREP CODE 205 294 205 294	Au ppb FA+AA < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Ag ppm < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Co ppm 12 1 14 10 10 10 11 9	Cu ppm 36 53 32 19 10 17 17 18 17	Fe * 4.78 4.60 4.49 4.33 4.71 5.11	Mn ppm 910 605 635 545 635 525	Mo ppm 1 1 1 1 1 1 1 1 1 1	Ni ppm 7 4 14 4 4 4	Pb ppm 2 2 4 2 4 2 	Zn ppm 74 80 70 70 44 34 36
60216 60217 60218 60219 60220 60221 60222 60223 60224 60225 60226 60227 60228 60229	205 294 205 294	<pre></pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 11 10 10 10 10 11	53 32 19 10 17 18 	4.60 2.91 4.49 4.33 4.71 5.11	805 605 635 545 635	1 1 1 1 1 1	4 4 4 4 4	 4 < 2 < 2 < 2 	80 70 44 34
60217 60218 60219 60220 60221 60222 60223 60224 60225 60226 60227 60228 60229	205 294 205 294	<pre></pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 11 10 10 11	53 32 19 10 17 18	4.60 2.91 4.49 4.33 4.71 5.11	805 605 545 635 	1 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 4 4 4 4	4 < 2 < 2 < 2 	 70 44 34 36
60219 60220 60221 60222 60223 60224 60225 60226 60227 60228 60229	205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 10 < 5 < 5</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 10 10 11	32 19 10 17 18 	2.91 4.49 4.33 4.71 5.11	635 545 	< 1 < 1 1 	4 4 4 4	4 < 2 < 2 	70 44 34
60221 60222 60223 60224 60225 60226 60227 60228 60229	205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 10 < 5 < 5</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 10 10 11	19 10 17 18 18	4.49 4.33 4.71 5.11	635 545 635 	< 1 < 1 1	4 4	< 2 < 2 < 2	44 34 36
50222 50223 60224 50225 60226 60227 60228 60229	205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294	<pre>< 5 < 5 < 5 < 5 < 5 < 10 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.5 < 0.5 < 0.5	10 10 11	10 17 18 	4.33 4.71 5.11	545 635 	<pre>11</pre>	4	< 2 < 2	34 36
60225 60225 60226 60227 60228 60229	205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294 205 294	5 < 5 10 < 5 < 5	<pre></pre>	 10 11	 17 18 	4.71 5.11 	 635 	1	4	< 2	36
60226 60227 60228 60229	205 294 205 294 205 294 205 294	<pre>< 5 10 < 5 < 5 < 5</pre>	< 0.5 < 0.5 < 0.5	11	 18 	 5.11 					
60227 60228 60229	205 294 205 294 205 294	10 < 5 < 5	< 0.5 < 0.5				525	< 1			
60229	205 294	< 5	< 0.5	-					4	< 2	34
60230	205 294	< 5			1	4.62	490	< 1	5	< 2	42

*

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 1 Invoice Date: 21-OCT-90 Invoice No. : I-9024990 P.O. Number :

Project : **WAN-12** Comments:

						CERTIFIC	ATE OF A	NALYSIS	A90	24990	
SAMPLE DESCRIPTION	PREP CODE	Au ppb Fa+aa	Ag ppm	Co ppm	Cu ppm	Fe *	Mn ppm	Mo ppm	Ni ppm	Pp ppm	Zn ppm
0231	205 294	< 5	< 0.5	23	25	4.05	865	< 1	43	4	92
50232	205 294	< 5	< 0.5	22	18	3.52	800	< 1	50	< 2	58
50233 50234	205 294										
50235	205 294	< 5	< 0.5	21	98	2.72	645	< 1	49	< 2	40
0236	205 294	< 5	< 0.5	20	77	2.53	710	< 1	40	6	68
50237	205 294	< 5	< 0.5	20		2.55					
50238 50239	205 294	< 5	< 0.5	21	93	2.21	445	< 1	42	18	92
50240	205 294										
50241	205 294	< 5	< 0.5	21	58	3.35	670	< 1	37	8	92
50242 50243	205 294 205 294	< 5 < 5	< 0.5	17	158	3.46	575	< 1	34	2	76
50244 50245	205 294 205 294	< 5 < 5	< 0.5	16	71	2.51	495	< 1	23	< 2	64
60246	205 294	< 5					540	< 1	20	< 2	
502 4 7	205 294 205 294	< 5	< 0.5	14	117	4.18	540	·	20	2	
50248 50249	205 294		< 0.5	16	26	4.73	590	< 1	17	< 2	48
50250	205 294										
50251	205 294		< 0.5	14	23	4.33	570	< 1	15	< 2	54
60252	205 294		< 0.5	17	71	4.87	545	< 1	18	< 2	66
50253 50254	205 294										
50255	205 294		< 0.5	17	65	4.84	565	1	17	< 2	64
50256	205 294				5	4.36	570	< 1		< 2	66
50257	205 294		< 0.5	18		4.30					
60258 60259	205 294		< 0.5	19	6	4.43	565	< 1	17	< 2	62
50260	205 294										
50261	205 294		< 0.5	16	5	4.22	545	< 1	15	< 2	60
502 62	205 294		< 0.5	16	2	4.27	600	< 1	15	< 2	66
50263 50264	205 294		< 0.5		^			¹			
60265	205 294		< 0.5	17	11	4.55	590	< 1	17	< 2	66
60266	205 294			18	23	5.01	705	< 1		< 2	74
50267	205 294		< 0.5	18	23	5.01	/03		19		
						1]	CERTIFICATIO	<u> </u>	BC	- a-cl-

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 1 Invoice Date: 21-OCT-90 Invoice No. : I-9025082 P.O. Number :

Project : **WAN-13** Comments:

		_				CERTIFIC	ATE OF A	NALYSIS	A90	25082	
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe t	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
60268	205 294 205 294	< 5	< 0.5	22	81	5.27	1035	1	21	8	98
60269 60270	205 294	< 5	< 0.5	20	44	4.82	530	< 1	34	< 2	56
60271 60272	205 294 205 294	< 5 < 5	< 0.5	19	55	5.00	565	< 1	32	< 2	62
60273 60274	205 294 205 294	< 5	< 0.5	20	75	4.89	630	< 1	34	< 2	
60275	205 294	< 5									
60276 60277	205 294 205 294	35 20	0.5	21	54	4.86	1090	5	11	8	88
60278 60279	205 294 205 294	< 5	< 0.5	20	57	4.92	1210	2	11	< 2	70
60280	205 294	< 5	< 0.5	17	50	3.98	800	1	16	4	74
60281 60282	205 294 205 294	< 5 < 5	< 0.5	18	44	4.18	1020	2	18	< 2	66
60283 60284	205 294 205 294	< 5	< 0.5		16	3.88	1005	2	15	< 2	
60285	205 294	10									
60286 60287	205 294 205 294	10 < 5	< 0.5	15	53	3.42	975	2	12	< 2	72
60288 60289	205 294 205 294	< 5 < 5	< 0.5	16	57	3.88	1070	2	18	20	112
60290 60291	205 294 205 294	< 5	< 0.5	17	31	4.13	1135	1	15	< 2	80
60292	205 294	30	0.5	17	30	4.00	1035	1	15	28	120
60293 60294	205 294	< 5 < 5			78	4.21	1110	2		< 2	
60295	205 294	10			•						
										20	0
							· · · · · · · · · · · · · · · · · · ·	CERTIFICATIO	DN:	B.C.	-ch

٠

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

DAIWAN ENGINEERING LTD. To: ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 2 Invoice Date: 23-OCT-90 Invoice No. : I-9025189 P.O. Number :

.

Project : Comments: **WAN-14**

60297 205 294 10 $$	5.81 25 2.48 8 2.28 2 2.54 1 3.72 9 2.59 15 3.51 4 3.24 5 2.89 $$ 2.89 $$ 4.74 8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43 43 43 6 	4	20 10 14 256 36 228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.15 23 5.81 25 2.48 8 2.28 2 2.54 1 3.72 9 2.59 15 3.72 9 2.59 15 3.51 4 3.24 5 2.89 9 4.74 8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43 6 	2 2 2 2 6 6 6 6 6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.81 25 2.48 8 2.28 2 2.54 1 3.72 9 2.59 15 3.51 4 3.24 5 2.89 9 4.74 8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43 6 	2 2 2 2 2 6 6 6 6 6 6	10 14 256 36 228 20
60301 205 294 5 $$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 2 2 2 6 6 6 6 	2 2 2 10 8 6 6 6 6 6 6	
60302 205 294 < 5 < 0.5 5 5 2 60303 205 294 < 5 < 0.5 3 3 2 60304 205 294 < 5 < 0.5 3 3 3 2 60306 205 294 < 5 < 0.5 4 24 22 60307 205 294 < 5 < 0.5 4 24 22 60308 205 294 < 5 < 0.5 8 23 3 60309 205 294 < 5 < 0.5 8 23 3 60310 205 294 < 5 < 0.5 6 7 2 60311 205 294 < 5 < 0.5 7 94 3 60313 205 294 < 5 < 0.5 8 7 3 60316 205 294 < 5 < 0.5 9 4	2.48 8 2.28 2 2.54 1 3.72 9 2.59 15 3.51 4 3.24 5 2.89 9 4.74 8	5 2 0 2	6 2 	< 2 2 10 8 6 6 6 6 6 6	10 14 256 36 228 20
60303 205 294 < 5 $$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 5 2 60 5 60 5 60 5 60 3 55 60 30 30 30 30 30 30 30 30	2 2 2 2 2 2 	2 2 10 8 6 6 6 4	
60304 60305 205 205 294 < 5 < 5 < 0.5 $$ 3 $$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 10 	 10 6 6 4	 822 36 228
60306 205 294 < 5 < 0.5 4 24 2 60307 205 294 < 5 $$	2.54 1 3.72 9 2.59 15 3.51 4 3.24 5 2.89 9 4.74 8	5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 5 0 5 0 0 5 0 5 0 0 5 0	10 6 5 7	 6 6 4	822 256 36 228
60307 205 294 < 5 $$	3.72 9 2.59 15 3.51 4 3.24 5 2.89 9 4.74 8	0 0 50 10 55 00 30	10 6 5 7	 6 6 4	256 36 228
60308 60309205 205 205294 2945 < 0.5 < 0.5 8 <6 23 7 33 7 60310205 205 205294 < 5 < 0.5 6 < 0.5 6 < 0.5 7 < 0.5 7 < 0.5 60311 60312 60313 60313 60313 60314 60315205 205 204 205 204 < 5 6 < 0.5 < 0.5 6 < 0.5 < 0.5 7 < 0.5 7 < 0.5 7 < 0.5 60313 60314 60315205 205 204 < 205 204 < 5 < 0.5 < 0.5 7 <7 7 7 7 7 60316 60317 60318 60320205 205 204 < 205 204 < 205 204 < 5 < 0.5 < 0.5 6 < 12 <7 8 7 60320 60321 60323205 204 < 205 204 < 5 <7 <7 7 7 7 7 7 <7 7 7 7 7 7 7 7 7	3.72 9 2.59 15 3.51 4 3.24 5 2.89 9 4.74 8	00 2 50 3 50 3 55 3 00 3	10 6 5 7 	8 6 4	256 36 228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.59 15 3.51 4 3.24 5 2.89 9 4.74 8	50 55 90	6 5 7 	6 6 4	 228 20
60311 205 294 < 5 $$ $$ $$ 60312 205 294 < 5 < 0.5 7 94 3 60313 205 294 5 < 0.5 7 94 3 60313 205 294 < 5 < 0.5 8 7 34 60315 205 294 < 5 < 0.5 8 7 3 60316 205 294 < 5 < 0.5 6 8 2 60316 205 294 < 5 < 0.5 12 7 4 60318 205 294 < 5 < 0.5 9 4 4 60320 205 294 < 5 < 0.5 9 4 4 60321 205 294 < 5 < 0.5 9 22 3 60323 205 294 < 5 < 0.5 9 22 3	3.51 4 3.24 5 2.89 9 4.74 8	10 3 55 6 90 3	5 - 7 	6 4	228 20
60312 205 294 < 5 < 0.5 7 94 33 60313 205 294 < 5 < 0.5 8 7 33 60314 205 294 < 5 < 0.5 8 7 33 60315 205 294 < 5 < 0.5 8 7 3 60316 205 294 < 5 < 0.5 6 8 2 60317 205 294 < 5 < 0.5 12 7 4 60318 205 294 < 5 < 0.5 9 4 4 60320 205 294 < 5 < 0.5 9 4 4 60321 205 294 < 5 $<$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	3.51 4 3.24 5 2.89 9 4.74 8	356 556 903	5 7 	4	228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.24 5 2.89 9 4.74 8	55 6 903	 7	4	20
60314 205 294 < 5 < 0.5 8 7 3 60315 205 294 < 5 < 0.5 8 7 3 60316 205 294 < 5 < 0.5 6 8 2 60316 205 294 < 5 < 0.5 6 8 2 60317 205 294 < 5 < 0.5 12 7 4 60319 205 294 < 5 < 0.5 9 4 4 60320 205 294 < 5 < 0.5 9 4 4 60321 205 294 < 5 < 0.5 9 22 3 60323 205 294 < 5 < 0.5 9 22 3	3.24 5 2.89 9 4.74 8	56 03			2
60315 205 294 < 5 $$	2.89 9 4.74 8	0 3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.74 8	.	7	10	72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.74 8				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20	2	34
60320 205 294 < 5	4.02 7		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Z	
60322 205 294 5 < 0.5 9 22 3 60323 205 294 < 5		5 6	14	4	24
60323 205 294 < 5					
		5 7	15	2	1 10
60324 205 294 < 5 < 0.5 6 17 3		4	8	2	10
		15 8	6	4	12
60327 205 294 < 5		25 30	7	6	
			·		`
	3.07 3	50 50	• 4	2	4
60331 205 294 < 5		1			
	2.12 20		3	2	14
	2.05 26		2	4	24
60335 205 294 5			·		
	1				<u> </u>

*

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 ٠

Page Number : 2 Total Pages : 2 Invoice Date: 23-OCT-90 Invoice No. : I-9025189 P.O. Number :

Project : WAN-14 Comments:

Г

						CERTIFIC	ATE OF A	NALYSIS	A9	025189	
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni PPM	Pb Pb	Zn ppm
60336 60337	205 294 205 294 205 294	10 < 5	< 0.5	4	34	2.53	150	8	3	4	48
60338	205 294	< 5	< 0.5	3	21	1.80	160	1	2	2	30
										1	
		1 									
<u> </u>	<u>R</u>	<u></u>	1	L	l		<u> </u>		I	B. Ca	0.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD, ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

٠

Page Number: 1 Total Pages: 1 Invoice Date: 29-OCT-90 Invoice No.: I-9025495 P.O. Number:

and

Project : WAN 15 Comments: ATTN: PETER DASLER

							CERTIFIC	ATE OF A	NALYSIS	A90	25495	
SAMPLE DESCRIPTION	PRI COI		Au ppb FA+AA	Ag ppm		Cu ppm	fe f	Mn ppn	Mo ppm	Ni. ppm	Pp ppm	Zn ppm
60339 60340 60341	205 2	294 294 294	< 5 < 5 < 5	< 0.5	³ 5	12 7	1.43 2.63	155 190	< 1	1 2	< 2 6	34 68
60342 60343	205 2	294 294	/ ~ 5 / ~ 5	< 0.5	4	' 10	2.03	235	2 3	2	2	44
60344 60345 60346 60347	205 205 205	294 294 294 294	<pre> 5 < 5 < 5 < 5 < 5 </pre>	< 0.5 < 0.5	 12 9	56 	3.97 3.09	200 305	 3	 8 11	 2 2	 22 38
60348 60349 60350 60351 60352	205 205 205	294 294 294 294 294	< 5 < 5 < 5 < 5 < 5 < 5	<pre> < 0.5 < 0.5 </pre>	 6 11	 57 47	2.29 3.74	175 230	5 5 1	5 7	 4 < 2	22 22
60353 60354	205 2	294 294	< 5	< 0.5	10	78	3.74	260	1		2	22
60355 60356 60357 60358	205 205	294 294 294 294	<pre>< 5 < 5 < 5 < 5 < 5</pre>	< 0.5 < 0.5	11 11 	55 52 	3.82 4.28 	410 520 	3 - 1 	7 5 	6 4	22 58
60359 60360 60361 60362 60363	205 205 205	294 294 294 294 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.5 < 0.5 < 0.5	10 12 14	51 34 77	3.61 4.07 4.24	300 515 	1 1 1	5 11	4 4 6	36 48 46
60364	205 2	294	< 5						·			
·····												

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 1 Invoice Date: 1-NOV-90 Invoice No. : I-9025812 P.O. Number :

Project : **WAN 16** Comments:

SAMPLE DESCRIPTION		eep De	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Ppm Ppm	2n ppm
0365 0366		294 294	< 5 < 5	< 0.5	18	111	4.31	635	< 1	18	12	74
50367	205	294	< 5	< 0.5	21	52	4.70	450	< 1	16	4	56
50368 50369		294 294	< 5 < 5	< 0.5	17	130	5.38	940	< 1	18	10	82
0370		294	< 5									
50371 50372		294 294	< 5 < 5	< 0.5	10	47	4.64	610	< 1	4	8	70
50373		294	< 5	< 0.5	13	91	4.43	650	1	6	8	84
60374		294	< 5]								
50375		294	< 5	< 0.5	12	114	4.24	890	< 1	11	6	84
50376 50377		294 294	< 5 < 5	< 0.5	13	52	4.80	840	< 1		4	64
60378		294	< 5									
50379	205	294	< 5	< 0.5	18	94	4.89	755	< 1	15	10	60
50380		294	< 5									
50381 50382		294 294	< 5 < 5	< 0.5	8	33	3.08	445	< 1	6	10	44
50383		294	< 5	< 0.5	11	65	3.37	480	< 1	10	6	64
60384		294	< 5									
60385		294	< 5	< 0.5	12	63	3.52	505	< 1	10	6	66
60386 60387		294 294	< 5 < 5	< 0.5	7	41		405				
60388		294	< 5		'		2.49	485	1	4	14	60
60389	205	294	< 5	< 0.5	12	83	3.61	820	< 1	10	10	84
60390		294	< 5									
60391 60392		294	< 5 < 5	< 0.5	9	44	3.25	450	< 1	6	2	50
60392 60393		294	< 5	< 0.5	11	45	3.62	515	< 1	7	4	
60394		294	< 5							'		54
60395 60396		294 294	< 5 < 5	< 0.5	8	39	3.37	425	< 1	5	8	52
60397		294	< 5	< 0.5	9	43	3.13	385	< 1	7	6	38
60398		294	< 5									
60399 		294	< 5	< 0.5	10	53	3.33	345	1	5	6	36
50400	205	294	< 5									
		.								N· 2	B.C.	l d.

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 Io: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5 Page Number : 1 Total Pages : 1 Invoice Date: 5-NOV-90 Invoice No. : I-9025821 P.O. Number :

Project : WAN 17 Comments:

							CERTIFIC	ATE OF A	NALYSIS	A90	25821	
SAMPLE DESCRIPTION		NEP DE	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
60501	205	294	< 5	< 0.5	15	54	4.18	590	1	7	36	78
60502	205	294	15									
60503 60504	205	294 294	5 5	< 0.5	14	35	4.03	435	1	12	12	56
60505		294	10	< 0.5	11	34	2.85	450	< 1	4	8	38
60506	205	294	< 5									
60507		294	< 5	< 0.5	6	19	2.55	325	< 1	3	6	34
60508		294	< 5									
60509 60510		294 294	< 5 < 5	< 0.5	11	61 	3.29	365	< 1	7	6	40
60511		294	< 5	< 0.5	9	35	3.24	380	1	6	8	44
60512	205	294	< 5									
60513	205	294 294	< 5	< 0.5	12	66	3.41	410	1	6	4	32
60514 60515			< 5 < 5	< 0.5	11	 57	3.23	475	< 1	6	4	44
60516	205	294	< 5									
60517	205	294	10	< 0.5	24	109	5.26	900	< 1	23	14	80
60518 60519	205	294	10									
60520	205 205	294 294	< 5 < 5	< 0.5	13	35	3.24	490	< 1	8	6	40
60521	205	294	< 5	< 0.5	19	55	4.35	390	1	21	16	58
60522 60523	205 205	294 294	< 5 < 5	< 0.5								
60523	205	294		< 0.5	13	33	4.95	260	< 1	10	4	32
60525	205	294	< 5	< 0.5	21	62	5.33	655	18	22	14	124
60526	205	294	< 5									
60527 60528	205 205	294 294	< 5 < 5	< 0.5	22	117	4.40	565	3	13	4	60
	203	234										

CERTIFICATION:

ノ・

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number:1 Total Pages : 1 Invoice Date: 5-NOV-90 Invoice No. : I-9025822 P.O. Number :

Project : **WAN 18** Comments:

Г

						(CERTIFIC	ATE OF A	NALYSIS	A90)25822	
SAMPLE DESCRIPTION		REP	Au ppb FA+AA	Ag ppm	Co ppm	Cu ppm	Fe t	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm
60529	205	294	< 5	< 0.5	23	60	4.63	565	< 1	12	6	46
60530 60531	205 205	294 294	< 5 < 5	< 0.5	22	102	4.64	1080	< 1	16	8	64
60532 60533	205 205	294 294	< 5 < 5	< 0.5	21	57	4.39	550	1	15	28	84
60534 60535	205 205	294 294	< 5 < 5	< 0.5			4.24		< 1	9		84
60536 60537 60538	205 205 205	294	< 5 < 5 < 5	< 0.5	15	 56	4.63	765	 1	4	28	68
60539	205	294	< 5	< 0.5	23	126	4.13	755	2	13	18	90
60540 60541 60542	205 205		< 5 < 5 < 5	< 0.5	20	246	4.55	670	1	14	26	104
60543		294	< 5	< 0.5	15	139	3.69	720	< 1	8	26	120
				•	A <u>1</u> 1-11-1 6 1-11-1	1	- I	-L	CERTIFICATIO	DN: 4	B. Ca	-di
									CERTIFICATIC	DN:	<u>5. (a</u>	-gl:

٠

,

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

*

CERTIFICATION:

>

Page Number : 1 Total Pages : 1 Invoice Date: 18-OCT-90 Invoice No. : I-9025093 P.O. Number :

Project : WAN Comments: CC: DAVID PAWLIUK

				·····		CERTIFIC	ATE OF A	NALYSIS	A90	25093	
SAMPLE DESCRIPTION	PREP CODE	Ag ppm	Co	Cu ppm	Fe %	Mn ppm	Mo ppm	Ni ppm	Pb ppm	Zn ppm	
50500	214 238	< 0.5	10	79	4.09	560	1	4	< 2	34	
							-				
						ŗ					
		J	<u> </u>	Ll		L			I,	l	

Г

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

Page Number : 1 Total Pages : 1 Invoice Date: 07-NOV-90 Invoice No. : 1-9026093 P.O. Number :

Project :	WAN-13
Comments:	

SAMPLE DESCRIPTION	PREP Ag CODE ppm	Co Cu Fe ppm ppm %		Mo Ni ppm ppm	Pb Zn ppm ppm	
0279 2 0281 2 0283 2	214 238 < 0.5 214 238 < 0.5 214 238 < 0.5 214 238 < 0.5 214 238 < 0.5 214 238 < 0.5	32 68 23 76 23 56 22 14 23 121	6.79 1320 4.27 820 4.36 920 4.02 935 5.05 1120	6 13 < 1 18 1 23 < 1 19 4 18	2 70 92 198 10 90 < 2 74 < 2 74	
50289 2 50291 2 50293 2	214 238 < 0.5 214 238 < 0.5 214 238 < 0.5 214 238 < 0.5 214 238 < 0.5 214 238 < 0.5 214 238 < 0.5	19 32 20 26 19 6 25 19 24 30	3.56 1080 4.04 990 3.50 900 4.68 1125 4.05 1780	<pre>< 1 15 < 1 14 1 16 1 25 3 21</pre>	<pre>< 2 70 < 2 68 2 64 < 2 74 < 2 62</pre>	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: DAIWAN ENGINEERING LTD. ATTN: PETER DASLER 1030 - 609 GRANVILLE ST. VANCOUVER, BC V7Y 1G5

.

Page Number : 1 Total Pages : 1 Invoice Date: 07-NOV-90 Invoice No. : I-9026094 P.O. Number :

Project : WAN-14 Comments:

Г

		_			(CERTIFIC	ATE OF A	NALYSIS	A90	026094	
SAMPLE DESCRIPTION	PREP CODE	Ag ppm	Co ppm		Fe t	Mn ppm	Mo ppm	Ni PPM	Pb ppm	Zn ppm	
60325 60327 60329 60331	214 238 214 238 214 238 214 238 214 238	1 < 0.5	9 8 6 5	7 24 26 5	3.50 2.97 2.35 1.91	80 155 360 50	5 1 10 14	10 3 2 2	2222	18 16 30 6	
											, j
											-gl:

но	LE N	10.:				W	A٨	- C PROJECT:				1 07					
CO	ULAR ORDIN Clina			-	90	0'	•	N. E. DATE FINJENED: (5EPT OCT 500'		REF. TO CLA Scale: / Lossed by	" = ,	10	• • •			
	ALT J	ER/	ATIO	DN				COMMENTS:			AVE CORE REC'Y / HOLE	X SULPHIDES	DRILLING	HOLE	APLE RVAL		ESTI- MATED
O SECTION	PROPYL	PYROPHYLO	51710	SERIC	FRACTURING	MINE	GEOI	DESCRIPTIVE	GEOL	OGY		SULPI	O DRIL INTE	Ť	O SAN	% REC'Y	Cu
- - -								0-8 OVERBURDEN 8-10 NOT SAMPLED									
- 10 -						P.4		Contaminated with float					/0		10		
-	w		I			PYMALAPZ		- Intensely silicified andesite with 0.5% limonite, minor epidote, trace Oxidized parts. Very weak potassic al	Zeoli	tes.	ite, 1% magnetite, Some intensely	1.5			50453		۱. ۷
-20 -	~		I			Py Mg Ep Lm		- Diabase dyke SILICEOUS ANDESITE 1-270 pyrite, 190 magnetite, minor e	ridat	а I.	and Vin othe		20		20 50		۲.۱
-30 -								Very weak potassic alteration .	_p;001	C , 11	ace limbnite	1.5			454		1
	~		I			PH Mg Ep Lm		SILICEOUS ANDESITE 1-2 % pyrite, 1% magnetite, 0.5% ep Weak potassic alteration	idot	e, m	inor limonite	1.5	30		R 50455		۱. ۷
-40 ·	~		I			Py Mg Ep Lm		SILICEOUS ANDESITE 190 pyrite, 190 magnetite, 0.5% ep Very Weak potassic alteration	idote	, tra	ce limonite	1	40		7 50456		۲.۱
- 50 -	×		Ţ			Py Py EP LM		SILICEOUS ANDESITE 1-290 magnetite, 170 pyrite, minor e Very weak potassic alteration	pidot	2 , tr	ace limonite		50		6 8 50457		۱. ۷

но		NO.:	•		h	/A	V-C PROJECT: WAN 90	PAGE NO.:	2	a				
~	LLAR	EL	EV,:				MOUND ELEV.: DATE STARTED: SEPT 30	REF. TO CLA		NER:				
- co	07.04	IATE				~	N. E. DATE FINISHED: OCT 2	SCALE:	/_	10	fee	+		
	CLIN/	TIO	N:	-9	0		DEARING: TOTAL DEPTH: 500'	LOGGED BY			• •	•	,	
		ER			。		COMMENTS:	AVE CORE REC'Y / HOLE		T				ESTI-
SECTION	11	11-11	R S	C 1 TE				NEO T / HOLE	IDES	ING			N C	MATED
SEC.	PROPY.	PYROPHYLI	1715	SERICITE			DESCRIPTIVE GEOLOGY			DRILLING	H		% REC'SAMP IN	Cu
	w		I		M P E	9 4 6	SILICEOUS ANDESITE 1-270 magnetite, 1.5% pyrile, minor epidote Very weak potessic alteration		1.5	+ 60		854058		٤.1
- 70					M P	9	SILICEOUS ANDESITE			70		70		
	W		МП		P E T	A	1% magnetite, 1% pyrite, minor epidote, Trace Zeol. Very weak potassic alteration	ites, limonite)			50459		۱. ۷
E 80 -					M	,				80		80		
	V		MH		1 6 7 8 1 C		SILICEOUS ANDESITE 290 magnetite, 1.590 pyrite, minor epidote. Trace possible chalcopyrite? Weak potassic alteration	limonite, calify	1.5			50460		ן. ۷
- 90 - - - - -	W		M		M P C L	2	SILICEOUS ANDESITE 1-29. magnetite, 1.52 pyrite minor epidote Trace lim possible chalcopyrite?	onite	1.5	90		P 5046		ړ. ۲
- 00 -					M.		Weak potassic alteration			100		100		
	v	/	m		Py Ef		SILICEOUS ANDESITE 290 magnetite, 1.5% pyrite minor epidote Trace & Weak potassic alteration	e-life	1.5			50462		۱. ۲
-110-			ļ		Mg		SILICEOUS ANDESITE			110		ILD		
	w	/	7		Му Ру Ер Ця		1-2% magnetite, 1% pyrite, minor epidote, Trace Weak potassic alteration	limonite	1			50463		۲.۱
- 120				L	1	I				120		120		

HO	LE I	NO.:			1	NF	٩N	-c	PROJECT:	h	IAN 90	PAGE NO.:	3 or	9]
CO	LLAR		EV,:					GROUND ELEY.:	DATE STARTED:	SEPT	30	REF. TO CLAI			D	L		
	CLIN			_	9,	~ °	,	N. E.	DATE FINISHED:	OCT	2	SCALE: / "					,	
	1						_	9EARINE:	TOTAL DEPTH:	500'		LOGGED BY:	<u>67</u>	<u>R4</u>	SUT	TON		
SECTION	4 1712 J	L 176	R	CITE Z	FRACTURING	MINERAL	LOGY	COMMENTS:				AVE CORE REC'Y / HOLE	× PHIDES	DRILLING	HOLE	4 E MPLE FRVAL	EC'Y	ESTI- MATED
- 120	PROPYL	PYROPHYL	2121	SERI			GEO	·	ESCRIPTIVE	GEOL	OGY		SULP		Ĩ	- 120	% R SAMF	Cu
	¥		ΝH			Mg Py Ep Cp Lm	?	SILICEOUS ANOESITE 1-270 magnetite, 170 pyrite limonite. Weak potassic		oidote	, Trace Chalco,	vyrite?	1			50464		.1
-130 -	٤		I			Ng Fy Ep Cp	?	SILICEOUS ANDESITE 1-290 magnetite, 1.590 P Very weak potassic alterat		or epid	lote Trace chalc	copyrite?	1.5	130		13 50465		۷.۱
	٤		НЗ			Mayerz		SILICEOUS ANDESITE 1-27. magnetite, 190 Pyr Weak potassic alteration	ite, minor	epidote	, Trace zeolite	s, limonite		140		2 50466		۷.۱
- 150 -	Z		MI			Mg Py EP Z CP	2.	SILICEOUS ANDESITE 1-270 magnetite, 190 pyri chalcopyrite? Weak potas			e. Trace Zeo	htes,		150		\$ 50467		۷.1
	2		ъч			My Py Ep Z Lm Cp	2	SILICEOUS ANDESITE 2% magnetite, 1% pyrin Chalcopyrite? Minor pyrite Weak potassic alteration	te, minor e c guarte u	epidote.	1 Zeolites. Trace	limonite,	1	160		\$ 50468		۷.۱
-10-	w		Δ			Mg Py Ep Z	-	SILICEOUS ANDESITE 1-2% magnetite, 1% pyrit Minur pyritic quartzveins Weak potassic alteration		oidote,	Trace Zeolites		1	180		· 50469 2		٤.1

на		10.:	-	1	W	AN	- C	PROJECT:	WAN 9	O PAGE NO.: (+ 00	9				
CO	LLAR	ELEV,	:				GROUND ELEY, :	DATE STARTED:	SEPT 30	REF. TO CLA			<i>)</i>	_		
		ATES:		α	~ (7	N. E.	DATE FINISHED:	OCT Z	SCALE: / "		-				
19	GLIMA	-		7(2		BEARING;	TOTAL DEPTH:	500'	LOGGED BY:	G	9R4 5	077	ro A		
Z		ERAT	14	RING	AL	GΥ	COMMENTS:			AVE CORE REC'Y / HOLE	DES	4G AL	hites	AL Al	ΥË	ESTI- MATED
SECTION	PROPYL 1	PYROPHYLL	210	FRACTURING	MINERAL	GEOLO		DESCRIPTIVE	GEOLOGY			BRILLING	HOLE	SAMP INTER	% REC SAMP. 1	% Cu
	~	м			Му Ру Ер Ер	·	SILICEOUS ANDESITE 190 magnetite, 190 py Chalcopyrite? Minor P Weak potassic alterat	yritic quarte vein	ote , zeolites . s	Possible trace of	1	18-		50470		۷.۱
- 190	- W	м			Mg Py EP Z		SILICEOUS ANDESITE 1-270 magnetite, 190 veins. weak potassi	pyrite, minor c c atteration	pidote, zeclite	s , puritic guartz		190		190 50471		L .I
- 200	~	М			Mg Py Ep Z		SILICEOUS ANDESITE 2% magnetite, 0.5% Veins. Weak-modera	pyrite, minor te potassic alter	epidote, zeolin ation	tes, pyritic quartz	0.5	200		8 50472		۱. ۲
-210	- W	32			Mg Iy Ep Z CP Bn	2.1.	SILICEOUS ANDESITE 170 magnetite, 0.5% Chalcopyrite? Bornite? Weak-moderate pota	Minor purific 8		zeolites . Possible	0.5	210		210 50473 20		۲.۱
	w	w M			Mg Fy Ep Zm		SILICEOUS ANDESITE 1-2% magnetite, 0.5% Moderate potassic al		epidate, zeali	tes Trace limonite	0.5			50474		۷.۱
-230	W	ЗM			My EP LAD		SILICEOUS ANDESITE i-270 magnetite, 0.5; Possible bornite? Mo	o pyrite, minor derate potassic	epidte . zcolit alteration	les Trace limonite	0.5	230 -		23 50475 20		Ľ.1

	LE H	0.: ELEV,	:	v	VAM	mound elev.:	PROJECT: DATE STARTED:	WAN 90 SEPT 30	PAGE RO.: 5 REF. TO CLAIN	i coni		0		
		ATES: TION:	-	90	0	N. E. BEARING:	DATE FINISHED: Total Deptn:	ост 2 500	SCALE: / " Lossed by:		-			,
	ALT VII	ERATI		T	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	X HIDES	LING RVAL	HOLE SIZE	MPLE ERVAL EC'Y.	ESTI- MATED
240	PROPYL	PYROPHY	SERI	FRACT	0E0	ם	ESCRIPTIVE	GEOLOGY		SULP	DRIL	I.2	SAM INTER	SAMI Cu
	~	M		r / e	19 4 19 7 7	SILICEOUS ANDESITE 1-290 magnetite, 190 PY Minor pyritic guartz veins Moderate potassic alterat		epidote Trace chala	opyrite?)	+240 -		250476	٤.1
- 250 -	v	M		م م ا	19 7 9	SILICEOUS ANDESITE Z?o magnetite, 19o pyri Weak-Moderate potassic		nonite, minor epido	te	l	250		2 50477	4.1
260 -	W	m			19 4 P MZ	SILICEOUS ANDESITE 290 magnetite, 190 purite, Weak-Moderate potassic alt		te, limonite, Trace z	eohtes	1	260		260 50478	۲.۱
) or (¥	m		M P T	9 4 2	SILICEOUS ANDESITE 2% magnetite, 1% pyrite Coated guarte eyed dyke Weak-modwate potassic al		ote, Trace Zeolites. Tra	ce of limonific	1	270		270 50479 280	٤.)
280 -	~	MI			lg 7 P	SILICEOUS ANDESITE 270 magnetite, 190 pyrit eyed dyke. Weak-mode	e minor epi rate potessic	dote, Trace limonite alteration	coated quarte	ł	20-		50480	(، ۷
-290 -	V	H 3		r P E L	P	SILICEOUS ANDESITE 1-270 magnetite,170 py Weak potassic alteratio	rite, minor	epidote Trace limon	nite	1	290		2 50481	2.1
300											300		300	

но	LE N	10.:			V	V A	N-C	PROJECT:	WAN 90	PAGE NO.:	6 .,	9				
60	LLAR	ELEN	, :				CHOUND ELEV.:	DATE STARTED:	SEPT 30	REF. TO CLA			P			
	GLINA			_ <	70	0	N. E.	DATE FINISHED:	OCT 2	SCALE: /		-			,	í
	Ť.			_		77	BEARING:	TOTAL DEPTH:	500'	LOGGED BY:	G		507	70	/ 	
		Line .	210			GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	× PHIDES	DRILLING	HOLE	APLE RVAL	EC'Y	ESTI- MATED
SECTION	PROPYL	FROPHYL	2171	SERIC	FRACTURING			DESCRIPTIVE	GEOLOGY		SULPI		Ho No	SAN	% RI SAMF	Cu
	w	1	1		M P €	19 17 19	SILICEOUS ANDESITE 1-290 magnetite, 0.5 Weak potassic alterati	70 parite min	nor epidote		0.5	Juc		2 20482		١. ٢
- 3/0		^	1		M Piez	9784	SILICEOUS ANDESITE 1-290 magnetite, 0.5% Weak potassic ulteration	•	or epidote. Trace 2	e eolites	0.5	310		\$ 50483		۲. ۲
-320-	w	/	٩		M P E	9	SILICEOUS ANDESITE 190 magnetite, 0.570 p Weak potassic alteratio		epidote, zeolites		0.5	320		2 50484		2.1
- 330	~	^	1		M P E Î	19 7 8 2	SILICEOUS ANDESITE 19. magnetite, 0.5% pyr Moderate potassic alter		lote , trace zeolites		0.5	330		\$ 20485		۲.۱
-340	- W M		5 11		M P T		SILICEOUS ANDESITE 1-2 % magnetite, 0.5% Moderate poissic alter		epidote trace zeolit	cs	0.5	340		A 504 86		۷.1
-350	w	, n	1		M P E Z L		SILICEOUS ANDESITE 29. magnetite, 19. pyrit Weak-moderate potassi		dote Trace Zeolites	> limonite	1	350		\$ 50487 \$		۷.1

NO		NO.:	-	V	VA.	I-C	PROJECT:	WAN 90	PASE NO.:	7 .,	9			-	
		KLEV,	:			GROUND ELEY.:	DATE STARTED:	SEPT 30	REF. TO CLAI			ρ	L		-
		ATES:	-	90	, .	N. E.	DATE FINISHED: TOTAL DEPTN:	ОСТ 2 500'	BCALE: / "						
	-	ERAT	_	ŕΤ	T	COMMENTS:	TOTAL DEPTN:	500	AVE CORE			3017			ESTI-
	য	<u>H</u>		Ŷ	ب				REC'Y / HOLE	S	ابر				MATED
SECTION	117	2 5	517	R N	MINERAL					HIO	RVA	HOLE	APL A	∑. Z	%
SEC	PROPYL	PYROPHYLL SILICA	ĨX.	FRACTURING	MINE					ה	DRILLING	Ĕ	SAN	% RE(SAMP	Cu
-360	18X	× n	SE				SCRIPTIVE	GEOLOGY		S	1 1		360	0 0/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ŧ					49 74	SILICEOUS ANDESITE					360				
Ē	W	M		ĮĮ	Ξp	1-2% magnetite, 1% pyrite		dote, Trace Zeolites					504 88		٢.1
▶ -					2	Moderate potassic alterati	۵ ۸						8		1
-370 ·					м.						370		370		
					Mg Fy	SILICEOUS ANDESITE				.			5		
Ē	V	M			Er Z	1-2% magnetite, 1% pyr			tes	1			504		6.1
F	M					Moderate - Intense potassic	, alteration						99		- 1
-380-											380		380		
E					4g P4	SILICEOUS ANDESITE									
F	WM	M			Ep	2 % magnetite, 0.5% pyrit	te i minior ep	idote		0.5			504 9		2.1
	M					Moderate - Intense /ctassic	alteration						10		,
-390 -					14						390		390		
					1q 74	SILICEOUS ANDESITE							524		
► ►	M	M			Ep	2% magnetite, 0.5% pyrite	10.5% epi	dote		0.5			4 4		2.1
E						Moderate-Intense potassic a	lteration								
-400	$\left \right $			~	19		1				400		400		
Ę				Ε	19 P	SILICEOUS ANDESITE							2	Ì	
	n	M		P	Ŷ	1-270 Magnetite, minor e		ite		2.5			2049		2.1
F						Moderale-Intense potassic	alteration						2		
- -410 -	$\left \right $,	4	SILICEOUS ANDESITE			.`	-	410	~ .	410	ł	
F				r E P	P	1-270 magnetite, 0.5% ef	idate	auto Tour - 111	_	Ì.			5		
F	M	M			7	Moderate - Intense potassi			>	4.5			44		Ζ.1
- 420								•					ω		
	E.					1				I I	1420	1	420		

He	DLE	NO.:		W	A/A	/-C	PROJECT:	WAN 90	PASE NO.:	3 00	9			
~	NLAR	ELEV,	:			GROUND ELEY,:	DATE STARTED:	SEPT 30	REF. TO CLA	N CORI	ÆR:	o		
		ATES:		an	0	N. E.	DATE FINISHED:	OCT 2	SCALE:		-			
	T	ATION:		70		BEARING:	TOTAL DEPTN:	5001	LOGEZD BY:	6.	ARY -	5U T 7	ON	
SECTION	1710	ERATI	7	ERAL	LOGY	COMMENTS:			AVE CORE REC'Y / HOLE	X HIDES	LING RVAL	HOLE	APLE RVAL	
-420	PROPYL	PYROPHYL.	SERICITE	FRACT	GEOL		DESCRIPTIVE	GEOLOGY		SULP	DRILLING	Ч. Ч	9	AMPS Cu
	Z	M		Mg Ep Py Z		SILICEOUS ANDESIT 270 magnetile, 0.1 Moderate potussic	5 % epidote , minor	purite, trace zeolit	· ¢ 5	4.5	420		\$ 50494	٤.١
- 430 	3	m		Mg Fy Z		SILICEOUS ANDESIT 27. magnetite, 0.5 Moderate potassic a	»o epidote, minor	- pyrite strace zeo	lites	1.5	430		43 5049	2.1
- - - - - - - - - - - - - - - - - -	n	m		Ma Ep Py Z	'	SILICEOUS ANDESITO 290 magnetite, O.S Moderate potassic	e 90 epidate, minor	pyrite, trace zeol	lites	4.5	440		15 \$ South	٢.١
- 450 	-	٣		My EP Py Zu		SILICEOUS ANDESITE 1-270 magnetite, C limonite Moderate p	.so epidate, min		zeolites,	4.5	450		\$ 50497	٤.١
	M	۲٦		My Ep Py Z		SILICEOUS ANDESIT 1-2 % magnetite, Moderate potassic	0.5% epidote im	inor pyrite, trac	e zeolites	2.5	460		40 50498	(. ۷
- 470 -	32	۲		Mg Ep Py		SILICEOUS ANDESITE 1-2 % Magnetite, Weak potassic al	0.5% epidote . m	inor pyrite		<i>٤.</i> 5	470 ~		4 50499 2	۲.۱

C00#	,AR	ELEV,					-C PROJECT: WAN 90 MOUND ELEV.: DATE STARTED: SEPT 30 N. E. DATE FINISHED: OCT 2 BEARING: TOTAL DEPTN: 500'	PAGE NO.: 9 REP. TO CLAIM SCALE: 1 " LOGGED BY:	1 cori = ;	er: 10		•		- ~	
A		PYROPHYLLIA SILICA	ION	_			COMMENTS:	AVE CORE REC'Y / HOLE	~		T	Ţ		% REC'Y.	ESTI- MATED
12	PROPYL ITI	PYROPH 51L	SER	FRAC	W	Ū	DESCRIPTIVE GEOLOGY		SULF			Ľω	SA	% F SAM	Cu
480 - V	w	M			Мд Бр Ру 2		SILICEOUS ANDESITE 1-230 magnetite, minor epidote, pyrite, Trace zeolites Weak-moderate potassic alteration		٢.5	-480 -			49 50500		۱. ۲
190-					Py Mg Ep		SKICEOUS ANDESITE			490			490 ५		
	w M	E H			E¢ Z		190 pyrite, minor magnetite, epidote, zeolites 570 pyritic quartz veins Moderate potussic alteration)				1050		۲.1
500 -							500 END OF HOLE			500			500		
								•							
4								•			ا مر				

60	LE NO.: LLAR EI ORDMAT	LEV,: TES:		•	AN	MOUND ELEV.: DATE STARTED: OCTOBER 3 N. E. DATE FINISHED: OCTOBER 4	PAGE NO.: / REP. TO CLAIM SCALE: / //	=)	6 En: 10	feet		
		RATIC	ITE Z 1	T	06Y		VE CORE C'Y / HOLE					
O SECTION	PROPYLLI	21715	SE KICITE	MINERAL	GEOLOGY	DESCRIPTIVE GEOLOGY		SULPHIDES		HOLE	O SAME	% REC'Y
						0-15 OVERBURDEN 15-20 NOT SAMPLED						
									10		10	
-20				Py		BASALT minor pyrite, quartz veins, magnetite		٢,5	20		2 50502	۷.1
-30		\checkmark		PIME		BASALT minor pyrite, magnetite, guartz veins, trace zeolites	-	2.5	30		0 20203	۷.۱
	~	V		PY My EP Z		BASALT minor pyrite, magnetite, trace zeolites, epidote minor guartz veins		٤.5			9 50504	٤.١
- 50 	Ŵ	V		Py Mg Ep		ANDESITE minor pyrite, magnetite, traces epidote		L.S	50		8, 50505 S	۲.۱

				W	AN	'-E	PROJECT:	WAN 90	PAGE NO.:	2 07	6				
		ELEV, NATES:	-	~ -	a	GROUND ELEV.:	DATE STARTED: DATE FINISHED:	OCTOBER 3 OCTOBER 4	REF. TO CLAI Scale: / "			fee	et-		
	IG LI NA	ATION:		90		BEARING:	TOTAL DEPTH:	350'	LOGGED BY:						
SECTION	1716	ERAT	ITE	FRACTURING MINERAL	DLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	¥ HIDES	DRILLING		HOLE	MPLE ERVAL REC'Y	ESTI- MATED
-60	PROPYL	PYROPHY SIL 14	SER				DESCRIPTIVE	GEOLOGY		SULF	IN DE			0 SAMI	Cu
	M	w		EPYMO	3	ANDESITE 0.5% epidote, min Weak potassic alt	or pyrite, magne eration	tite		4.5	60			50506	۱. ۲
-70	M	W	,	Ep Py Mg Ln		ANDESITE O.5% epidote, min 5% díabase dyke Very Weak potassic		ite Trace limonite		۲.5	70			7 50507	٤.1
- - - - - - - - - - - - - - - - -				Mg Py		DIABASE DYKE 3-5% Magnetite 5% andesite				1.5	80			8 50508	۱. ۷
- 90 	n	M		M9452		SILICEOUS ANDESIT 1-290 magnetite, Very weak potassic	170 pyrite, 0.5%	epidote . Trace zeolít	es.		90			90 50509	۷.۱
	- W	v		Mg Py Ep		ANDESITE igo magnetite, lgo	pyrite, minor e,	oidote, quarte veins	·		100			8 20210	۷.۱
- 110	~	~		Mypez		SILICEOUS ANDESITE 190 magnetite,190 Very weak potassi	pyrite, minor	epidote. Trace Zeoli	tes	1	110	. . .		205/1 205/1 2	٢.١

	DLE	NO.:			WA	N -		OF	6	<u> </u>			
C (oro	ELEV	;				MOUND ELEV.: DATE STARTED: OCTOBER 3 REF. TO CLAI N. E. DATE FINISHED: OCTOBER 4 SCALE: 1	u cori	er: 10	fee	t		
19		ATION:	_	- 9	0°	, ;	BEARING: TOTAL DEPTN: 350' LOGGED BY:	Ğŕ	RY	SUT	TON	/	
SECTION	itic	، اتہ ا		URING	MINERAL	1	COMMENTS: AVE CORE REC'Y / HOLE	X HIDES	DRILLING	LE	SIZE	EC'Y	ESTI- MATED
-120	PROPYL	PYROPHY	11/0	FRACT	NIW	GEO	DESCRIPTIVE GEOLOGY	SULPI		Ĥ		INTE % RE	Cu
	W	W	/		Mg Py Ep Lm		ANDESITE 190 magnetite, minor pyrite, epidote Trace limonite	٤.5	+120		1000	<u>N</u>	٢,١
-130	-				Mg Py Ep		ANDESITE 1-2% magnetite, minor pyrite, epidote	L.5	130		13 10010	î	١. ٢
- - - - - - - - - - - - - - - - - - -		~			Mg Fy		ANDESITE 1-2% magnetite, minor pyrite, pyritic guartz veins	4.5	140		1 202 L	10	۷.1
	~	×	/		Fig 1 2 5		ANDESITE 1-290 magnetite, minor pyrite, pyritic quartz veins, zeolites Trace limonite. Very weak potassic alteration	2.5	150		CI COL II	<u>}</u>	۱. ۲
160 160	w	×			Mg Py Ep Lm		ANDESITE 1-290 magnetite, minor pyrite, pyritic guartz veins, epidote Trace limonite Very weak potassic alteration	٤.5	160		10 20274	~	4.1
- 170 - 170 - 180	~	~			My 14 Ep Lm		SILICEOUS ANDESITE 190 diss. pyrite, O 5% magnetite, Trace limonite, epidote 190 pyritic quarte veins Epidote veinlets.		170	~	1/100/1	n	۷.1

но		NO.:				WA	N-E PROJECT:	WAN 90	PAGE NO.: 4	1 07	6				
	HLLAR SORDI						GROUND ELEV, : DATE STARTED: N. E. DATE FINISHED:	OCTOBER 3 OCTOBER 4	REF. TO CLAI Scale: / "			fee	t		
11	GLIN	ATIC			90	? °	BEARING: TOTAL DEPTN:	350'	LOUGED BY:			• • • • •		/	
SECTION	1710	L 17E	ATI	CITE 2	URING	MINERAL GEOLOGY	COMMENTS:		AVE CORE REC'Y / HOLE	X HIDES	DRILLING	HOLE	ZE APLE RVAL	EC'Y.	ESTI- MATED
-180	PROPYL	PYROPHYL	2111	SER	FRACTURIN	MIN GEO	DESCRIPTIVE	GEOLOGY		SULPHIDE		Ť	S SAI	% REC' SAMP II	Cu
	W		Μ			Py Ep Mg	SILICEOUS ANDESITE 1-270 pyrite, trace epidote, mag	netite Minor pyritic qu	uartz veins	1-2	180		2 50518		۱. ۲
-190			M			Py Mg Ep	SILICEOUS ANDESITE 1-270 pyrite, minor magnetite, ep	idote Trace limonite, l	bornite?	1-2	190		19 50519		٤.
-200-	W		1.1			en P Py	SILICEOUS ANDESITE				200		19 200		- 1
	W		V			mg _m 5p	190 pyrite, trace magnetite, limonit	e, epidote, quartz veir	15	1			50520		۲.۱
	Ŵ		Ŵ			^D y Mg 50 Lm	SILICEOUS ANDESITE 0.570 pyrite, trace magnetite, ep 190 pyritic guarte veins	idote, limonite		0.5	210		210 50521		۷.۱
-220- 	8		Μ			Py Mg	SILICEOUS ANDESITE 0.570 pyrite, minor magnetite			0.5	220		22 50522		۷.۱
-230-	8		ЯH		1	γ γ γ 2	SILICEOUS ANDESITE 190 purite, minor magnetite, epi 290 puritic quarte reins 290 diabase dyke	dote trace zeolites)	230 240		230 505 23 240		۷.۱

00 00	ORDH	IO.: ELEV, IATES: ATION:		۱ 90	_	N-E PROJECT: GROUND ELEY,: DATE STARTED: N. E. DATE FINISHED: BEARING:	WAN 90 PAGE RO.: OCTOBER 3 REF. TO CL OCTOBER 4 BCALE: 1 350' LOBBED B	AIN COR	10 7			
	-	ERAT		$\frac{7}{1}$		COMMENTS:		<u>r: G</u>	<u> </u>	307		ESTI-
SECTION	1715	1 C 2	CITE	TURING	MINERAL		AVE CORE REC'Y / HOLI	HIDES	티나티	HoLE SIZE	MPLE ERVAL REC'Y.	MATED
	PROPYL	PYROPH	SER	FRAC	MIN	DESCRIPTIVE	GEOLOGY		RON		645 SAMPL	NAS CU
-240	V	I			ру Му Ер	SILICEOUS ANDESITE 1-270 pyrite, trace magnetite, epidote 190 pyritic quarte veins, 100 diabose dy	re	1.5	+240		50524	٢.١
- 250-		I			ρ ₄ ~9	SILICEOUS ANDESITE 1-270 pyrite, trace magnetite 270 pyritic guartz veins.		1.5	250		250 50525	4.1
- 	3 5	M			Pygezh	SILICEOUS ANDESITE 190 purite, minor magnetite, epidate	. Trace Zeolites, limonite		260		2 50526	(. ۲
-270 - - - - -	W	Ŵ			Mgpy	SILICEOUS ANDESITE 290 magnetite, minor pyrite, epidote Minor guarte veins	, limonite Trace zeolites		270		270 505 27	2.1
- 180 ·	3	v			mg Sp Py Lm	SILICEOUS ANDESITE 290 magnetite, minor epidote, pyrite, l Very weak potassic alteration	imonite Trace pyritic guartz veing	2.5			280 5528	۲.۱
-210-	v	W			ng Ер ?ч	SILICEOUS ANDESITE 200 magnetite, minor epidate, trace py Very weak potassic alteration	rite, quartz veins	٤.5	290	· •	290 505 29	۷.۱
E 300			L					1	300		300	

на	NLE I	10.:		(NAI	N-E PROJECT:	WAN 90	PAGE NO.: 6	2 OF	6				
		ELEV,	:			MOUND ELEV.: DATE STARTED:	OCTOBER 3 OCTOBER 4	REF. TO CLAIN SCALE: / "			fast	-		
		ATES:	~	90	? "	N. E. DATE FINISHED: BEARING:	350'	LOGGED BY:					r	
	ALT J/1/	ERAT	ION		MINERAL GEOLOGY	COMMENTS:	F	AVE CORE REC'Y / HOLE	HIDES	DRILLING	HOLE	MPLE ERVAL	,, F	ESTI- MATED
SECTION	PROPYL	PYROPHYL	SERIC	FRACTURING	GEOI	DESCRIPTIVE	GEOLOGY		SULP		Ť	SAI	% RE SAMP	Cu
		~			Mg Py Lm	SILICEOUS ANDESITE 290 magnetite, minor pyrite, trace lim Very Weak potassic alteration	onite, guartz veins		2.5			\$ 50530		۷.1
-310	V	32			М] fy Ep Z Lm	SILICEOUS ANDESITE 290 magnetite, minor pyrite, trace 390 pyritic guarte veins Very weak potassic alteration	limonite, epidote, zeolit	e 5	2.5	310		R 50531		۲.۱
-320 -	3 6	w M			ng Py Ep Z	SILICEOUS ANDESITE 1-270 magnetite, O. 590 pyrite, minor 290 pyritic guarde veins	repidote trace zeolites		0.5	320		N 50532		٤.1
-330	w	w	•		тү Рч Бр	SILICEOUS ANDESITE 1% magnetite, 0.5% pyrite, minor e, 2% pyritic quarte veins	oidote		05	330		38 Jos J3		۲.۱
- 340 	v	~	,		ng Py Ep	SILICEOUS ANDESITE inopyrite, o stomagnetite, minor ex 270 pyritic quarte veine fyrite veir	let 0.5 mm		1	340		4 50534		۲.۱
- 350						350' END OF HOLE		*		350 360		350		

H0		NO.:	-	·	WAN	- G. PROJECT:	WAN 90	PASE RO.:	07	7			-	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LLAR	ELI	[¥,:			MOUND ELEV.: DATE STARTED: SU	EPT 28	REF. TO CLAIN	CORN	ER:	0			
co	ORDIN	NATE		_	_	N. E. DATE FINISHED: 50	EPT 29	BCALE: / "	= /	10	feet			
196	CLINA	ATIO	N: '	<u>-9</u>	0°	BEARING: TOTAL DEPTH: 42	201	LOGGED BY:	GI	ARY	SUTT	ON		
SECTION	ALT J/117	1 12	ATIC	FRACTURING	MINERAL GEOLOGY	COMMENTS:		AVE CORE REC'Y / HOLE	PHIDES	DRILLING	HoLE SIZE	SAMPLE	거니	ESTI- MATED
O sec	PROPYLITIC	PYROPHYL	SITIC	FRACT	MIN GEO	DESCRIPTIVE	GEOLOGY		SULP	ORIL	, T S	O SA INTI	% REC'SAMP IN	Cu
						0-10 OVERBURDEN								
- 10										10		13		
	v		v		Mg Py Ep	SILICEOUS ANDESITE 1-270 magnetite, 0.590 pyrite, minor and around magnetite blebs	epidote. Pyrite as	blebs in	٥.5			50412		2.1
-20					Mg Py	SILICEOUS ANDESITE				20		20 5		
	W		w		Ερ	1-290 magnetite, 0.570 pyrite, minor	- epidote		0,5			50413		۲.۱
-30 -					My Py	SILICEOUS ANDESITE				30		30 5		
	M		w		Ep	27º magnetite, 0.57º pyrite, minor e	pidote, staveins		0.5			ріно		۲.۱
E_40 E	-				Py My	80% QUARTZ MONZONITE				40		40 5		
					ניי 	1-2 70 pyrite, 170 Magnetite 20% SILICEOUS ANDESITE			1.5			0415		2.1
-30	m		Μ	60	M9 2	270 pyrite, 170 magnetite, 190 exidete,	trace zeolites	•		50	<b>~</b>	50		
1 <u>1 1 1 1</u>	M		MH		Му Ру Ер	80% SILICEOUS ANDESITE 1% magnetite, 1% pyrite, 1% epidote, mi 20% QUARTE MONZONITE	inor quarte veins		ł			50416		۷.۱
£60					Mg Py	1% magnetite, 0.5% pyrite				60		60		

MO		NO.:			W	AN	I-G	PROJECT:	WAN 9	70 PAGE	NO.:	2 01	7			· -	
<b>C0</b>	LLAR	E EL	EV,:				SHOUND ELEY .:	DATE STARTED:	SEPT 28		TO CLAI		<b>ER</b> :	P	L		
	CLIN.			_ '	90	0	N. E. BEARING:	DATE FINISHED:	SEPT 29		•			feet			
	r		ATIC	<del></del>		<u> </u>	COMMENTS:	TOTAL DEPTN:	420'				IRY	SUTI		r r	ESTI-
SECTION	1715	4 /F	R		FRACTURING	GEOLOGY	COMMENTS.			REC'Y		× HIDES	DRILLING	HOLE	MPLE	EC'Y.	MATED
	PROPYL .	PYROPHYL	2111	SERI	_			DESCRIPTIVE	GEOLOGY			SULP	OPRIL INTE	Ĭ	-60 International International	% R SAMI	Cu
	M		M		M. Py Ef	5	SILICEOUS ANDESI Ino magnetite, o	TE 5% pyrite,0.5%	epidote, min	or pyritic quar	tz veins	0,5			50417		۷.1
-70	-				M. f	1	SILICEOUS ANDES	ITE					70		70		
	M		m		6 _f	,	290 magnetite, Weak potassic alt	0.5% pyrite, 0. eration	570 epidote			0.5			50418		۷.۱
- 80 -			M		M. E, P)	9	90% SILICEOUS A/	JOESITE					ୡ୰		80 2		
			I				1-290 magnetite, 1 1090 QUARTZ MON	ZONITE	pyrite , weak	potassic altera	tion	0.5			b1h0.		2.1
-90	-				M Py		17. magnetite,	0.5% pyrite					90		90		
	M		I		М Р. Б,	i p	9090 SILICEOUS AN 1-270 Magnetite, 1090 QUARTE MON	0.57. pyrite, 0.5 ZONITE	7. epidote mo	derate potassic	alt.	0.5			50420		۲.۱
E100	4				PY	9	170 magnetite, 0	590 pyrite					100		100		
	W		I		M Py Ge		SILICEOUS ANDE 190 magnetite, 190 Moderate potassic	pyrite, minor e	pidote. Very in	tense silicific	ation	/			50421		۲.۱
E110							,			7			110		110		
	W		T		My Fi Gf Cp	2.2.	SILICEOUS ANDE 190 magnetite, 0.5 Moderate potassic	% pyrite, minor	epidote, poss	chalcopyrite		0.5			50422		۱. ۷
-120													120	ll	120		!

	ILE N	0.: ELEV,:		h	/A/	-G PROJECT: WAN 90 MOUND ELEV.: DATE STARTED: SEPT 28	PAGE NO.: 3 REF. TO CLAIN C	ORNES	• 1:	, ₁		_	
	GLINA	ATES: TION:	- 9	90	0	N. E. DATE FINISHED: SEPT 29 BEARING:	BCALE: / " = Louged by: (						
SECTION	য	ERATI	14	ACTURING	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	SULPHIDES		HOLE	SAMPLE	거니	ESTI- MATED
	PROPYL	PYROPHYLLI SILICA	SER	FRAC	GE	DESCRIPTIVE GEOLOGY		SUL	N.	T.	SU	% SAN	Cu
-120		I		M P Ef		SILICEOUS ANDESITE 190 magnetite, 0.5% purite, Trace epidote Moderate potassic alteration	0.	5	20		8 50723		۷.۱
-130	m	м		M 6 Py	5	SILICEOUS ANDESITE 1-290 magnetite, 190 epidote, 0.590 pyrite Very weak potassic alteration	0	<b>ا</b> ج	30		3 50424		۲.1
- <b>140</b> - - - - - -	m	M		M P. 6	9	SILICEOUS ANDESITE 1-290 magnetite, 0.570 pyrite, 0.570 epidote Moderate potassic alteration	o	.5	40		£ 50425		۱. ک
- 150	m	m		Py Cf		SILICEOUS ANDESITE 290 magnetite, 0.5% pyrite, 0.5% epidole Trace chall Weak potassic alteration, Few % diabase dyke	copyrite?	.5	50		\$ 50426		2.1
- - - - - - - - - - - - - - - - - - -	m	m		rty Ef Py		SILICEOUS ANDESITE 270 magnetite, 0.5% epidote, 0.5% pyrite Minor pyri	tic quarte veins	·5	60		2 50427		۲.)
	M	m		т Ер Ау		SILICEOUS ANDESITE 3% magnetite, 0.5% epidote, 0.5% pyrite, minor q Weak potassic alteration	Buartz veins 0	5	80		17 50428 80		۷. ۷

NOLE NO.: Collar Eley,: Coordmates: Inclination:					•	I-G PROJECT: WAN 90 PAGE HO.: MOUND ELEV.: DATE STARTED: SEAT 28 AEF. TO CL. N. E. DATE FINISHED: SEAT 29 BCALE:   DEARING:	1 11 COR 11 =	/0				
		rer W	ATI	TEZ	5	MINERAL GF01.0GY	COMMENTS: AVE CORE	× × PHIDES	LLING		% REC'Y.	ESTI- MATED
-180	PROPYL ITI	PYROPH	212	SERIC			DESCRIPTIVE GEOLOGY				%§	Cu
	r		٣			ng Ep Py	SILICEOUS ANDESITE 2-3% magnetite, 0.5% epidote, 0.5% pyrite Weak potassic alteration	0.5		50429		۷.۱
- 190 -						M			190	190		
	n		Нз			Mg Ep Dy	SILICEOUS ANDESITE 29. magnetite, 0.5% epidote, 0.5% pyrite Weak-moderate potassic alteration	0.5	5	50430		۲.۱
-200-	W		Н З			My Fy Ep	SILICEOUS ANDESITE 1-27. magnetite, 0.5% pyrite, minor epidote	0.5	200	2 50431		2.1
			-				Weak potassic alteration		210	210		
-210	V		L			Mg Py Ep	SILICEOUS ANDESITE 190 magnetite, 0.59. pyrite, minor epidote Weak potassic alteration	0.5	5	50432		2.
-220						m _g			220	220		
عبليت	٧		I	:		Пд Ру Ер <del>2</del>	SILICEOUS ANDESITE 190 magnetite, 0.5% pyrite, trace epidote, zeolites Weak potassic alteration	0	5	50433		۲.۱
-230-	~		F			Mg Py Ep	SILICEOUS ANDESITE 19. magnetite, 0.5% pyrite, minor epidote Weak potassic alteration	0,5	230 5	 2 50434		۱. ۲
E240									240	240		

		_		140	<u> </u>	-G PROJECT: WAN 90 PAGE NO				0F	 7				
HOLE NO.: COLLAR ELEV,:				vv	/ //	MOUND ELEV.:		SEPT 28	REF. TO CLAIN	CORN	ER :	0 4			
COORDINATES:			$\sim$		,	N. E.	-								
INCLINATION:				_			BEARING:	TOTAL DEPTH:	420'	LOBBED DY:		<u>ARY</u>	507	<u>70 //</u>	ESTI-
z	AL 71/1	L IK	110 7		MINERAL	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	X SULPHIDES	DRILLING	HoLE SIZE	SAMPLE INTERVAL % REC'Y	MATED
SECTION - 240	PROPYL 1	PYROPHY SIL 1	2111	FRACT	FRACTURING MINERAL GEOLOGY	GEO	DESCRIPTIVE GEOLOGY		240		240	Cu			
	w		T		Mg y G P		SILICEOUS ANDESITE 19. magnetite, 190 p Weak to moderate po	yrite minor epide						50435	۷.۱
-250-					Mg Py E f		SILICEOUS ANDESITE 19. magnetite, 19.		dote, trace limonite,	zcolites		250		250	٤.1
-260-	×		I		2		Weak petassic a					260		436 260	
	3٤		ΜIJ		М. БА Рү Е		SILICEOUS ANDESITE 190 magnetite, min Weak potassic alt	or epidote, pyrit	e, trace zeolites		<i>L.</i> 5	270		50437 270	۷.۱
-270	36		MJ		Mg E P Y Z		SILICEOUS ANDESIT 1-2 90 Magnetite, n Weak potassic al	ninor epidote ,	pyrite, trace zeoli	ites	2.5			50438	٢.١
-280	-		I		M F C Z O		Blebof chalcopyrite	sy. epidote, Tra is 0.75mm wide	ce chulcopyrite, zeolit	tes, pyrite	0.5			28 50439	.2
-290-	2		I		Py Mi tip Py	2		minor epidote, t	race Zeolites, pyri	te	0.5	290		290 50440	41
<u> 300</u>						<u>'</u>	Weak potassic al	teration			<u> </u>	300		300	

ALTERATION 0N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N 1N <br< th=""><th></th><th></th><th></th><th></th><th>•/0</th><th>ы соя =</th><th>PAGE NO.: ( REF. TO CLAI SCALE: ) ⁽¹⁾ LOGGED BY:</th><th>PROJECT: WAN 90 DATE STARTED: SEPT 28 DATE PINISHED: SEPT 29 TOTAL DEPTH: 420'</th><th>AN-G MOUND ELEV.: N. E. BEARINO:</th><th></th><th>-90</th><th>:s: n: ^</th><th></th><th>C C</th></br<>					•/0	ы соя =	PAGE NO.: ( REF. TO CLAI SCALE: ) ⁽¹⁾ LOGGED BY:	PROJECT: WAN 90 DATE STARTED: SEPT 28 DATE PINISHED: SEPT 29 TOTAL DEPTH: 420'	AN-G MOUND ELEV.: N. E. BEARINO:		-90	:s: n: ^		C C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N REC'Y	u, j		Τ	1		AVE CORE			EOLOGY	RING	R	L L	ECTION
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAM SAM	SA	Ι»			Sut		DESCRIPTIVE GEOLOGY	2		1-	5	PRO.	
JOU       Ing       SILICEOUS ANDESITE       310       310         W       I       Ing       Ingenetite, minor epidete, trace pyrite, zeolites, himonite,       05       320         320-       Mg       SILICEOUS ANDESITE       Ingenetite, minor epidete, trace pyrite, zeolites, himonite,       05       320         320-       Mg       SILICEOUS ANDESITE       Ingenetite, minor epidete, trace pyrite, imonite, techites,       05       320         330-       Mg       SILICEOUS ANDESITE       Ingenetite, minor epidete, trace pyrite, limonite, techites,       05       320         330-       Mg       SILICEOUS ANDESITE       Ingenetite, ossible quarte moneonite dyke       330         330-       Mg       SILICEOUS ANDESITE       330       330         340-       Mg       SILICEOUS ANDESITE       340       340         340-       Mg       SILICEOUS ANDESITE       340       340         340-       Mg       SILICEOUS ANDESITE       340       340         340-	1 1	8 South	1 1	<b>*</b>	300	0.5	ites,	570 epidote, trace pyrite, zeolite	190 magnetite,			I	w	-
W I I Ry SILICEOUS ANDESITE 170 Magnetite, minor epidote, trace purite, limonite, teolites, 170 Magnetite, minor epidote, trace purite, limonite, teolites, 170 Magnetite, minor epidote, trace purite, 330 Magnetite, 0.570 epidote, trace purite, 1-270 Magnetite, 0.570 epidote, trace purite, 1-270 Magnetite, 0.570 epidote, trace purite, 100 Magnetite, 0.570 epidote, trace purite, 110 Magnetite, 0.570 epidote, trace purite, 0.570 epidote, trace purite, 0.570 epidote, trace purite, 0.570 epidote, trace purit		30 50442				0.5	ke,	re lor epidote, traca quile zalta da	SILICEOUS ANDE 190 magnetite,		1 2	I	~	
M M Py SILICEOUS ANDESITE M M Py SILICEOUS ANDESITE 1-290 magnetite, 0.590 epidote, trace pyrite, limonite, 0.5 200 Hes Weak petassic alteration M N Py SILICEOUS ANDESITE 290 magnetite, 0.590 epidote, trace pyrite Weak potassic alteration 340 M N Py SILICEOUS ANDESITE 290 magnetite, 0.590 epidote, trace pyrite 350 350 350 350 350 350 350 350	20	38 5044			320	ۍ ه	eclites,	mor epidote, trace purite, limonite, teo	190 magnetite,	5017	M 66 9 L P	E	~	.320 -
M W Py SILICEOUS ANDESITE 29. magnetite, 0.5% epidote, trace pyrite Weak potassic alteration 350 Ma SULICEOUS ANDESITE Weak potassic alteration 350 Job States 350 Job S	4	330 5044					Imonites	E D.570 epidote, trace pyrite,	SILICEOUS ANDES 1-290 magnetite Zeolites		Py Lm	1	~	330 -
	L	50445					-	e Bevidete de la la la	SILICEOUS ANDES		Mg	/	2	
M M Py 200 magnetite, 0.500 epidote, trace pyrite, zeclites 0.5 trace quarte veins Weak potassic alteration		\$ 50446	I I	-	<b>3</b> 30		eclites		270 magnetite, D.s. trace quarte veins		Mg 60 14 Z			

NO	LE N	0.:		l	VA/	I-G- PROJECT: WAN 90	PAGE NO.: 7	7 of	7				
		ELEV,				BROUND ELEV.: DATE STARTED: SEPT 28	REF. TO CLAII Scale: / "	e corm	er:	P+	-		
		ATES: TION:	-	90	, 0	N. E. DATE FINISHED: SEPT 29 BEARING:	BCALE:					/	
		ERATI		$\overline{\Box}$		COMMENTS:	AVE CORE					_	ESTI-
	য	R	5	9	_ 	COMMENTS:	REC'Y / HOLE	DES	اب س				MATED
LION	E	J V U L	11	URI	MINE RAL GEOLOGY			HID	RVA	HOLE	APL APL	N N	%
SECTION	PROPYL	PYROPHYLLICA SILICA	SERIC	FRACTURING	0E0	DESCRIPTIVE GEOLOGY		SULP	DRILLING	H S S S	SAMP	% R	Cu
-360				1	1.4	SILICEOUS ANDESITE	- · · ··		360		360	Ì	
	m	м		e	iρ	290 magnetite, 0.5% epidote, minor pyrite: Trace zeolite 5% banded quartz veins	S	4.5			50447	4	51
-370	$\left  \right $				1.				370		370		
-					1g   P	SILICEOUS ANDESITE					5044		
	M	M			'4	290 magnetite, 0.5% epidote, minor pyrite Very weak putassic alteration		2.5			844		4. 1
-383-	4								380		380		
					7g 50	SILICEOUS ANDESITE					5		
	M	η			'Y m	1-270 magnetite, 0.5% epidate, trace pyrite, limonite Miñor guartz veins		4.5			9449		2.1
-390	-								390		390		
					19	SILICEOUS ANDESITE					3		,
	m	m		6	р 'У т	1-290 magnetite; 0.5% epidote, trace pyrite, limonite Very weak potassic alteration		2.5			0450		۷.۱
E400	┥╽								400		400		
					19	SILICEOUS ANDESITE		1-			504		
- 	m	M			7	1-290 magnetite, 0.5% epidete, trace pyrite		6.5		i	2		2.1
Ē	ſ					Very weak potassic alteration	•						
- - - 410 -	┥╽						<b>`</b>		410		410		
F				ri E F	0	SILICEOUS ANDESITE		2.5			5045		( )
	n	M			74	1-220 magnetite, 0.5% epidote minor pyrite, trace limonite, 2	ealths				2		
F 420						END OF HOLE (Sticking)			420		420	ĺ	

C0 C0	LE N LLAR ORDIN CLINA	ELEV	•:		•	7	PROJECT: EXPO WAN 90 PAGE ND.; GNOUND ELEV.; DATE STARTED: SEPT 26 REP. TO CLAI N. E. DATE PINISHED: SEPT 27 BCALE: / ' BEARING: TOTAL DEPTN: 370' LOGGED BY:	ы сол 	/0			$\sim$	
SECTION	1715	ERAT		FRACTURING	MINERAL	SEOLOGY	COMMENTS: AVE CORE REC'Y / HOLE	PHIDES	DRILLING	JOLE	SIZE SAMPLE ITERVAL	REC'Y.	ESTI- MATED
0	PROPYL	PYROPHYL		FRA	Σ	G	DESCRIPTIVE GEOLOGY	Sul	0 0		0	% SA	Cu
							0-6 OVERBURDEN 6-10 NOT SAMPLED						
-10					Py Mg Ep		SILICEOUS ANDESITE		10		10 50		
	W	٣	1		50 2		Minor pyrite, magnetite, epidote. Trace Zeolites Weak potassic alteration	٤.5	20		0376		۷.۱
-20	~	м			Mg Ep Py Z		SILICEOUS ANDESITE 190 magnetite, 190 epidote, minor pyrite. Trace Zeolites Weak potassic alteration	<i>٤.</i> 5			2 50377		۷.۱
-30					Mg Ep Py La		SILICEOUS ANDESITE		30		30 50		
	M	M			Py Lm		1% magnetite, 1% epidote, minor pyrite. Trace limonite, Ecolites weak potassic alteration	٤.5			378		4.1
	M	M			Mg Epy Epy La		SILICEOUS ANDESITE 170 magnetite, 190 epidote, minor pyrite Trace limonite, zeoliles. Weak potassic alteration	2 , 2		~~	2 50379 Q		۷.۱
50	~	м			Mg Ep Py Lm		SILICEOUS ANDESITE 1-2% magnetite, 1% epidote, minor pyrite. Trace limonite Weak potassic alteration	۷.5	50		50380 8		۷.۱

					- 1		GROUND ELEY, :	PROJECT: EXPO WAN DATE STARTED: SEPT 26		PAGE NO.: Z	-				<u></u>
co	ORDI	NATI	Es:		90	, °	N. E. BEARING:	DATE PINISHED: SEPT 2" TOTAL DEPTH: 370'		SCALE: / "	= ;	10			,
	AL DILI	ER 3/ 7	ATI			MINERAL GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	6	DRILLING		<b>u</b>	ESTI- MATED LINI G/O WWS Cu
-60	PROPYL	PYROPH	212	SER	FRAC	U N N		DESCRIPTIVE GEOLOGY			SULF		T		4 WY Cu
	۲		Μ			Mg Fpy Z	SILICEOUS ANDE 1-2% Magnetiti Weak potussic c	e, 170 eridote, minor pyrite	Trace 200	lite	۷.5	-60 ·		G 50381	٤.1
- 70 -		-				Mg	SILICEOUS ANDE					70		70	
	м		м			Мд Бр РЧ <del>2</del>	2% magnetite, 1	90 epidote iminor pyrite. L potassic alteration	Trace teol	ites,	L.5			50382	2.1
- 90 -						ng So Y	SILICEOUS ANDES	ITE			4.5	30		8 5038	2.1
- - - 90 .	M		Μ			<del>2</del> -m	Trace limonite.	, 1% epidote, minor pyrit Neuk Potassic alteration	e,zeolite	5		90		3 90 50	
						ng Sp Py Z	SILICGOUS ANDES				4.5			384	2.1
	M		17			£	Weak Potassic a	190 cpidote, minor pyrite Iteration	Trace Ze	dites		100		100 V	
- 100 ·			M			7g 5p 74 2	SILICEOUS ANDES				4.5			0385	2 .
	M		エ			2	iv magnetiti	e, 170 cridote, minor pyri	te. Trace 2	colites		110		110	
- 10 - - - -	M		м		r e f	7.9 FP 7	1-270 magnetite	ESITE 1190 epidote, minor pyrite		- ⁷	2.5		~	50386	2.1
120						2	Weak potassic	alteration.	Irace zeo	lites		120		120	

		IO.: E	- 	- +	}	PROJECT: EXPO WAN 90 MOUND ELEV.: DATE STARTED: SEPT 26	PAGE NO.: 3 REF. TO CLAIN	CORN	ER :	0			
	0 RDM				-	N. E. DATE FINISHED: SEPT 27	SCALE: / "	= /	10 4	eet	-		
191	GLINA	TION		90	,	BEARING: TOTAL DEPTH: 370"	LOGGED BY:						
SECTION	1716	ERATI	TE	FRACTURING	MINERAL GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	¥ PHIDES	DRILLING	HOLE SIZE	MPLE ERVAL	N Z	ATED
	PROPYL	SILIC.	SERI	FRAC	0EC	DESCRIPTIVE GEOLOGY		SULI		ΗS		SAMP	Cu
-120	M	м			19 19 4 2	SILICEOUS ANDESITE 170 magnetite, 190 epidote, minor pyrite. Trace zeolites		<i><b>(</b>.5</i>	120		2 50387	2	2.1
-Bo	-				19 50	SILICEOUS ANDESITE		L.5	130		130 50		
<u>.</u>	w	M			2	1-290 magnetite, minor epidote pyrite. Trace Ecolites Weak potassic alteration		2.3	140		382 9		
-140 	۲	м			Yg 50 7 2	SILICEOUS ANDESITE 190 magnetite, 190 epidote, minor pyrite, zeolites. Trace li Weak-moderate potassic alteration,	monite	K.5			50389	4	[
- 150	×	м			-m 49 50 7 2	SILICEOUS ANDESITE 1-290 magnetite, 190 chidote, minor pyrite, Trace zeolites Minor pyritic guartz veins. Weak to moderate potassic alteration		4.5	150		E 20390	2	· .]
	- ~	Μ			いかれて	SILICEOUS ANDESITE 1-2 70 magnetite, 170 epidote . minor pyrite. Trace limonite Trace pyritic guarte veine. Weak potassic alteration	, zeolites	4.5			2 503 91		۱. ۷
	M	М		(	14 17 17 17 17 17 17 17 17 17 17 17 17 17	SILICEOUS ANDESITE 270 magnetite, 190 epidote, 0.5% pyrite trace zeolites Trace guartz veins. Weak potassic alteration	•	0.5	170		2 50392	2	2 -1
F 180			1			1		1	1180	1	180	1	

CC CC IM	DLE I DLAR DORDH IGLIN/	ELI NATE ATIO	EV,: :s: N:	;	••				CLAIN	cor =		feet sut			
SECTION	AL 7117	1 16	ATIC		FRACTURING	MINERAL	GEOLOGY	COMMENTS: AVE COM REC'Y / HC	RE DLE	HIDES	LING RVAL	HOLE	APLE	EC'Y	ESTI- MATED
- 180	PROPY	PYROPHYL	217	SER	FRAC	N. N	CE CE	DESCRIPTIVE GEOLOGY		SULP	E DRILLING	Ξø	~ <u>~</u>	% R SAMF	Cu
	2		M		r E F	19 50 7 2		SILICEOUS ANDESITE 290 magnetite, 140 epidote, minor pyrite. Trace zeolites Weak potassic alteration.		2, ۲	180		\$ 50393		۱. ۷
- 190 -	M		м		<u> </u> L	19 4 42		SILICEOUS ANDESITE 270 magnetite, 190 epidote, minor pyrite, Trace limoniste, teolites Weak potassic alteration.		٢.5	190		19 Sozay		۱.۷
-200-	I		m		E	<b>A</b>		SILICEOUS ANDESITE 1% magnetite, 2% epidote, 1% pyrite. Weak potassic alteration.		1	200		8 50395		۷.۱
- 210 - - - - -	M		<b>n</b>		м Бр Т	7		SILICEOUS ANDESITE 1-290 magnetite, 190 epidote, 0.5% pyrite. Trace reolitis, limonite Weak potassic ulteration		0.5	210		210 50396		۲.۱
-220-	м	/	4		n Gi Pi U R			SILICEOUS ANDESITE 170 magnetite, 170 epidote, 0.5% pyrite, minor limonite Trace zedite. Weak potassic alteration		o.s	220		2 50397		(. ۷
230-	W	^	7		r li Eliz			SILICEOUS ANDESITE 1-290 magnetite, 0.570 pyrite, 0.590 epidote Minor limonite Trace zeolite Trace weak potassicalteration		0.5	230		230 50398 240		۷.۱

но	LE NO	•.: E	- 	- H			PROJECT: EX	NAN 90	PAGE NO.: 5	0.	7				
	LLAR	•	:			GROUND ELEY, :	DATE STARTED:	SEPT 26	REF. TO CLAI	N COR	MER:	P	L		
	CLINAT		- (	90	0	N. E. BEARING:	DATE FINISHED:	SEPT 27	SCALE:						
	ALTE				1-1	COMMENTS:	TOTAL DEPTH:	370'	LOGGED BY:	<u> </u>	<u>ן אר</u>	507		T	
_	2	A IH		MINFRAL	LOGY	COMMENTS:			AVE CORE REC'Y / HOLE	LDES	LING	HOLE	ZE IPLE RVAL	Υ, Σ	ESTI- MATED
SECTION	PROPYL	SILIC SILIC		FRACT	GEOL		DESCRIPTIVE	GEOLOGY		SULPH		ĥ	, <u>~</u> ∠	% RE( SAMP	Cu
-240	¥	M		1 1 1 1 1 1 1 1		SILICEOUS ANDESITE 190 magnetite, 0.5% Weak potassic alteratio 25% Quartz Monzo	oyrite, 0.5% e n	epidote Trace zeol	lites, limonite	0.5	-240		\$ 50399		۷.۱
- 250 -	W	I		N, E L	P	SILICEOUS ANDESITE 270 magnetite, 190 A		epidote, limonite		1	250		20 50400		41
-260 -	8	I		たらした	p n	SILICEOUS ANDESITE 1-276 magnetite, 190 p Trace Zeolites	; yrite, minor e,	pidote, limonite		1	260		3 50401		۷.)
- <b>170</b> -	2	I		11. 9. 6. 1		SILICEOUS ANDESITE 1-296 magnetite, 190,	oyrite . minor	epidote Trace lin	monite,	1	270		2 50402		41
280-	~	I		ng Pg Ef Z	<b>)</b>	SILICEOUS ANDESIT 1-240 magnetite, 140	E 1417ile, 0.570	epidote. Trace zer	olite	1			20403		41
-290 -	<b>M</b>	I		M9 14 Ef Z		SILICEOUS ANDESITE 1-290 magnetite, 1907 590 Quartz veins		idote, Trace Zeolit	લ	1	240		n sohoh 8		۷.۱

ма	LEN	<u>é</u>	ΞC	,	H		PROJECT: EXPO WAN 90 PAGE NO .:	(	. 7			
	LLAR			•	••		MOUND ELEV .: DATE STARTED: SEPT 26 REP. TO C	LAIM CO	RHER:	~		
	ORDINA			_	_	-		" =	10	feet		
IN		TION:		9	0	<i>.</i>				1 SUTT		
SECTION		N N	4	FRACTURING	MINERAL	GEOLOGY	COMMENTS: AVE CORE REC'Y / HOL	E G	DRILLING			
-300	PROPYL	PYROPHYLI	SEX	'  _		GEO	DESCRIPTIVE GEOLOGY		DRIL		S SAMPL	same Same ربر
	n	I	-		My Py Ep		SILICEOUS ANDESITE 170 magnetite, 170 pyrite, 0.5% epidote. Trace zeolites, limonite. Weak potassic alteration	}			\$ 50 405	41
-310 -	м	I	-		そうちょうちょう		SILICEOUS ANDESITE 190 magnetite, 190 pyrite, 0.5% epidote, Trace zeolites Weak potassic alteration	1	310		\$ 50406	٤.١
-320-	n	H			L LY ES ER		~590? Quartz Monzonite SILICEOUS ANDESITE 1-290 Pyrite, 190 magnetite, 190 epidote. Trace zeolites	Z	320		2 50407	41
-330-	n	T			PY Ng Ep		Weak potassic alteration. SILICEOUS ANDESITE 1-270 pyrite, 190 magnetite, 0.570 epidote. Weak potassic alteration	Z	330		33 50408	۲.۱
- 340 -	n	I			Мд РЧ Бр		50% SILICEOUS ANDESITE 1-290 Magnetite, 190 pyrite, 0.5% epidote 5070 QUARTZ MONZONITE		340		340 50409	۲.۱
- 350 -	м	M			Ng Py Ep Z		Minor pyrite SILICEOUS ANDESITE 190 Magnetite, 190 pyrite, 190 epidote Trace Zeolites Minor potassic alteration		350		350 50410 36	۲۰۱

C0	OLE N LLAR ORDINA	ELEV	.:			0	MOUND ELEV.:     DATE STARTED:     SEPT 26     NE       N.     E.     DATE FINISHED:     SEPT 27     SC	AGE NO.: 7 EP. TO CLAN CALE: 1 " .000ED BY:	i cori	/0			/	
SECTION		2	· · ·	EPACTIBING	MINERAL	GEOLOGY	COMMENTS: AVE REC'Y	E CORE Y / HOLE	SULPHIDES	DRILLING	of E	SIZE	INTERVAL % REC'Y	ESTI- MATED
₩ -360	PROPYL	PYROPHYLL			_		DESCRIPTIVE GEOLOGY		SUL	В <u>Г</u> 360.	. 4			Cu
-370	V	r	[		Mg 91 Ef Z		SILICEOUS ANDESITE 1-2% magnetite, 1% pyrite, 0.5% epidde Trace zeolites Weak potassic alteration		l	370		36 204 11 32		2.1
- <i>JN</i> -							370 END OF HOLE							
	-													
-														
-							·							
-											~			

		0.: E	<i>C</i> -	- J		PROJECT: EXPO WAN 90 MOUND ELEV.: DATE STARTED: SEPT 23	PAGE NO.:		4				
	bordini,			<u>a</u> -	0	N. E. DATE PINISHED: SEPT 24	REF. TO CLAF SCALE: / "			fee	t		
19		TION		70	<del></del> -	BEARING:	LOGGED BY:					/	
SECTION	्र		SERICITE Z	ACTURING	GEOLOGY		AVE CORE EC'Y / HOLE	X HIDES	DRILLING	14	SIZE SAMPLE LTFRVAL	EC'Y	ESTI- MATED
	PROPYL	PYROPHYLL SILICA	SER	FRAC	GEC	DESCRIPTIVE GEOLOGY		SULP	ORIL	Ţ	S SAN	% REC'	Cu
						O-10' OVERBURDEN							
						10-28 FLOAT							
- 10 ·						- Pyritic guartz veins			10		10		
- - - -			-			-Siliceous andesite, intensely silicified, pyritic -Siliceous andesite, weakly silicified -Diorite		۲]			50332		۷.۱
- 20 -						- Pyritic quarte veins			20		20		
						- Siliceous andesite, intensely silicified, pyritic - Siliceous andesite, weakly silicified - Diorite, Hornblende Porphyry		<b>C</b> 1			50333		۷.۱
_30 .				Mg Py					30		30		
		Μ		Pÿ		SILICEOUS ANDESITE 270 pyrite, minor magnetite, pyrite. Pyrite veinlets + diss no alteration products	eminated	Z			50334		2.1
-40-						no allatanos provens			40		40		
		I		Pt Mg		SILICEOUS ANDESITE 270 pyrite, 0.5% magnetite		2			50335		2.1
- _50 -									50		50		
		I		Py		SILICEOUS ANDESITE 2% pyrite, 0.5% magnetite		2			50336		۷.۱
60									60		60		

H	DLE N	10.: E	·/ _	T		En MAN 80						• -	
		ELEV,	-	v		PROJECT: EXPO WAN 90 MOUND ELEV.: DATE STARTED: SEPT 23	PAGE 80.: 2		•				
	DORDIN.				_	N. E. DATE FINISHED: SEPT 24	REF. TO CLA BCALE: /			La-	F		
13		TION:	-9	0	0	BEARING: TOTAL DEPTH: 200	LOGGED BY:					<u>^</u>	
	ALT	ERATI	ON			COMMENTS:	AVE CORE	$\overline{+}$					ESTI-
z	2	j K	TE	al A	5		REC'Y / HOLE						MATED
SECTION	17	15	12	MINERAL	Lo Lo			IDF	N A	Ľ	SPL F	i,≻ I	%
SEC	PROPYL	PYROPHY SIL 1	SE RICITE		GEOL				DRILLING	HOLE	SAN	% RE	
-60	8	N/ S	N N N			DESCRIPTIVE GEOLOGY		Sul	°≤			80	Cu
- 00				Py Mg		SILICEOUS ANDESITE		+	+60		-60		<b>{</b> {
Ē		M		Mg		2% pyrite, 0.5% magnetite					50		
E		(''						2			33		<.1
-											1		
-70	1			Py					70		70		
E		M		Py Mg		SILICEOUS ANDESITE					4		
-		Jri		14		1-2% pyrite, 0.5% magnetite, minor limonite, trace 2	colites	2			ů S		4.1
Ē				τ		limonite as diffuse patches around pyrite					86		
- 80 -			1	PY					80		80		
-  -				Mg		SILICEOUS ANDESITE							
F		M		Ct		1-2% pyrite, 0.5% magnetite, 1% pyritic calcite veins		Z			503		4.1
E				2		trace limonite, Zeolites					39		
- 90 -													
				Py		SILICEOUS ANDESITE	-		90		90		
E		M		Mg Ct		29. pyrite, 0.570 magnetite, 0.5% pyritic calcite ve	ins	2			S		4.1
F				Lm		trace limonite		6			37		
											0		
- 100 -				Py		SHACCOUS AND ST. T			100		100		
		M		mg		SILICEOUS ANDESITE		2			S		2.1
				Mg Ct Z		290 Pyrite, 0.5% magnetite, minor pyritic calcite vi	61112	1			341		~ 1
E ,						trace zeolites	-					1	
-110 -				0.			- ⁷⁴		110	- <b>-</b> -	110		
				Py ng Ct		SILICEOUS ANDESITE					کوع		
-		M		cť		270 pyrite, 0.5% magnetite, minor pyritic calate	veins	2	Į		~		2.
120											M		
1201									120		120		1

	COLLA	NO.: 2 NR ELEV DMATES: NATION:	•:			PROJECT: EXPO WAN 90 MOUND ELEV.: DATE STARTED: SEPT 23 N. E. DATE PIRISHED: SEPT 24 BEARING: TOTAL DEPTH: 200'	PAGE NO.: 2 REP. TO CLAIN BCALE: 1 " LOGGED BY:	n cori	ER: 10	feet		
SECTION	TIC	TERAT		FRACTURING	MINERAL	COMMENTS:	AVE CORE REC'Y / HOLE	s			<b>u</b> _	
-)20	PROPYL	PYROPHY	SEA	L		DESCRIPTIVE GEOLOGY		SULP	DRILLING	Ho Ho	SAN	SAMPR SAMPR
		M			ny ng tp	SILICEOUS ANDESITE 290 pyrite, minor magnetite, minor pyritic calcite vein. trace epidote	S	2_	-120		\$ 50343	٤.١
-130	> -   	M		P N E	4 19	SILICEOUS ANDESITE 290 pyrite, minor magnetite, trace epidote		Z	130		B Sozyh	4.1
+ 140 		M		P M E	499	SILICEOUS ANDESITE 290 pyrite, minor magnetite, trace evidate Possible mdy (blue metallic shine), weak potassic alteration		2	140		\$ 5034	۲.۱
- 120 - 120	w	M		P. E M	9	SILICEOUS ANDESITE 290 pyrite, minor epidote, magnetite		Z	50		5 503	۷.)
Г. 160 · - Г.	W	Μ		Py Ef Ng Z		SILICEOUS ANDESITE 290 pyrite, minor epidote imagnetite, trace zeolites			60		346 2 50347	٤.)
- - - - - -	W	Μ		PYZER		SILICEOUS ANDESITE 2-370 pyrite, minur zeolites, epidote, limonite, magnet	ite		70		70	4.1
E 180				LM Mg				3	80		50348 2	

	HOLE NO.: EC - J COLLAR ELEV,:						PROJECT: EXPO WAN 90	PAGE NO.:	4	. 4				_	
1	00RD		•••				enound elev.: Date started: SEPT 23	REF. TO CLA	L COR	NER :	0	,			
	NGLIN			- %	70	0	n. e. date finished: SEPT 24 dearing:	SCALE: /						/	
		TER		-	T	1	COMMENTS:	LOGGED BY:	<del>_ 6</del>	T			70~	т	ESTI-
Z	710	176	8	TE	SING	۲ ۲		REC'Y / HOLE	ES	07			μJ	⊢	MATED
SECTION	177	HYL	LCA.	121		GEOLOGY			PHIDES	DRILLING		HOLE	SAMPL	СЧ Ша	%
1	PROPYLITI	PROPHY	511	SER	MINFRAI	5	DESCRIPTIVE GEOLOGY		SULF	DRI		Īυ	AS I	SAM R	Cu
F180					Py		SILICEOUS ANDESITE			-180	$\left\{ - \right\}$		.180		
	W		Μ		PY ME		290 pyrite, minor magnetite, epidote, trace zeolites	, limonite	Z				50349		۲.1
-190	-				P4	, İ				190			190		
F					Mg		SILICEOUS ANDESITE	1 (					S		.
	W		Μ		FY EFE		27. pyrite, minor magnetite; epidote, trace zeolites	, calcite	2				50350		2.1
-200	+-	┝╼┥		-	+-	+				200		ŀ	200		
							200' END OF HOLE								
F							_ ·								
	1														
F															
	┥╽														
  -  -															
<u> </u>															

	NOLE	NO -	- r	- K	,			1.1011.00	· · · · · · · · · · · · · · · · · · ·	,				· -	
		RELE	-	- ~	•	PROJECT:	Exp	o WAN 90	PASE NO.:	0	5				
	COORD	MATES	:					SEPT 24	REF. TO CLA		MER:	P	4		
	INCLIP	ATION		90	, °	BEARING: TOTAL	-	SEPT 25	SCALE: / "					,	
		TERA		T	1	COMMENTS:		2601	LOGGED BY:	<i>ر</i> می	FIR Y	SUT	<u> </u>		
	1	THE	Tu			COMMENTS:			AVE CORE REC'Y / HOLE						ESTI-
NO	E	1	Z F	RING	NA 00					DES	<b>P</b>		ц м м	┍	MATED
SECTION	770	1×			MINE HAL GEOLOGY				l	wE	Ξŝ	HOLE		_C ≓ ∭ ⊓	%
S	PROPYL	PROPHYL	SEI	FRACTU	Σΰ	DESCRIP	TIVE	GEOLOGY		SULI	DRILLING	T.	SIZ	% RE	Cu
⊦ c				╎─╎							0		$\perp o$		J
						O-10 OVERBURDE	5 N								
F			ļ								10		10		
-10	1			1	4	SILICEOUS ANDESITE							50		
E				M		270 pyrite, minor Magnetit	e and	te l'impriste, minor	calite	2_			635		2.1
F	W	<b> </b>   ∨	4	11	n	Sample probably contaminated with	-, epini	avoite as veinlets.	t discen	2			12		
t				G	t	and in quartz veins	(TIONI )								
F-20	) (					and the goarde verses .					20		20		
F				PI M	1	SILICEOUS ANDESITE							5		
E	W	r Iv	1	4   1	P	1-2% pyrite, minor mugnetite	e, coidi	ote, calcite. Trace li	monite	2			w		2.1
Ł			1					,					52		1
È.											30		30		
F30	'			0					•				<b>– –</b>		
ŀ				P- M	g	SILICEOUS ANDESITE	_			7			503		2.1
Ē	W	W	1	6 (1		1-270 pyrite, minor magnetit	e. Trai	ce epidote, calcite					5		/
E				6	9	weak potassic alteration					40		40		
E40															
t /				Py		SILICEOUS ANDESITE				_	1		50		11
F	W	W	1	Εp		2.70 pyrite, minor magneti	te es	idate.		2	f		354		2.1
F						Weak potassic alteration							1		
Ē.						ene periossie alteration					50		50		ļ
-50	4			PY		CULATOUS ANT-COST									
F				Py Ng Ep		SILICEOUS ANDESITE 290 pyrite, minor magnetite	enidat	e Trace l'annite	calcide				503		
F	M	W		Ερ		290 pyrite, minor magnetite Weak potassic alteration	'J CPINEL		CUICIP	2			6	1	2.1
Ē.				Lm	1	Weak potassic alleration							5		
60											60		60		

0 0	DLLAR DORDH HCLIM	NO.: 2 ELEV, NATES: ATION: ERAT	:		0	MOUND ELEV.: H. E. BEARING:	project: Expo date started: SEP date finished: SEP total deptn: 260	T 24 T 25	PAGE BO.: 2 REF. TO CLAII SCALE: / " LOGGED BY:	n cori	ner: //	fei			
SECTION	1176	PYROPHYLLITE	RICITE	ACTURING	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	PHIDES	긜		HOLE SIZE	AMPLE TERVAL REC'Y	
-60	PR0.	2/2	SE	A R R R R R				LOGY		SUL				S SAME	R Cu
	~	v		Mg Ep Lm		SILICEOUS ANDESIT 270 pyrite, 190 ma Weak potossic alter	gnetite, minor epidote. Tr	ace limonite		2	-60			50356	٤.1
70				PY		SILICEOUS ANDESI	TE				70			70 4	
	w	W		Mg Ep	ſ I		agnetite minor epidote.	paritic quarte i	veins	2				0357	۱. ۲
- 80 -	~	8		PYPELSZ		SILICEOUS ANDESI Z7. pyrite, 17. n	TE nagnetite, minor epidote	, limonite Trace	: Eeolites	2	80			8.250358	٢.١
-90 -	~	~		Py Ng Ln Ep		SILICEOUS ANDES 290 pyrite, 19- ma 190 pyritic guartz v Weak potassic alt	gnetite, minor limonite, eins	epidote		2	90			2 50359 8	د ۱
-100 -	~			Py Ng Lm Ep		SILICEOUS ANDESI 290 pyrite, 170 mi 170 pyritic quarte	TE gnetite, minor limonite, veins	ep i dote		z				22260	۱. ۷
-110 -	W	M		fi Mg Lm Ep		SILICEOUS ANDESI 2-370 pyrite, 170	renation re Magnetike, 0.570 inmor	nte, Minor coid	, lote	3	10		~	5	4.1
120						270 pyritic guartz	veins				20		12		

.

		10.: E	_	- )	<	GROUND ELEY, ;	DATE STARTED:	DO WAN 90 SEPT 24	PASE NO.: 3 REP. TO CLAIN	CORM	<b>ER</b> :	ρ	-	-	
		ATES:	-	90	<i>, °</i>	N. E. DEARING:	DATE FINISHED: Total Depth:	SEPT 25 260'	BCALE: / // Lossed by:	= / G#	O +	eet sutt	oN		
_	ALT J/L/	ERATI	ON		MINERAL GFOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	X HIDES	DRILLING	HOLE	MPLE ERVAL	ΣĬΞ	ESTI- MATED
- 120	PROPYL	PYROPHYL	SERI	FRAC	MIN		DESCRIPTIVE	GEOLOGY		SULP		Ĩ	NAS INTEI 150	% R SAM	Cu
	V	Μ			Py Mg Ep Lm	SILICEOUS ANDESI 290 pyrite, 190 m	agnetite, minor ef	oidote. Trace limonite isic alteration	>	2	- 00 -		3 50362		۷.
-130	_				РЧ 19 Ер	SILICEOUS ANDE				1.5	130		130 503		, ,
	Μ	M			Бр́ Lm	1-270 pyrite, Minor calcite vei moderate potassi	ins .	190 epidote, 190 limonit	e	ر ۱۰	140		363 49		4.1
	×	M			14 552	Trace Zeolites	1% pyrite, mino	r epidote, limonite		1			50364		4.1
- -  50 - - -	V				Py Mg Ep	Moderate Potussic 70% QUARTZ MON 190 pyrite, minor	ZONITE Magnetite, epidote			2	150		\$ 50365		41
- - - - 160	n	I	14	My	ED LI	/ Mo.	nagnetite, 19. epidor derate Potossic alter	le, minor limonite, zeo ation	lites		160		12 30		
	w				fy Ep im	10% SILICEOUS AN	pyrite, minor epidote lin IDESITE			}			366		٢.١
- 	m	-+=		Pi	19 51 My		gnetite i minor epidote		- 		170		170 ろ		
	М	I			mg py Go im ct	calci	90 pyrite minor epic te moderate potass	lote, limonite ic alteration		Ζ			0367		۷.۱
E 180						10% QUARTZ MO	ON ZONITE				180		180		

HOLE NO.: Collar Ele	EC-K			PROJECT: EXPO DATE STARTED: SE	_	PAGE NO.: 4	0F	-5			-	
COORDINATE	:		N. E.		PT 25	BCALE:	= /	10 1	feet			
INCLIMATIO	n: -90	0	SEARINE:	TOTAL DEPTH: 2	260'	LOSSED BY:						
ALTER	ALLICA DI RICITE U ACTURING	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	X HIDES	DRILLING	HoLE SIZE	MPLE ERVAL	EC'Y. PINT.	ESTI- MATED
PROPYLLI PROPYLIT	SIL I SERIC FRACT MIN	GEO		DESCRIPTIVE GE	OLOGY		SULP	DRIL	Ĭ.º	N SS NT	% RE SAMP	Cu
- 180 - W	М. Р. Е́			nor punite, Trace zeolit	•		}	150		2 50368		(. ۲
- 190 -	n	9		DESITE - 270 magnetite	, 2% epidote			190		190 V		
· · · · ·	6 6 1	p	QUARTZ MONZON 1% magnetite,0.5	inte 10 pyrite iminur epidate	: Trace limonite,	calcite	.5			0369		۲.۱
-200 -	M P E	5	QUARTZ MONZON 17. magnetite, mi	ite nor pyrite , trace epido	te		.5	200		28 50370		١. ٢
-210 -	M A E	5 1 1 1 1	QUARTE MONZON 190 Magnetite, min	ITE or pyrite Trace zeolite	escalcite		.5	210		210 50371		2.1
- 220 -	μ μ μ μ μ	4	QUARTZ MONZO 190 magnetite, min minor calcite vein	or pyrite, Trace zeolite	epidote		.5	220		2 50372		۱. ۷
-230 -			QUARTE MONZONI		pidote, calcite	* -	2.5	230		23 50373		۲. ۲
240								240		240		

60 60		NO.: <u>é</u> Elev, Nates: Ation:	:		K 2 °	PROJECT: EXPO WAN 90 MOUND ELEV.: DATE STARTED: SEPT 24 N. E. DATE PINIBNED: SEPT 25 BEARING: TOTAL DEPTM: 260'	PAGE NO.: - REF. TO CLAI Scale: / / Lossed by:	-		fei	et 177	-		
SECTION		ERAT BITICH		1	MINERAL GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	T	DRILLING				•	ESTI- MATED
- 240	PROPYL ITI	PYROPH	SER	FRAC	WIV CEC	DESCRIPTIVE GEOLOGY		SULP	DRII 740	. :	Ĭ	AS 240	% REC'Y SAMP INT	Cu
					Мд Р4 Бр	QUARTE MONZONITE 2-390 magnetite, minor pyrite, trace epidote		۷.5				50374		۲.۱
-250					tig Py	QUARTE MONZONITE			250			250 50		
					Ep Z	2-3% magnetite, minor pyrite, trace epidote, zeolite		2.5				50375		۲.
- 260 - - - -						260° END OF HOLE			260			260		
										- <b>-</b>				

~	OLLAR	10.: /		-0		PROJECT: EXPO WAN 90 MOUND ELEV.: DATE STARTED: SEPT 22	REF. TO CLA	/ 07	NER:	0		-	
		ATES:	- ;	90	0	N. E. DATE FINISHED: SEPT 23 BEARING:	SCALE: / '						
SECTION	1716	ERATI	_	FRACTURING MINERAL	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	5			μE	۲. ۲	ESTI- MATED
- O	PROPYL	SILICT PYROPHYLL	SER	FRAC	GE	DESCRIPTIVE GEOLOGY		SULP	DRIL	₽ ©	SAI	% REC' SAMP IN	Cu
						O-12' OVERBURDEN							
/0									10		12		
		н		QZ PY My Ct	,	SILICEOUS ANDESITE WITH 10-20% guartz veins Pyrite diss and units along margins of quartz veins, 1- diss in guartz veins and andesite canton to using		1	2.		50301		4.1
20-	W	L		QZ PY Mg Ctp		SILICEOUS ANDESITE with 10-20% guartz veins, 1- diss and vnits alone margins of guartz veins, 1-	r amount		20		R 50302		۷.۱
30 -	V	I		Qt Py ng ct ep		Carbonate veins, truce epidote SILICEOUS ANDESITE With 20% guartz veins, 2% pyrite magnetike, trace epidote, minor Carbonate		1	36		A 50303		۲.۱
40-	w	Μ		なってきなや		SILICEOUS ANDESITE with 1090 guarte veins, 390 magne diss py. Diss magnetite along gte unit margin, 190 calcut	etite, 1-2%	)	40		4 50304	, , , , , , ,	۷.۱
50 -	~	M		at the py		SILICEOUS ANDESITE with 10-20% Gtz Uns, 2% magnetit as units + diss, 1-3% calcite	e, 1-2% py	1	50		5°305		4.1
0				T					60		60		

	HOLE NO.: EC -O COLLAR ELEV,: COORDMATES:							PROJECT: EXPO WAN 90	PAGE NO.: 2		6				]
c	orow	IATE	<b>s:</b>		~	0		nound elev.: Date started: SEPT 22 N. E. Date finished: SEPT 23	BEF. TO CLAII		/0	fee	t	,	
		ATIO	NI:	~ /	10	7		DEARING: TOTAL DEPTN: 320-	LOGGED BY:	GI	4RY	SVT	TON	1	
SECTION	AL JILIT	11	ATIC T		FRACTURING	ERAL	EOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	× HIDES		l	SIZE	APLE RVAL EC'Y	ESTI- MATED
- 60	PROPY.	PYROPHYL	2111	SERI		20	ຶ	DESCRIPTIVE GEOLOGY		SULPI				SAN SAN	www.cu
	w		M		1	Pt St Mg Py		SIL ANDS with 10% gtz-calúte uns, 2% magnetite, 1% p t diss, traces Limonite, epidote	grike units	1	-60			S 2030L	2.1
-70	-		M		4	ep 22 trap		SIL ANDS with 5-10 % gtz-calcite vns, 2% mognetite, 1% p + diss, trace lim + epid.	pyrite unts	1	70			70	٤.1
- 80-	W		~			ng		SIL ANDS with 570 gtz-calcite uns, 0.5% pyrite, 1-20 Minor limonite + epidote	90 <i>magnet</i> ik	1	80			50 Jazos	٤.1
-90	w		M		114	179 ( )		SIL ANDS with 1070 gtz-calcite uns, 170 pyrik, 290n minor limonite, trace epidate	nagnetik.	1	90			0 50309	٢.1
			N			<b>7</b> 7 7 7 7		SIL ANDS with 5% gtz-calcite vns, 0.5% pyrite, 2% m minor limonite	agnetite,	0.5	100			8 20310	۲.۱
			٩		- L.	19		SIL ANDS with 3-570 gtz-calcite vns, 0.570 pyrite, 290 m minor limonite	nagnetite,	0.5	סון			0 50311	۷.۱
E 120											120			20	

CC	DLLAR Dordi	: ELI Nate	EV.; 15:		-			PROJECT: EXPO WAN 90 MOUND ELEV.: DATE STARTED: SEPT 22 N. E. DATE FINISHED: SEPT 23 BEARING: TOTAL DEPTH: 320'	PAGE RO.: 3 REF. TO CLAIN SCALE: 1 " LOGGED BY:	i cori	ner: //				
SECTION	AL DILI	ER.	ATIC 2	NC	5		- T	COMMENTS:	AVE CORE	IDES	NG		w-	INT.	ESTI- MATED
ACL SEC	PROPYL	PYROPHYL	2111	SERI	FRACT	MIN	GEO	DESCRIPTIVE GEOLOGY		SULPI	1	f	SAN	% RE SAMP	Cu
	V		М		1 f 1 8	19 4 -η Ερ		SIL ANDS with 10% Btz-calcite uns, mostly guartz(8%), calcite(20 1% pyrite, 2% magnetik, trace limonite, goidate	90)	}	+120		8 50312		۷.۱
- 130 - 130 -	M		I		r I I	19 24 50		SIL ANDS with 10% gtz-calcite vns, 2% magnetite, 1% purite, 1% epidote, minor potussic alteration, very little calcite (<1%)	, 1 % lumonite	]	130		30 50313		۷.۱
	Μ		I		r // // 2	1g Dy Ep		SIL ANDS with minor guarte uns, 290 magnetite, 190 prite, 190 li. 190 epidote, Trace calcite	imonite,	l	140		£ 50314 .		4.1
- 150 -	м		I		P	9 19 5 p		SIL ANDS with moderate potessic alteration, 270 Un quartz, 190 ma 190 pyrite, 190 epidote, minor limonite, Trace	agnetites calcite	1	160		5 20315 S		۷.۱
- - - - - -	2		I			y Ig FP		SIL ANDS with minor potassic alteration, 190 pyrite, 190 mag 190 epidote, minor limonite	metite,	1			S0316		4,1
- 	M		T		M P E L	9 9 9 9		SIL ANDS with minor potassic alteration, 1% magnetite, 0.5% pyrite, minor limonite	190 exidate	0.5	i 70	~	E 50317		۲,۱
- 180											180		180		

HOLE NO.: EC- O						0			•е но.: 4	OF	6				
									F. TO CLAIN		ER:	P.	L		
	GLIN/			_ '	91	<i>, °</i>			ALE:   " 						
	ALT			T.	<u> </u>	- -								<del></del>	
SECTION	4 1716	×11 11	C A	ITE	<b>TURING</b>	ERAL	2064		CORE	HIDES	LING	HOLE	ZE MPLE BVAI	EC'Y	ESTI- MATED
SEC	PROPY	PYROPH	2111	SERI	FRACT		GEOL	DESCRIPTIVE GEOLOGY		SULP	DRIL INTE	Ť	S SAI	% R SAMF	Cu
• • • • •	n		I			М9 ЕР 44		SIL ANDS with moderate potussic alteration, 270 magnetite, 170 e 0.570 pyrite, minor Limonite, trace of zeolites,		0.5			50318		4.1
_ 190 . _			-			E Mg AY A		SIL ANDS with moderate potassic alteration, 270 magnetite, 190 Epidote, 190 Pyrite, minor Limonite, Trace zeol		)	40		1 50319		۷.۱
_200_	m		I			Z Mg		SIL ANDS with moderate potassic alteration, 2% magnetite,	,	0.5	200		200 503		7 1
	m		I			Ma Epy LA E			ice of		210		20 21 5		4.
-210 -	n		F			Mg Eo Py LM		SIL ANDS with moderate potassic alteration, 270 magnetite, 170 e 0.570 pyrite, minor limonite	epidote,	٥.5			503 21		41
•						·					220		220		
-220 -	v		M		1	Y9 94 - 19		SIL ANDS with moderate potassic alteration, 170 magnetite, 190 pyrite, 190 Limonite, Minor epidote		1			50322		4)
					F	24		minor pyritic quarte veins.			230		230 M		
-	~	,	M		16 L	24		SIL ANDS with minor potassic alteration, 190 magnetite, 1-29 minor epidote, limonite, . Trace pyrrhotit	?o pyrite te	1			22 8 0		41
240					P	0					240		240		

	ILE 1			 ~ ن	· C	,	PROJECT: EXPO W	IAN 90 M	ee no.: 5	07	6			
1	LLAR		-				MOUND ELEV.: DATE STARTED: SEPT		F. TO CLAIN			P+		
				<b>-</b>	70	0	N. E. DATE PINISHED: SEPT BEARING:		ALE:   "					
				<del></del>	$\overline{}$	<u> </u>				67	<u> </u>			
SECTION	AL 7117	11 11	R S		ACTURING	GEOLOGY	COMMENTS:	REC'1	CORE	X HIDES	DRILLING	HOLE SIZE	MPLE RVAL ECY	ESTI- MATED
240	PROPY.	PYROPHYL	2111	SER	ц Ц		DESCRIPTIVE GEOL	DGY		SULP		μõ	AN TE	Wes Cu
	¥		Μ		<b>FA</b> 30	P	SIL ANDS with moderate potassic alteration epidote, trace limonite	, 190 pyrite, 190 mag	netite,	)			50324	41
-25	×		Μ		9 × 1 €	4 5 6	SIL ANDS with moderate potassic alteration minor limonite, epidote,	~, 190 µyrite,190 mag	netite,		250		\$ 50325	4. ]
-260-	4		I			4 7 0 0	SIL ANDS with moderate potassic alterat Minor epidote, limonite,	in, 170 pyrite, 170 m	agnetite,	1	260		\$ 50326	٤, ן
-270	8		I		<b>H</b> P/H J	5 7 7 8	SIL ANOS with moderate potassic alteration minor epidote, Trace Limonite,	n, locmagnetite, 17. , zealite	, pyrites	1	270		R 50327	4, ]
-280	2		I		t P M t	5	SIL ANDS with moderate potossic alteration 170 magnetite, minor epidote, , trace Bedite	n, 1-270 pyrite, limonite,		}	280		280 50328	4.1
-  - - - - -	~		M		F M E	•	SIL ANDS with moderate potassic alteration 190 magnetite, minor epidote	on, 170 pyrite, limonite			290		29 50324	41
= 300					4	<u>ח</u>					300	1	00	

	HOLE NO.: 2 (-0) COLLAR ELEV.: BATE STARTED: SEAT 22.												<u>,,,</u> ,		
a	OLLAR	ELE	v.:				MOUND ELEV.: DATE STARTED: SEAT 22 REF. TO	-	u cor	NER :	0				
•		HATES		_ 9	~~	0	N. E. DATE FINISHED: SEPT 23 SCALE:	11	=	10	fe	e†	-		
		ATION		1	$\frac{\partial}{\nabla}$	<del>7 - 1</del>	DEARING: TOTAL DEPTN: 320 LOGGED	BY :	GA	RY	SUT	70/	<u>v</u>		
NO	2	ERA H		_	3AL	οų	COMMENTS: AVE COR REC'Y / HO		DES	9			٦L	کے الج	ESTI- MATED
SECTION	PROPYLIT	PYROPHYL	2	2 E	MINERAL	GEOLOGY	DESCRIPTIVE GEOLOGY			DRILLING		HOLE	SAMPL	AMP IN	%
-300	PR	ž		S R					Š					0~0	Cu
- - - - - -	V	^	1		PY Mg EP LM		SIL ANDS with moderate potassic alteration, 190 pyrite, 190 magnetite, Minor epidote, trace limonite		1	-300			\$ 50330		4.1
-3/0					P 4 19		SIL ANDS with moderate potassic alteration, 170, pyrite, 190 magneti	r,		310			30		
	W	~	1		Py Hg Ep Lm		minor epidote, Limonite		1				50331		۲.۱
-320 -							320' End of Hole			320			320		
								•							
											. مر				
E			1												

-30 Py SILICEOUS ANDESITE Py SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidote, trace limonite, calite veins WMM Lm Ct 40 40 40 40 40 40 40 40 40 40					5	0#	PAGE NO.:	WAN 90	PROJECT:		N - N	s A,			<b>0</b> .:		
$\frac{1}{10} = \frac{1}{10} $				~	ER:			OCTOBER 22	DATE STARTED:	LEV, :					ELEV.	LLAR	00
ALTERATION       OUT 1       COMMENTS:       AVE CORE RCCY/HOLE       AVE CORE RCCY/HOLE         VIII 1       THE DO THE DO		-	eet	fe	10	=	SCALE:	OCTOBER 23	DATE FINISNED:	E.	N.		•			ORDIN	co
No       No <td< th=""><th>; </th><th>~</th><th>TTO</th><th>ŚU</th><th>RY</th><th>GA</th><th>LOSSED BY:</th><th>270-</th><th>TOTAL DEPTH:</th><th>, </th><th>BEARING:</th><th></th><th><u>70°</u></th><th>-9</th><th>TION:</th><th>CLIM/</th><th>11</th></td<>	; 	~	TTO	ŚU	RY	GA	LOSSED BY:	270-	TOTAL DEPTH:	, 	BEARING:		<u>70°</u>	-9	TION:	CLIM/	11
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0		MPLE	JRE ZE	ORE VERED	LING	X HIDES	AVE CORE REC'Y / HOLE				4	1 1	URING ERAL	4	4 14	h	LION
W       N       SILICEOUS ANDESITE         2% magnetite, 1% pyrite, minor epidete, tracetimonite       10         10       N       W         11       N       N         11       N       N         12       W       N         130       N       N         14       N       N         150       N       N         16       N       N         17       N       N         18       N       N         19       N       N         10       N       N		1	2 S S S	RECO		SULP		GEOLOGY	DESCRIPTIVE					SERIG	PYROPHY SIL (	PROPY	
10       M       QUART? MON ZONITE       10       10       10         W       M       GY       30% o Silicous andesite       20       20         20       M       GUART? MONZONITE       20       20         30       30% Silicous Andesite       20       20       20         30       SILICEOUS ANDESITE       2% magnetite, 1% pyrite, minor epidote, trace limonite       30       30         40       M       GY       SILICEOUS ANDESITE       30       30         50       SUCEDUS ANDESITE       2% magnetite, minor epidote, pyrite       50       50         50       SUCEDUS ANDESITE       2% magnetite, primor epidote, pyrite       50       50	2.1	60517				)				ragnetite, 190,	270 m	>	Py Ep Ln Ct		Υ	w	
W       I       Ct       200 magnetite, 100 purite, minor epidote, caluite voins       20       20         20       My       QUARTE MONZONITE       3000 Siliceous Andesite       20       20         W       T       Ct       200 magnetite, 100 purite, minor epidote, caluite voins       30         30       T       Siliceous Andesite       30       30         30       T       Ct       200 magnetite, 100 purite, minor epidote, caluite voins       30         30       M       T       Siliceous Annesite       30       30         30       Siliceous Annesite, 100 purite, minor epidote, trace timonite, caluite voins       10       30         40       My       Siliceous Annesite       40       40         My       Siliceous Annesite, 100 purite, minor epidote, trace timonite, caluite voins       40         40       My       Siliceous Annesite       50       50         50       Siliceous Annesite       200 magnetite, minor epidote, purite       50         50		-			10					10NZONITE	QUARTZ A						- 10
20- W M L W M L W M L W M L W M L M L M L M L M M M M M M M M M M M M M M M M M M M						ł		e, calcite voins	le e, minior epidot	liceous andesi gnetile, 170 pyri	30% 51 270 m		6p Ct		MI	w	- - -
W M SILICEOUS ANDESITE 40- W M SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidote, trace limonite, calide veins 40- W M SILICEOUS ANDESITE 270 magnetite, 190 pyrite, minor epidote, trace limonite 50- M M M SILICEOUS ANDESITE 50- SILICEOUS ANDESITE 270 magnetite, minor epidote, pyrite 50- SILICEOUS ANDESITE 270 magnetite, minor epidote, pyrite					20	-		idote, calcite veins	e rite, minor ep	iliceous Andesi	30% 5		60			V	20
40     My     SILICEOUS ANDESITE     190 pyrite, minor epidote, trace limenite     1     8       W     W     Gp     270 magnetite, 190 pyrite, minor epidote, trace limenite     1     8       M     M     M     Sno guarte moneconite     50     50       50     My     SILICEOUS ANDESITE     50     50       50     My     SILICEOUS ANDESITE     50       270 magnetite, minor epidote, pyrite     1     1	4.1	520				)	late vēns	dote, trace timonite, c	e, minor epi				6p Lm		m	Ŵ	-30
-50 - My SILICEOUS ANDESITE 50 - Somagnetite minor epidate printe	631 4.1	60521				1		idote, trace limonite		quetite, 190 p	270 ma		Mg Py Gp Lm			35	-40
60 60	5 4.1	6052				۲.5		te .	epidate pyri	agnetite i minor	290 000		Му Бр Ру		¥	V	

NO		NO.:			 	λA	N-N	PROJECT:	WAN 90	PAGE RO.:	<u> </u>	5		···		<u></u>
<b>C0</b>	XLAR	ELI	EV,:				GROUND ELEY. :	DATE STARTED:	OCTOBER 22	REF. TO CLA	N CORI	NER :	0	1.		
co	o RDH	NATI	<b>[\$</b> :		<u>~</u> .	_ 0	N. E.	DATE FINISHED:	OCTOBER 23	SCALE: / '						
111		ATIO	N:		90	) [°]	BEARING:	TOTAL DEPTN:	270'	LOOSED BY:	G	ARY	150	TTON	/	
NOIL	ALT DILI	L 17E	_	ITE	URING	MINERAL	COMMENTS:			AVE CORE REC'Y / HOLE	X HIDES	DRILLING	E	SIZE	EC'Y.	ESTI- MATED
SECTION	PROPYL	PYROPHYLL ITE	SILICA	SERIC	Ľ			DESCRIPTIVE	GEOLOGY		Hd Ins	PRIL NTE	Ĩ	S SAMPL	% REC'	Cu
	くず		w			Mg Go Py	SILICEOUS ANDESI 2-3% magnetite, Weak potassic alt	TE minor epidote, pyrit pration	e		4.5			\$ 60523		4.1
-70	2 2 2		R			My Py Ep LM	SILICEOUS ANDES 2-3% magnetile, Weak potassic alte	0.5% pyrite, minor	epidote, trace limor	nite, calcite viens	0.5	70		2 60524		2.1
- - - - - - - - - - - - - - - - - - -			¥			<t My Py EP</t 	SILICEOUS ANDESI 370 magnetite, weak potassic alt	170 pyrite, 0.570 ei	pidote			80		\$ 60525		2.1
- 90 	M		3 2			му Ру ЕР С <del>с</del>	SILICEOUS ANDESIS 390 magnetite, 1 Weak potassic a 2590 guartz mo	90 pyrite, 0.5% ep Ilteration	vidote, trace calcite	veins	<i>.</i>	90		9 60526		2.1
	3 8		v			mg Py Ep	SILICEORS ANDESIT		- epidote, trace	limonite	0.5	100		8 605 27		2.1
			۲З			ns Py	50% QUARTE MONZO 200 Magnetite 50% SILICEOUS AN	, 190 pyrite				1(0		2 60528		٤.]
E 120							2% magnetite	, 170 pyrite				120		120		

но		NO.;		•	·	W	AN-N	PROJECT:	WAN 90	PAGE NO.:	5 07	5			
	HLAR HORDH		•				SHOUND ELEY :	DATE STARTED:	OCTOBER 22	REF. TO CLAI Scale: / "			P. +		
	GLIN				90	0	N. E. DEARING:	DATE FINISNED: Total deptn:	Остовек 23 270'	SCALE: / LOGGED BY:			• • • •		
SECTION	LITIC P	4 ITE	8		FRACTURING MINERAL	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	ES			Г'n	
) - 120	PROPYL	PYROPHYL	2111	SERI				DESCRIPTIVE	GEOLOGY			1.	, I S		% REC'
	W		м		Mg Ty Ep Ln	n	SILICEOUS ANDESI 2% magnetite, 1%	TE o pyrite, minor epio	lote, trace limonite		1	+120		PT 509 19	2.1
-130	38		M		My Py Ep	2	SILICEOUS ANDESI 290 magnetite, 201 Weak potassic a	o pyrite, minor epi	dote, trace limonite		}	130		3 60530	۱. ۲
- 140 - - 140 - - - - - -	38		۶H		My 14 Er LN	7	SILICEOUS ANDESIT 2% magnetite, 1. Weak potassic alte 25% guartz monz	5% pyrite, 0.5% e	pidote, trace limonit	e	1.5	140		9 60531	۱. ۲
- 150 ·	W		٦		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		50% QUARTE MONZON 290 Magnetite, 1 50% SILICEOUS ANDE 290 Magnetite,		epidote, limonite	· · ·		150		NO 60532 0	۷.۱
- 160 	v		нз		My Py EP		SILICEOUS ANDES 270 magnetites		epidote, trace limo.	nite	1	100		60533	۲-۱
- - - - - - - - - - - - - - - - - - -	3		H3		hş fy GP Ln CE		SILICEOUS ANDESIT 270 magnetite, 10 Weak potassic alt	7. pyrite, minor ep	idote, trace limonit	e, calcite veins				8 60534	۷.۱
E180											<u> </u>	180		180	

Description       Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	HOLE NO.:			W	A	N-N	PROJECT:	WAN	90	PAGE NO.:	1 01	5			_	
ALTERATION       ALTERATION <th>COORDINATES:</th> <th>:</th> <th>-9</th> <th>0°</th> <th>,</th> <th>N. E.</th> <th>GATE FINISHED:</th> <th>OCTOBER</th> <th></th> <th>REP. TO CLAI BCALE:</th> <th>M COR</th> <th>HER: /0</th> <th>fee</th> <th>t</th> <th></th> <th></th>	COORDINATES:	:	-9	0°	,	N. E.	GATE FINISHED:	OCTOBER		REP. TO CLAI BCALE:	M COR	HER: /0	fee	t		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ALTERAT	TIO	ALC ITE Z	TT						AVE CORE		J		ALE ALE	% REC'Y	ESTI- MATED % Cu
190MMSILICEOUS ANDESITE 2-370 megnetite, 170 pyrite, 0.570 epidote, trace guartz veins epidate and magnetite veinlets Weak potassic alteration190190190200MMGSILICEOUS ANDESITE 270 magnetite, 170 pyrite, minor epidote, trace guartz veins epidate vein lets200200WMGSILICEOUS ANDESITE 270 magnetite, 170 pyrite, minor epidote, trace limonite, guartz veins epidote vein let200200WMGSono QUARTZ MONZONITE 270 magnetite, 170 pyrite, minor epidote210210WMGGUARTZ MONZONITE 170 magnetite, 170 pyrite, minor epidote1220NGUARTZ MONZONITE 1-270 magnetite, 170 pyrite, minor epidote1230NGUARTZ MONZONITE 1-270 magnetite, 170 pyrite, minor epidote1		<u>א</u>	<u>N</u> 1	Mg Pi Ep		2-3 90 magnetite, 1 guartz veins	5 % pyrite, 0.570 ep		limonite,	Calcite -				\$ 6053		 Z .
W M SkicEous ANDESITE 270 magnetite, 1% pyrite, minor epidote, trace limonite, quarte veins 1 210 - M M M Sono QUARTE MONZONITE 1 5070 QUARTE MONZONITE 270 magnetite, 190 pyrite, minor epidote 1 220 - 1 220 - 220 - 22		1		19 19 19	•	SILICEOUS ANDESI 2-390 magnetite, 1 epidote and magnet	TE 70 pyrite,0.570 ep ite veinlets	idote, trace	guarte ve	โกร		190		60		L .
W M M EP 270 magnetite, 190 pyrite 270 magnetite, 190 pyrite, minor epidote 270 magnetite, 190 pyrite, minor epidote 270 magnetite, 190 pyrite, minor epidote 1 220 0 1 220 0 220 0 230 - 230 0 230 0	u u	2		М1 РЧ Ер Ст	S	SKICEOUS ANDESIT 290 magnetite, 19	E	lote, trace lin	monite, qua	rte veins	1	200		6053		2.1
20- My QUARTE MONZONITE 1-270 magnetite, 170 pyrite, minor epidote 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 120- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 100- 10	W	1		ту 1ч Ер		2% magnetite, 100	pyrite	:			1	210		6053		2.1
10 QUARTE MONZONITE	20-			Му Ру Ер	Ċ	DUARTE MONFONI	-e				t	220		6053		۷.۱
	230-			ng 14 61 Ct	G	DUARTE MONEONITE 1-270 Magnetite	, 190 purites minor	epidote itraci	e calcite vei	ns	-	230	-	6		۲.۱

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>		-	1.	14	j _ a/		1.1011.00								——––––––––––
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				EV.:		v	~ п /			-								
$\frac{1}{240} = \frac{1}{1000} = \frac{1}$		boitor	MAT	ES:								MEP. TO CLAI	ME COM		Lan	K		
$\frac{\text{AUTERATION}}{\frac{1}{2}} \frac{1}{\frac{1}{2}} $		ICLIN	ATIC	) ((	-	90	0					•			•			
$\frac{1}{240} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$		T					<u> </u>									T	<u> </u>	FETI
$\frac{240}{W} = \frac{1}{M} = \frac{1}{60} = \frac{1}{240} = \frac{1}{24$		1	M			۶ Z	- L				R	EC'Y / HOLE	s	<u>ر</u>				MATED
$\frac{2}{270} = \frac{1}{270} = \frac{1}{100} = \frac{1}$	TION	F 1		RS	517	URI								RANO A NO	5		N.Y	%
$\frac{2}{270} = \frac{1}{270} = \frac{1}{100} = \frac{1}$	SEC	J d	(H)a	E	×	ACT								LIE LIE	<u> </u>	SAN	AMP	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2110	18	2%	۱ N	SE	Ľ			DESCRIPTIVE	GEOLOGY			S	1	` 		00	La
W I Some guarde managerite. $3\pi_0 pyrite$ $27_0 magnetite. 3\pi_0 pyrite.27_0 magnetite. 3\pi_0 pyrite.W M Skuceous ANDESITE2\pi_0 magnetite. 1\pi_0 pyrite., minor epidde, trace limonite1260260260260260260260260260260260260260260260260260260260260260260260270270 magnetite. 1\pi_0 pyrite.270 magnetite. 1\pi_0 pyrite.270 magnetite. 1\pi_0 pyrite.270 END OF HOLE270$	F240					n	1	SILICEONS ANDESITE	1 11				1	+240-		1		
W I Some guarde managerite. $3\pi_0 pyrite$ $27_0 magnetite. 3\pi_0 pyrite.27_0 magnetite. 3\pi_0 pyrite.W M Skuceous ANDESITE2\pi_0 magnetite. 1\pi_0 pyrite., minor epidde, trace limonite1260260260260260260260260260260260260260260260260260260260260260260260270270 magnetite. 1\pi_0 pyrite.270 magnetite. 1\pi_0 pyrite.270 magnetite. 1\pi_0 pyrite.270 END OF HOLE270$	+					E	þ	200 magnetite, 100 py	prite, minor epidote							S S		
250-     M     SKICEOUS ANDESITE     250     250       280-     M     SKICEOUS ANDESITE     100 purite, minor epidole, trace limonite     1       260-     M     SKICEOUS ANDESITE     260     260       280-     M     SKICEOUS ANDESITE     280 magnetite, 1%0 purite, minor epidole, trace limonite     260       240-     M     SKICEOUS ANDESITE     280 magnetite, 1%0 purite, minor epidole, trace limonite     260       270-     SKICEOUS ANDESITE     290 magnetite, 1%0 purite, minor epidole, trace limonite     1     260       270-     SKICEOUS ANDESITE     270 magnetite, 1%0 purite     270     270       270-     SKICEOUS ANDESITE     270 magnetite, 1%0 purite     270       270-     SKICEOUS ANDESITE     270 magnetite, 1%0 purite     270       270-     Z70 END OF HOLE     270     270	F	W		I				30% guartz monzoni	te n Durte				1			12		2.1
W M I GO SAUDESITE 270 magnetite, 170 pyrite, minor epidole, trace limonite W M I GO SAUDESITE 270 magnetite, 170 pyrite, minor epidole, trace limonite W M I GO SAUDESITE 270 magnetite, 170 pyrite in the epidole, trace limonite 270 magnetite, 170 pyrite in the epidole i	Ē							270 magnetites 1						26.				
W T -260- W T W T SKICEOUS ANDESITE 200 magnetite, 100 pyrite, minar epidde, trace limonite 30% guartz montonite 290 magnetite, 100 pyrite 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270	-250	1				M	1	CILLEFOUS ANDESITE						450				
260- W H Sluceous ANDESITE 280 magnetite, 190 purite, miñor epidole, trace limonite 100 guartz monzonite 290 magnetite, 190 purite 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 2	F					6	0	290 magnetite, 190	pyrite, minor epidote	, trace limonite						603		
260- W H SILICEOUS ANDESITE 2000 magnetite, 100 pyrite, miñor epidole, trace limonite 2000 magnetite, 100 pyrite 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 27	Ē	W	1	I		μ μ	า									42		2.1
W M SILICEOUS ANDESITE 200 magnetite, 190 purite, minor epidole, trace limonite 1 200 magnetite, 190 purite 290 magnetite, 190 purite 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270- 270-	-  -																	
W M SKUCEOUS MAGNETIE, 190 pyrite, minor epidote, trace limonite 200 magnetite, 190 pyrite 200 magnetite, 190 pyrite 290 magnetite, 190 pyrite 270 END OF HOLE 270 END OF HOLE	-260	4				ملا		ALDCUTE						260		260		
$\frac{1}{270} = \frac{1}{270} = \frac{1}$	Ē					P	7	SILICEOUS ADDESTIE	rite minor epidote,	trace limonite						60		
$\frac{1}{270} = \frac{1}{270} = \frac{1}$	E	W		M		E	р 5									25		2.1
270- 270- END OF HOLE 270- END OF HOLE 270- 270- 270- 270- 270- 270- 270- 270-	Ļ							50% quarte Montonit	12 eurite							ω		
	1220						Ì							120		1770		
	E							270° END OF F	JOLE					200		270		
	F		ĺ															
	E							,										
	E																	
		1																
	F																	
	F														ł			
	F										•	:						
	F .	$\left  \right $																
	E																	ĺ
	E																	
	F																	
$\mathbf{E} \mid \mathbf{I} \mid $	Ē																	

мо		NO.:			ĥ	IAN	1 - M	PROJECT:	WAN 90	PAGE NO.:	1 07	3		<u> </u>		
co	CLAR CROM	IATE		- ?	90	0	N. E. BEARING:	DATE STARTED: Date finished: Total Depth:	0-TOBER 21 0(TOBER 22 170'	REP. TO CLAH Scale: / " Lobsed by:	= ;	10	fee su	Т т то,		
SECTION	1715	6 IF	ATIO V J	_	FRACTURING	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	¥ HIDES	DRILLING	HOLE	IZE MPLE FRVAI	REC'Y	ESTI- MATED
O SEC	PROPYL	PYROPHYL	SILICA	SERI				DESCRIPTIVE	GEOLOGY		SULF		Ĩ	S SA SA	% REC'	Cu
	2		MI		94 15 15 15	/       	SILICEOUS ANDESITE 190 pyrize, 190 ma		dote, trace limonite		1			00400		۱. ۲
- 10	-				PY		SILICEOUS ANDESITE	-				10		10		
• • • •	V		MI		Рч М Б, Ls	1 0 11			pidote, trace limo	nite	1.5	20		20		4.1
-20 	35		×I		Pr MI LI	 	SILICEOUS ANDESITE 1% pyrife, 1% mag Weak potassic alter		lote, trace limonite,	Zeolites	)			60502		۱. ۲
-30	38		MH		Mi Py Ej	0	SILICEOUS ANDESITE 27- magnetite, 190	pyrite minor epid	late .		1	30		2 60503		۷.1
- - - - - -			M		Ma Ay Ef		Weak potessic altera SICICEOUS ANDESITE 290 Magnetite, 190		11.			40		3 9 60504		٤.١
	2		I				~10% quartz monz	ation onite	dot C		L L	50	-	04 5 6		
60	w		I		My P 1 E1	•	SILICEOUS ANDESITE 190 magnetite, 190 ~10% guartz Mont	pyrite, minor eji	date			60		6305 6		4.1

	LE N		•	l	N A	N-M PROJECT: WAN 90	PAGE NO.: 2	_ 01	3				
	ORDIN	ELEV,				MOUND ELEV.: DATE STARTED: OCTOBER 21 N. E. DATE FINISMED: OCTOBER 22	REF. TO CLAI BCALE:	N CORI		far	F		
	GLINA			90	0	BEARING: TOTAL DEPTN: 170'	LOGGED BY:					(	
SECTION	1716	ERATI	Y	FRACTURING	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	¥ PHIDES	ERVAL		ω-	% REC'Y	ESTI- MATED
- 60	PROPYL	SILICT SILICT	SER	FRA	5	DESCRIPTIVE GEOLOGY		SUL				SAI	Cu
	3 8	I		M Pr E		SILICEOUS ANDESITE 190 magnetite, 190 pyrite, minor epidote, trace limonite ~30% guartz monzonite		١	60		\$ 60506		۱. ۲
-70		H3		N o W J		50% SILICEOUS ANDESITE 1-2% magnetite, 1% 14rite, minor epidote, trace limonite 50% QUARTZ MONZONITE			70		2 60507		2.1
- - - - - - - - -	~	M		μ ε	1	QUALTE MONZONITE 2% magnetite, 0.5% pyrite, minor exidote		0.5	80		8 60508		۷.1
-90				n - 6	5	2090 Siliceous andesite QUARTE MONZONITE 1-220 magnetite, minor pyrite, epidote		1.5	90		a 60509		۱. ۲
				м	9	minor pyritic quarte veins			100		18 6		
	~			M P. E	P	OUARTZ MONZONITE 1-270 magnetite, minor pyrite, epidote		4.5			60510		4.1
				n, p. E	P	QUARTE MONZONITE 1-22 magnetite, minor pyrite, epidote		5. ۲	110	- <b>- - -</b>	0 60511		۷.1
- 120									120		00		

		0.: ELEV.			Wr	M-M PROJECT: WAN 90 PAGE NO.: ] GROUND ELEV,: DATE STARTED: OCTOBER 21 REF. TO CLA	_					
cc	orde	ATES:			_	N. E. DATE PINISHED: OCTOBER 22 SCALE: /	/ =	10				
10		TIGN:	_	90	, °	BEARING: TOTAL DEPTH: 170 LOBGED BY:						
NOIL	1710	ERATI	17E 2	URING	MINERAL GEOLOGY	COMMENTS: AVE CORE REC'Y / HOLE	× HIDES	LING RVAL	HOLE	APLE RVAL	EC'Y.	ESTI- MATED
o2/-	PROPYL	PYROPHYL	SERIO	FRACTURING	GEO	DESCRIPTIVE GEOLOGY	SULP	DRILLING	Ησ	<u></u>	% REC SAMP	Cu
					ng Py Er	QUARTE MONZONITE 1-23 magnetite, minor pyrite, epidote	4.5	-120 -		12 60512		2.1
-130	-				ng 1y Ep	QUARTE MONZONITE 1-270 magnetite, minor pyrite, epidote	4.5	130		3 60513		۱. ک
- - - - - - - - - - - - - - - - - - -	-				Mg Ay ED	QUARTE MONZONITE 1-2% magnetile, minor pyrite, epidote	٤.5	140		£ 60514		۷.۱
-150	_						•	150		150		
					4g 14 Eo	QUARTZ MONZONITE 1-2% magnetite, minor pyrite, epidote	2.5			515		۲.۱
	-				ng Dy Ep	QUARTZ MONZONITE 1-290 magnetite, minor pyrite, epidote	4.5	160		\$ 60516		2.1
- - - - - - - - - - - - - - - - - - -	-					170° ENO OF HOLE		170		071		
Ē												

$\frac{1}{100} = \frac{1}{100} = \frac{1}$	M	DLE H	10.:		h	JA.	N-L PROJECT: WAN 90	O PAGE NO.:	1 01	6				
$\frac{1}{20} = \frac{1}{10} + \frac{1}{10} $	~	NLAR	ELEV,	:				REF. TO CLAI	n cor	NER :	D	12		
ALTERATION NO US NOT ALLE VIEW S NO US NOT ALLE VIEW S DESCRIPTIVE GEOLOGY O O O O O O O O O O O O O O O O O O O	1		-	-9		,							,	
$\frac{10}{10} = \frac{10}{10} = 10$		1							<u>ک</u>	ARY		TTO	~	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LION	1710	R IN	1TE	ERAL		COMMENTS:	AVE CORE REC'Y / HOLE	t 11DES	LING			RVAL SCY	ESTI- MATED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PROPY	PYROPHY SIL 1	SERIG	NIM	GEO	DESCRIPTIVE GEOLOGY		] •	DRIL	Ĩ			Cu
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F						0-5 OVERBURDEN					٦ ٢	, I	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							5-10 NOT SAMPLED							
W M I = 1 $V M M I = 1 $ $V M I = 1 $ $V M M I = 1 $ $V M I$	- 10				4					10		-		
W M I = 1 $V M M I = 1 $ $V M I = 1 $ $V M M I = 1 $ $V M I$	+ + +				PY			ace featites				0030		2.1
20- W M Skiceous ANDESITE 270 magnetite, 190 pyrite, minor epidote, trace limonite 1 30 30 30 30 30 30 30 30 40 40 40 40 40 40 50 50 50 50 50 50 50 50 50 5		W			Lm				1					
$W = \begin{bmatrix} n_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 $			ľ							20		_		
$W = W = \frac{1}{M} = \frac{1}{100} Prite, minor epidote, trace limonite} = \frac{1}{100} = \frac{1}{100$	- 20	1			nş							8		
30     M     M     30     30     30       30     M     SILICEOUS DYKE / ANDESITE     30     30     30       2%     Magnetite, 1%     pyrite, trace epidde, zeolites     1     40       40     M     F     2%     Magnetite, 1%     1%       40     M     F     2%     ANDESITE     1       40     M     F     2%     Magnetite, 1%     Pyrite, minor epidote, possible chalcopyrite?       40     M     F     2%     Magnetite, 1%     Pyrite, minor epidote, possible chalcopyrite?     50		W			60		270 magnetite, 190 pyrite, minor epidote, trace limoni	te				66		2.1
30     M     SILICEOUS DYKE / ANDESITE       2% magnetite, 1% pyrite, trace epidde, zeolites       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40			M							30		30	<b>5</b>	
40 40 40 40 40 40 40 40 40 40	-30	$\left  \right $			m		SILICEOUS DYKE / ANDESITE	م		-				, ,
40 40 40 40 40 40 40 40 40 40	Ē		-		60				}			367		2 -1
-40- W M G? SILICEOUS DYKE / ANDESITE 290 magnetite, 190 pyrite, minor epidote, possible chalcopyrite? 50 50 50	-		11		Ł		,			1.0		4		
W M Et 290 magnetite, 1% pyrite, minor epidote, possible chalcopyrite? 50 50 50	E-40	$\left  \right $	1							40			E E	
50 50					14				١					2.1
	-	W	17		4	?	- 10 magnetic, 170 pyrite, minor epidote, pose	side chaleofyrite ;						
11 SILICEOUS DYKE / ANDESITE	-									50	-	50		
	Ę				A4				1			603		
E W M G 210 Magnetite, 190 parite, minor epidote		W	M		69		270 magnetite, 170 parite, minor epidote		I			69		4.1
60 60	E E 60									60		6		

•

00 00	DLE I	ELI MATE	: <b>s</b> :		-	An o		WAN 90 DC TO BER 20 OCTOBER 21 360-	PAGE NO,: T REP. TO CLAN SCALE: J LOGGED BY:	n con	ner: / 0			
SECTION	41712	176	8	_	FRACTURING MINERAL	GEOLOGY	COMMENTS:		AVE CORE REC'Y / HOLE	X SULPHIDES	DRILLING	Hote Size	APLE RVAL EC'Y.	ESTI- MATED
SEC	PROPYL	PYROPHYLI	SILIC	SERI			DESCRIPTIVE	EOLOGY		SULPI		S: S:	SAMPL INTERVE % REC'	Cu
	2		m		M 9 P 4 G P L #		SILICEOUS ANDESITE 276 magnetite, 0.5% purite, miñor epidote,	trace limonite		0.5	- 60 -		360370	۲.۱
-70	v		m		Mg 14 60 LM		SILICEOUS ANDESITE 220 magnetite, 0.5% pyrite, minor opido	te, trace limonite		o <i>.</i> 5	70		70 60371	2.1
- 80-	~		W		My Py EP Lm		SILICEOUS ANDESITE 320 magnetite, 190 purite, minor epidote,	trace limonite		)	80		\$ 60377	2.1
- 90 -	×		M い の		ng Py Ln		SILICEOUS ANDESITE 390 magnetite, 140 pyrite, minor epidote,	trace limonite		1	90		2 602 73	2.1
- - - - - - -	v		J M		14 57 59 10		SILICEOUS ANDESITE 390 magnetite, 1.570 pyrite, minor epidote intergrown pyrite and magnetite blobs	, trace limonite		1.5	100	11/20		۷.۱
- 110 -	M		٩ I		MJ Py Ep Lm		SILICEOUS ANDESITE 190 magnetite, 190 pyrite, 190 epidote, trac weak potassic alteration	e limonite		)	110		0 60375	2.1
E 120											120		20	

00 00	ORDH	EL	.EV.; Es:	_	h 90	\ر A ل 	GROUND ELEV. : DATE STARTED: (	WAN 90 OCTOBER 20 OCTOBER 21 360'	PAGE NO.: 3 REP. TO CLAN SCALE: 1 LOGGED DV:	cori	#ER: //			, ,	
SECTION	itic	ÌН.	SILICA T	-	FRACTURING	GEOLOGY	COMMENTS:		AVE CORE REC'Y / HOLE	X SULPHIDES	DRILLING	HOLE	SI Z E AMPLE TFRVAI	% REC'Y	ESTI- MATED
- 120	PROPYL	PYROPHYLL	215	X ZS			DESCRIPTIVE	GEOLOGY		SUL	15 E			SAI	Cu
	m		۶H		P M G L	7 1 p r	SILICEOUS ANDESITE 190 pyrite, 190 magnetite, 190 epidote, tra Weak-moderate potassic alteration	ce limonite		١	1-0		2 60376		2.[
-130	-		×		M P E	9	SILICEOUS ANDESITE 290 magnetite, 190 prite, minor epidote			}	130		130		2.1
- 140	W	- - - -	Μ		H	•	,				140		77 2 60)		
	~		32		1 6 1 3	1 P ME	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidote 190 rusty quarte veins	e, limonite, trace zeo	lites	1	150		28 60		2.1
- 150	32		Μ		4   6 	4700	SILICEOUS ANDESITE 270 magnetite, 190 purite i miñor epidate 3090 quartz monzonite	itrace limonite		l	160		60379 2		۱. ۷
- 160	3 2		٣		<b>n</b> 9-6-4	'	56% SKICEOUS ANDESITE 270 Magnetite, 190 purite, miñor epidote, 5070 QUARTZ MONZONITE	, trace limonite		}			60380		2.1
- 170 ⁻			r H		M 6 1	ρ	SILICEOUS ANDESITE 270 magnetite, 170 pyrite, minor epido 2090 guartz Monzonite	ste, trace limonite		1	סקו	-	2 60381		2-1
= 180							minor calcite crystals 1×1 mm		······		180		180		

HO		10.:		-	i	WA,	J-L PROJECT: WAN 90	PAGE NO.:		6			<u> </u>
co	ULAR ORDIN GLINA			- ;	70	, ~	MOUND ELEV.:     DATE STARTED:     OCTOBER 20       N.     E.     DATE FINISHED:     OCTOBER 2)       BEARING:	REP. TO CLAI Scale: / " Logged by:	′ =	10			
SECTION	ALT 71/17	11	8		FRACTURING	MINERAL GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	SULPHIDES	DRILLING	HOLE SIZE	MPLE	
- 180 E	PROPYL	PYROPHYL	SILICI	SERIC	_		DESCRIPTIVE GEOLOGY		SULP		Ť	≥  ∂	NAS CU
	~		MI		E	14 14 19	SILICEOUS ANDESITE 290 magnetite, 190 purite, minor epidote, trace limonite 25% chlorite, 20% guarte monzonite Weak potassic alteration		1	- 180		260382	2.1
- 190 -	8		MI		r A e L	19 14 19	SILICEOUS ANDESITE 1-2 % magnetite, 190 pyrite, minor epidote, trace limonite		)	190		2 60383	۷.۱
-200-	~		MI		r H E	ty ip m	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidote, trace limonite weak potassic alteration		1	200		8 60384	۷.۱
- 210 -	35		۶I		r r F E L	4 9 0	SICICEOUS ANOESITE 290 magnetite, 190 pyrite, 0.5% epidote, trace limonite weak potassic alteration		-	210		2 60385	۱. ۲
-220 -	γr		MU		M P E L	1 P M	SILICEOUS ANDESITE 270 magnetite, 1% purite, 1% cridate, trace timonite 10% quarte montanite Weak potassic alteration		Į	720 730		220	۱. ۲
-230- - - - -	~	,	М		M P E	4 7 P	QUARTE MONZONITE 190 magnetite, 190 pyrite, 0.5% epidote 10% Siliceous Andrite		1	240		60387	۷.۱

COLLAR ELEV.: COORDMATES: NOTE CONTRATOR: $-90^{\circ}$ NOTE COMMENTS: NOTAL DEFTH: $360^{\circ}$ COMMENTS: NOTAL DEFTH: $360^{\circ}$ COMMENTS: NOTAL DEFTH: $360^{\circ}$ DESCRIPTIVE GEOLOG: 240 NOTAL DEFTH: $360^{\circ}$ NOTAL DEFTH: $360^{\circ}$ DESCRIPTIVE GEOLOG: 240 NOTAL DEFTH: $360^{\circ}$ 240 NOTAL DEFTH: $360^{\circ}$ 250 NOTAL DEFTH: $360^{\circ}$ 250 250 250 250 250 250 250 250	R 21 scale:  " = 10 Feet LOBERD BY: GARY SUTTON AVE CORE REC'Y / HOLE S 300171111 Hall Hole Hall Hall REC'Y / HOLE REC'Y / HOLE REC'Y / HOLE REC'Y / HOLE S 300171111 Hall Hall REC'Y / HOLE S 300171111 Hall Hall REC'Y / HOLE S 300171111 Hall Hall REC'Y / HOLE S 300171111 Hall Hall S 300 Cu S 300 S 300 Cu S 300 C
ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU ALTERATION NO LU COMMENTS: DESCRIPTIVE GEOLOG DESCRIPTIVE GEOLOG DESCRIPTIVE GEOLOG NO LU COMMENTS: DESCRIPTIVE GEOLOG NO LU COMMENTS: DESCRIPTIVE GEOLOG NO LU COMMENTS: DESCRIPTIVE GEOLOG NO LU COMMENTS: DESCRIPTIVE GEOLOG NO LU COMMENTS: DESCRIPTIVE GEOLOG NO LU COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG NO COMMENTS: DESCRIPTIVE GEOLOG COMMENTS: DESCRIPTIVE GEOLOG COMMENTS: DESCRIPTIVE GEOLOG DESCRIPTIVE GEOLOG COMMENTS: DESCRIPTIVE GEOLOG COMMENTS: DESCRIPTIVE GEOLOG COMMENTS: DESCRIPTIVE COMMENTS: DESCRIPTIVE GEOLOG COMMENTS: DESCRIPTIVE COMMENTS: DESCRIPTIVE COMMENTS: DESCRIPTIVE COMMENTS: DESCRIPTIVE COMMENTS: DESCRIPTIVE COMMENTS: DESCRIPTIVE COMMENTS: DESCRIPTIVE DESCRIPTIVE COMMENTS: DESCRIPTIVE DESCRIPTIVE COMMENTS: DESCRIPTIVE DESCRIPTIVE DESCRIPTIVE DESCRIPTIVE DESCRIPTIVE D	AVE CORE REC'Y / HOLE UNITENDIA REC'Y / HOLE REC'Y / HOLE REC'Y / HOLE REC'Y / HOLE REC'Y / HOLE REC'Y / HOLE REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL SUPERATION REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL SIGNAL REC'Y / HOLE SIGNAL REC'Y / HOLE SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIG
240 240 W M SILICEOUS ANDESITE 1-27. magnetite, 0.5% pyrite, minor epidot 1070 QUARTE MONZONITE W M J 250- W M J 250- 250- W M J 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 250- 25	e, trace zeolites 0.5 0.5 0.5 0.5
W M SILICEOUS ANDESITE 1-27. magnetite, 0.5% pyrite, minor epidot 1070 guarte monzonite weak potessic alteration SILICEOUS ANDESITE 1-270 magnetite, 0.5% pyrite, minor epidote 10% guarte monzonite Weak potassic alteration SILICEOUS ANDESITE 1-290 magnetite, 1% pyrite, 0.5% epidote 20% guarte monzonite Wak potassic alteration M T 270- M M C D M QUARTE MONZONITE 1-2% magnetite, 0.5% pyrite, minor epidote 20% guarte monzonite Wak potassic alteration C C D M D D M M D D M D D M M D D D D D D D D D D D D D	e, trace realites 0.5
<ul> <li>250-</li> <li>M I BANKAR SILICEOUS ANDESITE</li> <li>I-290 magnetite, 0.590 purite, minor epidate</li> <li>I090 quarte moneonite</li> <li>Weak potassic attenation</li> <li>SILICEOUS ANDESITE</li> <li>I-260-</li> <li>M I EP I SILICEOUS ANDESITE</li> <li>I-290 magnetite, 190 purite, 0.5% epidote</li> <li>2090 quarte moneonite</li> <li>Weak potassic alteration</li> <li>270-</li> <li>M QUARTE MONEONITE</li> <li>I-2% magnetite, 0.5% purite, minor epidote</li> </ul>	
-260- M M SKICEOUS ANDESITE 1-290 magnetite, 190 pyrite, 0.5% epidote 2090 guartz monzonite Weak potassic alteration -270- M QUARTZ MONZONITE 1-290 magnetite, 0.590 pyrite, minor epido	
-270- My QUARTE MONZONITE 1-270 magnetite, 0.570 pyrite, minor epido	260 1 1 260 260 6 0 340 260 260 260 260 260 260 260 260 260 26
	. 270 270 le 0.5 41 4.1
-280- Py QUARTZ MONZONITE Ep 1-220 Magnetite, 0.570 pyrite, minor ep	280 280 280 4.1
-290- Hy QUARTZ MONZONITE Ep 1-270 magnetite, 0.5% pyrite, minor e	

NOLE NO.: WA		190 PAGE NO.: 6 OF 6
COLLAR ELEV,: COORDINATES: INCLINATION: -90°	encund elev.: Date started: OCTOBEA N. E. Date finished: OCTOBEA BEARING: TOTAL DEPTH: 360-	
		AVE CORE REC'Y / HOLE SOLU PHIDE SAMPLE BUILLING SAMPLE INTERVAL SAMPLE SAMPLE INTERVAL SAMPLE SAMPLE INTERVAL
N X X N X H	DESCRIPTIVE GEOLOGY	
300 × × × × × × × × × × × × × × × × × ×	QUARTE MONZONITE 1-290 magnetite, 0.570 pyrite, minor epidote	as 300 300 2-1
310 - Mg P7 EP	QUARTZ MONZONITE 1-270 magnetite, 0.570 pyrde, minor epidote	310 310 0.5 6039 6.1
320- Ay EP	QUARTZ MONZONITE 1-270 magnetite, 0.590 purite, minor epidote	320 320 0.5 5 4 2.1
330 - M1 41 60	QUARTZ MONZONITE 1-220 Magnetite, 0.570 pyrite, minor epidote	. 330 330 0.5 94 <.1
340 - My 17 Ep	QUARTZ MONZOUITE 1-27, magnetite, 0.57, pyrite, minor epidote	340 340 0.5 340 4.1
350 - Mij Mij Mij Mij Mij	QUARTZ MONZONITE 1-270 magnetite, 0.5% purite, minor epidote	350 - 350 0.5 - 350 (0.3)99 79
360	360 END OF HOLE	360 360

1	HOLE NO .: WA			W	A^	I-T	PROJECT:	WAN 90	PAGE NO.:	l or	4			
co	ORDE	ATES:		_	_	GROUND ELEV, : N. E.	DATE STARTED: DATE FINISHED:	OCTOBER 18 OCTOBER 19	REF. TO CLAI Scale: / "		10 1	Reet	-	
	1	ATION:		90		BEARING:	TOTAL DEPTH:	255'	LOGGED BY:	GI	ARY	SUTTO	» <i>N</i>	
SECTION	1710	ERAT	÷ –	FRACTURING	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	¥ HIDES	DRILLING	HOLE SIZE	MPLE ERVAL	ESTI- MATED
-40	PROPYL	PYROPHYL	SER	FRAC	0 E		DESCRIPTIVE	GEOLOGY		SULF		Ξv	SAM INTER % RE	Wes Cu
						0-56 OVERBURD	EN							
-50 .	-										50			
- 56				P		SILICA ROCK				2			5 60344	2.1
-60-	W -	I		р. Ен Гл		270 purite, minor epidot	e, trace lim	onite			60		60	
		I		1994 199	11	SILICA LOCK 200 pyrite, trace mag	netite, limoni	ŧe		2			60345	2-1
-70 -				P- Et		SILICA ROCK	.4 1	v/1. anter	1.1		76		70	
	w	Ţ		er Eny	F	ino pyrite, minor chlor	rite, trace i	epidore, control, m	agnetite	Į			60346	2.1
E 80 -				P4 Ep		SILICA Rock 190 pyrite, minor chlo	cite esidate	trace magnetite			80		80	
	W	Ŧ		ng		Weak albitization				ł			60347	2.1
- - - - - - - - - - - -				Py		SILICA ROCK	4.1				90	-	90 60	
		Ŧ		mg		170 pyrite, minor magn	etite, very w	eak albititation		1			60348	2.1
E 100							······································				100		100	

00 00	COLLAR ELEV.: COORDWATES: INCLINATION: -90 ALTERATION							-T PROJECT: WAN 90 mound elev.: date started: OCTOBER 18 N. E. date finished: OCTOBER 19 bearing: Total depth: 255'	PAGE NO.: Z REF. TO CLAH SCALE: / " LOBGED BY:	. corr	<b>1</b> 0	fee	+ TOA	,	
SECTION	ALT 7111			_	6		GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	PHIDES	DRILLING	OLF.	SIZE	ERVAL	ESTI- MATED
- 100 S	PROPYL	PYROPHYLL	SILICA	SERI			GEC	DESCRIPTIVE GEOLOGY		SULP	OR DRII	Ĩ		% INTERV	Cu
			H			Ру Му Цт		SIGCA Rock 190 purite, minor magnetite, trace limonite		1			11000.	1-11-0	۷.1
	-		I			Py Mg Lm		SILICH ROCK 100 purite, minor magnetite, trace limonite		1	110			0 60000	K-1
-  20 -	W		I			py my Ep Lm		SILICEOUS ANDESITE 19. pyrite, 190 magnetite, minor epidote, trace Timonite weak potassic alteration			120		1/200	9 60751	٤-(
-130	- V		H			ry Py (n Ef		SILICEOUS ANDESITE 170 magnetite, 190 pyrite, trace limonite, epidete		1	130			<pre>c&gt;sol 0</pre>	۷.۱
	W		Н			My Py LM EP		SILICEOUS ANDESITE 1-2% magnetite, 190 pyrite, trace l'imonite, epidate 20% guartz mongonite		١	140			6 (02 < 7	۷.1
-150	3		Н			My Py Ln ZFP		SILICEOUS AN DESITE 1-270 magnetite, 190 pyrite, trace limonite, zeolifes, epidot 2020 guartz monzonite	 le		150		/ 0	0 75507 0	۷.۱

HO	LEN	0.:	-		NAN	I-T PROJECT:		PAGE NO.: 3	- 4	ł				
		ELEV,						REF. TO CLAIN CO SCALE: / " =	RHER 	P	+	-		
CO:	ORDIN CLINA	ATES:	-	90	, "		255	SCALE: / =	AR	y re y su	e1 1771	sN		
	ALT V	ERATI	ON Vu		3 V R	COMMENTS:	A' RE(		DRILLING		HoLE SIZE	PLE	M Z	ESTI- IATED
SECTION	PROPYL	PYROPHYLL I	SERIC	FRACTURING	GEOLO	DESCRIPTIVE GE	OLOGY		1	O	μ'n	SAMI NTER	SAMI SAMI	Cu
	2	I			ng py Ep (m	50% SKICEOUS ANDESITE 1-2% magnetite, 1% pyrite, miñor epidote, 50% QUARTE MONZONITE 1% magnetite, 1% pyrite, miñor epidote		)				60355	4	<-1
-170	V	n I			Mg Py ED E	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidote, moderate potassic alteration		(		0		2 60356		۲.۱
- 180 -	~	m			My Py EP Z	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidete weak potessic alteration	e, trace zeolits		l	90		\$ 60357	4	2.1
- 190	5	Μ			м1 17 Ер	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epido pyrite veinlets in intensely silicified area moderate potessic alteration	le		1	90		\$ 60358		۲.۱
200	38	M			Му Гу Ер	SICICEOOS ANDESITE 270 magnetite, 190 pyrite, 190 epidote epidote veinlets; wenk potossic alteration			2	00		8 60359		۷.۱
210	- 2 E	m			みちもと	SILLEE005 ANDESITE 2% magnetite, 1% pyrite, 1% epidote, tra Weak potassic alteration	er zeolites		۱	20		20 60360 22		۷.۱

60		10.: ELEV	.:		WA	N-	GROUND ELEV, : SATE STARTED:	WAN 90 OCTOBER 18 OCTOBER 19	PAGE NO.: 4 REF. TO CLAIN Scale: 1	COR	NER:	L	+		
			-	-9	0°	1	N. E. DATE FINISHED: DEARING:	255	LOGGED BY:	= G	/O ARY	ree I SU	TTO	oN	
SECTION	ALT 7/1/		101				COMMENTS:		AVE CORE REC'Y / HOLE	HIDES	DRILLING	J.E	SIZE	EC'Y.	ESTI- MATED
220	PROPYL	PYROPHYL		FRACT		GEO	DESCRIPTIVE	GEOLOGY		SULP	DRIL NTE	Ĭ	IS S	% INTER	www Cu
	v	٣	١	-	1 J 1 J 1 J 1 J		SILICEOUS ANDESITE 200 magnetite, 100 pyrite, 0.500 epic moderate potassic alteration	dote					10(00)		۷.1
-230	- - - - 	r	1		MJ PJ P		SKICEOUS ANDESITE 270 magnetite, 170 pyrite, 190 epidot Weak potassic alteration	e, trace realites		(	230		2 600 2	1~21	2.1
-240	38	•	1		MILAZ		SILICEOUS ANDESITE 270 magnetite, 190 pyrite, 190 epidoti weak potassic alteration	e, trace zeolits		(	240		25 60 763	1021	2.1
-250	- M	M			Mg 60 Py 2		SILICEOUS ANDESITE 290 magnetite, 190 epidote, 190 pyrit moderate potossic alteration 255° END OF HOLE	e, trace teolites		(	250 255		2 60264 M	1-201	۲.۱
· · · · · · · · · · · · · · · · · · ·												1			

HOLE NO.: Collar Eley Coordmates	<b>/,:</b>	WA	N-V MAN 90 PROJECT: WAN 90 PAGE NO.: MAN 90 PAGE NO.: OCTOBER 13 N. E. DATE FINISHED: OCTOBER 15 SCALE:	AIM COR	9 MER:	L	+		
INCLINATION		, 0	BEARING: TOTAL DEPTN: 485 LOGGED B						
	LING URING	GEOLOGY	COMMENTS: AVE CORE REC'Y / HOLE	K HIDES	DRILLING	u	SIZE SAMPLE ITERVAL	וזא	ESTI- MATED
O SECTION	SERIC FRACT	GEO GEO	DESCRIPTIVE GEOLOGY	Sut P		Ĩ	SI	% REC' SAMP II	Cu
			0-15° OVERBURDEN						
- /o -			15-485' SILICA ROCK		0/				
-15 W 1		Y	S.R. 290 pyrite minor limonite, epidote ~ 1090 quarte veins	2	20		5 602 96 Q		۷.۱
-20 -   -   -		4	SR 270 purite, trace chlorite	2			60297		2.1
-30 -	E	Y	SR 290 pyrite, trace chlorite, pyrite blebs and coatings to 1x2mm	2	30		A 602 98		2.1
-40 - 		7	SR 290 pyrite, trace limonite	2	40		86209 E		2.1
-50 -   -		7	SR 220 pyrite, trace limonite	2	50	** .	5 60 300		<.1
E60					60		60		

но	LE NO	0.:	/ <del></del>	WAN		ee no.: 2	07	9			_	
	ULAR I	ELEV,:			MOUND ELEV.: DATE STARTED: OCTOBER 13 RE: N. E. DATE FINISHED: OCTOBER 15 SC.	F. TO CLAIN ALE: / "	CORN	ER: / ()	feet	2		
	CLINAT		-9	0°	DEARING: TOTAL DEPTN: 485 LO	ALE: J	י = Gי	ARY	SUT	roN		
SECTION	21	RATI	RING	MINERAL GEOLOGY	COMMENTS: AVE REC'Y	CORE	X HIDES	DRILLING	HOLE	APLE	거니	ESTI- MATED
	PROPYLITI	PYROPHYLL.	FRACTU	MIN GEO	DESCRIPTIVE GEOLOGY		SULP	1, 1	Ĭ	· · 2	% R SAMF	Cu
		I		Py in	SR 2% purite, trace limonite		2	-60 +		\$ 60301		۷.۱
-70		Ţ		۴y	SR 290 pyrite 11×1×1mm bleb of pyrite - guartz		Z	70		~ 60302		2-1
- 80 -		I		1y Lin	SR 290 pyrite, trace limonite		2	80		\$ 60303		۲.۱
- 90 		I		Py 5	SR 295 pyrite, trace limonite		2	90		e 60304		۲.۱
		EI.		PY	SR 290 pyrite		2	100		8 603as		۷.۱
-110 -		T		Py	SR 2% pyrite		2	110		Q 60306 2		۷.۱

но	LE N	0.:		h	JA	U-V PROJECT: WAN 90	PAGE NO.: _	3 or	9	· · · · · · · · · · · · · · · · · · ·	
		ELEV, Ates:	;:			BROUND ELEV.: DATE STARTED: OCTOBER 13 N. E. DATE FINISHED: OCTOBER 15	NEF. TO CLAI Scale: /	n cori = )	/D	feet	
	CLIMA	TION	-	90	0	BEARING: TOTAL DEPTH: 485-	LOGGED BY:			SUTTON	/
NOI	┝	ERAT	1	URING	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	X HIDES	DRILLING	HOLE SIZE SAMPLE	REC'T % REC'T SAMP INT.
SECTION	PROPYLITI	PYROPHYLL ITE	SERICI	СС Ц		DESCRIPTIVE GEOLOGY		SULP	DRIL INTE	H is S	
		I	-	P	۲	SR 290 pyrite		2		60307	٤٠١
-130	-			P	4	SR 290 purite			130	130	
		1	-			278 001110		2		60308	
		1			4	SR 200 purite		2	140	2 60309	2.1
-150	-			P	77	SR 290 pyrite		2	150	15 603/0	
			ב						160	16	0
		1		ſ	⁹ 7	SR 270 pyrite, pyrite sphere of cubes 1mm in diameter	-	2	_	60311	2.1
-170	,-   -								170	- 17	
		J	-		'7	SR 270 parite		2		603/2	2.1
E180									180	18	۰

NG		10.:		WA		N-V PROJECT: WAN 90	PASE NO.: 4	OF	9			
8	ILLAR	ELEV,	:			GROUND ELEV.: DATE STARTED: OCTOBER 13	REF. TO CLAIR			PJ	_	
		ATES:	- ;	90	0	n. e. date finished: OCTOBER LS bearing:	SCALE: / " LOGGED BY:					
	1	ERAT		T		COMMENTS:				30176		ESTI-
	হা			2 -		COMMENTS:	AVE CORE REC'Y / HOLE	S	<u>ل</u>		ш <b>-</b> , , ,	MATER
LION	E	215	LITE					HID	RAN	HOLE		0/0
SECTION	PROPYLI	PYROPHYLL ITE	SERIC	FRACTURING	GEOLOGY	DESCRIPTIVE GEOLOGY	<u> </u>	SULPI	DRILLING	PH IS	SAMPLE INTERVAL % REC'Y	Cu
-180	Z	× ·	Ň						- 180-		180	
		I		P	1	SR 290 pyrite					1_1	
-  -		-				sR		1.5			60313	2.1
Ē	W	M		P L	1	SR 190 pyrite, trace limonite						
- 190	$\left  \right $	I	·					{	190		190	
				1	7   ••	SR					8	
►		T				SR 200 pyrite, trace limite		2			60314	2.1
Ē												
-200	-			P					200		200	
				ľ	1	SR 290 pyrite		2			60315	2.1
F		Ţ				2% pyrite					5	
Ē									210		210	
-210	-					8.4					60	
F				P	7	SR 290 pyrite		2			03/6	2.1
		I										
F									220		220	
-220	+			1		SR					603	
F					1	290 pyrite		2			317	Z -1
F		±										
F							-		230		230	
-230	-			P.		S/2					6	
È		T				SR 2070 pyrite		2			60318	2.1
  -				P	.						8	
E 240	M	I				SR-20% 2% chlorite, 2% pyrite			240		240	

NO	DLE NO.: W					N-V	/	PROJECT:		WAN 90	 PAGE NO.: 5	OF	9			_	
							DUND ELEY.:	DATE STAR		OCTOBER 13	REF. TO CLAI SCALE: / "	M CORI	er: /^	P	F		
1	ORDINA'		- 9	70	0	N. BEARING;	E.	DATE FINIS Total Dep		OCTOBER 15 485	SCALE: /						
SECTION	ALTE	RATI	ON		GEOLOGY	COMMENT	TS:				AVE CORE REC'Y / HOLE	1	DRILLING	HOLE		EC'Y	ESTI- MATED
-240	PROPYL.	SIL 1	SERICITE					DESCRIPTI	VE	GEOLOGY		SULP	OKIL	ĭ	ALA ALA	% REC'Y SAMP INT	Cu
	v	Ŧ		β	1	SR 270	pyrite, trace	e chlorite				2			60319		2.1
-250				1	,	SR							250		250		
		I				290	, purite					2			60320		۱. ۲
-210-				k									260		260		
		I				SR 270	purite					2			450,		2.1
-270													270		270	>	
		T		0.		SR 290	Purite					2			.0322		2.1
													280		280		
-280		I		P		SR 2010	pyrite, trace	chlorite				2			60323		۲-۱
-290													290		290	,	
		I		P		SR 270	pyrite, trace	chlorite				2			60324		<.1
= 300													300		300		

HOLE NO.:					W,	4N-V		PROJECT:	WAN 90	PAS	E #0.:	6 0+	9			· <u>-</u>	
<b>C0</b>	LLAR E	LEV,					ONNO ELEA":	DATE STARTED:	OCTOBER 13	REF.	TO CLAI	CORN	ER :	P	L		
	ORDINA'			<b>~</b> ~	. 0	Ν.	٤.	DATE FINISHED:	OCTOBER 15	SCA				feet			
	LINAT		- /	70	, 	BEARING;		TOTAL DEPTH:	4851		GED BY:	GA	14	SUTT	an I		
SECTION	ALTE	1/1	TE	FRACTURING	MINERAL GEOLOGY	COMMEN	ITS:			AVE REC'Y	CORE /HOLE	X HIDES	DRILLING	HOLE	SAMPLE	. I.	ESTI- NATED
SEC.	PROPYL	SILICA SILICA	SERIC	FRACT	MIN GEO			DESCRIPTIVE	GEOLOGY	<u></u>		SULP	300 INTE	Ĩ	STI 300	SAM SAM	Cu
		T			4	SL 2000	pyrite					2			60325		۷.۱
- 310		I			27	SR 290	purite			·		2	310		3 60326		2.1
-320		I			°7	SK 290	purite					2	320		\$ 66327		۷.۱
-330	-	I			Py	SR 2%	parite					. 2	3 <i>3</i> 0		33 60328	4	۲.1
- - - - - - - - - - - - - - - - - - -	-	F			21	SR 2%	purite					2	340		340		2.1
-350		T			7			e chloritic-puritic	quarte 1×1mm			2	350		50 60330		۲.۱
360													360		360		

HO	LE NO	0.:		1	WA	V-V PROJECT: WAN 90 PAGE NO.:	7.	, 9	·····		
1	ULAR I	ELEV,;				MOUND ELEV.:     DATE STARTED:     OCTOBER     I     NEF. TO CLI       M.     E.     DATE FINISHED:     OCTOBER     LS     SCALE:	NIM COR		P+	-	
		TION:	-	90	, •	N. E. DATE FINISHED: OCTOBER LS SCALE:   BEARING:			•		
_	ALTE	RATI	The NO		MINERAL	COMMENTS: AVE CORE REC'Y / HOLE	-	DRILLING	HOLE	C'Y.	
-360	PROPYL	SIT 1C	SERI	FRAC	MIN GEO	DESCRIPTIVE GEOLOGY		1 1	, T	‴≤ %	SAMP Cr
		Ŧ		4	'Y	SR 290 pyrite, trace chloritic - pyritic quarte 1×1mm bleb	2	- 360-		2 6331	۷.۱
-370		F			Y	SR 200 punite, trace chloritic-puritic guarte 1×1 mm blob	2	370		32 60332	۷.۱
- 380-	-	Ţ		Ļ	р _у т	SR 290 purite, trace limonite	2	380		28 60333	٤.1
- 390 		Ţ		ļ	4 m	SR 200 purite, minor green-blue guartz, trace limonite	. 2	390		\$ 60334	2.1
- - - - - - - - -		Ţ		ρ	Y	SR 200 pyrite, minor green-blue quarte	2	400		g 603 35	۲.۱
- - - - - - - - - - - -		I		1.	1	SR 200 purite, trace chlorite, limonite	2	410		9 60336	<.1
- 420								420		420	

and the second 
COLLAR ELEV.:     BROWND ELEV.:     DATE STARTED:     OCTOBER 13     NEF. TO GLAIM CORNER:       COORDMATES:     N.     E.     DATE FINISHED:     OCTOBER 15     SCALE:     1" = 10 feet       INCLINATION:     -90°     BEARING:     TOTAL DEPTN:     485'     LOGGED BV:     GARY SUTTON       ALTERATION     ONINIATION:     -90°     BEARING:     TOTAL DEPTN:     485'     LOGGED BV:     GARY SUTTON       NOILD UNIT VULL     UNIT VULL     JULL     JULL     JULL     JULL     JULL     JULL     JULL       NOILD UNIT     JULL     JULL     JULL     JULL     JULL     JULL     JULL     JULL					-									——
$\frac{1}{10000000000000000000000000000000000$				<b>*</b> 14 •		W	/ A ^	· · ·	8 •	• 9				
$\frac{1}{430} = \frac{1}{100} = \frac{1}$									AIM CO	INER:	P	+		
ALTERATION $\overline{O}$ $\overline{V}$ <th></th> <th></th> <th></th> <th></th> <th>-9</th> <th>0</th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					-9	0	0							
$\frac{1}{470} = \frac{1}{470} = \frac{1}$			TER	ΔΤΚ	<u> </u>	<u> </u>	TT			4 A Y		<u> 70</u> ~	<del></del>	
$T = \begin{bmatrix} 120 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 \\ 130 $		<u> </u>				2		REC'Y / HOL		,				ESTI-
$T = \begin{bmatrix} P_{1} & S_{R} \\ 27_{0} & pyrite \end{bmatrix}$ $T = \begin{bmatrix} P_{1} & S_{R} \\ 27_{0} & pyrite \end{bmatrix}$ $S_{R} = \begin{bmatrix} 157_{0} & pyrite \end{bmatrix}$ $S_{R} = \begin{bmatrix} 15$	NO NO	E	ľ		E	RA	9 0			NN N	l	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NTC N	1
$T = \begin{bmatrix} P_{1} & S_{R} \\ 27_{0} & pyrite \end{bmatrix}$ $T = \begin{bmatrix} P_{1} & S_{R} \\ 27_{0} & pyrite \end{bmatrix}$ $S_{R} = \begin{bmatrix} 157_{0} & pyrite \end{bmatrix}$ $S_{R} = \begin{bmatrix} 15$	ECT	ス	X	Ľ	215		EO		┥ぺ言			SIZ	N N N	
$T = \begin{bmatrix} P_{1} & S_{R} \\ 27_{0} & pyrite \end{bmatrix}$ $T = \begin{bmatrix} P_{1} & S_{R} \\ 27_{0} & pyrite \end{bmatrix}$ $S_{R} = \begin{bmatrix} 157_{0} & pyrite \end{bmatrix}$ $S_{R} = \begin{bmatrix} 15$	o   γ	8	1801	s	N. N.		G	DESCRIPTIVE GEOLOGY				- 01	88°	Cu
$T = \begin{bmatrix} 220 & pyrite \\ 220 & pyrite \\ W = \begin{bmatrix} 430 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 $	-420		0		-+-	_		4.7		+420	┝──┼	<u>-</u> 420	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1					60		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	È.			I				210 pyrite	2			3		<.1
$\frac{1}{440} = \frac{1}{100} = \frac{1}{100} = \frac{1}{1000} = \frac{1}{1$	Ē													
$ \begin{array}{c c} W & T \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	430-					0.		C4		430				
$\frac{1}{440} = \frac{1}{15}$ $\frac{1}{5}$ $\frac$						56		SK.						
$\frac{1}{440} = \frac{1}{15}$ $\frac{1}{570}$ $\frac{1}{$	F			7		LA	n	270 parite, trace epidote, limonite	17			l v		4.1
W I SR W SR W SR W SR W SR W SR W SR W SR W	Ē								-			8		
W I SR W SR W SR W SR W SR W SR W SR W SR W										440		440	,	ł
$\begin{bmatrix} W & T \\ W & T \\ W & T \\ W & T \\ W & SR \\ W &$	-440-  -	1				PY		SK						
450 V I VI SR 450 VI SR 450 VI SR 2 VI	Ē					Ep		1.5% purite, trace epidote, limonite	115			ů W		2.1
-450- Im SR 200 Ryrite, trase limonite	Ē	W		T										, i
-450- Im SR 200 Ryrite, trase limonite									l	400		450		
E In 220 Ryrite, trace limonite 2	+450-	$\left  \right $				0.1			•	1,20				
$ L          2 \circ Ryrite, trace limes, te                                     $	Ē					Lm		SR				0		
	F			-				270 purite, trace limonite	2	-		50		2.1
				-										
F 460										460		460		
E460- P4 50 0	1-960-	1				84		50				0		1
$\frac{1}{2} = \frac{1}{2} = \frac{5R}{270} pyrite$				+				29 purite				ů		<.1
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	 			ᅬ					12			12		· ·
	i F													
-470 - 470 - 470	F-470-					124				470	-	470		
						ľ'		SK .				6		
I     290 purite, trace limonite       Minor diabase dyke?			ŀ	I		1		270 purite, trace limonite	7			20		2.1
	E							minor diabase dyke?				4		
E 480 490 490	E 480	Ш								480		410		

HO	LE H	10.:			V	VA	N-V					PROJECT:		WAN	90		PAGE NO.:	9	9				-	
	LLAR						•	nound i				DATE STARTE		COBER			REF. TO CLAS SCALE: /	N CORI		P	+	-		
	ORDIN CLINA			- 9	70	0	N. DEARIM		E. 			DATE FINISHED TOTAL BEFTH		OBER			SCALE: / LOSGED BY:							ł
and the second value of th	ALT		_		Ť	1	-							185-			AVE CORE						<del>- T</del>	ESTI-
	1715	11	<b>—</b>	- i ,		GEOLOGY	СОММЕ	N15:									REC'Y / HOLE	t 1 DE S	DRILLING		HoLE SIZE	APLE RVAL	INT.	MATED
SECTION	PROPYL	PYROPHYL	2171	SERICITE	FRACTURING MINEDAL	GEOI					D	ESCRIPTIVE	GE	OLOGY	<u>.</u>			SULP	1		H S S	~ <u>-</u>	% RI SAMP	Cu
- 480	W	-	I		1 6	4	SR 290	pyri	te,ti	of Ho	pidate	>					<u></u>	Z	480			5863435		2.1
	-						485	É	י סא	OF HO	OLE					·								
<u>, , , , , , , , , , , , , , , , , , , </u>																								
												,											-	
										۲														
																				•••				
													<u>_</u>											

HO	-	0.:	-	W	AN	V-U PROJECT: WAN 90	PAGE NO.: /	0F	4				
<b>co</b>	LLAR	ELEV,	:		• 1•	MOUND ELEV.: DATE STARTED: OCTOBER 12	REF. TO CLAIN	CORM	ER:	0	<u></u>		
	ordin			100	9	N. E. DATE FINISHED: OCTOBER 13	SCALE: / "	= 7	10	feel		,	
۱۹ 				48		BEARING: 330° TOTAL DEPTH: 200'	LOGGED BY:	GA	RY	SUTT	roN		
SECTION	য	ERATI	Vu	ACTURING	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	X HIDES	DRILLING	HOLE	MPLE	ΣĪ	ESTI- MATED
O sec	PROPYL	SILICA SILICA	SERI	FRACT	GEO	DESCRIPTIVE GEOLOGY		SULP	ORIL	Ĭ	SA NTI	% RE( SAMP	Cu
Ē	$\prod$			E P		0-6 OVERBURDEN							
	n	I		146	5	SKICEOUS ANDESITE 2% epidote, 1% pyrite, trace magnetite Massive pyrite blobs, limonitic guartz veins pale blue gray color		}	-0		9 6027L		۷.۱
<u></u>	m	H		E P C		SILICEOUS ANDESITE 270 epidote, 1% pyrite epidotic pyritic guartz veins up to 50% pyrite to 5x5mm few70 calcite pale blue gray color		1	10		2 60277		۷.۱
-20-	n	E11		ERCU	i l	SILICEOUS ANDESITE 28 epidote, 0.5 % pyrite iminor calcite itrace limonite Pale blue gray color		0.5	20		2 60278		۲ ـ ۲
-30	- M	EH		5 P.4		SILICEOUS ANDESITE 1-27. epidote, 0.5% pyrite, minor calcite 3x4 mm blob of pyrite-guartz rale blue gray color		0.5	30		3 60279		۲.۱
-40 ·	m	۲H		El		SILICEOUS ANDESITE 1-2 20 epidote, 190 pyrite, minor calcite 1x1mm pyrite cule thin pyritic coating on fracture Surface	-	1	40		9 60280		۷.۱
-50- 		НЗ		Ef Py Ct		Pale bluegray color SILICEOUS ANDESITE 1-2% epidote, minor pyrite, calcite pale blue gray color		4.5	50		60281 0		۲.

60		ELEV,:		γ	An/	J-U PROJECT: WAN 90 PAGE NO.: ONOUND ELEV.: DATE STARTED: OCTOBER 12 REP. TO CL		NER :	ρ	L		
		ATES:	-	48	0	N. E. DATE FINISHED: OCTOBER 13 SCALE:   BEARING: 330° TOTAL DEPTN: 200' LOGGED BY	" = : G	/O ARY	SUT	TON		
SECTION	য়	ERATI	M	NINEBAL	GEOLOGY	COMMENTS: AVE CORE REC'Y / HOLE	× HIDES	DRILLING	HOLE	AE MPLE ERVAL	Ъ, Г	ESTI- MATED
og SEC	PROPYL	SILICA SILICA	SERI	FRACT	0EO	DESCRIPTIVE GEOLOGY	SULP		Ť		% RE SAMP	Cu
	M	НЗ		6 P 6 C 6	Ê	SILICEOUS ANDESITE 290 epidotes 0.570 purite, minor calcite, trace limonite 0.1 mm disseminated purite cubes Pale blue gray eolor	०.ऽ	+60		6 60282		۱. ک
-70	M	EH		EIC	р 9 t	SILICEOUS ANDESITE 290 epidote, 0590 pyrite, minor calcite pale blue gray color	0.5	70		7° 60283		۱. ۲
- 80 -	m	۶H		ل م ن	4	SILICEOUS ANDESITE 270 epidate, 0.570 pyrite, miñor calcite pale blue gray color	0.5	80		\$ 60284		۲.۱
-90 -	m	٤H		5 ( - -	1	SILICEOUS ANDESITE 270 epidote, 0.5% pyrite, minor calcite, trace limonite pale bluegray color		90		9 60285		2.1
	M	ЕH		E C		SIUCEOUS ANDESITE 270 epidote, 190 purite, minor calcite, trace calcite-quartz vein pale blue groy color	r	100		98209 6		۲.۱
- 110 -	M	MI		Er Py C	Ł	SILICEOUS ANDESITE 270 epidote, 190 purite, miñor calcite, trace calcite veins pale blue gray color	1	110		C8209 =		۷.1
CIAU	4			<u> </u>	<u> </u>		1	1120		120	1 1	

C0 C0	DLE HLLAR DORDI IGLIN	I EL				VAN	MOUND ELEV.: DATE STARTED: OCTOBER 12 REV N. E. DATE PINISNED: OCTOBER 13 BCA	•	coni = ,	<b>en:</b> 10	feet sut		,
SECTION	171C P		ATH	ON	9	MINERAL GEOLOGY	COMMENTS: AVE	CORE / HOLE	HIDES 0				ESTI- MATED
SEC -120	PROPYL	PYROPHYL	2111	SERI	FRACTURIN	MIN GEO	DESCRIPTIVE GEOLOGY		SULPI		Ho Ho	6 [™]	WWS Cu
	n		۶IJ		t de la constante de la consta	9 4	SILICEOUS ANDESITE 270 epidote, 190 parite, minor calcite, paritic guartz-calcit pale bluegray color	e veits	Į	+ 120		2 60288	۷-۱
- 130 -	n		۲۲			19 14 12	SILICEOUS ANDESITE 290 epidate, 190 pyrite, minor calcite, quarte veins pale blue gray color		ł	130		13 60289	2.1
- - - - - - - -	r r		м		e e c	ip Y t	SILICEOUS ANDESITE 270 epidote, 0.5% pyrite, minor calcite, epidotic calcite vein pale blue gray color		ۍ٥	140		P 60290	۲۰۱
- 150 -	H3		Μ		E	ρ 7 .t	SILICEOUS ANDESITE 2-3% epidote, 0-5% pyrite, minor calcite, pyritic guartz veni epidotic pyritic calcite veins pale blue gray color	, J	0.5	150		5 60291	2.1
-160 -	٩		۶IJ		5	р Ч t	SILICEOUS ANDESITE 270 epidote, 0.590 pyrite, minor calcite, quartz veins, calcite veins, epidote veinlets rale blue gray color		o.s	160		2 60292	2.1
-170-	M		MH		E P C Z		SILICEOUS ANDESITE 290 epidote, 190 pyrite, minor calcite, quartz veins, calci trace epidote veinlets, zeolitas pale blue gray color	te veins	1	170		170 60213 180	2.)

00 00	ORDI	NO.: ELEI NATES ATION	:	-	÷	AN	GROUND ELEV, : N. E.	PROJEGT: DATE STARTED: DATE FINISHED: TOTAL DEPTN:	WAN OCTOBER OCTOBER 200-	12	PASE NO.: 4 REF. TO CLAIN SCALE: 1 LOGGED BY:	= ;	er: 10				
SECTION	PROPYLITIC P			FRACTURING	MINERAL	GEOLOGY	COMMENTS:				AVE CORE REC'Y / HOLE	X PHIDES	DRILLING	HOLE SIZE	SAMPLE INTERVAL		ESTI- MATED
-)80	PROP	PYROPHYL	5/1/	FRAC	-	GE	DE SILICEOUS ANDESITE	SCRIPTIVE	GEOLOGY	- • • anna • a · · · · · ·		SUL	-180 180		180 180	SAN SAN	Cu
	m		7 1		EP PY Ct		2 % epidote, 1% pyrite, 1 pale blue gray color	ninor calc	ite, pyritic	quartz vi	eins	1			60294		6.1
- - 190 - -	m	1 1	7 L		Ep Py Gt		SILICEOUS ANDESITE 290 epidote, 190 pyrite, pale blue gray color	minor co	late, pyrit	ic quartz	veins	}	190		19 60295		2.1
							200' END OF HOLE	, ·					200		200		
المحمد مالمحمد ما																	

1	OLE			VA	V - P PROJECT:	WAN 90	PAGE NO.:	OF	8		<u> </u>	
c	CORDI	ELEV,: Nates:		_		OCTOBER 10 OCTOBER 12	REF. TO CLAIS BCALE:		er: / ()	feet	·	
			-90	, ° - <del></del>	DEARING: TOTAL DEPTN:	4601	LOGGED BY:					
SECTION	ידיכ	ERATI	L I TE	GEOLOGY	COMMENTS:		AVE CORE REC'Y / HOLE	HIDES	LING RVAL	HOLE SIZE	APLE RVAL EC'Y.	ESTI- MATED
O SE(	PROPYL .	PYROPHYL SILIC	FRACT	CEC WIL	DESCRIPTIVE	GEOLOGY		SULP	O DRILLING INTERVAL	H S	O SAMPL INTERVA % REC'Y	SAMPS Cu
					0-14 OVERBURDEN							
-10									10		04	
- 14	n	5H	E P	1	SILICEOUS ANDESITE 1-290 epidote, 0.520 pyrite, trace mi Contaminated with float	ynetite		0.5	20		60231 2	۲.۱
-20	EH -	٣H	E p L M	m	SILICEOUS ANDESITE 2-390 epidote, 0.5% pyrite, trace lin Pale blue-gray color	nonite, magnetite		o.5	20		4 60232	2.1
-30	HZ L	НЗ	E P L	5	SILICEOUS ANDESITE 2-3 % epidote, 0.5% pyrite, trace 1	imonite, magnetite	-	0.5	30		A 60233	2.1
-40	m	MI	E1 14 M	9	SILICEOUS ANDESITE 1-270 epidote, minor pyrite, trace m	naphetite		2.5	40		9 60234	2.1
-50-	H M	MI	EA Py Mg		SILICEOUS ANDESITE 2-370 epidote, 0.590 pyrite, trace ma	gnetite		0.5	σζ	<b>.</b>	SE 200 2	٤.١
-60									60		60	

но	DLE	NO.:			V	NA.	N-P PROJECT: WAN 90	D PAGE NO.: 2	,	8			]
	CLIN	HATI	Es:		90	_	ONOUND ELEV.:     DATE STARTED:     OCTOBER     ID       N.     E.     DATE PINUSWED:     OCTOBER     IZ       BEARING:	REF. TO CLAII SCALE: / //	- cori = )	er: 10	feet SUTTON	/	
SECTION	4 171C B	L 17E	IcA	IC ITE Z	FRACTURING	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	X SULPHIDES	DRILLING	HOLE SIZE SAMPLE	ERVAL	ESTI- MATED
SEC 60	PROPYL	FYROPHYL	715	SER	_		DESCRIPTIVE GEOLOGY		SULF	CO-			Cu
	EH		EH		EPM	ρ Υ Ig	SILICEOUS ANDESITE 2-3% epidote, 0.5% pyrite, trace magnetite		0.5	- 60 -	\$ 60236		۲.۱
-70	m		ΣH		E P A	0 7 9	SKICEOUS ANDESITE 1-270 epidote, 0.5% pyrite, trace magnetite		0.5	70	~ 60237	1 1	2.1
- <b>80</b> -	M		M		モアメンド	р У 9 5 5 5	SKICEOUS ANDESITE 170 epidote, 0590 pyrite, minor magnetite, trace lim	ionite, hematite	0.5	80	\$ 602.38		2.1
- 90 -	m		<b>N</b>		E P P C L	4 9 2	SILICEOUS ANDESITE 170 epidote, 0.570 pyrite, minor magnetite, calcite ver	ns, trace l'imonite	ۍ،ه	90	90 60239		۲.۱
- - - - - - - -	3 2		rı		5 P M U U	5 1 9 5 5 7	SILICEOUS ANDESITE 0.5% epidote, 0.5% pyrite, minor magnetite, calcite trace limonite	e veins	०.८	100	<u>5 60240</u>		۲.۱
-110 - 	W		W		Pythat		SILICEOUS ANDESITE 190 rusty pyrite, minor epidote, magnetite, trace limonite, hematite Quartz eye porphyry or volcaniclastic?	calcite Uns,	1	110	2 602 41 22		۷.۱

HOI	E N	0.:	-		W	I AA	J ~ f	PROJECT:	WAN 90	PAGE NO.:	3 05	8		<u></u>	-	
COL	LAR	ELE	v.:		•		GROUND ELEV, :	DATE STARTED:	OCTOBER 10	REF. TO CLAI	M CORI	ER:	0	1.		
	LINA'			-9	20	0	N. E.	DATE FINISHED:	OCTOBER 12	SCALE: / //						
	ALTE				Ť			TOTAL DEPTH:	460-	LOGOED BY:		<u> </u>		TON		
SECTION	2	H.	2		MINERAL	GEOLOGY				AVE CORE REC'Y / HOLE	SULPHIDES	DRILLING	HOLE	I A C MPLE ERVAL	% REC'Y. SAMP INT.	ESTI- MATED
-120	PROP	PYROPHYL	215	SER				DESCRIPTIVE	GEOLOGY		SUL	120	T	" 55 <u>1</u> 	%   SAN	Cu
	M	,	٩		P Ep Lp		SILICEOUS ANDESITE 190 pyrite, 190 Epidole masses to	epidote, trace limon 5 IXIXIMM	;te		1	120		60242		۲.۱
-130 -	M		m		Py EP		SILICEOUS ANDESITE 1% pyrite,0.5% e 20% Diabase l	pidote, minor magi	relite, trace limonite	, hematite	1	130		\$ 60243		۲.۱
- - - - - - - -	M H		MT		E, Py ng		SILICEOUS ANDESI 3% Epidote, mi	re nor pyrite, trace,	nagnetite		4.5	140		9 60244		۲.۱
-150 -	MH		4		EF Mi Pý	9	SILICEOUS ANDESI 2 no epidote, m		rite trace calcite	veins	4.5	150		\$ 60245		۲.۱
- 160 -	H		M		EAY My to	,	SILICEOUS ANDESITE 270 epidote, 0.5 190 guartz veins	"o pyrite, minor	magnetite, trace z	eolites, calcite	0.5	160		\$ 60246		۱. ک
- 170 -	N N	V	~		EP Py Mg ctm		A.4. (6.7	E 70 pyrite, minor m	agnetite trace calci	te, hematite,	20	120	- <b>-</b>	2 60247		۲.۱
E180					Km							180		180		

					1.01	A	ν_ <i>β</i>		WAN	90	PAGE NO.: 4		0			
	LE NO Lar (		.:		••	• • • •		PROJECT: Date Started:	OCTOBER		REF. TO CLAIN		÷	<u> </u>		
	RDINA	TES	:			_	N, E. (	DATE FINISHED:	OCTOBER	12	SCALE: / "					
100		NON:		-94	2		BEARING:	TOTAL DEPTH:	460-	-	LOGGED BY:	GA	RY	SUT	TON	
SECTION		1 14	5	10	MINERAL	GEOLOGY	COMMENTS:				AVE CORE REC'Y / HOLE	X HIDES	LLING	HOLE SIZE	MPLE ERVAL	
-180	PROPYL I	PYROPH	2/1			GEC	DE	SCRIPTIVE	GEOLOGY	· · · · <u></u>		SULP	ORII	Τ̈́́́́́	OSI SAMPL	a dia cu
	w	~	J		Py EP My Hy Z		SILICEOUS ANDESITE 0.5% pyrite, 0.5% epidole Minor quartz veins	₎ Minor ma	gnetite,trai	ce hematite	,zeolites	0.5			60268	۲-۱
- 190 -	v	~			Mg Py EP		SILICEOUS ANDESITE 190 magnetite, minor pyvi	ite, epidot	te, trace li	monite, hem	natite, zeolites	<i>L.</i> 5	190		9 60249	۷.۱
200 -		v			Hm Z Mg Py ED LM		SILICEOUS ANDESITE 1-270 magnetite, minor pyri	ile, trace e	pidote, limoni	k, zeolites,	, hematite	4.5	200		2 60250	2.1
-210 -					2 Hm Mg 14		SILICEOUS ANDESITE			1	e a dide	1	210		2 6025	٤.1
	W M	r			EP UM HA Z		190 magnetite, 190 pyrite, 2011tes. Pyrite and magne	minor e, lite masses	to O.Smm	I I MONITE,	icpianic,		220		220	
-220	W M	v	/		Mg PY EP LA HA		SILICEOUS ANDESITE 170 magnetite, 0.570 pyrite Ecolites	e, minor C,	oid te, trace	limonite,	hematile,	0.5	230		6252 20	ζ.
-230-	3 2	ħ			HAZ MAYPAMZ		SILICEOUS ANDESITE 190 magnetite, minor pyr	ite, epide	ite , trace )i	imonite, z	eolites	4.5			60253	۷.۱
E240						[						1	240		240	

-		NO.:	<u> </u>		v	VA	N-P	PRGJECT:	WAN 90		5	8			]
60	LLAR	ELI	EV,:				MOUND ELEY :	DATE STARTED:	OCTOBER 10	REF. TO CLAI	-	NER:	0,		
	o RDM			_ (	20	0	N. E.	DATE FINISHED:	OCTOBER 12	BCALE: /	=	10	feet		
	C L 1 M /			<del>-</del>	70		BEARING:	TOTAL DEPTN:	460-	LOBSED BY:	GA	<u>R4</u>	SUTTO	~~ 	
SECTION	AL 7/1/7	רר וצ	R	-	FRACTURING	GEOLOGY	COMMENTS:			AVE CORE REC'Y / HOLE	¥ HIDES	DRILLING	HOLE SIZE	MPLE ERVAL EC'Y.	ESTI- MATED
-240	PROPYL	PYROPHY	214	SERI				DESCRIPTIVE	GEOLOGY		SULP	DRI NTE 240	, F	A NTIN	awes Cu
	عد		w		M PC EHL	21	SILICEOUS ANDES 0.5% magnetite,	ITE minor purite, epido	te , trace hematite	, limonite	٤.5			60254	۲.۱
-250					MAE	5	SILICEOUS ANDESI	TE				250		250	
	35		w		e H L		0.5% magnetite,	0.5% pyrite, mind	or epidote, trace h	ematite, limonite	0.5	260		255	4.(
-260-	M		J		E M H P	9	SILICEOUS ANDESI 190 epidote, min Maroon and Green	or pyrite, trace he	ematite, pyrite, m	niñar quarte vas	۷.5		1 1	66256	۷.1
-270-	F13		Z		Ei M P H	P 7 1 m	Minor guartz veins	inor magnetite, pyr s very weak potas	ite, trace hemati sic alteration	te	2.5			260257	4.1
- <u>2</u> 80.	F		W		E) Ma Py Hi	3	Maroon and Green SILICEOUS ANDESIT 3% epidate, mi Possible sphalaite	E nor magnetite, py	rite , trace hemati	te	2.5	280		2 60258	4.1
-290- -	T		v		SI Bt El Pin Ha	2.2.	CHICTORY AND COM	E nagnetite, 0.590 p	oyrite i minor biot	ite	0.5	290		2 60259	۲.1
300					67	: ! !			-,,,,,_,_,_,_,_,_,_,_,_,_,_,			300		300	

ж	LE N	0.:	-		WI	AN-P	PROJECT:	WAN 9	O PAGE NO.: 6	OF	8			-	
CO	LLAR	ELEV,	:			GROUND ELEV.:	DATE STARTED:	OCTOBER 10	REF. TO CLAH	CORR	ER:	0,	_		
	ORDIN.			a,	,0	N. E.	DATE FINISHED:	OCTOBER I	Z = = = = = = = = = = = = = = = = = = =	= ,	10 f	eet	-		
in 	T	TION		70		BEARING:	TOTAL DEPTN:	460'	LOGOED BY:	Gr	9KY S	SUTTO	s∼ 		
SECTION	110	ERATI		FRACTURING	MINERAL	COMMENTS:			AVE CORE REC'Y / HOLE	HIDES	DRILLING	HOLE SIZE	MPLE ERVAL	거되	ESTI- MATED
-300	PROPYL	PYROPHYL	SERI				DESCRIPTIVE	GEOLOGY		SULP		Ξō	SAMPI INTERV	% R SAMI	Cu
	×۲	w			Ep Mg Py Hn Bt Sp?	SILICEOUS ANDESI 2-390 epidote, 1 Calcite Possible SA Maroon and Green	70 magnetite, 0.5%) halerite?	oyrite, trace hi	ematite, biotite,	٥.5			3 60260		۲.۱
-310	EH Z	w			EP Mg Py Bt Hm	SILICEOUS ANDES 270 epidote, 190 trace calcite Maroon and Gree	, magnetite, 0.5% p	yrite, minor bi	otite, hematite	0.5	310		30 60261		۷.(
300	H ₃	w W			Ep Mg Py Bt Hm	SILICEOUS ANDEST 2% epidote, 0.5 Maroon and Green	to magnetite, 0.5%	pyrite , miñor	biotite, hematite	0.5	320		320 60262		۲.۱
-730	m	w			Ep Mg Py Bt Ct	SILICEOUS ANDEST 1-270 epidotes puritic guarte ve	rE 0.5% magnetite, e ins. Trace collecte	0.5% pyrite, m	mor biotite,	0.5	330		30 60263		۲.۱
340	M	2			アリンナル	SILICEOUS ANDESI 1-270 epidote, O Trace hematite,	.5% magnetite, 0.5	Po pyrite, mino	r biotite	o.s	340		34 60264		4.1
-350	MH	Z			ふた シガンショ ハナ	SILICEOUS ANDESI 290 epidote, 0.5 Trace hematite, 1 190 pyritic quarte	» magnetite, 0.5% imonite, calcite	pyrite, minor	biotite	ۍه	350		350 60265 38		۲.۱

	HO.:				W	AN	$r - r^{\rho}$	PROJECT:	WAN 90	PAGE NO.	. 7.	. 8				
NLAR	t EL	TA':					GROUND ELEY, :	DATE STARTED		REF. TO		NER :	0	1.		
				0	~ <	,	N. E.	DATE FINISHED		SCALE:	" =	10	Fee1	<i>~</i> ,		
	AT10	)#:		70			\$EARING;	TOTAL DEPTH:	460-	LOGGED	ev: G	ARY	SUTT	ron		
1715	L 17E	8	CITE 2	URING	ERAL	LOGY	COMMENTS:						1 1 1 1	A E MPLE RVAL		ESTI- AATED
PROPY.	PYROPH)	5111	SER			GEO		DESCRIPTIVE	GEOLOGY		0 11 3				% R SAMF	Cu
n		Z			EP My Ht		2 % epidote, 1%	magnetite, 190 pyr	ite, 190 hematite, M	minor biotite	}			\$ 60266	4	٤.1
M		V			Mg Py Hm		1-2 % epidote, 1%	o magnetite, 190 p.			1	370		37 60267		۷.۱
38		Ž			Mg Py EP Hm Ct		170 magnetite, 19	10 pyrite, 0-590 ep	idote , trace hemat	lite	1	380		380 202 68		<.1
38		V			Hm		1-290 magnetite, Minor pyritic-epia	170 pyrite, 100 ep lotic quarte and c	idote , tracehema alcite veins	tite	l	390		\$ 60269	4	< \
3 K		W			бр Рч		2% magnetite, 1	To caidate, 0.5% py		ite 	0.5	5		60270	4	4.1
3 2		¥			Py   Hm		290 magnetite, 1	90 epidote, 0.59	o pyrite, trace l d calcite veins	hematite	0.2		-	\$ 60271		<.1
	E 3E 3E 3E 3E 3E 3E	ALTER HILT THONG	ALT POITIS 3 3 3 3 3 3 4	ALTERATION ALTERATION JUITAHONA E SE	ALTERATION: -90 ALTERATION: -90 SE VICINE VILLE SE SE S	ALTERATION: -90 ALTERATION: -90 SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITICA SITI	ALTERATION: -90° ALTERATION: -90° ALTERATION: 2171/11/10 2171/11/11/11/11/11/11/11/21/21/21/21/21/21	ALTERATION       90°       examine:         ALTERATION       0010000000000000000000000000000000000	DOBMATES: GLIMATION: -90° BEARING: - ALTERATION: -90° BEARING: - ALTERATION: -90° BEARING: - ALTERATION: - 	Description: -90° BEARING: TOTAL DESTRE DESCRIPTIVE OF DESCRIPTIVE GEOLOGY ALTERATION ALTERATION DESCRIPTIVE GEOLOGY ALTERATION DESCRIPTIVE GEOLOGY DESCRIPTIVE GEOLOGY	Descente:       n       e.       bare primer OCTOBER 12       ecaete         COMMENTS:       Total Bern:       460       Losets         ALTERATION       OWNENTS:       AVE COR         ALTERATION       OWNENTS:       AVE COR         ALTERATION       OWNENTS:       AVE COR         ALTERATION       OWNENTS:       DESCRIPTIVE       GEOLOGY         ALTERATION       OWNENTS:       Partic privite and content to privite and content to minor biotites         M       W	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Definition $-90^{\circ}$ reaches $-1^{\circ}$ reaches $460^{\circ}$ reaches $1^{\circ} = 00000000000000000000000000000000000$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{100} = \frac{1}{100} = \frac{1}$

			-			لم ۵	-P PROJECT: WAN 90 PAGE NO.: 8		8	<u></u>		
	LE N Llar	ELEV	.:			-,,-	BOUND ELEV. DATE STARTED: OCTOBER 10 REF. TO CLAIN	COR	ER:	0		
co	ORDIN	ATES			_	_	N. E. DATE FINNENED: OCTOBER 12 SCALE: /"	= ,	10	Feet		
114	CLINA	-		9	0		BEARING: - TOTAL DEPTN: 460 LOGGED BY:	GA	RY	SUT TO	<u></u>	
N	1715	ERA	TY		MINERAL	<u>-06Y</u>	COMMENTS: AVE CORE REC'Y / HOLE	K HIDES	LING RVAL	HOLE	APLE	ESTI- MATED
-420	PROPYL	PYROPHYLL		FRACTURING		GEOL	DESCRIPTIVE GEOLOGY		CC DRILLING	Γ. F	SAMPLE NITERVAL	SAMP IN SAMP IN SAMP IN
	w M				Mg BP Hn Lm		ANDESITE 290 magnetite, 190 epidote, 0.5% pyrite, trace hematite, limonite minor epidotic guarte veins	0.5			60272	۲./
-430	~				Mg Py EP Ct		ANDESITE 290 magnetites 190 pyrite, minor epidote minor colute veins and epidotic quartz veins	1	430	×	\$ 60273	۷.۱
-440 440	W				Mg Py GP Ctm		50% ANDESITE 2% magnetite, 1% pyrite, minor epidote, trace hematite minor calcite veins and epidotic guartz veins	1	440		\$ 602H	۲ . ۱
- 450	M F F		1		EPYCE EPYCE PYMQ		50% SILICEOUS ANDEGITE 1% epidote, 1% pyrite, minor calcite and pyritic-epidotic quarte veins SILICEOUS ANDESITE 1-2% epidote, 1% pyrite, trace magnetite	1	450	)	\$ 60275	2.1
- 40	1						460 END OF HOLE		460		40	
ي م ب ال م م ب ل										-		

00 00	LE I LLAR ORDIN	ELI	:5:		n 90	_	I-S     project:     WAN 90     page no.:       mound elev.:     date started:     OCTOBER 9     nef. to cl/       n.     e.     date finished:     OCTOBER 9     scale:       BEARING:	im cor "=	mer: /0			, <u> </u>	
SECTION	PROPYLITIC T	PYROPHYLL ITE	8	RICITE Z	ACTURING	MINERAL	COMMENTS: AVE CORE REC'Y / HOLE	× PHIDES	ERVAL	HOLE SIZE	SAMPLE	<b>b</b>   3	ESTI-
	PRO	PYROI	s	SE	FR/	20	DESCRIPTIVE GEOLOGY	SUL				8 Q	Cu
+60 E	$\square$						0-65 OVERBURDEN		+ 60		60		
-65	w		v		۳ ۴ ۱	19 7 0 - M	SILICEOUS ANDESITE 190 magnetite, 190 pyrite, minor epidote, trace limonite Volcani clastic 3	)	70		5 60204 9		2.1
-70	~		V			19 7 7 7	SILICEOUS ANDESITE - VOLCANICLASTIC 190 magnetite, 0.5% pyrite, minor epidote, trace limonite Very weak potassic alteration	0.5			7 60205		۲.۱
- 80 - - - - -	~		w		r P E L	y Y m	SILICEOUS ANDESITE 190 magnetite, 190 purite, minor epidote, trace limonite Weak potassic alteration	)	80		8 60206	4	2-1
- -90 - - - -	v		∿ ℃		μ ρ E	lg y P m	SILICEOUS ANDESITE 190 magnetite, 190 pyrite, minor epidote, trace limonite Weak potassic alteration 3090 Diabase dyke		90		9 60207 0		۲.1
- /00 ·	Μ		M		E p m	P 7 9	SILICEOUS ANDESITE 2 % epidote, 1.5% pyrite, minor magnetite Epidote veinlets Weak potassic alteration	1.5			60208 2	4	<.1
	M		I		E p. M	ρ 1 9	SILICEOUS ANDESITE 290 epidote, 1-570 pyrite, miñor magnetite Pale blue-gray color	1.5	(20		60209 20		<.1

	LE I		- Ev,:		W	AN	- S PROJECT: WAN 90 SMOUND ELEV.: DATE STARTED: OCTOBER 9	PAGE NO.: 2 REF. TO CLAIM	CORN	ER :	P L			
1	ORDH Glim			-	90	0	N. E. DATE FINISHED: OCTOBER 9 BEARING:	SCALE: / "						
SECTION	171C P	L 17E	R	_	FRACTURING	GEOLOGY	COMMENTS:	AVE CORE EC'Y / HOLE	S	DRILLING	HOLE	L A L	EC'Y.	ESTI- MATED
) - 120	PROPYLITIC	PYROPHYL	1715	SERI	FRACT	GEO	DESCRIPTIVE GEOLOGY		SULP	Ì	Ĕ		% r Sami	Cu
	M		I		E N.M	9	SILICEOUS ANDESITE - ANDESITE PORPAYRY 290 epidote, 190 pyrite, minor magnetite Pale blue-gray color		l	- 120 +		8 60210		۷.۱
-130	-				E	ρ	SILICEOUS ANDESITE			130		130		
• • • •	n		Μ		E P. M.L	<b>j</b> n	1.590 epidote, 190 pyrite, minor magnetite, trace limonite		1			60211		۷.۱
-140 - - - - - - - -	M		3 8		50.4 24	9	SILICEOUS ANDESITE - ANDESITE PORPHYRY 1.570 epidote, 190 pyrite, minor magnetite trace zeolites,	limonite	}	140		4 602 12		۷.۱
	Н		3 2		5 A C	9 9	SILICEOUS ANDESITE 390 epidote, 190 pyrite, minor magnetite, calcite, trace Weak potassic alteration	2colity	1	150		· 18 60213		۲.۱
-160 -	n		v		E1 A A G Z	9	SILICEOUS ANDESITE 190 epidote, 170 pyrite, minor magnetite, calite, trace Weak potassic alteration	e zeotites	}	160		-3 60214		۷.۱
-170-	v		¥		PEM		SILICEOUS ANDESITE O.590 pyrite, O.590 epidote, minor magnetite Weak potassic alteration		0.5	071 180		170 6025 180		۲.1

HO		 0.:		 V		N-S	PROJECT:	WAN 90	PAGE NO.:	3 05	5			-		
	LAR		:	·	• /	GROUND ELEY,:		OCTOBER 9	REF. TO CLAH		ER :	0	,			
. co	RDINA	TES:			-	N. E.	DATE FINISNED:	OCTOBER 9	SCALE: / "	= ,	10	Fee	1			
104		rion:	_	90	0	BEARING:	TOTAL DEPTH:	330-	LOGGED BY:	G	ARY	su	TTON	<u> </u>		
	ALTE	RAT	ION	T		COMMENTS:			AVE CORE REC'Y / HOLE	SUL PHIDES	DRILLING	1	SIZE	EC'Y	ESTI- MATED	
SECTION	PROPYLITIC	PYROPHYL	SEKI	1.1_			DESCRIPTIVE	GEOLOGY		SULP	ORIL INTE	Ì		% REC	Cu	
F	w M	W	/	M P E	9 1 P	SILICEOUS ANDESITE 190 magnetite, 0.59 Pyrite veinlets Weak potassic alte	eo epidote, 0.570 pyr cration	ite		0.5	~		60216		2.1	
- 190 -	m	m		M F	5	SILICEOUS ANDESI 190 magnetite, 19 290 pyritic guart Weak potassic all	70 epidote, 0.570 E veins	pyrite		0.5	190		190 60217		2.1	
-200 -	n	ΗZ		E, A n		SILICEOUS ANDESIT 190 epidote, 0.5% 190 pyritic quarte Weak potassic alt	ourite minor magn	etite		0.5	200		200 60 218		۷.۱	
-210 -	n	n		E) P M L	9	SILICEOUS ANDESIT	e pyrite, 0.5% magn	ette, trace limonite		0.5	210		2 60219		۲.۱	
- 220	× H	ЕЦ		EI Py M	1	SILICEOUS ANDESI 29. epidote, 0.5 Very weak potassie	2 pyrite, 0.5% m.	gnetite, trace explites	-	0.5	220		2 60220		۲.۱	
-230-	2 F	MI		El M Pj	s l	SILICEOUS ANDESIT O.5% epidote, O.5 Very weak potassi	1. magnetite, 0.5%	pyrite , trace limonite		0.5	230	-	2360221 240		4.1	

	LE I			~	V	VA.	M- S Mound Elev.:	PROJECT: DATE STARTED:	WAN 9 OCTOBER 9	REF. TO	.: 4 0 CLAIM COM	NER:	0 1		
	GLIN			-	90	0	N. E. BEARING:	DATE FINISMED: Total Deptw:	OCTOBER 9 330				Feet		
SECTION	ALZITI	4 ITE	ATIC V J	CITE Z	URING	GEOLOGY	COMMENTS:			AVE COR REC'Y / HO		DRILLING	HOLE SIZE	APLE RVAL	ESTI- MATED SAMP INT SAMP INT SAMP INT SAMP INT SAMP INT
-240	PROPYLITIC	PYROPHYL	21715	SERI	Ľ.	_		DESCRIPTIVE	GEOLOGY				H		SAME SAME
	٤		M		M P. E	\$ 1 <i>p</i>	1	Popyrite, minor epid Imm wide in quart		quarte veins	}	-240		\$ 60222	2-1
-250	V		м		р. М 6-2	1 19 0	SILICEOUS ANDES 190 pyrite, 190 n Very Weak Potas	aquetite, minor e	oidote, trace z	eolites	1	250		\$ 60223	4.1
- 260 - - - - -	×		m		やちじて	1 9 -	SILICEOUS ANDESI 190 pyrite, 190 Weak potessic a	magnetite, minor ex	fidote, trace z	eolites	l	260		\$ 60224	2.1
- 270 -	38		w M		M F F L	5		170 pyrite, 0.5% e Pyrite and magnet				270		27 60225	2.1
-280-	W		w M		M H E Z	1 		170 pyrite, minor z veins, pyrite and			1	280		280 60226 290	۷.۱
-290-	W		M		Ma Py Ep		SILICEOUS ANDESI 1-290 magnetite, Weak potassic a	0.5% pyrite, mino	r epidote ,trace	zeolites	<i>o</i> .5			6 2220 S	۷.۱

60 60	ORDIN	ELEV	•••			N-S PROJECT: WAN 90 MAN 90 DATE STARTED: OCTOBER 9 N. E. DATE FINISHED: OCTOBER 9	PAGE NO.: 5 REP. TO CLAI SCALE: 1	M CORI	ÆR:	feet		
	CLINA	TION:		90	<u>י ר</u>	BEARING: TOTAL DEPTH: 330'	LOGGED BY:	GA	RY	SUTTO	.N	
SECTION	2	ERAT	140	URING	MINERAL	COMMENTS:	AVE CORE REC'Y / HOLE	¥ HIDES	DRILLING	HOLE SIZE	SAMPLE INTERVAL	
28 -300	PROPYLITIC	PYROPHYLL	SEXI			DESCRIPTIVE GEOLOGY		SULP	ORIL INTE	, H_⊡	SAI 900	SAMI Sami
	v	52	E E		Ч9 Ру Ер Z	SILICEOUS ANDESITE 1-290 magnetite, minor pyrite, epidote, trace zeolites Very weak potassic alteration		4.5			60228	2.1
-310					mg	SILICEOUS ANDESITE			3/0		310	
	V	n r			му Ру ЕР Е	270 magnetite, 0.570 pyrite, minor epidote, trace zeolites Very weak potassic alteration		0.5			9229	2.1
-320. E					Mg Ep Py	SILICEOUS ANDESITE 1-2% magnetite, 1% epidote, 1% pyrite, trace zeolites			320		320 60 2	2.1
	M	n	/		£	The surgice reaction of the pyrite, trace tealing			330		330	
						330' END OF HOLE						
						· · ·						
							-					
<u>E</u>												

	DLE NO			1./A	N-R PROJECT: WAN 90 PAGE NO.			~			-	· · · · · · · · · · · ·
	NLAR E					•	-					
	ORDINA				MOUND ELEV.: DATE STARTED: OCTOBER / REF. TO IN MOUND ELEV.: REF. TO INTER. TO INTER. TO INTER. TO INTER. TO INTER. TO INTER.			E	2-+			
	CLINAT	ION: -	-90	0°	BEARING: TOTAL DEPTN: 380' LOBOED							
	T	RATIO		Î Î			MKY					
	যায়					.E   0	~					ESTI-
SECTION		18	FRACTURING	MINERAL			DRILLING	<b>A</b>	μu	SAMPLE	ž	%
ECT	PROPYL	SILICA	315	N I			티크	Ĕ	HOLE	AMF	щ ч Ш	/0
S I	10%	i i	F R A	20	DESCRIPTIVE GEOLOGY		ЫR	<u>z</u>		S.N.	SAI SAI	Cu
- 90	0	╘┨╌╌┩╌					49	, <u> </u>		90 -		
F F	11				0-95 OVERBURDEN					1		
-95										95		
F		Ĩ		Py rg	SILICEOUS ANDESITE	2				10		2.1
E 100.				Lm	290 pyrite, minor magnetite, trace limonite	-				S		
				Py	Pyrite masses to 1×1×2 mm and as veinlets and disseminations		10			100		
È.		-		Mg	SILICEOUS ANDESITE					60		
F		I		4	1.5% pyrite, trace magnetite, limonite Slight blue color	/·±	5			617		2.1
E					Super Dive Color					6		
- 110 -							110			110		
F				Py	SILICEOUS ANDESITE					-		
► ►		M		Mg	190 purite, minor magnetite, trace limonite			·		6017		2.1
F		I		ĺ	Very weak potassic alteration	1				2		
-  20 -												
				Py Mg	SILICEOUS ANDESITE	1	12			120		
ŧ		M		Lm	190 pyrite, 170 magnetite, trace limonite, epidote					6017		
┣ <b>-</b> ┣-	W	I		Ep	Purite and magnetite masses to 1×1mm					172		2.(
F										<b>~</b>		
F130-				Py	SULACEUS AND ESTE		13	•		130	ĺ	
-				rý	SILICEOUS ANDESITE					6		
- -	W	M		<del>2</del> 69	190 pyrite, 190 magnetite, trace zeolitos, epidote, limonite					<u>°</u>		<.1
		T		Lm						79		•
- 140-							140			140		
-				ту У Ч бр	SILICEOUS ANDESITE		יזין					
-	W	2	1	-	1-290 magnetite, 190 pyrite, trace limonite, chidote		1			601		
-		1-1		óρ	Purite and magnetite masses to 1×1mm					80		<.1
-150												
		<u> </u>	يلحمه			1	1150		1	1001	- 1	

но	LE 1	NO.:				WA	N-R	PROJECT:	WAN 90	PAGE NO.:	2 01	5			<b></b>
	ULAR ORDIN		5:				GNOUNG ELEV, : N. E.		OCTOBER 7 OCTOBER 8	REF. TO CLAS BCALE: /			foot	4	
104	CLIN/	ATIO	N:	-	90	<b>)</b> "	SEARING:	TOTAL DEPTW:	380'	LOGGED DY:					_
	AL DILI	11	8	17	URING	MINERAL.	COMMENTS:		an	AVE CORE REC'Y / HOLE	( 1DES	DRILLING	HOLE	IPLE RVAL	
OC SECTION	PROPYL	PYROPHYL	21715	SERIC	Ľ.			DESCRIPTIVE	GEOLOGY		SULPH		f	SAN SAN INTE	SAMP IN SAMP IN
	w		M			pymg	SILICGOUS ANDESITE 290 magnetite, 1.59 Purite and magneti	te masses to	limonite, epidote x 2 mm	, zeolites	1.5			60181	2.1
-160 -	W		M			Mg Py Ep	SILICEOUS ANDESITE 1-290 magnetites Prrik and magnetit				1	160		-28109 E	۷.۱
- 170-	Ŵ		M			My Py Ep	SKICGOUS ANDESITO 1-290 Magnetite, lyrite and magneti	19 Aunton 1	ce eridote 1×1 mm			170		17 60 183	۷.۱
- 180 -	W		n			Mg Py Ep Lm	SILICEOUS ANDESITE 1-290 magnetite, 19 Pyrite and magnetite				1	180		48109 8	۲.۱
- 190 -	v		m			ng Py Sp	SILICEOUS ANDESITO 1-2 70 magnetite, 19 Pyrite and magnetite	opyrite, trace	epidote 1 mm		1	190		190 60185	۷.۱
-200 -	¥		m		r I E	τη 	SILICEOUS ANDESITE 290 magnetite, 190 p Pyrite and magnetite	grite, trace epi masses to 1×1,	dote mm			200 210		× 60/86 ×	۲. ۲

но		10.:			WA	N-R PROJECT: WAN 90 PAGE NO.	3.	.5		<b>`</b>	
	LAR		E <b>V.</b> :		• - / [	MONTH TITLE DATE STARTED: OCTOBER 7 NEP. TO	LAIM CO	NNER:	0		
	ORDIN					N. E. DATE FINISHED: OCTOBER 8 SCALE:	" =	10	feet		
100	CLINA	ATIO	N: '	-9	0°	DEARING: TOTAL DEPTH: 380' LOGOED	■¥: G	ARY	SUTTO	J	
	ALT	ER/	ATIC	- T		COMMENTS: AVE COR REC'Y / HO	-E   :	DRILLING	HOLE SIZE	SAMPLE INTERVAL % REC'Y	ESTI- MATED
210	PROPYLITIC	PYROPHYL	SILICI	FRACT		DESCRIPTIVE GEOLOGI		ORILLIN ORILLIN	ĬŌ	2/0 2/0	a %
	×		n		ту Ру Ер	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, trace epidote Pyrite and magnetite masses to 1×1 mm				60187	۷.۱
-220	W		w		Mg 14 Ep	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, trace epidote		220		220	
-230	-		m				1	20.0		88	2.1
	W		~		Mg Py Ep	SILICEOUS ANDESITE - CLASTIC 290 magnetite, 190 pyrite, trace epidote		230		2 60189	2.1
-240	- W		w		Mg Py Ep	ANDESITIC VOLCANICLASTIC 270 magnetite, 1.90 pyrite, minor epidote Brownish color	1	240		24 60190	2.1
- 250	-		v		Mg Py Ep	ANDESITE - VOLCANICLASTIC 290 magnetite, 190 pyrite, trace epidote 290 pyritic quartz veins		250		2 60191	۲.۱
- 210	~		*		My Py Ep	ANDESITE - VOLCANICLASTIC 290 magnetite, 190 pyrite, trace epidote Very weak potassic alteration 190 pyritic yuartz veins Pyrite and magnetite masses to 1×1mm	1	260 270		260192 270	2.1

но		NO.:	-		ω,	AN	-R PROJECT: WAN 90	PAGE NO.:	1 or	5				
l i						•	MOUND ELEV .: DATE STARTED: OCTOBER 7	REF. TO CLAIN SCALE: / "			Lan	F		
	DRDM DLIMA			- 9	20	0	n. e. date finished: OCTOBER 8 searing: total deptn: 380'	SCALE: / LOGGED BY:	= GA	RY 3	SUTTO	$\sim$		
	ALT	ER/	ATIO	N	T		COMMENTS:	AVE CORE REC'Y / HOLE	X HIDES	DRILLING	HOLE	APLE RVAL		
270	PROPYLITIC	PYROPHYL	SILICI	SERICITE	<del></del>		DESCRIPTIVE GEOLOGY		SULP		Ť	SAMPL SAMPL	SAME MAR	<i>cu</i>
	W		Г		Py Mg Ef		SILICEOUS ANDESITE 190 pyrite, minor magnetite, epidote					60193	۷.	•1
-280					Py		SILICEOUS ANDESITE			280		280		
	w		Т		Mg Ep Ln	1	1.5% pyrite, 1% magnetite, trace epidote, limonite Weak potassic alteration Pyrite veinlets and masses to 1x1x1mm		1.5			6194	2	(.) 
-290-	W M		n I		PT MJ EP LM Z		SILICEOUS ANDESITE 1.570 pyrite, 1.570 magnetite, minor epidote, trace zeolites Weak potassic alteration	limonite,	1.5	290		290 60195	2	.1
-300	W		м		Mg Py Sp		SILICEOUS ANDESITE 290 magnetite, 190 pyrite, trace epidote Weak potassic alteration		1	3∞		38 60196	2	- ]
3/0 	V		W M		Ng Py Gp	•	SILICEOUS ANDESITE 290 magnetite, 190 pyrite, trace epidote, zeolites 180 pyritic quartz veins		1	310		2 60197	2	.1
-326	v	I I	N M		My Py Ep		SILICEOUS ANDESITE 270 magnetite, 0.590 pyrite, trace epidote Pyrite and magnetite masses to 141 mm Weak potassic alteration		0.5	320 330		320 60198 330	2	·.)

	LE N	0.: ELEV.	:		w,	A/	MOUND TITLE . DATE STARTED: OCTOBER 7 REF	NE NO.: 5 7. TO CLAIN	CORH	ER :	<u> </u>		-	
CO	o RDM	ATES:	_	α,	<b>م</b> م		N. E. DATE FINISHED: OCTOBER 8 SCA	Feet						
	_	T10N:				Ť		GOED BY:	6A	RY	50170			
SECTION	2	ERAT		4!	MINERAL			CORE /HOLE	¥ HIDES	DRILLING	HOLE SIZE	MPLE		ESTI- MATED
-330	PROPYL	PYROPHYL	SEKI			eEC eEC	DESCRIPTIVE GEOLOGY		SULP	330	I.o.	330	% RE SAMP	Cu
- >>0   	W	v M	-		Mg 84 50 2		SILICEOUS ANDESITE 2-390 magnetite, 0.520 pyrite, minor epidote, trace zeoli Weak potassic alteration	ites	0,5	200		60199		۲.۱
-340	$\left  \right $									340	i	340		
	w M	u r			нд Ру 60 Еп Е		SILICEOUS ANDESITE 2-3% magnetite, minor pyrite, epidote, trace Zeolites 1% pyritic guartz veins, Possible bornite? Weak potassic alteration		4.5			60200		2.1
-350	W M	nI			Mari Fi Z		SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidote, trace zeolites Weak potassic alteration		)	350		350 60201		۲.1
-360					mg		SILICEOUS ANDESITE			360		360		
	v	I			Ру 6р		1-270 magnetite, 1.5% pyrite, minor epidote ~ 10% Quartz Monzonite Weak potassic alteration		1.5			60202		۷.۱
E-370	$\frac{1}{2}$				mg		SILICEOUS ANDESITE			370		370		
	M	I			Ру 60 2		1.2% magnetite, 1.5% pyrite, minor epidote, trace zeolites Prrite and magnetite masses to 1×1mm Moderate - Intense potassic alteration Quartz Mongonite?		1.5		-	60263		۲.۱
							380' END OF HOLE			380		380		

NOLE NO.:				W	ĄN	-Q PROJECT: WAN 90 PAGE NO.: ]		7						
	LLAR ORDINI	ELEV,: Ates:				M. E. DATE FINISHED: OCTOBER 6 SCALE: /	"= 10 feet							
114		104:	-9	0	0	BEARING: TOTAL DEPTH: 410' LOGGED BY:	G A	RY	SUTT	o ∧/	<u> </u>			
NOI.	्र	ERATIN	14	MINERAL	GEOLOGY	COMMENTS: AVE CORE REC'Y / HOLE	X PHIDES	DRILLING	HOLE SIZE	MPLE ERVAL		ESTI- MATED		
	PROPYL	PYROPHYLL	SERICITE	FRACI	GEO	DESCRIPTIVE GEOLOGY	SULI	0 N T	<b>T</b> 201	O SAN INTE	SAN SAN	Cu		
						0-10 OVERBURDEN								
	-					SILICEOUS ANDESITE AND ROAD GRAVEL		10		D. 50535				
-20	- V	I		P M E	y p	SILICEOUS ANDESITE 190 disseminated pyrite, minor magnetite, epidote Extremely altered for intense silicification. Some light siten patches of original andesite	1	20		N 50536 0		۷.۱		
-30	-	I		p	4	SILICEOUS ANDESITE 190 pyrite, trace magnetite		Ť		50537		۷.۱		
- <b>40</b> 		I		р. М. Ц.		SILICEOUS ANDESITE 190 pyrite, trace magnetite, limonite	1	40		& 50538		۲.۱		
	- W	<b>7 T</b>		p E M L	4 9 9 9 9 9 9	SILICEOUS ANDESITE 190 pyrite, minor epidote, trace magnetite, limonite	1	50		0 20539 0		۱. ک		

			-	~~		Δ <b>Λ</b> Ι	-Q PROJECT: WAN 90	PAGE NO.: Z	07	7				
HOLE NO.: WAN COLLAN ELEV,:			W	7/1	MOUND ELEV.: DATE STARTED: OCTOBER 5	REP. TO CLAI	CORN	ER:	0	1.				
co	COORDINATES			_	_	N. E. DATE PINUSHED: OCTOBER 6								
194	CLIMA	ATIO	e: _=	<u>- 9</u>	0	,	BEARING: TOTAL DEPTH: 410'	LOGGED DY:	GA	RY S	UTTO	N		
	ALT V	ER/	ATIO	N			COMMENTS:	AVE CORE REC'Y / HOLE	× PHIDES	DRILLING	HOLE	APLE RVAL	EC'Y	ESTI- MATED
SECTION	PROPYL ITI	PYROPHYL	21715	SERICITE EDACTIIDING			DESCRIPTIVE GEOLOGY		SULP	DRIL INTE	Ĩ	SAI INTE	% R SAMI	Cu
- 60	M		Μ		Py Ep Cp	2.	SILICEOUS ANDESITE 170 pyrite, 0.5% epidote, minor magnetite, possible c	chalcopyrite	١			50540		۷.۱
- 70	n		M		Mg Py Ep		SILICEOUS ANDESITE - CLASTIC 290 magnetite, 0.5% pyrite, 0.5% epidote Trace weak potassic alteration		0.5	70		1 Sest1		۱. ۷
-80-	×		~		Mg Ру Бр		SILICEOUS ANDESITE 3% magnetite, minor pyrite, epidete Grey colour instead of Usual green, high silica content, rhyolitic rock	possilly a	4.5	80 90		\$ 50542 9		< .1
- 90 	8		w		Mg P4 Ep		SILICEOUS ANDESITE 290 magnetite, minor pyrite, epidote		2.5			50543		۱. ۲
	V		M		Mg Py Ep Z		SILICEOUS ANDESITE 290 magnetite, 190 pyrite, minor epidote, zeolites Weak potassic alteration	, guartz veins	1	100		0 50544 Q		۲.۱
	w		V		Mg Py Ep		SILICEOUS ANDESITE 190 magnetite, 0.5% pyrite, minor epidote Trace weak potassic alteration		0.5	110		50545 2		۲.1

	LE			٧	V AI	V-Q PROJECT: WAN 90	PAGE NO.: 3	0F	7								
co	ORDIN	ELEV,			_	MOUND ELEV.: DATE STARTED: OCTOBER 5 N. E. DATE FINISHED: OCTOBER 6	REF. TO CLAIM SCALE: / // LOGGED BY: (	= /	/D -	feet							
114	CLIN/	TION	-	90	0	BEARING: TOTAL DEPTH: 410-	LOGGED BY:	GAI	24	SUTT							
SECTION	1716	ERATI	4	ACTURING	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	X PHIDES	DRILLING	HOLE SIZE	AMPLE ERVAL REC'Y.	ESTI- MATED					
	PROPYL	SIT ICI	SERI	FRAC	0E	DESCRIPTIVE GEOLOGY		SUL		I.	SAMI SAMI	ves Cu					
- <b>]20</b>	~	W		M P E	9 4 P	SILICEOUS ANDESITE 190 Magnetite, 0.5% pyrite, minor epidote		0.5	-120-		50546	۷.۱					
- <b>130</b>				م	4	SILICEOUS ANDESITE			130		130						
	v	м		4 5	19 P	1% Pyrite, minor magnetite, epidote Weak potassic alteration		)			50547	4.1					
-140				p		SILICEOUS ANDESITE			140		140 S						
<u></u>	M	M		E	ρ M	190 pyrite, minor magnetite, epidote, trace limonite Weak potassic alteration		1			8450	2.1					
- <b>150</b>	-			ρ E	ρ	SILICEOUS ANDESITE 0.5% pyrite, 0.5% epidote, minor magnetite	•		150		150 505	4.)					
	M	2 10		٣	9	Weak potassic alteration		<u>o</u> S			44						
- 160 	n	V		р Ш м	ρ	SILICEOUS ANDESITE 0.570 purite, 0.5% epidote, minor magnetite		٥,5	160		\$ 50550	۲.۱					
-170 	-	W		p E M L	9	SILICEOUS ANDESITE 190 pyrite, 0.5% epidote, 0.5% magnetite, trace limonite Weak potassic alteration		1	(70		2 60151	۷.۱					
<u> </u>									180		180						

HOLE NO .: WAA					n	/Av	I-Q PROJECT: WAN 90	OF	7					
	COLLAR ELEV,: COORDWATES:						anound elev.: Date started: OCTOBER 5 N. E. Date pinished: OCTOBER 6							
1	CLIRA			- ;	90	0	DEARING: TOTAL DEPTH: 410'	LOGGED BY:	ĜŔ	NRY	SUT	TOA	/	
SECTION	1716	L 17E	ATIC V	_	ACTURING	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	SULPHIDES	DRILLING	HOLE	SAMPLE	고드	ESTI- MATED
	PROPYL	PYROPHYL	2111	SERIO	FRACTURING	GEO	DESCRIPTIVE GEOLOGY		SULPI	INTE INTE	, I,	180	% REC'SAMP. IN	Cu
-180	2		2		<b>N</b> 9 E	1	ANDESITE 270 magnetite, 0.570 pyrite, minor epidote		0.5	130		60152		۷.۱
- 190			v		<b>F</b> 9. U		SILICEOUS ANDESITE 390 magnetite, 190 pyrite, minor epidote			190		2 60153		2.1
-200	NE -		M				Blebs of pyrite to 1×2 mm, minor quartz veins SILICEOUS ANDESITE			200		200		
	V		Μ		M P 6	, Р	4% magnetite, 2% pyrite, minor epidote fyrite veinlets to 2mm and 1% pyritic quartz veins Weak potassic alteration		2	2/0		60154 20		۲. ۲
-2/0	W		w M		n o E iz		SILICEOUS ANDESITE 2% magnetite, 1-2% pyrite, trace epidote, zeolites 2% pyritic guartz reins Weak potassic alteration		1.5			60155		۷.۱
-220	2		W		M PIZE	9 1 P	SILICEOUS ANDESITE 3% magnetite, 1-5% pyrite, trace zeolites, epidote 2% pyritic guartz veins		1.5	220		22 60156		۷.۱
-230 -230 - - - - - - - - - - - - - - - - - - -	~		w		M Pi E	9	SILICEOUS ANDESITE 590 magnetite, 290 pyrite, minor epidote 190 pyritic quarte veins		2	230 240		230 60157 240		۲.۱

C01	LE N LLAR ORDIN	ELE	<b>s</b> :				MOUND ELEV.: DATE STARTED: OCTOBER 5 REF.	• NO.: 5 TO CLAIN E: 1 " •ED BY:	corn	er: 10 7	feet sutt		_	
	AL JIII	11	ATIC R	<u> </u>	IRING	RAL	REC'Y	CORE /HOLE	¥ HIDES	DRILLING	HOLE SIZE	MPLE	EC'Y	ESTI- MATED
SECTION	PROPYL	PYROPHYL	21715	SERIC	FRACTURIN	MINERAL GEOLOGY	DESCRIPTIVE GEOLOGY		SULP	NTE DRIF	H.S	240	SAMI	Cu
-240	M		W			Mg P4 Ep	SILICEOUS ANDESITE 5% magnetite, 1.5% pyrite, minor epidote, 1% pyritic quar Trace weak potassic alteration	tz uns	1.5			60158		2.1
-250						Me	ANDESITE			250		250		
	W					Mg Py	5% magnetite, 0.5% pyrite, minor guarte veins		0.5			0159		۱. ۲
- 260	35		N N N			Mg Py Ep	SILICEOUS ANDESITE 290 magnetite, 1.590 pyrite, minor epidote, guartz veins Weak potassic alteration, Quartz Monzonite?		1.5	260		260160 270		۲.۱
-270	- M		m			Py My Ep	Skiceous ANDESITE 290 purite, 190 magnetite iminor epidote, puritic guarte veins Trace purite veinlets or coatings on surfaces		2	280		60161 280		). ۷
280 	N M		34			Mq Py Ep	SILICEOUS ANDESITE 290 magnetite, 290 pyrite, minor epidote, 190 pyritic guart. Pyrite coatings up To 2x2 mm	f veins	Z	·		60162		2.1
- 296	38		2			mg Py Ep	SILICEOUS ANDESITE 390 magnetite, 270 pyrite, minor epidote Minor pyritie guartz veins, pyrite coatings up to 2x2 mm		2	290		240 60/63 38		۲.1

NOLE NO.: Collar Elev,: Coordmates: Inclination:					h	VA	AN-Q PROJECT: WAN 90 PAGE NO							<u></u>
				-90°			mound elev.:     date started:     OCTOBER 5       n.     e.     date pinisned:     OCTOBER 6       bearing:	REP. TO CLAI SCALE: / LOGGED BY:	M COR	ner: / 0			~	
- F	PROPYLITIC P	H.	TIO V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-	SERICITE Z	MINERAL	GEOLOGY	COMMENTS:	AVE CORE REC'Y / HOLE	¥ PHIDES	DRILLING	HOLE	AMPLE	% REC'Y	ESTI- MATED
300	PROP	PYROPHYL	21710	SEX			DESCRIPTIVE GEOLOGY		SUL		L.	-300	SAN SAN	Cu
-	¥		w m		ng Py Gp		SILICEOUS ANDESITE 390 magnetite, 190 pyrite, minor epidote Pyrite and magnetite masses to IXI mm		1	+300		60164		2 -1
310 -	38		N M		Mg Рч Ер		SKICEOUS ANDESITE 490 magnetite, 190 pyrite, minor epidote Pyrite and magnetite masses to 1x2mm		}	3/0		310 60165		2.1
320-	3 K		M		523		SILICEOUS ANDESITE 390 magnetite, 0.5% pyrite, minor epidote		0.5	320		32 60166		۷.۱
330-	VM	1	٩		<b>гу</b> Рч Бр		SILICEOUS ANDESITE 3% magnetite, 1% pyrite, minor epidote Pyrite Veinlet 2×5×0.25 mm with some magnetite Magnetite masses to 1×2 mm	2		330		33 60167 340		۱-۷
340-	W	ľ	~ ~ ~		mg Py Ep		SILICEOUS ANDESITE 490 magnetite, 190 pyrite, minor epidote 1x1mm pyrite and magnetite masses		)	340		60/68		۱. ک
350-	N	٣	1		mq Py Ep		SILICEOUS ANDESITE 390 magnetite, 1.590 pyrite, minor epidote 1x1mm pyrite and magnetite masses 190 guartz veins	.`	1.5	350 360		350 60169 360		2.1

					W	A٨	I-Q PROJECT: WAN 90	page no.: 7	OF	7					
		ELEV	•:				MOUND ELEV.: DATE STARTED: OCTOBER 5 N. E. DATE FINISNED: OCTOBER 6	in conner: "= 10 feet							
		TION	-	- 9	0'	•	BEARING: TOTAL DEPTH: 410'	LOBORD BY: GARY SUTTON							
	ALT	ERAT		1.			COMMENTS:	AVE CORE REC'Y / HOLE	* HIDES	Ξæ	HOLE SIZE	MPLE ERVAL	N Z Z	ATED	
SECTION	PROPYLITI	PYROPHYL		FRACTURIN	MIM	GEO	DESCRIPTIVE GEOLOGY		SULP	260	Ĭ	OF SAMP	% RE SAMP	Cu	
	V	r	1		MgyppZ		SILICEOUS ANDESITE 270 magnetite, 190 pyrite, trace epidote, zeolites Pyrite bleb IXIXI mm		]			60170	2	4.1	
-370	V M	٣	1		М9 Ру Бр		SILICEOUS ANDESITE 1-290 magnetite, 140 pyrite, trace epidote 190 pyritic guartz veins			370		370 60171	4	4.1	
-380-	v m	y	1		PY Mg EP Z		SILICEOUS ANDESITE 290 pyrite, 1-290 magnetite, trace epidote, zeolites Pyrite mass IXIN2 mm, Minor pyritic guartz veins		2	380		38 60172	4	(	
-380	W		1		ру М9 Ер	l l	SILICEOUS ANDESITE 1.570 pyrite, 190 magnetite, trace epidate Pyrite and magnetite mass 1x1x2 mm 190 pyritic guarte veins		1.5	390		390 60173		۲.۱	
-400 		בן			P1 Mg Ep Z		SILICEOUS ANDESITE 190 pyrite, 0.5% magnetite, trace epidote, zeolites			400		3 60174	4	2.1	
							410' End of Hole	- ⁻		410		410			