| F                                                                      |                                                                                                                  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                        | LOG NO: march 12/91 RD.                                                                                          |
|                                                                        | ACTION:                                                                                                          |
|                                                                        |                                                                                                                  |
|                                                                        | FILE NO:                                                                                                         |
|                                                                        |                                                                                                                  |
|                                                                        | LOG NO: OCT 1 6 1991 Ma                                                                                          |
|                                                                        | ACTION: LODGE TOTOL                                                                                              |
|                                                                        | greachart                                                                                                        |
| GEOLOGICAL AND GEOCHEMICAL AS<br>REPORT ON<br>SANTA MARINA GOLD LTD.   |                                                                                                                  |
| LANCE 4 PROJECT                                                        |                                                                                                                  |
| SKEENA MINING DIVISIO<br>KITSAULT RIVER AREA, NW BRITIS                |                                                                                                                  |
| LATITUDE 55°30'30"N<br>LONGITUDE 129°21'W                              |                                                                                                                  |
| SUB-RECORDER<br>RECEIVED NTS 103P/11                                   |                                                                                                                  |
| d little d                                                             | OLOGICAL BRANCH<br>SESSMENT REPORT                                                                               |
|                                                                        |                                                                                                                  |
| $\sim$                                                                 |                                                                                                                  |
|                                                                        | . 1,000                                                                                                          |
|                                                                        |                                                                                                                  |
| Bernard Dewonck, F.G.A<br>Paul M. Brucciani, B.<br>Brett LaPeare, B.Sc | Sc.                                                                                                              |
| September, 1990                                                        |                                                                                                                  |
|                                                                        |                                                                                                                  |
|                                                                        | ***                                                                                                              |
|                                                                        |                                                                                                                  |
|                                                                        | and the second |

#### SUMMARY

Exploration was completed between September 8th and September 10th on the LANCE 4 mineral claim by OreQuest Consultants Ltd., on behalf of Santa Marina Gold Ltd. The 18 unit claim lies on the north side of the Illiance River, between Theophilus and Foxy Creeks, 10 Km northeast of Alice Arm and Kitsault, B.C.

Work entailed regional mapping, prospecting, rock and silt sampling during which a total of 61 rock samples and 5 silt samples were collected.

The lithologies on the property include siltstones, calcareous mudstones, intermediate volcanic tuffs and mafic flows forming an upturned conformable sequence of Lower to Middle Jurassic age.

Similar rocks host the Dolly Varden, Northstar, Torbritt and Homestake silver-base metal deposits 30 km to the north-northwest. These deposits have been mined periodically since 1915 and have produced a total of 1.3 million tons of ore grading 485 g/t silver, 0.38% lead and 0.02% zinc.

Sulphide mineralization on the property is associated with a quartz-barite vein system up to 4 m wide which strikes north-south across the property. Grab samples collected from this vein have returned values up to 30 ppb gold. The highest gold value from the property is 180 ppb gold from a quartz vein near Theophilus Creek. The quartz barite vein-shear zone has a considerable strike length and appeared to be a favourable site for mineralization. However no further work is recommended due to the very low assays received from the numerous grab samples taken from the zone.

# TABLE OF CONTENTS

| Summary                             |      |    |    |
|-------------------------------------|------|----|----|
| Introduction                        | Page | 1  | 1  |
| Property Description                | Page | 1  | ź  |
| Location and Access                 | Page | 1  | ¥  |
| Claim Status                        | Page | 1  | s, |
| Physiography and Vegetation         | Page | 2  | t. |
| History and Previous Work           | Page | 2  | v  |
| Regional Geology and Mineralization | Page | 4  | ¥  |
| Property Geology and Geochemistry   | Page | 8  | v  |
| Conclusions and Recommendations     | Page | 10 | r  |
| Statement of Expenditures           | Page | 12 | ×  |
| Certificate of Qualifications       |      |    |    |
| Bernard Dewonck, F.G.A.C.           |      |    |    |
| Paul M. Brucciani, Geologist 🗸      |      |    |    |
| Brett LaPeare, Geologist            |      |    |    |
|                                     |      |    |    |

Bibliography

Ŵ

# LIST OF FIGURES

| Figure 1 | Location Map               | Following Page 1      |
|----------|----------------------------|-----------------------|
| Figure 2 | Claim Map                  | Following Page 1 /    |
| Figure 3 | Regional Geology Map       | Following Page 5 ,    |
| Figure 4 | Property Geology Map       | In Pocket $\ _{\lor}$ |
| Figure 5 | Rock and Silt Geochemistry | In Pocket             |

### LIST OF TABLES

Table 1 Claim Information

Page 1

# LIST OF APPENDICES

Appendix I Rock Sample Descriptions Appendix II Assay Certificates ÷.

Appendix III Analytical Procedures

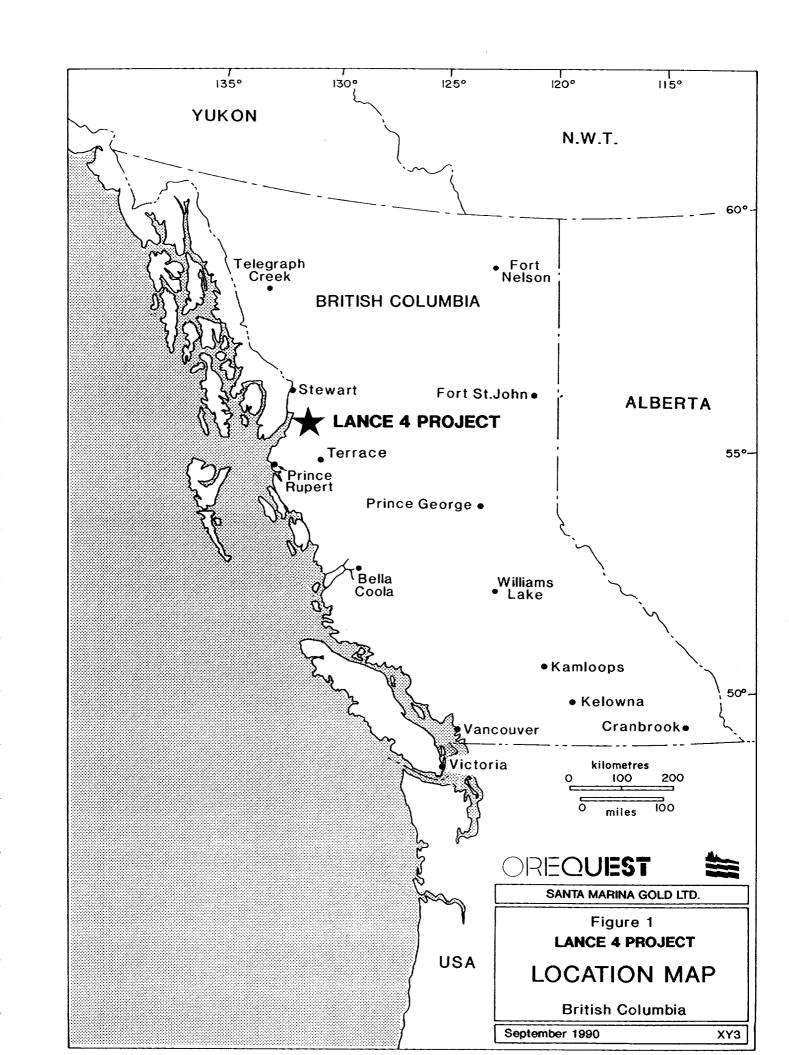
#### INTRODUCTION

This report, prepared by OreQuest Consultants Ltd. on behalf of Santa Marina Gold Ltd., presents the results of regional mapping, prospecting and silt sampling carried out by OreQuest during September of 1990 on the Lance 4 mineral claim.

#### PROPERTY DESCRIPTION

### Location and Access

The property is located within the Coast Mountains, 35 km east of the Alaska-B.C. International Boundary, on the north slope of the Illiance River valley. The claim also lies 65 km southeast of Stewart and 10 km northeast of Kitsault and Alice Arm at the head of Alice Arm Inlet. The centre of the claim is located at a latitude of  $55^{\circ}30'30"N$ and a longitude of  $129^{\circ}21'W$  and the NTS map reference is 103P/11.


Access to the property is via helicopter based at Stewart, from which the flight time is approximately 30 minutes.

#### Claim Status

The Lance 4 claim comprises 18 units (Figure 2) situated in the Skeena Mining Division and under option to Santa Marina Gold Ltd. Claim information is listed in Table 1 as follows:

### TABLE 1: Claim Information

| <u>Claim Name</u> | Record No. | No. of Units | Record Date | Expiry Date |
|-------------------|------------|--------------|-------------|-------------|
| Lance 4           | 8253       | 18           | Dec. 10/89  | Dec. 10/94  |





The owner of record is John Robins. The work described in this report was filed for assessment which, when approved, extends the expiry date to that shown above.

### Physiography and Vegetation

The claim overlies typically glaciated mountainous terrain of British Columbia. Elevations range from 600 m (2000 ft) on Theophilus Creek to 1515 m (5000 ft) on the shoulder of an unnamed ridge on the northern boundary of the property.

Below 1000 m sub-alpine vegetation in the form of spruce, fir, hemlock, slide alder and devil's club is present. Above 1000 m alpine flora exists. The highest elevations support only mosses and lichens.

#### HISTORY AND PREVIOUS WORK

Exploration started in the upper Kitsault valley in the early 1900's and by 1913 the Dolly Varden property was already staked, along with numerous other claims in the area. Exploration of the Dolly Varden property, located 30 km north-northwest of the Lance claim, delineated a considerable tonnage of ore and a railway was constructed from Alice Arm to the deposit. The Dolly Varden deposit was in production from 1919 to 1921. At the same time, several other prospects were explored but interest in the area dropped in 1921 when the price of silver declined. However, a mill to concentrate the ore was built in 1928 on the Torbrit property.

The area remained relatively calm from 1930 to 1946. In 1946, a company controlled by Mining Corporation of Canada acquired the Torbrit mine and started to build the road from Alice Arm up the valley. A new mill was constructed and production started in 1949. Two other prospects, the Galena and the Vanguard, located less than 5 km northeast of the subject claims, were explored in 1951.

The total amount of concentrates produced to the end of 1951 by the Dolly Varden, the Homestake, the North Star, and the Torbrit deposits was: 84 ounces of gold; 7,189,130 ounces of silver; 2,183,965 pounds of lead; 344,832 pounds of zinc; and 1,740 pounds of copper (Black, 1951).

At the present time, the Dolly Varden property includes the Dolly Varden Mine, the Torbrit Mine, the Wolf Mine, the North Star Mine, as well as the Red Point Prospect.

Until recently silver has been the focus of mining in the area, however, results from the 1989 diamond drilling program at the Dolly Varden suggest that mining in the past has been concentrated within the silver rich zone of a volcanic exhalative formation. The emphasis of current exploration has expanded to include the search for massive sulphide deposits rich in zinc, lead, and silver with appreciable gold, copper and cadmium.

In 1985 the regional geology and mineral deposits of the general area were mapped by Alldrick and others (Alldrick et al, 1986). There is no recorded history of exploration on the Lance claim specifically.

### REGIONAL GEOLOGY AND MINERALIZATION

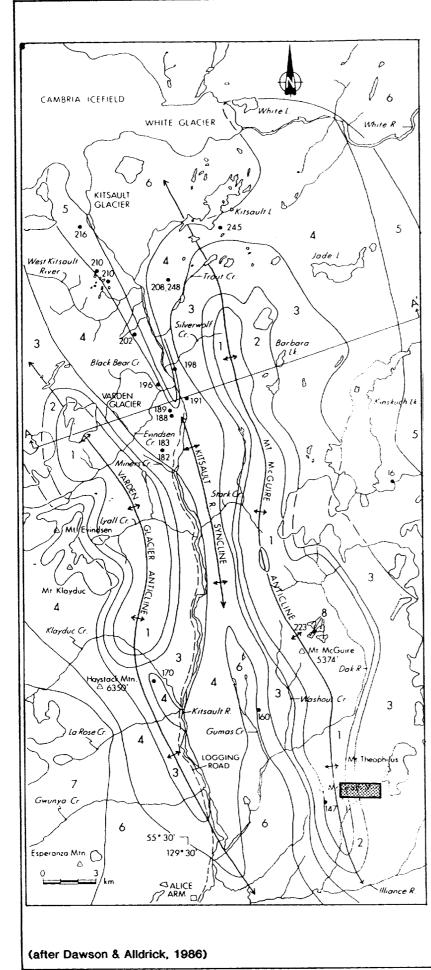
The northwestern portion of British Columbia has undergone regional mapping by the Geological Survey of Canada over an extended period of time (Kerr, 1930, 1948; Hanson, 1935; GSC 1956, 1979; Anderson, 1984, 1989; Anderson and Thorkelson, 1990). On a more detailed basis, the geological framework from which current mapping is evolving was established by the British Columbia Ministry of Energy Mines and Petroleum Resources (Grove, 1986). Grove defined the Stewart Complex as an assemblage of volcanic and related sedimentary rocks, ranging in age from Upper Triassic to Upper Jurassic, bounded by the Coast Plutonic Complex to the west, the sedimentary Bowser Basin to the east, Alice Arm to the south and the Iskut River to the north. Included in the Complex were the Upper Triassic Takla Group, Lower Jurassic Unuk River and Betty Creek, Middle Jurassic Salmon River Formation and Upper Jurassic Nass Formation of the Hazelton Group.

In 1985 the BCMEMPR initiated an on-going regional mapping program by D. J. Alldrick and several co-workers, with the first work conducted in the Kitsault area (Alldrick et al, 1986). Mapping has extended more than 200 kilometres northwest, resulting in constantly

evolving formation and age definition of rock units. In the Sulphurets Creek and Unuk River areas the Upper Triassic is referred to as the Stuhini Group, the Hazelton Group includes Unuk River, Betty Creek and the newly defined Mt. Dilworth Formations of Lower Jurassic Age and - on the open file maps for these areas (1988-4 and 1989-10 respectively)- the Middle Jurassic Salmon River Formation. On a more regional scale Alldrick (1989) has limited the Hazelton Group to the Unuk, Betty Creek and Mt. Dilworth Formations and suggested a correlation of the Salmon River Formation to rocks of the Spatzizi Group. The Ashman Formation, also Middle Jurassic, overlies the Salmon River and is part of the Bowser Group. Grove's Upper Jurassic Nass Formation no longer appears in the stratigraphic column.

In order of increasing age, lithologies of the Stewart Complex are described as follows:

1. Spatzizi Group (Middle Jurassic)


a) Salmon River Formation - thinly bedded alternating siltstones, mudstones and greywacke, and minor andesite pillow lavas and pillow breccias.

2. Hazelton Group (Lower to Middle Jurassic)

a) Mt. Dilworth Formation - intermediate to felsic pyroclastic rocks, including dust, ash, crystal and lithic tuffs, lapilli tuffs.

b) Betty Creek Formation - grey, green, locally maroon massive to bedded pyroclastic and sedimentary rocks, pillow lava.

C) Unuk River Formation - green and grey intermediate to mafic volcaniclastics and flows with local beds of fine grained immature sediments.



| MINERAL            | LEGEND<br>COMMODITIES | MINFILE<br>NUMBERS |
|--------------------|-----------------------|--------------------|
| KIT                | Ag. Pb                | 103P-245           |
| GALENA (ACE, TYEE) | Ag, Pb                | 103P-208. 248      |
| WOLF               | Ag, Pb, Zn            | 103P-198           |
| TORBRIT            | Ag. Pb. Zn            | 103P-191           |
| NORTHSTAR          | Ag, Pb, Zn            | 103P-189           |
| DOLLY VARDEN       | Ag. Pb. Zn            | 103P-188           |
| LA ROSE            | Ag, Pb                | 103P-170           |
| HOMESTAKE          | Au, Cu                | 103P-216           |
| INT                | RUSIVE ROCKS          |                    |

#### TERTIARY

- 9 MINOR DYKES: MICRODIORITE (a); GRANODIORITE (b); LAMPROPHYRE (c)
- 8 AJAX INTRUSIONS: QUARTZ FELDSPAR PORPHYRITIC QUARTZ MONZONITE (a): BIOTITE QUARTZ MONZONITE (b). 55.1 Ma (K/Ar)
- COAST PLUTONIC COMPLEX: OUARTZ MONZONITE (a); GRANODIORITE (b); 43-51 Ma (K:Ar)
  - INTRUSIVE CONTACT

#### VOLCANIC AND SEDIMENTARY ROCKS

#### MIDDLE TO UPPER JURASSIC

6 BASAL FOSSILIFEROUS WACKE (a); BLACK SILTSTONE AND WACKE (b); MINOR INTRAFORMATIONAL CONGLOMERATES AND LIMESTONE (c)

#### LOWER JURASSIC

- 5 GREEN AND MAROON VOLCANIC BRECCIA (a); EPICLASTIC CONGLOMERATE AND SEDIMENTS (b); LOCAL DACITIC FLOWS AND PYROCLASTICS (c)
- FELDSPAR-HORNBLENDE PORPHYRITIC ANDESITIC PYROCLASTICS (a) AND FLOWS/SILLS (b); MINOR INTERBEDS OF LIMESTONE, SILTSTONE, SANDSTONE, CHERT, AND BARITE (c)
- 3 BASAL POLYMICTIC CONGLOMERATE, MINOR INTERBEDDED LIMESTONE, SILTSTONE, GRIT, SANDSTONE (a); SILTSTONE, ARGILLITE (b); VOLCANIC BRECCIA, MINOR INTERBEDDED SILTSTONE, SANDSTONE (c); INTERBEDDED SILTSTONE. SANDSTONE, AND PEBBLE CONGLOMERATE (MARKER HORIZON) (d)
- 2 AUGITE (OLIVINE) PORPHYRITIC BASALT FLOWS. PILLOWED FLOWS (a); AUGITE-FELDSPAR PORPHYRITIC BASALT PYROCLASTICS AND VOLCANIC BRECCIAS (b); EPICLASTIC CONGLOMERATE, MINOR INTERBEDDED SILTSTONE, ARGILLITE, AND LIMESTONE (c)

SILTSTONE, ARGILLITE, WACKE (a): RARE LIMESTONE (b);



Figure 3 LANCE 4 PROJECT

**REGIONAL GEOLOGY** 

British Columbia NTS 103P/11

September 1990

### 3. Stuhini Group (Upper Triassic)

Mixed sedimentary rocks interbedded with mafic to intermediate volcanic and volcaniclastic rocks.

The regional geology depicted in this report (Figure 3) is reproduced from Dawson and Alldrick's summary in Geological Fieldwork 1985 (Dawson and Alldrick, 1986). A more detailed geological map can be found as Open File 1986-2 (Alldrick et al, 1986). It should be noted that no formation designations appear on these maps since the nomenclature described above was published in later years.

The Bowser Lake Group, a large sedimentary basin, in part overlies the Stewart Complex to the east. Previous workers (Hansen, 1935 and Grove, 1971) have interpreted the Bowser Lake Group as a large successor sedimentary basin, consisting of marine and nonmarine sediments with only minor volcanics, that extends over an area 160 km wide by 320 km long. The Bowser Lake Group has been unaffected by regional metamorphism, although numerous dykes and small plutons have caused minor metasomatism. Historically the Bowser Lake Group has proven uneconomic, with no significant discoveries associated with it.

The youngest rocks in the region are the Tertiary plutons of the Coast Plutonic Complex which forms the western contact of the Stewart Complex. Compositionally these plutons range from quartz monzonite and quartz diorite through to granodiorite and granite. They exhibit a typical massive crowsfoot texture and usually are medium to coarse

grained and porphyritic. Mafic minerals present are almost always hornblende <u>+</u> biotite.

Within the older volcanics regional structural features include a series of parallel anticlines and synclines with the fold axis striking north-south to northwest-southeast. Faults, photolineaments, small and large scale shears and fracturing are common throughout the area.

A number of epithermal and mesothermal precious metal deposits, massive sulphides, skarns and hydrothermal systems, as well as coppergold porphyries have been found in northwestern British Columbia. The majority of these deposits are hosted by rocks of the Stewart Complex and often show a spatial relationship with Early Jurassic intrusions.

The principal deposits in the Stewart area are hosted by an assemblage of volcanics of Lower Jurassic age, forming a northwest trending belt. Three types of deposits have been found within this belt:

 - Alkalic Copper-Gold Porphyry: High tonnage copper deposits containing significant amounts of gold (eg. Galore Creek and Copper Canyon deposits).

- 2) Gold-Silver Vein and Stockwork Deposits: High grade veins are found in the Lower Jurassic Hazelton volcanics (e.g. Silbak-Premier Mine). This type of deposit has been the most productive in the area.
- 3) Gold-Silver-Lead-Zinc Volcanic Exhalative Deposits: This type of deposit is found at Eskay Creek, within the upper sections of the Lower Jurassic volcanic-arc assemblage. The Dolly Varden Property, located 30 km north of the subject property, is believed to have potential for a similar type deposit as a result of interpretation of recent field mapping and diamond drilling.

The other types of mineralization are:

- 1) Silver-rich quartz-barite veins
- 2) Disseminated copper-gold mineralization

The silver-rich mineralization consists of mesothermal to epithermal veins deposited during folding within fractures and faults parallel to the axial plane of the fold. Historically exploration and development at Dolly Varden has been on this type of mineralization. Disseminated copper-gold mineralization includes the Homestake, Vanguard, Red Point and Red Bluff properties. The mineralization is localized along the upper contact of a feldspar and/or hornblende porphyritic flow or subvolcanic sill. Both types of mineralization

occur within andesitic pyroclastics of Middle to Lower Jurassic lithologies.

PROPERTY GEOLOGY AND GEOCHEMISTRY

The Lance 4 property is underlain by Stewart Complex volcanic and sedimentary rocks of Lower to Middle Jurassic age (Figure 4).

Along Theophilus Creek, the rocks are composed of fine grained siltstones and calcareous mudstones (Unit 3a). These strike approximately northeast-southwest and are overlain by a generally planar bedded, medium grained sequence of intermediate tuffs and volcaniclastics which occupy over two thirds of the property (Unit 4). Within the volcanics conformable bands of black siltstone and sandstone occur up to 50 m thick. The western margin of the property is underlain by porphyritic olivine and pyroxene basalt flows (Unit 2) which are the oldest rocks on the property.

Faults and shears within the claim are predominantly oriented north-south to northeast-southwest.

The strike of the strata varies from northwest-southeast to northeast-southwest and dips are variable in both east and westerly directions. Rocks on the west side of the property appear to "young" towards the east while those in the eastern and central parts of the property "young" to the west, suggesting the presence of a northerly trending syncline through the centre of the property.

The quartz and quartz-barite veins on the property trend approximately north-south and are mostly associated with the intermediate volcanic rocks.

The largest vein pinches and swells from less than 1 m to over 4 m in width and is at least 500 m long. It typically has a massive coarse grained barite core with a network of later enveloping quartz veins.

Sulphide mineralization on the property, in the form of pyrite, is associated with the sericitized, brecciated wall rocks at the margin of the largest quartz barite vein, which also host smaller quartz and quartz-calcite-ankerite veins, and with several shears.

A total of 61 rock samples and 5 silt samples were collected from the property (Figure 5). They were sent to TSL Laboratories in Saskatoon, Saskatchewan and were analyzed for gold by atomic absorption (samples >1000 ppb Au were then fire assayed). Samples also were analyzed for 35 elements by inductively coupled plasma (ICP) spectrophotometry. Seventeen rock samples assayed above the 5 ppb detection limit with the highest gold value (#60557, 180 ppb Au) found in a float sample of andesitic breccia containing up to 50% pyrite and minor chalcopyrite. The ICP results produced no significant anomalies. Sample #60581 (1300 ppm Zn) was taken from a quartz vein within a zone of moderate limonitic alteration. Sample #60567 (1200 ppm Cu) was also taken from a quartz vein within moderate limonitic

alteration. Neither sample contained visible sulphides. Rock sample descriptions appear in Appendix I, assay certificates in Appendix II and analytical procedures in Appendix III.

#### CONCLUSIONS AND RECOMMENDATIONS

The property is underlain by a conformable sequence of volcanic and sedimentary rocks of Lower to Middle Jurassic age, a part of the Stewart Complex.

A prominent quartz-barite vein up to 4 m wide and 500 m long strikes north-south through the central area of the property. The core of the vein is composed of massive barite and the periphery of anastomosing quartz veins. Sheared intermediate tuffs which form the host rock are often brecciated and intensely sericitized with up to 30% fine grained pyrite mineralization at the vein margin. Grab samples from the vein have returned values of up to 30 ppb gold.

The highest gold value on the property, 180 ppb gold, was returned from a float sample of brecciated andesite.

Samples from the quartz barite system and its associated shear zone failed to produce any significant assays. Although this zone has a strike length extending across much of the width of the Lance 4 claim, the absence of anomalous results from it and from the claim area in general indicates that additional work is not warranted.

# STATEMENT OF EXPENDITURES

| رومین      | Mobilization/Demobilization<br>(pro-rated from Kitsault Project)                                | \$ 650.36          |
|------------|-------------------------------------------------------------------------------------------------|--------------------|
|            | Wages:<br>B. La Peare (geologist) 2.0 days @ \$340/da<br>P. Brucciani ( " ) 2.5 days @ \$330/da |                    |
| -          | Engineering, Supervision & Administration<br>(direct and pro-rated from Kitsault Project)       | 1,681.66           |
|            | Support Costs (camp costs, expiditing, etc<br>pro-rated from Kitsault Project)                  | 1,628.87           |
| -          | Transportation & Communication<br>(pro-rated from Kitsault Project)                             | 458.48             |
| - <b>-</b> | Helicopter                                                                                      | 934.11             |
|            | Analyses                                                                                        | 1,340.40           |
|            | Report                                                                                          | 1,225.83           |
|            | Total Expenditures                                                                              | <u>\$_9,424.71</u> |

### CERTIFICATE OF QUALIFICATIONS

I, Paul Brucciani, of 15 Knighton Park Road, Stoneygate, Leicester, U.K., hereby certify:

- I am a graduate of the University of Aberdeen, Scotland (1987) and hold a B.Sc. Honours degree in Geology and Mineralogy.
- 2. I am presently employed as a geologist with OreQuest Consultants Ltd. of 306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various companies since graduation and have worked on projects in Canada, Australia, Cyprus and the United Kingdom.
- 4. The information contained in this report was obtained by direct onsite supervision of the work done on the property by OreQuest Consultants Ltd. in 1990 and a review of all data listed in the Bibliography.
- 5. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct of indirect interest in the property or in the securities of Santa Marina Gold Ltd.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts of other public documents.

Paul Brucciani, B.Sc. Geologist

DATED at Vancouver, British Columbia, this \_\_th day of September, 1990.

#### CERTIFICATE of QUALIFICATIONS

I, Brett R. LaPeare, of #114-175 E. 4th St. North Vancouver, British Columbia hereby certify:

- I am a graduate of the Lakehead University and hold a BSc. degree in Geology.
- 2. I am presently employed as a geologist with OreQuest Consultants Ltd. of 306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various companies since graduation and have worked on projects in Canada and the United States.
- 4. The information contained in this report was obtained by direct onsite supervision of the work done on the property by OreQuest Consultants Ltd. in 1990 and a review of all data listed in the Bibliography.
- 5. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property or in the securities of Santa Marina Gold Ltd.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Britt Johan

Brett R. LaPeare, B.Sc. Geologist

DATED at Vancouver, British Columbia, this day of 1990.

#### CERTIFICATE OF QUALIFICATIONS

I, Bernard Dewonck, of 11931 Dunford Road, Richmond, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1974) and hold a BSc. degree in geology.
- I am an independent consulting geologist retained by OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. The information contained in this report was obtained by supervision of the work done on the Lance 4 claim and a review of the materials listed in the bibliography.
- 7. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property or in the securities of Santa Marina Gold Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Bernard Dewonck, F.G.A.C. Consulting Geologist

DATED at Vancouver, British Columbia, this \_\_\_\_ day of \_\_\_\_\_, 1990.

a

#### BIBLIOGRAPHY

ALLDRICK, D.J.

- 1989: Volcanic Centres in the Stewart Complex, Geological Fieldwork 1988, Paper 1989-1, British Columbia Ministry of Energy, Mines and Petroleum Resources.
- ALLDRICK, D.J., DAWSON, G.L., BOSHER, J.A. and WEBSTER, I.C.L. 1986: Geology of the Kitsault River Area, BCMEMPR Open File Map 1986-2.
- ANDERSON, R.G. and THORKELSON, D.J. 1990: Mesozoic Stratigraphy and Setting for Some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia. Geol. Surv. Can. Paper 90-1E, p. 145-15x.
  - ANDERSON, R.G.
  - 1989: A Stratigraphic, Plutonic, and structural Framework of the Iskut River Map Area, Northwestern British Columbia. Geo. Surv. Can. Paper 89-1E, p. 145-154.
  - 1984: Late Triassic and Jurassic Magmatism Along the Stikine Arch and the Geology of the Stikine Batholith, Northcentral British Columbia. Geol. Surv. Can. Paper 84-1A.
- BRITTON, J.M., BLACKWELL, J.D. and SCHROETER, T.G. 1990: #21 Zone deposits, Eskay Creek, Northwestern British Columbia; Preliminary Report.
- BROWN, D.A. and GUNNING, M.H. 1989: Geology of the Scud River Area, Northwestern British Columbia. BCMEMPR Geol. Fieldwork 1988; Paper 1989-1.
- DAWSON, G.L. and ALLDRICK, D.J.
   1986: Geology and Mineral Deposits of the Kitsault Valley (103P/11,12). BCMEMPR, Geological Field Work 1985. Paper 1986-1, pp. 219-224.
  - DEVLIN, B.D. and GODWIN, C.I. 1986: Geology of the Dolly Varden Camp, Alice Arm Area (103P/11, 12). BCMEMPR, Geological Field Work 1985. Paper 1986-1, pp. 327-330.
- GEOLOGICAL SURVEY OF CANADA Map No. 9-1957: Operation Stikine 1956.
  - Map No. 1418A-1979: Iskut River.
    - KERR, F.A. 1930: Preliminary Report on the Iskut River Area, British Columbia. GSC Summary Report, 1929, Part A, pp.30-61.

### KERR, F.A.

1948: Lower Stikine and Western Iskut Rivers Area, British Columbia. GSC Memoir No. 246.

### MCMILLAN, W.J.

1990: British Columbia's Golden Triangle: Report on Iskut Field Conference. Geoscience Can. Vol. 17, No. 1, p. 25-28. APPENDIX I

ROCK SAMPLES DESCRIPTIONS

# APPENDIX I

# ROCK SAMPLE DESCRIPTIONS

| SAMPLE NO. | DESCRIPTION                                                                                                                    | ANALYSIS (ppb Au) |
|------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|
|            | - Andesite<br>- Chloritized, moderately<br>silicified<br>- 3-4% pyrite                                                         | 15                |
|            | - Mudstone<br>- Quartz-carb stringers- minor<br>oxidation.                                                                     | 15                |
|            | <ul> <li>Mudstone</li> <li>3 foot wide shear with<br/>minor rust.</li> </ul>                                                   | 15                |
|            | - Mudstone<br>- Qtz veins, normal to bedding                                                                                   | 5                 |
| -          | <ul> <li>Andesitic Tuff</li> <li>Silicified - highly, Oxidize<br/>and fractured.</li> <li>3-4% disseminated pyrite.</li> </ul> | 15<br>d           |
|            | - Andesitic Tuff<br>- Highly oxidized, limonite<br>alteration                                                                  | <5                |
|            | - Andesitic Tuff<br>- Highly oxidized, limonite<br>alteration.                                                                 | <5                |
|            | - Andesite<br>- 4 cm wide qtz vein within<br>gossan.                                                                           | <5                |
|            | – Andesite<br>– Gossan with limonite alterat                                                                                   | 5<br>ion.         |
| -          | - Andesite<br>- Oxidized<br>- <u>&lt;</u> 1% disseminated pyrite                                                               | 15                |
| -          | - Andesite<br>- Ankerite-limonite, alteratio<br>- 2-3% disseminated pyrite.                                                    | 10<br>n           |
|            | - Andesite<br>- Oxidized, silicified<br>- ≤ 1% disseminated pyrite.                                                            | 10                |

| SAMPLE | NO. | DESCRIPTION                                                          | ANALYSIS (ppb Au) |
|--------|-----|----------------------------------------------------------------------|-------------------|
| 60513  |     | Quartz vein<br>Minor oxiditation, chlorit<br>alteration.             | 5<br>Lic          |
| 60514  |     | Quartz vein<br>> 75 cm wide, minor oxidit                            | 5<br>cation.      |
| 60515  | -   | Andesite<br>Gossan-shear zone 3 m wide<br>2% pyrite, disseminated an |                   |
| 60516  |     | Andesite<br>Contact at shear with bari<br>and qtz veins.             | 20<br>.te         |
| 60517  |     | Barite vein<br>Minor oxiditation, trace<br>chlorite.                 | 15                |
| 60518  | -   | Andesite<br>Oxidized, silicified<br>3% disseminated pyrite.          | 5ppb Au/110ppmZn  |
| 60519  |     | Andesite<br>Barren quartz vein.                                      | <5                |
| 60520  |     | Andesite<br>Qtz-carbonate vein.                                      | 5                 |
| 60521  | -   | Andesite<br>Porphyritic, gossan<br>4% disseminated pyrite.           | 5                 |
| 60522  |     | Andesite<br>Silicified                                               | <5                |
|        |     | 10% cubic pyrite                                                     | <5                |
| 60523  | -   | Mafic Tuff<br>Moderately silicified<br>3% disseminated pyrite.       | <5                |
| 60524  |     | Andesitic Tuff<br>Gossan with qtz-carbonate<br>stringers.            | 10                |
| 60551  |     | Mudstone<br>Moderate limonitic alterat<br>carbonate veining.         | <5<br>cion,       |
| 60552  |     | Mudstone<br>Limonitic vugs, within qtz<br>veinlets.                  | <5                |

| SAMPLE NO. | DESCRIPTION                                                                                                                              | ANALYSIS (ppb Au)      |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 60553      | <ul> <li>Andesite</li> <li>Chloritized, moderate seric alteration.</li> </ul>                                                            | <5<br>itic             |
| 60554      | <ul> <li>Andesite</li> <li>Chloritized, moderate seric<br/>alteration.</li> </ul>                                                        | <5<br>itic             |
| 60555      | - Andesite<br>- Quartz vein 4cm wide/1m lond                                                                                             | 10<br>g.               |
| 60556      | - Andesite<br>- Quartz vein - 15cm wide.                                                                                                 |                        |
| 60557      | <ul> <li>Andesite (float)</li> <li>Blocky Tuff fragments =20%</li> <li>&lt; 50% pyrite, chalcopyrite</li> </ul>                          | 180ррын,470рртСи       |
| 60558      | <ul> <li>Andesitic Tuff</li> <li>Moderate jarosite, limonite sericitic alteration</li> </ul>                                             | <5                     |
| 60559      | <ul> <li>Andesitic Tuff</li> <li>Moderate jarosite, limonite<br/>Alteration.</li> </ul>                                                  | 470ppm Cu,<5ppbAu<br>, |
| 60560      | <ul> <li>Medium grained, feldspar<br/>phenocrysts, brecciated</li> </ul>                                                                 | <5                     |
| 60561      | <ul> <li>Andesite</li> <li>Quartz vein stockwork, and sericitized.</li> </ul>                                                            | <5                     |
| 60562      | <ul> <li>Barite vein</li> <li>1-2 m wide, 25m long, limon<br/>and sericite alteration.</li> </ul>                                        | <5<br>ite              |
| 60563      | <ul> <li>Andesitic tuff</li> <li>Sericite and limonite<br/>alteration within fractures</li> </ul>                                        | <5                     |
| 60564      | <ul> <li>Andesitic tuff</li> <li>Quartz vein (10cm x 20m)<br/>limonite and sericitic alter</li> <li>&lt; 10% euhedral pyrite.</li> </ul> | <5<br>ration           |
| 60565      | <ul> <li>Andesitic tuff</li> <li>Sericite and limonite<br/>alteration, qtz in fracture</li> </ul>                                        | 5<br>s.                |

jan ka

| SAMPLE NO. | DESCRIPTION                                                                                                                 | ANALYSIS (ppb Au)            |
|------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 60566      | <ul> <li>highly altered/@ contact<br/>barite vein</li> <li>30% disseminated pyrite</li> </ul>                               |                              |
| 60567      | - Quartz vein <5ppbA<br>- Minor limonite alteratio                                                                          | au/1200ppm Cu/310ppmCu<br>on |
| 60568      | - Barite vein<br>- Massive white barite                                                                                     | <5                           |
| 60569      | <ul> <li>Andesite tuff</li> <li>Ankerite staining and millimonite/calcite stringed</li> </ul>                               |                              |
| 60570      | <ul> <li>Andesitic Tuff (float)</li> <li>5 cm calcite vein, anker<br/>staining.</li> </ul>                                  | <5<br>rite                   |
| 60571      | <ul> <li>Andesitic Breccia Tuff</li> <li>Quartz vein, limonite-se<br/>alteration.</li> </ul>                                | <5<br>ericite                |
| 60572      | - Andesitic tuff<br>- Jarosite alteration<br>- $\leq$ 30% pyrite.                                                           | 50                           |
| 60573      | <ul> <li>Quartz vein stockwork</li> <li>High limonite, jarosite<br/>alteration</li> <li>10% pyrite, 10% chalcopy</li> </ul> | 50<br>yrite                  |
| 60574      | <ul> <li>Andesitic tuff</li> <li>Subvolcanic, quartz veir<br/>parallel to shear.</li> </ul>                                 | 55<br>n                      |
| 60575      | <ul> <li>Andesitic tuff</li> <li>Quartz ankerite vein, modulation</li> <li>limonite alteration.</li> </ul>                  | <5<br>oderate                |
| 60576      | - Quartz vein float<br>- Moderate limonite altera                                                                           | <5<br>ation.                 |
| 60577      | <ul> <li>Siltstone</li> <li>Brecciated ankerite + ca<br/>and quartz vein.</li> </ul>                                        | 25<br>alcite                 |
| 60578      | <ul> <li>Quartz vein float</li> <li>Moderate limonite altera<br/>faint banding.</li> </ul>                                  | <5<br>ation                  |

| SAMPLE NO. | DESCRIPTION                                                                                       | ANALYSIS (ppb Au) |
|------------|---------------------------------------------------------------------------------------------------|-------------------|
| 60579      | <ul> <li>Breccia tuff</li> <li>Quartz vein, moderate limon alteration</li> </ul>                  | <5<br>lite        |
| 60580      | <ul> <li>Brecciated Andesite</li> <li>Quartz vein (40cm x 15m) mo<br/>limonite.</li> </ul>        | <5<br>derate      |
| 60581      | - Brecciated tuff 5<br>- Quartz vein, limonite<br>alteration.                                     | ppb Au/1300ppm Zn |
| 60582      | - Breccia tuff<br>- Quartz vein, 10 cm wide                                                       | 5                 |
| 60583      | - Basalt<br>- Quartz, ankerite vein (10cm                                                         | <5<br>x 2m)       |
| 60584      | <ul> <li>Andesitic Breccia</li> <li>Moderate limonite, minor<br/>jarosite alteration.</li> </ul>  | <5                |
| 60585      | <ul> <li>Quartz vein (float)</li> <li>Minor limonite alteration,<br/>clasts dissolved.</li> </ul> | <5<br>breccia     |
| 60586      | <ul> <li>Quartz vein</li> <li>Sub parallel, stockwork, mi<br/>limonite alteration.</li> </ul>     | 5<br>nor          |
| 60587      | - Quartz vein<br>- 15 cm x 1 m, vuggy.                                                            | <5                |

APPENDIX II

# ASSAY CERTIFICATES

|                                           |                                                                                  | SASKATOON, SASKATOHEWA<br>S7K 6/<br>(306) 931-1033 FAX: (306) 242-47 |
|-------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| ·                                         | CERTIFICATE OF                                                                   | ANALYSIS                                                             |
| SAMPLE(S) FROM                            | OreQuest Consultants Ltd.<br>306 - 595 Howe Street<br>Vancouver, B.C.<br>V6C 2T5 | REPORT No.<br>S1056                                                  |
| SAMPLE(S) OF RO                           | ck                                                                               | INVOICE #: 15560<br>P.O.: R2575                                      |
|                                           | P. Brucciani<br>Project LANCE 4                                                  |                                                                      |
|                                           |                                                                                  |                                                                      |
|                                           | Au<br>ppb                                                                        |                                                                      |
| 60518<br>60519<br>60520                   | 5<br><5<br>5                                                                     |                                                                      |
| 60521<br>60522                            | <5<br><5                                                                         |                                                                      |
| 60523<br>60524<br>60574<br>60575          | <5<br>10<br>55<br><5                                                             |                                                                      |
| 60576                                     | <5                                                                               |                                                                      |
| 60577<br>60578<br>60579<br>60580<br>60581 | 25<br><5<br><5<br><5<br>5                                                        |                                                                      |
| 60582<br>60583<br>60584                   | 5<br><5<br><5                                                                    |                                                                      |
| 60585<br>60586                            | <5<br>5                                                                          |                                                                      |
| COPIES TO<br>INVOICE TO                   | 0: B. Dewonck, J. Chapman<br>0: OreQuest - Vancouver                             |                                                                      |

| ,                                                                                                               | 45                    |                                                                                                                | Div.     | BURGENER TECHNICAL ENTERPRISES LIMI<br>2 - 302 - 48th STREET, EA<br>SASKATOON, SASKATCHEW,<br>S7K 6<br>(306) 931-1033 FAX: (306) 242-47 | TED<br>ST<br>AN<br>A4 |
|-----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                 |                       | CERTIFICATE OF                                                                                                 | ANALYSIS |                                                                                                                                         |                       |
| ~                                                                                                               | SAMPLE(S) FROM        | OreQuest Consultants Ltd.<br>306 - 595 Howe Street<br>Vancouver, B.C.<br>V6C 2T5                               |          | REPORT No.<br>S1056                                                                                                                     |                       |
|                                                                                                                 | SAMPLE(S) OF RO       | ck                                                                                                             |          | VOICE #: 15560<br>D.: R2575                                                                                                             |                       |
|                                                                                                                 | <del> </del>          | P. Brucciani<br>Project LANCE 4                                                                                |          |                                                                                                                                         |                       |
| -                                                                                                               |                       |                                                                                                                |          |                                                                                                                                         |                       |
| 1235-14                                                                                                         |                       | Au<br>ppb                                                                                                      |          |                                                                                                                                         |                       |
|                                                                                                                 | 60587                 | <5                                                                                                             |          |                                                                                                                                         |                       |
| <b>2</b> 24                                                                                                     |                       |                                                                                                                |          |                                                                                                                                         |                       |
| ~                                                                                                               |                       |                                                                                                                |          |                                                                                                                                         |                       |
|                                                                                                                 |                       |                                                                                                                |          |                                                                                                                                         |                       |
|                                                                                                                 |                       |                                                                                                                |          |                                                                                                                                         |                       |
|                                                                                                                 |                       |                                                                                                                |          |                                                                                                                                         |                       |
| action to the second |                       |                                                                                                                |          |                                                                                                                                         |                       |
| -                                                                                                               | COPIES T<br>INVOICE T | 0: B. Dewonck, J. Chapman<br>0: OreQuest - Vancouver                                                           |          |                                                                                                                                         |                       |
| jalionij                                                                                                        | Sep 21/90             | ,                                                                                                              | Dim N.   | Imih                                                                                                                                    |                       |
| -                                                                                                               |                       | _ SIGNED<br>port, please contact Customer Service Departme<br>lects discarded two months from the date of this |          | Page 2 of 2                                                                                                                             |                       |

T S L LABORATORIES

. .

| 2-302-48TH | STREET, SASKAT | DON, SASKATCHEWAN | 57K 6A4 |
|------------|----------------|-------------------|---------|
|            | TELEPHONE #:   | (306) 931 - 1033  |         |
|            | FAX <b>#:</b>  | (306) 242 - 4717  |         |

### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| OREQUEST CONSUL<br>306 - 595 HOWE<br>VANCOUVER, B.C.<br>V6C 2T5 |        | TD.        |                  |             |       | T.S.L.<br>T.S.L.<br>T.S.L. | REPORT Na. :<br>File No. :<br>Invoice No. : | M - 8119 |                                        |  |
|-----------------------------------------------------------------|--------|------------|------------------|-------------|-------|----------------------------|---------------------------------------------|----------|----------------------------------------|--|
| ATTN: B. DEWON                                                  | СК, Ј. | Chapman Pr | PROJECT: LANCE 4 | R-2575      |       | ALL RESULTS PPM            |                                             |          |                                        |  |
| ELEMENT                                                         |        | 60518      | 60519            | 60520       | 60521 | 60522                      | 60523                                       | 60524    | 6057                                   |  |
| Aluminum                                                        | [A1]   | 13000      | 11000            | 22000       | 15000 | 20000                      | 17000                                       | 3200     | 51                                     |  |
| Iran                                                            | [Fe]   | 39000      | 21000            | 33000       | 32000 | 35000                      | 31000                                       | 32000    | 510                                    |  |
| Calcium                                                         | (Ca)   | 2200       | 880              | 70000       | 5500  | 8200                       | 24000                                       | 42000    | 34                                     |  |
|                                                                 | [Mg]   | 5500       | 4700             | 7800        | 8600  | 8200                       | 7900                                        | 5700     | 4                                      |  |
| Sodium                                                          | [Na]   | 260        | 230              | 90          | 340   | 270                        | 330                                         | 90       |                                        |  |
|                                                                 | EK 1   | 900        | 430              | 300         | 360   | 260                        | 270                                         | 1300     | 1                                      |  |
| Titanium                                                        | [Ti]   | 16         | 11               | 81          | 1800  | 1000                       | 710                                         | 18       | -                                      |  |
|                                                                 | [Mn]   | 280        | 280              | 1000        | 420   | 830                        | 830                                         | 1100     | 2                                      |  |
| Phosohorus                                                      |        | 820        | 560              | 450         | 910   | 860                        | 740                                         | 870      | -                                      |  |
| Barium                                                          | [Ba]   | 38         | 23               | 17          | 16    | 42                         | 270                                         | 64       |                                        |  |
| Chromium                                                        | [[1]   | 39         | 90               | 56          | 64    | 22                         | 28                                          | 17       | 1                                      |  |
| Zirconium                                                       | [Zr]   | 9          | 4                | 12          | 24    | 15                         | 14                                          | 10       |                                        |  |
| Copper                                                          | [Cu]   | 65         | 15               | 41          | 51    | 17                         | <b>9</b> 5                                  | 32       |                                        |  |
| Nickel                                                          | [Ni]   | 7          | 6                | 19          | 16    | 5                          | 5                                           | 4        |                                        |  |
| Lead                                                            | [Pb]   | 36         | 21               | 2           | 15    | 5                          | 2                                           | 3        |                                        |  |
| Zinc                                                            | [Zn]   | 110        | 31               | 57          | 71    | 59                         | 43                                          | 44       |                                        |  |
| Vanadium                                                        | [V]]   | <b>78</b>  | 60               | 110         | 130   | 120                        | 160                                         | 38       |                                        |  |
| Strontium                                                       | [Sr]   | 12         | 4                | 160         | 41    | 14                         | 42                                          | 110      |                                        |  |
| Cobalt                                                          | [Co]   |            | 4                | 18          | 9     | 10                         | 10                                          | 11       | <                                      |  |
| Molybdenum                                                      |        | < 2        | 4                | < 2         | < 2   | < 2                        | < Ž                                         | < 2      |                                        |  |
| Silver                                                          | [Ag]   | 1          | < 1              | < 1         | < 1   | < 1                        | < 1                                         | < 1      | <                                      |  |
| Cadmium                                                         | [Cd]   | < 1        | < 1              | < 1         | < 1   | < 1                        | < 1                                         | < 1      | Ì                                      |  |
| Beryllium                                                       | [Be]   | < 1        | < 1              | < 1         | < 1   | < 1                        | < 1                                         | < 1      | <                                      |  |
| Baran                                                           | [8]    | < 10       | < 10             | < 10        | < 10  | < 10                       | < 10                                        | < 10     | <<br><                                 |  |
| Antimony                                                        | [Sb]   | 20         | < 5              | < 5         | 15    | < 5                        | 10                                          | 10       | ,<br>K                                 |  |
| Yttrium                                                         | [Y]    | 4          | 3                | 8           | 7     | 7                          | 7                                           | 9        |                                        |  |
| Scandium                                                        | [5c]   | B          | 4                | 15          | 5     | В                          | 12                                          | 11       | <                                      |  |
| Tungsten                                                        | [₩]    | < 10       | < 10             | < 10        | < 10  | < 10                       | < 10                                        | < 10     | < Ì                                    |  |
| Niobium                                                         | [Nb]   | < 10       | < 10             | < 10        | < 10  | < 10                       | < 10                                        | < 10     | ,                                      |  |
| Thorium                                                         | [Th]   | 30         | < 10             | 20          | 40    | 50                         | 40                                          | 30       | À                                      |  |
| Arsenic                                                         | [As]   | 230        | 5                | < 5         | < 5   | < 5                        | < 5                                         | 5        | •                                      |  |
| Bismuth                                                         | [Bi]   | < 5        | < 5              | 10          | 5     | < 5                        | 10                                          | < 5      | <                                      |  |
| Tin                                                             | [Sn]   | < 10       | < 10             | < 10        | < 10  | < 10                       | < 10                                        | < 10     | (                                      |  |
| Lithium                                                         | [Li]   | 15         | 10               | 25          | 10    | 25                         | < 5                                         | < 5      | `````````````````````````````````````` |  |
| Holmium                                                         | [Ho]   | < 10       | < 10             | < 10<br>2.5 | 1.4   | 20                         | · •                                         |          | •                                      |  |

DATE : SEP-26-1990

SIGNED : Bernie Punn

T S L LABORATORIES

.

| 2-302-48TH | STREET, SAS | KATOON, | SASKATCHEWAN                 | <b>S7</b> K | 6A4 |
|------------|-------------|---------|------------------------------|-------------|-----|
|            |             |         | ) 931 - 1033<br>) 242 - 4717 |             |     |

### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| <b>au</b> ,  | OREQUEST CONSUL<br>306 - 595 HOWE :<br>VANCOUVER, B.C.<br>V6C 2T5 |                              | TD.                                                |                                                            |                                                               |                                          | T.S.L.<br>T.S.L.<br>T.S.L. 1 | REPORT No. :<br>File No. :<br>Invoice No. : | SE25MD                                           | )56 - 2                                  |
|--------------|-------------------------------------------------------------------|------------------------------|----------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------------|------------------------------------------|
|              | ATTN: B. DEWON                                                    | СК, Ј.                       | Chapman Pr(                                        | DJECT: LANCE                                               | 4 R-2575                                                      |                                          |                              | ALL RESULTS PP                              | ١Ħ                                               |                                          |
| ~            | ELEMENT                                                           |                              | 60575                                              | 60576                                                      | 60577                                                         | <i>6</i> 0578                            | 60579                        | 60580                                       | 60581                                            | 60582                                    |
| <b>101</b> . | Aluminum<br>Iron<br>Calcium                                       | [A1]<br>[Fe]<br>[Ca]         | 1300<br>17000<br>25000                             | 470<br>3900<br>920                                         | 1200<br>27000<br>63000                                        | 400<br>6100<br>5100                      | 3900<br>11000<br>1100        | 1300<br>5600<br>280                         | 4800<br>19000<br>8200                            | 13000<br>24000<br>2000                   |
| ~~           |                                                                   | [Mg]<br>[Na]<br>[K]]         | 3500<br>100<br>490                                 | 230<br>40<br>250                                           | 7200<br>40<br>710                                             | 600<br>30<br>220                         | 2300<br>120<br>420           | 480<br>60<br>320                            | 2500<br>180<br>800                               | 7700<br>60<br>230                        |
| <b>5</b> 44  | Phosphorus                                                        |                              | 4<br>560<br>420                                    | 3<br>140<br>58                                             | < 1<br>860<br>260                                             | 2<br>210<br>66                           | 5<br>390<br>290              | 2<br>190<br>120                             | 5<br>520<br>480                                  | 370<br>1300<br>360                       |
|              | Barium<br>Chromium<br>Zirconium<br>Copper                         | (Ba]<br>(Cr]<br>[Zr]<br>[Cu] | 33<br>84<br>5<br>9                                 | 5<br>130<br>< 1<br>14                                      | 46<br>32<br>6<br>7                                            | 18<br>110<br>1<br>15                     | 85<br>81<br>2<br>35          | 28<br>110<br>1<br>5                         | 31<br>78<br>4<br>14                              | 45<br>170<br>8<br>31                     |
| ~            | Nickel<br>Lead<br>Zinc                                            | [Ni]<br>[Pb]<br>[Zn]         | 3<br>3<br>23                                       | 4<br>9<br>60                                               | 3<br>< 1<br>29                                                | 3<br>13<br>23                            | 2<br>3<br>17                 | 3<br>< 1<br>8                               | 3<br>66<br>1300                                  | 29<br>10<br>120                          |
|              | Vanadium<br>Strontium<br>Cobalt<br>Molybdenum                     | [V ]<br>[Sr]<br>[Co]         | 25<br>260<br>4<br>< 2                              | 5<br>9<br>< 1<br>4                                         | 8<br>260<br>4<br>∢ 2                                          | 3<br>12<br>< 1<br>4                      | 24<br>7<br>5<br>< 2          | 5<br>2<br>2<br>4                            | 22<br>15<br>7                                    | 72<br>9<br>12                            |
| -            | Silver<br>Cadmium<br>Bervllium                                    | [Ag]<br>[Cd]<br>[Be]         |                                                    | $\langle 1 \\ \langle 1 \\ \langle 1 \\ \langle 1 \rangle$ | $\langle 1 \\ \langle 1 \\ \langle 1 \\ \langle 1 \\ \rangle$ | <pre>4 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | < 2<br>< 1<br>< 1<br>< 1     | < 1<br>< 1<br>< 1                           | < 2<br>< 1<br>2<br>< 1                           | < 2<br>< 1<br>< 1<br>< 1                 |
| -            | Boron<br>Antimony<br>Yttrium                                      | [B]<br>[Sb]<br>[Y]           | < 10<br>5<br>4                                     | < 10<br>< 5<br>< 1                                         | < 10<br>10<br>6                                               | <10<br>< 5<br>2                          | < 10<br>5<br>1               | <10<br>< 5<br>< 1                           | <10<br>25<br>4                                   | < 10<br>< 5<br>6                         |
| ~            | Scandium<br>Tungsten<br>Niobium<br>Thosium                        | [Sc]<br>[W]<br>[Nb]          | 5<br>< 10<br>< 10                                  | <pre> &lt; 1 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre>         | 5<br>< 10<br>< 10                                             |                                          | 3<br>< 10<br>< 10            | 1<br>< 10<br>< 10<br>< 10                   | 4<br>< 10<br>< 10                                | 10<br>< 10<br>< 10                       |
| utra.        | Thorium<br>Arsenic<br>Bismuth<br>Tin                              | [Th]<br>[As]<br>[Bi]<br>[Sn] | <pre> &lt; 10     15     &lt; 5     &lt; 10 </pre> | < 10<br>< 5<br>< 5<br>< 10                                 | 40<br>5<br>< 5<br>< 10                                        | < 10<br>10<br>< 5<br>< 10                | < 10<br>< 5<br>< 5<br>< 10   | < 10<br>< 5<br>< 5<br>< 10                  | <pre>&lt; 10     15     &lt; 5     &lt; 10</pre> | <pre>&lt; 10 &lt; 5 &lt; 5 &lt; 10</pre> |
|              | Lithium<br>Holmium                                                | [Li]<br>[Ho]                 | < 5<br>< 10                                        | < 5<br>< 10                                                | < 5<br>< 10                                                   | < 5<br>< 10                              | < 5<br>< 10                  | $\langle 5 \rangle$                         | < 5<br>< 10                                      | 10     10       10       10              |

DATE : SEP-26-1990

SIGNED : Remie Dunn

| TSL | LABORATORIES |
|-----|--------------|
|-----|--------------|

| 2-302-48TH | STREET, SASKAT | DON, SASKATCHEWAN | S7K | 6A4 |
|------------|----------------|-------------------|-----|-----|
|            | TELEPHONE #:   | (306) 931 - 1033  |     |     |
|            | FAX #:         | (306) 242 - 4717  |     |     |

#### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| 47aa           | OREQUEST CONSULT<br>306 - 595 HOWE S<br>VANCOUVER, B.C.<br>V6C 2T5 |                      | .TD.                                    |                                     |                                           |                                    | T.S.L.<br>T.S.L.<br>T.S.L. 1 | File    | No.:    | S - 1056 - 3<br>SE25MD<br>15667 |
|----------------|--------------------------------------------------------------------|----------------------|-----------------------------------------|-------------------------------------|-------------------------------------------|------------------------------------|------------------------------|---------|---------|---------------------------------|
|                | ATTN: B. DEWON                                                     | ж, Ј.                | Chapman proje                           | CT: LANCE 4                         | R-2575                                    |                                    |                              | ALL RES | ULTS PP | м                               |
| -              | ELEMENT                                                            |                      | 60583                                   | 60584                               | 60585                                     | 60586                              | 60587                        |         |         |                                 |
| 3×5            | Aluminum<br>Iron<br>Calcium                                        | [Al]<br>[Fe]<br>[Ca] | 1800<br>24000<br>32000                  | 14000<br>33000<br>24000             | 540<br>3200<br>900                        | 11000<br>22000<br>3300             | 6400<br>12000<br>620         |         |         |                                 |
| -              | Magnesium<br>Sodium<br>Potassium<br>Titanium                       | [Na]                 | 5700<br>40<br>340<br>20                 | 5400<br>150<br>1200<br>39           | 300<br>- 30<br>130<br>- 4                 | 5600<br>200<br>250<br>27           | 3800<br>50<br>190<br>11      |         |         |                                 |
| damp.          | Manganese<br>Phosphorus<br>Barium                                  | [P ]<br>[Bal         | 800<br>220<br>46                        | 1200<br>830<br>57                   | 58<br>36<br>3                             | 560<br>450<br>21                   | 360<br>92<br>8               |         |         |                                 |
|                | Chromium<br>Zirconium<br>Copper                                    | [Cu]                 | 92<br>4<br>8                            | 47<br>11<br>69                      | 120<br>< 1<br>5                           | 61<br>6<br>50                      | 110<br>3<br>4                |         |         |                                 |
|                | Nickel<br>Lead<br>Zinc                                             | [Ni]<br>[Pb]<br>[Zn] | 7<br>5<br>79                            | 8<br>6<br>59                        | 2<br>2<br>5                               | 5<br>6<br>30                       | 7<br>4<br>16                 |         |         |                                 |
| 9 <b>2</b> 776 | Vanadium<br>Strontium<br>Cobalt                                    | [Co]                 | 16<br>180<br>3                          | 78<br>65<br>12                      | 53                                        | 110<br>20<br>10                    | 26<br>4<br>3                 |         |         |                                 |
|                | Molybdenum<br>Silver<br>Cadmium                                    | [pA]<br>[b]]         | < 2<br>< 1<br>< 1                       | < 2<br>< 1<br>< 1                   | < 2<br>< 1<br>< 1                         | < 2<br>< 1<br>< 1                  | < 2<br>< 1<br>< 1            |         |         |                                 |
|                | Beryllium<br>Boron<br>Antimony                                     | [Be]<br>[B]<br>[Sb]  | $\langle 1 \\ \langle 10 \\ 10 \rangle$ | < 1<br>< 10<br>< 5                  | <pre> &lt; 1 &lt; 10 &lt; 5 </pre>        | <pre> &lt; 1 &lt; 10 &lt; 5 </pre> | < 1<br>< 10<br>5             |         |         |                                 |
|                | Yttrium<br>Scandium<br>Tungsten                                    | [Y ]<br>[Sc]<br>[W ] | 4<br>3<br>< 10                          | 11<br>13<br>< 10                    | <pre> &lt; 1 &lt; 1 &lt; 1 &lt; 10 </pre> | 3<br>7<br>< 10                     | 1<br>2<br>< 10               |         |         |                                 |
|                | Niobium<br>Thorium<br>Arsenic                                      | [Nb]<br>[Th]<br>[As] | < 10<br>< 10<br>15                      | < 10<br>20<br>< 5                   | < 10<br>< 10<br>< 5                       | < 10<br>10<br>< 5                  | < 10<br>< 10<br>10           |         |         |                                 |
|                | Bismuth<br>Tin<br>Lithium                                          | (Bi)<br>[Sn]<br>[Li] | (5)<br>(10)<br>(5)                      | <pre>&lt; 5 &lt; 5 &lt; 10 15</pre> | <pre>&lt; 5 &lt; 10 &lt; 5</pre>          | <pre>&lt; 5 &lt; 10 &lt; 5</pre>   | < 5<br>< 10<br>< 5           |         |         |                                 |
|                | Holmium                                                            | [Ho]                 | < 10                                    | < 10                                | < i0                                      | < 10                               | < 10                         |         |         |                                 |

DATE : SEP-26-1990

SIGNED : <u>Bernie Dunn</u>

100

|                                           |                                                                                  | SASKATOON, SASKATCHE<br>S71<br>(306) 931-1033 FAX: (306) 242 |
|-------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                           | CERTIFICATE OF ANAL                                                              | LYSIS                                                        |
| SAMPLE(S) FROM                            | OreQuest Consultants Ltd.<br>306 - 595 Howe Street<br>Vancouver, B.C.<br>V6C 2T5 | REPORT No.<br>S1061                                          |
| SAMPLE(S) OF RC                           | ock                                                                              | INVOICE #: 15570<br>P.O.: R2588                              |
|                                           | P. Brucciani<br>Project LANCE 4                                                  |                                                              |
|                                           |                                                                                  |                                                              |
|                                           | Au<br>ppb                                                                        |                                                              |
| 60551<br>60552<br>60553<br>60554<br>60555 | <5<br><5<br><5<br>10                                                             |                                                              |
| 60556<br>60557<br>60558<br>60559<br>60560 | 180<br><5<br><5<br><5<br><5                                                      |                                                              |
| 60561<br>60562<br>60563<br>60564<br>60565 | <5<br><5<br><5<br><5<br>5                                                        |                                                              |
| 60566<br>60567<br>60568<br>60569<br>60570 | 30<br><5<br><5<br><5<br><5                                                       |                                                              |
| COPIES 1<br>INVOICE 1                     | 90: B. Dewonck, J. Chapman<br>90: OreQuest - Vancouver                           |                                                              |

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 1 of 2

|                          |                                                      | TSL LABORATORIE                                                 |
|--------------------------|------------------------------------------------------|-----------------------------------------------------------------|
|                          |                                                      | 2 - 302 - 48th STREET, I                                        |
|                          |                                                      | SASKATOON, SASKATCHE<br>S71<br>34 (306) 931-1033 FAX: (306) 242 |
| , –                      | CERTIFICATE OI                                       | FANALYSIS                                                       |
| SAMPLE(S) FROM           | OreQuest Consultants Ltd                             | •                                                               |
|                          | 306 - 595 Howe Street<br>Vancouver, B.C.<br>V6C 2T5  | REPORT No.<br>S1061                                             |
|                          |                                                      | INVOICE #: 15570                                                |
| SAMPLE(S) OF RO          | CK                                                   | P.O.: R2588                                                     |
|                          | P. Brucciani<br>Project LANCE 4                      |                                                                 |
|                          |                                                      |                                                                 |
|                          | Au<br>ppb                                            |                                                                 |
| 60571                    | <5                                                   |                                                                 |
| 60572<br>60573           | 50<br>50                                             |                                                                 |
| 60501                    | 15                                                   |                                                                 |
| 60502                    | 15                                                   |                                                                 |
| 60503                    | 15                                                   |                                                                 |
| 60504                    | 5                                                    |                                                                 |
| 60505                    | 15                                                   |                                                                 |
| 60506<br>60507           | <5<br><5                                             |                                                                 |
| 00007                    | <b>U</b>                                             |                                                                 |
| 60508                    | <5                                                   |                                                                 |
| 60509                    | 5                                                    |                                                                 |
| 60510<br>60511           | 15                                                   |                                                                 |
| 60512                    | 10<br>10                                             |                                                                 |
|                          |                                                      |                                                                 |
| 60513<br>60514           | 5                                                    |                                                                 |
| 60514                    | 5<br>80                                              |                                                                 |
| 60516                    | 20                                                   |                                                                 |
| 60517                    | 15                                                   |                                                                 |
| COPIES T<br>INVOICE T    | 0: B. Dewonck, J. Chapman<br>0: OreQuest - Vancouver | n                                                               |
| Sep 21/90                | SIGNED                                               | Dim Pilinih                                                     |
| For enquiries on this re | port, please contact Customer Service Departi        | Page 2 of 2                                                     |

Samples, Pulps and Rejects discarded two months from the date of this report.

- .

T.S.L. LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| -           | OREQUEST CONSUL<br>306 - 595 HOWE<br>VANCOUVER, B.C.<br>V6C 275 | STREET |         |              |        |        |                           | T.S.L.<br>T.S.L.<br>T.S.L. | File        | No. : S -<br>No. : M -<br>No. : 156 | 8122       |             |
|-------------|-----------------------------------------------------------------|--------|---------|--------------|--------|--------|---------------------------|----------------------------|-------------|-------------------------------------|------------|-------------|
| -man,       | ATTN: B. DEWON                                                  | CK, J. | Chapman | PROJECT: L   | ANCE 4 | R-2588 |                           |                            | ALL RESL    | ILTS PPM                            |            |             |
| <b>3</b> 54 | ELEMENT                                                         |        | 60551   | 60552        | 60553  | 60554  | 60555                     | 60556                      | 60557       | 60558                               | 60559      | 60560       |
|             | Aluminum                                                        | [A1]   | 2400    | 9800         | 15000  | 12000  | 12000                     | 9300                       | 2200        | 9300                                | 5900       | 8300        |
|             | Iron                                                            | [Fe]   | 10000   | 22000        | 30000  | 25000  | 22000                     | 18000                      | 5200        | 69000                               | 110000     | 24000       |
|             | Calcium                                                         | [Ca]   | 140000  | 15000        | 28000  | 11000  | 8700                      | 4400                       | 7600        | 1000                                | 120        | 57000       |
|             | Magnesium                                                       | [Ma]   | 4200    | 3500         | 4600   | 5200   | 5900                      | 5200                       | 1400        | 4700                                | 960        | 4500        |
| **          | Sodium                                                          | [Na]   | 50      | 90           | 120    | 260    | 180                       | 90                         | 60          | 150                                 | 110        | 170         |
|             | Potassium                                                       | [K ]   | 120     | 510          | 1200   | 1200   | 800                       | 400                        | 490         | 880                                 | 780        | 650         |
|             | Titanium                                                        | [Ti]   | < 1     | 12           | 11     | 110    | 50                        | 24                         | 8           | 10                                  | 10         | 130         |
|             | Manoanese                                                       | [Mn]   | 1900    | 410          | 800    | 950    | 950                       | 830                        | 290         | 290                                 | 85         | 740         |
|             | Phosphorus                                                      |        | 26      | 400          | 1400   | 1000   | 700                       | 300                        | 160         | 1100                                | 790        | 730         |
|             | Barium                                                          | [Ba]   | 150     | 48           | 93     | 470    | 1100                      | 1300                       | 1100        | 280                                 | 48         | 80          |
|             | Chromium                                                        | [Cr]   | 6       | 73           | 13     | 27     | 65                        | 71                         | 90          | 27                                  | 27         | 33          |
| -           | Zirconium                                                       | [Zr]   | 1       | 2            | 5      | 5      | 3                         | 2                          | < 1         | 11                                  | 17         | 8           |
|             | Copper                                                          | (Cu)   | 16      | 9            | 20     | 21     | 37                        | 150                        | 470         | 86                                  | 83         | -<br>92     |
|             | Nickel                                                          | [Ni]   | 2       | 2            | < 1    | 3      |                           | 2                          | i           | 1                                   | 2          | 4           |
|             | Lead                                                            | (Pb)   | 2       | 5            | 5      | 4      | 2                         | 3                          | 2           | 20                                  | 28         | 4           |
| لسور        | Zinc                                                            | [Zn]   | 26      | 40           | 64     | 52     | 60                        | 52                         | 12          | 32<br>32                            | 81         | 29          |
|             | Vanadium                                                        | EV 1   | 5       | 22           | 30     | 33     | 40                        | 31                         | 8           | 76                                  | 55         | 58          |
|             | Strontium                                                       | [Sr]   | 600     | 54           | 96     | 56     | 58                        | 53                         | 51          | 13                                  | 3          | 74          |
| ***         | Cobalt                                                          | [Co]   | 3       | 4            | 6      | 9      | 8                         | 7                          | 3           | 3                                   | 1          |             |
|             | Molybdenum                                                      |        | < 2     | 2            | < 2    | < 2    | $\langle \tilde{2}$       | 2                          | < Ž         | 4                                   | 20         | 6<br>〈 2    |
|             | Silver                                                          | [Ag]   | < 1     | < 1          | < 1    | < 1    | < 1                       | < 1                        | < 1         | < 1                                 | < 1        | < 1         |
|             | Cadmium                                                         | [Cd]   | < 1     | < 1          | < 1    | < 1    | $\langle \hat{1} \rangle$ | $\langle 1$                | $\langle 1$ | $\langle 1$                         | - À İ      | $\langle 1$ |
| #79~L       | Beryllium                                                       | [Be]   | < 1     | < 1          | < 1    | < 1    | < 1                       | < 1                        | < 1         | < 1                                 | < 1        | < 1         |
|             | Baron                                                           | EB 3   | < 10    | < 10         | < 10   | < 10   | < <u>10</u>               | < 10                       | (10         | < 10                                | < 10       | < 10        |
|             | Antimony                                                        | (Sb)   | < 5     | < 5          | < 5    | < 5    | < 5                       | 5                          | < 5         | 20                                  | 40         |             |
|             | Yttrium                                                         | [Y]    |         | 2            | 8      | 8      | Š.                        | 3                          | 1           | 2                                   | 2          | < 5<br>7    |
|             | Scandium                                                        | (Sc)   | < 1     | < 1          | ŝ      | 3      | 2                         | 1                          | < 1         | 5                                   | 3          | 9           |
|             | Tungsten                                                        | [₩]    | < 10    | < 10         | < 10   | < 10   | < 10                      | < 10                       | < 10        | < 10                                | < 10       | < 10        |
| _           | Niobium                                                         | [Nb]   | < 10    | < 10         | < 10   | < 10   | < 10                      | < 10                       | < 10        | < 10                                | < 10       |             |
| -           | Thoriua                                                         | [Th]   | < 10    | < 10<br>< 10 | 60     | 60     | < 10                      | 30                         | < 10        | × 10<br>40                          | × 10<br>40 | < 10<br>40  |
|             | Arsenic                                                         | [As]   | 15      | 5            | < 5    | 10     | < 5                       | < 5                        | < 5         | 75                                  | 230        | 10          |
|             | Bisauth                                                         | [Bi]   | 20      | < 5          | . 5    |        | 10                        | 10                         | 15          | < 5                                 | < 5        | 10          |
| 58-3-3      | Tin                                                             | [5n]   | < 10    | < 10         | < 10   | < 10   | < 10                      | < 10                       | < 10        | < 10                                | < 10       | < 10        |
|             | Lithium                                                         | [Li]   | < 5     | < 5          | < 5    | < 5    | < 5                       | < 5                        | < 5         | < 5                                 | < 5        | < 10<br>< 5 |
|             | Holmium                                                         | (Ho)   | 10      | < 10         | < 10   | < 10   | < 10                      | < 10                       | < 10        | < 10                                | < 10       |             |
| -           | :                                                               |        | 10      | x 19         | v 10   | < 1V   | N 10                      | N 19                       | N 2V        | × 10                                | × 10       | < 10        |
|             |                                                                 |        |         |              |        |        |                           |                            |             |                                     |            |             |

DATE : SEP-26-1990

-

SIGNED : Bernie Punn

4

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

|        | OREQUEST CONSUL<br>306 - 595 HOWE (<br>VANCOUVER, B.C.          |                                              | TD.                                                    |                                                        |                                                    |                                            |                                                    | T.S.L.<br>T.S.L.<br>T.S.L.                 | File                                         | No. : S -<br>No. : SE25<br>No. : 1566    | MD                                               |                                              |
|--------|-----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------------|
| anda.  | V&C 2T5<br>ATTN: B. DEWONG                                      | ж, ј. (                                      | Chapman                                                | PROJECT:                                               | LANCE 4                                            | R-2586                                     |                                                    |                                            | ALL RESU                                     | LTS PPM                                  |                                                  |                                              |
| on-m-  | ELEMENT                                                         |                                              | 60561                                                  | 60562                                                  | 60563                                              | 60564                                      | 60565                                              | 60566                                      | 60567                                        | 60568                                    | 60569                                            | 60570                                        |
|        | Aluminum<br>Iron<br>Calcium<br>Magnesium<br>Sodium<br>Potassium | [A])<br>[Fe]<br>[Ca]<br>[Mg]<br>[Na]<br>[K]] | 1900<br>13000<br>1000<br>980<br>100<br>400             | 1400<br>7500<br>540<br>140<br>60<br>1000               | 8500<br>100000<br>160<br>1300<br>30<br>1200        | 2200<br>15000<br>1800<br>550<br>210<br>900 | 1700<br>32000<br>3300<br>570<br>260<br>1100        | 5700<br>27000<br>660<br>1900<br>40<br>1300 | 13000<br>150000<br>2100<br>5000<br>30<br>210 | 1100<br>4600<br>1700<br>160<br>50<br>560 | 320<br>1100<br>220<br>40<br>20<br>220            | 3900<br>39000<br>120000<br>9500<br>60<br>540 |
|        | Titanium<br>Manganese<br>Phosphorus<br>Barium                   | [Ti]<br>[Mn]<br>[P]]<br>[Ba]                 | 5<br>160<br>270<br>85                                  | 5<br>26<br>250<br>1400                                 | 31<br>250<br>360<br>540                            | 9<br>170<br>670<br>760                     | 11<br>89<br>930<br>48                              | 6<br>36<br>450<br>27                       | 23<br>880<br>290<br>11                       | 1<br>73<br>58<br>1900                    | 2<br>31<br>12<br>2000                            | <pre>&lt; 1 2800 120 550</pre>               |
| -      | Chromium<br>Zirconium<br>Copper<br>Nickel                       | (Cr]<br>(Zr]<br>(Cu]<br>(Ni]                 | 95<br>3<br>26<br>2                                     | 64<br>2<br>12<br>≺ 1                                   | 130<br>20<br>110<br>10<br>45                       | 74<br>4<br>11<br>2                         | 43<br>5<br>9<br>3                                  | 51<br>4<br>15<br>3                         | 69<br>44<br>1200<br>380                      | 94<br>2<br>20<br>9                       | 19<br>< 1<br>4<br>< 1                            | 12<br>8<br>13<br>1                           |
|        | Lead<br>Zinc<br>Vanadium                                        | [Pb]<br>[Zn]<br>[V]]                         | 4<br>ç<br>16                                           | 4<br>13<br>4                                           | 22<br>52                                           | 18<br>56<br>12                             | 6<br>12<br>13                                      | 9<br>19<br>27                              | 66<br>630<br>95                              | 24<br>46<br>3                            | 3<br>7<br>< 1                                    | 3<br>49<br>27                                |
| -      | Strontium<br>Cobalt<br>Molybdenum<br>Silver                     | (Sr]<br>(Co]<br>[Mo]<br>[Ag]                 | 5<br>1<br>< 2<br>< 1                                   | 79<br>2<br>2<br>< 1                                    | 13<br>32<br>8<br>< 1                               | 16<br>5<br>< 2<br>< 1                      | 30<br>7<br>< 2<br>< 1                              | 11<br>6<br>< 2<br>2                        | 5<br>310<br>< 2<br>7                         | 34<br>8<br>4<br>∢ 1                      | 90<br>3<br>< 2<br>< 1                            | 330<br>11<br>< 2<br>1                        |
|        | Cadmium<br>Beryllium<br>Boron<br>Antimony                       | [Cd]<br>[Be]<br>[B]<br>[Sb]                  | <pre></pre>                                            | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 10 &lt; 15</pre> | < 1<br>< 1<br>< 10<br>15                           | < 1<br>< 1<br>< 10                         | <pre></pre>                                        | < 1<br>< 1<br>< 10<br>10                   | 5<br>< 1<br>< 10                             | < 1<br>< 1<br>< 10                       | <pre> &lt; 1 &lt; 1 &lt; 1 &lt; 10 &lt; 5 </pre> | <pre> &lt; 1 &lt; 1 &lt; 1 &lt; 10 </pre>    |
|        | Yttrium<br>Scandium<br>Tungsten                                 | EY ]<br>ESc]<br>EW ]                         | <ul> <li>&lt; 1</li> <li>2</li> <li>&lt; 10</li> </ul> | <pre> 13 &lt; 1 1 &lt; 10 </pre>                       | 13<br>2<br>9<br>< 10                               | 5<br>2<br>4<br>< 10                        | 10<br>3<br>4<br>< 10                               | 10<br>1<br>3<br>< 10                       | 5<br>5<br>6<br>20                            | < 5<br>< 1<br>1<br>< 10                  | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 10</pre>   | 20<br>11<br>4<br>< 10                        |
| -      | Niobium<br>Thorium<br>Arsenic                                   | [N6]<br>[Th]<br>[As]                         | < 10<br>< 10<br>10                                     | < 10<br>< 10<br>35                                     | < 10<br>10<br>140                                  | < 10<br>< 10<br>60                         | < 10<br>< 10<br>95                                 | < 10<br>< 10<br>180                        | < 10<br>70<br>240                            | <pre>&lt; 10 &lt; 10 &lt; 5</pre>        | <pre>&lt; 10 &lt; 10 &lt; 5</pre>                | < 10<br>70<br>< 5                            |
|        | Bismuth<br>Tin<br>Lithium<br>Holmium                            | [Bi]<br>[Sn]<br>[Li]<br>[Ho]                 | < 5<br>< 10<br>< 5<br>< 10                             | < 5<br>< 10<br>< 5<br>< 10                             | <pre> &lt; 5 &lt; 10 &lt; 5 &lt; 10 &lt; 10 </pre> | < 5 < 10 < 5 < 10                          | <pre> &lt; 5 &lt; 10 &lt; 5 &lt; 10 &lt; 10 </pre> | < 5 < 10 < 5 < 10                          | < 5 < 10 < 5 < 10                            | 15<br>< 10<br>< 5<br>< 10                | 15<br>< 10<br>< 5<br>< 10                        | 10<br>< 10<br>< 5<br>10                      |
| 5-17%. |                                                                 |                                              |                                                        |                                                        |                                                    |                                            |                                                    |                                            |                                              |                                          |                                                  |                                              |

DATE : SEP-26-1990

SIGNED : Bernie Purn

7

٠

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

|        | OREQUEST CONSUL<br>306 - 595 HOWE (<br>VANCOUVER, B.C.<br>V6C 2T5 |        |         |                 |                                          |              |                                          | T.S.L.<br>T.S.L.<br>T.S.L. | File              | Na. : S -<br>Na. : SE2<br>Na. : 156 | 5MD                               |                                   |
|--------|-------------------------------------------------------------------|--------|---------|-----------------|------------------------------------------|--------------|------------------------------------------|----------------------------|-------------------|-------------------------------------|-----------------------------------|-----------------------------------|
| ,      | ATTN: B. DEWON                                                    | СК, Ј. | Chapman | PROJECT: L      | ANCE 4                                   | R-2588       |                                          |                            | ALL RESU          | LTS PPM                             |                                   |                                   |
| **     | ELEMENT                                                           |        | 60571   | 60572           | 60573                                    | 60501        | 60502                                    | 60503                      | 60504             | 60505                               | 60506                             | 60507                             |
|        | Aluminum                                                          | [A1]   | 900     | 2000            | 1500                                     | 8300         | 630                                      | 6400                       | 1200              | 15000                               | 5500                              | 6600                              |
| 2005   | Iron                                                              | [Fe]   | 13000   | 30006           | 25000                                    | 29000        | 7400                                     | 27000                      | 6200              | 35000                               | 65000                             | 54000                             |
|        | Calcium                                                           | [Ca]   | 17000   | 2200            | 3600                                     | 2600         | 140000                                   | 6400                       | 140000            | 27000                               | 9300                              | 1600                              |
|        | Maonesium                                                         | [Ma]   | 840     | 360             | 860                                      | 2600         | <b>45</b> 00                             | 2700                       | 3400              | 7100                                | 2600                              | 3300                              |
|        | Sodium                                                            | ENa]   | 50      | 60              | 40                                       | 260          | 40                                       | 190                        | 50                | 270                                 | 600                               | 230                               |
|        | Potassium                                                         | [K ]   | 340     | 1500            | 1600                                     | 1000         | 340                                      | 1100                       | 240               | 900                                 | 1900                              | 1700                              |
|        | Titanium                                                          | [Ti]   | 2       | 4               | 14                                       | 12           | < 1                                      | 9                          | < 1               | 48                                  | 15                                | 13                                |
|        |                                                                   | [Mn]   | 600     | 76              | 95                                       | 160          | 1100                                     | 130                        | 1600              | 860                                 | 220                               | 200                               |
|        | Phosohorus                                                        |        | 260     | 230             | 460                                      | 1000         | < 2                                      | 680                        | 44                | <b>87</b> 0                         | 870                               | 920                               |
|        | Barium                                                            | [Ba]   | 270     | 21              | 23                                       | 34           | 160                                      | 33                         | 390               | 83                                  | 180                               | 65                                |
|        | Chromium                                                          | [Cr]   | 94      | 61              | 35                                       | 45           | 15                                       | 17                         | 16                | 18                                  | 13                                | 17                                |
|        | Zirconium                                                         | [Zr]   | 4       | 4               | 4                                        | 4            | < 1                                      | 4                          | < 1               | 8                                   | 5                                 |                                   |
| -      | Copper                                                            | [Cu]   | 13      | 10              | 6                                        | 27           | 4                                        | 76                         | 10                | 39                                  | 32                                | 36                                |
|        | Nickel                                                            | ENi]   | 7       |                 | 1                                        |              | < 1                                      | .0                         | < 1               | 4                                   | < 1                               | < 1                               |
|        | Lead                                                              | [Pb]   | 7       | -               | 7                                        | 32           | < <b>i</b>                               | 26                         | < 1               | 4                                   | 25                                | 19                                |
|        | Zinc                                                              | [Zn]   | 16      | 10              | . 7                                      | 31           | 7                                        | 16                         |                   | 52                                  | 25<br>18                          | 21                                |
|        | Vanadium                                                          | [V]    | 20      | 7               | 6                                        | 22           | 1                                        | 14                         | 2                 | 78                                  | 89                                | 58                                |
|        | Strontium                                                         | [Sr]   | 20      | , 6             | 12                                       | 37           | 670                                      | 26                         | 1000              | 110                                 | 67<br>67                          | 58<br>12                          |
|        | Cobalt                                                            | [[0]]  | 4       |                 | 12                                       |              |                                          |                            |                   |                                     |                                   |                                   |
|        | Molybdenum                                                        |        | < 2     | <b>6</b><br>< 2 | < 2                                      | 7<br>2       | 1<br>< 2                                 | 9<br>2                     | < 2               | 10<br>< 2                           | 2<br>18                           | 3<br>4                            |
|        | •                                                                 |        |         |                 |                                          |              |                                          |                            |                   |                                     |                                   |                                   |
|        | Silver                                                            | [Ag]   | < 1     | · +             | < 1<br>< 1                               | 1            | $\langle 1 \\ \langle 1 \rangle$         | < 1                        | < <u>1</u><br>< 1 | < 1<br>< 1                          | $\langle 1 \\ \langle 1 \rangle$  | < 1<br>< 1                        |
|        | Cadmium                                                           | [6]]   | < 1     | 1               |                                          | < 1          |                                          |                            |                   |                                     |                                   |                                   |
|        | Beryllium                                                         | [Be]   | < 1     | < 1             | <ul><li>&lt; 1</li><li>&lt; 10</li></ul> | < 1<br>< 10  | <ul><li>&lt; 1</li><li>&lt; 10</li></ul> | < 1<br>< 10                | < 1<br>< 10       | < 1<br>< 10                         | $\langle 1 \\ \langle 10 \rangle$ | $\langle 1 \\ \langle 10 \rangle$ |
|        | Boron                                                             | [B]    | < 10    | < 10            |                                          |              |                                          |                            |                   |                                     |                                   |                                   |
| entre, | Antimony                                                          | [55]   | 10      | 5               | 5                                        | < 5          | < 5                                      | 5                          | < 5               | 5                                   | 35                                | 10                                |
|        | Yttrium                                                           | [Y]    | 3       | < 1             | 2                                        | 6            | 2                                        | 4                          | 3                 | 7                                   | 3                                 | 2                                 |
|        | Scandium                                                          | [Sc]   | 3       | 3               | 4                                        | 2            | $\langle 1$                              | 3                          | < 1               | 7                                   | 4                                 | 3                                 |
|        | Tungsten                                                          | [W]    | < 10    | < 10            | < 10                                     | < 10         | < 10                                     | < 10                       | < 10              | < 10                                | < 10                              | < 10                              |
| يو دو  | Niobium                                                           | [Nb]   | < 10    | < 10            | < 10                                     | < 10         | < 10                                     | < 10                       | < 10              | < 10                                | ( 10                              | < 10                              |
|        | Thorium                                                           | [Th]   | < 10    | < 10            | < 10                                     | < 10         | < 10                                     | < 10                       | < 10              | 40                                  | 30                                | 30                                |
|        | Arsenic                                                           | [As]   | 20      | 160             | 180                                      | 15           | 15                                       | 35                         | 15                | 15                                  | 140                               | 50                                |
| ,,     | Bismuth                                                           | [Bi]   | 10      | < 5             | < 5                                      | < 5          | 20                                       | < 5                        | 25                | 10                                  | < 5                               | < 5                               |
|        | Tin                                                               | [Sn]   | < i0    | < 10            | < 10                                     | < 10         | < 10                                     | < 10                       | < 10              | < 10                                | < 10                              | < 10                              |
|        | Lithium                                                           | [Li]   | < 5     | < 5             | < 5                                      | < 5          | < 5                                      | < 5                        | < 5               | 5                                   | < 5                               | < 5                               |
|        | Holmium                                                           | [Ho]   | < 10    | < 10            | < 10                                     | < <b>i</b> 0 | 20                                       | < 10                       | 20                | < 10                                | < 10                              | < 10                              |
|        |                                                                   |        |         |                 |                                          |              |                                          |                            |                   |                                     |                                   |                                   |

DATE : SEP-26-1990

SIGNED : Remie Vunn

...

. 7

-

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

#### I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| <i>p</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OREQUEST CONSUL<br>306 - 595 HOWE S<br>VANCOUVER, B.C.<br>V6C 215 |       |         |             |       |        |       | T.S.L.<br>T.S.L.<br>T.S.L. | File<br>Invoice | Na. : 5 -<br>No. : SE2<br>Na. : 156 | 5MD   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|---------|-------------|-------|--------|-------|----------------------------|-----------------|-------------------------------------|-------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATTN: B. DEWONG                                                   | ж, ј. | Chapman | PROJECT: LA | NCE 4 | R-2588 |       |                            | ALL RESU        | LTS PPM                             |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |       | 60508   | 60509       | 60510 | 60511  | 60512 | 60513                      | 60514           | 60515                               | 60516 | 60517 |
| Sens?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELEMENT                                                           |       |         |             |       |        |       |                            |                 |                                     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aluminum                                                          | [A]]  | 7900    | 11000       | 26000 | 13000  | 16000 | 2400                       | <b>6</b> 70     | 5200                                | 490   | 2200  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iron                                                              | [Fe]  | 23000   |             | 41000 | 34000  | 35000 | 9600                       | 3400            | 31000                               | 2800  | 4700  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcium                                                           | [Ca]  | 74000   |             | 3900  | 2000   | 5200  | 420                        | 220             | 640                                 | 100   | 140   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maonesium                                                         | [Ma]  | 4300    |             | 9300  | 6200   | 6800  | 1400                       | 340             | 2200                                | 180   | 190   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sodium                                                            | [Na]  | 140     | 210         | 160   | 170    | 160   | 60                         | 40              | 100                                 | 20    | 40    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potassium                                                         | EK 1  | 740     |             | 560   | 940    | 970   | 330                        | 170             | 2500                                | 220   | 720   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Titanium                                                          | [Ti]  | 27      | 16          | 350   | 920    | 610   | 39                         | 15              | 14                                  | 3     | 7     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manganese                                                         | [Mn]  | 1100    | 360         | 1100  | 370    | 530   | 160                        | 46              | 56                                  | 10    | 24    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phosphorus                                                        | [P]   | 540     | 1100        | 910   | 910    | 900   | 130                        | 40              | 670                                 | 56    | 100   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barium                                                            | [Ba]  | 59      | 54          | 110   | 46     | 83    | 41                         | 56              | 37                                  | 1000  | 1900  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chromium                                                          | [Cr]  | 25      | 27          | 30    | 26     | 26    | 91                         | 150             | 47                                  | 29    | 34    |
| and the second s | Zirconium                                                         | [[7]  | 5       |             | 14    | 10     | 11    | 1                          | < 1             | 7                                   | < 1   | < 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper                                                            | [Cu]  | 39      | 26          | 91    | 49     | 59    | 8                          | 5               | 32                                  | 4     | 5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel                                                            | [Ni]  | 2       |             | 4     | 2      | 4     | 1                          | 4               | < 1                                 | < 1   | 2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lead                                                              | [Pb]  | 6       |             | 13    | 10     | 9     | 2                          | 1               | 26                                  | 2     | 4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zinc                                                              | [Zn]  | 30      |             | 70    | 50     | 54    | 12                         | 5               | 64                                  | 3     | 4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vanadium                                                          | [V ]  | 36      |             | 120   | 79     | 81    | 16                         | 4               | 83                                  | -6    | 9     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strontium                                                         | [Sr]  | 390     | 28          | 17    | 8      | 12    | 2                          | 2               | 9                                   | 77    | 43    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobalt                                                            | [Co]  | 6       |             | 13    | 4      | 7     | 3                          | < 1             | 3                                   | 2     | 3     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molybdenum                                                        |       | 4       |             | < 2   | < 2    | < 2   | < 2                        | 4               | 6                                   | < 2   | 4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver                                                            | [Ag]  | < 1     | < 1         | < 1   | < 1    | < 1   | < i                        | < 1             | 4                                   | < 1   | < 1   |
| يعقو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cadmium                                                           | [p]   | < 1     |             | < 1   | < 1    | < 1   | < 1                        | < 1             | < 1                                 | < 1   | < 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beryllium                                                         | [Be]  | < i     |             | < 1   | < 1    | < 1   | < 1                        | < 1             | < 1                                 | < 1   | < 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boran                                                             | [B]   | < 10    |             | < 10  | < 10   | < 10  | < 10                       | < 10            | < 10                                | < 10  | < 10  |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antimony                                                          | [Sb]  | 5       |             | 5     | 5      | < 5   | < 5                        | < 5             | 35                                  | < 5   | < 5   |
| parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yttrium                                                           | [Y]   | 6       |             | 7     | 2      | 5     | < 1                        | < 1             | 1                                   | < 1   | < 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scandium                                                          | [Sc]  | 4       |             | 14    | 8      | 10    | 2                          | < 1             | 7                                   | < 1   | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tungsten                                                          | [₩]   | < 10    |             | < 10  | < 10   | < 10  | < 10                       | < 10            | < 10                                | < 10  | < 10  |
| , and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Niobium                                                           | [Nb]  | < 10    |             | < 10  | < 10   | < 10  | < 10                       | < 10            | < 10                                | < 10  | < 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thorium                                                           | [Th]  | 50      |             | 60    | 40     | 50    | < 10                       | < 10            | < 10                                | < 10  | < 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic                                                           | [As]  | 35      |             | 25    | 230    | 120   | 15                         | 5               | 180                                 | 15    | 20    |
| ر. <b>م</b> تر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bismuth                                                           | [Bi]  | 10      |             | 5     | < 5    | < 5   | < 5                        | 5               | < 5                                 | 10    | 10    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tin                                                               | [Sn]  | < 10    |             | < 10  | < 10   | < 10  | < 10                       | < 10            | < 10<br>/ E                         | < 10  | < 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lithium                                                           | [Li]  | < 5     |             | 30    | < 5    | < 5   | < 5                        | < 5             | < 5                                 | < 5   | < 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Holmium                                                           | [Ho]  | < 10    | < 10        | < 10  | < 10   | < 10  | < 10                       | < 10            | < 10                                | < 10  | < 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |       |         |             |       |        |       |                            |                 |                                     |       |       |

DATE : SEP-26-1990

SIGNED : Bernie Our

|                |                                                                                  | TSL LABORATORIES                                                  |
|----------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                |                                                                                  | 2 - 302 - 48th STREET, EAST<br>SASKATOON, SASKATCHEWAN<br>S7K 6A4 |
|                |                                                                                  | Ø (306) 931-1033 FAX: (306) 242-4717                              |
|                | CERTIFICATE OF ANA                                                               | LYSIS                                                             |
| SAMPLE(S) FROM | OreQuest Consultants Ltd.<br>306 - 595 Howe Street<br>Vancouver, B.C.<br>V6C 2T5 | REPORT No.<br>S1114                                               |
| AMPLE(S) OF SI | .lt                                                                              | INVOICE #: 15633<br>P.O.: R2579                                   |
| <u></u>        | B. R. LaPeare<br>Project LANCE 4                                                 |                                                                   |
|                |                                                                                  |                                                                   |
|                |                                                                                  |                                                                   |
|                | Au                                                                               |                                                                   |
|                | ppb                                                                              |                                                                   |
| L4101          | 10                                                                               |                                                                   |
| L4102<br>L4103 | 5<br>5                                                                           |                                                                   |
| L4104          | 10                                                                               |                                                                   |
| L4105          | <5                                                                               |                                                                   |
| L4106          | 15                                                                               |                                                                   |
|                |                                                                                  |                                                                   |
|                |                                                                                  |                                                                   |
|                |                                                                                  |                                                                   |
|                |                                                                                  |                                                                   |
|                |                                                                                  |                                                                   |
| X              |                                                                                  |                                                                   |
|                |                                                                                  |                                                                   |
|                |                                                                                  |                                                                   |

COPIES TO: B. Dewonck, J. Chapman INVOICE TO: OreQuest - Vancouver

Sep 26/90

SIGNED

Bernie Dun

For enquiries on this report, please contact Customer Service Department.
 Samples, Pulps and Rejects discarded two months from the date of this report.

Page 1 of 1

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE \*: (306) 931 - 1033 FAX \*: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| , mara             | OREQUEST CONSULT<br>306 - 595 HOWE S<br>VANCOUVER, B.C.<br>V6C 2T5<br>ATTN: B. DEWDWO | STREET            |           | PROJECT:    | I ONFE A    | R-2579         |           | T.S.L. REPORT No. : 5 - 1114 - 1<br>T.S.L. File No. : M - 8163<br>T.S.L. Invoice No. : 15786<br>ALL RESULTS PPM |
|--------------------|---------------------------------------------------------------------------------------|-------------------|-----------|-------------|-------------|----------------|-----------|-----------------------------------------------------------------------------------------------------------------|
|                    | ning of action                                                                        | 200 <b>9</b> 10 1 | QARK TRRS | 11.512011   |             |                |           |                                                                                                                 |
|                    |                                                                                       |                   | L4102     | L4103       | L4104       | L <b>4</b> 105 | L4105     |                                                                                                                 |
|                    | ELEMENT                                                                               |                   |           |             |             |                |           |                                                                                                                 |
| يو <b>م</b> تر     |                                                                                       |                   |           |             |             |                |           |                                                                                                                 |
|                    | Aluminum                                                                              | (A) ]             | 12000     | 12000       | 12000       | 15000          | 14000     |                                                                                                                 |
|                    | Iron                                                                                  | [Fe]              | 30000     | 36000       | 32000       | 39000          | 31000     |                                                                                                                 |
|                    | Calcium                                                                               | (Ca)              | 5900      | 3700        | 4160        | 3200           | 6100      |                                                                                                                 |
|                    | Magnesium                                                                             |                   | 5500      | 5300        | 5400        | 5100           | 3300      |                                                                                                                 |
|                    | Sodium                                                                                | [Na]              | 100       | 80          | 90          | 90<br>         | 60        |                                                                                                                 |
|                    | Potassium                                                                             |                   | 690       | 580         | 710         | 780            | 560       |                                                                                                                 |
| ,                  | Titanium                                                                              | (Ti)              | 210       | 300         | 320         | 69             | 56        |                                                                                                                 |
|                    | Manganese                                                                             |                   | 920       | 780         | <b>89</b> 0 | 1000           | 1700      |                                                                                                                 |
|                    | Phosphorus                                                                            |                   | 920       | 950         | 1100        | 930<br>970     | 1100      |                                                                                                                 |
|                    | Barium                                                                                | (Ba)              | 190       | 160         | 200         | 270            | 250       |                                                                                                                 |
|                    | Chromium                                                                              | [Cr]              | 13        | 8           | 8           | 12             | 12        |                                                                                                                 |
|                    | Zirconium                                                                             |                   | 5         | 6           | 5           | 8              | 5         |                                                                                                                 |
|                    | Copper                                                                                | (Cu)              | 60        | 62<br>5     | 73          | 82<br>13       | 97<br>7   |                                                                                                                 |
|                    | Nickel                                                                                | ENi3              | 5         | 5<br>9      | 5<br>9      | 10<br>10       | 7<br>49   |                                                                                                                 |
|                    | Lead                                                                                  | (Pb)              | 11<br>60  | 7<br>51     | 7<br>55     | 10<br>76       | 47<br>130 |                                                                                                                 |
|                    | Zinc<br>Vanadium                                                                      | [Zn]<br>[V]]      | 60<br>60  | B2          | 55<br>69    | 76<br>75       | 150<br>56 |                                                                                                                 |
| 20 <sup>4</sup> 00 | Strontium                                                                             |                   | 28        | 21          | 24          | 75<br>24       | 51        |                                                                                                                 |
|                    | Cobalt                                                                                | (Ca)              | 10        | 10          | 11          | 14             | 12        |                                                                                                                 |
|                    | Molybdenum                                                                            |                   | < 2       | < 2         | < 2         | < 2            | < 2       |                                                                                                                 |
| ,                  | Silver                                                                                | [Ag]              | < 1       | $\langle 1$ | $\langle 1$ | < 1            | < 1       |                                                                                                                 |
|                    | Cadmium                                                                               | [Cd]              | < 1       | < 1         | < 1         | < 1            | 1         |                                                                                                                 |
|                    | Beryllium                                                                             |                   | < 1       | < 1         | < 1         | (1             | < 1       |                                                                                                                 |
|                    | Baron                                                                                 | [8]               | < 10      | < 10        | < 10        | < 10           | < 10      |                                                                                                                 |
|                    | Antimony                                                                              | (Sb)              | < 5       | < 5         | < 5         | < 5            | 5         |                                                                                                                 |
|                    | Yttrium                                                                               | EY 3              | 8         | 9           | 10          | 9              | 13        |                                                                                                                 |
|                    | Scandium                                                                              | {Sc]              | 5         | 6           | 6           | 10             | 4         |                                                                                                                 |
|                    | Tungsten                                                                              | [₩]               | < 10      | < 10        | < 10        | < 10           | < 10      |                                                                                                                 |
|                    | Niobium                                                                               | (Nb)              | < 10      | < 10        | < 10        | < 10           | < 10      |                                                                                                                 |
|                    | Thorium                                                                               | [Th]              | 40        | 30          | 40          | 30             | 20        |                                                                                                                 |
| n)#inte            | Arsenic                                                                               | (As]              | 10        | 20          | 15          | 15             | 45        |                                                                                                                 |
|                    | Bismuth                                                                               | [Bi]              | 10        | < 5         | < 5         | < 5            | < 5       |                                                                                                                 |
|                    | Tin                                                                                   | [5n]              | < 10      | < 10        | < 10        | < 10           | < 10      |                                                                                                                 |
|                    | Lithium                                                                               | {Li}              | 20        | 20          | 20          | 30             | 25        |                                                                                                                 |
|                    | Holmium                                                                               | (Ho)              | < 10      | < 10        | < 10        | < 10           | < 10      |                                                                                                                 |

DATE : OCT-01-1990

SIGNED : Bernie Dunn

APPENDIX III

-

ومحرور

ANALYTICAL PROCEDURES



DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

| OreQuest Consul<br>306 - 595 Howe<br>Vancouver, B.C.<br>V6C 2T5 | Street                                                                                                                              | Jan.9/90                                                                               |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1 - SAMPLE PRE<br>Rock and (                                    | EPARATION PROCEDURES                                                                                                                |                                                                                        |
|                                                                 | sample is crushed, riffled<br>s pulverized to -150 mesh                                                                             |                                                                                        |
| Soils and<br>- Sample i                                         | Silts<br>is dried and sieved to -80                                                                                                 | ) mesh.                                                                                |
| A<br>đơ                                                         | old (Au ppb) -<br>30g subsample is fused, d                                                                                         | cupelled and the subsequent<br>aqua rega. The solution<br>omic Absorption.             |
| A<br>Se<br>ac                                                   | d (Au oz/ton) -<br>29.16g subsample is fused<br>equent dore' bead is parte<br>cid solution. The gold of<br>Water, annealed and weig | ed with a dilute nitric<br>btained is rinsed with                                      |
| A<br>fo                                                         | lver (Ag ppm) -<br>1g subsample is digested<br>or 1 1/2 to 2 hours, then<br>ne solutions are then run                               |                                                                                        |
| A<br>HI<br>WI                                                   | er (Ag oz/ton) -<br>2.00g sample is digested<br>NO3 for 1 hour in a cover<br>ith 1:1 HC1. The solution<br>psorption.                | with 15mls HCl plus 5mls<br>ed beaker; diluted to 100mls<br>n is run on the Atomic     |
| 4 - BASE ME<br>Geochem -                                        | A lg subsample is diges<br>for 1 1/2 to 2 hours, th                                                                                 | ted with 5mls of aqua rega<br>hen diluted with DI H2O.<br>run on the Atomic Absorption |
| Assay -                                                         | A 0.500g sample is taken<br>HCl plus 5mls HNO3, then<br>HNO3 and diluted to 100n<br>is run on the Atomic Abs                        | n redissolved with 5mls<br>mls with DI H2O. The soluti                                 |

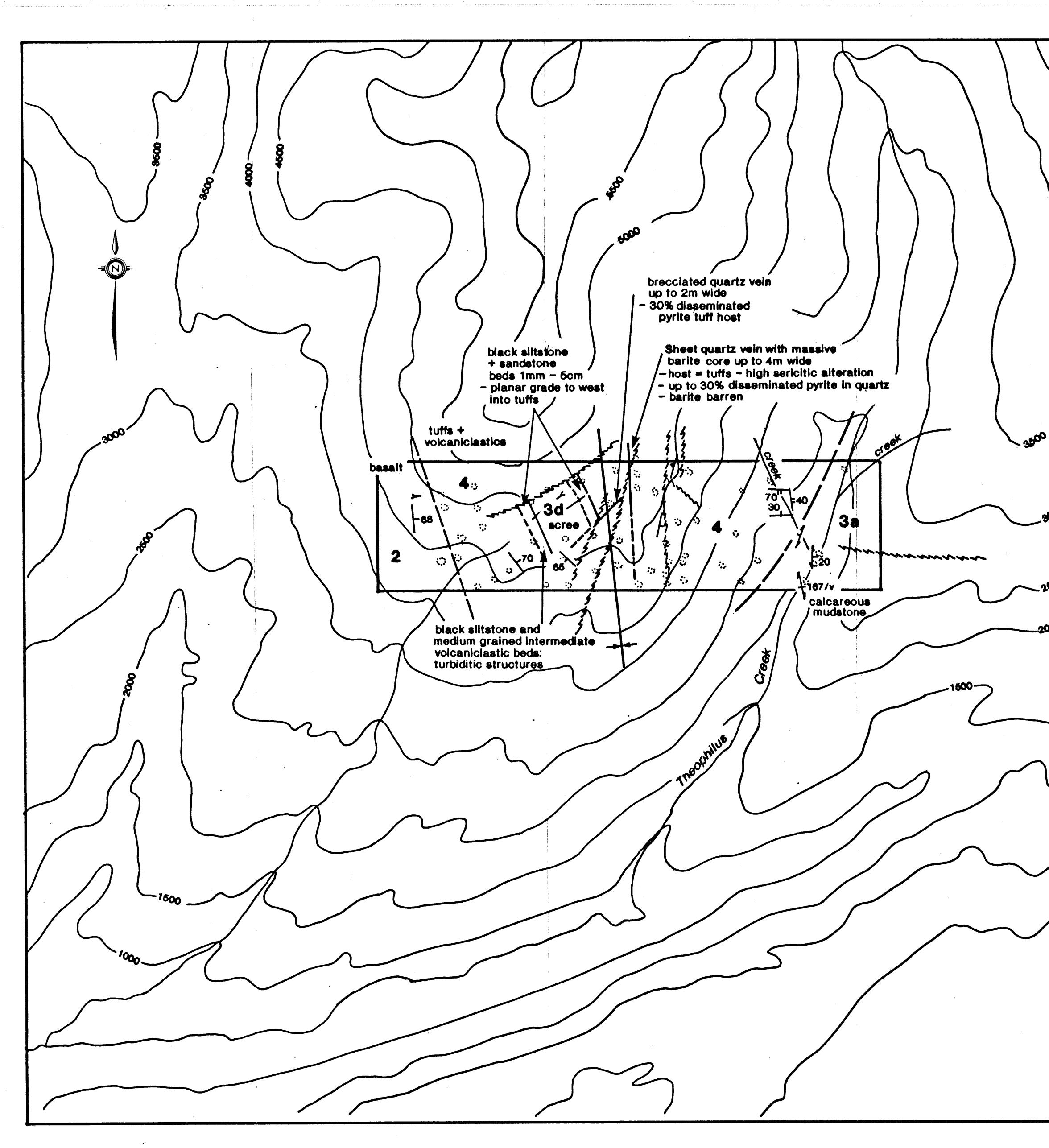


DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -

A lg subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the ICAP.


6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

Yours truly,

Bernie Dunn

Bernie Dunn BD/vh



- 4 - 6 -

- 10 in 10 i

## LEGEND

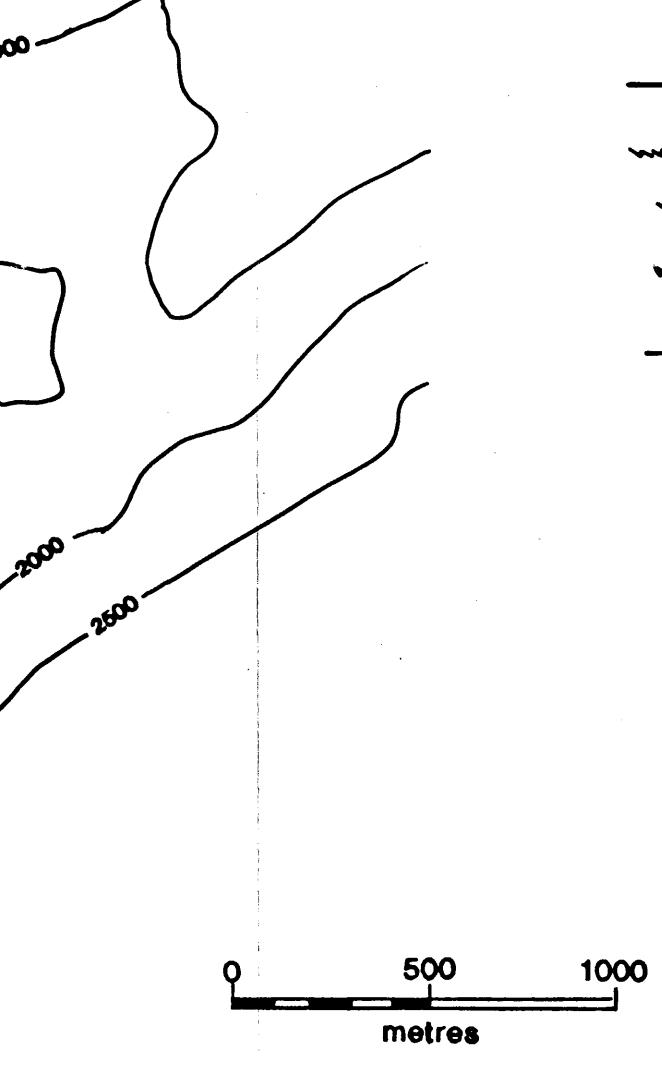
🖕 (r.

## JURASSIC Lower to Middle Jurassic

- MIDDLE VOLCANIC UNIT
  - a Green and minor maroon andesite pyroclastic rocks
  - **b** Feldspar + hornblende andesite porphyry
  - **c** Black siltstone

- in in

d Maroon siltstone, sandstone, and conglomerate


#### MIDDLE SEDIMENTARY UNIT 3

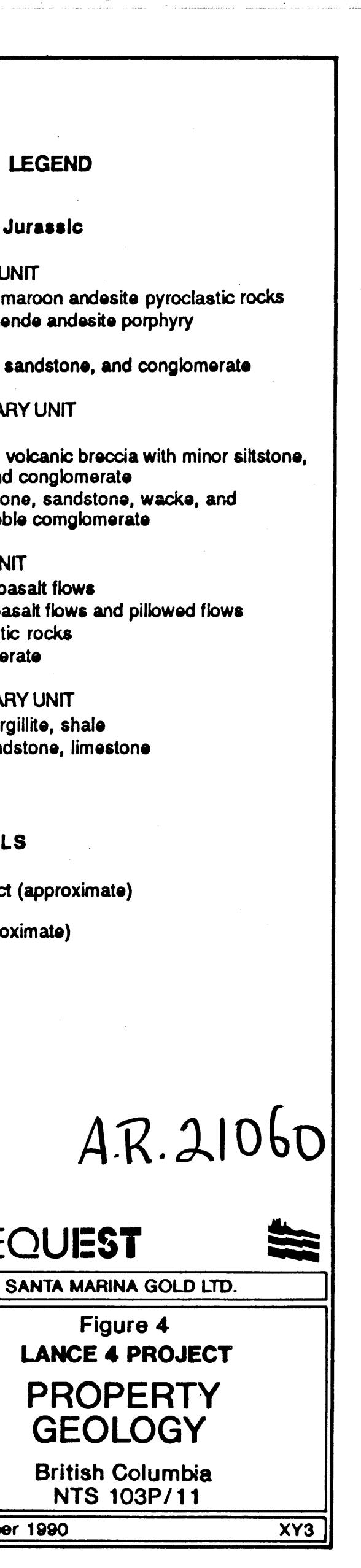
- Black siltstone
- C Green and purple volcanic breccia with minor siltstone, sandstone, and conglomerate
- d Interbedded siltstone, sandstone, wacke, and polymictic pebble comglomerate
- MAFIC VOLCANIC UNIT 2
  - a Olivine porphyry basalt flows
  - **b** Augite porphyry basait flows and pillowed flows
  - **c** Basaltic pyroclastic rocks
  - **d** Basaltic conglomerate
- LOWER SEDIMENTARY UNIT
  - **a** Black siltstone, argillite, shale
  - **b** Black wacke, sandstone, limestone

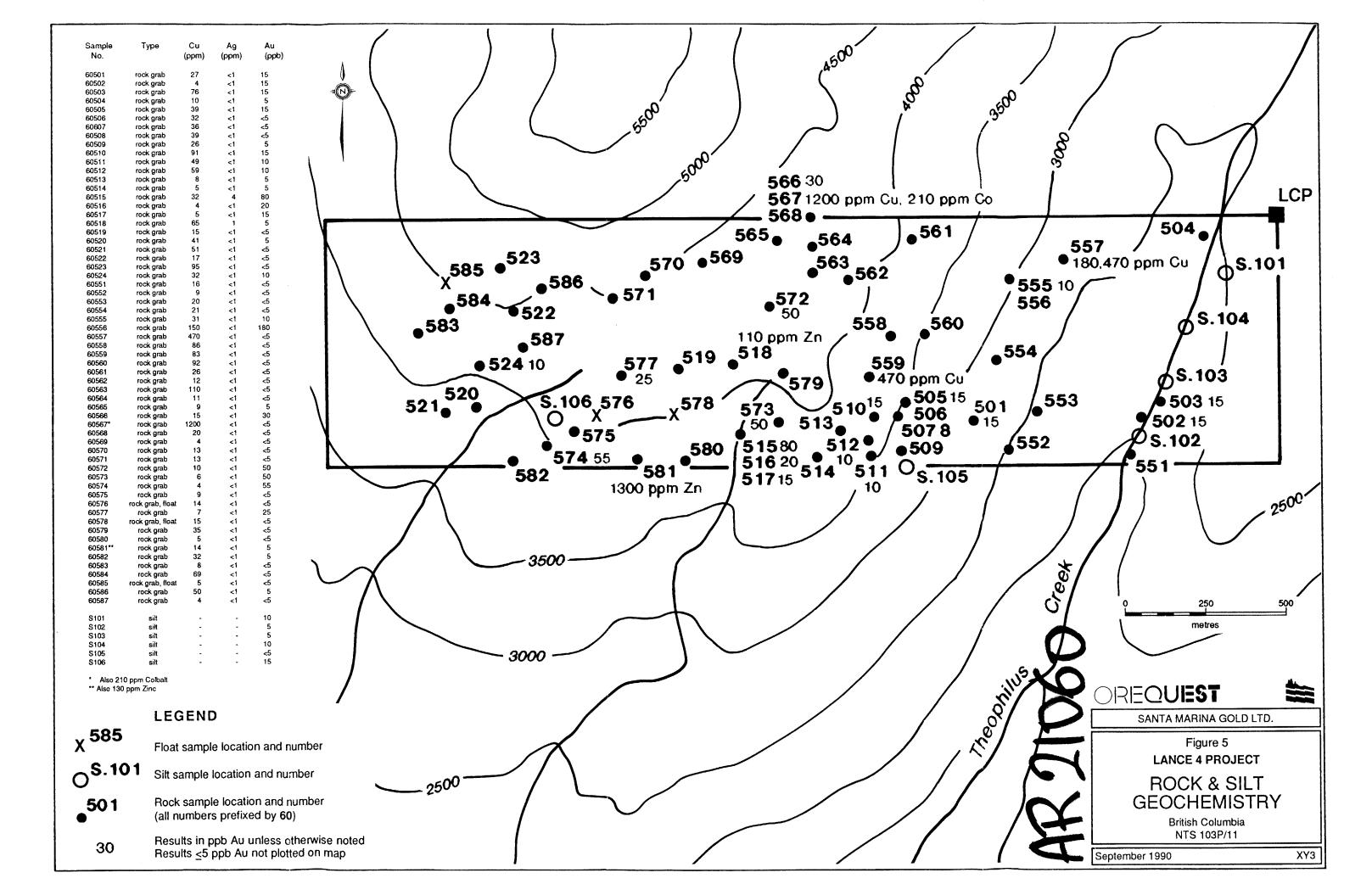
# SYMBOLS

- Geological contact (approximate)
- Fault/shear (approximate)
- X Bedding
- $\sim$ Foliation
- Syncline -------
- Younging ~
  - outcrop

÷.,




•


1

- 6 -

OREQUEST

September 1990



