LOG NO: Th	arch 12/91 RD.
ACTION:	- /
FTLE NO:	

GEOLOGICAL, GEOCHEMICAL, & GEOPHYSICAL

REPORT ON THE

ARC 10, 11, & 12

MINERAL CLAIMS

ARC OPTION

Liard Mining Division N.T.S. 104 B/10E

Latitude: 56' 40' N Longitude: 130' 38' W UX ZC € ₽ 2 🖂 **22 –** fr ◀ 🗄 **U** 🕬 U (*** **O** (5) 12 O () 5 **℃** <

NORANDA EXPLORATION COMPANY, LIMITED (no personal liability)

REPORT BY: ERIC GRILL MIKE SAVELL TED WONG

ł

NOVEMBER, 1990

TABLE OF CONTENTS

1.0	SUMM	IARY		•	•	• •			•	•	•		•		•	•	•	•	•	•	1
2.0	INTR	ODUCI	CION	•	•	•			•		•	•	•		•	•		•	•		2
	2.1	GENE	ERAL F	REMA	ARK	S			•							•			•		2
	2.2	LOCA	TION	& Ζ	ACC	ESS	5														2
	2.3	PHYS	STOGRA	APHY	ζ &	VE	EGE	TAT	r T C	DN	-		-			•					2
	2.4	CLAI	M DAT	ГД																	3
	2 5	DREY		៷៱៲	2K	•		•	•	·	•	Ī	•		•				•	·	จั
3 0	PECT	ONAT.	GEOLO	nor NGV	· · ·		•	•	•	•	•	•	•	•••	•	•	•	•	•	•	<u>л</u>
1 0	NDOI		CEOLO				• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	5
4.0		MAD.	UNITO	1		•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	5
	4.1	MAP	UNIT	1		•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	5
	4.2	MAP	UNIT	2		•	• •	•	•	•	•	•	•	• •	•	٠	•	•	•	•	c c
	4.3	MAP	UNIT	3		•	• •	•	٠	•	•	•	•	• •	•	•	•	•	•	٠	0
	4.4	MAP	UNIT	4		•	•	٠	•	•	•	٠	•	• •	٠	•	٠	•	•	•	/
5.0	GEOC	HEMIS	STRY	•	•	•	• •	•	•	•	٠	٠	•	• •	•	•	•	•	•	•	/
	5.1	SOII	LS .	• •	٠	•	• •	٠	•	•	•	٠	•	• •	٠	٠	•	•	•	•	8
	5.2	ROCI	KS -	•••	•	•	• •	•	•	•	•	٠	•	• •	•	•	•	•	•	•	8
	5.3	SŢRI	EAM SI	EDIN	1EN	TS	•	•	•	•	٠	٠	•	• •	•	•	•	•	•	•	10
6.0	GEOF	HYSIC	CS .	••	•	•			•	•	•	•	•	• •	٠	•	•	•	•	•	10
	6.1	INST	TRUMEN	NTA7	[10	N		•	•	•	•	•			•		•	•	•	•	10
	6.2	DISC	CUSSIC	ON (DF	RES	SUL	TS		•		•			•	•	•	•	•	•	10
7.0	CONC	LUSIC	ONS	•	•	•		•					•		•	•		•	•		11
8.0	RECC	MMENI	OATIO	١S		•		•				•	•				•	•	•		12
9.0	BIBI	IOGR	APHY			•						•			•	•			•		12
APPE APPE APPE APPE	NDIX NDIX NDIX NDIX	I II III IV	Stat Stat Ana Ana	teme teme lyti lyti	ent ica ica	of of I I I I I	f C F Q Pro Res	lost lua loced ult	ts lii dui ts	fic	cat 8	cid	ons								
FIGU	RE 1 RE 2	·	Loca Cla:	atic im S	on Ske	Ske	etc	h		5							1	:8	,0 1:	00 50),000
FIGU	RE 3		Prop	pert	-y	Geo	510	gy											1:	T	,000
FIGU	RE 4		Sam	ple	LO	cat	10	ns			_								1:	10	,000
FIGU	RE 5		Grid	d Ge	εol	ogy	2 -	Sar	np.	le	Γc	DCa	atı	ons					1	::2	2,500
FIGU	RE 6		Grid	d So	bil	Ge	eoc	her	nis	sti	€У	-	Au	ın	PF	dd			1	: 2	2,500
FIGU	RE 7					**						-	Ag	in	PF	m			1	:2	2,500
FIGU	RE 8					84						-	Cu	in	PF	m			1	: 2	2,500
FIGU	RE 9					**						-	Pb	in	PF	m			1	: 2	2,500
FIGU	RE 10)				11						-	Zn	in	PF	m			1	: 2	2,500
FIGU	RE 11					**						-	As	in	pp	m			1	::2	2,500
FIGU	RE 12	2				47						-	$\mathbf{S}\mathbf{b}$	in	pp	m			1	::2	2,500
FIGU	RE 13	5	Grid	1 Ma	agn	eto	ome	te	r S	รินา	rve	≥у		Pro	fil	e			1	::2	2,500
FIGU	RE 14	l,			-								-	Con	tou	ırs			1	:2	2,500

1.0 SUMMARY

In 1989 high-grade gold mineralized float was discovered in moraine at the toe of a glacier located on the southern half of the Arc 10 claim. Samples of pyrite rich quartz float boulders assayed up to 28.56 grams/tonne gold.

The most encouraging results of the 1990 field program were obtained in the SW corner of the Arc 10 claim, where grid soil sampling has outlined a linear gold anomaly approximately 800 m in length with soil values up to 370 ppb Au. Rock sampling has confirmed weak Au mineralization up to 909 ppb gold in vuggy quartz veins outcropping in the anomalous soil zone. Evidence suggests the high grade glacially transported float boulders, located 500 m north of the soil grid, probably originated from the same structure responsible for the soil anomalies, albeit subice, possibly where the glacier has bisected the trend of anomalous soil samples.

The 115 degree linear trend defined by the soil and rock gold anomalies lines up well with high grade gold mineralization in quartz veins cropping out in a creek to the northwest, 600 metres beyond the property boundary. Arc gold anomalies and those on the adjacent property to the west appear to be related to a structure that can be traced over a distance of more than five kilometres.

Throughout the remainder of the property, particularly in the central and southern portions, numerous rock exposures containing weak to moderate gold and copper mineralization are observed. Most often this mineralization is associated with narrow discontinuous locally pyritic quartz/carbonate veins that strike approximately 060. However, due to the small scale and limited extent of most showings, they are not afforded a very high potential on an individual basis. Nevertheless, taken as a whole, the ground underlying the Arc property has been considerably affected by a weak but widely distributed episode of mineralization, a fact that should not be overlooked when assessing the mineral potential of the property.

For the sake of comparison, similarities can be drawn between the Arc property main mineralized structure and the Snip deposit located some 28 kilometres due west. In both cases mineralization is proximal to a mid-Jurassic aged porphyritic intrusive, and in both cases mineralization is controlled by an elongate ESE oriented structure.

Further target definition utilizing soil geochem, I.P. and blast trenching is recommended prior to drill testing.

2.0 INTRODUCTION

2.1 GENERAL REMARKS

The Arc 10, 11, and 12 claims were optioned by Noranda Exploration Company, Limited from the Hunter Joint Venture in January, 1990.

Quartz vein float boulders containing high grade gold mineralization were discovered in 1989 in creeks draining the west side of the claim block as well as higher up on the property in the out wash of a glacier.

A field program was carried out during 1990, consisting of geological mapping, prospecting, geochemical sampling and geophysics, in an attempt to locate the source of the anomalous float and to evaluate the mineral potential of the claims.

A total of 97 man days were spent by Noranda personnel performing exploration on the Arc claims in 1990. The project is a joint venture of Noranda Exploration and Hemlo Gold Mines.

2.2 LOCATION AND ACCESS

The Arc property is located approximately 90 km north of the town of Stewart, B.C. and 50 km southwest of the Stewart-Cassiar Highway, #37 (fig 1). The proposed route of the Iskut valley road lies 3 kilometres to the northwest.

The claims lie within the Liard Mining Division and are centred at 56' 40' north latitude and 130' 38' west longitude on NTS map sheet 104 B/10E.

Access to the property was provided by helicopters chartered from Vancouver Island Helicopter's base at Bob Quinn Lake 50 km to the northeast.

2.3 PHYSIOGRAPHY & VEGETATION

The property lies within the rugged Coast Mountains, which are characterized by steep slopes and U-shaped valleys typical of a glaciated terrain. About 80% of the property can be easily traversed, whereas the remainder is either too steep or covered

by glacial ice. The property covers a prominent north-south oriented ridge between two elongate valleys. Elevation varies from 900 metres at the north end to over 1800 metres in the central and southern portions.

Most of the property either lies above treeline or in areas recently affected by glaciation, thus vegetation is sparse, consisting of scattered scrub grasses, alpine heather, and small stands of alpine fir at lower elevations.

2.4 CLAIM DATA

The property is comprised of the following claims which are shown in fig. 2. Upon acceptance of this report, they will be in good standing until the indicated date.

Name	Units	Record #	Record Date	Expiry Date
Arc 10	18	5615	Jan. 4, 1989	1993
Arc 11	18	5616	Jan. 4, 1989	1993
Arc 12	18	5617	Jan. 4, 1989	1993

The location of the LCP's for the Arc 10, 11, and 12 claims is by witness post, which is located on the south bank of Lehto Creek, exactly 5.0 km away at a bearing of 272.5'.

2.5 PREVIOUS WORK

There is no recorded work for the area of the Arc claims. However, as it is located in the Iskut belt of mineralization, the region has seen considerable exploration activity in recent years. A prospector's campsite estimated to be at least 10 years old was observed near the centre of the Arc 12 claim. Active properties nearby include Eskay Creek 10 km to the east, and Snippaker Creek and Johnny Mountain 30 km to the west.

November, 1990

3.0 REGIONAL GEOLOGY

The Arc Property is located near the centre of the Snippaker Creek Map sheet 104 B/10.

The area lies near the western edge of the Intermontane Belt of the Canadian Cordillera, where it parallels the Coast Plutonic Complex. Recent work by both the Geological Survey of Canada and the Geological Services Branch of British Columbia provides a framework of the complex geology of this rugged area. The area includes four, unconformity bounded, tectonostratigraphic assemblages: 1) Palaeozoic Stikine Assemblage; 2) Triassic-Jurassic volcano-plutonic complexes of Stikinia; 3) Middle and Upper Jurassic Bowser overlap assemblage; and 4) Tertiary Coast Plutonic Complex.(Anderson, 1989) This section of the Intermontane Belt forms the west limb of the "Stikine Arch," a roughly horseshoe shaped area of Upper Triassic to Jurassic stratigraphy that hosts most of the significant mineral deposits in northwest B.C. and the Toodoggone gold camp.

The Palaeozoic Stikine Assemblage contains the oldest stratigraphy and is divisible into three distinct, volcaniccarbonate units: Early Devonian limestones and intermediate to felsic volcanics; Mississippian bioclastic limestones; and Permian fragmental volcanics and limestone. These rocks are metamorphosed and highly deformed.

The Triassic-Jurassic volcano-plutonic complex (Stewart Complex) consists of both the Triassic Stuhini Group and the Jurassic Hazleton Group. The Stuhini Group consists of limestone and mafic volcanics deposited in an island arc environment. The Stuhini hosts the Snip and Johnny Mountain structural gold deposits. Hazleton rocks consist of andesitic breccias/lavas, felsic tuffs/breccias, and maroon-green volcanic sediments (siltstone, greywacke, conglomerate, and black shale) deposited in an island arc environment. Black shales (Eskay Creek facies) overlying felsic volcanics (Mt. Dilworth Formation) host the Eskay Creek gold deposits. Jurassic Hazelton Group volcanics correlate with Geology Map Units 1 and 2 on the Arc property geology maps.

Sub-volcanic intrusions accompany most of the volcanic centres of the Mesozoic island arcs and range from Alaskan type ultramafics to felsic dykes. Distinctive porphyritic dykes link Upper Triassic and Lower Jurassic volcanics with their plutonic equivalents. Many of the significant mineral deposits in the Stewart Complex are found to have a close association with

volcanic centres. These intrusions correlate with Geology Map Unit 4 on the Arc property geology maps.

The Middle and Upper Jurassic Bowser Overlap Assemblage predominantly consists of turbidite black clastics deposited in the Bowser Basin which formed as a result of uplift to the west due to emplacement of the Coast Range Intrusives.

The Tertiary Coast Plutonic Complex consists of posttectonic, felsic plutons. Eastward younging of strata and local zones of high strain attest to intrusion and uplift of the complex.

Locally, Tertiary to Recent subaerial volcanics cover low lying areas.

4.0 PROPERTY GEOLOGY

4.1 MAP UNIT 1

Underlying the central portion of the Arc claims are greengrey andesitic volcanics, consisting of fine to coarse lapilli tuffs, crystal tuffs, and massive andesite flows, as well as minor local interbedded sediments. Bedded structures within the volcanics indicate a general northwest strike and a moderate northeast dip.

This volcanic package is given a Permian age by the G.S.C. while the B.C.G.S. date them as Lower Jurassic and assign them to the pyroclastic-epiclastic sequence of the Betty Creek Formation.

Fragments in the tuffaceous units range from ash sized to blocks as coarse as 30 cm but the average is about 2.0 cm. Texture varies from gritty and angular in the finer fraction to subrounded in the coarser fraction, which locally has the appearance of bombs. Composition of fragments is andesitic with little variation throughout the sequence, though an exception to this is the occurrence at several localities of a lapilli tuff composed of angular pink felsic volcanic fragments. In all cases however, the matrix is andesitic in composition and commonly has a gritty appearance. Both matrix and fragments are commonly porphyritic, and contain up to 20% phenocrysts of 1-3 millimetre subrounded plagioclase feldspar and acicular hornblende.

Crystal tuff units are generally richer in crystalline material than lithic tuffs and are distinguished by a lack of

discernable fragments. It is not uncommon for one tuff variety to grade into another.

Andesite flows are typically massive and textureless, with a weakly sheared or smeared appearance. If the flows are porphyritic, containing feldspar or hornblende phenocrysts, it may be difficult to distinguish them from the crystal tuffs.

Immediately northeast of the claims are pillowed andesites, which suggests that andesitic rocks on the Arc property are subaqueous in origin. West of the property several small exposures of pebble conglomerate and sandstone within the andesites support this idea.

Andesitic volcanics and related sediments on the Arc claims have undergone weak regional propylitic alteration which gives a characteristic dark green color due to the presence of chlorite in altered mafic minerals. In outcrop, andesitic rocks weather a pale green to whitish color.

4.2 MAP UNIT 2

A sedimentary package consisting of phyllites with lesser sandstone and shales outcrop at the north end of the claim block. Black shales seen in several of the drainages in this area are commonly graphitic as well as moderately sheared and deformed. This is due to minor fault splays running off the main Lehto fault which strikes in an east-west direction through this area. Phyllitic rocks belonging to this package have an uncertain origin, though a locally high feldspar crystal content seen in many exposures suggests the possibility of a pyroclastic origin. Several outcrops in the area indicate sediments strike north to northeast and dip steeply towards the east.

4.3 MAP UNIT 3

Hornblende feldspar porphyry dikes are observed locally throughout the property and are possibly similar in age to Lehto porphyry intrusive, but are different enough in appearance to constitute a separate mappable unit. Porphyry dikes are narrow, ranging between one and three metres in width, and are tabular in form. They strike approximately northeast and intrude into both andesite volcanics and Lehto intrusive rocks.

Assessment - Geological	Geochemical,	November, 1990
and Geophysical Report		
ARC OPTION (Arc 10, 11	, 12 claims)	Page 7

Porphyry dikes contain up to 20% phenocrysts of rounded plagioclase feldspar which range up to 4.0 millimetres in length and euhedral needle shaped hornblende. The matrix is felsic in composition, aphanitic, and pinkish grey to pinkish green in colour. Dike rocks are generally unaltered, except for weak chloritic alteration of the mafic component, and for this reason it is easily distinguished in the field. It weathers to a pinkish white in colour. Porphyritic dikes do not appear to be associated with any obvious economic mineralization.

4.4 MAP UNIT 4

At the south end of the claim block the Lehto porphyry, a syn to post volcanic intrusion of Lower Jurassic age, cuts diagonally through andesitic volcanics. Lehto porphyry and other similarly aged intrusives are accorded with high mineralizing potential in the Iskut Area, and are spacially associated with many known mineral deposits and showings. This kilometre-wide northeast trending intrusive, is K-feldspar-plagioclasehornblende porphyritic to phaneritic in texture, is locally sheared, and ranges in composition from granodiorite to syenite.

Intrusive rocks weather to a pinkish white color except where they have been sheared and contain chlorite, in which case they have a greenish cast. Near the center of the intrusive body a chloritic shear zone that measures 50 metres wide by several hundred metres long and trends 080, contains numerous narrow pyrite seams and is locally silicified.

A few narrow basalt dykes of Pleistocene to recent age are observed on the west side of the Arc 11 claim that have intruded into andesites and strike east-west.

5.0 GEOCHEMISTRY

During the 1990 field season 147 rock, 16 silt, and 308 soil samples were collected on the Arc property. Samples collected off the property are included for the purposes of discussion only and have not been used for assessment credit.

Initial reconnaissance prospecting and sampling concentrated on locating the source of mineralized float boulders up to 30 centimetres in diameter, found in the outwash moraine below the west flowing glacier in the southern portion of the Arc 10 claim.

A thorough inspection of rocks exposed above and below the glacier suggests that the mineralized structure sought is buried under ice. Work conducted southwest of the glacier identified anomalous gold in quartz veins within a linear surface depression trending approximately 115 degrees, that is aligned with known gold mineralization on the adjoining property to the west.

5.1 SOILS

Following the discovery of gold bearing rocks southwest of the glacier, a survey grid was established which covered the trend of the anomalous zone, east from the property boundary for a distance of 1.2 kilometres. Soil samples were collected at 20 metre intervals on 100 metre spaced lines, from the "B" horizon at a depth of 20 to 50 centimetres. In addition, two soil lines with sample stations every 50 metres were run on contours both above and below the anomalous zone.

Results of the soil survey indicate numerous weak to moderate gold anomalies over an 800 metre strike length that parallel the 115 degree trend of the anomalous outcrops and a linear gulley. Gold values range up to 370 ppb. A break in the trend near the center of the grid appears to be due to the encroachment of glacier ice. This facilitates a possible source area for the mineralized float which has been discovered in outwash at the foot of this north flowing glacier.

Moderate to high base metal anomalies were also detected on the grid in several samples, which form a small cluster south of the gold trend between lines 13,400 E and 13,700 E. Values for Cu, Pb, and Zn in 9 anomalous samples range up to 862, 1268, and 3092 ppm respectively. No base metal mineralization was observed outcropping in this area.

5.2 ROCKS

Geochemical prospecting and rock sampling on other parts of the claim block identified several small copper and gold showings. In most cases gold occurrences are associated with narrow, highly discontinuous vuggy quartz-carbonate veins locally containing disseminated pyrite, which strike 060 and dip variably.

Rock samples collected in the vicinity of the grid returned values up to 909 ppb gold indicating weak gold mineralization. Anomalous samples collected from within the linear gulley were

November, 1990

Assessment - Geological Geochemical, and Geophysical Report ARC OPTION (Arc 10, 11, 12 claims)_____

<u>Page</u>9

from locally pyritic vuggy quartz veins in which the host andesites are strongly fractured, pervasively clay altered, and locally carbonate flooded.

Sample #129636, a grab sample from some pyritic quartz veins, was collected from a creek drainage about one kilometre south of the soil grid and assayed 0.067 opt gold. Another sample at this same exposure ran 2910 ppb gold and 4787 ppm copper. One kilometre northwest of the grid, sample #105423, a piece of andesite float containing quartz veins, contained 4520 ppb gold. Several other samples collected south of the grid ran up to up to 1080 ppb gold.

In the south central part of the Arc 12 claim numerous pieces of hornfelsed volcanic float containing pyrite an chalcopyrite were discovered within a 50 metre by 50 metre area in the moraine of a south flowing glacier and were sampled. The following table lists the significant geochemical results:

Sample #	Cu (ppm)	Zn (ppm)	Aq (ppm)	<u>Au (ppb)</u>
105406	5,341	144	1.4	28
105407	21,943	970	3.3	91
105408	40,635	9,162	11.8	22

Intensive prospecting in this area of abundant outcrop failed to locate the source of the float and is thus assumed to be sub-ice.

Approximately 1.5 kilometres north of the grid within a west draining gulley, several zones containing pyrite and chalcopyrite mineralization in narrow quartz/carbonate veins are exposed at 50 metre intervals over a distance of 200 metres in the creek. The veins strike 060, dip vertically, and range between 1 and 5 centimetres in width over a strike length of 1 to 3 metres. The following table lists the results of several grab samples:

Sample #	Cu (ppm)	Comment
109172	27,528	4 cm qz vein w/ py, cpy
109173	11,534	qz + cal veins w/ coarse cpy
109175	11,749	4 cm siderite vein w/ dissem cpy
108076	>99,999	4 cm piece of massive cpy float

Within the wedge of ground lying outside the claims between the LCP and the valley glacier to the east, numerous narrow, discontinuous quartz/carbonate veins were observed which contain local weak gold and copper mineralization. At the foot of the

large valley glacier which flows past the eastern boundary of the Arc claims, but which originates from much farther south, two rounded mineralized float boulders containing massive pyrite, pyrrhotite, and chalcopyrite were discovered, that ran 32,400 ppb gold and 49489 ppm copper. However, based upon their mineralogy, which suggests a skarn origin, it is unlikely that these boulders originated from within the Arc claims, or at least not in the northern part.

The 115 degree trend defined by the soil and rock gold anomalies lines up well with high grade gold mineralization in quartz veins cropping out in a creek to the northwest, 600 metres beyond the property boundary. Arc gold anomalies and those to the west just described appear to be related to a structure that can be traced over a distance of more than five kilometres.

5.3 STREAM SEDIMENTS

Several silt samples were collected from drainages at the north end of the claim block, which is predominantly underlain by fine grained sediments including black shales, which weather to a rusty orange colour in places. The best geochemical results for these silts are 262 ppm arsenic, 38 ppm molybdenum, and 19 ppb gold. Prospecting and rock sampling was unsuccessful in this area.

6.0 GEOPHYSICS

During mid-September, 1990, ground geophysical surveys consisting of Total Field Magnetics and Horizontal Loop Electromagnetics were performed on the Arc property. The objectives of the ground survey were to help map the local geology and structure of the property and possibly delineate potential areas of possible economic mineralization.

All ground surveys were carried out by Noranda personnel. A total of 6.8 km of magnetics was done on the Arc grid.

6.1 INSTRUMENTATION

MAGNETICS - The magnetics survey utilized EDA Omni4 magnetometers with readings corrected for diurnal drift by the use of a recording magnetic base station. The EDA system records

the Total Magnetic Field with an accuracy of within 1 nT. Readings were taken at 12.5 m intervals along the survey lines.

6.2 DISCUSSION OF RESULTS

The 1:5,000 contour magnetic plan map shows two rock units of contrasting magnetic susceptibility within the grid area. The rock unit with the high susceptibility, possibly volcanic, can be considered to lie within the 56800 nT contour. Narrow and possibly shallow dyke-like features are found within this rock unit. The low susceptibility unit found elsewhere but noticeably at the SW may be mapping a sedimentary rock package. Several E-W interpreted magnetic breaks are shown as well as a NW-SE break which may possibly extend almost to the grid's SE corner.

7.0 CONCLUSIONS

In 1989 high-grade gold mineralized float was discovered in moraine at the toe of a glacier located on the southern half of the Arc 10 claim. Resampling of pyrite rich quartz float boulders from the moraine assayed up to 28.56 grams/tonne gold (0.833 opt).

Results of the 1990 field program have identified a possible source area for this mineralized float. Grid soil sampling has outlined a linear geochemical gold anomaly trending 115 degrees that is 800 metres in length and borders the south edge of the glacier from which the anomalous float is believed to have been transported by. The fact that the upper part of this same glacier cuts across the projection of the anomalous soil zone strongly suggests that the anomalous float occurring in the moraines at the toe end of the glacier has originated from this zone under the ice.

Soil samples range up to 370 ppb gold, while rock samples collected in the vicinity of the soil grid have returned values of up to 909 ppb gold.

Throughout the remainder of the property, particularly in the central and southern portions, numerous rock exposures containing weak to moderate gold and copper mineralization are observed. Most often this mineralization is associated with narrow discontinuous locally pyritic quartz/carbonate veins that strike approximately 060. However, due to the small scale and

November, 1990

Assessment - Geological Geochemical, and Geophysical Report ARC OPTION (Arc 10, 11, 12 claims)

Page 12

limited extent of most showings, they are not afforded a very high potential on an individual basis. Nevertheless, taken as a whole, the ground underlying the Arc property has been considerably affected by a widely distributed episode of mineralization, a fact that should not be overlooked when assessing the mineral potential of the property.

Similarities are apparent between the Arc property and the Snip deposit located some 28 kilometres due west. In both cases mineralization is proximal to a mid-Jurassic aged porphyritic intrusive, and in both cases mineralization is controlled by an elongate ESE oriented structure. With this in mind further work is warranted on the Arc property.

Ground magnetic surveys have defined distinct rock units within the survey grids. Ground HLEM surveys have not been effective in outlining potential mineralized zones within bedrock and a program of I.P. surveying may be more effective for this purpose. Geological and geophysical results should be compiled to help assess the potential of the property and priorities established from this analysis.

8.0 RECOMMENDATIONS

Based upon the positive results of the 1990 field program, further work is recommended for the Arc claims. This work should include extending the geochemical soil grid further to the southeast along the trend of the mineralized structure which passes through the present grid area. Consideration should also be given to IP and HLEM geophysical surveys over the grid area to define possible anomalies at depth. A short drill program could follow positive definition of a sufficiently promising target.

9.0 BIBLIOGRAPHY

- Alldrick, D.J., Britton, J.M., Webster, I.C.L., and Russell, C.W.P. 1989: Geology and Mineral Deposits of the Unuk area, BCMEMPR, Open File Map 1989-10.
- Geology, More and Forrest Kerr Creeks, Northwestern British Columbia. Energy, Mines and Resources Canada, Open File 2094.

Assessment - Geological Geoche	emical, November, 1990
and Geophysical Report	
ARC OPTION (Arc 10, 11, 12 c)	laims) Page 13

بالقعاطية بالسالية

STATEMENT OF COSTS

CLAIM DATES TYPE	AS: ARC 10, ARC 11, ARC 12 S: June 1 to September 15, 1990 OF REPORT: GEOLOGICAL, GEOCHEMICAL AND GEOPHYSI	CAL	
1.	WAGES: Rate per day: \$151.90 No. of days: 103 Dates: June 1 to Sept. 15, 1990 TOTAL:	\$	15,645.70
2.	FOOD, ACCOMMODATION, AND SUPPLIES: Rate per day: \$57.39 No. of days: 103 Dates: June 1 to Sept. 15, 1990 TOTAL:	\$	5,911.17
3.	TRANSPORTATION: Rate per day: \$122.19 No. of days: 103 Dates: June 1 to Sept. 15, 1990 TOTAL:	\$	12,585.57
4.	ANALYSES: 308 soils for 28 element ICP & Au @ \$11.46 ea 16 silts " @ \$11.46 ea 147 rocks " @ \$15.37 ea TOTAL:	လ လ လ လ	3,529.68 183.36 <u>2,259.79</u> 5,972.43
5.	OTHER COSTS: Instrument Rental Base Map Shipping, Expediting	ទ ទ ទ ទ	411.95 420.00 998.60
6.	COST OF REPORT PREPARATION: Author Drafting Typing Data Processing TOTAL:	ა ა ა ა ა	1,000.00 200.00 50.00 526.57 1,776.57
	TOTAL COSTS:	\$	43,721.99

ł

Statements

12 ALIO 12 13

APPENDIX II

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Eric C. Grill, of 1928 West 35th Avenue, Vancouver, in the Province of British Columbia, do hereby certify that:

- 1. I am a geologist in the employ of Noranda Exploration Company, Limited (no personal liability).
- 2. I graduated in 1986 from the University of British Columbia with a Bachelor of Science degree (honours) in Geology.
- 3. My primary employment since 1986 has been in the field of mineral exploration.
- 4. This report is based on work supervised and carried out by the author.
- 5. I have no interest in the property described herein, nor in the securities of any company associated with the property, nor do I expect to acquire any such interest.

Eric C. Grill,

Geologist

APPENDIX I

STATEMENT OF QUALIFICATIONS

I, Michael J. Savell of the City of Prince George, Province of British Columbia, do certify that:

- I am a geologist residing at 3507 Rosia Road, Prince George, British Columbia.
- 2. I am a graduate of Dalhousie University with a Bachelor of Science (Honors) in Geology.
- 3. I am a member in good standing of the Geological Association of Canada, Canadian Institute of Mining, Prospector's and Developer's Association and the B.C.-Yukon Chamber of Mines.
- I presently hold the position of Project Geologist with Noranda Exploration Company, Limited and have been in their employ since 1980.

Michael J. Savell Geologist Noranda Exploration Company, Limited (No Personal Liability)

STATEMENT OF QUALIFICATIONS

I, Ted Wong, of the City of Vancouver, Province of British Columbia, hereby certify that:

- 1. I am a geophysicist residing in Burnaby, B.C.
- 2. I have graduated from the University of British Columbia in 1983 with a B.Sc. in Geophysics.
- 3. I am a professional geophysicist, registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta. I am a licensed professional geophysicist, registered with the Association of Professional Engineers, Geologists and Geophysicists of the Northwest Territories.
- 4. I have practised by profession on a continual basis since 1984.
- 5. I have been employed by Noranda Exploration Company, Limited since September, 1989.

red wong

Ted T. Wong, P. Geoph.

Ī

Assess	ment - Geological Geoche	emical, November, 19	90
and Ge	ophysical Report		
ARC OP	TION (Arc 10, 11, 12 c)	laims) Page	15

ł

APPENDIX III

ANALYTICAL PROCEDURE

ANALYTICAL PROCEDURE

Soils, Silts, Rocks

The samples are dried and screened to -80 mesh. Rock samples are pulverized to -120 mesh. A 0.2 gram sample is digested with 3 ml of $HClO_4/HNO_3$ (4 to 1 ratio) at 203° C for four hours, and diluted to 11 ml with water. A Leeman PS 3000 is used to determine elemental contents by I.C.P. Note that the major oxide elements and Ba, Be, Ce, Ga, La and Li are rarely dissolved completely from geological materials with this acid dissolution method.

For Au analyses, a 10.0 gram sample of -80 mesh material is digested with aqua regia and determination made by A.A.

Heavy Mineral Concentrates

The entire concentrate is digested in aqua regia solution, and elemental concentrations of Au, Ag, Cu, Pb, and Zn are determined by A.A.

Banylex G-ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

Ċ

DATE REPORT MAILED:

(FS)

DATE RECEIVED:

SEP 1

ASSAY CERTIFICATE

Co. Ltd. PROJECT 9009-024 295 FILE # 90-4130R Noranda Exploration

	SAMPLE#	AU** oz/t
)	106972	.833

- SAMPLE TYPE: ROCK AU** BY FIRE ASSAY FROM 1 A.T.

l

A. A.M. D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY.

Copy to Mike +2

1990

852 E. HASTINGS ST. VANCOUVER B.C. VGA 1R6 DATE RECEIVED: SEP 10 1990 OL DATE REPORT MAILED: PHONE (604) 253-3158 FAX (604) 253-1716 **ASSAY CERTIFICATE** Noranda Exploration Co. Ltd. PROJECT 9009-021 FILE # 90-4150R 29 SAMPLE# Au** oz/t .067 -} 129636 AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE TYPE: ROCK SIGNED BY D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SEP 1990 Com to Mike +2

۰ NC	ME ANALYTICA	L LA	BORA	TORI	ES LT	D.	8	52 E	. н	STIN	IGS	ST.	VA	NCO	JVEI	RВ.	c.	V6	A 11	R6		рно	NE (604)	253	-315	8	FAX (604)	253-1	1716
· · · · · · · · · · · · · · · · · · ·	1								G	Eoch	IEMI	CA	LA	NA	LYS	IS	CE	RTI	FIC	CATI	g (271	V	(M	(N						
		Nc	oran	da	Explo	orat	<u>ion</u>	Co	• L' P.O.	box a	PRC 2380,) <u>J E</u> 105	CT 0 Dav	90 1e,	09- Vance	027 ouver	BC	96 V6B	15 I	File	e #	90)-4:	133 (ry	Pag	e 1	ML,	ky y	٢.٦_	-
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag Ni PM PPM	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm p	Sr pm	Cd PPM	sb ppm p	Bi ppm p	v . ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	TI X	B ppm	AL I X	Na I X 1	W PPM	Au* ppb	
Anc.	106964 106965 106966 106966 106967	2 2 2 1	8 6 14 235	9 2 2 5	58 13 7 52 1	.4 2 .3 2 .4 3 .2 3	18 8 13 40	923 1966 135 818	9.52 2.82 6.27 11.14	78 6 38 488	5 5 5 5	ND ND ND ND	1 1 1	13 52 19 11	.2 .4 .2 .2	4 2 3 2	5 2 6 2	3 1 4 40	.50 4.03 .08 .63	023 014 027 024	6 2 5 3	2 1 4 1	.98 .14 .06 .75	51 170 16 41	.01 .01 .01 .01	2 1. 3 . 2 . 2 1.	90 . 24 . 39 . 40 .	01 .13 01 .04 02 .14 01 .09	2221	38 3 183 107	
	,	ICP This - Sai	500 Leach Mple t	GRAM IS P Ype:	I SAMPLE PARTIAL P1 ROCK	IS DIO FOR MN P2 SII	GESTEI Fe Si Lt	D WITI R CA I AU*	H 3ML P LA D ANALI	3-1-2 CR MG (SIS B	HCL- Ba ti Y aci	HNO3 BW DLE	-H2O / AND ACH//	AT 9 LIMI A FR	5 de Ted Om 1	G, C For N O GM	FOR IA K Sami	ONE AND PLE.	HOUR AL.	AND I AU DE	S DI Tect	LUTEI Ion I	D TO Limit	10 ML By 1	L WIT ICP I	H WATI IS 3 PI	R. M.		·		
	DATE RECEIVE	D:	SEP 4	1990	DATE	S REP	ORT	MAII	LED :	S	got	(90) ⁸	IGN	ed 1	BY.	<u>C</u> .,	<u>h.</u>	····	.D.T	OYE,	C.LE	ONG,	J.WA	NG; CE	RTIF	IED B	.C. AS	SAYERS	
								J J	155/ Asso	AY R 2J	ECC Gui	DM Cal	MEI ;,	NDE ~	ED Pro	gre	£S.		`	•				SEP		3 19	90 97				
	Y1									•																	••••	••••			

.

í

Ľ,

7

n. J. K.

854 S. HASTINGS ST. VILLOUVER D.C.

ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ANALYSIS CERTIFICATE Back (ES) <u>Noranda Exploration Co. Ltd. PROJECT 19008-011-29455</u> File # 90-3008 P.O. Box 2380, 1050 Davie St.; Vencouver BC V6E 315

	SAMPI F#	Mo	Cu	Ph	7n		MI	Co	Mo	Fa		11	A	Th	60		ch	D I	v	C		1.	<u> </u>		0	847			Ne			
	ordin EEN	DOM	nom	DOM	DDD		DOM	nome	DOM	. Y		nom	nom	000	51		20	DOM		1 1 1			500	- 19 9	Da Dom			¥	Na V			AU"
ł		100mm	PP-11	PP	Phan	3. P T-33	P.P.	PPin	- Pran			bbun	ppiii	P7***	Phan	<u></u>	Mail	Phan	Phu			ppm	hhu		Ph4		hhu			<u>^ </u>		ppo
	104775	6	15	33	2	3,0	5	1	66	4.86	812	5	ND	1	8	.2	19	2	1	.02	.009	2	1	.02	52	, D1	4	.16	.02	.09	1	17
	105451	1	6	7	18	.1	1	1	1872	1.25	2	5	ND	1	157	.7	2	2	1	5.56	.019	4	4	.14	58	, D1	2	.39	.02	.07	2	4
ļ	105452	3	6	2	1	.1	7	19	115	4.40	15	6	ND	1	2		2	2	1	.01	.006	4	1	.01	76	.01	4	. 14	.01	.12	1	118
۱	105461	21	124	66	23		1	3	71	6.36	235	5	ND	1	3	.2	2	- 4	4	.04	.042	15	1	.05	51	.01	3	.41	.01	.25	2	91
l	105462	2	915	9	13	.4	9	22	225	10.30	21	6	ND	1	4	.2	3	2	85	.24	.063	-3	27	1.21	22	,12	5	1.98	.01	.09	1	79

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

✓ ASSAY RECOMMENDED

1

4

1...

, t :

Copy to Mike

の内

The 1'6

سرق

1

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

ACME ANALYTICAL LABORATORIES LTD.

PHONE(604)253-3158 FAX(604)253-1716

(MS)

Arr

GEOCHEMICAL ANALYSIS CERTIFICATE

Noranda Exploration Co. Ltd. PROJECT 9009-021 File # 90-4150 Copy to Mike + 2

																								<u> </u>						
SAMPLE#	Мо	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe As	υ	Au	Th	Sr	Cd	Sb	Bİ	٧	Ca	P	La	Cr	Mg	Ba	Ţį	В	AL	Na	, K 🖉	W Au	*1
	ppm	ppm	ppm	ppn	ppn	ppm	ppm	ppm	X ppt	ppm	ppm	ppm	ppm	pbu:	ppm	ppm	ppm	*	<u> </u>	ppm	ppm	*	ppm	<u> </u>	ppm	X	X	<u>× (</u>	dd tude	<u>b</u>
120632	1	61	6	40		12	15	1466	4.48 15	5	ND	1	68	2	2	2	46	4.09	.052	6	19	1.40	101	.01	2	1.39	.03	.17		2
120633	5	117	18	67		30	34	561	6.76 19	5	ND	ż	10	5	3	2	100	1.80	062	4	30	2.01	33	.41	2 2	2.73	.04	.01	201E	5
120636	10	134	Ä	42		4	6	318	4.73	5	ND	1	7	.2	2	Ž	6	.22	037	2	3	1.22	48	.01	2 '	1.42	.04	.10 🕷	201E	5
129635	3	361	2	3	88 Q	5	ő	81	10.90 320	8	ND	6	3	2	ž	5	7	.03	069	5	2	.02	53	.01	2	.35	.01	.24 🖉	6 18	52
129636	4	298	í 10	4	1.5	1	3	97	7.01 349	5	3	3	6	2	ž	12	4	.10	020	5	1	.05	36	.01	2	.33	.01	.20 🕈	1 264	÷6
						•				Ĭ							-				 .					هد د. د		8		_
129638	1	9	4	105	.3	1	- 3	4192	5.06 💥 4	8	ND	1	156	.4	2	2	5	7.18	1023	6	1	2.09	64	.01	2 2	2.57	.01	.12 🌒		5
129639	2	53	2	13		8	4	467	1.67	5	ND	1	72	.2	2	2	1	.61	.036	7	6	.02	1607 §	.01	2	.29	.04	.19 🛞		2
129876	1	8	2	29	8841	1	3	162	3.12 6	\$5	ND	2	13	-2	2	2	4	.04	024	6	1	.78	74	.01	2 '	1.10	.02	.21 📓		8
129877	1	39	2	10	.2	1	3	502	2.73 46	5	ND	2	19	.2	2	2	1	.75	.046	4	1	.37	67	.01	2	.79	.02	.26 🖉	<u></u> 2	23,
										(8	XXX	
129680	2	74	4	8	1.0	7	4	136	7.23 125	5	ND	1	6	42	2	5	1	.12	2013	2	7	.05	139	.01	2	.17	.01	,05 🖉	<u>1</u> 2 12	23
129681	2	25	2	2	.3	5	9	106	6.78 93	5	ND	1	4	2.0	2	- 4	1	.04	.029	2	3	.02	55	.01	4	.30	.01	,18 🛞	<u></u> 63	19
129682	1	2471	2	27	3	2	15	971	5.52	5	ND	1	9	.2	2	. 5	2	1.18	1032	4	1	.34	65	.01	2	.84	.03	14 g	<u> 1</u>	4
129683	1	12	3	11		1	2	355	1.38	5	ND	1	3	,2	2	2	1	.26	.011	13	1	. 15	52	.01	2	.52	.02	.22 🛞	2	3
129684	- 2	11	3	6		6	2	236	1.51 2	5	ND	1	3	.2	2	2	1	.06	.005	2	6	.05	29	.01	2	.23	.03	.10 🖉	.	3
120686	. ,	20	4	15		1	78	2660	A 85 XA	÷ 7	ND	1	ön		5	Á	ž	Å <u>5</u> 7	ñŽÅ	ī	1	. 88	14	01	Å.	1.24	.01	. Ó9 🖗	2011 s	99 [']
120687		44	ž	4		2	24	630	16 20 102	Š		1	20	2 k	2	š	2	06	N82	2	i	.03	24	01	ż	.38	.01	.11 🕈	1 9 0	09
120688	2	13	2	ž	88 P.	5		52	2 05 001	Š	ND		Ď	<u> </u>	2	6	1	.02	012	2	Ĺ.	.01	18	01	ī	.24	.01	.13	39 39	76
120690	1	2	2			, T	10	3100	B 10 27	j 2		1	82	44	2	2	5	10 16	114	2	1	3 10	28	n1	2	.16	.01	10 8	S 1	52
127007	'	0	C	44		5	17	3100	0.10		NV	,	02		6	٤.		10.10		-	•	3414	20		-					
129690	1	12	5	5	.5	1	25	142	4.58 24	5	ND	1	4	.2	2	10	1	.09	1014	2	1	.02	38	.01	2	.23	.04	.09 🖁	1 . 44	41
STANDARD C/AU-R	18	57	4Õ	131	7.1	71	31	1048	3.96 40	19	7	39	53	19.9	14	19	57	.52	.095	38	58	.90	181	.09	35	1.89	.06	, .14 🖉	11 52	20

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

\$24

V Zn 9007-023 Sr TI K La LI Mg Mn Mo Na Pb Cd Ce Co Cr Cu Fe NI P A Ba Be Ča ITT SAMPLE Au Ag Al BI ppm ppm % ppm ppm Pg.6o/6 % ppm ppm % ppm ppm % ppb ppm % ppm ppm ppm 9% ppm ppm ppm ppm ppm % ppm 96 No. No. 4 0.03 2 10 0.04 10 6 2100 0.2 1.04 31 103 0.3 2 0.01 0.2 14 3 71 6 2.26 0.90 4 2 0.11 79 1 0.08 108080 238 -ACMÉ ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 GEOCHEMICAL ANALYSIS CERTIFICATE $\hbar c$ (EG) Noranda Exploration Co. Ltd. PROJECT 9009 060 294 File # 90-4675 P.O. Box 2380, 1050 Davie, Vancouver BC V68 315 SAMPLE# Mo Cu Pb Zn Ag Ní Co Mn Fe As U Au Th Sr 🖁 Cd Sb Bł Ca v La Cr Mg Ba AL Na K WWW IAU* ppm ppm ppm ppm ppm ppm ppm ppm X ppm ppm ppm ppm ppm ppm ppm ppm ppm X ppm ppm % ppm X X pont pob × A 129694 22 3 7 1243 4.64 80 5 8 .60 .079 3 .83 45 2018 51.34 ND 2 3 .03 1 ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 Barytes (EG) GEOCHEMICAL ANALYSIS CERTIFICATE yly c Noranda Exploration Co. Ltd. PROJECT 9008-040 295 P.O. Box 2380, 1050 Davie, Vancouver BC V6B 315 File # 90-3351 Page 1 SAMPLE# Mo Fe As U Au Th Sr Cd Sb Bi V Cu Pb Zn NI Co Mn Ca P. La Cr Mg Ba Ti AL Na K 🔍 🖌 Au* mag ppm ppm DDM X ppm ppm ppm ppm ppm ppm ppm ppm ppm X ppm X ppm X X X ppm pont pont pont pont X X ppm ppm ppb 105338 47 18.95 5 ND 2 55 .01 .001 .01 12 .01 2 2 .02 .01 .01 35 1 3 14
 2
 2
 27
 .07
 012
 2
 4
 .34
 205
 .01
 2
 .57
 .01
 .09
 16

 2
 2
 3
 .04
 012
 5
 4
 .24
 148
 01
 2
 .53
 .03
 .11
 7 36 186 6.05 42 5 ND 1 7 .2 5 5 231 1.56 2 5 ND 1 3 .6 105339 5 33 13 6 40 105340 7 Noranda Exploration Co. Ltd. PROJECT 9008-090 296 FILE # 90-3777 Page 11 SAMPLEN Cu Pb Ag NI Co Mn Fe As Mo Zn U Au Th Sr Cd Sb 81 Y Ca P La Cr Mg Ba 11 B AL Na K 44 Au* X ppm ppm ppm ppm ppm **X** 8 X X X ppm ppb DDM DDM DDM ppm mag mag mag pom pom pom pom X ppm ppm % ppm 💥 🗱 ppm 34 2:3 2 3 144 7.94 90 5 ND 1 11 .2 38 14 2 .06 030 3 2 .14 40 .D1 2 .53 .05 .12 1 65 106959 56 26

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

"ACME ANALYTICAL LABORATORIES LTD.

PHONE (604) 253-3158 FAX (604) 253-1716 $H_{\Gamma C}$ (EG)

GEOCHEMICAL ANALYSIS CERTIFICATE

Noranda Exploration Co. Ltd. PROJECT <u>9007-066-294</u> File # 90-2771 Page 1 P.O. Box 2380, 1050 Davie St., Vancouver BC V6B 315

SAMPLE#	ч	Mo ppm	Cu	Pb	Zn	Ag	NÍ	Co	Mn	Fe X	As	U mag	Au ppm	Th ppm	Sr ppm p	d Sb mippm	Bi ppm	V ppm	Ca P X X	La ppm	Cr ppm	Mg %	Ba ppm	τi 7	B ppm	AL X	Na %	K X I	W. XDre	Au*
							<u> </u>																				01	7.7		
80864 1/-		4	8	4	2		11	7	584	2.23		6	ND	2	🎆	2 2	• 5	2	.52 2031	6	1	.05	52	.01	47	.00	.01	.32 🔘		18
80865 Aly	•	Z	1	Z	7		7	2	330	1.92	<u>10:</u>	5	DN	1	? 🏼	2 2	2	1	.10 .024	· 7	6	.04	50	or the second	15	.00	.01	• 29 📓	WK _	11
80866 A		5	167	2	1 5		7	52	21	12.49	224	5	2	Z	!	2 2	6	1	:01 :001	2	7	.01	14	.01	2	.25	.01	•14 🔘	SI 2	140
80867		3	105	2	8	.1	7	5	284	1.98	36	5	ND	1	5 📖	22	3	1	.42 .034	2	6	.11	21	.01	2	.29	.05	•12 🛞		280
80868		3	1405	2	25	.1	9	2	139	1.52	2	5	ND	1	773	2 2	2	3	.03 .009	2	8	.40	815	.01	5	.62	.03	.04 🏼		10
A 93808		1	183	2	25	1	3	3	347	1.69	2	5	ND	1	54 💹	2 2	Z	2	.26 .015	3	4	.45	2006	101	11	.74	.05	.05	4	12
80870 /		3	2	2	3	3	8	Ĩ	50	1.45	2	9	ND	2	13 💹	2 2	2	1	.04 .010	3	8	.03	129	.01	11	.25	.10	.11 🏼	88 (600
80871 /		1	74	ž	113		13	8	4905	5.83	2	6	ND	2	288	0 2	2	61	18.36 .011	3	49	3.49	124	.01	2 2	2.19	.01	.05 🛞	88	6
80872 /		3	5	ž	2		8	1	66	3.09	42	5	ND	1	17	2 2	2	1	.07 .012	2	7	.03	35	.01	4	.28	.08	.10 🏽	SE 1 .	360
80873		1	1	2	24	.,	3	29	247	13.01	4	5	ND	2	12	2 2	2	9	.16 .026	2	1	.57	44	.09	36 '	1.16	.04	.15	1	2
80875	¥.	z	7	3	10	•	7	3	206	2 40	17	5	ND	2	6 🖉	2 2	2	1	.21 .043	4	6	.34	54	01	6	.85	.05	. 16		75
100845 /	" I	ĩ	Ż	4	28		6	144	324	15.05	2	5	ND	2	11 💹	2 ž	2	14	.26 .006	3	3	-44	30	01	Ž	1.58	.01	.21 🛞	9	23
100847 A		Ż	14	3	11		8	6	715	1.74	13	5	ND	2	46 📖	2 2	2	1	2.46 .017	5	7	.19	198	.01	4	.55	.11	.07 🛞		13
100848 A		3	11	3	11	.1	9	54	152	5.49	2	5	ND	2	4	2 2	2	15	.02 .014	2	7	.37	54	.01	3	.84	.01	.12		12
100 849 A	i	2	12	2	25		6	4	264	5.21	40	5	ND	2	26	2 2	2	4	.05 .057	4	5	.42	72	.01	2	1.01	.14	.05	4	15
103762 A		ž	2271	6	10	5	8	i i	618	2.66	34	5	ND	2	19	2 2	6	2	1.23 .037	4	7	.39	38	.01	3	.60	.03	.17 🏼	88 (680
104755		3	6	2	23	1	10	2	487	7.63	2	5	ND	2	19 💹	2 2	2	2	1.55 .004	8	9	.13	45	.01	2	.34	.01	.06 🛞		9
105306		4	13	7	7	.4	10	92	99	8.57	3	6	ND	2	5	22	2	4	.04 .025	2	5	. 13,	25	.01	2	.53	.03	.10	. .	103
105307 A		2	o	τ	55		7	28	757	12 20	a	6	ND	2	۸ 🖉	4 2	2	16	.03 .030	2	4	1.04	29	.03	75 2	2:11	.01	.14 🖉	.	36
105308 2		2	ž	2	1		6	3	88	10.65	3	6	ND	3	6 📖	2 5	ž	25	.02 .008	ź	6	.09	167	.03	2	.29	.02	.06`*	80	15
100021.		1	87	7	13		Å	í	04740	3.50	7	5	ND	2	756	6 2	2	14	20.33 .006	3	4	2.78	20	.01	2	.70	.01	.07 '		6
100025		ż	37	ر د	7		Ř	121	108	7.09	12	5	ND	2	5	2 2	2	3	.03 .013	2	5	.21	43	.01	3	.96	.02	.24 🐰	2	7
STANDARD	C/AU-R	18	57	38	132	7.2	71	31	1037	4.05	38	21	7	39	53 18	5 15	20	57	.52 .097	38	59	.95	181	.09	34	1.96	.06	.14 🖉	13	460

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 Rock P2 SILT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUL 23 1990 DATE REPORT MAILED: SIGNED Corry to Mike

111 31

1990

ACME ANALYTICAL LABORATORIES LTD. . .

1

A. . C. *

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

مهندًا السامة المالية المالية منها المالية المعاملة المالية المالية المالية المالية المالية المالية المالية الم

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

AUG - 8 1990

FA

Arc

Noranda Exploration Co. Ltd. PROJECT 9008-0081294 File # P.O. Box 2380, 1050 Davie St:; Vancouver BC V6B 315 90-3007

ŝ

	-	•			-				P.	0. Box	< 238	0, 10	50 Da	vië St	:;-V	ancou	ver B	IC V6	3 3 15						TE	UUU	UE	UL	らう	, 	_
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn A ppm pp	i N i pp	i Co ni ppn) Mn 1 ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm p	Cd pm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	t į.	ppm	Al %	-Na ** X	X	N hqq	Au*
日本	104768 104769 104770 104771 104772 -	1 1 4 9 1	1 7 5 4787 115	7 8 4 35 6	41 29 22 24 24 24	1	5 2 4 2 5 5 8 6 3 49	155 216 1253 161 1365	3.65 2.86 5.57 5.62 10.26	5 4 34 168 2	5 5 5 5 5 5	ND ND ND 3 ND	3 3 1 1	13 11 17 18 78 1	.2.2.2.3.1	2 2 2 2 2 2 2	2 2 5 2	1 11 11 133	.04 .07 1.63 .49 2.94	.027 .018 .019 .029 .023	6 6 3 2 3	3 4 9 5 157	.78 1.08 .56 .19 3.97	76 66 36 28 15	.01 .01 .01 .01 .01	3 1. 2 1. 9 . 2 . 2 2.	.08 .22 .66 .31 .65	.07 .06 .01 .01 .04	.07 .13 .18 .17 .19	1 1 2 2 1	12 4 18 910 45
1 4 1	104773 104774 ~ 105320 - 105321 105322 -	2 18 6 3 4	22 32 23 2 690	10 6 4 2 14	36 51 3 3 58	1	7 15 7 13 1 38 7 23 2 73	821 253 350 163 1124	4.20 6.86 4.30 7.91 8.94	145 32 5 2 94	5 5 5 5 5 5	nd Nd Nd Nd Nd	7 5 1 1 3	27 6 8 4 42	.22227	2 2 2 2 2 2 2	2 2 2 4 6	28 12 2 1 1	1.11 .05 .64 .01 3.33	.040 .016 .019 .004 .008	7 3 2 2 3	6 6 11 6 7	.48 .73 .12 .01 .27	49 150 47 23 17	.01 .01 .01 .01 .01	2 . 5 1. 2 . 5 .	.99 .86 .14 .07 .33	.02 .01 .01 .01 .01	.17 .22 .09 .04 .13	1 1 1 2 1	25 6 840 14 99
アナント	105323 105325 105326 105327 105328	2 7 2 4 3	4 242 22 5336	6 12 10 2 3	23 10 51 4 31		7 28 0 20 8 60 9 52 0 7	275 349 989 274 128	8.88 10.79 12.02 6.89 3.31	2 141 59 2 6	5 5 5 5 5	ND ND ND ND	2 1 1 2 1	6 7 8 4 5	.22.4.22	2 2 2 2 2 2	3 20 12 2 2	4 16 20 3 9	.37 .06 .51 .06 .12	.112 .007 .012 .063 .047	2 9 4 3 2	6 8 6 6 10	.58 .03 .57 .02 .47	20 232 16 17 27	.01 .01 .01 .01 .01	21. 21. 21. 5.	.18 .22 .75 .29 .68	.05 .01 .01 .01 .04	.18 .02 .08 .14 .04	12212	31 810 65 6 10
してい	105329 105351 105352 105353 - 105354	3 5 3 2 15	1 15 7 53 28	2 3 8 23 15	8 3 10 3 8		0 19 7 1 5 2 6 8 6 3	1004 39 64 212 597	2.65 3.62 4.05 4.85 6.07	5 25 10 96 299	5 5 5 5 5	nd Nd Nd Nd	2 2 1 4 2	11 14 66 36	.22.22	2 2 2 2 2 2	2 2 2 2 2 2 2	1 1 1 3 1	2.03 .01 .03 1.86 2.01	.007 .009 .028 .051 .011	3 5 4 4 2	6 6 5 3 4	.82 .03 .29 .14 .57	19 568 102 50 23	.01 .01 .01 .01 .01	3 2 3 2 3	.38 .28 .53 .43 .39	.01 .01 .02 .02 .01	.13 .17 .16 .16 .14	1 2 1 1 1	4 21 12 78 56
いいたいへ	105355 105356 105357 105358 105365	3 4 5 4 2	2 380 18 2 2	3 23 17 2 4	6 8 2 3 46		5 1 4 2 8 2 9 2 5 5	47 56 40 52 495	3.01 9.61 2.08 .99 3.26	17 312 48 9 5	5 5 6 5	nd Nd Nd Nd Nd	1 1 1 1	5 7 13 6 5	-22.2.2.2	2 2 5 2 2	2 19 2 3 2	1 3 2 1 1	.01 .02 .02 .01 .08	.005 .024 .020 .005 .038	7 6 6 7 3	5467 4	.10 .03 .02 .01 .58	35 33 24 22 19	.01 .01 .01 .01 .01	2 6 5 4 2 1	.46 .69 .26 .19 .05	.03 .01 .01 .01 .07	.15 .19 .13 .14 .10	2 1 2 2 2 2 2	18 260 •9 700 11
Р. 1 1 1	105366 105368 105401 - 105402 105403	2 6 5 3 4	60 15 984 4 5	49222	38 7 6 4 1	1 1 1 1	4 3 5 25 2 3 9 59 1 10	1079 109 706 202 25	2.93 14.65 1.53 6.61 2.80	2 17 3 3 3	5 7 5 5 5	nd Nd Nd Nd Nd	1 2 1 3 1	44 5 3 6 2	~~~~~~	2 2 2 2 2 2	2 8 2 2 2	1 1 3 1 1	4.74 .17 .19 .29 .01	.028 .071 .025 .016 .002	10 2 4 2 6	3 5 7 8 6	.66 .19 .03 .10 .01	452 9 49 17 40	,01 ,01 ,01 ,01	2.3.3.2.5.	.60 .55 .21 .29 .20	.01 .03 .01 .03 .03	.16 .19 .10 .11 .13	11211	8 25 780 1 10
1 A 4 1 4	105404 105405 105406 105407 105408	5 4 68 9 5	717 33 5341 21943 40635	3 5 44 4 26	3 1 144 970 9162 11.1		5 1 4 9 5 41 5 13 5 18	114 23 349 363 637	.46 11.87 13.32 8.17 12.28	2 8 126 35 20	5 5 6 5 5	ND ND ND ND	1 1 5 2	5 1 8 1 2 18 45	.2.2.7.4.9	2 2 2 2 2	2 4 8 11 61	1 1 4 7 6	.24 .02 .03 .02 .22	.003 .008 .013 .012 .123	2 2 4 6 9	12 3 4 5 6	.01 .03 .32 .31 .32	45 11 27 40 29	.01 .01 .01 .01 .01	2 3 21 21 21	.04 .22 .10 .15 .50	.01 .01 .01 .01 .01	.03 .14 .22 .18 .18	21111	3 15 28 91 22
•	105409 Standard C/Au-R	1 18	531 57	5 39	56 132 6.	י זק	5 21 D 31	3407 1057	7.58 3.94	42 37	5 20	ND 7	1 38	87 52 18	.6	2 15	3 17	22 56	6.50 .56	.015 .092	8 38	5 58	.52 .93	12 180	.01 .09	21. 341.	.66 .95	.01 .06	.08 .13	1	97 510

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. S PPM. 2

	•			Nor	and	a E:	xpl	ora	tion	Co	. L	tđ.	PR	OJE	CT	900	8-0	08 _.	294	, F	ILE	#	90-	3007	7			Pa	age	2	
	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N1 ppm	Co ppm	Mn ppm	Fe X	As ppit	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	11 X	8 ppm	Al X	Na X	K X	W ppm	Au* ppb
105410	10	1025	2	26		5	60	230	R. 94	41	5	ND	1	15	2	2	4	12	56	180	7	12	43	17	01	2	05	03	20	4	28
1 105411		1025	26	21	872	17	111	282	12 63	215	ź	ND	4	2	5	2	20	R	10	005	J R	16	11	. .	1	2	77	.03	.20	884'a	00
105612	5	10	3	25		'7	14	348	0.44	25	š	ND		ž	3	2	4	20	21	105	7	14	07	14	01	2 1	00	.00	05		20
4 105413 -	1 5	30	2	3		5	7	142	11.66	5	5	ND	i	3	88 F	2	2	7	.07	037	5	7	.02	33	Ôñ.	5	. 22	.01	.16		20
105414 -	Ā	7	2	1		12	20	31	3.15	2	5	ND	i	2	2	• 2	2	i	.01	007	2	5	.01	40	01	ź	.10	.01	.07		6
. [-	•	-	•							•		•	-		-	-	•			-					-	• • •				v
105415	4	9	2	2		11	9	54	2.83	3	5	ND	1	1	× 2	2	2	1	.01	012	2	6	.02	53 8	01	2	. 19	.01	.12		6
105416	3	5	2	3	200 P	B	7	117	3.72	5	7	ND	1	ż	5	2	5	2	.03	025	2	ž	.02	63	Cot)	2	14	.01	.11		2
105417 -	6	10	2	1	88 A	13	115	70	10.94	2	5	ND	1	2		5	3	ī	.03	014	5	11	.01	6	Soil.	2	18	.01	.13		- 31
105418	I L	6	5	1		12	Q D	65	7.74		5	ND	1	1	S 5	5	3	1	.02	n12	2	R	.02	ŏ	O1	2	.14	.01	.11		410
105419	07	114	117	4	94	ō	Ĩ	128	6.88	AO	5	ND	ż	. .	5	5	16	2	02	007	Ā	Ř	33	10 8	01	5	.63	01	10		18
105417	1 "	114					-	120									10	-			v	U				-			• • •		.0
105423 -	3	3	2	1		8	2	51	1.82	37.	5	3	1	6	88 Q.	2	2	1	.01	008	3	3	-01	31 🖁	01	2	.22	-02	.09	889 i 4	520
105424	3	2422	2	35	2	22	12	647	3.57	83	5	ND	1	3	2	ž	2	3	.20	036	7	9	.85	16	01	2 1	.50	.06	.09		12
105453	4	17	2	1	2	10	16	51	6.56	6	5	ND	1	6	2	ź	3	Ĩ	.06	037	4	Ĺ.	.04	14	01	ž	.27	.01	.18	884	13
105454	11	35	8	1	883 i	6	9	61	17.97	88 .	5	ND	1	2	.2	2	7	1	.04	012	3	4	.01	5 8	01	ž	.12	.01	.09	1	50
105455	6	7	Ž	3	2	8	7	81	3.42	2	8	ND	1	5	2	ž	ź	1	.12	026	3	3	.06	33 8	01	ž	.30	.01	.19	889	11
14		•	-	-		-	•				-		•	•			-	·			-	-				-			•		
105456	6	7	2	1		10	6	26	2.14	2	5	ND	1	1	.z	2	2	1	.01	2002	3	3	.01	40 🕴	.01	2	.21	.01	.16		9
105459	3	137	2	42		8	4	541	1.59	2	5	ND	1	6	.2	2	2	19	.15	.022	2	10	.51	25 🖁	.01	7	.63	.02	.01		3
105460	8	69	131	13		13	43	174	11.13	3	6	ND	1	244	.2	2	2	29	.67	.042	2	14	.43	15 🖁	.05	2	.95	.01	.03		16
STANDARD C/AU-R	18	58	37	134	7.2	70	31	1050	3.93	38	16	7	39	53	18.4	15	20	55	.50	-096	38	60	.88	181 🖇	.07	35 1	.85	.06	.14	14	540

.

.

.

١

,

•

.

ACME ANALYTICAL LABORATORIES LTD.

· ·

2.) 'A

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 Arc (66) AKC" 294

· Results

GEOCHEMICAL ANALYSIS CERTIFICATE

Noranda Exploration Co. Ltd. PROJECT /9007-022 294 File # 90-2332 Page 1 P.O. Box 2380, 1050 Davie'Str, Vancouver BC V68 315

n ppm ppm ppm ppm ppm ppm x x ppm ppm x x x pm
1 4 4.9 2 41 1 .85 .001 2 1 .07 16 .01 2 .09 .01 .02 1 1 41 5.0 2' 2 2 9.43 .006 2 1 3.18 2 .01 2 .16 .01 .02 1 1 2 .22 2 1 .03 .008 2 5 .02 25 .01 4 .13 .01 .09 1 3
1 41 5.0 2 2 9.43 006 2 1 3.18 2 01 2 .16 .01 .02 1 1 2 2 2 1 .03 008 2 5 .02 25 .01 4 .13 .01 .02 1
1 2 2 2 2 1 .03 008 2 5 .02 25 01 4 .13 .01 .09 1
) 4 7 2022293 9 7C 4 C9 200742 9 9 44 8 20142 9 4/ 01 14 20242 9E/
1 17 2 2 2 1 .09 005 2 10 .04 314 01 4 .05 .01 .02
1 186 222 2 5 6 12.44 013 3 1 .92 46 01 2 .43 .01 .06 1
1 33 13 2 4 6 5.40 045 2 5 1.54 27 01 2 .36 .01 .10 1
1 134 322 2 6 9 15.14 2001 2 1 2.22 163 201 3 .31 .01 .03
1 4 2 2 8 7 .17 063 2 3 .32 9 01 2 .97 .02 .08 1
1 10 28 2 2 12 .78 047 2 3 .60 50 01 2 .93 .02 .06 1
36 47 17 5 15 23 56 .51 096 36 55 .92 174 07 34 1.95 .06 .14 12

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 Rock P2 Silt AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

✓ ASSAY RECOMMENDED

A	çme an	ALYT	ICA	l la	BORATOP	RIES	LTI).	852 E.	HAS	TING	S S	T. V.	ANCO	DUVE	RВ.	c.	V6A	1R6	5	PH	ONE	(604)2	53-3	158	Fax	(604)25	3-1710
•	•									GE	oche	MIC	CAL	AN/	ALY8	318	CE	RTIJ	FICA	TE	ba	out	ex (ĒS)		AR (2.
	. •				Nora	nda	Ex	plo	ration	Co. P.O. B	Ltd	. I BO, 1	PROJ	EC] avie,	r 9(Vario	009 OUvér	BC V	(68-31	5	Fi	le	# g	0-41 ope	30 / 4	61	hì	kp x.	2
5	AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn Ag ppm ppm	N1 ppm	Co ppm	Mn ppm	Fe As X ppn	U ppm	Au	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ ppm	Ca X	P %	La ppm	Cr ppm	Mg X	Ba ppm	1 7 pp	BAL	Na X	K X ppi	Au*
-1	06968 AG	1	7	5	4 .1	5	13	63 38	2.07 7	55	ND	1	6	.2	2	• 4	1	·.04	014	2	1	.01	167	1	2.19	.01	.13	340
	06970 AG	3	5 20	22	7 .1 11 .2	52	4 6	254 1169	5.00 58 1.36 3	5	ND ND	1	14 23	.2	22	10 5	1	.06 1.58	018 009	94	5 1	.05	36 10 163 10	1	2.39	.01	.16	15
) 1 ; 1	06972 AG	4'8 2	3665 39`	123 2	1 16.8	6 1	25 55	12 29	13.60 76890 14.42 222	5	27 ND	2 2	3 1	.2 .2	46 4	40 2	1	.01 .01	.023	2 2	2 1	.01 .01	8 .0 8 .0		z.24 3.25	.01 .01	.07	53.1200 1120

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: SEP 4 1990 DATE REPORT MAILED: Sept 10/90. SIGNED BY......D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ARC

1990

1

/ ASSAY IN PROGRESS

in the survey

TT	SAMPLE	Au	Ån	AI	Âe	Ra	Re	BI	Ca	Cd	Ce	Co	Cr	Cu	Fo	ĸ	1.0	11	Ma	Mn	Mo	Na	NI	Þ	Ph	Sr	TI	V	70	9009-021
· No.	No.	aad	naa	96	bom	חסם ו	DDM	bow	96	DDM	DDm	Dom	bom	noa	96	%	bom	ום ו	9/6	noa	noo	96	pom	%	DDM	nom	%	opm	Dom	Pa 6 of 8
217	129054		0.2	4.44	41	279	1.9	3	0.48	1.0	82	17	18	47	5.55	0.58	36	13	1.00	1813		0.19	21	0.15	38	51	0.47	98	232	
218	129055	20	0.4	5.00	66	264	2.2	2	0.32	1.0	80	17	22	61	5.91	0.73	38	13	1.03	1686		0.15	21	0.15	49	38	0.44	104	297	
219	129056	10	0.2	4.84	9	226	1.9	4	0.32	0.3	78	19	27	32	5.98	0.41	30	12	0.94	1869		0.12	22	0.18	22	36	0.60	114	184	
220	129057	5	0.2	4.64	5	167	1.8	3	0.27	0.2	66	21	25	29	5.84	0.29	25	11	0.81	2083		0.09	21	0.18	14	27	0.87	125	148	
221	129058	5	0.2	4.15	14	457	2.0	5	0.47	0.7	77	20	17	41	5.51	0.47	31	13	1.10	2588	200	0.18	23	0.16	20	49	0.48	102	154	
1			ŝ				2					_																		
222	129059	5	0.2	4.28	14	134	1.1	2	0.11	0.2	55	14	21	26	5.21	0.48	21		0.64	1186		0.06	12	0.14	23	16	0.40	92	168	
223	129060	5	0.2	5.40	2	93	1.3	3	0.18	0.2	48	4	21	15	4.84	0.09	22	8	0.21	289		0.07	7	0.18	10	14	0.47	81	79	
224	129061	10	0.2	5.11	8	317	2.5	4	0.35	0.2	81	13	20	34	6.06	0.32	32	12	0.45	1541		0.08	12	0.21	19	26	0.67	117	158	
225	129062	5	0.2	4.96	6	195	1.5	4	0.23	0.2	58	8	29	25	4,97	0.24	26	8	0.36	581		0.08	9	0.17	18	22	0.77	131	102	
228	129063	5	0.2	4.43	20	260	1.3	2	0.16	0.2	62	13	14	35	4.75	0.90	22	12	1.06	1509		0.08	12	0.09	34	22	0.23	79	214	
227	129064	10	0.2	5.00	3	306	1.6	4	0.37	0.2	70	13	18	27	5.78	0.55	28	11	0.79	1736		0.07	14	0.20	15	31	0.57	128	129	
228	129065	5	0.2	4.59	30	293	1.8	5	0.44	0.8	72	20	24	34	6.12	0.57	25	14	1.45	2618		0.11	22	0.14	42	31	0.48	129	243	
229	129066	25	0.2	4.09	51	228	1.7	5	0.25	0,7	65	20	27	34	5.92	0.41	21	12	0.88	3305		0.07	20	0.16	67	22	0.49	105	250	
230	129067	5	0.2	4.81	9	391	2.0	4	0.34	0.5	79	17	19	33	6.07	0.85	31	12	1.05	2904		0.10	21	0.15	30	34	0.43	91	179	
231	129068	5	0.4	4.53	10	248	1.9	2	0.25	0.3	66	17	29	36	5.92	0.42	26	14	0.87	2864		0.08	22	0.17	58	27	0.51	108	212	
1.0			8																											
232	129069	5	0.2	4.14	10	337	1.8	2	0.46	0.2	66	18	26	33	5.38	0.53	25	10	1.12	2088		0.13	24	0.16	11	44	0.49	95	130	
233	129070	5	0.2	3.80	7	277	0.9	2	0.11	0.2	5 0	9	9	23	3.86	0.99	20	8	0.80	1576		0.05	8	0.08	12	19	0.12	42	90	
234	129071	5	0.2	5.19	5	267	2.2	2	0.12	0.2	82	18	13	27	5.14	0.67	37	11	0.76	1841		0.07	13	0.15	12	12	0.38	91	145	
235	129072	5	0.2	4.20	13	226	1.1	2	0.22	0.2	48	18	12	25	4.92	0.74	19	10	1.21	1816		0.08	17	0.12	5	22	0.33	73	99	
236	129073	10	0.2	4.81	16	283	1.4	2	0.20	0.2	59	18	23	57	5,60	0.83	23	14	1.02	2839		0.07	23	0.20	10	26	0.34	88	129	
1																														
237	129074	Б	0.2	4.20	12	254	1.4	2	0.11	0.2	58	15	15	38	4.82	0.81	23	10	1.04	2210		0.05	20	0.11	7	14	0.2 6	64	88	
238	129075	40	0.2	4.74	50	380	1.3	2	0.13	0.2	55	11	7	82	5.66	1.19	23	9	0.81	2639		0.05	11	0.11	10	22	0.19	54	84	
239	129078	75	0.4	4.32	36	190	1.4	6	0.32	0.2	59	17	23	95	5.87	0.55	21	10	1.05	1946		0.13	25	0.15	11	36	0.44	87	94	
240	129077	5	0.2	4.46	24	327	1.3	2	0.12	0.2	58	12	6	44	4.75	0.97	21	8	0.74	1604		0.05	9	0.11	8	19	0.25	64		
241	129078	5	0.2	4.74	10	193	2.0	6	0.41	0.Z	71	16	15	40	5.25	0.53	31	12	0.75	948		0.13	13	0.14		41	0.59	102	82	
0.00	100070				•			•	0 1E		50	•			4 91	1 45			1.05	0804		0.02	7	A 10		12	0 15	12	80	
242	120070	2	0.2	0.09	2	230	1.4	2	0,10		28	10	7	14	4.31	1.40	20	16	1.05	2004		0.03		0,12		22	0.10	43 54	BA	
243	129080		0.2	4.00	2	318	1.2	2	1 10	V.2	60 08	10	10	10	4.05	1.00	21		1 04	1000		0.00	18	0.14		101	0.23	97	104	
244	100080		0.2	4.20	~	304	1.3	-	0.00	N.6	72	10	17	20	4,00	0.72	20		1.24	701		0.38	24	0.12	7	01	0.01	127	198	
240	120082		0.2	4.00	~	183	1.2	•	0.88		73	40	10		5 28	0,00	30		0.00	1210		0.31	20	0.18		41	0.50	04	120	8
240	128063		V.2	4.30	2		1.0	-	0.42	¥.6	/3	10	10		0.20	0.07	31		0.00	1010		0.10	20	9.14		- 1	0.00	••		8
247	120084		0.0	A 3A	2	781	10		0 17		57	12	17	04	4 71	0.85	23	10	0.93	1812		0.07	20	0 13		24	0.30	72	84	
249	120085		0.2	3 00	2	025	1.2	3	0.30	0.2	52	12	19	21	4.47	0.85	20		0.00	1373		0.12	19	0 10		38	0.28	69	78	
240	120088		0.2	5 70	2	272	1.1	5	0.00		57	13	12	81 80	R 20	1 48	24	12	0.00	1977		0.08	20	0.12	5	38	0.31	81	98	
248	120007		0.2	A A3	2 8	310	1.0	2	0.15		53	11	17	98	4 38	1 00	21		0.80	1822		0.03	17	0 11	R	20	0.13	63	78	
250	120088		0.2	R 10		452	1.7	5	0.10	0.5	57	10		74	4.58	1 72	20		0.85	2510		0.05	10	0.18	10	22	0.21	56	79	
202	128000		0.2	0.10	2	700	1.0	0	0.21		57	10	•		4.00	1.76	20		0.00	2010		0.00		0.10			0.21			
252	120080	30	0.2	4 79	•	200	15	6	0 20		RA	17	15	92	5 28	0 90	24		0 97	2855		0.08	17	0 17	R	32	0.38	85	82	
254	120000		0.2	4.92	~	470	1.5	A	0.20		88	18	11	21	5 48	1 00	35	10	1 18	1988		0.28	19	0.15	13	85	0.39	87	107	
255	120001	50	0.2	3 80	7 0	7/0	1.4	3	0.75	0.5	60 RA	12	18	30	4 67	0.76	28	1,5	0.88	1492		0.08	17	0.09	.	22	0.19	68	91	
258	120002	EF.	0.2	4.3A	2	218	1 2	3	0.49	0.7	55	14	11	32	5 09	0.94	20	1.5	0.95	1398		0.15	18	0 12		45	0.39	80	89	
257	120002	10	0.2	4.00	4 7	370	20	2	0.38	.	101	12	15	22	5 12	0.67	43	1	0.85	1485		0.16	19	0 11	11	37	0.31	70	148	
201	160/03		V. £	4.00	'				0,00			10			0.12	0.07			0.00	, 400		5.15	10	v. i i		э,	4.91			
258	120094	20	02	3 05	F	951	15	R	0 44	0.7	74	14	17	38	4 79	0.88	30	14	1.00	1641		0.13	21	0.10	10	39	0.24	67	114	
259	129095		0.2	6 12	4	250	14	4	0.07	n 2	59	Ω.	5	24	4.54	1.84	24	13	0.72	1489		0.07	8	0.11	10	38	0.14	69	78	
260	129098		0.2	4,73	2	92	2.8	2	0.12	0.2	116	4	8	14	5.32	0.14	42		0.11	613	3	0.18	6	0.09	14	7	0.22	28	107	
281	129097		0.2	4,58	4	177	1.8	<u>́</u> 3	0.28	0.2	63	15	21	30	5.94	0.28	28	13	0.60	1678		0.11	14	0.19	Ð	28	0.63	113	94	
1		200027-0			4																									

T. BADPLE Au Ag Ai Bas		•																														
10. 10. <th></th> <th>, (+ +</th> <th>CALLDI E</th> <th>A</th> <th>Aa</th> <th>AL</th> <th>A =</th> <th>Da</th> <th>Ro</th> <th>- DI</th> <th><u> </u></th> <th></th> <th><u> </u></th> <th></th> <th><u>.</u></th> <th><u><u> </u></u></th> <th>Fo</th> <th></th> <th>1.0</th> <th></th> <th>Ma</th> <th>Ma</th> <th>Ma</th> <th>Na</th> <th>NI</th> <th>D</th> <th>Ph</th> <th>Sr</th> <th>TI</th> <th></th> <th>70</th> <th>0000-021</th>		, (+ +	CALLDI E	A	Aa	AL	A =	Da	Ro	- DI	<u> </u>		<u> </u>		<u>.</u>	<u><u> </u></u>	Fo		1.0		Ma	Ma	Ma	Na	NI	D	Ph	Sr	TI		70	0000-021
100 100 <th></th> <th></th> <th>JAMPLE</th> <th>74 55</th> <th>~vy</th> <th>64</th> <th></th> <th>Da</th> <th>09</th> <th>Dom</th> <th>04 04</th> <th>Dour Dour</th> <th>0.0</th> <th>00</th> <th>00</th> <th>on m</th> <th>04</th> <th>10</th> <th>La</th> <th></th> <th>06</th> <th>nom</th> <th>00</th> <th>04</th> <th>nnm</th> <th>96</th> <th></th> <th>nnm</th> <th>66</th> <th>nom</th> <th>200</th> <th>Pa 7 of 8</th>			JAMPLE	74 55	~vy	64		Da	09	Dom	04 04	Dour Dour	0.0	00	00	on m	04	10	La		06	nom	00	04	nnm	96		nnm	66	nom	200	Pa 7 of 8
1200 1200 1 1 2 1 1 2 1 1 0 </td <td></td> <td>110.</td> <td>120009</td> <td>hhn</td> <td>phu 8 0 3</td> <td>4 84</td> <td>- ppm</td> <td>hhiu</td> <td>ppm ppm</td> <td>ppm g</td> <td>90</td> <td>phin System</td> <td></td> <td>19</td> <td>ppin</td> <td>phu bhu</td> <td>5 20</td> <td>0.52</td> <td>97</td> <td>0158</td> <td>10 72</td> <td>1040</td> <td></td> <td></td> <td>10</td> <td>0 17</td> <td><u></u></td> <td><u>51</u></td> <td>0.58</td> <td>101</td> <td>140</td> <td>Fy. 7 01 0</td>		110.	120009	hhn	phu 8 0 3	4 84	- ppm	hhiu	ppm ppm	ppm g	90	phin System		19	ppin	phu bhu	5 20	0.52	97	0158	10 72	1040			10	0 17	<u></u>	<u>51</u>	0.58	101	140	Fy. 7 01 0
293 193000 6 0 284 19300 1 285 19300 1 0 0 1 0 <th0< th=""></th0<>		202	. 128080			4.04	~		2.5	0	0.40	V.C	65	13	"		0.20	0.02	37		0.70	1040		0.14	10	V.17			0.00	101		
290 10000 1 0 </td <td></td> <td>282</td> <td>120000</td> <td></td> <td></td> <td>A 71</td> <td>2</td> <td></td> <td>1 4</td> <td>2</td> <td>0.25</td> <td></td> <td>76</td> <td>14</td> <td>20</td> <td>90</td> <td>4 70</td> <td>0.64</td> <td>22</td> <td></td> <td>0.68</td> <td>1014</td> <td></td> <td>0 12</td> <td>10</td> <td>0.18</td> <td></td> <td>40</td> <td>0 58</td> <td>102</td> <td>124</td> <td></td>		282	120000			A 71	2		1 4	2	0.25		76	14	20	90	4 70	0.64	22		0.68	1014		0 12	10	0.18		40	0 58	102	124	
10000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000000 1000000000000000000 1000000000000000000		203	120000		0.2	9.71	ں م	080	1.0	3	0.00	¥.6	10	14	20	24	1.00	0.04	37		0.00	1100		0.16	21	0.11		97	0.25	88	105	
and b< b<< b< b<< b<< <td></td> <td>204</td> <td>12000</td> <td>D-</td> <td>0.2</td> <td>3.04</td> <td></td> <td>- 303</td> <td>2.2</td> <td>č</td> <td>0.21</td> <td>0.2</td> <td>- 40</td> <td>10</td> <td>21</td> <td>30</td> <td>4.00</td> <td>0.00</td> <td></td> <td>-</td> <td>0.75</td> <td>000</td> <td></td> <td>0.10</td> <td>10</td> <td>0.11</td> <td></td> <td>£1 £0</td> <td>0.20</td> <td>108</td> <td>110</td> <td>8 * · · · ·=</td>		204	12000	D-	0.2	3.04		- 303	2.2	č	0.21	0.2	- 40	10	21	30	4.00	0.00		-	0.75	000		0.10	10	0.11		£1 £0	0.20	108	110	8 * · · · ·=
12 13 13 <th< td=""><td>•</td><td>200</td><td>120051</td><td></td><td>0.2</td><td>4.04</td><td>0 7</td><td>200</td><td>1.2</td><td>4</td><td>0.90</td><td>V.6</td><td>00</td><td>10</td><td>20</td><td>50</td><td>0.70 E 10</td><td>0.59</td><td>20</td><td></td><td>0.84</td><td>020</td><td></td><td>0.10</td><td>10</td><td>0.17</td><td></td><td>02</td><td>0.50</td><td>102</td><td>105</td><td></td></th<>	•	200	120051		0.2	4.04	0 7	200	1.2	4	0.90	V.6	00	10	20	50	0.70 E 10	0.59	20		0.84	020		0.10	10	0.17		02	0.50	102	105	
construction construction<		201	120002		0.2	9.20	10		1.0	~	0.21	V.2	70	12	28		D,12	0.44	28		0.00	1127		0.08	19	0.13		20	0.00	102	0100	
293 19965 6 0.2 413 10 3 0.00 0.2 83 12 29 14 15 15 170 180 1 0.6 0.0 11 16 0.01 67 190 284 139955 15 0.2 4.4 16 0.2 79 14 27 140 0.4 0.2 16 100 <		292	120003		0,2	4.21	12	1/#	1.7	2	0,34		70	17	23	23	0.13	0.92	21		0.78	1107		0.14	21	0.13		37	0.01	80	213	
228 128053 0 0 2 0 1 3 0.00 0 0.00 10 0.00 10 0.01 0 0.00 10 0.01 0 <t< td=""><td></td><td>202</td><td>100854</td><td></td><td></td><td>4 4 9</td><td></td><td></td><td>10</td><td>•</td><td>0.00</td><td></td><td></td><td>40</td><td>20</td><td></td><td>4 60</td><td>0 70</td><td></td><td></td><td>0 70</td><td>700</td><td></td><td>0.04</td><td></td><td>0.00</td><td></td><td></td><td>0.91</td><td>67</td><td></td><td></td></t<>		202	100854			4 4 9			10	•	0.00			40	20		4 60	0 70			0 70	700		0.04		0.00			0.91	67		
248 12488 2 0 4 3 0.1 2 0.5 4.5 0.00 2.0 0.01 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.03 10 0.04 40 0.05 10 10 10 0.03 10 10 0.03 10 10 10 0.03 10 10 0.03 10 10 0.03 10 10 10 0.03 10 10 10 0.03 10 10 0.03 10 10 10 0.03 10		283	128004		0.2	4.13	45	192	1.0	3	0.00	U.2	03	12	28	4 V	4.03	0.73	23		0.78	1008		0.04	20	0.08		10	0.21	07		
200 120000 2 2 1 <th1< th=""> 1 <th1< t<="" td=""><td></td><td>284</td><td>129055</td><td></td><td>0.2</td><td>4.24</td><td>10</td><td>230</td><td>1.4</td><td>3</td><td>0.14</td><td>U,2</td><td>18</td><td>14</td><td>21</td><td>43</td><td>4,73</td><td>0.80</td><td>30</td><td></td><td>0.70</td><td>1300</td><td></td><td>0.07</td><td>21</td><td>0.13</td><td></td><td>19</td><td>0.33</td><td>07</td><td>113</td><td></td></th1<></th1<>		284	129055		0.2	4.24	10	230	1.4	3	0.14	U,2	18	14	21	43	4,73	0.80	30		0.70	1300		0.07	21	0.13		19	0.33	07	113	
1200 1200 1200 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 <td></td> <td>280</td> <td>129050</td> <td>20 P</td> <td>0.2</td> <td>4.21</td> <td>13</td> <td>444</td> <td>1.3</td> <td>3</td> <td>0.09</td> <td>0.2</td> <td>02</td> <td>10</td> <td>40</td> <td>34</td> <td>4.39</td> <td>1.00</td> <td>27</td> <td>20</td> <td>1.04</td> <td>1211</td> <td></td> <td>0.04</td> <td>49</td> <td>0.09</td> <td></td> <td>10</td> <td>0.15</td> <td>70</td> <td></td> <td></td>		280	129050	20 P	0.2	4.21	13	444	1.3	3	0.09	0.2	02	10	40	34	4.39	1.00	27	20	1.04	1211		0.04	49	0.09		10	0.15	70		
236 1 20050 5 0.2 4.8 2 10 0.2 4.8 0.30 11 4.9 0.30 11 12 0.10 11 11 12 0.10 12 14 4.57 0.41 12 0.11 12 0.33 11 12 0.33 11 12 0.33 11 12 0.33 12 0.33 11 12 0.33 12 0.33 12 0.33 12 0.33 12 0.33 12 0.33 12 0.33 12 0.33 12 0.33 12 0.33 12 0.34 2 0.2 1.4 0.4 0.21 17 4.6 0.31 13 12 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33 13 0.33		290	129057		0.2	3.80	10	141	1.0	2	0.44	0.2	66	14	20	41	4.41	0.04	23		0.80	1195		0.19	21	0.11		49	0.30	19		
288 120659 5 0.2 3.7.4 4 112 1.1 2 0.10 0.2 4.9 3.*25 1.4 4.57 0.41 20 0.40 245 2 0.06 10 11 12 0.33 72 73 302 120661 6 0.2 4.84 2 160 0.2 0.48 2 10 0.42 2.4 0.44 <t< td=""><td></td><td>287</td><td>129058</td><td></td><td>0.2</td><td>4.18</td><td>2</td><td>108</td><td>0.9</td><td>3</td><td>0.17</td><td>V.2</td><td>44</td><td>5</td><td>30</td><td>26</td><td>4.98</td><td>0.30</td><td>18</td><td></td><td>0.29</td><td>021</td><td></td><td>0.05</td><td></td><td>0.20</td><td>13</td><td>20</td><td>0.78</td><td>117</td><td>40</td><td></td></t<>		287	129058		0.2	4.18	2	108	0.9	3	0.17	V.2	44	5	30	26	4.98	0.30	18		0.29	021		0.05		0.20	13	20	0.78	117	40	
2000 5 0.2 3.4 4 11 1 <th1< th=""> 1 1 1<</th1<>			400050							•				•	۹			~ ~ ~	•••						4.0					70		
120000 10 13 2 0.16 12 0.16 12 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 10 0.16 12 20 0.16 17 00 17 00 17 00 17 00 17 00 17 00 17 00 17 00 17 00 17 00 11 <th11< th=""> 11 <th11< th=""> <th11<< td=""><td></td><td>588</td><td>129659</td><td></td><td>0.2</td><td>3.74</td><td>4</td><td>112</td><td>1.1</td><td>2</td><td>0,10</td><td>0.2</td><td>49</td><td>3</td><td>25</td><td>14</td><td>4.0/</td><td>0.41</td><td>20</td><td></td><td>0.40</td><td>245</td><td></td><td>0.05</td><td>10</td><td>0.13</td><td></td><td>12</td><td>0.38</td><td>72</td><td>(¥</td><td></td></th11<<></th11<></th11<>		588	129659		0.2	3.74	4	112	1.1	2	0,10	0.2	49	3	25	14	4.0/	0.41	20		0.40	245		0.05	10	0.13		12	0.38	72	(¥	
303 120001 0 <th0< <="" td=""><td></td><td>588</td><td>129660</td><td>2 P</td><td>0.2</td><td>3.84</td><td></td><td>159</td><td>1.3</td><td>2</td><td>0.15</td><td>0.2</td><td>70</td><td>10</td><td>30</td><td>23</td><td>4./1</td><td>0.41</td><td>26</td><td></td><td>0.54</td><td>811</td><td></td><td>90.09</td><td>24</td><td>0.14</td><td></td><td>17</td><td>0,32</td><td>/3</td><td>103</td><td></td></th0<>		588	129660	2 P	0.2	3.84		159	1.3	2	0.15	0.2	70	10	30	23	4./1	0.41	26		0.54	811		90.09	24	0.14		17	0,32	/3	103	
303 120002 1 0 2 0.2 1.0 0 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 <td></td> <td>302</td> <td>129681</td> <td>8 b</td> <td>0.2</td> <td>4.88</td> <td>2</td> <td>130</td> <td>0.8</td> <td>2</td> <td>0.26</td> <td>0.2</td> <td>61</td> <td>6</td> <td>42</td> <td>28</td> <td>6.58</td> <td>0.38</td> <td>23</td> <td></td> <td>0,50</td> <td>396</td> <td></td> <td>0.07</td> <td>10</td> <td>0.19</td> <td></td> <td>30</td> <td>0.91</td> <td>1/4</td> <td>. HU</td> <td></td>		302	129681	8 b	0.2	4.88	2	130	0.8	2	0.26	0.2	61	6	42	28	6.58	0.38	23		0,50	396		0.07	10	0.19		30	0.91	1/4	. HU	
304 120063 6 0.2 4.2 2 1 0 1 0 1 2 1 1 1 2 1 <t< td=""><td></td><td>303</td><td>129682</td><td></td><td>0.2</td><td>4.89</td><td>2</td><td>142</td><td>0.9</td><td>2</td><td>0.28</td><td>0,2</td><td>34</td><td>2</td><td>29</td><td>27</td><td>4.48</td><td>0.31</td><td>18</td><td></td><td>0.28</td><td>209</td><td></td><td>0.07</td><td></td><td>0.18</td><td></td><td>28</td><td>0.96</td><td>151</td><td></td><td></td></t<>		303	129682		0.2	4.89	2	142	0.9	2	0.28	0,2	34	2	29	27	4.48	0.31	18		0.28	209		0.07		0.18		28	0.96	151		
305 120004 5 0.2 4.18 2 1.4 1.1 2 0.22 0.2 4.11 0.2 0.2 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.4 1.6 0.3 1.6 1.4 1.6 0.4 1.6 0.4 0.6 0.4 0.6 0.0 1.7 1.1 1.1 1.1 2 0.21 1.6 1.1 2 1.6 2 1.4 1.6 0.4 0.5 0.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <th1.1< th=""> <th1.1< th=""> 1.1</th1.1<></th1.1<>		304	129663	Ð	0.2	4.22	2	121	0.7	2	0.25	0,2	41	9	27	22	5.94	0.32	21		0.34	808	3	0.08	1	0.19		29	0.84	148	100	8 -
300 120000 500 120000 500 120000 500 120000 120		005	400004				•			•									10		~ ~ 4	4400		0.00	•	0.04			A 78	104		
12000 10 0.1 0.1 0.1 0.1 0.1 0.10 11 0.00 10 0.00 <th< td=""><td>P1:</td><td>1305</td><td>129004</td><td></td><td>80.2 8 à 5</td><td>4.18</td><td>2</td><td>140</td><td>1.1</td><td></td><td>0.22</td><td>0.2</td><td>43</td><td></td><td>31</td><td>20</td><td>D./D</td><td>0.32</td><td>10</td><td>- 46</td><td>0.34 ñ ĂÅ</td><td>1400 9764</td><td></td><td>0.08</td><td></td><td>0.21 7099</td><td></td><td>25</td><td>0,70 </td><td>DR</td><td></td><td>8</td></th<>	P1:	1305	129004		80.2 8 à 5	4.18	2	140	1.1		0.22	0.2	43		31	20	D./D	0.32	10	- 46	0.34 ñ ĂÅ	1400 9764		0.08		0.21 7099		25	0,70 	DR		8
309 120003 5 0.2 4.09 1 2 0.2 1.0 2 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>	_	308	129667	2 N	0.2	A 18	2	903	0.0	2	0 15	n a	42	5	20	20	4.04 A 80	0.70	20	10	0.39	708		0.04	 A	0.22	a	28	0.57	125	95	
12000 5 0.2 1.0 <th1.0< th=""> 1.</th1.0<>		309	120668	Ĭ	0.2	4 00	11	200	1 1	5	0.10	1.2	59	15	40	20	4.00	0.97	21	147	1 11	1801		0.04	42	0 10		21	0.12	85	111	8
310 129699 6 0.2 4.59 6 40 1.8 2 0.14 0.2 82 14 30 41 4.96 0.98 30 17 1.02 2099 1 0.07 31 0.13 11 21 0.18 85 133 311 120671 5 0.2 4.18 32 2.2 4 0.15 0.2 35 16 6.02 0.07 31 0.17 17 17 0.55 108 39 317 104471 6 0.2 4.17 2 0.65 1.8 2 0.10 0.2 30 11 12 0.07 14 0.06 9 0.17 7 7 17 0.55 108 31 310 104472 6 0.2 4.70 2 0.00 1.0 1.0 0.07 1.1 0.11 1.3 0.12 1.3 0.11 1.3 0.12 1.3 0.11 0.11 0.11 0.10 1.3 0.11 0.11 0.11 0.11<			120000			4.00	••		1.1	-	0.21			10			4.00	0.07	•••					0.04		••			••••	•••		
311 120070 5 2 1.0 2 1.0<		310	129669		02	4 59	R	401	18	2	0 14	n e	82	14	30	41	4 98	0.98	30	147	1 02	2099		0.07	31	0.13		21	0.18	85	133	
312 119 07 6 2 119 07 2 119 07 2 119 07 11 2 0.01 0.2 100 11 10 0.11 11 0.01 0.11 11 0.01 0.11 11 0.01 0.11 11 0.01 0.11 11 0.00 0.11 11 0.01 0.11 0.01 0.11 0.01 0.01 0.11 0.01 <th0.01< th=""> <th0.01< th=""> <th0.01< <="" td=""><td></td><td>311</td><td>129870</td><td></td><td>0.2</td><td>4 18</td><td>33</td><td>220</td><td>2.2</td><td>4</td><td>0.15</td><td>0.2</td><td>108</td><td>11</td><td>25</td><td>- 14</td><td>4 01</td><td>0 44</td><td>38</td><td>16</td><td>0 49</td><td>1582</td><td></td><td>0.14</td><td>19</td><td>0.12</td><td>18</td><td>18</td><td>0.29</td><td>68</td><td>139</td><td></td></th0.01<></th0.01<></th0.01<>		311	129870		0.2	4 18	33	220	2.2	4	0.15	0.2	108	11	25	- 14	4 01	0 44	38	16	0 49	1582		0.14	19	0.12	18	18	0.29	68	139	
10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 <th< td=""><td></td><td>312</td><td>129671</td><td></td><td>0.2</td><td>3 52</td><td>2</td><td>119</td><td>0.8</td><td>2</td><td>0 13</td><td>0.2</td><td>37</td><td>5</td><td>28</td><td>18</td><td>5 03</td><td>0.35</td><td>15</td><td></td><td>0.28</td><td>710</td><td></td><td>0.06</td><td>9</td><td>0.17</td><td>- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19</td><td>17</td><td>0.55</td><td>106</td><td>87</td><td></td></th<>		312	129671		0.2	3 52	2	119	0.8	2	0 13	0.2	37	5	28	18	5 03	0.35	15		0.28	710		0.06	9	0.17	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	17	0.55	106	87	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-																						0.47			
318 104472 5 0.2 4.0 16 2 0.0 1 18 10 5.0 0.0 1.0 10 20 0.0 1.1 18 10 5.0 10 <td></td> <td>317</td> <td>104471</td> <td>6</td> <td>0.2</td> <td>4.11</td> <td>2</td> <td>165</td> <td>1.1</td> <td>2</td> <td>0.06</td> <td>0.2</td> <td>108</td> <td>13</td> <td>15</td> <td>18</td> <td>4.89</td> <td>0,77</td> <td>28</td> <td></td> <td>0.62</td> <td>1894</td> <td></td> <td>0.08</td> <td>13</td> <td>0.10</td> <td></td> <td>10</td> <td>0.17</td> <td>70</td> <td></td> <td></td>		317	104471	6	0.2	4.11	2	165	1.1	2	0.06	0.2	108	13	15	18	4.89	0,77	28		0.62	1894		0.08	13	0.10		10	0.17	70		
310 104473 5 0.2 4.60 16 271 1.4 3 0.24 0.2 60 15 11 25 5.07 1.10 27 11 0.18 1800 1 0.11 13 0.12 16 32 0.21 76 116 320 104474 5 0.2 4.42 9 284 1.0 2 0.41 0.2 57 12 5 17 3.70 1.32 23 10 1.08 1800 1 0.16 11 0.07 11 51 0.13 54 93 321 104476 5 0.2 4.32 3 1.44 2.1 2 0.02 88 12 23 25 5.00 0.40 35 11 0.50 820 1 0.13 16 0.16 11 0.50 10 10 10 16 0.41 10.50 820 1 0.16 11 83 0.41 0.2 10 10 10 10 10 10 10		318	104472	5	0.2	4.70	2	205	1.6	2	0.10	0.2	90	11	18	18	5.47	0.79	34	13	0.54	1/22		0.07	14	0.15		24	0.31	78		÷ •
320 104474 5 0.2 4.42 0 288 1.0 2 0.41 0.2 57 12 5 17 3.79 1.32 23 10 1.08 1369 1 0.16 11 0.07 11 51 0.13 54 93 321 104475 6 0.2 3.59 10 242 1.4 2 0.16 0.13 16 0.10 11 0.07 11 51 0.13 54 93 322 104476 6 0.2 4.32 3 141 2.1 2 0.20 0.2 88 12 23 2.5 5.09 0.40 55 11 0.50 820 1 0.13 18 0.16 11 48 0.44		319	104473	5	0.2	4.69	15	271	1.4	3	0.24	0.2	69	15	11	- 25	5.07	1,19	27		0.88	1899		0,11	13	0.12	10	32	0.21	70		
320 104474 5 0.2 4.42 0 242 1.0 2 0.1 0.1 0.10 10 0.10 10 0.10 10 0.10 10 0.10 11 0.00 11 0.00 11 0.10 11 0.10 11 0.00 13 23 0.10 11 0.10 11 0.00 13 23 0.10 11 0.10 11 0.00 13 23 0.14 64 13 16 24 4.15 0.90 20 10 11 13 0.00 13 23 0.16 11 23 0.14 64 13 12 23 22 6.30 0.00 13 10 11 13 0.00 13 23 0.14 60 10 11 44 0.54 102 101 13 10 13 10 11 14 0.15 10 13 0.13 16 11 46 102 0.16 11 48 0.54 102 101 101 101			101171				•								-						4 0.0	1000		0.40		0.07		= 1	0 12	E A	02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		320	104474		0.2	4.42	8	288	1.0	2	0.41	0.2	5/	12	5	24	3.79	1.32	23		1.08	1309		0.10	10	0.07		01	0.13	80	90	*
322 104476 6 0.2 4.32 3 144 $2,1$ 2 0.2 0.32 13 2 0.40 32 10.3 10 0.16 11 10 0.16 11 146 0.54 102 106 520 1 0.16 11 146 0.54 102 106 520 1 0.16 11 46 0.54 102 106 324 104478 6 0.2 3.63 2 102 27 3 12 23 516 0.47 31 11 0.66 616 1 0.16 11 46 0.54 102		321	104475		0.2	3.09	10	292	1.4	2	0.10	V.3	04	13	10	24	4.10	0.99	29		0.73	1400		0.00	10	0.08		20	0.52	08	108	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		322	104470		0.2	4.32	3		2.1	2	0.20	0.2	88	12	23	44	0.39	0,40	30		0.00	510		0.13	10	0.10		23 AB	0.54	102	106	
324 104478 8 0.2 4.13 2 1.6 2 0.28 0.2 7.3 12 24 25 5.15 0.47 5.1 1.6 0.2 1.6 2 0.28 0.24 23 5.15 0.47 5.11 1.6 0.2 1.6 0.2 0.2 7.3 12 24 23 5.15 0.47 5.11 1.6 0.2 1.6 0.2 0.2 7.3 12 24 23 5.15 0.47 5.11 1.6 0.2 1.6 0.2 1.6 0.2 1.6 0.2 6.17 23 1.6 4.45 0.60 26 9 0.48 698 1 0.08 13 0.13 8 22 0.37 79 76 326 104480 5 0.2 3.40 2 250 1.1 2 0.10 0.2 54 8 14 3.48 0.66 23 9 0.52 699 1 0.04 12 0.07 7 24 0.21 60 50 <td></td> <td>323</td> <td>104477</td> <td>2</td> <td>0.2</td> <td>9.29</td> <td>2</td> <td>10/</td> <td>1.3</td> <td>2</td> <td>0,40</td> <td>0.2</td> <td>73</td> <td>10</td> <td>21</td> <td>21</td> <td>4,21</td> <td>0.03</td> <td>30</td> <td></td> <td>0.00</td> <td>742</td> <td></td> <td>0.17</td> <td>10</td> <td>0.10</td> <td></td> <td>20</td> <td>0.54</td> <td>102</td> <td>102</td> <td></td>		323	104477	2	0.2	9.29	2	10/	1.3	2	0,40	0.2	73	10	21	21	4,21	0.03	30		0.00	742		0.17	10	0.10		20	0.54	102	102	
325 104479 \$ 0.2 3.63 2 148 1.2 2 0.15 0.2 61 7 23 16 4.45 0.50 26 9 0.48 698 1 0.08 13 0.13 8 22 0.37 79 76 326 104480 5 0.2 4.00 2 110 1.3 2 0.12 0.2 70 8 31 23 5.81 0.33 27 10 0.37 659 2 0.10 13 0.19 9 16 0.83 115 94 327 104481 5 0.2 3.40 2 250 1.1 2 0.10 0.2 54 8 16 14 3.48 0.66 23 9 0.52 699 1 0.04 12 0.74 139 73 328 104483 5 0.2 3.82 2 1.62 0.16 0.2 58 5 21 17 5.63 0.18 23 7 0.24		324	104476		0.2	9.13	2		1.0	2	0.20	U. 2	/3	12	24	20	0.10	0.47	31		0.00	102		0.11	10	0.10		20	0.04	100		
325 104480 5 0.2 4.69 2 10 1.2 2 0.10 1.2 2 0.10 1.2 2 0.10 1.2 2 0.10 1.2 2 0.10 1.2 2 0.10 1.2 2 0.10 1.3 2 0.10 0.37 650 2 0.10 13 0.10 9 16 0.63 116 94 327 104481 5 0.2 3.40 2 250 1.1 2 0.10 0.2 64 8 16 14 3.48 0.66 23 9 0.52 699 1 0.04 12 0.07 7 24 0.21 60 50 328 104482 5 0.2 3.82 2 1.6 0.2 58 5 21 17 5.88 0.21 416 2 0.07 6 0.20 .6 19 0.74 139 73 329 104483 5 0.2 3.82 2 1.6 1.2 51		225	104479		0.2	2 82	•	448	1 9	2	0 15	0.2	A1	7	22	14	A 45	0.50	28		n 48	808		0.08	13	0 13		22	0.37	79	78	
320 104484 5 0.2 3.82 2 1.3 2 0.12 0.12 0.12 0.12 0.13 0.14 0.04 12 0.07 7 24 0.21 60 50 327 104481 5 0.2 3.40 2 250 1.1 2 0.10 0.2 54 8 16 14 3.48 0.66 23 9 0.52 699 1 0.04 12 0.07 7 24 0.21 60 50 328 104482 5 0.2 3.82 2 1.6 0.2 38 5 29 17 5.88 0.22 17 5 0.21 415 2 0.07 6 0.20 .5 19 0.74 139 73 329 104483 5 0.2 3.82 2 1.6 0.2 51 5 24 13 4.02 0.59 19 8 0.38 621 1 0.07 7 7 7 0.41 80 72		325	104478		0.2	3.03 4.00	2	110	1.2	2	0.10		70	, 0	20	33	6.91	0.30	20	11	0.37	850		0.00	13	0.10		16	0.83	115	P4	
021 104482 5 0.2 3.29 2 76 0.6 2 0.16 0.12 0.16 <td></td> <td>327</td> <td>104481</td> <td></td> <td>0.2</td> <td>3 40</td> <td>2</td> <td>950</td> <td>1.5</td> <td>2</td> <td>0.10</td> <td>0.9</td> <td>54</td> <td>A</td> <td>18</td> <td>14</td> <td>3 48</td> <td>0.66</td> <td>23</td> <td></td> <td>0.52</td> <td>600</td> <td></td> <td>0.04</td> <td>12</td> <td>0.07</td> <td>7</td> <td>24</td> <td>0.21</td> <td>60</td> <td>60</td> <td></td>		327	104481		0.2	3 40	2	950	1.5	2	0.10	0.9	54	A	18	14	3 48	0.66	23		0.52	600		0.04	12	0.07	7	24	0.21	60	60	
329 104483 5 0.2 3.6 7 0.1 1.0 <th1.0< td=""><td></td><td>328</td><td>104482</td><td></td><td>0.2</td><td>3 20</td><td>2</td><td>78</td><td>0.8</td><td>5</td><td>0.16</td><td>n e</td><td>38</td><td>5</td><td>20</td><td>17</td><td>5 88</td><td>0.22</td><td>17</td><td>MA</td><td>0.21</td><td>415</td><td>,</td><td>0 07</td><td>6</td><td>0.20</td><td></td><td>19</td><td>0.74</td><td>139</td><td>73</td><td></td></th1.0<>		328	104482		0.2	3 20	2	78	0.8	5	0.16	n e	38	5	20	17	5 88	0.22	17	MA	0.21	415	,	0 07	6	0.20		19	0.74	139	73	
330 104484 5 0.2 3.82 2 162 1.0 2 0.14 9.2 51 5 24 13 4.02 0.59 19 8 0.38 621 1 0.05 9 0.13 7 17 0.41 80 72 331 104485 5 0.2 3.65 7 156 1.3 2 0.06 0.3 51 8 22 17 3.16 0.58 23 12 0.48 525 1 0.03 13 0.10 12 21 0.20 62 66 332 104486 6 0.2 4.03 3 255 1.3 2 0.10 0.2 64 9 17 19 3.97 0.92 27 11 0.64 10.05 15 0.10 10 18 0.21 64 76 333 104487 6 0.2 4.64 3 280 1.3 2 0.29 0.2 74 12 18 22 4.82 1.03		329	104482	Ĩ	0.2	A 57	2	A0	1.3	2	0.16		59	5	21	47	5 83	0 18	23	- 1	0.24	568		0.09	8	0.23		14	0.63	103	81	
330 104484 5 0.2 3.82 2 162 1.0 2 0.14 5.2 5.1 5 24 13 4.02 0.59 19 8 0.38 621 1 0.05 9 0.13 7 17 0.41 80 72 331 104485 5 0.2 3.65 7 166 1.3 2 0.06 0.3 51 8 22 17 3.16 0.68 23 12 0.48 525 1 0.03 13 0.10 12 21 0.20 62 66 332 104486 6 0.2 4.03 3 255 1.3 2 0.20 0.2 64 9 17 19 3.97 0.92 27 11 0.64 1064 1 0.05 15 0.10 18 0.21 64 76 333 104487 6 0.2 4.64 3 260 1.3 2 0.20 74 12 18 22 4.82 1.03						4.07	5			-	v. 10			v	- '		0.00					200			Ŭ							8
331 104485 5 0.2 3.65 7 156 1.3 2 0.06 0.3 51 8 22 17 3.15 0.58 23 12 0.48 525 1 0.03 13 0.10 12 21 0.20 62 56 332 104486 5 0.2 4.03 3 255 1.3 2 0.10 0.2 64 9 17 19 3.97 0.92 27 11 0.64 1064 1 0.05 15 0.10 10 18 0.21 64 76 333 104487 6 0.2 4.64 3 280 1.3 2 0.29 0.2 74 12 18 22 4.82 1.03 30 12 0.86 1301 1 0.13 19 0.12 9 36 0.31 79 90 334 104488 5 0.2 4.57 3 208 1.1 3 0.10 0.2 68 11 31 19		330	104484		0.9	3 82	2	1A2	10	,	0 14	0.0	F1	F	24	12	4.02	0.59	10		0.38	821		0.05	Q	0,13	7	17	0.41	80	72	
332 104486 6 0.2 4.03 3 255 1.3 2 0.10 0.2 64 9 17 19 3.97 0.92 27 11 0.64 10 10 18 0.21 64 76 333 104487 6 0.2 4.64 3 280 1.3 2 0.29 0.2 74 12 18 22 4.82 1.03 30 12 0.86 1301 1 0.13 19 0.12 9 36 0.31 79 90 334 104488 5 0.2 4.57 3 208 1.1 3 0.10 0.2 68 11 31 19 4.47 0.82 25 12 0.70 1086 1 0.06 18 0.13 10 15 0.31 76 86		331	104485		02	3.85	7	168	1.3	2	0.06	03	51	R	22	17	3.15	0.58	23	12	0.48	525		0.03	13	0.10	12	21	0.20	62	68	8
333 104487 6 0.2 4.64 3 280 1.3 2 0.2 74 12 18 22 4.82 1.03 30 12 0.86 1301 1 0.13 19 0.12 9 36 0.31 79 90 334 104488 5 0.2 4.67 3 0.10 0.2 68 11 31 19 4.47 0.82 25 12 0.70 1086 1 0.06 18 0.13 10 15 0.31 76 86		332	104486		0.2	4.03	3	246	1.3	2	0,10	0.2	64	õ	17	19	3,97	0.92	27		0.64	1084		0.05	15	0.10	10	18	0.21	64	76	8
334 104488 5 0.2 4.57 3 208 1.1 3 0.10 0.2 68 11 31 19 4.47 0.82 25 12 0.70 1086 1 0.06 18 0.13 10 15 0.31 76 86		333	104487	Ă	0.2	4.84	3	280	1.3	2	0.20		74	12	18		4.82	1.03	30	12	0.86	1301		0.13	19	0.12		36	0.31	79	80	8
		334	1044AA		02	4.67	3	204	1.1	3	0.10	0.9	6A	11	31	10	4.47	0.82	25	12	0.70	1086		0.08	18	0.13	10	15	0.31	78	. 86	8
NORANDA VANCOUVER LABORATORY **Geochemical Analysis**

╶┊╢┟╨╧╍┙╵╶╶╵┶┶╨┶╍┷┪	
OCT - 2 1990	
	IJ
LAB. CODE : 9009-021	•••
Com to Mike × 2	

* Sample screened @ -35 MESH (0.5 mm). Organic

Au - 10.0 g sample digested with aqua-regia and determined by A.A. (D.L. 5 PPB)

SEP. 04

SEP. 24

Date reo'd:

Date compl:

ICP - 0.2 g sample digested with 3 mi HCiO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 11 mi with water, Leeman P83000 ICP determined elemental contents. N.B. The major oxide elements and Ba, Be, Ce, Ga, La, Li are rarely dissolved completely from geological materials with this acid dissolution method.

Geol.: M.S.

Sheet: 1 of 8

a straight

Project Name & No.: ARC - 294

337 SOILS

Material:

Remarks:

T.T.	SAMPLE	Au	Ag	A	As	Ba	Beí	BI	Ca	Cd	Сө	Ċo	Cr	Cu	Fe	ĸ	La	u	Mg	Mn	Мо	Na	NI	Ρ	Pb	Sr	TI	V	Zn
No.	No.	 ppb	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ррт	ррт	ppm	%	96	ppm	ppm	96	ppm	ppm	%	ppm	96	ppm	ppm	- 96	ppm	ppm
2	12800E-9500N	5	0.2	3.25	2	133	0.6	2	0.15	0.2	27	5	37	13	3.11	0.84	11	7	0.99	620	1	0.09	6	0.05	2	12	0.07	32	66
3	9520	. 6	0.2	3.85	4	633	1.2	2	0.13	0.2	57	11	17	- 22	4.30	0.49	23	9	0.80	1556		0.05	11	0.11	9	15	0.24	68	83
4	9540	5	0.2	4.44	10	250	2.7	2	0.13	0.2	89	14	18	26	5.33	0.52	34	12	0.87	2034		0.10	14	0.14	8	13	0.37	81	118
5	9560	5	0.2	5.17	14	427	1.8	2	0.22	0.2	65	12	15	58	5.17	1.05	31	12	0.94	1878		0.07	17	0.18	10	24	0.35	94	103
6	12800E-9580N	6	0.2	4,64	12	253	1.3	2	0.43	0.2	59	17	14	41	5.19	0.82	25	10	1.11	1489		0.13	18	0.14	5	43	0.45	89	98
7	12800E-9600N	5	0.2	5.23	10	371	1.6	4	0.69	0.2	73	20	17	66	5.69	0.87	32	13	1.24	1908	1	0.20	22	0.16	8	68	0.58	114	123
8	9620	5	0.2	4.48	10	205	1.3	3	0.85	0,2	62	18	12	27	5.17	0.77	24	811	1.24	1210		0.34	17	0.13	7	94	0.51	94	97
9	9640	5	0.2	4.82	2	228	2.2	3	0,18	0.2	78	17	23	25	5.64	0.51	28	12	0.91	3066	1	0.08	23	0.16	7	18	0.48	89	99
10	9660	6	0.2	4.24	3	199	1.5	2	0.19	0.2	58	13	25	23	4.77	0.53	19	11	0.67	1700		0.08	14	0.16	6	19	0.40	92	88
11	12800E-9680N	100	0.2	3.97	9	278	1.5	3	0.18	0.2	58	18	21	41	5.17	0.58	23	12	0.87	2510		0.05	19	0.16	7	21	0.29	84	94
12	12800E-9700N	30	0.2	4.57	4	275	1.4	3	0.32	0.2	61	19	20	40	5.47	0.50	23	11	0.87	2032		0.07	19	0.18	4	30	0.49	105	91
13	9720	40	0.2	3.53	7	218	0.8	2	0.13	0.2	50	11	14	33	4.22	0.67	19	10	0.7 9	1759		0.08	13	0.12	6	24	0.14	60	80
14	9740	25	0.2	3.58	9	269	0,9	2	0.14	0.2	51	12	15	32	4.39	0.74	20	*11 *	0.88	1899		0.05	15	0.11	3	24	0.13	62	75
15	9760	20	0.2	3.76	7	194	1.0	3	0.18	0.2	51	13	14	26	4.66	0.63	19	11	0.86	1603		0.07	15	0.13		28	0.27	76	84
16	12800E-9780N	20	0.2	4.75	6	311	1.5	4	0.25	0.2	62	15	17	83	5.24	0,97	28	13	1.00	1848		0.11	22	0.14	7	34	0.31	84	109
					_																								
17	12800E-9800N	570	0.2	3.44	6	328	1.0	4	0.21	0.2	52	13	18	38	4.37	0,82	21	10	0.90	1681		0.05	18	0.09	4	20	0.17	69	
18	9820	25	0.2	3,99	7	297	1.0	3	0.53	0,2	59	14	14	33	4.43	0,90	21	11	1.04	1802		0.21	16	0.11	2	60	0.24	65	2 /9
19	9840	10	0.2	4.78	7	312	1.2	6	0,51	0,2	58	18	19	37	5.38	0.85	23	12	1.26	1881		0.18	24	0.14		55	0.42	93	108
20	9860		0.2	4.53	6	273	1.3	3	0.09	0.2	53	17	26	29	4.92	0.67	17	12	0.94	2298		0.04	19	0.12		17	0.27	78	
21	12800E-9880N	10	0.2	4.27	4	280	1.5	3	0.22	0.2	57	15	18	29	4.94	0,69	22	13	0.86	2402		0.07	18	0,15	10	31	0.34	88	94
22	12800E-9900N		0.2	4.14	2	157	1.2	2	0.75	0.2	59	20	14	23	5.34	0.27	23		1.04	1294		0.20	17	0.14	2	68	0.74	119	107
23	9920		02	4 73	2	DAA	1.4	3	0.28	0.2	63	17	16	32	5.49	0.58	25	11	0.85	2197		0.08	17	0.18	8	27	0.49	103	110
24	9940	95	0.2	4.33	,	247	15	2	0.28	0.5	60	17	18	36	5.17	0.71	25	12	1.05	1674		0.11	21	0.13	4	33	0.39	88	119
25	12800E-9960N		0.2	4.05	2	240	14	2	0.15	0.2	59	14	23	29	4.81	0.70	24	12	0.90	1578		0.08	18	0.10	8	20	0.28	74	112
28	13000E-9400N	Å	0.2	4 60	18		13	3	0.13	0.2	49	10	13	40	4.98	0.82	19	13	0.94	2297		0.05	12	0.12	9	18	0.22	65	94
1.0	100002 040011		v . L	4.00				Ŭ	0.10										•.• •				•						
27	13000E-9420N	K	02	5 AA	٥	416	18	2	0.32	0.2	78	11	A	7A	5 78	1 17	31	14	1.05	3440		0.09	11	0.15	7	32	Ó.30	66	105
28	9440	76	0.2	A 2A	å	288	12	Ā	0.02	nõ	58	15	12	21	4 92	0.85	22	41	0.82	3077		0.09	11	0.12	13	32	0.21	59	B1
20	9460		0.2	A 21	15	244	1 4	Ā	0.20	A 2	58	20	21	67	5 31	0.70	21	12	1 08	2882		0.08	21	0.15	10	25	0.28	74	98
20	9490	~	0.2	3 08	14	920	1.7		0.20	ЗňЭ́,	52	18	10	n#	4.85	0.53	17		0.81	2971		0.07	19	0.17		29	0 40	R4	109
21	13000E-9500N	•^	0.2	3.80	102	499	1.0	5	0.20		82	11	10	401	7 71	1 07	20	10	0.68	1822		0.07	13	0.14	1	40	0.10	81	78
	13000E-8300N	ev:	v.2	4.00	182		1.0	U	V. 14		02		10		,,,,	1.07	20		3.00	1466		0.04	10	0.14		40			
32	13000E-9520N	5	0.2	5.83	2	162	1.5	3	0.39	0.2	50	22	19	27	6.40	0.21	17	7	0.65	1381		0.05	14	0.22	4	46	0.85	166	68
33	9540	8	0.2	4.00	3	301	2.7	2	0.25	0.2	82	11	13	25	4.68	0.69	38	12	0.80	1734		0.11	. 18	0.12	8	26	0.29	66	128
34	9560	5	0.2	5.83	2	1008	2.1	3	0.44	0.2	73	17	9	25	5,38	1.17	31	11	1.11	3218		0.09	14	0.17	12	39	0.41	115	102
35	9580	5	0.2	5.19	2	280	1.8	3	0.16	0.2	66	16	12	20	5.47	0.8 0	28	10	1.08	2969		0.08	15	0.17	9	19	0.39	86	89
36	13000E-9600N	 5	0.2	4,38	2	176	1.3	3	0.64	0.2	61	19	15	25	5.43	0.48	23	10	1.11	1469		0.21	18	0.16	5	67	0.62	108	99

MARE SOLLS

T.T.	SAMPLE	٨	u	Åg	AI	As	Ba	Be	BI	Ca	Cd	Ce	Co	Cr	Cu	Fø	К	LA	LĨ	Ma	Mn	Mo	Na	NI	P	Ph	Sr	TI	V	70	0000 001
· No.	No.	pp	op t	opm	96	ррп	n ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	96	96	ppm		n 96	DDM	DDm	96	DDm	96	DDm	nom	96	• DDm	20	Pr 3 of 9
82	13300E-9240N		5	0.2	3.92	6	126	1.6	2	0.34	0.2	69	18	18	29	5.20	0.28	28	10	0.71	1635	1	0.12	14	0.16	23	29	0.58	109	132	19.501 8
83	13300E-9260N		5	0.2	4.89	11	220	🖁 1.9	4	0.42	0.2	75	17	20	43	8 27	0 42	28	12	0.83	1700		0 12	18	0 22	1.0	97	0.60	100		
84	9280		6	0.2	4.25	8	316	2.7	. 2	0.28	0.2	88	17	20	27	5 80	0.30	20		0.00	1844		0.13	10	0.22		37	0.69	130	147	
85	9300		5	0.2	3.88	12	401	1.4	2	0.34	0.2	58	18	18	20	5 15	0.30	21		1 02	1044		0.11	20	0.15		20	0.52	97	152	
88	9320		5	0.2	3.97	19	258	1.0	2	0.23	ิ ก็วิ	55	12	12	20	4 99	0.40	10		0.04	1404		0.10	21	0.15	15	38	0.46	91	138	
87	13300E-9340N		5	0.2	4.53	12	378	1.9	3	0.29	0.2	75	17	21	48	4.32 5.83	0.52	30	13	0.84	2597	1	0.08	13 20	0.09	22 21	37 28	0.19 0.43	59 92	135 143	
88	13300E-9360N	1	0 (0.2	3.87	10	295	2.2	2	0.30	0.2	81	17	17	39	5.26	0.48	32	12	0.90	2105	1	0.12	18	0.13	17	27	0.40	80	144	
89	9400		5	0.2	5.09	2	202	1.2	4	2.67	0,2	58	27	4	25	5.84	0.51	20	9	2.15	1536	1	1.13	22	0.13	5	310	0.70	94	100	1
90	9420		58 (0.2	4.39	15	342	1.7	2	0.25	0.2	81	17	21	64	6.95	0.46	31	14	0.76	5994	1	0.06	16	0.18	11	25	0.34	80	108	
91	9440		5	0.2	5.0 6	94	270	1.9	3	0.24	0.2	6 0	20	16	291	6.51	1.14	23	15	0.81	2413	3	0.06	16	0.17	17	40	0.35	109	B1	
92	13300E-9460N		6 (0.2	5.04	4	191	1.7	5	0.4 6	0.2	73	23	19	32	6.43	0.37	30	11	1.10	1812	1	0.13	21	0.23	8	45	0.75	138	123	
93	13300E-9480N	20	0 (0.2	5.30	2	235	2.1	2	0.24	0.2	77	20	19	29	6.14	0.58	28	12	0.99	2198		0.10	21	0.18	A	29	0.59	118	112	
94	13300E-9500N		6 (0.2	4.85	2	243	2.8	4	0.52	0.2	99	21	13	35	6.25	0.47	43	14	0.86	2020	80 1 0	0.23	19	0.17	Å	54	0.57	110	187	:
95	13400E-9200N		5 (0.2	4.46	18	171	1.2	2	0.50	0.2	63	15	12	33	5.24	0.60	24	11	1.01	1289	1	0.22	15	0.13	17	57	0.45	89	150	
96	9220		5 0).2	4.69	73	192	1.4	3	0.25	1,8	72	16	23	43	5.74	0.63	30	12	0.87	1899	1	0.11	21	0.15	105	28	0.44	93	411	
97 35	13400E-9240N		5 0).2	4.94	92	429	3.7	3	0.27	1.5	110	14	19	65	6.10	0.72	56	17	0.82	1828	1	0.15	20	0.14	71	28	0.37	91	398	-
98	13400E-9280N	6	S) 0).2	4.45	30	319	1.7	3	0.44	0.8	78	22	20	57	5.96	0.53	30	13	1.08	2955	1	0.14	21	0.16	15	45	0 49	103	222	
99	9300	5	50 0).2	4.10	48	291	1.1	2	0.11	0.3	55	14	14	36	4.91	0.83	20	11	0.92	2074	1	0.04	13	0.09	20	27	0.22	75	209	
101	9320		5 0).2	4.38	25	312	2.2	2	0.40	1.0	74	22	19	42	5.64	0.44	29	12	0.82	2648	2	0.13	21	0.20	17	45	0.54	105	171	
102	9340	5	0).2	3.89	11	267	1.3	3	0.23	0.2	58	19	21	43	5.44	0.54	21	12	0.83	2879	1	0.08	19	0.16	17	28	0.37	91	127	
103	13400E-9380N	5	5 0).2	4.24	2	166	1.4	4	0.39	0.2	54	18	17	32	5.43	0.20	19	8	0.68	1519	1	0.09	14	0.19	7	29	0.76	125	117	
104	13400E-9380N	5	0 🕅).2	5.18	26	410	1.8	3	0.21	Q.2	70	21	15	133	6.09	0.75	30	12	1.02	2447	1	0.06	19	0.16	15	26	0 47	105	111	
105	9400	6	S 0	.2	5.74	4	152	1.3	4	0.18	0.2	50	24	22	32	6.23	0.39	18	8	0.97	1875	1	0.04	20	0.24	11	17	0.70	147	83	
108	9420	5	0	.2	5.58	2	235	1.8	3	0.24	0.2	63	24	23	34	6.36	0.37	28	11	0.98	2001	1	0.08	22	0.22	9	24	0.69	137	97	
107	13400E-9440N	5	0 📓	.2	6.40	2	165	1.9	5	0.35	0.2	68	33	20	28	7.09	0.19	27	8	1.03	1653	1	0.07	24	0.22	P	33	1.01	178	104	
108	13500E-9120N	5	0).2	4.58	19	219	1.9	3	0.22	0.2	75	14	17	29	6.28	0.52	31	12	0.79	1755	1	0.10	15	0.14	22	24	0.48	92	186	
109	13500E-9140N	5	0	.2	4.20	30	194	2.1	2	0.25	0.4	75	15	20	29	5.73	0.41	30	11	0.88	1678	1	0.11	18	0.15	25	26	0.47	90	217	
110	9160	10	0 🕅	.2	4.25	9	186	2.1	2	0.28	0,5	72	15	19	25	5.47	0.38	27	11	0.74	1630	1	0.12	15	0.15	24	28	0.51	94	209	
111	9180	6	0 🕅	.2	5.16	13	182	3.0	5	0.22	0.7	90	23	22	32	6.38	0.29	37	13	0.91	1831	2	0.11	22	0.17	29	22	0.66	122	183	
112	9200	5	0 🖉	.2	3.82	18	293	4.4	2	0.15	0.6	145	8	13	29	5.04	0.37	46	14	0.48	1790	1	0.13	13	0.09	27	11	0.21	42	192	
113	13500E-9220N	5	0	.2	5.27	58	220	2.5	7	0.29	5.7	111	26	19	78	6.95	0.45	40	14	0.89	3581	3	0.10	18	0.21	349	28	0.59	113	957	,
114	13500E-9240N	5	0	.2	4.68	8	132	1.8	2	0.12	0.2	77	9	17	29	5.42	0.51	33	11	0.60	700	1	0.09	10	0.11	33	13	0.39	78	173	
115	9260	6	0 📓	.2	5.41	24	218	1.6	7	0.78	1.3	73	28	30	45	6.97	0.48	26	15	1.88	2538	1	0.22	34	0.20	34	62	0.71	153	321	
116	9280	5	0	.2	4.91	23	225	1.3	6	0.87	0.8	58	29	36	35	6.59	0.55	20	16	2.72	2220	1	0.13	44	0.13	28	39	0.65	164	291	
117	9320	25	81	.4 1	5.65	98	625	2.3	7	0.80	38.7	181	70	17	862	6.53	0.83	83	18	1.18	6849	12	0.14	24	0.20	1268	63	0.39	102	3092	
118	13500E-9340N	5	0	.4	4.89	120	389	1.9	8	0.78	1,2	83	25	18	54	6.20	0.57	30	14	1.37	3424	1	0.23	25	0.17	58	79	0.53	100	263	
119	13500E-9360N	5	0	.2	4.93	20	559	2.0	5	0.32	0.3	89	24	27	75	6.26	0.85	40	15	1.18	3484		0.08	32	0 14	10	35	0.30	105	152	
120	9380	5	0	.2 4	4.62	6	416	1.4	6	0.20	0.2	65	20	27	78	5.57	0.79	26	12	1.15	2187		0.05	28	0 13	10	28	0.38	100	111	
121	9400	280	0	.2 (5.18	6	388	2.0	2	0.18	0.2	66	13	12	47	7.70	0.97	29	28	0.95	4584		0.05	13	0.19		30	0.30	52	194	
122	9420	5	0	.2	4.05	2	187	0.9	2	0.15	02	48	14	17	28	4.44	0.55	18	10	0.81	1014		0.05	12	0.18		28	0.10	75	107	
123	13500E-9440N	5	0	.2	4.70	2	359	1.9	2	0.31	0.2	70	18	22	30	5.60	0.49	26	12	0.87	2258	1	0.05	20	0.18	4	29	0.49	116	95	
124	13600E-9100N	F	ő 🕺	2	1.97	9	385	2.3	۵	0.14	4.2	82	14	20	94	5 70	0.87	20		0.00	0510		<u> </u>	17			10				
125	13600E-9120N	5	o	.2	4.07	2	303	3.0	3	0.13	0.2	107	8	15	19	4.92	0.65	36	10	0.71	2012		0.08	12	0,18	D a	18	0.39	93	118	
	the second s	CC356.77							-	- 1 1 - 2 - 8	0000000000		-						000 3 , Y.J			0000000000				- 50. M 200000		V.6.U	- 	~ I V Z ~	

TIVE sould

1rc	sours							·		Same																					
T.	T. SAMPLE	A	1 1		AJ	As	Ba	Be	BI	Ca	Cd	Сө	Co	Cr	Cu	Fe	К	La	LI	Mg	Mn	Мо	Na	NI	P	Pb	Sr	TI	V	Zn	9009-021
· No	b. No.	pp	b pr	om 9	6	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	96	96	ppm	ppm	96	ppm	ppm	96	ppm	96	ppm	ppm	96	ppm	ppm	Pg. 4 of 8
12	6 13600E-9140N		5 0	.2 4.	63	2	326	1.7	3	0.28	0.2	75	12	22	34	5.25	0.77	35	13	0.92	1376		0.10	17	0.14	9	33	0.42	94	118	
12	7 9160		5 0	.2 3.	62	2	472	2.8	2	0.27	0,2	88	9	18	24	4.18	0.84	37	15	0.89	1486	1	0.09	18	0.07	9	32	0.18	53	129	
12	8 13600E-9180N		50 o	.2 3.	69	12	384	4.0	4	0.24	0.4	120	11	14	24	5.35	0.39	57	14	0.58	1530	1	0.14	11	0.09	23	22	0.32	63	208	
			8																												
12	9 13800E-9200N		🗑 0	.2 4.	37	12	324	1.8	4	0.41	2,3	78	18	15	41	7.40	0.47	27	12	0.72	4355	2	0.13	13	0.17	79	45	0.47	93	448	
13	0 9220		S 0	.2 4.	53	14	376	2.0	2	0.14	0.2	82	20	17	37	6.95	0.62	29	13	0.76	4423	2	0.08	13	0.14	17	16	0.35	92	190	
13	9280		5 o	2 5.	02	40	650	2.2	2	0.31	1.2	84	20	34	60	6.73	0.74	38	18	1.16	3490	4	0.10	23	0.17	38	38	0.37	100	278	
13	2 9300		8 o	.2 5.	05	99	896	1.9	2	0.55	3.2	115	35	14	96	7.23	0.65	48	18	1.24	8677	3	0.15	27	0.17	92	58	0.30	111	487	
13	3 13600E-9320N		8 o	2 4	50	2	168	2.1	2	0.21	0 2	87	11	19	24	5 55	0.28	30		0 43	1020		0 11	11	0.13	16	21	0.59	101	133	
						-		1	-				•••					•••													
13	4 13600E-9340N		8 n	2 5	R3	9	788	20	3	0 24	0.2	92	20	18	45	8 50	1.03	42		1 10	3973		0 07	20	0 19	R	33	0 48	130	139	
13	5 9360		6	2 5	78	2	482	21	3	0.40		91	20	17	48	7 40	0.95	37		1 01	3519		0.16	21	0.19	A	56	0.61	114	152	
113	A 9380		(8) 	2 4	20		453	20	4	0.45	N 0	82	20	10	42	7 18	0.00	34		1 18	3157		0 17	24	0.15	5	64	0.53	103	147	
112	7 9400	• 📖	8 .	0 5	00	5	249	1.0	2	2 12		50	20	3	37	8 28	0.88	21		2 60	1472		1 24	27	0.14	ૢૼ	301	0.75	00	107	
13	7 128005 0440N			. E. U.	00 00	-		4.0		0.16	×.5	100	30	10	40	5.00	0.00	50		0.57	1604		0.10	18	0.14		24	0.70	51	150	
13	6 13000E-9440N			.2 3.	28	3	444	4.0	2	0.24	¥.¢	108	9	10		5.08	0,40	50		0.07	1504		0.19	10	0.00	•	24	0.28	01	100	
1			×.						~	0.05		~		10		E 02	0 97				1517		A 18	17	0.00		24	0.24	84	116	
13	9 13000E-9400N			.2 3.4	40	4	312	3.4	2	0.20	V.2	90	11	10		0.03	0.37	41		0.04	1017		0.10	17	0.08		24	0.34	60	01	
14	U 948U		20 U	.2 3.1	90 4 -	2	013	1.0	2	0,10	U.2	00	12	22	30	5.29	0.75	25		0.80	2895		0.00	10	0.09	2	38	0.25	110	105	
14	1 13000E-9000N		2 V.	.2 4.4	4/ 	0	392	2.0		0.28	U.4	83	21	33		0.02	0.37	33		0.89	1841		0.07	31	0.15	14	20	0.02	112	105	
14	2 13700E-9100N			.2 4.0	54 	2	240	1.4	3	0.14	U.2	0/ 50	45	10	20	5.03	0.84	23		0.80	1407		0.07	12	0.13		23	0.30	125	70	
14	3 13700E-9120N		10. 10.	.2 5.4	07	2	104	1.3	4	0.35	0.2	28	15	24	20	5.82	0.25	25		0.50	540		0.09	10	0.15	•	33	0.62	135	(4	
114	4 13700E-9140N		8 n	2 4	2A	2	222	12	4	0.32	0.2	48	14	21	21	5.58	0.39	18	10	0.66	1411	8848	0.07	12	0.20	7	30	0.73	127	105	
114	5 9160		8 ñ	2 4	RO	3	77A	1.9	5	0.16		75	14	17	25	5 21	0.77	28	13	1 17	2012		0.08	19	0.12	9	18	0.36	82	94	
114	8 9180		8 o	28:	32	6	592	29	4	0.15	0.2	100	14	18	56	7.14	0.90	46	16	0.72	2664		0.08	18	0.18	20	23	0.48	109	168	
14	7 9200		6 n	2 5	47	12	321	1.4	6	0.59	0.2	77	22	22	49	6.48	0.70	32	15	1.19	2265		0.20	22	0.23	28	65	0.66	129	171	
14	8 13700E-9220N		0	2 5.0	85	35	799	1.7	6	0.29	1.5	84	20	. 19	66	6.75	1.08	36	18	1.12	3348		0.08	17	0.16	65	37	0.33	106	351	
1.			× .						-																						
14	9 13700E-9260N		8 o.	2 4.1	81	10	319	1.9	5	0.17	0 2	72	16	21	49	5.49	0.69	27	13	0.93	2145	886	0.07	21	0.15	13	23	0.35	88	122	
15	2 9280		8 o	.2 4.1	96	8	718	2.0	6	0.26	0.7	77	22	18	40	6.08	0.80	37	12	1.09	2538	1	0.08	26	0.15	13	33	0.40	112	134	
15	3 9300		8 o.	2 6.	14	4	841	1.8	5	0.86	0.9	55	29	17	89	6.54	1.48	23	16	2.57	3888		0.25	33	0.14	7	89	0.30	197	161	
15	4 9320		i o	.2 4.1	85	4	800	2.1	5	0.33	0.4	81	20	16	71	6.10	0.90	37	14	1.30	2627	1	0.11	24	0.13	5	50	0.41	103	118	
15	5 13700E-9360N	280) N	2 4.	87	9	518	1.4	5	0.84	0.4	83	20	8	58	5.90	0.86	32	11	1.30	3050		0.34	20	0.12	6	111	0.43	83	103	
						_																									
15	6 13700E-9380N		8 o.	2 4.	70	2	371	1.4	6	0.76	0.6	66	22	14	27	5.53	0.32	26	10	1.03	1799	80 1 0	0.21	18	0.20	3	74	0.81	124	109	
15	7 9400		8 o.	2 5.	87	7	1086	2.2	4	0.20	0.5	105	19	16	55	7.01	1.25	47	13	1.01	5157	1	0.05	22	0.16	9	47	0.29	98	113	
15	8 9420		iii o.	2 4.	39	2	1640	2.0	4	0.61	0.4	81	14	14	49	4.84	0.71	35		0.64	3924	1	0.07	14	0.24	10	52	0.30	90	111	
15	9 9440		S 0.	2 4.	19	2	359	1.3	3	0.15	0.2	53	14	20	24	4.98	0.76	21	11	0.94	2127		0.06	19	0.13	7	38	0.33	86	82	
16	0 13700E-9460N		8 o.	2 3.	18	2	283	0.8	2	0.11	0.2	41	8	15	18	3.45	0.82	17	9	0.72	1271		0.04	13	0.07	5	37	0.12	51	60	
			8			_																									
116	1 13700E-9480N		S 0.	2 4.	11	7	612	2.3	3	0.17	0.2	81	14	22	33	5.73	0.93	38	14	0.84	2079	10 1 0	0.07	24	0.10	12	45	0.21	75	129	
16	2 9500		0	2 4.0	06	9	598	1.2	2	0.15	0.2	66	17	22	24	5.73	0.74	24		0.90	2879	8 1	0.08	22	0.15	8	44	0.29	85	93	
18	3 9520		8 n	2 4	37	7	328	14	3	0.21	0.2	61	18	25	27	5.39	0.62	21	13	0.95	2172		0.07	25	0.15	8	26	0.42	102	93	
16	4 9540		8 n	2 4	58	3	192	13	3	0.28	12	53	23	22	28	B 12	0 44	20		1.09	1931		0.09	23	0.21	8	25	0.71	132	114	
16	5 13700E-9580N		8 n	2 4 3	37	8	341	20	3	0.19		76	17	25	25	5 15	0.64	30		0.86	1743		0.08	28	0.13	10	25	0.33	97	106	
1.0			× *						•			. •		20			₩ .₩												•••		
18	5 13700F-0580N		Ő ^	2 3	R2	7	985	47	2	0.31	n 2	133	10	14	21	5 38	0.51	63	17	0.82	1597		0 24	17	0.08	19	40	0.30	59	189	
16	7 13700E-0000N		8 v	A A	57	Å	243	2 A	2	0.30			17	20	36	5 75	0.83	43		0.97	1474		0.18	20	0.15	12	45	0.48	107	164	
18	R 138005-0100N		8 ř	9 R.	10	,	1570	20	4	0.59	ก็ค	120	21	10		8 58	0.00	55		1 38	6485		0.11	28	0.20	10	52	0.48	93	118	
IR	0 0100 0100		8 °	.с. U. 9 Б.	40	Ā	714	20	, ,	0.17	n a	104	12	14	17	5.30	1 04	31		1 04	5317		0.04	14	0.14	11	20	0.28	71	102	
17	0 13800E-0140N		8 °		RQ	2	205	4.V	E A	0.02	. A S	74	19	0	1 A	4 97	1.54	24		1 08	1951		0.03	12	0.07		10	0.08	52	DA	
1.7	1 13000E-0140N		() , () ()	۲.0 ع. ۸ و	17	E S	100	1.0	7	0.02	N.S	ρη ΑΛ	Â	91	833	5.02	0.41	24 24		0.27	382	8	0.07	۰ <i>۴</i>	0.07		21	0 88	115	42	
<u> </u>	1 13000C-0100N	2000	<u>v</u> U.		17	0	~1 6 9	1.6	1	V.10	\$20 0 1600		<u> </u>	<u> </u>		0.02	V.41	64	SSS	0.01	000	200. 4 03	0.01		0.10	1000 A.M.		0.00			· · · · · · · · · · · · · · · · · · ·

TT	SAMPLE	A 11	Âa	AI	Ås	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	ĸ	La	LI	Ma	Mn	Mo	Na	Ni	P	Pb	Sr	TI	v	Zn	9009-021
· No.	No.	ppb	ppm	96	pom	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	96	96	ppm	ppm	96	ppm	ppm	96	ppm	96	ppm	ppm	96	ppm	ppm	Pg. 2 of 8
37.	13000E-9620N	15	0.2	4,15	2	363	2.0	3	0.71	0.2	81	13	18	27	4.96	0.75	34	12	0.89	2040	<u> 18</u>	0.20	17	0.11	8	60	0.36	78	134	
38	9640	5	0.2	4.76	2	288	1.5	2	0.44	0,2	64	15	18	32	4.92	0.88	27	13	0.97	1466		0.1 3	19	0.14	14	45	0.43	93	118	1
39	9660	5	0.2	4.53	5	205	1.4	4	0.46	0.2	71	17	40	38	5.02	0.72	29	13	1.02	869		0,19	24	0.15	13	50	0.48	102	132	
40	9680	5	0.2	4.78	2	214	1.4	3	0.27	0.2	59	15	24	28	5.08	0.69	22		0.85	1963		0.10	21	0.17	10	34	0.44	96	87	
41	13000E-9700N	5	0.2	4.40	5	255	1.8	2	0.19	0.3	58	15	23	30	4.63	0.84	23	13	0.88	2144	1	0.07	22	0.13	8	27	0.25	78	78	;
42	13000E-9720N	5	0.2	3.89	4	215	0.9	3	0.15	0.2	41	11	20	21	4.28	0.78	16	12	0.77	1291	1	0.06	18	0.11	6	26	0.21	71	87	
43	9740	5	0.2	4.37	2	231	1.2	3	0.65	0.2	60	19	18	27	5,44	0.58	24	10	1.12	1550	1	0.20	20	0.15	4	72	0.56	103	87	:
44	9760	5	0.2	5.86	2	207	1.2	4	0.52	0.2	48	28	22	43	6.19	0.91	17	18	1.22	1798		0.31	44	0.15	5	67	0.40	138	104	
45	9780	5	0.2	4.40	2	276	1.3	2	0.25	0.2	54	15	17	28	4.90	0.94	23	14	1.02	1265	1	0.12	25	0.10	4	46	0.25	81	99	
46	13000E-9800N	5	0.2	5.38	2	160	1.6	5	0.21	0.2	62	22	23	65	5.74	0.45	19	11	0.80	1819	1	0.07	20	0.17	8	24	0.58	126	70	
47	13100E-9300N	5	0.2	4.48	64	232	2.0	3	0.23	0.4	80	16	21	37	5.47	0.63	27	13	0.99	2221	1	0.11	18	0.13	30	25	0.37	87	190	-
48	9320	5	0.2	4.89	78	249	1.9	4	0.20	0.8	80	18	17	72	5.71	0.67	29	13	1.03	2471	1	0.08	17	0.14	55	25	0.37	96	228	
49	9340	15	0.2	5.05	33	362	1.8	3	0.40	0.4	73	14	19	115	6.37	0.67	28	17	1.15	2491		0.10	14	0.19	22	39	0.45	139	199	:
51	9360	5	0.2	4.73	32	303	2.3	3	0.37	0.5	84	18	19	38	5.77	0.65	33	16	1.07	2555	2	0.14	21	0.15	38	42	0.43	101	194	
52	13100E-9380N	5	0.2	5.07	18	278	2.0	3	0.31	0.4	67	21	33	48	6.36	0.64	24	16	1.47	3600	1	0.09	27	0.15	40	27	0.44	129	225	•
53	13100E-9400N		02	3 84	10	280	17	3	0.29	0.2	89	16	17	32	5.08	0.66	27	12	1.29	1924	- 200 i (0.12	26	0.11	12	27	0.31	75	127	
54	9420 *	Š	0.2	5.60	8	238	1.4	2	1.98	0.2	60	24	4	33	5.87	0.83	20	10	2.10	1764		0.80	23	0.15	5	232	0.60	91	108	
55	9440	5	0.2	4.98	18	352	1.6	3	0.36	0.2	68	20	17	48	6.04	0.67	29	12	1.09	3183	1	0.09	19	0.18	10	32	0.47	114	110	
56	9460	5	0.2	4.55	9	148	1.6	2	0.20	0.2	58	17	18	37	5.61	0.35	23	9	0.52	2238		0.08	12	0.21	11	19	0.65	115	112	
57	13100E-9480N	15	0.2	4.74	10	165	1.8	4	0.44	0.2	72	18	15	36	5.89	0.63	30	12	1.13	1755	•	0.18	20	0.15	8	37	0.59	101	125	
60	101005 05000		8	A 46	•		4 8		0 28		e 0	17	01		5 00	0.84	24	40	1 07	1295		0 15	25	0 15	7	40	0 44	88	100	
50	13100E-9500N		0.2 0.2	4.40	5	100	1.0	4	0.30	n 2	40	12	18	10	4 70	0.63	18	10	0.74	2358		0.08	14	0.16	g	18	0.34	74	90	
60	9540	Ĕ	0.2	4.95	2	168	1.4	3	0.64	0.2	61	28	18	27	5.97	0.32	22		1.27	1607		0.19	23	0.17	4	63	0.78	131	91	
61	9560	5	0.2	4.49	11	198	1.9	2	0.17	0.2	70	18	17	28	4.95	0.69	25	12	0.83	1888	2	0.07	17	0.15	14	19	0.32	87	85	į
82	13100E-9580N	5	0.2	6.58	2	662	2.8	2	0.25	0.2	85	13	9	19	5.0 9	1.61	37	10	0.99	2699	1	0.06	14	0.18	12	20	0.31	98	98	
			8		_												~						47				0 8E	100	4.07	
63	13100E-9600N		0.2	4,10	5		1.9	4	0.66	0.2	87	17	12	20	D./U	0.35	34		1.00	1140		0.28	12	0.14	20	57 40	0.00	1102	197	
04	13200E-9300N		0.2	4.70	11	240	1.4	2	0.38	0.4	03 50	17	13	33	0.41 5 11	0.03	24	11	0.00	104		0.11	14	0.13	18	28	0.04	75	142	
00	9320		0.2	4.20	20	420	1.0	2	0.21	N.2	67	10	13	24	8.00	0.75	25	14	0.00	3044		0.08	15	0 18		22	0.51	99	122	
67	13200E-9360N	5	0.2	4.33	4	223	1.8	2	0.32	0.2	67	13	16	41	5.26	0.49	27	10	0.72	1723	i	0.13	15	0.17	12	35	0.45	91	109	
			8																											
68	13200E-9380N	5	0.2	4.78	2	311	1.8	3	0.54	0.2	72	20	17	39	6.03	0.47	29	10	0.94	2372		0.15	17	0.18	14	51	0.65	111	132	
69	9400	10	0.2	3.81	8	258	1.3	2	0.33	0,2	58	18	14	33	4.89	0.60	22	9	0.94	2065		0.11	16	0.12	39	36	0.37	77	138	
70	9420	5	0.2	4.32	11	272	1.8	3	0.30	0.2	71	16	23	35	5.60	0.48	24	12	0.81	2923		0.12	20	0.15	11	34	0.39	82	119	
71	9440	30	0.2	5.18	41	469	1.9	4	0.14	0.2	70	18	12	49	5.63	1.00	30		0.91	3635	3	0.06	16	0.13	17	24	0.31	82	89	
72	13200E-9460N	5	0.2	4.92	45	259	2.7	3	0.24	0.2	100	14	14	118	5.91	0.88	38	15	0.80	1737	1	0.11	17	0.13	13	29	0.35	85		
73	13200E-9480N	5	0.2	4.76	3	177	1.5	5	0.28	0.2	59	20	16	29	5.62	0.63	23	11	1.18	1794		0.10	22	0.16	8	28	0.52	104	98	
74	9500	5	0.2	4.68	2	223	1.6	4	0.24	0.2	64	17	17	31	5.45	0.58	23	12	0.90	2394		0.09	19	0.16	14	26	0.46	94	109	
75	9520	5	0.2	5.01	3	182	1.8	4	0.18	0.2	64	18	17	34	5.53	0.55	22	11	0.87	1696		0.07	19	0.18	10	18	0.48	103	84	
76	9540	5	0.2	4.60	2	219	1.9	3	0,59	0.2	76	17	15	32	5.63	0.45	32	12	0.82	1084		0.20	18	0.17	11	67	0.63	111	124	
Π	13200E-9560N	10	0.2	4.04	3	228	1.8	2	0.26	0.2	75	12	12	22	4.90	0.76	30	10	0.77	1522	1	0.13	13	0.11	9	33	0.36	71	99	
	120005 05001				~		2.0	•	0.40		110	10	10		5 80	0 42	£1		0 75	1828		0.98	14	0 12	10	40	0 47	80	147	
78	13200E-9380N		0.2	4.10 A A2	2 0	170	3.0	2	0.40 2 74	n e	A0	22	. 7	28	5 41	0.51	22	17	1.72	855		1.13	15	0.12	, i,	308	0,75	88	98	
10	13300E-0040N		0.2	4.43 4.80	2		31	4 3	0 20	0.2	99	11	18	T	5.84	0.15	40		0.47	1002		0.15	11	0.12		12	0.55	92	118	
81	13300E-9220N	Š	0.2	4.15	12	218	2.0	2	0.30	04	63	15	23	28	5.21	0.29	28	11	0.58	1435		0.08	15	0.21	18	29	0.63	123	122	

	• •														•										•					
T.T.	SAMPLE	Au	Ag	AI	Âs	Ba	Be	BI	Ca	Cd	Сø	Co	Cr	Cu	Fe	К	La	LI	Mg	Mn	Мо	Na	NI	P	Pb	Sr	TI	٧	Zn	9009-021
No.	· , No.	ppb	ррп	3 96	ppm	ppm	ppm.	ppm	96	ppm	. ppm	ppm	ppm	ppm	96	96	ppm	ppm	96	ppm	ppm	96	ppm	9⁄6	ppm	ppm	96	ррт	ppm	Pg. 5 of 8
172	12800E-9180N	Б	0.2	5.27	3	371	1.4	3	0.20	0.2	71	13	14	34	5.14	1.15	25	15	1.13	2408	1	0.09	17	0.13	11	33	0.27	78	97	
173	9200	5	0.2	5,18	2	441	1.8	4	0.37	0.2	80	16	12	28	8.12	0.88	30	14	1.09	3228	2	0.13	18	0.17	8	46	0.47	99	109	
174	9220	5	0.2	5.07	- 4	932	2.0	5	0.88	0.5	102	20	11	28	6.32	0.58	38	14	1.26	4503		0.26	18	0,19	12	96	0.56	105	128	
175	13800E-9240N	6	0.2	4.66	4	272	2.0	3	0.15	0.2	83	13	11	20	5.08	0.55	28	13	0.80	2286	1	0.12	13	0,13	13	14	0.29	63	140	
178	13800E-9260N	5	0.2	6.16	2	148	2.2	6	0.15	0,2	85	16	20	28	6.62	0.26	33	10	0,44	977		0.11	12	0.15	13	13	0.83	122	105	
177	9320	5	0.2	5.71	4	688	1.8	3	0.19	0.2	82	16	14	63	7.29	1.09	34	-17	1.00	3760		0.08	15	0.15	Ð	67	0.31	97	128	
178	9340	10	0.2	5.92	11	997	1.9	4	0.26	0.2	98	21	12	102	8.29	1.22	42	19	1.19	6130	2	0.08	17	0,14	13	121	0.27	90	161	
179	9360	B	0.2	5.42	6	1601	2.0	5	0.41	0,2	93	21	18	135	9.38	1.01	39	16	1.24	9285	2	0.08	17	0.15	14	72	0.24	105	154	
180	13800E-9380N	5	0.2	4.95	2	857	1.7	5	0.21	0.2	74	18	25	73	6.72	1.15	29	15	0.96	4081	1	0.10	22	0.13	10	101	0.23	97	148	
181	13800E-9400N	5	0.2	5.23	6	724	1.8	4	0.23	0.2	75	19	20	117	7.02	1.13	30	18	1.13	4781	2	0.09	20	0.13	12	99	0.32	102	133	
182	9420	5	0.2	4.91	2	720	1.8	2	0.43	0.2	77	17	13	79	7,07	0.95	32	18	1.14	4140		0.18	19	0.13	9	78	0,35	87	129	
183	9440	5	0.2	5.01	2	551	1.8	2	0.41	0.2	73	17	10	132	6.09	1.15	29	13	1.15	2487		0.18	19	0.13	8	65	0.34	92	125	
184	9460	5	0.2	4.94	· 3	612	1.4	2	0.40	0.2	59	13	8	27	5.48	1.24	23	13	1.14	2870		0.17	14	0.11	6	60	0.25	68	98	
185	13800E-9480N	5	0.2	5.73	2	1017	1.6	2	0.12	0.2	71	12	4	28	7.58	1.48	27	15	1.15	5735	1	0.05	11	0.12	6	31	0.16	46	108	
186	13800E-9500N	5	0.2	4.91	2	605	1.5	2	0.33	0.2	63	14	9	28	5.20	1.30	24	13	1.12	2802		0.15	15	0.10	7	50	0.20	71	102	
187	9520	5	0.2	5.59	2	622	1.9	2	0.30	0,2	72	15	17	\$7 ·	8.27	1.08	28	15	1.19	4256		0.12	20	0.16	7	43	0.31	86	123	
188	9540	6	0.2	5.70	2	681	2.0	З	0.24	0.2	78	16	18	32	6.59	1.19	29	15	1.12	4997		0.06	20	0.17	P	31	0.30	86	125	
189	9560	5	0.2	6.40	3	816	1.8	3	0.25	0.2	77	18	15	45	7.49	1.81	35	13	1.02	5410		0.05	17	0.16	8	29	0.21	103	149	
190	13800E-9580N	5	0.2	6.11	7	741	1.6	2	0,09	0:2	74	10	8	18	7.03	1.54	29	14	1.01	7850	1	0.04	10	0.09	11	22	0.10	43	101	
191	13800E-9600N		0.2	4.38	7	293	1.9	2	0.15	0.2	68	15	26	35	5.10	0.73	28	15	0.85	2273	2) 	0.06	25	0.13	11	26	0.27	83	100	
202	129035	5	0.2	4.88	5	529	1.6	2	0.15	0.2	59	12	13	42	4.88	1,28	24	15	1.08	1831		0.08	20	0.09	10	33	0.17	60		
203	129036	5	0.2	6.52	2	807	1.8	2	0.14	0.2	77	18	14	00	7.89	1.21	31	24 4	1.18	6022		0.08	17	0.17		70	0.29	90	13/	
204	129037	2 P	0.2	0.74	8	702	1.7	2	0.22	U.4	82	20	12	14	1.11	1,23	34		1.21	0283		0.08	17	0.15		107	0.20	102	149	
205	129038		0.2	0.20	4	871	1.0	2	0,83	4.2	81	23	10	20	0.12	0,82	09		1.00	3003		0.30	20	0.15		174	0.55	105	811A	
200	128038	0	0.2	4.89	2	384	1.4	3	1.40	V;2	08	20	10	.00	0.40	0.00	20	13	1.75	2703		0.02	24	0.10			0.00	100		
207	129040	65	0.4	5.34	20	528	2.0	4	0.21	0,4	82	21	18	75	6.95	0.71	38	19 1	1.01	3623		0.08	22	0.17	27	34	0.47	105	194	
208	129041	10	0.2	4.86	34	580	1.5	4	0.33	0.2	65	20	19	67	8.24	1.03	28	12	1.28	2479		0,10	21	0.13	14	47	0.36	92	110	
209	129042	5	0.2	4.83	15	312	1.9	2	0.14	0.2	66	18	23	- 48	5.52	0.72	27	13	0.95	2462		0.07	23	0.14	12	20	0.34	85	128	
210	129044	5	0.2	4.70	7	595	2.9	3	0.36	0.2	109	15	14	40	6.52	0.83	49	13	0.80	2490		0.15	14	0.15	19	35	0.47	100	181	
211	129045	5	0.2	4.47	14	300	2.9	6	0.19	0.2	94	17	18	35	8 .0 6	0.48	42	14	0.93	1601	2	0.11	20	0.14	21	18	0.47	102	178	
212	129049	5	0.2	4.31	7	126	2.6	2	0.13	0.2	103	13	15	23	5.18	0,30	38		0.51	1400		0.11	13	0.11	17	10	0.37	68	134	
213	129050	Б	0.2	3.29	6	136	1.1	4	0.39	0.5	52	10	18	25	4.81	0.23	20	9	0.62	813		0.09	11	0.16	22	30	0.62	108	138	
214	129051	5	0.2	4.55	8	155	2.9	2	0.21	0.2	102	15	17	27	5.78	0.32	38	12	0.71	1843		0.12	16	0.15	18	18	0.50	91	163	
215	129052	5	0.2	4.47	2	87	1.2	4	0.37	0.2	58	13	17	23	5.85	0.20	22	8	0,60	1137		0.11	10	0.15	8	27	0.87	132	95	
218	129053	5	0.2	4.54	28	341	2.2	2	0.17	0.7	84	11	20	38	5.77	0.38	34	12	0.57	1181		0.11	14	0.14	39	18	0.52	97	217	

•••

and the second
Silts																											·		
			•	N	oran	ıda	Ex]	plo :	rati	.on	Co.	Lt	td.	PROJE	CT	900'	7-0:	22 2	294	FI	LE	# 9	90-2	332			Pag	ge 2	•
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn jppm	Ag ppm	NI ppm	Co (ppm	Mn ppm	Fe X	As ppm	U Ppm	Áu ppm	Th ppm	Sr Co ppm ppr	1 Sb n ppm	Bi ppm	۷ همر	Ca X	P X	La ppm	Cr ppm	Ng X	Ba ppm	71 X	B A ppm 5	Na K X	K X	H /	iu# xpb
.; \+≠ ✓ 100829 A 108082 A 108086 A 109494 A	3 3 1 6	49 38 21 25	11 12 3 11	470 117 60 113	.8 .1 .1 .1	74 22 5 19	27 19 8 23	1785 1799 939 1319	7.43 5.38 3.30 6.93	8 14 7 7	10 5 5 5	ND ND ND ND	4 1 1 2	68 9.1 56 1 17 105 3.	332	6 2 2 3	114 63 16 86	.90 .83 .38 1.20	.185 .084 .063 .091	33 15 9 13	27 23 5 18	1.02 1.29 .75 1.49	298 194 173 213	.71 .24 .05 .38	5 6.30 10 2.74 2 1.10 6 3.20) .10 4 .12 5 .04) .28	.06 .11 .06 .15	1 - 1 1	1 1 1 3
														•			•						i				•		
																											: ·		
•	i)							· . [·] . <u></u>						•													11		
Gello -	Ä.	í C	N	lora	Inda	Ех	plc	orat	ion	Co	. L	tđ.	PR	ROJECT	90()7-(66-	-294	F	ILE	#	90-	-2771	1		1	Page	2	
GUK,	Ho ppm	Cu	Pb ppm	Zn ppm	Ag	EX N1	plc Co	Mn	ion Fe	Co . As	• Li U ppm	tđ. Au	PR Th ppm	ROJECT Sr Cd ppm ppm	900 Sb ppm)7-(Bi ppm)66- V ppm	-294 Ca X	F P	La ppm	# Cr ppm	90- ^{Mg}	-2771 Ba ppm	1 T X F	BAL xpm X] Na X	Page K X p	2 14 Ai	r* xb
AMPLE# 00833 00834 00835 00836 00837	Ho ppm 5 1 2 38	Cu ppm 40 38 60 35 17	25 ppm 10 4 10 7 8	Zn ppm 265 106 137 121 190	Ag ppn	EX N1 ppm 52 15 28 31 49	22 f 22 f 21 f 21 f 18	Mn ppm 283 6 214 4 692 9 729 6 856 7	Fe X 	Co. As ppm p 262 11 21 18 49	• L U ppm 7 5 5 5 5 5	Au ppm ND ND ND ND ND	PR Th ppm 3 1 2 3 2	Sr Cd ppm ppm 81 2.5 32 22 52 25 47 5 91 6	900 sb ppm 3 2 2 2 3)7-(Bi ppm 2 3 2 • 3 2	94 94 39 72 90 73	-294 Ca % 1.36 .56 .79 .58 1.06	F 2 098 082 068 068	La ppm 25 9 16 21 11	# Cr ppm 35 1 21 1 29 1 26 1 47 1	90- Mg 2 .14 .39 .43 .30 .14	-2773 Ba ppm 482 247 299 266 241	1 77 77 28 35	B AL ppm % 2 4.27 2 1.99 2 2.76 2 2.87 4 3.16	Na X .11 .03 .06 .07 .02	Page K p .06 .06 .07 .06	2 11 2 2 2 1	r* か 8 19 10 7 2
AMPLE# 00833 00834 00835 00836 00837 00838 00839 00840 00840 00841 00842	Ho ppm 5 1 2 38 4 2 1 1	Cu ppm 40 38 60 35 17 63 49 61 41 37	25 Pb ppm 10 4 10 7 8 13 8 14 3 8	Zn ppm 265 106 137 121 190 154 171 112 76 100	Ag Ppm	EX N1 52 15 28 31 49 49 32 33 9 40	22 1 Co ppm 22 1 15 21 18 23 28 21 16 17	Mn ppm 1283 d 1214 4 1692 5 1729 d 856 7 1790 d 2388 d 1273 5 1370 4 916 4	Fe X .23 .67 .61 .21 .15 .26 .70 .69 .98 .93	Co . A8 pm F 262 11 18 49 37 30 20 14	• Li Uppm 7 5 5 5 5 5 5 5 5 5 5 5 5	Au ppm ND ND ND ND ND ND ND ND ND ND ND ND	PR Th ppm 3 1 2 3 2 2 2 2 2 1 3	COJECT Sr Cd ppm ppm 81 2.5 32 .2 52 .5 47 .5 91 .6 65 .8 77 .7 32 .4 11 .2 44 .3	900 Sb ppm 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	96 6 - v ppm 94 39 72 90 73 91 98 51 35 55	-294 Ca * 1.36 .56 .79 .58 1.06 .81 .106 .81 .30 .41	F 2 098 080 082 068 089 076 076 076 076	La ppm 25 9 16 21 11 11 21 17 12 8 15	# Cr ppm 35 1 21 1 29 1 29 1 36 1 32 1 36 2 16 1 36 1	90- Mg 2.14 .39 .43 .30 .14 .36 .76 .00 .21 .65	-2772 Ba ppm 482 247 299 266 241 380 300 161 142 177	1 77 .06 .21 .28 .35 .28 .42 .09 .03 .19	B AL ppm % 2 4.27 2 1.99 2 2.76 2 2.87 4 3.16 2 2.81 2 3.69 2 3.69 3 5.69 3	Na X .11 .03 .06 .07 .02 .07 .15 .03 .02 .03	Page K p .06 .06 .07 .06 .07 .06 .07 .08 .06 .05 .05	2 9 9 1 2 2 2 1 1 2 2 1 1 2 2 1	# 8 9 10 7 2 4 7 8 7 1

Assessment - Geological Geochemical,November, 1990and Geophysical ReportARC OPTION (Arc 10, 11, 12 claims)Page 17

APPENDIX V

ROCK SAMPLE REPORTS

-

NORANDA EXPLORATION COMPANY, LIMITED

BARK/ARC PROPERTY

Ę

N.T.S. DATE July 18/ 1990

· · · · · ·

ン

ROCK SAMPLE REPORT

PR	OJE	CT:	

	SAMPLE NO.	BARK	CATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	al Al	o□∧□ Az	al Al	G A D	00A0 P5	00A0 Za	a da	SAMP B
$\hat{\ell}_{ij}\chi_i$	105451	Atz vein wid	h hematiste. fracture	5	chip	.04	4		1	6	7	18	2	C.
		fill strike	55° dip = 75% W											
1	105452	Vuggy Qtz ve	in with red sulphide	2	chip	.10	118	•1	3	6	2	/	131	CS
		weathering,	On eatent strike 80											
	inclus	HICC	11 1 11 10	59	CI -	-	2		2	30	2	2	$\overline{)}$	TAI
	105 413	· SUMY.30m bould	er, Massive benetite vein	- 54	Float		<u> </u>	•	*	- 30	a			5.10
		Du is OTZ children	man texture comi-control											
		10	<u>, , , , , , , , , , , , , , , , , , , </u>											
	105415	Im wide Rus	y brown weathered zone,	87	chip	Im	6	• 1	4	9	2	2	3	JNF
		Ungy, white QTZ	vein, py in enhedrall x'lls											
					1		2.				0			
· .	105417	.45 mx .30 m bo	uller, up to +25% purche	128	Hoat		5/	•	6	10	d		4	JNA
		in places, It, gre	CITZ, py dissi, Ked-brn					· · · · ·						
		weathering alt	Fn grey Hudesite							·····				
	105418	150 Jon up ho	1 From 105417	25%	Float	-	410	•1	4	6	2	1	2	TNE
		similar to 17 b	at more purite diss up											
		+++ +35%, slin	htly more silicions, numerous											
		scattered boulder					- C							
	105419	Qtz shears with	Ucons of pure py up to	10%	chip	-lm-	18	21	97	114	117	44	89	TNP
		5cm, with vary	s of shear zont	1		1	, ,							

		(()								J	July 21
		· NORANDA	EXPLOF	ATION CO	MPANY,	LIMITED)						-
		PROPERTY ARC						_	N. Dz	T.S ATE	July	1744,	 490
		ROC	CK SA	MPLE I	REPOR	T			PI	ROJECT	29	t	
	SAMPLE NO.	LOCATION & DESCRIPTION	% Sulphides	TYPE	WIDTH	o□ ▲□ Au	©□∧□ Aa	G A D Mo	G A D	Pb	00A0 Za	As	SAMPLED BY
	105411	pyritized flast black of gy win meterial	20%	Flat	-	1080	2.6	2	325	26	21	215	E. G.
		Ungoy, white quarter veine cutting silicified		······									
	05712	subrounded alt'à vole dissem po	15%	Floct		20	01	2	10	3	25	2	E.G
		Inoughort & reachines										•	July 18
	105365	grey, white ATZ vein in 5m wide rusty Zone	1 %	chip_	0,15n	11	,3	2	2	4	46	5	ID14
	105366	QTZ from 50 cm wide siliceous, rusty, vein	1 %	chip	0.5m	8	•]	2	60	4	38	2	JOH
• ;	104774	grey, white Qtz vein, 2m extent 7580° strike. 80° dip to NW.	1%	chijo	. 10 n	6	.2	18	32	6	51	32	٢. 5.
	105368 105424	Small ATZ-and Sulphile Vein Att. Anderste with Makehile staining	20%	chip. Hoat	0.10m	25	.5	63	15 2422	9	7 35	17 3	JOH J.N.F.
4	105423	Tr-42 py, possible Fracture Filling only? Urgan arz vein, bro weathered surface, Tr mineralization eme wink arz withle.	Tr	chip	0.10m	4520	.4	3	3	2	1	7	J. 0.4
	·	struke 0300											

4

PROPERTY ARC

N.T.S. _____

ROCK SAMPLE REPORT

DATE ______ 21/90

PROJECT 294 SAMPLED % Sulphides WIDTH TYPE SAMPLE NO. LOCATION & DESCRIPTION PB BΥ Mo Cu Zn A4 Aa A. 5% chip 5 0.20m ATZ vein in silicified Andesite 40 1) 33 13 42 JOH 105339 6 20% hematite 105338 massive humatite vein w/ minor gy 060/70 SE 2.0m x 0.10m. Rusty weathering O chip 0.10m 14 5 4 0.1 ECG-4 ł 105340 Barren quarte stringers in Anderitic chip 0.20, 7 0 0.1 2 86 2 2. ECG 6 volcanic rack. Strike ±090

#

G = GEOCHEMA = ASSAY

.

	PROPERTY Arc		_	N. D <i>i</i>	T.S ATE	Jul	3 19	_ <u>/</u> 1990				
	ROO	CK SA	MPLE	REPOR	T			PF	ROJECT	244		
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	o a	00 AO Ag	°□∧□ Mo	0□ A□ (u	ODAD Pb	on or	ם م ⊡ ۵ د A	SAMPLED BY
105 453	slightly siliceous quarts win	20 - 40	chip	.aa_	13	.2	4	17	2	1	6	C.S.
	extent entry to 50m (?)	-										
	60° strike, rusty weathering						 	<u> </u>				
105454	silicieous to pure quarte vein	30-80	ch:p	In	50	,3	11	35-	8	1	3	C.S.
	somewhat unggy with 20 n eatenit											
	SS-60 SMIZE.	-										
105455	- siliceous to pure quarte vein	30	Chip	, 3 0 ₁	11	, 2	6	7	2	3	2	C-2
	somewhat unggy with Smeathat											
105456	ven siliceous more queste than 5354.	5-10-15	[chip	2-	9	•1	6	7	2	/	2	C.s.
	10m upslope from 56 60° strike											
July 20, 149		///	-li-	10	3		2	127	2	42	2	65
10 3 13 1	no culobiles visible 10 cm thickness		م الم		<u> </u>			137				
	3 mextent 160° strike as fracture hill	/										
105460	silicified ou sitized intrusive	40-60	float	. 	16	.6	8	69	131	/3	3	C.S.
	(altered) epidote, pyrite, and quarte											

1 -

1

PROPERTY_Arc

ROCK SAMPLE REPORT

DATE July 18,19 1990 PROJECT 294

10011

N.T.S. 104 B/10

٢.

AMPLE NO.		%	TYPE	WIDTH	GOAD		G□ A□	GDAD		G	GOAD	SAMPLED
		SULPHIDES			An	Ag	Mo	(h	P5	<u>Cn</u>	AS	81
05414	In wide vussy an vein 090/50 sw	10	chip		6	÷Ĩ	8	7	2	1	2	ELG
	with 10.70 dissem on In silicitied interview	ie.										
105416	Sumi as 105414 2m Expanse	10	chip	1	2	1	3	5	2	3	2	ECG
	120/40 NE.		/									
105320	Runta day-an-oy win/slear	J	chip		840	.3	6	23	4	3	5	ELG
	15 cm wide 194/155		/									
105321	Rusty Vugan drupy an -quarte vein	15	float		14	-2	3	2	2	3	2	ELG
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,									
105329	Angular 20cm boulder of childrite		float		99	. 8	4	690	14	58	94	
	rich intrusive containing puritie											ELG
	quanta strinsers											
105323	Angular 40cm block of dark green	20	float		31	.2	2	4	6	23	2	EG
	valiance work with 20% fine expired											
	dissen anvite and some quarter stringers											
105375	Vucco frothe textured quarter vein with	< /	flogt		810	1.4	7	242	12	10	141	ECG
	Any quarter Trans privite Rust mance	}										
	arisy france, there papers strangering											
105376.	Proviting and to rain Anderitin ? hast	15	float		65	1.2	2	22	10	51	59	ECG
	Suitt was test and 150											
	again maggin we was any as a pup											

				N.	T.S		<u></u>					
	PROPERTY ARC						-	DA	ATE	July	17"	1990
	ROG	CK SA	MPLE	REPOF	Ţ			PF	ROJECT:	294	1	
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH			G A		GDAD Ph		G A	SAMPLED BY
105407	Classic acid intrusive - porch. Cu	2.0%	Flort	<u> </u>	91	3.3	9	21943	4	970	35	E.G.
	bearing any veine, Hemitile common on Fractures, lugar quarter venue with Cpy in											
105 408	lon up hill From 105407, Cpy& py min.	5%	Float	-	22	11.8	5	40635	26	9162	20	E.G.
	black chlorite fich F.g. intrusive, nineratzitis coarse, blebs of cpy toinil-Scon, py to 0.5 cm, discen throughout, cpy 2-2070, py -2.70.	 									•	
105409	50 m East of 105408, dk greg-green chlorite-rich Andesite rack, broccia with	7%	Floct		97	.3	1	531	5	56	42	E. (x.
	and cpy dissen. a round perimeter of And cpy dissen. a round perimeter of Andesite frags and py in gy lined vugs											
105410	10 m downhill From 105409, Buritized Floct boulder (20m) con-2% Pu-25%	253	Float		28	.4	10	1025	Ω	26	/	<u>E. &.</u>
	and up and clustered into patches or dissem, Fine gy. veinlets crosscutting losted in silicified Andesitic uple?											

July 21

. .

								N.	T.S			
	PROPERTY Arc						_	D		July 1	14, 199	D
	RO	CK S/	AMPLE	REPOR	T			PI	ROJECT	294	L	
SAMPLE NO.	LOCATION & DESCRIPTION		TYPE	WIDTH		GDAD						SAMPLE
		SOLFRIDES			Au 700	Ata 	10	994	$\frac{P_{5}}{2}$	La	145	
105401	quarte vein at contact between atz-fsp	5%	chip	~03 m	/80	<u> </u>	5	107		6		<u> </u>
<u></u>	porphy (dike) and andesite	-			 							
105402	Puelo man ante noine in hardlack	137	chio	+	1	.2	2	4	2	4	3	E.I.
10 3 102	Typitic Ungan quarte veris in the		<u>CN-1</u>		1-1							
	a contale vienes.											
105403	chip 50t m wide shear zone, with intividual	20%	ch:p	2m	10	:2	4	S	2	1	3	E. 4
	shears 1-3m wide weathered to Rust, pyrite				 			Í				
	disserving blocked shears, also gtz veins											
- <u></u>					0					0		
105404	white very quarter, Minor Male stain on	5%	Float	<u>3x.5</u> m	3	.2	2	117	3	3	-	E.G.
	fractures & trace apy in a few wags				 							
				2	15		41	22	-		8	
102402	pyritized shew zone, py up to 25 lo,	126	Chip	12m	13	1.7		32	0			<u> </u>
<u></u>	Shar Zone Dealter grey White weathering			+						<u> </u>		
	to a more orange, locally sitering moster	-									 	
	12 ani in 10 10		1		1							
105406	vein chipa such pusitic & trace can	10%	ch:p	.10m	28	1.4	68	5341	44	144	126	E. C.
	nineralization											2

July 21

)

PROPERTY

÷

ROCK SAMPLE REPORT

DATE ________ 17 / 1990 PROJECT ______94

N.T.S. ____

SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G AL	G A	a A	GOAD	GDAD PL	GDAD Za	G A	SAMPLED BY
105351	Rusty weathered, Vuggy, Qtz Vein	5	chip Gray	0.15m	21	:4	5	15	3	3	25-	-EG 50
105352	Rusty weathered, Vuggy, OTz vein	7	c. Lip	0,40,	12	•]	3	7	8	10	10	JDH
·	Pyrite weathered out of Vugs								0.0			
105353	Pyrite nodules in highly siliceous (QTZ?) vein with small QTZ	20	éhip.	0,30 m	18	.9	2	53	23		.,	304
	Veinleis	5	<u> </u>		51	2	15-	28	10-	8	299	704
/05354	with pyrite in areas of vein		Chil	O.TOm		,~		~	/3	0		
	as nodules. Vugs result of pyrite weathering.											
105355	QTZ vein with highly siliceous	15	chip.	0,40m	18	.1	3	2	3	6	17	JDIJ
	l + t li it ot				260	1.2	LI	280	22	8	3/2	JOH
105 556	Vuggy QTZ (weathered out pyrite?))	Crive	0,40					00			
105357	Vuygy QTZ Vein rusty with	2	Étrip.	0.20,	9	. 5	5	18	17	2	48	JDH
1	traces of red UTZ			<u> </u>								

O OFOCHERA A ARRAV

	PROPERTY_Arc	_	N.	T.S ^ ATE	July	17/ 1	<u>94</u> 0					
	ROC	CK SA	MPLE	REPOR	IT			Pf	ROJECT	7,0	<u>)94</u>	
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	o a	ODAD Ag	G A D	G A D	G A D PL	G AD	G□∧□ As	SAMPLED BY
105358	white QTZ with some Vuggy	<1	CHIP.	0.30r	700	:3	Ч	2	2	3	9	IDH
	Brown (Rusty) Q12		D (
104768	delbic /silkeurs indrusive with minor sulphide veining	3	Flort	().01 _m	12	•])		5	
<i>)</i> 04769	Jelsic / siliceous intrusise with sulphide veining	5	grabs	0.05,	Ч	,2	1	7	8	29		CS.
<u>104770</u>	silicified host with corbonate/ salphide veining	10	grals	<i>O.I0</i> , <i>n</i>	18	,1	4	5	4	22	34	<u>C</u> S.
/0477/	silicifiel host with corbonate/ quartz sulphide veining	7.5	grab	0,1/5	2910	2.6	9	4 787	35-	24	168	<u>C. 3.</u>
/04-712	somewhat unggy quertz vein with silicified host	10	graks	0.20	45	.3	1	115	6	56	2	CS.
/04773	silicitie d'intrugive with minor sulphide veining		gray	0.05m	25	, 2	2	22	10	36	145	<u> </u>
<u></u>	· · · · · · · · · · · · · · · · · · ·											

July LI

1

PROPERTY ARC Claims

N.T.S. 104B10 DATE - July 15th 1990

ROCK SAMPLE REPORT

PROJECT 294

SAMPLE NO.	LOCATION & DESCRIPTION		TYPE	WIDTH		GDAD	G	G□▲□	9 □ ▲□	G		SAMPLED
		JOLITHIDES			Au	Ag	Mo	Cu	27	Pb	A s	
109925	Dark grey to black Andesite containing	6%	chip of Vein	20cm	7	0.(3	3	4	7	12	47
	disensated surite strike 060°, with											•
	12-22 hills retheral											•-
	10-Soca , night steller,	·										1 - 1 M
100045		9%		20	72	01	1		4	0	7	
100015	Dark grey to black Milesite containing	0	chip of lein	Lum		0.1				60		
	diseminated pyrite, strike 060°, width											
	10-30cm, strike length approx 15m, minor											
	Hemitike veining, 15 m bellow sample											
	#109925 down the creek, weathered											
:												
102847	QTZ boldes a same 30cm by 25cm	32	Floot	-	13	0.1	2	14	3	11	13	
10011	Lite last apple - och											
	highly silver, minor remitite and norrolender											
	duck light green to white color of bolder											
		FM										
11 100848	Dark grey andesite grading into a	5%	chip	15-20cm	12	0.1	3	<u> </u>	3	11	2	
	smaller QTZ vein, alt., diseminated pyrte											
	more abuduant in QTZ but also in Andesite											
		}								, t		
100849	NKan Julle KAlabardhara	7%	Clad		15	0.1	2	12	2	25	40	
100014	Work grey to black Hindesite With Minor		LIDAT								<u> </u>	
• • • • • • • • • • • • • • • • • • •	traces of QTZ grading disensated pyrite											
	mostly in QTZ											

ARC PROPERTY ____

(

N.T.S. 104 8/10 DATE JULY 14/90

294

;

ROCK SAMPLE REPORT

PROJECT_

SAMPLE NO.	LOCATION & DESCRIPTION	%	TYPE	WIDTH	G 🗆 A 🗋	GOAD	G□∧□	G	G□▲□	G□∧□	g 🗌 🗚 🗌	SAMPLED
		SULPHIDES			Au	Ag	Mo	<u>Cn</u>	Zn	Pb	As	BY
80871	Calite Greccia, green volcanie claste	tr	Float		6	0.1	1	74	2	113	2	••
	min spee. Lunchite to copy in											
	calité matrix. Flost bldr 60x30cm											
80872	Of vein or silicidied rock as in	tr.	Þt		1360	0.1	3	5	Ζ	2	42	14
	80870. More oxidized, pinkish											
	weathered. Float Sldr, Sox Fo an							 				·
80 873	Hematik breecia is min. py	nin	ii	-	2	D.1	1	1	2	24	4,	••
	volumic clasts. Float Sldv, sub-		·····		í 							
	angular. 25 cm diam .											··•
	0											
												•
	· .							 				
• • • • • • • • • • • • • • • • • • •												
								· · · · · · · · · · · · · · · · · · ·				
_												

PROPERTY ARC.

S

ROCK SAMPLE REPORT

DATE JULY 14/90

N.T.S. 1048/10

		UN SA		NEFUN	1 1			PF	IOJECT:	047	7	
AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	o 🗆 n 🗆 An	©□∧□ Aa	G A		а□л□ РЬ	00 A [] Zn	G A	SAMPLED
80864	Bleached, limonife stained come in	2	chijo	0.5~	14	0.1	4	8	4	9	11	ms.
	tutts 1-37 dissen py some					•						
	stringer quarter veins. Zom is											
	about 1/2 m wile @ 070/74N											
80865	As above, same zone, 25 m to west.	••	"	<u> </u>	11	0.1	2	1	2	7	16	• •
80866	at- py vin, to bright mange limmite	20	Float	-	3140	0.5	5	167	2	1	224	"
	staining, coarse py. Jub angular				ļ				· · · · · ·		· · ·	
	float bldr, 30 cm diam .							 				
80867	Shined, silicided volcanic (?)	2	11		280	0.1	3	105	2	8	36	*,
	probable wallrock to reins, 27.	-										
	dissen py. Lubangulan Aloat blar				 							
-	0.5 m dram .										·	
80863	Qtr, calute ± barite breccia in gran	2			10	0.1	3	1405	2	25	2	
0.0.0	volcanie clasts, 1-2% goy, malash	•			 							
80869	Qtr breccin, similar to above, gtr	-1	N		<u>r 12</u>	0.1	_/	183	2	25	2	
	is vuggy, dusy, min gpy.	-										
	30 cm dram Bldr.									· · · · · · · · · · · · · · · · · · ·		1
80870	Rusty nance weathind very hard,	2/	"		600	0.3	3	2	2	3	2	
	cherty at vin a silicitied rack,	-										
	minh dissen by mast leaded out	-										
	40 em dran angular 5/dr.											
					-							

ROCK SAMPLE REPORT

PROPERTY____ Avc.

N.T.S. 104B10 July 10, 1990 DATE -29 PROJECT

SAMPLED % WIDTH SAMPLE NO. TYPE LOCATION & DESCRIPTION SULPHIDES BY Au As Aa Pb Zn Mo Cu 105306 - Float, Quartz wein ur 5-10% 5-10 float 7 EG 0.4 103 4 7 13 7 disseminated & fine grained pipite 105307 Puritic andesitic tu float 3 10 36 2 55 9 0.1 containing 9 3 siliceors fragments. Matrix d green Float mule 105308 - Float, Specular hematite float 15 0.1 3 2 Ζ 4 2 n cemented quartz viein preccia INCIA SAAM

)

								N.	T.S	104	B/10	
	PROPERTY Arc 10						-	DA	ATE	June	25	-
	RO	CK SA	MPLE	REPOR	T			PF		20	74	
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	GRAD. An	c⊠∧□ Aa	GKA□ Mo	GKAD Cu	0 K ∧□ P5	ola Zn	₀⊡∧□ As	SAMPLE BY
108083	Subrounded boulders of quartz vein material containing	10%	float		25640	5.5	2	5711	6	8	459	ECG
	dissemulated to semi-massive pyrite, cpy. Cirque above Ernie Cr.	-										
/08084	Boulder (20cm) of massive hematite cemented volcanic breccia		float.		67	•1	3	39	3	1	2	ECG
10 9085	Subrounded boulders of massive	~ (%	float		22	./	2	1461	2	25-	2	ECG
······	volcanic breccia. Minor disseminated cpy and malachite stain						•					<u>, , , , , , , , , , , , , , , , , , , </u>
* 108080	vuggy quartz vein pieces with weathered out sulphides	•	float		2100	0.2	1	6	6	2	61.	Eccs
108077	Carbonate vein (calcite + siderite)		float		90	.3	1	247	2	48	29	ECG
104078	pyrite											
109178	Narrow quartz veins in andisite	trace	rock.		340	0.4	5	970	9	7	10	ECG
109500	apulle hiff containing trace py.	-			16	./	2	492	2	28	2	C.S.

) PSM

PROPERTY Brandon Arc

N.T.S. <u>104 B/10</u> DATE <u>Ang 1**5**, 199</u>0 PROJECT 294

ROCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G A	G AC	G A	G A	G A D	G A D	G A	SAMPLED BY
106970	Sem wide maggy drugg gy vein Im strike 055/90 Hosted in felsie fragmental		rock		15	0.1	3	5	2	7	58	EG
	andesitic matrix Lapilli biff. Rusty.		Æ									
106971	30×10×10 cm piece of milky gy vein Barren Source Likely nearby.		float		30	0.2	1	20	2	(]	3	EG
106972	10 cm sub angular cobble of py cemented	50	float		31200	16.8	4	8665	123	1	76890	EG
	cpy al 70. A few pyritic gy vein lets.											
106973	Rounded 9cm cobble of pyritec.	50	float		1120	0.7	2	39	2	(222	ЕG
	, 											i
												· · · · · · · · · · · · · · · · · · ·

1 ()

 $(\omega \in p) < \infty)$

N.T.S. 104 8/10 DATE JULY 15/90

ARC. PROPERTY _

ROCK SAMPLE REPORT

PROJECT 294

SAMPLE NO.	LOCATION & DESCRIPTION	%	TYPE	WIDTH	<u>a 🗆 A 🗖</u>	G 🗌 A 🗌	GOAD	GOAD	G□ ▲□	GOAD	GOAD	SAMPLED
		SOLPHIDES			An	Ag	Mo	Cer	Pin	Pb	As	
808751	Rusty weathering bleached, silicitied	<u> </u>	chijo	Im	75	0.1	3	7	3	19	17	MS.
	zone in volcinels, irreg. shape											······································
	min dissen py.											
103762	Rusty withring, 6 leaded, pale green	2	Float		680	0.5	2	2271	6	10	34	••
:	altered volcanie = 270 dissem			ļ								·····
	cpy, mina py, 20 cm diam.			ļ								
	angular 61 dr.			ļ								
Lourge	K. C. H	5	Grat		190	10		5	16	<u> d</u>	75	
	pros allow that show											
•	- tout - france filling py											
	Fros VIII wetage thege wear			ļ								
	- fride weter growthe			ļ								
104755	ate - specular humatite vein in		chijo	0.1m	9	0.1	3	6	2	23	2	₩
<u></u>	fuft. Vein at 082/90				ļ							
					l 							
	· · · · · · · · · · · · · · · · · · ·											
	· · · · · · · · · · · · · · · · · · ·											
					[
		-										
		-		· · ·								
••••••••••••••••••••••••••••••••••••••												
		<u> </u>		I								

نسع	NORANDA	EXPLO	RATION CO	MPANY,	LIMITE)		N.	т.ś	104	в/10	-
	PROPERTY Bangton Arc	10	,				_	DA	ATE	June	23	
	J RO	CK SA	AMPLE I	REPOR	T			PF	ROJECT	_29	<u>4</u>	
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH		G A A	GRAD Ma		g⊠∧□ Zn	GE AD		SAMPLEC BY
* 109171	Charles the state of the state	2-11	<u>fl</u>		Ha E	- <u>g</u>		7				
· [1]	anit it to the the											
	have been and plaintent texture											
109177	n + i + u i doit.	-	cock		21	17	2	27528	29	57	24	FI.
10 1112	containing lame bleke of con in		(vein)			1.7	~~					
	veins and fine stringers in											
	host			 						ļ		
109173	Quart + calcite + siderite veins		rock.		24	3.0	2	11534	45	6	1	EG
	containing oppy coarse blebs (1.5cm)		(vein)						 	ļ		
	ор сру.		ļ,			<u> </u>		1000				
109174	Calcile + siderite veins w/ minor		rock		33	. /	2	105	30	6	5	EG
	disseminated pyrite		(Vein)							<u> </u>		Ì
108076	Massive cpy "nugget" (4 cm) from	-	Float.		75	/1.3	/	299,999	19_	<u> </u>	<u> /. </u>	EG
<u> </u>	weathered carbonate vein				 						ļ	-
109175	Hom carbonate vein with dissem		rock		10_	//	/	11749	2+	9	<u> /</u>	EG
	Сру				11	0		F a	100		2	
109493	Massive fine grained pyrite in				66	- 8	2	57	20	<u> </u>	$ $ \underline{s}	C.S.
<u></u>	mildly clay altered volcanic.			<u> </u>							+	
<u> </u>	I TOCK.										+	
				<u> </u>	 							

Ì

109172

3

1

•	PROPERTYArc							N. -DA	T.S	<u>104</u> Ang	<u>B/10</u> 23',	
	RO	CK ·S∕	MPLE F	REPOF	RT .			PE	ROJECT	20	14	(i
SAMPLE NO	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G AU	₀□∧□ AG	G A D Mo	G□∧□ Cu	°□ •□ P6	00 A0 20	GDAD AS	SĂMPLED BY
12968() 12x5x2cm angular gywein. Vusqy w/druggy Slightly pyritic Rusty		float		123	1.0	2	74	4	8	125	EG
12969	1 Large, angular Im block yellow-green attered andesitic inolonnic Rusty weath		subcrop?		639	0.3	2	25	2	2	93	ΕG
	w/ wuqqy, drusy gy veins											
	2 1.0m angular chloritic plagioclase porphyry. Weak foliation der. Fine weinlets of gapson drusy gy containing		float)4	0.3		2971	2.	2+		<u> </u>
Aug 20	Py, cpy, hem 3 Fin a unilate in adle area fini		indak.		3	D.1	· · · · · · · · · · · · · · · · · · ·	12	3	1)	2	EG
	grain andesitie vole. Slight vugginess											
12961	34 Purple siliceous andesitec rock w/ gy veins + hem. Slightly wuggy.		floot		3	0.1	2	11	3	6	2	<u> </u>
			/		27	<u>n 2</u>	2		ų	40		

O OFOCHEN A - ASCAV

.

	<u>,</u>							N.	T.S	1041	5/10	·
	PROPERTY Arc						-	DA	ATE	Ang	28	
	ROO	CK SA	MPLE I	REPOR	T		- 	PF	IOJECT:	29	<u> </u>	
SAMPLE NO.	LOCATION & DESCRIPTION	%	TYPE	width	G	G	G	G	G	G	GOAD	SAMPLE
1-2/21			6	 	462	49	100	20	<u> </u>	21-	As	
1.7686	Chlorike gry ven in welded top.		YOCK		•79	0.8	<i> </i>	ω	6	52	-69	ElF
	Tuff tof med. gr. dissem by in vein			·								
	0.5-1.0cm mide 130/ 80 NE											- Ín
179687	Eracture containing a - 10 cm inde vista	20	rock		909	0.4	2	44	2	6.	194	EG
	E mai Frother texture und 20% and	1										
	<i>b</i> , <i>van</i> , <i>m</i>											
129688	Rusty frothy toxtured IDX15×5cm		flt		396	0.5	2	13	2	2	91	EG
	piece of gay vein .											
				ļ				ļ		ļ		
129689	Calcite veine cutting situatied pratie	5	float		52	0.3	1	8	2	44	27	EG
·	atted grey rock. py dissem				 		· · ·					
								1-		ļ		
129690	Vuggy drusy gy vein in chlorite attd	5	roch		441	D.5	<u> </u>	12	5	5	24	EG
<u></u>	andesitic lap. tuff (silicitied) 5 70 desien	1									+	
· · · · · · · · · · · · · · · · · · ·	Py 5 cm mide 110/80 N		<u> </u>								+	
125191					الم کی ک							-59
								<u> =</u>				
	A it in the internet	LE	rock		12	<u>À Z</u>		<u> </u>	2	4	7.5	56
	1. in the stinker								1			

O OFOCIERA ADEAM

	B \/ b \ C	 	
		 C C C C C C C C C C C C C C C C C C C	
			1 1 1 1 1 1 1 1 1 1

N.T.S.

DATE Ang 28

1	- 1	•			
	۳P	ROP	ERTY	·	• • • •

S

ROCK-SAMPLE _REPORT

ROCK SAMPLE -REPORT PROJECT										<u></u>			
AMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G A D		G	G	G 🗋 🗚 🗋		ã⊡ Á⊡	SAMPLE	
29632	And city hard with disse bed and atidas stability	-1-3	chip	10 m	AU	<u>Ag</u>	10	Cn Inl	<u>_ ۲0</u>	En	HS IS	00	
~1052						0.2		01.	6	90	10		
124633	highly altered rock with small sulphide verns	<1%	float		5	0-8	5	117	18	67	19	C.S	
							· .						
129634	15m Sw of 104771 red weathing on bedrock	2-3	chip	.10 m	1495	0.1	19	134	4	42	3	C.S	
		3	<i></i>									1	
129635	15 Wod 104771 heavily alked host rock	2%	float		63	0.5	3	361	2	3	320	C.S	
							· .	· .	1 t. 2 				
129636	10m up Strike from 104771 , like 10471	5-30	ch:p	.57	2646	1.5	4	298	10	4	349	<u> </u>	
	where sugary textured , 25m long estimit		· · · · · · · · · · · · · · · · · · ·	la de la facilitada									
104 (37	The particular signal in a flet la		<u>chia</u>		77				<u>.</u>	9			
1000			<u>* 5 1 - + -</u>		• • •	-				· • • • • • • • • • • • • • • • • • • •	•••••••		
129638	querte/corbante ver, black weathering, 120	1-3	chip	<u>ilm</u>	5*	0.3	/	7	4.	105	4	<u> </u>	
	Sor. Res 15105E 7615 10	Sugar States	•.									14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
129620	while I was group Bly Bly F	Join	C. 4 4	-		A /	7_	52	7	17	٦.	0.0	
121031	White guard Vens (1000- 1300)		Floar		L	0.1		55	<u> </u>	/3	<u>म</u>		
2000		2-51			4		1	A	2	79	6	DG	
179876	Te slained filiceous vein such wae	<u>3-2</u> A	Chip	<u>ia 71.</u>	- V			U	<u> </u>		<u>v</u>	D, G	
	and ilicified and exite The yein contained			· · · · · · · · · · · · · · · · · · ·									
	3-5% dissem ov as cubes.	-	•						• •				
12 9877	T as above	3-5%	chio	.2	23	0.2	1	39	2	10	46	D.G	

ROCK SAMPLE REPORT

PROPERTY_____Arc

N.T.S. <u>104 B/10</u> DATE <u>Sept 8 19</u>90 PROJECT <u>294</u> A G A G A GA SAMPL

SAMPLE NO.	LOCATION & DESCRIPTION	%	TYPE	міртн	G	G□ A□			g 🗌 🗛 🗌			SAMPLED
		SULPHIDES			Au	Aq	Mo	Cu	Pb.	Zn	As	ВҮ
1296934	Narrow (0.7cm) pyritic gy veins 117/90	21	grab.		550	D.4	1	8	5	22	80	EG
i i	Vussa w/ drush testure some corbonate		,									
	+ four spects of come thested in custo											
	add in the in the											
	weathering capits triff.											
109170	Siliaified area plancic? containing		arah		6	0.1	4	27	2	5	4	Fls
101110	such white		91-02									
	guar i z beins											
		-										
<u></u>												
·												
······		-										
<u> </u>					1							
<u>.</u>	4			· · · · ·								
												ļ
	L										L	

1 1

N.T.S. _____ 104 B/10 DATE _

Arc PROPERTY ____

ſ.

ROCK SAMPLE REPORT

Aug 14, 1990, Aug 15, 296 PROJECT

SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH				GDAD			G	SAMPLED BY
106959	Angular nieces of clay and	2	float		65	Z.3	4	26	56	34	90	E.G.
100/01	carbonate altered volcanic with frothy						1					
	guartz veins and pyrite seams.											
												÷
106964	Puritic quartz veinlet in silicitied fsp-crystal	41	rock		38	0.4	2	8	9	58	ハ	EG
<u> </u>	tuff; 1-2 cm wide, 1.5m strike 110/70.6w.											
106965	Some an 964 but when In Frace on Minor	<1	rock		3	0.3	Z	6	2	13	16	EG
	siderite , limonite chlorite 108/70 NE.											
106966	4 cm wich pyritic qu vein Slight vuggy	• 2	rock		183	0.4	2	14	2	7	224	EG
	(frothy) texture str. 070/805E											
11/0/7			Clark		102	12	· ,	225	5	52	7/.	đ
10676 F	1 cm wide any win. Slightly vuggy, pyritic. In drk	_20	TIDAL		107	1.2		235		52	56	EG
	green chit chi alla voi tug up loc. tugar py											
106968	Subcropping 1-3 cm wide wigging any views in	1-3	Subcrop		340	0.1	1	7	5	4	7	EU
	silicified andesite tuff w/ Fine dissem py											
1 1 4 6 10					~					2		
106769	10 cm quy vein similar to 968. 1.5m		rock	·	150	0.1	6	6	5	<u> </u>	6	EG
	exposure 108/90											

N.T.S. 104 B/10 DATE July 19,20 PROPERTY **ROCK SAMPLE REPORT** 794 PROJECT % SULPHIDES SAMPLED SAMPLE NO. LOCATION & DESCRIPTION TYPE WIDTH 20 ΒY Mo Pb Gu L 100 2 2 2 Ч float 105327 ECG 10 vuggy gs 3 1.3 105328 10 5336 3 31 float ECG-6 5 Subrow 97 wargy Lock. ٩ 41 2 8 3 105329 Quartz-carbonate stockwork weins in . 1 5, ELG () altered (silicified) felsic intrasive 104775 Qti , vuggy with possible 5°% 95° southe. Sulphides Carsenopurite 3.0 2 812 6.5 chip 1 m 7 6 15 33

G = GEOCHEM A = ASSAY

- 5

commence of the text of the second

- 5 - 5 - 5 - 5 - 5 - 5 - 5

the second se

12800E

12700E

- 25 L 20

9800N.____ 9600N____ 9400N____

9000N____

9200N____

NORANDA EXPLORATION CO. LTD.

Yers. 5.02 Fri 4 Jan 1991 at 10:25 Centre of plot at 13250.0E/9530.0N Serial # C90140, Registered User + NORANDA EXPLORATION

12800E

12700E

13000E	13100E	13200E	13300E	13400E	13500E	13600E	13700E	13800E
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 1.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	- 0.2 - 0.2

warden and and

NORANDA EXPLORATION CO. LTD.

yers. 5.02 Fri 4 Jan 1991 at 10:25 Centre of plot at 13250.0E/9530.0N Serial # C90140, Registered User + NDRANDA EXPLORATION

29 - 36 - 32 - 23 - 29 - 29 - 37 - 33 - 33 - 63 - 32 - 33 - 40 - 41 - 23 - 25 - 27 - 66 - 41 - 56 - 26 - 22 - 13

12700E

12800E

13000E	13100E	13200E	13300E	13400E	13500E	13600E	13700E	13800E
	$ \begin{array}{c} 25 \\ 19 \\ 26 \\ 27 \\ 19 \\ 25 \\ 36 \\ 37 \\ 48 \\ 33 \\ 32 \\ 48 \\ 38 \\ 115 \\ 72 \\ 37 \\ \end{array} $	$ \begin{array}{c} 26\\ 23\\ 22\\ 32\\ 34\\ 49\\ 35\\ 33\\ -39\\ 41\\ -34\\ 32\\ 33\\ -39\\ -41\\ -34\\ -32\\ -33\\ -39\\ -41\\ -32\\ -33\\ -39\\ -41\\ -32\\ -33\\ -32\\ -33\\ -32\\ -33\\ -32\\ -33\\ -32\\ -32$	35 - 29 - 32 - 291 - 64 - 25 - 39 - 48 - 29 - 28 - 23 - 43 - 29 - 28 - 23 - 43 - 29 - 28 - 23 - 43 - 29 - 28 - 23 - 43 - 29 - 28 - 29 - 28 - 29 - 28 - 29 - 32 - 291 - 64 - 25 - 29 - 32 - 291 - 64 - 25 - 29 - 28 - 39 - 48 - 29 - 28 - 29 - 28 - 29 - 29 - 32 - 29 - 32 - 29 - 32 - 29 - 48 - 29 - 28 - 29 - 48 - 29 - 28 - 29 - 48 - 29 - 28 - 29 - 43 - 29 - 28 - 29 - 43 - 29 - 28 - 29 - 29 - 28 - 29 - 29 - 29 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	28 - 34 - 32 - 133 - 32 - 43 - 43 - 42 - 36 - 57 - 65 - 43 - 33	30 26 47 76 75 54 862 35 45 29 78 29 32 29 32 25 29 29 29	$ \begin{array}{c} 29\\ -35\\ -19\\ -19\\ -23\\ -42\\ -46\\ -45\\ -24\\ -96\\ -60\\ -37\\ -41\\ -24\\ -24\\ -34\\ -19\\ -21\\ \end{array} $, 35 21 25 25 27 24 33 16 24 49 55 27 -24 -33 -27 -24 -33 -26 -27 -56 -71 -69 -40 -49 -56 -25 -27 -56 -27 -56 -27 -56 -27 -56 -27 -56 -27 -27 -26 -27 -26 -27 -26 -27 -26 -27 -27 -26 -27 -26 -27 -27 -26 -27 -26 -27 -27 -24 -25 -27 -27 -56 -27 -56 -27 -56 -27 -56 -27 -27 -56 -27 -27 -56 -27 -26 -27 -56 -27 -56 -27 -26 -27 -56 -27 -27 -26 -27 -27 -26 -27 -27 -27 -27 -27 -27 -27 -27	$ \begin{array}{c} 35\\ -18\\ -45\\ -32\\ -37\\ -26\\ -28\\ -27\\ -132\\ -79\\ -117\\ -73\\ -135\\ -102\\ -63\\ -26\\ -20\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28$

12800E 13000E 13200E 13100E 13300E 13400E 13500E 13600E 13800E 13700E - 4 - 8 - 2 - 10 - 6 15 - 10 - 13 - 14 - 8 - 5 - 9 - 12 - 8 - 4 - 15 - 9 - 10 - 13 - 7 - 9 - 6 - 5 - 10 - 8 - 9 - 2 - 8 - 12 - 14 - 4 - 8 - 7 12 12 10 8 8 12 5 7 10 9 - 3 6 L 10 L 11 19 - 11 - 10 + 14 10 6 6 8 17 - 8 - 13 - 17 - 11 - 39 - 14 - 12 - 9 - 16 - 20 - 8 - 11 - 10 - 5 - 12 - 40 - 38 - 22 - 55 - 30 - 6 - 6 - 6 - 9 - 12 - 10 - 14 - 13 _ 17 _ 11 _ 5 9 9 11 15 . 7 . 17 4 6 8 10 18 56 2 - 5 - 8 - 16 - 92 - 38 - 17 - 21 21 22 15 12 16 23 18 11 - 17 - 20 - 15 - 5 - 7 - 13 - 13 . 1268 - 9 - 26 _ 34 - 71 - 105 - 17 - 13 - 33 - 349 - 27 - 13 - 65 - 26 - 20 - 7 - 5 - 7 - 17 - 79 - 23 - 9 - 9 - 8 _ 12 - 9 - 29 - 11 24 25 22 - 17 - 8 - 11 - 10

1 5

	GEOLOGICAL BRANCH SSESSMENT REPORT
	SOIL GEOCHEMICAL SURVEY
	PROJECT: ARC PROJECT # : 294 BASELINE AZIMUTH : 90 Deg,
	SCALE = 1: 5000 DATE : 8/28/90 SURVEY BY : M SAVELL NTS : 104B10
FIG	FILE: C294ARC • NORANDA EXPLORATION

NORANDA EXPLORATION CO. LTD.

Yers, 5.02 Fri 4 Jan 1991 at 10:25 Centre of plot at 13230.0E/9530.0N Serial # C90140, Registered User + NDRANDA EXPLORATION

x.

12700E

.

Vers, 5.02 Fri 4 Jan 1991 at 10:25 Centre of plot at 13250.0E/9530.0N Serial # C90140, Registered User : NDRANDA EXPLORATION

 $\begin{array}{c}
10 \\
10 \\
12 \\
14 \\
10 \\
4 \\
2
\end{array}$

12700E

9800N____

9600N____

9400N____

9200N____

9000N_____

12800E

Wed 12 Dec 1990 at 10:45 Centre of plot at 13100.0E/9675.0N Normal profile centred on 56500.0 nT Serial 🖡 M90140 Registered User : NORANDA EXPLORATION Vers. 5.02

SURVEY BY : TW/CC FILE: M294ARC FIG. 12 NORANDA EXPLORATION

. .

ASSESSVENT REPORT

Instrument Field Catum Pontour Interval : Profile Scale : 100 nT / Cm Conductor Axis

> ARC MAGNETOMETER SURVEY

BASELINE AZIMUTH : 90 Deg. SCALE = 1 : 5000

87

Account medicas Instrument OMNI4 Field : TOTAL : 0.0 nT Datum Contour Interval : 25 nT Interpreted Dyke Magnetic Break ~~~~ Conductor Axis 100m 50m 0m MAGNETOMETER SURVEY PROJECT: OMNI4 PROJECT # : 295 BASELINE AZIMUTH : 90 Deg. SCALE = 1 : 5000 SURVEY BY : TW/CC NTS : FILE: M295ARC

