ARIS SUMMARY SHEET

Discrict Geologist, Smithers Off Confidential: 92.03.08

ASSESSMENT REPORT 21079 MINING DIVISION: Liard

PROPERTY: Glacier

LOCATION: LAT 57 06 00 LONG 131 20 00

UTM 09 6330722 358646

NTS 104G03W

CLAIM(S): Glacier, Glacier 1-2

OPERATOR(S): Lazeo, T.

AUTHOR(S): Ven Huizen, G.L. REPORT YEAR: 1990, 23 Pages

COMMODITIES

SEARCHED FOR: Copper, Silver

KEYWORDS: Triassic, Andesites

WORK

DONE: Prospecting

PROS 1000.0 ha

RELATED

REPORTS: 20587

LOG NO: march 14	/9/ RO.
ACTION:	
FILE NO:	

REPORT ON THE GLACIER, GLACIER 1 AND GLACIER 2 CLAIMS

RECORD NO. 7013-7015

LIARD MINING DIVISION

NTS 104 G/3W

131° 20' W and 57° 06' N

OWNER AND OPERATOR: TERESA ANN LAZEO

#126-1859 Woodway	Place
SUB-RECORDER	B _1 T6
MAR 8 - 1991	U &
	ZC
M.R. # \$	
VANCOLIVER, B.C.	民国
i i samenia si sa	
AUTHOR: Greg L. Ven Huizen, P.Eng.	in [anal
3889 Hudson Street	4Z
Vancouver, B.C. V6H 3A9	○ [42]
vancouver, D.C. von SA9	PARKET TO THE PARKET
16 November 1990	CD CO
•	
	Fact freed

TABLE OF CONTENTS

SUMMARY	PAGE	1
FIG 1 GENERAL LOCATION OF PROPERTY	PAGE	2
GEOGRAPHIC AND PHYSIOGRAPHIC POSITION	PAGE	3
PROPERTY DEFINITION	PAGE	3
HISTORY OF THE AREA	PAGE	3 & 5
FIG 2-CLAIM MAP	PAGE	4
GENERAL GEOLOGY AND MINERALIZATION	PAGE	6
FIG 3-REGIONAL GEOLOGY	PAGE	7 &7a
PURPOSE OF THE WORK PROGRAM	PAGE	8
RESULTS AND INTERPRETATION	PAGE	8-13
FIG 4-TOPOGRAPHY AND TRENCH LOCATIONS	PAGE	9
FIG 5-TRENCHES AND SAMPLE RESULTS-GLACIER CLAIM	PAGE	10
FIG 6-TRENCHES AND SAMPLE RESULTS-GLACIER 1 CLAIM	PAGE	11
FIG 7-TRENCHES AND SAMPLE RESULTS-GLACIER 2 CLAIM	PAGE	12
CONCLUSIONS AND RECOMMENDATIONS	PAGE	13-14
COST ESTIMATE	PAGE	15
COST STATEMENT	PAGE	16
CERTIFICATE OF QUALIFICATIONS	PAGE	17
BIBLIOGRAPHY	PAGE	18
ANAIVSES	APPEN	ID I X

SUMMARY

The author was requested to write this report on trenching and prospecting performed by Mr. J. Ruza, prospector during 17 to 27 September 1990 on the Glacier and Glacier 1-2 claims owned and operated by Teresa Ann Lazeo. The report is based entirely on information supplied by Mr. Ruza and on reference materials as listed.

The Glacier and Glacier 1-2 claims are located 6 km SE of the Galore Creek deposits where 113,000,000 tonnes of reserves grading 1.06% Cu, .397 g Au and 7.94 g Ag has been geologically measured and is directly south of the Copper Canyon deposit.

The claim area is underlain primarily by a series of volcanic and sedimentary rock of Upper Triassic age which in the Galore Creek area are intruded by syenite, orthoclase porphyry, monzonite and/or pyroxenite. The trenches were blasted in gossanous zones in the volcanics and sedimentary rocks containing pyriferous and cuprifeous minerals.

The trenching consisted of 9 dynamited trenches totalling 26 meters in length with a total of approximately 7.5 m⁹ of rock moved. Twelve rock samples were taken from the trenches and were analyzed by Min-En Laboratories in North Vancouver. The analytical results show values up to 28000 ppm Cu and 19.9 ppm Ag from sample Glacier1 #4 which was a piece of heavily mineralized float with chalcopyrite and malachite.

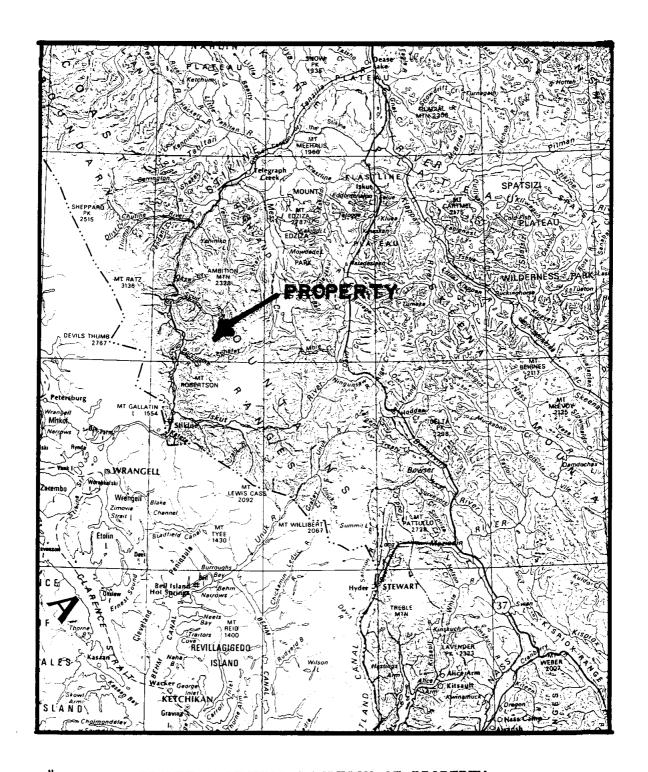


FIGURE 1 GENERAL LOCATION OF PROPERTY

A) Geographic and Physiographic Position

The property is located at 131° 20' W and 57° 06' N on NTS map 104 G/3 100 km south of the town of Telegraph Creek, British Columbia. The closest road is Highway 37 which runs N-S about 80 km east of the property. A fixed wing airstrip is located on the Scud River about 30 km NW of the property.

The property lies in rugged topography at elevations of 1050 to 2000 meters above sea level. About 70% of the property is covered by glacial ice. Sphaler Creek is about 7 km south of the property at an elevation of 300 meters above sea level. Sphaler Creek flows west into the the Porcupine River and then to the Stikine River located about 25 km west of the property.

Access to the property is by helicopter.

B) Property Definition

The property consists of three claims:

<u>Claim name</u>	<u>Units</u>	Record No.	Expiry Date	Mng Division
Glacier	18 (3s x 6w)	7013	10 March 91	Liard
Glacier 1	16 (4s x 4e)	7014	10 March 91	Líard
Glacier 2	$20 (4s \times 5w)$	7015	15 March 91	Liard

The record holder is Maria Teresa Lazeo of Burnaby B.C.

C) History of the Area

Interest in the area dates back to 1873 when placer mining commenced on the Stikine River gravel bars. Prospecting for

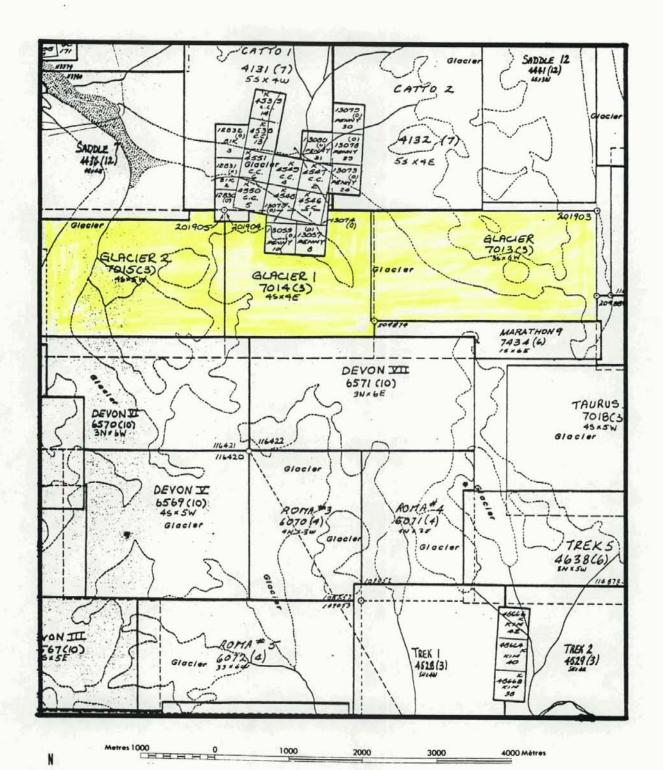


FIGURE 2 CLAIM MAP- GLACIER, GLACIER 1 AND GLACIER 2 SCALE 1:50,000- FROM BCDEMPR MAP M104 G/3W

Page 4

ESSIO

ENGINE

VenHuizea

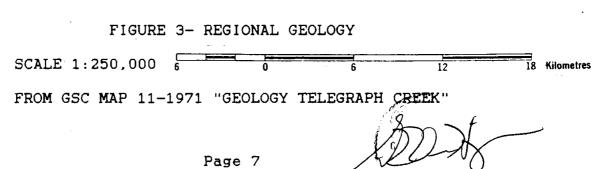
placer gold continued through the Cassiar gold rushes of 1873 to 1875 and the Klondike rush of 1896 to 1900 when the Stikine River was the route of thousands of prospectors to the interior. Exploration was confined mainly to the river valley and resulted in the discovery of numerous small showings along the Stikine.

After 1955 prospecting of the more remote areas by Hudson Bay Mining and Smelting Company was intitiated using helicopters supporting large exploration crews. Since then many of the areas have been investigated through geophysical, geochemical and conventional prospecting methods. A large number of prospects have been trenched and diamond drilled.

The Galore Creek deposit (#2 on Figure 3) has 113,000,000 tonnes of geologically measured reserves grading 1.06% Cu, .397 g Au and 7.94 g Ag and is located about 5 km northwest of the Glacier property.

The Copper Canyon showings (#12 on Figure 3) has geologically similarities to the Galore Creek deposit and is located about 1 km north of the Glacier property.

The Goat showing (#15 on Figure 3) is described as dessiminated copper minerals occurring in altered and brecciated Upper Triassic volcanic rocks and is located about 5 km southeast of the Glacier property.


The Bik showings (#10 on Figure 3) adjoins the Galore Creek property on the north and east. The geology is similar to Galore Creek but evidence of copper mineralization is limited. The Bik showings are about 7 km northwest of the property.

GENERAL GEOLOGY AND MINERALIZATION

The area is underlain by granitic and metamorphic rocks of the Coast Crytalline complex which forms the core of the northwesterly trending Coast Geanticline and the northeasterly trending Stikine Arch. The latter exerted a profound influence on Mesozoic sedimentation and structure around its margins. The arch is bounded on the east and northeast by an extension of the Whitehorse Trough in which great thicknesses of volcanic and clastic sedimentary rocks were deposited during the late Triassic and early Jurassic time. The claims are mapped as being underlain by volcanic and sedimentary rocks of Upper Triassic age.

The Galore Creek body is shown as being influenced by intrusive bodies of equidimensional plutons characterized by a high content of potash feldspar and sodic plagioclase, and an absence of quartz. The bodies are often porphyritic and very coarse grained and are intrusive into Upper Triassic volcanic and sedimentary rocks. In addition to the large masses of syenite porphyry the complex includes a prominent equigranular granitized unit, a multitude of prophyry dikes and highly altered equivalents of the Mesozoic assemblage. The Galore Creek deposits are found mainly within and around the margins of the complex in brecciated zones and are made up of tabular bodies of vein, breccia and dessiminated mineralization which are classified as replacement bodies (skarns), hydrothermal and porphyry.

LEGEND FOR FIGURE 3

ŀ						
		.	TRIASSIC AND JURA	ASSIC RLASSIC PRE-LO	wer jurassic	
			12 Svenite, orth	noclase porphyry,	monzonite, pyroxenite	
	LEGEND	MESOZOIC		nde granodiorite,		rtz diorite 11. Hornblende, olite and pyroxene-bearing
l	QUATERNARY	ž				
.	PLEESTOCENE AND RECENT		TRIASSIC UPPER TRIASSI	-		
	29 Fluoretile gravel; sand, silt; giacial outwash, till, alpine moraine and colluvium	!			sedimentary rocks (un	its 5 to 8 inclusive)
	28 Hot-spring deposit, tufa, aragonite	:				icaniclastic rocks and
ZOIC	27 Olivine basalt, related pyroclastic rocks and loose tephra; younger than some of 29	i	englomerat		s; minor grevwacke, s	ilitatione and polymictic
CENOZORC	TERTIARY AND QUATERNARY				is siltstone, ribbon che ke, volcanic conglome:	ert, calcareous and eate, and minor limestone
	UPPER TERTLARY AND PLEISTOCENE Rhyolite and dacite flows, lava domes, pyroclastic rocks and related sub- volcanic intrusions; minor basalt				limestone, calcareous ager than some 7 and	
	Basait, olivine basait, dacite.related pyroclastic rocks and subvolcanic intrusions; minor rhyolite; in part younger than some 28		5 Greywacke,	siltstone, shale; n	ninor congiomerate, t	if and volcanic sandstone
		-	MIDDLE TRIASS			
	CRETACEOUS AND TERTIARY UPPER CRETACEOUS AND LOWER TERTIARY SLOKO GROUP		<u> </u>	etionary black sha	ale; minor calcareous	shale and siltstone
	Light groen, purple and white rhyolite, trachyte and dacite flows, pyroclastic rocks and derived sediments		PERMIAN MIDDLE AND UT		ily bioclastic !imeston	e; minor siltstone, chert
	22:23 22. Notite leucograpite, subvolcanic stocks, dykes and sills 23. Forphyritic biotite andesite, lava domes, flows and (?) silis	Dic .	3 and tuff			
	SUSTUT GROUP Chert-pebble conglomerate, granite-boulder conglomerate, quartzose sandstone, arkose, siltstone, carbonaceous shale and minor coal	PALEOZOIC		gillacoous quartzit	te, quartz-scricite sch stose tuff and limestor	
	20 Felsite, quartz-feldspar porphyry, pyritiferous felsite, orbicular rhyolite; in part equivalent to 22		MISSISSIPPLAN Limestone,	crinoidal limeston	e, ferruginous limesto	one; maroon tuff, chert
	19 Medium-to coarse-grained, pink biotite-hornblende quartz monzonite	(und phyllite			
	JURASSIC AND/OR CRETACEOUS		B Amphibolite	. amphibolite gnei	es; age unknown proba	hly pre-Upper Jurassic
	POST-UPPER TRIASSIC PRE-TERTIARY				dunite, serpentinite; a	ge unknown, probably
Ì	18 Hornblende diorite		pri-Lower	Jurassic		
	17 Granodiorite, quartz diorite; minor diorite, leucogranite and migmatite				oximate, assumed)	
	I					+//*
	JURASSIC TURASSIC					
	MIDDLE (?) AND UPPER JURASSIC BOWSER GROUP					······ - 1
	Chert-pebble conglomerate, grit, greywacke, subgreywacke, siltatone and					**********
	shale; may include some 13					mate, assumed).
	MIDDLE JURASSIC Basalt, pillow lava, tuff-breccia, derived volcaniclastic rocks and related					
Ι.	subvolcanic intrusions					15 x
	LOWER AND MIDDLE JURASSIC Shale, minor siltstone, siliceous and calcareous siltstone, greywacke and		Glacier	• • • • • • • • • • • • • • • • • • • •	•••••••	خون کیا و دو د
	14 ironstone			INDEX TO	MINERAL PROPERTI	ES
	LOWER JURASSIC		1. Liard Copper	5. Bam	9. MH	13. Ann, Su
	Conglomerate, polymictic conglomerate; granite-boulder conglomerate, grit,		2. Galore Creek	6. Gordon	10. BIK	14, SF
	greywanke, siltstone; basaltic and andesitic volcanic rocks, peperites, pillow-breccia and derived volcaniclastic rocks		3. QC, QCA	7. Limpoke	11. JW	15. Goat
			4. Nabe	8. Poke	12. Copper Cany	on 16. Mary
1						

E) Purpose of the Work Program

The purpose of the trenching and prospecting program was to investigate several gossanous zones which were found by ${\tt Mr}$. Ruza.

F) Results and Interpretation

The trench and sample locations are presented on figures 3, 4, 5 and 6. The results of analyses are found in Appendix 1 of this report.

The trenches were located in gossanous trends found within volcanic and sedimentary rocks. The selected samples from the trenches are described as follows:

<u>Sample</u>		Description	Au(ppb)	Ag(ppm)	Cu(ppm)
Glacier	#1	Selected sample from	3	1.8	850
		volcanic rock			
Glacier	#2	Selected sample from	2	13.4	15800
		gossanous volcanic rock			
Glacier	#3	Selected sample from	2	1.7	685
		volcanic rock			
Glacier1	#1	Selected sample from	5	2.2	2600
		gossanous volcanic rock			
Glacier1	#2	Selected sample from	22	4.5	8600
		gossanous volcanic rock			
Glacier1	#3	Selected sample from	1	1.0	83
		limestone and shale			

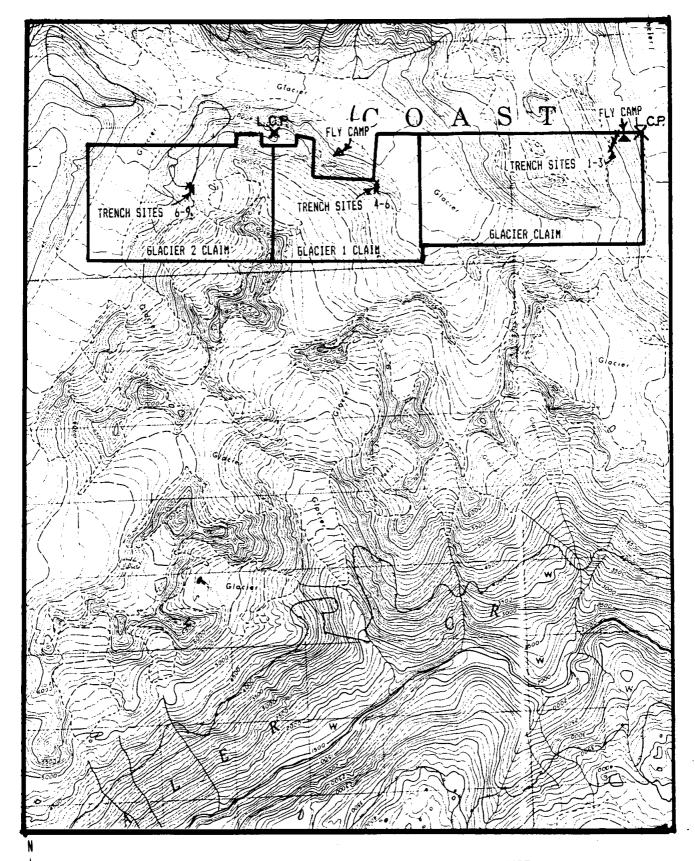
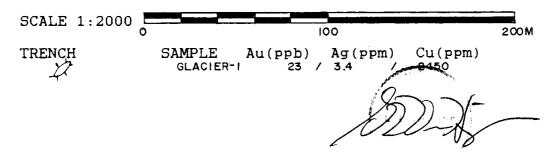


FIGURE 4- TOPOGRAPHY AND TRENCH LOCATIONS

Metres 1000 0 1000 2000 3000 4000 Metres


SCALE 1:50,000 (FROM NTS 104G/3 "SPHALER CREEK")

Page 9

Moder

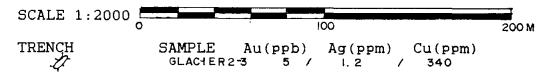
TRENCH 3
SELECTED SAMPLE GLACIER-3 2/1.7/685 **★ TRENCH 2** SELECTED SAMPLE GLACIER-2 2/13.4/15800 SELECTED SAMPLE GLACIER-1 3/1.8/850 TRENCH I

FIGURE 5- TRENCHES AND SAMPLE RESULTS- GLACIER CLAIM

Page 10

TRENCH 6 SELECTED SAMPLE GLACIERI-5 3/58/3350 FLOAT SAMPLE GLACIERI-4 1/19.9/28000 * TRENCH 5
SELECTED SAMPLE GLACIERI-3 1/1.0/83 TRENCH4 SELECTED SAMPLE GLACIERI-2 22/4.5/8600 GLACIERI-1 5/2.2/2600

FIGURE 6- TRENCHES AND SAMPLE RESULTS- GLACIER 1 CLAIM


SCALE 1:2000 O 100 200M

TRENCH SAMPLE Au(ppb) Ag(ppm) Cu(ppm)
GLACIERI-I 10 / 3.4 2600

Page 11

TRENCH 9
SELECTED SAMPLE GLACIER 2-4 2/2.4/2020 TRENCH 8
SELECTED SAMPLE GLACIER 2-3 4/1.1/86 TRENCH 7
SELECTED SAMPLE GLACIER2-1 1/3.2/3500
GLACIER2-2 1/5.6/8900

FIGURE 7- TRENCHES AND SAMPLE RESULTS- GLACIER 2 CLAIM

Page 12

Glacier1 #4	Piece of float heavily	1	19.9	28000
	mineralized with pyrite,			
·	chalcopyrite and malachite			
Glacier1 #5	Selected sample from	3	5.8	3350
	gossanous volcanic rock			
Glacier2 #1	Selected sample from	1	3.2	3500
	gossanous volcanic rock			
Glacier2 #2	Selected sample from	1	5.6	8900
	gossanous volcanic rock			
Glacier2 #3	Selected sample from	4	1.1	86
	gossanous volcanic rock			
Glacier2 #4	Selected sample from	2	2.4	2020
	gossanous volcanic rock			

The results indicate copper mineralization which due to the property's proximity to the Galore Creek deposits and other showings in the area should recieve further investigation.

Mapping of the area should be undertaken, particularily to find syenite intrusives which may form breccia zones along contacts with the volcanic and sedimentary rocks which in the Galore Creek area form hosts for major copper deposits.

CONCLUSIONS AND RECOMMENDATIONS

Copper mineralization has been found by Mr. Ruza with values as high as 28000 ppm being reported. GSC map 11-1971 shows that the claim area is underlain by volcanic and sedimentary rocks similar to those found in the Galore Creek area and other showings around the property. Due to the

proximity of the Galore Creek and Canyon Creek deposits the trenching should be followed up with geological mapping and sampling, geophysical surveys and further trenching to investigate for breccia zones along syenite intrusive contacts similar to those found at Galore Creek.

A Phase I program consisting of geological mapping and sampling, VLF-EM and magnetometer surveys and trenching is recommended.

Respectfully submitted,

Greg L. Ven Huizen, P.Eng.

COST ESTIMATE

Phase I

Geological mapping and sampling\$	15000
VLF-EM and Magnetometer surveys	15000
Transportation and helicopter	10000
Food and camp supplies	6000
Reports	3500
Assays	5500
Trenching and blasting	10000
Airborne geophysical surveys	15000
Government fees	5000
TOTAL\$	85000
Contingencies	15000
TOTAL PHASE I\$1	100000

COST STATEMENT

	J. Ruza & helper 11 days@ \$400(17 Sept-27 Sept 90).\$	4400
	Helicopter	2140
	Truck rental	860
-	Groceries and accommodations	620
	Report	500
ТОТАТ	r.	8520

Certificate of Qualifications

I Greg L. Ven Huizen of 3889 Hudson Street, Vancouver, British Columbia V6H 3A9, certifies as follows:

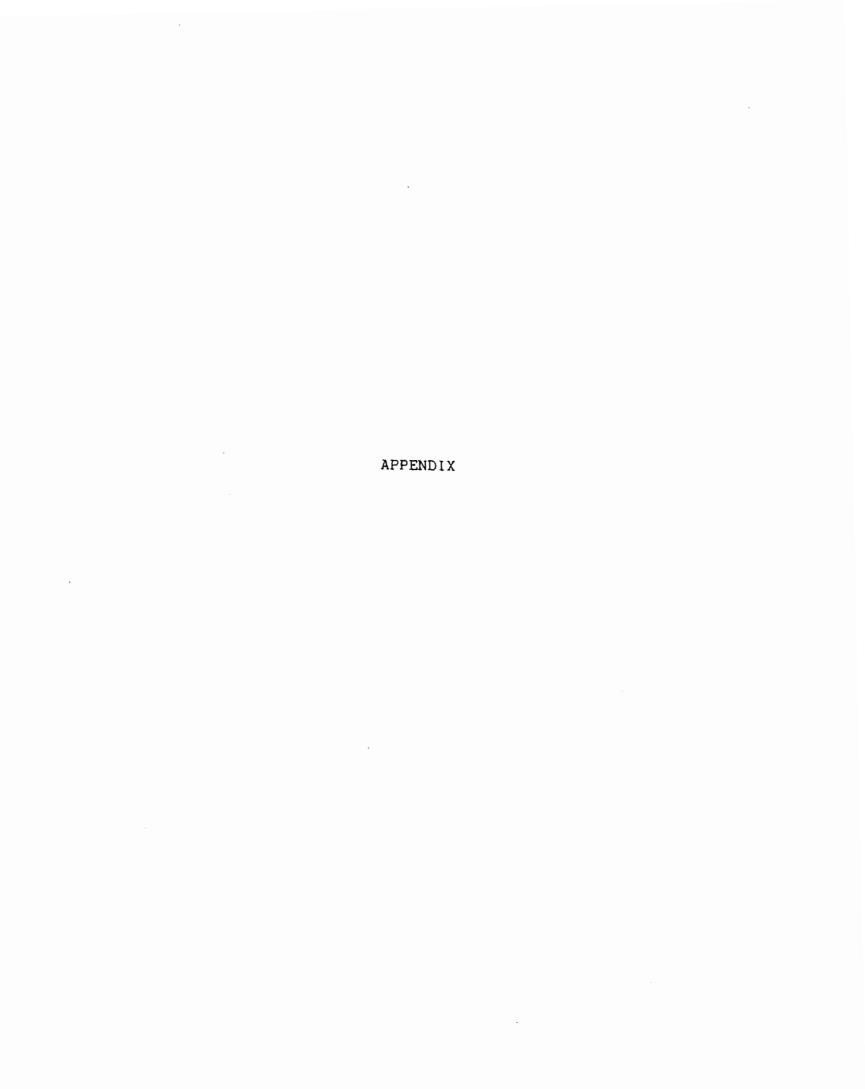
- 1) I am a graduate of the University of Minnesota with a Bachelor of Geo-Engineering Degree (Exploration Option) with Distinction, 1979.
- 2) I am a Registered member of the Association of Professional Engineers of the Province of British Columbia, No. 14,584.
- 3) I have been practicing my profession since graduation in U.S.A., Mexico and Canada.
- 4) This report is based on information provided to me by Mr. J. Ruza and on the references cited.
- 5) I have no interest in the property covered by this report (Glacier, Glacier 1 and Glacier 2 claims).

Respect for submitted,

Greg L. Ven Huizen, P.Eng.

16 November 1990

BIBLIOGRAPHY


Minfile, pages 700, 703, 706, 709, 710, 718 and 721

Geological Survey of Canada Paper 71-44 (with Map 11-1971), J.G. Souther, 1972

BCDEMPR Map M104 G/3W, 25 October 1990

NTS Map 104 G/3, 1974

Notes from and conversations with J. Ruza, November 1990

SPECIALISTS IN MINERAL ENVIRONMENTS MEMISTS + HSSALERS + HUAC LITE + GET CHEMISTS

NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

SMITHERS LAB.:

TELEPHONE/FAX (604) 847-3004

<u>Geochemical Analysis</u> Certificate

OV-1592-RG1

Company:

RUZA RESOURCES

Date: OCT-16-90

Project:

GLACIER/DEVON

Copy 1. RUZA RESOURCES, VANCOUVER, B.C.

Attn:

JAROSLAV RUZA

We hereby certify the following Geochemical Analysis of 26 ROCK samples submitted OCT-10-90 by J. RUZA.

Sample Number	AU-FIRE PPB	AG PPM	CU PPM	ZN PPM	
GLACIER #1 GLACIER #2 GLACIER #3 GLACIER1 #1 GLACIER1 #2		1.8 13.4 1.7 2.2 4.5		21 154 27 53 138	
GLACIER1 #3 GLACIER1 #4 GLACIER1 #5 GLACIER2 #1 GLACIER2 #2	. 1 1 3 1	1.0 19.7 5.8 3.2 5.6	83 (<u>22000)</u> 3350 3500 8900	40 106 79 i - 42 114	LOT HELY MINERALIZATION PHOLOSINISA MAGENTA
GLACIER2 #3 GLACIER2 #4 DEVON5 #1 DEVON5 #2 DEVON5 #3	4 2 1 3	1.7 1.3	86 2020 275 122 -6400	51 58 70 79 144	
DEVON5 #4 DEVON6 #1 DEVON6 #2 DEVON6 #3 DEVON6 #4	2 4 2 3 2	1.2	48 3750 164 25000 167	116 118 99 73 57	
DEVON6 #5 DEVON7 #1 DEVON7 #2 DEVON7 #3 DEVON7 #4	1 1 1 2 1	1.6 .3 6.2 .8 1.9	250 59 9500 52 570	102 56 80 29 93	
DEVON7 #5	2	, 2	37	52	

Certified by

MIN-EN LABORATORIES