GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

CLIFF, CLIFF 1 TO 4, MAX 1 TO 4, DAVE 1 AND 2 CLAIMS

and

GREAT EASTERN (LOT 3437) AND COPPER KING (LOT 3065s) REV CG's

Hedley-Olalla Area Osoyoos Mining Division

	82E-4W,5W		
LOG NO: March 14/9	/ (49° 6' N. Lat.,119°51' W. Lo	ong.)	
ACTION:			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	500		
	for		
mer NO.			
FILE NO:	GOUDCLIFF RESOURCE CORPORAT		
•	1505-409 Granville Street Vancouver, B.C.	parent ferre	V
	V6C 1T2	U CE	
	(Operator)	ZO	
		e Da	
	GRANT F. CROOKER	et let	- And I
	(OWNER)	ದ್ದಿ ಪ	A CONTRACTOR OF THE PARTY OF TH
		> € 3	A A
		K E.	The same of the sa
	by	C) [F]	* **
		k = 4 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		9 6	(T)
	GRANT F. CROOKER, B.Sc., F.G. Consulting Geologist		
	consulting declogist	क्रां इस्ते,	•
			6 A

February, 1991

TABLE OF CONTENTS

		Page
	SUMMARY AND RECOMMENDATIONS	: 1
1.0	INTRODUCTION	3
	1.1 General1.2 Location and Access1.3 Physiography1.4 Property and Claim Status1.5 Area and Property History	3 3 3 4 4
2.0	EXPLORATION PROCEDURE	8
3.0	GEOLOGY AND MINERALIZATION	10
	3.1 Regional Geology 3.2 Claim Geology 3.3 Mineralization	10 11 13
4.0	GEOCHEMISTRY	14
	4.1 Soil Sampling	14
5.0	GEOPHYSICS	17
	5.1 Magnetometer Survey 5.2 VLF-EM Survey	17 18
6.0	CONCLUSIONS AND RECOMMENDATIONS	19
7.0	REFERENCES	21
8.0	CERTIFICATE OF QUALIFICATIONS	23

APPENDICES

Appendix I	-	Certificates of Analysis
Appendix II	_	Rock Sample Descriptions
Appendix II	I –	Geophysical Equipment Specifications
Appendix IV		VLF-EM and Magnetic data
Appendix V		Cost Statement

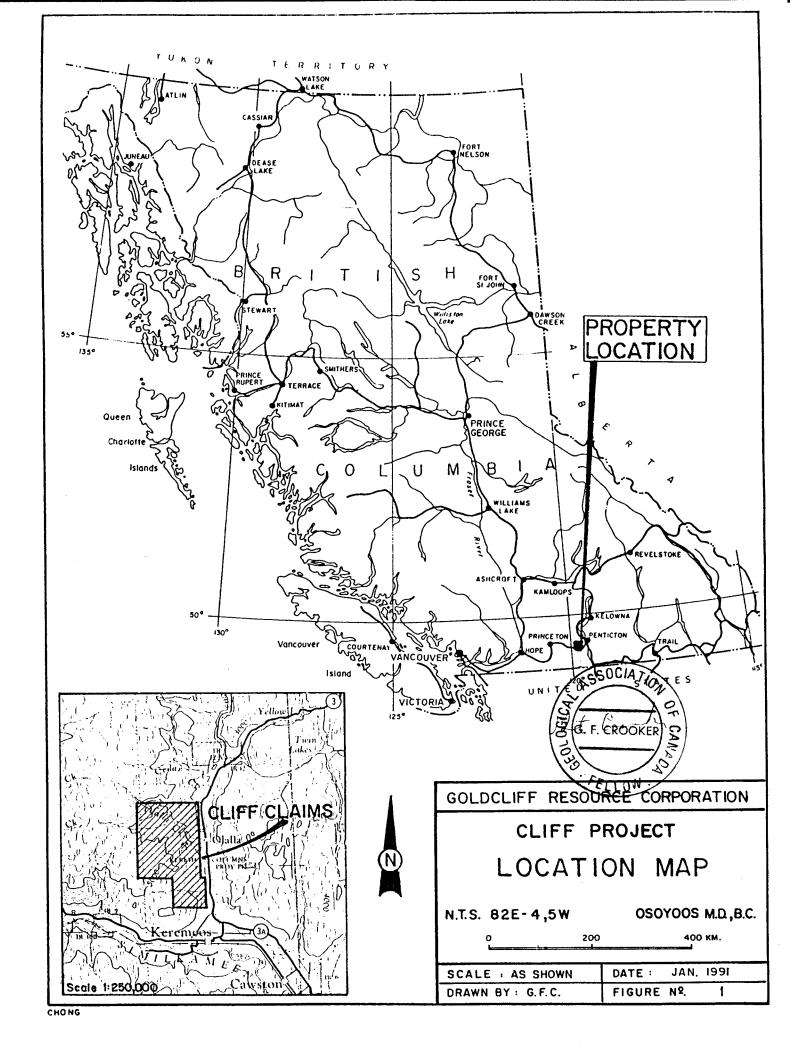
ILLUSTRATIONS

FIGURE		PAGE	
1. Loc	ation Map	follows p	page 1
2. Cla	aim Map	follows p	page 4
3. Pro	perty Geology	follows p	age 10
	l Geochemistry, Au, As, Ag, Cu e Zone	pock	cet
	l Geochemistry, Pb, Zn, Mo, Ni Zone	pock	ret
	l Geochemistry, Au, As, Ag, Cu oper King Zone	follows p	page 14
	l Geochemistry, Pb, Zn, Mo, Ni oper King Zone	follows p	page 15
8. Mag	netometer Survey, Lee Zone	poch	et.
9. Mag	netometer Survey, Copper King Zone	follows p	page 17
10. VLF	F-EM Profiles, Lee Zone	pocl	ket
11. VLF	F-EM Profiles, Copper King Zone	follows p	page 18
12. Com	npilation, Lee Zone	pocl	ket
13. Com	mpilation, Copper King Zone	follows p	page 13

SUMMARY AND RECOMMENDATIONS

The Cliff Property is located five kilometers north of Keremeos at Olalla, B.C.. Goldcliff Resource Corporation holds five modified grid and six two post mineral claims, and two reverted Crown Grants covering a total of 104 units. The property is located in the Osoyoos Mining Division.

The area has been the scene of exploration for base and precious metals since the late 1800's. A large number of properties have been explored in the area including the Sunrise, Something Good, Bullion, Golconda, Copper King and Dolphin. Approximately 20 kilometers northwest of the property at Hedley, Mascot Gold Mines Limited resumed production in the spring of 1987 at the Nickel Plate Mine.


The Golconda and Copper King properties are within the claim group presently controlled by Goldcliff. Several extensive workings exist on the Golconda and a small mill has operated on the property several times in the past. Several other areas of the Cliff claim have been explored by other operators. A number of old hand trenches have exposed gold mineralization along the Cliff Zone (figure 3). Soil sampling in the area also delineated gold geochemical anomalies.

Goldcliff has been exploring the property since 1986 and a number of VLF-EM conductors, gold and multi-element soil geochemical anomalies and favourable geological structures have been outlined. The main zones of interest (figure 3) include the Cliff, Frank, Valley and Lee Zones. The program outlined by this report is an extension of previous work.

During 1990 Goldcliff acquired the Golconda Property (Max 1 to 4, Dave 1 and 2 claims) and the Copper King Reverted Crown Grant. These acquisitions give Goldcliff control of almost all of the area west of Highway 3A at Olalla.

The 1990 program concentrated on the Lee Zone and the Copper King. Work included establishing additional grid lines, soil sampling, VLF-EM and magnetometer surveying and prospecting.

On the Lee Zone, six additional lines of soil geochemical sampling closed out the large gold geochemical anomaly (Au-1). The anomaly (figure 12) trends north northeasterly-south southwesterly and is approximately 500 meters long by 200 meters wide. Several smaller copper (Cu-1, 2) and molybdenum (Mo-1, 2) anomalies occur coincidentally with the gold anomaly. Prospecting located an area of bleached, altered intrusive with fracturing and up to 10% pyrite occurring both along fractures and as disseminations. Assaying of this material gave up to 974 ppb gold and 742 ppm copper.

Several smaller gold and copper soil geochemical anomalies were also outlined, along with a number of VLF-EM conductors. No causes are known for these features at this time.

On the Copper King, four lines of soil sampling were carried out. This soil geochemical sampling outlined a copper anomaly (Cu-4) approximately 200 meters long by 150 meters wide. A small gold anomaly (Au-3) occurs coincidentally with the copper along the eastern portion of the anomaly.

Prospecting located a massive magnetite, pyrite skarn body centered at approximately 9850N & 9700E. This skarn contains minor amounts of chalcopyrite and malachite and appears to be the cause of at least some of anomaly Cu-4. A number of rock samples were taken from the skarn and these returned very low gold values. One sample gave a copper value of 10845 ppm and a number of samples gave between 2380 and 4058 ppm copper.

Conductor III is subparallel to the Golconda Shear Zone and may represent an extension of that zone.

Recommendations are as follows:

- 1) Prospecting, geological mapping and sampling should be carried out over the geochemical anomalies outlined on the Lee Zone. Emphasis should be placed on the area which gave the anomalous gold value of 974 ppb.
- 2) Prospecting, geological mapping and sampling should be carried out over the geochemical anomaly Cu-4 and the skarn zone on the Copper King.
- 3) The other target areas outlined by previous programs should also have continued exploration by geochemical sampling, prospecting, trenching and drilling if required.

Respectively submitted,

Grang Crooker S.Sc., F.G.A.C.

Consulting Geologist

1.0 INTRODUCTION

1.1 GENERAL

Field work was carried out on the Cliff Property from May 2 to November 20, 1990, by Grant Crooker, Geologist, and Lee Mollison, Field Assistant.

The program was carried out on the Copper King and Lee Zones and consisted of establishing grid lines, soil sampling, VLF-EM and magnetometer surveying and prospecting.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located 5 kilometers north of Keremeos, near Olalla in southern British Columbia. The property lies between 49°13'15" and 49°17'15" north latitude and 119°49'30" and 119°53'15" west longitude (NTS 82E-4W, 5W).

Access to the property is via Highway 3A, then turning west at Olalla onto the two wheel drive Olalla Creek Road. This road along Olalla Creek gives access to the Dave 1 and 2 claims and portions of the Max 1 to 4, Cliff and Cliff 2 and 3 claims. An old four wheel drive mining road turning south from the main Olalla Creek Road gives access to the Great Eastern and Copper King claims, higher elevations of the Max 1 to 4 claims and eastern portions of the Cliff claim. Another four wheel drive road turning off the main Olalla Creek Road higher up the creek leads to the Manganese Zone at the western boundary of the Cliff 3 claim.

A man made trail leads to the western section of the Cliff claim and the Cliff 4 claim.

1.3 PHYSIOGRAPHY

The property is located in the Okanagan Highlands of southern British Columbia. Elevation varies from 550 to 1830 meters above sea level. Topography is steep with few level spots and precipitous cliffs occur at many locations on the property.

Olalla and Shuttle Creeks flow through the property and have water all year long. Several springs also occur on the property.

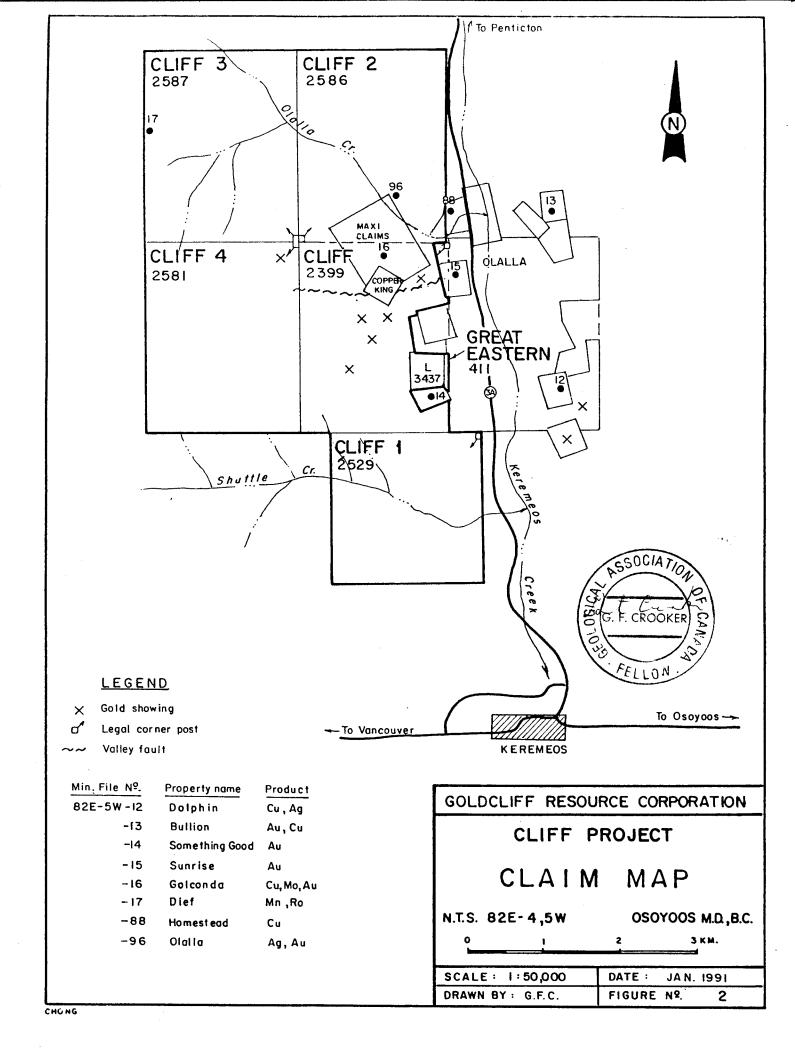
Vegetation varies from open range land to a forest cover of pine and fir trees. Some sections have heavy deadfall and thicker brush. Rattle snakes are also found in abundance on the lower elevations of the property.

1.4 PROPERTY AND CLAIM STATUS

During 1990 the Copper King, Max 1 to 4 and Dave 1 and 2 claims were added to the property.

The Cliff, Cliff 1 to 4, Copper King and Great Eastern claims (Figure 2) are owned by Grant Crooker of Keremeos, B.C., and are under option to and operated by Goldcliff Resources Corporation, 1505-409 Granville Street, Vancouver, B.C., V6C 1T2. The Max 1 to 4 and Dave 1 and 2 claims are owned outright by Goldcliff.

The property is located in the Osoyoos Mining Division and consists of five modified grid claims, six two post claims and two reverted Crown Grants covering 104 units.


Claim	Units	Mining Division	Record No.	Record Date	Expiry Date
Cliff	20	Osoyoos	2399(4)	01/04/86	01/04/97
Cliff 1	16	Osoyoos	2529(10)	30/10/86	30/10/97
Cliff 2	20	Osoyoos	2586(3)	30/03/87	30/03/94*
Cliff 3	20	Osoyoos	2587(3)	30/03/87	30/03/94*
Cliff 4	20	Osoyoos	2581(3)	30/03/87	30/03/95*
Copper King	1	Osoyoos	3354(3)	15/03/90	15/03/98*
Great Easter	n 1	Osoyoos	411(6)	01/06/78	01/06/97
Max 1	1	Osoyoos	31150	12/09/74	12/09/94
Max 2	1	Osoyoos	31151	12/09/74	12/09/94
Max 3	1	Osoyoos	31152	12/09/74	12/09/94
Max 4	1	Osoyoos	31153	12/09/74	12/09/94
Dave 1	1	Osoyoos	31002	09/07/74	09/07/94
Dave 2	1	Osoyoos	31218	22/10/74	22/07/94

^{*} Upon acceptance of this report.

1.5 AREA AND PROPERTY HISTORY

The Goldcliff Property is located in the Olalla-Hedley Gold Camp in southern British Columbia. Mining activity has been carried out in this area since the 1880's. The property is located 20 kilometers southeast of Hedley, where Mascot Gold Mines Limited resumed production by open pit methods at the Nickel Plate Mine in the spring of 1987. Mascot recently announced (February 1991) that ore reserves are sufficient to enable production to continue until the end of 1993.

A number of mining properties have been explored in the Olalla area since the 1880's. These include the Bullion, Dolphin, Golconda, Something Good and Shepard-Sunrise. Exploration has been oriented towards copper, molybdenum, silver and gold.

On the Something Good Property (Lot 1451, Minfile 82E-SW-014, figure 2) immediately east of the Cliff claim, a carbonate shear and breccia zone occurs in argillacious and cherty sediments near the contact of a large pyroxenite body. Calcite, quartz, and pyrite occur within the zone.

Three adits were driven on the zone in 1936-1937. The No. 1 adit (2541 feet ASL) was driven for 350 feet, and followed the footwall of the shear zone. The first 110 feet of the adit followed a well defined breccia stone. Samples taken by the resident geologist for the B.C. Department of Mines in 1937 (M.S. Hedley) ranged from 0.05 ounces per ton gold over 11 inches. Beyond this point the graphitic shear contained negligible gold values. The No. 3 adit (2342 feet ASL) was driven for 385 feet in the pyroxenite. Negligible gold values were encountered in the adit. Limited diamond drilling was also carried out, and some values were reported.

The Shepard-Sunrise Property (Lot 18s, Minfile 82E-SW-015) located along the eastern boundary of the Cliff claim appears to have the most economically significant mineralization in the Olalla Camp. Several mineralized quartz veins on the property have been explored by trenching, diamond drilling and several adits.

The diamond drilling was carried out in two phases, the first between 1946 and 1948 by Hedley-Monarch Mines Ltd., and the second during 1961 and 1962 by Friday Mines Ltd. The work has indicated ore reserves of 2177.28 tonnes of 0.99 ounces per ton gold and 2.50 ounces per ton silver. It has been reported that 300 tons of ore averaging 0.53 ounces per ton gold and 0.45 ounces per ton silver were shipped during the 1946-1948 period.

The mineralization appears to be related to the east-west striking Valley Fault. During drilling on the quartz veins, a gold bearing pyritic-silicious breccia zone was discovered. This breccia zone also appears to be related to the Valley Fault, and reported drill hole intersections are as follows:

D.H. No.	Intersection	Width	Oz Au	Oz Ag	Location
H-5	315.6'-354.7'	39.1'	0.056	0.14	Shepard-Sunrise
H-8	383.0'-391.1'	8.1'	0.330	1.08	Shepard-Sunrise
H-8	365.2'-400.7'	35.5'	0.110	0.35	Shepard-Sunrise
H-10	354.9'-360.1'	5.2'	0.063	0.25	Shepard-Sunrise
H-10	403.8'-411.7'	7.9'	0.139	0.53	Shepard-Sunrise

These drill intersections are along the western edge of L 18s and appear to be within 100 meters of the Cliff claim. The exact drill hole locations have been lost, and the western boundary of L 18s is not known exactly.

The Golconda Property (Max 1 to 4, Dave 1 and 2, Minfile 82E-SW-016) was acquired by Goldcliff during 1990. It is located along the northern boundary of the Cliff claim and consists of a shear zone up to five feet wide made up of one or more slickensided and gouge filled fault planes cutting pyroxenite. A number of quartz lenses between 30 and 60 feet long and 12 to 50 inches wide occur within the shear zone. These zones appear to occur at changes in attitude in the structure. The quartz is crudely banded and contains pyrite, chalcopyrite, molybdenum, and minor galena. Values in gold and silver also occur within the structure.

Several adits follow the shear zone, which strikes south 56° east. Limited production has come from the property, and a small mill has operated several times.

On the area covered by the Cliff claim, hand trenching, cat trenching, airborne VLF-EM and magnetometer surveying, ground VLF-EM surveying, geochemical soil sampling and diamond drilling have been carried out in the past. Freedom Resources Ltd. carried out the last significant exploration on the claim area during the 1981 through 1983 period. The airborne VLF-EM survey (1981) indicated two strong conductors, one associated with the Valley Fault, and second in the area ο£ hand trenching at approximately 9100N+9400E. The airborne magnetometer survey delineated the pyroxenite stock. Follow-up soil sampling and ground VLF-EM survrying were carried out over a small portion of the area. significant gold geochemical anomaly with coincidental VLF-EM conductors was delineated at approximately 9000N to 9700N, and 9300E to 9800E. No follow-up work was carried out in this area.

Along the Valley Fault at approximately 9900N and 10050E, cat trenching and diamond drilling has been carried out. The trenching exposed a north-south striking quartz vein, as well as a section of silicified and carbonatized syenite. This zone is described as being the westward extension of the pyritic-silicious breccia zone on L 18s. During 1961 two diamond drill holes were drilled by Friday Mines Ltd. to test the zone. Drill hole C-1 returned the best intersection, 0.03 oz/ton Au, 0.087 oz/ton Ag, 0.026 % Cu, with a trace of molybdenum from 100.8-115.05 feet. A number of other intersections of "weakly mineralized" syenite were reported, with only trace values in Au and Ag.

Freedom Resources Ltd. drilled five holes along the Valley Fault structure. Drill hole 81-1 was drilled north across the fault and into the syenite. Drill holes 83-2 and 83-3 were drilled in a northerly direction in an attempt to intersect the quartz vein north of the silicified and carbonatized zone. Two other holes, 83-1 and 83-1a were drilled along the structure further east. It is believed none of the drill holes encountered significant gold mineralization, although all of the records are lost.

D.H. No.	Grid Co-ord.	Azmuth	Angle	Depth
C-1	9936N+10056E	180°	-50°	442 feet
C-2	9875N+10038E	000°	-50°	740 feet
81-1	9805N+10208E	000°	-45°	500 feet
83-1a	10132N+10520E	175°	-45°	497 feet
83-2	9922N+10076E	0000	-45°	351 feet
83-3	9892N+10074E	000°	-45°	505 feet
83-1	9996N+10550E	180°	-45°	500 feet

The Copper King reverted Crown Grant was acquired by Goldcliff during 1990. Some trenching and several short adits were driven on the Copper King by previous owners. This work exposed a large skarn zone containing massive magnetite and pyrite with lesser chalcopyrite, hematite and malachite. Actual assay results from the zone are not known.

During 1986, 1987, 1988 and 1989 a number of exploration programs were carried out on the property by Goldcliff Resource Corporation. This work included establishing a grid on the Cliff claim and carrying out geological, geochemical and geophysical surveys. Most of the work to date has been on the Cliff claim with only minor work on the rest of the property.

Favourable results were obtained from these surveys. A number of VLF-EM conductors, gold and multi-element soil geochemical anomalies and favourable geological structures were outlined on the property. Several poorly exposed quartz stockwork and breccia zones gave values up to 1850 ppb gold in place, and up to 3400 ppb in float.

Four significant zones have been delineated by the exploration programs including the Frank, Valley, Lee and Cliff (north, central and south) zones (figure 3).

2.0 EXPLORATION PROCEDURE

During the 1986 exploration program a point at the northeast corner of Lot 3065 (Copper King) was chosen as 10,000N and 10,000E on the property. The main baseline was then picketed north and south from this point and tielines and grid lines established over most of the Cliff and Great Eastern claims. A secondary baseline was established in 1989 along 10,500N to establish control on the western portions of the property (Cliff 2, 3, and 4 claims).

GRID PARAMETERS

- -main baseline direction N-S along 10,000E
- -secondary baselines E-W, along 10,500N
- -tieline N-S along 6,700E, E-W along 13,000N
- -survey lines perpendicular to baselines
- -survey line separation 100 meters
- -survey station spacing 25 meters, slope corrected
- -lines 9800N through 10100N, Copper King
- -lines 8100E, 8200E, south of 10500N, Lee Zone
- -lines 8300E through 8600E, north of 10500N, Lee Zone
- -survey total 7.625 kilometers

GEOCHEMICAL SURVEY PARAMETERS

- -survey line spacing 100 meters
- -survey sample spacing 25 meters
- -survey totals 7.625 kilometers
 - 302 soil samples analyzed
 - 24 rock samples analyzed
- -302 soil samples analyzed by 31 element ICP and AU
- -9 rock samples analyzed by 30 element ICP and Au
- -15 rock samples analyzed by 30 element ICP and Au, Pt, Pd
- -soil sample depth 5 to 15 centimeters
- -soil sample taken from brown B horizon where possible, some samples from C horizon

All rock samples were sent to ACME Analytical Laboratories Ltd., 852 E. Hastings Street, Vancouver, B.C. for geochemical analysis. Laboratory techniques for geochemical analysis consists of preparing samples by drying at 60° C, and grinding to minus 100 mesh. A 30 element ICP analysis and Au (acid leach/AA finish) or Au, Pt, Pd (fire assay) were then carried out on the rock samples.

The rock sample locations were plotted on figures 12 (Lee Zone) and 13 (Copper King) at a scale of 1:2500.

All soil samples were sent to Min-En Laboratories Ltd., 705 West 15th Street, North Vancouver, B.C. for geochemical analysis. Laboratory techniques for geochemical analysis consists of preparing samples by drying at 95° C and seiving to minus 80 mesh. A 31 element ICP analysis and Au (aqua-regia digestion, atomic adsorption finish) were then carried out on the samples.

Gold, arsenic, silver and copper were plotted on figures 4 (Lee Zone) and 6 (Copper King). Lead, zinc, molybdenum and nickel were plotted on figures 5 (Lee Zone) and 7 (Copper King). All figures are at a scale of 1:2500.

GEOPHYSICAL SURVEY PARAMETERS

TOTAL FIELD MAGNETIC SURVEY

- -survey line separation 100 meters
- -survey station spacing 25 meters
- -survey totals 5.25 kilometers
- -measured total magnetic field in nanoteslas (gammas)
- -instrument accuracy ± 1 nanotesla

Readings were taken along the baseline to obtain standard readings for all baseline stations. All loops ran off the baseline were then corrected to these standard values by the straight line method.

The total field magnetic contours were plotted on figures 8 (Lee Zone) and 9 (Copper King) at a scale of 1:2500.

VLF-EM SURVEY

- -survey line separation 100 meters
- -survey station spacing 25 meters
- -survey total 7.0 kilometers
- -transmitting station Cutler 24.0 KHz
- -direction faced southerly
- -instrument Geonics EM-16
- -in phase (dip angle) and out-of-phase (quadrature) components measured in percent at each station

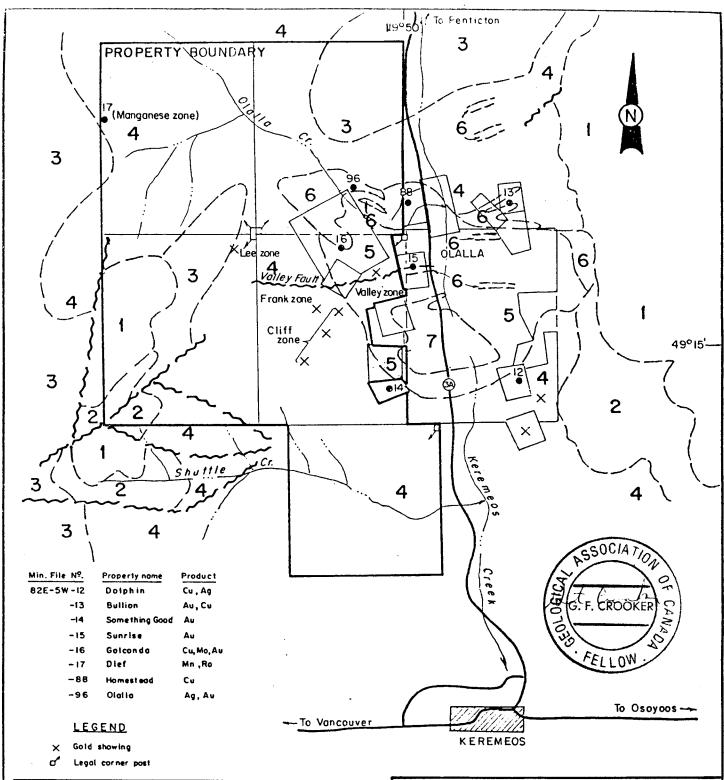
The VLF-EM profiles were plotted on figures 10 (Lee Zone) and 11 (Copper King) while the VLF-EM conductors were plotted on figures 12 (Lee Zone) and 13 (Copper King). All maps are at a scale of 1:2500.

For the Lee Zone, grid lines, soil sampling results and geophysical surveys completed in previous years were shown on the 1990 maps to give a complete picture of the zone.

3.0 GEOLOGY AND MINERALIZATION

3.1 REGIONAL GEOLOGY

The Cliff Property (figure 3) is located within the Intermontane Belt of British Columbia. Most of the property is underlain by marine sedimentary and volcanic rocks. An ultramafic to alkalic stock has intruded the eastern margin of the Cliff claim, the southern portion of the Cliff 2 claim, and most of the Great Eastern, Copper King, Max 1 to 4 and Dave 1 and 2 claims.


Early work in the area by Bostock and others described the marine sedimentary and volcanic sequence as belonging to the Old Tom, Shoemaker, Bradshaw, and Independence Formations. However as these formations do not form distinct, mappable units, Milford (1984) referred to the sequence as the Apex Mountain Group.

The Apex Mountain Group consists of five major lithofacies: massive and bedded chert, greenstone, chert breccia, argillite and limestone. Together they form a broadly folded, east dipping sequence that has an overall increase in age towards structurally higher rocks in the area. The maximum and minimum ages based on faunal ages in limestones and chert are Early Carboniferous and Middle to Late Triassic respectively.

The depositional environment of the Apex Mountain Group is interpreted to be generally deep, open-ocean basin. Shallow water deposition occurred locally. The group is interpreted to represent at least part of an ancient subduction complex that formed by eastward directed underthrusting and accretion of successively younger slices of oceanic sedimentary and volcanic rocks.

Other assemblages possibly temporally correlative with the Apex Mountain Group include the Kobau, Chapperon, Harper Ranch, and Cache Creek Groups.

The ultramafic to alkalic stock occupies approximately six square miles and is of late Mesozoic age. The stock grades from a peripheral zone of pyroxenite, high in mafics and magnetite, to a magnetite deficient granitic core. Faulting with associated veining, brecciation and mineralization occurred as contemporaneous or post consolidation features.

ROCK		TIME / UNIT	FORMATIONS
		TERTIARY	
VOLCANIC B SEDIMENTARY	1	Basalts	MARRON
	2	Conglomerates, sandstones	KETTLE RIVER
		PERMIAN	
METAMORPHIC	3	Greenstone	OLD TOM
	4	Chert	SHOE MAKER
		MESOZOIC	OLALLA STOCK
PLUTONIC	5	Pyroxenite	
	6	Diorite	
	7	Syenite	

GOLDCLIFF RESOURCE CORPORATION CLIFF PROJECT

PROPERTY GEOLOGY

N.T.S. 62E-4,5W

OSOYOOS M.D., B.C.

3 KM.

3

SCALE: 1:50,000 DATE : JAN. 1991 DRAWN BY : G.F.C. FIGURE Nº.

2

3.2 CLAIM GEOLOGY

A number of areas of the property have been geologically mapped in previous years. No geological mapping was carried out in 1990, and the units described below are not shown on any 1990 maps.

Most of the property is underlain by marine sedimentary and volcanic rocks of the Apex Mountain Group. Units 1 through 3 are members of this unit.

Unit 1 consists of mainly chert, with minor tuff and quartzite. The chert is predominantly massive, although some sections show distinct bedding. The chert varies in colour from black and green to blue. Bedding appears to be northeasterly with moderate dips to the northwest and small scale folding was noted in a few locations. Near the contact of the Olalla Stock and the Apex Mountain Group, the unit becomes more characteristic of a quartzite rather than a chert. Numerous tiny white quartz veinlets were observed in many locations.

Thin section interpretation of several rocks from this unit indicates a fine quartz matrix with a network of quartz veinlets cutting the fine quartz. There is a suggestion the unit may be a silicified tuff.

Unit 1a usually occurs within unit 1, and consists of poorly sorted, angular to subangular black or blue chert clasts within a microcrystalline matrix. The unit is usually no more than a few tens of meters thick, and occurs within the massive chert unit, often pinching out along strike.

Unit 1b consists of moderate to intense shearing with subrounded chert clasts. The unit often occurs near the emplacement of feldspar porphyry dykes and sills, and may be related to the emplacement of the dykes and sills.

Unit 2 is a greenstone unit which occurs within the chert, possibly due to the local extrusion of lava in shallow water. The rocks are generally greenish, massive and finely crystalline. They are likely of basaltic or andesitic composition.

Thin section interpretation of one rock from this unit indicated it to be of gabbroic composition.

Unit 3 is a finely crystalline, light blue-grey limestone. The unit varies from a few centimeters to perhaps 10 meters in thickness, and occurs rarely on the property.

Units 4 through 8 all appear to be derivatives of the Olalla Stock.

Unit 4 is a fine to medium grained equigranular rock, consisting mainly of dark green augite pyroxene. Generally 5 to 10 % magnetite occurs within the pyroxenite.

Unit 5 is a syenite which has two modes of occurrence. Unit 5a is a coarse grained massive syenite, greyish-orange in colour which occurs as narrow "veins" or as small bodies. Orthoclase is the main constituent, with 5% biotite and 2 to 5% magnetite. Unit 5b is a fine grained, light grey to buff to pink syenite occurring within the central portion of the stock. The main constituent is orthoclase, with augite being the main ferromagnesium mineral. The syenite is believed to be of metasomatic origin.

Unit 6 consists of feldspar porphyry dykes and sills. The dykes vary from less than 1 meter, up to 100 meters or more in width in the northwest corner of the claim. They are generally fine to medium grained with plagioclase phenocrysts in a plagioclase or K-spar groundmass. Hornblende, epidote and chlorite occur in varying concentrations within the unit. Bulk composition varies from latite to diorite.

Unit 7 is a massive hornblende dyke which occurs in only a few locations on the property.

Unit 8 is a dark grey, fine grained monzonite with a colour index of approximately 60%. It contains from 25 to 40% augite which gives the rock its characteristic dark colour. Orthoclase and plagioclase feldspars, with local olivine and hornblende form the remaining major constituents of the rock.

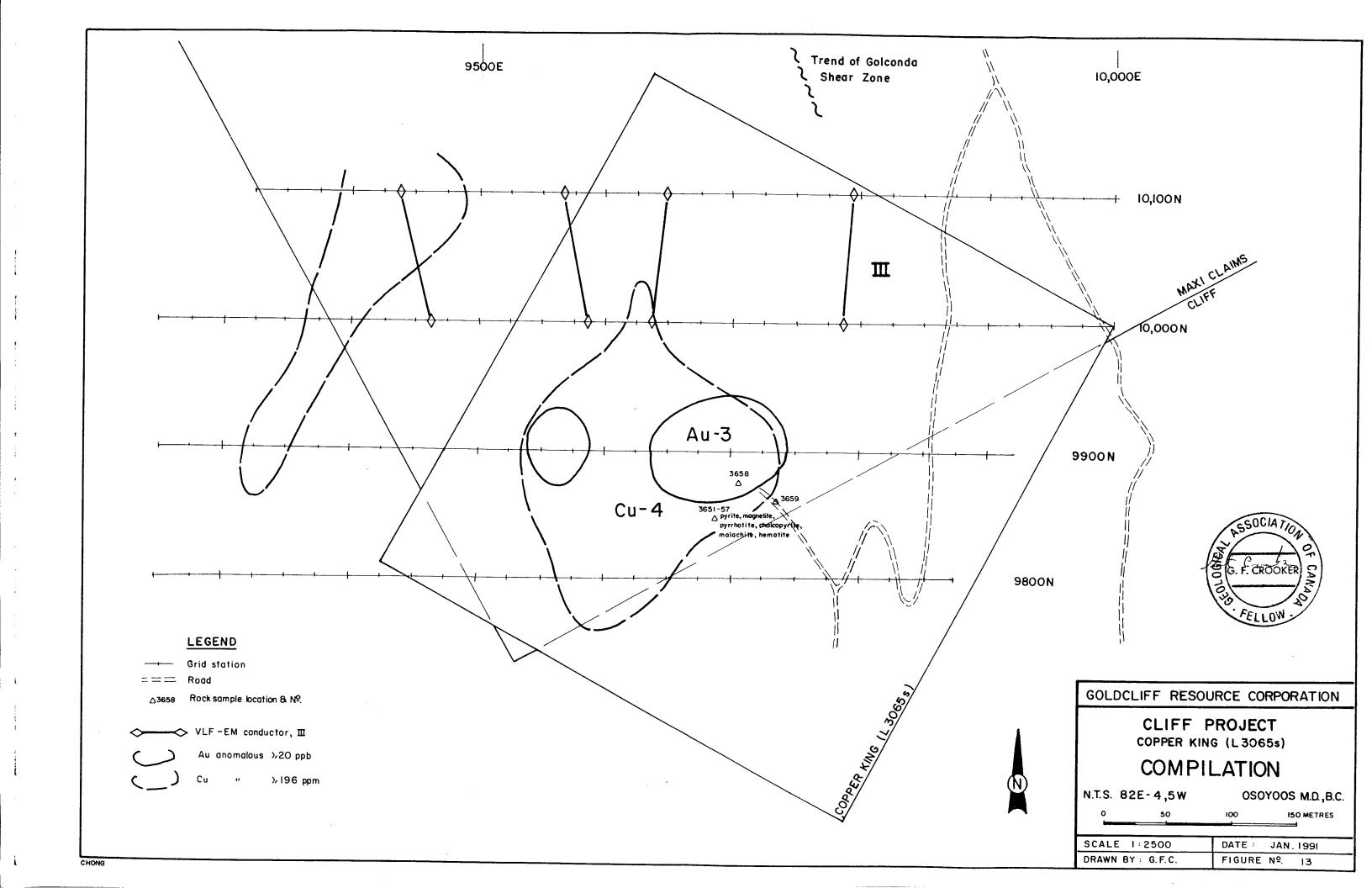
The Lee Zone is underlain by cherts (unit 1) and greenstones (unit 2) of the Apex Mountain Group which have been intruded by a number of dykes, sills and small intrusive bodies of a feldspar porphyry (unit 6). The dykes and sills generally have a north northeasterly trend and vary from a few centimeters to 50 meters or more in width. The northern portion of the zone appears to be underlain by a small intrusive body of the feldspar porphyry.

The Copper King is also underlain by cherts (Unit 1) and greenstones (Unit 2) of the Apex Mountain Group. They have been intruded by dark green pyroxenite (Unit 4) of the Olalla Stock.

3.3 MINERALIZATION

Lee Zone

Prospecting and sampling were carried out over the broad gold soil geochemical anomaly (Au-1) outlined by the 1990 and previous years work programs. Samples 90G-20 through 90G-34 were taken from the Lee Zone.


A number of samples (90G-20-23, 25, 29-32, 34) were taken of rusty, grey, green and black cherts and quartzites containing up to 15% pyrite. The samples were taken from outcrop as well as float and showed varying amounts of fracturing. The assay results were very low with the highest gold value 50 ppb and highest copper value 240 ppm.

A number of samples (90G-24, 26-28, 33) were also taken from a bleached, altered intrusive. This hornblende diorite showed up to 10% pyrite occurring both along fractures and as disseminations. Two directions of fracturing were noted at 8355E & 10415N, 232° dip 45°N and 220° vertical. The assay results from samples 90G-26-28 gave weakly anomalous gold and copper values. The highest values were 974 ppb gold and 742 ppm copper from sample 90G-26. This fracturing appears to at least in part be the cause of the broad geochemical anomaly. The dimensions of the mineralized zone are not known at this time.

Copper King

Prospecting and sampling were carried out over a massive magnetite, pyrite skarn located at approximately 9850N & 9700E. Nine samples were taken from the zone and all gave low gold values with the highest being 14 ppb. However some of the samples gave higher copper values, with P 3653 returning 10845 ppm and four others returning between 2380 and 4058 ppm.

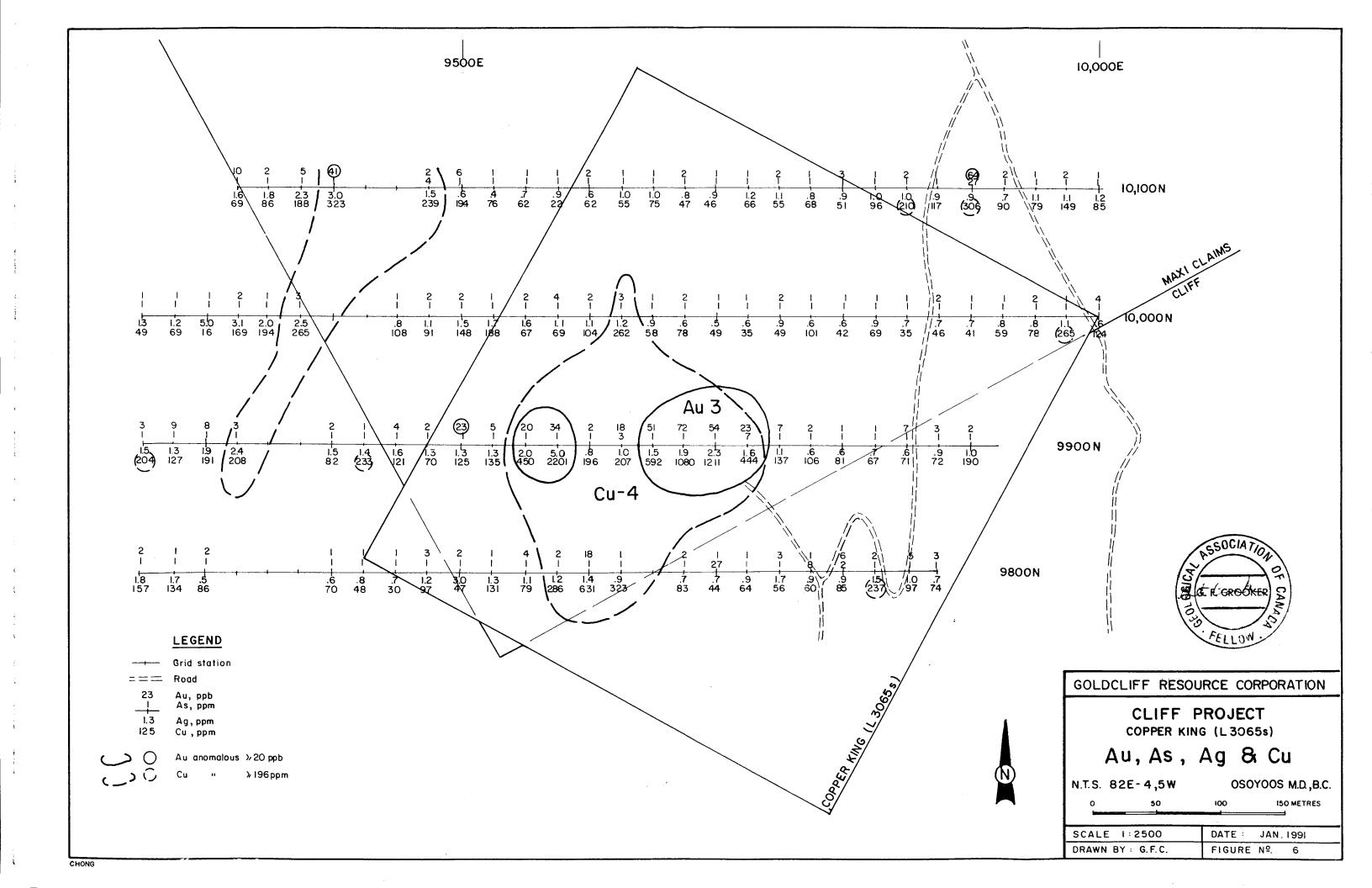
The samples generally showed 10-30% magnetite and pyrite, with lesser amounts of chalcopyrite, hematite and chalcopyrite.

4.0 GEOCHEMISTRY

4.1 SOIL SAMPLING

Three hundred and two soil samples were sent for analysis from the Lee Zone and Copper King. Background and anomalous values calculated for previous soil geochemical surveys were also used for this survey with the exception of molybdenum. Significant differences in the background values exist between 1986 and all other years. Thus for the 1986 program 12 ppm molybdenum was anomalous, while 3 ppm was anomalous for the years 1987-1990.

Ag ppm As ppm Cu ppm Pb ppm	BACKGROUND	AN	OMALOUS	
Ag ppm		0.85	2	1.5
As ppm	l	9.10	2	18.0
Cu ppm	l	98.10	- ≥	196.0
Pb ppm	l	25.24	≥	50.0
Zn ppm	l	92.99	≥	186.0
Mo ppm	1986	6.0	≥	12.0
Mo ppm	1990	1.5	2	3.0
Au ppb	•	11.13	≥	20.0


Lee Zone

Soil samples were collected on lines 8100E and 8200E south of baseline 10500N and on lines 8300E through 8600E north of baseline 10500N. One hundred and ninety-one soil samples were sent for analysis.

Gold

Gold values ranged from 1 to 174 ppb. Previous work on the Zone outlined a broad geochemical anomaly (Au-1) extending from line 8400E & 10075N to 8700E & 10500N. The 1990 soil sampling closed the anomaly to the north, south and west. The anomaly trends north northeast-south southwest and is approximately 500 meters long and 200 meters wide.

A northeast-southwest trending copper anomaly (Cu-1) occurs in the central part of the gold anomaly along with 2 small molybdenum anomalies (Mo-1, 2). Anomalous arsenic values also occur within the broader gold anomaly. The 1990 prospecting program located a bleached, altered intrusive with fracturing and pyrite at 10500N & 8350E. Samples returned up to 974 ppb Au and 742 ppm Cu (90G-26). This mineralization is at least in part causing the coincidental gold-copper anomaly.

A smaller gold anomaly (Au-2) was also outlined by previous work. The 1990 program closed this anomaly to the west. It is an eastwest trending anomaly 200 meters long and 75 meters wide. A small molybdenum anomaly (Mo-3) occurs coincidentally with the gold anomaly, as do scattered copper values.

Copper

Copper values ranged from 14 to 736 ppm and three small copper anomalies were outlined.

Anomaly Cu-1 is a small notheast-southwest trending anomaly within the broader gold anomaly Au-1. It ranges from 50 to 100 meters wide and is 200 meters long. The 1990 program closed the anomaly to the west.

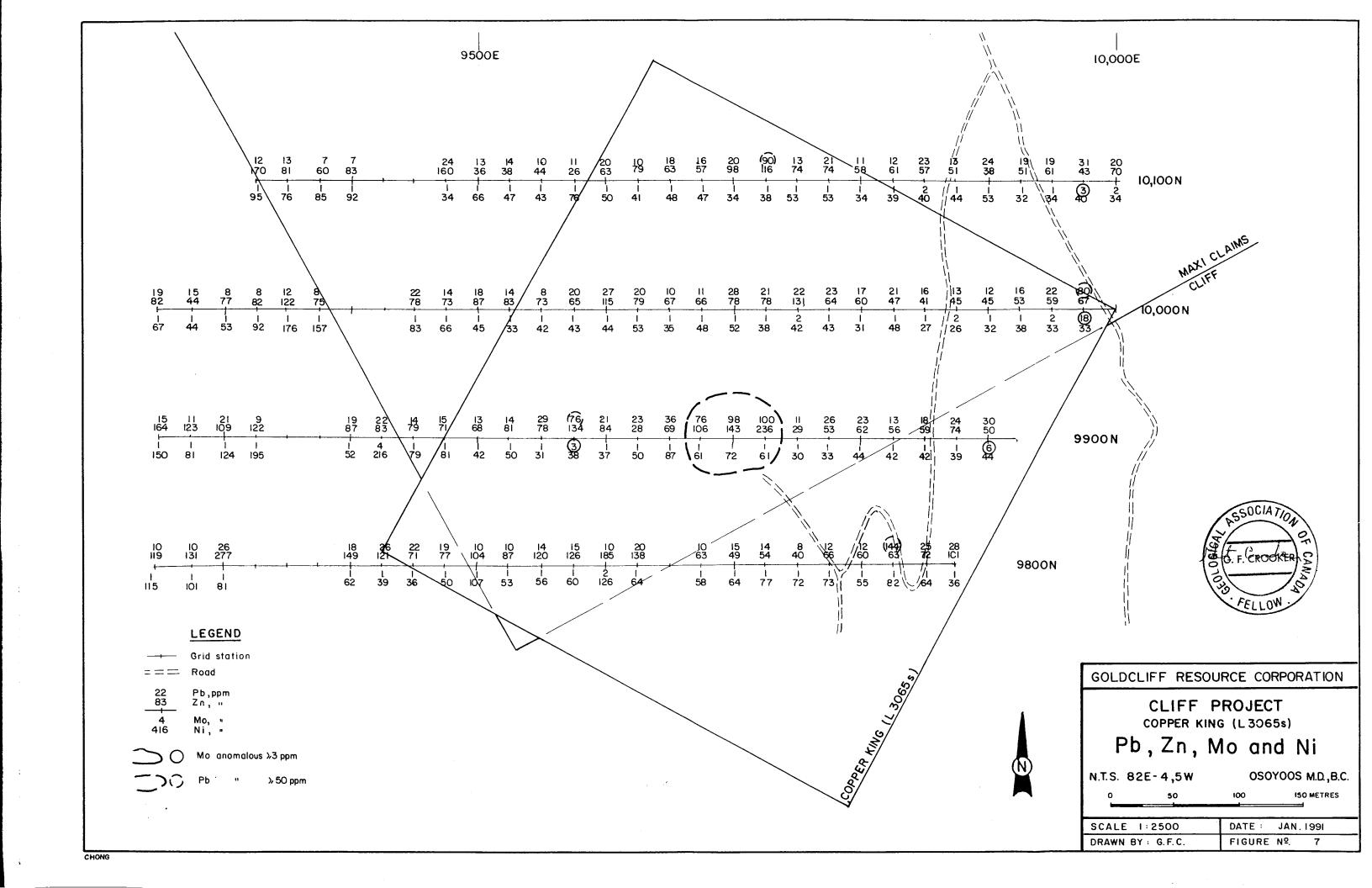
Anomaly Cu-2 is a linear east-west trending anomaly 50 meters wide and 400 meters long. It occurs immediately north of and up hill from gold anomaly Au-1. This copper anomaly is open to the west.

Copper anomaly Cu-3 is a small anomaly occurring at the northern portion of the grid. A few anomalous molybdenum values occur within the broader copper anomaly. The 1990 program closed this anomaly to the west.

Molybdenum

Molybdenum values ranged from 1 to 6 ppm and three small geochemical anomalies were outlined.

Anomalies Mo-1 and Mo-2 occur coincidentally with the broader gold anomaly Au-1 and copper anomaly Cu-1. Both anomalies are very small, being only four station anomalies.


Anomaly Mo-3 is also a small anomaly and it occurs coincidentally with gold anomaly Au-2.

Copper King

Soil samples were collected on lines 9800N through 10100N and one hundred and eleven samples were sent for analysis.

Gold

Gold values ranged from 1 to 84 ppb and one small, four station gold anomaly (Au-3) was outlined by the survey. It occurs within a broader copper anomaly and appears to be associated with a massive, magnetite, pyrite skarn.

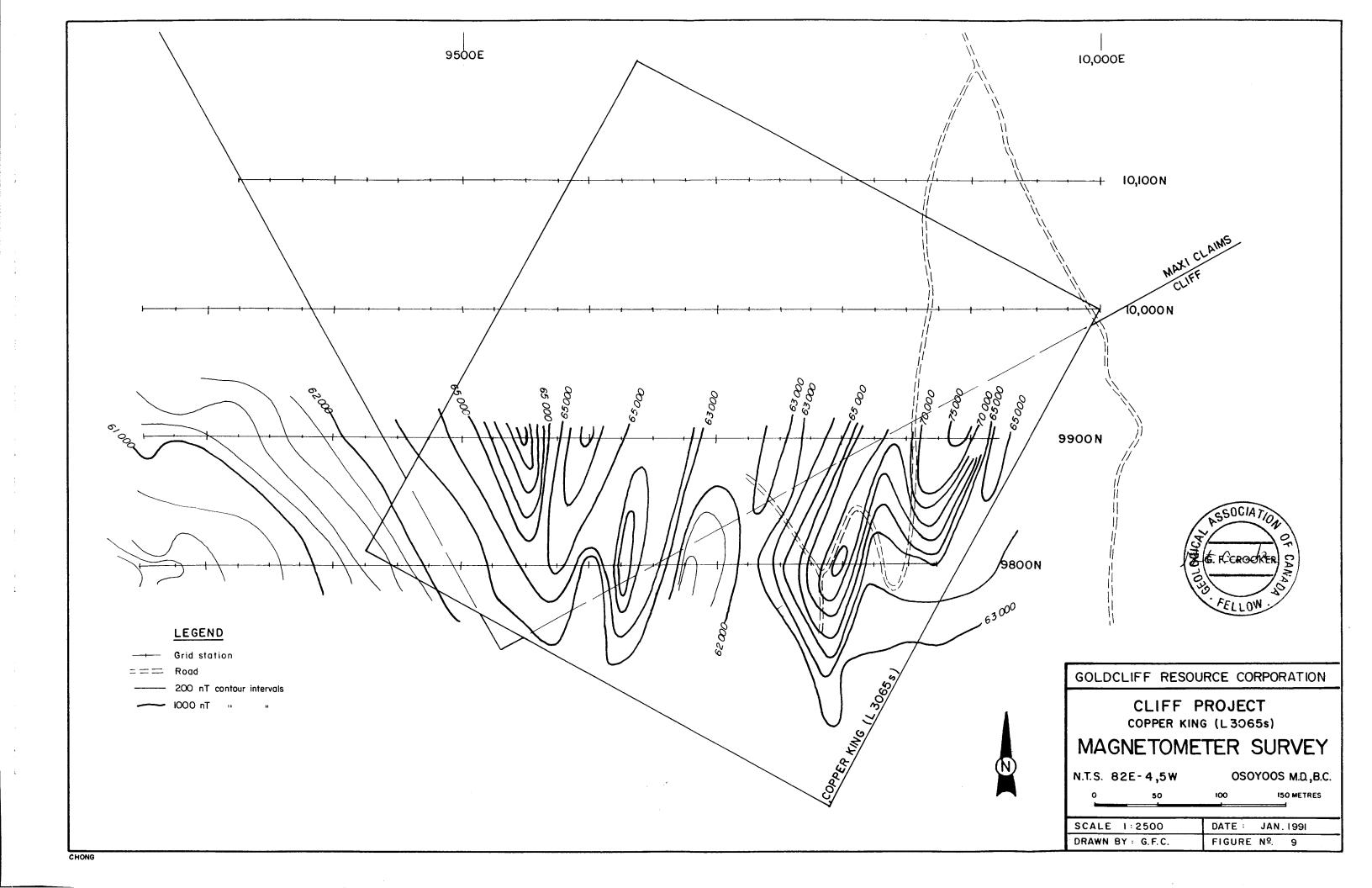
Copper

Copper values ranged from 1 to 2201 ppm and one anomaly (Cu-4) was outlined. The eastern portion of the anomaly is associated with a massive, magnetite, pyrite skarn with chalcopyrite. Gold anomaly Au-3 occurs within the broader copper anomaly.

5.0 GEOPHYSICS

5.1 MAGNETOMETER SURVEY

Lee Zone


A total field magnetic survey was carried out on lines 8500E through 8800E, north of baseline 10500N on the Lee Zone. The magnetic response was very active with total field magnetic values ranging from 57528 to 64961 nT. The areas of higher magnetism are generally on the eastern portion of the grid with areas of lower magnetism on the western portion of the grid. The areas of higher magnetism appear to be caused by the more highly magnetic Jurassic pyroxenite while the areas of lower magnetism are underlain by Triassic sedimentary and volcanic rocks.

A magnetic high extending as far as 11350N on line 8600E is the only distinct linear magnetic feature. This probably represents a dyke like feature extending from the main pyroxenite body. However, in view of the skarn bodies which are known to exist along the margins of the stock at other locations, the feature could be related to a skarn body.

Copper King

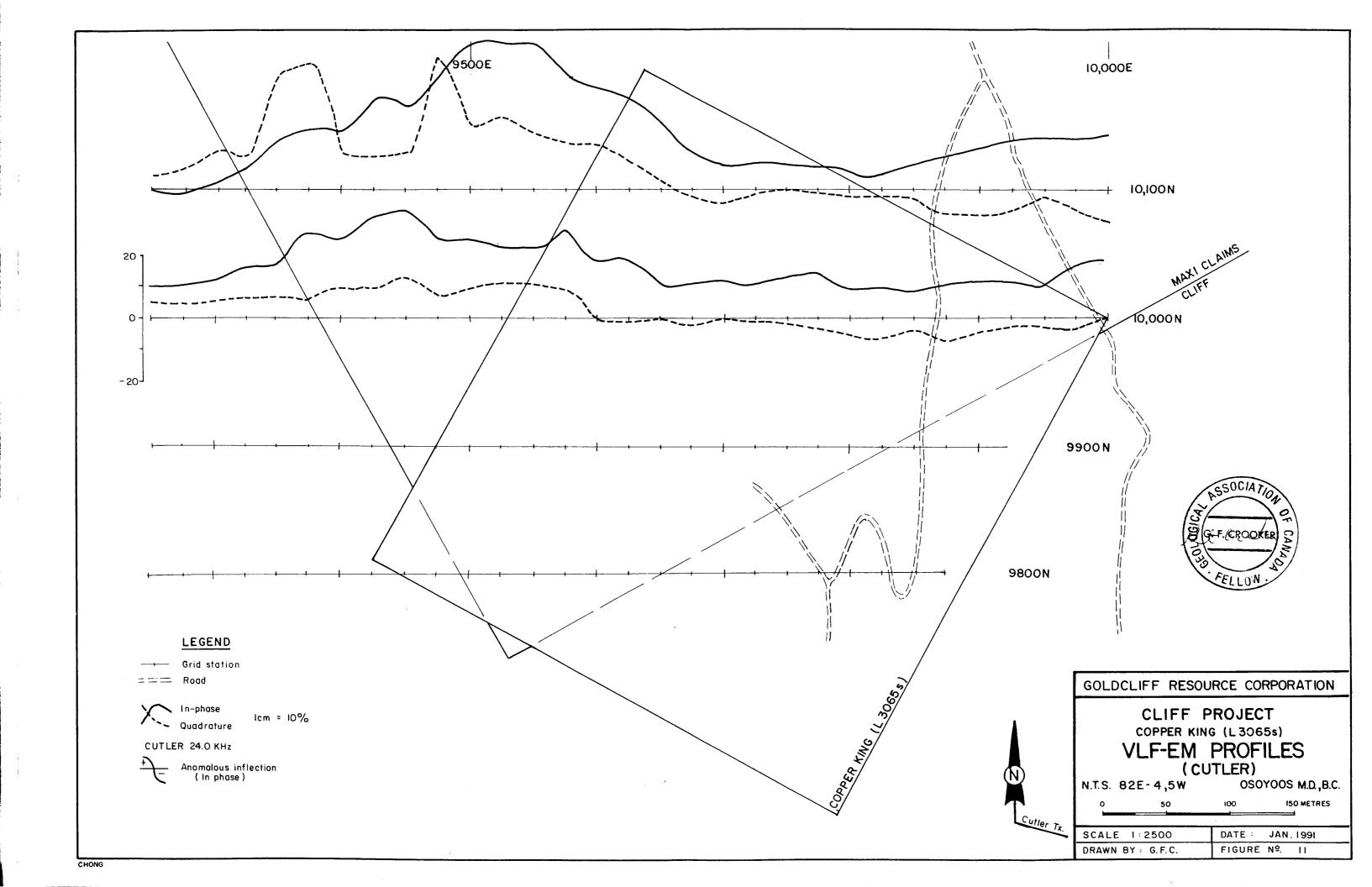
A total field magnetic survey was carried out on lines 9800N and 9900N on the Copper King. The magnetic response was very active with total field magnetic values ranging from 60229 to 75884 nT. This zone of high magnetism indicates the Copper King is mainly underlain by the highly magnetic Jurassic pyroxenite.

A massive magnetite, pyrite skarn body is known to lie between lines 9800N and 9900N at approximately 9700E. The magnetic response in this area varies between 62000 and 63000 nT. The high concentrations of magnetite within the pyroxenite in effect mask the magnetic response of the skarn and it is not possible to differentiate between skarn bodies and the pyroxenite.

5.2 VLF-EM SURVEY

Lee Zone

The VLF-EM survey was carried out on all of lines 8300E and 8400E, and 8500E and 8600E north of baseline 10500N. The VLF-EM data have in many cases been influenced by topography in the form of a positive bias when the operator faced up hill and a negative bias when the operator faced down hill. The anomalies generally exhibit long wavelengths and in-phase anomaly amplitude ranged from stong through moderate to weak. Since most of the survey area is on a slope and because significant amounts of outcrop are present, shallow and/or resistive overburden conditions are believed to exist. This allows a reasonable interpretation of weak anomalies even with topographic bias.


A number of weak to moderate southwesterly through northwesterly trending conductors were delineated by the survey. Conductors I and II coincide with two prominent gullies and probably represent structural features such as faults. These two structural features may have some significance as they transect coincidental gold-copper soil geochemical anomalies.

Several other conductors are associated with gold and/or copper soil geochemical anomalies but the significance of the conductors, if any, is not known. Other conductors occur within the zone but no causes are known for them.

Copper King

The VLF-EM survey was carried out on lines 10000N and 10100N. The general comments made on the VLF-EM survey for the Lee Zone also apply to the Copper King.

Four weak to moderate northerly trending conductors were delineated by the survey. Conductor III is subparallel to the Golconda Shear Zone and may represent an extension of the shear. No cause is apparent for the other conductors although two of them do trend toward a copper soil geochemical anomaly. Unfortunately the VLF-EM survey was not completed over lines 9800N and 9900N which pass on either side of a known skarn body at 9700E.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The 1990 program concentrated on the Lee Zone and the Copper King. Work included establishing additional grid lines, soil sampling, VLF-EM and magnetometer surveying and prospecting.

On the Lee Zone, six additional lines of soil geochemical sampling closed out the large gold geochemical anomaly (Au-1). The anomaly (figure 12) trends north northeasterly-south southwesterly and is approximately 500 meters long by 200 meters wide. Several smaller copper (Cu-1, 2) and molybdenum (Mo-1, 2) anomalies occur coincidentally with the gold anomaly. Prospecting located an area of bleached, altered intrusive with fracturing and up to 10% pyrite occurring both along fractures and as disseminations. Assaying of this material gave up to 974 ppb gold and 742 ppm copper.

Several smaller gold and copper soil geochemical anomalies were also outlined, along with a number of VLF-EM conductors. No causes are known for these features at this time.

On the Copper King, four lines of soil sampling were carried out. This soil geochemical sampling outlined a copper anomaly (Cu-4) approximately 200 meters long by 150 meters wide. A small gold anomaly (Au-3) occurs coincidentally with the copper along the eastern portion of the anomaly.

Prospecting located a massive magnetite, pyrite skarn body centered at approximately 9850N & 9700E. This skarn contains minor amounts of chalcopyrite and malachite and appears to be the cause of at least some of anomaly Cu-4. A number of rock samples were taken from the skarn and these returned very low gold values. One sample gave a copper value of 10845 ppm and a number of samples gave between 2380 and 4058 ppm copper.

Conductor III is subparallel to the Golconda Shear Zone and may represent an extension of that zone.

Recommendations are as follows:

- 1) Prospecting, geological mapping and sampling should be carried out over the geochemical anomalies outlined on the Lee Zone. Emphasis should be placed on the area which gave the anomalous gold value of 974 ppb.
- 2) Prospecting, geological mapping and sampling should be carried out over the geochemical anomaly Cu-4 and the skarn zone on the Copper King.
- 3) The other target areas outlined by previous programs should also have continued exploration by geochemical sampling, prospecting, trenching and drilling if required.

Respect Sucial Sommitted,

Grand Greeker, R.Sc., F.G.A.C. Geologist

7.0 REFERENCES

- B.C.M.M., Annual Reports for 1937, 1946.
- B.C.M.M., Minfile; 82E-SW-014, 82E-SW-015, 82E-SW-016, 82E-SW-017
- Bostock, H.S. (1927): Geological Survey of Canada, map 628A, Olalla.
- Bostock, H.S. (1930): Geological Survey of Canada, map 341A, Keremeos.
- Chapman, Wood and Griswold Ltd. (Aug. 1, 1961 to March 7, 1962): Progress Reports Friday Mines Ltd. (NPL) Olalla, B.C. Mining Properties, No. 1 to No. 6.
- Christopher, P.A. (1987): Report on the Cliff Property, Cliff, Cliff #1 and Great Eastern Claims, Hedley-Olalla area, Osoyoos Mining Division, B.C.
- Crooker, G.F. (1981): Geological report on the Bell Claim, Olalla Area, Osoyoos Mining Division, B.C.
- Crooker, G.F. (1981): Geological report on the FFH Claim, Olalla Area, Osoyoos Mining Division, B.C.
- Crooker, G.F. and Rockel, E.R. (1987): Geological, Geochemical and Geophysical Report on the Cliff, Cliff #1 and Great Eastern Claims, for Goldcliff Resource Corporation.
- Crooker, G.F., (1988): Geological, Geochemical and Geophysical Report on the Cliff, Cliff 1 to 4 and Great Eastern Claims, for Goldcliff Resource Corporation.
- Crooker, G.F., (1989): Geochemical Report on the Cliff, Cliff 1 to 4 and Great Eastern Claims, for Goldcliff Resource Corporation.
- Crooker, G.F.. (1990): Geological and Geochemical Report on the Cliff, Cliff 1 to 4 and Great Eastern Claims for Goldcliff Resource Corporation.
- Dodd, E.A. (1981): Geophysical Survey-Combined Airborne VLF and Magnetometer on the Joan and FFH Mineral Claims (40 units) for Freedom Resources Ltd., Vancouver, B.C., by Columbia Geophysical Services Ltd.
- Little, H.W. (1961): Geology Kettle River (West Half), B.C., Geological Survey of Canada Map 15-1961.

Milford, J.C. (1984): Geology of the Apex Mountain Group, North and East of the Similkameen River, South Central B.C., M.Sc. Thesis, University of British Columbia.

Phendler, R.W. (1981): Report on the FFH Gold Prospect, Osoyoos Mining Division, B.C. for Freedom Resources Ltd.

Ray, G.E., and Dawson, G.L. (1987): Geology and Mineral Occurrences in the Hedley Gold Camp, Southern British Columbia (92H/8E), Open File Map 1987-10a.

Rice, H.M.A. (1947): Geology and Mineral deposits of the Princeton Map-Area, B.C., Geological Survey of Canada, Memoir 243.

Rolston, T., and Timmins, W. (1981): Geophysical (and Geochemical) Report on the FFH Claim Group, Osoyoos Mining Division, for Freedom Resources Inc., Map Sheet 82E-4,5.

Sturdevant, J.A. (1963): Petrography of the Olalla Stock, Okanagan Mountains, British Columbia, unpublished M.Sc. Thesis, University of New Mexico.

8.0 CERTIFICATE OF QUALIFICATIONS

- I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:
- 1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
- 2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
- 3. That I am a member of the Canadian Institute of Mining and Metallurgy.
- 4. That I am a Fellow of the Geological Association of Canada.
- 5. That I am the owner of the Cliff, Cliff 1 to 4, Copper KIng and Great Eastern Claims.

Dated this 25th day of feb Province of British Columbia.

, 1991, at Keremeos, in the

Grand Crooker S.Sc., F.G.A.C.

Appendix I

CERTIFICATES OF ANALYSIS

GEOCHEMICAL ANALYSIS CERTIFICATE

Goldcliff Resources Corp. File # 90-1304 1505 - 409 Granville St., Vancouver BC V6C 1T2 Submitted by: GRANT CROOKER

SAMPLE#	Mo ppm	ppm Cu					Co ppm			As ppm			Th ppm		Cd ppm			V ppm	Ca %		La ppm		_	Ba ppm	Ti X	_	Al %	Na %		.₩.	
P 3651	2	3079	190	134	3.7	88	297	1177	31.91	20	5	ND	3	47	2.5	4	2	15	2.36	.001	5	4	- 17	11	.01	2	.21	.01	.03	4	11
P 3652	- 5	82	, 2	52	.1	18	11	1975	2.88	8	5	ND	5	94	.3	2	2	41	11.49			17	.47		.10	_	.82			1	13
P 3653	1	10845	11	245	6.7	25	71	1870	16.19	24	6	ND	6	11	2.1	2	2	130	10.47	.001	17	3	.10	43	.01	2	.36	.01	.02	18	14
P 3654	2	2829	2	76	2.0	14	353	759	35.67	14	5	ND	2	30	2.7	11	2	9	1.60	1001	3	5	.03		.01	6	.10			6	14
P 3655	1	4058	2	167	3.1	14	130	878	48.58	12	5	ND	3	17	2.0	8	2	14	1.22	_001	2	3	-04	20	.01	34	.14	.02	.02	3	7
3656	1	674	15	29	.6	6	51	2078	12.83	15	5	ND	5	66	1.0	2	2	27	8.64	1003	8	5	. 15	19	202	2	.25	.01	.01	15	2
3657	1	681	10	111	.5	7	56	1976	20.85	6	5	ND	4	93	1.5	2	2	18	6.97	-001	5	1	.11	18	.01	2	. 14	.01	.01	20	3
3658	1	2380	2	83	.1	37	13	1467	2.96	8	5	ND	1	177	.9	2	3	25	21.32	.023	8	9	.28	24	.05	59	.50	.01	.01	8	4
3659	35	316	9	13	.6	10	4	209	2.91	9	6	ND	2	20	.2	2	2	46	.75	.007	3	13	.02	158	_01	2	.05	.01	.18	3	2
3660	5	12 6	46	-126	1.6	38	-14	-177	-3.11	- 3	8	ND	1	24	5.	2-	7	5	91	.043	- 6	12	03	54	01-	2-	.09	-01	.04	-1	- 18
3661	19	285	7-	40	2	-46	-113-	-911 -	15.84	28	—5 -	-ND-	1	10	2	2	2	39	-1.60	.008	2	52	.76	19	-09	2	1.68	.02	:08	275	3
3662	-21-	232	2	- 55	.4	104	38	952	6.45	- 5	7-	- ND	1	21	.2	2	3	46	2.76	.013	2	123	1.08	-60	.15	2	2.21	.12	-61	-12	3
3663	- 2	412	79	458	4	-20	18	433	4.06	16	—5	ND-	1	5_	2.8	2_	3_	145	79	.017		_29	1.44	135	18	2_	2.87	.12	.96	- 3	
STANDARD C/AU-R	18	58	39	134	7.2	67	31	1063	3.99	43	19	6	39	50	18.2	16	22	60	.51	.095	39	53	- 93	180	.08	30	1.95	-06	-13	11	510

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

✓ ASSAY RECOMMENDED

GEOCHEMICAL ANALYSIS CERTIFICATE

Goldcliff Resources Corp. File # 90-6193
6976 Laburnum St., Vancouver BC V6P 5M9 Submitted by: GRANT CROOKER

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P			Mg		Ti	В	AL	Na		500000000000000000000000000000000000000		Pt**	Pd**
	ppm		ppm	ppm	ppm	bbu	ppm	bbu	ppm	ppm	ppm	<u> </u>	× ×	ppm	ppm	*	ppm	X.	ppm		*		ppm	bbp	bbp	ppb							
90G-20	. 8	52	18	37	.8	17	1	255	2.64	48	5	ND	1	4	1.0	2	2	23	.03	.014	2	66	.13	16	.01	4	.31	.01	.02	2	28	1	2
90G-21	4	18	6	15	. 1	18	1	388	.62	7	5	ND	1	4	.2	2	2	2	.02	.006	2	11	-01	24	.01	4	.07	.01		100000000000000000000000000000000000000	1	1	Ž
90G-22	5	46	7	15	. 4	15	1	121	.81	4	5	ND	1	6	.2	2	2	10	.05	.018	2	16	-21	48	.02	3	.22	.01		2550710000	10	1	2
90G-23	13	151	3	20	.9	24	9	114	1.71	10	5	ND	1	6	.3	2	2	34	.04	.017	2	62	.49	90	.05	_	.46		.05	1	20	1	2
90G-24	3	432	5	29	.5	15	13	224	4.68	4	5	ND	1	40	.7	2	2	71	.67	.104	2		1.02		.11		1.48			1	34	5	Ž
90G-25	3	339	13	28	.5	10	13	265	5.33	2	5	ND	1	77	_2	3	2	86	.67	.125	2	8	1.13	47	.11	6	2.10	. 13	.45	2	15	1	2
90G-26		742		25					9.96		5	ND	1	149	2	2		112		150	6			237	200		.48			1	974	1	4
90G-27	6		27	14	.7	9		-	6.62		5	ND		150	_2	2	4	81		.070	2	76		153	400000000000000000000000000000000000000	3	.48		.17	1	354	3	3
90G-28	6	100	12	26	.5	21	12	519	7.51	30	5	ND	1	58	_6	2	9	124		7.7	2	57				3	1.37			7777777	299	8	6
90G-29	5			7	.2	26	6	100	1.48	2	5	ND	1	34	.4	2	2			.040	4	33			5	5			.07	1	22	1	4
90G-30	4	33	3	3	.1	16	1	54	1.31	4	5	ND	2	8	_3	2	2	10	.02	.013	4	17	.17	147	.04	3	.32	.01	.17	1	16	1	2
90G-31	4	240	8	27	.3	60	16		4.63	4	5	ND	1	32	.2	3	2	52		125	7	111	.95	133	.21	3	1.74		.55		14	1	Ž
90G-32	35	73	3	22	. 2	30	7	174	1.60	3	5	ND	1	7	.4	2	2	26	.18	.009	2	71	.11	27	.05	4	.22	.02	.03	1	50	1	2
90G-33	3	33	7	31	. 1	12	6	365	2.20	2	5	ND	1	43	.2	2	2	48	.95	.098	2	15	.55	75	.07	5	.98	.06	.06	1	11	1	3
90G-34	5	41	4	2	.1	13	3	76	.57	12	5	ND	1	2	.2	2	2	2	.02	.010	2	11	.01	12	.01	5	-06		.04		12	1	2
STANDARD C/FA-10R	21	62	40	134	7.6	73	32	1049	3.98	41	15	7	36	53	18.6	15	19	61	.49	.096	37	61	.86	179	.08	38	1.90	.06	. 13	13	504	499	518

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP FROM 10 GM SAMPLE.

DATE RECEIVED: DEC 3 1990 DATE REPORT MAILED:

Dec 5/90

SIGNED BY . D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

MIN-EN LABS - ICP REPORT

COMP: GOLDCLIFF RESOURCES

ATTN: L.SALEKEN/G.CROOKER

.3 27170 .3 27440 .2 24670 .2 26750 .1 24850

8300E 10925N 8300E 10950N

8300E 10975N 8300E 11000N 8300E 11025N

.7 .6 1.0 .9

.1

PROJ: GEOTEC-GOLDCLIFF

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AG AL		, B PPM	BA PPM	BE PPM	BI C		CO CU PPM PPM	FE PPM	K PPM		MG PPM	MN PPM	MO PPM	NA PPM P					TH U			GA SN		CR AU
8100E 10150 8100E 10175 8100E 10200 8100E 10225 8100E 10250	.8 26180 4.3 31370 3.2 35250 1.8 27520 2.0 34510	1 1	7 10 10 5 6	117 112 233 224 230	1.5 .1 .1 .7	4 630 14 1533 12 1303 7 985 8 1049	.1 .1 .1	31 136 51 95 53 97 28 59 38 57	72860 74070	3010 4230	45 43 26	15670 41590 26390 15210 17490	1777 2066 1180	1 1 1 1	1200	82 11 69 10 68 4	110 020 480	27	1 13 1 16 1 17 1 14 1 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	84.4 159.2 160.6 1118.4 1119.3	106 134 116	1 1 1 1 1 1 1 1 1 1		82 1 224 7 163 1 69 1 72 1
8100E 10275 8100E 10300 8100E 10325 8100E 10350 8100E 10400	1.2 27960 2.4 30280 .4 17330 .3 14590 .8 12340	1 107 27 9	7 8 6 4 12	376 158 327 533 342	.3 .4 1.6 .7	5 1104 9 1205 4 676 4 1330 3 2178	0 .1 0 1.6 0 3.4 0 .1	52 83 40 54 22 160 22 92 17 69	36070 25110	1770 2440 2330 2120	26 31 14 12 13	9580 23280 3770 3920 8430	1189 2599 3658	1 1 2 1 4 1	1160 1 1020 1260 1070		980 960 560 260	53 42	1 19 1 14 3 15 3 19 1 20	1 1 1 1 1 1	102.8 109.8 91.9 57.1 50.0	343 325	1 1 1 1 1 1 1 1 1 1	1 1 1 1	35 1 102 1 22 48 8 1 23 1
8100E 10425 8100E 10450 8100E 10475 8100E 10500 8200E 9850N	.1 20610 .5 24060 .9 33070 4.5 36370 1.8 27530	5 1 1	6 8 10 4	283 115 119 194 245	1.0 1.6 1.9 .1	4 627 2 354 4 579 13 1701 7 827	0 .1 0 .1 0 .1	44 196 31 106 33 154 55 94 23 37	41710 52210 85750 43540	4390 4750 5830 2430	38 44 25	6570 14670 20660 40090 11740	1584 2061 2061	3 1 1 1 1 1	1260 1 1070 1 1260 1 1460	14 6 87 6 92 10 63 2	630 670 050 260	38 25 12 42	2 12 1 7 1 11 1 16 1 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	182.9 89.9	144 121 123	1 1 2 1 1 1 1 1 1 1		21 101 67 1 141 1 232 1 59 1
8200E 9875N 8200E 9900N 8200E 9925N 8200E 9950N 8200E 9975N	1.8 24100 .9 20650 1.1 19600 .6 14270 1.2 23100	20 1 1 1	4 5 1 1 2	185 392 575 384 316	.8 1.0 .1 .4 .3	6 796 4 396 4 699 2 709 5 733	0 .1 0 1.5 0 .1 0 .1	27 47 13 37 14 31 9 14 18 42	17300 34640	4090 2050 1220 1780	26 16 15 15 20	6720 4180 2640 8400	2277 1027 1207	1 1 1 1 1 1	1230 1610 1670 1410	31 4 34 7 19 16 43 7	410 770 540 760	25 23	1 14 1 8 1 14 1 16 1 10	1 1 1	2 56.5 47.1 36.1 76.8	435 235 93	2 1 1 1 1 1 1 1 1 1	1 1 1 1	41 1 23 1 16 1 8 1 28 1
8200E 10000N 8200E 10025N 8200E 10050N 8200E 10100N 8200E 10125N	1.2 20350 1.7 26650 1.9 31090 2.2 28420 2.0 23680	1 1 1 1	3 5 6 7 8	481 479 267 175 379	.9 .3 .2 .4	5 946 7 1018 7 1168 8 1389 8 1830) .1) .1) .1	22 70 30 93 31 99 34 100 33 82	48210 58910 51290	4330 3240 3020 3110	25 26 36 27	21700 20600	1483 1319 1733 3206	1 1 1 1 1 1	1340 1410 1240 1 1440	89 24	540 590 330 430	27 31	1 14 1 16 1 15 1 13 1 26	1 1 1	87.6 93.6 96.2 1113.0 102.1	124 119 110	1 1 1 1 1 1 1 1 1 1	1 1 1 1	34 1 58 59 68 1 128 1 92 1
8200E 10150N 8200E 10175N 8200E 10200N 8200E 10225N 8200E 10250N	1.8 27560 3.7 34630 3.2 34680 3.3 30570 1.1 23880	1 1	6 10 9 9 6	264 222 141 141 139	.7 .2 .4 .7	6 1079 12 1604 12 1365 12 1538 7 1353	1. C 21 21	30 119 52 118 49 117 47 118 38 124	78990 79050 74390	4490 3910 3940	45 44 38	19680 39910 40820 35420 23030	2801 3006 1950	1 1 1 1 1 1	1480 2 1260 1 1660 1		590 200 030	12	1 11 1 16 1 14 1 14 1 12	1	1 120.9 1 158.5 1 153.4 1 171.5 1 150.2	120 127	1 1 1 1 1 1 1 1	2 2	97 24 214 1 211 1 200 1 139 1
8200E 10275N 8200E 10300N 8200E 10325N 8200E 10350N 8200E 10375N	1.4 27300 .8 32100 1.0 27390 1.2 33340 1.7 39980	1 1	6 7 6 6 7	116 196 235 234 320	.7 1.2 .6 .7 .1	6 1379 6 774 6 865 7 969 9 1073	1. 0	40 170 32 141 24 52 30 74 35 101	50770 42840	2600 3430 3990	27 28 27	25130 12460 11810 17930 26420	2718 2326 2079	1 1	1330 1340 1470	81 7 72 8 66 5	790 370 560	25 27	1 11 1 10 1 12 1 10 1 11	1 1	89.1	152 184 188	1 1 1 1 1 1 1 1	1 1 1	146 1 58 1 63 2 71 1 116 1
8200E 10400N 8200E 10425N 8200E 10450N 8200E 10475N 8200E 10500N	1.1 36700 .6 31450 .5 22470 .2 11810 .6 19000	1 1	6 3 6 3 4	109 265 377 499 204	1.1 1.1 .8 .1 .7	6 881 5 857 5 1570 3 1480 4 1176		35 183 37 163 33 164 22 84 20 72	23420	1920 2820 2350	32 25 11	32540 14200 11180 6250 11510	2363 3683 3668	1 1 1 1 3 1	1220 1250 1120	69 6 58 23 65 15	300 540	26 39 52	1 10 1 11 1 24 1 17 1 17	1 .	95.6 66.9 38.4	162	1 1 1 1 1 1 1 1	2 1 1 1 1	156 1 53 1 34 9 32 1 45 1
8300E 10500N 8300E 10525N 8300E 10550N 8300E 10625N 8300E 10650N	.1 10750 1.9 29620 1.4 36560 1.9 27750 1.7 33610	1 1	3 5 6 5 8	323 207 190 419 544	.3 .8 .8 .5	3 1396 6 1052 6 916 8 1273 8 1267	1. C 21 21	17 58 37 477 49 736 40 117 41 136	61270 73170 55120	6450 9470 7640	26 29	6460 17990 20740 19190 17470	1283 1361 3210	1 1	1350	80 11 47 14	080 150 480	34	1 16 1 19 1 21 1 21 1 26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	128.0 162.1 91.7	102 81 85 232 287	1 1 1 1 1 1 1 1		22 1 92 1 105 1 122 22 99 13
8300E 10675N 8300E 10700N 8300E 10725N 8300E 10750N 8300E 10775N	1.7 28170 3.3 35970 1.6 30790 .6 28030 .6 28610	1 1 6	7 6 6 5 6	233 316 456 1104 596	.9 .1 .7 .8 1.1	8 992 15 1300 8 982 5 873 6 698	1. C 1. C 1. C	47 291 72 125 29 105 34 212 31 99	51730 54140	7700 7350 2920	41 25 21	17960 35490 15940 7940 12090	2321 1922 4039	1 1 1 3		04 11	160 950 470	37	1 22 1 12 1 17 1 15 1 16	1 1 1	155.5 130.6 95.1 92.9 88.4	202 238	1 1 1 1 1 1 1 1		83 1 269 1 109 1 33 5 49 1
8300E 10800N 8300E 10825N 8300E 10850N 8300E 10875N 8300E 10900N	.9 26750 .4 26210 .8 26200 1.1 30250 .8 25080	1 1	3 3 3 4	431 456 771 341 456	1.0 .6 .7 .4	6 653 5 622 5 948 6 874 6 982	3 .1 3 .1 3 .1	38 132 26 82 27 84 29 108 22 75	43720 42090 51330	4280 5570 4630	23 22	12270 9600 10900 15040 9900	2812 4123 3389	1 1 2 1	590 470 550	69 14	550 480 540	30 38 40 23 30	1 10 1 13 1 14 1 10 1 15	1 1	97.5 80.5 77.8 98.5 77.6	178 156	1 1 1 1 1 1 1 1 1 1	1 1 1 1	52 1 32 1 43 1 73 1 41 1

40760 2730 20 7950 5092 43420 4690 23 10780 2847 39960 3480 20 9330 2938 41300 3580 19 9190 1796 40010 4210 19 9360 1564

71.3 247 87.4 172 80.4 156 84.7 110

80.8 101

FILE NO: 0V-1360-SJ1+2 DATE: 90/09/18

* SOIL * (ACT:F31)

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1360-SJ3+4

DATE: 90/09/18 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM F	MO PPM	NA PPM	N I PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM PI	U PM	V PPM P	ZN G			CR AU PPM PPB
8300E 11050N 8300E 11075N 8300E 11100N 8300E 11125N 8300E 11150N	1.0 27460 1.0 30130 1.0 31040 .9 27200 .3 25390	1	6 5 5 5 8	376 329 402 320 387	.9 .6 .9 .8 1.2	6 7650 6 6630 7 6200 5 6720 5 9220	.1 .1 .1	23 24 26 23 31	63 4 65 4 66 4 79 4	0750 3020 6370 0440 9280	4640 4200 4150 4250 6240	22 21 23 20 19	10210 9440 8810	1640 2091 1666 2724	1 1 1 1	580 530 500 430 600	53 60 56 54	1250 1280 1350 1070 1570	37 28 33 32 35	1 1 1 1	16 15 14 15 19	1 1 1 1	1 8	89.0 1 92.6 1 81.7 1 74.9 1	16 23 39 10 16	1 1 1 1 1 1 1 1	1 1 1 1	33 1 33 3 36 1 34 1 21 1
8300E 11175N 8300E 11200N 8300E 11225N 8300E 11250N 8300E 11275N	.7 27920 .8 28450 1.0 29070 1.4 29820 1.0 30460	1	5 6 6 7 5	372 461 389 350 312	1.1 .8 .3 .8 .7	6 6330 6 9850 6 7220 6 9480 6 7700	.1 .1 .1 .1	28 25 28 32 27	70 4 69 4 88 5 88 5	6510 1790 6250 4030 60860	4970 5260 5750 5770 4560	25 26	10320 11430 13810 11850	1907 2440 1876 1742 1828	1 1 1 1	550 590 660 720 600	58 63 65	790 1100 820 1340 1130	25 38 20 18 21	1 1 1 1	13 20 13 15 16	1 1 1 1	1 8 1 8 1 10 1 9	81.8 1 89.7 1 05.1 1 90.1 1	17	1 1 1 1 1 1 1 1	1 1 1 1	32 1 38 21 38 1 50 1 41 28
8300E 11300N 8300E 11325N 8400E 10500N 8400E 10525N 8400E 10550N	1.2 27420 1.2 36780 1.0 25250 .1 19950 .7 26120	1 1	6 7 7 13	472 263 955 285 143	1.0 .2 .8 .7	5 12220 7 7470 5 16220 4 9360 5 7150	.1 .1 .1 .1	32 29	77 5 152 4 136 5 193 5	4720 5040	4780 4310 3820 4410 6120	27 30 17 19	11000 8430 8750	2082 2421 1785 601	1 1 1 1	610 620 690 490 880	69 41 37 43	1920 1320 2640 1670 990	28 24 22 22 22 19	1 1 1 1	24 15 40 17 12	1 1 1 1	1 10 1 10 1 8 1 8	03.3 1 06.6 1 84.3 81.9	50 37 09 71 77	1 1 1 1 1 1 1 1	1 1 1 1	41 1 54 1 40 34 10 29 13 50
8400E 10600N 8400E 10625N 8400E 10650N 8400E 10700N 8400E 10725N	.6 17890 .1 33560 .4 39220 2.1 41050 2.9 32580	266 1 1	7 7 7 7 8	463 240 263 442 307	1.4 3.2 1.9 .6	4 12920 6 5790 7 5790 12 14440 11 13010	.1 .9 .1 .1	60 52 70 43	155 6 121 6	75780 59470 55200 54050	4230 7340 10940 12270 9230	26	14470 13700 25140 22690	4160 4104 1772	2 1 1 1	550 680 960	130 70 182 120	810	34 44 38 19 10	1 1 1 1	35 21 16 24 12	1 1 1 1	1 10	73.7 1 07.2 1 12.7 1 25.1 1	00 58 50 68 33	1 1 1 1 1 1 1 1	1 1 1 2	1 115 1 16 42 1 135 22 135 1
8400E 10750N 8400E 10775N 8400E 10800N 8400E 10825N 8400E 10850N	2.4 47590 1.8 37210 2.7 42960 4.2 44860 3.0 37430	1 1	8 7 8 7 7	347 522 383 436 365	.5 .6 .2 .1	8 10930 9 13150 11 14440 15 17510 11 12780	.1 .1 .1 .1	41 49 57 36	112 5 157 6 115 7 81 6	54560 57300 75910 50420	11970 9300	33	18040 24030 35260 22070	3366 2229 1815	<u>1</u>	730 830 1330 860	108 148 210 128	1210 1040 880	20 31 16 10 10	1 1 1 1	14 28 13 12 12	1 1 1	1 10 1 13 1 14 1 1	07.2 2 33.9 1 48.3 1 19.9 1	39 10 89 67 41	1 1 1 1 1 1 1 1	2 1 2 2 2	146 124 104 33 148 1 235 1 137 1
8400E 10875N 8400E 10900N 8400E 10925N 8400E 1095CN 8400E 10975N	2.3 34690 3.0 35300 1.1 22630 2.0 26810 1.0 27510	1 1	8 8 6 5 25	387 381 333 339 365	.6 .2 .4 .2 1.0	9 13470 12 14850 · 6 11580 10 11780 7 9650	.1 .1 .1 .1	42 42 28 27 26	95 6 68 4 51 4 74 4	1070 12530 18260 17350	10740 11340 7850 9540 7760	28 31 19 28 27	25900 13840 18470 14020	1996 1841 1518 2404	1	1110 1200 890 640	156 79 86 73	840 690 1420	16 18 21 22 32	1 1 1	13 13 13 15 13	1 1 1 1	1 1	18.7 1 81.6 1 87.5 2 87.9 2	44 39 62	1 1 1 1 1 1 1 1	2 1 1 1	169 22 149 1 61 1 94 1 61 1
8400E 11000N 8400E 11025N 8400E 11050N 8400E 11075N 8400E 11100N	2.0 27120 1.4 30540 1.4 34670 1.3 32630 1.0 23450	1 1	7 6 5 4	400 482 484 734 1427	.8 1.1 1.1 .4 .3	7 9980 6 8160 7 7230 7 8590 5 11390	.1 .1 .1	30 28 32 27 20	108 4 96 5 88 4	50740 48890 51880 47230 34970	8190 7300 8610 5680 5150	26 26 30 26 19	12770 17680 11920 9230	1848 1766 2069 2247 2610	1 1 1 1	570 610	80 115 <i>7</i> 0 42	1300 970 840 910 1110	28 30 25 30 36	1 1 1 1	12 17 15 17 20	1 1 1 1 1	1 1 1 1 1 1 1	02.4 1 11.2 1 07.1 1 71.5 1	22 21 12	1 1 1 1 1 1 1 1	1 1 1 1	80 1 51 16 96 1 48 1 33 1
8400E 11125N 8400E 11150N 8400E 11175N 8400E 11200N 8400E 11225N	2.0 34520 1.4 24250 .9 18340 .7 27310 1.0 31440	1 3	5 12 9 4 5	692 497 218 272 343	.8 .1 .4 1.3 1.2	7 10440 4 20140 3 13720 5 5850 5 6840	.1 .7 .1 .1		80 3 64 4 102 4	51070 56720 66260 45890 45950	8110 6540 5200 3940 3760	14 22	12320 5530 9260	2250 3504 1755 2339 2266	1 1 1 1	1100 720 670 510 610	50 59 54	860 1030 950 1240 1160	26 41 24 27 25	1 1 1	13 22 21 14 19	1 1 1 1	1 1	69.8 2 54.8 76.0 1 82.9 1	02 06 56 12 26	1 3 1 1 1 1 1 2 1 1	1 1 1 1	105 1 47 2 9 3 20 2 27 18
8400E 11250N 8400E 11275N 8400E 11300N 8400E 11325N 8400E 11350N	.7 33770 .9 30520 1.4 43010 1.0 29140 1.0 31690	1 1	5 6 4 3	461 599 500 534 365	3.0 .3 .4 .8 1.0	6 7080 5 11930 8 8280 7 10020 6 5940	.1 .1 .1 .1	31 32 42	103 4 255 7 233 7	55770 46690 70850 74100 50770	6680 7660 8640 7100 1810	28 30	25660		3 1 2 1	540 600 660 540 610	80	2540 1370 1210 890 430	26 26 10 21 18	1 1 1 1	19 19 19 14 15	1 1 1 1	1 1 1 1 1 2	02.6 1 31.9 18.3 1	79 14 84 21 05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2	45 11 48 1 41 1 129 1 48 1
8400E 11375N 8400E 11400N 8400E 11425N 8400E 11450N 8400E 11475N	.4 12080 .9 23520 .4 20560 .6 25540 .8 23120) 1) 35) 1	1 3 3 2	550 224 158 149 288	.1 .4 .4 .7	2 9770 5 5840 3 3450 3 4030 3 8290	.1 .1 .1 .1	18	101 3 223 3 113 4	16040 33790 33630 42620 28190	2030 3040 2190 2030 1750	18 21	7170 3580 6460 4360	3042 335 490 425 1551	1 1 5 4 2	690 680 560 620 730	16 28 39 55 40	650 720 350 400 450	30 15 16 22 24	1 1 1 1	22 14 8 9 15	1 1 1 1	1 1 1	28.1 71.4 50.9 67.5 47.3	85 60 56 72 71	1 1 1 1 2 1	1 1 1	4 3 21 1 1 1 2 1 3 1
8400E 11500N 8500E 10500N 8500E 10525N 8500E 10550N 8500E 10575N	1.6 35100 .9 16140 1.1 27640 1.4 28830 1.7 29520) 1) 1) 1	4 3 5 6 5	235 715 271 502 503	1.1 .3 .3 .1	4 10010 3 13630 6 7770 6 12540 9 11800	.1 .1 .1 .1	13 24 36	62 2 100 4 193 4	35490 21330 42380 48870 57720	1830 1680 5420 4870 8040	18 23 24 25	3860 11300 12910	1943 2491 1014 2213 2490	3 1 1 1	1110 810 670 630 650	38 53 98	850 3050 640 1090 1260	31 24 24 25 24	1 1 1 1	16 28 13 28 23	1 1 1 1	1 1 1 1 1 1		62 66 71 91 04	2 1 1 1	1 1 1 1	12 1 12 1 33 1 39 3 84 1
8500E 10600N 8500E 10625N 8500E 10650N 8500E 10675N 8500E 10700N	1.7 29130 1.8 31340 .8 25260 .9 20510 1.0 20560) 1 } 1 } 1	7 6 7 8 6	287 349 249 286 288	.9 .7 .3	8 10400 8 10890 6 8720 5 9740 5 8390		33 39 30 27 24	225 5 122 4 82 4	61650 57730 49420 42110 39830	9320 10030 6700 6920 6230	26 22 18	15240 12720	1070 2030 1457 1806 1271	1 1 1 1	700 610 500 560 510	105 63	1700 1170 990 1170 890		1 1 1	19 17 9 10 9	1 1 1 1	1 1 1 1 1		89 21 96 91 83	1 1	1 1 1 1 1 1 1	82 4 98 1 44 1 32 1 36 1

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

PILE NO: 0V-1360-SJ5+6

DATE: 90/09/18
* ROCK * (ACT:F31)

P PB SB SR TH V ZN GA SAMPLE AL AS B BA BE ΒI CA CD CO CU K LI MN MO NA NI U W CR AU NUMBER PPM PPM PPM ' PPM PPB 2.3 33120 8 10350 9830 29 21420 1809 8500E 10725N 33 87 56110 650 110 890 100.6 112 .5 6 10 1.0.23380 76 38830 8500E 10750N 512 5 15620 26 6810 11890 3487 540 77 1500 28 25 68.4 133 57 396 97 1160 8500E 10775N 2.2 32090 .3 8 11360 95 57230 10250 29 17450 2656 510 36 10 108.7 132 16 108 29 15550 2830 8500E 10800N 1.9 33240 354 8000 34 113 56910 9740 89 1060 102.3 174 .1 590 18 14 74 9290 402 39 115 59030 8500E 10825N 1.7 35680 1.0 8200 34 16730 3869 560 71 1240 27 15 108.9 180 73 35 320 8500E 10850N 2.6 30270 .5 12910 . 1 31 79 49520 7230 30 16380 2381 850 17 23 78 1280 90.3 229 86 16 8500E 10875N 337 1.4 34110 9580 38 131 62850 11410 32 18370 3096 640 81 1710 30 18 124.7 180 93 350 9910 39 130 61030 10050 8500E 10900N 1.7 31920 30 18890 3153 710 87 19 17 1.1 1060 124.7 99 160 4 3 1 8500E 10925N 8 11900 9300 2.2 27750 496 33 81 48890 26 16920 2274 760 96 1020 13 90.3 155 .4 .1 21 88 8500E 10950N 2.7 29520 496 .5 9 12810 36 112 54910 12200 27 21210 1978 6 .1 680 116 1190 10 1 11 104.1 132 119 300 8500E 10975N 2.2 29130 5 .6 7 10180 .1 32 85 50580 8690 25 17850 1306 670 91 1000 9 10 100.3 104 88 27 18320 1928 8500E 11000N 2.1 33280 365 .6 9330 .1 36 73 54200 8310 800 103 1850 10 12 12 106.4 125 90 8500E 11025N 4.8 43530 376 14 17230 68 81320 18460 47 40030 1649 55 1190 183 1810 .1 .1 6 152.2 118 154 1 9 10990 27 21820 1542 8500E 11050N 2.3 32240 328 37 99 58310 10170 12 .1 680 110 1200 .1 118.5 101 98 8500E 11075N 9490 2.3 33450 401 .2 8 12050 38 103 56700 29 22760 1776 820 114 1220 13 1 114.9 102 13 105 8500E 11100N 543 .5 .3 9930 .1 92 53420 8340 1.9 33050 4 6 38 29 21840 2133 860 118 1370 13 105.7 105 102 8500E 11125N 8500E 11150N 2.2 33630 .7 18250 82 55970 32 23200 2300 21 5710 5193 679 8 11640 39 8300 710 122 1470 16 14 15 109.2 118 115 49 30080 15 421 12060 18 2870 48.8 216 620 68 1080 15 2.7 27730 302 27 22430 1945 12 8500E 11175N 6 14880 .1 36 80 54470 8120 1040 167 750 91.9 6 .4 16 84 85 880 127 800 8500E 11200N 3.5 31490 432 10 16030 56 60410 13680 25 31150 1745 . 1 41 6 17 1 110.8 90 1 116 1 27 32690 1513 8500E 11225N 4.0 36450 411 12 15150 .1 47 58 66220 12680 890 163 770 6 13 119.4 .1 145 8500E 11250N .7 18910 524 3 14880 24 98 36100 3080 23 21 7920 2636 530 2060 .8 67 33 34 63.6 121 19 . .3 8500E 11275N 559 27 111 40990 3870 .4 24400 6660 8710 2850 510 55 1100 28 16 77.0 124 23 29 8500E 11300N .8 22790 649 4 13710 30 116 40620 5570 20 9750 3711 580 51 1970 31 .1 36 79.2 133 8500E 11325N .6 24380 323 8. 4910 24 93 41630 4950 19 9910 1527 430 51 1110 20 13 86.3 .1 91 32 5 486 .5 .5 5 6820 8500E 11350N 1.0 31970 .1 39 189 60160 9310 27 17400 2009 530 90 1400 20 30 17 163.0 108 65 8500E 11375N .5 19160 919 13330 28 186 46050 4820 17 8780 4362 640 87 2000 90.5 154 38 24 1.2 34460 29 150 53390 8500E 11400N 458 .3 6440 8460 27 16720 1279 760 17 74 6 86 560 6 128.8 55 8 11310 8500E 11425N 2.3 27770 3 303 .3 . 1 36 163 51790 8030 26 21550 1417 490 129 880 101.0 69 14 114 8500E 11450N 1.7 24040 287 .5 6 9810 . 1 33 122 45690 4870 22 18060 1472 600 112 660 10 11 88.4 55 72 .1 8500E 11475N 3.3 33580 334 11 14580 48 187 69080 10500 29 32570 1368 870 176 12 5 640 8 130.8 55 156 50 242 70560 8500E 11500N 3.0 35370 319 10 12880 9870 29 30620 1432 520 193 750 8 16 133.5 59 2 166 8600E 10500N .7 21870 549 5 11950 23 80 38140 3820 21 9050 2745 920 45 2280 6 .1 26 24 71.2 136 31 1.3 25630 ۶. 8600E 10550N 450 9950 35 207 52210 6 .1 6530 22 13690 2417 280 65 1230 21 20 119.2 110 43 8600E 10575N 2.2 27560 337 .2 8 9550 31 112 54040 8680 19 17030 1144 380 70 830 8 15 127.2 80 75 7 280 1.2 23770 .9 25630 .1 7190 .1 8600E 10600N 5 308 25 23 67 44740 6420 20 12120 1593 49 570 18 10 99.8 101 37 259 8600E 10625N 85 43020 5330 9830 1339 7720 19 220 54 800 10 12 19 83.7 96 30 1.5 27450 374 38 167 58910 11310 23 18350 1821 8600E 10650N 8 9660 260 88 1550 .6 . 1 23 124.0 111 63 174 8600E 10675N 2.4 28880 378 9 11350 .1 36 149 60930 10060 24 21720 1551 630 82 1080 21 134.5 104 94 14 139 23 17960 1424 8600E 10700N 2.7 26510 308 .1 8 11230 .1 34 95 56620 9810 590 74 940 8 17 116.0 102 79 17 .1 18270 1274 8600E 10725N 2.2 32100 249 9710 .1 35 166 59320 8920 25 350 77 920 8 18 116.2 97 74 26 30 17050 2737 38 192 59420 8600E 10750N 1.5 30580 395 7 12850 7210 .8 760 116 2010 17 33 120.8 135 58 32 32 132 59580 8600E 10775N 2.1 30820 302 9410 8350 26 17210 1478 87 .5 .1 300 1220 12 21 115.0 115 6 65 6 10190 24 14570 2065 8600E 10800N 427 28 93 51010 97.0 124 21 1.9 26700 .1 7020 300 61 1320 33 21 52 6 34 117 55530 24 8600E 10850N 1.2 29390 408 6 8310 7760 30 14330 2908 680 80 1200 16 1 104.3 117 56 1 8600E 10875N 1.9 29340 263 9990 .1 46 126 61090 8090 320 93 1130 640 117 1520 3 .4 .2 30 16970 2705 13 16 125.2 101 -66 138 101 76130 36 27750 2698 8600E 10900N 2.4 34830 307 14050 47 10680 16 21 162.9 96 95 41 8600E 10925N 536 11 12730 51 121 79760 17620 38 28930 2916 2.8 40970 8 .1 340 172 1680 11 29 147.8 118 138 250 72 1550 26 8600E 10950N .6 30520 .7 6 7720 35 92 57680 5710 27 11390 2807 360 105.4 149 57 23 .1 16 8600E 10975N 1.8 29480 370 .5 8 8640 33 93 51380 8600 25 16590 1627 310 81 1100 87 55 16 1 14 1 107.4 112 8600E 11000N 3.0 36980 409 .1 11 11680 42 14990 38 32450 1641 650 151 80 68000 770 11 142.6 109 6 8 176 1.3 29510 23 13600 1668 8600E 11025N 334 6970 84 46910 5060 970 230 65 15 15 97.3 128 60 331 33 110 55030 7560 8600E 11050N 1.8 30650 5 .1 8 9670 24 16160 2005 540 78 1290 15 81 .1 11 1 122.1 106 8600E 11075N 2.4 32520 457 9 11400 36 100 56700 9150 30 19910 1899 640 107 820 .1 1 8 1 14 111.6 89 88 58160 8600E 11100N 1.2 24200 283 5 10750 5340 21 13920 3990 430 77 1250 25 1 16 84.0 110 46 234 292 8600E 11125N 23090 6 .4.2 5 11500 114 51640 5830 10430 2429 490 69 1070 17 19 83.4 41 97 8600E 11150N 1.2 23030 10670 23 58 39930 3880 24 11730 1964 70 23 .1 520 900 21 69.4 86 63 .j 8600E 11175N 1.2 22180 3 242 5 9540 20 81 34890 3920 22 8910 1403 740 49 320 20 13 70.1 33 1 74 9720 5 7680 8600E 11200N 1.0 25930 262 . 1 35 69 60600 23 22220 1451 210 42 1000 8 1 16 162.7 57 31 8600E 11225N 2.4 29840 9860 44 132 56060 10480 26 25020 1533 290 150 15 840 114.1 1 148

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1360-SJ7+8 DATE: 90/09/18

* ROCK * (ACT:F31)

TITAL ELONDERCHY GLON												, .															(//011131
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM		NA NI PM PPM		PB 1 PPM		SR PPM	TH PPM PF	U PM PI	V Z	N GA		W PPM	CR AU PPM PPB
8600E 11250N 8600E 11275N 8600E 11300N 8600E 11325N 8600E 11350N	.7 23630 .7 21010 .9 24160 .9 23050 .7 16670	1 1 1 1	2 2 4 6 1	213 229 219 256 149	.4 .2 .8 .1	3 6370 4 7720 3 7490 4 8330 3 5090	.1 .1 .1 .1	32 30 32 26 13	282 218 360 161 67	52740 40180 47280 41470 22730	6290 5420 4550 6240 3170	24 22 20	10100 4870	1511 1306 2239 1191 844	2 1! 6 3!	00 99 90 60	760 440 450 540) 11) 10) 13) 16	1 1 1 1	11 12 13 15 10	1 1 1 1	1 90 1 75 1 90 1 87 1 44	.7 7	8 1 4 1 5 1	1 1 1 1 1 1 1 1	1 1 1 1	56 8 45 2 29 11 35 6 14 3
8600E 11375N 8600E 11400N 8600E 11425N 8600E 11450N 8600E 11475N	1.4 29040 1.4 28500 .8 22570 .7 25750 .5 18980	1 1 1 1	3 2 1 2 4	313 351 272 572 354	.5 .5 .5	6 7680 5 8810 3 4830 4 7200 3 11550	.1 .1 .1 .1	31 34 23 24 19	131 188 110 115 100	47850 50750 37540 45370 35060	5140 4030 3770 5050 4090	23 22 18 20 23	14270	1969 2253 1796 2216 3634	1 19 1 1 1 1; 2 1; 2 1;	20 44 10 44	1190 1090 1900	16 19 12	1 1 1 1 1	16 17 13 19 24	1 1 1 1	1 115 1 105 1 77 1 109 1 60	2 7	5 1 6 1 6 1	1 1 1 1 1 1 1 1	1 1 1 1	71 10 41 4 31 9 29 11 12 12
8600E 11500N 9800N 9250E 9800N 9275E 9800N 9300E 9800N 9400E	.4 24550 1.8 29040 1.7 29900 .5 16970 .6 19380	1 1 1 1	1 3 7 2	230 625 724 1210 233	.3 .4 .1	3 5580 7 6440 6 6720 4 15020 3 5180	.1 .1 .1 1.0	22 40 40 22 19	114 157 134 86 70	38530 60830 58820 29520 31360	3320 10830 12060 5050 2350	21 20	8250 18030 19690 6080 6030	3334 728	1 2 1 2 1 2 1 3	40 62	850 710 3090) 10) 10) 26		14 14 16 36 19	1 1 1 1	1 74 1 144 1 132 1 48 1 65	4 11 6 13 5 27	9 1 1 1 7 1	1 1 1 1	1 1 1 1	25 2 83 2 88 1 25 2 16 1
9800N 9425E 9800N 9450E 9800N 9475E 9800N 9500E 9800N 9525E	.8 24180 .7 21360 1.2 26630 3.0 36980 1.3 26870	1 1 1 1	2 1 2 3 1	312 178 229 402 332	.5 .4 .3 .1	4 8330 3 3780 4 5680 9 9970 5 6420	.1 .1 .1 .1	18 11 21 35 28	43 30 97 47 131	34080 20080 48960 54360 50210	2550 1490 2450 6100 3990		6110 3520 8080 22050 12750	1915 742 509 1460 1092	1 4		880 450 760	22 19 10	1 1 1 1	20 11 18 21 13	1 1 1 1	1 77 1 45 1 123 1 127 1 130	.0 7 .8 7 .3 10	1 1 7 2 4 1	1 1 1 1 2 1 1 1	1 1 1 1	22 1 10 1 34 3 141 2 59 1
9800N 9550E 9800N 9575E 9800N 9600E 9800N 9625E 9800N 9675E	1.1 26850 1.2 20300 1.4 22620 .9 16520 .7 13060	1 1 1 1	2 3 3 3 3	393 199 304 323 106	.4 .2 .3 .1	5 7820 6 10470 5 11020 4 12410 3 6760	.1 .1 .1	27 41 55 43 34	79 286 631 323 83	49300 73340 76560 52210 52570	5080 5160 5560 5440 4270	18 21 15	11200 21270 22140 14450 15560	1844 2829 1513 1909 478	1 1:	20 60 90 126 20 64	1530 2080	15 10 20 20	1 1 1 1	20 16 18 24 10	1 1 1 1	1 110 1 218 1 334 1 167 1 109	6 12 1 18 4 13	6 1 5 1 8 1	1 1 1 2 1 1 1 1	1 1 1 1	51 4 65 2 59 18 60 1 105 2
9800N 9700E 9800N 9725E 9800N 9750E 9800N 9775E 9800N 9800E	.7 10980 .9 12120 1.7 8530 .9 13200 .9 15040	27 1 1 8 2	2 2 2 3 3	152 172 99 160 168	.1 .3 .3	4 6560 3 8160 • 2 34790 3 8610 4 7780	.1 .1 .1 .1	29 30 30 31 29	44 64 56 60 85	40020 41010 33590 40850 51040	4030 3230 2070 4720 4220	13 28 15	16140 20180 31170 19020 17410	656 536 670 1322 922	1 1	30 72 80 73	370 360 400 270) 14) 8) 12) 12	1 1 1 1	8 16 12 15	1 1 1 1	1 92 1 94 1 63 1 72 1 107	7 4	4 1 0 1 6 1	1 1 1 2 1 1 1 1	2 2 2	249 1 259 1 294 3 234 1 196 6
9800N 9825E 9800N 9850E 9800N 9875E 9800N 9900E 9800N 9925E	1.5 15190 1.0 13340 .7 13630 .7 14530 .6 14560	1 1 1 1	4 2 1 1	241 184 247 190 193	.1 .3 .4 .4	5 9770 3 9700 2 11780 2 8350 2 6790	.1 .1 .1 .1	37 30 18 13 13	237 97 74 53 47	70320 46230 24890 23600 24680	5190 4210 3470 2790 2850		21860 16890 8210 5640 4670	1105 1302 1487 988 773	1 2	10 82 10 64 20 36 50 28 30 25	641 871 8 981	25 28 28 28	1 1 1 1	13 13 22 21 20	1 1 1 1	1 135 1 106 1 48 1 53 1 59	6 7 0 10 1 9	2 1	1 2 1 2 1 1 1 1		277 2 177 54 61 3 41 1 25 3
9800N 9950E 9800N 9975E 9800N 10000E 9900N 9250E 9900N 9275E	.7 13250 .5 11620 .5 13070 1.5 32340 1.3 29530	10 1 1 1	3 2 2 6 2	206 170 180 556 360	.5 .4 .2 .6	3 8210 3 6080 3 5930 6 9290 6 5750	.1 .1 .1 .1	23 27 23 42 30	80 94 96 204 127	49210 62840 48530 61390 48980	2970 2890 3330 9800 6720		7520 7390 7100 17580 12690	784 670 827 3289 1219	1 12 1 2 1 1	80 35 40 38 10 40 90 150 10 81	8 670 840 1470	32 19 15	1 1 1 1	19 12 15 22 14	1 1 1 1	1 145 1 192 1 138 1 145 1 114	4 5 2 6 6 16	0 1	1 1 1 2 1	1 1 1 1	64 2 89 1 73 5 80 3 48 9
9900N 9300E 9900N 9325E 9900N 9400E 9900N 9425E 9900N 9450E	1.9 29550 2.4 33420 1.5 22870 1.4 26420 1.6 21550	1 1 1 1	4 3 3 2	388 683 328 212 270	.1 .1 .3	7 6580 8 11470 5 6310 6 8880 5 7440	.1 .1 .1 .1	39 55 25 56 28	191 208 82 233 121	56330 71130 51880 62490 50180	11590 12840 5810 5230 3980	28 38 20 22 17	18030 25550 10880 19640 11960	1899 2479 903 1611 987	1 5 1 2 4 8	20 124 20 195 40 52 30 216 30 79	122 82 72	9 19 22	1 1 1 1	12 16 19 18 22	1 1 1 1	1 124 1 130 1 137 1 155 1 146	1 12 8 8 9 8	7 7	2 1 2 1 1 1 1	2	102 8 165 3 49 2 164 1 74 4
9900N 9475E 9900N 9500E 9900N 9525E 9900N 9550E 9900N 9575E	1.3 24590 1.3 16690 1.3 23700 2.0 18970 5.0 14460	1 1 1 1	1 1 2 4 5	351 292 348 313 235	.2 .5 .1	5 10180 4 6780 6 7840 4 8910 3 21160	.1 .1 .1 .1	24 24 29 48 75	70 125 135 450 2201	38570 49650 54490 96050 112480	3930 3450 4090 3450 3410	14 19 14 12	11890 11010 11590 9420 9840	1212 758 1154 1073 1438	1 2 1 2 1 3 3 2	80 81 50 42 40 50 00 31 60 38	96 63 92 3 120	13 14 12 14 15 16 17 17 18	1	17 16 14 19 16	1 1 1 1	1 101 1 150 1 162 1 155 1 121	.0 6 .4 8 .2 7 .5 13	8 2	1 1 1 1 1 1 2 2 1 3	1 1 1 1	97 2 45 23 49 5 5 20 1 34
9900N 9600E 9900N 9625E 9900N 9650E 9900N 9675E 9900N 9700E	.8 21080 1.0 7570 1.5 14150 1.9 13680 2.3 14970	1 3 1 1	1 1 2 4 7	322 132 215 239 333	.1 .2 .1 .1	4 5720 3 7300 5 10070 3 18300 3 19120	.1 .1 .1 .1	45	196 207 592 1080 1211	42010 33940 63530 68810 77860	4180 4360 6040 5210 5420	12 12	7850 12540 16520 10650 9570	848 338 685 1210 1651	1 1 1 1 1 1	50 61 70 72	84 7 113 1 114 2 174	23 36 70 98	1 1 1 1	11 9 13 12 19	1 1 1 1	1 98 1 93 1 179 1 181 1 176	.2 6 .3 10 .1 14	8 9 6 3	1 1 1 2 1 2 1 2	1 1 1 1	27 2 86 18 120 51 36 72 17 54
9900N 9725E 9900N 9750E	1.6 14450 1.1 11420	7	7	484 70	.1 .1	3 18530 2 12680	-1 -1	27 13	444 137	44270 19030	2940 2240	17 9	7670 3670	1598 267		20 61 00 30			1	39 10	1	1 108 1 46	.4 23 .3 2	6 '	1 1	1	22 23 13 7

MIN-EN LABS -- ICP REPORT

COMP: GOLDCLIFF RESOURCES

ATTN: L.SALEKEN/G.CROOKER

PROJ: GEOTEC-GOLDCLIFF

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1360-SJ9+10 DATE: 90/09/18

• ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM 1	AL PPM I	AS PPM /	B. PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO CU PPM PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO NA PPM PPM	NI PPM	P PPM			SR TH		V PPM	ZN G PPM PP			CR AU
9900N 9775E 9900N 9800E 9900N 9825E 9900N 9850E 9900N 9875E	.6 164 .6 179 .7 15 .6 136 .9 19	750 570	1 1 1 1	4 3 4 4	236 257 230 206 271	.7 .2 .4 .1	3 3 3 4	8250 8090 8900 9050 7440	.1 .1 .1 .1	20 106 24 81 22 67 23 71 25 72	36940 40800 39730 43080 46450	4170 4630 3520 4110 4620	11 13 11 11 14	6970 13090 9640 9970 9050	803 931 820 788 880	1 180 1 180 1 200 1 200 1 240	33 44 42 42 39	570 800 900 950 990	26 23 13 18 24	1 1	14 1 14 1 15 1 19 1 18 1	1 1 1 1 1	97.7 104.0 97.4 108.4 117.8	53 62 56 59 74	1 1 1 1 1 1 1 2 2 1	1 6	41 2 74 1 60 1 62 7 60 3
9900N 9900E 9900N 9925E 9900N 9950E 9900N 9975E 9900N 10000E	1.0 116 1.2 146 2.1 13 1.2 156 1.0 18	000 110 280	1 1 1 1	3 4 2 2 3	158 174 160 235 232	.1 .1 .7 .4	4 5 4 3 4	7250 6270 14850 7630 6310	.1 .1 .1 .1	36 190 40 353 36 402 26 258 25 146	75910 87850 67700 48080 50020	3510 4670 3970 3800 3500	10	12000 11120 14970 9550 8640	666 753 578 761 833	6 170 31 160 3 190 8 200 4 210	44 35 45 37 35	620 500 560 800 740	30 41 51 31 23	1 1	13 1 14 1 15 1 20 1 18 1	1 1 1 1	236.3 274.2 203.0 134.7 145.0	50 55 48 63 61	1 2 2 2 2 1 1 1 1 1	2 3 4 1 4	42 2 32 4 46 84 41 1 36 3
10000N 9250 10000N 9275 10000N 9300 10000N 9325 10000N 9350	1.3 216 1.2 17 5.0 366 3.1 39 2.0 28	710 500 120	1 1 1 1	3 1 3 7	371 304 448 2497 641	.5 .4 .1 .1	9	6910 6030 17470 22580 15510	.1 .1 .1 .1	21 49 22 69 36 16 49 169 47 194	37010 39100 74380 79010 57030	4930 4990 16600 12900 9700	33	32960	1078 809 1288 1780 2442	1 250 1 230 1 330 1 710 1 330	92	630 360 1050 4500 1740	19 15 8 8 12	1 1	11 1 12 1 17 1 52 1 28 1	1 1 1 1	98.8 114.6 196.7 207.6 129.7	82 44 77 82 122	2 1 1 1 1 1 1 2	1 4	42 1 41 1 1 1 49 2 94 1
10000N 9375 10000N 9450 10000N 9475 10000N 9500 10000N 9525	2.5 339 .8 19 1.1 22 1.5 23 1.7 25	770 140 100	1 1 1 1	6 2 4 3 3	439 553 253 314 290	.1 .3 .3	9 4 4 5 6	9680 8310 7410 8490 7020	.1 .1 .1 .1	57 265 27 108 27 91 27 148 34 188	73280 41470 49080 48690 69320	17600 3590 4430 5740 8100	16 17 20	8310	1401 1761 799 1232 1059	1 310 1 300 1 290 1 310 1 220	83 66 45	1680 1240 620 780 1000	8 22 14 18 14	1 1	25 1 18 1 15 1 16 1 18 1	1 1 1 1	144.2 118.8 131.8 147.9 248.9	75 78 73 87 83	1 1 1 1 1 1 1 1 2 2	1 4	06 3 42 1 45 2 24 2 29 1
10000N 9550 10000N 9575 10000N 9600 10000N 9625 10000N 9650	1.6 244 1.1 190 1.1 179 1.2 210	30 560 500	1 1 1 1	2 5 1	432 416 528 343 313	.1 .1 .3 .5	5 4 4 4	7510 8900 13160 6980 6400	.1 .1 .1 .1	22 67 24 69 24 104 26 262 19 58	41120 43350 41590 45610 33410	4290 4430 4740 3550 3430	20 16 15 17 15		1159 1142 1810 816 874	1 240 1 240 1 210 1 280 1 260	42 43 44 53 35	400 760 1770 760 300	8 20 27 20 10	1 1	12 1 14 1 26 1 15 1 13 1	1 1 1 1	105.7 123.2 121.5 127.9 84.6	73 65 115 79 67	1 1 1 1 1 1 1 1	1 2	36 2 53 4 26 2 46 3 25 1
10000N 9675 10000N 9700 10000N 9725 10000N 9750 10000N 9775	.6 13! .5 149 .6 130 .9 13	930 520 130	1 1 1 1	3 4 2 5 2	247 309 368 449 285	.1 .1 .1 .1	4 4 3 4	7380 8480 9610 9260 6730	.1 .1 .1	37 78 35 49 28 35 21 49 25 101	67770 66050 49260 38040 53260	4610 4450 3600 5420 4040	10 11 10 10 9	10590 9770 7730 8260 8090	833 855 1228 1446 937	1 150 1 150 1 190 2 250 1 160	48 52 38 42 43	510 600 620 1260 620	11 28 21 22 23	1 1	13 1 15 1 16 1 20 1 12 1	1 1 1 1	200.0 186.5 131.1 89.9 153.5	66 78 78 131 64	1 1 1 1 1 1 1 1 2 1	3 4 1 2 1 4	42 2 41 1 28 1 45 2 53 1
10000N 9800 10000N 9825 10000N 9850 10000N 9875 10000N 9900	.6 14 .9 16 .7 12 .7 12 .7 16	750 320 550	1 1 1 1	3 3 4 4	268 212 158 137 150	.1 .2 .3 .1	3 4 3 3 3	6480 5400 6150 5990 6920	.1	17 42 25 69 17 35 17 46 19 41	30750 51710 35630 35130 39820	3150 2890 3280 3590 3530	10 10 8 9 12	6450 9140 5920 6060 5750	822 495 569 602 779	1 220 1 200 1 160 2 200 1 200	31 48 27 26 32	760 430 410 480 580	17 21 16 13 12	1 1	21 1 14 1 22 1 22 1 24 1	1 1 1 1	75.9 148.3 95.4 93.8 110.7	60 47 41 45 45	1 1 1 1 1 1 1 1 1 1	1 3	32 1 55 1 36 1 25 2 35 1
10000N 9925 10000N 9950 10000N 9975 10000N 10000E 10100N 9325E	.8 144 .8 150 1.1 17 .8 16 1.6 20	030 130 130	1 1 1 1	4 4 3 4	193 196 223 212 678	.2 .3 .3 .4 .1	3 3 4 5	7340 8660 6430 7180 13020	.1 .1 .1 .1	24 59 20 78 25 265 23 121 25 69	47350 35860 47320 44250 40210	4260 4290 4080 4240 6040	10 10 11 10 15	9350 9100 8000 8370 11130	765 844 807 793 1832	1 200 2 200 18 200 2 170 1 260		520 850 790 1020 2390	16 22 80 24 12	1 1	20 1 42 1 25 1 33 1 29 1	1 1 1 1	138.7 97.7 141.7 128.5 86.9	53 59 67 73 170	1 1 1 1 1 1 1 1 1 1	1 3	48 1 31 2 23 1 24 1 51 10
10100N 9350E 10100N 9375E 10100N 9400E 10100N 9475E 10100N 9500E		000	1 1 1 4 1	6 2 5 15 3	603 400 560 352 121	.1 .1 .1 .1	6 8 8 4 6	12800 6160 7750 27950 5600	.1 .1 .1 .1	30 86 36 188 38 323 41 239 53 194	49580 58430 73070 81320 113360	8830 11130 13900 3150 2710	18		1810 1283 1539 1113 394	1 330 1 230 1 320 1 120 1 110	85 92	1390 740 1240 3140 260	13 7 7 24 13	1	20 1 14 1 18 1 42 1 14 1	1 1 1 1	101.4 143.3 162.0 297.1 451.3	81 60 83 160 36	1 1 1 1 1 1 2 2 1 2	1 8	87 2 80 5 90 41 1 2 1 6
10100N 9525E 10100N 9550E 10100N 9575E 10100N 9600E 10100N 9625E		020	1 1 1 1	2 1 1 2 1	229 314 98 365 317	.1 .1 .1 .1	4 4 4 5	5690 7010 5720 10400 6220	.1 .1 .1 .1	39 76 30 62 30 22 34 62 27 55	52380	2900 3170 2290 2330 2190	7 13 11 10 17	7760 8910 18800 7840 8460	683 743 200 1294 658	1 120 1 200 1 100 1 140 1 230	47 43 76 50 41	350 310 310 840 660	14 10 11 20 10	1 1	11 1 11 1 7 1 18 1 13 1	1 1 1 1	279.8 161.1 92.4 216.1 148.7	38 44 26 63 79	1 2 1 1 1 1 1 2 1 1	1 3 2 17 1 4	16 1 37 1 70 1 45 2 31 1
10100N 9650E 10100N 9675E 10100N 9700E 10100N 9725E 10100N 9750E	1.0 13 .8 136 .9 126 1.2 149	570 570 970	1 1 1 1	3 4 2 2 2	237 261 523 421 335	.1 .1 .2 .1	4 4 3 4 4	7690 8180 9040 9640 7450	.1 .1 .1 .1	40 75 37 47 25 42 22 66 25 55	70600 70810 48130 41340 39450	3810 4560 3190 4210 3810	10 9 11	11920 10000 6950 7970 10370	807 726 1265 1372 1056	1 210 1 190 1 210 1 210 1 210	38 53	550 520 1700 1060 710	18 16 20 19 13	1 1	13 1 14 1 22 1 17 1 16 1	1 1 1 1	185.8 199.0 116.7 104.9 91.4	63 57 98 116 74	1 1 1 1 1 1 1 1	1 3	23 1 30 2 20 1 38 1 59 2
10100N 9775E 10100N 9800E 10100N 9825E 10100N 9850E 10100N 9875E		360 740 520	1 1 1 1	3 3 1 3	324 272 301 226 211	.1 .4 .1 .1	4 3 4 3 4	7460 7820 8260 7220 6270	.1 .1 .1	26 68 18 51 22 96 26 210 29 117	45320	3710 3340 3570 2990 3420	12 10 10 9 10	10140 7260 7880 7950 8150	962 756 865 657 666	1 190 1 210 1 180 2 170 1 160	53 34 39 40 44	840 750 620 620 440	21 11 12 23 13	1	16 1 23 1 23 1 22 1	1 1 1 1	105.4 83.9 112.6 125.4 134.5	74 58 61 57 51	1 1 1 1 1 1 1 1 1 1	1 3	65 1 37 3 27 1 14 2 31 1

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1360-SJ11

DATE: 90/09/18 * ROCK * (ACT:F31)

CA CD CO CU FE K LI MG MN MO NA NI P PB SB SR TH U AL AS B BA BE BI V ZN GA SN W CR AU SAMPLE AG

NUMBER	PPM PPM	PPM 'PF			PPM PP	M PPM	PPM	PPM	PPM PPM	PPM	PPM I	PPM PF	PM PPM	PPM PP	1 PPM	PPM PF		M PPM	PPM	PPM	PPM P	PM P	M PPM	PPB
10100N 9900E 10100N 9925E 10100N 9950E 10100N 9975E 10100N 10000E	.9 6930 .7 14960 1.1 17380 1.1 8650 1.2 14780	27 1 1 1	1 61 2 248 4 273 3 109 6 158	.1 .4 .1 .5	3 901 3 731 3 917 4 1609 3 1100	0 .1 0 .1 0 .1 0 .1	20 20	306 90 79 149 85	64210 1940 37030 3920 39040 4540 86980 2180 52240 3990	5 13 10 7 12 9 6 12 11 12	250 7690 7380 7780 2360	222 754 726 395 853	1 120 1 180 1 230 3 150 2 210	53 400 32 600 34 740 40 570 34 900	24 19 19 19 31 20	6 1 1 1 1 1	7	1 1 1 1 1 1 1 1	210.7 105.7 108.0 303.1 159.0	38 51 61 43 70	1 1 1 2 1	1 1 2 2	1 19 1 23 1 25 2 7 1 17	64 2 1 2
	•																					-		
			-																					
					· , · ,										-			-					····	
					. , ,																· · · · · · · · · · · · · · · · · · ·			
					,											<u></u>					· • • • • • •			
											. ,		<u>.</u>											· · ·
							· · · -																	
													,										-	
											······································													
			·		·						-		·			· · · · · · · · · · · · · · · · · · ·					· 			
										,	····		 											
										····-			<u>., -</u>											······································

Appendix II

ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

Sample No.	Grid Coord.	Туре	Description
3651	9845N 9685E	grab	-massive skarn, 60% massive py, mag, cpy, mal
3652	9845N 9685E	float	-massive garnet skarn, 2% py, calcite on fractures
3653	9845N 9685E	grab	-massive skarn, garnet, mag, py, 3% cpy, mal on fractures
3654	9845N 9685E	grab	-massive skarn, 60% py, mag, 1% cpy, mal
3655	9845N 9685E	grab	-massive mag, py,
3656	9845N 9685E	grab	-massive mag, py, hem
3657	9845N 9685E	grab	-massive mag, py, hem, calcite,
3658	9875N 9705E	grab	-4 mm calcite veinlet, tr py, mal,
3659	9860N 9735E	float	-chert bx, yellow iron oxides within matrix
90G-20	10405N 8105E	grab	-grey chert, 60 cm wide zone with iron oxides on fractures
90G-21	10325N 8090E	float	-grey quartzite, 2 mm fractures with limonite
90G-22	10310N 8255E	grab	-grey quartzite, rusty fractures, 1/2% py within quartzite
90G-23	10315N 8275E	grab	-grey chert, rusty fractures with py, rusty boxworks with limonite
90G-2 4	10320N 8290E	float	-sub oc? fg hbl diorite, 7 mm hbl laths up to 10% fg diss py
90G-25	10320N 8305E	float	-grey-green chert, 10-15% diss py

90G-26	10360N 8340E		-massive limonite within a bleached, altered intrusive?
90G-27	10400N 8375E	float	-bleached, altered, hbl diorite? rusty fractures, limonite, 10% py
90G-28	10400N 8350E	grab	-rusty, oxidized fracture within hbl diorite, 232° dip 45° N
90G-29	10320N 8290E	float	-rusty grey quartzite, 1/2% py on fractures
90G-30	10300N 8305E	float	-grey, rusty, fractured quartzite,
90G-31	10130N 8305E	float	-rusty grey-black chert, 1% py
90G-32	10190N 8400E	float	-rusty, grey chert, 1/2% py
90G-33	10210N 8400E	_	-dark grey feldspar porphyry, 1/2% py diss and along fractures
90G-3 4	10585N 8400E	float	-grey quartzite with rusty fractures

Appendix III

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

SCINTREX MP-2 PROTON PRECESSION MAGNETOMETER

Resolution: 1 gamma

± gamma over full operating range Total Field Accuracy:

20,000 to 100,000 gammas in 25 Range:

overlapping steps.

A reading appears 1.5 seconds Internal Measuring Program:

> after depression of Operate Switch & remains displayed for 2.2 secs. Recycling feature permits automatic repetitive readings at 3.7 sec.

intervals.

External trigger input permits use External Trigger:

of sampling intervals longer than

3.7 seconds.

Display: 5 digit LED readout displaying

total magnetic field in gammas or

normalized battery voltage.

Multiplied precession frequency Data Output:

and gate time outputs for base station recording using interfac-

ing optionally available from

Scintrex.

Up to 5,000 gammas/meter. Gradient Tolerance:

8 size D cells ≈25,000 readings at Power Source:

25° C under reasonable conditions.

Omnidirectional, shielded, noise-Sensor:

cancelling dual coil, optimized

for high gradient tolerance.

Complete for operation with staff Harness:

or back pack sensor.

Operating Temperature Range: -35 to +60° C.

Console, 8 x 16 x 25 cm; Sensor, Size:

8 x 15 cm; Staff 30 x 66 cm;

Console, 1.8 kg; Sensor, 1.3 kg; Weights:

Staff, 0.6 kg;

Scintrex Manufacturer:

222 Snidercroft Road

Concord, Ontario

GEONICS LIMITED VLF EM 16

Source of Primary Field

VLF transmitting stations

Transmitting Stations Used:

Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects

either station.

Operating Frequency Range:

About 15-25 Hz.

Parameters Measured:

1- The vertical in-phase component (tangent of the tilt angle of the

polarization ellipsoid).

2- The vertical out-of-phase (quad -rature) component (the short axis of the polarization ellipsoid com-

pared to the long axis).

Method of Reading:

In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone

Scale Range:

In-phase ± 150%; quadrature ±40%

Readability:

±1%

Operating Temperature Range: -40 to 50° C.

Operating Controls:

ON-OFF switch, battery testing push button, station selector, switch, volume control, quadrature dial ±40%, inclinometer ± 150%

Power Supply:

6 size AA alkaline cells ≈200 hrs.

Dimensions:

 $42 \times 14 \times 9 \text{ cm} (16 \times 5.5 \times 3.5 \text{ in})$

Weight:

1.6 kg. (3.5 lbs)

Instrument Supplied With:

Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional)

set of batteries.

Manufacturer:

Geonics Limited

1745 Meyerside Drive/Unit 8

Mississauga, Ontatio

L5T 1C5

Appendix IV

VLF-EM AND MAGNETIC DATA

Goldcliff Resource Corp. Data Listing

Area: Olalla B.C. Current File Name: GCNDAT.WRI Grid: GCN From File Name: GCN.XWZ

Date: February, 1991

Instrument Type: Scintrex MP-2 Magnetometer and Geonics EM-16

(Line & Station + = Northings and Eastings, - = Southings and Westings)

DATA TYPE(S):

#1. Total Field Magnetic Values

#2. VLF-EM In-Phase Values

#3. VLF-EM Quadrature

DATA DETAILS:

Corrected total field mag

Cutler Transmitter Cutler Transmitter

N/S	E/W				
STATION	LINE	#	# 1.	# 2.	#3.
9700	8300			9	- 7
9725	8300			13	-7
9750	8300			18	-2
9775	8300			25	3
9800	8300			30	2
9825	8300			34	6
9850	8300			42	3
9875	8300			44	6
9900	8300			50	4
9925	8300			51	8
9950	8300			52	4
9975	8300			50	4
10000	8300			49	1
10025	8300			46	2
10050	8300			43	3
10075	8300			39	10
10100	8300			30	6
10125	8300			26	10
10150	8300			16	2
10175	8300			10	-3
10200	8300			5	-7
10225	8300			· -4	-9
10250	8300			-8	-12
10275	8300			-8	-9
10300	8300			-2	-10
10325	8300			1	-5
10350	8300			3 3 3	-1
10375	8300			3	4
10400	8300				2
10425	8300			-2	-1
10450	8300			-6	2
10475	8300			-6	-4
10500	8300			-8	-6
10525	8300			-25	-9
10550	8300			-29	-11
10575	8300			-31	-8
10600	8300			-33	-10

	-				
	10625	8300	-40	-12	
	10650	8300	-38	-11	
	10675	8300	-48	-15	
	10700	8300	-48	-6	
	10725	8300	-43	- 5	
	10750	8300	-39	-7	
	10775	8300	-43	-16	
	10800	8300	-38	-10	:
	10825	8300	-31	0	
	10850	8300	-23	-1	
	10875	8300	-17	-3	
	10900	8300	-15	3 2	
	10925	8300	-13	4	
	10950	8300	-13	4	
	10975	8300	-8	-2 -4	
	11000	8300	-8 -9	- <u>4</u> -16	
	11025	8300	-10	-16 -32	
	11050	8300	-10 -10	-32 -26	
	11075 11100	8300 8300	-10 -2	-26 -38	
	11125	8300	-2 -2	-36 -26	
	11125	8300	0	-20 -5	
	11175	8300	4	-1	
	11200	8300	7	-2	
	11225	8300	9	6	
	11250	8300	16	10	
	11275	8300	16	8	
	11300	8300	18	7	
	11325	8300	16	3	
	9700	8400	14	-6	
	9725	8400	19	-2	
	9750	8400	23	0	
	9775	8400	27	-2	
	9800	8400	28	-2	
	9825	8400	33	-2 2 3 1 -2	
	9850	8400	38	2	
	9875	8400	40 39	3 1	
	9900	8400 8400	34	_2	
	9925 9950	8400	33	- <u>2</u> -1	
	9975	8400	32	-2	
	10000	8400	40	5	
	10025	8400	32	1	
` .	10023	8400	31	Ō	
	10075	8400	35	2	
	10100	8400	40	8	
	10125	8400	38	8	
	10150	8400	35	11	
	10175	8400	35	10	
	10200	8400	28	9	
	10225	8400	24	5	
	10250	8400	18	-5	
	10275	8400	12	-3	

10300 10325 10350 10375 10400 10425 10450 10475 10500 10525 10550 10575 10600 10625 10675 10775 10775 10800 10825 10850 10875 109950 109950 10975 11000 11025 11050 11125 11150 11175 11200 11225 11250 11375 11375 11375 11400 11425 11475 11500	8400 8400 8400 8400 8400 8400 8400 8400		8002331595148083150234846351833152245043353802 -1595480831503484635183310201152245043353802	-91001422836543203662002232027213544411213978087011
10500	8500	58611	-25	-6
10525	8500	58286	-25	-7
10550	8500	58384	-30	-10
10575	8500	58442	-33	-14

	10600	8500	58475	-32	-15
•	10625	8500	58667	-30	-16
	10650	8500	58857	-36	-11
	10675	8500	58811	-38	-9
	10700	8500	59071	-31	-9
	10725	8500	59153	-28	-3
	10750	8500	58872	-3	ō
	10775	8500	58841	-23	ĭ
	10800	8500	58797	-21	-2
	10825	8500	58783	-25	-1
	10825	8500	58765	-29	-2
	10875	8500	58780	-35	-4
	10900	8500	58804	- 4 7	-8
	10905	8500	58809	-48	-8
	10925	8500	58827	-38	-8
	10935	8500	58845	-26	ĭ
	11000	8500	58895	-23	ō
	11025	8500	58919	-22	-4
	11025	8500	58636	-12	2
	11075	8500	58851	-6	4
	11100	8500	59060	1	7
	11125	8500	58978	3	9
	11125	8500	58899	6	6
	11175	8500	58992	7	5
,	11200	8500 8500	59151	9	5
	11225	8500 8500	59295	9	4
	11250	8500 8500	58698	3	2
	11275	8500	58661	8	Õ
	11300	8500 8500	58772	5	Ö
	11300	8500	58705	5 5	-3
	11325	8500 8500	58374	2	-3
	11375	8500	58291	5	-4
	11400	8500 8500	58299	9	Ō
	11425	8500	58361	17	2
	11425	8500 8500	58115	20	6
	11475	8500	57976	26	8
	114/5	8500	58335	32	12
	11500	8500	56335	34	12
	10500	8600	59204	-21	-8
	10525	8600	59808	-25	-8
	10550	8600	59876	-32	-12
*	10575	8600	59509	-30	-8
	10600	8600	59306	-34	-9
`	10625	8600	59142	-35	-6
	10650	8600	59199	-34	-3
	10675	8600	59161	-38	-4
	10700	8600	59251	-34	-2
	10725	8600	59196	-30	-2
	10750	8600	59172	-28	-4
	10775	8600	59236	-24	-2
	10800	8600	59225	-22	- 5
	10825	8600	59141	-28	-13
	10850	8600	59214	-35	-14
	10875	8600	59513	-36	-12

	10900	8600	59487	-36	-13	
	10925	8600	59756	-30	-6	
	10950	8600	59547	-28	-7	
	10975	8600	59503	-22	-4	
	11000	8600	59615	-14	1	
	11025	8600	59645	-10	4	
	11050	8600	59711	-5	2	
	11075	8600	59761	-3	4	
	11100	8600	59853	0	4	
	11125	8600	59936	2	9	
	11150	8600	59939	1	7	
	11175	8600	60192	-1	4	
	11200	8600	59805	1	2	
	11225	8600	60378	0	3	
	11250	8600	60473	2	1	
	11275	8600	60924	7	-2	
	11300	8600	61924	9	-4	
	11325	8600	63284	10	-2	
	11350	8600	63124	3	- 5	
	11375	8600	61540	4	0	
	11400	8600	58610	1	2	
	11425	8600	58207	-1	1	
	11450	8600	57866	-6	0	
	11475	8600	58036	-4	1	
	11500	8600	58402	-1	1	
	10500	0700	50054			
	10500	8700	58854			
	10525	8700	58908			
	10550	8700	59325			
	10575 10600	8700 9700	59258 60334			
	10625	8700 8700	60361			
	10625	8700	60410			
	10675	8700	60239			
	10700	8700	58832			
	10725	8700	59289			
	10750	8700	59409			
	10775	8700	59450			
	10800	8700	59688	•		
	10825	8700	59654			
	10850	8700	59710			
	10875	8700	59713			
	10900	8700	59721			
· .	10925	8700	60071			•
	10950	8700	59750			
	10975	8700	59555			
	11000	8700	59630			
	11025	8700	60189			
	11050	8700	60071			
	11075	8700	60126			
	11100	8700	60245			
	11125	8700	60448			
	11150	8700	60498			
	11175	8700	60720			

11200 11225 11250 11275 11300 11325 11350 11375 11400 11425 11450 11475 11500	8700 8700 8700 8700 8700 8700 8700 8700	60974 61190 62098 62883 61594 61092 61156 60110 59437 58782 57925 57539 57650
10500 10525 10550 10575 10600 10625 10650 10675 10700 10725 10775 10800 10825 10850 10875 10900 10925 10950 11025 11050 11075 11100 11125 11150 11175 11200 11255 11275 11300 11325	8800 8800 8800 8800 8800 8800 8800 880	59662 59374 59592 59770 59903 60160 60402 60338 60388 60388 60855 60848 609914 61002 61257 61727 62350 64961 62068 60313
11350 11375 11400 11425 11450 11475	8800 8800 8800 8800 8800	59115 56939 57528 57938 58188 58141

11500	8800	56176		
E/W STATION	N/S LINE #	# 1.	# 2.	#3.
9250	9800	60229		
9275	9800	60310		
9300	9800	60492		
9325	9800	60681		
9350 9375	9800	60753		
9400	9800 9800	60924		
9425	9800	61122 61493		
9450	9800	61743		
9475	9800	62059		
9500	9800	62639		
9525	9800	63185		
9550	9800	64042		
9575	9800	65054		
9600	9800	62734		
9625	9800	66982		
9650	9800	64335		
9675	9800	61028		
9700	9800	61669		
9725	9800	62243		
9750	9800	64290		
9775	9800	67460		
9800	9800	70200		
9825	9800	64145		
9850	9800	64722		
9875	9800	65020		
9900	9800	64257		
9925	9800	64149		
9950	9800	62622		
9975 10000	9800	62050		
10000	9800	63524		
9250	9900	60909		
9275	9900	60982		
9300	9900	61070		
9325	9900	61299		
9350	9900	61514		
9375	9900	61650		
9400	9900	61954		
9425	9900	62482		
9450	9900	62918		
9475	9900	63483		
9500 9525	9900	64338		
9525 9550	9900 9900	66431		
9575	9900	69728		
9600	9900	64702 67004		
9625	9900	65055		
9650	9900	64135		
200	2200	OFTOO		

	9675	9900	64300			
	9700	9900	62324			
	9725	9900	62238			
	9750	9900	61798			
	9775	9900	63179			
	9800	9900	64252			
	9825	9900	67217			
	9850	9900	68280			
	9875	9900	74909			
	9900	9900	75884			
	9925	9900	63871			
	9950	9900	65485			
	9975	9900	66016			
	10000	9900	68512			
	9250	10000		10	5	
	9275	10000		10	4	
	9300	10000		12		
	9325	10000		16	5 5	
		10000		17	7	
	9350					
	9375	10000		26	4	
	9400	10000		25	9	
	9425	10000		31	9	
	9450	10000		35	12	
	9475	10000		25	7	
	9500	10000		25	9	
	9525	10000		22	10	
	9550	10000		22	10	
	9575	10000		26	8	
	9600	10000		18	-1	
	9625	10000		18	-1	
	9650	10000		12	0	
	9675	10000		10	-2	
	9700	10000		12	0	
	9725	10000		10	-1	
	9750	10000		12	-2	
	9775	10000		14	-3	
	9800	10000		. 9	- 5	
	9825	10000		. 9	-6	
	9850	10000		8	-4	
	9875	10000		10	-7	
	9900	10000		11	-4	
3	9925	10000		11	-2	
	9950	10000		10	-3	
	9975	10000		17	-3	
	10000	10000		18	0	
	9250	10100		0	5	
	9275	10100		-1	6	
	9300	10100		2	13	
	9325	10100		8	10	
	9350	10100		15	36	
	9375	10100		18	40	
	9400	10100		18	10	

9425	10100	28	10	
9450	10100	25	11	
9475	10100	38	42	
9500	10100	45	19	
9525	10100	45	22	
9550	10100	45	16	
9575	10100	35	14	
9600	10100	32	14	:
9625	10100	28	0 T-#	
		28 21	8 2 -3	
9650 0675	10100		- 2	
9675	10100	11	-5	
9700	10100	8		
9725	10100	8 7	-1	
9750	10100		0	
9775	10100	7	-1	
9800	10100	5 5	-2	
9825	10100	5	-2	
9850	10100	8	-2	
9875	10100	9	-7	
9900	10100	13	-8	
9925	10100	16	-6	
9950	10100	16	-2	
9975	10100	16	-6	
10000	10100	18	-11	

•

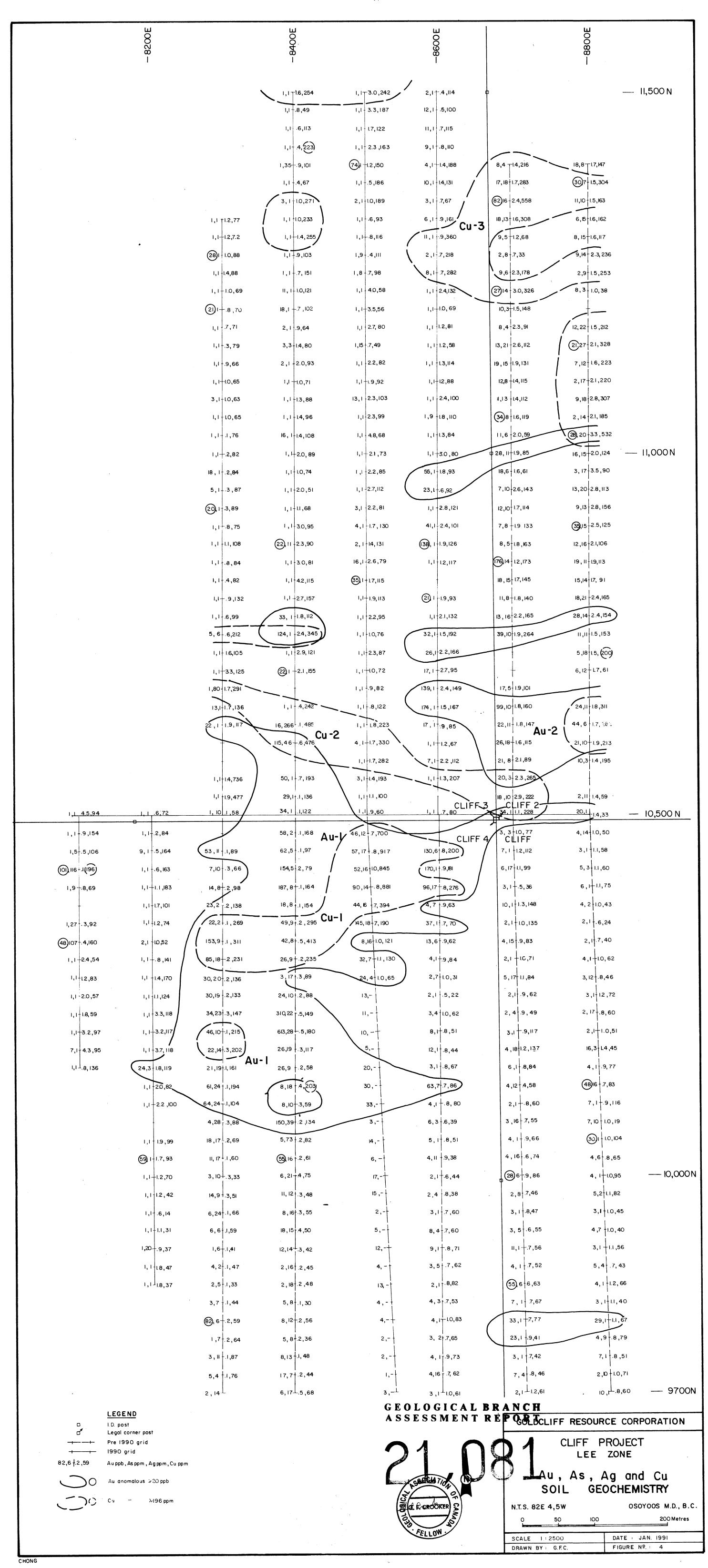
.

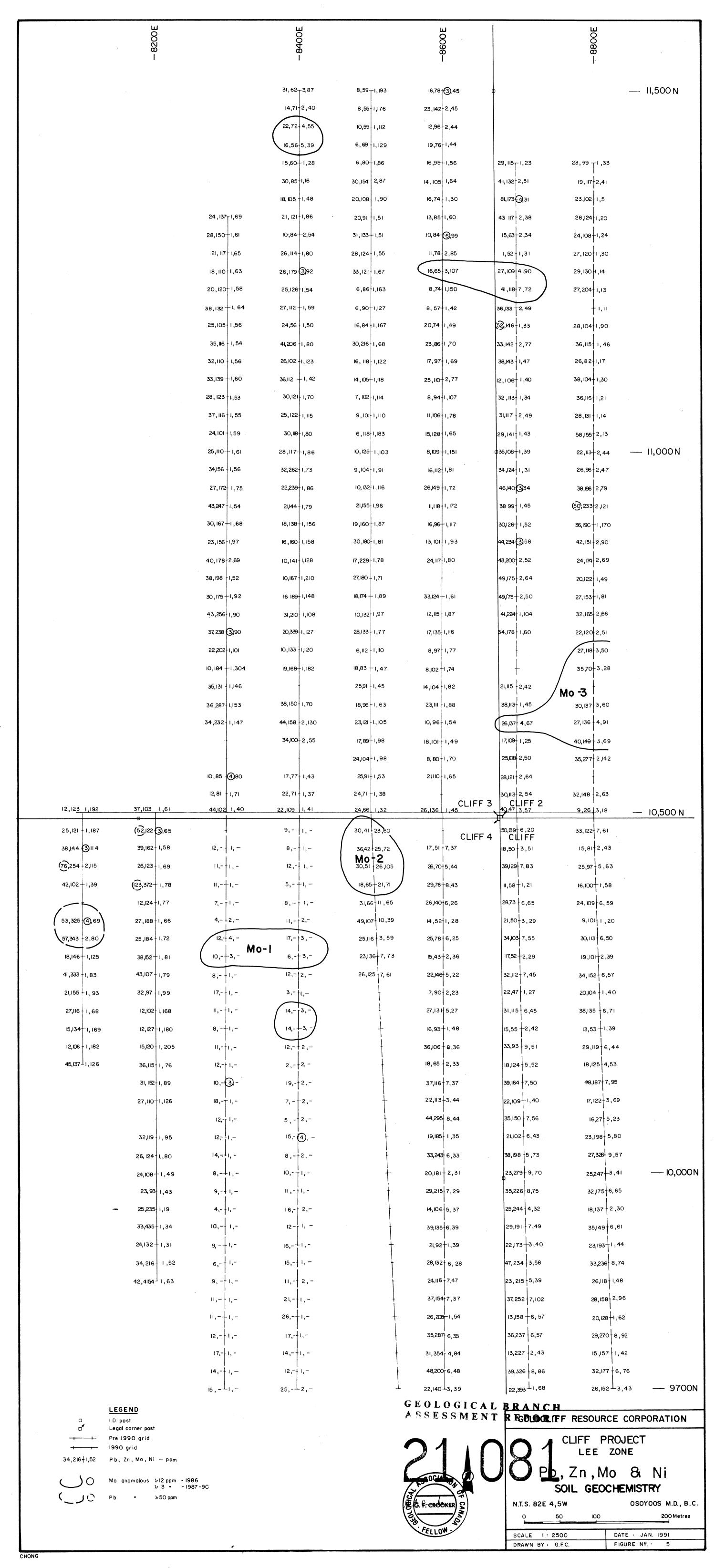
Appendix V

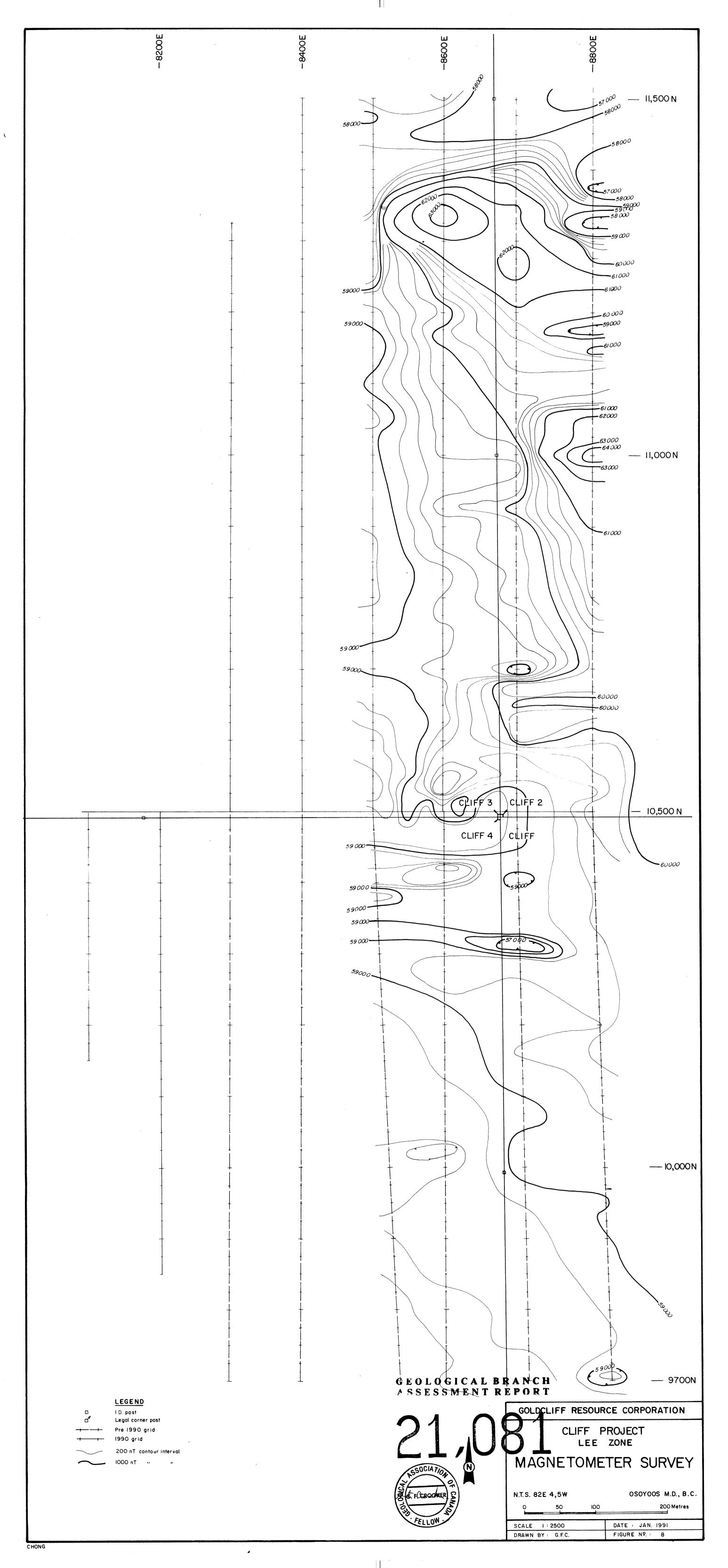
COST STATEMENT

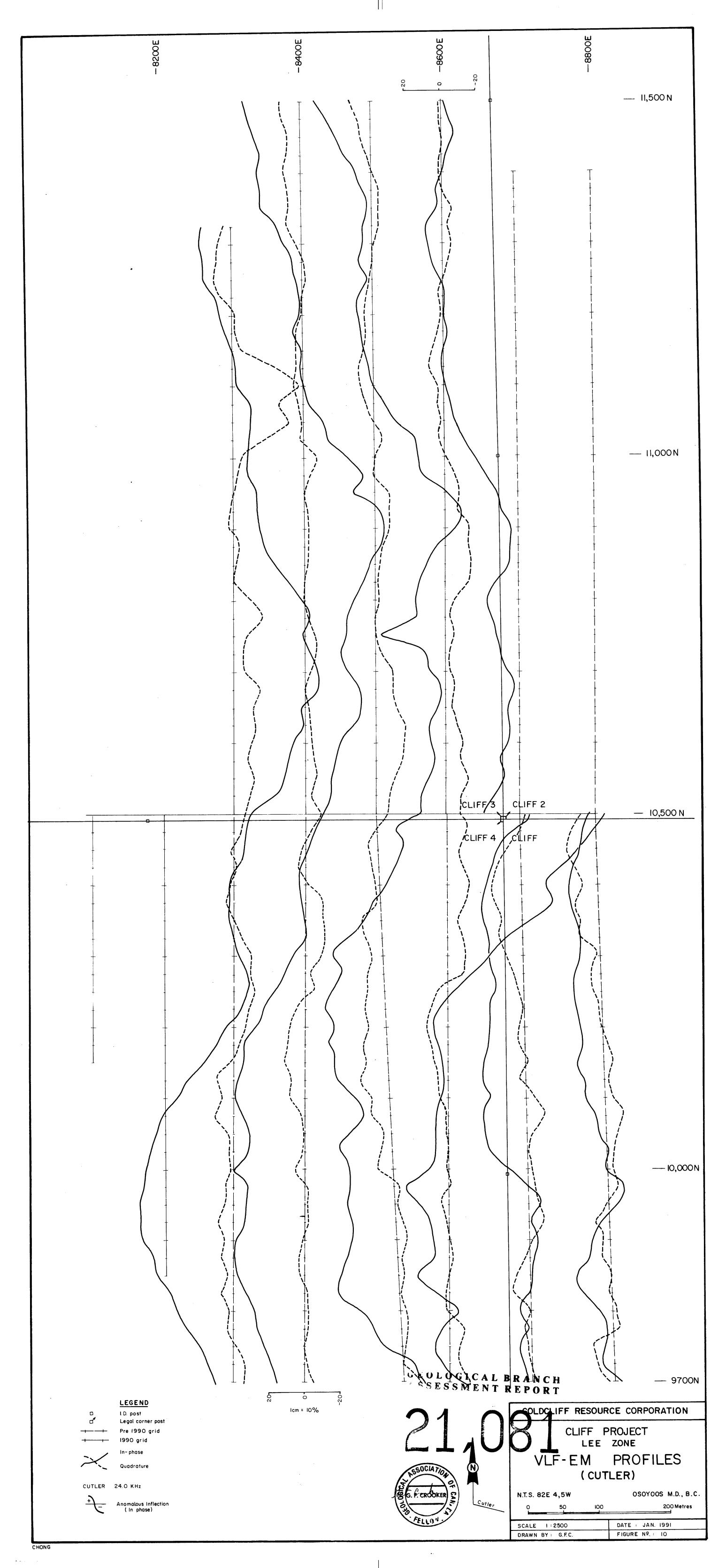
COST STATEMENT

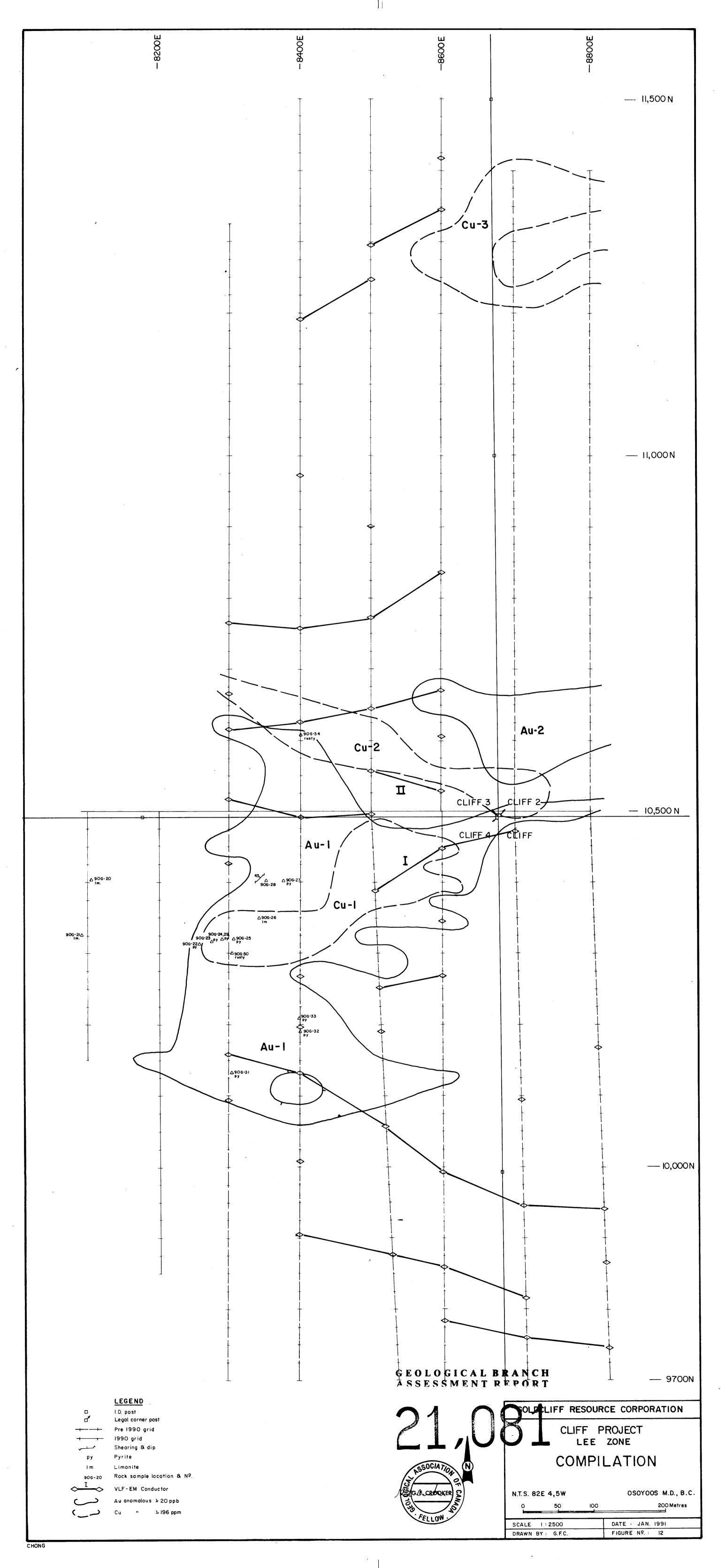
SALARIES


 Grant Crooker, Geologist May 2, 12, June 18, Nov. 13, 14, 1990 Jan. 3-5, Feb. 18-20, 1991 11 days @ \$ 350.00/day 	\$ 3,850.00
Lee Mollison, Field Assistant July 2-6, 8, 19-21, 25, 26, Aug. 17, 20-25, 28, 29, Sept. 4-6, Nov. 19, 20, 1990 25 days @ \$ 175.00/day	4,375.00
MEALS AND ACCOMODATION	
 Grant Crooker - 5 days @ \$ 60.00/day Lee Mollison - 25 days @ \$ 60.00/day 	300.00 1,500.00
TRANSPORTATION	
Vehicle Rental (Ford 3/4 ton 4x4) May 12, June 18, July 2-6, 8, 19-21, 25, 26 Aug. 17, 20-25, 28, Sept. 4-6, Nov. 13, 14, 19, 20, 1990.	
28 days @ \$ 60.00/day	1,680.00
- Gasoline	245.65
EQUIPMENT RENTAL	
 Magnetometer - Scintrex MP-2 Aug. 19-21, Nov. 19, 20, 1990 days @ \$ 25.00/day 	125.00
 VLF-EM - Geonics EM-16 Aug. 25, 26, Sept. 19-21, 1990 days @ \$ 25.00/day 	125.00
FREIGHT	48.77
SUPPLIES - Hipchain thread, flagging, geochem bags, et	c. 75.00


GEOCHEMICAL ANALYSIS


 302 soil samples, 31 element ICP, Au © \$ 14.50/sample 	4,379.00
9 rocks, 30 element ICP, Au,© \$ 10.75/sample	96.75
 15 rocks, 30 element ICP, Au, Pt, Pd, \$ 13.75/sample 	206.25
DRAUGHTING	882.95
PREPARATION OF REPORT	


P


 Secretarial, reproduction, telephone, office overhead etc. $\begin{array}{r} \underline{900.00} \\ \mathbf{18,789.37} \end{array}$ \$ Total

