LOG NO: march	22/91	RD.
ACTION:		
FILE NO:		

TRENCHING AND DIAMOND DRILLING REPORT

ON THE

MURRAY 90, INGRAM 90 AND MURRAY 91 GROUPS

NTS 82E/2W

Lat: 49 03' N Long: 118 49'W

SUB-RECORDER RECEIVED MAR 2 0 1991 M.R. # ______\$...... VANCOUVER, B.C.

U M ZO **4 A** 2 1 8 2 リー < Z - 2 S C 0 0 0 0 (H) (S) 5 <

Minnova Inc. Vancouver, B.C. Linda Caron December, 1990

TABLE OF CONTENTS

		raye
1.0	SUMMARY	1
2.0	INTRODUCTION 2.1 Location, Access and Terrain 2.2 Property and Ownership 2.3 History 2.4 Summary of Work Done, 1990	3 3 3 4 6
3.0	GEOLOGY 3.1 Regional Geology 3.2 Property Geology 3.2.1 Lithologies 3.2.2 Structure 3.2.3 Alteration and Mineralization	7 7 8 8 13 14
4.0	TRENCHING	16
5.0	DIAMOND DRILLING	22
6.0	SUMMARY AND CONCLUSIONS	27
7.0	RECOMMENDATIONS	28
8.0	REFERENCES	29

٠.

.

<u>Page</u>

LIST OF FIGURES

Figure Figure Figure Figure Figure	1 2 3 4 5	Location Map Claim Map Property Geolog Rainbow Grid Ge Detailed Grid G Drill Hole Loca	y ology an eology, tions	nd Trenc Trench	ch Locations and	after after after in poo in poo	p.3 p.3 p.7 cket cket
Figure Figure Figure Figure Figure Figure	6 7 8 9 10 11 12	Trench 3 - Geol Trench 4 - Geol Trench 5 - Geol Trench 6 - Geol Trench 7 - Geol Trench 8 - Geol Trench 9 - Geol	ogy and ogy and ogy and ogy and ogy and ogy and ogy and	Sample Sample Sample Sample Sample Sample	Results Results Results Results Results Results Results	after after after after after after after	p.18 p.19 p.19 p.19 p.20 p.20

LIST OF APPENDICES

Appendix IAnalytical Results - Trench SamplesAppendix IIAnalytical Results - Drill Core SamplesAppendix IIIDiamond Drill LogsAppendix IVCost StatementAppendix VStatement of Qualifications

1.0 <u>SUMMARY</u>

The Murray 90, Ingram 90 and Murray 91 Groups, part of the Rainbow - Tam O'Shanter property, contain a total of 22 mineral claims (221 units), located about 4 kilometres northwest of Midway, B.C. This report describes the fall 1990 trenching and diamond drilling program in the Rainbow grid area, on the Murray 90, Ingram 90 and Murray 91 Groups.

The claims are underlain by volcanics and lesser sediments of the Permian (?) Knob Hill Group, intruded by Cretaceous and Jurassic dykes and stocks, and covered by Tertiary (Eocene) sediments and volcanics (plus related intrusives). The Tertiary volcanics and sediments form the western part of the Toroda Creek Graben in this portion of the property. A large southeast trending belt of altered serpentine occurs on the property, marking a pre-Jurassic thrust fault. This belt of rocks is offset by a series of northeast trending Tertiary faults. Conglomerate of the Triassic Brooklyn Formation was intersected in drill holes in the lower thrust plate.

Alteration consists of listwanite alteration of the serpentine related to thrusting, probable Jurassic alteration and sulfide mineralization in the quartz-feldspar porphyry, and Tertiary chalcedonic veining and pervasive alteration related to northeast trending Tertiary faults.

Nine trenches were dug, in two main areas. Near Dry Lake, four trenches tested an area of altered quartz-feldspar porphyry, with no significant results. In the vicinity of the Midway Mine, five trenches were dug on a large multi-element soil anomaly. Several large areas of altered quartz-feldspar porphyry, with anomalous Au, Ag, Pb, Zn, As and Sb levels, were identified by this program. These areas of altered intrusive are believed to be the cause of the soil anomaly. Several major northeast trending fault zones were also discovered by the trenching program, again with anomalous (but sub-economic) precious metal values. Seven diamond drill holes were drilled to test the Midway Mine shear zone and alteration system at depth, and to test two northeast trending Tertiary structures. Several large areas of strongly altered porphyry were identified however grades were subeconomic. Both Tertiary structures had returned anomalous values from outcrop or trench samples, however, where intersected at depth, did not run. Alteration related to these structures is widespread, however, and additional drilling is recommended to further explore the zones. A thick sequence of Triassic Brooklyn conglomerate was intersected at depth in several of the holes. The conglomerate occurs below the serpentine belt, in a lower thrust plate. Further drilling is also recommended to test the base of this formation for the possibility of skarn development.

2.0 INTRODUCTION

2.1 Location, Access and Terrain

The Murray 90, Ingram 90 and Murray 91 Groups are located about 4 kilometres northwest of Midway, B.C. (see Figure 1). Access to the property is either via the Ingram Creek Road, which leaves Highway 3 just east of the Kettle Valley bridge or via the Murray Gulch road, which is accessed by turning north on Murray St. at the sharp highway curve in Midway, and passing through the Olsen and Bejoux farms. Numerous ranching and logging roads provide good access to the property.

The claims are situated on the south facing slope of the Kettle River valley and on the west facing slope of the Ingram Creek valley. Elevations range from 1470 metres in the north to 610 metres in the southern portion of the claim group. The terrain is hilly, with several steep cliffy sections. In the south, the property consists of open grassy slopes with little tree cover. To the north, the forest cover is moderate with mature pine and fir forest and minimal underbrush.

The climate is generally very dry, with hot summers and little rainfall. Snowfall is quite minimal, generally less than 0.75 metres. Water for drilling is available from Ingram Creek, or in wet years, from "Dry" Lake and several other small ponds on the Midway and MF claims.

2.2 Property and Ownership

The Murray 90 Group consists of 13 mineral claims (94 units), Ingram 90 Group 7 claims (92 units), and the Murray 91 Group 4 claims (64 units) as shown in Figure 2. Details of the claims and claim ownership are listed below.

MURRAY 90 GROUP:

<u>Claim Name</u>	<u>Units</u>	<u>Record #</u>	<u>Owner H</u>	Expiry Date
Midway	9	472	D. Moore	08/16/98*
Midway Fr.	1	3401	D. Moore	01/14/98*
Annex	20	3402	Dentonia Res.	01/14/95
Graham Camp	18	3403	Dentonia Res.	01/14/95
Downhill	8	3405	Dentonia Res.	01/14/95
Trout	12	5206	Dentonia Res.	07/15/95
Hoof	20	5355	Dentonia Res.	02/18/95
Mule 7	1	5625	Kettle River Res.	01/08/95
Mule 8	1	5626	Kettle River Res.	01/08/95
Mule 9	1	5627	Kettle River Res.	01/08/95
Mule 10	1	5628	Kettle River Res.	01/08/95
Mule 11	1	5633	Kettle River Res.	01/08/95
Graham Fr.	1	5634	Kettle River Res.	01/11/95
	0.4			

94

INGRAM 90 GROUP:

<u>Claim Name</u>	<u>Units</u>	<u>Record #</u>	<u>Owner</u>	Expiry Date
MF	4	769	D. Moore	05/16/98*
Rainbow	20	3404	Dentonia Res.	01/14/93
Ingram 1	9	5334	Dentonia Res.	01/06/94*
Ingram 2	18	5335	Dentonia Res.	01/06/93
Taxpayer	20	5336	Dentonia Res.	01/10/93
Pork Fr.	1	5354	Dentonia Res.	02/17/95*
Min 4	20	5618	Dentonia Res.	12/28/93
	92			

MURRAY 91 GROUP:

<u>Claim Name</u>	<u>Units</u>	<u>Record #</u>	<u>Owner</u>	Expiry Date
Midway	9	472	D. Moore	08/16/95
Annex	20	3402	Dentonia Res.	01/14/95
Hide	20	5356	Dentonia Res.	02/18/95*
Horn	15	5357	Dentonia Res.	03/04/95*

* Upon Acceptance of this report. All claims are currently under option to Minnova Inc.

2.3 <u>History</u>

Although several known showings occur on the property, exploration in the past has been limited. The following is a summary of the history of work done on the claims.

numerous pits are evidence of prospecting pre 1950 activity.

- 1960-1970 D. Moore, of Greenwood, mines 19 tonnes of ore from the Midway Mine. Recoverable grades are 14 g/t Au, 1506 g/t Ag, 15% Pb, and 16% Zn. Underground development consists of 75 metres of drifting on 3 levels with 15 metres of raise and a small amount of open stoping.
- 1983 Dentonia Resources/Kettle River Resources stake claims and option MF and Midway claims from D. Moore. Minor geological mapping, geochemistry and magnetometry done (Assessment Reports 11,466; 11,953).
- 1984 Kerr Addison Mines options claims. Geological mapping and geochemistry done over a small part of the property (Assessment Report 13,561).
- 1987 BP Resources Canada Ltd. options claims and completes program of mapping, geochemistry and 160 metres of diamond drilling in 2 holes (Assessment Report 17,162).
- 1988 BP Resources Canada Ltd. continues work on claims. Detailed mapping done as well as geochemistry, mag, VLF/EM, and diamond drilling (302 metres in 2 holes). Only a small portion of the claims were tested by this program (Assessment Report 18,381).
- 1989 BP Resources Canada Ltd. drops option on Rainbow property. Minnova Inc. examines property and completes small heavy mineral and rock sampling program (work filed for assessment, Lee, 1990a).
- 1990 Minnova Inc. signs option deal with Dentonia Resources, Kettle River Resources and D. Moore for the Rainbow and Tam O'Shanter properties. Geological mapping, rock and soil sampling and geophysics completed over the Rainbow grid, in the summer of 1990 (work filed for assessment, Lee, 1990b). The trenching and drilling described in this report was completed in the fall of 1990.

In addition to the above exploration for precious and base metals, over the years a small amount of ornamental chalcedony has been removed from the Picture Rock Quarry for lapidary purposes.

2.4 <u>Summary of Work Done, 1990</u>

Work done on the Murray 90, Ingram 90 and Murray 91 Groups during the fall of 1990 included 411 metres of backhoe trenching in 9 trenches and 7 diamond drill holes (1171 metres). A total of 374 rock samples was collected during the above program, 100 samples from backhoe trenches and 274 from diamond drill core. Trenches were dug using a Koering 666 excavator, owned by Kettle River Resources and operated by E. Girardi of Greenwood. A D-6 cat, owned by Foxy Creek Services, was used for access road construction. Drilling was done by Lone Ranger Drilling of Lumby, using a cat mounted Longyear 38 drill. Trench mapping and core logging was done by L. Lee, with assistance from G. Duso and R. Young. All work was done between August 20 and October 20, 1990. A total of 88 man days was spent on the property carrying out the above work program.

3.0 <u>GEOLOGY</u>

3.1 <u>Regional Geology</u>

The Greenwood area has been mapped on a regional basis by a number of people, most recently by Fyles (1990), and prior to this by Little (1983) and Church (1986). Although all these authors generally agree on the ages and distribution of the geological units, Fyles' work is the first to give an adequate interpretation explaining this distribution. His mapping shows that the pre Tertiary rocks form a series of thrust slices, which lie above a basement high grade metamorphic complex. A total of five thrust slices are recognized, all dipping gently to the north, and bounded in many places by lenses and bodies of serpentine. While earlier mapping has interpreted these serpentinite bodies as ultramafic intrusions, Fyles' shows them to belong to the Knob Hill Group of late Paleozoic age, and to represent part of a disrupted ophiolite suite. The common Fe-carbonate alteration of these serpentinites to listwanite is a result of the thrusting event.

The Knob Hill and Attwood Groups comprise the late Paleozoic rocks in the Greenwood Camp and consist of mainly chert, greenstone and serpentine and argillite and limestone, respectively. Fyles' interprets all there rocks to represent part of a disrupted ophiolite suite. Rocks of the Knob Hill and Attwood Groups are unconformably overlain by the Triassic Brooklyn Formation, represented largely by limestone, clastic sediments and pyroclastics. The majority of the skarn deposits in the Greenwood area are hosted within this unit.

Two separate intrusive events cut the above sequence, the probable Jurassic aged Lexington porphyry, and the Cretaceous Nelson Intrusions. Tertiary sediments and volcanics unconformably overly the older rocks, their distribution largely controlled by a series of extension faults.

The Rainbow property covers a portion of the Toroda Creek graben and is largely underlain by mid Eocene volcanics and sediments (see Figure 3). In the southwest area of the property,

a large intrusion shown regionally as the Lexington quartz-feldspar porphyry occurs, flanked on the north and south by roughly eastwest trending, north dipping bodies of serpentine. A number of steep NE dipping Tertiary faults cut the above strata (Fyles, 1990).

3.2 Property Geology

The Rainbow grid was mapped at a scale of 1:2500 during the summer work program, as shown in Figure 4. More detailed mapping was done in the area of the Picture Rock Quarry and Midway Mine. A 1:1000 map of this area is included as Figure 5. Trench and drill hole locations are shown on the above maps. The following section on geology is taken largely from an earlier report (Lee, 1990b), with only minor changes resulting from insight gained during the trenching and drilling program.

3.2.1 Lithologies

During the course of mapping, six distinct geological units, and a number of sub-units, were recognized. A geological legend of the property is shown below, listing these rock types.

TERTIARY	- EOCENE
Unit 6	Marron Formation
	6b - Marron intrusives
	6a - Marron volcanics
TT	Nothle Discou Desmotion

Unit 5 Kettle River Formation 5b - sandstone/tuff 5a - conglomerate

CRETACEOUS Unit 4 Nelson Plutonic Complex

JURASSIC

Unit 3	3d -	Quartz Feldspar Porphyry intrusive
	3c -	Coarse Feldspar Porphyry intrusive
	3b -	Crowded Feldspar Porphyry intrusive
	3a -	Microdiorite intrusive

LATE PALEOZOIC - CARBONIFEROUS OR PERMIAN Unit 2 Knob Hill Group, mainly intermediate to mafic volcanics, lesser cherts and tuffs.

Unit 1 Serpentine - Knob Hill Group 1c - carbonate altered serpentine (listwanite) 1b - talc altered serpentine 1a - dark green unaltered serpentine

On the geological maps included with this report, the breakdown of units given above is used. During the course of diamond drilling, an additional rock type was recognized. Several drill holes intersected thick beds of coarse conglomerate of the Triassic Brooklyn Formation. Because these rocks have not been identified on surface on the property, the geological legend has not been changed at this time.

The oldest rocks exposed on the grid belong to the Carboniferous or Permian Knob Hill group. While large areas of Knob Hill Group chert and greenstone (Unit 2) are known on the property, immediately south of the Rainbow grid, and to the northeast on the Tam O'Shanter grid, surface mapping and diamond drilling in the Rainbow grid area identified only isolated pods of fine grained volcanics which may belong to this group. These pods occur predominantly within the microdiorite intrusive and are thought to represent large xenoliths or roof pendants caught up in the intrusion.

Rocks belonging to Unit 1 are very common in the grid area, however. The serpentine forms a well defined zone, striking northwest and dipping gently north, which runs diagonally through the grid. Generally the rocks in this belt show a very well developed foliation parallel to the trend of the zone. For the most part, this belt is composed of listwanite (Unit 1c) and is readily identifiable by the prominent orange coloured outcrops. Within the main listwanite belt are zones of less altered serpentine, either grey, banded talc altered serpentine (Unit 1b), or dark green, strongly magnetic serpentine (Unit 1a). A large body of this dark green serpentine located on the bluff northeast

9

of the Midway Mine contains small poddy zones of chromite. Numerous other zones of serpentine occur, generally tectonically emplaced along fault zones. At depth, alteration of the serpentine is less intense, suggesting that the prominent orange weathering is largely a surface weathering effect.

The belt of serpentine is thought to represent a major thrust contact, with the listwanite alteration a result of the thrusting event. The lower contact of the listwanite belt is now intrusive in nature, however, with sills of feldspar porphyry and quartzfeldspar porphyry intruding along the foliation. These intrusives are Jurassic in age and post date the thrusting event. Tertiary sediments and volcanics unconformably overly the serpentine to the north.

Chemically and physically, the green, unaltered serpentines of Unit 1a are very distinct. The volatile content is high, giving a characteristically high Loss on Ignition. Magnesium content is also very high, while the percentages of Al, Na, and Ca are low. Silica content tends to be in the range 35-38%. Alteration of the serpentine is gradational, from weak talc alteration to a rusty, orange listwanite. Typically, there is little, if any, magnetism left in the highly altered rocks. Alteration to listwanite is characterized by a marked decrease in MgO and Fe2O3 content, and an increase in CaO content. In the field, these rocks may be very fine grained and dense and appear to be silicified, however chemical analysis shows that silica is actually depleted. In intensely altered rocks, any signs of remnant foliation is a useful tool in identification.

Brooklyn conglomerate, identified during the drill program, was seen underlying serpentine of unit 1. Since the Brooklyn Formation is Triassic in age, younger than the serpentine, this supports the fact that the serpentine represents a major thrust fault, with the conglomerate occurring in a lower thrust slice.

10

A large intrusion of probable Jurassic age is exposed in the southern part of the grid. The main body is a fine grained microdiorite (unit 3a), dark grey to green in colour, with about 20% fine mafics, probably pyroxene, and rare feldspar phenocrysts, in a fine grained matrix. Locally, and especially near the borders, the intrusive grades into a coarser grained feldspar porphyry (3c) or to a crowded feldspar porphyry (3b). Dykes of Unit 3c are also seen intruding the serpentine, both along foliation and at steeper angles. The gradation in crystal size is felt to be largely a function of the cooling rate of the magma; no field evidence for a chronological order of emplacement was seen. Compositionally, the coarser grained phases are similar to the microdiorite, but tend to be enriched in Na20 and depleted in K20 compared to the main body, a result of the increase in plagioclase content. All of the above phases may be weakly to moderately altered (propyllitic, silicified, clay altered); the alteration seems to be structurally controlled and post dates emplacement of the intrusion.

Cross-cutting the main intrusive body and occurring as sheetlike bodies intruding along the foliation in the serpentines, is a coarse grained quartz - feldspar porphyry (unit 3d). This intrusive is likely a late stage pulse from the same source as the Compositionally the quartz - feldspar porphyry is microdiorite. much higher in SiO2 than the microdiorite, and shows the same Na20 enrichment and K20 depletion as the feldspar porphyry. In hand specimen, unit 3d is typically coarse grained with approximately 5% quartz eyes and 10-20% feldspar phenocrysts, averaging 3-4 mm in size, hosted in a fine grained pale grey-green matrix. Very commonly the rocks are altered, often intensely as at the Midway Mine. Typically this alteration consists of strong saussuritization of the feldspars and pervasive clay or quartz-pyrite-sericite alteration, and less commonly strong silicification. The strong correlation between the alteration and the guartz - feldspar porphyry suggests that the intrusion of the porphyry is responsible

for the alteration. At the Midway Mine, high grade massive sulfide shear zones are hosted within this unit. A probable Jurassic age is assigned to the porphyry because of its similarity to the Lexington porphyry, for which Church (1986) had a uranium-leadzircon age date of early Jurassic.

Rocks belonging to Unit 4, intrusives of the Cretaceous Nelson Plutonic Complex, are rare in the grid area. One dyke(?) of medium grained diorite was seen cutting the microdiorite intrusion described above. Compositionally this dyke appears to be distinguishable from the older intrusion, being slightly lower in CaO, MgO and Fe2O3, and higher in SiO2 content.

Kettle River sediments of mid-Eocene age are exposed to the north of the main serpentine belt. Both coarse grained conglomerate (Unit 5a) and fine sandstone and tuffaceous sandstone (Unit 5b) are known. Unit 5a is typically a coarse conglomerate composed primarily of round to subround cobbles of microdiorite (about 30%) in a fine grained tuffaceous matrix containing 25% fine feldspar crystals. Compositionally, the conglomerate mimics the chemistry of the dominant clast type. Unit 5a represents the base of the Tertiary rocks in the area and is seen in several places unconformably overlying the serpentine.

Tuffaceous sediments belonging to the Kettle River Formation form a long north trending linear belt, bounded on either side by Tertiary volcanics. The distribution of the sediments suggests a topographic control to deposition, possibly a channel fill deposit. The sediments are generally recessive and poorly exposed. Bedding is rare but where seen is gently to the east. In hand specimen, these rocks appear very felsic; chemical analysis suggests a rhyolite to rhyodacitic composition.

The youngest rocks exposed on the grid belong to the Tertiary Marron Formation. These rocks occur as dykes and subvolcanic intrusives (Unit 6b) and as fine grained mafic volcanics (Unit 6a), covering most of the northern part of the grid. The intrusive rocks of the Marron Formation are typically pale grey-brown, fine to medium grained, with 20-50% plagioclase, 15-25% mafics (pyroxene?), and 5% biotite visible in hand sample, and locally interstitially K-spar. Compositionally, these rocks are monzonites to syenites, bordering on nepheline syenites in large areas of subvolcanic intrusives.

The intrusives are gradational into the overlying Marron volcanic rocks. Several different flows can be recognized in the field, all andesitic to trachyandesitic in composition. The lowermost of these flows is pale brown in colour, fine grained and pyroxene (+minor feldspar and biotite) phyric. This flow is overlain by a coarser grained, grey-brown, pyroxene (?) phyric volcanic. Typically, this unit is andesitic in composition, although locally a pink Kspar rich matrix was observed. These volcanics were significantly higher in K2O and CaO and lower in SiO2 than the main flow. The uppermost flow seen in the grid area is a fine grained, dark grey-brown, locally feldspar phyric volcanic.

The Marron volcanics appear to post-date any mineralization or significant alteration, and as a result the breakdown of the volcanics into different flows is probably unimportant.

3.2.2 Structure

The Rainbow grid is cut diagonally by a southeast trending belt of serpentinite. As described above, within this belt the serpentine has largely been altered to listwanite. This alteration is presumed to be a result of a major thrusting event, where the base of the serpentine marks the basal thrust contact. Foliation in the listwanite indicates that the thrust fault dips gently to the northeast, about 10-25 degrees. Because of Jurassic intrusive activity post-dating this thrusting event, the original nature of the contact cannot, however, be observed.

The other main structural feature of the grid area is a series of near vertical, northeast trending faults, all of which appear to down drop rocks on the west. These faults are Tertiary in age,

13

probably mid-Eccene and predating the extrusion of the volcanics, but reactivated in part during and after volcanic activity.

A main arcuate fault, east-west to southeast trending, occurs in the draw to the west and north of the Picture Rock Quarry. This fault appears to post-date the northeast trending structures and down drops rocks on the northern side relative to those on the south.

Numerous smaller faults of various orientations are known, including one near vertical, east-west fault at the Midway Mine which is associated with the mineralization. This fault appears to be pre-Tertiary in age, being truncated by a large Marron dyke.

3.2.3 Alteration and Mineralization

Three main styles of alteration and mineralization are known within the grid area, the Picture Rock Quarry, the Midway Mine, and the listwanite belt.

Alteration of the serpentine to listwanite is the earliest alteration event known on the property. This alteration is presumed to be a result of a major southeast trending, north dipping trust fault, pre-Jurassic in age. A by-product of the listwanite alteration is the formation of quartz veins. Such white, crystalline quartz veins are common on the property but, to date, do not appear to be mineralized.

In the Midway Mine area, Jurassic quartz-feldspar porphyry sills and dykes intrude the serpentinite. Very commonly, these intrusives are altered, with saussuritized feldspars, pervasive clay and quartz-pyrite-sericite alteration, and less often, silicification. The very strong correlation between this alteration and the presence of the quartz-feldspar porphyry, not only at this location but elsewhere on the grid and in the Greenwood Camp, suggests that the emplacement of the intrusion was responsible for the alteration. Anomalous gold, silver, arsenic and antimony are common in strongly altered quartz-feldspar porphyry, as described in the following section. At the Midway Mine, steep massive sulfide (pyrite-arsenopyrite-galena-sphaleritestibnite) shear zones are hosted within the altered intrusion, probably related to the above alteration event.

At the Picture Rock Quarry, epithermal chalcedonic quartz veins occur within feldspar porphyry intrusives and altered serpentinite. The veins are generally narrow, always less than 1 metre in width. Veins generally trend north to northeasterly, with dips commonly shallow to the east, although other orientations are known. Wall rock alteration adjacent to the veins is negligible. Typically the veins are banded, with white, grey and blue-green chalcedony and often contain large breccia clasts of the host rock. As described in the following section, the veins have a typical epithermal signature, with anomalous Au, Ag, As and Sb. Precious metal values tend to be sub-economic, however.

Similar chalcedonic veining is known elsewhere on the grid, the main occurrences being the ridge west of the Midway Mine, the south nose of this ridge and to the south of Dry Lake. Numerous other minor occurrences occur. Chalcedonic veins are known to cut all rocks of pre-Tertiary age. Although they have not been sediments of observed within the Kettle River Formation, similarities with other veins in the district (ie. Tam O'Shanter, Republic) suggest an Early Tertiary age to the mineralization, postdating the sediments but pre extrusion of the Marron volcanics.

Northeast trending Tertiary faults appear to largely control the location of the chalcedonic veining. Where these faults pass through the listwanite belt, the listwanite appears to be more intensely altered, possible the result of Tertiary alteration superimposed on the earlier alteration of the serpentine.

4.0 TRENCHING

A total of 9 trenches (411 metres) were dug on the Rainbow grid, as shown on Figures 4 and 5. One hundred rock samples were collected from the trenches. Plan maps showing the geology, structure and rock sample locations in the trenches are included for Trenches 3 - 9 (Figures 6 - 12). Minimal or no outcrop was intersected in Trenches 1 or 2, so detailed maps have not been included. Complete analytical results for the trench samples are contained in Appendix I.

The trenches were dug using a Koering 666 excavator, owned and operated by Kettle River Resources Ltd. of Greenwood. Minor access roads were built and trench site preparation was done using a D-6 cat owned by Foxy Creek Services of Greenwood. The cat was also used to backfill the trenches. After sampling, all trenches were filled and then seeded with a non-irrigation grass mixture.

Trenches were shovelled or swept clean and sampled by a panel sample method. A11 rock samples were shipped to Min-En Laboratories in North Vancouver, for preparation and analysis. Samples were dried and crushed by a jaw crusher and then pulverized on a ring mill pulverizer. For the 12 element ICP package, a 0.5 gram sample was digested for 2 hours in a hot aqua regia mixture, then diluted with water to obtain a standard volume. The solutions were then analyzed by either a Jarrall Ash 9000 ICAP or a Jobin Yvon 90 Type II Inductively Coupled Plasma Spectrometer. For whole rock analyses, a 0.5 gram sample was fused with lithium tetraborate and diluted to volume. Solutions were analyzed using the machines described above. For gold analyses, a 5 gram sample was cindered at 800 degrees C for 3 hours and then digested in agua regia and treated with Methyl Iso-butyl Ketone (MIBK). The MIBK solutions were then analyzed on an atomic absorption spectrometer.

Detection limits for the above analytical procedures are as follows:

Ag									0.1	ppm
As,	Sb,	Cu,	Pb,	Zn,	Mo,	Ni,	Cr,	Mn	1	ppm
к, 1	Na								10	ppm
Au									5	ppb

The first four trenches were dug in the Dry Lake area, as shown on Figure 4, to test a major fault zone and area of strongly altered quartz-eye porphyry.

Trench 1

The first trench, 25 metres in length, was dug in the grassy field to the northwest of Dry Lake. The trench averaged about 5 metres in depth but did not intersect bedrock at any point along its length. For the most part, the trench bottomed in a dark brown hardpan containing cobbles of rusty listwanite. A sample was collected of one such cobble, with minor mariposite (BCS 13601), with no significant results.

<u>Trench 2</u>

This trench, also 25 metres in length, was dug parallel to Trench 1 and about 25 metres southwest of it. Again the trench averaged about 5 metres in depth. For most of the length, the trench exposed a thick layer of grey clay. At the very eastern end bedrock was reached, however, because of the instability of the trench, this could not be properly exposed or sampled. The rocks uncovered were very strongly talc altered quartz-feldspar porphyry, with minor disseminated pyrite. The alteration is the result of a major northeast trending fault zone, which is also exposed in Trench 3. A small old pit nearby exposes similarly altered material. One sample was collected of the strongly altered intrusive. This sample was anomalous in arsenic (93 ppm) but not in gold, silver or base metals.

<u>Trench 3</u> (Figure 6)

Trench 3 was dug to test the fault zone intersected in the previous trench about 50 metres further south. The trench measured 25 metres in length and averaged 2 - 3 metres in depth. Massive quartz-feldspar porphyry was intersected throughout the trench, except at the easternmost end where no bedrock was reached. Two minor fault zones were recognized, between which the rocks were weakly to moderately talc altered. This is interpreted to be the same zone intersected in Trench 2. Seven samples were collected from the trench, as shown on Figure 6. None of the samples were anomalous in precious or base metals, although all were weakly anomalous in arsenic.

<u>Trench 4</u> (Figure 7)

The fourth trench was dug just southwest of the previous trench and was designed to give better rock exposures on the knoll to the northwest of the Dry Lake. Several old workings are located in altered porphyry or serpentine on this knoll (the "Dry Lake Showings"). Trench 4 measured 77 metres in length, and except at the easternmost end, intersected quartz-feldspar porphyry throughout the length. Dark brown hardpan was intersected at the eastern end of the trench - no bedrock was intersected. The porphyry is generally massive, blocky, well fractured, and relatively unaltered. Locally it may be moderately to strongly clay or carbonate altered. A one metre wide, white, highly fractured quartz vein was intersected at the eastern limit of bedrock. This vein is also exposed to the south in an old pit. Ten samples were collected from the trench. Apart from minor arsenic and antimony anomalies, none were significantly anomalous.

The last five trenches were dug in the vicinity of the Midway Mine, to test a large multi-element soil anomaly outlined by the summer 1990 work program (see Lee, 1990b). The locations of these trenches are shown on Figure 4, and in more detail on Figure 5.

TR-	TR-90-03:		LE RESU	LTS
	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)
BCS 13603	1	1.1	34	44
BCS 13604	10	1.1	20	31
BCS 13605	5	1.0	20	39
BCS 13606	6	1.3	15	33
BCS 13607	4	1.6	8	38
BCS 13608	2	1.7	13	37
BCS 13609	2	1.0	23	35

MINNONA ma

1

TR-90-04:		SAMPLE RESULTS		
	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)
BCS 13610	4	0.3	13	32
BCS 13611	3	0.6	14	35
BCS 13612	6	0.7	12	32
BCS 13613	4	0.8	11	33
BCS 13614	1	0.7	16	31
BCS 13615	5	0.8	7	25
BCS 13616	2	0.9	7	29
BCS 13617	1	0.8	35	. 33
BCS 13618	5	0.9	12	27
BCS 13619	1	1.6	21	14

MINNOVA Inc.

E:\LINDA\RTTR9004

Grey—green qtz—fsp porphyry; 5—10% qtz eyes, 25% hem stained fsp, 10—15% mafics (chl alt'd) Weak prop alt'n and locally mod—str clay and carb alt'n

.

.

.

10m 0

<u>Trench 5</u> (Figure 8)

Trench 5 was the northeastern most trench dug on the soil anomaly. The trench measured 58 metres in length; outcrop was reached for about half of this length, with dark brown hardpan in the remainder. One small dyke of the Marron Formation occurred at the east end of the trench. Elsewhere, bedrock consisted of well foliated, strongly magnetic, dark grey-green serpentine. Seventeen samples were collected from the trench, from bedrock and also from the hardpan layer to test the possibility that it was contributing to the geochemical anomaly. None of these samples were significantly anomalous in any elements.

<u>Trench 6</u> (Figure 9)

The sixth trench was dug about 100 metres southwest of the previous trench, to test the same soil anomaly. Trench 6 measured 45 metres in length and averaged 2-4 metres in depth. At the eastern (downhill) end, no bedrock was reached. Elsewhere, bedrock consisted of grey to green, strongly magnetic serpentine. Thirteen samples were collected and, as above, none were significantly anomalous.

<u>Trench 7</u> (Figure 10)

Trench 7 was dug on the steep slopes of the grassy bowl to the northeast of the Midway Mine. The trench started at the base of a strongly silicified outcrop of serpentine, and was dug for 65 metres in a downhill (southeast) direction. At the western end of the trench a thick dyke of strongly altered quartz-feldspar porphyry was intersected, in fault contact to the east with dark green serpentine. A total of 24 samples was collected from the trench. The quartz-feldspar porphyry dyke was anomalous in gold and lead throughout its width, to a maximum of 240 ppb Au and 90 ppm Pb. Locally, silver and arsenic were also anomalous. There were no anomalous results from samples of the serpentine. It

TR-90	TR-90-05:		SAMPLE RESULTS		
	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	
BCS 13620	2	1.8	3	17	
BCS 13621	1	1.6	6	54	
BCS 13622	2	1.3	4	39	
BCS 13623	1	1.3	2	25	
BCS 13624	2	1.5	4	34	
BCS 13625	5	0.9	3	37	
BCS 13626	2	0.8	2	31	
BCS 13627	3	0.9	4	25	
BCS 13628	2	1.0	5	21	
BCS 13629	1	1.3	3	21	
BCS 13630	2	1.0	2	23	
BCS 13631	2	0.9	3	27	
BCS 13632	1	0.7	4	23	
BCS 13633	1	0.5	2	21	
BCS 13634	2	1.1	3	30	
BCS 13635	3	1.3	2	42	
BCS 13636	2	0.9	4	22	

10m

0

TR-90	-06:	SAMPLE F	RESULTS										(N)
	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)									Ĭ
BCS 13637 BCS 13638 BCS 13639 BCS 13640 BCS 13641 BCS 13642 BCS 13644 BCS 13644 BCS 13644 BCS 13645 BCS 13646 BCS 13646 BCS 13648 BCS 13649	2 9 4 5 2 4 1 2 12 3 4 2 1	0.8 0.9 1.0 0.8 1.0 1.4 0.9 1.7 1.6 1.1 1.3 1.2	2 4 3 2 5 2 3 1 5 4 3 2	15 15 15 17 12 14 18 13 17 30 29 37 31									
2.5% black platey minera minor black acicular need dissem & a fract coatin	+ 					. /	Locally str ma with 57 plotey	black gnetic serp 6 black mineral				Trench 3—4m deep; Dark br hardpan; (clay + round cobbles of serp & basalt)	
13637 13638	13639	13640 13641	13642 1	3643 13644	0/8	13645	0/8	13646 13647	13648	13649		0/в	95+34E 89+20N
Grey-blac well foliat and min	k serp, sti ed. Mod perv Fer-c	r magnetic,	ani Local	Green-grey se d carb vnits. perv Fe-carb	rp; mod tak Weak-mod alt'n. V mi	c alt'n - foliated; n qtz vn	its.	Dark gr black serp carb strng weak perv weak fo	abund abund rs and carb; I'n	→Orange brown Fe c ait'd serp, weak fol'n	rb		
												Figure S)
												RAINBOW-TAM C TR-90-C)'SHANTER 06
												GEOLOGY, SAMPLE AND RESULTS	LOCATIONS
NCNA Ina					0 	_ <u>t</u>	. 	<u></u>	10r	n			0070050 100

TR-90-	07:	SAMPLE	RESU	ILTS	
	Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)	
BCS 13650	47	2.7	90	72	
BCS 13651	1 9	0.4	8	35	
BCS 13652	26	0.3	5	27	
BCS 13653	75	0.3	8	42	
BCS 13654	33	0.1	16	28	
BCS 13655	60	0.5	56	33	104 ppm As
BCS 13656	240	0.5	54	17	
BCS 13657	44	1.7	7	37	
BCS 13658	22	1.1	3	42	
BCS 13659	29	1.8	4	33	
BCS 13660	6	1.1	3	44	
BCS 13661	1	1.3	2	28	
BCS 13662	1	1.0	3	26	
BCS 13663	2	1.0	4	29	
BCS 13664	1	0.9	3	33	
BCS 13665	2	0.8	3	66	
BCS 13666	1	0.8	2	53	
BCS 13667	1	0.7	3	45	
BCS 13668	3	0.8	2	36	
BCS 13669	2	0.9	3	37	
BCS 13670	2	1.1	4	30	
BCS 13671	3	0.9	5	27	
BCS 13672	2	1.2	2	28	
BCS 13673	1	1.3	3	25	
					1

1

.

.

Figure 10
RAINBOW-TAM O'SHANTER
TR-90-07
GEOLOGY, SAMPLE LOCATIONS
AND
RESULTS
LJL/rjh OCTOBER, 1990

(N)

13671	13672	13673	
			0/В

appears that the soil anomaly is a result of anomalous geochemical levels within the porphyry unit.

<u>Trench 8</u> (Figure 11)

The eighth trench was dug in a north-south direction, about 60 metres to the east of the Midway Mine, in an attempt to find the eastern extent of the Midway shear zones. Moderately to strongly altered quartz-feldspar porphyry was intersected for most of the length of the trench. A major northeast trending fault zone was uncovered, with local poddy zones of strongly altered serpentine occurring along the fault zone. This fault may be the southern extension of the fault discovered in Trench 7. There was no evidence of the Midway shear zones, although they may be offset by the northeast trending fault. Eighteen samples were collected from the trench, as shown on Figure 11. Samples of the fault zone were strongly anomalous, to 1050 ppb Au and 140.4 ppm Ag, with The altered porphyry was also anomalous Pb, Zn, As, and Sb. anomalous, although not as strongly (to 137 ppb Au, 6.8 ppm Ag). Follow-up by additional trenching and by drilling is recommended to further test the northeast trending fault.

<u>Trench 9</u> (Figure 12)

Trench 9 was dug about 30 metres east of Trench 8, over the top of the ridge to the east of the Midway Mine. The trench was dug in an attempt to locate the eastern extension of the Midway shears and to test the soil anomaly. The trench measured about 65 metres in length, and averaged less than a metre in depth. Massive quartz-feldspar porphyry intrusive was intersected throughout the length of the trench. Locally, the porphyry was moderately altered. One east-west trending fault zone was recognized and a total of nine samples was collected. Within the fault zone values to 1200 ppb Au, 41.1 ppm Ag (plus anomalous Pb, Zn, As and Sb) were obtained. Elsewhere, there were no significant anomalous values.

					· ·
	TR-90	-09:	SAMPLE	5	
		Au (ppb)	Ag (ppm)	Pb (ppm)	Zn (ppm)
BCS	13692	1	1.0	22	36
BCS	13693	2	1.6	18	37
BCS	13694	1	1.2	17	41
BCS	13695	16	0.6	11	31
BCS	13696	118	8.8	16	163
BCS	13697	1200	41.1	317	508
BCS	13698	349	15.7	181	163
BCS	13699	21	2.3	25	92
BCS	13700	2	2.7	37	57

101 ppm As, 10 ppm Sb 674 ppm As, 27 ppm Sb (1.16 g/t Au) 428 ppm As, 10 ppm Sb

. . . .

OCTOBER, 1990

(Z)

In summary, nine trenches were dug on the Rainbow grid, in two main areas. The first four trenches tested an area of altered quartz-feldspar porphyry in the Dry Lake area. There were no significant results from these trenches. The last five trenches were dug in the vicinity of the Midway Mine to test a large multielement geochemical anomaly, outlined by the summer 1990 program. Trenching indicated that the soil anomaly was caused by elevated, but sub-economic geochemical levels in the quartz-feldspar porphyry intrusive. A major northeast trending fault zone was discovered to the east of the Midway Mine which should be further tested by trenching and drilling.

5.0 DIAMOND DRILLING

Seven diamond drill holes (1171 metres) were drilled on the Rainbow grid during the fall of 1990. All the holes were drilled in the vicinity of the Midway Mine, as shown on Figures 4 and 5. Drilling was done by Lone Ranger Drilling Ltd. of Lumby, B.C. using a cat mounted Longyear 38 drill. Listed below are the specifications for the drill holes.

DRILL HOLE	LOCA	TION	ORIENT	ATION	DEPTH	ELEV	
	EASTING	NORTHING	STRIKE	DIP	(M)	(M)	
RDH-90-01	93+75	89+25	180	-45	84.45	975	
RDH-90-02	93+75	89+75	180	-60	154.57	985	
RDH-90-03	94+54	89+00	180	-45	100.61	1010	
RDH-90-04	94+55	89+55	180	-60	224.08	1005	
RDH-90-05	95+60	89+00	270	-45	271.33	967	
RDH-90-06	93+20	88+85	270	-45	153.96	968	
RDH-90-07	92+10	89+00	270	-45	182.46	975	

Drill logs for the above holes are contained in Appendix III and complete analytical results for core samples collected are included in Appendix II.

Where altered or mineralized, core was split and sampled. Drill core samples were shipped to Min-En Laboratories in North Vancouver, for preparation and analysis. Procedures for this are the same as described in the previous section.

<u>RDH-90-01</u>

The first hole was drilled to test the Midway shear zone at a depth of about 15 metres below the surface. Hole 90-1 intersected about 23 metres of altered quartz-feldspar porphyry, mineralized with pyrite and local massive pyrite/galena veins to 3 cm. The best result from this hole was 1.14 g/t Au and 208 g/t Ag, over 1.5 metres, in an interval of bleached, silicified quartzfeldspar porphyry containing a narrow sulfide vein. A 10.5 metre interval of the most strongly altered porphyry returned an average

grade of 326 ppb Au and 52.7 ppm Ag.

RDH-90-02

Hole 90-2 was drilled on section with the first hole, to test the Midway shear zone at a greater depth. The drill hole intersected several zones of quartz-feldspar porphyry, clay altered and silicified and mineralized with up to 10% pyrite. Alteration and mineralization was less intense than in Hole 1. The intrusives appear to be relatively flat lying sheets, intruding along the foliation in the serpentine, rather than "pluqs" as previously believed. Gold values are locally anomalous (to 726 ppb) in the altered porphyry. A narrow band of serpentine, between two bodies of porphyry, strongly silicified and with minor late quartz veinlets, returned 86.6 ppm Ag over 2.1 metres. Silver values are also strongly anomalous in the overlying intrusive. Anomalous arsenic and antimony, and weakly anomalous gold values, accompany high silver values. At depth in the second hole, a thick conglomerate unit was intersected, containing 1-2% interstitial pyrite and skarnified limestone clasts. This unit is interpreted to be the Triassic Brooklyn Sharpstone Conglomerate. Typically in the Greenwood camp, skarn development occurs at the contact of this unit with underlying limestones (as on the adjoining Maymac ground). No significant values were obtained from samples of the conglomerate. The conglomerate occurs below a thick layer of serpentine, of the Permian Knob Hill Group. This supports the belief that the serpentine belt represents a thrust fault, with the Triassic conglomerate occurring in a lower thrust plate.

RDH-90-03

Hole 3 was drilled parallel to the first two holes, but about 75 metres to the east, testing the eastern extension of the Midway zone. The hole intersected about 26 metres of quartz-feldspar porphyry at the top of the hole, with local bleaching and silicification, and up to 5% pyrite. Weakly anomalous gold and
arsenic values occurred within this zone.

<u>RDH-90-04</u>

Hole 90-4 was drilled on section with Hole 3, to test the zone at greater depth. About 25 metres of quartz-feldspar porphyry was intersected near the top of the hole, altered as in the previous hole. A 12.5 metre interval of this altered intrusive averaged 242 ppb Au and 1.7 ppm Ag. Over 70 metres of Brooklyn conglomerate were intersected at depth, again apparently in a lower thrust plate; no significant results were obtained from samples of the conglomerate.

<u>RDH-90-05</u>

Holes 90-5, 90-6 and 90-7 were drilled towards the west to define a complete east-west section in the Midway Mine area and to test for steep northeast trending Tertiary faults. Hole 90-5 was the easternmost of the three holes and collared in the grassy bowl to the northeast of the Midway Mine. The hole intersected a thick sequence of Triassic Brooklyn conglomerate (over 100 metres), beneath a mixed package of serpentine and microdiorite. Within the conglomerate, local strong epidote alteration, pyrite, mariposite and rare epithermal guartz veining occur. The hole was ended in the conglomerate without reaching the basal contact. The hole intersected a steeply dipping fault zone near the projected position of the Trench 8 fault, but at a depth of about 190 metres There were no anomalous results from the fault below surface. zone, however shallower and more detailed drilling would better test the zone. No anomalous results occurred elsewhere in the hole.

<u>RDH-90-06</u>

Hole 90-6 collared at the upper portal of the Midway Mine and drilled to the west, parallel to the Midway shear zones. About 50 metres of quartz-feldspar porphyry was intersected, silicified and bleached with pyrite mineralization for much of this distance. A 2 metre interval of sheared, altered intrusive from this zone returned values of 164 ppb Au and 67.8 ppm Ag. There were no significant results elsewhere in the hole.

<u>RDH-90-07</u>

The last hole, 90-7, collared on Lone Boulder Hill, to the west of the mine, and drilled to the west, through a known Tertiary fault zone. On surface, narrow epithermal quartz veins related to this fault zone returned anomalous values to 2640 ppb Au (see Lee, 1990b). Two zones of quartz-feldspar porphyry were intersected in Hole 7, 70 and 50 metres thick respectively, each with local bleaching, silicification, clay alteration and pyrite The intrusives are separated by a major steeply mineralization. dipping Tertiary fault, about 15 metres in width, below which is a complex sequence of Tertiary sediments and volcanics, porphyry and serpentine, locally intensely altered. This sequence is underlain by a 25 metre zone of strongly silicified serpentine, with zones of up to 30% mariposite and local quartz flooding. Results from the altered intrusive, fault zone and silicified serpentine were disappointing, with a maximum value of 155 ppb Au in the quartz-feldspar porphyry. Silver values were negligible. Platinum and palladium assays were run on the samples of most intensely altered serpentine from this zone and were not anomalous. Further drilling would be required to fully test this structure.

In summary, seven holes were drilled in the vicinity of the Midway Mine to test zones of altered quartz-feldspar porphyry and steeply dipping Tertiary structures. Several large areas of strongly altered porphyry were identified however grades were subeconomic. Two major northeast trending Tertiary fault zones were tested at depth. Both structures returned anomalous values from outcrop or trench samples, however, where intersected at depth, did not run. Alteration related to these structures is widespread, however, and additional drilling is recommended to further explore the zones. A thick sequence of Triassic Brooklyn conglomerate was intersected at depth in several of the holes. The conglomerate occurs below the serpentine belt, in a lower thrust plate. Further drilling is also recommended to test the base of this formation for the possibility of skarn development.

6.0 SUMMARY AND CONCLUSIONS

- 1.0 No significant areas of alteration or mineralization were discovered by the trenching program at Dry Lake.
- 2.0 The large multi-element soil anomaly in the vicinity of the Midway Mine is the result of elevated Au-Ag-As-Sb-Pb-Zn levels within sills of highly altered quartz-feldspar porphyry.
- 3.0 Trenching in the Midway Mine area outlined large areas of altered quartz-feldspar porphyry with anomalous precious and base metal values. Trenching was also successful in identifying a major northeast trending, steeply dipping Tertiary fault zone (the Trench 8 structure). Precious metal values are anomalous within this fault zones, although no economic grades were returned.
- 4.0 Diamond drilling indicated that, although alteration in the quartz-feldspar porphyry is widespread, precious metal values are sub-economic. This style of mineralization is not felt to be a good exploration target on the claims. Drilling did identify several major Tertiary structures with widespread alteration. Sample results from drilling in these structures are poor, however because of the large size of the systems and the anomalous values on surface, further testing of these structures is advisable. A thick unit of Triassic Brooklyn Formation was intersected in several drill holes, in the underlying thrust plate. While no anomalous values were obtained from this unit, there is indication of skarnification, and further testing is recommended.

7.0 <u>RECOMMENDATIONS</u>

- 1.0 Additional surface trenching should be done to explore the major northeast trending Tertiary structures discovered in the Midway Mine area (Trench 8 and Hole 7 structures).
- 2.0 At the most favourable locations defined by the above program, the structures should be tested at depth by drilling.
- 3.0 Several deep diamond drill holes should be drilled to test the base of the Brooklyn Formation for the possibility of skarn development.

8.0 <u>REFERENCES</u>

- Chow, F., 1985. Geology and Geochemistry Report of the Rainbow Group. Assessment Report 13,561.
- Church, B.N., 1986. Geological Setting and Mineralization in the Mount Attwood-Phoenix area of the Greenwood Mining Camp. BCDM Paper 1986-2.
- Fyles, J.T., 1983. Assessment Report of Geology of Part of the Rainbow Group. Assessment Report 11,466.
- Fyles, J.T., 1990. Geology of the Greenwood-Grand Forks Area, British Columbia, NTS 82E/1,2. B.C. Geological Survey Branch Open File 1990-25.
- Lee, L.J., 1990a. Assessment Report on the Rainbow Group, for Minnova Inc. filed for assessment.
- Lee, L.J., 1990b. Assessment Report on the Murray 90 and Ingram 90 Groups, for Minnova Inc., filed for assessment.
- Little, H.W., 1983. Geology of the Greenwood Map-Area, British Columbia. GSC Paper 79-29.
- Reid, R. and P.P. Nielsen, 1983. Assessment Report on Geology and Ground Magnetometer Survey of Midway Mine Area, Greenwood Mining Division, for Dentonia Resources. Assessment Report 11,953.
- Wong, R.H., S.J. Hoffman, and W.D. Harris, 1988. Geological, Geophysical, Geochemical and Diamond Drilling Report on the Rainbow Group, Midway, B.C., Assessment Report 18,381.
- Wong, R.H. and S.J. Hoffman, 1987. Geological, Geochemical and Diamond Drilling Report on the Rainbow Group, Midway, B.C. Assessment Report 17,162.

APPENDIX I

•

ANALYTICAL RESULTS - TRENCH SAMPLES

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1352-RJ1+2 DATE: 90/09/17

• ROCK • (ACT:F31)

•

	AG	AS	CU	K	MN PPM	MO	NA PPM	NI	PB	SB PPM	ZN	CR	AU
17(01	1.6		7	110	471		/0	1244			20	757	
13602	.6	93	40	50	204	1	10	355	4 8	1	17	557 685	1
13603	1.1	17	14	1850	986	4	720	39	34	1	44	86	1
13604	1.1	1	9	1750	652	1	550	19	20	1	31	60	10
13605	1.0	18	16	1760	584	1	660	16	20	1	39	67	5
13606	1.3	12	8	1810	716	1	670	7	15	1	33	66	6
13607	1.6	12	9	1510	825	1	610	8	8	1	38	60	4
13608	1.0	32	0 7	1540	657	1	540	6	23	1	27 35	00 52	2
13610	.3	1	4	1740	575	1	370	5	13	. 1	32	35	4
13611	.6	2	3	1750	685	1	440	3	14	1	35	47	3
13612	.7	8	3	1720	884	1	410	1	12	1	32	42	6
13613	.8	1	2	1610	722	1	510	3	11	1	33	49	4
13615	.7	23	4	1350	588	1	380	5	10	1	25	45	1
17616	0	1		1200	712	1	470		7	· · · · · ·	20	72	
13617	.8	35	3	1650	828	i	340	4	35	1	33	39	1
13618	.9	17	9	1380	628	1	360	6	12	1	27	43	5
13619	1.6	. 78	6	430	858	2	130	8	21	3	14	179	1
13620	1.0			130	710		40	1125	<u> </u>	1	17	509	2
13621	1.6	1	13	4770	274	1	600	50	6	1	54	68	1
13623	1.3	1	6	90	1490	1	60	1022	2	1	25 25	887	2
13624	1.5	1	6	100	473	1	90	1245	4	i	34	1124	ź
13625	.9	1	5	80	460	1	60	1400	3	1	37	1387	5
13626	.8	1	5	100	490	1	90	1135	2	1	31	1304	2
13627	.9	1	4	50	770	1	50	919	4	1	25	921	3
13628	1.0	1	5	50	1075	1	30	548 640	5	1	21	1024	2
13630	1.0	i	5	50	780	1	30	932	ž	i	23	1190	2
13631	.9	1	5	40	1137	1	20	1048	3	1	27	882	2
13632	.7	1	3	40	717	1	10	500	4	1	23	757	ĩ
13633	.5	1	3	40	950	1	10	448	2	1	21	687	1
13635	1.3	1	15	1180	438 519	1	1310	650	2	1		338	23
17474	0	1	7	00	580	1	50	1454		1	22	635	
13637	.8	1	15	40	477	1	20	254	ž	i	15	357	2
13638	.9	1	9	40	628	1	10	224	2	1	15	502	9
13639	.9	1	16	10	757	1	10	274	4	1	15	476	4
13640	1.0	<u> </u>		10	/01	<u>_</u>	10	204	<u> </u>		17	009	
13641	.8	1	25	20	739	1	10	386 603	2	1	12	315	2
13643	1.4	1	23	40	727	i	10	1021	2	i	18	605	1
13644	.9	1	16	40	607	1	10	955	3	1	13	454	2
13645	1.7	1	20	40	723	1	10	1107	1	1	17	505	12
13646	1.6	1	17	40	712	1	10	712	5	1	30	1704	3
13647		1	7	70	495	1	10	1287	4	1	29	1025	4
13649	1.2	1	9	170	694	1	50	702	2	i	31	1499	1
13650	2.7	1	104	40	3943	1	10	906	90	1	72	517	47
13651	.4	1	3	1410	582	1	10	23	8	1	35	34	19
13652	.3	1	2	2170	542	1	10	11	5	1	27	28	26
13653	د. ۱	19 40	2	2190	769 706	1	10 10	1 7	8 14	1	42 28	30	75 11
13655	.5	104	5	2210	1398	ź	40	67	56	1	33	73	60
13656	.5	45	4	2610	2826		50	57	54	1	17	58	240
13657	1.7	1	23	1830	1779	1	20	404	7	1	37	207	44
13658	1.1	1	27	630	850	1	120	689	3	1	42	612	22
13659	1.8	1	23	540	1437	1	60	601 (70	4	1	33	550	29
13660	<u> </u>	1	ö	40	707	1	10	470	<u> </u>	<u> </u>	44	/95	6

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1352-RJ3+4 DATE: 90/09/17

*	ROCK	*	(ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K PPM	MN PPM	MO PPM	NA PPM	NI PPM	PB PPM	SB PPM	ZN PPM	CR PPM	AU PPB
13661 13662 13663 13664 13665	1.3 1.0 1.0 .9 .8	1 1 1 1 1	16 12 11 18 33	60 60 50 60 80	767 580 526 512 721	1 1 1 1 1	20 10 10 10 20	542 1149 1365 1411 1476	2 3 4 3 3	1 1 1 1 1	28 26 29 33 66	412 816 931 1170 1367	1 1 2 1 2
13666 13667 13668 13669 13670	.8 .7 .8 .9 1.1	1 1 1 1 1	21 27 25 13 15	180 480 110 110 50	517 585 473 498 482	1 1 1 1 1	40 140 10 20 10	1416 1201 1414 1487 1530	2 3 2 3 4	1 1 1 1 1	53 45 36 37 30	1259 1172 1171 1358 1074	1 1 3 2 2
13671 13672 13673 13674 13675	.9 1.2 1.3 140.4 7.1	1 1 589 98	9 13 10 46 48	50 80 170 2020 2460	287 478 1014 1510 1008	1 1 1 4 1	10 20 30 100 150	1428 1413 1413 77 59	5 2 3 989 58	1 1 1 28 3	27 28 25 592 63	819 904 728 54 56	3 2 1 1050
13676 13677 13678 13679 13680	24.0 1.7 1.2 3.2 2.1	182 1 1 178 374	32 11 15 23 31	1960 650 830 1750 940	1485 1324 1458 713 2369	2 1 1 1	110 30 100 250 40	67 99 162 417 371	176 25 12 23 29	5 1 1 1 1	206 137 284 139 77	46 80 105 181 191	398 4 2 105 48
13681 13682 13683 13684 13685	6.8 2.6 2.7 2.7 1.6	194 107 167 10 21	8 9 6 10 5	1270 1670 1890 2200 2300	875 1578 1784 2022 1046	1 1 1 1 1	60 70 70 100 140	36 8 7 15 8	191 38 40 40 24	5 2 2 1 1	96 61 91 58 41	38 16 24 35 32	1 137 2 58 56
13686 13687 13688 13689 13690	.8 1.0 .7 1.1 1.4	36 46 1 1	45 75 49 63 17	2030 1760 2180 2180 1430	1547 1402 1363 1219 1417	1 _1 1 1 1	100 40 170 100 150	66 129 30 19 298	20 12 11 15 3	2 1 1 1 1	57 62 62 58 36	41 71 11 24 203	11 5 2 24 29
13691 13692 13693 13694 13695	1.9 1.0 1.6 1.2 .6	9 31 18 21 29	12 6 6 5 5	1740 2030 2760 2320 2290	874 714 776 692 716	1 3 1 1 1	190 90 230 240 160	84 7 4 2 4	33 22 18 17 11	4 3 1 1 1	39 36 37 41 31	75 31 47 30 31	2 1 2 1 16
13696 13697 13698 13699 13700	8.8 41.1 15.7 2.3 2.7	101 674 428 81 33	17 25 14 11 6	2110 2810 3100 2510 2250	884 432 214 1457 1190	2 2 2 1 1	160 290 270 250 280	17 4 5 14 1	16 317 181 25 37	10 27 10 2 2	163 508 163 92 57	40 70 75 51 51	118 1200 349 21 2
	·		_										

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

<u>Assay Certificate</u>

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Company:	MINNOVA	INC.
Project:	661	
Attn:	I.PIRIE/L	LEE

Date: SEP-17-90 Copy 1. MINNOVA INC., VANCOUVER, B.C. 2. MINNOVA INC., GREENWOOD, B.C.

He hereby certify the following Assay of 2 ROCK samples submitted SEP-04-90 by G.DUSO.

Sample Number	AU g/tonne	AU oz/ton	
13674	1.20	.035	,
13697	1.16	.034	

Certified by

MÍN-EN LABORATORIES

0V-1352-RA1

APPENDIX II

.

ANALYTICAL RESULTS - DRILL CORE SAMPLES

COMP: MINNOVA INC. PROJ: RAINBOW ATTN: IAN PIRIE/ LINDA LEE

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1601-RJ1 DATE: 90/10/19 * ROCK * (ACT:F31)

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K PPM	MN PPM	MO PPM	NA PPM	N I PPM	PB PPM	SB PPM	ZN	CR PPM	AU PPB
BCD 19926 BCD 19927 BCD 19928 BCD 19930 BCD 19931	1.6 1.5 1.1 .8	12 38 48 29 27	5 4 28	2790 2820 2400 2270 2340	1035 1178 896 724	1 3 1 6	130 120 100 240	1 6 1 2	40 32 36 32	1 1 1 1	60 74 55 36 31	33 36 36 52 (8	6 24 12 2
BCD19932 BCD19933 BCD19933 BCD19935 BCD19935 BCD19936	1.4 24.5 99.2 28.8 3 2	1 338 567 621 45	7 26 50 29 7	2320 2340 2810 2540 2340	893 1358 1576 1341 840	3 1 1 1	310 240 230 260 330	1 1 1 1 1	20 29 308 770 69 32	1 19 53 20	38 445 4485 723 42	40 49 50 58 42 51	1 191 476 345
BCD19937 BCD19937 BCD19939 BCD19940 BCD19941 BCD19941	1.4 206.6 3.2 1.7 1.4	41 1266 58 51 7	5 42 8 5 5	1960 2680 2580 2180 2100	808 2118 1187 943 940	1 6 2 1	350 220 200 220 140	1 1 1 1 1	73 1608 35 26	1 53 1 1	40 1171 54 43 33	47 56 36 37 27	22 1100 40 6
BCD 19943 BCD 19944 BCD 19944 BCD 19945 BCD 19947 BCD 19948	1.7 2.5 1.3 1.6 1.2	41 85 1 1	5 4 15 17 37	2500 2510 150 50 20	1099 1082 604 398 852	1 2 1 1 1	190 180 10 10 10	33 2 635 1359 366	23 40 4 4 4	1 1 1 1 1	71 40 34 38 31	52 28 883 920 697	40 80 2 4 2
BCD 19950 BCD 19951 BCD 19952 BCD 19953 BCD 19953 BCD 19954	.8 .6 1.1 1.3 1.0	1 1 13 1 6	30 8 17 72 9	2340 3000 2270 2120 2360	906 1220 1051 1183 909	1 1 1 1 1 1	310 460 290 250 310	132 3 29 29 5	17 17 25 23 15	1 1 1 1 1	73 77 57 47 45	87 44 32 26 26	4 2 4 3 5
			R	DH- 1	0-01								
			788 ·										<u> </u>

COMP: MINNOVA INC. PROJ: RAINBOW ATTN: IAN PIRIE/ LINDA LEE

and a second second

٠.

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1601-RJ1 DATE: 90/10/19 * ROCK * (ACT:F31)

.

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K PPM	MN PPM	MO PPM	NA PP M	N I PPM	PB PPM	SB PPM	ZN PPM	CR PPM	AU PPB
BCD 19926 BCD 19927 BCD 19928 BCD 19930 BCD 19931	1.6 1.5 1.1 .8 .7	12 38 48 29 27	5 4 4 28 5	2790 2820 2400 2270 2240	1035 1178 896 724 802	1 3 1 6 3	130 120 100 240 260	1 6 1 2 1	40 32 36 32 20	1 1 1 1 1	60 74 55 36 31	33 36 36 52 48	6 24 12 2 4
BCD 19932 BCD 19933 BCD 19934 BCD 19934 BCD 19935 BCD 19936	1.4 24.5 99.2 28.8 3.2	1 338 567 621 45	7 26 50 29 7	2320 2340 2810 2540 2340	893 1358 1576 1341 840	2 1 3 2 1	310 240 230 260 330	1 1 1 1 1	29 308 770 69 32	1 19 53 20 1	38 445 4485 723 62	49 50 58 42 51	1 191 476 345 12
BCD 19937 BCD 19939 BCD 19940 BCD 19941 BCD 19942	1.4 206.6 3.2 1.7 1.4	41 1266 58 51 7	5 42 8 5 5	1960 2680 2580 2180 2100	808 2118 1187 943 940	1 6 2 1 1	350 220 200 220 140	1 1 1 1 1	73 1608 35 26 19	1 53 1 1 1	40 1171 54 43 33	47 56 36 37 27	22 1100 40 6 36
BCD 19943 BCD 19944 BCD 19945 BCD 19947 BCD 19948	1.7 2.5 1.3 1.6 1.2	41 85 1 1	5 4 15 17 37	2500 2510 150 50 20	1099 1082 604 398 852	1 2 1 1 1	190 180 10 10 10	33 2 635 1359 366	23 40 4 4 4	1 1 1 1 1	71 40 34 38 31	52 28 883 920 697	40 80 2 4 2
BCD 19950 BCD 19951 BCD 19952 BCD 19953 BCD 19954	.8 .6 1.1 1.3 1.0	1 1 13 1 6	30 8 17 72 9	2340 3000 2270 2120 2360	906 1220 1051 1183 909	1 1 1 1 1	310 460 290 250 310	132 3 29 29 5	17 17 25 23 15	1 1 1 1 1	73 77 57 47 45	87 44 32 26 26	4 2 4 3 5
			R	DH- 9	0-01								
			<u></u>										
												<u> </u>	
			<u> </u>										

IAN PIRIE/LINDA LEE

Attn:

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + -FIALISTS + GEOCHEMISTS

Assay Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

0V-1601-RA1

Company: MINNOVA INC. Project: RAINBOW

Date: OCT-18-90 Copy 1. MINNOVA INC., VANCOUVER, B.C. 2. MINNOVA INC., C/O KETTLE RIVER, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted OCT-16-90 by LINDA LEE.

Sample	AU	AU	AG	AG	
Number	g/tonne	oz/ton	g/tonne	oz/ton	
BCD19939	1.14	. 033	208.0	6.07	- <u> </u>

RDH-90-01

Certified by "4

MIN-EN LABORATORIES

٠.

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1601-RJ2 DATE: 90/10/21 * ROCK * (ACT:F31)

.

.

SAMPLE	AG PPM	AS PPM	CU PPM	K PPM	MN PPM	MO	NA PPM	N I PPM	PB PPM	SB	ZN	CR	AU
BCD 19929 BCD 19938 BCD 19946 BCD 19949	1.1 5.2 1.8 1.2	1 338 1 1	6 10 7 13	1910 2530 100 50	622 1512 603 665	1 1 1 1	310 290 20 10	4 5 1103 338	- 32 129 4 4	1 7 1 1	35 85 38 33	31 31 849 861	10 135 5
				, t ^u t									
												·	
		* <u>*</u> - , • <u>* - , • *</u>	R:	DH- 9	0-01								
			<u> </u>										

MIN-EN LABS --- ICESSEPERT. 705 WEST 15TH ST., NORTH VANCOUVERTER EFTV7M 112 (604)988-5814 OR (604)988-4524-500 ----

FILE NO: 0V-1601-RL2 DATE: 90/10/21 • ROCK • (ACT:F26)

.

SAMPLE NUMBER	AL203	BAT %	CAO %	FE203	K20 %	MGO X	MNQ2 X	* 1.NA20 * X	P205	\$102 %	T102 %	s %	TOT (%) %
BCD 19929 BCD 19938 BCD 19946 BCD 19949	15.43 14.84 1.01 1.67	. 145 . 070 . 240 . 025	8.59 6.28 2.55 3.11	3.94 3.86 6.91 6.82	2.23 2.82 .01 .01	1.91 2.48 33.20 30.01	209 .21 .11 .11	7267 	.01 .01 .05 .02	57.27 56.95 35.98 35.76	.33 .34 .01 .10	.02 .69 .08 .01	92.60 89.31 80.14 77.64
							****						<u> </u>
			R	DH-0	10-0	1			<u> </u>			· · · · · · · · · · · · · · · · · · ·	
									<u> </u>				
							·						

and the statement of the

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.:

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay Certificate

SPECIALISTS IN MINERAL ENVIRONMENTS

HEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

0V-1601-RA2

Company: MINNOVA INC. Project: RAINBOW A61

.

Project: RAINBOW 661 Attn: IAN PIRIE/ LINDA LEE Date: OCT-21-90 Copy 1. MINNDVA INC., VANCDUVER, B.C. 2. MINNOVA INC., GREENWODD, 3.C.

He hereby certify the following Assay of 4 ROCK samples submitted OCT-16-90 by LINDA LEE.

Sample Number	LOI %	
3CD19929	6.30	,
BCD19938	10,30	
BCD19946	18.70	
BCD19949	- 20.80	

RDH -90-01

Certified by

MIN-EN LABORATORIES

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1603-RJ1+2 DATE: 90/10/19 • ROCK * (ACT:F31)

•

BAPELE AG AS DU K MN NO MA NI PB PFM			-												
EU19995 1.5 1 6 205 950 1 440 11 38 2 39 50 1 ELD19957 2.4 32 36 90 850 150 834 8 1 33 1033 7 ELD19956 1.4 227 9 80 855 1 80 774 6 1 33 1033 7 9 64 1 33 603 7 1 140 23 41 9 53 70 9 ED119965 1.3 1 7 4640 777 1 2600 1 23 1 35 44 15 ED19966 1.4 4.5 6 4420 77 1 160 28 30 1 31 68 27 11 5860 116 160 28 30 1 31 68 27 11 35 31		SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K	MN PPM	MO PPM	NA PPM	NI PPM	PB PPM	SB PPM	ZN PPM	CR PPM	AU PPB
BC019963 1.3 1 7 4050 910 2 200 8 40 1 41 50 1 BCD19965 1.4 4.6 9 44.20 778 1 250 3 33 1 32 75 27 BCD19965 1.4 4.6 9 44.40 778 1 250 3 33 1 32 75 27 BCD19965 1.4 4.3 6 4450 1104 1 160 28 3 1.4 5.6 448 150 29 1.7 1.4 4.7 1.6 29 1.7 1.6 5.6 7.7 1.4 1.6 7.7 1.6 1.6 7.7 1.6 1.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.6 7.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7		BCD 19956 BCD 19957 BCD 19958 BCD 19958 BCD 19961 BCD 19962	1.5 2.4 1.4 2.4 5.3	1 32 227 18 10	6 36 9 34 163	2950 90 80 50 3940	595 890 858 1229 794	1 1 1 1 1	640 50 80 20 140	11 834 794 748 23	38 8 6 6 41	2 1 1 3 9	39 30 33 24 53	50 675 1033 439 70	1 5 7 24 94
B019968 6.6 723 11 5580 1405 2 180 3 48 6 728 84 152 B019970 11.4 163 14 3990 1626 1 100 172 9 63 57 101 66 B019971 186.6 445 44 180 2447 1 1031 163 76 519 500 72 B019974 2.1 11 11 7720 151 1330 8 53 2 63 67 13 B019975 1.4 55 5400 1428 1 130 2 26 1 42 64 67 1 44 72 254 1075 140 122 170 10 441 72 254 1075 140 122 170 10 461 425 400 174 400 717 10 141 42 40		BCD 19963 BCD 19964 BCD 19965 BCD 19965 BCD 19966 BCD 19967	1.3 1.0 1.4 1.0 1.4	1 4 46 38 43	7 6 9 7 6	4050 4120 4440 4040 4450	910 758 778 797 1104	2 1 1 1 1	200 260 250 190 160	8 1 3 4 28	40 22 33 27 30	1 1 1 1 1	41 36 32 44 31	50 44 75 70 68	1 3 21 37 21
BC19974 2.1 11 13 130 8 53 2 63 67 13 BC19975 1.4 55 10 5600 1522 1 130 3 29 1 42 105 10 BC19977 1.1 36 14 5440 1198 1 130 2 26 1 42 105 61 BC19977 2.1 139 5 5400 1144 1 42 60 722 540 1448 1 42 60 722 54 62 73 524 64 64 13 65 1 10 1186 6 1 34 399 1 65 1 10 1186 6 1 34 399 1 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150		8CD 19968 BCD 19969 BCD 19970 BCD 19971 BCD 19972	6.6 13.5 11.4 86.6 2.1	723 308 163 445 49	11 14 14 44 10	5580 4790 3990 180 4560	1405 1406 1626 2647 1224	2 1 1 1 1	180 150 100 10 170	3 29 172 1031 27	48 137 99 143 40	6 9 33 76 4	728 64 57 319 53	84 71 101 500 68	163 166 66 72 258
BCD19979 2.4 151 14 590 3271 1 20 883 6 2 37 524 60 BCD19981 2.0 1 7 120 700 1 10 1187 6 1 35 660 61 BCD19983 1.9 1 14 100 717 1 10 1187 6 1 34 599 1 BCD19984 .8 14 25 3990 801 1 350 59 30 1 50 59 1 64 45 64 47 1 800 150 63 1 60 24 64 65 66 1 34 91 1 230 39 40 92 1 16 31 3030 980 1 380 150 63 1 60 22 1 67 119 3 30 117 14	RDH-90-02	BCD 19974 BCD 19975 BCD 19976 BCD 19976 BCD 19977 BCD 19978	2.1 1.4 1.1 1.1 2.5	11 55 36 39 62	11 10 14 5 7	5720 5690 5480 5400 5140	1551 1282 1198 1448 1822	1 1 1 1 1	130 130 130 130 130 170	8 3 2 6 10	53 29 26 47 481	2 1 1 1 1	63 44 42 44 42	67 76 105 72 60	31 100 41 254 726
BCD 19984 .8 14 25 3900 801 1 350 59 30 1 50 59 1 BCD 19988 .9 35 17 4170 892 2 500 15 26 1 45 49 1 BCD 19988 .9 35 17 170 775 1 240 16 1 16 45 49 1 BCD 19999 .9 19 12 2240 801 1 440 10 22 1 46 45 6 BCD 199994 2.4 72 42 710 662 3 290 54 49 370 128 2 BCD 199994 2.4 72 42 710 652 1 590 67 25 1 55 160 3 100 92 17 1 48 17 2 160 10 20 77		BCD 19979 BCD 19980 BCD 19981 BCD 19982 BCD 19983	2.4 1.6 2.0 2.1 1.9	151 1 1 1 1	14 6 7 9 14	590 2630 120 120 120	3271 1073 720 685 717	1 1 1 1 1	20 60 10 10 10	883 221 1187 1198 818	6 50 6 6	2 1 1 1 1	37 53 26 31 34	524 89 646 638 399	40 61 2 1 1
BED19993 2.9 68 43 620 610 3 230 39 40 9 59 118 17 BCD19994 2.4 72 42 710 662 3 290 54 49 3 70 128 2 BCD19996 2.1 69 53 1170 837 1 280 60 41 1 72 106 1 BCD19996 1.4 32 95 1030 652 1 550 1 50 120 1 BCD19999 1.9 56 81 670 559 3 540 53 25 2 40 170 2 BCD20000 2.1 87 73 290 601 3 300 50 17 1 45 117 7 BCD20000 2.1 76 1280 770 3 280 20 2 2 1		8CD 19984 BCD 19988 BCD 19989 BCD 19989 BCD 19991 BCD 19992	.8 .9 1.3 .9 1.4	14 35 16 19 43	25 17 31 12 49	3990 4170 3030 2240 1170	801 892 980 801 775	1 2 1 1 1	350 500 380 440 240	59 15 150 10 46	30 26 63 22 32	1 1 1 1 1	50 45 60 46 67	59 49 24 45 119	1 1 84 6 3
BCD 19999 1.9 56 81 670 559 3 540 53 25 2 40 170 2 BCD 20000 2.1 B7 53 290 601 3 300 50 17 1 45 117 7 BCD 20002 1.6 81 76 1020 570 3 280 26 20 2 54 86 1 BCD 20002 1.6 81 76 1020 570 3 280 26 20 2 54 86 1 BCD 20003 .6 5 10 2920 751 3 470 18 25 1 36 45 21 BCD 20005 .7 22 18 2140 763 2 400 713 2 400 713 36 37 3 BCD 20006 .5 32 13 2430 893 4 520 </td <td></td> <td>BCD 19993 BCD 19994 BCD 19996 BCD 19997 BCD 19997 BCD 19998</td> <td>2.9 2.4 2.1 1.6 1.4</td> <td>68 72 69 82 32</td> <td>43 42 53 76 95</td> <td>620 710 1170 1330 1030</td> <td>610 662 837 814 652</td> <td>3 3 1 1 1</td> <td>230 290 280 610 590</td> <td>39 54 60 69 67</td> <td>40 49 41 25 25</td> <td>9 3 1 1 1</td> <td>59 70 72 55 50</td> <td>118 128 106 149 120</td> <td>17 2 1 3 1</td>		BCD 19993 BCD 19994 BCD 19996 BCD 19997 BCD 19997 BCD 19998	2.9 2.4 2.1 1.6 1.4	68 72 69 82 32	43 42 53 76 95	620 710 1170 1330 1030	610 662 837 814 652	3 3 1 1 1	230 290 280 610 590	39 54 60 69 67	40 49 41 25 25	9 3 1 1 1	59 70 72 55 50	118 128 106 149 120	17 2 1 3 1
BED 20004 1.0 42 5 2680 784 1 450 2 22 1 41 28 19 BED 20005 .7 27 6 2550 770 4 610 8 20 1 35 52 1 BED 20006 .7 22 18 2140 763 2 400 7 132 1 170 37 7 BED 20007 .6 27 10 2400 772 2 600 2 17 1 36 37 3 BED 20008 .6 1 8 2350 788 2 500 8 16 1 38 44 3 BED 20010 1.0 43 15 2140 862 1 620 6 26 1 34 66 1 BED 20013 1.2 20 11 3380 976 1 410 9	· · · ·	BCD 19999 BCD 20000 BCD 20001 BCD 20002 BCD 20002 BCD 20003	1.9 2.1 1.5 <u>1.6</u>	56 87 64 81 5	81 53 100 <u>76</u> 10	670 290 920 1020 2920	559 601 729 570 751	3 3 2 3 3	540 300 400 280 470	53 50 38 26 18	25 17 28 20 25	2 1 1 2	40 45 48 54 36	170 117 94 86 45	2 7 12 1
BCD20009 .5 32 13 2430 893 4 520 8 16 1 38 44 3 BCD20010 1.0 43 15 2140 862 1 620 6 26 1 34 66 1 BCD20011 .9 1 11 2770 822 1 480 5 19 1 40 47 3 BCD20013 1.2 20 11 3380 976 1 410 9 20 1 41 39 10 BCD20014 2.3 12 9 3310 1057 1 200 3 36 2 55 34 56 BCD20016 2.3 206 35 160 1190 1 20 707 7 9 33 565 3 BCD20017 2.1 1 21 80 937 1 10 907 <td< td=""><td>2DH-40-03</td><td>BCD20004 BCD20005 BCD20006 BCD20007 BCD20008</td><td>1.0 .7 .7 .6 .6</td><td>42 27 22 27 1</td><td>5 6 18 10 8</td><td>2680 2550 2140 2400 2350</td><td>784 770 763 772 788</td><td>1 4 2 2 2</td><td>450 610 400 600 500</td><td>2 8 7 2 8</td><td>22 20 132 17 24</td><td>1 1 1 1 1</td><td>41 35 170 36 36</td><td>28 52 37 37 37</td><td>19 1 7 3 1</td></td<>	2DH-40-03	BCD20004 BCD20005 BCD20006 BCD20007 BCD20008	1.0 .7 .7 .6 .6	42 27 22 27 1	5 6 18 10 8	2680 2550 2140 2400 2350	784 770 763 772 788	1 4 2 2 2	450 610 400 600 500	2 8 7 2 8	22 20 132 17 24	1 1 1 1 1	41 35 170 36 36	28 52 37 37 37	19 1 7 3 1
BCD20015 2.3 45 22 3140 1114 3 120 47 54 1 104 53 44 BCD20016 2.3 206 35 160 1190 1 20 707 7 9 33 565 3 BCD20017 2.1 1 21 80 937 1 10 907 7 1 32 791 1 BCD20020 1.7 1 6 30 935 1 10 816 7 1 28 578 1 BCD20021 .6 1 5 2570 667 1 310 56 26 1 63 61 3 BCD20022 .8 1 5 3700 905 1 420 19 38 1 59 51 7 BCD20023 .6 1 10 3620 872 1 430 6 32<		8CD20009 8CD20010 8CD20011 8CD20013 8CD20014	.5 1.0 .9 1.2 2.3	32 43 1 20 12	13 15 11 11 9	2430 2140 2770 3380 3310	893 862 822 976 1057	4 1 1 1 1	520 620 480 410 200	8 6 5 9 3	16 26 19 20 36	1 1 1 2	38 34 40 41 55	44 66 47 39 34	3 1 3 10 56
BCD20022 .8 1 5 3700 905 1 420 19 38 1 59 51 7 BCD20023 .6 1 10 3620 872 1 430 6 32 1 46 35 1	• • •	BCD20015 BCD20016 BCD20017 BCD20020 BCD20021	2.3 2.3 2.1 1.7 .6	45 206 1 1 1	22 35 21 6 5	3140 160 80 30 2570	1114 1190 937 935 667	3 1 1 1 1	120 20 10 10 310	47 707 907 816 56	54 7 7 7 26	1 9 1 1 1	104 33 32 28 63	53 565 791 578 61	44 3 1 1 3
		BCD20022 BCD20023	.8 .6	1	5 10	3700 3620	905 872	1	420 430	19 6	38 32	1	59 46	51 35	7 1

.....

RDH-90-02 & RDH-90-03

	COMP: MINNOVA INC. PROJ: RAINBOW 661 ATTN: I.PIRIE/L.LE	E		MIN 705 Wes	I-EN T 15TH 9 (604)9	LABS - ST., NORTH 280-5814 (IC IVANCOU DR (604)	P REP VER, B.C 988-4524	ORT . V7M 117	2		FÎLE * RO	NO: OV- DATE: CK • (1603-RJ 90/10/2 ACT:F31
	SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K PPM 3580	MN PPM	MO PPM	NA PPM	NI PPM	РВ РРМ	SB PPM	ZN PPM 75	CR PPM	AU PPB
RDH-90 -	BCD 19959 BCD 19959 BCD 19960 BCD 19973 BCD 19985	1.8 2.3 1.9 1.3	1 3 1	6 5 9	90 50 4210 3450	491 2070 1427 1087	1 1 1	30 10 140 390	1559 955 15 30	25 7 7 50 26	1 1 1	43 29 60	1011 583 41 20	10 160 320
02	BCD 19986 BCD 19987 BCD 19990	1.1 1.0 .8	1 1 10 (5	14 19 17	4810 5720 4480	547 589 522	1 1 2	630 560 790	23 17 19	25 34 31	1 1 1	53 56 59	54 68 71	20
RDH-90-	BCD20012	.6	45	45	2740	857	<u> </u>	620	1	41	1	<u>64</u> 30	44	<u>10</u> 5
03	BCD20018 BCD20019	.7 1.3	1 1	28 3	2320 60	891 898	1 1	560 10	10 250	24 7	1	49 26	54 486	10 5
			, 								<u> </u>			
				RE	»H-9	0-02		& R	(DH -	90-				
											<u> </u>			
•-									<u> </u>					
								-						

.

·	COMP: MINNOVA INC. PROJ: RAINBOW 661 ATTN: I.PIRIE/L.LEE			MI 705 WES	N-EN ST 15TH S (604)9	LABS T., NOR 280-5814	IC TH VANCOL OR (604)	P RE1 IVER, B.C 988-4524	PORT . V7M 11	2		FILE * ROO	NO: 0\ DATE: CK *	/-1603-RL 90/10/2 (ACT:F26
	SAMPLE	AL203	BAT	CAO %	FE203	K20	MGO	MNO2	NA20	P205	\$102 %	T102	S X	TOT(%)
R DH - 90-02	BCD 19955 BCD 19959 BCD 19960 BCD 19960 BCD 19973 BCD 19985	14.66 .93 .61 15.56 14.34	.125 .030 .005 .070 .060	6.74 4.96 5.89 3.83 9.08	5.10 6.69 5.84 4.48 4.97	2.91 .03 .02 3.85 2.67	3.56 32.85 28.37 4.05 3.69	.08 .08 .29 .18 .13	3.15 .02 .01 .15 2.30	.15 .02 .04 .01 .01	56.28 35.09 29.22 58.83 49.24	.73 .01 .01 .41 .54	.01 .03 .50 1.64 .14	93.50 80.75 70.81 93.05 87.16
	BCD 19986 BCD 19987 BCD 19990 BCD 19995	14.46 14.25 14.65 8.43	.130 .100 .135 .020	5.90 7.32 5.90 14.97	4.11 4.67 4.18 4.96	3.51 2.84 3.28 .52	2.47 3.00 2.53 3.18	.07 .08 .07 .10	3.49 3.31 3.55 1.86	.04 .10 .01 .01	57.37 55.31 58.36 54.00	.66 .69 .67 .51	.03 .04 .02 .23	92.23 91.72 93.35 88.79
R DH -40-03	BCD20012 BCD20018 BCD20019	15.85 16.50 .58	.070 .105 .010	5.71 7.25 3.92	4.00 4.91 6.17	2.12 3.02 .02	2.86 3.24 31.21	.15 .12 .12	2.30 5.18 .01	.01 .02 .07	57.31 52.98 30.90	.33 .48 .01	.18 .02 .01	90.89 93.84 73.04
													, ,	
			,					<u>-</u> -						
i				I	RDH -	90-0	02	& R	DH-0	40 -C	3	-		
											<u>- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1</u>			
		<u></u>	<u></u>											
			<u></u>					_			·	<u></u> .		
			. <u></u>				<u> </u>				<u>,</u>	*************************************		
								<u>.</u>						

-

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB: TELEPHONE (807) 622-8958 FAX (807) 623-5931

FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay Certificate

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

0V-1603-RA1

Company:	MINNOVA INC.
Project:	RAINBOW 661
Attn:	I.PIRIE/L.LEE

Date: OCT-21-90 Copy 1. MINNOVA INC., VANCOUVER, B.C. 2. MINNOVA INC., GREENWOOD, B.C.

He hereby certify the following Assay of 12 ROCK samples submitted OCT-13-90 by R.YOUNG.

Samole Number	LOI %				
BCD19955 BCD19959 BCD19950 BCD19960 BCD19973 BCD19985	5.30 17.60 28.50 7.60 12.00	RDH-90-02		 	,
BCD19986 BCD19987 BCD19987 BCD19990 BCD19995	7.00 7.30 5.60 10.50				
BCD20012	8.40	RDH-90-03			
BCD20018 BCD20019	5.10 25.50			 	

RDH-90-02 & RDH-90-03

Certified by

MÍN-EN LABORATORIES

6

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1617-RJ1+2 DATE: 90/10/22 * ROCK • (ACT:F31)

•

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K PPM	MN PPM	MO PPM	NA PPM	NI PPM	PB PPM	SB PPM	ZN PPM	CR PPM	AU PP9
BCD20024	1.6	54	13	3070	925	3	220	8	66	1	102	27	2
3CD20025	.8	35	12	1000	305	2	30	126	25	1	32	56	4
3CD20026	2.9	15	49	160	1122	1	20	1089	6	i	44	414	2
3CD20027	1.5	28	5	80	1256	1	20	952	6	1	40	687	4
3CD20028	1.8	60	11_	3210	1442	1	60	81	36	1	64	53	232
CD20029	1.9	18	36	3900	1333	2	90	30	33	1	62	27	50
CD20030	1.3	31	4	2750	1162	1	70	7	42	1	89	37	291
CD20031	1.5	80	4	3260	1612	1	100	6	46	1	53	40	100
CD20032	1.7	87	5	3010	1693	2	110	9	51	1	83	43	336
CD20034	.9	33	4	2970	1133	4	90	1	33	1	45	36	29
CD20035	1.3	38	3	3000	1261	1	100	19	31	1	47	40	64
ICD20036	1.8	69	33	2850	1034	1	190	22	25	1	40	40	30
CD20037	1.2	70	25	2700	933	3	270	1	33	1	42	30	6
ICD20038	.9	39	16	3480	916	4	310	4	22	1	38	34	7
ICD20039	1.4	52	16	2750	866	1	250	2	17	1	40	27	6
ICD20040	1.2	107	5	2440	758	2	210	19	37	1	45	37	44
CD20041	1.3	15	35	570	/52	1	230	318	6	1	40	284	17
0020042	1.4	10	19	120	074	1	50	288	6	1	34	478	15
CD20043	1.5	- 25	18	2390	559 778	1	290	112	22	1	66 74	36	32
0020049	1.0		- 1/	1070	700	<u> </u>	/50						10
020050	1.1	29	14	1970	798	2	450	21	22	1	47	30	12
CD20052	.0	04 50	13	2230	842	;	200	4	5/]	42	22	2
CD20055	1.0	27	2	2380	000	4 7	450	10	30	1	75	25	1
CD20054		30	3	2160	915	2	480	18	28	1	50 42	54 26	15
0020055		15		2270	700	<u>-</u>	200	74			76		
	./	12	41	100	1775	2	200	1102	50	1	73	29	109
CD20057	2.4	15	41	1740	1333		120	1102	0 4	1	38	2/0	57
CD20058	.0	15	77	1920	492		270	40	17		52	20	22
CD20059	1.3	15	40	1880	1106	1	220	35	12	1	51	50	40
CD 20061	1 2	24	50	1580	644	<u> </u>	330	40	22		55	81	
CD20007	8	22	46	1470	634		380	56	21	1	52	83	2
CD20063	1.2	26	44	1640	616	i	320	50	16	1	51	67	1
CD20064	.8	19	52	1540	678	ż	440	41	6	1	60	85	1
CD20065	1.0	22	59	1730	659	3	440	39	15	i	59	69	2
CD20066	1.0	4	55	1820	723	2	350	37	12	1	47	57	2
CD20067	1.2	36	32	1660	672	2	170	44	23	ż	41	49	1
CD20068	1.3	21	59	1930	752	1	90	31	19	1	53	51	11
CD20069	1.1	41	35	1760	807	2	130	25	14	1	43	56	12
CD20071	1.1	67	34	1220	714	4	50	20	28	2	54	42	11
CD20072	.9	18	63	2060	787	4	80	13	18	1	75	28	6
CD20074	.5	26	51	930	579	1	180	50	6	1	62	94	2
CD20075	.9	31	48	1320	651	1	240	45	15	1	80	64	2
CD20076	1.0	8	51	1140	588	1	330	31	14	1	65	64	1
				RDH-	90-0	04-					-, , ,,,,		
									<u></u>		<u></u>		

~

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 DR (604)988-4524

FILE NO: 0V-1617-RJ3 DATE: 90/10/26 * ROCK * (ACT:F31)

•

SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K PPM	MN PPM	MO	NA PPM	NI PPM	PB PPM	SB PPM	ZN	CR PPM	AU PPB
BCD20033 BCD20044 BCD20045 BCD20046 BCD20046 BCD20047	1.9 .8 1.1 1.7 1.6	35 1 1 1 1	12 5 9 14 20	4170 4910 4780 5450 4240	1938 1242 1285 526 596	3 1 1 2 2	140 360 360 770 1060	1 5 25 23	59 25 14 26 6	1 1 1 1 1	176 47 39 87 63	36 13 17 86 98	440 5 5 10 5
BCD20048 BCD20051 BCD20070 BCD20073	.9 .9 1.6 1.6	1 1 28 1	16 14 86 60	3550 2680 1260 1440	964 890 756 735	2 3 1 1	610 500 240 60	11 16 65 38	22 10 15 7	1 1 1 1	64 66 57 66	35 34 104 59	5 10 5 5
				<u> </u>			<u></u>						
			١	RDH-	90-	04							
												- -	
								<u>,, , , , , , , , , , , , , , , , , , ,</u>					
					-								

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1617-RL3 DATE: 90/10/26 * ROCK • (ACT:F26)

•

SAMPLE NUMBER	AL203	BAT %	CAO X	FE203	K20 %	MGO X	MNO2 %	NA20	P205	\$102 %	T102 %	s X	TOT (%) %
BCD20033 BCD20044 BCD20045 BCD20046 BCD20047	14.32 16.97 16.84 14.69 14.48	.075 .055 .045 .135 .120	7.66 7.87 8.83 5.81 7.98	4.05 5.34 5.42 4.35 5.03	3.92 4.05 3.90 3.77 3.05	3.03 2.54 2.52 2.78 3.16	.27 .17 .17 .07 .09	.16 3.08 3.12 3.41 3.29	.01 .11 .01 .04 .12	55.59 49.34 48.93 58.29 55.68	.37 .61 .61 .68 .75	1.22 .18 1.26 .32 .07	90.64 90.31 91.68 94.35 93.82
BCD20048 BCD20051 BCD20070 BCD20073	15.18 14.64 10.03 9.17	.080 .100 .030 .040	5.88 8.06 13.38 14.24	4.76 4.52 5.71 4.90	2.50 2.40 .77 1.36	2.88 2.26 3.09 2.85	.13 .12 .10 .10	2.95 2.83 1.16 .03	.01 .01 .01 .01	57.55 56.24 55.25 54.09	.44 .41 .61 .49	.22 .16 .72 .13	92.57 91.74 90.85 87.39
												,	
				RD	H - 90	0-04	٢						
	,												
										<u>.</u>			
												<u></u>	

(**1**_____)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + JECCHEMISTS

Assay Certificate

Company: MINNOVA INC.

Project: RAINBOW 661 Attn: I.PIRIE/L.LEE Date: OCT-26-90 Copy 1. MINNOVA INC., VANCOUVER, B.C. 2. MINNOVA INC., GREENWOOD, F.C.

He hereby certify the following Assay of 9 ROCK samples submitted OCT-17-90 by L.LEE.

Sample Number	LOI %	
BCD20033	9.50	
BCD20044	8,80	
SCD20045	8.90	
BCD20046	· 4.90	
BCD20047	5.20	
 6CD20048	6.90	
BCD20051	7.30	
BCD20070	3.30	
BCD20073	11.80	

RDH-90-04

Certified by

MIN-EN LABORATORIES

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821 THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931

FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

OV-1617-RA3

,

٠.

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0V-1630-RJ1+2 DATE: 90/10/30 * ROCK • (ACT:F31)

	r	·····											
SAMPLE NUMBER	AG PPM	AS PPM	CU PPM	K PPM	MN PPM	MO PPM	NA PPM	N I PPM	PB PPM	SB PPM	ZN PPM	CR PPM	AU PPB
BCD20079	2.2	1	9	60	889	1	30	977	10	1	37	705	14
BCD20080	.6	1	20	3180	371	1	140	88	10	1	54	34	1
BCD20082	2.4	1	27	270	864	1	40	641	10	1	38	673	2
BCD20085	2.4	1	42	80	981	1	20	28 654	10	1	24	461	1
BCD20086	1.7	1	15	2310	1032	1	250	90	10	1	54	54	3
BCD20087	1.4	9	24	3500	924	4	210	24	24	1	55	42	18
BCD20088	2.0	63	53	1450	1200	2	180 150	33	48	1	170	74	31
BCD20093	1.3	29	41	1720	694	3	230	45	23	1	45	110	1
BCD20094	1.6	84	48	1480	652	4	ź20	41	25	1	43	94	3
BCD20095		55	54	1270	551	2	90	25	21	1	69	87	7
BCD20097	1.6	72	104	1370	604	2	130	33 38	23	1	40 72	170	4
BCD20098	2.2	95	33	980	654	2	90	30	32	3	80	67	16
BCD20099	1.5	65	50	1060	991	1	210	45	30	2	49	93	2
BCD20100	1.4	20	57	1450	809	5	200	29	22	2	34	87	1
BCD19877	1.7	26	53	1820	800	4	120	30	26	1	64	76	9
BCD19878	1.7	- 44	91	1940	660	2	150	31	23	3	40	68	1
BCD 19879	1.6	55	79	1730	576	2	130	33	23	1	37	84	4
BCD19881	1.6	34	220	2500	626	4	100	23	30	1	56	54	22
BCD19883	1.9	130	56	1370	495	9	40	29	24	1	44	88	150
BCD 19886	1.5	46	68	2470	736	3	100	33	22	1	81	46	10
BCD19887	1.7	1	71	2640	656	4	100	52	16	1	115	39	17
BCD19888	1.3	1	94	2060	625	1	110	35	13	1	121	46	4
BCD19890	1.5	1	88	1610	709	1	90	43	14	1	105	53	20
BCD20077	1.7	1	53	1910	1000	1	250	111	6	1	54	17	5
BCD20078	1.2	1	31	1920	1002	4	320	5	14	1	62	22	5
BCD20081	1.3	1	4 18	2970	492	1	370	24	19	1	51	55	5
BCD20090	1.0	28	6	2050	944	4	300	2	23	i	39	35	5
BCD20091	1.2	9	16	2480	498	1	490	20	28	1	53	54	5
BCD20092	1.3	1	48	1190	527	1	160	48	15	1	59	111	10
BCD19884	1.9	1	16	1580	468	1	950	21	31	1	61	97	5
BCD19885	2.0	1	130	1650	1030	1	250	13	22	1	67	24	5
BCD19891	1.7	78	50	1080	586	1	80	42	17	1	66	76	10
					_								
				RDH	-90-	-05							
	·												
													Ì
			<u> </u>					·			<u></u>	·	
		·······									<u></u>		
	1												

(F A	COMP: MINNOVA INC. PROJ: RAINBOW 661 ATTN: I.PIRIE/L.LEE	E		MI) 705 WES	N-EN ST 15TH S (604)9	LABS ST., NORT 280-5814	IC H VANCOU OR (604)	P REP VER, B.C 988-4524	ORT	2		FILE * RO	NO: OV DATE: CK *	-1630-RL 90/10/3 (ACT:F26
(SAMPLE	AL203	BAT	CAO	FE203	K20	MGO	MNO2	NA20	P205	\$102	T102	s	TOT (%)
	NOMBER BCD20077 BCD20078 BCD20081 BCD20084 BCD20090	16.37 15.98 .72 14.46 15.84	.040 .075 .015 .105 .085	5.52 4.97 2.12 5.97 7.42	5.90 6.69 8.25 4.73 4.53	2.39 2.31 .01 3.13 2.90	7.51 4.52 43.01 3.82 1.87	.15 .15 .12 .07 .13	4.80 5.16 .03 3.05 2.47	.23 .13 .11 .26 .02	45.62 51.87 40.08 55.95 58.42	.63 .64 .01 .75 .46	.15 .13 .08 .29 .09	89.32 92.63 94.57 92.59 94.23
	BCD20091 BCD20092 BCD19880 BCD19884 BCD19885	14.60 9.79 7.46 14.84 13.79	. 135 .060 .050 .150 .140	6.40 8.73 14.52 6.71 12.52	4.15 5.63 5.50 4.27 7.28	3.39 1.29 .35 3.64 1.96	2.45 2.97 2.26 2.44 2.85	.07 .08 .09 .07 .15	3.24 .77 1.95 3.66 2.60	.16 .01 .06 .18 .22	58.23 62.88 62.39 59.33 47.92	.66 .61 .36 .67 .73	.19 .21 .76 .07 1.77	93.67 93.02 95.73 96.04 91.95
	BCD 19891	8.50	.035	13.11	5.33	1.28	2,85	.09	.18	.08	58.95	.43	.38	91.19
											<u>+</u>		;	· <u> </u>
											. <u> </u>			
				R	20H-91	0-05								
									·					
				<u>_</u>						<u> </u>	·		<u> </u>	
- deres" - s. tel							<u></u>		····	<u> </u>			<u> </u>	
							<u>.</u>							
										.				
												/ * _		

.

1

1

SPECIALISTS IN MINERAL ENVIRONMENTS DHEMISTS + ASSAYERS + HNALISTS + ACODEMISTS

Assay Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621 THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 CMITLEDC 1 AD

SMITHERS LAB .: TELEPHONE/FAX (604) 847-3004

0V-1630-RA2

Company:	MINNOVA INC.
Project:	RAINBOW 661
Attn:	I.PIRIE/L.LEE

Date: OCT-30-90 Copy 1. MINNOVA INC., VANCOUVER, B.C. 2. MINNOVA INC., GREENWOOD, B.C.

He hereby certify the following Assay of 11 ROCK samples submitted OCT-20-90 by R.YOUNG.

Sample Number	LOI %		
BCD20077 BCD20078 BCD20081 BCD20084 BCD20090	9.70 6.40 4.10 6.60 4.90		
BCD20091 ` BCD20092 BCD19880 BCD19884 BCD19885	5.70 6.20 3.90 3.00 8.90	R DH-90-05	
BCD19891	8.10		

Certified by_

MIN-EN LABORATORIES

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1636-RJ1+2 DATE: 90/10/31 *•ROCK *• (ACT:F31)

[SAMPLE	AG	AS	យ	K	MN	HO	NA	NI	PB	SB	ZN	CR	AU
	BCD 19893 BCD 19895 BCD 19895 BCD 19896 BCD 19897	3.5 2.9 1.9 1.7	40 40 16 55	27 9 22 15	2160 1970 3240 2130	1148 1172 960 906	1 1 1 3	370 280 850 740	10 7 4	132 36 37 34	1 1 1 1	72 53 47 48	13 21 27 3/	44 48 18
	BCD19898	3.1	73	11	1690	1028	1	360	4	27	2	62	22	
	BCD21551 BCD19899 BCD19900 BCD21553 BCD21554	67.8 6.0 2.4 1.8 5.8	313 314 49 25 128	82 33 5 5 22	1660 2080 1550 1780 1770	1400 1089 1081 891 1147	2 2 3 2 1	200 210 190 220 160	4 1 3 1	94 31 24 26 32	68 9 2 1 4	1144 61 46 39 42	26 28 28 27 26	164 196 39 25 46
	8CD21555 8CD21556 8CD21557 8CD21557 8CD21558 8CD21559	16.6 2.9 4.3 3.3 4.1	241 90 103 80 14	17 4 6 5 7	1760 1800 1870 1790 1650	944 1083 954 925 987	2 3 2 3 3	150 180 190 180 170	3 2 3 3 4	72 35 37 27 27	14 2 4 2	117 38 34 66 108	25 32 29 27 23	86 61 102 45 38
-06	BCD21560 BCD21561 BCD21562 BCD21562 BCD21563 BCD21564	1.6 1.8 2.4 2.1 2.8	29 15 4 49 31	3 4 4 5 10	1320 1370 1620 1310 1510	641 735 735 775 831	1 1 3 3	280 380 320 330 250	2 2 1 1 4	25 19 29 21 28	1 1 1 1 1	32 49 38 36 65	28 36 33 37 28	1 23 24 121 36
	BCD21565 BCD21566 BCD21567 BCD21568 BCD21569	4.0 2.1 1.3 1.3 1.6	46 14 1 1 1	24 4 1 1 1	1650 1570 1210 1960 1690	1342 1269 777 917 913	1 1 1 1 1	160 150 200 150 130	9 12 132 8 11	161 23 6 22 11	1 1 1 1 1	146 69 46 37 38	24 20 106 32 30	187 60 30 18 14
	BCD21570 BCD21571 BCD21574 BCD21575 BCD25376	1.4 1.5 1.2 1.5 2.0	1 1 31 17	1 1 2 2 9	1690 1120 1210 1340 1480	901 552 1136 1131 959	1 1 4 3 4	130 60 320 270 200	18 96 2 2 9	7 6 19 19 23	1 1 1 1 1	37 47 100 81 38	35 56 45 34 24	2 9 11 19 4
	BCD25377 BCD25378 BCD25379	1.2 1.2 1.2	1 1 1	7 13 4	1250 1220 1420	746 759 778	1 3 2	260 270 320	7 5 11	21 66 10	1 1 1	41 81 41	32 38 33	2 6 1
	BCD25380 BCD25381	.9 .8	21 13	4	1060 1390	542 649	3	250 200	5 9	8 16	1	30 29	27 · 34	3 2
	BCD25382 BCD25383 BCD25384 BCD25385 BCD25386	1.1 .9 1.2 1.2 1.1	26 30 23 21 33	2 3 2 3 11	1370 1340 1260 1250 1220	680 687 615 678 638	2 2 3 3	230 200 170 170 160	4 9 11 4 8	16 18 23 13 17	1 1 1 1 1	31 25 27 32 32	32 29 20 23 23	1 28 7 12 19
RDH.90 -07	8CD25388 8CD25389 8CD25390 8CD25391 8CD25392	1.2 1.0 .9 1.1 1.2	25 48 22 38 50	18 2 2 2 2	1220 1350 1380 1600 1570	689 658 624 745 698	1 1 2 2 3	200 200 230 250 230	6 1 4 9 5	15 17 11 17 10	1 1 1 1 1	38 32 32 32 32 30	27 25 30 30 35	6 19 21 3 18
	8CD25393 BCD25394 BCD25395 BCD25396 BCD25397	.7 .7 .9 1.0 1.0	6 22 12 6 1	3 3 7 8 2	1340 1170 1290 1320 1460	515 514 655 608 728	1 3 2 1 2	230 190 190 170 180	1 2 3 13 7	18 12 15 13 16	1 1 1 1 1	31 31 28 30 26	28 34 27 26 25	14 3 2 5 2
	BCD25398 BCD25399 BCD25400 BCD25401 BCD25402	.8 .9 1.0 1.5 .5	20 18 43 10 1	2 2 2 4 2	1450 1460 1310 1460 1420	608 686 528 705 649	1 2 1 4	180 150 140 150 200	8 6 1 8 10	16 13 15 14 19	1 1 1 1	26 26 30 28 30	22 21 21 25 31	4 10 1 19 2
	8CD25403 BCD25404 BCD25405 BCD25406 BCD25407	1.2 1.9 1.7 1.6 1.9	53 357 406 321 196	4 25 8 10 9	1450 530 110 100 80	736 943 517 468 545	3 3 3 1 1	140 30 10 10 10	16 609 1004 971 767	22 18 7 21 7	1 45 87 82 45	33 32 13 17 13	34 216 225 245 212	1 3 7 2 3

$$H - 90 - 07$$

ī

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0V-1636-RJ3+4 DATE: 90/10/31 * ROCK * (ACT:F31)

SANDI F	AG	AS	CI I	r	MN	MO	NA	NT	DR	82	714	 97	ALL
NUMBER	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPB
BCD25408	2.0	68	10	710	496	1	20	545	24	35	21	166	2
BCD25409 BCD25410	1.5	28 1	6 24	1580 4840	320 625	3	50 200	15	55 70	1	37 70	27	3
BCD25411	1.6	17	25	4780	656	5	200	3	59	1	36	10	1
BCD25412	1.4	16	22	4080	836	3	210	6	61	1	37	11	1
BCD25413	1.1	1	27	3190	592	7	160	113	82	1	97	6	4
BCD25414 BCD25415	1.0	250 409	16	240	895 1017	5	40 20	1489 2116	82 53	23	35 20	220	21
BCD25416	1.6	1	3	920	2565	1	20	545	8	11	60	16	2
BCD25417	1.3	170	5	100	739	3	10	2040	36	57	16	191	1
BCD25419 BCD25420	1.4	340	6	120	612	1	10	1481	39	31	14	218	6
BCD25421	1.5	1	8	100	615	i	30	1442	8	4	17	299	3
BCD25422	1.4	145	10	140	702	1	20	1867	12	17	18	337	4
BCD25425	2.1	701	7	130	100/		20	1038	8	18	16	332	1
BCD25424	1.6	301	5	170	865	1	10	1640	21	26 5	16 19	381	6
BCD25426	1.5	226	7	240	781	1	20	1522	9	12	20	462	1
BCD25427	2.2	398	5	150 80	857 033	1	20	1337	7	36	15	255	6
80025429	1.6	257	60	640	700	<u>`</u>		574	41		22	172	
BCD25430	2.2	283	14	100	1027	1	10	1534	12	25	16	266	2
BCD25431	1.8	34	10	120	856	1	20	2055	8	16	17	272	5
BCD25435	1.3	5	13	1980	668	1	50	1192 50	8 43	1	17 33	330	3
BCD25435	1.0	1	10	1520	556	2	40	14	41	1	30	15	2
BCD25436	.8	5	6	1970	589	2	60	18	36	1	31	27	1
BCD25437	.9	39 1	1	1550	615	5 1	60 70	5	37 41	1	34 30	20 19	2
BCD25439	.9	1	1	1360	659	2	50	9	41	1	29	16	ź
BCD25440	1.3	1	3	2250	693	4	100	17	22	1	35	24	2
BCD25442	.7	12	2	1970	542	3	120	18	12	1	27	20 18	2
BCD25443	.9	14	4	2140	702	1	160	13	18	1	35	27	2
	<u> </u>												
			RAN	00.	-07								
			K DA	-90	57								
	+			<u></u> *									
	ļ												
ļ													
	<u> </u>												
	ļ												
	ļ												

.

	COMP: MINNOVA INC. PROJ: RAINBOW 661 ATTN: I.PIRIE/L.LEE	E		MI) 705 Wes	N -EN ST 15TH S (604)9	LABS ST., NORT 280-5814	TH VANCOU OR (604)	P REI VER, B.C 988-4524	PORT v7N 11	2		FILE * ROI	NO: OV DATE: CK *	- 1636-RL 90/10/3 (ACT : F26
	SAMPLE NUMBER	AL203 %	BAT %	CAO X	FE203 %	K20 %	MGO X	MNO2 X	NA20 %	P205 %	\$102 %	TIO2 X	s X	TOT (%) %
RDH 40- 06	BCD 19892 BCD 19894 BCD 21552 BCD 21572 BCD 21573	14.81 15.74 15.48 14.65 14.91	.120 .070 .065 .135 .060	7.20 6.73 6.25 4.51 7.51	5.34 3.80 3.84 4.16 4.92	2.85 2.79 2.52 3.50 2.46	3.45 2.37 2.83 3.53 2.31	.09 .17 .16 .07 .18	3.54 2.62 1.83 2.15 2.92	.25 .01 .01 .18 .06	57.18 58.37 59.06 59.22 56.39	.78 .33 .32 .66 .42	.03 .58 .19 .04 .03	95.65 93.58 92.54 92.81 92.18
RDH-90. 07	BCD25387 BCD25418 BCD25432 BCD25444	16.22 .96 1.05 15.36	.060 .005 .010 .085	5.10 3.56 7.52 6.58	3.97 9.35 7.88 4.19	1.81 .07 .07 2.31	2.41 3.88 10.20 3.15	.09 .12 .13 .10	.45 .01 .01 .17	.01 .01 .01 .01	59.46 72.60 51.58 58.22	.34 .01 .01 .32	.06 .11 .26 .11	89.99 90.67 78.70 90.59
						2DH-9	0-06	<u> </u>	RDH	-90-	.07			
						<u> </u>								
		· ·												
				<u></u>										
														·····
۰.				<u> </u>		<u></u>	<u> </u>							
				<u> </u>		<u> </u>								<u></u>
					<u></u>						<u> </u>			
•														
·,				····		·····			<u> </u>			······		

	COMP: MINNOVA INC PROJ: RAINBOW 661 ATTN: I.PIRIE/L.L	:. .EE		MI1 705 WES	N-EN ST 15TH S (604)9	LABS - ST., NORTI 280-5814 (IC VANCOUN DR (604)	P REI Ver, 8.0 988-4524	ORT . V7M 117	2		FILE • RO	NO: 0V- DATE: 4 CK • (7	1636-R 90/10/ ACT:F3
RDH-90 - OG	SAMPLE NUMBER BCD 19892 BCD 19894 BCD 21552 BCD 21552 BCD 21572	AG PPM 1.9 3.3 8.5 1.7	AS PPM 1 35 22 1	CU PPM 16 7 12 14	K PPM 2530 2200 1990 5320	MN PPM 562 1185 1133 488	MO PPM 1 1 2	NA PPM 730 340 270 450	NI PPM 14 3 1 25	РВ РРМ 8 40 25	SB PPM 1 1 3	ZN PPM 63 64 55	CR PPM 88 26 30 50	AU PPB 5 60 55
R dh - 9 0 - 07	BCD21573 BCD25387 BCD25418 BCD25432 BCD25444	1.4 .9 1.2 1.9 1.4	32 4 264 1 37	11 6 5 11 2	1810 1320 140 170 1440	488 1295 660 731 835 718	2 4 1 2	430 240 200 10 30 130	23 4 2 2798 1839 35	8 17 20 16 8 13	1 21 1 1	35 16 19 25	50 39 23 223 444 25	5 5 10 5
				ƙ	CH-	90-01	0	<u>8</u> R	DH-9	10-0	7			
						. <u></u>								
				•=										
							<u> </u>				· ·		·	
					<u>.,,</u>									<u>.</u>
			<u> </u>											<u>.</u>
													·	
													<u> </u>	<u></u>

.

(DM	NABORATORIE	S		705 WEST 151H STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-45. FAX (804) 980-9821 THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004		
Company: MII Project: RAI Attn: I.F He hereby	NNOVA INC. NBDW 661 VIRIE/L.LEE certify the fo	NOV:	5 1990 Copy 1. 1 2. 1 of 9 ROCK s	Date: OCT-31-90 IINNOVA INC., VANCOUVER, B.C. IINNOVA INC., GREENNOOD, B.C. amples		
eubmitted		YOUNG		•		
submitted Sample Number	ОСТ-23-90 Бу F LOI ;	R, YOUNG, K		•		
submitted Sample Number BCD19892 BCD19894 BCD21552 BCD21572 BCD21573	OCT-23-90 by F L01 3.20 5.90 6.90 6.90 6.90	R.YOUNG. ()))) (КЪН-90-0))				

Certified by

MIN-EN LABORATORIES

1

3

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MINNOVA INC.

3RD FLOOR, 311 WATER ST. VANCOUVER, BC V6B 1B8

Project : 661 Comments: CC: LINDA LEE

C

Page Number : 1 Total Pages : 1 Invoice Date: 12-NOV-90 Invoice No. : I-9026344 P.O. Number :

				CERTIFICATE OF ANALYSIS	A9026344
SAMPLE DESCRIPTION	PREP CODE	au ppd Fa+aa	Ag ppm Aqua R		
BCD 25402 BCD 25403 BCD 25404 BCD 25405 BCD 25406	205 294 205 294 205 294 205 294 205 294 205 294	155 5 35 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2		
BCD 25407 BCD 25408 BCD 25422 BCD 25423 BCD 25424	205 294 205 294 205 294 205 294 205 294 205 294	15 10 80 < 5 10	< 0.2 < 0.2 < 0.2 < 0.3 < 0.2		
BCD 25425 BCD 25426	205 294 205 294	10 < 5	< 0.2 < 0.2		
					tart Bichler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: MINNOVA INC.

3RD FLOOR, 311 WATER ST. VANCOUVER, BC V6B188

. .

Project : 661 Comments: CC: LINDA LEE

Page Number : 1 Total Pages : 1 Invoice Date: 25-NOV-90 Invoice No. : I-9027045 P.O. Number :

					CER	TIFICATE OF A	NALYSIS	A90	27045	
SAMPLE DESCRIPTION	PREP CODE	Au ppb AFS	Pd ppb AFS	Pt ppb AFS						
BCD 25422 BCD 25423 BCD 25424 BCD 25424 BCD 25425 BCD 25426	214 214 214 214 214	8 4 8 14 14	12 10 12 26 28	< 10 < 10 < 10 < 10 < 10 < 10						
		·								
		<u></u>			<u> </u>		ERTIFICATION	/	3. Ca	-di-

APPENDIX III

DIAMOND DRILL LOGS
HOLE NUMBER: 90-1		MINNOVA INC. Drill Hole Record	IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: RAINBOW	PLOTTING COORDS GRID: Rainbox	ALTERNATE COORDS GRID:	COLLAR DIP: -45° 0' 0" 0+ 0 LENGTH OF THE HOLE: 84.45m 0+ 0 START DEPTH: 0.00m 0.00 FINAL DEPTH: 84.45m
PROJECT NUMBER: 661	NORTH: 8925.	00N NORTH:	
CLAIM NUMBER:	EAST: 9375.	00E EAST:	
LOCATION: Midway Nine Area	ELEV: 975.	00 ELEV:	
	COLLAR GRID AZIMUTH: 180° 0	0" COLLAR ASTRONOMIC AZIMUTH:	180° 0' 0"
DATE STARTED: September 30, 1990	COLLAR SURVEY: NO	PULSE EM SURVEY: NO	CONTRACTOR: Lone Ranger
DATE COMPLETED: October 1, 1990	MULTISHOT SURVEY: NO	Plugged: No	CASING: left in hole
DATE LOGGED: October 2, 1990	ROD LOG: NO	Hole Size: Ng	CORE STORAGE: Boundary Falls

PURPOSE: To test Midway shear at depth

1

DIRECTIONAL DATA:

.

Depth (m`	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	
53.66	-	-46* 0'	ACID	OK		-	•	•	-	•		
76.22	-	-46° 0'	ACID	OK			•	-	-	-		
-	-	-	-	•		- 1	-	•	-	-		
-	•	-	-	-			•	-	-	•		
•	-	-	-	•			•	-	-	-		
-	-	-	-	-			•	-	-	-		
-	-	-	-	-					-	-		
-	-	-	-	•		-		-	-	-		
-	-	-	-	-		-	-	-	-	-		
-	-	-	-	-		-	-	-	-			
-	-	-	-	•		-	•	-	-	-		
-	-	-	-	-		•	•	-	-	-		
-	-	•	-	-		-	-	-	-	•		
	-	•	-	-		-	•	-	-	-		
-	-	-		•			•	-	-	•		
-	-	-	-	-				-	•	•		
-	-	-	-	-		_		-	-	-		
-	-	-	-	-		.	-	-	-			
-	-	-	-	-		• ·	-	-	-			
-	-	-	-	•		-	-	-	-	-		
•	-	-	-	-			-	-	-	-		
-	•	-	-	-			-	•	•	-		
-	-	•	-	-		· ·	-	•	•	•		
-	-	-	-	•			-	-	•	•		
-	-	-	-	•			•	•	-	•		
-	-	•	•	-		-	-	•	•	•		

.

)

HOLE NUME	IER: 90-1	DATE: 19-March-1991				
FROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 6.40	«CASING»					
6.40 TO 44.00	«dTZ-FSP PO RPH»	Colour: grey Grain Size: m.gr. 6.4-9.9 -grey green, 5-10% qtz eyes avg. 1 mm, 20%, 1 mm rem. fsp (white), 20% green chl alt'd fsp avg. 2 mm (or poss. px) in f.g. grey green matrix, rusty fracs 9.9-15.8 -pale grey with 5% rem. qtz eyes, 30%, 1-2 mm fsp alt'd to clay; locally grades into green sections where fsp are chl. alt'd, similar to section above -gradational lower contact 15.8-21.4 -grey green as in 6.4-9.9 21.4-44.0 -pale grey green to grey qtz-sp porph with 5-10% qtz eyes av. 1-2 mm, 30% white rem. fsp (locally green chl. alt'd) av. 2 mm in f.g. matrix 22.4-22.8 -sharp upper contact â -rusty alt'd porph and rusty gouge 25.2 -3 cm rusty gouge zone	25	<pre>-min qtz units to 1 cm @ 45 deg -saus of fsp, mod perv. silic'n and minor qtz vns; rusty qtz vns/silic'd zones, 1-2 cm wide @ 45 deg to c.a. @ 12m, 12.2 m, 13.6 m, 15.5 m, 15.7 m -minor rusty fracs locally weak perv. silic'n and qtz units; chl alt'n of fsp [21.4-44.0] «silic'n» -fsp saus, locally fsp chl. alt'd or alt's to marip? -mod-str. perv. silic'n of matrix -minor vuggy qtz units</pre>	 -minor fine diss. py and py units -2-5% v.f.g. py diss and units -v. minor py diss and units -v. minor py diss and units throughout interval; units generally @ 45 deg but also @ random angles -py also finely dissem. in matrix in envelopes adj. to qtz-py units 426.0-31.5\$ «10% py» -as vns and units - 2 cm @ 45 deg finely dissem. in matrix, esp. in envelopes to 5 cm around qtz-py units 427.8-27.82\$ «2 cm sulphide vn» -2 rm sulphide vn with 80% py, 20% fine black mineral (galena?) @ 45 deg 	22.4-22.8 «FAULT ZONE»

HOLE NUMBER: 90 1

.

.

1 1

HOLE NUMB	ER: 90-1	DATE: 19-March-1991				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-rusty alt'd porph and gouge			134-381 «10% py» -as above 135.8-35.831 «3 cm sulphide vn» -vn a 45 deg with 30% py in grey qtz vn banded with py core, surrounded by grey (sulphide rich, fine) qtz, surrounded by .5 cm white qtz and 3 cm py rich envelope in porph	
44.00 TO 70.50	«SERPENTINE »	Colour: grey green Grain Size: fine 44.0-44.1 -10 cm grey gogue and bx zone a contact with 10% white qtz frags 44.1-47.0 -well foliated serpentine foliation a 45-75 deg to c.a. -mod-str magnetic locally mod-str talc alt'n along foliation, giving alternate pale green talc bands and grey str. magnetic serp. bands 47.0 -grad. contact 47.0-55.3 -grades downward into dark green-grey serpentine strongly magnetic, mod-str. foliation a 50 deg -40% f.gr. dark grey bands and clasts with 60% med green serp. 55.3-56.0 -grey green gouge and bx frags and str. alt'd serp 56.0-58.5 -dark green-grey serp. as in 47.0-55.3 -gradational lower contact 58.5-62.1 -grey well foliated arp with 30-40% bands _f white pale green carb alternating with grey f.g.		-mod-str. talc. alt'n along foliation 45.4-47.0 -mod. carb. units -minor carb. units	-minor diss. py in grey bands and clasts	139.8-44.1 KFault Zone»

•

•

1. 1

•

.

and the second second

i

HOLE NUM	BER: 90-1			DATE: 19-March-1991		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		serp. 62.1-64.1				
		-fine grained massive dark grey green serp, non- magnetic, sharp upper contact a 45 deg				
		64.1-64.40 -grey gouge zone a 45 deg to c.a.				64.1-64.40 «Fault Zone»
		64.40-70.5 -well Soliated grey seep, mod-str. magnetic; mod- str. talc along fol'n giving alt. pale green talc and grey str-mod serp bands as in 44.1-47.0 (ie) talc alt'n a upper and lower serp contacts		64.4-70.5 -mod-str. talc alt'n along foliation		
70.50	«FSP PORPH»]			
84.45		Colour: grey green Grain Size: fm.gr.				
		70.5 -sharp upper contact a 80 deg - 10 cm zone of green f.gr. clay alt'd intrus. with 30-40% large bx clast of serp			70.5-72.2 -min diss. py throughout	70.5-70.6 -fault contact @ 80 deg
		70.5-71.3 -v. fine grained green, mod clay alteration, f.g. margin of intrusive, fine rem fsp visible, locally bx with serp clasts as in flt zone above		70.5-71.3 -mod to pervasive clay alteration		
		71.3-72.2 -med-coarse grained fsp porph, 30-40% fsp, av. 2 mm in f.gr. matrix, grey green colour		71.3-72.2 -mod perv. day alt'n sauc of fsp, seric. on fracs		
		72.2 -grad contact			172.2-73.51 «5% py» -fine py - diss and units	
		72.2-73.5 -black f.gm.gr. fsp porph as in 71.3-72.2 but with fine py in matrix giving black colour				
		73.5-75.5 -grad into pale grey-green f.gr. porph		73.5-75.5 -weak pervasive silicification	73.5-75.5 -min diss. py	
		75.5-78.5 -same as above, local shearing @ 40 deg and local		475.〕 78.5∳ «silic'n, marip» •mod-str. silic'n, minor marip; seric	75.5-78.5 -2% fine diss. py	

HOLE NUMBER: 90-1

•

1

•

1 1

)

HOLE NUME	BER: 90-1			MINNOVA INC. Drill Hole Record	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		crackle type bx - grad into unit below	-	on shears		
		78.5-82.0 -f.g. gst (prob. silic'd intrusive as above), mod-str. banding @ 45-50 deg. defined by alternating bands of bleached, silic'd epid. rx; -gradational inot coarser grained, less alt'd intrusive below		478.5-82.0 keep silic'n» -mod-str. perv. epid. in bands to 4 cm wide; mod silic'n and qtz units	78.5-82.0 -1-2% py, diss and stringers	
		82.0-84.45 •grey green, fine-med. grained fsp porph - 20% green (chl alt'd) fsp 1 mm and >2 mm in size in f.gr. green matrix		82.0-84.45 -weak silicification and late qtz-carb units	82.0-84.45 -minor py	
	E.O.H.					

•

1

.

1 1

Ì

HOLE NUMB	OLE NUMBER: 90-1			ER: 90-1 ASSAY SHEET				DATE: 19-March-1991	
Sample	From (m)	To (m)	Length (m)		COMMENTS				
19926 19927 19928 19930 19931	9.90 11.90 13.90 21.40 23.00	11.90 13.90 15.80 23.00 24.50	2.00 2.00 1.90 1.60 1.50						
19932 19933 19934 19935 19936	24.50 26.00 27.50 29.00 30.50	26.00 27.50 29.00 30.50 32.00	1.50 1.50 1.50 1.50 1.50						
19937 19939 19940 19941 19942	32.00 35.00 36.50 38.00 39.50	33.50 36.50 38.00 39.50 41.00	1.50 1.50 1.50 1.50 1.50						
19943 19944 19945 19947 19948	41.00 42.50 44.00 55.00 64.00	42.50 44.00 45.50 56.00 65.00	1.50 1.50 1.50 1.00 1.00						
19950 19951 19952 19953 19954	70.50 72.20 75.50 78.50 80.50	72.20 73.50 78.50 80.50 82.00	1.70 1.30 3.00 2.00 1.50						

ł

1

PAGE: 6

HOLE NUMB	ER: 90-1			GEOCHEM. SHEET	DATE: 19-March-1991
Sample	From (m)	To (m)	Length (m)		
19929 19938 19946 19949	19.09 33.50 47.00 66.00	21.00 35.00 49.00 69.00	2.00 1.50 2.00 3.00		

1. 1

HOLE NUMBER: 90-1

.

HOLE NUMBER: 90-2		MINNOVA INC. Drill Hole Record					
PROJECT NAME: RAINBOW PROJECT NUMBER: 661 CLAIM NUMBER: LOCATION: Midway Mine Area	PLOTTING COORDS GRID: Rainbow NORTH: 8975.00N EAST: 9375.00E ELEV: 985.00	ALTERNATE COORDS GRID: NORTH: 0+ 0 EAST: 0+ 0 ELEV: 0.00	COLLAR DIP: -60° 0' 0" LENGTH OF THE HOLE: 154.57m START DEPTH: 0.00m FINAL DEPTH: 154.57m				
DATE STARTED: October 1, 1990 DATE COMPLETED: October 3, 1990 DATE LOGGED: October 4, 1990	COLLAR GRID AZIMUTH: 180° 0' 0" COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: NO	COLLAR ASTRONOMIC AZIMUTH: 180° 0' 0" PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	CONTRACTOR: Lone Ranger CASING: left in hole CORE STORAGE: Boundary Falls				

PURPOSE: To test Midway shear at depth

1 8

DIRECTIONAL DATA:

•

	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
	-	-60* 01	ACID	OK		- 1	-	-	•	-	
7.86	-	-60° 0'	ACID	OK		-	-	-	•	•	
4.57	-	-62 0'	ACID	OK		-	•	-	•	•	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-			•	•	-	-	
-	-	-	-				-		-	•	
-	-	-	-	-			-	-			
•	-	-	-	-			-	-	-		
-	-	-	-	-				-	-	-	
-	-	-	-	-		-	•	-	-	•	
-	-	-	-	-		-	-	-	•	-	
-	•	-	-	-		-	•	-	-	-	
-	-	-	-	-		-	-	•	-	•	
•	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-		-	-	-		-	•	-	-	•	
	-	-	-	•					-		
-	-	-		_				-			
-	-	-	-	-		-	-	-	-	-	
•	-	-	-	-			-	-	-	-	
•	-	-	-	-		- 1		-	-	-	
-	-	-	-	-		-	-	•	•	-	
•	-	-	-	-		-	-	•	•	-	
•	•	-	-	-		-	•	•	•	-	
-	-	-	-	-		- 1	-	-	•	-	

HOLE NUM	MIRNOVA INC. DRILL HOLE RECORD DATE: 19-March-1991										
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS					
0.00 TO 3.05	«CASING»										
3.05 TO 7.90	«TERTIARY DYKE» Tertiary Biotite Monzonite Dyke	Colour: dark grey brown Grain Size: fine to medium Massive, fresh dyke with 5%, 1-2 mm biotite, 20% mafics (px?) in purple grey fsp rich fine grained matrix; locally grades to coarser grained with 20-30%, 2-3 mm fsp (at top and bottom of interval) 7.9 -10 cm gouge zone at lower contact		-saus of fsp in coarser grained sections; v. minor carb stringers							
7.90 TO 9.40	«QTZ-FSP PO RPH»	Colour: pale green Grain Size: fine -5%, 2 mm qtz eyes, 20% v.f.gr. (1mm) remnant fsp in f.gr. green siliceous matrix		«silic'n» -minor qtz units, mod. perv. silic'n; seric on fracs		7.9-8.0 - fault zone					
9.40 TO 13.10	«TERTIARY DYKE» Tert. Biot. Monz. Dyke	Colour: dark grey brown Grain Size: m.gr. Altered interval of dyke as above, coarser grained with 20% saus fsp as in coarse intervals above; rx broken minor gouge zones (ie.) 12.9 m 13.1 -sharp lower contact @	40	Fsp saus; mod carb. stringers		∮9.4-10.0∦ «Fault Zone» -broken core, poor recovery					
13.10 TO 34.40	«SERPENTINE »	Colour: black green Grain Size: fine 13.1-15.9 -interval of str. foliated grey-black serp. (random) with gougy and bx zones with white carb clasts -upper contact sharp a	40	13.1-15.9 -locally hematitic	13.1-15.9) «Fault Zone»	13.1-15.9 «FAULT ZONE»					

HOLE NUMBER: 90-2

•

•

Ì

HOLE NUM	IBER: \$0-2			MINNOVA INC. DRILL HOLE RECORD		DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TURE TO CA ALTERATION MINERALIZATION		MINERAL 1 ZAT ION	REMARKS	
34.40 TO 47.50	«qtz fsp Porph»	serp strongly magnetic 15.9-23.4 -dark green, well foliated, str. magnetic serpentine -foliation @ 45-60 deg 23.4-30.8 -pale grey, str. foliated, weak-non magnetic serp. str. talc alteration 30.8-34.4 -pale grey talc, alt'd serp as above but massive non foliated - weakly foliated Colour: pale green grey Grain Size: m.gr. 36.4-41.4		15.9-23.4 -10% late carb stringers parallel to foliation and random [23.4-30.8] «talc alt'n» -str. talc alt'n; minor qtz vns, white grey, v. fine, parallel to fol'n to 1 cm -weak-mod carb veining parallel to fol'n 30.8-34.4 -mod late white carb veining	23.4-30.8 -minor diss. kjpy and py as stringers along foliation 30.8-34.4 -minor py	REMARKS	
47.50	«SERPENT I NE	<pre>34.4-41.6 -5% grey qtz eyes av. 2 mm, 25-30% fsp, av. 1-2 mm green (clay-chl alt'd) in f.gr. grey gmass 41.6-45.6 -pale grey green qtz-fsp porph as above but fsp white - pale green (saus) 45.6-47.5 -coarse grained porphyry with 5% qtz eyes av. 2 mm, 60% fsp av. 2-3 mm in f.gr. grey gmass 47.4-47.5 -10 cm rusty silic'd zone above contact with serpentine</pre>		<pre>434.4-41.61 «clay alt'n» -weak-mod perv. clay alt'n of mtrx, fsp clay-chl alt'd, minor qtz-py stringers 41.6-45.6 -weak to moderate perv. clay alt'n of matrix fsp saus; minor qtz-py and late carb units 45.6-47.5 -matrix weak-mod silic'd fsp saus</pre>	<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>		
то 49.60	»	Colour: grey Grain Size: f.gr. 47 5-40 55					
	Ŧ	1	1 1	441.2-49.22 «Silic'n»	47.5-49.55		

.

1 1

HOLE NUMBER: 90-2

•

Ì

HOLE NUM	BER: \$0-2			DRILL HOLE RECORD	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		<pre>-grey, f.gr. with mod developed fol'n, massive v. siliceous, non-mag prop lense of serp (because of fol'n) in intrusion</pre>		 -v. str. perv. silic'n and grey qtz along foliation; min late (x-cutting) qtz-py units 	-min py in units	
		49.55-49.60 -orange qtz vn, massive a 49.6 m contact	50 50		49.55-49.60 -min py	
49.60 TO 60.10	«QTZ-FSP PORPH»	Colour: pale green grey Grain Size: medium		«clay alteration»	«2-5% ру»	
		49.6-54.5 -pale grey-green, massivve, with 2-5% qtz eyes, 2 mm, 15% fsp av. 2 mm (saus); v. minor v. narrow gouge bands -gradational into coarser grained interval below		-weak clay alt'n of matrix; fsp saus, min late qtz-carb units	-2% diss py, narrow grey py rich envelopes around qtz stringers	
		54.5-57.5 -coarser grained interval of QPF with 30-40% fsp, av. 3 mm (saus)		-mod clay alteration of matrix, fsp saus	-2-5% fine diss. py and units	
		57.5-60.1 -med grey-green QFP with minor qtz eyes, 30% fsp av. 1-2 mm, (green clay'chl alt'd); fsp show weak alignment		-mod rusty fracs; envelopes to 10 cm; perv clay alt'n of matrix; clay-chl alt'd fsp; mod late carb units	-2-5% fine diss py and units	
60.10 TO 79.80	«SERPENTINE »	Colour• Grain Size:				
		60.1-63.2 -grey f.gr. aphanitic, massive - weakly foliated serp; str. silic'd and wt by qtz vns; mod rusty zones to 30 cm		<pre>{60.1-63.2} «silic'n, marip» -v. str. silic'n -local qtz vningto 4 cm with up to 15% mariposite; trace - 2% mariposite throughout interval</pre>	460.1-63.2} «2% ру »	
		61.8 -4 cm qtz vn with 15% marip				463.2-63.4 «Fault Zone»
		62.2-62.5 -30 cm rusty zone to 20% qtz veining and minor marip				

1 1

•

.

Ì.

HOLE NUME	BER: 90-2			MINNOVA INC. DRILL HOLE RECORD	DATE: 19-March-1991		
FROM To	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	LE CA MINERALIZATION MINERALIZATION		REMARKS	
		 63.2-63.4 Fault Zone Rusty clay gouge and alt'd serp 65.0-66.3 grey str. foliated serp fol'n @ 60-70 deg weakly magnetic; local rusty patches 66.3-67.5 grey, weakly foliated serp - str. silic'd with 10% marip 67.5-69.2 grey str. foliated serp with local silic'd and bx zones to 40 cm foliation @ local rusty zones to 30 cm 69.2-71.7 massive, weakly foliated grey serp, mottled texture, weak - non magnetic 71.7-72.6 dark green, v. fine grained, massive serp.; sharp upper and lower contact @ 72.6-79.8 grey serp as in 69.2-71.7 	50	<pre>463.4-65.0 # «10-15% qtz» -as ribbons along fol'n and min late xtal in qtz vns; minor mariposite 65.0-66.3 -weak silicification, <5% grey qtz as ribbons along fol'n 466.3-67.5 # «silic'n, marip» -v. str. silic'n and late crystalline vuggy calc veining -10% mariposite -mod rusty zones -locally bx and silic'd and late vuggy crystalline calcite veins 69.2-71.7 -weak - mod talc alteration; min late qtz-carb units -weak to mod talc alteration; min late </pre>			
79.80 TO 83.80	«FSP PORPH»	Colour: green Grain Size: f.gr. 79.8-80.2 -Fault, zone a 45 deg; buff clay gouge and broken alt'd porphyry 80.2-83.8				179.8-80.2} «Fault Zone»	
		-f.gr. fsp porph green with 30-40% fsp, < 1 mm, (saus) in f.gr. matrix; local gougy zones; -broken lower contact		-fsp saus, perv. clay alt'n, chl-seric on fracs	-min py - diss and units		

HOLE NUMBER: 90-2

•

•

1 1

)

HOLE NUM	BER: 90-2			MINNOVA INC. Drill Hole Record	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
83.80 TO 110.00	«TERTIARY DYKE» Tertiary Bio., Monz.	Colour: dark grey Grain Size: m.gr.				
	Dyke	83.8-87.4 -m.gr. intrusive with 30% fsp up to 4 mm, 5% bi, 20% mafics (px) to 3 mm in f.gr. matrix; non magnetic		-fsp alt'd to clay		
		87.4 -sharp contact @ 50 deg to finer grained intrusive				
		87.4-97.7 -dark grey, massive, f.gr. with 5% fine bi and 10-20% fsp to 3 mm in grey gmass; weak alignment of phenos - non magnetic				
		97.7 -sharp contact a	50			
		97.7-104.1 -c.gr. intrusive similar to 83.8-87.4 -50% plag av. 2-3 mm, 10% kspar av. 1 mm, 5% bio, 20% mafics (px); up to 3 mm in f.gr. grey gmass				
•		104.1 -sharp contact	50			
		104.1-110.0 -f.gr. massive intrusive as in 87.4-97.7				
		110.0 -sharp contact ລ	80			
110.00 TO	«QTZ FSP PO RPH»					<u></u>
114.00		Colour: pale green Grain Size: f.gr.			∮111.5-114.0ŀ «S-10% ру»	
		110.0-111.5 -rare qtz eyes, 15% fine fsp in f.gr. green matrix		110-111.5 -fsp saus	110111.5 -2% fine diss. py and py stringers	
		¶111.5-114.0₽ «bx» -bleached bx zone - 90% clasts of bleached		<pre>4111.5-114.0 «silic'n, clay alt» -of clasts</pre>	¶111.5-114.0⊫ ≪5-10% py» -in bx matrix	1111.5-114.0 «Fault Zone»

HOLE NUMBER: 90-2

.

1

.

1 2

)

HOLE NUME	ER: 90-2			MINNOVA INC. Drill Hole Record	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		silicified clay alt'd porph in black pyritic matrix -sharp upper contact -lower contact gradual at assimilation of or by microdiorite??				
114.00 TO 127.90	«MICRODIORI TE»	Colour: green-brown Grain Size: f.gr. 114.0-122.5 -massive, fine grained intrusive with 20% fsp to 1 mm, 20% mafics (px) to 4 mm but gen much less (may be partly resorbed) in f.gr. matrix (pale pink tinge - kspar nth?) 122.5-123.7 -grey green (cherty assim'd xenolith) -gradational upper and lower contacts; str. shearing		-mod late qtz-carb stringers		↓ 125.2-125.5 ↓ «FAULT ZONE»
		123.7-125.2 -microdiorite as in 114.0-122.5 125.2-125.5 -fractured zone with str. seric and clay on fracs - fault zone 125.5-127.9 -microdiorite as in 114.0-122.5 - grading down- wards into aphanitic pale green cherty rx, similar to 122.5-123.7		-seric and clay on fracs		d125.2-125.5⊫ «Fault Zone»«
127.90 TO 138.30	«BROOKLYN CONGLOM»	Colour: grey green Grain Size: c.gr. Clast supported with 80+% angular clasts from sand size up to approx 6 cm, avg5 cm. Clasts are 30% white grey chert, 30% green dior and gst (+ cherty gs) and minor mudstone, 15% 1st very limey matrix % of 1st clast size of clasts increased down hole		Minor late carb veinlet	1-2% interstitial py throughout + tr. coy	Triassic Brooklyn - sharpstone con- glomerate

•

.

HOLE NUME	BER: 90-2			MINNOVA INC. Drill Hole Record	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE		E ALTERATION MINERALIZATION		REMARKS
		with coarser and finer grained sections				
138.30 TO 141.10	«FSP PORPH FLOW: >	Colour: green Grain Size: fine 40% lath shaped fsp (pale green), show weak alignment @ 30 deg to c.a. in f.gr. grey green matrix Locally contains clasts and intervals of conglom above		Mine late qtz-carb veinlets (+ py)	<pre>«2% py» 2% fine, diss py and stringers</pre>	
141.10 TO 142.00	«TERTIARY DYKE» TERT. BIOT MONZ DYKE	Colour: dark brown grey Grain Size: fine Biotite rich dyke; 20% fine bio in fsp rich matrix Sharp contacts & 60-70 deg				
142.00 TO 154.57	«BROOKLYN CONGLOM»	as in 127.9-138.3 % of 1st clasts increases down; rims of 1st are skarnified to reddish garnet to reddish garnet		Min late qtz - carb units; weak epid. throughout	«2% py» 2% py - diss, mostly in matrix	
	E.O.H.	1-2 mm rims on clasts to 6 cm 142.9-143.1 -dark grey br., biotite rich dyke in 141.1-142.0 151.6-152.3 -f.gr. green intrusive dyke looks like finer grained version of fsp porph. flow in 138.3-141.1 contains clast of conglom (xenoliths)		 145.7–148.0∳ «str. ep alt'n»	151.6–152.3 –1-2% fine diss. py.	

HOLE NUMBER: 90-2

.

.

1 1

.

PAGE: 8

4

HOLE NUMBER: 90-2				ASSAY SHEET	ATE: 19-March-1991	
Sample	From	To	Length		COMMENTS	
	(14)	(m)	(m)			
19956	7.90	9.40	1.50			
19957	13.10	14.60	1.50			
19958	14.60	15.90	1.30			
19961	32.40	54.40	2.00			
19902	34.40	36.00	1.00		1	
19963	36.00	37.50	1.50		1	
19964	37.50	39.00	1.50			
19965	39.00	40.50	1.50			
19966	40.50	41.00	1.10			
1770/	41.50	43.00	1.40		1	
19968	43.00	44.50	1.50			
19969	44.50	46.00	1.50			
19970	46.00	47.50	1.50			
19971	47.50	49.00	2.10			
17772	47.00	51.00	1.40		1	
19974	52.50	54.00	1.50			
19975	54.00	55.50	1.50			
19976	55.50	57.00	1.50		1	
19977	57.00	28.20	1.50			
177/0	36.50	00.10	1.00			
19979	60.10	62.20	2.10			
19980	62.20	63.40	1.20			
19981	63.40	65.00	1.60			
19982	66.50	67.50	1.20			
17703	07.50	07.20	1.70		1	
19984	79.80	81.50	1.70			
19988	111.5	113.00	1.50			
19989	113.00	114.00	1.00			
19991	126.80	127.90	1.10			
19992	127.90	130.00	2.10		1	
19993	130.00	132.00	2.00			
19994	132.00	134.00	2.00			
19996	136.00	138.30	2.30			
19997	142.00	144.00	2.00			
17778	144.00	146.00	2.00		I	
19999	146.00	148.00	2.00		1	
20000	148.00	150.00	2.00		1	
20001	150.00	2.00	2.00			

•

1

.

1

, ,		

HOLE NUMBER: 90-2				ASSAY SHEET	DATE: 19-March-1991
Sample	From (m)	To (m)	Length (m)		
20002	152.00	154.57	2.57		

.

.

HOLE NUMB	ER: 90-2			GEOCHEM. SHEET	DATE: 19-March-1991
Sample	From (m)	To (m)	Length (m)		
19955 19959 19960 19973 19985	5.00 20.00 26.00 51.00 81.50	7.00 22.00 29.00 52.50 83.00	2.00 2.00 3.00 1.50 1.50		
19986 19987 19990 19995	94.00 99.00 115.00 134.00	96.00 102.00 118.00 136.00	2.00 3.00 3.00 2.00		

.

•

•

.

PAGE: 11

HOLE NUMBER: 90-3		M DRIL	IINNOVA INC. L HOLE RECORD	IMPERIAL UNITS: METRIC UNITS: X
PROJECT NAME: RAINBOW PROJECT NUMBER: 661 CLAIM NUMBER: LOCATION: Midway Mine Area	PLOTTING COORDS GRID: NORTH: EAST: ELEV:	900.00N 9454.00E 1010.00	ALTERNATE COORDS GRID: NORTH: 04 EAST: 04 ELEV:	COLLAR DIP: -45° 0' 0" ► 0 LENGTH OF THE HOLE: 100.61m ► 0 START DEPTH: 0.00m 0.00 FINAL DEPTH: 100.61m
	COLLAR GRID AZIMUTH:	180° 0' 0"	COLLAR ASTRONOMIC AZIMUTH: 180°	° 0' 0"
DATE STARTED: October 3, 1990 DATE COMPLETED: October 4, 1990 DATE LOGGED: October 8, 1990	COLLAR SURVEY: NO Multishot survey: No Rod Log: No		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NO	CONTRACTOR: Lone Ranger CASING: left in hole CORE STORAGE: Boundary Falls

PURPOSE: To test the E. extension of Midway mine shear and alteration sequence

1 1

DIRECTIONAL DATA:

.

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	
100.61	•	-45* 0'	ACID	ОК		-	•	•		•		
-	•	-	-	•		- 1	-	-	-	-		
-	-	-	-	•		-	-	-	-	-		
-	-	-	•	•		-	-	-	-	-		
-	-	-	-	-			-	-	-	•		
-	•	-	•	•		-	•	•	-	•		
-	•	-	-	-			•	-	-	-		
-	•	-	-	•		-	-	-	-	-		
_		-	-	•			-	•	-	·		
-	-							-	-	•		
	-	_	-					-	•	-		
-	-	-	-	-		-						
-	-	-	-	-				-				
-	-	-	-			-		-	-			
	-		-	•				-				
-	-	-		-		-	-	-				
-	•	-	-	-		-	-	-	-	-		
-	-	-	•	-		-		-	-	-		
-	•	•	-	-		-	-	-	-	-		
-	-	-	•	-		-	-	-	-	-		
-	-	-	-	-		-	•	-	-	-		
-	-	-	-	-			-	-	-	•		
-	-	-	-	-		-	-	-	-	•		
-	-	-	-	•		-	-	-	-	-		
-	-	-	-	-			-	-	-	-		
-	•	-	•	•		- 1	•	-	•	•		
-	-	-	-	-			•	-	•	-		

.

1

1

HOLE NUME	BER: 90-3	DATE: 19-March-1991				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 1.50	«CASING»					
1.50 T0 27.65	«QTZ-FSP PO RPH»	Colour: grey green Grain Size: m.gr. 5% qtz eyes, 30% fsp, avg. 1-2 mm in f.gr. green matrix; locally grades to caorser grained interval with fsp avg. 2-3 mm; massive		1.5-10.8 -rusty fracs, broken core, surface weathering fsp saus and chl. alt'd; mod late qtz carb units predominate a50%; mod local perv. silic'n 10.8-12.0 «bleached silic'd» 14.6-15.5 «bleached silic'd» 123.1-27.65 «silic'n» -mod to perv. silic'n 26.8-27.65 -v. rusty zone above serp contact 27.65 -sarhp contact a approx 75 deg	<pre>«2% py» 2% pyrite, throughout, dissem and as units, also pyritic alt'n envelopes adj. to fracs and units {23123.9} «5% py» -5% py as units and finely dissem. in martix as envelope to units {26.1-27.65} «55 py» -5% py as units, envelopes and irreg. bands to flood zones and 1x6 cm</pre>	23.1-23.9 «5% py» 26L.1-27.65 «5% py»
27.65 TO 33.60	«SERPENTINE »	Colour: grey Grain Size: aphanitic Grey f.gr. mod-str. magnetic serpentine; mod well developed foliation @ 65-80 deg Banded with 20% white carb bands to 1 cm, alternating with grey f.gr. mottley serp.; 5% fine acicular mag; needles visible in grey serp. bands locally		∮27.65-28.2≱ «silic'n, 3% marip» -mod-str., rusty zones decreasing away from contact; mod-str. silic'n	-minor, fine, dissem. py	

.

.

1 1

`)

HOLE NUME	BER: 90-3			DRILL HOLE RECORD	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
33.60 TO 35.70	«411 CROD 1 OR 1 TE»	Colour; green grey Grain Size: f.gr. V. fine grained, massive dyke with 20-30% fine fsp (<1 mm) visible in f.gr. gmass; pale grey- green, similar in appearance to QFP above but much finer grained; grades to sharply to slightly coarser grained in center of interval 35.7 m sharp contact @	45	Minor late carb veinlets	«2% py» 2% py as veinlets with alteration envelopes	
35.70 TO 41.70	«SERPENT I NE »	Colour: grey Grain Size: fine Grey banded serp as in 27.65-33.6 but with 10-20% talc alteration in bands and irregular patches 41.7 m sharp contact @	40	<pre>«talc alt'n» Mod talc alteration 35.7-37.5 -rusty bands Fe-carb alteration near contact 441.2-41.7} «silic'n» -str. per. silic'n and qtz veining (massive, white); local rusty zones and minor late carb vns</pre>	41.2-41.7 -minor pyrite	
41.70 TO 46.30	«FSP PORPH»	Colour: green-grey Grain Size: med. 30% fsb. avg. 1-2 mm, white and locally 10% green mafic??? or poss. chl alt'd fsp in f.gr. grey fsp rich matrix; poss. rare qtz eyes 41.7-46.3 -bleached zone at upper contact 46.2-46.3 -rusty zone at lower contact -sharp contact with 1 cm qtz vein @	45	Seric on fracs; late qtz-carb units	1-2% py-diss and units	
			-			

HOLE NUMBER: 90-3

.

1

PAGE: 3

Ì

HOLE NUMBER: 90-3 DATE: 1 DATE								
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS		
46.30 TO 51.75	«SERPENTINE »	Colour: grey Grain Size: f.gr. Grey mottled serp. str. magnetic in grey bands; weak foliation 45-60 deg.; alternating grey serp with white talc rich bands and local silic'd bands; Rusty zones to 40 cm wide i.e 50.5-51.0		46.6-46.8 «silic'n» 48.0-50.0 «talc» 51.5-51.75 «silic'n»				
51.75 TO 67.20	«FSP PORPH»	Colour: dark grey green Grain Size: med. c.gr. 30% coarse, white tabular fsp phenos to 1 cm, avg. 2-3 mm (may be weakly hem stained); 5% fine mafics (<1 mm, in f.gr. dark grey-green matrix; massive fresh intrusive; local weak alignment of fsp @ 80% crushed zones (faults?) @ 53.05-53.15 60.36-60.46 63.3-63.5 -f.gr. grey zone with 3 cm qtz vein 66.8-67.2 -sharp change to f.gr. porph. with 10% fsp, avg. 1-2 mm in f.gr. matrix, chilled margin of intrusive above						
		67.2 m contact a	60	67.1-67.2 -v. intense serpentinization of fsp porph; rem. porph textures visible				
67.20 TO 94.95	«SERPENTINE »	Colour: grey Grain Size: f.gr. Mottled, massive to weakly foliated serpentine, 80-90% grey, f.gr. serp with 10-20% white carb and locally talc rich zones; grey serp mod-str. mag locally acicular black crystals (magnetite?) visible 67.2-67.3		Local weak hem stain; minor talc alteration		467.2-67.3 ≱ «FAULT ZONE»		
		-str. grey gouge and int. serp.; Fault Zone						
	I	Talc alt'n increases downwards	1	1/4.0-80.1 «talc att'n»	I	1 · · ·		

.

.

1 1

ì

HOLE NUME	BER: 90-3	DATE: 19-March-1991				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		80.1-81.2 -aphanitic, massive, dark green serpentine		-strong {81.2-85.0} «talc alt'n» -strong		
		89.0-89.5 -aphanitic massive dark green serp.		¶94.6-94.95⊫ ≪silici'n» -strong		
		94.6-94.95 -grey cherty serp., weak foliation @ 50 deg ; 10 cm bx zone @ contact				
94.95 TO 100.61	«FSP PORPH»	Colour: green Grain Size: f. to m.gr. Massive, but broken core, 25% fsp, avg. 1 mm (green chl alt'd) in f.gr. matrix		Fsp chl alt'd chl/seric on fracs; local weak silic'n; minor late qtz-carb units	Minor diss. pyr and py stringers	
	E.O.H.			∮100.3-100.61≱ «silic'n, qtz vning» -str. perv. silic, minor qtz veining	∮100.3-100.61∳ «2% py»	

/

1 1

HOLE NUMBER: 90-3

•

1

.

LOGGED BY: L. Lee

PAGE: 5

HOLE NUMBER: 90-3				ASSAY SHEET	DATE: 19-March-1991	
Sample	From (m)	το (m)	Length (m)		COMMENTS	
20003 20004 20005 20006 20007	1.50 3.50 5.50 7.50 9.50	3.50 5.50 7.50 9.50 11.50	2.00 2.00 2.00 2.00 2.00			
20008 20009 20010 20011 20013	11.50 13.50 15.50 17.50 21.50	13.50 15.50 17.50 19.50 23.50	2.00 2.00 2.00 2.00 2.00			
20014 20015 20016 20017 20020	23.50 25.50 27.65 40.00 94.00	25.50 27.65 29.00 41.70 94.95	2.00 2.15 1.35 1.70 0.95			
20021 20022 20023	94.95 97.00 99.00	97.00 99.00 100.61	2.05 2.00 1.61			

-

1

.

1 1

1

HOLE NUMBER: 90-3				GEOCHEM. SHEET	DATE: 19-March-1991
Sample	From (m)	To (m)	Length (m)		
20012 20018 20019	19.50 56.00 81.50	21.50 59.00 84.50	2.00 3.00 3.00		

HOLE NUMBER: 90-5

•

÷

.

1

ł

HOLE NUMBER: 90-4		MINNOVA INC. Drill Hole Record					
PROJECT NAME: RAINBOW	PLOTTING COORDS GRID: Rainbow	ALTERNATE COORDS GRID:	COLLAR DIP: -60° 0' 0" 0+ 0 LENGTH OF THE HOLE: 224.08m 0+ 0 START DEPTH: 0.00m 0.00 FINAL DEPTH: 224.08m				
PROJECT NUMBER: 661	NORTH: 8955.00	NORTH:					
CLAIM NUMBER:	EAST: 9455.00	E EAST:					
LOCATION: Midway Mine area	ELEV: 1005.00	ELEV:					
	COLLAR GRID AZIMUTH: 180° 0' 0	COLLAR ASTRONOMIC AZIMUTH:	180° 0' 0"				
DATE STARTED: October 4, 1990	COLLAR SURVEY: NO	PULSE EM SURVEY: NO	CONTRACTOR: Lone Ranger				
DATE COMPLETED: October 7, 1990	MULTISHOT SURVEY: NO	Plugged: No	CASING: left in hole				
DATE LOGGED: October 9, 1990	RQD LOG: NO	Hole Size: No	CORE STORAGE: Boundary Falls				

PURPOSE: To test E. extension of Midway Mine shear at depth

1 8

DIRECTIONAL DATA:

- 1

•

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
58.80	•	-59* 0'	ACID	OK		-			-	-	
152.70	-	-60° 0'	ACID	OK		-	-	•	-	•	
205.48	-	-63° 0'	ACID	OK		-	-	-	-	-	
-	-	-	-	-		-	-	•	-	-	
-	•	-	•	•		-	-	-	-	-	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	•		•	•	-	-	•	
-	-	-	-	•		-	-	-	-	-	
-	-	-	•	-		-	-		-	•	
-	-	-	-	-		-	-	•	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	•	-		-	•	-	-	•	
•	-	-	-	-		•	-	-	-	-	
	•	•	-	-		-	-	-	-	-	
_	-	-	•	•			-	•	-	-	
	-	-	•	-		-	•	-	-	-	
_		-	-	-		-	-	-	-	•	
-		•	-	-		-	•	-	-	•	
			-	-			•	-	•	-	
-				-		1 .	•	-	-	•	
-		_		-			•	-	-	-	
-		-		-			•	-	•	•	
	-	-		-			-	-	-	•	
-	-	-	-	-			-	-	•	•	
-	-	-	-	-			-	•	•		
-		-					-	-	-		
-		-	-				•	-	-	-	

.

١

HOLE NUM	BER: 90-4			DATE: 19-March-1991		
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 to 3.05	«CASING»					
3.05 TO 6.60	«QTZ FSP PO RPH»	Colour: green-grey Grain Size: med. 5% qtz eyes, 2 mm, 30% fsp, tabular (saus. to chl alt'd) in f.gr. grey green matrix; rusty fracs; locally bx with qtz frags 5.9-6.6		Mod perv. clay alt'n; min qtz-carb units	Тгру	45.9-7.7≱ «FAULT ZONE»
		-broken, bx clay alt'd core; Fault zone 6.6 m contact ଇ	60			
6.60 TO 9.75	«SERPENTINE »	Colour: pale grey Grain Size: fine Massive, grey, mottled to mod. well foliated (@40-50 deg) serpentine; local narrow bx zones		Weak talc alt'n and local silic'n and cherty bands parallel to foliation	Tr. py throughout	
		6.6-7.7 -rusty bx zone, fault zone		6.6-7.7 -min. qtz veining and silicification	6.6-7.7 -minor pyrite	
9.75 TO 35.55	«QTZ FSP PO RPH»	Colour: pale grey green Grain Size: m.gr. as in 3.05-6.6, rusty fracs and local rusty zones, locally grades to finer grained sections		«clay alt'n» Mod-str perv. clay alteration; local weak silicification; seric on fracs; minor late qtz-carb veinlets	9.75-14.0	
		10.5-11.0 -rusty bx zone with late carb units; fault zone			-minor diss. pyrite	10.5-11.0 «FAULT ZONE» 11.7-12.0 «FAULT ZONE»
		11.7-12.0 -rusty broken core, poor recov., fault zone			12.8 -4 mm gtz-py unit a 20 deg to c.a.	113.0-13.35 WFAULT ZONE»
		13.0-13.35 -rusty gouge and str. clay alt'd porph c.a @	30	<pre>413.0-13.351 «min. qtz-py vning» -in fault zone</pre>	13.0-13.35 -minor py stringers	118 /- 10 DL EAULT ZONES
		18.4-19.0 -rusty, broken core, silic'd with qtz banding; Fault Zone		18.4-19.04 «silic'd» -silic'd with qtz banding	\$14.0-24.7\$ «2-5% py» -2-5% finely diss. py and rare stringer ie. 16.2, 20.2-20.5	1 10.4-19.00 «FAULI ZUNE»

1 1

.

)

HOLE NUM	BER: 90-4			MINNOVA INC. DRILL HOLE RECORD	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		22.47-22.55 -crushed rusty core, fault zone? 25.0-34.4 -pale grey green porph, locally strongly bleached 34.4-35.55 -c.gr. crowded fsp porph. phase of intrusion with 60-80% fsp avg. 3 mm in f.gr. matrix 35.55 -sharp contact @	80	<pre>25.0-34.44 «silic'n» -weak to mod pervasive silic'n of matrix; fsp saus; min late white qtz (+carb) units; minor graphitic shears 34.4-35.554 «clay alt'n» -mod to str. perv. clay alt'n; min late qtz units and blebs</pre>	34.4-35.55 -minor diss. py and py veinlets	
35.55 TO 43.80	«SERPENT INE »	Colour: grey dark green Grain Size: fine 35.55-39.0 dark green, well foliated, aphanitic serpentine, mottley texture with dark grey and dark green bands, str. magnetic 39.0 -gradational change to grey, mottled talc alt'd serp below 41.0-41.7 -crushed, str. alt'd core, poor recov., Fault Zone 43.0-44.5 -bx, intensely serpentinized zone, local gouge zones and crushed core with poor recov., Fault Zone		-min. carb units to 1 cm ¶39.0-43.8⊫ «talc alt'n» -mod-str. talc alt'n	-min py in carb. units	\$41.0-41.7\$ «FAULT ZONE» \$43.0-44.5\$ «FAULT ZONE» \$41.0-41.7} «FAULT ZONE» \$43.0-44.5\$ «FAULT ZONE»
43.80 TO 58.10	«FSP °ORPH MICRC,JORIT ES≫	Colour: pale grey green Grain Size: fine 15-20% fine fsp (avg. <1 mm) in f.g. grey green matrix; massive but broken core Shearing dom @ 45-50 to c.a.; grades into finer grained, grey micro diorite (massive, fresh looking from 48.6-53.7		Min late qtz-carb vnlts; chloritic shears and fracture coating and some chl, replacement gmass mafics	- 4 43.8-48.6∮ «2-5% ру» 48.6-53.7 -tr. diss. py	

HOLE NUMBER: 90-4

.

.

1 1

·

)

HOLE NUM	BER: 90-4	DATE: 19-March-1991				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		56.5-58.1		56.8-58.1 -v. weak, chl-hem str. (weak prop. alt'n)		
58.10 TO 79.80	«TERTIARY D YKE»	Colour: grey brown Grain Size: m.gr. Fresh, massive, intrusive 5% platey biotite, 10% mafics (avg. <1 mm) + 15% white subhedral fsp in f.g. brown (with pink hue - kspar rich?) matrix 58.1-58.11 -1 cm bleached zone a upper contact		Rare carb units		
		Locally grades into dark grey finer grained zones 65.8-66.6 78.4-79.8 72.3-78.4 -2% large pinkish qtz-cc filled amygdules?? or inclusions; <.5-3 cm in size, round to v. irreg. or elongate in shape 79.8 -sharp contact @ 80 deg. to c.a.		¶73.2–78.4⊫ «wk. ep. alt'n» -in matrix		
79.80 TO 120.40	«MICRODIOR- FSP PORPH»	Colour: grey green Grain Size: f.gr. Massive, fine grained, microdior. intrusive, 10% fine matrix, 10% fine fsp in f.gr. grey matrix, locally grades into coarser grained fsp porphyry 79.8-79.9 -int. serp @ contact 88.4-89.9 -coarser grained fsp porph intrusive with 35% fsp avg. 1-2 mm in f.gr. matrix; grad. contacts, rare qtz eyes 93.0-93.7 -pale grey, bleached 94.4-95.0		Mod late qtz-carb stringers and vns (with py) to 1.5 cm; vns dom. a 45-50; chl in shears 79.8-79.9 -int. serp 493.0-93.71 «silic'n» -strong 494.3-94.41 «silic'n»	Tr. py throughout - dissem. and stringers 493.0-93.74 «5% py» -diss and veinlets 494.3-94.44 «5% py»	ф93.0-93.7№ «5% ру» ф94.3-94.4№ «5% ру»

.

•

ì

HOLE NUM	OLE NUMBER: 90-4 MINNOVA INC. DRILL HOLE RECORD DATE: 19-March-1991								
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS			
		-coarser grained fsp porph as in 88.4-89.9	-	96.0-97.5 -mod hem stn. of fsp					
		98.4-99.2 -weak bleaching, coarser grained as above with rare qtz eyes		98.4-99.2 -weak silic'n					
		104.5-111.3 -coarser grained fsp porphyry, 20-30% fsp avg. 1-2 mm, 10% fine mafics (alt'd to chl) in f.gr. matrix; rare large mafics		105-106.0 -mod hem. stn of fsp and matrix					
		110.5-111.5 -bleached		-weak silic'n					
		<pre>1113.5-120.4 «local bx» -grad change from fine microdior. to c.gr. fsp porph as in 104.5-113.3; pale grey green, massive local bx zones @ 80-90 deg (to 2 cm); fine angular intrusive clasts in grey py matrix</pre>		¶113.5-120.4∦ «silic'n» -mod-str. perv. silic'n, chl/py shears	<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>				
120.40 TO 122.80	«SERPENT INE »	Colour: pale grey Grain Size: aphanitic White pale grey, aphanitic, massive, mod. foliation @ 60 deg; min remnant grey serp. kernels and talc rich bands		«silic'n, qtz-py vnlts» V. str. pervasive-silic'n and late grey-white qtz-py vnlts	«2% py» 2% py-diss and with qtz in vnlts				
122.80 TO 134.40	«FSP I JRPH»	Colour: grey green Grain Size: f. to m.gr. Pale-med. grey green, fine-medium grained with up to 20% rem fsp (avg. 1 mm), visible locally (saus.); grades to finer grained sections of microdiorite	-	Chloritic-pyritic shears	Minor py diss and vnlts throughout				
		<pre>4122.8-127.01 «bx» -silic'd fsp porph, crackle type bx and locally white silic'd frags in grey qtz-py rich matrix</pre>		122.8-127.0↓ «silic'n» -strong 127-129.5 -week perv silic!n	∦122.8-127.0≱ «5% py» -diss. and finely dissem. in bx matrıx in zones to 10 cm wide	\$122.8-127.0∲ «FAULT ZONE»			
		132.2-132.4 and 133.0-133.2 -broken core, poor recov.		129.5-131.0 -weak perv. clay alt'n 133.6-134.1] «silic'd»					

HOLE NUMBER: 90-4

.

.

1 1

1

HOLE NUME	BER: 90-4			MINNOVA INC. Drill Hole Record	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		133.6-134.1 -silic'd broken core; Fault Zone 134.4 -sharp but irregular contact				132.2-132.44 «FAULT ZONE» 133.0-133.25 «FAULT ZONE» 133.6-134.14 «FAULT ZONE»
134.40 TO 130.70	«BROOKLYN C ONGLOMERATE "	Colour: green Grain Size: c.gr. Coarser polymitric clast supported conglom. with 80+% angular clasts, and size, up to 8 cm, avg. .5 cm ; weak flattening bedding @ 80 deg to c.a. carb rich matrix; clasts are 40% grey chert, 40% gst, 10% mudstn, 10% 1st 136.7 -sharp contact @ 50 deg				
136.70 TO 151.60	«TERTIARY D YKE» TERT. BIOT. MONZON. DYK E	Colour: brown Grain Size: m.gr. 5% biot, avg. 1 mm, 15% tabular euhedral fsp (plag-hem stained) avg. 1 mm +5-10% fine mafics in f.gr. pinkish br (kspar rich?) matrix; fresh massive Grades to coarser grained, more equigranular away from contact Grad. change a 139.5 to coarser grained intrusive with 25% pinkish hem stained plag, avg. 1-2 mm subhedral, 5% bi, avg. 1 mm, 20% fine mafics in f.g. matrix, fresh massive 150.0-151.6 -pale grey, f.gr. dyke sim top of interval with several large inclusions of underlying conglom. 10 cm bleached, chill zone a lower contact		Rare late carb vnits		
151.60 TO 222.20	«BROOKLYN CONGLOMERAT E»	Colour: Grain Size: Grey-green clast supported conglom. as in 134.4- 136.7, weak bedding @ 70 deg; locally grades into finer and coarser grained zones		Min qtz vnlts and tr. mariposite throughout; local bleaching	∤151.6-156.4≱ «2% py» -py stringers and flood zones in mtx	

1 2

.

}

HOL	F	NI IM	REP .	90-4	
		141.71.1		70 4	

1

MINNOVA INC. DRILL HOLE RECORD

DATE: 19-March-1991

FROM TO	ROCK Type	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		159.0-164.0 -bleached with local silic'd sections 165.8-168.2 -bleached congl. with local silic'd sect. 169.6-172.0 -green volc. congl.? layer 30% clasts of chert, 1st gst in pale green carb. rich f.gr. matrix with rare large alt'd tabular xtals; tuffaceous, horizon? -10% porosity, as opposed to above with <1% 172.0-174.9 -bleached silic'd conglom. as in 159-164 and 165.8-168.2		<pre>↓159.0-164.0 weilic'n» -locally str. silic'n and late grey qtz-py vnlts to .5 cm @ 45 deg (minor mariposite?)</pre>	to 3 cm wide ∮159.0-164.0∳ «2-3% py» -as vnlts and flooding matrix in band to 2 cm wide	
				<pre>4165.8-168.2 & silicin, marip» -local str. perv. silicin as in 159-164 minor bright green altin in matrix-poss mariposite</pre>	≰165.8-168.2≱ «2-3% py» -as in 159.0-164.0	
				169.6-172.0 -mod late carb vnlts and vuggy infilling		«196.7-196.91 «FAULT ZONE»
				172.0-174.9 «silic'n, marip» -perv. silic'n, minor marip; rare late grey qtz-py vnlts	172.0-174.9 «2% py» -2% diss. py. and py stringers	
		<pre>[173.1-173.5] «bx» -grey, frothy bx zone, siliceous with py rich matrix</pre>			<pre>4173.1-173.5 wpy richw -40 cm zone of grey frothy bx, py rich matrix</pre>	
	174.9-180.2 -dark green, intrusive looking matrix, carb rich, increase in % of 1st clasts from above and 20% 1st now increasing gsize downwards in this zone			174.9-180.2 -str. late carb veining	174.9-180.2 -1% py - diss. and veinlets	
		 180.2-183.65 -f.gr. green intrusive approx. 40% fine fsp, 25% fine mafics - poss. dioritic comp.; massive, locally contains inclusions to 10 cm of conglom. 183.65-192.0 -dark green intrusive looking matrix as in 174.9-180.2; 60-70% clasts; matrix supported; 30-40% of clasts are 1st., carb rich matrix; grad change to pale conglom. 		180.2-183.65 -mod. late carb. vnlts	1180.2-183.65⊧ «2% py» -2% v. fine diss. py	
					183.65-192.0 -min diss. py	
		below 192.0-194.5 -pale grey clast supported conglom. as above with 80+% angular clasts sand to 10 cm size, avg. approx. 1 cm; clasts approx. 40% chert; 30% 1st,		192.0-194.5 -min late carb vnlts, local perv. silic'n	192.0-194.5 -min py diss. in matrix	

HOLE NUM	IOLE NUMBER: 90-4 MINNOVA INC. DRILL HOLE RECORD DATE: 19-March-1991							
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS		
		10% seds, 20% gst; v. carb rich matrix						
		194.5-198.0 -f.gr. pale green volc? or intrusive contains local zones of conglom.						
		196.7-196.9 -broken, clay alt'd core			1196.2-196.7 ∦ «5% py» 5% py stringers	\$196.7-196.9} «Fault Zone»		
		198.0-205.7 -green matrix supported conglom as in 133.65-192.0		-local str. seric. on fracs	-minor py			
		30-40% large clasts, avg. 2-3 cm in size, 10% large clasts, to 10 cm of grey 1st; rare red jasper frags; intrusive/volcanic looking matrix						
		205.7-207.6 -green, maroon, f.gr. tuff or f.gr. dyke; weak banding @ 80 deg to c.a.						
		207.6 -v. sharp contact @ 55 deg						
		207.6-222.2 -grey green conglom.; matrix supported with granular sandy (intrusive looking) matrix as in 198.0-205.7 but finer grained, avg. cast size .5-1 cm, grades into finer grained conglom. and into muddy layers with rare large clasts., weak bedding with mud layers a 50-70 deg to c.a. From 221-222.2						
		-becomes dom mudstn. with minor conglom. bands						
222.20 TO 223.10	«TERTIARY DYKE» TERT. BIOT. MONZ. DYKE	Colour: dark grey brown Grain Size: f. to m.gr. Dark grey-brown, fresh, massive dykes with 25% white fsp, avg. 1-2 mm, +10% mafics avg. 1-2 mm in f.gr. dark grey matrix						
223.10 TO 224.08	«BROOKLYN CONGLOM.»	Colour: Grain Size: Coarse conglom. with 60% clasts avg. 3.5 cm in pale green matrix; muddy matrix showing weak						

1. 1

HOLE NUMBER: 90-4

HOLE NUM	BER: 90-4	DATE: 19-March-1991				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		bedding @	60			
	E.O.H.					

1. 1

1

LOGGED BY: L. Lee

PAGE: 9

HOLE NUMBER: 90-4				ASSAY SHEET	DATE: 19-March-1991		
Sample	From (m)	to (m)	Length (m)	c	COMMENTS		
20024 20025 20026 20027 20028	3.03 5.00 6.60 8.00 9.75	5.00 6.60 8.00 9.75 12.00	1.97 1.60 1.40 1.75 2.25				
20029 20030 20031 20032 20034	12.00 14.00 16.00 18.00 22.00	14.00 16.00 18.00 20.00 24.00	2.00 2.00 2.00 2.00 2.00				
20035 20036 20037 20038 20039	24.00 26.00 28.00 30.00 32.00	26.00 28.00 30.00 32.00 34.00	2.00 2.00 2.00 2.00 2.00				
20040 20041 20042 20043 20044	34.00 41.00 42.50 43.80 93.00	35.55 42.50 43.80 45.50 94.40	1.55 1.50 1.30 1.70 1.40				
20050 20052 20053 20054 20055	98.40 110.50 113.50 115.50 117.50	99.20 111.50 115.50 117.50 119.00	0.80 1.00 2.00 2.00 1.50				
200 56 200 57 200 58 200 59 20060	119.00 120.40 122.80 124.00 125.50	120.40 122.80 124.00 125.50 127.00	1.40 2.40 1.20 1.50 1.50				
20061 2006 2 2006 3 20064 20065	151.60 153.00 154.50 159.00 160.50	153.00 154.50 156.40 160.50 162.00	1.40 1.50 1.90 1.50 1.50				
20066 20067 20068	162.00 165.80 172.00	164.00 168.20 173.00	2.00 2.40 1.00				

.

1 1

HOLE NUMBER: 90-4

.

Ì

HOLE NUME	ER: 90-4			ASSAY SHEET	DATE: 19-March-1991
Sample	From (m)	To (m)	Length (m)		
20069 20071	173.00 192.00	174.90 194.50	1.90 2.50		
200 72 200 74 200 75 200 76	196.20 209.00 213.00 217.00	196.90 211.00 215.00 219.00	0.70 2.00 2.00 2.00		

1

•
HOLE NUMBER: 90-4				GEOCHEM. SHEET	DATE: 19-March-1991		
Sample	From (m)	To (m)	Length (m)				
200 33 20044 20045 20046 20047	20.00 49.00 54.00 59.00 74.00	22.00 52.00 56.00 62.00 77.00	2.00 3.00 2.00 3.00 3.00				
20048 20051 20070 20073	85.00 101.00 181.00 202.70	88.00 104.00 183.00 205.70	3.00 3.00 2.00 3.00				

•

1

HOLE NUMBER: 90-5		IMPERIAL UNITS: METRIC UNITS:				
PROJECT NAME: RAINBOW PROJECT NUMBER: 661 CLAIM NUMBER: LOCATION: Midway Mine Area	PLOTTING COORDS GRID: NORTH: EAST: ELEV:	Rainbow 89.00N 9560.00E 967.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	ALTERNATE COORDS GRID: NORTH: 0+ 0 EAST: 0+ 0 ELEV: 0.00		LAR DIP: -45° 0' 0" HE HOLE: 271.33m RT DEPTH: 0.00m NL DEPTH: 271.33m
	COLLAR GRID AZIMUTH:	270° 0' 0"	COLLAR ASTRONOMIC AZIMUTH:	270° 0' 0"		
DATE STARTED: October 7, 1990 DATE COMPLETED: October 11, 1990 DATE LOGGED: December 10, 1990	COLLAR SURVEY: NO MULTISHOT SURVEY: NO ROD LOG: NO		PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ		CONTRACTOR: Lone Ranger CASING: left in hole CORE STORAGE: Boundary Fall	S

-

PURPOSE: To test a NE trending struture, E of the Midway Mine, and to better define the geology in this

1 1

DIRECTIONAL DATA: mine area

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
49.39	-	-46° 0'	ACID	OK		-		-		•	
105.50	-	-46* 0*	ACID	OK		1 -		-	-		
146.34	-	-45° 0'	ACID	OK		- 1	-	-	-		
181.70	•	-47° 0'	ACID	OK		-	-	-	-	-	
212.19	-	-48° O'	ACID	OK		-	-	-	-	-	
236.10	-	י0 *48	ACID	OK		-	•	-	-	-	
273.16	-	-48°98'	ACID	OK		- 1		-	-		
•	-	-	-	-		-	•	-	-	-	
-	-	•	-	-		-	-	-	•	-	
•	-	-	-	-		-	-	-	•	-	
-	-	-	-	•		-	•	-		-	
-	•	-	-	-		-	-	-		-	
•	-	-	-	-		-	•	-	-	•	
-	•	-	-	-		-	•	-	-	-	
•	•	-	-	•		-	•	•	-	-	
-	•	-	-	•		-	•	-	-	•	
•	•	•	-	•		-		-	-	-	
-	•	•	-	•		-	•	-	-	-	
-	•	•	-	•		•	•	-	-	-	
-	•	•	-	-		-	•	•	-	•	
-	•	-	-	•		-	-	-	-	-	
•	•	-	•	-		-	•	-	-	•	
-	•	-	-	-		-	•	-	-	•	
-	•	-	•	-			-	-	-	-	
-	•	-	-	-			•	-	-	-	
-	•	-	-	-		-	•	-	-	-	
-	•	-	-	-		-	-	-	-	•	
•	•	•	-	-		· ·	•	-	•	-	

•

ì

HOLE NUME	ER: 90-5		DATE: 19-March-1991			
FROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
0.00 TO 9.45	«CASING»					
9.45 TO 20.20	«SERPENTINE »	Colour: Grain Size:				
		9.45-16.1 -dark green, well foliated serp., str. magnetic -foliation @ 45-60 deg, f.gr.		-mod late carb stringers		
		16.1-20.2 -pale grey, str. foliated serp. foliation @ -50% remnant, dark grey, mag serp as blebs and bands with 50% talc bands; local gougy zones i.e. 19.9-20.2	50	¶16.1-20.2≱ «talc alt'n» -str. talc alt'n		∮19.9-20.2≱ «FAULT ZONE»
20.20 TO 21.10	«FSP PORPH MICRODIOR DYKE»	Colour: grey green Grain Size: f.gr. Massive dyke, f.gr. with 30% fine fsp in f.gr. grey matrix	-	Mod. to pervasive chl-ep alteration		
21.10 TO 22.50	«SERPENTINE »	Colour: Grain Size: Grey talc alt'd serp as in 16.1-20.2, str. gouge @ upper contact		1 21.1-22.5∳ «talc alt'n»		
22.50 TO 24.70	«MICRODIOR DYKE»	Colour: Grain Size: as in 20.2-21.1	-	Mod pervasive chl and ep alt'n		
24.70 10 27.90	«SERPENTINE »	As in 16.1-20.2	-	«talc alt'n»		
27.90 TO 33.80	«MICRODIOR DYKE»	Fine grained, massive; generally f.gr. with 15% tabular and needle-like mafics avg. 2 mm long, 10% subhedral fsp avg. 1 mm f.gr. matrix		Chl/serp on shears		

1 1

HOLE NUM	BER: 90-5	DATE: 19-March-1991				
FROM	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		30.3-30.3 -10% coarse, white fsp, 15% large amygdules filled with ep.?				
		Upper contact - sharp a Lower contact - 2 cm grey gouge	45 80			
33.80	«SERPENTINE			«talc alt'n»		
38.00	"	Generally grey, massive to weakly foliated serp. grades into well foliated green serp. locally, -foliation a with strongly developed chl/graph shears	45	Mod. talc alt'n, minor late carb vnlts; local hem. flooding		
38.00 TO 40.00	«MICRODIOR DYKE»	Colour: grey green Grain Size: f.gr. Dyke with 15% fine needle like fsp, random orient. in f.gr. matrix 38.0-38.3 -str. shearing, int. serpentinization of dyke 39.8-40.4 -grey gouge zone		Str. chl/serp alt'n, esp a upper contact; v. str. chl/graph shears; local hem. staining of matrix		↓ 38.0-38.3↓ «FAULT ZONE» ↓39.8-40.4↓ «FAULT ZONE»
40.00 TO 48.70	«SERPENTINE »	Colour: grey Grain Size: f.gr. Massive, f.gr. grey serp., mod foliation @ 45-60 deg to c.a.; mod-strong magnetic; 60-70% rem. grey serp with 30% talc bands and zones; local rusty zones 47.4-48.7 -rusty bx zone silic'd		<pre>«talc alt'n» Mod-str. talc alt'n; min late carb vnlts; min local hem. rich bands 447.4-48.7¹ «silic'd»</pre>		47.4-49.454 «FAULT ZONE»
48.70 TO 59.20	«TERTIARY D YKE» TERT. BIOT MONZ. DYKE	Colour: grey brown Grain Size: m.gr. Massive dyke, 20% white subhedral fsp, 5% bi, 10% mafics in f.gr. grey-brn matrix, stronger alt'n than other dykes seen to date 48.7-49.45		Mod to str. chl/seric on fracs; minor late carb vnlts; local hem staining in matrix; local bleaching		

1 1

.

)

HOLE NUMB	MINNOVA INC. DATE: 19-March-1991						
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS	
		-broken core with rusty fracs with slicks					
		54.6-54.8 -bx zone 40% subang. clasts avg. <1 cm in black py rich matrix; 5-10 cm bleached zones adj. to bx zone					
		59.2 -sharp lower contact @	80				
59.20 TO 63.00	«SERPENTINE »	Colour: grey Grain Size: f.gr. Grey , mottled - well foliated serp., non magnetic foliation ລ	50	Weak, local talc alteration			
63.00 TO 64.20	«GREENSTONE »	Colour: green Grain Size: f.gr. F.gr. pale green dyke? with 10% fine fsp in f.gr. matrix; broken core; finer grained and more altered than fsp porph/microdior		Mod late carb stringers; min chl. shears			
64.20 TO 65.35	«SERPENTINE "	Colour: grey Grain Size: f.gr. Grey, mottled serp. as in 59.2-63.0 grading downwards to pinkish, bx silic'd serp. near lower contact		∮65.0-65.35∳ «silic'd»			
65.35 TO 84.90	«GREENSTONE »	Colour: grey Grain Size: f.gr. F.gr. volc, pale green locally grades into coarser grained, equigranular intrusive; minor conglom. beds within unit					
		65.35-68.0 -strongly bx, with local gouge matrix; good recov. 68.0-71.0 -pale green, f.gr. gst with 5-10% v. fine fsp visible - graddes downwards into cherty gst with		65.35-68.0 -min hem. staining; mod-str. chl. alteration	65.35-68.0 -minor py diss. and stringers	465.35-68.0 «FAULT ZONE»	

1. 1

HOLE NUMBER: 90-5

.

)

HOLE NUM	BER: 90-5			DRILL HOLE RECORD	DATE: 19-March-1991	
FROM	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		min. conglom. frags				-
		71.0-73.8 -conglom./bx, pale green-gry; 50% v. ang. clasts avg. 1 cm in green cherty gst matrix; clasts dom chert and lst (may have red garnet rims), limey matrix		71.0-73.8 -min late carb, minor mariposite	71.0-73.8 -min py as bx infilling	
		73.8-77.2 -pale green volc. as above; f.gr. with min. fine fsp		<pre>473.8-77.2} «chl, hem alt'n» -mod perv. chl/hem -> prop. alteration mod perv carb</pre>		
		77.2 -contact - sharp @	80			
		77.2-78.4 -conglom. as in 71.0-73.8				
		78.4-82.5 -purple green volc. with fine felted fsp; rare large xenoliths to 10 cm amygdaloidal with calc. infilling		¶78.4-82.5⊨ «chl, hem. alt'n» -mod perv. hem-chl alteration; min. late carb vns		
		82.5-84.9 -m.gr. microdior? intrusive; str. perv. carb in matrix = 40% fsp, 15% mafics avg. 1 mm in f.gr. matrix; massive; rare xenoliths; 60 cm alt'd zone a lower contact		¶82.5-84.9⊫ «carb, chl, clay alt'n» -str. perv. carb, str. chl/clay alt'n a lower contact		
84.90 TO 87.60	«TERTIARY D YKE»	Colour: dark brown Grain Size: Fine grained, massive, fresh, biotite rich dyke; 10% bi, 10% mafics avg. 1 mm, 10% coarse fsp, avg. 3 mm in fine matrix 87.6				
		-contact - sharp ລ	50			
87.60 TO 96.15	«GREENSTONE »	Colour: grey green Grain Size: f.gr. F.gr., massive, 15% remnant. fsp. avg. 1 mm, visible local., in f.gr. grey-green matrix; locally cherty gst		Min carb stringers		

.....

1 1

HOLE NUMBER: 90-5

.

ì

HOLE NUME	BER: 90-5			MINNOVA INC. DRILL HOLE RECORD	DATE: 19-March-1991	
FROM	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
96.15 TO 103.60	«DIORITE»	Colour: grey green Grain Size: f.gr. Medium grained intrusive, looks quite similar to tertiary dyke but no biotite; paler colour and gradational contacts with greenstone above and below; 15-20% euhedral white fsp, avg. 1mm may be saus, 15% mafics, avg. <1 mm in f.gr. matrix. rare xenoliths		Possible minor bi, repl. mafics?		Probable subvolc, equiv. of Greenstone above and below
103.60 TO 104.90	«GREENSTONE »	As in 87.6-96.15				
104.90 TO 224.00	«BROOKLYN CONGLOM»	104.9-109.5 -green matrix supported conglomerate with 60-70% subang. clasts, avg5 cm in f.gr. green granular locally muddy, matrix; clasts are 50% chert, 40% gst; 10% lst.; rare v. large lst clasts to 20 cm; matrix may look intrusive but prob. dit grad in clast size		-min chl/ep alt'n of matrix throughout	-v. minor py throughout	Brooklyn Formation
		109.5-112.0 -coarse conglom. with 20%, v. large, dom. lst clasts in fine sandy-muddy, locally fine conglom. matrix; lower contact - gradational 112.0-112.9 -green f.gr. sandstone with local conglom beds or large lst clasts; weak bedding @ 112.9-124.0 -green conglom. as in 104.9-109.5; clasts grad. from sand -> cobble size, avg5 cm 124.0-124.4 -green sandy layer, weak bedding @ 124.4-135.85 -green conglom as above; rare jasper clasts	60	∮122.0-123.0∦ «minor marip.» -mod. late qtz vnlts อ 45 deg	122.0-123.0 -minor py - diss. in matrix	1 214.5-2177 } «FAULT ZONE»

1. 1

HOLE NUMB	ER: 90-5			DRILL HOLE RECORD	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		135.85-137.3 -pale green-buff coloured matrix to conglom. clast supported with about 80% v. ang. clasts, avg. 1 cm; 10% large grey lst clasts up to 20 cm		<pre>{135.85-137.3} «wk. silic, ep» -in matrix, min marip. in matrix; minor bleaching</pre>	<pre>1135.85-137.31 «2% py» -finely dissem. and vnlts and flood zones in matrix</pre>	
		137.3-155.8 -pale grey-green conglom, clast supported but grades into finer intervals of matrix supported conglom.		¶149.5-151.0∦ «min qtz-py stringers» -weak bleaching	149.5–151.0 -min py stringers	
		155.8-157.15 -pale green, f.gr. muddy tuff? band, 1% cc filed amygdules		155.8–157.15 -min hem staining		
		sharp contacts @ 157.15-169.0 -grey green conglom., dom. clast supported with 80+ clasts avg. approx5-1 cm as above 169.0-169.3 -f.gr. green muddy layer with rare clasts; bedding/contact @	60	∮167.3-168.0∳ «bleached, silic'd mtx» -minor marip; vuggy dissolved lst clast	164.5-164.8 -2% py, diss in matrix and vnlts {167.3-168.0} «5% py» -5% fine py, diss. in matrix and vnlts	
		169.3-177.5 -fine clast supported conglom; 90+% clasts sand - 6cm size, avg5 cm; clasts are dom gst, lesser chert and lst.; rare jasper frags and coarse grained intermed. intrusive		169.3-177.5 -min late qtz vnlts to .5 cm ඛ 45 deg		
		From 176.6 becomes coarser grained matrix supported 177.5-178.7 -f.gr. green muddy layer; sharp upper contact a gradational into fine conglom. a lower contact 178.7-181.2	50			
		-fine conglom. as in 169.3-177.5 181.2-182.3 -green est. v. fine conglom. layer gradational into and out of conglom, above and below Bedding @ 182.3-204.7	45	∮186.1–194.4≱ «5% epith qtz vns» -bleached silic'd zone with 5% white-	181.0-181.2 -1% py vnlts @ 20 deg to c.a. 186.1-194.4 -minor py in vnlts with quartz	

MINNOVA INC

HOLE	NUMBER:	90-5
------	---------	------

MINNOVA INC. DRILL HOLE RECORD

DATE: 19-March-1991

1

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-fine clast supported coryl as above with rare large clasts, dom lst.; gen dark green (exc. in bleached zone); local sectionns with abund. coarse lst clasts (is v. rare garnet replacement near rims)		grey f.gr. (epithermal looking) qtz vns and flood zones; 1-2% marip		
		204.7-205.1 -md. grained mafic-interm. dyke with 20% needle- like mafics, 30-40% fsp. avg. <1 mm 205.1-209.0 -dark green med. grained clast supported congl.; sand - 7cm clasts, avg5-1 cm; minor garnet repl. large lst. clasts; limey matrix		∮202.8-208.1∦ «str. ep alt'n» mod-str. perv. epid. alt'n; minor hem many stn on fracs; minor carb vnlts	202.8-208.1 -min py diss in matrix	
		209.0-210.6 -f.gr. dark green dyke with 30% fine rem. fsp visible; locally bleached		209.0-210.6 -min white-grey qtz vns to 1 cm @ 45 deg with pyrite rich envelopes to 2 cm	209.0-210.6 -min. py as envelopes to qtz vns	
		210.6-213.5 -coarse conglom. with local bleaching 213.5-215.0 -muddy layer with local conglom. bands and large lst clasts with garnet rims 215.0-224.0 -dark green conglom. as above with rare large lst. clasts; local muddy/intrusive(??) layers to 10 cm		211.4-211.7 «3 cm epith qtz vn» -zone with 3 cm grey epithermal qtz vn ∂ 40 deg 212.5-213.5 -bleached, silic'd, broken core	211.4-211.7 -min py 212.5-213.5 «5% py» -diss and flood zones	∯214.5-217.7≱ «FAULT ZONE»
224.00 TO 226.40	«DIORITE DY KE»	Colour: green Grain Size: m.gr. 25% subhedral fsp, avg. 1 mm, 10% needle-like mafics, 2 mm long, in fgr. pale green matrix	-	«chl. alt'n.» Mod chl. alt'n; min. late qtz-carb. veining		∦224.4-225.0∦ «FAULT ZONE» looks like older dyke cut conglom. in fault zone, late it was in turn cut by Tert. dyke
226.40 TO 235.85	«TERTIARY DYKE» Tert. biot. monz. dyke	Colour: dark brown Grain Size: f.gr. Massive, fresh dyke 10% fine bi and mafics, 5% fsp, avg. 1 mm in f.gr. matrix contains local large xenoliths of conglom. (or running very near to down contact of dyke?)				
	1	Contacts @ 45 deg, 3 cm white qtz vn @ upper		[1	1

.

HOLE NUME	BER: 90-5			MINNOVA INC. DRILL HOLE RECORD	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		contact				
235.85 TO 237.10	«DIORITE DYKE»	As in 224.0-226.4 Contacts a	45	«chl altn» Mod. chl. alt'n; min late qtz carb veining		
237.10 TO 240.80	«BROOKLYN CONGLOM»	Pale grey med. grained matrix supported conglom. 50-60% clasts, avg. 1 cm in fine muddy matrix; contains local muddy bands to 30 cm			Min. py vnlts	
240.80 TO 250.90	«BROOKLYN MUDSTONE»	Pale green, f.gr. mudstone, local well dev. bedding @ 45 deg, graded beds with strat. tops up Locally grades into coarser sandy sections		«str. ep/hem alt'n» Str. perv. ep. and hem. alt'n; min carb vnlts and weak perv. carb.	«1% py» 1% py, as grey bands, to 2 cm thick @ 45 deg as fine random stringers	
250.90 TO 271.33	«BROOKLYN CONGLOM» E.O.H.	Fine dark green clast supported conglom. with 90% subang. clasts avg5 cm, but rarely to 20 cm in f.gr. sandy matrix; matrix limey; clasts 70% gst (+dior), 20% chert, 10% lst, large clasts lst; minor sandy layers to 15 cm		Min. perv. ep alteration matrix; minor qtz-carb vnlts	Rare py, diss matrix and as vnlts.	

HOLE NUMBER: 90-5

1 8

1

DRILL HOLE RECORD

LOGGED BY: L. Lee

PAGE: 9

HOLE NUME	ER: 90-5			ASSAY SHEET	DATE: 19-March-1991
Sample	from (m)	ĩο (m)	Length (m)		COMMENTS
200 79 20080 20082 20083 20085	36.50 38.00 47.40 54.00 64.20	38.00 40.00 48.70 55.00 65.35	1.50 2.00 1.30 1.00 1.15		
20 086 200 87 20088 20089 200 93	65.35 66.80 71.00 77.20 122.00	66.80 68.00 73.80 78.40 123.00	1.45 1.20 2.80 1.20 1.00		
20094 20095 20096 20097 20098	135.85 149.50 164.50 166.00 167.50	137.30 151.00 166.00 167.50 169.00	1.45 1.50 1.50 1.50 1.50		
200 99 20100 19876 19877 19878	186.10 187.50 189.00 190.50 192.00	187.50 189.00 190.50 192.00 193.50	1.40 1.50 1.50 1.50 1.50		
19879 19881 19882 19883 19886	193.50 209.00 210.60 212.00 240.80	194.40 210.60 212.00 213.50 242.80	0.90 1.60 1.40 1.50 2.00		
19887 19888 19889 19890	242.80 244.80 246.80 248.80	244.80 246.80 248.80 250.90	2.00 2.00 2.00 2.10		

HOLE NUMBER: 90-5

1

1

PAGE: 10

•

HOLE	NUMBER:	90-5
------	---------	------

GEOCHEM. SHEET DATE: 19-March-1991 Length (m) Sample From Τo (m) (m) 22.50 28.00 41.00 20077 24.70 2.20 200**78** 31.00 3.00 44.00 57.00 93.00 20081 3.00 2.00 20084 55.00 . 200**90** 90.00 93.00100.00115.00118.00205.00207.00233.00235.00236.00237.00 200**91** 200**92** 19880 7.00 3.00 2.00 19884 19885 1.00 19891 265.75 268.75 3.00

HOLE NUMBER: 90-6		M DRIL	IMPERIAL UNITS: ME	METRIC UNITS: X		
PROJECT NAME: RAINBOW PROJECT NUMBER: 661 CLAIM NUMBER: LOCATION: Midway Mine Area	PLOTTING COORDS GRID: NORTH: EAST: ELEV:	Rainbow 8885.00N 9320.00E 968.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	0+ 0 0+ 0 0.00	COLLAR DI LENGTH OF THE HOL SIART DEPT FINAL DEPT	-:-45°0'0" : 153.96m : 0.00m : 153.96m
DATE STARTED: October 11, 1990 DATE COMPLETED: October 12, 1990 DATE LOGGED: October 13, 1990	COLLAR GRID AZIMUTH: COLLAR SURVEY: NO MULTISHOT SURVEY: NO ROD LOG: NO	180° 0' 0"	COLLAR ASTRONOMIC AZIMUTH: PULSE EM SURVEY: NO PLUGED: NO HOLE SIZE: NG	270° 0' 0"	CONTRACTOR: Lone Ranger CASING: left in hole CORE STORAGE: Boundary Falls	

FURPOSE: To test a NE fault in the W of the Midway Mine — and to beter define the geology in the mine area

1 1

DIRECTIONAL DATA:

-

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
32.30	•	-46° 0'	ACID			· ·	•		-	-	
93.90	-	-46° 0'	ACID	OK			-	-	-	-	
137.50	-	-47° O'	ACID	OK		-	-	-	-	-	
153.96	-	-48° 0'	ACID	OK		-	-	-	-	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-		•	-	-	-	-	
-	•	•	-	-		-	-	-	•	-	
-	-	-	-	•		-	-	-	-	-	
-	-	-	-	-			-	-	-	•	
-	-	•	-	•		-	•	•	•	-	
	•	•	-	•			-	-	-	•	
-		-	-	-						-	
-		-	-	•			-				
-	_							-			
-	_						-	-	-		
-	-		-	-			•	-		-	
-		-	-	-			-	-		-	
-		-	-	-		-	-	-	-	-	
-		-	-	-			-	-	-	-	
•	-	-	-	-		· ·	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	•	-	-	-		-	-	-	-	•	
-	-	-	-	-			-	-	-	•	
-	•	-	-	-		-	•	-	-	-	
-	•	-	-	-		•	-	-	-	•	
-	•	-	-	•		•	-	-	-	•	
-	•	-	-	-			•	-	-	-	

HOLE NUM	MINNOVA INC. DRILL HOLE RECORD DATE: 19-March-1991								
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS			
0.00 TO 6.10	«CASING»								
6.10 TO 25.20	«TERTIARY D YKE» TERT. BIOT. MONZ DYKE	Colour: dark grey brown Grain Size: f m.gr. Massive, fresh intrusive, dark grey brown with 5% bi, 10% fine mafics, 20% subhed. fsp avg. 1 mm in f.gr. fsp rich matrix (pinkish brown kspar rich?) 25.2 -gradational contact (at assim. of porphyry??)		Min. carb vnlts v. min. chl on fracs					
25.20 TO 30.20	«QTZ-FSP PO RPH»	Colour: pale grey green Grain Size: m.gr. 5% qtz eyes; 30% fsp avg. 2 mm, in f.gr. grey- green matrix 30.2 sharp contact @	45	<pre>«chl, clay alt'n» Mod perv. chl/clay alt'n; fsp saus; mod carb vnlts</pre>	«1-2% py» 1-2% py diss and stringers				
30.20 TO 39.50	«TERTIARY D YKE» TERT. BIOT. MONZ. DYKE	Fresh massive dyke as in 6.1-25.2 -2 cm f.gr. chill zone at lower contact	45		-				
39.50 TO 90.15	«Q1Z FSP PO RPH»	Dark green porphyry with 5% qtz eyes avg. 1-2 mm 25% coarse subhedral plag, avg. 2 mm in f.gr. matrix 41.1-43.0 -pale green 43.0-45.5 -pale grey-green 20% v. prominent subhedral fsp avg. 3-4 mm		39.5-41.1 -fsp saus., kmod perv. chl alt'n, min cab vnlts 441.1-61.0} «silic'n» 41.1-45.5 -weak silic'n; fsp saus, perv. clay- chl alt'n, min qtz units	<pre>441.1-45.5↓ «2% py» -2% py diss. and vnlts and as flood zones in envelopes to 1 cm around vnlts</pre>	4 49.7-50.1 ∦ «FAULT ZONE»			

1. 1

•

J

HOLE NUMBER: 90-6

1 1

MINNOVA INC. DRILL HOLE RECORD

DATE: 19-March-1991

a second the first of second second

FROM	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		45.5-49.7 -pale grey green, fsp less prominent than above		45.5-49.7 -fsp saus. mod silic'n of matrix; min qtz-py stringers	445.5-49.74 «2-5% py» -diss and vnlts and less commonly as envelopes to vnlts	
		49,7-50.1 -white silic'd, str. bx porph. and gouge 50.1-61.0 -pale grey with 10% qtz eyes and 15% rem. fsp, bleached, silic'd zone		49.7-50.1 -str. silic'n 50.1-61.0 -fsp sau	≰49.7-50.1≱ «5-10% py» -5-10% fine py, 1 cm sulphide (py+?), a lower contact	1 49.7-50.1⊧ «Fault Zone»
		61.0-71.0 -bleached qtz fsp porphyry as above exc. 30-40% prominent large subhedral fsp, avg. 3-4 mm; grad change to greener less silic'd and bleached porph. below		≰61.0-71.0⊧ «bleached, silic'd» -fsp saus., bleached, silic'd matrix	<pre>{61.0-61.5} «10-15%» -10-15% py, f.gr. with qtz in flood zones to 4 cm wide in matrix; banding a 70-80 deg 441 5-71 01 «27 py»</pre>	
		71.0-81.0 -qtz fsp porp[h with 5% qtz eyes, 15-20% fsp, avg. 3 mm in f.gr. grey-green matrix; local qtz bx zones to 3 cm ie 76.15		71.0-81.0 -mod silic'n fsp saus chl alt'd; local bleached zones	 71.0 71.2% py, diss and stringers 	
		81.0-82.65 -m.gr., mafic-intermed. dyke; upper contact gouge zone; lower contact @	45	81.0-82.65 -fsp saus, mod carb vnlts		
		82.65-82.90 -grey well foliated serp.				
		82.90-83.0 -green fault gouge				82.90-83.0 -Fault Zone
		83.0-90.15 -md. grained, grey green porphyry with 2% v. large qtz eyes (avg. 4-5 mm); 50% fsp (saus. & chl alt'd); subhedral, avg. 2-3 mm, <5% euhedral mafic		【83.0-90.15】 «clay alt'n» mod. seric on fracs; mod perv. clay alt'n, minor carb. vnlts	83.0–90.15 –min. diss. py.	
90.15 TO 93.90	«SERPENTINE »	Colour: dark grey green Grain Size: f.gr. Dark grey - green serp. str. magnetic, mod-str. foliation @	45		-	

HOLE NUMB	NUMBER: 90-6 MINNOVA INC. DRILL HOLE RECORD DATE: 19-March-1991									
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS				
		93.0-93.90 -v. broken core, poor recov., fault zone				1 93.0-93.90⊨ «FAULT ZONE»				
93.90 TO 105.70	«TERTIARY D YKE» TERT. BIOT. MONZ. DYKE	Colour: grey pinkish grey Grain Size: m.gr. Fine to m.gr. massive fresh dyke; equigranular with 5% bi, 10% mafics, 40% fsp, subhedral avg. 1 mm in f.gr. fsp rich matrix 10 cm crushed zone at lower contact, Fault Zone		Hem. stn. of fsp phenos and local hem. stn'd matrix; min carb. vnlts, min seric/chl on fracs						
105.70 TO 109.10	«FSP PORPH»	Colour: grey green Grain Size: m.gr. 30% coarse euhedral tabular fsp to 1.5 cm long, avg. 3-4 mm in f.gr. grey matrix 108.5-109.1 -gougy core in fault zone @ lower contact		Mod. carb vnlts 107.1-107.5 -mod-str. clay chl alt'n 108.5-109.1 -v. str. clay alt'n and gouge						
109.10 TO 114.80	«TERTIARY D YKE» TERT. BIOT. MONZ. DYKE	Colour: pinkish brown Grain Size: m.gr. as in 93.9-105.7 111.2-111.9 -broken core, poor recovery 114.8 -sharp lower contact @	45	Str. hem. stn. fsp and matrix; mod carb vnlts		¶108.6-109.9₽ «FAULT ZONE»				
114.80 TO 142.15	«MICRODIOR FSP PORPH»	Colour: grey green Grain Size: f.gr. 40-50% fine fsp, avg. 1 mm, subhedral in f.gr. matrix; locally grades to slightly coarser grained with 20% f. mafics visible	-	Mod carb vnlts; fracs hem/mary stained fsp locally saus						
		119.5-121.2 -weak crackle type tx 126.75-129.3		-mod clay alt'n, local gouge zones		1117.3-121.2P «FAULI ZUNE»				

.

ì

HOLE NUM	BER: 90-6			MINNOVA INC. DRILL HOLE RECORD	DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-c.gr. grey fsp porph dyke? cutting microdiorite; 40% c. fsp avg. 3-4 mm, showing weak alignment a	50			
		131.7-135.0 -broken, well fract'd core with poor recov. local str. bx, bleaching		<pre>4131.7-135.0↓ «silic'n, bleaching» -local str. silic'n and bleaching ie 134.1-134.6</pre>		
		Lower contact a	45		139-142.15 -1% py as fine vnlts	
142.15 TO 145.30	«TERTIARY D YKE» TERT. BIOT. MONZ. DYKE	Colour: grey brown Grain Size: f. to m.gr. Fresh, massive dyke 5% bi, 10% fine mafics, 20% fsp white tabular, avg. 1-2 mm (saus) and yellow elongate euhedral clay alt'd in f.gr. brown matrix, minor gouge zones & lower contact	-	fsp clay alt'd min carb. vnlts		
145.30 TO 153.96	«FSP PORPH MICRODIOR»	Colour: grey green Grain Size: f.gr. Fine grained with 5% mafics, alt'd to chl locally 20-30% rem. fsp visible Locally bx (crackle type)		∦145.3-147.3≱ «chl-clay alt'n» -mod perv. clay chl alt'n	∮ 146.9-148.3) «2-5% ру»	147.3-148.3) «FAULT ZONE»
		147.3-148.3 -broken core and strongl bx with silic'd clasts		∮147.3-153.96≱ «silic'n» -mod-str. perv. silic'n	148.3-153.75 -tr. py stringers	
		and py matrix 153.75-153.96 -bx zone a	45		153.75-153.96 -5% py	
	E.O.H.					

HOLE NUMBER: 90-6

LOGGED BY: L. Lee

PAGE: 5

.

- -

HOLE NUME	BER: 90-6			ASSAY SHEET	DATE: 19-March-1991
Sample	From (m)	To (m)	Length (m)		COMMENTS
19893 19895 19896 19897 19898	25.20 29.00 39.50 41.00 43.00	27.00 30.20 41.00 43.00 45.00	1.80 1.20 1.50 2.00 2.00		
19899 19900 21551 21553 21554	45.00 47.00 49.00 53.00 55.00	47.00 49.00 51.00 55.00 57.00	2.00 2.00 2.00 2.00 2.00		
21555 21556 21557 21558 21559	57.00 59.00 61.00 63.00 65.00	59.00 61.00 63.00 65.00 67.00	2.00 2.00 2.00 2.00 2.00		
21560 21561 21562 21563 21564	67.00 69.00 71.00 73.00 75.00	69.00 71.00 73.00 75.00 77.00	2.00 2.00 2.00 2.00 2.00		
21565 21566 21567 21568 21569	77.00 79.00 81.00 83.00 85.00	79.00 81.00 83.00 85.00 87.00	2.00 2.00 2.00 2.00 2.00		
21570 21571 21574 21575 25376	87.00 89.00 131.70 133.50 147.30	89.00 90.15 133.50 135.00 148.30	2.00 1.15 1.80 1.50 1.00		
25377 25378 25379	148.30 150.50 152.00	150.50 152.00 153.96	2.20 1.50 1.96		

.....

.

PAGE: 6

HOLE NUMB	ER: 90-6			GEOCHEM. SHEET DATE: 19-March-199	21
Sample	From (m)	То (m)	Length (m)		
19892 19894 21552 21572 21573	14.00 27.00 51.00 99.00 122.00	17.00 29.00 53.00 102.00 125.00	3.00 2.00 2.00 3.00 3.00		

.

1

ļ

PAGE: 7

•

HOLE NUMBER: 90-7		MINNOVA INC. Drill Hole Record							
PROJECT NAME: RAINBOW PROJECT NUMBER: 661 CLAIM NUMBER: LOCATION: Midway Mine Area	PLOTTING COORDS GRID: Rainbow NORTH: 8900.00N EAST: 9210.00E ELEV: 975.00	ALTERNATE COORDS GRID: NORTH: EAST: ELEV:	COLLAR DIP: -45° 0' 0'' 0+ 0 LENGTH OF THE HOLE: 182.46m 0+ 0 START DEPTH: 0.00m 0.00 FINAL DEPTH: 182.46m						
DATE STARTED: October 12, 1990 DATE COMPLETED: October 15, 1990 DATE LOGGED: 0, 0	COLLAR GRID AZIMUTH: 270° 0' 0" COLLAR SURVEY: NO MULTISHOT SURVEY: NO RQD LOG: NO	COLLAR ASTRONOMIC AZIMUTH: 270 PULSE EM SURVEY: NO PLUGGED: NO HOLE SIZE: NQ	0° 0' 0" CONTRACTOR: Lone Ranger CASING: left in hole CORE STORAGE: Boundary Falls						

- -

. .

1. .

C. M. C. Law South Street St.

7

PURPOSE: To test for NE structures west of the Midway mine and to better define the geology in the mine area

1. 1

DIRECTIONAL DATA:

ļ

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments
21.95	•	-45° 0'	ACID	OK			-	-	•	-	
95.12	-	-46° 0'	ACID	OK		-	-	-	-	•	
128.60	-	-46° 0'	ACID	OK		-	-	-	-	•	
171.34	-	-46° 0'	ACID	OK		-	-	-	•	-	
-	-	-	-	•		•	-	-	-	•	
-	-	-	-	•			-	-	-	-	
-	-	-	-	•		-	-	-	•	•	
-	-	-	-	-		-	•	-	-	-	
-	-	-	-	•		-	•	-	-	-	
-	-	-	-	-		-	-	-	•	•	
-	•	-	-	•		-	-	-	-	•	
-	-	•	•	-		-	-	-	-	-	
-	-	-	•	•		-	-	•	-	-	
-	-	-	-	-			•	-	-	-	
		-					-	-	-	-	
-	-	-					-	-	-		
-	-	-	-				-	-	-	-	
-							-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		.	-	-	-	-	
-	•	-	-	-			-	-	-	-	
-	-	-	-	-		· ·	•	-	-	•	
-	-	-	-	•		1 -	-		-	-	
-	•	-	-	•		•	-	-	-	•	
-	-	-	-	-		•	•	-	-	-	
-	-	-	-	•		-	-	•	-	-	
-	-	-	-	-		· ·	-	-	-	-	

•

HOLE NUME	DLE NUMBER: 90-7 DATE: 19-March-1991									
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS				
0.00 TO 6.10	«CASING»									
6.10 TO 76.50	«QTZ FSP PO RPH»	Colour: green grey Grain Size: m.gr. 5% qtz eyes, 30% coarse subhedral fsp, avg. 2 mm (str. chl. alt'n), 15-20% fine mafics, in grey green f.gr. matrix		6.1-22.4 -fsp alt'd to chl. Fe-Mn stained fracs; min carb vnlts						
i		6.1-8.3 -rusty, mn stained fracs, local gougy zones 15.7-16.6 -crowded qtz fsp porph. with 60% fsp, avg. 2mm		∮8.05-8.25} «bleached, silic'd» -bleached, silic'd with 3 cm, irregular white chalc. qtz flood zone	4 35.1-37.3 ⊧ «2% ру»					
		22.4-29.0 -crowded qtz-fsp porphyry, 5% qtz eyes, 60% fsp avg. 2-3 mm, 10% fine mafics in f.gr. gmass; fsp alt'd to pale blue-green colour 29.0-31.5		22.4-29.0 -fsp alt'd to blue-green coloured clay weak silic'd matrix; local bleaching and str. silic'n ie. 26.8-27.4	22.4-29.0 -tr py v. fine in matrix in envelopes adj. to fracs and vnlts; locally up to 50% v. fine py (grey matrix?)	159.3-59.61 «FAULT ZONE» 165.0-65.31 «FAULT ZONE»				
		-coarse qtz-fsp porph, green with chl alt'd fsp as above 31.5-35.10 -fine, pale grey green, qtz-fsp porph, 5-10% qtz eyes, 15% rem. fsp (clay alt'd) visible		{31.5-35.10∳ «clay alt'n» -mod perv. clay alt'n	31.5-35.10 -tr py	171.5-71.9 «FAULT ZONE»				
		35.1-37.3 -pale grey beige coloured qtz-fsp porph.; bleached v. prominent coarse fsp in fine matrix 37.3 -gradational contact		435.1-37.3↓ «clay alt'n» •fsp str. sauc., weak silic'n and str. perv. clay alt'n of matrix, str. seric. on fracs, min chalc. qtz vning a 45 deg	∮35.1-37.3∤n «2% py» •vnlts and finely dissem.	176.5-82.9 ≱ «FAULT ZONE»				
		37.3-39.0 -pale purple-green qtz-fsp porph.; prominent fsp as above, strongly alt'd 39.0 -gradational contact		37.3-39.0⊨ «clay chl alt'n» -str. clay-chl alt'n -weak hem alt'n						
		39.0-46.3 -bleached pale gey qtz-fsp porph as in 35.1-37.3		39.0-46.3 -fsp str. saus; weak silic'n and str.	4393.0-46.34 «2% py» -vnlts and finely dissem.					

· · ·

The second s

10. Contract 1.3

1

HOLE NUMB	ER: 90-7		DRILL HOLE RECORD			DATE: 19-March-1991	
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE		ALTERATION	MINERALIZATION	REMARKS	
		Contains less alt'd interval 44.3-44.7 46.3-54.7 -qt2-fsp porphyry with 5% qtz eyes, 30% fsp avg. 2 mm (green, chl-seric alt'd) in f.gr. purple green matrix; fsp not as coarse and prominent as above; local bleaching a 52.9-53.2 54.7 -gradational contact 54.7-59.5 -bleached qt2-fsp porph. as in 35.1-37.3 and 39.0-46.3 Local, narrow gouge zones a 45 deg to c.a. a 55.5 m 59.3 m 59.3-59.6 -strly bx; fault zone a 45 deg to c.a.; minor rusty fracs 59.5 -gradational contact		<pre>perv. clay alt'n of matrix; str. seric on fracs 46.3-54.7 -fsp chl-seric alt'd; mod prop. alt'd matrix (chl-hem); min carb vnlts; rare chalc (white-grey) vns to 1 cm @ 45 deg. ie. 50.9 m 52.9-53.0 -weak silic'n 54.7-59.5 -fsp str. saus, weak silic'n and str. perv. clay alt'n of matrix</pre>	54.7-59.5 -minor py	↓ 59.3-59.6 ↓ «FAULT ZONE»	
		59.5-68.2 -pale grey-green qtz-fsp porphyry; locally bx or narrow gouge zones a 45 to 50 deg ie 52.8; 65.0-65.3 68.2-72.4 -rusty, pale green qtz-fsp porphyry, local gougy and bx zones eg. 68.2-68.4 rusty gouge a 45 71.5-71.9 str. bx		 \$59.5-68.2\$ «clay-chl alt'n, min epith qtz veins» -fsp saus, str. perv. clay-chl alt'n of matrix; rare cream-grey chalc. vns to 1 cm a 45 deg. ie. 63.9 m \$68.2-72.4\$ «clay alt'n» -perv. clay alt'n, local silic'n rusty or clay alt'd fsp; rusty sericitic fracs.; min qtz vnlts 	68.2-72.4 -minor py	65.0-65.3 «FAULT ZONE» 68.2-68.4 «FAULT ZONE» 71.5-71.9 «FAULT ZONE» 72.4-76.5 «FAULT ZONE»	
		72.4-76.5 -v. rusty, intensely bx,qtz,fsp porph. gouge zones fault zone		<pre>172.4-76.51 «silic'd, bx» v. rusty, silic'd, bx, intense clay locally</pre>	72.4-76.5 -minor py		

MINNOVA INC.

1. 1

et es la traca de la

Fmc

The other law

HOLE NUMBER: 90-7

.

LOGGED BY: L. Lee

PAGE: 3

•

HOLE NUM	BER: 90-7	DATE: 19-March-1991				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
76.50 TO 82.90	«SERPENTINE »	Mottled, reddish brown, intensely silic'd serp.; poor recov., v. broken core; 20 cm grey-brown gouge zone @ lower contact => Fault Zone		¶76.5-82.9⊫ «str. silic'n, marip»		476.5-82.91 «FAULT ZONE»
		76.5 -upper contact a	45			
82.90 TO 86.80	«KETTLE RIV ER SEDS»	<pre>82.9-83.6 -dark grey, f.gr. muddy argillite sharp lower contact @ 55-60 deg 83.6-86.35 -grey beige, qtz rich sst-wacke with minor carbon rich beds to 10 cm; bedding @ 60 deg 85.5-85.8 -v. rusty broken sst and rusty clay gouge 86.35-86.8 -dark grey, muddy argillite as above with sandy interbeds; bedding @ -sharp lower contact</pre>	45			«85.5-85.8) «FAULT ZONE»
86.80 10 95.12	«TERTIARY D YKE» FSP - BI PHYRIC FLOW	Pale grey, 30% fine fsp; 5% coarse bi, 5-10% euhedral mafics to 4 mm lonng in f.gr. fsp rich matrix; locally v. rusty clay alt'd		<pre>86.8-88.5 -str. clay alt'n 88.5-88.7 -v. rusty, local chalc. vning, intense clay alt'n and gouge 88.7-89.7 -str. clay alt'n 89.7-91.9 -mod perv. clay alt'n rusty zones to 1 m wide, min qtz vning and bx zones 493.9-95.124 «clay alt'n» -v. rusty, intensely clay alt'd volc.</pre>	Min py vnlts	

.

and the second secon

HOLE NUME	BER: 90-7	DATE: 19-March-1991				
FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
95.12 TO	«SERPENTINE					
99.10		95.12-98.3 -rusty brown core, poor recovery; intensely silic'd serp. with weak fol'n a -local rusty gouge zones	45	495.12-98.3} ≪silic'n» -intense	Minor py and acicular radiating py-like xtals (marcasite?) on rusty fracs	95.12-98.3
		98.3-99.1 -grey mottled intensely silic'd serp.		98.3-99.1 «Silic'n» -intense, mariposite, rare white chalc. vnlts		
99.10 TO 100.61	«QTZ FSP PO RPH»	Grain Size: m.gr. Strongly alt'd qtz-fsp porphyry and fault gouge		∮99.1-99.7⊨ «clay, chl, talc alt'n» •intense clay-talc alt'n and fault gouge 99.7-100.0		199.1-99.71 «FAULT ZONE»
				-str. chl-talc alt'n 100.0-100.61 -rusty, str. clay alt'n, fault gouge		4100.0-100.6# «FAULT ZONE»
100.61 TO 127.60	«SERPENT I NE »	100.61-106.0 -rusty, str. silic'd serp. bx and chalc. qtz flooding, local foliation @ random angles 104.88-105.7 -rusty, broken coe, local bx zones; fault zones		<pre>[100.61-106.0] «silic'n, chalc. qtz flooding» -v. str. silic'n and chalc. qtz flood zones and late qtz vnlts @ 70 deg to c.a.; v. rusty</pre>		≰104.88-105.7 ≱ ≪FAULT ZONE≫
		106.0-111.0 -buff, grey intensely silic'd werp, weak-mod foliation a -local rusty bands to 20 cm	45	<pre></pre>		1119.3-119.61 «FAULT ZONE»
		111.0-113.1 -rusty silic'd grey-buff serp. with 5% mariposite		1111.0-113.1 «silic'd, 5% marip» -silic'd, rusty 5% mariposite, mod carb vning and minor white qtz		
		113.1-115.5	1	vning 113.1-115.5 «silic'n, 10-15% marip»		

HOLE NUMBER: 90-7

.

.....

`.)

HOLE NUMBER: 90-7

1 2

MINNOVA INC. DRILL HOLE RECORD

DATE: 19-March-1991

and the set

But the second se

FROM TO	ROCK TYPE	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERALIZATION	REMARKS
		-grey intensely silic'd serp.		-intense silic'n and buff-grey banded qtz flood zones; up to 30% marip locally 10-15% throughout interval	-	
		115.5-118.5 -grey, strongly silic'd serp as in 106.0-111.0 with local rusty zones to 10cm, weak foliation @ 45 deg		≰115.5-118.5≱ «silic, marip» str. silic'n and mod late white xtalline vuggy qtz vns a 50-60 deg to c.a.; 2% mariposite		
		118.5-119.6 -rusty silic'd intrusive (qtz-fsp porph.) v. strongly alt'd		118.5-119.6 «silic, clay alt'n» -silic'd, rusty, str. clay alt'd, local gouge		4119.3-119.64 «FAULT ZONE»
		118.5 -sharp contact ລ	60			
		119.3-119.6 -str. bx and rusty gouge				
		119.6-127.6 -grey str. silic'd serp as in 115.5-118.5 m with local rusty zones to 10 cm; mod magnetic, weak foliation 45-60 deg to c.a.		<pre>4119.6-127.6 will c'n, 1-2% maripw str. silic'n,, 1-2% mariposite, minor qtz vns @ 45 deg to c.a.; local hem. flooding</pre>		
127.60 TO 182.46	«QTZ FSP PO RPH»	Colour: grey green Grain Size: m.gr. 5% qtz eyes, avg. 2 mm, 20-30% subhedral fsp, avg. 3 mm in length in f.gr. pale green gmass, locally pale grey zones bleached and altered				
				4127.6-138.8¢ «clay alt'n»		
		128.0-132.3		127.6-128.0 -crushed core, fsp saus., perv. clay alt'd and weak silicif; str. seric on fracs		
		-pale green grey 132.3-133.6 -pale grey, bleached		128.0-132.3 -mod perv. clay alt'n; fsp saus and and chl alt'd local zones of strong bleaching	128.0-132.3 -2% fine py - diss and vnlts	1148 0-140 11 «FAULT ZONE»
		133.6-138.8		132.3-133.6 -zone of str. bleaching, perv. clay	132.3-133.6 -tr. py	Trace is it wither the

HOLE NUMBER: 90-7

1 2

MINNOVA INC. DRILL HOLE RECORD

DATE: 19-March-1991

ì

FROM TO	ROCK	TEXTURE AND STRUCTURE	ANGLE TO CA	ALTERATION	MINERAL 1ZAT ION	REMARKS
		-pale green-grey with prominent fsp, local zones of weak bleaching		and weak silic'n min qtz vnlts		
				133.6-138.8 -saus, weak-md. perv. clay alt'n, str. seric on fracs; local weak bleaching	133.6-138.8 -tr py	
		-pale grey bleached zone with rusty zones and fracs		┃138.8-139.9↓ «silic'n» bleached, fsp saus, mod. perv. silic'n and late white-grey gtz vnlts	≰138.8-139.9⊫ «2-3% ру»	
		139.9-142.6 -grey green qtz-fsp porph. as above with rusty fracs and local narrow rusty gouge zones ie. 142 15		139.9-142.6 -fsp weakly saus. local weak bleaching	139.9-142.6 -tr py	
		142.6-145.8 -qtz-fsp porph with 5% qtz eyes, 30% large, sub- hedral fsp (avg. 4 mm), 5% fine mafics in f.gr. dark grey gmass; local rusty fracs and narrow gouge zones		142.6-145.8 -fsp chl - clay alt'd		
		145.8 -gradational into finer qtz-fsp porph. with no mafics (as above)				
		145.8-148.0 -green grey qtz-fsp porph. as in 139.9-142.6		145.8-148.0 -fsp chl alt'd weak chl-clay alt'n		
		148.0-149.1 -rusty, fract'd broken core, bleached silic'd qtz-fsp porph		∮148.8-149.1} «bleached, silic» saus, seric fracs, v. rusty	148.0-149.1 -minor py	1 148.0-149.1 ⊧ «FAULT ZONE»
		149.1-151.2 -pale green grey, qtz-fsp porph, weak bleaching 151.2-182.46		149.1-151.2 -weak bleaching and silic, local rusty zones ot 20 cm; min qtz-py vnlts	149.1-151.2 -tr. py	
		-grey green, the grained qt2-tsp porph, massive relatively fresh, minor local gouge zones, rusty zones and crushing and weak local bleaching		151.2 -fsp weak chl-clay alt'd; minor seric on fracs	151.2 -tr py on fracs with seric	
		100-100.1 -rusty silic'd zone		156-156.1 -rusty silic'd zone		
		-5 cm grey gouge				
		181.9-182.46		181.9-182.46		

HOLE NUM	BER: 90-7			MINNOVA INC. Drill Hole Record		DATE: 19-March-1991
FROM TO	ROCK TYPE	K AA		ALTERATION	MINERALIZATION	REMARKS
		-changes to purle-green qtz-fsp porph with prominent fsp, alt'd to chl		-weak to pver alt'n, chl - hem		
	E.O.H.					

s contrativos - - - -

•

HOLE NUMBER: 90-7				ASSAY SHEET	DATE: 19-March-1991	
Sample	From (m)	To (m)	Length (m)		COMMENTS	
25380 25381 25382 25383 25384	6.10 26.00 27.50 35.10 37.00	8.40 27.50 29.00 37.00 39.00	2.30 1.50 1.50 1.90 2.00			
25385 25386 25388 25389 25390	39.00 41.00 45.00 47.00 49.00	41.00 43.00 47.00 49.00 51.00	2.00 2.00 2.00 2.00 2.00			
25391 25392 25393 25394 25395	51.00 53.00 55.00 57.00 59.00	53.00 55.00 57.00 59.00 61.00	2.00 2.00 2.00 2.00 2.00			
25396 25397 25398 25399 25400	61.00 63.00 65.00 67.00 68.20	63.00 65.00 67.00 68.20 70.20	2.00 2.00 2.00 1.20 2.00			
25401 25402 25403 25404 25405	70.20 72.40 74.00 75.50 77.00	72.40 74.00 75.50 77.00 78.50	2.20 1.60 1.50 1.50 1.50			
25406 25407 25408 25409 25410	78.50 80.00 81.50 85.00 86.80	80.00 81.50 82.90 86.00 88.00	1.50 1.50 1.40 1.00 1.20			
25411 25412 25413 25414 25415	88.00 90.00 93.90 95.12 97.10	90.00 91.90 95.12 97.10 99.10	2.00 1.90 1.22 1.98 2.00			
25416 25417 25419	99.10 100.61 104.00	100.61 102.00 106.00	1.51 1.39 2.00			

......

HOLE NUMBER: 90-7

1

HOLE NUM	BER: 90-7	•		ASSAY SHEET	DATE: 19-March-1991
Sample	from (m)	To (m)	Length (m)		
25420 25421	106.00 108.00	108.00 109.50	2.00 1.50		
254 22 254 23 254 24 254 25 254 26	109.50 111.00 112.00 113.10 114.30	111.00 112.00 113.10 114.30 115.50	1.50 1.00 1.10 1.20 1.20		
254 27 254 28 254 29 254 30 254 31	115.50 117.00 118.50 119.60 121.00	117.00 118.50 119.60 121.00 123.00	1.50 1.50 1.10 1.40 2.00		
254 33 254 3 4 254 3 5 254 3 6 254 3 7	125.00 127.60 129.00 130.50 132.30	127.60 129.00 130.50 132.30 133.60	2.60 1.40 1.50 1.80 1.30		
254 38 254 39 25440 25441 25442	133.60 135.50 137.00 138.80 148.00	135.50 137.00 138.80 139.90 149.10	1.90 1.50 1.80 1.10 1.10		
25443	149.10	151.20	2.10		

and an and the second second second second second

1

1 1

•

HOLE NUMB	ER: 90-7			GEOCHEM. SHEET	DATE: 19-March-1991
Sample	From (m)	To (m)	Length (m)		
25387 25418 25432 25444	43.00 102.00 123.00 159.00	45.00 104.00 125.00 162.00	2.00 2.00 2.00 3.00		

HOLE NUMBER: 90-7

1

and the second second

APPENDIX IV

COST STATEMENTS

COST STATEMENT - MURRAY 90 and 91 GROUPS

1.0 Fees and Wages

	L. Lee, Geologist 42 days @ \$250/day R. Young, Junior Geol 38 days @ \$200/day G. Duso, Assistant 8 days @ \$150/day	\$10,500.00 7,600.00 <u>1,200.00</u> \$19,300.00
2.0	Analytical Costs	
-	Trench Samples: 81 geochem samples @ \$20/sample	\$1,620.00
	Drill Core Samples: 229 geochem samples @ \$20/sample 45 litho samples @ \$30/sample	4,580.00 <u>1,350.00</u> \$7,550.00
3.0	Contractor Costs	
	Kettle River Resources: Koering 666 excavator \$135/hr 26 hours (mob + operation)	\$3,510.00
	Foxy Creek Services: D-6 cat \$55/hr 15 hours (mob + operation)	825.00
	Lone Ranger Drilling Ltd. 1171 metres NQ drilling, all inclusive cost of \$54/metre.	<u>63,234.00</u> \$67,569.00
4.0	Transportation and Accommodation	
×.	Truck rental: 1 Toyota 4-Runner 44 days @ \$40/day 1 Toyota 4-Runner 10 days @ \$40/day Fuel and Supplies Room and Board 88 man days @ \$40/day	\$1,760.00 400.00 1,200.00 <u>3,520.00</u> \$6,880.00
	TOTAL:	\$101,299.00

\$35,500.00 towards Murray 91 Group \$65,799.00 towards Murray 90 Group

Note: All work was done on the Midway claim which is included in both the Murray 90 and Murray 91 Groups.

COST STATEMENT - INGRAM 90 GROUP

1.0 Fees and Wages

	L. Lee, Geologist 4 days @ \$250/day G. Duso, Assistant 4 days @ \$150/day	\$1,000.00 <u>600.00</u> \$1,600.00
2.0	<u>Analytical Costs</u> Trench Samples: 19 geochem samples @ \$20/sample	\$380.00
3.0	<u>Contractor Costs</u> Kettle River Resources: Koering 666 excavator \$135/hr 13 hours (mob + operation)	\$1,755.00
	Foxy Creek Services: D-6 cat \$55/hr 4 hours (mob + operation)	220.00 \$1,975.00

4.0 <u>Transportation and Accommodation</u>

Truck rental:	
1 Toyota 4-Runner 4 days @ \$40/day	\$160.00
Fuel and Supplies	300.00
Room and Board 8 man days @ \$40/day	_320.00
	\$780.00

TOTAL: \$4,735.00

APPENDIX V

STATEMENT OF QUALIFICATIONS

•

STATEMENT OF QUALIFICATIONS

- I, Linda J. Caron certify that:
 - 1.0 I am an exploration geologist residing at Lind Creek Road (Box 248), Greenwood, B.C.
 - I obtained a B.A.Sc. in Geological Engineering 2.0 (Honours) in the Mineral Exploration Option, from the University of British Columbia (1985).
 - 3.0 I graduated with an M.Sc. in Geology and Geophysics from the University of Calgary (1988).
 - I have practised my profession continually since 4.0 1987 and have worked in the mineral exploration industry since 1980.
 - 5.0 I was employed by Minnova Inc. at the time of this program and personally carried out or supervised the work covered in this report.

Date: <u>*Feb*</u> 28/91

Linda Caron

9050 N					
	(N				
9025 N					
	and the state of the				
0000 N					
9000 N					
8975 N					
8950 N					
				1	
8925 N					
			100		
8900 N		2-2-1			

		6b	Marron Intrusives			
		6a	Marron Volcanics			
	UNIT 5	Kettle River	Formation			
		5b	Sandstone / Tuff			
		50	Conglomerate			
	CRETACEOUS	Nelson Plut	onic Complex			
	UNIT 3	Quartz Feldspar Porphyry Intro	usive			
		3c	Coarse Feldspar Porphyry Intr	usive		
		3b	Crowded Feldspar Porphyry in	trusive		
		3a	Microdiorite Intrusive			
	LATE PALEOZOIC - CARBONIFEROUS OR PERMIAN					
	UNIT 1	Serpentine	- Knob Hill Group			
		1c	Carbonate altered Serpentine	(Listwonite)		
		1b	Talc Altered Serpentine			
		10	Dark Green Unaltered Serpent	ine		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Fault			Shaft/Decline		
	Geological	Contact	>1/-	Pit Location		
24	Strike/Dip	of Fracture	/Foliation X	Rock Sample Location		
	Strike/Dip	of Veining	$\bigcirc$	Area of Outcrop		
	Strike/Dip	of Contact		Roads		

LEGEND

TERTIARY - EOCENE

UNIT 6 Marron Formation

Adit Location Trench Location Drill Hole Location

>----

 $\succ$ 

0--

_____ Creeks x x x x x Talus ----- Power Line

8825 N

8800 N 8775 N

8750 N 8725 N

8700 N

8675 N 8650 N 8625 N 8600 N

8575 N

