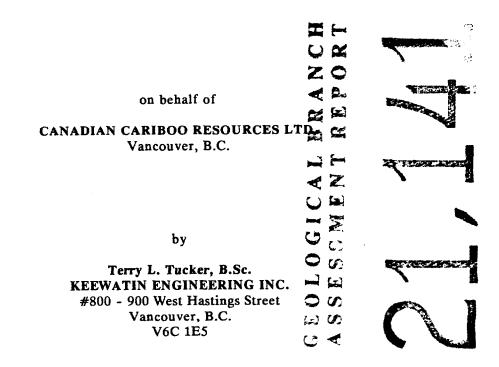
LOG NO:	March 26/91	RD.
ACTION:	7	
FILE NO:		·····

GEOLOGICAL AND GEOCHEMICAL REPORT


~ •

ON THE

LA ROSE PROPERTY

KITSAULT RIVER AREA, BRITISH COLUMBIA

Skeena Mining Division NTS 103P/11, 12 Latitude: 55° 35'N Longitude: 129° 32'W

January 11, 1991

Keewatin Engineering Inc.

TABLE OF CONTENTS

SUMMARY INTRODUCTION 1 Location and Access 1 Physiography and Climate 2 Claims and Ownership 2 History 3 GEOLOGY 5 Regional Geology 5 7 Regional Economic Geology 8 Property Geology Property Economic Geology 9 1990 EXPLORATION PROGRAM 10 Geochemical Survey 10 CONCLUSIONS 12 REFERENCES 13

STATEMENT OF QUALIFICATIONS

Page No.

LIST OF FIGURES

							Following Page No.
•		•		•			1
							2

Figure 1.	Property Location Map (B.C.)	1
Figure 2.	Topographic Claim Location Map	2
Figure 3.	Claim Map - 1:50,000	2
Figure 4.	Regional Geology	2
Figure 5	Property Geology	8
Figure 6.	Mineral Occurrences	10
Figure 7.	Sample Docation and Goology http://www.	n pocket
Figure 8.	Geochemistry - Ald	n pocket
Figure 9.	Ocochemistry rig	n pocket
Figure 10.	Ocochemistry Cu	n pooleet
Figure 11.	Geochemistry - I b	n pocket
Figure 12.		n pocket
Figure 13.	Geochemistry - As	n pocket

LIST OF APPENDICES

APPENDIX I	Statement of Costs
APPENDIX II	Sampling and Geochemical Procedures
APPENDIX III	1990 La Rose Property Geochemistry Compilation
APPENDIX IV	Soil, Stream Silt and Rock Data Sheets
APPENDIX V	Legal Corner Post Photographs

- -

-

- -

- -

SUMMARY

The La Rose property is situated in the Upper Kitsault River area, 57 kilometres southeast of Stewart in northwestern British Columbia. The area is located 3 kilometres north of deep water port facilities at Kitsault on Alice Arm. An unmaintained mine road extends from Alice Arm through the northeastern corner of the property.

The La Rose property was subjected to a reconnaissance rock, soil and stream silt geochemical survey and prospecting program in 1990. The program was severely hampered by poor weather conditions. The area is underlain by favourable Lower Jurassic Hazelton Group stratigraphy which displays potential for hosting base metals and gold mineralization.

A total of twenty significant geochemical anomalies were identified by prospecting and stream silt sampling. Silt sample 90284EEL88 returned 343 ppm Zn and silt 90284MML009 returned 284 ppm Zn. A number of silts from La Rose Creek returned anomalous gold values of up to 113 ppb Au (90284EEL92). Several soil samples which were taken along a contour below the BJ crown granted claims returned anomalous values including S3443 (178 ppb Au), S3445 (152 ppm As), S3449 (108 ppm As) and S3450 (195 ppm As). A float sample from La Rose Creek assayed 652 ppb Au and 1,591 ppm As (90284EEF165).

Geological mapping in 1990 resulted in significant changes being made to the regional geological picture. Recent government mapping by the Geological Survey of Canada identified the Upper Triassic Stuhini Group north of the property on the east side of the Kitsault River. The two recognized units of the Hazelton Group have been redefined, and the Hazelton Group-Salmon River/Bowser Lake Group contact has been significantly shifted westward in the White River area and eastward in the Lahte Creek area. Structural shortening in a northeast-southwest direction is also postulated to have taken place as a result of high angle faulting as well as folding.

The La Rose property area clearly warrants further work including prospecting and detailed contour soil/silt sampling in the geochemically highlighted areas.

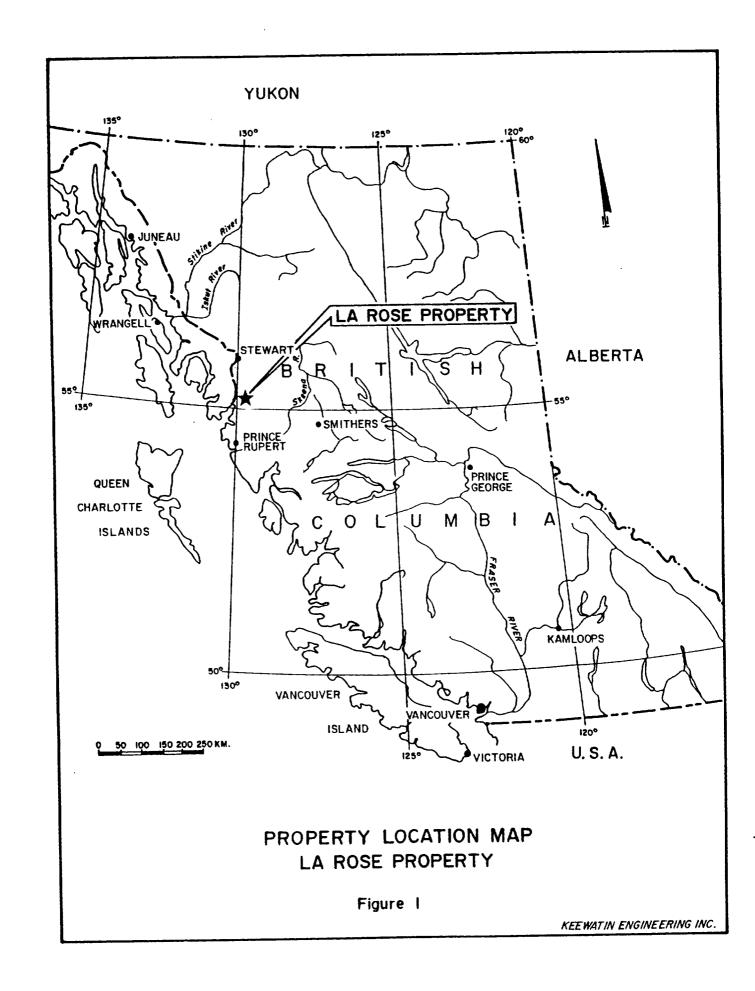
INTRODUCTION

The 1990 La Rose property exploration program commenced September 28, 1990 and continued to October 4, 1990. Keewatin Engineering Inc. was commissioned by Canadian Cariboo Resources Ltd. to carry out the 1990 exploration program. The objective of this program was to evaluate the base and precious metal potential of the property.

The property is located 57 kilometres southeast of Stewart, B.C. within the Skeena Mining Division and comprises four mineral claims and five crown granted claims totalling 85 units.

The property covers approximately four kilometres of favourable geology that includes intermediate volcanics, volcaniclastics and sediments of the Lower Jurassic Hazelton Group.

The 1990 work program comprised helicopter-supported prospecting and soil/silt/rock geochemistry.


Location and Access

The La Rose property is located in northwestern British Columbia, 57 air kilometres southeast of Stewart and 3 kilometres north of Alice Arm (Figure 1). The Kitsault River flows through the northeastern corner of the property. The claims are situated within N.T.S. map sheets 103P/12 and 103P/11 and are centred about 55°-35' North latitude and 129°-32' West longitude.

The historic Dolly Varden Mining Camp is located 15 kilometres further up the Kitsault River from the La Rose property and the Alice Arm Mining camp is located 3 kilometres south of the property.

Although access into the area is generally limited to helicopter, Stewart or Kitsault, on the south side of Alice Arm provide good intermediate staging areas that are accessible by road. Float planes could be accommodated at Alice Arm. The old Kitsault River Road from Alice Arm to Dolly Varden has been recently (1990) reconstructed and passes through the northeastern corner of the property. Helicopter bases are located in Stewart, Smithers, and on a seasonal basis, at a logging camp on Highway 37, just south of Meziadin Lake.

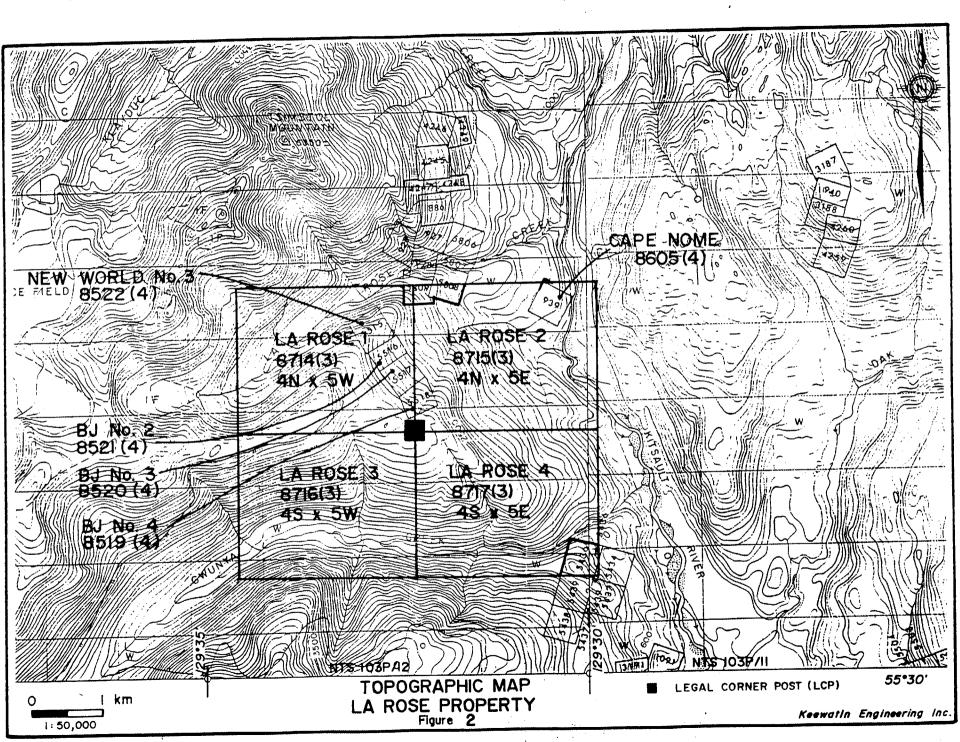
Keewatin Engineering Inc.

2

An exploration camp could be established on the property on the west bank of the Kitsault River on the Alice Arm - Dolly Varden access road. The 1990 exploration program was based out of Keewatin's camp at Kitsault Lake.

Physiography and Climate

The physiography of the Kitsault-Alice Arm area is characterized by rugged coastal topography (Figure 2). Elevations on the property range from 30 metres to 1,280 metres. Slopes range from steep to precipitous and are generally heavily wooded.


Vegetation within the property package varies greatly with elevation. The larger drainages and lower elevations are heavily wooded by spruce, fir and hemlock and not uncommonly snarled by alders, willows, blueberry bushes, huckleberry bushes and devil's club. Treeline ranges from 700 to 1,070 metres above which only sparse balsam fir can be found.

The climate is coastal with abundant rain from June to October, and extraordinary accumulations of snow throughout the winter that can total over 20 feet. Access into the area is often hampered by low cloud and foul weather.

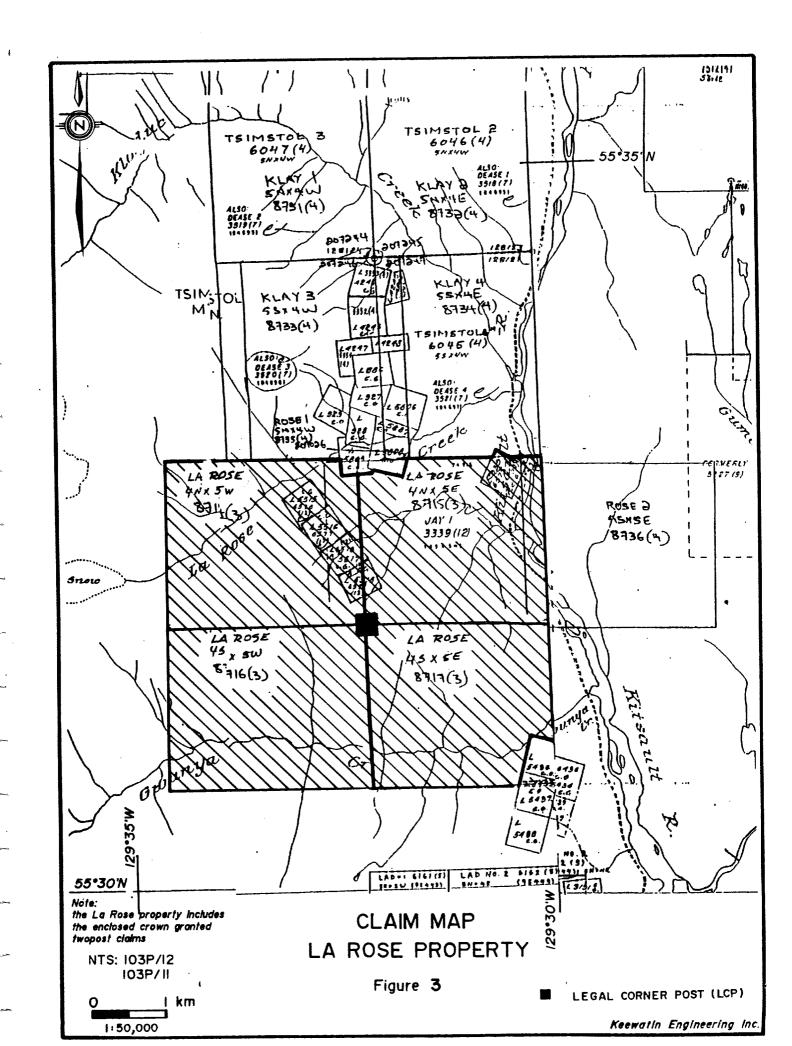
Claims and Ownership

The La Rose property comprises four (4) mineral claims (80 units) and five crown granted two-post claims (5 units) located within the Skeena Mining Division (Figure 3). These claims are more fully described below.

Claim Name	No. of Units	Record No.	Record Date	Expiry Date	Owner Lot N	No.
La Rose 1	20	8714	March 30, 1990	March 30, 1991	L. Barry	
La Rose 2	20	8715	March 30, 1990	March 30, 1991	L. Barry	
La Rose 3	20	8716	March 30, 1990	March 30, 1991	L. Barry	
La Rose 4	20	1917	March 30, 1990	March 30, 1991	L. Barry	

1

ł


1 1

1

1

1

.

Claim Name	No. of Units	Record No.	Record Date	Expiry Date	Owner	Lot No.
Crown Granted (Claims					
Cape Nome	1	8605	March 22, 1990	March 22, 1991	L. Barry	939
New World #3	1	8522	March 22, 1990	March 22, 1991	L. Barry	5515
B.J. #2	1	8521	March 22, 1990	March 22, 1991	L. Barry	5516
B.J. #3	1	8520	March 22, 1990	March 22, 1991	K. Hicks	5517
B.J. #4	1	8519	March 22, 1990	March 22, 1991	L. Barry	5518
Total	85 Units					

It is to be noted that the crown granted two-post claims were bought by the owners at an auction held by the provincial government.

Although the property comprises four modified grid claims that enclose the crown granted two-post claims, the actual ground claimed is slightly reduced due to the overstaking of valid, preexisting claims to the north (Figure 3).

The claims are, apparently, the subject of an agreement between the owners and Canadian Cariboo Resources Ltd. The LCP's for the La Rose 1-4 claims were located and are as shown on the map. Photographs of the LCP's are found in Appendix V.

<u>History</u>

The Kitsault area has been explored sporadically since the turn of the century when rich silver-bearing outcroppings were first discovered and the Dolly Varden silver camp was established along the banks of the Kitsault River (Figure 4).

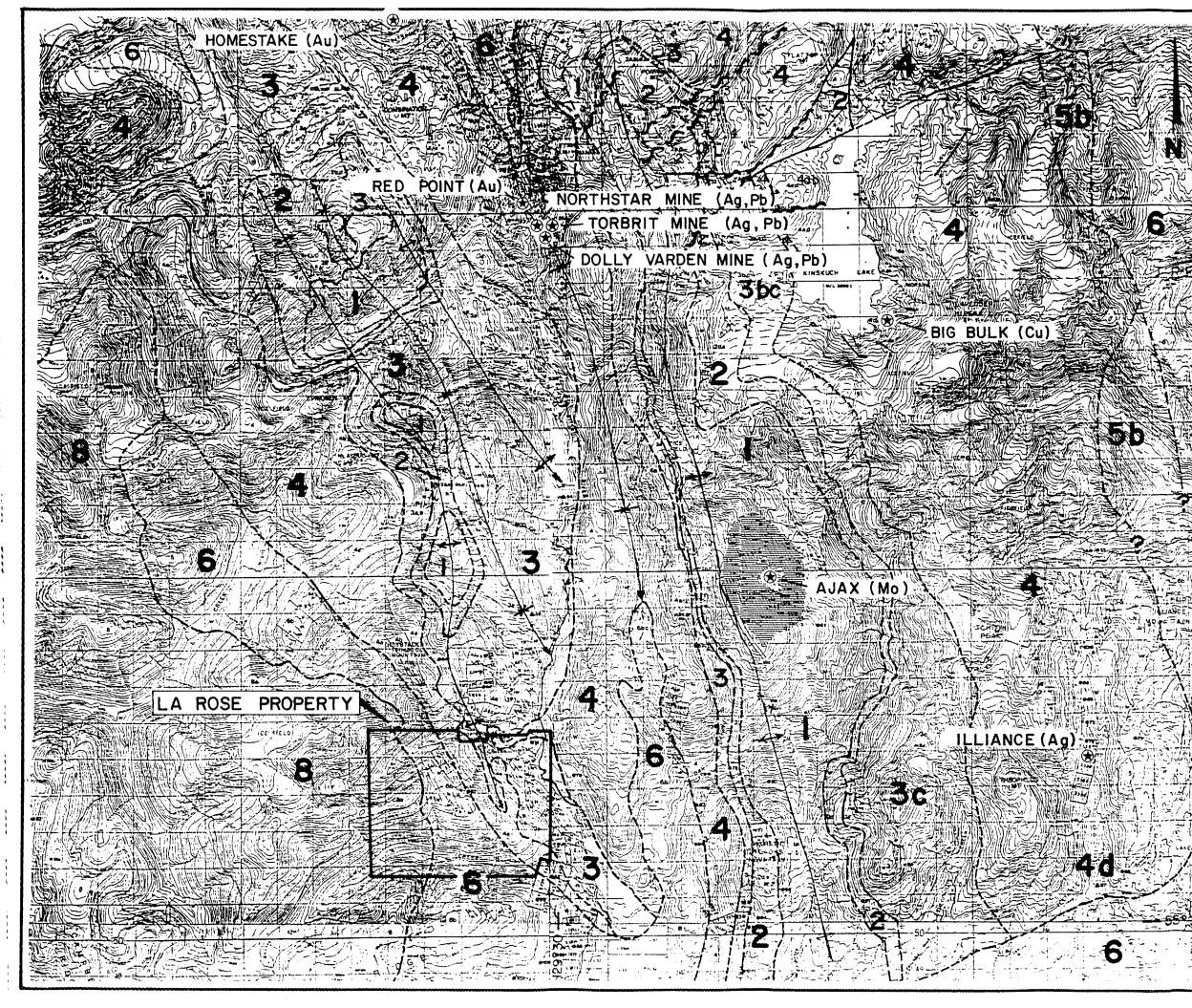
The Dolly Varden, North Star and Torbit stratiform volcanogenic Ag-Pb-Zn deposits (Devlin, 1987) have long been the major focus of mining and exploration activity in the area. The Dolly Varden and North Star mines produced 1.3 million ounces of silver (40.4 million grams) from 1919 to 1921, and the Torbit produced 18.6 million ounces of silver (579.4 million grams) and 11.0 million pounds of lead (5.0 million kilograms) between 1949 and 1959 (Devlin, 1987). In more recent years, Dolly Varden Minerals Inc. has outlined significant additional proven, probable and possible reserves of 1.5 million tons (1.3 million tonnes) with 14.2 million ounces (441.6 million grams) contained silver at the Dolly Varden, North Star, Torbit and Wolf deposits (Devlin, 1987). During 1990, Dolly Varden Minerals Inc. conducted a 23,250 foot (7,087 metre) drill program testing targets along the trace of the Dolly Varden mineral horizon. No economic grades of mineralization were obtained (Vancouver Stockwatch, August 10, 1990). Numerous minor silver vein occurrences also dot the Kitsault River Valley, including the Wolf deposit just north of the Torbit mine.

Gold exploration has been largely centred along the highly visible, rusty, gossanous "Copper Belt" that extends for 14 kilometres along the west bank of the upper reaches of the Kitsault River. The "Copper Belt" is host to abundant, but variably mineralized gold-silver veins and zones of disseminated copper. Prior to 1939, 36 ounces (1,120 grams) of gold was produced from 9 tons (8.2 tonnes) of, presumably, hand cobbed ore from the Homestake Ridge showings (Black, 1951). In 1989, Noranda Exploration Co. Ltd. completed a 10,000 foot drill program along the Homestake trend, testing both the high-grade gold vein potential and low-grade, bulk tonnage Cu-Au potential. Noranda conducted a limited geological mapping and geochemical sampling program in 1990, but have since dropped their option with the property holder (NDU Resources Ltd. of Vancouver, B.C.). Dolly Varden Minerals Inc. also conducted a large drill program at Red Point and the Red Point Extension in 1989. In spite of samples assaying up to 0.452 oz/ton Au over 6.4 feet (15.50 g/t over 1.95 metres), Dolly Varden was apparently discouraged by the sporadic and generally uneconomic results. During 1989, two new discoveries were made by Bond International Gold in Hazelton Group rocks 50 kilometres to the north of the La Rose property area. The Red Mountain discovery at the headwaters of Bitter Creek consists of two zones; the Marc and Brad, which intersect each other on surface. The best drill intersection yielded 216 feet of 0.28 oz/ton Au and 1.4 oz/ton Ag (66 m of 9.88 g/tonne Au and 49.29 g/tonne Ag). A second discovery at the headwaters of Willoughby Creek; 6 kilometres to the east across the Cambria Icefield produced a drill intersection of 67 feet grading 0.73 oz/ton Au and 5.3 oz/ton Ag (20.5 m of 24.98 g/tonne Au and 184.21 g/tonne Ag) (Northern Miner, October 9, 1989). No new information about these new discoveries has been released in 1990.

Molybdenum mineralization associated with Eocene intrusives in the area led to extensive exploration efforts beginning in 1965. The Lime Creek deposit, 5 kilometres east of Alice Arm, was mined by Kennco Explorations (Canada) Ltd. and B.C. Moly Corp. between 1967 and 1972. Amax of Canada Ltd. milled 4.5 million tons (4.1 million tonnes) of the 10.2 million tons (9.3 million tonnes) of stockpiled ore to produce 23.2 million pounds (10.5 million kilograms) of molybdenum during 1981 and 1982 (B.C. Minfile 103P-120). The mine, mill and Kitsault townsite are now closed indefinitely. The Ajax deposit located on Mount McGuire just northeast of the La Rose property has a drill defined reserve of 1,162.0 million tons (1143.7 million tonnes) grading 0.09% molybdenum (Dawson and Alldrick, 1986), making it the largest undeveloped reserve of molybdenum in the province.

The Anyox stratiform massive sulphide Cu-Ag-Au deposits, located at the head of Observatory Inlet 45 kilometres to the southwest of the property, produced 24.7 million tons (22.4 million tonnes) that averaged 1.5% Cu, 0.27 oz/ton Ag (9.25 g/tonne), 0.05 oz/ton Au (1.7 g/tonne), and less than 0.5% combined Pb and Zn. Selenium was also produced as a by-product (Grove, 1986). The mine and smelter complex was operated by Grandby from 1914 to 1935. Reserves, calculated by Cominco, the present owners, are 49 million tons (44.4 million tonnes) of 0.65% Cu.

A copper-gold quartz stockwork system on the southeast shore of Kinskuch Lake, currently staked as the Big Bulk, was drilled between 1955 and 1982. Intersections include 16.2 metres of 1.22% Cu. Surface chip samples contained assays of up to 0.715 percent copper, 1.75 grams per tonne gold and 0.34 grams per tonne silver over 13 metres (Minfile #103P-016).


The entire belt of Jurassic rocks in the area has been the subject of numerous regional reconnaissance geochemical surveys including those by Newmont (1967), Cominco (1985), and Oliver Gold (1989, 1990). The entire area was covered by a regional geochemical survey which was completed by the Geological Survey of Canada in 1978.

Mineralized showings located on the La Rose property were discovered in the early 1900's. The assessment records and Minfile indicate that work done has been of limited extent and includes some pits and trenches. A 1.2 metre chip sample taken across the Silverwing showing assayed 1,264 grams per tonne silver equivalent (Minfile 103P 167).

GEOLOGY

Regional Geology

The La Rose project area, within the Stikinia terrain, is underlain by Lower to Middle Jurassic volcanic rocks of the Hazelton Group at the western margin of the Intermontane Tectonostratigraphic Belt (Figure 4). The Hazelton Belt is bounded to the west by the plutonic rocks of the Early Eocene Coast Mountain Complex, and to the east by the thick Middle to Upper Jurassic Bowser Basin sedimentary package.

LEGEND

INTRUSIVE BOCKS

BOCENE AND YOUNGER

O DYKSK (a) diprine, minoradiarise; (b) tomprophyre; (c) divrise, sill phase; (d) quarts foldapar purphyry

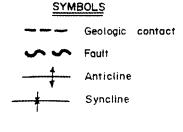
EARLY TO MUDDLE ROCEME

9 ALICE ARM (INTRUSIONE: (a) quarte manutume: (b) bintite quarte montonite porphyry: (c) seriale quarte sententite membroite

CONCERNATION BALLHOLITE: (b) quarts meansons; (b) granter

VOLCANIC AND SEDIMENTARY BOCK

QUATERNARY PLENTOCENI


7 MAPIC VOLCANICE: Disvice baselt flows

JURAEBIC MIDDLE TO UPPER JURASSIC

6 UPPER SEDIMENTA RY UNIT: (a) banal (mail/lenses waster; (b) situates, phale, and minor sendstoor; (c) introformational conglementar; (d) impenance

LOWRE TO MIDDLE JURABASC

- BPICLASTICAND FELSIC VOLCANICUNIT: Is) marana and green valuanic conglimerate. 5 presess, and more mendatane. (b) black situane. serilite, water, and limenane: (c) green water grey doolice preserve to tacks and foldapar perphyrate liven; (d) megacrymic foldaper perphyry.
- INTERMEDIATE VALCANIC UNIT: (a) gross and means measure advance pyroclassic rocks: (b) fridays: _ her vibiosoic addance apropry; (c) block unitsoc; (d) merees subsoc; saddness, and rougenerse; (c) hermosons and familierans mension; (f) berri: (g) subphilic carbanes modeleser/monitons fine becess; (b) angue-foldager perpoyry.
- MIDULE BEDIMERTARY UNIT (a) back addances (b) instantone and fomblicross instances (c) grows mal perpis without because with small millions, and congenerate; (d) minribedded uiklane, Andersen, weeke, and palyments prible congenerate.
- MAFIC VOLCANIC UNIT. (a) aliviae perpayer bank (lows: th) abgete perpayery bank (lows and pilowed flows; ic) bankic presidence rects: (d) bankic conglementer; (c) block pilowed flows; including and linearies
- LOWER SEDEMENTARY UNIT: (a) bluck aitatone, argillite, abole: (b) black worke, anotatone, innotone

NOTE: From Alldrick et. al, openfile map 1986/2 (modified from Greig 1990).

4 Km. -3

CANADIAN CARIBOO RESOURCES LTD.

LA ROSE PROPERTY

REGIONAL GEOLOGY

DATE: Jan. 1991	NTS: 103 P/11, 12, 13, 14
PROJECT	PROJ. GEDL. T. Tucker
SCALE: 1 : 100,000	
Keewatin Engineeri	ng Inc. MAP No 4

The supracrustal rocks of the Kitsault River area accumulated during repeated periods of largely marine, clastic and volcanic deposition on both a regional and local scale. The area was originally considered by Black (1951) and Alldrick and Dawson (1986) to be underlain by Lower Jurassic Hazelton Group rocks that can be subdivided on a regional scale into a lower siltstone dominated sedimentary unit (Unit 1), a lower basaltic volcanic and lesser sedimentary unit (Unit 2), a middle sedimentary unit (Unit 3), an upper intermediate volcanic unit with repeated limy clastic horizons throughout (Unit 4), and an upper epiclastic and felsic volcanic unit, which thins or is locally absent within the lithological sequence (Unit 5). Well exposed in structural depressions around the margins of the area are predominantly fine black marine clastics (Unit 6) which may represent the rocks at the base of the Bowser Basin as indicated by the abundance of Middle to Upper Jurassic marine fossils. Contacts between Units 1 to 5 are broadly conformable, while the base of Unit 6 appears disconformable as represented by accumulations of Unit 5 derived conglomerates above the contact. Work by Grove (1970) identified Unit 6, as it is shown north of Kitsault Lake, as the Salmon River Formation of the Hazelton Group.

The area is currently being mapped by Greig (1990) in partial fulfilment of a Ph.D. thesis sponsored by the G.S.C. The work completed by Greig in 1990, east and northeast of Kinskuch Lake, contradicts much of Alldrick's (1986) map and stratigraphic section. Based upon limited fossil identifications and stratigraphic correlations, Greig (1990) has mapped Alldrick's Units 1, 2 and 3 as members of the Upper Triassic Stuhini Group, and has positively identified thin bedded pyritic to laminated siliceous siltstones at the base of the Bowser Lake Group (Unit 6) as the Salmon River Formation.

Within Unit 4, a regional scale northwest-southeast trend of quartz-carbonate-sericitechlorite-pyrite alteration known as the "Copper Belt" extends 11 kilometres along the western bank of the Kitsault River and is associated with andesitic pyroclastics and flows or shallow sills.

The structural setting in the area is not fully understood. Alldrick (1986) worked with a fairly simple concept of broad, regionally folded, repeated sequences extending in parallel northwestsoutheast trends. Greig (1990) could not find evidence of the same degree of shortening that is exhibited in the younger Bowser Lake Group rocks as is displayed in the underlying rocks of Hazelton or Stuhini Groups. Greig (1990) states the following:

б

"Shortening evident in the Bowser Lake Group is not expressed in the Salmon River Formation, which forms a northeast dipping homoclinal sequence beneath the Bowser Lake Group. Shortening must therefore have taken place within structurally lower rocks of the Hazelton and Stuhini Groups, or along a detachment between the Bowser Lake Group and the Salmon River Formation. The former alternative is preferred, but given the massive nature of Stuhini and Hazelton Group volcanic rocks, it is probable that shortening was accommodated primarily by faults rather than by folds."

Faults are generally high angle and normal in movement. At least two fault sets are present, and many exhibit multiple episodes of activity (Campbell, 1959). Regional metamorphism is subgreenschist facies in grade.

Regional Economic Geology

Mineral deposits in the area can be subdivided into four main types: stratiform Ag-Pb/Zn-Pb-Ag massive sulphide; structurally controlled Ag-Pb veins; alkaline porphyry associated Cu-Au; and quartz monzonite porphyry associated Mo.

<u>Stratiform Massive Sulphides</u>: Deposits of the Dolly Varden Ag-Pb camp are the most economically significant in the Kitsault area known to date. They were earlier interpreted by Campbell (1959) to be mesothermal to epithermal veins controlled by fold generated fault structures. Recent work in the area by Devlin (1987) concludes that the deposits originated as a single stratiform volcanogenic massive sulphide horizon that have since undergone faulting and are locally remobilized as replacements or vein deposits. Stratigraphically conformable volcanogenic-sedex sulphide-sulphate mineralization associated with calcareous mudstones also occurs at the Kit occurrence which is considered to host substantial reserves of strontium sulphate.

<u>Veins</u>: The Wolf deposit and numerous other Ag-Pb prospects in the Kitsault, Dak River and Illiance River valleys exhibit structurally controlled, discontinuous and cross-cutting replacement and vein type mineralization. Other prospects include the Ace-Galena, Frog and Illiance River silver veins.

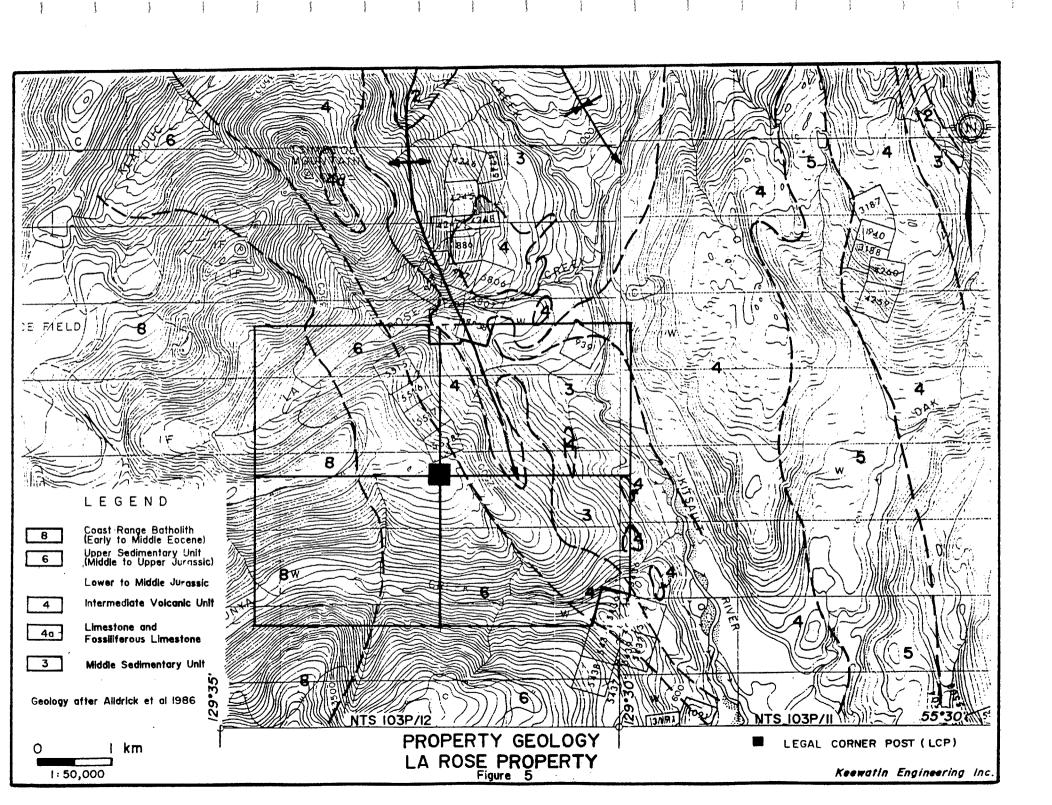
<u>Alkaline Porphyry Copper-Gold</u>: The Kitsault River area also hosts disseminated copper-gold mineralization within Unit 4 in association with the Copper Belt alteration zone. Mineralization consists of disseminated and stringer vein controlled pyrite and chalcopyrite with associated sporadic gold and minor galena and sphalerite. The Homestake and Red Point prospects are typical of this type of mineralization, although no deposits of economic significance have been reported. At Kinskuch

Lake, porphyritic andesite flows and tuffs, and minor dykes or sills of hornblende diorite host disseminated Cu-Au mineralization.

<u>Quartz Monzonite Porphyry Molybdenum</u>: Bulk tonnage, low grade molybdenum mineralization exists in association with the Eocene Ajax and Alice Arm quartz monzonite stocks within both Units 1 and 6 to the south of the area.

To the south of the La Rose property is the old Esperanza Mine (Minfile #103P-126) that produced 4,524 tonnes of ore that averaged 1.77 grams per tonne gold, 984 grams per tonne silver and trace copper and lead between 1911 and 1948. To the north of the property the La Rose workings (Minfile 103P-170) produced a hand picked shipment of 72 tonnes that averaged 6.47 grams per tonne gold, 6,900 grams per tonne silver and 7 percent combined lead and zinc. Several other showings along these trends may extend into the La Rose property area.

Property Geology


The La Rose property is underlain by Lower to Middle Jurassic sedimentary and volcanic rocks of the Hazelton Group and a portion of the Early to Middle Eocene Coast Range Batholith. The property geology is presented on Figure 5. A brief description of the lithologies follows:

Upper Triassic - Stuhini Group

Unit 1 - Lower Sedimentary Unit: This unit is composed of thin bedded silty argillite, fine grained sandstone and rare rusty weathering siliceous siltstone and lenses of tan to medium grey silty limestone up to 40 cm thick (Greig, 1990).

Unit 2 - Mafic Volcanics: This unit consists of resistant, dark green volcanic and subordinate volcaniclastic rocks that are characterized by their mafic composition and the presence of pyroxene (Greig, 1990).

Unit 3 - Middle Sedimentary Unit: This unit comprises rusty weathering, coarse grained, commonly calcareous arkosic wacke, dark grey, moderately siliceous siltstone and calcareous sedimentary breccia (Greig, 1990).

Lower to Middle Jurassic - Hazelton Group

Unit 4 - Intermediate Volcanic Unit: This unit is composed of a thick sequence of pale green and mauve weathering, green and maroon massive andesitic lapilli tuff breccia (Greig, 1990).

Unit 5 - Epiclastic and Felsic Volcanic Unit: This unit consists of volcanic rocks with a dacitic-andesite or rhyodacitic composition. The volcanics are interlayered with a wide variety of sedimentary rocks ranging from calcareous mudstones to brown weathering limestones (Greig, 1990).

Unit 6 - Upper Sedimentary Unit: This assemblage is composed of a thin bedded and fine grained lower package of black pyritic siliceous siltstones and an upper package of massive, thick bedded, medium grained turbiditic arkose (Greig, 1990).

Early to Middle Eocene

Unit 8 - Coast Range Batholith: Unit 8 underlies the western quarter of the La Rose property. These large intrusive bodies consist of quartz monzonite and granodiorite (Alldrick et al. 1968).

Alteration

Although not mapped on the La Rose property, a wide band of biotite hornfels alteration has been mapped in Jurassic sedimentary and volcanic rocks adjacent to the Coast Range Batholith 10 km south of the property. This alteration and the "Copper Belt" type alteration may be present on the La Rose property.

Property Economic Geology

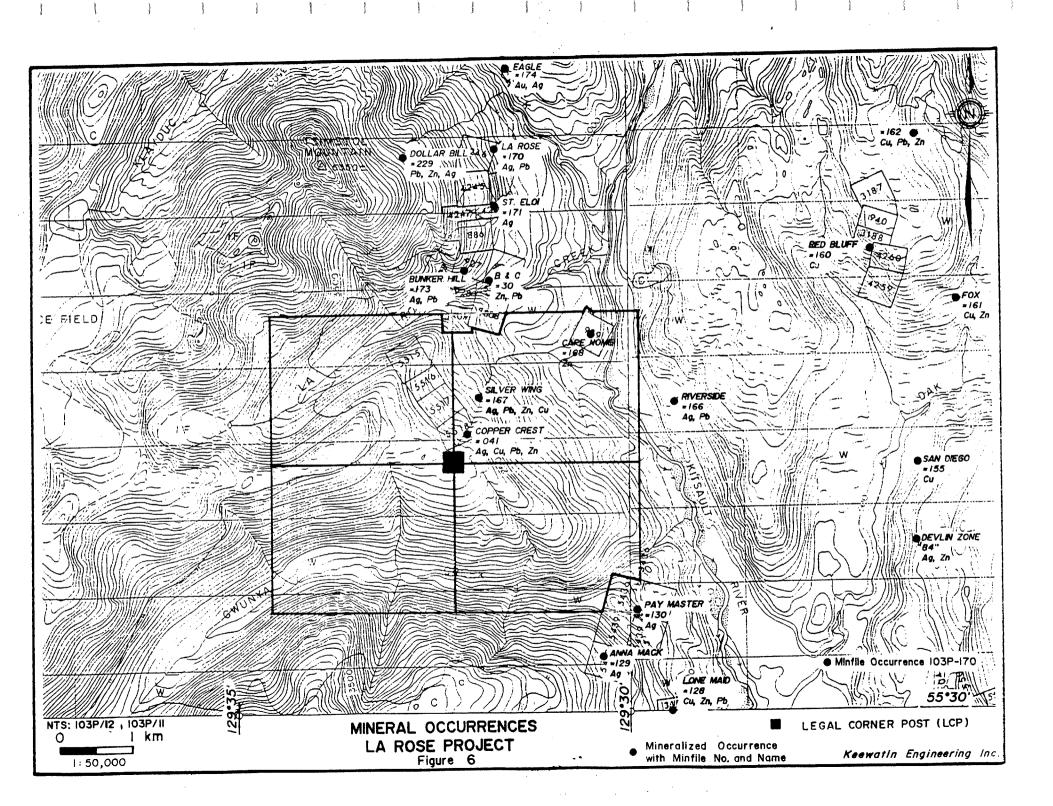
In the immediate area of the La Rose property a series of crown granted mineral claims cover several north-south and northwest trending shear zones (Figure 6). These zones are mineralized with copper, silver, lead, zinc and minor gold.

The Cape Nome crown grant was explored in 1918 and 1919 for precious metals (Minfile 103P-168). This crown grant was not prospected during the 1990 field season. Good gold values are reported from quartz veins in pyritized black siltstone. A zinc showing to the west is also reported. The Silverwing showing (Minfile #103P-167, Figure 5) consists of quartz stringers in a breccia zone

traced along Jones Creek for 23 metres. The quartz stringers contain minor galena, sphalerite chalcopyrite and pyrite. The Copper Crest showing (Minfile 103P-041, Figure 6) consists of red stained sedimentary and volcanic rocks that contain pyrite, chalcopyrite, sphalerite and galena with high silver values up to 2198 grams per tonne (grab sample ?).

Several pits and trenches were found during the 1990 program on the La Rose property along a mineralized zone with approximately 100 metres strike length. The description of the Silverwing showing is similar to that of the discovered showing which consists of a series of parallel quartz veins in a black siltstone. Samples taken in 1990 from the trenches returned up to 3,964 ppm Zn, 5.4 ppm Ag (90284MMR005) and a grab sample from a dump assayed 6.1 ppm Ag, 278 ppm Cu (90284EEF160).

1990 EXPLORATION PROGRAM


Field work on the La Rose property was carried out between September 28, 1990 and October 4, 1990. This work consisted of helicopter supported reconnaissance prospecting and contour soil/stream sediment geochemical surveys.

Approximately 7 kilometres of line traverse was completed on the property during the 1990 field season. A majority of the major drainages have been silt sampled. The Silverwing showing was found and several samples were taken.

Geochemical Surveys

The objective of the 1990 program was to conduct a reconnaissance stream silt and prospecting evaluation of the Hazelton Group rocks on the La Rose claims. The work was intended to evaluate both the gold and base metal potential of the area. The primary exploration tool was silt sampling as the area displayed a well developed drainage system. Soils were taken as an aid to prospecting on gossanous patches of soil below mineralized outcrops, and a soil contour line was completed below the BJ crown grants. Many of the rock samples are grab samples.

A total of 15 rock samples, 35 soil samples and 34 silt samples were taken during the 1990 field season (Figures 7-13). Geochemical results for these samples including rock sample descriptions are compiled in Appendix III. Sampling procedures are described in Appendix II. Stream silt, soil and rock data sheets are in Appendix IV.

Samples were sent to Bondar-Clegg and Company Ltd. in North Vancouver, B.C. for geochemical analysis. All of the samples were analyzed for Au, Ag, Cu, Pb, Zn, As, Mn and Ba. The analytical techniques are described in Appendix II.

The area had been previously silt sampled by the B.C. Geological Survey in 1978 (GSC, 1978). Twelve silt samples were collected from this area of the La Rose property. Using threshold values from the Ministry's report, drainages from the La Rose property showed elevated values in copper and molybdenum and anomalous values in silver, lead, zinc and arsenic. The samples were not analyzed for gold.

The terrain is rugged and foot traversing can be difficult. Major streams are juvenile and deeply incised. Only a small portion of the property is above treeline with the remainder being very heavily wooded. Outcrop is extremely sparse on the lower slopes of the La Rose 2 and 4 claims making prospecting very difficult.

A number of significant anomalies were selected on the basis of elevated values in one or more elements and type. Anomalous threshold values were taken from Tupper et al. (1990). Significant anomalies are described below:

Silts taken along La Rose Creek returned a number of significant anomalies including 90284EEL91 (89 ppb Au), 90284EEL92 (113 ppb Au), 90284EEL100 (32 ppb Au) and 90284EEL104 (39 ppb Au). Significant values were received from a large, one metre by one metre float boulder found in the creek 90284EEF165 (652 ppb Au, 1,591 ppm As).

Prospecting on the BJ crown grants led to one of the Minfile listed mineralized showings being located. Grab samples from the showings returned anomalous values, including 90284MMR005 (5.4 ppm Ag, 3,964 ppm Zn), 90284EEF160 (6.1 ppm Ag, 278 ppm Cu, 41 ppb Au) and 90284EEC158 (7 ppm Ag, 47 ppb Au). A soil taken 10 metres from the showing returned 115 ppb Au (90284MMS003).

A soil contour and two cross lines were completed below and across the BJ crown grants respectively. Several significant anomalies were delineated including S3443 (178 ppb Au), S3445 (152 ppm As), S3446 (2.1 ppm Ag), S3449 (108 pm As), S3450 (195 ppm As) and 90284SSS23 (127 ppm As). Three silts taken from creeks draining the crown grants were also anomalous, 90284 MML009 (284 ppm Zn), 90284MML010 (24 ppb Au) and 90284MML011 (136 ppm As, 266 ppm Zn).

CONCLUSIONS

The La Rose claims are underlain by rocks of the Lower to Middle Jurassic Hazelton Group and a portion of the Early to Middle Eocene Coast Range Batholith. The claims are located in the vicinity of the historic Dolly Varden Camp.

During September and October, a program of helicopter-supported reconnaissance prospecting and geochemical sampling was carried out on the La Rose property. A total of 34 silt samples, 35 soil samples and 15 rock samples were collected on the La Rose property. The results from the 1990 field work have outlined several significant areas which have multi-element anomalies. Twenty rock, silt and soil sample anomalies on the La Rose property require further follow-up. This work would include detailed contour soil sampling, silt sampling and prospecting.

Respectfully submitted, KEEWATIN ENGINEERING INC.

Terry L. Tucker, B.Sc.

Keewatin Engineering Inc.

REFERENCES

- Alldrick, D.J., Dawson, G.L., Bosher, J.A. and Webster, I.C.L., 1986. Geology of the Kitsault River area (NTS 103P). British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File Map 1986/2.
- Black, J.M., 1951. Geology and Mineral Occurrences of the Upper Kitsault Valley: British Columbia Ministry of Energy, Mines and Petroleum Resources Ann. Rept., 1951, p. A76-A83.
- Campbell, F.A., 1959. The Geology of Torbit Silver Mine: Econ. Geol., v. 54, p. 1461-1495.
- Dawson, G.L., and Alldrick, D.J., 1986. Geology and Mineral Deposits of the Kitsault Valley (103P/11,12): British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 327-330.
- Devlin, B.D., and Godwin, C.I., 1986a. Geology of the Dolly Varden Camp, Alice Arm Area (103P/11,12): British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 327-330.
- Grove, E.W., 1986. Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area: British Columbia Ministry of Energy, Mines and Petroleum Resources, Bull, 63, 152 p.
- Geological Survey of Canada, 1978. Regional Stream Sediment and Water Accelerated Geochemical Survey, B.C.; NTS 103P and Part of 1030; RGS-2-1978.
- Greig, C.J., 1990. Stratigraphic and Structural Relations Along the West-Central Margin of the Bowser Basin, Oweegee and Kinskuch Areas, Northwestern B.C., Department of Geoscience, University of Arizona, Preliminary Doctoral Thesis Report.
- Sinclair, A.J., 1981. Applications of Probability Graph in Mineral Exploration: Assoc. of Exploration Geochemists, Special Volume No. 4.
- Tupper, D.W., Tucker, T.L. and Sandberg, T., 1990. Geological, Geophysical and Geochemical Report on the Kits-Jade Project, Kitsault Lake Area, B.C.

STATEMENT OF QUALIFICATIONS

I, TERRY L. TUCKER, of 640 Crystal Court, in the City of North Vancouver, in the Province of British Columbia, do hereby certify that:

- 1) I am a graduate of the University of Alberta, Edmonton, Alberta (1989) with a Bachelor of Science degree (specialization in Geology).
- 2) That I have been a practising geologist in Canada, Australia and Papua New Guinea since 1987.
- 3) I was under contract to Keewatin Engineering Inc. of 800 900 West Hastings Street, Vancouver, B.C. for the duration of time I worked on this project.
- 4) I personally participated in the 1990 field program from September 23, 1990 to October 4, 1990, on the La Rose property as described in this report.
- 5) I am the author of the report entitled "Geological and Geochemical Report on the La Rose Property, Kitsault River Area, British Columbia, Skeena Mining Division", dated January 11, 1991.
- 6) I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Canadian Cariboo Resources Ltd., in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this <u>11th</u> day of January, 1991.

Respectfully submitted, Terry L. Tucker, B.Sc.

----, -- ----, -----

Keewatin Engineering Inc.

APPENDIX I

-

Statement of Costs

Keewatin Engineering Inc.

.

STATEMENT OF COSTS

وتسريسون

, Annual A

.....

Labour	\$ 4,155.00
Camp and Equipment Rentals	525.00
Radios	65.00
Mobilization/Demobilization	397.98
Helicopter	2,368.94
Supplies/Generator	156.55
Maps, Drafting Supplies	85.00
Sample Analysis	867.45
TOTAL:	\$8,620.92

APPENDIX II

-

-

Sampling and Geochemical Procedures

Keewatin Engineering Inc.

SAMPLING AND GEOCHEMICAL PROCEDURES

Rock, soil and stream silt samples were collected on the claims. All samples were shipped via Greyhound or Canadian Airlines International to Bondar-Clegg and Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C. for sample preparation and analysis.

Rock samples were of four types. Float samples were taken of rocks not in place in outcrop. Grab samples were comprised of single samples of mineralization from outcrop. Chip samples were continuous evenly collected samples across a specified width, generally across mineralization. Samples were collected in plastic sample bags and given individual coded numbers. All rock samples were dried (if necessary), crushed and riffled to pulp size, then pulverized to approximately minus -140 mesh at the Bondar-Clegg lab.

Stream silt samples were collected in all drainages encountered that had adequate silt/sand deposits. Often, streams were too short or juvenile in nature and sample material was difficult to collect. Samples were collected by hand in kraft paper sample bags.

Soil samples were collected at 100 metre spacings along elevation contours and on a random, prospected basis. B-horizon soil was collected where available in kraft paper sample bags. Gossanous soils in scree and talus slopes were often sampled. Samples were collected by mattock or by hand.

Both soil and silt samples were dried, and then sieved to -150 mesh through nylon screens.

All samples were then digested in hot aqua regia and analyzed by Induced Coupled Plasma (I.C.P.) for the following elements: Ag, Pb, Zn, Cu and As, plus three of Sb, Cd, Mn, Sr, Mo, Hg. Samples were also checked for gold (30 grams) by fire assay preconcentration followed by aqua regia digestion, and then analyzed by atomic absorption.

APPENDIX III

.

-

1990 La Rose Claims Geochemical Assay Compilation

Keewatin Engineering Inc.

.

1990 LA ROSE GEOCHEMICAL ASSAY COMPILATION

The following abbreviations were used in rock descriptions:

SS	=	sandstone
slt	=	siltstone
An	=	andesite
Fe	=	iron alteration
calc	=	calcareous
carb	=	carbonate
qtz	=	quartz
Si	=	siliceous
ser	=	sericite
ba	=	barite
chl	=	chlorite
ank		ankerite
gn	=	galena
sp	=	sphalerite
mal	=	malachite
сру	=	chalcopyrite
az		azurite
ру	=	pyrite
ро	=	pyrrhotite
sulp	=	sulphide
Sed	=	sediment
brec	=	brecciated
grn	=	green
Ī	=	fine
gr	=	grain
tr	=	trace
v	=	very
vn	#	vein
sh	Ħ	shear
cong	=	conglomerate
volc	=	volcanic

KEEWATIN ENGINEERING INC.	SAMPLE TYPE	SAMPLER
LAROSE PROPERTY = L COMPILATION OF ROCK, SOIL, SILT, DRILLCORE GEOCHEM/ASSAY RESULTS ANALYSES BY BONDAR-CLEGG, VANCOUVER TLT, NOVEMBER 1990	F - FLOAT C - CHIP R - GRAB L - SILT S - SOIL	EE - TERRY TUCKER SS - STEVE CREELMAN Z - DAVE TUPPER MM - MIKE RENNING ## - CLINTON FREDRICKSON

SAMPLE NO.	A R E A	DESCRIPTION	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Sb (ppm)	Mn (%)	8a (ppm)
90 284 EE C-158 90 284 EE C-159	L	1.0m 2%py in seds 0.5m cont with above	47 8	7 2.4	136 66	8 17	197 175	106 93	-5 -5	0.03 0.11	12 76
90 284 EE F-160	L	dump, qtz/py 20% po	41	6.1	278	13	71	250	2	-0.01	-5
90 284 EE R-161	L	Fe alt sed	-5	0.8	49	11	167	9 -5	-5 -5	0.04 -0.01	46 16
90 284 EE R-162	Ľ	as above	8 ~5	3.7 0.6	401 25	-2 7	11 28	-5	-5	-0.01	113
90 284 EE R-163	E.	gn py in Fe alt sed qtz py gn vn in sed	652	5.9	37	11	43	1591	63	-0.01	9
90 284 EE F-165 90 284 MM R-003	L.	sediment	-5	0.5	34	6	125	23	-5	0.14	299
90 284 MM R-003	- F	sediment	-5	0.5	30	6	125	19	-5	0.13	492
90 284 MM R-005	ĩ	py sp in qtz vn	10	5.4	272	6	3964	39	-5	0.04	-5
90 284 MM R-006	Ē	gtz py vn	102	1.7	11	73	152	2000	-5	0.05	44
90 284 MM R-007	Ē	4m wide qtz v⊓	-5	-0.2	7	4	21	21	5	0.02	52
90 284 MM F-008	L	angular py sed float	-5	1.1	34	5	39	18	-5	0.22	89
90 284 MM R-009	L	An with tr py	-5	0.8	141	4	42	15	-5	0.17	147
90 284 SS F-11	L	Si An with tr py	-5	0.7	49	9	66	26	-5	0.09	105 1 3 8
90 284 \$3413	L		-5	0.7	27	10	120	27	-5	0.1	80
90 284 \$3414	L		9 -5	1.3	15 19	11 11	59 47	19 17	-5 -5	0.07 0.03	56
90 284 s3415	Ļ		-5 52	1.1 2	23	13	47 84	25	-5	0.03	56
90 284 \$3416	L		-5	1.2	18	9	53	7	-5	0.02	58
90 284 \$3417 90 284 \$3440	L		-5	0.6	4	ý	97	13	-5	0.04	70
90 284 S3440 90 284 S3441	Ľ		-5	0.7	5	7	125	6	-5	0.02	80
90 284 S3442	ĩ		5	0.5	13	9	29	12	-5	0.03	33
90 284 \$3443	Ē		178	1.2	18	18	58	84	-5	0.02	51
90 284 \$3444	Ē		-5	0.6	12	16	41	67	-5	0.03	48
90 284 S3445	L		-5	1.3	9	39	47	152	-5	0.02	38
90 284 S3446	L		-5	2.1	18	11	159	74	-5	0.16	96
90 284 s3447	L		-5	0.6	12	20	66	57	-5	0.05	56
90 284 \$3448	L		-5	0.5	18	12 11	65 64	31 108	-5 -5	0.05 0.03	65 41
90 284 \$3449	L		-5 -5	1.5 0.6	15 13	11	64 48	195	-5	0.03	69
90 284 S3450	L		-5	0.8	15	11	61	32	-5	0.05	45
90 284 \$3451 90 284 MM \$-003	L		115	0.9	17	13	85	31	-5	0.1	52
90 284 MM S-003	-		-5	0.9	20		84	37	-5	0.38	92
90 284 SS S-10	ī		-5	0.4	4	17	34	-5	-5	0.02	204
90 284 SS S-11	Ē		-5	0.4	8	14	22	22	5	-0.01	34
90 284 SS S-12	Ē		-5	0.5	23	13	54	93	-5	0.03	134
90 284 SS S-13	Ĺ		-5	0.2	4	9	13	-5	-5	-0.01	16
90 284 SS S-14	L		-5	0.7	13	6	36	-5	-5	-0.01	27
90 284 SS S-15	L		-5	0.2	11	5	31	-5	-5	-0.01	66
90 284 SS S-16	L		-5	0.5	6	10	18	-5 -5	-5 -5	-0.01 0.02	27 21
90 284 SS S-17	L		-5	0.4	4	17	13	-7	-2	0.02	21

•

.

.

KEEWATIN ENGINEERING INC.	SAMPLE TYPE	SAMPLER
LAROSE PROPERTY = L COMPILATION OF ROCK, SOIL, SILT, DRILLCORE GEOCHEM/ASSAY RESULTS ANALYSES BY BONDAR-CLEGG, VANCOUVER TLT, NOVEMBER 1990	F - FLOAT C - CHIP R - GRAB L - SILT S - SOIL	EE - TERRY TUCKER SS - STEVE CREELMAN Z - DAVE TUPPER MM - MIKE RENNING ## - CLINTON FREDRICKSON

SAMPLE NO.	A R E A	DESCRIPTION	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Sb (ppn)	Mn (%)	Ва (рря)
90 284 SS S-18	L		-5	-0.2	6	16	22	7	-5	0.01	51
90 284 SS S-19	L		-5	0.7	12	11	48	11	-5	0.02	76
90 284 SS S-20	L		-5	0.6	16	10	51	10	-5	0.03	130
90 284 SS S-21	L		-5	0.6	20	18	62	10	-5	0.05	106
90 284 SS S-22	L		-5	0.4	7	_6	49	-5	-5	0.01	85 146
90 284 SS S-23	L		10	1.6	45	32	149	127 31	-5 -5	0.81 0.57	140
90 284 SS S-24	L		-5 -5	1.1 0.8	11 41	11 9	162 153	21	-5	0.57	111
90 284 SS S-25	Ļ			1.9	89	28	343	63	-5	0.89	276
90 284 EE L-88	L		-5 28	-0.2	12	6	42	-5	-5	0.03	94
90 284 EE L-89	<u>с</u>		-5	0.4	11	5	41	12	-5	0.03	86
90 284 EE L-90 90 284 EE L-91	-		89	-0.2	9	6	36	8	-ś	0.03	83
90 284 EE L-91	-		113	0.6	40	13	93	31	-5	0.08	326
90 284 EE L-92	1		-5	0.4	11	6	43	10	-5	0.03	94
90 284 EE L-94	ī		-5	0.5	9	5	35	7	-5	0.02	63
90 284 EE L-95	ĩ		-5	0.4	9	5	38	-5	-5	0.02	58
90 284 EE L-96	ī		33	0.5	25	7	53	18	-5	0.04	160
90 284 EE L-97	Ē		5	0.2	13	5	51	8	-5	0.03	107
90 284 EE L-98	Ē		-5	0.3	9	6	55	10	-5	0.04	154
90 284 EE L-99	L		-5	0.2	10	3	37	-5	-5	0.03	100
90 284 EE L-100	L		32	0.5	15	9	66	48	-5	0.05	142
90 284 EE L-101	L		-5	0.4	11	5	40	10	-5	0.03	105
90 284 EE L-102	L		-5	0.5	18	8	94	36	-5	0.1	171
90 284 EE L-103	L		-5	0.3	8	2	32	6	-5	0.03	66 82
90 284 EE L-104	L		39	0.2	9	5	39	15 -5	-5 9	0.03	62 484
90 284 MM L-005	L		-5 -5	1.1	-1	16 31	238 90	-5	-5	0.03	138
90 284 MM L-006	L		-5 6	0.5 0.6	39 55	41	176	120	-5	0.03	131
90 284 MM L-007	Ľ		-5	0.6	21	14	113	17	-5	0.07	170
90 284 MM L-008	<u>د</u>		-5	0.5	53	21	284	38	-5	0.17	187
90 284 MM L-009 90 284 MM L-010	L		24	0.6	48	30	115	19	-5	0.34	137
90 284 MM L-011	ι		-5	0.6	58	36	266	136	-5	0.17	181
90 284 SS L-38	Ľ		-5	0.4	14	7	80	11	-5	0.05	114
90 284 SS L-39	Ē		-Š	0.4	12	5	46	-5	-5	0.03	79
90 284 SS L-40	Ē		-5	0.4	13	2	47	13	-5	0.03	68
90 284 SS L-41	ī		-5	0.6	12	9	113	18	-5	0.17	178
90 284 SS L-42	Ē		-5	-0.2	12	7	54	6	-5	0.04	94
90 284 SS L-43	Ē		23	0.6	13	6	61	16	-5	0.04	104
90 284 SS L-44	Ē		-5	0.7	39	7	142	19	-5	0.08	177
90 284 SS L-45	L		-5	0.3	19	7	69	15	-5	0.05	128
90 284 SS L-46	L		5 5	0.5	21	9	76	16	-5	0.06	157
90 284 SS L-47	L		-5	0.5	26	8	89	17	-5	0.08	182

mdar-Clegg & Company Ltd.) Pemberton Ave. North Vancouver, B.C. V7P 2R5)4) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPP INSPECTION & HISTING SERVICES.

		NGINEERING INC.			- 		SI	JBMITTED	BY: D	ICK	
PROJECT: 2	84	····					D	ATE PRIN	TED: 2	4-0CT-90	
ORDER ELEMENT			NUMBER OF Analyses	LOWER DETECTION LIMIT		TEXTRACTION			N E THOD		
1	Au 30g Ag	Gold 30 grams Silver	210 211		PPB PPN	Fire-Assa HNO3-HC1		Extr.	Fire Ind.	Assay A Coupled	A Plaswa
3	Cu	Copper	211	1	PPM	HN03-HC1	Hot	Extr.	Ind.	Coupled	Plasma
4	Pb	Lead	211		PPN	HN03-HC1				Coupled	Plasma
5	Zn	Zinc	211		PPM					Coupled	
6	As	Arsenic	211		PPN					Coupled	
/	Sb	Antimony	211	5	PPM	HN03-HC1	Hot	Extr.	Ind.	Coupled	Plasma
8	Nn	Nanganese	211	<u>በ</u> በ1	PCT	HN03-HC1	Hat	Evtr	Ind	Coupled	01
ŷ	8a	Barium	211		PPM	HN03-HC1				Coupled Coupled	
				•				24411	1041	ooupice	r iusmu
	E TYPES	NUMBER	SIZE FR	RACTIONS		NUMBER		SAMPLE	PREPA	RATIONS	NUMBER
S S0	ILS	41 DIMENT,SILT 170	1 -80)		211		DRY, S	IEVE -	80	211
REMAR	KS: "IS"	DENOTES INSUFFICIEN	SAMPLE.							,	
REPOR	T COPIES	TO: MR. RON NICHOLS MR. TERRY TUCKER	2			INV	/0101	E TO: MR Nr		NICHOLS Y TUCKER	
									<u> </u>		

Bondar-Clegg & Company Ltd. 9 Pemberton Ave. orth Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

A DIVISION OF INCHCAPE INSPECTION & ITS IF 3G SERVICES

Geochemical Lab Report

	REPORT: V90-024	138.0]			1.	DATE PRINT PROJECT: 2			PAGE 1
	SAMPLE NUMBER	ELENENT AU 30g UNITS PPB	Ag PPN	Cu PPM	Pb PPM	Zn • PPN	As PPN	Sb PPN	Mn PCT	Ba PPM	
	S1 90 284 EE S-		0.9	68	11	87	21	<5	0.20	92	
and 2	S1 90 284 EE S-		0.6	59	5	114	8	<5	0.23	497	
	S1 90 284 EE S-		0.9	72	13	105	36	<5	0.28	220	
	51 90 284 EE S- 51 90 284 EE S-		0.8 1.0	92 106	12 7	106 103	20 32	<5 <5	0.20 0.26	223 280	
******	\$1 90 284 EE S-	-9 <5	0.0	00				· · · · · · · · · · · · · · · · · · ·			
	S1 90 284 EE S-		0.9 0.8	89 109	8 18	105 109	20 17	<5 /5	0.20	180	
	S1 90 284 EE S-		1.0	85	3	99	>2000	<5 13	0.19 0.09	109 70	
	S1 90 284 EE S-		1.1	98	16	171	38	-13 <5	0.09	212	
	S1 90 284 EE S-		1.2	85	17	124	36	<\$ <5	0.29	141	
pires.4	\$1 90 284 EE S-	-14 21	0.8	144	14	112	23	<5	0.09	558	
	S1 90 284 EE S-		0.6	98	13	96	18	<5	0.14	246	
	S1 90 284 EE S-		0.8	80	8	103	22	6	0.16	550	
	S1 90 284 EE S-	-17 <5	0.6	80	14	86	16	<5	0.06	98	
	\$1 90 284 EE S-	-18 <5	0.5	44	18	105	22	<5	0.13	158	
	S1 90 284 EE S-	-19 <5	0.7	62	21	129	25	<5	0.19	132	
- 20-	S1 90 284 EE S-		0.7	50	18	120	25	<5	0.18	196	
	S1 90 284 FE S-	-21<5	0.8	47	10	30	50	<5	0.02	47	5
	S1 90 284 MM S-		0.9	17	13	85	31	<5	0.10	52	
	51 90 284 NH S-	-004 <5	0.9	20	9	84	37	<5	0.38	92	
	S1 90 284 SS S-	-1 6	0.9	116	19	106	31	<5	0.19	203	
pharming	S1 90 284 SS S-		0.7	72	19	132	29	<5	0.20	114	
	S1 90 284 SS S-		1.4	126	85	172	99	<5	0.30	590	
	S1 90 284 SS S-		0.8	51	18	113	40	<5	0.15	286	
	S1 90 284 SS S-	·5 93	1.2	144	31	125	35	9	0.17	602	
	S1 90 284 SS S-		0.4	4	17	34	<5	<5	0.02	204	
	S1 90 284 SS S-		0.4	8	14	22	22	<5	<0.01	34	
,	S1 90 284 SS S-		0.5	23	13	54	93	<5	0.03	134	
	S1 90 284 SS S-		0.2	4	9	13	<5	<5	<0.01	16	
	S1 90 284 SS S-	-14 <5	0.7	13	6	36	<5	<5	<0.01	27	
	S1 90 284 SS S-		0.2	11	5	31	<5	<5	<0.01	66	
	S1 90 284 SS S-		0.5	6	10	18	<5	<5	<0.01	27	
,	S1 90 284 SS S- S1 90 284 SS S-		0.4	4	17	13	<5	<5 (5	0.02	21	
	S1 90 284 SS S- S1 90 284 SS S-		<0.2 0.7	6 12	16 11	22 48	7 11	<5 <5	0.01 0.02	51 76	
	S1 90 284 SS S-	.20 .P	<u> </u>								
-	S1 90 284 SS S-	· · · ·	0.6 0.6	16 20	10	51 62	10	<5 <5	0.03	130	
	S1 90 284 SS S-		0.0	20 7	18 6	62 49	10 <5	<5 <5	0.05	106	
	S1 90 284 SS S-		1.6	45	32	149	127	<5 <5	0.01 0.81	85 146	
	S1 90 284 SS S-		1.1	11	11	162	31	<5 <5	0.57	146 157	
ب_				**	**	102	JI	V	0.01	101	5

Bondar-Clegg & Company Ltd.) Pemberton Ave. srth Vancouver, B.C. V7P 2R5 _604) 985-0681 Telex 04-352667

4

A DIVISION OF INCHCAPE INSPECTION & TESTING SURVICES

Geochemical Lab Report

	REPORT: V90-02438.0]						ED:-24=0C1 34		AGE 2
entions;	SAMPLE ELEMENT NUMBER UNITS		Ag PPN	Cu PPN	Pb PPM	Zn PPN	As PPM	Sb PPN	Mn PCT	Ba PPM	
	S1 90 284 SS S-25	<5	0.8	41	9	153	21	<5	0.20	111	
	T1 90 284 EE L-59	<5	0.8	83	10	89	21	<5	0.13	257	
An an	T1 90 284 EE L-60	<5	0.8	80	9	102	25	<5	0.08	230	
	T1 90 284 EE L-61	<5	0.8	76	13	130	23	<5	0.16	190	
	T1 90 284 EE L-62	22	0.8	75	13	123	36	<5	0.16	201	
	T1 90 284 EE L-63	27	0.8	100	23	140	30	<5	0.21	157	
	T1 90 284 EE L-64	10	0.8	81	21	122	21	<5	0.13	138	
	T1 90 284 EE L-65	6	0.8	92	18	138	25	<5	0.12	303	
	T1 90 284 EE L-66	<5	0.8	94	15	134	28	<5	0.12	281	
	T1 90 284 EE L-67	<5	0.8	86	14	123	23	<5	0.09	248	
	T1 90 284 EE L-68	<5	0.7	70	15	134	28	<5	0.15	654	
	T1 90 284 EE L-69	<5	0.7	70	22	130	45	<5	0.17	427	
	T1 90 284 EE L-70	<5	0.6	76	8	71	13	<5	0.10	232	
tar_ta	T1 90 284 EE L-71	<5	0.6	95	6	72	12	<5	0.11	304	
	T1 90 284 EE L-72	<5	0.5	62	21	98	51	<5	0.14	270	
	T1 90 284 EE L-73	<5	0.5	17	8	44	12	<5	0.09	74	
and the second of the second s	T1 90 284 EE L-74	<5	0.7	76	21	191	30	<5	0.20	204	
	T1 90 284 EE L-75	<5	0.7	55	4	108	9	<5	0.16	488	
	T1 90 284 EE L-76	<5	0.7	59	4	98	18	<5	0.21	377	•
15-yili	T1 90 284 EE L-77	<5	0.7	53	9	166	21	<5	0.25	178	
	T1 90 284 EE L-78	<5	0.6	75	6	95	15	<5	0.17	238	
مارسون	T1 90 284 EE L-79	<5	0.8	68	15	114	30	<5	0.13	314	
	T1 90 284 EE L-80	<5	0.6	35	23	147	19	<5	0.20	573	
	T1 90 284 EE L-81	<5	0.6	34	18	112	14	<5	0.18	286	
	T1 90 284 EE L-82	<5	0.6	40	18	104	20	<5	0.15	314	
	T1 90 284 EE L-83	<5	0.5	27	24	118	·· 9	<5	0.25	171	
	T1 90 284 EE L-84	10	0.6	35	21	146	37	<5	0.19	356	
p	T1 90 284 EE L-85	<5	0.6	42	43	169	29	<5	0.21	364	
	T1 90 284 EE L-86	<5	0.7	74	33	134	84	<5	0.21	388	
	T1 90 284 EE L-87	<5	0.5	52	23	117	54	<5	0.17	255	
	T1 90 284 EE L-88	<5	1.9	89	28	343	63	<5	0.89	276	
1	T1 90 284 EE L-89	28	<0.2	12	6	42	<5	<5	0.03	94	
	T1 90 284 EE L-90	<5	0.4	11	5	41	12	<5	0.03	86	
	T1 90 284 EE L-91	89	<0.2	9	6	36	8	<5	0.03	83	
	T1 90 284 EE L-92	113	0.6	40	13	93	31	<5	0.08	326	
	T1 90 284 EE L-93	<5	0.4	11	6	43	10	<5	0.03	94	
	T1 90 284 EE L-94	<5	0.5	9	5	35	7	<5	0.02	63	
	T1 90 284 EE L-95	<5	0.4	9	5	38	<5	<5	0.02	58	
	T1 90 284 EE L-96	33	0.5	25	7	53	18	<5	0.04	160	
	T1 90 284 EE L-97	<5	0.2	13	5	51	8	<5	0.03	107	

. , Bondar-Clegg & Company Ltd.) Pemberton Ave. orth Vancouver, B.C. V7P 2R5 604) 985-0681 Telex 04-352667

•

e-1-10-1

. .

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTPICITAL PARTY.

	REPORT: V90-02438.0						DA Pr	PAGE 3			
	SANPLE ELEMENT Number units		Ag PPN	Cu PPM	Pb Ppn	Zn PPN	As PPN	Sb PPM	Nn PCT	Ba PPM	
1	T1 90 284 EE L-98	<5	0.3	9	6	55	10	<5	0.04	154	
	T1 90 284 EE L-99	<5	0.2	10	3	37	<5	<5	0.03	100	
	T1 90 284 EE L-100	32	0.5	15	9	66	48	<5	0.05	142	
	T1 90 284 EE L-101	< <u>5</u>	0.4	11	5	40	10	<5	0.03	105	
	T1 90 284 EE L-102	<5	0.5	18	8	94	36	<5	0.10	171	
	T1 90 284 EE L-103	<5	0.3	8	9	32	6	<5	0.03	66	
	11 90 284 EE L-104	39	0.2	9	5	39	15	<5	0.03	82	
	T1 90 284 EE L-105 T1 90 284 EE L-106	<u>رج</u>	1.0	107	21	145	57	<u><5</u>	0.27	267	•
	T1 90 284 EE L-107	<5 <5	1.8 1.9	76 69	11 9	147 188	91 105	<5 <5	0.72 1.04	379	
_		· · · · ·	1.7		,	100	COT		1.04	577	
	T1 90 284 EE L-108	<5	1.7	128	13	209	146	6	0.93	446	
	T1 90 284 EE L-109	<5	1.2	164	9	167	73	<5	0.52	321	
	T1 90 284 EE L-110 T1 90 284 EE L-111	<5	1.2	108	13	159	39	<5	0.41	555	
	T1 90 284 EE L-112	6 · <5	0.9 0.8	104 83	12 11	143	26	<5 /5	0.47	616	
			0.0	0.5	11	121	32	<5	0.22	430	
	T1 90 284 WM L-001	<5	1.5	53	42	129	26	<5	0.13	358	
	T1 90 284 MM L-002	<5	1.1	77	19	.180	37	<5	0.39	949	-
	T1 90 284 NM L-005	3	1.1	4	16	238	<5	9	2.24	484	
	T1 90 284 WM L-006	<5	0.5	39	31	90	31	<5 	0.03	138	
	T1 90 284 HN L-007	6	0.6	55	41	176	120	<5	0.08	131	
	T1 90 284 MM L-008	<5	0.6	21	14	113	17	<5	0.07	170	
	T1 90 284 MH L-009	<5	0.5	53	21	284	38	<5	0.17	187	
	T1 90 284 MM L-010	24	0.6	48	30	115	19	<5	0.34	137	
	T1 90 284 MM L-011	<5	0.6	58	36	266	136	. <5	0.17		
	T1 90 284 NH L-012	<5	1.0	110	18	144	22	<5	0.17	650	
	T1 90 284 MM L-013	<5	1.0	164	16	145	22	<5	0.18	271	
	T1 90 284 HH L-014	<5	0.6	79	12	93	35	<5	0.08	122	
	T1 90 284 MH L-015	<5	0.7	132	36	105	37	<5	0.12	92	
	T1 90 284 NN L-017	<5	0.7	111	21	148	37	<5	0.17	168	
	T1 90 284 NH L-018	<5	0.9	160	17	144	38	<5	0.18	194	
	T1 90 284 MM L-019	<5	0.8	94	23	144	60	8	0,20	465	
	T1 90 284 MM L-020	<5	1.3	106	15	176	38	<5	0.47	850	
	T1 90 284 MM L-021	<5	1.2	105	10	165	34	<5	0.52	712	
	T1 90 284 WH L-022	<5	0.9	104	12	102	53	<5	0.18	424	
	T1 90 284 SS L-1	9	0.9	107	17	183	41	<5	0.18	750	
	T1 90 284 SS L-2	6	0.8	83	17	177	38	<5	0.19	301	
	T1 90 284 SS L-3	15	1.0	103	22	166	64	<5	0.21	343	
	T1 90 284 SS L-4	11	0.8	104	13	163	23	<5	0.11	254	
	T1 90 284 SS L-5	16	0.9	113	17	175	39	7	0.13	309	
	T1 90 284 SS L-6	<5	1.0	117	15	147	54	11	0.12	644	

Bondar-Clegg & Company Ltd. Pemberton Ave. rth Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

A DIVISION OF INCHCAPPEINSPECTION & ITS HNOLENEES

Geochemical Lab Report

DATE PRINTED: 24-OCT-90... REPORT: V90-02438.0 PROJECT: 284 PAGE 4 SAMPLE ELEMENT Au 30g Ag Cu Pb Ba Zn As Sb Mn NUMBER UNITS PPB PPM PPM PPM PPM PPM PPM PCT PPN T1 90 284 SS L-7 <5 1.0 98 16 118 87 18 0.12 350 <5 T1 90 284 SS L-8 0.9 107 23 147 41 <5 0.18 142 T1 90 284 SS L-9 <5 0.8 82 22 159 23 <5 0.16 172 T1 90 284 SS L-10 <5 0.9 105 10 165 27 <5 0.15 190 T1 90 284 SS L-11 6 1.0 104 12 140 75 <5 0.17 196 T1 90 284 SS L-12 12 0.9 96 15 157 25 <5 0.15 238 T1 90 284 SS L-13 <5 1.0 108 18 141 26 <5 0.13 331 T1 90 284 SS L-14 <5 0.8 103 14 145 23 <5 0.11 305 T1 90 284 SS L-15 12 0.7 76 15 127 22 <5 0.17 117 T1 90 284 SS L-16 66 0.8 83 16 142 38 <5 0.20 486 T1 90 284 SS L-17 IS 0.5 122 8 57 33 <5 0.18 561 T1 90 284 SS L-18 <5 0.8 73 29 109 23 <5 0.21 1735 <5 T1 90 284 SS L-19 0.7 48 14 100 16 <5 0.12 302 T1 90 284 SS L-20 <5 0.5 47 19 95 12 <5 0.14 374 T1 90 284 SS L-21 <5 0.9 64 17 115 43 <5 0.19 410 T1 90 284 SS L-22 <5 0.8 13 94 63 28 <5 0.11 215 T1 90 284 SS L-23 <5 1.0 92 273 41 63 <5 0.32 581 T1 90 284 SS L-24 <5 0.6 46 11 96 15 <5 0.13 215 T1 90 284 SS L-25 <5 0.7 41 11 88 13 <5 0.11 183 T1 90 284 SS L-26 <5 67 84 0.7 14 25 <5 0.12 207 T1 90 284 SS L-27 <5 1.0 101 14 165 25 <5 0.10 133 T1 90 284 SS L-28 <5 0.8 90 11 107 30 <5 0.11 114 T1 90 284 SS L-29 <5 1.1 129 16 131 33 <5 0.16 154 T1 90 284 SS L-30 <5 1.0 80 21 121 45 <5 0.09 116 T1 90 284 SS L-31 38 0.9 76 16 115 52 <5 0.10 115 T1 90 284 SS L-32 <5 0.8 63 10 97 24 <5 0.09 132 T1 90 284 SS L-33 <5 0.8 84 11 140 19 <5 0.10 230 T1 90 284 SS L-34 <5 1.1 123 12 168 30 <5 203 0.11 T1 90 284 SS L-35 27 1.4 120 19 201 30 <5 0.14 262 T1 90 284 SS L-36 28 134 1.9 26 236 51 250 11 0.11 T1 90 284 SS L-37 21 0.8 70 17 164 43 <5 0.11 119 T1 90 284 SS L-38 <5 0.4 14 80 Π <u> </u>(5 0.05 114 7 T1 90 284 SS L-39 <5 0.4 12 5 46 <5 <5 0.03 79 T1 90 284 SS L-40 <5 0.4 13 2 47 13 <5 0.03 68 T1 90 284 SS L-41 **<5** 0.6 12 9 113 18 <5 0.17 178 T1 90 284 SS L-42 <5 7 54 <0.2 12 <5 6 0.04 94 T1 90 284 SS L-43 23 0.6 13 61 6 16 <5 0.04 104 T1 90 284 SS L-44 <5 39 0.7 7 142 19 <5 0.08 177 T1 90 284 SS L-45 <5 0.3 19 7 69 15 <5 0.05 128 T1 90 284 SS L-46 <5 0.5 21 9 76 16 <5 0.06 157

ndar-Clegg & Company Ltd. Pemberton Ave. vorth Vancouver, B.C. /7P 2R5 4) 985-0681 Telex 04-352667

. . . .

•

* 111 - 14 I

·

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V90-	02438.0						OJECT: 2	D:-24-0CT 34		AGE 5
SAMPLE NUMBER	ELEMENT Au 30g UNITS PPB	Ag PPN	Cu PPN	Pb PPM	Zn PPN	As PPM	Sb PPM	Mn PCT	Ba PPM	
T1 90 284 S		0.5	26	8	89	17	<5	0.08	182	
T1 284 3402	<5	0.7	97	10	85	27	<5	0.14	427	
T1 284 3403	<5	0.6	87	13	88	32	<5	0.13	360	
T1 284 3404	<5	0.7	82	12	83	33	<5	0.11	407	
T1 284 3405	<5	0.7	93	12	79	23	<5	0.12	374	
T1 284 3406	<5	0.8	30	17	85	172	<5	0.39	932	
T1 284 3407	43	0.9	87	15	85	31	<5	0.13	358	
T1 284 3408	245	0.9	82	47	249	105	<5	0.27	383	
T1 284 3409	<5	0.8	90	11	71	29	<5	0.12	368	
T1 284 3410	11	0.6	69	12	97	52	<5	0.18	463	
T1 284 3411	<5	0.9	98	9	80	22	<5	0.11	348	
T1 284 3412	<5	0.7	81	22	79	53	<5	0.13	335	
11 284 3413	<5	0.7	27	10	120	27	<5	0.10	138	
T1 284 3414	9	1.3	15	11	59	19	<5	0.07	80	
T1 284 3415	<5	1.1	19	11	47	17	<5	0.03	56	
T1 284 3416	52	2.0	23	13	84	25	<5	0.02	54	
,T1 284 3417	<5	1.2	18	9	53	7	<5	0.08	58	
TI 284 3418	10	0.9	71	19	114	35	<5	0.10	129	
T1 284 3419	215	0.8	68	18	107	47	<5	0.10	124	
T1 284 3420	15	0.9	64	14	101	37	<5	0.09	87	
T1 284 3421	<5	1.2	63	40	107	72	<5	0.10	100	
T1 284 3422	6	1.0	103	17	133	42	<5	0.12	132	
T1 284 3423	<5	0.8	102	18	147	38	<5	0.13	143	
T1 284 3424	62	0.8	79	19	113	40	<5	0.09	103	
T1 284 3425	<5	0.7	60	17	113	35	<5	0.09	109	
T1 284 3426	84	1.2	140	24	223	61	<5	0.13	153	
T1 284 3427	<5	1.0	80	23	123	52	<5	0.09	90	
T1 284 3428	<5	1.1	86	20	121	43	<5	0.09	91	
T1 284 3429	18	1.1	117	18	185	34	<5	0.10	165	
T1 284 3430	21	1.0	89	18	124	67	<5	0.09	98	
T1 284 3431	37	0.6	74	16	124	20	<5	0.11	146	
T1 284 3432	14	1.1	82	19	120	40	<5	0.10	123	
T1 284 3433	<5	1.2	88	21	141	76	<5	0.09	89	
T1 284 3434	30	0.9	105	17	192	26	<5	0.15	143	
T1 284 3435	<5	1.0	98	22	203	54	<5	0.10	107	
T1 284 3436	<5	0.9	75	18	127	30	<5	0.12	187	
T1 284 3437	<5	0.9	90	20	129	45	<5	0.09	116	
T1 284 3438	49	0.8	65	14	104	34	<5	0.09	177	
T1 284 3439	10	0.8	65	16	105	28	<5	0.16		
T1 284 3440	<5	0.6	4	9	97	13	<5	0.04	70	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. with Vancouver, B.C. P 2R5 604) 985-0681 Telex 04-352667

•

.

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V90-0	2438.0						TE PRINT	ED:24-0C1 84	-90	PAGE 6
SAMPLE NUMBER	ELEMENT Au 30g UNITS PPB	Ag PPM	Cu PPN	Pb PPN	Zn PPM	As PPN	Sb PPN	Nn PCT	Ba PPN	
T1 284 3441	<5	0.7	5	7	125	6	<5	0.02	80	
T1 284 3442	<5	0.5	13	9	29	12	<5	0.03	33	
T1 284 3443	178	1.2	18	18	58	84	<5	0.02	51	
T1 284 3444	<5	0.6	12	16	41	67	<5	0.03	48	
T1 284 3445	<5	1.3	9	39	47	152	<5	0.02	38	
T1 284 3446	<5	2.1	18	11	159	74	<5	0.16	96	
T1 284 3447	<5	0.6	12	20	66	57	<5	0.05	56	
T1 284 3448	<5	0.5	18	12	65	31	<5	0.05	65	
T1 284 3449	<5	1.5	15	11	64	108	<5	0.03	41	
T1 284 3450	<5	0.6	13	11	48	195	<5	0.03	69	
T1 284 3451	<5	0.4	15	11	61	32	<5	0.05	45	

Bondar-Clegg & Company Ltd. 30 Pemberton Ave. lorth Vancouver, B.C. v7P 2R5 (604) 985-0681 Telex 04-352667

-

Geochemical Lab Report

A DIVISION OF INCHCAPF INSPECTION & HISTING SERVICES

	-02439	.O (COMPLETE)			R	EFERENCE	INFO:	SHIPMEN	1 416
CLIENT: KEE PROJECT: 28		ENGINEERING INC.				UBMITTED ATE PRIN			
ORDER	El	EMENT	NUMBER OF Analyses	LOWER Detection limit	EXTRACTION		NETH	OD	
1	Au 30g Ag	g Gold 30 grams Silver	42 42	5 PPB 0.2 PPM	Fire-Assay HNO3-HC1 Hot	Extr.		Assay A Coupled	
3	Cu	Copper	42	1 PPM	HN03-HC1 Hot	Extr.	Ind.	Coupled	Plasna
• 4	Pb	Lead	42	2 PPM	HN03-HC1 Hot	Extr.		Coupled	
5	Zn	Zinc	42	1 PPH	HNO3-HC1 Hot		Ind.	Coupled	Plasma
6 7	As	Arsenic	42	5 PPH	HN03-HC1 Hot			Coupled	
·····	Sb	Antimony	42	5 PPH	HN03-HC1 Hot	Extr.	Ind.	Coupled	Plasma
8	Mn	Manganese	42	0.01 PCT	HN03-HC1 Hot	Fytr.	Ind	Coupled	Places
9	Ba	Barium	42	5 PPH	HN03-HC1 Hot			Coupled	
SAMPLE	TYPES	NUMBER	SIZE FR	ACTIONS	NUMBER	SAMPLE	PREPA	RATIONS	NUMBER
R ROCI	K NR RF	D ROCK 42							
REMARK	S: THE	FOLLOWING SAMPLES WEI	2 -15 RE ANALYZED I		12	CRUSH, F	PULVER	IZE -150	43
REMARK	S: THE DUPL		RE ANALYZED I		12	CRUSH, F	PULVER	IZE -150	43
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>fee F=146: 812 ppb</u> 154: 61 165: 698	RE ANALYZED I						
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI .ICATE: .8 <u>4 EE F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137	RE ANALYZED I				RONI		
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>ee F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137 10: MR. Ron Nichols	RE ANALYZED I				RONI	HICHOLS -	
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>ee F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137 10: MR. Ron Nichols	RE ANALYZED I				RONI	HICHOLS -	
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>ee F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137 10: MR. Ron Nichols	RE ANALYZED I				RONI	HICHOLS -	
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>ee F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137 10: MR. Ron Nichols	RE ANALYZED I				RONI	HICHOLS -	
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>ee F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137 10: MR. Ron Nichols	RE ANALYZED I				RONI	HICHOLS -	
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>ee F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137 10: MR. Ron Nichols	RE ANALYZED I				RONI	HICHOLS -	
	S: THE DUPL 90 2	FOLLOWING SAMPLES WEI ICATE: 184 <u>ee F=146: 812 PPB</u> 154: 61 165: 698 SS F-10: 137 10: MR. Ron Nichols	RE ANALYZED I				RONI	HICHOLS -	

Bondar-Clegg & Company Ltd. ...130 Pemberton Ave. orth Vancouver, B.C. 7P 2R5 (604) 985-0681 Telex 04-352667

••

Geochemical Lab Report

A DIVISION OF INCHCAPPENSPECTION & 11 STENG STRVICES.

REPORT: V90-0	2439.0							ROJECT: 2	ED: 23-00 184	1-30	PAGE 1	
SAMPLE NUMBER	ELEMENT Units	Au 30g PP8	Ag PPH	Cu PPM	Pb PPM	Zn PPM	As PPN	Sb PPM		8a PPN		
R2 90 284 EE	F-146	811	3.7	14	5		416	22	<0.01	36		
R2 90 284 EE	R-147	<5	0.4	79	5	90	19	<5	0.15	131		
R2 90 284 EE		<5	0.8	35	4	44	15	<\$.5	0.08	140		
R2 90 284 EE		<5	1.9	4684	4	269	542	1973	0.04	312		
R2 90 284 EE	R-150	<5	0.5	52	10	38	17	7	0.09	1385		
R2 90 284 EE		<5	0.5	203	7	63	13	12	0.10	432		
R2 90 284 EE		<5	0.3	72	5	71	9	8	0.13	1470		
R2 90 284 EE		<5	0.5	107	5	40	<5	<5	0.17	602		
R2 90 284 EE		61	0.7	388	20	87	21	<5	0.08	36		
R2 90 284 EE	R-155	<5	0.2	11	33	26	36	<5	0.03	107		
R2 90 284 EE		<5	<0.2	28	8	8	6	6	0.02	1183	· · · · · · · · · · · · · · · · · · ·	
R2 90 284 EE		<5	0.6	22	14		1171	27	0.08	25		
R2 90 284 EE		47	7.0	136	8	197	106	<5	0.03	12		
R2 90 284 EE		8	2.4	66	17	175	93	<5	0.11	76		
R2 90 284 EE	-100	41	6.1	278	13	71	250	9	<0.01	<5		
R2 90 284 EE	R-161	<5	0.8	49	11	167	9	~ 5	0.04	46		
R2 90 284 EE	R-162	8	3.7	401	<2	11	<5	<5	<0.01	16		
R2 90 284 FE		<5	0.6	. 25	7	28	6	<Š	0.04	113		
R2 90 284 EE		<5	0.5	15	4	96	9	<5	0.17	113		
R2 90 284 EE	-165	652	5.9	37	11	43	1591	63	<0.01	9	Γ	
R2 90 284 EE	₹-166	<5	0.7	62	21	244	16	<5	0.26	189		
R2 90 284 EE		<5	0.2	13	9	47	102	7	0.01	69		
R2 90 284 MM	2-001	<5	0.9	160	5	88	15	<5	0.17	466		
<u>R2 90 284 MM</u>		< 5 -	0.6	72	3	27	10	<5	0.19	250		
R2 90 284 MM	2-003	<5	0.5	34	6	125	23	<5	0.14	299	1	
R2 90 284 MM	2-004	<5	0.5	30	6	125	19	<5	0.13	492		
R2 90 284 MM		10	5.4	272	6	3964	39	<5	0.04	<5		
R2 90 284 MM		102	1.7	11	73	152	>2000	<5	0.05	44		
R2 90 284 MM I		<5	<0.2	7	4	21	21	5	0.02	52		
2 90 284 MM	-008	<5	1.1	34	5	39	18	<5	0.22	89		
2 90 284 MH	2-009	<5	0.8	141	4	4?	15	<5	0.17	147		
R2 90 284 SS 1		27	2.4	70	19	39	275	10	0.04		-	
R2 90 284 SS I		49	0.9	95	18	82	303	<5	0.01	253		
R2 90 284 SS		<5	0.6	11	27	30	533	20	0.01	30		
R2 90 284 SS 1	-4	<5	0.3	8	67	161	33	<5	<0.01	68		-
R2 90 284 SS 1	-5	<5	0.5	88	ġ	42	23	<u>رج</u>	0.07	35		
R2 90 284 SS I	-6	<5	0.4	92	, 7	21	15	<5 <5	0.03	15		
R2 90 284 SS I		<5	0.8	79	11	43	ċ,	<5	0.01	13		
	. 0	48	2.6	24	115	371	131	25	0.04	17		
R2 90 284 SS I	-0	40	2.0	24	112	J/1	1 1 1	7.1	11.074	17		

J30 Pernberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

. •

21

i anti ang

Geochemical Lab Report

.

			A DIVISIC	N OF INCH	APE INSPEC	THON & ITS	DA	IF PRIMIE	0: 23-001	-90	
REPORT: V90-0	02439.0						PR	OJFCT: 28	34		PAGE 2
SAMPLE NUMBER	ELEMENT UNITS	Au 30g PPB	Ag PPN	Cu PPM	Pb PPM	Zu PP N	As PPH	Sh PPM	Mn PCT	Ba PPM	
R2 90 284 SS R2 90 284 SS	F-10 F-11	<u>143</u> <5	<u>5.0</u> 0.7	<u>68</u> 49	<u>899</u> 9	16 <u>96</u> 66	<u>351</u> 26	<u>(5</u> (5	0.10	19 105	
							 		· · · · · · · · · · · · · · · · · · ·		
~											
-											
							<u></u>				
-											
											
										<u> </u>	
12 4											
5×			<u> </u>			_					
-					i.						
											·
27 %											
- 											

APPENDIX IV

578-3**-**

ومعتدي

-

Soil, Stream Silt and Rock Data Sheets

.

Keewatin Engineering Inc.

•

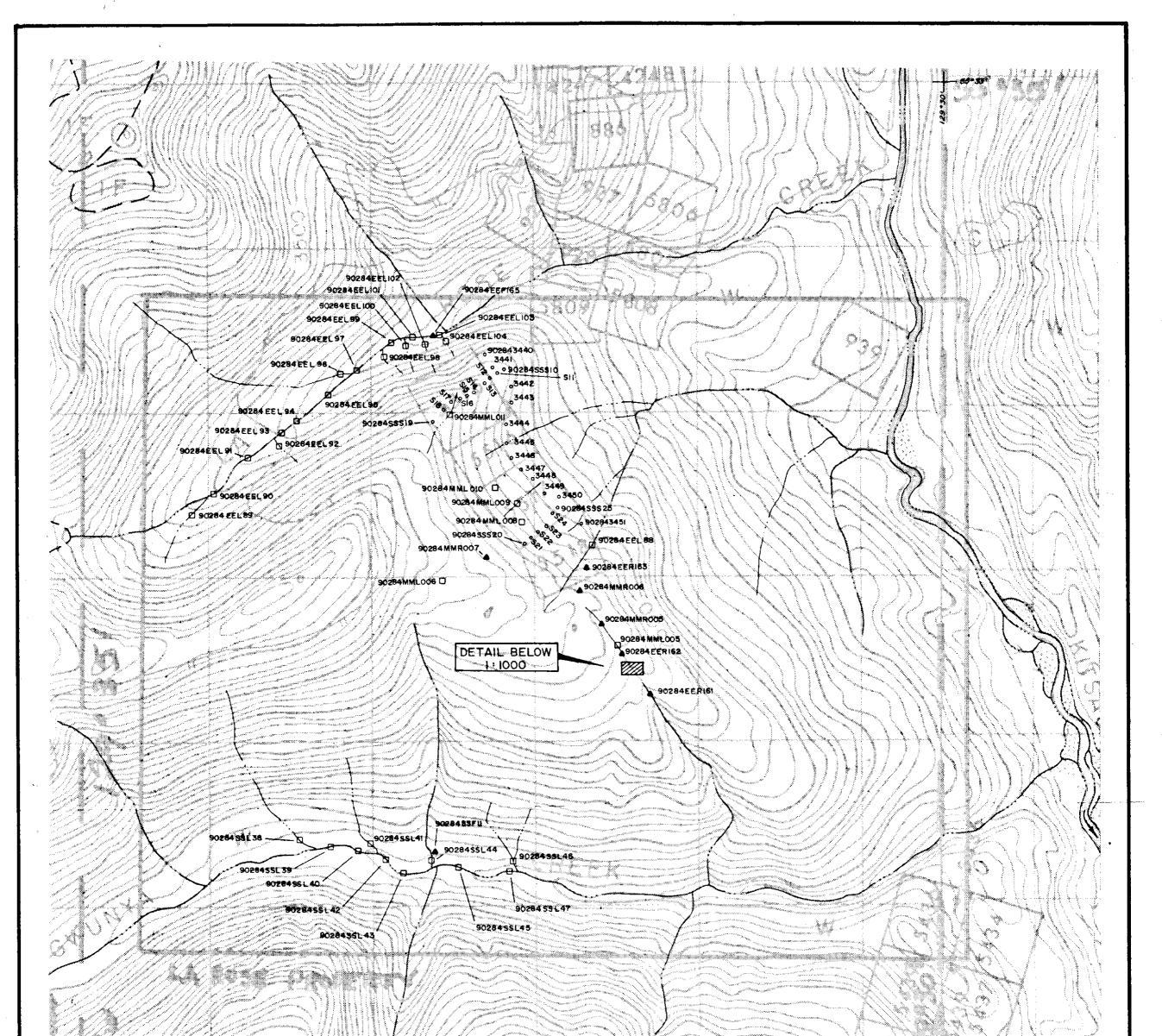
Proj	ect:	CANAL	DIAN CA	LIBOV	OIL SA	MPI	LES														
Area Colle	ı (Grid): ectors:		INT FR	EDRICKSON									ĒR			.:					
		Somple L				To	pogr						ation					So	i 1	Dot	0
Sam				Notes	. I	Bottom	of slope		Ground	Wooded	Wooded			pu		Sampled	Depth to Horizon Sample	Horizon	Develop – ment	Parent	Material
Num	ber	Line	Station		- E	Voiley E	Direction	Hill Top	Level (Heavily Wooded	Sparsely	Burnt	Logged	Grasslar	Swamp)	Horizon	Depth to Sam	Good	Poor	Drift	Bedrock
				LA LOSE PLOPERTY												A	VOcn				
284	3415		Om	2830	/							· ·				R	Da		 		
284	3414		Sm	1,											 	<u>Ş</u>	Sam				<u> </u>
284	34/1		10m	2841	2′	 									<u> </u>		roa		<u> </u>		
284	341		15m 20m	11	, 							· · ·			<u> </u>	12	10a	F			
484	_ 3 41#	•	10 m	284	′	$\neg \uparrow$					1					10-	1 cm	F			
9-120	4 344	<u></u>	Om	2580	+											B	100	n			í
1020	3441	/	100m	2540													154				ł
	3442		200m	2420												B	10				1
	3443		300m	2440	1											B	5				
	3444		400 m	2420												B	5				
	3445		500m	2420												B	10				L
	3446		600m	2360	'						L					B	10				
	3+47		700 m	2400												B	10				L
	3449		.800 m	2490]				ļ					B	10				
	3449		900 m	2440									$ \square$		ļ	B	15				
	3450		1000m	2480	<u> </u>										i	- All and a second s	KO.		┞──┤		
-	3451		1,100 m	2480	·											3	10		┞───┤		
						-+															
						-+															
		•				\rightarrow	-+				· ·								┝──┨		
																	$\left - \right $		┟──┤		
			- I		<u> </u>												<u>+</u>				

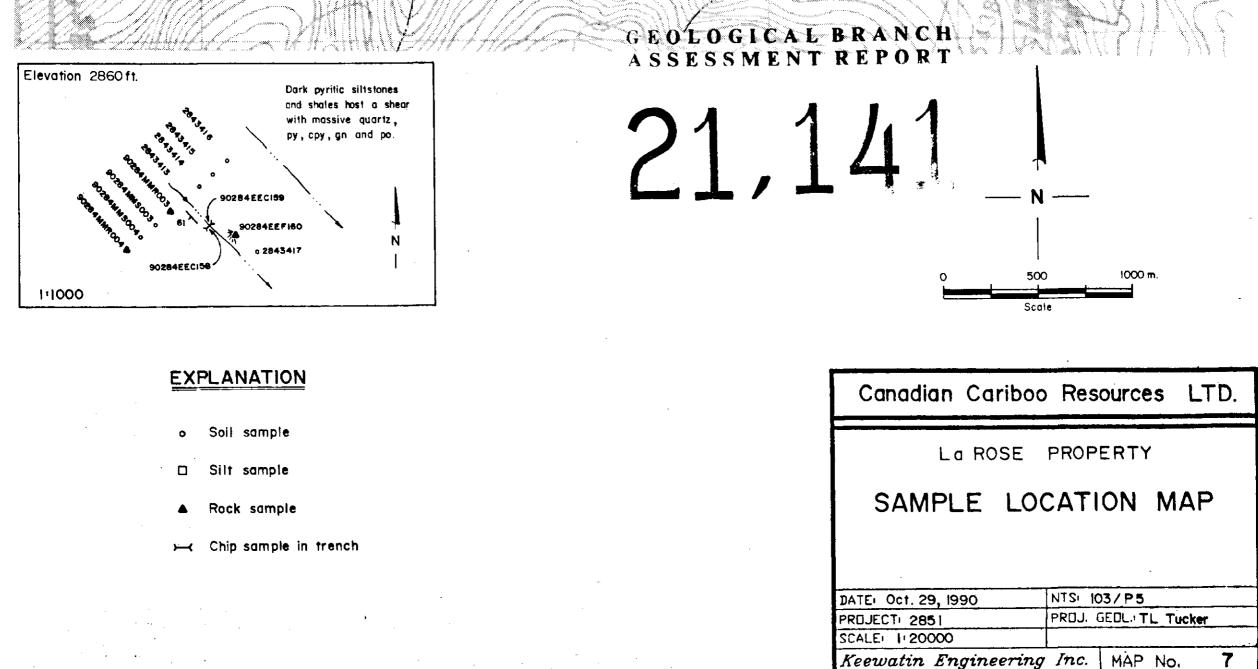
KEEWAT	N ENGINEERING INC.	
ST.	EAM SEDIMENTS Results Plotted By:	
eq (Grid):(A Rose.	Map:N.T.S.:	
llectors:		
Sample, Line after TO NOTES	SEDIMENT DATA STREAM DATA	
Sample where efter D Nyother Notes	Grevel Sand Clay Organic Organic Clay Vidth Dary Clay Vrelo- city Dary GULLY	
Ea. 88 257011.	30 30 40 Zen Kenfest	
- end Sept 28		
184EEL89 LAROSECK Fridelary 2610.	O O VOU <td></td>	
BHEEL90 MUANCK LARUSE 2510	0000 1.000	
EEL91 Manck 2380	0 0 100 2.70 lupt	
XER92 tributery from SE 2330.	020 80 <1,40 max.	
EEL93 min de Lanore 2290	0 10 90 Zu 70 last	
EEL94 (AROSE 2202)	0 70 80 2m 20 lust	
EL95 LAROSE 2100		
enge tributury from NW 2010.	20 20 60 m 20 feet	
FEL97 (ARDSE 7000	6 10 BO 1 M < 0 moor	
<u>EE298 trib from SE 1940</u> DEE299 (APOSÉ 1880)	0 6 90 7. 20 frot	
$\frac{1880}{EEL99} + 1.15 \text{ from SE} (850)$	10 10 50 < 4 40 8/12	
EELIOI LAROSE 1780	0 10 90 7m 20 lust	
EEL 102 drawing from 5 contract '7:00	40 30 36 21 10 slam	
EL 103 LAROSE 1730	10 10 80 Bm 20 Junt	
722 104 Num SE 1700	10/0 R0 In 610 mod	
end 40cT		
	<u>──</u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
	── ╂ ─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼	
	── ┨ ─┤─┤─┤─┤─┤─┤─┤─┤─┤─┤─┤─┤	
	— 	
·		
	╺━━╫──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼	
		1

ļ

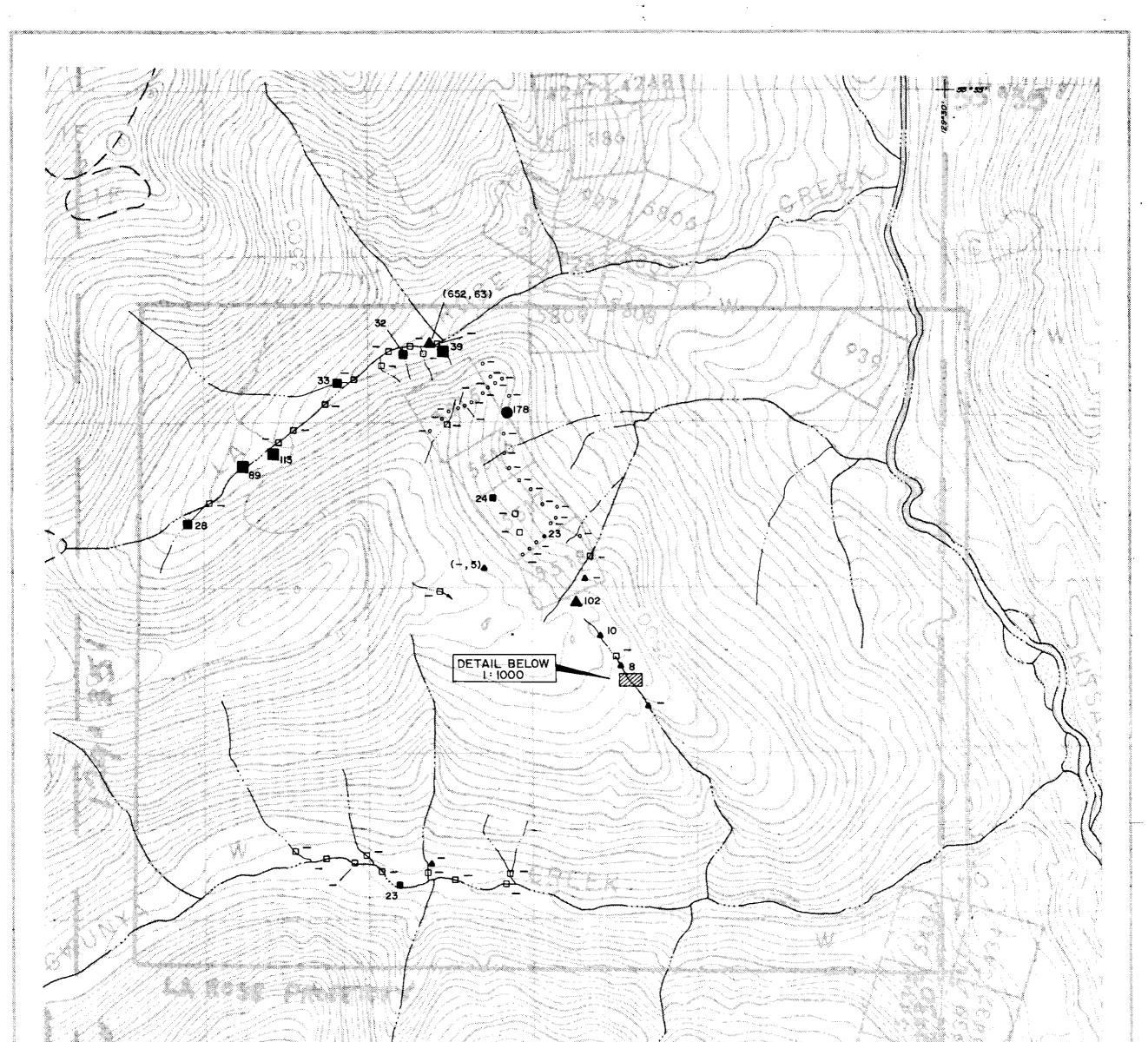
.

oject: ea (Grid):_	<u>L'AROSE</u>	21BOI	ر					EN-NEER	Results Plotted By:
lectors: _									
		REP.	ISAL	IPLE	TYOP	11		T	Date: Surface Underground
	LOCATION NOTES	SAMPLE NUMBER	8	CHIP	CHANNEL	CORE	LOAT (HID	ROCK TYPE	SAMPLE DESCRIPTION MAP SHEET
0000058	Carose propuly 2260'			1.0	0		<u> </u>	seels	
						1	†	-725	Chip across check. pyrtic shear in
EECISS	Z^2600			0.5				sedy	clk pyritic secto. minor po sp. gr.
0EEF 160							17	Sed	
<u> </u>	2680		\checkmark			·			all of dump. gtz py/200pc
TR162	291 0						 		from showing.
EFRIG3	<u> </u>		Ľ,					<u> </u>	loty put god in a gtz sheen
	2620		\mathbf{A}						in strutic seds.
					_				50cm 9tz Sulphale (gnoy) in
	end 28Sept								pyritic seds shale 13
ZE165	LAROSECK 1730						/	Sect Float	
			.	\rightarrow				sea rior	gtz pyrite an viens within a
								•	sunte suitementer (stale)
									10 610
									Hoat angular and is ImXIm X 7Hocm
		· · ·							
			_						
	· · · · · · · · · · · · · · · · · · ·		-+						
					_		<u> </u>		
							<u> </u>		
			-+			-+			
						\rightarrow			
			+	+					
			+	\neg		+			
						+			
<u> </u>									
		· ·							
						T			

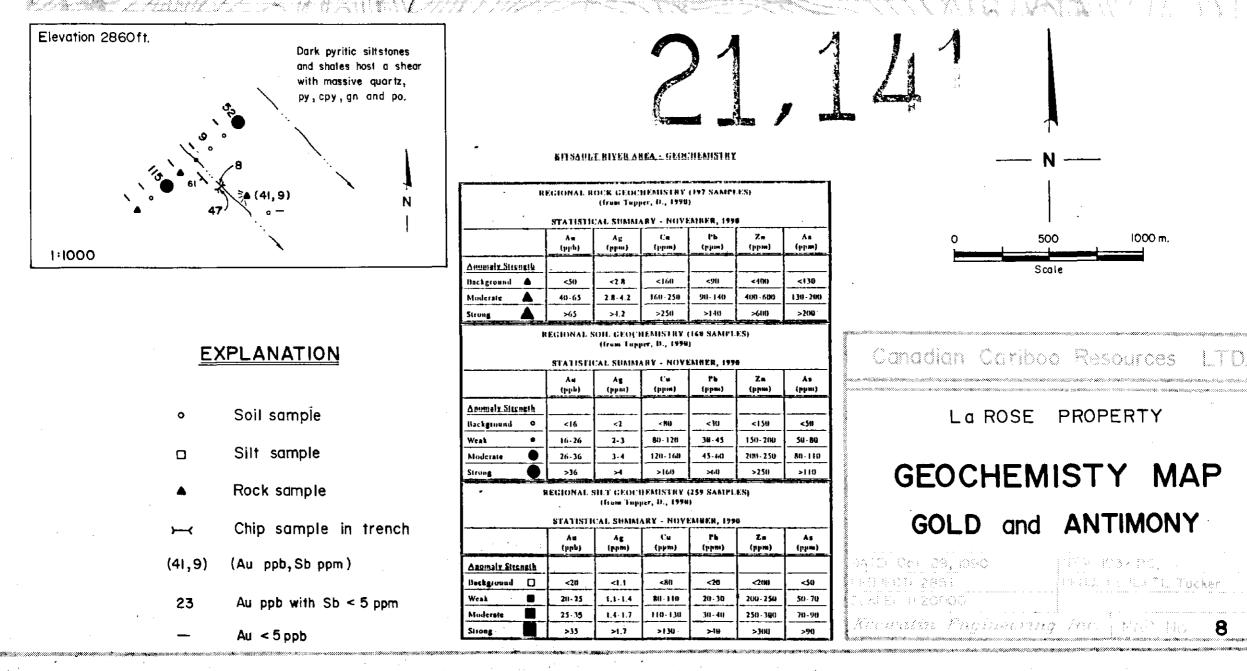

ı		-					•								•		
•	KEEWATIN È													•.			
Project :	Canadian Caribon STREAM	SEU	INC.				iottec							<u></u>			
Area (Grid):	Michael Renning				Map	:				N	.T.S.:	·			<u></u>		
Collectors :_	Michael Kenning				Date		1				_	11					
	5		SEDI	MEN.			5	STRE	_	****		<u>o</u> .	~				
Sample Number	NOTES	Gravel	Sand	Silt	Clay	Organic	Bank	Active	Jwidth	Copth Cepth	Velo. city	SPRING	DRY GULLY				
90 2 84	Illiance		ト	X					0,7		S						
MML001														ļ	<u> </u>	<u> </u>	
90 284	Flliance											· ·	·····				
MML002			\times	\times					0.7	2-3	F	3			 		
90 284	Iron precipitale sample			×					0.3	1	S	×					
MM -005	Gwunya Creek (La Rose 2 Claim SE corner)																
	\bigcirc																
	La Roce													ļ!	L		
90284			X	X					0,5	/-2	17			 	ļ	ļ	ļ
MML006	33.50′				·									 			
0.001	La Rose		X	×					10	1-5	ha				'		
90284	3400 '		\sim	<u> </u>					12 -	/-5_	-7						
MML007	La Rose																
90284	La llose		X	x					0.5	2-5	M		[
MML008	2750'																
	La Rose										· · ·						
90284			×	x		X.			1,0	2-5	F						
MML009	2660'																
	La Rose														j]	il	
90284			<u>×</u>	X		x			0,2	1-2	17			·			
MML010	27.10'												·				
90 284	La Rose		×	x		x											
MMLOII	30001		~	~		~			20	570	F			-+			
												·			-		
		·····					11	1									

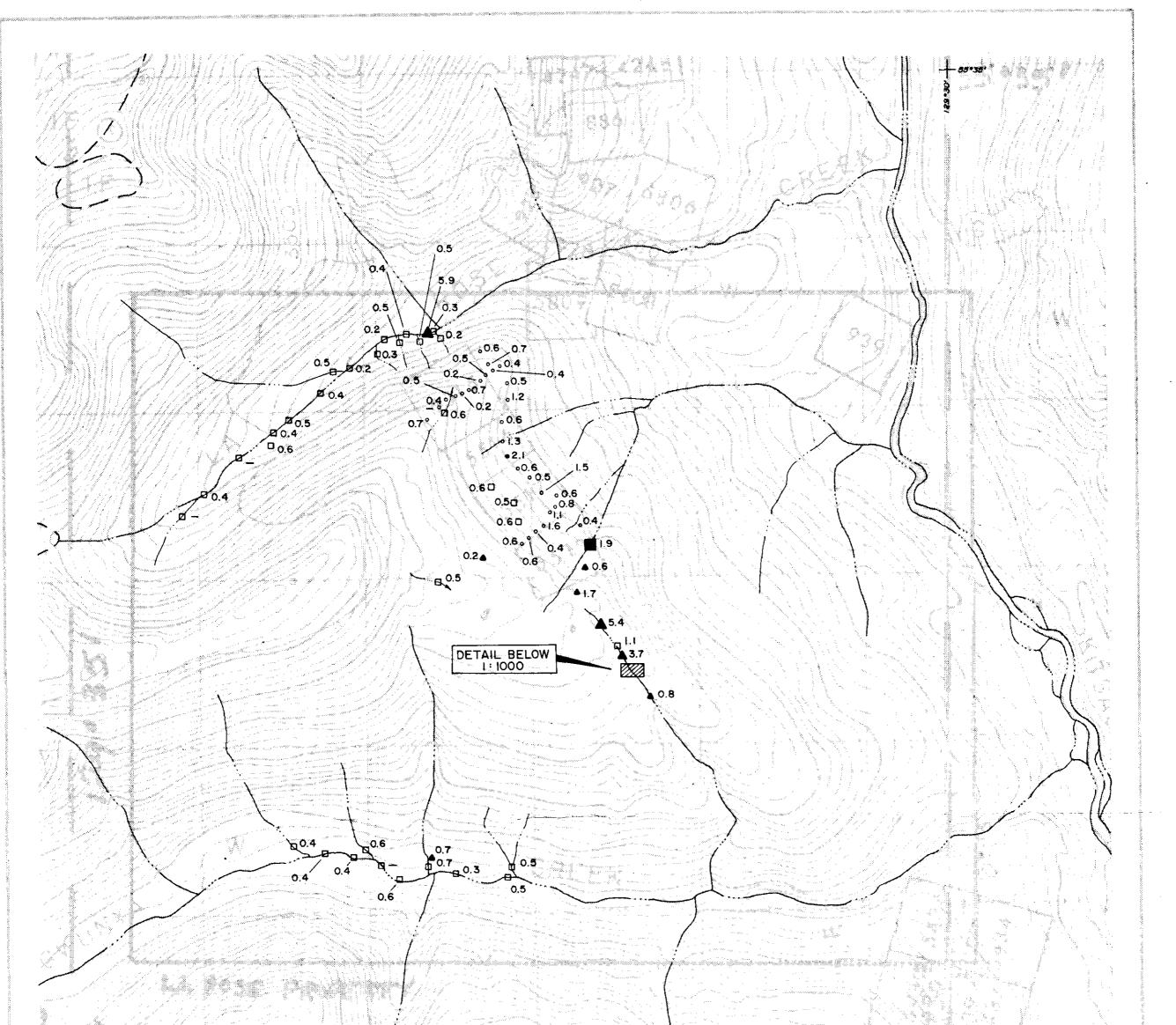

Area (Grid): Collectors: _	· · ·	Caribou Renning							K SAMPLES	Results Plotted By: Map: NTS: Date: Underground
SAMPLE NUMBER	LOCATION	NOTES	REP. SAMPLE		1		(LENC	1	- ROCK	
			NUMBER	GRAB	CHIP	CHANNEL	CORE	FLOAT	ITPE	SAMPLE DESCRIPTION SHE
<u>90 284</u> MMR00i	Illiance			X					Volcanic	Light green - grey andesite / basalt.
10 284 MMR002	Illigince			X					volcanic	Barile Quartz, calcile minor pyrite in a fine to medium grained
90284 MMR003	La Gre of	= 10 M unstrain		×	×				argillite	green - grey andesite. Un dentified greenish mine
10 284 1MR004	of old showing La Rose			×	×				argillite	
10284 MR005	La Rose			×					Vein Quartz,	punite, sphalerite? (otherwise an
0284 mr. R. DOG	La Rose			×					pyrite vein,	inknown silver - dull grey mineral with a tinge of red or ruby) in a Quantz vein nyrite, in a quartz vein taken high on the Westerly bank of the largest
0 284	La Roce								Quartz pyrite Vein	Barren Quartz vein unto 444
D284	Illiance				7.a ·				(Quartz)	at this point. Dissappears under
MKDOB								\times	sediments; argillites	Float mineralized with pyrik found ~ 10-15 Metres upstream of silt 012. + Very angular float.
284 MR009	Illiance	2660'		<					volcanic	Rhyolite / tuff fragmental, diss pyrite.

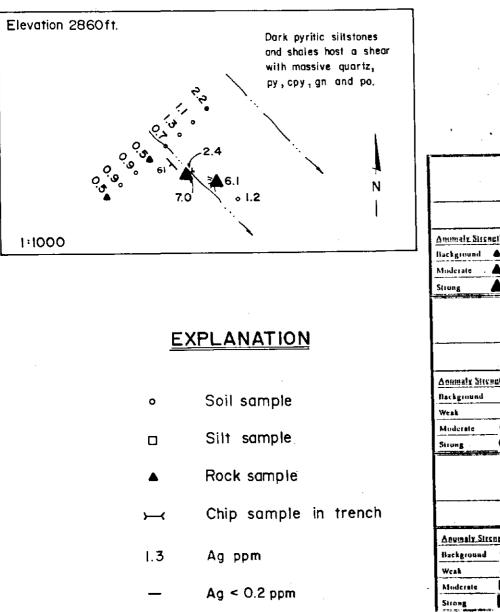
KFFWA	ATIN ENGINEERING INC.
	Results Plotted By:
Area (Grid): Collectors:STEVE CREECMAN	Map:N.T.S.:
Collectors:STEVE CREECMAN	Date: OCTOBER So
	SEDIMENT DATA STREAM DATA
Sample NOTES	Gravet Stitt Garden Bank Diav Doepth A active Clay Width C Clay A active Clay Clay Clay C Clay C C Clay C C
Number	Gravel Silt Clay Vidth Active GULL
EUNDSEN CREEK	
284 St 27 edge of maine bas/ord ; 5+2 Koat	670 802 102 - Zn Dan F
SSITS candid gra sand & grand . fouris gassan	- 62, 40E
St29 trickler drains differentaine sig soud toil	
SSL30 conded islconics; prof: antomination from main	in - 802,202, Sm2an M
SSL31 land tors showing "	32 5020 32 /m Sim F
SIJA major cleft drainge three worame; volconics SIJA rounded grov. & light and bed.	302 402 302 /m Sen F
SSI 24 oner ortweet fan/ workeine ; Warnics/ sects	- 702 302 Bin 10m E
SU35 as above.	Sol 302, 108 1020 /m Summ
SSI30 andesites & alfored shales.	108 602 308 1m 100 F
SSL37 in alders; gry soul & grovel	1/2 602 302 /m 12 m
LA ROSE PROPERTY	
SSI38 10m mile sessmal led, drams high notel go	10 202 602 ice // /a h
SE37 gronodivrite : Gwing a Creek men	Ker See Tre. 10m Er F
Sigo burrya Creek	28 702, 102 10m 2m F
Sill dains List; granite grovel bed	Dr. 72 102 11 Sam
SS142 brunga greek	-602.402 10- 7cm F
SSL48 Governa arek	- 602 402 102 102 - F
SELVIN word Product creek healt becaute cladiment	
SSL45 Grunga creek	- 702, 302. Wender F
,	


.

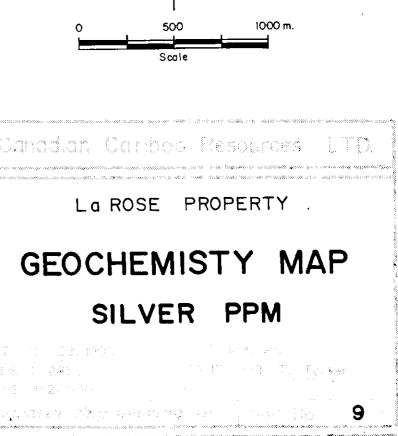
	CAN	4DIAN	CARIBOU	SOIL S	AM	PLES	i										• •				
Area (Grid): Collectors :	57	EVE P	PEELMAN					Map): B	DC	706	R	ſ	N.T.S <i>Gi</i>	· · >						
	Sample La				Т	opogr						ation					So	i 1	Dat	0	
Sample			Notes		Bottom	of slope		Ground	Wooded	Wooded			q	-	Sampled	Depth to Horizon Sample	Horizon	Develop ment	Parent	Material	
Number	Line	Station			Valley B	Direction o	Hill Top	Level G			Burnt	Logged	Grassland	Swampy	Horizon	Depth to Samp	G ood	Poor	Drift	Bedrock	Colour
	KINS.N.		m scree	2.300		W.						84	· ner	1		EXP.					Br
0284 555			on scree	63670		12									_	ExP	•	 			By
		Sourcemis	& beside shear	0.4/00		6.									8	11					f.
6284 SSS4			dry gully silt/soil	EL3790	 	E- E-									5	u					K Za
284 5555	i e Chr	E Plose	tales lolow gossam	23930		10-					· ·	<u> </u>			گ	h		┝──┤			6
284 555		E FLOIC	ning Across CG 5515	ã.2600		NE]	×		R	isan		<u>├</u>			Br
284 SSSI		Ine in	26 kg to 20 50'	2640		HIC.				X		†			P	121					er Bl
SSSI:		from	Strie Strie	2700						×					R	Dun				t	R
SSSIR				2750						X					B	ra			\neg	†	Ber Ber Ber
SSSIN			j	2500					X				_		3	10					2r
55555				2800					X						4/3	10					2
SSSIG			Н	2850						X					አ	n					Br
55517				2950		\square							X		B	5					67
5518				2030]			X]	R	15					Bi
21.722				3080		\square							X		R	13					Br
55520			my across C.G. 5517	2850						X					Z	20					Bar
15121		Inna	2450' 20 2480'	2780									\times		B	15 15		┝↓			Br Gr
555 27				2670		- -							<u> </u>		ß	15				ļ	60
.555.2.3				Z580		$ \cdot \cdot $				<u> </u>					K	20					Br
SSSZY			<u>b</u>	2520		- -				X		<u> </u>			Ĕ	10					BABA
2845552-5				2480						<u> X:</u>					R	5			\rightarrow		<u>K</u>
						┝──┦															
			-,																	<u> </u>	
								{	 			<u> </u>									
							-+		+		<u> </u>										
			· · · · · · · · · · · · · · · · · · ·							-+		+	-+					\rightarrow		+	
	· · · ·	1				- T		1	- 1	1	I		1	1			1	I		- 1	

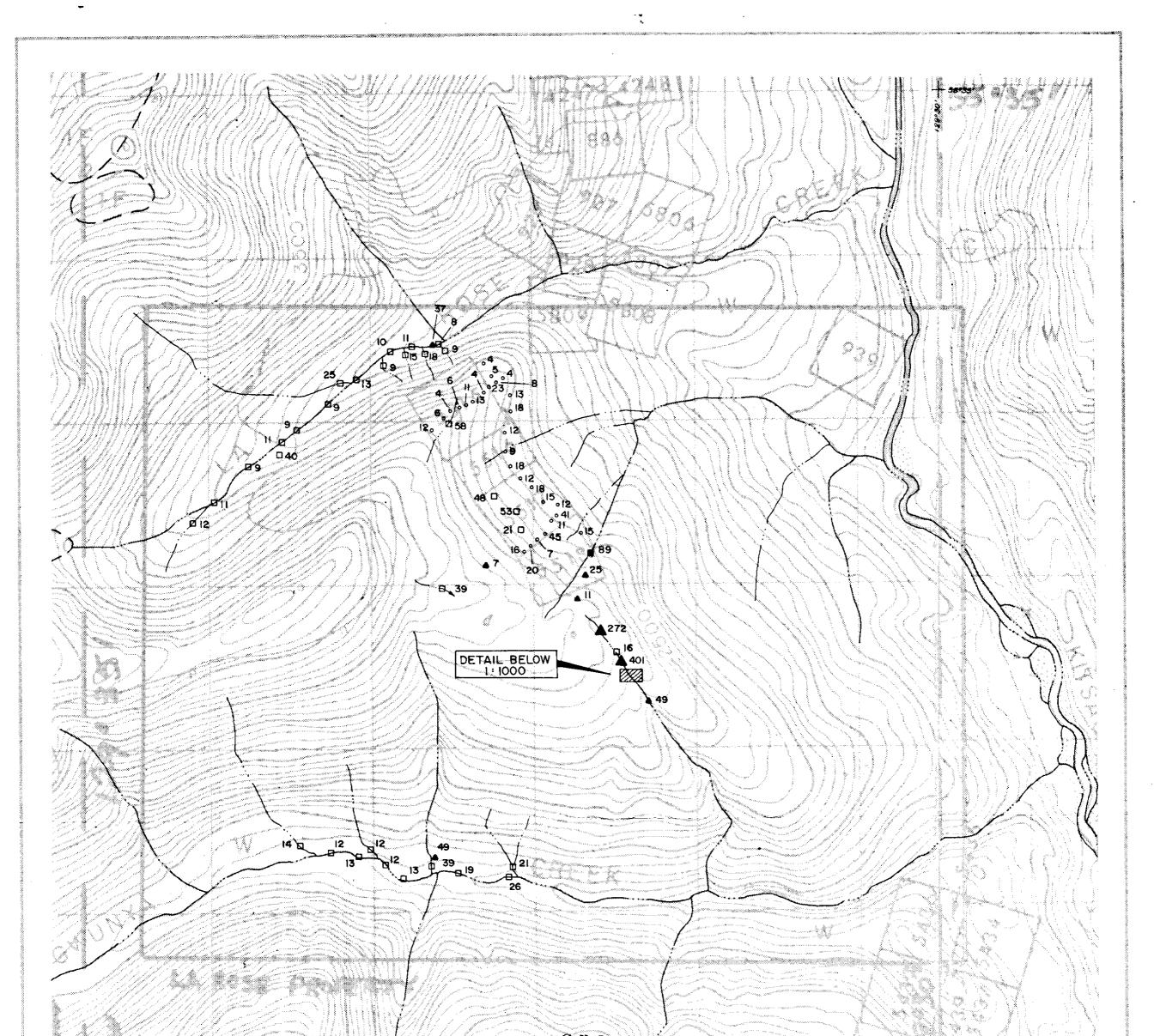


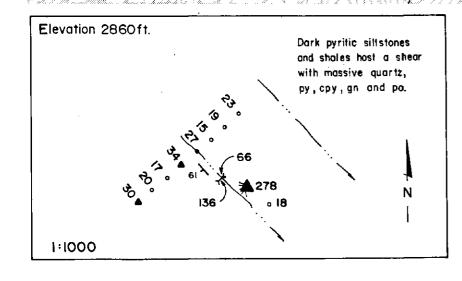



ASSESSMENT REPORT

1000 m.

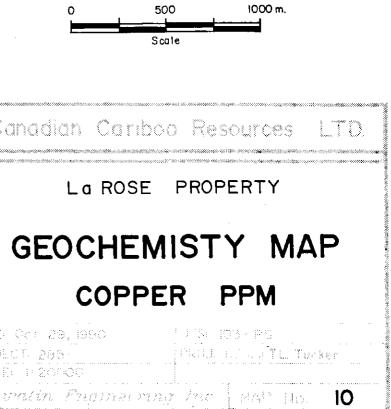


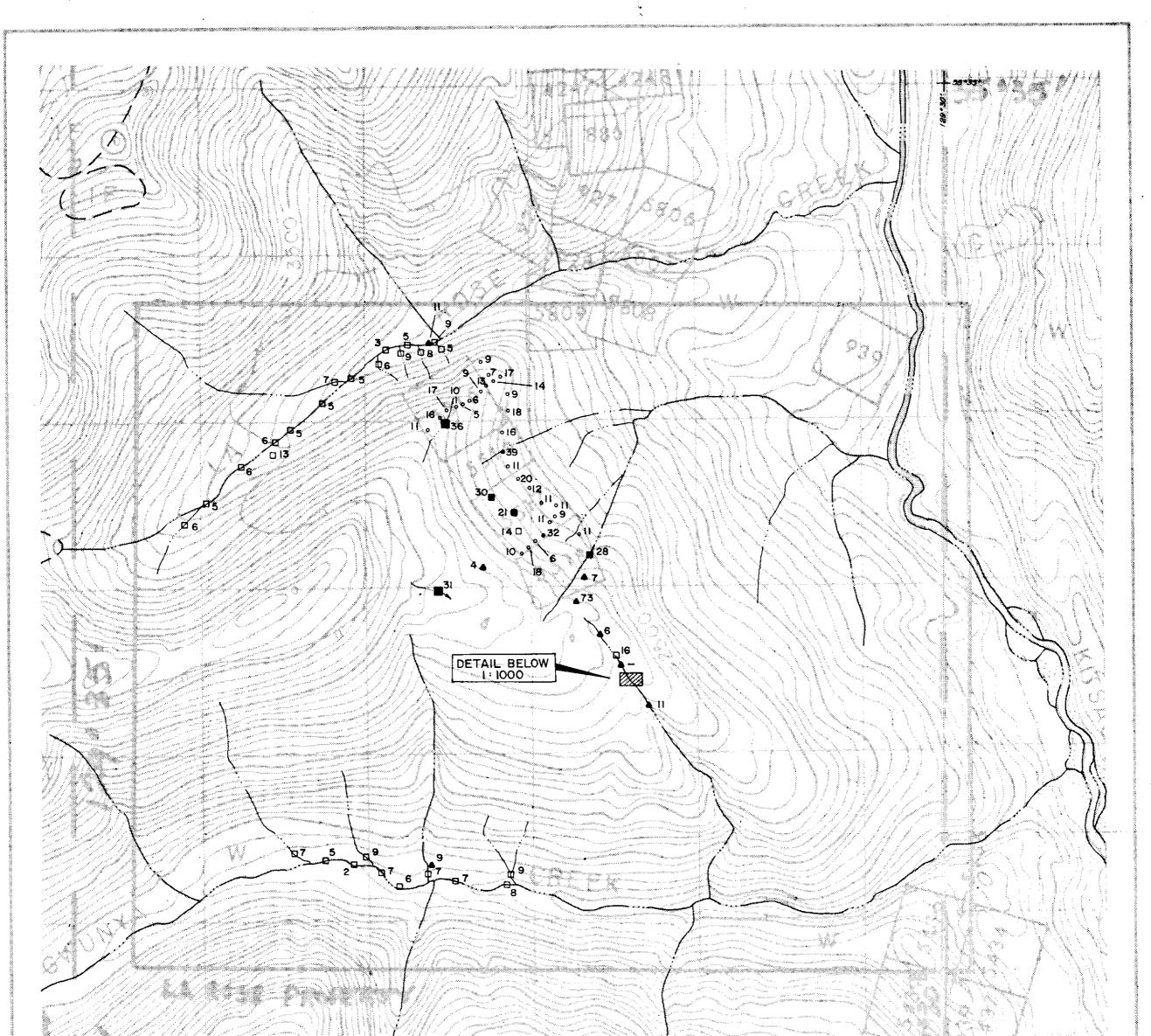

GEOLOGICAL BRANCH ASSESSMENT REPORT


						, ,	
•		RIISAULI	HAKR VI	EA : GENCI	IEMISTRY		
	ħ1	GIONAL RO	ық скоси (fram Tapp	12603568¥ (cr, H., 1998)	197 SAMPI.	¥:S)	
		STATISTIC	AL SUMMA	RY - NOVE	MHER, 1994	,	
		Au (ppb)	А д (ррім)	Св (ррм)	4.t (midu)	Za (ppm)	As (ppin)
naly Strene	<u></u>						
ground d	<u> </u>	<511	<2.8	<160	<9川	<4130	<130
alt		48-65	28.4.2	160-250	90-140	4010-6010	130-200
		>65	>1.2	>250	>149	>600	>200
	R	r I	(from Tupp AL SUMMA	er, D., 1998 LRY - NOVE	MBER, 199		As
		Aս (բրե)	^ ք (ըրտ)	Cu (ppm)	մ1 (տղոյ	(ppm)	(բրա)
aly Stren							
round	0	<16	<1	< KU	<30	<150	<54
	•	16-26	2.3	80-120	30-45	150-200	50-80
rate	۲	26-36	3.4	120-160	45-60	200-250	80-110
8		>36	>4	>160	>60	>250	>110
		REGIONAL	(Իստ Դոր	pre, D., 1996	n		
		STATIST	CAL SUAIM	ARY - NOV	ENEBER, 199 1		1
•••==•••		Au (բթե)	Ag (ppn)	Cu (ppm)	քե (րթա)	Z= (ppm)	А́з (ррия)
maly Stree	stb						
bauora	D	<2()	<1.1	<80	<20	<2114	<50
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>		20-25	1.1-1.4	RD-111	20-30	260-250	50-74
Icrais		25-35	1.4-1.7	114-130	30 - 40	250-3(10	70-90
ng		5-35	>1.1	>130	>#	>300	>90

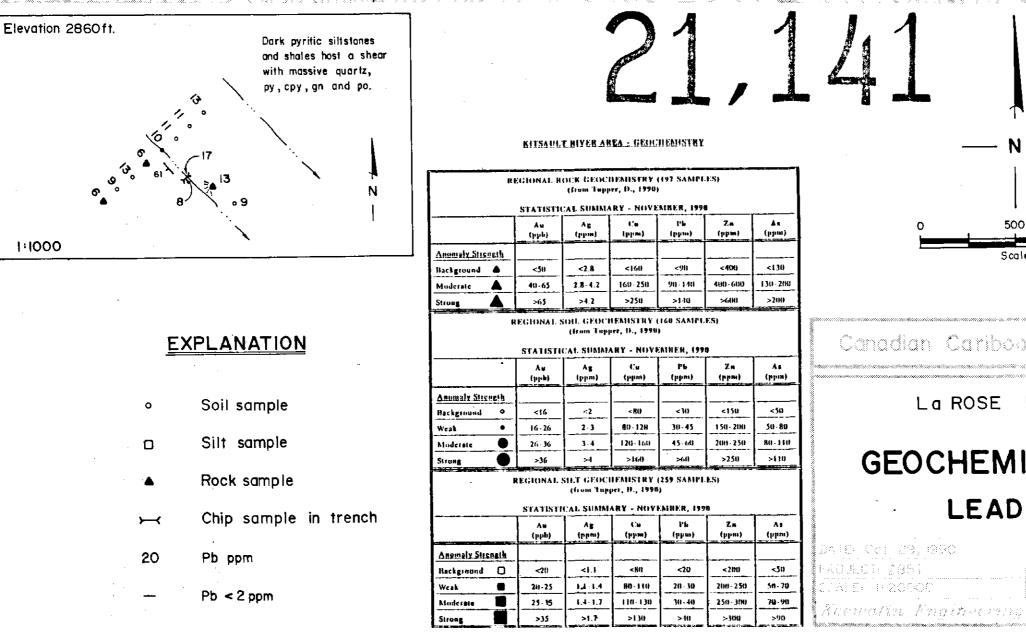
Ν

GEOLOGICAL BRANCH ASSESSMENT REPORT

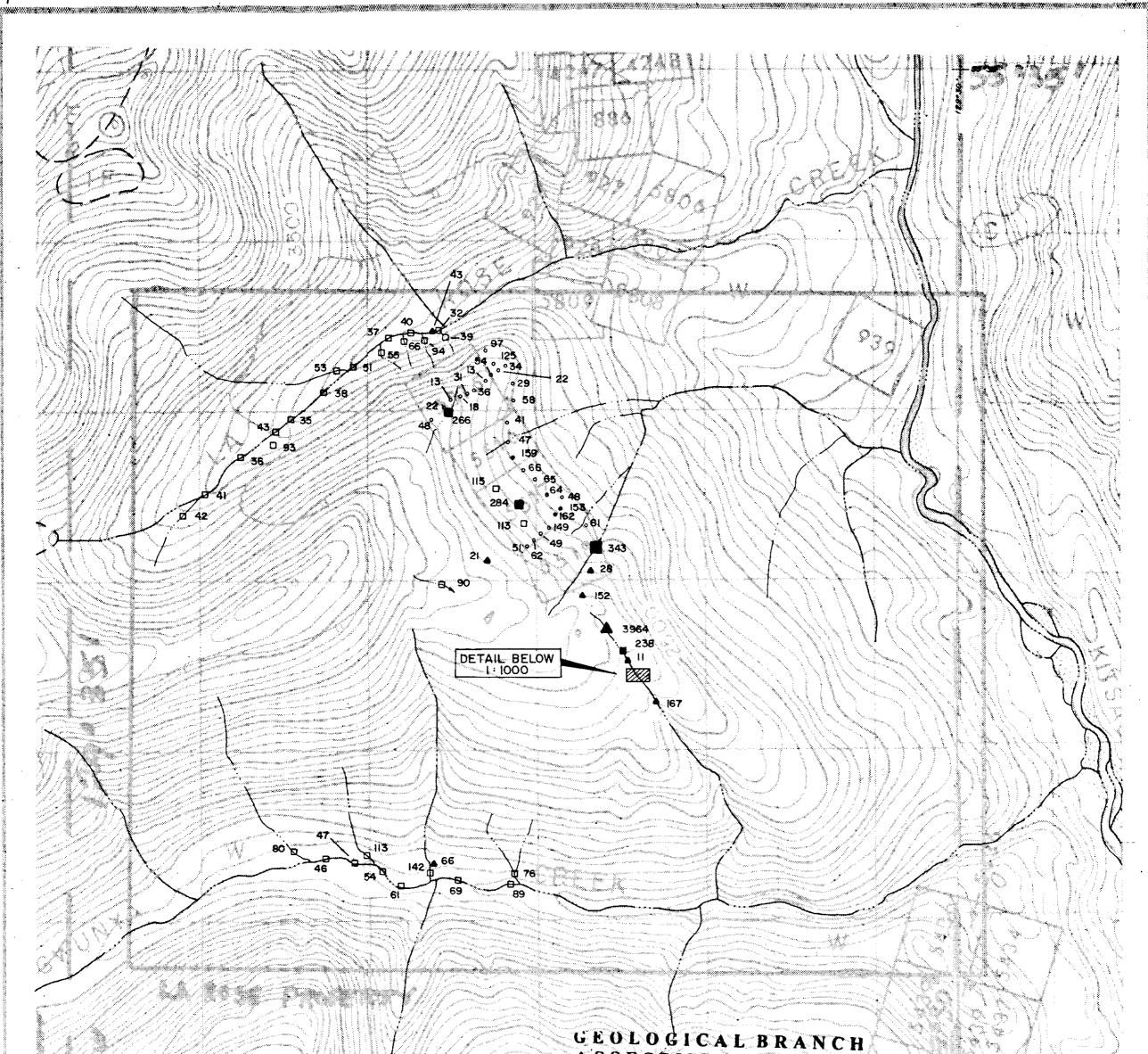



EXPLANATION	

0	Soil sample
	Silt sample
•	Rock sample
)	Chip sample in
89	Cu ppm

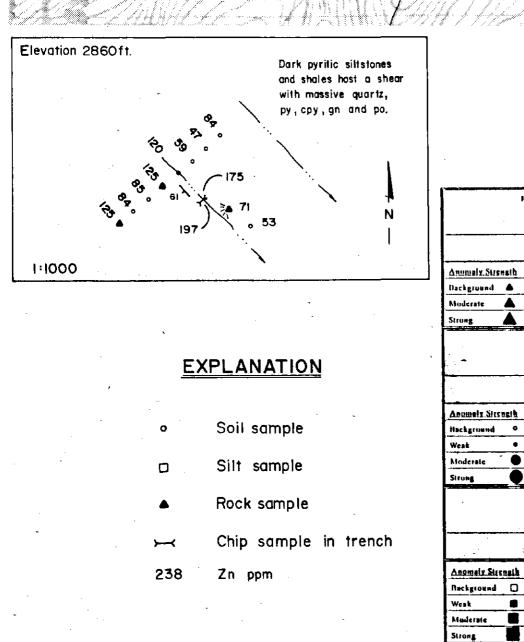

trench

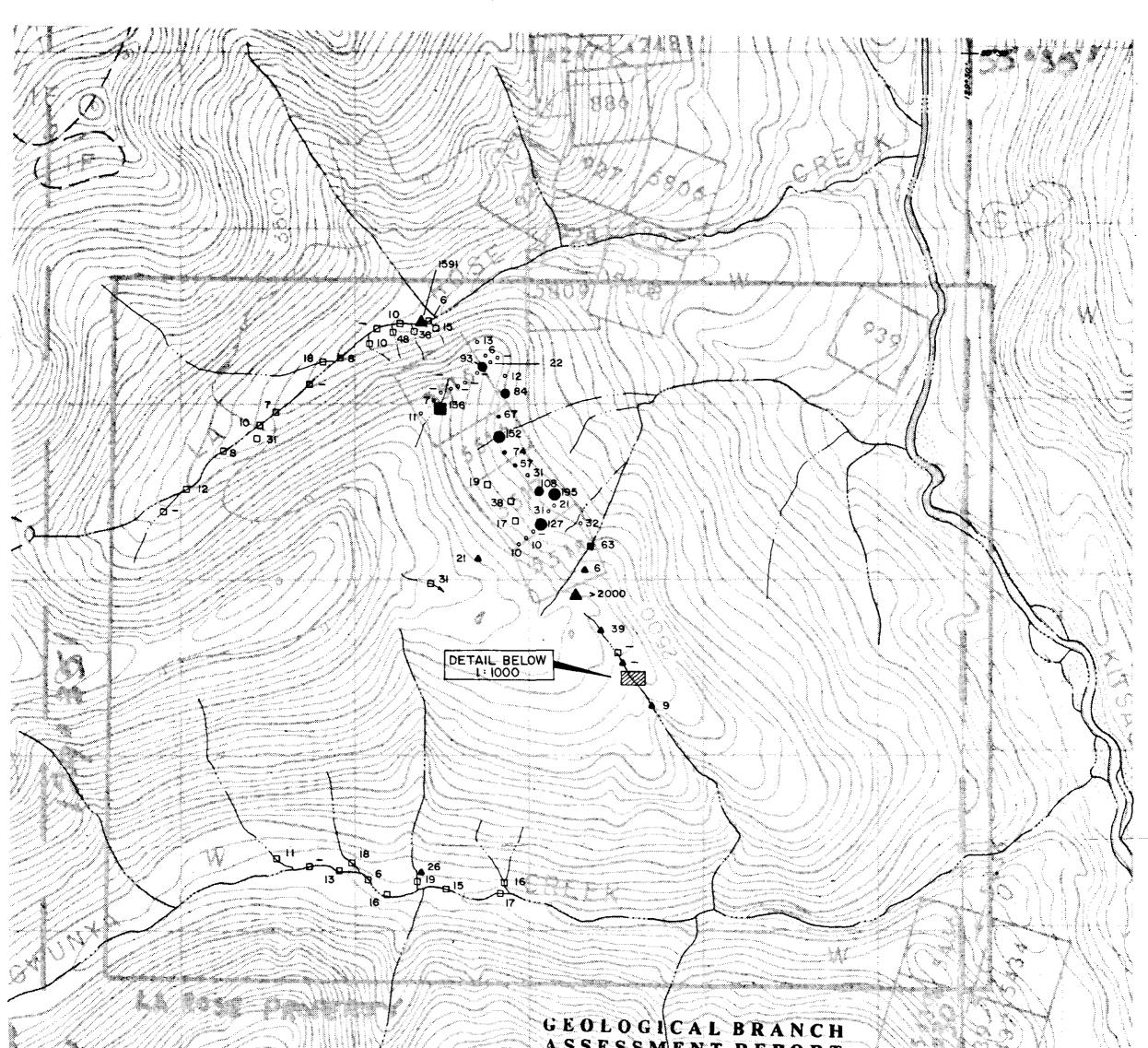
C. C. C. M. C. C. S. M. M. S. C.				1400	1999	hi a gar bain sa		1 417	
41									
—— N ——		ES)	(197 SAMPL	EA : GEOU - ITEMNSTRY (er, 1)., 1999)	OCK GEOCI		RI		
1		Zn	NIBER, 199 Ph	RY - NOVE		STATISTIC			
0 500	(mqq)	иц. (ррня)	(ppm)	(լւթու)	А д (ррна)	չոր (ինթթի)			
Scale							netp	Anomaly Stee	
	<130	<4(H)	<911	<160	<2.8	<50		Background	
	130-200	400-600	90-140	160 - 250	2.8-4.2	40+65		Moderate	
	>2(H)	>600	>[40	>2511	>4.2	>65		Strong	
Canadian Camboo Re		-)	IEMISTRY (er, d., 1990) RY - NOVE	(tram Tupp		ĸ		
	Аз (ррня)	Zn (ppm)	1°6 (ppm)	Cu (ppm)	Ag (ppus)	Au- (բրի)			
							esth	Anumaly Stee	
La ROSE PROF	<511	<150	< 10	<80	<2	<16	•	Hackground	
	50-80	150-200	30-45	84 - 124	2.3	16-26	•	Weat	
	80-110	200-250	45-60	t 20 - 160	1-4	26-36		Atoderste	
GEOCHEMIST	>110	>250	>64	>160	×	>36		Strong	
		ES)		IEMISTRY (ier, D., 1998		EGIONAL S	k		
COPPER		STATISTICAL SUMMARY - NOVEMBER, 1990							
	Ав (ррм)	Zn (рраз)	ել (հեմ)	Си . (рум)	Ag (ppm)	Au (թթե)			
DA 6-06-29, 1990 - 1734							ngth	Appinaly Sils	
PROJECT 265	<50	<2110	<20	<80	<l.1< td=""><td><20</td><td>0</td><td>Dackground</td></l.1<>	<20	0	Dackground	
	50 - 70	2(31) - 2511	20 - 30	80-110	1:1-1.4	20-25		Weak	
		258-300	30-40	110-139	1,4-1.7	25-35		Moderate	
Knowlin Fammary Inc.	70-90	110.200							



GEOLOGICAL BRANCH ASSESSMENT REPORT

Canadian Cariboo Resources LTD. La ROSE PROPERTY GEOCHEMISTY MAP LEAD PPM


9 Cal 29, 1930	1112日 1月37日3
101 2851	a kili a ti a Tu Tucker
5 1/20500	
	ç no por po 🚹


٥

۲

GEOLOGICAL BRANCH ASSESSMENT REPORT

	BITSAUL	C BLYER AF	NKA - GÉGU				$\frac{11}{1}$
KI		(քրոս Դոթյ	DENDSTRY ber, D., 1990	•			
	STATISTIC An	AL SUMMA	Cu	MARER, 199	0 7.n	۸.	
	(րդե)	(mul)	(իրտ)	(բրութ)	(ppm)	(ppm)	0 500 1000 m.
<u></u>			<160		<100	<130	Scole
	<u></u>	<u>- <2.8</u> 2.8-4.2	<160 160-250	<90 90 - 100	408-680	<u>- <1.50</u> 130 - 210	
	>65	>1.2	>250	>140	>600	>2(M)	
R		(frum Top)	IEMISTRY (ur, D., 1990)			
	STATISTIC Au (ppb)	AL SUMM/ Ag (ppm)	(197 - NOVE) (197 - NOVE) (199 - NOVE)	САТВЕН, 199 Ръ (ррм)	0 Zn (ррин)	Аз (ррня)	Canadian Cariboo Resources LTD.
u h							
<u> </u>	<16	<1	<u> </u>	- 10	<150	<511	La ROSE / PROPERTY
<u>.</u>	16-26	2-3	80-120 120-160	30-45	150-200 200-250	50-80 80-110	
	26-36 >36	<u>ا•د</u> بر	>160	45-60 >60	>250	>110	
•			IEMISTRY (.ES)		GEOCHEMISTY MAP
			per, 11., 1998		•		
			ARY - NOVI		F	rl	
:	ծա (ըրև)	Ag (ppm)	Ըս (թրու)	11 5 (ppm)	2# (ppm)	Аз (ррм)	
uh							DATE OCT. 29, 1980 2405 1037 P5
0	<20	<1.1	<#0	<28	<200	<511	PROJECT 2951 CONTRACTOR TO A CONTRACTOR TO A CONTRACTOR C
<u>.</u>	20-25	1.1-1.4	80-118	24-34	200-250	50-70	SEALES P 20000
	25-35	1.4-1.7	110-130	30-40	220-300	70-90	
	>35	>1.7	>130	>10	>3110	>911	Recevation Engineering Inc. MOP. 115. 12

						SE		1) E N	TR	FPORT
	Elevation 2860ft.	Dark pyritic siltstones and shales host a shear with massive quartz, py, cpy, gn and po.	:	KITSAUL	I BIYEN A	BEA SFEIH	III EMISTRY	/ -		— N —
	د ⁶¹ ه کو ۱۵۵ ه کو ۱۵۵ ه	≥ 250 N • 7 N	M		CAL SUMM	per, ()., 1998	i)			
				Au (ppb)	AE (ppm)	Cu (ppm)	1'b (ppni)	Z.a (ррм.)	Аз (ррш)	I
L	1:1000		Anomaly Strength					· · ·		
	······································		Background	<511	<2.8	<160	<90	<108	<130	. Scale
			Moderate 🔺	411-65	2.8-4.2	160-250	90-140	400-600	130-200	
		•	Strong	≻ 45	>4.2	>250	>140	>600	>2114	
				EGIONAL	SOIL GEOC			ES)		200.000 M
	EX EX	PLANATION	ļ			per, D., 1998				
		LANATION			CAL SUMM		1	1	····	Canadian Cariboo Resources LTD
				հա (թրհ)	Ag (ppm)	Cu (ppm)	ԲԽ (բրա)	Zn (ppm)	As (ppm)	
			Annualy Steerth							
	Ο.	Soil sample	Background O	<16	<2	<80	< 340	<150	<\$0	La ROSE PROPERTY
			Weak •	16-26	2-3	80-120	30-45	150-210	50-80	
	0	Silt sample	Moderaie	26-36	3.4	120-160	45-60	200-250	80-110	
	. –		Strong	>36	Я	>160	>68	· >250	>110	CEOCUENICTY MAD
	•	Rock sample		REGIONAL	SILT GEOC (Irom Tup	DEMISTRY per, D., 1996		LES)		GEOCHEMISTY MAP
		•••		STATIST	CAL SUMM	ARY - NOV	ENIBER, 199	**		ARSENIC PPM
	X	Chip sample in trench		Au (pph)	^g (թրու)	Си (рраз)	րբ (հեայ	Z = (ррш)	Аз (рущ)	
	63	As ppm	Anumely Steenath		·		·		-	0A16 Cc1 29, 1990 0175 1037 P5
			Hackgedund []	<20	<1.1	<80	<20	<2()()	<50	
			Wesk 📕	20-25	1.1-1.4	No. 110	20.30	200-250	-1	IROJECT 2951 PRUJ. GENELTT. Tucker
			Moderata	25-35	1.4-1.7	110-130	30 40	250-300		
			Strong The second second	>35	>1,7 5-m-/ 3464	>130	>10	>3INI	>90	I Recratin Engineering Inc. MAP No. 13