LOG NO:	march 26/91	RD.
ACTION:	····· /	

FILE NO:

GEOLOGICAL REPORT ON THE GAB 5 MINERAL CLAIM FOR KIRBY ENERGY INC.

MAR 2 - 1901

Gold Consideration a Constant of the Iskut River Area VANCOUVER, E.C. Liard Mining Division British Columbia

NTS 1048/15W

56°50' North Latitude 130°45' West Longitude

- Prepared by -S.L. TODORUK, Geologist C.K. IKONA, P.Eng.

軍害 C 22 ZC < ≏ **x** 🕾 **m 2**2 <u>ب</u> ₹Z υ¥ - 2 S S O S L L $\bigcirc \infty$ (L) (V) ഗ ≪

March, 1991

GEOLOGICAL REPORT on the GAB 5 MINERAL CLAIM

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	LIST OF CLAIMS	2
3.0	LOCATION, ACCESS AND GEOGRAPHY	2
4.0	AREA HISTORY	3
5.0	REGIONAL GEOLOGY	8
6.0	PROPERTY GEOLOGY	12
7.0	GEOCHEMISTRY AND MINERALIZATION	13
8,0	DISCUSSION AND CONCLUSIONS	14

LIST OF FIGURES

		Following Page
Figure l	Location Map	1
Figure 2	Claim Map	2
Figure 3	Regional Mineral Occurrence Map	3
Figure 4	Regional Geology Map	8
Figure 5	Property Area Geology Map	12
Figure 6	As Contour Soil Map	pocket
Figure 6	Zn Contour Soil Map	pocket
Figure 8	Newmont Cliff Zone - Geology Map	pocket
Figure 9	Newmont Cliff Zone - Au Soil Map	pocket
Figure 10	Newmont Cliff Zone - As Soil Map	pocket
Figure 11	Newmont Cliff Zone - Zn Soil Map	pocket

APPENDICES

Appendix I	Bibliography
Appendix II	Cost Statement
Appendix III	Rock Sample Description Forms
Appendix IV	Analytical Procedures
Appendíx V	Assay Certificates
Appendix VI	Statement of Qualifications
Appendix VII	Engineer's Certificate

1.0 INTRODUCTION

Between July and September, 1990 Pamicon Developments Ltd. carried out a field exploration program on Kirby Energy Inc.'s Gab 5 mineral claim (20 units) which is located in the Iskut River Gold Camp of northwestern British Columbia. Previous work on the property had identified an area in the northeast corner which was highly anomalous in zinc and arsenic in soils. Follow-up soil geochemistry in 1990 verified this anomalous zone and has expanded the anomaly over a considerable distance both on contour soil traverse lines initially and subsequently on cut grid lines.

The location of this As-Zn soil anomaly occurs immediately south of the intersecting point of two major structural lineaments identifiable both on the ground and clearly noticeable from an airborne magnetometer geophysical survey carried out in 1988. The westernmost of these structures is the McLymont Fault which appears to be spatially associated with Gulf International Minerals' Northwest Zone gold-silver skarn deposit while the eastern lineament appears to be related to numerous highgrade silver-lead-zinc (+100 oz/ton Ag, 10 to 15% Pb-Zn) carbonate hosted barite shear prospects.

Recent government geological interpretations have indicated that rocks in the area of the Gab 5 mineral claim area of early Jurassic age and not as previously believed Paleozoic age. This age would make these rocks correlative to the Betty Creek Formation and possibly the Mount Dillworth Formation which hosts the rich Eskay Creek deposit to the southeast. As a result, potential exists on the property for discovering a volcanogenic massive sulphide deposit similar to that at Eskay Creek.

As well, excellent potential exists for producing a limestone related base and/or precious metal bearing skarn or replacement deposit.

The as yet untested anomalous As-Zn soil anomalies on the Gab 5 claim may be an expression of any of the above three deposit models.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the following claim (Figure 2) is recorded in the name of Western Informational Services Ltd. Separate documents indicate the claim is under option to Kirby Energy Inc. by an agreement dated June 6, 1988.

Claim	Record	No. of		
Name	<u>Number</u>	<u>Units</u>	Record Date	Expiry Date
Gab 5	3830	20	December 22, 1986	December 22, 1995

3.0 LOCATION, ACCESS AND GEOGRAPHY

The Gab 5 claim is located approximately 100 kilometres east of Wrangell, Alaska, and 115 kilometres northwest of Stewart, British Columbia, on the eastern edge of the Coast Range Mountains (Figure 1). Newmont Lake is situated within the claim boundaries and the Iskut River 15 kilometres to the south of the Gab 5 claim.

Coordinates of the claims area are 56°50' north latitude and 130°45' west longitude, and the property falls under the jurisdiction of the Liard Mining Division.

Access to the Gab 5 claim would be via fixed wing aircraft from Wrangell, Alaska or Smithers, British Columbia to either the Forrest Kerr gravel airstrip 10 kilometres northeast of the Gab 5 claim or the Bronson Creek gravel airstrip located 22 kilometres southwest from the claims. From these gravel airstrips, helicopter support is needed to reach the Gab 5 mineral claim. In addition, the Bob Quinn gravel airstrip is located 40 kilometres to the northeast on Highway 37 at Kilometre 139. Access to the property by helicopter or fixed wing can also be accomplished from this airstrip.

Geographically, the area is typical of mountainous and glaciated terrain with the elevations ranging from 700 metres above sea level in the river valley bottoms to in excess of 1500 metres at the ridge tops, Major drainages are U-shaped, whereas smaller side creeks tend to be steeply cut due to the intense erosional environment. Active glaciation is prevalent above the 1200 metre contour, with the tree line existing at 1000 metres. The upper reaches of the area are covered with alpine vegetation. The lower slopes are predominantly timbered with a variety of conifers with an undergrowth of devil's club. More open areas and steeper slopes contain dense slide alder growth. Both summer and winter temperatures would be considered generally moderate and in excess of 200 centimetres of precipitation may be expected during any given year.

4.0 AREA HISTORY

Figure 3 of this report presents a regional scale map of northwestern B.C. from the town of Stewart in the south to near Telegraph Creek in the north, a distance of 225 kilometres. Within this area, a semi-arcuate band of Hazelton Group equivalent volcanic and sedimentary rocks (Unuk River Formation, Betty Creek Formation, Salmon River Formation) with their metamorphic equivalents trend northwest and contain most of the known mineral occurrences. This group is bounded by the Coast Range intrusive complex to the west and by the much younger sediments of the Bowser Basin to the east.

This area of approximately 10,000 square kilometres has historically been referred to as the Stikine Arch. Mining activity within it goes back to the turn of the century. Due to the large size of the region it has been referred to in more specific areas which range from the Stewart area to Sulphurets, Iskut and Galore Creek areas. Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area can be considered as one large mineralized province with attendant subareas.

The history of the area can be divided into two time periods: circa 1900 to the mid-1970s and the more recent activities of the late 1970s, 1980s and early 1990s.

1900 - 1975

The original discovery of mineralization in the area can be attributed to miners either en route to or returning from the Klondike gold fields at the turn of the century. Rivers flowing through the Alaska Panhandle served as access corridors and mineralization was noted along the Iskut and Unuk Rivers and at the head of the Portland Canal. Highlights of this period were:

- * discovery of copper, gold, silver mineralization at Bronson Creek in the Iskut
- * location of similar mineralization along the Unuk and at Sulphurets Creek
- * discovery of the Silbak-Premier gold-silver mine near Stewart plus a number of other rich silver occurrences along the Portland Canal
- * the location by Tom MacKay of the original mineralization at Eskay Creek near the headwater of the Unuk River

Development and production at this time was largely limited to the area around Stewart where a number of mines produced high grade silver. The most significant producer was the Silbak Premier some 12 km north of Stewart which from 1920 until 1936 produced some 2,550,000 tons grading 16.8 g/tonne gold and 409.5 g/tonne silver.

After World War II the area was explored for base metals, notably copper. This era led to the discovery of the Granduc, Galore Creek and Schaft Creek

copper deposits and the E & L copper-nickel deposit. Published reserves of these are listed below and shown on Figure 3.

	Tons	<u>Cu</u> (%)	<u>Au</u> (g/t)	<u>Ag</u> (g/t)	<u>Mo</u> (%)	<u>Ni</u> (%)
Granduc	10,890,000	1.79				
Galore Creek	125,000,000	1.06	0,397	7.94		
Schaft Creek	910,000,000	0.30	0.113	0.992	0.02	
E&L	3,200,000	0.60				0.80

Of these Granduc was taken to production by Newmont Mining but a combination of low copper prices and high operating cost resulted in suspension of activity.

1975 - Present

The more recent activity in the area dates to the rise of precious metal prices in the 1970s. Significant early events at this time were:

- * acquisition by Skyline Explorations of their property on Mt. Johnny near Bronson Creek in the Iskut in 1980
- * continued work by Esso Minerals on Granduc Mining's properties on Sulphurets Creek in the Unuk River area
- * re-organization of the Silbak-Premier property and participation by Westmin Resources Ltd.

Work on these properties led to the following reserves being published for the properties listed below as well as stimulating exploration activity in the area. This activity led to the definition drilling of the Snip deposit by Cominco/Prime, the reserves of which are also shown.

Company Deposit Area Short Tons Ref, Au Ag (oz/t)(oz/t) Cominco/Prime Snip Iskut 1,032,000 0.875 Note 1 Newhawk/Lacana West Zone Sulphurets 550,400 0,420 18.00 Note 2 Sulphurets Sulphurets 20,000,000 Note 3 0,08 Lake Zone Catear Gold Wedge Sulphurets 295,000 0.835 2.44 Note 4 Resources Westmin Silbak Silbak 5,770,000 2,06 g/t 86.3 g/t Stewart Note 1: News Release, Vancouver Stockwatch, November 7, 1988 Note 2: News Release, Northern Miner, February 19, 1990 Note 3: News Release, Vancouver Stockwatch, August 24, 1989

Note 4: Pers. Comm., Catear Resources

Between August, 1988 and July, 1990 Skyline Gold Corp. produced 210,000 tons grading 0.45 oz/ton Au (pers. comm., D. Yeager) from its Reg property.

These successes have generated extensive exploration activity in the area which has led to the discovery of a large number of mineral occurrences which are in a preliminary stage of evaluation. The most notable of these to date is on Tom MacKay's old Eskay Creek showings. The 1988/89/90 work on this project of Calpine/Stikine Resources indicates a major gold-silver-base metal mineral deposit of possible volcanogenic massive sulphide and epithermal affinity with a minimum strike length of 1800 metres. Some notable recent results on the project are:

DDH #CA 89-93 91.8 feet 0.453 oz/ton Au and 16.9 oz/ton Ag DDH #CA 89-109 682.2 feet 0.875 oz/ton Au and 0.97 oz/ton Ag including 62.3 feet 7.765 oz/ton Au and 1.35 oz/ton Ag

These intersections are considered to be close to the true width of the mineralization. A great many other excellent intersections have been

published by the companies and exploration is continuing with drilling and underground bulk sampling tests. Reserves based on this drilling indicate probable reserves of 4,364,000 tons grading 0.77 oz/ton Au and 29.12 oz/ton Ag (news release, September 14, 1990).

During the 1990 season American Fiber Corp./Consolidated Silver Butte intersected encouraging results in drilling on their adjoining claims south of Eskay Creek. Hole 90-30 returned 46.9 feet of 0.421 oz/ton Au and 30.91 oz/ton Ag (pers. comm. J. Bond, American Fiber).

Drilling on Gulf International Minerals' Northwest Zone near Newmont Lake has been ongoing between 1987 and 1990. A few of their more significant intersections are provided below (annual reports and news releases).

<u>Drill Hole</u>	<u>Interval</u> (feet)	<u>Length</u> (feet)	<u>Copper</u> (%)	<u>Silver</u> (oz/ton)	<u>Gold</u> (oz/ton)
87-25	343.0-373.0	30.0	0.23	0.11	0.404
	409.3-412.0	2.7	0.55	0.35	0,250
	470.2-473.8	3.6	0.42	0.19	1.520
87-29	167.0-170.0	3.0	0.001	0,01	0.140
	205.0-241.5	36.5	0.97	1,16	1.605
88-28	213.9-229.0	15.1	0.41	0.29	0.810
	260.5-276.6	16.1	0.24	0.29	0.645
	300.2-301.5	1.3	0.15	0.17	0.320
	330.1-338.9	8.9	1.99	0.31	0.340
	353.0-363.2	10,2	1.02	0.22	0.268

In September 1989 Bond International Gold Inc. announced initial drill results from their Red Mountain project. This project is located 20 kilometres east of Stewart. A 66 metre intersection on the Marc Zone reportedly graded 9.88 gm/tonne gold and 49.20 gm/tonne silver. On the Willoughby Gossan Zone a 20.5 metre intersection is reported as 24.98 gm/tonne gold and 184.2 gm/tonne silver.

A great many other companies active in the areas have released assays from preliminary trenching and/or drilling. Many of these show excellent values in gold, silver and base metals and it is anticipated that additional properties with mineral reserves of possible economic significance will emerge. Of recent interest in the area is the discovery in 1990 of a Kuroko-type polymetallic volcanogenic massive sulphide occurrence on Eurus Resource Corp./Thios Resources Inc.'s Rock & Roll project. Trench samples range up to 0.317 oz/ton Au, 100 oz/ton Ag, 8.15% Pb, 4.24% Zn and 0.65% Cu over 4.6 feet while in drilling a 31.7 foot intersection graded 0.80 oz/ton Au, 25.7 oz/ton Ag, 2.07% Pb, 5.35% Zn, 0.58% Cu.

The locations of a number of these occurrences are indicated in the accompanying figure. At this time these represent only a fraction of the reported results in this rapidly developing area.

5.0 REGIONAL GEOLOGY

The geology of the Iskut-Galore-Eskay-Sulphurets area has undergone considerable study in the past few years by industry, federal and provincial geologists (Figure 4). Much of this work stemmed from Grove's mapping of the Stewart Complex (Grove, 1969, 1970, 1973, 1982, 1987). Earliest geological mapping of the area was carried out by Kerr (1948) during the 1920s and 1930s although Operation Stikine undertaken by the Geological Survey of Canada in 1957 produced the first publications. R.G. Anderson of the Geological Survey of Canada is presently mapping the area covered within NTS 104B.

Grove defined a northwest trending assemblage of Upper Triassic and Jurassic volcanics and sedimentary rocks extending from Alice Arm in the south to the Iskut River in the north as the Stewart Complex. Paleozoic limestone and volcanics underlie the complex while Mesozoic to Tertiary aged intrusives cut the units. Tertiary felsic plutons forming the Coast Plutonic Complex bound the area to the west while clastic sediments of the Spatsizi and Bowser Lake Groups overlap on the east.

Age dating of mineralization within the various mining districts suggests a close cospatial and coeval relationship with late Triassic to early Jurassic volcanics and intrusives. This has directed exploration efforts toward these members.

A stratigraphic column of the area's lithologies is presented on the following page.

PALEOZOIC

Stikine Assemblage Volcanic and Sedimentary Rocks

Paleozoic Stikine assemblage rocks commonly occur as uplifted blocks associated with major intrusive bodies as exposed along the southwest flanks of Johnny Mountain and Zappa Mountain.

At the base of the Stikine assemblage stratigraphic column, at least four distinctive limestone members have been differentiated interlayered with mafic volcaniclastics, felsic crystal tuffs, pebble conglomerate and siliceous shale.

Mississippian rocks consist of thick-bedded limestone members interbedded with chert, pillowed basalt and epiclastic rocks.

Lower Permian units comprise thin- to thick-bedded corraline limestone interbedded with volcanic mafic to felsic volcanic flows, tuffs and volcaniclastics.

Stratigraphy of the Iskut River Area (after descriptions by R.G. Anderson and J.M. Logan)

Stratigraphy	Lithology	Comments	
BOWSER GROUP	,		
M. Jurassic	conglomerate, siltstone,	Successor basin	
	sandstone, shale		
	gradational to unconformable	<mark>.</mark>	
SPATSIZI GRO	02		
L. Jurassic	shale, tuff, limestone		
UATEL TOP CDO	unconformable		
R Incade io	ur .commi skalic/selo_elkolic	postrootional amont?	
E. JUI25510	coeval alkalic/calc-alkalic	Contractional events	
		ISIAM AIC IUCKS	
STURINI GROU	P		
L. Triassic	intrusions; mafic volcanic rocks in	extensional in western	
	the east, bimodal in the west	area	
	polymictic conglomerate basaltic to	no Triassic clasts;	
	andesitic volcanics (plagioclase	limestone clasts	
	and hormblende)	COMMON	
M. Triassic	sedimentary rocks		
	unconformable co	ntractional event	
STIKINE ASSE	MBLAGE		
Permian	thin bedded coralline to crystalline	volcanic units resemble	
	limestone (over 1000 m thick),	Hazelton Group rocks	
	fossiliferous; intermediate flows		
	and volcaniclastics		
F. Permian	rusty argillite		
	unconformable-		
	'siliceous' turbidite. felsic	extensional event	
	lapilli tuff		
Missis-	mafic meta- upper coralline	thick bedded	
sippian	volcanics and limestone and		
	metasediments conglomerate	limestone commonly	
	lower limestone	bioclastic, coarse	
	with tuff layers	crinoids, corals	
	unconformable		
E, Devonian	limestone; intermediate to felsic	contractional events;	
volcanics rocks highly deforme			

Plutonic Rocks - Coast Plutonic Complex

L. Tertiary	granodiorite, diorite, basalt	
E. Tertiary	quartz diorite, granodiorite, quartz monzonite, feldspar porphyry, granite	
M, Jurassic	quartz monzonite, feldspar porphyry, syenite	
L, Jurassic	diorite, syenodiorite, granite	
L. Triassic	diorite, quartz diorite, granodiorite	
? Not determined	quartz diorite, ?	
	Pamicon Devel	opinen

MESOZOIC

Stuhini Group Volcani and Sedimentary Rocks

Upper Triassic Stuhini Group volcanic and sedimentary rocks are characterized by a distinct facies change from bimodal mafic to felsic flows and tuffs interbedded with thick sections of limestone in the northwest to predominantly mafic volcanics with minor shale members in the southeast.

Hazelton Group Volcanic and Sedimentary Rocks

Lower Jurrasic Hazelton Group volcanic and sedimentary rocks predominantly occur in the southeast, northwest corners and central portions of the Galore-Iskut-Sulphurets area. Hazelton Group stratigraphy consists of the lowermost Unuk River Formation (Grove, 1986) comprised of mafic to intermediate volcanics with interbedded shale, argillite and greywacke sediments capped by feldspar porphyry flow; the Betty Creek Formation (Grove, 1986) overlying the Unuk River Formation consists of maroon and green volcanic conglomerate and breccia often containing diagnostic jasperoidal veins, with the youngest uppermost member of the Hazelton Group consisting of dacite to rhyolite, spherulitic rhyolite welded tuff and tuff breccia with basal sediments and upper pillow basalts correlative with Grove's (1986) Salmon River Formation and Alldrick's (1987) Mount Dilworth Formation.

Lower Jurassic volcanics of the area are commonly correlated with the Telkwa Formation of the Hazelton Group. A close spatial and coeval relationship has long been recognized (Alldrick, 1986, 1987 and others) between Lower Jurassic volcanism and early Jurassic intrusive activity and its metallogenic import ance in precious metal mineralization (Premier porphyry). Because of the relationship, lower members of the Hazelton Group are considered the most favourable targets for exploration.

Spatsizi Group Sedimentary Rocks

Spatsizi Group shales, tuffs and limestone of upper Lower and lower Middle Jurassic age overlie Hazelton Group rocks in the eastern part of the map area. Buff, sandy bivalve and belemnite fossil bearing limestone units decrease in abundance in the north parts of the area at the expense of shale. Here, black radiolarian-bearing siliceous shale alternately interbeds with white tuffs giving the units an informal name of 'pyjama beds'. This pyjama bed sequence serves as an important marker for identifying the favourable underlying Hazelton Group.

Bowser Group Sedimentary Rocks

Bowser Lake Group Middle and Upper Jurassic clastic sediments cover most of the northeast quadrant of the map area. Interbedded shale and greywacke units predominate in the south while thick-bedded shales dominate toward the north. Near the highlands toward the northern reaches of the Bowser Basin, basal chert-rich conglomerates identify the Bowser Group as an overlap assemblage.

CENOZOIC VOLCANIC ROCKS

Recent mafic flows and ash of the Hoodoo Formation, Iskut Formation and Lava Fork Formation cap specific areas within the region.

PLUTONIC ROCKS

The Coast Plutonic Complex, forming the western boundary of the Stewart Complex, is generally characterized by felsic Tertiary plutons. Late Triassic Stuhini Group and Early Jurassic Hazelton Group plutonic styles suggest coeval and cospatial relationships with surrounding volcanics via distinctive porphyritic dykes such as the Premier Porphyry. Tertiary Coast Complex plutons lack these dykes and volcanic equivalents.

11

Pamicon Developments Ltd. -

6.0 PROPERTY GEOLOGY

As reported in the March, 1990 Geological Report on the Gab 5 Mineral Claim by Todoruk, a general understanding of the geological environment in the vicinity of the Gab 5 claim was taken from provincial government geological mapping carried out in 1989 (Open File 1990-2 by J.M. Logan, V.M. Koyanagi, J.R. Drobe). More recent work by the BCMEMPR consisting chiefly of fossil age dating has indicated that a structural package marked by the McLymont Fault on the west and a similarly prominent northeast trending structural lineament 3 km to the east defines what is now termed the McLymont Graben. This graben is portrayed as a broad synform from which at its lower topographical elevations south of Newmont Lake has yielded latest Upper Triassic aged conodonts.

Northward, on the north shores of Newmont Lake, a thick succession of crystal tuffs, volcanic sandstone, dark grey to black algal limestone and andesite breccia flows occurs from which more than ten attempts were made at various locations to retrieve conodonts or radiolarian fossils for age dating purposes. No noticeable fossils were present suggesting this package of rocks signifies an age of early Jurassic (pers. comm, J.M. Logan, BCMEMPR) and consequently correlative to rocks of the Betty Creek Formation seen elsewhere in the Iskut River Camp to the east.

Also found higher up section and to the north are rocks of felsic volcanic composition and again are being contemplated as correlative to the Mount Dillworth Formation which is spatially associated with the world class polymetallic Eskay Creek volcanogenic massive sulphide deposit 35 km to the southeast.

Early Jurassic monzonite plugs intrude these rocks to the east, west and north.

Geological mapping carried out on the Gab 5 claim in 1990 was focussed in the area of the northeast corner of the property around the anomalous As-Zn soil

LEGEND		
HATERNARY .		
Ry ALCONTVOLONICE		
Call Titl, ALLMAN		
·		
LAYERED ROCKS MIDDLE TO UPPER JURASSIC BOWSER LAKE GROUP		
JBP ANNA MOOD SHUL NO LOCALLY CROSSMOOD SHOTTAN TUMOTE COUPLETS	PERMIAN AND OLDER	
TURNED ON THINKS OF ANNALS OF A CONSIGNATION OF A CONSIGNATIONO OFFICIAL OFFICIA	Pros All Challenge of the All Challenge of the All Challenge of the Challenge of the All Chal	E GAEY TO LIGHT GAEEN AND SALCEOUS PHYLLITE AN HITE SALCEOUS TURBOITE ETHLITIONANT
IRASSIC	FE LANSTONE MORISTALLERS, THE MOOID TO MONT OF	MACHEN MASSINE, WHITE TO
Ju DRADNOED SEDARENTS AND YOLGANICS	The AMO TO ALSO AFTANOLOWICS AND UNDITON UND	SET: WARMEN POLINTED TO
Jw BROCHITO AND CANCEL MACTURED DARK OWER AND DARK SECTORS SETTIMES	LOWER DEVONIAN	
CONSIGNITY CONTAINING CLASS OF DIGHT, BLACK SETTIDIE, AND INTERMEDIATE TO VELSO VOLCHINGS (Jung)	IDc OMPANIED COMMENT AMERICAN STATEMENT	MAKE CONDUCTION
DOLE(7) JURASSIC		
mJvb Drigt Midtan dery to garter Allow Basict, Localit Amidou doal, PLAGOCLASE Prime, PLIDY BARDON RUNS AND R.DW BARDONS, MINLOCLASTIE.	INTRUSIVE ROCKS	
INVESTIGATION ALTOWARD BLOCK OF HAIT SUCCOUS 1043 AND STOMEWES		12 12
WER(7) JURASSIC		
Lip //ISSE/, THEY AROUND, SETSTONY AND SUMPTIONY WITH CURRONATOUT WOOD PRECEDENTS, DRIVELY CONSCIONATION CONTRACTORY VECONSCI SECONDATION AND LINESTON CURSTS.	HONEY DEMONSTRATE OF ANY DEMONST	O AND OCELANS
LT BROWNEN GREY LANELY AND GREETAL TUPY, MICOUTE CRISTAL TUPY AND LESSER /LOWS	JURASSIC AND YOUNCER(7)	
UPPER TRASSIC STURING ROUP	And the downer, whe counse to weak answer, processor powerse, Lists convolution to the back of the work count for the structure of the county and the structure for the structure of the structure of the structure of the for the structure of the structure of the structure of the for the structure of the structure of the structure of the for the structure of the structure of the structure of the for the structure of the structure of the structure of the for the structure of the structure of the structure of the structure of the for the structure of the structure of the structure of the structure of the for the structure of the str	SALAA TO OLIAATZ ETE GITTUENT, OLIAATZ PATIALLY ALLATED TO
UTS UNDINGED YOLCHINGS AND SEDMENTS	DT TANKO TTWORNER OF TTWORNER TO AN TTWO TON'S TWO TO	HIDEN GRUNTD
UTS W HANCOW AND GREEN PLAGOCLASE AND LESSIN AUGITE PHYSIC LAPLU TO BLOCK TUP'S AND ASSOCIATED EPICLASTICS	OLOTS, BOTTE WHERE MUSIN'S AND GRAVED AND LESS TWO	TS PLACENT,
UTSY MANOON AND GALLY PORPHISTIC KXCANE ALOW BALCONS, PLACEDASI-PHYSIC (FE-6): ALGED VIEW (FE-6)	Jd KOWNELINGE DOWT, HOWNELINGE OWNEL HOWNEL COMPRESS HORE THAN 49 HERCEN OF THE ROOK	NOT IS CHLORING AND
UTSL GARGAGEN ANNATIC TUP	MIDDLE(7) JURASSIC	
UTS# SHITCH PLOT AND LIFE LAND WAR AND LAND THE AND CALCULATED	Jell DOWNT TO GAMANO GOART GAANTO, DOCURS AT INDUCT AN DOWNTY, DAY CAMANO, DOCURS AND	SALLS PLAGOOLAST
PALEOZOIC STIRINE ASSEMBLAGE	EARLY JURASSIC	
Pu - ENDWOLD METADOLONICS AND METASEDMENTS	NOTIFIC AND A LADOCASE FORMULING MOREOWIT; COCUME /	S DINES SALS AND
WESTERWI ASSEMBLAGE	Internet Are Conney, Sincing & Michael A. 1990	ATTY PAR SUBARDAR TO CRITITALS, TRADITIC
PENNGA	e.jg HOMMELENCE MOTIFIE POEASSIAN / ELECTIVE MEGACHISTIC GAMA	rng,
	AGE UNKNOWN .	· • 7
PH SALENCE LASTON LASTON AND AND AND AND AND AND AND AND AND AN	ed HOWING CONTR DOWT: HEDEN GANNED, LOCALLY FOLD CONTRACT MARCULA MARC HOLISONS (JP TO 100 CENTRALING	TED AND ALTERED. SJ OF AND HEROLITEL
Pc2 ALGA: LANTITION: DIRACAMONITID, DARK GAPT TO IKACK LOCALITYTTO, WEATHERS BARY, MODULE ACH MILE AND LEGARIT SINCED CONCINE ALGA: STRUCTURES COMMON	d ALTERED DOWT	
Pro NONNELING PLACOCIASE PORMINES MOISTE MEDIA INC. LONG LONGET	DYKES & AMINUC ANDESTE AND BASALE AN INVIC PLADOCLASS MININ & MICLIEVANUSE	S & LAWRING MINIE
PINEDIT DALDHITE KOCULAR KOWINLIKK CRISTALE WARCON LAWA AND LAYLU TUY	·	
Pet additional program with prevint writeholds with an additional additionadditional additional additional additional add		
Peg THCK MEDCEL AND LOCALLY ASUMDANT Peg THCK MEDCEL, BOXLDCR TO HEBBLE CONCLONERATE, CLASTE AND AUGUST MINNES	MAD SYLING C	
MISSISSIPPIAN - PENNSYL VANIAN	NOV SIMULS	
Mas SLTETCHE SANGETONE TRANSITIES AND LESSER CHERTE		
Lie Deckelooki Caedoki Calculati with ettempoliti Sciole Scitterer	Geological contact (delined, approximate, assumed)	
	Unconformable contact (defined, assumed)	
	Bedding (horizontal, inclined, overturned)	× "/ "
MIX WAS TO PRIMALIDATE SOCIALIZED AND THAT SUCCESS DUE TOPS AND EPICLASTICS PARTY ATTOMICATE TO PLESS ASH FLOW AND HELDED TOPS PARTY	Fault (observed, interred)	- 7
Mine Weitzlich weitzliche scollz, die weitzlich weitweitz in der Auflichen weitzlich w	Thrust or high angle reverse fault (defined, assumed)	
MAR WARNER WARNER WAR AND THE WARDER ATTER DEAMS FROM THE DEAMS FR	Anticline (direction of plunge indicated)	_ +-+-
EASTERNEASSEMBLAGE	Syncline (direction of plunge indicated)	
PERMIAN	Minor fold axis	- >
Pte DEVOLUTIONED ON OWNED TRAVE AND INTRACE CANCEL INTERADOLD TRAVACTORS AND SECTORS SATURDARS AND MARKKINS THE MODED MORTSTALLERD LAMESTORES.	Dvke	
PE IMPTICAL BOOLASTIC ACCAMANTED AT ANY TALLET ANT TO ANY SAASTLY CHARGE CALCAMANTE INCOLUCIAL'S COMPLETELY ACCIDENTIAL STO TO CASE	Vein	2
CALCHE	Outcrop visited	«
	1 · · · · · · · · · · · · · · · · · · ·	

E Ċ Ε 100000010 -----

• • •

* *** * *#*

11111111

(*) 14

÷

The second secon

÷

– Pamicon Developments Ltd. ––

geochemical signatures. Mapping completed along cut and chained grid lines is depicted in Figure 8 of this report. A northwest trending unit of thinly laminated, dark grey to black limestone forms a prominent set of cliffs along the east ends of the grid lines. Stratigraphically below the limestone is a poorly sorted (pebble to boulder) polymictic conglomerate, a purple and green fragmental andesitic lithic tuff, bluish grey plagioclase porphyritic crystal tuff with minor dark grey to black and fine grained siltstone/fine ash tuff.

7.0 GEOCHEMISTRY AND MINERALIZATION

During 1990, a total of 682 soil samples and 13 rock samples were collected from the Gab 5 claim. Of this, 271 soils were collected from contour traverse lines in the area and upslope of L100/25+00N to L100/35+00N where values obtained in 1989 produced 39 samples greater than 100 ppm As ranging up to >2,000 ppm As and 18 samples greater than 200 ppm Zn ranging up to 2,494 ppm Zn. 1990 contour soil results for As + Zn are plotted on Figures 6 and 7 of this report. Values for Au are not plotted as the highest value is 40 ppb Au. However, these results are listed on the appropriate soil sheets appended to this report.

The results from the initial phase of this program verified prior sampling in this area and at this time it was decided to establish a cut and chained survey grid for control in trying to establish the source of this geochemical anomaly.

A baseline was oriented at 310° with crosslines run perpendicular to this at 100 metre intervals. The majority of crosslines were terminated at their northeast end at the base of steep limestone cliffs.

Figures 9 to 12 illustrate values for gold, silver, arsenic and zinc.

Soil samples were collected at 25 metre interval stations on survey lines. Samples were taken at depths varying from 5 to 75 cm and of B-C type horizon

material. The material was then stored at the Bronson Creek base camp and then shipped to Vangeochem Labs in Vancouver, B.C. A description of analytical procedures is appended to this report.

No showings of significance have been found on the property or associated with the widespread As-Zn soil anomaly to date. However, sample 91558 was collected from a limestone outcrop in the detailed grid area (Figure 8) and did produce geochemically anomalous values in gold, cadmium, arsenic and zinc as listed below:

Sample	Au	Cd	As	Zn
Number	(ppb)	(ppm)	(ррв)	(ppm)
91158	50	32,6	>2,000	4,018

An unidentifiable black mineral was noted within limonitic alteration and could possibly represent fine-grained sphalerite.

8.0 DISCUSSION AND CONCLUSIONS

Field work carried out on Kirby Energy Inc.'s Gab 5 mineral claim in 1990 has verified the presence of an extensive As-Zn soil anomaly initially discovered in 1989.

With new government geological interpretations of host stratigraphy age determinations in the Newmont Lake area (i.e. the McLymont Graben) as being of early Jurassic age, it is possible to better suggest soil anomalies of the As-Zn gendre are more attributable to a volcanogenic massive sulphide depositional model as compared to skarn or limestone replacement varieties. In western North America there is a very poor correlation between As (and As \pm Zn) and Au in known skarn and replacement type deposits. However, this association is present in several VMS type ore bodies including the only two deposits of this nature in the Iskut River, the Eskay Creek deposit 35 km to the southeast and the Black Dog deposit 27 km to the southwest.

Pamicon Developments Ltd.

Continued evaluation of the Gab 5 mineral claim is strongly recommended for 1991 with continued geological mapping and sampling, grid expansion, soil geochemistry and geophysical surveying which should include VLF-EM/magnetometer, IP and horizontal loop surveys.

Respectfully submitted,

S.L. Todoruk, Geologist

C.K. Ikona, P.Eng.

APPENDIX I

BIBLIOGRAPHY

. . . .

BIBLIOGRAPHY

- Alldrick, D.J., J.K. Mortensen, and R.L. Armstrong (1986): Uranium-Lead Age Determinations in the Stewart Area; <u>in</u> Geological Fieldwork, 1985, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 217-218.
- Alldrick, D.J. (1987): Geology and Mineral Deposits of the Salmon River Valley, Stewart Area, NTS 104A and 104B; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File Map 1987-22.
- Alldrick, D.J., J.M. Britton, M.E. Maclean, K.D. Hancock, B.A. Fletcher and S.N. Hiebert (1990): Geology and Mineral Deposits of the Snippaker Area (NTS 104B/6E, 7W, 10W, 11E), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File 1990-16.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia; <u>in</u> Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.
- Britton, J.M., I.C.L. Webster and D.J. Alldrick (1989): Unuk Map Area (1048/7E, 8W, 9W, 10E), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 198, Paper 1989-1, pages 241-250.
- Bilodeau, P.J. and C.K. Ikona (1989): Geological Report on the Rob 15 & 16 Mineral Claims.
- Calpine Resources Inc.: News Release, Vancouver Stockwatch, December 13, 1988.

Costin, C.P. (1973): Assessment Report 4150, Dirk Claims, Newmont.

- Clendenan, A.D. and P. Holbeck (1982): Report on Geology and Geochemistry of the Hoodoo Claim Group, Kerr Addison Mines Ltd., BCDM Geological Branch Assessment Report No. 11,331.
- de Carle, R.J. (1988): Report on a Combined Helicopter-Borne Magnetic, Electromagnetic and VLF Survey. Iskut River Area, Liard Mining Division, British Columbia.

Delaware Resources Corp.: Progress Report, Snip Prospect, November 19, 1987.

- Delaware Resources Corp.: News Release, Vancouver Stockwatch, November 11, 1988.
- Delaware Resources Corp.: News Release, Vancouver Stockwatch, January 16, 1989.
- Dewonck, Bernard (1990): Summary Report on Avondale Resources Inc. Forrest Project.

Equity Preservation Corp. (1988): Stewart-Sulphurets-Iskut Map Handbook.

- Eurus Resources Corp. and Thios Resources Inc.: News release dated February 18, 1991.
- Franklin, J.M., J.W. Lydon and D.F. Sangster (1981): Volcanic-Associated Massive Sulphide Deposits, Economic Geology, 75th Anniversary Volume, pp 485-627.
- Fraser, R.J. (1984): Report on Geology, Geophysics, Rock Trenching and Sampling Hoodoo Claim Group, Kerr Addison Mines Ltd., BCDM Geological Branch Assessment Report No. 12,614.

Gulf International Minerals Ltd.: Annual Report, 1987.

Gulf International Minerals Ltd.: Annual Report, February 1988.

Gulf International Minerals Ltd.: Annual Report, February 1991.

- Grove, E.W. (1968): Unuk River, Annual Report, Ministry of Mines and Petroleum Resources, British Columbia, p. 45-46.
- Grove, E.W. (1972): Geology and Mineral Deposits of the Stewart Area; B.C. Department of Mines and Petroleum Resources, Bulletin 58.
- Grove, E.W. (1973): Detailed Geological Studies in the Stewart Complex, Northwestern British Columbia, Ph.D. Thesis, McGill University.
- Grove, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas; Ministry of Energy, Mines and Petroleum Resources.
- Grove, E.W. (1985): Geological Report and Work Proposal on the Skyline Explorations Ltd. Incl Property.
- Grove, E.W. (1986): Geological Report, Exploration and Development Proposal on the Skyline Explorations Ltd. Reg Property.
- Grove, E.W. (1987): Geology and Mineral Deposits of the Unuk River, Salmon River, and Anyox Map Areas; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.
- Holbeck, P. (1983): Report on the Geology and Geochemistry of the Hoodoo West Claim Group, Kerr Addison Mines Ltd., BCDM Geological Branch Assessment Report No. 12,220.
- Kerr, F.A. (1948): Lower Stikine and Western Iskut River Areas, British Columbia, GSC, Memoir 246, 94 pages.

- Kiesman, W. and C.K. Ikona (1989): Geological Report on the Gab 7, 8 & 10 Mineral Claims.
- Kowalchuk, J. (1982): Assessment Report 10,418, Warrior Claims, Dupont Exploration,
- Lefebure, D.V. and M.H. Gunning (1987): Exploration in British Columbia 1987, in press, B.C. Geological Survey Branch publication.
- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990): Geology of the Forrest Kerr Creek Area, Northwestern British Columbia (104B/15); British Columbia Geological Survey, Geological Fieldwork 1989, Paper 1990-1, p. 127-139.
- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990): Geology and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern B.C., British Columbia Geological Survey Open File 1990-2.
- Ohmoto, H. and B.J. Skinner, ed. (1983): The Kuroko and Related Volcanogenic Massive Sulphide Deposits, Economic Geology Monograph 5.

Skyline Explorations Ltd.: Annual Report, 1987.

Skyline Explorations Ltd.: Annual Report, 1988.

- Souther, J.G., D.A. Brew and A.V. Okulitch (1979): Geology of the Iskut River, GSC Map 1418A.
- Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Gab 11 & 12 Mineral Claims and Stu 8 & 9 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1987): 1987 Summary Report on the Sky 4 & 5 and Spray 1 & 2 Claims.

4

Pamicon Developments Ltd. -

- Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Stu 4 & 5 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1988): Geological Report on the Forrest 1-15 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Kerr 1-6 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Gab 9 Mineral Claim.
- Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Gab 11 & 12, Mon 1 & 2, Wei & Zel, Stu 8 & 9 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Stu 4 & 5 and NWG 6 & 7 Mineral Claims.
- Todoruk, S.L., C.K. Ikona and M.A. Stammers (1990): Summary of 1989 Exploration, Forrest 1-15 Mineral Claims.
- Webster, I.C.L. and W.J. McMillan (1990): Structural Interpretation of Radar Imaging in Sulphurets-Unuk-Iskut River Area (NTS 104B), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File 1990-7.

Western Canadian Mining Corp.: News release dated November 12, 1987.

APPENDIX II

COST STATEMENT

COST STATEMENT

KIRBY ENERGY INC.

GAB 5 MINERAL CLAIM

LIARD MINING DIVISION

JULY 1, 1990 TO OCTOBER 31, 1990

WAGES

Manager/Coordinator		
K. Milledge - 4 days @ \$250.00	\$ 1,000.00	
Geologists		
S. Todoruk (Senior Geologist)		
- 2.5 days @ \$400.00	1,000.00	
R. Darney (Senior Geologist)		
-1 day (0.5400.00)	400.00	
R, Gernardt (Field Geologist)	205 00	
- 1 day (\$325.00 L. Vensing (Right Conlogist)	325,00	
-45 days 0 \$325.00	1 461 50	
- 4.5 days e 9525.00	1,402.00	
Prospectors		
E. Debock - 1,5 days @ \$300.00	450.00	
N. Debock - 1 day @ \$300,00	300,00	
J. Anderson - 2 days @ \$300.00	600,00	
W. Wiggins - 2 days @ \$250.00	500,00	
Samplers/Core Splitters		
P. Hoffman - 7 days \$225.00	1.575.00	
T. Montgomery - 3 days @ \$225.00	675.00	
K. Russell - 3 days @ \$225.00	675.00	
E. Munroe - 4 days @ \$225.00	900.00	
B. McAdam - 4 days @ \$225,00	900.00	
B. Charlton - 1 day @ \$225.00	225.00	
C. O'Brien – 2 days @ \$225.00	450.00	
D. Flinn - 1 day @ \$225.00	225.00	
B. Lightle - 3 days @ \$225.00	675,00	
G. Douglas - 1 day @ \$225.00	225.00	
J. Elmore - 1 day @ \$225.00	225.00	
Surveyors		
Robert Allen & Company (legal surveyors)	3.446.21	
B. Lightle - 3 days @ \$250.00	750.00	
Line Cutters		
Gordon Clark & Associates - 27 days @ \$300.00	8,100.00	
Total Wages		\$ 25,083.61
Project Supervision		2.239.39
•		

- Pamicon Developments Ltd. -

CAMP AND EQUIPMENT EXPENSES								
Room and Board Pamicon Crew Line Cutters Helicopter Crew	51.5 days 27.0 days <u>9.0 days</u>	A 10 007 FO						
	81.5 days @ \$125.00	\$ 10,937,50						
Field Equipment and Sup	pplies	2,212.50	13,150.00					
GENERAL EXPENSES								
Travel, Accommodation a Space Tel Communication Fixed Wing Helicopter Freight Assays Survey Equipment Rental Map Reproductions Report	und Airfare IS	\$ 1,130.00 720.00 664.72 12,071.12 204.64 7,224.00 230.00 150.06 3,000.00	25.394.54					
TOTAL THIS PROGRAM			\$ 65,867.54					

2

APPENDIX III

ROCK SAMPLE DESCRIPTION FORMS

I AN N DEVELO AENTS LIMITED				Geochemical Data Sh/ - ROCK SAMPLING										
E Marca							NTS							
Sampler Li Paride				Project <u>Livey</u>			Location Ref							
Date July 24 70				Property 0,42 -5			Air Pholo No							<u> </u>
SAMPLE		SAMPLE	Sangio		DESCHIPTION						ASS	AYS	<u> </u>	
NQ.	COUNTION	TYPE	Whith	Dock Type	Altoration	Minoralization	ADDITION.	AL OBSERVATIONS	Hu	Hg	Ca %	As	22	[टन
91154	//00m	GRAB SAMPLE		GREEN (oloured : Volcanii	MANGANESE TUFE	> 1%	200 m	E Line	nd	40.1	10.00	35	35	4.3
91155		SAmple GRAG		1.		7140	1000/3	5-250N	Lad.	<0.1	Pho	723	50	84
	·	GRAB					9/1	54 or.	100					0.1
91156	1030 in	GAAB SAMple_		BIACK	none		300 m	South of	nd	20.1	>10.00	109	28	5.5
· ·····				- ·			41,55	•	.					
				· · ·				· · · · · · · · · · · · · · · · · · ·	•			· · 		
41158	B12(5 at 1018-	Grab.		Limestere	hi-onte.		patchy so	ell, resincus blac phalante? or they	~ <u>5</u> 0	<u>^0.[</u>	>10.00	> 2040	4018	32.6
9(159)	905524 in Ally Cale 5	grus		end esite?	g o ssanous	1-2-6	- Fron large		. 30	03	0.43	113	155	5.3
91160	()	grab			17	••	area in M	ul corner	20	<0,1	0.36	< 3	5.2 84	4.7
911.61	lj	9145		4	1r	4	of Gabs	· chin below	10	<0.1	687	63	79	2.7
91162	• . 	grab		4,		- 11	McLymont	Foult.	. 10	40.1	0.18	19	25	2.6
· · · · · · · · · · · · · · · · · · ·														
· · · · ·	··· ····· · ····	· · · · · ·		ĺ										
• • • • •														
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				I Contraction of the second se	1	• .	•••••		J		1 ·	din i Lin Gebadel I ander	1

.

FAMILUM		
DEVELO	JENTS	LIMITED

Geochemical Data Sh - ROCK SAMPLING

NTS	
Location Ref	
Air Photo No	

Sampler	A bor K E
Date	02/08/90

Project Kieby

SAMPLE SAMPLE		SAMPLE	Sample DESCRIPTION					ASSAYS						
NO. LOCATION TYPE	TYPE	Width Width	Rock Туре	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Ay	ng Ma	×	As	67	25		
	Gab 5-	Grap		· · · · · · · · ·				1	1		۱ ۳۳	fí –	¦ <u>}, ⊔</u>	
5644	11			Adasite	• <u>-</u>	non.	Pessible Suberget	2	i <0.1	0.84	478	187	70	
<u> </u>	"	11		Highty		Slight	01- 15- 50			0.73	22	49	102	
<u>~</u>				<u>al 1011 a</u>		Stight	- 14 11 - j	1		a 1 -	 	36		
		· · · · · · · · · · · · · · · · · · ·				2	130, 10,000		-0-1	.25	<u>ייי</u>	0.0	Γ¢Υ Γ	
											·	•		
	·	·					· · · · · · · · · · · · · · · · · · ·							
							· · · · · · · · · · · · · · · · · · ·					· -·· •		
				···								. 		
										• •				
July 25/9	0							···		•				
54351	Gab 5	Grah		dark grey	alate	none?	eleu = 1045 m.	nd	<0_	PN.00	972	7.2	141	
	· · · -	·····			<u>v current</u> y .	·····	··· · · · · · · · · · · · · · · · · ·							
Sant palac				_ / _			· · · · · · · · · · · · · · · · · · ·							
54.257	5540N	Coch		Ping phare	lingula	NEQ, duss		201	2	220	רע		71	
<u>94352</u>	50406			Xtal tote		Prickey	· · · · · · · · · · · · · · · · · · ·		2.0		11	0.10		
	·								-					
·							<u> </u>	-						

INHUTED RECONDER.
APPENDIX IV

ANALYTICAL PROCEDURES

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

November 21, 1990

- TO: Mr. Steve Todoruk PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, BC V6B 1N4
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Digestion

- (a) 5.00 to 10.00 grams of the minus 80-mesh portion of the samples were used. Samples were weighed out using an electronic micro-balance and deposited into beakers.
- (b) Using a 20 ml solution of Aqua Regia (3:1 solution of HCl to HNO3), each sample was vigorously digested over a hot plate.
- (c) The digested samples were filtered and the washed pulps were discarded. The filtrate was then reduced in volume to about 5 ml.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

-2-

VANGEOCHEM LAB LIMITED

- (d) Au complex ions were then extracted into a di-isobutyl ketone and thiourea medium (Anion exchange liquids "Aliquot 336").
- (e) Separatory funnels were used to separate the organic layer.
- 3. <u>Method of Detection</u>

The detection of Au was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out onto a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values, in parts per billion, were calculated by comparing them with a set of gold standards.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

1-14

Raymond Chan VANGEOCHEM LAB LIMITED

03/19/91	14:51	UGC
0012701	14.01	vuc.

NO, 728 P002/003

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

March 19, 1991

- TO: MY. Al Montgomery PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, BC V6B 1N4
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.
- 1. <u>Method of Sample Preparation</u>
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 0" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L, 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The gold is extracted by cupellation and parted with diluted nitric acid.
- (d) The gold beads are retained for subsequent measurement.
- 3. Method of Detection
 - (a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
 - (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
- 4. Analysts
 - The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

aonarth U

VANGEOCHEM LAB LIMITED

YANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L, 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

November 21, 1990

- TO: Mr. Steve Todoruk PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, BC V6B 1N4
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soll, silt or rock samples were received at the laboratory in high wet-strength, 4" X 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" dlameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2 <u>Method of Digestion</u>

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCl:HNO3:H2O in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

IGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

3. Method of Analyses

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disketts.

-2-

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOLIVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

February 22, 1991

- TO: Mr. Steve Todoruk PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings Street Vancouver, BC V6B 1N4
- FROM: VANGEOCHEM LAB LIMITED 1650 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine silver by fire assay method in geological samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were eccived at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in 8" x 12" plastic bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized into 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.
- 2. Method of Digestion
 - (a) 20.0 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into a fusion pot.
 - (b) A flux of litharge, soda ash, silica, borax, either flour or potassium nitrite was added. The samples were thoroughly mixed and then fused at 1900 degrees Fahrenheit to form a lead button.
 - (c) The silver was extracted by cupellation, weighed and parted with diluted nitric acid.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. VGL 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Calculation

The silver was calculated by the weigh loss of the bead and then parts per million (ppm) was calculated.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and the laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

February 22, 1991

- TO: Mr. Steve Todoruk PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings Street Vancouver, BC V6B 1N4
- FROM: VANGEOCHEM LAB LIMITED 1650 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine Cu, Pb and 2n assay samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.
- 2. <u>Method</u> of <u>Digestion</u>
 - (a) 0.200 gram portions of the minus 100 mesh samples were used. Samples were weighed out by using an analytical balance.
 - (b) Samples were digested in multi acids in volumetric flasks.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Analyses

Cu, Pb and Zn concentrations were determined using a Techtron Atomic Absorption Spectrophotometer Model AA5 with their respective hollow cathode lamps. The digested samples were directly aspirated into an air and acetylene mixture flame. The results, in parts per million, were calculated by comparing them to a set of standards used to calibrate the atomic absorption units.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and their laboratory staff.

R- 16

Raymond Chan VANGEOCHEM LAB LIMITED

APPENDIX V

ASSAY CERTIFICATES

_. . . .

1630 PANDORA	REET
VANCOUVER, BC	V5L 1L6
(604) 251-5656	

VANGEOCHEM LAB LIMITED

BRANCH OFFICES PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ONT. BENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIBNT: PAMICON DEVELOPMENTS LTD.
ADDRESS: 711 - 675 W. Hastings St.
: Vancouver, BC
: V6B 1N4DATE: AUG 13 1990
DATE: AUG 13 1990REPORTS: 900180 GA
JOBS: 900180

PROJECT#: KIRBY SAMPLES ARRIVED: AUG 03 1990 REPORT COMPLETED: AUG 13 1990 ANALYSED FOR: Au (FA/AAS) ICP INVOICE#: 900180 NA Total Samples: 5 Sample Type: 5 Rock Rejects: Saved

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

SIGNED: lyndly

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

1630 PANDORA STRELT VANCOUVER, BC V5L 1L6 (604) 251-5656

MAIN OFFICE -1988 TRIUMPH ST. -VANGOUVER: B.C. VSL-1K5. © (604) 251-5656 © FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

VGC VANGEOCHEM LAB LIMITED

● FAX (604) 2

PARICON DEVELOPMENTS 179.

PAGE 1 OF 1

I

REPORT	IVNBRE:	900130	61	308	NURBER :	\$\$\$1 88
SAMPLE	ŧ			ł.		
				ppb		
54351				đđ		
91154				ad		
91155				nd		
91156				nd		
91157				ađ		

VANGEOCHEM LA LIMITED

- ---

----1630 Pandora Streat, Vancouver, B.C. V51 116 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HKO2 to H20 at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ha, P, Sn, Sr and W.

ANALYST: Mymilia

REPORT &: 900180 PA	PANTCON DEV	ELOPHENT	S LTQ.			PROJE	CT: KLR81	t		DATE	IN: AU	6 03 1990	0 04	TE GUI: A	US 24 19	90	ATTENTION	I; KR. S1	TEVE TODO	RUK		PAG	E 16F	i –	
Sample Name	٨g	A 1	As	9a	Bí	Č2	Co	Ċo	Cr	Cu	Fe	ĸ	Ng	H n	No	Ra	Xi	P	Pb	Sb	Sn	Sr	U	W	lr.
	<u>ş</u> pa	2	pp#	ppe	pp+	ž	ppe	994	60 4	004	2	1	ĩ	ppm	ppe	7	ppe:	t	994	D0 B	pg a	<u>p</u> p∎	pps	994	pşe.
5(35)	(0,1	0.09	972	68	<3	>10.00	7.2	12	11	17	1.56	(0.0i	0.22	4595	26	(0.01	19	0.02	49	(2	5	407	5	<3	14
31154	(0, 1	1.01	35	645	(3	>10.00	4,3	13	14	25	1.67	0.16	0.46	1935	12	0.03	20	0.05	60	(2	9	184	<5	{3	35
91155	<0.1	1.29	223	486	93	>10.00	B. 4	20	28	40	2.22	0.24	0.71	2839	16	0.05	19	0.06	95	54	12	132	(5	(3	50
91156	(0.1	9.08	409	59	(3	010.00	5.5	6	11	26	0.47	(0.01	0.49	3991	15	0.03	22	0.02	62	<2	7	1452	(5	(3	28
91157	(0,1	0,47	363	42	8	1.21	10.0	18	120	41	3.35	9,20	0.20	427	32	0.05	19	0,04	119	62	15	54	(5	<3	56
			-																-	-					
Ninious Detection	0.1	0.01	3	1	3	0.01	0.(1	1	្រ	Q.QI	0.01	0.01	L	1	0.01	1	0.01	2	7	2	I.	3	3	6
Maximum Detection	50.0	10.00	2000	1000	L000	10.09	[000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater Ti	han Maxie	N B	is - Iasu	lficien	it Scepte	ns 1	- No Seep	le	AKONALOUS	s result	S - Furti	her Anal	yses Sy /	Alternat	e Kethod	s Sugges!	led.							

ł

1639 PANDORA STREET VANCOUVER, BC V5L 116 (604) 251-5658

FAX (604) 254-5717.

VANGEOCHEM LAB LIMITED

BRANCH OFFICES PASADENA. NFLD. BATHURST, N.B. MISSISSAUGA, ONT RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	PAMICON DEVELOPMENTS LTD.	DATE:	AUG 16	1990
ADDRESS:	711 - 675 W. Hastings St.			
:	Vancouver, BC	REPORT#:	900212	GA

PROJECT#:	KIRBY	
SAMPLES ARRIVED:	AUG 10 1990	
REPORT COMPLETED:	AUG 15 1990	
ANALYSED FOR:	Au (FA/AAS)	ICP

INVOICE#: 900212 NA TOTAL SAMPLES: 3 SAMPLE TYPE: 3 ROCK REJECTS: SAVED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Routh SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

1630 PANDORA STREET VANCOUVER, BC V5L 116 (604) 251-5656

VGC VANGEOCHEM LAB LIMITED

nð

nd

54402

54403

MAIN OFFICE 1988 TRIUMPH-ST.-VANCOUVER, B.C. V5L-1K5-(604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES

PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO. NEVADA, U.S.A.

J

REPORT NUMBER: 900212 (JOB NUNBER: 900212	PANICON DEVELOPMENTS LTD.	PAGE	1	OP	1
SANFLE #		Au					
54401	1	nd					

VANGEOCHEM LAI LIMITED

_____ 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Far: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with S ml of 3:1:2 HCl to HND, to HgO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ha, P, Sn, Sr and W.

													• •						ANAL	YST:		ly-	<u> / </u>		
REPORT \$; 900212 PA	PARICON DEV	VELOPKENT	IS LTD.			PROJE	CT: KIRS	٢		DATI	E 1N: AU	5 10 199) DA	TE OUT: .	AUG 29 14	9 90	AFTERTION	6 HQ. 51	IEVE TOOC	iruk		PAS	E 1.05	t	
Sample Name	Ag	Al	As	Ba	Bi	Ca	63	Co	Cr	ើរ	Fe	ĸ	Hg	Kn	Ko	Ma	Ni	Р	Pb	55	Sn	Sr	U	H	20
54401	(0.1	1.04	478	4p∎ 29	р <u>яя</u> {3	0,94	19.7	25	₽₽ ₽ }1000	рр е 38	1 5.23	Z 0_10	Z 0.45	9p∎ 580	ab∎ >1000	7 {0.01	008 7067	T. 0.03	арж 100	ррө (2	₽9 0 9	рри. 44	P94 5	pp∎ ≺3	₽ 9 ● 70
54402 54403	<0.1 <d.1< th=""><th>2.76 3.60</th><th>(3 55</th><th>609 270</th><th>(3 (3</th><th>0.23 0.25</th><th>4.9 3.6</th><th>8 01</th><th>48 50</th><th>15</th><th>4.62 3.63</th><th>0.15 0.23</th><th>2.07</th><th>968 770</th><th>32</th><th><0.01 <0.01</th><th>59 6</th><th>0,11</th><th>11</th><th>(2</th><th>10</th><th>23</th><th><s< th=""><th>(3</th><th>103</th></s<></th></d.1<>	2.76 3.60	(3 55	609 270	(3 (3	0.23 0.25	4.9 3.6	8 01	48 50	15	4.62 3.63	0.15 0.23	2.07	968 770	32	<0.01 <0.01	59 6	0,11	11	(2	10	23	<s< th=""><th>(3</th><th>103</th></s<>	(3	103
Rigiana Detection	A 1	A 61	1		2	0.01				-				,,,,				v	14	11	,	15		13	04
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	0.1 1000.0	20000	10001	1 200 0 0	0.0) 10.00	0.01 10.00	0.01 10.00	i 20000	i 1000	0.01 10.00	1 20000	0,01 10.00	2 200 0 0	2 2000	2 1000	100CO	5 100	3 1000	1 20030
(- Less Than Mintace	> - Greater II	han Naxir	19 6	is - (nsu	fficien	l Sample	e ns	- No Samp	ole	ANOHALOU	S RESULT	5 - Furti	ser Anal	yses By	Alternat	e Nethod	s Suggesl	ed.							

Routh

1630 PANDORA STRE ET
VANCOUVER, BC V5L 1L6
(604) 251-5656

VANGEOCHEM LAB LIMITED VANGEOCHEM LAB LIMITED • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

OBOCHEMICAL ANALYTICAL REPORT

PROJECT#: KIRBY SAMPLES ARRIVED: AUG 17 1990 REPORT COMPLETED: AUG 24 1990 ANALYSED FOR: AU (FA/AAS) ICP INVOICE#: 900257 NA TOTAL SAMPLES: 5 SAMPLE TYPE: 5 ROCK REJECTS: SAVED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC staff

Ray Man SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

1630 PANDORA STREET VANCOUVER, BC V5L 116 (804) 251-5656

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE -1980 TRIUMPH ST.--VANCOUVER, B.C. V5L-1K5-• (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES

PASADENA, NFLD, BATHURST, N.B MISSISSAUGA, ONT, RENO, NEVADA, U.S.A.

ļ

REPORT NUMBER: 30025	7 GA JOB NUMBER: 900257	PANICON DEVELOPHEETS LTD.	PAGE 1 OF 1
SAMPLE I	Au		
	ppb		
91158	50		
91159	30		
91160	20		
91161	10		
91162	10		

VANGEOCHEM LA LIMITED

و حدد خدة خدر عبر جور عبر حن خدة كار خلة خلو جور حاد خط خلا خلي الم -----1630 Pandora Street, Vancouver, B.C. V5L 1L6

Ph: (604)251-5656 Faz: (604)254-3717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HHO, to H₂O at 95 °C for 90 sinutes and is diluted to 10 ml with water. This Jeach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ka, P, Sm, Sr and W.

					Th	is Jeach	is part	ial for A	1, Ba, (Ca, Cr, f	'e, K, M	g, Mn, Ka	ι, Ρ, S π.	, Sr and	W.				ANAL	YST:	_4	M	h		
REPORT 1: 900257 PA	PAKICON DE	VELOPHEN	TS LTD.			PROJE	CI3 XIRB	Y		DATE	E EN: AU	6 17 1990	DA	TE OUT: S	ept 07 1	1990 :	ATTENTION	(1 MR. S)	TEVE TODO	ruk	•	246	E 1.0F	1	
Szaple Hane	Ág ora	61 T	As ann	Ba	Bi	Ca T	b3	Co	Çr	Co Co	۶e	K 7	tig T	Ma	No	Ka 1	Ki	P	Pb ope	St	Sn	Sr	i) Mar	¥	Zn
91158 91159	(0.1 0.3	0.17 0.95	>2000	30 48	(3	>10.00	32.6 5.3	19 22	36 83	20 41	7.51	(0.0) 1.03	0.35 0.21	3209 354	63 23	(0.0) (0.0)	25 10	0.01	369 203	24 19	18 20	563 32	(5 (5	27 (3	4018 155
91160 91161	(0,1 (0,1	2.00 2.22	(3 63	115 28	<3 <3	0.36 0.47	4.7	18 29	55 112	22 21	5.48 5.43	\$.00 0.79	0.97 0.64	292 368	19 20	(0.01 (0.01	11 7	0.20 0.15	91 74	(2 (2	20 14	23 73	<5 <5	(1 (1	84 79
91162	(0.1	0.33	19	LQ	<3	0,18	2.6	20	34	12	3.89	0.65	0.02	62	17	(0.01	(1	0.13	76	15	10	16	<5	(1	25
Minioum Detection Maximum Detection K - Less Tham Minioum	9.1 50.0) - Greater T	0.01 10.00 han Maxi	3 2000 #U#	i 1000 is - Insu	3 1000 [ficien	0.01 10.00 t Sample	0.1 1900.0	1 20000 - No Samp	1 1000 Je	1 20000 Anomalous	0.01 10.00 5 RESULT	0.01 10.00 S - Furti	0.01 10.00 Ner Anal	1 20000 yses 8y A	l 1000 Witernat	0.01 10.00 e Bethod	L 20000 s Sugges	0.01 10.00 ted.	2 20000	2 2000	2 1999	1 10000	5 100	3 1000	1 20000

.

111 .

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

.

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

DATE: OCT 01 1990

REPORT#: 900599 GA JOB#: 900599

INVOICE#: 900599 NA TOTAL SAMPLES: 1 SAMPLE TYPE: 1 ROCK REJECTS: SAVED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: KIRBY

SAMPLES ARRIVED: SEPT 27 1990

ANALYSED FOR: AU (FA/AAS) ICP

REPORT COMPLETED: OCT 01 1990

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

SIGNED: Kg-lL

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900599 GL	JOB KUNBER: 940599	PINICON DEVELOPMENTS LTD.	PAGE 1 OF 1
SANPLS I	<u>ku</u>		
54352	30 ·		

VANGEDCHEM LA. LIMITED

______ 1530 Pandora Street, Vancouver, B.C. V51 115 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 KC) to HNO3 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Kyrilh

.

REPORT 4: 900599 PA	PANLCON DE	YELOPHENT	IS LTD.			31029	CI: X128	ĭ		DAT	E IN: SEP	1 27 19	90 D/	NTE OUT: I	OCT 29 L	990	ATTENTIO	N: MR. S	TEYE TODO	RUK		PAG	É 1 of	1	
Sample Name	Ag	AL	As	8a	Bí	Ca	C 6	Co	Cr	Cu	Fe	ĸ	Mg	Ħn	fio	Ka	Ni	P	Pb	56	51	Sr	U	¥	Zn
	pp a	L	p o e	ppe	p p e	I	ppe.	phe	90e	pp e	ĭ	1	1	005	008	r	006	ĩ	000	008	004	000	008	00.6	0.08
54352	2.0	0.93	47	25	(3	0.25	0.6	11	61	B4	3,53	0.08	Ò. 18	354	л. П	0.07	15	0,07	301	28	(2	52	(5	(3	71
Minigus Detection	Ó. L	0.01	3	1	3	0.01	0.1	1			0.01	0.01	0.01			0.61		0.01	2	2	,	1	5	9	+
Maximum Detection	50.0	10.00	2000	1000	1000	10,00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10,00	20090	j0.00	20000	2000	1000	10000	100	1600	20000
(- Less Than Ninioun) - Greater i	ihan Maxis	DUN	is - Insu	Ificien	t Sample	45	- No Samp	le	AMONALOU	s results	6 - Furt	ber Anal	yses By .	Alternat	e Nethod	s Sugges	ted.							

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B, MISSISSAUGA, ONT RENO, NEVADA, U.S.A,

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 ~ 675 W. Hastings St. : Vancouver, BC : V6B 1N4 DATE: JULY 20 1990

REPORT#: 900109 GA JOB#: 900109

INVOICE#: 900109 NA TOTAL SAMPLES: 55 SAMPLE TYPE: 55 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CREEK COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: KIRBY

SAMPLES ARRIVED: JULY 17 1990

ANALYSED FOR: AU (FA/AAS) ICP

REPORT COMPLETED: JULY 20 1990

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

longton SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD F. PENNER.

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N B MISSISSAUGA, ONT. RENO, NEVADA, U S.A.

I

REPORT NUMBER: 90010	9 GA JOB NUMBER: 900109	PANICOL BEVELOPMENTS LTD.	PAGE 1 OF
SAMPLE #	Ao		
	ppb		
L1050 000W	20		
L1050 025#	30		
L1050 050¥	20		
L1050 075W	10		
L1058 100N	10		
L1050 1258	20		
L1050 150N	10		
L1050 175W	nd		
L1050 200M	bā		
L1050 225W	nd		
L1D50 250%	ba		
G1050 275N	D.C.		
L1050 300W	20		
L1050 325N	20		
61050 35DW	20		
1.1308พ	16		
t.t100w 025w	10		
111000 8500	nd		
11100W 035W	nd		
51100H 0754 5.1100X 100N	กป		
211000 1000			
L1100N 125N	ad		
E1100N 150N	10		
L1100x 175x	20		
11100N 200N	bл		
L1100W 225W	ba		
	- 1		
511000 2000 511460 2054	ng - 2		
L11900 2000	60 1.0		
FITON JACK FITON 2008	10		
LI1008 3208 111008 3509	UL		
PTTAAW 2200	20		
L1100# 375N	10		
LIIDON 400B	ba		
L1100W 425W	nd		
L1100# 450W	20		
L1100H 475N	10		
(1100B 500D	د.		
BIIVUM DUUR Tiiddy Cocy	D0 - 2		
011000 TCD9	DD		
LIIUUA 3305 1100w 5260			
PITAAN 242M	DA		
DETECTION LINIT	5		
	-		

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A

REPORT	NUMBER: 900109 GA	JOB WUNBER; 90	00109	PINICON	DEVELOPMENTS	LTD.	PACE	2	0 7	2
SAMPLE	F	30								
		ppb								
L1100M	600N	ba								
61100N	625N	20								
611088	650 R	10								
C1100M	6758	nd								
61100M	70DN	nd								
11100F	7258	nđ								
L1100M	750N	nð								
L1100W	1758	nd								
LIIOON	800N	nd								
L1100M	825 0	15								
111000	850N	30								
61100M	875 5	20								
L1100N	900N	10								
L1100N	9258	10								
L11008	950N	10								
LIIDON	975N	20								

1938 Trillaph Street, Vancouver, 1, VSL 185 Ph: (604)251-5556 Fax: (664)254-57:7

ICAP GEOCHEMICAL ANALYSES

A US grea sample is signated with S wi of 3:1:2 K(l to HMCs to HsO at 95° C for 90 elevites and is diluted to 10 m). This leach is partial for 40, 29, Ca, Cr, Fe, K, Ng, So, Na, P, So, Sv and N.

REPORT \$1 900109 P4	PAN	CON DEVE	COPHENTS	LTO.		2803F	CT: KIP	BA			DATE	TN: JUCY	17 1390	DATE	CUT: JU	LY 23 19	90 AT	TENT DOR:	MP. STEV	S TODONS	K,		9465	1 OF 2	
Sample Wame LLOSO DOON	Ag 9 9 4 1 B	41 7 2.10	Α: pp+ 1£?	92 908 85	8: pp# {3	C: 7 .67	99 999 2.9	ου 1944 5	Cr ppe 11	00 \$94 13	fe % }.45	К Х .0:	Mg 2 .7A	Mr: 294 493	s bu Vû	Na Z .01	Ni PSA 8	ہ - 12	РЬ 225 17	55 295 (2	5n gp⇔ jl	Sr Fat S	U P ps KS	3 8 8	Zn pça 9)
1.1050 0253/	.1	4.11	162	48	$\langle 2 \rangle$.05	2.7	14	16	25	2.94	.01	. 33	795	11	.01	3	. 69	7	$-\Omega$	18	7	<5	11	123
11050 0508		3.68	175	70	13	.11	2.9	17	14	71	3. 27	. 62	50	3233	4	.01	10	.07	22	C.	14	11	C	7	:61
11050 0755		2 67	207	212	22	24	7.5	.5		4.4	3 01	04	52	16466	, ,	ns.	12	19	22	12	13	32	0	à	360
		2.67	200	100	10		5.6		12	60	3.9.	6.2	60	7740	10	.00	12	17	с. С	,5	19	14	15	5	136
L1030 100M	• 1	4157	a21	136	12	10	2.2	.)	72	31	3.03	102		1140	1	.01	12	.12	Ð	.2	11	15	12	Ċ.	./.
£1050 125N	.2	4,42	254	122	(3	.12	6.6	14	LS .	39	4.63	.02	. 30	19551	11	.01	10	. 13	21	<2	15	4	(5	3	258
11050 LSON	• 3	5.63	112	29	3	.03	5.7	5	12	22	3.34	-01	.12	2479	14	.02	- 1		Ω	Ω	17	2	0	3	139
1 1050 175N	.2	3.24	1062	131	(3	. 67	4.1	ş	ાંહ	16	4.16	.01	3Ú.	1533	30	.01	6	. 05	20	(2	17	5	11	(3	378
L1050 200N	.1	5,95	83	71	(3	. 15	2.1	4	11	13	4.17	.01	.04	722	13	.01	5	.04	(2	- (2	19	2	75	.2	116
11050 22SN	-1	2,06	755	43	(2	. 04	3.3	3	11	4	5.55	.0:	. 19	2519	5 2	. 06	5	. 67	58	13	13	Ę	(5	1	:13
L1050 250N	.!	3.24	505	30	(3	. 02	3.4	÷0	19	19	4,47	.0)	.26	1724	18	.05	9	.04	74	0	16	7	۲5	13	228
L1950 2758	.1	4,21	1081	59	(3	.96	5.3	:4	15	33	4.30	.61		5.	25	.14	7	.12	47	. 2	- 11	5	(5)	(3	420
11050 2008		5,00	96.0	129	3	.06	5.7	9	13	27	5.37	.01	1.01	17175	15	.10	11	90	(2	72	14	5	75		268
11050 S25N		3.64	1996	202	13		17.4	£	:0	1	1 15	05		17502	19	51	g	12	199		9	6	.5	1	20:26
11050 350N		3.28	186	34	3	. 07	4.2	10	20	23	7.89	.0:	.32	815	12	.07	13	. () =	33	12	17	É	75	Ē	191
11100N 000N	. 1	2.76	437	34	(3	. 05	2.9	8	9	27	4.18	.ÓL	.29	311	R	.04	4	.05	25	\$2	14	7	(S	(3	46
		101	764	10	12		1.5	ů	ú	21	2 02	, e . () ,	10	/10	10	62	4	05	10	10		i.		12	
111000 0200		4.00	150	162	/2	.04 00		A0	10	50	2.32 3.57		42	100000	7	102	15	.0.0	, U D	1.5		- ÷		13	515
LIJUUN USUN	P.	4,91	159	163	· 4	. 177	234C			30	2.07	,01		720009	1	.13	1.	.05	-	12			1.5	20	0-0
11100N 075M	.7	3,30	125	55	(3	.02	2.1		14	15	3.13	, Ģ I	.74	931	9	.03	1	.05	15	<u>(</u>	14	1		1.5	82
LIIDON ICON	-1		92	19	(3	.02	1.2	5	15	16	3,35	.QI	.11	711	13	.Q:	5	,05	(2	32	16	2	5	12	92
C1100N 1254	.3	3.31	286	191	(3	. 06	3.0	31	15	26	3.EI	.01	.35	7385	12	.05	13	.07	12	(2	13	5	(5	(3	185
L1100N 150N	- 2	2.61	78	34	G	, 03	1.8	6	10	10	3,49	.01	.43	1000	7	.05	6	.07	Q	(2	12	4	C (S	(3	1
11100N 175X	.1	1.57	320	44	(3	.05	2.5	9	13	12	2.68	.0:	. 36	3316	7	, QZ	Б	.10	22	< <u>2</u>	3	4	(5	10	61
L1100N 200N	.2	2.32	1998	63	(3	. 06	4.2	9	13	17	4,85	.01	. 19	6073	24	. 09	8	.11	62	- (2	13	4	(5	(3	341
L1100N 225N	.3	2.83	161	70	(3	. 06	2,1	7	15	11	2.32	,05	. 26	475	10	. 01	7	• 1 <u>0</u>	74	(2	15	,	<5	<3	91
L1100N 250N	.1	1.03	12	35	(3	. 02	.6	4	8	7	.76	.01	.08	85	4	.01	3	.03	22	<2	10	5	<5	<3	28
11100N 275N	.2	1.17	264	35	< 3	. 05	2.4)	36	12	3,96	.01	.14	166	11	101	10	. 04	50	<2	17	6	- <5	- (3	61
L1100N 300A	э,	3,80	272	19	(3	.04	1.5	10	16	22	3.39	.01	.11	2684	۱4	.02	7	.07	23	(5	18	3	<5	<3	- 151
L1100N 325W	.2	4,10	145	10	(3	.03	3.0	5	13	14	4.97	.01	. 65	896	17	.01	7	.06	39	(2	21	1	15	- {3	14
L1190N 350K	.1	2,76	333	34	13	.04	4.0	1	;4	u	7.24	.01	.06	3204	20	.05	7	· 10	4 9	(2	19	2	(5	(3	10
11100N 375W	.1	4.64	237	22	73	.04	2.6	В	17	14	6.47	,01	.15	695	23	,03	6	, 06	39	12	20	2	(5	(3	a
11100M 400M	.1	2.48)2000	54	(3	.02	4.6	30	11	21	5.96	. 61	. 15	3864	18	. 10	9	. 68	21	17	13	3	(5	3	24'
11100N 425N	.1	1.30	844	167	(2	. 3	2.8	5	8	Ø	5,46	. 02	. 22	5983		.08	. 8	. 11	25	<2	3	27	<5	(3	16
LLIGON ASON	2	2.25	100	20	12	05	37	9	15	- 15	5 33	61	17	1571		62	0	•1	26	(2	17	Ę	(5	(3	7
E1100% 475N	.3	4,24	104	34	G	.05	2.0	É	13	14	4.31	.01	. 11	580	13	.01	5	.05	:5	(2	19	3	(5	(3	11
11000 5000	1	760	200		17	63	1.	,	. 1	. 7	5 14	A.(.,	1284			,					e		/5	÷
LEIVEN JOON LEIVEN JOON		2.64	377	17		,07 63	2.1	10	1. 17	10	3.39		. 15	1634	14		1	. 19		24	13	G	13		,
LIIV(4 3250		2.34	238	4/	(j	.07	2,5	18	1/	19	4,96	.01	,15	6393	23	¥2	10	• • •	Jr.	(2	19	4	• 5	14	25
F1160M 220K		1.97	332	247	-3	.37	3,8	17	<u>)</u> 4	19	3,23	, 0é	, 50	8407	20	,08	8	.14	29	Ω	9	15	(5	G	76
L1100N 5758	, 4	3.07	729	192	(3	.16	3,5	25	12	20	4.87	.03	.23	14832	28	.13	. 9	. 10	59	(2	13	6	¥5	(3	40
Minimum Detection	0. j	0.01	3	1	3	0.05	¢.1	1	i	1	0.01	é.01	0.01	1	t	0.01	ł	0.01	2	2	2	í	5	3	
Maximum Detection	50,0	10,00	2009	1000	1000	10,00	1000, 0	20000	1000	20000	10.00	10.00	10,00	20090	1000	10,00	20000	19,09	20000	2000	1000	0000	100	1000	2060
< - Less Than Hintmum) - Ar	eater Th	ал Катыно	• i:	s - însu	ffiçient	Sancie.	n s -	No Samp	le A	NÚHAL OUS	PESU TS	- Forth	er Analy	ises Bv A	tere at a	Hettods	Stoners	p.K						

Second Control (Control (Contro) (Contro) (Control (Control (Contro) (Control (Contro) (Contro) (

1CAP GEOCHEMICAL ANALYSES

A iS gram sample is digested with S mt of Sill2 HCH to HSD, to HgD at 959 C for 30 minutes and is colluted to 10 mT with water. For S fact the partial for AD, Ba, Ca, Cr, For K, Mg, Mn, Ha, P, So, Sr and W.

ANALYST: Runnh

.

REPORT 4: 900109 PA	PAN	ICON DEVI	ELOPHENTS	.⊺8.		FR01	IECT: KD	RBY			DATE	TN: DECY	17 1990) DATE	007) N	:L¥ 25 :1	990 A	TENTION	MR. STE	65 10 060	UK.		2 4 9E	2 05 2	
Sample Name	۶g	AL	As	Ва	Bi	(a	65	(p	٢	Cu	īe.	ĸ	Hg	H:	• •	Na	Ni	P	fo	Sb	Sc	Sr	บ	N	2 a
	ppa.	2	ppa 🛛	ppo	pas.	2	ppe	p2 s	p3•	224	2	ž	· 1	0\$ C	5 <u>07.</u>	2	623	3	ppe	201	P.D.	22 4	op∉	20 0	ppa
L1100N 500M	(0.1	3.07	883	213	(3	. 17	2.4	16	17	17	4.11	.02	. 63	3212	18	. 64	12	. 20	€0	18	11	13	:5	10	249
L1100N 625N	(0.1	2.91	265	147	(3	.07	2.2	13	13	59	3,40	.51	.51	2389	11	.02	7	.15	44	7	10	٤	< <u>5</u>	< 3	156
L1100N 650N	<0.1	1.93	83	215	<3	.22	2.0	14	11	14	3,02	.03	.41	3390	5	.02	9	.17	42	2	8	19	2 5	0	133
£1100N 6758	.3	2.48	46)	144	(3	. 09	2.7	23	14	32	4,53	.01	.35	5492	22	.04	90	. 91	7 5	6	10	10	(5	(3	229
L1100K 700N	. 2	2,68	193	(57	(3	.14	2.6	16	21	:9	5.01	.01	.31	3406	(B	. \$2	12	. 15	66	16	14	27	(5	73	123
L11008 7258	.3	1.60	36	65	(3	.04	1.4	7	13	14	2.78	.05	. 14	463	10	.01	6	.05	35	72	i¢	ę	< 5	(3	65
L1100K 759N	.2	2.44	.7	Ĩ.	4	. 05	3.2	7	18	2ŭ	8.56	, 01	. 24	275	14	.03	ių	. 67	78	28	15	8	75	10	63
L1100W 775%	. I	4.15	98	101	<3	. 25	1.6	17	18	26	3.65	, 04	. 38	1239	17	.01	9	. 14	48	12	12	14	<5	<3	98
1110en 800x	- 1	7.63	49	47	(3	. 03	1.5	2	13	11	3.09	. 01	, 12	117	9	.0:	5	.05	45	<2	10	4	<5	(3	39
L1100X 825X	.1	5.85	450	299	G	.22	1.7	:3	27	17	4.54	.11	.24	:984	35	. 91	13	. 20	É4	25	19	36	(5	7	198
L1100% 850%	.3	2.37	\$7	30	<2	. R E	1.7	8	16	24	3, 82	.01	. 03	172	12	.01	8	.05	72	:7	29	5	(5	<3	58
L1100N 875S	(0,1	1.04	23	26	<2	. 05	.7	\$	10	11	1.93	. 01	. 10	95	ę	. 91	S	.02	26	(2	7	6	15	(2	36
11100M 900x	.1	2.89	46	49	(2	.02	1.5	1	14	:4	2.70	.0)	.21	78	9	. 35	7	.02	29	3	£1	21	(5	(3	37
C1100K 905X	.3	3.18	\$8	24 -	4	.07	1.8	5	21	18	5.75	.01	.30	206	:0	.47	11	.08	47	:5	12	50	<5	6	51
11100% \$59#	,9	3.18	50	42	73	,05	3.	5	3:	:5	2,53	.01	.9	319	ε	31	5	.07	20	Q	14	9	(5	(?	66
L11008 575N	.5	3.25	143	59	6	.45	1.4	4	16	19	4,78	. 01	. 25	174	ė	.03	7	. 64	39	4	10	4	⟨5	(3	55
Ainiaus Detection	0,3	0.01	3	L	3	0.01	0.1	1	1	1	0,01	0,61	0.01	t	•	0.0}	1	6.01	2	2	2	:	5	3	1
Xaxious Detection	50.0	10.00	2000	1000	(900	10,00	1000.0	20000	1000	20000	10,60	19.90	10.00	20000	1000	\$6.00	20040	10.00	20090	2000	3000	10000	100	1060	20000
(- Less Than Minjaum) - Er	sater 3h	an Kaxino	a :5	- Insu	Profest	Sample	25 -	No Saep]€ Å	NONALOUS	RESOLTS	- Furth	er Analy	ses fy s	ternate	e Pethods	Suggest	eć	-					

PROJECT#: KIRBY

SAMPLES ARRIVED: JULY 30 1990

ANALYSED FOR: Au (FA/AAS) ICP

COPY SENT TO: PAMICON DEVELOPMENTS LTD.

SAMPLES FROM: BRONSON CAMP

REPORT COMPLETED: AUG 13 1990

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ON1. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD.DATE: AUG 13 1990ADDRESS: 711 - 675 W. Hastings St..: Vancouver, BC.: V6B 1N4.DATE: AUG 13 1990...<

INVOICE#: 900159 NA TOTAL SAMPLES: 147 SAMPLE TYPE: 147 SOIL REJECTS: DISCARDED

....

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Ryand ha SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

∜GC

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B C V5I 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

I

REPORT NUMBER	: \$00159 GE JOB NUMBER:	: 900159 Panicon	DEVELOPHENTS LTD.	PAGE 1 OF 4
SAMPLE #	۸u			
	քքե			
L1100 000N	bn			
L1100 0259	pa			
L1100 050W	20			
L1100 075N	20			
L1100 1000	ba			
L1100 125W	þđ			
13180 150M	ba			
L1100 175N	ba			
L1100 200W	ba			
L1100 225 8	DĞ			
L1100 250W	ba			
L1100 275 0	рą			
LE100 300W	ad			
61100 J258	od			
L1100 350 6	ađ			
L1100 3750	nd			
L1106 4000	ba			
L1100 425M	nd			
L1100 450M	nđ			
L1100 475W	ad			
L1100 500M	nd			
L1100 525W	ba			
L1100 550M	ba			
L1100 575M	2d			
11100 600 m	20			
L1100 625M	20			
L1100 \$50W	bđ			
L11DO 6750	od			
L1100 700M	nć			
61100 725W	28			
L1100 750N	ad			
L1100 775N	ba			
L1100 775WA	ad			
G1180 8008	ba			
L1100 \$25N	nd			
L1100 850W	20			
E1180 875W	nd			
L1100 900N	pq			
.1100 925W	40			
BISCIICN LIN	17 5		_	
nd ≠ none det	ected •• = not analysed	is = insufficient	sample	

∜GC

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT BUMBER: 90015	9 GL JOB NUKBRR: 90015	9 PARICON DEVELOPMENTS LTD.	PAGE 2 OF 4
SAMPLE \$	λt		
	ppb		
L1100 950R	20		
61100 9750	40		
L1100 1000M	Бa		
L1109 10258	bđ		
L1100 1050¥	nd		
L1100 1075#	nd		
L1100 1100M	nđ		
L1100 1125W	nd		
L1100 1150M	ba		
L110D 1175M	40		
11190 1200W	ad		
L1100 12250	nð		
L1120 000H	ba		
L1120 025W	nd		
L1120 ¢50N	nd		
L1120 075N	nd		
L1120 100N	nd		
L3120 1258	nd		
L1120 150N	nd		
L1120 1758	nà		
L1120 200N	nd		
L1120 225¥	bd		
L1120 250M	20		
L1120 275M	20		
L1120 300K	ad		
L1120 3258	ba		
L1120 350B	nd		
L1120 375M	ba		
L1120 400M	ba		
L1120 4258	۵ð		
G1120 450N	ba		
L1120 475 8	nd		
L1120 500M	ba		
L3120 5258	ba		
11120 550 X	nd		
L1120 575x	nd		
L1120 600N	ba		
G1120 625N	nd		
L1120 650X	nd		
DETECTION LINIT	5		
ad = nome detected	= not analysed i	s = insufficient sample	

VANGEOCHEM LAB LIMITED

٧G

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 ● (604) 251-5656 ● FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUXBER: 9001	59 GA JOB NUMBER: 9001	59 PANICON DEVELOPMENTS LTD.	PAGE 3 OF 4
SAMPLE #	hu		
	ppb		
L1120 675N	ba		
L1120 700B	40		
L1120 725W	40		
L1120 7558	40		
L1120 8000	20		
L1120 825M	20		
L1120 850W	bđ		
L1120 875M	nd		
L1120 900W	ađ		
L1120 9258	nd		
L1120 950N	ba		
11120 975m	nd		
L1120 1000W	 nd		
1120 10258	nđ		
L1120 1050N	40		
£3170 1075¥	20		
11120 11408	28		
11100 11958 [1100 1175#	zv ad		
11120 11208 11120 11508	ed.		
51120 11308 79190 11760	20 70		
01120 1173 <u>8</u>	UU		
L1120 1200M	od		
L1120 1225X	20		
L1120 12508	ba		
L1120 12758	ba		
L1230 000X	ba		
L1230 025W	ba		
L1230 0508	bd		
L1230 D75K	ba		
L1230 100M	20		
L1230 1258	Ъå		
L1230 150K	ba		
11230 175m	nd		
L1230 700¥	ba		
L1230 225 0	nd		
L1238 250M	ad		
L1230 275N	bđ		
L1230 308N	ać		
11230 325 0	ba		
L1230 350M	ad		
DETECTION LINIT	5		
nd = none detected	= not analysed i	s = insufficient sample	

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT	NUNBER:	900159 GA	JOB	NUKBER:	900159	PLUICON	DEVELOPHERTS	LTD.	PACR	ł	0 ?	4
SAMPLE	ŧ		Åa									
			ppb									
L1230	3758		bđ									
L1230	40 D H		nd									
L1230	425N		nd									
L1230	450B		nd									
L1230	4758		20									
L1230	SAAN		10									
11236	525W		ad ba									
L1230	5508		ba ba									
11730	5750		มน กล้									
11230	600N		nd									
L1230	6258		ba									
L1230	650H		ba									
L1230	675N		20									
L1230	700 6		nd									
L1230	725N		ađ									
1.1230	750m		nd									
11230	7758		nð									
L1230	80 DE		nd									
L1730	8258		ad									
61230	850H		ba									
1220	41CU											
11230 11230	075H 906W		DU 6a									
11230	370M 83CM		цц • А									
11720	267N 9502		50 50									
11230	0008		nu nd									
01690 1			W4									
61230 1	0258		nd									
L1230 1	050N		ba									
61230 1	0758		nd									
L1230 1	180N		₽₫									
11230 1	1258		ba									

AUG 24 1000	
	Ľ

ICAP GEOCHEMICAL ANALYSIS

1630 Pandora Street, Vancouver, b.c. V5L 116 Ph: (604)251-5656 Fast (604)254-5717

REPORT 1: 900159 PA	PANICON DEV	ELOPHENT	IS LTD.			PROJEC	T: KIRBY			DATE	IN: JUL	Y 30 199	0 DAT	TE QUT: A	UG 21 19	90 A	TTENT10H	: MR. ST	EVE TODOR	luk		PAGE	1 OF	4	
Sample Nape	Ag Ogđ	A) I	As gpt	Ba poe	Bi ppe	Ca Z	C d D D D	Co DD6	ÚT DDe	Cu Dae	Fe 1	ĸ	Mg I	Kn pas	No Dan	Ma Z	Nj OD u	P X	Pb ad∎	Sb dpa	Sn DDM	S⊤ ØD∎	비	N OD a	Zn ope
11100 000N	9.2	3.68	88	90	(3	0.12	7.4	10	14	36	5.59	0.10	0.28	5929	14	0.06	17	0.15	75	67	13	<i>"</i> ;	7	113	263
L1100 025N	0.3	3.17	<3	53	(3	0.10	3.8	9	13	33	5.22	0.03	0.32	810	8	0.04	12	0.11	48	33	12	12	(5	97	83
(1100 050N	0.5	2.65	G	21	(3	0.05	3.1	É	13	42	4.05	0.04	0.09	301	11	0.02	5	0.10	54	27	IR		7	89	72
11100 0158	6.2	7 14	10	55	13	A 06	3.2	č	2	26	5 49	6.02	0 10	26.72	G'	0.05		A 11	64	87	15	2	، د	247	180
	V.Z	7.62	72	12	10	0.00	3.4	0 5	2	30	5 05	V.05	0.10	676	,	0.03	-	6 11	09 76	61	10	3	75	155	118
C1100 100M	0,4	1.05	(3	15	13	V. V4	2.3	4	3	26	3.83	(0.01	0.07	6/V	,	0.05	,	V. 11	n	22	,	1	13	203	118
11100 125N	0.1	5.01	(3	34	(3	0.08	5.2	7	9	45	5.12	0.02	0.20	461	10	0.03	8	0.13	87	72	13	6	<5	162	134
L1103 150N	0.1	6.02	(3	50	(3	0.06	4.8	8	•	33	5.79	0.06	0.15	1627	10	0.05	9	0.08	75	93	11	3	<\$	198	227
LI100 175N	0.1	4.01	178	55	<3	0.09	8.2	17	13	52	5.10	0.09	0.47	4205	11	0.04	18	0.16	72	11	9	10	7	128	174
L1100 200N	0.3	4.11	56	31	<3	0.05	5.9	10	51	35	4.48	0.10	0.17	675	13	0.02	9	0.12	75	80	9	6	(5	131	- 111
L1100 225N	(0.1	2,60	60	24	(3	0.03	4.6	8	12	36	4.25	0.05	0.14	615	13	0.01	6	0.06	61	45	14	4	8	79	60
L1100 250N	(0.1	3,14	483	119	<3	0.09	9.4	19	7	44	4,65	0.03	0.63	10298	13	0.08	в	0.10	63	22	9	10	16	97	308
L1100 275N	0.2	4.24	(3	24	(3	0.05	7.2	8	11	33	7.07	0.03	0.10	925	11	0.04	6	0.08	60	68	15	6	6	137	86
11100 3000	(0.1	6.09	(3	11	9	0.03	3.7	1	4	34	5.38	(0.01	0.05	703	9	0.03	4	0.07	67	78	13	1	- (5	204	80
11100 3258	0.2	6.14	ä	is	á	0.02	2.7	ĩ	5	22	5.92	(0.6)	30.0	474	á	0.04	,	6.13	56	44	13	ż	65	205	7:
L1100 350N	(0.1	4.54	61	36	(3	0.08	3.8	. 9	9	42	4.93	(0.01	0.36	1698	2	0.06	5	0.12	(9	30	10	9	6	147	168
11110 0754	• •	2.07	12	10	/7					10	7 10		A 60				,	A 11				2	5	141	03
LITON JUN	0.2	3.26	13	12	(3	0,04	1.8	3	11	33	1.13	0.02	0.09	461	18	0.03	6	V.11	69	01	17	3	ن. م.	101	03
L1200 400N	0.5	5.22	(3	18	14	0.04	Ч. Б	6		21	5.26	0,04	0.15	502	8	0.03	6	0.11	58	13	5	2	0	1/1	19
L1100 425N	9.1	4.30	365	89	(3	0.08	7.6	15	11	43	4,78	0.08	0,90	6765	20	0,06	14	0.10	64	66	7	10	(5	131	250
L1100 450N	(0.1	4.32	384	336	<3	0.64	11.7	18	10	- 41	5.05	0.11	0.70	>20000	20	0.06	13	0,14	66	73	9	- 44	5	138	284
L1100 475N	(0.1	3.88	264	35	<3	0.07	7.3	14	11	49	5.49	0,05	0.39	6024	18	0.05	9	0.11	65	62	12	7	6	120	155
L1100 500N	(0.1	3.43	142	27	(3	0.09	4,4	8	17	39	2.97	(0.01	0.36	1273	11	0.03	17	0.09	51	29	12	ß	5	112	129
LL100 525N	(0.1	6.14	>2000	55	(3	0.05	17.1	7	13	48	5.60	0.08	0.17	3407	11	0.09	7	0.17	69	84	15	3	6	204	478
L1100 550N	(0.1	6.84	<3	20	<3	0.02	4.7	3	5	33	5.79	0.02	0.07	625	11	0.03	5	0.09	75	102	11	- (1	9	229	101
L1100 575N	(0.1	5.65	198	23	{3	0.05	6.6	8	9	46	5,93	0.09	0.13	1540	21	0.03		Ó,08	79	98	12	3	12	190	132
L1100 600N	(0,1	2,55	182	30	(3	0.02	9.2	1	15	44	9,45	0.09	0,10	1305	21	0.05	8	0.10	84	79	14	4	<5	75	91
LL100 625M	(0.1	7.78	15	30	(3	6.64	5.7	9	,	46	6.44	0.13	0.15	2648	15	0.03	7	0.11	96	159	9	3	7	258	153
11100 6500	(0.1	3 67	(3	14	(3	0.04	6.R	ę.	15	51	7.14	0.14	0.13	713	19	0.02	10	0.09	90	99	17	2	8	RA	111
11100 6158	101	3 54	66	74	73	0 04	1 7	12	ĩ	27	4 02	0.14	0 42	996	ő	0.02	10	0.09	72	62	10	â	6	114	144
11100 700N	(0.)	1 50	5	29	/2	0 0.2	1 6			23	1 50	0.07	0.12	010		/0.01	2	A A9	40	12		7	25	47	
L1100 725N	(0.1	4.13	35	82	(3	0.07	2.6	5	S	18	3.12	0.04	0.19	697	5	0.02	ŝ	0.11	45	35	6	5	ĩ	137	97
11100 7500	76.1	3 75	/2	01	/7	0.07	3.1				2 62		0.10	1000	10	6 62	F	A 11	20	12	٥		75	72	51
L1600 735V	10.1	2.33	() AF	30	13	0.03	1.1		3		2, 98	0.04	0.18	1080	10	0.02	1	6.15	50	14	;			140	157
	sq. 1	3.78	32	33	(3	0.11	3.6	10	Y	28	3.78	0.06	0.45	1880	11	0.04	5	0.13	31	26	0	12		113	137
LILUY BUNN	KU. 1	5.02	(3	63	(3	0.07	3.5	Ç	1	31	3.99	0.11	0.11	244	17	(0.01	b	0.10	63	/4	3	3	11	161	BL
L1100 875%	<0.1	3.17	30	39	(3	0.06	3.6	8	11	46	3.74	0.14	0,18	298	25	(0.01	2	0.11	66	47	11	1	10	96	[0]
L1300 800K	(0.1	3.33	686	41	(3	0.01	11.4	12	11	45	6.25	0.15	0.13	8174	29	0.02	6	0.08	70	84	9	2	6	97	80
L1100 B75N	(0.1	3.25	860	37	<3	0.02	12.1	13	17	59	6.74	0,16	0,20	2339	24	0,05	7	0.08	85	84	13	4	10	98	312
L1500 900N	(0,1	3.62	303	73	(3	0.04	7.5	10	6	42	4.41	0.13	0,30	8291	19	0.07	7	0.08	85	55	11	5	10	115	383
11100 925N	(0.1	4.07	378	64	(3	0.03	5.9	9	8	38	3.32	0.11	0.37	6617	7	0.07	7	0.08	77	49	,	5	9	130	355
L1100 950N	(0.1	1,99	135	40	(3	(0.01	1.5	3	5	18	3.04	0.07	0.20	389	5	(0.01	3	0.05	42	8	8	2	10	59	56
Kinimua Detection Maximum Detection	0.1 50.0	0.01 10.00	3 20 0 0	1 1000	3 1000	0.01 10.09	0.1 1090.0	1 20000	1 1000	1 20000	0.01 10.00	0.01	0.01 10.00	1 20000	1 1000	0.01 10.00	1 20000	0.01 J0.00	2 20000	2 2000	2 1000	ا 00001	5 100	3 1000	1 2000(
C. Const. These Miniputes	S. Center F	Sec. 8-17	a	in . Tari		Courte		. Wo Co	1 -	LYDY AL DU	e opein t	C . C	har hard	tener De J	******	Nothed	e Connel	had had							

1630 Pandora Street, Vancouver, b.u. VSL 11.6

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with 5 ml of 3:1:2 HCl to HHD, to H_D at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for At, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Junth

	REPORT 4: 900159 PA	PANICON DE	VELOPMEN	IS LTD.			PRDJE	CT: KIRBY	I		DATE	IN: JUL	Y 30 199	O DA	TE OUT: A	AUG 21 19	190 1	ATTENTION	: KR, ST	EVE TODOR	RUK		PA6 8	2 OF	4	
	Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Ċu	Fe	ĸ	Hg	Ko	No	Ka	Wi	P	Рь	Sb	Sn	Sr	U	¥	2n
		ppe	1	pg .	ppe	pp i	1	ppa o o	9 p e	₽₽∎	ppm	1	۱ ۲	2	ppe	poe	1	pg #	L 0.00	₽₽ ₽	ppm	ppe	ppe	op a	ope 27	ppe.
	L1100 9/5N	(0,1	2.11	931	20	(3	0.05	3.3	1		1/0	4.51	0.05	0.26	691	10	0.0Z	15	0.08	b/ 70	33	8	5	<p< td=""><td>bi</td><td>32</td></p<>	bi	32
	L1100 1000N	(0,1	2.65	1272	76	()	U, 84	13.7	, ,	11	35	3,84	0.05	0.18	/264	13	0.08	3	0,12	/8	21	1	3	(3	55	403
	L1100 1025N	(0,]	2.57	1134	21	<3	0,03	13.7	1	1	21	3,96	0.01	0.10	7284	65	0.06	9	0.09	73	34	4		(5	64	3/1
	L1100 1050N	(0.1	5.29	23	30	<3	0.05	6.4	δ	8	35	5.42	0.12	0.12	1361	19	0.02	8	0.13	93	123	8	4	(5	166	163
	L1100 1075N	0,3	3,34	1449	210	(3	0,06	24,8	16	10	42	5.35	0,11	0.21	>26000	48	0.14	14	0.14	364	75	5	5	(5	83	885
	L1100 1100N	(0.1	3.72	820	166	(3	0.08	14.8	17	18	46	6.91	0.15	0,24	17648	21	0.07	20	0.13	% I	88	9	8	<5	95	345
	L1100 1125N	(0.1	2.34	>2000	459	(3	1.48	39.5	20	11	50	7.87	0.17	0.32)20000	102	0.29	23	0.27	204	89	8	47	(5	54	1637
	L1100 1150N	(0.1	4.02	454	112	23	0.23	10.6	10	11	33	4.79	0.10	0.29	4499	16	0.04	17	0.35	70	65	8	16	(5	107	196
	L1100 1175N	0.3	3.83	(3	52	(3	0.08	5.4	6	11	27	4.18	0.06	0.32	644	9	0.03	13	0.09	46	33	9	9	<5	103	113
	L1100 1200M	0.2	1.39	31	107	(3	0.11	4.6	4	9	15	2.09	0.06	0.20	1199	8	0.01	15	0.07	20	(2	10	12	{5	36	67
	L1100 1225N	0.8	2.48	(3	135	(3	0.14	4.3	3	10	20	3.67	0.03	0.24	606	9	0.03	15	Ú. 08	29	<2	9	15	(5	65	80
	L1100 1250N	A5	45	ns	ńs	05	ns	£	ns	ns	05	ns	٨S	ns	ns	65	65	65	N5	N 5	65	15	ns	∏S	NS	ns.
	L1120 000N	0.2	2.48	7	57	(3	0,16	5.7	\$	14	29	3.87	0.07	0.31	811	10	0.03	19	0.08	47	13	8	15	(5	62	104
1	L1120 025N	0.3	7.68	(3	29	<3	0.07	4.4	- A	6	20	4.43	0.12	0.08	392	9	0.01	16	0.13	87	121	5	5	(5	212	125
-	L1120 050N	0.4	3.09	<3	29	(3	0.07	7.4	5	15	26	5.04	0.14	0.18	843	14	0.02	23	0.11	52	50	9	8	<5	80	92
	L1120 075N	0.2	4.32	35	30	(3	0.09	6.3	6	12	34	4.33	0.15	0.23	1287	13	0.02	20	0.12	73	70	6	8	(5	112	158
2	L1120 L00N	0.5	2.62	110	50	(3	0.09	6.9	E	15	28	4.94	0.17	0.44	1196	13	0.02	23	0.16	57	41	9	60	۲)	65	98
	L1120 125M	0.1	5.03	(3	13	(3	0.07	6.0	(1	10	21	4.98	0.14	0.08	331	13	(0.0)	21	0.09	68	76	10	5	(5	133	81
	L1120 150N	(0,1	2.15	3	31	(3	0.08	4.3	3	12	25	2.03	0.12	0.14	555	7	(0.01	21	0.09	41	(2	12	8	(5	60	81
	LU120 175N	(0.1	1.17	38	40	4	0.11	4.1	(1	9	í	t.82	0.09	0.15	149	6	0.01	19	0.04	15	<2	9	10	(5	30	69
	L1520 200N	(0,1	2, 13	34	45	(3	0.13	5.6	2	20	17	5,25	0.07	0.33	542	10	0.03	41	0.08	36	8	8	13	<5	52	76
	L1120 225N	(0.1	4.39	24	36	(3	0.10	4.5	3	11	19	2.99	0.11	0.26	1253	7	0.02	22	0.10	51	37	7	10	(5	116	123
	LE120 250N	(0.1	6.11	75	41	(3	0.10	6.4	5	19	31	4.51	0.12	0.41	370	12	0.03	28	0.10	67	56	8	11	(5	107	163
	L1120 275N	0.3	4.30	(3	31	(3	0.12	4.9	3	12	20	4.12	0.16	0.19	824	12	0.01	27	0.03	73	74	8	10	(5	114	129
	L1120 300N	0.2	6.80	<3	18	(3	0.10	6.3	2	10	25	6.23	0.19	0.15	509	14	0.02	26	0.14	93	127	13	,	<5	183	151
	L1120 325N	0.3	3.24	(3	18	(3	0.09	6.5	ι	17	26	5.21	0.13	0.10	827	13	(0.0)	25	0.09	66	59	14	7	۲۵	81	111
	L1120 350N	0.3	3.58	13	97	<3	0.12	6.6	G	9	19	4.70	0.11	0.21	1214	12	0.02	30	0.07	47	49	12	9	(5	36	207
ĺ	L1120 3758	0.3	4.32	5	40	<3	0.11	5.4	(1	10	19	4.45	0.10	0.27	1380	12	0.03	31	0.13	53	59	13	9	<5	116	153
i	L1120 400H	0.2	3.71	460	91	(3	0.11	11.3	7	10	27	4.75	0.11	0.54	7807	15	0.07	34	0.07	51	35]1	12	<5	9 9	400
	L1120 4258	0.3	5.85	179	56	(3	0.14	9.1	2	11	25	5.64	0.12	0.30	3375	14	0.06	34	0.16	11	87	13	12	<5	160	380
	L1120 450N	0.2	1.71	>2000	161	(3	0.21	29.5	5	11	21	5.96	0.12	0.33	8128	35	0.15	35	0.11	11	47	,	15	<5	39	879
	L1120 475K	0,1	3.13	1362	124	15	0.14	18.8	5	15	21	5.74	0.15	0.73	\$526	25	0.12	39	0.14	96	89	,	13	(5	76	733
	L1120 500N	0.2	6.21	10	24	(3	0.10	6.6	(1	11	13	5.12	0.18	0.11	1291	16	(0.01	35	0.08	94	129	9	6	(5	164	158
	L1120 525N	0.3	4.61	705	149	0	0.26	15.0	2	10	15	5.66	0.20	0.49	10611	16	6.64	37	0.10	76	89	· 11	19	(5	118	353
	L1120 550N	0.2	5.53	935	241	(3	0,18	16.8	1	10	12	6.16	0.13	0.40)20000	17	0.09	40	0.16	74	98	10	13	(5	146	603
	L1120 575N	6.2	2 75	254	140	12	6.10	11 7	4	15	10	5.04	A 11	6 24	10201	14	0 40	27	ń 14	14	47	16	14	75	106	513
	L1120 600W	V.1	1 04	170	45	10	0.14	07	21	6	17	4 87	A 11	v) (1.50	2104	14	6 05	37	0 10	11	77 61		., ,,	15	120	313
	11120 6258	V.9 I E	7.07	112	21	13	A 13	0.3 Z A		T IZ	12	7.Df	0.15	V.23	3180	10	0.03	10	A 62	1	24	13	,	75	130	414
	L1120 650W	0.5	3.42	33 73	51	(3	0.15	6.1	2	16	23	4.50	0.13	0.38	2468	12	0.02	40	0.12	60	56	, 8	15	(5	89	49
	Miniaux Antochian		6.01	'n		,	e 61			1	,	0 41	0.04	0.01		,	0 AI		<u>Λ</u> Δ1	,	2	,	ı		,	
	Maximum Detection	411 EA A	10 00	2000	1000	1000	10.01	1000 0	1	1000	20000	10.00	10.01	10.01	10000	1000	10.00	1	10 00	20000	2000	4 1000	10000	100	1000	20000
			- P -	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00		10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
VANGEOCHEM LAP LIMITED

ant i

=;

MUNICES & REPORTS

1630 Pandora Street, Vancouver, ... V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with S ml of 3:1:2 HCl to HNOm to H2O at 95 °C (or 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Mynth

Samp An As Bs Ca C	REPORT 1: 900159 PA	PANICON DEV	/ELOPMENT	IS LTD.			PROJEC	T: KERBY			DATE	IN: JUL	Y 30 1990	D 041	(E OUT: #	AU& 21 19	90	ATTENTION	I: MR. ST	EVE TODOX	LUK .		PAGE	3 OF	4	
L129 (53) (61) (64) (5)	Sample Name	Ag gga	AI 2	As pp∎	Ba pp∎	Bi 9P a	Ca 1	Cđ 9¢∎	Co pp∎	(Cr pp=	Cu pge	Fe X	ĸ	Hg I	Mn ppa	Ho ppe	Na I	Ni pd4	P I	Pb 976	Sb 99#	Sn pp4	Sr ppe	U pp∎	W ppm	Zn ppe
L1122 Poet 0.3 3.15 15	L1120 675N	(0.1	6.44	51	33	<3	0.13	19.0	17	>1000	59	5.80	0.15	0.20	1300)1000	0.04	9888	0.13	108	160	15	10	<5	304	211
Lip: Type 6.4 4.2 1.44 4.6 6.1 1.4 2.6 0.1 2.4 7.7 0.1 0.1 0.1 0.5 3.8 0.1 1.1 0.5 3.8 0.1 1.1 0.5 3.8 0.1 1.1 0.5 3.8 0.1 0.1 0.5 3.8 0.1 0.1 0.5 3.8 0.1 0.1 0.5 3.8 0.1 0.5 3.8 0.1 0.1 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.5 0.1<	L1120 700N	0.3	3.15	15	15	<3	0.05	5.5	8	30	44	3.74	0.12	0.11	206	48	(0,0)	40	0.12	80	62	15	6	<5	140	85
Lipp Som C2 Log Log <thlog< th=""> <thlog< th=""> <thlog< th=""></thlog<></thlog<></thlog<>	11120 7258	0 d	4.77	144	48	(1	0.11	2. R	R	d	47	4.17	0.08	0.35	674	a	0.03	ei -	0.13	55	38	11	11	(5	200	165
Lills Type	14120 3508	6.2	7 67	100	36	13	0.00	1.9	Ĩ		26	3 72	0.02	0.52	622		0.07	61	0.18	36	2	13	.,	15	136	89
Lizz Dia Dia <thdia< th=""> <thdia< th=""></thdia<></thdia<>	1 4120 7154	V. 2	4.00	100	30		4.00				20	4,71	0.00	0.00	942		0.03		0.10	40		1.3				
Lip2 Bios Ga Lip2 Bios Ga Lip2 Bios Ga Lip2 Bios Ga Ga <thga< th=""> <thga< th=""></thga<></thga<>	CHIZO //JK	113	113	113	115	14.5	43	115		113	113	115	15	115	11.5	43	43	12	12			19	43		113	42
11122 655 0.5 4.5 72 6.15 0.16 72 0.15 0.16 75 32 15 3 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	L1120 800M	(0.1	2.33	162	26	(3	0.06	0.7	5	<1	26	4,19	KO.OI	0.27	2267	<1	0.04	(I	0.13	25	(2	14	9	<5	104	92
L1122 6564 4.1 2.47 17 33 4.3 0.17 0.4 6 1.1 24 4.5 0.61 0.18 4.5 1.2 144 6.5 0.28 145 0.66 1.2 146 1.5 0.18 115 15 5 1.2 15 5 1.1 16 5.3 128 145 1.1 12 15 15 1.1 12 1.5 15 1.1 14 1.1	L1120 825N	0.5	4.97	28	18	(3	0.04	0.8	2	(1	27	5.90	(0.01	0.14	772	1)	0.05		0.10	45	33	15	3	(5	247	144
L1120 B558 6.2 6.7 7.6 1 4 G 2 3 6.6 1.10 1.01	L1120 850N	<0.I	2.87	17	53	(3	0.17	0.6	8	<1	39	4.13	(0.01	0.42	1748	0	0.06	(1	0.07	9	<2	11	18	<\$	138	166
L1120 9004 L.2 0.0 873 (1) 0.0 0.0 (1) 0.10 0.10	L1120 8758	0.2	4,79	12	28	(3	0.07	(0.1		- (1	39	4.55	<0.01	0.18	1041	0	0.04	(1	0.12	38	18	14	6	<5	247	136
L1120 stype 0.3 2.47 30 4.47 0.4 0.47 0.49	L1120 900N	1.2	3.03)2000	89 3	(3	0.13	60.6	13	<1	47	6.96	{0.01	0.29	20000	a	0.70	(1	0.18	199	9	9	36	(5	151	3723
Li 120 1550 0.2 i 157 14 21 13 0.0 1.6 5 0.4 12 2.2 0.4 0.23 259 0.1 0.0 1 0. 0.1 73 8 0.2 4 7 0.5 82 55 80 11120 155 0.5 1.3 0.0 1.4 0.6 55 0.6 1.4 0.0 55 13 10 14 0.5 55 80 11121 155 151 0.0 1.4 0.6 55 13 10 14 0.5 55 80 1112 151 155 0.5 1.4 0.6 1.4 0.6 55 14 0.1 0.4 14 0.5 5 14 0.1 0.2 14 0.4 14 0.5 5 14 0.1 0.4 14 0.5 55 14 0.1 0.4 14 0.5 5 14 0.1 0.1 0.2 14 0.4 14 0.5 14 0.4 14 0	L L I Z 0 925N	0.3	3.47	30	47	(3	0.05	2.1	5	Ω	35	5.22	0.04	0.08	1004	(1	0.04	G	0.08	66	39	12	5	<5	163	159
Lizo 0.3 2.14 24 64 1.3 0.6 1.4 8 (1) 55 235 (1) (0,0) 1.6 0.05 535 1.1 0.025 235 (1) 0.01 1.6 0.025 1.35 1.55 1.1 2.1 0.05 1.1 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)	L1120 950N	0.2	1.97	14	31	(3	0.07	1.0	5	- G	21	2.42	0.04	0.23	239	(I	(0.01	(1	0.17	38	(2	4	7	<5	82	56
Lilize isobit 6.2 Jikob 366 JOS 32 Jikob 366 JIKob 366 JIKob 366 JIKob 366 JIKob JIKob <th>L1120 975W</th> <th>0.3</th> <th>2.14</th> <th>24</th> <th>64</th> <th>(3</th> <th>0.09</th> <th>1.4</th> <th>8</th> <th>- di</th> <th>36</th> <th>2.31</th> <th>0.09</th> <th>0.26</th> <th>339</th> <th>(1</th> <th>(0.01</th> <th>(i</th> <th>0.08</th> <th>56</th> <th>13</th> <th>10</th> <th>14</th> <th>(5</th> <th>95</th> <th>85</th>	L1120 975W	0.3	2.14	24	64	(3	0.09	1.4	8	- di	36	2.31	0.09	0.26	339	(1	(0.01	(i	0.08	56	13	10	14	(5	95	85
Lilizo 0.4 6.50 169 18 63 0.43 1.1 3 cl 34 cl 5 0.02 cl 0.12 53 54 13 4 cl 228 114 Lilizo 1050H 0.2 2.57 1204 33 (1) 13 cl 14 13.71 (6) 0.55 2021 (1) 0.64 10.08 277 (2) 10 3 (5) 107 105 Lilizo 1050H (0.1) 2.64 2050 10 1.6 11 (1) 4.4 3.71 (6) 0.56 0.29 2000 (1) 0.18 39 21 4 3 3.64 10.6 11 10.4 41 3.71 10.8 10.18 10 11 14 45 10.0 1.1 10.3 10.1 10.1 11 41 41 3.71 10.8 10.0 10.1 10.0 10.0 <td< th=""><th>L1120 1000M</th><th>0.2</th><th>>10.00</th><th>366</th><th>105</th><th>(3</th><th>0.12</th><th>5.8</th><th>10</th><th>ä</th><th>14</th><th>6.93</th><th>0.11</th><th>0.38</th><th>1072</th><th>41</th><th>0.09</th><th>(1</th><th>0.22</th><th>103</th><th>138</th><th>15</th><th>12</th><th>(5</th><th>513</th><th>515</th></td<>	L1120 1000M	0.2	>10.00	366	105	(3	0.12	5.8	10	ä	14	6.93	0.11	0.38	1072	41	0.09	(1	0.22	103	138	15	12	(5	513	515
Lil2e 16501 Lil2e	L1120 1025W	0.4	6.50	109	18	{3	0.05	1.1	3	ä	34	4.45	0.05	0.08	238	5	0.02	ä	0.12	\$3	54	13	4	(5	325	114
L1122 11758 0.1 2.35 0.32 0.02 1.3 1.2 1.4 1.4 2.27 0.01 1.5 0.02 1.6 0.02 <td< th=""><th>1 1120 10508</th><th>۵ ۲</th><th>2 97</th><th>1264</th><th>53</th><th>12</th><th>A A2</th><th>17.4</th><th>12</th><th></th><th>19</th><th>6 17</th><th>/0.01</th><th>6 26</th><th>9524</th><th>15</th><th>A 15</th><th>11</th><th>0.09</th><th>207</th><th>12</th><th>10</th><th>2</th><th>75</th><th>197</th><th>6.25</th></td<>	1 1120 10508	۵ ۲	2 97	1264	53	12	A A2	17.4	12		19	6 17	/0.01	6 26	9524	15	A 15	11	0.09	207	12	10	2	75	197	6.25
Lilizo Hond, Co.i. 2.14 1.24 1.2 <th>11120 10308</th> <th>/0.1</th> <th>2.20</th> <th>207</th> <th>(22</th> <th>12</th> <th>A 16</th> <th>1 4</th> <th>12</th> <th>71</th> <th></th> <th>2 71</th> <th>/0.01</th> <th>0.50</th> <th>2021</th> <th></th> <th>0.04</th> <th></th> <th>0.00</th> <th>22)</th> <th>12</th> <th></th> <th>17</th> <th>75</th> <th>104</th> <th>174</th>	11120 10308	/0.1	2.20	207	(22	12	A 16	1 4	12	71		2 71	/0.01	0.50	2021		0.04		0.00	22)	12		17	75	104	174
Lillo link Out Zull & load Cull & load Cull & load Zull & load <thzull &="" load<="" th=""> Zull & load <thz< th=""><th>(1)26 11604</th><th>10.1</th><th>2.64</th><th>10000</th><th>122</th><th></th><th>0.10</th><th>35.0</th><th>12</th><th></th><th>20</th><th>5 14</th><th>10.01</th><th>0.30</th><th>4741</th><th>47</th><th>A 47</th><th>/1</th><th>0.07</th><th>30 <0</th><th>11</th><th>ě</th><th></th><th></th><th>00</th><th>2117</th></thz<></thzull>	(1)26 11604	10.1	2.64	10000	122		0.10	35.0	12		20	5 14	10.01	0.30	4741	47	A 47	/1	0.07	30 <0	11	ě			00	2117
Lil20 lipSi Lil20		(U. L	2.04	72000	01	()	0.02	13.3	2	<u></u>	30	3.49	(0.0)	0.14	8313	33	0.0/		9.19	38	21	5	3	10	06 T 16	202
L1120 11301 0.3 b.10 36 38 C3 0.03 c1 313 1733 c1 0.04 c1 6.03 91 83 6 3 C5 294 266 L1120 11754 0.4 5.1 127 53 C3 0.01 1.0 11 (1 41 3,70 0.06 0.33 1208 C1 0.04 (1 0.03 (1 0.04 (1 0.01 1.0 11 (1 41 3,70 0.06 0.33 1208 C1 0.04 (1 0.01 1.0 11 (1 41 5,70 0.03 0.02 C1 0.04 (1 0.01 1.0 11 (1 41 5,70 0.02 0.04 (1 0.01 1.0 11 (1 13 3.206 0.04 (1 0.11 5.21 1.0 0.02 1.0 0.21 5.33 (1 0.02 0.07 303 (1 0.03 5.21 1.0 0.21 1.0 0.04 0.1 0.52	L1120 1125M	0.2	5.08	549	552	(3	0,10	76.4	14	(1	49	1.11	0,07	0,29	220000	(1	0.38	(1	0,18	212	50	9	11	()	247	1981
L1120 0.4 9.51 127 53 63 0.10 11 (1 (1 (1 (1 (1)<	LT120 F150M	0.3	6.10	306	38	(3	0.03	4.8	6	a	36	4.50	0.06	0.13	1793	a	0.04	(I	0.09	31	83	6	3	(5	294	200
L120 1250N 0.2 4.38 33 25 (3 0.63 0.61 5 (1 32 5.20 0.63 0.795 (1 0.64 (1 0.11 50 11 12 4 (3 206 104 112 122 15 M (0.1 2.52 27 55 (3 0.63 0.63 (0.1 5 (1 2.5 2.18 (0.01 0.31 547 (1 0.04 (1 0.07 27 (2 15 8 (3 0.55 11 122 125 M (0.1 1.55 122 112 125 M (0.1 1.55 122 112 125 M (0.1 1.55 122 113 13 0.05 (0.1 3 0.55 (0.1 3 112 5 2.18 (0.01 0.21 583 (1 0.02 (1 0.04 28 (2 14 8 (5 81 9) 104 112 122 125 M (0.1 1.55 122 113 13 0.02 0.4 0.2 7 (1 35 4.47 (0.01 0.25 921 (1 0.04 (1 0.04 28 (2 14 8 (5 81 9) 104 112 122 125 M (0.1 1.55 13 0.12 112 113 12 0.02 0.4 0.2 7 (1 35 4.47 (0.01 0.25 921 (1 0.04 (1 0.04 28 (2 14 8 (5 81 9) 104 112 0 125 M (0.2 7 0.4 13 0.02 0.4 0.3 5 (1 0.05 0.5 0.6 0.1 0.4 0.4 (1 0.04 10 0.06 83 58 9 1 (5 7 8 78 78 112 123 0 050 M (0.5 5.57 23 14 17 (3 0.04 0.3 5 (1 30 5.54 0.02 0.07 303 (1 0.04 0.1 0.00 84 80 112 2 (5 383 114 12 0 0.55 0.04 0.3 5 (1 39 6.61 0.07 0.11 652 (1 0.04 (1 0.07 68 72 16 1 0.55 11 (5 25 11 12 12 11 12 0 050 M (0.5 5.57 33 4 117 (3 0.04 0.5 5 (1 39 6.61 0.07 0.11 652 (1 0.04 (1 0.07 68 72 16 1 1 (5 25 11 12 12 11 12 112 0 0.05 1.0 0.07 1118 (1 0.04 (1 0.07 68 72 16 1 1 (5 25 11 1 (5 25 11 12 112 0 10 0 0.0 0.04 0.1 0.09 1118 (1 0.04 (1 0.07 68 72 16 1 1 (5 25 11 1 (5 25 11 1 12 112 0 10 0 0.05 0.7 7 7 (1 1 25 4.4 10 0.02 0.2 1121 (1 0.04 (1 0.07 68 72 16 1 1 (5 25 11 1 12 113 0 100 M (0.2 2 3.55 (3 4.1 (3 0.09 (0.1 5 (1 43 3.57 (0.01 0.13 121 (1 0.04 (1 0.09 51 59 11 1 2 (5 326 121 112 0 113 150 1 0.02 (1 0.07 58 121 11 12 13 0 100 1 1 0.01 5 (1 0.09 51 59 11 1 2 (5 133 8 11230 105 (5 122 113 (1 0.03 (1 0.09 51 59 11 1 2 (5 133 8 11230 105 11 0.04 (1 0.09 51 59 11 1 2 (5 159 11 7 (5 139 8 111 12 0 (5 139 11 12 (5 135 11 12 (5 139 11 12 0 12 1196 (1 0.03 (1 0.07 57 43 13 7 (5 139 112 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L1120 1175W	0.4	3.51	127	53	(3	0.10	1.0	11	(41	3,70	0.06	0.31	2208	<1	0.03	(1	0.22	51	37	10	8	<5	164	147
Li120 1225M (0,1 2,62 27 58 (3 0,03 (0,1 6 (1 3 (1 26 (1 35 3,76 (0,01 0,31 847 (1 0,04 (1 0,07 27 (2 15 8 (3 1 2 11) 12 1120 125M (0,1 1,95 26 44 (3 0,04 0,2 7 (1 35 4,47 (0,01 0,35 921 (1 0,04 (1 0,04 28 (2 13 7 (5 98 65 11) 12 125M (0,1 1,95 26 44 (3 0,04 0,2 7 (1 35 4,47 (0,01 0,35 921 (1 0,04 (1 0,04 28 (2 14 8 (5 81 94 12 12 12 12 12 12 12 12 13 7 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L1120 1200N	0.2	4.38	53	26	<3	0,03	2.6	6	(1	32	5,20	0.03	0.20	796	<1	0.04	(1	0.11	50	41	12	•	<5	208	104
L1120 1350k 0.3 2.04 35 65 63 0.05 (0.1 3 1 2 1 2 1 3 7 (5 98 6 L1120 1275W (0.1 1.96 25 64 (3 0.05 (0.1 25 2.1 883 (1 0.04 28 (2 1.3 7 (5 88 1 0.04 28 (2 1.3 7 (5 88 1 0.02 (1 0.02 1.4 8 (5 88 9 1 (5 88 1 0.02 1.4 1 0.03 1.0 0.04 0.0 1.0 0.04 0.04 1.0 0.08 68 9 1 (5 278 7 7 1.3 6.0 0.05 0.09 10.18 6.0 0.05 6.09 1.0 1.0 0.06 68 88 1.2 2 2 5 1.6 1.1 2.5 1.3 1.6 1.2 2.5 1.3 1.0 0.0 0.0 1.0	L1120 1225N	(0, L	2.62	27	58	<3	0.03	(0.1	6		36	3.26	{0.0]	0.31	847	(i	0.04	<1	0.07	27	<2	15	8	<5	132	113
L1120 1275W (0.1 1.95 26 64 (3 0.04 0.2 7 (1 35 4.47 (0.01 0.35 921 (1 0.04 (1 0.04 28 (2 14 8 (5 81 96 L1230 000M 0.6 5.72 23 13 (3 0.02 0.4 2 (1 30 5.54 0.02 0.07 303 (1 0.08 63 56 9 1 (5 278 7 1 35 6.10 0.07 303 (1 0.08 63 56 9 1 (5 278 7 1 36 6.25 0.07 303 (1 0.04 61 0.07 68 72 16 1 (5 278 7 7 1 26 4.74 0.02 1.31 61 0.07 68 72 16 1 (5 255 122 12 13 13 15 1230 1000 0.07 43 30 10 5 257	L1120 1250N	0.3	2.04	36	63	(3	0.05	(0.1	3	(1	26	2.18	(0.01	0.21	583	(1	0.02	(1	0.13	32	<2	13	7	(5	98	63
L1236 000H 0,6 5,72 23 13 (3 0.02 0.4 2 (1 30 5.54 0.02 0.07 303 (1 0.03 (1 0.08 63 56 9 1 (5 278 74 L1230 025M 0.2 7.74 30 2.0 (3 0.04 0.3 5 (1 34 6.65 0.05 0.10 1436 (1 0.06 84 89 12 2 (5 383 151 L1230 075H 0.4 5.51 34 17 (3 0.04 0.8 6 1 39 6.65 0.05 0.09 1118 64 0.04 (1 0.07 68 72 16 1 (5 256 122 12 155 122 133 11 2 123 111 2 111 2 111 12 13 13 11 12 13 111 12 13 13 12 13 13 12 13 13 12	L1120 1275M	(0.1	1.96	25	44	(3	0.04	0.2	7	<1	35	4.47	(0.01	0.35	92 i	(1	0.04	(1	0.04	28	<2	14	8	(5	81	9(
L1230 0.2 7.64 30 20 (3 0.04 0.3 5 (1 36 6.65 0.05 0.10 1436 (1 0.10 82 92 10 2 (5 383 151 L1230 0504 0.5 6.57 34 17 (3 0.04 0.8 6 (1 39 6.01 0.07 0.11 662 (1 0.06 84 86 12 2 (5 316 12 L1230 0504 0.2 5.24 250 30 (3 0.05 2.7 7 (1 25 4.74 0.02 0.23 1321 (1 0.04 (1 0.07 45 27 13 9 (5 255 122 12 13 (5 153 12 153 1321 (1 0.04 (1 0.07 45 27 13 9 (5 257 6.01 1321 16 1 0.07 13 12 13 153 12 133 12 13	L1230 000M	0.6	5.72	23	13	(3	0.02	0.4	2	₹1	30	5.54	0.02	0.07	303	a	0.03	a	0.08	63	58	9	1	(5	278	74
L1230 050N 0.5 6.57 34 17 (3 0.04 0.8 6 (1 39 6.01 0.07 0.11 662 (1 0.02 (1 0.08 84 88 12 2 (5 316 12 L1230 055N 0.4 5.31 44 11 (3 0.03 1.3 5 (1 34 6.08 0.05 0.09 1118 (1 0.04 (1 0.09 43 30 10 5 (5 255 12 L1230 150N 0.2 5.24 230 30 (3 0.05 (0.1 5 (1 43 3.57 (0.61 0.21 196 (1 0.02 (1 0.07 45 27 13 9 (5 257 12 L1230 150N 0.2 3.95 (3 41 (3 0.09 (0.1 5 (1 43 3.57 (0.61 0.21 196 (1 0.03 (1 0.11 35 (2 12 13 (5 193 88 L1230 155N 0.1 7.26 17 40 (3 0.04 (0.1 5 (1 25 5.4 (0.01 0.35 331 (1 0.03 (1 0.11 35 (2 12 13 (5 193 88 L1230 155N 0.1 7.26 17 40 (3 0.04 (0.1 5 (1 40 6.80 0.04 0.12 257 (1 0.03 (1 0.11 35 (2 12 13 (5 193 88 L1230 155N 0.1 7.26 17 40 (3 0.04 (0.1 5 (1 40 6.80 0.04 0.12 257 (1 0.03 (1 0.04 61 53 16 5 (5 191 74 L1230 200N 0.4 4.01 38 19 (3 0.04 (0.1 5 (1 40 6.80 0.04 0.12 257 (1 0.03 (1 0.04 61 53 16 5 (5 191 74 L1230 225N 0.1 4.10 35 36 (3 0.04 (0.1 5 (1 42 5).684 0.04 0.13 602 (1 0.03 (1 0.07 57 43 13 7 (5 195 6) L1230 250N 0.2 3.36 72 35 (3 0.03 3.5 6 (1 42 7)0.09 0.04 0.17 160 (1 0.06 (1 0.05 (1 0.07 57 43 13 7 (5 195 6) L1230 275N 0.1 4.10 35 58 11 (3 0.01 2.9 5 (1 38 9.73 0.02 0.13 519 (1 0.06 (1 0.05 62 65 18 1 (5 153 9) L1230 300N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.22 0.64 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 133 9) L1230 300N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.22 0.64 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9) L1230 325N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.22 0.64 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9) L1230 325N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.22 0.64 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9) L1230 325N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.22 0.64 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9) L1230 325N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.22 0.64 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9) L1230 325N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.22 0.64 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9) L1230 325N 0.1 4.43 48 29 (0.0 10.00 1000 10.00 1000 20000 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	L1230 0258	0.2	7.84	30	20	<3	0.04	0.3	5		36	6.85	0.05	0.10	1436	<1	0.04	<1	0.10	82	92	10	2	(5	383	150
L1230 075M 0.4 5.31 44 11 (3) 0.03 1.2 5 (1) 34 6.80 0.05 0.09 1118 (1) 0.04 (1) 0.07 68 72 16 1 (5) 256 122 L1230 100M 0.2 5.24 230 30 (3) 0.05 2.7 7 (1) 26 4.74 0.02 0.23 1321 (1) 0.04 (1) 0.07 45 27 13 9 (5) 255 122 12 13 (5) 12 13 (5) 13 43 2.57 (0.01) 0.02 (1) 0.07 45 27 13 9 (5) 257 60 L1230 150M 0.2 3.95 (3) 41 (3) 0.09 (0.1) 5 (1) 25 5.54 (0.01 0.03 (1) 0.03 (1) 0.03 (1) 0.03 (1) 0.03 (1) 0.03 (1) 0.04 (1) 10 10 10	L1230 050%	0.5	6.57	34	17	(3	0.04	0.8	6	0	39	6.01	0.07	0.11	662	<1	0.02	(1	0,08	84	86	12	2	< S	316	124
L1230 100N 0,2 5,24 230 30 (3 0,05 2.7 7 (1 25 4,74 0,02 0,23 1321 (1 0,04 (1 0,09 43 30 10 5 (5 252 121 L1230 125N 1,2 5,19 30 42 (3 0,06 (0,1 5 (1 43 3,57 (0,01 0,21 196 (1 0,07 45 27 13 9 (5 257 60 L1230 150N 0,2 3,55 (3 41 (3 0,09 (0,1 5 (1 25 5,54 (0,01 0,35 331 (1 0,03 (1 0,01 0,11 36 (2 13 (5 13 8 1230 100N 0,01 0,11 36 (2 13 (1 25 5,54 (0,01 0,10 731 (1 0,03 (1 0,01 59 11 2 (5 362 122 13 13 7 <t< th=""><th>L1230 075#</th><th>0.4</th><th>5.31</th><th>44</th><th></th><th>(3</th><th>0.03</th><th>1.3</th><th>5</th><th>(1</th><th>34</th><th>6.80</th><th>0.05</th><th>0.09</th><th>111B</th><th>(1</th><th>0.04</th><th>(1</th><th>0.07</th><th>68</th><th>72</th><th>16</th><th>1</th><th>(5</th><th>256</th><th>123</th></t<>	L1230 075#	0.4	5.31	44		(3	0.03	1.3	5	(1	34	6.80	0.05	0.09	111B	(1	0.04	(1	0.07	68	72	16	1	(5	256	123
L1230 1254 1.2 5.19 30 42 (3 0.06 (0.1 5 (1 43 2.57 (0.01 0.02 (1 0.07 45 27 13 9 (5 257 64 L1230 1594 0.2 3.95 (3 41 (3 0.09 (0.1 5 (1 29 3.25 (0.01 0.35 331 (1 0.03 (1 0.11 356 (2 12 13 (5 193 86 L1230 175K 0.1 7.28 17 40 (3 0.07 (0.1 3 (1 25 5.54 (0.01 0.1 7.13 (1 0.03 (1 0.41 61 53 16 5 (25 16 17 17 13 7 (5 362 122 1267 (1 0.03 (1 0.46 53 16 5 (5 191 7 13 7 (5 195 122 13 13 7 (5 195 16	L1230 100N	0.2	5.24	290	30	(3	0,05	7.7	7	- A	26	4,74	0,02	0.23	1321	(1	0,04	(1	0.09	(3	30	10	5	(5	252	12
L1230 150 N 0.2 3.95 (3 41 (3 0.03 (1 5 (1 29 3.25 (0.01 0.03 (1 0.03 (1 0.01 35 12 13 (5 133 8 L1230 175 k 0.1 7.28 17 40 (3 0.07 (0.1 3 (1 25 5.54 (0.01) 0.03 (1 0.09 61 53 11 2 (5 362 12 L1230 206 H 0.4 4.01 38 19 (3 0.04 (0.1 5 (1 40 6.80 0.04 0.12 267 (1 0.03 (1 0.04 61 53 16 5 (5 191 74 L1230 250 N 0.1 4.10 35 36 (3 0.04 (0.1 9 (1 46 5.84 0.04 0.13 602 (1 0.06 (1 0.07 57 43 13 7 (5 135 9 13 <t< th=""><th>1230 175#</th><th>1 2</th><th>5 19</th><th>30</th><th>47</th><th>12</th><th>0.06</th><th>20.1</th><th>Ę</th><th>15</th><th>13</th><th>3 57</th><th>ረስ ሲነ</th><th>6 21</th><th>196</th><th>11</th><th>0 02</th><th>61</th><th>0.07</th><th>45</th><th>77</th><th>13</th><th>4</th><th>65</th><th>257</th><th>61</th></t<>	1230 175#	1 2	5 19	30	47	12	0.06	20.1	Ę	15	13	3 57	ረስ ሲነ	6 21	196	11	0 02	61	0.07	45	77	13	4	65	257	61
L1230 0.1 7.28 17 40 (3 0.07 (0.1 3 (1 25 5.54 (0.01 0.03 (1 0.04 (0.1 5 (1 40 6.80 0.04 0.12 267 (1 0.03 (1 0.04 61 53 16 5 (5 191 7 (5 135 6 (1 46 5.84 0.04 0.13 602 (1 0.03 (1 0.07 57 43 13 7 (5 135 6 14 42 10.03 (1 0.07 57 43 13 7 (5 135 14 53 <th>1.1230 1500</th> <th>A 2</th> <th>2 95</th> <th>(2</th> <th>41</th> <th>12</th> <th>0.00</th> <th>(0.1</th> <th></th> <th>21</th> <th>70</th> <th>2.05</th> <th>(6.6)</th> <th>A 25</th> <th>221</th> <th></th> <th>0.02</th> <th></th> <th>0.11</th> <th>75</th> <th></th> <th>12</th> <th>12</th> <th>(5</th> <th>193</th> <th>9</th>	1.1230 1500	A 2	2 95	(2	41	12	0.00	(0.1		21	70	2.05	(6.6)	A 25	221		0.02		0.11	75		12	12	(5	193	9
L1230 200H 0.1 7.20 17 10 13 0.1 23 5.34 0.01 0.10 741 0.10 0.03 0.1 0.09 61 53 11 2 03 12 10 0.03 0.1 0.09 61 53 11 2 03 10 17 10 0.1 10 10 10 10 10 10 10 11 10 10 10 10 10 11 10 11 10	11220 1254	V.2	0.70 T 10	17	74	10	0.03	70.1	3	11	47	4+64	10.01	0.00	331	21	0.43	71	0.00	50	50	11	3	/5	262	10
L1230 0.4 4.01 38 19 63 0.04 (0.1 5 61 40 5.80 0.04 0.12 257 61 0.03 61 0.04 61 53 16 5 61 191 14 L1230 225# 0.1 4.10 35 36 43 0.04 (0.1 9 41 46 5.80 0.04 0.13 602 (1 0.03 (1 0.07 57 43 13 7 45 195 61 L1230 250N 0.2 3.36 72 35 (3 0.03 3.5 6 (1 42 10.00 0.04 0.17 160 (1 0.05 62 65 18 1 55 144 55 144 55 153 9 1.1230 300N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.32 0.06 0.12 1209 (1 0.05 62 65 18 1 (5 153	14770 SAAU	0.1	1.20	17	10	(3	0.07	(0.1	د ح		23	2.31	(0.0)	0.10	741		0.03	4	0.07	01	33	11	, ,	14	101	12.
L1230 250N 0.2 3.36 72 35 (3 0.03 3.5 6 (1 42)10.00 0.04 0.17 160 (1 0.06 (1 0.07 57 69 16 5 (5 144 55 L1230 275N 0.4 3.55 58 11 (3 0.01 2.9 5 (1 38 9.73 0.02 0.13 519 (1 0.06 (1 0.05 62 65 18 1 (5 153 9 L1230 300N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.32 0.06 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9 L1230 325N 0.2 6.96 7 13 (3 0.02 (0.1 (1 (1 1) 15 4.64 (0.06 0.05 214 (1 0.03 (1 0.07 48 24 10 2 (5 217 9 L1230 325N 0.2 6.96 7 13 (3 0.02 (0.1 1 1 1 1 1 1 0.01 1 0.01 2 2 2 1 5 3 Maxiaum Detection 50.0 10.00 2000 1000 1000 10.00 1000 1000	L1230 2258	0.4	4.01	.98 35	36	(3	0.04	(0.1	5 9	<1 <1	40	5.80 5.84	0.04	0.12	267 602	0 (1)	0.03	() ()	0.04	61 57	53 43	13	3	(5	191	6
LL230 230N 0.2 3,36 72 35 (3 0.03 3.5 6 (1 42 10.00 0.04 0.17 160 (1 0.06 (1 0.06 (1 0.06 (1 0.06 (1 0.07 57 69 16 5 (5 144 55 L1230 275N 0.4 3.55 58 11 (3 0.01 2.9 5 (1 38 9.73 0.02 0.13 519 (1 0.06 (1 0.05 62 65 18 1 (5 153 9 L1230 300N 0.1 4.43 48 29 (3 0.02 (0.1 5 (1 19 4.32 0.61 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9 L1230 325N 0.2 6.96 7 13 (3 0.02 (0.1 (1 15 4.64 (0.01 0.05 214 (1 0.05	11000 AFAU								-												-		_			
L1230 0.4 3.55 58 11 (3 0.01 2.9 5 (1 38 9.73 0.02 0.13 519 (1 0.06 (1 0.05 62 65 18 1 (5 153 9 L1230 300N 0.1 4.43 48 23 (3 0.02 (0.1 5 (1 19 4.32 0.06 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9 L1230 325N 0.2 6.96 7 13 (3 0.02 (0.1 (1 15 4.64 (0.06 0.05 214 (1 0.03 (1 0.05 49 47 11 (1 (5 349 60 Ninisus Detection 0.1 0.01 3 1 3 0.01 0.1 1 1 6 0.01 0.01 1 0.01 0.01 2 2 2 1 3 Ninisus Detection 0.1 1	L1230 230N	0.2	3,36	72	35	(3	0.03	3.5	6	<1	42	>10.00	0.04	0.17	160	(1	0.06	(1	0.07	57	69	18	5	<5	144	5
Lizzo 300N 0.1 4.43 48 29 (3 0.02 (0.1 5 (1 19 4.32 0.01 0.12 1209 (1 0.03 (1 0.07 48 24 10 2 (5 217 9 0.2 6.96 7 13 (3 0.02 (0.1 (1 (1 (1 15 4.64 (0.01 0.05 214 (1 0.03 (1 0.05 49 47 11 (1 (5 349 6) 1.12 0.1 1 0.01 1 1.1 0.01 1 1.1 0.01 1 0.01 1 0.01 1 1.1 (1 (5 349 6) 1.12 0.1 0.01 1.1 0.01 1 1.1 0.01 1 1.1 0.01 1 0.01 1 1.1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1.1 0.01 1 0.01 1 0.01 1.1 0.01 1.0 0.00 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10.00 1	C1230 275W	0.4	3,55	58	- 11	(3	0.01	2.9	5	(1	38	9.73	0.02	0.13	519	(1	0.06	(I	0.05	62	65	18	I .	<5	153	9
L1230 325H 0.2 6.96 7 13 <3 0.02 <0.1 <1 <1 15 4.64 <0.01 0.05 214 <1 0.03 <1 0.05 49 47 11 <1 (5 349 6 Minisus Detection 0.1 0.01 3 1 3 0.01 0.1 1 L F 0.01 0.01 1 1 0.01 1 0.01 2 2 2 1 5 3 Maxiaum Detection 50.0 10.00 2000 1000 1000 10.00 1000.0 20000 10.00 10.00 10.00 10.00 20000 10.00 20000 10.00 20000 100 1000 2000 f = lorg Than Minisure) = Exceptor This Maxiaum is = lorgificing Exceptor Another 0.05 PESNUTS = Exceptor Data Model 0.05 PESNUTS = Exceptor Analysis Detected	L 1230 300N	0.1	4.43	48	29	(3	0.02	(0.1	5	4	19	4.32	0.01	0.12	1209	<1	0.03	(1	0.07	48	24	10	2	(5	217	9
Ninisus Detection 0.1 0.1 0.1 0.1 1 1 0.01 1 0.01 2 2 2 1 5 3 Maxisum Detection 50.0 10.00 2000 1000 1000 1000 20000 10.00 10.00 20000 </th <th>L1230 325N</th> <th>0.2</th> <th>6.96</th> <th>1</th> <th>13</th> <th><3</th> <th>0.02</th> <th><0.1</th> <th>4</th> <th>0</th> <th>15</th> <th>4,64</th> <th>(0,0)</th> <th>0.05</th> <th>214</th> <th>(1</th> <th>0.03</th> <th>(1</th> <th>0.05</th> <th>49</th> <th>47</th> <th>11</th> <th><1</th> <th><5</th> <th>349</th> <th>6</th>	L1230 325N	0.2	6.96	1	13	<3	0.02	<0.1	4	0	15	4,64	(0,0)	0.05	214	(1	0.03	(1	0.05	49	47	11	<1	<5	349	6
Maxiaum Detection 50.0 10.00 2000 10.00 20000 20000 10.00	Niniasa Detection	0.1	0.01	3	1	3	0.01	0.1	1	I	E	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	
- Jor- Than Ministe) - Breather Than Havious in - Incutificing Estate on Campto SHAMAI (145 DECH) 75 - Frether Anglurer Du Alternate Hothad - Frenchid	Kaxiaum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10,00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	2000
	C - Jore Than Minimum) - Greater 1	lhan Mari	***	ir - lar:				- No Fie	-1-	6 MAH 41 TH	e premi i	10 - Ferts	er Anal	Sec. Du	*******	n H-++-	d- Cuarar	h . 4		_ / • •		• - •			

1650 randora Street, Vancouver, VDL IL6 Ph;(604)251-5656 Fax;(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to MNG, to H_O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Komb

REPORT 8: 900159 PA	PAXICON DEV	ELOPHENT	S LTD.			PROJEC	T: XIRB	f		DAT	: IN: JU	LY 30 199	0 DA	ITE OUT: A	WG 21 1	990	ATTENTION	I: MR, ST	EVE TODOR	RIIX		PAGE	4 OF	4	
Sample Name	Ag pp=	A) 1	As pp=	Ва рре	Bi pga	Ca I	Cd Pge	Co pp∎	Cr pps	Cu ppe	fe 1	К 1	Hg l	Na P P A	Ho ppe	Na 1	Ni PD4	Р 1	₽6 ppe	Sb 900	Sn 904	St ppa	U Ppe	¥ Pp م	ln pp a
L1230 350N	0.2	2.68	(3	14	<3	0.04	5.9	5	11	34	6.35	0.01	0.10	188	11	0.02	6	0.07	54	49	14	4	(5	84	55
L1230 375N	0.2	3.99	(3	35	(3	0.04	0.4	2	7	19	3.38	(0.01	0.09	146	5	0.01	(1	0.09	51	33	8	4	(5	138	63
L1230 400N	0.2	5.34	73	22	<3	0.03	6.1	3	9	34	6.15	0.05	0.08	726	10	0.02	7	0.09	62	68	9	3	(5	178	88
L1230 425R	0.5	3.11	4	27	(3	0.07	1.1	4	8	24	2.27	0.07	0.17	178	6	(0.01	9	0.13	40	12	3	,	(5	102	73
L1230 450N	0.2	2.53	16	61	(3	0.11	1.6	9	[1	24	2.41	0.14	0.39	531	7	<0.01	14	0.13	43	13	4	17	(5	80	83
L1230 475R	(0.1	3.07	40	82	(3	0.08	1.3	8	1	19	2.23	0.17	0.49	453	6	<0.0L	12	0.10	39	30	2	10	<5	95	12
L1230 500R	0.2	3.76	1494	196	(3	0.11	25.7	12	10	35	5.77	0.12	0.35	14205	23	0.08	12	0.13	86	51	5	10	(5	123	618
£1230 525N	0.3	4.30	983	176	(3	0.15	17.4	10	6	30	4.74	0,13	0.30	5438	26	0.03	19	0.11	77	51	б	11	(5	142	323
11230 SSOK	(0.1	4.01	<3	221	(3	0.10	3.5	12	B	21	4. SL	(0.01	0.70	2217	6	0.03	14	0.13	51	39	6	12	7	134	98
L1230 575K	(0.1	1.33	1	94	(3	0.11	0.5	\$	10	42	1.61	(0.01	0.13	254	3	(0.0)	11	0,10	32	(2	9	13	(5	41	45
L1230 600N	<0.1	3.38	18	122	<3	0.12	(0.1	6	8	24	3.13	(0.01	0.33	1132	. 3	0.02	п	0.11	32	(2	6	17	<5	115	85
L1230 625N	<0,1	3.87	65	171	<3	0.54	3.7	15	13	31	4.45	0.09	0.38	4223	6	0.03	21	0,20		34	4	22	<5	127	137
L1230 650N	0.5	5.64	(3	20	(3	0.08	2.7	7	10	47	4.73	0.12	0.09	245	16	0.01	16	0.09	94	10[9	5	(5	190	80
L1230 675N	<0.1	2.05	1803	191	(3	0.05	32.6	14	11	43	5.94	0.13	0.10	>20000	93	0.04	20	0.13	63	60	3	8	(\$	89	266
L1230 700N	<0.1	5.87	15	36	(3	0.08	6.7	11	13	46	5.54	0.27	0.19	1401	18	0.02	25	0.12	102	132	8	6	16	192	193
L I 230 725K	0.2	6.15	55	€t	(3	0.07	6.1	8	ц	36	5.05	0,17	0,15	862	15	0,02	22	0.13	90	113	8	6	(5	206	161
L1230 750N	0.2	3.67	71	91	(3	0.06	6.2	30	1	61	4.64	0.10	0.34	5903	វេ	0.02	24	0.22	69	55	7	7	<5	\$15	136
L1230 775K	Q. I	3,75	(3	18	(3	0.06	4,6	11	16	51	5,96	0.08	0.13	994	13	0.02	24	0.07	70	74	- 14	5	8	125	83
L1230 B00N	0.9	2.66	30	- 4i	<3	0.05	3.1	6	12	27	3.03	<0.01	0.16	341	11	0.01	17	0.03	46	21	Б	7	(5	85	54
L1230 B25N	(0.1	4.65	<3	48	(3	0.06	5.0	7	12	38	6.05	<0.0L	0,21	654	12	0.02	24	0.16	53	67	6	9	(5	155	65
11230 B50W	0.2	7.49	(3	32	(3	0.07	7.0	i 1	14	51	6.13	0.20	0.13	697	16	0.02	32	0.12	124	184	8	6	(5	249	70
L1230 875M	0,6	4.55	(3	15	<3	0.06	5.7	11	14	55	5.78	0.24	0.10	410	18	0.01	31	0.08	(12	129	16	5	<5	143	8
L1230 900H	0.6	3.26	11	44	<3	0.07	5.1	11	16	44	5.03	0.16	0,30	535	11	0.02	30	0.10	65	74	12	В	10	96	9
L1230 925W	0.7	3.16	5	132	<3	0.13	4.1	19	13	27	3.05	0.11	0.31	1\$02	10	0.01	28	0.12	79	37	8	- 11	<5	100	13
L1230 950N	0.3	3.15	26	51	<3	0.10	2.7	3	15	31	5.12	0.08	0, 28	496	13	0.02	29	0.08	65	64	9	10	<5	101	59
L1230 1000N	0.1	1.49	19	45	⟨3	0.07	1.7	7	11	31	2.12	0.01	0.13	107	6	(0.01	25	0.06	SL	10	9	9	(5	44	4
L1230 1025N	0,4	1.15	46	28	<3	0.05	1.0	6	12	18	1.30	0.04	0.10	156	6	(0.01	28	0.06	34	<2	- 4	7	(5	33	4
L1230 1050N	0.3	6.99	(3	18	(3	0.06	3.1	7	7	32	5.22	0.16	0.06	385	11	(0.01	31	0.07	120	137	7	3	<\$	232	10
L1230 1075N	0.4	5.04	(3	31	(3	0.09	2.2	9	11	38	3.43	0.19	0.12	434	11	(0.01	33	0.16	84	107	7	8	<5	165	7
L1230 100N	(0.1	4.31	<3	25	39	0.07	3.9	9	17	38	4,62	0.20	0.17	194	10	<0.01	32	0.08	88	96	9	8	<5	137	6
L1230 1125N	0.2	2.70	(3	35	25	0.07	5.0	11	17	40	4.52	0.14	0.25	1291	13	0.02	33	0.08	71	60	12	9	8	78	7
LL100 775WA	0,2	3.97	<3	12	(3	0.07	3.7	8	16	43	5,39	0.09	0.03	181	14	0.02	33	0.09	86	89	15	6	19	127	9
Ninimum Detection	0.1	0.01	3	ŧ	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	. 2	1	5	3	
Marisen Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	2000
< - Less Than Kinimum	🔿 - Greater I	han Maxi		is - Insi	flicien	t Sample	45	- No Saep	le	ANDISALOU	IS RESULT	5 - Furt	her Ana	lyses By	Alternat	e Method	ls Sugges	ted.							

1.1.2

411-1411-

1630	PANDO	RA	STREE	r
VANC	OUVER,	BC	V5L	311
(604)	251-56	56		

-MAIN OFFICE -1988 TRIUMPH ST: VANCOUVER, 8:C. V\$L TK5 ● (604) 251-5656 ● FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 ~ 675 W. Hastings St. : Vancouver, BC : V6B 1N4

VANGEOCHEM LAB LIMITED

DATE: SEPT 07 1990

REPORT#: 900206 GA JOB#: 900206

INVOICE#: 900206 NA TOTAL SAMPLES: 41 SAMPLE TYPE: 41 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: KIRBY

SAMPLES ARRIVED: AUG 03 1990

REPORT COMPLETED: SEPT 07 1990

ANALYSED FOR: Au (FA/AAS) ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC staff

Kg 1h SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

1630 PANDORA SINCE VANCOUVER, BC V5L 116 (604) 251-5656

VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988 TRIUMPH ST. -VANCOUVER, B.C. V5L 1K5-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ONT RENO, NEVADA, U.S.A.

REPORT NUMBER: 90020	IG GA JOB NUMBER: 9	00206 PANICON DEVELO	MENTS LTD.	PAGE 1 OF 2
SAMPLE &	14			
	gpb			
L1200 000W	nd			
L1200 025m	ba			
L1200 850X	ba			
L1200 075M	nà			
61200 100 8	bđ			
L1290 125¥	ъđ			
L1200 150B	nd			
£1208 175M	ba			
E1200 200M	6a			
11200 225M	ąğ			
L1200 250m	ađ			
L1200 275W	nd			
61200 308 0	pu pu			
L1200 325M	ba			
L1200 350W	ba			
L1200 3750	nđ			
£1288 400M	nd			
61200 425H	ad			
61200 450F	nd			
L1200 475M	вđ			
L1200 500m	nd			
£1200 525W	nd			
L1200 550#	ad			
L1200 575m	nd			
L1200 600W	ba			
L1200 625#	nd			
61200 650 0	ъđ			
L1200 675H	nd			
L1200 700#	nđ			
L1200 725 H	nd			
L1200 750M	bđ			
L1200 775W	ba			
L1200 600M	ba			
61200 825W	ba			
L1200 850W	nđ			
L1200 875M	nd			
£1200 900N	Dd			
L1200 925N	nd			
L1200 950N	ba			
DETECTION LINIT	5			
nd = nome detected	= oot analysed	is = insufficient sample		

1630 FAMOORA STREET VANCOUVER, BC V5L 1L6 (604) 251 5555	
MAIN OFFICE BRANCH OFFICES 1988 TRIUMPLEST PASADENA, NFLD, VANCOUVER, B.C. V5L-11K5 BATHURST, N.B. • (604) 251-5656 MISSISSAUGA, ONT. • FAX (604) 254-5717 RENO, NEVADA, U.S.A.	

PARICON DEVELOPHENTS LTD.

PAGE 2 OF 2

JOB MUNBER: 900206

ya Dađđ

nd að

REPORT RUNBER: 900206 GL

SAMPLE I

61200 9758 11200 1000W

DETECTION LINIT	5	
nd = none detected	= not analysed	is = insufficient sample

VARGEOCHEM LAB LIMITED • == : ___ ___ ------ ____

1630 Pandora Street, Vancouver V5: Phi(504)251-5656 Faxi(604)204-5717 V51 116

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to HgD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for AS, Ba, Ca, Er, Fe, K, Mg, Mn, Ma, P, Sn, Sr and W. ANALY6T:

¢

COURT

REPORI	F #: 900206 PA	PANICON DEV	ELOPHENI	IS LTD.			PROJE	CT: KIRBY	f		DATE	IN: AUR	G 03 1990	DAT	re out: s	EPT 04 1	990	ATTENTION	: MR. ST	EVE TODOS	RUK		PAGE	1 OF	2	
Sample	e Name	Ag	AI	As	Ba	8 i	Ca	Cđ	Co	Cr	Cu	Fe	ĸ	Ng	Ħn	No	Na	Ri	Р	Pb	Sb	5n	Sr	ß	W	Zn
		pge	1	pge.	pps	pp .	ĩ	9pe	ppa	g p 🖬	ppe	1	ĩ	ž	gp a	pps	1	pp e	1	P 9 4	pg e	pp∉	pρ∎	ppe.	ppq	¢p∎
L1200	000N	(0,1	4.00	151	68	<3	0.06	3.5	7	12	20	3, 44	0.07	0.71	172	13	(0.01	13	0.05	18	<2	17	9	<5	(3	104
L1200	0258	(0.1	3.67	85	25	<3	0.06	3.8	9	12	20	7.65	0.13	0.21	407	18	(0.01	LÓ	0.06	47	(2	22	5	<5	<3	93
11200	050H	(0.1	2.99	263	43	(3	0.05	3.7	21	13	29	4.27	0.11	0.48	6078	24	(0.01	12	0.05	41	(2	18	5	(5	(3	152
L1200	075N	<0.1	6.34	160	32	(3	0.05	2.4	14	13	31	5.03	0.14	0.25	1493	18	(0.01	9	0.06	33	(2	25	4	<5	(3	160
L1200	100N	{0.1	1.81	3	20	<3	0.04	0.2	4	10	a	0,99	0.05	0.19	67	7	<0.0J	7	0,15	23	<2	14	5	(5	(3	35
L1200	125N	(0.1	3.62	482	73	(3	0.08	0.8	10	10	20	3.4L	0.09	0.43	5130	(7	<0.0L	6	0.11	22	<2	16	7	<5	<3	178
L1200	1508	(0.]	2.12	>2000	410	(3	0.11	10.1	39	5	58	4,65	0,10	0.20	15019	73	(0.01	19	0.14	96	2	13	6	<5	<3	717
L1200	175M	(0,1	7.56	>2000	68	(3	0,15	4.7	20	11	13	5,06	0.15	0.05	3104	16	(0.01	8	0.08	19	(2	26	6	<5	<3	274
L1200	2000	(0.1	5.83	222	49	<3	0.05	3.3	22	12	28	4.55	0.13	0.22	5238	18	(0.01	10	0.15	40	(2	21	•	<\$	(3	211
L 1 200	2258	0.2	2.28	70	52	<3	0.04	1.4	15	13	18	2.06	0.07	0.12	494	13	(0.01	7	0.06	52	<2	22	5	(5	(3	57
L E 200	250#	(0,)	3.76	(3	13	(3	0.04	2.7	7	11	9	6.B6	0.13	0.06	379	13	(0.01	8	0.04	46	<2	24	2	(5	(3	94
L \$ 200	2758	{0.1	3.69	54	22	(3	0.04	3.2	10	13	18	9.00	0.14	0.11	490	17	(0.01	11	0.03	53	(2	28	2	{ 5	G	114
L1200	300x	(0, 1	1.25	123	20	(3	0.03	1.5	13		21	2.26	0.06	0.21	284	8	(0.01	5	0.05	41	(2	15	3	(5	(3	44
L1200	3258	(0,1	6.02	95	58	(3	0.08	3.2	31	0	24	4.98	0.13	0.29	5199	16	(0.0)	11	0.97	37	(2	22	7	(5	(3	257
L\$200	3SON	0.1	8.12	<3	43	(3	0.05	2.5	10	5	15	4.58	0.13	0.15	1413	12	<0.01	11	0.10	8	(2	27	3	<5	(3	223
11200	375N	(9.1	4.79	(3	10	(3	0.04	0.8	10	9	19	6.05	0.13	0.07	278	15	(0.01	8	0.05	37	(2	26	2	(5	(3	85
L1200	4000	0.1	5.03	653	6t	(3	0.05	3.1	12	9	30	4.70	0.12	0.22	6359	23	(0.01	15	0.07	155	0	18	5	(5	(3	521
L1200	425N	(0.1	4.19	334	52	G	0.05	2.3	10	10	23	3.67	0.11	0.25	4049	12	(0.01	11	0.13	54	0	16	6	(5	(3	313
1 \$ 200	450N	(0.1	3.07	259	69	(3	0.04	2.6	18	11	18	5, 10	0.13	0.28	14539	20	(0.01		0.08	60	0	16	4	65	0	140
L1200	475N	(0.1	3.72	484	59	(3	0.03	2.8	10	9	16	5.07	Q. 11	0.21	1173	20	(0.01	9	0.09	50	(2	19	5	(5	(3	231
L1200	500N	0.1	6.51	G	18	(3	0.05	1.0	q	13	16	1.47	0.15	9.6 8	437	15	(0_01	11	0.03	50	17	29	,	(5	(3	105
L1200	525X	1.2	4.68	560	66	(3	0.05	21.0	17	9	41	3.85	0.11	0.18	>20000	37	(0,01	4	0.10	726	(2	18	i.	(5	(3	757
L1200	550M	0.2	5.83	360	152	(3	0.08	3.8	20	8	34	4.24	0.16	0.41	B243	16	(0.01	14	0.07	57	(2	20	Ť	(5	G	485
L1200	5758	0.1	2.03	866	425	(3	0.25	4.5	8	6	11	5.47	0.14	0.21	8688	18	(0.01	11	0.13	52	3	18	25	(5	(3	215
L1200	600N	0.1	3,81	735	104	<3	0.08	3.6	11	8	12	6.36	0.14	0.54	5154	21	(0.01	11	0.12	39	(2	19	8	(5	(3	231
L1200	625N	0.1	3.99	130	57	(3	0.05	2.2	20	л	32	4,19	0.11	0.48	2459	12	(0.01	12	0.09	53	0	18	5	(5	(3	190
L1200	6508	(0.1	5.21	310	70	(3	0.04	3.4	14	10	27	5.79	0.15	0.13	5540	17	(0.01	s	0.14	45	(7	73	2	6	(3	308
L1200	675N	0.2	5.06	(3	33	(3	0.03	1.1	12	9	17	4.56	0.14	0.11	845	16	(0.01	9	0.11	47	Ö	26	3	(5	(3	109
L 1200	1001	6.2	3.41	455	101	(3	0.05	2.4	27	R	35	4.53	0.11	0.34	4717	15	(0.01	10	0.35	44	12	19	5	(5	(3	736
L1200	725N	(0.1	3.49	127	121	(3	0.08	1.2	9	7	18	4.05	0.10	0.31	1155	n	(0.01	10	0.40	33	(2	17	19	(5	(3	151
L 1200	750R	Q. 1	3.58	685	133	(3	0.12	0.7	18	7	28	4.21	0.10	0.27	2795	12	(0.01	11	0.19	41	<2	15	8	<5	(3	164
11200	775K	(0.)	3.77	1177	200	<3	0.25	2.9	75	S	184	4.23	0.15	0.43	4278	15	(0.01	13	0.14	67	(2	16	15	(5	(3	551
L1200	SOON	0.2	3.11	700	353	(3	0.58	3.1	34	,	(5	3.79	0.16	0.36	7592	16	(0.0)	11	0.32	75	(2	17	21	<5	(3	387
L1200	875N	0.1	4.91	210	76	(3	0.07	1.0	21	1	115	4.40	0.10	0.38	4583	12	(0.0)	9	0.17	28	(2	70	6	(5	(3	235
L1200	850N	0.2	3.6t	92	65	(3	0.04	1.5	14	9	25	4.38	0.09	0.34	1616	12	<0.0]	8	0.09	30	0	16	6	<5	(3	125
L1200	875N	0.1	5.22	12	294	11	6.47	65	16	٢	50	4 25	0.15	6 B1	\$491	,	{0 01	7	0 00	75	(7	18	23	45	(3	191
L1200	900N	A. 1	3, 19	(3	15	(3	6.64	3.1	17	10	26	310.00	0.19	0.09	292	14	(0.01	?	0.04	71	27	12	1	5	ä	89
L1200	925N	(0.1	3.11	(7	22	ö	0.01	1.0	17		20	6 67	0.14	0 11	295	12	20 01	,	0.04	63	9	76	÷	(5	12	54
L1200	950N	0,1	5.18	(3	51	(3	0.05	0,5	11	11	25	5.68	0.11	0.42	375	8	(0.0]	8	0.05	22	(2	24	8	(5	(3	70
Minie	ve Detection	Ú., I	0.01	3	ı	3	0.01	0.)	i	ı	1	0.01	0.01	0.01	1	1	0.01	1	0.01	,	2	2	1	S	3	,
Nacio	um Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - i	ess Than Miniaus	> - Greater T	han Kasi	1000	is - Insu	lficient	: Sample	- AS	- No Samp	le	ANOMALOU	S RESULT	S - Furth	er Anal	yses By	Alternat	e Aetho	ds Sugges	ted.	7-4VV	* ***		,			+ * * * * *

Ě

1530 Pandora Street, Vancouve. . V5L 1L6 Ph: (604) 251-3655 Fax: (604) 294-5717

Variante de constitues

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with S mi of 3:1:2 HCL to HNO, to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sm, Sr and N.

ANALYST: Rymath

REPOR! 4: 900206 PA	PANICON DE	VELOPHEN	TS LTD.			PROJE	CI: XIRB	Y		ÐAT	E [R: AU	G 03 199	0 DA	TE 001:	SEPT 04	1990	ATTENT!O	N: MR. 5	IEVE TOO	RUK		PA 6	E 2 OF	2	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Çd	Co	Cr	Cu	fe	Ķ	đg	Ka	No	Na	Ni	P	Pb	56	Sn	Sr	U	W	In
	(pp	1	p p s	ppe	9 PE	ĩ	pp∎	99 e	ρ ρ ε	pg e	2	2	Y	ope.	00 t	ĩ	pp.	ĭ	ppe	pp≜	op n	ppe	pp=	ppe	вре
L1200 9758	(0.1	3.90	(3	37	(3	0.03	Ċ.8	12	15	36	5.31	0.12	0.23	229	16	<0,01	8	0.02	38	(2	18	5	(5	<3	47
L1200 1000N	(0.1	5,48	(3	40	(3	0.03	2.3	12	15	25	6.81	0.14	0.42	415	12	(0.01	8	0.02	32	<2	25	4	<5	<3	69
Minimum Detection	0.1	0.01	3	1	3	0.01	0,1	1	1	1	10.0	0.01	0.01	1	1	10.0	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10,00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10,00	10.00	10,00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) – Greater T	han Maxi	e u e	is - lose	lficien	t Sample	ns	- No Samp	oie	ANDHALOU	S RESULT	S - furt	her Anal	yses By	Alternat	e Nethod	s Sugges	ted.							

1630 PARHORA - F " VANCOUVER, BC - V5L 1L6 (604) 251-5656

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

VANGEOCHEM LAB LIMITED

DATE: SEPT 04 1990

REPORT#: 900236 GA JOB#: 900236

INVOICE#: 900236 NA TOTAL SAMPLES: 28 SAMPLE TYPE: 28 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: KIRBY

SAMPLES ARRIVED: AUG 13 1990 REPORT COMPLETED: SEPT 04 1990

ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Kynth SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

1630 PANDORA CHOENT VANCOUVER, BC V5L 1L6 (604) 251-5655

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPHIST. FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900236 GA	JOB NUMBER: 900236	PAMICON DEVELOPMENTS LTD.	PAGE 1 0P 1
SANPLE I	L 0		
	ppb		
L960 000N	<u>``5</u>		
L960 025W	5		
L960 050N	nd		
L960 075N	5		
L940 100N	10		
L960 125 N	15		
L960 150N	nd		
1960 175N	10		
L960 200N	5		
1960 225N	5		
L960 250N	20		
L960 275N	5		
L960 300x	nd		
L960 350N	15		
L960 375N	nð		
L960 400N	10		
L960 425N	10		
L960 450N	nd		
L960 475N	10		
L960 500N	10		
L960 550N	5		
L960 625N	5		
L960 675N	DÌ		
L960 725N	10		
L960 750N	10		
1960 775W	5		
6960 800N	ba		
L960 825N	15		

:==== === :=== 1630 Pandora Street, Vancouver_ V5L 1L6

= =

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A ,5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₅ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ka, P, Sn, Sr and W.

= ==

ANALYST: Royalla

REPORT D: 900236 PA	PANICON DE	VELOPNENT	S LID.			PROJE	CT: KIRB	Y		DATI	E 10: AUG	\$ 13 1990	DA	TE OUT: S	EPT 04	1990	ATTENTIO	I: MR. SI	IEVE TODO	ruk		PA 68	1 OF	1	
Sample Name	Ag	A1	As	8a	8 i	Ca Y	Cd	Ćo	Cr	Cu	fe T	ĸ	Mg	Ho	Ha.	Ha	Ni	P	Pb	55	5a	Şr	ų	W	la ope
1940 0000	() (2 99	<2 <2	44 1	47 (3	0.12	2 5	22	26	12	6.56	A 22	0.07	222	22	/0.01	94 24	Λ Λ Δ1	μμ= 52	(2	32	7	ру• 6	/3	91
1960 000N	20.1	6 66	13	511	13	0.74	/0.1	17	27	21	4 07	0 47	0,01	1954	19	/0.01	10	A 07	26	22	32	17	15	(3	256
1967 0230	10.1	6,00	12	141	/2	A 13		16	17	21	4.0/	0.92	0.10	1995	1.7	(0.01	10	0.07	40	14	17	13	14	/2	105
1000 030N	1.5	3.05	10	42	12	0.13		10	17	20	3.04	V. 23	0.12	1326	14	(0.01	5	0,20	11	12	10	Б А	15	(3	103
L360 073N	(0.1	1.33	13	43	13	0.01	(0.1	7	10	15	3.11	0.19	0.12	300	5	(0.01		0.07		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10		10	(3	31
1960 1008	(0.1	1.34	43	30	(3	0,08	1.4	3	13	8	2.90	0.17	0,13	160	10	(0.01	12	0.03	16	Q.	13	ç	(3	(3	42
L960 125N	<0.1	2.31	(3	19	(3	0.08	0.5	13	22	12	3.75	0.23	0.13	240	15	(0.0t	15	0.03	31	(2	22	4	6	(3	88
L960 150N	(0.1	4.98	<3	24	(3	0.14	2.0	17	26	13	>10.00	0.25	0.06	165	21	(0.01	12	0.03	23	<2	39	3	(5	<3	82
L960 175N	(0.1	1.75	(3	155	<3	0.09	1.8	15	10	15	3.29	0.17	0.20	1481	11	(0.01	6	0.20	12	<2	14	4	(5	<3	59
L960 200M	(0.1	4,30	(3	30	(3	0.12	1.1	23	21	27	6.54	0.21	0.28	952	19	(0.01	16	0.06	17	<2	22	5	(5	<3	85
L960 2258	(0.1	4.15	(3	10	<3	0.11	2.3	19	19	13	6.24	0.28	0,05	381	20	<0.01	20	0.04	28	<2	33	З	(5	(3	75
L960 250W	(0.1	4.76	(3	221	(3	0.29	7.6	71	31	57	210.00	0.34	0.13	17639	42	(Û. 01	63	9.05	36	(2	32	3	(5	(3	573
L960 275N	(0.1	3.03	(3	453	(3	0.21	(0.1	12	17	13	4.55	0.20	0.15	365	17	(0.01	11	0.10	14	(2	18	17	<5	(3	107
L960 300N	(0.1	2.33	(3	163	(3	0.15	0.4	12	20	12	3.11	0.73	0.28	127	16	(0.01	18	0.12	18	(2	18	10	(5	(3	103
1960 350N	(0.1	\$. 93	3	41	40	0.10	(0.1	8	20	31	1.24	0.21	0.13	193	15	(0.01	18	0.24	(2	(7	29	9	(5	(3	101
L960 375M	(0.1	4.29	(3	46	<3	0.11	0.2	14	24	22	5.01	0.36	0.31	214	20	(0.01	20	0.05	14	(2	24	Ś	(5	(3	96
1960 400N	(0.1	3.66	(3	67	(3	0.12	2.2	13	23	20	8,56	0.21	0,10	207	20	{Ó,Ó1	15	0.11	22	(2	25	7	5	(3	68
1960 4258	(0.1	3.37	(3	148	(3	0.10	(0.1	16	18	9	2.86	0.20	0.11	149	13	(0.01	13	0. OB	(2	(2	30	5	7	(3	87
1960 450N	(0.1	2.79	(3	28	(3	0.14	3.7	61	23	43	9.97	0.29	0,13	1368	28	(0.01	17	0.19	45	(2	17	3	5	(3	87
1960 475N	(角, 1	1.80	(3	38	(3	0 13	0.9	17	25	12	4 87	0.29	0 14	287	22	(0.01	20	0.06	37	12	7R	1	ĥ	(3	88
L960 500N	(0.1	3.77	(3	90	(3	0.10	1.2	15	22	31	4.17	0.31	0.26	825	17	(0.0)	13	0.09	17	(2	19	Ś	(5	(3	93
1960 5500	(0.1	0.74	(3	249	3	0.10	1.2	12	31	11	5 90	0.30	0.17	154	17	(0.01	74	0 16	57	4	10	17	5	13	30
1960 6258	(0.5	1 18	(3	274	(3	0 77	1.0	19	71	17	2 51	0.24	6.17	3373	19	(0.01	27	ń 17	52	ć	17	19	Ē.	12	175
1960 6758	(0.1	1.31	14	176	13	0.26	0.3	26	21	17	4.28	0.24	0.27	3741	21	(0.01	39	0.07	50		26	10	ര്	ä	64
1960 3258	(0.1	6.94	32	95	(1	0.12	(0.1	10	11	i,	1 .91	0.13	0 11	176	15	(0.01	13	0.09	74	17	27	12	65	ä	82
L960 750N	(0.1	0.76	10	45	(3	0.23	(0.1	10	15	6	1.59	0.18	0.13	393	19	(0.01	3	0.13	36	(2	21	12	(5	<3	110
1980 80AN	(0.1	2.09	(1	72	(7	A 14	• •	15	10	e	4 14	0.25	A 19	972	16	(0.01	٩	0.21	20	12	19	,	(5	13	89
1960 9254	(0.1	1 97	22	76	/3	0.11	1 0	10	10	- u a	2 52	0.00	0.12	123	10	70.01		A 03	22	12	25	é	/5	12	50
1966 7750	(V) J	3,37	10	20	12	A 14	1,0	23	10		4 36	0.23	0.12	111	13	26 61	11	V. V/	31	22	23	r v	14	73	20
C360 //3K	(0.1	2.33	(3	43	(3	V. IV	U.4	23	18	10	4.75	0.70	0.13	432	14	(0.01	14	0.05	21	(2	30	3	()	(3	12
Rinimum Detection	0.1	0.01	3	1	3	0.01	Q.1	1	1	1	0.0i	0.01	0.01	I.	1	0.01	i	0.01	2	2	2	1	\$	3	1
Naxious Detection	50.0	10,00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
C - Less Than Hinimum) - Greater 1	Chan Maxie	NUA .	is - losi	flicient	Sample	ns	- Ko Saep	le	ANOMALOU	S RESULT	5 - Furth	er Anal	yses By (Alternat	te Nethod	ls Sugges	ted.							

1630 PANDORA STREET VANCOUVER, BC V5L 1L6 (604) 251-5656

MAIN OFFICE -1988 TRIUMPH GT. -VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

VANGEOCHEM LAB LIMITED

DATE: SEPT 14 1990

REPORT#: 900403 GA JOB#: 900403

INVOICE#: 900403 NA TOTAL SAMPLES: 49 SAMPLE TYPE: 49 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: KIRBY

SAMPLES ARRIVED: SEPT 06 1990

REPORT COMPLETED: SEPT 14 1990

ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Kyndh SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

1630 PANDORA SIREET VANCOUVER, BC VSL 1L6 (604) 251-5656

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 4098 TRIUMPH ST--VANCOUVER, B.C. V5L 1K5-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U S.A.

REPORT NUMBER: 90	10483 GL JOB WUNBER:	: 900403 PANICON	DEVELOPNENTS LTD.	PAGE 1 OF 2
SAMPLE I	¥0			
	bbp			
L0+00 000 t	bđ			
LO+00 025¥	5			
LO+OQ OSOW	20			
LO+00 075W	nð			
LO+00 100 0	bđ			
LQ+00 125 0	15			
LO+00 150¥	ad			
LO+00 175 4	10			
LO+00 200 4	5			
LO+DO 225W	nđ			
LO+00 250W	20			
LO+00 275¥	nđ			
LD+00 300 4	15			
.0+00 350 0	bd			
.G+00 375#	nđ			
.0+00 400 T	nd			
.0+00 425 0	ba			
.0+00 450 7	10			
.0+00 4750	på			
.0+00 500 4	5			
.0+00 525 4	nd			
.0+00 55 00	5			
.0+06 575 V	5			
,0+00 600 0	5			
.0+00 625 0	ba			
.0+00 650 0	20			
0+00 675 0	ba			
0+00 700 t	nà			
.0+00 725¥	20			
.0+00 750 t	nd			
0+00 775 8	5			
0+00 800W	ba			
0+00 825 ¥	nd			
,0+00 900¥	10			
0+50 000¥	ba			
0+50 025¥	nð			
0+50 050 0	ba			
0+50 125 4	5			
0+50 150 v	15			
ETECTION LINIT	5			
d = nome detecte	d = not analysed	is = insufficient	sample	

1630 FANDOR + LINE 1 VANCOUVER, BC - V5L 1L6 (604) 251-5656

VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988-TRIUMPH ST: VANCOUVER, B.C. V5L TKS-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT	NUMBER;	900403 GA	JOB NUMBBE	: 900403	PANICON	DEVELOPHENTS	s LTD.	PAGE	2	OP	2
SAMPLE	ŧ		Le								
			opb								
L0+50	1751		5								
10+50	200¥		15								
10+50	225		15								
50+50	2501		15								
L0+50	275		15								
L0450	3007		nd								
L0+50	325T		5								
L0+50	3541		10								
C.0350	375 T		nð								
L0+50	1001		nd								

V6 jĒί -165 1.6 IΤ 1_

1630 Pandora Street, Vancouvi 2. VSL 11.6

ANALYST: Rymb

.

11

Ph: (604) 251-5656 Fax: (604) 254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNQ, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Kn, Ka, P, Sn, Sr and W.

	DEPROT	1. 900403 P4	GANICON DEL		C I TN			000.10	CY. PTODY			BATC	IN. etc	AT AC 100	-	(C 1947. 0	CT A5 10	iên.	ATTENTION	. 10 ct	CUE 1000	21 FV	•	PACE	Inc	•	
	NET UNI	4; 300403 FM	CANLUM UC	CLUTHER	3 LIV,			FRUIE	LII NIRDI			nair	IN; 201	ri ng 133		IE 001: 0	() (J 13	20	ATTENTIUM	: 86, 31	ςγε 10000	(UK		r Huc	1.00	4	
	Sample	Kine	Ag	Al 7	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	fe	X T	Ng	Na	Mo	Na.	Ni	P	Pb	Sb	Sn	St	U	¥	Zn
	10400	0004	(0.1	5.16	(3	23	(7	n 05	0 8	γγ∎ 7	442	20	4 61	A 10	0.11	425	400	0 12	2002	0 A3	21	/7	18	2	/5	/2	104
	1 0+00	625R	(0.1	2 97	(3	25	(1	0.44	0.0	1	21	20	2 43	0.00	0.20	167	437	0.07	2003	0.05	31	0	10 t7	12	6	ä	67
	1.0+00	0504	(0.1	3.00	ä	119	(3	0.08	0.9	6	14	18	2 67	0.02	0 14	190	6	0.04	12	0 07	12	10	15	42	(5	G	56
	1.0100	A254	(6.1	5 14	12	24	/2	0.00	05	2	10	1.4	1.02	0.05	0.09	257		0.07	7	0.04	20	ä	17	3	(5	a	70
I	L0+00	1004	(0.1	3.04	(3	71	(3	0.14	1.4	11	16	30	3.55	0.05	0.49	927	8	0.07	íŚ	0.07	38	(2	12	15	(5	(3	97
	1.0100	1250	70.1	4 18	/2	10	12	A A5			1.9	10		A 45	0 00	247				0.07	21	12	17		15	12	79
	1.0400	1504	(0.1	2 75	13	21	/0	0.03	4.7	è	14	12	6.26	0.03	A 13	160	10	0 05	Ĩ	0.07	71	10	15	Ś	5	(2	
	1.0400	1750	(0.)	3.29	10	งเ	10	0.03	1.7	2			6.10	0.01	0.13	100	10	0.03	°,	0.05	33	12	1.2	1	/5	13	44
	10,00	2000	(0.1	2.30	13		13	0.02	1.3	2	11	17	3.3/	0.03	0.03	172	,	0,00	\$ \$	0.03	20	14	10		75	/2	72
İ	10100	2008	(0.1	2.00	(3	40	14	0.05	<v.1< th=""><th>2</th><th>12</th><th>17</th><th>2.01</th><th>0.03</th><th>0.29</th><th>1/3</th><th>1</th><th>0.08</th><th>6</th><th>0,08</th><th>20</th><th>4</th><th>10</th><th>2</th><th>75</th><th>(3</th><th></th></v.1<>	2	12	17	2.01	0.03	0.29	1/3	1	0.08	6	0,08	20	4	10	2	75	(3	
	10100 1	22 3 1	(4,1	2.89	(3	17	3	0.03	1.6	4	11	15	6.32	0.08	0.04	43/	15	0.08	6	0,08	9 1	2	16	2	()	()	67
	L0+00	2508	(0.1	3.22	(3	18	(3	0.02	1.1	4	11	15	3.85	0.04	0.08	348	11	0.05	3	0.05	36	<2	15	3	(5	<3	71
	L0+00	2759	(0,1	3.17	(3	62	(3	0.12	1.3	12	12	28	4.13	0.08	0.36	1581	ii	0.10	Ī	0.07	63	<2	12	10	<5	(3	125
1	L0+00	3004	(0.1	2.36	(3	16	(3	0.02	1.2	4	9	11	5.90	0.06	0.05	385	ü	0.05	2	0.05	39	3	12	2	<5	<3	55
*	L0+00	3254	(0.1	4.37	G	14	(3	0.07	1.3	4	13	16	6.17	0.07	0.06	407	13	0.08	a	0.04	41	(2	18	2	<5	<3	77
5	L0+00	3501	(0.1	4.06	ä	54	(3	0.07	1.4	Ŕ	11	23	3.98	0.08	0.35	497	10	0.10	4	0.04	29	(2	14	8	(5	(3	119
2						-				•		••				127			-				• •				
Ş.	L0+00	375W	(0.1	4.51	(3	40	(3	0.04	(0.1	4	7	23	4.41	0.08	0.16	312	11	0.11	1	0.03	33	(2	16	3	<5	(3	142
Ę.	L0+00	4000	(0.1	4.06	(3	25	<3	0.03	0.4	5	11	21	4.12	0.05	0.16	379	10	0.09	2	0.08	19	(2	16	1	<5	<3	108
12	L0+00	4250	{0.1	4.18	<3	21	(3	0.01	1.0	- 4	11	15	4.45	0.05	0.07	305	13	0.07		0.05	33	<2	17	3	(5	(3	68
	L0+00	450W	<0.1	5.09	<3	20	<3	0.04	0.7	6	9	17	4.60	0.08	0.09	897	13	0.08	<1	0.08	25	<2	19	3	(5	(3	82
	L0+00	4759	<0.1	3.95	<3	17	<3	(0.01	2.0	3	12	13	7.17	0.07	0.04	179	12	0.08	2	0.04	\$3	<2	18	a	<5	(3	56
	L0+00	5251	(0.1	2.78	3	52	(3	0.03	1.7	5	13	70	6.19	0.09	0.12	3(1	13	0.13	3	0.05	54	•	17	3	(5	(3	87
	L0+00	550V	(0,1	6.54	(3	20	a	0.01	0.3	s	9	21	5.75	0.09	6.09	780	12	0.09	ā	0.08	33	(7	22	2	<5	(3	146
1	L0+00	5758	(0,1	4.26	G	105	(3	0.10	0.3	Ř	- si	30	3.59	0.0B	0.27	395	ü	0.12	3	0.09	40	(2	16	27	(S	(1	143
L	L0+00	500W	(0.1	3.29	(3	70	(3	0.10	0.8	13	12	37	4.00	0.07	0.55	1090	9	0.07	3	0.06	32	ā	13	14	(5	(3	121
	L0+00	625W	(0.1	4,54	(3	50	(3	0.03	0.9	6	10	21	3.70	0.07	0.21	342	u	0.09	ā	0.05	35	(2	17	7	(5	(3	121
	10+00	6SOV	(0.1	2.46	(3	108	3	0.01	(0.1	4	6	11	2.15	6.62	0.25	479	7	0.03	a	0.07	,	0	9	7	(S	(1	63
L	10+00	6758	(0.1	3.72	a	113	G	0.07	0.8	Å	11	31	3.51	0.06	0.44	1059	9	0.08	ä	0.10	23	(7	13	13	(5	(3	92
Ł	L0+00	7004	(0,1	3.68	(3	446	(3	0.15	0.5	9	A	21	2.70	0.06	0.51	1583	1	0.06	ä	0.08	12	0	12	318	(5	C)	88
F	L0+00	7254	(0.5	7, 91	G	126	G	0.1B	0.9	13	14	25	3.25	0.07	0.71	1365	7	0.06	6	0.10	28	0	12	39	<5	(3	95
	L0+00	7500	(0.)	1 90	12	36	12	0.02	24		19	29	6 94	0.09	A 14	249	, sí	0.05	. ñ	6 10	49	R	16	,	(5	a	33
			VVI I	1494		30		0.03	2.7		1.5	C 1	Q, 74	0.00		C T1		4.45	14	*.1*	••	v		,			•
I.	L0+00	775	(0.1	2.iB	(3	36	<3	0.02	(0.1	4	9	15	2.02	0.02	0.22	140	8	0.03		0.08	20	(2	9	8	(5	(3	42
	L:0+00	800W	(0,1	4.55	(3	175	(3	0.04	3.0	13	9	21	3.86	80.0	0.45	7201	32	0.09	0	0.06	200	(2	13	9	(5	(3	50
1	10+00	825W	(0.1	3.00	370	341	(3	0.59	6.5	16	7	19	3.63	0.12	0.86	2074	15	0.07	(1	0.12	50	<2	11	55	<5	<3	224
L	L0+00	900W	(0.1	0.95	55	89	(3	0.47	1.0	7	8	14	1.66	0.07	0.17	367	L1	0.03	<1	0.08	17	<2	9	31	<5	(3	152
	L0+00	000W	(0.1	5.09	(3	22	₹3	<0.01	0.7	3	11	21	5,72	0.07	0.08	167	12	9.11	(1	0.06	43	(2	19	2	<5	<3	92
1	10+00	075N	(0.1	3,85	0	٦r	(3	(0.01	6 .1		11	20	4.00	0.04	6 17	209	12	0.05	a	0.06	79	()	16	,	(5	(3	83
L	L0+00	ÓSON	(0 t	7 Rh	23	27	(3	(0.01	1 7		10	10	6 46	A 66	6 19	200		0.00	21	0.05		15	15	6	6	13	69
1	L0+00	1258	(0)	1 94	(2	16	/2	20.01	1.1	- -	10	10	5 49	0.00	0.1d	113	12	0.07		0.03	~~	¥.	15	4	75		51
1	L0+00	1504	(0.1	2.28	(3	51	(3	(0.01	(0.1	3	9	14	1.97	0.02	0.12	B7	7	0.03	- A	0.05	17	(2	10	9	<5	(3	35
	Nista	un Dekasti					•																-	c.	F	-	
1	Harin	a vesetijon A Bakachina	V.L 50 A	10.01	3 2000	1 1000	3	0,01	1000 6	1	1000	1	0.01	Ų.Ų] 10 AA	0.01	20000	1000	10.01	20000	10.00	20000	2000	1000	10000	3 100	1000	20000
1	(- 14	w vetetijun Lee Than Viniawa	JU.U 	19.00 19.00	2000	1000 	1000	10.00	1000.0	20000 . Ma Cara	1000	10000	10.00	10.00	10.00 10.00	20000 VEAN D-	1000	10.00 • Kette	20000 de Chases	14. 4 0	20000	2000	1000	10000	100	1440	20004
L			A - ALEAPEL I	MAR NAIL	-14	13 - LOSU	11111180	. 34 0 010	r RS'	— MO 2480	18	MUNALUU	I ACOULI	a - rert	nec Andl	7373 OF 1	ni 17f (141	¢ netnQ	as aaddes								

VANGEOCHEM LAS LIMITED

1630 Pandora Street, Vancouver, B.C. VSL 1L6 Ph:(604)251-5655 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with S al of 3:1:2 HCl to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Kynth

REPORT 8: 900403 PA	PANICON DE	ELOPKEN1	IS LTD.			PROJE	CT: KIR81	ŕ		DATE	E EN: SEI	PT 06 199	10 DAT	IE OUT: C	DCT OS IS	990	ATTENTION	: 118. 51	EVE TODO	RUK		PAG	E 2 OF	2	
Sample Name	Ag	A1	As	Ba	Bì	Ca	Cđ	Co	1Ĵ	Cu	Fe	ĸ	Mg	Ma	No	Na	Ki	P	Pb	Sb	Sn	Sr	u	¥	Zn
	ppe	ĩ	ppe	pp∎	pp 4	I	9PB	ppe	pge.	Ppn	I	I	1	ppe	<u>ope</u>	1	ppe	I	ppe	<u>ppe</u>	<u>ope</u>	pge	ppa	pps	ppe
L0+50 175W	0 . j	1.06	<3	29	(3	0.04	1.3	5	7	14	1.42	<0.01	0.06	83	6	0.02	7	0.02	25	(2	8	9	(5	(3	33
L0+50 200W	0.3	1.58	(3	24	(3	0.04	1.0	6	12	17	1.55	0.01	0.07	75	8	0.04	6	0.03	48	(2	12	7	(5	(3	40
LQ+50 225¥	(0.1	4.28	(3	49	<3	0,09	1.5	6	12	25	4.58	0.07	0.28	1036	11	0.09	9	0.03	33	(2	15	6	<5	(3	140
L0+50 250¥	(0.1	5.74	(3	16	<3	0.02	0.9	3	8	14	4.28	0,05	0,05	325	13	0,08	. S	0.04	26	<2	19	2	<5	(3	84
LO+50 275¥	<0.1	3.08	(3	85	<3	0,11	2.3	н	11	31	3.91	0.06	0.42	1273	В	0.08	8	0.06	24	٢2	12	12	<5	<3	137
L0+50 300W	<0.1	5.58	(3	11	(3	0.01	1.7	3	10	15	4.39	0.04	0.04	127	11	0.08	3	0.05	29	(2	20	2	<5	(3	53
L0+50 325W	<0.1	3.88	<3	11	<3	(0.01	1.9	3	12	14	6.55	0.07	0.07	182	12	0.09	5	0.04	46	<2	18	2	(5	(3	79
L0+50 350N	0.7	2.57	<3	27	(3	(0.01	0.9	3	8	18	2.81	0.02	0.06	172	8	0.05	3	0.04	21	<2	12	4	(5	<3	51
LO+S0 375W	0.3	3.23	<3	33	(3	<0.01	0.9	3	10	14	1,98	(0.01	0.12	158	8	0,04	(1	0.05	25	<2	14	5	<5	(3	60
L0+50 400W	0.2	3.87	(3	39	(3	0.02	\$.2	8	10	20	3.66	0.03	0.18	L150	8	0.07	3	0. 0 6	24	(2	н	6	(5	(3	110
Minisum Detection	0.1	Q.01	3	1	3	0.01	0.1	1	I	1	0.01	0.01	0.01	1	1	0.01	ł	0.01	2	2	2	I	5	3	1
Waximum Detection (- Less Than Minimum	50.0 > - Greater Ti	10.00 Man Maxis	2000 866	1000 is - Insu	1000 fficien	10.00 t Saeple	1000.0 ns	20000 - No Samp	1000 Le	20000 Andkalou	10.00 5 RESULT	10,00 5 - Furti	10.00 her Analy	20000 yses By /	SOOO Alternati	10.00 e Method	20000 s Suggest	10.00 ed.	20000	2000	1000	10000	100	1000	20000

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

 CLIENT: PAMICON DEVELOPMENTS LTD.
 DATE: OCT 05 1990

 ADDRESS: 711 - 675 W. Hastings St.
 DATE: OCT 05 1990

 : Vancouver, BC
 REPORT#: 900566 GA

 : V6B 1N4
 JOB#: 900566

INVOICE#: 900566 NA TOTAL SAMPLES: 117 SAMPLE TYPE: 117 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: KIRBY

SAMPLES ARRIVED: SEPT 24 1990

REPORT COMPLETED: OCT 05 1990

ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

.

ANALYSED BY: VGC Staff

SIGNED: RyAL

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 900566	GA JOB NUMBER: 9	00566	PANICON DEVELOPMENTS LTD.	PAGE 1 OF 3
SAMPLE I	1u			
• • • •	pap			
8L4400B 5100W	nđ			
BL4800B 5125B	ba			
BL48608 5150N	ba			
BL44008 51758	5			
BL400B 5200N	15			
BL4800E 5725E	10			
BL48088 5258 0	DA			
8646008 5275A	RC LC			
BLABUUX JJUUB Di Aanam Cjich	15			
RP440AR 22528	15			
RT.44008 5356W	16			
REARDAR 53750	nd			
RL4800R 5400N	15			
BL48088 54258	ba			
BL4800B 5450M	nd			
BL44008 5475¥	5			
BL4800B SS00B	bđ			
BL48008 5525W	5			
BL4880E 5550E	ad			
BL4800B 5575	20			
DE 14802 SCAAN	15			
DL1000B 50000	17			
RI LEASE SESAN	10			
BL4880R 5675W	nð			
BL48008 5700#	ad			
L5000B 5025B	20			
LSOODE SOSON	nd			
L5000B 5075N	10			
LSOOBE STOOF	5			
L50008 51258	Bđ			
15688# 1950P	10			
1.50000 4775P	18			
LSADAN ALAAR	15			
L5000K 4825k	10			
LS0008 4850B	ba			
L5000N 4875B	10			
12000H 4900B	20			
L50001 4950E	10			
65090N 4975B	15			
	r.			
vocoulium Willi nă : nove Aeterted	₹ hevicas tos =	le = lae	nfficient sample	
ag - HADE ACTEFIED	- mar analloca	10 - 189	aresotone onwhere	

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 90050	IG GA JOB NUMBER:	900566 PANECON DEVELO	ekents LTD.	PAGE 2 OF 3
SAMPLE I	åa			
	opb 🕐			
L5000B 5000B	5			
15100X 4825B	15			
L51408 4450B	5			
L51000 48758	ba			
15100N 4900B	nd			
L51008 49258	pà			
L51448 4950B	5			
L5100# 4975B	ba			
L52008 4825B	ba			
15200¥ 4850B	15			
L52008 4875E	ać			
L5200 H 4900K	28			
652008 (925B	bđ			
L52000 4950g	10			
L52008 (975B	5			
15200N 5000B	nd			
L5200# 50258	ba			
L53001 4825E	15			
653 001 4850E	15			
153008 48758	nđ			
L53008 4900B	ba			
15300N 4925B	nd			
L53008 49758	ad			
L53001 5000B	5			
153000 5025B	5			
L53000 50508	ъđ			
L53000 50758	od			
L5400N 4825B	10			
L54000 18508	20			
15400H 4875B	15			
L5400H 4900K	20			
15400N 4950B	nd			
15400# 4975 B	10			
L540DN 5000B	nd			
15400¥ 5025B	នថ			
654000 5050E	15			
15400N 5075B	10			
L55800 48258	5			
L5500N 4850B	nd			
DETECTION LINIT	5			
nd = none detected	= not analysed	is = iasufficient sample		

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT HUNBER: 90854	is ga job wuxber: 90	0566 PANECON DEVELOPMENTS LTD.	PAGE 3 OF 3
SAMPLE	à c		
	ppb		
LSS00F 40756	20		
155001 4900E	nd		
L5500B 4925B	ba		
65500N 4950R	10		
65509N 4975N	ba		
	- 1		
FSSAAM CAJEB FSSAAM SAAAR	10 1 6		
155000 2023B	2 10		
LSS008 50758 [SS008 51708	, 60		
1.55000 51000 1.55000 51250	5		
	,		
L56888 4825E	Da		
L56001 4850B	ρά		
6560 00 48758	10		
L5600B 4900B	5		
L56008 49258	ađ		
L5608# 4950B	10		
L\$600H 4975B	ađ		
15600N 5000E	ba		
L5600N 5025B	ad		
15600N 5050R	bđ		
****	,		
LJODUM JU(JK 1660aw 5100p	2 15		
150048 5195P	10		
623ADB 103KV	10		
1.57000 1050p	13		
841998 1949D	,		
L57603 48758	5		
15700H 19008	10		
L57008 49258	ba		
L57008 49508	ba		
LS700N 4975B	nd		
LS7DON SOCOR	ad		
L57001 50258	5		
557000 S0508	10		
L57008 50758	15		
PSIAOB STAAR	DQ		
167883 61759	24		
157000 51500	44 5		
1.57809 51752	20		
157000 5200R	nđ		
DETECTION LINIT	5		
nd = zone detected	= not analysed	ls = insufficient sample	

ICAP GEOCHEMICAL ANALYSIS

OCT 3 P 1990

: 1

ANAL

A .5 gram sample is digested with 5 ml of 3:1:2 BCl to HHO2 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with wa This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ma, P, Sn, Sr and W.

REPORT 0: 900565 PA	PANICON DEV	ELOPNENT	S LTD.			PROJEC	TI KIRBY	Ī		DATE	IN: SEP	PT 24 199	O DAT	E OUT: O	ICT 24 19	90 I	ATTENT ION	: MR. ST	EVE TODOS	RUK		PAGE	E 1 OF	3	
Sample Name	Ag ppm	Aj I	As ppe	Ba ppe	Bi p ga	Ca X	Čd PP •	Co gpe	€т рре	Ըս քք∎	Fe 1	ĸ	Hg X	An	Mo pp≜	Na Z	Ni ppo	P Z	РЬ 690	Sb ppe	Sn pp∎	5r ppe	U pom	W Ppb	2n gp e
BL 4800E 5100N	0,4	2.45	373	352	(3	0.36	(0.1	19	20	43	4.59	0.14	0.78	3385	17	0,05	14	0.05	(2	(2	(2	44	<5	<3	221
814800E 5125N	0.4	3.43	307	320	(3	0.32	(0.1	17	21	50	4.41	0.14	0.82	1995	21	0.05	6	0.06	<2	(2	<2	33	(5	<3	287
81.4800E 5150N	(0.1	2.58	506	359	(3	0.37	(0.1	20	20	60	4.91	0.15	0.94	3068	20	0.05	15	0.09	6	(2	(2	39	(5	(3	379
BL 4800F 5175W	(0.1	2 18	127	232	12	0.45	70.1	19	19	47	4.24	A 14	0.90	2914	18	0.06	17	0.09	ō	0	0	121	65	(3	294
BLABOOE SZOON	0.1	2.70	380	215	(3	0.31	(0.1	18	13	50	4, 41	0.13	0.81	1854	21	0.05	12	0.09	<2	(2	(2	120	(5	(3	203
BL4800E 5225N	0.1	2.57	144	48	<3	0.10	(0.1	9	29	19	4.40	0.10	6.45	288	21	0.05	7	0.12	<2	(2	(2	11	{5	(3	86
BL4800E 5250N	<0,1	1.00	41	31	<3	0.11	(0.1	10	13	9	4.86	0.10	0.10	319	19	0.05	5	0.08	23	3	<2	12	<5	<3	65
BL4800E 5275N	(0.1	2.34	12	43	<3	0.12	(0.1	6	20	13	7.02	0.15	0.15	316	19	0.04	3	0.04	(2	<2	<2	15	<5	<3	70
BL4800E 5300N	(0.1	2.99	S	72	(3	0.10	(0.1	7	21	16	4.77	0.11	0.22	136	20	0.04	•	0.22	(2	(2	<2	26	<5	(3	78
BL 4800E 5325M	0.2	2.64	239	101	(3	0.15	(0.1	11	21	19	5.31	0.14	0.40	548	16	0.05	9	0.05	(2	(2	(2	42	(5	(3	92
BL4800E 5350N	0.1	2.82	24	35	(3	0.13	<0.1	10	22	14	7.85	0.19	0.12	638	23	0.07	3	0.10	(2	(2	(2	13	(5	<3	83
BL 4800E 5375h	0.3	2.89	17	54	(3	0.13	(0.1	7	22	25	7.78	0.19	0,21	512	22	0.05	3	0.05	<2	<2	(2	13	(5	(3	109
BL4800E 5400K	0,6	3.23	<3	54	(3	0.10	{0.1	11	20	16	4.69	0.13	0,14	5217	21	0.07	2	0.09	<2	(2	(2	- 14	(5	(3	130
BL 4800E 5425N	Ù.4	1.77	1060	115	(3	0.11	(0.1	51	13	20	5.18	0.12	0.11	5228	15	0.04	6	0.16	28	(2	<2	17	(5	(3	62
BL.4800E 5450N	0.1	1,37	52	66	(3	0.04	(0.1	3	12	7	1.69	0.04	0.09	105	10	0.02	2	D.06	<2	<2	(2	8	(5	(3	32
BL4800E 5475N	0.7	1.97	153	131	(3	0.07	(0,1	3	13	12	1.40	0.03	0.05	109	13	0,02	3	0.11	<2	<2	(2	12	(5	<3	67
BL 4800E 5500N	<0.1	4.10	(3	32	(3	0.11	<0.1	9	28	15	6.35	0.17	0.15	433	25	0.08	5	0.03	<2	<2	<2	- 4	<5	<3	\$ 2
BL4800E 5525N	0.2	3.19	<3	29	(3	0,13	(0,1	B	27	20	6,46	0.16	0.29	351	21	0.06	7	0.02	<2	<2	<2	7	(5	<3	86
BL 4800E 5550N	0,1	2.91	7	67	(3	0.15	(0.1	16	24	12	4.46	0.13	0.21	2415	19	0.07	5	0.08	(2	(2	<2	9	<5	(3	104
BL4800E 5575N	0.2	3.73	(3	25	(3	0,10	(0.1	9	23	12	6.12	0.16	0.07	221	24	0.09	(1	0.03	(2	(2	(2	3	<5	(3	80
BL4800E 5600N	0.4	0.89	38	33	<3	0.04	(0.1	2	10	7	0.95	0.02	0.04	53	11	0.02	12	Q. 15	<2	(2	(2	6	(5	(3	42
BL4800E 5625N	0.3	1.89	79	34	(3	0.07	(0.1	3	14	6	1,97	0.05	0,15	110	12	0.03	. 9	0.03	<2	<2	(2	8	(5	<3	51
BL4800E SESON	0.6	2.54	9	49	<3	0.11	(0,1	5	20	16	5.08	0.12	0.21	228	15	0.04	10	0.04	<2	<2	<2	9	<5	(3	69
BL4800E 5675N	0.3	2,27	(3	18	<3	0.07	(0.1	9	19	9	4.67	0.11	0.07	135	20	0.05	S	0.02	<2	<2	<2	3	<5	<3	47
BL48005 5700N	0.3	9.46	<3	18	<3	0.10	<0.1	6	31	15	5.77	0.18	0.06	199	27	0.08	8	0.02	<2	(2	<2	1	<5	(3	61
L5000E 5025H	0.2	1.72	1729	202	<3	0.12	<0.1	11	14	24	4.49	0.11	0.16	8521	34	0.06	8	0.06	419	(2	<2	8	<5	<3	701
L5000E 5050N	0.3	3,49	329	126	(3	0.07	(0.1	17	17	42	3.79	0.10	0.65	754	16	0.03	7	(0.01	<2	<2	<2	7	- <5	<3	95
L5000E 5075H	0.3	2.58	606	25	<3	0.10	<0.1	9	16	23	4.51	0.11	0.28	1583	23	0.04	4	Q,08	<2	<2	<2	5	<5	<3	83
L5080E 5100M	(0.1	2.35	950	328	(3	1.14	(0.j	17	15	28	3.68	0.17	0.43	4724	20	0.05	9	0.10	(2	<2	(2	56	<5	(3	136
L5000E \$125H	(0.1	3,57	1075	269	(3	0,34	(0.1	12	18	27	4.23	0.14	0.48	2948	23	0.04	8	0.04	(2	(2	<2	15	(5	(3	132
L5000N 4750N	0.2	3,39	373	352	(3	0.34	(0.1	18	22	46	4.39	0.15	0.85	1975	19	0.06	11	0.07	{2	<2	(2	27	(5	(3	415
L5000N 4775N	0.1	3.24	344	364	(3	0.28	0.3	19	37	56	4.82	0.16	0.81	4085	20	0.05	16	0.07	{2	(2	(2	21	(5	(3	334
L5000N 4800N	0.4	1.96	1360	578	(3	0.69	(0.1	16	16	43	4.84	0.18	0.64	6805	21	0.08	10	0.08	68	(2	0	32	(5	(3	910
L5000N 4825N	0.2	2.75	756	472	(3	0.15	0.6	31	21	45	4.61	0.14	0.40	10272	21	0.07	1	0.02	73	(2	<2	10	(5	(3	638
L5000K 4850N	0.3	1,52	1348	698	(3	0.65	(0.1	16	16	31	3.82	0.15	0.45	10054	50	0.07	14	Q. 08	65	<2	<2	183	(5	<3	642
15000K 4875K	0.4	3.54	723	63	(3	0.14	(0.1	12	23	30	5.67	0.16	0.27	3224	33	0.05	6	0.05	<2	<2	<2	13	<5	<3	181
15000H 4900H	0.4	8.32	(3	66	(3	0.10	(0.1	16	32	41	4.74	0.16	0.23	4303	33	0.05	4	0.05	(2	<2	<2)	(5	(3	145
L5000N 4950H	0.6	1.34	1539)1000	(3	0.77	(0.)	15	12	34	3.71	0.17	0.48	15123	141	0.05	15	0.09	40	(2	(2	501	(5	(3	445
L5000N 4975H	0.4	1.68	1168	427	(3	0,63	(0,5	11	12	25	3.54	0.14	0,46	5322	43	0.07	11	0.08	115	(2	<2	517	(5	(3	740
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	t	ı	0.01	0.01	0.01	ŀ	I	0.01	ι	0.01	2	2	2	i	5	3	I
Maximue Detection	50.0	10.00	2000	1000	1000	10,00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater 1	'han Hazi	EUE -	is - Ins	afficien	Samle		- No Saen	le	AND MALI DU	C DEGIN F	s - Fort	hor Anol	veae Pu		a Mathad	le Sonnae	f ad							

WARD DECKA HEM LAND BUILD STUD

1630 Pandora Street, Vancouver, B.C. VSL il6

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with S m) of 3:1:2 HCl to KNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for At, Ba, Ca, Cr, Fe, K, Kg, Mn, Na, P, Sn, Sr and W.

ANALYST: Mydl

.

:

--

	REPORT 8: 900586 PA	PANICON DEV	EL OPHENT	S LTO.			PROJEC	T: KIRSY			DATE	IN: SEP	T 24 199	IQ DAT	E DUT: DI	CT 24 19	90 A	TTENTION	MR. STE	EVE TODOR	UK		PAGE	2 OF	3	
	Sample Name	Ag pp s	A1 1	Ås pga	Ba pps	8i gg∎	Ca I	Cd Pp4	Со рре	Cr ppn	Cu ppe	Fe 1	K 2	fig I	.Hn ppe	Mo gpe	Na Z	Nı ppe	P X	P6 gp∎	Sb ppm	Se p≬∎	S⊺ ppe	U ₽₽∎	y ppe	2n pp a
	LS000H 5000E	1.2	1.69	32000	947	(3	1.16	4.6	16	1 1	43	5.01	0.22	0.25	11717	38	0.10	14	0.11	430	<2	<2	145	(5	<3	1398
	15100N 4825E	(0.1	0.98	603	537	(3	3.06	0.1	4	10	23	1.46	0.16	0.19	3061	14	0.05	8	0.13	13	<2	(2	2859	<5	(3	443
	L5100N 4850E	0.1	3.99	759	95	<3	0.10	(0.1	5	19	18	4.27	0.12	0.24	960	26	0.06	5	0.07	<2	<2	(2	23	(5	(3	238
	L5100N 4875E	0.3	1.14	4i	50	(3	0.18	1.4	8	14	- 14	5.11	Q.12	0.06	1315	32	0.05	10	0,13	22	<2	(2	21	(S	(3	87
	L5100N 4900E	0.4	2.92	211	55	<3	0.12	(0.]	8	23	26	5.97	0.14	0.23	862	28	0.05	12	0.08	<2	(2	<2	13	(5	(3	85
	LS100N 4925E	0.1	2.51	488	154	(3	0.24	0.1	18	18	39	4.26	0.13	0.54	3754	19	0.05	12	0.05	(1	(2	(2	30	(5	(3	171
	L5100N 4950E	0.3	2.29	410	124	(3	0.25	(0.1	18	15	38	3,85	0,11	0.49	3019	15	0.05	11	0.05	4	12		20	()	()	103
	L51008 4975E	0.8	2.15	1107	166	(3	9.14	(0.1	13	15	21	4.59	0.12	0.19	5723	25	0,04	6	0.13	15	12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		() ()	13	176
	15200K 4825E	0,3	2.23	793	254	(3	0.39	{0,1	14	13	26	3.63	0.12	0.55	3528	17	0,04	Ч -	0.07	(2	\$2	12	75	()	(3	229
	L5200N 4850E	0.1	2.19	71Q	163	3	0.18	(0.1	14	16	31	4.04	0.19	0.49	5225	16	0.00	د	0.09	14	(2	12	12	()	(3	300
	L5200N 4875E	0.4	3.11	551	89	(3	0.26	(0.1	10	20	20	4, 4B	0.12	0.23	3484	24	0.05	6	0.08	<2	(2	<2	14	<5 /5	<3 /2	259 225
	L52008 4900E	(0.1	2.46	636	351	(3	0.65	(0.1	15	19	29	4.35	0.16	0.48	/[4]	13	0.06		0.11	13	12	(2	34	()	(3)	993 525
2	L5200N 4925E	Q. 2	2.34	854	4/2	(3	0.91	0.8	17	19	34	1.53	0.19	0.05	8526	19	0.07	12	V.11 0.10	43	12	22	00 60	15	(3	795
1	L32008 49305	0.1	1.83	1215	514	(3	1.00	0.5	1.9	13	26	4.11	0.21	0.30	10219	21	0.07		9.17	19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	50	/5	73	900
2	LJ2004 43/JC	V.2	2.10	1213	331	14	1.10	(0.1	10	19	27	4.3/	V. 21	V. J2	17213	20	4.40	v	0.11	63	12		30		13	
1.	L5200K 5000E	0.1	2.86	835	428	(3	0.62	<0.1	19	16	45	4.46	0.18	0.66	5207	17	0.05	11	0.09	<2	<2	<2	31	<5	<3	256
5	L5200M 5025E	0.5	2.46	813	406	<3	1.20	<0.1	16	16	46	3.8i	0.18	0.53	3654	15	0.05	6	0.10	<2	<2	<2	53	<5	<3	271
	L5300N 4825E	0.4	2.81	10	25	(3	0.09	0.2	7	21	11	4.22	0.08	0.08	797	19	0.05	2	0.13	<2	<2	(2	6	(5	(3	62
	L5300N 4850E	0.3	3.00	710	151	(3	0,07	<0.1	4	16	9	4,09	Q.09	0.16	772	- 14	0.03	2	0.14	<2	(2	(2	16	(5	(3	48
	153008 48758	(0.1	4.12	224	42	(3	0.15	(0.1	10	31	23	9.23	0.24	0.28	513	28	0.06	5	0. 04	(2	(2	(2	6	(5	(3	76
	L5300K 4900E	0.3	4.41	1394	101	<3	0.11	(0,1	11	20	30	5.08	0,13	0.71	1087	28	0.04	11	0.06	<2	<2	<2	23	(5	(3	176
	L5300K 4925E	0.6	3.69	603	156	<3	0.08	(0.1	1	20	14	3.58	0.09	0.64	675	22	0.04	4	0.04	(2	(2	(7	29	(5	(3	115
	15300N 4975E	0.3	2.07	637	345	(3	0.54	(0.)	17	18	19	3.45	0.13	0.51	5408	20	0.04	1	0.19	(2)	14	2	28	10	(3	296
	L53000 5000E	0.2	2.35	688	537	G	0.92	(0.1	17	19	23	3.80	0.16	0.31	6383	20	0,03	8	V.17	12	12	1	50	13	/2	104
	E53009 5025E	0.3	1.88	551	445	(3	1.52	(0.1	17	16	19	3.03	0.18	0.63	4686	72	0.05	5	0.18	(2	12	(2	23	(3	13	104
	L 5300N 5050E	0.2	2.57	1114	493	(3	0.75	(0.1	20	18	27	4.10	0.16	0,60	5485	27	0.05	9	0.17	(2	(2	(2	66	(5	(3	197
	15300N 5075E	0.2	2.19	1373	488	(3	0.68	(0.1	18	15	27	3.91	0.15	0,50	4160	25	0,05	5	0.31	<u>q</u>	42		36	()	(3	167
	1 5400N 4823E	0.3	2.47	203	103	(3	0.10	(0.1	5	17	10	4.09	0.08	0.20	805	13	0.03	3	0.07	(2	12	12	50	(3)	79	73
	1 54000 40365	0.6	1.01	(3	43	(3	0.13	10.1		23	19	3.33 E TE	4.12	0.00	214	20	0.01		0.05	/2	12	12	5	/5	10	112
	134048 4873E	0.2	4.50	{3	23	13	0.12	6.9	3	25	3	5.75	V. 13	Q. 07	1101	13	0.03	11	V.V0	14	4	11		13		111
	L5400X 4900E	0.5	3.32	(3	23	<3	0.14	(0.1	8	26	16	7.67	0.20	0.05	437	25	0.07	(1	0.07	<2	(2	(2	4	<5	<3	85
	L5400N 4950E	0.1	2,17	207	205	<3	0.11	(0.1	θ	19	10	4.48	0.09	0.20	1276	16	0.05	5	0.13	<2	<2	<2	12	(5	(3	93
	L5400N 4975E	(0.1	2.82	349	174	<3	0.12	(0.1	8	20	16	S.17	0.12	0.21	819	18	0.04	5	0.12	<2	<2	<2	11	<5	(3	85
	L5400N 5000E	(0.1	3.24	407	183	(3	0.10	(0.1	8	15	5	2.91	0.07	0.23	803	- 14	0.03	(1	0.07	<2	<2	<2	14	<5	(3	75
ł	15400N 5025E	0.5	2,38	965	627	(3	1.48	(0. 1	Li	18	17	4.65	0.23	0.46	13431	22	0.06	2	0.13	7	(2	<2	65	(5	<3	239
ŀ	L5400H 5050E	(0.]	2.05	725	236	(3	0.53	(0.1	15	94	23	3.23	0.II	0.49	3418	21	0,04	17	0.19	<2	(2	(2	22	<5	(3	205
L	L5400N 5075E	(0.1	\$.87	1139	342	<3	1.19	(0.1	16	15	31	3.34	0.15	0.50	3532	21	0.04	3	0.13	(2	<2	<2	59	<5	(3	215
ŧ.	L5S00N 4825E	Q.1	3,15	(3	48	<3	0.15	{0.1	9	29	16	6.03	0,14	0.35	235	18	0.05	4	0.02	(2	<2	(2	8	<5	(3	69
	L55008 4850E	0.2	4.58	225	44	(3	0.15	<0.1	9	31	24	5.57	0.14	0,37	263	23	0.05	9	0.04	<2	<2	(2	9	<5	<3	74
	Kinimum Detection	0.1	0.01	3	ŧ	3	0.01	0.1	1	1	ì	0.01	0.01	0.01	i	1	0,01	ı	0.01	2	2	2	1	5	3	1
	Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10,00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

WZ COMERCIANE CONTRACT TRACE PROV

1630 Pandora Street, Vancoux., 2.C. V5L 116

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with 5 ml of 3:1:2 HEL to HNDg to HgC at 95 °C for 90 minutes and is diluted to 10 mL with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ha, P, Sn, Sr and W.

ANALYST: Mylh

- .

REPORT #: 900566 PA	PANICON DEV	ELOPHENT	IS LTD.			PROJEC	1: KIR81	ſ		DATE	IN: SEP	F 24 199	O DAT	12 OUT: 0	ict 24 19	90 #	ATENTION	: MR. ST	EVE TODOR	XUX.		PAGE	3 D F	3	
Sample Name	ÂÇ ADA	A) Y	As 000	Ba	91 Doe	Ca T	60 000	Co	Cr	Ĉu.	Fe 1	K 7	fig Y	Mn	Bo Dae	Ka T	Ri	P 7	Pb	Sb	Sn	Sr	U	¥ 806	2n
1.5500N 4875F	0 1	3 65	12	16	13	6 12	2 1	10	24	11	7 12	0.19	A 09	205	74	0.09	10	0.02	/2	/2	22	444	/5	(2	90
15500W 4900F	0.2	3 57	12	24	12	0 17	1 1	9	27	14	0 10	0.10	0,07	100	32	0.05	11	0.02	12	12	12	4	15	12	69
1 660AU 40365		3 66	10	21	13	N.1.7	1.1			10	0.10	V, CV	0.10	1/0	24	0.00	10	0.03	10	12			/6	13	50
LIIVUN 47ZOL	V.6	3,00	(3	27	(3	0.07	1.1	•	25	13	9.72	0.03	0.14	157	19	0.04	10	0.03	32	52	52	9	()	(3	23
132001 49205	Q.7	2.79	,689	61	(3	0.05	(0.1	•	16	19	2.58	0.05	0,39	641	15	0.03	1	Q.Q5	(2	<2	(2	•	(5	(3	92
L5500# 4975E	0.8	2.68	652	102	(3	0.05	(0. 1	2	16	13	2.68	0.05	0.33	294	16	0.03	5	0.07	(2	{2	(2	5	(5	(3	78
L5500K 5000E	0.7	2.52	540	35	(3	0.16	(0.1	3	15	16	2.58	0.07	0.37	398	17	0.03	7	0.20	(2	{2	(2	10	<\$	(3	147
L55008 5025E	0.5	1.76	721	170	(3	0.30	(0.1	16	15	16	3.67	0.11	0,25	4072	18	0.05	Б	0.16		<2	<2	47	<5	(3	165
L 5500K 5075F	0.7	2.42	945	135	(3	0.19	(0.1	9	17	1 R	4 33	0.11	0.23	5398	74	0.06	10	0.14	2 1	(7	0	10	(5	(3	291
155000 51000	0.2	4 01	16.45	103	/3	0.15	/0.1	10	10		5 73	A 10	0.04	7070		A A7	10	A A0	25		/1		/5	17	672
LESOCH FLORE	0.3	9,01	1041	103	13	0.13	10.1	13	13	29	3.75	V. 16	9.29	1210	۵f Di	0.07	14	0.00	2.3	14	11	25			000
L30000 31205	0.4	2.33	1749	1/9	(3	0.71	(0.1	1	U.	15	7.32	0.22	0,13	11/3	34	Q.05	4	0.10	10	Q	32	25	()	(3	2/*
15600N 4825E	0.4	3,50	<3	30	<3	0.12	1.9	8	23	16	6.53	0.15	0.21	216	22	0.04	8	0.03	<2	(2	<2	6	<5	<3	63
L56001 4850E	(0,)	7.35	(3	19	<3	0.11	1.3	10	30	13	5.98	0.18	0.09	578	27	0.10	6	0.04	<2	(2	(2	2	(5	(3	92
L5600# 4875E	0.3	2.99	<3	13	<3	0,13	2.1	9	27	14	8.74	0.21	0,05	225	25	0.08	9	0,04	<2	(2	(2	3	<\$	<3	73
L56004 4900E	0.2	4.36	(3	48	(3	0.15	0.7	9	33	28	7.18	0.18	0.42	374	22	0.05	8	0.03	<2	(2	<2	- 11	(5	(3	89
L56001 4925E	1.2	2.75	32	35	(3	6.08	1.0	5	17	17	3.01	0.08	0.24	199	15	0.05	6	0.09	à	(2	(2	7	(5	(3	66
I SEOGN ARSOF	0.6	2 40	151	67	12	0.02	A 1	٩	15	12	2 99	0.09	0.25	4(07	16	0.05	7	0.07	13	(7	0		6	a	163
1 56008 49755	4.0	1,10	73		10	0.10	A 9	6	24	22	5 17	A 15	0.10	976	27	0.00	, ,	0.07	/5	71	/1	, i	75	12	75
	0.7	1.15	(3	78	(3	0.10	0.3		25	26	3.27	9.15	0.10	5/3	1	0.01	¢	Ų, 11	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14		13	13	15
L2600N 2000E	0.2	6.95	(3	44	<3	0.10	(0.1	5	30	31	4.81	0.13	0,25	348	21	0.03	4	9.05	(2	(2	(2	2	0	C3	97
15600N 5025E	0.5	5.37	(3	28	(3	0,10	1.1	7	25	19	4, 91	0.14	0.09	1189	24	0.09	4	0.06	(2	<2	<2	3	<5	(3	98
1.5600N S0S0E	0.4	2.52	1813	565	<3	0.66	(0.1	12	15	30	5,32	0,20	0.33	9484	25	0.08	8	0.10	107	<2	(2	59	<5	(3	772
L5600N 5075E	0.4	2.38)2000	455	(3	0.47	6.4	11	17	33	5.62	0.19	0.27	16871	34	0.11	16	0.15	218	<2	<2	25	(S	(3	1493
L5600K 5100E	0.6	1.53	>2000	>1000	(3	0.92	(0.1	12	12	28	6.82	0.25	0.13	19708	39	0.14	10	0.20	690	(2	<2	791	(5	(3	1991
L5600% 5125F	0.4	1.48	37000	143	(3	0.25	(0.1	5	12	Å.	5.02	0.13	b. 14	1501	42	0.05	7	0.04	177	ö	ä	19	(5	(3	477
157008 48255	0.7	2 90	/3	13	12	0 12	0.9	e e	22		7 19	6.19	0.05	322	27	A 11	ć.	6 0.7	0	ō	ö	2	cs.	(3	98
L5700N 4850E	0.5	3.05	(3	12	(3	0.13	2.4	រាំ	28	6	7.80	0.19	0.06	244	27	0.09	7	0.02	2	à	(2	3	(5	(3	91
						•										• • •					(2)	,			
L3/000 48/5E	0.5	3,16	(3	24	(3	0.15	1.5	17	28	17	9.89	Q.21	0,20	434	26	0.09	12	0.03	(2	Q	Q	b	0	G	46
L57000 4900E	ò,7	4,02	(3	65	(3	0.09	1,2	7	\$7	11	7.33	0,18	0.19	119	19	0.04	5	0.04	(2	(2	(2	2	<5	(3	31
L5700K 4925E	0.5	7.34	(3	65	(3	0.18	1.4	12	37	22	7.32	0.21	0.41	753	24	0.05	10	0.03	(2	(2	(2	11	<5	<3	196
15700N 4950E	0.4	4,29	<3	17	(3	0.11	0.5	14	24	9	4.78	0.13	0.12	713	23	0.09	4	0.04	(2	(2	<2	4	<5	<3	76
L5700W 4975E	0.4	3,42	164	311	(3	0.49	0.3	12	20	33	4.21	0.15	0.68	888	17	0.07	n	0.09	14	<2	(2	73	<5	<3	340
15700N 5000F	6 3	7 20	350	202	67	n 15	14	15	32	26	4.26	0 12	n 69	5035	24	A 66	10	o to	17	(7	0	16	(5	0	346
57000 50050	v	0.00	1400	517			1.0	14	44	10	4 35	9,13	0,00	0000	24	0.00	10	× 11	100	14	14	122	/5	12	740
157000 BAEAC	0.3	2.30	1498	347	(3	1.00	(0.1	16	17	22	4.75	0.19	U. BU	10340	54	0.05	10	V. 14	LVV	12	11	132	(3	13	144
CTLOOK DODIE	0,3	2.80	P82	298	(3	0.81	(0.1	11	20	19	4.25	Q, 7	0,56	3976	26	0.07	9	0.13	20	(2	Q	21	0	(3	394
L5700# 5075E	0.2	2.78	1738	356	(3	0,47	<0.1	- 14	17	24	5.75	0.19	0.41	6868	32	0.0B	9	0,15	121	(1	(2	26	(5	(3	- 714
L3700# \$100E	0.2	3.10	1012	353	(3	0.43	{0.1	13	18	25	4.75	0.15	0.45	6574	31	0.06	7	0.14	55	(2	(2	21	<5	(3	498
L5700N 5125E	0.5	2.29	1159	440	(3	0.34	(0.1	17	20	29	5, 29	0,16	0,45	9332	31	0.06	9	0,15	162	(2	(2	17	(5	(3	569
L5700N 5150E	0.5	2 12	1400	46.8	12	1 1	201	17	16	21	4 50	A 10	A 44	6046	21	0.00	•	0 10	157	15	12	46	- 75	(3	76.2
157001 51755		2,02	1103	600	13	1.14	(0.1	14	10	31	1.30	V+17	0.00	5500	51	0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.10	191			67	24	/5	250
1570AN 530AF	(0,1	2,10	1112	33/	(3	1.25	(0.1	16	14	24	1.17	0.19	0.87	2286	73	0.07	12	V-1/	104	4	54	67	()	(3	0033
CALAAN DIANE	(0.1	0.94	1640	491	(3	2.47	(0.1	15	16	26	4.11	Q. 22	9,26	4933	37	0.08	22	0.20	19/	1	(2	87	(5	(3	753
Ninigue Detection	0.1	0.01	3	1	3	0.01	Q. 1	ĩ	i.	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	L	5	3	i
Maximum Detection < - Less Than Minimum	SO.O > - Steater T	10.00 han Mari	2000	1000 i.e Tosi	1000 If Girling	10,00	1000.0	20000 - No 5	1000	20000	10.00 	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10909	100	1000	20000

104"+10 UA 2

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. VSL 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: ADDRESS:	PAMICON DEVELOPMENTE LTD. 711 - 675 W. Hastings St.	DATE:	OCT 12	1990
:	Vancouver, BC V6B 1N4	REPORT#: Job#:	900581 900581	GA

PROJECT#: KIRBY SAMPLES ARRIVED: SEPT 24 1990 REPORT COMPLETED: OCT 12 1990 ANALYSED FOR: AU ICP INVOICE#: 900581 NA TOTAL SAMPLES: 64 SAMPLE TYPE: 64 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Ryal L SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUKBER: 9085	81 GA JOB NOMBER:	900581 PANICON DEVEL	OPNEETS LTD.	PAGE 1 OF 2
SANPLB I	<u>A</u> u			
	ppb			
14700N 4800B	bă.			
L4700B 4825B	nd			
647008 4850B	nd .			
L47001 4875B	10			
L4700N 4900B	15			
L4700# 4925B	20			
L4700N 49508	15			
14700H 4975B	15			
147008 5025 <u>8</u>	5			
L4700N 5050E	20			
L4700N 5075B	5			
L47008 5100B	10			
L4800N 4750B	15			
L4800N 4775B	ាជំ			
F1400B 4900B	. ş			
64800H 4825B	5			
L4800W 4850B	ad			
L4800N 4875B	10			
L4800N 4900B	5			
L48008 4925B	5			
L4800N 4950B	ba			
14800N 4975B	10			
14800K 5025B	nd			
64800W 5050g	nd			
P48008 2012R	12			
L4900H 4750E	nđ			
64300M 41736	20	•		
110000 10000 110000 10000	D0. 7			
L4900N 4850B	10			
1.4900N #875P	5			
L4900N 4908R	10			
14900N 4925R	ha			
L49000 4950R	nd			
L4900N 4975B	nd			
14900# 5025#	nd			
LASOON SOSOR	nd			
L49008 5075B	10			
L49008 S100B	ba			
DETECTION LINIT	5			
nd = none detected	= not analysed	ls = iasufficient sample		

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

ABPORT NUNBBE: 900561 GA	JOB NUNBER: 900561	PANICON DEVELOPMENTS LTD.	PAGE 2 DF 2
SAMPLE	40		
	cob		
14900N 5125B	10		
B/L5000B 4700W	nd		
B/L5000E 4725H	ba		
B/15000B 4750N	þа		
8/L50008 47758	5		
B/L5000R 4800R	5		
B/L50008 4625W	nð		
B/L5000B 4850W	nd	·	
B/L5000B 4875W	nđ		
B/L5000B 4900M	nd		
R/1.50002 19758	10		
B/CSOONE ASSON	nd		
B/LS000R 4975W	nd		
1,5100R 4750R	15		
L5100B 4775E	5		
1.5700W 47002	nd		
1.5280N 4725R	10		
L5200N 4750R	10		
L5200N 4775R	nd		
L5300# 4780B	15		
L5300N 4725B	5		
L5300H 4750B	ba		
L5300H 4775B	5		
L5400N 4750B	nd		
L5400N 4775E	nđ		

1530 Pandora Brescy, Lence (2010) 301 (201 Ph:(804)251-5656 Pax:1604)254-5717

<u>---</u>...

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of Bolls HOL to HHD, to HyD at 95 °C for 90 minutes and is diduced to 10 ml with wate This leach is partial for AL, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, En, Sr and W.

REPORT 4: 300581 PA	PANICON DEV	VELOPMENTS	S (10.			PROJEC	T: KIRBY	,		DATE	IN: SEPT	24 199	ń DAT	E OGT: 0	CT 31 19	90 A	ATTENTION	: MR, ST	EVE TODOR	ų.	····	FAGE	1 05	:	
Sample Name	Âç Pər	Al Z	Ås. ppq	Ba Çus	B) Pp#	Ca X	Cd Pa∎	() 9 9 9	Çr poe	Cu po∙	Fe 1	K L	Mg ኢ	‼រា Bp≢	Ko 9PA	Ma X	Mi pde	F ۲	P5 Dp●	SN ODR	Sa pom	Sr.	υ ρρα	⊔ Арв	n(aqo
14700# 4800E	0.5	3.43	<3	56	<3	0.06	1.5	7	16	27	3.78	0.04	0.29	1362	14	0.05	12	0.04	<2	12	(2	7	<5	< 3	97
L47008 4825E	0.7	2.55	17	133	<3	0.18	1.8	7	15	22	3.40	0.07	0.26	5637	19	0.05	12	0,10	:2	:2	(2	25	<s< td=""><td>< 3</td><td>118</td></s<>	< 3	118
L4700K 4BSCE	(0.1	3,43	190	71	<3	0.07	0.3	7	21	21	4.10	0.05	0.34	1232	20	0.05	16	0.05	<2	- (2)	(2	6	<5	<3	132
14700N 4875E	(0.1	3.06	553	231	(3	0.32	(0.1	В	19	19	4.82	0.12	0.18	3158	22	0.19	13	0.07	0	0	<2	22	<5	(3	128
L4700N 4900E	(0.1	3.11	<3	35	(3	9.10	3.1	5	25	20	9.24	0.16	0.15	869	23	0,12	16	0.04	<2	(2	(2	6	<5	(3	83
L 4700N 4925E	(0,1	3,74	762	93	<3	0.05	(0.1	10	21	28	4,64	0.08	0.28	6654	19	0.09	12	0.03	54	(2	12	4	(5	(3	435
L4700N 4950E	<0.1	5.10	243	51	(3	0.05	0.7	6	20	21	5.05	0,09	0.19	2025	24	0.10	16	0.07	<2	(2)	<2	4	(5	< 3	180
L4700N 4975E	0,2	2.30	(3	44	<3	0.09	2.1	٤	20	18	7.48	0.10	0.3:	443	19	0.08	19	0.04	(2	- C	32	8	(5	(3	81
14700W 5025E	{0,1	7.06	238	51	(3	0.07	Ù.9	9	24	25	3.91	0.07	0.21	1909	25	0.07	16	0.04	66	12	(2	B	< 5	<3	169
L4700H 5050E	(0.1	1.87	(3	Ū.	(3	0.07	2.2	9	21	15	8.76	0.14	0.06	344	25	0.13	10	0.03	27	4	<2	4	<5	<3	73
L4700W 5075E	{0.1	3.43	<3	29	(3	0.05	1.2	B	20	15	5.10	0.0B	0.12	480	19	0.09	16	0.05	\mathbf{C}	¢,	(2	4	< 5	(3	61
14700K 5100E	(0.1	4.42	<3	38	(3	0.08	2.4	7	24	18	8.58	0.15	0.25	508	19	0.10	14	0.01	(2	<2	- 62	5	、 (5	<3	65
L4800H 4750E	(0.1	3.86	157	107	(3	0.07	0.6	7	20	22	3, 61	0.06	0.55	1692	LB	0.07	15	0.06	(2	<2	(2	ġ	<5	<3	183
14800N 4775E	(0.1	3.57	59	69	(3	0.05	0.3	R	16	26	3,91	0.06	0.49	2779	18	0.06	15	0.08	(2	12	0	6	<5	(3	152
L4800H 4800E	(0.1	4.11	(3	38	(3	0.06	1.3	4	31	22	5.40	0,09	0.22	547	18	0.07	13	0.04	(2	(2	(2	5	(5	(3	77
L4800N 4825E	(0,1	3,87	(3	31	(3	0.05	1.3	ć	19	20	6.58	0.10	0.10	413	25	0.10	8	0.04	(2	a	{2	3	(5	(3	82
L4800N 4850E	(0.1	2.56	1604	608	(3	0.34	(0.1	15	15	37	4.20	0.12	0.26	14508	43	0.14	15	0.07	6.2	(2	(2	32	(5	<3	598
14800% 4875E	(0.1	4.47	149	38	(3	0.06	(0.6	1	18	17	5.64	0.11	0.07	1004	24	0.10	15	0.04	(2	(2	(2	4	(5	(3	32
L4800X 4900E	(0.1	2.27	992	37	(3	0.05	(0.1	i i	16	11	6.76	0.09	0.09	1273	25	0.09	9	0.04	6	(2	<2	4	(5	(3	86
L4800K 4925E	(0,1	3,25	349	57	(3	0.05	(0.1	7	19	18	4.94	0.08	0.09	8819	23	0.08	11	0.07	(2	(2	(2	4	<\$	(3	114
L4800# 4950E	0.2	2.83	497	43	<3	0.05	(0.1	5	21	15	6.67	0.09	0.25	1739	27	0.07	14	0.04	21	<2	(2	5	(5	(3	137
L4800N 4975E	<0.1	4.16	477	126	(3	0.08	0.5	5	17	17	5.19	0.07	0.28	2986	26	0,07	14	0.05	(2	<2	<2	6	<5	<3	292
L4800N 5025E	(0.1	5.21	730	820	<3	0.23	(0.1	10	18	20	6.14	0.18	0.46	>20000	25	0.15	9	0.13	(2	<2	<2	12	<5	<3	503
L4800N 5050E	(0.1	1.19	1434	737	(3	0,58	<0.1	6	8	13	2.68	0.09	0.40	5392	17	0,21	11	0.07	63	(2	(2	32	(5	(3	1512
L4800N 5075E	(0.1	0.22	1544	563	(3	4, 47	(0.1	5	£	14	2.65	0.20	0.12	5067	16	0.15	12	0.12	115	17	<2	546	(S	(3	1258
14900# 4750E	(0.1	2.94	115	53	(3	0.07	1.1	11	16	20	5,92	0.08	0.37	2012	18	0.08	12	0.03	<2	(2	(2	9	(5	<3	107
L49008 4775E	<0.1	2.82	(3	14	<3	0.04	1.1	5	14	8	5.06	0.07	0.06	382	16	0,10	8	0.03	(2	(2	<2	3	- (5	(3	50
14900H 4800E	(0.1	2.59	(3	26	(3	0,04	(0.1	1	15	11	4.22	0.05	0,12	2823	16	0.08	8	0.05	(2	(2	<2	5	<5	<3	79
L4900X 4825E	<0.1	3.90	<3	29	<3	0.04	0,5	4	16	13	4.64	0.07	0.10	1979	19	0.09	12	0.19	(2	- 62	(2	2	<5	<3	- 79
L4900N 4850E	(0.1	3,45	(3	26	(3	0.04	1.0	5	17	12	5.49	0.08	0.09	680	20	0,09	8	0.05	<2	(2	(2	3	(5	<3	13
L4900N 4875E	(0.1	4,45	294	61	<3	0.06	(0.1	5	20	20	7.33	0.12	0.31	864	t9	0.07	11	0.05	<2	(2	(2	6	(5	(3	162
L4900N 4900E	(0.1	3.50	78	79	(3	0.15	0.1	15	19	32	4.04	0.07	0.46	3337	16	0,08	19	0.07	(2	(2	{2	13	(5	<3	199
L4900K 4925E	(0.1	2.96	381	49	(3	0.03	(0.1	4	15	91	4.80	Q.07	0.13	1099	24	0.05	8	0,05	<2	(2	<2	5	(5	<3	110
L4900N 4950E	(0,1	1.52	35	46	(3	0.06	0.2	3	10	7	3.38	0.02	0.16	194	13	0.03	9	0.04	(2	(2	<2	10	<5	<3	62
L49008 4975E	(0.1	3.38	303	98	(3	0.08	(0.1	9	18	24	5,31	0.09	0.26	2075	23	0.08	14	0.13	7	</td <td>(2</td> <td>10</td> <td><5</td> <td>(3</td> <td>155</td>	(2	10	<5	(3	155
149008 50256	(0.1	3.02	189	88	(3	0.08	(0.1	16	13	35	4.09	0.07	0.34	4382	15	0.05	11	0.13	<2	(2	(2	9	<5	(3	15
L4900X 5050E	(0.1	2.12	1453	178	(1	0.47	(0.1	17		20	6.74	6.11	0.21	10222	27	0.10	13	0.12	112	(2	(7	38	(5	(3	55
L49008 5075E	6.2	4 97	20	74	/7	6 45	(0.)	, r t	17	20	1 45	0.07	0.22	410	17	0.05	13	0.04	()	13	15	ĸ	15	(1	Q.
L4900N 5100E	(0.1	2.24	(3	51	(3	0.03	(0.1	5	16	10	4,80	0.06	0.19	263	17	0.05	13	0.02	(2	(2	(2	5	(5	(3	6
Minimum Detection	0.1	0,01	3	1	3	0.01	Q.1	Т	i	1	0.01	0,01	0.01	1	1	0.01	1	0.01	2	2	2	ì	5	3	
Naxieum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10,00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	2000
C - Less Than Minimum	> - Greater I	lban Kasir	204	is - Insu	Ificien	Sample	ns	- No Samp	le	ANOHALOU	S RESULTS	s - Furt	her Anal	yses By I	Alternati	e Hetho	ls Suages	ted.							

VANGEOCHEM LAD LIMITED

1530 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A 15 gram sample is digested with 5 mi of Bili2 HCL to HMD, to HyD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for A1, Ba, Ca, Cr, Fe, X, Xg, Mn, Na, P, En, Sr and M.

ANALYST:	My in

- .

REPORT : 900581 PA	PAMICON DEV	ELOPHEN	IS LT 0.			31019	CT: K era '	f		GAT	E ln: SEF	T 24 199	IŪ DA	TE OUT: D	C 31 19	990	ATTENTION	; MR. SI	TEVE TODD	₹UK		PAG	2 05	2	
Sample Name	Ag	Al	45	Ba	₽ı	Ca	Cd	60	Cr	Cu	ſe	ĸ	۴g	5a	No	Xa	N:	P	Pb	Sa	5 <i>л</i>	St	IJ	H	2n
	¢0#	X	936	pee	20	2	90 0	pps.	pes.	006	2	7	7	pg •	ppa	ĭ	20 2	l.	pge	996	ppe	p þ.e	200	204	326
L4900H 51255	0.2	2.35	<3	60	3	0.06	2.3	8	17	15	5.50	0,10	0.12	988	20	0.08	12	0.08	(2	(2)	< 2	5	:5	- 13	69
8/L5000E 4700N	0.3	2.92	(3	13	(3	6.09	3.0	7	24	13)19.00	0.22	0.08	454	52	0.16	16	0.03	22	З	<2	3	- 5	- 13	- 65
B/L5000E 4725M	<0.1	3.44	1317	107	(3	0.07	(0.1	10	21	21	5.53	0.1	0.27	10850	42	0.14	18	0.05	135	(2	(2	5	15	<3	713
B/1,5000E 4750N	(0.1	3.22	347	43	<3	0.06	Ú.8	9	23	18	6.15	0.11	0.17	1374	38	0.30	17	0.94	35	(2	(2	4	:5	- 33	138
8715000E 4775K	(0.1	2,64	1572	319	(3	0.26	3.2	£	16	12	3.65	0.10	0.38	9054	28	¢.16	16	0.07	302	:2	(2	10	45	:0	1114
8/L5000E 4800N	(0.1	2.48	196	275	{3	0.09	6.5	7	15	9	4.53	0.0B	0.10	20000	44	0.13	13	0.04	301	(2	(2	3	15	:3	813
9/L5000E 4825N	(0.1	3.77	366	130	<3	0.31	0.2	6	19	15	4,46	0.11	0.36	8077	19	0.0B	20	0.09	(2	(2	<2	15	15	:3	349
8715000E 4850N	(0.1	1.17	1609	>1000	(3	1.30	0.7	9	10	14	4.24	0.19	0.24	14683	21	0.18	15	0.17	123	<2	<2	£4	:5	<3	1392
B/LS000E 4875N	(0.1	2.01	646	306	(3	0.47	1.1	13	15	21	3.67	0.11	0.56	3970	28	0.08	18	0.13	58	<2	(2	52	:5	43	428
8/LS000E 4900N	(0.1	1.13	7	£7	-3	0.06	1.5	4	13	13	3.14	0.03	Q.11	225	11	0.04	14	0.12	(2	<2	(2	11	·5	43	69
B/L5000E +925N	(0.1	2.55	983	192	<3	0.22	(0.1	9	13	20	3, 92	0.09	0.34	5552	16	0.10	14	0.15	47	(2	(2	13	.2	(3	541
8/1,5000E 4950N	<0.1	1.60	>2000	568	(3	1.75	(0.1	10	11	27	3.78	0.19	0.27	6840	21	0.12	14	0.11	106	<2	(2	328	.5	(3	960
B/L5000E 4975N	(0.1	2.54	1376	B£	(3	0.08	(0.1	3	11	13	3.83	0.96	0.17	1978	33	0.06	6	0.02	123	<2	(2	10	(5	(3	322
L5100# 4750E	<0.1	2.94	177	462	<3	0.33	1.8	22	22	72	5.33	9.13	1.26	2917	15	0.09	23	0.08	(2	(2	<2	28	15	(3	160
L5100# 4775E	(0.1	3.19	494	245	(3	0.20	9.4	14	16	43	4.31	0.08	0.70	1214	20	0.08	17	0.09	<2	<2	(2	39	(5	(3	219
L5200# 4700E	(0.1	3.12	25	376	(3	Ø.29	2.8	20	20	65	\$.27	0.13	1.09	2863	13	0.03	19	0.07	(2	(2	Ω	32	:5	(3	155
L5200K 4725E	<0.1	3.11	32	342	(3	0.28	1.7	20	20	62	5.03	0.12	1.07	1932	13	0.08	20	0.08	<2	(2	(2	23	<5	(3	151
L5200K 4750E	<0.1	3,53	39	157	(3	0.14	1.4	15	16	40	4.57	0.03	0.55	1405	17	0.10	10	0.09	(2	<2	<2	47	<5	:3	165
L5200# 4775E	<0.1	3.38	147	265	(3	0.24	2.2	22	21	56	5.66	0.13	1,06	1643	18	0.10	19	0,09	(2	<2	<2	106	<i>4</i> 5	<3	188
L5300N 4700E	(0.1	2.92	(3	419	(3	0.41	2.5	22	22	68	5.29	0.14	1.27	2183	13	0.08	22	0.08	(2	(2	<2	56	<5	(3	131
L5300N 4725E	<0.1	3,32	(3	1 6 0	<3	0.13	1.3	15	17	42	4.71	0.09	0.70	1054	14	0.08	17	0.10	<2	<2	<2	26	{ 5	(3	142
L5300N 4750E	¢.2	3,03	448	242	(3	0.13	(0.1	13	16	46	4.99	0.09	0.65	1632	14	0.05	7	0.03	(2	<2	<2	5i	<5	<3	96
L5300N 4775E	(0.1	3.43	284	208	<3	0.16	0.5	15	13	47	4.32	0.10	0.70	699	12	0.08	8	0.10	<2	<2	<2	13	<5	(3	117
15400N 4750E	(0.1	3.58	32	233	<3	0.22	1.3	17	16	49	4.88	0.12	0.74	1491	15	0.09	11	0.07	(2	(2	<2	56	(5	(3	129
L3400N 4775E	(0.1	2.29	353	169	(3	0.11	0.1	11	11	31	4.00	0,06	0.43	393	10	0.05	8	0.06	(2	(2	<2	58	< S	(3	100
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	ı	1	i	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	ī
Maximum Detection	50,0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
C - Less Than Nincoun) - Greater I	han Maxi	AUS	is - Insu	lficient	Sangle	ns	- No Samp	le	ANOMALOL	IS RESULT	S - Furti	her Anal	yses By A	Uternati	e Metho	ls Suggesl	ted.							

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

DATE: OCT 05 1990

REPORT#: 900566 GA JOB#: 900566

INVOICE#: 900566 NA TOTAL SAMPLES: 117 SAMPLE TYPE: 117 SOIL REJECTS: DISCARDED

CCT 3 n toon
Unsociona

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: KIRBY SAMPLES ARRIVED: SEPT 24 1990

REPORT COMPLETED: OCT 05 1990

ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

RAL SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

-

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

I

REPORT NUMBER: 900566	GA JOB NUMBER: 90	0566 PINICOB DEVELOPMENTS LTD.	PACE 1 OF 3
SAMPLE	λa		
	ppb		
BL4800B 5100W	nd		
BL4880B 5125W	ba		
8648888 51598	ba		
BL4800E 5175#	5	•	
B14800B 5200M	15		
BL4800B 5225#	10	•	
B648008 52508	nd		
BC48008 52758	zđ		
BL46008 53008	15		
BL4800B 5325W	15		
BL48008 5350¥	10		
BL4000B 5375M	bā		
BL480DE 540DE	15		
BE4800R 54250	nd		
814800E 5450N	bd		
BL48008 54758	5		
8648008 5580m	ba		
BL48008 55258	5		
ALIADOR SSSOR	nd	·	
BL4800E 5575E	20		
BL48008 5600K	15		
BL48008 56250	bđ		
RL48GOR S658T	- 10		
RL48008 56750	ba		
BLABOOR STOON	nd		
L5000R 5025N	20		
LSOODE SOSON	nd		
1.5000K 5075H	10		
LSOOOR STACE	S		
L50008 51258	ba		
L50008 47508	10		
15000# 4775R	10		
LSOON 4800R	15		
L5000# 4825R	18		
LSOCON 4850E	ba		
L50008 48758	10		
L50008 49008	20		
LSODDE 4950K	10		
L50008 49758	15		
DETECTION LINET	5		
ad a same debasted		is - tranfficient such	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-

SAMPLE I Au D20 PDD L50400 5000 S L51040 41252 15 L51040 41252 S L51040 41252 Au L52040 41252 Au L53040 41252 L5 L53040 41252 L5 L53040 41252 L5 L53040 41253 Au L53040 41253 L6 L53040 41253 L6 L53040 41253 L6 L54040 41253 L6 L54040 41253 L6	REPORT NUMBER: 90056	56 GA JOB BUNBER: 9	00566 PARICOR	DEVELOPHENTS LTD.	PAGE 2 OF 3
ppb · LS1004 41738 15 LS1004 42538 15 LS1004 42538 15 LS1004 42538 15 LS1004 42538 15 LS2004 42538 15 LS2004 42538 15 LS2004 42538 16 LS2004 42538 15 LS2004 42538 16 LS2004 43538 16 LS2004 43538 16 <tr< td=""><td>SAMPLE 1</td><td>Åa</td><td></td><td></td><td></td></tr<>	SAMPLE 1	Åa			
LS4600 50000 S LS1000 41500 a LS1000 41500 a LS2000 a LS2000 41500 a LS2000 41500 a LS2000 41500 a LS20		ppb *			
LS100 44258 15 LS100 44758 ad LS100 44758 ad LS100 4758 ad LS100 45758 ad LS100 45758 ad LS100 45758 ad LS200 45758 ad	LSOODE SOOGE	S			
L5100 4758 s d L5100 4758 s d L5100 4758 s d L5100 4758 s d L5200 44508 15 L5200 44508 15 L5200 44508 15 L5200 44508 15 L5200 44508 15 L5200 45508 10 L5200 45508 10 L5200 45508 10 L5200 45508 10 L5200 45508 15 L5200 4558 nd L5200 4558 nd L5400 4	L5108# 4825B	15			
L5100# 4758 nd L5100# 4758 nd L5100# 4758 nd L5100# 4758 nd L5200# 4758 nd L5200# 4758 nd L5200# 4508 15 L5200# 4508 15 L5200# 4508 15 L520# 4508 16 L520# 4508 15 L520# 4508 16 L520# 4508 16 L530# 4578 nd L540# 4578 16 L540# 4578 16 <	LS100H (ESOB	\$			
LS100# 49008 nd LS100# 49008 S LS100# 49508 S LS100# 49508 S LS200# 49508 15 LS200# 49508 15 LS200# 49508 20 LS200# 49258 nd LS200# 49508 nd LS200# 49508 nd LS200# 49508 nd LS300# 44508 15 LS300# 44508 15 LS300# 44508 nd LS300# 49558 nd LS300# 20 LS300# 50508 nd LS300# 15 LS300# 50508 nd LS300# 50508 nd LS300# 50508 nd LS300# 15 LS300# 15 LS30# 15 L	L51008 4875B	EĞ			
151000 49258 nd 151000 49508 5 152000 4258 nd 152000 4508 20 152000 4558 nd 153000 4558 15 153000 4508 15 153000 4508 15 153000 4508 15 153000 4558 16 153000 4558 16 153000 4508 16 154000 4508 20 154000 4508 16 154000 4508 16 154000 4508 16 154000 4508 16 154000 4508 16 154000 4508 16 154000 4508 16 154000 4508 <td>L5100N (900B</td> <td>ba</td> <td></td> <td></td> <td></td>	L5100N (900B	ba			
L5100 45502 5 L5200 44502 15 L5200 44502 15 L5200 44502 15 L5200 44502 20 L5200 44502 20 L5200 45502 10 L5200 45502 10 L5200 45752 10 L5200 42752 15 L5300 42752 15 L5300 42752 16 L5300 42752 16 L5300 42752 16 L5300 5002 5 L5300 5002 5 L5300 5002 5 L5300 5002 5 L5300 5002 5 L5300 5002 5 L5300 5002 16 L5400 4552 10 L5400 4552 10 L5400 4552 10 L5400 4552 10 L5400 4552 10 L5400 4552 10 L5400 4558 16 L5400 4558 16	L5100W 4925B	nd			
51500 49752 pd 15700 4958 15 15700 4958 15 15700 4958 15 15700 4958 20 15700 15 15 15700 15 15 15700 15 15 15700 15 15 15700 15 15 <t< td=""><td>L51060 4950B</td><td>5</td><td></td><td></td><td></td></t<>	L51060 4950B	5			
15200x 48508 15 15200x 48508 15 15200x 48508 20 15200x 48508 15 15300x 48508 15 15300x 48508 16 15300x 48508 10 15300x 48508 10 15300x 48508 10 15300x 50508 10 15400x 49508 10 15400x 50508 15 15400x 50508 15 15500x 4258 5 1	L5100N 4975B	Dđ			
L5200 44500 15 L5200 4500 20 L5200 45500 10 L5200 45500 10 L5200 45550 10 L5200 45550 10 L5200 4255 15 L5200 4255 15 L5300 44500 15 L5300 44500 nd L5300 4000 nd L5300 5050 nd L5300 5050 nd L5300 5050 nd L5300 5050 nd L5400 4255 15 L5300 5050 nd L5400 4250 10 L5400 4250 20 L5400 4250 20 L5400 4550 nd L5400 4250 15 L5400 4550 nd L5400 4250 15 L5400 4550 nd L5400 4250 15 L5400 4550 nd L5400 4250 15 L5400 5050 nd L5400 4250 20 L5400 4250 20	L52008 48258	eđ			
L5200 4475g nd L5200 4500g 20 L5200 4500g 20 L5200 4500g nd L5200 4500g nd L5200 4500g nd L5200 4250g 15 L5200 4475g nd L5300 4425g 15 L5300 4425g nd L5300 4505g nd L5300 4505g nd L5300 5005g s L5300 5005g s L5300 4505g nd L5300 4505g nd L5300 4505g nd L5300 4505g nd L5300 4505g nd L5400 4475g 15 L5400 4500g nd L5400 4500g nd	L5200N 4850B	15			
L52004 4900E 20 L5204 4925E ad L52004 4975E 5 L52004 4975E 5 L52004 4975E ad L53004 4925E ad L53004 4925E 15 L53004 4950E ad L53004 4950E ad L53004 4955E ad L53004 4975E ad L53004 5955E ad L53008 5055E ad L53008 5055E ad L54004 4950E 20 L54004 4950E ad L54004 4950E ad L54004 4950E ad L54004 4950E ad L54004 5950E ad L54004 5950E ad L54004 5950E ad L54004 5950E ad L54004 1955E ad L54004 19	L52008 41758	Dđ			
LS2004 4925E nd LS2007 4975C S LS2007 4975C S LS2007 4975C S LS2007 4975C S LS2007 4975C S LS2007 4975C nd LS2007 4950C nd LS3008 4900C nd LS3008 4900C nd LS3008 4975C nd LS3008 500E S LS3008 500E S LS3008 5050E nd LS4004 4950E nd LS4004 4950E 20 LS4004 4950E 15 LS4004 4950E nd LS4004 5950E nd LS4004 4950E nd LS4004 1950E nd LS4008 1950E nd LS408 nd LS408 1950E nd LS408 1	52008 4900B	20			
L5200# 49508 10 L5200# 49508 ad L5200# 49508 ad L5300# 44258 15 L5300# 44258 nd L5300# 44258 nd L5300# 49508 ad L5300# 50508 ad L5300# 50508 ad L5400# 44508 20 L5400# 44508 20 L5400# 44508 20 L5400# 44508 ad L5400# 49508 ad L5400# 49508 ad L5400# 49508 ad L5400# 20558 ad L5400# 20558 ad L5400# 2058 ad L540# 2058 ad L540# 2058 ad L540# 2058 ad L540# 2058 ad	L52008 49258	ad			
LS200F 4975E S L5200B nd L5300B nd L5300B nd L5300B 15 L5300B 16 L5300B 16 L5300B 16 L5300B 16 L5400B 15	52008 49508	10			
L5200 50008 nd L5300 4258 nd L5300 4258 nd L5300 42758 nd L5300 42758 nd L5300 42758 nd L5300 49758 nd L5300 5008 5 L5300 5058 nd L5300 5058 nd L5400 4558 10 L5400 40 L5400 40 L5400 40 L5400 40 L5400 4	15200# 4975B	5			·
LS200F 50258 ad LS300F 44758 15 LS300F 44758 nd LS300F 44758 nd LS300F 4758 nd LS300F 5008 5 LS300F 5008 5 LS300F 5008 nd LS400F 4558 16 LS400F 4558 16 LS400F 4558 15 LS400F 4558 nd LS400F 4558 nd LS400F 19758 10 LS400F 19758 10	.5200m 5000m	ađ			
15 15 15300 44508 15 15300 44758 nd 15300 4758 nd 15300 4758 nd 15300 49558 nd 15300 49558 nd 15300 49558 nd 15300 50508 nd 15300 50508 nd 15300 49558 16 15300 50508 nd 154007 40558 16 154007 40558 15 154007 40508 nd 154008 40508 20 154008 40508 10 154007 40558 10 154008 50508 15 154008 50508 15 154008 50508 15 155007 48508 nd 155007 48508 nd 155008 48508 nd	52608 50258	nd			
L5300# 4450# 15 L5300# 4475# nd L5300# 4475# nd L5300# 4975# nd L5300# 4975# nd L5300# 5050# sd L5300# 5050# nd L5400# 4050# 20 L5400# 4050# 20 L5400# 4050# 20 L5400# 4950# nd L5400# 5050# nd L5400# 5050# 15 L5400# 5050# 15 L5400# 5050# 16 L5400# 5050# 16 L5500# 4850# ad DB#ECTIO# LIMIY 5 Dd = none detected = not analysed	53001 4825k	15			
15300F 4475F nd 15300F 4475F nd 15300F 4925F nd 15300F 4925F nd 15300F 5025F 5 15300F 5050F nd 15300F 44250F 16 15400F 44250F 20 15400F 44250F 20 15400F 4450F 20 15400F 4950F nd 15400F 5050F nd 15400F 5050F nd 15400F 5050F 15 15400F 5050F 15 15500F 4850F nd 15600F 1600F n nd </td <td>5300N 4450R</td> <td>15</td> <td></td> <td></td> <td></td>	5300N 4450R	15			
L5300# 4960E = = not analyzed is = insufficient samle	5300H 4875B	nd			
L5300# 49258 nd L5300# 49758 nd L5300# 5008 5 L5300# 50508 nd L5300# 50758 nd L5300# 4258 14 L5400# 4258 15 L5400# 4258 10 L5400# 4258 10 L5400# 4258 10 L5400# 4258 nd L5400# 5008 nd L5408 50258 nd L5409 50508 15 L5409 50508 15 L5409 50508 15 L5409 50508 15 L5409 50508 16 L5500F 48508 20 D878C7109 LINIY 5 nd 15 = insufficient sample	53008 49608	ŧđ			
L5340# 4975E nd L5300# 5000E 5 L5300# 5050E nd L5300# 5050E nd L5300# 5075E nd L5400# 6058 16 L5400# 605E 20 L5400# 605E 20 L5400# 605E 15 L5400# 605E nd L5400# 605E 10 L5400# 605E nd L5400# 505E nd L5400# 505E nd L5400# 505E 15 L5400# 505E 15 L5400# 505E 15 L5400# 505E 16 L5400# 505E 15 L5400# 505E 16 L5500# 4850E nd DBYRECTIOW LINIT 5 nd	5300x 4925x	nð			
LS300# S000E S LS300# S025E S LS300# S025E nd LS300# S025E nd LS400# 4025E 16 LS400# 4025E 16 LS400# 4035E 20 LS400# 4035E 15 LS400# 4035E 10 LS400# 5025E nd LS400# S025E nd LS400# S025E 16 LS400# S025E 16 LS500# 4025E 5 LS500# 4025E 5 LS500# 4025E 5 LS500# 4025E 16 LS500# 405E	5100x 4975r	nđ			
LS300B S025B S LS300B S025B nd LS300B S075B nd LS300B S075B nd LS400F S075B nd LS400F 20 LS400F 20 LS400F 4850B 20 LS400F 15 LS400F 4950B nd LS400F 10 LS400F 10 LS400F 10 LS400F 10 LS400F 500B nd LS400F 10 LS400F 10 LS400F 500B nd LS400F 10 LS400F 10 LS400F 5025B nd LS400F 15 15 LS500F 16 LS500F 10 LS500F 16 15 15 15 15 LS500F 18 nd 15 15 15 15 15 LS500F 18 nd 15 16 15 16 16 16	53008 5000R	5			
L5300W 5050B nd L5300W 5075E nd L5400W 4350E 20 L5400W 4350E 20 L5400W 4950E 20 L5400W 4950E nd L5400W 4950E nd L5400W 4975E 10 L5400W 5050E nd L5400W 5050E 15 L5400W 5050E 15 L5400W 5050E 15 L5400W 5050E 16 L5500W 4355E 5 L5500W 4355E nd DBYECTION LIMIT 5 Rd = none detected = not analyzed is = insufficient sample	.53008 5025B	5			
L53888 50758 nd L54808 50758 16 L54008 48258 16 L54008 48508 20 L54008 48758 15 L5408 49508 nd L5409 49508 nd L54008 5008 nd L5409 5008 nd L5409 5008 nd L5409 50508 15 L5409 43508 nd L5409 50508 15 L5409 50508 15 L5409 43508 nd DBYBC7100 LINIT 5 nd = none detected = not apalysed	.5300N 5050R	nð			
LS400 43258 16 LS400 43508 20 LS400 4758 15 LS400 4758 15 LS400 49508 nd LS400 4958 10 LS400 50008 nd LS400 50008 nd LS400 50258 nd LS400 50758 15 LS400 50758 10 LS400 50758 10 LS500 43258 5 LS500 43258 nd DBYRCTION LINIT 5 nd = none detected = not analysed is = insufficient sample	53008 5075E	 ba			
L5400# 4450# 20 L5400# 4900# 20 L5400# 4900# 20 L5400# 4950# nd L5400# 4950# nd L5400# 4950# nd L5400# 4950# nd L5400# 5050# nd L5400# 5050# 15 L5400# 5050# 15 L5400# 5050# 16 L5400# 5050# 16 L5500# 4850# nd D8#RCTIO# LINIT 5 nd = not analysed is = issufficient sample	5400¥ 4825¥	16			
L54000 48758 15 L54000 49008 20 L54000 49508 nd L54000 49758 10 L54000 50008 nd L54000 50008 nd L54000 50508 15 L54000 50508 16 L54000 50758 10 L55000 48508 5 L55000 48508 nd DBYRCTIOB LINIT 5 nd is = insufficient sample	SLOOP LASOR	20			
L5400H 4900E 20 L5400H 4950E nd L5400H 4975E 10 L5400H 5000E nd L5400H 5000E nd L5400H 5050E 15 L5400H 5050E 16 L5400H 5050E 16 L5400H 5050E 5 L5500H 4825E 5 L5500H 4850E nd DBYECTION LINIT 5 nd = not analysed is = insufficient sample	5400B 4675B	15			
L5400# 4950B nd L5400# 4975E 10 L5400# 5000B nd L5400# 5025E nd L5400# 5025E 15 L5400# 5075E 16 L5500# 4025E 5 L5500# 4025E 5 L5500# 4025E ad DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	54988 4900B	20			
L5400x 49758 10 L5400x 5000B nd L5400x 50258 nd L5400x 5050B 15 L5400x 5050B 16 L5400x 5075B 16 L5500x 4825B 5 L5500x 4825B ad DBYECTION LIMIT 5 nd	5400N 4950R	nđ			
L5400N 5600E nd L5400N 5000E nd L5400N 5050E nd L5400N 5050E 15 L5400N 5050E 16 L5500N 4825E 5 L5500N 4825E ad DBYECTION LIMIT 5 nd	5400¥ 49758	10			
L5440W 50258 nd L5400W 5050B 15 L5400W 5075B 10 L5500W 4025B 5 L5500W 4025B 5 L5500W 4050B ad DBYECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	54061 5800R	nd			
L5400m 5050m 15 L5400m 5075m 10 L5500m 4025m 5 L5500m 4025m ad DBYECTION LIMIT 5 md = mone detected = not analysed is = insufficient sample	54908 50258	ađ			
LS400W S075B 10 LS500W 4825B 5 LS500W 4850B ad DBYRCTFOW LINIT 5 ad = none detected = oct analysed is = insofficient sample	5400# 5050R	15			
LSS00# 4025# 5 LSS00# 4025# ad DBTRCTFOW LINIT 5 nd = nome detected = not analysed is = insufficient sample	54000 5075R	10			
LSSOON 4850E ad DBYECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	5500# 4825K	5			
DBTECTION LINIT 5 nd = none detected = not analysed is = insofficient sample	55008 4850B	ad			
nd = none detected = not analysed is = insufficient sample	RIECTION LINIT	5			
	d = none detected	= oot analysed	is = insufficient	sample	

.

-

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

ł

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

.

-

REPORT NUMBER:	900566 GA JOB MUNBER:	900566 PANICON DEVELO	PREFTS LTD.	PICE	3 0	8 3	
SAMPLE #	ła						
	ppb						
LS500M 4075B	20						
L55008 49008	nð						
155008 49258	ad						
G5500X 4950R	10						
L5500# 49758	ba						
L5500H 5000B	ba						
LS5601 50258	10						
L5500N 5075B	5						
L55008 5100B	ba						
L5500¥ 51258	5						
L56808 48258	ba						
L5600T 4850B	nð					•	
L5600X 48758	10						
156068 4900R	5						
L56008 49258 -	ba						
1560AN 1950P	18						
1556668 19568 1556688 1475P							
134448 13148 1556AM 668AP	-1						
LIGUNE JUUGA	110 						
POPARA SATOR	Del						
T2PANE 2020R	na						
L5600E 5075B	5						
L5600K 5100R	15						
L56008 51258	10						
LS7008 48258	15						
L5700N 4850K	5						
1.5700N 4875R	s						
1.5700N 4900R	. 10						
1.5700T 4975E	nd						
LSTOOK LASAR	nð						
L5700# 4975B	nđ						
LSTOOM SOADP	ъđ						
LSINGE CAICD	μ4 C						
151008 30238 151008 50238	J 16						
171778 30768 171778 20768	14						
121008 21008 711008 20136	-1 2						
P31008 3100R	BQ						
L57008 51258	20						
LSTOON SESOR	S						
65700# 5175 B	20						
157008 S2008	ba						
DETECTION LINIT	5				•		

•

ワイ 通じ 通 しみ

Ł . .

;

 $= \left[\left[\begin{array}{c} 1 \\ 1 \end{array} \right]^{2} \right] = \left[\left[\left[\begin{array}{c} 1 \\ 1 \end{array} \right]^{2} \right]^{2} \left[\left[\left[\begin{array}{c} 1 \\ 1 \end{array} \right]^{2} \right]^{2} \left[\left[\left[\begin{array}{c} 1 \\ 1 \end{array} \right]^{2} \right]^{2} \right]^{2} \right] \right] \right] \right]$

ANALYST:

dinth

1630 Pandora Street, Vancouve .C. VSL 1L6

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCL to HNO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, F, Sn, Sr and W.

REPORT #: 900565 PA	PANICON DEV	ELOPMENT	S LTO.			PROJEC	T: KIR81	f		DATE	IN: SEP	YT 24 199	0 DA1	TE QUT; D	CT 24 19	90	ATTENTION	1: MR, ST	EVE TODO	ank I	111	PAGE	1.06	3	
Sample Nume	Ag	AI 1	As Pote	Ba	Bi og∎	Ca Z	Cd Dom	Co	Çr An II	Cu	Fe 1	K T	fig T	Лл	Mo equi	Ka T	Ni	P 1	Pb en	Sb	5n	St	IJ ∎00	¥ ea∎	l∩ ag∎
BL 4800E 5100N	0.4	2.45	373	352	(3	0.36	(0.1	19	20	43	4.59	ň. 14	0.78	3385	17	0.05	14	30.0	(2	(2	10	44	3	(3	221
81 4800E 51 25N	0.4	3.43	307	320	3	6.32	(0.1	17	21	50	4 41	0.14	0.87	1905	21	0.06		0.06	0	ö	12	33	(5	(3	287
RI 4800F 5150N	(0.)	2.58	506	359	(3	0.37	70.1	20	20	64	4 91	ð 15	0.94	206.9	20	0.06	15	0.09	K.	(2	0	79	(5	(3	279
PLADORE STAN	(0.)	2 10	477	200	/2	A 46	20.1	19	10	12	4 94	0.14	6 96	2914	10	0.00	1.7	0.00	/2	10	10	101	/5	12	294
BL4800E 5700N	0.1	2.70	380	215	(3	0.31	(0.1	18	19	50	4,41	0.13	0.6i	1854	21	0.05	12	0.09	<2	(2	<2	120	(5	(3	203
BL 4800E 5225N	0.1	2.57	144	48	(3	0,10	<0.1	9	20	19	4,40	0.10	0,45	288	21	0.05	7	0.12	<2	(2	<2	11	(5	(3	86
BL 4800E 5250N	(0.1	1.00	41	31	(3	0.11	<0.1	10	13	9	4.86	0.10	0.10	319	19	0.05	5	0,08	23	3	<2	12	<5	(3	65
BL4800E \$275N	(0.1	2.34	12	43	(3	0.12	(0.1	6	20	13	7.02	0.15	9.15	316	19	0.64	3	0.04	(2	<2	(2	15	(5	(3	70
BL4800E 5300N	(0.1	2.99	8	72	(3	0.10	(0.1	7	21	16	4.77	0.11	0.22	136	20	0.04	4	0.22	(2	(2	<2	26	(5	(3	79
BL4800E 5325N	0.2	2.64	239	101	(3	0.15	(0.1	11	21	19	5.31	0.14	0,40	548	16	0.05	9	0.05	(2	(2	(2	42	(5	(3	92
BL4800E 5350N	0.1	2.82	24	35	(3	0.13	(0.1	10	22	14	7.85	0.19	0.12	6 38	23	0,07	3	0.10	(2	<2	<2	13	(5	{3	83
8L4800E 5375N	0.3	2.89	17	54	(3	0,13	(0.1	1	22	25	7.78	0.19	0.21	512	22	0.05	3	0.05	<2	{ 2	(2	13	<5	(3	109
BL4800E 5400K	0.6	3.23	<3	54	(3	0.10	(0.1	[1	20	16	4.69	0.13	0.14	5217	21	0.07	2	0.09	<2	<2	(2	- 14	<\$	<3	130
BL4900E 5425N	0.4	1.77	1060	115	(3	0.11	<0.1	51	13	20	5.18	0.12	0.11	5228	15	0.04	6	0.16	28	<2	<2	17	(5	(3	62
BL4800E 5450N	Q. 1	1.37	52	66	(3	0,04	<q.1< th=""><th>3</th><th>12</th><th>7</th><th>1.69</th><th>0.04</th><th>0.09</th><th>105</th><th>10</th><th>0.02</th><th>2</th><th>0,06</th><th><2</th><th><2</th><th><2</th><th>8</th><th><5</th><th>(3</th><th>32</th></q.1<>	3	12	7	1.69	0.04	0.09	105	10	0.02	2	0,06	<2	<2	<2	8	<5	(3	32
BL 4800E 5475N	0.7	1.97	153	131	(3	0.07	< 0.1	3	13	12	1.40	0.03	0.06	109	13	0.02	3	0.11	(2	(2	<2	12	<5	(3	\$7
BL4800E 5500N	(0.1	4,10	<3	32	(3	0.13	<0.1	9	28	15	6.35	0.17	0.15	433	25	0.08	5	0.03	<2	<2	(2	4	<5	(3	92
BL 4800E 5525N	0.2	3.19	(3	29	(3	0,13	<0.1	8	27	20	6.46	0.16	0.29	3\$1	21	0.05	7	0.02	(2	<2	<2	7	- <5	<3	86
BL4BODE 5550N	0.1	2.91	7	67	(3	0, IS	<0.1	16	24	12	4.46	0.13	0.21	2415	19	0.07	5	0.08	(2	(2	(2	9	<5	<3	104
BL4800E 5575N	0.2	3.73	<3	25	(3	0,10	(0.1	9	23	12	6.12	0.16	0,07	221	24	0.09	(1	0.03	(2	<2	(2	3	(5	(3	80
BL4800E 5600N	0.4	0.89	38	33	(3	0.04	(0.1	2	10	7	0.95	0,02	0,04	53	11	0,02	12	0.15	<2	(2	(2	6	(5	(3	42
8L4800E 5625N	0.3	1.69	79	34	(3	0.07	(0.1	3	- 14	6	1.97	0.05	0.15	110	12	0.03	9	0.03	(2	<2	- (2	8	(5	(3	51
BL 4800E 5650N	0.6	2.54	9	49	(3	0.11	(0.1	5	20	16	5.08	0.12	0,21	226	15	0.04	10	0.04	<2	<2	<2	9	<5	(3	69
8L4800E 5675N	0.3	2.27	(3	18	<3	0.07	<0.1	9	19	9	4.67	0.11	0.07	135	20	0.06	5	0.02	<2	<2	<2	3	<5	(3	47
BL4B00E 5700N	0.3	9.46	{3	18	(3	0.10	(0.1	6	31	15	5.77	0.18	0.05	199	27	0.08	8	0.02	<2	<2	(2	1	<5	(3	81
L5000E 5025N	0.2	1.72	1729	202	(3	0.12	(0.1	11	14	24	4.49	0.11	0.16	8521	34	0.06	8	0.06	419	(2	(2	8	<5	(3	701
L'2000E 2020N	0.3	3.49	329	126	(3	0.07	<q.1< th=""><th>17</th><th>17</th><th>42</th><th>3.79</th><th>0.10</th><th>0.65</th><th>754</th><th>16</th><th>0.03</th><th>7</th><th>(0.01</th><th>(2</th><th>(2</th><th>(2</th><th>7</th><th><5</th><th>(3</th><th>95</th></q.1<>	17	17	42	3.79	0.10	0.65	754	16	0.03	7	(0.01	(2	(2	(2	7	<5	(3	95
L3000E 5075N	0.3	2.58	696	75	(3	0.10	(0.1	9	16	23	4.51	0.11	0.28	1683	23	0.04	4	0.08	(2	(2	(2	5	(5	(3	83
15000E 5100K	(0.1	2.35	950	328	(3	1,14	<0.1	17	15	28	3.88	0.17	0.43	4724	20	0.05	9	0,10	<2	(2	(2	56	<5	<3	136
L5000E 5125N	(0.1	3.57	1075	269	(3	0.34	(0.1	12	18	27	4.23	0.14	0.48	2948	23	0.04	6	0.04	(2	(2	<2	15	(5	(3	132
L50008 4750N	0.2	3.39	373	352	(3	0.34	(0.1	18	22	46	4.39	0.15	0.85	1975	19	0.05	11	0.07	<2	<2	(2	27	(5	G	416
L5000H 4775N	0.1	3.24	344	364	(3	0,2B	0,3	19	37	56	4.82	0.16	0.81	4085	20	0.06	16	0.07	<2	<2	<2	21	<5	(3	334
L5000X 4800N	0.4	1.96	1360	578	(3	0.69	(Q. I	16	16	43	4.84	0.18	0.64	6805	21	0.08	10	0.08	88	<2	<2	32	(5	(3	910
L5000# 4825N	0.2	2.75	756	472	<3	0.15	0.6	16	21	45	4.61	0.14	0,40	10272	21	0.07	1	0.02	73	<2	<2	10	(5	(3	638
L5090X 4850N	0.3	1.52	1348	698	(3	0,65	(0.)	16	16	31	3.82	0.15	0.46	10054	50	0.07	14	0.08	65	(2	<2	183	(5	<3	642
L50008 48758	0.4	3.54	723	63	(3	0.14	(0.1	12	23	30	5.67	0.16	0.27	3224	39	0.05	6	0.05	<2	<2	(2	13	<5	<3	191
LOUVOK 4900N	0,4	B.32	(3	66	<3	Q. 10	{0.1	16	32	41	4,74	0.16	0.23	4303	33	0.05	4	0.05	<2	<2	<2	7	<5	<3	[45
L5000N 4950N	0.6	1,34	1539	>1000	<3	0.77	<0.1	15	12	34	3.71	0.17	0,48	15123	141	0,05	15	0.08	40	(2	<2	501	< S	(3	446
L3000W 4975N	0.4	1.68	1169	427	<3	0.63	(0.1	11	12	25	3.54	0.14	0.46	53 22	43	0.07	11	0.08	115	(2	<2	517	{ 5	<3	740
Minimum Detection	0.1	0.01	3	1	3	0,01	0.1	1	1	1	0.01	0.01	0.01	Т	1	0.01	1	0.01	2	2	2	1	5	3	I
maxidum Vetection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
🐧 — Less Than Hinique) - Greater T	han Mari	iui	is - Ins	afficient	: Samula	. 85	- No Saeo	le	AROBAL DI	S RESULT	S - Forti	har Anal	VEPS RV 1	Atternati	e Kethr	vis Succes	ted.							

122 STORESOUNDER LASS LITERS

1630 Pandora Street, Vancouver, _.C. V5E IL6

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₂ to H₂O at 95 °C for 90 minutes and is dituted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mo, Na, P, Sn₁ Sr and W.

ANALYST: Mall

REPORT 8: 900565 PA	PAMICON DEV	ELOPHENT	IS LTD.			PROJE	CT: KIRBY			DATE	IN: SEE	PT 24 195	IO DAT	TE OUT; O	CT 24 19	90 /	ATTENTION	: XX, ST	EVE TODOS	ШK	-	PAGE	2 OF	3	
Sample Name	Ag øde	Al I	As DDe	Ba Oda	Bi ₽₽●	Ca T	Ed Do n	Co ese	Cr D0 II	Cu Ope	fe I	К 1	Mg I	.Mn DDe	Mo DDe	Na 1	Ni DD o	P I	Pb 900	Sb D D B	Sn pD4	Sr gp∎	U ppe	N DDA	In 1990
L5000H 5000E	1.2	1.69	>2000	947	(3	1.16	4.6	16	11	43	5.01	0.22	0, 25	11717	38	0.10	14	0.11	430	(2	(2	145	(5	(3	1398
L5100N 4825E	(0.1	0,96	603	\$37	(3	3.06	0.1	4	10	23	1.46	0.16	0.19	3061	14	0.05	8	0.13	13	<2	(2	2859	<5	(3	443
L5100N 4850E	0.1	3,99	759	95	(3	0.10	(0,1	5	19	1B	4.27	0.12	0.24	960	26	0.06	5	0.07	<2	<2	(2	23	<5	(3	238
15100N 4875E	0.3	1.14	41	50	(3	0.18	L,€	8	- 14	14	5.11	0.12	0.05	1315	32	0.06	10	0.13	22	<2	(2	21	<5	<3	87
L5100N 4900E	0.4	2.92	211	55	(3	0.12	<0.1	8	23	26	5.97	0.14	0.23	862	28	0.05	12	0.08	(2	<2	<2	13	<5	(3	85
L5100H 4925E	0.1	2.51	488	154	(3	0.24	0.1	18	18	39	4.26	0.13	0.54	3764	19	0.05	12	0.05	(2	(2	(2	30	(5	(3	171
L5100N 4950E	0.3	2.29	410	124	(3	0.25	(0.1	18	15	38	3.85	Ò.1	0.49	3019	16	0.05	11	0.05	(2	<2	(2	20	(5	(3	183
L5100H 4975E	0.8	2.15	1107	166	(3	0.14	(0.1	13	15	21	4.59	0.12	0.19	6723	25	0.04	6	0.13	16	(2	(2	6	(5	(3	178
L32008 48/3E	0.3	2.23	793	254	(3	0.39	(0,1	14	13	26	3.63	0.12	0.55	3528	11	0.04	1	0.0/	(2	(2	(2	ap	() /*	(3	224
L5200A 4830E	0.1	2.19	/10	163	(3	0.18	(0.]	14	16	31	4,04	0.11	0.49	5225	16	0.05	3	0.03	12	(2	52	12	G	(3	300
15200N 4875E	0.4	3.11	551	89	(3	0.25	(0.1	10	20	20	4.48	0.12	0.29	3484	24	0.05	6	0.08	<2	(2	(2	14	(5	(3	259
L32000 4900E	(0.1	2.46	638	301	(3	0,65	(0,1	15	14	79	4.36	0.16	0.48	7141	19	0.06	1	0.11	13		(2	34	()	(3	330
152000 4920t	V.2	1.05	864 031	472	\3 /2	0.91	0,5	17	19	34	4.03	0.19	0.05	8528	19	0.07	12	0,11	49		(2	00 60	(3)	(3	363
15200N 4975F	0.1	2.10	1215	537	(3	1.28	(0.1	16	13	28	4.11	0.21	0.52	10219	21	0.07	ć	0.15	29 29	12	(2	63 50	(3	12	969
	•	1,10	1115		10	1120		10	14	31	4.07	V.21	0.52	17213	20	0.00	•	0.11	07	12	14	10	13	13	303
L5200# 5000E	0.1	2.86	835	428	(3	0,62	{0,]	19	16	45	4.46	0.18	0.68	5207	17	0.05	11	0.09	(2	(2	<2	31	(5	(3	256
L5200N 5025E	0.5	2.46	813	406	(3	1.20	(0.1	16	16	46	3.81	0.18	0.53	3654	15	0.05	6	0.10	< 2	(2	<2	53	<5	(3	271
- L5300X 4825E	0.4	2.81	10	25	(3	0.09	0.2	7	21	11	4.22	0.0B	0.08	797	19	0.05	2	0.13	(2	(2	<2	6	(5	(3	62
L5300X 4850E	0.3	3,00	710	151	(3	0.07	(0.1	4	16	9	4.09	0.09	0.16	772	14	0.03	2	0.14	(2	(2	<2	16	(5	(3	48
C33000 48/3E	(4.1	4.12	224	42	(3	0.13	(0.1	10	31	23	9.23	0,24	0.78	513	28	0.05	¢	0,04	(2	(2	32	8	(3	()	16
L5300N 4900E	0,3	4.41	1394	141	(3	0.11	(0.1	Ľ	20	30	5.08	0.13	0.71	1087	26	0.04	11	0.05	<2	<2	<2	23	<5	<3	176
LS300H 4925E4 MCTD	0,6	3,89	603	156	(3	0.08	(0.1	7	20	14	3.58	0.09	0.64	675	22	0.04	- 4	0.04	<2	<2	(2	29	<5	<3	116
L5300N 4975E	0.3	2.07	637	345	(3	0.54	<0.1	17	18	19	3.46	0.13	0.51	5408	20	0.04	1	0.19	(2	(2	(2	26	<5	(3	185
LS300A S000E	0.2	2.35	888	537	(3	0.92	(0.1	17	19	23	3.80	0,15	0.57	8589	20	0.05	8	0.17	(2	(2		35	G	(3	238
C23008 2022E	0.1	1.68	551	446	(3	1.52	{0.1	17	16	19	3.03	0,18	0.63	4686	22	0.05	6	0,19	(2	(2	(2	59	(5	(3	184
15300K 5050E	0.2	2.57	1114	493	(3	0.75	(0.1	20	18	27	4,10	0.15	0.60	5485	27	0.05	9	0.17	<2	<2	(2	66	(5	(3	197
L33000 30732	0.2	2.19	13/3	468	G	9.68	(0.1	18	15	21	3, 91	0.15	0.60	4160	25	0.05	6	0.11	(2	(2	\$2	26	(5	(3	183
154000 4850F	V.3	2.4/	203	103	(3	0.10	(0.1	۵ /	1/	10	4.09	0.08	0.20	805	15	0.03	,	0.0/	\$2	(2	(2		(5)	(3	73
154000 48755	0.0	3.VI 4 CA	12		13	0.13	VV.1	с с	23	19	0.33 C 76	4.12	0.00	379	20	0.09		0.07	14	12	12	20	75	13	112
	4.2	4.00	13	23	13	V.12	V. 7	1	13	,	3,13	¥, 1a	0,07	1101	23	V.V3	VI.	0.00	12	12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		13	13	114
L5400H 4900E WA15	0.5	3,32	<3	23	<3	0.14	<0.1	8	26	16	7.67	0.20	0.06	437	25	0.07	<1	0.07	(2	(2	<2	4	- <5	(3	85
L54008 4950E	0.1	2.17	207	205	<3	0.11	<0.1	8	19	10	4.48	0.09	0.20	1276	16	0.05	5	0.13	(2	(2	(2	12	(5	(3	93
L54003 4975E	<0.1	2. B 2	349	174	<3	0.12	<0.1	8	20	16	5,17	0.12	0.21	819	18	0.04	5	0.12	<2	<2	(2	11	<5	(3	65
L3400K 5000E	(0.1	3,24	407	183	<3	0.10	(0.1	9	15	5	2.91	0,07	0.23	803	14	0.03	(1	0.07	<2	<2	(2	14	(5	(3	75
13400K 2025E	0.5	2,38	965	627	(3	1.48	(0.1	i 1	18	17	4.65	0.23	0.46	13431	22	0.05	2	0.13	1	<2	<2	65	<5	(3	239
L5400N 5050E	<0.1	2.06	725	236	(3	0,53	(0.1	16	94	23	3.23	0.11	0.49	3418	21	0.04	17	0.19	(2	(2	(2	22	(5	(3	205
L54008 5075E	<0.1	1.87	1139	342	(3	1,19	<q.1< td=""><td>16</td><td>15</td><td>31</td><td>3.34</td><td>0.15</td><td>0.50</td><td>3532</td><td>21</td><td>0.04</td><td>3</td><td>0.13</td><td>(2</td><td><2</td><td><2</td><td>59</td><td><5</td><td><3</td><td>215</td></q.1<>	16	15	31	3.34	0.15	0.50	3532	21	0.04	3	0.13	(2	<2	<2	59	<5	<3	215
L5500N 4825E	(0.1	3.15	<3	48	(3	0.15	(0.1	9	29	16	6.03	0.14	0.35	238	18	0.05		0.02	(2	(2	(2	8	<5	<3	69
L5500N 4850E	0.2	4,58	229	44	(3	0,15	(Q.)	9	31	24	5.57	0,14	0.37	263	23	0.05	9	0.04	(2	<2	(2	9	(5	<3	74
Minimum Detection	0.1	0.01	3	ι	3	0.01	0.1	I	ι	1	0.01	0.01	0.01	1	L	0.01	ŧ	0.01	2	2	2	1	S	3	I
Maxicum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10,00	20000	2000	1000	10000	100	1000	20000

VA EU (EL LA 1.1) EF

1630 Pandora Street, Vancouve .C. VSL 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HND₂ to H₂B at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, So, Sr and W.

ANALYST: Kyrth

5.

---- · · •

REPORT 0; 900565 PA	PANICON DEV	ELOPHENT	S LTD.			PROJEC	T: KIRBY	I		DATE	IN: SEP	1 24 199	O DAT	ie ovi: O	CT 24 19	90 /	NDITNENTION	: HR. SI	EVE TODOS	RUK		PAG	E 3 OF	3	
Sample Name	Ag	AL	As	Ba	Bi	Ca	Ċd	Co	Çr	Ca	fe	ĸ	Kg	Ma	Но	Na	Ni	P	ዮኦ	Sb	Sn	Sr	U	W	In
	ab∎	ž	<u>pp</u>	sp∎	pps	2	p pe	pge	op 4	ppm	1	Z	ĩ	ppe	ppa	I	ppa	ĩ	poe	ppe	p94	pga	ppe	ppe	opa
L5500N 4875E	0.1	3.65	(3	15	(3	0.12	2.1	10	24	11	7.12	0.18	0.09	28S	24	0.09	10	0.02	<2	<2	<2	•	(5	<3	9 0
L5500N 4900E	0.2	3.57	G	24	(3	0.13	1.1	9	27	16	8.18	0.20	0.13	176	23	0.06	11	0.03	<2	<2	(2	•	(5	(3	68
L5500N 4925E	0.6	3.05	(3	27	<3	0.07	1.1	6	23	13	4.22	0.09	0,14	152	19	0.04	10	0.03	<2	<2	(2		< S	<3	53
L5500N 4950E	0.7	2.79	688	61	<3	0,05	<0.1		15	19	2.58	0.06	0.39	641	15	0.03	,	0.05	(2	<2	<2	4	(5	<3	92
15500N 4975E	0,8	2,68	652	102	<3	0.05	{0.1	2	16	13	2.68	0.06	0.33	294	15	0.03	5	0.07	(2	<2	(2	5	(5	(3	78
15500N 5000E	0.7	2.52	540	91	<3	0.16	(0.1	3	16	16	2.56	0.07	0.37	398	17	0.03	7	0.20	(2	(2	<2	10	<5	(3	147
LS500N 5025EC	0.5	1.76	721	170	(3	0.30	(Q. I	11	15	16	3.67	9.11	0.25	4072	18	0.05	6	0.16	4	(2	(2	47	- <5	(3	165
LSSOON SOTSE	0,2	2.42	945	135	<3	0.19	(Q.1	9	17	18	4.33	0.11	Q.23	5398	24	0,05	10	0,14	21	<2	<2	10	(5	(3	291
L5500N 5100E	0.3	4.01	1645	103	<3	0.15	(0. I	19	19	35	5.73	0.16	0.24	7276	37	0.07	i 2	0.08	25	<2	<2	7	<5	(3	633
L5500N 5125E	0.4	2.33	1749	179	(3	0.71	(0,1	1	17	15	7.32	0.22	0.13	7773	34	0.06	9	0.10	10	<2	<2	25	<5	<3	274
L5600K 4825E	0.4	3,50	(3	30	(3	0.12	1.9	8	23	16	6.53	0.15	0.21	216	22	0.04	8	0.03	<2	<2	<2	6	(5	(3	63
L5600N 4850E	(0.1	7,35	(3	19	(3	0.11	1.3	10	30	13	5.98	0.18	0.09	578	27	0.10	8	0.04	<2	<2	<2	2	<5	(3	92
LS600N 4875E	0.3	2.99	<3	13	<3	Q.13	2.1	9	27	- 14	8.74	0.21	0.05	225	25	0.08	9	0.04	<2	<2	<2	3	(5	(3	73
LS600N 4900E	0.2	4.36	(3	48	<3	0.15	0.7	3	33	28	7.18	0.18	0.42	374	22	0.05	B	0,03	<2	(2	<2	11	<5	(3	89
L5600N 4925E	1.2	2.75	32	35	(3	0.08	1.0	5	17	17	3.01	0.08	0.24	19 9	15	0.05	6	0.09	<2	<2	<2	7	(\$	(3	66
L5600N 4950E	0.6	2.40	151	67	<3	0.08	0.1	9	15	22	2.89	0.08	0.26	4683	16	0.05	7	0.07	(2	(2	(2	8	(5	(3	103
L5600N 4975E	0.7	7.19	<3	78	<3	0,10	0.3	8	26	26	5.27	0.15	0.10	375	27	0.07	5	0,11	(2	(2	(2	4	(5	<3	75
L5600N 5000E	0.2	8.95	(3	44	(3	0.10	(0.1	5	30	31	4,81	0,13	0.25	348	21	0.03	4	0.05	<2	< 2	(2	5	(5	<3	92
L5600# 5025E	0.5	5.37	(3	28	(3	9.10	1.1	7	25	19	4.91	0.14	0.09	1189	24	0.09	4	0.06	<2	(2	(2	3	(5	<3	98
LS600N 5050E	0.4	2.52	1813	565	(3	0.66	(0.1	12	16	30	5,32	0.20	0.33	9484	25	0.08	8	0.10	107	<2	<2	59	<5	(3	172
15600N 5075E	0,4	2,38	>2000	455	(3	0.47	6.4	II	17	33	5.62	0.19	0.27	16871	34	0.11	16	0.15	218	<2	<2	26	٢S	(3	1493
L5600N 5100E	0.6	1.53	>2000	>1000	(3	0.92	(0.1	12	12	28	5.82	0.25	0.13	9708	39	0.14	10	0.20	690	<2	<2	791	<5	(3	199i
LS600N 5125E	0.4	1.48	>2000	143	(3	0.21	(0.1	S	12	9	6.02	0.13	0.14	1501	42	0.05	7	0.04	127	<2	(2	19	(5	(3	477
L5700N 4825E	0.3	3.80	<3	13	<3	0.13	0.8	9	23	Li	7.19	0.19	0.05	322	27	0.11	6	0.02	<2	<2	<2	2		(3	98
LS700N 4850E	0,5	3.05	<3	12	<3	0.13	2.4	11	28	8	7,80	0.19	0.06	244	27	0,09	1	0.02	<2	<2	(2	3	(5	(3	91
L5700N 4875E	0.5	3.16	(3	24	(3	0.15	1.5	12	28	17	8.89	0.21	0.20	434	26	0.09	12	0.03	{2	(2	(2	6	<5	<3	90
L5700N 4900E	0.7	4.02	<3	65	(3	0.09	1.2	7	17	11	7.33	0.18	0.19	119	19	0.04	5	0.04	(2	(2	(2	2	<5	(3	31
L5700N 4925E	0.5	7.34	(3	65	(3	0.18	1.4	12	37	22	7.32	0.21	0.41	753	24	0.05	10	0.03	(2	(2	(2	11	(5	<3	196
L5700N 4950E	0.4	4.29	(3	17	<3	0.11	0,5	14	24	9	4.78	0.13	0.12	713	23	0.09	4	0.04	(2	(2	(2	4	<5	(3	75
L5700N 4975E	0.4	3.42	164	311	(3	0.43	0.3	12	20	33	4.21	0.15	0.68	888	17	0.07	11	0.09	14	<2	<2	73	<5	<3	340
LS700N SOOCE	0.3	3.30	358	202	(3	0.15	1.6	15	22	28	4.36	0.13	0.68	5036	24	0.05	10	0.10	13	(2	₹2	15	(5	(3	346
LS700N 5025E	0.3	2,38	1498	547	(3	1.00	(0.1	16	17	22	4.75	0.19	0.80	10340	52	0.08	10	0.15	100	<2	<2	132	- (5	<3	742
L5700N 5050E	0.3	2.80	685	298	<3	0,81	(0.1	11	20	19	4.25	0.17	0.56	3976	25	0.07	9	0.13	28	<2	(2	51	<5	(3	364
L5700N 5075E	0.2	2.78	1738	356	(3	0.47	<0.1	14	17	24	5.75	0.18	0.41	6868	32	0.08	9	0.15	121	(2	<2	26	(5	(3	714
L5700N 5100E	0.2	3,10	1012	353	(3	0.43	(0,1	13	18	25	4.75	0.15	0.45	6574	31	0.05	7	0.14	56	<2	(2	21	<5	(3	498
L5700N 5125E	0.5	2.29	1169	440	(3	0.34	(0.1	17	20	29	5.29	0.16	0.46	9332	31	0.06	9	0.15	162	(7	(2	17	(5	(3	\$69
L5700N 5150E	0.5	2.32	1489	46B	(3	1.14	(0.1	12	16	31	4,50	0.19	0.66	6245	31	0.0R	9	0.19	152	(2	(2	40	(5	(3	763
L\$700N 5175E	(0.1	2.16	1112	537	G	1.25	(0.1	16	14	24	4,17	0.19	0.81	5588	29	0.07	12	0.17	104	0	(7	67	(5	(3	659
L5700K 5200E	(0,1	0.94	1840	491	(3	2.47	(0.1	15	16	28	4.11	0.22	0.26	4933	37	0.08	22	0.20	197	7	(2	B7	<5	(3	933
Minimum Detection	0.1	0.01	3	L	3	6.01	0.1	1	ι	1	0.01	0.01	0.01	t	1	0.01	I	0.01	2	2	2	1	5	3	1
Maximus Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00 5 85500 74	10.00	10.00	20000	1000	10.00 Notice	20000	10.00	20000	2000	1000	10000	100	1000	20000

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: ADDRESS:	PANICON DEVELOPMENTE LTD. 711 - 675 W. Hastings St.	DATE:	OCT 12	1990
:	Vancouver, BC V6B 1N4	REPORT#: JOB#:	900581 900581	GA

PROJECT#: KIRBY SAMPLES ARRIVED: SEPT 24 1990 REPORT COMPLETED: OCT 12 1990 ANALYSED FOR: AU ICP INVOICE#: 900581 NA TOTAL SAMPLES: 64 SAMPLE TYPE: 64 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Myn1 L SIGNED:

GENERAL REMARK: RESULTS FAXED TO MR. DONALD PENNER & BRONSON CAMP.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPORT NUMBER: 90050	1 GA JOB BUEBER:	900581 PANICON DEVELOPHE	ITS LTD.	PAGE 1 OF 2
SAMPLE #	λα			
	ppb			
14700N 4800E	að			
L4700# 4825B	nđ			
L47008 4850E	að -			
L47008 4875B	10	-		
647008 4900B	15			
L4700# 4925E	20			
L4700K 4950B	15			
L47008 49758	15			
L4700W S025B	5			
L4700N 5050B	20			
L47008 50758	5			
L47000 51908	10			
L4800N 4750B	15			
L4800N 4775B	nđ			
L4800H 4800B	- 5			
14400# 4425B	5			
14800N 4650B	nd			
L4800X 4875B	10			
L48008 4900E	5			
L48008 4925B	5			
L48008 4950B	ađ			
L4800H 4975B	10			
L4800K 5025B	δā			
14800M 5050B	nd			
L4000K 5075B	15			
L4900H 4750B	ba			
L49008 47758	nd			
F4260M 4800B	ba			
649008 46258	\$ S			
L4900H 4850B	10			
L4900# 4875B	5			
T42001 42008	10			
L49008 49758	Dđ			
F42001 4320B	ba			
F43008 43328	bd .			
L4900E 5025E	bā			
LADOR SOSOB	ad			
L49008 50758	10			
L4900K 5100K	ađ			
DETECTION LINIT	5			
nd = none detected	= not analysed	is = insufficient sample		
VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT HUNBER: 908581 GA	JOB NUMBER: 900581	PANICON DEVELOPHENTS LTD.	PAGE 2 OF 2
SIKPLE #	La		
	aop		
L4900N 5125B	10		
B/G5000B 4700N	ad		
8/650008 47258	nđ		
B/L5000B 47508	6a		
B/L5000B 4775#	5		
B/15600g 4800g	5		
B/1.50008 48258	ed		
B/L5000R 4850N	 กฉ้		
8/150008 48758	nê		
B/L5000B 49008	ba		
B/L5000B 4925K	10		
B/L50008 4950M	ba		
B/15000g 4975#	nd .		
LS100E 4750B	15		
L5100B 4775B	5		
L5200N 4780B	nd		
15200# 4725B	10	•	
L52001 4750B	10		
L5200H 4775B	ъđ		
L5300# 4700B	15		
L53008 47258	5		
L53008 4750B	ad		
L5300N 4775B	5		
L5400# 47508	eđ	·	
L54008 47758	ba		

1510 Sandora Stream, vanduure - - - - 452 128 P>= (604) 251-5656 Fac: (604) (54-5717

. :_. .

ł

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 mL of 3:172 HD to 360_{2} to 360_{2} at 95 % for 90 minutes and is diluted to 10 minutes. Thus Leach is partial for AD, Bay (s. Cr. Fe, C. By, Mn, Na, P. Sn, Sr and W.

					Ta:	s leach	is parti	al for A), ia, (ណ្ដែរ រ	ie, ⊂ 5	ç, Xn, Na	1, P, Sn	, Sr and	W.		-		ANALY	rsī:	A	z A	14		
REPORT & SOOSET PA	PANICEN DE	VELCONENT	S LTD.			PRD(EC	.1: X1P81	r		Mie	IN: SEP	PT 24 149	to Da	TE OUT: D	KI (4 19	igic y	ATSITER	 1. 12. Si	EVE TOOD	RUY	:	FAG	E L G F	?	
Sample Name	Aq Gan	Al 2	Ás. SD é	Ba C De	3L Na B	Ca I	ûd Gra	(a nce	n() ∎an	(ິນ ຄະ∎	Fe ,	ĸ	Kç X	Kn 20 4	4g	Ka 1	NL DAR	ŕ	fb	57	Sn.	Ç.	U	ii	2n
L47008 46008	0.5	3.43	3	56	3	0.06	1.5	7	JIÉ	27	3.79	0.04	0.29	1362	14	0.05	17	0.04	0	0	(3	7	/5	73	97
L4700# 482SE	0.7	2.55	17	133	(3	<u>ë.</u> 18	1.8	,	15	22	3.40	0.07	0.35	5637	19	0.06	12	0.10	0			15	ع	(1	118
L47001 48508	(0.)	3.43	190	71	(3	0.07	9.3	7	21	21	4.59	0.05	0.34	1222	20	0 áf	16	D 65	ä	12		3	15	12	132
L4700) 4875E	<0.;	3.06	553	29:	(3	0.32	(0.1	e.	19	19	6.92	0.12	0.18	3159	22	ú 10	:1	6 07	0	:2	ö	22	(5	10	12R
L4700A 4900E	(0,1	3.11	<3	35	(3	0.10	3.1	5	25	20	9,24	0,16	0,16	869	13	0.12	16	0.94	(2	Ċ	2	6	(5	3	83
L4700k 4925E	(0.1	3,74	762	93	(3	0,05	(0.1	10	21	26	4.64	0,48	o. 20	6654	19	0.09	12	0.03	54	(2	12	٤	(5	(3	425
14700F 4950E	(0, 1	5.10	243	51	(3	0.05	0.7	6	30	21	5.05	0.09	0,19	2025	24	0.10	16	0.07	42	<2		4	<5	(3	180
E4700# 4975E	0.2	2,30	(3	44	G	0.03	2.1	É	20	16	7.48	Q.1¢	0.3L	443	19	0.08	19	0.04	(2	<2 ·	(?	8	<5	(3	81
L4700N 5025E	{Û.]	7.06	299	51	(3	0.07	0.5	5	24	25	3.91	0.07	0.21	1909	25	0.07	16	0.04	66	q	<2	8	<5	<3	169
L4700N 5050E	(0.1	1.87	(3	17	C	0.07	2.2	S	21	15	B. 76	0.14	¢.06	344	25	0.13	[4	0.03	37	4	-{2	•	<5	(3	73
14700N 5075E	(0.1	3,43	(3	29	G	0.05	ι.2	E	29	15	5.18	0.0B	0.12	480	19	0.09	16	0.05	(2	Q	<2	4	(5	(3	61
L47008 \$100E	(0.1	4.42	(3	38	(3	0.03	2.4	1	24	18	E.58	0.15	0.25	508	19	0,10	14	0.01	(2	(?	- (2	6	(5	(3	\$5
L4800N 4750E	(0.1	3.86	157	107	G	0.07	О.Б	7	20	22	3.61	0.06	0.55	1692	i B	0.07	15	0.06	(2	- (2	(2	9	- (5	(3	183
14800N 4775E	(0.1	3.57	59	69	(3	0.06	0.3	6	16	26	3.91	0.06	0.49	2279	18	0.05	15	0.08	(2	(?	72	6	{5	(3	152
749004 4800F	(0.1	4.11	(3	38	3	Q.Q6	1.3	4	56	12	5.40	0.09	0.22	507	1B	0.07	13	0.04	(2	(2	(2	5	(5	(3	77
148000 48255	(0.1	3.87	(3	31	3	0.05	:.3		19	20	E.SB	0.10	0.10	413	25	9.LC	8	0.04	(2	α	(2	3	(5	(3	82
L4800N 4850E	(0.)	2.56	1604	608	(3	0.34	(0.1	15	15	37	4.20	0.12	0.76	1450B	43	0.14	15	0.07	62	0	0	32	6	(3	598
14800N 48758	{Q.L	4.47	149	38	(3	0,06	(0.1	7	18	17	5.64	0.11	0.07	1004	24	0.10	15	0.64	(2	(2	0	4	(5	(3	92
L4800N 4900E	(0.1	2.27	992	37	3	0.05	$\{0,\}$	4	56	11	6.76	0.09	0.09	1273	25	0.09	9	0.04	6	12	(2	4	(5	(3	86
L48008 4925E	(0.1	3.25	349	57	(3	0.05	Q.I	7	19	18	4.94	0.08	0.09	8819	33	0.08	L	0.07	(2	(2	(2	4	(5	(1	114
L4800N 4950E	0.2	2.83	497	43	(3	0.06	(0.)	5	21	١٤	6.67	0.09	0.25	1739	27	0.07	н	0.04	21	(2	(2	5	(\$	(3	137
L4800H 49752	(0.1	4.16	477	126	(3	0,08	Q.S	5	17	17	5.19	Q.07	0.28	2986	26	0.07	14	9,06	<2	<2	(1	8	(5	(3	292
LABOON 2023E	(Q. L	5.21	730	620	- (3	¢, 23	<0.1	10	18	20	6.14	0.18	0.45	>20000	25	Q.55	9	0.13	<2	<2	(2	12	- (5	(3	503
L48001 30502	(0.)	1.19	1434	737	(3	0.56	(0.1	f	8	13	2.68	0.09	0,40	5392	17	0.21	11	0.07	63	<2	<2	32	(5	(3	1512
E48000 5075E	(0,1	0.22	1544	563	()	4,47	(0,1	5	6	14	2.65	0.20	0.12	5067	16	0.15	12	0.12	166	17	(2	546	(5	G	1258
149001 4750E	(0.1	2.94	115	53	(3	0.07	1.1	11	16	20	5.92	0.08	0.37	2012	18	0.08	12	0.03	(2	Q	(2	9	(5	(3	107
	10.1	2.02	13	14	(3	V.U4	1.1	3	14		5.06	0.0/	0,05	382	16	0.10	8	0,03		(2		3	0	(3	20
149600 4075C	20.1	2.33	13	23 30	13	0,04	10.1	1	13	11	4.22	0.05	0.12	2823	16	0.0K		0.0L				5	(<u>)</u>	(3	11
L49001 4850E	(0.1	3.45	(3	25	(3	0.04	U.6 [.0	5	[] 16	12	5,49	0.08	0.09	1979 680	20	0.03 0.09	6	0.13 0.0 5	(2	0	(2	3	(5	(3	73
14900H 4875E	{0.1	4.45	294	6 1	(3	0.05	(0.1	5	20	20	7, 91	Ó 17	0.31	64.	19	0 A7	11	<u>0</u> 05	()	0	17	£	(5	(2	14.2
149001 4900E	(0.1	3.50	78	-1 79	ä	0.15	ß. 1	15	Ŀ٩	17	6.04	0.01	0 LE	3333	16	0.09	19	0 AT	()	in in		12	15	(3	199
L49001 4925E	(0.1	2.96	381	49	(3	0.03	(0.1		15	11	4 80	0.07	0.10	1099	24	20.05	4	0.05	1		12	ŝ	ă.	(3	116
L49001 4950E	(0.1	1.52	15	46	0	10 Å	6.7	ŕ	10	7	7 76	6.67	0 1 S	191	13	0.02	ä	6 GL	ä	17	12	เก้	65	(1	51
L49008 4975E	(0.1	3.38	303	98	3	0.0B	(0.1	9	68	24	5.91	0.09	0.26	2075	23	0.09	ú	0.13	7	(2	12	10	(5	3	159
L49000 5023E	(0.1	3.02	189	88	(3	0,09	(0.1	16	13	36	4.09	0.07	0.34	(332	15	0.05	11	0. 13	(1	(2	(2	9	(5	(3	152
L49000 5050E	(0.1	2.12	1453	178	(3	0,42	(6.1	17	A	70	4.74	0 11	0.21	10227	27	210	17	0.12	112	0	10	28	(5	(1	555
L49001 5075E	0.7	4.97	20	74	(1	0.05	(0.1		17	19	20	6.07	6 72	917	54 27	0.05	13	0.04	10	12	/1	4		12	90
L4900N SLOCE	(0.)	2.24	G	51	ä	0,03	(0.1	5	16	lo I	4,80	0.06	0.19	263	17	0.05	13	0.02	(2	(2	Q	5	(5	(3	64
Minimum Detection	0,1	0.01	3	L	3	0.01	Q.L	1	L	1	0.01	0.01	0.01	3	L	0.01	l	0.01	2	2	2	I	5	3	1
Masimu Detection	50.0	10.00	2000	[000]	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	10:00	10000	100	1000	20000
< - Less Than Miniaua) - Greater T	ihan Kasin	EUA	is - [aș;	licien	Sample	U \$	- No Sand	ile i	ANJHA, DIS	S RESULT	S - Furt	her Acal	rses Br	Alternati	e Hethod	is Suanes	ted.	•						

Value No. V. 1847

VANGEOCHEM LAD LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Far:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram simple is digested with 5 ml of 3:1:2 HC: to H40, to HgD at 95 PC for 90 minutes and is diluted to 10 ml with water. This leach is partial for A:, Ba, Ca, Cr, Fe, K, Mg, Kn, Na, P. Sn, Sr and W.

ANALYST:	Anth

-

REFORT 1: 900581 PA	PANICON DE	VELOPHENI	TS LTD.			PROJE((T: K ir)			DAT	E IN: SEP	1 24 199	10 OA	TE DUT: {	007 31 13	90 /	TTENTION	: MR. ST	EVE TEDO	RUM		PAG	2 OF	2	
Sample Name	Âg	Al	As	94	21	Ca	Cd	io	Ũr	Cu	Fe	к	Ħg	Kn	No	Na	Ni	P	Fb	Ξa	Sn	51	U	¥	la.
	0 04	ĩ	pae	006	₽ 9 ∎	1	DDR	20 4	904	994	1	χ	ī	թր∎	ap e	I	pp s	٦	ppe	008	0 p.s.	pp.	DØR	DO	pen
L49009 5125E	0.2	2.35	(3	60	<3	0.06	2.3	8	17	15	5.60	0.10	0.12	968	20	0,08	17	0.08	<2	12	<2	E	<5	(3	69
B/L5000E 4709N	0.3	2.92	(3	13	(3	0.09	3.0	7	24	19	>10.00	9.22	0.08	454	52	0.16	16	0.03	22	3	<2	3	(5	< 3	65
B/L5000E 4725N	(0.1	3.44	1317	307	<3	0,07	(0.1	10	21	21	5.53	0.11	0.27	10850	42	0.14	18	0.05	136	10	(2	5	75	<3	713
B/L5000E 4750N	(0.1	3.22	347	41	(3	0.05	0.8	3	23	18	6.15	0.11	0.17	1374	39	9.10	17	0.04	35	. 2	(2	4	:5	G	133
B/L5000E 47754	(0.1	2.64	1572	3:9	(3	0.26	3.2	٤	16	12	3.65	0.10	0.39	9054	28	0.15	18	0.07	302	:2	(2	10	< 5	<3	1114
B/15000E 4800N	(0.1	2.48	1186	275	<3	0.09	6.5	7	15	9	4.53	0.08	0.10	320000	44	0.13	13	0.04	301	Q	:2	3	<5	(3	813
B/LS000E 4825N	<0.1	3.77	366	130	< 3	0.31	0.2	6	19	15	4.46	0.11	0,35	8077	19	0.08	20	0.09	<2	- 62	<2	15	₹5	(3	349
B/15000E 4850N	<0.1	1.17	1603)1000	< 3	1.30	0.7	9	10	14	4.24	0.19	0.24	14683	21	0.18	15	0.17	123	(2	<2	84	(5	(3	1397
B/LS000E 4875N	{0.1	2.01	646	305	(3	0.47	1.1	13	15	21	3.67	0.11	0.55	3970	25	0,08	18	0.13	58	12	<2	62	<5	<3	428
B/L5000E 4900N	(0.1	1.12	7	€7	{ 3	0.05	1.5	4	13	13	3.14	0.03	9.11	225	11	0.04	14	0,12	<2	12	42	11	<5	<3	60
B/1.5000E 4925N	(0.1	2.55	983	192	(3	0.22	(0.1	9	13	20	3.92	0.09	0.34	5552	16	0,10	14	0.15	47	<2	(2	13	(5	<3	541
B/L5000E 4950M	(0.1	1.60	>2900	569	(3	1.75	(0.1	10	11	27	3.78	0.19	0.27	6840	21	0.12	14	0.11	106	(2	(2	328	(5	<3	800
B/L5000E 4975N	(0, 1	2.54	1376	B6	<3	0.08	(0.1	3	11	13	3.83	0.05	0.17	1978	33	0.06	8	0.02	123	:2	(2	10	(5	<3	322
LSLOON 4750E	(0.1	2.94	177	462	(3	0.33	1.8	22	22	72	5.33	0.13	1.26	2917	15	0.09	23	0.09	(2	<2	<2	28	(5	(3	160
1.5100N 4775E	(0.1	3,19	494	245	<3	0,20	0.4	14	16	43	4.31	0,08	Q.7Q	1214	20	0.08	17	0.09	(2	(2	(2	39	<5	<3	219
15200N 4700E	<0.1	3,12	25	376	(3	0.29	2.8	20	20	65	5.27	0.13	1.05	2861	13	0.09	19	0,07	(2	(2	(2	32	<5	(3	155
L5200N 4725E	(0.1	3,11	32	342	<3	0.28	1.7	20	20	62	5.03	0,12	1.07	1932	13	0.08	20	0.08	(2	(2	<2	23	(5	< 3	151
L5200N 4750E	(0.1	3.53	39	157	(3	0.14	1.4	15	15	40	4.57	0.09	0,55	1405	17	0.10	10	0.09	(2	(2	<2	47	<5	< 3	165
L5200N 4775E	<q. i<="" td=""><td>3.38</td><td>147</td><td>266</td><td>(3</td><td>0,24</td><td>2.2</td><td>22</td><td>21</td><td>65</td><td>5.66</td><td>0.13</td><td>1.06</td><td>1643</td><td>18</td><td>0.10</td><td>18</td><td>0.09</td><td>(2</td><td>(2</td><td>(2</td><td>105</td><td><5</td><td>(3</td><td>188</td></q.>	3.38	147	266	(3	0,24	2.2	22	21	65	5.66	0.13	1.06	1643	18	0.10	18	0.09	(2	(2	(2	105	<5	(3	188
L53008 4700E	(0,1	2,92	(3	419	(3	0.41	2.5	22	22	68	5.29	0.14	1.27	2183	13	0.08	22	0.08	(2	(2	(2	56	<5	(3	131
L5300N 4725E	<0.1	3.32	(3	160	(3	0,13	1.3	15	17	42	4.71	0.09	0,70	1054	14	0.08	17	0.10	(2	(2	(2	26	(5	(3	142
L5300% 4750E	0.2	3.03	448	242	(3	0.13	<0.1	13	16	46	4.99	0.09	0.65	1632	14	0.05	7	0.09	(2	(2	(2	51	<5	(3	96
L53008 4775E	(0.1	3.43	284	208	(3	0.16	0.5	15	13	47	4.32	0.10	0.70	699	12	0.08	8	0.10	(2	<2	<2	73	- <5	(3	117
L5400N 4750E	(0.1	3,58	32	233	(3	0.22	1.3	17	16	49	4.68	0.12	0.74	1491	15	0.09	11	0.07	(2	(2	{2	56	(5	- (3	128
L5400N 4775E	(0.1	2.29	353	1 6 9	(3	0.11	0,i	11	11	31	4,00	Q. 06	0,43	393	10	Q, O6	8	0.06	<2	(2	<2	58	<5	(3	100
Minioum Detection	0.1	0,01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	ı	0.01	1	0,01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10,00	20000	1000	\$0.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
C = Less Than Kiniaua	> - Greater 1	lhan Baxi	đu n	is - last	ufficien	t Sample	65	- No Samp	le	ANDRALO	JS RESULT	6 - Furt	her Anal	yses By	Alternati	e Method	s Suggest	ted.							

.

Sec. 2012/01/2014

STATEMENT OF QUALIFICATIONS

-

.....

APPENDIX VI

STATEMENT OF QUALIFICATIONS

I, STEVE L. TODORUK, of 6323 Piccadilly Place, West Sechelt, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Pamicon Developments Limited, with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.
- 3. THAT my primary employment since 1979 has been in the field of mineral exploration.
- 4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. THAT this report is based on data generated by myself, under the direction of Charles K. Ikona, Professional Engineer.
- THAT I have no interest in the property reported on herein or in the securities of Kirby Energy Inc. nor do I expect to receive such interest.
- 7. THAT I consent to the use by Kirby Energy Inc. of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

DATED at Vancouver, B.C., this <u>2(</u> day of <u>March</u>, 1991.

Steve L. Todoruk, Geologist

---- Pamicon Developments Ltd.-

APPENDIX VII

ENGINEER'S CERTIFICATE

ENGINEER'S CERTIFICATE

I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Consulting Mining Engineer with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- THAT I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- THAT I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- THAT this report is based on work conducted under my direction in 1990 and on extensive knowledge of the immediate area.
- THAT I have no direct or indirect interest in the property described herein or the securities of the Company nor do I expect to receive any such interest.
- 6. THAT I consent to the use by Kirby Energy Inc. of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

DATED at Vancouver, B.C., this $\frac{22}{2}$ day of M.4KCh, 1991. Charles K. Ikona, P.Eng.

n.

2d

P. 3

p,

v. 3

•2b

L	IŤ	но	LOG	IES
_				

THIN LAMINATED, DARK-GREY LIME	ST
POORLY SORTED (PEBBLE TO BOULD POLYMICTIC (VOLCANIC & INTRUSIVE DEBRIS FLOW/WATER L)ER E CL AIN
PURPLE & GREEN, FRAGMENTAL AND)E\$
BLUISH GREY, PLAGIOCLASE PORPH	YRI
DARK GREY TO BLACK, VERY FINE FRAGMENTS NOTED) <u>SILTSTONE/F</u>	GR. TNE

WATERCOURSE, TARN
EFFLUX
OUTCROP
BEDDING, DIP
SOIL GEOCHEMISTRY GRID SAMPLE
AS & AMELOD-1000 FOLL ALB ASSESSMENTF

ð~2b

20

\$

3

20

2b

2c

2d

 \sim

 \bigcirc

 $\langle \rangle$

25

613 •

THIN LAMINATED, DARK-GREY LIMEST
POORLY SORTED (PEBBLE TO BOULDER POLYMICTIC (VOLCANIC & INTRUSIVE C DEBRIS FLOW/WATER LAIN
PURPLE & GREEN, FRAGMENTAL ANDES
BLUISH GREY, PLAGIOCLASE PORPHYR
DARK GREY TO BLACK, VERY FINE GR FRAGMENTS NOTED) <u>SILTSTONE/FIN</u>

<u>SYMBOLS</u>

	WATERCOUR	SE, TARN		
	EFFLUX			
	OUTCROP			
	BEDDING, D)IP		
	SOIL GEOCH	IEMISTRY	GRID S	AMPLE
	ZR GMBEO ASS	2100°C ESS	IC / ME	AL! NT
	Contract of		j)	
		Scale	1:250	0
m 0	50	100)	150

K	IRBY	ENE	RGY	INC
	GA	B 5	CLA	Μ
NEV	NMON	IT CI	LIFF	ZC
Zı	n S	01	L (GR
LI	ARD MI	NING		ON, B
PAMI	CON D	EVEl	OPM	ENT
DRAWN. J.W.	N.T.S. 104 [3/15 W.	DATE MAI	RCH IS

TONE ER) CLASTS) NN CONGLOMERATE ESITIC LITHIC TUFF RITIC CRYSTAL TUFF

GRAINED (FINE NE ASH TUFF