REPORT ON YETI 4 - 7 CLAIMS YEHINIKO LAKE STIKINE RIVER AREA NORTHWESTERN BRITISH COLUMBIA NTS 104 G

57 degrees 32 minutes north, 131 degrees 20 minutes west

ERIK OSTENSOE

Prepared for: Toscana Resources Ltd.

Prepared by: Erik Ostensoe, FGAC

consulting geologist

Date of report:

Revised:

December 15, 1990. May 15, 1991.

Final Revision: June 18, 1992

ARIS SUMMARY SHEET

istrict Geologist, Smithers Off Confidential: 92.03.21 ASSESSMENT REPORT 21168 MINING DIVISION: Liard ROPERTY: Yehiniko **COCATION:** LAT 57 32 00 LONG 131 20 00 UTM 09 6378945 360299 NTS 104G11W #LAIM(S): Yeti 4-7 OPERATOR(S): Toscana Res. *UTHOR(S): Ostensoe, E.A. EPORT YEAR: 1990, 107 Pages COMMODITIES SEARCHED FOR: Copper, Gold Triassic, Mafic volcanics, Sediments, Alteration, Quartz-calcite veins EYWORDS: Pyrite, Gold WORK PONE: Geological, Geophysical, Geochemical, Prospecting, Physical LINE 22.0 km 4.5 kmMAGG PROS 1500.0 ha Map(s) - 1; Scale(s) - 1:10 000ROCK 142 sample(s);ME 25 sample(s);ME SILT MINFILE: 104G 112

Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TYPE OF REPORT/SURVEY(S)	TOTAL COST
Geological, Geochemical, Magnetometer	\$75,000
AUTHOR(s) Erik Ostensoe sig	NATURE(S)
DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILE PROPERTY NAME(S) Yehiniko	
COMMODITIES PRESENT Gold, copper	
B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN	
•	NTS104 G
LATITUDE 57 degrees 32 minutes north Lo	NGITUDE . 131 degrees 20 minutes west
NAMES and NUMBERS of all mineral tenures in good standing (when we (12 units); PHOENIX (Lot 1706); Mineral Lease M 123; Mining or Certified	rk was done) that form the property [Examples: TAX 1-4, FIRI Mining Lease ML 12 (claims involved)]:
Yeti.47.claims - 72247227 inclusive	
	,
OWNER(S)	C.
J. Tarnowski in trust for Cascade (2) Investments J.V.	A SUB-RECORD
MAILING ADDRESS Box 11569, Vancouver Centre, 820 - 650 West Georgia Street,	MR. # 18 1992
Vançouver, B. C V6B 4N8	Or bing &
OPERATOR(S) (that is, Company paying for the work)	13 100 10 BC
(1) Toscana .Resources. Ltd	
1104750 West Pender St., Vancouver, B.	C
MAILING ADDRESS	
SUMMARY GEOLOGY (lithology, age, structure, alteration, mineralization	
reliminary and partial prospecting, geological and magnetometer surveys have explored in prelimination volcanic rocks (in part alrered to serpent coarsely purphyritic augite dacite occupies the cold and copper values occur in quartz-calcite verite zones in volcaniclastic rocks west of "wand zinc values. Magnetic patterns have not been igh, gold values and the presence of visible gold will be required to enable determing the presences to previous work.	inary fashion Upper Triassic age inite) and arenaceous sedimentary strata e northcentral part of the claims: eins in mafic flows. Quartz-sericite est Yehiniko Creek" contain gold, copper a completely defined. Recognition of departicles in specimens indicate that

Underground (metres)	• • • • • • • • •				<i>.</i>	• • • • • • •			\$79,096.5
Road, local access (kilometres) Trench (metres)	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •		• • • • • • • • • • • • • • • • • • •	
Photogrammetric (scale, area) Line/grid (kilometres)	22 line	ķms	. Ye	ti.6.7		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		\$11,000
PREPARATORY/PHYSICAL Legal surveys (scale, area) Topographic (scale, area)							• • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
PROSPECTING (scale, area)	reconnais	şşance	Ye	ti4 . - 7.	incl	• • • • • • •			.\$10,600.
Mineralogio Matallurgio	· · · · · · · · · · · · · · · · · · ·					• • • • • • • • •	• • • • • • • • • • • •		
Sampling/essaying Petrographic									· · · · · · · · · · · · · · · · · · ·
Non-core RELATED TECHNICAL	•••••				· • • • • • • • •		· · · · · · · · · · · ·		
Core						• • • • • • •	· · · · · · · · · · · · · · · ·		
Other 7 platinu DAILLING (total metras; number		ssays				• • • • • • •	• • • • • • • • • • • •		• • • • • • • • • •
Sit 25 silts Rock 142 rocks	" : : " · · · · · · · · · · · · · · · ·			ti47. ti47.		• • • • • • • •			
	for. 30 .ele	ements.by.ICP	Į.	•					.\$28,496.
Airborne GEOCHEMICAL (number of sam)	i	.)		• • • • • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • • • • •		
Other				• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •			
Radiometric Salamic				· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
Induced Polarization					· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •	. <i></i>		• • • • • • • • • • • • • • • • • • •
Magnetic Electromagnetic					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · ·		
Ground	4.5	line kms	Ye	ti 7					\$ 5,000
Photo GEOPHYSICAL (line-kilometres)	••••••				• • • • • • • •	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •
	16.sq	1kms	Ye	ti .47.	.incl	• • • • • • •			.\$24,.000

•

-i-

LOG NO: JUN 2 6 1992
ACTION:
FILE NO:

page

CONTENTS

•	0-0	SUMMARY	1
_	I-0	INTRODUCTION	1
900	I-1	Introduction and Acknowledgements	1
•	I -2	Location and Access	2
-	I-3	Claims and Ownership	5
سن	I-4	Previous Work	5
	I - 5	1990 Program of Work	6
	II-0	GEOLOGY AND GEOCHEMISTRY OF YETI 4 - 7 CLAIMS	8
	II-1	Introduction	8
<u> </u>	II-2	Geology	8
	II-3	Geochemistry	13
	III-0	GEOPHYSICAL SURVEYS OF YETI 4 - 7 CLAIMS	19
_	III-1	Introduction	19
	III-2	Magnetometer Survey	28
450	•		
	IV-0	MINERAL POTENTIAL OF YETI 4 - 7 CLAIMS	28
F6F5)			
in the g	V-0	PROPOSAL TO EXPLORE THE YETI 4 - 7 CLAIMS	32
****	V-1	Budget - Phase 1	33
n hange	V-2	Budget - Phase 2 (contingent)	34
tional to	VI-0	REFERENCES	35
tical	VII-0	STATEMENT OF QUALIFICATIONS AND CONSENT	36

ILLUSTRATIONS

- TSL-49				page
	FIGURE	1.	LOCATION MAP	2
_	FIGURE	2.	CLAIM MAP - YETI 4 - 7 CLAIMS	. 3
	FIGURE	3.	INDEX MAP	7
	FIGURE	4.	SIMPLIFIED GEOLOGY - after Brown, Greig and Gunning, 1990	9
-	FIGURE	5a.	ROCK GEOCHEMISTRY AND GEOLOGY	10
	FIGURE	5b.	ROCK GEOCHEMISTRY AND GEOLOGY	11
	FIGURE	5c.	ROCK GEOCHEMISTRY AND GEOLOGY	12
	FIGURE	6a.	STREAM GEOCHEMISTRY - GOLD, SILVER	15
	FIGURE	6b.	STREAM GEOCHEMISTRY - COPPER, LEAD	16
~	FIGURE	6c.	STREAM GEOCHEMISTRY - ZINC, NICKEL	17
_	FIGURE	6d.	STREAM GEOCHEMISTRY - COBALT, CHROMIUM	18
	FIGURE	7a.	SOIL GEOCHEMISTRY - GOLD	20
	FIGURE	7b.	SOIL GEOCHEMISTRY - SILVER	21
-	FIGURE	7c.	SOIL GEOCHEMISTRY - COPPER	22
•	FIGURE	7d.	SOIL GEOCHEMISTRY - LEAD	23
	FIGURE	7e.	SOIL GEOCHEMISTRY - ZINC	24
-	FIGURE	7f.	SOIL GEOCHEMISTRY - NICKEL	25
•	FIGURE	7g.	SOIL GEOCHEMISTRY - COBALT	26
•	FIGURE	7h.	SOIL GEOCHEMISTRY - CHROMIUM	27
	FIGURE	8.	TOTAL FIELD MAGNETOMETER SURVEY	29

ILLUSTRATIONS

				page
	FIGURE	1.	LOCATION MAP	2
			CLAIM MAP - YETI 4 - 7 CLAIMS	3
~			INDEX MAP	7
			SIMPLIFIED GEOLOGY - after Brown, Greig and Gunning, 1990	-
	FIGURE	5a.	ROCK GEOCHEMISTRY AND GEOLOGY	10
	FIGURE	5b.	ROCK GEOCHEMISTRY AND GEOLOGY	11
	FIGURE	5c.	ROCK GEOCHEMISTRY AND GEOLOGY	12
***	FIGURE	6a.	STREAM GEOCHEMISTRY - GOLD, SILVER	15
	FIGURE	6b.	STREAM GEOCHEMISTRY - COPPER, LEAD	16
	FIGURE	6c.	STREAM GEOCHEMISTRY - ZINC, NICKEL	17
	FIGURE	6d.	STREAM GEOCHEMISTRY - COBALT, CHROMIUM	18
	FIGURE	7a.	SOIL GEOCHEMISTRY - GOLD	20
	FIGURE	7b.	SOIL GEOCHEMISTRY - SILVER	21
	FIGURE	7c.	SOIL GEOCHEMISTRY - COPPER	22
	FIGURE	7d.	SOIL GEOCHEMISTRY - LEAD	23
****			SOIL GEOCHEMISTRY - ZINC	24
**			SOIL GEOCHEMISTRY - NICKEL	25
we			SOIL GEOCHEMISTRY - COBALT	26
-		-	SOIL GEOCHEMISTRY - CHROMIUM	27
····			TOTAL FIELD MAGNETOMETER SURVEY	29
				ocket

TABULATIONS

TABLE I. CL	AIMS INFORMATION	5
TABLE II. ST	ATISTICAL SUMMARY OF ANOMALIES	14
•	APPENDICES	
APPENDIX I.	INDUCED COUPLED PLASMA ANALYSES AND ASS STREAM SEDIMENT AND ROCK SAMPLES	SAYS -
APPENDIX II.	INDUCED COUPLED PLASMA ANALYSES - SOIL	SAMPLES
APPENDIX III.	ROCK SAMPLE DESCRIPTIONS	
Appendix IV.	STATEMENT OF EXPENDITURES	

0.0 SUMMARY

The Yeti 4 - 7 mineral claims located in northwestern British Columbia have been explored in preliminary fashion by prospecting, geological mapping, rock chip, soil and stream sediment sampling, and a limited magnetometer survey, at cost to date of more than \$75,000. This work has revealed the presence of a geological environment that is favourable for the location of precious metal deposits and many of the samples contained significant quantities of gold, copper, zinc, and silver. Fire assays of 4.366 and 1.603 ounces gold per ton were obtained from chip samples taken by a geologist from quartz-carbonate veins that occur in strongly fractured andesitic volcaniclastic formations. An even higher gold content of 515,100 ppb (or about 15 ounces gold per ton) was indicated in a grab sample from a 0.15 metre wide structure that contained visible gold and was analysed by ICP methods.

The results of the preliminary work performed on the Yeti 4 - 7 claims are thought to be strongly encouraging and a two phased program of exploration by standard geological methods and diamond drilling is recommended. The cost of such work is estimated to be \$75,000 for Phase 1. Phase 2 work, which is contingent upon positive results being obtained from Phase 1, is estimated to cost \$154,000. It is recommended that the proposed program of work commence as soon as weather conditions permit access to the mineral zones.

I.O INTRODUCTION

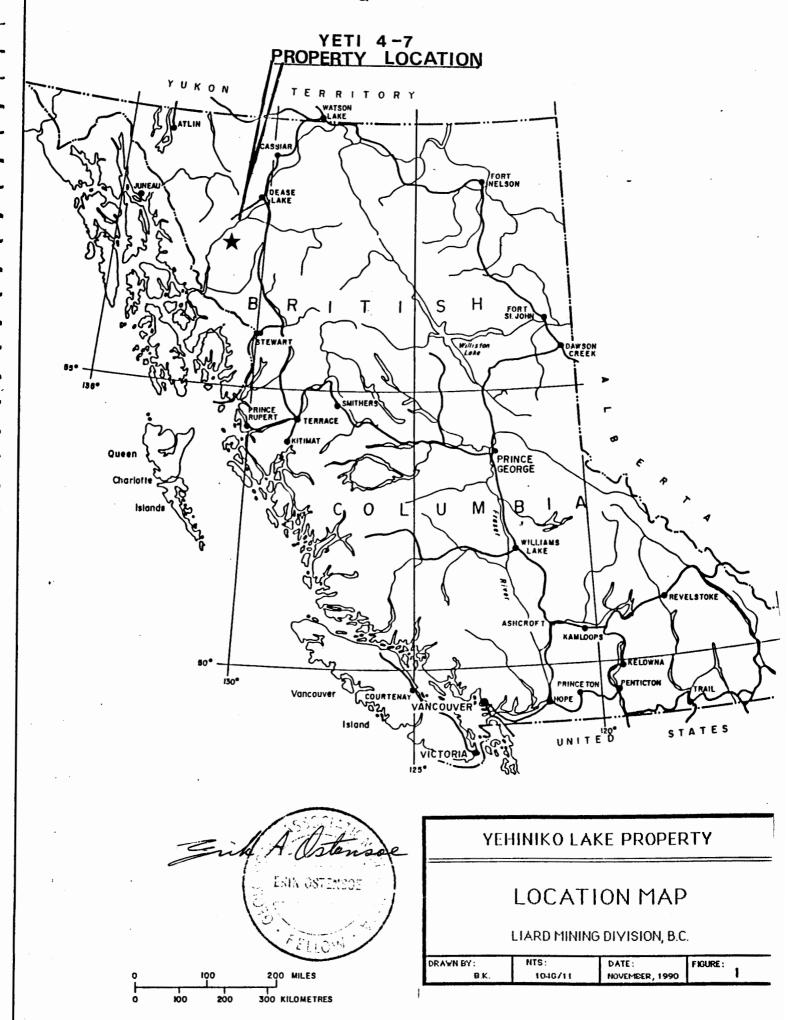
I.1 Introduction and Acknowledgements

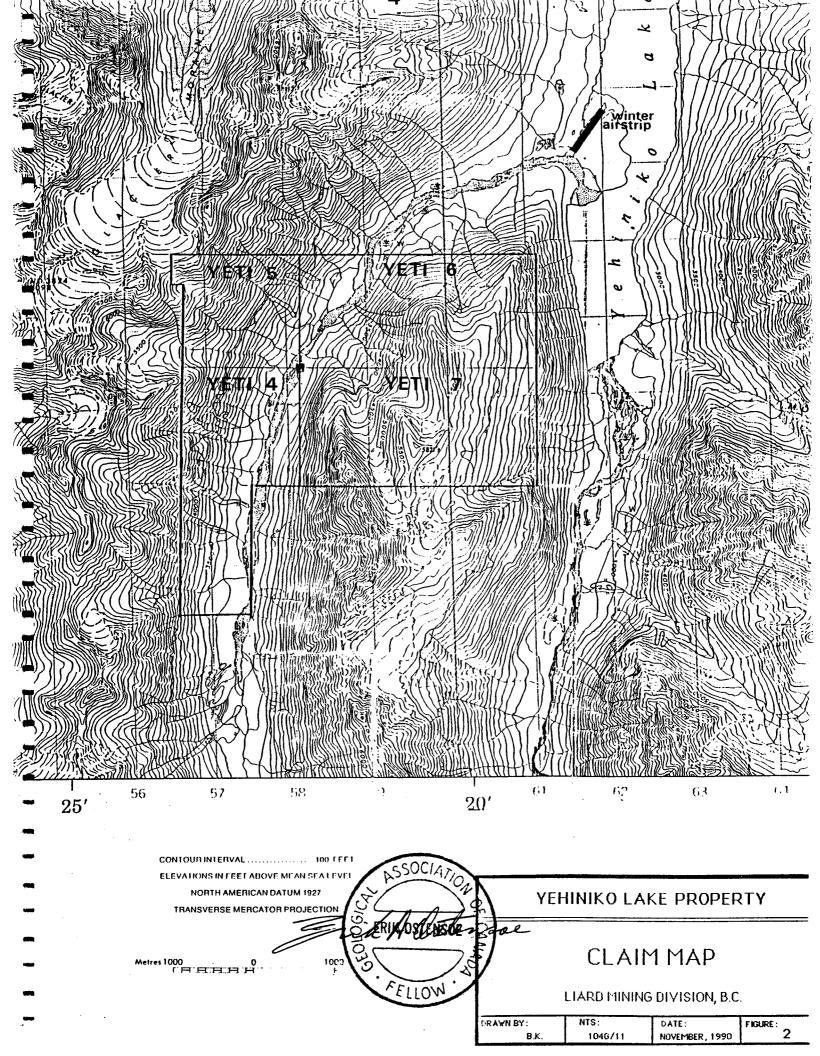
This report was prepared at the request of management of Toscana Resources Ltd. It briefly describes the program of work performed on the Yeti 4 - 7 claims during September 1990 by Coast Mountain Geological Ltd. and Quest Canada Exploration Services Inc. It includes recommendations for further work at anticipated cost of \$75,000 for first stage work and \$154,000 for second stage work. Stage two expenditures should be incurred if, after review by management and/or consultants, the results of stage one are positive with respect to mineral potential.

The writer participated in the 1990 field work in the planning and execution of prospecting, geological mapping, soil survey and

IGS-2 geophysical surveys. It should be noted that high gold analyses were obtained from the analytical laboratory after completion of field work and that no confirmatory check sampling was possible. The author has inspected hand specimens taken from the vicinity of chip and grab samples that are strongly anomalous in gold and other metals and has observed metallic gold particles and chalcopyrite, pyrite and malachite in those samples.

Figures that accompany this report were prepared with the assistance of Chris Basil and Will Kushner of Coast Mountain Geological whose assistance is appreciated. Field workers included the author, whose qualifications are listed elsewhere in this report, and geologists Andrew Wilkins, B.Sc. 1981, Willie Kushner, B.Sc. 1987, Todd Faragher, B.Sc. 1988, and prospectors Chris Basil, David Ridley, and Catherine Ridley, and helpers Jamie McClellan and Keith Huey.


I-2. Location and Access


The Yeti 4 - 7 inclusive claims are located immediately west of the south end of Yehiniko Lake, 40 km south of Telegraph Creek in the Stikine River area of northern British Columbia (Figures 1 and 2). They are close to the eastern edge of the Coast Mountains physiographic province at the transition to the Intermontane province. The Schaft Creek porphyry copper molybdenum deposit is located 27 km southeast of the Yeti 4 - 7 claims and the Galore Creek porphyry copper-gold deposit is 45 km south. The entire lower Stikine River district is currently the site of intensive mineral exploration.

The Yeti 4 - 7 claims have elevations between 950 and 1900 metres and extend from west of a large creek, unofficially called "West Yehiniko Creek", easterly across two prominent ridges and down an east-facing slope almost to the south end of Yehiniko Lake. Terrain is steep except for a high gently sloping upland surface in the east-central part of Yeti 6 and 7 claims.

Access to the Yeti 4 - 7 claims at the present time is entirely by helicopter but there are no apparent serious physical barriers to construction of road access. Access during the exploration phase of work possibly can be facilitated by making improvements to a winter landing field located five kms north, near Yehiniko Lake.

Winters in the Telegraph Creek area are generally a moderate blend of Interior cold modified by Coastal marine conditions but a substantial snowpack accumulates at the Yehiniko Lake area and

avalanches are a late winter hazard. Summers are warm and dry, punctuated by active thunderstorms and accompanying sudden rainfalls.

I-3. Claims and Ownership

Toscana's Yehiniko Lake area property is comprised of four modified grid system mineral claims (Figure 2 and Table 1). The claims are registered in the name of J. Tarnowski who holds them in trust for Cascade Investments joint venture and are subject to option agreements that will enable Toscana to earn its interest.

TABLE 1. CLAIM DATA Claim name Record No. Units - total Recorded Owner Expiry Date*

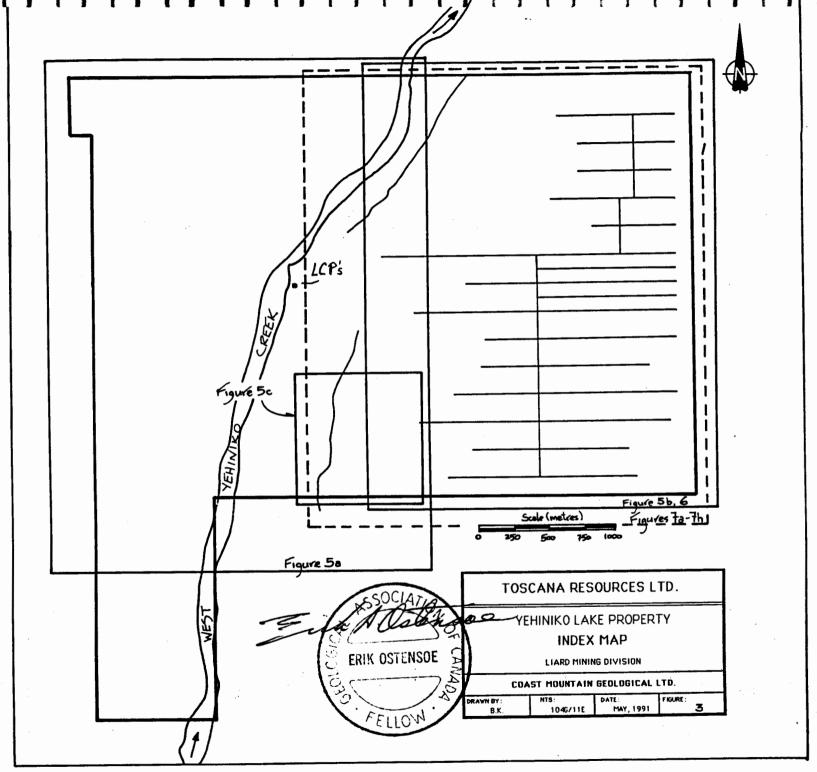
Yeti 4	7224	3N,3W	- 9 units J.	Tarnowski**	91-03-24
Yeti 5	7225	6S,3W	-18 units J.	Tarnowski**	91-03-24
Yeti 6	7226	3N,6E	-18 units J.	Tarnowski**	91-03-24
Yeti 7	7227	3S,6E	-18 units J.	Tarnowski**	91-03-24

*Data from Ministry of Mines office, Vancouver, B.C., Nov.1,1990; additional assessment work credits are pending.

**held in trust for Cascade Investments J.V.

I-4. Previous Work

Forrest Kerr's pioneering Geological Survey of Canada studies in the Stikine River area included the Yehiniko Lake area (Kerr, 1948). J.G. Souther, also of the Geological Survey of Canada, expanded and revised Kerr's work (Souther, 1971). Mssrs. Brown, Greig and Gunning of the Geological Survey Branch of British Columbia's Ministry of Energy Mines and Petroleum Resources, produced Open File 1990-1 (2 sheets), Geology and Geochemistry of the Yehiniko Lake Area, early in 1990. The latter is a 1:50,000 scale reconnaissance study of the district and is supplemented by a technical paper, Geology of the Stikine River-Yehiniko Lake Area, Northwestern British Columbia, by Brown and Greig, published in Geological Fieldwork, 1989 (Paper 1990-1).


Several old claim posts are present on the Yeti 4 - 7 claims but a search of assessment work files failed to find any recorded work. The program of technical surveys completed during 1990 by Coast Mountain Geological and Quest Canada Exploration Services personnel and described in this report is the only known recent work.

I-5. 1990 Program of Work

The Yeti 4 - 7 claims were acquired by Toscana Resources Ltd. from Cascade Investments Ltd. during summer 1990. Toscana hired Coast Mountain Geological and Quest Canada Exploration Services to carry out a preliminary evaluation of the mineral potential of the claims. Work was done in the period September 19 through October 1, 1990. Crews were based at "Scud Camp", a temporary camp located 40 km south of Yehiniko Lake at the confluence of Scud and Stikine Rivers, and were transported daily to the property by helicopter.

The property evaluation included prospecting, stream sediment and soil surveys, geological mapping, chip sampling, and magnetometer geophysical surveys at cost of approximately \$75,000. Figure 3 is an index map that illustrates the location of various work areas that are discussed elsewhere in this report. It shows the grid of 22 kms of measured and flagged lines that was established in the eastern portion of the the Yeti 4 - 7 claims in order to give coverage in the vicinity of the intersection of two strong fracture systems. The entire grid was soil sampled and 4.5 kms of the grid were surveyed using the IGS-2 (magnetometer and VLF-EM) instrument.

Geologists and prospectors, at times with the assistance of climbers, examined most of the accessible parts of the claims, prepared a preliminary geological map and took chip, grab, and float samples from veined and mineralized zones. Data obtained are presented and discussed in the following sections of this report.

II-0. GEOLOGY AND GEOCHEMISTRY OF YETI 4 - 7 CLAIMS

II-1. Introduction

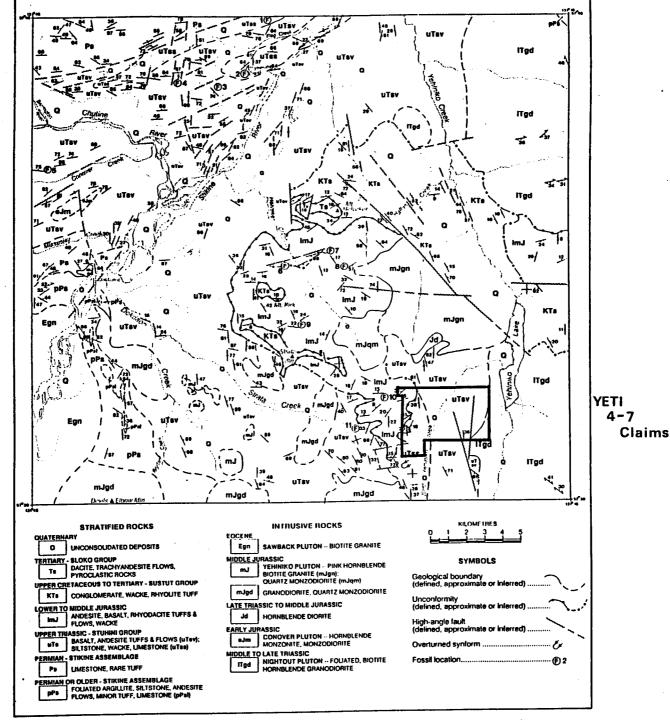
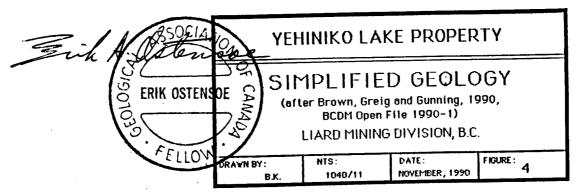
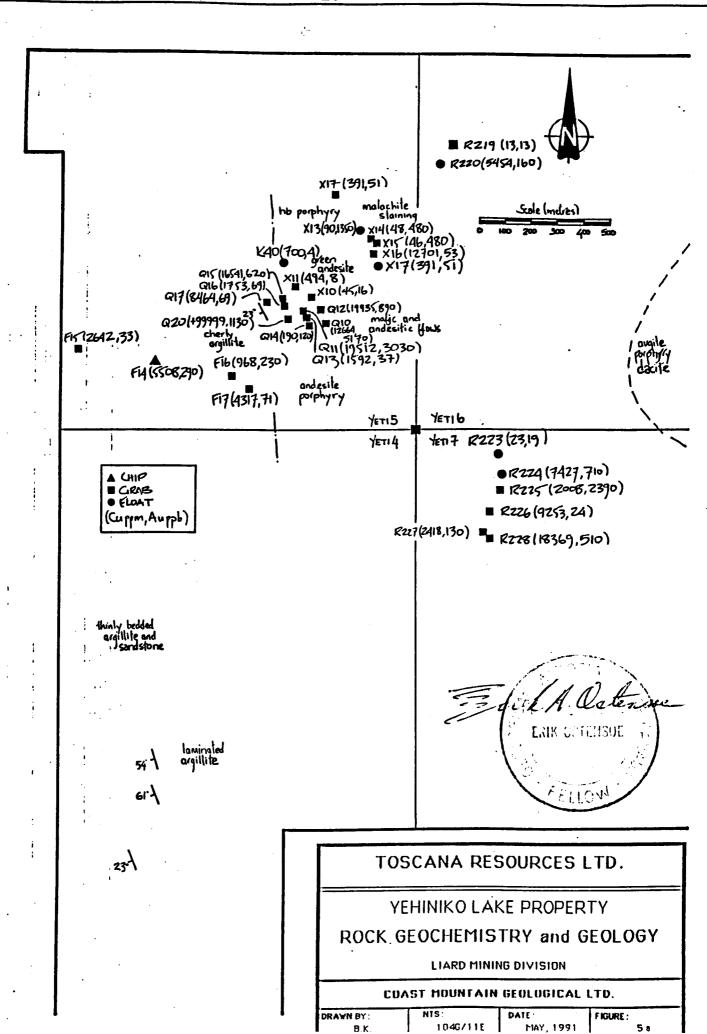
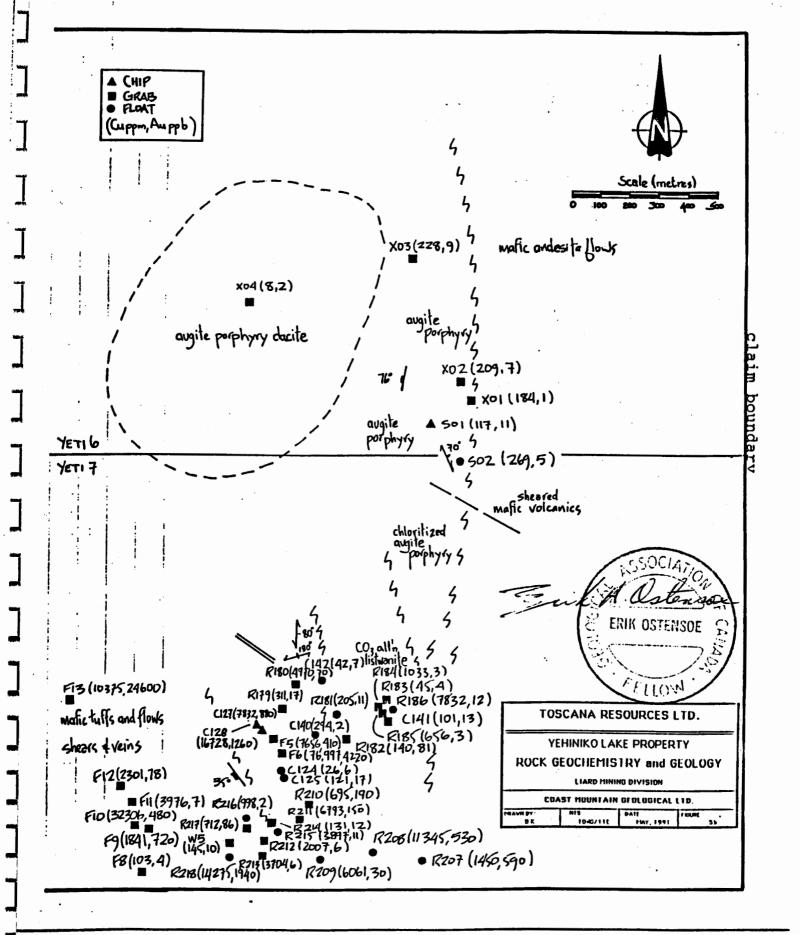
The Yeti 4 - 7 claims are underlain by upper Triassic age Stuhini Group hypabyssal and extrusive rocks and bedded argillic and arenaceous sedimentary rocks. Figure 4, copied from Sheet 1 of Open File 1990-1 (Brown, Greig and Gunning, op cit.), is a simplified presentation of the geology. Figures 5a, 5b and 5c are more detailed but emphatically preliminary maps of portions of the Yeti 4 - 7 claims, on which are shown the geological units and structures, and, where appropriate, rock and geochemical sample sites and copper and gold analyses. Induced coupled plasma (ICP) rock and stream sediment analyses, and assay certificates are presented in Appendix I; soil sample analyses are presented in Appendix II. Brief descriptions complete with copper, gold, silver, lead and zinc analyses of rock samples gathered by geologists and prospectors are presented in Appendix III.

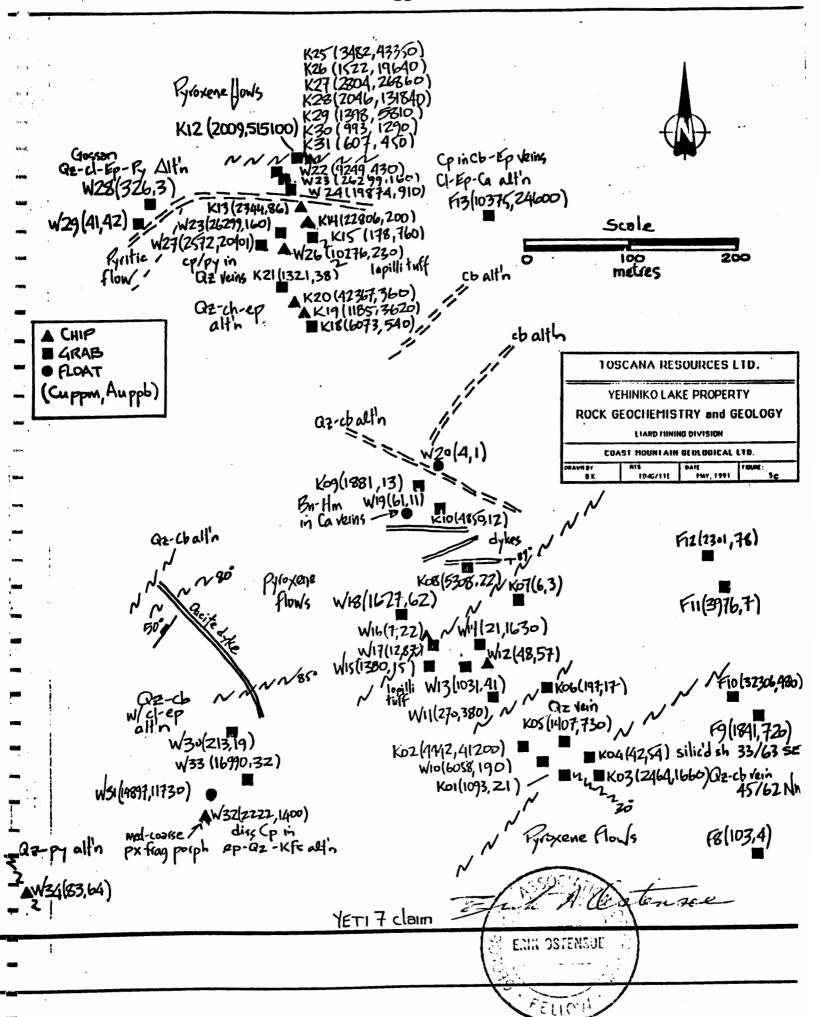
II-2. Geology

The Yehiniko Lake area is situated near the east edge of the Boundary Ranges of the Coast Mountains physiographic province and immediately west of the Stikine Plateau of the Intermontane Belt. Triassic age Stuhini Group basaltic and sedimentary rocks are intruded by foliated biotite hornblende granodiorite of Nightout Pluton, also of late Triassic age. Sustut Group sedimentary rocks of late Mesozoic age are present at the north end of the lake. Dominant regional structures are north and northwesterly striking faults; bedding trends have similar alignments.

Geological Survey Branch maps show that the Nightout Pluton occupies the eastmost part of the Yeti 4 - 7 claims but its presence was not confirmed by 1990 fieldwork. The abundance of granodiorite debris found in the morainal debris and gravels of West Yehiniko Creek are witness to the presence at the headwaters of that creek of a substantial mass of Coast Intrusions.

Massive mafic flows of basaltic or even more basic composition are dominant in the eastern parts of the claims. Where sheared, this rock type is strongly serpentinous. The north central part of the property is occupied by a coarsely porphyritic augite dacite that is believed to be a hypabysssal intrusion. West of West Yehiniko Creek the contact between the volcanic and the overlying sedimentary portions of Stuhini Group strata is clearly defined.


Figure 1-14-2. Simplified geology of the Stikine River - Yehiniko Lake area (104G/11W and 12E).

British Columbia Geological Survey Branch

Host rocks are pyroxene-rich volcanic flows that dip gently southwesterly and are fractured and crosscut by carbonate mineralized alteration zones. Similarly, quartz-sericite-pyrite zones in volcaniclastic rocks west of West Yehiniko Creek contain elevated amounts of gold, copper and zinc (Figure 5a). Chloritized augite porphyry flows located in the southeast part of the claims exhibit strong carbonate alteration and erratic but strongly anomalous copper and gold values (Figure 5b). Several quartz-calcite veins that contain gold, chalcopyrite and pyrite mineralization are present near the south boundary of Yeti 7 claim in an area of steep slopes (Figure 5c).

II-3. Geochemistry

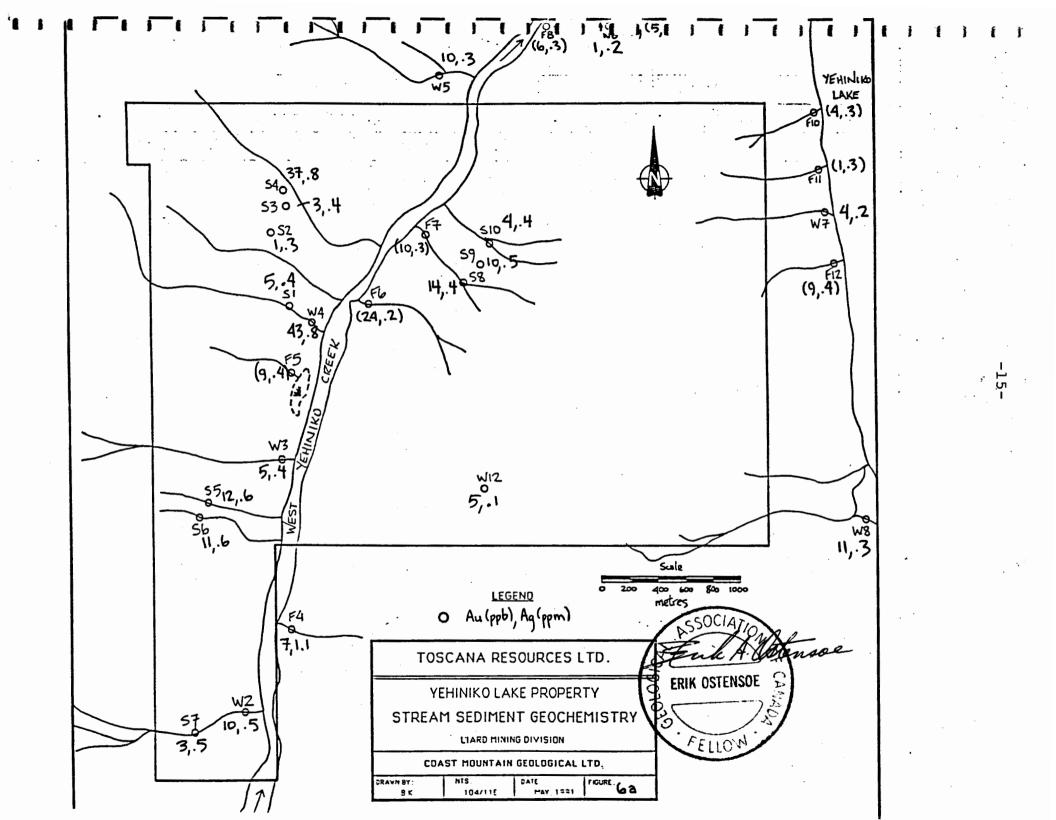
716 B-horizon soil samples were taken from the grid of hip-chained and compassed lines that is shown in Figure 3 and elsewhere in this report. Soils were air dried at the base camp and packaged and shipped by air freight to Acme Analytical Laboratories in Vancouver, B. C. where they were analysed for 30 elements by the induced coupled plasma (ICP) method (Appendix II). Gold contents were determined by an acid leach/atomic absorption technique. Selected samples with elevated levels of particular metals (i.e. gold, copper, nickel, cobalt) have been analysed for platinum group metals (included in Appendix I).

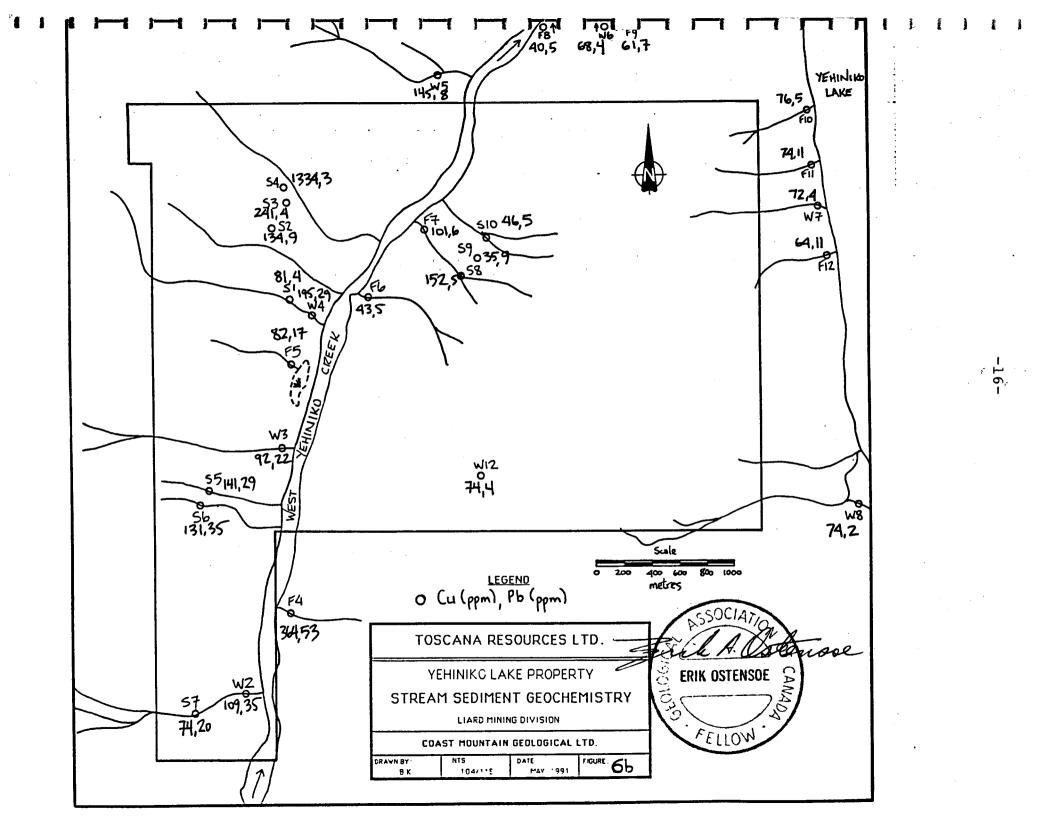
Twenty-five stream sediment samples were taken from drainages on the Yeti 4 - 7 claims and were prepared and analysed by Acme Laboratories Ltd. for 30 elements by the ICP method and for gold by acid leach/AA (Appendix I).

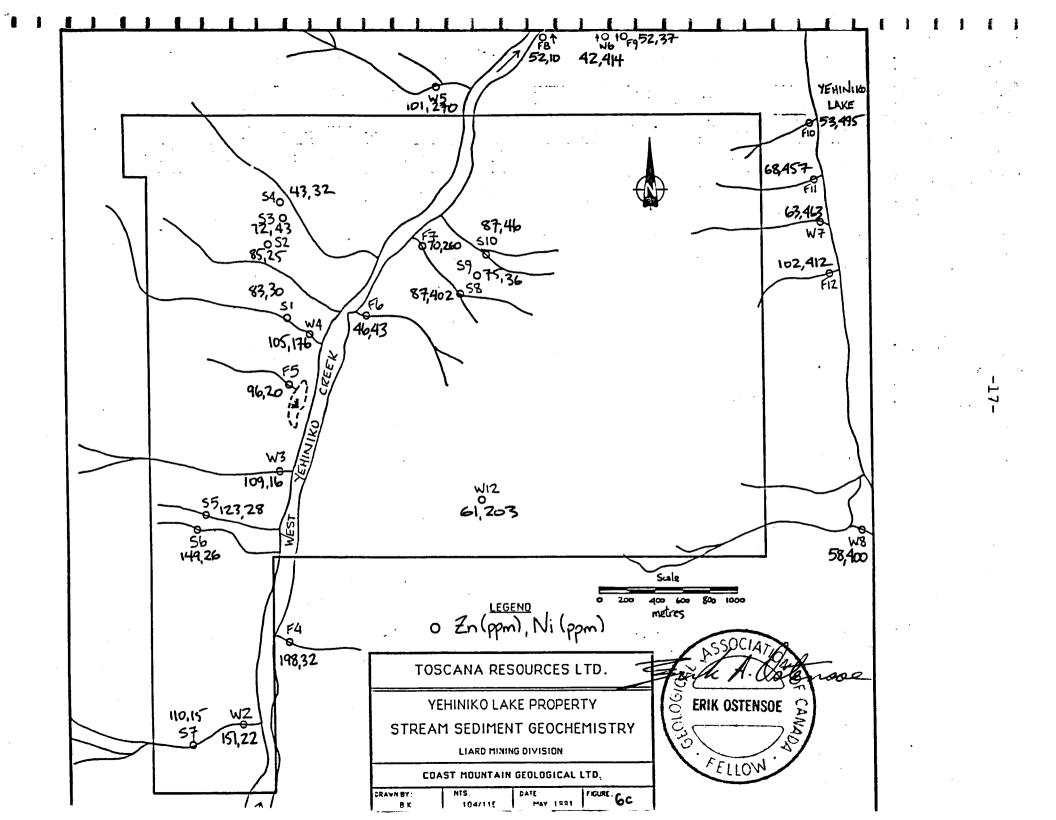
Prospectors and geologists sampled all mineral zones encountered in the course of their prospecting and mapping traverses. All such samples were analysed by Acme Analytical Laboratories Ltd by the ICP method. Some samples with high metal contents (particularly gold and copper) were fire assayed for gold. Locations of rock samples are plotted on Figures 5a, 5b and 5c of this report. Certificates of analysis are included in Appendix I; rock sample descriptions complete with copper, gold, silver, lead and zinc analyses, in Appendix III.

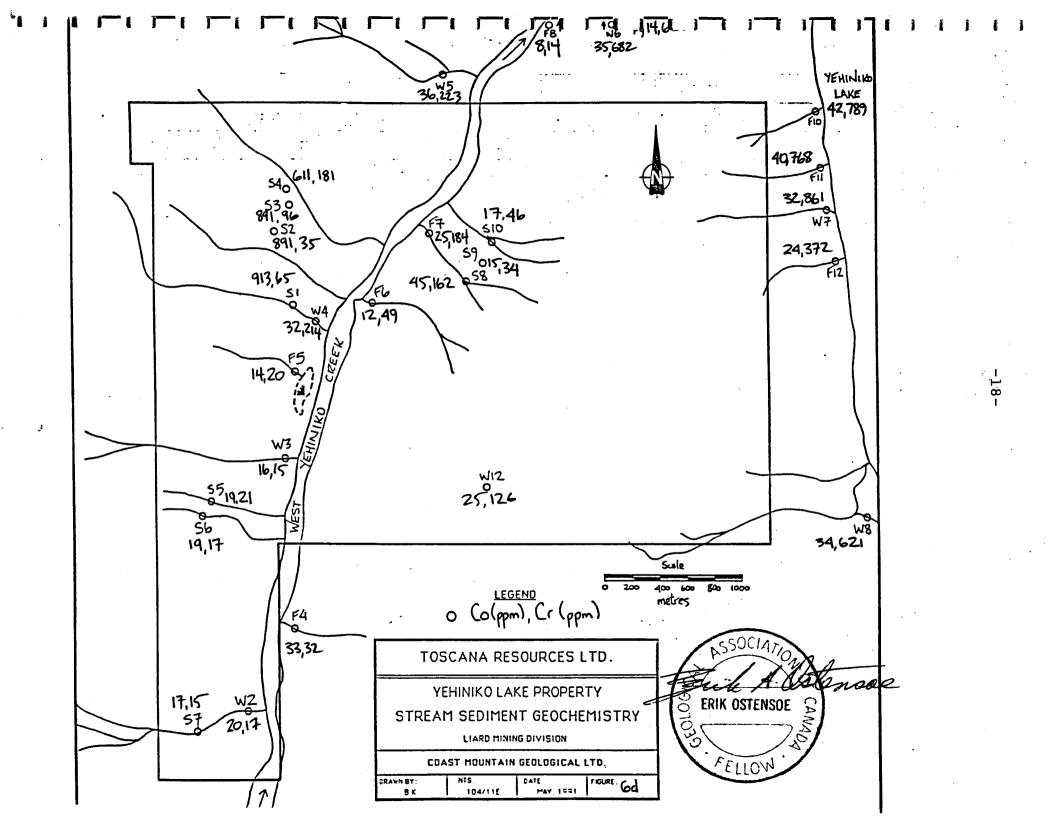
In general, soils are immature and those taken from the eastern part of the grid are contaminated by glacial moraine debris. At higher elevations some of the soils are undoubtedly a blend of glacially transported and residual locally derived materials.

Hot plotted


The details of soil quality were recorded by the samplers at the time of sampling and such records were used for reference when the analytical results were being considered. The soil grid is illustrated in Figure 3 of this report and certificates of analysis are included in Appendix II. Table II lists mean, threshold, anomalous, and strongly anomalous, values for gold, silver, copper, lead, zinc, cobalt, nickel, and chromium, as calculated from the soils analytical data using PROBPLOT, a statistical method. Threshold is defined as a range of values that approximates the mean analysis plus two standard deviations; anomalous, the mean plus three standard deviations; and strongly anomalous, the mean PROBPLOT also calculates the plus four standard deviations. distribution of values with respect to arithmetic or log normal distribution: the latter, where present, is suggestive of the presence of more than one population and hence of mineral deposits. Further information is contained in Mr. Wilkins' report "Soil Geochemistry Statistics - Yehiniko Property".


TABLE II. Stati Mean (x)	stical Summary Threshold	y of Anomalie Anomalous	s Strongly Anomalous
lognormal*	x+2s	x+3s	x+4s
Gold* 2 ppb Silver 0.3ppm Copper* 48 ppm Lead 7 ppm Zinc 64 ppm Nickel 266 ppm Cobalt 29 ppm Chrom'm 380ppm	13 - 30 0.6 - 0.7 175 - 333 16 - 19 99 - 116 594 - 757 52 - 63 801 -1012	31 - 71 0.8 - 0.9 334 - 634 20 - 24 117 - 134 758 - 921 64 - 75 1013 - 1222	+ 72 ppb +1.0 ppm +635 ppm + 25 ppm +135 ppm +922 ppm + 76 ppm +1223ppm

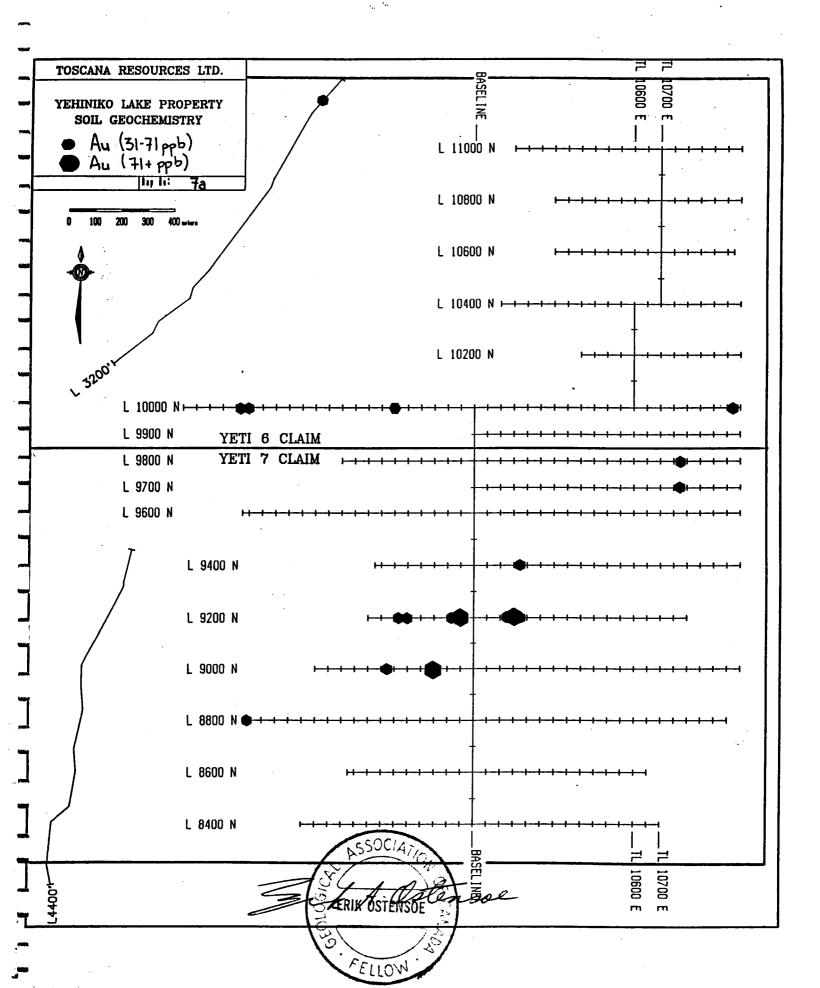

as calculated by Andrew Wilkins, B.Sc. using PROBPLOT

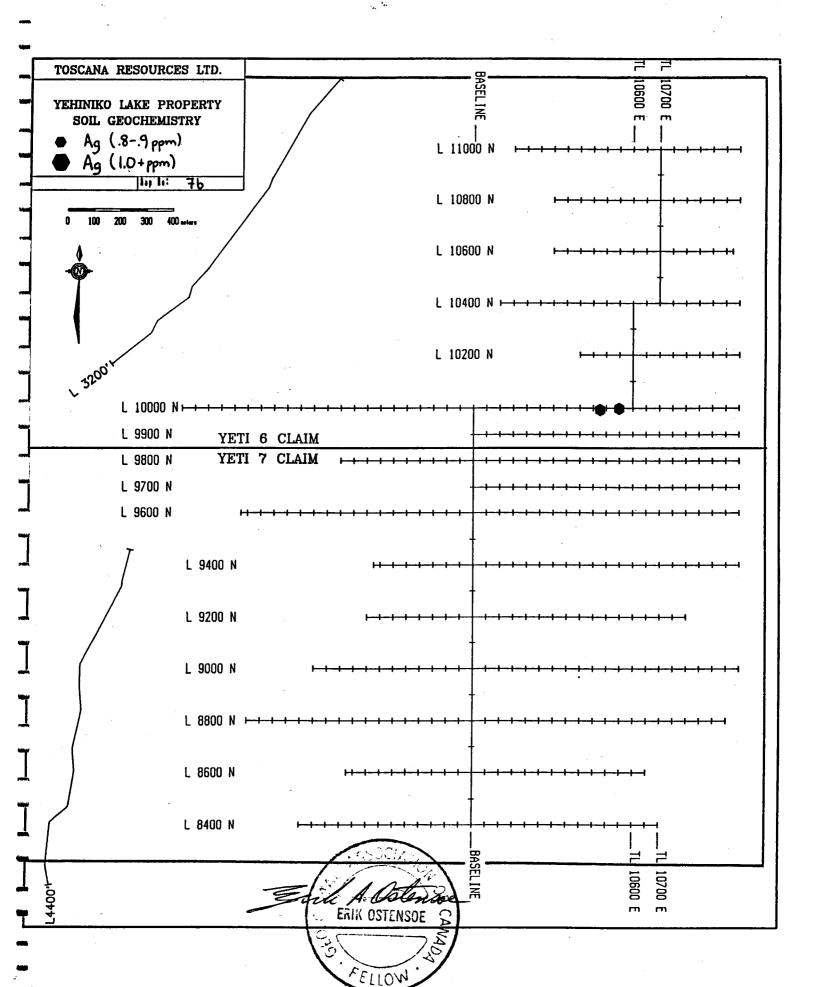

Twenty-five stream sediment samples were taken from drainages on the Yeti 4 - 7 claims and were analysed for 30 elements by the ICP method and for gold by acid leach/AA. Sample locations and analytical results are plotted in Figures 6a (gold, silver), 6b (copper, lead), 6c (Zn, Ni) and 6d (Co, Cr) and Certificates of Analysis are included in Appendix I.

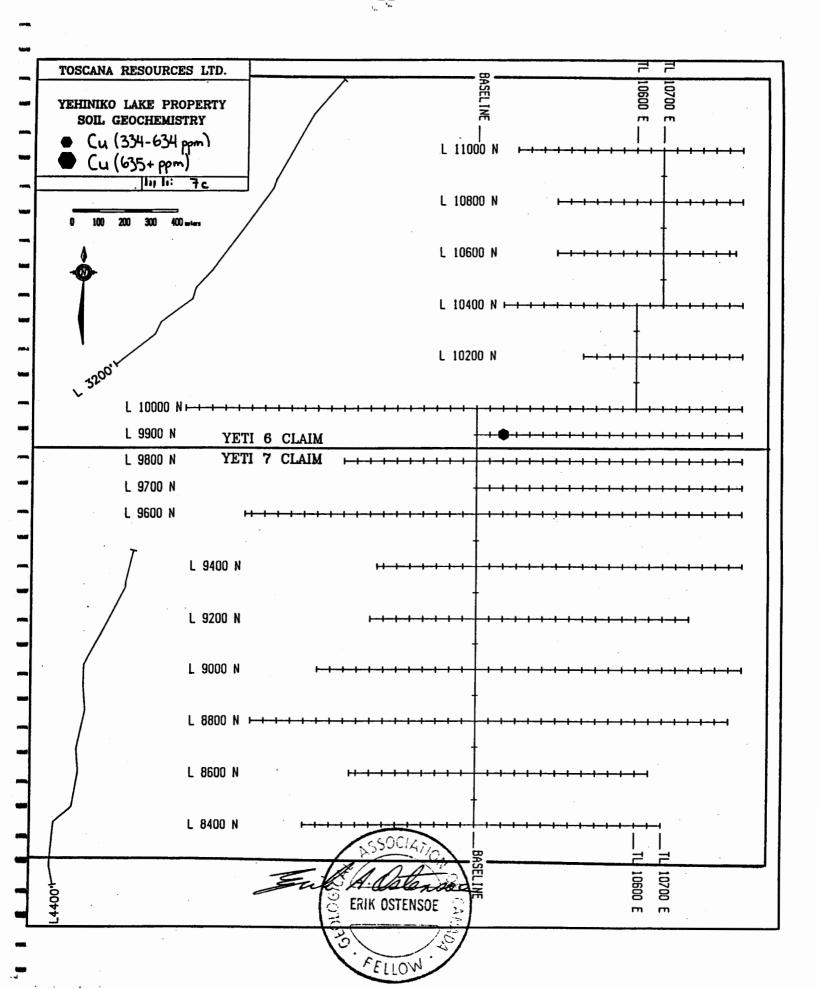
All streams that flow in the Yeti 4 - 7 claims area have very steep profiles and their annual flow patterns reflect the climate: winter flows are slight or non-existent, followed by early summer run-off flood-like conditions. Streams are frequently scoured by heavy

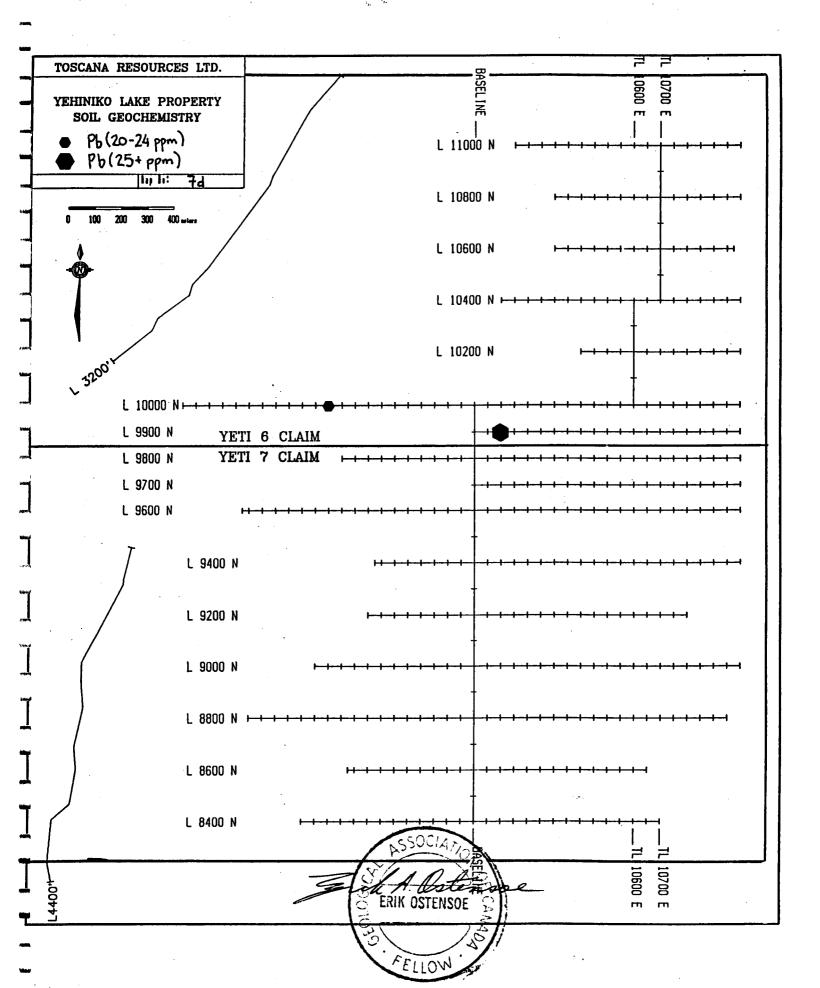
flows that leave only small amounts of fine material in the channels. Consequently, stream sediments are immature and samplers sometimes had difficulty finding sufficient volumes to comprise adequate samples. Streams west of West Yehiniko Creek rise at high elevation and their sediments partially represent rocks from adjoining mineral claims.

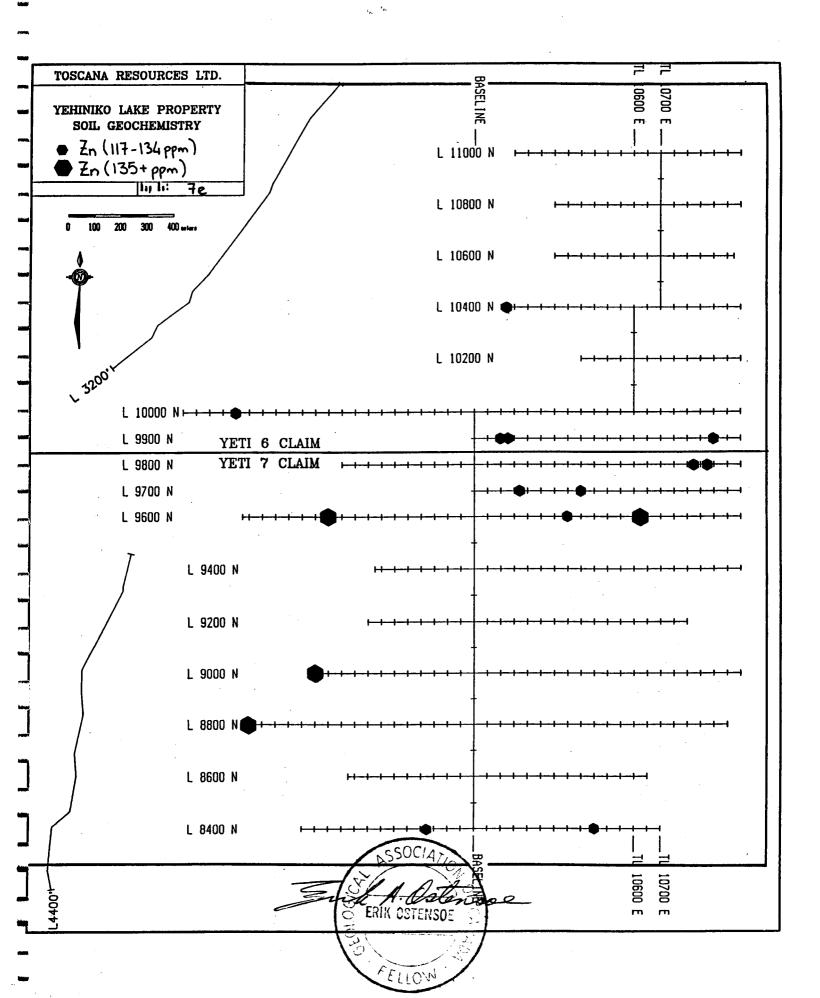
Figures 7a through 7h display the locations of soil samples that contain anomalous and strongly anomalous amounts of various metals. At the client's request, seven soil samples that returned anomalous analyses for nickel and cobalt were analysed by Acme Analytical Laboratories Ltd. for precious metals (Au, Pt, Pd, Rh) by a fire assay method. Several possibly anomalous palladium values, between 23 and 36 ppb, were obtained but the number of samples was too small to be indicative of potential. The assay certificate is included with Appendix I of this report.

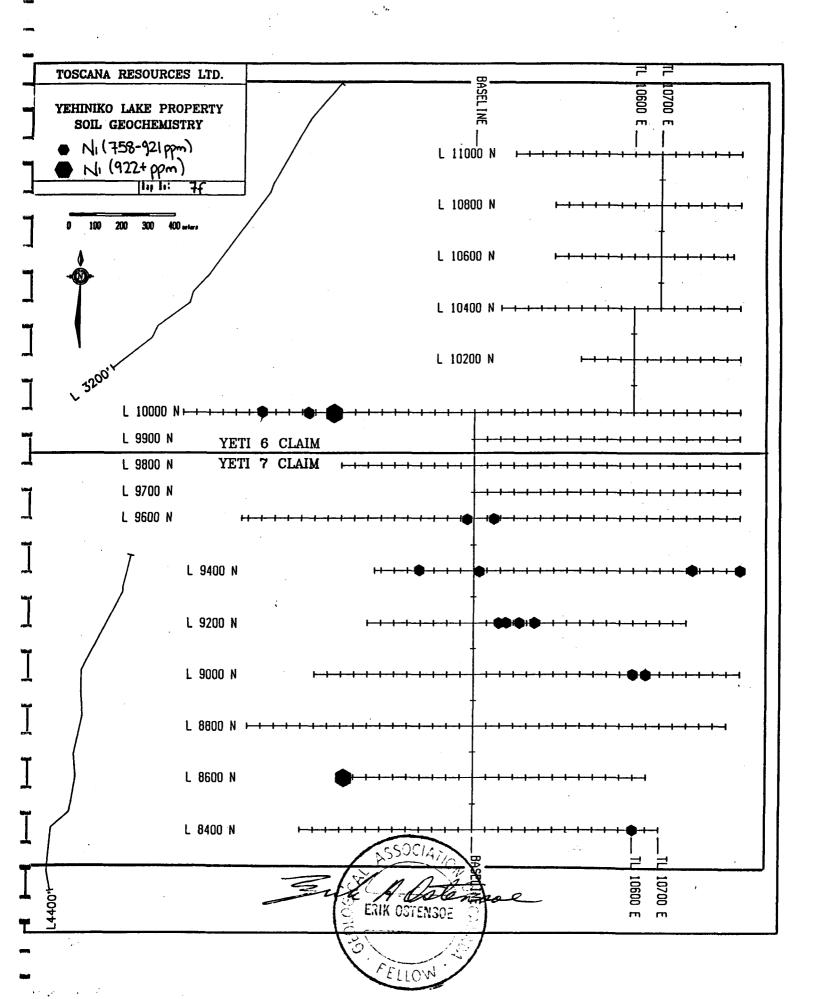

III-0 GEOPHYSICAL SURVEYS OF YETI 4 - 7 CLAIMS

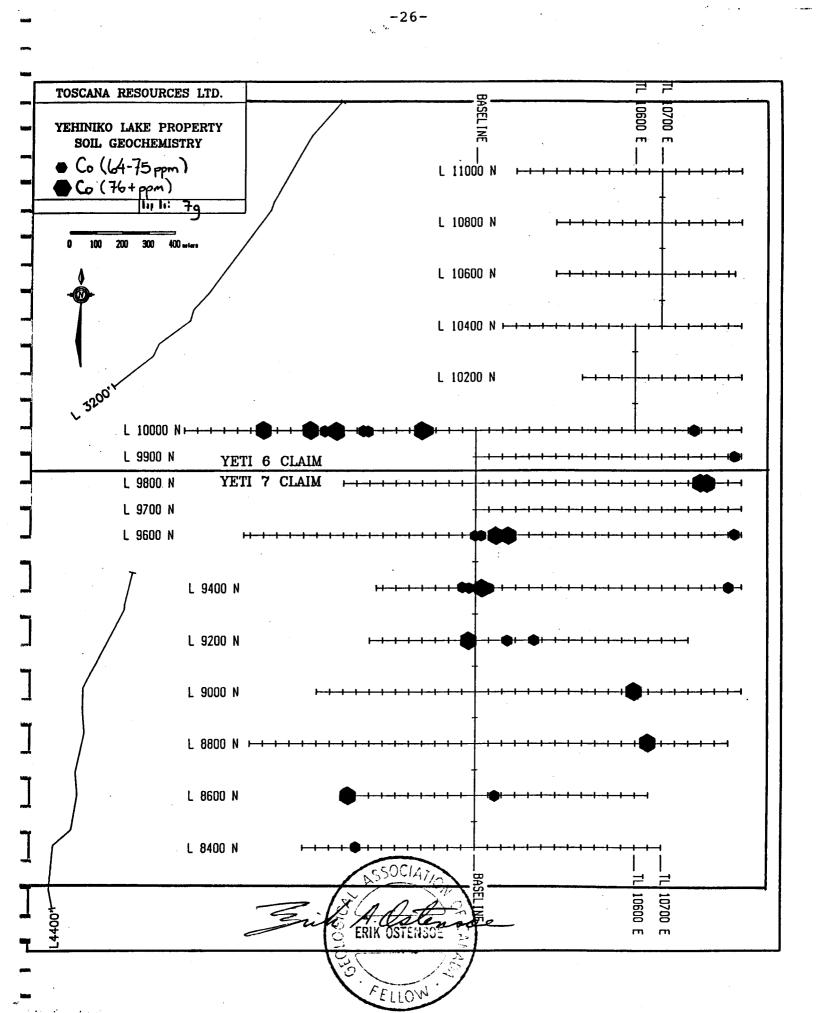

III-1. Introduction

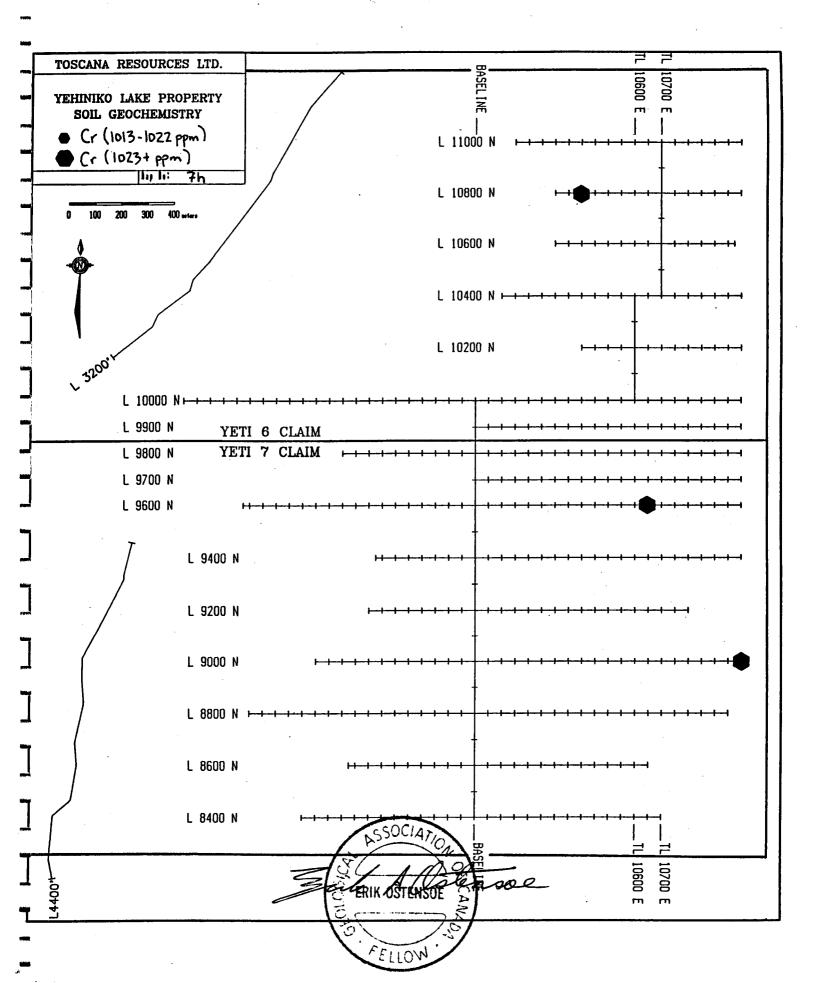

The preliminary program of work on the Yeti 4 - 7 claims during September 1990 included reconnaissance geophysical surveying of the grid of soil lines that was established in the eastern part of the property. 4.5 kms of the grid were surveyed prior to the onset of winter conditions that precluded its completion.


The IGS-2 instrument employed in the survey is a portable microprocessor-based system with built in solid state memory: its
function combines a magnetometer and a very low frequency
electromagnetic meter. The magnetometer has a total field sensor
with resolution of 0.1 gamma and absolute accuracy of 1 gamma at
50,000 gamma total field strength. A compatible recording base
station magnetometer was operated at the Scud River camp during the
course of the field survey so that a diurnal correction could be
applied to the field data. Figure 8 is a profile map that illustrates the corrected magnetic response obtained; the VLF-EM data
obtained was not satisfactory due to sensor malfunction and is not
presented.


The survey grid shown in Figure 8 was configured to cover two strong fractures with strikes of 347 degrees and 002 degrees that were reported by Brown, et al. in GSB Open File 1990-1.



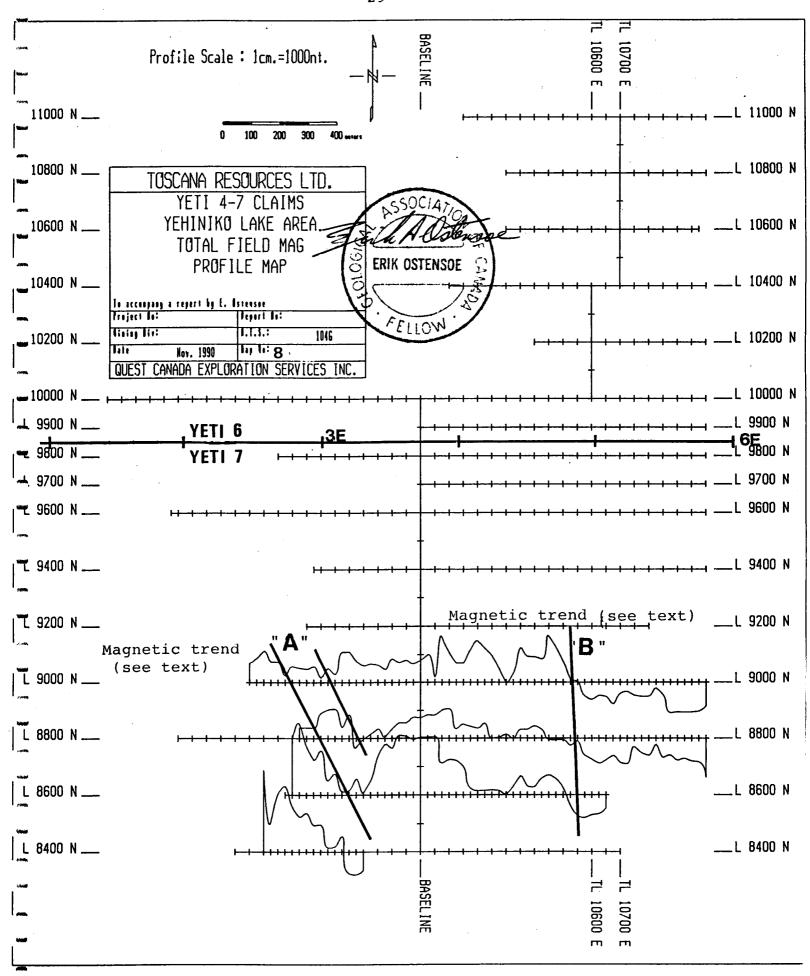




III-2. Magnetometer Survey

Total field magnetic data obtained from a survey of a small part of the grid is illustrated in profile in Figure 8 of this report. The magnetic survey coverage is insufficient to enable an elaborate interpretation and the following comments do not have the benefit of any analysis by a geophysicist.

Two parallel magnetic "troughs" located west of the baseline, marked 'A' in figure 8, may represent the high angle fault mapped in that approximate position by Brown and Gunning (op. cit.) and shown in Figure 4 of this report. Several strong but narrow fractured zones were found in this area by geological reconnaissance and it is inferred that the magnetic response reflects those or similar features.


Structure "B" shown in Figure 8 is a sharply defined magnetic gradient present near 10600E on grid lines 8600N, 8800N, and 9000N. This may be a high angle fault structure corresponding to that noted by Brown and Gunning (op cit). Contrasting magnetic patterns are suggestive of a lithologic contact but preliminary geological work did not find any bedrock outcrops east of the position of the inferred contact and that possiblility could not be checked in the field. GSB maps (Open File 1990-1, Brown, et al. op cit.) record Nightout Pluton hornblende granodiorite in this area which would be consistent with the observed lower magnetic susceptibility observed east of structure "B".

IV-0. MINERAL POTENTIAL OF THE YETI 4 - 7 CLAIMS

Prospecting, geological mapping, geochemical data and geophysical surveys have partially explored the mineral potential of the Yeti 4 - 7 claims. Two areas of particular interest have been identified:

(1) Yeti 7 Claim near south boundary

Prospectors and geologists found comb-structured quartz veins with pyrite and coarse grained chalcopyrite in several locations on Yeti 7 claim near the boundary with Yeti 4 claim. The occurrences are distributed in an area with dimensions approximately 650 metres by 600 metres (see Figure 5c).

Host rocks are diorite and dioritic and volcaniclastic flows that have been strongly fractured but only moderately Feldspathic and calcareous alteration is present along fractures and combed and brecciated quartz veins with widths of 0.3 to 1.0 metres occupy the same structures. Chalcopyrite, sphalerite, and pyrite are the most prominent sulphides. Native gold was observed on a slabbed surface of a specimen from the same site as sample 90G-25-K12. The latter, which is a grab sample, returned 515,100 ppb (or approximately 15 opt) by acid leach\AA determination but was not fire assayed. Sample 90G-25-K28, another grab sample from the same general area, returned 131,840 ppb gold by acid leach/AA, and 4.366 opt by fire assay determination. No check assays were taken because assays were received in the field after the onset of winter conditions that precluded further work in that part of the Short descriptions of several of the samples that returned high gold, silver, zinc and copper analyses are given below:

sample 90G-25-K02 - grab sample from 1 metre wide intensely fractured and chloritized quartz-carbonate vein: 41,200 ppb gold, 4.3 ppm silver, 4442 ppm copper

sample 90G-25-K12 - grab sample from 0.15 metre wide intensely fractured quartz-carbonate vein hosted by a limonitic flow: 515,100 ppb gold, 697.2 ppm silver, 27,244 ppm zinc

sample 90G-25-K14 - grab sample from 1 metre wide fracture zone that contains limonite and intense copper and manganese staining: 200 ppb gold, 38.2 ppm silver, 22,800 ppm copper.

These results are thought to be strongly encouraging, especially considering the preliminary nature of investigations, and more detailed work, including drilling and blasting to expose structures and less weathered bedrock, is fully warranted by the data already obtained. Best results were obtained from the more accessible northernmost exposures but there is no evidence that the mineral potential varies in the entire 600 metre long zone.

(2) West of West Yehiniko Creek

Mineral zones were found on the steep slopes west of West Yehiniko Creek. The most significant is the area of quartz-sericite-pyrite alteration at elevation 1100 metres on Yeti 5 claim where selected samples yielded analyses as follows:

sample 90G-25-Q10 - grab sample from 2 metre wide zone of malachite and sulphide minerals in epidotic andesitic volcanic rocks: 5170 ppb gold, 14.2 ppm silver, 12,664 ppm copper,

sample 90G-25-Q11 - grab sample from 20 cm wide zone of malachite staining with sulphide minerals hosted by rocks similar to sample 90G-25-Q10: 3030 ppb gold, 14.3 ppm silver, 19,512 ppm copper

sample 90G-25-Q12 - grab sample from 50 cm wide zone similar to sample 90G-25-Q10: 890 ppb gold, 12.1 ppm silver, 19,935 ppm copper

sample 90G-25-Q20 - grab sample from 30 cm wide zone of massive chalcopyrite in pod-like structures with quartz veining and potassic feldspar and epidotic alteration: 1130 ppb gold, 103.1 ppm silver, >99,999 ppm copper

sample 90G-25-X16 - grab sample from 25 cm wide zone of carbonate veinlets with malachite, pyrite and chalcopyrite hosted by chloritic and epidotic volcanic formation: 53 ppb gold, 3.8 ppm silver, 12,701 ppm copper.

Several other samples returned high metal values and it is apparent that additional prospecting and sampling will be required to determine the extent of alteration/mineralization in the area. Also it will be important to return to the sites of the above listed grab samples and obtain representative chip samples of the mineral zones. A portable rock drill and explosives may be required to ensure that accurate sampling is carried out.

(3) Other Areas of Interest

Other areas of interest that require further investigation include a zone of listwanite-like alteration located near 9000N on the grid base line and shown on Figure 5b, where sample R 186 from a weathered slab returned strongly anomalous values in copper (7832 ppm) and silver (5.3 ppm) but only a nominal value in gold (12 ppb). Listwanite, a product of serpentinization followed by conversion to talc and carbonate minerals, is frequently found in and near gold deposits and is a prominent alteration type in the vicinity of gold deposits in the Motherlode District of Central California and, notably, in the Ural goldfields of the USSR. Bedrock near the R 186 occurrence should be sampled in more detail with the aid of drilling and blasting to ensure that unleached and uncontaminated material is being assayed.

V-0. PROPOSAL TO EXPLORE THE YETI 4 - 7 CLAIMS

As described in previous sections of this report, preliminary evaluation of the Yeti 4 - 7 claims has revealed the presence of rock types and structures that are favourable hosts to epithermal deposits. Several sulphide zones that were identified and sampled returned analyses that were clearly anomalous in gold, copper and silver. Metallic gold was recognized in a specimen that also contained chalcopyrite, pyrite and sphalerite. Platinum group metals may be associated with the mafic-rich geological units located centrally to the claims but a small number of PGM analyses revealed only background amounts of platinum and rhenium and weakly anomalous to background amounts of palladium. A substantial number of B-horizon soil samples contained anomalous amounts of precious and base metals.

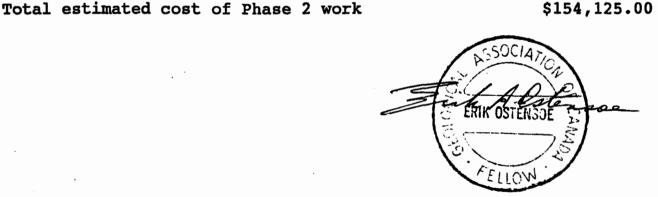
The Yeti 4 - 7 claims may host one or more valuable mineral deposits and the potential to locate such deposits by standard exploration techniques is judged to be good. First priorities for further exploration should be completion of geological mapping and prospecting, followed by detailed examination and chip sampling of specific mineral zones.

Of particular importance will be the detailed mapping and examination of the chalcopyrite-gold zones that are present in the south-central portion of the property. In part these occurrences are in brecciated quartz and carbonate veins with widths that vary from a few centimetres to more than one metre. It is recommended that the various zones be trenched and then chip sampled, with due attention paid to the presence of metallic gold particles which may distort assays. The exact work program cannot be determined in advance but it should be assumed that a three man crew, comprised of a geologist and two assistants, all of whom should be climbers and experienced in the use of a "Cobra" or similar gas powered portable rock drill and one of whom must have a blaster's qualification, will require about four days to adequately expose and sample the showings.

Further work should also be directed to the "listwanite" showing located at 90 + 00 S on the base line of the geophysical grid, and to the scattered chalcopyrite occurrences located west of "West Yehiniko" Creek. It is recommended that a three-man crew work in these areas for approximately ten days.

The geophysical survey that was begun during the 1990 field season should be completed. This will require mobilization of an operator and appropriate equipment and will entail four field days.

A detailed budget estimate is presented in the following section of this report. The sum of \$75,000 should be provided to ensure that the recommended work is completed. Data obtained should then be compiled and reviewed by company management and consultants before additional work is commenced.


In the interests of efficiency a provisional budget of \$154,000 should be available for immediate continuance of work on the Yeti 4 - 7 claims if management determines that further exploration is justified. Failure to follow up field results in a timely fashion will inevitably lead to added costs because of the short field season and the high cost of mobilizing personnel and equipment into the area. It is anticipated that Phase II work will include further detailed prospecting and geological work, geophysics, and about 500 metres of diamond drilling.

V.1 Budget - Phase 1

Pre-season costs (1) detailed pre-season planning, allow \$ (2) base maps, air photographs, field consumables	3,000.00 1,500.00
Field costs (1) mobilization of personnel and equipment to Yeti 4 -	7 area 3,000.00
(3) geophysical survey, including mobilization of operat	.0,500.00 .or
	6,000.00 7,500.00 days
at \$750/day (6) rock drill rental and blasting consumables, allow (7) assays and analyses, allow (8) freight on samples	2,500.00 2,500.00 2,600.00 1,000.00
Compilation and reporting of data, allow	5,000.00
Sub-total \$5	57,600.00
Management fee at 12.5% of expenditures	7 200.00
Allowance for unforeseen expenditures at 15%	9,720,00
Total	4.520-00 ENSOE

V-2 Budget - Phase 2 (Contingent upon results of Phase 1)

Continuation of prospecting and geological work \$20,000.00 Allowance for detailed geophysical surveys of selected areas 5,000.00 Diamond drilling - allow for drill testing of selected areas using a helicopter transportable rig (a) mobilization of rig to Telegraph Creek 5,000.00 (b) move rig from Telegraph Creek to site 8,000.00 (c) preparation of sites - three at \$8,000 per site 24,000.00 (d) drill 500 metres at \$150.00 per metre, estimated 75,000.00 Sub-total \$137,000.00 Management fee at 12.5% of expenditures 17,125.00

VI.O. REFERENCES

- Brown, D, Greig, C.J., and Gunning, M., 1990, Geology and Geochemistry of the Stikine River-Yehiniko lake Area, Northwestern B.C., Open File 1990-1, Geol. Survey Branch, Ministry of Energy, Mines and Petroleum Resources, B.C.
- Brown, D. and Greig, C.J., 1990, Geology of the Stikine River-Yehiniko Lake Area, Northwestern British Columbia, Geological Fieldwork, 1989, Geol. Surv. Branch, Ministry of Energy, Mines and Petroleum Resources, B. C.
 - Kerr, F. A., 1948, Geology and Mineral Deposits of the Stikine River Area, B. C., Memoir 247, Geol. Surv. Canada.
 - Souther, J. G., 1972, Telegraph Creek Map-Area, British Columbia, Paper 71-44, Geol. Surv. Canada.
- Wilkins, Andrew, 1990, Soil Geochemistry Statistics Yehiniko Property, Private Report to Toscana Resources Ltd.

VII.0 STATEMENT OF QUALIFICATIONS AND CONSENT

- I, ERIK A. OSTENSOE, state that:
- 1. I am a consulting geologist with residence in Vancouver, British Columbia
- 2. I am a graduate of the University of British Columbia with a Bachelor of Science degree in Honours Geology and I have taken graduate level courses in Geology at Queen's University in Kingston, Ontario
- 3. I have worked as a geologist for more than thirty years as an employee of major mining companies and as a consultant to junior companies
- 4. My professional work has included a wide range of responsibilities as well as exposure to mineral exploration techniques commonly employed in a variety of geological environments in most parts of western Canada and northwestern United States
- 5. I am a Fellow of the Geological Association of Canada (member no. 4128), a member of the Canadian Institute of Mining, Metallurgy and Petroleum, and a member of the Association of Exploration Geochemists, and I have applied to become a registered member of the Association of Professional Engineers and Geoscientists of British Columbia
- 6. I worked on the Yeti 4 7 property, Stikine River Area, British Columbia, that is the subject of the accompanying report, during September, 1990 and I supervised the work of several qualified geologists and prospectors
- 7. I am familiar with a number of mineral exploration projects currently being conducted in nearby areas
- 7. I am the author of the accompanying report, entitled "Report on Yeti 4 7 Claims, Yehiniko Lake, Stikine River Area, Northwestern British Columbia", dated December 15, 1990 and revised May 15, 1991
- 8. I have no personal interest in the shares or properties of Toscana Resources Ltd. and I do not expect to acquire any such interest, nor do I own any interest in mineral properties in the vicinity of the Yeti 4 7 claims

9. The accompanying report may be used in its entirety by Toscana Resources Ltd. in an initial public offering of securities of the company or in a Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers for British Columbia.

Erik A. Ostensoe, FGAC

Prepared and Signed at Vancouver, British Columbia, this 15th day of January, 1991.

Revised report prepared and signed at Vancouver, British Columbia, this 15th day of May, 1991.

APPENDIX I.

INDUCED COUPLED PLASMA ANALYSES AND ASSAYS

ROCK AND STREAM SEDIMENT SAMPLES

Note 1. Samples prepared, analysed and assayed by Acme Analytical Laboratories Ltd. Vancouver, B. C.

PRAN RECEIVED! OCT 10 1770

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

Quest Canada Exploration FILE # 90-5072R

OCT. 1 8 1990

SAMPLE#	Au** oz/t
90C-25-K25	1.603
90C-25-K26	.551
90C-25-K27	.852
90C-25-K28	4.366
90C-25-K29	.189
90C-25-K30	.039
90C-25-W32	.015
90F-25-K33	.087
90F-25-W31	.409
90G-25-Q10	.144
90G-25-Q11	.073
90G-25-Q20	.017
90G-25-R22	.067
90G-25-X13	.032
STANDARD AU-1	.101

AU** BY FIRE ASSAY FROM 1 A.T. - SAMPLE TYPE: ROCK PULP

D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Quest Canada Exploration File # 90-5 P.O. Box 11569 Vancouver, Vancouver BC V6B 4N8 Page 1 File # 90-5450

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Τİ	8	AL	Na	K	40.000	Au*
	ppm	ppm	ppm	ppm	pps	ppm	ppm	ppm	×	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		* ****	ppm	ppm	X	bbu	. 7	ppm	<u> </u>	<u> </u>	7 5	pa .	ppb
90C-25-\$6	29	6	2	1	2	10	116	35	4.55	5	5	ND	1	9	.2	2	2	1	.02	.002	2	12	.02	6	.01	2	.02	.01	.05	1	10
90F-20-W17	-4	2027	12	21		10	14		2.31	7	5	ND	Ž	392	1.2	2	2	20	12.73	.512	7	3	.66	41	.01	2	.50	.02	.32	1	17
90F-COR-D4	2	46	4	7	.1	11	7	66	.80	3	5	ND	1	94	.2	2	2	19	1.07	.033	2	5	.15	22	. 15	2 1	.37	.23	.10 🛞	1	6
90F-COR-D5] 3	126	7	172	8	15	21	291	2.58	63	5	ND	2	142	.3	2	2 '	34	4.75	.009	2	13	1.71	125	. 25	13 2	.89	.09	.29	1	12
90F-COR-D6	1	18	2	18	.3	9	8	123	2.30	2	5	ND	1	254	.3	2	2	29	7.66	.004	3	7	.21	33	.17	4 6	5.56	.21	.14	1	19
90F- COR-D7	1	23	4	12	,5	4	22	85	6.00	19	5	ND	1	8	.2	2	2	11	.06	.018	2	3	.31	59	.02	2	.96	.01	.25	1	610
90F-COR-X20	5	71	,328	331	3.6	3	5	1265	2.91	7	5	ND	5	156	6.4	2	11	94	4.57	.068	15	3	.51	111 🖁	.05	2	.83	.04	.13	1	20
90G-26-K11	4	42875	/ 2	68	17.0	13	3	110	8.18	692	5	ND	1	7	3.7	14	2	1	.04	.014	2	13	.01	9 🖠	.01	3	.06	.01	.03	2	320
90G-COR-D2	5	43	5	10-	~. 2	2	2	305	.93	9	5	ND	6	100	.2	2	2	7	4.20	.026	8	2	.41	55	.04	2	.68	.05	.15	1	8
90G-COR-D3	4	179	3	10	.3	5	2	206	1.35	•	5	ND	8	44	.2	2	2	12	.41	.029	8	5	.75	59	.04	2 1	.21	.10	.18	1	5
90s-12-C1	1	18	2	41	.3	8	7	684	2.24	10	5	ND	2	121	.3	2	2	20	16.87	.025	4	15	1.17		.01	2 1		.04	.07	1	5
STANDARD C/AU-R	19	61	39	133	7.1	73	31	1052	3.97	40	18	7	40	53	18.8	15	20	61	.46	.096	41	61	.89	192	.08	33 1	.89	.06	.13	12	530

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 ROCK P2 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE REPORT MAILED: Ot 26/90 ,D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY

✓ ASSAY RECOMMENDED

GEOCHEMICAL ANALYSIS CERTIFICATE

Ouest Canada Exploration File # 90-5158 P.O. Box 11569 Vancouver, Vancouver BC V68 4N8

					*****			M-		As		Au	Th	Sr.	Cd	Sb	Bí	٧	Ca	p	La	Cr	Ma	Ba	W1	B A	Na	K W	Au*
SAMPLE#	Mo	Cu	Pb	Zn	₩ Ag	N1	Co	Mn	re	88870000	U							~~	- 2	2	ppm	ppm	ž	ppm	X	ppm 2	×	X ppm	ppb
	ppm	ppm	ppm	ppm	ppa	ppm	bbu	bbw	X	pps	ppm	ppm	ppm	bba	bbus	ppm	bbu	bbu		********	bdow	PP			*********			2000000	
					******						_			404		7/	2	39	3.84	.027	5	41	87	84	.01	2 1.00	.02	.04 1	290
90C-25-F14	4	5508	126	78	3.0	29	8		2.64		5	ND	•	101	1.4	74	~			200 100 100	,	36 1.			.10	2 2.07		000000 20	11
90C-COR-S1	8	88	7	18	3	16	9	96	2.70	20	5	ND	1	149	4	4	2	54		.043	•				700702-200	2 3.84		2000000	1
90F-25-K40	•	700	2710	954	2.1	11	11	912	8.63	12	5	ND	1	88	6.3	13	2	165	1.65	.094	8	20 2.		_	01			999000 Z	
	١ ;			57559		7	18			15	5	ND	1	221	654.8	15	2	·12	8.38	.033	8	7.	47	32	3335 337	2 .21		00000002-0	33
90G-25-F15	_	_				<u> </u>				200000700	É	ND	•		2.5	16	2	48	13.89	.035	5	13 .	92	87	01	2 1.20	.01	.02 1	11
90G-25- 9 21	1	3601	8	158	1.5	•	0	1023	2.09		,	NU	•	150			-											(00000000) Waxaana	
											_		_			•	_	^		.017	7	41	24	42	.01	2 .39	.01	.05 1	69
90G-25-Q22	5	2632	757	25	4.0	15	3	442	1.17	10	5	ND	1	60	2	2	~	47	,		3		53	23	***	2 .63		0000000020	4
90G-COR-D1	3	20	51	22	2	4	3	230	1.02	8	5	ND	7	23		16	2	15	3	.034	•					2 5.95		200200000000	. 7
90G-COR-X19	5	178		290	33.4	70	24	236	4.22	2	5	ND	1	547	2.5	4	2	55	;	.062	_3	115 3.		67	. 16			20000223	- 1
	4.5	57	37	129	7.0			1052		43	16	7	37	53	18.5	14	20	56	.46	.096	38	61 .	91	179	.08	32 1.89	.06	.13 13	
STANDARD C	10	31	31	167	****	16		1076	3.77	***********					***********														

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

✓ ASSAY RECOMMENDED

SAMPLE#	Mo		ı Pb		2000	Ni ppm				As ppm				Sr ppm	NOON 7	Sb		V ppm			La ppm			Ва ррп		B ppm	Al X	Na X		
90G-20-W26	1	1110	13	77	2	5	16	682	3.06	2	5	ND	1	48	.7	3	2	43	1.60	.038	2	9	1.46	24	.09	2	1.60	.02	.10	1 430
90G-20-W27	4	717	13	37			78	321	2.72	₩5	5	ND	1	61	.2		2	17	1.77	.036	2	33	.13	43	.D1	2	.47	.01	.29	1 640
90G-20-X15	1 1	5812		22			20	914	1.61	4	5	ND	1	303	.2				4.98						.01	2	.41	.01	. 13	1 3:
90G-20-X16	5	3532	10	22				549	1.97	5	5	ND	2	87	.2			11	2.72	174	4				.01	3	.54	.01	.40	1 13
90G-20-X17		15206		72				366	9.37	2	_	ND	1		1,2				.65		,		2.37		2.67.0		2.67		.25	1 110
90G-20-X18	13	3890	8	18	2.3	11	20	214	2.20	5	5	ND	1	60	.2	2	2	. 10	.92	.027	2	5	.39	24	.01	2	.46	.01	.36	1 22
90G-20-X19	2	20896	5	35	1.8	13	44	1142	3.57	7	5	ND	1	133	4.3	2	2	10	3.50	.074	2	11	1.26	69			.79	.01	.22 🛇	1 6
90G-20-X28	3	1907	11	103	9	12	23	862	5.63	2	5	ND	1	122	1.8			104	1.84	.068			2.36	72	. 15	2	2.32	.04	.14	1 16
90G-20-X29	1 1	2711	13	127	.3	8	26	886	5.83	3	5	ND	1	127	.,9	7	2	82	1.04	.149	2	11	2.37				2.86	.03	.11 🕷	1 12
90C-25-K25	7	3482	5	46525	264.1		11		8.29	18	9	59	1		268.5					.039			.74			2				2 43350
90C-25-K26	5	1522	5	12622	74.4	11	15	1000	3.41	14	6	21	1	26	99.1	2	2				2	10	.30	23	.01		.50		.07	2 19640
90C-25-K27	3	2804	4	20022	135.4	27	23	1368	8.52	8	10	31	1	21	99.4		2	75	3.80	.064	2	54	1.62	27	.01			.01	.11 🐰	1 26860
90C-25-K28	9	2046	25	40090	562.1	5	5	124	15.16	47	5	179	1	2	209.7	2	17	26	.06	.034	2	16	.08	41	201	2	.32	.01	.09	1 131840
90C-25-K29	1 1	1398	10	9797	26.1	40	33	2349	10.08	2	9	4	1	31	45.7	9	2	208	3.63	.105	2	75	3.04	28	.02			.03		1 5810
90C-25-K30	1	993	8	2381	6.8	38	36	2142	10.09	2	9	ND	1	29	11.9	9	2	176	2.96	.115	2	62	3.02	30	.09	2 :	3.76	.03	.08	1 1290
90C-25-K31	2	607	3	726	2.5	43	27	1607	9.60	2	9	ND	1	24	.2	10	2	98	2.91	.111	4	75	3.32	38	.01	3 4	6.41	.01	.15	1 450
90C-25-K34	1	51	2	197	1.2	10	62		7.74	36	8	ND	1	22	1.9			107		.115	2		1.08	30			1.45			1 220
90C-25-K35	21	4849	16	103	99.4		19	451	33.62	2	5	ND	2	6	.2		360	387		. 125		151	.98	53	.02		1.93			1 580
90C-25-K37	1	3486	7	184	6.4		36	1273 '		2	9	ND	1	20	.2			145		.117			3.05			2 :	5.45	.01	.06	1 130
90C-25-W32	2	22223	13	97	36.6	36	34	524	4.38	6	5	13	1	82	3.7	7	6	77	.73	.139	2	94	1.77	26	.21	2 1	1.70	.05	.03	1 1400
90C-25-W34	3	83	181	275	3.2	14	74	417	16.00	14	5	ND	1	24	2	9	2	195	.06	.183	7	53	1.47	61	.01	3 2	2.05	.02	. 16	1 64
90F-25-K32	5	7391	2	38	1.8				1.53		5	ND	•	20	2		2	14		014	2	49	.19	13	7.70.50	2	.26			1 320
90F-25-K33	1	1789	3	67	2.0	•-	-			4	5	ND	i	3	2		Ž	25		011	_	8	.43	13		2		.01	5555	1 2540
90F-25-K38	1	3208	2	10	3.7			1274	.93	3	5	ND		125	ž				20.90	.008	3	21	.38	3	01		.42			1 150
90F-25-R223	i	23	17	75	.3			2415		2	8	ND	i	64	.2	10	2	92		.085	2		1.97	10	7.7.30					1 19
90F-25-R224	5	7427	10	24	1.6	18	11	399	2.15	15	5	2	1	19	.2	3	2	39	1.27	.021	2	47	.56	12	.01	2	.64	.02	.05	1 710
90F-25-W31	1	14897	377	28	9.5	22	15			505	5	16	1	4	3.2	2	2	3		.003	2	2	.04	14	.01	5	.07	.01	.02	1 11730
90G-25-F16	l i	968	5	45					4.43	6	5	ND	1	42	.2	6		113		.087			2.53		.16			.07	5000	1 230
90G-25-F17	li	4317	18	136	3.7		13		1.92	23	5	ND	i	97		_	2	26		.020	2	43	.65	8	.01			.01		1 71
90G-25-F18	11	825	2	114	.2				5.34	2	5	ND	i	70	.,			124		.070			3.57	10	.05				6060	1 8
90G-25-K36	1	7913	12	179	1.3	135	44	1714	8.73	2	7	ND	1	38	.z	. 4	2	158	4.30	.082	4	287	5.12	55	.01	2 4	.87	.01	.03	1 11
90g-25-K39	j	10261	6	86	1.2				4.13	5	Š	ND	i	16	1.7		Ž	55		.083			1.66	28	.01		.87			1 14
906-25-910	-	12664	25	:	14.2		32		3.89	6	5	16	i	84	3.1		Ž	60		078			1.65		.12		.48		200000	5170
90g-25-Q11		19512			14.3	35			4.70	11	5	ND	i	41	4.3	7	Ž			.083			1.98		13	-	.65			3030
90G-25-912	-	19935	57		12.1				5.74	7	5	ND	i	63	5.9	10	8		1.52		_		2.43	_	. 15			.03	6000	890
90G-25- Q 13	1	1592	9	24	1.3	8	4 1	1846	1.37	5	5	ND	1	203	.2	4	2	27	29.14	.015	4	27	.55	82	.01	2	.64	.01	.03	1 37
STANDARD C/AU-R	19	63	40	133	7.3	72	32 1	1057	3.97		20	8	39	52	19.0		21	57	.45	.095	38	59	.92	182	.07	32 1	.90	.06	.14	450

	_	=	•	-	•	Qı	769		and	ua.		P								0.000-93					-1	-	AI	N.	Y 🕸	V A
SAMPLE# .	Мо	Cu		Zn ppm		Ni ppm	Co	Mn ppm		As ppn	U ppm	Au ppm		Sr ppm	Cd ppm		Bi ppm	bbur A	Ca X		La ppm	Cr ppm	Mg %	Ba ppm	71 2	ppm	*	×	x pr	
	bbu	bbu	ppm	Phin		FF	FF				-						_	400	0 /5	.072	2	134	2.26	13	.10	2 2.	08 .	.03 .	.02	1 1
000-25-014	•	190	6	117	4	33	27	1140			•	ND	4	68		Z	2	122	9.45 17.70		_	137	.12		.01			.01 .	.06	1 6
90G-25-Q14	24	16541	109	420	19.4	5	20	1362	2.47	51	5	ND		163	5.3	2	10				14	ž						.01 .		1
90G-25-Q15	==		107	20	1.9			2225	.78	51	5	ND		349	5	2	3		28.82		17	3			.01			.01	.03	1
90G-25-916	1 2	1753	2052		11.3	c .	11		1.58		5	ND	1 7	229	70.8		2	_	29.20		11	1	.18		201			.01 .		1 11
90G-25-Q17	3	8464		8604				960	13.52		5	3	2	48	23.6	6	44	18	4.90	.001	2	1	.20	15	• U I	٠.				
90G-25- 9 20	25	99999	43	2076	103.1	•	37	,,,,				_	_								_	_				2 2	27	.01 .	n2 🚿	Z 23
	1						70	423	14.83	18	5	2	1	12	3.3	2	61	123	.79				1.24		.01	2 2.				1
90G-25-R22	26	2008		347	26.6		39				3 -	ND	i	40	1.4		3	54	.94	.160	2		1.21		.10	3 1.		.07 .		
90G-25-R226	20	9253	2	108		34	16		3.25		•	ND	•	54	1.3	5	2	106	1.05		2	3	1.38		.22	4 1.		.09		1 1
90G-25-R227	1 1	2418	2	61	1.8	4	40							59	.6	5	5	23	.67		2	1	1.01	16	.07	5 1.	11 .	.04	.02	1 5
90G-25-R228	9	18369	26	61	4.6		20		3.90		•	ND		40			2		3.16		2	25	.46		.01	4 .	76 .	.01	.15 🛞	2
90G-25-W30	3	213	26 13	32		12	13	619	1.86	35	11	ND	1	40		_	_		3.10		_									
,00 25 850	`										_			44		,	7	10	.28	.010	2	4	. 19	47	.01		27 .	.01 .	.03	2
90G-25-W33	1	16990	3	1	1.0	6	13	130	2.55		5	ND	1	11	2		44		2.78		5	266	3.60		.12	7 2.	58 .	.03 .	.02 🛞	1
	1 :	45	2	92	1	91	68	848	5.23		5	ND	1	42	2	2	- 11	104	3.41		ž	27	1.85		.01	4 2.	13 .	.03 .		1
90G-25-X10	1 :	494	5	58		15	40	985	5.29	14	5	ND	1	51	7	Z	3	72			3	1.4	2.58		.14	7 2	88 .	.05	.04	1
90G-25-X11	1 :	21	2	104		9	17		4.96		5	ND	1	27	1.1		2	101	.54		- 2	19	.60		.01	5	83	.01	.11	8 13
90G-25-X12	1 -		2677	19827					1.47	17		ND	4 2	270	348.9	3	2	42	12.84	.161	11	17	.60	30		•			***	
90G-25-X13	39	YU	2011	17021			•	-	•••							ĺ					_	4-		47		2 1.	20	01	12	1 4
	1 .					40	003	804	13.21	88	5	ND	1	20	1.3	2	4	19	1.99		2		1.00			2 1	77	.01	44	1 4
90G-25-X14	1	48		206		,					, -	ND	1	41	2.2	2	4	28	3.82	.061	3	11	1.19		.01			.01		
90G-25-X15	1	46		232		,			4.71			ND	i	17	6	à 🕳	12	39	1.28		2	5	.92		.02	2 1		.01		1
90G-25-X16] 1	12701	10			3	15			1000	٠ _	ND	•	11		5	3	9	1.09			11	. 15		.01	_			.01	1
90G-25-X17	1	391	2	35		_8	31	318	2.10		·	70	38	52	19.1	15	21	59	.46			60	.90	183	.08	35 1	.89	.06	.14 🖇	12 !
STANDARD C/AU-R	20	61	37	133	7.4	72	32	1055	3.98	43	24		30	26	2017.4	2 12				. 9813										

ASSAY IN PROGRESS

SAMPLE#	Mo	Cu	Pb	Zn	Ag		Co	Kn		AS	_	Au	Th	\$r	Cd		Bí	V	Ca	P			Mg X	Ва ррпа		8	Al	Na 2	K	as ppb
	bbar	bbu	bbu	bbas	pps	ppm	bbu	bbu	X	bbu	ppu	77-	1	bbu	þþa	ppm	-	pp.		10010	14	Man		- PP-1	2007 S					***
	1.	776	7	38	***	6	15	1732	2.19		10	HD.	1	305		2	3	23	11.54	701	3	5	.65	115	0.	6	.88.	.01	.17	430
90C-20-F11	1 :	375		30 79		13	14	779	3.76		5	ND	•	66		2	2	54	1.30	.065		8	1.83	23	10	7 2	2.07	.01	.09	a 2
90C-20-F12		1564	ſ				• -				Ś	ND	ż		5	2	3	45		075			1.15	12	310	6 1	1.68	.01	.08 🕏	10
90C-20-F13	1 !	1117	13	64		8	13	542	2.72		5	10		160	8	2	Ž	59		136		27		26	iz	_		.02		530
90C-20-F14	1 4	4972	>	39	2.4	20	39	310	2.54		_		_		1.5	ž		183		NO.	2		2.12		33		2.11			52
90C-2D-F15	2.	3066	5	134		20	34	965	8.11		7	ND	1	108	3-2	3	2		1.31		~	20	4, 14	31						
90C-20-X07	1	8	. 2	89		5	15	2290	5.38	7	11	MD	1	614	8	2	2	72	17.47	.055	3	_	2.07		.01		.36			3
90F-HS-W	1	30. 9	B	92	14.4	24	120	557	7.97	23	5	HD	1	45	4.9	2	10	92	.60	.089	Z		1.15	52	111		1.35			430
90F-12·0	1 1	476	2	125		15	17	526	6.49		5	HD	1	75	7	2	2	37	1.13	,032	2	20	1.53	1555	.05		5.44			1 2
90F-25-4()	1 1	20574	1 2	15	1.0	21	15	613	4.65		5	HD	1	32		2	4	74	3.14	.025	2	50	.77	28	.01	7	.73			550
90F-25-904		10412		15	4.6		14	585	4.95		5	5	1	33	1.1	2	2	16	1.62	027	2	6	.48	28	201	6	.69	.01	.07 🖁	\$ 5519
A01-53-404	1	10712	•	10		•	••	,,,	4		•		_			-	_													
000 35 5330		5454		15	2.5	14	10	551	2.01	2	5	HD	1	195		2	2	47	4.42	2090	2	30	1.25	3	14	4 1	1.50	.01	.01 🖁	160
90F-25-R220	1 :	2498	3	108	2.0	-		1275	3.19		5	HD		145	2.8	Ž	Ž	45		105			1.34	40	07	7 1	1.38	.01	.14	59
90G-20-F10		1378	10	231	3.0	5	18	844	3.85	360	5	HD		161	8	2	Ž	87		2213	_	4	1.91	82	116	6 1	1.99	.03	.45	1 4
90G-20-X08	1 :		7	132	3.0	5	14	997	3.82		5	ND		161	3	Ž	Ž	52		151			1.84	32	12	6 2	2.23	.02	.03	12
90G-20-X09	!	92	4			2		1028	3.96	- X	5	ND	-	258	5	2	2	33		.152						9	.48	.01	.33	4 27
90G-20-X10	1	285	•	62	6	•	10	1020	3.70		•	NU	•			-	_		7.01			-	• • • •	•		-			100	**** ****
222 22 444		94	•	4/2			30	987	5.83	10	5	ND	1	135	. 5	2	2	74	.03	.264	5	10	2.40	21	36	5 2	2.57	.02	.11 🛱	3 E 8
90G-20-X11	!	86	8 22	145 78			30 B	552	4.37		5	ND		172	2	Ž	2	51							18	7	1.81	.04	.24	1 59
906-20-X12	4	92	æ	20			200	288	6.41		5	ND	•	67	3	2	4	41		1030	_	-	1.09	9	18			.01		ii 13
90G-25-R219	1 5	13	•		5			337	1.54		5	ND	•	48	Z	2	Ž	18		014			2.32	112	CX: .23		.44		363	41
90G-GR-X01	!	22	2	17	30.00		13				5	ND		177		2	2	78		D83	_		2.40			-	1.38		•	43
906-GR-Y02	l	43	- 7	60		76	23	662	4.34	2	7	NU	2	111		2	~		J.VE		•••	,,	2.79		200	•••		•••	· ®	
			_			_	_		- 40			618	•	40		•	-	41	3.03	210	17	5	.55	218	.01	11	.50	63	14 🌋	42
906-52-XUJ	1	225	Z	56	کدی	7	9	670	3.12		5	ND	2	68	2	2	2	55		193		22	-	13	209			.03		1 26
CAN-1	2	100	7	43		11	9	401	2.48	767	5	ND	,	104	2	2							1.34		7,777		1.71			45
Criti-2	1 1	146	6	49	3	- 23	18	371	3.62		5	ND	4	17	2	2		108		128		26		28		91	.12			2 1
CAN-3F	105		2169	2371	8.0		4		10.06		5	ND	2		F. 7.1	2	Z	47						15	70.0.7/*	9	-21			33
CAN-4F	1	31	6	59	5	61	12	1764	3.62	44	12	ND	1	230	.5	2	2	42	12.19	.014	2	YZ	3.39	13		y	-21	.02		
! ! =	١.	-	•	75			-	0/5	2 51		7	ND	•	99	7	2	2	50	12.87	.052	٨	17	.53	45	01	6	.70	.01	.05 🖁	13
CAN-5	1 1	_ 5	Ž	35		0		945	2.51		•		1	98		2	2	74		095						_	1.44			4 46
CAH-6	1	34	4	72	**>	17	16	912	4.35			ND	-									34	.65	52		9		.03	•	
CAN-7	4	142	16	233			13	1027	4.43		5	ND	5	22			2	95				• •			107	-	1.89			520
STANDARD C/AU-R	1 18	59	37	131	7.2	71	32	1050	3.94	: (39)	21	7	39	55	15.5	15	20	58	-40	092	39	77	.76	106	400	41	.07	.00	• 17 %	

ICP - .500 GRAK SAMPLE IS DIGESTED WITH 3" 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CK MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

GEOCHEMICAL ANALYSIS CERTIFICATE

Quest Canada Exploration File # 90-4819 Page 1 P.O. Box 11569 Vancouver, Vancouver BC V6B 4N8

SAMPLE#	Mo			Zn	Ag	>	Co	Mn pps	Fe %	A 8	U ppm	Au			Cd			V ppm	Ca %		La ppm			8a ppm	71	B ppm	Al X	Na %	X p	W Au ^a
90C-20-K01	47						<u> </u>	4553	3.74	55		MD	1	8	1.3		2	35	.08	*******				141	20000		.97	.01	.45	1 25
90C-25-K13	174	2344			1.3			1559	5.34			ND	i	129		2		109	7.44	.089	6		2.42		.03		3.15	.01	.15	1 86
90C-25-K14	1 45	22806			38.2			1326	9.78	2		ND	i	30	2.2			103	.81	.094	3				.03		3.64	.02	.20	1 200
90C-25-K19		1185	45		1.9		13	107	3.41	47		2	i	6	.2		2	16			2		.10	53	.05		.35	.01	.13	1 3620
	2												i														1.89	.11	.13	1 360
90C-25-K20	33	42367	13	yɔ	27.1	24	17	518	6.89	10	,	ND	1	72	3.3	2	2	113	.68	.127	2	43	1.47	07	.26	,	1.09	• • • • •	. 13	J 200
90C-25-S1	3	177	2	9	,,2	10	4	194	.82	2	5	ND	1	5	.2	2	2	6	.19	.051	2	6	. 15	37	.01		.58	.05	.11	1 11
90C-25-S3	21	245	2	31	***1	37	66	544	14.18	108	5	ND	1	20	.7	2	2	170	.24	.067	2	155	3.51	4	.22	2	4.49	.01	.01 🖁	1 9
90C-25-S4	57	114	9	1	2	18	586	28	11.24	174	5	ND	1	2	.2	2	2	3	.01	.001	2	60	.02	2	.02	2	.04	.01	.01	1 23
90C-25-S5	28	37	8	16	.,1	34	97		9.45	- 58	5	ND	1	22	.2		2	108	.26	.049	2	174	1.87	1	.20	2	2.30	.04	.01	1 9
90C-25-W21	49	7090	9		39.2			1012	11.59	30		ND	1	28	1.2			70	1.53		2		1.79		.02		2.36	.01	.13	1 260
90C-25-W26		4007/				70	20	4007			_						_		~~		_	, ,	2 /7				7	^^		1 230
	1 ''	10276	-	141	3.0	30		1024	6.37	2		ND		45	.9	2	2	88		.115	2		2.63		.20		2.87	.02	.05	
90F-20-X02	1 !	3690	3		1.5		4	764	1.08	2	12	ND		317	.3		2			.052	2	2	.46	40	.06	3	.61	.09	.24	1 47
90F-20-X03	1!	203	2	28	3		8	676	2.51		•	ND	•	351	.2		_	109		.076	3	_			111	-	1.13	.15	.68	1 13
90F-20-X05	1 !	54029	7		37.6	9		614	2.90	12	5	ND	-	548	6.1	_			2.28		6	7			.17	-	1.23	.11	.45	1 1020
90F-20-X06	[]	1058	3	1	.9	1	1	1255	.37	2	5	ND	1	909	.3	2	2	18	32.11	.014	2	1	.05	12	.02	2	.07	.03	.02	1 68
90F-20-F07	3	460	87	76	.5	34	44	661	6.45	1055	5	MD	2	246	.3	7	2	30	2.57	116	8	5	.46	28	.01	10	.23	.04	.12	1 15
90F-20-W14	2	26	2	3		4	1	854	.28	5	5	ND		125	2	2	2	2		.003	Ž	Ž	.05	60	.01	2	.06	.01	.02	1 7
90F-20-W16	1 7	3745	5	106	3.5	8	24	1113	4.82	5	_	ND		179	1.4		_	119		206	8	6	2.46		.12	_	2.58	.10	.11	1 30
90F-20-W17	Ιi	90	3	34			7	580	1.94	6		ND	i		. 2	2	Ž	36		065	4	3	.62		04	4	.81	.04	.11 🖁	1 7
90F-25-Q01	16	54051	_		24.2		23		23.98		115	ND	•	177	6.0	5	_	273		.272	-	9	.90	79	.17	•	1.73	.31	.24	1 53
	١.					4-							_			_	_									44		4 70		
90F-25-Q02	!	7361	-		1.6			1143	6.19	•	13	ND	1	491	2.0	2	2	65		.282	12		1.08		.10		4.62		.56	
90F-25-R207	1 1	1450	6	8	6	9	5	204	2.50	31		ND	1	4	.2	2	2	11		.009	2	6	.10	9	.01		.20	.01	.02	1 590
90F-25-R208	1 :	11345	2		3.9			511	4.83	12	5	ND	1	6	.9	2	2	43		.049	2	-	1.25		.01		1.57	.02	.08	1 530
90F-25-R209	1	6061	2		5.0		42	642	4.93	20	7	ND	1	50	.6	2	2	58		.026			3.02		.01		2.34	.01	.01	1 30
90F-25-R215	1	3897	2	68	1.6	436	30	445	4.22	5	5	ND	1	40	.3	2	2	64	.29	.043	2	393	4.40	440	.01	5 :	3.49	.01	.03	1 11
90F-25-R216	3	998	15	59	1.4	62	72	062	14.54	116	5	ND	1	26	.8	4	2	64	.93	2071	3	3	1.09	18	.05	2 :	2.34	.08	.05	1 2
90F-25-R218	_	14275	2	90	7.2	55		915	5.32	9	8	MED	i		2.4	Ž	Ž	59		.106	4		2.78		02		3.32	.04	.20	1 1940
90F-25-\$2	45	269	2	13	5	21		176	8.56	5	5	MD	i	11		Ž	2	62		.018	2		1.11		.07		1.39	.01	.01	1 5
90G-20-F08	1	67	Ž	73		18		175	5.67	32	11	ND	•	688		4	2	29		2057	5		2.31		101	9	.48	.02	.24	4
90G-20-F09	2	34	5	33							5		-	,			2				-				7 7 7 7	-			- 200	1 2
906-20-109	"	34	7	22	.3	17	7	241	1.91	5	7	ND	1	51	.2	2	2	10	1.37	.047	5	8	.07	121	.01	5	.39	.05	.20	-
20G-20-K02	1	1013	3	70	1.3	8	17	781	2.78	3	5	ND	1	231	.2	2	2	72	2.39	.173	5	6	1.78	54	.12	5 1	1.81	.09	.14	1 48
20G-20-W15	5	2386	7		1.2	20	29 1		6.32	8	5	ND	-	114	1.9	2	2	92		.125	3	13	2.34		.19	4 2	2.58	.06	1.27	1 250
20G-20-X01	1	231	6	48	5	6			3.45	8	10	ND		826	.2	Ž		125		120	9	3	.66				1.01	.06	.56	1 4
OG-20-X04	li	1242	7		1.3	7	14 1		4.10	14	5	ND		230	.3	84		93		147	14	_	1.74		.01		.36	.03	.25	1 37
OG-25-R212	Ż	2007	3			42			2.05	9	5	ND	1	17	.2	2	Ž	27	,	.041	2		1.05		01		1.14	.02	222	1 6
			_								_					_	_											•		اہ
OG-25-R213	1 18	3704 59			2.4			170 054	2.36	11 42	5 20	ND 7	1 40	76	.2 9.2	2 15	_	31 58		.012			1.72		.01		1.17	.01 .06	.01	2 480
TANDARD C/AU-R	10	77	Jí	131 🔅	1.6	15	31]	リンキ	J.71 🛞	96	ZU	-	70	27 j	7.4	13	10	70	.47	74	37	J 7	.70	102	·UI	37	1 • 7 I	·	• I → 🛞	- 100

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL AU DETECTION LIMIT BY ICP IS 3 PPM. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Quest Canada Exploration FILE # 90-4819 Page 2

SAMPLE#	Мо	Cu			93300007	8		Mn	Fe	As	U	Au		Sr	Cd		Bi	V ppm	Ca	P	La ppm			Ва	3000.2	B ppm	Al X	Na X	K X) Open	Au* ppb
	bbs	ppm	ppm	ppm	· PP	bbu	bbm	ppm		ppa	pp	ppm	ppm	ppm		bbu	17~	Popul		*****	FF	-		P	****	8 					<u></u>
90G-25-R214	١,	131	7	56	•	250	20	1278	3.61	7	5	ND	1	51	.2	2	2	56	2.21	.038	2	346	3.73	92	.01	4	2.62			1	12
90G-25-K12	1 ;	2003	Ž	27244	200000000000000000000000000000000000000	»	12		3.33	16	5	398	1	23	190.3	2	16	25	4.54	.013	2	1	.26	19	,01		-41		.05	2 51	15100
90G-25-K15	1 4	178	2	322	2000 300 30	W _ I		2247	7.55	**	5	ND	1	52	1.0	2	2	94	3.37	.098	4	45	2.66	118	.04	2	3.52	.01	.15	#	760
• • • • • • • • • • • • • • • • • • • •	1 :	4369	2	238	7.0	×			4.06	33	5	ND	i	60	1.6	2	2	99	6.07	.090	5	42	1.96	24	.01	3	2.18	.04	.05	#1	2420
90G-25-K16	1 :		_	236 94	- 00000-507/33	e II			7.84		ś	ND	i	11	1.5	2	Ž	97		140	3	53	2.98	49) (11	6	3.59	.03	.22	₩¥	220
90G-25-K17	· '	13113	•	74		,	21	1203	7.04		•	NO	•	•••		-	_	•	•••												
	١.						44	4407		2	4	***	4	59	1.0	2	2	R1	8.01	.045	2	30	2.25	18	.06	4	2.40	.01	.08	. 1	540
90G-25-K18	8		- 5	83	2000/2007	8 II	:=	1197	4.58	25	0	ND	. !	27	*** *********************************		5		2.54	$-20 \times 24 \times 26$	7		1.84		. 19		1.99			. 1	38
90G-25-K21	2	1321	2	73	1.0	· .		769	6.24	888	2	ND	!	42		2	~				7	7,	.95		2007.3		1.20		.13		190
90G-25-R210	1	695	2	46	8	62	• •	868	2.36	***	5	ND	1	33	2	~	~	25			2	,	1.82		9000.0		1.67		-	#	150
90G-25-R211	1	6793	2	35	3.7	24	11	1018	3.36	₩4	5	ND	1	22	8	2	Z		1.00						5.0.5	oz	1.86				86
90G-25-R217	1 1	712	2	40	.4	471	44	1185	3.44	23	5	ND	1	69		2	Z	50	3.58	.021		310	4.21	29	.01	* 7	1.00	.01	.01		•
																_					_						, 70	01	••		430
90G-25-W22	35	9249	4	357	53.6	45	47	1770	12.45	12	5	MD	1	5	1.2		118			.084			3.78		70.355		4.39				
90G-25-W23	39	26299	11	372	86.1	53	43	2231	12.82	32	5	ND	1	9	3.0	2	199	386	.22	2087	4		4.39		70707		5.45				160
90G-25-W24		19874	2	74	7.4	29	24	1351	5.64	8	5	ND	1	26	1.6	2	5	78	.64	.083	5		2.51		90.5.2	8 -	2.78			₩¥	710
90G-25-W25		23377	2	5	8.9	22	15	825	7.59	2	5	ND	1	40	1.5	2	2	66	.55	.080	2	31	1.91	38	77.7	Z	2.11			### _	450
90G-25-W27	3		29	ō	3.1		16	217	3.98	90	5	29	1	4	.2	2	2	10	. 19	.024	2	5	.08	50	.01	6	.27	.01	.11	N 2	20400
704 CJ WL				•		Ī																				ě					_
90G-25-W28		326	3	71	5		189	578	10.33	8	5	ND	1	23	.3	2	2	117	.34	.092	2	4	2.12	24	.23	2	1.88	.06	.04	X.V	3
	:		3	£2			40	591		34	Ś	ND	•	40		5		107	.54	.086	2	3	1.68	81	.25	2	1.87	.05	.07	1	42
90G-25-W29		41	7	52	7.	11			3.98	2012/12/0	19	4	40	52	19.9	15	19	59	.47	.097	40	60			.08	41	1.91	.06	.13	13	520
STANDARD C/AU-R	18	58	36	130		73	31	1054	3.70	41	17	0	70	JE	20-14	1,3			-71												

ASSAY RECOMMENDED for Cur 1 %

AMPLES Point Poi																										200.000				35.1	
NP-25-W19	SAMPLE#										55.700,000								•											2000.00	
2 4 2 22 2 15 5 626 1.90 2 5 100 1 89 3 2 2 26 6.11 .016 2 38 1.14 35 .01 3 .23 .01 .04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	005-25-410	1							2241	7.02	. 2	5	MD	1	309	2	2	2	57	23.31	.014	9	22	5.95	1402	.01	_			200000	11
21 226 6 19 1:5 25 16 199 5.28 13 5 NO 1 193 1.3 3 2 28 12.68 0.02 4 20 .54 47 15 3 5.84 57 .36 1 4 6 20 6 10 1 76 .4 4 2 48 9.85 .033 2 24 .58 5 .17 2 1.62 .06 .59 1 6-00 10 1 76 .4 4 2 48 9.85 .033 2 24 .58 5 .17 2 1.62 .06 .59 1 6-00 10 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1		1 3	7	5	•••	200000000000000000000000000000000000000	5				600000000	5		1	89	600000000000000000000000000000000000000		2	28	6.11	.018	2	38	1.14	35	.01				9000000	1
007-COR-N10	,		224	7		200000000000000000000000000000000000000						-		1	1193			2	28	12.68	.022	4	20	.54	47	.15					4
007-COR-N12				ž								_		1			e e	2	48	9.85	.033	2	24	.58	55	.17					
00-COR-X15 1 67 11 58 .5 12 20 757 7.29 2 5 NO 1 52 .2 2 57 2.14 .217 2 15 1.58 25 .10 5 2.61 .10 .74 1 100 -COR-X15 1 175 2 119 1.3 29 64 1616 24.71 4 5 NO 2 31 1.8 2 2 533 .32 .007 7 72 1.11 34 .16 2 3.73 .11 .80 1 35 NO -COR-X16 10 70 -COR-X16 10 75 6 10 1.4 154 62 126 13.20 2 5 NO 1 1 253 5.2 2 4 22 3.23 .039 2 55 .88 8 .06 34 .02 .13 .02 4 9 NO -COR-X17 17 337 19 114 15.5 22 149 1437 16.15 63 5 NO 2 86 1.4 5 314 9 18.49 .003 2 27 .26 2 .01 4 .29 .01 .01 .05 1 280 NO -C25-K01 10 00-25-K01 20 00-25-K01 20 00-25-K03 3 2464 2 4 6 1.0 13 9 1503 2.40 36 5 NO 1 107 .5 3 2 28 9.39 .022 2 10 2.63 283 .01 8 .19 .01 .07 1 21 .00 .02 .02 .02 .03 .03 .03 .00 .02 .00 .00 .00 .00 .00 .00 .00 .00		_		•		000000000000000000000000000000000000000						_		i				2	202	2.92	.069	5	35	1.12	71	.16	4	4.03	.25	.43	66
NOT-COR-X15 1 175 2 119 13 29 64 1616 24.71 4 5 NO 2 31 1.8 2 2533 .33 007 7 72 1.11 34 16 2 3.73 .11 .80 1 35 NOT-COR-X15 1 75 2 119 13 29 64 1616 24.71 4 5 NO 2 31 1.8 2 2533 .33 007 7 72 1.11 34 16 2 3.73 .11 .80 1 35 NOT-COR-X16 NOT-COR-X16 1 7 3374 19 114 15.5 22 149 1437 16.15 63 5 NO 2 2 31 1.8 2 2 533 .33 007 7 72 1.11 34 16 2 3.73 .11 .80 1 2 2 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1	PUP COR X IE	"	0120	,	720		•					_		•																	
NOT-CON-X16 56 48 417 1205 12:2 17 51 2372 13.65 104 5 MD 1 179 25.1 2 83 9 20.08 .004 2 8 .17 10 .01 2 .21 .01 .01 24 170 .00F-CON-X16 1 95 6 10 1.4 154 62 126 13.20 2 5 MD 1 253 .2 2 4 22 3.23 .039 2 55 .88 8 .06 3 4.02 .13 .02 1 9 .00F-CON-X18 17 3374 19 114 15.5 22 149 1437 16.15 63 5 MD 2 76 .00 1 .0	90F-COR-X14	1	67	11	58	.5	12	20	757	7.29	2	5		1		2000007, 700		_			20.77.20.00	•				70.00	_		-	690,600	10
00-26-KD1	90F-COR-X15	1	175	2	119						•	5		2									_			7					
17 3374 19 114 15.5 22 149 1437 16.15 63 5 ND 2 86 1.4 5 314 9 18.49 .003 2 27 .26 2 .01 4 .29 .01 .01 43 61 100-25-K01 2 1095 4 46 1.0 13 9 1503 2.40 36 5 ND 1 107 5 3 2 228 9.39 .022 2 10 2.63 283 .01 8 .19 .01 .07 1 21 00-25-K02 3 4442 4 13 4.3 12 4 396 1.22 8 5 38 2 13 .7 3 2 9 .80 .023 2 9 .17 33 .01 7 .18 .01 .07 1 21 00-25-K03 3 2464 2 4 .5 14 25 176 1.13 8 5 ND 2 8 10 .7 2 2 2 5 .15 .016 2 10 .07 50 .01 5 .20 .01 .07 1 1660 00-25-K03 3 2464 2 4 .5 14 25 176 1.13 8 5 ND 2 8 .10 .7 2 2 2 5 .15 .016 2 10 .07 50 .01 5 .20 .01 .07 1 1660 00-25-K03 3 2464 2 4 .5 14 25 176 1.13 8 5 ND 2 2 .5 ND 1 57 .4 2 2 30 .23 .035 3 18 .48 285 .01 6 .72 .03 .06 1 54 .00-25-K05 1 197 7 39 .8 9 10 3303 3.00 2 5 ND 1 595 .8 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 .11 .10 .06 1 17 .00-25-K06 1 197 7 39 .8 9 10 3303 3.00 2 5 ND 2 186 .6 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 .11 .10 .06 1 17 .00-25-K09 1 1881 4 8 3 1.7 19 23 1216 6.56 2 5 ND 1 555 .6 4 2 120 .44 .41 .13 .83 .22 .33 .14 .20 .03 .06 1 2 .00-25-K09 1 1881 4 8 3 1.7 19 23 1216 6.56 2 5 ND 1 555 .2	90F-COR-X16	56	48	417	1205	12.2	17	51	2372	13.65	104	5	ND	1		25.1		83					_		10	G007-500	_			98022 2	
00-24-K01 1 62 232 25 28.9 7 21 3664 7.27 65 5 MD 2 86 1.4 5 314 9 18.49 003 2 27 .26 2 01 4 .29 .01 .01 43 61 006-25-K02 3 4442 4 13 4.3 12 4 396 1.22 8 5 38 2 13 7 3 2 2 8 9.39 .022 2 10 2.63 283 01 8 .19 .01 .07 1 21 006-25-K03 3 2644 2 4 .5 14 25 176 1.13 8 5 MD 2 10 7 2 2 5 .15 .016 2 10 .07 50 .01 5 .20 .01 .07 1 26 006-25-K03 3 2644 2 4 .5 14 25 176 1.13 8 5 MD 2 10 .7 2 2 5 .15 .016 2 10 .07 50 .01 5 .20 .01 .07 1 1600 00-25-K04 2 42 7 27 5 12 9 280 4.14 6 5 MD 1 57 .4 2 2 30 .23 .03 3 18 .48 285 .01 6 .72 .03 .06 1 54 006-25-K05 1 197 7 39 .8 9 10 3303 3.00 2 5 MD 1 595 8 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 1.11 .01 .06 1 17 006-25-K05 1 1 6 2 29 .3 7 7 1745 2.33 9 5 MD 2 106 .64 2 49 21.13 .023 4 15 1.88 1397 .01 6 1.11 .01 .06 1 17 006-25-K05 1 1 881 4 83 1.7 19 23 1216 6.56 2 5 MD 1 72 .3 3 2 106 4.9 41 131 8 32 2.33 145 .03 4 2.06 .03 .06 1 22 006-25-K09 1 1 881 4 83 1.7 19 23 1216 6.56 2 5 MD 1 72 .3 3 2 106 4.9 4.17 36 2.81 272 .06 4 2.66 .03 .05 1 13 006-25-H10 1 6058 8 47 1.4 15 34 1070 10.25 77 5 MD 1 86 2 4 5 4 4 4 7 36 2.81 272 .06 4 2.66 .03 .05 1 13 006-25-H11 3 270 3 7 .2 9 3 540 .66 6 5 MD 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 360 006-25-H11 3 270 3 7 .2 9 3 540 .66 6 5 MD 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 360 006-25-H11 3 270 3 7 .2 9 3 540 .66 6 5 MD 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 360 006-25-H11 3 270 3 7 .2 9 3 540 .66 6 5 MD 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 360 006-25-H11 3 207 3 7 .2 9 3 540 .66 6 5 MD 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 360 006-25-H11 3 1031 6 154 10.5 19 19 204 2.02 273 5 MD 2 67 8.4 116 2 16 .32 .014 2 9 .13 134 .01 8 .36 .01 .03 1 44 .00 .05 1 10 .05 1 10 .06 .05 .00 .05 .00 .00 .00 .00 .00 .00 .00	90F-COR-X17	1	95	6	10	1.4								1				4							8	77 77 77 77					
00-25-K01	90F-COR-X18	17	3374	19	114	15.5	22	149	1437	16.15	63	5	ND	2	76	.9	4	14	56	.56	.133	3	48	1.45	8	.10	>	1.60	.01	ا	200
00-25-K01 2 1093 4 46 1.0 13 9 1503 2.40 36 5 MD 1 107 5 3 2 28 9.39 022 2 10 2.63 283 01 8 .19 .01 .07 1 21 00-25-K02 3 4442 4 13 4.3 12 4 396 1.22 8 5 38 2 13 7 3 2 9 .80 .023 2 9 .17 33 .01 7 .18 .01 .08 2 41200 00-25-K03 3 2464 2 4 7 27 .5 12 9 280 4.14 6 5 MD 2 10 .7 2 2 5 .15 .016 2 10 .07 50 .01 5 .20 .01 .07 1 1660 00-25-K04 2 42 7 27 .5 12 9 280 4.14 6 5 MD 1 57 4 2 2 30 .23 .035 3 18 .48 285 .01 6 .72 .03 .06 1 54 00-25-K05 1 197 7 39 .8 9 10 3303 3.00 2 5 MD 1 57 4 2 2 30 .23 .035 3 18 .48 285 .01 6 .72 .03 .06 1 54 00-25-K05 1 197 7 39 .8 9 10 3303 3.00 2 5 MD 1 55 .8 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 1.11 .01 .06 1 17 .00-25-K05 1 6 .22 .03 1 7 7 1745 2.33 9 5 MD 2 186 .6 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 1.11 .01 .06 1 17 .00-25-K08 1 5308 2 85 6.2 20 24 1150 6.47 2 5 MD 1 555 .8 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 1.11 .01 .06 1 17 .00-25-K08 1 1881 4 83 1.7 19 23 1216 6.56 2 5 MD 1 555 .6 4 2 120 4.44 .131 8 32 2.33 145 .03 4 2.06 .03 .06 1 22 .00-25-K09 1 1 881 4 83 1.7 19 23 1216 6.56 2 5 MD 1 72 .3 3 2 106 4.94 .124 7 36 2.81 272 .06 42.66 .03 .05 1 130 .00-25-K10 1 6.058 8 47 1.4 15 34 1070 10.25 .77 5 MD 1 46 .2 4 5 49 4.27 .026 2 21 1.07 16 .01 3 1.30 .01 .05 1 190 .00-25-H11 3 .00-25-H11 3 .00-25-H11 1 1031 6 154 10.5 19 19 204 2.02 273 5 MD 2 57 8.2 10 2 .6 .32 .014 2 9 .13 134 .01 8 .35 .01 .05 1 190 .00-25-H11 1 2 .2 1 1 141 1.6 55 25 1214 6.57 3 5 MD 2 65 .8 10 2 16 .32 .014 2 9 .13 134 .01 8 .35 .01 .00 .00 .00-25-H13 1 1031 6 154 11 .05 19 19 204 2.02 .07 3 5 MD 2 67 8.4 116 2 16 .32 .014 2 9 .13 134 .01 8 .35 .01 .00 .01 1 125 .00-25-H13 1 1031 6 154 4 11 6 204 1.10 9 5 MD 2 84 9 2 2 25 1.33 .035 2 14 .40 922 .01 6 .31 .01 .07 1 1630 .00-25-H13 1 1031 6 154 4 11 6 204 1.10 9 5 MD 2 84 9 2 2 25 1.33 .035 2 14 .40 922 .01 6 .31 .01 .07 1 1630 .00-25-H13 1 1031 6 154 4 11 6 .50 2 .11 1 11 11 11 11 11 11 11 11 11 11 11	00c-24-F01		62	232	25	28.0	7	21	3664	7.27	68	5	ND	2	86	1.4	5	314	9	18.49	,003	2	27	.26	2	.01	4			3000 5	
00-25-K02		;		7		W. T. T. C. C. V.								1	107	- 5	3	2	28	9.39	.022	2	10	2.63	283	.01	8				
00-25-K03		1 -		Z								-		ż				2		.80			9	.17	33	.01	7	. 18	.01	.08 2	
0G-25-R04 0G-25-R05 0G-25-R05 0G-25-R05 0G-25-R05 0G-25-R06 1 197 7 39 8 9 10 3303 3.00 2 5 ND 1 595 8 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 1.11 .01 .06 1 70 .06 .25 .00 1 6 2 29 .3 7 7 1745 2.33 9 5 ND 2 186 .6 6 2 47 22.22 .025 5 22 .75 3.6 .01 4 .73 .01 .06 1 3 .06 .02 .06 .03 .06 1 .04 .06 .02 .07 .06 .07 .06 .07 .06 .07 .07 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07				3	7	200000000000000000000000000000000000000								_				2	5	.15	.016	2	10	.07	50	.01	5				
00g-25-K05		_		7	27									1								3	18	.48	285	.01	6	.72	.03	.06 1	54
0G-25-K06 1 197 7 39 8 9 10 3303 3.00 2 5 ND 1 595 8 6 2 49 21.13 .023 4 15 1.88 1397 .01 6 1.11 .01 .06 1 17 .00-25-K07 1 6 2 29 .3 7 7 1745 2.33 9 5 ND 2 186 6 6 2 47 22.22 .025 5 22 .75 36 .01 4 .73 .01 .06 1 3 .00-25-K09 1 5308 2 85 6.2 20 24 1150 6.47 2 5 ND 1 55 .6 4 2 120 4.44 .131 8 32 2.33 145 .03 4 2.06 .03 .06 1 225 .00-25-K09 1 1881 4 83 1.7 19 23 1216 6.56 2 5 ND 1 72 .3 3 2 106 4.94 .124 7 36 2.81 272 .06 4 2.66 .03 .05 1 130 .00-25-K10 1 6850 2 90 2.7 2 4 31 1174 7.02 2 5 ND 1 81 1.5 3 2 105 2.90 .141 6 39 3.63 52 .18 6 3.37 .02 .03 .01 .05 1 130 .00-25-W10 1 6058 8 47 1.4 15 34 1070 10.25 77 5 ND 1 46 .2 4 5 49 4.27 .026 2 21 1.07 16 .01 3 1.30 .01 .05 1 190 .00-25-W11 3 270 3 7 .2 9 3 540 .66 6 5 ND 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 360 .00-25-W13 1 1031 6 154 10.5 19 19 204 2.02 273 5 ND 2 67 8.4 116 2 16 .32 .014 2 9 .13 134 .01 8 .36 .01 .03 1 41 .00-25-W14 1 1 1627 11 141 1.6 55 25 1214 6.57 3 5 ND 2 84 .9 2 2 25 1.33 .035 2 14 .40 .922 .01 6 .31 .01 .07 1 1630 .00-25-W18 1 1627 11 141 1.6 55 25 1214 6.57 3 5 ND 2 84 .9 2 2 25 1.33 .035 2 14 .40 .922 .01 6 .31 .01 .07 1 1630 .00-25-W18 1 1627 11 141 1.6 204 1.10 9 5 ND 2 84 .9 2 2 25 1.33 .035 2 14 .40 .922 .01 6 .31 .01 .07 1 1630 .00-25-W18 1 1627 11 141 1.6 55 25 1214 6.57 3 5 ND 1 51 2.6 5 3 43 9.61 .027 2 24 .63 212 .05 4 1.28 .01 .01 225 .00-25-W18 1 .00-25-W18	you as not	-	-	•	-									_			_	_				_		4.	27		,	20	01	n4	730
0G-25-K07	90G-25-K05	2		2	8		, -	_			**	-		_					_			2	_								
1 5308 2 85 6.2 20 24 1150 6.47 2 5 NO 1 55 6 4 2 120 4.44 .131 8 32 2.33 145 .03 4 2.06 .03 .06 1 00c-25-K09 1 1881 4 83 1.7 19 23 1216 6.56 2 5 NO 1 72 .3 3 2 166 4.94 .124 7 36 2.81 272 .06 4 2.66 .03 .05 1 13	90G-25-K06	1	197	7	39	8	9				400000	_		•				_				4				TO 17 TO 1	_			20000120	
1 1881 4 83 1.7 19 23 1216 6.56 2 5 ND 1 72 3 3 2 166 4.94 .124 7 36 2.81 272 .06 4 2.66 .03 .05 1 13 106 .25 .K10	90G-25-K07	1	′ 6	2	29			•	•••		- 33200.70			_				-				, -				2. 17. 7.3					
1 1881	90G-25-K08	1	5308	2	85	6.2					200000000			1																	13
NG-25-H10 1 6058 8 47 2 9 3 540 66 6 5 ND 2 55 2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 380 .006-25-H11 3 270 3 7 2 9 3 540 .66 6 5 ND 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 380 .006-25-H13 1 1031 6 154 10.5 19 19 204 2.02 273 5 ND 2 67 8.4 116 2 16 .32 .014 2 9 .13 134 .01 8 .36 .01 .03 1 41 .006-25-H14 1 21 5 41 4 11 6 204 1.10 9 5 ND 2 84 .9 2 2 2 25 1.33 .035 2 14 .40 922 .01 6 .31 .01 .07 1 1630 .006-25-H18 1 1627 11 141 1.6 55 25 1214 6.57 3 5 ND 1 58 .9 4 2 164 6.18 .114 3 122 4.05 100 .16 3 3.38 .03 .01 1 627 .006-20R-X07 16 3829 20 153 10.1 44 9 2033 4.21 16 5 ND 1 51 2.6 5 3 43 9.61 .027 2 24 .63 212 .05 4 1.28 .01 .01 225 38 .006-20R-X08 700G-COR-X08 7226 175 103 30 .4 5 5 3162 2.05 6 5 ND 2 17 1.1 2 12 18 4.72 .011 2 28 .39 40 .02 3 1.09 .01 .02 468 7 .006-20R-X10 .006-20R-X10 .006-20R-X10 .006-20R-X11 .006-20R-X11 .006-20R-X13 18 29779 16 992 76.7 14 43 1175 8.68 30 5 ND 1 82 17.6 4 58 24 2.48 .015 2 36 .49 24 .06 2 1.51 .04 .02 1 350 .006-20R-X13 18 29779 16 992 76.7 14 43 1175 8.68 30 5 ND 1 82 17.6 4 58 24 2.48 .015 2 36 .49 24 .06 2 1.51 .04 .02 1 350 .006-20R-X13 18 29779 16 992 76.7 14 43 1175 8.68 30 5 ND 1 82 17.6 4 58 24 2.48 .015 2 36 .49 24 .06 2 1.51 .04 .02 1 350 .006-20R-X13	90G-25-K09	1	1881	4	83	1.7	19	23	1216	6.56	2	5	ND	1	72	3	3	2	166	4.94	:124	′	30	2.51	212	.00	•	2.00	.03	.02	
1 6058 8 47 1,4 15 34 1070 10.25 77 5 ND 1 46 .2 4 5 49 4.27 .028 2 21 1.07 16 .01 3 1.30 .01 .05 1 190	000-25-K10	,	4850	,	00		24	31	1174	7.02	2	5	MD	1	81	1.5	3	2	105	2.90	.141	6	39	3.63	52	.18					12
3 270 3 7 2 9 3 540 .66 6 5 ND 2 55 .2 2 2 10 3.51 .018 2 8 .15 137 .01 10 .22 .01 .05 1 30 .06 .25 .413 1 1031 6 154 10.5 19 19 204 2.02 273 5 ND 2 67 8.4 116 2 16 .32 .014 2 9 .13 134 .01 8 .36 .01 .03 1 41 .00 .06 .05 .00 .07 1 1630 .00 .07 1 1630 .00 .07 1 1630 .00 .07 1 1630 .00 .07 1 1630 .00 .07 1 1630 .00 .00 .00 .00 .00 .00 .00 .00 .00 .		1 1				200000000000000000000000000000000000000					2000000			1	46			5	49	4.27	.028	2	21	1.07		.01	3			000000	
00G-25-W14	,	;		ž							00070000			Ž	55			2	10	3.51	.018	2	8			20000000	• •				
OG-25-W18 1 1627 11 141 1.6 55 25 1214 6.57 3 5 NO 1 58 .9 4 2 164 6.18 .114 3 122 4.05 100 .16 3 3.38 .03 .01 1 6 30G-COR-XO7 OG-COR-XO7 OG-COR-XO8 OG-COR-XO		1 1		ž	•			-			2000 700			_	67	8.4	116	2	16	.32	.014	2	9	. 13		9.75.500					
OG-25-W18 1 1627 11 141 1.6 55 25 1214 6.57 3 5 NO 1 58 .9 4 2 164 6.18 .114 3 122 4.05 100 .16 3 3.38 .03 .01 1 627 11 141 1.6 55 25 1214 6.57 3 5 NO 1 58 .9 4 2 164 6.18 .114 3 122 4.05 100 .16 3 3.38 .03 .01 1 627 11 141 1.6 55 25 1214 6.57 3 5 NO 1 58 .9 4 2 164 6.18 .114 3 122 4.05 100 .16 3 3.38 .03 .01 1 627 11 141 1.6 55 25 1214 6.57 3 16 NO 1 51 2.6 5 3 43 9.61 .027 2 24 .63 212 .05 4 1.28 .01 .01 225 38 .00	90G-25-W14	l i		5											84			2	25	1.33	.035	2	14	.40	922	.01	6	.31	.01	.07 🐃 1	1630
70G-COR-X07		1																_				_	400		400			7 70	07		42
70G-COR-X08 70G-COR-X08 70G-COR-X08 70G-COR-X08 70G-COR-X08 70G-COR-X08 70G-COR-X10 70G-COR-X13 70G-CO	90G-25-W18	1												1							***********	•									
OG-COR-X10 OG-COR-X10 OG-COR-X10 S496/ 1575 31689 / 13 197.1 / 7 2 84 .02 5 6 89 5 68 71.9 347 32175 / 1 .22 .011 2 3 .02 21 .01 6 .08 .01 .01 14 12960	90G-COR-X07					10.1		-			50000.000			1				_													
70G-COR-X11 289 424 217 46 7.6 7 11 312 3.52 8 5 NO 2 32 1.1 5 511 48 .57 .117 3 22 1.40 90 18 5 1.33 .06 .64 4 11	90G-COR-X08	7226			,	.4		5			80000 7000			_																	
70G-COR-X11 289 424 217 46 745 7 11 312 3.52 8 5 ND 2 32 131 5 11 46 .57 111 3 22 1.40 7 11 312 3.52 8 5 ND 2 32 131 5 11 46 .57 111 3 22 1.40 7 11 11 11 11 11 11 11 11 11 11 11 11 1	90G-COR-X10	5496	1575		/ 13							_		_								, -	_							99999	
70G-COR-X13 18 29//9 16 992 16 14 43 11/3 8.60 30 3 HD 1 62 11/4 45 18 180 07 18 1 80 07 18 1 80 07 18 1 80 07 18 1 80 07 18 18 540	90G-COR-X11	289	424	217	46	7.6	7	11	312	3.52	8	5	NO	2	32		5	511	48	.57	.117	3	22	1.40	y 0	715	7	1.33	.00	.0	
20 000 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90G-COR-X13	18	29779	16	992	76.7	14	43	1175	8.68	30	5	ND	1	82	17.6	4	58													350
	STANDARD C/AU-R	18	61	36		200 5 0.770 F 500			1053	3.98	41	18	7	38				19	56	.51	.097	37	60	.91	181	.07	38	1.89	.07	.13 11	540

rage 2

Quest Canada Exploration FILE # 90-4399

SAMPLE#	Mo	Cu		Zn	Ag		Со	Mn ppm	Fe %	37.00	U ppm	Au		Sr ppm	Cd	Sb ppm	Bi ppm	V ppm	Ca %	P %		Cr ppm	Mg %	Ba ppm	Ti %	ppm ppm	Al X	Na %	K %	W P PM	Au* ppb
	<u> </u>		- Param		2000 C	PP	P F			*****			•••	<u></u>			-					· · ·									
90G-25-X01	2	184	. 2	29	1	6	10	702	3.79	6	5	ND	1	66	.2	2	2	49		.132		3	.74	31	.18	-					1
90G-25-X02	10	209	3	21	2	5	12	405	3.47	9	5	ND	1	37	2	2	2	36	2.17		2	4	.51	22	.15		1.83		.04		
90G-25-X03	15	228	6	52	4	11	7	491	3.99	69	5	ND	1	32	.2	2	3	27	1.58	17	3	4	.39		.09		1.66		.04		ž
90G-25-X04	1	8	2	13	.1	44	5	1710	1.98	8	5	ND	1	162	.2	2	2		15.45	.046		17		1622	.01	12	2.09				5/0
90G-26-K01	1	30317	2	20	7.5	2	10	383	5.60	10	5	ND	1	4	1,2	2	5	10	. 19	,040	2	1	.32	32	.01	5	.64	.02	.06		549
	_		_					150	- ^-				4	,	•	2	2	10	.23	.021	7	4	.43	21	.01	3	.70	.02	.05	1	504
90G-26-K02	2	7482			2.5	8	11	650	3.07	₩¥	2	ND	- 1	*		2	7		.38	115		2	.04		.01	5	.60		.13		5
90G-26-K03	1	4085		92			12	615	4.85		2	ND	- !	y	2	2	3	20	.60	.018		R	.12	55	.01	ź		.01		1	2
90G-26-K04	2	29762		- 11	9.8	11	9	228	4.12	2002 20	: =	ND	1	(1.9	*	2	(.14	1009		2	.04	44	.01	7	.10	.01		1	1557
90G-26-K05	1	23733		1	5,6	4	-4	145	3.51	10	; -	ND	!	-3	.,9	2	~	170		106		, E	1.60	8	.04	2	2.40	.03			9
90G-26-K06	29	274	24	89	5	10	53	1051	17.56	12	>	ND	1	32	1.2	2	2	138	1.51	. 100	,	,	1.00	·			L. 70	.03			•
000-24-407	,	6231	15	1291	2.1	12	6	186	2.19	19	5	7	1	4	7.5	2	2	7	.24	.016	2	8	.05	22	.01	3	. 14	.01	.05	. 1 1	12267
90G-26-K07				121	9.0		4	57	3.38	59	• .	23	•	11	.2	5	9	6	.02	.019	• _	6	.01	65	.01	3	.13	.01	.07	12	24390
90G-26-K08	20	2060		143		27	31	1218	6.12		Š	ND	i	٠,		5	ź	79	.35		:	3	2.37	56	.01	4	3.21	.02	.15		405
90G-26-K09	:	21136		128		-:	15	989		40	í	ND	i	7	.6	5	5	22	.33	108	•		1.09	35	.01	4	1.86	.02	.16	1	180
90G-26-K10		14588					21			10	-	ND	,	35	3	5	5	157	2.19	232			2.53		.13	2 :	3.03	.03	.64	*	4
90G-30-R187	יו	721	2	65	.6	33	21	638	5.63	10	,	NU	2	رد		_	-	151	L. 17			•		•••		-		•			
90G-30-R188	1	4183	2	83	3.7	38	23	346	1.93	3	5	ND	1	30	1.7	2	2	13	5.79	.043	2	81		3	.05	2			.02	1	10
90G-30-R189	1	6329		229	15.4	131	55	944	7.40	153	5	ND	1	84	4.2	2481	3	71	3.30	.069			1.59	52	.05		1.79	.01			315
90G-30-R190	1	982	_	162	4.8	9	15	811	5.05	2	5	ND	1	17	.2	6	2	91	.86	.060		22	1.46		.22	2 :				1	198
90R-26-A01	1	6909	239	35	27.5	7	10	315	4.35	137	5	ND	1	16	.6	2	2	6	.68	.038		4	.04	27	.01	_3	.23		.11		675
STANDARD C/AU-R	18	58		131	6.9	71	32	1047	3.99	40	21	7	39	53	18.9	15	19	56	.52	.094	38	58	.89	181	.09	37	1.89	.06	.14	13	540

GEOCHEMICAL ANALYSIS CERTIFICATE

Quest Canada Exploration File # 90-4399 Page 1
P.O. Box 11569 Vancouver, Vancouver BC V68 4N8

SAMPLE#	Mo				- 338 T	3	Co	Mn ppm		As ppili	-		Th	\$r ppm			Bi ppm	V ppra	Ca %			Cr ppm				ppm B	Al X	Na X	K X	V PR	Au* ppb
90C-17-S-32	3	484				· · ·	4	132	1.46	6		ND	1	7	.2	-		10		80.0000	•			72		*	.12	.01	- 1	1	16
90C-17-S-33	3		Ž			8	5		1.34	2		ND	i	30	.2						× –			269				.03			6
90C-17-S-34	2		2	8		7	2	53	1.14	5	5	ND	i	4	2			_	-01	.009				81	201		.13		.05	ż	5
90C-25-C-125	1 1	4584	ž	_	1.3	•	_	1889	2.96	7		ND	i	122	.8	Ž							3.17	164	.01	e –	1.40		.02		31
90C-25-C-127	i		2		1.8			1024	4.11	8	5	ND	i	27	.9				4.35				2.79	53		-		.01	9	i	880
90c-25-c-128	3	16728	2	31	2.7	304	21	1163	4.31	6	8	2	1	52	1.6	2	2	60	5.84	.027	,	258	2.54	68	.01	7	2.08	.01	.02	2 1	1260
90F-10-K-20	1		3635		21.6			4897		830	5	ND	i		59.1					105				60	Ŏ1			.01		1	82
90F-10-W-22	22	642	10	45			25			102	5	ND	Ä	14			-	100		.043				342				.01		2	82
90F-25-C-124	2	26		7		11	3	965	1.18	9	6	ND	•	257	3				10.60	2008				55	.01			.01	* 1 2 8		6
90F-25-C-125	ī	121	3	43			14		4.19	6	5	ND	i		.3			81		100			1.32	36	10				.07		17
90F-25-C-140	2	294	3			8	10	73	3.58	2	5	ND	•	38	.2	2	2	26	1.26	.098	2	15	.26	53	.08	7	1.13	00	ne :	•	2
90F-25-C-142	1 7	42	118	211		_	• •	2686	3.05	26	10	ND	i	286	2.0		2			016			1.96	15	Oi		1.73				7
90F-25-R-186	i	7832	5	40	5.3				3.13	18	5	ND		437	.,9			45		.018			1.63	76	01		.30				12
90G-10-K-21	li	183	9	73				797			5														.13					1	5
·· ·· ·· ·· ··	;		•		6				6.26		-	ND	1	95	.6				3.37			112					2.35				
90G-10-K-22	'	14	96	164	1.1	21		2850	4.78	41	18	ND	1	68	1.3	2	2	15	10.99	.032	4	23	.30	335	.01	2	.60	.01	.10		42
90G-10-K-23	2	47	10	22		23	21	149	3.50	8	5	ND	1	56	6	2	2	23	1.36	.143	4	24	.44	37	.24	2	.79	.05	.04	1	4
90G-10-W-20	2	40	7	30	1	16	9	1922	1.42	7	5	ND	1	73	7	2	2	12	1.30	.060	3	19	.08	33	.06	2	.69	.01	.01	2	2
90G-10-W-21	3	53	1021	1897	12.5	11	3	1165	1.12	18	5	ND	14	20	16.6		2	2	.27	2006	3	10	.05	411	.01	2	.24	.01	.12	3	4
90G-10-W-23	12	474	6	38	1.0	11	62	296	7.16	4	5	ND	1	36	8	Ž	2	25		.049	2		.35	30	.17		.58			2	25
90G-10-W-24	17	191	8	20	.8	13	43	392	6.18	9	5	ND	1	79	.6	Ž	3	33		.084			.24		, 18				.03	Ī	50
90G-23-K-11	2	9027	26	88	2.7	8	3	138	2.16	455	5	3	1	4	1.8	24	2	1	.02	.006	2	6	.01	8	.01	2	.05	.01	.02	.	5250
90G-25-C-139	1 7	51306	5	41	10.0		18		10.65	2	7	5	i	11	5.0		8	5Ò	.66	.036			1.34	28	.01				.02		6380
90G-25-C-141	1 1	101	3	30		• • •	44	893	5.20	8	5	ND	i	442	2	2	2	64		.029	_		9.62	198	.01	: -			.11		13
90G-25-F-08	24	103	16	56			8		5.12	30	5	ND	i	10	2	3	2	84		.085	4		1.37		.01		.67				7
90G-25-F-09	2	1841	2	112		3	7			161	5	ND	i	40	2.2		2	11		054	4				01			.01		1	720
,04 25 1 07	-	1041	•	116		•	•	074	J. L.			NU	•	70		10	-	••	4.02		•	_		7 7		•			•••		
90G-25-F-10	2	32306	5	1	6.4	6	26	833	7.43	24	19	ND	1	50	3.0	2	9	1	7.39	2009	2	3	.01	29	.D1	2	.06	.01	.04 🖇		480
90G-25-F-11	2	3976	3	7	7	10	7	374	1.57	13	5	ND	1	28	.6	2	2	3	2.88	.008	2	8	.09	81	.01	2	.13	.01	.03 🖔	1	7
90G-25-F-12	5	2301	6	45	9	10	16	450	3.53	56	5	ND	1	13	2	2	2	25	.97	.036	2	34	.56	49	.01	2	.97	.01	.11 🏽	2	78
90G-25-F-13	4	10375	20	24	7.8	9	39		6.72	30		31	1	1	.8	2	2	6	.02	2010	2		.08		.01	2	.16	.01	.02	1 24	600
90G-25-R179	i	311	5	61	.2	10	20		5.13	5	5	ND	1	47		2	2	63		.110	2		1.77		, 13				.04	1	17
90G-25-R180	2	4970	4	180	6.2	107	30	413	3.89	26	5	ND	1	33	2.7	2	2	51	1.29	ORO	2	105	1.57	27	18	3 1	.94	.07	. 11		70
POG-25-R181	21	205	320	63	2.7			215	.87	14	-	ND	•	77		41	2	22		.003	_	190			01			.01		1	11
20G-25-R182	1	140	2	21					4.74	8	_	ND	-	384	.3	2	2	44		.090	_	69		162		2		.07		1	81
70G-25-R183	1 ;	45	2	40					3.36	13	_	ND	-	333	.3	2				2004	_	213			.01			.07	200		4
70G-25-R183	;	1033	2	17	.7				1.95	4	-	ND		229	.5	7	2	34 16		G 00000000	2				.01	4			.05 (.07	•	3
7VU-23"K 104	'	1033	2	17	e f	113	y	600	1.73		7	HU	•	CCA	•	•	۷	10	4.19	.003	~	04	2.41	74	.VI	•		.01	.07		اد
OG-25-R185	1	656	3	61	.5 4				3.66	Ż		ND		340	.3	3		47	3.46				3.38		.01		.76			1	3
STANDARD C/AU-R	18	57	38	130	6.5	67	31 1	1044	3.94	39	18	6	38	52	18.7	15	20	56	.51	.087	35	55	.90	180	.09	33 1	.89	.06	.15 🏽	13	510

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P2 ROCK P3-P8 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE

DATE RECEIVED: SEP 13 1990 DATE REPORT MAILED:

SIGNED BY. A. J. J. D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Coast Mountain Geological Ltd.	Fif # 96 Joid
--------------------------------	---------------

90-F16-F01	SAMPLE#	Mo	-		Zn		NI				Ad				Sr		:	Bi	٧	Ca %	400000000000000000000000000000000000000		Cr		8a ppm		B ppm	Al X	Na X			Au*
90-F16-W3		1	Phi	· M		######################################	š.	pp.	ppm		335-33	Ham	H	H		****					30.000	8			-							
90-F16-W6 1 25 20 134 4 11 38 26 25 122 3 .40 2 7 NO 1 143 16 2 2 43 14.00 042 2 146 5.77 72 01 2 .22 01 .07 6 90-F16-W6 1 25 20 134 4 11 38 26 26 8.64 2 5 5 NO 1 2 0 2 2 3 3 4 .11 .004 2 10 .06 22 .01 4 .10 .01 .01 .01 .01 .01 .00 90-F16-W8 4 5 5 17 1 18 2 324 .61 4 5 NO 1 2 2 2 3 3 4 .11 .004 2 10 .06 22 .01 4 .10 .01 .01 .01 .01 .01 .01 .01 .01 .00 .00		_		_	39	₩.2	9	61	470	5.24				1																	2	36
90-Fi6-W6 4 5 5 17 1 18 2 324 2 84 654 2 5 NO 1 6 1.8 11 2 101 1.8 131 7 28 1.75 19 .01 2 3.02 .05 .07 6 0-Fi6-W6 4 5 5 17 1 18 2 324 .61 4 5 NO 1 2 2 2 2 3 4 .11 .004 2 10 .06 22 .01 4 .10 .01 .01 .01 1 90-Fi6-W6 1 3 78 1.2 84 .654 2.35 19 5 NO 1 20 .3 2 2 2 10 1.35 .069 4 13 .38 82 .03 15 .75 .04 .16 1 90-Fi6-W13 1 324 9 196 .3 18 14 .486 3.82 14 5 NO 1 12 1.2 2 2 109 4.07 .085 3 56 .52 3 17 12 2.74 .04 .02 1 90-F22-W1 19 26 6 28 11 10 7 328 1.90 .14 5 NO 1 18 .2 2 2 22 .20 .007 2 16 .65 5 .06 7 .66 .03 .06 3 90-F22-W1 1 12566 8 69 17.1 10 23 1179 5.86 2 5 NO 1 19 .2 2 2 2 2 .26 .001 3 6 .02 10 .01 2 .05 .01 .01 1 90-F22-W1 1 12566 8 69 17.1 10 23 1179 5.86 2 5 NO 1 19 .2 2 2 2 2 .26 .001 3 6 .02 10 .01 2 .05 .01 .01 1 90-F22-W2 1 3 4 20 90 .5 2 18 14 4 4 314 1.09 16 5 NO 1 18 30 .2 11 2 44 16.47 .016 2 19 4.32 1612 .01 9 .16 .01 .10 1 90-F22-W2 4 1732 5 11 .6 14 4 314 1.09 16 5 NO 1 10 5 1.5 15 2 2 2 2 2 .75 .005 2 10 .03 19 .01 2 .07 .01 .02 1 90-F22-W3 1 6383 9 32 .9 26 19 686 3.66 5 NO 1 10 5 1.5 15 2 2 2 2 2 .75 .005 2 10 .03 19 .01 2 .07 .01 .02 1 90-F22-W4 5 42 18 25 .2 27 8 NO 1 .35 5 NO 1 207 .2 2 2 2 5 5 .17 .031 2 179 .85 808 .01 5 .02 .01 .00 2 90-F22-W4 5 42 18 25 .2 27 8 NO 1 .35 5 NO 1 207 .2 2 2 2 5 5 .17 .031 2 19 .85 808 .01 5 .02 .01 .00 2 90-F22-W3 1 6 8 8 8 7 .35 8 7 .56 6 5 NO 1 10 .5 1.5 1.5 2 2 9 4 2.05 .01 3 10 .02 7 .7 .01 .02 1 90-F22-W4 5 4 18 25 .2 27 8 NO 1 1 50 .5 NO 1 10 .1 10 1 10 1 10 1 10 1 10 1 10 1	90-F26-F02	1	836	14	189	₩.4	6					5	ND	1	59											7.7						8
90-F16-WB	90-F16-W4	1	149	5	18		276	25	1222	3.40	2	7	ND	1	143	8	2	2	43	14.09	.042	2	146	5.77	72	.01	2	.22	.01	.07	# 1	2
90-F16-W13	90-F16-W6	1	23	20	134	4	11	38	2642	8.64	2	5	ND	1	6			2	101	. 18			28	1.75	19	.01	2	3.82	.05	.07	6	1
90-F16-H13	90-F16-W8	4	5	5	17	1	18	2	324	.61	4	5	ND	1	2	.2	2	3	4	.11	.004	2	10	.06	22	.01	4	.10	.01	.01	1	1
90-F22-H1	90-F16-W9] 1	3	7	34			4	654	2.35	19	5	ND	1		.3	2	2	10			м -									1	1
90-F22-W2		1	324	9	196	.3	18	14				5	ND	1				2							_							47
90-F23-W1 1 12566 8 69 97 1 10 23 1179 5.86 2 5 ND 1 133 3.7 8 2 124 5.74 127 4 24 2.54 122 13 2 2.76 .03 1.03 1 90-F23-W2 1 34 20 90 .5 2 18 1911 9.86 27 5 ND 1 380 .2 11 2 44 16.47 .016 2 19 4.32 1412 .01 9 .16 .01 .10 1 90-F24-W2 90-F25-W3 1 6383 9 32 9 26 19 686 3.60 6 5 ND 1 10 .2 2 2 2 .76 .005 2 10 .03 19 .01 2 .07 .01 .02 1 90-F26-W3 1 6383 9 32 9 26 19 686 3.60 6 5 ND 1 45 12 2 2 2 15 .17 .031 2 19 .85 808 .01 5 .82 .01 .04 1 90-F26-W3 90-F26-W4 90-F26-W4 90-F26-W3 1 34 8 25 .2 27 8 187 1.35 3 5 ND 1 207 .2 2 2 15 .17 .031 2 19 .85 808 .01 5 .82 .01 .08 12 90-G16-F01 1 346 9 31 1 8 15 587 5.64 6 5 ND 1 1207 .2 2 2 15 .17 .031 2 19 .85 808 .01 5 .32 .01 .08 12 90-G16-F02 1 774 8 60 .6 4 11 592 3.54 5 5 ND 1 207 .2 2 2 15 .17 .031 2 19 .85 808 .01 5 .32 .01 .08 12 90-G16-F03 2 189 76 544 .6 15 11 426 2.44 141 5 ND 1 35 4.8 2 2 49 1.78 104 3 14 .62 295 12 7 1.70 .12 .05 2 90-G16-F03 1 116 9 28 .3 11 9 310 3.08 38 5 ND 1 46 .5 2 2 57 1.24 .11 3 14 .69 33 14 .62 295 12 7 1.70 .12 .05 2 90-G16-F05 1 478 18 77 .8 49 26 1058 5.73 172 5 ND 1 45 1.1 12 3 85 4.72 125 4 65 1.64 99 .09 11 2.36 .03 .19 3 90-G25-F05 90-G25-F06 90-G25-F06 976997 14 23 23.3 311 33 700 20.48 8 5 7 1 8 8.3 10 17 71 .44 .010 2 202 .92 27 21 24 6 2.35 .14 .07 2 90-G26-F04 1 38 2 27 .1 266 30 726 4.92 2 5 ND 1 38 1.8 5 10 17 71 .44 .010 2 202 .92 27 20 8 13 .31 .01 .01 1 90-G26-F04 1 2123 2 132 .5 3 15 1252 5.93 3 5 ND 1 38 .8 5 2 5 4 3.31 131 7 18 1.57 40 .01 7 2.86 .06 .15 1 90-G16-K01 1 38 2 27 .1 266 30 726 4.92 2 5 ND 1 38 .8 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90-F22-W1	19	26	6	28	1	10	7	328	1.90	14	5	ND	1	18	.2	2	2	22	.28	.059	2	. 16	.65	56	.06	7	.66	.03	.06	3	40
90-F23-W1 1 12566 8 69 37.1 10 23 1179 5.86 2 5 ND 1 133 3.1 8 2 124 5.74 127 4 24 2.54 122 13 2 2.76 .03 1.03 1 90-F23-W2 1 34 20 90 .5 2 18 1911 9.86 27 5 ND 1 380 .2 11 2 44 16.47 016 2 19 4.32 1412 01 9 .16 .01 .10 1 90-F26-W2 1 6383 9 32 .9 26 19 686 3.60 6 5 ND 1 45 1.5 2 2 30 5.91 024 2 36 .59 77 .01 2 .68 .01 .04 1 90-F26-W5 1 6383 9 32 .9 26 19 686 3.60 6 5 ND 1 45 1.5 2 2 30 5.91 024 2 36 .59 77 .01 2 .68 .01 .04 1 90-F26-W5 90-F26-W5 1 6383 9 32 .9 26 19 686 3.60 6 5 ND 1 45 1.5 2 2 30 5.91 024 2 36 .59 77 .01 2 .68 .01 .04 1 90-F26-W5 90-F26-W5 90-F26-W5 1 774 8 60 .6 4 11 592 3.54 5 5 ND 1 207 .2 2 2 15 .17 0031 2 19 .85 808 01 5 .82 .01 .08 2 90-F26-W6 90-F26-W6 90-F26-W5 1 774 8 60 .6 4 11 592 3.54 5 5 ND 1 207 .2 2 2 15 .17 0031 2 19 .85 808 01 5 .32 .01 .08 2 90-F26-W6 90-F26-W6 1 1 16 9 28 .3 11 9 310 3.08 38 5 ND 1 46 1 1 1 1 2 2 94 2.05 101 3 13 1.00 127 17 6 3.94 .24 .20 1 90-F26-W6 1 1 16 9 28 .3 11 9 310 3.08 38 5 ND 1 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90-F22-W2	3	10	146	- 5	6	6	1	72	.34	2	5	ND	1	19	.2	2	2	2	.26	.001	3	6	.02	10	.01	2	.05	.01	.01	1	13
90-F26-W2	90-F23-W1	1	12566	/ 8	69	17.1	10	23	1179	5.86	. 5	5	ND	1	133			2	124	5.74	.127	4	24	2.54	122	. 13	2	2.76	.03	1.03	1	300
90-F26-W3 90-F26-W4 90-F26-W4 90-F36-W6 1 5 421 8 25	90-F23-W2	1	34	20	90	.5	2	18	1911	9.86	27	5	ND	1	380	.2	11	2	44	16.47	.016	2	19	4.32	1412	.01	9	. 16	.01	.10	1	9
90-F26-W4 90-F26	90-F26-W2	4	1732	5	11		14	4	314	1.09	16	5	ND	1	10	.2	2	2	2	.76	.005	2	10	.03	19	.01	2	.07	.01	.02		350
90-G16-F01	90-F26-W3	1 1	6383	9	32	. 9	26	19	686			5	ND	1	45			2	30	5.91	.024	2	36	.59	77	.01	2	.68	.01	.04	1	420
90-G16-F02 90-G16-F02 1 774 8 60 .6 4 11 592 3.54 5 5 ND 1 117 1.1 2 2 94 2.05 .101 3 13 1.00 127 .17 6 3.94 .24 .20 1 90-G16-F02 2 189 76 544 .6 15 11 426 2.44 441 5 ND 1 35 .8.8 2 2 49 1.78 .104 3 14 .62 295 .12 7 1.70 .12 .05 2 90-G16-F04 1 116 9 28 .3 11 9 310 3.08 38 5 ND 1 46 .5 2 2 5 7 1.24 .111 3 14 .69 .33 .16 12 1.88 .15 .08 1 90-G16-F05 1 478 18 77 .8 49 26 1058 5.73 172 5 ND 1 36 1.3 2 2 97 2.28 .108 2 2 5.92 21 .24 62 .36 .14 .07 2 90-G26-F05 1 7656 2 29 4.7 304 30 2308 3.54 10 5 ND 1 143 1.9 9 2 43 27.90 .012 3 212 1.42 17 .01 2 1.32 .01 .01 1 90-G26-F05 90-G26-F06 1 7656 2 29 4.7 304 30 2308 3.54 10 5 ND 1 143 1.9 9 2 43 27.90 .012 3 212 1.42 17 .01 2 1.32 .01 .01 1 90-G26-F01 3 240 5 33 .1 6 4 860 2.12 3 5 ND 1 78 .2 2 5 7 4.98 .008 2 12 .80 82 .01 10 .08 .01 .04 1 90-G26-F03 1 5484 11 121 1.2 4 11 2107 6.53 4 7 ND 1 93 1.6 6 2 45 11.27 .067 7 17 1.66 29 .01 3 2.85 .03 .09 1 90-G16-K01 1 38 2 27 .1 266 30 726 4.92 2 5 ND 1 38 .8 5 2 54 .31 .31 7 18 1.57 40 .01 7 2.86 .06 .15 1 90-G16-K02 1 1 38 2 27 .1 266 30 726 4.92 2 5 ND 1 38 .8 5 2 54 .31 .31 7 18 1.57 40 .01 7 2.86 .06 .15 1 90-G16-K03 1 37 8 18 .1 436 27 483 3.03 23 5 ND 1 283 .2 2 2 35 11.92 .016 2 104 7.78 .96 .01 7 .32 .01 .00 1 90-G16-K04 1 25 10 14 .1 364 32 848 3.43 6 5 ND 1 283 .2 2 2 35 11.92 .016 2 104 7.78 .96 .01 7 .32 .01 .00 1 90-G16-W2 1 25 10 14 .1 364 32 848 3.43 6 5 ND 1 283 .2 2 2 35 11.92 .016 2 104 7.78 .96 .01 7 .32 .01 .00 1 90-G16-W3 1 1 3 4 18 .1 126 17 676 3.55 4 5 ND 1 128 .2 2 2 2 11 .83 .002 2 10 .30 24 .11 9.10 10 1 90-G16-W3 1 1 3 4 18 .1 126 17 676 3.55 4 5 ND 1 128 .2 2 2 2 11 .83 .002 2 10 .30 24 .11 9.13 1.01 .02 1 90-G16-W7 3 8 5 13 .1 9 5 435 1.42 2 5 ND 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .00 .01 1 90-G16-W7 3 8 5 13 .1 9 5 435 1.42 2 5 ND 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .00 .01 1	90-F26-W4	5				2					3	5		1					15	.17	.031	2	19	.85	808	.01	5	.82	.01	.08	2	16
90-G16-F03	90-G16-F01	1	346	9				15			6		ND	1	117								13	1.00	127	.17	6	3.94	.24	.20	1	6
90-G16-F03	90-G16-F02	1	774	8	60	6	4	11	592	3.54	5	5	ND	1	22	.8	3	2	36	2.07	.170	12	10	.94	48	.24	12	1.90	.07	.09	3	7
90-G16-F04		2	189	76	544						141	5	ND	1			2	2	49	1.78	.104	3	14	.62	295	.12	7	1.70	.12	.05	2	4
90-G16-F06		1										_		-					57		111	3	14	.69				1.88	.15	.08		4
90-G16-F06 1 388 10 41 .2 14 12 389 2.96 7 5 ND 1 36 1.3 2 2 97 2.28 108 2 25 .92 21 .24 6 2.36 .14 .07 2 90-G25-F05 90-G25-F05 1 7656 2 29 4.7 304 30 2308 3.54 10 5 ND 1 143 1.9 9 2 43 27.90 .012 3 212 1.42 17 .01 2 1.32 .01 .01 1 90-G25-F06 9 76997 / 14 23 23.3 311 33 700 20.48 8 5 7 1 8 8.3 10 17 71 .44 .010 2 202 .92 27 .01 8 1.31 .01 .01 1 90-G26-F01 3 240 5 33 1.1 6 4 840 2.12 3 5 ND 1 78 2 2 5 7 4.98 .008 2 12 .80 82 .01 10 .08 .01 .04 1 90-G26-F03 1 5484 11 121 1.2 4 11 2107 6.55 4 7 ND 1 93 1.6 6 2 45 11.27 .067 7 17 1.66 29 .01 3 2.85 .03 .09 1 90-G26-F04 1 38 2 27 .1 266 30 726 4.92 2 5 ND 1 38 .8 5 2 54 3.31 .31 7 18 1.57 40 .01 7 2.86 .06 .15 1 90-G16-K01 1 38 2 27 .1 266 30 726 4.92 2 5 ND 1 396 1.0 2 2 39 19.06 .021 2 92 7.77 493 .01 7 .42 .01 .03 1 90-G16-K03 16 166 12 87 .1 35 14 575 4.85 27 5 ND 1 248 2 2 2 12 24.62 .020 3 44 4.55 40 .01 12 .17 .01 .05 1 90-G16-K04 9 271 10 53 .5 44 14 487 12.07 10 5 ND 1 27 .2 6 2 141 1.38 .106 7 124 .84 19 .30 2 1.84 .07 .05 1 90-G16-W1 1 37 8 18 .1 436 27 483 3.03 23 5 ND 1 438 2 2 2 25 18.28 .012 2 131 7.71 6 .01 2 .15 .01 .04 1 90-G16-W3 1 13 4 18 .1 126 17 676 3.85 4 5 ND 1 191 .5 2 2 40 13.84 .035 2 113 5.48 33 .01 10 .28 .01 .06 1 90-G16-W5 1 11 5 25 .1 520 35 412 3.32 2 6 ND 1 119 .7 2 2 72 10.93 .038 2 407 4.75 94 .01 5 1.08 .01 .06 1 90-G16-W7 3 8 5 13 .1 9 5 435 1.42 2 5 ND 1 216 .2 2 2 11 1.83 .092 2 10 .30 24 11 9 1.31 .01 .02 1 90-G16-W1 1 8 10 31 .3 1 4 4052 4.23 835 6 ND 1 116 .7 4 2 427.05 .024 12 5 .17 13 .01 2 .22 .02 .07 1		1 1		-								_		-																. 19	3	28
90-025-F06 9 7697 / 14 23 23. 311 33 700 20.88 8 5 7 1 8 8.3 10 17 71 .44 010 2 202 .92 27 01 8 1.31 .01 .01 1 90-026-F01 3 240 5 33 1 6 4 840 2.12 3 5 MD 1 78 2 2 2 5 7 4.98 008 2 12 .80 82 .01 10 .08 .01 .04 1 90-026-F03 1 5484 11 121 1.27 4 11 2107 6.53 4 7 MD 1 93 1.6 6 2 45 11.27 067 7 17 1.66 29 .01 3 2.85 .03 .09 1 90-026-F04 1 2123 2 132 .5 3 15 1252 5.93 3 5 MD 1 38 .8 5 2 54 3.31 131 7 18 1.57 40 .01 7 2.86 .06 .15 1 90-016-K01 1 38 2 27 .1 266 30 726 4.92 2 5 MD 1 396 1.0 2 2 39 19.06 .021 2 92 7.77 493 .01 7 .42 .01 .03 1 90-016-K03 16 166 12 87 .1 35 14 575 4.85 27 5 MD 1 248 .2 2 2 12 24.62 .020 3 44 4.55 40 .01 12 .17 .01 .05 1 90-016-K04 9 271 10 53 .3 44 14 487 12.07 10 5 MD 1 27 .2 6 2 141 1.38 .106 7 124 .84 19 .30 2 1.84 .07 .05 1 90-016-W1 1 37 8 18 .1 436 27 483 3.03 23 5 MD 1 438 .2 2 2 2 25 18.28 .012 2 131 7.71 6 .01 2 .15 .01 .04 1 90-016-W3 1 13 4 18 .1 126 17 676 3.85 4 5 MD 1 119 .5 2 2 40 13.84 .035 2 113 5.48 33 .01 10 .28 .01 .10 190-016-W7 3 8 5 13 .1 9 5 435 1.42 2 5 MD 1 216 .2 2 2 21 1.83 .092 2 10 .30 24 .11 9 1.31 .01 .02 1 90-016-W7 3 8 5 13 .1 9 5 435 1.42 2 5 MD 1 216 .2 2 2 21 1.83 .092 2 10 .30 24 .11 9 1.31 .01 .02 1 90-016-W1 1 8 10 31 .3 1 4 4052 4.23 835 6 MD 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .07 1		•										-		-												.24	6	2.36	.14	.07	2	6
90-G25-F06 90-G26-F01 3 240 5 33 1 6 4 840 2.12 3 5 MD 1 78 2 2 5 7 4.98 008 2 12 .80 82 001 10 .08 .01 .04 1 90-G26-F03 90-G26-F04 1 5484 11 121 1.2 4 11 2107 6.53 4 7 MD 1 93 1.6 6 2 45 11.27 067 7 17 1.66 29 .01 3 2.85 .03 .09 1 90-G26-F04 1 2123 2 132 .5 3 15 1252 5.93 3 5 MD 1 38 .8 5 2 54 3.31 131 7 18 1.57 4 .01 7 2.86 .06 .15 1 73 2 18 .1 77 11 736 2.45 3 5 MD 1 396 1.0 2 2 39 19.06 .021 2 92 7.77 493 .01 7 2.86 .06 .15 90-G16-K01 90-G16-K02 1 73 2 18 .1 77 11 736 2.45 3 5 MD 1 396 1.0 2 2 39 19.06 .021 2 92 7.77 493 .01 7 .42 .01 .03 1 90-G16-K03 90-G16-K04 90 271 10 53 .5 44 14 487 12.07 10 5 MD 1 248 .2 2 2 12 24.62 .020 3 44 4.55 40 .01 12 .17 .01 .05 1 90-G16-K04 90-G16-K04 90-G16-W1 1 37 8 18 .1 436 27 483 3.03 23 5 MD 1 438 .2 2 2 25 18.28 .012 2 131 7.71 6 .01 2 .15 .01 .04 1 90-G16-W2 1 25 10 14 .1 364 32 848 3.43 6 5 MD 1 263 .2 2 2 25 18.28 .012 2 131 7.71 6 .01 2 .15 .01 .04 1 90-G16-W3 1 13 4 18 .1 126 17 676 3.85 4 5 MD 1 119 .5 2 2 40 13.84 .035 2 113 5.48 33 .01 10 .28 .01 .10 1 90-G16-W7 90-G16-W7 3 8 5 13 .1 9 5 435 1.42 2 5 MD 1 216 .2 2 2 21 1.83 .092 2 10 .30 24 .11 9 1.31 .01 .02 1 90-G16-W1 1 8 10 31 .3 1 4 4052 4.23 835 6 MD 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .07 .07	90-G25-F05	1	7656	. 2	29	4.7	304	30	2308	3.54	10	5	ND	1	143	1.9	9	2	43	27.90	.012	3	212	1.42	17	.01	2	1.32	.01	.01	1	410
90-G26-F01	90-G25-F06	9	76997									5	7	1	8			17	71	.44	.010	2	202	.92	27	.01	8	1.31	.01	.01	114	220
90-G26-F03 90-G26-F04 1 2123 2 132		1 3	240	5							3	5		1	78			5	7	4.98	.008				82	.01	10	.08	.01	.04	S f	17
90-G16-K01		1		_								_		-					45		.067							2.85	.03	.09	1	4
90-G16-K02		1				.5	3				3			-					54						40	.01	7	2.86	.06	.15	1	7
90-G16-K03 16 166 12 87 35 14 575 4.85 27 5 ND 1 24 1.4 2 2 138 1.67 2.299 17 66 4.47 34 0.03 2 2 2.86 0.05 0.08 1 90-G16-K04 9 271 10 53 3 44 14 487 12.07 10 5 ND 1 27 2 6 2 141 1.38 106 7 124 .84 19 30 2 1.84 0.07 0.05 1 1 37 8 18 3 436 27 483 3 0.03 23 5 ND 1 438 .2 2 2 25 18 28 0.012 2 131 7 71 6 0.01 2 1.5 0.01 0.04 1 1 1 1 1 1 1 1 1	90-G16-K01	1	38	2	27	.1	266	30	726	4.92	2	5	ND	1	396	1.0	2	2	39	19.06	.021	2	92	7.77	493	.01	7	.42	.01	.03	1	1
90-G16-K03 16	90-G16-K02	1 1	73	2	18	***	77	11	736	2.45	3	5	ND	1	248	.2	2	2	12	24.62	.020	3	44	4.55	40	.01	12	.17	.01	.05	1	1
90-G16-K04 90-G16-W1 90-G16-W2 1 25 10 14 1 364 32 848 3.43 6 5 ND 1 283 2 2 2 25 18.28 .012 2 131 7.71 6 .01 2 .15 .01 .04 1 90-G16-W3 1 13 4 18 1 126 17 676 3.85 4 5 ND 1 119 .5 2 2 40 13.84 .035 2 113 5.48 33 .01 10 .28 .01 .10 1 90-G16-W5 1 11 5 25 .1 520 35 412 3.32 2 6 ND 1 119 .7 2 2 72 10.93 .038 2 407 4.75 94 .01 5 1.08 .01 .06 1 90-G16-W7 90-G16-W10 1 8 10 31 .3 1 4 4052 4.23 835 6 ND 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .07 1	90-G16-K03	16	166	12	87		35	14	575	4.85	27	5	ND	1	24	1.4	2	2	138	1.67	.299	17	66	.47	34	.03	2	.86	.05	.08	1	2
90-G16-W1 1 37 8 18 .1 436 27 483 3.03 23 5 ND 1 438 .2 2 2 25 18.28 .012 2 131 7.71 6 .01 2 .15 .01 .04 1 90-G16-W2 1 25 10 14 .1 364 32 848 3.43 6 5 ND 1 283 .2 2 2 35 11.92 .016 2 104 7.78 966 .01 7 .32 .01 .06 1 90-G16-W3 1 13 4 18 .1 126 17 676 3.85 4 5 ND 1 119 .5 2 2 40 13.84 .035 2 113 5.48 33 .01 10 .28 .01 .10 1 90-G16-W5 1 11 5 25 .1 520 35 412 3.32 2 6 ND 1 119 .7 2 2 72 10.93 .038 2 407 4.75 94 .01 5 1.08 .01 .06 1 90-G16-W7 3 8 5 13 .1 9 5 435 1.42 2 5 ND 1 216 .2 2 2 21 1.83 .092 2 10 .30 24 .11 9 1.31 .01 .02 1 90-G16-W10 1 8 10 31 .3 1 4 4052 4.23 835 6 ND 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .07 1	90-G16-K04	9	271										ND	1				2	141						19	.30	2	1.84	.07	.05	1	1
90-G16-W3		1											ND	1		.2									6	.01	2	. 15	.01	.04	1	3
90-G16-W3	20-G16-W2	1	25	10	14	 1	364	32	848	3.43	6	5	ND	1	283		2	2	35	11.92	.016	2	104	7.78	966	.01	7	.32	.01	.06	1	1
90-G16-W5		1	13	4	18			17	676	3.85	4	5	ND				2					2	113	5.48	33	.01	10	.28	.01	.10		6
90-G16-W7 3 8 5 13 1 9 5 435 1.42 2 5 ND 1 216 .2 2 2 21 1.83 .092 2 10 .30 24 .11 9 1.31 .01 .02 1 90-G16-W10 1 8 10 31 .3 1 4 4052 4.23 835 6 ND 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .07 1		1	11	5	25						2	6	ND					2	72	10.93	.038	2	407	4.75	94	.01	5	1.08	.01	.06	1	2
90-G16-W10 1 8 10 31 .3 1 4 4052 4.23 835 6 ND 1 116 .7 4 2 4 27.05 .024 12 5 .17 13 .01 2 .22 .02 .07 1		3										-																		.02	1	4
90-616-U11		_	_	_			-					-																		;	i	38
	20-G16-W11	,	14	31	80	.4	2	7	971	2.40	140	8	ND	1	27	.4	2	2	7	7.33	.095	14	4	.08	56	.01	7	.54	.03	.14	1	17
																							60	.82	180	.07	33	1.88	.06	. 13	13	480

Coast Mountain Geological Ltd. FILE #

FILE	#	90-	2	0	1	9
------	---	-----	---	---	---	---

SAMPLE#	Mò ppm	Cu ppm	Pb ppm		Ag ppm	Ni	Co	Mn ppm	Fe %	As ppm	D D	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca X	P %	La ppm	Cr Cr	Mg %	Ba Ti ppm %	B Al	Na X	K W Au* % ppm ppb
90-G16-W12 90-G25-W5 90-G26-W1 90-G19-X01	1	529 1255 11 466	2 5 3 6	152 19	.4 1.3 .1	21 22 11 10	22 2	1038 1170 275 1603	6.28 .97	2 9	5 5 5 5	ND ND ND	2 1 3	81 42 58 37	.4 .8 .2 .2	3 2 2 2	2 2 2 2	122	1.45	.097 .073 .005 .168	6 2 3 7	7	1.05 2.79 .50 1.58	36 .01 39 .03 43 .01 76 .08	2 1.09 2 3.16 6 .15 5 1.98	.01 .01 .06 .03	.16 1 230 .08 1 10 .04 2 48 .28 5 50

APPENDIX II.

INDUCED COUPLED PLASMA ANALYSES

SOIL SAMPLES AND STREAM SEDIMENT SAMPLES

- Note 1. Samples prepared and analysed by Acme Analytical Laboratories Ltd. Vancouver, B.C.
- Note 2. Sample Number Code -

;· '

```
90G - 25 - K01
      / / \ \ \ \
   1990 / Yehiniko\\
/ project \ \sample reference no.
G = grab sample
                   sample taken by
C = chip sample
L = silt sample
                    K = Kushner
                    F = Faragher
F = float sample
                    S = Ostensoe
                    W = Wilkins
                    X = Basil
                    R = Ridley, D.
                    C = Ridley, C.
                    Q = McLellan
```

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

DATE RECEIVED! NOV 20 1770

PHONE 253-3158 DATA LINE 251-1011

DATE REPORT MAILED:

Noy.24/90

GEOCHEM PRECIOUS METALS ANALYSIS

Quest Canada Exploration FILE # 90-4747R

SAMPLE#	Au ppb	Pt ppb	Pd ppb	Rh ppb
25 BL 100E 94+75N 25 BL 100E 84+25N 25 L96N 101+50E	8 1	2 4	2 2 5	2 2 7
25 L96N 105+75E 25 L90N 106+50E	6 2	6	36 4	2 2

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. - SAMPLE TYPE: SOIL PULP

D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

NOTES THEMSELLOWS HADOWALOKING

DWTF VECTACRI MAA TO TAAA

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

NOV. 26/90

GEOCHEM PRECIOUS METALS ANALYSIS

Quest Canada Exploration FILE # 90-4820R

SAMPLE#	Au	Pt	Pd	Rh
	ppb	ppb	ppb	ppb
25 L94N 109+50E	3	2	24	3 2
25 L86N 95+25E	23	4	13	

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. - SAMPLE TYPE: SOIL PULP

SIGNED BY. D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS ----- ------ ---- -----

DUTE VECETAED: DEC 11 1220

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

DATE REPORT MAILED

Dec 24/80

GEOCHEM PRECIOUS METALS ANALYSIS

Coast Mountain Geological Ltd. FILE # 90-2019R

SAMPLE#	Au ppb	Pt ppb	Pd ppb	Rh ppb
90-L25-F05	8	1	4	2
90-L25-F06	3	1	2	2
90-L25-F07	4	3	14	2
90-L25-F10	3	3	8	2
90-L25-W3	7	1	2	2
90-L25-W4	72	2	3	3
90-L25-W6	3	4	6	2
90-L25-W7	1	1	2	2
90-L26-W12	16	8	3	2
STANDARD FA-100R	44	45	48	9

10 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. - SAMPLE TYPE: 901L PULP

D. TOYE, C. LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

GEOCHEMICAL A.LYSIS CERTIFICATE

Quest Canada Exploration P.O. Box 11569 Vancouver, Vancouver BC V6B 4N8

File # 90-4894

Page 1

									Γ.	U. 50	^ ''	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		uvei ,																	
SAMPLE#	Мо	Cu	Pb	70	Αg	Ni	Co	Mn	Fe 🕷	1	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Ng	Ba	Ti	В	AL	Na	K 💮		u
SAMPLEN	ppm		ppm	ppm	2000 CO	ppm	ppm	ppm	×		pm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	*	ppm	ppm	X	ppm	***	bbu	X	X	X P	PM P	pb
		P	FF		*********	77			- 8	***			-	-							4-		07	45/		7 1	.56	.04	.07	4	12
25 3200' 0+00	1	58	17	84	.2	13	13	552		27	5	ND	3	50	2	2	2	79		.088	17	22	.83	154	.07			.04	.06		6
25 3200' 1+00	ĺ	45	17	81	1	12	11	408		26	5	ND	3	42	2	2	4	79		.095	16	22	.74	119	.07		.21	.03	.07		12
25 3200' 1+50	1	39	16	78		13	12	479	3.53 🏽	27	5	ND	3	37	2	2	2	64		.097	14	19	.70	87	.06				2000		8
25 3200' 2+00	li	29	11	71		11	10	409	3.22 🏽	22	5	ND	2	36	2	2	2 -	63		.094	14	19	.68	83	.05		.13	.03	.07		21
25 3200' 2+50	l i	42	17	84	1	12	12	569	5.45 🏽	25	5	ND	3	38	2	2	2	62	.53	.097	15	19	.72	98	.06) 1	.22	.04	.07		٥١
25 3200 2.50	i .	••	••	•																							-	•	~ ×		,
25 3200' 3+00	1	21	9	42		4	6	269	2.27 🏽	9	5	ND	4	31	2	2	2	47		.081	12	12	.49	41	.06		.92 1.10	.04 .05	.06	2	31
25 3200' 3+50	li	28	7	48		4	7	284	2.59 🏽	5	5	ND	4	39	2	2	2	58		.091	14	14	.60	48	.09				.05	5	31
25 3200' 4+00	1	20	7	47		4	5	225	2.32 🐰		5	ND	4	34	.2	2	2	58		.089	15	13	.47	40	.06			.04 .05	.06	2 1	7
25 3200' 4+50	li	30	5	56		4	7	303	2.79 🐰	8	5	ND	5	39	2	2	3	60		.092	16	14	.62	55	.09			.05	.06		
25 3200' 5+00	1	26	7	60	2	6	7	280 2	2.57 🏽	6	5	ND	5	38	2	2	2	58	.61	1095	15	14	.58	55	-08	3 1	.05	.03	.06 🞆		٦
25 5200 5:00	`		•														_									,	02	0/			
25 3200' 5+50	1	31	6	46	.2	5	6	221 2	2.38 🏽	10	5	ND	4	32	2	2	2	53		-089	14	13	.52	47	.06			.04	.07		3
25 3200' 6+00	1	21	6	52	1	3	6	274	1.85 🏽	3	5	ND	3	36	.2	2	4	46	-	.105	14	13	.56	65	.07		.00	.05	.07	*	
25 3200' 6+50	Ιi	20	6	45	-	4	6	248 2	2.13 🏻	4	5	ND	3	36	.2	2	2	52		103	15	12	.57	67	.07			.05	.08	2	31
25 3200' 7+00	li	24	11	41		5		202		8	5	ND	3	32	2	2	2	48		-087	12	12	.51	50	.06	-		.04	.07	**	3
25 3200' 7+50	i	25	10	44	.2	5		200 2			5	ND	3	31	2	2	2	51	.51	.092	13	13	.49	43	.06	5	.87	.04	.07 💮		5
23 3200 7.30	ľ		,				_		*****	***	-																		💥		
25 3200' 8+00	1 1	30	9	55	.3	6	7	291	2.45	7	5	ND	3	39	.2	2	2	55		.088	15	15	.71	58	.09		1.27	.05	.06		6
25 3200' 8+50	li	35	14	59	2	7	8	309		9	5	ND	4	40	2	2	2	59	.56	.084	14	15	.74	64	-09		1.32	.05	.06		3
25 3200' 9+00	1 ;	34	8	59	2	6	8	316		10	5	ND	4	41	.2	2	2	60	.59	.089	15	14	.76		10			.06	.06 💹	#	2
25 3200' 9+50	1 :	24	12	59	***	6	7	288		12	5	ND	4	35	2	2	2	70	.49	2085	14	17	.72	72	.07		1.39	.04	.05 💹		5
	1 :	43	11	81	2	11	•	382		23	5	MD	Ä	41	.2 .2	2	2	71	.60	.095	16	21	.75	109	.07	5 1	1.38	.04	.06 🎇	.	13
25 3200' 10+50	'	43	• • •	01		••	••	302	****				•	• • •		-	-														_
25 3200' 11+50	١,	34	18	62		10	9	324	5.49 🏽	20	5	ND	3	35	.2	2	2	70		.084	14	19	.73	74	.06		1.38	.04	.05		5
25 3200' 12+00	li	40	13	66	2	10		348		21	5	ND	4	35	Z	2	2	70	.47	.088	15	19	.73	77	.05		1.38	.03	.05		?
25 3200' 12+50	li	37	16	64	****	10		327		22	5	ND	4	36	.2	2	2	71	.49	-090	16	19	.74		06		1.41	.04	.05		6
25 3200' 13+00	1 ;	32	10	55	2	9	8			19	5	ND	4	30	2	2	2	68	.42	.082	13	19	.61		05		1.13	.03	.05		2
25 3200' 13+50	li	29	10	60		ģ		299		18	5	ND	4	33	2	2	2	73	.46	-083	14	20	.69	68	.06	4	1.31	.04	.05 🎇		5
25 3200. 13430	l '	Ly	10	•		•	·				•		•																🕷		
25 3200' 14+00	1 1	28	9	56	.2	9	8	267	3.19 🖁	16	5	ND	4	31	2	2	2	67		.076	15	18	.61		.05	-	1.15	.03	.04		38
25 3200' 15+00	1 ;	24	10	60	2	11	8	292		12	5	ND	4	36	.2	3	2	70	.49	.082	14			79	.07	_	1.40	.04	.05		21
25 L106N 107+25E	li	67	3	47	3	452	_	601	200	24	5	ND	1	16	2	2	2	86		.053	2		4.87	88	.09		2.17	.03	.02		21
25 L106N 107+50E	li	33	7	48	.2	313		432		3	5	ND	1	8	2	2	2	85	.17	.037	4	470	4.03		12		2.30	.02	.02		2
25 L106N 107+75E	1 1	27	3	64	33	292		545		5	5	ND	1	12	2	2	2	95	.23	2101	3	645	3.75	61	14	6 7	2.08	.03	.02 🎇		11
ES ETOON TOTAL			•	•					***																				🕷		-1
25 L106N 108+00E	1	44	2	53	2	334	33	457	5.98 🏽	**	5	ND	1	11	.2	2	2	97		.064		693		79	.09		2.33	.03	.03		3
25 L106N 108+25E	1 1	41	- 2	61	3	365		673			5	ND	1	15	2	2	2	85			3	683			12		2.29	.03	.03		31
25 L106N 108+50E	i	78	4	41		527		614		6	5	ND	1	16	.2	2	2	79		.049	3	707		80	.07		2.57	.03	.03		!!
25 L106N 108+75E	li	57	Ž	52	3	407		748		3	5	ND	1	13	2	2	2	84		.065	3	620					2.34	.03	.03		11
25 L106N 109+00E	,	66	5	39	2	461		455		3 2	5	ND	1	17	.2	2	2	75	.27	.046	2	702	4.87	80	.09	6 7	2.21	.03	.03 🎇		3
EJ LIVOR 109TODE	'	30	•	-		751	٠.	700			-		•	,-															🕷		
25 L106N 109+25E	•	65	4	42		448	38	491	4.35 🏻	2	5	NO	1	15	.2	2	2	72		.044		644			.08		2.27	.03	.02		.11
STANDARD C/AU-S	18	60			7.1		32	1051	5.95		18	7	37		18.9	16	19	56		.094	37	58	.91	181	07	34 '	1.89	.06	.13	12	47
STANDARD C/AU-S			75		200000000					27.73		<u> </u>			677/67 X																

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. AUT ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ŧ	1	(()	ł	()	ŧ	}	ŧ	Ì	ĺ	i Q	1	t d	h	dal	ì p	1 d _	L.	.of) F	ľ) # 1	}4	39)	ŧ	ì	f)	ŧ)	1	hade	`1
[AMPI	E#			Mo ppm	Cu	Pb ppm		Ag		Co	Mn ppm		As ppm	U Ppm	Au ppm			Cd ppm		Bi ppm	V ppm	Ca X		La pm	Cr ppm	Mg X		Ti X		Al X	Na X	. 50000	M Au*
			109+		1	58	3	50	.3	426	40	593	5.73	2	5 5	ND ND	1	12 14	.2 .2	2	5 2	89 77	.25 .0 .28 .0			626 4 660 3			.18 .09		2.48 1.87	.03	200000	1 9 1 1
- 12	25 L	104N	109+ 107+	00E	3		7 14	54 56	.7	84	18	416 687	6.42	2 9	5	ND	1	11	 5	2	4	89	.15 .0	73	13	155	.99	64	.48 .08	2	3.98 2.09	.03	.04 💹	1 2 1 1
			107+ 107+		1		3 6	61 65	.3 .5	334 297	34 31	596 584		2 3	5 5	ND ND	1	11 15	.2 .2	2	3 6	90 96	.28 .0 .26 .0		-	659 3 599 3			.09		2.15	.03		1 3
			107+		1	30	12	59 49	300 OT 100			821 420		3 4	5 5	ND ND	1	20 11	.2 .2	2	4 2	96 91	.29 .0		_	609 3 654 3			.11 .09			.03		1 2 1 22
			108+ 108+		1 1	36 25	10	55				900		2	5	ND	i	14	.2	2	2	94	.25 .01	39	2	572 3	.29	89	11	4	1.87	.03	.04 💹	1 4
- 12	5 L1	104N	108+ 108+	50E	1 6	37 35	2 3	53 57	.3	307 279	34 36	595 900	4	2 2 4	5 5	ND ND	1	13 10	.2 .2	2	3 3	84 89	.26 .00 .18 .00	SA MO		570 3 558 3			.07 .08		1.97 2.08	.03		1 1 1 1
2	5 L1	04N	109+	90E	2	24	5	67		236		1932	9	2	5	ND	1	10 11	.2 .2	3	4 2		.14 .07			534 2 617 3			.17 .09		2.59 2.10	.03 .03	555255	1 5 1 2
			109+		1 2	36 28	4	50 54	-2	316 259		764 · ! 1171		2 2 4	5	ND ND	i	12	.2	2	2	93	.23 .07	4	3	597 2	.91	69	.11	3	2.19	.03	.04	1 1
la	5 L1	04N	109+ 110+	75E	9 13	14 23	11 7	53 95	.1			883 : 2641 :	×	2 12	5 5	ND ND	1	18 39	.2 .2	2	6 3	82 112	.22 .04 .46 .09	.8 7		312 1 404 2			15 14			.02		4 2 1 5
			106+		2	23	4	73 52	.5 .6	146 53		748 326		4	5 8	ND	1	10 11	.2 .4	3 2	4 2		.14 .00			289 1 116			.21 .37		2.72 5.31	.02 .04	.03 .04	1 1 1 3
			106+		2	61	11	63	.5			565		Š	5	ND	i	15	.2	3	2	84	.22 .07	9	3	436 3	3.07	154	.12	2	1.76	.02	.03	1 2
			107+ 107+		1	33 32	11 2	113 59	.5 .5			2363 656	×	26 3	5 5	ND ND	1	46 16	.2 .2	2	4 3	126 90	.45 .20 .26 .00	13 57		396 2 580 4			.10 .12		2.35 2.01	.03 .03		1 3 1 1
2	5 L1	02N	107+	50E	1	34	2	45		315		779		2	5	ND	1	14		2	2		.24 .09			595 3 374 2			.07 .15	•		.03	200000	1 6 1 2
	5 L1 5 L1	OZN OZN	107+	75E 00E	1 2	16 25	10 13	58 72		158 279		870 : 469 :		2	5	ND ND	1	16 7	*****	2	5		.14 .04	9	3	546 3	5.19	37	13	5	2.22	.02	.02	6 3
2	5 L1	IO2N	108+	25E	1	39	2	58 57	.4	348 338		710 526		2 2 4 2	5 5	ND ND	1	9 8	.2 .2	2	2	87 95	.19 .00			692 3 686 4			.10		2.30 2.50	.04	22000	1 2
															_	,,,		40		,	_		.18 .0	**	_	380 2			.28		2.22	.03	.06	1 2
			108+		8	20 39	3	76 41	.6		29	669 376	6.71	56	5 5	ND ND	i	18 13	.2 .2	3	2	113	.19 👯 0:	8	2	827 3	.76	52	.07	4	2.56	.02	.05	1 1
- 1	-		109+		16	23	4		5			1991 806	- 5	90 10	5 5	ND ND	1	88 33	.2	3	2		.72 .14	0		327 2 209 1			.14			.03		1 2 1 1
			109+ 109+		17 11	31 25	6	81 80		152 160		1402		10 25	5	ND	i	64	1.4	3	2	93	.59 .1	9	11	187 1	.16	484	.30			.04		1 3
			110+		20	12	9	83	.2			749		2 4	5 5	ND ND	1	18 49	.2 .2	2	4 2	94 90	.20 .0	6		144 241 2			.43 .09		1.81 1.87	.02		2
	5 L1	OON	106+	OE	1	62 224	7	52 68		108 316		423 : 985 :		65	5	ND	1	95	2	4	2	249	.98	2	27	475 2	2.53	1003	.09	8	2.34	.04	.10	6
2	5 L1	OON	106+7 107+0	75E	3 6	32 42	3 6	71 77	.5 .6	248 187		816 4 759 (10 4	5 5	ND ND	1	53 40	.2 .2	2 3	2	121 100	.60 .10)Z)4		522 3 219 1			.10 .20	-	1.95 3.11	.03 .03		1 5
			107+2	- 1	5	17	9	78	.3			678 3		3	5	ND	1	38	.2	2			.36 .11			223 1			.15				.07	1 1
s	TAND	ARD	C/AU-	S	18	58	36	131	7.0	68	32 '	1051 3	3.95	38	17	7	37	53	18.4	15	20	56	.46 .09	4	38	59	.91	181	07		1.89	.06	.13	1 54

																											_	• •	
SAMPLE#	Mo ppm	Cu	Pb ppm		Ag ppa	N: ppm	Co	Mn	Fe As			Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	Ppm V	Ca X	P *	La ppm	ppm Cr	Mg X	Ba ppm	Ti Z	_	Al X	Na X	K W % pps	
25 L100N 107+50E	1	48		79	5	234	17	453	4.70 5	5	ND	4	30	.2	2	2	91	.35	.131	6	262	1.83	215	.13		2.05	.03	.05 1	,
25 L100N 107+75E	1 7	17	Ā	80	3	130	20 1		4.13 5	5	ND	i	39	.2	2	2	90		106	5		1.65		.20		1.33	.02	.06 1	3
25 L100N 108+00E	1 4	15	4	69		163		730	4.65	5	ND	i	15	2	Ž	Ž	84		.086	4	446		83			1.65	.02	.05 1	1
25 L100N 108+25E	4	29	7	79	5	254	68 1		5.15 12	5	ND	1	25	.2	Ž	2	97	.27	.090	6	356		196	13		1.86	.02	.05 1	2
25 L100N 108+50E	4	20	8	90	6	179	50 1	1734	5.75 10	5	ND	1	20	.2	2	2	83	.32	.112	6	350	2.16	144	.15	6	1.94	.03	.05 1	2
25 L100N 108+75E	4	15	9	64	.4	183	29 1		5.38 2	5	ND	1	24	.2 .4	2	4	94	.25	.073	3	449		103	.14		1.63	.02	.04 1	1
25 L100N 109+00E	7	26	. 8	61	6	197		730	5.06 10		ND	1	37		2	2	112		.070	7		2.02	273	.27		1.73	.03	.05 1	1
25 L100N 109+25E 25 L100N 109+50E	5	35 22	4	90 90		256 205	41 1 57 2		5.20 13 4.47 3	5 5	ND ND	1	44 28	.2 .2	2	2	85		2118 114	10	219 318			.16	_	2.18 1.39	.03	.06 1 .07 1	3 2
25 L100N 109+75E	5	52	11	170	3	430	38 2		4.26		ND	i	74	:4	2	2	77		168	11	266			.10		2.11	.03	.07	66
25 L100N 110+00E	2	24	5	111		214	35 1	130	5.09 6	5	ND	1	41	.2	2	2	85	.63	_089	3	216	3.17	239	.17	6	2.41	.04	.04 1	2
25 L84N 93+50E	1	78	4	33 🖁	.3	598			4.85 5	5	ND	1	43	2	2	2	69	.55	.048	2	296		150	.10	2	3.47	.01	.19 1	1
25 L84N 93+75E	1	104	5	38	3	665			5.14	5	ND	1	19	.2	2	2	90		.057	4	293			07		3.02	.01	.04 1	4
25 L84N 94+00E	!	83 54	4	28 49	83	692			5.64 2	5	ND	1	38	2	2	2	101		.048	3	406		43	07		3.37	.01	.04	4
25 L84N 94+25E	1	74	0	47	-3	574	40	457	4.53 4	>	ND	1	30	.2	2	2	77	.35	.079	4	299 (0.20	72	-07	5	2.83	.02	.04 1	•
25 L84N 94+50E	1	99	7	44 🖁	8887 F88	697			4.88 8	-	ND	1	43	.2	2	2	78		.044	4	335		112	.09	_	3.58	.02	.05 1	6
25 L84N 94+75E	! !	74	2	28	0.07.773	577			4.83 2	5	ND	1	32	2	2	2	82		.043		374		119	.09		3.08	.02	.08	5
25 L84N 95+00E 25 L84N 95+25E	1	64 70	. 4	33 38		562 576			5.04 2 5.17 5	5 5	ND		24	.2	2	2	88 88		.042	3	396 <i>(</i>		91	.09		2.79	.02	.07	6
25 L84N 95+50E	i	78	6	45		665			5.39 9	5	ND ND	i	22 18	.2 .2	2 2	2	89		.042 .045		400 7			.11 .10		2.96 3.15	.03 .02	.05 1 .04 1	6 6
25 L84N 95+75E	1	69	4	45		497	42	560	5.62 7	5	MD	1	33	2	2	2	89	.44	.059	6	430 :	5.05	76	.12	5	2.30	.04	.05 1	6
25 L84N 96+00E	li	83	8	77	3	541			5.66	5	ND	i	23	.2	2	2	85		.060	6	426					3.28	.03	.05	4
CAN-L1	2	93	21	143		41			4.17 32	5	ND	1	43	.7	2	2	94		.123	10		1.19		.08		1.51	.03	.09	3
CAN-L2 (TF)	16	905	125		G059766	186			15.47 432	_	ND	4		6.1	12	2	205	.62		65	107			.07		2.08	.01	.08	64
901-25-85	3	141	29	123	.6	28	19	895	5.36 44	5	ND	1	166	.2	4	2	74	4.15	.144	16	21	.77	197	.01	7	1.11	.01	.09 1	12
90L-25-\$6	2	131	35	149	.6	26			5.95 54	5	ND	1	186	.2	3	2		3.76		16	17	.59	266	.01		1.05	.01	.12 1	11
90L-25-S7	1	74	50	110	5	15			5.10 48	5	ND	1	97	.2	2	2			124	13	15	.80	182	.02		1.38	.02	.08 1	3
90L-25 -58 90L- 25-59	1	152 35	5	87		402	45 1		5.84 27	5	ND	1	38	.2	2	2	59		.094	10	162 3		165	-05		3.05	.02	.08	14
90L-25- \$10		22 44	y E	75 87		36 46	15 1 17 1		4.90 6 4.75 10	5 5	ND ND	- 1	92 95	.2 .2	2	2	48 1 54	1.07 .91	124	9	34 1	1.28 1.59	241 168	.03 .06		2.74 3.38	.02 .02	.07 1 .06 1	10
70L-2J-310	•	70	,	• · · · · · · · · · · · · · · · · · · ·		40	17 1	740	7.13	,	AD	•	72	**	3	~	34	.71	*169	6	40	1.37	100	•••	•	3.30	.02	.00	•
90s-25 - 91	2	92	22	90 🖁		21	17 1		5.49 13	5	ND	1	19	2	2	2	97	5	059	12	38 1			.07		3.31	.01	.06 3	19
90s-25- 9 2	2	520	10	105		21	21 2		6.24 8	5	ND	1	26	2	2	2	89		093	15	38 1			.07		2.96	.01	.09	73
90s-25- 93 90s-25 -9 4	1	88 110	-	120 126		15 22	14 18 20 19		5.45 9	5 5	ND	1	28	Z .2	3 4	2	65 101	3	159	30 17	27 1 37 2			.02 _03		2.94 5.38	.01 .01	.09 1	11 11
705-25- 44 205-25- 9 5	1	153		130		22 28	20 17		6.27 7 6.29 10	5 5	ND ND	1	25 27	2	3	2	128	5	.101 .116	17	47 2		158 226	06		3.38 3.51	.01	.09	22
	•											•			•	•											•••		
90S-25-Q6 Standard C/Au-S	1 18	176 58		134 130 6		27 68	23 30 31 10		5.98	5 17	ND 6	1 37	40 53 1	A A	2 15	2 18		.33 å .45		22 36	47 1 57			.06 .07		i. 13 i. 88		.07 1	28 52
							-7 1			- 11			<i></i> 3	***		,,,		.72	7.7			.,,	.00 %	· · · · · · · · · · · · · · · · · · ·				• • • •	

			-		. ,			Z4	<i>></i> 4	,	ıa f	7	14) - 0	T	r 4	- ş #	Ŧ	7403		=	;	-	-	-		~	age 4	
SAMPLE#	PPM Mo	Cu ppm	Pb ppm	Zn ppm	200000000000	N1 ppm	Co	Mn pps	Fe X	00-5500	ppe U	Au	Th ppm	- · · · · · · · · · · · · · · · · · · ·	Cd S PM PP	n pp		_	a P X X	La	Cr	Hg X	Ba	Ti 7		Al X	Na X	K L	i Au
905-25-97	1	242	16	177		37	26	2311	7.49	0	-	ND	•	23	.2	2 :	147	, 4	2 .148	24	EO	2 44							**
90S-25-Q8	l i	265	19	122	20000000000	32		3770		12	ź	ND	- :	38	9 T 2	2 2			2000000			2.66		.04		3.81	.01	.10	54
905-25-09	li	383	16	134	7	36		3680	9.01	23	2	ND		2000	70 - 70	-			6 178	23		2.10		.04		.09	.01	.09	30
905-25-910	1 ;	351	25	116	4000000000000	67		2388	500	200	2		- !	30	5:±33				0 2144	33		2.35		.07		.98	.02	.07	21
90s-25-Q11	i	249	24	146		37			500	38 70	5	ND	1	72 25	.2 .2	2 2	154 120		9 .109 6 .122	17 19	_	3.21 2.44		.12		.87 3.68	.08	.13 1	37 61
905-25-912	1	401	54	445	.8	54	50	3930	8.24	66		ND	•	42 1						. 47									
90s-25-Q13	1 1	705	26	138	8	49	_			24	2	MD	:	90000	.6	•	138		0 3113	13		2.86		.07		.45	.02	.09 1	67
90S-25-Q14	li	329	21	124	8	58			200	25	5	ND	- :	45 77	2	2 2				10		2.56		-11		.05	.07	.15	85
905-25-015	Ż	150	17	132		49				16	2	ND	:	20000	2	-			4 102	10		2.86		12		.84	.11	.111	<u> </u>
905-25-916	lī	181	16	130	26	68				17	2	ND			2 2	2 2				11		2.44		.06			.02	.07 1	92
	! `					-	JE .		···•		•	NU	'	•' 🐃			122	.94	2 \$130	17	81	2.11	307	+07	6 2	.91	.02	.09 3	9
905-25-017	1 1	357	15	140	6	52	31 1	1718	7.50	14	5	ND	1	30		, ,	137	E0	3 2113	14	05 4	2.89	179				•		.
905-25-Q18	1	170	12	125	5	34	27 2		4.68	12	Š	ND	i	64			87		164	9		1.70		.07 .04	2 3		.01	.08 1	30
90s-25-Q19	1	255	14	131	5	41	34 2		7.70	12	5	ND	i	600000	5 2	5	126		154	15		2.19		.05	14 1		.01	.11	9
905-25-920	1	331	13	157	8	64	44 3		9.62	16	5	ND	i	28	5	. 5	151	.47			117			07	5 2. 2 3.		.01	.09 1	11
905-25-021	1	231	14	130	6	27	36 3			2	5	ND	i	46		5			167	18		1.97		205	12 2		.01 .01	.07 1 .13 1	16
											-		•		▓ '	_	• • • •	••••			70	1.77	707		12 2	. / •	.01	. 13	58
90s-25 -Q 22	4	488	16	141	335	31	51 2	425	7.98		5	ND	1	35 📖	2 4	2	110	. 00	167	11	49 1	40	273	.06	5 2.	58	.01	.09 2	15
90s-25 - Q23	4	479	12	138	6	32		968 1		3	5	ND	1	34	2 2	2		1.03	@06050000	16	51 2			.05	2 3		.01	.12	27
905-25-924	8	417	20	148		42		485 1		2	5	ND	i	507000	2 4	5	147		319	19	64 2			206	2 3.		.01	.09	54
90s-25 -Q 25	2	508	. 15	142		43		852		00000	5	ND	i		5 2	5			142	13	80 2		- 2	.04	6 2.		.01	.08 1	
90s-25- 9 26	5	452	15	125	33.5	38		301		0	5	ND	i		2 3	2	121		175	11	77 1			.04	3 2.		.01	.06 1	23 18
													•	📖	₩ -	-		•/-		••	•••		J E 7 3		J 2.	. / 4	.01	.00	10
90s-25 - 927	6	500	11	125	5	40	83 2	309 1	0.68	2	5	ND	1	31	6 6	2	124	.84	.165	13	67 2	na	194	.05	4 2.	97	.01	00 4	83
90s-25 -228	15	631	17	141	6	41		682 1		2	5	ND	i	26		5	136	.58		12	74 2			106	63.		.01	.08 1	24
90s-25 - 929	14 1	196	17	127	9	38		904 1			Š	ND	i	33 💹	38 5	5	116		160	18	63 1			205	5 2.		.01	.09	44
90s-25 -Q30	14 1	124	26	171		48		192 1		72	5	ND	i		5 4	5	128	.92		14	75 2		X	.06	3 2.	-	.01	.07 1	60
90s-25 -Q31	41 1	661	17	112		49		649 1		6	5	ND	i	20		2	143	.38		13	77 2		117		2 3.		.01	.07	110
											-		•	-	₩ -	-	.45				•••		•••		£ 3.		.01	.01	110
905-25-032	_	722	15	118	.6	54	87 2	026 1	1.19 🎆	0	5	ND	1	28	2 4	2	126	.88	164	10	83 2	. 16	140	_07	4 2.	76	.01	.06 1	44
90s-25-Q33		768	13	115	.6	45	71 2	700 1	1.71	6	5	ND	1	42	3 4	2			128	11	87 1		230	.06	5 2.	_	.01	.07 1	25
90s-25- Q3 4	7 1		21	105	7	55	82 1	941 1	3.75 🚟	0	5	ND	1	26	100	ž	148		134	12	95 2			-09	2 3.		.01	.05 1	41
STANDARD C/AU-S	18	57	38	130	6.6	68	30 1	046	3.92 🎇	0	22	7	36	50 17.		_	55		.090	35			- 22	208	33 1.			.14 11	54

GEOCHEMICAL ANALYSIS CERTIFICATE

Ouest Canada Exploration P.O. Box 11569 Vancouver, Vancouver BC V6B 4N8

File # 90-4820

Page 1

									•	•••	<i>-</i>	,	141.00	uver,	10.10	••••											
SAMPLE#	Ppm Mo	Cu ppm		_	n Ag m ppm			Mn ppm	Fe X		U ppm			\$r ppm	Cd ppm	Sb ppm	Bi ppm	ppm V	Ca P X X	La ppm	Сг	Mg X	Ba Ti ppm %			499996 3.7	Au* ppb
25 L110N 101+50E 25 L110N 101+75E 25 L110N 102+25E 25 L110N 102+50E 25 L110N 102+75E	1 1 1	142 116 110 59 18	10 6 6 2 2	7: 4:	4 .4 7 .3 5 .3	114 290 530 308 247	31 43 36	1012 711 435 600 167	4.62 4.76 4.85	9 6 4 2 2	5 5 5 5 5	ND ND ND ND	3 2 1 1 1	40 44 20 8 8	.7 .8 .8 .3	2 2 2 2 2	2 2 2 2	87 76 82 82 64	.69 .088 .67 .081 .31 .041 .19 .053 .15 .035	2	240 683 564	3.02 4.08 5.78 4.05 4.05	95 ,08	5 2.25 11 2.18 3 2.14	.03 .01 .03	.25 1 .10 1 .07 1 .03 1 .02 1	11 14 1 2
25 L110N 103+00E 25 L110N 103+25E 25 L110N 103+50E 25 L110N 103+75E 25 L110N 104+00E	1 1 1	95 62 65 48 24	7 2 5 2 2	36 36 45	8 .3 6 .2 5 .3	629 476 464 377 304	40 39 35	867 4 465 4 427 4 401 4 367 3	.16 .10 .34	2 2 3 2 2	5 5 5 5	ND ND ND ND	1 1 1 1	27 15 16 11 8	.9 .9 .5 .6	2 2 2 2 2	2 2 2 2 2	71 72 70 72 74	.28 .045 .19 .042 .19 .041 .19 .048 .16 .063	2 2 2	650 660 661	7.23 5.53 5.45 4.97 4.49	155 .08 58 .06 63 .06 44 .06 42 .04	9 1.97	.01	.09 1 .03 1 .02 1 .02 1 .03 1	1 3 2 1 1
25 L110N 104+25E 25 L110N 104+50E 25 L110N 104+75E 25 L110N 105+00E 25 L110N 105+25E	1 1 1	37 55 69 83 36	2 2 6	38 41 50	.3 .3	436 435 448	33 45	809 4 410 4 327 4 550 4 268 4	.12 .14 .46	2 2 2 2 2	5 5 5 5	ND ND ND ND	1 1 1 1	8 19 17 14 9	.7 .2 .5 .7	2 2 2 2	2 2 2 2 2	76 75 72 76 83	.19 .056 .27 .048 .24 .046 .23 .046 .23 .052	2 2 2	649 679 645	4.53 4.85 4.89 5.03 4.06	62 .06 61 .09 90 .06 67 .06 36 .08	5 1.73 7 1.78 5 1.88 4 2.21 2 1.75	.02 .01 .02 .02	.04 1	2 1 1 1 2
25 L110N 105+50E 25 L110N 105+75E 25 L110N 106+00E 25 L110N 106+25E 25 L110N 106+50E	1 1 1 1	45 71 38 42 23	3 2 3 3 10	47 42 42 54 58	2 .3	390 285 287	35 28 24	279 3 433 3 634 3 343 5 298 4	.70 .59 .21	2 2 2 2 2 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	11 15 10 8 11	.5 .5 .5 .3	2 2 2 2	2 2 2 2	63 61 68 85 85	.20 .051 .34 .043 .19 .056 .22 .069 .18 .069	2 3 2	570 548 591	4.13 4.68 4.06 4.16 3.70	29 .06 141 .07 60 .07 30 .07 36 .16	4 1.86 5 2.19 4 1.80 4 2.23 2 1.86	.03 .02 .02	.02 1 .05 1 .02 1 .03 1	1 1 6 4 2
25 L110N 106+75E 25 L110N 107+25E 25 L110N 107+50E 25 L110N 107+75E 25 L110N 108+00E	1 1 1 1	21 67 41 34 33	5 5 2 12	48 50 49 48 53) .3) .3 3 .3	202 361 267 211 194	36 24 23	762 3 628 4 629 4 688 3 434 3	.38 .42 .70	2 5 2 2 4	5 5 5 5 5	ND ND ND ND	1 1 1 1	11 18 12 11 11	.4 .4 .4	2 2 2 2	2 2 2 2	71 80 91 74 74	.19 .050 .34 .060 .29 .076 .24 .057 .22 .054	2 2 3	564 596 492	3.37 4.42 3.85 3.34 2.99	50 .12 68 .07 48 .11 44 .11 46 .12	2 1.59 6 2.03 3 1.85 5 1.92 2 1.67	.02	.03 1 .03 1 .03 1 .03 1 .03 1	3 2 1 6 3
25 L110N 108+25E 25 L110N 108+50E 25 L110N 108+75E 25 L110N 109+00E 25 L110N 109+25E	1 1 1 1	81 25 23 62 39	2 3 2 3 8	41 46 53 41 53	.4 .2 .3	476 290 246 462 309	22 22 39	566 4 345 5 333 5 484 4 788 4	.11 .14 .70	5 2 2 3 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	19 9 11 22 16	.3 .6 .7 .7	2 2 2 2 2	2 2 2 2		.34 .051 .28 .072 .32 .071 .37 .051 .30 .069	2 2 2	637 643 794	4.93 4.11 3.55 4.94 3.86	97 .08 32 .08 46 .08 101 .07 112 .04	6 2.05 2 2.00 2 1.78 8 1.84 3 1.85	.03 .03 .04 .03	.03 1 .03 1 .04 1 .03 1	2 1 1 1 7
25 L110N 109+50E 25 L110N 109+75E 25 L110N 110+00E 25 L108N 103+00E 25 L108N 103+25E	1 1 1 1	32 31 45 59 63	3 2 4 2 4	51 43 44 38 43	.4 .3 .3	378 410 497	30 40 35	277 4 290 3 478 3 395 4 428 5	.70 .96 .36	2 2 2 2 2	5 5 5 5	ND ND ND ND	1 1 1 1	12 10 15 19 16	.3 .3 .2 .7	2 2 2 2	2 2 2 2 2	72 77	.24 .059 .22 .061 .16 .051 .20 .040 .20 .034	2 2 2	546 704	3.92 4.87 4.90 5.67 5.21	58 .11 40 .06 57 .04 89 .06 74 .07	2 1.94 6 2.01 3 1.99 9 1.99 9 1.80	.03 .02 .02 .02	.03 1 .02 1 .02 1 .02 1 .04 1	1 3 1 1 3
25 L108N 103+50E STANDARD C/AU-S	1 18	47 59	2 36	38 131	.3 6.7			380 4 054 3		2 37	5 18	ND 7	1 37	10 51 1	.5 8.8	2 14	2 18		.16 .039 .50 .097		713 57	4.75 .96	35 .06 181 .08	4 1.61 34 1.89	.01	.02 1 .14 13	1 54

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND ALO AU DETECTION LIMIT BY ICP IS 3 PPM. AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: SEP 26 1990 DATE REPORT MAILED:

													5000000	35.5			1800000					0 41	Na	r u	Au*
SAMPLE#	Mo	Cu	Pb	Zn Ag	Ni	Co	Mn	Fe	As	U	Au	Th		d Sb	Bi	٧	Ca P		Cr	Mg X	Ba Ti ppm %	B Al	X	00909 35	ppb
5, W. II W. W.	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	X	ppm	ppm	ppm	ppm	bba bb	u bbu	ppm	ppm	<u> </u>	ppm	Phon			FF 12			·
	1				š		400			E	ND	4	20 .	6 2	2	84	.21 .045	2	775 5	5.73	69 .06	12 1.76	.01	.02 1	1
25 L108N 103+75E	1	62	6	374	01 T		402		2	2			21 1.		2	111	.18 .042		1045 5		74 .07	8 1.50	.01	.03 1	11
25 L108N 104+00E	1	57	2	354		40			2	5	ND	•		5 2	2	88	.22 .082		584 3		44 .06	2 2.26	.02	.04 1	2
25 L108N 104+25E	1 1	46	2	54			1480		8	5	ND	. !	385360	A1000	2	90	.31 .063				37 .09	4 2.48	.02	.04 1	3
25 L108N 104+50E	1	72	3	58 👊			719		13	5	ND	Ţ		5 2 3 2	2	78	.13 .068	7	426 1		36 ,29	2 3.30	.02	.03	1
25 L108N 104+75E	1	38	7	54 88.5	121	16	431	5.48	2	5	ND	2	• · · · · · · · · · · · · · · · · · · ·	3 4	~	70	. 13 .000	•	450						1
	İ							9		_		_			2	87	.24 .111	2	566 4	4 30	29 .08	4 2.19	.02	.02 1	1
25 L108N 105+00E	1 1	37	3	53 🛶		26	471		10	5	ND]	.,	2 2	_		.15 .080	. –	541 4		58 .05	4 2.07	.02	.03 1	3
25 L108N 105+25E	1 1	38	7	49	348	36	764		3	5	ND	1	11	3 2	2	67	.28 .059	5	474 4	4 76	79 .10	4 2.15	.02	.03 1	1
25 L108N 105+50E	1 1	59	4		407		464		2	5	ND	1	15	5 2	2	61			543 4	6 08	145 .07	3 2.51	.03	.09 1	1
25 L108N 105+75E	1 1	83	5	31 3	459	38	423	3.39	2	5	ND	1	24	5 2 3 2	2	48	.51 .051		685 4	4.70	48 .07	2 1.97	.03	.02 1	1
25 L108N 106+00E	1 1	36	7	50 4	331	23	280	4.81	2	5	ND	1	12 .	3 2	2	94	.35 .058	_	005 4	1.30		• ••••	•••		
FY FIAMI ING. AND	1		•		3 0								💥	<u> </u>	_	,	12 817	9	942 4	. 79	146 .08	3 2.40	.03	.12 1	1
25 L108N 106+25E	1	85	2	38 ,5	454	36	425	4.00	2	5	ND	1	19 🗼	4 2	2	67	.42 .047		727 5		85 .07	8 1.98	.02	.04 1	11
25 L108N 106+50E	li	77	Ž	44 33		45	538	4.85	3	5	ND	1		6 2	2	83	.27 .049	. –			67 .11	3 2.37	.03	.03 1	- 11
25 L108N 106+75E	1 1	45	3	59 .5	×		448		2	5	ND	1		7 2	2	86	.29 .056		649 4		31 .13	2 2.69	.02	.02 1	- 11
25 L108N 107+25E	1 :	39	Ž	68 .3			520		3	5	ND	1	7 🐃	9 2	2	89	.16 .076		668 4			2 2.38	.02	.04 1	il
25 LIUON 107425E	1 :	23	2	46	»		426		2	5	ND	1	9 🐃	2 2	2	66	.15 .090	>	252 1	1.55	44 .20	2 2.30	.02		٠,١
25 L108N 107+50E	1 '	23	L	~		••												_			/0 10	2 2.31	.03	.03 1	3
	1 .	26	3	69 .4	170	18	466	4.26	2	5	ND	1		2 2	2	75	.18 .061		419 2		48 .19	2 2.34	.02	.04 1	1
25 L108N 107+75E	1 :		3	85	151	22		4.46	- 5	5	ND	1	9 🏻 .	4 2	2	86	.24 .069		348 3		57 .18			.03 1	- il
25 L108N 108+00E	1 1	20	, 3	60 .4		23	645		2	5	ND	1		3 2	2	84	.21 .053		663 4		76 ,10	2 1.99	.02	.04	il
25 L108N 108+25E	1 !	19	,	200000000		8		4.59	2	5	ND	2		6 2		72	.15 .075		202 1		35 .32	2 4.01	.03	.02	- il
25 L108N 108+50E	1 !	28	4	54	372		471	4.70	• 5	5	ND	1	11	7 2		82	.35 .071	2	722	4.48	57 .07	4 2.17	.04	.02 1	'
25 L108N 108+75E	1	47	2	47 884	312		4/1	7.10				•	* * 60000												ا،
	1 .					25	117	5.39		5	ND	1	14	4 2	2	95	.32 .077	2	654 3		96 .11	2 2.08	.03	.03 1	:1
25 L108N 109+00E	1 1	28	4	62					3 2	5	ND	i	15	5 2		87	.33 .104		569	3.73	157 .16	2 1.82	.03	.04 1	11
25 L108N 109+25E	1 1	25	2	67			770			5	ND	•	12	5 2			.28 .061		806	4.25	72 .11	3 1.97		.03	3
25 L108N 109+50E	1 1	29	2	67				4.89	2	5	ND	- 1	10	2 2			.22 .057		640	3.95	46 .07	2 1.78	.03	.03 1	1
25 L108N 109+75E	1 1	25	2	64				3.14	2	5	ND		18	4 2	2	66	.35 .054	2	628		71 .08	4 1.76	.03	.03 1	1
25 L108N 110+00E	1 1	53	2	37 📖	418	33	414	3.91		9	NU	•	10		_	-		. –							_
					.		-74				ND	4	29	3 2	2	67	.48 .052	3	311	4.11	77 .06	5 2.15		.05 1	1
25 L106N 103+00E	1	69	2	999999	275		571		6	5 5	ND	- ;		4 2		90	.41 .051		538		102 .07	9 1.54	.02	.04	10
25 L106N 103+25E	1	64	2	38	· ·			4.87	6	5				7 2			.20 .041				61 .05	10 1.96	.01	.05 1	1
25 L106N 103+50E	1	62	2		538			5.09	₩\$		ND	- ;		5 2			.40 .066	• -	625	4.32	102 .07	5 1.72	.02	.04	2
25 L106N 103+75E	1	69	2	48			661	5.43	3		ND	1	16 1.	0 2	_		.29 .057				49 .08	4 2.35	.02	.03	1
25 L106N 104+00E	1	80	3	45 🔐	421	40	604	5.92	6	5	ND	,	10	· ·	£			• -		•					1
	1				×	_ :				_			4.	4 2	2	93	.22 .044	2	781	4.85	73 .07	4 2.01	.02	.02 1	8
25 L106N 104+25E	1 1	64	2		433		433		2	5	ND	1	202000	8888 T	_		.24 .065				88 .15	3 3.19	.02	.03 1	1
25 L106N 104+50E	1 1	86	6	61			754		5	5	ND	1	7 - 200000	.6 2			.26 .049				90 .07	8 1.61	.02	.03 1	5
25 L106N 104+75E	li	69	2	41 🚟	474		499		2	5	ND	1		4 2			.23 .042	2			83 .08	5 1.62		.03 1	1
25 L106N 105+00E	li	60	2	47		37	485	5.75	2	5	ND	1		0 2			.24 .043	2				: : : . _	.02	.04 1	1
25 L106N 105+25E	i	60	Ž	43	472		486	5.04	2	5	ND	1	19	.5 2	2	89	.24 :093	. 4	, 30	J. 17		_ ,,			
C) LIOON 107'E)E	1 '		-									_	🎆			72	24 0/4	2	685	4 72	102 .05	15 1.87	.01	.04 1	1
25 L106N 105+50E	1 1	74	2	39	550	46	506	4.29	2	5	ND	_1		4 2			.21 .041	2 ZE		.96				.14 11	50
STANDARD C/AU-S	18			131 6.		_	1055		37	18	8	36	51 18.	.5 16	23	56	.50 .095	35	7.7	. 70	.,,				
JINNUNN CING	<u> </u>				···																				

						×	ues															50.72 .			***	.		Au*
SAMPLE#	. No	Cu	Pb	Zn Ag		Co	Mn	Fe	۸s	U	Au	Th ppm	Sr Cd ppm ppm	Sb ppm	Bi ppm	V ppm	Ca P		Cr ppm	Mg X	Ba ppm	Ti Z	ppm ppm	Al X	Ka X	X		ppb
	ppm	ppm	bbu	bba bba	ppm	ppm	bbs	_ * :	ppa	ppm	PAN	Phan		77	FF	FF												
		96	5	37 .3	517	45	484	. oz 🏻	3	5	MD	2	35 1.0	2	2	92	.30 .045	2	722	4.91	173	.06			.01	.08	}	3
25 L106N 105+75E	!	85	2	34 .2			459		3	5	ND	2	31 .7	2	2	79	.23 .046		716		87	.05	13 1		.01	.04		2
25 L 106N 106+00E	1 :	62 56	2	40 .3			472		2	5	ND	1	20 .8	2	2	93	.17 .043	2		4.35	64	.06	-		.01	.03	1	2
25 L106N 106+25E 25 L106N 106+50E	;	69	7	40 .3			535		2	5	ND	1	17 1.1	2	2	87	.17 .044		716	4.05	56 60	.06				.02	1	51
25 L106N 106+75E	;	73	2	39 .3		51			6	5	ND	1	24 .6	2	2	79	.18 .048	3	592	4.42	6 U	.00	•	.02	.01	.03		-1
25 F100H 100+17E	'		-											_	_			47	74	1.55	172	.08	8 2	2.87	.02	.08	1	4
25 L104N 101+00E	2	68	8	71 .3	77	17	1220	5.11 🖁	19	5	ND	2	30 .8		2		.49 .106	17 14		1.65	197	.03		2.11		.08	1	5
25 L104N 101+25E	2	63	13	121 .2			1529		9	5	ND	1	43 .6	2	2		1.00 .113 2.45 .118			.54	182	.01	20			.13	2 2	2
25 L104N 101+50E	1	18	3	97 .1			537	7.0	2	5	ND	1	50 .5		2		.53 .041			5.07		.05			.01	.05	2	2
25 L104N 103+50E	1	70	2	33 .2			699	30	2	5	ND	1	32 .9 22 .7		2	48	.26 .048	3		6.28	112	.04		2.65	.01	.03	1	3
25 L104N 103+75E	1	66	2	37 .3	561	45	467	3.12	2	5	ND	•	22 .1	2	2	70		_										
							400	, ,. 🖇		5	ND	•	19 .8	2	2	76	.22 .045	2	567	5.92	145	.05		2.61		.04	1	2
25 L104N 104+00E	1	83	2	443			490		2	5	ND	•	16 .6	Ž	2	106	.17 .040	2	789	4.39	114	.06	•	1.64	.01	.03	1	11
25 L104N 104+25E	1	61	2	35 .2			437 S		2	5	ND	i	14 .8	Ž	Ž	95	.19 .042	2	709	4.81	119	.07	_			.04	1	3
25 L104N 104+50E	!	67	2	37 .3			441		6	5	ND	ż	12 .9	2	2	82	.21 .046	4	581	4.31	109	.11				.03	Ţ	2
25 L104N 104+75E	1	68	2	44 .2 33 .3	470 502		303		2	Ś	ND	ī	16 .4	2	2	71	.16 .043	2	570	5.14	91	.05	5 2	2.01	.01	.02	1	1
25 L104N 105+00E	1	62	2	33 883	702	33	303 .	J.71 8				•													•			اہ
OF 140/H 405.355	١.	56	2	38 .2	443	34	352	3.03	2	5	ND	1	14 ,9	2	2	72	.17 .042		599		64	.06				.01	1	3
25 L104N 105+25E	;	56	3	51 3			477		- 6	5	ND	1	10 .8	2	2	78	.26 .048	2		3.80	64	.06				.02		31
25 L104N 105+50E	1 4	58	, <u>3</u>	413		34		533	3	5	ND	1	16 .2	2	2	72	.32 .049	3		4.21	98	.07		2.05	.03	.03	1	31
25 L104N 105+75E	2	19	2	54 .2			360		2	5	ND	1	8 .6	3	2	72	.15 .079		200		50	.23		2.74	.02	.02	1	- 5
25 L104N 106+25E	2	16	2	49 .3		12			2	5	ND	1	9 .4	2	2	62	.17 .077	10	197	1.61	50	.21	2 4	2.72	.02	.02		۲
25 L104N 106+50E	•	10	•	7						_											401			2.16	.02	.03	•	ا ر
25 L104N 106+75E	١,	40	2	52 .4	299	24	288	3.41 🖁	2	5	ND	1	12 .6		2	60	.19 .092			3.58	104	.06		1.91	.02	.03	1	3
25 L102N 104+00E	1 ;	62	2	43 .4			399		2	5	ND	2	19 .5		2	84	.26 .051			4.36	109			1.97	.02	.02		4
25 L102N 104+25E	l i	62	2	39 .2			427		2	5	ND	1	22 .7			76	.30 .053			4.27	136	.08		2.53	.02	.02		4
25 L102N 104+50E	l i		Ž	56 .1			518		4	5	ND	1	10 .7				.14 .063			4.62		.06 .10		2.37	.02	.03	* i	1
25 L102N 104+75E	l i		7	55 3		23			5	5	ND	1	10 .4	2	2	81	.16 2056	•	429	3.48	01	.,,,	_	L.J!	.02	.03		• 1
E) LIGEN 104.13E	1 '	•••	•		_			8						_	_		22 040	7	402	4.09	104	.06	4	2.42	.02	.03	1	2
25 L102N 105+00E	1	59	2	54 .3		25		3.97	6	5	ND	1	14 .6					: -		4.25	68	.04		2.09	.02	.01		1
25 L102N 105+25E	1	38	2	49 .3	355	28			2	5	ND	1	12 .5							2.85		.18		2.55	.03	.03	1	3
25 L102N 105+50E	1	32	11	57 .2		19			5	5	ND	1	10 .4					, -		3.44		13		2.32	.02	.02		1
25 L102N 105+75E	1	41	12	65 .1			315		2 8	5	ND	1	5 .4 17 .2	2						1.74		.10		2.27	.02	.04	1	13
25 L100N 89+75E	1	55	5	76 .1	59	14	562	5.85	. 5	5	ND	2	17 ,2	2	-	• • • •	. 10	•	•									
	1					_				5	ND	•	16 .2	, ,	2	79	.10 .036	5	39	.24	30	.25		.79	.01	.03	2	13
25 L100N 90+00E	2	16	11	39 .1		-	173		2 2	5	ND	- ;	18 .3		2		.14 .042		47	.93	31	12	2	1.54	.01	.03	2	2
25 L100N 90+25E	2	27	4	45 .1		9	209 769		- E	5	ND	i	20 .4		2	-	.27 .081		96	2.53	58	.07		2.39	.02	.04	1	5
25 L100N 90+50E	1 !	126	6	69 .3			1325		2	5	ND	i	22 .6	2	4	86	.32 .087			3.37	74	.06		2.58	.02	.05	1	13
25 L100N 90+75E	1	137	15	79 .1			533		3 2	5	ND	ż	20 .4		-		.22 .068			1.59	53	.10	2 :	2.27	.01	.04	•	5
25 L100N 91+25E	1	60	9	75 .2	טכ	14	JJJ	J.67 (•	70	-		_	_			•					_		~~	64		/0
		445	7	65 ,2	380	37	619	5.01	3	5	ND	2	27 .9	2	2					4.37	100	.07		2.46	.03	.04		49 53
25 L100N 91+50E	1.1	115 59	7 38	130 6.7			1053		37	15	7	38	53 18.6		18	57	.49 .096	37	56	.95	180	.07	33	1.89	.06	.14	13	
STANDARD C/AU-S	18	27		130 0.7	,,,		,0,,																					

ĺ	1	E)	ŧ	}	ŧ]	E	1	I)	E	1	ſ]	ſ	i	ı)	E	1	Ē	m risa 2	*	7
					(Oue	st	Cal	nad	a E	xp]	lor	ati	on	I	FIL	E #	90	-48	320					

Page 4

							9	gue	ST C	inad	a , e ;	крто	rati	LOH	r	. T DI	<u>π</u>	90	702	•							
SAMPLE#	Mo	Cu ppm	Pb ppm			Ni ppm	Co	Mn	Fe X	AS XPIN PF	U A		**	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X 1	La ppm	Cr ppm	Mg %	Ba Ti ppm X	B Al		X ppm	Au*
25 L100N 91+75E	1	176	5	81	.1	61	24	727	5.73	11	5 NI		28	.8	2		101	.39		8		2.01	50 .10	2 2.50 2 2.08		.05 1 .06 1	18
25 L100N 92+00E	1	74	9	77	.1	34		542		•	5 NI			.8	2	2	111	.36		5 5		1.36	56 .08 76 .12	2 2.07		.05 1	3
25 L100N 92+50E	1	45	11	81	2	35		653		0.70	5 M	-	22	1.0	2	2	125	.22	U/ 1	5		1.11	43 .12	2 2.32		.05 1	
25 L100N 92+75E	1	64	17	70		33		556			7 NI		20	.5 .2	2	2	107 91	.25	NEE	5		1.38	69 .07	2 2.65		.04 1	
25 L100N 93+00E	1	59	15	80	.2	52	17	672	4.42	7	5 N) 1	23		2	2	Υı	.21	U))	,	72	1.30	0 ,				
25 L100N 93+25E	1	104	7	78	.3	67	24	1507	5.20	10	5 NO) 1	24	.8	2	5.		.30		5		1.75	82 .08	2 2.43		.05 1 .05 1	8
25 L100N 93+50E	li	112	14	83	.3	71	24	845	5.58 🛭	10.7 TO	5 NI		24	.7	2	2	113	.34		6		1.75	68 .12	2 2.06 2 1.57			- 1
25 L100N 93+75E	2	47	14	53	.3	33		370		***	5 N		18	.7	2	2	117	.19		5 6		.73 .75	47 .20 45 .23	2 1.56			
25 L100N 94+00E	1	36	15	53		33		680			5 NO		18	.2 1.0	2	2	87 87	.17	NAG:			1.34	45 .16	2 2.69	.02		
25 L100N 94+25E	1	46	3	69	.4	62	13	505	3.96	6	5 NI) 1	16	1.0	2	2	01	.21	•	•						201083 13 20008113	
25 L100N 94+50E	3	42	23	56	.5	47	16	516	7.12 🖁	12	5 NC		16	.2	2	5	129	.16				.87	37 .30	2 2.18 2 3.12		.03 2	2
25 L100N 94+75E	ž	234	6	74	 1	365		861	5.64 🛞	6	5 NC		15	.2	2	2	96	.45		-		3.54 5.06	125 .19 72 .08	2 2.43		.04 1	4
25 L100N 95+00E	1	81	5	48		462		398		30°770	5 NO		15	.4	2	2	91 46	.31 .0				3.41	246 .04	2 1.64		.04 1 .08 1 .04 1	i
25 L100N 95+25E	1	43	2	65		354		541		999 77 .6	5 NO 5 NO		38 18	.8 .8	2	2	88	.45		2	715	4.61		2 2.30		.04 1	1
25 L100N 95+50E	1	86	2	48	1	467	45	461	5.US 🎇	3	5 NI	, ,	10	•••	~	_	•										ا۔
25 L100N 95+75E	2	151	4	48	.2	464	65	573	5.18	25 TO 1	7 N		16	.9 .6	2	2		.35				3.86	223 .17 153 .08	2 2.73 2 2.14		.33 1	
25 L100N 96+00E	2	117	9	55	.1			981		517 17 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 N		19	.6	2	2	65	.55				3.05 2.71	2002:2032:	8 2.01		.07 1	6
25 L100N 96+25E	1	106	4	80		268		970		105 TO	5 NI		29		2	2 5		1.20		9	320	3.34		9 2.54			6
25 L100N 96+50E		117	9	77		327	40	1126	4.93		8 NI 5 NI		27 32	.6 .9	2	6		1.11		7	373	3.03	220 .05	5 1.98		.06 1	1
25 L100N 96+75E	2	87	6	86	Z	279	3/	1419	4.37	9) MI	•	JE		-	ŭ	•										/-
25 L100N 97+00E	۱ 1	120	2	77	.2	337	56	1872	5.31 🖁	22	5 NI		31	.6 .7	2	2	76					3.65		4 2.84 4 2.20		.07 1 .04 1	47
25 L100N 97+25E	li	67	Ž	52			31	562	5.68 🏽	13	5 NI			7	2	2	90	.74								.06 1	2
25 L100N 97+50E	1	80	7	52				807		10	5 N		27	4	2	2	71 67	.73 .1 .51 .				3.78 3.55		9 2.68		.07 1	8
25 L100N 97+75E	1		2	77	.2	375		1111		23	5 N		22	.2 .5	2	2	79	.49				4.22		3 2.73		.04 1	6
25 L100N 98+00E	1	119	13	60	.1	493	79	1317	5.35	18	5 N	1	19		2	0	17	.47		•	,,,,	7,66					
25 L100N 98+25E	١.	126	2	77		412	74	1701	5.74	24	5 N	D 1	24	.7	2	2	76		ATT 27 TAX			3.69		9 2.92		.06 1	4
25 L100N 98+50E	li	84	7	70				1277		14	5 N	D 1		.2	2	4	70	.52				2.99		3 2.54 9 2.77		.05 1 .05 1	3
25 L100N 98+75E	l i	112	Ž	63	1	351	56	1241	5.09 🖔	15	5 N		30	1.1	2	2	74					3.89	156 .10 68 .08	13 2.46			1
25 L100N 99+00E	2		5	47	1 1	430		778		31	5 N		18	5	2	2	52			20	34Y	3.71 1.35		12 2.45			
25 L100N 99+25E	2		14	83	1	70	23	2547	4.73	34	5 N	D 1	27	.8	2	2	44	.70	IUX	20	01	1.37	207 .47	12 2.45			
25 L100N 99+50E		215	10	77	***	118	34	2293	6.55	53	9 N	D 1	24	,2	2	2	56					1.56					19 14
25 L100N 99+75E	2	134	4	57	1			1914		22	5 N		19	.2	2	2	21	.50		25		.63		15 1.80		.12 1 .05 1	
25 L96N 91+50E	1	162	15	80				829		14	5 N	D 1	26	.2	2	2	84	.37		7		2.43	84 .08 106 .12	4 2.34 3 1.98			1
25 L94N 97+25E	li	24	10	71		208	33	1844	4.78 🖁	8	5 N		15	2	2	2	82	.30				2.95 5.68		17 2.18			
25 L94N 98+75E	i	75	2	36	.2		46	533	4.68 🖔	5	6 NI	1	40	.8	2	2	77	.66	U2 <i>(</i>	3	43U	2.00	613 16				-
	٠,	= /	47			578	47	599	5 23	10	5 M	1	32	.2	2	4	88	.44	046	3		6.54	65 .11			.02 1	1
25 L94N 99+00E	18	56 57	13	41	6.6							7 37		17.9	15	20	56			36	56	.91	181 .07	34 1.90	.06	.14 11	48
STANDARD C/AU-S	10	21	31	131					30	- C																	

Page 5

Quest Canada Exploration FILE # 90-4820

SAMPLE#	` Mo	Cu	Pb	Zn	2002	Ni	Co	Hn	Fe As	U	Au	Th	Sr Cd	Sb	Bi	٧	Ca		La	Cr	Mg	Ba Ti	8	Al %	Na X	K W	Au*
	ppm	ppm	bbw	bba	bbw	bbu	ppm	ppm	X ppm	ppm	bbu	ppm	bbar bbur	ppm	ppm	bbu	X	×	bbu	ppm	X	ppm X	bbu			* 177	
25 10/H 100,005	١.	89		46		716	E1	761 :	5.51 2	12	ND	2	19 .2	2	2	88	45	.044	7	402	7.23	62 .10	23 2	.29	.02	.04 1	1
25 L94N 100+00E	;	90	5	68	3	844		1219		9	ND	2	16 .2	Ž	2	89		.072		405		69 .17	20 2		.02	.05 1	1
25 L94N 100+50E	li	80	3	56	3	742		976		Ś	ND	ī	10 .2	Ž	2	100		.060		485		48 .14	9 2	.34	.01	.03 1	1
25 L94N 100+75E	li	65	3	58	4	609	47	702		9	ND	Ž	13 .2	2	2	86	.22	.074		440		57 .15	6 2		.02	.04 1	31
25 L94N 101+00E	li	78	3	50		712	49	598		5	ND	1	36 ,2	2	2	85	.44	.048	6	437	5.79	241 .12	9 2	.64	.03	.03	4
	•																		_								
25 L94N 101+25E	1	43	6	64	3	322	25	623	200000000000000000000000000000000000000	5	ND	1	11 .2	2	5	84		.086	-	260		56 .19	3 2		.03	.04 1	3
25 L94N 101+50E	1	46	6	66	.3	340	27	463		5	ND	1	10 .2	2	2	84 84		.083 .080	•	481 1 129		53 .10 120 .28	3 2 3 1		.03	.04 1	5
25 L94N 101+75E	1	16	10 6	75 66	.3	63 205	11	554 3 1514 4		5 5	ND ND	1	16 .2 22 .2	2	2	78		.125		301		130 .03	4 1		.03	.06 1	1
25 L94N 102+00E	1 1	27 43	5	84		301		1382		7	ND	i	16 .2	2	2	90		.085		460		99 .09	3 2		.03	.05 1	1
23 LYAN TUEYESE	•	7.7	•	-		J0 !	33	1302 .	/167	•	NO	•	.0	-	_	,,			•								1
25 L94N 102+50E	1	43	7	100	.3	200	26	853 6	5.04 14	5	ND	1	15 ,2	2	2	97		.057		292		79 .20	2 2		.02	.04 1	1
25 L94N 102+75E	1	31	6	95		113	18	781 6		5	ND	1	21 .2	2	2	90	.33		8			90 .35	2 2		.03	.04 1	- !
25 L94N 103+00E	1	47	6	68	.3	322		829 5		5	ND	1	18 .2	2	2	95		.088	4	479		10309	5 2		.02	.03 1	- 11
25 L94N 103+25E	1	32	4	67		270		495 6		5	ND	1	9 .2	2	2	104	.17		_	444 3 678 3		40 .11 54 .07	2 2. 3 2.		.02	.03 1	- 41
25 L94N 103+50E	1	43	4	49		364	28	348 5	6.61 B	6	ND	1	16 .2	2	2	103	.26	. 00 1	2	6/6	3.71	54 .07	3 2.	. 2.7	.03	.05	٠,۱
25 L94N 103+75E	•	33	9	76	.4	150	10	717 4	.62 9	5	ND	1	12 .2	2	2	72	.13	.056	7	249	1.90	109 ,11	6 2	.21	.02	.05 1	1
25 L94N 104+00E	2	30	4	72		258		1202 5		7	ND	i	12 .2	2	2	110	:	.084		626		79 .13	4 1		.03	.04 1	2
25 L94N 104+25E	1	17	7	58	2	146		431 4		Š	ND	i	12 .2	2	Ž	93		.079		448		55 .11	4 1.	.33	.03	.03 1	1
25 L94N 104+50E	i	22	5	75	5	192		700 5		5	ND	1	15 .2	2	2	98	.21	.066		412		95 .22	3 1.		.03	.04 1	1
25 L94N 104+75E	1	32	8	91	.3	220		1260 5		5	ND	1	13 ,2	2	2	91	.26	.091	5	421	2.64	95 .14	4 2	. 13	.03	.04 1	1
•																											
25 L94N 105+00E	1	26	6	83	6	254		787 5		5	ND	1	14 .2	2	2	98	.17		6	476		108 .15	4 2		.03	.05	- 11
25 L94N 105+25E	1	33	5	75	***	280	30	733 5	. *****************************	5	ND	1	17 .2	2	2	92		.057	4	529 : 744 :		134 .11 99 .06	3 2 4 2		.03 .03	.04 1	. :1
25 L94N 105+50E	1	51	3	56	2000000000000	419		537 5	10000000000	9	ND	1	23 .2	2	2	98 93	.39	.051 .068		506		89 .12	5 1		.03	.04 1	اد
25 L94N 105+75E	2 2	27 20	5 9	62 79		211 129	22 18	752 4 531 4		5 7	ND	1	21 .2 13 .2	2	2	87		.061	7			81 .28	6 1		.02	.06 1	2
25 L94N 106+00E	~	20	y	19	5	129	10	731 4	1.72	•	NU	•	13	E	-	01	. 16		•	330	,	J		•••		•••	- 1
25 L94N 106+25E	1	31	4	68	.2	272	22	387 5	i.25 7	5	ND	1	10 .2	2	2	84	.21	.078	4	581	3.17	64 .16	5 2	.44	.03	.03 1	1
25 L94N 106+50E	2	19	6	73		126		578 5		8	ND	i	11 .2	Ž	2	92		.071	6	310	1.62	82 .31	3 2		.02	.06 1	1
25 L94N 106+75E	Ĭ	23	7	66	.3	102	14	563 4		5	ND	1	10 .2	2	2	86		.083		270		53 .25	4 2		.02	.04 1	1
25 L94N 107+00E	1	24	4	67	.3	305		454 4	.71 4	7	ND	1	12 .2	2	2	87		.071		773		76 .06	4 1		.03	.04 1	1
25 L94N 107+25E	1	20	5	66		208	16	236 3	1.74	8	ND	1	9 .2	2	2	74	.18	.049	3	545	2.77	26 .12	6 2	.12	.03	.03 1	4
	_		_					- /		_			- ·	•	•	0/	22	004	•	800 4	4 10	60 _11	4 2	25	.02	.03 1	,
25 L94N 107+50E	1	14	3	62	******	319		341 5	4000000000	8	ND ND	1	7 .2 7 .2	2	2	94 83	.23 .11	.086	2	745		30 .20	7 2		.02	.04 1	- ;!
25 L94N 107+75E	Z	14	4 5	57 71		335 224		485 5 517 5		6 5	ND ND	1	11 .2	2	2	95	.15		5	544		60 .22	6 2		.02	.04 1	2
25 L94N 108+00E 25 L94N 108+25E	2 1	24 65	3	51	3000007-1-70	224 775		273 4	66000000000	6	ND	1	24 .2	2	2	100	.39		3	639 3		151 .12	7 2		.03	.06 1	1
25 L94N 108+50E	3	31	5	84		286		1604 4		7	ND	i	20 .2	2	2	84	.27			387 2		111 .10	6 2.		.03	.06 1	1
	•		•							•		•		_	_												
25 L94N 108+75E	2	27	6	53	.4	231	18	286 4	.72 9	5	ND	1	9 .2	2	2	88	.17			589 2		46 .15	5 2.		.03	.04 1	
STANDARD C/AU-S	17	58	37	131	6.9	69	31 1	1053 3	.95 39	20	7	38	52 18.7	15	18	56	.47	.090	37	57	.90	181 .08	<u>36 1.</u>	.90	.06	.14 12	48

Quest Canada Exploration FILE # 90-4820 Page 6

SAMPLE#	- Mo	Cu	Pb ppm	Zn ppm			Co ppm	Mn	Fe %	As ppm	U ppm	Au	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	ppm V	Ca (La La	Cr Cr	Mg X	Ba Ti ppm %			K X		Au* ppb
25 L94N 109+00E 25 L94N 109+25E	3 2	28 14	4	65 54	.3		23	422 301		2 2	5	ND ND	1	11 19	.2	2	2 2	88 54	.16 .057				78 .12 100 .08	2 2.16		.03	1	4 2
25 L94N 109+50E	6	164	3	78		707	-	2082		8	5	ND	i	65	.2 .2	2	2	123	.54 .108				363 .06	2 2.67		.10	i	4
25 L94N 109+75E	1	71	2	70	1	517	30	299	2.32	5	5	ND	1	107	.2	2	2	49	1.02 2079	7	292 3	5.16	505 .06	4 1.75	.02	.07	1	3
25 L94N 110+00E	1	98	3	90	.5	839	37	616	3.38	13	6	ND	1	110	.,2	2	2	85	1.15 .071	10	369 3	5.55	511 .07	8 2.20	.03	.08	1	3
25 L92N 96+00E	1	195	12	65		410	45	801	4.92	9	5	ND	2	28	.2	2	2	80	.63 .098	7	337 4	6.02	61 .20	2 3.13	.03	.06	1	9
25 L92N 96+25E	1	265	15	83	4	262	36	1018	4.96	6	5	ND	3	31	.2	3	2	77	.62 .106	9	222 3	5.11	67 .21	2 3.28	.03	.06	1	12
25 L92N 96+50E	1	197	3	67		356		1469 !		5	5	ND	1	17	.3	2	2	85	.66 .063		379 4		113 .15	2 3.62		.13	1	12
25 L92N 96+75E 25 L92N 97+00E	;	89 133	2	43 55		346 354		599 4 1100 !		2 6	5 5	ND ND	1	22 23	.2	2	2	86 90	.54 .046 .86 .062		478 4 434 4		89 .10 77 .11	2 2.39 2 2.92	.02	.05		8
25 1728 77.002	•	133	•			334	7.				,	NU	•	2.5		_	_	,,		7	737 7	***	***	L L.7L	.02			"
25 L92N 97+25E	1	140	2	58				892 4		2	5	ND	1	22	.3	2	2	81	.77 .051		488 4		106 .13	2 3.01		.08	1	27
25 L92N 97+50E 25 L92N 97+75E	!	96 123	2	44 62	2	408		672 4		2 6	5	ND	1	26	.2	2	2	80 86	.62 .052		595 4		96 .13	2 2.74	.02	.06		20 58
25 L92N 98+00E	;	97	Ž	62 47		322 402		1199 5 649 4		2	5 5	ND ND	1	20 17	.3 .2	2	2	80	.71 .058		476 4 633 4		113 .15 75 .12	2 2.99 2 2.65	.02 .01	.08	1	69
25 L92N 98+25E	i	24	3	53				196 2		2	5	ND	i	28	.2	3	Ž	53	.31 .091		139 1		212 .18	2 1.70	.03	.04	i	2
25 1 224 20 505		,,,	-			700					_			44			_				700 /					•		
25 L92N 98+50E 25 L92N 98+75E	1	65 35	3 10	48 85	.1	398 239		611 5 885 5		2	5 5	ND ND	1	18 19	.2 .3	2	2	93 97	.34 .066		399 4 277 3		89 .09 139 .16	2 2.39 2 2.12	.03 .02	.04		2
25 L92N 99+00E	i	98	. 16	64		423		912 5		3	5	ND	2	19	2	2	2	83	.32 .107				90 .16	2 3.03	.02	.04	•	9
25 L92N 99+25E	1	103	2	48	 1	416	38	529 3	3.80	2	5	ND	ī	17	.2	2	2	57	.35 .055	5	382 4	.67	82 .14	2 3.07	.03	.06	i	41
25 L92N 99+50E	1	85	2	39	2	487	42	441 4	.58	2	5	ND	1	31	.4	2	2	78	.47 2048	2	544 5	.06	106 .13	2 2.57	.02	.06	1	110
25 L92N 99+75E	1	109	2	36	.2	721	78	489 5	. 75	5	5	ND	1	30		2	2	95	.44 .052	2	547 6	5.58	78 .12	2 2.94	.01	.03	•	20
25 L90N 94+00E	l i	88	4	444		506		1865 6		5	5	ND	i		5.3	Ž	Ž	123	.36 .078		532 5		50 .08	2 4.06	.01	.02	1	8
25 L90N 94+25E	1	151	3	87	.2	165	29	1518 4	.96	2	5	ND	2	32	2	4	2	79	.65 ,119	7	179 2		79 .10	2 3.06	.02	.04	1	11
25 L90N 94+50E	!	93	2	99		91		2380 5		10	5	ND	4	27	.3	4	3	89	.25 .115		98 2		84 .13	2 3.32		.08		9
25 L90N 94+75E	1	185	2	102	.1	190	35 6	2202 6	.00	5	5	ND	1	26	.6	2	2	95	.29 .080	11	202 3).25	70 .10	2 3.34	.02	.07	•	12
25 L90N 95+00E	1	215	3	67		295	41 '	1727 5	5.12	7	5	ND	2	20	.3	2	2	95	.55 .053	10	366 4	.30	112 .12	2 3.32	.02	.05	1	14
25 L90N 95+25E	1	83	2	56		131		1192 3		5	5	ND	1	33	.2	2	2	63	.74 .114		159 1		103 .13	2 2.06	.02	.05	1	4
25 L90N 95+50E	1	109	2	82		136		1812 4		•	5	ND	1	36	.2	3	2	79	.99 .115		173 2		111 .21	2 2.70	.03	.05		4
25 L90N 95+75E 25 L90N 96+00E	1	186 185	2	66 57	.1 .2	363 456		1164 4 1172 4		4	5 5	ND ND	1	14 17	.2 .2	2	2	91 77	.49 .062		429 4 492 5		79 .17 133 .19	2 3.35 2 3.56	.02 .01	.07 .35	1	13
125 L70N 70*002	•	103	-	<i>31</i>		770	73	116 9	.JE		7	NU	•	17	••	6	2	• •	.,, .000	~	776 7		133 (617)	£ 3.30	.01			''
25 L90N 96+25E		129	2	48		356		736 4		8	5	ND	1	17	.3	2	2	79	.86 .055		357 4		56 .11	2 2.90		.14	1	5
25 L90N 96+50E		160	2	55		404		896 4		2	5	ND	1	18	.3	2	2	77	.63 .050	_	437 5		121 .16	2 3.24	.02	.14	. 1	,6
25 L90N 96+75E 25 L90N 97+00E		169 126	6 2	58 52		304 431		279 5 794 4		10 7	5 5	ND ND	2	18 22	.4 .2	2	2	88 83	.69 .067	3	368 4 547 5		111 .13 103 .14	2 2.86 2 3.08	.02	.08	1	47
25 L90N 97+25E		116	Ž	51	00000717709	417		723 4	::	3	5	ND	i	19	.2	2	2	77	.61 .046	2	599 5		100 .12	2 2.93	.01	.06	∭ i	30
05 . 004 07:555			_						8		_			_, 🖁		_	_			_				2 2 51	•			ا۔
25 L90N 97+50E STANDARD C/AU-S	1 19	55 60	2 38	29 131	000000000000	346 73		339 3 053 3		2 40	8 24	ND 7	40	24 52 1	2 8.6	2 16	2 21	47 60	.44 .026 .48 .096		440 4 59		146 .08 183 .08	2 2.21 32 1.90	.01 .06	.08	2 12	54

Ouest Canada Exploration FILE # 90-4820

Page 7

2 2.86 .03

.06

34 1.89

609 5.74 153 .07

. 07

57 .96 179

.04

.14

12

¥ Au* Ti 8 Al Na Ba ٧ Ca P La Cr Ma Cat Sb Bi Au Th Sr Fe Ag U Pb Zn 🖔 Ag Ni Co Mn SAMPLE# · Mo Cu X X ppm ppb X ppm X % ppm X x ppm DOM pon pon pon ppm ppm X ppm ppm ppm ppm ppm ppm DOM ppm ppm ppm ppm ppm 2 2.57 .01 .77 .043 543 5.89 231 .09 . 18 99 2 ND 45 2 37 403 5.07 5 36 410 25 L90N 97+75E 11 80 .D8 .02 .15 2 2.97 593 6.65 182 2 91 .81 .049 2 1.2 2 1 60 2 2 36 ,4 523 45 492 5.19 80 25 L90N 98+00E .07 2 3.21 .02 .31 2 588 7.35 241 2 78 1.13 .049 90 1.1 444 4.73 3 5 ND 1 566 46 91 7 36 25 L90N 98+25E 1 84 .03 .11 1 2 2.04 3 563 4.94 249 .07 2 93 .88 2069 59 2 .8 410 37 640 5.11 2 5 ND 1 2 47 .4 62 1 25 L90N 98+50E 2 3.34 .01 .07 13 2 524 7.80 172 .04 .69 .062 45 1.2 2 88 5 ND 1 774 5.45 47 .5 607 49 76 4 25 L90N 98+75E 1 .08 2 2.76 .01 2 592 6.59 173 99 1.64 1055 2 2 95 1.5 5 3 31 500 42 766 5.77 25 L90N 99+00E 61 11 5 2.12 .03 .08 433 3.96 122 .14 95 .38 .076 5 ND 2 24 1.0 809 6.48 8 .5 38 12 86 360 25 L90N 99+25E 1 81 .06 10 2 2.58 .02 .39 .052 5 570 5.30 83 .06 2 91 .9 2 3 5 ND 36 64 426 36 681 5.71 84 10 .5 25 L90N 99+50E 1 2 3.16 .03 -06 1 16 8 283 3.71 73 .13 18 1.2 2 2 82 .31 2073 5 ND .5 28 688 5.19 83 8 100 276 1 25 L90N 99+75E 16 .08 3 3.32 268 5.23 114 .13 86 .56 .061 24 .9 2 5 2 .6 567 55 1223 5.20 ND 214 7 109 1 25 L88N 91+50E 52 68 3 2.84 .02 .06 .60 .053 3 298 5.66 2 51 825 5.41 5 ND 31 571 136 7 154 25 L88N 91+75E .06 21 -03 300 3.89 83 .08 2 2.35 .64 .091 2 23 2 2 66 3 .7 5 ND 78 276 32 675 3.95 94 7 25 L88N 92+00E 15 2 2.63 .06 7 271 3.96 113 .D9 .04 .92 .104 2 2 73 32 .9 5 ND 100 .3 321 37 957 4.27 119 10 25 L88N 92+25E 1 .03 .05 5 2 2.77 .12 5 348 4.43 68 2 2 77 .53 .066 5 ND 18 7 71 .4 354 38 842 4.54 25 L88N 92+50E 1 136 13 2 2.94 .03 .07 5 338 4.29 77 .12 79 .53 .071 19 1.0 2 39 938 4.58 5 ND 71 . 4 325 130 6 25 L88N 92+75E 10 2 3.03 .03 .07 5 368 4.88 81 .70 .062 77 46 969 4.62 5 20 450 ND .5 154 14 84 25 L88N 93+00E 1 10 .03 .06 2 2.77 4 352 4.60 76 . 13 73 .58 1052 5 19 1.0 2 2 64 .6 394 41 796 4.41 1 121 25 L88N 93+25E .07 6 75 .20 2 2.89 .03 260 3.45 2 79 .41 .107 9 2 5 ND 2 18 .9 37 1219 4.98 87 .3 245 1 107 12 25 L88N 93+50E 15 .07 .03 63 13 2 2.31 .45 .079 5 324 3.58 47 2 2 65 5 1 17 .6 ND 62 .4 254 32 743 3.99 25 L88N 93+75E 1 117 4 74 .19 2 2.73 .03 .07 1 6 7 269 3.33 2 80 .36 2109 5 ND 14 .3 128 9 79 241 36 1105 4.89 25 L88N 94+00E 1 2 2.52 .03 -06 395 4.18 78 .46 .058 5 ND 14 342 40 756 4.24 7 63 25 L88N 94+25E 1 138 2 2.64 59 . 14 .04 .05 82 .29 .092 6 247 2.98 2 11 1 74 202 23 740 4.54 77 4 1 25 L88N 94+50E 3 .05 209 2.71 50 .26 2 3.45 2 2 93 .29 .134 .2 5 2 11 ND 7 80 214 37 1133 6.17 25 L88N 94+75E 1 88 .05 .05 2 2.55 255 3.57 40 .24 70 .34 .089 6 2 2 2 5 ND 1 10 2 62 .4 .3 233 27 621 4.29 83 25 L88N 95+00E 1 2 3.14 .05 -08 53 . 24 266 3.98 .34 .095 6 3 2 10 .8 2 2 77 5 ND 72 274 34 787 4.93 106 4 25 L88N 95+25E 1 2 3.38 .04 .29 290 4.72 263 .19 23 2 60 .58 .067 38 655 4.34 5 ND 1 25 L88N 95+50E 55 .3 301 95 2 .04 .07 2 2.57 251 3.79 175 . 25 74 .75 .096 28 2 2 5 1 60 .5 257 32 671 4.80 ND 96 25 L88N 95+75E 1 2 2.38 .02 .05 380 4.07 187 .06 51 1.28 .112 3 2 ND 1 33 2 2 43 291 31 1022 3.29 25 L88N 96+00E 1 134 3 5 2 2.53 .02 .06 264 .08 54 1.46 .128 319 4.14 3 2 2 55 1.0 .5 768 3.34 5 ND 1 2 52 306 35 113 25 L88N 96+25E 1 .07 .03 3 327 4.46 177 .11 2 2.85 31 .5 2 2 61 .70 .099 5 ND 25 L88N 96+50E 93 2 51 332 33 577 3.82 2 3.34 .02 .11 .82 .048 3 536 5.52 173 27 2 2 421 39 643 4.27 5 25 L88N 96+75E 131 3 46 1 2 2.65 .02 .05 372 4.72 293 2 2 61 1.43 .080 2 86 5 ND 1 29 424 3.35 .5 305 117 2 45 1 3 125 L88N 97+00E 2 3.42 .04 .01 2 645 6.47 116 .08 2 88 .69 .D45 34 2 2 1.1 541 4.90 5 ND 1 .3 471 40 133 2 40 1 25 L88N 97+25E 2 2.82 .03 .01 2 592 5.56 77 .10 2 2 84 .46 .037 5 1 22 .8 2 ND 36 462 4.67 88 2 31 .3 415 25 L88N 97+50E 1 2 3.49 .01 .03 668 7.04 134 .05 .34 .049 4 2 2 96 2 5 ND 28 1.0 50 1063 5.70 35 561 86 25 L88N 97+75E

.55 ,050

.49 .097

76

56

2

16

23

33

7

37

52 18.5

2

38

18

40 768 4.65

32 1054 3.97

35

131 6.7

2

38

1 76

18

60

25 L88N 98+00E

STANDARD C/AU-S

.3 450

70

3

35

Quest Canada Exploration FILE # 90-4820 Page 8

SAMPLE#	. No	Cu ppm	Pb	Zn Ag ppm ppm		Co	Mn ppm		As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca P		Cr	Mg X	Ba Ti ppm X	B Al	Na X	X ppm	Au* ppb
25 L88N 98+25E	S	52	11	68 .2	179	24	834 : 1016 :	5.22	18 10	5 5	ND ND	1 1	12 16	.4 .7	2 2	2 2	81 83	.20 .087 .31 .066	7	190 491	2.68 5.37	70 .14 92 .13	2 2.79 2 3.34	.02	.04 1 .04 1	15 6
25 L88N 98+50E 25 L88N 98+75E		68 63	12 8	69 .2 71 .2			923		3	5	ND	ż	15	.6	ž	2	79	.32 .084	4	446	5.96	90 ,08	3 2.98	.02	.07 1	4
25 L88N 99+00E	i	68	3	70 .1	374	44	928	5.30	6	5	ND	1	14	.5	2	2	91	.36 .076 .32 .049		405 432		89 .14 75 .11	2 2.84 2 2.87	.04	.05 1 .04 1	1 15
25 L88N 99+25E	1	62	2	56 .3	419	39	640 4	6.70	2	5	ND	1	13	.8	2	2	81	.32 ,049	3	432	4.01	13 ***	£ £.01	.03	•••	
25 L88N 99+50E	1	54	. 2	52 .1	374	37	675 :	5.14	•	5	ND	1	15	.8	2	Ź	85	.30 .062	3	481		85 .08	2 2.57		.04 1	7
25 L88N 99+75E	i	30	3	80 .1	228	36	1036	5.49	4	5	ND	1	20	.4	2	2	84	.35 .082	4	309		91 .12 58 .09	2 1.85 9 3.01	.02 .01	.05 1 .03 1	23
25 L86N 95+25E	1	141	11		1050		2642 (:	20	5	ND	2	16	1.2	2	2	98 85	.21 .051 .53 .040	8	472 636	6.81	125 ,11	2 2.84		.18 1	1
25 L86N 95+50E		70 88	2	41 .3 48 .4	494 684		508 4 571 5		3	5 5	ND ND	1	23 19	1.0	2	2	92	.49 .051	4		7.14	89 .09	2 3.56	.01	.03 1	6
25 L86N 96+00E	'	00	_	70	001	70	<i>.</i>			-		•	• • •		_	_			_						AE	7
25 L86N 96+75E	1	98	4	83 .1	376		1212 5		14	5	ND	1	11	.8	2	2	88 76	.22 .142	7	354 235		42 .14 61 .16	2 3.06 2 2.65	.03 .03	.05 1 .06 1	5
25 L86N 97+00E	1	72 36	11 7	57 .4 57 .2	230 49		628 3 488 5		8	5 5	ND ND	1	12 8	.6 .2	2	2	80	.15 .090	ģ		.89	26 .28	2 2.91	.02	.05 1	1
25 L86N 97+25E 25 L86N 97+50E	1	30 95	5	102 .2			889 5		15	ś	ND	i	7		2	2	89	.19 .077	6	444	4.65	34 .10	2 3.79	.02	.05 1	5
25 L86N 97+75E	i	47	7	94 .2		25	698 5		8	5	ND	1	9	.8	2	2	97	.18 .073	12	331	3.36	50 .16	2 3.23	.02	.05 1	4
			_		244	40	20/ /	EA		5	ND	•	9	.7	2	2	75	.20 .118	10	270	3.34	3416	2 3.05	.03	.05 1	4
25 L86N 98+00E 25 L86N 98+25E		60 52	2	64 .4 56 .3		18 23	284 4 393 5		4	5	ND	i	8	.8	2	2	79	.20 .063		443		26 .10	2 3.03	.03	.03 1	1
25 L86N 98+50E	i	41	. 8		171		758 4		6	5	ND	1	8	.4	2	2	85	.16 .133		334		30 ,12	2 2.55	.02	.05	4
25 L86N 98+75E	1	42	7	48 .3	108		175 3		. 4	5	ND	1	8	.4	2	2	65	.12 .069		165		21 .22	2 2.68 2 2.77	.02 .02	.03 1 .03 1	1
25 L86N 99+00E	1	37	2	56 .2	158	14	319 3	3.87	7	5	ND	1	7	.4	2	2	68	.14 .070	0	227	2.01	19 .16	2 2.11	.02	.03	•
25 L86N 99+25E	2	29	12	62 .3	71	10	413 4	.93	7	5	ND	1	8	.2	2	2	76	.10 .095	7	153		28 .24	2 2.29	.02	.04 1	1
25 L86N 99+50E	1	38	5	61 .2		10	234 5	5.31	8	5	ND	1	7	.3	2	2	68	.11 .070	10		1.66	35 .24	2 3.24	.01	.03 1 .03 1	2
25 L86N 99+75E	1	45	5	57 .3			230 4			5	ND	1	9	5	2	2	76 88	.17 .085 .13 .146		260 234		22 .20 66 .09	2 3.08 2 2.06	.03 .01	.05	7
25 L86N 100+25E	2	36 76	6 2	79 .1 44 .2			2230 : 458 4		9	5 5	ND ND	1	10 16	.6 .8	2	2	81	.15 .051		650		31 (05	6 2.69	.01	.02 1	2
25 L86N 100+50E	1	10	6	** ***	070	26	7,0 .	1.70			NO	•			_											
25 L86N 100+75E	1	56	5	75 .1			1892 :		5	5	ND	1	18	.5	2	2	95	.33 .103		393		161 .08 68 .09	2 2.43 2 2.34	.03 .02	.05 1 .04 1	1
25 L86N 101+00E	2	43	10	70 .1			1377		5	5	ND	1	14 13	.6	2	2	97 88	.18 .111		276 342		68 .09 72 .10	2 1.95	.02	.04 1 .04 1 .04 1	12
25 L86N 101+25E	1	36 25	2 8	73 . 3 72 .2			1916 5 1090 5		8	5 5	ND ND	1	9	.5	2	2	86	.15 .089	4	406		47 .11	2 1.93	.02	.04 1	5
25 L86N 101+50E 25 L86N 101+75E	2	25 28	10	93 .2			2609 5		5 6	5	ND	i	18	.8	Ž	Ž	107	.32 .094	5	317		179 ,25	2 1.61	.03	.05 1	1
ES EGON TOTAL			,,													_			_	7/0		407 43	2 2 22	02	OS 1	,
25 L86N 101+75E A	2	38	6	73 .4			855 5		89	5	ND	1	26 9	.5 .8	2	2	118 92	.40 .085 .20 .075		349 542	2.83	107 .12 41 .10	2 2.33 2 2.92	.02 .02	.05 1 .03 1	8
25 L86N 102+00E	1	70 73	2	75 .2 69 .2			847 5 762 4		25 16	5 5	ND ND	1	13	.5	2	2	92 82	.24 .062	_	570		66 .09	3 2.76	.02	.03 1	2
25 L86N 102+25E 25 L86N 102+50E	1	44	2 9	69 .2 80 .3			789 5		10	5	ND	i	23	.6	2	2	85	.40 .096				102 .09	2 2.04	.02	.05 1	2
25 L86N 102+75E	ż	30	7	70 .5		15	494 4		8	5	ND	1	19	.3	3	2	96	.18 _051	6	337	1.65	148 .25	2 1.40	.02	.04 1	1
			-	40	710	71	708 5	. TO	13	5	ND	1	11	.8	2	2	80	.26 .077	3	633	3.95	65 .08	4 2.21	.02	.03 1	1
25 L86N 103+00E STANDARD C/AU-S	1 17	43 58	3 39	69 .3 131 6.9			700 3 1055 3		36	18	7	36		18.4	15	19		.49 .091	37		.95		34 1.89	.06	.14 11	45
SIANUARU C/AU-3				121 000000				*****	90 W. 201																-	

						1	Zne	ot Ca	iaua	EA	PTO.	Iat.	1011	•	LTI	· #	90-46	60						rage 9	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn Ag ppm ppm		Co ppm	ppm Mn	Fe A				Sr ppm	Cd ppm	Sb ppm	Bi ppm	bba A	Ca P X X	La ppn			Ba Ti ppm X			K V X ppm	Au* ppb
25 L86N 103+25E 25 L86N 103+50E 25 L86N 103+75E 25 L86N 104+00E 25 L86N 104+25E	2 1 1 1 2		12 8 2 10 8	41 .2 42 .2 86 .1	165 548 466 166 161	42 39 31	1815 407 406 2287 1342	5.13 5.76 5.55	2 5 2 5 2 5 5 5 5 5	ND ND ND	1 1 1 1	11 14 49 23 34	.4 1.0 .6 .3	2 2 2 2	2 2 2 2	92 53 97	.13 .073 .29 .046 .82 .039 .32 .108 .34 .093	2 2 5	815 518 337	2.53 5.80 5.88 2.49 1.66	29 .09 335 .13 128 .21	2 2.11 2 2.94 2 3.29 2 2.10 2 1.60	.03 .07	.02 1	1
25 L86N 104+50E 25 L86N 105+00E 25 L86N 105+25E 25 L86N 105+50E 25 L86N 105+75E	2 2 1 1	24 29 38 33 30	8 4 4 9 9	77 .3 85 .2 66 .2 61 .2 52 .3	126 457 250	30 56 31	560 4 2086 6 1468 ! 978 4 465 4	6.47 5.11 5.33 6.09 6.12	5 5 5 5 5 5	ND ND	1 1 1 1	18 17 11 10 9	.3 .5 .8 .6	2 2 2 2		77 80	.20 .068 .27 .092 .29 .121 .19 .080 .14 .060	5 2 3	313 701 446	1.36 1.88 5.34 3.44 3.55	79 .27 156 .30 70 .06 46 .14 34 .14	2 1.07 2 1.50 6 2.26 2 2.11 2 2.06	.03 .02 .03	.04 1	2 2 1 13 2
25 L86N 106+00E 25 L86N 106+25E 25 L86N 106+50E 25 L84N 96+25E 25 L84N 96+50E	1 3 2 1		3 8 14 2 6	67 .2 45 .2 47 .3	315 76 25 479 460	22 5 38	705 5 1236 6 164 3 510 3 722 4	.80 2 .36 2	5 5 6 5 5	ND ND ND ND	1 1 1 1	13 10 10 41 32	6. 2. 2. 6. 1.0	2 3 2 2 2	2 2 2 2 2	98 62 56	.29 .086 .12 .073 .11 .086 .63 .068 .48 .070	6 8 2	255 81 454	3.89 1.23 .47 5.33 4.94	66 .10 45 .30 28 .28 87 .11 92 .09	3 2.11 2 1.64 2 1.73 2 2.61 2 2.41	.02 .02 .03	.04 1 .05 1	2 3 1 1 4
25 L84N 96+75E 25 L84N 97+00E 25 L84N 97+25E 25 L84N 97+50E 25 L84N 97+75E	1		2 3 2 2 2	89 .2 82 .2 90 .1	412 275 304 203 147	29 36 25	735 4 771 6 1071 5 927 5 326 4	.51 4 .66 5 .48 2	5 5 5 5 5	ND ND ND ND	2 3 2 3 2	11 11	1.0 .7 .7 1.3	2 2 2 2	2 2 2 2 2	103 89 87	.43 .055 .23 .106 .21 .087 .23 .124 .18 .143	10 7 12	345 374 236	4.73 4.03 4.14 3.22 2.58	63 .14 39 .32 40 .23 44 .29 37 .24	2 2.79 2 3.50 4 2.90 2 3.38 2 3.66	.04 .04 .04	.04 1 .06 1 .05 1 .05 1	2 7 1 2
25 L84N 98+00E 25 L84N 98+25E 25 L84N 98+50E 25 L84N 98+75E 25 L84N 99+00E	2 1 2 1 2	39 24 37 106 32	3 7 3 2 2	62 43	145 67 412	15 ° 8 30	477 4 1082 4 370 3 597 4 387 4	.37 2 .13 2 .98 3	5 5	ND	1 1 1 2 2	7 24 11 11 7	.3 .7 .5 .8	2 2 2 2	2 2 2	67 79	.09 .081 .50 .115 .12 .113 .22 .085 .16 .081	7 10	141 144 276	.50 3.00 1.25 4.79 .47	19 .34 45 .09 36 .09 41 .17 28 .22	2 2.76 2 2.19 2 2.35 2 3.84 2 3.55	.02 .06 .02 .03	.08 1 .05 1	2 1 8 8 1
25 L84N 99+25E 25 L84N 99+50E 25 L84N 99+75E 25 L84N 100+25E 25 L84N 100+50E	3 1 1 1	37 105 37 27 30	3 2 2 4 6	69 .2	27 464 172 152 192	37 18 25 1	511 4 958 5 510 5 1039 4 441 4	.07 20 .21 3 .09 2	5	ND ND ND ND	2 1 1 1	10 22 15 11 9	.6 .9 .7 .8	2 2 2 2	2 2 2 2	95 90 83	.16 .121 .38 .092 .30 .062 .17 .087 .18 .068	11 7 6		4.84	24 .33 77 .14 50 .32 47 .19 33 .19	2 2.74 3 3.80 2 2.70 2 1.91 2 2.45		.05 1 .07 1 .04 1 .04 1 .03 1	6 5 2 1 7
25 L84N 100+75E 25 L84N 101+00E 25 L84N 101+25E 25 L84N 101+50E 25 L84N 101+75E	1 1 2 1 3	34 21 20 20 20	2 6 2 3	88 .1 59 .2 60 .1 71 .2 71 .2	97 206	16 14 18	705 6 427 4 750 3 528 4 323 4	.10 2 .61 2 .40 2	5 5 5	ND ND ND ND	2 1 1 1 2	10 12 9 11 11	.6 .4 .5 .7	2 2 2 2 3	2 2 2 2	92 87 85	.28 .125 .21 .074 .23 .066 .14 .066 .15 .112	3 3 4	399 439 244 501 180	2.92 1.76 3.20	39 .32 46 .15 38 .31 42 .18 36 .24	2 2.50 2 1.63 2 1.27 2 1.79 2 1.34	.03 .05 .02	.03 1 .03 1 .04 1 .03 1 .06 1	2 1 1 1 4
25 L84N 102+00E STANDARD C/AU-S	1 19	52 62	2 38	66 .1 132 6.9			420 3 061 3			ND 7	1 40	9 52 1	.4 8.4	2 15	2 20		.21 .094 .51 .094	4 38	587 : 58		31 .06 183 .08	3 2.17 35 1.91		.04 1 .14 11	3 46

									2000.012	 		<u></u>		8886 8 826					99999925						-	N-	K U	Au*
SAMPLE#	Мо	Cu	Pb		Ag		Co	Mn	Fe As		• • • • •		Sr ppm			Bi ppm	Ppm	Ca X	P	i.a ppm	Cr ppm	Mg X	Ba Ti		l X	Na X	X pps	
	bbus	bbw	bbu	ppm	bbu	ppm	ppm	bbu	X pps	ppm	PP-M	Phan	H		Phil	Phu	- Prince			PP	FF	<u></u>					*****	
25 L84N 102+25E	3	35	8	73		88	15	821	5.29 2	5	ND	2	11	.3		2	82		. 133	10		1.52	42 .23	2 2.7			.05 1	6
25 L84N 102+50E	2	26	4	75	4	177		459		5	ND	1	22	2	2	2	59		.104	6		2.70	123 .04	3 1.7 2 1.7			.05 1 .04 1	1
25 L84N 102+75E	1	29	4	67		208		514		5	ND	1	12	.2		2	72 65		.061	4 5		3.02 1.72	64 .09 186 .09	4 1.1			.07 1	1
25 L84N 103+00E	3 2	15 28	3 10	72 80	.3 .2			1905 3101			ND ND	1	29 20	.2 .5		2	74		082			1.35	216 .12	2 1.5			.05 1	i
25 L84N 103+25E	'	20	10	90	***	113	77	3101	7.16			•			_	_	• •			_							\$3000 000 \$3000 000 \$3000 000	
25 L84N 103+50E	1	20	10	70		142		1808			ND	1	12	6	2	Ź	76		.088	4		1.58	132 -12	2 .9			.05 1	1
25 L84N 103+75E	2	21	12	97		141		1716		• _	ND	1	47	.4	2	2	83		110			2.33	356 .16 378 .07	4 1.5 4 1.9			.07 1 .06 1	1
25 L84N 104+00E	3	111	2	67	5	397		1600			ND		69 24	.2	2	2	85 74		.130 .052	-		2.99	146 .12	4 1.5	-		.10 1	ĭ
25 L84N 104+25E]	25 21	2 7	61 119	.3	173 82		756 1168			ND ND	1	29	:4	2	2	85		.079			1.38	190 .17	3 1.3			.11	1
25 L84N 104+50E	•	21	•	117		02	٤,	1100	7.00		, no	•			_					_					_			_
25 L84N 104+75E	4	29	7	81	.2	89	24	1504		5	ND	1	16	.3	2	2	87		.074		192		98 .20	2 1.8			.06 1	2
25 L84N 105+00E	2	41	6	91	2	274		982		5	ND	1	29	.2	2	2	112		.120			2.83 1.27	192 .13 157 .16	2 1.9 2 1.3			.06 1 .10 1	- 1
25 L84N 105+25E	4	26	7	95	2	106		2868			ND	1	25 16	.6	2	2	89 96		.081 .107			1.73	92 .12	2 2.4			.05 1	i
25 L84N 105+50E 25 L84N 105+75E	1 2	61 34	3 8	70 89	.6	226 117		1060 1971	200000000	_	MD	1	10	7	2	2	81		.092			1.79	89 .13	2 2.2		02	.05 1	1
25 LOAN TUSTISE		34	•	07		•••	34	.,				•			-	_												
25 L84N 106+00E	1	215	2	48	.6	890		535			ND	1	191	,5	2	2		2.09				3.14	750 .03	16 1.4 7 1.7	-		.08 1 .07 1	11 5
25 L84N 106+25E	1	58	10	93	.3	296		1463			ND	1	70	₩ 7	2	2	100 101	1.00	.134 .078	4		3.14 1.59	345 .05 86 .16	2 1.7	•		.07	3
25 L84N 106+50E	5	25	12	70	2	106 146		1112 1438	0000000000		ND ND	1	17 20	.2	2	2	86		.071	4		2.95	87 .11	8 1.5	_		.07 1	1
25 L84N 106+75E 25 L84N 107+00E		19 56	2 7	88 105	.3	232		1423			ND	i	67	.8	Ž	2	161	.56	.098			2.23	402 .17	2 2.1	4 .	02	.10 1	1
23 LOAN TOTYOUE	ן י	20	•	105			70			_		-								_					_	02	A7	
25 TL107E 110+00N	1	48	2	54	4	328		538		5	ND	1	15	5	2	2	77		.055	_		4.38 3.55	70 .06 30 .10	3 1.9 2 2.0	-	. –	.03 1 .03 1	2
25 TL107E 109+75N	!	30	Ş	43		248		444 329		5 5	ND ND	1	7 9	.6 .2	2	2	87 90		.064	3	515	3.27	44	2 1.6			.02 1	i
25 TL107E 109+50N 25 TL107E 109+25N		21 35	2	48 76	.2 .4	206 107		529 689		5	ND	ż	13	.8	2	2	93		.097				72 .39	2 2.8	2.		.02 1	1
25 TL107E 109+00N	;	50	2	48		312	38	659			ND	ī	10	6	2	2	70		.053	2	493	4.05	72 .09	2 1.9	3.	02	.02 1	1
1 1			_							_					_	_				_	704	,	03 00	2 1.6	4	.02	.03 1	4
25 TL107E 108+75N	!	62	2	43	3	371		448			ND	!	11	2	2	2	87 60		.039			4.27 2.60	82 .08 35 .17	2 1.7	-		.02 1	ĭ
25 TL107E 108+50N 25 TL107E 108+25N	!	28 72	3 2	43 43		155 3 97	12 39	172 500		5 5	ND ND	- 1	9 14	.7	2	2	79		.052			4.60	66 .07	4 1.9	-		.03 1	Ž
25 TL107E 108+00N	;	27	2	46		208	19	426	3.09 2	Ś	ND	i	11	3	Ž	2	70		.043	3	460	3.23	54 .12	2 1.5			.02 1	2
25 TL107E 107+75N	li	64	Ž	33		435		435		5	ND	1	20	.3 .7	2	2	68	.30	.051	2	594	4.75	120 .07	5 1.8	1 .	02	.03 1	2
	ĺ									_		_				_	•	20	067	4	112	3.08	71 .22	2 1.5	T	.02	.03 1	4
25 TL107E 107+50N	1	33	2	42		215		757		5 5	MD	1	12 10	.6	2	2	84 77		.057 .034	•			125 .08	2 2.2			.02 1	2
25 TL107E 107+25N	1	70 97	2	43 35		400 441		380 386			ND UN	1	24	.8	2	2	50		.047	2		4.94	244 .09	2 2.6			.25 1	1
25 TL107E 107+00N 25 TL107E 106+75N	1	90	2	31		450		402			ND	i	26	.7	2	2	58	.54	.045	2		4.82	192 .08	2 2.4			.16 1	3
25 TL107E 106+50N	i	84	2		2			413		5	ND	1	23	.7	2	2	58	.57	.044	2	620	4.89	324 .08	3 2.4	6.	.02	.21 1	1
	·									_			45		-	2	95	72	.047	2	480	4.55	114 .08	5 1.8	2 .	02	.02 1	2
25 TL107E 106+25N	1	66	5	51	.3	420		637	9000000000	-	ND 7	1 36	15 51	.6 18.4	2 15	2 20	85 55		.094	37			182 .08	31 1.8			.14 12	45
STANDARD C/AU-S	18	59	38	131	0.7	70	32	1055	o.y/ 39	10			21	10:4	1,5			.,,,					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

Quest Canada Exploration File # 90-4820 Page 1

SAMPLE#	Mo ppm	Cu	Pb ppm		Ag ppm	Ni ppm	Co	Mn	Fe X	As pps	U ppm	Au	Th ppm	\$r ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P	La	Cr	Mg X	Ba ppm	Ti X	ppm B	Al %	Na X	K (X pp	Au* ppb
25 TL107E 106+00N 25 TL107E 105+75N 25 TL107E 105+50N 25 TL107E 105+25N 25 TL107E 105+00N	1 1 1 3	58 71 61 23 23	2 3 2 2 11	44 46 40 41 55	.4 .3 .3 .2	450 574 463 380 58	38 47 33 38 8	544 529 422 562 259	5.21 4.65 4.54 4.73	2 2 2 3 2	5 5 5 5 5	ND ND ND ND	1 1 1 1 2	16 15 22 11 8	.3 .3 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2	97 82 82 72 85	.21 .34 .14	.047 .049 .054 .051	2 3 3 3 12	727 693	4.79 5.84 4.90 5.12	90 78 132 47 34	.09 .07 .08 .08 .35	8 2 5 1 6 2	.77 2.01 1.92 2.16 2.90	.02 .02 .03 .01	.03 .03 .03 .02 .04	3 8 1 1
25 TL107E 104+75N 25 TL107E 104+50N 25 TL107E 104+25N 90S-11-W12 90S-20-A01	5 1 1 4	32 29 9 539 168	12 8 2 25 2	75 58 41 139 127	.2 .3 .3 .3	107 237 405 16 24	42	693 ! 523 ! 410 ! 3439 ! 1444 !	5.42 4.83 5.70	2 2 2 4 4	5 5 5 5 5	ND ND ND ND	3 2 1 1	8 7 5 149 126	.2 .2 .2 .8 .5	2 2 2 2 2	2 2 2 2 2	74 90 74 116 183	.10	.092 .060 .038 .212 .199	13 8 2 6 6	466 583 18	1.75 3.49 5.09 2.27 3.80		.32 .24 .10 .16 .17	2 2 2 2 2 2	65 31 37 37	.02 .02 .01 .01	.03 1 .02 1 .02 1 .36 1	1 1 2 63 1 12
905-20-A02 905-20-A03 905-20-A04 905-20-A05 905-20-A06	1 1 1	200 93 157 257 100	12 9 8 14 4	97 95 89 105 95	.3 .1 .3 .2 .1	20 14 15 12 12	19 21 23	1501 ! 878 ! 1200 ! 1359 ! 1339 !	5.06 5.09 5.91	5 2 6 10 3	5 5 5 5	ND ND ND ND	2 2 2 3 1	113 144 168 171 120	.2 .2 .4 .8 .3	2 2 2 2 2	2	214 177 182 214 197	.73 2.81 2.33	.187 .303 .252	7 6 8 9 7	17 23 18	3.14 2.67 2.96 3.18 2.94	99 131	.18 .18 .16 .18	2 2 2 2 2 3	.36 .63 .30 .30	.01 .01 .02 .02 .02	.77 1.14 .61 1.03 .49	67 2 7 7
905-20-A07 905-20-A08 905-20-A09 905-20-A10 905-20-A11	1 1 1	173 94 37 53 361	5 2 5 2 11	99 79 44 77 106	.1 .1 .1 .1	13 9 6 9 13	18 8 14	1405 4 1005 3 547 4 690 3 1427 5	5.98 2.94 5.42	2 4 2 2 9	5 5 5 5 5	ND ND ND ND	1 1 1 1 3	122 96 71 67 161	.2 .4 .2 .2 .5	2 2 2 2 2	2 2 2 2 2	156 143 103	1.24 .74	.166 .084 .068 .076 .264	10 6 4 8 13	10 10 10	3.05 2.05 1.13 1.51 3.04	26 27 32	.14 .17 .12 .14	2 2 2 1	.02	.01 .02 .05 .05	.36 2 .13 1 .08 2 .12 1 .75 1	9 4 2 5 11
90S-20-A12 90S-20-A13 90S-20-A14 90S-20-A15 90S-20-A16	1 1 1	289 140 160 125 102	6 2 4 3 2	98 79 71 58 63	.1 .1 .2 .1 .2	13 10 11 10 11		1438 ! 1054 4 968 4 702 ! 751 !	i.57 i.21 i.48	6 4 4 2 2	5 5 5 5 5	ND ND ND ND	2 1 2 1 1	151 155 196 165 154	.6 .3 .2 .6	2 2 2 2	2 2 2	89	2.07 1.76	.198	9 7 7 5 6	11 13 13	2.77 2.50 2.42 1.77 1.84	35 53 31	.17 .15 .18 .16	2 1 2 1	.68	.01 .01 .01 .01	.55 1 .34 1 .24 1 .11 .10	38 7 12 4 1 12
90s-20-A17 90s-20-A18 90s-20-W1 90s-20-W2 90s-20-W3	1 1 8 9	175 108 472 672 100	3 2 6 25 51	66 67 107 137 157	.1 .1 .1 1.7	8 9 17 16 7	14 40 77	1209 : 539 : 2442 (3393 : 1104 :	5.38 6.82 7.36	2 2 8 18 21	5 5 5 5 5	ND ND ND ND	1 1 1 1 2	53 103 90 114 87	.2 .9 1.8	2 2 2 2 2	2 2 2 2		.52 1.83 1.44	.124 .114 .154 .189 .287	13 4 4 6 2	9 17 14	1.11 1.48 2.66 2.45 2.41		.05 .15 .06 .11	2 2 2	.46 .03 .82 .68	.06 .02 .01 .01	.09 .16 .15 .16 .38	6 1 2 1 62 1 21 1 15
905-20-W4 905-20-W5 905-20-W6 905-20-W7 905-20-W8	10 8 13 6 7	125 302 224 252 385	63 10 7 9 7	149 154 138 136 134	1.5 .7 .5 .3	7 12 11 10 13	48 29 2 32 2	946 7 2331 6 2045 6 1814 6 1879 5	5.70 5.40 5.43	18 8 9 11 4	5 5 5 5 5	ND ND ND ND	1 1 2 1 1	119 83 55 91 74	.4 .7 .7 .2 .5	2 2 2 2	2 2 2 2 2	81 90 87 87 89	.49 .43 .54	.288 .250 .254 .263 .207	4 3 4 4 3	15 13 15	2.36 2.44 3.17 2.24 2.88	79 58 70	.22 .18 .19 .18 .20	2 2 2	.77 .25 .52 .96	.03 .01 .01 .01	.35 .36 .56 .34 .78	14 40 42 45 150
90S-20-W9 Standard C/AU-S	13 18	1114 58	50 37	160 131	.7 6.8	14 71		3639 7 1053 3		8 39	5 16	ND 7	1 38	100 52	.3 18.5	2 16	2 19	89 58	.53 .49	.207 .097	3 35		2.46 .95	190 179	.18 .07	2 2 33 1		.01 .06	.66 1 .13 11	240 55

EMEL | L. L. LATOL BLT | EL STIL STIL | ST. | DEC. | 16 | PHONE (104) (1315 | FAL (125-1716

Quest Canada Exploration File # 90-4747 Page 1

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	K	U A	1
					Ppm										ppm					*					X			X	X	ppm p	
25 BL 100E 100+00N 25 BL 100E 96+00N 25 BL 100E 95+25N 25 BL 100E 95+00N 25 BL 100E 94+75N	1		5 2 2	84 51 33	8.1	668 721 631	74 56 49	1486 1920 766 382 1092	7.50 6.74 5.41	6 2 2	5 5 5	ND	2 2 1	20 12 18 34 18	1.3 .7 .8 .4	2 2 2	2 2	92 91 89	.16 .30 .39	.109 .114 .071 .044 .039	14 9 2		.56 4.78 5.07 7.34 9.81	95 190	.24	9 1 12 7	3.90 2.78 2.07 3.00 2.46	.02 .01 .01	.03 .03 .11	1 1	1 2 3 1 1
25 BL 100E 94+50N 25 BL 100E 94+25N 25 BL 100E 93+75N 25 BL 100E 92+50N 25 BL 100E 92+00N	1 2 1	71 123 95 66 136	7 8 17	54 31	.1 .1 .4	681 881 447	75 78 61	403 953 825 1212 1022	5.50 4.71 5.62	2 2 5	5	MD ND ND ND	1 1 1 1	15 12 19 21 8	.2 .2 .2 1.2	2 2 2	2 2 2	61 67 76	.48 .36 .38	.028 .040 .033 .103	6 4 9	256 227 178	5.93 9.55 10.73 3.60 5.91	46 65 88	.07 .05 .21	69 1 28 2 7 3	2.19 1.67 2.50 3.18 3.52	.01 .01 .03	.02 .01 .03	1 1 1 1	1 2 1 3
25 BL 100E 91+75M 25 BL 100E 91+50M 25 BL 100E 91+25M 25 BL 100E 91+00M 25 BL 100E 90+75M	1 1	32 102 82 113 70	5 10	52 94	.1 .3 .2	507 355	44 34 50	1189 760 1023 1899 780	5.60 6.36 6.95	12	5 5	ND ND ND ND	1 1 1 1	21 40	.6 .2 .9 .8 .2	2 2 4 2 2	2 3 2	93 . 93 .	.50 .35 .47	.090 .054 .083 .079	5 11 8	534 393 439	2.27 5.37 4.03 4.90 5.71	133 134 159	.09 .14 .08	5 2 5 3 5 3	.72 .94 .35 .02	.03 .03 .02	.05 .06 .06	1 1 1 1	1 1 6 2
25 BL 100E 90+50N 25 BL 100E 90+25N 25 BL 100E 90+00N 25 BL 100E 89+75N 25 BL 100E 89+50N	2 2 1	77 77 44 42 43	17 15 4 6 7	92 54	.2 3 .3	258 209 106	27 36 24	1157 616 1451 829 768	4.63 5.76 4.79	13 17 9 2 3	5 5 5	ND ND ND ND			.6 .8 .9 .3	2 4 3 2 2	2 2 2	79 94 98	.24 .21 .66	.079 .087 .085 .077	9 6 6	285 306 131	3.95 2.92 2.50 2.05 3.03	42 63 146	.20 .13 .17	2 2 2 2 2 2 2	2.85 2.73 2.92 2.33 2.15	.03 .03 .10	.06 .05 .06	1 1 1 1	1 7 1 2 1
25 BL 100E 89+25N 25 BL 100E 89+00N 25 BL 100E 88+75N 25 BL 100E 88+50N 25 BL 100E 88+00N	1 1		4 9 4 10 5	52	.2	306 236	30 30 20	1101 910 615 320 549	5.47 5.03 3.72	42223		ND ND	1 1 1 1	32 7 10 9	1.0 .9 .4 .3 1.0	3 2 2 3 2	2 2 2	84 92 69	.18 .27 .16	.125 .090 .053 .099	8	287 439 310	2.26 2.07 3.54 2.73 2.73	37 39 45	.20 .13 .12	4 3 5 2 3 2	.38 .88 .60 .82	.02 .03 .03	.03 .04 .03	1 1	1 2 3 1
25 BL 100E 87+75N 25 BL 100E 87+50N 25 BL 100E 87+25N 25 BL 100E 87+00N 25 BL 100E 86+50N	1	42 35 87 49 53	4 15 5 13 12	48 66	.3 .2 .1 .2 .3	114 428 284		393 667 537 418 783	5.09 4.72	2 4 2 5 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	6 7 8 14 7	.8	3 2 2 2 4	2 1 2 2	103 85 77	.13 .19 .24	.070 .107 .049 .087	9 5 10	236 465 305	2.88 1.46 4.18 3.07 2.45	31 34 73		3 3 7 2 5 3	.98 .16 .78 .13	.03 .02 .03	.04 .03 .04	1 1 1	3 1 2 15 2
25 BL 100E 86+25N 25 BL 100E 86+00N 25 BL 100E 85+75N 25 BL 100E 85+50N 25 BL 100E 85+25N	3	28 57 29 23 65	9 5	78 60 59	.3 .2 .2 .2 .2	267 98 84	34 10 11	836 850 307 530 1016	5.25 4.79 6.06	3 4 4 4 6	5 6 5 5	ND ND ND ND	1 1 1 1		.6 .3 .7 1.0	2 3 2 2 2	2 2	79 . 81 . 77 .	14 11 11	.111 .066 .080 .100 .099	6 8 8	427 178 127	1.37 2.75 1.26 1.01 1.90	38 25 20	.08 .10 .17	7 3 4 2 2 3	.53 .32 .93 .35	.02 .02 .02	.02 .03 .03	1 1 1 1 1	3 8 1 1 1 1
25 BL 100E 85+00M	. =	57 59	5 40 1		.2 7.0			963 (1058 :			5 16	ND 7	1 38		.8 8.7	2 15				093 096			1.77							2000	1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SAMPLE#	Mc	C	u Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr		Sb		-	Ca		La			Ba			٨L	Na %	K	ppm ppt
,								ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbm	ppm	X		bbu	ppm		ppm	**	bbu				blue bly
or at 400s 6/. Th	1,		. 47	70		40	10	408	4 28	•	5	ND	1	15	.6	2	2	66	.22	.208	19	143	.67	46	.10	3	4.11	.02	.04	1 :
25 BL 100E 84+75N 25 BL 100E 84+50N	_	10	2 13 13	106		ARF	31	RRA	5.19	81		ND		35	.7					.130	20	485	3.34	120	.17	7	3.26			1 3
25 BL 100E 84+25N		8	1 0	73	₩2	449	41	592						11	.8	2	2	83	.28	.075	7	633	4.34	36	.20	_	3.16			1 5
25 BL 100E 84+00N			13					1000	6.11	4	5	ND	1	10	1.5	3	2	79	.19	.087	12	202	.96	53	.27		3.29			1 1
25 TL 106E 104+00N		5	6	48	2	362			4.55	2	5	ND	1	11	4	2	3	81	.28	.044	4	608	3.64	66		8	2.21	.05	.02	1 2
	'																_							440			4 04	OT	04	1 1
25 TL 106E 103+75N	3	2	6 5	72	.3	93	24	1288	5.06	3		ND			1.1					.099				160		_	1.86			1 3
25 TL 106E 103+50N	1	2	B 7	63	.3	224	20	400		2		ND	1		.5	2				.079				94			2.40			1 1
25 TL 106E 103+25N	1 '	5	9 10	40	.3	363	29	485	4.83			ND	-			2	2			.060				119			1.83			1 1
25 TL 106E 103+00N		! 1	7 4	69	3	187	23	892	5.20	2	5	ND ND		16 13		3 2	2			.075		413	2.41	65	10		2.02			1 3
25 TL 106E 102+75N	2	2	5 14	68		219	19	210	4.68	4	7	ND	•	13		2	2	65	. 20		•	400				•			• • •	
05 4045 403.504	١,	2	5 9	E0		155	20	665	7 07	3	5	ND	1	11	1,1	2	2	88	.18	.072	8	361	1.92	62	.19	3	2.36	.02	.03	1 1
25 TL 106E 102+50N 25 TL 106E 102+25N	1:	1			.1				5.49			ND	i	13	1.3	Ž				.051	3	524	6.14	80	. 13		2.75			1 2
25 TL 106E 102+25N	1 :	2		73			23		5.72				i		1.3	3	2	99	.16	.071	9	356	2.62	67	.22		2.57			1 2
25 TL 106E 101+75N			17						5.69	200000000000000000000000000000000000000		ND	1		1.6	2	2	97	. 15	.107		107	.45	37	.35		2.42			1 2
25 TL 106E 101+73N		3		72		177			6.71	2	5	ND	1	7	1.1		2	106	.10	.120	7	327	2.07	29	.27	5	2.21	.01	.04	1 2
23 IL 100E 101+30N	~	. •		•		•••		•••																				٠.,	•	
25 TL 106E 101+25N	2	18	B 13	73	. 2	147	23	1263	4.97	2	5			14	.8	2				.084				64			1.85			1 1 1 5
25 TL 106E 101+00N		4	7	91	.3	204	23	506	4.68	6		ND		12		2				.063		423	2.90	51	.12		2.40 2.07			1 1
25 TL 106E 100+75N	i	6	5 2	59	.3	344	30	499	5.06	2	5	ND		17						.057	3	635	5.59	73	.00		2.07 2.13			1 2
25 TL 106E 100+50N	1	33		60				625		3		ND		12	.9	3	Z	99	.28	.079		498	2.03	109		4	2.13	٠٠٠	.03 M	1 1
25 TL 106E 100+25N	1	51	3 8	56	- 134	193	22	497	4.47	4	5	ND	1	14	.7	3	2	88	.42	.064	0	417	2.51	109		7	2.03			
	١.	_									_			22		•	2	102	70	.075	4	96	2 11	71	na.	4	2.53	.02	-07	1 5
25 L100N 89+00E		8						729				ND ND	1	22 30						,100			2.40		.07		2.28			1 1
25 L100N 89+25E		10				147			5.08			ND	i			2				.059			.86		12		1.88			
25 L100N 89+50E	1	3	12					815 464					i			3				.054	, –			72			2.16			1 1
25 L100N 91+00E 25 L100N 92+25E		8.	D 19	74	.3	45	16	463	4.91			ND		24						.052		60	1.46	66	.09	4	2.36	.02	.06	2 :
23 LIUUN YZYZJE	'		, ,,	- ' -		7,		703	7.,,		•		•			•														
25 L100N 100+25E	1 2	. 4	4 11	67		24	15	2039	4.82	13	5	ND	1	25		2				, 125		37	.54	208	.10		2.64			
25 L100N 100+50E	1 1			76		18	13	1802	4.68	12	5	ND	1			2				, 155				317			2.29			3 13
25 L100N 100+75E		7		50	4	289	56	2075	5.20	42		ND		15			2	64	.41	.089	14	346	2.65	137	. 03		2.04			1 1
25 L100N 101+00E	7	20	5 14	81	3	103	31	2280	6.23	103	5		1		.7	2	2	56	.46	103	15	96	1.30	142	.00		2.49			
25 L100N 101+25E	2	15	9 12	63	.1	60	21	2213	5.09	50	5	ND	1	24	.2	2	2	45	.59	,108	12	20	1.9/	170	.uc	10	2.86	.01	. 12	
	1										_					_	_	-	77	nea	,	474	4 40	94	04	12	2 20	02	ΩL	1 .
25 L100N 101+75E	1	6	5 12	47	• • •	435	39	563	5.03	6				13		2				.050		584	5 21	257	07	R	2.38	.01	.03	1
25 L100N 102+50E	1			37	· • 1	485	37	383	5.49	5	5	ND ND		18 18			2	100	.22	.041	2	58A	5.41	210	05		2.45			ż
25 L100N 102+75E	1	7						331				MD		17		2	2			.045		570	5.49	116	.06		2.37			
25 L100N 103+00E	1 .	7		38		537	44	584			5	ND ND	1		.2		2			038		621	5.09	89	.08	9	2.25			
25 L100N 103+50E	1	6	7 11	56		211	5/	439	J.1/		7	NU	•	10		-	•	76	/				,			•			-	
ar	1.			, 4		440	77	492	5 54		•	ND	1	14	.3	2	2	101	.25	.040	3	638	4.56	125	.11	9	2.21	.02	.03	**1 '
25 L100N 103+75E		4(9 6	474	. I	77	33 71	1058	7.70	23	16	7	37	53	18 9	15	19	55	.51	.097	38	61	.90	181	.07	38	1.90	.06	.13	13 49
STANDARD C/AU-S	19	, pr	J 41	121	1.3	73	21	1020	7.77	7	13	•				_:-				7.77.10					*****					

Quest Canada Exploration FILE # 90-4747 Page 3

							Z , ·									averasión.				56.652 2.3			300014	4
SAMPLE#	Mo ppm	Cu	Pb ppm	Zn Ag ppm ppm		Co	Mn ppm	Fe As X pps		Au ppm	Th ppm	Sr Co			bbur A	Ca P			_	Ba Ti ppm %	ppm %	Na X	X ppm	ppb
25 L100N 104+00E 25 L100N 104+25E 25 L100N 104+50E 25 L100N 104+75E	1 1 1 1 2	53 60 31 33 18	2 8 5 11	48 .2 36 .1 68 .5 84 .8 74 .6	482 472 248 201	35 33 23 24	337 538 700	5.13 2 5.70 2 4.87 7 5.75 6 4.24 2	5 5 5 5	ND ND ND ND	1 1 1 1	13 .6 18 .9 14 1.0 18 1.3 13 1.4) 2) 2) 3	2 2 2	92 109 80 95 84	.18 .037 .26 .037 .22 .059 .27 .070 .19 .064	2 2 4 6 6	656 5.2 683 4.8 450 3.1 307 2.4 260 1.8	4 9 1 4 1	87 .05 90 .07 111 .07 114 .28 92 .21	9 2.04 7 1.96 4 2.20 3 2.17 2 2.26	.01 .01 .02 .03	.02 1 .03 1 .03 1 .04 1 .03 1	3 2 1 3
25 L100N 105+00E 25 L100N 105+25E 25 L100N 105+50E 25 L100N 105+75E 25 L100N 106+00E 25 L99N 100+00E	1 2 1 1 1	27 21 33 68 31	8 9 4 4 2	86 .6 81 .8 61 .5 55 .4 68 .3	169 91 79 221	21 17 25 29	329 567 388 505	4.39 2 4.75 2 3.45 3 4.16 3 3.83 10	5 5 5 5	ND ND ND ND	1 1 1	13 1.3 14 1.8 19 .9 17 .6	2 3 3 3 5 2	2	69 95 58 74 28	.24 .072 .18 .060 .77 .083 .61 .058 .46 .104	6 7	280 1.7 176 1.2 184 2.5 362 3.2 24 .6	8 2 2 3 1	98 .26 90 .35 217 .18 133 .14 169 .02	2 3.54 2 1.91 2 2.13 2 2.13 7 2.31	.03 .03 .10 .08	.03 1 .04 1 .41 1 .05 1 .08 1	1 1 2 1
25 L99N 100+25E 25 L99N 100+50E 25 L99N 100+75E 25 L99N 101+00E 25 L99N 101+25E	1 1 5 2	14 24 21 388 152	6 2 2 29 15	79 .5 68 .3 98 .3 123 .6 126 .4	14 17 18 30	12 10 11 30	1956 1754 2192 1806	4.93 3 4.12 6 3.32 3 10.53 108 7.35 56	5	ND ND ND ND	1 1 1 1	18 .2 13 .5 41 .6 12 1.5 17 1.6	2 2 1 2	2 2 4	39 26 29 59 58	.44 .115 .37 .114 1.14 .181 .24 .141 .37 .118	14 14 9 10 9	25 .6 26 .6 27 .5 46 .8 60 1.2	5 1 9 2 5	189 .08 142 .03 287 .04 86 .05 121 .04	4 2.50 6 1.77 5 1.72 2 2.90 4 2.80	.02 .01 .02 .02	.07 1 .09 1 .08 1 .07 1 .08 1	3 2 2 7 5
25 L99N 101+50E 25 L99N 101+75E 25 L99N 102+00E 25 L99N 102+25E 25 L99N 102+50E	2 1 1 1 1 1	111 88 88 88 91 65	6 6 2 4	48 .3 37 .2 49 .1 48 .1 49 .1	455 444 505	42 40	396 415 458	5.93 17 5.81 4 5.71 2 4.64 2 4.58 2	5 5 5	ND ND ND ND	1 1 1	15 .8 27 .3 17 .4 18 1.1	2 1 2	2 2 2	104 114 111 80 84	.41 .055 .50 .046 .39 .035 .41 .041 .43 .043	2	603 4.5 532 5.4 554 5.3 415 6.2 458 5.1	3 1 0 3	58 .07 101 .09 68 .08 100 .07 106 .06	6 2.69 2 2.60 5 2.58 5 3.03 3 2.55	.01 .01 .01 .01	.03 1 .04 1 .02 1 .03 1 .02 1	5 1 1 3
25 L99N 102+75E 25 L99N 103+00E 25 L99N 103+25E 25 L99N 103+75E 25 L99N 104+00E	1 1 3 1	73 76 58 34 54	6 6 12 17 13	39 .2 67 .3 62 .6 77 .6 78 .4	374 234 147	36 20	563 349	4.47 2 5.57 10 4.21 5 4.48 3 5.11 8	5 5 5	ND ND ND ND ND	1 1 1 1	19 .4 9 1.1 12 .1 16 1.1) 2 5 3 1 4	6 2 2	82 87 72 80 82	.52 .039 .25 .043 .24 .103 .25 .104 .25 .083	6 8 7	424 5.0 567 4.1 279 2.8 200 1.8 497 3.4	1 19 12	68 .07 37 .11 65 .14 85 .16 109 .07	4 2.48 4 3.03 2 2.80 3 2.18 4 2.40	.01 .03 .03 .03	.02 1 .03 1 .04 1 .05 1 .04 1	1 1 6 1
25 L99N 104+25E 25 L99N 104+50E 25 L99N 104+75E 25 L99N 105+00E 25 L99N 105+25E	3 2 2 1 2	27 37 22 25 23	10 2 7 2 4	79 .7 80 .7 71 .7 73 .5 105 .6	217 174 205	36 20 24	594 1941 496 1009 1920	4.89 3 5.30 3 4.29 2 5.30 2 6.45 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	16 1 21 12 1 16 22	6 3 5 5	2 2 5	87 90 82 94 107	.23 .102 .29 .120 .16 .058 .28 .098 .32 .113	4 7 4	486 2.4	8 1 7	113 .28 119 .08 115 .20 89 .06 160 .23	2 2.06 3 2.02 4 2.21 2 2.09 2 1.64	.03 .03 .03 .03	.04 1 .04 1 .03 1 .03 1 .06 1	1 1 4 3
25 L99N 105+50E 25 L99N 105+75E 25 L99N 106+00E 25 L99N 106+25E 25 L99N 106+50E	2 1 1 3 3	30 38 62 29 16	4 10 5 20 3	82 .5 73 .4 52 .4 72 .7 71 .5	267 318 157	27	1130	5.71 3 5.62 2 6.20 3 4.68 2 4.79 4	5	ND ND ND ND ND	1 1 1 1	16 .: 14 .: 12 .: 19 .: 15 .:	\$ 2 5 2 7 5	2	94 90 98 82 92	.35 .091 .32 .080 .29 .070 .30 .075 .24 .093	5	456 2.7 524 3.2 748 3.4 287 1.9 458 2.2	0 4 8	121 .14 70 .15 46 .07 134 .13 126 .12	2 1.97 2 2.07 2 2.13 3 1.98 5 1.62	.03 .03 .03 .03	.04 1 .04 1 .02 1 .05 1 .04 1	2 5 1 1 3
25 L99N 106+75E STANDARD C/AU-S	2 19	29 62	5 43	78 .6 131 7.2				6.30 2 3.99 38		ND 8	1 37	11 .5 53 18.4			82 55	.16 .074 .51 .097		433 2.0 60 .9		48 .15 181 .07	2 2.16 35 1.90	.02 .06	.03 1 .13 11	7 46

	·					·										·								-					<u></u>
SAMPLE#		Cu Span	Pb ppm	ppm ppm	3	Co ppm	Mn	fe %		ppm	Au ppm	Th ppm	Sr ppm	Cd	Sb	Bi ppm	ppm V	Ca %	P X	La ppm	Cr ppm	Mg X	20000	Ti Z pr	B Al		K X	ppm W	Au*
25 L99N 107+00E 25 L99N 107+25E 25 L99N 107+50E 25 L99N 107+75E 25 L99N 108+00E	1 1	25 24 26 19 22	11 5 14 9	68 .3 63 .3 58 .2 57 .3 62 .4	280 294 203	22 30	375 498 385 1258 207	5.01 5.48 4.95 3.74	2 3 4 2 67	5 5 5 5 7	NO ND ND ND	1 1 1	12 12 9 11 29	.7 .9 1.0 .8	3 4 4 4	2 2 2 2 2	85 98 93 76 133	.30 .30 .31 .23	.084 .075 .084	2 2 3	619 564 668 465 269	3.09 3.23 2.49	98 . 49 . 61 .	15 13 11	6 2.06 7 1.86 6 1.85 4 1.82 4 2.00	.03 .03	.04 .03 .03	1	1 1 3 1
25 L99N 108+25E 25 L99N 108+25E 25 L99N 108+50E 25 L99N 109+00E 25 L99N 109+25E	2 4 4 3	29 91 48 26 16	5 2 10 7 5	51 .2 94 .2 81 .4 118 .3	362 533 229 222	23 18 37 37	216 689 1278 927	4.44 1.21 4.36 4.72	21 29 51 13	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	15 203 95 57	.5 .3 .5 1.1	2 3 5 2	2 2 2 2 2 2	88 58	.28 2.30 1.03 .65	.041 .282 .189 .081	2 6 12 8	690 124 203 258 515	3.55 1.24 1.64 2.13	57 .(469 .)	08 03 2 12 26	6 1.98 6 .79 9 1.98 7 2.10 4 1.73	.03 .02 .05	.02 .06 .05	1 1 1 1	1 1 2 1
25 L99N 109+50E 25 L99N 109+75E 25 L99N 110+00E 25 L98N 95+00E 25 L98N 95+25E	4 1	15 01 39 34 35	6 3 2 9 15	45 .2 79 .4 47 .2 115 .4 110 .5	211 583 350 89	14 65 26 20	238 : 1621 : 373 4 1036 6 2117	3.16 5.99 6.69 6.33	4 9 4 4 5	5 5 5 5 5	ND ND ND ND	1 1 1 1	12 51 19 24	.2 .7 .4 1.0	2 3 3 4 2	2 2 2 2 2	71 99 91 120 94	.25 . .57 . .35 . .29 .	064 093 035 081	2 6 2	576 381 841 107	2.51 2.78 3.14	52 .0 482 .0 118 .0 155 .2	05 08 07 28	5 1.52 6 1.93 8 1.49 6 2.10 6 1.56	.03 .03 .03	.02 .05 .04 .05	1 1 1 1	1 1 1
25 L98N 95+50E 25 L98N 95+75E 25 L98N 96+00E 25 L98N 96+25E 25 L98N 96+50E	1 1	90 23 38 46 54	12 2 10 11	63 .1 57 .5 36 .1 34 .1 58 .2	118 477	18 38 40	685 4 533 4 390 5 350 5 730 4	6.91 5.62 5.35	2 6 2 2 4	5 5 5 5 5	ND ND ND ND	1 2 1 1	13 19 14 13 23	.6 1.5 .4 .6	3 3 2 2 3	2 2 2 2 2	91 118 104 100 73	1.16 . .24 . .21 . .22 .	066 039 033	5 2 2	254 4 144 5 429 5 391 5 276	5.45 5.91	264 .1 102 .3 53 .0 69 .0 112 .0	14 18 17	5 3.10 3 1.71 3 2.42 2 2.61 7 2.60	.02 .02 .01	.04 .02	1 1 1 1 1 1	1 3 2 1 1
25 L98N 96+75E 25 L98N 97+00E 25 L98N 97+50E 25 L98N 97+75E 25 L98N 98+00E	1	56 56 82 64 59	8 8 5 10	32 .1 63 .3 38 .2 37 .1 67 .3	255 325 315	26 30 29	400 5 725 4 502 4 470 4	i.56 i.53 i.23	2 8 5 2 11	5 5 5 5 5	ND ND ND ND	1 1 1 1	18 21 19 16 18	.2 .3 .2 .2	3 5 4 2 3	2 2 2 2 2	88 64 70 72 57	.26 . .38 . .40 . .31 .	083 048 048	5	413 5 211 3 295 4 308 3 89 1	3.38 4.06 3.92		18 17 17	4 2.38 4 2.45 4 2.54 3 2.43 5 2.75	.01	.03 .05 .04 .04	1 1 1 1 1 1	1 1 1 3
25 L98N 98+25E 25 L98N 98+75E 25 L98N 99+00E 25 L98N 99+25E 25 L98N 99+50E	1 1	39 24 18 19 24	7	97 .4 123 .3 96 .3 118 .3 99 .3	54 34 30 32 35	16 3 15 1 17 2	1579 4 3359 2 1898 9 2049 9	2.99 5.26 5.31	4 5 4 8 4	5 5 5 5 5	ND ND ND ND	1 1 1 1	36 85 33 39 30	.5 .4 .7 1.2	3 2 3 5 4	2 2 2 2 2	39	.49 . 1.50 . .51 . .64 .	227 143 191	9 7 11 10	47 47 45	.51 .62	172 .0 292 .0 138 .1 165 .1 255 .0	15 9 4	9 2.37 7 1.23 7 2.62 7 2.25 8 2.34	.02 .02 .02 .02	.09 .08 .06 .08	1 1 1 1 1 1	1 2 1 2 1
25 L98N 99+75E 25 L98N 100+00E 25 L98N 100+25E 25 L98N 100+50E 25 L98N 101+00E	1 1	19 25 15 18	5 11 9 7 9	79 .2 89 .3 42 .1 40 .1 46 .1	30 24 6 7 15	13 2 10 1 12 1	2163 4 2433 4 1403 3 1773 3	.23 1.46 1.70	4 3 2 2 10	5 5 5 5 5	ND ND ND ND	1 1 1 1	26 43 51 41 18	.2 .2 .2 .2 .2	4 2 2 3 2	2 2 2 2 2		.58 . 1.27 . .65 . .69 . .43 .	229 046 042	11 10 11 14 18	44 31 9 10 19	.65 .49 .54		16 11 11	6 2.16 9 2.01 7 2.05 5 2.23 5 1.59	.02 .02 .01 .01	.10 .15	1 1 1 1	2 1 2 2 6
25 L98N 101+25E Standard C/AU-S		28 58	5 39	71 .3 133 7.1	39 71		232 4 058 3		11 39	5 22	ND 8	1 38	15 53 1	.2 8.5	5 16	2 19	35 56	.34 .0 .51 .0		16 37		.99 .90	184 .0 180 .0		3 2.16 0 1.90	.01 .06	. 12 . 13	1 11	1 55

SAMPLE#	Mo	Cu ppm	Pb ppm	Zn A ppm pp	g N		Hn ppm	Fe As X pps	3 ·	Au ppm	Th ppm	Sr ppm	Cd pps		8 i ppm	ppm V	Ca %	****	La ppm	Cr				AL N	a K X X	****	Au* ppb
25 L98N 101+50E	,	72	12	105 .	114	21	1084	4.29 Z	5	ND	1	34	.4	2	2	56	.75	.088	18	108	1.82	144 .10	12 2.	77 .0	2 .11	1	13
25 L98N 101+75E	1	60	10	94	3 23	5 29	1376			ND	1	18	7	2	2	66	.44	,112	16	178	2.46	117 .12	11 2.	65 .0	2 .09	1	8
25 L98N 102+00E	1	62	12	80 🎆	27	7 32	1289			ND	1	17	4	2	2	78		.112	- 11		3.07	85 .15	10 2.			***	3 [
25 L98N 102+25E	1	64	5	53 🐘			884			ND	1	22	3	2	2	49	.51	.062			3.15	113 .13	5 2.				4
25 L98N 102+50E	1	82	2	64 .	\$ 243	3 29	1033	4.49 2	5	ND	1	19	6	5	2	53	.51	.075	8	272	3.47	89 .11	6 2.	54 .0	4 .09	***	4
25 L98N 102+75E	1	55	8	222227	2 27				5	ND	1	18	.2	2	2	73		.082	7		3.38	86 .06	8 2.			1	6
25 L98N 103+00E	2	67	11	64 🌼	38		885		5	ND	1	13	.2	2	4	· 78	.38		4		4.42	57 .05	8 2.			1	- !
25 L98N 103+25E	!	76	5		2 37		641		5	ND.	. !	18	2	Z	Z	91		.068	4		4.12	8709	4 2.				- 11
25 L98N 103+50E	1	75 93	4	39 . 61 .	2 417 2 436		499 883		5 5	ND ND	1	20 20	.2	2	2	101 87		.047	3		4.30	87 .10 79 .15	8 2. 8 3.				3
23 LYON 1034/3E	•	73	7	01	- - 30	91	003	3./3 0	7	NU	•	20		~	2	01	.37	*vo/	y	397	4.80	17	o 3	30 . U.	.		'
25 L98N 104+00E	1	81	15	69 🗼	365					ND	1	16	.6	2	2	80		.086			4.04	60 .17	9 3.0			1	1
25 L98N 104+25E	2	25	12	2000000	83			4.86 3	5	ND	1	10	1.6	2	2	78		.098			1.08	34 .38	5 3.			. 1	3
25 L98N 104+50E	1	57	13	75 🐃			860 !	000000		ND	1	19	2	2	2	100		.106	_		4.15	99 .04	7 2.				- !
25 L98N 104+75E	2	26	13	61			387			ND	1	11		S	2	83		.097			1.28	43 .24	3 3.				- 11
25 L98N 105+00E	2	42	7	80 .:	244	23	556 4	1.92 4	5	ND	1	10	.6	2	2	85	.25	.072	6	381	2.99	53 .18	4 2.0	8 .02	2 .03		'1
25 L98N 105+25E	1	38	10	77 🔐	225	31	797 4	i.96 2	5	ND	1	15	.2	2	2	84	.39	.114	5	383	2.79	80 ,09	5 2.4	0 .03	.04	. 1	1
25 L98N 105+50E	2	22	6	79 🔐		31	1335 4			ND	1	16	.5	2	2	91		.096	5		1.96	101 .13	6 1.6			1	1
25 L98N 105+75E	3	20	5	87 💓	15		1619 4		5	ND	1	30	.6	2	2	89		.101	4		2.63	322 .12	7 1.6			1	- 11
25 L98N 106+00E	4	30	′ 7	72			832 5		5	ND	1	23	1.1	2	2	87		.086	4		2.75	159 .12	6 1.9			1	5
25 L98N 106+25E	6	19	3	100 .5	129	29	1401 6	5.35 2	5	ND	1	38	.7	2	2	107	.41	.069	7	272	1.55	194 .26	6 1.6	8 .03	.08	1	1
25 L98N 106+50E	3	64	2	52	360	27	394 5	5.45 3 4	5	ND	1	36	.2	2	2	107	.49	.067	6	602	3.21	178 .15	5 2.2	8 .04	.05	1	1
25 L98N 106+75E	3	18	6	100 .5		19	1256 6	5.62 2	5	ND	1	25	1.0	2	2	113	.63	.104	7	192	.94	185 .37	3 1.2			1	1)
25 L98N 107+00E	1	32	16	70 .4	W		556 4		5	ND	1	20	.7	2	2	84		.081	4		2.59	125 .23	6 1.5			1	11
25 L98N 107+25E	3	20	7	106			1866 6	5.65 2	5	ND	1	27	1.7	2	2	109		.101	-		1.35	200 .39	3 1.9			1	- !
25 L98N 107+50E	3	11	9	84 (.1	255	37	1133 5	5.89 2	5	ND	1	17	1,2	2	2	89	.24	.103	5	409	3.49	140 ,32	10 1.8	6 .02	.05	1	1
25 L98N 107+75E	1	50	3	58 .2			878			ND	1	18	.2	2	2	80		.089	_		3.96	100 .09	10 2.0			1	68
25 L98N 108+00E	1	36	8	66			338 4		5	ND	1	18	4	2	2	82		.061	6		3.22	89 .10	7 1.8			1	11
25 L98N 108+25E	3	21	10	84			870	5.20 5	5	ND	1	25	1.0	3	2	108		.074			2.55	131 .24	7 1.7				1
25 L98N 108+50E	2	18	7	107			1790 5			ND	1		1.1	2	5	90		.115	6		2.24	192 .31	8 1.6				- !
25 L98N 108+75E	4	40	7	75 .5	221	86	1569 5	.69 4	5	ND	1	13	1.0	2	2	107	. 10	.078	14	547	1.76	98 .20	9 2.5	3 .03	.05		'
25 L98N 109+00E	2	13	5	64 .3			985 4	.77 2	5	ND	1	12	1.1	3	2	112		.070			1.88	110 .30	6 1.3			1	1
25 L98N 109+25E	2	32	12	67			654 4			ND	1	11	1.3	2	2	90		.055	6		2.86	81 .23	6 2.2			1	91
25 L98N 109+50E	1	26	2	74 3			497 4	20000000000000000000000000000000	5	ND	1	20		2	2	73		.088			3.56	114 .09	5 2.0				- !!
25 L98N 109+75E	5	24	11	84 .4			1648 5		5	ND]		1.3	2	2	96		.092			1.94	169 .24	5 1.7				- []
25 L98N 110+00E	3	19	10	70 .5	166	20	529 3	.76 5	5	ND	1	33	1.4	2	2	85	.33	.058	7	ZYÖ	1.97	203 .24	8 1.4	2 .03	.06		'
STANDARD C/AU-S	19	60	38	131 7.0	70	31 °	1059 3	.99 37	18	7	37	53	8.7	15	19	56	.51	.095	38	61	.90	181 .07	39 1.9	0 .06	.13	13	54

SAMPLE#									Mri ppri							Cd					P X		Cr	Mg	Ва				Na X		W Au*
25 L97N 100+00E BL		2	79						1556				ND	1	66					1.48											1 2
25 L97N 100+25E	1		113						887			5	ND	1	18	.5				.68					40			3.64			1 2
25 L97N 100+50E	1		58						2596			5	ND	1	45	7				1.34					267			2.61			1 7
25 L97N 100+75E 25 L97N 101+00E	1	•	26 34						1840 1589			2	ND ND		50 40	.8 .2				1.50			39		179			2.69			1 5 1 2
23 LY/N 101400E		2	34	2	100			13	1207	4.34		,	NU	•	40	••	~	~	21	.74	,	10	/4	.97	222	·UY	0	2.01	.02	.07	
25 L97N 101+25E	ı	1	33	2	91		7/	18	1559	4.30	₩	5	ND	1	64	.8	3	2	54	1.96	162	9	77	1.00	294	12	8	2.06	-02	.05	1 1
25 L97N 101+50E	.		73						1705			5	ND	1	26	.2					.099										1 6
25 L97N 101+75E	1		77						1309				ND		20	.3	2		93		.058		393	5.16	138	.07	12	3.03	.02		1 3
25 L97N 102+00E			66	6	82	1	441	38	1249	6.26	19	5	ND	1	15	7	2	2	90	.41	.084	8			121						
25 L97N 102+25E		2	78	5	66		40:	37	929	5.55	8	5	ND	1	15	.2	2	2	82	.39	.060	7	374	4.08	90	.09	7	2.85	.03	.04	1 3
25 L97N 102+50E	1		94	•	77		, ~		42/	E 72	**************************************		ND		27		-	-	86	77	OE T	,	E7/	/ 70	77	200	7	2.38	07	0 /	
25 L97N 102+30E 25 L97N 102+75E	1	1	86 78						624 688				ND		23 17	.4			90		.053				73 78			2.36 2.34			2
25 L97N 102+75E	1		76						645		2	5	ND		15				89		.046				71			2.17		.03	6
25 L97N 103+25E			68						615			5	ND		12	7				.26					63			2.01			1
25 L97N 103+75E			46						732			5	ND	1		5	4			.50	.140	4			112		8	2.34	.02		3
	ı	_		_								_		_				_									_				
25 L97N 104+00E	ı	_	36						2045			5	ND		17				89		.098				200						6
25 L97N 104+25E	ı	_	35				193		1455		3	5	ND ND		20	1.0			102		.089				175		_	1.81			8 2
25 L97N 104+50E 25 L97N 104+75E			32 29				249 248		1151 1056		5 3		ND		17 10	.5 .2			96 83		.082				127 64			2.35 2.37		200000	2
25 L97N 105+00E			24						846		2				14	.2	4		97		071				79			1.99			
ES EVIN 103.00E		-	~7	•	03		201		040	7.77		•	NO	•	14		•	-	,,				J O.	E197	• • •		-			•••	
25 L97N 105+25E	3	2	30						1092			5	ND	1	14	.6	2	2	112	.23	.079	4	443	2.33	70	.13	5	2.05	.03	.03	4
25 L97N 105+50E		2	19						747		5	5	ND	1	13	.7		2	89	.24	.074	5	336	2.00	111	.17		1.75			1
25 L97N 105+75E			21						952		2	5	ND		11	.8	3	2	112		.110				87			1.46			6
25 L97N 106+00E			16						342				ND		10	9			124		.072				49			2.01			
25 L97N 106+25E		1	23	7	80	2	251	22	463	6.01	2	5	ND	1	12	.,7	2	2	105	.26	.076	4	526	2.88	91	.17	4	1.77	.02	.03	10
25 L97N 106+50E	1	•	17	7	27		210	24	525	5 07	2	5	MD	4	10	.6	2	2	97	22	.101	4	440	2 44	99	31	4	1.58	03	Ω4 **	. ,
25 L97N 106+75E			17				216		760			5	ND		12		3		88		.078				54			1.76			3
25 L97N 107+00E			29						388			Ś	ND	i	10		4		80		.067				45			2.38			7
25 L97N 107+25E			110						712			5	ND		63	.8	5	Ž			.074				186			2.66		. 10 🚳 1	3
25 L97N 107+50E	l	2	13	6	65	2	137	13	286	3.92	6	5	ND	1	10	.5	4	2	95	.18	.070	5	368	1.65	50	.21	2	1.32	.02	.03 🦭	1
00 1071 107.7F	1	_		_	,-		-4-	4-				_			_		_	_						• ••			_				
25 L97N 107+75E 25 L97N 108+00E		-	15 17	8 2			217 187		333 771				ND ND		7	1.1	5 4	2 1 5		.19					39 74			1.91 1.54			38 1
25 L97N 108+25E							166		310	3.02	2	7		1		1.2	3	2	77 R2	.23					54			1.82			
25 L97N 108+50E				15			175		211		2	7			7	.5	2	2		.14				2.20		.16		1.90			
5 L97N 108+75E		ì							382		2		ND	-	10		3	Ž		.22					57			1.47			
	1	-		-	- •			. •		- •		-		•			-										-				- I
5 L97N 109+00E			39	7	46	.1	389	29	331	4.38	2	5				.2				.29								1.85			1
TANDARD C/AU-S	11	3	60	41	131	6.9	72	31	1058	3.99	40	17	7	36	53	18.6	15	19	56	.51	097	37	60	.90	181	.07	37 1	1.90	.06 .	. 13 😘 33	46

																														_	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	71	В	AL	Na	K	N	Au*
	.ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppa	ppm	ppm	ppm	ppm	pps	ppm	ppm	ppm	X	X	ppm	ppm	<u> </u>	ppm	X	ppm	×	X	X	ppm	ppb
25 L97N 109+25E	,	28	4	54	.2	328	28	200	4.19	2	5	ND	1	13	.8	2	2	83	26	. 050	2	728	3.64	48	.07	6 3	2.03	.04	.03	1	1
25 L97N 109+50E	1 7	48	2	83	2	485	40		3.32			ND	i	50	.3	2	2	114			2		3.44	353			1.88	.04	.07	i	į
25 L97N 109+75E	3	11	3	109	₩ī.		4	256	.23			ND	1	132	.5	Ž	Ž		1.62		2		.33	339			.12	.01	.14	1	1
25 L97N 110+00E	7	17	10	79	.3	178	26	1027		3		ND	1	35	1.0	2	2	93	.42		4		2.12		. 15		1.36	.03	.08	1	1
25 L96N 91+25E	1	274	9	115	,.	179	32	2392	6.04	9	5	ND	1	47	.,7	2	2	87	.69	.069	14	110	2.88	148	.02	5 3	3.76	.02	.14	1	12
25 L96N 91+75E	1	196	3	76		239	38	1111	5.38	9	5	ND	1	36	1.2	2	2	87	.65	.074	10	121	3.04	104	.09	6 2	2.41	.03	.08	1	2
25 L96N 92+00E	1 1	161	- 8	89	.5	79	23	1002	4.80	5	5	ND	2	40	.9	3	2.	84	.68	.099	13	70	1.91	106	.08	4 2	2.11	.02	.08	1	1
25 L96N 92+25E	1	191	4	98	.5	94		1086		2		ND	2	40	.9	2	2	86	.65		14		2.21	124	.08		2.40	.02	.10 🖇	1	1
25 L96N 92+50E		119	16	78	₩,	61		995		•		ND	1	26	.3	2	2	86	.37		6		1.56	83	.08			.01	.04	1	3
25 L96N 92+75 E	1	76	5	69	.5	83	15	510	4.83	10	5	ND	1	25	6	3	2	93	.29	,046	5	99	1.92	46	.07	3 2	2.90	.01	.03		6
25 L96N 93+00E	1	44	8	75	.7	95		491		3	5	ND	1	19	1.1	2	2	96	.25		4		1.88		.17	3 2	2.51	.02	.03	1	1
25 L96N 93+25E	1	29	14	86	.5	66		1003		8	5	ND	1	25	.9	4	2	124	.23		5		1.46		.16			.02	.04		1
25 L96N 93+50E	1	84	14	85		129		776		8	5	ND	1	23		3	2	99	.28			137			.12			.02	.05		- 4
25 L96N 93+75E 25 L96N 94+00E	2 2	29 136	11	97 84	.5	48 199		726 578		9	5 5	ND ND	1	29 20	1.4	2	3 2	137 96	.34 .24		5	177	1.27	85 59	.25		. 17 . 10	.02	.04		15
S LYON YATUUE	-	130	0	04		177	20	2/0	J.00		7	RU	'	20	.7	2	2	YO	.24	.040	,	177	2.04	27	.10	3 3	. 10	.02	.04		ادا
25 L96N 94+25E	3	35	11	101	.5	61		1755		8	5	ND	1		1.8	2	2	124	.48				.94					.03	.05	•	2
25 L96N 94+50E	2	119	12	136	.6	227	24	742	5.72	38	5	ND	1		1.5	2	2	158	.49				2.00		.24			.04	.08		2
25 L96N 94+75E 25 L96N 95+00E	2 2	45 46	16	88 82	.5 .4	68 46		1326 777			5 5	ND ND	1	20	7	3 2	2	125 158	.28		_	134			.11			.01	.05		9
25 L96N 95+25E	2	55	6	81 8		154		821			5	ND	i	23 22	1.6	2	2	108	. 27		7		1.22 2.19	107 168	.20 .16			.01 .02	.05	1	1
	_		_						ŝ		-		•	*			-				•										1
25 L96N 95+50E	1	102	12	107	9900 T000	354		916		31	5	ND	1		1.0	2	2	130	.75				4.00	377	.10		.43	.02	999	1	1
25 L96N 95+75E 25 L96N 96+25E	2	89 50	12 9	86 66	*	171		1266		• 7	5	ND	1		1.0	4	2	186	.61			275		284	15	4 2		.02	.06		- 11
25 L96N 97+00E		76	2	78	MARKET 1	171 300		744 <i>(</i> ! 1358		10	5 5	ND ND	1	14 24	.9	3 2	2	80 70	.22			228		54 124	.16	43	.59	.03	.05 .07		- 11
25 L96N 97+25E	i	73	9	77		351		1523 !		7	5	ND	i	18	.7 .7	2	2	70	.31			249		127	.10	6 2		-02	.08		il
	•		•										•			_	_	•••						•••							1
25 L96N 97+50E	1	80	5	68	.3	263		1321		<u> </u>	5	ND	1	26	.9	2	2	67	.39			257			.07	7 2		.02	.06	1	1
25 L96N 97+75E	1	77 69	5 2	72 62		303		1220		7	5	ND]	22	.7	2	2	68	.37			279			.08	9 2		.02	.06		2
25 L96N 98+00E 25 L96N 98+25E		66	4	66		431 442		1162 ! 973 !		3	5	ND ND		16 17	.5 1.0	2	2	75 71	.32			345 333		89 100	.07 .06	10 2 10 2		.01 .02	.06		- 41
5 L96N 98+50E	i	68	3	63		521		804		3	5 5	ND	•	19		2	2	90	.29			446		77		13 2		.02	.04		٠il
	•	-	•								•		•			-	-	,,			•	110		••							
5 L96N 98+75E	1	135	5	71	**			153		5	5	ND	1		1.0	2	2	78	.31				3.37	108	.10	7 2		.02	.06		1
25 L96N 99+00E	1	67	2	50		643		747		2	5	ND	1	16	.8	2	3	107	.24			571			.11	20 2 12 2		.02	.03		11
5 L96N 99+25E 5 L96N 99+50E	1	76 84	2	55 41	227, 772	529 656		104 6		3 2	5 5	ND ND	1	15 26	.6 .6	2	2	84 71	.27 .33		_	417 398		92 137	.10	21 2		.02	.05 .02		21
5 L96N 99+75E	i	91	3			767		837		3	5	ND	i	20		2	2	75	.23	047		423		80	80.	31 2		.02	.02		1
	•		-	🖁		. ••	-	-	· · · · ·		-		•	🖁		_	-		, 		7			-					-		`
5 L96N 100+00E	2	78	11	81				764 7	200	4	5	MD	_1	12		2	4		. 15			407 !		:	.21	11 2			.03	1	2
STANDARD C/AU-S	18	59	38	132 💥	646 B	72	31 1	059 3	1.99 ⊗	43	20	7	36	53 18	B2 8 2	14	17	56	.51 🖫	096	35	59	.90	180 :	_07	37 1.	.89	.06	.14		52 i

SAMPLE#	Mo	Cu ppm	Pb ppm		300000		Co ppm	Mn	Fe X		ppm U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sp ppm	Bi ppm	ppm V	Ca %	P X		Cr ppm	_	Ba ppm	Ti X	ppm ppm	Al X	Na %	K %		Au* ppb
25 L96N 100+25E 25 L96N 100+50E 25 L96N 100+75E 25 L96N 101+00E 25 L96N 101+25E	1 1 2 1	53 66 114 71 104	9 6 6 13 6	63	3 .1 3 .2 7 .3	732 887 382	63 99 42	1532 870 2228 1633 1972	6.86 7.20 5.88	3 2 6 13 10	5 5 5 5 5	ND ND ND ND	1 1 2 1	23 6 15 22 24	.7 .4 .7 1.0	2 2 2 3 2	3 2 2 2 4	80 98 103 94 101	.07 .19 .47	.131 .061 .070 .122 .057	11 8	626 491 361	4.53 7.58 6.40 3.95 6.68	88 24 101 151 133	.19 .04 .13 .07		2.83 3.17 3.28	.03 .01 .01 .01	.05 .01 .03 .06	1 1 1 1	6 1 8 2 7
25 L96N 101+50E 25 L96N 101+75E 25 L96N 102+00E 25 L96N 102+25E 25 L96N 102+50E	1 1 2 1 2	107 96 105 39 98	4 8 9 10		.3	604 674 224	46 40 29	1866 1110 777 777 1159	6.00 5.69 4.18	16 8 9 10 8	5 5 5 5 5	ND ND ND ND	1 1 2 1	24 25 13 13	.4 .5 .7 .7	2 2 2 3 3	2 2 2 2 2	96 92 90 75 88	.55 .29 .22	.079 .051 .081 .133 .123	10 9 3	412 433 315	6.30 5.48 5.83 2.56 3.89	159 101 63	.02 .12 .13 .05	8 3	.76 .17 .91	.01 .03 .03 .02	.03 .03 .03 .05	1	2 5 5 1
25 L96N 102+75E 25 L96N 103+00E 25 L96N 103+25E 25 L96N 103+50E 25 L96N 103+75E	1 1 1 2 2	74 103 60 20 24	2 4 4 8 5	58 75 127	.3 .3	434 338 147	43 32 22	491 750 566 1223 2261	5.02 4.96 6.79	3 6 3 2 5	5 5 5 5 5	ND ND ND ND	1 1 1 1	10 12 19 27 20	.6 .5 .2 1.5	3 2 2 3 2	2 2 2 2 2	56 76 85 115 106	.31 .45 .50	.055 .064 .087 .073	4 2	430 452 270	3.30 4.56 3.84 1.90 2.01	84 125	.14 .11 .07 .31	2 2 6 2 5 2 4 1 5 1	.66 .21 .53	.03 .03 .03 .03	.11 .04 .04 .05	1 1 1 1	1 1 2 2 3
25 L96N 104+00E 25 L96N 104+50E 25 L96N 104+75E 25 L96N 105+00E 25 L96N 105+25E	1 6 2 3 1	35 33 41 16 95	8 15 9 10	84 85	.5 .5 .6	203 74	47 26 15	843 - 3437 : 969 : 620 : 545 :	5.85 5.58 6.22	5 5 9 8 72	5 5 5 5 5	ND ND ND ND	1 1 1 1	12 19 12 8 68	.4 1.1 1.3 1.6	2 3 2 3 2	4 2 2 2 2	82 98 96 97 117	.27 .24 .11	.120 .087 .079 .066 .081	6 5 9	314 363 185	2.70 1.75 2.44 .96 3.60	66 222 62 33 290	.09 .19 .16 .30	5 2. 8 1. 3 2. 2 2. 11 2.	.73 .41 .74	.03 .03 .03 .02	.04 .05 .04 .03	1 1 1 1	1 3 9 8 7
25 L96N 105+50E 25 L96N 105+75E 25 L96N 106+00E 25 L96N 106+25E 25 L96N 106+50E	2 3 8 6 2	81 169 104 81 92	7 5 8 9 3	71 70 92 152 51	.3	741 526 604	41	331 6 586 5 963 6 838 5 393 5	5.51 6.09 5.70	107 43 154 127 7	5 5 5 5 5	ND ND ND NO	1 1 1 1	32 24 27 42 21	.6 .3 .6 .5	2 2 4 3 2	2 2 2 2 2	145 120 218 193 118	.41 .33 .54	.070 .051 .165 .168 .037	5 19 10	735 450 400	3.53 4.29 2.63 3.10 5.06		.07 .08 .12 .12	6 2 7 2 5 3 7 2 7 2	.18 .21 .96		.06 .09 .08 .08	1 1 1 1	1 1 5 1 2
25 L96N 106+75E 25 L96N 107+00E 25 L96N 107+25E 25 L96N 107+50E 25 L96N 108+00E	1 2 3 5	41 35 29 42 17	8 11 2 10 7	59 81 59 82 72	.5 .4	309 321	29 32	529 4 782 5 396 4 609 5 527	5.06 4.35 5.91	2 4 3 9 2	5 5 5 5 5	ND ND ND ND	1 1 1 2 1	12 14 11 26 10	.6 .7 .2 .7	2 2 2 3	3 3 2 2 2	81 86 80 94 89	.26 .23 .38	.061 .080 .061 .082 .082	4 2 5	548 617 476	4.49 3.66 3.66 2.70 2.63	86 54 198	.11 .15 .10 .14	5 2 5 2 8 2 7 1 3 1	.28 .06 .66	.03 .02 .03 .03	.03 .04 .03 .07	1 1 1 1	2 2 1 1 2
25 L96N 108+25E 25 L96N 109+00E 25 L96N 109+25E 25 L96N 109+50E 25 L96N 109+75E	1 1 2 6 8	26 26 31 14 36	10 11 4 13 6	70 59 54 76 99	.3 .2 .3 .5	278 292 370 215 290		352 4 384 5 288 4 644 6	5.34 6.47 5.28	4 7 3 69	5 5 5 5 5	ND ND ND ND	1 1 1 1		.8 .4 .2 1.2 1.3	4 2 2 2 2	3 2 4 2 2	79 93 93 108 179	.23 .33 .33	.062 .052 .071 .067 .081	2 2 4	764 725 543	3.11 3.12 3.38 2.58 2.44	135 31 65 104 398	.11 .11 .07 .21	7 1. 5 2. 6 1. 5 1. 8 2.	.03 .80 .73	.03 .03	.03 .03 .03 .05	1 1 1 1 1 1	1 1 1 1 1
25 L96N 110+00E STANDARD C/AU-S	5 18	22 61	7 36	64 130	.5 7.0	205 71		429 3 1058 3		14 40	5 15	ND 7	1 38	21 53 1	.8 8.6	2 15	2 21		.33 .50		4 37		2.21 .90		.17 .07	7 1. 38 1.			.04 .13	1 13	52

SAMPLE#	Мо	Cu	Pb		Ag	Ni	Co	Hn		As	U	Au	Th	\$r ppm	Cd post	Sb	Bi ppm	V ppm	Ca P		Cr	Mg X	Ba T		B Al	Na X	2. 00000000000	Au*
	ppm	ppm	ppm	***		ppm	ppm	ppm	*				PPM												5 3.20	.03	.04 4	
25 L94N 96+25E 25 L94N 96+50E	3 2	64 15	11 14	5550	.6	208 28		1124 1031		12	5 5	ND ND	1	23 10	1.0	2	2	120 110	.30 .083		74	1.38	186 .2 70 .3		4 1.43	.02	.04 2 .03 2	5
25 L94N 96+75E	3	34	9		.5	142	32	973	5.69	2	5	ND	i	9	1.3	2	Ž	94	.14 .079	8	234	1.76	45	9	4 3.20	.02	.03 2	1
25 L94N 97+00E	3	58	10			133		759		•	5 5	ND	1	11 10	1.3	2	2	97 97	.14 .064 .16 .051		171	1.81 3.26	46 .1 63 .0		4 3.74 4 2.87	.02	.03 4 .03 1	2
25 L94N 97+50E	2	42	5	66	.3	286	26	601	0.31		7	ND	ı	10	1.0	2	٤,	. 71	. 10 3031	7	347	J.20						1
25 L94N 97+75E	2	40	9	68	.3	310		938	•	2 2	5	ND	1	18	.3	2	2	92	.26 .104			3.40			5 2.38	.02	.03 1	1
25 L94N 98+00E	3	85	8	62	1	801	58		4.02	2	5 5	ND ND	1	28 30	.3	2	2	56 123	.35 .057 .43 .037			8.55 5.96	228 .0 145 .0		13 3.61 21 1.78	.02	.03 2	2
25 L94N 98+25E 25 L94N 98+50E	2	78 89	8			635 673		512 505		2 2	5	ND	i	28	:4	2	2	82	.52 .053			6.42	206 .0	8 2	22 2.26	.02	.03 2 .03 1	1
25 L94N 99+25E	2	72	4			613		869		7	5	ND	1	12	.5	2	2	98	.23 ,077	7	382	5.64	40 .1	6 1	14 2.26	.02	.03	6
25 L94N 99+50E	3	82	11	64		638	67	1042	7 55 S	•	5	ND	1	13	.8	2	2	100	.23 .091	8	362	5.25	51 .1	B 1	4 2.49	.02	.03 1	1
25 L94N 99+75E	2	95	9			752		907		5	5	ND	i	17		2	2	94	.35 .055	6	381	6.33	58 .1		4 2.04	.02	.03 1 .04 1 .04 3 .05 2	1
25 L92N 100+25E	2	42	9			152		1755		2	5	ND	1	105	.,7	2	2	53 89	1.32 .180 .41 .076		161 364		282 .D 312 .0		4 1.83 6 2.89	.02 .02	.04 1 .04 3	7
25 L92N 100+50E 25 L92N 100+75E	3 2	86 73	14 14			519 489		1397 (1022 (16	5 5	ND ND	1	34 10		2	2	98	.17 .063		504		62 .1		6 2.78	.03	.05 2	2
	_		••				_									_	_			_	701					02	05 T	
25 L92N 101+00E	_	106	8	00000		777		815 ! 1654 :		6	5 5	ND ND	1	11 12	5 1.1	2	2	88 76	.17 .069 .18 .085	9 10	396 269		77 .1		8 3.06 8 3.21	.02	.05 3 .04 1	46
25 L92N 101+25E 25 L92N 101+50E		185 330	· 18 18			777 515		1024 1097 (9	5	ND	i	14	6	2	2	78	.19 .068	7		4.34	124 .1		7 3.19	.02		350
25 L92N 101+75E	3	99	12	50 🎆	1	765	62	832	6.82 🖁	9 8 2	5	ND	1	14	.2	2	2	94	.12 .047		554		56 .0 97 .1		4 2.81 3 3.19	.01	.02 3 .03 2	41
25 L92N 102+00E	2	97	8	48		590	40	620	5.33	2	5	ND	1	16	.5	2	2	83	.33 .049	•	481	J.04	7/		3 3.17	.02		1
25 L92N 102+25E	3	115	5			849	67	958	5.62	2	5	ND	1	14	.7	2	2	84	.27 .044		511		65 .0		6 3.25	.02	52455554 1244	10
25 L92N 102+75E	3	96	10			581		584		2	5	ND ND	1	15	5	2	2	81 136	.21 .057 .22 .052	6 3	430 642		54 .0 30 .0	7.0	5 3.24 4 2.15	.02 .01	.03 3 .02 2	اهٔ
25 L92N 103+00E 25 L92N 103+25E	1 2	74 83	4			609 504		338 618		2 2 7 5	5 5	ND	1	18 24	.2 .3	2	3	93	.43 .047		537		86 ,0	7	5 2.37	.02	.05 2 .03 1	4
25 L92N 103+50E	ī	72	13			410		382		5	5	ND	i	12	.3 .2	2	2	65	.23 .057		414	4.13	85 .0		5 2.45	.04	.03 1	3
25 L92N 103+75E	2	56	15	50		453	37	537	4 52		5	MD	1	15	.5	2	2	72	.27 .042	3	457	4.61	99 .1	1	4 2.39	.03	.03 3	2
25 L92N 103+75E	1	58	3		60.000	408		482		4	6	ND	i	21	.2	2	2	83	.31 .055	3	545	4.20	123 .0	3 1	0 2.04	.03	.03 2	4
25 L92N 104+50E	i	15	5	59	2	103	11	405	2.96	2 3	5	ND	1	12	.3	2	2	61	.17 .074		232		73 .0	100	3 1.37	.03	.03 1	- !
25 L92N 105+00E	3	16	10 7		2	72 150		392		3	9 5	ND ND	1	13	1.1	2	2	74 104	.15 .082		156 325		96 .2 56 .1		3 2.89 2 2.43	.02	.03 3 .03 2	2
25 L92N 105+25E	3	23	,	84		120	29	1279	7.37		,	NU	•	7	7.4	-	-	104	.13 .107	·	363							
25 L92N 105+50E	3	21	6			189		782		2	5	ND	1	9	.8	2	2	83	.14 .084		400		46 .1	754	3 2.29	.02	.02 2 .08 3	4
25 L92N 105+75E	5	93	10			492		464		133 84	6	ND ND	1	49 10	.9 .8	2	2	178 147	.48 .081 .14 .057		585 327		137 .1 52 .2		7 2.83 4 1.87	.02	.05 3	1
25 L92N 106+00E 25 L92N 106+25E	6	32 19	10 13			193 114		823 ! 2846 ⁴		101	5	ND	i	27	.7	2	2	159	.27 .087	5	259	1.10	213 .1		4 1.37	.02	.06 1	2
25 L92N 106+50E	3	40	9	100		256		2469		55	5	ND	1	25	.2	2	2	113	.40 .125	3	362	2.21	258 .0	5	5 1.63	.02	.08 1	1
25 LO2N 407400-	4	31	4	66	2	310	25	431 !	5.87	6	9	ND	1	10	.3	4	2	89	.24 .081	2	632	3.11	65 .0		6 2.04	.03	.03 1	5
25 L92N 107+00E STANDARD C/AU-S	1 19	51 59	38	132 7		70		1059		41	22	7	37	53	18.5	15	20		.51 .097			.90	181 .D		8 1.90	.06	.13 11	49
CIVIDANO CINO C				00000	3000										*******													

						,	Xae.	st Can	aua	DA	PTO.	I a C.	LOH	•	r I I I	υ π	30-47	7/					-	age I	U
SAMPLE#	Mo	Cu	Pb ppm	Zn A			Mn Mn	Fe As X ppm	• -	Au			Cd PPS	Sb ppm	8 i ppm	V ppm			Cr			B Al		K PP	W Au*
25 L92N 107+25E 25 L92N 107+50E 25 L92N 107+75E 25 L92N 108+00E 25 L90N 100+25E	4 3 4 4 3	62 24 54 4 37	10 7 3 9 5	93 64 92 52 59	250 488	40 46 13	758 (1243) 966) 302 (233 (5.28 44 5.38 64 6.26 3	5 5 5	ND ND ND ND	1 1 1 1	24 13 34 10 6	.6 .8 .2 1.6	2 2 2 3 2	5 4 2 2 2	112 113 114 137 74	.32 .064 .20 .091 .36 .086 .14 .037 .12 .078	3 2 2	502 480	5.04 2.58 4.31 1.28 1.29	130 .08 79 .07 116 .07 73 .43 28 .25	5 3.01 3 2.06 6 2.81 2 1.04 2 3.10	.02	.03 .06 .03	8 8 1 1 5 1 1 1 2
25 L90N 100+50E 25 L90N 100+75E 25 L90N 101+00E 25 L90N 101+25E 25 L90N 101+50E	2 2 2 1	53 52 47 35 52	7 8 4 7 2	67 64 63 54 45	391 327	38 36 28	770 4 708 5 716 5 604 4 495 5	5.32 2 5.35 2 5.65 2	5 5 5	ND ND ND ND	1 1 1 1	14 15 13 15 10	.9 .9 .9 1.0	2 2 2 2 2	2 2 2 2	81 89 91 78 86	.28 .064 .30 .061 .31 .056 .29 .056 .24 .033	3 4 3	450 430 309	4.51 4.38 3.70 2.85 4.06	77 .09 91 .08 81 .09 78 .12 54 .06	2 2.86 2 2.75 4 2.13 2 2.00 4 2.16	.02 .02 .02 .02	.05 2	3 3 3 3 8
25 L90N 101+75E 25 L90N 102+00E 25 L90N 102+25E 25 L90N 102+50E 25 L90N 102+75E	1 1 2 4	36 44 49 35 28	6 2 5 7 5	73 .2 53 .1 44 .1 68 .2 87 .4	334 385 307	27 34 25	706 5 505 5 458 5 471 5 1200 6	.53 6 .11 4 .56 6	5	ND ND ND ND	1 1 1 1	18 16 12 14 12	.6 .8 .9 1.5	2 2 2	3 5 2 2 2	85 86 84 93 81	.31 .066 .29 .059 .23 .039 .23 .054 .19 .097	2 2 2	453 474	2.82 3.55 4.09 3.46 1.88	84 .08 88 .04 46 .07 50 .08 68 .17	2 2.40 3 2.12 4 2.20 3 2.21 4 2.79	.03 .02 .02 .02	.03 2 .03 1 .02 2 .02 2 .03 2	1 1 4 1 9
25 L90N 103+00E 25 L90N 103+25E 25 L90N 103+50E 25 L90N 103+75E 25 L90N 104+00E	3 4 2 2 3	30 30 26 67 26	7 8 18 4 11	72 .3 97 .4 102 .2 56 .1 78 .4	156 115 424	30 23 41	784 4 1675 5 1274 5 732 5 793 5	.65 11 .99 7 .14 6	5 5 5 5 5	ND ND ND ND	1 1 1 1		.9 1.1 1.0 .8	2 2 2 2 2	5 3 3 2 3	82 92 85 81 80	.11 .071 .24 .092 .20 .092 .31 .058 .18 .064	5 7 2	327 224 547	2.07 1.98 1.39 4.27 2.29	47 .13 153 .16 159 .19 131 .08 72 .13	2 2.32 7 1.88 5 1.76 5 2.22 3 2.22	.02 .02 .02	.04 2	5
25 L90N 104+25E 25 L90N 104+50E 25 L90N 105+00E 25 L90N 105+25E 25 L90N 105+50E	2 3 3 2 3	42 23 80 34 93	10 2 17 15 15	71 .3 95 .2 83 .5 100 .2 107 .4	142 181 112	20 25 19	503 5 867 5 542 4 866 4 447 5	.73 6 .93 36	5 5 5 5	ND ND ND ND	1 1 1 1	7 14 15 29 21	.8 1.2 1.1 .8	2 2 2 2	2 3 2 2	85 83 85 80 83	.15 .048 .21 .071 .27 .055 .54 .070 .41 .076	6 3 3	235 196 182	3.10 1.69 2.13 1.50 2.23	55 .13 117 .26 91 .08 146 .13 106 .09	2 2.89 4 1.96 4 2.22 2 1.47 4 2.13	.02	.04 1 .03 2 .05 4 .07 1 .05 3	4 1 10 15 2
25 L90N 105+75E 25 L90N 106+00E 25 L90N 106+25E 25 L90N 106+50E 25 L90N 106+75E	1 2 2 3 2	60 78 57 151 71	2 6 10 7	42 .1 52 .1 56 .1 70 .1 58 .2	860 521	83 45 47	626 4 847 5 570 4 401 5 741 4	.18 7 .72 6 .56 27	5 5 5 5 5	ND ND ND ND	1 1 1 1	17 25 12 40 17	.4 .2 .4 .3 .3	2 2 2 2	2 2 2 2	69 51 71 102 92	.34 .070 .18 .056 .22 .090 .54 .070 .30 .073	2 2 7	607 527 587	3.90 10.22 5.04 6.70 4.07	70 .05 92 .03 85 .06 275 .04 133 .05	9 1.61 26 1.62 10 2.10 9 3.74 7 2.14	.01 .02 .01	.02 1 .02 1 .02 2 .13 4 .05 2	4 2 2 2 1
25 L90N 107+00E 25 L90N 107+15E 25 L90N 107+25E 25 L90N 107+50E 25 L90N 107+75E	3 2 2 3 3	42 53 52 49 36	4 3 2 3 7	60 .1	524 424	37 39 43	412 4 412 4 312 3 906 4 343 4	.78 22 .97 8 .57 26	5 5 5 5 5	ND ND ND ND	1 1 1 1	29 44 20 14 11	.4 .5 .4 .7 .4	2 2 2 2	2 2 2 2 2	75 106	.27 .041 .44 .044 .28 .049 .28 .044 .16 .034	2 2 2	682 428 412	4.94 4.76 5.92 4.56 5.30	146 .06 112 .08	5 2.41 10 1.91 5 2.98 5 2.65 2 2.91	.02	.04 4 .07 2 .03 2 .03 3 .02 3	
25 L90N 108+00E STANDARD C/AU-S	3 18	39 58	6 40	72 .4 131 6.9			419 6 057 3		5 15	ND 7	1 39	10 52 1		2 15	2 18		.18 .081 .50 .095	3 35	480 61	3.98 .90	53 .13 179 .07		.02 .06		

SAMPLE#						Ag			Mn ppm	Fe X	As pps	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X		Cr		Ba ppm	T!	ppm B		Na X	K X	Ppe	
25 1 004	108+25E		32						717				ND		10	.2					,067				108	.16	6	2.33	.02	.05	1	4
	108+50E	;				3						_	ND	i		2	2	2			.059				34			2.62	.02	.05		5
	108+75E		37			 3							ND	i			2	2			.030	2	516	4.10	32	.14	7	2.86	.02	.03		4
	109+00E		42		57		438	34	375				ND	1		.2	2				.027				139			2.60			1	4
	109+25E			ž						4.57			ND	1		.2			106	.47	.032	4	655	5.11	194		9	2.83	.01	.04		4
LJ LJON	107.554	Ι'	• • •	_				••											•								_					
25 L 90M	109+50E	1	49	3	44	33	440	34	358	4.49	19	5	ND		47						.044	2	719	4.00	230	.14	9	2.45				9
	109+75E	1	73		52	3 3	654		415		27	5		1	40	.2	2				.039	3	744	5.37	163			2.84				2
	110+00E	li			50	.2	607	41	368	5.03	2 2	5		1	44	2	2	2	97	.38	.042				86			2.26				3
25 L88N	100+00E BL	ĺi	50	5	71	2	311	28	573	4.56	2	5	ND	1		2	2				,050				51			2.57			1	1
25 L88N	100+25E		39	5	71	.2	223	18		3.74	2	5	ND	1	6	.2 .2	2	2	71	. 13	.068	5	362	2.59	28	315	5	2.90	.02	.02		2
	•••]		_																							_					
25 L88N	100+50E	1	34	9	53	3	131	11	230	4.11	5				8		2				, 100				29			2.68				8
25 L88N	100+75E	1	57	2		.3					9	5	ND	1		.2	2				.056			3.55		.07		2.63				6
25 L88N	101+00E	Ì	67	4	70	.3	330	33	648	4.55	6	5	ND	1	9	.2	2	2	85	. 18	.102				38			2.88				2
25 L88N		1	58	2	51	321	387	31	462	5.18	5	5	ND	1		.2	2	2	87	. 15	.058				28		6	2.81	.02	.03		
25 L88N	101+50E		23		58	.3	119	15	441	3.31	2	5	ND	1	8	2	2	2	81	.11	.075	6	294	1.60	35	.25	6	2.24	.01	.02	1	7
																		_												^-		
25 L88N	101+75E	1	93	3	89	3	684	47	1004				ND		30	2	2	2			.166				262			4.07				2
25 L88N	102+00E	1	69	5				29	664				ND		13	2	2	2	80	.24	.109			2.72		.30		2.95				7
25 L88N	102+25E	1	97	6		2	408	41	937	5.55			ND		11	2	2	2	94	.22	.084				54		_	2.65			1	7
25 L88N	102+50E	1	78	3	68	.3	414	40	878	5.16	9		ND	1		.2					.061				60			2.26				2
25 L88N	102+75E	1	59	5	85	.2	316	36	792	5.56	17	5	ND	1	8	.2	2	Z	99	.16	,080	5	221	5.20	34	.0	•	3.08	. UZ	.03		-
																	_	_							_				04	07		
25 L88N	103+00E	3	25	8		.Z	35	25	2774	5.61		5	MD	1	9	∭. Z	2	2	98	-11	.120	6	155	.50	75		0	1.49				1
25 L88N	103+25E	1	27			.2	182	35	1435	5.40	32	5	ND	1	12	 2	2	Ž	88	.16	.107				82			1.80				
25 L88N	103+50E] 1	69		63	.2	422	51	1011	5.00	2	5	ND	1		2	2	2	85	.25	.073				159			2.56			1	2
25 L88N	103+75E	1	44	4		.2	327	32	495	5.13	2	5	ND	1	8	.2	2	2	86	.18	.044	6	640	3.29		. 15		2.63				2
25 L88N	104+00E	1	84	3	73	₩.	486	36	502	4.94	31	5	ND	- 1	32	2	2	Z	121	.39	.066	5	2//	3.8/	167		•	2.61	.02	.00		~
		l										_		_	_		_	_		40				4 05	-		4	2.89	02	02		7
	104+25E	2	41		82				831	5.33		5	ND		7	.2	Z	2	85	.12	.063	9	344	1.23	36	30		2.71				ž
25 L88N	104+50E	1	51				296			5.49	9	8		1	8	2	Z	Z			.104		200	2.33	32	.61		2.13				7
	104+75E	1						10					ND	1	12	2	2	Z			.071				99			2.03				•
25 L88N	105+00E	1			96	33	225	20	570	5.66	**	5	ND	1	19	2	2	2	91	.23	.076	•	470	2.32	79	10		2.03				i
25 L88N	105+50E	1	55	3	53	2	399	35	354	3.95	10	5	ND	1	36		Z	Z	78	.55	.039	2	121	3.07	104	***	0	2.01	.01	.07		•
												_						•	~	4/		•	70/	4 77	72	66	4	2.36	01	04		*
25 L88N			44	_	48	2	473	41	337	5.16	3	5	ND		11	2	Z	Z	Y 2	. 14	.060	2	794	4.// E 26	32 116	00	4	2.82				2
25 L88N			77				590	42	311	4.60	2	5	ND	1		2			٥/ حر	.41	.041	4	520	2.33	86	.07		2.16				2
25 L88N			100				753	148	1754	6.Z1	#10		ND	1	11	2					.099	4	267	0.44 4 EF	/E	101	10	2.80	02	.UT		1
25 L88N			80	5			519	59	909	5.28	9		ND	1	8	.2	2	2			.056		20Y	7.77	48		7	2.74	02	٠٠٠		1
25 L88N	107+00E	1	61	6	62		388	36	742	4.42	16	5	ND	1	15	.2	2	2	Y/	. 47	2053	7	400	3.73	40		•	E. / 7	. U.			•
									.==			-					-	•	40	50	ne.	2	540	5 Nº	110	MA.	11	2.48	Ω1	OR.		1
25 L88N		1	73	_3	56	22	533	46	459	4.02		5	ND	1	53		2	47	0Y	.75	.046 .093	70	700 93	J.U0	107	100	38	1 01	.04	13	12	47
STANDARD	C/AU-S	18	58	37	131	7.0	71	32	1050	3.97	37	Z3	7	39	23	17.1	15	17	70	.71	.UYJ	30	70	.70	101	23	-30	1.71	<u>.v.</u>	• • •	<u> </u>	لنت

Quest Canada Exploration FILE # 90-4747 Page 12

	SAMPLE#		· Mo	Cu	Pb ppm	Zn ppm	Ag Ppm		Co	Mn ppm	Fe X	As Ppm	pps U	Au ppm	Th ppm	Sr ppm	Cd PPS	Sb ppm	Bi	V pps	Ca X	P X p		Cr M	, B	2000200	B ppm	Al	Na X	K X pp	M Au*
	25 L88N 25 L88N 25 L88N	108+25E	1 2 6 2 1	45 23 16 12 14	6 9 14 11 6	51 53 72 53 41	.2 .2 .3 .3 .1	426 324 105 84 145	29 29 16 10 11	190 4 363 4 565 5 223 3 199 3	4.05 5.54 3.58	7 9 9 6 7	5 5 5 5 5	ND ND ND ND	1 1 1 1	_	.7 .5 1.9 1.8	2 2 3 2 2	4 2 2 2 2 2	75 84 125 94 71	.21 .03 .22 .04 .08 .05 .10 .04	11 6 5 3	2 4 2 4 7 1 4 3	74 4.76 38 3.7 38 1.26 31 .86	6. 7.	7 .07 3 .06 0 .37 1 .38	2 2. 2 2. 3 1.	07 47 99	.01 .02 .02 .02	.03 .02 .06 .02	1 1 1 1 1 1 1 1 1 1 1 2 1 1 22 1 22 1
9	5 L88N 5 L88N 5 L88N 0S-12-6	109+00E 109+25E 109+50E /1	1 1 1 1 16	10 16 20 36 28	14 4 7 177	39 50 50 52 294	33337 Z20	90 160 204 293 6	14 16 21	275 3 206 4 233 3 328 3 180 3	.68 5.90 5.03	8 7 6 6	5 5 5 5	ND ND ND ND	1 1 1 1 22	8 8 8	1.3 .7 .6 .7 3.5	2 2 2 2 2	2 2 2 2 2	97 96 77 64 6	.33 .07 .14 .10 .18 .07 .20 .03 .25 .06	1 7 3	2 37 2 38 2 36	71 1.24 78 1.81 90 2.35 97 3.07 5 .09	34 34	3 .16 .07 .10	2 1. 2 1. 2 1. 2 1.	03 65 55 94	.05 .02 .02	.03 .03 .03 .05	1 15 1 2 1 1 1 1
S	TANDARD	C	19	61	36	131	6.9	72	32 1	059 3	.97	40	17	8	37	53	8,5	15	19	56	.52 .09	8 3	3 6	1 .91	180	.07	37 1.9	90	.06	.13 11	

File # 90-4/46 rage 1

P.O. Box 11569 Vancouver, Vancouver BC V68 4N8

					00000000000					20000000000					20000000000					20000000000			···		202003000450			2000	7
SAMPLE#	Mo	Cu ppm		Zn ppm			Co ppm	Mn ppm	Fe X	99999999	U ppm	Au ppm	Th ppm	Sr ppm	Cd PDB		Bi ppm	V ppm	Ca %	200000000000000	La ppm	Cr ppm	Mg X		Ti Z	B Al		K I	i Au*
	- Polym	Phu	Pilan	ppii		PARE	ppin	- Private	^		177.11	77.11	ppm	<u> </u>		Polym	Phil	hhan			Hym	Phan		Polyme		ppin A		* :P3*	- 174
L25E 104N	10	22	178	70	6.3	8	4	1657	2.18	6	5	MD	4	64	1.0	2	431	26	.51	.098	9	13	.50	253	.08	8 1.30	.01	.36	2 1
L25E 102+25N	1	22	3	181	,3	5	9	1765	2.65	9	5	ND	2	38	1.0	2	3	26	2.14	.083	6	9	.89	165	.06	3 1.38	.02	.28	1
L25E 99+50N	1 1	149	8	616		3		1693	2.26	2	5	ND	7	39	3.2	2	2				15	8	.75	530	.06	5 1.10		.21	- 1
L25E 98N	1 1	193	18	250	8	9			11.77	3	5	ND	4	67	8	4	2	187	.17		15		3.67	271	.26	2 3.80	.01	.10	45
L25E 95N	2	140	5	69	.8	3	2	185	1.50	2	6	ND	3	9	.2	2	3	8	.07	.050	10	8	.24	322	.01	3 .84	.02	.21	4
L25E 93N	1 4	55	41	19	.8	1	1	120	2.44	10	5	ND	3	80	.7	2	2	10	.02	.049	11	7	-10	439	.10	2 .48	.01	.16 1	13
L25E 92N	l i	32	Ž	101		3	4		3.09		5	ND	6	47	. 7	Ž	2	23	.30	085	13	7	.96	657	.05	2 1.54	.01	.16	11
24 L26E 99N	4	138	12	181	1.4	72	6	2051	6.27	8	5	ND	1	24	1.0	4	2	136		.148	7	160	3.41	233	.24	2 4.06	.03	.06 1	7
24 L26E 98+75N	2	220	32	145	1.6	13			12.06		5	ND	5	62	.7	8	32	163		.249	17	173		403	.27	4 2.66	.02	.14 1	70
24 L26E 97+50N	1	94	16	213	7	6	6	1557	4.95	•	5	ND	1	35	.5	3	2	103	.73	.274	17	20	1.85	111	.19	4 2.17	.08	.08 1	12
24 L26E 97+25N	١.	191	43	347	1.8	26	47	2270	8.16			ND	2	29	.6	E	2	76	.13		8	198	T 24	257	ne	3 3.75	.01	.16 1	82
24 L26E 97N	;	136	61	189	1.7	10			10.55	16	5	ND	2	44	.3	ے د	2	66		193	7		1.07	125	.08 .21	3 1.61	.01	.17	59
24 L26E 96+25N	1	83	48		2.2	22			13.68	69	Ś	ND	ī	48		6	2	172		313	7	316		101	.30	5 3.95	-01	.10	120
	li		2			6					5		•			-	_								2005 TO 100			200000	
24 L26E 95N	1	87	16	187		5	5		6.27	22	5	ND	1	11	.4	3	18	61		.130	3		1.27	176	.07	4 1.62	.02	.26 1	10
		•	_	242							_						_												
			•						:		-]	;	*****	4	Z			0.750.700	- : :				0000000 2000			1 I 2000 81 E	
													-			_	2							:				9690301.2	39
	i				5000005-500					0.000	_		•			•	-				_							771 30000 2	ă
24 L27E 100+75N	3	55	27	97	6	8	7		3.82	14	5	ND	3	75		2	11	56		.140	10		1.27	327	.14	2 1.62	.03	.18 1	9
				4=4							_		_				_	4==			_			4					
	1									5	2		Z			4	2											200000000	30
	2		_				_			**			7		200/2/70	-	_			40 C C C C C C C C C C C C C C C C C C C	_							2000000000	7
	•					•				•			_				_												7
24 L27E 98+75N	Ž	166	177	416	1.5	7	_		,	2	5	ND	3		1.0	5	10			71 T T T 101	14	•				3 3.88		.12 1	37
	3			7 7 7 7						9	5	ND	1	18	3	4	2	60			5			77				.15	84
	41				000000000000000000000000000000000000000		-				-	•••	1		32773	_	2			70.77.5 (ASO) —				,	999999 (20)			T 1 200000000	46
	1		• • •			•	* -				_		3				-					• •			007.7.7.3				2
	1					-	•	•••		~			3				_					_			6980X 23			4000000	7
124 1272 700	•	,,,	•			.,	,		J. 10			NU	•	76 3		-	_	133	•		-	00		104		L L.00	.00	•••	'
24 L28E 101N	1	49	19	207	.6	8			4.90	13	5	ND	1	86	1.0	4	7	49		.146	11			170	.13	4 2.01	.03	.21 1	14
	3		• •	,	3	7	_		- 20			ND	1	37	.3		2	22			8	14		117	.07			.12 1	35
				:									!			•	2				_								13
													,																7
24 LEGE YY+/3N	2	10	44	0 5		7	3	3 72	∠.d0		7	KU	•	+3 %		4	0	20	.21	YUY	13	•	.73	204	***	3 1.03	.03		1
24 L28E 99+50N	4	32	22	128	6	5	3	819	3.67	11	5	ND	2	42	.2	4	2	22	.19	102	9	11	.67	200	.08	5 1.29	.03	.20 2	100
STANDARD C/AU-R	19	61			7.0	73			3.99	44	18	8	37	53 1		14	19		.51		38				.07	40 1.90	.07	.13 11	510
24 L27E 104N 24 L27E 103N 24 L27E 102N 24 L27E 101N 24 L27E 100+75N 24 L27E 100+25N 24 L27E 100+25N 24 L27E 100+25N 24 L27E 99+75N 24 L27E 97+75N 24 L27E 97+25N 24 L27E 97N 24 L28E 100+25N 24 L28E 100+25N 24 L28E 99+75N	3 1 1 2 1 2 3 4 1 1 1 1 3 1 1 2 4	84 61 167 102 55 212 64 56 47 166 47 265 21 59 76 49 27 99 132 16	16 9 11 8 255 27 16 3 27 7 177 24 24 10 2 8 19 10 19 4 4 4	249 226 251 203 97 171 117 144 95 416 141 171 169 13 151 207 56 234 39 88	71706 57425 581113 63655 6	5 26 18 35 21 8 12 25 7 5 7 19 25 5 6 5 16 5 16 5 7 16 16 16 16 16 16 16 16 16 16 16 16 16	5 177 177 30 13 7 11 8 10 8 5 4 7 10 1 5 12 1 6 3	677 2141 1525 2121 1072 751 1276 1291 1022 1100 1727 1419 1257 1546 43 2071 1466 374 1830 434 395	6.22 4.87 6.24 6.66 3.82 7.35 3.50 2.85 10.14 6.83 7.45 3.21 3.21 4.90 4.70 6.41 5.11 2.86	30 98 47 20 14 37 77 22 9 6 2 3 7 13 12 21 17	55555 55555 55555 5	ND ND ND ND ND ND ND ND ND ND ND ND ND N	11123 24333 111351 11114 2	86 144 123 51 75 67 26 26 33 160 18 11 46 5 52 86 37 46 137 43	.9.9.4 1.0.6.6.0 1.0.3.2.6.4 2.2.2.6.4 2.2.6.4	46462 43225 42222 42442 4	222211 22222 72226 2	109 56 106 99 56 139 49 40 33 250 60 45 30 2 135 49 22 83 99 20	.12 .83 1.22 1.40 .75 .41 .48 .25 .52 .89 .04 .09 .06 .49 .02 .34 .68 .50 .82 .21	.218 .260 .299 .270 .140 .259 .082 .081 .218 .063 .094 .067 .009 .138 .146 .057 .181 .296	11 10 5 8 10 9 8 11 12 14 5 7 16 26 3 11 8 6 14 13 9	84 19 82 62 22 33 48 23 7 44 58 11 5 62 19 14 39 65 1	3.07 2.33 3.94 2.52 1.27 3.24 1.31 .92 .68 3.32 1.58 1.59 .93 .02 2.44 1.52 2.35 1.56 .53	509 18 131 296 327 356 121 276 97 181 77 188 155 203 104 170 117 83 105 284	.19 .15 .20 .22 .14 .26 .18 .10 .08 .36 .11 .16 .03 .01 .11	4 3.07 6 2.39 4 3.49 5 2.75 2 1.62 2 3.82 2 1.57 2 1.35 2 .96 3 3.88 2 2.02 2 2.27 2 1.23 3 .38 2 2.80 4 2.01 2 .83 4 2.74 2 2.13 3 1.05	.02 .01 .03 .02 .03 .02 .05 .03 .04 .01 .02 .07 .02 .08 .03 .04 .02	.12 1 .13 1 .18 1 .12 1 .15 1 .16 1 .12 1 .15 .16 1 .12 .15 .16 .17 .17 .17 .18 .19 .19 .19 .19 .19 .19 .19 .19 .19 .19	33 33 33 34 44 14 31 12 7

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL P AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME ANAL CAL LABORATORIES LTD. 852 E. HASTINGS ST. VP NUVER B.C. VOM 1KO PHONE (004)233-3130 PAR (0 232-112 GEOCHEMICAL ANALYSIS CERTIFICATE

Coast Mountain Geological Ltd. File # 90-2019 Page 1
P.O. Box 11604, 820 - 650 W. Georgia St., Vancouver BC V68 4N9

SAMPLE#	Mo ppm		Pb ppm	Zn	200000000000	Ni ppm	Co	Mn ppm		As	U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al %	Na %	K %	0.00000 0.000	Au* ppb
000-14-01		47	31	133			7	374	4 77	19	5	MD	2	7			2	74	17	.031	10	36	.14	50	.02	4 5.	50	.01	8	1	9
90S-16- Q1 90S-16- Q2	6 2	13 28	18	146		17 20	7	534	6.73 5.92	23	5	ND ND	4	7	.6	2	2	55			10 11	32	.42	45	.02	2 2.		.02	.01		9
905-16- Q3	-	12	20	190	.3	15	6	1270	4.76	15	5	ND	1	* *	.8	2	2	. 81		.046	20	30	.24	66	.04	2 2.		.01	.02	•	10
905-16- Q4	l ż	55	21	210			5	4357	3.17	32	5	ND	4	12 27	1.5	35	3			.069	25	18	.19	84	.09	11 2.		.08	.04		5
70S-16-Q5	2	46	20	104	2	20	6	362	6.18	₩	5	ND	- ;	16	5	2	3				8	36	.36	51	.07	2 2.		.02	.01		13
703° 10°QJ	'	40	ŁU	104		20	•	302	0.10		,	NU	•	,0		•	•	100	1.02		•	J U		٠,				.02	.0,		"]
70 s-16-96	2	13	24	177	1.6	11	7	2270	5.43	12	5	ND	1	13	.9	2	4	78		,058	20	20	. 10	70	.09	2 2.		.01	.01 🖁	1	9
70s-16- 97	1	16	16	170	31.3	24	10	8151	7.44	27	5	ND	1	6 🖁	3.6	2	2	55		.091	43	26	.06	118	.02	2 2.		.01	.03		8
70s-16- 98	15	27	35	279	5	19	16		10.40	82	5	ND	1	4 🖇	.3	4	2	98		.088	8	44	.04	32	.02			.01	.02		14
90 s-16-99	1	2522	54	189	13.0	28	9		8.93	560	5	ND	1	29 🖇	3.6	11	2			.098	24	51	. 14	129	.01			.01	.05	1 22	
⁷ 0S-16- Q10	2	82	19	187		13	5	1485	4.90	93	5	ND	1	7	.8	4	2	50	.16	.030	16	25	. 18	254	.07	3 1.	B7 .	.05	.03		37
0S-16-911	3	17	14	155		9	5	445	4.84	16	5	ND	1	10	. 7	2	2	77	.21	. 028	8	20	. 13	49	.04	2 2.0	05 .	.01	.01	1	89
OS-16-Q20	2	19	5	45		9	5	117	1.76	7	5	ND	1	13 🖔	.2	2	3	59	.17	.024	6	15	. 14	28	.04	3 .8	34 .	.01	.03 🛞	1 3	26
POS-16-Q21	3	6	6	33	2	4	2	129	1.69	2	8	ND	2	8 🖔	.2	2	3	25	.09	.025	9	10	.08	50	15			. 10	.08 🛭		12
OS-16-924	3	52	14	81	.8	35	10	1203	5.31	10	5	ND	1	9 🖇	4	2	2	68	.14	.366	10	82	.38	61	.05	4 2.			.03	1	19
¹ 0s-16- 925	4	26	11	85	8	7	8	754	8.02	3	7	ND	2	9	.6	2	2	48	.09	.607	9	15	.10	424	.02	3 2.3	58	.01	.02	1	4
70 s-16-926	18	26	14	80	.7	21	5	164	4.87	33	5	ND	1	10	•	2	2	86	.15	2075	9	41	.18	56	.07	2 1.	18	.01	.02	1	6
OS-16-927	1 4	36	22	87	1.6	49	7		7.54	50	6	ND	ż	7	 2	2	2	175		.091	10	91	.26	42	.08	2 2.			.04		25
OS-16-928	22	43	32	188		64	14		9.34	195	5	ND	1	6	.2	2	2	147		.697	7	110	.08	179	.02	3 1.		.01	.03	₩1	12
OS-16-929	6	56	60	384		10	20		8.62	70	5	ND	1	4	1.3	Ž	2	38		127	24	10	.85	101	01	2 2.		.01	.02 🛭	**1	14
OS-16-Q30	98	276	54	248	.7	142	28	1077		291	5	ND	1	3	.3	17	2	134		.447	16	18	.05	113	.01	2 .9	92	.01	.02	1	8
90s-16 -93 1	5	70	77	607	1.5	52	13	3297	5.19	75	5	MD	1	22	4.7	2	3	92	2.52	. 186	24	48	.77	276	.03	4 2.	44	.01	.05	•	16
70S-16-Q32	ĺź	17	13	122		9	3	474	1.78	10	ś	ND	i	13		2	2	23		122	19	13	.11	68	.05			.03	.03		4
70S-16-Q40	2	40	12	52	2	33	7	437	6.46	2	11	ND	ż	11	5	ž	2	85		036	13	62	.56	35		2 3.			.02	1	10
905-16-Q41	Ž	11	4	26	2	21	4		2.19	2	8	ND	i	6	.2	Ž	Ž	61		.019	10	39	.16	50	.02	3 1.2		.01	.04		12
POS-16-Q42	2	6	10	14		4	1	169	.95	2	5	ND	i	7	.2	2	3	45		.021	6	16	.06	13	.11			.02	.03 🖔		15
)0s-16- 943		45	12	104		71	11	482	6.93		5	ND	7	13	.8	2	2	145	.14	.034	10	165	.61	95	.14	4 3.1	14	.01	.04	•	,
105-16- 944	1 1	5	8	19	2	5	'1		1.04		5	ND	1	6		2	2	29		.012	9	18	.05	13	.05				.03		93
OS-16-Q45	;	ģ	14	23		11	ż		1.75		5	ND	•	7 8	.2	2	2	84		.017	7	36	.06	25	.13				.01		11
0s-16- w8	li	62	49	307	1.2	22	_			1479	5	ND	ż	22	1.7	4	2			169	10	8	.23	154	.01	Š 1.2			.20		66
05-16-W9	i	109	44	149	1.9	10	17			422	5	ND	1			6	2	37 1		.073	11	ă	.41	181	.01	4 1.2			.13	1 19	
03 10 47	•	107	77	.77			••	£1.70				110	•	8			-	J ,			••		•••			٠			•••		
0s-16-W10	1	76	12	75	1.6	7				237	5	ND	1	22	.5	2	2			.145	7	4	.29	177	.01	7 1.3			.13	****	90
0s-26-W1	1	97	5	67	2	292	29		4.67	31	5	ND	1	16		2	2	65		.066			2.99	298	.08	10 2.0			.06 🖠	.	5
0-L25-F05	1	82	17	96		20	14		4.66	21	5	ND		212	.8	2	2		. 20		14	20	.93	131	.01	7 1.4			.09	1	2
0-L25-F06	1	43	5	46	.2	43	12		8.29		5	ND	8	28	.7	2	2	190	.55		20	49	.86	70	.06	2 .8			.04		24 10
0- L25-F07	1	101	6	70	.3	260	25	912	4.53	32	5	ND	1	50	.8	2	2	96	.97	.076	6	184 3	3.21	115	.08	11 2.2	.y .	.03	.08	1	'"
0-L25-F08	1	40	5	52	.3	10	8	371	2.88	2	7	ND	8	37	.4	2	2	55	.71	.090	16	14	.67	98	.10	3 1.0	ю.	.04	.11 🏽	2	6
TANDARD C/AU-S	17	57		133	7.2	70	31		4.01	39	25	7	37	52 1	8.5	15	19	56	.51	094	37	57	.92	180	.07	35 1.9	1 .	.06	.14 🐰	13 4	49

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P2 SOIL P3 Moss Mat P4-P5 Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUN 26 1990 DATE REPORT MAILED:

Coast Mountain Geological Ltd. FILE # 90-2019 Page 2

					100000000000					oran kore																			- 45	,-	_
SAMPLE#	bbu	pp#	Pb ppm		2000000 ATT	Ni ppm	bbus Co	Mn ppm	Fe X	As ppm	ppm U	ppn:	Th ppm	Sr ppm	Cd ppm		Bi ppm	V Ppm	Ca	9000000000000		Cr	Mg %	Ba ppn	300000000000000000000000000000000000000	-	Al X	Na %	K	200730200	Au*
90-L25-F09	1	61	7	52	.1	37	14	622	3 46	12	5	ND	4	43	.4	2	2	53		-074											
90-L25-F10	1 1	76	5	53	3	495		515		11	~	ND	7		**********	2	2					62	1.00	77	2007.7.700		1.50	.02	.04	₩7	5
90-L25-F11	li	74	11	68	3	457		742		12	2	ND	- :	36 63	.2		2	78	.50		3	789	. 5.85	182			1.90	.01	.06	# 1	4
90-L25-F12	1 1	64	11	102		412		1116		22	2	***		-	.3	2	2			.051	5	768	5.98	195			2.14	.02	.14 🛞		1
90-L26-F01	1 1	26	5	31	.3	5		276		4	5	ND ND	7	65 28	.2 .2	3	2	67 100		.113	12 16	372 20	1.92	364 52		11 1	.69	.01	.06	1	9 29
90-L26-F02	1	32	6	58	4	7	8	609 3	S. 14	6	6	ND		46	•	2	•		1 00	201	•	•									_
90-L26-F03	1 1	47	25	173		30	12		5.51	32	6	ND	5	60	.2 1.3	Z	~				14	11	.77	140			.22	.05	.13 🏽	1	5
90-L26-F04	1 2	364	53	198	4.1	32		1747		25	2	ND	٠		2.0	2	2		1.69		12	39	1.33	128			.66	.04	.08		4
90-L26-F13	ī	61	3	42	.3	450		390		16	2					*	2			.110	9	32	1.76	144	200000000000000000000000000000000000000		.12	.01	.07		27
90-L26-F14	1	72	13	76		273	_	595 4		26	5	ND ND	ż	41 33	.4	2	2	96 73		.049	2	638 211	4.86 3.79	84 84	.09 .11	5 2 12 1	.18	.03 .07	.13		7
90-L26-F15	,	97	13	72	.3	332	31	543 4	70	40						_	_												•••		-
90-L26-F16	;	157	12	83		35		905 4		8005 JESS	2	MD	. !	45		2	2	82		.076	4	444	3.25	87	.08		.76	.03	.10 🛞		15
90-L26-F17	1 1	67	2	33		18		338 5		18	5	ND	!	64	₩2	2	2			.106	4	48	2.07	39	315	5 2		.05	.04 🐰		6
90-L16-W10	1 1	110	15	582		139		641 4		2	5	ND	?	50	2	2	2	100		.072	2	36	.94	55	16	2 1		.04	.13 🎆		12
90-L16-W11		74	1,2	123		754	56	716 5	.07	32	2	ND	!		4.1	3	2		1.75		11	118	1.66	221	.05	5 1		.02	.06	1	16
	1	17	·	123		134	20	/ 10 3	.07	16	5	ND	1	56	1.2	2	2	73	1.12	.043	3	208	10.40	70	.07	8 3	.29	.01	.11		7
90-L16-W12	1	74	4	33	.0000000.0000	670		531 5		8	5	ND	1	120	1.0	2	2	92 1	1.20	.043	2	376	9.05	168	.07	9 2	.80	.03	.20	•	5
90-L25-W2	1	109	35	151	5	22	20	946 5	.76 🏽	102	5	ND	3	88	.7	2	2		1.03		16	17	.92	251	.01	6 1		.02	.10		10
90-L25-W3	1 1	92	22	109	4	16		743 4		35	5	ND	2	138	5	2	2		5.38		15	15	.91	143	.02	4 1		.02	.09		5
90-L25-W4	?	195	29	105		176		625 8		176	5	ND	3	39	2.0	10	4	127	.60	111		214	2.17	132	11	2 1.		.04	.15		43
90-L25 -W 5	' '	145	8	101	.3	270	36	898 5	.57	21	5	ND	2	76	.7	2	2	92 1		.073			3.87		.09	3 2		.06	.10	i	10
90-L25-W6	1	68	4	42	.2	414		766 5		8	5	ND	2	39	.4	2	2	97	.57	.053	3	682	4.88	123	.06	12 1.	80	.02	.05		•
90-L25-W7	1	72	4	63		463		590 4		31	5	ND	1	76	22	2	2	82		.065			3.89	177	.06	15 1.		.02	.07		,
90-L25-W8	1	74	2	58	3	400		640 5		14	5	ND	2	43	3	2	ž	86		.070		621		118	207	20 2		.02	.08		11
90-L26-W1	2	113	8	80	4	12	17 1	051 4	.17 🏽	15	7	ND	8	53	2	4	2	54	.91		21	15		258	.02	6 1.		.02	.11		7
90-L26-W9	1	102	37	133	.9	21	17 1	088 4	.39	54	8	ND	4		1.5	3	2	82		.095	12	42	1.20	99	.07	5 1.		.04	.11	i	17
90-L26-W10	1	107	13	96	.3	22	19 1	156 4	.73	23	5	ND	2	46	.5	3	2	77	.77	.098		43	1.60	81	.07	5 1.	97	.02	~		40
90-L26-W11	1	30	2	18	1	140	12	239 2	.39 🏻	10	5	ND	Ĭ.	24	2	2	2			.030	10	224	1.69	44	.05				.05	•	19
90-L26-W12	1	94	2	61	.2	203		784 4		16	5	ND	i	82		2	ž	65 3		.078	4	126	3.43	64	.07	2 2.		.02	500000		10
90-L16-Q1	2	74	7	213		119		942 4		21	5	ND	i	40	1.7	5	2	55 2	(122	14	85	2.00	147	.05			.01	.04	8.8	10
STANDARD C/AU-S	18	57	38	X	7.3	69		027 4		40	21	7	38	2	8.4	16	18		.51		37	57				4 2.		-02	.05	ļ	21
				8	000000	<u></u>		7		86.583 -				JE 1	**************************************		10	30	.71		31	21	.93	181	.07	32 1.	73	.06	.14 👑	13	51

APPENDIX III.

ROCK SAMPLE DESCRIPTIONS

- Note 1. Cu, Ag, Pb, Zn analyses are reported in parts per million Au analyses are reported in parts per billion.
- Note 2. Samples were prepared and analysed by Acme Analytical Laboratories Ltd., Vancouver, B. C.
- Note 3. Sample Number Code -

```
90G - 25 - K01
             \ \\
   1990 /
           Yehiniko\ \
             project \ \sample reference no.
G = grab sample
                    sample taken by
C = chip sample
L = silt sample
                    K = Kushner
                    F = Faragher
F = float sample
                    S = Ostensoe
                    W = Wilkins
                    X = Basil
                    R = Ridley, D.
                    C = Ridley, C.
                    Q = McLellan
```

COM MULLIANDE LEEP 1

F.I. = fracture index

Sampler <u>BK</u>
Date 1909-90

Property EHINIKO (25)

NTS _____

SAMPLE		D	ESCRIPT	ION ,	•		A:	SSA	YS	
NO.	Sample Yidth	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cul	Au	Ag	Pb	3
90G 25 KOI	Kcm	atz/cash	sklim	1% cpy.tr.18hd	located in 50 cm shear zone @ 110/305 at least 35m long in volcanoclastics	1093		1.0		46
G KOZ		etz/cark	. 1	3% CP7 tr-1907 tr. Mac, Hem						13
G koz	ilsm	atz lcail	W.	16cpy, tr.py, tr. His	· · · · · · · · · · · · · · · · · · ·	2464	160	.5	2	4
G-KO4	25m	tuff.	Sil, lim	up to 15% CP1, P7, aal 750hil 7	Pad 1.5m x 20 cm F.I 35	42	54	٠5	7	27
G KOS	-lm	tuff.	sl. lim	16 GPY, K.PY		<u> </u>	730		2	8
G K06	-5m	calc-qtz vein	Hem, Ser, lim Mariposite	tr. Py	In lithic to the shear F.I I. Uno 2 stained	197	17	-8	7	39
G K07		calc/4/2	Mar, chi, ser. Hem	no vis malzh	In Im wide shear in lithric full	6	3	.3		29
G- K08	-50	tul		Mid, Born blebs up to Scm	FIZ milic dyke @ 92/895	53c8	22	6-2	2	85
GKOG	-5 m	Volc Flow		tr. Mie	very fine grained	1881	1	1.7		83
G.KIO	-3m	10.	chl-ep	Mil spins			12			90
G.KIZ	alsm	Wz/cash	extr. lim	Mail 3% cp4, 190pg 10% vfg black maiza	Vein @ 135/ZZE in FI 45 flow . Very heavy	2004	5/5/6	397.2	6	2724
	.Im	11 . 1.	lim	Mal & MnO2 stains	Im wide shear zone 50 m long@ 103/97 E' with calcite rein thru middle.	234	986	1-3	2	156
C.KI4	In	In volc	lim	Mal, Az, MAOZ, R.S. Stains - intense.	In sume vein as K13 Lip to 15% CP+	228	2200	38:	5	217
G.KIS	Sm	Volc Flow	Extr. lim	no vie mulzh	sheared area below dyke, apposite Ki4	118	76	5.2	2	322
G-K16	.5m	1.Fg xiking	chl-ep-ser	1-2% Py	FI 5. Main sheardirection 46/755	436	7 2420	7.0	2	238

Sampler <u>BL</u>
Date <u>4-20,09,90</u>

Property / EHENICO (25)

NTS _____

SAMPLE	h		DESCRIPT	ION	ļ	L	A:	SSA	YS	
NO.	Sample Yidth	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	cu	Au	Aq	Pb	Zn
90G& KI]		a volc Flow	lim, chil, ser sil	Mulfacpy apy	fault can be traced over 200 m	13113	220	4.4	3	94
GK18		volc Flow	chl-ser lim	Mul, Munoz stairs 3/0 f.a py depy		607.3	540	2.5	B	83
C·K19	20cm	gtz vein		76 v6 CP4 87		1185	3620	1.9	45	4
C.K20	20cm	sheared Volc flad		17 10 50% 97	running @ 169 /71 E	123	360	27.1	13	95
GKZI		sheared volulibus	Sil	3%cpy	located 10m from K20, in basically undetered volleanics	1321	38	<i>/</i> ·0	2	73
C.K25	15m	Sheared And flaw	X-lim Mul strins	3% cpy py 7/= sph. 15%?	Qtz ven W/ molz" for 5m along steat.	3482				16575 15
C.K26	-30m	h.	. 1	ี น	shear varies from 17/20E to 15/35E and can be travel at least 35m along cliff. Sampled across K12, includes 10cm 57 wall	1572	19/40	Z4,/	5	12672
C K27	-50m	11	lì	١,	sock on either side of motion zone.	2804	_			20×2
C. K28	-40m	34	X-lim	no vis. molen	Rak is exhanch aftered trothy texture. No osignal texture multi remain	204	3/8/	\$2.7	25	TOR
C+29	lm		sk.lim shl-ser-ep	3% py spotty Mil	Chip below molto zone starting where KZT ended.	398	58/0	26.1	10	9797
C. K30	In	And flas	51. lin mod. Mul	131 (Am below showing - unrelated to snowing. Fractures @ 145/45NW, 107/55NE, FF3.5	993	1290	6.8	8	2381
C-1631	-20m	gorge.	chl.	no vis malzh	Unmalzed, located 2 m. from showing in some bracture.	607	450	2.5	3	726
F-K32		atzvain	Gl. lin	3% 47	CPT is between spaces in enhedral gitz XKs	7391	320	1.8	2.	38
F. K33		atz vein		1% cpy	Same malz' style as K32.	1789	2540	2.0	3	67
C. K34		and flaw	atz-cer chl. feld.	15% pg	lim shear zone @ 17/37E-related to	51	220	1.2	2	197

C-CHIP G-GRAB F-FLOAT

	NOCK SAMELE SILEET	SI IAU ISL LES IP.
Sampler <u>Hv</u> Date	Property EHENIKO (25)	NTS

SAMPLE	la . !	, .	ESCRIPT	ION			A	SSA	YS	1
NO.	Sample Yidth	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cu	Au	Aq	Pb	Zn
C. K35	.25m	And Havi brecin	X-lim	no vis malz	Extremely altered fault breccia from fault @ 171/75E Spotty Mul, Az in area below KBS	4540	580	99.4	16	103
C. K36	lm	And flai		1% py, cpy	Spotty Mil, Az in onea below K35	1913	11	1.3	12	179
C K37	_~ วีm	And flan	X-lim	3/2 CP1 7-10% Pg	Spotty Mil stains. Same structure as K31, but low SW, on other side of creek	3486	130	6.4	7	184
F. K38		etz/cush vein	id. Mul	3% Bornite	Mostly combonite.	32 0 8				10
F. K39		atz vein		5% cp1	Cpy infill between gt= XH's	10261	14	1.2	6	86
F- K40						700				954
										·
										-

KOLA'SALIPLE SHEEL

Sampler <u>ERIK O.</u>
Date <u>Sept. "90.</u>

Property Yehracke #25

NTS 104 G-11

The state of the s

SAMPLE	Sample		ESCRIPT	ION	!		A:	SSA	YS	1
NO.	Yith			Mineralization	ADDITIONAL OBSERVATIONS	Cu	Au	Ag	Ph	Zn
900-25-51	0.64	Mate Volcano	Q.VI+ stkw	Icm Qus. K Chloritizh	50% UQ. L99N 100+20E, 5690ft.			रा	2	9
90 F-25-SZ	. F1.	sh'd ch'ude		·				.5	2	13
900-25-53	i		}	XIIIne pyrite	1	245	9	•(2	31
900-25-54	15 cu	Valc		, , ,	White usingty. Leached Mal.	114	23	-2,	9	1
90C-ZS-S5		i	ì '	Q-py	Coarsely xlline py in matic viola.	37	9	-1	8	6
POC-25-S6	9an	Vole.	pyrite Sericite	Q-py	Lowest exposure OPy zone alt. 3950'	6	10	.2	2	i
			·							
				·.						
						1				
									·	

ROLL SAILLE STEET

Sampler C.J. RIDLEY
Date SEPT. 8190

Property YEHINIKO #25

NTS .

SAMPLE	Sample	1	DESCRIPT	ION		,	A	SSA	448	.
NO.	Yith	Rock Type	Alteration	Mineralization	ADDITIONAL GESERVATIONS	Cu	Ph	20	Ag	Au
90F-25-C124	-	Crtz. Calcute	_	MINOR PY	1740 m. esec:	26	1	7	. /	6
9UF-25-C125	_	mafic intrusion	-	malachite Py < 2% CPN 2190	1750 m. elev:	121	3	43	.1	17
902-25-0126	m. 2.5	metic intr	colcite	PY <240 Cry <270 malack ke	1750 m. elec. C126 - C127 ave chip samples of the showings, which are = 10 m in which length; willthe undetermined					
900-25-0127	m. 2.5	maje intr	Calcite	hemarie U	minieralization appears to be steady througout the wich sampled	7932	7	49	48	880
900-25-0128	m. 25	matie	carcite	. //	-	16728	2	31	2.7	1260
906-25-0129	15cm.	vein		7340 CPy + Py malachite trace bornite	1750m Clev: high grace grap of 15cm highly mineralized used about 0128.					
90F-25-C140	_	majic Intrusion	_	75% Pyrrh 7240 Py	170 m elev. sample later found to be on cliffs above	294	3	9	.1	2
909-25-0141		listuanite	maripusite maiachite siderite trace (Py		1705m ever: 2m. w of R185. De of Instrumite	101	3	30	٠١	13
90F-25-C142	-	udeanic breccia	calcite chlorite	4 CRY	1615 m. elev	42	118	21	.8	7
						İ				
					-					
	:									
							<u> </u>			
			Articles (Constitution of the Constitution of		•		İ			

roly saidle sheet

Page /

Sampler D. Ridley
Date Sept 8/90

Property Yehiniko *25

TS ____

SAMPLE	Sample		DESCRIPT	ION	 I	•	ASS	SAYS	5
NO.	YHE	Rock Tyce	Alteration	Mineralization	ADDITIONAL COSERVATIONS	Cu F	8/2	AA	IAu
90625R179			K-sparl!)	py 1-2% disem+ stringers	5780'	311	ī	1	ì
90625 R180		hornblende porphyry dyke	carbonate	Py 3-5% CP > 1% malachite	5620': carbonate veinlets in aphanitic andesite(?) cutoff by dyke.	4970	1 12	30 62	70
90 FZ 5 R 181	F	etz vein?	limonite	minor tetrahedrite? malachite stain	5520': very angular: 212 is sugary	205 3	Ī	1	Ī
70625 <i>R1</i> 82	1.5m	a.Hered volcanic	silica carbonate	minor py 1-2%	5650': Horange-brown gossan.	140 -	2 2	1 .2	81
906 25R183	lm	listmanite	carbonate silica mariposite	minor py > 1%		45	2 40	1.1	4
90625 <i>R18</i> 9	25cm	9tz carbonate vein	"	Momixed py-cp malachite	section in listwanite R183: 2m northerly	1035 2	1-	1 .7	3
90625R185	1.5m	fauH zone	carb-gtz filled	1% py-cp minor malachite	022/90: near R183+184	656 :	3 6	1.5	3
90 F 25R186		182	carb-gtz	upto 5% py-cp abundant malachite	weathered slab from o/c: needs blasting to determine true nature (width min. 40cm)	783	5 4	0 5.3	12
90F25R207	Ė	2t2 vein	-	>1% chalco malachite	L84+50N: 99+15E	1450	5 8	3 .6	590
90F25RZ&	F	mafic soleanic	chlorite	up to 5% cp - py malachite	5300'; on rubble pile: abundant where found: possible subcrep.	11345	2 4	1/3.9	530
90F25R209	F	andesite	carbonate	3-5% pyrrh-cp	5440': possible subcrep	6061	2 6.	5 5.0	30
90625R210	40cm	hornbly porphy diorite	-	> 1% cp	5600': 110 % 70 NE	695	2 4	é 0.8	190
90G25R211	40em	**	carbonale	in some parts.	gtz stringers : 2 35m 5 of RZ10	6793	7 3	5 3.7	150
90625R21Z		altered diorite	chlorite silica	1-37- disem ep malachite	2-10zm wide gtz vains coming together strike 130°+ 150° 5500'	2007	3/2	5/1.2	16
90625RZ13	35cm	ein vein	N	upto 3% cp	5580'	1 1	2 2		1

I TOOK BAIL LE SI EET I I TEST TEST TEST WP. I I Pagez

Sampler D. Ridley Date Sept 22 190

Property Yehiniko *25

NTS ____

SAMPLE	Sample	-	DESCRIPT	TION		1	A	SS	AYS	;
NO.	Yidth	Rock Typ	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cu	Pb	7.	Aa	Au
90625R214	45cm	2+z vein	chlorite	1-2% cp	125/80NE: 5550'	/31	3	56		12
90 F25 R215	F	otz Breccia	-	up to 3% cp	5540': 1x2.5 m float block.	3871	2	68	1.6	11
90FZ5RZ16	F	mafic volcanie	_	monor magnetite	5.460'	998	15		1.4	2
90625 R217	50cm	etz breccia vein	chlorite	1% py-cp	160/85NE: 5440'	712		40	,4	86
90F 25 R218	F	breccia	carbonate	up to 5% cp	5370'	4275				19:7c
90 GZSR219	30cm	etz vein	-	upto 20% py	3300'	13		20	.5	13
90F 25R220	F	a Hered volcanic	epidote pyrite	minor cp malachite	3340'	5454				160
90F25R223	F	,, 11	chlorite	cohedral pyrite	angular float entalus: 3180'	23	17	75		19
40FZ5R224	F	gtz vein	limonite	upte 3% cp miner py (>1%) malachite	min. width 30cm; angular fleat 3260'		,			710
40625R225	50cm	д 11	chlorite meticuck.	py up to 7% beswerk epen species filled with liminite	highly exidized, 3260; 080/90					2390
90625 RZZ6		figrain toff(?)	epidate	1/0 py mulachite	approx. strike 160' dip E. cun be traced					
90625R227	1.5m	dk green matic valcania	epidote	stackwork veinlets t stringers of apt py: epidate veinlets	visible over 26×10m area! 3400	7253 2418				130
40625 R228	•	matic volennics		cp up to 3%:	150% 90 may be same shear as R226:	18369				510
						101	~	01	1.10	210
		·						\dashv	-	

I I DOK JAM LE SILET

Sampler TODD FARAGHER
Date Aug-Sept '90

Property YEHINIKO #25

SAMPLE	Samoi		DESCRIPT	ION	1		1	1 SS	AYS	•
NO.	Aigh	Rock Typ	Alteration	Mineralization	ADDITIONAL OBSERVATIONS		_	T		
90G 25-F05	.3m	diorite	-	CPY+PY (2%)	min along shear surface 170°/72W	1		T		A410
90 G 25 - F06	.5m	diorite	epidote	сру (3-5%)	calcite, coarse grained diorite	i.e.		+	23.4	-
906 25-F08	Im	siltstone		diss py 1%	January Constitution of the Constitution of th	Ī	i	T	.5	
90F 25 - F09	F	intrusive	calcareous clayalter.	py1% tr cpy	angular float	1841		1		720
90G 25-F10 90G	,5m	calcite Vein	-	cpy clots 2%		330%				480
25-FI1	.5m	2 tz vein	-	tropy + py	@ 54 /50 se + malachite	3976	3	7	.7	7
90G 25-FIZ	lm	porphyry volcanic	SILICEOUS	CPY + PY	broken + sheared @ 122/62N + 28/80 E	7.3¢	6	45	.9	78
90 G 25 - F13	.5m	gtzvein	-	сру+ру		10375				
90-C25-F14	10cm	FIZ vein	hustel in sellments	cpy elets	,			i		29%
90-625-F15	15m	sillstone	cularens	cpy clots						33
%-625-F16	.5n	velenic	chl tep	penasive cpy 412		76B	_	1 1	.5	
				DETVOSIJE CPY 418		4317	18	136	3.7	7/
					•					

	DCI.	JAN.	1E	1.	EE	
--	------	------	----	----	----	--

Sampler.	Jamie	Mc	Lellan
Date			

Property Yehranko

NTS _____

SAMPLE	l	, 1	DESCRIPT	ION ,		L	A	SSA	145	
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Cu	Au	Ag	Pb	Z n
904-25-010	2 m	Volcanic	epidote	malachite py , cpy			5170			
QII	20cm	Volcanio	epidote	malachite py, epy		19512	君	14.3	136	72
Q12	Bocm	Volenic	epidote	ри ,сру	·	19935	890	12-1	57	126
ો 13	30cm	QTZ Bret.	epidole	ру, сру		1592	31	13	9	24
Q1 4	50 cm	Volcanie	epidote	PY.	pyrite in pods with epidote and Otz Aalos	190	120	,4	6	117
QIS	Socm	Útz Bed.	epidate	malachite py icpy		16541	620	19.4	109	420
Q16	30cm	Qtz Biet.	epidote	ру , срў			69			20
Q 17	20cm	Otz Bret.	epidote	py, cpy, galena		8464	69	11.3	7652	860
Q20	30 cm	Qtz.	Kaspar epidote	cpy, malachite	massive apy in 4. pods	9999	1/30	103.1	43	207
-										

Sampler C. BASIL
Date SEPT '90

Property YEHINIKO #25

NTS _____

SAMPLE	<u>.</u>		DESCRIPT	ION		L	A	SS	4YS	
NO.	Sample Yidth	Rock Type	Alteration	Mineralization	. ADDITIONAL OBSERVATIONS	Cu	Ag	Pb	Zn	Au
90 G 25 - X01	2m²	hornfeld porphyry	PY, chlorite	dissem py	10 to 20m² Gossan on upper eastern face of cliff	184	.z	2	29	1
90G 25-X02	2m2	11	11	11	20 meters west along extension of gossan (sample voi)	209	.2	3	21	7
90G 25-X03	0.5m2	11	РУ	РУ	in shear zone 296° /vert dip	228	.4	6	52	9
90G 25-X04	o.lm	į1	day	PY	100° /vert dip fault 1300 m elev gouge w/qtz stringers w/purple clay alter.	8	-1	z	13	2
90G 25-X10	0.6 m ²	volc.	chlorite	py 1-3%	sheared volc. 1150m elev	45	.1	Z	92	16
90G 25-×11	0.5m	volc.	siliceous	PY	1180 meles on cliff top (NORTH SIDE DE CREEK) - goesanous + sheared	494	-4	2	58	8
90G 25-X12	1m2	volc.	chlorite epidote	4r p4	1200 m elev - next creek to north of XII (Shele contact 1220 m elev)	21	.7	2	104	1
90 F 25-X13	F	volc	chlorite	py, sphal	1120 m elev - carbonate veinlets	90	1.1	267-	19827	1350
909 25-X14	,3m	volc	limonite	py 5-15%	diffs above creek in shear	48	.3	ıl	206	480
90 G 25-X15	,3m	volc.	limonita	145-15%	1085melev - just below X14 shear - 720/vert dip	46	.3	16	232	480
90 G 25 - X16	.25m	volc.	chlorite epidote	mal, py, cpy	carbonate veinlets - dissem mal	270,	3.8	10	78	53
904 25-X17	F	2 tz.		PY	rose gtz roto melev.	391	1.4	2	35	51

RUCK SAMPLE SHEET

Sampler Andrew Wilkers
Date SEP 190

Property YEHENIKO #25.

SAMPLE	1		ESCRIPT	ION	1		A	554	175	
NO.	Sample Width	Rock Type	Alteration	Mineralization		Cu	Au	Aq	Pb	Zn
90G-25-WS	G	AÑOS.	QZ VN.	PY-CP.		755	10	1.3	5	152
90G-25-W10	G	OZ-CB VN.	QZ-CB	CP-PY-MA	in ANOS volcanies . 025/20 SE	6058	190	1.4	В	4.7
90G-25-WII		QZCB:	07-CB-CL	CP.	Subcrop of 10cm wide, banded and comb	k: 7	380	-2	3	7
90C-25-W12		ANDS	OZ-GY-CB pervasive + un	HM. s	Im. wide altin zone around QZ-CB uns inp to 10cm wide. Altin consists of SD with a	48	59	.4	6	183
					The zone is bleached white with HM					
					068/B2N					
90G-25-W13	G	QE UNB ANOS	07-HM	MA: PY-CP.	banded fine grained in w bands of QZ, HM stained QZ and red HM, siliceous altin	1031	41	10.5	6	154
0 10 10.0		7,300			stained QZ and red HM, siliceous altin W dis PY-CP lots of MA staining 050/58NW					
90G-25-W14	G	ANDS	bleached.	MA	Bleached, purple altin zone w bunded QZ vns MA Staining - 80cm wide	21	1632	.4	5	41
					075/755					
90F-25-WIS	F.	ANDS	02-CB	dis S	Bleached at altin of ANDS w some CB uns and finely dis silver mineral	380	15	13.9	4	28
90C-25-W16	1	121K	OZCBUN	Fine dis SX	gully. Wil is comb textured enhected	17	22	. 1	2	119
90C-25· WI7	1	102		11	laz xtals w some CB alter and finch dis sulphicle. WIT is more massive		87	, 2	6	16
					white and honey coloured quartz both enhedral and chalcedonic -banded					
·	1				055/86 NW.					

RUCK SAMPLE SHEET

Sampler ANDREW WILKINS.

Date -SEP/90 =

Property <u>VEHENIKO</u> # 25

SAMPLE			ESCRIPT	ION	<u>,</u>		A	SSA	YS	
NO.	Sample Yidth	Rock Type	Alteration	Mineralization		Cu	Au	179	Pb	300
90G-25-W/8	G	XTAL TUFF	CB - MN.	HM-BB-MA	Altered stal tutt w cuhedral CA uns and box in HM and Bd mineralization	1627	62	1.6	11	141
					MA-MN staining. CL-EP altin of volcanice broken up and sheared					
				·	025/86 NW 175/55E 092/43N.					
90F-25-W19	1 / -		EP-QZ-CB CL-Marapo		Vuggy and layered OZ-CB uning gossamus SB CL-Maraposite altin	61	11	.4	5	175
			,							
90F-25-W20	F	QZ-CB un	02-CB	HM.	Gossanous, sugary textured QZ-CB vong w minor silver oren sulphide 120/65 Intense CL-CA altin of volcanics w dis PY-CP. lots of MN staming 120/80N	4	١	•2	2	42
90C=25-W21	i		CL-CA Dervoisi ve	PY-CP	Intense CL-CA altin of volcanics w dis PY-CP. lots of MN staning 120/800	7090	260	39.2	9	18
90G-25-W22		Į1	11	//	" High grade.	9249	430	53.6	4	35
90G-25-W23	1	11.	11	"	A house 100/54N.	299	160	861	(1	37.
90G-25-W24	1	ANDS	EP-CL-CA	CP.	CP blebs in EP-Ce-CA altered volcanic CA in micro uns w CP. Clots of EP-CL pervaisive altin	874	710	7.4	2	74
					EP-CL pervaisive altin Zone is 10m long 20-150 cm wide					
90G-25-W2S	G	μ	"	"	" Same Zone. 2	377	452	8.9	2	5
90C-25-W26		11	"	"	Chip sample of above tone	1027	230	3.0	15	14
90G-25-W27		az un in ANOS	azun.	PY-CP-MA.	Sugary textured at un w blebs of PY-CP, menor CB. Un is 10 cm wide and is bandled and MA storned. Below un for	251	20/	3:1	29	9
					landed and MA stained. Below in for Im. is bleached CL-PY-MS aftered volc		<u> </u>			

RUCK SAMPLE SHEET

Sampler ANDREW MILLIANS
Date SEP 190

Property YEHENIKO # 25

SAMPLE		_	ESCRIPT	ION	1		A	SSA	YS	
NO.	Sample Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	cu	Au	49	Ph	2n
90G-25-W28	G.	ANDS.	az-ep-cl Ms	PY minor MA	bleached ANDS volcanics w 20% dis PY, enveloped by EP-CL-PY. Minor MA on 148/cn	3:26	3	.5	3	71
,					py, enveloped by EP-CL-PY. Minor MA on some fractures - tone is Im. wide 148/80.	U <u>E</u>				
90G-25-W29	G	ii	//	// //	Same as above = 5mi wide 145/801	41	42	ا ،	2	52
90G-25-W30		Ozvn in ANOS	CL-MS-QZ	PY-CP	Scm. wide, white & green mottled azun w minor Py CP. Surrounding vn is 30 cm.	213	19	٠١	13	32
700 20 00 20					of intense CL-MS-QZ altin w micro QZ vns and dis PY-CP-HM staining along for.					
					fractures. Un is traceable for 2m					
90F-25-W31	F	QZ UN	02-CB	CP-PY-GL	Gossanous, silvery white QZ VM W 5 70 CP, 270 PY and minor GL. VM is 20 to 30	489.7	¹¹ 73 ₅	9.5	377	28
		////			con wide and is believed to be subcrops. 07-py-CB alter in surrounding volcanics					
90C-25-W32	30cm	Augite	KF-EP-	PY-CP-MA.	Shear zone within med Augite porphyry KF-EP-QZ after loaded w Pf-CP-FAA	7777	3400	36.6	13	97
90G-25-W33		177 1196	QZ.	CP	11 Dz uns loaded w CP (1-570). Uns vary from 2cm to 30cm 005/8000	1690	32	1.0	3	j
90C-25-W34		14/00	QZ-MS-PV	PY.	shear zone 1-2m wide 165/80E		ì	ı	1	275
70025 0001										
	 									
·										

APPENDIX IV

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

PROJECT PREP		1147.33
MOB/DEMOB		6500.00
PERSONNEL Chief Geologist (E. Ostensoe)	19	9,990.00
14.5 days @ 400/day	5800.00	
Geologist (A. Wilkins) 3.5 days @ 325/day	1137.50	
Geologist (W. Kushner) 7.5 days @ 250/day	1875.00	
Climbing Geologist (A. Wilkins) 3 days @ 425/day	1275.00	
Climbing Geologist (W. Kushner) 3 days @ 350/day	1050.00	
Supervisor (J. Marr) 2 days @ 325/day	650.00	
Prospector (D. Ridley) 12.5 days @ 235/day Prospector (K. Ridley) 7 days @ 235/day Prospector (C. Basil) 2 days @ 135/day Sampler (F. Thrane) 12 days @ 225/day Sampler (J. McClennen) 2 days @ 225/day	470.00 2700.00	
HELICOPTER 22.2 hrs @ 700/hr	1	5,540.00
CAMP CHARGES Crew 69 days @ 125/day Pilot (30% pro rata) 13.5 days @ 125/day	8625.00 506.25	9131.25
Crew 69 days @ 125/day		·
Crew 69 days @ 125/day Pilot (30% pro rata) 13.5 days @ 125/day		9131.25
Crew 69 days @ 125/day Pilot (30% pro rata) 13.5 days @ 125/day COMMUNICATIONS 69 days @ 15/day		9131.25
Crew 69 days @ 125/day Pilot (30% pro rata) 13.5 days @ 125/day COMMUNICATIONS 69 days @ 15/day HAND HELD RADIOS 45 days @ 5/day		9131.25 1035.00 225.00
Crew 69 days @ 125/day Pilot (30% pro rata) 13.5 days @ 125/day COMMUNICATIONS 69 days @ 15/day HAND HELD RADIOS 45 days @ 5/day FIELD GEAR CONSUMABLES		9131.25 1035.00 225.00 428.75
Crew 69 days @ 125/day Pilot (30% pro rata) 13.5 days @ 125/day COMMUNICATIONS 69 days @ 15/day HAND HELD RADIOS 45 days @ 5/day FIELD GEAR CONSUMABLES FIELD GEAR RENTAL 55.5 days @ 5/day		9131.25 1035.00 225.00 428.75 277.50 120.00
Crew 69 days @ 125/day Pilot (30% pro rata) 13.5 days @ 125/day COMMUNICATIONS 69 days @ 15/day HAND HELD RADIOS 45 days @ 5/day FIELD GEAR CONSUMABLES FIELD GEAR RENTAL 55.5 days @ 5/day CLIMBING GEAR RENTAL 6 days @ 20/day FREIGHT 1681 lbs @ .98/lb 1681 lbs @ .56/lb	1647.38 941.36	9131.25 1035.00 225.00 428.75 277.50 120.00

Statement of Expenditures (cont'd)

SAMPLE ANALYSIS 142 rocks @ 10.15/sample 926 soils @ 8.20/sample 25 silts @ 8.20/sample 15 Au fire-assays @ 8.50/assay 7 platinum group assays @ 10/assay	1441.: 7593.: 205.(127.:	20 00 50
MAGNETOMETER SURVEY 4.5 km @ 100/km		450.00
REPORT PREPARATION and PRODUCTION	•	1700.00
	Subtotal	69,688.56
13.5% MANAGEMENT FRE		9407.96
	TOTAL	\$79,096.52