LOG NO:	april 2/9/ RD.	
ACTION:		~
ļ		
FILE NO:		

ASSESSMENT REPORT ON THE HALCYON RESOURCES LTD./GALICO RESOURCES INC. JOLLY T PROJECT

ISKUT-SULPHURETS AREA SKEENA MINING DIVISION BRITISH COLUMBIA

45.	SUB-RECE			
•	福紀 2	7	1991	ł
M.R.	# VANCOUV	EF	\$ २, B.C.	,

OF OLOGICAL BRANCH

LATITUDE 56°42'S ESSMENT REPORT

G. A. Malensek B.Sc.
J. Chapman, F.S.A.C.

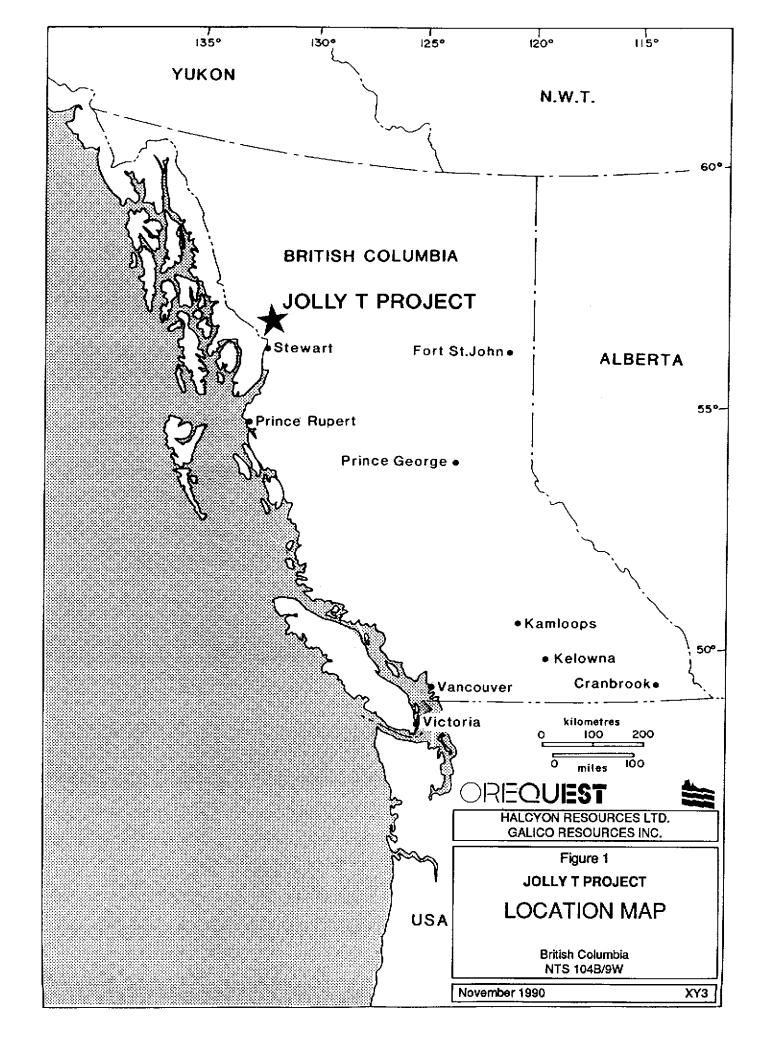
January 20, 1991

OREQUEST

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The Phase I exploration program has been completed by OreQuest Consultants Ltd. on the Jolly T Project, owned by Halcyon Resources Ltd. and Galico Resources Inc. (50% each). The property consists of the 20 unit Reg mineral claim, which is centred approximately 6.5 km northwest of the Eskay Creek property of Prime Resources Group Inc./Stikine Resources Ltd., within the Skeena Mining Division. This work was done under the management of Prime Explorations, a division of Prime Equities Inc., from September 1 to 15, 1990. The project is accessible by helicopter only and was reached from OreQuest's seasonal camp 15 km to the southeast. The claim lies 38 km east of the Bronson Creek airstrip, which is serviced on a regular basis from Smithers, 330 km to the southeast, and 39 km west of the Bell II staging area on the Stewart-Cassiar Highway.

The Jolly T Project lies on the northern flank of what is known as the Stewart Complex, an assemblage of volcanic and related sedimentary rocks of Upper Triassic to Middle Jurassic age which, as originally defined, extends from the Iskut River to Alice Arm (north-south) and from the Bowser River Group sedimentary basin to the Coast Plutonic Complex (east-west). This complex has been intruded during both Lower Jurassic and Tertiary times. The Lower Jurassic intrusive event is believed to be essentially coeval with the volcanics as well as being associated with extensive precious and base metal mineralization.


Although the Iskut River area was explored as early as the beginning of the century, mine developments such as Newhawk Gold Mines Ltd. (Sulphurets), Skyline Gold Corporation (Johnny Mountain), Prime Resources Group Inc./Cominco Ltd. (Snip) and, most recently, Prime Resources Group Inc./Stikine Resources Ltd. (Eskay Creek) has spurred extensive precious metal exploration during the last four years. Much of this activity has focused on the Upper Triassic to Lower Jurassic stratigraphy in search of vein and/or shear hosted deposits. Discovery of stratiform massive sulphide mineralization as Eskay Creek has broadened exploration horizons along with interest in large tonnage lower grade porphyry style copper-gold deposits.

The 1990 exploration program on the Jolly T Project consisted of reconnaissance geological mapping and prospecting in conjunction with the collection of 11 rock, 93 soil, and 6 heavy mineral concentrate stream sediment samples for geochemical analysis. The property was found to be underlain mainly by argillite/siltstone and greywacke/ sandstone with minor lenses of conglomerate. All of these units are believed to belong to the Middle Jurassic Salmon River Formation. Small areas of blow-out quartz veining were located however no sulphides were observed to be associated with them.

Gold results from all samples are low with the maximum results from rock, soil and silt samples being 15 ppb, 25 ppb and 10 ppb respectively. Results from the ICP analysis returned spot soil anomalies in copper, lead, nickel and zinc with a weak clustering of anomalous zinc at the west end of soil line L1. Sample location

13+50E on L1 returned the highest zinc value (778 ppm) along with 151 ppm nickel and 129 ppm copper.

Based on the results obtained from the 1990 field program, both geological and geochemical, no further work is recommended on the Jolly T Project. If new developments occur at the Eskay Creek camp or adjoining properties which are relevant to the Jolly T property geology then a re-evaluation may be required.

TABLE OF CONTENTS

Summary, Conclusions and Recommendations	
Introduction	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	2
Property and General Area History	3
Regional Geology	9
Property Geology	10
Property Geochemistry	12
Statement of Expenditures	14
Certificate of Qualifications	
J. Chapman, F.G.A.C.	
G. A. Malensek, Geologist.	

Bibliography

LIST OF FIGURES

Figure 1	Location Map	Following	Summa	ry
Figure 2	Claim Map	Following	Page	2
Figure 3	Regional Mineral Occurrence Map	Following	Page	4
Figure 4	Regional Geology	Following	Page	9
Figure 5	Property Geology and Rock Sample Location Map	Following	Page	11
Figure 6	Property Geochemistry: Soil and Silt Sample Locations	Following	Page	12

LIST OF TABLES

Table 1	Claim Data	Page 3
Table 2	ICP Soil Geochemistry Statistics	Page 13

LIST OF APPENDICES

Appendix I Rock Sample Description Sheets

Appendix II Assay Certificates

Appendix III Analytical Procedures

INTRODUCTION

This report summarizes the 1990 exploration program conducted on the Jolly T Project of Halcyon Resources Ltd. and Galico Resources Inc. The report is prepared by OreQuest Consultants Ltd. at the request of Prime Explorations, a division of Prime Equities Inc., on behalf of Halcyon and Galico.

No previous work has been recorded on the Jolly T Project area, therefore the 1990 program was designed to provide data on the underlying geology as well as first pass geochemical coverage. The work was carried out from September 1 to 15, 1990.

LOCATION AND ACCESS

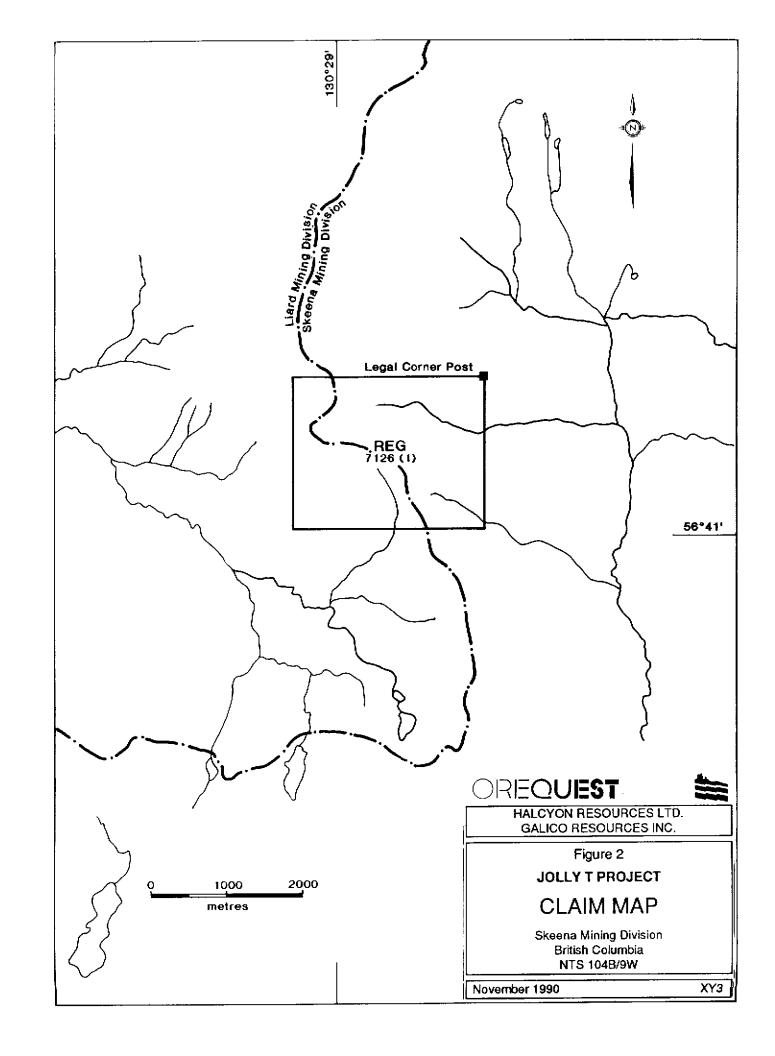
The Jolly T Project is located about 80 km north-northwest of Stewart, British Columbia, on NTS map 104B/9W.

Access to the property is by helicopter from the Bronson Creek airstrip 38 km to the west or the Bell II staging area on the Stewart-Cassiar highway, Highway 37, about 39 km to the east. The B.C. government and several interested mining companies in the area are presently funding the construction of a road into the Iskut area. Surveying for the road location and environmental testing began in 1990.

Frequent scheduled and charter flights from Smithers, 330 km southeast, to the Bronson Creek strip, service the exploration and

mining activity in the area. The Snippaker Creek airstrip, 25 km southwest of the property, was used during the 1990 season by single-engine fixed wing aircraft. Several old landing strips are located south of the property on the Unuk River but would require work to be serviceable. Exploration work was carried out via helicopter from OreQuest's seasonal camp 15 km southeast of the Jolly T Project.

PHYSIOGRAPHY AND VEGETATION


Elevations on the Jolly T Project range from 1000 m (3300ft) at the southeast end of the property up to 1600 m (5200ft) in the west. Slopes range from gentle to very steep.

The entire property is vegetated by small subalpine stunted shrubs and grasses. Locally small patches of stunted mountain hemlock and balsam were found which rarely exceed 3 m in height.

Climate in the area is severe, particularly at the higher elevations. Heavy snowfalls in winter and rain in the short summer working season are typical of the Iskut-Sulphurets area. Inclement weather conditions and reliance on helicopter transport make this a high cost area to explore for minerals.

CLAIM STATUS

The Jolly T property consists of one 20 unit mineral claim, the status of which is listed in Table I and shown on Figure 2.

TABLE 1 - CLAIM STATUS

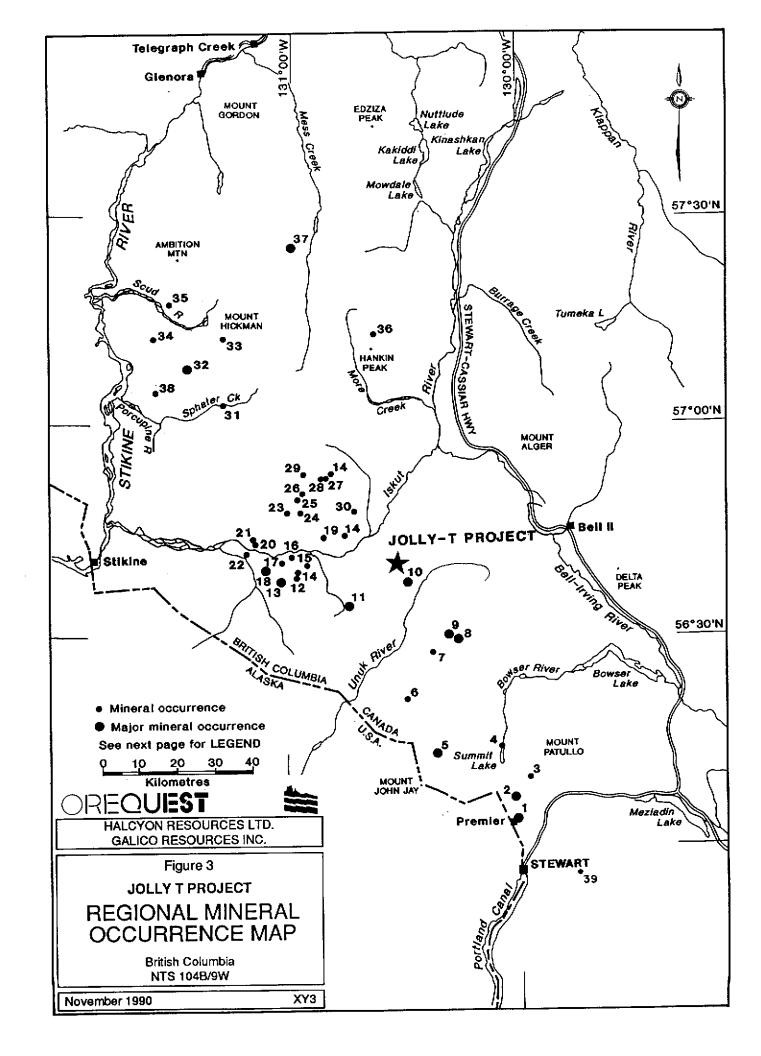
Reg 20 7126 Jan. 13, 1989 Jan. 13, 1995

The expiry date indicated above reflects assessment filed on the basis of work described in this report.

The property straddles the Skeena and Liard Mining Divisions boundary however the Legal Corner Post is within the Skeena Mining Division. The claim is located on map 104B/9W centred at approximately $56^{\circ}42'N$ latitude and $130^{\circ}28'W$ longitude.

During the course of the field work the Legal Corner Post (LCP) was physically located on the ground in the approximate area plotted on the claim map.

GENERAL AREA HISTORY


There is no record of any work having been carried out on the claims area itself, however much work has been done in the region both historically and recently. A brief summary of activity on surrounding properties is included here.

The Jolly T Project lies within an historically active mining and exploration area that extends some 225 kilometres from Stewart in the south to near Telegraph Creek in the north. Within this area, which

has been referred to as the Stikine Arch, mining activity goes back to the turn of the century. Due to the size of the region it historically has been referred to as more specific areas, ranging from the Stewart area to Sulphurets, Iskut River and Galore Creek, however all of these individual camps appear to be related to the Stikine Arch as a whole and are located in the area now referred to as the "Golden Triangle". Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area can be considered as one large mineralized province with attendant subareas. The location of several deposits and mineral occurrences appears in Figure 3, which also locates the Jolly T Project with respect to these sites. This list of mineral occurrences is by no means comprehensive but is included to illustrate distribution in the region.

The Stewart area has been mined actively since the early 1900s and is one of the most prolific mining districts in British Columbia (Grove, 1971). Most prominent among the numerous mining properties are the Silbak - Premier, Big Missouri and Granduc deposits, located 13 km north, 20 km north and 39 km northwest of Stewart respectively.

The Jolly T Project lies on the northern flank of the Iskut-Sulphurets area which has seen extensive exploration in the last three years. The Iskut area originally attracted interest at the turn of the century when prospectors, returning south from the Yukon goldfields searched for placer gold and staked bedrock gossans. In

LEGEND FOR FIGURE 3

PROPERTY OWNER AND/OR NAME

- 1 Westmin Resources Ltd./Silbak Premier Mines
- Westmin Resources Ltd./Tournigan Mining Explorations Ltd.
- 3 Noranda (Todd Creek Project)
- 4 Scottie Gold Mine
- 5 Granduc
- 6 Echo Bay Mines/Magna Ventures/Silver Princess Resources (Doc Project)
- 7 Western Canadian Mining (Kerr Project)
- 8 Exponential Holdings Ltd. (Gold Wedge)
- 9 Newhawk/Lacana/Granduc (Sulphurets Project West Zone)
- 10 Prime/Stikine Resources Ltd.
 (Eskay Creek Project)
- 11 Consolidated Silver Standard Mines Ltd.
 (E & L Deposit)
- 12 Inel Resources Ltd.
- 13 Skyline Gold Corporation (Johnny Mountain)
- 14 Kestrel Resources Ltd.
- 15 Hector Resources Inc. (Golden Spray Vein)
- 16 Tungco Resources Corp.
- 17 Winslow
- 18 Cominco/Prime (Snip Deposit)
- 19 Pezgold Resource Corp.
- 20 Meridor Resources Ltd.
- 21 Prime/American Ore Ltd./Golden Band
- 22 Magenta Development Corp./Crest Resources Ltd.
- 23 Ticker Tape Resources Ltd. (King Vein)
- 24 Pezgold Resource Corp.
- 25 Consolidated Sea-Gold Corp.
- 26 Gulf International Minerals Ltd. (Northwest Zone)
- 27 Kerr Claims
- 28 Pezgold Resource Corp. (Cuba Zone)
- 29 Pezgold Resource Corp. (Ken Zone)
- 30 Avondale Resources Inc. (Forrest Project)
- 31 Pass Lake Resources Ltd. (Trek Project)
- 32 Galore Creek
- 33 Continental Gold Corp.
- 34 Bellex Resources Ltd./Sarabat Resources Ltd.
 (Jack Wilson Project)
- 35 Pass Lake Resources Ltd. (JD Project)
- 36 Lac Minerals (Hankin Peak Project)
- 37 Schaft Creek
- 38 Paydirt
- 39 Bond International Gold (Red Mountain)
- 40 Eurus/Thios (Rock & Roll)
- 41 Westmin Resources Ltd. (SB)

MINERAL RESERVES AND/OR ELEMENTS

6,100,000 tons 0.064 oz/t Au, 2.39 oz/t Ag

1,860,000 tons 0.09 oz/t Au, 0.67 oz/ton Ag Au

Au

10,890,000 tons 1.79% Cu

470,000 tons 0.27 oz/ton Au, 1.31 oz/ton Ag

337,768 tonnes 25.78 g/tonne Au, 36.65 g/tonne Ag

550,000 tons 0.42 oz/t Au, 18.0 oz/ton Ag

1,992,000 tons 1.47 oz/t Au, 55.77 oz/t Ag

3,200,000 tons 0.80% Ni, 0.60% Cu

Au, Ag, Cu, Pb, Zn

740,000 tons 0.52 oz/ton Au, 1.0 oz/ton Ag

Au, Ag, Cu, Pb, Zn

Au, Ag

Au, Ag, Cu, Pb, Zn

Au, Ag, Cu, Pb, Zn

1,030,000 tons 0.88 oz/ton Au Ag, Au

Au

Αu

Au, Ag, Cu, Pb

Au Au

Au

Αu

Au, Ag, Cu

Ag, Cu, Au

Ag, Pb, Zn

Cu, Au

Au, Ag, Cu

Cu, Au

125,000,000 tons 1.06% Cu, 0.397 g/t Au.

7.94 g/t Ag

Au, Ag, Cu

Au, Cu

Au, Cu

Au

910,000,000 tons 0.30% Cu, 0.020% Mo, 0.113

g/t Au, 0.992 g/t Ag

200,000 tons 0.120 oz/ton Au

Au, Ag

Ag, Pb, Zn, Cu, Au

308,000 of 0.505 oz/ton Au, 1.07 oz/ton Ag

the 1970s the porphyry copper boom drew exploration into the area. The new era of gold exploration began with the 1979 option of the Sulphurets claim block by Esso Minerals Canada and the 1980 acquisition of the Mount Johnny claims by Skyline Explorations Ltd. Skyline (now Skyline Gold Corporation) commissioned its mill in July, 1988, however production has been suspended temporarily. Cominco Ltd. and Prime Resource Group Inc. are presently preparing the adjacent Snip deposit for production.

Beyond these projects, and except for limited early placer gold recovery from some creeks, the area has had no mineral production history. Since 1979, more than 70 new mineral prospects have been identified, though ground acquisition was relatively slow until the fall of 1987 when the promising results of summer exploration programs became known and the provincial government announced the upcoming release of analytical results from a regional stream sediment survey. By April 1988, all open ground had been staked. More than 60 companies hold ground in the Iskut-Sulphurets belt but to date only small areas within this 40 x 80 km district have received extensive exploration.

In the Sulphurets Creek camp 23 km southeast of the Jolly T Project, near Brucejack Lake, the vein-hosted West Zone of Newhawk Gold Mines Ltd. / Granduc Mines Ltd. / Corona Corporation is reported to contain 550,000 tons grading 0.42 oz/ton gold and 18.0 oz/ton silver (The Northern Miner, Vol.76, #36; November 12, 1990) while the

Snowfield Gold Zone and Sulphurets Lake gold zone are bulk tonnage low grade deposits containing 7.7 million tons of 0.075 oz/ton gold and 20 million tons of 0.08 oz/ton gold respectively (GCNL Aug. 24, 1989). Exponential Holdings Ltd.'s Gold Wedge Property is reported to contain 337,768 tonnes of 25.78 grams/ton gold and 36.65 grams/tonne silver, partly in the Golden Rocket Vein in a similar setting (George Cross Newsletter, No. 227, November 23, 1990). Newhawk has recently completed a feasibility study which has indicated that current gold and silver prices preclude production at this time. Also located in this area is Placer Dome Inc.'s Kerr property, a porphyry coppergold occurrence to which they have assigned a geological resource of 138,000,000 tons grading 0.61% copper and 0.01 oz/ton gold (Placer Dome Inc. Annual Report, 1989).

On the Snip property situated 38 km to the west of the Jolly T Project, the Twin Zone, a 3 to 25 ft thick discordant shear vein cuts a thickly bedded sequence of intensely carbonatized feldspathic wackes and siltstones. Twin Zone reserves in all categories have been reported as 1,030,000 tons of 0.88 oz/ton gold (Canadian Mines Handbook, 1990-91). This does not include additional reserves which may be developed outside the Twin Zone when mining begins. Twin Zone mineralization occurs in a banded shear zone comprising alternating bands of massive calcite, heavily disseminated to massive pyrite, crackle quartz and thin bands of biotite-chlorite.

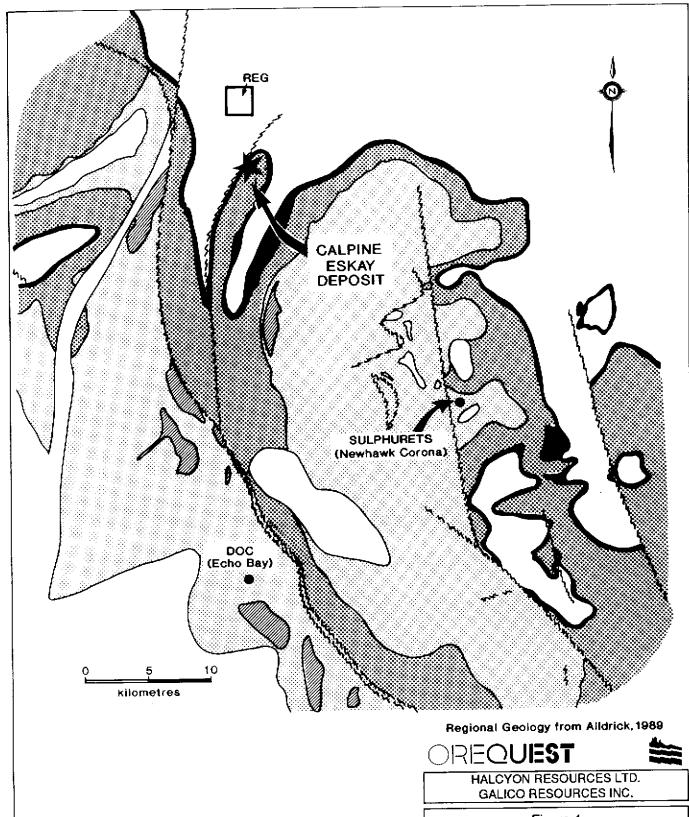
At Skyline's nearby Johnny Mountain Mine, reserves in all categories are estimated at 740,000 tons of 0.52 oz/ton gold and 1.00 oz/ton silver with copper, zinc, and lead (Canadian Mines Handbook, 1990-91). Five major areas of gold-bearing sulphide are known. The most important Stonehouse Zone consists of sulphide-potassium feldspar-quartz vein and stockwork systems which have been only partly explored. The Johnny Mountain Mine has been temporarily shut down, but will be re-evaluated in light of gold price, definition of mineable reserves and road access.

The most recently discovered and perhaps the most exciting gold mineralization occurs on the Eskay Creek property of Prime Resources Group Inc./Stikine Resources Ltd., located 5 km south of the Jolly T Project. Numerous Calpine (now Prime)/Stikine news releases have announced results from over 600 drill holes completed from 1988 to the present, the most spectacular of which is hole CA-89-109 which produced 682.2 feet of 0.875 oz/ton gold. Published preliminary reserve calculations done in-house by Prime, based on drilling up to hole CA90-657, indicate probable geological reserves of 1,992,000 tons grading 1.47 oz/ton gold and 55.77 oz/ton silver (Vancouver Stockwatch, Sept 14, 1990). The company is currently driving an exploration drift to test the deposit at depth for continuity and to conduct metallurgical testing.

Several types and styles of mineralization are present at Eskay Creek, the most significant of which are: a) a gold and silver-rich

assemblage of disseminated to near-massive stibnite and realgar within a carbonaceous mudstone-rhyolite breccia "contact zone"; and, b) stratiform banded base metal sulphide layers with high gold and silver values in the contact zone and in a hanging wall andesite flow and sill complex with intercalated mudstone. The latter type accounts for most of the reserves. This stratigraphy appears to be at or near the contact between the Mt. Dilworth (felsic volcanics) and Salmon River (primarily sediments) Formations.

Immediately south of the Eskay deposit, American Fibre Corporation and Silver Butte Resources are in a joint venture on the SIB Project, on ground that hosts the same stratigraphy as the Eskay deposit. Results from recent drilling have returned results of 46.9 ft of 0.421 oz/ton gold and 30.91 oz/ton silver from hole 90-30 (Vancouver Stockwatch, October 10, 1990). Results from the final 1990, 26 hole program included values of 6.3 ft of 0.13 oz/ton gold and 19 ft of 0.13 oz/ton gold both in hole 90-38 (GCNL, November 5, 1990).


Elsewhere in the area Tymar Resources and Akiko-Lori Gold Resources have been drilling on the Lakewater Project which adjoins the Prime/Stikine project to the west. The companies are drilling a 320 m wide gap in the American Fibre/Silver Butte SIB claims within which the favourable Eskay deposit stratigraphy occurs. Results have been encouraging and include the following: 9.8 ft of 1.197 oz/ton gold, 1.7 oz/ton silver, 0.73% lead and 0.72% zinc (LW90-2), 3.3 ft

of 0.115 oz/ton gold (LW90-3) and 16.4 ft of 0.042 oz/ton gold (LW90-6), (Vancouver Stockwatch, October 30, 1990).

REGIONAL GEOLOGY

The area is underlain by the Stewart Complex (Grove 1971, 1986). The Stewart Complex encompasses Late Palaeozoic and Mesozoic rocks, confined by the Coast Plutonic Complex to the west, the Bowser Basin to the east, Alice Arm to the south and the Iskut River to the north. A simplified representation of the regional geology setting after Alldrick (1989) appears in Figure 4.

The oldest units in the Stewart Complex are Upper Triassic epiclastic volcanics, marbles, sandstones and siltstones. These, in turn, are overlain by sedimentary and volcanic rocks of the Upper Triassic to Middle Jurassic Hazelton Group. In the Unuk River area, the Hazelton Group had been subdivided (Alldrick et al, 1989) into the Lower Jurassic Unuk River, Betty Creek and Mt. Dilworth Formations, and the Middle Jurassic Salmon River Formation. Upper Jurassic sedimentary rocks were identified as the Nass Formation by Grove (Grove, 1986) and included by him in the Hazelton Group. More recently the Salmon River Formation has been included in the Spatzizi Group which underlies the Ashman Formation, basal unit of the Bowser Group. Both the Salmon River and Ashman Formations occur in the Middle Jurassic (Alldrick, 1989).

GROUP

BOWSER LAKE

SPATSIZI

HAZELTON

STUHINI

FORMATION

Ashman

Salmon River

Mount Dilworth

Betty Creek

Unuk River

PERIOD

M.Jur

190 Ma

L. Jur

210 Ma

U.Tri

Figure 4

JOLLY T PROJECT

REGIONAL GEOLOGY

British Columbia NTS 104B/9W

November 1990

XY3

The Unuk River Formation was deposited during Upper Triassic to Lower Jurassic times and marks a period of submergence (marine sedimentation) followed by emergence marked by volcaniclastic rocks. These rocks include arkosic and lithic wackes, siltstones, conglomerates, tuffites and green and grey intermediate to mafic volcanics.

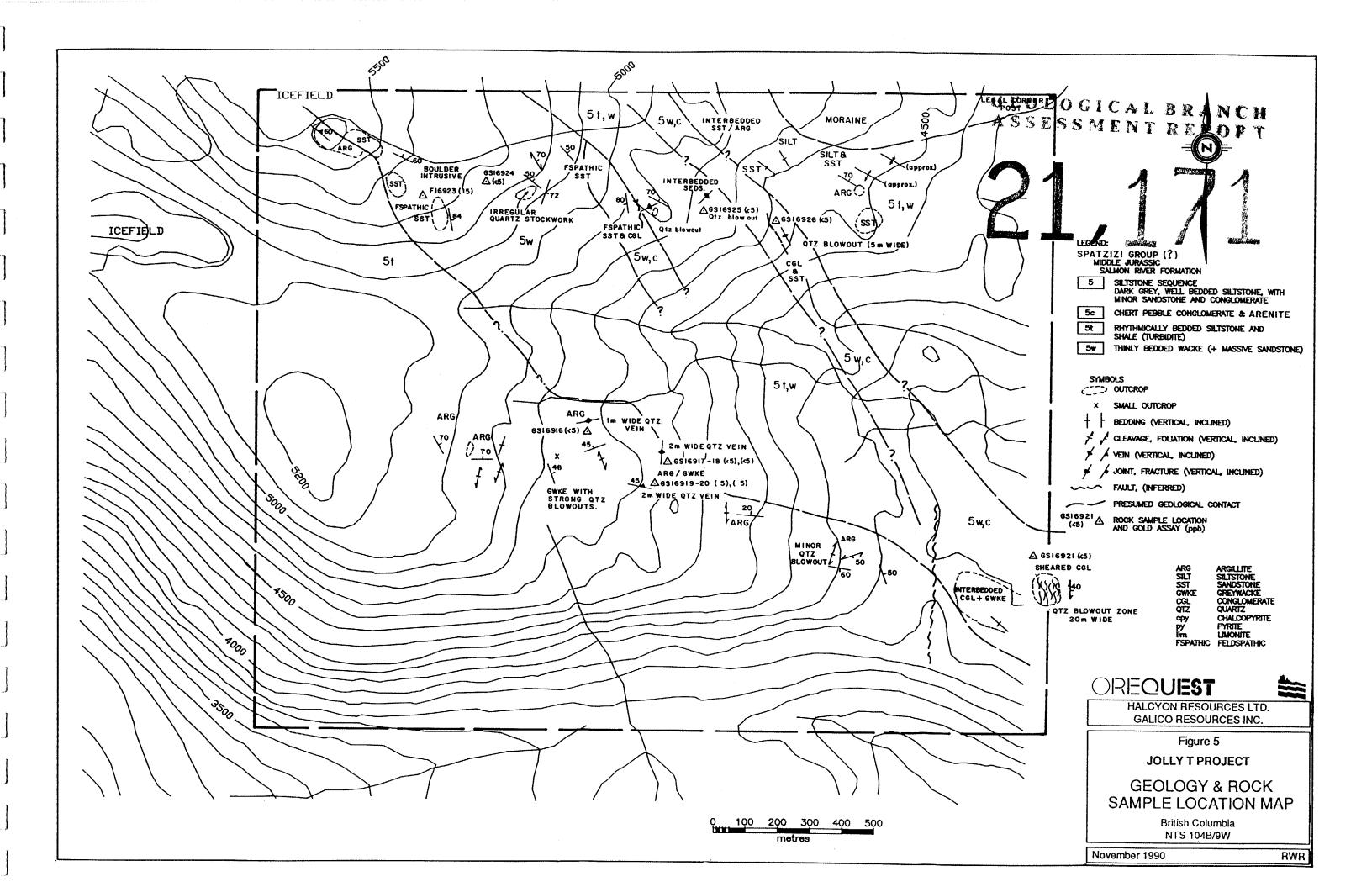
Unuk River rocks outcrop along a broad north northwesterly trending belt from Alice Arm to the Iskut River.

Subsequent to deposition of the Unuk River Formation, a period of erosion and deformation occurred followed by deposition of the Betty Creek Formation volcanics and marine sediments. Betty Creek rocks are characterized by red and green volcaniclastic agglomerates with intercalated andesitic flows, pillow lavas, chert and minor carbonate lenses.

The Mt. Dilworth Formation was deposited during a period of explosive felsic volcanic activity. Massive to bedded airfall tuffs and welded ash flow tuff characterize this formation.

The Salmon River Formation comprises thin bedded, alternating siltstones and mudstones with minor limestone. The overlying Ashman Formation is characterized by turbidites and wackes with lesser intraformational conglomerates and marked by a basal chert pebble conglomerate.

PROPERTY GEOLOGY

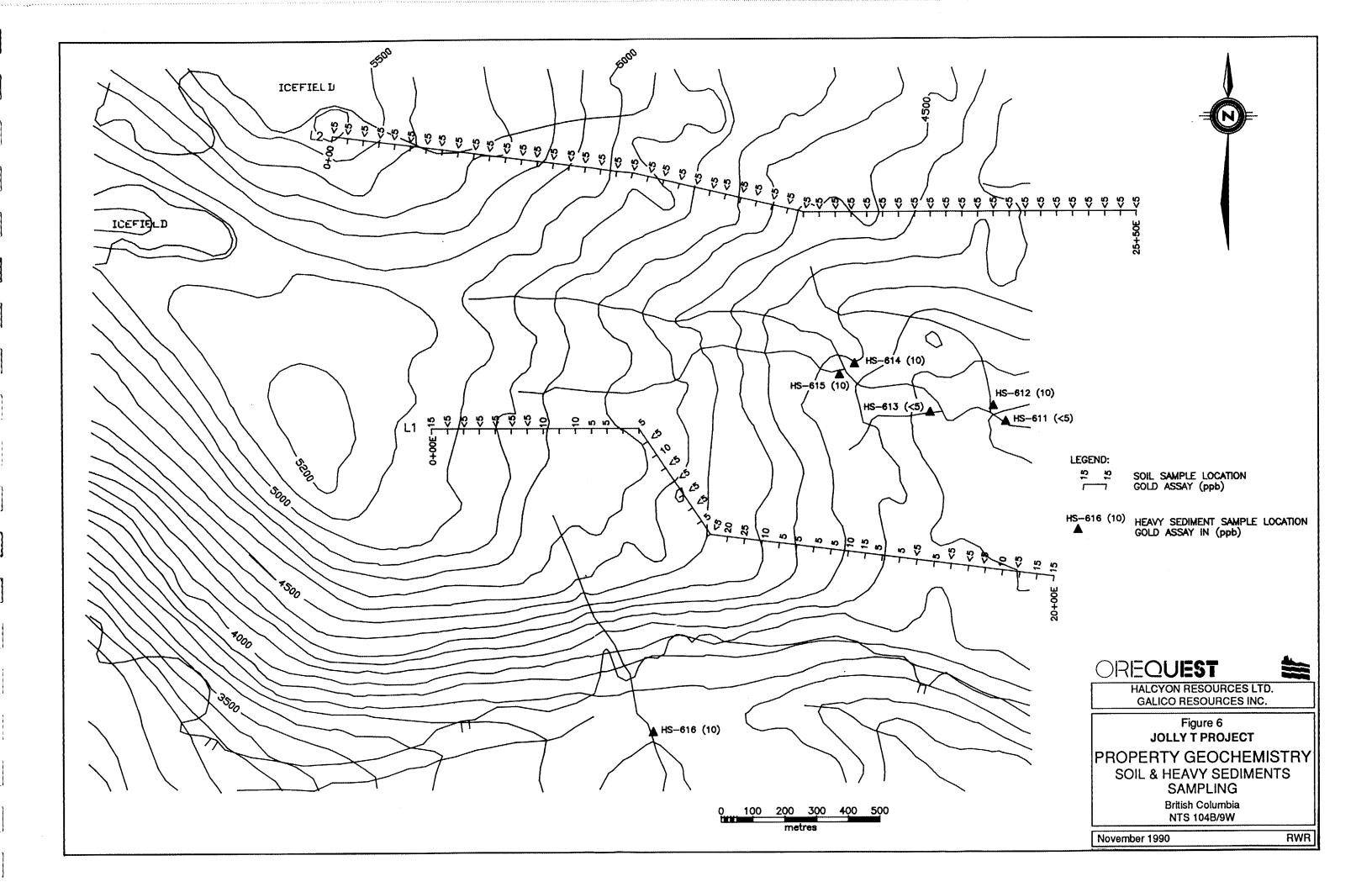

Reconnaissance mapping was conducted along the major ridges and creeks on the property to determine the underlying geology.

Accessible outcrop indicates that the property is underlain by a thick succession of Salmon River Formation sediments consisting of intercalated siltstone/argillite, sandstone/greywacke and chert pebble conglomerate (Figure 5).

The argillite is fine grained, black in colour and has a strongly developed cleavage which usually cuts bedding planes at an acute angle. The dominant trend is north-northwest with vertical dips. The sandstone/greywacke unit is medium grained dark grey to brown in colour and ranges from thinly to massively bedded. It also occurs with minor intercalated argillite lenses. The conglomerate is grey in colour, has well rounded matrix supported chert pebble clasts and is often interbedded with sandstone.

The above described sequence has been tightly folded into an asymmetric series of north-northwest trending folds. In general, the sedimentary contacts also trend northwesterly. No large scale fault structures which may host precious metal mineralization were noted.

Moderate sized quartz vein systems are present, especially around faults and in the hinges of tight folds. They range from 0.5 to 5.0 wide and up to 200 m in length. No widespread alteration zones were



noted during the mapping program and the only sulphide observed was minor pyrite.

PROPERTY GEOCHEMISTRY

A total of 6 heavy mineral concentrate stream sediment samples, 63 soil samples and 11 rocks were collected and sent for assay. All samples were sent to TSL Laboratories for sample preparation in Richmond, B.C., and analysis in Saskatoon, Saskatchewan or Vangeochem Labs Ltd. in Vancouver. Samples were analyzed for gold by atomic absorption plus a 35 (TSL) or 25 elements (Vangeochem) by inductively coupled plasma (ICP) spectrophotometry. Soil samples were collected along two traverse lines, at 50 m intervals, using a mattock to collect material from the B horizon at a depth of 10 to 30 cm and placing it into kraft paper bags. Heavy mineral concentrate sediment samples were collected from active drainages by passing material through a 10 mesh screen and collecting approximately 2 kg of the fines into a plastic sample bag. Rock sample descriptions are listed in Appendix I, followed by assay certificates in Appendix II and analytical procedures in Appendix III.

No anomalous gold results were returned from any sample type, the maximum value being 25 ppb gold in soil. Rock sample locations and gold values are plotted on Figure 5 while soil and stream sediment sample locations and gold values can be found on Figure 6.

A statistical analysis of the ICP soil geochemical data was done using the PC-XPLOR version 1.21 software package. The data from the Jolly T Project was included as part of an overall larger data base collected from six properties explored by OreQuest this year, all of which are underlain by similar rock types. The arithmetic means and standard deviations (SD) calculated were used to determine threshold and anomalous levels for the elements chosen as possible indicators of potential gold mineralization.

Results of the statistical analysis are tabulated below, rounded off to the nearest integer. Values greater than mean plus one standard deviation are considered possibly anomalous while those over mean plus 2 standard deviations are definitely anomalous.

<u>Table 2 - ICP_Soil Geochemistry Statistics</u>

Element	A	rithmetic Mean	Mean +1xSD*	Mean +2xSD*	
Copper	(Cu)	29	47	66	
Lead	(Pb)	14	21	28	
Zinc	(Zn)	79	115	150	
Nickel	(Ni)	50	81	112	
Silver	(Ag)	2	3	3	
Cobalt	(Co)	13	24	34	
Molybdenum	(Mo)	3	4	6	
Antimony	(Sb)	7	12	16	
Arsenic	(As)	12	20	27	

* (SD) = Standard Deviation

Application of these values to the soil sample results from the Jolly T Project yields mostly spot anomalies in copper, zinc, nickel

and arsenic. Assays include highs of 129 ppm copper, 161 ppm nickel, and 778 ppm zinc.

Geological evaluation of the project area indicates that exposed quartz veins and the host lithologies, in general, are virtually barren. The magnitude of the anomalies in the soil likely represents only weakly mineralized material at best, particularly if any surface enrichment or mechanical concentration has occurred.

STATEMENT OF EXPENDITURES

Mobilization/Demobilization (pro-rated from Iskut Project)	\$	682.78
Wages: G. Cavey (consulting geologist) 2.0 days @ \$525/day G. Malensek (geologist) 3 days @ \$320/day D. Wiggerman (field assistant) 2.5 days @ \$300/day F. Brodie (") 2 days @ \$280/day S. Floyd (") 3.5 days @ \$220/day	\$	1,050.00 960.00 750.00 560.00 770.00 4,090.00
Engineering, Supervision & Administration (direct and pro-rated from Iskut Project)		1,629.28
Support Costs (camp costs, expiditing, etc direct and pro-rated from Iskut Project)		2,949.89
Transportation & Communication (pro-rated from Iskut Project)		420.77
Helicopter		2,583.43
Analyses		1,820.45
Report		2,792.88
Total Expenditures	<u>\$1</u>	<u>16,975.28</u>

CERTIFICATE of QUALIFICATIONS

- I, Grant A. Malensek of 7809 Borden Street, Vancouver, British Columbia hereby certify:
- I am a graduate of the University of British Columbia (1987) and hold a BSc. degree in Geology.
- 2. I am presently employed as a geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since 1986 and have worked in British Columbia and Papua New Guinea.
- 4. The information contained in this report was obtained by conducting the exploration program on the property and a review of the materials listed in the bibliography.
- 5. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the Jolly T Project or in the securities of Halcyon Resources Ltd. or Galico Resources Inc.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Grant A. Malensek, B.Sc

DATED at Vancouver, British Columbia, this 20th day of January, 1991

CERTIFICATE of QUALIFICATIONS

I, Jim Chapman, of Route 1, Box L15, Bowen Island, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1976) and hold a BSc. degree in geology.
- 2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of 306-595 Howe Street, Vancouver, British Columbia.
- I have been employed in my profession by various mining companies since graduation.
- 4. I am a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 5. I am a Fellow of the Geological Association of Canada.
- 6. The information contained in this report was obtained from a review of data listed in the bibliography, a property examination and knowledge of the area.
- 7. I have no interest, direct or indirect in the Jolly T Project or in the securities of Halcyon Resources Ltd. or Galico Resources Inc.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Jim Chapman, F.G.A.C. Consulting Geologist

DATED at Vancouver, British Columbia, this 20th day of January, 1991

BIBLIOGRAPHY

ALLDRICK, D.J.

1989: Volcanic Centres in the Stewart Complex in Geological Fieldwork, 1988, Paper 1989-1, British Columbia Ministry of Energy, Mines and Petroleum Resources.

ALLDRICK, D.J., BRITTON, J.M.

1988: Geology and Mineral Deposits of the Sulphurets Area, BCMEMPR Open File Map 1988-4.

ALLDRICK, D.J., BRITTON, J.M., WEBSTER, I.C.L., RUSSELL, C.W.P. 1989: Geology and Mineral Deposits of the Unuk Area, BCMEMPR Open File Map 1989-10.

BRITTON, J. M., FLETCHER, B.A., ALLDRICK, D.J.

1990: Snippaker Map Area, BCMEMPR Geological Fieldwork 1989, Paper 1990-1.

CANADIAN MINES HANDBOOK 1990-1991.

CHAPMAN, J.

1989: Report on the Halcyon Resources Ltd. Jolly T Project, Iskut-Sulphurets Area, Liard Mining Division, British Columbia, September 19, 1989.

GEORGE CROSS NEWSLETTER

1989: August 24.

1990: November 5.

1990: November 23.

GROVE, E.W.

1971: Geology and Mineral Deposits of the Stewart area, B.C., British Columbia Dept. of Mines and petroleum Resources, Bulletin No. 58.

1986: Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area, B.C., Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.

NORTHER MINER

1990: Vol. 76, #36, November 12, 1990.

PLACER DOME INC.

1989: Annual Report.

PRIME RESOURCES CORPORATION

1989: Galore Creek - Iskut River - Eskay Creek Areas, The Prime Group of Companies (Claim Holdings Map).

RAVEN, W. CHAPMAN, J.

1990: Report on the Canadian Eagle Explorations Ltd. Tri Lakes Project, Iskut Sulphurates Area, Liard Mining Division.

SOUTHER, J.G., BREW, D.A., OKULITCH, A.V. 1979: GSC Map 1418A, Iskut River.

VANCOUVER STOCKWATCH

1990: September 14. 1990: October 10. 1990: October 30.

APPENDIX I ROCK SAMPLE DESCRIPTION

SAMPLE LITHOLOGY / REMARKS/ALTERATION/STRUCTURE / MINERALIZATION

- GS 16916 ARGILLITE
 - Massive Qtz vein, white bull qtz, coarse grained zone of irr. veinlets \leq 10 cm trending 080^{o} appx., vuggy. Barren, no visible mineralization.
- GS 16917 ARGILLITE
 - Massive Qtz vein, as above > 2m wide for + 50 m strike trending 050° .
 - Barren no mineralization
- GS 16918 ARGILLITE
 - Massive Qtz vein, as above 1m wide 010°/90 trend for +50 m, many veinlets run perpendicular to trend Barren, small metallic grey FeOx stain.
- GS 16920 QTZ VEIN (BLDR?)
 As above, offset (?) by 50 m from 16919, weakly gossanous
 Barren
- GS 16921 SHEARED CONGLOMERATE
 20 m wide shear zone, irregular spaced 2 cm wide stringers but also anastomosing and irregular.
 Barren

- 75 cm wide massive qtz vein, barren.

- ARGILLITE
 Grey, fg, well bedded, strongly cleaved, trace rusty weathering S₀ 120°/60° NE, S, 060°/48° NE, vein 130'/60NE
- F 16923 INT. INTRUSIVE?
 Boulder 40 x 40 cm gossanous texture almost obliterated qtz rich- 1° or 2° flooding? mod. hard, 100% oxidized.
 Probably py-rich-lm after py.
- GS 16924 FELDSPATHIC SST
 - Massive qtz vein, gossanous coating along vugs, highly fractured no structural measurement.
- GS 16925 FELDSPATHIC SST
 Veining 050/90°
 Qtz-blowout- 5 m wide zone anastomosing rusty weathering qtz stringer 1 to bedding 0.5 to 5cm wide w/ limonite after py (+ep).
- GS 16926 MASSIVE QTZ VEIN
 50 m along strike 2 m wide, trending 150°/90 orange weathering massive cg texture, barren.

APPENDIX II ASSAY CERTIFICATES

TSL LABORATORIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX. (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S9971

SAMPLE(S) OF ROCK

INVOICE #: 15429

P.O.: R2528

W. Raven Project REG

REMARKS: Orequest Consultants

	Au ppb
16916 16917 16918 16919 16920	<5 <5 <5 <5
16921 16922 16923 16924 16925	<5 <5 15 <5 <5
16926	<5

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 13/90

SIGNED

Page 1 of 1

€ TA

TIS L LABORATORIES

2-302-48%H STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 19th Floor Box 10

808 West Hastings St.

Vancouver B.C. V&C 2%6

ATTN: J. FOSTER PROJECT: REG HALEMON OREQUEST CONSULTANTS R-2528

ALL RESULTS PFM

T.S.L. File No.: # 8017

7.S.L. Invoice No. : :5732

T.S.L. REPORT No. : 5 - 9971 - 1

ሮሃ ሮሎሮኔ፣		16916	16917	14918	14919	14920	16921	14922	16923
ELEKENT						٠			
Aluminum	(A1)	5900	2900	4500	630	I800	7800	2100	29 00
Iron	{Fe}	11000	5800	8800	2400	7600	10000	4100	17000
Calcium	Ca1	2300	400	400	360	520	4300	1400	660
Magnesiu#	{Mq}	3500	1900	2700	350	2500	5500	1500	2200
Sadium	[Na3	40	170	120	30	80	40	50	160
Potassium	[K]	300	70	350	50	170	210	(4 0	1100
Titanium	[71]	45	16	13	11	17	17	10	15
Mandanese	[Ma]	150	47	83	19	160	280	71	76
Phospherus	[2]	220	120	170	150	240	200	100	480
មិន៩ បេក	[8a]	18	6	24	4	12	18	8	9 0
Caromium	(Cr)	110	e 5	130	110	140	210	120	§ 5
Zirconium	[[7]	1	1	2	< 1	3	3	1	3
Copoen	[Cu3	120	Ó	14	3	£	4	4	7
Nickel	ENi3	5 33	13	21	5	22	65	14	7
Lead -	[26]	* 7	< 1	7	< 1	< 1	< 1	< 1	Ŀ
Zinc	[Zn]	. 87	20	19	6	16	21	11	10
Vanadium	(V)	13	12	9	2	9	22	5	25
Strantium	[Sr]	5:	8	7	7	12	∂ 0	37	19
Cobalt	(Ca)	3	1	3	< 1	3	5	2	(1
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 7	< 2	< 2
Silver	Lon1	1 1	< 1	₹ ‡	< 1	< 1	< 1	< 1	< 1
Cadmium	$\{Cd\}$	₹ 1	< 1	₹ 1	< 1	< 1	< 1	₹ 1	< 1
Beryllium	[Be]	₹ 1	< 1	< 1	1 >	< 1	₹ 1	< 1	< 1
Boron	(B)	< 10	< 10	< 40	< 10	< 10	< 10	€ 10	< 10
êc ti≋c oy	(Bb)	< 5	< 5	₹ 5	< 5	< 5	-t 10	4, 5	√ 5
Yttrium	[7]	3	1	i	< 1	3	3	1	1
Scandium	{Sc1	< 1	< 1	< 1	< 1	< 1	2	4 1	< :
Tungsten	(¥]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobiwa	(%)	₹ 10	₹ 10	< 10	< 10	< 10	< 10	(10	: 10
Thorium	{ in l	< 10 -	< 10	< 10	< 10	< 10	< 10	(10	< 16
Arsenic -	{As}	<u> </u>	15	< 5	(5	< 5	< 5	₹ 5	15
Bismoth	{Bi}	₹ 5	< 5	< 5	< 5	< 5	< 5	(5	< 5
រីរោ	[Sn]	< 10	< 10	< 10	< 10 ✓ E	< 10	< 10	< 10	(10 / 5
Lithium	[Li]	< 5 ← +Ω	< 5	5	< 5	< 5	10	< 5	⟨ 5
Holæium	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	~ 10

DATE : SEP-30-1990

GIGNED: Bunce Vun

7 S & LABORATORIES

2-302-48TH STREET, SASKATOSK, SASKATCHEWAN S7K 5A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

1.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION (TB. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X6

T.S.L. REPORT No. : 8 - 997(- 2 T.S.L. File No. : SE15MA

T.S.L. Invoice No. : 15732

ATTN: J. FOSTER PROJECT: REG HALCHON OREQUEST CONSULTANTS R-2528 ALL RESULTS PPM

16924 16925 16926 ELEMENT Aluminum {All 1500 1200 1200 iren (Fe) P500 6100 3100 Calcium [Ca] 300 180 ₽0 990 Magnesium (Mg) 400 1100 Sadium [Nai 40 100 30 Potassium [K] 190 160 50 Titanium (Tz) 8 5 12 Manoanese [Mn] 200 110 46 Phosphorus (P] 120 76 34 Barium [Ba3 18 14 5 Chromium [Cr] 93 150 140 2 Zirconium [Zr] ĺ < i 9 Cooper (Cu) Ē 19 Nickel LM: 1 15 12 16 C639 (Pb] 5 Ą 2 Zinc {Zn] 23 15 Ġ Vanadium [V] 6 3 3 Strontium (Sr) 6 5 2 Cobalt [Co] 2 2 į < 2 < 2 Molybdenum [Mo] 4 Silver 4 1 [Aq] . 2 $\langle -1 \rangle$ $\langle -1 \rangle$ Cadmium (Cd)< 1 ≤ 1 Bervllium [Be] $\langle -1 \rangle$ < 1 $\langle -1 \rangle$ Barga < 10 {B] < 10 < 10 Antimony (Sb) < 5 < 5 < 5 Yttrium [Y]4 2 ≤ 1 Scandium [90] $\langle -1$ i < 1 Tunosten [W] < 10 < 10 < i0 Nichias [MJ] < 10 < 10 < 10 Thorium [Th] (10 < 10 ₹ 10 Arsenic {As} (5 < 5 ₹ 5

DATE: SEP-30-(990

Bismuth

Lithius

Holmium

Tin

[Bi]

(5ຄ)

[Li]

(Ho)

< 5

< 10

< 5

< 10

₹ 5

 ≤ 10

< 5

< 10

< 5

< 10

< 5

< 10

SIGNED: Bunne Oun

MAIN OFFICE 1988 TRIUMPH ST.

-VANGOUVER, B.G. V5L 1K5 ● (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A

REPORT NUMBER: 90045	Ó GÀ JOB NUMBBR: 90	0450 OREQUEST CONSULTANTS I	.TD. P1GE 1 OF 2
SAMPLE #	Au		
	ppb		
HA-LI O+OOE	→ 15		
8A-LI 0+50B	nd		
MA-LI 1+008	ba		
HA-LI 1+50E	nd		
HA-LI 2+00B	nd		
	_		
81-LI 2+50B	nd		
HA-LI 3+00B	pđ		
HA-LI 3+50R	10		
HY-TI 4+008	nd		
HA-LI 4+50E	10		
T1 17 C.AAB	r		
HA-LI 5+00B HA-LI 5+50B	\$ \$		
BA-LI 6+008	od Da		
HA-LI 6+50E	ua 5		
HA-L1 7+00E	nd		
78-FT 1400	ш		
HA-LI 7+50B	10		
HA-LI 8400B	pď		
HA-LI 8+50B	nd		
HA-LI 9+00B	nd		
HA-LI 9+50B	nð		
			-
HA-LI 10+00B	\$		
HA-LI 10+50B	nd		
HA-LI 11+008	20		
HA-LI 11+50B	25		
HA-L[12+00E	10		-
	_		
HA-LI 12+50B	5		
HA-LI 13+00B	\$		
HA-LI 13+50B	5		
HA-LI 14400E	10		
BA-LI 14+508	15		
HA-L! 15+008	5		
HA-LI 15+50B	5		
HA-LI 16+00E	กต้		
HA-LI 16+50B	, ru S		
HA-LI 17+00B	aď		
WE BI TINAAA	u u		
HA-LT 17+50E	กด้		
HA-LI 18+008	nd		
HA-LI 18+50B	10		
HA-LI 19+00E	bđ		
DETECTION LINIT	5		
nd = none detected	= not analysed	is = insofficient sample	

1630 PANDORA STREET VANCOUVER, BC V5L 1LG (604) 251-5656

MAIN OFFICE 1988 TRIUMPH ST.

VANGOUVER, B.C. V5L 1K5 ● (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900450 GA

HA-LI 20+00E

JOB NUMBER: 900450

OREQUEST CONSULTANTS LTD.

PAGE 2 OF 2

SAMPLE # 14 ppb HA-LI 19+508 15 15

1630 Pandora Street, Vancouver, B.C. VSL 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 al of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water.

This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and M.

ANALYST: Ayall

																					•				
REPORT #: 900450 PA	OREQUEST COI	NSULTANTS	LTD.			DSGTEC	T: HALCYO	N REG CL	AEH JOLU	STAGT Y.	IN: SEP	r 11 1990	STAG	OUT: OC	T 09 199	30 AT	TENTION:	MR.GEOR	GE CAVEY			PAGE	į QF	7	
Sample Name	Ag	A1	۸s	Ba	Bi	Ca	Cd	Ço	Ст	Сu	Fe	K	Мg	Kn	Ho	Na	Ní	P	Pb	Sb	Sn	Ŝr	U	¥	Zn
	ров	ĭ	pps	pp a	op.	I	₽₽€	po∎	pp4	ppe	I	ĭ	z	ppe	ρp∎	Z	ppm	ĭ	op•	ρp∎.	ppm	pos.	pp =	pps	pp.
HA-L1 0+00E	0.3	5.34	₹3	71	(3	0.28	3.1	49	50	67	5.83	0.15	0.93	1068	8	0.05	73	0.12	(2	<2	48	22	₹5	₹3	147
HA-L1 0+50E	0.2	4.94	₹3	65	⟨3	0.22	2.1	38	64	57	5.67	0.14	1.08	1085	7 .	0.05	83	0.10	<2	₹2	29	19	₹5	₹3	139
HA-LI 1+00E	0.1	7.56	(3	70	(3	0.37	3.5	59	57	67	7.64	0.22	1.04	1617	10	0.07	65	0.15	₹2	<2	57	26	(5	₹3	173
HA-LI 1+50E	(0.1	7.13	(3	82	₹3	0.34	3.2	50	60	71	7.28	0.20	0.97	1227	10	0.06	71	0.15	₹2	₹2	50	39	(5	(3	206
HA-L1 2+00E	(0.1	4.99	(3	42	(3	0.17	2.1	39	55	48	5.76	0.13	0.90	1150	12	0.05	80	0.07	(2	<2	31	11	⟨5	(3	162
					4.6							A A0		739	8	0.03	109	0.08	(2	₹2	l B	I3	< 5	∢3	233
HA-L1 2+50E	(0.1	4.03	₹3	110	(3	0.12	3.2	31	67	63	4.59	0.09	1.00		12	0.06	29	0.10	₹2	₹2	72	22	(5	₹3	119
HA-LI 3+00E	(0.1	7.24	₹3	65	(3	0.33	2.6	54	50	12	7.43	0.20	0.65	1534	14		14	0.02	₹2	(2	20	7	(5	(3	168
HA-LI 3+50E	(0.1	4.93	₹3	91	₹3	0.12	2.0	14	15	16	5.54	0.16	0.14	914		0.10			⟨2	₹2	37	17	(5	₹3	77
HA-LI 4+00E	⟨0.1	210.00	(3	49	₹3	0.28	2.4	44	40	44	7.45	0.22	0.56	844	9	0.05	20	0.09			46	12	(5	₹3	125
HA-LI 4+50E	(0.1	5.32	(3	51	₹3	0.16	2.6	36	53	38	5.57	0.13	0.74	1016	11	0.04	53	0.08	(2	(2	10	12	13	13	123
HA-LI 5+00E	₹0.1	4.41	(3	85	(3	0.22	3.2	39	62	50	5.34	0.14	0.97	893	12	0.06	72	0.09	(2	<2	41	21	<5	⟨3	178
HA-L1 5+50E	(0.1	3.06	(3	76	⟨3	0.09	1.9	24	83	45	3,92	80.0	1.31	845	7	0.03	109	0.03	<2	₹2	₹2	11	₹5	₹3	127
HA-LI 6+00E	(0.1	2.88	(3	94	₹3	0.15	1.6	30	101	64	4.29	0.08	1.53	696	8	0.02	141	0.06	<2	< 2	4	19	₹5	₹3	155
HA-L1 6+50E	0,1	5.04	₹3	78	(3	0.33	2.5	Si	81	65	6,05	0.17	1.52	1048	11	0.07	84	0.13	(2	< 2	45	30	₹5	₹3	164
HA-LI 7+00E	0.2	4.91	₹3	85	₹3	0.20	2.4	40	62	46	5.57	0.16	1.04	1105	12	0.06	74	0.07	<2	<2	32	19	₹5	₹3	162
MH-L1 JTVVE	V.2	71.71	12	•••	`•	V, 2V			ν.		***												_		
HA-LI 7+50E	0.6	5.41	₹3	76	₹3	0.20	2.2	40	56	48	6.04	0.17	0.79	1605	9	0.05	59	0.15	₹2	₹2	41	16	₹5	(3	155
HA-LI B+00E	0.2	3.03	₹3	108	₹3	0.06	1.8	22	83	51	3.94	0.08	1.33	797	7	0.02	106	0.04	<2	<2	₹2	10	₹5	€3	130
HA-LT 8+50E	0.5	5.74	(3	100	⟨3	0.09	1.7	27	50	57	5.46	0.14	0.65	899	11	0.05	55	0.09	₹2	(2	14	8	₹5	(3	167
HA-LI 9+00E	⟨0.1	6.06	(3	57	₹3	0.27	2.1	49	57	63	6.46	0.18	0.B7	1162	13	0.06	50	0.13	₹2	₹2	55	22	(5	₹3	145
HA-LT 9+50E	₹0.1	6.84	(3	45	(3	0.18	2.4	39	48	53	6.41	0.17	0.61	860	12	0.05	36	0.08	₹2	<2	50	U	(5	(3	128
III CI 7.07C																					7.	15	/5	⟨3	76
HA-LI 10+00E	(0.1	8,66	₹3	60	₹3	0.20	1.7	45	47	36	6.26	0.17	0.79	1103	6	0.04	40	0.08	₹2	(2	31	12	(5	(3	129
KA-LT 10+50E	(0.1	6.92	⟨3	14	₹3	0.16	1.4	43	48	45	6.22	0.16	0.75	1161	9	0.05	38	0.09	(2	(2	43 78	10 44	(5 (5	(3	67
HA-LI 11+00E	(0.1	5.78	₹3	19	₹3	0.49	2.3	39	26	22	5.52	0.16	0.64	537	8	0,08	5	0.08	(2	<2	76	10	(5	(3	98
HA-LI 11+50E	⟨0.1	6,04	₹3	31	₹3	0.18	2.4	36	44	35	6.57	0.16	0.42	780	14	0.04	11	0.09	(2	(2		12	(5	(3	135
HA-LI 12+00E	<0.1	4.60	⟨3	63	₹3	0.14	1.7	44	56	45	5.85	0.14	0.81	1467	8	0.04	72	0.12	₹2	₹2	32	14	/3	13	100
HA-LI 12+50E	₹0.1	2.69	₹3	78	(3	0.01	1.0	19	68	40	3.30	0.05	1,18	628	6	0.02	87	0.04	₹2	(2	(2	5	(5	(3	114
HA-L1 13+00E	(0.1	3.95	(3	50	(3	0.09	1.5	26	58	57	4.34	0.08	0.90	705	7	0.03	76	0.10	₹2	₹2	17	10	₹5	₹3	136
HA-LI 13+50E	0.4	6.55	(3	65	(3	0.15	6.5	77	59	129	6,88	0.18	1.06	2288	9	0.07	151	0.16	(2	(2	33	14	₹5	₹3	778
HA-LI 14+00E	(0.1	3.38	(3	64	(3	0.18	1.8	33	66	54	4.36	0.10	1.30	951	7	0.05	82	0.07	₹2	₹2	13	21	₹5	⟨3	177
	₹0.1	3.45	₹3	60	₹3	0.06	2.1	26	56	41	4,04	0.08	0.97	800	4	0.03	67	0.03	₹2	<2	18	9	₹5	⟨3	149
KA-LI 14+50E	10.1	4.73	13	••	10	V. V.		••				.,													
HA-LT 15+00E	0.3	3.98	₹3	53	(3	0.12	2.2	32	54	44	4, 17	0.11	0.95	929	7	0.04	55	0.10	<2	(2	33	13	(5 (5	₹3 ₹3	120 85
HA-LI 15+50E	0.2	5.84	(3	33	₹3	0.24	2.0	36	37	30	5.90	0.17	0.54	719	9	0.06	15	0.10	(2	(? {2	73 31	16 4	(5	(3	54
HA-LI 16+00E	0.1	8.78	<3	11	₹3	0.12	1.5	32	24	25	5.60	0.14	0.37	1254	8	0.04	(1	0.08	(2						81
HA-LI 16+50E	0.2	5.72	₹3	14	₹3	0.05	1.2	14	14	11	5.14	0.13	0.12	869	9	0.07	(1	0.04	(2	(2	13	1	(5	(3	84
HA-LI 17+00E	0.4	6.27	₹3	26	₹3	0.09	2.0	25	30	48	6.08	0.17	0.21	285	10	0.07	4	0.07	⟨2	₹2	55	4	(5	(3	70
UL.1 1 17.5AC	A =	4 10	/2	44	(3	0.05	0.7	28	64	22	4,27	0.09	0.88	849	7	0.02	52	0.06	(2	₹2	21	6	(5	(3	81
HA-LI 17+50E	0.2	4.18	(3 (3	44 54	(3	(0.01	1.1	23	76	33	3.60	0.06	1.29	743	8	0.02	97	0.05	(2	(2	(2	6	₹5	(3	96
HA-LI 18+00E	0.1	2.62			(3	0.13	2.4	29	54	32	4.82	0.11	0.92	549	9	0.05	50	0.09	ζ2	(5	48	14	(5	(3	109
HA-L1 18+50E	0.2	4.40	(3	59				21	91	33		0.08	1.20	611	25	0.03	181	0.08	(2	₹2	11	В	(5	₹3	109
HA-LI 19+00 <u>E</u>	0.2	3.41	₹3	64	(3	0.03	0.6	41	31	33	4.11	V.V0	1.10	511	1.3		101	4.40			••	•		.•	1
Miniaus Detection	0.1	0.01	3	t	3	0.01	0.1	1	ı	i i	0.01	0.01	0.01	ı	ı	0.01		0.01	2	2	2		5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10,00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:112 HCl to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water.

This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ma, P, Sn, Sr and W. ANALYST: PAGE 2 OF 2 ATTENTION: MR.GEORGE CAVEY PROJECT: HALCYON REG CLAIM JOLLY TOATE IN: SEPT 11 1990 DATE OUT: OCT 09 1990 REPORT #: 900450 PA OREQUEST CONSULTANTS LTD. Sr Žπ S'n Кa Ag Al Ba Ĉā Cd Co Cr Cu Пo Sample Name ppe pos pps рр∎ Z 1 1 ppe ppe 004 ppe рре pps pps ppe 991 ₹5 ₹3 7 109 0.04 12 ₹2 9 7 101 625 0.02 (3 18 91 30 4.04 0.11 1.39 HA-LI 19+50E 0.1 3.42 ₹3 0.03 0.6 11 (5 ₹3 104 ⟨2 ₹2 21 37 5.13 0.14 18.0 984 12 0.04 59 0.12 ₹3 49 (3 0.11 1.3 33 69 4.77 HA-L1 20+00E 2 2 2 0.01 0.1 0.01 3 0.01 0.1 1 0.01 0.01 0.01 0.01 3 Minimum Detection 10000 100 1000 20000 10.00 10.00 10.00 20000 1000 10.00 20000 10.00 20000 2000 1000 1000 20000 10.00 1000.0 20000 50.0 10.00 1000 Maximum Detection ANOMALDUS RESULTS - Further Analyses By Alternate Methods Suggested. (- Less Than Minimum > - Greater Than Maxisus is - Insufficient Sample ns - No Sample

*

1

TSL LABORATORIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED.

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

REPORT No.

S1007

(306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

SAMPLE(S) OF Soil

INVOICE #: 15504

P.O.: R2531

W. Raven Project REG

 $\mathbf{A}\mathbf{u}$

REMARKS: Orequest Consultants - HALCYON

		11.4
		ppb
L2	0+00	<5
L2	0+50E	<5
L2	1+00E	<5
L2	1+50E	<5
L2	2+00E	<5
L2.	2+50E	<5
	3+00E	<5
	3+50E	<5
	4+00E	<5
	4+50E	<5
	E - 007	/ =
	5+00E	<5 /5
	5+50E	< 5
	6+00E	<5
	6+50E	<5
L2	7+00E	<5
L2	7+50E	<5
L2		<5
L2		<5
L2		<5
L2	9+50E	<5

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 17/90

SIGNED

Nyprall Page 1 of 3

V

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATORIES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

REPORT No.

(306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

\$1007

SAMPLE(S) OF Soil

INVOICE #: 15504

P.O.: R2531

W. Raven Project REG

REMARKS: Orequest Consultants - HALCYON

		Au ppb
L2 L2 L2	10+00E 10+50E 11+00E 11+50E 12+00E	<5 <5 <5 <5 <5
L2 L2 L2	12+50E 13+00E 13+50E 14+00E 14+50E	<5 <5 <5 <5 <5
L2 L2	15+00E 15+50E 16+00E 16+50E 17+00E	<5 <5 <5 <5 <5
L2 L2	17+50E 18+00E 18+50E 19+00E 19+50E	<5 <5 <5 <5 <5

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 17/90

SIGNED

Page 2 of 3

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATORIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 481h STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX. (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

REPORT No. S1007

SAMPLE(S) OF Soil

INVOICE #: 15504

P.O.: R2531

W. Raven Project REG

REMARKS: Orequest Consultants - HALCYON

		Au
		ppb
L2	20+00E	<5
L2	20+50E	<5
L2	21+00E	<5
L2	21+50E	<5
L2	22+00E	<5
L2	22+50E	<5
L_2	23+00E	<5
L2	23+50E	<5
L2	24+00E	<5
L2	24+50E	<5
- 0	05.005	
L2	25+00E	<5
L2	25+50E	<5

COPIES TO: J. Foster, P. Lougheed

INVOICE TO: Prime-Vancouver

Sep 17/90

SIGNED

Page 3 of

TIS L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 ~ 1033 FAX #: (306) 242 - 4717

1.C.A.S. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V&C 2X6

ATTN: 1. FOSTER

PROJECT: REG OREGUEST CONSULTANTS

HALCYON

ALL RESULTS PPM

7.S.i. File No.: M - 8075

7.S.L. Invoice No.: 15648

T.S.L. REPORT No. : 5 - 1007 - 1

57K &A4

ELEMEI	NŦ	£2 0+00	L2 0+50E	£2 1+00€	12 i+5 0E	£2 2+00E	12 2+50€	£2 3+60€
Aluminus	{A}}	26450	22360	None o	****			
Iron	[Fe]	39300	45250	29780	27500	24480	29050	40730
Calcium	[Ca]	13 6 0	43230 1440	42860	40640	37240	35970	48160
Magnesius		5 6 50	7410	1040	3100	1700	4680	3640
Sodium	(Na)	470	80) 7410	6200 250	6200	5640	5970	6 640
Potassium		470 470	50 330	380	1240	370	1580	750
Titanium	ETi3	2717	528	590 544	99 0	64 0	1130	480
Manganese		2717 959		7616 540	3345	1935	3130	+ 6316
Phosphory		757 828	1426	96B	779	811	·621	894
Barium Garium	(Ba)	93 93	1176	618	796	584	726	1016
Chromium	[Cr]		77	94 	113	152	145	123
Zirconium		40	82	53	47	47	40	39
	(Cu)	{3	5	12	10	23	30	33
Copper Nickel	(Nil	3 9 55	45 474	43	30	35	30	<u>31</u>
Feaq	(Pb]	55 19	131 22	77	61	69	51	53
Zinc				19	13	17	12	10
Zinc Vanadium	[2n] [V]	99 99	133	107	9 2	105	110	112
vanacium Strontium		71	43	74	75 	56	70	124
Cobalt		17	24	<u> 1</u> 5	42	28	71	43
	(Co)	72	34	25	18	19	16	29
Malybdenus Caluss		< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	₹ }	2	<u> </u>	< 1	1	₹ 1	< 1
Cadmium	[Cd]	4 1	< <u>1</u>	₹ 1	< 1	< 1	< 1	< 1
Beryllium	(Be)	4	< 1	< 1	< 1	1	1	< 1
Baron	£8 1	< 10 2	< 10	< 10	< 10	< 10	< 10	< 10
Anti a ony	[Sb]	₹ 5	5	< 5	< 5	₹ 5	10	₹ 5
Yttrium	[Y]	11	11	11	9	14	15	15
Scand เยค	(5c)	5	5	5		4	5	9
Tungsten Niobium	[W] [Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
		< 10	(10	< 10	< 10	< 10 -73	< 10 20	< 10
Thorium ^i-	ETh 1	40	70 15	40	40	30	20	30
Arsenic	(As)	(5	15	5	₹ 5	20	20	. 5
Bismuth	(Bi)	10	5	< 5	< 5	₹ 5	5	₹ 5
Tin	En23	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	10	20	20	20	15	15	15
Haimium	EHo3	₹ 10	< 10	< 10	(10	< 10	< 10	(10

BATE : SEP-25-1990

SIENED: Beine Vienn

T 5 { LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEMAN TELEPHD#E #: (306) 931 - 1033

S740 6A4

FAX #:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.

10th Floor Box 10

BOB West Hastings St.

Vancouver B.C. V&C 2X6

T.S.L. REPORT No.: S - 1007 - 2

T.S.Ł. File No.: SE24MC

T.S.L. Invoice No.: 15648

ATTN: J. FOSTER PROJECT: REG OREQUEST CONSULTANTS HALCYDN

ALL RESULTS PPM

ELEMENT	•	L2 3+50E	£2 4+ 00€	L2 4+50E	£2 5+00E	£2 5+50€	LZ 6+00E	L2 6+50€
Aluminum	{A}]	2 9 070	44860	22480	32340	5745.0	25712	
i ron	(Fe)	40840	49250	22460 39390	32340 42160	27150 77740	25740 24760	271 8 0
Calcium	[Ca]	2000	47230 2480	07670 68 0	42100 1040	38340 2360	31700 1740	43900
Magnesium	[Mq]	5700	5520	5700	5390	23 0 0 6190	17 40 5540	13120 7840
Sodium	(Na)	580	1020	270	360	6170 650	530 830	47 9 0
Potassium	EK]	6 4 0	710	456	590	680 680	910	3500
Titanium	(Ti)	3071	63 4 2	1980	3060	3140	3131	594 6
Manganese	EnM3	961	810	B00	723	648	544	57 46 653
Phosphorus		52 9	1068	746	96B	738	7 6 0	652
Barium	{Ba}	102	98 98	120	105	108	139	104
Chromium	(Cr)	41	34	50	46	45	45	17
Zirconium	[Ze]	22	26	6	27	29	23	32
Copper	[Cu3	32	23	34	36	36	40	15
Nickel	ENi3	55	35	76	63	71	78	28
Lead	(Pb)	15	11	15	16	12	16	3
Zinc	EZn3	107	81	94	109	114	130	71
Vanadium	(A)	78	124	59	71	63	48	104
Strontiva	[Sr]	25	33	14	22	41	27	148
Cobalt	[c3]	21	15	19	16	19	23	20
Mołybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	Κ 2
Silver	{Ag}	1	< 1	< i	< 1	< 1	< 1	< 1
Cadmium	£6d3	₹ \$	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	(₽e)	í	i	₹ 1	2	1	< 1	< 1
Boren	[B]	< 10	< 10	€ 10	< 40	< 10	< 10	< 40
Antimony	[Sb]	< 5	< 5	< 5	₹ 5	5	₹ 5	< 5
	[Y]	14	12	8	16	13	11	10
	(Sc)	5	7	4	5	5	5	7
-	[#]	< 10	₹ 10	< 10	< €0	₹ 10	< 10	< 10
	[Nb]	< 10	< 40	< 10	< 10	< 10	< 10	< 10
	[Th]	20	50	20	20	40	40	40
•	[As]	70	5	25	10	15	25	< 5
	[Bi]	< 5	< 5	< 3	< 5	< 5	< 5	5
	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	(Li)	i5	10	10	10	10	10	5
Halmium	(Ho)	(10	< 40	< 10	< 10	< 10	< 10	< 10

DATE : SEF-25-1990

SIGNED: Beinie Vienn

YSE LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

I.S.L. REPORT No.: 5 - 1007 - 3 T.S.L. File No.: SE24MC T.S.L. Invoice No. : 15648

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: REG OREDREST CONSULTANTS HALCYON

ALL RESULTS PPK

		12 7+00E	Ł2 7 ÷ 50E	12 8+00E	L2 6+50E	LZ 9+00E	L2 9+50E	L2 10+00E
ELEMENT								
Aluminum	[Al]	29070	25930	26870	66 94 0	38930	31960	32310
Iron	(Fel	38360	34270	42800	46880	38340	42960	40420
Calcium	[£3]	1480	680	1040	940	400	1540	1580
Kagnesium	[M g]	6170	5780	6230	4840	1800	5100	5400
Sodium	[Na]	400	29 0	44 0	150	400	310	460
Potassium	(K)	84 0	56 0	67 0	B0	480	540	700
Titaniom	{Ti]	1379	1962	2003	6050	1914	35 44	3893
Manganese	[Mn]	575	6 8 1	779	99B	564	266	67 9
Phosphorus	[P]	9 52	534	766	566	466	B22	886
•	(Bal	94	P 9	92	36	93	137	97
Chromium	[Cr]	51	52	53	24	17	40	42
Zirconium	[Zr]	19	11	7	42	117	22	17
	(Ca)	43	34	40	15	19	27	32
Nickel	EN13	70	66	77	17	16	50	53
	[Pb]	15	12	19	£	22	16	15
	£2n3	114	P 5	116	46	8 2	97	101
	EV 3	49	55	£3	128	35	68	76
	[5r]	23	15	14	Ē	5	28	20
Cobalt	(Co)	18	17	20	15	9	13	15
Molybdenum		< 2	< 2	< 2	€ 2	< 2	< 2	₹ 2
Silver	[Aq]	< 1	₹ }	< 1	₹ 1	2	< 1	(1
Cadmium	£0d]	< 1	< 3	< 1	₹ ‡	< t	< 1 .	_ { 1
	[Be]	4 i	<u> }</u>	< 1	i, 1	3	1	1
	EB 1	< 10	< 16	. 10	< 10	₹ 10	< 40	< 10
	(Sb)	√ 5	₹ 5	< 5	₹ 5	₹ 5	₹ 5	₹ 5
•	[Y]	20	14	8	₽	30	i 7	13
Scandium	15c1	<u> </u>	4	4	7	4	5	5
Tungsten	EW]	< 10	< 10	v 10	< 10	< 10	< 40	< 10
Niobiam	(MP)	< 10	(10	₹ 10	10	< 10	₹ 10	₹ 10
Thorium	(Th)	30	20	4i)	30	< 10	30	20
Arsenic	[As]	łű	Š	25	20	10	25	40
Bismuth	EBi 3	⟨ 3	₹ 5	< 5	₹ 5	< 5	< 5	₹ 5
Tin	(Sn)	< 10	4 10	₹ 10	10	< 10	< 10	< 10
	{Lil	10	5	5	< 5	₹ 5	5	₹ 5
	(Ho)	< 10	⟨ 10	10	< 10	₹ 10	< 19	< 10

DATE: SEP-25-1990

SIGNED: Beinie Our

LABORATORIES 7 S Ł

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 604

TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717

E.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1007 - 4 T.S.L. File No.: SEZ4MC T.S.L. Invoice No.: 15648

Vancouver B.C. V6C 2X6

ALL RESULTS PPH PROJECT: REG DREGUEST CONSULTANTS HALEYON ATTM: J. FOSTER

		£2 £0+50€	12 11+00E	L2 11+50E	{2 12+00E	L2 12+50E	£2 13+00E	L2 13+50€
ELEMENT								
Aluminum	[Al]	30400	21830	23176	20910	26300	25400	28830
Iroa	(Fe)	4087 0	31920	32950	31650	38120	30220	37490
Calcium	[Ca]	3229	1080	2200	2020	5740	360	1460
Magnesium	[Mo.]	6310	6160	6010	6190	683 0	5680	5970
Sod ium	(Na)	1670	510	840	460	3060	240	740
Potassium	CK 3	1020	540	730	570	1650	570	560
Titanium	(Ti)	3 B 02	68 5	2425	1560	4255	727	2590
Manganese	[Mn]	601	519	468	411	520	358	668
Phosphorus		860	406	570	580	772	350	584
Barium	(Ba)	9 6	46	84	82	76	54	46
Chromium	(Cr)	42	52	41	54	33	55	44
Zirconium	{Zc]	13	2	23	12	17	7	9
Copper	(£9)	29	34	30	36	25	40	26
Nickel	[Ni]	52	86	57	73	42	75	55
Lead	{Pb]	1 6	12	11	10	11	–	12
Zinc	{In}	90	94	101	S 1	9 0	113	89
Vanadium	{V }	80	42	57	47	79	40	70
Strontium	[51]	40	15	32	29	62	7	18
Cobalt	[Co]	16	<u> </u>	10	13	17	12	17
Molybdenua	[Ma]	< 2	₹ 2	< 2	< 2	< 2	< 2	< 2
Silver	EgA3	< 1	< 1	₹ 1	< 1	₹ \$	< 1	< 1
Cadmium	ECd]	< 1	< 1	< 1	₹. \$	< 1	< 1	_ {1
Beryllium			< 1	< 1	₹ }	< 1	< 1	< 1
Baron	EB]	< 10	< 10	< 10	< 10	< 10	(10	< 10
Anti⊕ony	[Sb]	< 5	< 5	< 5	< 5	5	< 5 7	〈 5 7
Yttrium	£A]	5	ģ.	10	8	10		, 4
Sc and item	{\$∈}	Š	3	4	4	5	3 < 10	< 10
Tungsten	[₩]	< 10	K 10	< 10	< 10	< 10		< i0
Micoium	(Nb)	< 10	₹ 10	< 10	< 10	₹ 10	< 10 40	20
Therium	[T h]	50	<u> 3</u> 0	30	20	60 *	40 10	یں 20
Arsenic	[As]	20	25	15	10	5	10 (5	20 < 5
Bisauth	[Bi]	₹ 5	< 5	< 5	< 5	₹ 5		(10
Tin	(Sn3)	₹ 10	< 10	< 10	< 10	< 10	< 10 < 5	
Lithium	(Li]	₹ 5	< 5	< 5	₹ 5	< 5		
Hoimium	(Ho)	< ₹0	← 10	< 10	< 10	< 10	< 10	< 10

Bunie Aun

DATE: SEP-25-1990

TISIL LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4

₹ELEPHONE **#:** (304) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regra Bigestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

I.S.L. REPORT No. : 5 - 1007 - 5 T.S.L. File No. : SE24MC

Vancouver B.C. V&C 2%6

T.S.L. Invoice No.: 15648

ALL RESULTS PPM PROJECT: REG OREDNEST CONSULTANTS ATTN: J. FOSTER HALEYON

		€2 14+00E	L2 14+50E	L2 15+00E	£2 £5+50E	L2 16+00E	L2 16+50E	L2 17+00E
ELEMENT								
Aluminum	[A1]	32270	31640	28420	58800	28000	34920	29570
Iron	[Fe]	J9290	39 700	39550	46B40	40500	39 19 0	37680
	[Ca]	1560	1900	1220	700	1540	320	360
Magnesium	[#q]	& 010	5740	5980	3410	5480	3530	5290
_	[Na]	400	310	440	150	730	550	210
Potassium	IK 1	54 0	500	489	130	670	650	420
Titanium	(Ti)	3086	3437	3117	5357	2959	1697	1932
Manganese	(Mn)	597	59 5	762	1181	862	973	713
Phosphorus	(P)	629	818	952	524	B66	46b	634
	{Bal	45	114	75	ΔB	60	41	44
Chromium	$\{0r\}$	62	52	72	27	41	30	4B
Zirconium	[2r]	12	24	16	33	ió	43	11
Copper	[Cu]	40	2.7	40	19	40	25	30
	[Ni]	72	65	83	15	60	35	56
Lead	[Pb]	16	Σ1	13	16	17	18	14
Zinc	£Zn3	108	127	98	47	121	102	92
Vanadiu≢	EV 3	74	65	74	125	<i>6</i> 5	39	5B
Strontium	[Sr]	29	44	19	5	19	4	6
	[Ca]	17	14	17	17	17	15	15
Molybdenum	(Mol	< 2	< 2	2	< 2	2	< 2	< 2
Silver	[Ag]	< i	< 1	₹ 1	< 1	< 1	< 1	(1
Cadeius	{Cd}	< 1	< 1	< 1	₹ 1	< 1		- < 1
Beryllium	{Be}	< 1	1	< 1	< 1	< 1	2	₹ 1
Boron	[8]	₹ 10	₹ 10	₹ 10	6.110	< 10	< 10	< 10
Antimony	[Sb]	₹ 5	< 5	< 5	₹ 5	< 5	₹ 5	< 5
Yttrium	[Y]	12	17	12	ş	12	26	7
Scandium	(Sc)	5	6	6	5	4	4	3
Tungsten	[#]	< ₹0	< 10	₹ 10	(-10	< ₹0	< 10	< 10
Nigbium	EMb]	< 10	(10	√ 10	€ 10	< 10	< 10	₹ 10
Thorium	(Th)	40	20	30	50	20	50	50
Arsenia	[As]	20	15	35	35	15	20	20
Bismuth	(Bi)	< 5	< 5	₹ 5	< 5	< 5	₹ 5	₹ 5
Tin	{5n}	< 10	< 10	. 10	< 10	< 10 < 5	< 10 < 5	< 10 < 5
Lithium	(Li]	₹ 5	₹ 5	< 5	< 5	< 5 < 10	√ J ← 10	₹ 10
Holaium	(Ho)	< 10	(10	< 10	√ 10	* 10	V 10	V IV

DATE : SEP-25-1990

SIGNED: <u>Bernie Dunn</u>

TSL LABORATORIES

> 2-302-48TH STREET, SASKATOON, SASKATCHENAN S7K **&A4**

TELEPHONE #: (306) 931 - 1033 FAX ***:** (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.

T.S.L. REPORT No. : S - 1007 - 6 T.S.L. File No.: SE24MC T.S.L. Invoice No. : 15648

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER PROJECT: RES DREQUEST CONSULTANTS HALEYON ALL RESULTS PPX

		L2 17÷50€	£2 18+00€	L2 £9+50E	L2 19+00E	{2 19+50€	£2 20+00E	L2 20+50€
ELEMENT								
Aluminum	(A1)	20990	40330	32110	28700	18910	35280	25920
Iron	(Fe)	31230	43900	37930	32410	28010	36490	33860
Calciu a	{Ca}	240	1060	6140	760	340	5 6 0	980
K agnesium	[Mg]	5950	4570	5 6 70	4700	5750	1780	4800
Sodium	[Na]	70	540	3()4()	360	100	450	4B6
Potassium	EK 1	380	5 80	1710	45 0	356	620	510
Titanium	[Ti]	239	5304	6197	2846	428	1199	2018
Kanganese	[Mn:]	494	722	408	468	505	720	564
Phosphorus	[P]	4 Q2	1068	902	700	474	39 0	570
Barium	(Ba)	48	72	115	52	40	23	34
Chromium	{Cr}	52	32	23	40	51	13	38
Zirconium	{[r]	3	44	43	15	3	72	16
Copper	(Cu)	40	33	24	34	23	13	24
Nickel	EN13	76	34	25	47	66	17	44
Lead	{Pb}	13	20	16	15	12	23	{4
Zinc	{Zn}	98	110	65	100	79	76 	84
Vanadium	[]	31	90	79	60	34	22	53
Strontium	(Sr)	7	14	B <u>4</u>	13	7	4	12
Cobalt	{Co3}	15	16	13	12	13	5	11
Molybdenum		< 2	< 2	₹ 2	< 2	< 2	4	< 2
Silver	(Ag)	< 1	< 1	4. 1	< <u>\$</u>	< 1	< 1	〈 1 〈 1
Cadmium	££43	< 1	< 1 -	< 1	< <u>1</u>	<u> </u>	√ 1 _ 1	(1
Beryllium	[Be]	< 1	2			< 1 < 10	(10	₹ 10
Baron	(B)	< 10	< 10	< 10 < 5	< 10 < 5	< 5	\ 1V \ 5	₹ 5
Antimony	(56)	< 5	₹ 5 19	√ 5 13	√ J 12	N O	10	7
Yttrium	{Y]	7		ស	4	2	1	3
Scandium -	(Sc)	2	5 (10	8 (10	< 10	< 10	< 10	< 10
Tungsten	{₩] EAR 3	< 10	(10 10	< 10	₹ 10	₹ 10	₹ 10	< 10
Niobium	₹ % b}	< 10 40	- 10 40	20	40	50	₹ 10	50
₹horium	[{\h}]	40 15	₩V < 5	20 15	77 25	20	30	15
Arsenic Diametr	[As] [Bi]	(5	\ ↓ { 5	 ⟨ 5	4.5	4° (5	< 5	₹ 5
Bismuth Tio	(80)	< 10		< 30	₹ 10	√ 10	(10	₹ 10
ern Lithean	ເວກ: [[i]	\ 10 \ 5	(5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< 5	₹.5	₹ 5	₹ 5
tianga Hol≋ium	(Ho)	√ 10	 10	(10	. 10	₹ 10	₹ 10	< 10
いらて出すが明	CUCI	\ 1V	5 40	5 19	. **			

DATE: SEP-25-1990

SIBNED: Beinie Oun

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX ±:

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FSOTER

PROJECT: REG OREQUEST CONSULTANTS

HALCYON

T.S.L. REPORT No.: S - 1007 - 7

T.S.L. File No.: SE24MC

7.S.L. Invaice No. : 15648

57K 6A4

ALL RESULTS PPH

		€2 21+00€	£2 21+50€	£2 22+00€	£2 22+50E	42 23+00E	£2 23+50E	L2 24+00E
ELEMENT								
Aluminum	[Al]	20770	13250	36130	36710	30430	27750	17520
Iron	(Fe)	32360	220 30	38490	43690	36100	313B0	27910
Calcium	[Ca]	2920	1420	5 20	1120	1200	280	1080
Magnesium	EMg]	5670	5350	4 270	4000	5070	5030	5160
Sodius	[Na3	1660	310	240	540	460	150	120
Potassium	[K]	99 0	35 0	370	370	560	330	430
Titanium	[ITI]	1622	396	2823	50BJ	4020	1017	527
Manganese	EMn 3	607	426	653	404	469	30i	482
Phosphorus	{P]	5 9 0	4B6	£40	5 50	890	354	704
Barium	[Bal	50	36	44	30	73	43	55
Chromium	[Cr3]	37	44	39	28	40)	44	43
Zirconiwa	[]r]	23	7	15	22	23	8	2
Copper	[Cu3	31	27	21	12	27	19	J 4
Nickel	[Ni]	52	59	32	21	46	49	60
Lead	{Pb3	14	8	E £	10	12	12	11
Zinc	{Zn1	9 5	6 3	£3	47	98	65	76
Vanadiu a	(V)	43	26	79	104	71	43	35
Strontium	(Sr I	34	19	8	ii	14	6	16
Cobalt	[Co]	14	12	11	9	13	6	13
Molybdenum	(No)	< 2	₹1.2	< 2	< 2	2	₹ 2	₹ 2
Silver	[Ag]	< i	< 1	€ 1	(1	< 1	< 1	₹ 1
Cadmium	[Cd]	< i	< 1	(1	< 1	< 1	< 1 _	< 1
Beryllium	(Be]	< i	< 1	2 <u>1</u>	4 1	1	< 1	< 1
Baron	[8]	< 10	< 10	4. 10	10	< 10	< 10	(10
Antimony	[So]	₹ 5	< 5	< 5	< 5	< 5	₹ 5	< 5
Yttrium	{Y]	10	5	é	7	13	8	7
Scandium	{Sc]	3	2	4	4	5	3	2
lungsten	(W]	< 10	< 10	< 49	< 10	< 10	< 10	< 10
Viobium	(Nb3	< 10	₹ 10	(10	1. 10	₹ 10	< 10	< 10
Thorium	[Th]	70	50	70	50	50	40	80
Arsenio	(As)	10	5	30	15	15	5	10
	[Bi]	< 5	< 5	< 5	< 5	< 5	₹ 5	< 5
	(5n)	(10	< 10	0.10	< 10	< 10	₹ 10	< <u>10</u>
	(Li)	30	30	15	15	7 5	30	25
ក្នុងខ្មែរ	(Ha)	< 10	< 10	: 10	< 40	< 40	< 10	₹ 10

DATE : SEP-25-1990

TSt LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

(306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10

808 West Hastings St.

Vancouver B.C. V6C 2X6

ATTN: J. FOSTER

Ĺ...

PROJECT: REG OREQUEST CONSULTANTS

HALCYON

T.S.L. REPORT No.: S - 1007 - 8

7.S.i. File No.: SEZ4MC

T.S.L. Invoice No.: 15648

S7K 6A4

ALL RESULTS PPM

		L2 24+50E	£2 25+00€	L2 25+50E
ELEMENT				
Aluminum	[A1]	33840	30050	52280
Iron	(Fel	37470	34970	39430
Calcium	(Ca)	620	200	36 0
Magnesium	(Mg]	3390	1430	2570
Sodium	ENa3	420	630	90
Potassium	EK 1	380	55 6	80
Titanium	(Ti}	3668	1257	3 6 55
Manganese	(Mn)	329	569	1523
Phosphorus	(P 3	572	430	598
Barium	[Ba]	11	26	29
<u> ជាសាសាមត</u>	[Cr]	30	13	20
Zirconium	[Zr]	34	52	23
Cooper	(Cu)	15	27	i å
Nickel	ENi3	23	13	Ģ
Lead	£P63	16	20	10
Zinc	(Zn)	53	B6	3 3
Vanadium	{V]	73	23	106
Strontium	{Sr}	8	2	Ţ
Cobalt	(Co)	£	7	17
Molybdenusi	(Mo)	< 2	4	< 2
Silver	[Ag]	< 1	< 1	$\langle -1 \rangle$
Cadmissa	£541	< i	< 1	√ 1
Beryllium	{Be]	i	2	< 1
Baron	(B)	< 10	(10	< 10
Antimony	(S b)	< 5	< 5	< 5
Yttrium	(Y)	11	26	9
Scandium	{ S ∈]	4	2	4
Tungsten	[¥]	< 10	< 10	< 10
Niopina	[Mp]	< 10	< 10	€ 10
Thorium	(Th)	40	< 10	< 10
Arsenic	(As)	10	3%	10
Bismuth	(Bi)	< 5	< 5	∘, 5
Tin	{5a}	< 10	< 10	< 10
Lithium	{Li}	15	10	₹ 5
Holmium	[Ho]	< 10	₹ 10	10

DATE: SEP-25-1990

Beenie Oun

MAIN OFFICE

-1988 TRIUMPH ST.

• (604) 251-5656

• FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO. NEVADA, U.S.A.

REPORT NUMBER: 900451 Ga	JOB MUMBER: 900451	OREGORS? COMBULTABLE LTD.	PAGE 1 OF 1
SAMPLE #	λι		
	ppb		
HA-HS-611	ad		
HA-K5-612	16		
94-K5-613	ad		
HA-95-614	10		
HA-HS-615	10		
HA-HS-616	*10		

_________________ 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Kanth REPORT #: 900451 PA DREQUEST CONSULTANTS LTD. PROJECT: HALCYON REG CLAIM JULLY TOATE IN: SEPT 11 1990 DATE DUT: OCT 09 1990 ATTENTION: MR. GEORGE CAVEY PAGE 1 OF 1 Sample Name Al Ca €đ Ċо Cr Cu Гe Na Ni Рb Sr U Sb Sn Zn 7 ppa 004 Ĭ. ppe pps. 908 ¢p# 000 7. 7. 1 pos. ₽¢∎ pps Ž. рра DOS 000 008 000 000 pgn HA- HS-611 2.47 0.1 ⟨3 94 ₹3 0.17 0.5 14 110 3,65 31 0.12 1.56 592 9 0.02 140 0.05 <2 <2 9 26 (5 289 100 HA- HS-612 0.1 2.58 125 ₹3 (3 0.18 0.4 16 87 37 4.06 0.12 1.42 589 10 0.02 123 0.05 (2 <2 9 35 ۲5 314 114 HA- HS-613 2.62 (0.1 (3 92 ⟨3 0.13 0.5 17 117 36 4.15 0.13 1.67 737 10 0.03 143 0.05 <2 ₹2 21 ₹5 339 143 HA- HS-614 2.34 <0.1 ₹3 103 ⟨3 0.11 <0.1 15 125 32 3.43 0.11 1.55 515 10 0.02 144 0.04 ₹2 ₹2 23 ⟨5 300 105 HA- HS-615 (0.1 2.52 ₹3 108 <3 0.14 (0.1 [4 118 29 3.69 0.12 1.56 609 8 0.02 124 0.05 <2 ₹2 24 ₹5 316 99 HA- HS-616 (0.1 2.59 ⟨3 109 ⟨3 0.12 (0.1 17 113 3.92 0.11 1.63 857 0.02 123 0.05 (2 <2 ç 26 ₹5 324 94 Minimum Detection 0.1 0.01 3 3 0.01 0.1 1 1 1 0.01 0.01 0.01 0.01 1 0.01 2 5 Maximum Detection 50.0 10.00 2000 1000 1000 10.00 1000.0 20000 1000 20000 10.00 10.00 10.00 20000 1000 10.00 20000 10.00 20000 2000 1000 10000 100 1000 20000 < - Less Than Minibus

> - Greater Than Maximum is - Insufficient Sample

ns - No Sample ANOMALOUS RESULTS - Further Analyses By Alternate Methods Suggested.

APPENDIX III ANALYTICAL PROCEDURES

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4

306) 931-1033 FAX: (306) 242-4717

OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver, B.C. V6C 2T5 Jan.9/90

- 1 SAMPLE PREPARATION PROCEDURES
 Rock and Core
 - Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh.

Soils and Silts

- Sample is dried and sieved to -80 mesh.
- 2 FIRE ASSAY PROCEDURES Geochem Gold (Au ppb) -

A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in agua rega. The solution is then analyzed on the Atomic Absorption.

Assay Gold (Au oz/ton) -

A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance.

3 - Geochem Silver (Ag ppm) -

A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H2O. The solutions are then run on the Atomic Absorption.

Assay Silver (Ag oz/ton) -

A 2.00g sample is digested with 15mls HCl plus 5mls HN03 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HCl. The solution is run on the Atomic Absorption.

- 4 BASE METALS
 - Geochem A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H2O. The solutions are then run on the Atomic Absorption.
 - Assay A 0.500g sample is taken to dryness with 15mls
 HCl plus 5mls HN03, then redissolved with 5mls
 HN03 and diluted to 100mls with DI H20. The solution
 is run on the Atomic Absorption.

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -

A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the ICAP.

6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

Yours truly,

Bernie Dunn

Berne Dunn

BD/vh

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES .BATHURST, N.B. RENO, NEVADA, U.S.A.

October 10, 1990

TO:

Mr. Grant Malensek
OREQUEST CONSULTANTS LTD.
306 - 595 Howe Street
Vancouver, BC V6C 2T5

FROM:

VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6

SUBJECT:

Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".

FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The gold is extracted by cupellation and parted with diluted nitric acid.
- (d) The gold beads are retained for subsequent measurement.

3. Method of Detection

- (a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
- (b) The detection of gold was performed with a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.

4. Analysts

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

Raymond Chan

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656

FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 10, 1990

TO:

Mr. Grant Malensek

OREQUEST CONSULTANTS LTD.

306 - 595 Howe Street Vancouver, BC V6C 2T5

FROM:

VANGEOCHEM LAB LIMITED

1630 Pandora Street Vancouver, BC V5L 1L6

SUBJECT:

Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" X 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sleve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2 Method of Digestion

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCl:HN03:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6

TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A

-2-

3. Method of Analyses

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data subsequently stored onto disketts.

4 Analysts

The analyses were supervised or determined by Mr. Conway Chun and his laboratory staff.

Conway Chun

VANGEOCHEM LAB LIMITED