Off Confidential: 92.03.27 Jistrict Geologist, Smithers SSESSMENT REPORT 21173 MINING DIVISION: Skeena **PROPERTY:** Kitgold 55 37 00 LAT LONG 129 33 00 LOCATION: 09 6163339 UTM 465357 NTS 103P12E 049 Alice Arm - Anyox Area CAMP: Kitgold 1-4 CLAIM(S): Santa Marina Gold OPERATOR(S): AUTHOR(S): Dewonck, B. 1991, 54 Pages REPORT YEAR: COMMODITIES SEARCHED FOR: Gold, Silver, Copper, Lead, Zinc Jurassic, Sediments, Volcanics, Anticline, Faults, Quartz veins, Gold (EYWORDS: Galena, Sphalerite WORK Geological, Geochemical DONE: GEOL 1000.0 ha Map(s) - 1; $Scale(s) - 1:20\ 000$ 85 sample(s) ;ME ROCK Map(s) - 1; Scale(s) - 1:20000SILT 13 sample(s) ;ME 103P MINFILE:

LOG NO: april	e 2/91	RD.
ACTION:		
FTLE NO:		

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT ON SANTA MARINA GOLD LTD.'S KITGOLD PROJECT

SKEENA MINING DIVISION KITSAULT RIVER AREA, NW BRITISH COLUMBIA

> LATITUDE 55⁰37'N LONGITUDE 129⁰33'W

> > NTS 103P/12

GEOLOGICAL DRANCH ASSESSMENT REPORT

Bernard Dewonck, F.G.A.C.

March 25, 1991

OREQUEST

SUMMARY

An exploration program by OreQuest Consultants Ltd. was completed between September 11th and September 20th on the KITGOLD mineral claims on behalf of Santa Marina Gold Ltd. of Vancouver. The property consists of 4 contiguous claims comprising 80 units. It lies on the west side of the Kitsault River valley, between Lyall and Klayduc Creeks, 50 km southeast of Stewart, B.C.

Work entailed regional mapping, prospecting and silt sampling, during which a total of 85 grab rock samples and 13 silt samples were gathered.

The lithologies on the property include mudstones, siltstones, sandstone, calcareous sediments, intermediate tuffs, volcaniclastics and mafic flows. These rocks form a conformable, anticlinally folded sequence, of Middle to Lower Jurassic age.

Similar rocks host the Dolly Varden, Northstar, Torbrit and Homestake base metal deposits 10 km to the north. These deposits have been mined periodically since 1915 and have produced a total of 1.3 million tons of ore grading 485 g/t silver, 0.38% lead and 0.02% zinc.

Sulphide mineralization on the property is associated with a system of quartz veins, up to 2.0 m in width, forming a zone over 1 km long and 30 m wide, striking northwest-southeast and dipping to the east. Samples within this zone assayed only up to 25 ppb gold, however there are similar, smaller quartz veins yielding values as high as 0.252 oz/ton gold up 500 m east of this zone. Grab samples of silicified intermediate volcanics on the east side of the zone also produced anomalous results up to 0.134 oz/ton gold.

Further work in the form of grid-controlled detailed mapping, rock and soil sampling and, if warranted, ground geophysical surveys is recommended in the general area of the anomalous samples. In addition to this work, property-wide prospecting and sampling should continue, particularly in the western part of the property where lithologies similar to those hosting the anomalous samples occur. Successful definition of targets in the area of initial prospecting discoveries would warrant a follow-up diamond drilling program.

TABLE OF CONTENTS

Summary		
Introduction	Page	1
Property Description	Page	1
Location and Access	Page	1
Claim Status	Page	1
Physiography and Vegetation	Page	2
History and Previous Work	Page	2
Regional Geology	Page	4
Property Geology	Page	9
Conclusions and Recommendations	Page	13
Statement of Expenditures	Page	15
Certificate of Qualifications		
Bernard Dewonck, F.G.A.C.		
Paul-M. Brucciani, Geologist		
-Brett LaPeare, Geologist-		

Bibliography

LIST OF FIGURES

Figure	1	Location Map	Following Page 1
Figure	2	Claim Map	Following Page 1
Figure	3	Regional Geology Map	Following Page 5
Figure	4	Property Geology Map	Porket
Figure	5	Rock and Silt Sample Location Map	Pouket

LIST OF TABLES

Table 1Claim Information

Page 1

LIST OF APPENDICES

- Appendix I Rock Sample Descriptions
- Appendix II Assay Certificates
- Appendix III Analytical Procedures

INTRODUCTION

This report, prepared by OreQuest Consultants Ltd. on behalf of Santa Marina Gold Ltd., is based on the results of regional mapping, prospecting, rock and silt sampling conducted by OreQuest during September of 1990 on the Kitgold mineral claims. Recommendations for further work are also included in this report.

PROPERTY DESCRIPTION

Location and Access

The property is located within the Boundary Mountain Range, 25 km east of the Alaska-B.C. International Boundary, on the western slope of the Kitsault River valley. The claims also lie 50 km southeast of Stewart and 20 km north of Kitsault and Alice Arm at the head of the Alice Arm Inlet (Figure 1). The centre of the claim is located at a latitude of $55^{o}37'N$ and a longitude of $129^{o}33'W$ and the NTS map reference is 103P/12.

Access to the property is via helicopter based at Stewart, from which flight time is approximately 30 minutes.

Claim Status

The Kitgold claim consists of 4 contiguous claims comprising 80 units (Figure 2), situated in the Skeena Mining Division and under option to Santa Marina Gold Ltd. They are listed in Table 1 as follows:

TABLE 1:	Claim	Information

Kitgold 2870720March 30/90March 30/91Kitgold 3870820March 30/90March 30/91	<u>Claim Name</u>	Record No.	No. of Units	Record Date	<u>Expiry Date</u>
Kitqold 4 $8/09$ 20 March $30/90$ March $30/9$	Kitgold 1 Kitgold 2	8706 8707	20 20	March 30/90 March 30/90	March 30/91 March 30/91 March 30/91 March 30/91 March 30/91

The claims are owned by John Robins. The work described in this report, when filed for assessment, would extend the expiry date beyond 1991.

Physiography and Vegetation

The property overlies typically glaciated, mountainous terrain of northwestern British Columbia. Elevations range from 425 m (1400 ft) on the east side of the property near the Kitsault River, to 1690 m (5500 ft) on the ridge at the west edge of the claims.

Below 1000 m sub-alpine vegetation in the form of spruce, fir, hemlock, slide alder and devil's club are present. Above 1000 m alpine flora exists. The highest elevations are glaciated and support only mosses and lichens.

HISTORY AND PREVIOUS WORK

Exploration started in the upper Kitsault valley in the early 1900's and by 1913 the Dolly Varden property was already staked, along with numerous other claims in the area. Exploration of the Dolly Varden property, located 10 km north of the Kitgold claims, delineated a considerable tonnage of ore and a railway was constructed from Alice Arm to the deposit. The Dolly Varden deposit was in production from 1919 to 1921. At the same time, several other prospects were explored but interest in the area dropped in 1921 when the price of silver declined. However, a mill to concentrate the ore was built in 1928 on the Torbrit property.

The area remained relatively calm from 1930 to 1946. In 1946, a company controlled by Mining Corporation of Canada acquired the Torbrit mine and started to build the road from Alice Arm up the valley. A new mill was constructed and production started in 1949. Two other prospects, the Galena and the Vanguard, located less than 5 km northeast of the subject claims, were explored in 1951.

The total amount of concentrates produced to the end of 1951 by the Dolly Varden, the Homestake, the North Star, and the Torbrit deposits was: 84 ounces of gold; 7,189,130 ounces of silver; 2,183,965 pounds of lead; 344,832 pounds of zinc; and 1,740 pounds of copper (Black, 1951).

At the present time, the Dolly Varden property includes the Dolly Varden Mine, the Torbrit Mine, the Wolf Mine, the North Star Mine, as well as the Red Point Prospect.

Until recently silver has been the focus of mining in the area, however, results from the 1989 diamond drilling program at the Dolly Varden suggest that mining in the past has been concentrated within

the silver rich zone of a volcanic exhalative formation. The emphasis of current exploration has expanded to include the search for massive sulphide deposits rich in zinc, lead, and silver with appreciable gold, copper and cadmium.

In 1985 the regional geology and mineral deposits of the general area were mapped by Alldrick and others (Alldrick et al, 1986). There is no recorded history of exploration on the Kitgold property specifically.

REGIONAL GEOLOGY AND MINERALIZATION

The northwestern portion of British Columbia has undergone regional mapping by the Geological Survey of Canada over an extended period of time (Kerr, 1930, 1948; Hanson, 1935; GSC 1956, 1979; Anderson, 1984, 1989; Anderson and Thorkelson, 1990). On a more detailed basis, the geological framework from which current mapping is evolving was established by the British Columbia Ministry of Energy Mines and Petroleum Resources (Grove, 1986). Grove defined the Stewart Complex as an assemblage of volcanic and related sedimentary rocks, ranging in age from Upper Triassic to Upper Jurassic, bounded by the Coast Plutonic Complex to the west, the sedimentary Bowser Basin to the east, Alice Arm to the south and the Iskut River to the north. Included in the Complex were the Upper Triassic Takla Group, Lower Jurassic Unuk River and Betty Creek, Middle Jurassic Salmon River Formation and Upper Jurassic Nass Formation of the Hazelton Group.

In 1985 the BCMEMPR initiated an on-going regional mapping program by D. J. Alldrick and several co-workers, with the first work conducted in the Kitsault area (Alldrick et al, 1986). Mapping has extended more than 200 kilometres northwest, resulting in constantly evolving formation and age definition of rock units. In the Sulphurets Creek and Unuk River areas the Upper Triassic is referred to as the Stuhini Group, the Hazelton Group includes Unuk River, Betty Creek and the newly defined Mt. Dilworth Formations of Lower Jurassic Age and - on the open file maps for these areas (1988-4 and 1989-10 respectively) - the Middle Jurassic Salmon River Formation. On a more regional scale Alldrick (1989) has limited the Hazelton Group to the Unuk, Betty Creek and Mt. Dilworth Formations and suggested a correlation of the Salmon River Formation to rocks of the Spatzizi Group. The Ashman Formation, also Middle Jurassic, overlies the Salmon River and is part of the Bowser Group. Grove's Upper Jurassic Nass Formation no longer appears in the stratigraphic column.

In order of increasing age, lithologies of the Stewart Complex are described as follows:

1. Spatzizi Group (Middle Jurassic)

a) Salmon River Formation - thinly bedded alternating siltstones, mudstones and greywacke, and minor andesite pillow lavas and pillow breccias.

Hazelton Group (Lower to Middle Jurassic)

 a) Mt. Dilworth Formation - intermediate to felsic pyroclastic rocks, including dust, ash, crystal and lithic tuffs, lapilli tuffs.

	LEGEND	MINFILE		
MINERAL PROPERTIES	COMMODITIES	NUMBERS		
KIT	Ag. Pb	103P-245		
GALENA (ACE, TYEE)	Ag. Pb	103P-208, 248		
WOLF	Ag. Pb. Zn	103P-198		
TORBRIT	Ag, Pb, Zn	103P-191		
NORTHSTAR	Ag. Pb. Zn	103P-189		
DOLLY VARDEN	Ag. Pb. Zn	103P-188		
LA ROSE	Ag. Pb	103P-170		
HOMESTAKE	Au. Cu	103P-216		
INTRUSIVE ROCKS				
ARY				
MINOR DYKES MICRODIORITE (a); GRANODIORITE (b); LAMPROPHYRE (c)				
AJAX INTRUSIONS. OUARTZ FELDSPAR PORPHYRITIC QUARTZ MONZONITE (a). BIOTITE QUARTZ MONZONITE (b). 55.1 Ma (K/Ar)				
COAST PLUTONIC COMPLEX: QUARTZ MONZONITE (a); GRANODIORITE (b): 43:51 Ma (K/Ar)				

GRANODIORITE (b): 43-51 Ma (K/Ar)

INTRUSIVE CONTACT

VOLCANIC AND SEDIMENTARY ROCKS

MIDDLE TO UPPER JURASSIC

6 BASAL FOSSILIFEROUS WACKE (a); BLACK SILTSTONE AND WACKE (b); MINOR INTRAFORMATIONAL CONGLOMERATES AND LIMESTONE (c)

LOWER JURASSIC

- GREEN AND MAROON VOLCANIC BRECCIA (a); EPICLASTIC CONGLOMERATE AND SEDIMENTS (b); LOCAL DACITIC FLOWS AND PYROCLASTICS (c)
- 4 FELDSPAR-HORNBLENDE PORPHYRITIC ANDESITIC PYROCLASTICS (a) AND FLOWS/SILLS (b); MINOR INTERBEDS OF LIMESTONE, SILTSTONE, SANDSTONE, CHERT, AND BARITE (c)
- 3 BASAL POLYMICTIC CONGLOMERATE, MINOR INTERBEDDED LIMESTONE, SILTSTONE, GRIT, SANDSTONE (a); SILTSTONE, ARGILLITE (b); VOLCANIC BRECCIA, MINOR INTERBEDDED SILTSTONE, SANDSTONE (c); INTERBEDDED SILTSTONE, SANDSTONE, AND PEBBLE CONGLOMERATE (MARKER HORIZON) (d)
- 2 AUGITE (OLIVINE) PORPHYRITIC BASALT FLOWS, PILLOWED FLOWS (a): AUGITE-FELDSPAR PORPHYRITIC BASALT PYROCLASTICS AND VOLCANIC BRECCIAS (b): EPICLASTIC CONGLOMERATE, MINOR INTERBEDDED SILTSTONE, ARGILLITE, AND LIMESTONE (c)
- SILTSTONE, ARGILLITE, WACKE (a): RARE LIMESTONE (b);

Figure 3

KITGOLD PROJECT

REGIONAL GEOLOGY

British Columbia NTS 103P/12

b) Betty Creek Formation - grey, green, locally maroon massive to bedded pyroclastic and sedimentary rocks, pillow lava.

c) Unuk River Formation - green and grey intermediate to mafic volcaniclastics and flows with local beds of fine grained immature sediments.

3. Stuhini Group (Upper Triassic)

Mixed sedimentary rocks interbedded with mafic to intermediate volcanic and volcaniclastic rocks.

The regional geology depicted in this report (Figure 3) is reproduced from Dawson and Alldrick's summary in Geological Fieldwork 1985 (Dawson and Alldrick, 1986). A more detailed geological map can be found as Open File 1986-2 (Alldrick et al, 1986). It should be noted that no formation designations appear on these maps since the nomenclature described above was published in later years.

The Bowser Lake Group, a large sedimentary basin, in part overlies the Stewart Complex to the east. Previous workers (Hansen, 1935 and Grove, 1971) have interpreted the Bowser Lake Group as a large successor sedimentary basin, consisting of marine and nonmarine sediments with only minor volcanics, that extends over an area 160 km wide by 320 km long. The Bowser Lake Group has been unaffected by regional metamorphism, although numerous dykes and small plutons have caused minor metasomatism. Historically the Bowser Lake Group has proven uneconomic, with no significant discoveries associated with it.

The youngest rocks in the region are the Tertiary plutons of the Coast Plutonic Complex which forms the western contact of the Stewart Complex. Compositionally these plutons range from quartz monzonite and quartz diorite through to granodiorite and granite. They exhibit a typical massive crowsfoot texture and usually are medium to coarse grained and porphyritic. Mafic minerals present are almost always hornblende \pm biotite.

Within the older volcanics regional structural features include a series of parallel anticlines and synclines with the fold axis striking north-south to northwest-southeast. Faults, photolineaments, small and large scale shears and fracturing are common throughout the area.

A number of epithermal and mesothermal precious metal deposits, massive sulphides, skarns and hydrothermal systems, as well as coppergold porphyries have been found in northwestern British Columbia. The majority of these deposits are hosted by rocks of the Stewart Complex and often show a spatial relationship with Early Jurassic intrusions.

The principal deposits in the Stewart area are hosted by an assemblage of volcanics of Lower Jurassic age, forming a northwest trending belt. Three types of deposits have been found within this belt:

- Alkalic Copper-Gold Porphyry: High tonnage copper deposits containing significant amounts of gold. (eg. Galore Creek and Copper Canyon deposits).
- 2) Gold-Silver Vein and Stockwork Deposits: High grade veins are found in the Lower Jurassic Hazelton volcanics (e.g. Silbak-Premier Mine). This type of deposit has been the most productive in the area.
- 3) Gold-Silver-Lead-Zinc Volcanic Exhalative Deposits: This type of deposit is found at Eskay Creek, within the upper sections of the Lower Jurassic volcanic-arc assemblage. The Dolly Varden Property, located 10 km north of the subject property, is believed to have potential for a similar type deposit as a result of interpretation of recent field mapping and diamond drilling.

The other types of mineralization are:

- 1) Silver-rich quartz-barite veins
- 2) Disseminated copper-gold mineralization

The silver-rich mineralization consists of mesothermal to epithermal veins deposited during folding within fractures and faults parallel to the axial plane of the fold. Historically exploration and development at Dolly Varden has been on this type of mineralization. Disseminated copper-gold mineralization includes the Homestake,

Vanguard, Red Point and Red Bluff properties. The mineralization is localized along the upper contact of a feldspar and/or hornblende porphyritic flow or subvolcanic sill. Both types of mineralization occur within andesitic pyroclastics of Middle to Lower Jurassic lithologies.

PROPERTY GEOLOGY AND GEOCHEMISTRY

The Kitgold claims are underlain by volcanic-sedimentary rocks that are Lower to Middle Jurassic in age and form an anticline trending northwest-southeasterly (Figure 4).

The eastern side of the property comprises fine to medium grained interbedded andesitic tuffs, breccias, conglomerates and volcaniclastics, with intercalated mafic volcanics, sandstone and (Unit #4). They are the youngest of the volcanic and siltstone sedimentary rocks on the property, and form the eastern limb of the anticline. The andesite tuffs consist of intermediate lapilli through blocky brecciated tuffs and are intercalated with maroon mafic porphyritic and/or amygdaloidal flows. These comprise the bulk of the exposure in this area of the property. Contacts between the rock types strike north to north by northwest and dip $45^{\circ}-65^{\circ}$ to the east. This unit then forms a syncline with a fold axis parallel to that of the anticline. It is along this axis that the andesitic tuffs of Unit 4 are best exposed. Observed contacts strike parallel to the eastern limb of the anticline but dip more steeply $(60^{\circ} \text{ to } 70^{\circ})$ to the west. To the west a gradation to fine laminated mudstone, siltstones

and sandstones occurs, forming a sedimentary unit approximately 300 m thick (Unit #3).

The oldest rocks on the property , which lie at the core of the anticline, consist of pillowed basaltic flows, conglomerates and pillow breccia (Unit #2) with small lenses of interbedded siltstones and limestone. These rocks form a northwest-southeasterly striking band 0.5 km to 1.5 km wide through the centre of the property.

Rocks west of the fold axis forming the western limb of the anticline are similar in composition and thickness to those already described on the eastern limb.

Faults and shears within the claim are predominantly oriented north-south to northeast - southwest.

The stratigraphy has also been intruded by a series of fine to medium grained sub-volcanic dykes, of intermediate composition, up to 10 m wide. They usually trend northwest - southeast (parallel to sub-parallel with the fold axis and stratigraphy). Chill margins, alteration and/or brecciation of the country rock are not evident at the dyke contact.

Quartz veins, evident throughout the property, are concentrated along a north-south trending linear zone, 10 to 30 metres wide and 1000 metres long. Veins within the zone may be up to 2 metres thick and several hundred metres in length. These large veins also give rise to ubiquitous veinlets and stringers between individual veins. Cross cutting relationships indicate at least three phases of emplacement, resulting in a high degree of brecciation and silicification associated with a well developed, elaborate stockwork. Sericitic and limonitic alteration exists but is localized and weakly developed. The veining occurs within a massive intermediate volcanic flow.

Sulphide mineralization occurs mostly as pyrite up to 20% in veins and associated wall rock contacts. Rare arsenopyrite and/or chalcopyrite is occasionally associated with pyrite. In the centre of the property, an old trench had been dug within an interbedded tuff-volcaniclastic siltstone. A localized brecciated quartz vein system parallel to local bedding $(022^{o}/60^{o}E)$ was observed in the trench which contained up to 25% red brown (iron rich) sphalerite.

A total of 85 grab rock samples and 13 silt samples were collected from the property. The samples were sent to TSL Laboratories in Saskatoon, Saskatchewan and were analyzed for gold by atomic absorption (with follow up fire assay if >1000 ppb). Inductively coupled plasma (ICP) spectrophotometry was also done on all samples for 35 elements.

Rock sampling produced several anomalous gold results within Unit #4 on the east side of the property where mafic flows are intercalated with the more predominant intermediate volcanics. Sampling was concentrated within veins and gossanous areas, mostly within the intermediate volcanics but proximal to contacts with the mafic flows.

The following list describes the five samples which assayed over 0.1 oz/ton gold. Refer to Figure 5 for locations of these and all other samples and their gold results.

SAMPLE #37603 (0.230 oz/ton Au) Unit #4
 - 3 cm wide quartz vein within an intermediate volcanic tuff
 Silicified wall rock proximal to vein
 Vein strikes @ 322° and dips 50°NE
 No sulphides were visible
SAMPLE #37608 (0.101 oz/ton Au) Unit #4
 - 5cm wide quartz vein within an intermediate volcanic tuff
 Silicified wall rock contains <7% cubic pyrite
 Vein strikes @ 292° and dips 50° NE
 Moderate oxidation observed
SAMPLE #37610 (0.252 oz/ton Au) Unit #4
 - 20 cm wide quartz vein within an intermediate blocky tuff</pre>

- Vein is moderately brecciated and oxidized
- Vein strikes (300°) and dips 55° NE

SAMPLE #37620 (0.134 oz/ton Au) Unit #3

- Massive, silicified intermediate volcanic - Numerous quartz stringers (<0.5 cm wide) at random orientations

- $\leq 3\%$ pyrite within the stringers and wall rock.

This initial survey indicates that gold occurs both in 1) narrow quartz veins and small random stringers; and 2) massive silicified intermediate volcanics, with no veins or stringers and little pyrite.

Sample #37620 was taken from an intermediate volcanic within Unit #3, however the large vein stockwork system mentioned previously, which is also located in Unit #3, failed to reveal any significant gold values.

The ICP analyses produced scattered anomalies for various metals. These values as well as gold values are tabulated below as indicated:

Sample	<pre># Au oz/ton (ppb)</pre>	Ag(ppm) ≥10	Cu(ppm) ≥100	Pb(ppm) ≥100	Zn(ppm) ≥500	As(ppm) >100
37503 37508	.040 .051					130
37513	.051					300
37522	(260 ppb)	69	530	(2.6%)	8500	770
37523 37524	(620 ppb)	170	240	2700 870	740	2100 130
37530				0,0		180
37541					790	
37603	0.225					
37605	(450 ppb)					100
37608	0.101					95
37610	0.250					
37611	(730 ppb)					220
37614	0.133					250
37620	0.131					170
37631			160			
37635	0.039		230		12%	
37636			130		8900	
37637					588	

All rock sample descriptions appear in Appendix I followed by assay certificates in Appendix II and analytical procedures in Appendix III.

The highest gold values in silt samples were received from samples KG207 and KG208 (20 and 110 ppb respectively), collected in the southeast portion of the property, and sample KG214 (35 ppb), collected just north of the property. These samples are all from drainages influenced in part by the area in which anomalous rock samples were collected.

CONCLUSIONS AND RECOMMENDATIONS

The Kitgold property overlies volcanic - sedimentary rocks of Lower to Middle Jurassic age, which have been subsequently anticlinally and synclinally folded. The stratigraphy and anticline strike roughly north-south, with the core of the anticline trending through the middle of the property. Sampling and prospecting has produced several anomalous rock samples, collected primarily from intermediate volcanics of Unit #4 with one located within Unit #3, on the east side of the property. Five samples assayed over 0.1 oz/ton gold, four of which are associated with quartz veins or stringers. One sample shows no vein association.

Prospecting also located an old trench within Unit #3 containing up to 25% sphalerite in a brecciated stockwork zone. Topography made it impossible to trace out the sphalerite showing to any extent.

Further work, especially in the area of the anomalous samples is necessary to gain a better understanding of the nature and extent of the anomalous rock samples. Grid controlled mapping, rock and soil sampling in the general area of these samples is recommended, followed by trenching and channel sampling of prospective lithologies, veins and/or structures. More extensive prospecting and sampling propertywide is also recommended, particularly in the western portion of the property where rocks of the same units as those hosting the anomalous samples occur. Successful definition of targets in the area of the initial prospecting discoveries would warrant a follow-up diamond drilling program.

STATEMENT OF EXPENDITURES

Mobilization/Demobilization (pro-rated from Kitsault Project)	\$	650.37
Wages: P. Brucciani (geologist) 3 2/3 days @ \$330/day B. LaPeare (") 4 1/2 days @ \$340/day		1,210.00 1,530.00
Engineering and Supervision (pro-rated from Kitsault Project)	:	1,876.67
Support Costs (camp costs, expediting, etc pro-rated from Kitsault Project)	1	1,928.87
Transportation and Commumication (pro-rated from Kitsault Project)		458.47
Helicopter	4	1,068.82
Analyses	2	2,119.20
Report Costs		2,446.14
Total Expenditures	\$16	5,063.54

CERTIFICATE OF QUALIFICATIONS

I, Bernard Dewonck, of 11931 Dunford Road, Richmond, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1974) and hold a BSc. degree in geology.
- I am an independent consulting geologist retained by OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. The information contained in this report was obtained by supervision of the work done on the Kitgold property and a review of the materials listed in the bibliography.
- 7. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property or in the securities of Santa Marina Gold Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Bernard Dewonck, F.G.A.C. Consulting Geologist

DATED at Vancouver, British Columbia, this 25th day of March, 1991.

BIBLIOGRAPHY

ALLDRICK, D.J. 1989: Volcanic Centres in the Stewart Complex, Geological Fieldwork 1988, Paper 1989-1, British Columbia Ministry of Energy, Mines and Petroleum Resources. ALLDRICK, D.J., DAWSON, G.L., BOSHER, J.A. and WEBSTER, I.C.L. 1986: Geology of the Kitsault River Area, BCMEMPR Open File Map 1986-2. ANDERSON, R.G. and THORKELSON, D.J. 1990: Mesozoic Stratigraphy and Setting for Some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia. Geol. Surv. Can. Paper 90-1E, p. 145-15x. ANDERSON, R.G. A Stratigraphic, Plutonic, and structural Framework of the 1989: Iskut River Map Area, Northwestern British Columbia. Geo. Surv. Can. Paper 89-1E, p. 145-154. 1984: Late Triassic and Jurassic Magmatism Along the Stikine Arch and the Geology of the Stikine Batholith, Northcentral British Columbia. Geol. Surv. Can. Paper 84-1A. BRITTON, J.M., BLACKWELL, J.D. and SCHROETER, T.G. 1990: #21 Zone deposits, Eskay Creek, Northwestern British Columbia; Preliminary Report. BROWN, D.A. and GUNNING, M.H. 1989: Geology of the Scud River Area, Northwestern British Columbia. BCMEMPR Geol. Fieldwork 1988; Paper 1989-1. DAWSON, G.L. and ALLDRICK, D.J. 1986: Geology and Mineral Deposits of the Kitsault Valley (103P/11,12). BCMEMPR, Geological Field Work 1985. Paper 1986-1, pp. 219-224. DEVLIN, B.D. and GODWIN, C.I. 1986: Geology of the Dolly Varden Camp, Alice Arm Area (103P/11, 12). BCMEMPR, Geological Field Work 1985. Paper 1986-1, pp. 327-330. GEOLOGICAL SURVEY OF CANADA Map No. 9-1957: Operation Stikine 1956. Map No. 1418A-1979: Iskut River.

KERR, F.A. 1930: Preliminary Report on the Iskut River Area, British Columbia. GSC Summary Report, 1929, Part A, pp.30-61. KERR, F.A. 1948: Lower Stikine and Western Iskut Rivers Area, British Columbia. GSC Memoir No. 246.

McMILLAN, W.J. 1990: British Columbia's Golden Triangle: Report on Iskut Field Conference. Geoscience Can. Vol. 17, No. 1, p. 25-28.

· .

APPENDIX I

ROCK SAMPLE DESCRIPTIONS

.

APPENDIX I

ROCK SAMPLE DESCRIPTIONS

SAMPLE NO.	DESCRIPTION	ANALYSIS (ppb Au)
-	Mafic Volcanic Vuggy qtz vein, minor hematite alteration 2-3% pyrite.	10
-	Intermediate volcanic Proximal to qtz vein 3% Subhedral pyrite	5
-	Volcanic Breccia Quartz vein, 10% coarse grained calcite, chlorite + sericite + limonite + <1% pyrite	0.040 oz/ton Au
	Quartz vein Vuggy, 20 cm long, chlorite alteration.	35 ′
-	Volcanic breccia Stratiform horizon, silicified & chlorite alteration < 3% medium grained pyrite.	<5
-	Andesitic tuff Silicified, ankerite gossan 1% pyrite.	10
	Brecciated Siltstone High limonite alteration, quartz vein (0.3 x 4m).	<5
	Quartz vein 0.15 m x 10 m	0.051 oz/ton Au
	Andesitic Breccia Quartz vein stockwork, sericitic + argillic altera	<5 tion.
-	Quartz vein 0.2 m x 20 m, coarse graine < 1% fine grained pyrite	20 ppb Au d
	Quartz vein Same as 37510, 1.5 m wide	5

SAMPLE NO.	DESCRIPTION	ANALYSIS (ppb Au)
	Quartz vein 1.0 m x 100 m, moderate limonite alteration	<5
-	 Andesitic Tuff/flow Limonite gossan 3.0m x 2.0m ≤ 15% fine grained pyrite. 	70
	 Quartz vein 0.5m x 30m moderate limonit alteration 	<5 e
	• Andesitic Breccia (float) • Quartz vein, sericitic alte	5 ration
	- Basalt (float) - Quartz vein, moderate limon alteration.	<5 ite
	- Andesitic breccia - Quartz vein, 5 cm wide, ankerite staining.	<5
	 Siltstone/Sandstone Quartz & Ankerite vein (0.05m x 3m),geothite 	<5
-	 Intermediate Tuff/conglomer Quartz ankerite vein, intersection of 2 shears < 3% diss pyrite 	ate 5
	 Intermediate tuffs Chlorite + Calcite + epidot qtz vein. 	<5 e
-	 Intermediate volcanic/ conglomerate Shear (0.20 m x 8 m), sericitic alteration < 20% medium grained pyrite 	<5
	- Andesite 260 ppb Au - Quartz ankerite limonite ve host is highly sericitized.	1/2.6% Pb/.85% Zn in
-	 Intermediate volcanic/ conglomerate Qtz & ankerite vein, high limonite alteration. 10% arsenopyrite, trace cpy 	620ppb Au/0.27% Pb/0.07%Zn

SAMPLE NO.	DESCRIPTION	ANALYSIS (ppb Au)
	Andesitic Tuff Pegmatitic quartz, feldspar vein	20ppb Au,870ppm Pb
-	Andesite Pyritiferous shear 10% pyrite	30
	Breccia tuff(float) Silicified	<5
-	Intermediate volcanics High sericite, argillite alteration. Sulphides oxidized to lime	<5 onite.
	Basalt Pillow, limonite & jarosi alteration.	<5 te
-	Basalt Quartz vein, high limonito jarosite < 20% pyrite in fractures	
-	Basalt Quartz vein, high limonito jarosite < 20% pyrite in fractures	80 ∋&
	Intermediate volcanic tuf Limonite gossan, 10m x 13	
	Intermediate pyroclastic Quartz ankerite vein in shear, limonite alteration	10 n
	Mafic volcanic 13 Part of shear; sericite & limonite & jarosite.	Oppm Mo,<5ppb Au
	Quartz vein (float) Quartz & calcite & barite float.	<5
	Intermediate pyroclastics Quartz carbonate vein, se & limonite.	
37536 - -	Intermediate pyroclastics Sheared; limonite & sericite.	15

SAMPLE NO.	DESCRIPTION	ANALYSIS (ppb Au)
	 Intermediate pyroclastics Brecciated quartz vein, intense limonite, jarosite 	55
	 Intermediate pyroclastics Same as 37 but more massive. 	10
	 Intermediate pyroclasitcs Volcanic has intense limonit § jarosite & argillic alteration 	
37540 -	 Siltstone (float) Brecciated qtz vein, limonite alteration 	5
-	 Chert Mostly fine to medium graine pyritic 20% pyrite,trace arsenopyrit 	,
•	 Chert Mostly fine to medium graine pyritic 20% Pyrite,trace arsenopyrit 	
-	 Intermediated volcanic Weekly silicified, 2 thin qt stringers. 2% disseminated cubic pyri 	
	 Intermediated volcanics Moderate silicified, qtz stringers; epidote & chlorit alteration 	10 ce
	 Intermediate volcanic tuff 3.0 cm wide vein, moderately silicified. 	
	 Mafic tuff Brecciated qtz vein, 1-3 cm wide stringers. 	130
	 Mafic tuff 0.3 m wide brecciated vein, 35 m long. 	450
	 Quartz vein Brecciated vein with sub- parallel stringers. 	60

SAMPLE NO.	DESCRIPTION	ANALYSIS (ppb Au)
37607	 Intermediate volcanic 3 cm wide qtz vein 	95
37608	 Intermediate volcanic tuff (5 cm wide qtz vein, host rock is moderately silicified < 7% cubic pyrite in tuff. 	
37609	 Intermediate volcanic (tuff) 0.3 m wide vein with 50% epidote. 	30
37610	 Blocky intermediate tuff 0.2 m wide vein, rusty, brecciated. 	0.252 oz/ton Au
37611	 Intermediate volcanic Wall rock at above sample, rusty < 12% disseminated cubic pyr. 	730 ite.
37612	- Mafic volcanic - Brecciated quartz vein.	50
37613	 Intermediate volcanic Bullish qtz vein, 8cm wide. 1% pyrite in wallrock. 	390
37614	 Intermediate volcanic Oxidized 2% disseminated pyrite. 	0.134 oz/ton Au
37615	 Intermediate volcanic 0.3 m wide chlorite & qtz ve chlorite = 40%. 	90 in;
37616	 Intermediate tuff/Mafic volc Vein within contact, wallrock is oxidized. 	anic 150
37617	 Blocky tuff 0.15 m wide vein with 20% chlorite. 	30
37618	 Blocky tuff 0.12 m wide vein, 50-60% massive epidote. 	10
37619	 Blocky tuff 0.2 m wide vein, 30% massive chlorite. 	<5

SAMPLE NO.	DESCRIPTION	ANALYSIS (ppb Au)
-	 Intermediate volcanic Silicified, numerous < 6mm stringers. < 3% pyrite in wall rock & stringers. 	0.134 oz/ton Au
	 Intermediate volcanic Brecciated qtz veining- extensive stockwork. 	5
	 Intermediate volcanic Brecciated qtz veining- extensive stockwork. 	25
	 Intermediate volcanic Small gossan; moderate stri stockwork. 	25 nger
	 Intermediate volcanic Brecciated qtz veining - extensive stockwork. 	10
	 Intermediate volcanic Brecciated qtz veining - extensive stockwork. 	15
-	 Intermediate volcanic Medium grained, oxidized <a href="mailto: 4% disseminated pyrite. </td><td><5</td></tr><tr><td>-</td><td> Intermediate volcanic Gossan, footwall of large
fault, silicified. < 1% disseminated pyrite. </td><td><5</td></tr><tr><td>-</td><td> Intermediate volcanic Gossan, footwall of large
fault, silicified. ≤ 1% disseminated pyrite. </td><td><5</td></tr><tr><td></td><td> Intermediate volcanic Vein within gossaned
footwall. </td><td>15</td></tr><tr><td>-</td><td> Mafic volcanic Silicified, 5 mm qtz -
ankerite stringers. <u><</u> 1% disseminated pyrite. 	<5
	- Flow breccia - mafic - 0.2 m wide shear with parallel qtz-ankerite.	10

SAMPLE NO.	DESCRIPTION	ANALYSIS (ppb Au)
	 Mafic volcanic Moderate oxidation, 3cm wid qtz vein. < 3% disseminated pyrite. 	5 le
	• Mafic volcanic • Qtz, sericite alteration.	5
-	 Mafic volcanic silicified, grey to pale green. 2% disseminated pyrite. 	<5
-	 Mafic volcanic 0.03 Old trench, brecciated qtz veining. < 30% sphalerite. 	890z/ton Au, 12% Zn
	- Intermediate volcanic - Silicified. - ≤ 5% disseminated pyrite.	0.9% Zn,55ppb Au
	 Intermediated volcanic Silicified, barren qtz veining. 	500ppm Zn,25ppbAu
•	 Mudstone Moderate oxidation, minor of carbonate stringers. < 1% cubic pyrite. 	15 Itz
	 Intermediated volcani (float 3 cm wide qtz vein, minor et alteration. 	
	 Intermediate volcanic (float Rusty, silicifed, minor epidote alteration. 	at) <5
-	- Intermediate volcanic (floa - Well oxidized - <u><</u> 25% pyrite.	at) <5
-	- Qtz vein (float) 400 - 0.2 m wide qtz vein - < 40% pyrite	ppm W, 10 ppm Au
	- Intermediate subvolcanic (- Oxidized, qtz stringer.	float) <5

APPENDIX II

ASSAY CERTIFICATES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM 306 - 595 Howe Street Vancouver. B.C. V6C 2T5

INVOICE #: 15568 P.O.: R2577

SAMPLE(S) OF ROCK

P. Brucciani Project: KITGOLD

	Au ppb	Au ozt
37630 37631 37632 37633 37633	<5 10 5 5 <5	
37635 37636 37637 37638 37601	>1000 55 25 15 80	.039
37602 37603 37604 37605 37606	10 >1000 130 450 60	.220/.231
37607 37608 37609 37610 37611	95 >1000 30 >1000 730	.101 .252/.247
000700		

COPIES TO: B. Dewonck, J. Chapman INVOICE TO: OreQuest - Vancouver

Sep 21/90

inno filma SIGNED 1 of 4 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver. B.C. V6C 2T5

INVOICE #: 15568 P.O.: R2577

SAMPLE(S) OF Rock

P. Brucciani Project: KITGOLD

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Au ppb	Au ozt
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37613 37614 37615	50 390 >1000 90	.134/.132
37623 25 37624 10	37618 37619 37620	10 <5 >1000	.128/.134
37625 15 37626 <5	37623 37624 37625	25 10 15	
37627<5	37628 37629 37501	<5 15 10	
COPIES TO: B. Dewonck, J. Chapman INVOICE TO: OreQuest - Vancouver Sep 21/90	INVOICE	TO: OreQu	· •

SIGNED

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 2 of 4

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver. B.C. V6C 2T5

INVOICE #: 15568 P.O.: R2577

SAMPLE(S) OF Rock

P. Brucciani Project: KITGOLD

	Au ppb	Au ozt	
37503 37504 37505 37506 37507	>1000 35 <5 10 <5	.040	
37508 37509 37510 37511 37512	>1000 <5 20 5 <5	.051	
37513 37514 37515 37516 37517	70 <5 5 <5 <5		
37518 37519 37520 37521 37522	<5 5 <5 <5 260		
COPIES INVOICE		wonck, J. est - Vand	_

Sep 21/90

in line SIGNED 3 of 4 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver. B.C. V6C 2T5

INVOICE #: 15568 P.O.: R2577

SAMPLE(S) OF Rock

P. Brucciani Project: KITGOLD

	Au ppb
37523	620
37524	20
37525	30
37526	<5
37527	<5
37528 37529 37530 37531 37532	<5 60 80 10
37533	<5
37534	<5
37535	<5
37536	15
37537	55
37538	10
37539	<5

COPIES TO: B. Dewonck, J. Chapman INVOICE TO: OreQuest - Vancouver

Sep 21/90

Rilmin SIGNED

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 4 of 4

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	OreQuest Consultants 306 - 595 Howe Street				
	Vancouver. B.C. V6C 2T5				

INVOICE #: 15596 P.O.: R-2611

SAMPLE(S) OF Rock

B. LaPeare Project: KITGOLD

	Au ppb
37639	<5
37640	<5
37641	<5
37642	10
37643	<5
37540	5
37541	<5
37542	<5

COPIES TO: B. Dewonck, J. Chapman INVOICE TO: OreQuest - Vancouver

Sep 25/90

Bernie Vu SIGNED Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver, B.C. V6C 2T5

INVOICE #: 15634 P.O.: R2578

SAMPLE(S) OF Silt

B. R. LaPeare Project KITGOLD

	Au ppb
KG201	10
KG202	10
KG203	5
KG204	15
KG205	5
KG206	15

COPIES TO: B. Dewonck, J. Chapman INVOICE TO: OreQuest - Vancouver

Sep 26/90

Benie Vu Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Orequest Cons. Ltd. 306-595 Howe Street					
	Vancouver, B.C. V6C 2T5					

INVOICE #: 15631 P.O.: R2613

SAMPLE(S) OF Silt

B.R. LaPeare Project KITGOLD

		Au ppb
KG	207	20
KG	208	110
KG	209	5
KG	210	10
KG	211	15
KG	212	10
KG	213	5
KG	214	35
KG	215	5
KG	220	5
KG	221	<5
KG	222	<5

COPIES TO: B. Dewonck, J. Chapman INVOICE TO: Orequest Cons. Vancouver

Sep 26/90

Bernie Ourn Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

,

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE VANCOUVER, B.C. V6C 2T5		D.					T.S.L. T.S.L. T.S.L.	File	No.: S - No.: SE25 No.: 1568	MD	
ATTN: B. DEWONC	к, ј. Сн	iapman	PROJECT:	KITGOLD	R-253	77		all resu	LTS PPM		
ELEMENT		37602	37603	37604	37605	37606	37607	37608	37609	37610	37611
ELEMENT Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium Beryllium Boron Antimony Yttrium Scandium	(A1) [Fe] [Ca] [Mo] [Na] [K] [Ti] [Mn] [P] [Ba] [Cr] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu	$\begin{array}{c} 9700\\ 21000\\ 11000\\ 3500\\ 40\\ 380\\ 1500\\ 510\\ 150\\ 510\\ 150\\ 40\\ 9\\ 4\\ < 1\\ 11\\ 96\\ 62\\ 290\\ 10\\ < 2\\ < 1\\ < 1\\ < 10\\ < 5\\ 11\\ 7\end{array}$	$\begin{array}{c} 8300\\ 15000\\ 9700\\ 3800\\ 100\\ 470\\ 61\\ 670\\ 230\\ 27\\ 51\\ 3\\ 54\\ 3\\ 2\\ 120\\ 33\\ 30\\ 4\\ < 2\\ 5\\ < 1\\ < 10\\ < 5\\ 6\\ 2\end{array}$	$\begin{array}{c} 7700\\ 12000\\ 3100\\ 3700\\ 60\\ 1200\\ 19\\ 500\\ 160\\ 130\\ 47\\ 2\\ 35\\ 3\\ 5\\ 140\\ 11\\ 13\\ 5\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 5\\ 5\\ 1\end{array}$	$\begin{array}{c} 4700\\ 18000\\ 3700\\ 2100\\ 80\\ 870\\ 25\\ 350\\ 220\\ 57\\ 61\\ 2\\ 19\\ 3\\ 9\\ 64\\ 11\\ 9\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 11000\\ 23000\\ 3000\\ 4700\\ 110\\ 930\\ 240\\ 550\\ 410\\ 68\\ 67\\ 4\\ 67\\ 3\\ 4\\ 67\\ 3\\ 4\\ 160\\ 44\\ 11\\ 7\\ < 2\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 4\\ 3\end{array}$	$\begin{array}{c} 6200\\ 14000\\ 680\\ 3000\\ 70\\ 800\\ 58\\ 580\\ 240\\ 36\\ 66\\ 2\\ 9\\ 4\\ 66\\ 2\\ 9\\ 4\\ 68\\ 17\\ 3\\ 6\\ 17\\ 3\\ 5\\ < 1\\ < 10\\ < 10\\ < 5\\ 3\\ 1\end{array}$	$\begin{array}{c} 12000\\ 29000\\ 70000\\ 5300\\ 140\\ 1000\\ 20\\ 1800\\ 460\\ 31\\ 22\\ 6\\ 15\\ 1\\ 7\\ 48\\ 36\\ 86\\ 9\\ < 2\\ 1\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 9\\ 3\end{array}$	$\begin{array}{c} 6000\\ 7900\\ 10000\\ 960\\ 30\\ 190\\ 630\\ 200\\ 330\\ 13\\ 81\\ 3\\ 11\\ 2\\ 4\\ 11\\ 37\\ 490\\ < 1\\ < 2\\ < 1\\ < 1\\ < 10\\ < 5\\ 2\\ 1 \end{array}$	$\begin{array}{c} 1100\\ 3600\\ 1100\\ 460\\ 60\\ -300\\ 27\\ -73\\ 50\\ 25\\ 95\\ < 1\\ 26\\ 1\\ 26\\ 1\\ 26\\ 1\\ 26\\ 1\\ < 2\\ 4\\ < 1\\ < 10\\ < 5\\ < 1\\ < 10\\ < 5\\ < 1\\ < 1\end{array}$	$\begin{array}{c} 10000\\ 33000\\ 880\\ 4900\\ 150\\ 910\\ 38\\ 330\\ 460\\ 35\\ 74\\ 6\\ 29\\ 2\\ 200\\ 35\\ 10\\ 5\\ 200\\ 35\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 10\\ 5\\ 2\\ 1\\ 1\\ 1\\ 1\\ 10\\ 5\\ 3\\ 2\end{array}$
Tungsten Niobium Thorium Arsenic Bismuth Tin Lithium Holmium	[W] [Nb] [Th] [As] [Bi] [Sn] [Li] [Ho]	$\langle 10 \\ \langle 10 \\ \langle 10 \\ \langle 5 \\ \langle 5 \\ \langle 5 \\ \langle 10 \\ 10 \\ \langle 10 $	< 10 < 10 < 5 < 5 < 10 5 < 10 5 < 10	$\langle 10 \\ \langle 10 \\ \langle 10 \\ 10 \\ \langle 5 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\ \langle 5 \\ \langle 10 $	$\begin{array}{c} & 10 \\ < & 10 \\ < & 10 \\ 100 \\ < & 5 \\ < & 10 \\ < & 5 \\ < & 10 \\ < & 10 \end{array}$	20 < 10 20 < 5 < 10 < 5 < 10 < 10	< 10 < 10 < 10 < 20 < 5 < 10 < 5 < 10	< 10 < 10 30 95 < 5 < 10 < 5 < 10	$\langle 10 \\ \langle 10 \\ \langle 10 \\ \langle 5 \\ \langle 5 \\ \langle 5 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\ \langle 10 \\ \rangle \rangle$	$\begin{pmatrix} & 1 \\ < & 10 \\ < & 10 \\ < & 10 \\ & 15 \\ < & 5 \\ < & 10 \\ < & 5 \\ < & 10 \\ < & 10 \\ \end{pmatrix}$	$\begin{array}{c} & 2 \\ < & 10 \\ < & 10 \\ < & 10 \\ & 220 \\ < & 5 \\ < & 10 \\ & < & 5 \\ < & 10 \end{array}$

SIGNED : Bernie Dunn

.

2-302-48TH	STREET, SASKATI	JON, SASKATCHEWAN	S7K 6A4
	TELEPHONE #:	(306) 931 - 1033	
	FAX #:	(306) 242 - 4717	

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE S VANCOUVER, B.C. V6C 2T5		D.					T.S.L. T.S.L. T.S.L.	File	No.: S - No.: SE2: No.: 1568	imd	
ATTN: B. DEWONCH	<, J. C⊦	iapman	PROJECT:	KITGOLD	R-2577			ALL RESU	lts ppm		
ELEMENT		37612	37613	37614	37615	37616	37617	37618	37619	37620	37621
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium Beryllium Boron Antimony Yttrium Scandium Tungsten Niobium Thorium	(Ti) (Mn) (P) (Ba) (Cr) (Cr) (Cu) (Ni) (Pb) (Zn) (V) (Sr) (Co)	$\begin{array}{c} 2900\\ 10000\\ 1200\\ 1600\\ 40\\ 770\\ 150\\ 230\\ 240\\ 28\\ 74\\ 2\\ 8\\ 6\\ 13\\ 36\\ 3\\ 6\\ 3\\ 4\\ 2\\ 8\\ 6\\ 13\\ 36\\ 3\\ 4\\ 10\\ < 1\\ 10\\ 2\\ < 1\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ <$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 14000\\ 42000\\ 1600\\ 5800\\ 190\\ 1200\\ 1000\\ 740\\ 610\\ 49\\ 61\\ 9\\ 61\\ 9\\ 61\\ 9\\ 19\\ 7\\ 17\\ 55\\ 64\\ 5\\ 11\\ < 2\\ 2\\ < 1\\ < 10\\ < 5\\ 5\\ 6\\ < 10\\ < 10\\ 30 \end{array}$	32000 47000 400 9500 40 310 71 1900 180 19 75 6 3 6 28 140 21 3 14 $\langle 2$ $\langle 1$ $\langle 1$ $\langle 10$ 22 1 $\langle 10$ 2 10 2 10 10 2 10 10 2 10 10 2 10 10 10 2 10 10 10 2 10 2 1 10 10 2 1 10 50 50 50	$\begin{array}{c} 5000\\ 11000\\ 500\\ 3000\\ 70\\ 530\\ 30\\ 410\\ 130\\ 30\\ 110\\ 1\\ 11\\ 3\\ 6\\ 28\\ 9\\ 4\\ 4\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1$	$\begin{array}{cccc} 43000\\ 66000\\ 660\\ 10000\\ 80\\ 260\\ 44\\ 1800\\ 220\\ 25\\ 56\\ 10\\ 220\\ 25\\ 56\\ 10\\ 3\\ 4\\ 9\\ 130\\ 120\\ 7\\ 16\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1$	$\begin{array}{c} 9500\\ 12000\\ 6200\\ 4200\\ 150\\ 160\\ 970\\ 340\\ 380\\ 23\\ 64\\ 5\\ 4\\ 3\\ 4\\ 28\\ 39\\ 650\\ 6\\ 2\\ 4\\ 3\\ 4\\ 28\\ 39\\ 650\\ 6\\ 1\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	31000 51000 11000 9100 80 260 1400 100 10 10 17 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 10 5 2 < 1 < 10 < 50 < 100 < 60	$\begin{array}{c} 14000\\ 42000\\ 2100\\ 4700\\ 40\\ 500\\ 62\\ 280\\ 530\\ 39\\ 48\\ 7\\ 28\\ 3\\ 7\\ 28\\ 3\\ 9\\ 160\\ 72\\ 45\\ 13\\ < 2\\ 2\\ 3\\ < 1\\ < 10\\ < 5\\ 8\\ 5\\ < 10\\ < 10\\ 10\\ 10\end{array}$	$\begin{array}{c} 1000\\ 3700\\ 220\\ 480\\ 30\\ 210\\ 7\\ 39\\ 54\\ 6\\ 140\\ <&1\\ 7\\ 4\\ 2\\ 11\\ <&1\\ <&1\\ <&1\\ <&1\\ <&1\\ <&1\\ <&1\\$
Arsenic Bismuth Tin Lithium Holmium	[As] [Bi] [Sn] [Li] [Ho]	70 < 5 < 10 15 < 10	30 < 5 < 10 10 < 10	250 < 5 < 10 15 < 10	< 5 < 10 < 10 < 10 < 10	25 < 5 < 10 10 < 10	<pre>< 5 < 5 < 10 30 < 10</pre>	<pre></pre>	<pre></pre>	170 < 5 < 10 20 < 10	$\begin{array}{c} 10 \\ < 5 \\ < 10 \\ < 5 \\ < 10 \\ < 5 \end{array}$

SIGNED : Bernie Ann

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE VANCOUVER, B.C. V6C 215	STREET	TD.					T.S.L. T.S.L. T.S.L.	File	No.: 5 - No.: 5E25 No.: 1568	imd	
ATTN: B. DEWONC	к, ј. С	Hapman	PROJECT:	KITGOLD	R-2571	7		all resu	ILTS PPM		
		37622	37623	37624	37625	37626	37627	37628	37629	37501	37502
ELEMENT											
Aluminum	[A]]	1200	2900	1100	1200	11000	2300	7500	2400	4300	22000
Iron	[Fe]	8700	16000	7300	7500	45000	37000	25000	20000	12000	57000
Calcium	[Ca]	140	380	420	180	51000	62000	50000	140000	17000	34000
Magnesium	[Mg]	180	1000	220	350	7900	6000	6700	4700	2400	6100
Sodium	[Na]	30	40	30	20	180	210	190	110	70	340
Potassium	[K]	560	630	460	410	560	320	580	310	130	360
Titanium	[Ti]	6	7	4	13	31	1	11	< 1	15	880
Manganese	(Mn 1	24	120	66	52	990	1600	1100	1700	340	980
Phosphorus		160	270	160	140	1100	970	830	420	130	770
Barium	[Ba]	16	23	16	13	92	34	36	46	12	35
Chromium	[Cr]	120	70	100	110	28	11	26	6	79	20
Zirconium	[Zr]	1	2	1	< i	22	14	10	9	2	20
Copper	[Cu]	13	35	13	15	61	210	140	33	11	7
Nickel	[Ni]	4	11	7	7	11	ç	6	4	1	< 1
Lead	[Pb]	9	10	7	5	2	2	< 1	< i	10	6
Zinc	[Zn]	14	56	24	19	59	52	50	36	39	100
Vanadium	EV 3	4	20	6	5	120	31	76	26	30	260
Strontium	[Sr]	4	4	3	2	430	220	260	760	72	100
Cobalt	[Co]	< 1	3	2	2	18	15	9	6	4	21
Molybdenum		6	2	4	6	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	2	< 1	< 1	< 1	< 1	< 1	< i	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	$\langle 1$	$\langle 1 \rangle$	$\langle 1$	$\langle 1$
Baran	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[56]	< 5	10	< 5	< 5	5	5	< 5	< 5	< 5	< 5
Yttrium	[Y]	< 1	2	< 1	< 1	10	10	9	16	3	23
Scandium	[Sc]	< 1	< 1	$\langle 1 \rangle$	< 1	28	18	14	13	3	23
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium Thanium	[Nb]	< 10 < 10	< 10 < 10	< 10 < 10	$\begin{pmatrix} 10 \\ 10 \end{pmatrix}$	< 10 50	< 10 50	< 10	< 10	$\begin{pmatrix} < & 10 \\ < & 10 \end{pmatrix}$	< 10 50
Thorium Arsenic	[Th] [As]	< 10 40	< 10 25	< 10 20		50 Zo		40	100		
Bismuth	[Bi]	40 < 5	20 < 5	20 < 5	25 < 5	30 < 5	35 < 5	20 < 5	15 < 5	5 (5	5 < 5
Tin	(Sn)										
Lithium		< 10 < 5	< 10 5	< 10 < 5	< 10 < 5	< 10 15	< 10 < 5	< 10 10	< 10 < 5	< 10 5	< 10 15
Holmium	[Li] [Ho]	< 10	< 10	< 10							
nu1m1um	1001	N 10	N 10	N 10	< 10	< 10	< 10	< 10	10	< 10	< 10

SIGNED : Dernie Purp

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 ~ 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE VANCOUVER, B.C. V&C 2T5	STREET						T.S.L. T.S.L. T.S.L.	File Invoice	No.: 156	6121	
ATTN: B. DEWONC	k, J. LHAN	man	PROJECT: K	116010	R-2577			ALL KES	ULTS PPM		
ELEMENT		37630	37631	37632	37633	37634	37635	37636	37637	37638	37601
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosohorus	[Ti] [Mn]	5000 31000 44000 7600 130 820 18 860 860 860	13000 37000 64000 7300 110 370 15 1300 700	2900 25000 49000 6800 70 700 5 1200 680	14000 21000 45000 7200 210 340 1100 600 590	24000 39000 27000 9400 170 520 280 1000 1000	2100 13000 11000 1400 60 450 100 230 190	21000 41000 7400 8300 200 350 1300 760 1100	4000 8500 26000 2100 500 270 45 940 290	4000 13000 2200 2400 90 1100 14 110 350	19000 34000 4100 7100 360 400 440 780 410
Barium Barium Chromium Zirconium Copper Nickel Lead	[Ba] [Cr] [Zr] [Cu] [Ni] [Pb]	47 30 10 55 7 3	56 22 15 160 9 27	49 36 38 5 12	45 100 11 25 31 6	48 28 18 71 10 6	45 40 3 230 9 37	47 48 17 130 10 10	250 47 2 12 1 3	55 38 2 61 21 9	410 31 30 7 40 5 8
Zinc Vanadium Strontium Cobalt Molybdenum Silver	[Zn] [V] [Sr] [Co] [Mo] [Ag]	24 38 310 13 < 2 < 1	47 120 590 13 < 2 < 1	32 24 300 8 < 2 < 1	27 75 210 10 < 2 < 1	90 180 140 16 < 2 < 1	120000 14 39 11 < 2 < 1	8900 190 22 18 < 2 < 1	500 20 490 2 < 2 < 1	190 7 28 9 < 2 < 1	120 78 20 10 < 2 < 1
Cadmium Beryllium Boron Antimony Yttrium Scandium Tungsten	(Cd) (Be) (B) (Sb) (Y) (Sc) (W)	<pre>< 1 < 1 < 1 < 10 10 7 13 < 10</pre>	<pre>< 1 < 1 < 1 < 10 10 8 20 < 10</pre>	<pre>< 1 < 1 < 1 < 10 < 10 < 5 6 8 < 10</pre>	<pre>< 1 < 1 < 1 < 10 < 5 5 7 < 10</pre>	<pre></pre>	$\[\] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \] \[\] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \] \[\] \] \] \[\] \] \] \] \[\] \] \] \] \[\] \] \] \] \] \[\] \] \] \] \[\] \] \] \] \[\] \] \] \] \] \[\] \] \] \[\] \] \] \] \[\] \] \] \] \[\] \] \] \[\] \] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[\] \] \[$	<pre>< 1</pre>	$\begin{pmatrix} & 1 \\ & 22 \\ < & 1 \\ < & 10 \\ < & 5 \\ & 6 \\ & 3 \\ < & 10 \end{pmatrix}$	$\begin{pmatrix} & 1 \\ & 2 \\ & \langle & 1 \\ & \langle & 10 \\ & \langle & 5 \\ & 2 \\ & 1 \\ & \langle & 10 \end{pmatrix}$	$\langle 1 \\ \langle 1 \\ \langle 10 \\ \langle 5 \\ 6 \\ 4 \\ \langle 10 \\ \langle $
Niobium Thorium Arsenic Bismuth Tin Lithium Holmium	(Nb] (Th] [As] (Bi] [Sn] (Li] (Ho]	< 10 40 25 10 < 10 10 < 10	<pre>< 10</pre>	<pre>< 10</pre>	<pre>< 10 20 < 5 10 < 10 45 < 10</pre>	<pre>< 10</pre>	$egin{array}{ccc} & 10 \ < & 10 \ & 10 \ < & 5 \ < & 10 \ & 25 \ < & 10 \ & 10 \ \end{array}$	$\begin{pmatrix} & 10 \\ & 60 \\ & & 5 \\ & & 5 \\ & & 10 \\ & & 35 \\ & & 10 \end{pmatrix}$	<pre>< 10 < 10 < 5 5 < 10 20 < 10</pre>	<pre>< 10 < 10 20 < 5 < 10 15 < 10</pre>	<pre>< 10</pre>

SIGNED : Dernie Dunn

2-302-46TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE VANCOUVER, B.C. V6C 2T5	STREET							e No.:	
ATTN: B. DEWOND	ж, Ј. Сн	apman	PROJECT: KIT	GOLD	R-2611		ALL F	ESULTS PP	M
ELEMENT	-	37639	37640	37641	37642	37643	37540	37541	3 754 2
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Chromium Chromium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium	<pre>[A1] [Fe] [Ca] [Mg] [Na] [K] [Ti] [Mn] [K] [Ti] [Mn] [Cr] [Ca] [Ca] [Ca] [Ca] [Ca] [Ca] [Ca] [Ca</pre>	$\begin{array}{c} 6600\\ 24000\\ 4800\\ 3600\\ 430\\ 2900\\ 690\\ 420\\ 740\\ 56\\ 49\\ 420\\ 740\\ 56\\ 49\\ 48\\ 24\\ 18\\ 2\\ 16\\ 49\\ 48\\ 24\\ 5\\ < 2\\ < 1\\ < 1\end{array}$	$\begin{array}{c} 11000\\ 45000\\ 4200\\ 5100\\ 560\\ 5700\\ 1200\\ 370\\ 910\\ 71\\ 33\\ 7\\ 48\\ 4\\ 6\\ 75\\ 71\\ 23\\ 7\\ 48\\ 4\\ 6\\ 75\\ 71\\ 23\\ 7\\ < 2\\ < 1\\ < 1\end{array}$	$\begin{array}{c} 16000\\ 40000\\ 5500\\ 6300\\ 920\\ 6000\\ 1700\\ 490\\ 690\\ 100\\ 499\\ 8\\ 150\\ 3\\ 8\\ 150\\ 3\\ 100\\ < 2\\ < 1\\ < 1\\ < 1\end{array}$	$\begin{array}{c} 51000 \\ 720 \\ 450 \\ 130 \\ 510 \\ 150 \\ 47 \\ 88 \\ 13 \\ 130 \\ 4 \\ 9 \\ 4 \\ < 1 \\ 4 \\ 8 \\ 4 \\ 21 \\ < 2 \\ < 1 \\ < 1 \\ < 1 \end{array}$	$\begin{array}{c} 15000\\ 31000\\ 9706\\ 4600\\ 1800\\ 3600\\ 680\\ 400\\ 730\\ 64\\ 78\\ 7\\ 67\\ 5\\ 11\\ 120\\ 76\\ 46\\ 10\\ < 2\\ < 1\\ 2\end{array}$	890 12000 1700 280 100 250 37 56 330 8 140 2 15 10 6 32 4 8 32 4 8 34 4 8 3 4 4 8 3 4 4 8 3 4 4 1 5	380 14000 240 60 20 140 11 20 86 43 130 2 14 3 5 790 2 2 3 8 4 1 2 4 1 2 3 5 790 2 2 3 8 4 1 12	$\begin{array}{c} 230\\ 13000\\ 80\\ 40\\ 10\\ 120\\ 8\\ 9\\ 22\\ 35\\ 80\\ 1\\ 7\\ 22\\ 35\\ 80\\ 1\\ 7\\ 2\\ 33\\ 150\\ < 1\\ < 1\\ < 1\\ < 1\\ 4\\ 22\\ < 1\\ 2\end{array}$
Beryllium Boron Antimony Yttrium Scandium Tungsten Niobium Thorium Arsenic Bismuth Tin Lithium Holmium	(Be] (B] (Sb) (Y] (Sc) (W] (Nb) (Nb) (Th) (As) (Bi] (Sn) (Li) (Ho)	$\langle 1 \\ \langle 10 \\ \langle 5 \\ 4 \\ 2 \\ \langle 10 \\ \langle 10 \\ 10 \\ 15 \\ 5 \\ 10 \\ \langle 5 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\ \langle 10 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\$	$\langle 1 \\ < 10 \\ < 5 \\ 5 \\ 3 \\ < 10 \\ < 10 \\ < 10 \\ 30 \\ 15 \\ < 5 \\ < 10 \\ 5 \\ 10 \\ = 10$	$\langle 1 \\ < 10 \\ < 5 \\ 8 \\ 6 \\ 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ 10 \\$	5	< 1 < 10 < 5 6 100 < 10 160 < 5 < 10 < 5 < 10 < 5 < 10	< 1 < 10 < 5 1 < 1 < 60 < 10 < 10 < 5 < 10 < 5 < 10	$\langle 1 \\ \langle 10 \\ 5 \\ \langle 1 \\ \langle 10 \\ \langle 10 \\ \langle 10 \\ \langle 10 \\ \langle 5 \\ \langle 5 \\ \langle 10 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\ \langle 10 \\ \langle 10 \\ \langle 5 \\ \langle 10 \\$	< 1 < 10 5 < 1 < 1 < 20 < 10 < 55 < 5 < 10 < 5 < 10 < 5 < 10 < 5 < 10 < 10

Bernie Ourn

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE S VANCOUVER, B.C. V6C 215		.TD.					T.S.L. T.S.L. T.S.L.	File 1	No.: S - No.: SE2: No.: 1568	5MD	
ATTN: B. DEWONCH	K, J. CH	Iapman	PROJECT: 1	(ITGOLD	R-2577			all resu	LTS PPM		
ELEMENT		37503	37504	37505	37506	37507	37508	37509	37510	37511	37512
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium Chromium Zirconium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium Boron Antimony Yttrium Scandium Tungsten	<pre>[A1] [Fe] [Ca] [Mg] [Na] [K] [Ti] [Mn] [P] [Ba] [Cr] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10000\\ 21000\\ 4300\\ 4600\\ 60\\ 270\\ 18\\ 590\\ 140\\ 14\\ 100\\ 3\\ 2\\ 2\\ 2\\ 4\\ 31\\ 18\\ 15\\ 6\\ < 2\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 1\\ < 10\\ < 10\\ < 10\\ \end{array}$	$\begin{array}{c} 9400\\ 21000\\ 90000\\ 4400\\ 130\\ 830\\ 410\\ 2500\\ 290\\ 46\\ 16\\ 6\\ 4\\ 2\\ 9\\ 30\\ 110\\ 97\\ 8\\ < 2\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 7\\ 3\\ < 10\\ < 10\\ < 5\\ 7\\ 3\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ <$	$\begin{array}{c} 2500\\ 13000\\ 120000\\ 4200\\ 130\\ 1200\\ 12\\ 3200\\ 1200\\ 170\\ 12\\ 3\\ 8\\ 1\\ 4\\ 25\\ 6\\ 250\\ 4\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1$	$\begin{array}{c} 1300\\ 12000\\ 7000\\ 570\\ 50\\ 540\\ 10\\ 520\\ 110\\ 110\\ 96\\ 2\\ 26\\ 13\\ 110\\ 96\\ 2\\ 26\\ 13\\ 110\\ 49\\ 9\\ 13\\ 3\\ 2\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 3\\ 1\\ < 10\\ < 10\\ < 10\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 810\\ 3400\\ 220\\ 330\\ 40\\ \cdot 150\\ 4\\ 24\\ 32\\ 4\\ 100\\ < 1\\ 4\\ 32\\ 4\\ 100\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ < 1\\ < 1\\ < 10\\ < 10\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Niobium Thorium Arsenic Bismuth Tin Lithium Holmium	(Nb) [Th] [As] [Bi] [Sn] [Li] [Ho]	$< 10 \\ < 10 \\ 130 \\ < 5 \\ < 10 \\ < 5 \\ < 10 \\ < 5 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10$	<pre>< 10 < 10 < 5 < 5 < 10 < 5 < 5 < 10 < 5 < 10 < 5 < 10</pre>	<pre>< 10 100 5 5 < 10 < 5 < 10 < 5 < 10</pre>	$\left< \begin{array}{c} 10 \\ < 10 \\ < 5 \\ 5 \\ < 10 \\ < 5 \\ < 10 \\ < 5 \\ < 10 \end{array} \right.$	$< 10 \\ < 10 \\ < 5 \\ < 5 \\ < 10 \\ < 5 \\ < 10 \\ < 5 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10$	<pre>< 10 < 10 < 70 < 5 < 10 < 5 < 10 < 5 < 10 < 5 < 10</pre>	<pre>< 10 < 10 < 5 < 5 < 10 < 5 < 10 < 5 < 10 < 5 < 10</pre>	<pre>< 10 < 10 < 20 < 5 < 10 < 5 < 10 < 5 < 10 < 5 < 10</pre>	<pre>< 10 < 10 < 5 < 5 < 10 < 5 < 10 < 5 < 10 < 5 < 10</pre>	<pre>< 10 < 10 < 45 < 5 < 10 < 5 < 10 < 5 < 10</pre>

SIGNED : _ Bunie Dun

٠

. .

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE : VANCOUVER, B.C. V6C 215		D.					T.S.L. T.S.L. T.S.L.	File	No.: S - No.: SE2 No.: 156	5MD	
ATTN: B. DEWON	СК, Ј. С	Hapman	PROJECT	: KITGOLD	R-1	2577		ALL RESU	LTS PPM		
ELEMENT		37513	37514	37515	37514	37517	37518	37519	37520	37521	37522
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium Beryllium Boron Antimony Yttrium Scandium Tungsten Niobium Thorium	(A1) [Fe] [Ca] [Mg] [Na] [K] [Ti] [Mn] [P] [Ba] [Cr] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu] [Cu	$\begin{array}{c} 4100\\ 37000\\ 640\\ 1100\\ 40\\ 890\\ 8\\ 220\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 12\\ 390\\ 50\\ 68\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 5\\ 10\\ 10\\ 10\\ 5\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 1400\\ 4300\\ 1600\\ 760\\ 40\\ 230\\ 5\\ 94\\ 7B\\ 8\\ 110\\ <& 1\\ 9\\ 3\\ 4\\ 9\\ 5\\ 12\\ <& 1\\ <& 1\\ <& 1\\ <& 1\\ <& 1\\ <& 10\\ <& 5\\ <& 1\\ <& 10\\ <& 10\\ <& 10\\ <& 10\\ <& 10\\ <& 10\\ <& 10\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{E500} \\ \text{24000} \\ \text{9700} \\ \text{4400} \\ \text{220} \\ \text{610} \\ \text{31} \\ \text{710} \\ \text{820} \\ \text{210} \\ \text{38} \\ 10 \\ \text{43} \\ \text{7} \\ \text{6} \\ \text{35} \\ \text{64} \\ \text{46} \\ 10 \\ \text{< 2} \\ \text{< 1} \\ \text{< 1} \\ \text{< 1} \\ \text{< 10} \\ \text{< 5} \\ \text{6} \\ \text{40} \\ \text{< 10} \\ \text{< 10} \\ \text{80} \end{array}$	$\begin{array}{c} 2000\\ 9500\\ 57000\\ 2500\\ 60\\ 350\\ 340\\ 44\\ 82\\ 3\\ 11\\ 11\\ < 1\\ 74\\ 10\\ 390\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Arsenic Bismuth Tin Lithium Holmium	[As] [Bi] [Sn] [Li] [Ho]	300 < 5 < 10 < 5 < 10	$egin{array}{c} 10 \ < 5 \ < 10 \ < 5 \ < 5 \ < 10 \ < 5 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ < 10 \ \ < 10 \ \ < 10 \ \ < 10 \ \ < 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	5 < 5 < 10 < 5 < 10	< 5 < 5 < 10 < 5 < 10	5 < 5 < 10 < 5 < 10	15 5 < 10 < 5 < 10	10 < 5 < 10 < 5 < 10	<pre> < 5 10 < 10 < 10 < 5 < 10 < 10 </pre>	<pre></pre>	770 < 5 < 10 < 5 < 10

SIGNED : Bernie Dun

. .

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSUL 306 - 595 HOWE VANCOUVER, B.C. V6C 215	STREET	TD.					T.S.L. T.S.L. T.S.L.	File	Na. : 5 - Na. : 5E2 Na. : 156	5MD	
ATTN: B. DEWONC	K, J. C	Hapman	PROJECT: K	ITGOLD	R-2577			ALL RESU	LTS PPM		
ELEMENT		37523	37524	37525	37526	37527	37528	37529	37530	37531	37532
Aluminum Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium Copper Nickel Lead Zinc Vanadium	(A1) (Fe) (Ca) (Mg) (Na) (K) (Ti) (Mn) (P) (Ba) (Cr) (Cr) (Cr) (Cr) (Ca) (Ni) (Pb) (Zn) (Cv) (Sr) (Co)	$\begin{array}{c} 650\\ 40000\\ 480\\ 300\\ 300\\ 190\\ 9\\ 400\\ 44\\ 9\\ 110\\ 5\\ 240\\ 5\\ 2700\\ 740\\ 5\\ 2700\\ 740\\ 3\\ 7\\ 1\\ < 2\\ 170\\ 3\\ < 1\\ < 10\\ 180\\ 1\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 10\\ < 5\\ \end{array}$	$\begin{array}{ccccc} 7500\\ 18000\\ 2900\\ 1800\\ 50\\ 690\\ 54\\ 2400\\ 120\\ 130\\ 89\\ 2\\ 42\\ 2\\ 870\\ 180\\ 25\\ 7\\ 3\\ < 2\\ 870\\ 180\\ 25\\ 7\\ 3\\ < 2\\ 8\\ 2\\ 1\\ 30\\ 10\\ 4\\ 2\\ < 10\\ < 10\\ < 10\\ < 5\end{array}$	17000 55000 620 5500 170 1200 210 370 190 89 25 9 11 3 50 53 65 7 5 $\langle 2$ $\langle 1$ $\langle 10$ $\langle 5$ 4 3 $\langle 10$ $\langle 5$ 4 3 $\langle 10$ $\langle 5$ 4 3 $\langle 10$ $\langle 5$ 4 3 $\langle 10$ $\langle 5$ 4 3 $\langle 10$ $\langle 10$	$\begin{array}{c} 2900\\ 7000\\ 3400\\ 1500\\ 70\\ 310\\ 21\\ 410\\ 50\\ 51\\ 85\\ 1\\ 45\\ 3\\ 21\\ 13\\ 8\\ 21\\ 13\\ 8\\ 3\\ 21\\ 11\\ 10\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	$\begin{array}{c} 14000\\ 63000\\ 500\\ 4400\\ 30\\ 1500\\ 130\\ 550\\ 630\\ 220\\ 30\\ 9\\ 210\\ 2\\ 35\\ 34\\ 43\\ 5\\ 4\\ 22\\ 5\\ 4\\ 22\\ 5\\ 4\\ 22\\ 5\\ 4\\ 10\\ < 10\\ < 5\\ 2\\ 2\\ < 10\\ < 10\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 100\\ < 50\\ 1$	$\begin{array}{c} 17000\\ 42000\\ 1900\\ 6300\\ 60\\ 1600\\ 27\\ 160\\ 800\\ 81\\ 42\\ 6\\ 82\\ 42\\ 20\\ 61\\ 38\\ 10\\ 7\\ 4\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ $	$\begin{array}{c} 6100\\ 23000\\ 2500\\ 2600\\ 60\\ 1400\\ 13\\ 84\\ 1200\\ 53\\ 96\\ 3\\ 35\\ 10\\ 9\\ 20\\ 31\\ 8\\ 4\\ < 2\\ 20\\ 31\\ 8\\ 4\\ < 2\\ < 10\\ < 10\\ < 5\\ 4\\ 2\\ < 10\\ < 10\\ < 55\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	$ \begin{array}{r} 1900 \\ 17000 \\ 920 \\ 700 \\ 50 \\ 790 \\ 11 \\ 55 \\ 470 \\ 31 \\ 100 \\ 3 \\ 26 \\ 13 \\ 11 \\ 12 \\ 12 \\ 4 \\ 5 \\ < 2 \\ 2 \\ 4 \\ 5 \\ < 2 \\ 2 \\ 4 \\ 5 \\ < 2 \\ 2 \\ 4 \\ 5 \\ < 2 \\ 2 \\ < 1 \\ < 10 \\ 5 \\ 2 \\ < 1 \\ < 10 \\ 5 \\ 2 \\ < 1 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ < 5 \\ $	$\begin{array}{c} 11000\\ 44000\\ 1600\\ 4400\\ 310\\ .850\\ 730\\ 260\\ 830\\ 77\\ 21\\ 12\\ 40\\ < 1\\ 12\\ 16\\ 59\\ 14\\ 4\\ 6\\ < 1\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 4\\ 4\\ < 10\\ < 10\\ < 5\\ 4\\ 4\\ < 10\\ < 10\\ < 75\\ 5\\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Tin Lithium Holmium	(Sn] [Li] [Ho]	< 5 < 10 < 5 < 10	$< 5 \\ < 10 \\ 10 \\ < 10 \\ < 10$	< 5 < 10 15 < 10	< 5 < 10 < 5 < 10	<pre> < 5 < 10 < 5 < 10 < 10 </pre>	< 5 < 10 10 < 10	< 5 < 10 < 5 < 10	< 5 < 10 < 5 < 10	< 5 10 15 10 	< 5 < 10 < 5 < 10

SIGNED : _____ Dernie Durn

. . .

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

OREQUEST CONSULTANTS LTD. 306 - 395 HOWE STREET VANCOUVER, B.C. V6C 2T5			T.S.L. REPORT No. : S - 1058 - 8 T.S.L. File No. : SE25MD T.S.L. Invoice No. : 15684
ATTN: B. DEWONCK, J. CHAPMAN	PROJECT: KITGOLD	R-2577	ALL RESULTS PPM
37533 ELEMENT	37534 37535	37536 37537	37538 37539
Aluminum [Al] 15000 Iron [Fe] 46000 Calcium [Ca] 940 Magnesium [Mg] 5100 Sodium [Na] 60 Potassium [K] 950 Titanium [Ti] 44 Maganese [Mn] 210 Phosphorus [P] 620 Barium [Ba] 34 Chromium [Cr] 30 Zirconium [Zr] 8 Copper [Cu] 40 Nickel [Ni] 15 Lead [Pb] 29 Zinc [Zn] 95 Vanadium [V] 33 Strontium [Sr] 6 Cobalt [Co] 22 Molybdenum [Mo] 130 Silver [Ag] 2 Cadmium [Cd] 3 Beryllium [Be] 1 Boron [B] 4 Molybdenum [No] 5 Yttri	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bismuth [Bi] < 5 Tin [Sn] < 10 Lithium [Li] < 5 Holmium [Ho] < 10	$\begin{pmatrix} 10 \\ < 5 \\ < 5 \\ < 10 \\ < 10 \\ < 10 \\ < 10 \\ \end{pmatrix}$	< 10 < 10 5 < 5 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SIGNED : Bunie Curn

APPENDIX III

ANALYTICAL PROCEDURES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Jan.9/90

OreQuest Consultants Ltd. 306 - 595 Howe Street Vancouver, B.C. V6C 2T5

- 1 SAMPLE PREPARATION PROCEDURES Rock and Core
 - Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh.

Soils and Silts - Sample is dried and sieved to -80 mesh.

2 - FIRE ASSAY PROCEDURES Geochem Gold (Au ppb) -

A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption.

Assay Gold (Au oz/ton) -

A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance.

3 - Geochem Silver (Ag ppm) A lg subsample is digested with 5mls of aqua rega
 for 1 1/2 to 2 hours, then diluted with DI H20.
 The solutions are then run on the Atomic Absorption.

Assay Silver (Ag oz/ton) -A 2.00g sample is digested with 15mls HCl plus 5mls HNO3 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HCl. The solution is run on the Atomic Absorption.

- BASE METALS
 Geochem A 1g subsample is digested with 5mls of aqua rega
 for 1 1/2 to 2 hours, then diluted with DI H20.
 The solutions are then run on the Atomic Absorption.
 - Assay A 0.500g sample is taken to dryness with 15mls HCl plus 5mls HN03, then redissolved with 5mls HN03 and diluted to 100mls with DI H20. The solution is run on the Atomic Absorption.

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

Page 2.

- 5. ICAP Geochemical Analysis -A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the ICAP.
- 6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

Yours truly,

Bernie Dunn

Bernie Dunn BD/vh

2000 Well bedded black Siltstone and sandstone 2500 assays >0.1 oz/ton Au · 3000 interbedded with proximal to mafic/intermediate intermediate pyroclastics volcanic contact medium grained intermediate Öld trench. volcanic tuffs and flows -40 Zone of predominantly green or marcon breccia, clasts = medium grained mafic volcanic or sub volcanic sph clasts 1-75cm dia, angular - subrounded = 20-70% of rock matrix - medium grained intermediate volcaniclastic material 5000 . Vein system parallel to bedding zone of predominately intermediate volcaniclastic 2 and tuff rock Quartz vein stockwork forms 6500 prominent photolinear \ -all high gold assays on hanging Š 2500 ଞ୍ଚି wall of vein system -stockwork has no high gold value 5000 3a intermediate volcanics 4500 60 1 **740** 4000 quartz veins up to 2cm wide 4a 3500 -pinch and swell, brecciated in parts minor pyrite mineralization 2 13 high sericitic alteration of host == 65 // 70 veils sinistrally faulted 2-3m 70 -000r medium grained 1_=== 4a lamprophyric dykes 150/83 asaltic conglomerate/ 11. I.I. pillow lavas 3 20 60 gradational boundary 2 epidote alteration in quartz veins 0

LEGEND

Lower to Middle Jurassic

4 MIDDLE VOLCANIC UNIT

JURASSIC

- a Green and minor marcon and site pyroclastic rocks
- **b** Feldspar + hornblende andesite porphyry
- C Black siltstone
- d Maroon siltstone, sandstone, and conglomerate

3 MIDDLE SEDIMENTARY UNIT

- a Black siltstone
- **C** Green and purple volcanic breccia with minor siltstone, sandstone, and conglomerate

A.R. 21173

SANTA MARINA GOLD LTD.

Figure 4 KITGOLD PROJECT

PROPERTY

GEOLOGY

British Columbia NTS 103P/12

XY3

- **d** Interbedded siltstone, sandstone, wacke, and polymictic pebble comglomerate
- 2 MAFIC VOLCANIC UNIT
 - **a** Olivine porphyry basalt flows
 - **b** Augite porphyry basalt flows and pillowed flows
 - c Basaltic pyroclastic rocks
 - **d** Basaltic conglomerate
- **1** LOWER SEDIMENTARY UNIT
 - a Black siltstone, argillite, shale
 - **b** Black wacke, sandstone, limestone

SYMBOLS

OREQUEST

September 1990

- ---- Geological contact (approximate)
- Fault/shear (approximate)
 - Bedding
 - Foliation
- Anticline, Syncline
- Veins
- Younging

