LOG NO: April 15/91	RD.
ACTION:	
· · · · · · · · · · · · · · · · · · ·	
FILE NO:	وابد حنبي ا

ANCHPORT

B R E E

GICAL SMENT

0 0

L

0 0

E) Ø

<u>ک</u> ج

ASSESSMENT REPORT ON

SILT, SOIL AND ROCK GEOCHEMICAL SAMPLING

OF THE GIN PROPERTY

(Gin 1 to 9 Claims)

Liard Mining Division, British Columbia NTS 104H/12W Latitude: 57° - 44' N Longitude: 129° - 55' W

on behalf of

DRYDEN RESOURCE CORPORATION Vancouver, B.C.

by

David T. Mehner, M.Sc., FGAC KEEWATIN ENGINEERING INC. #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

March 5, 1991

.....

Province of British Columbia

•

Ministry of Energy, Mines and Petroleum Resources

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

.

TYPE OF REPORT/SURVEY(S)	TOTAL COST
SILT SOIL & ROCK GEOCHEMICAL SAM	APLING #22,923.67
AUTHOR(S) DAVID MEHNER SIG	NATURE(S) Dair & mehner
·	·····
DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILE PROPERTY NAME(S) $\dots G.M.$	D YEAR OF WORK !?
COMMODITIES PRESENT COPPER - GOLD	
B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN	
MINING DIVISION	NTS $104 H - 12 W$
LATITUDE	IGITUDE
NAMES and NUMBERS of all mineral tenures in good standing (when wor (12 upits) · PHOENIX (Lot 1706) · Mineral Lease M 123 · Mining or Certified	rk was done) that form the property [Examples: TAX 1-4, FIR8 Mining Lease MI 12 (claims involved)] -
GIN 1 to 9 CLAIMS; 20 UNITS E	ACH. 180 UNITS TOTAL
	· · · · · · · · · · · · · · · · · · ·
OWNER(S)	
(1) DRYDEN RESOURCE CORP. (2)	
•••••••	•••••••••••••••••
MAILING ADDRESS	
900 - 900 WEST HASTINGS ST.	·····
VANCOUVER B.C. VGCIES	· · · · · · · · · · · · · · · · · · ·
OPERATOR(S) (that is, Company paying for the work)	
(1) DRYDEN RESOURCE CORP. (2)	
MAILING ADDRESS	
800-900 WEST HASTINGS ST.	
VANCOUVER, B.C. VECIES	
	· · · · · · · · · · · · · · · · · · ·
SUMMARY GEOLOGY lithology are structure alteration mineralization	1 size and attitude).
INUER TO MIDDLE JURASSIC TOOD	OGGANE INCANICS ARE INTRUDE
RV COFILAL HORNBIENDE DIDRITE. FR	PATIC ZONES OF PENELITIC
OUTERATION OCCUR THROUGHOUT THE	- PORDEDTY. RIDITE VENIS (SZCM
ALTERTION OCCOR THROUGHOUT THE	$\frac{1}{2} \frac{1}{2} \frac{1}$
SIGNIFICANT MINERALIZATION 15	KNOWN ON THE PROPERTY.
······································	
REFERENCES TO PREVIOUS WORK	
	•••••••••••••••••••••••••••••••••••••••

TYPE OF WORK IN THIS REPORT	EXT (IN	TENT OF WORK				0	N WHICH CLAIMS		COST APPORTIONED
GEOLOGICAL (scale, area)		· · · · · · · · · · · · · · · · · · ·			<u></u>				\$ 1220 12
Ground			[.		· · · · · · · · ·	N 8 9 7			$[\cdot, $
Photo									
GEOPHYSICAL (line-kilometres)			ļ						
Ground									
Magnetic									
Electromagnetic									
Induced Polarization									
Radiometric									
Seismic									
Other									
Airborne									
GEOCHEMICAL (number of samp	les analysed for	.)			0.1.0.				Arona M
Soil	92 Lu Pb	Zn Ag Au As	Hg 56 Mo	6	-/N 3,5	?, 6., 7			5 atd 44
Silt	78 Rulba	In Ag An As	Hg Sb Mo	Ģ	-IN 2, 3,	4,5,6,7,	8,9		•/3,754.20
Bock	24 LuPb	ZnAq Au AS H	19 56 Mo	<u>6</u>	IN 3 6	7,8	·		# 1558-81
Other									
DRILLING (total metres; number	of holes, size)								
Core									
Non-core									
RELATED TECHNICAL									
Sampling/assaving									
Petrographic									
Mineralogic									
Metallurgic									
			[
PROSPECTING (scale, area)									
PREPARATORY/PHYSICAL									
Legal surveys (scale, area)				. .	• • • • • • • • •		• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	•••••
Topographic (scale, area)					• • • • • • • • •		· · · · · · <i>· · ·</i> · · · · · · · · · ·		••••••
Photogrammetric (scale, area)					• • • • • • • •			•••••	
Line/grid (kilometres)					••••				
Road, local access (kilometres)		 <i></i>	••••		• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		••••
Trench (metres)					••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • •
Underground (metres)									
								TOTAL COST	22,923.67
FOR MINISTRY USE ONLY		NAME OF P	AC ACCOUNT		DEBIT	CREDIT	REMARKS:		
Value work done (from recent)						· —			

ŧ

CON ANAISTRT DEC OALT		Debit ditebit	
Value work done (from report)			
Value of work approved			
Value claimed (from statement)			
Value credited to PAC account		•••••	
Value debited to PAC account			
Accepted Date	Rept. No		Information Class
	l		

TABLE OF CONTENTS

-

.

.

Page No.

NTRODUCTION	1
Location and Access Physiography and Climate Property Status and Ownership Previous Work	1 1 2 3
GEOLOGY	3
Regional Geology Property Geology Lithology Alteration Structure Mineralization	3 5 5 6 6
GEOCHEMISTRY	6
Analysis	7 7
CONCLUSIONS	9
RECOMMENDATIONS	9
REFERENCES	.0

LIST OF FIGURES

Following Page No.

Figure 1.	Location Map	1
Figure 2.	Regional Location Map	1
Figure 3.	Gin Property Claim Map	2
Figure 4.	Regional Geology/Bowser Basin	3
Figure 5.	Regional Geology	3

LIST OF MAPS

Map 1.	Geology - 1:10,000	In pocket
Map 2.	Cu-Au-Ag, Rock, Silt and Soil Geochemistry; 1:10,000	н
Map 3.	Pb-Zn-Mo, Rock, Silt and Soil Geochemistry; 1:10,000	м
Map 4.	As-Hg-Sb, Rock, Silt and Soil Geochemistry; 1:10,000	n

LIST OF APPENDICES

- APPENDIX I Statement of Expenditures
- APPENDIX II Summary of Personnel

· ...

- APPENDIX III Analytical Procedures Used by Min-En Laboratories Ltd.
- APPENDIX IV Silt Geochemistry Results
- APPENDIX V Silt Sample Descriptions
- APPENDIX VI Soil Geochemistry Results
- APPENDIX VII Soil Sample Descriptions
- APPENDIX VIII Rock Geochemistry Results
- APPENDIX IX Rock Sample Descriptions
- APPENDIX X Statement of Qualifications

INTRODUCTION

The Gin claims are located on the Klastline Plateau within the Stikine Arch of northwestern British Columbia. They were staked in 1990 to cover ground thought to have excellent potential for hosting porphyry Cu-Au mineralization or precious metal rich veins which commonly occur peripheral to these deposits.

In 1990, Keewatin Engineering Inc. was contracted by Dryden Resource Corporation to carry out reconnaissance exploration over the property and assess it's potential for hosting economic mineralization. Initial exploration consisted of limited silt, soil and rock geochemical sampling. Field work was carried out from a base camp established on the Klastline Plateau 20 km, southwest of the property centre.

Location and Access

The Gin claims are located in the Stikine region of northwestern British Columbia, approximately 193 km north of Stewart, B.C. (Figure 1). They are centred 7 km east of the northern tip of Kinaskan Lake and 17 km south-southeast of Iskut Village at about 57°-44' North latitude and 129°-55' West longitude on NTS map sheet 104H/12W (Figure 2).

Access is via helicopter from Canadian Helicopter's base at Tatogga Lake Lodge, a resort located 14 km south of Iskut Village and 1.2 km west of the northern end of the property. Both the lodge and Iskut Village are situated on the Stewart-Cassiar Highway. The proposed B.C. Rail extension to Dease Lake is about 18 km northeast of the Gin claims. Scheduled air service is available from Smithers and Iskut during the summer months.

Physiography and Climate

The Gin property covers the northwestern half of Todagin Mountain which forms a small massif between Kinaskan, Ealue and Todagin Lakes in the southeastern portion of the Klastline Plateau. Evaluation varies from 850 metres (2,800 feet) above sea level along Coyote Creek in the extreme northwest corner of the property to 2,155 metres (7,069 feet) above sea level atop Todagin Mountain (Map 1). Most of the property is characterized by rolling plateau with gentle slopes between 1,525 metres (5,000 feet) and 1,830 metres (6,000 feet) above sea level. Steep, rugged slopes

are prevalent along the deeply incised creek valleys and on the north facing slopes at the northern end of the property.

Vegetation consists of spruce and alder along the lower slopes and in creek valleys. Sub-alpine scrub meanders through the property at about the 4,200 foot level. The tree line is about 4,500 feet above sea level. Alpine flora including flowers and grass are common above the tree line. A number of small creeks which flow through the property could provide water for camp and drill operations.

Precipitation in the area is moderate, averaging 100 cm per year. Thick accumulations of snow are common during winter. Field work can commence at lower elevations in June, while it is seldom possible to begin surface geological work before July and difficult to continue past September at the higher elevations.

Property Status and Ownership

The nine Gin claims (180 units) located within the Liard Mining Division (Figure 3) are 100% owned by Dryden Resource Corporation with offices at Suite 800 - 900 West Hastings Street, Vancouver, B.C., V6C 1E5.

The property consists of the following claims:

	Record No.	No. of Units	Date of Record	Expiry Date
1	7642	20	July 24, 1990	July 24, 1992
2	7643	20	July 24, 1990	July 24, 1992
3	7644	20	July 24, 1990	July 24, 1993
4	7645	20	July 24, 1990	July 24, 1992
5	7646	20	July 26, 1990	July 26, 1993
6	7647	20	July 26, 1990	July 26, 1992
7	7648	20	July 22, 1990	July 22, 1992
8	7649	20	July 26, 1990	July 26, 1993
9	7650	20	July 23, 1990	July 23, 1993

* New expiry dates after filing 1990 assessment work.

Previous Work

The Gin property is located in the Stikine River area of northwestern B.C., a region well known for its alkalic plutons and associated porphyry copper-gold mineralization.

Although there are no known showings on the Gin property, the claims are situated immediately west of Falconbridge Ltd.'s, Red-Chris porphyry copper-gold prospect. This deposit, with published reserves of 45.2 million tons grading 0.56% Cu and 0.010 oz/ton Au (Panteleyev, 1977) was discovered in the 1960's. It, along with other properties in the Klastline Plateau area were explored intermittently for porphyry copper mineralization until the late 1970's. The entire area remained relatively inactive until the G.S.C. carried out a regional stream silt sampling program in 1988 (National Geochemical Reconnaissance, 1988). Since then a number of companies, including Dryden Resource Corporation have been actively exploring the area for porphyry copper-gold and associated precious metal, shear-vein deposits.

As part of its ongoing exploration program in the area, Dryden Resource Corporation staked the Gin 1 to 9 claims in 1990 to cover a number of colour gossans and stratigraphy thought to have excellent potential for hosting economic mineralization.

Since acquiring the claims, Dryden Resource Corporation has conducted a silt sampling program over the entire property and has followed this up with limited soil and rock geochemical sampling.

GEOLOGY

Regional Geology

The property is located within the Intermontane Tectono-Stratigraphic Belt of the Canadian Cordillera (Figure 4). The claims lie within the northeastern half of the Stikine Arch along the northern contact of the Middle to Upper Jurassic sediments of the Bowser Lake Group.

The regional geology (Figure 5) has been mapped by the GSC (Souther, 1971; Gabrielse and Tipper, 1984; Read, 1984). Rock units in the area include Permian and Older phyllites and limestone overlain by Upper Triassic, Stuhini Group argillite, siltstone, and wacke. Overlying these sediments are Upper Triassic to Lower Jurassic Hazelton Group augite-andesite flows, pillow lavas, pyroclastics

4

and derived volcaniclastics. Lower Jurassic Toodoggone volcanics which have been mapped on parts of the claims are thought to be correlative with parts of the Hazelton Group stratigraphy.

Unconformably overlying the above units to the south are chert pebble conglomerate, grit, greywacke and siltstone of the Middle to Upper Jurassic, Bowser Lake Group.

Transecting the Upper Triassic to Middle Jurassic assemblage is Upper Cretaceous to Lower Tertiary, massive and flow banded rhyolite, orbicular rhyolite and massive felsite. This unit commonly weathers rusty orange due to the oxidation of fine grained pyrite.

Capping the stratigraphy at the higher elevations are Upper Tertiary and Pleistocene basalt and olivine basalt flows, commonly exhibiting excellent columnar jointing.

Intrusive rocks in the region are typically fine to medium grained plutons that are coeval with the Triassic to Middle Jurassic volcanic assemblages. Compositions vary from diorite, granodiorite, monzodiorite, monzonite and syenite. Many of the smaller alkalic plutons, dated at between 185 and 195 million years (Schmitt, 1977), are associated with porphyry Cu-Au or precious metal vein systems. The intrusives all fall within the Stikine Arch structural domain, a regional feature along which Early Jurassic intrusive and related (island arc type) volcanic activity took place. Alkaline porphyry copper-gold deposits including the Galore Creek, Schaft Creek and Red Chris deposits occur within this trend. Some of the more notable deposits or occurrences of this type that are situated in the general area (Figure 2) include:

- A) The Red-Chris deposit situated on the property immediately east of the Gin claims (discussed earlier in this report).
- B) The Q.C. porphyry Cu-Au deposit located on Quash Creek, 23 km to the northwest of the property centre. Discovered by Conwest Exploration in the 1960's, the deposit has inferred geological reserves of 100 million tons plus grading 0.12% Cu (Webb, 1970).
- C) The GJ porphyry Cu-Au deposit located on Groat Creek 19 km to the west-southwest was discovered in 1964 by Conwest Exploration Co. Ltd.

- D) The Rok porphyry Cu-Au prospect situated on the southeastern half of Ehahcezetle Mountain, 8.5 km to the north-northeast of the Gin claims. Discovered by Texasgulf Inc. in 1975, the property was drilled in 1990 by Consolidated Carina Resources Ltd. in 1990 who intersected 27.87 metres grading 1.765% Cu and 0.066 oz/ton Au.
- E) The Spectrum Au vein system located on the east slopes of Mt. Edziza, 33 km to the west. Recent drill intersections into this precious metal target by Columbia Gold Mines (Northern Miner, October 29, 1990) include 33 feet at 0.36 oz/ton Au, 8 feet at 0.60 oz/ton Au and 75 feet at 0.30 oz/ton Au.
- F) The Castle Au prospect located east of the QC porphyry Cu-Au deposit and 22 km northwest of the Gin property centre. Work to date by Teck Corp. and Triumph Resources Ltd. has identified a sulphide system 7 km long by up to 250 metres wide that contains visible gold and has yielded assays to 4.0 oz/ton Au from grabs and 0.93 oz/ton Au from one metre chips (Brock, 1990).
- G) The Main, Top and Gordon's showing situated 4 km northwest of the Q.C. prospect. These vein/shear showings discovered by Teck Corp. in 1988 have yielded highly anomalous gold values including 1.062 oz/ton Au and 6.80 oz/ton Ag across 9.2 feet (Delaney, 1988).
- H) The Horn (SF) Ag prospect located 5 km south of the Q.C. porphyry prospect.
 Discovered by Conwest Exploration in 1964, a vein system has returned values of 11.04 oz/ton Ag over an area of 45 metres x 4.2 metres (Phendler, 1980).

Property Geology

Lithology

Geological mapping during the 1990 program was limited to a number of wide spaced, short traverses in the southwestern portion of the property (Map 1). In this area Lower Jurassic, "Toodoggone" assemblage rocks consisting of conglomerate interbedded with porphyritic andesite flows are intruded by hornblende diorite. The conglomerate consists of well rounded andesite clasts to 25 cm in diameter with minor interbedded quartzite, siltstone and calcareous siltstone. Locally the

Keewatin Engineering Inc.

calcareous siltstone has been altered to "skarn" assemblage calc-silicate minerals including actinolite and calcite.

Unconformably overlying the Toodoggone stratigraphy to the south are Middle to Upper Jurassic, Bowser Group chert pebble conglomerates, minor greywacke and siltstone. The conglomerates contain clasts to 20 cm in diameter but typically clasts are ≤ 4 cm across.

Alteration

A cursory examination of outcrops throughout the property indicates there is widespread but erratic propylitic alteration. Hematite, chlorite and calcite veins, or fracture fillings are the main alteration minerals. Actinolite and calcite, calc-silicate replacement of limy siltstone beds has been noted in two outcrops.

Large iron stained, colour gossans due to oxidized, fine grained pyrite or oxidized dolomite veins (pyrite bearing?) are common throughout the property. Magnetite veins were noted in the hornblende diorite unit.

Structure

Bedding strikes northeast with southerly dips of 35° to 80°. The major unconformity separating Bowser Group sediments from underlying Toodoggone volcanics and volcaniclastics also strikes northeast-southwest. No faults were noted.

Mineralization

Widely scattered, narrow (<3 cm) pyrite veins occur erratically throughout the property. Trace amounts of chalcopyrite and arsenopyrite are associated with the pyrite locally. No significant mineralization has been noted on the property.

<u>GEOCHEMISTRY</u>

During the 1990 field season, 78 stream silts, 92 soils and 24 rock samples were collected. Of this total, 28 silts and 5 rock samples were collected from ground immediately adjacent to the Gin property.

6

7

The <u>soil samples</u> were collected from four separate traverses through the central portion of the property over areas largely underlain by Toodoggone volcanics and sediments. The samples were taken at 100 metre intervals from flagged reconnaissance lines. Samples were taken with a mattock from the "B" horizon wherever present.

<u>Stream silt samples</u> were taken from active stream beds wherever possible. A Hughes 500 helicopter was used to aid the reconnaissance style sampling program.

<u>Rock samples</u> were taken of mineralized or altered float and outcrop material. Typical samples consist of random grabs or chips from the collection site. No systematic chip or channel sampling wsa done.

All silt, soil and rock sample locations were marked with red and blue flagging.

<u>Analysis</u>

All samples were sent to Min-En Laboratories Ltd. in Smithers, B.C. where they were processed and analyzed for gold. Pulps were forwarded to Min-En Laboratories Ltd. in Vancouver, B.C. for 7 element ICP plus Hg analysis.

Analytical procedures used by Min-En Laboratories Ltd. are outlined in Appendix III.

<u>Results</u>

<u>Stream silt geochemistry</u> results are plotted on Maps 2 to 4. Geochemistry results are also listed in Appendix IV and sample descriptions are in Appendix V.

The results for all nine elements analyzed are low. Only two of the silt samples yielded values greater than 20 ppb gold (21 and 29 ppb) and none of the samples returned ≥90 ppm copper. In comparison to silt geochemistry results from elsewhere on the Klastline Plateau, those from the Gin property are considered to reflect background values only.

A summary of silt geochemistry values is as follows:

Copper (Map 2):	Range 12 ppm - 85 ppm
Gold (Map 2):	Range 1 ppb - 29 ppb
Silver (Map 2):	Range 0.20 ppm - 2.4 ppm
Lead (Map 3):	Range 6 ppm - 116 ppm
Zinc (Map 3):	Range 38 ppm - 338 ppm
Molybdenum (Map 3):	Range 1 ppm - 5 ppm
Arsenic (Map 4):	Range 1 ppm - 18 ppm
Mercury (Map 4):	Range 105 ppb - 3,500 ppb
Antimony (Map 4):	Range 1 ppm - 7 ppm

Soil geochemistry results are plotted on Maps 2 to 4. Geochemistry results are also listed in Appendix VI and sample descriptions are in Appendix VII.

As with silt results, geochemistry values for the soil samples collected from the Gin property are low for all the elements analyzed.

A summary of results is as follows:

Copper (Map 2):	Range 16 ppm - 98 ppm
Gold (Map 2):	Range 1 ppb - 9 ppb
Silver (Map 2):	Range 0.10 ppm - 1.1 ppm
Lead (Map 3):	Range 9 ppm - 144 ppm
Zinc (Map 3):	Range 31 ppm - 833 ppm
Molybdenum (Map 3):	Range 1 ppm - 7 ppm
Arsenic (Map 4):	Range 1 ppm - 114 ppm
Mercury (Map 4):	Range 45 ppb - 2,750 ppb
Antimony (Map 4):	Range 1 ppm - 48 ppm

<u>Rock geochemistry</u> results are plotted on Maps 2 to 4. Results are also listed in Appendix VIII and sample descriptions are in Appendix IX.

Results show narrow pyrite \pm arsenopyrite veins on the property do contain elevated gold and silver values to 1,240 ppb and 45.1 ppm respectively. Moderately anomalous antimony values to 155

Keewatin Engineering Inc.

ppm, arsenic values to 3,455 ppm and mercury values to 6,250 ppb were also obtained. A single anomalous zinc value of 8,340 ppm and two lead values of 1,211 ppm and 3,030 ppm were also located. Copper values are relatively low with only two samples yielding \geq 150 ppm. The highest copper result was 419 ppm.

CONCLUSIONS

Silt, soil and rock geochemical sampling over parts of the Gin property have failed to identify significant mineralized targets requiring follow-up work.

The northern portion of the property, particularly the north facing slopes along Coyote Creek have seen only limited sampling and opportunities could still exist in this area for porphyry coppergold or precious metal, shear-vein style mineralization.

RECOMMENDATIONS

Two widely spaced contour soil lines with samples taken at 100 metre intervals are recommended to test the north facing slopes at the north end of the property for copper-gold mineralization. Further work would be contingent upon the results of this program.

Respectfully submitted,

KEEWATIN ENGINEERING INC. Mahan D. T. MEHNER David T. Metric r. M.Sc., F EHO

9

REFERENCES

Brock, J.S., 1990. Triumph Resources Ltd. Progress Report on the Castle Property.

Delaney, T.M., 1988. Assessment Report on Hand Trenching, Geology and Geochemistry, Quash Creek, B.C., Liard Mining Division, NTS 104G/16W.

Gabrielse, H. and Tipper, H., 1984. Geological Survey of Canada, Open File 1005.

- Mehner, D.T., 1991. Assessment Report on Diamond Drilling, Contour Soil Sampling and Geophysical Surveys of the GJ Property, Liard Mining Division, B.C.
- National Geochemical Reconnaissance, 1:250,000 Map Series, 1988. Geological Survey of Canada, Open File.

Northern Miner Newspaper, October 19, 1990, p. 18.

- Panteleyev, A., 1977. Red-Chris Deposit (104H/12W) in Geology in British Columbia, 1976. British Columbia Department of Mines and Petroleum Resources, Victoria, pp. 125-127.
- Phendler, R.W., 1980. Report on the Horn and Big Claims (Covering the S.F. and Q.C. Prospects), Liard Mining Division, B.C. Unpublished Company Report for ERL Resources Ltd.
- Schmitt, H.R., 1977. A Triassic-Jurassic Granodiorite Monzodiorite Pluton South-East of Telegraph Creek, B.C. Unpublished B.Sc. Thesis, University of British Columbia, Vancouver, 91 pp.
- Souther, J.G., 1971. Telegraph Creek Map-Area, British Columbia. Geological Survey of Canada, Paper 71-44.
- Seraphim, R.H., 1971. Geological Report on Al Claim Group, Quash Creek, Liard Mining Division, Assessment Report 3239.

Webb, A.J., 1970. Report on Q.C. Group, Liard Mining Division, B.C. Amoco Company Report.

APPENDIX I

-

<u>, ---</u>

.

<u>н</u>.,

• •

-

÷ .

Statement of Expenditures

STATEMENT OF EXPENDITURES

A----

-

- · -

. . .

Gin 1 to 9 Mineral Claims

Personnel			
David Mehner, Senior Geologist	3.0 days @ \$375/day	\$1,125.00	
Marty Bobyn, Project Geologist	2.0 days @ \$325/day	650.00	
Bob Ryziuk, Geological Technician	3.5 days @ \$300/day	1,050.00	
Dan Perrett, Prospector	2.0 days @ \$250/day	500.00	
Mike Skeoch, Prospector	2.5 days @ \$240/day	600.00	
Grant Nagy, Sampler	2.0 days @ \$250/day	500.00	
Colin Anderson, Labourer	1.0 days @ \$230/day	230.00	
Trevor Shepard, Sampler	2.5 days @ \$175/day	437.50	
Keith Louis, Sampler	3.5 days @ \$175/day	612.50	
Verna Jordan, Cook/First Aid	3.0 days @ \$250/day	<u> </u>	
			\$ 6,455.00
Accommodation and Food			
Includes Keewatin personnel and pilot	29.0 man days @ \$60/da	У	1,740.00
<u>Equipment Use</u>	25.0 man days @ \$15/da	у	375.00
Helicopter (including fuel)			
Hughes 500	10.9 hours @ \$ 670/hr.	\$7,303.00	
Bell 205	1.0 hours @ \$1700/hr.	1,700.00	
			9,003.00*
<u>Geochemistry</u>			-
Soils	92 samples @ \$10.00 ea.	\$ 920.00	
(includes sample prep., Au fire geocher and 7 element ICP)	n, Hg analysis		
Silts (includes analysis as for soils)	78 samples @ \$10.00 ea.	780.00	
Rocks	24 samples @ \$12.50 ea.	300.00	
(includes analysis as for soils & silts)		<u> </u>	2,000.00*
<u>Camp Construction and Maintenance</u>			123.84*
Field Supplies - Topo-thread, flagging,	, etc.		287.39*
Expediting - contract charges			102.00*
Travel - staff to and from Vancouver			120 70+
			150.70*
Freight			174.59*
Report Preparation			
D. Mehner	2.0 days @ \$375/day	\$ 750.00	
Drafting, typing, blueprints, accounting	g, etc.	600.00	
	5,		1.350.00
Sub-Total:			21,741.52
Handling Fee - 10% on 3rd Party invoi	ces by Keewatin Engineering	Inc	
(denoted by *)	ere of reconstraine Dagingering		1 182 15
(1,104.15
TOTAL EXPENDITURES:			\$22,923.67

APPENDIX II

.

-

_

....

Summary of Personnel

Keewatin Engineering Inc.

.

SUMMARY OF PERSONNEL

.....

_

....

- - - -

Name	Position	Sampler <u>Code</u>	Dates Worked
David Mehner	Senior Geologist	"AA"	Aug. 4, 5 (½ day); Sept. 16 & 17 (½ days); Nov. 6 (½ day).
Marty Bobyn	Project Geologist	"F "	Sept. 16, 17.
Bob Ryziuk	Geological Technician	"BR"	Sept. 16, 17, 24 (½ day); Oct. 5.
Dan Perrett	Prospector	"DP"	Sept. 16, 17.
Mike Skeoch	Prospector	"U"	Sept. 16, 17, 28 (½ day).
Grant Nagy	Sampler	"NN"	Sept. 16, 17.
Colin Anderson	Sampler		Sept. 16.
Trevor Shepard	Sampler	*V"	Aug. 4, 5 (½ day), 22.
Keith Louis	Sampler	"CL"	Aug. 4, 5 (½ day); Sept. 16, 17.
Verna Jordan	Cook/First Aid		Aug. 5; Sept. 16, 17.

APPENDIX III

-

~

Analytical Procedures Used by Min-En Laboratories

ANALYTICAL PROCEDURES USED BY MIN-EN LABORATORIES

<u>Hg Analysis</u>

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, B.C., employing the following procedures.

After drying the samples @ 30°C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for two hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable dilutions made if necessary.

ICP Analysis for Cu, Pb, Zn, Ag, As, Sb, Mo

After drying the samples at 95°C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for two hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

Au Fire Geochem

A suitable sample weight; 15.00 or 30.00 grams is fire assay pre-concentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

Gold Assay Procedure

Samples are dried @ 95°C and when dry are crushed on a jaw crusher. The - $\frac{1}{4}$ inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram subsample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

Ag, Cu, Pb, Zn Assay Procedure

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The assays are digested using a HNO3-KCL04 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The natural standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

APPENDIX IV

-

_

Silt Geochemistry Results

.

COMP: KEEWATIN ENGINEERING PROJ: 152

ATTN: R.NICHOLS/M.BOBYN

5

ζ.

- -

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 DR (604)988-4524 FILE NO: 0V-1198-SJ1+2 DATE: 90/08/27 * SILT * (ACT:F31)

SAMPLE	AU	AG PPM	CU	PB PPM	ZN	AS	SB	MO PPM	HG PPB	
000 153/001 045		4.0		15		•	1	4	175	
1 909 152(G)L 003	1	4.4	70	24	103	1 1		,	550	
90V 152(0)L 063		4 3	51	26	115	i	1	i	225	
1 00V 152(G)L 064	+	2.1	70	- 6	64	, t			115	
90V 152(G)L 065	2	.6	42	15	60	i	i	i	1245	
001 152(0)1 066		0	5/	22	40		1	4	2/5	
1 90V 152(G)L 000		. 7	34	16	71	1	1	s 1	145	
POV 152(G)L 068		1.3	31	21	140	i	i	Ś	155	
90V 152(G)(069	Ś	1.2	33	15	69	1	1	1	215	
90V 152(G)L 070		1.3	52	16	69	i	1	1	225	
P01 152(C)1 071	2	21	77	6	7/		1		215	•
90V 152(G)L 072	1	1.3	85	18	95	1	i	1	445	
90V 152(G)L 073	i	2.4	76	6	60	i	i	1	130	
90V 152(G)L 074	1	1.3	45	14	50	Ť	1	1	405	
90V 152(G)L 075	1	1.6	50	16	53	1	1	1	180	
90V 152(G)L 076	2	1.2	53	26	39	1	1	?	415	-
90V 152(G)L 077	<u>ī</u>	1.6	33	14	43	1	1	1	385	
90V 152(G)L 078	3	.7	12	25	49	t	1	2	425	
90V 152(G)L 079	2	.8	20	27	43	1	1	1	365	
90V 152(G)L 080	21	1.3	55	21	40	1	3	1	425	
90V 152(G)L 081	2	1.1	31	17	51	1	1	1	240	
90V 152(G)L 082	3	1.3	43	16	49	1	2	1	275	
90V 152(G)L 083	2	1.1	51	19	38	13	1	1	580	
90V 152(G)L 084	1	.8	36	12	60	1	1	1	220	
90V 152(G)L 085	1	2.0			104	<u> </u>	1	<u>1</u>	155	
90V 152(G)L 086	2	.9	35	18	80	1	1	1	365	
90V 152(G)L 087	1	.6	13	24	51	1	1	1	215	
90V 152(G)L 088		.6	16	21	51	1	1	1	230	
1 90V 152(G)L 089	2	1.0	63	30	112	1	2	1	300	
900 132(6)0 090	· · · · · · · ·	· · · · ·			63	I			4/2	
90V 152(G)L 091	1	-4	49	12	107	1	1	1	110	
90V 152(6)L 092	1 3		20	15	98	1	1	1	125	
90V 152(G)L 093		1.)	49	13	70 115	4	4	-	145	
90V 152(G)L 094	2	1.0	47	20	42	1	1	;	125	
					05	<u>`</u>		····	190	
90V 152(5)L 096		1.7	57	10	85	1	1	1	160	
900 152(0)1 097	27	1 2	71	40	111	1	6	1	260	
900 152(6)1 099	1	.8	56	28	133	i	1	1	280	
90V 152(G)L 100	1	.6	54	14	100	1	1	2	145	
90V 152(C) 101	1	4	57	14	102	1	1	1	105	
900 152(0) 102		.4	38	15	135	1	1	;	290	
90V 152(G)L 103	1	1.4	41	19	81	1	1	1	140	
90V 152(G)L 104	1	1.0	33	19	79	1	1	1	150	
90V 152(G)L 105	2	.9	34	26	115	1	1	1	155	
90V 152(G)L 106	7	.9	53	25	86	1	1	1	195	
90V 152(G)L 107	i i	.9	57	14	85	1	1	1	220	
90V 152(G)L 108	2	.9	52	22	80	1	1	1	495	
90V 152(G)L 109	2	1.0	55	40	289	1	1	1	275	
90V 152(G)L 110	1		63	52	242	1	1	1	210	
90V 152(G)L 111	1	.8	62	17	117	1	1	1	355	
90V 152(G)L 112	2	1.1	57	13	84	1	3	1	185	
90V 152(G)L 113	1	2.2	78	8	58	1	1	1	155	
90V 152(G)L 114	1	1.9	72	8	59	1	1	1	115	
YUV 152(G)L 115	1			16	103	1	1	1	300	
90V 152(G)L 116	1	.8	59	13	98	1	1	1	165	
90V 152(G)L 117	2	.9	75	56	215	1	5	1	275	
1 90V 152(G)L 118	} 1	2.0	36	116	338]	7	1	265	
1 YUV 152(G)L 119		1,1	56	17	104	1	1	1	140	
ANA 125(P)F 150	NU SAMPLE					<u></u>	·			

^

PROJECT CODE ERROR

SHOULD BE 18

COMP: KEEWATIN ENGRG. PROJ: 152

ς. -

\$

.....

FILE NO: 0V-1198-SJ3 DATE: 90/07/27 * \$1LT * (ACT:F31)

ATTN:	8.NICHOLS/M.ROBY	'N

MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90V 152(G)L 121 90V 152(G)L 122 90V 152(G)L 123 90V 152(G)L 124 90V 152(G)L 124	1 2 1 1	.8 1.0 .5 .7 1.2	48 68 63 46 64	22 40 18 18	121 211 105 75 88	1 1 1 1	1 1 1 1	1 1 1 1	400 270 200 570 160	
90V 152(G)L 126 90V 152(G)L 126 90V 152(G)L 127 90V 152(G)L 128 90V 152(G)L 129 90V 152(G)L 130	2 1 3 2 1	-8 -8 -6 -5	58 73 49 44	16 52 31 24	102 256 170 91	1 18 1	1 6 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	245 300 230 220	
90V 152(G)L 130 90V 152(G)L 131 90V 152(G)L 132 90V 152(G)L 133 90V 152(G)L 134	5 NO SAMPLE 1 2	1.2 .9 1.0	59 59 71 56	13 15 27	85 106 160	1	1	1	175 165 390	
90V 152(G)L 135 90V 152(G)L 136 90V 152(G)L 137 90V 152(G)L 138 90V 152(G)L 139 90V 152(G)L 140	2 1 1 2 2 2	.6 .7 .8 .5 .9	42 60 50 60 54	16 12 15 11 6	79 123 106 120 120	1 1 1 1 1	, 1 1 1 1 1 1	1 1 1 1	105 125 150 120 115	
90V 152(G)L 141 90V 152(G)L 142 152(G)L 142	1 3	.9 1.1	38 30	18 19	112 138	1	1	1 2	130 220	- <u>-</u>
SHOULD BE	78 - 78	<u>e</u>								
	·····		<u></u> .		<u></u>					
						<u> </u>		.		
					_,,	<u> </u>				
		<u> </u>								
	····									<u>. , , , , , , , , , , , , , , , , , , ,</u>

.

COMP: KEEWATIN ENGINEERING PROJ: 152

.....

-

MIN-EN LABS - ICP REPORT

705 WEST 151K ST., NORTH VANCOUVER, 8.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 05-0548-LJ6 DATE: 90/09/27 • SILT * (ACT:)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90NN152-2-003	1	.2	56	25	81	1	1	1	1550		
				····							
	ļ				·						
			<i>.</i>								
· · · · · · · · · · · · · · · · · · ·						<u> </u>	<u> </u>				
	 		<u>.</u>		<u>.</u>				· <u> </u>		
		- 1									
		·		····· _·· ·	<u>.</u>						
		···-·	···		······					·	
· · · · · · · · ·											
			<u> </u>	···	···-						
	<u> </u>						<u></u>				

APPENDIX V

_

Silt Sample Descriptions

ELED ALLE COLLED STREAM SEDIMENTS																		
Project:	= 152 Aust Gin day	STREAM	SED	IMEN	ITS	Resu	lts Pl	lotted	By:									
Area (Grid)	GT					Map	:				N	.T.S.:		10	<u>4 H</u> ·	-120	J	
Collectors :	DM, TS KL.					Date	:		$A_{\rm L}$	<u></u>	ł	19	90					
]		I	SEDI	MENT	DAT	A	5	TRE	AM D	ΑΤΑ							
Sample	NOTES					_	anic	¥	ē,	ب ج	۲ <u>.</u>	ά.	DNI	L				
Number			Cra	San	Silt	Clay	Org	Ban	Act	S PIN	Sē	city City	SPF	50				
<u>4001521</u>	1225	() i 3	05		50		25			100	to.	11:			<u> </u>	\rightarrow	+	
$\frac{051}{062}$	1225 m. 1100 m. 1	$\frac{O(n-2)}{O(n-2)}$	45		20		<u> </u>		×	22.		11			├ ──┦	-+		
63	1450 m	<u> </u>	40	40	30				Ť	20	÷.,		\vdash –					<u> </u>
<u> </u>	1450	Gint		50	So				~	2t	2.5							
65	1570 m - 100 Sector	<u>Gin 5</u>	1	5.7	50				~	7.9		1						
66	1570 m 400 m 42	Gins		30	2.5				~	$V_{2,2}$								
51	1690 m. main wet margaret	Ging		5	55					1:2:2	:,	Mod					<u> </u>	<u> </u>
61	1540m 102 6md	Gina		75	30				$\overline{}$	70	1.7	-1.	i					
59	15 Car	Ging		50	5.5				1	-).	<u>۰</u>							
70	RIGHT FAST good SIGT]					1	2m	30	<u>.</u>						
-7;	LEFT good FAST	GIN 3	<u> </u>	ļ					L.	2m	30	ļ	 					
72	Right good Lost	GING	<u> </u>	 	 			ļ	V.	<u>2 m</u>	20	 	<u> </u>					
- 13	LEFT good Mod	GING		1			 	ĺ	\sim	2m	30	L	<u> </u>					_
-14	Right aged fair	WEST OF SINS	<u> </u>	 	 				_	250	35						$ \rightarrow $	
75	LEFT good fast	WEST OF GIRS	<u> </u>	<u> </u>	<u> </u>			<u> </u>	Ľ	<u>2m</u>	25	<u> </u>					$ \rightarrow $	
76	Right Good Fasi	WEST OF GIN B	.	<u> </u>				 	Ľ	21	30					\vdash	$ \rightarrow $	
<u> </u>	LEFT good fast	WEST OF GIAR	<u> </u>	┣				┨	Ľ	lim.	μΩ		<u> </u>		┟╍╍╌┤			
78	Right good mod	<u>GIN 9</u>	<u> </u>				<u> </u>			μm	2	<u> </u>	<u> </u>		╞───┛			
<u></u>	LEFT POOR FAST	Gin 9	 -	<u> </u>	<u> </u>			<u> </u>	۲	<u>2</u> M	125		 			\vdash		
<u> </u>	LEFT good LIGHT RADWN SILT	· · · · · · · · · · · · · · · · · · ·		<u> </u>					\vdash	25	20		<u> </u>			├──╂	-+	<u> </u>
	RIGHT MODISILTS LOTS OF LOGS		<u> </u>		<u> </u>						120	-			 		+	
1 12	Left good Silt	···	╂.──		+			i		120	20	+			 .	\vdash	\rightarrow	
	MID good SILT			┼╌╼╸		<u> </u>		1	ŤŽ	2.20	140.	<u> </u>			┟╍──┤	-+	-+	
	DOOR TO NO SILIS, STREP, TOOK TOOSS / MUS	D WATER COVE					<u> </u>	#	ビ	3/000	120			<u> </u>		\rightarrow	<u> </u>	
	LEFT FAST LITTLE SILT - MOST SAN	<u> </u>		-				#	1	3m	25	1	1			-+	-+	
<u> </u>	FET SAND MIND CUT			1		1		V	Lm	15		1				$\neg \uparrow$		
· · ·	DIRUT COSCIL LEA SEM LITERE OF MIL	F MAY SUT CLASS MAN		1					$\overline{\checkmark}$	Yum	10						-	
21	CLARN DER SHE WITH CAST	<u>, akt zilt Glekas morten</u>)	1	1			1	1	V	3m	30		<u> </u>					
		· · · · · · · · · · · · · · · · · · ·	1		1			1	1	Ţ,	<u> </u>							

HIGO ALL CONTRACTOR STREAM SEDIMENTS																		
Project:	#152 4: 21 G	n Claim STREAM	SED	IMEN	11 S	Resul	lts Pl	otted	8y: .								····	
Area (Grid):	<u> </u>				I	Map:	•				N	.T.S.:		10 4	FH.	<u>- 12</u>	ω'	
Collectors :	DM. TE EL				. (Date	:			124	<u>.</u>	;	<u>, e e</u>		<u> </u>			<u> </u>
		• • • • •		SEDI	MENT	DAT	A	S	TREA	M D	ATA		17		T			
Sample	Hav. NOT	ES	< Kel	g		>	Janic	¥	tive	jth.	, Dth	ė.	MIN	<u>ر</u> ۲				
Number 10V152(5)/		ð	San	Silt	ចឺ	ŏ	89 10	Ă	ĴŇ	ឹ	0' C	SPI	50				
91	1500m	Sec. 1	75		30				1	150			1			_		
92	1590 - HS LEADA	Ging	90		10				1	200	5	μ_{i}						
93	1600 N. Tran 1	Ging	$(\gamma \cdot \gamma)$		25				 	100	5	Л;						
94	1500 00 0.000	Ging	1.		1)			ļ	~	'So	15	11						
-15	1235 to his her de	Gin 2	<u> </u>		4.5				¥	30	2							·
3	1235m main	Gin 2		20	75				~	100	15	1 대				<u> </u>		
2~;	1430p	East of Gin 2		40	30		<u>30</u>		1	30		$i_{2\omega}$						
3:	1420 mon sin al.	Find of Ging?		20	70				 / 	200	25	11	<u> </u>			-+	-+	
19	1590 r hi rard	North of Gin7	1	50	So			 		120	5	111,	<u> </u>	<u> </u>				
<u>```</u>	Right poor fast	Gin 9	1	ļ	İ					(m	20	H.						·
·):	LEFT poor inst	GIN 9	.	 				 		<u>2 m</u>	15	H_{-}]	┟───┟			
<u> </u>	pool frot	GIN 2	╄	<u> </u>				<u> </u>	<u> </u>	l m	10	<u>H</u>			╞╧┻┫			<u></u>
<u> </u>	good fast	GIN2		<u> </u>					<u>/</u>	im	10	H;				$ \rightarrow $		
<u>}</u>	NOT TAKEN			<u> </u>	<u> </u>		ļ	<u> </u>	ļ	 	┣							-
157	NOT TAKEN		_					 	ł,				 			=		
`).	good FAST		_					<u> </u>	_	1 M	20		ļ	 				
	good FAST	Gin 2	ļ	<u> </u>				∦	<u> </u>	<u>3m</u>	30		ļ					
	RIGHT: TOKEN FROM ZANK	and FAST GINZ	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> 3</u> w	30	+	<u> </u>	<u> </u>				
	LEFT TAKEN FROM BANK	good fast	<u> </u>			<u> </u>	<u> </u>	┨	1	<u>IM</u>	10	<u> </u>	ļ					
	1590 Let back	Worth of Gin7	_	35	35	<u> </u>			<u> </u>	50		100	· 		┣──┤			
	1580m V. Small	<u> </u>	(·¬		30	<u> </u>	ļ		<u> </u>	190	12	<u> '2:v</u>			╞━━┥	<u> </u>		<u>_</u>
	1580m min	Gint		40	60	 	 		\downarrow	150		41	·			<u> </u>		
	1550m right ril	Ginb		20	20			∦	+	100	<u>c</u> ;	111	-	 	<u><u> </u></u>	├───╉	-+	
	1650m left hand	Ginb	_	0	59	<u> </u>	<u> </u>	┨	ľ	10.0	13	<u> +1</u>			<u> </u>		<u> </u>	
<u> </u>	1770 main	South of Ginb	-	50	150	 	<u> </u>	╫╌┈╴	⊢∼	<u>1150</u>	10	19.	┨		 	┢──┤		·
	Disc Internet	South of Ginb		122	50	<u> </u>	· <u> </u>	╫╌╾		<u>1150</u>	125	11.	╂	<u> ~ </u>	┟╌╶╷┤	/ł		
	14X0m. lett at	I or the children t	-	120	120	<u> </u>	+	-#		100	120	111	+	+		_	━	(
	1489. 1 E Mart	North of Grad		1:0	13			<u> </u> ·	10	11)	126	11.	┨╌╍━	—	 	┢╌╼╂		
- 149-	 	· · · · · · · · · · · · · · · · · · ·	_	85	15		+	┨	+	1/SC	(1.5.5)	10		<u> </u>	╟──┦	-+		
L				1		1	<u>.L</u>			1	. I	<u> </u>		<u> </u>	╨┈┈╷╎	1		

1 1 1

Project:	#152 Ascot Gin claims STREAM	SED	IMEN	TS	Resu	its Pl	otted	By⊧.								
Area (Grid):	<u> </u>				Map					N	.T.S.:	<u></u>		<u>4 H</u>	-12	ω
Collectors :	DM. T.S. K.L				Date	:	1/4/	445	<u>†</u>	19	790			<u> </u>	<u></u>	· · · · · · · · · · · · · · · · · · ·
			SEDI	MEN	T DAT	A		TRE/	M D	ATA						[]
Sample	NOTES	avel	ġ	r.	λ	ganik	, Yu	C C V B	i i i	cpth	승고	N N	ULL) RY			
Number 15V 152 (5)2	5	ŝ	Ŝ	Ö	ō	8	Ā	м ³	ă Cm	> 0	ŝ	ភិច			
21	Right tril		90	10			Lun		2	2c	MED					
122	actual light but got sample from Bank; no gelt		100	ø	L		\mathbf{X}		2.5	20	Hi	ļ				
123	Pour Creek, little Ino sell' sample hum chy bank.				60	<u>40</u>	X		-15	20	шēр					
124	right trit		70	30			Ì	-	2.5	20	iai					ļ
25	right trib, edge of strong gorson,		70	30			 		2.5	<u>20</u>	MED	ļ				<u> </u>
125	stup dry cish bed tette siet left tak	 	85	15	⁻				<u>د، ہ</u>							
121	left trut , very lettle sectionant ? garrow		175	5		<u> </u>		<u>~</u>	1.0	/C	H1 11:					<u> </u>
26	right trib Sy both site	 	75	2				~	<u>, , , , , , , , , , , , , , , , , , , </u>	/5	7'					<u> </u>
17.5				·			<u> </u>		20	25						
	RIGHT DOOR FAST GIN T	<u> </u>						~	<u>,</u>	2	·	[
	LEAT GODD FAST GIAL	i						- 7	3 m	20			-			+
	CETI GAAD INST SING		+		<u> </u>		<u></u>	J	<u> </u>	10	╞╾╼╡	<u> </u>		\vdash		╪╍──┤
	RIGHT DOOR POST GING] ·							100	10		<u></u>				+
	KIGN POOV SCOO GIN G			ļ				1	in n	15						+ · · · · · · · · · · · · · · · · · · ·
	LET DOOR LED 13111 9		<u> </u>				<u> </u>	 		- <u></u>		<u> </u>				+
	LEFT and Fast Gouth OFFIN T		<u> </u>		1			1	3m	30	h					+
	Right 0008 (Im South Of Gin 7							1	m	15	1	 				†
			 													
	LEFT DOOR FAST SOUTH OF GIN 7				[[1	Im	20						
	RIGHT DOOR SLOW GIN 7.	l						~	<u>3 m</u>	5	<u> </u>					
	TRKEN FROM BAUK DOOR SLOW			<u> </u>			X		Im	5						
			ļ		 	Į	 	 	<u> </u>	ļ		ļ		·		
	·	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	₽	ļ	L							
			ļ			 	 	 		 	 	 	<u> </u>	 		
······································					 _	<u> </u>	∦	 	 				┤╶┧	┝──┼		+
		 	<u> </u>		 	<u> </u> -	╫──	<u> </u>	<u> </u>		╞──	╡───	╞──╽	┝───┼	═╼╞┲═	┢╾╼╡
		<u> </u>	}	<u> </u>	 		∦ —	<u> </u>	<u> </u>			ł	┟╴╺╸╢	┝╍╴┞		
		<u> </u>				┟┅╍	₩	<u> </u>		<u> </u>		┝			<u> </u>	╆
		1	<u> </u>	1	L	1	<u>ll</u>	1	1	L	1	1	L	L	1	

KEEWATIN ENGINEERING INC.

		ł	KEEWATIN E	NGI	NEE	RIN	IG II	NC.											
Project:	GIN	CODE 18	STREAM	SED	IMEN	тя ,	Result	ts Pl	otted	Rv:									
Area (Cald)							Man	13 1 1	onica	<i></i>		N	TC	1	04	H -1	2.00	, ,	
Areu (Griu):	·					•	nop. Data:					I N	. 1. 5. •					**	
Conectors :	<u></u>	·····				ACNIT	DAT		c	трс /		ΔΥ Δ							
Sample		NOTER			5501	VICIA I		÷ i		<u>י א א א וו</u>		<u>- z</u>		۶.	7				
Number		NULES		Srave	and	đ,	ξ.	- B	3ank	CT.	Vidti	Cept	\elo irv lo	P HI	у Ц Г Г				
					<i>1</i> /7	~	<u> </u>				n.	мЭ.		~					
90-NN-18	clry. 1740n	Aloine meadow : spore	л^ед.	20	40	40					<u>.s</u>	1/20	510]		[
L-003		sing. Louldays														i—		<u> </u>	<u> </u>
	·		· · · · · · · · · · · · · · · · · · ·										.			┝══┟	╼╼╾┥		
·····		· · · · · · · · · · · · · · · · · · ·														┢───┨	∔	-+	
	· · · · · · · · · · · · · · · · · · ·													 '	·	┟╼╍╼╼┝		—— -	
	<u> </u>		······································													 ł			
				 				- ·								┢╼╼╋		-+	
																	-+		<u></u>
	· · · · · · · · · · · · · · · · · · ·		<u> </u>									<u></u>							- <u></u>
				†	· · · · · · ·				<u> </u>				·						
									1	·			[]		<u> </u>				<u> </u>
					<u> </u>	╧╦╦╤╛┲╤╛											-	<u> </u>	
																[]			
											<u> </u>	[<u> </u>					
				İ	<u> </u>							<u> </u>	<u></u>						
				.	ļ				ļ				ļ						
				!	 -			<u> </u>			<u> </u>		<u> </u>	L	!]		
				_	<u> </u>	<u> </u>			 			<u> </u>							
	· · · · · · · · · · · · · · · · · · ·			!	 		 	ļ	╢──			<u> </u>	. 	·]		 			
		<u> </u>			┣—	├		<u> </u>		 			·		 	┟╌┈┦		_ 	;
					╞╾╾		<u> </u>	<u> </u>		<u> </u>		<u> </u>	+	·					
	<u> </u>	······································			╉╌───		 		∦			<u> </u>				╞──┦			
			······································	†	┨┛┛┙				 		<u></u> ⊦	+ -		┼──	<u> </u>	┟╍╌┦			
		······	<u></u>	1	<u> </u>				†——		<u> </u>	<u> </u>	+	╞━━╍					
	·	··		1	<u> </u>		<u> </u>	†	 	-	<u> </u>		+	1				ł	
<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u></u>	1	1	† -	1		∦	1	1	1	1	 	1				·

•

	KEEWATIN ENGINEERING INC.																
Project:	18 GIN CLAIMS STREAM	SED	IMEN	TS	Resul	its Pl	otted	Bv:		1. B	OBY	N					
Aren (Grid)					Man:			-, .		N	TS:		10-	4 H-	-12	W	
Collactore :	M. BOBYNI				Date	 -	SED	τ.	10	N 99	0		<u> </u>				
Conectors i,			SEDU			~		TREA		<u>ΛΤΛ</u>	<u> </u>			-1	<u> </u>	T	
Sample		 TE	3601	VIEIN		~ ₽		•	aw U			Ϋ́ς.	2			1	
Number	NOIES	Sravi	bna	a li	<u>Š</u>	Ē	3erk	, Č	Nide 1	ē	22	SP Rt	Ч Ц Ц Ц		ļ		
						<u> </u>			<u>د</u>	<u>e</u> n.							
GOE 18L	5920' Small Trib Cisck not on 1.50000 M3		60	10	30			\leq	<u>30</u>	10	High	<u> </u>					
501	Moussmet; Well developed Streem Denks, Augular		 														
	Boulders of vesicular anderity Sandy Gravels. It	<u> </u>															
	······································	 								<u> </u>			 				
]	 						····		 		 				
		 	<u> </u>	<u>.</u>		÷				<u> </u>	╞╼╼╸						<u></u>
		I	<u> </u>				 			 	⊦		┨{				
							<u> </u>										<u> </u>
		 			<u> </u>		 _			<u> </u>	<u> </u>		<u> </u>				
		_			}					<u> </u>	-[:		<u> </u>				
		 				<u> </u> i		<u> </u>	ļ			 -	.[]				
		 	- <u> </u> -				<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u></u>			<u> </u>
		 	 	 		ļ	 	 _		<u> </u>							
·		!	┨	 		┨	∦-─	 	 	<u></u>		1		ļ		{	
- <u></u>		╂		<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		 					
		 	<u>.</u>	ļ	<u> </u>	<u> </u>		ļ	ļ	.	- 	ļ	 				<u> </u>
		<u>.</u>	┥	┞		 	 	 	ļ	<u> </u>		ļ		 			
			<u> </u>	<u> </u>	<u> </u> .		 -		<u> </u>					,			
			╉╼╌╴	<u> </u>	<u> </u>		 	<u> </u>	ļ	.Į	- 	·		<u> </u>			
	······································	┨		 	+		 	 		┨───		·	<u> </u>				
			╉══╾	<u> </u>	┼╼━			┢╾╌╴	<u> </u>	_					┝──┤		
-		I					∦		 		- {			Į	┨		
				<u> </u>		╂───	}	╟╺──						· .	╞╼╼┥		
			+	<u> </u>	╡╼╼╼╕		╢───	╉╼╼╸	+	+	-						
				 			<u> </u>	 				┟╌━	┨╼┈╴┊	 			<u> </u>
<u> </u>	<u> </u>		+		+		∦	+				┼╌╾╴	 -	 			
			╡──	┢──	╉╼╼	- =	#	<u>†</u>	<u>+</u>	╡═┉	╞╞╼═╼	╞───					
	<u></u>		+		+		<u> </u>	1						 			
	· · · · · · · · · · · · · · · · · · ·	╉	╉	┼	· 	+	╢───	 	 	+		╉━──	-		┞─┤		<u> </u>

•

APPENDIX VI

.

-

-

--

.

•• • • • • •

Soil Geochemistry Results

COMP: KEEWATIN ENGINEERING PROJ: 152 ATTN: R.NICKOLS/D.MEHNER

٠.

1

Ļ ---

Í

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 0S-0548-SJ1+2 DATE: 90/09/27 * SOIL * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90CL152-S-001	3	.1	55	21	72	1	1	1	180	
90CL152-S-002	1	.8	98	29	45	1	1	1	260	
90CL152-S-003	2	.8	63	.9	63	1	1	1	110	
9001152-5-004		1.1	67 90	21	70	1	1	1	155	
					70				205	· <u>·····</u> ··-
9001152-5-000	1	.0	00 AR	25	AR N	2	1	1	282	
90CL152-S-008	1	.7	73	20	103	1	i	1	180	
90CL152-S-009	2	1.1	65	9	76	1	1	1	110	
90CL 152-S-010	1	.1	53	23	90	1	1	1	135	- <u>-</u>
90CL152-S-011	1	.1	35	35	82	1	1	1	200	
90CL152-S-012	3	.1	61	34	117	1	4	2	155	
9001152-5-013	2		30 50	23	31 104	1	1	1) 60 65	
90CL152-S-015	1	.2	45	24	68	Ś	i	i	775	
9001 152-5-016	1	.7	47	22	\$ 5	1	1	1	120	
90CL152-S-017	i i	.1	35	22	90	i	1	1	365	
90CL152-S-018	2	.4	48	40	103	1	1	2	135	
90CL152-S-019	1	.1	32	29	110	7	1	1	215	
AUCT 125-2-050	2	<u></u>	42			<u> </u>	I		370	
90CL152-S-021		.1	43	17	78	1	1	1	170	
90CL152-S-022	1	.1	30	23	73	i	1	1	365	
90CL152-S-024	2	.1	47	22	59	1	1	i	335	
90CL152-S-025	1	.3	54	9	54	1	1	. 1	745	
90CL152-S-026	1	.4	48	19	74	1	1	1	335	
90CL152-S-027	1	.1	41	20	100	1	1	1	305	
90CL152-S-028	2	.5	36	18	106	1	1	1	225	
9001 152-5-029	, 1	.1	49	32	99	1	1	1	210	
P0ri 152-5-031	· · · · · · · · ·	<u>.</u>				•		1	2750	·····
90CL152-S-032	1	.1	26	29	92	1	1	1	190	
90CL152-S-033	2	.1	78	34	125	1	3	3	255	
90CL152-S-034	1	.5	36	25	58	3	1	1	1250	
9061152-5-035		.4	96	18	<u></u>	1	1	1	695	
90CL152-S-036	1	.3	34	24	56	1	1	1	170	
90CL152-5-057	2	יין א	49	2.Y 12	103	1	1	1	120	
90CL152-S-039	3	.3	26	26	76	i	1	1	155	
90CL152-S-040	1	.1	38	30	91	1	1	2	135	
90CL152-S-041	2	.1	87	36	125	1	<u> </u>	1	385	
90CL152-S-042	6	-1	29	25	79	1	1	1	250	
90CL152-S-043	4	.3	34	21	100	1	1	1	100	
9001152-5-044		.1	40	34	77	1144	40	1	145	
9001 152-5-0/6		1	48		70			<u>-</u> -	265	
90CL152-S-047	3	.1	43	32	48	1	1	i	200	
90CL152-S-048	1	.1	57	27	65	1	1	1	250	
90BR152-S-001	1	.1	42	31	99	1	1	1	115	
90BR152-5-002	. 2	1		25	109	1	1	1	22	
908R152-S-003	1	-1	67	19	136	1	1	1	90	
9088152-5-004	2	.1	/4 5.8	20 18	130	ר 1	1	1	75	
90BR152-S-006	1 1	.4	48	28	99	i	1	ź	100	
908R152-S-007	1	.8	31	26	122	1	11	3	140	
908R152-S-008	1	.3	34	25	255	1	1	7	135	
908R152-S-009	2	.3	78	12	89	1	1	1	90	
908R152-S-010		.5	29	19	159	1	1	2	165	
908R152-5-011	2	.1	20	20	73	1	1	1	100	
	_					<u> </u>		· /		

1

PROJECT # MISPLOTTED

SHOULD BE # 18

COMP: KEEWATIN ENGINEERING PROJ: 152 ATTN: R.NICHOLS/D.MEKNER

MIN-EN LABS ---- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 05-0548-SJ3+4 DATE: 90/09/27 * SOIL * (ACT:F31)

SAMPLE	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS	SB PPM	MO PPM	HG PPB	
908R152-S-013 908R152-S-014 908R152-S-015	1	.2	34 20	19 15 27	88 90	1	1	1 2	145 75 125	
908R152-\$-016 908R152-\$-017	2 2 1	.4 .2	24 23	23 25	80 127	1	1	1	65 45	
908R152-S-018 908R152-S-019 908P152-S-020	2	.2 .3 6	24 30 24	24 24 21	91 92 113	1 1 1	1	1 2 1	75 60 95	
908R152-S-021 908R152-S-022	22	.3	25 59	23 32	112 116	1	1	1	85 155	
90BR152-S-023 90BR152-S-024 90BR152-S-025	6 1 4	.1 .1	27 55 24	21 22 23	89 94 87	1 1 1	1 1 1	1 1 1	45 125 150	
908R152-S-026 908R152-S-027	32	.3	49 35	19 23	94 95	1	1	1	175 135	
908R152-S-028 908R152-S-029 908R152-S-030	9 6 3	.2 .7 .6	61 48 67	28 27 25	76 122 100	1 1 1	1 1 1	1 1 1	210 115 125	
9088152-5-031 9088152-5-001	2	.4 .7	57 37	23 32	92 105	1	1	1	230 150	
90NN152-S-002 90NN152-S-003 90NN152-S-004	1 2 7	.2 .2 .3	22 29 41	26 28 25	64 106 79	1 1 1	5 1 1	1 1 1	235 195 450	
90NN152-5-005 90NN152-5-006	1 2	.1 1.0	51 49	43 31	195 107	1	1 1	1	445 125	
90NN152-5-007 90NN152-5-008 90NN152-5-009	1 2 2	.6 .9 .4	31 31 36	30 30 27	77 67 77	1 1 1	1 1 1	1 1 1	145 105 205	
90NN 152-S-010 90NN 152-S-011	1 3	.4 .1	36 41	31 26	82 94	1	1	1	90 140	
90NN 152-S-012 90NN 152-S-013 90NN 152-L-003	1 1 1	.2 .1 .2	41 42 56	32 27 25	82 102 81	1 t 1	1 1 1	1 1 1	405 280 1550	
<u> </u>	# /11/20									
SHOULD	BE ≠/	8								
· · · · · · · · · · · · · · · · · · ·	{ }		<u> </u>	<u> </u>	<u></u>	,		<u>_</u>		
]									
·		-		<u> </u>					_ 	
	1									
		·		··		<u>.</u>				- <u></u>
	}									
		<u>_</u> ;,							<u> </u>	<u> </u>
•										

í ; -

Constantine - Ma

. .

APPENDIX VII

, ,

,—

_

.

..

Soil Sample Descriptions

KEEWATIN ENGINEERING INC.

SOIL	SAMPL	ES -

Project:	DRYDEN	<u>1. 18 (</u>			220		Resu	its I	Piott	ed 8	y:							·		
Area (Grid):	·	1 61	<u> </u>				Мор	·				N	. T. S.	:	10.	<u> </u>		[2]		
Collectors:	CASEY	Konie	SENT 16 1990				Date													
	Sample La	ocotion		То	pogra	ρhγ			V	egeta	atlan					Sol		Data		7
Sample			OD BUILD THE HEFTOW ICE OIL WAS TAKENIS DIT CRES BEFORE Notes CRIEN ON CREEK CANX	Buitem	al slope	9	Ground	Wooded	Wooded			þu	y	Sompled	a Horizon 1pie	Horlzon	Develop - ment	Parent	Material	
Rumber Ro-Ct-18-S-	ELEV METRES	Station	DB-OARCBROWN LE-LIGHTBROWN BLACK - BLACK	Volte	Orection	HIII TO	لعدوا	Heavily	Sparaely	8 urnt	Logged	Grostla	S×0mp	Horizon	Depth 1 San	G ood	Poor	Drit	Bedrock	Colour
୦.୦/	1790	0 too	80 SAND 20 SILT		l	1			<u> </u>					R	40	$ _ \checkmark]$		\leq		De
202	1750	_1too	110 SAND 10 SILT SO ORGANICS	┢──-	E			<u> </u>	<u> </u>	· .	 	$ \checkmark$		A	30				i	2100
003	1750	2.100	50 SANDIOSILT 30 ANGULAY FRAGE 10 ORS		<u>v/</u>			 		ļ				A	25					BLN
1,50	1760	3+00	30 SAND 30 ANGILER FRASS 40 CLAY	_	N	i			.l					<u>l</u> A	20		[]			BLA:
<u>505</u>	1790	4100	50 SAND 10 SICT 40 ROUNDED FRAGS	<u> </u>	NW		i	ļ	<u></u>	Ł	_		[<u>A</u>	20		4	<u> </u>		DB
006	1800 _	5100	40 SAMID 10 SILL 40 ANIGULAR FRAGS 10 DAG		N		<u> </u>	<u> </u>	 _		<u> </u>	4	<u> </u>	Į.₿_	20	 '				<u>D8</u>
007	1820	6:20	60 SAND 10STUE 30 ANSWER THASE		I.N			 	·}		.		.	A	15	'	Ľ	\leq		<u>LB</u>
	1.800	7400	60 SANS 10 SILT 20 ANGULAP FRACE 10 CLAY	- 	NE		 	 	<u> </u>	.			ļ	⊥ A_	20	L		<u> </u>		<u>LB</u>
001	1780	8100	20 SAND YORNGUL AP FRAS YOURGANUS	\downarrow	NE			 	1					B	125	~				<u>LR</u>
010	1760 _	9100	70 SAND LOSILT 20 BUSSING FRAGE	\downarrow	NE			<u> </u>			1		I	<u> </u>	25					DE.
011	1740	10100	40 SAND 10 SILT 10 OR GARDICS YOANDULAR BRING	<u> </u>	E		<u> </u>	1	_	_	↓		 	LA_	125		\bowtie	\leq		DB
012	1710	11+00	TO SAND IS SULT IS ANGULAR FRAGS		E		<u> </u>	ŀ	<u> </u>				ļ	A_	15		1			LB
013	1740	12 100	100 ORGANICS	$\cdot $	ί.w		<u> </u>	<u>i</u>	<u> </u>			<u>к</u>		A	35		12		\leq	8LM
614	1800	13700	20 SANNA BO ANGULAR FRAGS "	· ·	W			<u> </u>	<u> </u>		<u> </u>		<u> </u>	A .	15		~		\checkmark	DB.
015	1830	. 14 too	TOSOND 20 SILL TO GRAVEL		N.	Ĺ		1	·				ł	A L	25	レ	1		\checkmark	pß
216	1830	15700	40 SAND 10 SILTYO ROUTILED FRACE 10 OR	5	N			T				$\overline{}$		A.	25		1		∇	LB.
01;	1800	16+02	20 SAND 40 ANGULAR FRAGE 40 ORGANICS		N	1						11		A	30		11			DB
018	1710	17102	30 SAND 30 ANGULAR FANGS 40 CLAY		INE				i.		1			A.	45	1	1	\mathbf{V}		LB
P10	1760	19-00	70 SAND 10 SILL 20 GRAVEL		NE									A	15					DB
L. 020	1770 _	19100	TO SAND 10 Sit 20 ROUMEND FRAGS		NE									A	25		12	∇		ice.
021	0771	20100	30 SAND 40 ROUNDET 30 CLOP		NE		_I		}			\mathbf{V}	l	1 m	15			\Box		LB
072	1790	21+02	30 SAND35 ORGANICS 35 GRAVEL		NE						_	V		Γ <u>΄</u> Α	35		12	V		BLA
023	1790	22100	TOSAND IOSILT 10 GRANNI 10 ORGANICS		N							∇		β	15		4	$\Box Z$		DB
024	(BIO	23100	TOSANDIOSILTIOGRAULLIOORGANICS		10									Â	20		1			LB
025	1809	24+00	60 SAND 10 SILI 30 GRAVEL		N							11		ß	40		1	1		LB
026	1800	25100	50 SAND 1051LT IDCLAY 30 ANGULAX FRAGS						1			IZ.		B	20		1	V		LB
027	1800	26:00	TO SAND IO SICE 20 SRAVES				17				·	V.		A	15	I	∇	V		LB
028	11280	2.7100	60 SAND 10 SILT 30 ANGULAR FRAGS		NĚ							17		A	15		4	\overline{Z}		DR
02'1	1170	29-20	TO SAMP LOSILE 20 GRAVEL	_!_	NE			ļ				V	1	A	15		1	17	1	Dβ

1 1 1

a second second second second second second second second second second second second second second second seco

ALLWAIN LINGINGLINING ING

SOIL SAMPLES

Project:).			
Area (Crid):	DF-	2		t	(1)	

S 191

Results Plotted By: _____

Area (Grid): .	21	11
Collectors:	CASER	Louie

Map: ______ N.T.S. : _____? 1 -

1

1

Ť

. .

•

- -

1. 141

1

Т

Dote _____

	Sample La	cation		Τo	pogra	iphy			V	ege ta	tlan					Sol	1	Doto		
Sample			Notes	- Ton	of slope	of CLIFE	round	Wooded	Wooded		2	ą		Sampled	Horizon Die	Horizon	Derelop - ment	Parent	Material	
Number 10- ⁽¹ -18-5 -	ELEV	Station		Vetto	Orection o	Top	Level G	Heovily	Sporsely	Burnt	Logged	Grasslan	Swampy	Horlzon	Depth to Some	Good	Poor	Del 11	Bedrock	Colour
030	1596	Oton	TO SANDIO SILT ZO ROUNDED FRAGS		E							$\overline{\mathcal{N}}$		A	25			··· †	$\overline{\mathbf{v}}$	D
03/	1570	1100	60 SAND 10 SILF 30 ROUNDED FRAGS		E	1			Γ			$\overline{\mathcal{N}}$		Ð	30					n
032	. 1580	2+00	40 SAND 10 SILF JOANGULAR ERAGS 10 OFGAMICS		NE							\mathbf{Z}		ĥ	10		V.		1	L
033	1580	3100	TO SAND LOSILTZO ANSILAR FRAGS		NE			i						A	25	. 7			7	٥
034	1580	4100	100. ORGANICS		Ε	$\mathbf{\nabla}$		L						A	15		V	L.	1	R
035	1570	5+00	TO SAND 10510 20 GRAVEL		E				Ľ	· ·				A	10	4			$\overline{}$	ם
036	1580	6100	BOSAND 20 SILT		NE	\checkmark		<u> </u>	l					<u>1</u> A	30				<u> </u>	1
0 <u>2</u> 7	1580	7400	705AND20 SILF 10 GRAVEL	- <u> </u>	NE			 	<u> </u>	<u> </u>		\checkmark		<u> </u>	40	$ \checkmark$	·		<u> </u>	Þ
038	1590	8tm	BOSAND 20 SILT		NE	\checkmark	<u> </u>		.	L	.			LA_	40		_		<u> </u>	Þ
037	1560	- HOO	60 SAND 10 SILTZO ANGULAR FRAGS 10 ORGANICS		N			↓	<u> </u>		İ	\checkmark		I.A_	30	44	<u> </u>		\leq	E
0 40	1540	10100	100 SAND 10 SILT 20 GRAVEL 10 ORGANICS		Im		ļ	 	<u> </u>	 		\checkmark		<u>A</u>	12	<u> </u> ,			<u> </u>	10
041	1350	11100	60 SAND 10 SILT 20 GRAVEL 10 DRGANICS		SE		<u> </u>	<u>ŀ</u>	1		ļ	 ∠_	ļ	<u>j</u>	30	12	+		<u> </u>	11
042	1580	12:00	TO SAND 10 SILTS 20 ANGULAR FRASS	\downarrow	NE	 	i			·	ļ	<u>·</u>	ļ	ļĄ	کا	 	Į-C,	 	V.	12
043	1580	13+00	30 SAND TO ANGULAR FRAGS	Ľ,	NE	ļ		<u> </u>	.	. <u> </u>	 	<u> </u>	 	<u>A</u>	45	<u>. </u>	14	<u> </u>	<u> </u>	μ
044	1580	14+00	605AND 10 SILT 30 ANGULAR FRAGS	\checkmark	NE	ļ		<u> </u>	<u> </u>	<u>+</u>		L	 	A	20	<u> </u>	<u> </u>		1	11
<u> </u>	1580	15100	50 SAMD 10 SILT 10 ORGANICS 30 MIG FAIGS	╏───	<u>βw</u>	<u> </u>	<u>} </u>	1	.	<u> </u>	_	<u> </u> ,	 	⊢ A_	123	 	10	_	Ľ,	щ
046	1580	16 too	BOSAND 1051615 10 GRAVEL	 	1	<u> </u>	 							B	40		1_		4	μ
047	1580	17100	40 SANDIO SILT 40 ANGULAR FRAGSIOORGANICS	<u> </u>	NW	<u> </u>	Ļ	_	ľ	<u> </u>	<u> </u>	<u> </u>	┠──	ļĄ.	150	╄	<u> </u> ~		LV,	4
୍ ୦୳ସ	1580	(8100	703AND 1051LT 20 GRIVEL	-	<u>15w</u>	{	- <u> </u>			+		12		<u>I</u> ₽	40	$\downarrow \checkmark$				4
		+			+				+	+		<u> </u>		<u> </u>		•	╉╼╾	+	<u> </u>	╋
	· · · · · · · · · · · · · · · · · · ·				-		İ				1				1	—	1,	—	 	1
			· · · · · · · · · · · · · · · · · · ·					-}	+		 	┨━──	<u> </u>				+	╉╌╌	┨	+
			T	1		1		+	+	+		+		1		 	֠	<u> </u>		t
				ļ				1		1				Γ.		ļ				Ţ
<u> </u>	ł <u>. </u>			1	╂	╂			+		·		1	<u> </u>	4	 .		+	┣	4
	·		······································	_		1	<u> </u>	—	1				1	_				1	1	

Project: Area (Grid)	G	IN PR	KEEWATIN EN soil s operty	GIN ampi	EE LES	RIN F	G Resu Map: Date	NC.	Plotte	ed B	 	N	.T.S.	:	/0	241	<u>4-1</u>	24	/	
Conectors	Sompte La	cation		То	 Doğr	ophy			V	ngeta	allon					Sol	l.	Daic		
Sompte			Notes	ottom	of slope		round	Woodtd	Wooded			2		Sampled	Horizon ple	Horlzon	Dereiop - ment	Parent	Woterial	
Number	Line	Station	· ·	Voiley 8	Okrection o	HILI TOR	ل و بوا 1	Heovily	Sparsely	Burnt	Logged	Grosslar	Swampy	Horlton	Depth to	Good	Poor	Dr. 1	B. drock	Calaur
	12 + + f	· , ·	15		251			<u> </u>	ļ								14		2	_
<u> </u>	1+000	10 A 61	mail - and Essan have a ser	4	<u>150</u>	<u> </u>	 		<u> </u>			<u> </u> √-,-		15		┨───-		├ ──┤	·	
	1.2 100 24		10.17.21.77 · 25.97		<u>i w</u>	<u> </u>		┼──	 	 			┨───	$\frac{n}{n}$	12.5	<u> </u>	$\frac{1}{2}$	<u></u> <mark>}</mark>		
	<u>3+007-0</u>	<u>, 535 m</u>		,			\vdash		+		╉╍╌╍	÷	 	12	25		╊╧	<u></u>	17	21
5.005			20 11 - 111 - 2 11 + 12 41	-	1	ť	レ	1	ŀ	+	1	17	1	B	30			<u> </u>	1	L.
1-201	$\frac{1}{6+0}r!$		50 11 - 10 11 - 20 11				L.	v	1					8	30	~			1	r
5-09	7+1011	52019	10 11 · 20 00 · O day		1.7	·			Ţ	Į			ļ	18		 	1.1	<u> </u>	1.1	1.
0.001	5450 m	1.3201	50 milt + 10 and 10 - 11 + 50 - 4			<u> </u>	1	1	. ,	1	<u> </u>	<u> </u>		15	25	4	$\downarrow \checkmark$	_	<u></u>	$ I \ge 1$
010	2-70 m	<u>),)</u>	199 11 - 10 V1 - 20 V1 - 30 11 ,			<u> </u>	 		\downarrow		<u> </u>			1	30	<u> </u>	+		<u> ×</u>	pr
3. DH	10+00r	12.5m	$\frac{140}{140} \sqrt{4} \cdot \frac{10}{10} \sqrt{2} \cdot $	<u>1</u>	·	+		+	+	╁━━	-		╂		120	17	+	+	<u> ^</u>	14
	1,400 m	<u>+</u>	10 11 . 11 1. 10 11 . 19 11	<u>+</u>		•		+ 7	┥┵			<u> </u> .	+		1.2	ť		+	17	HIN .
	<u>12+mr</u>			·	<u>{</u>	· 	- 	┼╱		+	+	+	+	+	-	Ť	-		ľ	12
																				8

\$

APPENDIX VIII

-

.

p

.

-

Rock Geochemistry Results

COMP: KEEWATIN ENGINEERING PROJ: 152 ATTN: R.NICHOLS/D.MEHNER

--

. -

÷

MIN-EN LABS - ICP REPORT 705 WEST 15TK ST., NORTH VANCOUVER, B.C. V7N 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 0S-0548-RJ5 DATE: 90/09/27 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	РВ РРМ	ZN PPM	AS PPH	SØ PPN	NO	HG PPB	
90DP152-R-001 90DP152-R-002 90DP152-R-003 90NN152-R-001 90NN152-R-002	412 2 1240 22 3	45.4 2.1 18.6 1.4 1.1	419 15 17 98 53	3030 25 1211 75 44	8340 97 481 297 50	30 1 3455 1 36	13 2 155 2 23	1 1 1 1 1	1395 125 315 125 850	
90NN152-R-003 90NN152-R-004 90U152-R-001 90U152-R-002 90U152-R-003	10 5 285 2 370	.2 .1 4,6 2.2 2.4	61 83 486 26 26	37 26 57 34 34	61 97 102 20 50	18 135 202 274 214	10 11 8 14 8	2 3 1 25 5	700 615 75 450 360	
900152-R-004 905152-R-001 905152-R-002 905152-R-003 905152-R-004	2 1 42 3 1	.7 1.8 1.2 1.5 1.0	47 19 140 18 31	26 32 25 21 20	27 63 16 45 61	81 3 44 47 1	5 7 5 4 1	65 1 1 11 1	3250 1725 735 310 155	
90F152-R-005 90F152-R-006 90F152-R-007 90BR152-R-004 90BR152-R-005	1 3 1 1 2	2.0 .1 1.9 1.7 1.1	16 11 14 21 87	12 14 21 17 34	67 48 27 118 26	1 1 1 1 27	9 1 9 1		1225 565 1550 1800 605	
908R152-R-006 908R152-R-007 908R152-R-008	1 1 5	.1 1.0 1.9	84 16 11	30 32 12	33 47 89	1 496 2	1 17 1	2 58 18	635 6250 335	
							-			
					·····					 *
	-									<u></u>

COMP: KEEWATIN ENGINEERING PROJ: 152

ATTN: R.NICHOLS/M.BOBYN

MIN-EN LABS --- ICP REPORT

FILE NO: 0V-1112-RJ1+2 DATE: 90/08/18 * ROCK * (ACT:F31)

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 112 (604)980-5814 OR (604)988-4524

SAMPLE AU AG CU PB PVH PVH PVH PPH												
90.0.1522.027 2 2.0.101 40 82 1 1 1 340 90.0.1528.035 103 2.4 144 30 41 102 9 12 335 90.0.1528.035 103 2.4 144 30 41 102 9 12 335 90.0.1528.035 30 6.1 3828 85 43 844 12 1 205 90.0.1528.035 33 -4 591 36 411 1 1 1 44375 90.0.1528.035 33 -4 591 36 411 1 1 1 44375 90.0.1528.035 33 -4 591 36 113 11 122125 90.0.1528.0040 3 2.4 670 11 1 22125 90.0.1528.002 3 2.1 2.7 291 113 1 1 22125 90.0.1528.002 7 2.5		SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	P8 PPM	ZN PPM	AS PPM	SB PPM	MO PPH	HG PPB	
90.0.528.037 90.0.528.038 90.0.528.038 90.0.528.039 90.0.528.039 90.0.528.039 90.0.528.04 90.0.528.04 90.0.528.04 90.0.528.04 90.0.528.04 90.0.528.04 90.0.528.04 90.0.528.004		90.0.152R 027 90.0.152R 034 90.0.152R 035 90.0.152R 036	2 103 13 2250	2.0 2.4 2.8 10.5	101 114 4638 3828	40 30 33 85	82 41 22 43	1 102 1 844	1 9 2 12	1 12 1 1	340 335 190 205	
W. 0.0. 1528 002 3 2.4 67 28 11.51 1 <th1< th=""> 1 1 1</th1<>		90.0.152R 037 90.0.152R 038 90.0.152R 039 90.0.152R 040 90.AD.152R 001	408 30 33 67 28	28.4 6.1 .4 .2 8.0	140680 3030 591 193 188	124 171 36 24 49	841 411 170 53657	942 166 1 1 22	93 9 1 1 19	1 8 1 1 10	305 1320 44375 690 71375	
POLAD.1528 008 3 25.6 588 4051 1867 1772 13 1 450 90.AD.1528 009 5 128.8 249 33837 34635 466 125 2 915 90.AD.1528 010 268 350.2 1655 1541 9992 3150 116 1330 90.0.1528 042 7 5.2 240 1358 79331 1159 96 12 13875 90.0.1528 042 718 35.7 106 3718 3339 2662 56 7 1500 90.0.1528 044 100 157.2 581 722 26825 56 7 1500 90.0.1528 044 91 203 54 34 1 545 901528 045 8 6.0 8118 102 2802 54 34 1 545 901528 045 13 1.2 1050 43 94 1 1 2 440	*	90.AD.152R 002 90.AD.152R 003 90.AD.152R 004 G //V 90.AD.152R 005 90.AD.152R 006 90.AD.152P 007	3 PROP. 25 24 3 7	2.4 1.2 1.7 56.7 14.5 2 1	929 76 1181 358 284	49 113 1546 777 70	11351 1027 478 49949 21753 1163	20 1 1621 1141 91	1 1 52 28	· 3 1 1 4	720 600 22750 7875 490	
90.0.1528 043 718 35.7 106 3718 3339 2662 56 7 1500 90.0.1528 044 100 137.2 581 722 28825 6527 6 1 20250 90.0.1528 046 27 5.3 23749 76 371 126 28 1 3455 90.0.1528 046 27 5.3 23749 76 371 126 28 1 5455 901528 046 27 5.3 23749 76 371 126 28 1 545 901528 047 10 1355 19 1 2 440 901528 045 683 11.5 10221 49 134 199 19 1 445 901528 045 625 15.3 21341 49 43 427 24 1 420 901528 045 10000 50.3 7.4 1003 34 66 1 155 199 1 445 1400 165 100.0 165 100.0 <t< td=""><td></td><td>90.AD.152R 008 96.AD.152R 009 90.AD.152R 010 90.0.152R 010 90.0.152R 041 90.0.152R 042</td><td>3 5 288 50 7</td><td>25.6 128.8 36.2 56.2 5.2</td><td>588 249 1655 240 65</td><td>4051 35857 1541 1358 317</td><td>1867 30405 9992 79331 3631</td><td>1772 406 38150 1139 1610</td><td>13 125 116 98 9</td><td>1 2 1 12 8</td><td>450 915 330 13875 830</td><td><u> </u></td></t<>		90.AD.152R 008 96.AD.152R 009 90.AD.152R 010 90.0.152R 010 90.0.152R 041 90.0.152R 042	3 5 288 50 7	25.6 128.8 36.2 56.2 5.2	588 249 1655 240 65	4051 35857 1541 1358 317	1867 30405 9992 79331 3631	1772 406 38150 1139 1610	13 125 116 98 9	1 2 1 12 8	450 915 330 13875 830	<u> </u>
90.V.152R 018 3 1.2 1050 43 94 1 1 2 440 90.V.152R 020 510 26.0 9994 109 1355 119 17 8 8500 90.U.152R 058 643 11.5 18221 49 134 199 19 1 445 90.U.152R 059 625 15.3 21341 49 43 427 24 1 420 90.U.152R 060 552 7.4 1033 34 96 2061 21 3355 90.U.152R 062 10000 50.3 64366 108 33 371 69 1 65 90.U.152R 062 10000 54.2 166190 178 34 4 142 1 65 90.U.152R 064 25000 54.2 165190 178 34 4 142 1 65 90.U.152R 065 20000 64.3 140680 156 44 1 131 1 70 90.U.152R 066 20000 64.3 1406		90.0.152R 043 90.0.152R 044 90.0.152R 045 90.0.152R 045 90.0.152R 046 90.0.152R 047	718 100 8 27 567	35.7 137.2 6.0 5.3 26.5	106 581 8118 23749 25944	3718 722 102 76 91	3339 26825 890 371 203	2662 6527 247 126 54	56 6 11 28 34	7 1 3 1 1	1500 20250 445 365 545	
90.U.152R 061 1500 31.3 39310 131 46 14901 111 1 125 90.U.152R 062 10000 50.3 64306 108 33 371 69 1 65 90.U.152R 663 50000 74.5 97050 122 28 142 88 1 70 90.U.152R 643 25000 54.2 168190 178 34 4 142 1 65 90.U.152R 064 25000 68.2 115850 124 41 1 100 1 60 90.U.152R 066 20000 64.3 140680 156 44 1 131 70		90.V.152R 018 90.V.152R 020 90.U.152R 058 90.U.152R 059 90.U.152R 060	3 510 683 625 552	1.2 26.0 11.5 15.3 7.4	1050 9994 18221 21341 10033	43 109 49 49 34	94 1355 134 43 96	1 119 199 427 2061	1 17 19 24 22	2 8 1 1 3	440 8500 445 420 335	
90.U.152R 066 20000 64.3 140680 156 44 1 131 1 70		90.U.152R 061 90.U.152R 062 90.U.152R 063 90.U.152R 064 90.U.152R 065	1508 10000 50000 25000 20000	31.3 50.3 74.5 54.2 68.2	39310 64306 97050 168190 115850	131 108 122 178 124	46 33 28 34 41	14901 371 142 4 1	111 69 88 142 100	1 1 1 1 1	125 65 70 65 60	
		90.U.152R 066	20000	64.3	140680	156	44	1	131	1	70	
											· · · - · · · · ·	
				· · · · · ·					<u> </u>	· · =		
			· · · · ·									
									`	·		

-

ż

.

APPENDIX IX

.

-

Rock Sample Descriptions

≥ct:) (Grid):_	18 GIN CI	<u> </u>	<u>,</u>	ΚE	E.W.	nta P	N E ! ?ock :	NGINEERIN SAMPLES F	IG INC. Results Plotted By: <u>M BOBYN</u> Map:NTS: Data: 5507 16 519 1990 Surface v. Undergroups	-
ectors:	NIBOBYA				- 		•	۱ ۲۰۰۰ - ۱		ا ج ن ے
MPLE JMBER	LOCATION NOTES	REP. SAMPLE. NUMBER	SAM GRAB	AIHO	CHANNEL A	CORE	FLOAT (H1	ROCK TYPE	SAMPLE DESCRIPTION	
.= 19.8	Foot Creek Brok: 5910'	1	\checkmark			1		Carponste	Red Oreme, corbonate pressia: narrow (2mm)	
001		i	1	1		1		Buch	quarter standard of random orientation.	<u> </u>
		1	1	1		T			1-Z % Py within carboncit, Discora.	
05.80	6000: St. 10 Bodger							Carbonate	In diam, poulders of pronce wx; which Fs.	
	train from frost have %							Breccia	Carbonte Bressing a 20% and atz pateoes	
									3-5% Ry f.f.	
OFISE	5840's Small Greek on		1				1	Chloritized	Orange Was Green Black F3. Carbonate alt G.W?	
005	N creek book				1	1		Corbonate Att.	Eq. ; 5-7% dissem. Pr. within Im wide	
		1	1					Gregowooke	Carb alt 20083	
0 F18 R	Large % on grossy Knoll	 	1					choritized	G.g. Buff-Brown WX; Grey FS. C.a. melanaciatic	
004	5400'							Hol Dionto	chlorite alt. Hol. Diarite =30 % Hol.	
			<u> </u>		<u> </u>		<u> </u>	<u>}</u>	5-7% mt. < 1% P1	·
SFIBR	Front Heave 0/c; 6420'		<u> ~</u>				Fr-0+	Silicibra	Mineralized Silicified Hot Diorite; Strongly	
<u>005</u>	on grossy knull, 5 ficing		<u> </u>	<u> </u>	 		1	Hol. Disrile	Jointed ; 15m xlm; 5% Mt; 10.15% finely	
0 F1812	6240': MAS to Small Loke		17		1	1	1	Folated	For strongly follo ted chlorite altered diorite?	
.006	to Sutn: (passnows 2005							Chloritized	Volc? Feldspor Soupprinting: Darrow early walts to low	
	to 300 welter × 25m lengter			1	T	Ţ		Dion to /Vole?	width 5-7% Firsh distance Re	
OFIBIC	75m westof F8006							Freeburge	F.g. chloritized diarle / Valc; as RODG;	
207	Gossons zone 2mx10m							Chloritzet	Norrow Purity Fracture zones to 30cmmate	
	in Et a lateunit.							Volc Braite?	Rep: Grob 10-1540 Py	
			1.							
										···
					-	<u> </u>		-		
					-					
		_			<u> </u>					
							_		·	
			[- [

.

KEEWATIN ENGINEERING INC.

ROCK SAMPLES

ojecti		مند خ	#	18	<u></u> .	. <u></u>
--------	--	-------	---	----	-----------	-----------

eo (Grid):_____

lectors: Michael akeach

Results Plotted By:		······································
Map:	. NTS: _	104H-12W
Date:	190	Surface Underground

1

SAMPLE NUMBER	LOCATION NOTES	REP	SAMPLE TYPE (LENGTH)					Door		
		SAMPLE NUMBER	GRAB	СНІР	CHANNEL	CORE	FLOAT	КОСК ТҮРЕ	SAMPLE DESCRIPTION	C .
VIBROOI	1790 20 map		/					144 ALANA	Qtz carbonateartan in with 2" an Form	
		<u> </u>		 				•	topy biets. 2-3%=-py +1% cpy	
<u>54 (BR002</u>	/720 " "							give on the Steel	FLOST heque bouldens 4-5% Fepy	
10 (BROD3	1750 ^N 4						<u> </u>	atz + Barita	Possibly Frost because on tailor slope	
									7-575 Fe py	
' <u>211/8 R004</u>	5608 f+ " "					 		dtz casb	Aich of Pyroctactic outcrop in and 3-4% Fepy	
10-28 13E-21	5200 ft Just colours		X		+			1. secontadi	Ounder calente Litter proces in chalo	
	more follo that Carlo							State.	111 1 dre + 15 10 - mind ration, schaberts,	
DP-18802	505011		<u> </u>		+		<u> </u>	Issenia	Very Excome all and march and	<u> </u>
					1				brann mylemente disaverin in CE.	
DD7-138-03	0150 42		Ĭ				+	- 2/24110260	I work fice pay its world Deverite longthous	<u> </u>
				<u> </u>					Apricon in cross diana - goro TMX1000	
		1								
			+	+	<u>+</u>		<u> </u>			+
		<u> </u>		•						
										1

				ΚE	EW.	ΑΤΙΙ	ΝE	NGINEERI	NG INC.		
oject:	GIN DRYDEN				-	F	ROCK	SAMPLES	Results Plotted By:		
eo (Grid): Hectors:	BOG RYZMK - CRANT	NAG	4.	AN	21	DVFR	AS		Date: Surface X Underground		
SAMPLE NUMBER	LOCATION NOTES	REP. SAMPLE NUMBER	SAM	PLE 1	TYPE (LENGTH						
			GRAB	СНІР	CHANNEL	CORE	FLOAT	TYPE	SAMPLE DESCRIPTION		
<u></u>	4821 ft; float in Cr.					 	×	cultstone	fligtin cruck; black setstone to wache; bealoite van; 51% pyrite		
-NN-138-05	1838 11 right side		X					siltstory	Festavial pyrite pods 8% lacy "pyrite/ stachwich pursbutain		
0 - NN +88-0'	5 4906 ft. taken abure		*	<u> </u>	<u>↓</u>		↓	seltstene	as above, 4% diss + fract syrete		
	Maryan Ti	20						sultions	3-5% finily dessipurite, Bedded Deltitone		
<u>C-NN-18K-C-</u>	ATTEN Ereck from NNR-3					+					
19-BK-18R-0	4 5670ft.							sultatione	Vugqy sty veins: < 2% syrile, ocatorizo SMXICAN - surrounded by Talus.		
2-BR-18R-C	5 5740 fl west of BR-04							Broccia,	Pyrite concentrations < 3 cm. gorson outercos:		
0-BR-18R-00	578.ft 25 m from creek on south Bank;		*					Chert Bre	ca 55 M × 20 m chuit breccus / anderite flow (?) contact zone 57% syrite		
10 BR-18R-	7 6030ft; north side of creek;		×	·				Brecció	sulicified, precented rk, 5 3 pyrite,		
1 <u>0-8R-18R-0</u>	8 5500 ft - yk in Cruck byd;							Brecci	pyrete 52%		
4D -1526-1	4 Jackson Creek, West	+						augete Unkinte j	5-8% mod. grained pyrite stukes lan NE 2 is 1.3 M. wid, pyrite cubes.		

APPENDIX X

•

.

ſ

-

--

Statement of Qualifications

.

STATEMENT OF QUALIFICATIONS

I, DAVID T. MEHNER, of 333 Scenic Drive, in the Municipality of Coldstream, in the Province of British Columbia, do hereby certify that:

- 1. I am a Consulting Geologist with Keewatin Engineering Inc., with offices at 800 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I am a graduate of the University of Manitoba, B.Sc. Honours, 1976, M.Sc. Geology, 1982.
- 3. I have practised my profession continuously since 1979.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. During the period of July to October, 1990, I managed and carried out the exploration program on the Gin property claims near Kinaskan Lake on behalf of Dryden Resource Corporation.
- 6. I do not own or expect to receive any interest (direct, indirect or contingent) in the properties described herein, nor in the securities of Dryden Resource Corporation in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia, this <u>5th</u> day of <u>March</u>, A.D. 1991.

Respectfully submitted,

OCIA) D. T. MEHNER õ David T. Mehner, M.Sc., F ELLON

and service and se

