LOG NO: April 15/91	RD
ACTION:	
FILE NO:	

1990 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE LAMA 1 & 2 CLAIMS

Located in the Telegraph Creek Area Liard Mining Division NTS 104G/12E 57° 42' North Latitude 131° 35' West Longitude

1 880⁰

A DRANCH

-prepared for-PASS LAKE RESOURCES LTD.

-prepared by-Bruno Kasper, Geologist February 1991 1990 GEOLOGICAL AND GEOCHEMICAL REPORT ON THE LAMA 1 & 2 CLAIMS

TABLE OF CONTENTS

		<u>_Page</u>
	INTRODUCTION	.1.
	LIST OF CLAIMS	.1.
	LOCATION, ACCESS AND PHYSIOGRAPHY	.1.
	PROPERTY MINING HISTORY	
4.1	Previous Work	.2.
4.2	1990 Work Program	.3.
	REGIONAL GEOLOGY	.4.
	PROPERTY GEOLOGY AND MINERALIZATION	
6.1	Geology	.5.
6.2	Mineralization	.6.
	GEOCHEMISTRY	.7.
	DISCUSSION AND CONCLUSIONS	.7.
	4.1 4.2 6.1 6.2	INTRODUCTION LIST OF CLAIMS LOCATION, ACCESS AND PHYSIOGRAPHY PROPERTY MINING HISTORY 4.1 Previous Work 4.2 1990 Work Program REGIONAL GEOLOGY PROPERTY GEOLOGY AND MINERALIZATION 6.1 Geology 6.2 Mineralization GEOCHEMISTRY DISCUSSION AND CONCLUSIONS

APPENDICES

Appendix A	Bibliography
Appendix B	Statement of Expenditures
Appendix C	Rock Descriptions
Appendix D	Certificates of Analysis
Appendix E	Statement of Qualifications

LIST OF FIGURES

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

	Following <u>Page</u>
Location Map	.1.
Claim Map	.2.
Regional geology	.3.
Regional Geology	.4.
Geology and Geochemistry	-Pocket-

1.0 INTRODUCTION

The Lama 1 and 2 claims were staked in June, 1990 to cover favourable stratigraphy and geophysics near the junction of the Chutine and Stikine Rivers, approximately thirty-five kilometres southwest of Telegraph Creek in northwestern British Columbia (Figure 1). Regional mapping indicates that the claims are underlain by an Upper Triassic mafic/felsic submarine volcanic package, permissive for both volcanogenic massive sulphide or mesothermal precious metal deposits such as those found to the south in the Galore Creek, Iskut River, Sulphurets and Stewart mining camps.

Reconnaissance exploration, consisting of geological mapping, prospecting and geochemical sampling, was carried out over the Lama 1 and 2 claims in September of 1990. Equity Engineering Ltd. conducted this program for Pass Lake Resources Ltd., and has been retained to report on the results of the fieldwork.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the following claims, located in the Liard Mining Division, (Figure 2) are owned by Pass Lake Resources Ltd..

Claim <u>Name</u>	Record Number	No. of Units	Record Date	Expiry Year		
Lama 1	7400	20	June 22, 1990	1991		
Lama 2	7401	<u>20</u> 40	June 22, 1990	1991		

The location of the legal corner post for the Lama 1 and 2 claims has been verified by the author.

3.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The Lama 1 and 2 claims are located within the Boundary Ranges of the Coast Mountains approximately 35 kilometres southwest of Telegraph Creek in northwestern British Columbia (Figure 1). They lie within the Liard Mining Division, centered at 57° 42' North latitude and 131° 35' West longitude.

Access to the Lama 1 and 2 claims for the 1990 exploration program was provided by daily helicopter setouts from the Ball Ranch, located approximately twenty kilometres to the northeast on Callbreath Creek. The Ball Ranch is connected by road and ferry to Glenora, which lies sixteen kilometres south of Telegraph Creek along a secondary road. An access road suitable for four-wheel

1

drive vehicles has been constructed west-southwest from Glenora to a placer mining camp on the Barrington River. This road passes within 2,500 meters of the northwest corner of the Lama 1 claim.

The Lama claims cover a rounded ridge lying between the Chutine and Stikine River floodplains (Figure 4). Topography is moderate for the area, with elevations ranging from approximately 180 meters on the Chutine River floodplain to almost 800 meters on the ridgetops. Steep bluffs make access difficult in some areas.

The entire property is wooded, sparsely covered by birch and other deciduous trees. It lies in an intermediate or gradational belt between the wet belt of the Coast Range and the dry belt of the Stikine Plateau. The summers are typically cool and showery with occasional snowfalls. Considerably less snow accumulates over winter than in the wet belt. Prospecting and mapping could be started in July and continued through till October in a normal year. Shaded creek beds commonly contain packed snow until mid to late July.

4.0 PROPERTY MINING HISTORY

4.1 Previous Work

Placer gold was discovered on gravel bars of the Stikine River between Glenora and Telegraph Creek in 1861 and worked extensively until the early 1900's. The placer gold deposits of the lower Barrington River have been worked sporadically since 1903 (Figure 3).

In 1929, Frank Jackson discovered sphalerite-chalcopyritegalena-quartz lenses within a zone of pyritized volcanics which can be traced southwesterly for approximately five kilometres (Kerr, 1948). These showings, known as the Jackson and Lady Jane occurrences, lie approximately five kilometres southwest of the Lama claims on the south side of the Chutine River. Sporadic trenching was carried out until 1935, but the irregularity and discontinuity of the mineralization has discouraged further work.

The area south and west of Telegraph Creek was extensively explored for its copper potential throughout the 1960's, following the discovery of the Galore Creek copper-gold porphyry deposit in 1955 and the Schaft Creek copper-molybdenum deposit in 1957, both of which host greater than one million tonnes of contained copper. These deposits are located 87 kilometres south-southwest and 62 kilometres south-southeast, respectively, from Telegraph Creek.

Several copper occurrences were discovered southwest of Telegraph Creek at this time (Figure 3). Kennco explored copper mineralization within a syenitic border phase of a large granodiorite stock and its intruded volcanics on their Poke claims,

on Limpoke Creek. Kennco's Gordon claims, located at the junction of Limpoke Creek and the Barrington River, also host disseminated copper mineralization within the syenitic phase of the stock and the intruded volcanics (BCDM, 1966).

With increased gold exploration during the late 1970's and early 1980's, most of the copper prospects were re-evaluated for their gold potential. Du Pont of Canada Exploration Ltd. conducted geological, geochemical and geophysical surveys over Mount Barrington following up highly anomalous gold geochemistry from field-sieved stream sediment samples collected during a regional survey. Korenic (1982) reported assays up to 122 grams per tonne (3.575 oz/ton) gold from narrow pods of massive pyrite, arsenopyrite, chalcopyrite and pyrrhotite.

In 1987, the federal and provincial geological surveys conducted a joint regional silt sampling program over the entire Telegraph Creek and Sumdum map sheets, taking a total of 1291 samples (GSC, 1988). Silt sample 871174, taken from a creek draining the Lama claims, returned low values for all elements.

During the course of regional mapping in 1989 over map sheets 104G/12E and 104G/11W, Brown et al.(1990) took rock sample CGR89-93 from the eastern side of the Lama claim group. This "pyritic, siliceous dust tuff" had moderately elevated copper with 225 parts per million. No other work has been recorded on the Lama 1 and 2 claims.

4.2 1990 Work Program

The 1990 exploration program on the Lama 1 and 2 claims consisted of geological mapping, prospecting and stream sediment sampling. This work was targeted at two distinct styles of mineralization for which the property shows favourable stratigraphy:

1) volcanogenic massive sulphides associated with felsic and mafic submarine volcanics. A similar suite hosts the Lady Jane and Jackson showings, which exhibit many of the features of VMS deposits and are located five kilometres to the southwest along strike.

2) structurally-controlled mesothermal precious metals deposits. Several major gold-silver deposits, including the Silbak Premier and Snip, are located within this Mesozoic island arc stratigraphy to the south in the Galore Creek, Iskut River and Stewart mining camps.

During the course of this program, two silt samples and eight rock samples were taken (Figure 4). The silt samples were collected from silt accumulations in creek drainages, sieved to minus 80 mesh in the laboratory and analyzed geochemically for gold and 32 elements by ICP.

3

Phyllite, argilaceous quartille, quariz-sericite schist, chierite schist, greenstone, minor chert, schistoes tidl and limestone

B Amphibolite, amphibolite guess; age unknown probably pre-Upper Arsant

PASS	6 LAKE	RESOURCES	LTD.
TELEGR	APH CI GIONA ARD MINI	REEK PROF AL GEOL	PERTIES LOGY B. C.
E	QUITY EN	GINEERING LT	D.
DRAWN. J.W.	NTS 1046/13	DATE DEC., 1990	FIG No. 3

SYMBOLS

pary idefined and approximate, assu (ined and approximate, assumed) on hanging-wall side idefined and approximate, and

10

(N)

Reconnaissance geological mapping and prospecting were carried out using a 1:10,000 scale enlargement of the government's 1:50,000 scale topographic map as a base (Figure 5). Rock samples, described in Appendix C, were taken from zones of alteration and mineralization and analyzed geochemically for gold and 32 elements by ICP. Analytical certificates are attached in Appendix D.

5.0 REGIONAL GEOLOGY

The Telegraph Creek area lies on the western margin of the Intermontane Belt within the Stikine Arch near its contact with the Coast Plutonic Complex (Figures 3 and 4). A sequence of Paleozoic to Middle Triassic oceanic sediments is unconformably overlain by rocks equivalent to Upper Triassic Stuhini Group island arc volcanics and sediments. These have been intruded by Upper Triassic to Lower Jurassic syenitic stocks and by Jurassic to Lower Cretaceous quartz diorite and granodiorite plutons of the Coast Plutonic Complex.

The oldest rock assemblage in the Telegraph Creek area consists of Permian bioclastic limestone (Unit 3) overlying metamorphosed sediments and volcanics (Unit 2) and crinoidal limestone (Unit 1).

Unconformably overlying the Permian limestone unit are Upper Triassic Stuhini Group island arc bimodal volcanics and sediments (Units 5 through 8). In the area of the Lama claims (Figure 4), Brown et al (1990) divided the Stuhini Group into sediments (Unit uTSs1) and volcanics (Unit uTSv). The sediments comprise grey, arkosic wacke with limestone clasts, siltstone, graphitic shale, rare black chert and rare polymictic conglomerate with granitoid The volcanics have been further subdivided. Sub-unit b clasts. consists of mafic volcanics, including augite porphyry flows and Sub-unit p comprises bladed plagioclase porphyry pyroclastics. basalt, with pillows on the Lama claims. Sub-unit a includes intermediate volcanics, primarily andesite flow-breccia, red-brown volcanic breccia and fine-grained andesite. Sub-unit f includes felsic volcanic rocks, primarily pyritic, laminated sub-aqueous silicious ash tuff (Brown and Greig, 1990). Several significant gold occurrences are hosted by Upper Triassic Stuhini volcanics in a cluster around Galore Creek sixty kilometres to the south.

Small, equidimensional syenite, pyroxenite and orthoclase porphyry stocks (Unit 12), dated as Late Triassic to Early Jurassic by Souther (1972), intrude mainly Stuhini volcanics. The Galore Creek and Copper Canyon copper-gold porphyry deposits are hosted by Upper Triassic volcanics intruded by syenitic stocks of Unit 12. Mesozoic orthoclase porphyry or syenite stocks are associated with most significant precious metals deposits in the Stewart, Sulphurets and Iskut River districts, including the Silbak Premier, Sulphurets, and Snip deposits.

4

LEGEND

(to accompany Figure 4)

LITHOLOGIES

OUATERNARY Alluvium, unconsolidated glaciofluvial deposits Oal UPPER TRIASSIC Stuhini Group uTSs1 Grey arkosic wacke with limestone clasts, siltstone, graphitic shale, rare black chert; rare granitoid-bearing polymictic conglomerate/breccia uTSv Volcanic rocks; undifferentiated Mafic volcanic rocks; augite-porphyritic basalt to basaltic ъ andesite flows and breccia; pyroxene-rich crystal lithic lapilli tuff; volcanic wacke, dark green to olive-green, medium-grained, massive, minor plagioclase Bladed plagioclase-porphyritic basalt or basaltic andesite, P locally pillowed Intermediate volcanic rocks; massive, green andesite flowа breccia containing 10-20% equant plagioclase phenocrysts; redbrown to purple plagioclase=rich volcanic breccia and tuff; fine-grained, massive, green to olive aphyric andesite f rocks; rhyolite/dacite: Felsic volcanic subaqueous felsic/siliceous ash tuff, laminated, pale to dark green, commonly pyritic; "sharpstone", silicic wacke/breccia, pale to dark green, siliceous angular fragments; local welded

SYMBOLS

ignimbrite

Geological boundary (defined, approximate, assumed)
Unconformity (defined, approximate, assumed)
Bedding (inclined, vertical)
Bedding; tops observed (inclined, overturned)
Foliation (inclined, vertical)
Dike (inclined, vertical; composition indicated by abbreviation)
Antiformal axis (approximate)
Synformal axis (approximate)
Overturned synclinal axis
Axial plane of minor fold (inclined, vertical)
Fold axis of minor fold (arrow indicates plunge)
Glacial striae (undetermined direction of movement)
High-angle fault (defined, approximate; solid circle on downthrown side)
Reverse fault (defined, approximate, assumed; teeth in direction of dip)
Dike swarm
Cross-section line
Fossil location; age determined, undetermined (data on Sheet 2)
Potassium-argon isotopic age sample location (data on Sheet 2)
Field station with no structural measurements

Geology after Brown et al (1990)

it 13) with granodior

5

Lower Jurassic conglomerates (Unit 13) with granodiorite clasts unconformably overly Stuhini Group sediments. The Jurassic volcano-sedimentary strata are similar in appearance to those of the underlying Triassic rocks, with differentiation possible mainly through fossil identification, but have been assigned to the Hazelton Group by Brown and Greig (1990).

Jurassic and/or Cretaceous granodiorite to quartz diorite batholiths (Unit 17) of the Coast Plutonic Complex intrude all older lithologies. This unit consists mainly of medium-grained hornblende-biotite granodiorite with lesser hornblende quartz diorite and is locally foliated near its margins. Marginal phases of this intrusive unit have been noted by Government geologists, to be syenitic and they conclude, "much additional work is needed to subdivide the many phases of this map-unit" (Souther, 1972).

Coarse conglomerate, sandstone, siltstone and minor black shale of the Upper Cretaceous and Lower Tertiary Sustut Group (Unit 21) unconformably overlies Jurassic strata on Mount Helveker and are found along the Stikine River below Telegraph Creek. Conformably overlying the Sustut Group on Helveker Mountain are about 160 meters of felsic to intermediate, mainly pyroclastic rocks (Unit 24), correlated by Souther (1972) to the Early Tertiary Sloko Group found further to the northwest.

Upper Tertiary and Quaternary basalt flows (Unit 25) are exposed in the Stikine River and north of Dodjatin Mountain.

6.0 PROPERTY GEOLOGY AND MINERALIZATION

6.1 Geology

The Lama 1 and 2 claims are underlain by an interbedded sequence of volcanic, volcaniclastic and sedimentary rocks of the Upper Triassic Stuhini Group (Figure 5). These rocks show variable strikes, moderate to steep dips and have undergone zeolite grade metamorphism. A major east-northeast-striking, northerly-dipping thrust fault bisects the property. Stuhini Group rocks occur on both sides of this fault. East and north to northeast-trending, steeply-dipping faults have been mapped, mainly within the southern half of the property. Several distinct rock types have been identified on the Lama 1 and 2 claims but more mapping will be necessary in order to determine the continuity of these units. Geology in Figure 5 has been adapted in part from Brown et al (1990) and has been modified on the basis of field work carried out during 1990.

Government mapping has revealed two outcrops of undifferentiated sedimentary rocks (Unit 8A) on the ridge to the north of Dolly Creek. These rocks strike to the northwest and dip

- Equity Engineering Ltd. -

steeply towards the southwest. Their exact composition is unknown.

Augite-porphyritic basalt and basaltic andesite flows (Unit 8D) outcrop in several places throughout the property. These rocks are dark green, massive and may contain up to 20% one to two millimetre augite phenocrysts. Pillow textures have been observed within this unit in the northern part of the property (Brown et al., 1990) and rocks containing calcite amygdules (Unit 8D1) have been mapped in the southeast corner of the Lama 1 claim.

Andesite and feldspar-porphyritic andesite (Unit 8E) is widespread throughout the property. This unit is dark green, massive and often contains 10-20% feldspar phenocrysts. Local, parallel alignment of phenocrysts suggests that some of these rocks may represent flows.

Government mapping indicates an outcrop of felsic volcanics (Unit 8F) on the ridge to the south of Dolly Creek.

Heterolithic lapilli tuff (Unit 8H) outcrops near the legal corner post. These rocks are massive, maroon coloured and contain mafic and felsic rock fragments up to one centimetre across.

A strong magnetic anomaly is centred around the peak near the southern boundary of the claims (GSC, 1978). Government mapping indicates that the area is underlain by volcanic rocks of units 8E and 8D.

6.2 Mineralization

A total of 8 rock samples were taken on the property during 1990. Most of these samples returned low values for the major base and precious metals, although a few contained some copper.

Sample LAMA ROCK-1 was taken from brecciated, silicified volcanic float on the slope to the north of Guru Creek. The sample, containing disseminated chalcopyrite, assayed 0.92% copper, with low values for other metals. Samples 484811 and 484812, taken from malachite stained volcanic cliffs above sample LAMA ROCK-1, returned copper values of 8560 and 6040 ppm respectively. Float sample 484810, from the same vicinity, returned 3510 ppm copper. The brecciated nature of some of these samples suggests that mineralization may be related to east-trending faults, which have been mapped to the west of this area and may continue along Guru Creek.

A strong iron-carbonate alteration zone within volcanics is exposed on the slope to the north of Dolly Creek. Samples from this area returned low values for all of the major base and precious metals.

Malachite staining has been observed on south facing cliffs in

6

the northern part of the Lama 1 claim. This area has yet to be investigated.

7.0 GEOCHEMISTRY

Regional geochemical sampling of the Telegraph Creek map sheet was conducted by the British Columbia Geological Survey in 1987 (GSC Open File 1646, 1988). One silt sample (871174) was taken from a creek which drains the western part of the Lama 1 claim, however it returned values below the 90th percentile for all base and precious metals.

In 1990, two silt samples (90BK-45 and 90DC-20) were taken from Dolly and Guru Creeks, on the Lama property. Sample 90BK-45, from Dolly Creek on the Lama 1 claim, returned an anomalous silver value of 0.4 ppm (equivalent to the 95th percentile for silver for the government survey). The creek drains an area of iron carbonate altered volcanics. Other precious and base metal values for both of the silt samples are low.

8.0 DISCUSSION AND CONCLUSIONS

The Lama 1 and 2 claims are underlain by Upper Triassic Stuhini Group rocks. These rocks host significant base and precious metal deposits to the south in the Galore Creek area. In addition, the presence of felsic and submarine mafic volcanics and the possibility of a volcanogenic massive sulphide target warrants attention.

During the 1990 field season an area of copper mineralization was found on the Lama 2 claim, malachite-stained cliffs were observed on the Lama 1 claim and a silt sample from Dolly Creek was found to be anomalous in silver. A large magnetic anomaly on the Lama 2 claim is, as yet, unexplained. The Lama 1 and 2 claims are in a very early stage of exploration but the results to date offer encouragement for further work.

Respectfully submitted, EQUITY ENGINEERING LTD.

Bruno Kasper, Geologist

Vancouver, British Columbia February, 1991. 7

APPENDIX A

BIBLIOGRAPHY

BIBLIOGRAPHY

- Allen, D.G., A. Panteleyev and A.T. Armstrong (1976): Galore Creek, in CIM Special Volume 15, pp. 402-414.
- BCDM (1929-1935, 1963-66): Annual Reports; British Columbia Department of Mines.
- British Columbia Ministry of Energy, Mines and Petroleum Resources (1988): Telegraph Creek - Mineral Occurrence Map; Minfile Map 104G.
- Brown, D.A. and Greig, C.J. (1990): Geology of the Stikine River-Yehiniko Lake Area, Northwestern British Columbia (104G/11W and 12E); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1, pages 141-151.
- Brown, D.A., C.J. Greig and M.H. Gunning (1990): Geology of the Stikine River-Yehiniko Lake Area, Northwestern British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File 1990-1.
- Fox, P.E., E.W. Grove, R.H. Seraphim and A. Sutherland Brown (1976): Schaft Creek, in CIM Special Volume 15, pp. 219-226.
- Geological Survey of Canada (1978): Geophysical Aeromagnetic Series, Map 9249G Chutine River.
- Geological Survey of Canada (1988): National Geochemical Reconnaissance, Sumdum - Telegraph Creek, British Columbia (NTS 104F - 104G); GSC Open File 1646.
- Kerr, F.A. (1948): Lower Stikine and Western Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 pp.
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical and Geophysical work performed on the Tuff 1 Claim; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #10,475.
- Lehtinen, J. (1990): 1989 Geological and Geochemical Report on the Kink 1-4 Claims; Report submitted for assessment credit to the British Columbia Ministry of Energy, Mines and Petroleum Resources.

Souther, J.G. (1972): Telegraph Creek Map Area, British Columbia; Geological Survey of Canada Paper 71-44.

APPENDIX B

.

STATEMENT OF EXPENDITURES

LAMA CLAI (LAMA 1 & 2 (September 26 - Sep	M GRC 2 CLA ptmeb)UP IMS) er 29, 199	1)	
PROFESSIONAL FEES AND WAGES: Bruno Kasper, Geologist 1 day @ \$300/day Don Coolidge, Prospector	\$	300.00		
1 day @ \$250/day		250,00	\$	550.00
CHEMICAL ANALYSES: Rock Geochemical Samples				
7 @ \$17.75/each Silt Samples	\$	124.25		
2 @ \$14.94 each		29.88		154.13
EXPENSES: Accommodation Aircraft Charter Courier and Telefax	\$	230.00 18.47 8.44		
Drafting Expediting Freight		16.95 2.55 10.01		
Geochemical Supplies Helicopter Charters Materials and Supplies		9.91 569.60 2.39		
Maps and Publications Meals Printing and Reproductions Radio Rental		1.21 4.28 82.24 10.00		
Truck Standby	<u></u> ,	4.88 5.00		980.34
			\$	1,684.47
MANAGEMENT FEE @ 15% ON expenses			\$	1,852.39
REPORT (estimated)			\$	2,000.00 3,852.39

.

•

APPENDIX C

٠

ROCK SAMPLE DESCRIPTIONS

Mineral Abbreviations:

AS	Arsenopyrite	KF	Potassium Feldspar
AZ	Azurite	LI	Limonite
BI	Biotite	MC	Malachite
BO	Bornite	MG	Magnetite
CA	Calcite	MO	Molybdenite
CC	Chalcocite	MN	Manganese-oxides
CB	Fe-Carbonate	MR	Mariposite
CL	Chlorite	MS	Sericite
CP	Chalcopyrite	MU	Muscovite
CV	Covellite	PO	Pyrrhotite
CY	Clay	PY	Pyrite
DO	Dolomite	QZ	Quartz
EP	Epidote	SI	Silica
GE	Goethite	SM	Smithsonite
GL	Galena	SP	Sphalerite
HE	Hematite	TA	Talc
JA	Jarosite	\mathbf{TT}	Tetrahedrite

EQUITY ENGI	NEERING LTD.			ROCK SAMPLE DESCRIP	TIONS			Page-1-					
Property :	Lama 1 & 2 Claims			NTS : 104G/12E		Date : 02/	21/91						
Sample No.	Location :	6397670	N	Type : Float		Alteration :	SI, CL	Au	Ag	Cu	Pb	Zn	As
		347980	E	Strike Length Exp. :	m	Sulphides :	2-3%CP, TR. PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
APM ROCK -1	Elevation:	1200 ft		Sample Width :	m	Oxides :	MC, LI	5.	4.4	0.92%	36.	76.	10.
	Orientation:	1		True Width :	m	Host :	Intermediate volcanicla	stic?					
Comments :	Brecciated rock	containing	1-2mm (wide quartz veinlets. C	halcopyrite	occurs as 1mm	blebs within the quartz v	einlets.					
Sample No.	Location :	6397720	N	Type: Float		Alteration :	CB, S1?	Au	Ag	Cu	РЪ	Zn	As
		346970	E	Strike Length Exp. :	m	Sulphides :	1%CP, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
484810	Elevation:	1250 ft		Sample Width :	m	Oxides :	GE, MC	<5.	<0.2	3510.	8.	74.	5.
	Orientation:	1		True Width :	m	Kost :	Feldspar-porphyry						
Comments :	The sample was t	aken from a	a talus	slope below malachite-s	tained clift	fs.							
Sample No.	Location :	639772 0	N	Type : Select		Alteration :	CB, SI?	Au	Ag	Cu	Pb	Zn	As
·		346900	E	Strike Length Exp. : ?	m	Sulphides :	1-2%CP, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
484811	Elevation:	1320 ft		Sample Width : 25	CM	Oxides :	MC	<5.	<0.2	8560.	<2.	82.	<5.
	Orientation:	1		True Width : 35 c	m	Host :	Feldspar porphyry/Andes	ite					
Comments :	The sample was t	aken from a	a bluff	face.									
Sample No.	Location :	6397650	N	Type: Grab		Alteration :	CB, SI?	Au	Ag	Cu	Pb	Zn	As
		346830	Е	Strike Length Exp. : ?	m	Sulphides :	1-2%CP, 1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
484812	Elevation:	1350 ft		Sample Width : 1	m	Oxides :	MC	<5.	<0.2	6040.	<2.	130.	<5.
	Orientation:	1		True Width : ?	m	Host :	Mafic volcanics						
Comments :	Malachite occurs	along frac	cture s	urfaces.									
Sample No.	Location :	6398440	N	Type : Grab		Alteration :	CA, CB, QZ	Au	Ag	Cu	Pb	Zn	As
		346710	Ε	Strike Length Exp. : <	1 m	Sulphides :	<1%PY	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
484915	Elevation:	1320 ft		Sample Width : 20	cm	Oxides :	GE	<5.	0.4	121.	2.	140.	<5.
	Orientation:	? /?		True Width :	m	Host :	Felsic Dyke?						
Comments :	The sample was t	aken from a	a poorly	y exposed outcrop. Diss	eminated py	rite is associa	ted with silicification.						
Sample No.	Location :	6399230		Type : Grab		Alteration :	СВ	Au	Aa	Cu	Pb	Zn	As
2-0-F-1- 11-2-		346510	E	Strike Length Exp. : 1	.5 m	Sulphides :	TR. PY	(daa)	(ppm)	(pom)	(pom)	(pom)	(pom)
• 484916	Elevation:	1700 ft	-	Sample Width : 1.0		Oxides :	GE. JA	<5.	0.2	24.	8.	92.	25.
	Orientation	072 / 75	N	True Width : 4.0 c	m	Host :	Volcaniclastics				-		
		· · · · · · · · ·		• • • • • • • •		•							

.....

• () · · · ·

Page-2-EQUITY ENGINEERING LTD. ROCK SAMPLE DESCRIPTIONS Date : 02/21/91 NTS : 104G/12E Property : Lama 1 & 2 Claims Alteration : CA, CB, MR? Cu Рb Zn As Sample No. Location : 6399220 N Type : Grab Au Ag 346500 Ε Strike Length Exp. : >30 Sulphides : TR. PY (ppb) (ppm) (ppm) (ppm) (ppm) (ppm) m <5. 0.2 107. 2. 78. 10. Oxides 484917 Elevation: 1650 ft Sample Width : 1.2 m : True Width : 1.0 m Host : Volcaniclastic? Orientation: 065 / 58 N Comments : The sample was taken from the same intense carbonate alteration zone as sample 484916. Calcite veining is prevalent in this area. Cu Pb Zn As Alteration : Au Location : 6399270 Type : Float Ag Sample No. N Ε Sulphides : TR. PY (ppm) (ppm) (ppm) (ppm) (ppm) 346490 Strike Length Exp. : តា (ppb) <0.2 23. 120. 15. 484918 Elevation: 1800 ft Sample Width : Oxides : GE, HE <5. 10. m Volcaniclastic wacke? True Width : Host : Orientation: 1 m ٠ Comments : Frost-heaved float. Found upslope from a carbonate alteration zone.

,

٦

.....

APPENDIX D

.

CERTIFICATES OF ANALYSIS

CHEMEX

100

922

950

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: E	EQUITY	ENGINEE	RING	LTD.
-------	--------	---------	------	------

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Comments: ATTN: HENRY AWMACK

NUMBER Samples	DESCRIPTION	METHOD		UPPER LIMIT
7	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
7	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
7	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
7	As ppm: 32 element, soil & rock	ICP-AES	5	10000
7	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
7	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
7	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
7	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
7	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
7	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
7	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
7	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
7	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
7	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
7	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
7	K %: 32 element, soil & rock	ICP-AES	0.01	10. 0 0
7	La ppm: 32 element, soil & rock	ICP-AES	10	10000
7	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
7	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
7	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
7	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
7	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
7	P ppm: 32 element, soil & rock	ICP-AES	10	10000
7	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
7	Sb ppm: 32 element, soil & rock	ICP-AES	5	10000
7	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
7	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
7	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
7	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
7	U ppm: 32 element, soil & rock	ICP-AES	10	10000
7	V ppm: 32 element, soil & rock	ICP-AES	1	10000
7	W ppm: 32 element, soil & rock	ICP-AES	10	10000
7	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

CERTIFICATE

A9024446

EQUITY ENGINEERING LTD.

Project: LAMA-1-2 P.O. # : PLJ90-03

Samples submitted to our lab in Vancouver, BC. This report was printed on 16-OCT-90.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 294 238	7 7 7	Geochem ring to approx 150 mesh Crush and split (0-10 pounds) NITRIC-AQUA REGIA DIGESTION
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. A9024446

.

5

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number : 1 A Total Pages : 1 Invoice Date: 15 JUL 90 Invoice No. : 1-9018208 P.O. Number : PL 90-02

Project : Comments: LAMA

	CERTIFICATE OF ANALY									rsis	/	A9018	208								
SAMPLE DESCRIPTION	PREI CODI	P	Au ppd Fataa	Ag PPm	A1 %	As ppm	Ba ppm	Be PPm	Bi PPm	Ca t	Cd PPm	Co PPm	Cr ppm	Cu Ppm	Fe	Ga PPm	Hg PPm	K B	La ppn	Mg	Mn PPm
AMA ROCK-1	205	294	5	4.4	2.42	10	130	< 0.5	< 20	2.83	< 0.5	30	55 3	>10000	6.13	< 10	< 1	0.15	< 10	1.15	930
								,													
																,					
		1													CERTIF		1:	-E	2.	en f	<u>ŀ</u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number : 1-B Total Pages : 1 Invoice Date: 15 JUL 90 Invoice No.: 19018208 P.O. Number: PLJ90-02

٢

,

Project : LAMA Comments:

r

	CERTIFICATE OF ANALYSI									SIS	A9018208							
SAMPLE DESCRIPTION	PREP CODE		Mo	Na ¥	Ni ppm	P PPm	Pb ppm	Sb ppn	Sc PPm	Sr PPm	Ti %	T1 PPm	bb <i>u</i> r A	V PP ^m	W PPm	Zn PPm		
LAMA ROCK-1	205 2	94	3	0.03	г	2200	36	5	12	77 -	< 0.01	< 10	< 10	213	< 10	76		
		ł																
L	t t				<u></u>			· · · · · · · · · · · · · · ·							CERTIF		B.C.	-cl

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number : 1-A Total Pages : 1 Invoice Date: 16-OCT-90 Invoice No. : I-9024446 P.O. Number : PLJ90-03

Project : LAMA-1-2 Comments: ATTN: HENRY AWMACK

										CERTIFICATE OF ANALY						YSIS	4	\9024	446	•	
SAMPLE DESCRIPTION	PRI COI	EP DE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppn	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg PPm	K *	La ppm	Mg %	Mn ppm
484810 484811 484812 484915 484916	205 205 205 205 205 205	294 294 294 294 294 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 0.4 0.2	3.17 3.17 3.53 1.09 2.05	5 < 5 < 5 < 5 25	40 30 60 740 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3.52 3.29 2.59 0.69 0.58	< 0.5 < 0.5 < 0.5 0.5 < 0.5	30 34 38 4 8	30 16 17 27 77	3510 8560 6040 121 24	7.79 8.64 9.47 3.69 5.90	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.08 0.13 0.08 0.28	< 10 < 10 < 10 20 10	2.01 2.49 2.94 0.48 1.31	1030 1375 1350 965 350
484917 484918	205	294	< 5 < 5	0.2 < 0.2	0.73 2.79	10 15	90 140	< 0.5 < 0.5	< 2 < 2	5.61 0.54	< 0.5 < 0.5	12 16	36 77	107 23	4.95 6.17	< 10 < 10	< 1 < 1	0.22	< 10 10	2.29 2.70	1105
															CERTIFI	CATION		ß	. (.	n-g	K.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Number : 1-B Total Pages : 1 Invoice Date: 16-OCT-90 Invoice No. : I-9024446 P.O. Number : PLJ90-03

ų.

Project : LAMA-1-2 Comments: ATTN: HENRY AWMACK

											CERT	IFI	CATE	OF A	ANAL Y	SIS	A9024446	
SAMPLE DESCRIPTION	PR CO	ep de	Mo ppm	Na &	Ni ppm	P P	Pb ppm	Sb ppm	Sc ppm	Sr 1 ppn	'i * p	Tl Pm	U PPm	v	M Bbu	Zn ppm		
484810 484811 484812 484915 484916	205 205 205 205 205 205	294 294 294 294 294	2 2 2 1 5	0.02 0.05 0.05 0.08 0.02	54 15 12 5 5	2330 2400 2600 1280 920	8 < 2 < 2 2 8	5 5 5 < 5 5 5	15 13 21 2 12	78 < 0.0 55 0.2 60 0.0 36 < 0.0 28 < 0.0	01 < 27 < 02 < 01 < 01 <	10 10 10 10 10	< 10 < 10 < 10 < 10 < 10 < 10	242 252 250 69 84	< 10 < 10 < 10 < 10 < 10 < 10	74 82 130 140 92		
484917 484918	205	294 294	1	0.02	8 9	770 770	2 10	5 < 5	16 18	274 < 0.0 20 0.0	01 < 01 <	10	< 10 < 10	43 185	< 10 < 10	78 120		

-

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9111438

.

,

Comments: ATTN: ROBERT FALLS

С	ERTIFI	CATE A9111438			ANALYTICAL	PROCEDURES	6	
EQUITY E		NG LTD.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
P.O.#: Samples This rej	PLJ90-0 submitte port was	2 ed to our lab in Vancouver, BC. printed on 25-FEB-91.	301	1	Cu %: HClO4-HNO3 digestion	AAS	0.01	100.0
	SAM	PLE PREPARATION						
CHEMEX	NUMBER SAMPLES	DESCRIPTION						
214	1	Received sample as pulp						

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : LAMA Comments: ATTN: ROBERT FALLS Page Number :1 Total Pages :1 Certificate Date: 25-FEB-91 Invoice No. : 19111438 P.O. Number : PLJ90-02

,

.

.

			CERT	IFICATE OF ANALYSI	S A911143	8
SAMPLE DESCRIPTION	PREP CODE	Cu %				
LAMA ROCK -1	214	0.92				
				CERTIFICAT	rion: A. Ada	n pondais

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Comments: ATTN: HENRY AWMACK

A9024447

ŧ

CERTIFICATE

A9024447

EQUITY ENGINEERING LTD.

Project: LAMA1-2 P.O. # : PLJ90-03

Samples submitted to our lab in Vancouver, BC. This report was printed on 16-OCT-90.

	SAMPLE PREPARATION CHEMEX CODE NUMBER SAMPLES DESCRIPTION 203 2 Dry, sieve to -35 mesh 205 2 Geochem ring to approx 150 mesh 238 2 NITRIC-AQUA REGIA DIGESTION												
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION											
203 205 238	2 2 2	Dry, sieve to -35 mesh Geochem ring to approx 150 mesh NITRIC-AQUA REGIA DIGESTION											
* NOTE	1 .												

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

			ROCEDURE	S	
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD		upper Limit
100 922 921 923 926 926 927 928 929 930 931 932 933 931 934 935 936 937 938 939 940 941 942 943 958 944 945 946 947 948 949	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock K %: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti %: 32 element, soil & rock Sc ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 5 10 0.5 2 0.01 0.5 1 1 1 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 2 5 1 1 0.01 10 10 10 10 10 10 0.5	$\begin{array}{c} 10000\\ 200\\ 15.00\\ 10000\\ 10000\\ 100.0\\ 10000\\ 100.0\\ 1000$
950	2	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Number : 1-A Total Pages : 1 Invoice Date: 16-OCT-90 Invoice No. : I-9024447 P.O. Number : PLJ90-03

,

٩

5

Project : LAMA1-2 Comments: ATTN: HENRY AWMACK

										CE	RTIF	CATE	OF A	NALY	'SIS	/	9024	447		
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppn	Ba ppm	Be ppm	Bi ppm	Ca ¥	Cd ppn	Co ppm	Cr ppm	Cu PPm	Fe %	Ga ppm	Hg PPm	K %	La ppm	Mg f	Min ppmi
00 BK-45 00 DC-20	203 205	< 5 < 5	0.4	1.52 1.43	555	340 90	0.5 < 0.5	< 2 < 2	0.94 3.54	< 0.5 < 0.5	10 13	164 251	18 40	3.24 2.98	10 10	<pre><1 <1 <1 <1</pre>	0.12 0.07	10 < 10	0.98	650 555
																				~

r

CERTIFICATION:

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : LAMA1-2 Comments: ATTN: HENRY AWMACK

Page Number : 1-B Total Pages : 1 Invoice Date: 16-OCT-90 Invoice No. : I-9024447 P.O. Number : PLJ90-03

· •

,

.

										CERTIFICATE OF ANA						'SIS	A9024447	
SAMPLE DESCRIPTION	PR CO	ep De	Mo ppm	Na %	Ni ppm	P Ppm	Pb ppm	Sb ppm	Sc ppn	Sr ppm	Ti ¥	Tl ppm	ppm U	v ppa	W Ppm	Zn PPn		-
90 BK-45 90 DC-20	203	205	1 < 1	0.05	28 63	530 510	2 < 2 < 2	2 5 < 5 < 5 < 5	4 4 4	57 66	0.12 0.10	2 10	Ppm < 10 < 10	9 2 80 80	<pre>ppm < 10 < 10</pre>	52 58		
- -															CERTIFIC	ATION:	B. Cargli	

APPENDIX E

.

r

- . .

,

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, BRUNO KASPER, of 101-1990 West 6th Avenue, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am a Consulting Geologist with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of Alberta with a Bachelor of Science degree in Geology.
- 3. THAT my primary employment since June, 1988 has been in the field of mineral exploration.
- 4. THAT this report is based on fieldwork carried out under my direction.
- 5. THAT I have no interest, directly or indirectly, in the securities of Pass Lake Resources Ltd. or any of its affiliates. I have no interest, directly or indirectly in the property.

DATED at Vancouver, British Columbia, this 28^{th} day of <u>February</u>, 19<u>91</u>.

Bruno Kasper, Geologist

Vancouver, British Columbia February, 1991.

