LOG NO: april 30/91	RD.
ACTION:	
FILE NO:	-

ASSESSMENT REPORT

ON THE

Q.C. PROPERTY

(Q.C. 1-7, 9-10, 15 CLAIMS)

Liard Mining Division, British Columbia NTS 104G/9 & 16W Latitude: 57° 47' N Longitude: 130° 20' W

on behalf of

DRYDEN RESOURCE CORPORATION Vancouver, B.C.

by

David T. Mehner, M.Sc., FGAC **KEEWATIN ENGINEERING INC.** #800 - 900 West Hastings Street Vancouver, B.C. V6C 1E5

C R ZO A A 2 1 8 2 JF **Z** \bigcirc \blacksquare <u>.</u> Z 5 o s **L** 0 0 5 0 **9 4**

March 8, 1991

Keewatin Engineering Inc.

3

TABLE OF CONTENTS

Page No.

INTRODUCTION	1
Location and Access	1 / 2 /
Property and Ownership Previous Exploration	2 / 3
GEOLOGY	5
Regional Geology	5
Property Geology	6 / 7
Structure	8 8
GEOCHEMISTRY	12
Analysis	12 12
DIAMOND DRILLING	15
Results	15 /
CONCLUSIONS	17 /
RECOMMENDATIONS	17 /
REFERENCES	18

LIST OF FIGURES

		Following Page No.
Figure 1.	Location Map	1
Figure 2.	Regional Location Map	1 /
Figure 3.	Q.C. Property Mineralized Centres	2 /
Figure 4.	Claim Map	2 🧷
Figure 5.	Regional Geology/Bowser Basin	5
Figure 6.	Regional Geology Map	5

LIST OF MAPS

In Pockets

Map 1.	Cu Geochemistry and Geology	1:5,000 🖉
Map 2.	Au Geochemistry	1:5,000
Map 3.	Ag Geochemistry	1:5,000
Map 4.	Pb-Zn-Mo Geochemistry	
Map 5.	As-Hg-Sb Geochemistry	1:5,000
Map 6.	Sample Locations	1:5,000
Map 7.	Cross-Section Through DDH-90-Q01	1:500
Map 8.	Cross-Section Through DDH-90-Q02	1:500

LIST OF APPENDICES

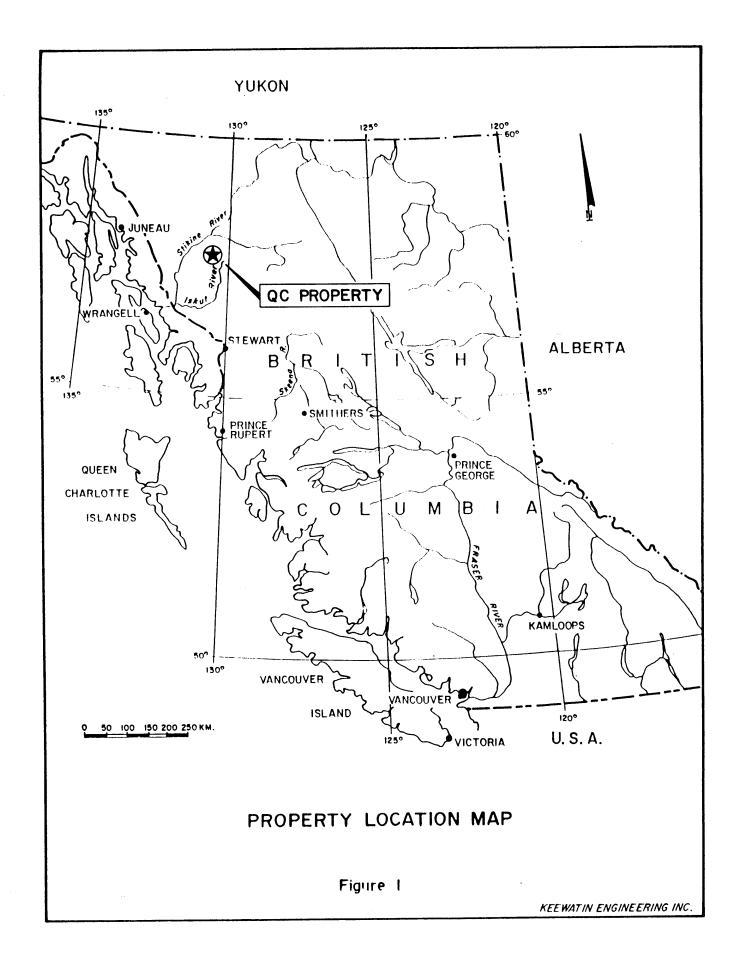
APPENDIX I	Statement of Expenditures
APPENDIX II	Summary of Personnel
APPENDIX III	Analytical Procedures Used by Min-En Laboratories Ltd.
APPENDIX IV	Silt Geochemistry Results
APPENDIX V	Silt Sample Descriptions
APPENDIX VI	Soil Geochemistry Results
APPENDIX VII	Soil Sample Descriptions 🗸
APPENDIX VIII	Rock Geochemistry Results /
APPENDIX IX	Rock Sample Descriptions
APPENDIX X	Drill Logs
APPENDIX XI	Drill Core Geochemical Results
APPENDIX XII	Statement of Qualifications

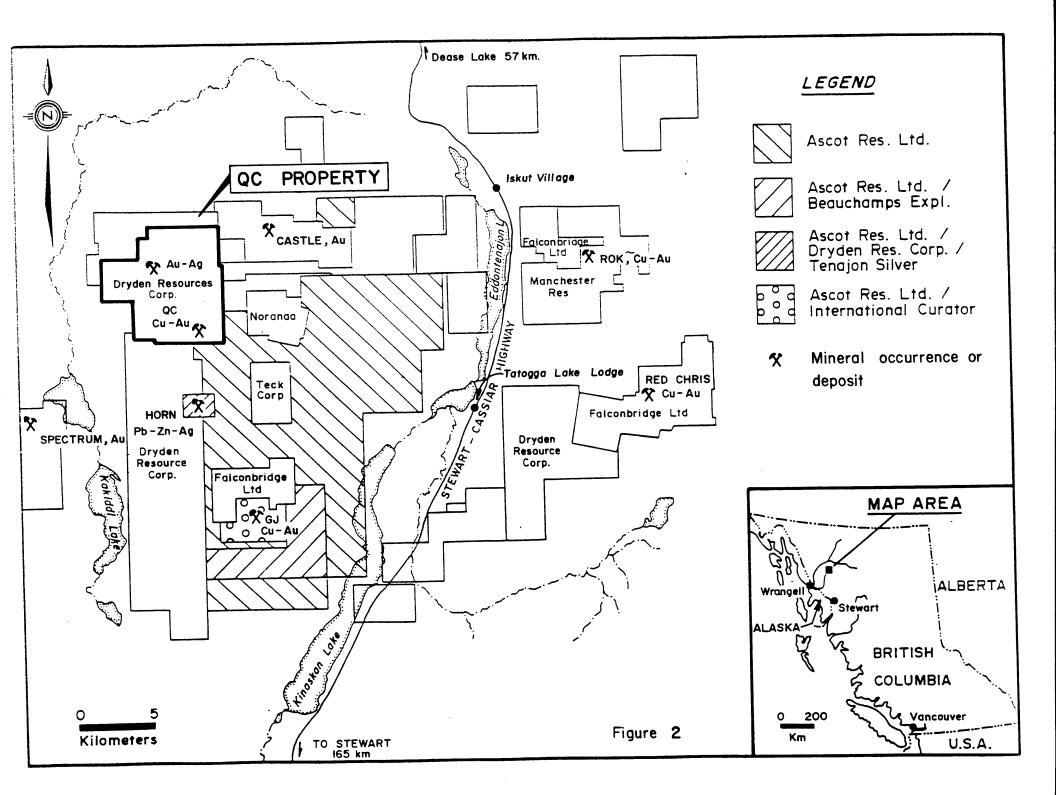
•

INTRODUCTION

The Q.C. property is situated along Quash Creek in the southwest portion of the Klastline Plateau in northwestern British Columbia.

Limited work by previous exploration groups since the mid-1960's has identified both a porphyry, copper-gold prospect and precious metal, shear-vein target on the property.


In the fall of 1990, Dryden Resource Corporation optioned the property from Triumph Resources Ltd. Keewatin Engineering Inc. was subsequently commissioned by Dryden Resource Corporation to carry out an exploration program on the property. Due to the lateness of the season the limited program was confined to the porphyry copper-gold zone and included stream silt and soil geochemical sampling, and, testing the western edge of a copper-gold soil anomaly with two diamond drilling holes totalling 377 metres.


Field work was carried out from the Iskut Valley Inn with the aid of a Hughes 500 helicopter, which was under contract from Vancouver Island Helicopters.

Location and Access

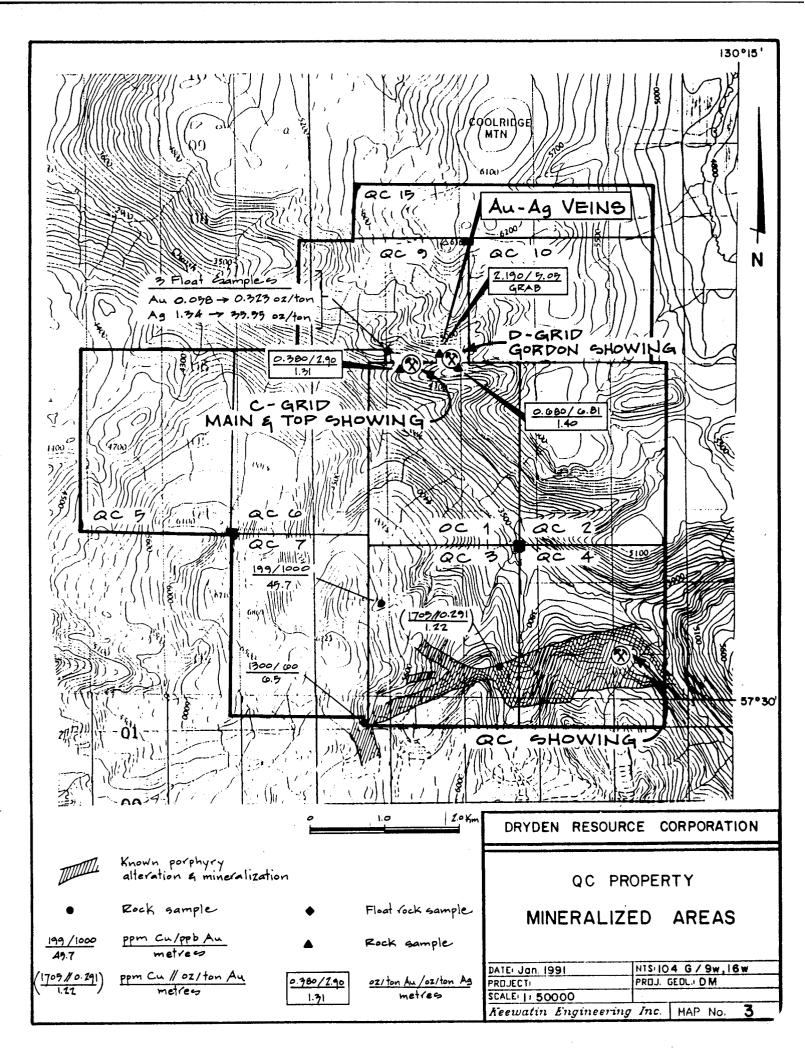
The Q.C. property is situated in the Stikine region of northwestern British Columbia, approximately 203 km north of Stewart, B.C. (Figure 1). The claims are centred 21 km southwest of Iskut Village and 20 km west of Eddontenajon Lake at 57° 47' North latitude and 130° 20' West longitude on NTS map sheet 104G/9W and 16W (Figure 2). Quash Creek cuts through the centre of the Q.C. claims.

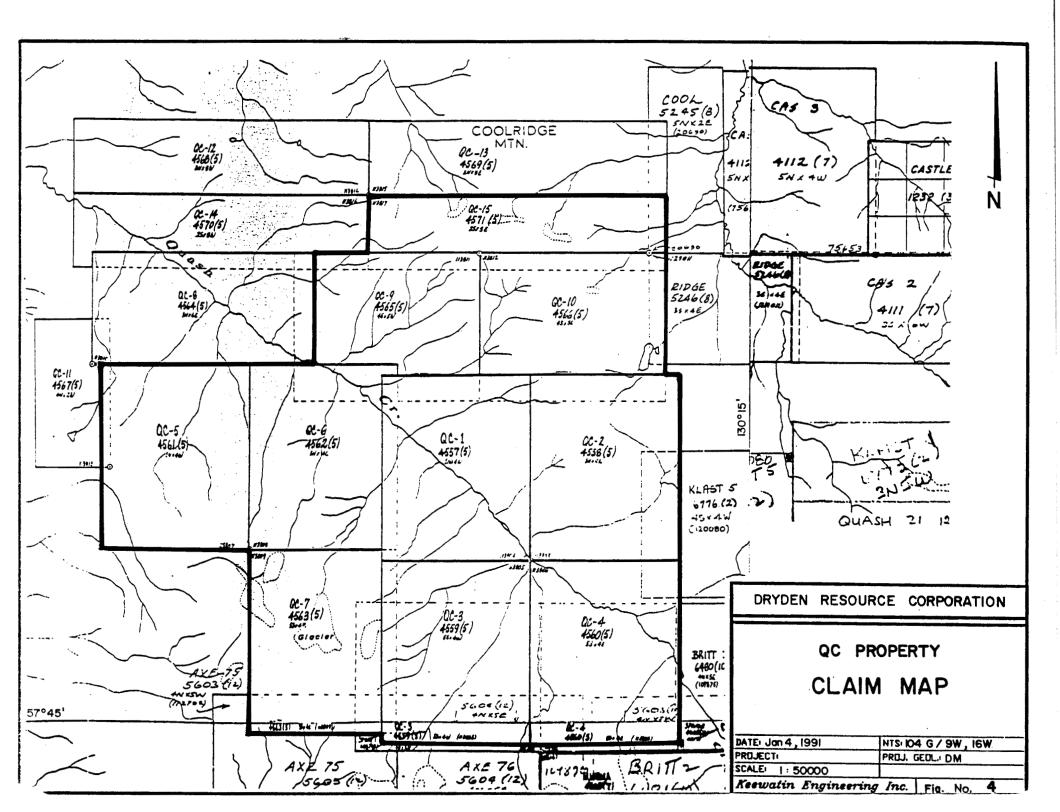
Alternate access is via helicopter from Canadian Helicopters Ltd. base at Tatogga Lake Lodge, a resort located 14 km south of Iskut Village and 21 km east-southeast of the property. Both the lodge and Iskut Village are situated on the Stewart-Cassiar Highway. The proposed B.C. Rail extension to Dease Lake is about 23 km northeast of the Tatogga Lake Lodge. Scheduled air service is available from Smithers to Iskut during the summer months.

Physiography and Climate

Topography on the property varies from fairly subdued with gently rolling hills atop the plateau in the northeastern portion of the property to extremely rugged with steep slopes and cliffs along the deeply incised Quash Creek valley (Figure 3). Much of the ground around the Q.C. porphyry copper zone is of the rugged variety with very steep east, west and north facing slopes making parts of the property relatively inaccessible. The western portion of the property is characterized by moderate and north facing slopes.

Elevations on the property vary from 975 metres (3,200 feet) above sea level along Quash Creek to 2,094 metres (6,869 feet) above sea level along the western side of the property near the southern claim boundary.


Vegetation varies from poplar and alder at the lowest elevations along the creek valleys to predominantly spruce along the steeper slopes at higher elevations. Sub-alpine scrub meanders through the property at about the 1,310 metre (4,300 foot) level with the tree line at about 1,370 metres (4,500 feet) above sea level. Alpine grasses and flowers are common on the Plateau. Remnant glaciers are common at the higher elevations just south of the Q.C. prospect.


Precipitation is moderate, averaging 100 cm per year. Thick accumulations of snow are common during winter. Fieldwork can commence at lower elevations in June, while it is seldom possible to begin surface geological work before July and difficult to continue past September, at the higher elevations.

Property and Ownership

۰, ۱

The Q.C. property consists of 10 claims, 196 units located in the Liard Mining Division (Figure 4). The claims include the following:

Claim Name	Record No.	No. of Units	Date of Record	Expiry Date
QC 1	4557	20	May 6, 1988	May 6, 1999
QC 2	4558	20	May 6, 1988	May 6, 1998
QC 3	4559	20	May 6, 1988	May 6, 1993
QC 4	4560	20	May 6, 1988	May 6, 1998
QC 5	4561	20	May 6, 1988	May 6, 1992
QC 6	4562	20	May 6, 1988	May 6, 1992
QC 7	4563	20	May 6, 1988	May 6, 1992
QC 9	4565	20	May 6, 1988	May 6, 1993
QC 10	4566	20	May 6, 1988	May 6, 1999
QC 15	4571	16	May 6, 1988	May 6, 1997

* Due date after filing this report.

The Q.C. claims are owned by Teck Corporation (90%) and Silver Standard Resources Ltd. (10%). Triumph Resources Ltd. with offices at #1500 - 675 West Hastings Street, Vancouver, B.C., V6B 1N2 has an option to earn up to 50% of Teck's interest in the Q.C. claims.

In September, 1990 Dryden Resource Corporation with offices at 800 - 900 West Hastings Street, Vancouver, B.C., V6C 1E5 optioned the Q.C. claims from Teck Corporation, Silver Standard Resources Ltd. and Triumph Resources Ltd. The terms of the option allow Dryden to earn a 50 percent interest in the property by making cash payments of \$25,000 and issuing 100,000 shares upon signing the agreement and to make a further cash payment of \$25,000 and incurring exploration expenditures of \$1,000,000 by December 31, 1994.

Previous Exploration

The Axe property is located in the Stikine River area of northwestern B.C., a region well known for its alkalic plutons and associated porphyry copper-gold mineralization.

The first recorded work carried out on the property occurred in 1964 during a regional evaluation of the Klastline Plateau by Conwest Exploration Co. Ltd. That program identified a number of porphyry copper-gold and precious metal shear-vein targets on the plateau. One of the most significant of these was the Q.C. porphyry copper prospect (Figure 2). The Q.C. claims were staked and limited property work included silt and soil sampling and a small ground magnetometer survey.

In 1965, Huntec conducted 2.19 km of Induced Potential and 1.83 km of ground magnetometer survey on the Q.C. claims over 2 lines for Conwest. Huntec believed "the high apparent chargeability readings to be caused by extensive sulphide mineralization. The magnetometer and resistivity I.P. readings were very flat".

In 1969, further silt sampling along with detailed geological mapping $(1^* = 200 \text{ ft.})$, soil sampling and a ground magnetometer survey were conducted by Conwest over the malachite-stained, Q.C. gossan zone. The property was then optioned from Conwest by Amoco in 1970 and tested by 1,938.2 metres (6,359 feet) of drilling in nine B.Q. sized drill holes. Although thick overburden and broken ground prevented the first three holes from being drilled to their target depth, the average grade for 916.2 metres (3,006 feet) of core recovered from holes 70-2, 3, 4 and 5 averaged approximately 0.12% Cu. The best intersection was in hole 70-5 which returned 36.6 metres (120 feet) grading 0.19% Cu, 0.10 oz/ton Ag and trace Au.

In 1970 and 1971 Silver Standard Mines Ltd. staked the Al claims immediately west of the Q.C. property to cover a number of copper occurrences located by prospecting (Seraphim, 1971). They conducted a limited geological mapping and sampling program and contracted McElhaney Associates, B.C. Land Surveyors, to establish the position of their property relative to the Q.C. claims.

TexasGulf Canada Ltd. acquired the property in the mid-1970's and completed a small work program before letting it go. From then until 1988 the entire Klastline Plateau area remained relatively inactive until the G.S.C. carried out a regional stream silt sampling program (National Geochemical Reconnaissance, 1988). The same year, Teck Corporation staked the Q.C. 1 to Q.C. 15 claims in the Quash Creek area in order to cover gold-copper geochemical anomalies resulting from the GSC survey. After completing silt and soil geochemical sampling, hand trenching was used to expose veins that yielded values to 1.10 oz/ton Au and 6.8 oz/ton Ag over 2.8 metres in the "D" grid area, located 4.2 km northwest of the porphyry zone.

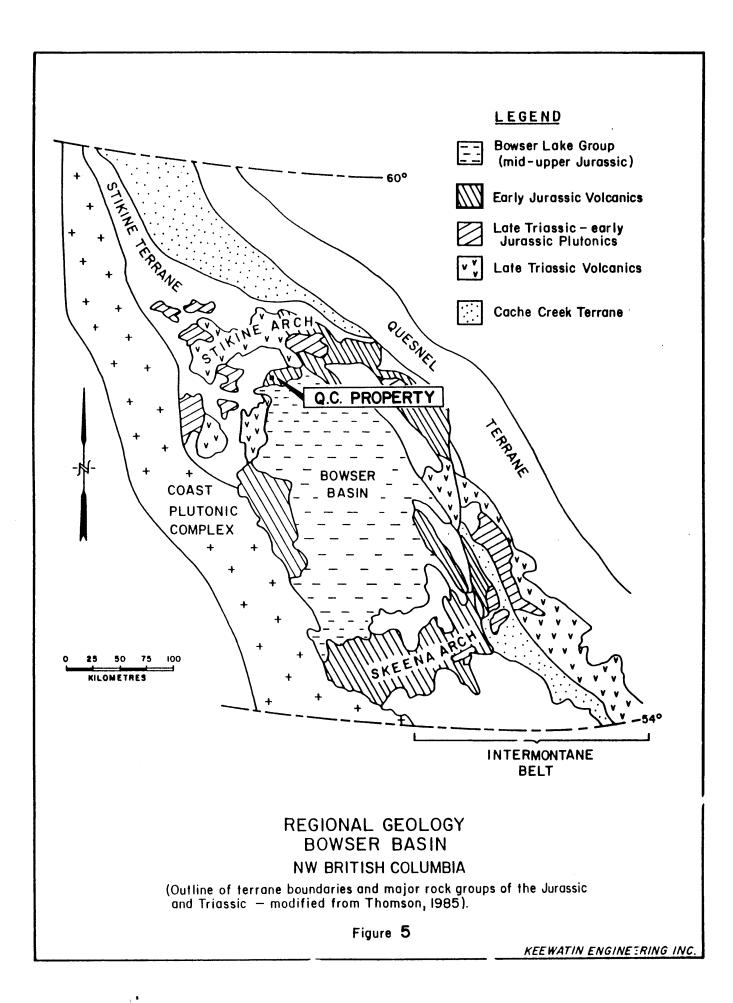
The Q.C. claims were optioned from Teck by Triumph Resources Ltd. in 1990. Triumph has carried out silt, contour soil and rock geochemical surveys over the Q.C. porphyry target and have resampled all the vein targets to the northwest (Konkin, 1990).

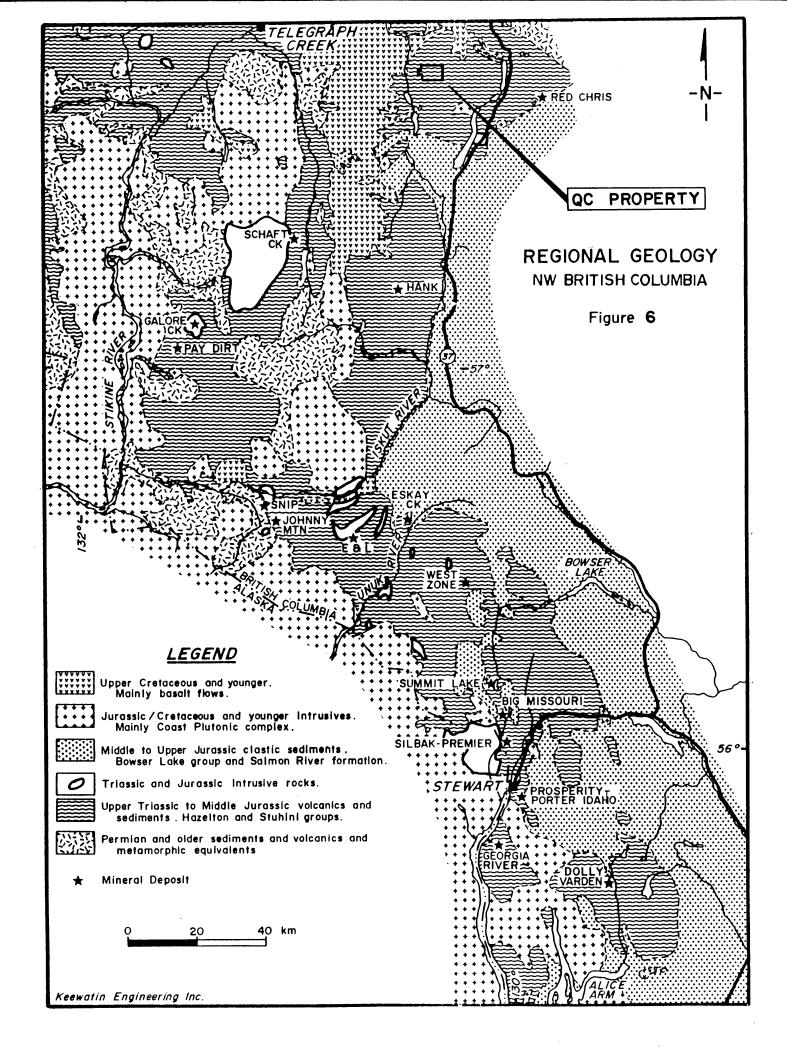
The Q.C. claims were optioned by Dryden in the fall of 1990. Dryden has carried out silt, soil and rock geochemical sampling and have drilled two holes totalling 377.04 metres into the western edge of a strong copper-gold geochemical anomaly identified in talus fines by Triumph.

GEOLOGY

Regional Geology

The property is located within the Intermontane Tectono-Stratigraphic Belt of the Canadian Cordillera (Figure 5). The claims lie within the northeastern half of the Stikine Arch, to the north of the Middle to Upper Jurassic sediments of the Bowser Lake Group.


The regional geological setting (Figure 6) as mapped by Souther (1971) of the G.S.C. comprises Upper Triassic Stuhini Group(?) siltstone, chert, greywacke, volcanic conglomerate and minor limestone overlain by augite porphyry basalt flows, pyroclastic rocks and derived volcaniclastic rocks. These in turn are overlain by Lower to Middle Jurassic volcanics that are correlative with the Hazelton Group. The volcanic stratigraphy includes augite-andesite flows, pillow lavas, pyroclastics and derived volcaniclastic rocks.


Unconformably overlying the above units to the south are chert pebble conglomerate, grit, greywacke and siltstone of the Middle to Upper Jurassic Bowser Lake Group.

Transecting the Upper Triassic to Middle Jurassic assemblage is Upper Cretaceous to Lower Tertiary massive and flow banded rhyolite, orbicular rhyolite and massive felsite. This unit commonly weathers rusty orange due to the oxidation of fine grained pyrite.

Capping the stratigraphy at the higher elevations are Upper Tertiary and pleistocene basalt and olivine basalt flows, commonly exhibiting excellent columnar jointing.

Intrusive rocks in the region are typically fine to medium grained plutons that are coeval with the Triassic to Middle Jurassic volcanic assemblages. Compositions vary from diorite, granodiorite monzodiorite, monzonite and syenite. Many of the smaller alkalic plutons, dated at between 185 and 195 million years (Schmitt, 1977), are associated with porphyry Cu-Au or precious metal vein systems. The intrusives all fall within the Stikine Arch structural domain, a regional feature along which Early Jurassic intrusive and related (island arc type) volcanic activity took place. Alkaline porphyry copper-gold deposits including the Galore Creek, Schaft Creek and Red Chris deposits occur within this trend (Figure 6). Some of the more notable deposits or occurrences of this type that are situated in the general area (Figure 2) include:

- A) The Red-Chris alkalic porphyry copper-gold deposit located 31 km east-southeast of the property. Explored in the mid 1970's by Texasgulf Inc. (now Falconbridge Ltd.) the deposit has published reserves of 45.2 million tons grading 0.56% Cu and 0.010 oz/ton Au (Panteleyev, 1977).
- B) The GJ porphyry copper-gold prospect, located on Groat Creek 12 km to the eastsouth-southeast, was discovered by Conwest Exploration Co. Ltd. in 1964.
- C) The Rok porphyry Cu-Au prospect situated on the southeastern half of Ehahcezetle Mountain, 26 km to the east. Discovered by Texasgulf Inc. in 1975, the property was drilled in 1990 by Consolidated Carina Resources Ltd. who intersected 27.87 metres grading 1.765% Cu and 0.066 oz/ton Au in the third hole of a three hole program.
- D) The Spectrum gold vein system located on the east slopes of Mt. Edziza, 14 km to the southwest. Recent drill intersections into this precious metal target by Columbia Gold Mines (Northern Miner, October 29, 1990) include 33 feet at 0.36 oz/ton Au, 8 feet at 0.60 oz/ton Au and 75 feet at 0.30 oz/ton Au.
- E) The Castle gold prospect located 7.5 northeast of the QC porphyry copper-gold prospect. Work to date by Teck Corp. and Triumph Resources Ltd. has identified a sulphide system 7 km long by up to 250 metres wide that contains visible gold and has yielded assays to 4.0 oz/ton Au from grabs and 0.93 oz/ton Au from one metre chips (Brock, 1990).
- F) The Horn (SF) silver prospect located 5.0 km south of the Q.C. porphyry prospect. Discovered by Conwest Exploration in 1964, a vein system has returned values of 11.04 oz/ton Ag over an area of 45 metres x 4.2 metres (Phendler, 1980).

Property Geology

No geological mapping has been carried out on the Q.C. property by Dryden Resource Corporation. However, data from government maps and assessment reports indicates the oldest rocks on the property are Upper Triassic Stuhini Group argillites, chert, cherty siltstones, quartzite, greywacke, grit, polymictic conglomerate and minor limestone. Interbedded with the sediments are similar age augite andesite flows, pyroclastics and volcaniclastic equivalents (Map 1).

Intruding the Upper Triassic stratigraphy are several irregularly shaped, hornblende diorite, granodiorite, monzodiorite and monzonite stocks that appear similar to the 8.5 km by 2.0 km, Early Jurassic stock (Schmitt, 1977) that hosts the GJ porphyry copper-gold mineralization to the south.

In the vicinity of the Q.C. prospect the intrusives have been subdivided into hornblendebiotite porphyry, monzonite, feldspar porphyry and quartz diorite. Both the hornblende-biotite and monzonite feldspar porphyries occur as dykes and sills up to 6 metres across or as irregularly shaped bodies of somewhat larger dimensions. Earlier workers believed that the hornblende-biotite porphyry is the main source of mineralization. The quartz diorite is a fine grained unit that is difficult to distinguish from the extensive andesitic rocks. The quartz diorite occurs as dykes within an andesite tuff/flow sequence on the east side of the porphyry zone.

The linear nature of the intrusive units within the region and particularly in the vicinity of the Q.C. prospect suggests pre- and/or post-intrusive faults exert a major control on their emplacement.

On the east side of the Q.C. claims, Upper Tertiary and Pleistocene basalt and olivine basalt flows unconformably cap the Triassic to Jurassic stratigraphy.

Alteration

Alteration over much of the property, is restricted to local chlorite replacement of mafics and epidote and calcite fracture fillings related to minor faulting or intrusive contacts.

In the vicinity of the Q.C. prospect, alteration becomes significantly more intense. Here, an east-west propylitic alteration zone measures at least 4 km long by 0.80 km wide (Map 1). Alteration intensity including the presence of weak quartz veining, minor clay replacement of feldspars and minor secondary potassium feldspar flooding increases with proximity to the diorite intrusive contact.

7

Structure

Well developed bedding in volcaniclastic units north of Quash Creek commonly strike eastwest and dip 50° to 70° to the north. South of Quash Creek stratigraphy strikes east-west but dips 60° to 70° south.

The Q.C. porphyry copper prospect and subvolcanic intrusive bodies lie within a strongly developed fault zone trending 080° and dipping vertically or steeply to the north. Quartz veins and massive pyrite or pyrrhotite veins within the zone have similar orientations.

The mineralized zone is at least 4,000 metres long and varies from 200 to 800 metres in width. It appears to be cut off to the east by a major northwest striking fault that follows the Quash Creek Valley. To the west the fault zones appear to bifurcate into at least three separate east-west striking zones.

Further to the north on the Q.C. property, Teck Corp. has located a significant gold-silver bearing composite vein system that strikes 115° and dips vertically. These structures have been traced for at least 40 metres along strike.

Mineralization

There are two main centres of mineralization on the Q.C. property. The porphyry copper-gold target south of Quash Creek and the precious metal, shear-vein 4.2 km to the northwest (Figure 3).

i) <u>Porphyry Copper-Gold Target</u>

The porphyry copper-gold target consists of disseminated and veinlet pyrite ($\leq 10\%$) with minor pyrrhotite ($\leq 6\%$) and disseminated and fracture controlled chalcopyrite in an altered and strongly fractured and esite-diorite sequence within the 4,000 metre by 800 metre fault bounded zone. The rocks are strongly oxidized with iron gossans clearly marking the mineralized areas. Malachite and azurite staining is also very common. In 1970, Amoco drill tested a 1,300 metre by 400 metre area in the far eastern end of the mineralized zone with nine, widely spaced B.Q. diamond drill holes (Map 1). Three of the drill holes were abandoned due to bad ground conditions while a fourth was lost in overburden.

Despite these problems, four of the holes; 70-2, 3, 4 and 5, tested an area of 400 metres by 400 metres over a vertical distance of between 100 and 300 metres. Amoco calculated a "potential" for 100 to 120 million tons, with an average grade of 0.12% Cu based on these results. The significant intersections include:

Drill Hole	Hole Length (metres)	Significant Interval	Cu %	Cu oxide %	Au oz/ton	Ag oz/ton
70-1*	25.60					
70-2**	163.07	14.94-163.07 includes 111.25-163.07	0.13 0.16	n/a 0.09	tr	tr n/a
70-3**	181.36	34.14-173.74	0.07	n/a	tr	tr
70-4	355.09	32.31-355.09	0.13	n/a	tr	tr
70-5	304.80	3.96-304.80 includes 268.22-304.80	0.12 0.19	n/a n/a	tr tr	tr 0.10

hole abandoned in overburden

holes abandoned due to bad ground conditions

In 1990, Triumph Resources Ltd. re-evaluated the porphyry zone by conducting extensive silt, soil, talus fines and rock geochemical sampling around the known, porphyry mineralization and over gossanous areas elsewhere on the property. The results of this work, particularly to the west and north of the drill tested area were very encouraging.

Copper and gold values to 1,300 ppm Cu and 700 ppb Au were obtained from a 550 metre by 250 metre soil grid established along the ridge top (above 1,524 metres), and west of holes 70-1 to 70-5.

Contour sampling of talus fines and soils below the grid at the 1,524 metre level yielded exceptionally high values over a considerable distance on the north and west facing slopes including:

Location	Line Length	Consecutive	Average	Average
	(metres)	Samples	Cu (ppm)	Au (ppb)
North Slope	850	18	1,894	271
West Slope	1,250	26	1,999	327

Individual sample highs include 6,400 ppm Cu and 1,390 ppb Au.

Further soil sampling has since been carried out by Dryden Resources along the 1,173 and 1,280 metre elevation contours as well as along old cut lines between the 1,143 and 1,219 metre contours downslope and to the north of the previous drilling. As with the Triumph sampling, the results are very encouraging. Anomalous soils with values up to 3,555 ppm Cu and 504 ppb Au were obtained over a 500 metre by 900 metre area located north and northeast of holes 70-1 to 70-5. The anomaly which extends down to Quash Creek disappears to the west where overburden and glacial outwash appears to thicken.

Rock sampling within the soil sampled area on the west side of the previous drilling has yielded significant copper and gold values including a 40 metre chip sample along the west facing rock bluffs above the 1,524 metre contour that averaged 1,140 ppm Cu and 150 ppb Au. Rock grabs and chips taken above the 1,280 metre contour line have returned even higher values including:

Sample No.	Sample Size	Company	Cu ppm	Au ppb
48084	0.9 m	Triumph	1,600	2,000
49014	1.8 m	Triumph	3,370	190
49013 SS-800-5	2.1 m	Triumph	745	1,020
EB-800-3	grab	Dryden	997	6,950
SS-800-4	grab	Dryden	3,037	30
SS-800-7	grab	Dryden	3,041	202

In October, 1990, two diamond drill holes totalling 377.04 metres drill tested a soil/rock, copper-gold geochemical anomaly west of the previous drilling. Both holes intersected strongly altered, pyritic rocks containing copper values in the 1,000 to 2,881 ppm range with gold values as high as 0.053 oz/ton over one 1.50 metre interval. A more complete description of drilling results is provided in the "Drilling" section of this report.

Surface sampling by Triumph Resources Ltd. elsewhere within the porphyry system has yielded additional significant values including 1,705 ppm Cu and 0.291 oz/ton Au over 1.22 metres in the Red Zone (1,300 metres west of hole 70-1 to 5), 199 ppm Cu and 1,000 ppb Au over 45.7 metres in the Orange Zone (3,000 metres northwest of holes 70-1 to 5) and grabs with 1,500 ppm Cu, 60 ppb Au and 615 ppm Cu and 1,000 ppb Au in the extreme southwest corner of the property (Figure 9).

ii) <u>Shear/Vein Gold Target</u>

An area located 4.2 km northwest of the Q.C. porphyry target contains significant gold-silver values in veins that were exposed and sampled by Teck Corp. in 1988. The veins contain pyrite, arsenopyrite, chalcopyrite, galena and sphalerite within quartz - carbonate \pm barite gangue. There are at least two separate, parallel systems approximately 400 to 450 metres apart. The veins strike 115° and dip at 90°. Vein widths vary from 0.15 metres to 2.8 metres and have been traced for 40 metres in the "D" grid and 30 metres in the "C" grid (Figure 10).

Initial rock sampling by Teck in 1988 yielded these significant gold and silver values:

Location	Width (metres)	Au oz/ton	Ag oz/ton
Main Zone/C-Grid	1.31	0.380	2.90
Top/C-Grid	1.00	0.340	10.60
North of C-Grid	grabs	to 0.323	to 35.55
D-Grid	1.00	1.000	4.70
D-Grid	2.80	1.100	6.80
Gordon/D-Grid	1.40	0.680	6.81
North of D-Grid	grabs	2.190	5.05

Limited prospecting and soil sampling by both Teck and Triumph Resources Ltd. indicates both the "C" and "D" vein systems are open along strike to the southeast and more significantly to the northwest where grab samples have returned values to 2.190 oz/ton Au and 35.55 oz/ton Ag.

A brief examination of showings in the "C" and "D" grid areas by Dryden Resource Corporation confirmed the presence of mineralized structures containing significant gold and silver

values. Individual samples taken by Dryden have yielded results as high as 1.969 oz/ton Au over 1.0 metre in the "D" grid and 569.4 ppm Ag from a grab in the "C" grid.

GEOCHEMISTRY

During the 1990 field season 4 stream silts, 207 soils and 19 rock samples were collected from the porphyry copper zone in the southern part of the property.

The soil samples were collected from the 3,850 and 4,200 foot elevation contours and from 7 old, cut lines radiating from a point north of the 1970 drilling at about the 3,700 foot elevation contour. The samples were taken at 50 metres intervals with the aid of a mattock. Wherever possible, samples were taken from the "B" soil horizon and placed in Kraft sample bags. Where the horizon was not developed samples were taken of whatever material, usually talus fines that was available. A large outwash plain of glacial debris occurs near the mouth and east of Rusty Creek and as a result the geochemical response from this area may be masked by the thick cover.

All rock, silt and soil sample collection sites were marked with red and blue flagging.

<u>Analysis</u>

All samples were sent to Min-En Laboratories Ltd. in Smithers, B.C. where they were processed and analyzed for gold. Pulps were then forwarded to Min-En Laboratories Ltd. in Vancouver for Hg analysis plus 7 element ICP which included Cu, Pb, Zn, Ag, As, Sb and Mo.

Analytical procedures used by Min-En Laboratories Ltd. are outlined in Appendix III.

<u>Results</u>

i) <u>Stream silt</u> samples were all collected from Rusty Creek, a fast flowing, turbulent creek that cuts through the stratigraphy west of the 1970 drilling. The results for the four samples collected show elevated copper values of between 149 ppm and 252 ppm with three of the four samples anomalous in gold values of 33 ppb to 134 ppb and mercury values of 265 ppb to 585 ppb. Geochemical analysis for the other elements returned relatively low results.

13

A complete print out of stream silt geochemistry results is available in Appendix IV. Sample descriptions are in Appendix V and results are plotted on Maps 1 to 5. Sample numbers are shown on Map 6.

ii) <u>Contour soil sampling</u> has identified two, large, multi-element anomalies plus a small coppergold soil anomaly.

a) The largest soil anomaly is situated north and downslope of drill holes 70-1 to 70-5. In this region a coincident copper-gold soil anomaly accompanied by elevated molybdenum, silver and arsenic values covers an area 900 metres east-west by 400 metres north-south. The anomaly is open to the east and uphill to the south. Although it appears cut-off to the west, increasing overburden thickness in this direction may be masking the underlying geology.

Significant results within this anomaly include:

Copper:	Twenty-three samples returned over 1,000 ppm Cu. The
	highest value is 4,357 ppm Cu.
Gold:	Twenty-nine samples with ≥100 ppb Au. The highest value is
	504 ppb Au.
Silver:	Twelve samples with ≥10.0 ppm Ag. The highest value
	obtained is 37.4 ppm.
Molybdenum:	Thirty-nine samples with values between 10 ppm Mo and 56
	ppm Mo.
Arsenic:	Seven samples along the west side of the anomaly yielded
	values of 102 ppm As to 272 ppm As.

b) The second multi-element soil anomaly occurs along the 1,280 metre elevation contour on either side of Rusty Creek. Anomalous elements include copper, gold, mercury, lead and molybdenum. The overall extent of this anomaly has not yet been delineated.

Copper:	Sixteen samples with values between 250 and 1,046 ppm Cu.
Gold:	Ten samples with values between 100 ppb Au and 252 ppb Au.
Molybdenum:	Six samples with values of 13 ppm Mo to 42 ppm Mo.

Mercury:	Six samples with values of 255 ppb Hg to 1,410 ppb Hg.
Lead:	Four samples with values of 41 ppm Pb to 56 ppm.

c) A small copper-gold anomaly occurs along the 1,280 metre elevation contour where it crosses Bruns Creek. The poorly defined anomaly includes two samples with copper values of 216 ppm and 773 ppm and three samples with gold values of 362 ppb Au to 696 ppb Au.

The soil geochemistry results are all plotted on Maps 1 to 5 and sample numbers are shown on Map 6. Geochemical results are available in Appendix VI and soil sample descriptions are in Appendix VII.

iii) <u>Rock sampling</u> has been limited to grab samples of sulphide rich material and/or malachiteazurite stained float and outcrop taken from along Rusty Creek and to the north of the 1970 drilling. The sampling has returned highly anomalous copper and gold values up to 9,290 ppm Cu and 6,950 ppb Au and elevated silver values to 11.0 ppm. Weakly anomalous arsenic values of 11 ppm to 191 ppm are associated with the higher gold numbers. Molybdenum is also weakly anomalous with values of 10 ppm to 58 ppm. Lead, zinc, antimony and mercury results are low. Complete rock geochemistry results are given in Appendix VIII. Sample descriptions are available in Appendix IX and geochemical results are plotted on Maps 1 to 5. Sample locations are shown on Map 6.

A summary of the rock geochemistry results follows:

Copper:	Map 1 - Range 216 ppm - 9,290 ppm
Gold:	Map 2 - Range 1 ppb - 6,950 ppb
Silver:	Map 3 - Range 1.7 ppm - 11.0 ppm
Lead:	Map 4 - Range 6 ppm - 100 ppm
Zinc:	Map 4 - Range 19 ppm - 532 ppm
Molybdenum:	Map 4 - Range 1 ppm - 58 ppm
Arsenic:	Map 5 - Range 1 ppm - 191 ppm
Mercury:	Map 5 - Range 30 ppb - 85 ppb
Antimony:	Map 5 - Range 1 ppm - 6 ppm

14

DIAMOND DRILLING

A two hole, 377.04 metre diamond drill program was carried out on the Q.C. porphyry copper zone to test a strong soil-rock, copper-gold geochemical anomaly identified by Triumph Resources Ltd. west of the previous drilling. The helicopter supported drill program was contracted out to Falcon Drilling of Prince George, B.C. who completed the drilling with B.G.M. sized tools. The core was flown to the Iskut Valley Inn where it was logged and sampled in 3.0 metre intervals. Sections with significant mineralization were sampled in 1.50 metre intervals. The core was then transported to a "common" core storage area on the Klappan Mine Road (immediately north of Ealue Lake) at approximately the 11 kilometre mark.

The location of the drill holes are shown on Map 1. Cross-sections are on Maps 7 and 8. Drill logs are included in Appendix X and geochemical and assay results are in Appendix XI.

Results

i) <u>DDH-90-Q-01</u> is located at an elevation of 1,450 metres (4,780 feet) along Rusty Creek. The hole intersected andesitic tuffs, mudstones and siltstones which are intruded by altered, porphyritic diorite dykes. Finely disseminated and fracture controlled pyrite ($\leq 2\%$) and pyrrhotite ($\leq 2\%$) is present throughout the core. Chalcopyrite is associated with weak quartz veining and narrow (≤ 3 mm) pyrite veins/fracture filling.

Alteration includes propylitically altered andesite units and mottled, silicified (hornfelsed) and skarn altered mudstones and siltstones. Diorite dykes vary from "fresh looking" units with scattered, corroded feldspars to moderately altered intrusives with chloritized hornblendes and sericite replaced feldspars.

All units are magnetic as a result of the weak but widespread pyrrhotite mineralization.

Geochemical analysis of the core indicate sections of low grade copper values typically in the 1,100 ppm to 1,500 ppm range are widespread. Gold values are erratic with the best result returning 3,480 ppb over 3.0 metres. Silver values show a narrow range of 0.9 ppm to 4.0 ppm. Molybdenum results are weakly anomalous throughout the upper half of the hole with values commonly in the 10 to 20 ppm range with a high of 112 ppm over a 1.5 metre section. Arsenic values are erratic and

mostly low, however increased values to 1,208 ppm are associated with the higher gold results. Mercury results are variable from 60 ppb up to 2585 ppb.

From - To (metres)	Length (metres)	Cu ppm	Au ppb	Ag ppm	As ppm	Pb ppm	Zn ppm
3.00 - 90.00	87.00	1,067	21	1.5	11	12	20
159.00-171.00	12.00	1,162	912	3.4	340	12	72

A summary of the significant mineralized intervals in hole Q01 are as follows:

ii) <u>DDH-90-Q-02</u> is collared at an elevation of 1,430 metres (4,680 feet) on the east side of Rusty creek, north of hole Q01.

The hole intersected the same silicified, mottled, skarn altered mudstone/siltstone assemblage encountered in hole Q01. Patchy K-feldspar flooding occurs throughout the hole. Sulphides include 3% to 4% disseminated and fracture pyrite but <1% pyrrhotite. Chalcopyrite occurs within limited quartz veining and/or pyrite fracture filling.

Geochemical analyses are similar to those in hole Q01 except that the low grade copper intervals are narrower and more erratic in hole Q02. Individual sample highs include 2,881 ppm Cu over 1.50 metres and 1,750 ppb Au over 1.50 metres. A summary of the significant mineralized intervals intersected in hole DDH-90-Q02 are as follows:

From - To (metres)	Length (metres)	Cu ppm	Au ppb	Ag ppm	As ppm	Pb ppm	Zn ppm
36.00- 52.50	16.50	1,168	16	2.2	15	13	25
60.00-72.00	12.00	1,435	140	2.4	18	16	28
75.00-76.50	1.50	1,118	20	2.2	1	16	21
109.50-111.00	1.50	1,038	15	2.2	1	10	26
123.00-124.50	1.50	1,931	1,750	3.7	87	26	142
129.00-132.00	3.00	1,060	38	2.6	1	12	87
135.00-145.50	10.50	1,057	34	2.3	12	13	28
150.00-151.50	1.50	1,358	104	2.6	254	17	32

CONCLUSIONS

The Q.C. claims are located in a region of B.C. where significant porphyry copper-gold and gold-silver shear-vein deposits are known to occur. Exploration work on the property to date has identified a large porphyry system. Widely spaced drill testing within a part of this system indicates potential geological reserves of 100 million tons plus grading 0.12% copper (Amoco). Subsequent extensive soil and rock geochemical sampling throughout the system has greatly enlarged the area of anomalous copper and gold values and has also identified specific zones with significantly higher values in copper and gold. The potential for the porphyry system to contain higher grade zones which could be developed into an economic copper-gold deposit is considered excellent.

To the northwest, preliminary work on peripheral, precious metal shear-vein systems has yielded significant gold and silver values. These targets which are open along strike and down dip offer excellent potential to develop into high grade deposits, amenable to underground development.

RECOMMENDATIONS

An exploration program including systematic geochemical, geological and geophysical work over the porphyry system is recommended in order to define the extent of copper-gold mineralization and establish the location of higher grade zones that will require follow-up drill testing.

Detailed follow-up including prospecting, soil and rock geochemical sampling followed by blasting, hand trenching and diamond drilling, if warranted is recommended for the precious metal vein/shear targets.

Respectfully submitted,

KEEWATIN ENGINEERING INC. David T. Mehner, M.Sc., ELLON

REFERENCES

Brock, J.S., 1990. Triumph Resources Ltd. Progress Report on the Castle Property.

- Delaney, T.M., 1988. Assessment Report on Hand Trenching, Geology and Geochemistry, Quash Creek, B.C., Liard Mining Division, NTS 104G/16W.
- Konkin, K., 1990. Geochemical Sampling Report on the Quash Creek Claim Group, Northwestern British Columbia, Liard Mining Division, NTS 104G/16W.
- Mehner, D.T., 1990. Assessment Report on Silt, Soil and Rock Geochemical Sampling, An Induced Polarization Geophysical Survey and Diamond Drilling of the Rok Property, Liard Mining Division, British Columbia, NTS 104H/13W.
- Mehner, D.T., 1991. Assessment Report on Diamond Drilling, Contour Soil Sampling and Geophysical Surveys of the GJ Property, Liard Mining Division, B.C.
- National Geochemical Reconnaissance, 1:250,000 Map Series, 1988. Geological Survey of Canada, Open File.
- Northern Miner Newspaper, October 19, 1990, p. 18.
- Panteleyev, A., 1977. Red-Chris Deposit (104H/12W) in Geology in British Columbia, 1976. British Columbia Department of Mines and Petroleum Resources, Victoria, pp. 125-127.
- Phendler, R.W., 1980. Report on the Horn and Big Claims (Covering the S.F. and Q.C. Prospects), Liard Mining Division, B.C. Unpublished Company Report for ERL Resources Ltd.
- Schmitt, H.R., 1977. A Triassic-Jurassic Granodiorite Monzodiorite Pluton South-East of Telegraph Creek, B.C. Unpublished B.Sc. Thesis, University of British Columbia, Vancouver, 91 pp.
- Seraphim, R.H., 1971. Geological Report on Al Claim Group, Quash Creek, Liard Mining Division, Assessment Report 3239.
- Souther, J.G., 1971. Telegraph Creek Map Area, British Columbia. Geological Survey of Canada, Paper 71-44.

Webb, A.J., 1970. Report on Q.C. Group, Liard Mining Division, B.C. Amoco Company Report.

APPENDIX I

Statement of Expenditures

.

STATEMENT OF EXPENDITURES

<u>Q.C. Mineral Claims</u>

<u>Salaries</u>

 R. Nichols, Project Supervisor D. Mehner, Senior Geologist M. Bobyn, Project Geologist J. Miller, Geologist B. Ryziuk, Geological Technician G. Nagy, Sampler S. Creelman, Sampler E. Birkeland, Sampler K. Louis, Sampler J. Tashoots, Sampler/Core Splitter A. Hark, Sampler V. Jordan, Cook/Firt Aid J. Lund, Cook/First Aid 	6.0 days @ \$425/day 14.5 days @ \$375/day 3.0 days @ \$325/day 5.5 days @ \$275/day 5.5 days @ \$300/day 1.0 days @ \$250/day 5.5 days @ \$225/day 8.0 days @ \$300/day 4.0 days @ \$175/day 5.5 days @ \$175/day 7.0 days @ \$175/day 9.5 days @ \$250/day 2.0 days @ \$250/day	2,550.00 5,437.50 975.00 1,512.50 1,650.00 250.00 1,237.50 2,400.00 700.00 962.50 1,225.00 2,375.00 500.00	\$ 21,775.00
<u>Accommodation and Food</u> (includes Keewatin personnel, pilo	109 man days @ \$ 60/day t and Falcon Drilling crew)		6,540.00
Equipment Use	74 man days @ \$ 15/day		1,110.00
	nes 500 - 37.9 hrs @ \$ 670/hr. Sell 205 - 11.5 hrs @ \$1,680/hr. 4 x 4 - 1.0 month rental + gas	\$25,393.00 19,320.00 <u>1,374.35</u>	46,087.35*
<u>Geochemistry</u> Soils: (includes sample preparation, Au f Hg analysis and 7 element ICP)	207 samples @ \$10.00 ea. ïre geochem,	\$ 2,070.00	
Silts: (includes analysis as for soils)	4 samples @ \$10.00 ea.	40.00	
Rocks: (includes sample preparation and a for silts and soils)	19 samples @ \$12.50 ea. nalysis as	237.50	
Drill Core: (analysis as for rocks)	175 samples @ \$12.50 ea.	<u> 2,187.50</u>	4,535.00*
<u>Diamond Drilling</u> - contract plus cost of consumables and site p	metres @ \$		19,336.66*
<u>Camp Communications and Mainte</u> (includes radio rental, nails, diesel			1,436.49*
<u>Accommodation and Travel</u> Staff travel to and from Vancouve	r-Smithers-Iskut Village		1,816.04*

•

<u>Field Supplies</u> (includes sample bags, topo thread, flagging, rock hammer) 1,016.33					
Expediting - contract charges 1,241.10					
<u>Freight</u> Equipment and sample shipping (including truck and air freight) 631.93*					
Report Preparation\$ 439.09Pre-Field:base maps, prints, etc.\$ 439.09Post-Field:D. Mehner3.5 days @ \$375/day1,312.50drafting, typing, blueprints, accounting and computer time3.116.71	i				
Sub-Total: 110,394.20					
3rd Party Invoices - 10% charged by Keewatin Engineering Inc. (denoted by *) <u>7,654.00</u>					
TOTAL EXPENDITURES: \$118,048.20					

APPENDIX II

Summary of Personnel

SUMMARY OF PERSONNEL

		Sampler	D. (1W-l-1
<u>Name</u>	<u>Position</u>	Code	Dated Worked
Ron Nichols	Project Supervisor		Oct. 1, 23
David Mehner	Senior Geologist	"AA"	Sept. 15; Oct. 3 ($\frac{1}{2}$ day), 6, 8, 9 ($\frac{1}{2}$ day); Nov. 2 ($\frac{1}{2}$ day), 9 ($\frac{1}{2}$ day); Dec. 5 ($\frac{1}{2}$ day), Jan. 22.
Marty Bobyn	Project Geologist	"F"	Sept 15; Oct. 6, 8.
Jason Miller	Geologist	"O"	Oct. 15 (½ day), 16-20.
Bob Ryziuk	Geological Technician	"BR"	Oct. 6, 8 (½ day), 1, 12 (½ day), 15 (½ day), 17, 18.
Grant Nagy	Sampler	"NN"	Oct. 8.
Steve Creelman	Sampler	"SS"	Oct. 8-11, 14 (½ day), 15.
Eric Birkeland	Sampler	"EB"	Oct. 4, 6-12.
Keith Louis	Sampler	"CL"	Oct. 6, 8, 18-19.
James Tashoots	Sampler/Core Splitter	"JT"	Oct. 16-20, 21 (½ day).
Alex Hark	Sampler	"AA"	Oct. 6-12.
Verna Jordan	Cook/First Aid		Oct. 9, 13-20, 21 (¹ / ₂ day).
Joanne Lund	Cook/First Aid		Sept. 29; Oct. 6.

APPENDIX III

Analytical Procedures Used by Min-En Laboratories

۰, ۱

ANALYTICAL PROCEDURES USED BY MIN-EN LABORATORIES

<u>Hg Analysis</u>

Samples are processed by Min-En Laboratories at 705 West 15th Street, North Vancouver, B.C., employing the following procedures.

After drying the samples @ 30°C, soil, and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ring pulverizer.

A 0.50 gram subsample is digested for two hours in an aqua regia mixture. After cooling samples are diluted to standard volume.

Mercury is analyzed by combining with a reducing solution and introducing it into a flameless atomic absorption spectrometer. A three point calibration is used and suitable dilutions made if necessary.

ICP Analysis for Cu, Pb, Zn, Ag, As, Sb, Mo

After drying the samples at 95°C, soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized on a ring mill pulverizer.

0.50 gram of the sample is digested for two hours with an aqua regia mixture. After cooling samples are diluted to standard volume.

The solutions are analyzed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers.

<u>Au Fire Geochem</u>

A suitable sample weight; 15.00 or 30.00 grams is fire assay pre-concentrated. The precious metal beads are taken into solution with aqua regia and made to volume.

For Au only, samples are aspirated on an atomic absorption spectrometer with a suitable set of standard solutions. If samples are for Au plus Pt or Pd, the sample solution is analyzed in an inductively coupled plasma spectrometer with reference to a suitable standard set.

Gold Assay Procedure

Samples are dried @ 95°C and when dry are crushed on a jaw crusher. The - $\frac{1}{4}$ inch output of the jaw crusher is put through a secondary roll crusher to reduce it to -1/8 inch. The whole sample is then riffled on a Jones Riffle down to a statistically representative 300 - 400 gram subsample (in accordance with Gy's statistical rules). This sub-sample is then pulverized in a ring pulverizer to 95% minus 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are fire assayed using one assay ton sample weight. The samples are fluxed, a silver inquart added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved, diluted to volume and mixed.

These aqua regia solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. Likewise the blank must be less than 0.015 g/tonne.

Ag, Cu, Pb, Zn Assay Procedure

A 2.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 70 assays has a natural standard and a reagent blank included. The assays are digested using a HNO3-KCL04 mixture and when reaction subsides, HCL is added to assay before it is placed on a hotplate to digest. After digestion is complete the assays are cooled, diluted to volume and mixed.

The assays are analyzed on atomic absorption spectrometers using the appropriate standard sets. The natural standard digested along with this set must be within 3 standard deviations of its known or the whole set is re-assayed. If any of the assays are >1% they are re-assayed at a lower weight.

APPENDIX IV

Silt Geochemistry Results

CCMP: KEEWATIN ENGINEERING PROJ: 800

MIN-EN LABS - ICP REPORT

FILE NO: 0S-0709-SJ4 DATE: 90/10/27 * SILT * (ACT:F31)

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

TN: R. NICHOLS/D. MEHN	ER		(604)9	980-5814 C	R (604)98	8-4524			* S	ILT *	(ACT:F
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90SS 800 L-001 90SS 800 L-002 90SS 800 L-003	87 33 134	1.2 1.3 1.3	252 149 160	21 16 9	130 90 90	8 1 20	1 1 1	1 1 1	265 415 585		
·			<u></u>								
	- · · · · · · · · · · · · · · · · · · ·										
•											
					<u> </u>						
				· · · · · · · · · · · · · · · · · · ·		<u></u>					
				1441 1-2-7. 25 25		<u></u>					
						·····	<u> </u>	<u> </u>			
						<u> </u>	· <u>·</u> ··································				

٠

COMP: KEEWATIN ENGINEERING PROJ: 800

ATTN: R. NICHOLS/D. MEHNER

MIN-EN LABS - ICP REPORT

.

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0708-SJ1 DATE: 90/10/27 * SILT * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90AA 800 L-001	1	1.4	187	8	97	1	1	1	80	
•										
-										
		· <u></u>		<u></u>		<u></u>				
		<u></u>	<u> </u>							
							······		<u> </u>	
							· ··· ····			
									<u></u> ,	

APPENDIX V

Silt Sample Descriptions

Keewatin Engineering Inc.

Project: 800 - QUASH CREEK

STREAM SEDIMENTS Results Plotted By: ______

Area (Grid):

Map:______N.T.S.: _____

Collectors:	SIEVE CREEZIMATY				Date	: <u></u>									 	
			SEDI	MENT	T DAT	A	S	TRE/	AM D	ATA					Τ	
Sample Number	NOTES	Gravel		Silt		Organic	Bank	Active	Width		Velo- city	SPRING	DRY GULLY			
9.55-300-41	Inain (K (Risty Springs) below fulls; sais & volcames		902. 40 h. 40 Z.	102				X	3m	70a 70a 70a	F					
503-300-12	(\	23	ych	45%				X	3in-	200	Ē					
<u>563-800-62</u> 9655-800-63	11: h	202	402	402				X	3in	Zim	F					
90 AA-800L-0	1 Kusty Creek a 1148 m elov 1-3% slipe goodsame	<u>ic</u>	30	60				\times	3m	30au	F				 	
		_													 	
		_		ļ								 			 	
			┨									╂			 	
		-	+												 	
												 			 	
			1								1				 }	
Traditions debuters												1			 ; 	
			1	1	1				1			1			 	
				-												
			-													
		ľ							<u> </u>			-				
		_ _			<u> </u>		 	<u> </u>	<u> </u>	<u> </u>	ļ	-				
		_			 		∦	 		 	.	-	 			
					<u> </u>		 		<u> </u>	╞───	.		 	 	 	
							 	 		·	Į	-		 	 	
														ŀ	 	
					+	+		+			+		·		 	
													<u> </u>		 	
		-				1		1		1	1	1		[]	 	
		-	+		1		1	1	1		+	1	†		 	
					1	1	1		1	1	1	1	<u></u> }∤	 		
		-		1	1	1	1	1	1	1	1	1	t		t	

APPENDIX VI

Soil Geochemistry Results

.

Keewatin Engineering Inc.

.

COMP: KEEWATIN ENGINEERING PROJ: 800

ATTN: R. NICHOLS/D. MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0709-SJ1+2 DATE: 90/10/27 * SOIL * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90BR 800 S-001 90BR 800 S-002 90BR 800 S-003 90BR 800 S-004 90BR 800 S-005	128 80 162 114 90	1.3 1.1 1.2 1.7 1.2	355 370 229 872 293	39 18 38 41 48	181 148 143 139 82	1 1 1 8	1 1 1 1	1 1 2 13 1	1410 365 265 200 315	
90BR 800 S-006 90BR 800 S-007 90BR 800 S-008 90BR 800 S-009 90BR 800 S-010	173 195 156 6 18	1.2 1.0 1.2 1.0 1.0	292 190 215 120 121	56 43 37 38 36	158 99 157 93 102	1 1 1 1	1 1 1 1	1 1 1 1 1	215 260 220 255 245	
90BR 800 S-011 90BR 800 S-012 90BR 800 S-013 90BR 800 S-014 90BR 800 S-015	22 17 17 24 9	1.4 1.4 1.0 1.6 1.4	69 54 70 47 81	35 34 31 25 74	125 156 196 99 284	1 1 1 1	1 1 1 1	1 1 1 1 1	185 165 225 245 250	
90BR 800 S-016 90BR 800 S-017 90BR 800 S-018 90BR 800 S-019 90BR 800 S-020	21 36 12 2 1	.7 1.0 .9 1.2 1.3	48 60 66 46 43	22 60 56 27 27	179 400 312 278 166	1 1 1 1 1	1 1 1 1	2 1 1 1 1	195 255 210 180 220	
90BR 800 S-021 90BR 800 S-022 90BR 800 S-023 90BR 800 S-024 90BR 800 S-025	1 1 42 1 9	1.7 1.2 1.6 1.4 1.5	42 38 44 54 45	14 13 19 19 18	134 95 76 112 72	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	215 185 175 205 255	
90BR 800 S-026 90BR 800 S-027 90BR 800 S-028 90BR 800 S-029 90BR 800 S-030	1 15 3 52 26	1.3 1.6 1.2 1.3 1.4	60 68 71 78 87	17 11 11 14 25	95 88 49 84 97	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	205 200 210 190 280	
90BR 800 S-031 90BR 800 S-032 90AA 800 S-001 90AA 800 S-002 90AA 800 S-003	362 442 182 6 1	1.2 1.5 1.5 1.5 1.6	773 85 810 105 82	52 20 16 17 18	204 72 132 99 79	185 1 1 1 1	1 1 1 1 1	6 1 15 2 1	190 215 110 200 240	
90AA 800 S-004 90AA 800 S-005 90AA 800 S-006 90AA 800 S-007 90AA 800 S-008	39 42 1 22 18	.8 1.0 1.3 .8 1.1	180 309 65 78 64	34 23 22 27 30	62 134 118 169 132	1 1 1 1 1	1 1 1 1 1	3 2 1 3 2	180 165 140 155 175	
90AA 800 S-009 90AA 800 S-010 90AA 800 S-011 90AA 800 S-012 90AA 800 S-013	2 3 2 1	1.4 1.3 1.0 1.2 1.3	38 53 75 80 68	7 14 28 24 12	92 123 122 136 107	1 1 1 1	1 1 1 1	1 1 3 2 1	130 105 110 145 140	
90AA 800 S-014 90AA 800 S-015 90AA 800 S-016 90AA 800 S-017 90AA 800 S-018	1 10 2 1 3	1.3 1.1 1.2 1.3 1.2	59 87 63 74 79	20 27 23 25 9	110 134 96 112 133	1 1 1 1 1	1 1 1 1	1 1 3 1 1	135 120 175 145 125	
90AA 800 S-019 90AA 800 S-020 90AA 800 S-021 90AA 800 S-022 90AA 800 S-023	236 168 218 244 258	1.2 .9 1.3 1.5 .9	65 313 571 494 457	26 39 28 49 49	132 109 136 179 118	1 218 175 102 272	1 1 1 1	1 5 2 1 1	115 145 85 175 120	
90AA 800 S-024 90AA 800 S-025 90AA 800 S-026 90AA 800 S-027 90AA 800 S-028	100 2 1 99 120	1.0 .9 .8 1.0 1.1	352 80 61 208 1823	37 15 26 22 20	110 122 95 112 76	179 1 1 1 1	1 1 1 1 1	2 2 2 4 18	150 170 145 130 275	

COMP: KEEWATIN ENGINEERING PROJ: 800

ATTN: R. NICHOLS/D. MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: OS-0709-SJ3 DATE: 90/10/27 * SOIL * (ACT:F31)

SHMEE AU AG CLU PB PM PM PM PM PPM PM PM	IN: K. NICHOLS/D. MEH	INEK		(004)9	00-2014 0	K (004)90	0-4724			- 301	L ··· (AUIIF
90A 800 s-030 2 1.4 105 33 75 1 1 9 1575 90A 800 s-031 3 .9 214 23 123 1 1 8 825 90A 800 s-032 1 1.4 63 26 57 1 1 2 570 90A 800 s-033 1 1.1 167 27 112 1 1 2 570 90A 800 s-035 1 1.6 81 28 80 1 1 2 300 90A 800 s-035 1 1.6 80 14 132 1 1 4 210 90A 800 s-035 1 1.6 80 14 132 1 1 200 90A 800 s-037 2 1.4 55 10 101 1 1 140 90A 800 s-043 2 1.4 73 17 76 1 1 3 165 90A 800 s-043 2 1.4 73 17 76 1 1 100 <th></th>											
DDAA 800 S-031 3 .9 214 23 123 1 1 8 825 DDAA 800 S-032 1 1.4 63 26 57 1 1 5 730 DDAA 800 S-032 1 1.1 167 27 112 1 1 2 590 DDAA 800 S-034 2 1.4 81 28 80 1 1 2 300 DDAA 800 S-035 1 1.5 57 16 103 1 1 225 300 DDAA 800 S-036 1 1.6 80 14 132 1 1 4 210 DDAA 800 S-037 2 1.4 55 10 101 1 1 1200 DDAA 800 S-038 6 1.2 62 11 98 1 1 3 125 DDAA 800 S-043 2 1.0 61 18 85 1 1 4 130 DDAA 800 S-042 76 1.4 233 29 101 81 1		70					1	1			
90AA 800 S-032 1 1.1.4 63 26 57 1 1 5 730 90AA 800 S-033 1 1.1 167 27 112 1 1 2 590 90AA 800 S-034 2 1.4 81 28 80 1 1 2 590 90AA 800 S-035 1 1.5 57 16 103 1 1 225 90AA 800 S-036 1 1.6 80 14 132 1 1 4 210 90AA 800 S-038 6 1.2 62 11 98 1 1 1 100 90AA 800 S-039 1 1.2 75 19 95 1 1 3 165 90AA 800 S-041 2 1.0 61 18 58 1 1 4 130 90AA 800 S-042 76 1.4 73 17 76 1 1 100 90AA 800 S-044 192 1.3 508 58 184 209 9 1					33		1				
90AA 800 S-033 1 1.1 167 27 112 1 1 2 590 90AA 800 S-034 2 1.4 81 28 80 1 1 2 300 90AA 800 S-035 1 1.5 57 16 103 1 1 225 90A 800 S-035 1 1.6 80 14 132 1 1 4 210 90A 800 S-037 2 1.4 55 10 101 1 1 1 200 90A 800 S-039 1 1.2 75 19 95 1 1 3 165 90A 800 S-040 1 1.3 53 25 80 1 1 4 130 90A 800 S-041 2 1.0 61 18 58 1 1 6 105 90A 800 S-043 2 1.4 73 17 76 1 1 100 90A 800 S-044 192 1.3 508 184 209 1 9 140							1				
90AA 800 s-034 2 1.4 81 28 80 1 1 2 300 90AA 800 s-035 1 1.5 57 16 103 1 1 1 225 900 90AA 800 s-035 1 1.6 80 14 132 1 1 4 210 900 90AA 800 s-037 2 1.4 55 10 101 1 1 200 90AA 800 s-039 1 1.2 75 19 95 1 1 3 165 90AA 800 s-041 2 1.0 61 18 58 1 1 4 130 90AA 800 s-042 76 1.4 73 17 76 1 1 100 90AA 800 s-044 192 1.3 508 58 184 209<	90AA 800 S-032					112					
\$00A 800 \$-035 1 1.5 \$77 16 103 1 1 1 225 \$00A 800 \$-036 1 1.6 80 14 132 1 1 4 210 \$00A 800 \$-037 2 1.4 55 10 101 1 1 200 \$00A 800 \$-038 6 1.2 62 11 98 1 1 1400 \$00A 800 \$-039 1 1.2 75 19 95 1 1 3 165 \$00A 800 \$-041 2 1.0 61 18 58 1 1 4 130 \$00A 800 \$-042 76 1.4 233 29 101 81 1 6 105 \$00A 800 \$-043 2 1.4 73 17 76 1 1 100 90 \$00A 800 \$-044 192 1.3 508 58 164 209 1 9 165 \$00A 800 \$-045 6 1.3 99 22 145 1 12											
907A 800 \$-036 1 1.6 80 14 132 1 1 4 210 90A 800 \$-037 2 1.4 55 10 101 1 1 1200 90A 800 \$-038 6 1.2 62 11 98 1 1 140 90A 800 \$-039 1 1.2 75 19 95 1 1 3 165 90A 800 \$-040 1 1.3 53 25 80 1 1 3 125 90A 800 \$-041 2 1.0 61 18 58 1 1 4 130 90A 800 \$-042 76 1.4 233 29 101 81 1 6 105 90A 800 \$-044 192 1.3 508 58 184 209 1 9 165 90A 800 \$-044 192 1.3 508 58 184 209 1 9 165 90A 800 \$-047 1 1.4 60 16 90 1 1 2 <td></td>											
90AA 800 \$-038 6 1.2 62 11 98 1 1 1 140 90AA 800 \$-039 1 1.2 75 19 95 1 1 3 165 90AA 800 \$-040 1 1.3 53 25 80 1 1 3 165 90AA 800 \$-041 2 1.0 61 18 58 1 1 4 130 90AA 800 \$-042 76 1.4 233 29 101 81 1 6 105 90AA 800 \$-042 76 1.4 73 17 76 1 1 100 90A 800 \$-044 192 1.3 508 58 184 209 1 9 165 90A 800 \$-045 6 1.3 99 22 145 1 1	90AA 800 S-036		1.6				1	1		210	
POAA 800 \$-039 1 1.2 75 19 95 1 1 3 165 POAA 800 \$-040 1 1.3 53 25 80 1 1 3 125 POAA 800 \$-041 2 1.0 61 18 58 1 1 4 130 POAA 800 \$-043 2 1.4 73 17 76 1 1 1 100 POAA 800 \$-043 2 1.4 73 17 76 1 1 1 100 POAA 800 \$-044 192 1.3 508 58 184 209 1 9 165 POAA 800 \$-045 6 1.3 99 22 145 1 1 5 140 POAA 800 \$-047 1 1.4 60 16 90 1			1.4					-			
90AA 800 S-040 1 1.3 53 25 80 1 1 3 125 90AA 800 S-041 2 1.0 61 18 58 1 1 4 130 90AA 800 S-043 2 1.4 233 29 101 81 1 6 105 90AA 800 S-043 2 1.4 73 17 76 1 1 100 90AA 800 S-043 2 1.3 508 58 184 209 1 9 165 90AA 800 S-044 192 1.3 508 58 184 209 1 9 165 90AA 800 S-045 6 1.3 99 22 145 1 1 5 140 90AA 800 S-046 2 1.5 60 20 83 1 1 2 145 90AA 800 S-048 4 1.0 48 24 97 1 1 2 125 90AA 800 S-049 12 1.0 56 19 97 9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
90AA 800 S-041 2 1.0 61 18 58 1 1 4 130 90AA 800 S-042 76 1.4 233 29 101 81 1 6 105 90AA 800 S-043 2 1.4 73 17 76 1 1 100 90AA 800 S-044 192 1.3 508 58 184 209 1 9 165 90AA 800 S-045 6 1.3 99 22 145 1 1 5 140 90AA 800 S-046 2 1.5 60 20 83 1 1 2 145 90AA 800 S-046 2 1.0 56 19 97 1 1 2 125 90AA 800 S-049 12 1.0 56 19 97 9 1 3 195 90AA 800 S-050 1 1.1 47 16 131 1 1 2 260											
90AA 800 \$-042 76 1.4 233 29 101 81 1 6 105 90AA 800 \$-043 2 1.4 73 17 76 1 1 1 100 90AA 800 \$-043 22 1.4 73 17 76 1 1 1 100 90AA 800 \$-043 192 1.3 508 58 184 209 1 9 165 90AA 800 \$-045 6 1.3 99 22 145 1 1 5 140 90AA 800 \$-047 1 1.4 60 16 90 1 1 2 145 90AA 800 \$-048 4 1.0 48 24 97 1 1 2 145 90AA 800 \$-049 12 1.0 56 19 97 9 1 3 195 90AA 800 \$-051 2 .8 57 34 139 1 1 2											
90AA 800 s-043 2 1.4 73 17 76 1 1 100 90AA 800 s-043 192 1.3 508 58 184 209 1 9 165 90AA 800 s-045 6 1.3 99 22 145 1 1 5 140 90AA 800 s-046 2 1.5 60 20 83 1 1 5 125 90AA 800 s-047 1 1.4 60 16 90 1 1 2 125 90AA 800 s-049 12 1.0 56 19 97 9 1 3 195 90AA 800 s-050 1 1.1 47 16 131 1 1 2 165 90AA 800 s-051 2 .8 57 34 139 1 1											
90AA 800 \$-045 6 1.3 99 22 145 1 1 5 140 90AA 800 \$-046 2 1.5 60 20 83 1 1 5 125 90AA 800 \$-047 1 1.4 60 16 90 1 1 2 145 90AA 800 \$-047 1 1.4 60 16 90 1 1 2 145 90AA 800 \$-048 4 1.0 48 24 97 1 1 2 125 90AA 800 \$-048 4 1.0 56 19 97 9 1 3 195 90AA 800 \$-050 1 1.1 47 16 131 1 1 2 165 90AA 800 \$-051 2 .8 57 34 139 1 1 4 135 90AA 800 \$-052 1 .9 118 54 107 4 1 2 260											
90AA 800 \$-045 6 1.3 99 22 145 1 1 5 140 90AA 800 \$-046 2 1.5 60 20 83 1 1 5 125 90AA 800 \$-047 1 1.4 60 16 90 1 1 2 145 90AA 800 \$-047 1 1.4 60 16 90 1 1 2 145 90AA 800 \$-048 4 1.0 48 24 97 1 1 2 125 90AA 800 \$-048 12 1.0 56 19 97 9 1 3 195 90AA 800 \$-050 1 1.1 47 16 131 1 1 2 165 90AA 800 \$-052 2 .8 57 34 139 1 1 4 135 90AA 800 \$-052 1 .9 118 54 107 4 1 2 260	90AA 800 S-044	192	1.3	508	58	184	209	1	9	165	
90AA 800 \$-047 1 1.4 60 16 90 1 1 2 145 90AA 800 \$-048 4 1.0 48 24 97 1 1 2 125 90AA 800 \$-049 12 1.0 56 19 97 9 1 3 195 90AA 800 \$-050 1 1.1 47 16 131 1 1 2 165 90AA 800 \$-051 2 .8 57 34 139 1 1 4 135 90AA 800 \$-052 1 .9 118 54 107 4 1 2 260			1.3	99		145	1	1			
90AA 800 s-048 4 1.0 48 24 97 1 1 2 125 90AA 800 s-049 12 1.0 56 19 97 9 1 3 195 90AA 800 s-049 12 1.0 56 19 97 9 1 3 195 90AA 800 s-050 1 1.1 47 16 131 1 1 2 165 90AA 800 s-051 2 .8 57 34 139 1 1 4 135 90AA 800 s-052 1 .9 118 54 107 4 1 2 260											
90AA 800 \$-049 12 1.0 56 19 97 9 1 3 195 90AA 800 \$-050 1 1.1 47 16 131 1 1 2 165 90AA 800 \$-051 2 .8 57 34 139 1 1 4 135 90AA 800 \$-052 1 .9 118 54 107 4 1 2 260											
POAA 800 \$-050 1 1.1 47 16 131 1 1 2 165 POAA 800 \$-051 2 .8 57 34 139 1 1 4 135 POAA 800 \$-052 1 .9 118 54 107 4 1 2 260											
20AA 800 s-051 2 .8 57 34 139 1 1 4 135 90AA 800 s-052 1 .9 118 54 107 4 1 2 260							-				
90AA 800 S-052 1 .9 118 54 107 4 1 2 260											
										260	
					-						
							, , , ,				
										,	
									<u></u> ,		
					<u> </u>						

•

COMP: KEEWATIN ENGRG. PROJ: 800

 TOTE
 TOTE
 TOTE
 FILE NO: 05-0689-SJ1+D1+2

 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2
 DATE: 90/10/25

 (604)980-5814 OP
 (604)088 (53)
 * SOIL * (ACT:F31)

ATTN: R.NICHOLS/D.MEHNER

(604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	<u>, , , , , , , , , , , , , , , , , , , </u>
90EB 800 S-001 90EB 800 S-002 90EB 800 S-003	171 150	1.6	282 372 981	32 36 21	38 48 75	1 13	1	18 22	160 105 100	
90EB 800 S-003 90EB 800 S-004 90EB 800 S-005	187 252 37	1.4 2.2 2.1	1046 435	27 35	63 88	1 63 34	1 1 1	18 42 13	85 175	
90EB 800 S-006 90EB 800 S-007 90EB 800 S-008	20 37 83	.8 1.8 1.8	188 238	46 25 34	92 91 60	1 1	1 1 1	6 9 14	135 110 120	
90EB 800 S-008 90EB 800 S-009 90EB 800 S-010	138 94	2.0 1.6	364 623 438	54 19 46	110 105	16 1 14	1 1 1	14 1 11	70 85	
90EB 800 S-011 90EB 800 S-012	11 28	1.9 1.5	511 269	21 28	137 67	1 6	1	1 6	80 105	
90EB 800 S-013 90EB 800 S-014 90EB 800 S-015	92 41 2	1.4 1.1 1.5	352 98 80	23 29 26	86 115 194	1 1	1 1 1	6 5 1	65 85 85	
90EB 800 S-016 90EB 800 S-017	10 1	.5 1.6	77 58	37 19	254 169	1	1	2 1	75 85	
90EB 800 S-018 90EB 800 S-019 90EB 800 S-020	1 20 20	1.6 2.1 2.1	74 76 70	24 21 22	93 194 102	1 1 1	1 1 1	4 1 1	80 85 90	
90EB 800 S-021 90EB 800 S-022	3 10	3.2 1.5	45 78	8 17	122 113	1	1	1 2	65 95 70	
90EB 800 S-023 90EB 800 S-024 90EB 800 S-025	1 1 23	.2 2.0 2.3	106 66 151	29 8 13	146 105 72	1 1 1	1 1 1	1 1 2	70 80 105	
90EB 800 S-026 90EB 800 S-027 90EB 800 S-028	17 201 32	.7 1.6 1.9	172 396 123	21 45 23	53 144 72	6 188	1 · 1 1	6 2 1	95 85 85	
90EB 800 S-029 90EB 800 S-030	41 23	1.8	122 258	14 12	57 104	1 1 1	1 1	9	60 90	
90EB 800 S-031 90EB 800 S-032	41 97	16.3 20.6	190 286	16 26	52 47	1	1	8 19	105 105	
90EB 800 S-033 90EB 800 S-034 90EB 800 S-035	102 162 61	22.5 10.9 14.7	1024 2298 937	32 9 31	47 68 62	1 1 1	1 1 1	17 18 16	100 65 120	
90EB 800 S-036 90EB 800 S-037 90EB 800 S-038	103 176 122	12.1 1.4 3.6	849 617 357	18 19 18	29 35 34	1 1 14	1 1 1	56 35 27	85 145 120	
90EB 800 S-039 90EB 800 S-040	93 84	4.6 8.5	478 524	24 11	41 28	1	1 1	20 22	145 165	
90EB 800 S-041 90EB 800 S-042 90EB 800 S-043	175 184 88	10.2 9.9 37.4	1204 1090 719	24 23 24	31 35 49	1 1 1	1 1 1	30 38 26	130 105 140	
90EB 800 S-044 90EB 800 S-045	50 79	29.0 27.6	458 765	24 29	72 87	1	i 1	16 27	180 215	
90EB 800 S-046 90EB 800 S-047 90EB 800 S-048	86 68 79	8.2 8.1 2.3	1405 4357	29 20 28	169 82 125	1 2	1	15 21 7	120 210 180	
90EB 800 S-048 90EB 800 S-049 90EB 800 S-050	38 23 276	2.0 10.2	1190 1784 1061	29 10	145 35	י 1 1	1	6 50	165 75	
90EB 800 S-051 90EB 800 S-052 90EB 800 S-053	137 40 504	4.0 6.0	487 165 856	23 34 16	39 97 38	1 42 1	1	37 5 42	135 200 100	
90EB 800 S-053 90EB 800 S-054 90EB 800 S-055	504 183 27	11.8 2.7 1.1	856 1038 157	16 20 39	38 63 122	1 1	1 1 1	42 30 4	145 155	
90EB 800 S-056 90EB 800 S-057 90EB 800 S-058	40 21 696	.5 2.2	423 127 216	28 10 35	104 167 246	1 1	1	10 1 1	95 105 95	
90EB 800 S-058 90EB 800 S-059 90EB 800 S-060	696 42 1	1.5 2.6 1.8	216 59 47	35 9 27	248 114 82	1 1	1 1	1 1	85 115	

COMP: KEEWATIN ENGRG. PROJ: 800

ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0689-SJ3+4 DATE: 90/10/25 * SOIL * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90EB 800 S-061 90EB 800 S-062	12 21	2.1	27 95	8 34	87 139	1	1	1 2	95 85	
90EB 800 S-063 90EB 800 S-064 90EB 800 S-065	2 2 3	.9 2.1 1.4	35 26 73	29 17 35	122 42 155	1 1 1	1 1 1	3 1 2	105 110 85	1
90EB 800 S-066 90EB 800 S-067	3 1	.9 .5	71 80	34 81	167 217	1	1 3	5 8	115 80	
90EB 800 S-068 90EB 800 S-069 90EB 800 S-070	30 1 19	1.2 .9 .6	109 47 66	32 40 68	148 187 212	30 1 41	1 1 1	4 2 1	100 95 65	
90EB 800 S-071 90EB 800 S-072	1 3	1.0	58 28	39 14	156 63	1	1	1	65 110	
90EB 800 S-073 90EB 800 S-074 90EB 800 S-075	1 1 30	1.9 1.1 1.0	47 125 116	32 30 29	153 140 139	1 1 21	1 1 1	1 2 5	85 150 130	
90EB 800 S-076 90EB 800 S-077	1	1.2	145	 33 44	167 202	1	1	32	185 95	
90EB 800 S-078 90EB 800 S-079 90EB 800 S-080	1 1 3	1.2 1.3 1.4	102 84 108	18 24 28	92 147 155	33 32 36	1 1 1	3 3 3	165 140 145	
90EB 800 S-081 90EB 800 S-082	3	1.2	119 129	34 26	334 334 134	<u> </u>	1 1	5 5	155	
90EB 800 S-083 90EB 800 S-084 90EB 800 S-085	1 3 4	1.6 1.1 .9	166 132 132	29 34 21	158 118 143	1 1 17	1 1 1	3 2 4	155 105 125	
90EB 800 S-086 90EB 800 S-087	19 3	.8 .9	120 96	29 23	250 123	1 1	 1 1	2 2	75 115	
90EB 800 S-088 90EB 800 S-089 90EB 800 S-090	1 1 2	1.2 1.3 1.3	78 131 87	30 30 26	127 122 131	19 1 1	1 1 1	3 2 3	100 155 135	
90EB 800 S-091 90EB 800 S-092	1	.8 1.3	56 78	26 22	217	8 46	1	1 1	100 75	
90EB 800 S-093 90EB 800 S-094 90EB 800 S-095	1 1 6	.8 1.1 .9	125 98 58	33 35 28	142 124 225	1 1 12	1 1 1	1 1 1	110 85 70	
90EB 800 S-096 90EB 800 S-097	1	8 1.0	65 69	26 28	124 110	25 18	1 1	2	75 95	
90EB 800 S-098 90EB 800 S-099 90F 800 S-001	6 1 96	1.3 1.0 1.7	75 98 823	32 29 29	207 260 83	1 1 1	1 1 1	2 1 12	110 85 110	
90F 800 S-002 90F 800 S-003	131 107	1.7	1054 675	23 27	54 53	1 1	1 1	12	75 110	
90F 800 S-004 90F 800 S-005 90F 800 S-006	44 60 103	2.4 1.2 1.4	499 1107 1171	14 15 10	59 114 81	1 1 1	1 1 1	10 16 16	115 80 60	
90F 800 S-007 90F 800 S-007 90F 800 S-008	51 21	1.0	666 486	23 17	91 118	1 1		18 2	100 90	
90F 800 S-009 90F 800 S-010	50 94	1.9 1.6	99 1169	10 10 26	114 85 149	1 1	1	1 9 13	95 65 95	
90F 800 S-011 90F 800 S-012 90F 800 S-013	83 50 61	2.1 1.9 1.6	1455 1001 1038	35 19	159 153	1 1	1 1	13 11 9	115 110	
90F 800 S-014 90F 800 S-015	3 43 91	1.1 1.4	99 614 1464	22 26 18	90 131 143	1 1 1	1 1	2 12 15	90 110 70	
90F 800 S-016 90SS 800 S-001 90SS 800 S-002	256 244	1.8 1.6 2.2	471	10 25	98 100	1 1	, 1 1	13 13 23	85 105	
90SS 800 S-003 90SS 800 S-004	50 123	2.4 1.8	147 1863 2098	24 12 19	63 79 89	1 1 1	1 1 1	8 - 17 - 18	95 70 75	
90SS 800 S-005	142	1.6	2090	19	07			10		

COMP: KEEWATIN ENGRG. PROJ: 800 ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0689-SJ5 DATE: 90/10/25 * SOIL * (ACT:F31)

TN: R.NICHOLS/D.MEHNER			(604)5	80-5814 0	OR (604)98	8-4724			- 51	DIL *	(ACT:
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90SS 800 S-006 90SS 800 S-007 90SS 800 S-008	109 21 100	1.6 1.2 2.0	1806 142 127	22 24 10	73 139 136	1 1 1	1 1 1	14 1 1	75 110 95		
·				. <u></u>							····
									<u></u>		
			···								
				- <u></u>		·····			<u> </u>		
	<u></u>			<u></u>							
			······								
				······				<u></u>	<u> </u>		
											- <u></u>

APPENDIX VII

Soil Sample Descriptions

, 1

Keewatin Engineering Inc.

Protect	QUASE	-1 CR.	- # 800	SOIL SA	амрі	_ES	ſ	Rasu	lts F	Plotte	ed B	v:									
	CD	NTOUR	LINES					Man:	,			/	N	I.T.S.	. /	040	2/**	16	5ω		
Collectors:	N A	D MI	EHNER				•	Date		00	TOE	BER	··· 1	99	с 0						
	Sample Lo				To	pogro						otlan					Soll	. ·	Dolo		5
							T														
Somple Number			Notes		Valley Bottom	Orection of slope	Hili Top	Level Ground	eavily Wooded	Sporsely Wooded	Burnt	Logged	Grassland	Swampy	Horlton' Sampled	Depth to Horlzon Somple	Good Horizon			Bedrock Material	Calour
	Line	Station			۷٥	r D	Ē	٦	н	Ϋ́	Вu	د	ບັ	Ś	Å		ŏ	ď	ŏ	B	ပိ
90 - AA - 80	0-5	ELEV.]						CM					
01			10% RK chips to 2.5 cm. Sun			Ņ				~						25		1	~		Brn.
02			15% organics; 20% unded frage 5.	<u>Бим, slu</u>	lan			~		~						35		\checkmark	~		Brn
03			RK frags 20%, organico 5 10% ~	lich awas.						4			 	 	B	45 35		$ \rightarrow $	~		Brn
04			10 % org; 30% ork frage; RK frag to Cay-Ry in rk frage	a to 10 cm;	 				Ľ			┨			10-	33			\prec	<u> </u>	scn
0.0			70% rbfiago, 10% organico			N			V			}	}──		B	25			-		Brn
05		1160 M	30% rk frags to 10 cm; 10%	sign with	<u> </u>	N			5						B	35		5	v		Brn
06	08° 5/0,		10% organis; 8% rk frage \$10	cun:		N-C	28°						┼───		B	45		V			3rn
08	100 210	re 1162m	15% organis; the frage = 5		<u> </u>	N			V			<u> </u>		1	B	45		1	V		Brn
09	10. 100	e roam	20% olganics; rk fings = 50			N			~			<u> </u>	1	1	B	35			~		BRN
/0	10° chape.	· · · · · · · · · · · · · · · · · · ·	10 % orgenits : rh frage < 8		1	N			11	1			1	1	B	35	~			~	RBAN
11	10 000	1168 M	10-15% organics; 25% gravel; rhs			N			15		1	1	ŀ	1	B	40	~			4	BRA
12	10° slope	1168 M	150RGANICS; 20% RK frags; RKS			N		1	1.						B	40	. 5			V	RBAN
13	7° slope	1169m	15% organico: 15-20% gravel;			N			1.		T				B	40	1V			~	BRN
14	10° Slope		10% organico; 20-25% Ak frags	s; & Jam		N			~						B	45	~				BRN
15	12º Slope	1172m	te le	17	· ·	\overline{N}			12						B	35	V				BRN
16		1175 M	10-15% organics; 15% the fings	5 2 cm.		N			~	ŀ					B.	35				V	BRN
17.	12° Slope	1170 m	15% organics; 15-20% rkfro	yo 52cm	1	N			5				<u> </u>		B	40	1			5	BRN
/8 .		11674	<u>^</u>			N.	·	ļ	14	<u> </u>	ļ				B	40	1	<u> </u> !			BRN
		1167m	50% Nk frago & 3 cm; to 30			<u> </u>		V	14	ļ				1	B	40	↓	~	~		BRW
20	·	1162 m	25-30% \$ 1.5 cm ih frage	; west	_	· N	ļ		14	ļ	ļ		1		B	35	r		ļ!	-	RBAN
	L	·	edge of large slide. Slide alea; pravel, munoi			<u> </u>	- 	ļ	. <u> </u>	<u> </u>	ļ					1					
21		116 2 m	Slide abou; gravel mindi	Sand.		N		-		14					A	35		K	K		GBAN
22		1165m	Slide ava: 5 70 organico; 95%		_	<u></u>				14	┨				A	45		~	14	┟┤	G-BEN BRN
23		1165M	gravel. 60% rd frags = 4 c.		zenies		·			1-	- 	-			B	30		V	14		ISKA
24	l	116.8 m	1. 80 % gravel roots everyn			N				1-					A	30		1r	2	~	RERN
25		1170 m	10% frage 2-4 MM rest 4	o silt											B	35	۲Ľ	+			<u>~op</u>

Declarit	QUASH	CREEK -	# 188	SOIL SA	MPI	LES		Rasu	lts F	Plott	ed B	v:	`	D. 11	<u> </u>	YNE	<i>TR</i>				
-rojeci:	(°0117	TOUR LINE	S N. oF 19.70					Maa				,	N	1 7 9	: /	046	/4	ω			
Area (Grid)	:	112 11514/5	=10							0.7	ORE	R 1	990	1. 1. J.	•						
Collectors	:DAN	ID MEHNE			<u> </u>			Date		VC1	UDE										
	Somple Lo	1			To	pogra	phy			V	egeta	otion					Soll	I I	Dala	I	
Sample			Notes		Bottom	of slope		round	Wooded	Wooded			υđ			Horizon pla	Horlzon	Derelop -	Porent	Material	
Number	Line	Station	· .	, 	Volley B	Direction	HIII TOP	Level (HEOVILY	Sporsely	Burnt	Logged	Grassland	S₩ompy	Horlron	Depth to Sampl	G ood	Poor	Orlir	Bedrock	Colour
90- AA-	800-S	ELEV.	~ (1)			N								 	B	45	~			-	RBRN
26	ļ	1/73	10% rk frags < 2 cm.			+									B	25		<u> </u>			RBRIN
27.		1177	5-10% 5 2cm the fungo			N_			12				}			25		~	-		BRN
28		1173	poor soil; gravel.	-					├	۲,	<u> </u>				A	35		V	-		BRA
29.		1172	poor soil many rk.					V		<u></u>	<u> </u>	╂			A	25			~		BRN
30	<u> </u>	//38m	30% sand; 40% selt: 10%	10 TO THE plage.	1		ļ	1 v				<u> </u>	1	+	A	30	 	5	-		BRA
3/			50% silt; 30% gravel; 20%				. 	1V	17					+	B	25	2				RBEN
32			20% sult: 50 20 grance, 20 7			+	<u> </u>	1	~						B	25				-	RBEN
33		1145M	20% sigenic; 10% sand; 10	13 PK 602 10		N		ł	10			+	+	+	B	30			├ ───┦		RBAN
34		1145M	70% Suit, 10% save; 7	TOP ALCONIE	<u></u>	1r	1		12	†	<u> </u>	1	+		ß	30	~				RBRA
35		1170 m	10 % organie; 10% Ak fing;		1	N	1	1	15	1	1		1		B	40	1				RBR
36		1173 M	20% organic; 60 silt; 10%			N	+	1	1	1			1.		A	40	5				RBRW
38	<u> </u>	1163 m.	30% olganic; 60% set 1		1.	N	1		V.	1	1				A	30		~	~		Ber
39.		1155	30% organico; 60% siet;	10% All have	1	N	1		1					1	B	25				-	BRAY
40		1/55	10% Digamic 90% self	L	· • · · ·	N			- <u> </u>		+	-	1		B	35	1	1	t	1	RBAN
41		1152	20% alganic 80% silt		1.	IN	1		V						B	35	V			V	RBRI
42		1158	10% org Duce; 50% hag 20%	9 savel 20%	set				~	1.		1	1		A	25		~	4		BRAY
$\frac{43}{43}$		1/55	westor slide: 10% organis; 90		1-1-	N			1-		1	-	1		B	30	v-		1	~	RBRA
44	_	1100	Shole area. 20% organics 70%		10.			V	1	~		1			B	25	V			?	BRN
45		1155	Slide area. 20% organics 80					V		V					B	25		~	1	1	BRA
46.		1160	20% organies 70% selt; 10?			- ·			~						B	35	V	·		~	RBAN
47.		1165	10% organics 90% silt	<i>v · į *</i> _			-	V	V						B	25				レ	RBRA
48		1/65	20% ugenis 80% silt					V	V						B	30				4	RBR
49.		1160	10% organics; 80% silt 10	Porto frago		\mathcal{N}		•	~						B	35		<u>' </u>		V.	RBR
50		1150	10% organics 90% silt.			N			~						B	30				V	RBAN
51		1150 .	1000 organics, 100 rk frago, 10	90-sand; 70% 5	soft.			V	V			-I			ß	35	1			V	RBAN
	•						_		_					_			_	<u> </u>			<u> </u>
								1			1			1			1		1	1	

SOIL SAMPLES

Project:	QUASH	CREEK	# 800	
1101001				-

.

Results Plotted	l By:	· · · · · · · · · · · · · · · · · · ·
		1046/16W

. .

1. Riverin Сс

Area (Grid): ___

Collectors:	ERIC F.	TIRKELAN	1D			<u> </u>	Date		Der	r. c	6/9	70								
	Somple Lo	cation		Τo	pogr	ophy			V	egeta	otlan)				Sol	1	Dot	ġ.	
Sample			Notes	Bottom	slope		pung	Wooded	Wooded					Sampled	to Horizon Sample	Horlzon	Develop - ment	Parent	Material	
Number				Bot	5	a	5	Ň	1 1			p v	~	Ň	0 <u>d</u>				<u> </u>	
90 EB 800 S		Station		Valley	Oirection	HIII TO	Level	Heavily	Sparsely	Burnt	لمعوده	Grassla	Swompy	Horlzon	Depth 1 Son		COARSE .	Drifi	Bedrock	Colour
001	420.5	0-60	ALL SAMPLES TAKEN IN										<u> </u>	Ats		10	15		MB	
002	9220	0+10	TALLUS DUR SOLL - SAMPLE							·				A+B		20	30		HB	
003	+210	0+60	MATCRIAL MOSTLY ORG.												30	15			MB.	
004	4225	1+10	MATERIAL IN LOOSE TALLUS.								• •				30		70		B	<u> </u>
005	4200	1+60						1		ŀ				AD			75		DB	
006	4200	2+10													30		40		R	
007	4200	2+60	· .												25				3	
008	4190	3+10													125		50		R	
009	9200	3+60												A+ B	325	15	T		B	
010	4200	4+10													25				MB	<u> </u>
011	4200	4+60												H+ E			89		DB	
012	9200	5+10								•				AtI	300+	15	75		DB	\Box
013	9200	5+60										ŀ			355-		60		8	\square
014	4200	6+10													351		60	_	MRC	5
015	9200	6+60							•	Τ				4+5				1	13	1
	4200	7+10	NO SAMPLE AT 7460		,									Arl		15	_	1	R	1-
017	4200	8+10										T			8 30	15		1	MRS	1
018	4180	9+10							ŀ					408		1/5	30	_	MC	
019	4200	8+60	BACK 50 M										1		330	15		_	B	1
020	4200	9+60							1	1			1	4.1		_	_	the local division in which the local division is not the local division of the local division is not the local division of the loca	13	1
021	4190	10+10					T	1		T					3 30				B	\uparrow
022	4200	10+60		1	ŀ			-	1.		1			At-1		- 20		_	B	\mathbf{t}
1023	4700	11+10		1	1	1		1				1-	1	Art	_	- 20			1.R	+
_ 224	4200	11+60									1		1		330				BB	+
025	4200	12+10		1				1			1	1			8 31				DC	
026	4200	12+60								1	1		1	Att		30			DB	_
	4200	15+10				-		-	1	1		1	1		3 4-0				DR	
028	+200	13+60						-1	-1		+	1		AL	BIS	12	2 60	51	172	
029	+190	14+10				_		1	-	-	1			44	8 35	20	5 50	*	13	+-

Project:	QUASH	y Cree	ек #800 егто.	SOIL SA	AMPL	_ES	F	Resu	lts F	Plott	ed B	y:			/	$\overline{\wedge A}$		161.	1		
Area (Grid): Collectors:	Enic	BIKK	ELMD.				l I	Kesu Mop: Date		Det.	61	47/	N / <u>90 .</u>	.T.S.	:	<u> </u>			·		
	Somple Lo				To	pogra				V	egeta	ilon					Sol	l	Data		
Sample Number 90 E13 <i>800 S-</i>	Sint BLSUATION	Station	Notes		Valley Bottom	Okrection of slope	Hill Top	Level Ground	Heavily Wooded	Sparsely Wooded	Burnt	Logged	Grassland	Swampy	Horlzon' Sampled	A Depth to Horizon A Sample	Good Harizon	Ment Develop - ment	Potente Parent	Bedrock Material	Colour
030	4190	14+60													<u> </u>		<u> </u>	10			B
831	4180	15+10								Ļ	·				"		20				3. 3
03z	. 4200	15+60			 										11	40+	20	70			3
033	1277 M	16+10			 	<u> </u>				 	<u> </u>				"	354]		TB MB
034	1280 M	16+60			 					<u> </u>	ļ	1					10			ļ!	mB
035	1290	17+10			<u> </u>							<u>├</u>					10			<u> </u>	B
_036	1280	17+60	· ·		 				 		<u> </u>				"		20			<u> </u>	10B
037	1283	18+10		·						ļ	<u> </u>		<u> </u>		<u>n</u>		30		\mid		DB
078	1280	18+60			ļ	 					ļ	 		ļ	"		30			 	PB
039	1280	19+10		<u></u>	1	 		ļ	ļ	ļ	<u> </u>	ļ			7	257	30	20	'	<u> </u>	PB DB
040	12.81	19+60			<u> </u>	Ļ		 	 	<u> </u>	<u> </u>		ļ	ļ	<u>"</u>		30		 	<u> </u>	DB
041	12.00	20+10				<u> </u>		ļ	<u> .</u>	<u> </u>	<u> ·</u>		ļ		"		30		Ļ		DB
OFZ	1282	20+16				<u> </u>	ļ	ļ		ļ	<u> </u>	<u> </u>	·	ļ	!!		30				DR
A3	1281	2410		••	L		L	ļ	<u> </u>			1	ļ	<u> </u>	"	30+					DB DB
044	1280	21460								·					11	39	30	40	<u>/</u>		DB
_ 045	1280	22+10				<u> </u>	J		<u> </u>					ļ	11	يصحل	25				128 128
046	1270	22+60						<u> </u>			<u> </u>					25	10	20			DB
							<u> </u>			Ľ			<u> </u>						L.		
					_		<u> </u>	<u> </u>				_			1						
							<u> </u>		<u> </u>		1		ļ	 	1	\square	ļ	1	<u> </u>	1	
			1												<u> </u>						
						<u> </u>						1					<u> </u>				
										1	\bot					_		Ľ			
						<u> </u>					<u> </u>		1	<u> </u>		1	<u> </u>				
													1								
· ·······												·									
	·																				
		<u> </u>							1	1									1	1	

Topography

SOI	L	SA	Μ	PL	ES.

Project: QUASH	CREEK	#800
Area (Grid):		
AICO (0110)		

Sample Location

BIRKELAND.

Results Plotted By:	
Map:	N.T.S. :/

Collectors: ERIC

Date _ OCT 7/90

. .

04 G/16W

Soll

Doto

Vegetation

	N.	Τ.	S.	:		04	
--	----	----	----	---	--	----	--

1				L																
Sample			Notes	Bottom	of slope		Ground	Wood ed	Wooded			pu		S ampl ed	Depth to Horizon Somple	т	Develop - ment		Material	
Number			· · ·	Valley E	Oirection	II Top		Heavily	Sporsely	Burnt	Logged	Grassland	Swampy	Horlzon	pth to Sam	h orsi	Pacomo	Drift	Bedrock	Colour
0 E B 800 J	- ELEUATION	Station		>	ชั้	HH		ž	Ϋ́	ā	ڭ	હે	Ś			<u>8</u>		ă 		
047	1220 M	0+50		ļ										B	25		40	\rightarrow		B B
048	1220	1+00		<u> </u>						· · ·				B	25	20	50			B.
099	1220	1+50									·			B	25		20		<u> </u>	DB DB BB BB BB
050	1215	2400											ļ	3	25	20	10		ļ	DB
057	1718	2450			 									3	25		10	·		B
052	1220	300		<u> </u>	ļ						<u> </u>			3	25		10			B
053	1220	3+50	· · · · · · · · · · · · · · · · · · ·		<u> </u>				ļ					B	40	10	10		<u> </u>	15
054	1220	9+00	· · ·											B	25	10	20	┝━━━┫		B
- 055	1220	9450		_	<u> </u>				· · ·		L	L		D.	30	60	20			BB
056	1220	5700							L	· .	L	ļ		B	30	10	20			ß
1957	1220				<u> </u>		 	 		 	·		 	<u> </u>	. <u> </u>	<u> </u>	 			
OF8	```				<u> </u>			<u> .</u>		L.			ļ	<u> </u>	<u> </u>					
							<u> </u>		<u> </u>			L			<u> </u>	ļ				
		·	2	·	<u> </u>			<u> </u>					<u> </u>			ļ	ļ			
····								·					1	<u> </u>		ľ				·
		1							ŀ											
										T										
														ŀ						
					·							T		T						
		· [·					1		Τ		1						1 ′	T		
		1		-			1											<u> </u>		T
		1						1												
l	-	1					1	1					1					1		1
			· · · · · · · · · · · · · · · · · · ·	-1	-		1		1		·						1	1	<u> </u>	1
	•					1	1	1	1	1	1					1		1	T	1
							1		1	1				1				\top	<u> </u>	1
			····· • ······························					•		•	•	•								

SOIL S	AMP	LES
--------	-----	-----

Project: QUASH	PREEK	#8.00
Area (Grid):		

Results Plotted By: _____ Map: ______N.T.S.: 1046/icui

. .

. 0 Col

Collectors	Eric	SIRKIELA	mp.						Date		<u>se</u> i	<u> </u>	/80	2								
	Somple Lo	cotion				To	pogra	phy			V	egeto	tion					Sòl	I	Data	1	
Somple Number	Balan e	Station	Note	2 S		Volley Bottom	Orection of slope	HIII Top	Level Ground	Heavily Wooded	Sparsely Wooded	Burnt	Logged	Grassland	Swampy	Horlzon' Sampled	Depth to Horlzon Sample	Person Horizon	Destroyed ment	ADMEN Parent	Bedrock Material	Colour
	ELEVATION				•		<u> </u>			<u> </u>						ļ				-29		
057	1281	16+00								}						4+3	25	10	10	<u> </u>		B
058	12.85	16+50														<u> </u>	30	10				B.
059	1280	17+00				<u> </u>				 	<u> </u>						35	10	10			R
060	1280	17+30						<u> </u>				<u> </u>				<i>"</i>	30	10	25		 	R
261	1285	18+00			·····					┼──		<u> </u>				<i>"</i>	30	10	20	┝───┦		R B
062	1280	18+50		<u></u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	 			┼───						1	30	10-	2			
063	1280	19+00	· ·		·····	<u> </u>	<u>{</u> −−.			┼───	 					1,	30	<u></u>	25			HEB B
069	17.81	19+50		· · · · · · · · · · · · · · · · · · ·	·····							<u> </u>				1,1		20				R
065	1275	20+00				+					<u> </u>	┼╌──				1	30	10	38			R
066	1785	20+50		<u></u>				┼──								10	30	_	20	<u>├</u> ────┤		13
057	1280	21+00								1	1	1.				11	25	5	15			ß
068	1265	21+50			·		† –	+	<u> </u>	- <u> </u>	1			1	<u> </u>	"	30			MRB		
669	1270	22450	:				<u> </u>	1			+	+				1	30	15				HEB B
076	1280	1				-	+	<u>+</u>		- <u> </u>			+	<u> </u>	1				30			B
071	1280	23+00				+		+		+	+		+		<u> </u>	1.	30		30		<u> </u>	B
072	1280	23+50				- <u> </u>		-	1		1	1	+	<u> </u>	+	1 "	90			13	<u> </u>	
073	12.78	24+00				+		+	+		 .		+	+		+	190	1/3-	40	10 <u>,</u>	┼──	B
								+				+				+	+	+	+	+	╂	+
		•					+		+			+	+		+	+		+		╂	┼──	┼──
											+		+			- 		+	+	+	╂───	
		+					+	+		+		+			+					+	╂───	
		+	·						-{		- _ `	+			+	+	+	+		+	╂───	+
			-				+	+	+						+				+	+	+	+-
I									+					+	+				+	+	+	+
												+		+				+			+	

SOIL SAMPLES

Project:	QUASH	CREEK		SOIL_S.	амрі	_ES	:	Resu	ults I	Plott	ed B	у: _									
Area (Grid)	:							Мар	:				N	.T.S.	:	10	46	<u>-//</u>	6W		
Collectors	ERIC	BIRKEL	9712 ·					Date	:	907	-9	190	2								
	Somple L	1			To	pogra	phy			V	egeta	otlon					Sol	1	Dolo	,	
Sample			Notes		Bottom	slope		pund	oded	ooded					S ampl e d	Depth to Horizon Somple	Horlzon	Develop I ment	Parent	Material	
Number			N U I C S		Valley Bat	ction of	Top	Level Ground	Heavily Wooded	Sporsely Wooded	Burnt	gged	Grassland	Swampy	Horlzon Sc	th to I Somple	R R		ني المعارب		Colour
90 E 8 800 S-	Line	Station			۷۵۱	Ore	нi		о е н	Śpę	Βu	رە	ů		Ř	Dep	30	20	ō	â	ပိ
074	1190 M	0700															20	70			04+20
075	1193	0+46	· · · · · · · · · · · · · · · · · · ·	·····					<u> </u>						1	30	20				".
076	1190	1+00			ļ				<u> </u>	 						30					•
077	1188	150							 	I						30	20	70			.1
078	1190	2100		· · · · · · · · · · · · · · · · · · ·						ļ					"	30	20				n
019	1192	2+50			 				 	 	ļ	<u> </u>			//	30	20				.h
080	1190	3+00	- · · · · · · · · · · · · · · · · · · ·			Į			 	<u> </u>					11	30	20		<u> </u>		11
081	1190	3+50			<u> </u>	· · ·		I	 	 					11	30					~
082	1189	4+00			ļ				ļ		<u> </u>	l	<u> </u>		11	30					
083	1190	4+30			ļ						<u> </u>		l		"	2	10	70			17
084	1195	3700			 	ļ				 	L	ļ	ļ	ļ	<u>"</u>	30	10	60		il	~
085	1193	5750			<u> </u>	ļ	ļ	ļ	<u> </u>	ļ	ļ			ļ	17	30	5	90			"
086	1191	6+00		· · · · · · · · · · · · · · · · · · ·	<u> </u>			ļ	<u> </u>		ļ		Ŀ		<u>"</u>		20				
087	1190	6750		••	<u> </u>	ļ			<u> </u>		1			<u> </u>	17	25	15	FO			17
288	1190	7+00							· ·						n	20	15	50			<i>"</i> .
	1182	74.50			<u> </u>		1								"	25	15	40			<i>n</i>
090	1179	8700		····			I			<u> </u>					111		15				11
091	1175	8750								<u> </u>	1				12.	25	90	20	[n
DAZ	1173	9+00													n	25					<u>n</u>
013	1172	9450													11						i n
	1/73	iaton				1									11	25	20	30			n
095	1150	10+50				•									n			90			N
096	11.450	11+00											1		11			60			D
- 97	11330	11+50													1,1	25	20	50			4
098	11200	12+00													1	20					n
099	1120	12+50													~			52			11
			·			T		1	1	1		1		1	1		1	T	1	1	
	ŀ										1							1	1		
	1										-						-	1	1	T	1

.

Protect:	800 -	QUASH	CREEK	SOIL S	АМР	LES	1	Resu	ults f	Plott	ed B	v:	4	Sēz	F						
Area (Crid)								Man				, _	N	τs	: /	104	G/	16u	ر		
Area (Gria)		TELE CP	EEI MAAN					mup	•		C	++	$\frac{1}{G}$	70 70	•						
Collectors			ECLININ		r			Date				<u> </u>		<u> </u>							
	Somple Lo	cotion			To	pogra	phy			V	geta	tlan					Soli	i 1	Data		
																		1			
Sample Number			Notes		alley Bottom	ction of slope	HIII TOP	rel Ground	Heavily Wooded	rsely Wooded	Burnt	Logged	Grassland	Swampy	Horlson Sampled	Depth to Horlzon Sample	od Horizon			Bedrock Material	our
	Line	Station			Val	ž	H	1	e H	Spo	Βu	ř	Gra	¥ S	Hor	0.0	G ood	Poor	Orli	B	Colour
905-800-52 905-800-52 905-800-52 905-800-53 905-800-55 905-800-55 905-800-55 905-800-55	NORDY LINKE	50-	10% 010	E 3900		SONU)		×	-					B	Don	X		ĸ	1	1
905-200-52		100 m	152 019.	3820		15°A			_,	X	•					Da	X		x		A RUNENENENEN
925-800-53		150-	20 20 005.	3360		SON				X						25a	. X		X		22
5055-800-SY		200 -	5% 03.	3880	<u> </u>	25°N				X			ļ		B	Da	x		x		Br
GOSS-800-35		250-	Son only	3930	ļ	RIN BON BIN HON			<u> </u>	X					B	10cm 20cm	<u> </u>	┝━━╋	X		Br
5055-100-56		300	Son on (lire ands at 3	06m)3850_	<u> </u>	BON			X						3	2200	X	┢───╁	X		S~
535-800-57	WOTLINE	50m	02	3740		BIN			X						<u>d</u>	Ban	X	┝──┤	X		<u>E1</u>
505-840.53	1	100	Strange (line and s at 3 D2 mg (line and s at 3 D2 mg (line and s 72m	-) 3720_	<u> </u>	140° N				 					6	Zen	<u> </u>	┟──┤	~		Br
			0		<u> </u>				<u> </u>	ļ				 	 	₋		\vdash			
	_							 	 								ļļ				
									╂					<u> </u>	h		<u>├</u> ───┤	\vdash			
				· · · · · · · · · · · · · · · · · · ·	+	ł		<u> </u>	<u> </u>	<u> </u>				<u> </u>	╂			┝──┤			
}			•		+	<u>+</u>	<u> </u>	<u> </u>	+						<u> · - </u>	+		┝──┥	-+		
					1	+		1		1					<u>†</u>	+	i		-+		· ·
	<u> </u>		· · · · · · · · · · · · · · · · · ·				<u> </u>		1					<u> </u>		+	<u> </u>			 	i
					1.	1	1	1	1-	1		1		<u> </u>	1	1					
								1	1	1		1	1	1	1	1			·	┌── ┤	
				······		1	1	1	1			1								[]	
		1			1				1				1		1						
	1													Ι							
	1					·							1								
	1	·																			
										1											
								1		ļ		1		1	1						
				=										1	1						
			<u>,</u>																		
	ŀ.	<u> </u>	·			- 			1	<u> </u>	_	1	<u> </u>	<u> </u>	 	<u> </u>	 	<u> </u>	 		
		1			_	_	1			1	1	1		1	1	1	1	1	1	l I	

SOIL SAMPLES

Projoci: DRYDEN 800

Results Plotted By: ____ BOBYN

QUASH CREEK - HUB GRID Areo (Grid): _____

Mop:______N.T.S.: 104 G/1600

M BOBYN / A HARK Collectors: ____

Date OCT 2 1990

	Sample La	cation		Τo	pogra	рру			v	egeta	llon					Sol	1	Date	3	
Sample			Notes	Bottom	of slope		round	Wooded	Wooded			p		Sampled	i to Horizan Sample	Horlzon	Derelop - ment	Parent	Material	
Number	Line	Station (m)		Volley B	Direction o	HIII TOP	Level G	H eovily	Sparsely	Burnt	Logged	Grassland	Swompy	Horlzon	Depth to Some	Good	Poor	Drift	Bedrock	Colour
90F8005001	0°	0+00	4060': edge of NE chute		NE				\checkmark					A	30		\checkmark	~		RB
F SOOZ	0°	0150	4000' : 20% rock figs : 10% signis		NE					·				B	35	J				Br R.
F 5003	0°	1+00	3910': 15-20% org. No A/B horiz		NE									A	35	1	$\overline{\mathbf{v}}$	\checkmark		Black
F 5004	0°	1+50	3870', 15 % srg, 15% frogs.		NE			V						B	35	\checkmark				DBC
F 5005	0°	2+00	3310' no distinctive F13/Dirt.		NE			V						A	50					LBr
F 5006	0	2150	3780' B horiz a Dem		NE			1						в	40	V.			<	LB
F 5007	0 *	3100	3740; Grand Silty Loom 5% 19		NE			1						B	30	<u> </u>	<u> </u>		\checkmark	RBr
F 5008	0°	3+50	3665; no distinctione AIB		NE			1/						A	50		\checkmark	V		831
F 5009	0°	4+00	3700?; well dev AB; loom silt.		NE			1						B	40	\checkmark			/	RBr
F SOIO	1250	0+50	36501. 15-20% 019: 5-10% Fings		NE			1/	l					B	40	V			レ	MRB
F 3011	125°	100	3660' B horiz to 15cm	l	NE			1	<u> </u>					B	35	V		<u> </u>	10	LBC
F 5012	1250	1+50	3620' very dry org. sois.		NE				1					13	30	1				LBr
F 5013	125°	1+93	36401. 10% from: 15% ora		NE			1						B	40	1				OBr
E 5014	0900	0+50	36:05 15% on well des A+B	·	NE		1	<u>.</u>						B	40	1.1	1		~	DRB
FSOIS	0900	1100	3590': cky noriz 2 20cm		NE	ļ	1							B	30	1			1-	DRB
F 5016	0900	1+50	3580: 10-13 % org. 10% frags		NE			1/						B	40	V				LBr
		ļ		ļ		ļ			<u> </u>			 	ļ	 		ļ		<u> </u>		<u> </u>
	<u> </u>			╂──										┼─				+		┼
	<u> </u>						1	1					1		1		1	<u> </u>		+
	1						Ţ]·			1		1	1
	1	1			•		1										1		1	1
	1																1		1	1
		ļ																		
																			[
			······																	
	·	1									<u> </u>									
						L				ļ		ļ	1	ļ	I		1	1		I

jK.

APPENDIX VIII

Rock Geochemistry Results

Keewatin Engineering Inc.

COMP: KEEWATIN ENGRG. PROJ: 800 ATTN: R.NICHOLS/R.MEHNER MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0690-RJ1 DATE: 90/10/26 * ROCK * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
90AH 90AH 90AH										
90AH 90EB 800 R-001	1	1.7	216	6	53	1	1	1	65	
90EB 800 R-002 90EB 800 R-003 90EB 800 R-004 90EB 800 R-005 90EB 800 R-006	316 9 30 [.] 18 10	1.8 2.1 3.0 2.7 2.3	567 533 3037 1951 2179	100 34 7 12 25	126 142 95 50 28	11 1 1 1 37	1 1 1 1 1	10 10 1 58 11	85 60 55 65 35	
90EB 800 R-007 90EB 800 R-009 90F 800 R-001 90F 800 R-002 90F 800 R-003	4 4 39 1 39	2.5 3.7 11.0 2.2 2.8	1448 19084 9290 610 3193	14 39 26 11 7	69 86 135 19 30	26 1 1 1 1	1 13 3 1 1	8 16 2 22 34	45 50 45 45 40	
90AA 800 R-001 90AA 800 R-002 90FDE	. 30 . 27	1.8 2.8	1207 2048	14 20	30 43	1 1	1 1	10 1	30 35	
90SS 800 R-001 90SS 800 R-002	19 3	2.6 1.8	237 480	6 7	70 21	1 1	1 1	1 1	60 45	
90SS 800 R-003 90SS 800 R-004 90SS 800 R-005 90SS 800 R-006 90SS 800 R-007	30 1 6950 480 202	1.8 2.1 10.6 2.6 2.7	657 977 997 997 3041	6 9 30 17 31	19 19 532 350 67	1 1 191 33 112	1 1 1 1 6	4 35 22 20 3	55 60 40 45 60	

.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

Assay	Cert	ifi	cate

0S-0690-RA1

Company: KEEWATIN ENGRG. Project: 800 R.NICHOLS/R.MEHNER Attn:

Date: OCT-26-90

Copy 1. KEEWATIN ENGR6., VANCOUVER, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted OCT-17-90 by B.RYZIUK. . .

Sample	¥AU	*AU	AG	AG
Number	g/tonne	oz/ton	g/tonne	oz/ton
90SS 800 R-005	9.02	. 263	12.2	 _ 36

*AU - 1 ASSAY TON.

, **s**

Certified by

MIN-EN LABORATORIES

APPENDIX IX

Rock Sample Descriptions

Keewatin Engineering Inc.

,

				KE	EWA	ATIN	N EI	NGINEERIN	IG INC.
ject:	800 - QUASH CREE	EK				R	оск	SAMPLES	Results Plotted By: SEF
a (Grid): lectors:	STEVE OPER	CIMAN		Dil	1Eh	NE	R		Map:NTS: _1046/16W Date:OCTOBER, 1990SurfaceUnderground
	LOCATION NOTES	REP. SAMPLE NUMBER	64	CHIP CHIP	CHANNEL 3	LENG	FLOAT H	ROCK TYPE	SAMPLE DESCRIPTION
<u>\$-800 R2</u>	PLATY SPRINGS CK. (ICPT) BP of cliff band (LCPT) mir cliff band. (RIGHT)						100-	Fasic CHERT cliter	gray altered filsic, silicified minut cause closhed fire diff.pyr. alteration zone; rusty sociatic & silicions seds; firepyr. us alone; with colork stringer verns-
<u>55-800-RY</u> <u>55-870-C5</u> 55-870-R6 55-800-R7	<u> </u>			Sm				DYKE DYKE 7 DYKE 7 CALSTE	siticina alteration; parte fundachita porel siticions alteration; parte fundachita. rotter albred questo verified delle ininar walachile. Join S-10 cm x 7 massive walachite/azureite.
	Main Creek (Rusty Creek) @ 2 3850 ft elev						×	HBld divite	
- <i>ÀA-800 E</i> O 2	ca 3850 slev centour @ sample AAS-28						X	siltstone, riliceious	Bldr 1/2 m × 0.8 m stuckwork Py fract; - patichy epidote alt. tr. azerieto an fract.
			-						

 			• .	• -	·	-	 • •
	KE	EWATIN ENVIL	NEERIN	NG IN	С.		

NUMBER LOCATION NOTES NUMBER TYPE SAMPLE DESCRIPTION SHEET 1 S. WEST OF QUASH CREEK. NUMBER If the state of the state						44					
ed (Grid):	oiect:	Quash Creek DRYD	EN-E	300	~		F	ROCK	SAMPLES	Results Plotted By: M. BOBYN	
SAMPLE LOCATION NOTES SAMPLE SAMPLE TYPE ROCK TYPE SAMPLE SAMPLE DESCRIPTION MAP SHEET // S. WEST OF QUASH CREEK. SAMPLE a a b b b b c a b b b b c a b b b b c a b b b c a b b b b c a b b b c a b b c a b b b c a b c a a b b c a b c a a b a						-				Map: NTS: IOHG /16W	
SAMPLE NUMBER LOCATION NOTES SAMPLE NUMBER SAMPLE B SAMPLE B ROCK TYPE SAMPLE DESCRIPTION MAP SHEET * S.WEST OF QUASH CREEK. NUMBER B <td< td=""><td></td><td></td><td>MEHN</td><td>JER.</td><td><u></u></td><td></td><td></td><td></td><td>·</td><td>Date: October 1990 Surface Vindergro</td><td>ound</td></td<>			MEHN	JER.	<u></u>				·	Date: October 1990 Surface Vindergro	ound
D.F800R Soil Lae 4+60m V representite Altered Strongly fract. + jointed, carbonate + color DOI Small avalance chute Grab over 1.5m Andesitic altered ± sericite?, Patchy ± 1% dissem Cpy 4290' app. Flow Mal. stain; 1-2% Py; stringers to D.Scmat mass. Cpy 002 Dry creek bed V Gossanel F.g. Dark Red-Bron Wx; Grey Fresh. Large ander 002 Dry creek bed Bouder/ bouider 2.0m cliam. Source>immidiently above is 4290' app. Fg. Andsik gossonals Dre 355 % finely dissemply, ± 1% Cor, Tr All 002 Dry creek bed Fg. Andsik gossonals D/c 35-5% finely dissemply, ± 1% Cor, Tr All 003 Small Avalance D.orite ? euherical feldspir V Altered Fig. Reddism Brown Wx; Lt. Grey Fresh; 003 Small Avalance D.orite ? euherical feldspir Yellorite ? Product bouiders . 4255 app - on map. Andesite Stain : 1-2% Cop; j.lumerous (20-30) large Valcanic ? angular 003 Small Avalance Stain : 1-2% Cop; j.lumerous (20-30) large Valcanic ? angular Diorite ?/ Fedspor And. Flow? 003 Grep - on map. Valcan	SAMPLE	LOCATION NOTES	1		<u> </u>			<u> </u>		SAMPLE DESCRIPTION	
D F800R Soil Los 4+60m V representite Altered. Strongly fract. + jointed, carbonote + chlor. 001 Small avalance chute Grab over 1.5m Andesitic altered t sericite?, Patchy to -1% dissen Cpy . 4290' app. Elow Mal. stain jl 2% Py; stringers to 0.5cm f mass. Cpy 0F800R Soil line. 13+14m V Gossaned Fig. Dark Red-Brn Wz; Grey Fresh. Large angler. 002 Dry creek bed V Gossaned Fig. Dark Red-Brn Wz; Grey Fresh. Large angler. 002 Dry creek bed Pointer? boulder 2.0m diam. Source>immidietly above is 4290' app. Fig. Andoik gossonals of cigs Firehy dissen Ry to -1% (cy, Tr All boulder 2.0m diam. Source>immidietly above is 002 Dry creek bed Provider? boulder 2.0m diam. Source>immidietly above is 4290' app. Fig. Andoik gossonals of cigs Firehy dissen Ry to -1% (cy, Tr All boulder 2.0m diam. Source>immidietly above is 003 small Avalaerus chute Diorik ? euhorical felasorus with dissen Vy thelachite 4255'app-on map. Andesite Stain ; 1-2% (cy; flumerous (20-30) large Volcanie ? Andesite Stain ; 1-2% (cy; flumerous (20-30) large Volcanie ? Oiorite ?/ Fedspor And. flow? Oorite ?/ Fed			NUMBER	GRA	СНП	CHANN	COR	FLOA	i IPC		SHEET
OOI Small avalance crute grab over 1.5 m Andesitic altered ± sericite?, Patchy ± -1% dissem Cpy				~	rec	(ese	ht:+_e		Altered	Strongly Fract. + jointed, carbonate + chlor	
H290'app. Flow Mal. stain; 1.2% Py; stringers to 0.5 cmat mass. Cay OF800R Soil line. 13+14m V Grossanel F.g. Dark Red-Bron N/x; Grey Fresh. Large angler. OOZ Dry creek brd Bouder/ boulder 20m diam. Source>immidictly above is 4290'app. Fg. Andsik gossonals o/c; 3-5% finely dissemPy; 3-1% (ov, Tr All DF800R Soil line. End of; V Altered Fig. Reddisn Brown Wx; bt. Grey Fresh; OO3 small Avalances chutz Diorite? euhedial H255'app-on map: Andesite Stain ; 1-2% (op; Numerous (20-30) large Volcenic? angular Diorite?/ Feldspor Andesite Oo3 Small Avalances Volcenic? angular Diorite?/ Feldspor Volcenic? Andesite Stain ; 1-2% (op; Numerous (20-30) large Volcenic? Andesite Stain ; 1-2% (op; Numerous (20-30) large Volcenic? Angular Diorite?/ Feldspor And. flow? Oorite? Carb t Chlor aitered · Source > likely from	001			ar				i'	Andesitic		
0F800R Soil line 13+14m V Gossanel F.g. Dark Red-Bro Wx; Grey Fresh. Large angler 00Z Dry creek bed Bouder/ bouider 2.0m diam. Source? immidietly above is 4290'app. Fg. Andsike gossonals o/c.j.3-5% finely dissem Ry, 5-1% Cor, Tr. Al 05800R Soil line Endof; V Altered Fig. Reddish Brown Wx; bt. Grey Fresh; 003 small Avalacine chute Diorite? euhedral felasper sotels; Heavily Malachik; 4255'app-on map. Andesite Stain : 1-2% Cor; Numerous (20-30) large Volcenie? cangular micrealized bouiders. Diorite? Carb + Chlor altered. Source-7 likely Figm											
OOZ Dry creek bed Bouder/ bouider 20m cliam. Source>immidicitly above is 4290'app. Fg. Andsik gossonais o/c;3-5% finely clissemRy,2-1% Cpy, Tr As DF800R Soil line_ End of; V Altered Fig Reddisn Brown Wx; Lt. Grey Fresh; 003 small Avalance chutz Diorite? euhedral feldspir yotels; Heavily Malachite 4255'app-on map. Andesite Stain ; 1-2% Cpy; Numerous (20-30) large Valcenic? angular microlized bouideys. Diorite? Diorite? Valcenic? Carb + Chlor altered. Source > likely from	10 F 800 R	Soil line 13+14m						\checkmark	Gossanel		
4295'app. Fq. Andraite gosservais o/c;3-5% fively disseminity, 1-1% Cov, 1r Allow DF800R Soil line_End of; V Altered Fig Reddisn Brown Wx; Lt. Grey Fresh; 003 small Avalance chote Diorite? 4255'app-on map. Andesite stain: 1-2% Cov; Numerous (20-30) large Volcenic? angular minerous (20-30) large Valencie? Diorite? Corb + Chlor altered Source 7 likely Frem	00Z	Dry creek bed							Bouider/	boulder 2.0m diam. Source immidiatly above in	
DF800R Soil line_Endof; V Altered Fig. Reddisn Brown Wx; Lt. Grey Fresh; 003 small Avalacene chute Diorite? euhedral Feldspor xstels; Heavily Malachite 4255'app-on map. Andesite stain; 1-2% Cpy; Numerous (20-30) large Volcenic? angular Diorite?/ Feldspor And. Flow? Diorite? Diorite?/ Feldspor And. Flow? Carb + Chlor autored Source -> likely form		4290'app.							F.g. Andrik	gossonais o/c: 3-5% finely dissem Ry + -1% Cp	Tr Al
003 small Avalance chute 4255 app- on map. Volcenic? euhedral felaspor rotals; Heavily Malachite 4255 app- on map. Volcenic? angular mineralized baulders. Diorite?/Falaspor And, flow? Carb + Chlor alfered. Source-7 likely form	0 F800 R	Soil line Endof:						\checkmark	Altered	Fig Reddish Brown Wx: Lt. Grey Fresh;	
4255'app-on map. Andesite Stain; 1-2% Cpy; Numerous (20-30) large Volcanic? angular Deviders. Diorite?/Feldspor And. Flow? Carb + Chlor attered. Source -> likely form	003	Small Avalance chute									
Diorite?/Feldspor And. flow? Carb + Chlor altered. Source -> likely form		4255 apr = 60 map.								Stain: 1-2% Cay; Numerous (20-30) large	
Diorite?/Feldspor And. Flow? Carb + Chlor altered. Source -> likely from											
Carb + Chlor altered . Source -> likely From								·			
										Carb + Chlor altered . Source > likely For	m
		· · ·									
Image: Sector										3	
Image: Sector											
Image: Sector											
Image: Sector										•	
Image: Sector											
Image: Sector											
Image: Sector								•			
Image: Sector											
Image: Series of the series of th								•			
		· · · · · · · · · · · · · · · · · · ·							1		

KEEWATIN ENGINEERING INC.	
DOCK SAMPLES	

Project: Area (Grid):_ Collectors: _	LUASH CREEK #80 FRIC BIRKELMD.	0			-	F	ROCK	SAMPLES	Results Plotted By: Map: NTS: Date: Io/an	<u>Mahner</u> 104 G/16 W Surface Un	derground
SAMPLE NUMBER 90 & B 800		REP. SAMPLE NUMBER	SAM GRAB	CHIP CHIP	CHANNEL H	CORE	FLOAT E	ROCK TYPE	SAMPLE DE	SCRIPTION	MAP Sheet
R-001 R-002	FROM SLIDE PATH ABOVE PA	445.	V V					ANDESITE .			
R-003 R-004	PROM CREEK BED JUST	BOUR Y	V Arrs.					<i>n</i> ,1			
R-005 R 006	FROM OUTCROP - BASE OF FROM CREEK BED BELOW	CLIFE	<u> </u>					" GRAN/ BIARTE			
R007	"							Apesite.			
	· · · · · · · · · · · · · · · · · · ·			 		 					
										· · · · · · · · · · · · · · · · · · ·	
			<u> </u>				<u> </u>				

APPENDIX X

<u>Drill Logs</u>

•

Keewatin Engineering Inc.

LOCATION:	QUASH CREEK - NTS 104G-9W 57	KLASTLINE PLATEAU 245'N; 130°18'W		DRILL	HOLE LOG					HOLE NO		PAGE	NO. 1 of 4
AZIM: 073° DIP: -45°		ELEV: 1456.9m/4780 (ft) LENGTH: 194.46m		ſ	DIP TEST			PROPERT	Y: QUASH	I CREEK (I	DRYDEN-TR	NUMPH OP	TION)
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO					
STARTED: Octobe COMPLETED: Oc PURPOSE: To tes Au soil anomaly or Rusty Springs Cree	tober 15, 1990 t gossan and Cu- n east side of		194.46	073°		-46°		DATE LOO DRILLING		tober 14, 1 CON DRILL			
CORE RECOVERY	: 97%		l	 									
METR	EAGE			SAMPLE	MET	REAGE	LENGTH				SAYS	r	r
FROM	то	DESCRIPTION		NO.	FROM	TO		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
0.00	0.61	Casing											
0.61	12.80	Andesite tuffs or andesitic siltstones; bedded; grey veins ≤2cm @ 040° to Core Axis and 060° to Core fractures with pyrite, pyrrhotite or chalcopyrite occ 055° to Core Axis. Varies from weak to strongly magnetic; propylitica chloritization of mafics and on fractures; epidote e quartz veins and epidote patches; late calcite vein fracture filling. Pyrite veins/fracture filling approximately 1% with (≤1%) and trace chalcopyrite; chalcopyrite also oc	Axis. ≤1mm sur @ 050° to ally altered; onvelopes to is (≤1mm) and pyrrhotite curs with	Q31401B Q31402B Q31403B Q31404B Q31404B Q31405B Q31406B	0.61 3.00 6.00 7.50 9.00 10.50	3.00 6.00 7.50 9.00 10.50 12.00	2.39 3.00 1.50 1.50 1.50	867 1288 1035 795 743 1459	15 5 11 12 6 12	28 40 30 43 31 20	1.4 1.4 1.3 1.3 1.2	46 15 10 13 22 7	23 1 1 23 1 5
12.80	16.50	quartz veins; Fe gossan on fractures; bedded unit mudstone, siltstone and possibly chert or siliceous units are silicified and are green-grey in colour. Base of Fe oxides is 9.0 metres. As above but with 0.1-0.3% disseminated chalcopy silicifed green andesitic tuffs/siltstones to mudsto chloritized; 1% epidote patches and envelopes to pyrrhotite veins/fracture fillings; bedding (?) less c where evident, 010° to Core Axis; 1-2% pyrthe vein fillings @ 050° to Core Axis; 1% pyrrhotite veins/fi ≤½% dissemination, veinlet, fracture filling and qu associated chalcopyrite.	s siltstone; all yrite; unit is nes; pyrite- distinct but s/fracture racture filling;	Q31407B Q31408B Q31409B	12.00 13.50 15.00	13.50 15.00 16.50	1.50 1.50 1.50	1517 1107 1102	17 8 18	25 15 13	2.0 1.1 1.0	12 1 1	1 23 14

~

		DRILL HOLE L	.OG							E NO. 90-Q01	PAGE	2 OF 4
METRE	EAGE			MET	REAGE				AS	SAYS		
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
16.50	58.20	Siliceous grey-green siltstones to mudstones; very hard; bedded; andesitic composition?? Trace only chalcopyrite, 1-2% veinlet/ fracture filling pyrite (≤1.5mm) @ 035 ⁵ -40° to Core Axis and parallel pyrrhotite veinlets/fracture filling. <1% quartz veins ≤4mm @ 065° to Core Axis. Various degrees of magnetism due totally to pyrrhotite veins. Core shows some mottled texture. Bedding @ 010° to Core Axis. Brecciated with light brown, angular rock fragments grading down to light green fragments from 35.97- 37.00m.	Q31410B Q31411B Q31412B Q31413B Q31414B Q31414B Q31415B Q31416B Q31416B Q31416B Q31417B Q31418B Q31420B Q31422B Q31422B Q31422B Q31422B Q31425B	16.50 18.00 19.50 21.00 22.50 24.00 25.50 27.00 28.50 30.00 33.00 36.00 39.00 42.00 45.00 48.00	18.00 19.50 21.00 22.50 24.00 25.50 27.00 28.50 30.00 33.00 33.00 36.00 39.00 42.00 45.00 45.00 51.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	578 445 728 1186 971 967 1557 1847 2113 1259 1046 1133 652 758 1003 1100	13 11 15 8 12 16 16 16 16 16 15 17 12 11 15 20 8 9	12 11 12 11 13 7 13 30 16 11 13 18 12 19 18 26	1.1 1.1 1.0 1.1 1.3 1.5 1.4 1.3 1.4 1.2 1.1 1.1 1.1 1.3	21 6 10 7 1 2 32 10 6 191 1 3 8 3 12	11 4 62 1 1 1 28 1 1 7 1 5 1 1 1 1 7 2 7
58.20	60.34	Porphyritic, medium grained diorite with partly sericitized,	Q31426B Q31427B Q31428B Q31429B	51.00 54.00 57.00 60.00	54.00 57.00 60.00 63.00	3.00 3.00 3.00 3.00	937 928 498 485	9 12 16 7	27 20 18 18	1.4 1.2 1.1	126 2 3 4	1 1 3
		moderately corroded plagioclase crystals to 4mm and chlorite replaced hornblende crystals to 3mm set in fine grained, green groundmass; ≤30% plagioclase and ≤20% hornblende crystals. Weakly magnetic. Calcite veins to 2mm = 3%. 1% disseminated and fractured pyrrhotite; rare speck of chalcopyrite.										
60.34	66.75	Same silicious mudstone/siltstones as 16.50 - 58.20m; light grey brown to light grey green. Bedding @ 10° to Core Axis. Mottled zones. ≲2% fracture/vein pyrrhotite (>) pyrite; veins/fractures ≤2mm and @ 20° and 50° to Core Axis. Trace to 0.1% chalcopyrite	Q31430B	63.00	66.00	3.00	674	10	22	1.2	3	2
66.75	81.00	Same siliceous mudstones, mottled siltstones, pale green to grey green. Bedding @ 10° to Core Axis. 1% quartz veins to 3mm @ 60° to Core Axis. 1 - 2% pyrite veins to 3mm @ 40° to Core Axis; get. ≤1% pyrrhotite occurs with veins and locally. 5% disseminated pyrrhotite occurs over 60 - 70 cm intervals; these may be "skarn" zones. 0.5% chalcopyrite occurs as stringers/blebs within quartz veins, as small fracture fillings and blebs within pyrite veins and to a much lesser degree within disseminated pyrrhotite moralization,	Q31431B Q31432B Q31433B Q31434B Q31434B Q31435B Q31435B Q31436B Q31437B Q31438B	66.00 67.50 69.00 70.50 72.00 73.50 75.00 76.50	67.50 69.00 70.50 73.50 75.00 76.50 78.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	969 1803 1317 1438 1131 1648 1138 1148	16 12 7 16 8 14 7 8	30 28 25 19 14 14 20 14	3.0 2.7 2.2 2.4 2.3 2.3 2.4 2.3	128 14 9 9 8 16 14 7	1 1 1 1 1 1 1

.

		DRILL HOLE L	.OG							E NO. 90-Q01	PAGE	3 OF 4
METR	EAGE		SAMPLE	METREAGE		LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
		Trace sphalerite disseminated in quartz veins. N.B. 4mm pyrite veins as shallow as 15° to Core Axis; varies from moderate to strongly magnetic; increase to 2% irregular calcite fractures with depth.	Q31439B Q31440B	78.00 79.50	79.50 81.00	1.50 1.50	1752 1075	17 6	27 15	2.6 2.0	17 9	1 1
81.00	93.00	 Similar siliceous mudstone as above, but ≤1% quartz veins. 3% crackle calcite fracturing, most at 75° to 85° to Core Axis; cross cut pyrite veins. Trace disseminated and fractured (with calcite) chalcopyrite. Disseminated and vein pyrite = 2%; pyrite veins common @ 40° and are 1 - 3mm; most pyrite as veins. Disseminated pyrrhotite = 3% - 5% in "spotted" (skarn") beds. Overall unit is strongly magnetic, grey green, siliceous, hard. Bedding @ 0° to 5° to Core Axis; minor blocking offsets bedding. 92.53-93.00m = 0.3% chalcopyrite associated with quartz veining and disseminated with pyrrhotite (3 - 5%) bearing skarn. 	Q31441B Q31442B Q31443B Q31444B Q31444B Q31445B	81.00 82.50 84.00 87.00 90.00	82.50 84.00 87.00 90.00 93.00	1.50 1.50 3.00 3.00 3.00	1141 1429 848 1272 675	11 22 6 11 9	17 16 19 19 21	1.7 1.8 1.9 2.1 1.7	10 13 8 20 8	1 1 15 1
93.00	106.17	As above but chalcopyrite rare as disseminated grains with pyrrhotite in siliceous skarn. < <1% quartz veins. NOTE: pyrite veins are cut @ 90° by later calcite filled fractures. 99.97-100.26m = fault; ferrous oxides on fractures; slickensides 90° to 85° to Core Axis 108.00-112.44m = very cherty; strongly siliceous.	Q31446B Q31447B Q31448B Q31449B Q31450B	93.00 96.00 99.00 102.00 105.00	96.00 99.00 102.00 105.00 108.00	3.00 3.00 3.00 3.00 3.00	675 900 809 667 719	15 8 16 14	20 16 26 17 23	2.5 2.3 2.3 2.1 2.4	31 8 12 13 19	1 1 1 6
106.17	141.38	 Siliceous mudstones and minor siltstones with < 1% pyrite and ≤1% pyrrhotite (disseminated). 108.00-112.4m is very cherty; strongly siliceous; 3 - 4% ≤2mm calcite filled fractures; tension gashes??. Weak to moderately magnetic. Bedding @ 117m is 10° to Core Axis. 125.67m = 4mm arsenopyrite vein @ 70° to Core Axis 137.77m = 5mm quartz vein with disseminated chalcopyrite and magnetite cuts core @ 55° to Core Axis. 	Q31451B Q31452B Q31453B Q31454B Q31455B Q31455B Q31456B Q31457B Q31459B Q31459B Q31460B Q31461B	108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00 138.00	111.00 114.00 117.00 120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	39 369 460 475 152 75 221 336 774 578	10 11 7 6 13 19 6 10 15 19	24 42 21 25 28 19 41 22 20 29 22	0.9 1.8 1.6 2.0 1.7 1.5 1.0 1.9 2.1 2.2 2.4	6 17 8 11 19 54 22 11 62 25 21	33 198 1 1 1 447 69 6 74 1 1

•

		DRILL HOLE L	.OG							E NO. 90-Q01	PAGE	4 OF 4
METRE	EAGE		SAMPLE	MET	REAGE	LENGTH			AS	SAYS		
FROM	то	DESCRIPTION	NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
141.38	153.92	Massive siliceous green siltstone (andesitic); partly mottled and lesser (≤20%) green, silicified mudstone. 0.5% fracture pyrite and local patches (≤4cm) of 8% pyrrhotite. Trace chalcopyrite. Pyrite increases toward base of interval.	Q31462B Q31463B Q31464B Q31465B	141.00 144.00 147.00 150.00	144.00 147.00 150.00 153.00	3.00 3.00 3.00 3.00	686 400 439 776	18 13 15 19	19 62 19 121	1.6 2.2 2.4 2.8	30 67 45 123	1 3 1 73
153.92	160.53	Medium grained porphyritic hornblende (20%) biotite (≤5%) plagioclase (35%) diorite; locally trachytic. Plagioclase feldspars are corroded and faintly green after sericite. ≤1% quartz vein 3mm to 9mm @ 45° and 065° to Core Axis. Vein contains trace chalcopyrite, pyrite and arsenopyrite in vein and as envelopes. 1-2% calcite veins/fracture fillings @ 20 - 35° to Core Axis. ≤1% pyrite veins/networks; moderately magnetic.	Q31466B Q31467B Q31468B	153.00 156.00 159.00	156.00 159.00 162.00	3.00 3.00 3.00	610 532 884	10 23 13	37 51 155	2.4 2.4 3.7	45 88 3480	11 278 1208
160.53	179.90	Grey green andesitic silicified mudstone, siltstone tuffs, possible skarn beds; mottled; local weak brecciation. 160.80-160.88m = quartz veining @ 20° to Core Axis with 5 - 8% disseminated arsenopyrite. ≤1% pyrite veining/fracture filling; ≤1% quartz veining; 3 - 5% calcite fracture filling; ≤1% pyrrhotite veinlets, patches; moderately magnetic; mislatch @ 172.13m.	Q31469B Q31470B Q31471B Q31472B Q31472B Q31473B Q31474B	162.00 165.00 168.00 171.00 174.00 177.00	165.00 168.00 171.00 174.00 177.00 180.00	3.00 3.00 3.00 3.00 3.00 3.00 3.00	1446 635 1682 788 502 556	9 11 15 19 17 30	91 19 22 17 15 18	4.0 2.7 3.2 2.7 2.2 2.5	101 28 39 73 99 508	113 1 37 178 115 1
179.90	184.00	Medium grained porphyritic hornblende (20%), biotite (≤5%) plagioclase (25%) diorite, locally trachytic; hornblende fairly fresh; weak alteration and corrosion of plagioclase phenos. ≤1% quartz veinlets. Trace fracture pyrite and pyrrhotite; strongly magnetic.	Q31475B	180.00	183.00	3.00	279	10	24	1.9	84	49
184.00	194.46	Grey, grey-brown, green-grey-brown silicified mudstones to sittstones; weakly developed foliation @ 45° to Core Axis. 3 - 5% crackle fracture calcite; mottled skarn alteration; ≤1% pyrite, ≤1% pyrrhotite and trace (rare) chalcopyrite; chalcopyrite veinlet @ 190.00m. E.O.H.	Q31476B Q31477B Q31478B Q31479B	183.00 186.00 190.00 193.00	186.00 190.00 193.00 194.46 EOH	3.00 3.00 3.00 1.46	188 242 211 187	6 7 16 22	24 20 94 25	2.0 2.0 2.1 2.4	220 28 63 64	5 1 220 88
		E.U.M.			ASSAYS			oz/ton A	<u>u</u>	oz/ton Ag		
			Q31468B	159.00	162.00	3.00 SIGNIFICANT	MINERAL	0.105	ALS	0.10		
				3.00	90.00	87.00	1067	12	20	1.5	21	11
ĺ			includes: and and	10.50 25.50 67.50	16.50 39.00 90.00	6.00 13.50 22.50	1296 1377 1284	13 13 11	18 16 19	1.3 1.3 2.2	5 49 12	11 5 3
			anu	67.50 159.00	171.00	12.00	1284	11	19 72	2.2 3.4	912	340

LOCATION:	QUASH CREEK - NTS 104G-9W 57	KLASTLINE PLATEAU °45'N; 130°18'W		DRILL	HOLE LOG					HOLE N DDH-90-		PAGE N	IO. 1 of 5	
AZIM: 043° DIP: -45°		ELEV: 1426.5m/4680 (ft) LENGTH: 182.58m		[OIP TEST			PROPERTY: QUASH CREEK (DRYDEN-TRIUMPH OPTION)						
		CORE SIZE: BGM	METREAGE	AZIMUTH	INCLINATION	CORR. INCLIN.		CLAIM NO						
STARTED: Octobe COMPLETED: Oc PURPOSE: To tes Au soil anomaly o Rusty Springs Cre 300m north of DD	tober 17, 1990 st gossan and Cu- n east side of lek approximately		91.14 182.58	043° 043°		-46° -46°			GED: OC CO: FAL	tober 17 - CON DRILL				
CORE RECOVERY			1		MET	REAGE	LENGTH	I		AS	SAYS			
FROM	то	DESCRIPTION		SAMPLE NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)	
0.00	2.13	Casing												
2.13 36.27	36.27	Intensely silicified siltstone to mudstone – breccial is very mottled, but bedding can be seen locally. common on fractures. Minor clay altered fractures 12.30m. 2% calcite veinlets occur (0.5 - 3.0mm). as massive veinlets/bands and with calcite veins. veinlets are probably tension gashes due to the le of them. Bedding, where present occurs from 5 - Core Axis. Calcite veins (\pm pyrite) occur at prefer orientations 45° to 65° w.r.t. the Core Axis. Patchu pink alteration (55%) ?? probably finely dissemina or Kfeldspar (?). No visible chalcopyrite. As above, except not brecciated. Still mottled with patchy maroon-pink mudstone impurity (?) or Kfel alteration(?). 1% calcite veining (up to 2% locally) 2% quartz veining. Trace chalcopyrite (\leq 0.2%) and with quartz veins. 4 - 5% pyrite occurs as veins/fr with calcite or quartz veins. Very silicified as above measurements w.r.t. the Core Axis are as follows: 32.37m = clay/chlorite slickensided fract 40.50m = quartz/calcite vein (3 - 10mm) 45.60m = calcite vein (3mm) @ 40° 48.70m = quartz/pyrite/chalcopyrite vein	Fe stain is s occur to 4 - 5% pyrite These calcite nsoidal shape 15° w.r.t. the red as of maroon- ted biotite (?) h 5 - 10% dspar cross cuts 1 - d pyrite occur acture fill and e. Structural ure at 35° @ 44°	C31480 C31481 C31482 C31483 C31484 C31485 C31486 C31487 C31487 C31488 C31489 C31490 C31491 C31492 C31493 C31493 C31495 C31495 C31497 C31498 C31497 C31498 C31499 C31500 C31501	2.13 6.00 9.00 12.00 15.00 21.00 24.00 27.00 30.00 33.00 36.00 37.50 39.00 40.50 42.00 43.50 45.00 46.50 48.00 9.50 51.00	6.00 9.00 12.00 18.00 21.00 24.00 27.00 30.00 33.00 36.00 37.50 39.00 40.50 42.00 43.50 45.50 46.50 48.00 49.50 51.00 52.50	3.87 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	84 109 198 181 467 536 447 605 779 752 726 1372 1372 1372 1372 1373 1005 418 871 873 1005 418 872 1369 1046 894 2947	19 25 24 17 12 16 6 8 23 18 24 16 13 19 8 18 14 12 13 10 9 15	8 12 10 12 12 12 11 12 9 12 9 27 20 12 10 12 13 14 60 43 27 41	1.3 1.4 1.5 1.1 1.4 1.3 1.0 1.9 1.8 1.9 2.7 2.9 2.2 1.8 2.1 1.7 1.9 2.2 2.2 1.8 2.1 1.7 9 2.2 2.2 1.8 2.1 1.7 9 2.2 2.2 1.8 2.9	23 47 58 60 30 19 14 21 17 28 18 32 42 2 11 12 11 8 14 12 15 19	53 52 30 21 1 1 40 22 48 6 3 1 10 26 1 50 31 13 13 30	

· · · ·

.

		DRILL HOLE L	OG							E NO. 90-Q02	PAGE	2 OF 5
METRE	AGE			MET	REAGE				AS	SAYS		_
FROM	то	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
36.27	67.08 Cont.	$\begin{array}{rcl} 51.70\text{-}52.10\text{M}=& \$90\% \ \text{quartz/pyrite/chalcopyrite vein} @ 7^{\circ} \\ & \text{with calcite tension gashes cross cutting} \\ 54.10\text{m}=& \text{calcite veins} (3 \times 1\text{mm}) @ 67^{\circ} \\ 53.00\text{m}=& \text{calcite veins} (3 \times 1\text{mm}) @ 49^{\circ} \\ 56.85\text{m}=& \text{quartz/pyrite/chalcopyrite vein} (5 - 6\text{mm}) @ 38^{\circ} \\ 57.30\text{m}=& \text{calcite vein} (1 - 5\text{mm}) @ 56^{\circ} \\ 58.05\text{m}=& \text{calcite vein} (2\text{mm}) @ 51^{\circ} \\ 59.10\text{m}=& \text{calcite vein} (8 - 12\text{mm}) @ 45^{\circ} \\ 61.60\text{m}=& \text{calcite vein} (4\text{mm}) @ 26^{\circ} \\ 62.20\text{m}=& \text{calcite vein} (4\text{mm}) @ 31^{\circ} \\ 64.30\text{m}=& \text{calcite vein} (1 - 3\text{mm}) @ 31^{\circ} \\ 64.30\text{m}=& \text{calcite vein} (2 - 4\text{mm}) @ 13^{\circ} \\ 65.40\text{m}=& \text{calcite vein} (2 - 4\text{mm}) @ 13^{\circ} \\ 66.45\text{m}=& \text{calcite vein} (2\text{mm}) @ 50^{\circ} \\ \end{array}$	Q31502 Q31503 Q31504 Q31505 Q31506 Q31507 Q31508 Q31509 Q31510 Q31511	52.50 54.00 55.50 57.00 58.50 60.00 61.50 63.00 64.50 66.00	54.00 55.50 57.00 58.50 60.00 61.50 63.00 64.50 66.00 67.50	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	482 714 752 553 420 1187 940 1101 909 2881	10 12 15 19 4 12 15 16 15 20	12 14 13 12 13 14 18 17 16 91	1.5 1.9 1.8 1.6 2.1 2.1 2.1 2.1 3.4	9 9 7 8 7 20 19 30 42 888	1 31 9 1 5 1 1 1 88
67.08	72.20	Brecciated, silicified mudstone (?) as described above (2.13 - 36.27m). 10% Kfeldspar alteration local pervasive replacement of fragments. 10% pyrite decreases downhole to approximately 4% as massive veins and veins with quartz or calcite. No visible chalcopyrite. 2% calcite veinlets occur as well as minor quartz/pyrite veins (67.18 - 67.28m). Calcite veins appear to be tension gashes @ o° and 55° to Core Axis. Massive pyrite veins are later as they cross cut calcite veins. Pyrite veins are @ 47° - 65° to Core Axis.	Q31512 Q31513 Q31514	67.50 69.00 70.50	69.00 70.50 72.00	1.50 1.50 1.50	1396 1431 1638	13 14 26	23 23 22	2.3 2.5 2.6	43 44 31	34 11 1
72.20	91.64	Intensely silicified siltstone to mudstone as described above (56.27 67.08m). Mottled by 5 - 10% patchy Kfeldspar (maroon-pink). ≤1.0% calcite veinlets and tension gashes cross cut earlier quartz/pyrite/±chalcopyrite/±pyrrhotite veins (≤0.5%). Bedding is recognized rarely. Unit becomes more chloritized below 85.00m (3 - 5%). Trace chalcopyrite (≤0.2%), trace pyrrhotite (≤0.1%), and ≤0.3% pyrite occur with quartz veining. The remaining 2 - 3% pyrite occurs as massive veinlets and fracture fill. Pyrite occurs on some fractures. Structural measurements w.r.t. the Core Axis are as follows: 77.40m = calcite vein (1mm) displaces bedding (right lateral) @ 54° 77.40-77.70m = tension gash calcite @ o°	Q31515 Q31516 Q31517 Q31518 Q31519 Q31520 Q31520 Q31522 Q31522 Q31523 Q31524 Q31525 Q31525 Q31526 Q31527	72.00 73.50 75.00 76.50 78.00 79.50 81.00 82.50 84.00 85.50 87.00 88.50 90.00	73.50 75.00 76.50 79.50 81.00 82.50 84.00 85.50 87.00 88.50 90.00 93.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	697 539 1118 868 607 839 340 683 606 569 386 624 621	15 17 16 15 19 15 6 12 18 10 16 10 11	18 20 21 37 36 23 23 19 30 31 22 25 27	2.4 1.9 2.2 2.1 1.7 1.6 1.6 1.2 1.6 2.1 1.9 2.0 2.0	58 16 20 125 76 33 160 21 7 10 4 7 9	1 43 54 67 21 1 1 1 1 1 6 1

		DRILL HOLE I	.OG			••••••••••••••••••••••••••••••••••••••				E NO. 90-Q02	PAGE	3 OF 5
METRE	AGE		SAMPLE	METREAGE		LENGTH			AS	SAYS		
FROM	το	DESCRIPTION	NO.	FROM	то		Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm
72.20	91.64	78.65m = quartz/pyrite vein (3mm) @ 47° 79.95m = quartz/pyrite vein (11mm) @ 65° 84.55m = quartz/chalcopyrite vine (3mm) is displaced by a calcite vein (1mm) @ 15° 85.65m = quartz/pyrite vein (1mm) @ 53° 85.85m = quartz/pyrite vein (3mm) @ 57° 87.05m = quartz vein (5mm) @ 53° displaced (right lateral) 8mm 87.25m = quartz/pyrite/chalcopyrite vein (3mm) @ 53°										
91.64	125.83	87.25m = quartz/pyine/chatcopyine vein (shift) @ 33 Dark green, intensely silicified mudstone to siltstone (andesitic composition?). Bedding seen locally where texture is less mottled. Dark colour is most likely due to fine grained disseminated chlorite (?) biotite (?). ≤3% patchy Kieldspar occurs. Calcite tension gashes are cross cut by quartz/pyrite/chalcopyrite veins (\$0.3% veinlets) as well as massive pyrite veins and later calcite veins. 1.0 - 1.5% calcite veins and tension gashes occur. 3 - 4% pyrite as massive veins mostly. Trace chalcopyrite (\$0.2%) and sphalerite (60%) occur locally with quartz/pyrite veins. Structural measurements w.r.t. the Core Axis are as follows: 93.10m = calcite vein (3mm) @ 28° 99.25m = bedding @ 27° 99.70m = pyrite veins (1mm X 2) @ 48° and 32° 100.70m = calcite veins (2 - 3mm) cross cut pyrite veins and are @ 23° 108.75m = quartz/pyrite/chalcopyrite veins (2 X 2mm) @ 59° 109.45m = quartz/pyrite/chalcopyrite veins (2 X 2mm) @ 59° 112.65m = pyrite vein cross cutting calcite tension gashes (5 Mmm)	Q31528 Q31529 Q31530 Q31531 Q31532 Q31533 Q31534 Q31535 Q31536 Q31536 Q31537 Q31538 Q31539 Q31540 Q31541 Q31542 Q31543 Q31544 Q31545	93.00 96.00 99.00 102.00 105.00 106.50 109.50 111.00 112.50 114.00 115.50 117.00 118.50 120.00 121.50 123.00 124.50	96.00 99.00 102.00 105.00 106.50 109.50 111.00 112.50 114.00 115.50 117.00 118.50 120.00 121.50 123.00 124.50 126.00	3.00 3.00 3.00 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1	676 566 709 986 423 819 971 1038 923 869 643 649 619 915 722 908 1931 687	17 9 17 11 12 13 11 10 15 11 12 15 9 6 16 26 6	21 19 21 19 22 25 26 37 25 22 40 36 32 26 32 26 35 142 65	1.4 1.9 1.8 2.0 1.9 2.2 2.1 2.3 1.8 1.8 1.8 1.8 2.1 2.0 2.1 3.7 2.6	17 102 30 16 1 15 12 40 42 21 8 16 12 21 8 16 12 72 1750 42	7 14 12 1 25 1 1 1 1 1 1 1 1 1 1 1 87 1
		(a) 45° (3mm) 112.95m = quartz/pyrite/chalcopyrite vein (2mm) @ 40° 113.95m = calcite tension gashes (10 X 0.5mm) @ 60° 116.10m = quartz/pyrite/chalcopyrite vein (5mm) @ 44° cross cuts calcite tension gashes 117.30m = calcite vein (2 - 4mm) @ 15° 119.55m = pyrite vein (3mm) @ 38° 121.90m = pyrite vein (3mm) @ 46° 124.40m = pyrite/chalcopyrite vein (8 - 10mm) @ 55° 124.50m = pyrite/sphalerite vein (8mm) @ 57° 125.50m = pyrite veins (2 - 3mm) @ 60° and 55°										

-

		DRILL HOLE L	OG							E NO. 90-Q02	PAGE	4 OF 5
METR	EAGE			MET	REAGE				AS	SAYS		
FROM	TO	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
125.83	148.40	Intensely silicified and Kfeldspar altered (≤10%) marcon-pink siltstone to mudstone. Granular from 129.35 - 132.10m and 137.30 - 137.95m and 141.30 - 143.15m with 5% disseminated pyrite (0.5mm) possibly after mafics (intrusive?) or just secondary growth in same sediment. 4 - 5% pyrite as veins are cross cut by calcite veins (2%). Trace disseminated chalcopyrite and as interstitial blebs (≤0.3%); 135.30 - 135.50m = 5% interstitial bleb chalcopyrite. No visible quartz veining. Trace disseminated pyrhotite occurs throughout (≤0.1%). Some calcite occurs as tension gashes (lensoidal). Texture is mottled throughout; no bedding recognizable. Structural measurements w.r.t. the Core Axis are as follows: 103.15m = calcite vein (5mm) @ 24° 130.40m = pyrite vein (5mm) @ 42° 130.60m = calcite vein (2mm) @ 48° 131.20m = calcite vein (2.0mm) @ 42° 131.75m = calcite vein (2.1mm) @ 55° 132.15m = pyrite vein (4 - 5mm) @ 54° 133.60m = pyrite vein (1.5mm) @ 18° displaced by cross cutting calcite vein (2mm) @ 48° 133.60m = calcite veins (2 X 2mm) @ 48° 139.70m = calcite veins (2 X 2mm) @ 48° 140.65m = calcite vein (2mm) @ 40° 141.35m = calcite vein (2mm) @ 40° 141.45m = calcite vein (2mm) @ 30°	Q31546 Q31547 Q31548 Q31549 Q31550 Q31551 Q31552 Q31552 Q31555 Q31555 Q31556 Q31557 Q31558 Q31559 Q31560	126.00 127.50 129.00 130.50 135.00 135.00 136.50 139.50 141.00 142.50 144.00 145.50 147.00	127.50 129.00 130.50 132.00 135.00 136.50 138.00 139.50 141.00 142.50 144.00 142.50 144.00 145.50 147.00	1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	445 279 1085 1035 419 596 1601 1036 1039 848 807 631 1172 867 945	6 15 10 14 23 21 8 10 22 11 10 15 14 19 14	65 18 78 96 22 28 40 37 26 23 28 13 27 13 12	2.0 1.5 2.5 2.7 1.7 2.2 3.2 2.7 2.3 2.1 2.1 2.1 2.1 2.0	16 7 54 21 52 50 38 23 29 46 45 27 27 27 98 64	1 9 1 1 1 1 1 1 1 1 1 20 31 1 30 110
148.40	156.95	Silicified, mottled plagioclase porphyritic to equigranular diorite dyke as described above (143.15 - 144.53m). Matics have altered to brown biotite (3 - 4%). Less chalcopyrite than above (±0.1%). 1.0% quartz veining and 1.0% pyrite veining are cross cut by later calcite veining. 2 quartz/pyrite veins @ 23° and 50° to Core Axis; calcite tension gashes predominantly @ 65° to Core Axis. Minor limonite on fractures.	Q31561 Q31562 Q31563 Q31564 Q31565 Q31566	148.50 150.00 151.50 153.00 154.50 156.00	150.00 151.50 153.00 154.50 156.00 157.50	1.50 1.50 1.50 1.50 1.50 1.50	501 1358 492 500 691 475	25 17 20 17 19 20	103 32 16 19 10 10	2.3 2.6 1.6 1.7 2.2 1.7	1600 104 34 19 23 35	4241 254 55 112 27 34

•

DRILL HOLE LOG											PAGE 5 OF	
METRE	AGE		0.000	MET	REAGE			-	AS	SAYS		
FROM	TO	DESCRIPTION	SAMPLE NO.	FROM	то	LENGTH	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)	Au (ppb)	As (ppm)
156.95	180.99 182.58 EOH	Intensely silicified and Kfeldspar altered siltstone (?) to mudstone (?). Brecciated locally; contains abundant calcite tension gashes (2 - 3%). Abundant rubble, limonite stain and minor fault gouge. Brown 161.59 to 164.79m = FAULT ZONE. Minor chalcopyrite (s0.1%) and pyrrhotite (s0.1%) occur with calcite tension gashes as well as approximately 1% pyrite. A remaining 1 - 2% pyrite occurs as massive veinlets. No visible bedding; very mottled throughout. Structural measurements w.r.t. the Core Axis are as follows: 161.15m = foliation (fault zone) @ 0° 165.70m = calcite veins (2mm, 1mm) @ 58° 166.85m = calcite veins (3mm) @ 53° 166.85m = calcite vein (3mm) @ 53° 167.10m = calcite vein (3mm) @ 54° 171.95m = quartz vein as above @ 68° 174.10m = calcite tension gashes (10 s2mm) @ 20° 176.95m = quartz/pyrite vein (11mm) @ 32° 180.75m = calcite tension gashes (0.5 - 3.0mm) @ 55° Silicified diorite dyke as described above (148.40 - 156.95m). E.O.H. @ 182.58m.	Q31567 Q31568 Q31570 Q31571 Q31572 Q31573 Q31574 Q31575	157.50 159.00 165.00 168.00 171.00 177.00 177.00 180.00	159.00 162.00 165.00 171.00 174.00 177.00 180.00 182.58 EOH	1.50 3.00 3.00 3.00 3.00 3.00 2.58	568 490 401 416 460 439 861 408 302	14 8 21 18 11 12 15 8 8 8	13 12 10 14 15 22 113 57 35	1.9 2.2 2.1 2.3 2.4 2.7 3.0 2.4 2.0	22 49 26 19 34 129 330 30 111	12 1 35 29 1 22 4 1 27
	EUH	E.U.M. @ 182.58m.	Q31544 Q31561	123.00 148.50 36.00 60.00 75.00 109.50 123.00 129.00 135.00 155.00	<u>ASSAYS</u> 124.50 150.00 52.50 72.00 76.50 111.00 114.50 132.00 145.50 151.50	1.50 1.50 <u>SIGNIFICAN</u> 16.50 12.00 1.50 1.50 1.50 3.00 10.50 1.50	T MINERAL 1168 1435 1118 1038 1931 1060 1057 1358	oz/ton / 0.053 0.048 JZED INTEI 13 16 16 16 10 26 12 13 17		<u>oz/ton A</u> 0.11 0.10 2.2 2.4 2.2 2.4 2.2 3.7 2.6 2.3 2.6	16 140 20 15 1750 38 34 104	15 18 1 1 87 1 1 254

KEEWATIN ENGINEERING INC.

APPENDIX XI

Drill Core Geochemical Results

. 1

Keewatin Engineering Inc.

COMP: KEEWATIN ENGRG. PROJ: 800

-

ATTN: R.NICHOLS/D.MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0706-RJ1 DATE: 90/10/29 * ROCK * (ACT:F31)

,

KIIN: KINICHOLS/DIMENNE			(004))	00-3014 0						NUCK	(ACT 1151)
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB		
90 Q 800 R31401 90 Q 800 R31402 90 Q 800 R31403 90 Q 800 R31403 90 Q 800 R31404 90 Q 800 R31405	46 15 10 13 22	1.4 1.4 1.4 1.3 1.3	867 1288 1035 795 743	15 5 11 12 6	28 40 30 43 31	23 1 1 23 1	1 1 1 1	16 10 9 15 8	2195 1950 2035 2240 2040		
90 Q 800 R31406 90 Q 800 R31407 90 Q 800 R31407 90 Q 800 R31408 90 Q 800 R31409 90 Q 800 R31410	7 12 1 1 21	1.2 2.0 1.1 1.0 1.1	1459 1517 1107 1102 578	12 17 8 18 13	20 25 15 13 12	5 1 23 14 11	1 1 1 1 1	6 17 8 24 24	2000 1940 1240 1435 1855		
90 Q 800 R31411 90 Q 800 R31412 90 Q 800 R31412 90 Q 800 R31413 90 Q 800 R31414 90 Q 800 R31415	6 10 7 1 1	1.1 1.0 1.1 1.3 1.2	445 728 1186 971 967	11 11 15 8 12	11 12 11 13 7	4 62 1 1 1	1 1 1 1 1	15 10 23 5 12	1660 1545 1710 1550 1515		
90 Q 800 R31416 90 Q 800 R31417 90 Q 800 R31417 90 Q 800 R31418 90 Q 800 R31419 90 Q 800 R31420	2 32 10 6 191	1.3 1.5 1.4 1.3 1.4	1557 1847 2113 1259 1046	16 16 13 5 17	13 30 16 11 13	1 28 1 1 7	1 1 1 1	19 10 6 17 15	1455 2165 2090 1965 1555		
90 Q 800 R31421 90 Q 800 R31422 90 Q 800 R31423 90 Q 800 R31423 90 Q 800 R31424 90 Q 800 R31425	1 3 8 3 12	1.2 1.1 1.1 1.1 1.3	1133 652 758 1003 1100	12 11 15 20 8	18 12 19 18 26	1 5 1 1 172	1 1 1 1 1	15 7 5 13	2135 1820 2585 2035 1645		
90 Q 800 R31426 90 Q 800 R31427 90 Q 800 R31428 90 Q 800 R31428 90 Q 800 R31429 90 Q 800 R31430	126 2 3 4 3	1.4 1.2 1.1 1.1 1.2	937 928 498 485 674	9 12 16 7 10	27 20 18 18 22	1 1 3 1 2	1 1 1 1 1	22 11 6 16 17	2435 2515 2245 2145 2165		
									<u>.</u>		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
	· · · · · · · · · · · · · · · · · · ·										
		<u> </u>									(8.)
						. <u>.</u>					

COMP: KEEWATIN ENGINEERING PROJ: 800 ATTN: R. NICHOLS/ D. MEHNER

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0719-RJ1+2 DATE: 90/10/30 * ROCK * (ACT:F31)

r										
SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
900 800 R31431	128	3.0	969	16	30	1	1	45	140	
900 800 R31432	14	2.7	1803	12	28	1	1	46	105	
900 800 R31433 900 800 R31434	9	2.2 2.4	1317 1438	7 16	25 19	1	1	66 19	110 85	
900 800 R31435	8	2.3	1131	8	14	1	1	10	75	
900 800 R31436	16	2.3	1648	14	14	1	1	112	105	
900 800 R31437 900 800 R31438	14	2.4 2.3	1138 1148	7 8	20 14	1	1	23 13	85 80	
900 800 R31439	17	2.6	1752	17	27	i	i	11	75	
900 800 R31440	9	2.0	1075	6	15	1	1	33	65	
900 800 R31441 900 800 R31442	10 13	1.7 1.8	1141 1429	11 22	17 16	1	1	20 9	65 80	
900 800 R31443	8	1.9	848	6	19	1	i	15	95	
900 800 R31444 900 800 R31445	20 8	2.1 1.7	1272 675	11 9	19 21	15 1	1	11 17	80 75	
900 800 R31445	31	2.5	675	15	20	1	1	18	85	
900 800 R31447	8	2.3	900	8	16	1	1	13	90	
900 800 R31448	12	2.3	809	8	26	1	1	12	75	
900 800 R31449 900 800 R31450	13 19	2.1 2.4	667 719	16 14	17 23	1 6	1	22 16	90 75	
900 800 R31451	6	.9	39	10	24	33	1	2	75	
900 800 R31452	17	1.8	369	11	42	198	1	7	95 70	
909 800 R31453 909 800 R31454	8 11	1.6 2.0	460 475	7 6	21 25	1	1	1	70 85	
900 800 R31455	19	1.7	497	6	28	1	1	3	60	
900 800 R31456	54	1.5	152	13	19	447	1	4	90	
909 800 R31457 909 800 R31458	22 11	1.0 1.9	75 221	19 6	41 22	69 6	1	3 1	110 95	
900 800 R31459	62	2.1	336	10	20	74	1	1	75	
900 800 R31460	25	2.2	774	15	29	1	1	3	65	
900 800 R31461 900 800 R31462	21 30	2.4 1.6	578 686	19 18	22 19	1 1	1	1 10	255 145	
900 800 R31463	67	2.2	400	13	62	3	1	5	195	
900 800 R31464	45	2.4	439	15	19	1	1	12	150	
900 800 R31465 900 800 R31466	123	2.8	776	19	121 37	73	1	1	185 210	<u></u>
900 800 R31460	45 88	2.4	610 532	10 23	51	11 278	1 1	1 1	205	
900 800 R31468	3480	3.7	884	13	155	1208	2	1	105	
900 800 R31469 900 800 R31470	101 28	4.0 2.7	1446 635	9 11	91 19	113 1	1	2 2	180 185	
900 800 R31470	39	3.2	1682	15	22	37	1	1	155	<u></u>
900 800 R31472	73	2.7	788	19	17	178	1	2	160	
900 800 R31473 900 800 R31474	99 508	2.2 2.5	502 556	17 30	15 18	115 1	1	2 2	155 85	
900 800 R31474 900 800 R31475	84	1.9	279	· 10	24	49	1	1	165	
900 800 R31476	220	2.0	188	6	24	5	1	1	175	
900 800 R31477 900 800 R31478	28	2.0	242	7	20	1 220	1	1	145 155	
900 800 R31478	63 64	2.1 2.4	211 187	16 22	94 25	220 88	1	1 1	165	
900 800 R31480	23	1.3	84	19	8	53	1	1	185	
900 800 R31481	47	1.4	109	25	12	52	1	4	210	
900 800 R31482 900 800 R31483	58 60	1.5 1.1	198 181	24 17	10 12	30 21	1 1	2 2	185 205	
900 800 R31484	30	1.4	467	12	12	1	1	2	225	
900 800 R31485	19	1.3	536	16	12		1	8	200	
900 800 R31486 900 800 R31487	14 21	1.0 1.0	447 605	6 8	11 12	40 22	1	6 11	225 215	
909 800 R31488	17	1.9	779	23	9	48	i	15	175	
90Q 800 R31489 90Q 800 R31490	28	1.8 1.9	752 726	18 24	12	6 3	1	11 13	165 130	
704 000 K31490	18	1.9	120	24	9	3	1		150	

COMP: KEEWATIN ENGINEERING PROJ: 800 ATTN: R. NICHOLS/ D. MEHNER MIN-EN LABS - ICP REPORT

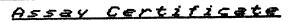
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 0S-0719-RJ3+4 DATE: 90/10/30 * CORE * (ACT:F31)

SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB
900 800 R31491 900 800 R31492	32 42	2.7 2.9	1372 1178	16 13	27 20	1	1	31 18	165 125
900 800 R31493	2	2.2	871	19	12	10	1	28	95
900 800 R31494 900 800 R31495	11 12	1.8 2.1	873 1005	8 18	10 12	26 1	1 ·	9 20	130 150
900 800 R31496	11	1.7	418	14	13	50	1	1	145
900 800 R31497	8	1.9	872	12	14	31	1	21	125 140
900 800 R31498 900 800 R31499	14 12	2.2 2.2	1369 1046	13 10	60 43	1 13	1 1	21 93	110
900 800 R31500	15	1.8	894	9	27	1	1	14	125
909 800 R31501 909 800 R31502	19 9	2.9 1.5	2947 482	15	41 12	30 1	3 1	83 11	95 100
900 800 R31503	9	1.9	402 714	10 12	14	1	i	12	95
900 800 R31504	7	1.9	752	15	13	31	1	15	105
900 800 R31505	8	1.8	553	19	12	9	1	3	140
900 800 R31506 900 800 R31507	7 20	1.6 2.1	420 1187	4 12	13 14	1 5	1	6 15	95 105
900 800 R31508	19	2.1	940	15	18	ĩ	1	14	120
900 800 R31509 900 800 R31510	30 42	2.2 2.1	1101 909	16 15	17 16	1	3 1	35 12	155 135
900 800 R31510	888	3.4	2881	20	91	88	3	27	
900 800 R31512	43	2.3	1396	13	23	34	2	18	135
900 800 R31513	44	2.5	1431	14	23	11	2	37	125
900 800 R31514 900 800 R31515	31 58	2.6 2.4	1638 697	26 15	22 18	1	1	21 13	160 145
900 800 R31516	16	1.9	539	17	20	43	1	9	190
900 800 R31517	20	2.2	1118	16	21	1	1	7	120
900 800 R31518 900 800 R31519	125 76	2.1 1.7	868 607	15 19	37 36	54 67	1	25 11	155 145
900 800 R31520	33	1.6	839	15	23	21	i	6	150
900 800 R31521	160	1.6	340	6	23	1	1	3	220
900 800 R31522 900 800 R31523	21 7	1.2 1.6	683 606	12 18	19 30	1	1	8 16	145 115
900 800 R31524	10	2.1	569	10	31	i	i	10	140
900 800 R31525	4	1.9	386	16	22	1	1	9	220
900 800 R31526 900 800 R31527	7 9	2.0 2.0	624 621	10 11	25 27	6 1	1	18 8	210 160
900 800 R31528	17	1.4	676	17	21	7	1	7	155
900 800 R31529	102	1.9	566	9	21	14	1	7	200
900 800 R31530	30	1.8	709	17	19	12	1	6	220
900 800 R31531 900 800 R31532	16 1	2.0 1.9	986 423	11 12	21 19	1 1	1	4	155 205
900 800 R31533	15	2.2	819	13	22	25	1	11	150
900 800 R31534 900 800 R31535	14 15	2.1 2.2	971 1038	11 10	25 26	1	1 1	15 10	180 155
900 800 R31536	12	2.1	923	15	37	1	1	23	165
900 800 R31537	40	2.3	869	11	25	1	1	12	160
900 800 R31538 900 800 R31539	42 21	1.8 1.8	643 640	12 12	22 40	1	1	7 11	175 155
900 800 R31540	8	1.8	619	15	- 36	1	1	8	135
900 800 R31541	16	2.1	915	9	32	1	1	11	145
900 800 R31542 900 800 R31543	12 72	2.0 2.1	722 908	6 16	26 35	1	1	3 19	150 155
900 800 R31544	1750	3.7	1931	26	142	87	1	9	25
900 800 R31545	42	2.6	687	6	65	1	1	5	120
900 800 R31546	16	2.0	445	6	65 19	1	1	6	150 125
900 800 R31547 900 800 R31548	7 54	1.5 2.5	279 1085	15 10	18 78	9 1	1	6 5	125 115
900 800 R31549	21	2.7	1035	14	96	1	1	7	105
900 800 R31550	52	1.7	419	23	22	1	1	7	115

COMP: KEEWATIN ENGINEERING PROJ: 800 ATTN: R. NICHOLS/ D. MEHNER MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: OS-0719-RJ5 DATE: 90/10/30 • CORE * (ACT:F31)


SAMPLE NUMBER	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	MO PPM	HG PPB	
909 800 R31551 909 800 R31552 909 800 R31553	50 38 23	2.2 3.2 2.7	596 1601 1036	21 8 10	28 40 37	1 1 1	2 1 1	10 7 6	90 65 100	
900 800 R31554 900 800 R31555	29 46	2.3	1039 848	22 11	26 23	1 16	1	8 12	95 105	
900 800 R31556 900 800 R31557 900 800 R31558 900 800 R31559 900 800 R31560	45 27 27 98 64	2.1 1.8 2.1 2.1 2.0	1073 631 1172 867 945	10 15 14 19 14	28 13 27 13 12	17 20 31 30 110	1 2 1 2 3	14 10 23 10 7	125 105 110 115 130	
900 800 R31561 900 800 R31562 900 800 R31563 900 800 R31563 900 800 R31564 900 800 R31565	1600 104 34 19 23	2.3 2.6 1.6 1.7 2.2	501 1358 492 500 691	25 17 20 17 19	103 32 16 19 10	4241 254 55 112 27	7 2 1 1 2	7 23 16 10 16	25 100 140 120 95	
900 800 R31566 900 800 R31567 900 800 R31567 900 800 R31568 900 800 R31569 900 800 R31570	35 22 49 26 19	1.7 1.9 2.2 2.1 2.3	475 568 490 401 416	20 14 8 21 18	10 13 12 10 14	34 12 1 35 29	2 1 1 1 1	11 6 9 10 6	125 135 115 155 135	
900 800 R31571 900 800 R31572 900 800 R31573 900 800 R31573 900 800 R31574 900 800 R31575	34 129 330 30 111	2.4 2.7 3.0 2.4 2.0	460 439 861 408 302	11 12 15 8 8	15 22 113 57 35	1 22 4 1 27	1 1 1 1 1	9 24 7 2 3	215 160 195 215 195	
				<u></u>						
· <u> </u>		<u> </u>			<u></u>					
			. <u></u> .		<u></u>	<u></u>				
·····										
							· · · · · · · · · · · · · · · · · · ·	<u>-</u> -		

Company:

Project:

800

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCUUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

OS-0719-RA1

Date: OCT-30-90 Copy 1. KEEWATIN ENGINEERING, VANCOUVER, B.C. 2. KEEWATIN ENGINEERING, VERNON, B.C.

Attn: R. NICHOLS/ D. MEHNER

KEEWATIN ENGINEERING

He hereby certify the following Assay of 3 CORE samples submitted OCT-22-90 by D. MEHNER.

Sample Number	¥AU g/tonne	¥AU oz/ton	AG g/tonne	AG oz/ton
900 800 R31468	3.60	.105	3.5	.10
90G 800 R31544 .	1.80	.053	3.7	. 11
900 800 R31561	1.63	.048	3.3	.10

*AU - 1 ASSAY TON.

Certified by

MIN-EN LABORATORIES

APPENDIX XII

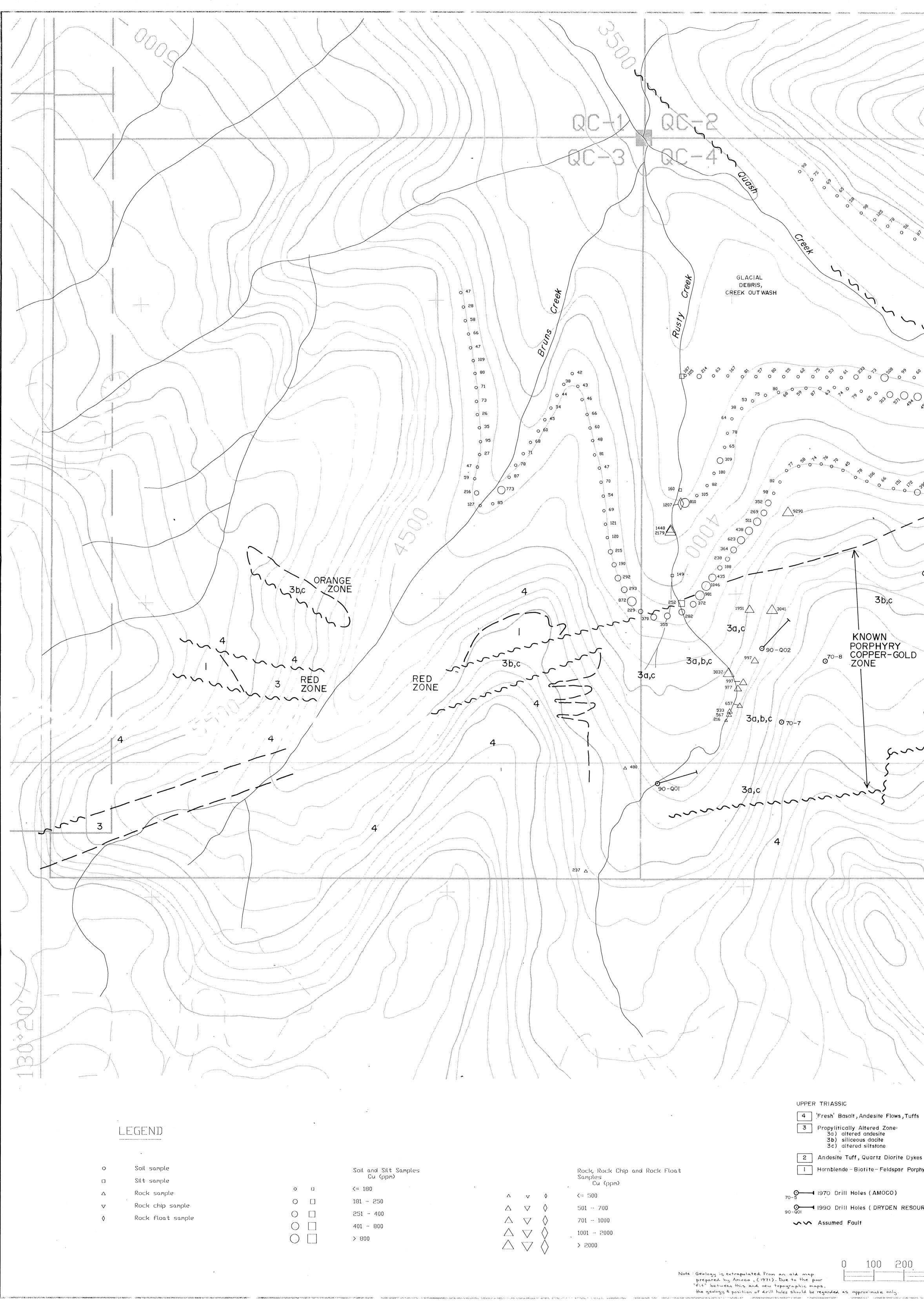
Statement of Qualifications

, •

Keewatin Engineering Inc.

STATEMENT OF QUALIFICATIONS

I, DAVID T. MEHNER, of 333 Scenic Drive, in the Municipality of Coldstream, in the Province of British Columbia, do hereby certify that:

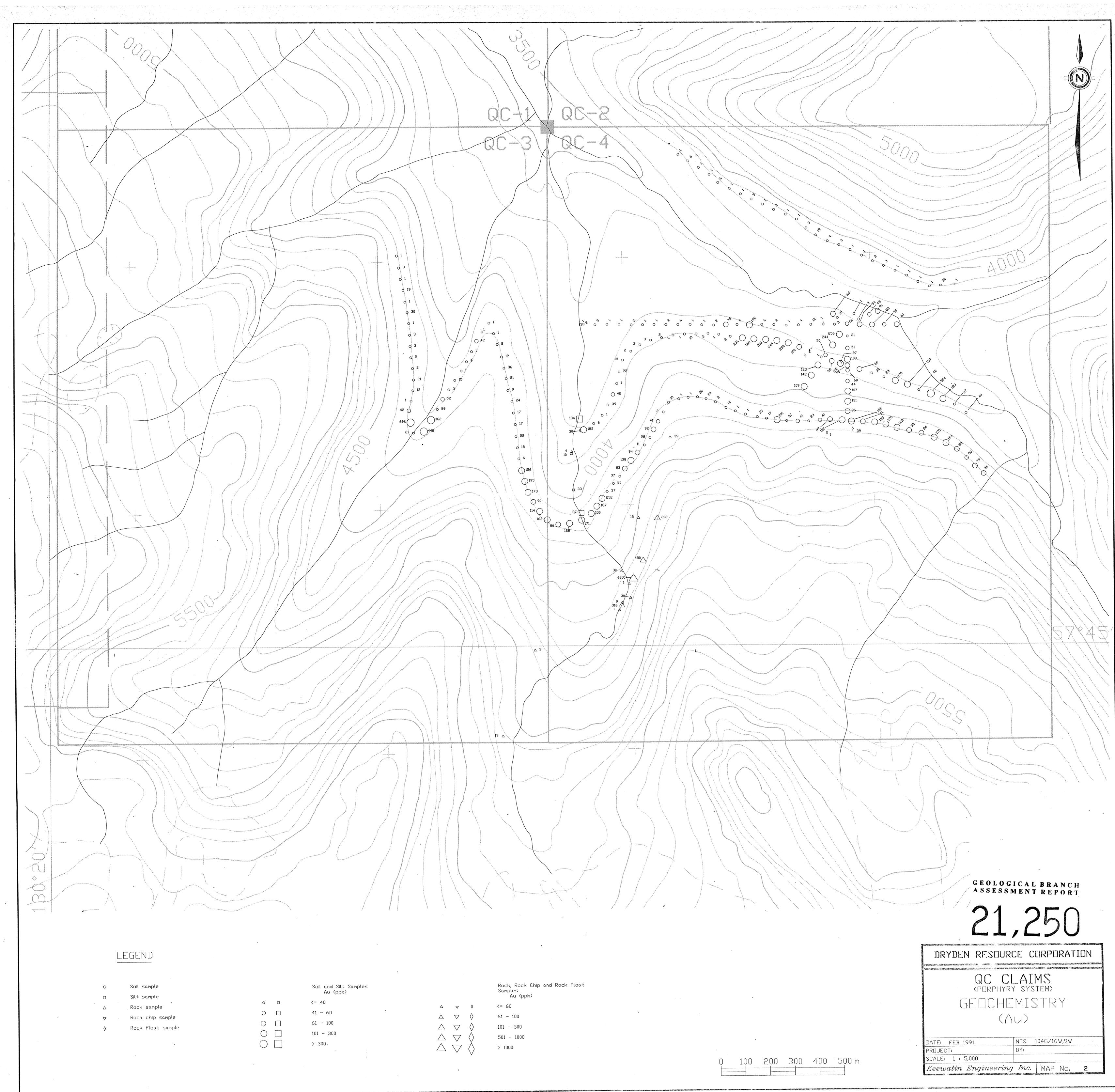

- 1. I am a Consulting Geologist with Keewatin Engineering Inc., with offices at 800 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I am a graduate of the University of Manitoba, B.Sc. Honours, 1976, M.Sc. Geology, 1982.
- 3. I have practised my profession continuously since 1979.

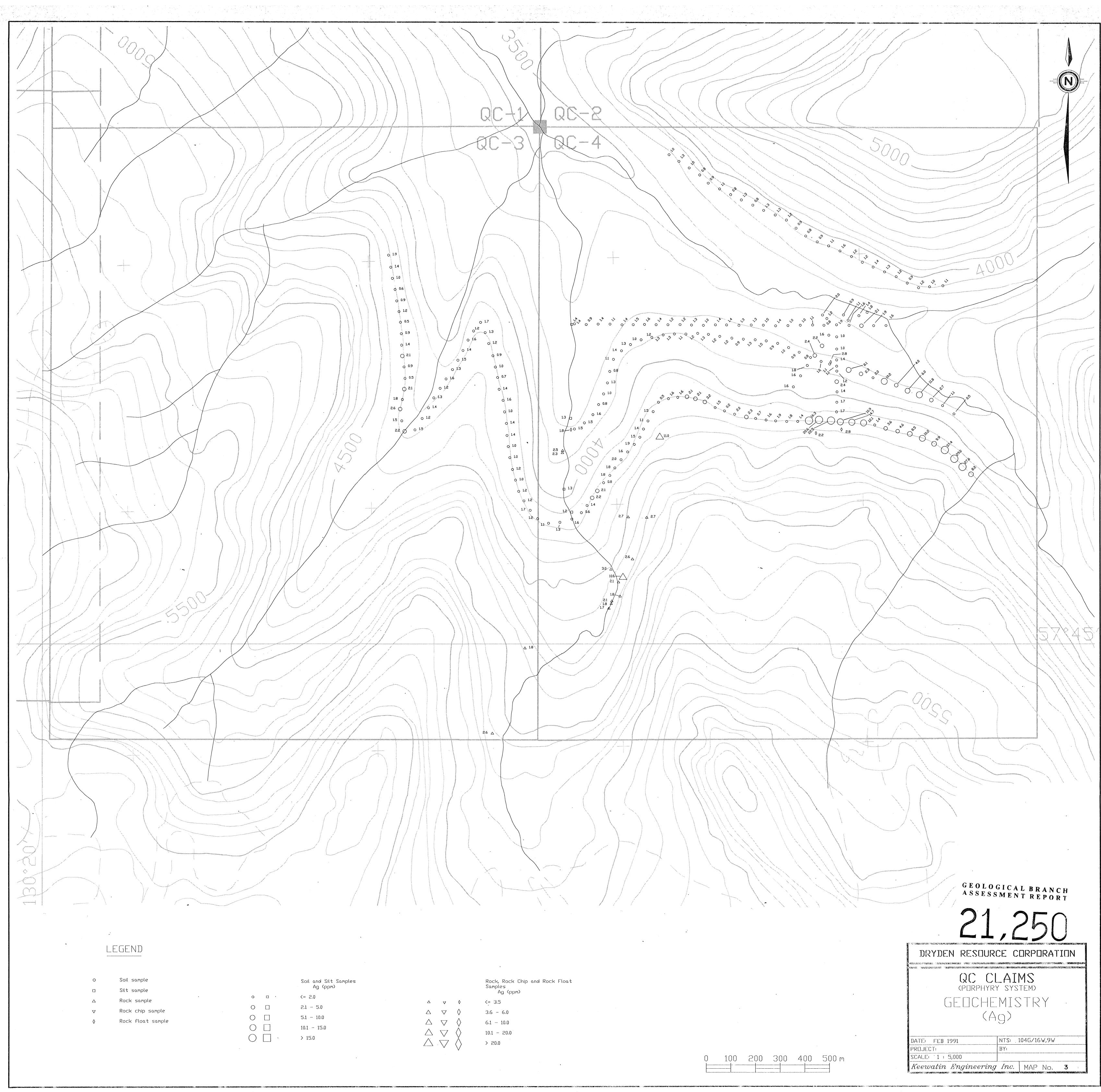
- 4. I am a Fellow of the Geological Association of Canada.
- 5. During the period of August to October, 1989, I managed and carried out the exploration program on the Q.C. property claims near Kinaskan Lake on behalf of Dryden Resource Corporation.
- 6. From July to October, 1990, I managed and carried out the exploration program on the Q.C. property on behalf of Dryden Resource Corporation.
- 7. I do not own or expect to receive any interest (direct, indirect or contingent) in the properties described herein, nor in the securities of Dryden Resource Corporation in respect of services rendered in the preparation of this report.

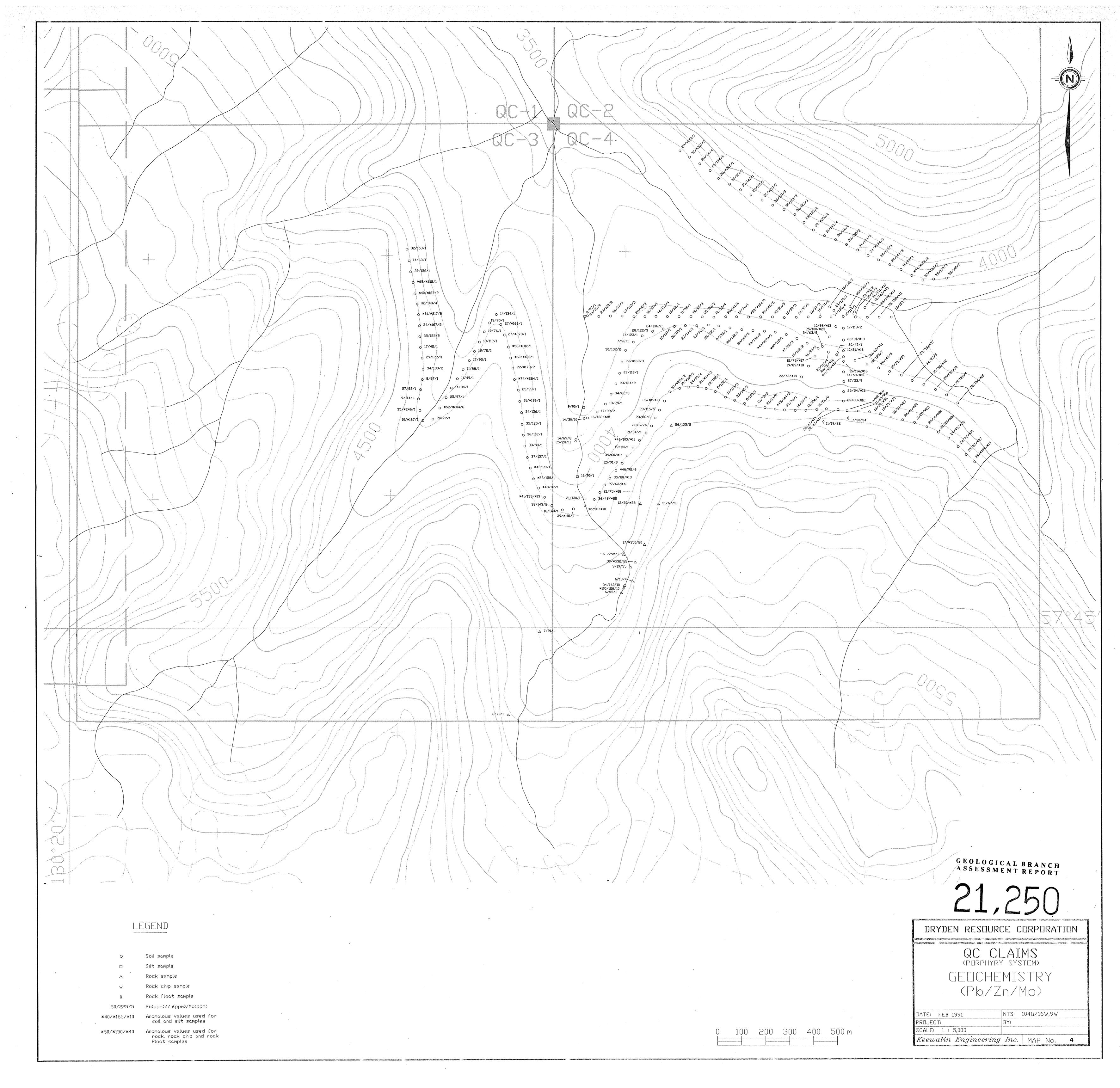
Dated at Vancouver, British Columbia, this <u>8th</u> day of <u>March</u>, A.D. 1991.

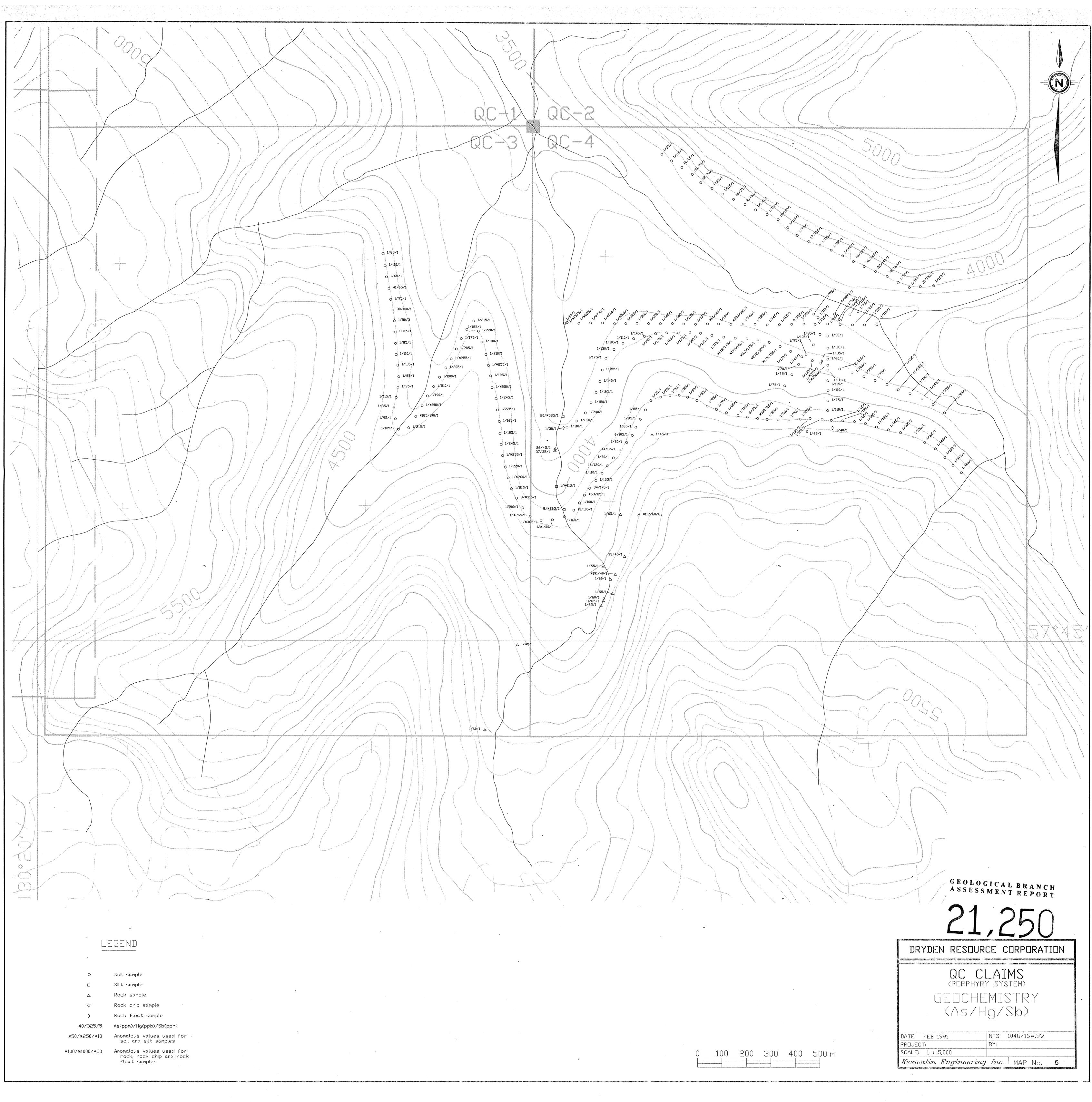
Respectfully submitted, SOCIATIO D. T. MEHNER David ahner, M.Sc. AC ELLON

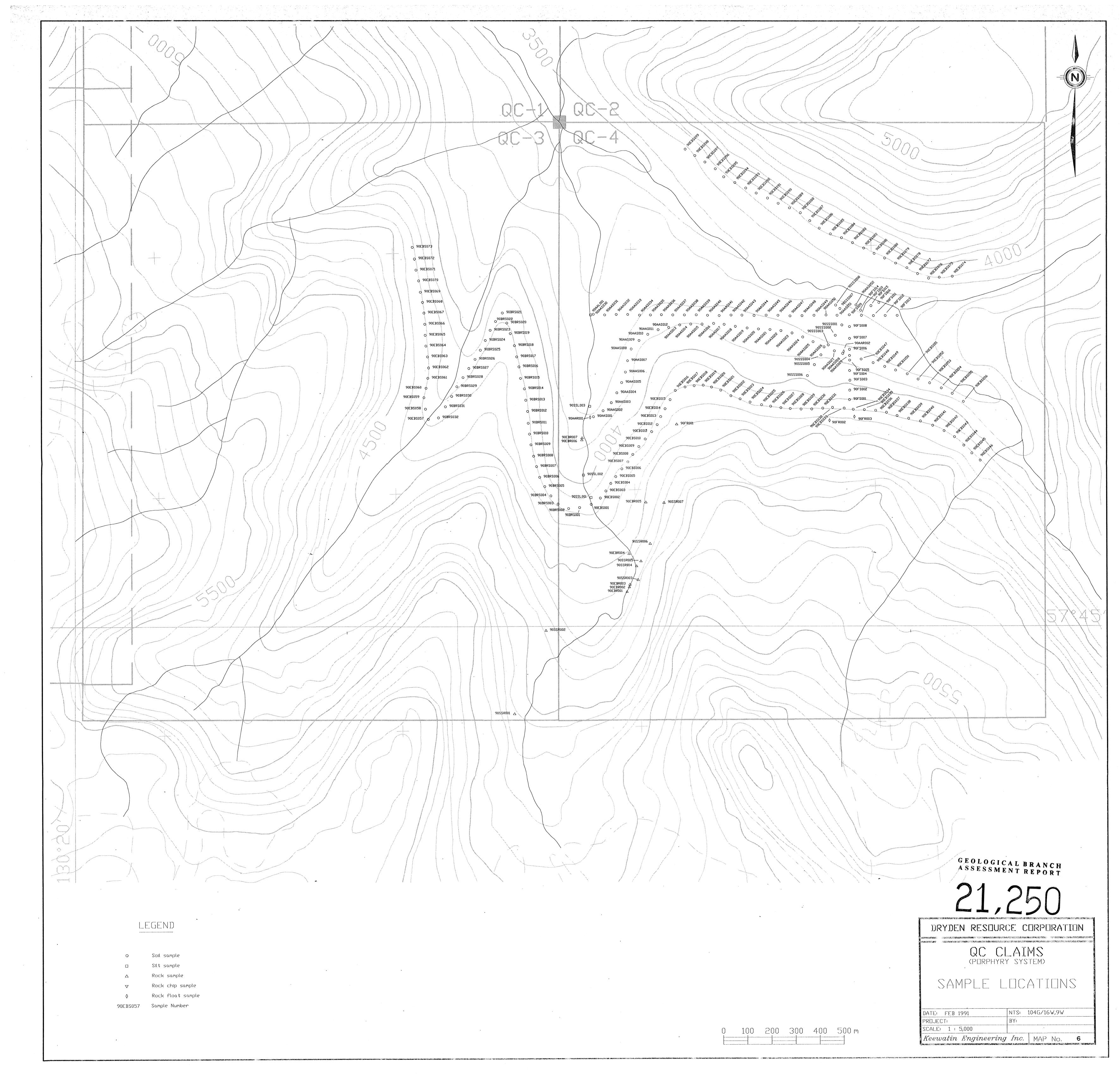
Keewatin Engineering Inc.

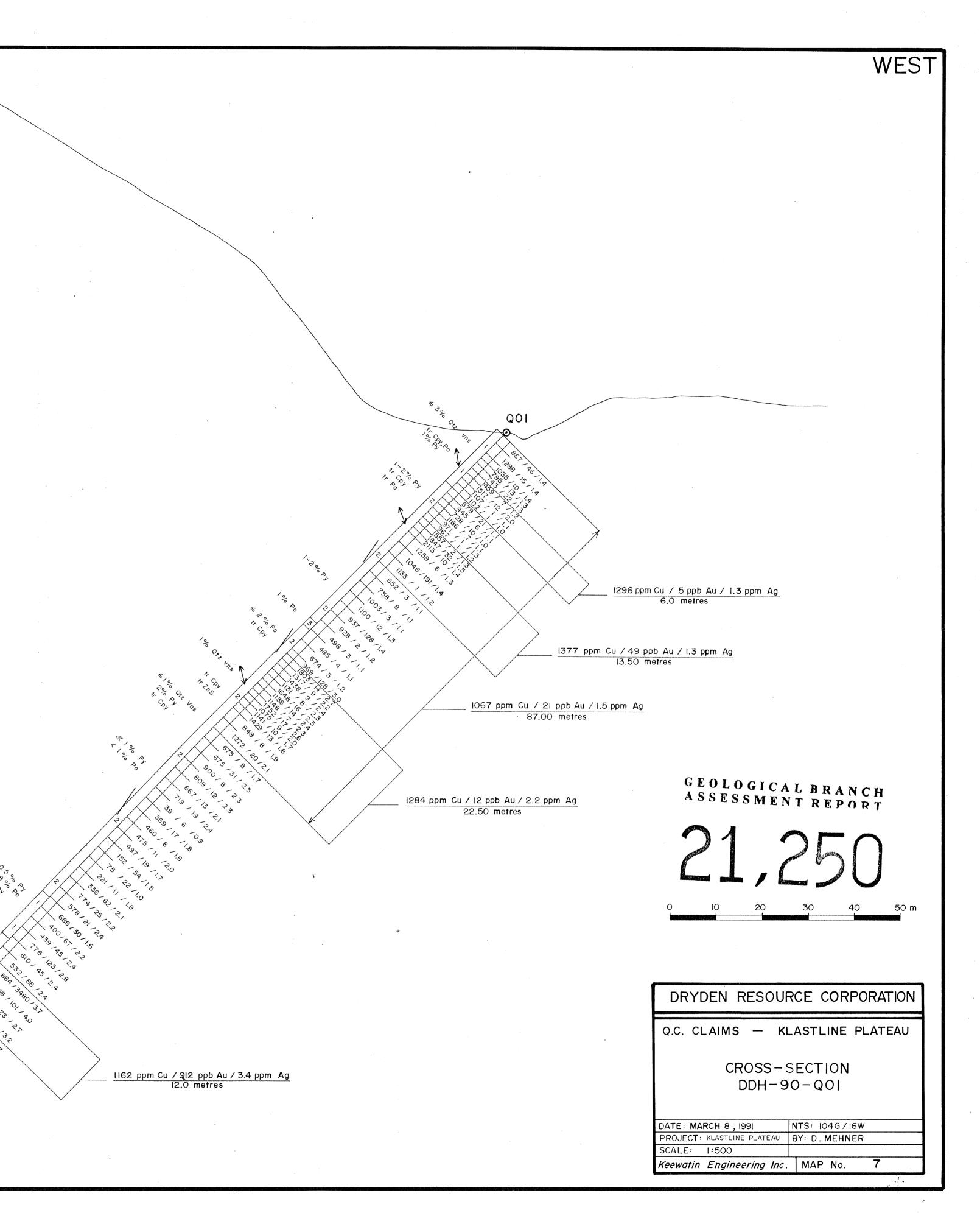



×


.


.


- conscience de la consci		teð 1999a flærkinna að fráðanar - einað 1994 í Hegaldanu
	•	
88		and the second s
	- 404	
0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0		
3555 471 486147 66662048		
3 ³ 8 ⁵ 6 ⁵ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	X423.	
286 52 ^h 610 3193 0 0 0 ^h 62 ^h 28 ^h 28 ^h 19 ^h		
30	169	
3a 070-6		
© ^{70−6} 7 2		
, 3a,b //		
70-2 0 ₇₀₋₁		
Y 070-4 SOLD		
0 ⁷⁰⁻⁵	5	
4		
		,
	GEOLOGICAŤ nn	
	GEOLOGICAL BR Assessment Re	ANCH POR1
	21 25	$\overline{\mathbf{n}}$
ws,Tuffs		
	RESTURCE CLIRPI	
rite Dykes	- TARATAR - TARATARANAN TARATARAN TARATARAN TARATAR TARATARA - TARATARAN - TARATARAN TARATARAN	ad S S I I I ab I and S Mar I Stand State (S S S S S S S S S S S S S S S S S S S
	QC CLAIMS	
) N RESOURCE CORP)		\sim
	(Cu)	
DATE: FEB 1991 PRUJECT:	NTS: 104G/16 BY:	5W,9W
200 300 400 500 m SCALE: 1 : 5,000		No
	na sense sa	



feet above sealevel	metres above sealevel — 1500	EAST					
4900 —					,		
			·				
4800 —		•					
	- 1450						
4700 —							
4600 —	- 1400						
4500 —		LEGEND					
		UPPER TRIASSIC TO LOWER JURA 4 Porphyritic Hornblende-Bioti 3 Porphyritic Diorite: Plagioci	te-Plagioclase Diori	te			
4400 —	1350	UPPER TRIASSIC 2 Siltstones to mudstones : Silic 2b Siltstones to mudstones with 1 Andesitic tuffs or siltstones	Andesitic Componen	t			
	-	Kf potassium feldspar Cpy	chalcopyrite				2000 1000 1000 1000
4700		Cal calcite Py lim limonite Po Qtz quartz ZnS Vns veins asp tr trace	pyrite pyrrhotite sphalerite arsenopyr.ite			5, 0, 0, 0, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
4300 —	- 1300	Fault Zone	• •		Ox.	× × 1/1 × 1.00 PO ×	
		Fractured Core Bedding Common Vein Orientatio	n		EOH 194.46 m	3	
42 00 —		ppm Cu / ppb Au /. ppm				101 - 70 - 70 - 60 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 7	0

