ARIS SUMMARY SHEET

District Geologist, Smithers

Off Confidential: 92.03.08

ASSESSMENT REPORT 21287

MINING DIVISION: Liard

PROPERTY:

Hank

LOCATION:

LAT 57 14 00 LONG 130 30 00

UTM 09 6344144 409450

NTS 104G01W 104G02E

CLAIM(S): Hank 1-5 OPERATOR(S): Carmac Res. AUTHOR(S): Visagie, D.

REPORT YEAR: 1991, 78 Pages

KEYWORDS:

Triassic, Stuhini Group, Andesites, Quartz veins, Gold

WORK

DONE:

Drilling, Geochemical

DIAD 1458.4 m 5 hole(s); BQ

Map(s) - 6; Scale(s) - 1:400,1:5000

SAMP 453 sample(s); ME

RELATED

REPORTS: 08546,12098,13594,19523

MINFILE: 104G 107

LOG NO:	Than	15/91	RD.
ACTION:	1	7	
FILE NO:		Annual desired to the second s	
TILE NO.		_	-

DIAMOND DRILLING REPORT

ON THE HANK PROPERTY

BALL CREEK AREA, BRITISH COLUMBIA

LIARD MINING DIVISION

NTS: 104G/1&2 Latitude: 57 15' Longitude: 130 30'

OPERATOR:

Carmac Resources Ltd. 860 - 625 Howe St. Vancouver, B.C.

V6C 2T6

WORK CONDUCTED:

July 15 - September 30, 1990

REPORT BY:

Dave Visagie April 25, 1991

> GEOLOGICAL BRANCH ASSESSMENT REPORT

> 21,287

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	LOCATION AND ACCESS	1
3.0	TOPOGRAPHY, VEGETATION AND CLIMATE	1
4.0	CLAIM STATUS	3
5.0	EXPLORATION HISTORY	3
6.0	REGIONAL GEOLOGY AND MINERALIZATION	6
7.0	PROPERTY GEOLOGY	7
0.8	1990 WORK PROGRAM	9
9.0	GEOCHEMISTRY 9.1 Assay Procedure	9 9
10.0	DRILL SUMMARY 10.1 Lower Alteration Zone 10.2 Upper Alteration Zone 10.3 Check Sampling 10.4 Surveying	10 10 12 12 12
11.0	SUMMARY AND CONCLUSIONS	16
12.0	RECOMMENDATIONS	16
13.0	COST STATEMENT - HANK PROPERTY	17
14.0	STATEMENT OF QUALIFICATIONS	19
	FIGURES	
FIGU.	RE 1 PROPERTY LOCATION RE 2 CLAIM MAP RE 3 PECTONAL GEOLOGY	2 4 8

TABLE OF CONTENTS CONTINUED

FIGURES (con't)

The	following	maps	can	be	found	in	the	pocket	at	the	back	of	this
repo	ort:												

FIGURE	4	DRILL HOLE	LOCATIONS	
FIGURE	5	HOLE 90-1,	SECTION 800E - LOWER AL	TERATION ZONE
FIGURE	6	HOLE 90-2,	SECTION 850E - LOWER AL	TERATION ZONE
FIGURE	7	HOLE 90-3,	SECTION 950E - LOWER AL	TERATION ZONE
FIGURE	8	HOLE 90-4,	SECTION 200NE - UPPER A	LTERATION ZONE
FIGURE	9	HOLE 90-5.	SECTION 240NE - UPPER A	LTERATION ZONE

TABLES

TABLE 1	HISTORY OF WORK	5
TABLE 2	DRILL HOLE SUMMARY	1 1
TABLE 3	CHECK SAMPLE RESULTS: HANK PROJECT	13
TABLE 4	CORRECTED DRILL COORDINATES	14

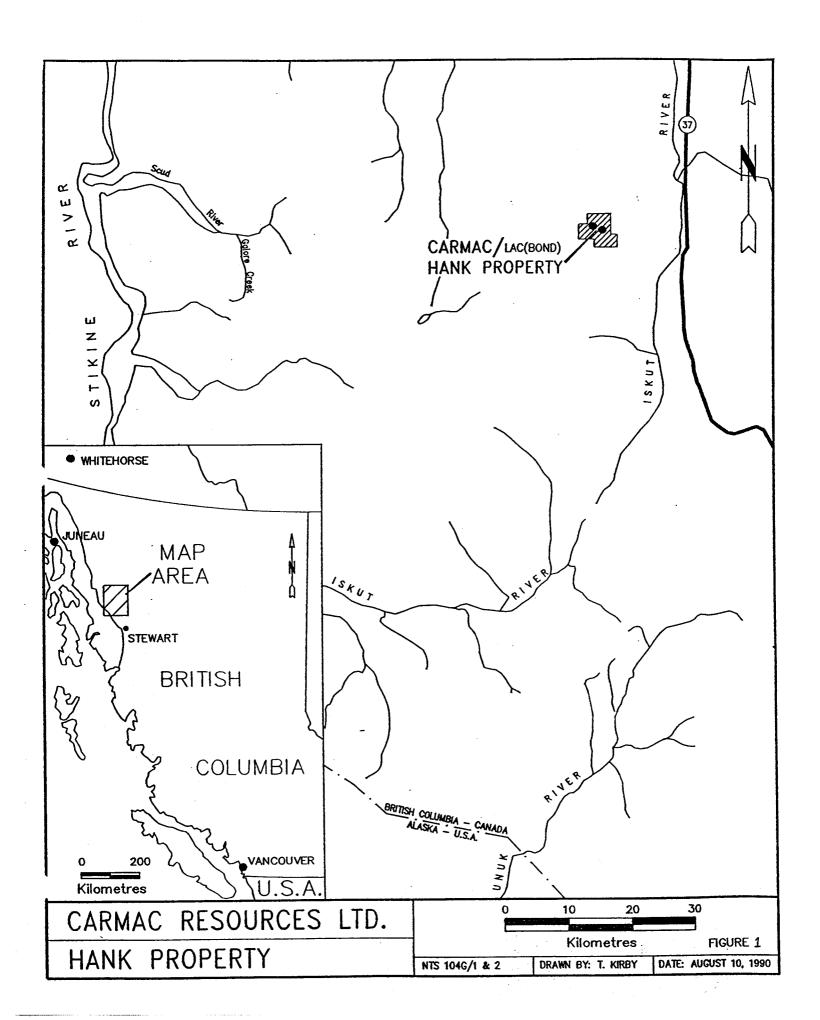
APPENDICES

APPENDIX	1	DRILL	LOGS	21
APPENDIX	2	ASSAY	RESULTS	52

H91-410

1.0 INTRODUCTION

The Hank property is located approximately 16 km west of the Stewart-Cassiar Highway in the Ball Creek area of northern B.C. During 1990 the claims were held under option agreement by Carmac Resources from Lac Minerals. Previous exploration has shown the property to be underlain by Upper Triassic Stuhini Group volcanics in which two zones: Lower and Upper of sericite pyrite alteration occur. In addition, a third zone felsite, was identified that refers to an area of intense clay, silica and pyrite alteration. Drilling has shown both the Upper and Lower Alteration zones to contain significant discrete sections of gold mineralization. The purpose of the 1990 drill program was to test the continuity and grade of these zones. A total of 1458.4 m of BQ drilling, in five holes, was completed in a 21 day period.


2.0 LOCATION AND ACCESS (Figure 1)

Access to the region is via Highway 37 (the Stewart-Cassiar Highway), from the Burrage Creek emergency landing air strip, located on the east side of the Iskut River, approximately 370 km north of Kitwanga, B.C. The Hank claims are situated 15 air km west of Highway 37 along a tributary of Ball Creek, herein termed Hank Creek, approximately 20 air km south of the Mount Edziza Provincial Park. Helicopter flying time to the property from the Burrage Creek strip is approximately 15 minutes. A helicopter base is maintained at Bob Quinn, 10 km to the south of the Burrage strip.

3.0 TOPOGRAPHY, VEGETATION AND CLIMATE

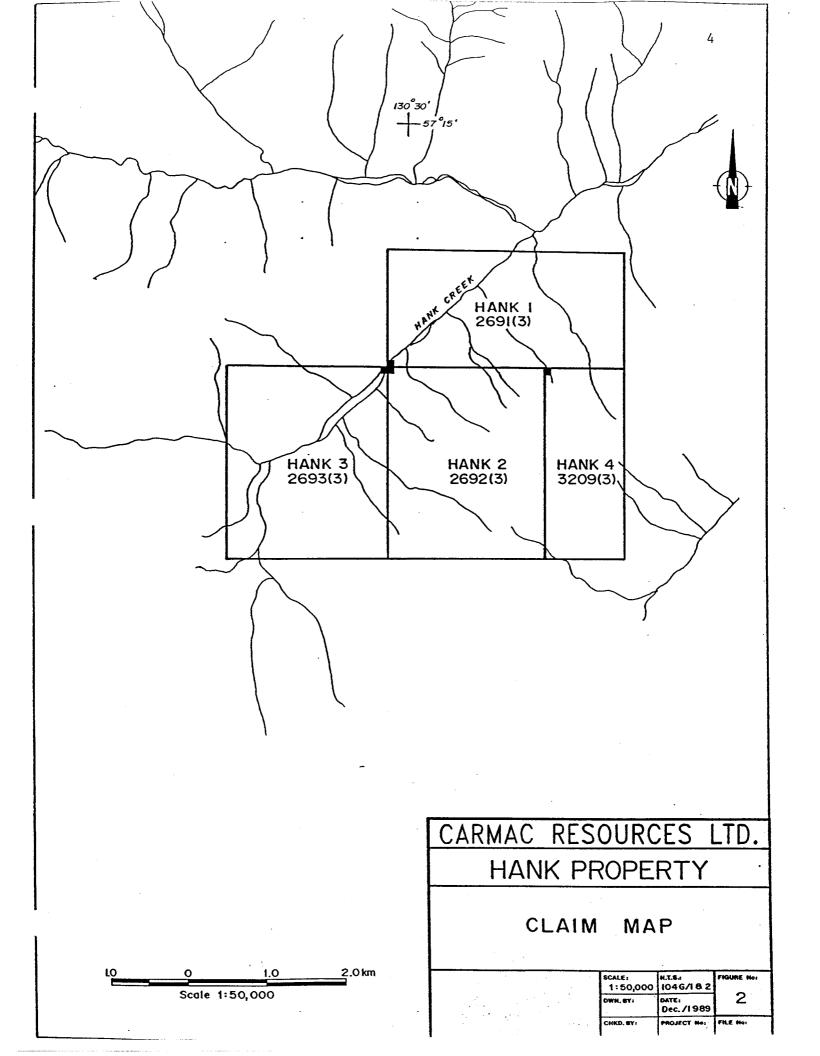
Local topographic relief is moderate to very steep with elevations ranging from approximately 900 m along Hank Creek to over 1,950 m in the eastern portion of the property. The area exhibits the characteristics of typical glaciated physiography, including wide U-shaped, drift-filled valleys flanked by steep rugged mountains, cirques and deeply incised V-shaped upland valleys.

Vegetation consists mainly of dense alder, willow, and mature conifers such as spruce, fir, and hemlock along the valley slopes. At higher altitudes above timberline, generally between 1,400 m and 1,600 m above seal level, the vegetation changes to subalpine and alpine with the highest parts of the property supporting only moss and lichen. Glaciers and snowfields occur frequently throughout the area, usually above 1,600 m. The period of least snow cover occurs between July and mid-September. Summers are relatively cool and wet, while winters are cold and snowy.

4.0 CLAIM STATUS (Figure 2)

The Hank property, consisting of four contiguous claims totalling 68 units, occurs within the Liard Mining Division of B.C. The Hank 1, 2, and 3 claims were staked by Lac in March 1983 to cover anomalous gold stream samples collected from gossanous rocks adjacent to Hank Creek. The Hank 4 claim was staked in September 1984 to consolidate the claim group. In 1990 Lac optioned the property to Carmac Resources Ltd. who acted as operator.

The pertinent claim data is summarized below:


Claim Name	# of Units	Record #	Expiry Date
Hank 1	18	2691	March 10, 2001
Hank 2	20	2692	March 10, 2001
Hank 3	20	2693	March 10, 2001
Hank 4	10	3209	October 12, 1999

5.0 EXPLORATION HISTORY

Exploration dates back to the 1900's when limited exploration for placer gold was completed in the area. Little work was done until the 1950's when Hudson's Bay Mining and Smelting located the Galore and Canyon Creek porphyry Cu-Au deposits. During the late 1950's and 1960's, several major mining companies conducted regional reconnaissance programs resulting in the discovery of several porphyry copper deposits.

Recent exploration and development activity has focused on vein and fissure vein gold mineralization in the Iskut River area. As a result several new discoveries were made, including Skyline's Johnny Mountain, Prime Resources'/Cominco's Snip, Newhawk's Sulphurets, Magna Ventures' Doc, Prime Resources Group Inc.'s Eskay Creek. In addition, a renewed emphasis has been placed on porphyry Cu-Au deposits.

Exploration and development at the Hank property dates back to 1983 and is summarized on Table 1.

TABLE 1 HISTORY OF WORK

1983	February	- Hank 1, 2, 3 claims staked
	March 10	- Hank 1, 2, 3, claims recorded
	August	 completed preliminary soil, rock and stream sediment sampling and geological mapping
1984	July, August	- linecutting, grid soil sampling, rock sampling of alteration zones in creeks, VLF-magnetics survey, hand trenching, soil pits, map geology, I.P. geophysics
	September	- stake the Hank 4 claim, B.Q. core drilling of four holes totalling 288.1 m
	October 12	- Hank 4 claim recorded
1985	July, August September	- backhoe trenching, B.Q. core drilling of 46 holes totalling 4209.3 m in "HOTSPOT" area, petrographic study
1987	August, September	- I.P. geophysics, backhoe trenching, B.Q. core drilling of 9 holes totalling 1048.2 m, map geology
1988	August, September	- B.Q. core drilling of 23 holes totalling 4736 m, petrographic study, road building
1989	July, August September	- linecutting, road building, mapping, rock sampling, thin section study, N.QB.Q. core drilling of 11 holes totalling 1610.6 m.
1990	June	- Carmac Resources Ltd. optioned the property
	August, September	<pre>- completed a five hole drill program totalling 1458.4 m</pre>

6.0 REGIONAL GEOLOGY AND MINERALIZATION

The property occurs within the westernmost part of the Intermontane Tectonic Belt, close to its contact with the Coastal Crystalline Tectonic Belt. As a result of the proximity of this area to a regional tectonic boundary, geologic relationships tend to be quite complex. The Hank claims are situated within Stikinia accreted terrane of the Canadian Cordillera. The geology of this area has been studied by Kerr (1930, 1948), and by Grove (1986), and is presented in Geological Survey of Canada Maps 9-1957, 1418A and 1505A.

The oldest rocks in the region are complexly folded, metamor-phosed schists and gneisses of probable mid-Palaeozoic age.

Metamorphism occurs within and adjacent to a plutonic system.

The metamorphic rocks are commonly overlain by a white to grey crystalline limestone that is believed to belong to a Late Palaeozoic sedimentary sequence that includes some minor greenstone units. This oceanic assemblage is part of the Stewart Complex, a tectonic unit which has been correlated with the Cache Creek Group.

The principal component of the Intermontane Tectonic Belt in the Iskut River area is a Mesozoic volcanic and sedimentary sequence, correlative with time equivalent Stuhini volcanics. Grove correlates this unit with Middle Jurassic Unuk River Formation rocks of the Stewart Complex. In the Galore Creek area, Souther (1971) has mapped the Upper Triassic Hazelton Group as an undifferentiated sequence of island arc volcanics and sediments.

On the north slopes of Johnny Mountain and Snippaker Peak, Palaeozoic meta-sedimentary rocks are found to overlie the Mesozoic sequence. These apparently represent the upper plate of a regional, east-west trending thrust fault, which pushed up and over to the south in a manner similar to that of the King Salmon Thrust Fault.

In the Coast Crystalline Tectonic Belt, Palaeozoic and Mesozoic sequences are commonly intruded by Late Cretaceous to Early Tertiary plutonic rocks of quartz monzonite to quartz diorite composition. To the east of the main intrusive complex, smaller granitic plugs and stocks are prevalent.

Quaternary flows and ash deposits of olivine basalt are the youngest rocks in the area. Hoodoo Mountain, to the south of the property, is underlain by these units, which also occur in parts of the valleys of the Iskut River and Snippaker Creek.

Several styles of mineralization exist in the area including porphyry Cu-Au mineralization as occurs at Galore Creek, precious metal rich polymetallic deposition as exhibited at the Eskay and Skyline mines and shear hosted precious metal bearing quartz veins as located at the Sulphurets and Snip deposits.

7.0 PROPERTY GEOLOGY (Figure 3)

The Hank property is underlain by a thick succession of Upper Triassic to Middle Jurassic volcano-sedimentary lithologies. The strata have been intruded by a series of plutons which represent different intrusive episodes. These intrusions consist of synvolcanic plugs, dykes and stocks. The Upper Triassic sequence consists of Stuhini Group andesitic tuffs, flows and trachytic volcanics. Middle Jurassic sediments of the Spatsizi Group unconformably overly the Stuhini Group.

Overall the Stuhini Group rocks are north-east striking, and dip at $10^{\circ}-50^{\circ}$ to the south-east. The Spatsizi Group are variably striking and generally flat to shallow dipping.

Three distinct zones of alteration have been outlined; the Lower Alteration Zone (LAZ), Upper Alteration Zone (UAZ), and felsite.

The Lower Alteration Zone is north-east trending, steeply dipping (fault controlled?), 150 m wide and 2,500 m long area in which the hosting andesitic pyroclastics and volcanics are altered to a mass of carbonate, sericite and pyrite. Within this alteration are obliquely cutting 30-40 m wide stockwork, and vein-shear "high background" sections in which veinlets of rhodochrosite, calcite, siderite +/- quartz and barite with accessory galena, sphalerite, chalcopyrite and tetrahedrite occur. The LAZ typical averages 50-100 ppb Au, while the "high background" sections average 100-700 ppb Au. Individual vein shears or distinct highly mineralized zones of 0.5-5.0 m contain up to 95 g/tonne Au.

The Upper Alteration Zone is north-east trending, variably dipping from steep to subparallel to bedding and ranges from 100-200 m wide with a strike of at least 2,500 m. The volcanical clastics are altered to a mass of carbonate, sericite and pyrite. The UAZ is characteristically subdivided into a weakly silicified NE portion (1 km) with minor Au values, a central (0.4 km) "Hot Spot" area with less than 10% pyrite and intense siderite-quartz veining with associated Au mineralization, and thirdly the SW segment (1.5 km) with low pyrite (1-2%), minor carbonate veining but extensive low grade gold showings (surface trench 462 ppb Au over 115 m.).

The "felsite" is an area of low gold (<100 ppb) that has been intensely silica-clay-pyrite altered. In the "Hot Spot" area the "felsite" and UAZ are divided by a 50 m wide clay gouge zone of moderately east dipping nature.

SEDIMENTARY AND VOLCANIC ROCKS

	SEDIMENTARY AND VOLCANIC	, ROCKS
1	QUATERNARY RECENT	
	Unconsolidated glacial and fluvial clay, silt, sand, till; peat, muskeg	gravel;
- }		
٥	19 Tuía, hot spring deposits	•
201	18 Olivine basalt, ash, cinders	
o z	TERTIARY	
C H	PLEISTOCENE AND (?) EARLIER Basalt, rhyolite, ash, tuff, agglomerate; locally miclude 16; 17a, rhyolite, pisolitic siliceous tuff, chadonic rhyolite breccia	
	EOCENE Basait, rhyolite and associated volcanic rocks; min conglomerate, sandstone, shale	or
	CRETACEOUS AND TERTIARY UPPER CRETACEOUS AND PALEOCENE	
-	15 Conglomerate, sandstone, shale, minor coal	
i	CRETACEOUS	
	POST LOWER CRETACEOUS 14 Volcanic rocks, breccia	CRETACEOUS AND /OR EARLIER PRE UPPER CRETACEOUS Mainly volcanic rocks; minor conglomerate, grey-
ZOIC	JURASSIC AND CRETACEOUS UPPER JURASSIC AND LOWER CRETACEOUS Argillite, greywacke, conglomerate, coal; 12a, andesite, chert, tuff, conglomerate, shale, greywacke	wacke; chert, argillite
MESO	JURASSIC LOWER AND MIDDLE JURASSIC Conglomerate, greywacke, grit, siltstone, shale; lla, may include younger rocks	JURASSIC AND /OR EARLIER PRE UPPER JURASSIC . 9 Nainly volcanic rocks; minor conglomerate; grey-
	TRIASSIC 8 Tuff, siltstone, limestone, conglomerate, breccia	wacke, argillite 10. Mainly sedimentary rocks
1	RERMIAN AND OR TRIASSIC.	
	Gneiss, schist, crystalline limestone, crystalline	olonute, quartzite
	Geological boundary (defined, approximate, assumed)	
	Limit of geological mapping	
	Bedding (horizontal, inclined, vertical, overturned) (dip, g, gentle; m, medium; s, steep)	+
	Bedding, inclined (direction of tops unknown, over- turning suspected)	
	Schistosity, gneissosity (inclined, vertical, dip unknown)	······································
	Fault (defined, approximate, assumed)	A
	Anticline (defined, approximate)	
	Syncline (defined, approximate)	O 11
	Trend of complexly folded beds (direction of plunge known	• • • • • • • • • • • • • • • • • • • •
	unknown)	$\mathcal{L}_{\mathcal{L}}$
	Beit of quartz diorite and quartz porphyry dykes Glacial striae (direction of movement known, unknown)	4
	Placer mine	

8.0 1990 WORK PROGRAM

In preparation for the 1990 program a base camp was established on Hank Creek at the site of the 1989 Hi-Tec campsite. During the course of the program, several previously established drill sites were re-surveyed as the 1990 sites. Five NQ sized diamond drill holes totalling 1458.4 m were drilled. All drilling was completed by Boisvenu Drilling of Vancouver, B.C. Drilling commenced on August 17th and finished September 6th. Throughout the program, the daily average was 66.3 m. The majority of assaying was completed by Eco-Tech Laboratories, Kamloops, B.C. with some samples being sent to Min-En Labs, Vancouver, B.C. In addition, a limited number of check samples were sent to Vangeochem, Vancouver, B.C. The 1990 drill core is presently stored at the base camp.

9.0 GEOCHEMISTRY

A total of 453 drill core samples were split and sent for analysis. All core was logged and split on site, stored in plastic bags ,then sent for analysis. Assay results for Cu, Au and Ag are entered in the drill logs and plotted on the drill crosssections. All assay results are listed in Appendix 2.

9.1 Assay Procedure

All of the samples were analyzed, by either Eco-Tech Laboratories in Kamloops, B.C., or Min-En Labs, Vancouver, B.C. using the 30 element Inductively Coupled Plasma (I.C.P.) method with gold content being determined by atomic absorption. Samples that contained >1000 ppb Au, were assayed. In addition a number of check samples were checked for gold by Vangeochem.

The following is an outline of the procedure used for the preparation and analysis of the samples:

Samples dried (if necessary), crushed or sieved to pulp size and pulverized to approximately -140 mesh.

For the 30 element I.C.P. analysis, a 10 gram sample is digested with 3 ml of 3:1:3 nitric acid to hydrochloric to water at 90° C for 1.5 hours. The sample is then diluted to 20 mls with demineralized water and analyzed. The leach is partial for Al, B, As, Ca, Cr, Fe, K, Mg, Ma, Na, Q, Sb, Ti, U, and W.

For gold determination by atomic absorption, a 10 gram sample that has been ignited overnight at 600°C is digested with hot dilute aqua regia and the clear solution obtained is extracted with Methyl Isobutyl Ketone (MIBK). Gold is determined in the MIBK extract by atomic absorption using a background detection (detection limit 5ppb).

For fire assay analysis, a one assay ton subsample is used.

10.0 DRILL SUMMARY (Figures 4-9)

The purpose of the 1990 drill program was to test the continuity and grade of the Upper and Lower Alteration Zones. Three holes totalling 1125.9 m were drilled in the Lower Alteration Zone while two holes with a combined length of 332.5 m were drilled in the Upper Alteration Zone. The drill hole data is summarized on Table 2 with the following being a summary of the results for each zone. The drill logs are located in Appendix 1 while the drill hole locations are plotted on Figure 4.

10.1 Lower Alteration Zone (Figures 5-7)

Previous drill programs completed by Lac Minerals have shown the Lower Alteration Zone to contain discrete areas of gold mineralization with the best section, located in hole 88-4 averaging 0.391 opt Au, 3.86 opt Ag, 1.00% Pb, and 1.57% Zn over 9.14 m. From an inspection of the drill core it appeared that the zone is associated with an area of increased silicification within volcaniclastic breccias in which narrow stringers of galena, sphalerite and chalcopyrite occur.

Three holes; 90-1, 2 and 3 were drilled to test the along strike and down dip extensions of this intersection. Hole 90-1 located so as to test the section 20 m down dip intersected a corresponding zone that contains minor sphalerite within quartz veins. However, while gold assays are anomalous they are low ranging up to 300 ppb.

Holes 90-2 and 3 were located to test the zone intersected in hole 88-4 approximately 60 and 120 m along strike to the north. In addition, hole 90-3 was spotted so as to test the down dip extension of a zone intersected in hole 89-5 that averaged 0.298 opt Au, 5.12 opt Ag, 0.13% Pb, and 1.13% Zn over 2.12 m. Holes 90-2 and 3 both intersected the same package of rocks as noted in holes 88-4 and 90-1. In the case of hole 90-2, a zone of weak sphalerite, galena and chalcopyrite mineralization within an area of moderate silicification that corresponds with the projection of the 88-4 intersection was intersected. Gold values although anomalous are generally low ranging up to 890 ppb Au. Hole 90-3 intersected low grade, up to 500 ppb Au that corresponds with the section in 88-4. In addition, a 1 m section that assayed 1080 ppb Au that corresponds with the section averaging 0.298 opt Au, 5.12 opt Ag, 0.13% Pb and 1.13% Zn over 2.12 m was intersected.

TABLE 2
DRILL HOLE SUMMARY

Hole	Location	n	Bearing	Dip	Elevation	Length	Zone	Intersection	n		
#	North	East			(m)	(m)		From (m)	To (m)	int (m)	Au (ppb)
90-1	10675.5	9902.0	139	-49	1030.2	355.1	Lower	178.3	179.1	8.0	1370
90-2	10676.3	9902.0	122	-49	1080.2	367.9	Lower	225.7	226.7	1.0	890
								326.6	332.2	5.6	471
90-3	10721.5	10058.0	135	-45	1072.3	402.9	Lower	99.0	101.0	2.0	915
								122.8	125.8	3.0	760
								145.7	142.6	0.5	1510
90-4	10271.8	10949.3	292	-45	1465.8	152.4	Upper	31.3	39.3	8.0	896
**************************************				·····				53.3	56.3	3.0	740
90-5	10272.9	10949.7	310	-45	1464.9	180.1	Upper	58.3	64.5	6,2	1062
							-644.	79.5	109.5	30.0	738

10.2 Upper Alteration Zone (Figures 8-9)

Holes 90-4 and 5 were located to test the down dip continuity of the Upper Alteration Zone in the vicinity of holes 85-4 and 45. Hole 85-45 intersected a 30.48 m section that averaged 0.109 opt Within this section individual assays of up to 0.500 opt Au Hole 85-32 intersected a 12.19 m section that averaged 0.274 opt Au. In both cases the hosting rock is a sericite carbonate, pyrite altered agglomerate-volcaniclastic breccia that has been intensely sheared in which narrow quartz-carbonate stringers occur with the best grade values being associated with well mineralized (chalcopyrite, galena and sphalerite) quartz vein stringers in which occasional visible gold occurs. Hole 90-4 was located to test 40 m down dip, the possible extension of the zone, as defined in hole 87-1. Although hole 90-4 intersected similar geology, only a limited number of mineralized veins or stringers were located with gold values throughout the hole being anomalous but low, up to $390~\rm{ppb}$ Au. Hole $90-5~\rm{was}$ located so as to test $30~\rm{m}$ down dip, the extension of the Upper Alteration Zone as located in hole 85-32. As was the case in hole 90-4, drill hole 90-5 intersected similar lithology to hole 85-32, however, no significant zones of quartz veining or base metal mineralization were located. Maximum gold values are 1490 ppb Au.

10.3 Check Sampling

During the course of the program a limited number of samples were re-assayed to check the reproducibility of results. Table 3 is a listing of the results.

10.4 Surveying

All of the 1990 drill sites were surveyed by qualified personnel. In addition, several of the previously drilled holes were resurveyed and the new co-ordinates are listed in Table 4.

TABLE 3 CHECK SAMPLE RESULTS: HANK PROJECT

Sample #	Eco-Tech	Labs	Vangeochem
	1st (ppb)	2nd (ppb)	(ppm)
84706	195	180	260
84722	10	<5	40
83625	340	270	340
83646	75	85	80
83676	0.043*	0.043*	0.045*
83501	0.032*	0.030*	0.020*
83509	285	290	340
83512	0.044*	0.040*	0.053*
84777	145	110	200

^{*} assayed opt Au, all others ppb

The samples chosen were selected so as to represent a crosssection of the assays. From the results it is observed that in general there is good reproducability of the assays.

TABLE 4 CORRECTED DRILL COORDINATES

DDH #	EAST	NORTH	ELEVATION
84-1 84-3 84-12	10897.62 11084.61 11113.53	10466.18 10423.16 10444.90	1419.85 1464.44 1463.34
84-12 85-12 85-24 85-67 85-67 85-67 85-113 85-1	11113.53 11010.53 10988.11 10973.37 10921.52 11065.12 10880.66 11027.70 10894.14 10991.47 10865.04 10865.04 11064.64 11064.72 11040.31 10981.82 11079.04 11097.63 11128.08 11044.04 11146.05 11015.06 11116.72 11078.49 10814.37 10895.83 10952.60 11107.08 11070.42 10948.86 11074.52	10444.90 10326.82 10297.99 10270.92 10255.78 10452.86 10239.37 10499.03 10293.08 10519.66 10267.66 10294.46 10382.17 10536.37 10347.42 10602.42 10377.85 10630.16 10246.70 10321.04 10567.28 10517.93 10294.66 10481.12 10267.08 10227.06 10265.27 10258.63 10341.77 10445.30 10294.30 10654.86 10547.93 10572.52	1467.54 1467.59 1467.54 1467.54 1467.59 1447.80 14457.96 1447.80 1447.99 1447.99 1447.99 1447.99 1447.99 1447.99 1447.99 1447.99 1447.99 1447.99
85-40 85-42 85-44 85-45 85-46	1004.52 10961.15 10949.57 10815.34 10877.57 11024.14	10414.92 10348.27 10284.47 10297.01 10473.87	1425.98 1433.36 1441.23 1447.85 1445.21

TABLE 4 (Con't) CORRECTED DRILL COORDINATES

10114.29 10460.63 10459.01 10034.25	10472.66 10896.57 11180.75 10545.96	1142.13 1168.31 1092.23 1097.24
10162.70 10162.70 10162.70	10670.10 10670.10 10670.10	1116.80 1116.80 1116.80
10072.40	10585.40	1109.82 1103.41
10073.01	10584.71 10458.41 11015.09	1103.45 1113.83 1123.04
	10460.63 10459.01 10034.25 10162.70 10162.70 10162.70 10132.60 10072.40 10073.01 10010.34	10460.63 10896.57 10459.01 11180.75 10034.25 10545.96 10162.70 10670.10 10162.70 10670.10 10162.70 10670.10 10132.60 10645.30 10072.40 10585.40 10073.01 10584.71 10010.34 10458.41

11.0 SUMMARY AND CONCLUSIONS

Previous mapping and drilling on the Hank property has outlined two zones of extensive quartz-sericite-pyrite alteration: Upper and Lower within Stuhini Group volcanics and volcaniclastics on the Hank property. Within these zones of alteration occur discrete areas of gold and silver mineralization. The gold and silver values appear to be related to narrow mineralized, galena, sphalerite and chalcopyrite bearing quartz stringers. The purpose of the 1990 program was to test both zones along strike and dip for continuity.

Three holes totalling 1125.9 m were drilled in the Lower Zone in the vicinity of hole 88-4 where a 9.14 m section averaged 0.391 opt Au, 3.86 opt Ag, 1.00% Pb and 1.57% Zn was located. Although similar stratigraphy was encountered, no significant zones of gold mineralization were located. On the Upper Alteration Zone, two holes totalling 332.5 m in length were drilled to test the intersections encountered in the area of holes 85-32 and 45 where sections averaging 0.109 opt Au over 30.48 m and 0.274 opt Au over 12.19 m were intersected. As was the case in holes 90-1, 2, and 3 similar stratigraphy was encountered, however, the gold values while significant were generally low with maximum values of up to 1490 ppb Au.

From all available data, it appears that both zones are discontinuous along strike and dip. The potential for tonnage appears limited.

12.0 RECOMMENDATIONS

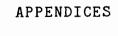
It is recommended that no further work be completed by Carmac Resources Ltd. on the Hank property.

13.0 COST STATEMENT - HANK PROPERTY

1. Labour (Field Program)

Personnel G. Clouthier - Project Geologist D. Visagie - Senior Geologist J. Robertson - Cook B. Moehling - Core Splitter B. Kinney - Core Splitter R. Marra - Labourer L. Malmquist - Labourer K. Orleski - Labourer C. Fehr - Labourer J. Hogan - Consultant	\$ 61,755.24
2. Room & Board	
Camp Cost \$16,378.89 Camp Supplies \$18,059.96	\$ 34,438.85
3. Communications	
Telephone, Radio Tel Rental	\$ 3,075.63
4. Equipment Rental Trucks, field gear, surveying equipment, etc.	\$ 4,758.45
5. Travel Cost	
Crew and equipment transportation	\$ 5,622.30
6. Fuel Diesel, gasoline, etc.	\$ 7,738.90
7. Drill Cost	
1458.4 m @ \$90.93/m* * includes additives, drill supplies, mobe/demobe costs, etc.	\$132,626.41

\$ 14,871.30
\$ 67,065.36
\$ 303.42
\$ 5,000.00
\$337,255.86


I, D.A. Visagie of 860 - 625 Howe Street, Vancouver, British Columbia, do hereby declare that:

- 1. I graduated from the University of British Columbia with a Bachelor of Science Degree, majoring in Geology, in 1976.
- 2. I have been steadily employed in the mining industry since then and have since January 1990 been employed by Northair Mines Ltd. as Senior Geologist.
- 3. The work undertaken on the Hank property was under my supervision.

Dated at Vancouver, British Columbia, this 25th day of April, 1991.

Dave Visagie

MA Unasie

APPE	NDIX	<u> 1 - </u>	DRILL LOGS		T	1		7										<u> </u>					
Cari	mac	Rosi	ources Ltd.	DEPTH	BEARING	DIP	SURVEY TYP								LENGTH:	35	<u>~, ·</u>	HOLE N					
Cari	mac	1103	ources Eta.	COLLAR	1390	-490	Eastman	C	LAIM	: /	4 <i>A</i>	NP	<u> </u>		CORE SIZ			SHEET		1	of ,		
Diam	ond Dr	ill Ho	le Record	139.0	135	-48°	Single shot	, –	ATITL	JDE:	. 10	67:	5.5	3 N	RECOVER	Y: @>_	1354/ <u></u>	LOGGE	D BY:	GH	Clou	the	
				230.4	135° 141.5° 138.5 138.5° 138.5°	-50°			EPAF	RTUF	?E:	99:	32.	22 F	STARTED:	Augus	t 21 1990	SAMPLI	ED BY:	B.	Ki.	nnev	,
				352.4	/38.5	-50°		E	LEVA	TION	N:	133	30.	17 M	COMPLET	ED: Aug	24. 1990	PURPO	SE: Z.	wer	Zone	2	
			Alt'n wk - inten	5e (1-	10)	 		/	Altera	ation	1	Min	erali	zation		-7-0	Assay D	ata				Core	Data
Inter (met		Rock	Geologic Descrip	otion				0	Pyro	41.0		Pyrite			Sample No.	From	To	Interval			İ	RQD	Reco-
From	To	Туре						`	Pyrophylic Sericite	٤		te !										%	very %
0	26.0		OVERBURDEN :	Large	bbcks	of a	ndesitic	l	" (1	*-			\neg										
			Valcamolastics										T.										
26.∞	27.43		TRICONED: Z	Into	pedroc	k	<u> </u>																
27.93	45.6	ACB	CATICLASTIC	BRE	CCIA;	oria	inal	3	9	2		3%			84601	27.4	30.4	3.1	1	0.7			
			rock type mi	xed ar	ndesitic	Vo/co	moclastics	<u> </u>							24602	30.4	33.4	3.0		0.4	82		
			Intense clay												84603	3.3.4	36.4	3.0		<i>L.</i> 2	_		
			2-5% pyrite	, N	1atrix	_bric	k red								34404	36.4	39.4	2.0	5	1.2	163		
			Goethite - hema	tite	mix.	Frag	ments								846.05		A2.4	3.0		0.3	21		
			Maht gray -	white	altal	Valco	naclasts								84606	424	45.6	3.2	45	0.3	32		
			Brecciation va	ries	fram	crack	le type						\dashv						-				
			to well mille										_						-				
			~2-3; Many f	ragments	3 Show	hleac	hed	<u> </u>			-						 		-			<u> </u>	
			rims with m	ore gr	reenish	Cares	(Chlandic)				_						 		 				
			Strong to Intense						-	-			\dashv	_	.	 	-		 			ļ	
			39.72 1cm 4					<u> </u>					-						╁			 	
			50.32 2cm					 				\dashv							 				
			Post breccia +	fracturin	g + Sh	earing	intense					\dashv	\dashv							<u> </u>			
-			45.8-52.5 ~ 1cm					-	\vdash			-+	-				-		 				
45.6	21.1		BLACK ARO	1			4 .	3	3		10%	\dashv			24607	115 1	45.5	د د	15	0.9	122		
~> , €	46.5							-3-	3		/07s	-+	\dashv		JA 460 /	73.0	70.5	U.7_	 ~ -	<u></u>	1	<u> </u>	
			grained Stranger				al		\Box			\dashv											
41.5	77.0	VCB	VOLCANO CLAS	Tic I	3 BF CC	10.	1,0ht	7	7	2	2%	$\neg \uparrow$	-		94608	46.5	49.5	3.G	<5−	0.7	363		
	****	y <u>u</u> , j					~9/10	 		^-	^-				34609	1	52.5	3.0	5		33 F		
			Gray to Cray Pervasive C	100	5=-161	le Co	u rordination)	<u> </u>				\dashv	\neg		84610	1	55.5	3.0	15	0.3			
	-		alteration.																				

					Alter	ation	IN	Minera	alizat	ion			Assay I	Data				Core [Data
Inter (met		Rock Type	Geologic Description		Patrophullo		Fyrice.				Sample No.	From	To	Interval			T	RQD 1	
			VOLCANO CLASTIC ISPECCIA CONT		1						3461/ 84612	55.5	53.4	3.0	45	0.3	67		
			Weak pervasive carbonate also								84612	52.5	17.5	3.0	15	0.7	235		
	- 		present throughout Leter crackle	_	<u> </u>		\bot							1		ļ			
			bracciation strong throughout	<u> </u>												<u> </u>			
			* Alteration prosess would increase																_
			each volume causing autobresselish				\perp	<u> </u>	11					<u> </u>		<u> </u>			
			Fragments 0.5 - 10cm subangular						ļ							<u> </u>			ļ
			Locally rounded													<u> </u>			
			Strangest Shear airection 40°CA														<u> </u>		
			Projec 2-3%											<u> </u>	ļ	<u> </u>	ļ		
															<u> </u>	ļ			
			49.0 Shearing Trand 450CA												<u> </u>	<u> </u>	<u> </u>		ļ
			50.0 Shearing " 40° CA											<u> </u>	<u> </u>	<u> </u>	<u> </u>		
			50.3-51.3 Shear sine Trend 24-36-49				\perp							ļ			L		
			576-630 Shatter zone "Fault" Trend				丄							<u> </u>	<u> </u>	ļ	<u> </u>	\sqcup	
		<u> </u>	2 45° CA Intense Clay alt v		10	2	\perp							ļ		ļ	<u> </u>		
			To sericite + continute	ļ												ļ_,			
			50.5 4cm white curb vein 55° CA				\perp				34613	31.5	63.0	1.5	5	0.4	273		
			62.6 2cm " " " 25° A	_							84614	63.0	55.3	2.3	< 5	0.3	128		
			133-653 Feldsper perpounting service				_ _				34315	35.3	3.3	3.5	13	.5	253		
			153-186 Shatter zone tr 30-50" 17												<u> </u>	 	<u> </u>		L
			682 white carb wein zom 40°CA														L.		
			68.8-77.2 Hematite Carllite Staining	<u> </u>			┛				34116	68.3	71.3	3.0	<5	₹.2	19		
			pervasive Pervasive atin	5	5	,	1	٠;			84617	7/.3	7-9.3	3.0	< 5	12.2	178	1 1	
	·		alele pr patchy dissemination	<u> </u>							84518	74.3	77.3	3.0	10	0.3	187		
			Japanti size lithic frequents												ļ				
	·		typical shloritie 12-cms	<u> </u>													<u> </u>		
			75M > iHeration INCreasing down	7	7	2	41	%											
1			iole.	1	1										1	1	1	1 /	

Carı	nac I	Reso	Durces Ltd. Project: HANK							ı	Dri	ill Hole N	lo. <u>н - 9</u>	10-1 P	age _	3	of _	10	_	
Inte	val				Alter				nera	lizatio	n			Assay D	ata				Core	Data
(met	ers)	Rock Type	Geologic Description	Clay	Pyrophylle	Curbonic	Siliza	77.75				Sample No.	From	То	Interval				RQD %	Reco- very %
77.2	83.5		FINE GRAINED LIMY TUFF Patchy stay	4	6	2		Tr				846 19	77.3	80.3	3.0	15	0.3	164		
			Sericite altiv. causing bleached sections									84620	30.3	93.3	3.0	10	1.2	144		
			Fresher rock tark gray carbonate	_								84621	£3.3	24.3	3.0	45	0.3	165		
			appear primary is 20 white colaite									34622	86.3	89.3	3.0	15	0,3	153		1
			ff some miner This fragments up											92.3		15	0.4	140		
			to 1cm 40% of one shattered Trend														,,,,			
			of major preaks 450 to CA very																	
			miner prite																	
		ŀ	23.2 -83.5 Fould Zone 50° CA																	
83.5	100.00		ALTERED FINE GRAINED VOLCANIC	8	8	5	7	1/2/2												
			Crany white overall with purplish																	
			dematite staining Alteration is									84624	92.3	95.3	3.0	45	04	167		
			complete Sentite Clay corporate Prite	Γ							T	84625	45.3	97.0	1.7	15	0.2	168		
			occurs as blebs Freeture Fillings +											100.0	3.0	5	03	2/		
			dissemination The whole into his										•							
			been shattered froming a healed																	
			crackle breija love shearing																	
			trends at 45°CA Very more silvertistish								П									
			in some patches which are slighty																	
			inardor																	
			970 - 100,0 First zone core shittered																	
			mastly cay Trend 30° to CA																	
100.0	141.0		VOLCANGELASTIC BRECCIA																	
			100.5 - 105.0 Pervasive alteration	5	2	2		(1%			1	84627	100.0	103.0	3.0	45	0.7	177		
		1	weakens down hat with care								T									
			changing from creamy white to																	
			dork gray - green Orginal rock								T									
			composition is andesitic weak								T									
			Chlorice clay alteration persists								1									

Carn	nac I	Resc	ources Ltd. Project: HANK							D	rill Hole N	lo. <u>н - 90</u>	<u>-/</u> P	age _	4	of _	10	_	
Into					Alter				erali	ization			Assay [Data				Core	Data
Inter (mete	ers)	Rock	Geologic Description	Clay	Sencio	Cartomate	Silico	Parit			Sample No.	From	То	Interval				RQD	Reco- very %
From	То	Туре		_	3/-				}					<u> </u>	ļ				%
			VOLCANOCLASTIC BRECCIA Cont.	2	_	2		16	\dashv				<u> </u>			}			
		-	fracturing is weak to moderate	<u> </u> -					-					_		ļ.—.	<u> </u>		
			with miner calcite ff. Fragments	<u> </u>				-	-	}-			<u> </u>	 	ļ	ļ			
			up to 15 cm common: usually inquiar	ļ	ļ				_					 					
105.6	131.6		Shatter - ne Intense Fracturing Strong		_			_ -	_				ļ	ļ		-			
			Clar Chierie carbonate ulteration	_				\perp	_								<u> </u>		<u> </u>
			ariginal restores obscure; rock	ļ	_			\dashv	_				 	 		-			
			dark green Trand of Fretures	<u> </u>	L_		\perp	\perp].					ļ	ļ				ļ
									_										
			~ 50° to CA Local parts stringers quita strong overall	5	Sri.	4		1%	4								<u> </u>		-
			Hernblandes Chleritized but still using	-	-		-	4		_	-		ļ				-		-
			125.4 - 125 7 ~ 3% px as f.f.		<u> </u>			+		_	84618 84629	125.1	125.7	0.6	15	0.2	154		
			127.3 128.1 ~ 4% px a= ff								84629	/27.3	128.1	0.8	45	0.2	133		
132.0	ن برندار		FINE GRAIVED ANDESITE TUFF					1%								<u> </u>		_	
			Gray green, bosically unattered												<u> </u>				
			chlorite white cachonate stringers														<u></u>		
			related to hewer grandors regional													<u> </u>			_
			netz merphism																
141.0	169.9		VOLCANOCLASTIC BRESSIA (ANDESITIC)												L	<u> </u>			
			unaltered fragments subangular												<u> </u>				
			up to 1=cm Minor white commate	L.													<u> </u>		
			ff very weak fracturing													<u> </u>		<u> </u>	
			141.0 -149.0 -	L				13			84630	149.0	152.0	3.0	10	0.5	97		
			149.0 -> ff disconnected + bless			3		2.02					155.0		15	2.2	61	_	<u> </u>
			pale greenish altered patches								84632	155.0	150.0	3.0		0.4		<u> </u>	
			seems to be mostly carbonate								84633	158.0	161.0	3.0	10	0.8	71		
			Fizzes strongly in HCl.														_		1
															<u> </u>				

Inter	val		A. 1. S.	L	Alte	ratio	n	М	iner	aliza	ation	1		Assay [Data				Core	Da'
(mete	rs) To	Rock Type	Geologic Description				Silves	1 %	Sph	Cal	Cox	Sample No.	From	То	Interval				RQE	T-
			VOLCANOCLASTIC BRECCIA cont.							_		94524	7.145	1.4.0	5.0	10	0.8	KK	-	1 %
\rightarrow			168.7 Irregular QU ~ 2cm with									84635					1.0			╁
\rightarrow			pyrite + Minor CDV + Sph		<u> </u>					\prod			167.0				3.0		 	\vdash
	· 07. 4		* 15t Quine observed with Sol Pay	L									168.6				1.3			╁
9.9	255-1		ALTERED VOLCANOCLASTIC BRECLIA								1		11.8.7				0.7		 	
			Perusive Clay Sericite Carb Alth										77.55	 	7.0	10	0.7	61	-	┢
			Peruasive Clay Sericite Carb Alth	4	6	3	2	3-5									 	 	-	<u> </u>
			Sincification weak but pervisive		Ī	1	1												 	\vdash
			+ in veins + stringers.	V	V	V	٧									-	 	<u> </u>		-
			Original Texture obscurred by with										·			<u> </u>	 			-
			however int transment outland														<u> </u>			-
			Mesen Chloritic Sections to 1850 m																	
			* Factuall of Lower zone																	-
			171.5 Minor fault - printic gouge 25°CA									94539	137.4	172.9	3.0	20	1.2	65		
-		+	1748 QC UZIN ~ 10 Cm - 250 CA			3	7	10				89640			1.6	20 80	2.4	79		Γ
\dashv			176.35-176:55 Q: Vain HW 45°CH Shear									84641		174.8	۵,٦					
-+			FW ~ 45° CP			3		10				84642	1748	176.3	45	60	1.9			
-			78.35-179.45 QCVein 45°CA MIREY Sph.			3	7	10	3,3	2.1	J.=	34543	176.3	176.7	0.4	120		40		
_			- Spy + Gal spithermal binding present		_							3462-		178.3	1.6	40				
+			78.9 - 72. 4 II						0.3	0.1	0.3	846 45	178.3	179.1	0.8	1370		621		
+			190.2-180.6 CQ vein sharp contacts				\dashv	1	0.3	0.7	0.1	34645	179.1	180.1	10		0.8	87		
-			50°CA Minor Cpx sph + Gal				_					84647	180.1	180.3			3.7	109		
_			180.8 - 133.4 Fault N 45° CA	_				_				84648	180.8	182.8	2.0	20	0.6	83		
$\neg \vdash$		/	193.2 -1849 Fault zone ~ 15°CA									846 49	182.8	184.7		350	1.7	55		
-			34.8-185.6 QC vein complex matti-		_	4	6	-7			0.1	84:50	184.7				1.9			_
			Stage veining + refracturing 5-7% py	_	_		\dashv	_												
	-+	\dashv					\perp													
	}		85.6-186.9 Fault Zone Trend 50-55° CA Strong ground py			- 1		5			İ	84651	185.7	1910	1.0	100	24	07/		_

Carmac	Res	ources Ltd. Project: HANK								Dı	rill Hole N	10. <u>// -</u> '	<u>90-/</u> P	age _	6	of _	/0	_	
Interval					ratio					tion			Assay D	ata				Core	Data
(meters)	Rock Type	Geologic Description	Cay	Serieito	Carponate	51/100	Pyr %	Sph %	GA1 %	CP1 %	Sample No.	From	То	Interval				RQD %	Reco- very
		ALTERED VOLCANOCLASTIC BRECCIA cont	8	8	2														_/ <u>~</u>
		1860 - 3551 Strong pervasive Clay Sericit: Alth Moderate pervasive	+	4	V	\	6												
	-	Carponate altin Lacal silver freetign			-	_			_	-	<u> </u>				ļ				
		Pr ~ 7% Local variations will		-	┼				-	-					-				
		he noted: pyrite acours as selective replacements offragments			-												[-		
		ar along the rious of fragments																	
	-	+ as dissemination - + moture filling	<u> </u>	_	ļ				<u> </u>	ļ	~		ļ			100			
	1	188.5 - 188.7 Fault 35-40° CA		_				_	-	_	84652	186.9	183.9	2.0	25	0.3	52		
		188.0 - 188.5 Traces diss gal sph + Cpy			-		8	11	Ir	110	34653	188.9	190.1 193.1	1.2	165	16	407		
		190.3-1905 Fault Strong Carb Strongers		i	1				 	†	07677		1/3:/	7.0	100	,,,,	701		
		143.0 10m pale pink surb fizzes when							·	1		_							
	-	Scratched (rhodocrevity) 25°CP																	
	<u> </u>	172.3 15 Cm Silveous zone Tr Cher					8		<u> </u>	Tr.									
		753 - 1962 Foult ~ 15°0A QUISTINGERS									844 55	193.1	196.1	3.0	255	0.9	90		
		py gouge	ļ		$ldsymbol{ldsymbol{ldsymbol{eta}}}$				ļ	<u> </u>									
	<u> </u>	1963 300m DC Stringers Tr 50°CA 16%py	<u> </u>		ļ		10		<u> </u>	ļ			196.9						
		20 a constatain cara							ļ	ļ			198.0						
		24/2-242 November 356 15				_				 	चुक्राहरू	125,9	231.1	3.0	25	0.7	46		
		213 1 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							ļ		34254	31.4	234.	3.0	25	0.3	44		
	-	11 - Called 100 100 100 100 100 100 100 100 100 10					3			<u> </u>	84360	9 3 4	10.00	3.0	,20	0.8	145		
		and a second of the second									42	207.4	270.4	3.5	30	1.2	494		
	 	211.2 - 211.32 13 = Stark 195 10 15 ° CP									9-25	212.9	013 4	5.0	15	0.5	46		
		Steam is rects story in									49338	917.4	216.7	3.5	25	0.5	43		
		2/4.5 3500 with property take to									34334	111.5	219.9	3.0	15	0.5	29		
		Monor apor spice									94665	219.7	222,3	2.4	70	0.8	141		
		(211-282) monter of thouter. I have the look	7	4	2	2	4										L		

Carr	nac	Res	Durces Ltd. Project: HANK					-				No. <u>∄ -</u> '	<u>90-/</u> F	Page _	7_	of	10		
Inter			Geologic Description	-	Alter	1-				lizatio			Assay [Data				Core	Data
(mete	ers) To	Rock Type	acologic Description	Clay	ericite	Carbonati	Silica	Py %	Sph %	Cer %	Sample N	o. From	То	Interval				RQD %	Reco
	***		ALTERED VOLCANDOLASTIC BRECLIA CONT	12	4	16	2	4		- 1	+				+	 	+	+~	%
			222.3 - 222.6 20% QC stringers Tr Cpy	L				,			84666	222.3	222.6	0.3	1040	25	526	 	-
			274.9 2cm QC vein to Trace Cpx	V	Y	Y	Y	Y		7r	24667		224: 7	 ×		0.8		1	-
			(222.5 - 234.0) weaker alteration	1							84668	•	225.1	0.4		1.3		<u> </u>	-
			Chlorite Stil present weak fracturin	G							24669	1	228.1	3.0		0.4		 	
			QC Stringers Trend 45°CA	Л	T						34670		231.1	3.0		1.4			\vdash
			237.4 QC veinlet = py 200, 45° CA		Ī						8467		23-7.1	3.0		0.8			
			2385 D veinles 450 CA								84686	1	237.1	3.0		0.8			
			239.1-239 5 Fault Silve - 12 pebby								24/89					0.8	-		_
											84690				410				
	-	——k	234.0 -274) Printe Stronger Stonger	6	4	3	3	6			24691			i	160	1.3	91		-
			pervasive alth Silica locally present	$\cdot \Box$	1	1							1.	2.0	700	1.7	1		
			234.0 - 274) Printe Stronger Stronger Per vasive alt'n Silica locally present as flooding and miner velocity	Tr		V	V	V									<u> </u>		
+		+	A41.6-2430 Strong QC veining transling								346 92	241.6	243.0	1.4	95	0.8	7		
\rightarrow			-73 (7)									243.0			105		-		
\longrightarrow			245.3 Druzz/ Strenkets po more									2 244.2				2./	_		
\longrightarrow			Spik								1	2-46.2	,		180				
			146.4 -247.2 Fault zone 15° CA														~~		
			MAZZI QC Leining										1					i	
-+		K	13472/ QC, vining					7			24172	2480	250.0	2.0	200	1.4	54		-
	-		251.2 Giventet woom									240.0		1.0	170				
			25/17 Oc verolet to coarse py								84674			2.0	310				
			234,3 Profile our weinkt								84675				890		_		
		á	159.6 - 259.1 Gtz Carb 1011 750A								34676	254.6		2.8	50	1.9			
			course euhodral private 0.7 cm.								24677	257.2			186				
			55. 1 100m Oto Carb wan strong					7	5		24678	257.5				6.2			
			Sphal (hlack) + Cy py								T	261.5				4.3			
			1 ./								34180	T				14			
			•			T		\top		*	34681					2.1			

Inter			Geologic Description	L	12.	ratio				lization				O -/ F					Core Da
(mete	To	Rock Type		Clay	ier cite	promote	عاادم	Pro/	\$ 1.2	30/0%	Sample	No.	From	То	Interval				RQD Re
			ALTERED VOLCANOCLASTIC BRECCIA								8448	12 2	66.1	267.1	110	440	3.7	530	" 9
					_	-	<u> </u>	\sqcup	_						· · ·	100	-	7,0	
			253.c - 267.7 Peruative clay Service		6	2	2	5	_										
			2/7' 5% PX	-	-	_											_		
			267 - miner chloritie raminants	-					_		8469	1 2	67.1	269.1	2.0	30	Fr. 8	9	
			weaker alth 5% py	+-	_				_		8469	7 2	691	270.9	1.8		1,0	_	
			269.1 -270.8 QC Stkwk (shatter zone)	-	<u> </u>	ļ.,								272.2		65		268	
		$\neg \uparrow$	271.2 -271.6 Fulltzene Marks lite		1						300	- 1	2.2	274.2	2.0	30	1		
			myalatch)		_						346 8	34 2	74.2	276.2			2.5	-	
			272.5-277.4 Black metallic mineral	4	<u>K</u>	3	3	4			8438			2722			2.0		-
			locally disseminated Throughout	_	-				\perp		846	2/ 2							\neg
			laire like inagnetite carbonate	-	ļ						546	37 2	78.9	274.9					\neg
			2+2 verning + flooding		<u> </u>				\perp					,			,,,,		
			274.4-242.7 Altin weaker with	4	1	/	4		\perp		9460	14 2	9.9	281.4	2.0	15	1.2	70	\neg
			reminant Chlorite in patches lastic	ـــ	_									283.4			42		
			Testure quite obvisus								3470								_
			19 Fault Sil ser Oltwa 3cm 70°01	 					\perp		2470	2 28		297.9			1.2		
			186.9-287.3 1 It 30- CA Clay	_												30		80	
		-	each, grass				\perp										.7	/	\dashv
_		- 12	3 1cm QC vein 45° F	<u> </u>					L		2.99					45	.9	10	-
	_		8.7 Rom Carb Str. Harris 45°CA								*3473			193.5	0.9	198	20 2	1001	-+
		12	910-291.2 JC URINITY 50"CP													10	w.J.	076	-
			92.0-242.2 20 Stkuk Trend 30 CH, P		1	3	3 .	7 7	۲-	101						$\neg +$	\neg		+
		12	926-2935 3tz Carl Stringers + miner													_	-	+	+
			C+km & Strain Pervasur Clt.												-		-		
			43.5-301.5 Waker pervasive all v	4	4	2	/ 3	2			24707	1 29	3,5	293.5	3.0	40	CZ /	100	+
		_	greener Thands patches gill							1	3 470			294.5			_	76	+
		\neg	Drusent								9470			301.5					_

ŀ	5		
Carmac Resources Ltd.	Project:	HANK	Drill Hole No. <u>H-90-1</u> Page 9 of 12

Inter	val				Alter			1	inera					Assay D	ata				Core	Dat
(meters) Roo	Rock Type	Geologic Description	(b)	Servente	(arbonst	Silica	P. 1/2	Sph %	61.16	CAYOS	Sample No.	From	То	interval				RQD %	Rec very	
			297.3 Cypsum common as																	
			The Colors Colors																	Г
301.5	3c44		MAFIC LAPILLY TUFF dark green																	Г
			30% hbe partly shleritized < 1% px	3		ンカ/ サ	Gyps	2/%				847/0	30/.5	304.5	3.0	45	4.2	66		Γ
												847/1	304.5			65	" "	8		
304.4			ALTO VOLCANOCLASTIC PRESCIA	5	6	1	2	3%	1			84712		3/0.5		50	41	30		
			Peruasive Clay Servertz alto weaker									847/3	310,5			80	4.	67		
			pervasive care social silicitication									847 14	3/3.3	3/5.9		160	**	744		Г
			327.2 32 U-15 161 45°CA									24715						46		
			3/3.3 - 3/5.2 3+2 Carb werning 20%	8	6	2	4				1	·	317.4			35		11		\vdash
			3/3.3 - 3/5.2 3-2 Carb weining 20%									947/7	317.2	320.4		65	-1	33		<u> </u>
			Px 24/2 ~ 10/0 5ph.					49	.5%											Г
			315-317.2 Mod Practuring Siptum																	Г
			common as for shearing tronds														 			Г
			50° C PA																	Γ
			319 1-32-4 - Shear = she																	Г
			317.7 - 6 mm winds 194 5ph 30 4A					7	1											Г
			317.9 QC vein 455 3H 6Cm																	Γ
		l	P! + 3Ph				T -						ı							Г
		/	320.4-3390) Mad por wasive Clay					4				247/8	320.4	323.4	3/1	85	1.	199		Γ
]	Ser. Alta Mr. Patches Samuel									34719	1			10	*	57		Г
																				Г
			Common St 4% py																	Г
			27,33-327.7 Foult 30°CA Fragments					4	410/5			9 47 7 B	324.4	227.7	/. 3	45	4,	1/3		Г
			Pi + sprikrite near fu					Γ΄-				34721	, ,	-		35		127		Γ
			328.8 Fault 50°CR ~ 50m									24727				10	ħ	33		Γ
			372.5 - 332.8 Fault 60° CA Stry Chi inf									34723				25	t,	16		Γ
			337.3-330.3 Foult some HW 3-0 FW450																	
			(334.0-350.0) See (24.4-334.0	\Box				5												一

Carr	nac	Res	Durces Ltd. Project: <u>4ANK</u>									ill Hole I	No. <u>/</u>	<u>ප -/</u> P	age _	<u>ls_</u>	of .	10		
Interval			Goglogia Deparintian		Alter		<u>n</u>	Mi	inera	aliza	tion			Assay E	Data				Core	Data
(met	ers) To	Rock Type		Clay	Schatc	Carb	Silica	2.0%	k %	Cal %	CPY	Sample No.	From	То	Interval				RQD %	Reco- very
			ALTO VOLORNO CENSTIE BRECCIA CONF	1	Ť	\vdash	\dagger	1	 	 	 			1	 	-	-	-		%
			P-rvasive Clay Series coalteration							T -			· · · · · · · · · · · · · · · · · · ·		 	 	<u> </u>	 	 	-
			Privative Clay Series alteration Chlorice still present bacil												 	 	†	 		
			30 3/-N + 30 TIPSUM COMMIN													 		†	 	
			25 - 1 Kernte to Strong Posterin	7												}	†	_		-
			334.0 -348.0 Strong Shearing Fault	5	5	3	2	5				24724	334.7	334.7	3.0	55	1.2	178	274	
			33 to -3483 Strang Shearing Fault 23nc Trend Se CA	_				_				34725	339.7	342.7	3.0	5	4.2	77.	5	
			355.0 Shear 40° CA	<u> </u>		<u> </u>	_					84726	342.7	345.7	3.0	20	.3	57	178	
				L		<u> </u>						84726 84727	345.7	348.7	3,0	20	.z	79		
				<u> </u>	igsquare	<u> </u>						4773	3.48.7	351.7	3.0	10	1.Z	61		
				├								84724			2.e	10	4.2	9		
355-1			~ 1.0 C ~ 11 1.1	 			\sqcup					2773 0	353.7	355:1	1.4	30	1.3	43		
-223. 4	+		END OF HOLE	-																
					\vdash	\vdash														
						\vdash	\vdash										ļ <u>.</u>			
				-																
																	ļ			
											-						 	\vdash	 	
											\neg							\vdash		
_ _																				
		$-\!$	-																	
		$-\!$																		
		\dashv			_	\perp														
						_														
					\perp													\Box		

Carmac Resources Ltd.		DEPTH	BEARING	DIP	SURVEY TYP	PE I	PROJ	ECT:	4	lar	K			LENGTH:	367.	9		HOLE NO .: H-90-2								
				COLLAR	1220	-49		9	CLAIN	1:	H	unt	< 2	2		CORE SIZ	E: 4/	0	SHEET	NO.	1	of -	7			
Diamond Drill Hole Record			13.7 f t 487	118.5	- 49° -51° -51.5°	-Eastman 35 LATITUDE: 13, 373.28 N									RECOVER	Y: 99	7-100	LOGGED BY: CA Cloud								
				337	1/5.5	-51.5°	1/	_ [DEPA	RTU	RE:	9.	900	2 . 01	γ E	STARTED: COMPLET	Fire	, 2 4 , 193	SAMPL	ED BY	·		<i>-</i>	,		
								E	LEVA	TIO	N:) (330	، 17 ا	1. /	PSL	COMPLET	ED: Aug	27, 177	PURPO	SE: /	<u> </u>	-		<u> </u>		
Interval (meters) Rock Geologic Descr								Alter	atior	וו	Mir	nera	lizat	ion			Assay D	ata		wer		Core Da				
		Rock	Geologic Descri	ption				0	52/	د ه	51/15	12	3.5	ر ا ود	5	Sample No.	From	То	Interval	Au	Ag	Cu	BOD	Rec		
From	То	Туре	3-27.1 O.B.					1	521.25	are	10.4		رو			Cample No.	FIOIII	"	III III III III III III III III III II	Au PPb	PDM		%	ver		
\ 7.1	116.0		VOLCANO SLAS	STIC /	3/2Ecc/	M. 01	-iainally	4	+	3		3.5				84730	27.1	30.1	3.0	30	0.3	43	-	 ^		
			andesitie. Su	6 - ana	ular +	ragme	ints up					-				2473/		33.1	3.0	5	0.2			T		
			to 10 cm.	Strong	r	fracti	er in a									8.4732		36.1	3.0		0.6			T		
			as noted be	ر پ سول:	ch/arit	e - c	/úy									84735		39.1	7. O		0.4			T		
			alteration													24734	· · · · · · · · · · · · · · · · · · ·	42.1	3, S	30	1.1	153				
			effects for														-12.1			90						
			brick is													82736	45.1	78.1	3. C	10	1.3	549	,	Τ		
			miner hematit	<u> </u>	مرق ا	· .	<u>ے کصد د</u>																	Г		
			grained +	= 21h= dr	al a	V. ~	3-4%																	Γ		
			27.1 - 30.4 /	ault	6) •	19														<u> </u>				L		
			33./	3.	5° : 11	4cm														ļ						
			344 -35./ Car	b str.	ngers	55°	C4					\perp								<u> </u>						
			34.1-35.3 5,	2/2	J	<i>इ.इ.च</i>	<u>. ,4</u>	L					_							ļ				L		
			41.4 16cm G									\perp								ļ				L		
			48.2 111-4 G	W sux	5 // t	ے بروڑیوں			_			\perp		\dashv										L		
			38.0-50.0	Vc UX	· slation	-10	12/	4_	2	2	2	<1.0					1	ļ		ļ				ot		
			Find - 60.0 C	sery s	trans	Clay	altri	7		2		2.5				<i>84737</i>		51.1	3.0		2.9			L		
			Red brown	<u> کتر</u>	3 tain	y S	trong					\rightarrow		_		27732		54.1	3. ú	20				L		
			+racturina	2-3%	12/						_	_	_					57.1	₹. ೨		0.3			L		
			502-512 Fau					9				2.5				89740		60.1	ن.3	45				L		
			54.1 QC vein	30° (CA Irro	=g ~	25 cm						_			8474/	60.1	63.1	3. ℃		0.5			_		
			55.7 - 13.7 Faul	t Tre	nd 50	CY	1nt-nse	9				2.5				8-77-12	631	65.2	2./	10	0.4	441		<u> </u>		
			-lax altiv		,						_		\dashv							-		<u> </u>		\vdash		
			65.2 Pu	tchy c	lax al	twr	plagueles	-4	2	2	4	.ò</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td>								 						
			ff andes	itis ro	ck	1º/0 P	y Curb			-								ļ	 	<u> </u>				├-		

Inter	val				Aiter					lizat				Assay D	ata				Core	Dat
(mete		Rock Type	Geologic Description	Cb/	Sencite	Carb	Silies	P. %	Sph 3/6	621%	Cp; %	Sample No.	From	То	Interval				RQD %	Rec ver
			71.6 _ 71.9 Fault Clay gouge 35°CA	7	2	2	1	<1												
			71.6_71.9 Fault clay gauge 35°CA 74.2-74.7 " " 45°CA	2	2	2	1	41												
			75.4-75.6 " " " 45°CA	12	3	2	1	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
			756-830 Minor Faults Trend 45°CA																	
	<u> </u>												a							
			82.c -) Sore varies from													<u> </u>				L
			dark gray green to parroon													<u> </u>				
			the to February store																	
			Telifares still Trical of valcanoclastic	3_		2		2,0												Γ
			Mais you carpais alteration																	L
			in fractured sections, incette plas	L							<u></u>									I
			properties and per Trand carb																	
			Stungers: ~ 35 do CH													<u> </u>	L			
			17418 Proses white South your sounds	L					i								1_			
			106,2 Quein 2:10 25° CA																	L
			107.6-1/60 Section in rately a-1/	4	C!!	2		1												
			Hay comb on like green													<u> </u>				
			the saleur of the a felt of	L								347-3	1/1.0	//-7.c	3.0	5	<.2	151		
[dist Pr									24794					1.2			
160	1.7.2		BROWNISH BLACK MAFIC DIKE								_									Γ
			Deast wery apparate rule no																	Γ
			Sulfidor 1/2 BOOK IN WELLOW																	Ţ
2.0			WACHNOOLF THE INFECTION STRANG	6	4	2	2	3				24745	ز.112	120.5	3.0 -	10	42	50		Γ
			20 breezer un and Fracturina									24745			3. ა		1.0	110		Γ
			Patchy but project day carb								-									Γ
			1/7.0 -127 large sien Zene Trend																	Γ
			45-454 174																	Γ
			Strong 197 32 620 1158 1179												· · · · · · · · · · · · · · · · · · ·					T
Ì]	Mires Siliceous patches + Pf																	1

Inter			Coolerie Description	<u></u>	Alter			Mi	nera	alizat	ion			Assay [Data				Core	Dat
(met	ers) To	Rock Type	Geologic Description	. 2	Sarioti	dob	31/164	J. 0%	5ph %	Ca) %	Cry%	Sample No.	From	То	Interval				ROD	F
			VOLCANO CERSTIC BRECOID CONT	8	24	2	2	3				24747	/23.3	124 5	15	220	0.6	72	 	70
			1215-123.7 juge is nearly hock	L								94748				15		85	 	-
			due to graphite or carbonocecus									34749				$\overline{}$	0.6		 -	
			material												3.3	13	0.0	36	 	<u> </u>
267	132.3		FINE CRAINED ANDESITE Probably	2		2		3										 		\vdash
			a DIKE relatively unfractured Dusted													ļ				_
			with time pyrite disseminations														 	<u> </u>		_
		-	+ 50m= 22 Play Phanacras 1 3 rom																	-
			·														<u> </u>			
32.3	134. =		FRULT DINE 60% Gouge Trend	y	5	3	2	5				84750	1297	132.7	30	-5	0.5	150		
-+			~ 40-04) Proken O-boles 32 porte											135.7		5	1.0			
			Back seems & doo Back teins in																	
			gonge was pro operall																	
			134.3-1344 with per unio																	
			35°CA																	
35.3	152.0		VOLCANO CLASTIC BRECCIA Patchy	5	2	5	2	2.5				84752	135.7	138.7	3.0	5	1.0	101		
			pale green clay carponers sections									24753					3.4			
-			with dart green chloritie portches																	
	$\neg +$		C Stringer: complet but miner										ı							
			Transling 30 -41. CA Fragments up to								[
			16cm suprounded to angular		_															
_			2-3% /		_		_				\perp									
			141.0 - K4.5 VERY WK alt' 41=16p1	٦			1	41	_											
		-+	144.5 20m Corh Str win Cgpy 55-20				_													
			1445 Very weakly carponalized Pestion	ا څــ		2	[_									
-	-+	_	Minor Sta Con Stringers, Fraginants		_	_			\perp	_	_									
+		 ,	52.5 cm QC vein w px		\dashv		\dashv	\perp	_ .											*
\neg		 	JAS 1cm QC Vein w py			_	_				{2}	84754	1523	/53.3	1.0	5	0.3	53		
			53.2 sam Ochein in Py				- 1				- 1		}	T						

Carr	iiac i	1650	Durces Ltd. Project: HANK								יוט	ill Hole N	10. <u>H - J</u>	<u>0-7</u> Pa	age _	<u> </u>	01 _			
Inter	val				lterat				nera					Assay D	ata			لــــا	Core	Data
(mete		Rock Type	Geologic Description	Clay	Carb	1	Silica	200	50/ %	621 1/2	e/c taz	Sample No.	From	То	Interval				RQD %	Reco- very %
1520	175.0		FINE GRAINED ANDESITE TUFF	1-2		2		4												
			Env green basically unaltered except							_									<u> </u>	<u></u>
			where noted, Minor disseminated py																	_
			Mine 3-2 carb stringers with 120	1	1	}	}	}							l				<u> </u>	
			157.5 QC stringer & minor py 60°Ch				7										·			
			157.5 - 158.5 Buff coloured carporatized	2		4		1%												
			Section			Ť	\neg	1		Γ										
			167.1 - 172.1 Buff coloured carporatized																	
			3-ction			寸						84755	1/9.3	169.1	3.8	5	4.2	41		
			163.5-13.6 Sta Oak Storger 2002			4	_	,	Tr			24756	169.1	172 1	3.c	5	0.9	187		
			attach some dick gray chalcading																	
			atz 106 pt Tr Sph																	
			167, -172.1 Pitch, Blue gray chalcolonic				\neg													
			ite ~10% pr well rack is both			7														
			1201/ st ~ 35° CA		_		\neg													
1750	367.9		VINCHARCALISTIC BREEZEITH Bark			, 1	_,	,												
	- 11 - 1		gran green mattered except					-												
			where noted ~11/2 /2/ targe			*1	7	V			\top									
			Subangular fragments up to			_											1			
			150m Compesition andesite			1	_			\vdash										
			1742-180.4 QC Steakharis 4% px			.7	4	4			1	247.57	174 2	180.4	1.2	30	1.7	1/2		
			1824-1920) unaltered weekly			-	7	-/	-			-11.57.				<u> </u>				
			printized rock, minor conboratized		_		-1													
			Patcher , Minst Con home.	1-1	-	$\neg \uparrow$										T-				
						-9		6		 		84753	192 0	196.6	112	25	2.4	51		
			196.0-196. 10 shatter Zone 6% py 204.0-204.3 Carbonatized Fault Zone						_			27/33	170.0	4,5,5				1		
				1		+			_			24759	211 5	2124	3.9	115	4.7	36		
			for 0.2 M above HW of Fault				_			<u> </u>	_	07/37		775.	<u> </u>	1"		1	\Box	
			212.4-213.2 FAULT Very Strang!			7	_			-		84760	212.7	0.13.2	0.8	175	6.1	230	1.	1

		1	Durces Ltd. Project: <u>Hank</u>	1	Alter	atio		l Mai	inor	lizo	tion	rill Hole N								
Inter			Geologic Description	\vdash		10						 		Assay D	ata	,	т	т	Core	Data
(mete	To	Rock Type		Clay	रंभ शक्	ar) onat	Silica	3, %	Sph %	0/0/0	Cpy %	Sample No.	From	То	interval				RQD %	Reco very
			45° CA gauge ver/ dark due													<u> </u>		1		1.0
			to ground sulfide (pyrite															1		
			· · ·	L					<u> </u>											
2132		<u> </u>	This fault is the contact with	1	6	4	3	5		<u> </u>										
			the LOWER ALTERATION ZONE																	
			The wall rock appears to be																	
			the same however the core																	
			is very pule green to white due to	_																
			pervasive clar carbonate severte						ļ	ļ										
			alth Pyrite content ranges																	
			from 4-6% Otz Carponat - veinlets	_					<u> </u>											
			and stringers are more common																	
			Local zones of silicous flooding							L										
			will be noted																	
			213.1 - 216.4 Silverbed zene strong secondary Breccution 5% pyrite	3	7	5	<u>:</u> 5	5	Tr			*84761	213.1	214.4	1.8	190	2.5	12		
			secondary Brecciation 5% pirite										21-1.4		1.5	355	0.5	4		
			Minor supplement Toroughout.	<u> </u>						<u></u>		84753	214.4	214.4	3.0	195	1.7	44		
			, , , , , , , , , , , , , , , , , , , ,						<u> </u>		<u> </u>	84732	219.4	222.4	3.c	70	4.2	11		
			224.0 224.4 FAMLT Siliceous Singe 80 C.					3				84765	222.4	224.0	1.6	155				
			224.9 - 226 7 Silcified zene									94766	229.0	225.7	1.7	295	3.6	195		
			225.7 - 226.7 8% 124 miner Cpy	<u> </u>				3			< C. 3	* 24767	225.7	226.7	1.0	890	3.6	195		
			main shearing 35-40° CA									84768	226.7	228.7	2.0	220	2.2	106		
			228.7 - 2328 Chloritic section weaker	3	1	3	1	3		ļ		84769	228.7	2 30.7	2.0	140	3.4	97		
		* `	permasue alt w	<u> </u>								84770	230.7	232.7	2.0	55		10		
-+			233 2 MUNOY FAULT 40°CA									84771	2 32. 7	234.6	1.9	95		53		
			234.6-238.5 Silverfied some Strongly fred.	3	7	5	5	5	<0.4	<0. 1	< 0.1	* 34772	239.6	234.6	2.0	195	7.2	55		
			Minor galena + Sphalerity Incongnout									*84773	236.6	238.5	2.0	180	6.7	13		
			Strongly Cheared									84774	238.5	240.5	2.0	125		474		1

Interval				Altera		n	Mi	inera	aliza	tion	1		Assay D	ata				Core	Data
(meters) From To	Rock Type	Geologic Description	Clay	جهد، لمن	Cirhnie	Since	PV 2%	50%0%	1/2 /10:	COVO	Sample No.	From	То	Interval				RQD %	T
		249.7 - 262.3 Substied Zaize, Minor	3		5	5	6				84775	340.5	292.5	2.0	80	1.8	28	╁	76
		gal + Sph + cpx with 6 1/2 px									9.477/		644.7	2.2	10		26	 	
	<u> </u>	Throughout Strong galena + sphal	Ľ	'		Ľ	6	.5	. s	Tr	24777	244.7		1.5	145	+	101		
		in Shear Tone 246 4 - 2 46. 4 45%	بهرا				4	5	. 5		34779	246.2	246.9	0.7	355	8.3			
		2º pro, vath a mon locally						-,		~	34777	246.7	248.3	1.9	66	1.0	49		
		1. 1 - 12 4 17 5 155 15 15 15 15 15 15 15 15 15 15 15						-,	Tr		84790	243.9		2.0	95	1.4	69		1
		15° t.					7	7	~ .	T _r	34791	251.7	252.3	2.0	105	1.0	57		
		253.7 5 Jan 3 July 1971 1971 1971					·	5	-,		34-03	252.9	્ર્યા ક	2.0	15		48		
		- Charles Free Lines and the						Tr			34785	257.8	252	3.0	30		86		
		1008 William Lawrence					2				94794	75.4	2512	2.4	55	0.7		<u> </u>	
		124.2012 111. +1 app 4 11 70 00		,			·	, ÷		1.	734795	2.5 2.5		1.4					
		24.3 - 27 2 Strong lang tracks some					r	<u>-</u> ,	7r		٠٠. ٣٠. د		2.11		150		75		
		and the second s	<u> </u>																
		Division with the side of the side		-	25	9	٣.				3-1-3-	0.72.3	2J-7 R	2.5	35-	0.7	56		
		the state of the s										235.3	238.3	3,4	55	1.0	77		
		151-215 5 First 120m 1200			1						ر د - د. د	235,3	27.3	3.0		L.Z			
		E 21 - 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1																	
		235.5-2508 Million Lymny to Charles																	
		274,3-274,8 Sparrage to a					ź.	Tr	75		ايد و ريو	: 7, 31	208.8	9.3	20	1.2	24		<u> </u>
		77, 330 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									3 <u>29</u> 3 14 1	: 73 2	3 (141) 4	1	205				
											3-1-1-4-1	574.4	15. 4	ر د پر		4.2	20		\vdash
	:	2784 - 2831 Sta Chin 2 + 30 + 4 mg	رر	6	<i>=</i>	4,	7				プーシアナス	275.2	,	٤.٥	20	-	18		
		Partition forms Trapel ASOCH									ري وعرب	0743	از روي	/.당	75	1.2	55"		
		283.9 - 284.7 942 1241 18454 3									24775	137.7	033.7	1	25	1.0	51		
		423 - 204) de promo uniter		2	۵	2	23					7-2	CH-LD		275	1.1	23	V	
		and have considered to a second									34.297			3.0	15	1.3	106	<u> </u>	<u> </u>
		Main Shear Treny 42 CA Pat									34743	2877	2 70.7	3.0	10	4.2	12		
		Property - incharge 112 day to 15									24714	£ ₹0.7.	093.7		15	(.7.	94		
		· ·														~~	-//-	-	i

interval	- 1			Alter	atior	n j	Mit	neral	lizati	on			Assay D	ata				Core	Data
(meters)	Rock Type	Geologic Description		:(2	S. A.C.		1.1		,	Sample No.	From	То	Interval				RQD %	Reco- very %
		295.0 - 3 · 3.5 W. W.	14		3		ς.				39 hps		245,7	2	290	0.6	48		~
		11.5									-3-151	2.4.	8997			1.2			
		Latin - Sold Separate Sorp Corp.	4		1	3	3.4				33452	5. 17. 2	2012	1.5	15	0.6	61		
		Jone 45% 1 900 1110 0100 100 100 1000									3453	42.47. 2	301, 4	2.2	205	0.5	70		
		Same and the second sec									'3 <i>454</i>	501.4	303.1		5	0.3	10		
		3031 - 20/00/2 10/12/20/20/20									3.457	14.03.7	335,7	6.7	10	4.2	132		
		Character of the second second second second	<u>_</u>	1351 15		,					3	1 5.5	. چر	ى. 3	10	1.2	89		
		3-4-6,00									-3.2	: 3.كند3 - الاندو	-:500	4.7	110	2.8	64		
		524. 4 - 544									₫ 3 ☆%-	912.0	3/5.5	0.5	980	1.4	48		
		the same of the sa									23-53		735		260				
		3101-3104 Diven 151619 21/10					ć				3	, ,	3/3/5	3.5	115	0.8	47		
		Tr Spas																	
		2007-3000 20 rest 5 pt 452A	1				7 =		<u> </u>	1641 1641	-3-			4	10	0.4	72		
		37-1-33,4 10, 1000	.1	.1	-4	ς,	7.4		<u> </u>		-2 -3	379.2	250.2		15	0.9	169		
		The second of the second									-3		5,5 5,5		65	1.5	230		
		- Chige 3004 3009 327000									23464	300.0	329.7	2.7	355	2.4	66		
		ಸ್ವಿಚಿನ ಕಗಳು ಕಟ್ಟ									934.5	3.24. 7	3 4 1 7	2.		2.2	51		
		Then & Marie and the same and									73-60	373.7	3 52.0	· ; ;-	495	4.8	126		
		337.7-2372 FAULT AP. A. W									-3	357/	232			0.5	80		
		+ /									3	3,200	34.		10		66		
		198 - 388 / M. A. M. Mary M. Mary M. M. M. M. M. M. M. M. M. M. M. M. M.		2		,	٦,				3	3.41.7.	20.00	3.5	25	0.9			
		· lovering house they a serving a non									- 3		50 -0 - 7	4		1.4			
		Locallined some man 3 % pr									3	* 2	2.7	1	15	0.4	133	F	
		352 - 5,79 15 - 1 - 5					- 5												
		The Keep of																	
		EVD BE ADDE																	

Car	mac	Pos.	ources Ltd.	DEPTH	BEARING	DIP	SURVEY TYP	E	PROJE	ECT	: <i>H</i>	AΛ	1K			LENGTH:	40	2.9	HOLE	10.:	H-9	0-3	 }	
Car	mac	nes	ources Liu.	COLLAR	135°	45°	Transit		CLAIM	l:	HA	NK	<i>'</i> 2			CORE SIZ	_	2 2	SHEET		1	of g		
Diam	ond D	rill Ho	le Record	500 ft	134.5°		Eastman S		JTITA.						٨/	RECOVER		8 -100%	LOGGE	D BY:	GA			سرج
					129.5		и									STARTED:		29,1990						
								E	LEVA	TIO	N:	07	2.5	341	m	COMPLET	ED: Aug	31,1990	PURPO	SE: L	BUR	- 7	reni	<u></u> 2
Inter	rval								AILUIZ	11101		MINI	ciai	ızaık	UI 1		7	Assay D	ata				Core	Dat
(met	ers)	Rock	Geologic Descrip	otion				Clay	Semerte	Carb	Silica	50 1	50)	61 %	6	Sample No.	From	То	Interval				RQD	Rec
From	То	Туре						7	6150	9-	ic.	» e	٠ ا	,e	ે	,		'					%	ver
	15.2		OVERBURD	EN								\neg												
15.2	37.5		FELDSPAR P	PORPHY	RITIC																			
			TUFF Ande	sitic.	50%	lath	like																	
			Plagioclase ph	enecrys	ts in	a	dark						[<u> </u>				
			gray matrix																					
			up to 2cm.				_ •																	
			Minor Clay	carb	alta	lec.	al/y	3		2		41												
			less than 1%	p/ c	1/55 +	on 5	lips	1		1		1												
			23.9 - 24.1 Fa	ult Cla	y goug	e 4	5° CA	,		_		<u>'</u>												
			28.7-29.3 3%	6 py												83472	28.7	29.3	0.6	15	0.3	64		
			26.7-27.2 FA	PULT C	LLay (90491	<u> </u>								\perp									
			35.7 FAULT	3cm	cuge.		35°CA					_	\perp		_					<u> </u>				
37.5	45.3							4	4	3		3.5			\perp					ļ	<u> </u>			<u>_</u>
			Clar sel a	1/4	2-3°	3,	2v 1	+	4	\downarrow		1	\perp	_ _		83 <i>47</i> 3	37.5	40.5	3.0		0.8			
			39.9 - 39.6 /-/	TULT 5	O'CA	-garg	e block					4		\perp	_	83474	40.5	43.5	3.0		<.2			
			Coround Sul	Fides			·					\perp		_ _		83475	43.5	46.5	3.0	<5	0.6	65		
			45.5 1cm Car									\perp	\perp		_					L	<u> </u>			
1	53.3		Rock type as							2		1%	_ _		_					ļ	ļ			_
5 <i>3</i> ,3	257.0		Creamy white	<u>=</u>	y ca	rb c	alteration	5	4	5		4	\perp	_	4						ļ			
			Patchy chlo				reral/					1		-						<u> </u>	<u> </u>			<u> </u>
570	1/03 4		Practuring im							_	\perp	_	\dashv		\perp						1			<u> </u>
2/0/	TVJ.		VOLCANO CLAS	TIC I	RECCI	7 - S	ubangular	3_	3	5	2	1,5	\perp	4	\neg	83476	60.3	62.3	2.0		2.7			_
		\dashv	fragments up						-		_	4-	_	4		83477		63.6	1.3		1.5			<u> </u>
			62.3-63.6 Q							_	_/	.5 7	72		_ _	83479	63.6	65.6	2.0	<5	1.6	165		
			35% veining	~ 1.	5 % py	Min	Sph.			_	_	_ -	\perp	4										_
												\bot		丄								l		

Interval			L	Alte	atio	n	Mi	nera	ilizati	ion			Assay [Data				Core	
(meters)	Rock Type	Geologic Description	Clay	Sencite	Cartonit	5/1/2	prite!	Sph %	Ca10/	Cov%	Sample No.	From	To	Interval				RQD %	T
	ļ	VOLCANDCLASTIC BRECCIA COL	2		2		,,,		1						 				 %
		69.9-71.6 Caticlastic Breccia	T	T							83479	68.9	71.9	 	-	2.2	96	 	⊢
	 	autobrecciation due to mass												3.0	10		159	├─	\vdash
		expansion in main alted zone?	1.								83481					1.3			
		70.3 FAULT 4cm gouse 60°CA	1				7			\neg	83482			1	1				-
		71.6-71.9 GOUSE FAULT 45°CD					_		\dashv	_	8.3482	77.9	20.4	2.5	13	08	147	<u> </u>	-
		70.8 FAULT 4cm gouge 60°CA 71.6-71.9 Gouge FAULT 65°CT 71.9-74.4 Buff gray clay carbonate	3	 , 	3		1%			_							-	<u> </u>	L
		alt'd rock	1		5		1/0						 			 		 -	-
		74.4 -80.4 Caticlastic Bx See	3	2		7	1.5			-+			 		 	 -	-		H
·		68.9-71.6	1-3	٦	3		1.5	\dashv	-				 			ļ		 	<u> </u>
		80.4- Pervasive buff coloured	_			_	\dashv		_	-					 	-		 	-
		Clay Carb scrisite alt'n	 			\dashv	+	\dashv		\dashv								 	-
		20.5 Minor diss sph				ᆉ	十	\dashv		\dashv									
0.4		FOOTWALL OF LOWER ALT'N	 	,	5	3	3	\dashv	-	-									
		20NE - Core is largely a cataclostite	٥	4	2	2	}	+		\dashv						 			
		with precipation during immeralization	_			\dashv	-+	+	+			-							
		and strong post museral shearing +			-+	\dashv		\dashv					 						
		incturing +			+	\dashv	_	\dashv											
	8	32.8 while Corb vein 3cm 90°CA				\dashv	+	-	-	+									
	8	33.9 - 86.7 Brecciated Olz Carb Stringer	4	6	_	-	_	-+			33483		82.4	2.0					
		7012 Steen Du Silve Old	4	6	4	4	4	-					83.9		1 5		95	\dashv	
	ာ	Zene Strong py + silica flooding			\dashv			-+			83485				30		72	\rightarrow	
	8	16.7-86.4 Fault gauge 60°CA ? 16.9-89.7 Buff carbonatized rook			\dashv		-	-		+	33486	86.7	99.7	2.0	30	1.1	93		
	~	30 stringers		5	5	2	2	-		+			<u> </u>						
	٥	3C stringers			+	_	-												
		5-6% py		-	+	5	7.5 7	r		18	33487 8	89.7	91.0	1.3	45	2.3	112		
			\dashv	+		- -				+							$_{\perp}$		
		dark green core corbuntized	4	2	4/	4	-	-		_ 5	3488 9	71.0	93.0	20	5	1.2	78		
		2% pr Minor Hydrocarbon patches			_	_ 1				- 1				1		- 1		T	

Inten			T	Alte	ratio	n	Mir	era	lizatio	_		No <i>H-</i>								
		Book	Geologic Description	12		16						ļ		Assay D	ata	1		,	Core	Da
rom		Туре		/ay	Sericite	Carbonate	Silica	8%	<i>></i>	Cal %	.0/	Sample No.	From	То	Interval				RQD %	ve
			93.0-90 Mottled light gray to dork green	4	4	- "	2	55		\Box		83489	970	95.0	2.0	295	10	GC.		9
			bervasive clay comb seriote		Τ							83490		97.0	2.0		2.9			-
\dashv			alth. Strong QC versing 1-10/									8349/		99.0			1.6			H
			Strongest tractuting + waining 45°CA								\neg	0 9 7 77	///	17.0	2.0	1260	1.6	173		H
			TO SOLE CATE ZOILE /F & Gile								\dashv							-		-
			patch Silici Fication To appar	3	1	4	4	6			7	8 3492		/2/2		915	20	91		-
			101.5 - 102.5 FAULT Siliceaus goinge	<u> </u>		7	Ο.	<i>D</i>					101.0	101.0	2.0 1.8					-
			~ 45° CA					$\neg \uparrow$	\dashv		ᅥ	83494		102.8		,	3.9			_
			02.5-109.0 FAULT Zone Chy-Scricite	\vdash						_	\dashv			104.8	2.0	30		162		_
\perp			gouge 15% of core QC weins	-				6	\dashv		\dashv	83495	104.8	107.8	3.0	35	0.5			_
			commonly smashed		\vdash		一	\dashv	\dashv		-	23496	107.8	110.8	3.0	450		160		_
			109.0 - 115.0 Strangly Speared Clay Ser	4	6	4	_		\dashv		+	83497	110.8	113.8	3.0	385	1.2	95		_
			carb alt'd volcanic	4	6	4	2	3.5	\dashv		\dashv							 		
			150 - 122.8 Moderately sheared clay	2		4			-+		+						- 0			_
\perp			carb-ser all'd	1	٦	4	+	3.5	-	+	$\neg \tau$	93498	_113. g	116.8	3.0	100				_
			117.5-117.8 Fault 50° CA		\vdash	-	\dashv	_	\dashv	-	1	3 3 <i>49</i> 9	111.9	119.8	3.0		2.8			_
			228-1238 QC vein 20ne 3-7%				\dashv	+	+		- 4	83.500	119.3	122.8	3.0	195				
				-		\dashv	\dashv	3.5 4	.c	+		33.501	122.8	123.8	1.0	1080	9.7	79		_
		,	23.8-1360 Claysereite, corp all'd rock		_		-		\dashv			33502	123.8	135.9	2.0	600		101		_
		,	CSI-DS 2 00	2	6	4	2	3.5			- 1	83503	125.9	128.9	3.0		6.5	75		
			55.1-155.3 20 vein 70°CA Mun 130			-	-	_ -	\perp		4	93504	128.8	131.8	3.0	215		70		
			30 + Sericite 35°CA 50% gour				\dashv	-			+	93505	131.8	1348	3.0	80	1.2	97		
			· · · · · · · · · · · · · · · · · · ·	\dashv		\dashv			+	_ _	4									
		7	uery obvious		_		-		- -		\perp									
		- ,		\dashv	\dashv		_ ,		- -			83504	134.8	137,8	3.0	40	0.4	50		_
\top			40.9 - 142.1 3 1-20m Veins Strom		_	_	_[:	5.5 1	<u> :</u>	.5 .9	1	33507	1372	139.3	1.5	35	0.8	100		
			Sph Gal + Cpy Trend 35°CA	\dashv	4	_	-	_	\perp		4	83508		140.3	1.5	જ ૬	16	//3		
		4.	92.2 Tr Sph w Otz	\dashv	_	_	_	_ _			\perp	83504	140.8	142.1	1.8	285	17.8	23		_
1			35.0 - Strong Silica flectin:	3	5	4 :	5					83510	142.1	144.1				19		_
			med veining	1	1	- 1		- 1	1	- 1	1	83511	144.1	145.7			- 4	85-		-

Carmac Resources Ltd.	Project:	HANK	Drill Hole No. $H-90-3$ Page A of B

Inter	val			\bot	Alter						tion			Assay D	ata				Core	Dat
(mete	ers) To	Rock Type	Geologic Description	Clay	Semoite	Carb	Siliza	Pro1.	Sph %	6210%	CPV %	Sample No.	From	То	Interval				RQD %	Reco very
	-		VOLCANOCLASTIC BRECCIA cont.					4	1		1	83512	*145.7	1462	0.5	1510	179	57/		1~
			145.8-146.2 QC vein 40°CA ~ 2cm											148.2		15	0.8	6		\vdash
			Strong Sph + Cpv in middle of										1482			55		83		\vdash
				١.										154.2	3.0	15				
			154.2 Strong Shearing Jown hole From this point Strong Clay alti Sericite Content?											157.2	3.0	365	1.6	30		\vdash
			from this point Strong clavative	7	5	2	2	4												T
			Sericite Content ?																	
			155.1-155.7 Brecciated white BC vein																	T
			minor joy									-							·	T
			159.3 ~ 20m gouge w 12x + sph									03517	157.2	159.4	2.2	165	1.9	42		T
			minor psy 159.3 ~ 2 cm gouge \$\overline{\pi} py + sph 163.7 - 164.4 \$\overline{\pi} \text{Gouge} \text{Sub 1/ to Ct1} 164.4 - 166.8 \$\overline{\pi} \text{Gouge} \text{with Crushed}											162.4		255	2.1	130		Γ
													162.4		2.0	115		27		T
			prese fac tragments									83520	164.4	126.8	2.4	500	5.7	176		Γ
-			166.8 -169.0 Shattered Core 200 4000t					4				83521	*166.8	169.0	2.2	415	4.9	/30		Γ
			Main shearing at 100 2 45000									83522	159.0	172.0	3.0	420	1.8	84		Ι
			OC vein fragments with sphafe										172.0		2.0	155	1.6	100		Γ
			2 mmon									83524	174.C	174.0	2.0	300	1./	64	L	Γ
			13.0-180.2 Cataclastite 50% Cauge. Trend 9 45° Shattered Sections of	7	7	3	3	5				83525	1760	178.0	2.0	355	1.5	111	L	Г
			Trend : 450 Shattered Sections of									33523	178.0	100.0	2.0	645	<u>1</u> ,	31	L	Γ
			13+2 Carb veining (LELY Good recovery									83527	180.0	1320	2.0	120			L	
			insuffring)									<i>935</i> 28	1820	184.0	2.0	/0	4.2	54		Γ
-			170.2 5ph in 2cm gouse 72178					5	Tr			83529	1840	186.0	2.0	10			L	
			170.7 -171.0 QC vein Strong Sish Minor Cpy					5	1			93530	186.0	189.0		65		29		
			174.3 soushed sph + Gal over 10 cm									3353/	198.0	190,0	2.0	190	1.0	21	l	
			175.6 SC usin 75°CA Sph + C/24 in Or /came		<u> </u>															
-			177.8 OCUPIN TO LONG SIN SIN SOL																	
			30.0-1825 Cotaclostite 40% Gouce																	\prod
			1200 Sph + Sal Over 10cm]									Γ
			1825-1961 Mad Frantured rock			ı	T	T											i	\Box

Carn	nac I	Res	ources Ltd. Project: HANK	-							Dı	rill Hole t	۱o <i>-بر-</i>	<u>90-3</u> Р	age _	5_	of _	8	_	
Inter	val	1			Alter		n	Mi	inera	aliza	tion			Assay D	ata				Core	Data
(mete		Rock Type	Geologic Description	Clay	Such	Carb	Silica	13,0%	Sph %	Gal 0%	Cpy %	Sample No.	From	То	Interval				RQD %	Reco- very %
			1861-1945 Cataclastite 40° gauge	6	3	3	2					8 35 32	190.0	192.0	2.0	105	2.5	6		
			1.055 Officeous fragments Than		<u> </u>	<u> </u>						23.533	172.0	R4.0	2.0		8.1			
			above	_	1				_			83534	1940	195.4	1.4		0.3			
			AD 5-173.7 QC vein Carb Minkigh 76°CA				ļ			<u>L</u> .		33 <i>5</i> 3 <i>5</i>	195.4	196.9		65	0.7	247		
			19/19 40m 20 vein									33536	196.9	198.9	2.0	15	4.2	3/		
			194.5-199.6 moderately fractured									83537	198.9	200.7	2.0	15	0.4	37		
			175.4 - 196.9 NISSEM Gal + Sph associated					3,5	0.2	0.1		835.33	200.9	202.9	2.0		0.7			
		·	with silicens Zones									33539	202.9	204.9	2.0	135	0.3	86		
			199.6 -200.1 Siliceous gauge 50°CA									33540	204.9	206.9	2.0	15				
			200,2 White Carb wein shattered							1	1	83541		208.9			0.6			
			200.6-211.6 Caticlastite 60% goinge	6	3	3	3	4	Tr			835.42		210.9		5	4.2			
			Glay Stricte . Siliceous Datches				Ī		1			83543		211.6		10	06			
			Miner sph frags in going									73544		214.6		10	0.3	64		
			shear Trend 50°CA EW U5°CA									83545		217.6	, , , , , , , , , , , , , , , , , , , ,		03			
			2716-224.5 Come still shottered with	Π									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1				
			a 17 % gouge clay somite carb alth	Π												1				
			pervosite some local silice finding	Γ												 				T
			N: 10/							1		23545		19.	_3.3_	24	6.5	16		
			20-15-223.2) week Fristuring Pervayine			_				Γ			5,5.3			140				
			QCSax Are				ļ —			1		33543	223.4	263.6	F	10	(2			
			0040 - 0044 FRALT 00-40° 09 8					5		T		355 49		2.23.2		10	0.5	1		
			23.1-230.4 Fault 25°CA				I					335 50	2.823	331.2	ر ج	10	0.2			\Box
			253.3-253.2 Fault 5 322 55ctl		1-1		\vdash					83551	A31.2	2.54.0				127		
			2325 -573 7 Fult S. Fung 40°CA									23552	23-12	237.2	3.5	15	4.2			
			237.1-230.2 Fault QC ven Prace 35°C/7	⊿.	3	3	1	4				3322 32243	237.2	240.2	3.2		0.6			
			(222.7 - 243.5) Weak fracturing viscosing		1	-2-	 	7				3.2.4	240.2	2.43.0	ر. ب د. 3	35	0.7			
			Slav Ser Carb wk Silicification									23555		243.7		230				
			2-33-3-35 OS vein 4500 more	\vdash						 			2.43.7:			5	6.2			_
			250 2500	_	\vdash			\vdash			 		2-43.7		1,8	5	4.7	7		
				Ц	ئــــــــن					L	L		2-4-3-7	<u> </u>	1.5	ــــــــــــــــــــــــــــــــــــــ	۲۰۰۲			L

Inter					Alte	ratio	n	Mi	iner	aliza	ation			Assay [Data				Core
(mete	ers) To	Rock Type	Geologic Description	7/21	Sales	Such	501 24	1. A.	Spass	Sal of	Cp: 1	Sample No.	From	То	Interval				RQD %
\dashv			0485 - 0596 Fauti Printie Chr-ser	1	+	1	1-2	ج	'	+	1	<u> </u>	0.00.5	251.5	 		-	-	 ~
_			Douge With granded 5/ France 450 CAR				 	-	†	1	 		2515		3.5		6.4		-
_			303 4							†	_			259.5	3.0	15		52	
			157.5- 3017 Scattered Immer Faults 300		\top				_	+	 	1	554,5		3.0	5	0.4	-	1
\bot			2000	1-	+	-	\vdash			-	1	224()	2,47.5	230.5	3.5	10	0.5	/3	
			2 117-223.3 Medicately - Practiced Section	 -	-	├_	 		_	-	-		***************************************					 	
			F-181 hu 21 ractifed Section	1	7	=	4	5.5			—	<u> 83532</u>	9655	233.5	3.5	35		26	
\top			5-10's or sistematic although	 	┼	_				├	-	शत्रहाउँ र		233.5	3.≎	10	4.2	148	
			potopic since Pisoling Classic Todans	-	-	<u> </u>		_		ļ		37404	2305	239.5	3.0	15	1.2	100	
\dashv			Unitie man flows Reported toplaced	<u> </u>				_		<u>L</u>		33535	20~.€	573.5	3,5	5	<.Z	22	
\dashv		-+	in party main fracture trans a serop																
\dashv			273.3-279.6 Foult zone 200 3040e	<u> </u>								325;	2725	275.5	3.0	10	0.6	7	
+			Broken De veins common Trend 35-45 CA	4	7	22	3	3				23577	2.25.5	278.5	3,0	10	1.1	7	
+-			2726-2393 Relatively weakly - included									33503	2735	281.5	3.0	5	1.1	15-	
+			Zone very Strong 174 250					9				بازې د ز	2372	_ 234.5		س	1.3	4	
+			1323-2015 Foult Zone 15th Source					7				33572	23-5	2875	3.0	/0	1.3	5	
4			the rest is shattered the 120 12000 Feb 5500A					-				3377	237.5	290.5		15			
			Trend on primar beins 4 styne some					_				93572	293.5		3.0		1.2	10	├─┤
\bot			arms sem carb sta vein more sain for				\neg	7	Tr	た		*		252.1	دُ ۱۰ ک	/0	1.3	2	\vdash
\perp				21	7	2	_	7	/r	14		33573	242./	232.6	5.5	60	4.2	13	\vdash
			The State of Winds Courins	21	-	~	3	7				35=	222.0	295.3	3.0	10	0.6		
								-+				35555	244.6	278.6	3.0	90	0.5	70	
T		-	246.2-297.7 - 20m Covern Sub / 40 com						77-			335-3	275.5	30/.6	3.€	10	0.3	10	
T		-	Alma Sala										531.d	304.5		15	4.2	132	
1			Sign - 3/4 o mont in modernio fractation	3	7	۵	3	7				33573	304.6	30.7./	₹. ⊜	10	1.0	3	
\dagger			3119 Foult 4cm Souge 50°CR	_		[935 - 2	3 25 3	3/0.6	2,0	10	2.1	52	
+			3/3.8 Cpr blebs over 3 cm core								Tr	33530	512.6	3/3.6	3 . C	50	4.8	128	
+	-+	-3	14.3-300.6 FAULT 80° Gove ~35°CA					7				35 <i>59</i> /	3 / 3.6	3/4.1	C.5		2.0		
+-			312 12m = respect cp/								Tr	33532	314.1	3/5, ₹			3.5		$\neg \uparrow$
+-			317.5 fragmants Sph					Τ.	72			93543 3	315,3	317.5		305		190	-+
	l		*									<u> </u>	1/2/5	31/.5		190	-	170	

Carmac Resources Ltd.	Project:	<u>Hank</u>	-	Drill Hole No. <u>H - 90-3</u> Page	_7_	of .	8	

Inten	/al				Alter		1		nera					Assay D	ata			·	Core	Dat
(mete		Rock Type	Geologic Description	Clay	Sepporto	Carbon	51/103	Px :	Sph %	Cul %	CPI %	Sample No.	From	То	Interval				RQD %	Rec ver
	-		320.6-347.4WK - med fractured altid									83585	319.5	322.5	3.0	125	0.8	8		
	•		Valcana clastic Breceia , minor atz	3	2	2	5	5				33535	322.5	325.5	3.0	105	0.9	23		
			Early veining Tr 25° CA Siver Planting	l L		i			<u>_</u>		<u>L</u> .	23587	325.5	328. <i>5</i>	3.0	135				
			329.3-329.5 Faux 35-CA 20 veining	<u>'</u>	V	•	V					33588	3285	331.5		155				
			331.3 30 win 450 CA 5 15									33537	3345	334.5	3.0	165	1.8	139		
			332.4 Julien cin 3504 Gal - 5ph					5	$\tau_{\rm r}$	Tr										
			343.5 Druzzy Calcite win									33590	334.5	337.5	3.3	105	0.6	77		
			3-7-1-370,0 Strong fracturing	3	2	2	5	6				33591	3374	343.5	.F.J	285	0.8	22		
			3-17.7-3=7.9 Gauge Fault 50°CA									83592	340.5	343,5	3.5	230	0.7	89		
			353.1-351.2 Souge FW 25°57 HW 50°CH									93593	343.5	3+3.5	3.0	150	0.9	100		
			353.0 - 356.0 Fult 500 yours Tr 50°CA									33594	376.5	349.5	3.5	210	1.0	20		
	-		353.2 Hairling Sph 10						Tr			33575	349.5	352.5	3,0	155	0.5	27	<u>L_</u>	L
			356.4-357.2 FOUR 450 HOUSE TO 60°CA									33596	352.5	355.5	3.0	205	1.5	35	<u>L</u>	L
			3576-3700 Strong Silverfination as seens	.3	7	2	7	8				83577	355.5	353.5	3, <i>0</i>	10	0.7	13		L
			+ 1=1000 ling									33549	५५५.६	331.5	3.0	55	1.2	19	<u> </u>	
			3597 - 3541 Spage : 75° 0A FRUIT									ودحوي	35/.5	364.5	3,0	50	1.7	35	<u> </u>	L
			3541 Winer 500									33600	२,(ब.ह	367.5	3.o	10	1.0	74	<u> </u>	
			The Thorn Sign FAULT 45°CH																<u> </u>	L
			301.3 Junge 3cm FAXLT 45°CA											1						
			331.9 Some 20m FAULT 50°CA																<u> </u>	L
			363.9-365.3 Short Tone 2003 ange																	
			45-5 CA													<u> </u>			<u> </u>	L
		-	3: K-34 FAULT TOO Goige FW 480P					8				336CI	3 7.5	370.5	3.5	10	1.5	181	L	L
			374.5-375.5 F 1 Strong QC 481010g				[83602	370.5	378.5	3.0	80	1.5	143		
_		-	Tr 50°CA									93603	373.5	376.5	3.0	30	0.8	37		
			377-7831 FAYET SHISSONS PROFINED									83604	376.5	377.5	7.0	35	1.5	8		L
		- 1	3877-3878 Fault Chy a 10010									8330×	इन्दर	₹2.5	3.0	15	0,5			
			388.0 GC usin Fray 30/12/									83607		335.5	30	30	1.4	34		
							T					23,8	385,5	388.4	3.0	70	2.9	54		Γ

Carr	nac	Reso	Durces Ltd. Project: Hank								Dr	ill Hole N	lo <i>H-9</i>	<u>10-3</u> P :	age 🕹	<u>}_</u>	of _	8		
Inter	val					ation			nera					Assay D	ata				Core	Data
(mete		Rock Type	Geologic Description	JAV.	Strate	78.7	<i>ڊراي</i> ن د	2	Sp. %	30/0/	" 10°	Sample No.	From	То	Interval				RQD %	Reco- very
		1 1	387.9 - 403.9 Moderately fractured Mod - String Silica Slooding. Some Discontante Q+2 7-8% py	 	, , , , , , , , , , , , , , , , , , ,				* \	-	,	83609	392.5	391 8	3.0	120	2.4			%
			Mod - String Silica Stooding Same	3_	7	3	6	7.5				93610	391.5				1.2	8		
			202 20 denie Q+2 7-8% pv									335//		397.5			4.2	7		
			Fault 399.5 - 450.50 ~ 45°CA											423.5		25		103		
														403.4			0.5			
403.4			END OF HOLE																	
								\neg												
										\neg										
								7												
						\Box					\neg					-				
							\neg	\neg												
																-			П	
										\neg										
						\neg	一	_	\dashv	$\neg \uparrow$										
						\neg		\neg		$\neg \uparrow$										
						_	_	-	\neg	$\neg \uparrow$									-	
								_		$\neg \uparrow$				•						
						_		一		$\neg \dagger$										
						\neg	\neg	-												
	-						\neg			_	\neg									

Car	man	Poc	ources Ltd.	DEPTH	BEARING	DIP	SURVEY TYP	E F	PROJ	ECT:	Н	ÞΝ	1 K		LENGTH:	152	1.4 M	HOLE N	10.:	H -	90-	4	
Cai	mac	nes	ources Lia.	COLLAR	292°	450	Transit	(LAIN	1: /	7 A	NA	 4	2	CORE SIZ		₹ 2	SHEET		7	of ·		
Diam	ond D	rill Ho	le Record					L	ATIT	UDE:	10	27	1. 9	33	RECOVER			LOGGE	D BY:	6	a c	104	Hais
														. 33	STARTED	a . 4	3 1990						
											N: /						3 1990 -3 1990					+106 2019	
				<u> </u>	<u></u>				Alter			_		lization		LD. SEPL	Assay D			<u> Pope</u>		Core	
Inte (met		Rock	Geologic Descrip	otion				0	1,	6										l		200	Poss
From	To	Туре	,					ay	Seriate	Carb	مني ارازية	200	, <u>, ,</u>	30 of	Sample No.	From	То	Interval		İ		RQD %	very
0	7.3		OVERBURI	25N			· · · · · · · · · · · · · · · · · · ·	7	4		`	2		-	33614	7,3	10.3	3.0	50	0.4	10		76
7,3	31.0		WEATHERE		7 N/O	CIP	~	-	1			\uparrow				10.3		3.0					
	1-71-8-		ALTERED					 				_			836/6		16.3	3,0		0,4			
· · · · · · · · ·			Light green					 								13.3		7,0		0.2			-
			graned Fo	() (o)	n -	£ = 0 +	1100 C	T	<u> </u>						1 5 3017		1						
			Jorg 15																				
			crumbling					 											 				
			Lear Textur	رری ی	acet	1101	2 AMO -																
			CLUSTIC BR	753C14	17	£5									T								
			7.3-20.2 25																				
			20.0 - 31.0 (2000	= 0/0	× =1	+ 'N	7	3			7			234/8	19.3	22.3	3.0	5	4.2	//		
			Were mine												37314	F	25.3	3.0	5	4.2	26		
			10% Fau				45°CA)								33320		28.3	3.0	10	02	18		
			316 - 43.2 FA	MLT	J Strona	Cla	V 5:40e	7	3			15			33521	28.3	31.3	3.0	5	0.3	16		
			345-412 (310 ton	Carbon	ate	Q4-								83/22	313	3-4.3	3.0	850				
			Lein a th	ered	by A	=3u1+	1-206								93523	34.3	37. 3	3.0		3.3			
			121 100105	Ur - 7	ned u	174 €1	217/1877112								23324	37.3	39.3	2.3	1160	3.6	14		
			toxfures			, ,									83325	89.3	41.3	2.0			8		
			43.2-54.6 SA												33323	41.3	44.3	3.0		0.6			
			argille Alth	20%	6 Far	14 90	219 -2								33327	44.3	47.3	3,0		1.2		L	<u></u>
			Minor QC VE	=1nl=+5	D.n.	or word	Prosture		L.,						83623	47.3	50.3	3.0		0.8			
			airection 70-					<u> </u>						_	33:23	50.3	53.3	3.0	70	1.0	23	لـــا	
			54.6-56.8 S				<u> </u>												<u> </u>				
			Station Px	~ 3%	<u>/</u>	···········		ے ک				3							<u> </u>		ļ!		<u> </u>
			56.9-56.9 OC															·	<u> </u>		<u> </u>		
			56,8-655 C	124 Ch!	AH'N	× 10%	nv				1	ı			1						1 !		

Carmac Resources Ltd.	Project:	Hank	Drill Hole No. <u>H-90-4</u>	Page	2_	of .	3

Inte	wal	l			Alter	atio	n	М	inera	aliza	tion			. Assay D	ata				Core	Dat
(met		Rock Type	Geologic Description	Clar	Senuto	Shorat	Other	P. 0%	30% 0%	30 / 1	£085,	Sample No.	From	То	Interval				RQD %	Rec ver
31.0	121,3		V3LOR NOCLASTIC BRECCIR	7		50	13					33330	53.3	51.3	5.0	740	3,4	14		1
			anderes Fragments sub opporter									83631	45.3	523	1.5	450	1.7	19		
			to sub rounded up to 23 m																	T
			,	4	£â: 3			1												Т
			16.5-71.6 253% resover: > Strops	ن ا	3	2	2	1				23132		77.3	4.1	135	0.8	20		Τ
			Sn=n= =ep= at 75-20°CA									33123	71.6	D4 (35	5	0.2	18		Γ
			7: 1- 77.3 Madrate fracturing minor					<1				35154	74.6	77.1	2.5	10	0.5	19		Ι
			Silver Beation <10% px	L						L										
			7-1,1-77.1 Strong Shearing - 70-90°11	1	Shi To		1	1												
			+ nearly 2 metres of core washed	<u>-</u> خ	-4	1	1	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td>												I
			- + nearly 2 metres of core washed	_			<u> </u>													
			Full Trend 60-200 CA							L										
			48.6-93.0 Oc stringers 70° CP Tr 12,					2				93335	72.6	75.3	3,3		0.9	16		
			73.6 QC veintet 2 cm 15°CH									93636			2.9	10	0.4	19		1
			74.6 - 95.0 Graphitic Fault Gruse					1		L_		3.3337	93.2	101.2	3.0	10	0.6	19		
			50°CA																	
			750-190 weakle Frontyed	3	5 ki 2	1	1	41					-1							
			932-1012 FAULT BOOCA MILAGE QC																	
			vein Prominents										t			<u> </u>				I
	•		,	<u> </u>								83633	11.2	10-3.2	2.0	5	0.5	17		
			1350 - 11/2 Silverfication service	3	5	2	3	3.5				3637	103.2	155.2	2.0	155				
			+ Px much Stronger Strong Strong					1				93640	105.2	108.2	5,0		1.3			
_			106.7 Oc vein 6cm 45°CA					ý				33641	108.2	111.2	3.5	225	2.0	20	L	
			102.9-154.9 Suge ~ 90°CA									93642	111.2.	1142	3.0	180				
			110.2 - 110.4 Pehhies Comp 1/25hed									83643		1:7.2	3.0	390	3.3	18		I
\dashv			111.2 - 117.4 Strong Shearing 15% gouge									83544			3.0	200	3.7	19		
			3% Cart 9+2 veinlets Trend 60-750-A				<u> </u>					33348		121.2	1.0	190	2.8	20		
			117,4-121,3 FAULT HWF FUShip 450																	Γ
			Earl Otz well frage common																	T

Inte	rval				Alter						tion			Assay D	ata				Core i	Data
(met	ers)	Rock Type	Geologic Description	Clay	रेंग के देव	Carbons	Silies	P, 2,	Sph 3/	Ga 13/	101	Sample No.	From	То	Interval				RQD %	Reco- very
121.3	152.4		ANDESITE PORPHYRY POSSICIOSE	3			2	,							 	<u> </u>	<u> </u>		\vdash	"
			+ alt'd Harnblends phenoceuses in	1	1	,	IT									1	1			
			dack orsen instell Locally ling	¥	V	Y	V	V												
			green to grave where sin the)	 				
			parusaina oran 21% prescent whereads														1			
			122.9-123.9 Strong processing					20				33444	127.0	123.2	2.6	75	0.9	39		
			125.8 OC wining over com					3				33647	123.2				as			
			125-1314 timente on open			-			-			23649	123.2	128.2	5.0					-
			Crocture										123.2	130.2		30				
	<u>. </u>		130.3 - 131.2 FAULT 453 CA 0.4										130.2			390				
			in Hw predict applicate 30% pr					20					131.2				1.2			
			1316 QC stringers SO"CA 30% pv																	
			1320 - 13-40 West pay going the Borb																	
			344 Ada 150/2 pt					4.5												
			1320-152.4 pre-suse 30 glaveres									33653	134.3	137.0	3.0	5	0.5	26		
			Common Freetung medicale									32550	197.0	ن ر ښا						
		\longrightarrow	10 2,004									33355	<u> </u>	ر. <i>۱ اندا</i>		1				
			132.5-134.5 Fault Chloritic ange 55°CA	L																
			140.7-140.3 Forth 11 11 50°5 p									<u> </u>	143.31	1430	ر.۶_	265	2.1	9		
			430 -1433 Frank 20 June Green war									93357	175.0	ر.دير		25	0.5	7		
			eit per in Experience									38 189	وبحنة	1= 2.2	3,4	45	0.2	9		
			54.9-145.2 BC 10 FAIR 2012 70EA																	
1524			END OF HOLE																	
							Ĺ.,													
																ļ				
								_						•						
																ļ				
- [- 1	:	ı	1 1		1 1	- 1		1 1	۱ - ا	i 1	1			1	ì	l -	1	

Čar	maa	Doo	ources Ltd.	DEPTH	BEARING	DIP	SURVEY TYP	E F	PROJI	ECT:	H	AN	1 K		LENG	TH:	180	. 14 m	HOLE N	0.:	1 - 9	70 -	5	
Car	mac	nes	ouices Liu.	COLLAR	3100	-45	Transit	C	LAIM	l:	HA	NE	< 2		COR	E SIZI		•	SHEET		•	of	3	
Diam	ond D	rill Ho	le Record	15.2 m 50 Ct	304.5		Eastman 5	ςL	ATIT					.85	RECO	OVER			LOGGE	D BY:	G.F	7.0	YouTh	ner
				76.277	304.5		31		EPA						STAF	TED:	Sa. 1	4,1990	SAMPLI	ED BY:	V		1-1	
				152.4 ft		-49	()		LEVA			14			СОМ	PLET	FD: Sen	7, 1990 L 5, 1990	PURPO	SE: //	NIAN	r 7c	100 h	Υ
<u> </u>				1 300 11	1		<u> </u>		Altera					lizatio	n		221 30/36	Assay D	ata		-1-1-0	, <u> </u>	Core	Data
Inte (me		Rock	Geologic Descrip	otion				17	₹*	Ş	S. 1.					la Na	From	То	Interval				RQD	Reco-
From	To	Туре		*			*	₹.	ouch is	Oxbapte	Ē.		0	Cal %	Carrip	16 110.	rioni	"					%	very %
.9	7.3		OVERBURD	EN				1										., /						
7.3	1236		VOACHNOCLE		BRE	COLF	****		<u> </u>					1										
			andesièic s				brounded								8 34	59	7.3	10.3	3.0		0.3			
			Prou ments	<i>i</i> n 1	1123) Y Y	.Ω								236		10.3	13.3	3,6		0.2			
			similar has												930	31	13.3	16.3	3.0	65	0.3	_		
7.3	25.5		Surface weat	herino	and	altera	d sor								83.	162	16.3	19.3	3.0	35	0.3	22		
			has resulted					2	3)	1	2												
		<u> </u>	Some fracture	sare	rustr.	<u> </u>	15								83.	63	19.3	22.3	3.0	5		12		<u> </u>
			Strangle fract	ored											933	334	22.3	25.3	3.0	5	4.2			L
			27.6-355 FAYLT	25°5 90	<u> ज्ञानुद्</u>	<u> </u>	75°CA	Z	3	4	4	25		_	32.	565	25.3	28.3	3.0	5				<u> </u>
			277-289	ב טבים	2%,	دير دي	ا برواد								9 =	636	23.3	31.3	3.0	460	6.4	28		<u> </u>
ļ			29.7 - 29.3 0:			tacts	Jana Kan	<u> </u>														//		
ļ	ļ		31.3 - 32.1 0	2 11210		/-	o	<u> </u>	ļ			_			836	67	31,3	3 4.3	3.0	240				ļ
ļ				7		//	//	ļ						_	33.		34.3	37.3	3.0		2.8			
				ULT			55°CP	 								117	27.5	40.3	3,0		3.6			ļ
			20.9 - 53.3 FA					6	6	2	2	\dashv	_		836	<u>رد)</u>	<u>40,≅1</u>	43.3	7.0	170	1.9	17		\vdash
			433 : 1 ug e				nnant													1	1 -	,,		
			QC Unin Fra				,		-							77_		<u>-16,3</u>	3.0	25				
			-53 3 - 73 2 Str	202 Cl	<u>a, 5-7.</u>	,55c'	2 \	6	6	2	3	1.5				72		49.5	3.0	40	0.3 3.8			ļ
			moderate s	1/10+10-3	- 10h	/-	ath py	 	 			\dashv				273		52.3	3.0	320		-		\vdash
			627-63.6 F.	ault 2	5 5 mg q	ال دا	1 90 90°CA	 								174		55.3	3.0	200				\vdash
			minor g	round	5wlfin	les ir	`				\vdash					75		59.3	3.0	316 1490				
			gouge						-		\vdash	\dashv				74		6/3	3.0			24	-	-
					٠, ٥	1.	1 1	 	$\vdash \vdash \vdash$		\vdash					(77 <u>.</u> (-0	· · · · ·	63,6	2,3	1990				
			Note: Pyrite	Modero	<u> </u>	de o	<u>D9erved</u>	-	\vdash			\dashv				<u>679</u> 679		64.5	3.0	60			 	
	L	لـــــا	ω_K –	Mod are	ite ti	actur	ing	L	لــــا		L				103	017	67.5	101.5	1,0	100	0.0		Ц	

Carn	nac I	Reso	Durces Ltd. Project: HANK								Đ	rill Hole	No. <u>H - c</u>	<u> 20 -5</u> P	age _	2_	of _	3		
Inten	val				Alter						ation		·	Assay [Data				Core	Data
(mete		Rock Type	Geologic Description	Clay	कारक	Carbonsic	Silvea	RO%	Sph%	ial %	Cpr%	Sample No.	From	То	Interval				RQD %	Reco very
			73.2-75.6 FAULT 50°6 gauge	5	6	2	$\overline{}$	2,9				33680	67.5	70.5	3.0	10	0.2	24		
			ate servette alt'i very atrong										70.5		3.6	40	62	15		Г
			~70°CA 2-376 pi										73.5			85	#3	16		Г
		ļ [75.6 = 73.2 Seriote quartz alty Strong	14	1	2	5	2.5	;								0.8			
			17 × 2-30/2																	
	-		79.2-32.1 FAULT 4300 Louge, Imetre									83483	73.5	79,5	3,0	140	12.5	19		
			Carb Gt win fragments in Hanging										79.5				1.3			
			wall French 45°CA					2.5	-			1	82.5		T		1.2			
			82.1-249 Maderite Fracturina	1		İ		1,	1				35.5	23.5	1	840	24	141		
			949-88.0 FALLT 40% gouge Trend	1	1			1.5	1	1	1	- 3555		- 0, 5		1070	121	7.	<u> </u>	T
			70° C H		T			Г	1								i			
			89.2 112.1 FAULT Zone 25% auge	4	1 4	2	5	2.0		T		83487	88.5	91.5	3.0	625	1.8	36		
			2-5 % DU Atz Oarh from & 15th Trank 3000				1	† <u>```</u>			1	33633			3.0		2.8			T
			Note: Care has heen strangly								Ť	33699		97.5	3.0		2.0			<u> </u>
			altered throughout Faulting 15				1	1		- 	1	63640		130.5	3.6	450			 	
			intense form is soft and	1		 	1	T	\top	\top		83691	1	/			1.1			
			usually crushed. Parity is				1	1		1			103.5	1		970			†	一
			the only sulfide charried white		1				1				106.5			1440	1,2	D	†	
			carponate quarte venire veniry	†					1				109.5				3/		†	_
			13 finishes are only weakly	ļ —	\vdash					1		1030.7		///۵:3	7.0	0,,	2//	01	 	\vdash
			interesting of with the to	<u> </u>				1		†	1				İ	<u> </u>				-
			1121-1213 Shatter Zone 5-10%	4	7	3	5	2 (-	†	†	03/02	112.5	115 00		200	1.4	29	†	
			gauge 3-4% py (stronger than Above	_	/>	<u> </u>		J	1	†	1-	02/96	115.5	113.5		2/5	20	21	-	
			min Shear trend 40-53° CA				1	†	1		1		118.5							<u> </u>
		1	121.3 - 123.6 FAULT 70°CA	T						\top	 	5 367/	110.5	141.5	3.0	200	7/0	101	 	\vdash
			121.3-122.5 Grage 60°CA 3-4% by	1			<u> </u>	3,5		+	+	l			1		 	 	 	\vdash
			122.5 - 123.6 Intensely pyritic Mylonite	\vdash			 	20		1	1	83698	* 121.5	123.6	2.1	295	5.5	113	 	\vdash
			Note: Similar to that mite in	\vdash		 	<u> </u>	40	 	†		83699			3.0		2.5			-
			Hole H-90-4	 		_	 	7.0		1	+	83700		129.6			2.2		\vdash	\vdash

Carmac	Res	ources Ltd. Project: <u>Hank</u>									rill Hole N	lo. <u>⊬-</u> '	<u>70-5</u> P	age _	3	of _			
Interval		Geologic Description		Alter						tion			Assay D	ata	T	1		Core	
(meters) From To	Rock Type	deologic Description	Clay	Suck	arbunete	111	1,0%	16 dq	11%	Cpy	Sample No.	From	То	Interval				RQD %	Reco- very %
123.6		PORPHYRITIC ANDESITE TUFF	2	_			1.5	_			28 351	129.6	132.6	3.0	15	4.2	33		
<u> </u>	ļ	Pagioclase i Harnblende phenocrysts potris corres from dark green to brick red. <10/0 pyrite except where noted. No Perussive alta	<u> </u>	ļ	<u> </u>	<u> </u>	_	ـــــــــــــــــــــــــــــــــــــ	<u> </u>		28352	132.6	135.6	3,0	5	4.2	8		
	-	matrix carries from dark green	<u> </u>	<u> </u>	<u> </u>		<u> </u>	_	<u> </u>	<u> </u>				ļ	<u> </u>	ļ		<u> </u>	<u> </u>
	<u> </u>	to brick red. < 10/0 parite except							<u> </u>					}	ļ				<u> </u>
***************************************	ļ	where noted. No Perussive alt n						L	ļ	<u> </u>					<u> </u>	ļ.,			
	ļ	129.9-1330 Shear zone 70° to CA						<u> </u>							ļ	ļ., .			<u> </u>
	ļ	very Strong				<u> </u>									<u> </u>	•		<u> </u>	<u> </u>
		133.A-139.5 Intermediant Shear					1		<u> </u>		29353	135.6	139.6	3.0	210	.6	2	<u> </u>	<u> </u>
		20nes_																<u> </u>	
	ļ	138.5-180.14 weakly fractured miner													<u> </u>	ļ		L	
	<u> </u>	earbonate f.f. 210/0 pyrite No							<u> </u>						<u> </u>	ļ		<u> </u>	<u> </u>
	<u> </u>	alteration			L		<u> </u>		<u> </u>	<u> </u>					Ĺ		<u> </u>		<u> </u>
180.14	<u> </u>	END OF HCLE	<u> </u>												ļ	<u> </u>			
	ļ								1_	_					ļ	ļ			ļ
			<u> </u>		L.			L											
									<u> </u>										
										ļ						<u> </u>			<u> </u>
	ļ							L										<u> </u>	
							<u> </u>		<u> </u>			1			L	-			
	<u> </u>																		
															<u> </u>				<u> </u>
																		<u> </u>	L
										T									
		•	Γ						T										

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

APPENDIX 2 - ASSAY RESULTS

VANCOUVER OFFICE: 705 WEST 15TH STREET 705 WEST 15TH STREET 5 2 NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524

FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958

FAX (807) 623-5931

SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004

ASSAY Certificate

OS-0389-RA1

Company:

CARMAC RESOURCES LTD.

Project: Attn:

F. HEWITT

HANK

Date: AUG-31-90 Copy 1. CARMAC RESOURCES LTD., VANCOUVER, B.C.

2. CARMAC RESOURCES LTD., C/O MIN-EN LABS

He hereby certify the following Assay of 25 ROCK samples submitted AUG-29-90 by F.HEWITT.

Sample	AU	AU	AG.	AG		
Number	g/tonne	oz/ton	g/tonne	oz/ton		
84640	.02	.001	2.4	.07		
84641	.08	.002	3.1	. OP		•.
84642	.06	. 002	1.9	. Oþ		
84643	.12	,004	3.6	. 11		
84644	.04	.001	1.8	.05		of all the state of the state o
84645	1.57	,040	5.6	.16		
84646	, O5	.001	0.8	.02		
84647	.65	.019	3.7	.11		
84648	.02	.001	0.6	.02		
3672	.20	, 006	1.4	.04	ur i i	
⁻ 84573	. 17	, OUS	3.6	-11		
84674	.31	.009	4.2	.12		
84675	. 89	.026	17.2	.50		
84676	. 05	.001	1.9	, 06	*	•
84677	. 18	.005	9.8	.29		
84678	. 30	.009	() = 2	.18		
84679	.15	, ()()4	4.3	.13		
84680	· OA	.002	1.4	. ()4		
84681	.08	.002 .013	2,1	.11		
*84682	, 08. 246	ola"	3.71	.11		
84683	.03	.001	1.6	.05		
84684	.06	.002	2.5	.07		
84685	.07	.002	2.0	"Oé		
84686	.11	.003	1.9	. 04		
84687	.03	.001	1.2	.04		and which other white made and the same down states when down some

MIN-EN LABORATORIES

COMP: CARMAC RESURCES LTD.

PROJ: HANK

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE ...: 0S-0389-RJ1 DATE: 90/08/31

TTN: F.HEWITT									OJ WE		504)980						(M 112								*	D Rock		90/08/ ACT:F3
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	U V PPM PPM	ZN PPM	GA PPM	SN PPM F	W CR
84640 84641 84642 84643 84644	2.0 2.7 1.5 3.1 2.0	16580 8990 13730 7620 14290	89 230 57 411 67	10 8 9 10 10	143 83 142 76 166	.1 .1 .1 .1	1 15660 1 20770 2 13300 1 12140 1 17390	.1 .1 .1 2.2 .1	37 35 23 37 25	79 64 125 40 122	69580 77610 44890 89870 56100	4970 3190 4800 3650 4040	12 5 9 1 9	7690 5010 6780 2050 10020	873 830 698 320 857	1 1 1 1	1180 650 1170 830 1060	1 1 1 1 1 1 1	080 750 180 840 100	23 16 16 23 24	3 18 4 38 5	23 15 29 21 32	1 1 1 1	1 86.0 1 64.3 1 75.0 1 36.0 1 96.0	61 116 94 63 88	1	1 1 1 1	1 1 1 1 1 5 1 1
84645 84646 84647 84648 84672	5.6 1.2 2.1 1.4 1.5	7350 10660 4910 10830 5550	189 93 78 55 83	9 11 5 9 6	112 133 646 94 129	.1 .1 .1 .1	1 11760 1 23950 2 91180 2 35920 1 17030	10.9 .1 8.8 .1	24 23 12 24 17	621 87 109 83 54	57130 48040 18240 52670 51830	3820 4630 2590 3350 3050	2 5 1 11 1	4000 7940 2080 11010 2220	489 1123 2549 1646 411	1 1 2 1	1520 680 600 990 380	1 1 1 1 5 1 1 1 1	130	696 38 291 18 157	7 2 5 1	16 25 1 27 15	1 1 1 1	1 38.0 1 67.3 1 23.6 1 82.7 1 19.4	2469 89 839 66 31 7	1 1 1 1 1	1 3 1 2	1 8 2 21 2 48 1 5 1 12
84673 84674 84675 84676 84677	3.5 4.4 19.2 2.2 10.4	6480 5140 5540 7600 5780	148 92 62 58 72	7 6 7 7	87 133 115 176 104	.1	1 32550 2 36280 2 36200 1 33010 2 32600	7.3 14.7	22 17 23 22 24	97 46 6 48 108	53840 45390 62110 47890 61090	3070 2600 2640 3480 2730	3 1 1 2 1	10410 8630 8850 16840 13970	1686 1822 1376 1460 1369	1 1 1 1	560 330 380 400 360	1 1	130 800 1 910 110 910	135 197 464	4 5 1 1 3	39 57 54 82 65	1 1 1 1	1 26.2 1 23.1 1 28.4 1 51.0 1 39.6	3218 2512 217 876 1505	1 1 1 1	3 1 3 2	1 1 1 12 1 1 1 1 1 4
84678 84679 84680 84681 84682	4.5	1190	22	7 7 6 9 7	119 150 96 176 104	.1	2 29630 1 32760 2 27830 3 38360 1 28360	2.4 2.4 218.4 218.2	26 19 22 19 27	497 199 114 107 530	50880 45150 49660 43960 56980	3860 3870 3040 2930 3420	1 3 8 1 3	9110 12180 15380 25920 15360	1035 1224 828 1830 923	1 3 1 3 1	390 390 400 340 390	1 1 1 1 1 1 1 1	980 060	47 193 268 309 80	4 1 5 1	68 180 92 1018 76	1 1 1 1	1 28.3 1 42.7 1 54.3 4 34.0 1 34.8	36 359 512 21424 169	. 1	1 3 2 6 3	1 8 2 23 1 3 1 19 1 8
84683 84684 84685 84686 84687	1.6 2.9 2.0 2.7 2.1	9050 8700 9430 6710 8170	80 72 99 111 97	7 8 8 5 7	97 136 134 155 100	.1 .1 .1	2 34290 2 31400 2 25830 3 31960 2 31960	1.2 73.3 45.2 23.2 .1	28 18 20 16 27	262 168 24 30 113	53180 46130 57660 38450 60600	3660 3700 4130 2980 3370	5 1 1 1 5	13280 16800 7870 15910 14970	907 1138 787 1369 943	1 4 1 3 1	390 370 320 250 290	1 1 1 1 1 1 1 1	110 220 100 790 990	140 833 189 104 22	1 2 6 1	138 235 192 261 191	1 1 1 1	1 40.2 1 29.4 1 35.7 1 28.6 1 57.2	283 6710 4065 1819 70	1 1 1 1	3 4 4 4 1	1 11 1 7 1 35 2 53 1 25
.,																												
																											-	
,			·····		, . .				**************************************																			
							· · · · · · · · · · · · · · · · · · ·																					ۍ ن

CARMAC RESOURCES - ETK 90-525

10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, 8.C. V6C 2T6

SEPTEMBER 12, 1990

VALUES IN PPM UNLESS OTHERWISE REPORTED

PAGE 1

PROJECT: HANK SHIPMENT: 90 -3 31 CORE SAMPLES RECEIVED SEPTEMBER 4, 1990

ET#	DESCRIPTION	AU(ppb)		AL(%)	AS	8	BA	81 CA(%)	CD	C0	CR	CU FE(%)	K(%)	LA	MG(%)	MN	MO	NA(%)	NI	р	PB	SB	SN	SR TI	(%)	U	V	W	Y	ZN
525 - 1	84601	5	.7	.85	(5	2	71	(5 1.58	(1	22	á	13 6.06	.28	11	.48	934		.09												
525 - 2	84602	20	.4	.76	20	5	48	(5 1.43	(1	24	3	82 5.73	.30	(10	.42	738	١١		10	1709	11	(5	(20		.01	(10	30	(10	13	47
525 - 3	84603	5	(.2	.62	28	3	39	5 1.83	(1	24	6	103 6.56	.31	12	.44	789	/1	.10	11	1226	/	(5	(20		.01	(10	23	(10	9	50
525 - 4	84604	5	1.2	.62	46	(2	33	(5 2.13	(1	29	R	163 5.97	.30	(10			(1	.10	11	2176	8	(5	(20		.01	(10	26	(10	9.	63
525 - 5	84605	(5	.3	.59	17	(2	40	(5 2.63	(1	19	10	21 6.72	.28	13	.26	805	i /1	.09	20	2137	22	/	(20		.01	(10	17	(10	7	87
525 - 6	84626	5	.7	.70	(5	(2	90	(5 3.34	(1	14	11	177 3.59	.32		.46	1152	(1	.08	11	2407	15	(5	(20		.01	(10	24	{10	5	62
525 - 7	84627	(5	. 5	.55	7	(2	99	(5 3.91	/1	22	11	100 5.16		13	.61	856	2	.05	12	2106	5	(5	(20		.01	(10	37	(10	6	35
525 - 8	84628	(5	(.2	1.26	(5	(2	65	(5 5.35	/1	12	11		.23	15	.80	1260	2	.01	22	1454	8	(5	(20	142 (.01	(10	27	(10	2	56
525 - 9	84629	(5	(.2	1.19	(5	(2	54	(5 5.34	/1		7	154 3.87	.27	17	.54	895	(1	⟨.01	11	2514	6	(5	(20	198 (.01	(10	18	(10	6	37
525 - 10	84630	10	.5	3.30	√5	(2	172	(5 3.41	1	13 38	0	133 4.37	.27	16	.51	921	(1	(.01	9	2357	5	(5	(20	188 (.01	(10	21	(10	5	34
525 - 11	84631	(5	(.2	2.99	(5	(2	89	(5 5.53	/1		10	97 9.26	.21	15	1.30	1542	(1	.02	8	1057	(2	(5	(20	66 (.01	(10	102	(10	4	64
525 - 12	84632	.5		3.24	(5	(2	84	(5 3.26	(1	23	10	61 6.76	.24	14		1830	(1	(.01	5	1009	(2	(5	(20	73 (.01	(10	91	(10	8	52
525 - 13	84633	10	.8	2.82	(5	(2	70		(1	24	8	71 7.55	.23	13		1381	(1	.02		1091	(2	(5	(20	44 (.01	(10	94	₹10	5	51
525 - 14	84634	10		2.21	(5	(2	71	(5 3.45	11	31	10	71 7.63	.24	13		1509	3	(.01	8	1038	(2	(5	(20	50 (.01	(10	82	(10	6	59
525 - 15	84635	10	1.0	2.63	(5	(2		(5 4.84	(1	22	14	55 5.92	.25	12		1358	(1	(.01	5	975	4	(5	(20	56 〈	.01	(10	67	(10	7	41
525 - 16	84636	25		2.23	10	(2	81	(5 4.37	11	25	14	84 6.95	.26	13		1495		(.01		1117	3	(5	(20	57 (.01	(10	80	(10	7	55
525 - 17	84637	23		1.43	10		49	(5 2.87	1	35	17	78 9.91	.21	13		1107	2	(.01	10	1199	8	9	(20	31 (.01	(10	73	(10	2	46
525 - 18	84638	10			,	(2	46	(5 2.64	32	29	1/	70 5.06	.23	(10	.63	1071	4	(.01	5	905	4	8	(20	31 (.01	(10	52	14	6	3728
525 - 19	84639	10	.7	1.73	9	(2	71	(5 2.43	(1	22	13	61 5.65	.20	(10	.79	1218	{]	.04	5	1006	(2	(5	(20	51 (.01	(10	73	(10	6	57
525 - 20	84649	20	1.2	1.29	25	3 .	48	(5 1.42	(1	34	9	65 5.39	.22	(10	.66	719	⟨1	.11	8	1047	6	(5	(20	54 (.01	(10	59	(10	7	62
525 - 21	84650	25 455	1.7	.42	34	(2	44	(5 2.71	(1	29	27	55 5.84	.18	(10	.75	1077	2	.01	7	967	9	6	(20	65 (.01	(10	59	(10	4	49
525 - 22	84651	455	1.9	.21	96	4	21	(5 1.34	1	21	74	25 5.30	.08	(10	.43	429	4	(.01	6	461	21	6	(20	35 〈	.01	(10	14	(10	(1	67
525 - 23	84652	150	2.0	.37	78	(2	32	(5 2.35	4	22	20	58 6.02	.15	(10	1.04	873	1	.02	3	863	163	(5	(20	117 (.01	10	41	(10	4	360
525 - 24		25	.5	.35	23	(2	27	(5 3.78	3	22	22	52 5.75	.13	(10	1.44	1371	(1	(.01	4	966	152	₹5	(20	223 (.01	(10	51	(10	7	279
	84653	10	.3	.36	14	(2	22	(5 5.24	(1	14	11	29 4.60	.12	(10	1.17	1311	(1	⟨.01	2	859	23	(5	(20	192 (.01	(10	50	(10	8	59
323 23	84654	165	1.6	.33	163	(2	15	(5 2.23	1	24	16	487 7.32	.08	16	.93	679	(1	(.01	5	984	86	5	(20		.01	10	30	(10	(1	116
525 - 26	84655	255	.9	.43	94	(2	32	7 2.80	(1	29	23	90 7.74	.11	(10	1.30	955	(1	.01	5	981	25	(5	(20		.01	(10	44	(10	3	54

CARMAC RESOURCES - ETK 90-525

ET#	DESCRIPTION	AU(ppb) AG AL(%)		В	BA	BI CA(%)	CD	00	CR	CU FE(%)		LA M6(%)	MN	MO NA(%)				SB	SN	SR TI(%)	U	٧	¥	Y	ZN
525 - 27 525 - 28 525 - 29 525 - 30 525 - 31	84656 84657	70 1.1 .56 25 1.0 .79 25 .7 .55 25 .3 .94 145 2.3 .38	77 44 58 10	<2 <2 <2 <2	27 30 34 35	<5 3.88 <5 3.07	<1 2 <1 <1	28 23 24 24		292 9.05 82 7.08 46 6.66 44 6.68	.12 .09 .10	11 1.80 <10 2.06	1505 1660 1480 2105	2 <.01 <1 .03 <1 .02 2 <.01 3 <.01	3 4 2 3	840 1053 838	16 94 53 16	⟨5 ⟨5 ⟨5	<20 <20 <20	153 <.01 203 <.01	<10 <10 <10	64 92 65 78 25	<10 <10 <10 <10 <10 <10	5 8 5 9	52 193 128 68 2577

NOTE: < = LESS THAN

FAX:F. HEWITT 689-5041

cc: DAVID VISAGIE C/O NORTHAIR GROUP

COLTICH LABORATURIES LTD.

SC90/CARMAC

CARMAC RESOURCES - ETK 90-535

10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557 C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

SEPTEMBER 13, 1990

VALUES IN PPM UNLESS OTHERWISE REPORTED

PAGE 1

PROJECT: HANK
44 CORE SAMPLES RECEIVED SEPTEMBER 7, 1990

ET#	DESCRIPTION	AU(ppb)	AG AL(%		AS	8	BA	BI CA(%)	CD	C0	CR	CU FE(%)		LA MG(%)		MO NA(%)			PB	SB	SN	SR TI(%)	Ü	٧	W	Υ	ZN
535 - 1	84708		20.3 .2		78	⟨2	14	<5 3.21	36	33	24	1096 4.14	.11	<10 .67		2 (.01			2520	20	⟨20	114 (.01	<10	14	(10		4098
535 - 2	84707	40	<.2 .3	5	38	⟨2	21	(5 4.56	⟨1	29	15	100 5.60	.15	13 1.54	1228	(1 (.01	ŧ	1167	18	⟨5	₹20	85 (.01	<10	59	<10	6	63
535 - 3	84709	₹5	<.2 .3	3	8	₹2	33	(5 5.66	₹1	26	9	70 5.24	.15	13 1.69		(1 (,01	5	1073	9	⟨5	₹20	293 (.01	13	68	<10	6	39
535 - 4	84709	₹5	<.2 .3	1	9	⟨2	24	<5 5.08	⟨1	20	10	29 4.95	.11	<10 1.81	792	<1 <.01		860	4	₹5	(20	416 (.01	<10	83	<10	4	35
535 - 5	84710	45	₹.2 1.7	8	⟨5	⟨2	41	4.7 6	₹1	23	10	66 4.91	.10	11 2.07	986	<1 <.01		306	4	₹5	₹20	248 (.01	₹10	82	<10	5	38
535 - 6	84711	65	<.2 .5	6	16	₹2	9	(5 4.03	⟨1	21	11	8 3.13	.13	(10 1.16	687	1 <.01	3	939	5	(5	(20	270 (.01	₹10	24	<10	7	18
535 - 7	84712	50	<.2 .7	1	28	₹2	10	<5 4.20	₹1	19	9	30 4.40	.11	<10 1.11	594	(1 (.01	(1009	14	(5	(20	190 (.01	<10	48	₹10	5	20
535 - 8	84713	80	٠.2 .8	4	41	₹2	15	(5 5.09	₹1	27	22	67 5.18	.15	14 1.07	841	(1 (.01	7	1157	32	₹5	<20	178 <.01	96	40	<10	8	48
535 - 9	84714	160	<.2 .2	8 1	04	⟨2	19	45 6.64	19	22	12	744 5.22	.10	14 2.56	1618	⟨1 ⟨.01	7	961	248	٤	₹20	202 (.01	57	37	₹10	10	2129
535 ~ 10	84715	40	<.2 .8	2	21	<2	18	(5 5.00	(1	23	16	46 5.46	.16	13 1.29	1001	(1 .03	7	1145	12	<5	<20	284 <.01	<10	47	₹10	7	56
535 - 11	84716	35	<.2 1.8	2	9	62	27	(5 4.42	₹1	15	23	11 5.67	.17	11 1.76	1016	(1 .05	7	1108	10	₹5	<20	131 (.01	<10	61	<10	8	56
535 ~ 12	84717	65	<.2 .7	0	19	⟨2	6	(5 4.60	3	17	26	33 5.30	.13	11 .93	1176	<1 <.01	E	860	72	<5	<20	324 <.01	<10	25	<10	4	429
535 - 13	84718	85	<.2 .7	0	28	₹2	17	<5 5.80	₹1	22	11	199 4.73	.10	11 .65	933	(1 (.01	8	852	19	< 5	<20	211 (.01	<10	23	<10	8	35
535 - 14	84719	10	(.2 1.4	6	(5	₹2	14	<5 5.71	<1	25	26	57 5.10	.07	11 1.56	1110	⟨1 ⟨.01	13	705	13	<5	<20	291 (.01	<10	74	<10	3	54
535 - 15	84720	45	<.2 1.8	5	9	⟨2	23	(5 5.21	12	32	23	113 5.07	.09	<10 1.61	1141	1 <.01	14	755	177	₹5	<20	255 (.01	<10	60	<10	3	1245
535 - 16	84721	35	<.2 2.0	6	19	⟨2	25	<5 5.35	(1	27	23	127 4.79	.09	11 2.13	1444	⟨1 ⟨.01	13	757	47	<5	<20	193 (.01	<10	94	<10	5	128
535 - 17	84722	10	<.2 1.7	1	12	⟨2	11	<5 5.52	₹1	29	18	33 4.99	.03	11 1.55	1110	(1 .04	12	854	54	₹5	<20	309 (.01	<10	59	<10	5	81
535 - 18	84723	25	<.2 1.4	0	⟨5	⟨2	16	(5 4.57	<1	23	25	16 4.36	.07	<10 1.78	913	(1 (.01	11	801	19	<5	<20	189 <.01	<10	82	<10	5	45
535 - 19	84724	55	<.2 1.5	5	20	<2	18	<5 4.07	₹1	29	29	274 5.31	.12	11 1.40	901	(1 .05	15	844	33	₹5	<20	171 (.01	<10	63	<10	4	50
535 - 20	84725	5	<.2 1.4	2	33 .	<2	24	8 4.37	<1	32	23	54 5.62	.09	<10 1.41	1028	i .04	16	796	33	₹5	<20	119 (.01	<10	59	<10	7	50
535 - 21	84726	20	.3 1.2	0	16	⟨2	25	(5 4.14	₹1	22	9	178 4.87	.09	(10 1.21	775	<1 .02	ć	702	83	(5	₹20	100 (.01	<10	55	<10	5	44
535 - 22	84727	20	.2 1.7	5	24	⟨2	29	(5 4.49	₹1	27	20	73 5.09	.10	(10 1.75	887	1 .02	{	746	14	<5	(20	127 <.01	₹10	69	<10	3	55
535 - 23	84728	10	<.2 1.3	0	12	₹2	21	(5 3.22	₹1	22	11	61 5.09	.08	<10 1.35	600	(1 .03	8	855	103	₹5	(20	130 <.01	<10	60	(10	4	69
535 - 24	84729	10	<.2 1.8	8	20	₹2	24	(5 3.40	₹1	23	23	9 4.86	.11	<10 1.28	569	2 .03	6	875	9	5	(20	90 (.01	₹10	59	<10	4	35
535 - 25	84730	30	.3 1.0	2	33	5	43	(5 .99	(1	27	19	43 5.73	.17	(10 .58	650	<1 .08	28	1202	14	₹5	<20	89 (.01	<10	33	₹10	7	73
535 - 26	84731	5	.2 .6	7	16	⟨2	44	(5 2.45	₹1	21	10	13 4.69	. 15	12 .56	1105	<1 .05	20	2018	4	11	₹20	113 <.01	<10	37	⟨10	8	53

BLOE A								C110 20 333	
PAGE 2 ET# DESCRIPTION		AS B	BA BI CA(%)	CD CO CR	CU FE(%) K(%)	LA MG(X) MN	MO NA(%) NI P	PB SB SN SR TI(X)	U V W Y 7N
535 - 27 84732 535 - 28 84733 535 - 29 84734 535 - 30 84735 535 - 31 84736 535 - 32 84737 535 - 32 84738 535 - 33 84739 535 - 34 84740 535 - 35 84741 535 - 36 84741 535 - 38 84742 535 - 38 84743 535 - 40 84745 535 - 41 84746 535 - 41 84746 535 - 42 84747 535 - 43 84748 535 - 44 84749	15 .4 .82 30 1.1 .62 90 1.5 .77 10 1.3 .83 55 2.9 .33 20 .3 .29 30 .3 .34 45 .3 .50 10 .5 .36 10 .4 .54 5 <.2 1.47 10 <.2 1.85 10 <.2 1.85 10 <.2 .56 20 1.0 .37 230 .6 .66 15 .5 1.60	\$\frac{5}{6}\$ \$\frac{2}{2}\$ \$\frac{5}{5}\$ \$\frac{2}{2}\$ \$10 \$\frac{42}{2}\$ \$21 \$\frac{3}{3}\$ \$13 \$\frac{2}{2}\$ \$20 \$\frac{2}{2}\$ \$13 \$\frac{2}{2}\$ \$25 \$\frac{2}{2}\$ \$12 \$\frac{2}{2}\$ \$12 \$\frac{2}{2}\$ \$15 \$\frac{2}{2}\$ \$15 \$\frac{2}{2}\$ \$15 \$\frac{2}{2}\$ \$17 \$\frac{2}{2}\$ \$18 \$\frac{2}{2}\$ \$19 \$\frac{2}{2}\$ \$10 \$\frac{2}{2}\$ \$11 \$\frac{2}{2}\$ \$12 \$\frac{2}{2}\$ \$13 \$\frac{2}{2}\$ \$14 \$\frac{2}{2}\$ \$15 \$\frac{2}{2}\$ \$15 \$\frac{2}{2}\$ \$16 \$\frac{2}{2}\$ \$17 \$\frac{2}{2}\$ \$18 \$\frac{2}{2}\$ \$19 \$\frac{2}{2}\$ \$20 \$\fra	37	(1 18 22 (1 15 11 (1 12 16 (1 13 13 (1 12 20 (1 15 38 (1 12 17 (1 14 35 (1 14 51 (1 15 19 (1 12 42 (1 10 31 (1 12 42 (1 10 31 (1 13 25 (1 16 45 (1 19 58 (1 19 85 (1 19 85 (1 20 36	26 5.40 .11 117 2.69 .18 153 2.47 .15 400 2.65 .21 549 2.99 .34 572 4.42 .15 35 4.19 .13 48 4.44 .15 30 3.88 .21 59 4.29 .11 441 3.61 .25 151 3.80 .26 146 4.66 .20 50 3.75 .05 110 4.81 .11 70 2.85 .11 97 4.71 .11	12 .70 1737 13 .56 .760 11 .44 .599 13 .45 .828 14 .40 .918 12 .35 .518 15 .35 .889 15 .35 .176 14 .39 .1106 11 .69 .832 13 .48 .671 16 .60 .690 14 .76 .653 <10 .51 .652 10 .96 .803 <10 .51 .705 10 .98 .955	1 (.01 19 1463 1 .04 15 1560 2 .05 13 1360 (1 .03 15 1375 1 .03 12 1645 4 .05 15 1628 2 .02 13 1834 2 (.01 16 1697 3 .02 15 1719 (1 .03 17 1586 3 .04 13 2120 2 .02 11 2138 1 .02 19 2227 (1 (.01 23 581 3 (.01 25 1863 4 (.01 12 1250 4 (.01 21 1291	PB	10 50 <10
					171 5.24 .12	13 .80 525	(1 .02 26 2343	8 (5 (20 86 (.01 (10) 28 <10 5 76

NOTE: < = LESS THAN

FAX:F. HEWITT 689-5041

ECO-YECH LABORATORIES LTD.

B.C. CERTIFIED ASSAYER

SC90/CARMAC

CARMAC RESOURCES - ETS 90-9070

10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700

SEPTEMBER 6, 1990

FAX - 604-573-4557

VALUES IN PPH UNLESS OTHERWISE REPORTED

C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, B.C. V6C 216

20 CORE SAMPLES RECEIVED AUGUST 27, 1990

ET#	DESCRIPTION			AL(%)	AS	В	8A	BI CA(%)	C0	CO	CR	CU FE		((1)		16(%)	MN	MO 1	NA(%)	NI	Р	РВ	SB	SN	SR 1	TI(\$)	U	V	W	Y	ZN
9070 - 1	84606	(5	.3	.55	29	(2	20	(5 2.51	(1	19	21	32 6	.48	.23	18	.56	1202	(1	.10	13	2599	15	(5	(20	110	(.01	(10	31	(10	22222	78
9070 - 2	84607	(5	.9	.67	25	₹2	13	(5 2.88	(1	22	15	122 5	.79	.19	12	.54	981	ä	.07	20	2753	13	(5	(20	127	/ 01	(10			0	
9070 - 3	84608	(5	.7	.38	28	₹2	44	(5 2.79	(1	24	13	363 3	.17	.19	(10	.34	998	(i	.07	16	1129	10	(5	(20	127	(.01	(10	50 40	(10 (10	3	87
9070 - 4	84609	5	1.0	.29	16	(2	88	(5 2.72	(1	19	13	336 2	.47	.18	(10	.35	876	ii.	.07	14	805	11	(5	(20	121	/ 01	(10	15	14.4	2	60
9070 - 5	84610	(5	.3	.53	18	(2	59	(5 3.51	(1	24	21	48 4	.25	.18	14	.57	1236	(i	.04	17	1436	11	(5	(20	135	(.01	(10	26	(10 ⁻	2	41
9070 - 6	84611	(5	.3	.36	26	(2	44	(5 2.68	(1	16	18			.19	13	.38	870	1	.05	14	1709	11	(5	(20	122	₹.01	(10	18	(10	1	02 57
9070 - 7	84612	15	.7	.35	33	(2	16	(5 3.82	(1	16	18	235 3	.74	.16	13	.40	984	1	.04	13	1714	12	(5	(20	179	/ 01	(10	22	(10	•	56
9070 - 8	84613	5	.4	.42	40	(2	31	(5 3.58	(1	23	20		.91	.16	15	.43	1173	d	.05	17	1875	12	(5	(20	230	(N1	(10	27	(10	J	53 54
9070 - 9	84614	(5	.3	.35	17	⟨2	39	(5 4.33	(1	14	24	128 4	.07	.15	17	.56	1394	(1	.02	18	2030	7	(5	(20	224	(.01	(10	31	(10	9	58
9070 - 10	84615	⟨5	.5	.33	32	1(2	43	(5 3.74	(1	16	19	255 3	.94	.15	15	.62	1049	(1	.03	19	1847	14	15	(20	237	(.01	(10	26	(10	5	55
9070 - 11	84616	(5	(.2	.32	15	(2	22	(5 3.91	(1	18	17	19 4	.76	.13	14	.87	1382	(1	.02	21	1564	9	(5	(20	229	(.01	(10	40	(10	2	59
9070 - 12	84617	(5	₹.2	.31	11	(2	641	(5 4.54	(1	17	46	78 4	.37	.15	16	.69	1606	(1	.02	25	1561	i	(5	(20	242	.01	(10	46	(10	2	47
9070 - 13	84618	10	.3	.33	13	(2	322	(5 3.60	⟨1	23	19	187 4	.87	.13	15	1.09	1745	(1	.04	21	1339	i	(5	(20	184	(.01	(10	35	(10	1	47 60
9070 - 14	84619	15	.3	.43	10	(2	162	(5 2.50	(1	26	14	164 4	.75	.15	14	1.14	1201	(1	.06	24	1787	6	(5	(20	176	(.01	(10	41	(10	3	60
9070 - 15	84620	10	(.2	.44	13	₹2	105	(5 2.40	(1	23	13	144 4	.72	.14	13	1.06	1189	(1	.06	21	1766	13	(5	(20	143	(.01	(10	42	(10	3	59
9070 - 16	84621	(5	.3	.45	12	(2	41	(5 3.40	(1	17	10	165 4	.32	.18	14	.90	1398	(1	.05	14	2112	5	(5	(20	129	(.01	(10	40	(10	3	46
9070 - 17	84622	⟨5	.3	.44	9	(2	47	(5 3.20	(1	14	9	153 3	.53	.20	13	.74	1282	(1	.07	12	2019	4	(5	(20	178	(.01	(10	40	(10	Å	38
9070 - 18	84623	(5	.4	.42	8	(2	201	(5 4.99	(1	15	10	140 3	.68	.18	14	.80	1682	(1	.03	11	1916	5	(5	(20	215	(.01	(10	38	(10	3	41
9070 - 19	84624	(5	.4	.43	11	⟨2	116	(5 4.28	(1	15	14	167 3	.99	.18	14	1.08	1512	(1	.04	13	1933	6	(5	(20	162	(.01	(10	40	(10	3	43
9070 - 20	84625	(5	.2	.46	10	(2	89	(5 2.74	(1	12	11	168 3	.57	.20	13	.68	939	(1	.08	11	2297	4	(5	(20	114	(.01	(10	31	(10	4	35

NOTE: (= LESS THAN

FAX:F. HEWITT 689-5041

cc: DAVID VISAGIE C/O NORTHAIR GROUP

ECO-TECH LABORATORIES LTD.

B.C. CERTIFIED ASSAYER

ECO-TECH LABORATORIES LTD. 10041 BAST TRANS CANADA HWY.

CARMAC RESOURCES - ETS 90-9079

860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

SEPTEMBER 11, 1990

PHONE - 604-573-5700 FAX - 604-573-4557

VALUES IN PPM UNLESS OTHERWISE REPORTED

PROJECT: CARMAC (HANK)
30 CORE SAMPLES RECEIVED AUGUST 30, 1990

E 1 		AU(ppb)	AG /	AL(1)	AS	8	B A	BI CA(%)	CD	CO	CR	CU FR(%)		LA HG(HO NA(%)	NI	P	PB	SB	SN	SR TI(%)	U	V	¥	Y	ZN
9079 - 1	84660	20	. 8	1.16	33	<2	30	(5 3.64	<1	24	36	145 6.19	.12	<10 1.		::::::::::::::::::::::::::::::::::::::	1	1223	11	 (5	(20						
9079 - 2	84661	30	1.2	1.33	56	<2	35	<5 3.53	(1	24	30	494 6.67	.11		1918	1 .01		1216	38	(5	(20	54 <.01	<10	60	<10	5	67
9079 - 3	84662	15	.5	1.31	25	<2	32	<5 3.13	⟨1	21	38	46 5.89	.14	(10 1.0		(1 .01	1	1192	15	(5	(20	75 (.01	<10	73	<10	1	182
9079 - 4	84663	<5	. 4	1.57	16	<2	27	<5 3.50	⟨1	19	35	43 5.41	.13	(10 1.1		1 .01	i	1167	10	(5		39 <.01	<10	54	<10	6	78
9079 - 5	84664	15	.5	1.47	15	<2	25	<5 3.86	<1	19	31	29 5.29	.14	(10 1.0		(1 .01	7	1201	10	(5	(20	34 <.01	<10	54	<10 ·	8	86
9079 - 6	84665	70	. 8	1.44	40	<2	25	<5 3.12	⟨1	23	26	141 6.38	.11	(10 1.6		<1 .01	3	1123	٥	(5	<20 <20	32 <.01	<10	51	<10	6	69
9079 - 7	84666	>1000	3.5	1.07	128	<2	29	<5 1.89	< 1	20	17	526 9.47	.09	(10 1.1		2 .03	i	1212	32	(5	(20	33 <.01	(10	59	(10	.,	75
9079 - 8	84667	105	. 8	1.53	41	<2	32	(5 2.20	(1	21	27	53 6.06	.11	<10 1.1		1 .02	1	1102	3.2	(5	(20	15 (.01	(10	50	<10	(1	59
9079 - 9	84668	150	1.3	1.48	139	<2	37	<5 2.01	<1	19	30	56 6.54	.09	<10 1.6		2 .03	1	1217	24	(5	(20	22 <.01	<10	72	<10	4	78
9079 - 10	84669	60	.4	1.54	19	<2	26	4.15	(1	20	27	59 5.72	.12	<10 1.8		1 .02	1	1177	7	(5	(20	20 <.01	<10	85	(10	3	92
9079 - 11	84670	170	1.4	1.27	19	₹2	24	(5 3.34	2	19	35	310 5.92	.12	(10 1.5		(1 .02	1	1070	78	(5	(20	34 <.01	(10	73	(10	1	78
9079 - 12	84671	100	. 8	1.21	20	<2	18	(5 3.86	(1	20	28	38 5.50	.13	(10 1.7		(1 .04	,	1123	11	(5	(20	38 (.01	(10	54	<10	6	298
9079 - 13	84688	55	. 8	.86	51	<2	23	<5 3.74	(1	21	27	71 6.16	.12	<10 1.2		(1 .02	1	1042	24	(5	(20	75 <.01 84 <.01	<10	61	(10	1	83
9079 - 14	84689	45	. 8	. 45	48	<2	<5	(5 3.93	<1	13	19	79 5.12	.12	(10 1.4		<1 .02	,	1048	12	(5	(20	84 <.01 186 <.01	<10	51	(10	5	12
9079 - 15	84690	410	3.6	. 40	95	<2	27	<5 1.94	<1	23	44	152 8.53	.12	(10 .6		1 .04	5	934	36	(5	(20	79 < .01	(10	34	(10	8	54
9079 - 16	84691	160	1.3	.40	40	<2	20	<5 1.89	< 1	23	34	91 6.63	.15	⟨10 .4		2 .05	6	1053	39	(5	(20	54 <.01	(10	16	(10	(1	67
9079 - 17	84692	95	. 8	. 42	32	<2	18	<5 1.75	⟨1	17	40	7 4.32	.17	(10 ,3		1 .05	ĭ	1235	55	(5	(20	46 <.01	(10	22	(10	7	161
9079 - 18	84693	105	1.8	.41	87	<2	22	<5 2.22	<1	16	40	99 7.13	.17	(10 .3		2 .02	3	1141	38	(5	⟨20	44 <.01	<10 <10	17 15	(10)	33
9079 - 19	84694	140	2.1	.43	89	<2	18	(5 3.91	4	22	56	127 6.70	.18	⟨10 .6		1 <.01	Š	1108	127	(5	(20	68 <.01	<10 <10	15	<10 <10	4	94
9079 - 20	84695	180	1.8	.36	94	<2	15	<5 1.61	< 1	14	46	28 5.58	.15	⟨10 .4		3 .01	i	1003	50	(5	(20	52 <.01	<10	14	(10	/1	598
9079 - 21	84696	35	.5	.38	19	<2	12	<5 3.55	(1	19	30	9 4.01	.16	(10 .8		⟨1 ⟨.01	6	889	35	(5	(20	96 (.01	<10	30	(10	(1	107
9079 - 22	84697	90	1.0	.31	51	<2	11	(5 4.15	3	20	29	40 3.99	.13	(10 1.0		2 <.01	6	753	128	(5	(20	119 (.01	<10	23		,	128
9079 - 23	84698	65	1.0	. 44	71	<2	17	<5 4.07	< 1	24	28	205 5.39	.18	10 .4		(1 (.01	ĭ	1586	92	(5	₹20	96 (.01	(10		(10	0	367
9079 - 24	84699	(5	<.2	. 48	19	<2	11	(5 4.31	<1	21	24	70 4.77	.16	(10 1.6		1 <.01	Ś	991	14	(5	(20	324 <.01	(10	14 55	(10	D D	121
9079 - 25	84700	10	<.2	.80	79	<2	21	(5 3.79	<1	22	26	41 4.68	.12	(10 1.5		2 <.01	6	950	11	(5	<20	170 (.01	(10	56	(10	7	62
9079 - 26	84701	₹5	<.2	.67	44	<2	19	(5 3.98	(1	24	23	91 5.86	.15	(10 1.2		(1 (.01	5	875	4	(5	(20	202 <.01	(10	54	<10 <10	5	57 31

CARMAC RESOURCES - ETS 90-9079

BL# SAGR Z	DESCRIPTION	AU(ppb)	λG	AL(%)	ÀS	B	BA	BI CA(%)	CD	CO	CR	CU FE(%)		LA HG(%)	MN		NI	P	PB	SB			U	V	¥	Y	ZN
9079 - 27 9079 - 28 9079 - 29 9079 - 30	84702 84703 84704 84705	<5 30 15	<.2 .3 .7	.47	46	<2	22	<pre></pre>	< 1	26 27 32 16	21		.13 .15 .16	<10 1.64 <10 1.60 10 1.67	1106 910	<1 <.01 3 <.01 <1 <.01 1 <.01	6	864 959 992 824	14 5 9	(5 (5 (5 (5	<20 <20 <20 <20 <20	120 <.01 103 <.01 58 <.01 68 <.01		57 55 48	<10 <10 <10 <10	4 4 7	40 32 31

NOTE: (= LESS THAN

FAX: F.HEWITT 689-5041 DAVE VISAGIE 636-2363 ECO TECH LABORATORIES LA JUTTA JEALOUSE B.C CERTIFIED ASSAYER

ASSAYING - ENVIRONMENTAL TESTING
10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 11, 1990

CERTIFICATE OF ANALYSIS ETS 9079

CARMAC RESOURCES C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

ASSAYS

SAMPLE IDENTIFICATION: 30 CORE samples received AUGUST 31, 1990

ECO-TECH LABORATORIES LTD.

JUTTA JEAKOUSE

B.C. Certified Assayer

SC90/CARMAC

CARMAC RESOURCES - ETS 90-9094

10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAX - 604-573-4557

C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

SEPTEMBER 20, 1990

VALUES IN PPM UNLESS OTHERWISE REPORTED

PAGE 1

PROJECT: HANK

212 CORE SAMPLES RECEIVED SEPTEMBER 8, 1990

ET#	DESCRIPTION		AG	AL(%)	AS	В	BA.	BI CA(%)	CD	CO	CR	CU FE(%)	K(%)	LA MG(%)	MN	MO NA(%)	NJ	Р	PB	SB	SN	SR T	I(%)	U	V	W	Υ	7N
9094 - 1	83451	10	(.2	.70	10	(2	(5	5 1.71	(1	28	12	13 5.54	10	10 1 40	======			======					======	=====	=====	======	=====	=====
9094 - 2	83452	15	.6	.77	13	(2	(5	(5 1.18	(1	24	16	61 5.77	.10	18 1.49	418	(1 .03	6	962	40	(5	(20	43	(.01	(10	55	(10	(1	23
9094 ~ 3	83453	205	.5	.33	77	(2	(5	8 1.64	(1	27	35	70 5.61		17 1.42	428	(1 .04	/	959	11	(5	(20	44	(.01	(10	62	(10	(1	23
9094 - 4	83454	5	.3	1.47	(5	(2	(5	(5 2.42	(1	35	14	10 6.24	.06	17 1.14	482	2 .02	_ /	684	28	(5	(20	47	(.01	(10	26	(10	(1	18
9094 - 5	83455	10	1.2	2.47	(5	(2	23	(5 3.39	(1	27	30	132 6.60	.11	21 2.40	923	(1 .04	6	1082	10	(5	(20		.01	(10	82	(10	(1	41
9094 - 6	83456	10	1.2	1.69	9	(2	16	(5 2.97	(1	33	31	89 6.95	.16 .12		1613	(1 .01	14	944	2	(5	(20	84	.01	(10	106	(10	(1	73
9094 - 7	83457	110	2.8	.97	33	(2	(5	(5 1.91	(1	28	29	64 6.04	.11	7.1	1224	(1 (.01	17	878	140	(5	(20		.01	(10	100	(10	(1	179
9094 - 8	83458)1000	1.4	1.17	30	(2	8	(5 1.39	()	23	43	48 3.85	.08	19 1.54 12 1.48	586	1 .02	16	967	163	(5	(20		.01	(10	57	(10	{1	252
9094 - 9	83459	260	1.2	2.30	7	(2	11	(5 1.57	(i	37	34	138 7.31	.09		682 1314	6 .02	10	703	109	(5	(20	48 ((10	53	(10	(1	107
9094 - 10	83460	115	.8	1.91	20	(2	12	5 1.25	()	30	34	47 6.99	.08	20 2.38	856	(1 .04	12	983	71	(5	(20			(10	136	(10	(1	178
9094 - 11	83461	10	.4	2.31	(5	(2	14	(5 2,30	(1	28	28	72 6.04	.09		1170	2 .03	12	889	14	(5	(20			(10	116	(10	{1	57
9094 - 12	83462	15	.9	2.10	6	⟨2	25	(5 3.04	(1	30	23	169 5.64	.16		1256	(1 (.01	10	960	8	(5	(20			(10	112	(10	(1	74
9094 - 13	83463	65	1.5	1.62	29	(2	11	(5 2.89	(1	31	22	230 5.47	.10		1137	(1 (.01 2 (.01	7	888	5	(5	(20			(10	81	(10	{1	65
9094 - 14	83464	355	2.4	.87	71	(2	6	(5 1.91	(1	33	23	66 5.63	.08	17 1.48	672	2 .03	0	951	,	(5	(20			(10	74	(10	(1	57
9094 - 15	83465	575	2.2	1.24	76	4	(5	(5 .53	1	30	31	51 5.63	.08	15 1.40	557	3 .04	7	902	11	(5	(20			(10	54	(10	(1	64
9094 - 16	83466	495	4.8	1.58	67	(2	11	7 1.57	15	24	25	126 5.51	.11		1007		,	900	19	(5	(20			(10	61	(10	(1	487
9094 - 17	83467	40	.5	1.91	58	(2	10	(5 2.90	(1	22	20	80 5.92	.10		1144	7 .02	,	1088	46	(5	(20			(10	73	(10	(1	2008
9094 - 18	83468	10	1.1	1.52	13	(2	9	(5 2.62	(1	23	19	66 5.24	.11	21 1.70	792	(1 .02	3	1151	18	(5	(20			(10	88	(10	1	167
9094 - 19	83469	25	.9	1.47	34	(2	16	(5 2.89	3	30	22	20 4.93	.13	20 1.48	711	(1 .03	3	1020	14	(5	(20			(10	91	⟨10	(1	86
9094 - 20	83470	35	1.4	2.04	23	(2	12	(5 2.45	(1	32	17	102 6.81	.13	25 2.12	993	(1 (.01	,	1117	16	(5	(20			(10	59	(10	3	627
9094 - 21	83471	(5	. 4	2.16	14	₹2	9	(5 2.39	(1	27	16	135 7.05	.09		1160	(1 .02	6	1084	26	(5	(20			(10	97	(10	(1	100
9094 - 22	83472	(5	.3	.27	20	(2	21	(5 3.55	(1	18	29	64 3.97	.13	22 .34	804	(1 .02	. J	1100	69	(5	(20			(10	120	(10	(1	146
9094 - 23	83473	⟨5	.8	.26	37	(2	15	(5 3.97	(1	21	23	68 4.50	.13	24 .43	846	2 (.01 1 (.01	10	2096	9	(5	(20			(10	19	(10	5	68
9094 - 24	83474	5	(.2	.50	33	(2	14	(5 3.76	(1	25	22	60 5.06	.10		1052		20	1997	9	(5	(20			(10	20	(10	3	46
9094 - 25	83475	(5	.6	.22	20	⟨2	13	(5 3.42	(1	17	22	65 2.99	.11		795	2 (.01 2 (.01	24	1692) 7	()	(20			(10	30	(10	2	54
9094 - 26	83476	90	2.7	.29	12	₹2	23	(5 4.46	(1	19	32	70 4.48	.13	23 .65	997		15	1685	1,	(2)	(20			(10	15	(10	4	50
														.03	111	2 (.01	23	1958	14	12	(20	118 (.	.01 〈	(10	28	(10	1	87

PAGE 2 ET#	DESCRIPTION		AG	AL(%)	AS	B	8A	B1 CA(%)	CD	CO	CR	CU FE(\$			MG(%)	MN	HO NA(%)			PB	SB	SN	SR TI (%) บ	V	u	Y	ZN
9094 - 27	83477	140	1.5	.18	15	(2	21	(5 4.97	(1	11	48	80 2.40	.09	13	.38	979	=========				=====	=====	========	======	=====			
9094 - 28	83478	(5	1.6	.34	9	(2	18	(5 3.27	(1	13	17			22	.42	584	3 (.01		1386		(5	(20	51 (.0	(10	8	(10	2	50
9094 - 29	83479	10	2.2	.33	12	(2	19	(5 3.36	(1	16	18			22	.60	609	1 (.01		2827	6	(5	(20	88 (.0	(10	17	(10	4	46
9094 - 30	83480	(5	.8	.47	9	(2	26	(5 5.05	(1	14	11			25	.64	982	1 (.01 2 (.01		2716		(5	(20	107 (.0	(10	16	(10	3	70
9094 - 31	83481	(5	1.3	.29	24	(2	13	(5 4.16	₹1	17	14	-	.15	24	.55	771	(1 (.01	10		6	(5	(20	129 (.0)	(10	48	(10	4	64
9094 - 32	83482	(5	.8	.30	19	₹2	12	(5 4.80	₹1	18	17			25	.45	882	1 (.01	13	2578 2566	8	(5	(20	137 (.0)	(10	18	(10	2	- 31
9094 - 33	83483	(5	.4	.43	10	(2	22	(5 6.81	(1	15	10			30	.72	1236	3 (.01	12		/	(5	(20	150 (.01	(10	25	(10	2	34
9094 - 34	83484	5	1.0	.41	28	(2	6	(5 4.37	(1	14	9	160 3.90		28	.50	866	3 .03	11		4	(5	(20	154 (.01	(10	39	(10	4	50
9094 - 35 9094 - 36	83485	30	2.6	.21	667	(2	(5	(5 3.77	(1	16	38	95 5.34		25	.32	936	5 (.01	13		6 18	(5	(20	137 (.01	(10	34	(10	6	53
9094 - 37	83486 83487	30	1.1	.36	34	(2	12	(5 5.08	₹1	29	51	72 5.39	.07	27	1.48	1408	2 (.01	20		23	₹ {5	(20	50 (.01	(10	10	(10	()	209
9094 - 38	83488	(5	2.3	.30	182	(2	6	(5 3.72	₹1	44	51	93 7.42	.05	34	.74	993	2 (.01	30		23	(5	(20 (20	136 (.01	(10	103	(10	(1	49
9094 - 39	83489	5 206	1.2	.30	43	(2	20	(5 5.30	(1	27	63	112 3.71	.10	22	.97	1558	5 (.01	23		52	(5	(20	83 (.01 135 (.01	(10	67	(10	(1	114
9094 - 40	83490	295 140	1.9	.26	213	(2	16	(5 3.39	(1	38	60	78 7.04	.04	33	.91	1178	1 (.01	23		13	(5	(20	135 (.01 93 (.01	(10	63	(10	9	160
9094 - 41	83491	265	2.9 1.6	.25 .25	155	(2	(5	(5 1.86	(1	36	39	101 6.79	.07	31	.37	440	5 .03	28	1190	55	6	(20	59 (.01	(10 (10	54	(10	(1	69
9094 - 42	83492	915	3.5	.23	89 137	(2	9	(5 2.50	(1	33	29	75 5.86	.08	27	.74	839	2 (.01	10	917	17	(5	(20	52 (.01	20	27 57	(10	(1	307
9094 - 43	83493	185	3.9	.25	70	3	6	(5 1.44	(1	28	50	70 4.96	.06	22	.55	497	4 .03	11	736	50	(5	(20	72 (.01	(10	37 37	(10	(1	103
9094 - 44	83494	30	2.1	.30	19	(2 (2	(5 (5	(5 1.63	2	42	41	97 7.56	.09	31	.74	461	3 .03	14	1035	208	(5	(20	105 (.01	(10	29	(10 (10	(1	54
9094 - 45	83495	35	.5	.26	23	(2	(5	(5 3.57 (5 3.98	(1	32	22	50 7.23	.12		1.14	695	2 (.01	8	1190	64	(5	(20	191 (.01	(10	43	(10	(1	575
9094 - 46	83496	450	6.2	.26	48	(2	(5	(5 2.45	() 4	26	16	100 4.57	.11		1.31	776	(1 (.01	6	981	6	(5	(20	202 (.01	(10	46	(10	7.1	208
9094 - 47	83497	385	1,2	.22	26	(2	(5	(5 3.07		12	25	113 6.08	.14	27	.96	637	2 (.01	8	1171	223	(5	(20	44 (.01	(10	34	(10	(1	43 784
9094 - 48	83498	100	.9	.27	15	(2	7	(5 1.72	(1 (1	34	20	23 4.33	.13		1.11	711	1 (.01	5	927	32	(5	(20	49 (.01	(10	27	(10	3	40
9094 - 49	83499	375	2.8	.22	21	(2	, (5	(5 3.07	(1	21	13	19 4.79	.11	22	.76	552	(1 (.01	4	899	10	(5	(20	50 (.01	(10	37	(10	(1	38
9094 - 50	83500	195	1.5	.22	21	(2	7	(5 2.38	(1	14 19	11 11	85 4.70	.11		1.12	850	(1) (.01	5	915	19	(5	(20	47 (.01	(10	36	(10	2	213
9094 - 51	83501	1000	9.7	.10	57	(2	(5	(5 1.85	80	26	31	9 6.27	.14	31	.85	588	(1 (.01	5	1028	24	(5	(20	45 (.01	(10	26	(10	(1	78
9094 - 52	83502	600	4.8	.19	67	(2	9	(5 2.83	8	28	18	190 4.37	.03	19	.29	472	3 (.01	4	502	179	(5	(20	26 (.01	(10	8	36		8859
9094 - 53	83503	115	6.5	.25	21	(2	(5	(5 2.29	3	20	26	73 5.12 56 3.90	.11	25	.54	749	4 (.01	6	958	252	(5	(20	30 (.01	(10	14	(10		1017
9094 - 54	83504	215	3.6	.26	49	(2	(5	(5 3.30	3	19	20	74 5.41	.16 .12	20	.59	704	5 (.01			3678	(5	(20	54 (.01	(10	24	(10	(1	392
9094 - 55	83505	80	(.2	.23	13	(2	(5	(5 2.76	(1	16	19	13 3.82	.12			1183	3 (.01		1040	117	(5	(20	69 (.01	11	38	(10	(1	533
9094 - 56	83506	40	.4	.23	10	(2	(5	(5 2.68	(1	15	16	43 2.60	.11		1.04	968	3 (.01		1039	4	(5	₹20	68 (.01	(10	31	(10	2	40
9094 - 57	83507	35	.8	.21	5	(2	6	(5 2.75	(1	11	24	34 2.78	.11	15	.85	884	2 (.01		1249	16	(5	₹20	74 (.01	(10	25	(10	4	36
9094 - 58	83508	85	1.6	.20	56	(2	(5	(5 2.40	(1	15	17	67 3.68	.09	15 19	.91	956	1 (.01		1159	2	(5	(20	51 (.01	(10	24	(10	4	28
9094 - 59	83509	285 1	17.8	.26	69	(2	12	(5 2.38	86	25	41	1066 4.43	.15	24	.83	838	1 (.01	3	1102	208	(5	(20	114 (.01	(10	23	(10	2	131
9094 - 60	83510	105	4.1	.33	13	(2	(5	(5 3.21	6	19	25	34 4.76	.16		.75	805	3 (.01	4		4771	(5	(20	94 (.01	(10	15	31	1 9	018
9094 - 61	83511		8.9	.27	39	(2	8	(5 3.15	35	18	28	143 5.28	.14			905 1133	2 (.01	4	1181	431	10	(20	157 (.01	(10	33	(10	2	696
9094 - 62	83512		7.9	.16	31	(2	19	(5 1.70	138	14	37	571 3.55	.09			592	2 (.01	3		2954	(5	(20	108 (.01	(10	31	12	(1 3	1791
9094 - 63	83513	15	.8	.32	15	(2	(5	(5 3.08	(1	23	31	6 4.97	.15			969	5 (.01	2	575	762	(5	(20	49 (.01	(10	13	66	(1)10	000
												,	.13	20 1	. 30	707	2 (.01	3	1148	26	(5	(20	54 (.01	(10	52	(10	(1	66

ECO-TECH LABORATORIES LTD. CARMAC RESOURCES - ETS 90-9094

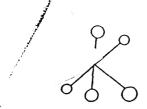
PAGE 3 ET#		DESCRIPTION			AL(%)	AS	В	BA	BI CA(%)	CD	CO	CR	CU FE(%)	K(%)	LAI	16(%)	MN	MO NA(%)	N1	Р	PB	SB	SN	co	T1/#\					
9094 -		83514	55	1.2			.====:	:		======	=====	::::::	=========	======	======	=====	=====	=========	======	, ======					TI(%)	U :=====	V =====	W ======	Y :=====	ZN ======
9094 -	-	83515	15	.4	.68 .30	52 7	(2 (2	8 (5	(5 2.88	(1	23	40	83 5.45	.12			1090	2 (.01	5	1007	146	(5	(20			(10	58	(10	(1	246
9094 -		83516	365	1.6	.30	41	(2	(5	(5 3.71	(1	21	29	7 6.19	.13		1.69	790	2 (.01	3		40	(5	(20	177	(.01	(10	40	(10	(1	46
9094 -		83517	165	1.9	.33	73	(2	7	(5 2.62 (5 2.89	1	23	30	30 5.54	.14	29	.97	554	2 (.01		1084	207	(5	(20	126	(.01	(10	21	(10	(1	317
9094 -		83518	255	2.1	.26	49	(2	13	(5 3.16	4	28	36	42 5.34	.18	29	.83	865	1 (.01	5	1421	272	₹5	(20	51	(.01	(10	17	(10	(1	643
9094 -		83519	115	1.4	.38	32	(2	(5	(5 3.94	(5	20 27	19	130 4.02	.12	22	.81	791	(1 (.01	1	896	212	(5	(20	78	(.01	(10	24	₹10	(1	364
9094 -	-	83520	500	5.7	.37	58	(2	(5	(5 4.38	17	21	26 32	27 6.26 176 5.23	.15		1.30	972	1 (.01	4	998	88	(5	(20	125	(.01	(10	38	(10	(1	186
9094 -	71	83521	415	4.9	.23	95	(2	β	(5 2.26	41	24	34	176 5.23 130 5.83	.10			1115	2 (.01	3	623	494	(5	(20	282	(.01	11	44	(10	()	1952
9094 -	72	83522	420	1.8	.25	69	(2	(5	(5 3.43	6	21	31	84 4.78	.11	30	.68	718	4 (.01	4	863	1155	(5	(20	57	(.01	(10	17	19	(1	4641
9094 -	73	83523	155	1.6	.22	33	(2	(5	(5 2.90	16	19	20	100 4.16	.09	26 23	.94	960	2 (.01	4	840	133	(5	(20	86	(.01	(10	24	(10	(1	795
9094 -	74	83524	300	1.1	.19	35	(2	(5	(5 2.13	6	15	24	64 3.36	.07	23 19	1.01	908 679	2 (.01	4	638	176	(5	(20	86	(.01	(10	33	(10	(1	1717
9094 -	75	83525	355	1.5	.22	39	(2	(5	(5 2.53	5	16	25	111 3.48	.10	20	1.00	706	1 (.01		617	177	(5	(20	45	(.01	(10	21	(10	(1	763
9094 -	76	83526	645	1.5	.23	38	(2	(5	(5 1.72	(1	17	21	31 3.37	.10	19	.69	534	2 (.01	0	496	93	(5	(20	86	(.01	(10	38	(10	(1	667
9094 -	77	83527	120	.8	.20	8	(2	(5	(5 1.81	6	19	29	37 4.30	.12	24	.40	495	1 .01	3	610	44	(5	(20	77	(.01	(10	32	(10	(1	194
9094 -	78	83528	10	(.2	.16	(5	-(2	(5	(5 2.48	2	13	18	54 3.53	.10	21	.39	612	4 (.01	4	803	530	(5	(20	60	(.01	(10	9	(10	(1	764
9094 -	79	83529	10	.3	.16	(5	(2	(5	(5 2.57	2	14	18	51 3.98	.09	24	.40	611	1 (.01	1	641 667	145	(5	(20	64	(.01	(10	9	(10	(1	286
9094 -		83530	65	.5	.18	19	(2	(5	(5 2.16	(1	14	19	29 3.55	.09	22	.44	503	(1 (.01	2	753	128	(5	(20		(.01	(10	8	(10	(1	365
9094 -		83531	190	1.0	.16	32	(2	(5	(5 2.54	(1	18	11	21 4.31	.07	26	.43	541	(1 (.01	2	703	25 11	(5 (5	(20		(.01	(10	8	(10	(1	172
9094 -		83532	105	2.5	.13	53	(2	(5	(5 2.95	(1	17	12	6 3.93	.06	24	.36	553	(1 (.01	2	550	19	(5	(20 (20		(.01	(10	8	(10	(1	57
	83	83533	210	8.1	.15	30	(2	(5	(5 2.03	(1	17	14	9 4.00	.07	24	.41	421	(1 (.01	3	591	19	(5	(20		(.01 (.01	(10	8	(10	(1	21
	84	83534	20	.3	.17	16	(2	(5	(5 2.63	(1	15	11	23 3.68	.07	23	.77	602	(1 (.01	2	567	28	(5	(20		(.01	(10	,	(10	(1	43
9094 -		83535	65	.7	.16	9	(2	(5	(5 2.45	13	11	10	247 3.76	.07	24	.71	742	(1 (.01	ĩ	597	807	(5	(20		(.01	(10 (10	20	(10	(1	79
	86	83536	15	₹.2	.18	21	(2	(5	(5 2.37	(1	11	9	31 4.40	.07	28	.75	697	(1 (.01	2	687	29	(5	(20		(.01	(10	20 25	(10 (10	(1	1276
9094 -		83537	15	.4	.16	31	(2	(5	(5 1.97	(1	10	14	37 3.40	.07	21	.42	429	2 (.01	2	624	55	(5	(20		(.01	(10	13	(10	(1	50
	88	83538	240	.7	.19	27	(2	(5	(5 2.23	(1	16	9	46 4.56	.07	28	.73	683	(1 .01	4	585	76	(5	(20		(.01	(10	35	(10	(1 (1	81 58
	89	83539	135	.3	.21	7	(2	(5	(5 2.63	()	14	7	86 3.19	.07	21 1	.00	849	(1 (.01	2	551	6	(5	(20		<.01	(10	38	(10	71	23
	90	83540	15	.4	.18	(5	(2	(5	(5 2.85	3	9	7	43 2.29	.11	16	.20	595	2 (.01	1	743	178	(5	(20		(.01	(10	7	(10	4	323
	91 92	83541	10	.6	.15	16	(2	(5	(5 2.44	(1	18	11	31 4.51	.07	27	.27	502	(1 (.01	1	664	95	(5	(20		(.01	(10	8	(10	(1	111
9094	_	83542	5	(.2	.18	(5	(2	(5	(5 2.38	(1	13	8	12 3.10	.09	19	.41	483	(1 (.01	2	626	56	(5	(20		(.01	(10	12	(10	(1	39
	73 94	83543 83544	10	.6	.24	29	(2	9	(5 3.71	6	21	15	115 4.88	.11	29	.64	753	1 (.01	6	871	212	(5	(20		₹.01	(10	18	(10	(1	893
	74 95	83545	10	.3	.23	25	(2	8	(5 2.43	(1	20	13	64 5.26	.08	31 1	.37 1	017	(1 .03	2	821	7	(5	(20		(.01	(10	52	(10	(1	38
	75 96	83546	15 25	.3 .5	.23 .21	27	(2	9	(5 2.78	(1	24	15	87 5.05	.07			817	(1 .02	4	804	6	5	(20	87	(.01	(10	50	(10	(1	31
	70 97	83547	140			21	(2	11	(5 2.68	(1	17	15	16 4.75	.09			621	(1 .01	2	728	7	(5	(20	95		(10	41	(10	(1	166
	77 98	83548	140	1.1	.17 .23	45	(2	10	(5 1.90	5	24	16	24 6.07	.08	35		436	1 (.01	3	537	16	(5	(20	71		(10	19	(10	(i	783
	70 99	83549	10	.5	.23	34 29	(2 (2	11	(5 2.86	(1	25	15	7 5.45	.09	33 1		779	1 (.01	3	852	8	(5	(20	109	(.0)	(10	42	(10	(1	37
9094 - 1		83550	10	.2	.25	23	(2	12	(5 2.51	(1	30	15	13 5.89	.11			674	(1 (.01	4	848	10	(5	(20	100	(.01	(10	30	(10	(1	34
, v, r 1	00	00000	10	٠.	• 2 J	23	12	7	(5 2.99	(1	23	12	45 5.39	.09	31 1	.49	760	(1 (.01	4	665	7	(5	(20	105		(10	52	(10	(1	44

PAGE 4																													
E1#	DESCRIPTION			AL(%)	AS	В	BA	BI CA(%)	CD	CO	CR	CU FE(%)	K(%)	LA MG(%	:) MN	MC	D NA(%)	NI	Р	PB	SB	SN	CD	TI(%)					
9094 - 101	83551	10	.2	.22	26	(2	9	(5 3.03	(1	21	13	127 5.22				=====	======:	=====	======	======	=====		JN ======		U ======	v =====:	W ::::::	Y =====:	ZN =======
9094 - 102	83552	15	(.2	.24	33	(2	10	(5 2.05	(1	23	11	38 4.77	.09	32 1.6	8 /82	()	1 (.01	4	528	12	(5	(20	148		(10	40	(10	(1	27
9094 - 103	83553	15	.6	.17	43	(2	12	(5 1.81	(1	20	15		.09	29 1.7		(1		3	542	12	(5	(20	102	(.01	(10	35	(10	(1	29
9094 - 104	83554	35	.5	.20	42	(2	9	(5 2.08	(1	21	14	61 4.66 15 5.17	.08	27 1.2		(1		3	175	10	⟨5	(20	94	(.01	(10	24	(10	(1	24
9094 - 105	83555	250	1.4	.14	39	(2	(5	(5 1.49	2	21	26		.08	30 1.1		(1		3	646	15	(5	(20	72	(.01	(10	23	(10	(1	53
9094 - 106	83556	5	.2	.19	18	1(2	8	(5 2.53	(1	22	11	41 3.90	06	23 .7		7		5	238	19	7	(20	59	(.01	(10	7	(10	(1	373
9094 - 107	83557	5	(.2	.18	28	(2	12	(5 2.13	(1	32	12	40 5.21	.08	31 1.3	_	(1		5	719	70	5	(20	53	(.01	(10	30	(10	(1	213
9094 - 108	83558	10	.4	.17	31	(2	11	(5 1.96	(1	22	15	7 5.92	.07	34 1.3		(1		5	312	14	₹5	(20	62	(.01	(10	25	(10	(1	41
9094 - 109	83559	15	1.1	.21	39	(2	14	(5 2.05	(1	26	10	44 5.20	.06	30 1.0		(1		4	136	11	(5	(20	59	(.01	(10	34	(10	(1	34
9094 - 110	83560	5	.4	.21	12	(2	7	(5 2.63	(1	28	14	52 6.51	.11	38 .84		2		9	1052	48	(5	(20	74	(.01	(10	28	(10	(1	101
9094 - 111	83561	10	.5	.23	15	(2	15	(5 2.63	(1	26	13	22 5.55	.12	35 .83		2		4	1060	13	(5	(20	72	(.01	(10	16	(10	(1	18
9094 - 112	83562	35	1.3	.23	44	(2	6	(5 1.87	(1	34	16	13 6.39 26 4.90	.12	41 .88		1	.01	8	1146	7	(5	(20	111	(.01	(10	33	(10	(1	16
9094 - 113	83563	10	(.2	.29	18	(2	10	(5 3.11	(1	26	19	148 5.90	.12	30 .73		2		6	1208	31	(5	(20	75	(.01	(10	17	(10	(1	82
9094 - 114	83564	15	1.2	.26	23	(2	7	(5 2.82	(1	18	13		.13	38 1.42		(1		5		7	₹5	(20	124	(.01	(10	53	(10	(1	26
9094 - 115	83565	5	(.2	.27	17	(2	13	(5 2.71	()	26	16	100 5.37 22 5.93	.10	34 1.43		(1	_	2	1011	6	(5	(20	105	(.01	(10	55	(10	(1	25
9094 - 116	83566	10	.6	.27	16	(2	9	(5 2.92	(1	33	16	7 7.18	.12	38 1.24		2	.01	5	1157	4	(5	(20	76	(.01	(10	40	(10	(1	20
9094 - 117	83567	10	1.1	.25	19	(2	14	(5 2.21	(1	28	19	5 6.49	.13 .13	46 1.42		2	.01	7	1230	5	(5	(20	132	(.01	(10	34	(10	(1	57
9094 - 118	83568	5	1.1	.22	6	(2	14	(5 1.45	a	19	22	15 7.13	.13	41 1.04 43 .97		2	.02	9	1249	6	(5	(20	85	(.01	(10	26	(10	(1	17
9094 - 119	83569	5	1.3	.24	9	(2	12	(5 1.56	(1	20	19	4 5.83	.11	43 .97 37 1.16		i	.02	8	1178	8	(5	(20	46	(.01	(10	29	(10	(1	18
9094 - 120	83570	10	1.3	.22	6	(2	16	(5 1.82	(1	27	14	8 5.76	.11	36 1.18		2	.02	5	1264	7	(5	(20	51	(.01	(10	29	(10	(1	18
9094 - 121	83571	15	1.2	.20	11	(2	14	(5 2.51	(1	24	13	10 6.99	.10	43 1.38		(1	.02	3	845	4	(5	(20	63	(.01	(10	21	(10	(1	18
9094 - 122	83572	10	1.3	.16	16	(2	(5	(5 2.51	(1	20	15	2 4.38	.08	26 1.27		(1	.02	3	123	6	(5	(20	98	(.01	(10	29	(10	(1	18
9094 - 123	83573	60	(.2	.70	10	(2	(5	5 1.71	(1	28	12	13 5.54	.10	18 1.49	416 418	1	(.01	3	62	25	(5	(20	108	(.01	(10	19	(10	(1	21
9094 - 124	83574	10	.6	.77	13	(2	(5	(5 1.18	(1	24	16	61 5.77	.09	17 1.42		(1	.03	6	962	40	(5	(20	43	(.01	(10	55	(10	(1	23
9094 - 125	83575	90	.5	.33	77	(2	(5	8 1.64	(1	27	35	70 5.61	.06	17 1.42	482	. 1	.04	/	959	11	(5	(20		(.01	(10	62	⟨10	(1	23
9094 - 126	83576	10	.3	1.47	(5	(2	(5	(5 2.42	(1	35	14	10 6.24	.11	21 2.40		(1	.02	7	684	28	(5	(20	47	(.0)	(10	26	(10	(1	18
9094 - 127	83577	15	(.2)	2.47	(5	(2	23	(5 3.39	(1	27	30	132 6.60	16	23 2.76		(1	.04	. 6	1082	10	₹5	(20		10.	(10	82	(10	(1	41
9094 - 128	83578	10	1.0	.29	36	(2	(5	(5 2.01	(1	23	14	3 5.18	.10	47 1.50	539	2	.01 .03	14 7	944	2	(5	(20		(.01	(10	106	(10	(1	73
9094 - 129	83579	10	2.1	.24	31	(2	6	(5 2.02	(1	24	12	52 4.74	.11	30 1.02	461		(.01	′.	1004	14	(5	(20		(.01	(10	36	(10	(1	20
9094 - 130	83580		4.8	.23	28	3	(5	(5 1.41	(1	24	13	128 5.46	.10	48 .66	284	(1	.05	7	962	14	(5	(20		(.01	(10	32	(10	(1	18
9094 - 131	83581		2.0	.21	39	(2	5	(5 1.41	(1	21	13	109 5.01	.09	30 1.11	956	1		,	898	40	(5	(20		(.01	(10	30	(10	(1	21
9094 - 132	83582		3.5	.19	53	(2	11	(5 2.06	5	18	9	100 5.06	.07	30 1.71		(1	.01 (.01	2	488	9	(5	(20		⟨.01	(10	33	(10	(1	144
9094 - 133	83583		2.1	.21	49	(2	14	(5 2.30	24	19	12	190 4.81	.07			-	(.01	3	348	11	(5	(20		⟨.01	(10	31	(10	(1	684
9094 - 134	83584		1.0	.21	58	(2	14	(5 2.40	4	19	10	87 4.88	.06	_	1172			ئ ا	337	26	(5	(20			(10	39	(10	(1	2480
9094 - 135	83585	125	.8	.22	50	(2	15	(5 1.99	(1	19	9	8 5.87	.07	36 1.19			1.00	1	775	9	(5	(20			(10	43	(10	(1	617
9094 - 136	83586	105	.9	.20	39	(2	15	(5 1.92	(1	19	10	23 5.64	.06	35 1.24			1.00	(1	945	8	(5	(20			(10	45	(10	(1	38
													.00	03 1.44	1117	(1	.01	(1	716	10	(5	(20	71	(.01	(10	47	/10	71	10

PAGE 5																										
ET#	DESCRIPTION			AL(%)	AS	B	BA	BI CA(X)	CD	CO	CR	CU FE(%)	K(%)	LA MG(%)	MN	MO NA(%)	NI P	P8	SB	SN	SR TI(%)	U	V	W	Y	ZN
9094 - 137	83587	135	.3	.21	14	(2	12	(5 1.80	(1	27	16	12 6.27	.10	38 .90	423	1 .02	9 981	: 6	(5	(20	62 (.01	(10	27	(10		
9094 - 138	83588	155	1.6	.21	64	(2	15	(5 1.80	(1	19	9	75 5.70	.05	35 1.29	1070	(1 .02	3 790	18	(5	(20	57 (.01	(10	45	(10	(1	20 58
9094 - 139	83589	165	1.8	.27	70	(2	13	(5 2.19	()	25	11	139 7,60	.07	45 1.60	1727	(1 .02	4 957	16	(5	(20	58 (.01	(10	65	(10	(1	130
9094 - 140	83590	105	ه.	.34	53	(2	9	(5 2.74	(1	26	12	77 7.15	.07	43 1.80	1944	1 (.01	6 944	8	(5	(20	65 (.01	(10	75	(10	/:	80
9094 - 141	83591	285	.8	.26	66	.(2	13	(5 3.10	(1	27	15	22 7.62	.09	46 1.80	1678	2 (.01	5 1004	10	ς,	(20	69 (.01	(10	72	(10	(1	52
9094 - 142	83592	230	.7	.24	85	12	11	(5 2.41	(1	32	12	89 8.74	.08	50 1.43	1102	1 (.01	8 1028	14	(5	(20	59 (.01	(10	63	(10	(1	44
9094 - 143	83593	150	.9	.27	82	(2	13	(5 2.09	()	35	12	100 8.88	.10	50 1.31	1282	2 .01	8 1017	13	(5	(20	60 (.01	(10	46	(10	(1	48
9094 - 144	83594	210	1.0	.26	108	(2	12	(5 2.99	(1	35	13	20 8.85	.10	52 1.40	1304	(1 (.01	8 1035	21	(5	(20	82 (.01	(10	48	(10	(1	63
9094 - 145	83595	155	.5	.25	75	(2	12	(5 3.84	8	29	14	27 7.68	.08	45 1.85	1714	1 (.01	6 914	17	(5	(20	121 (.01	(10	64	(10	(1	1135
9094 - 146	83596	205	1.5	.25	55	(2	9	(5 3.56	5	33	16	35 8.32	.10	48 1.60	1094	2 .01	9 1117	18	(5	(20	125 (.01	(10	46	(10	(1	836
9094 ~ 147	83597	10	.7	.19	17	(2	14	(5 1.59	(1	23	20	13 7.49	.11	40 .74	350	4 .02	6 927	8	(5	(20	52 (.01	(10	11	(10	(1	46
9094 - 148	83598	55	1.2	.18	35	3	8	(5 1.36	1	26	36	19 6.49	.08	35 .61	353	3 .02	8 772	12	(5	(20	49 (.01	(10	14	(10	(1	372
9094 - 149	83599	50	1.7	.19	50	2	5	(5 .98	(1	23	27	35 6.76	.09	36 .43	231	1 .03	5 951	9	(5	(20	37 (.01	(10	9	(10	(1	19
9094 - 150	83600	10	1.0	.23	21	(2	18	(5 2.63	(1	28	20	74 8.55	.10	48 1.34	512	(1 (.01	4 1005	7	(5	(20	95 (.01	(10	25	(10	(1	38
9094 - 151	83601	10	1.5	.27	57	(2	15	(5 3.70	(1	28	15	181 8.03	.09	48 1.86	753	(1 (.01	2 1035	13	(5	(20	162 (.01	(10	39	(10	(1	53
9094 - 152	83602	80	1.5	.25	25	(2	16	(5 2.81	₹1	25	17	143 7.03	.09	41 1.36	666	1 .03	6 964	9	(5	(20	182 (.01	(10	36	(10	(1	33
9094 - 153	83603	30	.8	.27	37	(2	12	(5 2.46	(1	28	25	37 8.20	.11	46 .85	435	1 .03	9 1094	6	(5	(20	109 (.01	(10	22	(10	(1	18
9094 - 154	83604	35	1.5	.22	41	⟨2	9	(5 2.01	(1	22	26	8 6.52	.10	36 .45	342	2 (.01	8 1039	12	(5	(20	30 (.01	(10	13	(10	(1	44
9094 - 155	83605	15	.5	.26	42	(2	12	(5 2.10	(1	33	33	3 8.23	.12	46 .91	460	2 .01	9 1782	8	(5	(20	57 (.01	(10	18	(10	(1	21
9094 - 156	83607	30	1.4	.26	54	(2	14	(5 2.57	< 1	39	20	34 9.11	.11	51 .98	509	3 (.01	12 1564	13	(5	(20	57 (.01	(10	23	(10	(1	61
9094 - 157	83608	70	2.9	.23	48	(2	17	(5 2.09	(1	33	24	84 10.50	.12	56 .50	338	3 (.01	10 1462	24	(5	(20	31 (.01	⟨10	10	(10	(1	250
9094 - 158	83609	120	2.4	.29	61	(2	12	(5 2.68	(1	29	17	237 8.93	.10	49 .91	577	1 (.01	12 977	10	(5	(20	44 (.01	(10	23	(10	(1	34
9094 - 159	83610	. 10	(.2	.37	52	(2	7	(5 2.78	(1	27	18	8 8.23	.12	49 1.24	536	(1 (.01	10 1326	6	6	(20	71 (.01	(10	39	(10	(1	30
9094 - 160	83611	15	(.2	.42	24	(2	10	(5 3.19	(1	26	19	7 8.52	.12	52 1.38	611	(1 (.01	10 1452	4	(5	(20	66 (.01	(10	34	(10	(1	28
9094 - 161	83612	25	.8	.85	39	(2	19	(5 2.65	(1	23	26	103 8.99	.12	54 1.35	618	2 (.01	18 1423	7	(5	(20	14 (.01	(10	49	(10	(1	32
9094 - 162	84750	5	.5	1.64	30	(2	30	(5 4.26	(1	30	42	158 7.73	.09	50 1.34	1160	1 (.01	27 1972	8	(5	(20	94 (.01	(10	60	(10	(1	70
9094 - 163	84751	5	1.0	.78	43	(2	28	(5 3.20	(1	32	20	87 5.65	.10	36 .96	1116	3 (.01	14 1379	12	{5	(20	91 (.01	(10	48	(10	()	46
9094 - 164	84752	5	1.0	.70	58	(2	20	(5 3.45	(1	41	20	101 6.46	.08	39 .79	1387	3 (.01	13 1217	15	12	(20	78 (.01	(10	53	(10	(1	61
9094 - 165	84753	15	3.4	1.62	44	(2	33	(5 4.15	(1	32	16	90 7.85	.08	47 1.07	1202	2 (.01	8 1029	12	6	(20	50 (.01	(10	85	(10	(1	59
9094 - 166	84754	5	.3	1.61	39	(2	38	(5 3.24	(1	25	16	53 6.06	.11	38 .98	1136	2 (.01	6 1011	2	⟨5	(20	48 (.01	(10	71	(10	(1	61
9094 - 167	84755	5	(.2	.32	21	(2	28	(5 5.56	(1	22	11	41 5.87	.13	37 .91	1994	(1 (.01	4 827	(2	(5	(20	72 (.01	(10	72	(10	i	46
9094 - 168	84756	5	.9	.33	40	(2	40	(5 4.39	(1	33	14	187 7.36	.10	45 1.16	1414	1 (.01	9 1061	11	5	(20	73 (.01	(10	74	(10	(1	72
9094 - 169	84757	30	1.7	.62	45	(2	24	(5 2.05	()	51	16	112 9.44	.10	54 1.05	994	b .02	13 1080	23	6	(20	40 (.01	(10	70	(10	(1	65
9094 - 170	84758	25	2.4	.64	21	(2	22	(5 2.78	(1	28	15	51 6.82	.12	40 .91	1119	1 (.01	7 1118	9	8	(20	47 (.01	(10	34	(10	(1	67

PAGE 6 ET#	DESCRIPTION			AL(%)	AS	8	BA	BI CA(%)	CD	CO	CR	CU FE(%)	K(%)	LA MG(X)	MN	MO NA(%)	NI	P PE	SB	SN	SR 11(%)	U	V	u	Y	ZN
ET#	DESCRIPTION 84759 84760 84761 84762 84763 84764 84765 84766 84766 84767 84768 84776 84770 84770 84771 84772 84773 84774 84775 84776 84777 84778 84778 84778 84781 84782 84784 84785	115 175 190 355 195 70 155 295 890 220 140 55 95 195 180 125 80 10 145 355 60 95 105	4.7 6.7 2.5 .5 1.7 (.2 .8 3.6 3.6 2.2 3.4 1.4 2.0 7.2 6.7 2.8 1.8 .6 10.1 8.3 1.0 1.4 1.0 (.2 .3 .7 5.3	.65 .32 .31 .28 .26 .26 .22 .23 .23 .23 .64 .76 .29 .27 .15 .28 .29 .45 .21 .24 .27 .30 .29 .38 .36	50 61 36 26 55 11 48 91 91 177 32 7 28 130 47 69 15 12 29 40 59 39 15 18 41 80 66	(2 4 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	16 11 8 12 11 14 17 13 13 15 21 20 9 20 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5	(5 3.63 (5 1.76 (5 1.50 (5 1.92 (5 1.20 (5 3.20 (5 1.66 (5 .96 (5 1.68 (5 2.71 (5 2.18 (5 2.76 (5 3.39 (5 2.20 (5 3.20 (5 2.20 (5 3.20 (5 2.41 (5 2.60 (5 2.29 (5 3.15 8 3.11 (5 3.81 (5 3.69	(1 7 1 (1 (1 (1 17 17 17 17 17 17 17 17 17 17 17 17 17	18 24 15 27 22 19 34 43 43 24 17 12 25 32 18 34 14 11 10 18 19 24 26 22 26	16 24 39 23 35 18 21 27 27 20 16 10 13 15 11 13 25 27 37 21 40 26 22 26	36 4.37 270 5.68 22 4.85 4 5.95 44 6.22 11 5.09 17 8.11 195 8.74 106 7.04 97 6.05 10 5.64 53 6.80 55 6.94 13 6.57 474 7.75 28 3.96 26 3.99 101 3.21 115 3.99 49 3.88 69 5.07 57 5.38 48 5.29 86 5.26 200 4.59 154 7.11	.11 .06 .14 .10 .13 .12 .10 .06 .11 .13 .12 .10 .03 .07 .06 .10 .07 .04 .09 .08 .05 .10	28		MO NA(\$) 2 (.01 5 .03 4 .02 1 .01 3 .03 2 (.01 2 .02 3 .03 3 .03 2 (.01 1 (.01 1 (.01 1 (.01 1 (.01 1 (.01 2 (.01 1 (.01 4 (.01 3 (.01 4 (.01 4 (.01 2 .03 3 .02 2 (.01 4 (.01 4 (.01 4 (.01 4 (.01 4 (.01 4 (.01 4 (.01 5 .03 6 (.01 6 (.01 6 (.01 6 (.01 7 (.01	2 3 4 4 1 3 6 6 2 2 1 1 3 4 1 4 1 3 4 1 1 3 4 1 1 1 1 1 1 1	915 39 1106 598 802 232 1164 13 1090 188 1158 6 11204 89 1060 112 1060 112 1100 87 1041 1073 896 97	====== (5	\$N (20 (20 (20 (20 (20 (20 (20 (20 (20 (20	SR TI(x) 39 (.01 92 (.01 50 (.01 74 (.01 53 (.01 106 (.01 44 (.01 37 (.01 39 (.01 41 (.01 41 (.01 78 (.01 81 (.01 94 (.01 186 (.01 93 (.01 55 (.01 55 (.01 48 (.01 82 (.01 81 (.01 81 (.01 93 (.01 101 (.01 118 (.01 117 (.01 118 (.01 117 (.01 119 (.01 119 (.01	-		(10 (10 (10 (10 (10 (10 (10 (10 (10 (10	3 G G G G G G G G G G G G G G G G G G G	
9094 - 199 9094 - 200 9094 - 201 9094 - 202	84787 84788 84789 84790	150 35 55 20 20	.6 .7 1.0 (.2 (.2	.32 .28 .28 .31 .29	106 63 77 62 20	(2 (2 (2 (2 (2	(5 (5 (5 (5 (5	(5 3.67 (5 4.39 (5 3.05 (5 3.42 (5 3.05	3 (1 (1 (1 (1	22 23 25 35 22	30 23 37 26 21	75 5.05 56 5.18 77 3.64 85 4.90 24 4.50	.10 .09 .10 .09	47 .85 49 1.59 33 1.00 46 1.48 40 1.41	890 1509 824 780 685	3 (.01 2 (.01 5 (.01 3 (.01 2 (.01	9 5 9 1	110 72 851 13 916 86 036 10 768 10	(5 (5 (5 (5 (5	(20 (20 (20 (20 (20 (20	78 (.01 103 (.01 62 (.01 80 (.01 70 (.01	(10 (10 (10 (10 (10 (10	25 30 18 54 35	(10 (10 (10 (10 (10 (10	(1 (1 (1 (1 (1	449 57 28 25 27

CARMAC RESOURCES - ETS 90-9094


PAGE 7																									•		
ET# ========	DESCRIPTION			AL(%)	AS	B =====	BA	BI CA(%)	CD	C0	CR	CU FE(%) K	(1)	LA MG(%)	MN	MO NA(%)	NI	Р	PB	SB	SN	SR TI(%)	IJ	V	ม	Y	7 N
9094 - 203 9094 - 204 9094 - 205 9094 - 206 9094 - 207 9094 - 208 9094 - 209 9094 - 210 9094 - 211 9094 - 212	84791 84792 84793 84794 84795 84796 84797 84798 84799 84800	205 15 20 75 25 275 15 10 15 290	2.3 (.2 1.0 1.2 1.0 1.1 1.3 (.2 (.2	.24 .43 .32 .28 .25 .26 .32 .30 .51	117 (5 27 55 60 46 47 21 11 36	(2 (2 (2 (2 (2 (2 (2 (2 (2	(5 22 (5 (5 (5 (5 (5 (5 (5	(5 2.38 (5 3.69 (5 3.05 (5 3.54 (5 2.17 (5 2.26 (5 3.08 (5 3.17 (5 1.52 (5 2.82	17 (1 (1 (1 (1 1 2 (1 (1	37 16 38 30 24 23 32 26 23 22	36 18 25 28 33 39 35 26 30 33	18 5.52 55 4.83 51 5.39 23 4.58 106 6.30 12 5.58 94 4.82	.06 .16 .12 .08 .06 .09 .10 .08 .10	36 1.07 66 1.68 48 1.76 41 1.95 43 1.27 38 1.04 55 1.52 49 1.46 38 1.41 40 1.42	604	7 .02 4 (.01 3 (.01 3 (.01 3 .02 5 (.01 3 (.01 3 (.01 3 (.01 3 (.01 3 .06 3 .01	5 3 5 6	848 1083 827 349 255 776 860 912 797 826	159 8 10 9 15 116 201 51 13 13	5 (5 (5 (5 (5 (5 (5 (5 (5	(20 (20 (20 (20 (20 (20 (20 (20 (20 (20	53 (.01 57 (.01 61 (.01 55 (.01 55 (.01 79 (.01 73 (.01 75 (.01 68 (.01	(10 (10 (10 (10 (10 (10 (10 (10 (10 (10	16 58 59 59 47 27 52 42 57 37	(10 (10 (10 (10 (10 (10 (10 (10 (10 (10	(1 (1 (1 (1 (1 (1 (1 (1 (1	1711 59 41 57 44 319 426 77 28

NOTE: (= LESS THAN

FAX:F. HEWITT 689-5041

cc: DAVID VISAGIE C/O. NORTHAIR GROUP

ECO-TECH LABORATORIES LTD.
JUTTA JEALQUSE
B.E. CERTIFIED ASSAYER

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 20, 1990

CERTIFICATE OF ANALYSIS ETS-9094

CARMAC RESOURCES C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

ASSAYS

SAMPLE IDENTIFICATION: 212 CORE samples received SEPTEMBER 8, 1990

EŢ#	D:	escription	AU ((G/T)	AU (OZ/T)	ZN (%)	
9094 - 9094 -	51 62	83501 83512	1.08 1.51	.031 .044	1.92	

'TTE: < = LESS THAN > = GREATER THAN

TECH LABORATORIES LTD.

JEALOUSE

Certified Assayer

FAX:F. HEWITT 689-5041

cc: DAVID VISAGIE C/O NORTHAIR GROUP

CARMAC RESOURCES - ETS 90-9108

10041 EAST TRANS CANADA HWY. KAMLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700

SEPTEMBER 24, 1990

FAX - 604-573-4557

VALUES IN PPH UNLESS OTHERWISE REPORTED

C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

91 CORE SAMPLES RECEIVED SEPTEMBER 10, 1990

																JI COME	DAULUDO KECI	CIADD !	356151	DEK IU	, 1990					
ET!	DESCRIPTION	AU(ppb)	AG	AL(\$)	λS	8	ВА	BI CA(%)	CD	C0	CR	CU FE(%)	K(%)	LA MG(%) M	N HO	HA(\$)	NI P	PB	SB	SH	SR TI(%)	U	V	¥	¥	7 N
9108 - 2 9108 - 3 9108 - 4 9108 - 5 9108 - 6	83614 83615 83616 83617 83618	45 50 5 45 5 5	1.3 .4 .3 .4 .2 <.2	.68 .42 .40 .34 .36	33 33 21 50 15 9	<2 <2 <2 <2 <2 <2 <2 <2	39 39 39 39 30 108 297	(5 2.98 (5 4.94 (5 4.98 (5 5.58 (5 4.93 (5 4.14	(1 (1 (1 (1 (1 (1	24 13 13 14 12	41 10 7 9 6	59 7.36 15 3.98 22 4.61 13 4.49 11 4.50 11 4.16	.13 .18 .18 .14 .17	122 1.14 62 78 1.16 323 90 1.58 379 86 1.30 320 86 1.51 331 80 1.22 274	6 6 4 3 7 3 4 2 5 2	<.01 <.01 <.01 <.01 <.01 <.01 <.01	19 1557 1 1684 2 1632 <1 1496 <1 1552	6 3 <2 <2 <2	<pre><5 <5 <5 <5 <5 <5 <5 <5</pre>	<20 <20 <20 <20 <20 <20 <20	28 <.01 54 <.01 59 <.01 39 <.01 54 <.01	<10 <10 <10 <10 <10	36 34 37 26 30	<10 <10 <10 <10 <10 <10	(1 (1 (1 (1 (1	ZN ==== 29 71 99 71 51
9108 - 7 9108 - 8 9108 - 9 9108 - 10 9108 - 11 9108 - 13 9108 - 14 9108 - 15 9108 - 16 9108 - 16 9108 - 19 9108 - 20 9108 - 21 9108 - 21 9108 - 23 9108 - 23	83619 83620 83621 83622 83623 83624 83625 83626 83627 83628 83629 83630 83631 83632 83633 83634	5 10 5 850 765 71000 340 55 70 90 740 450 135 5 10	.5	.36 .44 .42 .35 .12 .06 .17 .32 .31 .32 .34 .23 .32 .55 1.58	6 9 31 515 55 114 107 58 95 125 91 193 333 51 29 49	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	388 120 24 26 <5 7 7 15 20 11 17 10 15 58 229 25 17	(5 4.21 (5 4.31 (5 4.35 (5 4.71 (5 18.44 (5 20.20 (5 14.23 (5 4.39 (5 5.04 (5 4.10 (5 4.09 (5 7.35 (5 3.01 (5 4.79 (5 4.12 (5 4.56 (5 4.61	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	13 15 14 13 2 2 5 12 15 16 10 14 15 10 12 13	2 2 4 6 8 3 1 2 2 1 7 2 4 3 2 2	26 4.10 18 5.17 16 4.02 14 5.39 8 1.26 14 1.68 8 2.44 13 3.82 14 3.98 27 3.75 23 4.26 14 3.47 19 4.18 20 3.65 18 3.30 19 3.62	.19 .20 .18 (.01 .03 (.01 .04 .13 .12 .11 .13 .04 .15 .17	79 1.34 2451 96 1.23 2777 75 .89 1911 92 .47 1822 28 .52 7389 36 1.00 9131 47 .79 7165 67 .36 1819 69 .28 1546 66 .52 1675 75 .67 1738 59 .31 3439 71 .50 2239 67 .79 2098 62 1.00 1613 66 .76 1699 68 .90 1923	5 2 2 2 6 6 6 6 6 6 6 7 2 2 3 3 3 3 3 4 4 4 3 3 9 2 2 2	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	1 1599 <1 1620 2 1565 2 1596 <1 1215 <1 407 1 190 <1 605 1 1268 1 1296 2 1481 2 1498 1 928 2 1393 3 1271 1 1310 2 1384 2 1279	<2 <2 <2 6 9 <2 <2 <2 5 5 4 9 7 5 7 8 7	<pre><5 <5 pre>	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	71	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	34 32 35 25 8 3 3 4 4 10 12 3 5 20 24 19	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10		50 47 79 53 48 38 92 42 62 67 74 70 67 53 61 68
9108 - 25 9108 - 26	83637 83638	10 5	. 4 . 6 . 5	.86 .51 .94	24 47 41	<2 <2 <2	90 20 23	<pre><5 4.37 <5 5.97 <5 5.41</pre>	<1 <1 <1	10 12 13	2 <1 2	19 3.14	.18 .18 .20	61 1.01 1935 60 .73 2554 69 .72 2472	1	<.01 <.01 <.01	2 1363 2 1324 2 1349	5 4 5	<5 <5 <5	<20 <20 <20	101 <.01 87 <.01 107 <.01	<10 <10 <10 <10	19 17	<10 <10 <10 <10	(1 (1 (1 (1	67 58 39 44

ECO-TECH LABORATORIES LTD.

PAGE 2		DESCRIPTION	AU(ppb)	λG	AL(%)	AS	В	BA	BI CA(%)	CD	CO	ĊR	CU PE(%) K	(1)	LA HG(%)	HN	HO NA(%)	NI	p	PB	SB	SN	SR T	I(%)	Ü	٧	¥	Y	Z N
_	::::							=====		=====	=====					======									=====	=====	:::::	=====	
9108 -	27	83639	155	. 8	.73	96	<2	10	<5 5.98	<1	12	<1	21 3.23	.14	63 .95	2714	2 <.01	2	1463	5	(5	(20	147	<.01	<10	16	<10	<1	62
9108 -	28	83640	80	1.3	.32	226	<2	15	<5 4.62	<1	15	3	15 4.52	.09	78 .62	1912	2 <.01	2	1272	8	5	<20	81	<.01	<10	6	<10	<1	51
9108 -	29	83641	225	2.0	. 45	271	<2	18	<5 5.73	< 1	20	<1	39 4.47	.08	79 .79	2743	2 <.01	3	1387	6	5	<20	93 -	<.01	<10	22	(10	(1	61
9108 -	30	83642	180	2.9	.38	343	<2	19	<5 5.72	1	20	2	33 4.75	.05	81 .75	2936	2 <.01	2	1352	5	8	<20	88	<.01	<10	20	(10	(1	51
9108 -	31	83643	390	3.3	.30	434	<2	20	<5 7.03	2	18	2	28 4.34 (.01	76 .58	3667	2 <.01	3	1335	4	<5	<20	92	<.01	<10	11	(10	<1	45
9108 -	32	83644	200	3.7	.31	349	<2	10	(5 6.67	2	19	5	33 4.56	.03	79 .20	2883	3 <.01	3	1391	11	10	<20	133	(.01	<10	8	<10	(1	44
9108 -	33	83645	190	2.8	.50	305	<2	11	<5 7.20	1	20	<1	42 4.32	.05	74 .48	3222	2 <.01	3	1358	6	8	<20	104	<.01	<10	18	<10	< 1	37
9108 -	34	83646	75	.9	1.20	265	<2	45	<5 4.45	(1	25	3	39 7.40	.04	117 .89	1595	3.02	3	1341	6	21	<20	102	<.01	(10	100	(10	(1	41
9108 -	35	83647	40	.5	1.49	131	<2	33	(5 5.61	(1	21	2	42 5.14	.15	87 1.08	2034	3 <.01	3	1399	7	(5	(20	106	<.01	(10	95	<10	<1	47
9108 -	38	83648	10		1.69	49	<2	68	(5 4.73	(1	20	5		.14	81 1.29	1518	3 <.01	3	1447	6	<5	<20	107	<.01	<10	127	(10	<1	45
9108 -	37	83649	30		1.62	148	<2	36	<5 4.91	(1	22	1	43 5.13	.12	87 1.05	1613	2 <.01	3	1502	7	(5	(20	108	<.01	(10	119	<10	<1	54
9108 -	38	83650	390	1.3	.28	377	<2	29	(5 7.23	1	14	7	15 5.69 <	.01	92 2.15	1230	8 <.01	(1	587	3	7	(20	68		(10	11	(10	<1	26
9108 -		83652	60	1.7		188	<2	17	(5 4.90	(1	21	⟨1		.11		1912	3 <.01	3	1527	7	<5	(20	74		<10	30	<10	(1	64
9108 -	40	83653	5		1.49	42	<2	27	<5 3.71	(1	20	<1		.21		1380	3.03	3	1150	12	(5	(20	101		<10	35	<10	(]	53
9108 -		83654	10		1.60	31	<2	43	⟨5 4.78	<1	12	<1		.22	74 1.11		1 (.01		1894	5	<5	<20	80 -		<10	36	<10	1	53
9108 -		83655	20		1.37	33	<1	17	<5 5.05	(1	13	(1		.18		2048	1 <.01		1729	7	₹5	<20	61		<10	25	<10	<1	45
9108 -		83656	265		1.15	87	<2	16	(5 3.95	<1	15	<1		.14		1691	2.04		1567	15	<5	< 20	77 -		(10	30	(10	(1	69
9108 -		83657	25		1.81	38	√2	27	<5 2.92	(1	16	<1		.14	81 1.11		2.04		1639	16	(5	<20	65		<10	51	<10	⟨1	74
9108 -		83658	45		1.73	29	' <2	51	<5 4.13	<1	13	⟨1		.16	67 1.09		1 .01		1608	9	(5	<20	75		<10	48	<10	(1	65
9108 -		83659	5	. 3		10	<2	29	(5 4.63	(1	10	(1		.18	65 1.46		2 (.01		1478	<2	<5	<20	38		<10	29	<16	(1	46
9108 -		83660	5	.2		19	₹2	48	(5 4.76	(1	16	1		.21	88 1.60		3 (.01		1721	3	7	(20	52		<10	43	(10	<1	62
9108 -		83661	65	.3	. 52	83	<2	35	(5 4.64	⟨1	16	2		.20		2888	4 <.01		1895	7	9	<20	46		<10	28	<10	<1	75
9108 -		83662	35	.3	. 43	37	⟨2	48	(5 4.80	(1	11	1		.18	76 1.25		2 <.01		1494	3	₹5	<20	63		<10	29	<10	₹1	57
9108 -		83663	5	<.2	. 46	11	₹2	379	<5 ₹.50	₹1	12	2		.22	70 1.37		2 <.01		1491	2	7	<20	85		<10	34	<10	< 1	54
9108 -		83664	5	<.2	. 43	11	<2	609	(5 1.25	(1	9	1		.20	58 1.17		<1 <.01		1404	(2	(5	(20	90		<10	30	<10	(1	40
9108 -		83665	5	.2	. 45	32	⟨2	45	(5 5.48	(1	16	1		. 21	79 1.11		3 <.01		1630		8	<20	100		<10	30	<10	<1	69
9108 -		83666	460	6.4	, 33	187	<2	21	(5 7.42	(1	14	(1		.09		3485	3 <.01		1269	10	17	<20	143		(10	6	<10	(1	90
9108 -		83667	240	3.4	.30	286	<2	20	(5 11.03	(1	11	2		.04		4329	1 <.01		1122	. 1	11	(20	116		(10	5	<10	(1	58
9108 -		83668	75	2.8	. 39	91	⟨2	14	(5 3.82	(1	13	3		.14		1427	3 <.01	_	1322	12	8	(20		<.01	<10	5	<10	(1	53
9108 -		83669	160	3.6	. 35	117	<2	18	(5 6.36	(1	11	8		.12		3054	3 <.01		1097	12	6	<20		<.01	(10	5	<10	(1	131
9108 -	-	83670	70	1.9	. 40	82	<2	25	(5 4.97	(1	14	(1		.16		1625	3 <.01		1377	9	5	(20	69		(10	5	<10	(1	75
9108 -		83671	25	.7	. 12	46	<2	32	(5 6.02	(1	11	5		.20		1555	3 <.01		1118	5	(5	<20	109		(10	5	<10	(1	62
9108 -		83672	40	.3	.44	55	(2	22	45 3.54	<1	14	2		.17		1274	3 (.01		1273	7	<5	<20	73		<10	7	<10	(1	71
9108 -		83673	320	3.0	. 32	195	<2	19	<5 8.01	(1	11	4		.10	52 1.04		5 <.01		1034	7	10	<20	92		<10	10	(10	(1	39
9108 -	-	83674	200	.5	.35	139	<2	43	(5 4.85	(1	12	7		.15		3235	1 <.01		1252	2	Ь	(20	92		(10	19	<10	(1	49
9108 -		83675	310	.7	.37	151	(2	34	(5 4.83	(1	13	3		.16		2597	1 (.01		1266	3	8	<20		<.01	(10	14	<10	(1	64
9108 -	63	83676	>1000	1.5	. 35	507	<2	26	<5 5.25	2	13	2	27 4.72	.01	73 .98	2867	1 <.01	1	1158	4	14	<20	94	10.>	<10	11	<18	₹1	87

CARMAC RESOURCES - ETS 90-9108

													25			9 9	100					
PAGE 3 ET#	DESCRIPTION		G AL(%)	AS 1	BA	BI CA(%)	CD	CO	CR	CU FE(\$) K(\$)		MO NA(\$)	NI P	PB	SB	SN	SR TI(%)	U	V	U	٧	711
9108 - 6		140 (.		161 (50	/2 / (/	 /1				*************				:::::	=====	*********				::::::	-2222
9108 - 6		>1000 3.		161 () 219 ()		<5 4.64 <5 5.50	١1	11	4	24 3.40 .17	55 .70 2671	2 <.01	4 1305	3	<5	<20	97 <.01	<10	18	<10	(1	67
9108 - 6		60 .:		30 (2		(5 4.97	(1	16	3	22 3.89 .11	61 .66 2276	3 <.01	2 1268	15	12	<20	80 (.01	<10	10	(10	(1	79
9108 - 6		10 .:		26 (7		(5 4.91	(1	13	3	22 3.63 .22	61 .84 2123	1 <.01	1 1303	4	<5	<20	144 <.01	<10	19	<10	(1	61
9108 - 6	8 83681	40 1,		.85 <2		(5 5.78	(1	13	2	24 3.50 .21	59 .90 1920	1 <.01	2 1338	5	<5	<20	161 <.01	<10	18	<10	(1	61
9108 - 6	83682	85 .		.37 <2		(5 4.27	<1 <1	12 12	2	15 4.14 ,14	66 1.35 2928	2 <.01	2 1199	5	6	<20	108 <.01	<10	10	<10	(1	63
9108 - 7	83683	140 1.9		.05 <2		(5 11.85	(1	17) 1	16 3.35 .17	54 .64 2330	2 <.01	2 1288	4	<5	<20	97 <.01	<10	12	<10	(1	69
9108 - 7	83684	>1000 1.		.92 (2		(5 5,38	(1	12	2	19 2.38 .12	41 .76 4904	<1 <.01	<1 848	<2	5	<20	80 <.01	<10	10	<10	< 1	60
9108 - 7	83685	510 1.2		06 (2		(5 4.50	(1	13	2	25 3.33 .20 24 3.24 .19	55 .66 3979	1 <.01	2 1415	4	7	<20	98 <.01	<10	13	<10	(1	64
9108 - 7	83686 A	840 2.4		36 (2	16	(5 9.20	1	12	0		55 .99 2603	2 (.01	2 1514	6	8	<20	92 (.01	<10	15	<10	2	60
9108 - 7	83686 B	530 1.8		98 (2	15	(5 9.71	1	12	1	41 3.18 .07 18 3.28 .05	51 .70 4583	2 (.01	2 993	22	7	<20	108 <.01	<10	7	<10	<1	122
9108 - 7	83687	625 2.8		38 <2	22	(5 5.16	2	14	,	36 3.87 <.01	53 1.07 5167 57 .48 2623	4 <.01	2 1042	3	10	<20	142 <.01	<10	7	<10	(1	49
9108 - 70	83688	700 2.0	.33 3	75 (2	22	(5 6.21	ī	18	2	22 4.41 .04	57 .48 2623 67 1.01 3941	8 <.01	3 1046	16	6	(20	53 (.01	<10	7	<10	(1	81
9108 - 71	83689	555 2.2	.37 4	40 (2	25	(5 5.77	2	21	2	43 4.86 .05	73 .77 3371	3 <.01	1 1138	6	11	(20	37 <.01	<10	9	<10	(1	40
9108 - 78	83690	450 1.1	.40 1	63 (2	21	(5 6.80	(1	16	(1	70 2.47 .18	45 .43 2924	2 (.01	4 1423	7	8	<20	67 (.01	<10	15	<10	(1	106
9108 - 79		195 1.6	.12 2	50 <2	14	(5 6.33	(1	22)	39 4.13 .12		1 (.01	3 1701	3	(5	(20	131 (.01	<10	20	<10	5	61
9108 - 80	83692	970 1.2	.53 2	19 <2	23	(5 6.59	(1	19	1	46 4.37 .13		3 <.01	3 1521	1	13	<20	107 <.01	<10	24	<10	(]	50
9108 - 81	83693	>1000 1.2	.53 1	96 (2	28	(5 5.85	(1	23	,	50 4.28 .15	69 1.69 3598 67 1.36 2912	2 (.01	3 1349	5	12	<20	118 <.01	<10	34	<10	<1	48
9108 - 82	83694	395 3.1	.36 5	07 , <2	29	(5 5.58	1	22	6	39 5.61 <.01	80 .38 2224	2 <.01	6 1519	b	.7	<20	106 (.01	<10	39	<10	(1	60
9108 - 83	83695	200 4.4	.33 4	15 (2	20	(5 5.13	2	17	8	29 4.18 .01	61 .32 2087	3 <.01 3 <.01	4 1359	11	10	<20	78 (.01	(10	10	<10	⟨1	48
9108 - 84	83696	315 3.7	.34 4	39 (2	26	(5 7.38	2	17	5	26 4.35 (.01	65 .24 3056	2 <.01	3 1239	ð	10	<20	75 (.01	<10	9	<10	<1	29
9108 - 85	83697	260 3.5	.53 5	30 <2	23	<5 6.29	2	25	3	51 5.40 .09	80 .38 2155	2 (.01	2 1211	10		<20	105 (.01	(10	9	<10	<1	13
9108 - 86	83698	295 5.5	.39 7	15 (2	47	<5 4.70	2	27	8	43 8.18 <.01	109 .27 1456	4 <.01	4 1667	12	14	<20	116 (.01	(10	14	<10	<1	66
9108 - 87	83699	5 <.2	2.18	13 (2	42	<5 5.61	<1	22	2	43 5.70 .15	86 1.79 1874	2 <.01	4 1245	19	21	(20	78 <.01	(10	10	(10	<1	53
9108 - 88	83700			0 (2	46	⟨5 5.99	< 1	23	3	41 6.22 .13	93 2.13 2214	2 <.01	3 1430 4 1347) 10	(5	(20	82 (.01	<10	57	(10	<1	66
9108 - 89	28351			8 (2	34	(5 2.24	<1	18	1	33 4.74 .22	66 .62 809	(1 .13	3 798	10	(5	(20	70 (.01	(10	70	<10	<1	65
9108 - 90	28352	5 (.2		6 (2	56	(5 4.67	<1	14	<1	8 4.06 .18	67 1.36 1644	1 .03	(1 1803	16 11	⟨5 ∠s		102 <.01	<10	17	(10	(1	51
9108 - 91	28353	210 .6	2.04	6 (2	35	(5 4.43	⟨1	17	1	7 5.08 .17	77 1.33 1884	3 .04	(1 1608	16	<5 <5		114 (.01	(10	37	<10	(1	63
										* **		3 .01	/T T000	16	13	140	114 (.01	<10 .	40	<10	(1	£ 3

NOTE: (= LESS THAN

FAX:F. HEWITT 689-5041

G. CLOUTHIER

D. VISAGE 636-2363

SC90/CARMAC

BCQ TECY LABORATORIES LTV. 20TTA YEALOUSE B.C. CERTIFIED ASSAYED

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

OCTOBER 26, 1990

CERTIFICATE OF ANALYSIS ETS 90-535A/9108A/9094A *********************************

CARMAC RESOURCES 860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

SAMPLE IDENTIFICATION: CHECK WORK ON JOBS 535,9108,9094 AS REQUESTED

ET#	Description	AU (ppb)	
535 - 535 - 1	1 84706 17 84722	180 (5	
9108 - 3 9108 - 6	83625 84 83646 63 83676 71 83684	270 85 1000 1000	
	59 83509 52 83512	> 1000 290 > 1000 110	

NOTE: > = Greater Than < = Less Than</pre>

ECH LABORATORIES LTD.

JUTTA JEALØUSE,

Certified Assayer

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

OCTOBER 26, 1990

CERTIFICATE OF ASSAY ETS 90-535A/9108A/9094A

CARMAC RESOURCES 860. 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

ASSAYS

SAMPLE IDENTIFICATION: CHECK WORK ON JOBS 535,9108,9094 AS REQUESTED

ET#	De	escription	AU (g/t)	AU (oz/t) =======	
9108 - 9108 -		83676 83684	1.49 1.04	.043	
7 4 - 9094 -		83501 83512	1.01 1.36	.029 .040	

ECO TECH LABORATORIES LTD.

XUTTA JEALØUSE

/ Cerxified/Assayer

ASSAYING - ENVIRONMENTAL TESTING
10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 24, 1990

CERTIFICATE OF ANALYSIS ETS 90-9108

CARMAC RESOURCES C/O NORTHAIR GROUP 860, 625 HOWE STREET VANCOUVER, B.C. V6C 2T6

ASSAYS

SAMPLE IDENTIFICATION: 91 CORE samples received SEPTEMBER 10, 1990

ET# Descrip	tion	AU (g/t)	AU (oz/t)	
9108 - 12	83624	1.16	.034	
9108 - 63	83676	1.49	.043	
9108 - 65	83678	1.99	.058	
31.08 - 71	83684	1.09	.032	
9 - 81	83693	1.44	.042	

IOTE: > = GREATER THAN

ECO TECH LABORATORIES LTD.

ZUTTA JEALOUSE

B.C/ Certified Assayer

FAX:F. HEWITT 689-5041

G. CLOUTHIER

D. VISAGE 636-2363

cc: DAVID VISAGIE C/O NORTHAIR GROUP GERRY CLOUTHIER

(for frue location of Hold 85-21 see above)

Wass are Au pob, Agrippin, Au com

El. 1500 m.

El. 1400m

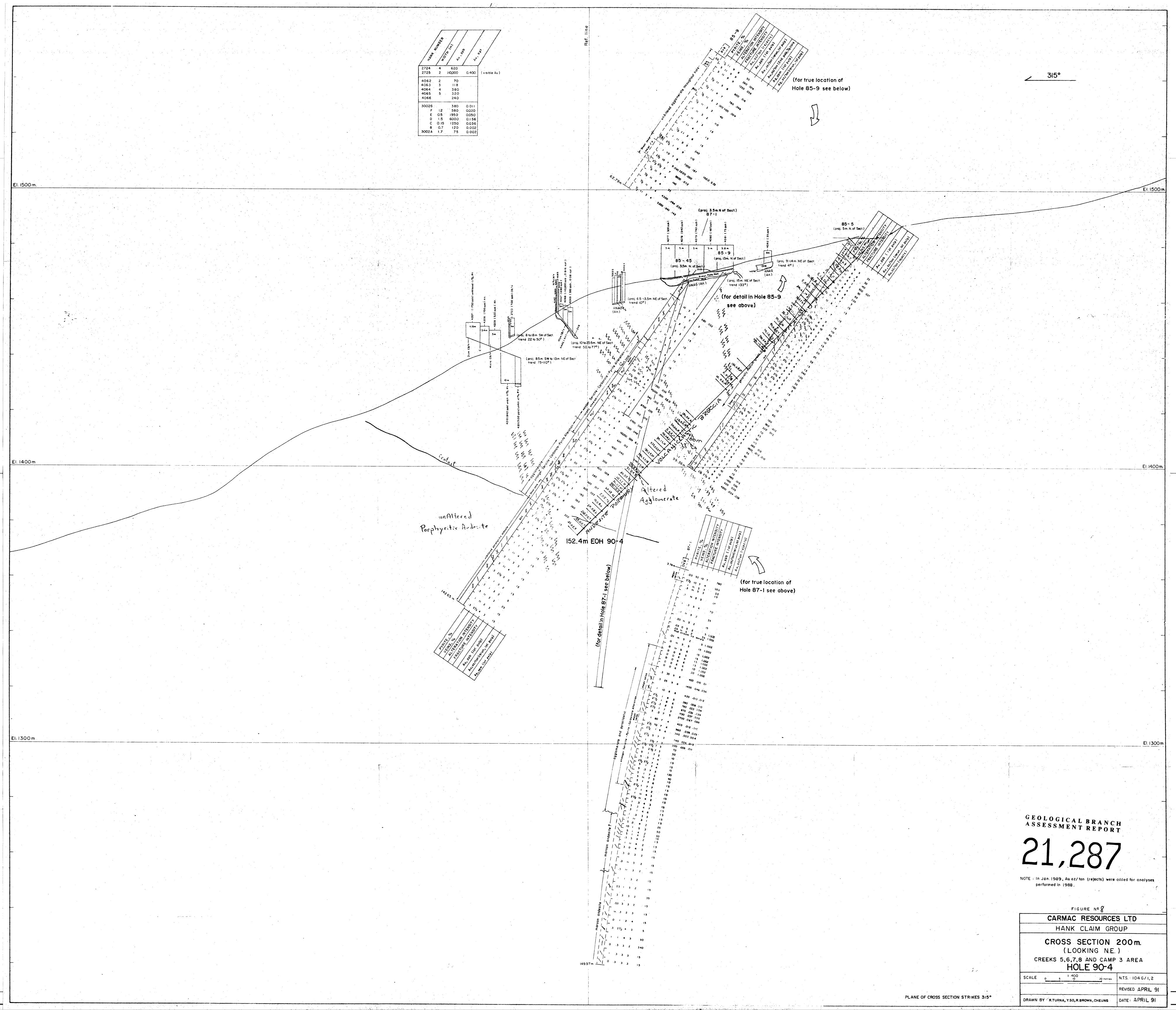
GEOLOGICAL BRANCH ASSESSMENT REPORT

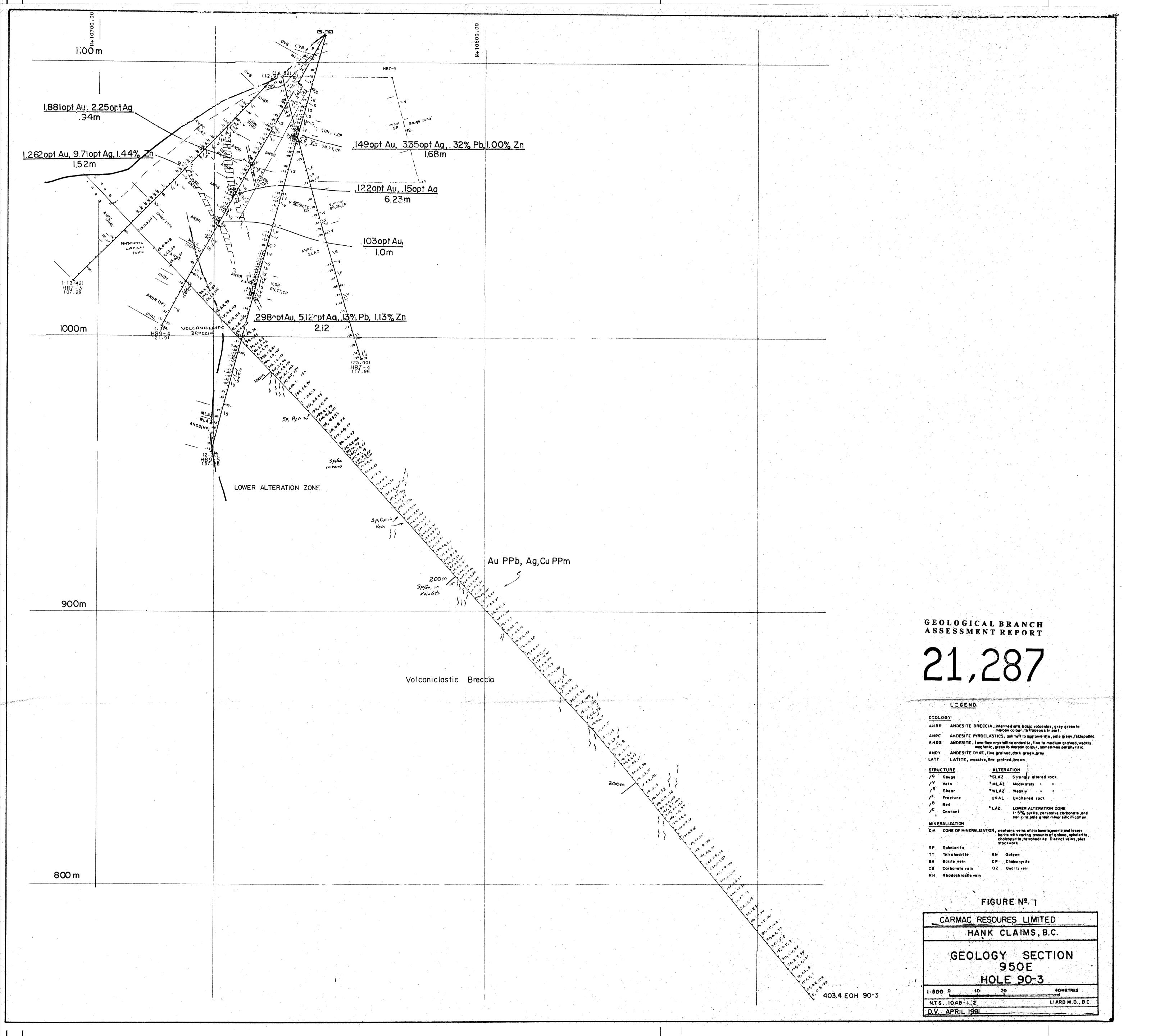
21,287

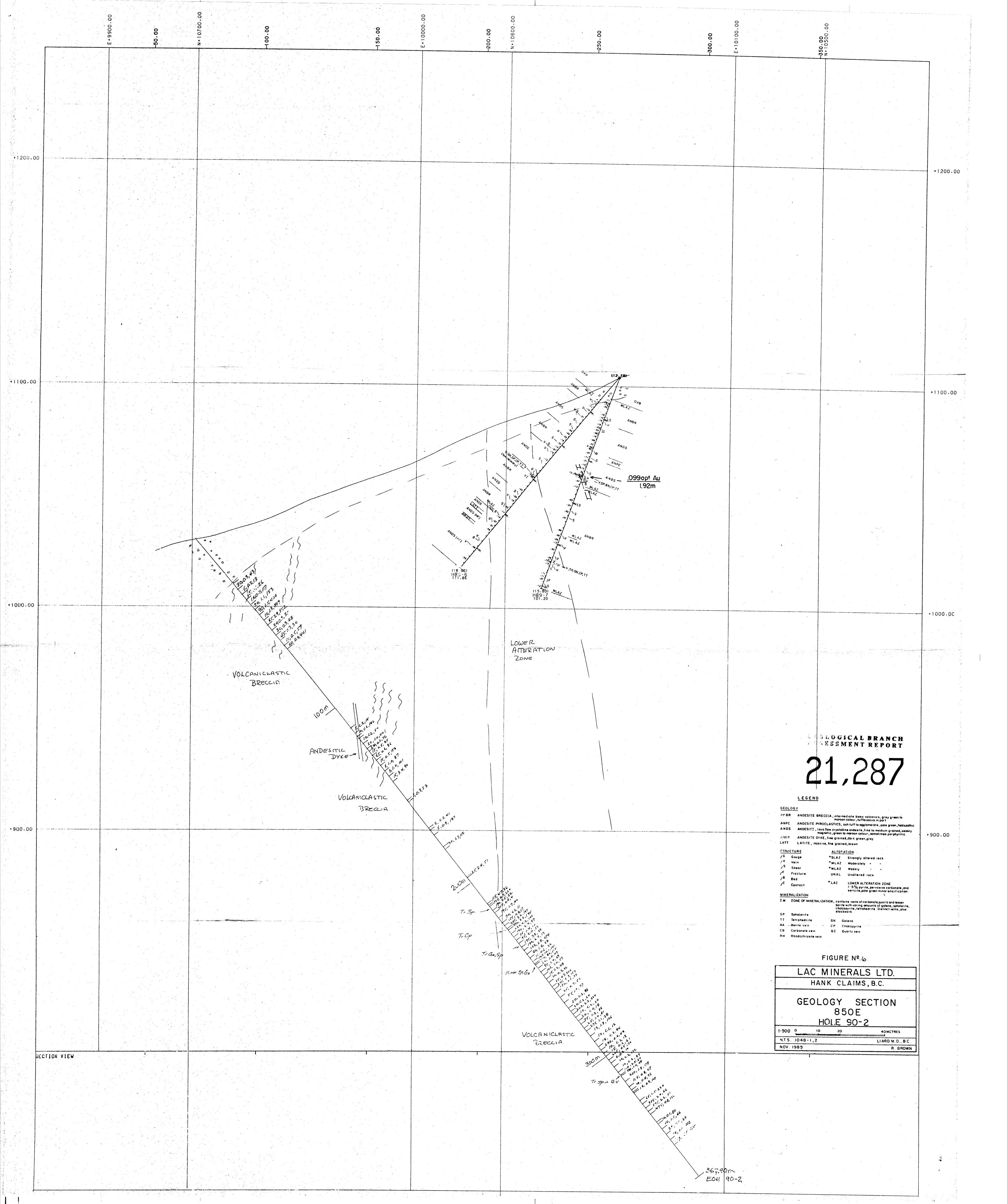
AC RESOURCES L

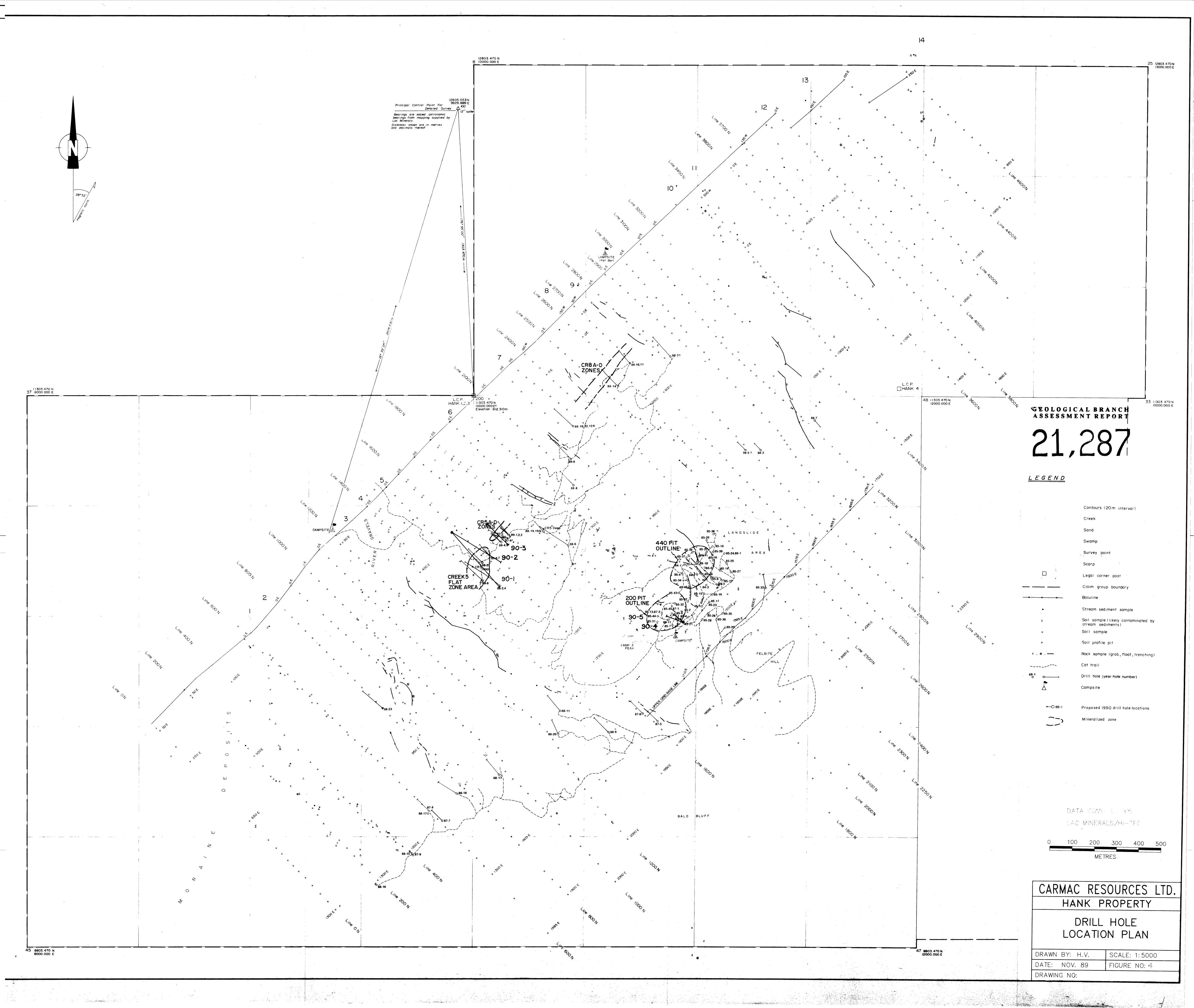
CARMAC RESOURCES LTD

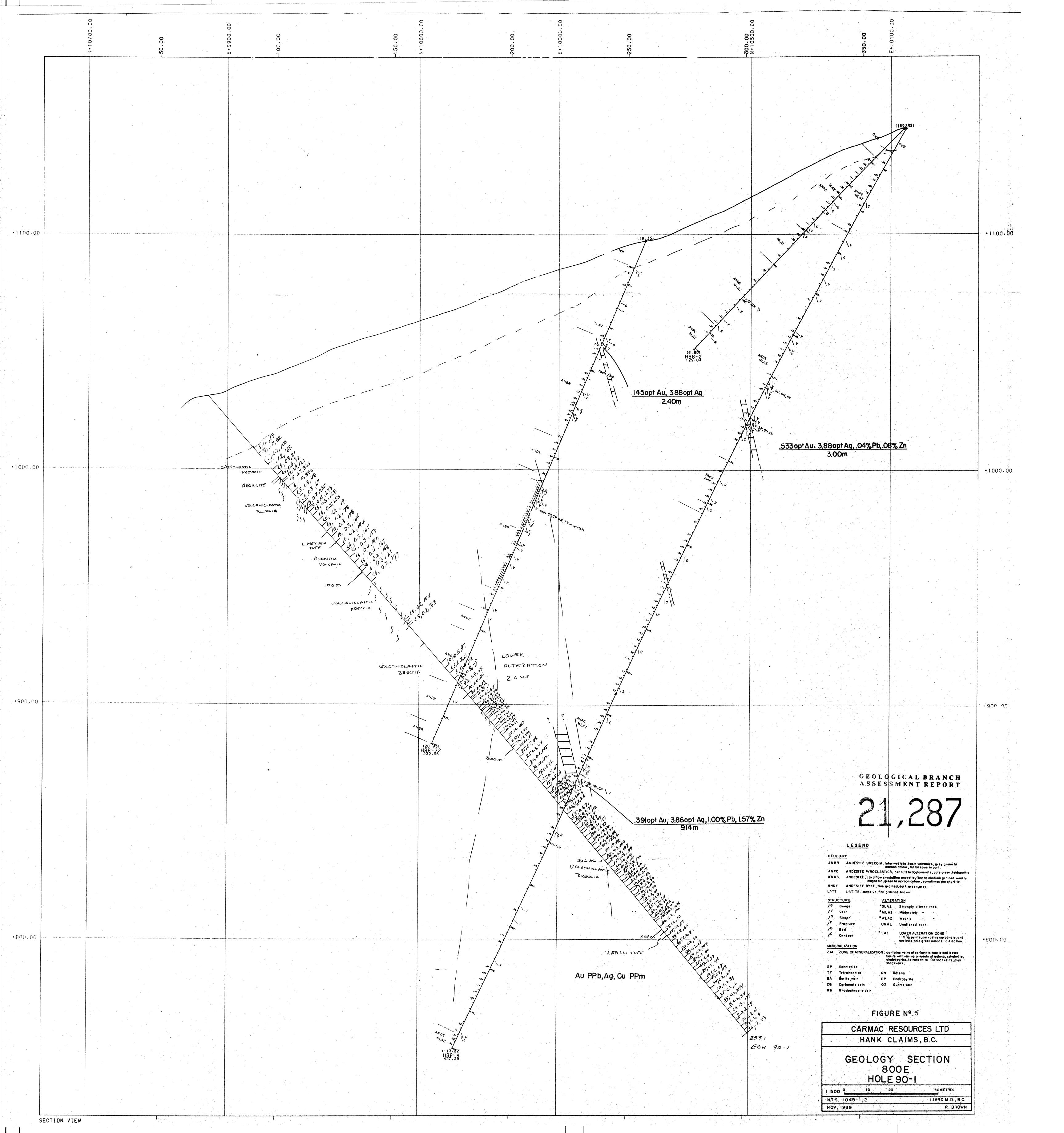
HANK CLAIM GROUP


CROSS SECTION 240m. (LOOKING N.E.)


CREEKS 5,6,7,8 AND CAMP 3 AREA
HOLE 90-5


SCALE 0 5 10 20 metres N.T.S.: 104 G/1, 2


PLANE OF CROSS SECTION STRIKES 315°


DRAWN BY R.TURNA, Y.SO, R.BROWN, CHEUNG DATE: JAN 1986

