SUB-RECORDER RECEIVED MAY 1 0 1991

noranda

NORANDA EXPLORATION CO. LTD.

M.R. #...... VANCOUVER, B.C.

LOG NO: May 21/91 RD.
ACTION:

FILE NO:

GEOCHEMICAL REPORT

ON THE

BARK MINERAL CLAIM

Liard Mining Division N.T.S. 104 B/10E

Latitude: 56' 40' N Longitude: 130' 39' W

NORANDA EXPLORATION COMPANY, LIMITED (no personal liability)

REPORT BY: MICHAEL SAVELL GEOLOGICAL BRANCH1991
ASSESSMENT REPORT

21,308

TABLE OF CONTENTS

1.0	SUMM	ARY	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	•	•	•	•	•	1	
2.0	INTRO	DDUCT:	ION		•			•	•			•	•				•	•		•	•	•	•	2	
	2.1	GENE	RAL	RE	MA	RK	S																	2	
	2.2	LOCA	TION	. &	A	CC	ES	SS																2	
		PHYS							ET	יאי	TO	N						_		_			_		
		CLAIN				~	. •							٠	Ť	Ĭ	·	Ĭ.	Ī	Ť	·	Ī	•	2 3	
		PREV				v	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	
2 0						I			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	J 1	
		ONAL (OG	Y			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	
4.0		HEMIST			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6	
	5.1	SOILS	S	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6	
	5.2	ROCKS	3	•	•	•	•	•	•			•	•	•	•		•	•	•	•	•	•	•	6	
5.0	CONC	LUSIO	NS				•					•	•	•		•	•	•		•	•	•		7	
6.0	RECO	MMENDA	ATIC	NS																				7	
APPEN	NDIX :	I	Sta	te	me	nt	c	of	Co	st	s														
APPEN	NDIX :	ΙΙ	Sta	te	me	nt		of	Qι	ıa l	lif	ii	cat	iic	ons	6									
APPEN	NDIX :	III	Ana	1v	ti	ca	1	Pi	000	ed	lui	es:	ŝ												
	NDIX		Ana	_																					
	NDIX Y		Roc	_								~													
AFFE	VDIA	v	NOC	·ĸ	Ja.	m _E	,10	. 1	101	501	. C.	•													
FIGUE	RE 1		Loc	at	io	n	Sk	cet	cch	1										3	1:8	3,6	000	,000	0
FIGUE	RE 2		Cla	im	S	ke	tc	h														1:	50	,000	0
FIGUE			Sam						ior	ıs														,000	
	-				-	_																			

1.0 SUMMARY

The Bark claim was staked by Noranda Exploration Company, Limited in July, 1990. A field program consisting of prospecting and geochemical sampling was carried out following staking to determine the mineral potential of the property. The Bark property is located approximately 90 km north of the town of Stewart, B.C. and 50 km southwest of the Stewart-Cassiar Highway.

On the Bark claim, the dominant lithologies are Triassic and/or Jurassic andesitic volcanics on the north half and felsic porphyritic intrusive rocks of the Lehto Porphyry on the south half.

Soil samples were collected at 25 metre intervals on the 5000 and 5500 foot contour lines at the northwest corner of the property. No significant metal concentrations were detected. A total of 15 rock samples were collected during prospecting traverses from a variety of oxidized and quartz veined outcrops and float scattered over the property. Weakly anomolous Au values of 36, 26 and 31 ppb detected in three pyritic samples may indicate continuation of mineralization known to occur on the adjacent ARC claims.

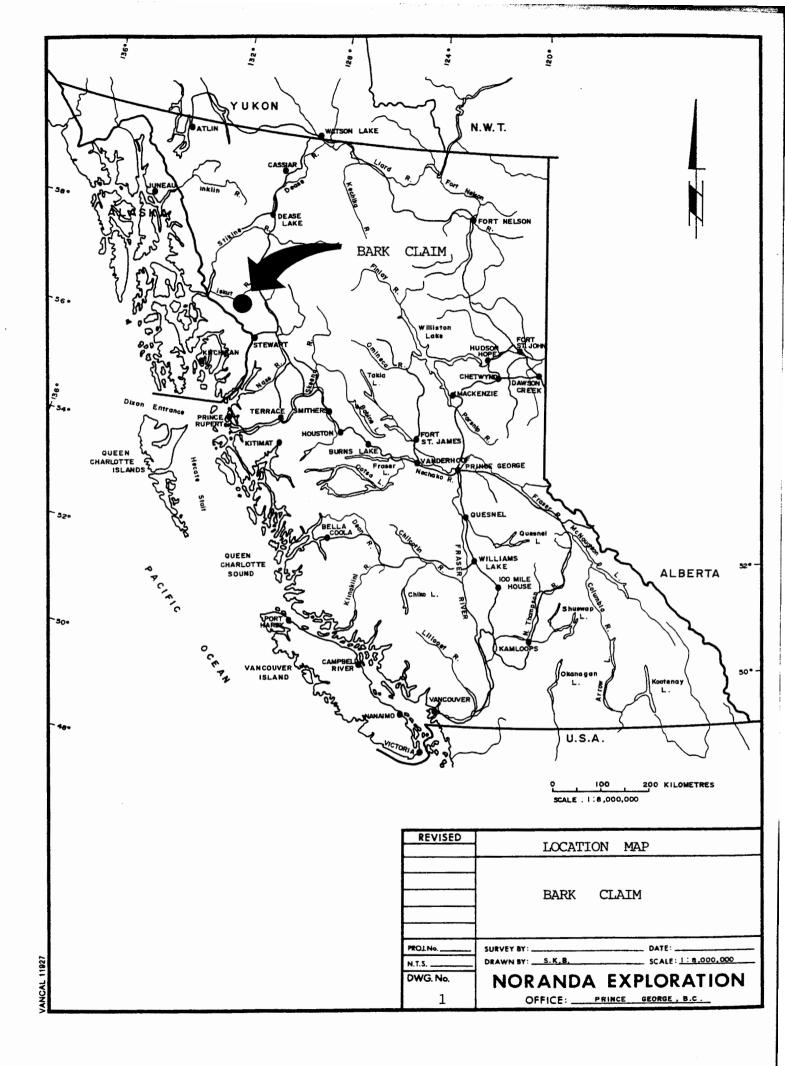
The limited exploration program undertaken in 1990 has not adequately assessed the property. Further detailed prospecting and contour line soil sampling is recommended.

2.0 INTRODUCTION

2.1 GENERAL REMARKS

The Bark claim was staked by Noranda Exploration Company, Limited in July, 1990. A field program consisting of prospecting and geochemical sampling was carried out following staking to determine the mineral potential of the property. Noranda has an option to acquire a 50% interest in the adjacent ARC 10 to 12 claims which lie immediately to the west and north. The exploration on the Bark claim was concurrent with work done on the ARC claims. A total of 2 man days were spent by Noranda personnel performing exploration on the Bark claims in 1990.

2.2 LOCATION AND ACCESS


The Bark property is located approximately 90 km north of the town of Stewart, B.C. and 50 km southwest of the Stewart-Cassiar Highway, #37 (fig 1). The proposed route of the Iskut valley road lies 3 kilometres to the northwest.

The claims lie within the Liard Mining Division and are centred at 56' 40' north latitude and 130' 39' west longitude on NTS map sheet $104\ B/10E$.

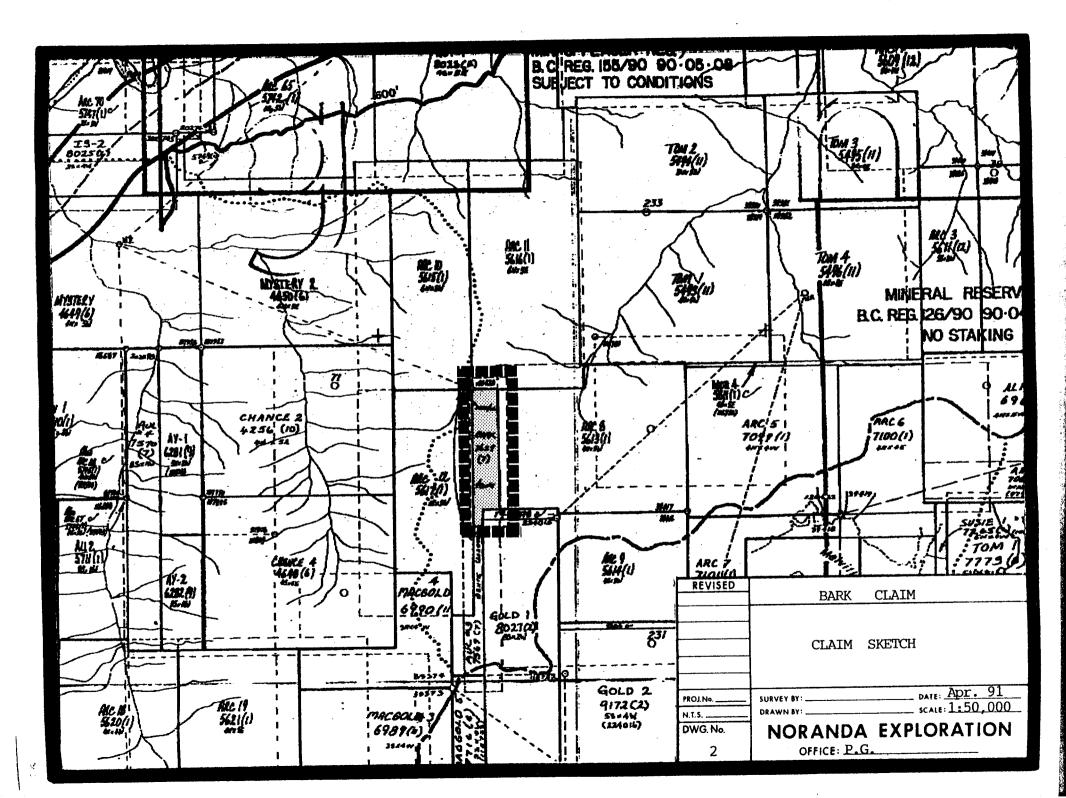
Access to the property was provided by helicopters chartered from Vancouver Island Helicopter's base at Bob Quinn Lake 50 km to the northeast. A four man tent camp established on the ARC claims was used for accomodation.

2.3 PHYSIOGRAPHY & VEGETATION

The property lies within the rugged Coast Mountains, which are characterized by steep slopes and U-shaped valleys typical of a glaciated terrain. About 75% of the property can be easily traversed, whereas the remainder is covered by glacial ice. The property covers part of a southeast facing slope within an ice filled U-shaped valley. Elevation varies from 1200 metres at the east end to over 1750 metres at the northwest corner. The entire property either lies above treeline.

April, 1991

Page 3


2.4 CLAIM DATA

The property is comprised of the following claim which is shown in fig. 2. Upon acceptance of this report, it will be in good standing until the indicated date.

Name	Units	Record #	Record Date	Expiry Date
BARK	4	7629	July 14, 1990	1993

2.5 PREVIOUS WORK

There is no recorded work for the area of the Bark claim. However, as it is located in the Iskut belt of mineralization, the region has seen considerable exploration activity in recent years. A prospector's campsite estimated to be at least 10 years old was observed near the centre of the Arc 12 claim. Active properties nearby include Eskay Creek 10 km to the east, and Snippaker Creek and Johnny Mountain 30 km to the west.

3.0 REGIONAL GEOLOGY

The Bark Property is located near the centre of the Snippaker Creek Map sheet 104 B/10.

The area lies near the western edge of the Intermontane Belt of the Canadian Cordillera, where it parallels the Coast Plutonic Complex. Recent work by both the Geological Survey of Canada and the Geological Services Branch of British Columbia provides a framework of the complex geology of this rugged area. The area includes four, unconformity bounded, tectonostratigraphic assemblages: 1) Palaeozoic Stikine Assemblage; 2) Triassic-Jurassic volcano-plutonic complexes of Stikinia; 3) Middle and Upper Jurassic Bowser overlap assemblage; and 4) Tertiary Coast Plutonic Complex.(Anderson, 1989) This section of the Intermontane Belt forms the west limb of the "Stikine Arch," a roughly horseshoe shaped area of Upper Triassic to Jurassic stratigraphy that hosts most of the significant mineral deposits in northwest B.C. and the Toodoggone gold camp.

The Palaeozoic Stikine Assemblage contains the oldest stratigraphy and is divisible into three distinct, volcanic-carbonate units: Early Devonian limestones and intermediate to felsic volcanics; Mississippian bioclastic limestones; and Permian fragmental volcanics and limestone. These rocks are metamorphosed and highly deformed.

The Triassic-Jurassic volcano-plutonic complex (Stewart Complex) consists of both the Triassic Stuhini Group and the Jurassic Hazleton Group. The Stuhini Group consists of limestone and mafic volcanics deposited in an island arc environment. The Stuhini hosts the Snip and Johnny Mountain structural gold deposits. Hazleton rocks consist of andesitic breccias/lavas, felsic tuffs/breccias, and maroon-green volcanic sediments (siltstone, greywacke, conglomerate, and black shale) deposited in an island arc environment. Black shales (Eskay Creek facies) overlying felsic volcanics (Mt. Dilworth Formation) host the Eskay Creek gold deposits. Jurassic Hazelton Group volcanics correlate with Geology Map Units 1 and 2 on the Arc property geology maps.

Sub-volcanic intrusions accompany most of the volcanic centres of the Mesozoic island arcs and range from Alaskan type ultramafics to felsic dykes. Distinctive porphyritic dykes link Upper Triassic and Lower Jurassic volcanics with their plutonic

equivalents. Many of the significant mineral deposits in the Stewart Complex are found to have a close association with volcanic centres. These intrusions correlate with Geology Map Unit 4 on the Arc property geology maps.

The Middle and Upper Jurassic Bowser Overlap Assemblage predominantly consists of turbidite black clastics deposited in the Bowser Basin which formed as a result of uplift to the west due to emplacement of the Coast Range Intrusives.

The Tertiary Coast Plutonic Complex consists of posttectonic, felsic plutons. Eastward younging of strata and local zones of high strain attest to intrusion and uplift of the complex.

Locally, Tertiary to Recent subaerial volcanics cover low lying areas.

On the Bark claim, the dominant lithologies are Triassic and/or Jurassic andesitic volcanics on the north half and felsic porphyritic intrusive rocks of the Lehto Porphyry on the south half.

4.0 GEOCHEMISTRY

4.1 SOIL GEOCHEMISTRY

Two contour lines on approximately the 5000 and 5500 foot contours at the northwest corner of the property were sampled at 25 metre intervals. Sample numbers, locations and analytical results are shown on figure 3. Samples were collected from the "B" soil horizon where possible, however due to poor soil development and slumping, the material obtained was often mixed with or consisted of "C" horizon. They were obtained by digging a small hole averaging about 50 centimetres deep with a grubhoe. The soil was placed in a kraft paper envelope and shipped to the geochem lab of Noranda Exploration at 1050 Davie Street, Vancouver, B.C. Details of the analytical procedure are given in Appendix III and lab reports in Appendix IV.

No significant metal concentrations were detected. As only a small part of the claim was sampled, no conclusive statements can be drawn regarding the entire claim.

4.2 ROCK GEOCHEMISTRY

A total of 15 rock samples were collected during prospecting traverses from a variety of oxidized and quartz veined outcrops and float scattered over the property. Sample locations and results are shown on figure 3, lab reports listed in Appendix IV and descriptions provided in Appendix V.

No significant metal concentrations were detected. Weakly anomolous Au values of 36, 26 and 31 ppb detected in samples 105332, 105363, and 105466 may indicate continuation of mineralization known to occur on the adjacent ARC claims, where economic concentrations of gold have been found. The samples are all described as pyritic quartz veins or lenses in a felsic intrusive host. Two of these also show elevated As values of 142 and 168 ppm.

5.0 CONCLUSIONS

Weakly anomalous Au and As values detected in pyritic, quartz veined felsic intrusive rocks sampled during prospecting traverses suggest the possibility that the mineralizing system known to occur on the ARC 10 to 12 claims immediately to the northwest may continue onto the Bark claim. The limited exploration program undertaken in 1990 has not adequately assessed the property.

6.0 RECOMMENDATIONS

Further detailed prospecting and contour line soil sampling is recommended.

TOTAL COSTS:

\$ 1,522.71

Page 8

APPENDIX I

STATEMENT OF COSTS

CLAIMS: BARK DATES: July 15 to September 1, 1990 TYPE OF REPORT: GEOCHEMICAL		
<pre>1. WAGES: Rate per day: \$151.90 No. of days: 2 Dates: July 15 to Sept. 1, 1990 TOTAL:</pre>	\$	303.80
2. FOOD, ACCOMMODATION, AND SUPPLIES: Rate per day: \$57.39 No. of days: 2 Dates: July 15 to Sept. 1, 1990 TOTAL:	\$	114.78
<pre>TRANSPORTATION: Rate per day: \$122.19 No. of days: 2 Dates: July 15 to Sept. 1, 1990 TOTAL:</pre>	s	244.38
4. ANALYSES: 20 soils for 28 element ICP & Au @ \$11.46 ea 15 rocks " @ \$15.37 ea TOTAL:	\$ <u>\$</u> \$	230.55 229.20 459.75
5. COST OF REPORT PREPARATION: Author Drafting Typing TOTAL:	\$ \$ \$ \$	250.00 100.00 50.00 400.00

APPENDIX II STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Michael J. Savell of the City of Prince George, Province of British Columbia, do certify that:

- I am a geologist residing at 3507 Rosia Road, Prince George, British Columbia.
- 2. I am a graduate of Dalhousie University with a Bachelor of Science (Honors) in Geology.
- I am a member in good standing of the Geological З. Association of Canada, Canadian Institute of Mining, Prospector's and Developer's Association and the B.C.-Yukon Chamber of Mines.
- 4. I presently hold the position of Project Geologist with Noranda Exploration Company, Limited and have been in their employ since 1980.

Michael J. Savell

Geologist

Noranda Exploration Company, Limited

(No Personal Liability)

APPENDIX III ANALYTICAL PROCEDURE

ANALYTICAL PROCEDURE

Soils, Silts, Rocks

The samples are dried and screened to -80 mesh. Rock samples are pulverized to -120 mesh. A 0.2 gram sample is digested with 3 ml of HClO₄/HNO₃ (4 to 1 ratio) at 203° C for four hours, and diluted to 11 ml with water. A Leeman PS 3000 is used to determine elemental contents by I.C.P. Note that the major oxide elements and Ba, Be, Ce, Ga, La and Li are rarely dissolved completely from geological materials with this acid dissolution method.

For Au analyses, a 10.0 gram sample of -80 mesh material is digested with aqua regia and determination made by A.A.

Heavy Mineral Concentrates

The entire concentrate is digested in aqua regia solution, and elemental concentrations of Au, Ag, Cu, Pb, and Zn are determined by A.A.

APPENDIX IV

ANALYTICAL RESULTS

											-		Cr	Cu	Fe	ĸ	La	Li	Μα	Mn	Мо	Nα	Ni	ρ	Pb	81	11	٧	411	DU03 02.
_	SAMPLE	Au	Ag	AJ	As	Ва	•	BI	Ca	Cd	Ce	Co ppm :			96	96		ppm	96		ppm	96	ppm	%	ppm	ppm	96	ppm		Pg. 5 of 8
No.	No.		ppm	- 46	ppm	and a little control	ppm p		0.20	0.2	71	13	14		5.14	1.15	25			2408	1	0.09	17	0.13	11	33	0.27	78	97	į.
172	13800E-9180N	5		5.27	3	371		3	0.20	0.2	80	16	12		6.12	0.88	30	89999999		3228	2	0.13	18	0.17	9	46	0.47	99	109	į.
173	9200	5	0.2	5.18	2	441	1.8	4	0.88	0.5	102	20	11	28	8	0.58	38	14	1.28	4503	1	0.26	16	0.19	12	98	0.58		2000000	į
174	9220	5		5.07	4	932 272	2.0	5 3	0.15	0.2	83	13	11	20		0.55	26	13	0.60	2286	•	0.12	13	0.13	13	14	0.29	63	140	
175	13800E-9240N		0.2	4.66	4	414	2.0	3	0.10		-	,-																		ė
				6 18	2	148	2.2	В	0.15	0.2	85	18	20	28	6.62	0.28	33	10	0.44	977		0.11		0.15	13	13			700000	Š
178	13800E-9260N		0.2	6.18 5.71	4	688	1.8	3	0.19	0,2	82	16	14	63	7.29	1.09	34	17	1.00	3760	1	80,0	15	0.15	9	67	0,31		233.836	å
177	9320		- 1.3	5.92	11	997	1.9	4	0.28	0.2	98	21	12	102	8.29	1.22	42	19	1.19	6130	2	0.08		0.14	13	121	0.27		- West (2000)	ŝ
178	9340	10		5.42	6	1601	2.0	5	0.41	0.2	93	21	18	135	9.38	1.01	39	18	1.24	8265	2	80,0		0.15	14	é	0.24		2338/3/22	į.
179	9380		0.2		2	888888	1.7	5	0.21	0.2	74	18	25	73	6.72	1.15	28	15	0.96	4081		0.10	22	0.13	10	101	0.23	97	148	A
180	13800E-9380N	5	0.2	4.95	-		• • • •	٠	0.2.																					8
1				5.23	8	724	1.8	4	0.23	0.2	75	19	20	117	7.02	1.13	30	18	1.13	4781	2	0.09		0.13	-8800020	8	0.32		222.39	V65
181	13800E-9400N	5	0.2	4.91	2	720	1.8	2	0.43	0.2	77	17	13	70	7.07	0.95	32	18	1.14	4140		0.18	19	0.13	900000000	76			. 30402	333
182	9420	5		5.01	2	3000000	1.8	2	0.41	0.2	73	17	10	132	8.09	1.15	29	13	1.15	2467		0.18	19	0.13	300000	65			988844	188
183	9440	9	0.2	4.94	3	20000000	8	2	0.40	0.2	8	13	8	27	5.48	1.24	23	2000.00	ě .	2870	1	0.17	14	0.11	-999000	60			. 200.003	18
184	9460	5	0.2	5.73		1017	1.8	2	0.12	0.2	71	12	4	28	7.58	1,48	27	15	1.15	5735		0.05	11	0.12	- 6	31	0.16	3 40		Ž.
185	13800E-9480N	- 5	0.2	0.74	-			-	_,,,,																		0.20	7	1 102	ii e
1	AAAAAE AEAAN	6	0.2	4.91	2	505	1.5	2	0.33	0.2	63	14	9	26	5,20	1.30	24	13	1.12	2802	9577787825	0.15	15	0.10	- 2000 XX	8			* 80922	88
188	13800E~9500N 9520	£	0.2		2	88888	1.9	2	0,30	0.2	72	16	17	97	6.27	1.08	28	9883336	1.19			0.12		0.18	900000000	43	0.31		3333.2.2	508
187	9540	ĸ	0.2	5.70	2	20000000	2.0	3	0.24	0.2	78	16	16	32	8.59	1.19	29	999930000	1.12		1	0.08		0.17	- 303000	20	0.2		000000	963
188	9560	### ### ##############################	0.2	8,40		818	1.8	3	0.25	0.2	77	18	16	45	7.49	1.81	35	800000	8	5410	203630059	0.05	17	0.16	200000000	8	0.10		- 889 9 3	868
189	13800E-9580N	5	0.2	6.11	7	741	1.8	2	0,09	0,2	74	10	8	18	7.03	1.54	29	14	1.01	7850		0.04	10	0.00		§	• • • • •	•	- ***	
1180	130002-000011														8							0.08	25	0.13		26	0.2	7 8	3 100)
191	13800E-9600N	6	0.2	4.38	7	203	1.9	2	0.15	0.2	68	15	26	800000	5.10			18	8 . L.	2273	53838383	0.00		0.10	98888	O\$	0.2	-	383.97	i
192	129026	40*	0.2	5.38	2	619	2.8	2	0.19	0.2	87	13	10	33332	88			20000030	×	2394 1894	- 3000000	0.10				5 5			4 10	1 %
193	129027	5	0.2	4.39	2	288	2.0	2	0.21	0.2	74		14	933333	88 i			70000000	92	3746	99900000	0.10		0.18	5200000000	184		8 9	8 13	S
184	129028	5	0.2	8.61	2	832	22	2	0.15	9000000	78		11	300000	88			9222355	55	3895	76000,0000	0.08			_ 3000002	24		2 5	8 12	C.
195	129029	5	0.2	6.41	2	477	2.2	2	0.14	0.2	70	10	6	24	0.03	1.84	20		ÿ 0. 0 .											
	`				_						87	13	14	28	6.73	0.80	34	1 17	1.0	1 3171	ı 📖	0.14	17	0.1	5 6	4	3 0.3	-	13 14	8888
198	129030	5	×		_	700000	88	2	0.24	90000000	23		10	200000	500	1.28		5000000	202	3 3406	\$333000	0.14	17	0.1	2 (5			71 10	66
197	129031	5	0.2			9000000	×	2	0.30	93993632	98t			98888	335	1.16		3 13	1.0	7 3198	3 🔙	0.13	16	0.1	3 📖	5	2 0.2		71 10	888
198	129032	10	× .			7000000	×	2	0.22	8000002	88			- 20000	XX			5 312	0.0	7 2112	2 🔙	0.09	16	0.1	1 🎆	6			71 10	986
199	129033	, b	0.2			2 436 3 582	885 <u> </u>	5	0.34	880300	98			. 800000	83	1.10	3 30) 🕅 🛭	1.0	8 3330	0 🎇	0.10	3 21	0.1	3 11	S 11	4 0.3	30 1	93 13	0
201	129034	•	0.2	5.24	, (9 006	2.0	•	0.0		₿ ′¯		•						*							.				
				4.88		5 529	1.6	2	0.16	5 Q.2	59	12	13	3 42	2 4.88	1.2	3 2	4 🚟	1.0	6 183	1 🎆	0.0			- 2000	888	3 0.1		2002.9	6
202	129035	5 5	₩			2 607	388	2	0.14	. 888888	SS		14	ı 🔐	7.89	1.2	1 3	1 22	2 1.1	8 502	2 🎆	0.0			800000	888 I	1 0.2		33353	7
203	129038	2007	Ø			5 702	938 . <u> </u>	2	0.2		XX		12	900000	7.77	1.2	3 3	4 11	1.2	1 528	3 🎆	0.0			. 2000	38	9 0.2		9999	18 12
204	129037	5	0.2			4 97	888	. 2	0.8	98888	888			922020	3 6.72	2 0.9	2 3	2555555	1.5		3630333	0.3			93339	10			02 14 05 11	12 18
205	129038	5	33			2 394	888	3	1.4	. 2000200	888 - L	25	10) 6	8 6.40	9.0	9 2	3 📖	1.7	3 276	3 🚃	0.8	2 24	0.1	6 🚃	1/	4 0.	99 1	03 🐘	
206	129039			7.4.		-															. ****	▓				₩.	4 0.4	47 1	05 18	a a
207	129040	85	0.4	5.3	4 2	0 62	2.0	4	0.2	1 0.	82	2 21	14	B 7	5 8.9	5 0.7		900000	205	1 382	38388	0.0			. 8888	888	14 0.4 17 0.5		92 1	98886
207		10	888	4.8		2000000	3000	4	0.3	3 O,	2 6	5 20) 11	9 🏻 5	7 6.2	4 1.0		990000	9335		233000	0.1			. 20000	88 .	20 0.		85 1	802033
208		92020	0.2			5 31	0000	2	0.1	4 0.	2 60	8 16	3 2		8 5.5					5 246		0.0			5333399				00 1	
209				2 4.7			5 2.0	3	0.3	6 0.	2 10	9 15	5 1	4 4	0 6.5	2 0.8	3 4	8 🔝	3 0.8	0 249		0.1				XXX			02 1	
210				4.4		4 30	9972	6	0.1	9 O,	2 9	4 17	7 1	8 📆	5 6.0	6 0.4	8 4	2 💓	4 0.8	3 160	n 🎆	2 0.1	1 20	, 0,1	*	1		٠, ,	-	
211	128040		₩								**				**			_ 🎆	S			. .				7	10 0.	37	88 1	34
212	129049		5 O	2 4.3	t	7 12	6 2.6	2	0.1	з 0.	2 10	3 1	3 1	5 🔐	3 5.1	8 0.3	0 3	8 1	10.6	1 140	N	0.1			9000000	000	30 O.		2000	38
212		9992.3	97.95	2 3.2		999239	8 1.1	4		9 0.	5 5	2 10	0 1	8 📆 2	5 4.8	1 0.2	3 2	0		32 81		0.0		0.1	50000000	00000	18 O.		3333	63
213				2 4.6		200000	5 2.9	2	0.2	1 0	2 10	2 1	5 1	7 2	7 6.7	в 0.3		B 💓	2 0.	71 184		0.1				5000	27 O.		2225	95
214				2 4.4			7 1.2	4	0.3	7 0,	2 5	8 1	3 1	7	3 6.8	5 0.2		2 🚃	8 0.0	90 113		1 0.1 1 0.1	1 1	4 N	14				97 2	
			5 0.	2 4.5	4 2		1 2.2		0.1	7 0.	7 B	4 1	1 2	0	38 5.7	7 0.3	18 3	4 🐠	20.	57 118	3 J 🤲	4 U. I			2 5000	B-02				
216	129053	2000	υ ⊗ υ.	7.0																										

_	SAMPLE	Au	Âg	Al	Ae	Ва	Be	BI	Ca	Cd	Ce	Co	Or	Cu	Fe	K	La	LI M	Mn	Mo	Na.	NI	P	Pb	Sr	Ti	٧	۷n	8008-05
110.	No.	ppb	ppm	96	рря	n ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	9,6	%	ppm	ррт %	ррп	ррг	n 96	ppm	9.6	ppm	ppm	96	ppm		Pg. 8 of
307	129888	5	0.2	3.10	3	413	0.7	2	0.24	0.2	33	10	26	18	4.04	0.76	14	12 0.8	275		0.03	22	0.22		24	0.28	98	118	<u> </u>
308	129687	5	0.2	4.16	2	203	0.9	2	0.15	0.2	43	5	23	20	4.89	0.48	20	10 0.3	9 79	, 💥	0.04	8	0.22	9	28	0.57	125	95	9 8
309	129668	5	0.2	4.09	11	389	1.1	. 2	0.21	0,2	58	15	42	42	4.30	0.97	21	17 1.1	1 180	l 🎆	0.04	42	0.10		21	0.12	85	111	
310	129669	5	0.2	4.59	6	401	1.8	2	0.14	0.2	82	14	30	41	4.98	0.98	30	17 1.0	2 2099)	0.07	31	0.13	11	21	0.18	85	133	
311	129670	5	9	4.18	33	220	2.2	4	0.15	0.2	108	11	25	34	4.91	0.44	38	15 0.4	9 156	2 💥	0.14	19	0.12	18	16	0.29	68	139	Š
312	129671	6	0.2	3.52	2	119	0.8	2	0.13	0.2	37	5	26	18	5.03	0.35	15	8 0.2	9 710) 🎆	0.08	9	0.17	7	17	0.55	108	97	** *** ***
113	129672	8	0.2	4.77	2	72	0.8	6	0.13	0.2	39	6	30	22	6.01	0.18	16	₿ 0.2	9 42	3 📖	0.04	7	0.18	7	15	0.85	151	79	
114	129673	5	0.2	5.15	2	84	0.8	5	0.10	0.2	33	17	26	25	6.42	0.21	11	6 0.5	3 140	; 🎆	0.04	12	0.21	9	12	0.70	127	101);
			- 10	•	_												;												ë ë
115	129674	5	0.2	3.46	4	109	0.6	4	0.12	0.2	32	9	27	19	6.06	0.34	14	8 0.3	1 99	ı 🎆	0.05	8	0.21	7	17	0.63	120	99	ÿ }
16	129875	5	0.2	3.83	2	900000	0.7	5	0.18	0.2	38	6	21	3000000		0.25	18	7 0.3		3 🎆	0.04	7	0.22	7	17	0.87	142	78	3
17	104471	5	:	4.11	2	20000000	1.1	2	0.06		108	13	15	3330000	4.89	0.77	28	13 0.8		30000	0.06	13	0.10	- 00000000	16	0.17	65	84	8
118	104472	5	;	4.70	2	- 22000,0000	?	2	0.10	0.2		11	18	300000	5.47	0.79	34	13 0.5		900000	0.07			933033000	8	0.31	78	100	Ø.
119	104472		8	4.69	15	900000000	8 .	3	0.10	0.2	69	15	11	30000000		1.19	27	11 0.8		933333	0.11		0.12	30000000	§ .	0.21	78	- 603000000000	XX
110	104473		0.2	4.00	10	***	1.**	3	V.24	**		,,	,,		3,07	1,10			. ,		₩ ••••		U. 1 &						·
320	104474	5	0.3	4.42	9	288	10	2	0.41	0.2	57	12	5	17	3.79	1.32	23	10 1.0	A 1386		0.18	11	0.07	11	51	0.13	54	93	e. Å
120	104474			3.59	10	3000000	1.0	2	0.18	0.2	84	13	15	100000000		0.99	29	12 0.7		380000	2 0.08	18	0.09	2000000	23	0.14		33000	2
122	104478		;	4.32	3	88.00	8	2	0.10	0.2	88	12	23	22	5.39	0.40	35	11 0.5		000000	1 0.13	18	0.16	- 8880000	¢ -	0.52		2000	16
23	104478			4.29	2	0000000000	1.3	2	0.40	0.2		11	21	445000000	4.21	0.53	30	12 0.6		900000	0.17		0.18	98833333	Ş	0.54		2000000	ds.
24	104477		0.2		2	33343439		2	0.25	0.2		12	24	000000000000000000000000000000000000000	5.15		31	11 0.5		800000	0.11	18	0.15	88888888	2	0.54		\$3000,0000	88
124	104476		0.2	4.13	~	1/8	1.0	2	0.23		,,,	12	27		0,10	0.47	٠.	.,,		•	₩ •···	,.	0						Š.
25	104479			3.83	2	148	1.2	2	0.15	0.2	61	7	23	18	4,45	0.50	26	9 0.4	8 69	, 🎆	0.08	13	0.13		22	0.37	79	76	*
28	1044/9	ž		4.90	2	90003/5/000	1.3	2	0.12	0.2	70	8	31	20000000	5.81	0.33	27	10 0.3		20000000	2 0.10	13	0.19	- 8000000000	8	0.83		888899180	88
27	104480			3.40	2	200000000000000000000000000000000000000	1.1	2	0.12	0.2		8	16	14		0.88	23	9 0.5		9000000	0.04		0.07	80000000	S	0.21	60	3888876	US
328	104482		:	3.29	2	800000000	0.6	2	0.16	0.2		5	29	90000000		0.22	17	5 0.2		388999	2 0.07	6	0.20	300000000	(ž			30333763	*
129	104483	5	;	4.57	2	300000000	9	2	0.15	0.2		5	21	17		0.18	23	7 0.2		2000000	0.09		0.23	200000000	8	0.83			S\$1
					_			_	.,,			_													Š				
130	104484	5	0.2	3.82	2	182	1.0	2	0.14	0.2	51	6	24	13	4.02	0.59	19	8 0.3	8 62	ı 🎆	0.05	9	0.13	7	17	0.41	80	72	
131	104485	5	:	3.65	7	156	1.3	2	0.08	0.3	51	8	22	37	3.15	0.58	23	12 0.4	8 52	5 🎆	0.03	13	0,10	12	21	0.20	62	66	**************************************
332	104488	5	0.2	4.03	3	255	9	2	0,10	0.2	64	9	17	19	3.97	0.92	27	11 0.6	4 106	ı 🎆	0.05	15	0.10	10	18	0.21	64	75	
133	104487	5	0.2	4.64	3	280	1.3	2	0.29	0.2	74	12	18	22	4.82	1.03	30	12 0.8	6 130	ı 🎆	0.13	19	0.12		38	0.31	79	90	
34	104488	5	0.2	4.57	3	208	1.1	3	0.10	0.2	68	11	31	19	4.47	0.82	25	12 0.7	0 108	3 🎆	0.08	18	0.13	10	15	0.31	76	86	
																													8
35	104489	5	0.2	4.12	2	100	0.8	6	0.57	0,2	47	13	17	19	4.88	0.30	17	7 0.e	4 72	5 🎆	0.18	10	0.17	7	64	0.72	111	78	*
38	104490	. 6	0.2	3.98	2	221	1.1	7	0.47	0.2	56	19	16	18	5.14	0.28	21	8 0.5	7 171	2 🎆	0.11	- 11	0.23) (()	39	0.78	123	83	
37	104491	5	0.2	3.25	2	80	0.5	5	0.33	0.2	37	8	21	17	4.55	0.28	13	5 0.4	7 52	7 💹	0.08	13	0.19	8	27	0.74	114	88	¥
38	104492	5	0.2	4.02	2	109	0.7	5	0.26	0.2	48	8	27	23	5.85	0.38	20	8 0.4	3 124	5 🎆	2 0.08	10	0.19) 💮 🦻	29	0.79	140	88	
39	104493	5	0.2	3.92	2	131	1.1	4	0.15	0.2	52	6	20	15	4.71	0.49	19	9 0.4	4 77	4 🎆	0.08	9	0.17	9	17	0.54	97	96	*
																									8				:: **
40	104494	5	0.2	2.88	2	148	0.5	3	0.12	0.2	39	5	20	11	2.63	0.59	18	8 0.3	9 40.	2 🏻	0.04	9	0.13	1 12	23	0.23	60	58	*
41	104495	5		4.89	8	80000000	1.9	2	0.33	0.2	77	15	26	27	5.43	0.47	31	12 0.5	9 118	1 🎆	4 0.17	18	0.17	12	40	0.57	104	105	
42	104496	5		3.96	2	255	1.0	2	0.18	0.2	52	10	22	2000	3.83	1.01	21	12 0.9	0 115	3 🎆	0.07	20	0.08	8	32	0.17	64	74	
43	104497	5		5.12	2	- 3000 2000	1.3	3	0.29	0.2	68	13	21	8000000	5.36	0.80	28	11 0.8		93333	0.12	16	0.17	, 8	39	0.55	107	98	* *
44	104498	9990 TAX	0.2		2	- 8000000000	1.5	4	0.20	0.2	:	18	20	30000000		0.48	24	80000000	4 178	98883	0.07		0.20	- 20000000	8	0.66		333,030	98.
• •					-		··-				-					• •	-,				× · · · ·		•		* - 1 8				*
45	104499	Ę.	0.2	4 43	2	353	1.5	4	0.37	0.2	81	15	15	17	5.52	0.56	20	10 0.8	2 244	ı 🎆	0.14	15	0.17	5	42	0.54	104	98	% *
48	104500	32323333	0.2			794	5	3	0.45			16	8	200000000000000000000000000000000000000	6.92			12 0.6		200000	333		0.18	- 80000000	8	0.28		2000	33
	, 5 , 55 6	838888		1.00	-	1868858656		•	÷, ••				-	355, 1775				9000 TOO		1000000	9.00			2000000	×			800 3 00	90

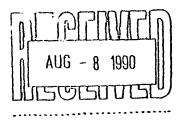
ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Bark (ES)


Copy to Mike

Noranda Exploration Co. Ltd. PROJECT 19008-01172 File # 90-3008
P.O. Box 2380, 1050 Davie St. Vancouver BC V68 315

SAMPLE#	Mo	Cu	Pb	Zn	AG	H	Co	Hn	Fe	A	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca		La	Cr	Mg	Ba	11	8	AL	Ka	K	W.	Au*
	ppm		ppm		ppm			ppm		50000000		ppm		ppm	PÇER		ppm	ppm	X	*		ppn				ppm	X	×	X	704	ppb
104775	6	15	33	2	3.0	5	1	66	4.86	812	5	MD	1	8	.2	19	2	1	.02	.009	2	1	.02	52	.01	4		.02	.09		17
105330	3	6	6	2	. 2	6	66	89	9.06	86	7	ND	1	1	2	2	2	3	.01	006	2	5	.04	23	.01	2	.21	.01	.10		4
105331	1 2	4	ž	1	W 1	8	116		12.18		7	ND	1	1	20	2	2	2	.01	.002	2	10	.10	12	.01	7		.01	.11		3
105332	3	54	7	3	8		:::		22.52		5	ND	1	13	200	8	3	3	3.57	.001	2	22	1.51	10	DI	3	.18	.01	.05	#	36
105333	1	3715	3	32	2.5		215			71	5	36	1	37	.8	5	94	1	2.05	.001	2	21	.01	3	.01	2	.02	.01	.01	113	34600
105334	١,	1024	, 8	24	.6	24	104	352	19.56	16	5	ND	1	19	,	,	4	19	1.97	.067	4	15	.24	7	.07	5	.71	.02	.02		390
105335	1 :	49489			18.6		109	424	40.13	39	Ś	ND	i	15	4	5	38	1	.92	001	ż	17	.32		Ö	2	.01		.01		200
105359	1 2	158	٠ ١,	12	100000000000000000000000000000000000000		103	109	2.28	₩3	ś	ND	ż	10	2	5	2	ż	.05	661	13	3	.22		.01	4			.13	₩	4
105360	6	367	7	A	:1	ξ.	7	110	2.02	86	á	NO	Ž	7	33	5	ī	1	.04	.008	22	2	.02		04	i		.02		₩7	8
105361	3	13	3	14	ī	ś	2	307	1.70	2	5	ND	4	10	ž	2	2	2		010		3	.06		Ō	5			.08		2
105362		52	26	36	.6	5	2	102	5.51	71	5	ND	1	22	.2	12	2	1	.01	.026	5	3	.31	444	.01	3	.71	.05	.09		5
105363	29	824		69			31	322	12.50	142	5	ND	i	7	333	Ž	5	10	.03	010	2	11	.90		Of	6					26
105364	1 %	14	2	1			";	89	1.00	17	5	ND	1	,	2	,	5	1	.05	.011	16	1	.02		.01	2		.01			5
105367	1 3	15	5	Š		7	6	67	1.90		6	ND	i	5	₩ 3	2	Z	i	.02	012	9	Á	.12		.01	2		.03			3
105451	1	6	7	18	:i	i		1872	1.25	Ž	5	ND	i	157	.7	2	ż	1		.019	4	4	.14		.01	2		.02		2	4
105452	3	6	2	1	.1	7	19	115	4.40	15	6	ND	1	2		2	2	1	.01	.006	4	1	.01	76	.01	4	. 14	.01	.12	1	118
105461	21	124	66	23	₩.7	1	3	71	6.36	235	5	ND	i	3	2	2	4	4	.04	.042	15	1	.05	51	.DI	3	.41	.01	.25	*	91
105462	2	915	9	13	4	9	22	225	10.30	21	6	ND	1	4	2	3	2	85	.24	.063	3	27	1.21	22	112	5	1.98	.01	.09		79
105463	1	11	Ž	18	3.1		6	148	3.61		6	ND	1	5	.2	2	2	4	.18	.064	5	3	.35	54	.01	3	.80	.03	. 13		3
105464	1	76	2	35	.3		14	487	4.79	98	5	ND	1	26	.2	2	2	37	1.56	,044	2	14	.58	86	.07	2	.84	.01	. 29		10
105465	1	2	3	10	,1	3	23	479	7.44	2	5	ND	2	27	.2	2	2	2	1.07	.012	4	6	.50	19	.01	5	.67	.03	.10	M	1
105466	1	5	5	24		2	26	599	13.80	168	5	ND	ī	13	2	2	2	62		.058	2	13	.61	31	.01	6	1.71	.01	.21	2	31
STANDARD C/AU-R	18	58	37	130	6.6	71	31	1051	3.96	39	15	7	38	53	18.4	15	21	55	.48	.094	38	60	.88	180	.07	35	1.88	.06	. 14		530

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

✓ ASSAY RECOMMENDED

. kal

APPENDIX V

ROCK SAMPLE REPORTS

NORANDA EXPLORATION COMPANY, LIMITED

PROPERTY_____Bank

N.T.S. 104 8/10

DATE July 19,20

ROCK SAMPLE REPORT

PROJECT 294

SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	G A A	g A	g□ ∧□ Mo	0□A□ . Gu	g□A□ Pb	80 A0 Zn	g□A□ A<	SAMPLED BY
					1	,	,,,					
(05329	Quartz-carbonate stackwork veins in	0	chip		4	./	3	1	2	8	5,	ELG
	altered (silicipied) felsic entrusive		/									
	,	l		<u> </u>								
105330	Rusty shear zone 15 om wide x 3.0m long	5	chip		4	,2	3	6	6	2	6	ECG
	with drung frothy gy weins containing		,		<u> </u>	ļ			ļ			
	dessem fine grained pyrite, in interesing host	<u>/</u>			 		ļ					
	str. 120/80 SW			-	<u> </u>	ļ	ļ					
		ļ		ļ	-	ļ.,	2	11	1		11	1000
105331	ao 105330 str. 120/653W but more py	20	chip		3	. '	×	1-7-	2	-/-	7	ECC:
15.000		-	1.		36	0	3	54	2	3	4	ECG
105 332	In gy-carb-py long in felsic intensive	5	chip	 	100	. 0		,	~			
	1	i	1,		i	I	ı	1	•			#

July 4

NORANDA EXPLORATION COMPANY, LIMITED

PROPERTY_BARK

N.T.S. 104 B/10

DATE July 18/90

ROCK SAMPLE REPORT

PROJECT: 294

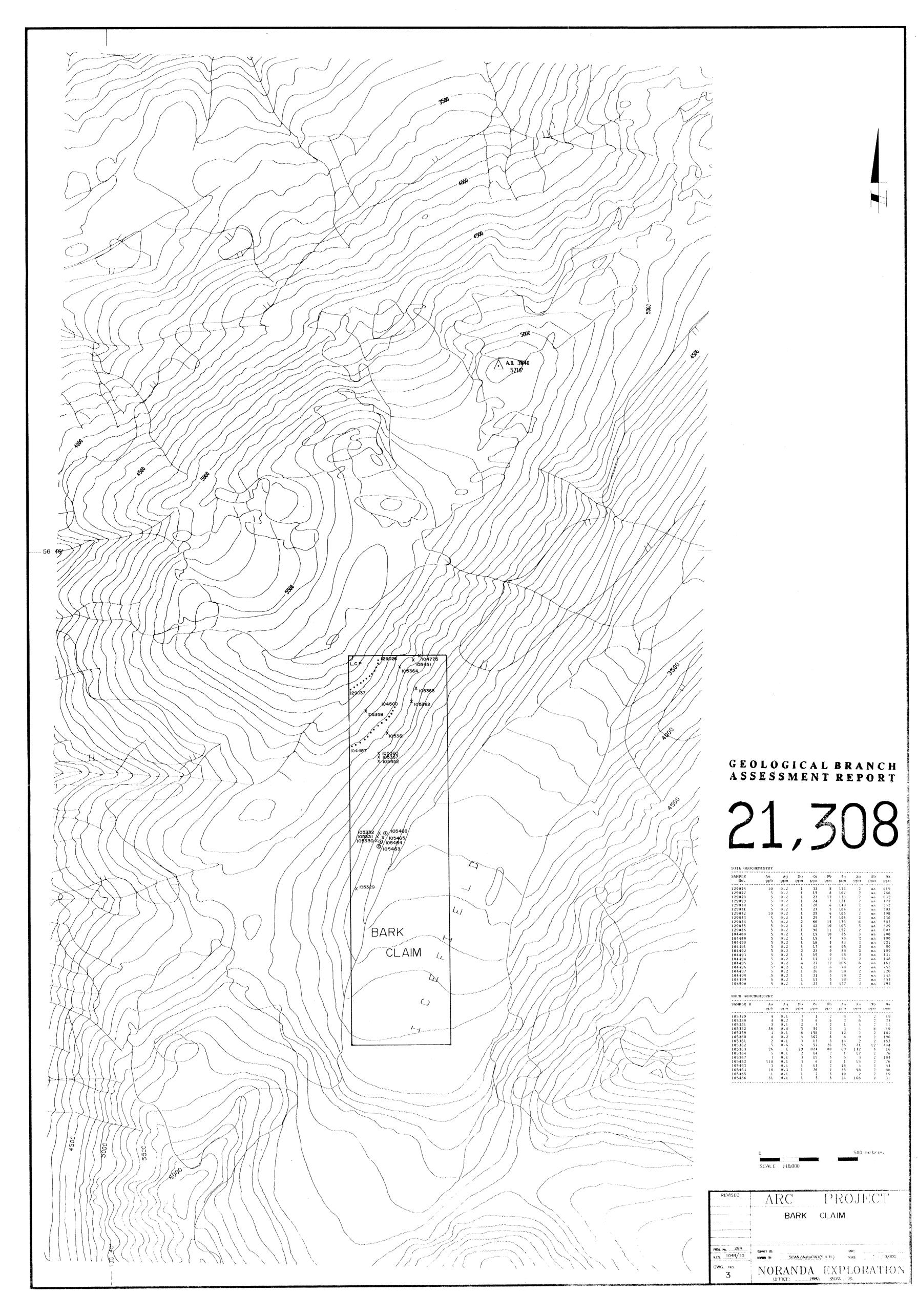
									,0020.2			
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	00 A0	в П А П Да	9 A D	all All	0□ A□	00A0 てへ	G□A□ As	SAMPLED BY
105359	Siliceous Vein in Felspar Fich	%</td <td>Chip</td> <td>0,10m</td> <td>77</td> <td>: (</td> <td>6</td> <td>158</td> <td>2</td> <td>12</td> <td>2</td> <td>JOH</td>	Chip	0,10m	77	: (6	158	2	12	2	JOH
	intrusion				Pps	ppm -					->	
									7	0	9	
105360		3.2	Chip	0.6m	8	,2	5	367	6	8	7	JOH
	QTZ			<u> </u>	 -							
105361	siliceous , rusty zone , weathered	212	chip	30	ವ	-1	3	13	3	14	2	Joit
7.007	tusty Brown											
										2 (71	
105362		2%	chip	0.3	5	1.6	5	52	26	36	7/	JOH
	QTZ					-	<u> </u>					
105363	vodules of QTz and sulphides	20%	chip	-	26	1.0	29	824	80	69	142	JOH
	in Felsic inTrusive.											
										ļ.,		
105364		2/2	chip	0.2m	5	-1	2	14	2	/	12	104
	5m wide orange zone			ļ		ļ						
1053/7	OT 1 Cold in Truster	41%	chip	0.2	3	-/	3	15	5	5	3	JOH
105367	QTz and felsic intrusion vein	2/10	10011	DIAM	<u> </u>	ļ	1	1 - 0 -	 	1	 	

اللم 21

NORANDA EXPLORATION COMPANY, LIMITED

PROPERTY BARK

N.T.S. 104 8/10


DATE July 20/90

ROCK SAMPLE REPORT

PROJECT: 294

												·
SAMPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	TYPE	WIDTH	0 1 A 1	OD AD	80 A0	0□ A□ Cu	_{в□л□} РЬ	g□ A□ 乙ハ	G□A□ AS	SAMPLED BY
	TAN SAMA					- '						
105463	pyritized quarte vein somewhat	30	float	.02,	3	- 1	1	11	2	18	4	C. S.,
	siliceous, boulder Im2				ļ <u>.</u>						•	
INCUIU	1	15-	C/ 4		10	,3	1	76	2	35	98	C.S.
103 767	of glacier (up 50-1000) dissuinked purite and	13	4-10aT		, ,	1.5	<u>'</u>	, 0				
	veing quartz material											
105465	Trusty quarte veining 15m extent	20-40	chia	.01 -	1	- 1		2	3	10	2	C.S.
700 700	vugy and disseminated strike 45-55		υ	10.7								
105466	massive sulphides in vein with some		float	10 m	31	• 1		5	5	24	168	C.S.
700 100	disseninated in the intrusive host.		V 10 % 1									
		<u> </u>										
		<u> </u>	<u></u>	<u> </u>	L	L	OF OCI	<u>L</u>	A - ACC	<u> </u>	L	<u></u>

G = GEOCHEM A = ASSAY

