

LOG NO:	may	21/91	RD.
ACTION:	0	:	

FILE NO:

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT ON THE TANTALUS RESOURCES LTD. TREATY CREEK PROJECT

> ISKUT AREA SKEENA MINING DIVISION BRITISH COLUMBIA

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,318

J. Chapman, F.G.A.C. W. Raven, F.G.A.C. A. Walus, M.Sc.

March 25, 1991

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The Treaty Creek Project is the subject of an option agreement between Tantalus Resources Ltd. and Teuton Resource Corp. whereby Tantalus may earn a 60% interest in the property. The project is located 80 km north of Stewart B.C. and consists of 26 claims totalling 300 units within the Skeena Mining Division. Work was carried out between August 4 and September 27, 1990 by OreQuest Consultants Ltd. under the direction of Prime Explorations - a division of Prime Equities Inc.

Exploration on the Treaty Creek Project during 1990 was concentrated on the Treaty Gossan and an area of new showings discovered on the GR2 claim. Grid establishment over the Treaty Gossan and the new showings was implemented to provide control for geological mapping, prospecting, geochemical rock and soil sampling along with magnetic, VLF-EM and UTEM geophysical surveys.

On the Treaty Gossan a northeast-southwest trending 2.5 km grid was established to cover the main alteration zone and the surrounding rocks. Mapping was completed over the east half of the grid however the early onset of winter conditions precluded completion of the west half. Soil sampling at either a 25 m or 50 m spacing was completed over the entire grid. Geophysical surveys were completed to line 22W. Approximately 17.5 km of lines were flagged and picketed.

The area of new showings comprises seven separate exposures on the GR2 claim. A small grid totalling 5.225 line km, was emplaced over the showings to provide control for geological mapping, trenching and a UTEM geophysical survey, much of which was conducted over an icefield.

The remainder of the property received only very limited prospecting and mapping during this program.

On the Treaty Gossan the area mapped is underlain predominantly by rocks of the Betty Creek and Mt. Dilworth Formations, which host the alteration zone. The Treaty Gossan alteration zone is represented by a very strong, pervasive pyrite-quartz-sericite altered rock with massive to schistose structure. This rock is strongly oxidized resulting in a bright yellow-orange-brown colour giving rise to the large distinctive area of gossan staining. Locally within the gossan, are numerous boulders and one small outcrop of a laminated chertlike rock containing alunite, native sulphur, prehnite and selenite which may represent a submarine hot springs deposit.

Geological mapping and sampling of the Treaty Gossan area has revealed three stages of mineralization related to different events. These events are as follows: mineralization related to extrusive rocks of the Mt. Dilworth Formation, a porphyry copper type system (the main Treaty Gossan alteration zone) and local epithermal style mineralization.

The Mt. Dilworth Formation, which partially hosts the nearby Eskay Creek Deposit, can be traced across the large nunatak which contains the Treaty Gossan. Outcrops of the Mt. Dilworth Formation within the mapped area are confined to a small part of the grid though further work may reveal more of this unit. Maximum values of 0.54 oz/ton gold and 3.17 oz/ton silver were received from grab samples of this formation.

The porphyry type alteration system hosts the greatest potential for a large tonnage deposit as the alteration zone covers approximately 1 square km. Mineralization within the zone consists chiefly of pyrite which constitutes 3-7% by volume of the rock. Rock and soil samples collected over the zone returned weakly anomalous copper values, up to 235 ppm and 147 ppm respectively and significant gold values, 340 ppb and 290 ppb, over a wide area. The intensity of the alteration and the possibility that the gossan represents the outer phyllic alteration zone of a porphyry system would account for the low copper values.

Also of interest within the Treaty Gossan alteration zone is the overprint of an epithermal system. The possibility for much higher grade mineralization, particularly gold, within the system is significant as evidenced by the high grades present, up to 24.0 oz/ton gold at the Konkin Gold Zone showings, within a smaller alteration zone to the northwest. On the Treaty Gossan rock samples of the sinter material assayed up to 190 ppb gold, 448 ppm zinc, 1.64 oz/ton silver, 662 ppm antimony and 3863 ppm lead. Soil sampling confirmed these anomalies with up to 255 ppb gold, 299 ppm zinc, 2.4 ppm silver, 22 ppm antimony and 297 ppm lead.

-

Mapping on the new showings, Zones A through F on the GR-2 claim, indicate that they are hosted by a series of north-northeast trending shear zones. These are up to 50 m wide, and have been partially or completely replaced by sericite, quartz, clay, pyrite, calcite and barite and locally contain quartz-calcite-sulphide veins.

Gold and silver results locally were high with up to 0.401 oz/ton and 100 oz/ton respectively, along with copper to 1.93%, zinc to 37.4%, and lead to 42.7% from grab samples.

The UTEM survey resulted in several weak to moderate conductors exhibiting the same general trend as the showings. No follow up work was done on these anomalies due to the onset of winter conditions and heavy snow.

Further work is required to expand the grid coverage in this area and to complete a more detailed mapping survey of the showings prior to additional geophysical surveys, trenching and drilling.

Further work is recommended on the Treaty Gossan area, continuing where the 1990 surveys left off. The remainder of the grid should be mapped to complete the detailed work over the main alteration zone. In addition the grid should be extended to the northeast (east of Line 0+00) to delineate the extent of the Mt. Dilworth Formation and its potential for significant mineralization. Soil sampling, magnetic and VLF-EM electromagnetic surveys should be completed over all new grids. Test lines of IP and deeper penetrating EM surveys, such as Max-Min and UTEM should be conducted over the Gossan during the next phase prior to a trenching and drilling program. Diamond drilling will be required to test the alteration zone at depth.

In addition to the above mentioned programs further prospecting and mapping is required on the numerous other gossans visible on the property. A zone of laminated sulphides located within upper Mt. Dilworth Formation rocks near the toe of the Treaty Glacier was located during the 1990 field season by the Geological Survey of Canada. Due to the early snowfall this could not be followed up on 1990 and should be examined in detail during the next program. Costs for the Phase III program are estimated at \$700,000.

TABLE OF CONTENTS

Summary, Conclusions and Recommendations	
Introduction	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	3
Property and General Area History	4
Regional Geology	11
Exploration Program	15
GR-2 Showings - Geology and Mineralization Zone A Zone B Zone C Zone C-1 Zones D, E, F	17 18 19 20 21 21
Trenching and Sampling	24
Prospecting Targets	32
Treaty Gossan - Geology and Discussion Lithology Mineralization	33 34 35
Treaty Gossan - Geochemistry Rock Geochemistry Soil Geochemistry	40 41 42
Treaty Gossan - Geophysics Magnetic Survey VLF-EM Survey	48 48 49
Budget Estimate	50
Statement of Expenditures	51
Certificate of Qualifications	
J. Chapman, F.G.A.C. W. Raven, F.G.A.C. A. Walus, M.Sc.	

Bibliography

r -

. . .

•

ι.

-

~

P

s,

-

,

۰,

.

κ.

·

<u>e</u> ~

÷

.

ς.

*

.

~

.

4

۶ د

٠ .

-

\$

ι.

LIST OF FIGURES

Figure	1	Location Map	Following Page 1
Figure	2	Claim Map	Following Page 3
Figure	3	Regional Mineral Occurrence Map	Following Page 6
Figure	4	Regional Geology Map	Following Page 11
Figure	5	Property Geology and Index Map	Following Page 15
Figure	6	GR-2 Showings - Property Geology &	In Pocket
	•	Rock Geochemistry - Gold & Silver Resu	lts
Figure	7	GR-2 Showings, Property Geology &	In Pocket
	_	Rock Geochemistry - Copper, Lead & Zin	c Results
Figure	8	GR-2 Showings, Chip Line Across Zone	Following Page 27
•		E - Geology & Rock Geochemistry	
Figure	9	GR-2 Showings, Trench 1 - Geology &	Following Page 28
		Rock Geochemistry	
Figure	10	GR-2 Showings, Trench 2, 3, 4 -	Following Page 29
		Geology & Rock Geochemistry	
Figure	11	GR-2 Showings, Trench 5, 6 - Geology	Following Page 30
_ •		& Rock Geochemistry	
Figure	12	GR-2 Showings, Trench 7 - Geology &	Following Page 31
		Rock Geochemistry	
Figure	13	GR-2 Showings, Trench 8 - Geology &	Following Page 31
		ROCK Geochemistry	
rigure	14	GR-2, VR 1, 2, 5 Claims - Geology and	ROCK
The second	16	Geochemistry	In Pocket
rigure	12	TR 1, 6, 7 Claims - Geology and Rock	T- Decket
T	10	Geochemistry	In Pocket
Figure	10	Treaty Claim - Geology	In Pocket
Figure	10	Treaty Claim - Geochemistry	In Pocket
rigure	10	Coochemistry	III POCKEL
Riguro	10	Troaty Cossan - Soil Coochomistry -	In Bocket
riguie	13	Cold Load	III FOCKEL
Rimre	20	Treaty Cossan - Soil Coochemistry -	In Pocket
rigare	20	Copper Zinc	III FOCKEL
Figure	21	Treaty Cossan - Soil Geochemistry -	In Pocket
TIGATC	2 I	Silver, Antimony	III I COACE
Figure	22	Treaty Gossan - Magnetometer Survey	In Pocket
Figure	23	Treaty Gossan - VLF-EM Profiles	In Pocket
Figure	24	Treaty Gossan - Fraser Filtered VLF-EM	In Pocket
	~ ~	raded concert respective ADI-DH	

LIST OF TABLES

Table I Claim Infor	rmation
---------------------	---------

۰.

۰.

۲ ۱

.

۰. ۱

.

.

1

×.

.

.

ŝ,

*

.

Page 3

LIST OF APPENDICES

Appendix	I UTEM	Survey on GR2 Claim
Appendix	II Thin	Section Descriptions
Appendix	III Rock	Sample Descriptions
Appendix	IV Assay	y Reports and Procedures

INTRODUCTION

This report is prepared by OreQuest Consultants Ltd. at the request of Prime Explorations on behalf of Tantalus Resources Ltd. It outlines the work program carried out on the Treaty Creek Project during 1990, presents the results of this work and makes recommendations for further work. The information contained herein is derived from supervision and execution of the field program, the referenced cited, and familiarity with the Iskut-Sulphurets area gained by OreQuest on behalf of various clients from 1987 to 1990.

The work program on the Treaty Creek Project consisted of grid establishment, detailed geological mapping, prospecting, geochemical rock and soil sampling on both the Treaty Gossan and the new showings on the GR-2 claim. Geophysics in the form of magnetic and VLF-EM surveys were carried out on the Treaty Gossan with a UTEM survey used on the GR-2 claim area. The program commenced August 4, 1990 and terminated September 27, 1990 due to the onset of winter conditions which precluded completion of the grid mapping on the Treaty Gossan.

LOCATION AND ACCESS

The Treaty Creek Project is located about 80 km north-northwest of Stewart, British Columbia in the Skeena Mining Division on NTS map 104B/9. It is centred at approximately $56^{o}35'N$ latitude and $130^{o}07'W$ longitude (Figure 1).

Access to the property is by helicopter from the Bronson airstrip 60 km to the west or from the Bell II staging area on the Stewart-Cassiar Highway, Highway 37, about 25 km to the northeast. The B.C. government and several interested mining companies in the area are presently conducting environmental studies and surveying for a road location from Highway 37 to Bronson Creek.

scheduled Frequent and charter flights from Smithers, approximately 330 km southeast, to the Bronson Creek strip service the exploration and mining activity in the area. Until recently the Johnny Mountain airstrip, located 60 km west of the Treaty Creek Project, was serviced regularly from Terrace. The Snippaker Creek airstrip, located 40 km west of the claim area, was used during the 1990 season by single-engine fixed wing aircraft. Several old landing strips are located south of the property on the Unuk River but would require work to be serviceable. Exploration work was done via helicopter from the OreQuest seasonal base camp located on a small lake at the northwest end of the VR-5 claim, the northwest corner of the Treaty Creek Project.

PHYSIOGRAPHY AND VEGETATION

Elevations on the Treaty Creek Project range from 950 m in the Treaty Creek valley on the east side of the property to over 2200 m on the peaks to the west, east and south. Slopes range from moderate to very precipitous.

Low lying regions are vegetated by mature mountain hemlock and balsam. This changes to subalpine and alpine vegetation consisting of stunted shrubs and grasses. The claims cover the icefield at the head of Treaty, South Treaty and Atkins Glaciers with the result that much of the property is covered by ice.

Climate in the area is severe, particularly at the higher elevations. Heavy snowfalls in winter and rain in the short summer working season are typical of the Iskut-Sulphurets area. Inclement weather conditions and reliance on helicopter transport make this a high cost area to explore for minerals.

CLAIM STATUS

The property is located in the Skeena Mining Division on maps 104B/9E and 9W centered at approximately $56^{o}35'N$ latitude and $130^{o}07'W$ longitude (Figure 2).

The Treaty property consists of 26 modified grid claims, the status of which is as follows:

TABLE I - CLAIM INFORMATION

Claim Name	No. of Units	Record No.	Date of Record	Expiry Date*
Treaty	12	2006	Jan. 9, 1980	Jan. 9/93
TR 1	18	4957	Sept. 30, 1985	Sept. 30/93
TR 2	18	4958	Sept. 30, 1985	Sept. 30/93
TR 3	15	4959	Sept. 30, 1985	Sept. 30/93
TR 4	18	4960	Sept. 30, 1985	Sept. 30/93
TR 5	20	4961	Sept. 30, 1985	Sept. 30/95

Claim Name	No. of Units	Record No.	Date of Record	Expiry Date
TR 6	15	4962	Sept. 30, 1985	Sept. 30/93
TR 7	20	4963	Sept. 30, 1985	Sept. 30/93
TR 8	8	4964	Sept. 30, 1985	Sept. 30/95
TR 9	20	4965	Sept. 30, 1985	Sept. 30/93
TR 10	15	4966	Sept. 30, 1985	Sept. 30/93
TR 11	6	4967	Sept. 30, 1985	Sept. 30/93
TR 12	9	4968	Sept. 30, 1985	Sept. 30/93
TR 13	8	7770	Aug. 6, 1989	Aug. 6/94
GR1	10	7248	Feb. 10, 1989	Feb. 10/94
GR2	14	7249	Feb. 10, 1989	Feb. 10/94
BR1	3	7214	Feb. 10, 1989	Feb. 10/95
BR2	3	7215	Feb. 10, 1989	Feb. 10/95
DR 1	4	7220	Feb. 10, 1989	Feb. 10/94
DR 2	5	7221	Feb. 10, 1989	Feb. 10/94
VR1	20	6191	May 25, 1987	May 25/94
VR2	20	6192	May 25, 1987	May 25/94
VR5	16	6195	May 25, 1987	May 25/94
Tarn 1	3	7504	April 7, 1989	April 7/94
Tarn 2	5	7505	April 7, 1989	April 7/94
Tarn 3	5	7506	April 7, 1989	April 7/94
	300			

Expiry dates based on acceptance of the 1990 work program.

PROPERTY AND GENERAL AREA HISTORY

.

i. . .

The following is a chronological summary of the work completed on the present day Treaty Creek Project as compiled from available reports.

1929-1930 Prospectors Williams and Knipple were reported to have discovered gold and arsenic mineralization from two unknown locations in the area now covered by the TR claims. Consolidated Mining and Smelting Co. visited the 57 claim property, took samples but did not continue the option on the claims.

1950's Several prospecting syndicates explored the Treaty Creek area.

1953 Prospectors Williams and Knipple found a small silver bearing sulphide vein. In addition, several large float boulders containing tetrahedrite were found in the Treaty glacier; no source was located.

- 1966-1967 In an attempt to promote interest in the Portland Canal-Iskut area of B.C., the government Department of Mines carried out a regional mapping program. The government geologists reported discontinuous lead zinc veins on the present day property. A magnetic anomaly was also discovered at the junction of the Treaty Creek and South Treaty glaciers.
- 1967-1980 The claims were staked several times but were allowed to lapse with no recorded work.
- 1980-1981 E & B Explorations optioned the claims from E. Kruchkowski and carried out a regional prospecting and geological mapping program. No significant mineral occurrences were discovered.
- 1984 Teuton Resources Corp. acquired the claims and carried out a small program of prospecting and stream sediment sampling. One sample of a mineralized boulder returned a value of 5800 ppb Au. A silt sample taken at the junction of the Treaty Creek and South Treaty Glaciers contained 510 ppb Au.
- 1985 Further mapping, prospecting and a heavy mineral stream sediment survey was carried out by Teuton Resources. One heavy metal silt sample from the western portion of the property returned a value of 4200 ppb Au. Native sulphur mineralization was discovered in a pyritic alteration zone.
- 1986 Teuton carried out further rock geochemistry sampling which returned values as high as 925 and 990 ppb Au from the area southeast of the 1985 anomalous stream sample.
- 1987 Teuton continued exploration with more rock and silt sampling. Rock samples as high as 28.0 oz/t gold over 1.2 m enabled the company to expand to a detailed rock sampling, hand trenching and a 184.5 m drill program. Inclement weather limited the effectiveness of the detailed work and the program was prematurely shut down.
- 1988 Teuton followed up the successful 1987 program with blasting, trenching and sampling of the known mineralized zones. A grid was placed over the main area of interest on which a magnetometer survey and geological mapping were conducted. Several reconnaissance rock and soil lines were put in to test areas southwest, northeast and east of the main area of interest.

OreQuest Consultants carried out field surveys on the Treaty Creek Project with main focus of work on the the nunatak Konkin Zone and area in general. Reconnaissance work of mapping, prospecting, soil, stream sediment, and rock sampling was done mainly on the Treaty Gossan area. Detailed trenching, chip sampling, VLF-EM and magnetic surveys and diamond drilling were completed on the Konkin Zone. Additional work on the nunatak area consisted of rappel traverses over the Goat Trail and Southwest Zones to acquire continuous chip samples. Α Phase II program was implemented in late September with additional drilling on the Konkin Zone and 2 holes on the Goat Trail Zone. Drill program was shut down prematurely due to severe winter conditions.

A brief summary of activity on surrounding properties is included here:

The Treaty Creek Project lies within an historically active mining and exploration area that extends some 225 kilometres from Stewart in the south to near Telegraph Creek in the north. Within this area, which has been referred to as the Stikine Arch, mining activity goes back to the turn of the century. Due to the size of the region it historically has been referred to as more specific areas, ranging from the Stewart area to Sulphurets, Iskut River and Galore Creek, however all of these individual camps appear to be related to the Stikine Arch as a whole. Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area can be considered as one large mineralized province with attendant subareas. The location of several deposits and mineral occurrences appears in Figure 3, which also locates the Treaty Creek Project with respect to these sites. This list of mineral occurrences

LEGEND FOR FIGURE 3

PROPERTY OWNER AND/OR NAME MINERAL RESERVES AND/OR ELEMENTS 6,100,000 tons 0.064 oz/t Au, 2.39 oz/t Ag 1 Westmin Resources Ltd./Silbak Premier Mines 2 Westmin Resources Ltd./Tournigan Mining 1,860,000 tons 0.09 oz/t Au, 0.67 oz/ton Ag Explorations Ltd. 3 Noranda (Todd Creek Project) An 4 Scottie Gold Mine An 10,890,000 tons 1.79% Cu 5 Granduc 6 Echo Bay Mines/Magna Ventures/Silver Princess Resources (Doc Project) 470,000 tons 0.27 oz/ton Au, 1.31 oz/ton Ag 7 Western Canadian Mining (Kerr Project) Cu, Au 8 Exponential Holdings Ltd. (Gold Wedge) 337,768 tonnes 25.78 g/tonne Au, 36.65 g/tonne Ag 9 Newhawk/Lacana/Granduc (Sulphurets Project -West Zone) 550,000 tons 0.42 oz/t Au, 18.0 oz/ton Ag 10 Prime/Stikine Resources Ltd. 1,992,000 tons 1.47 oz/t Au. 55.77 oz/t Ag (Eskay Creek Project) 11 Consolidated Silver Standard Mines Ltd. (E & L Deposit) 3,200,000 tons 0.80% Ni, 0.60% Cu 12 Inel Resources Ltd. Au, Ag, Cu, Pb, Zn 13 Skyline Gold Corporation (Johnny Mountain) 740,000 tons 0.52 cz/ton Au, 1.0 cz/ton Ag 14 Kestrel Resources Ltd. Au, Ag, Cu, Pb, Zn 15 Hector Resources Inc. (Golden Spray Vein) Au, Ag 16 Tungco Resources Corp. Au, Ag, Cu, Pb, Zn 17 Winslow Au, Ag, Cu, Pb, Zn 18 Cominco/Prime (Snip Deposit) 1,030,000 tons 0.88 oz/ton Au 19 Pezgold Resource Corp. Ag, Au 20 Meridor Resources Ltd. Aυ 21 Prime/American Ore Ltd./Golden Band Aυ 22 Magenta Development Corp./Crest Resources Ltd. Au, Ag, Cu, Pb 23 Ticker Tape Resources Ltd. (King Vein) Au 24 Pezgold Resource Corp. Au 25 Consolidated Sea-Gold Corp. Au 26 Gulf International Minerals Ltd. (Northwest Zone) Au, Ag, Cu 27 Kerr Claims Ag, Cu, Au 28 Pezgold Resource Corp. (Cuba Zone) Ag, Pb, Zn 29 Pezgold Resource Corp. (Ken Zone) Cu, Au 30 Avondale Resources Inc. (Forrest Project) Au, Ag, Cu 31 Pass Lake Resources Ltd. (Trek Project) Cu, Au 125,000,000 tons 1.06% Cu. 0.397 g/t Au. 32 Galore Creek 7.94 g/t Ag 33 Continental Gold Corp. AU, Ag, Cu 34 Bellex Resources Ltd./Sarabat Resources Ltd. (Jack Wilson Project) Au, Cu 35 Pass Lake Resources Ltd. (JD Project) AU, Cu 36 Lac Minerals (Hankin Peak Project) Au 37 Schaft Greek 910,000,000 tons 0.30% Cu. 0.020% Mot 0.113 g/t Au. 0.992 g/t Ag 38 Paydirt 200,000 tons 0,120 oz/ton Au AU, Ag 39 Bond International Gold (Red Mountain) 40 Eurus/Thios (Rock & Roll) Ag, Pb, Zn, Cu, Au 308,000 of 0.505 nz/ton Au, 1.07 oz/ton Ag 41 Westmin Resources Ltd. (SB)

.

is by no means comprehensive but is included to illustrate distribution in the region.

The Treaty Creek Project is located on the northern flank of the Iskut-Sulphurets area which has seen extensive exploration in the last three years. The Iskut area originally attracted interest at the turn of the century when prospectors, returning south from the Yukon goldfields searched for placer gold and staked bedrock gossans. In the 1970s the porphyry copper boom drew exploration into the area. The new era of gold exploration began with the 1979 option of the Sulphurets claim block by Esso Minerals Canada and the 1980 acquisition of the Mount Johnny claims by Skyline Explorations Ltd. Skyline (now Skyline Gold Corporation) commissioned its mill in July, 1988, however production has been suspended temporarily. Cominco Ltd. and Prime Resource Group Inc. have recently put the adjacent Snip deposit into production.

Beyond these projects, and except for limited early placer gold recovery from some creeks, the area has had no mineral production history. Since 1979, more than 70 new mineral prospects have been identified, though ground acquisition was relatively slow until the fall of 1987 when the promising results of summer exploration programs became known and the provincial government announced the release of analytical results from a regional stream sediment survey.

In the Sulphurets Creek camp 8 km south of the Treaty Creek Project, near Brucejack Lake, the vein-hosted West Zone of Newhawk Gold Mines Ltd. / Granduc Mines Ltd. / Corona Corporation is reported to contain a diluted minable reserve of 550,000 tons grading 0.42 oz/ton gold and 18.0 oz/ton silver (The Northern Miner, Vol. 76, #36, Nov. 12, 1990) while the Snowfield Gold Zone and Sulphurets Lake gold zone are bulk tonnage low grade deposits containing 7.7 million tons of 0.075 oz/ton gold and 20 million tons of 0.08 oz/ton gold respectively (GCNL Aug. 24, 1989). Newhawk has recently completed a feasibility study which has indicated that current gold and silver prices preclude production at present. Exponential Holdings Ltd.'s Gold Wedge Property is reported to contain 337,768 tonnes of 25.78 grams/tonne gold and 36.65 grams/tonne silver, partly in the Golden Rocket Vein in a similar setting (GCNL, November 23, 1990). The northern boundary of the Newhawk/Granduc/ Corona ground adjoins the southern claim boundary of the Treaty Creek Project. Also located in this area is Placer Dome Inc.'s Kerr property, a porphyry coppergold occurrence to which they have assigned a geological resource of 138,000,000 tons grading 0.61% copper and 0.01 oz/ton gold (Placer Dome Inc. Annual Report, 1989).

On the Snip property situated 60 km west of the Treaty Creek Project, the Twin Zone, a 3 to 25 ft thick discordant shear vein cuts a thickly bedded sequence of intensely carbonatized feldspathic wackes and siltstones. Twin Zone reserves in all categories have been reported as 1,030,000 tons of 0.88 oz/ton gold (Canadian Mines

8

.

Handbook, 1990-91). This does not include additional reserves which may be developed outside the Twin Zone. Twin Zone mineralization occurs in a banded shear zone comprising alternating bands of massive calcite, heavily disseminated to massive pyrite, crackle quartz and thin bands of biotite-chlorite.

At Skyline's nearby Johnny Mountain Mine, reserves in all categories are estimated at 740,000 tons of 0.52 oz/ton gold and 1.00 oz/ton silver with copper, zinc, and lead (Canadian Mines Handbook, 1990-91). Five major areas of gold-bearing sulphide are known. The most important Stonehouse Zone consists of sulphide-potassium feldspar-quartz vein and stockwork systems which have been only partly explored. The Johnny Mountain Mine has been indefinitely shut down pending an increase in gold prices, definition of remaining mineable reserves and road access.

The most recently discovered and perhaps the most exciting gold mineralization occurs on the Eskay Creek property of Prime Resources Group Inc./Stikine Resources Ltd., located 20 km west of the Treaty Creek Project. Several types and styles of mineralization are present at Eskay Creek, the most significant of which are: a) a gold and silver-rich assemblage of disseminated to near-massive stibnite and realgar within a carbonaceous mudstone-rhyolite breccia "contact zone"; and, b) stratiform banded base metal sulphide layers with high gold and silver values in the contact zone and in a hanging wall andesite flow and sill complex with intercalated mudstone. The latter

type accounts for most of the reserves. This stratigraphy appears to be at or near the contact between the Mt. Dilworth (felsic volcanics) and Salmon River (primarily sediments) Formations.

Numerous Calpine (now Prime)/Stikine news releases have announced results from over 600 drill holes completed from 1988 to the present, the most spectacular of which is hole CA-89-109 which produced 682.2 feet of 0.875 oz/ton gold. Published preliminary reserve calculations done in-house by Prime, based on drilling up to end of 1990 indicate probable geological reserves of 2,164,000 tons grading 1.41 oz/ton gold and 51.9 oz/ton silver (Prime Resource Group Inc. news release, March 7, 1991). The company is currently driving an exploration drift to test the deposit at depth for continuity and to conduct metallurgical testing.

Immediately south of the Eskay deposit, American Fibre Corporation and Silver Butte Resources are in a joint venture on the SIB Project, on ground that hosts the same stratigraphy as the Eskay deposit. Results from recent drilling have returned results of 0.421 oz/ton gold and 30.91 oz/ton silver over 46.9 ft from hole 90-30 (Vancouver Stockwatch, October 10, 1990). Results from the final 1990, 26 hole program included values of 0.13 oz/ton gold over 6.3 ft and 0.13 oz/ton gold over 19 ft both in hole 90-38 (GCNL, November 5, 1990).

Elsewhere in the area Tymar Resources and Akiko-Lori Gold Resources have been drilling on the Lakewater Project which adjoins the Prime/Stikine project to the west. The companies are drilling a 320 m wide gap in the American Fibre/Silver Butte SIB claims within which the favourable Eskay deposit stratigraphy occurs. Results have been encouraging and include the following: 9.8 ft of 1.197 oz/ton gold, 1.7 oz/ton silver, 0.73% lead and 0.72% zinc (LW90-2), 3.3 ft of 0.115 oz/ton gold (LW90-3) and 16.4 ft of 0.042 oz/ton gold (LW90-6), (Vancouver Stockwatch, October 30, 1990).

REGIONAL GEOLOGY

The Treaty Creek property lies within the Iskut River map area (NTS 104B) which encompasses an important geological transect through the west-central Cordillera. The area is underlain by the Stewart Complex (Grove 1971, 1986) which includes Late Paleozoic and Mesozoic rocks, confined by the Coast Plutonic Complex to the west, the Bowser Basin to the east, Alice Arm to the south and the Iskut River to the north. A simplified representation of the regional geology setting after Alldrick (1989) appears in Figure 4.

Grove (1971, 1986) established the modern stratigraphic, plutonic and metalogenic framework for the Stewart mining district. Alldrick (1983, 84, 85, 87), Alldrick et al. (1987, 89), Alldrick and Britton (1988), and Britton and Alldrick (1988) have redefined and extended the Mesozoic stratigraphy around the Silbak Premier and Big Missouri mines north to the Sulphurets and Bronson Creek Camps.

The stratigraphy and plutonic framework are most simply described in terms of four tectonostratigraphic elements: Paleozoic Stikine Assemblage, Triassic and Jurassic Stikinian strata and plutons, Middle and Upper Jurassic Bowser Lake Group and Tertiary Coast Plutonic Complex (Anderson, 1989). Of particular interest to mineral explorationists are the Lower Jurassic volcanics and associated Early Jurassic alkaline granitic rocks of the Stikinian assemblage; many of the precious metal vein deposits seem to be associated with them (eg. Premier, Big Missouri, Silver Butte, Sulphurets camp).

The Hazelton Group encompasses Lower Jurassic Unuk River and Betty Creek Formation volcanics along with Middle Jurassic Mt. Dilworth Formation volcanogenic rocks. These are overlain by upper Middle Jurassic sediments of the Salmon River Formation and Upper Jurassic Bowser Lake Group sediments.

The Unuk River Formation in the eastern Iskut River map area is dominated by white and grey-brown andesitic volcanic breccia and thin-bedded lava (Anderson and Thorkelson, 1990). West of the Bowser River, the volcaniclastics grade into a sedimentary unit, dominated by siliceous siltstone and subordinate pebble conglomerate and greywacke.

The Betty Creek Formation, conformably overlying the Unuk River Formation, contains characteristic hematitic maroon to green volcanic siltstone, greywacke, conglomerate and breccia. The members are massive, thick- or medium-bedded. The clastic sediments have likely been derived by weathering and erosion of Unuk River Formation tuffs and flows. Areas where Betty Creek Formation thins or wedges out represent paleotopographic highs.

In the eastern Iskut River map area, the Mount Dilworth Formation is the least heterogeneous and most extensive marker within the Hazelton Group. It consists of distinctive white, maroon or green weathering, siliceous felsic welded tuff and tuff breccia (Anderson, 1989). This thin, distinctly colored unit is resistant, a cliff-former and is an important regional stratigraphic marker (Alldrick, 1988). The formation represents airfall deposits from a series of subaerial explosive felsic volcanic eruptions, and indicates the last volcanic event of Hazelton Group volcanism.

The Salmon River Formation in this area is a thick assemblage of thin to medium-bedded siltstones and wackes and is comprised of two members. A thin, sandy, bioclastic limestone occurs at the base with the overlying member having three facies that form north-trending belts.

Plutonic rocks occur throughout the Iskut map area, but dominate in the southwest. In the past geologists have included all granite plutons as part of the Tertiary Coast Plutonic Complex. Recent mapping and geochronometry have helped to define the plutonic episodes. At least four episodes are recognized (Anderson, 1989) as follows:

1. Late Triassic - Stikine plutonic suite

- 2. Early Jurassic Texas Creek plutonic suite
- 3. Middle Jurassic Three Sisters plutonic suite
- 4. Eocene Hyder plutonic suite.

The Early Jurassic Texas Creek plutonic suite is coeval with eruption of Lower Jurassic Hazelton Group volcanic rocks, and is crosscut by alkali - feldspar - phyric andesite dykes, ie "Premier Porphyry" dykes (Anderson & Bevier, 1990). These dykes are thought to have fed the porphyritic volcanic flows present at the top of the Unuk River andesitic sequence.

Recent age dating has identified the Three Sisters plutonic suite as Middle Jurassic.

The Tertiary Hyder plutonic suite of the Coast Plutonic Complex lacks dykes and preserved volcanic equivalents. Tertiary plutons crosscut all regional structural fabrics and are post-tectonic (Anderson & Bevier, 1990).

The regional structural pattern is a north - northwest striking system of open to tight folds. The axial planes dip steeply west-southwest and the folds are doubly plunging, creating a series of cance-shaped synclinal troughs in the Long Lake area.

pr. -

h. -

During the Cretaceous, moderate deformation with lower greenschist facies regional metamorphism along north-trending fold axes took place and major folds and slaty cleavage were formed (Alldrick, 1986).

Precious and base metal veins developed in the area occur within the Upper Triassic (Kerr, Doc, Inel, Snip, and Stonehouse deposits), Lower Jurassic (Premier and Sulphurets deposits) and lower Middle Jurassic (Eskay creek deposit) strata. For many deposits (Premier, Kerr, Inel and Snip) proximity to Early Jurassic calc-alkaline to alkaline plutonic intrusions, especially the alkali-feldspar porphyry variety (Premier porphyry) seems to be the main control, in which case the host strata are of secondary importance.

The Eskay Creek deposit is an important exception where the precious metal veins seem to be mainly stratabound within a sedimentary and pillowed lava sequence of the Eskay Creek facies of the Salmon River Formation (Anderson, Thorkelson & Bevier, 1990).

EXPLORATION PROGRAM

The 1990 exploration program initially focused on the Treaty Gossan area, with limited reconnaissance mapping and prospecting carried out over areas not covered by the 1989 program or which warranted additional work. During this reconnaissance work the new showings on the GR2 claim were located and followed up with the work described herein. (Figure 5)

A grid baseline was established across the centre of the GR-2 claim showings trending 190° for a distance of 800 m. Cross lines were spaced at either 50 or 100 m intervals extending east and west of the baseline past the zone or to the limits of traversable topography. Areas with significant outcrop exposure have a 50 m line spacing while large expanses of snow and ice or talus cover have a 100 m line spacing. The terrain in the area of the showings is steep with lots of loose talus, snow and ice cover. The grid was used as control for detailed geological mapping, hand trenching, rock chip sampling and a UTEM geophysical survey.

A total of 5.225 km of grid was established which includes the 0.8 km of baseline. The UTEM survey was completed on selected lines, those being the ones that were traversable. A total of 3.1 line km of UTEM were completed before the onset of inclement weather. One hundred thirty rock samples were collected of which 67 were grab samples, 31 chip samples over untrenched outcrops and 32 chip samples from the trenches. Chip samples were taken over variable widths but average 1-2 m.

The exploration program on the Treaty Gossan, consisted of grid establishment, detailed geological mapping, prospecting, geochemical rock and soil sampling and magnetic and electromagnetic geophysical surveys.

All the surveys except prospecting were confined to the grid area. The grid was established at the northeastern edge of the gossan area with the baseline trending 225° for a distance of 2.5 km. Crosslines were located at 100 m intervals with lines to the northwest and southeast extended to the limits of traversable topography. All lines are a combination of picketed and flagged stations. Pickets were erected at 50 m intervals with flagging marking the intermediate stations resulting in a 25 m station spacing.

A total of 18.975 line km of grid was established with magnetic and electromagnetic surveys each totalling 14.075 line km.

Other areas of the property which received limited exploration included the area southeast of the Treaty Gossan to attempt to trace the Mt. Dilworth Formation and areas north and east of the GR-2 showings.

GR-2 SHOWINGS - GEOLOGY AND MINERALIZATION

The new showings were discovered during reconnaissance mapping and prospecting on the GR-2 claim. Float samples of massive galena were found which were then traced back to the source. The initial prospecting and preliminary mapping was done at a scale of 1:1,000 for each showing then integrated onto two maps as shown on Figures 6 and 7. The area is located near the head of Atkins Glacier on a ridge that separates Atkins Glacier from the main Treaty Glacier. Elevations range from 1450 m on the east side of Atkins Glacier to almost 2000 m at the top of the ridge. Ice and talus cover much of the area limiting outcrop exposures and making access difficult.

The major showings represent portions of shear zones hosted by rocks of the Betty Creek Formation, consisting of interbedded andesitic volcaniclastics, breccias and siltstone. The shears generally have a north to north-northeast strike, a near vertical dip and are up to 50 m wide. Hydrothermal alteration forming sericite, quartz, clays, calcite, pyrite and barite has locally partially to completely replaced the host rocks along these zones.

Zone A

This showing covers an area of about 30 x 30 m consisting mostly of talus with a few tiny outcrops. Numerous boulders with up to 20% pyrite, 40% limonite, 60-70% galena, 2-3% chalcopyrite, wad and minor azurite-malachite staining are scattered over the area. A trail of heavily mineralized boulders appears to be the surface expression of an underlying shear vein which where exposed does not exceed 40 cm in width. The apparent strike of the vein is northeast-southwest. The showing appears to represent a series of discrete northeast trending shear veins developed in andesite lapilli tuffs over a width of

approximately 20 m. Varying degrees of sericite, quartz, pyrite and calcite alteration are present across the zone.

Samples from Zone A returned the highest gold assays received, 0.170 oz/ton (#34504) and 0.401 oz/ton (#34505), while silver assays from these samples are 5.30 oz/ton and 4.90 oz/ton respectively. Base metals values are also anomalous with up to 1.65% copper (#34509), 28.6% lead (#34504), and 37.4% zinc (#34507). All of the previously mentioned results were from float samples of sulphide bearing vein material.

Zone B (Mama Susu)

Numerous boulders containing up to 60-70% galena, 10% stibnite, 2-3% chalcopyrite, minor pyrite, wad, limonite and traces of malachite-azurite and sphalerite occur over a talus covered area measuring approximately 50 m by 20 m. The mineralization is related to a 20 m wide shear zone developed in andesitic pyroclastics, a substantial portion of which have been almost totally replaced by sericite and quartz. This zone can be considered to be the northeast extension of the mineralization encountered in Zone A. Talus cover in the area between Zones A and B conceals any potential mineralization along the structure.

Results from Zone B were similar to those in Zone A with gold and silver assays of 0.207 oz/ton and 100 oz/ton (#34706) and 0.142 oz/ton and 83.1 oz/ton (#34513) respectively. These were both float samples

of massive sulphide material consisting predominantly of galena. Grab samples from outcrop include 0.045 oz/ton gold and 8.25 oz/ton silver (#34705) and 0.078 oz/ton gold and 6.91 oz/ton silver (#34514). Base metal assays were not as high as those from Zone A but are nonetheless significant. Sample #34706 contained the highest copper (0.78%), lead (20.7%) and zinc (1.06%). Other values of significance are lead 10.9% (#34513) and 3.99% (#34514).

Zone C (Big Pella)

As in Zones A and B the area is extensively talus covered and likely represents a northeast striking shear zone, developed in andesite pyroclastics and siltstones. It is 10-15 m wide and can be traced for approximately 50 m before being lost in talus cover. The zone is almost completely sericitized and locally silicified with up to 10% disseminated pyrite and pockets of up to 90% massive stibnite, 30% galena, and 50% pyrite. Some boulders indicate that nearby exposures of quartz cemented breccia constitute part of the zone.

Zone C analyses were the lowest of all of the zones with gold values ranging from a low of 0.004 oz/ton to a high of 0.016 oz/ton in sample #34515. Silver values were higher, however well below Zone A and B levels, ranging from 1.14 oz/ton to a high of 11.7 oz/ton (#34516). This is likely related to the low base metal content which returned only two anomalous lead values, from samples #34516 (1.55%) and #34515 (1.27%). Sample #34515 is possibly in place while #34516 is float material. Zone C-1

Zone C-1, believed to be an extension of Zone C, is located 300 m to the south-southwest. The zone consists of several quartz veins up to 50 cm wide carrying galena, minor chalcopyrite and abundant manganese stain. The veins are hosted by pyroclastics and sediments of the Betty Creek Formation and strike north to northeast. Several grab samples collected from the zone assayed anomalous gold values up to 370 ppb (#34726). Silver assays returned higher values of 8.99 oz/ton (#34711), 9.44 oz/ton (#34726), 12.64 oz/ton (#34724) and 27.4 oz/ton (#34707). Base metal values were low with a maximum of 0.2% copper (#34707), 16.3% lead (#34724) and 0.39% zinc (#34708).

Showings D, E, F

These showings are all located in a small valley containing an out flow stream fed by an icefield, and are separated from each other by varying widths of less intensely altered (sericite - calcite chlorite - limonite) andesitic pyroclastics and siltstones. They consist of shear zones 30, 20 and 50 m wide separated by 70 and 100 m respectively, all striking northeast-southwest. All are very strongly to completely altered to sericite with auxiliary quartz and disseminated pyrite (up to 5%). Locally they contain pockets of massive sulphide with galena (up to 30%), pyrite (up to 50%), limonite (up to 50%), sphalerite (up to 10%) and minor stibnite, wad and malachite-azurite staining.

The massive sulphide bodies constitute irregular pods, up to 130 cm in diameter with no apparent prevalent attitude, but many of the pods are only partially exposed by trenches, so their full extent remains to be determined. The sulphides include galena, pyrite and stibnite (constituting up to 50% of the pod) with lesser amounts of sphalerite, chalcopyrite and arsenopyrite. In places these minerals are totally oxidized to limonite, manganese-oxides and malachiteazurite. The bulk of the mineralization occurs in strongly fractured to brecciated zones, which occur more frequently in the siltstone unit. The mechanism controlling emplacement of these sulphide bodies is not yet known however it is possible that faults cross cutting the major shear zones acted as ground preparation for ore bearing solutions.

The presence of stibnite as well as very well defined colloform textures in the sulphides (R. Kirkham -personal communication) point to an epithermal origin of the mineralization, although part may have originated in a much higher temperature regime as indicated by the very coarse grained textures of some of the sulphides.

Copper and zinc values ranged from 0.01% to 0.2%, and 0.01% to 0.39% respectively. Significant lead assays include the following: 6.50% (#34707), 9.47% (#34728), 11.96% (#34726) and 16.30% (#34724). All of the above samples are grab samples of outcrop or subcrop.
Zone D samples referred to herein include grab samples only. The trench sampling will be discussed in detail in the following section. Gold and silver assays were generally low, with a high of 0.010 oz/ton gold in sample #34556 and 12.9 oz/ton silver in sample #34523. Base metals ranged from 0.01% to 0.73% copper, 0.04% to 2.86% lead, and 0.07% to 3.73% zinc. All the highest base metal assays were derived from sample #34523 which consisted of strongly sericitized andesitic tuffs with 1-2% galena, limonite and wad. All of the above samples were collected from subcrop.

Gold assays from Zone E were quite low, ranging from below detection limits to 0.006 oz/ton (#34525). Silver was also low though 3 samples assayed >2 oz/ton including 20.4 oz/ton from sample #34526. Copper ranged from 97 ppm to a high of 0.10% (#34526), lead from 352 ppm to 3.31% (#34526) and zinc from 81 ppm to 0.34% (#34524). Samples #34524 and #34525 are float material while #34526 was a 1.0 m chip sample of intensely sericitized andesitic tuffs? with 2-3% pyrite, 3-5% galena and abundant limonite. The UTEM survey shows a weak conductor associated with this showing which continues southwest under the icefield.

Zone F received the bulk of the detailed work based on the intensity and extent of surface alteration, and high grade sulphides exposed at surface. Gold and silver results were low, ranging from 20 ppb to a high of 550 ppb gold in massive sulphide (#46017) and two significant silver assays of 11.18 oz/ton (#46014) and 53.53 oz/ton

(#46017). Base metal results were lower than expected except for select grabs which assayed as high as 42.70% lead (#46017) and 9.16% lead (#34531). Copper values were low except for sample #46017 which assayed 6058 ppm. Zinc returned three strongly anomalous values of 5.16% (#46017), 6.72% (#34530) and 8.29% (#34531). Samples #34530 and #34531 consisted of mineralized silicified siltstone and andesite tuff respectively.

This zone is contained within the main UTEM anomaly as interpreted by S. Visser in his report (Appendix I, Figures 6 and 7). It is described as either a number of closely spaced weak conductors or a wide conductive zone. Anomalous values in gold (0.01 oz/ton), silver (13.13 oz/ton), copper (1436 ppm), lead (0.26%) and zinc (0.2%) have been returned from rock samples along this UTEM conductor trend northeast of Zone F. Abundant north to northeast shearing is evident in the limited outcrop throughout this area.

TRENCHING AND SAMPLING

The favourable results received from the numerous grab samples collected at the various showings prompted a more detailed trenching and chip sampling program. The initial program consisted of hand clearing of talus material over the most promising areas (Zone F) followed by systematic chip sampling. Sampling was carried out generally at 2 m intervals with 1 m chips over sections with significant visual mineralization.

The trenching program included some of the same areas that were chip sampled so as to allow a comparison of the results obtained from surface material vs. blasted material to see if assays varied due to either surficial enrichment or leaching of mineralization. Trenching was carried out by Tim Carlson Blasting Co. of Courtnay, B.C. and chip sampling of the trenches was done by OreQuest.

A total of 5 chip lines were completed; lines A-D on Zone F, and Line E over Zone E, Figures 6, 7 and 8, followed by 8 trenches which were drilled, blasted, excavated, and chip sampled. Trenches are labelled 1-4 on Zone F, 5 and 6 on Zone D and 7 and 8 on Zone C (Figures 9 to 13).

Lithologies encountered in the trenches are the same as on surface, consisting of andesitic pyroclastics and siltstone, strongly to completely sericitized with local development of silicification, pyritization and clay alteration. Alteration in trenches 7 and 8 (both Zone C) is dominated by clays.

Both chip lines A and B were completed over the same approximate area as covered by Trench 1. The exact correlation is not known as trenching removed the markers for the chip lines.

Results from chip line A, samples #34801-34808, Figures 6 and 7, were not as high as anticipated although significant results were received. Gold values were low, ranging from below detection limits to a high of 150 ppb (#34805) which also contained the highest silver assay of 13.13 oz/ton, over a length of 2 m. Other silver assays range from 0.9 ppm to 17.2 ppm. The highest copper (756 ppm), lead (3.22%) and zinc (8678 ppm) are also from sample #34805. Excluding this sample copper ranged from 11-149 ppm, lead from 130-535 ppm and zinc from 91-1041 ppm. These results show a good correlaton with the trench samples as shown on Figures 9 and 10.

Results from chip line B were generally higher than those from line A. The highest gold (180 ppb), silver (9.30 oz/ton), copper (1436 ppm), lead (2.17%) and zinc (19606 ppm) are all from sample #34810, a 2 m chip of andesitic pyroclastics containing galena and pyrite. Sample #34811 also contained elevated silver (3.18 oz/ton) which when combined with sample #34810 yields a weighted average of 6.24 oz/ton silver over 4 m. This sample (#34811) also assayed 10725 ppm lead and 6127 ppm zinc.

Chip line C, in the area of Trenches 3 and 4, contained gold values ranging from 20-180 ppb (#34816). Silver values were higher with 3 assays of >1 oz/ton including 10.82 oz/ton (#34815), a 1 m chip of andesite pyroclastics containing massive galena. When combined as a weighted average with surrounding samples silver assays 5.80 oz/ton over 3 m. Base metal results were also encouraging with sample #34815 containing the highest copper (1477 ppm), lead (7.53%), and zinc (7389 ppm) values. Sample #34816 assayed 3.31% lead which, when combined with #34815 gives a lead assay of 5.42% over 2 m.

Chip line D, also in the area of Trenches 3 and 4 returned gold assays from 40-110 ppm and silver from 15.1 to 22.0 ppm except sample #34817 which assayed 7.08 oz/ton silver. This sample also contained the highest copper - 1002 ppm, lead - 4.03%, and zinc - 4558 values from the zone. Other results include copper 61-122 ppm, lead 1577-11511 ppm and zinc, 1935-3987 ppm.

Chip line E (Figure 8) was was sampled across Zone E where up to 2.76 oz/ton silver was obtained in float and grab samples. Well developed north to northeast trending foliation, and southeast striking, moderate northeast dip bedding were observed in this area. The zone was not trenched as the steep slope made access with heavy equipment difficult. Results of 11 chip samples totalling 22.2 m were low in all elements except for #34831 at the west end of the zone. This 2.2 m chip contained two narrow shear veins composed of 15-20% galena which assayed 20 ppb gold, 8.33 oz/ton silver, 1047 ppm copper, 3.30% lead and 2038 ppm zinc. Assays from the other samples include the following: gold, (nd-30 ppb), silver, 0.2-5.3 ppm, copper, 86-137 ppm, lead, 28-444 ppm and zinc, 110-700 ppm.

Trench #1

This trench, located over Zone F, is underlain almost completely by andesitic pyroclastics with minor siltstones at the north end (Figure 9). Alteration includes limonite, sericite, clays and silica with a few minor northeast trending shears. Results of up to 180 ppb gold and 9.30 oz/ton silver over 2 m accompanied by strong base metal

anomalies from previous chip samples in the area provided the location for the trench. Six chip samples for a total length of 12.2 m were collected from the trench with the highest results from sample #34836 which contained 100 ppb gold, 16.6 oz/ton silver, 1388 ppm copper, 7.73% lead and 3.87% zinc over 2.0 m toward the north end of the trench.

The sample contains 1.7 m of a 2.3 m long andesitic pyroclastic/ siltstone hosted breccia zone cemented by 3-5% galena, 1-2% sphalerite, 1-2% pyrite, limonite and quartz. The remaining 0.6 m of the breccia zone is contained in sample #34835 which assayed 2.98 oz/ton silver and 12192 ppm lead. The breccia zone is developed on the west side of a northeast trending shear zone. All of the samples from this trench contain assays significantly above background levels.

Trench #2

This trench, located on Zone F, has a total length of 6 m over which 4 samples were collected (Figure 10). It is underlain by intercalated andesite pyroclastics and siltstone. Alteration includes sericite, silica, limonite and manganese with pyrite, sphalerite, galena, and malachite stain. The trench was designed to trace rich mineralization which outcrops 5 m to 7 m to the southwest in the vicinity of trenches 3 and 4. Sample #34840, a 1 m chip of intensely sericitized and silicified andesitic pyroclastics with 20-30% galena, limonite, minor sphalerite and malachite assayed gold (400 ppb), silver (9.32 oz/ton), copper (1168 ppm), lead (7.70%) and zinc (9276

ppm). Excluding this sample other assays include gold (below detection limit - 30 ppb), silver 26-37 ppm), copper (104-117 ppm), lead (2723-6427 ppm) and zinc (2385-2980 ppm).

Trench #3

This trench, 4 m long, is also located on Zone F, 3 m south of trench 2 (Figure 10). It is underlain mainly by siltstone with minor intercalated andesite and local brecciated sections cemented with quartz and minor galena, sphalerite and abundant manganese. Galena is also present as small veins or lenses up to 15 cm wide striking north-northwest. Trenches 2, 3 and 4 were to test an area of highly anomalous results from grab samples (20-550 ppb gold, up to 53.53 oz/ton silver, 42.7% lead and 8.29% zinc) and chip samples (20-280 ppb gold, up to 10.82 oz/ton silver). Three samples were collected from the trench of which sample #34844, a weakly limonitic siltstone with a 5-15 cm galena vein, contained the highest gold (160 ppm), silver (21.04 oz/ton), copper (1424 ppm), lead (>20,000 ppm) and zinc (>20,000 ppm) over a 1 m chip. The other two samples from this trench also contained elevated silver, lead and zinc.

Trench #4

This small trench, 2 m total length, is also on Showing F (Figure 10). It is underlain by siltstone which is locally brecciated, sericitic, limonitic and contains abundant manganese. The breccia section is cemented by quartz, galena (10-20%), minor sphalerite and limonite. Results from this trench were very good. Over the length

of the trench, (2 m) gold averaged 235 ppb, silver 30.04 oz/ton, copper 4017 ppm, lead 11.80% and zinc 3.12%.

Trench #5

This trench, 4 m long, is located on Zone D and is underlain by andesite pyroclastics which have been completely altered to sericite and clays. Measurements of small shears and foliations indicate a northeast strike which is conformable with the larger scale shearing in the area. Trenches 5 and 6 were intended to trace the mineralization encountered in grab samples which contained gold values up to 0.010 oz/ton, silver to 12.9 oz/ton, copper from 0.01% to 0.173%, lead from 0.04% to 2.86% and zinc 0.07% to 3.73%. Two samples were collected, the results of which were quite low with gold (0.006 oz/ton), silver (1.37 oz/ton), copper (0.02%), lead (0.21%) and zinc (0.08%), all from sample #34560, a 2 m chip (Figure 11).

Trench #6

This trench, 10 m long, also located on Showing D, is underlain by andesite pyroclastics and siltstone which are partially replaced by sericite, quartz, pyrite and limonite. A small interval of brecciated rock containing tiny quartz crystals hosts minor pyrite, galena and sphalerite. The best result from the 5 samples collected from this brecciated unit was sample #34564 which assayed <0.005 oz/ton gold, 36 ppm silver, 0.01% copper, 0.58% lead and 0.45% zinc over a 2.0 m chip (Figure 11).

Trench #7

This trench, 6.5 m long, over Zone C, exposed andesite pyroclastics with variable amounts of sericite, quartz and clay alteration (Figure 12). Two trenches, 7 and 8, were excavated over this zone, prompted by anomalous gold results up to 0.016 oz/ton gold and from 1.14 oz/ton to 11.7 oz/ton silver in float and grab samples collected earlier in the program. Additional factors affecting the location of the trenches on this showing were very strong alteration and the presence of float boulders containing 50-60% stibnite. Results of the 3 samples were low however with the highest gold (20 ppb) and zinc (50 ppm) from sample #34566, a 2 m chip. The highest silver (10.7 ppm) and lead (1335 ppm) were from sample #34568, and the highest copper (24 ppm) from sample #34567. Antimony results were low with a maximum of 240 ppm however arsenic was strongly anomalous with over 2000 ppm in #34566. All the above samples are 2 m chips.

Trench #8

This trench, 18 m long, across Zone C, is underlain by andesite pyroclastics with variable sericite, clay, limonite and manganese alteration (Figure 13). Results of the seven samples from this trench were low with gold below detection limits in all samples. The highest copper (145 ppm) and zinc (1545 ppm) sample #34574, silver (161 ppm) and lead (1801 ppm), sample #34575 were from adjoining 2 m samples of intensely sericitized and limonitic andesite pyroclastics.

The program was successful in outlining areas of significant mineralization, mostly lead and silver with local elevated gold, copper and zinc values. Exact relationships between the showings is still unclear however they are all related to a series of northnortheast trending shear zones, of variable widths, with apparently discontinuous high grade vein mineralization. Zones of brecciation evident in some of the trenches, peripheral to fault zones, are considered to be the result of explosive hydrothermal action and fragments of bedded vein quartz containing epithermal sulphide assemblages have been noted within the breccias (R. Kirkham, pers. comm.). Alteration in the form of sericite, clays, limonite and silicification is pervasive but locally shows great variation in Additional trenching will be required to intensity and extent. delineate the full extent of these zones.

PROSPECTING TARGETS

VR2 and TR7 Claims

Areas to the north (northern portions of GR2 and VR2 claims -Figure 14) and to the east (southern portion of TR7 claim - Figure 15) of the newly discovered showings were briefly prospected. They were found to be underlain by andesite pyroclastics and sediments of the Betty Creek Formation and felsic volcanics of the Mt. Dilworth Formation respectively. Locally the rocks are strongly sericitized, silicified and calcitized in zones up to 100 m across with mineralization consisting predominantly of disseminated pyrite, locally up to 20%. In the northern portion of GR2 and VR2 claims boulders with galena and abundant manganese staining (ie. similar mineralization as in the new showings) were found. Several samples of these boulders were assayed returning up to 3.17 oz/ton silver and 50 ppb gold. Grab and float samples collected in the south portion of TR7 did not record significant gold or silver values.

East Side of Treaty Gossan

Several grab samples collected from outside the grid area in the southeast part of the Treaty Gossan returned anomalous gold values associated with enhanced arsenic (Figures 16, 17). The highest result of 0.054 oz/ton gold (#46003) came from a small northeast trending shear zone containing 15-20% disseminated pyrite. The shear zone is hosted by heavily silicified, gossanous rhyolite (or rhyolite tuff) of the Mt. Dilworth Formation? containing 3% disseminated pyrite, and local pods of up to 20% pyrite. The rhyolite (or rhyolite tuff) is exposed as a body several metres wide and 50-60 m long within an area of extensive talus, and likely represents an extension of the Mt. Dilworth stratigraphy.

TREATY GOSSAN GEOLOGY AND DISCUSSION

Geological mapping at a scale of 1:2500 was completed over half of the grid only due to the earlier than expected onset of winter conditions (Figure 16). The report therefore concerns primarily the mapped portion of the grid, although general conclusions concerning the Treaty Gossan area are based on experience from previous exploration seasons. Lithology

The mapped area is underlain by rocks of the Hazelton Group represented by north-south trending Betty Creek and Mt. Dilworth Formations. Rocks of the former formation consist of massive to poorly bedded andesitic pyroclastics to epiclastics and well bedded siltstone and argillite. These volcano-sedimentary rocks are accompanied by massive to vesicular andesitic flows. Andesite pyroclastics contain a variety of fragments including massive and scoriaceous fragments, glass and crystals. A substantial part of the area mapped is occupied by an equigranular diorite intrusive.

The overlying felsic volcanic sequence of the Mt. Dilworth Formation comprises rhyolitic to dacitic airfall tuffs and flows which are extensively altered to chlorite, sericite and clays. Contacts between the Betty Creek rocks and the Mt. Dilworth are believed to be conformable however the extensive cover and locally intense alteration renders this subjective.

Rocks of these formations host the Treaty Gossan alteration zone which is a pervasively pyrite-quartz-sericite altered rock with massive to schistose structure. Many boulders of a laminated chertlike rock carrying alunite, native sulphur, prehnite and selenite were also found in the area. They are mainly concentrated south of lines 10W to 13W, where a small outcrop (lx2 m) of this lithology was discovered.

Mineralization

Mineralization encountered during the mapping and prospecting of the area is associated with three distinct episodes related to extrusive rocks of the Mt. Dilworth Formation; a porphyry copper type system; and subsequently, local epithermal overprinting. These stages, partially superimposed on each other, represent different styles of mineralization, alteration and potential for gold occurrence.

1) Mineralization related to the Mt. Dilworth Formation.

The oldest of the stages is associated with the felsic extrusive rocks of the Mt. Dilworth Formation which in part hosts the nearby Eskay Creek deposit. These were mapped on the north-east portion of the grid (lines 0 to 5W, and outside the grid in the south-east portion of the Treaty Gossan (Figure 17). Samples derived from the former location did not record anomalous gold values.

Some of the grab samples collected from the latter location returned anomalous gold values generally associated with elevated arsenic. The highest result, 0.054 oz/t gold (#46003), consisted of a small north-east trending shear zone containing 15-20% disseminated pyrite, within a weakly carbonatized rhyolite. A similar exposure of gossanous rhyolite located by the G.S.C. near the toe of the Treaty Glacier contained finely laminated pyrite and traces of Sartorite, a lead-arsenic-antimony sulphide, in rocks considered to be Mt.

Dilworth. No work was done in this area during 1990 however follow up should be undertaken during the next phase.

2) Mineralization Related to a Porphyry-Copper System.

The Treaty Gossan alteration zone together with surrounding areas bear several features characteristic of porphyry-copper type systems.

The Treaty Gossan alteration zone encompasses about 1 square kilometre, a magnitude observed in many porphyry-copper systems. The zone is surrounded by an extensive alteration halo of weak to moderate intensity, affecting all andesitic rocks of the Betty Creek Formation and the diorite intrusive. The alteration features chlorite, calcite, zeolites, pyrite (limonite), sericite and epidote with the first two being dominant. This assemblage fits the pattern of alteration zoning for a porphyry-copper system put forward by Lowell & Gilbert (1970) and Sillitoe (1973) with the pyrite-quartz-sericite alteration zone equivalent to the phyllic zone and the surrounding zone equivalent to the propylitic alteration in this model.

Another feature of the Treaty Gossan area is a magnetic anomaly detected by the 1989 Aerodat airborne geophysical survey, to the south and east. Nothing on the ground was found to justify this anomaly, however it could be explained by assuming a porphyry-copper model for the Treaty Gossan area in which case the magnetic variation would be too subtle for a limited ground magnetic survey to detect. According to Lowell & Gilbert (1970) deep parts of the propylitic alteration

zone in porphyry-copper systems feature the presence of substantial amounts of magnetite replacing pyrite. These magnetite-rich portions of the system could result in a circular magnetic anomaly located peripheral to parts of the system (similar to that of Treaty Gossan), provided the concentration of magnetite is sufficient to cause an airborne anomaly. In his world wide review of gold-rich porphyry copper deposits, R.H. Sillitoe (1979) listed the high magnetite content as a primary feature of deposits of this type, able to generate magnetic responses up to 4500 gammas above background. He even suggested the use of ground and airborne magnetic surveys as an effective means of locating such deposits.

The bulk of the sulphide mineralization so far associated with the Treaty Gossan occurs in what would be the sericitic (phyllic) alteration zone, as disseminated pyrite making up 3-7% of the rock by volume. Numerous rock samples representing this zone collected during this and previous exploration seasons returned at best weakly anomalous values in gold. Significantly, the samples also showed weakly anomalous values in copper which suggests that it may represent the upper portion of a porphyry-copper system, and more precisely, the upper part of its phyllic zone, which usually carries little copper (or associated gold) mineralization. Many of the samples collected from the surrounding propylitic alteration zone returned anomalous values in gold with numerous results over 100 ppb, the 2 highest results being 340 ppb (rock grab sample) and 290 ppb (soil).

In a porphyry-copper model, the propylitic zone may contain a few small gold-silver bearing galena-sphalerite-chalcopyrite veins. Some small veins of this type have been located in the area of the Treaty Gossan, all in the propylitic zone. One such vein found by OreQuest in 1989 carrying galena and chrysocolla assayed 0.038 oz/ton gold and 2.55 oz/ton silver.

3) Mineralization associated with an epithermal system.

Over the area of the Treaty Gossan numerous boulders and one small outcrop (located south of line 10W) of siliceous laminated rock containing alunite, native sulphur, prehnite and selenite were found. In thin section the rock was found to be composed of very fine grained (chert) quartz, alunite and disseminated pyrite comprising 1-3 mm thick laminations. The layers often show soft sediment type deformation such as small scale slump folds and pull-apart structures. The rock probably represents the precipitate (sinter) from a hot springs in a marine environment.

Native sulphur, prehnite, selenite and some alunite were subsequently introduced to the rock along small crosscutting fractures. These fractures were eventually sealed off by silica which explains the excellent condition in which the native sulphur is preserved.

Samples of this rock showed anomalous levels of mercury (Dani Alldrick-personal comm.) and a warm spring was reportedly located in

the south-east part of Treaty Gossan by Chris Hrkac in 1985. All these facts suggest that the area is underlain by an active epithermal system. It is crucial however, to explain the relationship between this epithermal system and the Treaty Gossan alteration zone.

None of the low temperature minerals accompanying laminated silica sinter were found in the pyrite-quartz-sericite altered rock, which suggests that they constitute two separate systems. The epithermal system was superimposed on the porphyry-copper system, when the latter was eroded to the present level (according to estimates by R. H. Sillitoe this would occur after removing 2 to 3 kilometres of overlying rocks). One area where the epithermal system is likely in place is under the glacier situated to the south of lines 9W to 13W, which is characterized by scattered silica sinter boulders at the edge of the icefield, and also by a small outcrop of this lithology (Figure 18). Other areas are likely to be located on the unmapped portions of the grid and outside of the grid area.

The epithermal system is not restricted, however, to the Treaty Gossan. Laminated and vein hosted sulphides with native sulphur were reported in place on the north side of the Treaty Glacier on the TR-6 claim by geologists of the Geological Survey of Canada from Ottawa, headed by Rod Kirkham. This occurrence is in felsic volcanics (rhyolite?) probably belonging to the the Mt. Dilworth Formation. A boulder of laminated silica sinter was also found on the so called Ridge Zone (north-west corner of TR-8) by OreQuest in 1989. The few

float samples of silica sinter collected on the Treaty Gossan in 1990 did not record significant gold results however this is not surprising due to the high level of the system represented by the sinter and "silver, arsenic, gold, mercury, antimony and thallium values occur sporadically within the sinter", (B.R. Berger, 1985).

An indirect confirmation that the epithermal system contains gold can be found in the substantial soil gold anomaly detected on lines 13W to 16W. Most of the soil samples collected from these lines returned gold values ranging from 50 to 270 ppb. The most likely explanation of this anomaly is that gold is being transported from its source under the ice by west to north-west flowing streams causing the west northwest trending anomaly observed.

TREATY GOSSAN-GEOCHEMISTRY

A geochemical rock and soil sampling program was carried out concurrently with the geological mapping and prospecting surveys. Rock samples of representative sulphide mineralization, were collected during the course of mapping and prospecting in areas of interest, or areas of strong alteration. Soil samples were collected at both 50 m and 25 m spacing with the western half of the grid sampled at a 25 m spacing as this is the area of the most intense gossan development. Selected portions of the grid were not sampled due to obviously thick glacial moraine which occurs as prominent ridges.

Rock Geochemistry

Results of the rock sampling program for gold were generally low which was not unexpected given that samples obtained in previous years by various operators have returned similar assays. Values ranged from below detection limits to a high of 340 ppb from sample #34721, a 2 m wide chip across well foliated chlorite-quartz schist within a fault zone.

One area of elevated gold results is located at the south ends of Lines 9W to 13W which corresponds to the area underlain by the laminated chert (sinter) and pyrite-sericite-quartz altered volcanics containing pods of massive pyrite. Values range from below detection limits to 190 ppb with most in the 30-60 ppb range.

Results for base metals and possible indicator elements revealed an anomaly corresponding to the area underlain by the laminated rock and the pyrite-sericite-quartz altered zone. Samples from this area yielded anomalies in molybdenum, arsenic, zinc, silver and in particular lead and antimony. These include molybdenum - 34 ppm, arsenic - 89 ppm, zinc - 448 ppm, silver - 1.64 oz/ton, antimony - 662 ppm and lead - 3863 ppm. The highs for silver, arsenic, antimony and lead are all from sample #34579, a float sample of strongly silicified and sericitized andesite pyroclastic? containing 20-30% massive pyrite. Samples #34579 to #34583, all within a 100 m x 100 m area contained elevated silver, 1.0 - >50 ppm, antimony, 41-622 ppm and

lead, 174-3863 ppm. These samples are all either in place or likely derived from a local source under the nearby glacier.

Elevated values are found sporadically throughout the grid and include: sample #34720 - 280 ppb gold and 82 ppm arsenic; #34721 - 340 ppb gold, 68 ppm arsenic, 1383 ppb lead, and 2112 ppm zinc; and, #34723 (float sample) 200 ppb gold, 2182 ppm lead, and 1777 ppm zinc.

Soil Geochemistry

In addition to gold, elements selected as significant potential indicators include the following: copper, silver, lead, zinc, arsenic and antimony (Figures 19 to 21). As no mapping was completed west of L13W on the grid, correlation of soil anomalies with geology is difficult in this area and if mentioned is based on information from previous mapping or prospecting programs on the Treaty Gossan.

Gold in soils revealed two distinctly anomalous areas within the grid (Figure 19). These are LOW through L3W and L13W through L24W. The easternmost anomaly contains values up to 290 ppb along a west northwest trend up to 200 m wide and 600 m long, open at both ends due to moraine and/or ice cover. This anomaly appears to crosscut the trend of the Mt. Dilworth-Betty Creek contact at approximately right angles and shows some correlation with two of the EM conductors defined by the geophysical survey.

The westernmost anomaly can be divided into two portions, a coherent west northwest trending zone from L13W through L16W, and a more erratic area between L18W and L24W with local spot highs. As discussed previously the anomaly on lines 13W through 16W likely represents in part downslope dispersion from a source off the grid to the east overprinting smaller anomalies similar to those evident between lines 18W and 24W. This portion of the grid was not mapped during the 1990 program so no sources for the anomaly are known at this point. A maximum value of 255 ppb gold was received from this area.

Lead occurs as small scattered anomalies from L0 to L9W with highs to 163 ppm (Figure 19). A distinct east-west trending zone of \geq 100 ppm extends from L15W, near the glacier in the area of the laminated chert (sinter) and the quartz-sericite-pyrite altered rock, to the southeast end of L11W. This zone is from 100 to 300 m wide and persists for approximately 600 m with both ends obscured by talus or ice. The higher values are virtually all on L13W, 0+50S to 1+00S with a high of 297 ppm. Outwash streams from the small icefields on the peaks have likely spread the anomaly out from a source somewhere under the glacier as it shows a trend similar to the gold anomaly. Anomalous lead values to 3863 ppm were obtained from rock samples at the edge of the ice proximal to this soil anomaly. One elevated value of 211 ppm lead within the zone was found at the north end of the grid, L15W, 4+50N. No mapping is available to explain this high which

is some distance from the suspected source area of lead values. Antimony and arsenic anomalies are found proximal to the lead zone.

Copper occurs mostly as spot highs on the western half of the grid (Figure 20). Values range between 100 and a high of 147 ppm at L20W; 1+75N. On the eastern grid area a broad, weak anomaly extends from 1+00S to 2+50N over L4W to L6W, values here are in the 80-110 ppm range. This anomaly crosscuts stratigraphy and may in part be caused by moraine debris though it is coincident with silver, zinc and antimony values.

Zinc anomalies are concentrated over a broad area on the eastern half of the grid from L4W to L12W, and on the western end of the grid from line 19W to 25W (Figure 20). The main anomaly (\geq 150 ppm) on the east side of the grid is 500 m wide and 1 km long and is open at both ends. The values show a general increase to the west with the two highest assays, 709 ppm on L6W, 6+00N, and 555 ppm on L9W, 6+50N both at the ends of the respective lines.

This large zinc anomaly appears to correlate with areas underlain by the Betty Creek Formation, consisting of andesitic pyroclastics, massive to vesicular andesite or black siltstone and argillite. A lens of diorite near the northwest end of the grid lines generally shows a low zinc response. The area underlain by the pyrite-quartzsericite altered rock contains significantly lower zinc values. It is felt that zinc generally outlines the more mafic rock types which

would also explain the anomalies at the western end of the grid where the gossanous pyrite-quartz-sericite zone fades and the typical Betty Creek Formations andesites reappear.

Arsenic anomalies are virtually all confined to the eastern half of the grid with the exception of L16W. There are two anomalous areas on the east side of the grid. The first (> 20 ppm) covers lines 0 to 3W and is strongest south of the baseline with highs to 70 ppm. The anomaly appears to coincide with felsic volcanics of the Mt. Dilworth Formation and it is likely that the elevated arsenic values north of the baseline on lines 0 to 3W over the andesitic rocks of the Betty Creek Formation is caused by downslope dispersion.

A second arsenic anomaly on the east side of the grid lies between stations 2+50N - 5+50N on lines 6W to 9W. Values are on the order of 4 times higher than the area of L0 to L3W. Four sites returned ≥ 100 ppm arsenic with two of these sites assaying > 200 ppm arsenic (254 ppm at L9W, 4+50N and 271 ppm at L6W, 5+00N). With the exception of L9W, 4+50N all the higher results correlate with the contact between the diorite lens and the topographically overlying andesites of the Betty Creek Formation. The anomaly does not continue south of L9W however indicating either a change in the nature of the contact or the lack of some other contributing factor. Some correlation is evident with elevated copper and zinc values in this area.

Also an isolated arsenic anomaly on L16W from stations 1+00S to 2+00N contains values of 31-89 ppm. It is believed that there is a relatively small source for this anomaly located upslope from station 1+00S which exhibits a downslope dispersion trail. There is a strong correlation between arsenic and antimony at this location with the antimony exhibiting slightly greater mobility.

Antimony values outline two anomalous zones (Figure 21). The easternmost anomaly extends from L4W to L9W with elevated results over the entire lengths of the lines. Assays are generally higher to the northwest over areas underlain by andesites of the Betty Creek Formation. There is a general decrease in values over the northern diorite lens though this is not consistent. A good correlation is evident with arsenic, zinc, lead and copper values in this area.

There are numerous spot highs of 2 to 11 ppm, scattered throughout L12W to L19W which generally corresponds with the pyritequartz-sericite gossanous alteration zone. No anomalies were noted between lines 19W and 25W, which is outside of the Treaty Gossan.

In summary the soil geochemical survey has outlined several broad and significant anomalies in gold, silver, copper, lead, zinc, arsenic and antimony.

Copper and zinc correlate well with the areas of the grid underlain by (or believed to be underlain by) rocks of the Betty Creek

Formation. This includes mostly andesite and andesite pyroclastics with some areas of siltstone and argillite. A diorite lens mapped out over the northwest portions of L6W to 12W is an exception to the mafic rocks - elevated copper-zinc assays, but the diorite is extensively altered (carbonate, sericite) which may have leached some of the metals.

Lead shows a strong correlation with the main pyrite-quartzsericite alteration zone, particularly in areas of increased pyrite content near the laminated chert. It appears to be a good indicator for this epithermal-type mineralization. Lead is also elevated over areas underlain by mafic rocks, particularly on the east side of the grid, but values in this area are much lower (50 ppm vs. 100 ppm) than those seen over the main alteration zone.

Arsenic correlates well with exposures of Mt. Dilworth Formation at the northeast end of the grid and also shows a strong correlation with the contact between the diorite lens and andesites on L5W to L9W. An isolated area of elevated arsenic also occurs on L16W. No mapping was done in this area to determine the source but given the shape of the dispersion trend it likely represents a small restricted zone.

Antimony correlates well with the copper and zinc anomalies on the east side of the grid but not on the west, even though both areas are believed to be underlain by andesites of the Betty Creek Formation. Completion of the grid mapping may provide an answer to

this question. Antimony is also present sporadically within the pyrite-quartz-sericite alteration zone.

Silver shows a restricted anomalous pattern with only two weakly anomalous zones evident. Along with lead and gold it outlines the area from L12W through L16W which is postulated to be caused by an epithermal source under the ice to the northeast. Between L5W and L9W three spot highs at the edges of the grid area again show a strong correlation with lead values overlying both diorites and the pyritequartz-sericite alteration zone.

TREATY GOSSAN GEOPHYSICS

Ground geophysical surveys were performed over most of the Treaty Gossan grid utilizing the Scintrex IGS-2 instrument with readings taken at 12.5 m intervals along lines spaced 100 m apart. Coverage is complete on L0 to L21W, on L22W from BL to 2+37.5S with no surveys completed on L23W to L25W. The work included magnetic and VLF-EM electromagnetic surveys, utilizing the Hawaii (23.4 kHz) transmitting station. The last few lines were not surveyed due to time constrains caused by the shut down of the Hawaii station.

Magnetic Survey

The magnetic survey did not reveal any broad or distinct trends nor does it appear to be that useful in determining lithologic contacts (Figure 22). The small anomaly at the northwest end of L2W to L5W cannot be explained by anything observed during the mapping

program. The lows on L5W from 0+00 to 2+00S are in an area of talus and moraine debris masking any possible source for the anomalies. The only other area of significant anomalies, which consists of alternating highs and lows, lies within the diorite lens near the northwest end of L8W to L11W. Nothing was evident during the mapping program to explain these trends. The airborne magnetic feature referred to in the discussion of porphyry copper systems is to broad a feature to appear in this survey.

VLF-EM Survey

The VLF-EM survey revealed mainly spot conductors associated with either lithologic contacts or glacial features such as moraine ridges.

Three weak, two line conductors have been delineated by the survey which show no obvious topographic source and may indicate some structural features (Figure 23). Two of these conductors occur from L3W to L5W between the baseline and 1+50N. These appear to crosscut stratigraphy and show only a weak correlation with the geochemistry in this area. A third weak conductor trends north across lines 14W and 13W at 3N and 4N respectively. This anomaly cross cuts both the apparant stratigraphy and the trend of the geochemical anomalies in this area. The mapping program did not extend this far, however additional information may be available when this is completed. The airborne survey flown in 1989 showed a similarly flat response over this portion of the property with only weak single station anomalies recorded.

BUDGET ESTIMATE

Mob/Demob

.

.

.

\$ 18,000

Labour: Project Manager (Project Geologist Geologist (2) Geophysicist (1) Field Assistants	1) (1) (4)	14 35 50 20 <u>50</u> 355	days days days days days days	କ କ କ କ ଭ	\$550/day \$450/day \$360/day \$400/day \$270/day Subtotal	\$ <u></u> \$1	7,700 15,750 36,000 8,000 <u>54,000</u> 21,450
Camp Support	drillers	355 60	days days	6	\$150/day \$125/day	\$	53,250 7,500
Helicopter							57,500
Geophysics	IP 10 km UTEM 10 }	n 0 9 cm 0	\$1500/ 1000/	/kn /kn	n A		15,000 10,000
Analyses							12,500
Trenching	10 days (a \$5(0/day	7			5,000
Report							25,000
Drilling SSubtotal GST @ 7% Contingency @ 10%	1250 m @	\$15()/m			<u>1</u> \$5	.87,500 12,700 35,890 54,860
Management Fee (@ TOTAL BUDGET	16%, GST ESTIMATE	inc	1)			\$6 <u>\$7</u>	96,550 96,000

STATEMENT OF EXPENDITURES

Mob/Demob	\$	12,112.33
Field Labour		88,121.53
Support Costs		49,031.14
Transportation and Communications		6,997.99
Equipment Rentals		2,607,42
Contract Services		11,940.00
Analyses		14,343.54
Helicopter		43,693.14
Report Costs Total of Expenditures	\$2	<u>22,951.21</u> 251,798.30

....

×

۶

.

F

1

1

\$

,

-

.

.

STATEMENT OF QUALIFICATIONS

I, Jim Chapman, of Route 1, Box L15, Bowen Island, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1976) and hold a BSc. degree in geology.
- 2. I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of 306-595 Howe Street, Vancouver, British Columbia.
- I have been employed in my profession by various mining companies since graduation.
- 4. I am a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 5. I am a Fellow of the Geological Association of Canada.
- 6. The information contained in this report was obtained from a review of data listed in the bibliography, numerous visits to the property in 1989 and 1990, and knowledge of the area.
- 7. I have no interest, direct or indirect in the securities of Tantalus Resources Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Jim Chapman, F.G.A Consulting Geologis

DATED at Vancouver, British Columbia, this 25th day of March, 1991.
STATEMENT OF QUALIFICATIONS

I, Wesley D.T. Raven, #108, 1720 W. 12th Avenue, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1983) and hold a BSc. degree in geology.
- 2. I am presently retained as a consulting geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- I have been employed as an exploration geologist on a full time basis since 1983.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. The information contained in this report was obtained during onsite property exploration supervision personally conducted by myself in 1990.
- I have no interest, direct or indirect, in the property nor in the securities of Tantalus Resources Ltd.
- 7. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Wesley Roven Wesley D.T. Raven, F.G.A.C. Geologist

DATED at Vancouver, British Columbia, this 25th day of March, 1991.

STATEMENT OF QUALIFICATIONS

I, Alojzy Aleksander Walus, of 4816 Joyce Street, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of Wroclaw (Poland) and hold a MSc. degree in geology.
- I have three years experience as an exploration geologist in Poland.
- 3. In 1988 and 1989 I worked in British Columbia as a geologist with several exploration companies.
- 4. During the 1990 summer exploration season I was employed as a field geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- All information contained in this report was obtained during 1990 exploration program.
- I have no interest, direct or indirect, in the property nor in the securities of Tantalus Resources Ltd.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Alojzy Aleksander Walus, M.Sc.

DATED at Vancouver, British Columbia, this 25th day of March, 1991.

BIBLIOGRAPHY

ь.

ALLDRICK, D.J. Volcanic Centres in the Stewart Complex in Geological 1989: Fieldwork, 1988, Paper 1989-1, British Columbia Ministry of Energy, Mines and Petroleum Resources. ALLDRICK, D.J., BRITTON, J.M. 1988: Geology and Mineral Deposits of the Sulphurets Area, BCMEMPR Open File Map 1988-4. ALLDRICK, D.J., BRITTON, J.M., WEBSTER, I.C.L., RUSSELL, C.W.P. 1989: Geology and Mineral Deposits of the Unuk Area, BCMEMPR Open File Map 1989-10. ALLDRICK, D.J., DROWN, T.J., GROVE, E.W., KRUCHKOWSKI, E.R., NICHOLS, R.F. 1989: Iskut-Sulphurets Gold, Northern Miner Magazine, Jan. 1989, p-46. BERGER, B.R. Geologic-Geochemical Features of Hot-Spring Precious-Metal 1985: Deposits. U.S. Geological Survey Bulletin 1646. CANADIAN MINES HANDBOOK 1990-1991 CAVEY, G., CHAPMAN, J. Report on Tantalus Resources Ltd.'s Treaty Creek Property, 1989: Iskut Sulphurets Area, Skeena Mining Division, British Columbia, March 20, 1989. CHAPMAN, J., RAVEN, W., WALUS, A. 1990: Geological, Geophysical, Geochemical and Drilling Report on the Tantalus Resources Ltd., Treaty Creek Project, Iskut-Sulphurets Area, British Columbia, January 8, 1990. 1990: Phase II Drilling Report on the Tantalus Resources Ltd. Treaty Creek Project, Iskut-Sulphurets Area, British Columbia, January 10, 1990. CREMONESE, D. 1987: Assessment Report on Diamond Drilling, Geochemical & Geological Work on the TR 4, 5, 8 Claims for Teuton Resources Corp. 1987: Assessment Report on Geological, Geochemical and Geophysical Work on the TR 5, 8 Claims for Teuton Resources Corp. 1987: Summary Report on the Treaty Group Claims for Teuton Resources Corp. 1987: Assessment Report on Geochemical Work on the Treaty, TR 1, TR 2, TR 3, TR 6, TR 7 Claims for Teuton Resources Corp.

CREMONESE, D. 1988: Assessment Report on Geological, Geochemical and Geophysical Work on the Following Claims: TR 5... 4961(9) [Part of the North Group] and TR 8... 4964 (9) [Part of the South Group] for Teuton Resources Corp. EQUITY PRESERVATION CORP. Stewart-Sulphurets-Iskut, Map Handbook GEOLOGICAL SURVEY OF CANADA, BRITISH COLUMBIA MINISTRY OF ENERGY MINES AND PETROLEUM RESOURCES National Geochemical Reconnaissance, 1:250,000 Map Series, 1988: Iskut River, British Columbia (NTS 104B), GSC Open file 1645, MEMPR, BC, RGS 18. GEORGE CROSS NEWSLETTER (GCNL) August 24, 1989. November 5, 1990. GROVE, E.W. 1971: Geology and Mineral Deposits of the Stewart area, B.C., British Columbia Dept. of Mines and petroleum Resources, Bulletin No. 58. 1986: Geology and Mineral Deposits of the Unuk River - Salmon River -Anyox Area, B.C., Ministry of Energy, Mines and Petroleum Resources, Bulletin 63. LOWELL, J.D & GILBERT J. M. 1970: Lateral and Vertical Alteration Mineralization Zoning in Porphyry Ore Deposits. Econ. Geol, 65 MEMPR Revised Mineral Inventory Map 104B (MI). a: Revised Mineral Inventory Map 103P (MI). b: NORTHERN MINER 1988: Calpine Results Verify Potential, Vol 74, No. 41, p-1, December 19, 1988. 1989: Iskut River Road Study in Progress, Vol 74, No. 50, p-28, February 20, 1989. 1989: Johnny Mountain Turnaround, Vol 75, No. 24, p-1, August 21, 1989 Calpine Hole Kick Starts VSE, Vol 75, No. 25, p-1, August 28, 1989: 1989. 1990: Newhawk's Sulphurets Uneconomic, Vol. 76, No. 36, p-23, November 12, 1990. PRIME CAPITAL CORP. 1990: News Release, September 14, 1990. PRIME RESOURCES GROUP INC. 1989: Galore Creek - Iskut River - Eskay Creek-Stewart Mining Camps, The Prime Capital Group of Companies (Claim Holdings Map).

.

SAYER, C. 1988: Drill Recommendations on the TR 5 and TR 8 Claims for Teuton Resources Corp. unpublished report. SILLITOE R. H. 1973: The Tops and Bottoms of Porphyry Copper Deposits Econ. Geol. 68. 1979: Some Thoughts on Gold-Rich Porphyry copper Deposits. Mineral Deposit 14. SOUTHER, J.G., BREW, D.A., OKULITCH, A.V. 1979: GSC Map 1418A, Iskut River. TEUTON RESOURCES CORP. 1988: Teuton Resources Corp., News Release, November 8, 1988. VANCOUVER STOCKWATCH October 10, 1990. October 30, 1990. March 7, 1991.

.

-

.

•

.

.

.

ς.

.

,

.

.

APPENDIX I

· · ·

~ .

-

Υ.

. .

.

1

.

.

~

r.

•

<u>ب</u> -

r

רי ג

.

.

•

,

.

~

-

UTEM SURVEY ON GR-2 CLAIM

UTEM SURVEY

~

۲ 、

.....

ς.

,

.

. .

.

.

r •

*

1

,

.

.

-

.

κ.

.

.....

~

۰.

()

ON

GR 2 CLAIM TREATY CREEK PROJECT

FOR

TANTALUS RESOURCES LTD

BY

SJ GEOPHYSICS LTD. AND LAMONTAGNE GEOPHYSICS LTD.

SKEENA, M.D., B.C. N.T.S. 104 B/9E

DECEMBER 1990 Syd J. Visser SJ GEOPHYSICS LTD.

TABLE OF CONTENTS

<u>PAGE</u>

. .

~

.

•

Υ.

,

τ.

.

INTRODUCTION 1 1 DESCRIPTION OF UTEM SYSTEM FIELD WORK AND DISCUSSION OF FIELD PARAMETERS 3 4 DATA PRESENTATION Grid and UTEM compilation Map 6 FIGURE G1 scale 1:5,000 7 DISCUSSION Statement of Qualifications APPENDIX I Legend APPENDIX II APPENDIX III Data sections

INTRODUCTION

A UTEM survey was conducted on the, Tantalus Resources Ltd., Treaty Creek project, by SJ Geophysics Ltd. and Lamontagne Geophysics Ltd., at the request of Prime Explorations Ltd. and Orequest Consultants, during the later part of September, 1990. The survey grid is located on GR 2 claim which is approximately 80 kilometres north-northwest of Stewart, in the Unik River area of northern B.C. (N.T.S. 104B/9E).

The purpose of the UTEM survey was to search for massive sulfides or conductive (mineralized) shear or fault zones which may contain gold. The survey was conducted partially over a glacier and in topographically difficult terrain.

DESCRIPTION OF UTEM SYSTEM

UTEM is an acronym for "University of Toronto ElectroMagnetometer". The system was developed by Dr. Y. Lamontagne (1975) while he was a graduate student of that University.

The field procedure consists of first laying out a large loop, which can vary in size from less than 100M X 100M to more than 2Km X 2Km, of single strand insulated wire and energizing it with current from a transmitter which is powered by a 2.2 kW motor generator. Survey lines are generally oriented perpendicular to one side of the loop and surveying can be performed both inside and outside the loop.

The transmitter loop is energized with a precise triangular current waveform at a carefully controlled frequency (30.97 Hz for this survey). The receiver system includes a sensor coil and backpack portable receiver module which has a digital recording facility on cassette magnetic tape. The time synchronization between transmitter and receiver is achieved through guartz crystal clocks in both units which must be accurate to about one second in 50 years.

The receiver sensor coil measures the vertical or horizontal magnetic component of the electromagnetic field and responds to its time derivative. Since the transmitter current waveform is triangular, the receiver coil will sense a perfect square wave in the absence of geologic conductors. Deviations from a perfect square wave are caused by electrical conductors which may be geologic or cultural in origin. The receiver stacks any pre-set number of cycles in order to increase the signal to noise ratio.

The UTEM receiver gathers and records 10 channels of data at each station. The higher number channels (7-8-9-10) correspond to short time or high frequency while the lower number channels (1-2-3) correspond to long time or low frequency. Therefore, poor or weak conductors will respond on channels 10, 9, 8, 7 and 6. Progressively better conductors will give responses on progressively lower number channels as well. For example, massive, highly conducting sulfides or graphite will produce a response on all ten channels.

It was mentioned above that the UTEM receiver records data digitally on a cassette. This tape is played back into a computer at the base camp. The computer processes the data and controls the plotting on an 11" x 17" graphics printer. Data are portrayed on data sections as profiles of each of the first nine or ten channels, one section for each survey line.

2

FIELD WORK AND DISCUSSION OF FIELD PARAMETERS

Syd Visser (chief geophysicist), Andrew Rybaltowski (Geophysicist) and Neil Visser (helper), all with SJ Geophysics Ltd., and the equipment were mobilized from Calpine camp for each day of the survey by helicopter. Because of weather conditions at this time of the year, at these elevations, it was deemed to risky to leave the equipment in the field during the night. The field survey parameters and local geology were discussed in the field with Mr. Wes Raven, project geologist with Orequest Consultants, before commencing the survey and during the survey period. Mr. Raven also aided in the field survey.

Approximately 2 Km, using a station spacing of 25M and 12.5M, were surveyed from 1 loops in a period of 3 production days (Sept 8, 9 and 12). Several attempts, during the remainder of the season, were made to extend the survey and one production day was lost due to snow and wind. It was not possible to retrieve the loop. Because most of the pickets were lost on the ice the majority of the lines were located with topofil and compass during the survey. The slope was taken at each station and the approximate horizontal distance calculated later by computer.

Because of the unequally spaced station on most of the lines the UTEM sections may be mislabeled and therefore the location should be correlated to the grid on the location map. The location of the survey loop and approximate location of the survey lines are shown on the enclosed figure G1. The purpose of using a close station spacing in the search for deeper conductors is to better locate and separate the short wavelength near surface conductors from the deeper long wavelength conductors. The results of the 1990 UTEM survey are presented on 10 data sections representing 5 lines of data (Appendix III) and one UTEM compilation map (Figure G1, Scale 1:5,000).

Legends for the UTEM data sections are also attached (Appendix II).

In order to reduce the field data, the theoretical primary field of the loop must be computed at each station. The normalization of the data is a follows:

a) For Channel 1:

 $\text{ Ch.1 anomaly} = \underline{\text{Ch.1} - PC} \quad \text{X 100} \\ /PT/$

Where:

- PC is the calculated primary field in the direction of the component from the loop at the occupied station
- Ch.1 is the observed amplitude of Channel 1
- PT is the calculated total field

```
b) For remaining channels (n = 2 \text{ to } 9)
```

```
% Ch.n anomaly = (Ch.n - Ch.1) X 100
```

Ni

where Ch.n is the observed amplitude of Channel n (2 to 9)

N = Ch.1 for Ch1 normalized

N = PT for primary field normalized

- i is the data station for continuous normalized (each reading normalized by different primary field)
- i is the station below the arrow on the data
 sections for point normalized
 (each reading normalized by the same primary
 field)

Subtracting channel 1 from the remaining channels eliminates the topographic errors from all the data except ch.1.

If there is a response in channel 1 from a conductor then this value must be added to do a proper conductivity determination from the decay curves. Therefore channel 1 should not be subtracted indiscriminately.

The data from each line is plotted on at least 2 separate sections consisting of a continues normalized section to which interpretation was added and a point normalized section. Additional point normalized data sections were produced where more than one conductor is present on the same line. Point normalization data is the absolute secondary field at a "gain setting" related to the normalization point. The data is usually point normalize over the central part of the crossover anomaly to aid in interpretation.

5

DISCUSSION

The UTEM survey on the Treaty Creek project indicated a number of weak anomalies or conductive zones as indicated on the compilation map figure G1. The majority of the survey lines (300S, 200S, 150S and part of 100S) were established on the ice during the survey, since most of the original pickets had slid down the ice, therefore the lines as shown on the location map may not be accurately located.

The best anomaly, on the small survey area, is the conductive zone striking across the west end of lines 300S, 200S, 150S and possibly 100S. This anomaly appears to be a number of closely spaced weak (less than 1 mho) conductors or a wide conductive zone with the best conductivities on lines 300S and 150S. This conductive zone does not appear to extend north of 100S although the data on line 50S is very noisy due to extreme wind conditions during the survey. There appears to be a weak conductor on the extreme west end of line 200S but there is not sufficient data to confirm this.

A second very weak conductor or conductive zone strikes across the grid, close to the base line, from line 300S to line 50S. This conductor or conductive zone is possibly a very weak conductor such as a conductive fault, shear zone or a change in conductivity of the rocks. The very similar response seen on line 500S near the base line may be part of the same structure or conductor.

of these conductive warrant further Both zones investigation by trenching or drilling

Syd Visser F.G.A.C. Geophysicist

SJ/Geophysics LTD.

APPENDIX I

-

b.,

~

-

κ.

-

,

r

,

.

,•

ς.

·

. . .

.

.

•

, ,

۰ .

r .

~

κ.

STATEMENT OF QUALIFICATIONS

I, Syd J. Visser, of 11762 94th Avenue, Delta, British Columbia, hereby certify that,

- 1) I am a graduate from the University of British Columbia, 1981, where I obtained a B.Sc. (Hon.) Degree in Geology and Geophysics.
- 2) I am a graduate from Haileybury School of Mines, 1971.
- 3) I have been engaged in mining exploration since 1968.
- 4) I am a Fellow of the Geological Association of Canada.

Syd J./Visser, B.Sc., F.G.A.C. Geophysicist

APPENDIX II

. .

-

he

. s.

e ----

Υ.

7 κ.

F .

• .

1

 \sim

.

s.

.

- . N
- . . •
- .
- ٣ ς.
- 1 γ.
- ٠ ĥ. •
- κ. P****
- κ.

UTEM System Mean Delay Time		
Channel Number	Delay Time (msec)	<u>Symbol</u>
1	12.8	Į
2	6.4	>
3	3.2	
4	1.6	Ę
5	0.8	\rightarrow
6	0.4	9
7	0.2	×
8	0.1	$\widehat{\Lambda}$
9	0.05	$\overline{\diamond}$
10	0.025	•
Base	Frequency = 31 Hz	

) • •

APPENDIX III

-

-

~

Nye.

ſ,

۳ ر

,

ς.

1.

ς.

1

×

,

.

•

.

~

4

۰ ۱

·

. . .

.

CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 500 S COMPONENT HZ SECONDARY FIELD CH1 CONTIN. NORM.

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 500 S COMPONENT HZ SECONDARY FIELD CH1 POINT NORM.

CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FRED (HZ) 30.97 LOOP NO 100 LINE 300 S COMPONENT HZ SECONDARY FIELD CH1 CONTIN. NORM.

•

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FRED (HZ) 30.97 LOOP NO 100 LINE 300 S COMPONENT HZ SECONDARY FIELD CH1 POINT NORM.

CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 200 S COMPONENT HZ SECONDARY FIELD CH1 CONTIN. NORM.

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 200 S COMPONENT HZ SECONDARY FIELD CH1 POINT NORM.

CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 150 S COMPONENT HZ SECONDARY FIELD CH1 CONTIN. NORM.

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FRED (HZ) 30.97 LOOP NO 100 LINE 150 S COMPONENT HZ SECONDARY FIELD CH1 POINT NORM.

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 100 S COMPONENT HZ SECONDARY FIELD CH1 CONTIN, NORM.

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 100 S COMPONENT HZ SECONDARY FIELD CH1 POINT NORM.

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 50 S COMPONENT HZ SECONDARY FIELD CH1 CONTIN. NORM.

UTEM SURVEY AT TANTALUS FOR PRIME EXPLORATIONS LTD. CONDUCTED BY SJ GEOPHYSICS LTD. JOB 9003 BASE FREQ (HZ) 30.97 LOOP NO 100 LINE 50 S CONPONENT HZ SECONDARY FIELD CH1 PDINT NORM.

APPENDIX II

: **1**10-1

THIN SECTION DESCRIPTIONS

Ì

DESCRIPTION OF THIN AND POLISHED SECTIONS FROM TREATY PROJECT

THIN SECTION #16-8-2 Rhyolite crystal-lithic tuff

The rock represents a mixture of rhyolite fragments with crystals of K-feldspar. They are set in abundant very fined grained groundmass of unknown origin in which chlorite is a dominant constituent. Crystals of K-feldspar are substantially altered to clays.

THIN SECTION #16-8-3

Rhyolite

The rock consists of equal size laths of K-feldspar and quartz grains along with fine disseminated pyrite. They comprise 60-70%, 15-20% and 10-15% of thin section respectively. About 20-30% of K-feldspar is altered to sericite.

THIN SECTION #16-8-1 AND 18-8-2 COMBINED DESCRIPTION Andesite(?) lithic lapilli-tuff

The rock consists of partly glassy fragments of andesitic (?) scoria with most of the vesicles filled by calcite and quartz. They are set in a heavily altered groundmass dominated by secondary calcite.

THIN SECTION #19-8

Diorite

The rock is composed of 50-60% plagioclase, 20-30% mafic minerals dominated by amphibole, 2-3% apatite and 10-20% secondary minerals. The latter include chlorite and calcite.

THIN SECTION #32-1 AND B-COMBINED DESCRIPTION

Laminated, Alunite Rich, Chert-Like Rock

Mineral composition of a rock represented by the two thin section is as follows:

Cryptocrystalline to very fine grained silica	30-40%
Fine grained quartz	25-30%
Alunite	25-30%
Pyrite	10-15%

.

These minerals comprise 2 types of laminae 0.5 to 3.0 mm wide. One type is composed of cryptocrystalline to very fine grained mutually interlocking quartz grains with minor pyrite and alunite. Layers of the second type consist of a coarser (0.05-0.2 mm) mosaic of quartz and alunite grains with very fine-grained disseminated pyrite. The layers are strongly deformed by pinch and swelling, pulling apart and in thin section #32-1 by intense folding.

POLISHED SECTION #32-1

It consists of 30-35% stibnite and 5-10% galena with the reminder being quartz. Stibnite occurs as anhedral, very irregular scattered grains, lesser as masses of mutually interlocking grains which also comprise 1mm wide veinlets. Some of the stibnite grains show "albite type" twining. Galena occurs as scattered, anhedral to euhedral grains.

APPENDIX III

ROCK SAMPLE DESCRIPTIONS
SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	ANALYSIS Au Ag
16809	Sept 26	L5+83W, 1+30N	ANDESITE TUFF	Grab/ser. <u>+</u> chl	Tr. of cpy	nd
16810	14	L12+80W, 1+605	SER. SCHIST	Grab/ ser.	1% ру	40
16811		L13+00W, 1+57S	SER. SCHIST	Grab/ ser.	3-5% po, limonite	30
1 6812		L12+95W, 0+40N	SER. SCHIST	Grab/ ser.	6-10% py	nd
16813	н	L13+28W, 1+75N	ANDESITE OR DIORITE	Grab/ ser. + carb.	2-5% ру	20
16814	15	L12+75W, 4+35N	ANDESITE TUFF	Float/ser silica	10-15% pyrite	nd
33230	Aug 5	L9+15W, 1+35S	SER. SCHIST	Qtz rich	10% py.	<0.001 oz/t
3324 2	Aug 9	E side Treaty Gosson	ARGILLITE	Rusty argillite	3% ру.	<0.001 oz/t
33243		Same as above	RHYOLITE	Rusty rhyolite (Dilworth)	5% ру	0.003 oz/t
33244	**	Same as above	RHYOLITE	Same as above	5-10% pyrite	<0.001 oz/t
33245	n	Same as above	RHYOLITE/ DACITE	Very rusty and grey	Finely diss. to massive 10-20% py	<0.001 oz/t
33246	п	Same as above	CONTACT/SHEAR	Rhyolite/ And. limonite stain	NO PY.	<0.001 oz/t
33253	Aug 16	W side Treaty Gosson	ANDESITE	Small vein of black hard rock 10 cm x 60 cm ?	5~10% ру	<5
33254	"	W side Treaty Gosson	ANDESITE	Several small veins of black hard rock 2-10 cm x 10 m?	5~20% ру	20

TANTALUS PROJECT

.

and the second second

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	ANALYSIS Au Ag
33265	Aug 24	New Zone	CLAY	Grey looks pyritized ?		50
33266	"	II	FLOAT	Siliceous rock with calcite chunks Lots of float	5-15% pyrite, 1% galem	a 30
33267	II	n	**	Massive stibnite	<5% pyrite and galena	10, 3.17 oz/t
33268	n	n	н	Siliceous rock with quartz crystals	s 20% pyrite	nd, 1.37 oz/t
33269	n	Near New Zone	VOLCANIC SED.	Rusty bedded sediment, Big Zone 15 m x 75 m	l% pyrite	nd
33270	Ħ	**	INT. DYKE	Hematite stain + pyrite veinlets	2 m x ?	nd
33271	Ir	89	QTZ BLOWOUT	Heavy limonite stains 2 m x 50 m	3-5% pyrite	30
34501	Aug 8	VR-2	QTZ CEM.BRECC.	Float	limonite	0.016oz/t,2.98oz/t
34502	"	m	SER-QTZ-PY-ALT ROCK	Float, sericitic-silicified	5-10% pyrite	0.051oz/t,2.18oz/t
34503	"	M	ANDESITE LAP- ILLI TUFF	Float, sericitization		0.001cz/t, 0.25cz/t
34504	Aug 8	ZONE A, GR2	QTZ-SER VEIN	Float	30-40% limonite, 10-20% galena, wad.	0.170oz/t, 5.30oz/t
34505	•		u	"	" ", wad, az, mal.	0.401oz/t, 4.90oz/t
34506	II	II	QTZ-SER ALT ROCK	Grab, silica-ser	10-15% pyrite	0.089oz/t, 1.76oz/t
34507	**	78	SHEAR VEIN	Float, sericitic	60-70% galena, limonit	e 0.095oz/t, 4.17oz/t

i

wad

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	ANALYSIS Au Ag		
34508	Aug 8	ZONE A, GR2	QTZ-SER ALT RO	CK Float, sericitic-silicified	10-15% pyrite	0.061oz/t, 4.57oz/t		
34509	ft.	19	SHEAR VEIN	Float, sericitic-silicified	10-15% chalcopyrite	0.013oz/t, 5.00oz/t		
34510	Aug 9	ť	LIM-QTZ CEMEN- TED BRECCIA		Limonite, tr cpy	0.044oz/t, 5.15oz/t		
34511	HT.	ZONE B, GR2	SILICIFIED BRECCIA	Ploat, silicified	20-30% tetrahedrite (?) + gal	0.039oz/t, 0.81oz/t		

i

34512	H	ſł	SILTSTONE	Grab,	small pod		20-30% lim, 10-15% gal, tr. malachite, azurit	0.006oz/t, 5.80oz/t e
34513	II	**	SHEAR VEIN	Float,	sericitic-si	licified	40-50% gal, 5-10% tøtr(minor pyrite	?) 0.142oz/t,83.1oz/t
34514	11	n	w	Grab,	sericitic-sil	licified	5-10% gal, 2-3% chal., minor malachite, azui	0.078oz/t, 5.91oz/t rte
34515	Aug 9	ZONE C, GR2	QTZ-SER-ALT ROCK	Grab,	sericitic-sil	licified	10-15% pyrite	0.016oz/t, 8.40oz/t
34516	"	11	"	Float,	sericitic-si	licified	3-5% gal, minor pyrite and limonite	0.004oz/t, 11.7oz/t
34517	II	"	a	н			20-30% pyrite, minor arsenopyrite	0.014oz/t, 2.33oz/t
34518	"	u		11		n	10-15% pyrite	0.009oz/t, 1.14oz/t
34519	Aug 11		MASSIVE	Float,	sericitic-si	licified	99% stibnite	0.005oz/t, 1.26oz/t
34520	49	n	STIBNITE "	Grab			"	0.005oz/t, 1.35oz/t

イント・キャイン イン・イン・イン・イン・アン・アン・イン・イン・イン・オン・アン・アン・アン

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION ANALYSIS Au Ag	
34521	Aug 11	ZONE D, GR2	ANDESITE PYROCLASITC	Chip 1.0 m, sericitic	5-10% pyrite <0.00loz/t, 0.33oz/t	:
34522	"	н	SILTSTONE	Grab, sericitic-silicified	1-2% galena, limonite <0.00loz/t, 1.92oz/t wad	:
34523	"	**	ANDESITE TUFF	Chip 1.0 m, sericitic	" " 0.003oz/t, 12.9oz/t	2
34524	Aug 11	ZONE E, GR2	QTZ VEIN	Float	10-15% galena, limonite 0.003oz/t, 2.76oz/t + wad	:
34525	**	Ħ	11	n	20-30% pyrite, 1-2% gal, 0.006oz/t, 2.55oz/t	:
34526	Aug 11	ZONE E, GR2	SERICITE ALTERED ROCK	Chip 1.0 m, sericitic 2	-3% py, 3-5% gal <0.001oz/t, 20.4oz/t limonite	:
34527	Aug 12		R	n	3-5% pyrite 15	
34528	"	"	•	Chip 1.5 m, sericitic	10-15% sericite 30	
34529	11	ZONE F, GR2	ANDESITE PYROCLASTIC		10-15% limonite, 1-2% 50 pyrite, 1-2% galena	
34530	и	"	SILTSTONE	Grab, silicified	5-10% pyrite, 10-15% 55 limonite, 3-5% galena 3-5% sphalerite	
34531	"	"	ANDESITE TUFF	Chip 1.5 m, sericitic, silicified	3-5% pyrite, 5-10% gal 80 ppb, 9.16oz/t 3-5% sphalerite, limonite mal-az stain, wad	;
345232		"	QTZ VEIN	Float	limonite wad 10	
34533	Aug 12	GR2	ANDESITE	Float, sericitization	limonite, wad 5	

REMARKS/ALTERATION/STRUCTURE

SAMPLE DATE

÷

LOCATION

LITHOLOGY

PYROCLASTICS

_

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	ANALYSIS Au Ag
34534	Aug 12	GR2	QTZ-SERICITE ALTERED ROCK	Chip 1.0 m, sericitic, silicified	limonite	nd
34535	r)	Ħ	QTZ VEIN	Float	5-10% pyrite, 30-40% limonite	10
34536	**	u	*1	Float	5-10% galena, minor pyrite, limonite, wad	10, 1.84 oz/t
34537	41	Ŧ	11		3-5% galena, 1-2% pyrite, limonite, wad	20
34538	Aug 16	L0+25E, 0+00	DACITE	Grab, sericitization	2-3% pyrite	nd
34539	н	L0+00, 1+00S	14	", silicification	2-3% pyrite	nd
34540	Aug 18	L7+75W, 2+70N	DIORITE(?)	Grab, calcitization	limonite	nd
34541	**	L8+95W, 1+40S	SERICITE ALTERED ROCK	Grab, sericitization	15% diss. pyrite	nd
34542	*1	L8+952, 1+405	SER-QTZ ALTERED ROCK	Grab, silicified-sericitized	5) T	50
34543	M	L8+75W, 1+75S	SER-QTZ ALTERED ROCK	Grab, silicified-sericitized	10% pyrite	30
34544	Aug 19	L8+90W, 4+65N	DIORITE	Grab, calcitization	limonite	nd
34545	Aug 23	TR7	DACITE	Grab, sericitization	10-15% pyrite	nd
34546	"	н	μ		II	nd
34547	11	••	ANDESITE	v v	limonite	30

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERAL17ATION	ANALYSIS Au Ag
34548	Aug 23	TR 7	ANDESITE	Grab sericitization	limonite	20
34549	II	**	ANDESITE PYROCLASTICS	Grab, sericitization	3-5% pyrite	nd
34550	1)	u	SER-QTZ Altered Rock	Grab, silicified-sericitized	n	20
34551	Aug 24	"	ANDESITE PYROCLASTICS	ŭ v	n	10
34552	н	11	n	м у	"	10
34553	II	"	**	Float, silicified-sericitized	5-10% pyrite	10
34554		"	77	u	10-15% pyrite	10
34555	Aug 30	ZONE E, GR2	QT2-SER SCHIST	4.0 m chip sericitic-silicified	minor pyrite	0.010 oz/ton
34556	*1	ZONE D, GR2	"	1.0 m chip "	3-5% pyrite	0.010 oz/t
34557	Aug 31	н	QTZ-SER Altered Rock	1.1 m chip "	limonite	<0.005 oz/t
34558	Aug 23	**		Grab "	10-15% pyrite	<0.005 oz/t
34559-6	0 "	**	"	See Trench #5		
34561-6	5 "	н	"	See Trench #6		
34566-6	8 "	••	п	See Trench #7		
34569-7	5 Aug 23	ZONE D, GR2	QTZ-SER	See Trench #8		

ALTERED ROCK

ł

.....

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	AN. Au	ALYSI	iS Ag
34578	Sept 24	W. OF ZONE F	FRAGMENT	Float	10-15% galena, limonite, minor stibnite	480		
34579	Sept 26	L10+08W, 1+90S		Float, silicification, gtz-py stockwork	20-30% massive pyrite	60		
34580	**	L9+65₩, 2+25S	MASSIVE PYRITE POD	Grab	80-90% pyrite	60		
34581	n	L10+00W, 2+60S	LAMINATED CHERT	Float, native sulphur bearing	10-15% pyrite	50		
34582	17	L10+00W, 2+60S	n		'n	nd		
34583	n	L10+70W, 1+55S	QTZ-PY POD	Grab	60-70% pyrite	190		
34584	Sept 26	L10+35W, 2+50S	LAMINATED Chert	Ploat, native sulphur bearing	20-30% pyrite	nd		
34585	IF	L10+77W, 2+35S	u	•	17	20		
34586	н	L11+85W, 1+985	¢*		N	30		
34701	Aug 9	ZONE A 1675 m 5494′	ANDESITE	Grey, fine grained subporphyritic rusty weathering, hard, float	10% disseminated to blebby pyrite	<0.001	oz/t	<u>-</u>
34702	Aug 9	ZONE B 1700 m 5560'	SULPHIDE BOULDER	Strongly gossanous, weakly foliated, float	40% massive pyrite 60% quartz with minor galena?	0.007	oz/t	

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	ANALY Au	SIS Ag
34703	Aug 9	ZONE B 1765 m 5789'	SHEAR ZONE	Source of 34702, 1.5-2.0 m wide, approx 30 m exposed along strike soft, friable, quartz sericite py-cp 1 m chip, weakly foliated, 040°/40°NW	5% disseminated pyrite quartz-ser-py-ep? <u>+</u> galer (fine grained)	0.048oz/t,2 na	2.70oz/t
34704	N	ZONE B 1795 m 5888'	u	ab 34703 but ≤ 5 m wide, 20 m long, exposed along strike, well foliated; bright yellow gossan 000°/? qtz-se-py ± cpy ± galena, 5 m chip	Strong qz-py anastomosing stockwork veins	0.0310z/t,	6.09oz/t
34705	Aug 9	ZONE B 1835 m 5019'	9	Continuation along strike of sample #34704-bright yellow gossan with 0.5 m wide band mangangane oxide stained brecciated rock (type very linear, 000 ⁰ /?, runs out @ 1850 m elevation, grab	Quartz veins 30 cm wide with 3% pyrite 1% (in places) cpy 37) minor blebby galena	0.0450z/t,8	3.250z/t
34706	W	ZONE B 1840 m 6035'	MASSIVE GALENA	Appears to be subcrop part of shear zone of samples #703-704, float	Coarse grained galena (75%) with quartz and 1% chalcopyrite + strong manganese oxide and iron oxide staining	0.207oz/t,1	00.0oz/t
34707	Aug 9	ZONE C-1 1780 m 5838'	FAULT ZONE (SILTSTONE)	Strongly mineralized, highly sheared 160 ⁰ /?, grab	Pervasive manganese oxide replacement along bedding & fracture planes - blebby 2% galena in 10 cm quartz vein with iron oxide boxworks (lim. after pyrite)?	0.004oz/t,2	27.402/t
34708	11	ZONE C-1 1780 m 5838'	11	п и	Massive 100% manganese oxide boulder or subcrop	0.002oz/t,]	.360z/t

1.1

The transformer of the transform

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	ANALYSIS Au Ag
34709	Aug 9	ZONE C-1 1700 m 5576'	MASSIVE PYRITE QUARTZ	Grey, fine grained, very gossanous on small moraine, float	30% crystalline pyrite in quartz vein	<0.001oz/t
34710	Aug 11	ZONE C-1 1825 m 5986'	QUARTZ VEIN	Subcrop? white, sugary drusy tex- ture with 2% fine grained blebby black mineral py? or cpy? semi- rounded to rounded outline 1 mm long, float	pyrite or chalcopyrite	0.003oz/t
34711		ZONE C-1 1780 m 5838'	FAULT?	2 m wide covered in scree highly brecciated yellow orange streak on hillside-mudstone or siltstone 110 ⁰ bearing, grab	5% very fine grained py, 1% blebby gal <u>+</u> minor chalcopyrite	0.004oz/t,8.99oz/t
34712	Aug 12	EAST OF ZONES A & B	SANDSTONE	Quartz vein, 10 cm wide, coarse grained massive texture, grab	Rare disseminated pyrite	nd
34713	14	63001	ANDESITE DYKE?	Highly gossanous, appears to be somewhat sheared, 010 ⁰ trend, 15 m wide, 100 m along strike, brecciated, totally oxidized, grab	Silicified, 2% very fine grained pyrite	20
34714	II	63001	n	Gossanous, iron oxide surface stain, grab	Minor pyrite	nd
34715	•		IF	As 34713, grab	As 34713	nd
34716		" 5 4 78′	LIMESTONE	Large boulder, gossanous, black fine grained calcareous, float	Anastomosing massive coarse grained carbonate stockwork	nd

İ

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION		ANALYS Au	318 Ag
34717	Aug 12	EAST OF ZONES A & B 5527'	BRECCIA?	Off white, coarse grained texture full of small pebbles, (semi- rounded) of sediments, no sulphides very porous, float	precipitate? or sinter 5	nd		
34718	н	" 5527 <i>'</i>	QTZ BOULDER	Highly brecciated, resealed quartz vein, medium grained drusy matrix w laminated fine grained quartz class up to 2 cm long, float	Minor pyrite with ts	9300		
34719	Aug 18	L5+50W, 1+50N	SILTSTONE	Small iron oxide rich, white carbonate vein, 5 cm wide fault filling 040 ⁰ /40 ⁰ NW	Very gossanous	160		
34720	n	L4+44W, 1+70N	**	50 m east, small fault mineralized strong iron oxide stained quartz clay-pyrite mineralization trend 150°60°SW, 3 m chip	10 cm wide quartz vein barren	280		
34721	Aug 19	L3+25W, 1+85N	ANDESITE W/ SMALL FAULT	2m wide, well foliated chlorite quartz(?) schist, weak surface iron oxide stain with local boudins of aphanitic andesite, l m chip	Iron oxide cemented brecciated texture, minor carbonate infilling 1% disseminated pyrite + rare quartz-galena tetra- hedrite	340 1		
34722	n	L3+00W, 1+10N	ANDESITE	Green, aphanitic, strong iron oxide stain, grab	With small 5 m wide zone of irregular massive pyrite veins up to 5mm wi	50 .de		
34723	8)	L2+00W,0+75N	SILTSTONE/ SANDSTONE BOULDER	Sheared, appearance, black fine grained well bedded, polished by glacial action, highly gossanous	Stockwork of 70% pyrite 30% chlorite veins < 2.5 cm wide	200		

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION		ANALY Au	'SIS Ag
34724	Aug 23	20NE C-1 5904'	SILTSTONE SANDSTONE	Small 1 m wide fault 160 ⁰ /60 ⁰ NE (approx) small quartz stringers in highly foliated sediments,grab	10% galena, trace chal- 2 copyrite in small quartz- sulphide stringers	180		
34725	,,	ZONE C-1	SHEARED SILT-	Approx 1 m wide mineralized,	30 cm wide quartz-	180		
34726	a	10 m along vein	SANDSTONE	in sheared oxidized and mangan- iferous sediments, foliation appears to be oblique to bedding at a low angle approx 020°/50°SE 1 m chip and grab	<pre>galena- ± chalcopyrite 3 vein 80% quartz-15% galena 5% sphalerite, minor chal- copyrite-strong quartz stockwork throughout</pre>	370 a -		
34727	II	ZONE C-1 5838'	ANDESITE LAPILLI TUFF	Appears to be continuation of mineralized zone but w/minor off set, highly oxidized and manganese oxide stained quartz vein/stockwork in places completely replacing wallrock 170°/70°SW, grad	Pervasive replacement 3 with manganese oxide + iron oxide y	320		
34728	**	ZONE C-1 5773'	SILTSTONE	Strongly sheared porous and brittle rock, pervasively oxidized and manganese oxide stain, subcrop, grab	1 cm quartz-galena- <u>+</u> chalcopyrite irregular stockwork	190		
34729	Aug 24	NW OF ZONE F 1700 m	DACITE LAPILLI TUFF	Shear, brecciated, well foliated approx 2 m wide, strongly oxidized rock clasts in fine grained black chlorite matrix foliation 040 ⁰ /90 ⁰ , 2 m rock chip	1-2% fine grained grained grained grainated pyrite	90		
34730	85	NW OF ZONE F 1735 m	M	Shear, highly broken and outcrop fractured 3 m wide - no just float or scree of manganese oxide stained volcaniclastic trend 000°/?	highly manganiferous 60 or specular hematite pervasive carbonate coating + qtz 3 mm stringers	0		

. .

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION		ANALYSIS Au Ag
34731	Aug 24	NW OF ZONE F 1720 m	R	Shear, well foliated sericite schist with crushed oxidized clasts and matrix, pervasive manganese oxide stain, S 032 ⁰ /90 ⁰ 15 m wide approx., grab	No sulphides	60	
34732	п	, 1800 m	ANDESITE TUFF	Massive pyrite stockwork + sericite, very gossanous, float	3% pyrite	50	
34733	Aug 24	" 1745 m	ANDESITE TUFF	Shear, highly brecciated and broken, approx minimum width 2 m completely oxidized-original texture completely obliterated 15 m strike length approx. 5 m wide in places 080° trend	Manganese oxide stain on fractures	20	
34801	Aug 25	GR-2 TRENCH A	ANDESITE PYROCLASTICS	Chip 2.0 m	Traces - pyrite	20	
34802	н	н	n	•	Massive pyrite	nd	
34803	u	**	"	•	Traces - pyrite	10	
34804	Aug 25	GR-2 TRENCH A	ANDESITE PYROCLASTICS	Chip 2.0 m	Traces - pyrite	20	
34805	77	II		н	Galena, pyrite	150,	13.13 oz/t
34806	11	1)	••	н	Traces - pyrite	40	
34807	-	**		"	Traces - pyrite	20	
34808	"	**	"	"	Pyrite	30	
34809	н	GR-2 TRENCH B	в	"	Massive pyrite	10	

 $f_{i}(\mathbf{y}, \mathbf{r}, \mathbf{v}, \mathbf{r}, \mathbf{v}, \mathbf{r}, \mathbf{v}, \mathbf{r}, \mathbf{r}$

SAMPLE DATE LOCATION LITHOLOGY **REMARKS/ALTERATION/STRUCTURE** MINERALIZATION ANALYSIS Au λg 34810 Aug 25 GR-2 TRENCH A ANDESITE Chip 2.0 m Galena + pyrite 180, 9.30 oz/t PYROCLASTICS 34811 п н 11 . Some pyrite 80, 3.18 oz/t 34812 . Some pyrite 100 34813 •7 GR-2 TRENCH C ,, No mineralization 20 34814 п п п No mineralization 20 н 34815 -11 R Massive galena, pyrite 180 34816 Aug 26 . Chip 1.0 m Massive galena, pyrite 110, 5.10 oz/t 34817 e GR-2 TRENCH D R п Massive galena, traces 110, 7.08 oz/t chalcopyrite and pyrite 34818 GR-2 TRENCH D н Aug 26 Chip 75 cm Pyrite veinlets, traces 70 of galena ** 34819 ** •• Chip 1.0 m Limonite, trace of 40 pyrite 34820 ** ... 11 Dissemianted pyrite 40 34821 GR-2 TRENCH E н Aug 30 Chip 2.0 m No mineralization 20 34822 л ÷1 н ... 20 34823 н ... 83 Chip 2.1 m Traces of pyrite 20 34824 (ŧ æ H Chip 2.0 m No mineralization 20

ш

34825

н

...

10

...

SAMPLE	DATE	LOCATION	L1THOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION	ANALYSIS Au Ag
34826	Aug 30	GR-2 TRENCH E	ANDESITE FYROCLASTICS	Chip 2.0 m	Limonite	10
34827	+	**	"	n	н	20
34828		н	н		"	nd
34829	41	"	"	u u	"	10
34830	"	v		'n	۲	30
34831	M	90 1	н	Chip 2.3 m	Limonite, manganese, galena	20
34832-3	7 Aug 30	GR-2	ANDESITE PYROCLASTIC	See Trench #1		
34838-4	1 "	"	"	See Trench #2		
34842-4	4 "			See Trench #3		
34845-4	6 "	*	*	See Trench #4		
46001	Aug 12	E. Treaty Gossan	RHYOLITE	Strongly gossaned, very fine grained dirty greyish white. Sample is of grey pods within the rhyolite which are in part grey rhyolite + sulphide (pyrite) grunge	Trace-1% disseminated pyrite in rhyolite, 20% massive pyrite in the sulphide grunge.	270
46002		••	SULPHIDE	Same location as 46001, hi-grade	Sample is virtually all	30

.6002 " " SULPHIDE Same location as 46001, hi-grade Sample is virtually all 30 GRUNGE grab of pure greyish-black fine grained pyrite. sulphide (pyrite) grunge

......

.

ANALYSIS

MINERALIZATION

						Au	Аg
46003	40912-	" A	RHYOLITE/ SHEAR ZONE	Sample approx. 40 m 5W of 46001 and 46002 on small shear zone trending 240°/70°NW. Minor carbonate stringer veins and weak pervasive carbonate in matrix. Rock is greyish-white rhyolite	Contains 15-20% very fine grained disseminated pyrite and some massive patches of pyrite	0.054	oz/t
46004	Aug 12	E. Treaty Gossan	RHYOLITE	Very strongly gossaned section of white-dark grey- to greyish black color. Local patches of carbonate alteration	Pyrite averages 1-2% disseminated with local massive sections (10-15%) Massive sections look like grey to grey-black grunge	30 ≥	
46005	n	4	RHYOLITE/ BRECCIA ZONE	Coarse angular rhyolite fragments up to 2 cm x 2 cm in a gossaned matrix of rhyolite. Strong pervasive carbonate alteration throughout. Trend approx. 290°/20°NE, dip is just a guess	Contains trace-3% disseminated pyrite.	10	
46006	n	u	RHYOLITE & RHYOLITE BRECCIA	Altered rhyolite and rhyolite breccia. White carbonate coating on the weahtered suraface. Also weak to strong patches of carbonate in matrix	Trace pyrite	10	
46007	*1	11	GOSSANED RHYOLITE SHEAR ZONE	Strong rusty gossan in altered rhyolite. Weak to moderate pervasive carbonate alteration	Contains 5-15% very 5 fine grained disseminated pyrite	5	
46008	"		п		9 11	10	
46009	Aug 16	L7+15W,1+10N	SERICITE SCHIST	Very strongly gossaned, sample from canary yellow gossan patch Shear trend = 322 ⁰ /90 ⁰	Contains 3-5% fine grained disseminated and cubic pyrite	<5	

REMARKS/ALTERATION/STRUCTURE

SAMPLE DATE

LOCATION

LITHOLOGY

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUCTURE	MINERALIZATION		ANALYSI Au	(S Ag
46010	Aug 16	L7+01W,2+00N	SERICITE SCHIST	Intense shearing in schist. Rock is extremely friable breaking into small chips. Strong pervasive gossan throughout Shear 313 ⁰ /90 ⁰	Gossan so strong cannot get a fresh surface	<5		
46011		L7+10W,4+00N	IRON-CARB- ONATE VEIN	A 1 m wide carbonated flooded zone, trend=187 ⁰ /62 ⁰ W	No visible sulphides, yellow brown oxidation	<5		
46012	Aug 23	GR-2 ZONE E	MANGANESE WAD	Heavily gossaned area, northeast extensions of initial discoveries	Sample is virtually all manganese wad	nd		
46013	u	"	SERICITE SCHI ST	Looks like altered rhyolitic volcanics. Gossan very strong and pervasive. Strong shearing Trend approx. 008 ⁰ /80 ⁰ E	Trace-1% disseminated pyrite on fresh surfaces	nd		
46014	n	GR-2 ZONE F	SERICITE SCHIST??	Heavily gossoned rock, can't really tell what it is	Trace-1% galena	40,	11.1802	z∕t
46015	41	II.	SILICEOUS BANDS WITH ARGILLITE BAND	From big gosson zone, siliceous bands with intermexed black S siltstone or argillite bands - Bands trend 126 ⁰ /10 ⁰ NE, shearing 027 ⁰ /60 ⁰ SE	No visible sulphides	20		
46016	"	μ	SILICEOUS POD/SHEAR	Siliceous unit within argillite that has brecciated angular clasts of argillite within the unit. Minor carbonate alteration	Contains trace-1% disseminated pyrite with local patches of up to 20% massive pyrite	30		

· · · ·

ł

contraction to the test of te

1 3 1	٦	f	1		j	۲]	'	2	*	1	r	7		2	1	2	•	1	٠	}	•)		?		1	•]	۲	3	ţ	١
-------	---	---	---	--	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	--	---	--	---	---	---	---	---	---	---

SAMPLE	DATE	LOCATION	LITHOLOGY	REMARKS/ALTERATION/STRUC	TURE	MINERALIZATION	ANALYSI Au	(S Ag
46017	Aug 23	GR-2 ZONE F	MASSIVE GALENA IN SERICITE SCHIST	Right beside 34531. Sam massive galena from stro altered gosson zone	mple is of angly	Up to 80% massive galena 550 and some possible tetra- hedrite? Galena shows curve cleavage faces. Minor malae stain present, some sphalerite seen on this outcrop but not in this samp) ed chite ple	
46018	Aug 24	GR-2 ZONE D Shear float	SILICEOUS to float on Bi	Sheared siliceous rock, c Pela Zone in the grai upper saddle. Float mat on rocks knobs sticking	similar ned dissemi erial found out of glac	Contains 10% very fine 10 inated pyrite 1 cier		
46019	47	n	n	I	H	" 22	0	

APPENDIX IV

.

ľ

i

ASSAY REPORTS AND PROCEDURES

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1033 FAX: (306) 242-4717

OreQuest Consultants Ltd. April 8, 1991 306 - 595 Howe Street Vancouver, B.C. V6C 2T5 SAMPLE PREPARATION PROCEDURES 1 – Rock and Core - Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh. Soils and Silts - Sample is dried and sieved to -80 mesh. 2 -FIRE ASSAY PROCEDURES Geochem Gold (Au ppb) -A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption. Assay Gold (Au oz/ton) -A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance. 3 - Geochem Silver (Ag ppm) -A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the Atomic Absorption. Assay Silver (Ag oz/ton) -A 2.00g sample is digested with 7.5mls HCl plus 2.5mls HNO3 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HCl. The solution is run on the Atomic Absorption. 4 BASE METALS Geochem -A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then rur on the Atomic Absorption. A 0.500g sample is taken to dryness with 15mls Assay HC1 plus 5mls HNO3, then redissolved with 5mls HN03 and diluted to 100mls with DI H20. The solution

is run on the Atomic Absorption.

con't...

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -

A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the ICAP.

6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

7. Mercury Analysis -

A 1 gram subsample is digested with 4mls of nitric acid plus 1ml of sulfuric acid in a water bath for 1 1/2 to 2 hours, diluted with DI water. A couple of drops of a potassium permangante solution are then added to each sample solution. An aliquot of each solution is then analyzed on the A.A. by a cold vapor procedure.

Yours truly,

imk

Dennis Pilipiak

DP/vh

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENTI	PRIME EQUIT:	IES INC.		DATE:	OCT 02	1990
ADDRESS:	10th Flr 80	08 W. Hastings S	st.			
	Nancouver, I	BC A State Table		REPORT#:	900622	GA
	V6C 2X6			JOB#:	900622	
	na se presenta de la composición de la En la composición de l					

PROJECT#: TANTALUS (TREATY) INVOICE#: 900622 NA SAMPLES ARRIVED: OCT 01 1990 TOTAL SAMPLES: 10 REPORT COMPLETED: OCT 02 1990 SAMPLE TYPE: 10 ROCK ANALYSED FOR: Au⁽(FA/AAS) ICP REJECTS: SAVED

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: VGC Staff

lyml h SIGNED:

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. VSL 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

	REPORT KUN	(BB8: 900622 GA	JOB BUMBBE: 900622	PRIME ROUITIES INC.	PAGE 1 OF 1
•			in a		
	dant VS I		ppb	· · ·	
	34566		20		· · ·
	34568		na nd		
	34569	.	Dd - 1		
	24214		· 20		
~	34571		nă		
ų.	34572 34573		nd ad		
l -	34574		nd		•
	34575	7	nd		
	•		•		
		1999 - 1999 1997 - 1999 -	· • •		
		- - .		·.	
			:		
	,			· .	
			÷		
			-		
		. *. .	•		
		· · · ·	А.		
				•	
		•			
		• •			
`					
		÷.			
	•				

2.3

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and M.

												• •													
REPORT 1: 900622 PA	POINE CONT	T100 fur					_												ANAL	YST:	Ĺ	m	6		
	WINC CADI	1163 140				PROJ	ECT: TAN	TALUS (TR	EATY)	DAT	TE IN: 00	T 01 199	Ó Di	ATE DUT: I	OCT 3 19	90	ATTENTIO	N. NO 1	Ти соетс	в					
Sample Name	Aq	Á1	Ås	Ra	Ri	r.	64	6 .											TU CUĐIC	ĸ		PA	it 10F	1	
	000	I	rine.	004				10	LT	Çu	Fe	ĸ	Ng	ពីព	llo	Na	Ni	P	Pb	56	G n	ç.,		11	٩.
34566	3.0	0.70	32000	202	72	A 10	ppe 1 7	ppe	ppe	ppe	I	1	ž	<u>poe</u>	ppe	I	0De	Ŷ	0.04	000	0 m	JI	U And	*	10
34567	1.3	0.65	455	116	(2	0.10	1.7	2	57	19	3.95	0.14	0.05	92	6	0.01	1	0.19	115	290	րրա 5	ppe De	pp∎ ∕r	pps.	004
34568	10.7	0.65	471	401	(3	0.10	1.1	1	32	24	4.26	0,15	0.04	50	7	0.01	a	0.10	77	165	5	30 70	(2)	(3	50
34569	1.5	0.71	1037	432	(3	0.00	. 1.3	1	34	22	2.76	0.11	0.03	61	7	(0.01	(1	0.04	1335	704	3	19	(5	()	34
34570	2.9	0.49	586	401	3	0.12	47	ა ი	49	14	3.03	0,10	0,04	132	4	0.01	(1	0.09	310	RO	å	79	/5	13	4/ 50
						****	7.3	1	46	14	2,42	0.10	0.04	316	5	0.01	<1	0.04	799	87	3	40	/5	13	33
34571	5.6	0.78	- 399	379	(3	0.10	1 2	21	75		.											14	10	13	132
34572	4.0	0.66	552	396	(3	0 10	1.2	1	33 70	12	2.44	0.11	0.05	105	3	(0.01	17	0.03	539	89	3	32	(5	/1	54
34573	9.3	0.71	1112	319	(3	0.06	1 1	2	38	· 17	2.20	0.09	0.06	141	4	<0.01	<1	0.05	429	82	3	24	15	13	99 64
34574	3,7	0.81	919	419	(3	0 30	17.0	47	5V 50	17	3.13	0,12	0.05	138	5	0.01	<(0.04	1301	193	Š	74	(5	13 70	64 74
34575	16.1	0.94	>2000	210	(3	0.14	3.0	21	23	145	8.14	0.22	0.07	13718	B	0.06	<1	0.17	384	217	Ē	50	75	13	79
								,	-11	32	3.26	0,18	0.05	719	5	0.03	<1	0.12	1801	320	6	51	(5	72	1040
Minimum But as																					-		.0	10	740
minimum Detection	0.1	0.01	3	1	3	0.01	0.1	ſ	1	1	0.01	A A1													
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	26666	10.00	U. UI	0.01	1	1	0.01	1	0.01	2	2	2	1	5	2	ſ
< - Less Inan Minique	> - Greater Th	an Kaxim	LL B	is - Insu	ficient	Sample	ns	- No Saen	1000		IV.VV P DECULT	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
										NNUNNI, 0103	O RESULTS) - rurth	er Anal	yses By A	lternate	e Method	s Suggest	ed.						1444	20000

The second s

â

÷

the second

<u>, 1</u> 4

.

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	PRIME EQUITIES INC.	DATE:	OCT 09	1990
ADDRESS:	10th Flr 808 W. Hastings St.			
:	Vancouver, BC	REPORT#:	900654	GA
:	V6C 2X6	JOB#:	900654	

PROJECT#: TANTALUS (TREATY) SAMPLES ARRIVED: OCT 05 1990 REPORT COMPLETED: OCT 09 1990 ANALYSED FOR: AU (FA/AAS) ICP INVOICE#: 900654 NA TOTAL SAMPLES: 17 SAMPLE TYPE: 17 ROCK REJECTS: SAVED

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: VGC Staff

Buth. SIGNED:

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900654 GA	JOB NUMBER: 900654	PRINE EQUITIES INC.	PAGE 1 OF 1
SANPLE I	20		
	ppb		
16807 -	nd		
16808	nd		
16909	nd		
10005	10		
10010	10		
10011	10		
15414	د_		
16812	nd		
16813	20		
16814	ba		
34578	180		
34579	60		
345#8	60		
34581	50		
34649	50 ed		
33302	144 144		
34383	190		
34584	DQ		
34585	20		
34586	30		

DETECTION LINIT nd = none detected ---

5 -- = not analysed is

is = insufficient sample

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL, (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT:	PRIME EQUITIES INC.	DATE:	OCT 16	1990
ADDRESS:	10th Flr 808 W. Hastings St.			
· •	Vancouver, BC	REPORT#:	900654	AA
:	V6C 2X6	JOB#:	900654	

PROJECT#: TANTALUS (TREATY) SAMPLES ARRIVED: OCT 05 1990 REPORT COMPLETED: OCT 16 1990 ANALYSED FOR: As Sb INVOICE#: 900654 NA TOTAL SAMPLES: 17 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 17 ROCK

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: Raymond Chan

SIGNED:

Ryall

Registered Provincial Assayer

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. VSL 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NONBER: 900654 44	JOB NUNBER: 900654	HERE COMMENTS THE.	PAGE 1 OF 1
SAMPLE #	As %	5b %	
	•		
16807	<.01	.02	
16808	<.01	.01	
16809	<.01	.01	
16810	<.01	<.01	
16811	<.01	<.01	
16812	<.01	<.01	
16813	<.01	<.01	
16814	<.01	<.01	
34578	.41	2.80	
34579	. <.01	.04	
34580	<.01	.02	
34581	<.01	.01	
34582	<.01	.01	
34583	<.01	.01	
34584	<.01	.01	
34585	<.01	<.01	
34586	<.01	.01	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm .01 1 ppm = 0.0001%

:01 ppm = parts per million

(= less than

Rymli signed:

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT:	PRIME EQUITIES INC.	DATE:	NOV 05	1990
ADDRESS:	10th Flr 808 W. Hastings St	•		
:	Vancouver, BC	REPORT#:	900654	AB
:	V6C 2X6	JOB#:	900654	
		• •		

PROJECT#: TANTALUS (TREATY) SAMPLES ARRIVED: OCT 05 1990 REPORT COMPLETED: NOV 05 1990 ANALYSED FOR: Ag INVOICE#: 900654 NA TOTAL SAMPLES: 2 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 2 ROCK

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

 REPORT NUMBER: \$00654 AB	JOB NUMBER: 900654	PRIME BQUITIES INC.	PAGE	1	OP	1
SAMPLE #	Ag oz/st					
34578 34579	98.26 1.64					

DETECTION LIMIT 1 Troy oz/sbort ton = 34.28 ppm .01 1 ppm = 0.0001%

ppm = parts per million

< = less than</pre>

signed: pz

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT:	PRIME EQUITIES INC.	DATE:	NOV 16	1990
ADDRESS:	10th Flr 808 W. Hastings St.			
:	Vancouver, BC	REPORT#:	900654	AC
:	VGC 2X6	JOB#:	900654	

PROJECT#: TANTALUS (TREATY) SAMPLES ARRIVED: OCT 05 1990 REPORT COMPLETED: NOV 16 1990 ANALYSED FOR: Pb Zn

INVOICE#: 900654 NB TOTAL SAMPLES: 1 **REJECTS/PULPS: 90 DAYS/1 YR** SAMPLE TYPE: 1 ROCK PULP

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY:

Raymond Chan

SIGNED:

Registered Provincial Assayer

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A

REPORT NUMBER: 900654 AC	JOB NUMBER: 900654	PRINE	BQUITIES INC.	PAGE	1	0P	1
SAMPLE #	ļ	Pb %	Zn &				
34578	11.5	90 2	.02				

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm .01 .01 1 ppm = 0.0001% ppm = 9

ppm = parts per million < = less than

land signed:

_____ _____ 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

-11-1-5

1.15-

1. ٦

REPORT 1: 900654 PA

Samule Name

16807

16808

16809

16810

16811

16812

16813

16614

34578

34579

34580

34581

34582

34583

34584

34585

34586

Minimum Detection

Maximum Detection

< - Less Than Minimum

r ... 1

PRIME EQUITIES INC.

A!

ž

1.51

0.34

5.72

1.00

2.25

0.09

1.36

1.08

0.13

0.09

0.04

0.39

0.24

0.15

0.27

0.24

0.35

0.01

50.0 10.00

(3)

(3

(3

<3

<3

3

2000

4 -(3

<1

4

(1

8

1

1000

(0.01

0.02

0.01

The search and

(3

(3 <0.01

(3 (0.01

(3 <0.01

3

1000

is - Insufficient Sample

<0.1

0.2

(0.1

(0.1

<0.1

0.1

10.00 1000.0 20000

 $\langle 1 \rangle$

19

6

1

16

1

ns - No Sample

B1

58

BÛ

B3

71

1

1000 20000

6 4.65

23

(1

3 5.4B

1 4.00

1

8.79

2.70

0.01

10.00

0.08

0.19

0.02

0.08

0.06

0.01

10.00

<0.01

<0.01

(0.01

<0.01

<0.01

0.01

10.00

Aq

00 **4**

0.3

0.1

0,3

0.2

0.2

<0.1

0.7

0.2

>50.0

)50.0

17.4

5.1

2.6

3.6

1.0

0.6

1.3

0.1

> - Greater Than Maximum

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 NCl to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

																ANAL	YST:					
			PROJE	CT: TANTA	LUS (TRE	ATY)	DATE	E IN: OC	T 05 1990	D DA1	E DUT: N	OV 13 19	990 /	ATTÉNT I D	N: MR. J	IN FOSTE	2		ŕAG	E 1 OF	1	
As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Ma	ňo	Na	Ni	P	fo	S۵	Sn	Sr	Ŀ	ş	Įo
pp∎	ρρ∎	ppe	X	ppm	pp e	pps	ppm	ĩ	2	2	ppa	ppe	۲,	DD	X.	рра	00≜	004	008	608	009	608
<3	170	<3	4,79	0.7	16	17	36	5.38	0.19	1.55	1280	11	0.05	14	0.05	< 2	7	(2	398	.5	<3	93
183	32	<3	8.31	2.1	7	79	6	3.29	<0.01	5.39	2166	17	0.07	8	0.01	25	14	0	129	<5	12	5
<3	78B	<3	5.55	0.9	38	61	113	8.13	0.27	3.96	1753	25	0.10	55	0.08	<u>,</u> 2	(2	(2	163	(5	<3	121
(3	85	(3	0.32	0.1	17	37	36	6.74	0.20	0.48	472	34	0.16	(1	8.24	189	6	(2	119	(5	3	46
43	46	(3	0.73	<0.1	20	32	42	5.65	0.19	0.98	1129	. 12	0.09	(1	0.26	66	(2	(2	77	<5	(3	83
64	4	<3	0.02	(0.1	2	71	37	3.69	ů.ů7	(0.01	19	17	0.02	(1	<0.01	25	30	(2	35	<5	(3	1ú
21	15	(3	0.75	<0.1	14	26	93	3.29	0,20	0.63	1198	10	0.07	(1	0.12	19	£.	(2	38	(5	< 2	100
<3	11	(3	2.76	<0.1	23	25	14	3.24	0.19	0.50	1249	6	0.08	(I	0.17	(2	10	$\overline{2}$	57	(5	(3	83
>2000	9	<3	0.05	178.9	4	162	3191 /	4.90	0.08	<0.01	4278	38	0.03	- 0	(0.01	>20000	>2060	0	27	25	/2	120000
89	3	(ع	70.01	3.0	7	130	92	5.55	0.10	<0.01	165	B	Ú.03	(1	<0.01	3863	622	<2	50	(5	<3	518
<\$	<1	<3	0.10	1.1	14	140	100	>10.00	0.27	(0.01	53	23	0.06	(1	K 0.01	\$57	129	0	đ	/5	29	20
(3	5	<3	(0.01	<0.1	7	66	13	2.67	0.04	<0.01	(1	4	0.04	- G	(0.01	331	60	(7	26	(5 (5	<3 (3	73

 $\langle 1$

 $\langle 1 \rangle$

<1

 $\langle 1 \rangle$

۲)

<1

1

20000

ANOMALOUS RESULTS - Further Analyses By Alternate Methods Suggested.

0.04

0.03

0.04

0.04

0.05

0.01

1000 10.00 20000

7 0.04

19

3

11

1

1

<1 <0.01

 $\langle 1 \rangle$ <0.01

 $\langle 1 \rangle$ (0.01

 $\langle 1 \rangle$ <0.01

(1

 $\langle \mathbf{1} \rangle$ <0.01

1 0.01

<0.01

10.00

331

174

207

71

19

57

2

20000

6Ú

41

42

25

21

19

2

2000

<2

(2

<2

(2

<2

(2

2

1000

26

35

12

48

53

39

L

10000

<5

(5

(5

<5

(5

(5

5

100

15 40 7

10

73

23

4

5

-1

20000

<3

<3

(3

<3

<3

(3

3

1000

1 16

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

• == == ==

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: PRIME EQUITIES INC. DATE: OCT 03 1990 ADDRESS: 10th Flr 808 W. Hastings St. : Vancouver, BC REPORT#: 900621 AA : V6C 2X6; JOB#: 900621 Ż F PROJECT#: TANTALUS

SAMPLES ARRIVED: OCT 01 1990 REPORT COMPLETED: OCT 03 1990 ANALYSED FOR: Cuspb Zn Au

INVOICE#: 900621 NA TOTAL SAMPLES: 11 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 11 ROCK .

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

東京書家 かたしきてき

688-67.2

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT BUKEER: 90062	1 AA JOB NUMBER: 900	621	PRIME BOUITIRS 1	NC.	PAGE	1 OF 1
SAMPLE #		Cu %	Pb %	Zn %	Au oz/st	
				-	•	•
34555		.03	.26	.20	.010	
34556		.02	.18	.16	.010	
34557	•	.02	.01	.01	<.005	
34558		.01	.01	.01	<.005	
34559		.02	.11	.08	<.005	
· .						
34560		.02	.21	.08	.006	
34561		.02	.03	.10	<.005	
34562		.02	.07	.10	<.005	
34563		.02	.35	. 32	<.005	
34564		.01	.58	.45	<.005	
	1 41 2-4-113		÷ .			
34565		.04	.06	.25	<.005	-

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

Grand h

- 005 < = less than **VANGEOCHEM LAB LIMITED**

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES

BATHURST, N.B.

RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: PRIME EQUITIES INC. ADDRESS: 10th Flr 808 W. Hastings St. Vancouver, BC : V6C 2X6

REPORT#: 900621 AB

DATE: OCT 05 1990

JOB#: 900621

PROJECT#: TANTALUS SAMPLES ARRIVED: OCT 01 1990 REPORT COMPLETED: OCT 05 1990 ANALYSED FOR: Ag

INVOICE#: 900621 NB TOTAL SAMPLES: 1 **REJECTS/PULPS: 90 DAYS/1 YR** SAMPLE TYPE: 1 ROCK ÷

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

. . . .

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: Raymond Chan

SIGNED:

电达方法 化医热分析

Registered Provincial Assayer

VGC VANGÉOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

.
() () (VANJELLAB)LINITED

.

1630 Pandora Street, Vancouver, B.C. VSL 1L6 Phi(604)251-5656 Faxi(604)254-5717

ĺ

(004)731-3030 LEXI/004)734-

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with S ml of 3:1:2 HCl to HNG, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Kg, Kn, Ma, P, Sn, Sr and W.

ANALYST: Myrulh

REPORT 0: 900621 PA	PRINE EQUI	ITIES INC				PROJE	CT: TANT	ALUS (TRI	EAT¥)	ÛAŤ	E IN; OC	T OL 199) DA	TE OUT: (DCT 3 199	90 -	ATTENTIO	i: AR. J	IN FOSTER			PAG	E I DF	1	
Sample Name	Ag	. A l	As	Ba	Ði	Ca	Cd	Co	Ċr	Cu	Fe	ĸ	Mg	Kn	No	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	2.n
	ppe	1	pp∎	ppe	ppe	X.	poe	pom	pρ∎	op n	I	ĩ	ž	ppe	ppe	ĩ	DOR	1	006	00±	00	004	00e	000	004
34555	19.7	0.72	431	544	<3	0.31	13.9	17	32	96	5.75	0.18	0.06	16510		0.07	16	0.15	5213	132		32		(3	1834
34556	28.0	0.32	1384	268	(3	0.04	5.5	2	129	54	1.34	0.03	0.02	1320	ż	0.02	5	0.03	3507	192	ö	47	(5	G	499
34557	1,2	0.56	357	318	<3	0.06	1.5	9	29	66	4.44	0.12	0.03	452	7	0.01	3	0.19	145	38		29	<5 <5	(3	14.6
34558	0.5	1.95	(3	56	(3	1.31	2.2	21	50	29	4.14	0.19	0.65	957	ė	0.04	,	0.17	103	(7	14	44	/5	13	167
34559	31.0	0.81	1356	221	(3	0.32	12.9	7	49	107	5,14	0.16	0.06	3219	8	0.04	(1	0.13	2788	155	5	41	<5	(3	912
34560	>50.0	0.95	>2000	265	(3	0.15	7.2	5	56	117	4,29	0.12	0.04	660	5	0.04	(1	0.13	4960	192	5	47	(5	(3	908
34561	3.8	0.81	>2000	100	₹3	0.12	15.9	14	38	94	5.81	0.13	0.05	407	7	0.04	6	0.09	B80	148	10	26	(5	a	1054
34562	14.6	0.78	>2000	110	<3	0.05	13.4	7	27	81	4.50	0.10	0.03	783	Ŕ	0.04	- 41	0.09	2102	143	5	25	(5	in	1077
34563	28.0	0.78	1500	168	(3	0.33	49.6	12	37	89	6.14	0.19	0.12	>20000	10	0.11	ä	0.09	7436	225	7	25	(5	(3	2220
34564	36.0	0.57	1625	75	(3	0.29	88.2	12	67	68	4.38	0.14	0.10	>20000	16	0.14	(1	0.06	12616	652	6	22	(5	<3	4731
34565	7.2	1.27	809	178	<3	0.39	42.4	13	23	243	4,51	0.15	0.15	5601	8	0.08	(1	0.09	1464	110	6	52	<5	<3	2528
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	L	1	1	0.01	0.01	0.01	1	L	0.01	1	0.01	2	2	2	t	5	3	1
Naxious Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - Greater 1	Than Maxi	sua	is - Insu	flicien	t Sample	ns	- No Samp	le	ANGMALOU	s result	S - Furtl	her Anal	yses B y A	Alternati	e Method	s Sugges	ted.							

and the second

ANALYSED BY: VGC Staff

SIGNED:

Panulh

GENERAL REMARK: None

Ň		GEOCHEM LAB LIMITED	I630 PANDORA International to the total
	REPORT NUMBER: 9064	27 GA JOB NUKBER: 508427 PRINE BOD	ITIES INC. PAGE 1 OF 1
	SANPLE J 34801 34802 34803 34804 34805	Au ppb 20 nd 10 20 150	
	34806 34807 34808 34809 34809 34810	40 20 30 10 180	、 、
	34011 34812 46012 46013 66014	80 100 ad 10	
•	46016 46017 46010 46019	30 550 10 220	

μ.

ы.

.

.

Υ.

1

ъ.

DETECTION LINIT 5 nd = none detected -- = not analysed is = insufficient sample

VANCOUVER, BC V5L 1L6 (604) 251-5656 MAIN OFFICE **BRANCH OFFICES** PASADENA, NFLD. ► VANGEOCHEM LAB LIMITED -1088 TRIUMPHI ST. WANCOUVER, B.C. VSL 1K5 BATHURST, N.B. MISSISSAUGA, ONT. (604) 251-5656 FAX (604) 254-5717 RENO, NEVADA, U.S.A. ASSAY ANALYTICAL REPORT __________________ CLIENT: PRIME EQUITIES INC. DATE: SEPT 17 1990 ADDRESS: 10th Flr 808 W. Hastings St. 👬 👫: Vancouver, BC REPORT#: 900427 AA 1: V6C 2X6 JOB#: 900427 PROJECT#: TANTALUS (TR) INVOICE#: 900427 NB SAMPLES ARRIVED: SEPT 10, 1990 TOTAL SAMPLES: 5 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 5 ROCK REPORT COMPLETED: SEPT 17 1990 ANALYSED FOR: Pbzzn Ag 海湖北

and Prantik SPREE

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: None

VANCOUVER, BC VSL 116

(604) 251-5656

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO. NEVADA, U.S.A.

I____] **T** F 1630 Pandora Streat, Vancouver, B.C. V5L 1L6

hei

 $\mathbf{\lambda}\mathbf{v}$

19 C

÷

. . . .

~

EU

Ph:(604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

 $\mathbf{Pe}($

A .5 gram sample is digested with S al of 3:1:2 HCl to HHO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ma, P, Sn, Sr and H.

REPORT #: 900427 PA	1	PRIME EQUI	TIES INC.				PROJE	CTI TANT	ALUS (TR)		DATE	E INI SE	PT 10 19	90 DA	TE OUT: S	5EPT 13	1990	ATTENTION	li KR. J	in foster			PAG	E 1.0F	t .		. •
Sample Name		Åg	· Al	As	Ba	Bi	Ca	C:d	Co	Cr	Cu	Fe	K	fig	Ma	Mo	Ha.	Xi	P	Pb	Sb	Sn	5r	Ű	t	20	
		99 8	. 1	ppa	ppe	ppa	1	pps	op.	p pe	ppe	I	I	ī	p p u	90 4	Z	рра	I	998	ppa	ppe	ppe	pps	PPH	ppa	1.11
34801		0.9	0.71	117	9B	<3	0.88	3.1	22	19	91	4.39	0.13	Ò.30	6959	13	(0.01	a	0.19	130	51	3	25	(5	(3	962	÷ +
34802		4.4	0.95	575	11	<3	0.51	4.8	25	14	149	6.14	0.38	0.15	7303	15	<0.01	4	0.26	417	113	6	21	(5	(3	899	12
34603		11.1	0.75	283	72	<3	0.38	10.0	20	8	105	4.81	0.25	0.12	5524	12	<0.01	(1	0.19	372	101	<2	15	(5	(3	1041	
34804		6.9	0.74	8LS -	225	(3	0.13	0.7	8	21	50	3,86	0.41	0.04	754	14	<0.01	4	0.11	253	93	4	20	(5	{3	520	· · · · · ·
34805		>50.0	0.57	1701	97	<3	0.17	88,0	7	62	756	3.87	0.10	0.05	2882	15	(0.01	ä	0.10	>20000	1422	5	15	<5	(3	8678	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - N 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999
34806		. 17.2	0.54	756	60	(3	0.15	3.7	6	26	33	2.53	0.25	0.03	1286	9	(0.01	25	0.15	- 967	. 94	13	13	/5	(1	609	
34807		15.6	0.53	474	76	(3	0.10	1.0		28	ü	1.08	0.23	0.06	133	10	(0.01	ā	0.07	535	93	4	EA	25	(3	91	
34808		4.6	T. 0.87	561	161	(3	0.42	(0.1	13	64	53	3.09	0.14	0.32	6288	12	(0.01	- 49	0.11	222	59	Å	21	75	(3	222	5. A. A. A.
34809		. 1.3	1.02	109	64	(3	0.57	5.0	24	11	125	6.14	0.41	0.19	3646	10	<0.01		0.79	92	52	'n	21	25	/2	701	
34810		>50.0	0.36	22	99	(3	0.24	176.1	10	113	1436	4.05	(0.01	0.09	13548	19	<0.01	160	0.05	>20000	1439	3	11	<5	(3	19606	
34811		>50.0	0.25	283	160	(3	0.10	49.8	5	75	243	2.61	(0.01	0.07	RORA	20	ZA A1	111	• • •	10705	9CA	,	£.	/5	(3	6107	
34812		12.3	0.36	665	85	(3	0.03	1.3	2.	35	21	1.73	(0.01	(0.01	669	50	70.01	71	6.09	14123	105	10	10 ·	76	(3	0121	
46012		5.4	0.65	259	55	. (3	0.30	. 7.0	15	21	64	4 24	0.10	A 05	15005	11	70.01	11	V.VB	1000	123	12	6 ·	(3)	. (3	343	· · · · ·
46013		6.5	0.74	32000	159	(3	0.13	20.1		42	97	1 20	A 45	· A A3	170/2		(0.01		0.20	372	133	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	(3	· (3	/51	ź,
46014		>50.0	0.56	385	619	- (3	0.21	7.0	5	70	512	2.14	0.22	0.02	4189	15	(0.01	5 91	0.15	4/8 16896	878	<2 <2	17	- (5	(3)	81 992	
46015		8.8	0.8 3	343	431	3	6.19	(0.1	K	12	191	2 17	6 72		917	19	/0 0I		A 10	416	a.t	/8	-				1
46016		4.1	0.21	290	23	44	0.05	(0.1	Ä	107	42	2.40	0.05	(0.01	3L7 199	13	70.01	157	V. LO	- 413	70	14	22	(5	(3	231	
46017		350.0	0.09	(3	11	, 32	0.16	\$38.3	- <u>a</u>	86	6059	4 12	76.61	6 03	100000		74 41	24	V.V1	176	20		11	10	(3	37	
45018		- 11. t	1.68	ä	219	3	4.74	2.5	22	57	2030	4 70	70.01	V.VJ	1000		(0.01	10		720000	72000	•	4	4 9	5	20000	
46019		4.6	0.21	1641	12	. (3	0.09	0.9	11	116	75	2.91	0.04	0.01	1635 82	16	(0.01	43 173	0.20	33/6	51 154	(2 (2	327	(5 (5	<3 (1	737	
							. '															•6	••		19	11/	1. P
Minious Detection		0.1	0.01	3	- L	3	0.01	0.1	· 1	1	ı	0.01	9.01	0.01	1	1	0.01	1	0.01	2	2	,		5	. 2	. 1	
Hariaue Detection	· 7	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000	
< - Less Than Minimum	ं) -	Greater T	han Maxim	ua j	ls - Insu	ifficient	: Sample	85	- No Sampi	le i	MONALOUS	RESULTS	5 • Furti	her Anal	vses By A	Uternati	e Nethod	s. Suggest	ad.			1114			****		Sec. 1
the second				• -		• • *	· · ·		•																		
				· •	· . / /		1.00	11																			14.1

ANALYST: Kamh

+

	VANGOULER, RE VEL 116 (604) 251-5656	
	MAIN OFFICEBRANCH OFFI1988 TRIUMPH ST- VANCOUVER, D.C. V5L 1K5PASADENA, NF-VANCOUVER, D.C. V5L 1K5 • (604) 251-5656BATHURST, N• (604) 251-5656 • FAX (604) 254-5717MISSISSAUGA, C	C ES LD. B. DNT. J.S.A.
GEOCHEMICAL ANALYI	ICAL REPORT	
		

	CLIENT:	PRIME EQUITIES INC.	•	DATE:	SEPT 10	1990
	ADDRESS:	10th Flr Box 10	808 W.	Hastings St.		
1. 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		Vancouver, BC		REPORT#:	900405	GA 🧨
	•	V6C 2X6		JOB # :	900405	

PROJECT#: TANTALUS (TR) SAMPLES ARRIVED: SEPT 07 1990 REPORT COMPLETED: SEPT 10 1990 ANALYSED FOR: «Au (FA/AAS) ICP

INVOICE#: 900405 NA TOTAL SAMPLES: 34 SAMPLE TYPE: 34 ROCK CHIP REJECTS: SAVED

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS LTD. COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: VGC Staff

SIGNED: Ranch

GENERAL REMARK: None

NARCOLVER, BO - VGE 1_0-(604) 251-5656

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988-TRIUMPH-ST.-VANCOUVER; B.C. V5L-1K5-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

	REPORT NUMBER: 900405 GA	JOB KUNBER: 900405	PRIME BQUITIES INC.	PAGE 1 OF 1
	SAMPLE 1	10		
		ppb		
	34813	20		
	34814	20		
	34815	180	·	
	34816	110	-	
	34817	110		
:	34818	70		
	34819	40		
	34820	40		
	34821	20		
	34822	20		
	34823	20		
	34824	20		
	34825	10		
	34826	10		
۹	34827	20		
	34828	nd		
	34829	10		
	34830	30		
	34031	20		
	34832	10		
	34833	ad		
	34834	10		
	34835	50		
	34836	100		
	34837	60		
	34838	20		
	34839	30		
	34840	400		
	34841	bā		
	34842	nd		
	34843	20		
	34844	160		
	34845	220		
	34846	250		

	VANUES CONTRACT	25.	1.1	
l	(604) 251-5656			

► VANGEOCHEM LAB LIMITED

MAIN OFFICE -1960 TRIUMPH ST: VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT: PRIME EQUITIES INC.DATE: SEPT 17 1990ADDRESS: 10th Flr808 W. Hastings St.: Vancouver, BCREPORT#: 900405 AA: V6C 2X6JOB#: 900405

INVOICE#: 900405 NA TOTAL SAMPLES: 12 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: 12 ROCK CHIP

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PROJECT#: TANTALUS (TR)

SAMPLES ARRIVED: SEPT 07 1990 REPORT COMPLETED: SEPT 17 1990

ANALYSED FOR: Pb Zn Ag

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: Raymond Chan

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: None

۰. ۱

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE -4088-TRIUMPH ST. VANCOUVER, B.C. VSL-1K5 (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900405 AA	JOB NUMBER: 900405	PRINE EQUITIES	: INC.	PAGE 1 OF 1
SAMPLE #	Pb %	Zn %	Ag oz/st	
34814			1.49	
34815	7.53		10.82	
34816	3.31		5.10	
34817	4.03		7.08	
34831	3.30		8.33	
34835	~~	_ ~	2.98	
34836	7.73	3.87	16.60	
34840	7.70		9.32	
34843			3.24	
34844		*	21.04	
34845	14.30	2.21	26.08	
34846	9.31	4.04	34.00	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppa 1 ppa = 0.0001%

.

.

1

.01

Randh

.01 .01 ppm = parts per million

< = less than

signed:

VANGEDCHEM LAB LIMITED

1630 Pandora Street, Vancouver, B.C. VSL 1L6

Ph: (604) 251-5656 Fax: (604) 254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with 5 m) of 3:1:2 HCl to HHO3 to H2Q at 35 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Figue

.

REPORT 0: 900405 PA	PRIME EQUITI	r INC.				PROJECT	: TANTAL	US (TR)		DATE	IN: SEP	T 07 1990) DAT	E QUT: SE	PT 13 1	990	ATTENTION:	MR. J1	K FOSTER			PAGE	I OF	1	
			4-	b .	D.	£ 1.	64	C o	Č.	Ĉъ	í.	ĸ	۲a	Mn	Ho	Na	Nš	۴	Pb	Sb	Sn	Sr	U	, М	In
Sample Name	Ag	AL	AS	sa	51	L.A.	Cu	Ç0				, ,				7	0.0 M	1	000	006	000	000	ppe	004	op∎
	90 -	7	ppe	pon	pos		000	pp∎ 10	ομα ο ο	рин 02	1 00	0.02	0.05	17266	9	(0.01	3	0.09	798	B2	<2	43	<5	<3	1159
34613	45.0	0.46	97	79	(3	0.25	8.4	10	23	02	1.00	70.01	0.03	19616	ĥ	(0.0)	(1	0.09	3258	180	3	41	(5	<3	1667
34814	>50.0	0.36	118	115	(3	0.23	13.2	4	23 23	117	1.73	(0.01	0.01	10010	· 6	70.01	2	0.08	>20000	1215	3	31	(5	(3	7389
34815	>50.0	Q.4B	<3	71	(3	0.29	68.8	y	29	19//	9.03	10.01	0.01	120000	10	/0.01	/1	0.00	>20000	593	(2	39	(5	(3	4650
34816	>50.0	0.50	<3	170	<3	0.23	42.4	10	89	697	3.54	0.04	0.04	10000	10	(0.01	1	0.00	120000	1028	4	23	(5	(3	4558
34817	>50.0	0.55	553	70	<3	0.38	38.1	12	59	1002	5.67	0.12	Q.07	19630	15	(0.01	1	V.12	720090	1010	-	15			
34910	22.4	0.65	347	312	(3	0.29	16.5	13	85	122	2.80	0.11	0.05	8886	7	(0.0)	8	0.13	5068	95	(2	23	(5	(3	1935
34010	15 1	0.71	310	365	(3	0.66	22.7	14	26	61	3.64	0.02	0.14	11173	5	(0.01	2	0.20	1577	54	3	38	(3	(J (D	3000
39817	15 4	0 71	262	87	3	2.29	24.5	25	40	135	5.78	<0,01	0.64	7940	10	<0.01	28	0.26	1511	64	ζ2	49	(3	5	3967
34620	10-1	0.02	276	679	12	6.28	0.4	15	17	118	3.86	0.33	0.06	2990	4	(0.01	<1	0.22	71	62	₹2	34	<5	(3	281
34821	0.6	0.52	2/0	407	()	0.29	0.5	18	24	115	4.30	0.38	0.05	2881	7	(0.01	<1	0.25	43	59	<2	64	<5	(3	203
34822	0.2	0.93	301	977	13	9.27	v .5	10														20	<i>,</i> c	(1	172
24822	0.3	0.75	709	590	(3	0.19	<0.1	7	9	109	3.87	0.35	0.04	283	6	(0.01	{}	0.22	75	68		JJ 00	10	13	173
14024 24024	0.4	6 73	681	468	(3	0.17	(0.1	5	8	126	3.53	0.24	0.04	244	L	<0.0L	(1	0.23	70	62	3	28	()	(1	274
34024	0.5	0 60	758	286	(3	0.19	(0.1	5	8	122	2.88	0.23	0.03	145	9	<0.0ì	(1	0.27	31	75	(2	24	(2	<3	110
39820	0.0	0.0V	1051	464	17	0.25	(6.1	13	18	107	4,50	0.34	0,05	2479	8	(0.01	(1	0.24	28	62	(2	30	(5	(3	198
34825	0.4	0.00	100	707	/5	1 67	0.8	18	R	131	4.12	0.05	0.07	5603	7	(0.01	<1	0.26	98	87	<2	25	<5	(3	350
34627	1.9	0.02	107	202	10	1.07	V, U	10	v													63	/5	12	225
74979	4.0	0.85	1575	297	(3	0.29	4.5	6	18	125	5.34	0,58	0.04	2454	7	(0.01	<1	0.30	345	146	3	33	\J /F	14	J(J 100
34879	5.3	0.85	1265	267	{3	0.31	3.8	5	10	101	6.80	0.66	0.05	2870	11	(0.01	</th <th>0.25</th> <th>444</th> <th>151</th> <th>52</th> <th>40</th> <th>(2)</th> <th>(3</th> <th>700</th>	0.25	444	151	52	40	(2)	(3	700
24920	4.0	0.66	610	211	(3	0.26	3.9	8	11	86	4.71	0.19	0.03	LOB94	5	<0.01	(1	0.23	395	99	(2	27	(5	(3	040
34034	1.0	0.74	11	256	(3	0.30	33.4	8	8	1047	4,65	0.22	0.04	9824	5	(0.01	(1	0.23	>20000	914	2	31	()	(3	2037
21022	7.010 5 A	0.01	595	85	ä	0 92	4.1	32	7	201	6.57	0.23	0.29	15725	6	(0,01	(1	0.27	736	161	(2	26	<5	(3	1205
34035	3.0	V. 73	313	00													_		400	105		24	75	12	1659
34833	11.2	1.33	981	164	<3	0.86	9.9	32	В	215	7.83	0.46	0.21	15033	12	<0.01	2	0.29	487	130	20	17	75	/2	1249
34834	7.6	1.08	926	253	<3	0.32	4.6	31	10	166	9,18	0.47	0.06	10114	12	(0.01	CL CL	0.34	2003	100	14	10	1.5	70	766
34835	>50.0	0.B2	435	106	23	0.15	1.1	4	3	74	4.60	0.31	0.03	2039	7	(0.01		0.17	12192	1/9	1	12	(J /5	13	100
34836	50.0	0.54	54	66	(3	0,25	510.3	1	44	1377	3,56	0.15	0.07	18305	24	(0.01		0.10	>20000	1184			()	10	720000
34837	19.5	0.62	698	95	16	0.13	4.2	i	19	36	3.33	0.20	0.04	4762	6	(0.0]	(1	0.11	1605	113	(2	18	13	(3	870
0.400 <i>0</i>	27.0	0.54	1015	56	12	<u>0.55</u>	20.1	12	27	110	6.56	{0.01	0.15	>20000	1	(0.01	(1	0.12	6427	125	<2	28	(5	<3	2980
34838	31.0	0.37	1010	101	12	0.00	26.9	10	15	117	3.87	0.13	0.06	15046	5	(0.0)		0.14	2723	142	<2	20	(5	(3	2385
34839	26.0	0.20	/ 18	101	10	0.00	96.0	10	29	1168	4 54	(0.0)	0.07	>20000	12	(0.0)	(1	0.12	>20000	767	<2	21	<5	(3	9276
34840	>50.0	0.57	(J	39	(3	V, 30	10.7	19	70	104	3 46	0.07	0.74	12507	5	(0.0	1 (1	0.20	2919	67	(2	35	<5	<3	2970
34841	26.0	0.75	235	Z04	<u>(</u>)	0.80	11.1	14	,	45	2.10	0.12	0 12	>20000	10	(0.0	1 6	0.17	1489	62	< 2	35	(5	<3	2529
34842	24.0	0.79	233	200	G	0.49	10.6	10	3	01	4.42	V.12	V. 14	120000	1.4										
34843	>50.0	0.59	115	363	51	0.44	23.0	5	7	279	4,4]	<0.01	0.06)20000	£	(0.0	1 (1	0.11	996	187	(2	336	(5 (5	<3 / 2	4518
34844	>50.0	0.39	<3	32	<3	0.17	287.4	6	30	1424	2.47	0.08	0.04	14759	16	(0.0		0.06	120000	1733	12	1.5	\ J / E	(3	1200000
34845	>50.0	0.30	(3	42	< 3	0.58	260.3	1	23	3587	5,21	(0.01	0.14	>20000	16	<0.0	1 (1	0.04	720000	2000	52	105	1. D / F	(3	120000
34846	>50.0	0.47	. 3	46	16	0,33	495.6	13	67	4448	4,20	0.01	0.03	>20000	27	(0.0	1 (1	0.08	20000	2000	4	195	(3	67	720000
Hannaha Delenana	A 4	0.01	-	1	2	0.01	Ô. 1	1	۱	1	0.01	0.01	0,01	1	1	0.0	1 1	0.01	2	2	2	1	5	3	1
Analyze Defection	V. I E A A	10.00	2000	1000	1005	10.00	1000.0	20000	1000	20000	10.00	10.00	10,00	20000	1000	10.0	0 20000	10.00	20000	2000	1000	10000	100	1000	20000
maximum Detection	50.0	10.00	2000	1000	1000	1 7	1000.0	- Ma E	1999	ANDRALO	NG PESH	15 - fpr4		LUSES RU	Alterna	te Neth	ods Suanes	sted.							
s - Less Than Rinioue) breater	плап Пахз	#U#	15 - 1059	11110160	r Saebii	r n5	NO 348;		ADDIAL VI	OD KLUUL														

VANGEOCHEM LAB LIMITED

. •

MAIN OFFICE -1088-TRIUMPH ST .--VANCOUVER, B.C. V5L-1KS-• (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PRIME EQUITY INC. DATE: SEPT 04 1990 ADDRESS: 10th Flr Box 10 808 W. Hastings St. 10 : Vancouver, BC REPORT#: 900320 GA : V6C 2X6 JOB#: 900320

PROJECT#: TANTALUS (TR) SAMPLES ARRIVED: AUG 28 1990 REPORT COMPLETED: SEPT 04 1990 ANALYSED FOR: AU (FA/AAS) ICP

INVOICE#: 900320 NA TOTAL SAMPLES: 50 SAMPLE TYPE: 50 ROCK **REJECTS: SAVED**

SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: PRIME EQUITY INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: VGC Staff

SIGNED: Ayulh

GENERAL REMARK: None

BRANCH OFFICES PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A

REPORT NUKBER: 900320	GA JOB NUNBER: 90	0320 PRIME EQUITY INC.	PAG	E 1	01	2
SIMPLE I	λu					
11765	ppb גמ					
17766	36					
11761	30 10					
1776A	μ1 Γ					
31769	nd					
11603	au -					
33270	bā					
33271	30					
34534	ba					
34535	10					
34536	10					
34537	20					
34538	nd					
34539	88					
34540	nd					
34541	ba					
34542	50					
-31543	30					
34544	nð					
11515	nd					
34546	nð					
51617	50					
, 3131/ 1/2010	JU 20					
J4J40 1/6/0	20					
34343	20					
11001 11001	20					
~ 3433T	IV					
34552	10					
33553	10					
34554	ba					
34712	nd					
34713	20					
VH14	nd					
J 34715	nð					
- 34716	nd					
J 34717	nđ					
v 34718	9300					
• • • • • • • • • • • • • • • • • • • •						
34719	160					
√ 34720	280					
× 34721	340					
> 34722	50					
DRERCEION LINIE	ξ					
ad = none detected	= not analysed	is = insufficient sample				
		•				

. •

GC VANGEOCHEM LAB LIMITED

		16% (FACO) (MA VANCO) (ACO) (FC (604) 251-5656	1 - 4 - 48: 116
	CHEM LAB LI	MAIN OFFICE 	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. 717 RENO. NEVADA, U.S.A.
REPORT NUMBER: 900320 GA	JOB NUNBER: 900320	PRIME BOUITT INC.	PAGE 2 OF 2
SAMPLE 1	ט ג לממ		
34723	200		
~34724	180		
34725	180		
34726	370		
3(72)	320		
34728	190		
34729	90		
34730	60		
34731	60		
34732	50		
3 3 6 7 3 3	20		

Ł

1

-

-

1

ς.

1

· ·

κ.

~

١.

L.

1

L

-

MAIN OFFICE VANGEOCHEM LAB LIMITED -1968 TRIUMPH ST. 6 WGOUVER B.C. V5E 1K5 (604) 251-5656 FAX (604) 254-5717 REPORT NUMBER: 900320 AL JOB NUMBER: 900320 PRINE EQUITY INC. PAGE 1 OF 3 SAMPLE # Cu Рb Zn ¥ ષ્ઠ ዬ 33265 .01 .02 .01 33266 .03 .30 .21 33267 .06 9.06 .85 33268 .76 .03 .10 33269 .03 .23 .05 33270 .02 .03 .10 33271 .02 .02 .20 34534 .02 .11 .40 34535 .03 1.01 .10 34536 .02 3.55 .07 .02 1.58 34537 .59

34538 .01 .01 .02 .01 34539 .01 .01 .02 .01 .02 34540 34541 <.01 <.01 .01 34542 .01 <.01 .01 .01 34543 .01 .05 .02 .01 .01 34544 .02 .01 .01 34545 34546 .02 .01 .02

DETECTION LIMIT 1 Trey oz/short ten = 34.28 ppm

.01

signed: Agod h

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U S A

(654) 251-5656

MAIN OFFICE VGC VANGEOCHEM LAB LIMITED 1988 THUMPHIST VANCOUVER, B.C. V5L 1K5

• (604) 251-5656 FAX (604) 254-5717

1412 - 11 - 12 - 1<u>2</u> - 1<u>5</u>

(604) 251-5656

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUNBER: 900320 AA	JOB HUMBER: 900320	PRINE EQUITY INC	C.	PAGE 2 OF 3
SAMPLE #	Cu ¥	Pb %	Zn St	
34547	.02	<.01	.01	
34548	.01	<.01	.01	
34549	.02	<.01	.01,	
34550	.02	<.01	.01	
34551	<.01	<.01	.01	
34552	.01	<.01	.02	
34553	.01	<.01	.01	
34554	<.01	<.01	.02	
34712	<.01	<.01	.01	
34713	.01	<.01	.01	
34714	.01	.01	.01	
34715	.01	<.01	.01	
34716	.01	.01	.01	
34717	.01	<.01	.01	
34718	.01	.16	.01	
34719	.02	.01	.03	
34720	.01	.01	.02	
34721	.01	.14	.17	
34722	.01	.01	.02	
34723	.01	.16	.13	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

. '

.01 1 ppm = 0.0001%

.01 ppm = parts per million

(= less than

.01

Rynd h signed: -----

. *

Withous and wal 116 (604) 251-5656

MAIN OFFICE GC VANGEOCHEM LAB LIMITED - 1988 TRIUMPH ST. VANCOUVER, B.C. VSL TKS (604) 251-5656
FAX (604) 254-5717

_BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900320 AA	JOB NUMBER: 900320	PRIME EQUITY IN(C.	PLCE 3 OF 3
SAMPLE #	Cu &	Pb %	Zn %	
		2 · ·		
34724	.04	16.30	.13	
34725	.04	3.28	.21	
34726	.03	11.96	.13	
34727	.03	.58	.16	
34728	.05	9.47	.08	
34729	.02	.09	.02	
34730	.03	.15	.15	
34731	.01	.09	.29	
34732	.01	.01	.02	
34733	.02	.01	.04	

•

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm .01

.01 .01 1 ppm = 0.00014 · ppm = parts per million

< = less than

Ramalh signed: ----

VANCOUVER, DC V5L 1L6 (604) 251-5656	
MAIN OFFICE 1088 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5- • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT ____________

CLIENT:	PRIME EQUITIES INC.	DATE:	SEPT 07 1990
ADDRESS:	10th Flr Box 10 808 W.	Hastings St.	
	Vancouver, BC	REPORT#:	900320 AB
	VGC 2X6	JOB#:	900320
		•	
		· · ·	

PROJECT#: TANTALUS (TR) SAMPLES ARRIVED: AUG 28 1990 REPORT COMPLETED: SEPT 07 1990 ANALYSED FOR: Ag 代生命 $m = k_{\rm eff}$

INVOICE#: 900320 NA TOTAL SAMPLES: 8 **REJECTS/PULPS: 90 DAYS/1 YR** SAMPLE TYPE: 8 ROCK See Ise

 $\phi \in [0, \tau]$ SAMPLES FROM: OREQUEST CONSULTANTS LTD. COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: Raymond Chan

SIGNED:

Ryndh

Registered Provincial Assayer

GENERAL REMARK: None

		VANCOUVER, DO VEL 115 / (604) 251-5656	
	OCHEM LAB LIM	MAIN OFFICE 1988 TRIUMPH ST: VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
REPORT NUKBER: 900320 AB	JCE NUMBEE: 900320	PRIKE BQUITIES INC.	PAGE 1 OF 1
SAMPLE #	Ag oz/st		
33267	3.17		
33268	1.37		
.34536	1.84		
34718	4.62		
34724	12.64		
34725	2.28		
34726	9.44		
34728	4.48		

ECTION LIMIT .O1 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001% ppm = parts per million < = less than DETECTION LIMIT

signed:

-

Kyml h

1530 Pandera Btrept, Vancouver, J.C. 451 116 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with S el of 3:1:2 HCl to HND, to H_D at 95 °C for 90 minutes and is diluted to 10 ml with vater. This leach is partial for Al, Ba, Ca, Er, Fe, K, Ng, Nn, Na, P, Sn, Sr and W.

REPORT D: 900320 PM	PRIJAE	EB U	177 INC.				P	ROJECT: i	ANTAL US CT	1 9 1		A									AN	ALYST	r: <u> </u>	lg_	(2		
Sample Mane		le.	A 1	L			-			~ /		MA(F 18	: AUS ;	28 199	0 b	ATE OUT;	SEPT	15 1990	ATTER	TZON: NR.	. ID) FO	STER		/			
Marine -	1	fill.	7	793 1901			81	Ca	Cd (Co		Cr i	Ca	F#	r		-	_	_							rine 1	0F 2	
352b) 2204 /	i	Ğ1	0.72	3	5 X	ар Эр	ρ∎ ∕5 ▲	1 p	Ma pha		ipe py		2	Ĩ	1		ľ	lo N	a j	Ni	•	Ph :	5	6a e			
35266	I;	5.8	0.69)200	 }	Г.	13 D.	18 6	.5 4		27	Ž6 Ι.	5	0.ET	- A A .	101	₽ ₽		1 🖻	pe	1 .	De 54			T •	и -	∎ Zn
53267)5(0.0	0.22	134		й б	14 Q. /2 0	4	-B 12	1	4 5 <u>2</u> (08 >10.	.00	1.72	A ta	132	31	S (0,0	1 17,	97 O.(xi z	70	34	5 6	e e e	a p	Al poe
15268	45	9.¢	0.47	755	i li	a .	(3 Z.	135	.9 27		30 63	1))10.	#0	6.67	8 65	120400	3	19 0.0	2 2	CI 0.(S 3 1	67 S	*	* ¢	1 (i) ·	G 58
12/23	•	1.7	3, 33	(3	27	5,	1. I. V.	1 11	.7 IQ		46 21	2 9.	5	8.7%	0 22	120000	2	B 0.0	5 3	4 0.0	fi >280	00 3	12	73 (a)	4 1. 1 11	•	3 2815
17770								21 2.	.6 18		30 24	12 7.	H .	0.10	1.36	2454	2	/ 0.0	1	4 0.1	0 90	74 10	Я	13 78		1 1 2	10654
12771	1	1,5	1.24	136	8	۰, s	7 F	× .							****	7.7	I	3 {0.01	i 1	¢ 0,1	7 30	59 3	6	14 19		• •	13 1242
1534	1	.3	2.22	ä	27			313 Q.	4 22		47 21	0 <u>6</u> .	10 -	0.71	Å. 39	214						-			, G	1 1	L3 646
1575	7		0.39	1893	30	r i	7 8	⊐∠], 24 /∧	17 IZ		127	3 9.	51 1	0.33	0.57	1A14		u (0.01	4	2 0.2	5 76	SI (8	8 (54	L /4		
5X	39	.4	0.51	>2908	18	r d	7 6.	41 19. M /A		1	16 <u>6</u>	4 5.	X 1	1.66	0.06	320000	1	1 (9,9) 1 (8,9)	. 1	2 0.0	23	9 4	2 1	2 17	·		. 163
	350	.0	8,56	213	45		2 2	ин <u>ци</u> Ос 14	1 7	1	00 17,	5) <u>70.</u>	H (0. Z	0.03	1170		3 (4 ,0]		5 0,6	4 117	1 5	¢	6 22	·		-3 (S) (1)
1577					-			0e (V.	3 11	1	SA 10;	7) 10. (10 (M	1.77	6.64	>20000	00 1	\$ ¥.#1	l.	4 0.X	5 1031	8 36	6 <u>1</u>	4 74			a 4/4. (2) //m
1520	16.	.6	0.21	1118	28		2 6	10									£1	. . .91	2	9 0.0	5 32090	10 ES	7 2	5 22	(5		ំ ខេត្ត
1539	0.		1,84	38	42	ċ	3 4.	TI 76	<u> </u>		19 ()	4 <u>.</u> 9.7	2 (.17	9.19	320800	11									``	- B AA
1549	ŧ.	.1	1.46	27	45	Ċ	1 0.0	н (у. Н а	1 II 2 2		M 31	1 3.	5 (.11	1.65	1001				I.0	159	1 24	í 1	2 9			*
541	0,	.5	0.80	23	>1000	G	3 8.3	5 2	4 J 1 11	2	a 11	1.3). 01	0.04	248	14	20.01	: بد	9.2	30	ତ	6 I	ذ 12	c	Ż	3 MLS 1 191
	۹,	1	\$. 17	21	21	G	1 0.0		1 1	2	38	7.2	8 (. 87	3.22	1911	. 7	10.0L	0	6.07	2 13	6 (2	2	3 4	(5		4 <i>527</i> 7 10
542		_						• •.	6 16	2	/ 11	4.4	4 (Q). #1	\$.03	113	ć			0.0	•	4 g	5	3 253	(5	ì	מו יי כיכו ר
543	₽,		0.3E	12	5	(3	0.0	Z 1.3	5 7		• ••						-	reat	11	\$ 4. 41		3 (1	2	4 24	G	ë	1 6
544	1.	2	9.66	H	10	(3	6.2	1 7	· ·	14	1 12	7.2	5 0	.01	(0.0)	151	7	{0.01	75	7h 4.		_					
545	U.:	ъ -	1,13	(3	182	(3	9.2	7 2.1	. 0		25	2.9	4 (4	. 01	4.19	205	6	(0.44		14.01	<i>n</i>	9 8	; 7	1 6	(5	C	1 12
546	Q.,	4	1.94	2000	1	{3	1.5	7 (0.1		4 -		<u></u>	20	.87	3,20	1594	6	(0.0)	X		68	(2		5 38	(5	c	i 🐨
	۰,	1	1. 11	543	10	<3	1.2	3 (0.1	27	÷	1 bļ	5,4	20.	.21	1.91	1318	10	(Å. ÅI		/ V.IV	185	{2	; 1	257	(5	ċ	96
747				_						-	ч ч	3.4	2 0.	.21	0.64	780	Ĥ	(0.01	4	V. JO A 10	10	<u> </u>	13	43	<u>ج</u>	G	. <u>.</u>
148		1	1.24	81	- 64	(3	0.E	5 1.8	17	5		• -									-36	. 7	13	40	(5	0	207
H9	9.1 d 1	1	0.8j	<u>#1</u>	22	(3	3.3	7 2.t		31 192	47	1.8	š ().	.11	9.09	613	12	(0.01	5	• *							
60	v.,	,	V. DV	- 78	10		9. Ó	0.3		- 14 14	2 24	5.4	0,	.47	1.30	1554	1	(8.01		4.2J A 10	77	18	,	22	(5	(7	172
51	40 I	E. F	1 97	- 14	13	(3	0.97	t 1.1	17	30	'	7.51	с ф ,	F1	0.05	31	5	(0.4)	ä	0.09	31 W	2	1	16	<5	G	135
		•	1.3/	4	203	4	Ø. 18	t 0,3	8	*		4.41	· •.	17	0.87	623	7	(0,0)	- a	Ø.19	22	, v	6			3	35
2	0.2	,	1.70	16							-	τ, Β	Ϋ.		9.34	361	7	(0.01	(1	0.13	45		11	54	6	. <3	- 17
2	1.		Ó. R7	10	13		Q. Q 5	i 1.2	3	46	19	6.65		*			•				74	•	12	60	(5	' (3	33
ж	(0.1		8.85	27	13	G	0.34	0.2	6	49	15	4.95	Ψ,	40 AA	4.Z/	233	16	(0,01	(1	4.M	45	17					
12	(0.1		0.66	<u> </u>		(3	1.68	0.9	6	- 59	15	6.17	- T.	1931. 1941	0.17	Z16	10	(0, 0 1		4.25	30	14			(5	<3	98
: .	(0.1		2.36	a	11	(3	0.35	0.6	a	83	ä	6.72	/6	64 I		575	3	(0.01	(1	9.40	42	50		11	(5	(3	67
					12	G	¢. 90	Q.2	10	34	35	3.00	10.1 6.1	94 I 12 J	0.92	109	4	(9.01	4	0.01	12	0	9 /3	21	(5	<3	(76
•∨ •	(0,1		6.60		10	10							•••	46 1		524	1	(0.01	(1	0,15	40		14	162	6	10	24
а С	(0, 1		1.56	c	10 76	3	Q. 28	0,5	B	- 44	20	2.9	0 .4	12 7	h A+		-					-	.,	191	(3	(3	50
· ·	0.5	I	4.05	15	125	(3	9,58	8.0	5	- 39	30	3.53	á. (••• \ DA 4		165	5	(0.01	4	0.05	52	(2	8	41	/2		
2	4,5	1	9.41	15	145	(3	710.00	(0.1	a	- 14	₽ -	1.44	1.0	2	2.85	133		(9.01	6	0,09	31	(2	12	175			58
,	>50.0	. (0.17 3	2000	122	13	10.00	(0.1	1	13	17	1.21	1.0	мі	1.54	4aa	3	(Ø. ¥]	(1	4.02	35	(2	- 4	2342	73	(3	37
					104	14	1.35	(0.1	4	214	30	1.03	0.1	12 6	0.2	192	2	(0. 0)	(1	0.03	21	(2	3	641	72	19	¥/
· · · · · · · · · · · · · · · · · · ·	0.8	(0,50	136	179	71	114 44	• •								191	3	<0.0]	a	0.0Ż	1731	1070	á	67	75	1.0	3/
	1.9	Ċ	0.57 "	62	40	13	/10.00	3.0	21	25	63	5.29	1.0	di o	57	105/							-	WŁ		13	43
	3.1		0.64	68	17	()	3.71	9.5	4	40	20	2.90	6.6	 3 a	58	(42		18.01	49	0.07	57	10	7	179	75	15	29.
	0.7	3	7.28	11	706	13	3.4/	74.1	16	72	30	4.43	9.6	- v 39 7	24	BU3	15	19.91	4	0.04	63	(7	5	199	(J) /E	15	1.9
m Zakashi				••	140	13	1.37	1.5	26	235	65	5.80	0.2	3 2	- 41 DT	1143	17	9 .0[31	9.13	1383	(2	1	123	(3) /5	(3	53
un uncertine	0.1	đ	1.01	3	1		A 4-	• •					•. L	- 3	-81	1124	13	{0 , 0]	104	0.19	187	167	6		13	{]	Z112
ALL TAXA MANY	50.0	10	. 60	2000	1000	-3 1005	10.01	9,1		1	1	0.61	Ó. M	1 A	.61			6.44					-	6	()	G	174
The second state	🔿 – G reater Ti	han :	Basi ing	is.	- lasef	Viciael	Saast-	1000.0	20900	1000	20000	10.00	10.0	0 jo	.08 7	0000	1	4,4 <u>1</u>	1	0.01	2	2	2		۹.	-	
	مېپومېرو نېمدون د مه	.			-4 24	, 14.6EU E	ownis	AS -	No Sample	- 4	MONALOUS	RESULT:	5 - Fao	ther i		. Do 111	1999 1999	zv,ųų Katà−i	29900	10.00	20000	2000	1000	19000	100	3 1000	1
l			101													j mt/i	er mit fil		Sannar I.	-4			••		344	1940	(* ***

:

1

÷.

ţ

Ç

{

3630 Paenora Street, Vancouver, 3.C. VSL 116 Phe (504)251-5636 Fast (504)254-5717

1

:

Ŀ

ę.

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with 5 mL of 3:1:2 HCL to HMDs to MgD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Ma, Na, P, Sa, Sr and M.

												Mt	-1 - 1 -		r ma								-		
REPORT 8: 900320 PA	PRIME EAU	ITY INC.				PRO,	iect: Tak	TALUS (TR	1	214	75 tir. ai	12 30 100							ANAL	YST:	_/	ly	<u>1 </u>		
Smule Name	hg	A]	As	ßa	Đi	Ċ		<i>.</i>	.		*******	A 10 173		HILL DRII;	SEPT 11	1990	ATTENTIO	H: HR. .	IIN FOSTE	R		PAG	¥£ 2.0⊊	2	
H <u>723</u> H724	6.6	1 <u>1.16</u>	epa 58	908 7	200 53	2 0.36	pp1 27.7	ррш 9	р на 53	- Din - Pita - 47	Fe 2)10.00	۲ ۱ ۱.۱۳	Ng 1 9 57	Pan Pan Sat	He BRA	14 1 1	Ni ppe	PI	69 1999	Sh 9pa	Sn şpa	Sr p po	ų ppe	¥ P38	Zo
4725 4726 4727	>50.0 >50.0 +3.0	0.49 0.32 0.73	1595 >2969 >2960	14 114 43 83	(3 (3 (3 (3	0.26 8.07 (9.01 0.15	21.5 29.3 22.6	12 8 3	103 143	419 331 282	>10.00 5.53 4.04	0.19 0.12 0.07	0.05 0.04 (0.01	>20000 6518 5100		(0.0) {0.0) {0.0] {0.0]	1.24 1. (1. 1. (1. 1. (1.	0.14 0,22 0.15 0.05	2182 20000 20000 20000	29 509 159 610	18 16 10	16 113 57	(5 (5 (5	< 3 (3 (3	1777 1585 2808
4728 4729	>50.0 2.7	0.77 0,82	772)2900	112 34	(5 (3	0.18 A 15	15.4	17	62 62	244 731	4,55	9_17 0,12	9.07 9.02	>20000 >20000	8	(0.01	e A	0.09	7607	145	13	41 17	() 5	3	1725 2117
(730 731 732	45.0 7.9 2.1	0.40 0.55 4.31	331 336	151 259 71	(3)	5.66 8.43	10.4 46.1	16 6 6	15 15	148 276 57	5,86 1,30 1,89	0,13 0.37 0,15	0.03 0.10 0.02	1965 220000 220000	a a a	(0.01 (0.01	0 0 0	0.25	2570 2721	77 50	19 7 12	61 25 431	(5 (5 17	(3 (3 (3	1414 145 2090
733	2.4	0.66	278	269	(3	4.01 8.38	(0.1 1.3	35. 31	142 515	35 123	9.41 6.17	0.36 0.16	2.32	4521	1	(0.0]	4 (1	9.15 9.15	123HZ B O	11 (2	11 23	258 109	(5 (5	(3 (3	3947 284
ainna Betection Tinna Betection - Less Than Miniaca	9.1 50.0) - Sreater D	0.01 10.00	3	1	3 1000	0.01 10.00	0.L 1000.0	1 20000	i 1000	1 20060	0.01 10.00	0.01	0.01	20000	+/.3 	0.61	2008 1	9.29 0.91	262 2	19 2	9 2	36 i	(5 5	<3 3	M5
	· ACHIEL IN	nam (MS14		15 ~ 1954	11 ficies	t Sample	! 45 ·	- No Sampi	ie		S RESULT	i - Farth	er Auti	yses by a	lternate	e Hetho	20009 Is Suggest	10.08 ed.	20000	2000	1000	10000	100	1008	20000

OIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 - FAX (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 15046 P.O.: R-2278

SAMPLE(S) OF Rock

W. Raven Project: Treaty Creek Tantalus

REMARKS: OreQuest Consultants Ltd.

	Au	Au	Pb	Zn	Cu
	ppb	ozt	%	%	१
$46001 \\ 46002 \\ 46003 \\ 46004 \\ 46005$	270 30 >1000 30 10	.066/.042	.01 <.01 <.01 <.01 .01	<.01 .02 .02 .01 .01	<.01 <.01 <.01 <.01 <.01
46006	10		<.01	.01	<.01
46007	5		<.01	.01	<.01
46008	10		<.01	.01	<.01
46009	<5		<.01	.01	<.01
46010	<5		<.01	.02	<.01
46011 33253 33254 34527 34528	<5 <5 20 15 30		<.01 <.01 <.01 .23 .06	.01 .01 .15 .11	<.01 <.01 <.01 <.01 <.01 <.01
34529	50		1.68	1.42	.02
34530	55		.13	6.72	.04
34531	80		9.16	8.29	.34
34532	10		.16	.32	<.05
34533	5		.16	.24	.03

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 30/90

Bernie Dum SIGNED

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

4.

Г ... •

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (305) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L.	REPORT	No.:	5 - 9677 - 1
10th Floor Box 10	7.S.L.	File	No. :	E:M7775
808 West Hastings St.	T.S.L.	Invoice	No.:	15190
Vancouver B.C. V6C 2X6				

ATTN: J. FOSTER PROJECT: TREATY CREEK TANTALUS OREQUEST CONSULTANTS R-2278 ALL RESULTS PPM

		46001	4 6002	46003	46004	46005	46006	46007	4600B	46009	46010
ELEMENT	-										
Aluminum	[A1]	840	2600	4200	1300	1500	1500	2900	5500	3600	3600
Iron	[Fe]	8100	34000	22000	23000	19000	10000	32000	30000	19000	13000
Calcium	[£3]	260	8000	1400	8900	17000	2800	2300	36000	6600	420
Magnesium	[Mg]	260	920	2300	300	560	210	360	2600	1200	190
Sodius	ENa]	160	30	130	110	240	440	160	200	170	160
Potassium	EK 3	1000	2100	2000	\$000	700	540	3100	720	1300	1300
Titanium	ETi]	56	19	440	32	8	9	120	60	14	5
Manganese	[Hn]	17	230	75	160	1000	256	260	810	230	550
Phosphorus	(P)	36	20	110	18	< 2	30	1500	1600	95 0	580
Barium	[Bal	32	21	39	39	26	32	41	35	110	170
Chromium	[Cr]	50	27	55	6 6	40	74	32	44	26	7
Zirconium	[Zr]	2	4	7	Č.	4	2	6	5	4	< 1
Copper	[Cu]	40	12	17	11	5	5	20	29	9	6
Nickel	EN13	t	1	3	3	1	1	9	18	4	< 1
Lead	[Pb]	100	34	220	35	87	2 B	10	5	10	40
Ziac	{Zn]	15	160	30	65	27	39	39	52	25	93
Vanadium	EV 3	2	2	15	4	3	2	17	85	21	8
Strontium	(Sr)	6	59	9	87	33	10	38	120	32	9
Cobalt	[Co]	< 1	< 1	1	< 1	< 1	< 1	7	12	3	2
Molybdenuæ	[Ma]	4	10	6	6	< 2	< 2	6	< 2	< 2	< 2
🕂 Silver	[Ag]	57	9	200	13	4	1	< 1	< 1	< 1	1
Cadmium	[Cd]	< 1	Ł	$\langle 1 \rangle$	2	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	(Be]	< 1	2	$\langle 1$	< 1	< 1	< i	< 1	< 1	< 1	< 1
Baron	[8]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	50	10	130	10	< 5	< 5	15	< 5	< 5	< 5
Yttrium	[Y]	< t	3	2	2	5	2	6	Ģ	2	2
Scandium	[Sc]	< 1	< 1	1	$\langle 1 \rangle$	2	< 1	3	5	2	1
Tungsten	[₩]]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	(Nb)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorica	ETh]	< 10	< t0	< 10	< 10	< 10	< 10	< 10	20	< 10	< 10
Arsenic	(As)	380	65	790	120	30	45	45	25	15	20
Bismuth	[Bi]	· < 5	< 5	< 5	< 5	5	< 5	< 5	25	< 5	< 5
₹in	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	5	< 5	< 5	< 5	< 5	· < 5	15	< 5	< 5
Holmius	(Ho)	< 10	{ 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-04-1990

SIGNEB : _____ Rennie Dunn

2-302-48TH STREET, SASKATGON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.			T.5.L.	REPORT No. : 5 - 9677 - 2
10th Floor Box 10			T.S.L.	File No. : E:#7775
808 West Hastings St.			T.S.L.	Invoice No. : 15190
Vancouver B.C. V&C 2X6				
ATTN: J. FOSTER PROJECT:	TREATY CREEK TANTALUS	OREGUEST CONSULTANTS	R-2278	ALL RESULTS PPM

		46011	33253	33254	3 4 527	34528	34529	34530	34531	[*] 34532	ິ <u>ْ</u> 34533
ELEMENT											
Aluminum	(A1)	3300	27000	3200	2500	2900	2200	1100	1400	1300	2400
ไกษา	[Fe]	25000	38000	45000	36000	41000	35000	42000	42000	37000	65000
Calcium	{Ca}	61000	77000	27000	4100	5300	2300	2600	3200	1600	780
Mannesius	[約]	7400	5600	6300	1200	930	910	1100	1200	210	140
Sodium	[Nia]	110	110	160	40	30	20	20	20	20	20
Potassium	{K]	620	340	750	1900	2560	1400	910	1300	1300	1300
Titaniua	[1 i]	6	1200	40	11	6	5	4	4	4	2
Manganese	[% n]	760	B £0	710	4000	3600	3700	2200	2400	2200	2500
Phosphorus	(P]	640	1000	310	1300	1400	750	300	428	380	630
Barium	(Ba]	110	44	10	100	54	46	29	39	28 0	270
Chroa ដែត	(Cr)	38	49	24	20	20	< 1	< 1	< 1	64	21
Zirconium	[27]	6	13	8	6	6	3	4	4	< 1	4
Copper	[Cu3]	23	17	16	6B	69	130	220	2800	120	170
Nickel	[N:]	27	28	3	3	5	2	7	5	3	9
Lead	[Pb]	7	2	16	1400	470	15000	1400	22000	900	1200
Zinc	{ [a]	44	46	42	1000	600	17000	58000	61000	4500	1500
Vanadiuæ	{¥]	81	78	27	21	25	9	< 1	< 1	< 1	8
Strontium	[Sr]	270	110	32	23	26	12	7	19	100	83
Cobalt	[Co]	10	10	6	6	10	3	5	4	6	42
Holybdenum	(Ma]	< 2	2	8	< 2	2	< 2	< 2	< 2	2	< 2
¥ Silver	(Ag)	< 1	< 1	< 1	17	10	75	65	290	39	44
Cadmium	[Cd]	< 1	{ i	< 1	10	6	6B	340	330	28	17
Beryllium	[Se]	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baroa	EB 3	< 10	< 10	< 10	< 10	< 10	< 10	< 40	< 10	< 10	< 10
Antiaony	[Sa]	15	< 5	< 5	95	65	240	270	2400	120	70
Yttrium	[Y]	9	11	4	8	6	5	5	6	7	9
Scandium	[5c]	7	7	3	10	11	7	9	5	5	В
Tungsten	[₩]	< 10	< 10	< 10	410	70	230	830	1100	80	40
Nichium	[栖]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Therium	[Th]	50	20	30	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Arsenic	(As)	20	< 5	210	340	500	470	520	480	250	60
Bismuth	[Bi]	- 35	30	25	10	5	5	20	20	15	20
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[£1]	< 5	10	10	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Holaium	[Ho]	< 10	20	10	< 10	< 10	16	10	10	< 10	< 10

DATE : SEP-04-1990

SIGNED : Beinie Our

L

•

.

•

.....

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORAT 10th Floor Box 808 West Hastin Vancouver P.C.	ION LH 10 ngs St. Ver 21).					T,S.L, T.S.L. T.S.L.	. REPORT . File . Invoice	F No. : S No. : E: No. : 15	- 9626 - :M7731 5149	1
ATTN: J. FOST	ER ER	PROJECT:	TREATY CREEK	OREGAIE	ST CONSULT	ANTS R-2242		ALL RES	BULTS PPM		
ELEMEN	T	34501	34502	34503	34504	34505	34506	34507	34508	34509	34510
ลิโมกเ่กยก	[A]]	3900	> 5000	1700	550	:000	1000	350	940	600	410
Iran	(Fe]	33000) 31000	19000	58000	64 000	40000	33000	61000	42000	61000
Calcium	(Ca]	1B00	0086	4300	2300	1700	12000	8100	4900	1600	3700
Maonesium	[Mo]	3400	3200	1000	1100	440	2100	2000	1300	190	1600
Sodium	[Na]	20	20	30	< 10	< 10	10	< 10	10	20	20
Potassium	EK 3	330	1500	1400	400	850	1100	200	1200	740	380
Titanium	[Ti]	64	69	3	7	5	3	7	4	2	5
Hanoanese	[Mn]	2400) 430	1000	1400	1200	5100	2600	3200	5200	1500
Phosphorus	5 (P)	250	1000	560	<u></u> ĴÚ	110	350	< 2	510	190	< 2
Barium	[Ba]	210) 37	40	33	41	13	24	21	9	46
Chromiua	[Cr]	25	24	20	7	15	36	8	3	30	43
Zirconium	(Ze)	< 1	2	3	< 1	< 1	3	< 1	< 1	1	< 1
Cooper	(Cu)	19000	15000	1500	5000	-6600	360	4000	5900	15000	1300
Nickel	ENi 3	13	13	18	2	5	3	< 1	7	6	3
Lead	(Pb]	59	37	42	20008	23006	2100	21000	00001	1500	2100
Zinc	[[n]	260	76	70	14000	B000	350	140000	2500	940	7500
Vanad ium	£V]	18	19	14	< 1	< 1	7	< i	< 1	2	< 1
Strontium	(Sr)	13	20	15	71	170	36	21	12	21	53
Cobalt	[Co]	8	12	16	< 1	3	4	< 1	8	5	1
Molvodenus	⊧ [Mo]	< 2	< 2	< 2	18	86	2	< 2	(2	< 2	< 2
Silver	[Ao]	42	37	. <u>4</u>	270	270	- 41	250	77	BI	92
Cadatism	{ [Cd]	27	12	2	79	57	24	1100	39	13	55
Bervllium	[Be]	< 1	< 1	< 1	< 1		< 1	< 1	< 1	< 1	< 1
Boron	{B }	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb)	10	70	65	2800	3000	340	3000	1100	360	450
Yttrium	[¥]	7	3	11	9	12	4	5	6	2	7
Scandius	(Sc]	3	2	5	3		4	< 1	3	1	2
Tunosten	[1]	20	10	70	190	110	< 10	1900	80	40	120
Niabium	(Nb)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorius	ETh 3	40	50	< 10	< 10	< 10	30	< 10	< 10	< 10	< 10
Arsenic	{A=3	15	540	540	1100	1500	9800	930	1700	950	1600
Bismuth	EBi3	. 5	< 5	< 5	20	20	< 5	15	< 5	< 5	15
Tin	[Sn]	< 10	< 10	< 10	$\langle 10$	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[[1]	< 5	< 5	< 5	{ 5	< 5	< 5	< 5	(5	< 5	< 5
Holaium	(Ho)	< 10	< 10	< 10	10	20	< 10	< 10	10	< 10	10

DATE : AUG-31-1990

SIGNED : Bernie Arm

2-302-48TH STREET, SASKATODM, SASKATOHEWAN S7K 4A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SEAN

Aqua-Regia Digestion

PRIME EXPLORATI 10th Floor Box 808 West Hastin Vancouver B C	0% (TO 10 gs St. VAC 28	· ·					T.S.L T.S.L T.S.L	. REPOR . File . Invoice	[No. : No. : No. :	5 - 9626 - E(M7731 15149	2
ATTN: J. FOSTE	8 8	e PRBJECT:	TREATY CREE	k Gregue	EST CONSULT	TANTS R-2	242	ALL RE	SULTS PPM		
ELEMENT		3451;	1 34512	34513		34515	34516	34517	34518	34519	34520
สโยสถาบส	[A]]	25() 1000	280	1500	1600	1100	(400)	57() 590	360
Iran	(Fe]	5900X	37000	7300	14000	:4000	8000	69000	28000	27000	22000
Calcium	iCa]	330(> 2600	2 4 0	t100	200	223	420	50	> 200	140
Magnesium	(Mg)	150(3 240	60	130	150	70	160	4(> 30	20
Sodium	[Na]	20) 20	10	50	30	40	10	20) < 10	< 10
Potassium	EK 🕽	35() 770	270	(200	1B00	9 20	920	39() 540	400
Titanium	[Ti]	7	2 6	2	4	Ÿ	3	2	3	5 < 1	< i
ñanganese	[Mn]	1600) 3300	2100	900	360	240	5300	250) 62	59
Phosphorus	(P]	ε	3 150	48	360	240	170	240	74	1 34	20
Barium	[Bz]	43	5 42	45	67	110	140	15	34	19	13
Chromium	[[7]	47	7 39	5.3	62	77	57	53	130) 79	49
Zircanium	[2r]	< 1	l < 1		2	2	< i	2	< 1	1	< 1
Copper	[Cu]	59 0) 9500	4300	7260	710	340	85	4E	} 98	160
Nickel	[Ni]	3	5	2	3	3	2	2	3	ş 4	3
Lead	[Pb]	534) 22000	25000	24066	\$2000	14000	1400	300) 62	< 1
Zin⊂	[ไ ถ]	370) 1400	580	170	310	2009	1160	66) 56	26
Vanadium	EV 3	< 1	< 1	4 1	5	8	5	7	7	1 5	2
Strontium	[Sr]	45	5 100	7	12	8	7	B	3	57	4
Cobalt	(Co)	$\langle \rangle$	2	< 1	4	l	1	< 1	< 1	. 2	< i
Molybdenum	[Xo]	< 2	2	2	< 2	< 2	< 2	< 2	< 2	2 < 2	< 2
Silver	[Ag]	22	270	270	150	186	200	45	19	21	25
Cadmium	[C4]	5	27	25	6	12	26	41	2	2 3	3
Beryllium	[Be]	< 1	. < 1	(1	< 1	< 1	< 1	< 1	< 1	. < 1	< 1
Boron	(B)	< 10) < 10	< 10	< 10	< 10	< 10	< 10	< 10) < 10	$\langle 10$
Antiaony	[Sb]	17000	2100	31000	3B00	29 00	3200	1200	350	70000	73000
Yttrium	EY 3	6	, 4	< 1	Z	< 1	< t	3	< 1	. < 1	< 1
Scandium	[Scl	2	2 2	$\langle 1 \rangle$	2	3	i	4	< 1	. < 1	< 1
Tungsten	CW]	< 10) 40	< <u>10</u>	< 10	< 10	5 0	46	< 10	10	$\langle 10$
Niobium	END I	< 10) < 10	< 10	< 10	< 10	< 10	< :0	< 10) < 10	< 10
Therium	ETh]	< 10	10	$\langle -10 \rangle$	(10	$\langle -10 \rangle$	$\langle 1 \dot{0} \rangle$	26	< 10	< 10	$\langle 10$
Arsegic	{As]	1700	920	830	140	2600	1700	11000	(000)	150	80
Bismuth,	[Bi]	- 15	(5	< 5	ξ. 5	(5	< 5	< 5	< 5	< 5	< 5
Tin	(Sn)	< 10	e (10	< 10	< 10	< 10	< 10	< 10	< 10) < 10	< 10
Lithium	ELi3	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Holmium	(Ho)	20	r < 10	< 10	〈 10	< 10	< 10	10	< 10	< 10	< 10

DATE : AU6-31-1990

SIGNED : _____ Remine Durm

 $\left[\right]$ r

-

- 1**1**

2-302-48TH STREET, SASKATBON, SASKATCHEWAN S7K 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 47)7

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

T.S.L. REPORT No. : 5 - 9626 - 3

T.S.L. File No. : E:#7731

T.S.L. Invoice No. : 15147

ALL RESULTS PPM

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vanaguver B.C. V6C 2X6 ATTAL 1 EPETER PROJECT, IDEATY CREEK PREQUECT CONCUM-

ATTN: J. FOSTER PROJECT: TREATY CREEK OREQUEST CONSULTANTS R-2242

		34521	34522	34523	34524
ELEMENT					
Aluminum	[4]]	2500	1800	780	7700
iron	(F.)	62000	25000	23000	48000
Calcium	[Ca]	2000	960	780	3700
Maonesium	[約]	980	360	310	1400
Sodiua	(Na]	< 10	< 10	< 10	20
Potassium	{K }}	1500	970	370	1400
Titanium	[Ti]	4	3	2	4
Manganese	[Mn]	1900	5000	4000	3300
Phosphorus	[P]	660	290	9 0	520
Bariua	[Ba]	14	56	55	47
Chromium	(Cr]	31	33	$\langle 1 \rangle$	24
Zirconium	[2r]	5	2	< 1	1
Caoper	[Eu]	92	67	820	200
Nickel	[Ni]	13	ŝ	2	4
Lead	[Pb]	180	7100	25000	11000
Zinc	[2n]	510	5000	42000	3600
Vanadium	EV 1	50	7	< 1	9
Strontiua	[5#]	· 14	10	7	11
Cobalt	{Co]	11	3	1	6
Molybdenum	[Mo]	< 2	6	< 2	< 2
Silver	(Ag)	4	35	240	59
Cadmitte	[Cd]	16	39	260	55
Beryllium	[Be]	{ 1	< 1	(1	< 1
Boron	(B)	< 10	< 10	< 10	< 10
Antisony	(Sb)	1900	1500	1100	460
Yttrium	[Y]]	7	3	<u>1</u>	9
Scandium	[Sc]	11	4	2	7
Tungsten	[₩]	30	100	620	70
Nicoium	[Nb]	< 10	< 10	< 10	< 10
Thorium	[Th]	4 ()	< 10	< 10	10
Arsenic	(As]	2400	2000	470	570
Bismuth	[Bi]	· < 5	< 5	(5	< 5
Tia	(Sn]	< 10	< 10	< 10	< 10
Lithium	Ri)	< 5	< 5	< 5	< 5
Hoimium	(Ho)	10	< 10	(10	< 10

DATE : AUG-31-1990

Bunie Vum SIGNED :

۲		_	4	
	7	$\overline{\langle}$		
	مر)		•
	$\overline{}$			

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST

SASKATOON, SASKATCHEWAN S7K 6A4 Ø (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPIEIS) COOM	Prime Explorations Ltd.	<i>↓ ↓</i>
	10th Floor,Box 10-808 West Hastings St.	REPORT No.
	Vancouver, B.C.	S9626
	V6C 2X6	

INVOICE #: 14833 P.O.: R-2242

SAMPLE(S) OF Rock

A. Walus Project: Treaty Creek

REMARKS: OreQuest Consultants

	Au ozt	Ag ozt	Pb %	Zn %	Cu %
34501 34502	.013/.018	2.98 2.18	.02	.04	1.93
34503	<.0017.001	.25	.01	.01	.15
34504	.168/.172	5.30	28.6	1.64	. 55
34505	.392/.418/.392	4.90	11.0	.93	.79
34506	.090/.087	1.76	.32	.04	.04
34507	.091/.100	4.17	37.4	15.5	.39
34508	.061	4.57	.97	.33	.63
34509	.014/.012	5.00	.19	.10	1.65
34510	.045/.043	5.15	3.21	1.07	.14
34511	.039	.81	.03	.04	.08
34512	.007/.005	5.80	11.1	.21	1.05
34513	.141/.132/.152	83.1	10.9	.08	.50
34514	.080/.075	6.91	3.99	.02	.74
34515	.016	8.40	1.27	.04	.07
34516	.004/.004	11.7	1.55	.32	.07
34517	.014	2.33	.18	.14	.02
34518	.007/.010/.009	1.14	.04	.01	.01
34519	.005	1.26	<.01	.01	.02
34520	.005	1.35	<.01	<.01	.02

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 23/90

Bernie Vi SIGNED

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

۲*		4
	~	
*****	•)	

2 - 302 - 48th STREET, EAST SASKATOON SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. S9626 Vancouver, B.C. V6C 2X6

INVOICE #: 14833 P.O.: R-2242

SAMPLE(S) OF ROCK

A. Walus Project: Treaty Creek

OreQuest Consultants **REMARKS:**

	Au ozt	Ag ozt	Pb %	Zn १	Cu ¥
34521	<.001/<.001	.33	.04	.07	.01
34522	<.001/<.001	1.92	.73	.56	.01
34523	.002/.004	12.9	2.86	3.73	.11
34524	.004/.002	2.76	.89	.34	.03

SIGNED .

C. Idziszek, J. Foster TO: COPIES INVOICE TO: Prime - Vancouver

Aug 23/90

Bernie Du

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

 For enquiries on this report, please contact Customer Service Department 	t.
Samples, Pulps and Rejects discarded two months from the date of this re	port.

CERTIFICATE OF ANALYSIS

	Prime Explorations Ltd.	11
SAMPLE(S) FROM	10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6	REPORT No. S9627

INVOICE #: 14834 P.O.: R-2243

SAMPLE(S) OF ROCK

A. Walus Project: Treaty Creek

REMARKS: OreQuest Consultants

	Au	Ag	Pb	Zn	Cu
	ozt	ozt	%	¥	१
34701	<.001	.12	.03	.03	<.01
34702	.007	.26	.02	.02	<.01
34703	.048	2.70	.55	.03	.04
34704	.031	6.09	1.07	.05	.05
34705	.045	8.25	.25	.02	.07
34706	.208/.212/.200	100.	20.7	1.06	.78
34707	.003/.004	27.4	6.50	.29	.20
34708	.002	1.36	.49	.39	.05
34709	<.001	.21	.03	.01	.01
33230	<.001	.32	.05	.03	.02
33242	<.001	.09	.02	.02	.01
33243	.003	.13	.03	.01	.01
33244	<.001	.08	.01	.01	.01
33245	<.001	.18	<.01	<.01	.01
33246	<.001	.09	.02	.03	.01
34525	.006	2.55	.56	.17	.03
34526	<.001	20.4	3.31	.05	.10
34710	.003	.44	.05	.01	.03
34711	.004	8.99	2.52	.03	.07

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 23/90

SIGNED _____ Bernie Vie Page 1 of 1

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

2-302-48TH STREET, SABKATOON, BASKATCHEWAN B7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Mastings St.						T.S.L T.S.L T.S.L	Т.S.L. REPORT Na. : S - 9627 - 1 T.S.L. File No. : E:M7732 T.S.L. Invaice Na. : 15165				
Vancouver B.C. ATTN: J. FOSTE	V6C 2. R	K& PROJECT:	TREATY CREE	k oreque	est consult	'ANTS R-22	43	ALL RES	SULTS PPM		
ELEMENT		3470:	1 34702	34703	34704	34705	34706	34707	34708	34709	33230
Alumnum	[A]]	45(x	0 3000	3500	2500	2500	450	2200	3500	1500	14000
Iroa	[Fa]	24000	0 28000	31000	31000	21000	13000	59000	35000	59000	27000
Calcium	(Ca)	2B(X	0 1400	98 0	800	700	100	520	<i>6</i> 20	300	1800
Magnesium	[Mg]	2504	0 350	410	320	\$10	20	<u>1</u> 40	100	80	<u>5500</u>
Sodiua	[Na]	Ŗ	0 10	50	40	20	10	10	20	20	60
Potassium	(K 3	660	0 1900	2200	3300	1500	350	1600	1500	1600	1600
Titanium	[Ti]	5X) 24	5	7	5	1	4	1	3	7
Manganese	(Ma)	55(0 140	260	110	4100	230	5100	4100	1000	800
Phosphorus	(P]	70(0 760	810	500	850	79	540	490	230	720
Barium	EBa]	25	? 28	<i>99</i>	68	140	22	35	75	7	42
Chromium	[Cr]	13	5 58	36	43	33	35	46	41	38	34
Zircoaium	[Zr]	2	j < 1	1	2	2	(1	2	2	1	4
Copper	[Cu]	11	1 74	210	320	4,339	9100	1600	320	50	47
Nickel	[Ni]	< 1	1 5	3	1	1	3	1	4	8	2
Lead	[P5]	130) 120	2400	11000	1600	23000	26000	2400	380	430
Zinc	(Zn)	170) 160	190	330	170	11000	1700	3200	150	180
Vanad ium	{V]	18	5 14	23	15	5	2	10	1	9	25
Stroation	[Sr]	iQ) 12	31	26	15	5	14	32	14	7
Cobalt	(Col	4	8	6	1	2	< 1	< 1	5	5	5
Malybdenum	[Ho]	$\langle 2$	2 < 2	< 2	< 2	< 2	< 2	6	10	< 2	< 2
5ilver	[Ag]	< 1	1 3	48	7 9	170	270	270	35	3	4
Cadaiua	[Cd]	2	2 36	9	11	5	90	34	50	4	< 1
Beryllium	[Be]	< 1	l < 1	< 1	< E	$\langle 1$	< 1	< 1	< 1	< 1	< 1
Boran	(B)	< 10) < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[56]	45	i 360	9 50	2100	540	53000	2000	240	110	110
Yttrium	[Y]	3	S J	3	1	3	< 1	3	9	e 1	5
Scandium	[5c]	< 1	2	4	3	4	< i	4	5	5	i
Tungsten	[W] 3	< 10) < 10	< 10	< 10	< 10	120	50	70	< 10	< 10
Nicbium	[Nb]	< 10) < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	$\langle 10$
Thorium	[Th]	< 10) < 10	< 10	< 10	< 10	< 10	10	< 10	80	30
Arsenic	[As]	45	6500	3500	2700	1700	600	B000	820	680	55
Bisauth	[Bi]	4 5	< 5	< 5	< 5	< 5	(5	< 5	< 5	< 5	< 5
Tin	[5 n]	< <u>1</u> 0	(10	< 10	< 10	(10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	5	< 5	< 5	< 5	15	< 5	< 5	< 5	< 5	20
Holmium	[Ho]	(20) < 10	< 10	< 10	< 10	< 10	10	< 10	< 10	< 10

1

11

. .

DATE : AUG-31-1990

SIGNED : Burie Dum

7 S.L. LABORATORIES

2-302-487H STREET, SASKATDON, SASKATOHEWAN S7K SA4 TELEPHONE #: (306) 731 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATI	or ltd.						T.S.L.	REPORT	No.: 9	- 9627 - 2
10th Figor Box	10						1.5.L.	File	NO. (E	:M7752
BOB WEST HASTIN	0Sວ£ເ ເມຕ່ວນ	1					1.5.1.	INVOICE	NO. 1 10	1165
VEREQUVER 5.5. ATTN: I EDGTE	VQL 230 D 0	ን አካብ የሮሞች •	TOPATY POPER	ORESPEC	ат есыныя т.	ANTE 5 9747			ute de¥	
HEINE J. FUGIC	R i	101912113	CACHIE GACEN	UNEQUE	01 10100011	HNIƏ NT2240		HLE 723	QUIA FFN	
		33242	33243	33244	33245	33246	34525	34526	34710	34711
ELEMENT										
Aluminum	[4]]	14000	2600	2000	840	4506	860 8	260 0	1200	1600
Iron	[Fe]	26000	BB00	8300	41000	15000	J1000	20030	9200	9200
Calcium	[Ca]	5700	180	320	40	460	100	900	280	360
Magnesiya	[Ma]	5500	550	490	50	879	70	140	60	80
Sadius	(Na)	60	330	180	50	20	< 10	30	30	20
Potassium	[K]	620	1200	920	820	1600	560	3060	15 00	1000
Titanium	[Ti]	65	17	13	4	2	4	5	5	3
Manganese	E Min 3	680	86	72	48	330	160	1700	116	5 00
2 Phosphorus	[P]	320	44	36	< 2	58	30	660	430	370
Barius	[Ba]	<u>i</u> 40	71	63	14	120	13	110	350	350
Shrowium	(Cr]	<i>5</i> 0	55	92	46	14	67	29	116	82
Zirconium	[Zr]	2	3	2	2	< 1	$\langle 1 \rangle$	2	3	1
Cooper	2Cu3	53	В	6	5	1	70	730	45	340
Nicke]	(Ni)	Ь2	3	5	2	< 1	3	2	2	2
Lead	(Pb)	110	176	65	62	120	2400	26090	850	21000
Zinc	{2n]	150	44	40	17	210	1300	370	69	170
Vanadium	{V]	28	В	3	i	< 1	2	10	3	5
Strontium	(Sr)	Jt	3	3	2	5	7	18	15	13
Cobalt	(Co)	8	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	i	2
Molybdenum	[X o]	< 2	< 2	2	64	4	< 2	< 2	< 2	< 2
#Silver	[Ag]	< 1	1	< 1	2	< 1	46	280	17	170
Cadeium	[Cd]	2	< 1	1	1	2	20	22	2	2
Beryllium	[Be]	< 1	< 1	$\langle 1$	< 1	3	< 1	< 1	< 1	< 1
Boran	[B]	< 10	< 10	< 10	< 10	< 10	< 10	$\langle 10 \rangle$	< 10	< 10
Antimony	[55]	35	60	30	30	10	1200	1400	130	4 60
Ystrium	[Y]]	4	1	< 1	< 1	3	< i	2	< 1	ŧ
Scandium	(5c)	3	< 1	< 1	< 1	1	< 1	я Н	5	Z
Tungsten	EW }	< 10	< 10	< 10	< 10	< 10	$\overline{30}$	< 10	< 10	< 10
Niobium	(Nb3	< 10	< 10	< 10	< 10	10	; 20	< 10	10	< 10
Thorsua	[Th]	30	< 10	< 10	< 10	< 10	< 10	(10	< 10	< 10
Arsenic	(As)	60	45	BO	140	130	4330	390	410	510
Bismuth	[Bi]	. < 5	< 5	< 5	< 5	6 5	₹ 5	< 5	< 5	< 5
Tin	(Sn]	< 10	< 10	< 10	< 10	< 18	- 10	< 10	< 10	< 10
Lithiua	[Li]	JQ	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Holmius	(Ho]	< 10	< 10	< 16	$\langle -10 \rangle$	< 10	< 10	< 10	< 10	< 10

١. i. L <u>.</u>.... ŝ. ι.

-

• • •

DATE : AUG-31-1990

STEMED : Bernie Our

VANGEOCHEM LAB LIMITED

(5(

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PRIME EQUITIES INC.DATE: JAN 16 1991ADDRESS: 10th Flr 808 W. Hastings St..: Vancouver, BC.: V6C 2X6.DATE: JAN 16 1991

PROJECT#: TANTALUS (TREATY) SAMPLES ARRIVED: JAN 08 1991 REPORT COMPLETED: JAN 16 1991 ANALYSED FOR: Au (FA/AAS) INVOICE#: 910004 NA TOTAL SAMPLES: 260 SAMPLE TYPE: 260 SOIL PULPS REJECTS: DISCARDED

<u>`</u>,

SAMPLES FROM: PREVIOUS JOB #900630 & 900713 COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. MR. JIM FOSTER

ANALYSED BY: VGC Staff

R SIGNED:

GENERAL REMARK: COPY SENT TO MR. W. RAVEN - OREQUEST CONSULTANTS.

6

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 910004	GA JOB NUMBER: 910004	PRIME EQUITIES INC.	PAGE 1 OF 7
SAMPLE I	Au		
	ddd		
L12¥ 1+50N	10		
L12W 2+00N	10		
612W 2+50W	nd		
112V 3400N	ba		
L12W 3+50N	ba		
L12W 4+00N	nd		
1124 4450N	10		
L12T 5+00H	nd		
L134 0+50N	40		
L13V 1+00H	30		
138 1/CAN	114		
1139 10308 1139 24060	- 3		
LIJE 11000	01		
LL30 2+508	na		
LIJN J+BUK	10		
2134 3F20N	10		
G13V 4+008	nđ		
L13T 4+50H	ba	<u>.</u>	
L13V 0+005	10		
L139 0+50S	60		
L13W 1+00S	70		
114 4 0400	60		
CTAN 0450N	50		
111W 1100K	30		
E348 1458W	10		
1114 JANON	£0		
8118 E.VVW			
L14V 2+50H	50		
C14A 3+D6R	nd		
L14V 3+500	40		
C14W 4+00K	20		
L14V 4+50N	d.		
L14¥ 5+00¥	20		
L154 0+505	20		
L15V 1+00S	30		
L15V 1+505	nd		
L159 2+D0S	10		
L16V 0+50S	10		
L167 1+00S	10		
T.178 0+00	10		
L177 0+50N	nd		
	r		
nd = none detected	s z nationalization z an	= isenfficient esuala	
ng - none geneered	and analysed 18	- Insalficien samine	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

I

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

.

ł

ł

•

:

		thine Synthese the.	1408 1 VI 1
SAMPLE I	Ya		
	ppb		
617¥ 1400M	30		
L17V 1+50N	30		
G178 2+008	ad		
L17V 2+50N	10		
6170 3+00N	ba		
L17W 3+50M	20		
L170 4+00N	nd		
6170 0+50s	10		
L17U 1+00S	10		
L17W 1+505	10		
L17W 2+008	20		
L181 0+50N	pđ		
£180 1+00N	50		
1.1 81 14500	20		•
L184 2+00K	nd		
5.18m - 24500	10		
7.1.8 W 3480W	80		
510W 5100B	60		
110M UTCUR	pd		
L19T 1+00H	Bầ		
1100 1150V	ad		
5134 310AM	nd		
5168 316AN	. nd		
1109 17200 1109 21009	nd ad		
FIDE JIVED	10 10		
7738 74348	14		
L199 4+000	20		
6138 0+50S	nd		
L19¥ 1+00S	20		
619V 1450S	· Da		
PIOM Atra	nd		
L20V 0+50N	nd		
L28W 1400M	nd		
6200 1450N	ba		
LZOV Z+CON	· nd		
6200 2+50N	nd		
L20¥ 3+008	nd		
6201 3+50N	50		
L20V 0+50s	nd		
L200 1+00s	bđ		
DETECTION LINIT	5		
ed a sees defeat	ad the sulface the	= izenfficiezt samze	*

ς.

L

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

Ì

:

.

	REPORT NUMBER: 910004 GA	JOB NUKBER: 91000	4 PRIME BOUITIES INC.	PAGE 3 OF 7
	SAMPLE 1	λα		
		oob		
	121W 0+00	ba		
	L21V 0+50F	nd		
	L21V 1+00N	nd		
	L21T 1+50N	40		
	L21W 2+00H	nđ		
	1.21W 2+50W	70		
	1.21W 3+00W	20		
	1,211 3+50N	nd		
	1.724 0+00	10		
	L22V 0+50N	nd		
	1990 1.84W			
	5221 1+50M	DQ - 2		
	L220 1+508	nd		
	SZZW ZEQON	€U An		
	LZZN 2+50H	20		
	422¥ 3400X	nd		
	L22W 0+58S	nd		
•	1.22W 1+50S	10		
	1.771 7+805	200		
	1.778 7+508	10		
	L22W 3+00S	nd		
	1998 3.540	14		
	6228 J1348	- 3 10		
	1224 4+UUS	nq		
	622¥ 4+5V8	na	<u>.</u>	
	L22V 5400S	nd		
	L23¥ 0+80	DO		
	123W 0+50M	nd		
	L23V 1+00N	bā		
	L23W 1+50M	30		
	L23V 2+008	30		
	123W 2+50H	20		
	123W 2+00S	bd		
	L23W 2+50S	nd		
	123V 3+00S	nd		
	L239 3+50S	ba		
	L239 4+00S	nd		
	1239 4+50s	лđ		
	L247 0+00	nd		
	1.244 8+508	nđ		
	1247 1+90N	20		
		E		
	nd - none defected	t Frankras	e - Incufficiant comula	
	no - nose derected	- mar anatizea	19 - INSATTICICAL SANAIG	

۰.

١.

<u>ن</u>ے ا

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

ł

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

. . |

REPORT NUMBER: 910004 GA	JOB NUMBER: 910004	PRIME EQUITIES INC.	PAGE 4 OF 7
SAMPLE ‡	¥a		
	ppb		
L24¥ 1+50N	20		
124W 2+00N	10		
1.24¥ 2+50N	10		
1.244 0+505	nd		
1.747 14885	nd		
1.244 1.4508	nd		
1.218 31406	nd.		
1738 71500	nd		
1914 21900 1914 91000	nu fa		
6218 37000 8958 8188	20 5-1		
11 34 0 700	81Q.		
L25¥ 0+50K	ba		
625W 1+00N	nd		
125 4 1+508	pđ		
625W 2+00W	nð		
L258 0+50S	nd		
00 1150 115CH	- d		
IE 5128 14438 40 1198 14968	litu ad		
TK 6120 17738	- 3		
TH LIFE 2420H	nd		
TH LIZE 2+758			
TR 6124 3+258	ng		
TR 1128 3+758	10		
TR 6124 4+258	20		
TR 6124 4+758	bà		
TR 1.13V 0+25N	50		
TR LI3Y 0+75H	40		
•			
TR LIJU 1+25M	10		
TR 6138 1+758	170		
TR L13T 2+25H	10		
TR 6130 2+758	20		
TR L130 3+25K	nd		
TE 6138 3+758	10		
TR 1139 4+25W	ъč		
TR 1131 0+255	50		
TP [138 0+150	70		
PD 7.129 11250	10		
IR WIJE 1.675	10		
TR 6144 0+258	20		
TR 614¥ 0+75#	20		
TR 1144 1+25N	20		
TR 114W 1+750	10		
NEASCATOR TIME	Ę		
nd = none detected	u - = not analysed is = 1	nsufficient samole	
	- The anarithe a 19 - 1	nostreres samie	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ł

į

REPORT NUMBER: 910004	GA JOB NUMBER: 9	10004 PRINE EQUITIES INC.	PAGE 5 OF 7
SAMPLE 1	Lu		
	bbp		
TH LIAN 2+258	nd		
TH LIAN 24758	10		
TR LIAN 3+250	10		
TR 614Y 3+758	nd		
TH LIAT 4+258	nd		
TR 1144 44758	nð		
TE L15V 0+25S	10		
TR L150 0+758	nd		
TR L15W 1+25S	ba		
TR 6150 1+758	nd		
TR L16T 0+255	10		
TR L169 0+755	20		
TR 6170 0+250	20		
TR L17V 0+75N	30		
TR 6178 1+258	10		
TR 6178 14750	. nđ		
40 £178 31258	ad		
40 T178 019CB	18		•
TH DITE 27730	20		
TR L17V 3+75N	nđ		
PO 1118 411CM	20		
16 5170 97670 90 1170 8756	20		
LK BLIK 97630	24		
TK 61/8 17233	20		
TK 61/8 1+195	110		
TK 5188 U+238	DQ		
TR L181 0+758	nd		
TR L18W 1+25W	50		
TR 616W 1+75N	nd		
TE LIBY 2+258	ad		
TK 6180 2+750	nd		
TR L188 3+758	nð		
TR L19V 0+250	nđ		
TR 1190 0+750	ad		
TR L19V 1+25N	nd		
TR 6198 1+758	nd		
TR L19V 2+25N	40		
TR 619¥ 2+758	50		
TR L19W 3+25M	10		
TR L19¥ 3+758	20		
DETECTION LINIT	5		
	-		

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

÷

٠Į

REPORT NUMBER: 91000	4 GA JOB NUMBER: 9	10004 PRIKE BOUITIES INC.	PAGE 6 OF 7
SAMPLE I	Au		
	ppb		
TR 6190 0+258	10		
TR L191 0+758	nd		
TR 6198 1+258	nd		
TR L191 1+758	20		
TR LZON 0+25N	20		
TR 6201 0+750	10		
TR L200 1+250	nd		
TR 620¥ 1+75N	20		
TR 1201 2+250	20		
TR L204 2+75H	10		
TR 6200 3+250	nð		
TR L207 0+256	nd		
TR L204 0+755	ba		
TR L21V 0+25N	20		
TR 6211 0+750	10		
TR 6219 1+250	40		
TR L21W 1+750	10		
TR L21V 2+25N	nd		
TR 6217 2+758	nd		
TR L218 3+258	10		
TR L214 3+758	10		
TR 122W 0+25W	30		
TR L22V 0+75H	30		
TR 1221 1+251	10		
TR L220 1+758	20		•
TR L22V 2+25N	30		
TR 6228 2+758	10		
TR L229 0+255	20		
TR L227 0+755	20		
TR L22W 1+25S	10		
TR L22T 1+755	10		
TE L224 2+258	20		
TR L224 2+755	10		
TE L22W 3+258	bđ		
TR L22W 3+755	nd		
TR 1228 4+258	20		
TR 1220 4+755	20		
TR L221 5+255	nd		
TR 1230 0+250	ba		
DETECTION LINIT	5		
nd = none detected	= not analysed	is = insufficient sample	

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

PRIME EQUITIES INC.

.

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ŧ,

÷ .

1.11

SAMPLE # Au ppb TR L23W 0+75M nd TR L23W 1+25M nd TR L23W 1+75M nd TR L23W 2+25M 20 TR L23W 2+25M 20 TR L23W 2+25M 20 TR L23W 2+25S 10 TR L23W 2+75S 10 TR L23W 2+75S 10 TR L23W 2+75S 10 TR L23W 2+75S 10 TR L23W 3+75S 20 TR L23W 3+75S 20 TR L23W 3+75S 20 TR L23W 4+25S 20 TR L23W 4+25S 20 TR L24W 0+75M 30 TR L24W 0+75M 30 TR L24W 1+25W 40 TR L24W 0+75S 10 TR L24W 0+25S 10 TR L24W 1+75S 10 TR L24W 2+75S 20 TR L24W 2+75S 20	004	9104	KUKBBR:	JOB	GŁ	910004	NVKBBA:	PORT	RE	
ppb TR L23W 0+75W nd TR L23W 1+25W nd TR L23W 1+75W nd TR L23W 2+25W 20 TR L23W 2+25W 20 TR L23W 2+25W 20 TR L23W 2+25S 10 TR L23W 3+25S 10 TR L23W 3+25S 20 TR L23W 3+25S 20 TR L24W 0+25W 30 TR L24W 0+25W 10 TR L24W 0+25W 10 TR L24W 0+25S 10 TR L24W 0+25S 10 TR L24W 0+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L25W </th <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>ŧ</td> <td>IPLB</td> <td>SL</td> <td></td>				10			ŧ	IPLB	SL	
TR L23W 0+75H nd TR L23W 1+25H nd TR L23W 1+75H nd TR L23W 2+25H 20 TR L23W 2+25H 20 TR L23W 2+25H 20 TR L23W 2+25S 10 TR L23W 2+75S 10 TR L23W 2+25S 10 TR L23W 2+25S 10 TR L23W 3+25S 10 TR L23W 3+25S 20 TR L23W 3+25S 20 TR L23W 3+25S 20 TR L24W 0+25W 30 TR L24W 0+25W 30 TR L24W 1+25W 10 TR L24W 1+25W 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 <td< th=""><td></td><td></td><td></td><td>ppb</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				ppb						
TR L23W 1+25N nd TR L23W 1+75N nd TR L23W 2+25N 20 TR L23W 2+25N 20 TR L23W 2+25N 20 TR L23W 2+25S 10 TR L23W 2+25S 10 TR L23W 2+25S 10 TR L23W 2+25S 10 TR L23W 3+25S 10 TR L23W 3+25S 20 TR L23W 3+25S 20 TR L23W 3+25S 20 TR L24W 0+25W 30 TR L24W 0+25W 30 TR L24W 1+25W 40 TR L24W 1+25W 10 TR L24W 0+25S 10 TR L24W 0+75S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 <td< th=""><th></th><th></th><th></th><th>nđ</th><th></th><th></th><th>(0+75M</th><th>1231</th><th>78</th><th></th></td<>				nđ			(0+75M	1231	78	
TR L23W 1+75H nd TR L23W 2+25H 20 TR L23W 2+75H 40 TR L23W 2+75H 40 TR L23W 2+75H 40 TR L23W 2+75H 40 TR L23W 2+75S 10 TR L23W 2+75S 10 TR L23W 3+75S 20 TR L24W 0+25H 30 TR L24W 0+25H 30 TR L24W 1+25H 10 TR L24W 1+25H 10 TR L24W 0+75S 10 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L24W 2+75S 10 <td< th=""><th></th><th></th><th></th><th>nd</th><th></th><th></th><th>1+250</th><th>L231</th><th>TR</th><th></th></td<>				nd			1+250	L231	TR	
TR L23W 2+25N 20 TR L23W 2+75N 40 TR L23W 2+25S 10 TR L23W 3+25S 10 TR L23W 3+25S 20 TR L23W 3+25S 20 TR L24W 0+25N 30 TR L24W 0+25N 30 TR L24W 0+25N 30 TR L24W 0+25N 30 TR L24W 1+25N 40 TR L24W 1+25N 10 TR L24W 0+25S 10 TR L24W 0+75S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 <td< th=""><th></th><th></th><th></th><th>pđ</th><th></th><th></th><th>1 1+758</th><th>6231</th><th>TR</th><th></th></td<>				pđ			1 1+758	6231	TR	
TR L23W 2+75H 40 TH L23W 2+25S 10 TR L23W 2+75S 10 TR L23W 2+75S 10 TR L23W 3+25S 10 TR L23W 3+25S 10 TR L23W 3+25S 20 TR L23W 3+75S 20 TR L23W 4+25S 20 TR L24W 0+25H 30 TR L24W 0+25H 30 TR L24W 0+75H 30 TR L24W 1+25H 40 TR L24W 1+25H 10 TR L24W 1+25H 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 2+25S 10 TR L25W 0+25H nd TR L25W 0+75H 8d				20			2+258	L231	TR	
TH 123W 2+25S 10 TH 123W 2+75S 10 TH 123W 3+25S 10 TH 123W 3+25S 10 TH 123W 3+25S 20 TH 123W 3+25S 20 TH 123W 3+25S 20 TH 123W 3+25S 20 TH 123W 4+25S 20 TH 124W 0+25W 30 TH 124W 0+25W 30 TH 124W 1+25W 40 TH 124W 1+25W 40 TH 124W 1+25W 40 TH 124W 1+25W 10 TH 124W 1+25W 10 TH 124W 0+25S 10 TH 124W 1+25S 20 TH 124W 2+25S 10 TH 124W 2+25S 10 TH 124W 2+25S 10 TH 125W 0+25H nd TH 125W 0+75H nd TH 125W 10 10				40			J 2+75 H	6231	. 18	
TR L23Y 2+75S 10 TR L23N 3+25S 10 TR L23N 3+75S 20 TR L23N 3+75S 20 TR L23N 3+75S 20 TR L23N 3+75S 20 TR L23N 4+25S 20 TR L24N 0+25N 30 TR L24N 0+25N 30 TR L24N 0+75N 30 TR L24N 1+15N 30 TR L24N 1+15N 30 TR L24N 2+25N 10 TR L24N 0+25S 10 TR L24N 0+75S 10 TR L24N 0+75S 10 TR L24Y 1+75S 10 TR L24Y 2+75S 20 TR L24Y 2+75S 20 TR L25N 0+25N nd TR L25N 0+75N nd <td< th=""><td></td><td></td><td></td><td>10</td><td></td><td></td><td>2+258</td><td>1231</td><td>TL</td><td></td></td<>				10			2+258	1231	TL	
TR L23W 3+25S 10 TR L23W 3+75S 20 TR L23W 4+25S 20 TR L23W 4+25S 20 TR L23W 4+25S 20 TR L24W 0+25W 30 TR L24W 0+25W 30 TR L24W 0+75N 30 TR L24W 1+15H 30 TR L24W 1+25W 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 1+75S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L25W 0+25K nd TR L25W 0+75H nd TR L25W 1+25K 10 <th></th> <th></th> <th></th> <th>10</th> <th></th> <th></th> <th>1 2+758</th> <th>1231</th> <th>TR</th> <th></th>				10			1 2+758	1231	TR	
TR L23W 3+755 20 TR L23W 4+255 20 TR L24W 0+25W 30 TR L24W 0+75H 30 TR L24W 0+75H 30 TR L24W 1+25W 40 TR L24W 1+25W 40 TR L24W 1+25W 10 TR L24W 2+25W 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 1+25S 10 TR L24W 1+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L25W 0+25W nd TR L25W 0+75W Bd TR L25W 1+25W 10				10			1 3+258	L231	TR	
TR L23W 4+25S 20 TR L24W 0+25W 30 TR L24W 0+75H 30 TR L24W 1+75H 30 TR L24W 1+25W 40 TR L24W 1+25W 40 TR L24W 1+25W 10 TR L24W 2+25W 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 1+75S 10 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L25W 0+25W nd TR L25W 0+75W md TR L25W 1+25W 10				20			1 34758	1231	TR	
TR L24W 0+25W 30 TR L24W 0+75H 30 TR L24W 1+75H 30 TR L24W 1+25W 40 TR L24W 1+75H 30 TR L24W 1+75H 30 TR L24W 1+75H 30 TR L24W 2+25W 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 20 TR L24W 2+75S 20 TR L25W 0+25K nd TR L25W 0+75H Bd TR L25W 1+25K 10				20			i 4+25s	L231	TR	
TR L24W 0+75H 30 TR L24W 1+25W 40 TR L24W 1+75H 30 TR L24W 1+75H 30 TR L24W 2+25W 10 TR L24W 0+25S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 1+75S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L24W 2+75S 10 TR L24W 2+75S 10 TR L24W 2+75S 20 TR L25W 0+25K nd TR L25W 0+75H nd TR L25W 0+75H nd TR L25W 1+25K 10				30			i 0+25 1	6241	TR	
TR L24W 1+25W 40 TR L24W 1+75H 30 TR L24W 2+25W 10 TR L24W 0+25S 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L25W 0+25K nd TR L25W 0+75H Bd TR L25W 1+25K 10				30			0+75¥	L241	TR	
TR L24W 1+75H 30 TR L24W 2+25W 10 TR L24W 0+25S 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 0+75S 20 TR L24W 1+25S 20 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L25W 0+25K nd TR L25W 0+75H Bd TR L25W 1+25K 10				40			i 1+25 i	6241	TR	
TR L24W 2+25W 10 TR L24W 0+75S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 1+75S 10 TR L24W 1+75S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L25W 0+25E nd TR L25W 0+75B Bd TR L25W 1+25W 10				30			i 1+15#	L241	TR	
TR L24W 0+25S 10 TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 1+75S 10 TR L24W 2+25S 10 TR L25W 0+25K nd TR L25W 0+75H nd TR L25W 1+25K 10				10			ĭ 2+25∎	6241	tr	
TR L24W 0+75S 10 TR L24W 1+25S 20 TR L24W 1+75S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L24W 2+25S 10 TR L25W 0+25K nd TR L25W 0+25K nd TR L25W 0+75H nd TR L25W 1+25K 10				10			0+258	6241	TR	
TR L24W 1+25S 20 TR L24W 1+75S 10 TR L24W 2+25S 10 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L24W 2+75S 20 TR L25W 0+25K nd TR L25W 0+75H md TR L25W 1+25K 10				10			I 0+75s	6241	TR	
TR L24W 1+755 10 TR L24W 2+255 10 TR L24W 2+755 20 TR L25W 0+25K nd TR L25W 0+75H Bd TR L25W 1+25K 10				20			1+258	L241	TR	
TR L24W 2+25S 10 TR L24W 2+75S 20 TR L25W 0+25K nd TR L25W 0+75H nd TR L25W 1+25K 10				10			1 1+755	1241	TR	
TR L24V 2+75S 20 TR L25V 0+25K nd TR L25V 0+75H nd TR L25V 1+25K 10				10			1 2+258	1249	TR	
TR L25W 0+25K nd TR L25W 0+75H nd TR L25W 1+25W 10				20			1 21758	1241	TR	
TR L25Y 0+75H nd TR L25W 1+25W 10				nd			i 0+25K	L251	TR	
TR L25W 1+25W 10				nd			1 0+758	1251	TR	
				10			i 1+250	L251	TR	
TR 525W 1+75W ad				nd			1+758	6251	TR	
TR L25W 0+25S 20				20			r 0+25s	6251	72	

PAGE 7 OF 7

.

DETECTION LINIT

nd = none detected

1

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

1

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: ADDRESS;	PRIME EQUITIES INC. 10th Flr 808 W. Hastings St	DATE:	Dec 19	1990
:	Vancouver, BC V6C 2X6	REPORT#: JOB#:	900713 900713	68
PROJECT#: SAMPLES ARRIVED: REPORT COMPLETED: ANALYSED FOR:	TANTALUS (TREATY)Oct 29 1990TOTADec 19 1990SAAu (FA/AAS) ICP	INVOICE#: L SAMPLES: MPLE TYPE: REJECTS:	900713 20 Scil DISCARE	NB)ED

SAMPLES FROM: DREQUEST CONSULTANTS - ESKAY CREEK - COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: Mr. Jim Foster

ANALYSED BY: VGC Staff

SIGNED:

Ry-

ì

GENERAL REMARK: None

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

•			
REPORT NUMBER: 900713 GB	JOB NUMBER: 900713	PRIME EQUITIES INC.	PAGE ! OF 1
SAMPLE #	Au		
	роб		
TR L15W 0+25N	70		
TR L15W 1+25N	30		
TR L15¥ 1+75N	120		
TR L15W 2+25N	90		
TR 115W 2+75N	110		
TR L15W 3+25N	2 0		
TR L15W 3+75N	50		
TR L15W 4+25N	255		
TR L15W 4+75N	210		
TR L16W 0+25N	90		
T& L16W 0+75N	90		
TR L16W 1+25N	70		
TR L16W 1+75N	190		
TR L16W 2+25N	70		
TR L16W 2+75N	100		
TR LIGN 3+25N	100		
TR L16W 3+75W	70		
TR L16N 4+25N	60		
TR L16N 4+75N	50		
	REPORT NUMBER: 900713 GB SAMPLE # TR L15W 0+25N TR L15W 1+25N TR L15W 1+25N TR L15W 2+25N TR L15W 2+25N TR L15W 2+25N TR L15W 3+25N TR L15W 3+75N TR L15W 3+75N TR L15W 4+75N TR L15W 4+75N TR L15W 4+75N TR L16W 0+25N TR L16W 0+25N TR L16W 0+25N TR L16W 0+25N TR L16W 2+25N TR L16W 2+25N TR L16W 2+75N TR L16W 2+25N TR L16W 2+25N TR L16W 3+25N TR L16N 3+75N TR L16N 4+25N TR L16N 4+25N TR L16N 4+25N TR L16N 4+25N TR L16N 4+25N	REPORT NUMBER: 900713 GB JUB NUMBER: 900713 SAMPLE # Au ppb TR L15W 0+25N 70 TR L15W 1+25N 90 TR L15W 1+25N 90 TR L15W 1+25N 90 TR L15W 2+25N 90 TR L15W 2+25N 90 TR L15W 2+25N 90 TR L15W 2+75N 110 TR L15W 3+25N 90 TR L15W 3+75N 50 TR L15W 3+75N 50 TR L15W 4+25N 255 TR L15W 4+75N 210 TR L16W 0+25N 90 TR L16W 0+25N 90 TR L16W 0+25N 90 TR L16W 0+25N 90 TR L16W 1+25N 70 TR L16W 1+25N 70 TR L16W 2+75N 100 TR L16W 2+75N 100 TR L16W 3+25N 70 TR L16W 3+25N 70 TR L16W 3+75N 70 TR L16W 3+75N 70 TR L16W 3+75N 70 TR L16W 4+75N 60 TR L16W 4+75N	REPORT NUMBER: 900713 GB JUB NUMBER: 900713 PRIME EDUITIES INC. SAMPLE # Au ppb TR LISW 0+25N 70 TR LISW 1+25N 90 TR LISW 1+75N 120 TR LISW 2+25N 90 TR LISW 2+25N 90 TR LISW 2+75N 110 TR LISW 3+25N 90 TR LISW 4+25N 255 TR LISW 4+25N 210 TR LIGW 0+25N 90 TR LIGW 1+25N 70 TR LIGW 2+25N 100 TR LIGW 2+25N 100 TR LIGN 3+25N 100 TR LIGN 3+25N 60 TR LIGN 4+25N 60 TR LIGN 4+25N 60

TR L16W 5+25N

60 .

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	PRIME EQUITIES INC.	DATE:	Dec 19	1990
ADDRESS:	10th Flr 908 W. Hastings St.			
:	Vancouver, BC	REPORT#:	900630	GB
1	V6C 2X6	J08#:	900630	

PROJECT#: TREATY SAMPLES ARRIVED: Oct 01 1990 REPORT COMPLETED: Dec 19 1990 ANALYSED FOR: Au ICP INVDICE#: 900630 NB TDTAL SAMPLES: 23 SAMPLE TYPE: Soil REJECTS: DISCARDED

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: Mr. Jim Foster

ANALYSED BY: VGC Staff

SIGNED:

Ng.

GENERAL REMARK: None

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

L

SAMPLE # Au ppb 11SW 0+50N 11SW 1+00N 90 11SW 1+50N 15N 2+00N 15N 2+00N 15N 3+00N 11SW 2+50N 11SW 3+00N 11GW	REPORT	NUMBER:	900630	69 JI	IÐ NUMBER	: 900630	PRIM	E EQUITIES	INC.	PAGE	1	OF	i
L1SW 0+50N B0 L1SW 1+00N 90 L1SW 1+50N 150 L1SW 2+00N 160 L1SW 2+50N B0 L1SW 2+50N B0 L1SW 2+50N 100 L1SW 3+50N 110 L1SW 3+50N 120 L1SW 3+50N 120 L1SW 5+00N 120 L1SW 5+00N 120 L1SW 5+00N 120 L1SW 0+00 60 L16W 0+00 60 L16W 1+50N 200 L16W 1+50N 200 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+50N 110 L16W 5+00N 80 L16W 5+50N 80 L16W 5+50N 80 L16W 5+50N 80	SAMPLI	ĒĦ			Au								
L15W 0+50N B0 L15W 1+50N 150 L15W 2+00N 160 L15W 2+50N B0 L15W 2+50N B0 L15W 3+00H 100 L15W 3+50N 110 L15W 3+50N 120 L15W 4+50N 120 L15W 4+50N 120 L15W 0+00 200 L16W 0+00 60 L16W 0+00 60 L16W 1450N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 3+50N 90 L16W 4+00N 40 L16W 4+50N 110 L16W 4+50N 80 L16W 5+50N 80 L16W 5+50N 80 L16W 5+50N 80 L16W 5+50N 100					10b								
LISM 1+00N 90 LISM 1+50N 150 LISM 2+00N 160 LISM 2+50N 80 LISM 3+00N 100 LISM 3+50N 100 LISM 4+00N 70 LISM 4+00N 70 LISM 4+50N 110 LISM 0+00 220 LISM 0+00 80 LIGM 0+00 80 LIGM 1+50N 200 LIGM 1+50N 200 LIGM 2+50N 60 LIGM 2+50N 60 LIGM 3+50N 90 LIGM 3+50N 90 LIGM 3+50N 90 LIGM 4+50N 110 LIGM 4+50N 100	L15¥	0+50N			80								
L15N 1+50N 150 L15N 2+00N 160 L15N 2+50N 80 L15N 3+50N 100 L15N 3+50N 110 L15N 4+00N 70 L15N 4+50N 120 L15W 0+00 220 L16W 0+00 50 L16W 0+00 50 L16W 0+00 50 L16W 1+50N 200 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+00N 40 L16W 4+50N 10 L16W 5+00N 80 L16W 5+50N 100	L15₩	1+00N			90								
L15W 2+00N 160 L15W 2+50N 80 L15W 3+50N 110 L15W 3+50N 110 L15W 4+00N 70 L15W 4+50N 120 L15W 5+00N 110 L15W 0+00 220 L16W 0+00 60 L16W 0+00 60 L16W 0+00 60 L16W 1+00N 80 L16W 1+00N 80 L16W 1+50N 200 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+00N 40 L16W 5+50N 110 L16W 5+50N 100	L15W	1+50N		1	.50								
L15H 2+50N B0 L15H 3+00H 100 L15W 3+00H 70 L15W 4+00H 70 L15W 4+50N 120 L15W 5+00N 110 L15W 5+00N 110 L16W 0+00 60 L16W 0+00 B0 L16W 1+50N 200 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 3+00N 70 L16W 3+00N 70 L16W 4+00N 40 L16W 4+50N 110 L16W 4+50N 100	L15₩	2+00N		1	50								
115N 3+00N 100 L15N 3+50N 110 L15N 4+00N 70 L15N 4+50N 120 L15N 5+00N 110 L15W 5+00N 110 L16W 0+00 60 L16W 0+00 80 L16W 1+00N 80 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+00N 40 L16W 4+50N 110 L16W 5+50N 80 L16W 5+50N 80 L16W 5+50N 100	L15W	2+50N			80								
115W 3+50N 110 115W 4+00N 70 115W 5+00N 120 115W 5+00N 110 L15W 0+00 220 L16W 0+00 60 L16W 0+00 60 L16W 0+00 80 L16W 1+00N 80 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+50N 110 L16W 5+50N 80 L16W 5+50N 100	L15N	3+00N		į	00								
L15W 4+00N 70 L15W 4+50N 120 L15W 5+00N 110 L15W 0+00 220 L16W 0+00 50 L16W 0+50N 100 L16W 1+50N 200 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+50N 100 L16W 5+50N 100	L15W	3+50N		t	10								
L15W 4+50N 120 L15W 5+00N 110 L15W 0+00 20 L16W 0+00 60 L16W 0+50N 100 L16W 1+00N 80 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 50 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+50N 110 L16W 5+50N 80 L16W 5+50N 100	1150	4+00N			70								
L15W 5+00N 110 L15W 0+00 220 L16W 0+00 60 L16W 0+50N 100 L16W 1+00N B0 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+50N 110 L16W 5+50N 100	115¥	4+50N		1	20								
L15W 0+00 220 L16W 0+00 60 L16W 0+50N 100 L16W 1+00N 80 L16W 1+50N 200 L16W 2+50N 60 L16W 2+50N 60 L16W 3+50N 90 L16W 3+50N 90 L16W 4+00N 40 L16W 5+50N 100	115 4	5+00N		1	10								
L16W 0+00 60 L16W 0+50N 100 L16W 1+00N B0 L16W 1+50N 200 L16W 2+00N 130 L16W 2+50N 60 L16W 3+00N 70 L16W 3+50N 90 L16W 4+00N 40 L16W 4+00N B0 L16W 5+50N 100	L15₩	0+00		. 1	20								
L16W 0+50N 100 L16W 1+00N 80 L16W 1+50N 200 L16W 2+00N 130 L16W 2+50N 60 L16W 3+00N 70 L16W 3+50N 90 L16W 4+90N 40 L16W 4+50N 110 L16W 5+00N 80 L16W 5+50N 100	L16W	0+00			50								
L16W 1+00N B0 L16W 1+50N 200 L16W 2+00N 130 L16W 2+50N 60 L16W 3+00N 70 L16W 3+50N 90 L16W 4+90N 40 L16W 4+50N 110 L16W 5+00N B0 L16W 5+50N 100	L16₩	0+50N		!	00								
L16W 1+50N 200 L16W 2+00N 130 L16W 2+50N 60 L16W 2+50N 60 L16W 3+00N 70 L16W 3+50N 90 L16W 4+00N 40 L16W 5+50N 100	L16₩	1+00N			80								
L16W 2+00N 130 L16W 2+50N 60 L16W 3+00N 70 L16W 3+50N 90 L16W 3+50N 90 L16W 4+00N 40 L16W 5+00N B0 L16W 5+50N 100	L16W	1+50N		2	200								
L16W 2+50N 60 L16W 3+00N 70 L16W 3+50N 90 L16W 4+00N 40 L16W 4+50N 110 L16W 5+00N B0 L16W 5+50N 100	L16W	2+00N		· i	30								
L16H 3+00N 70 L16H 3+50N 90 L16H 4+00N 40 L16H 4+50N 110 L16H 5+00N B0 L16H 5+50N 100	L18¥	2+50N			60								
L16W 3+50N 90 L16W 4+00N 40 L16W 4+50N 110 L16W 5+00N B0 L16W 5+50N 100	L16#	3+00N			70								
LIGW 4+00N 40 LIGW 4+SON 110 LIGW 5+00N B0 LIGW 5+SON 100	E16W	3+50N		÷	90								
L16W 4+SON 110 L16W 5+OON BO L16W 5+SON 100	L16W	4+90N			40				· · · · ·				
L15M 5+00N B0 L16W 5+50N 100	L16W	4+50N		1	10								
L16W 5+50N 100	L16W -	5+00N			80								
	L16W	5+50N		1	00								

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	PRIME EQUITIES INC.	DATE:	OCT 15	1990
ADDRESS:	10th Flr 808 W. Hastings St.			
· :	Vancouver, BC	REPORT#:	900630	GA
· • •	V6C 2X6	JOB#:	900630	

PROJECT#:	TREATY	
SAMPLES ARRIVED:	OCT 01	1990
REPORT COMPLETED:	OCT 15	1990
ANALYSED FOR:	Au ICP	

INVOICE#: 900630 NA TOTAL SAMPLES: 155 SAMPLE TYPE: 155 SOIL REJECTS: DISCARDED

~

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

.

.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: VGC Staff

SIGNED:

handh

GENERAL REMARK: None

1

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

I

		TELES DESTITES TROP	then I of J
SAMPLE	Au		
	ppb		
6128 1450W	15		
L12V 2+00N	10		
L12T 2+50H	15		
L12V 3+00N	20		
L12¥ 3+50N	15		
L124 4+00N	5		·
L121 4+50H	15		
L12V S+000	nd		
LIJY O+SON	20		
113W 1+00W	15		
113V 1+50N	15		
L13V 2+00N	10		
L13V 2+50N	10		
L13W 3+00N	15		· .
L13V 3+50N	20		
L13V 4+00N	15		
L131 4+50H	nd		
113V 0+00S	ba		
L13T 0+50S	15		
L13V 1+005	Dđ		
1148 0100 ·	nd		
1110 ATC40 1110 ATC40	14 20		
8110 UTSVO 2110 Ildav	10		
5148 145AN	1J nå		
4191 17390 1119 31000	1C		
7748 1100	12		
L14V 2+50K	20		
L144 3+008	ba		
L14V 3+50H	ad		
614¥ 4+00H	ba		
L14V 4+50X	nd		
LIAY SHOON	10		
LIST OFSOR	20		
L15V 1+00N	20		
L157 1+50X	15		
L15V 2+00K	15		
1.151 7450H	15		
	15		-
2128 21990 1158 14588	10	50	
1158 J18AN	10	5 1	
MT48 318AU	74		
DETECTION LINIT	5		
nd = none detected	= not analysed is = i	insufficient sample	

ı.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

ł

REPORT NUMBER: 900630	GA JOB KUNBER: 900630	PRIME RQUITIES INC.	PAGE 2 OF 4
SAMPLE I	Au		
1150 I.(FAV	ppb		
_ LLOT 4+00H			
1158 0400 1158 0400			
1100 UTUU 1160 04500	10 - 16		
1158 01505 1158 14000	14		
0198 1.440	13		
L15V 1+50S	15		
L15W 2+00S	10		
L16V 0+00	15		
LIGY D+SOM	5		
L16W 1+00W	nd		
			•
L16Y 1450N	15		
6160 2+000 1160 2+000	15		
LLDW 2+508	10		
LL68 34008 (168 3.640	15		
PT04 345AN	3		
LIGT 4+00X	10		
L16W 4+50H	15		
L160 5400B	nd		
L16V : 5+50B	ba	and the second	
L16V 0+58S	. 10		
11/0 1/000			
FTPL T4AA9	10		
1179 ALCON	15		
6138 94648 6138 94648) E		
1178 1150V	10		
8118 11348	10		
L17V 2+008	15		
L178 2+508	bđ		
L17W 3+00X	5		
L170 3+50N	nd		
L178 4+00X	30		
1178 A+SAC	10		
L17¥ 14009	15		
1177 1+505	20		
L17T 24005	15		
LINT OFSON	ba		
L18¥ 1+00#	5		
L18V 1+50N	10		
L18W 2+00K	20		
L18¥ 2+50N	20		
DREPORTAN TIME	c		
VEIDUIIVE LINII			

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

ł

	REPOR	T BUNBER:	900630	G L JO I	B NUMBBR:	900630	PRIME BOUITIES	IIC.	PLGE	3 OF	4
	SAMPL	B F .		2 i	1						
				ppi)						
	L18 V	3400N		BC	1						
	L194	0+001		םל	1						
	L199	0+508		10							
	1190 1100	14008			j						
	6198	14208		nd							
	619¥	2+00 1		5	; ·						
	6191	2+50N		BČ	t i						
	L197	3400N		15	•						
	619¥	3+50N		Da.	l						
	L19¥	4+008		nd							
1	L19¥	0+505		nđ							
	L198	1+005		20							
	L19 T	1+505		15							
	L20T	0+00		15							
	L20 V	0+508		ba							
	1.7AV	14AAN			·						
	1.207	14508									
	1.74.	7100B		10							
	1.769	.74500		10							
-	120W	34000		25							
	1.50 m	215Am						:			
	5201 1984	110UE		00							
	6298 C308	1:000		10							
	1718	0100		5 13							
	131M	01208		ر ډر							
	0114	41440		64							
	L21T	14008		5							
	1211	14508		15							
	1211	21008		20							
	L211	2450N		20							
	1711	3+UUE		DÓ							
	L21	3+50 <u>N</u>		15							
	L 2 2 1	0+00		15							
	L22V	O+SOX		15							
	L 2 2 Y	1+00N		10							
	L227	1+508		ba							
	175 1	2400B		20							
	L221	2+50N		25							
	L22	3+00 m		nd							
	1224	0+50s		20							
	DETECT	ION LINIT	-	ç							
	nd = 1	one detect	ted	= not :	analysed	is	= insufficient sample				

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

1

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

SAMPLE * Au DPD L221 14505 ad L224 14065 10 L224 14055 5 L224 14005 10 L224 14505 0 L224 14005 10 L227 14505 0 L227 14505 0 L227 14005 10 L227 14005 0 L237 0400 10 L237 14008 15 L237 14008 15 L237 14008 10 L244 14004 10 L244 14004 10 L244 14004 10 L244 14005 5	REPORT NURBER: JUVEJU G	V JOR NUMBRE: ACOULD	PRIME BOUITIES INC.	PAGE 4 OF
L221 1-505 nd L222 2-4055 10 L224 2-4055 10 L227 2-4055 nd L228 2-4055 nd L227 2-4005 15 L227 2-4005 10 L228 2-4005 10 L238 2-605 nd L239 1-605 10 L239 1-606 nd L239 1-606 nd L239 1-608 10 L239 1-608 10 L239 1-608 nd L239 1-608 nd L239 1-608 nd L239 1-608 nd L239 1-605 nd L239 1-605 nd L244 1-604 nd L244 1-604 nd L244 1-604 nd L244 1-604 nd L244 1-605 2-0 L244 1-605 2-0 <	SAMPLE	1 0		
L211 1-305 04 L227 2-405 10 L227 2-405 5 L228 3-4065 12 L228 3-4065 12 L227 4-505 10 L227 4-505 10 L228 4-505 10 L238 4-40 10 L238 4-40 10 L238 4-40 10 L239 1-508 10 L244 0-508 10 L244 1-508 10 L244 1-5		bbp		
L247 14005 10 L227 14005 5 L228 14005 15 L227 14005 16 L227 14005 16 L227 14005 16 L237 14005 16 L238 1400 10 L239 1400 10 L239 1400 10 L239 1400 10 L238 1400 10 L244 14000 10 L244	622T 145US	BQ		
L224 24505 5 L227 44005 15 L227 44005 15 L227 44005 10 L228 5405 10 L228 5405 10 L228 5405 10 L228 5405 10 L238 0400 10 L238 0400 10 L238 0400 10 L238 1400 15 L239 1400 15 L239 1400 15 L239 1400 10 L239 2405 10 L239 2405 10 L239 2405 10 L239 24505 10 L239 24505 10 L239 24505 10 L239 14505 15 L239 14505 15 L239 14505 16 L249 0400 10 L249 1400 10 L249 14505 10 L249 145	122W 2+00S	10		
1242 34905 00 1227 44005 15 1227 44005 10 1237 6400 10 1237 6400 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14000 10 1237 14005 10 1237 14005 10 1237 14005 10 1247 14000 10 1247 14000 10 1247 14000 10 1248 14000 10 1244 14000 10 1244 14000 10 1244 14000 10 1244 14000 10 1244 14000 10 1244 14000 10 1244 14000 10 1244 14000 10	622¥ 2450S /	5		
1214 9700 20 1221 44005 15 1224 14505 10 1237 4400 10 1237 1400 10 1237 1400 15 1237 1400 15 1237 2400 nd 1237 24005 nd 1237 24005 nd 1238 24505 10 1239 24505 nd 1237 44005 nd 1238 16 1237 1239 14505 nd 1238 14005 nd 1247 14001 nd 1247 14015 5 1247 14025 nd 1247 14025 nd 1247 14035 1 1247 14035 1 1247 14035 1 1247 <td>1/24 1400S</td> <td>00 20</td> <td></td> <td></td>	1/24 1400S	00 20		
1227 44005 15 1227 54005 10 1237 6400 10 1237 6400 10 1237 6400 10 1237 1400H 15 1237 1450F 5 1237 2400S nd 1237 2400F nd 1237 2400S nd 1238 2450S 10 1239 2450S 15 1239 2450S nd 1238 4400S nd 1248 1400F nd 1244 1400F nd 1244 1400F 5 1244 1400F 5 1244 1400F 5 1244 1400F 10	1111 J1309	20		
L224 4-505 10 L227 5-605 nd L227 5-605 nd L237 4-60 10 L237 4-5508 10 L237 4-5508 5 L237 2-605 nd L237 2-605 nd L237 2-555 10 L237 2-555 10 L237 3-565 5 L237 3-565 nd L237 4-505 nd L247 4-60 nd L247 1-60 nd L247	122¥ 4+00S	15		
1227 54005 nd 1237 14508 10 1238 14508 10 1239 14508 5 1237 24008 nd 1238 14508 5 1237 24008 nd 1238 14508 10 1239 24008 nd 1238 24005 10 1239 24005 10 1239 24005 10 1239 24005 10 1239 24005 nd 1240 1400 nd 1244 1400 nd 1244 1400 nd 1244 1400 nd 1244 1401 nd 1244 1402 5 1244 1405 5 1244 1405 5 1244 1405 5 1244 1405 6 1244 1405 6 1244 1405 6 1244	L221 4+505	10		
1237 0400 10 1237 04508 10 1237 14008 15 1237 14008 nd 1237 14508 5 1237 24008 nd 1237 24008 16 1237 24005 16 1237 24605 5 1238 4400 nd 1239 44505 nd 1239 44505 nd 1248 14508 nd 1244 14008 nd 1244 14008 nd 1244 14008 5 1244 1408 10 1244 14085 5 1244 14085 5 1244 14085 10 1244 14085 10 1244 14085 10 1244 14085 10 1244 14085 10 1244 14085 10 <	L22W 5+00S	nd		
L23W 0+508 10 L23W 1+50W 15 L23W 1+50W 5 L23W 1+50W 6d L23W 1+50W 5 L23W 2+50S 16 L23W 2+50S 16 L23W 3+50S 5 L23W 3+50S 5 L23W 3+50S 5 L23W 4+60S md L23W 4+50S nd L24W 0+00 nd L24W 0+00 nd L24W 0+00 nd L24W 1+00H nd <	L23¥ 0+00	10		
L239 1400H 15 L237 2450F 5 L237 2450F 6 L237 2450F 6 L237 2450S 10 L237 2450S 15 L238 3450S 5 L238 3450S 5 L238 44005 nd L239 4450S nd L240 0450H nd L244 0450H nd L244 1400H nd L244 1400H nd L244 1450F 10 L244 1450F 10 L245 15 L245 15 L2	123W 0+50B	10		
L23 1+50 5 L23 2+00 nd L23 2+54 5 L23 2+54 5 L23 2+54 5 L23 2+54 5 L23 2+50 10 L23 2+50 10 L23 2+50 10 L23 3+50 5 L23 3+50 5 L23 3+50 nd L24 1+50 20 L24 1+50 20 L24 1+50 20 L24 1+50 nd	623V 1+00N	15		
L23 2+00 bd L23 2+50 bd L23 3+50 5 L23 4+50 bd L23 3+50 5 L23 4+50 bd L23 4+50 bd L24 1+50 bd L24 1+00 bd	L23V 1+50B	5		
L23 2450 S L23 2450 nd L23 2450 10 L23 3406 15 L23 3450 5 L23 3460 nd L23 4400 nd L23 4400 nd L24 1400 nd L24 1404 nd L24 1404 nd L24 1404 nd L24 1408 10 L24 1408 5 L24 1408 10	1238 2+008	ba		
L237 24005 nd L238 24505 10 L238 24505 15 L238 34505 5 L238 34505 5 L238 44005 nd L238 44005 nd L238 44005 nd L238 44005 nd L248 04508 nd L248 14508 nd L248 14508 nd L248 14508 nd L248 14508 nd L249 24508 5 L248 14508 nd L249 24508 5 L249 24508 20 L249 14005 5 L249 14005 5 L249 14005 nd L249 24505 nd L249 24505 nd L249 14005 nd L249 14008 nd	123V 2450X	5		
L237 2450S 10 L237 3400S 15 L238 3450S 5 L238 4400S nd L238 4400S nd L238 4400S nd L248 04508 nd L248 04508 nd L248 04508 nd L248 1400M nd L248 1400M nd L248 1400M nd L248 1400M nd L248 2450B Nd L248 1400M nd L248 2450B S L248 1400S S L248 2450S nd L248 240S nd L248 1400S nd L248 240S nd L258 1400 nd <	1237 2+00S	. ba		:
L23W 3+00S 15 L23W 3+50S 5 L23W 3+50S 5 L23W 3+50S nd L23W 4+00S nd L24W 0+50 nd L24W 0+50 nd L24W 1+50S 20 L24W 1+50S 20 L24W 2+50S nd L24W 1+00W nd L25W 1+00W nd	L23W 2+50S	10		
L23¥ 34586 5 L23¥ 44005 md L23¥ 44585 md L23¥ 44585 md L24¥ 0400 md L24¥ 0400 md L24¥ 1400H md L24¥ 1450F md L24¥ 2450F S L24¥ 1450S 20 L24¥ 2400S md L25¥ 0450F md L25¥ 1400K md L25¥ 1400K md L25¥ 1450K md L25¥ 0450S md L25¥ 0450S md	123W 3+00S	15		
L238 4400S nd L238 4450S nd L248 0450B nd L248 0450B nd L248 1450B 10 L248 1450S 20 L248 1450S 20 L248 1450S 20 L248 1450S nd L248 2400S nd L248 2400S nd L248 2400S nd L258 0450S nd .258 1450K nd .258 1450K nd .258 1450K nd .258 1450K nd	L23W 3+50S	5		
L23F 4+50S nd L24F 0+50B nd L24F 0+50B nd L24F 1+00H nd L24F 1+50B nd L24F 2+50B S L24F 1+50S 20 L24F 1+50S nd L24F 2+60S nd L24F 2+50S nd L24F 2+50S nd L24F 2+50S nd L24F 2+50S nd L24F 1+50H nd L25F 1+50H nd L25F 0+50S nd	6238 - 4400S	ba		
L24Y 0+00 nd L24Y 0+50B nd L24Y 1+00H nd L24Y 1+50B nd L24Y 2+50B nd L24Y 2+50B 5 L24Y 2+50B 5 L24Y 1+50S 20 L24Y 1+00S 5 L24Y 1+50S 20 L24Y 2+00S nd L25Y 0+50B nd L25Y 1+50K nd L25Y 0+50S nd	L238 4+505	ъđ		
L24W 0+50H nd L24W 1+00H nd L24W 1+50B nd L24W 2+50H 10 L24W 2+50H 5 L24W 1+50S 20 L24W 1+50S 10 L24W 2+50S nd L25W 1+50K nd .25W 1+50K nd .25W 1+50K nd .25W 0+50S nd	624W 0+00	nd		
L24W 1400W nd L24W 1450W nd L24W 2450W 10 L24W 2450W 10 L24W 2450S 20 L24W 1400S 5 L24W 1400S 5 L24W 1450S 20 L24W 1400S 5 L24W 1450S 20 L24W 2400S nd L24W 2450S nd L25W 0450W nd .25W 1450W nd .25W 1450W nd .25W 1450S nd .25W 1450W nd .25W 0450S nd	624V 0+50N	ba		
L24Y 1+50Y nd L24Y 2+00H 10 L24Y 2+50S 20 L24Y 1+50S 20 L24Y 1+50S 20 L24Y 1+50S 20 L24Y 2+00S nd L25Y 0+50S nd .25Y 1+50K nd .25Y 1+50K nd .25Y 0+50S nd	L24V 1+00N	nd		
L24Y 2+50H 10 L24Y 2+50S 20 L24Y 1+00S 5 L24Y 1+50S 20 L24Y 1+50S 20 L24Y 2+00S nd L24Y 2+00S nd L24Y 2+50S nd L24Y 3+00S nd L25Y 0+50H nd .25Y 1+50H nd .25Y 1+50H nd .25Y 0+50S nd	L241 1+501	ba		
124Y 2450H S 124Y 0450S 20 124Y 1400S S 124Y 1450S 20 124Y 2400S nd 125Y 0400 nd 125Y 0450H nd 125Y 1450H nd 125Y 1450H nd 125Y 1450H nd 125Y 0450S nd 125Y 0450S nd	LZ4V 2+00N	10		
L24Y 0+50S 20 L24Y 1+00S 5 L24Y 1+50S 20 L24Y 2+00S nd L24Y 2+50S nd L24Y 3+00S nd L25Y 0+50H nd .25Y 1+50K nd .25Y 1+50K nd .25Y 2+00N nd .25Y 0+50S nd	L24V 2+50V	5		
124¥ 1+00s 5 124¥ 1+50s 20 124¥ 2+50s nd 125¥ 0+50H nd 125¥ 1+50K nd 125¥ 1+50K nd 125¥ 2+00N nd 125¥ 0+50s nd	L241 0450s	20	·	
L24Y 1450s 20 L24Y 2400s nd L24Y 2450s nd L24Y 2450s nd L24Y 3400s nd L25Y 0400 nd L25Y 0400 nd L25Y 0450H nd L25Y 1450H nd L25Y 1450H nd L25Y 2400H nd L25Y 0450S nd	L24W 1+005	5		
L24W 2+00S nd L24W 2+50S nd L24W 3+00S nd L25W 0+00 nd L25W 0+50 nd L25W 1+00X nd .25W 1+50N nd .25W 2+00N nd .25W 0+50S nd	624T 1450s	20		
L24¥ 2±50S nd L24¥ 3±00S nd L25¥ 0±00 nd L25¥ 0±50H nd L25¥ 0±50H nd L25¥ 1±50K nd L25¥ 2±00N nd L25¥ 0±50S nd	L24V 2+00S	ba		
L24W 3+00S nd L25W 0+00 nd L25W 0+50H nd L25W 1+00H nd .25W 1+50H nd .25W 2+00H nd .25W 0+50S nd	L74¥ 2+505	nd		
L25¥ 0+00 nd L25¥ 0+50H nd L25¥ 1+00H nd L25¥ 1+50H nd L25¥ 2+00H nd L25¥ 0+50S nd	1247 3+00S	nd		
525¥ 0+50¥ nd 525¥ 1+00X nd 525¥ 1+50K nd 525¥ 2+00N nd 525¥ 0+50S nd	L25V 0+00	nd		
1+00X nd 1+50K nd .25V 2+00N .25V 0+50S	1254 0+508 ···	bđ		
.25V 1+50K nd .25V 2+00N nd .25V 0+50S nd	1400H	nđ		
25¥ 2±00N nd 25¥ 0+50S nd	125V 1+50K	nd		
257 0+50s nd	25¥ 2+00N	nd		
	25V 0+50S	. nđ		
	ETECTION LINIT	۲		

nd = none detected

-- = not analysed is = :

·

. .

ಂಷ್ ನಾನ ಮಾತ್ರಜ್ಞ ಎಂತಿ 1630 Pandora Street, Vancouver, B.C. V5L 1L6

- - - T

__

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HND₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Much

REPORT 1: 900630 PA	PRIME EQU	ITIES INC.				PROJE	CT: TREA	TY		DAT	E IN: OCI	01 1990	Ó DA	ATE OUT: I	NOV 05 19	990	ATTENTION	I: MR. J	IN FOSTER			PAG	5 1 OF	4	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ħg	Ko	No	Na	Ni	P	Pb	56	Sn	Sr	U	W]:
1124 14508	90 9 0 7	· Z	ppe Za	ppa 207	ppe / 2	1	ope C C	ope	ope ou 7	pp	Z	I	X	ppe	ρpe	Z	ppa	X	ppe	ppa	ppa	99 8	<u>ppa</u>	ppe	pp
L12W 2+00N	0.8	0.95	(3	270	(3	0.03	6.V 4.2	6 4	317	15	4.30	0.09	0.30	184	326	0.05	1578	0.12	60	7	(2	36	<5	<3	3:
L12W 2+50N	0.8	1.38	(3	315	(3	0.06	3.5	10	19	24	5.01	0 10	0.33	100	13	0.05	14	0.12	22	4	(2	3/	(5)	(3)	3
L12N 3+00N	0,4	1.01	(3	373	(3	0.14	3.3	8	14	1B	4.20	0.09	0.42	244	7	0.07	14	0.12	30	12	(2	67 43	(3)	(2)	41
L12W 3+50N	0.2	0.77	<3	376	(3	0.07	2.1	5	12	13	3.76	0.07	0.26	169	B	0.05	9	0.11	31	<2	(2	40	<5 <5	(3	3
L12W 4+00N	0.3	0,82	<3	320	<3	0.09	1,8	6	13	13	4.16	0.08	0.32	213	7	0.06	9	0.11	32	2	(2	43	۲۵	(3	34
L12W 4+50W	0.2	5.94	(3	242	<3	0.57	4.1	62	241	109	6.50	0.23	3.40	2903	17	0.12	109	0.11	<2	<2	<2	27	<5	<3	15
L12W 3+00N	0.2	3.65	(3	382	(3	0.27	4.7	60	78	110	6.66	0.17	1.38	2262	17	0.08	84	0.09	<2	(2	<2	11	<5	<3	28
LIJW VTJVR [120] 1+0/W	0.5	1.18	(3	3/0	(3	0.12	0.7	8	12	34	5.10	0.12	0.57	539	11	0.05	7	0.13	136	5	(2	57	<5	<3	8
1700A	0.4	V. 70	10	263	(3	Q.10	1.3	4	12	14	4,33	0,08	0.52	380	9	0.04	5	0.11	179	<2	<2	52	(5	<3	6
L13W 1+50N	0.6	1.08	(3	156	<3	0.16	0.3	8	14	23	6.93	0.15	0.59	460	13	0.05	5	0.17	150	(2	(2	48	<5	<3	7
L13W 2+00N	1.0	0.59	(3	233	<3	0,06	<q.1< th=""><th>3</th><th>9</th><th>7</th><th>4.07</th><th>0.07</th><th>0.24</th><th>185</th><th>9</th><th>0.04</th><th><1</th><th>0.12</th><th>101</th><th>2</th><th>(2</th><th>45</th><th><5</th><th><3</th><th>3</th></q.1<>	3	9	7	4.07	0.07	0.24	185	9	0.04	<1	0.12	101	2	(2	45	<5	<3	3
L13W 2+50N	0,6	0.68	(3	85	<3	0.10	1.0	7	18	8	4.87	0.10	0.25	209	10	0.07	6	0.15	112	7	(2	77	<5	<3	3
13W 3+00W	0.7	0.78	(3	119	(3	0.07	(0.1	5	8	13	5.83	0.12	0.27	208	9	0.08	4	0.19	\$7	(2	<2	73	<5	₹3	31
LIAW ATOVN	0.7	V.1 <u>7</u>	(3	75	(3	0.04	(0.1	4	7	12	4.88	0.09	0.26	193	9	0.05	a	0.14	7	3	<2	58	₹5	₹3	3
L13W 4+00N	0.4	0.93	<3	257	(3	0,05	(0,1	6	10	16	5,56	0.10	0.31	204	8	0.05	1	0.15	44	0	0	50	(5	<3	4
L13W 4+50N	(0,1	0.73	<3	322	(3	0.06	0.3	6	9	14	4.81	0.09	0.2B	198	8	0.05	a	0.13	36	2	(2	48	(5	(ā	4
LISW 0+00S	0.2	1.24	<3	207	(3	0. 20	0.2	8	11	21	5.62	0.12	0.62	537	12	0.05	1	0.14	130	(2	(2	62	<5	(3	6
L13N 1+005	0.4	1.20	<3	35	(3	0.20	0.8	10	9	32	5.33	0.12	0.72	503	10	0.05	2	0.13	155	(2	(2	48	<5	(3	7
LIJN 17343	AS	ns	NS	AS	ńs	NS	ns	05	AS	<u>As</u>	n \$	^{ـ ۵5}	ħ\$	NS	ns	85	ns	N\$	ñ\$	05	N 5	Λ5	Π5	115	ñ
L14N 0+00	0.7	0.96	<3	113	(3	0.07	0.3	8	8	18	5.18	0.11	0.57	393	9	0.04	a	0.10	101	3	(2	56	(5	(3	3
L14W 0+50N	0.7	1.09	<3	258	(3	0.13	0.6	10	8	17	5.10	0.11	Q.68	453	H.	0.06	a a	0.11	136	2	(2	46	(5	(3	5
L14W 1+00K	0.7	1.47	(3	239	(3	0.21	(0.1	9	8	20	4,91	0.12	0.68	611	11	0.05	(1	0.16	119	<2	(2	70	<5	<3	6
LTAN ETOUR LTAN 2400N	0.5	1.27	(3	76	(3	0,14	(0.1	13	11	25	7.38	0.16	0.57	657	13	0.07	(1	0.19	103	6	<2	90	<5	<3	5
L148 2700N	V.8	0.98	(3	179	(3	0.13	(0,1	1	7	20	5.53	0.10	0.53	482	10	0.05	(1	0.14	174	5	{2	54	₹5	(3	6
L14W 2+50H	0,7	1.00	(3	74	(3	0.14	(0.1	7	10	26	5.21	0.10	0.58	382	11	0.04	α	0.11	125	0	0	49	(5	(3	7
L14W 3+00N	0.8	0,76	<3	70	<3	0.04	(0.1	5	6	7	4.70	0.09	0.38	277	10	0.05	(I	0.11	87	6	(2	52	< <u>5</u>	(3	3
L14W 3+50H	0.8	0.85	(3	352	(3	0.06	(0.1	7	19	12	5.73	0.11	0.43	283	12	0.05	2	0.13	106	6	(2	45	<5	(3	4
1148 44008 1148 44008	0.3	0.88	<3	428	<3	0.05	(0.1	6	7	10	4.45	0.08	0.41	262	8	0.05	<1	0.12	75	(2	(2	48	<5	<3	4
L14N 4730N	0.1	0.97	<3	297	(3	0.16	{0.1	10	15	16	5,26	0.10	0.53	310	9	0.09	A	0.12	42	3	<2	53	₹5	(3	4
L14W 5+00M	0.2	1.28	<3	507	<3	0.06	(0.1	10	293	24	5.07	0.0B	0.49	350	ti	0.0 6	63	0.14	49	17	17	50	/5	13	£
L144 0+50K	0.3	0.80	(3	454	<3	(0.01	(0.1	4	8	1	2.77	0.04	0.45	333	8	0.03	ã	0.06	79	2	(2	34	(5	(3	2 2
L14N 1+00N	0.6	1.27	{3	353	(3	0.09	(0.1	37	995	33	5.61	0.11	0,77	624	15	0.05	927	0.11	101	(2	(2	54	<5	(3	Š
LIAN INSON	0.7	1.46	<3	419	<3	0.10	<0.1	10	29	28	5.44	0.11	0.79	550	9	0.05	3	0.13	93	(2	(2	55	(5	(3	5
- LI4W 2+00N	0.8	1.38	(3	552	(3	0.11	{0.1	10	10	26	5.40	0.12	0.73	528	10	0.05	a	0.13	103	<2	(2	47	(5	(3	5
L14N 2+50N	0,9	1.29	(3	473	(3	0.08	<0.1	8	10	19	4.89	0.10	0.62	567	9	0.05	a	0.14	125	(2	<2	57	(5	(3	5
1140 34500	1.3	0./5	G	377	<3	(0.01	<0.1	2	2	6	2.79	0.04	0.40	289	9	0.02	<1	0.07	127	(2	<2	50	<5	<3	3
LIGH GHOM	0,8	1,05	(3	404	(3	0.02	(0.1	4	5	8	3.58	0.06	0.52	375	9	0.03	(1	0.09	128	(2	<2	51	۲5	(3	4
	0.9	V. 74	13	361	(3	0.04	(0.1	3	5	13	4.52	0.07	0,49	356	9	0.03	.4	0.11	137	<2	<2	45	₹5	₹3	5
Maniaum Detection Maxiaum Detection	0.1 50-0	0.01 10.00	3 2000	1 1000	3 1000	0.01	0.1 1000 0	1 20044	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	.
< - Less Than Miniaum) - Greater	Than Nazie	46	is - lası	ufficient	: Sample	1111	- No Saso	1000	ANORALOU	S RESULTS	iv.vv i - Furth	her Anal	VSPS BV /	1999 Alteraste	19.09 Hethod	20000 C Sugarst	10.00	20000	2000	1000	10000	100	1000	2000

ANOMALOUS RESULTS - Further Analyses by Alternate Methods Suggested. is - Insufficient Sample ns - No Sample

14 . [k i ... (Date. ∃1., ⊮E 1 . . T

-

ANALYST: Kymlh

20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6

Phi(604)251-5656 Faxi(604)254-5717

Nazious Detection

< - Less Than Miniaua

50.0 10.00

2000

) - Greater Than Maximum is - Insufficient Sample

1000

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HWOg to HgD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900630 PA	PRIME EQUIT	TES INC.				PROJEC	T: TREAT	(DATE	IN: OCI	01 1990	DAT	TE OUT: N	DV 05 19	90	ATTENTION	I: MR. J1	IN FOSTER			PAG	E 2 OF	4	
Sample Name	Ag DTA	A] ۲	A5	Ba nos	Bi aon	Ca	Cd	Co	Čr DD 1	Cu	fe Y	K ž	Mg X	16 500	Ho	Na X	Ni	P Y	РЬ рла	Sb	Sa sos	Sr DDG	U Dû	W 100	Zn ooe
1159 4+50N	2.0	1.42	<3	401	<3	0.13	0.8	8	11	45	5.41	0.12	0.63	586	10	0.07	8	0.13	211	(2	(2	64	(5	3	71
LISH 5+00N	1.6	1.05	(3	304	(3	0.09	0.6	5	 6	25	5.18	0.09	0.50	452	ŝ	0.04	3	0.12	155	(2	0	44	(S	(3	58
1154 0+00	0.6	1.00	(3	423	(3	0.06	0.9	5	4	12	3 96	0.06	0.53	438	Å	0.05	ă	0.10	95	0	0	43	(5	(3	43
	0.0	0 17	/5	272		0.00 A A4	0.J	3	,	12	2.20	0.00	0.JJ	100	6	0.04		A 1A	113	12	12	50	/5	/3	29
L15W 1+005	0.8 0.8	0.87	, (3	260	(3	0.03	(0.1	2	2	6	2.55	0.04	0.35	289	7	0,04	(1	0.10	100	(2	(2	75	<5	(3	29
L15W 1+505	0.4	0.61	(3	218	<3	0.05	0.7	3	3	6	4.21	0.07	0.23	287	5	0.08	(1	0.19	57	<2	(2	47	(5	(3	37
L15W 2+005	0.6	0.71	(3	301	(3	0.04	0.1	1	14	B	3.42	0.05	0.31	244	8	0.05	(1	0.10	65	<2	<2	51	<5	<3	40
L15W 0+00	1.3	0,88	31	490	<3	0.06	1.2	2	35	17	3.30	0.06	0.40	291	5	0.04	8	0.14	86	5	<2	112	<5	<3	55
L16W 0+50N	0.B	0.70	63	182	(3	0.05	1.1	Ĩ	ß	15	5.22	0.10	0.32	250	A	0.05	- A	0.17	90	9	(7	97	(5	(3	48
L16W 1+00N	0.8	0,86	70	368	(3	0.05	0.9	2	7	19	4.37	0.07	0.51	371	6	0.04	κί	0,17	83	13	₹2	78	<5	(3	58
L16W 1+50N	0.7	0.B2	56	325	(3	0.04	1.9	2	3	16	4.51	0.07	0.45	328	7	0.04	<i< td=""><td>0.1B</td><td>77</td><td>8</td><td><2</td><td>90</td><td><5</td><td>(3</td><td>48</td></i<>	0.1B	77	8	<2	90	<5	(3	48
L16W 2+00N	0.8	0.74	47	242	(3	0.05	0.3	2	2	19	5.16	0.09	0.34	266	7	0.04	(1	0.20	95	7	(2	88	<5	(3	47
LIGW 2+50N	0.4	1.02	<3	479	<3	0.05	1.0	8	5	20	4.55	0.07	0.56	407	9	0.04	(1	0.12	111	<2	(2	55	<5	<3	48
L16W 3+00N	0.2	1.02	<3	443	<3	0.06	0.7	5	5	14	4.34	0.08	0.55	355	8	0.04	(1	0.12	92	<2	<2	52	(5	(3	43
L16W 3+50N	0.3	1.48	<3	543	<3	0.23	1.9	13	9	25	5.79	0.12	0.79	589	12	0.07	5	0.16	108	<2	<2	62	<5	<3	71
L16W 4+00N	0.5	1.17	₹3	572	(3	0,10	1.5	7	11	25	4.58	0,08	0.58	423	9	0.05	9	0.11	64	<2	(2	52	(5	(3	61
116W 4+50N	0.5	0.93	(3	322	₹3	0.11	1.2	B	213	22	5.23	0.09	0.52	379	11	0,05	63	0.11	98	5	<2	52	(5	(3	56
L16W 5+00N	0.6	1.05	(3	194	<3	0.08	1.6	5	15	17	6,89	0.15	0.52	424	11	0.07	6	0.22	87	5	(2	60	<5	<3	50
L16W 5+50N	0.6	0.81	(3	294	{3	0.05	0.8	4	13	18	6.41	0.10	0.39	267	9	0.05	1	0.15	74	6	<2	49	<5	<3	45
L16W 0+505	1.2	0.90	85	313	(3	0.06	0.5	4	8	37	4.97	0.09	Q.45	364	8	0.05	3	0.18	123	14	₹2	94	<5	(3	62
L16W 1+00S	0.8	0.79	B9	365	(3	0.02	2.3	3	All states of the states o	29	4.35	0.09	0.41	339	B	0.05	(1	0.16	96	22	(2	64	(5	<3	57
L17W 0400	0.5	0.69	(3	217	(3	0.09	1.9	2	4	12	6.05	0.11	0,29	178	3	0.07		9.15	32	2	(2	6V	()	5	40
L178 0+50N	0.5	0./0	(3	805	(3	0.02	1.3	3	4	13	4.2/	0.08	0.28	166	11	0.05	4	0.11	59	9	(2	87	(5	(3	37
L17W 1400N	0,4	0,86	(3	542	(3	(0.01	1.1	3	5	14	4.77	0.08	0,28	168	10	0.06		0.13	22	4	(2	64	()	(3	42
L17W L+50N	0.2	0.60	(3	419	(3	<0.01	0.0	2	2	10	3.05	0.06	0,22	123	B	0.04	(1	0.09	50	<2	<2	54	(5	(3	24
L17W 2+00N	0.3	0.72	(3	250	(3	0.09	1.0	8	5	14	5.00	0.10	0.31	171	8	0.08	(1	0.11	51	6	<2	66	(5	(3	30
L17# 2730R	0.4	V./Z	13	138	13	(0.01	0.8	1	2	13	4.03	0.08	0.28	164	8	0.03		0.12	40	2	12	32	10	(3	27
LI/W 3+00N	0,4	0.5/	(3	685	(3	0.02	1.3	3	•	13	3,03	0.05	0.30	18/	۵ -	0.00	<u>, (1</u>	0.08	28	(2	12	63	G	(3	31
L178 3+30N	0.7	0.83	(3	391	(3	(0.01	0.4	4	2	19	3.69	0.06	0.48	328		0.04	(1	Q.11	81	5	<2 (2	48		(3	42
L17W 4+00A	0.1	1.63	(3	168	(3	9.11	1.7	1/	14	45	4.9/	0.12	0.68	664	11	0.0/	20	0.12	15	(2	(2	23	5	(3	100
L17N 0+505	(0.1	0.59	(3	326	(3	0.08	1.4	2	(1	12	4.09	0.08	0.23	130	6 6	0.04	(1	0.14	38	5	<2 (2	68 90	<5 /5	<3 (2	37
LITH 11003	(0.1	V.J.	10	207	10	10.03	V.0			10	3.12	V,VO	V. 21	113		0.03		0.13	JJ 47	2	12	50	1.1	13	21
LI/# 17295	(0.1	0.4/	13	220	(3	(0.01	V.D	1			9.09	0.08	V.15	110	8	0.00		0.19	100	8	(2	114	()	(3)	20
LI/W 21005	0,3	V.64	(3	3/3	(3	(0.01	V./	1	(1 	13	3.38	9.05	0.22	171	5	Q.03	<1 20	0.10	108	1	14	114	()	13	50
10 ETT VIGON	(0.1	1+22	(3	54	(3	V, 28	2.0	25	15	88	6.29	0.15	0.75	879	13	0.07	22	0,13	2	(2	(2	32	(5	(3	147
LIBN 1+00N	(0.1	1.98	(3	165	(3	0.12	2.0	18	14	76	5.91	0,14	0.69	698	10	0.07	17	0.17	អ	(2	<2	35	(5	3	113
FTON (1450N	(Q.1	2.52	3	89	(3	0.23	7.5	<u> </u>	12	103	6.63	V.1/	V.69	1163	12	0.08	25	V, 20	1	SZ .	4	b J AA	()	(3	145
LIBW Z+QON	(0.1	1.69	<3	131	(3	0.22	1.6	21	14	55	5.28	0,13	0.76	818	12	0.07	21	0,10	9	(2	(2	28	(5	(3	133
LIUW 2+30N	0.2	2.22	(3	206	(3	0,16	2.0	25	29	89	6.25	0.15	0.73	971	12	0.06	28	0.16	4	(2	(2	36	<5	(3	147
Niniaus Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	t	0.01	0.01	0.01	t	1	0.01	1	0.01	2	2	2	1	5	3	ı

1000 20000 10.00 10.00 10.00

20000

ANOMALONIS RESINTS - Further Analyses By Alternate Hethods Sungested.

1000

10,00 20000 10.00 20000

2000

1000 10000

100

1000

1000 10.00 1000.0 20000

As - No Saunie

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Phi (604) 251-5656 Fax: (604) 254-5717

1.

1.1

1.4

GEOCHEMICAL ANALYSIS ICAP

A .5 gram sample is digested with S ml of 3:1:2 HCl to HNOs to HsO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Mn, Na, P, Sn, Sr and W.

			-		Thi	s leach	is partia	l for Al	l, Ba, Ci	a, Cr, F	e, K, Hg), Mn, Na	, P, Sn,	Sr and I	H .				ANALY	st:	4	_l	1		
REPORT N: 900630 PA	PRIME EQUIT	TES INC.				PROJEC	T: TREATY	1		DATE	IN: 001	1 OL 1990	DAT	E OUT: N	DV 05 19	4 0e	TTENTION	: MR. JI	N FOSTER			PAG	3 OF	4	
Sample Name	Ag	Al t	Å5	Ba	Bi	Ca 1	Cd Opti	Co	Cr obe	Cu	Fe 1	K	Mg T	No.	Ho	Na 1	Ni	P 1	Pb	56 000	Sn DDe	ST DDA	U 001	W 606	Zn een
L18W 3+00N	0.5	1.29	(3	358	(3	0.10	1.2	11	21	39	4.97	0.11	0.59	400	11	0.05	27	0.13	20	(2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33		(3	7B
L198 0+00N	0.1	1,63	(3	157	(3	0,38	1.6	23	20	52	5.59	0.16	0.70	B69	12	0.07	37	0.03	13	<2	(2	38	(5	<3	181
619W 0+50N	0.2	2.34	(3	149	<3	0.45	2.1	28	28	60	5.83	0.17	1.10	929	- 14	0.11	37	0.09	<2	<2	<2	39	<5	<3	165
L19W 1+00N	0.2	1.95	<3	134	. (3	0.32	1.6	24	25	58	5.67	0.15	0.87	973	13	0.07	37	0.10	<2	<2	<2	30	(5	{ 3	160
L19# 1+50N	0.1	1.69	(3	128	(3	0.2B	2.4	20	21	51	5.20	0.13	0.77	728	12	0.06	26	0.09	<2	<2	<2	28	(5	<3	150
L19W 2+00H	0.3	2.01	<3	194	<3	0.32	2.4	24	23	60	6.03	0.17	0.78	956	13	0.08	29	0.13	<2	<2	<2	44	< 5	<3	159
L19W 2+50N	0.2	1.78	(3	139	(3	0.30	2.1	23	21	54	5.55	0.14	0.76	932	f1	0.09	31	0.11	<2	<2	(2	37	<5	(3	145
L19W 3+00N	0.2	1.92	(3	124	(3	0.45	1.7	22	25	32	4.34	0.13	0.95	858	10	0.06	27	0.09	(2	(2	(2	21	(5	(3	111
LINM 3+308	0.2	2.80	(J /1	148	 < 3 < 7 	1,05	2.3	40	04 07	49	5,30	0,20	1.74	1160	11	0.18	58	0.08	(2	(2	< <u>/</u>	60 10	(0)	(3	128
LISW 4+00H	0.2	1.21	(3	80	1	0.32	2.0	12	21	24	3.00	0.08	0.70	612	ь	0.04	32	0.07	12	12	14	10	13	13	10
L19W 0+505	0.2	2.26	<3	110	<3	0.74	1.9	31	21	47	5.68	0.19	1.28	778	13	0.22	26	0.0B	(2	(2	(2	70	(5	(3	144
L19W 14005	0.3	1.95	(3	88	(3	0.39	3,8	35	24	69	7.81	0.20	1.05	15/0	14	0.09	31	0.11	(2	(2	(2	39	(5	(3	264
	0.2	2.24	(3	16/	13	0.01	4.1	25	23	38	6.V/ 5.50	V.17	1.08	730	14	0,13	32 55	0.03	(2	(2	(2	22	(3	(3	1/8
1200 0100	0.4	2.00	(3	134 122	(3)	V.20 0.27	3.2	21	21	6/ 50	0,32	V+17	0.90	000	13	0.0/	30 25	0,11	12	12	12	29	()	(3	171
C20# 0100M	V. 1	2.00	13	192	13	V.3/	1.0	20	23	70	6.VD	V. 10	0. 31	330	12	V.U7	13	0.10	12	11	12	33	13	13	171
L20W 1+00N	0.3	1.90	<3	119	(3	0.25	2.2	27	24	56	5.62	0.12	0.91	1098	13	0.06	28	0.10	<2	(2	(2	22	<5	(3	157
120W 1+50N	0.3	2.61	(3	133	(3	0.41	2.8	33	31	68	6.05	0.17	1.22	1456	15	0.08	41	0.10	(2	<2	(2	29	(5	(3	1/2
LZOW ZHOON	0.2	1.97	(3	140	(3	0.33	<0.1	27	22	58	5.52	0.14	0.86	1102	13	80.0	27	0.10	<2	(2	(2	33	(5	(3	160
1200 Z+200	0.2	1.84	(3)	131	(3	0.31	1.8	26	21	23	5.31	0,14	0.84	1040	12	0.08	24	0.09	3	(2	(2	32	() (5	(3	100
CZVW 3+0VM	(0.1	1.71	(3	132	13	0.47	1.0	4	19	•2	4.33	V.12	ų, 3V	/88	11	V.V6	13	0.09	12	(2	14	28	()	(3	179
120W 3+50N	0.3	1.97	<3	194	<3	0.33	1.5	19	18	32	4.73	0.12	0.68	949	10	0.06	18	0.08	3	<2	<2	25	₹5	<3	138
120W 0+50S	C.0	3.81	(3	148	(3	0.48	2.2	45	37	61	8.42	0.25	1.84	2076	18	0.09	40	0.11	<2	<2	<2	32	{5	<3	189
L20W 1+00S	0.2	3.12	(3	176	<3	0.52	1.8	37	45	66	7.28	0.21	1.66	1451	18	0.08	45	0.09	<2	(2	<2	37	(5	(3	192
L21W 0+00	0.3	2,49	(3	270	(3	0.30	2.5	24	30	63	5.31	0.15	0.90	1113	13	0.06	32	0.09	(2	<2	(2	40	(5	(3	170
CTIM A+DAN	0.4	1.43	(3	404	13	0.16	0.8	18	21	50	4.98	0.12	0.74	681	12	0.05	12	0.09	29	(2	(2	53	(5	(3	115
L21W 1+00N	0.5	2.06	<3	223	(3	0.24	1.3	24	21	44	4.79	0.12	0.86	853	12	0.09	17	0.08	11	(2	<2	37	(5	<3	121
L21W 1+50N	0.5	2.11	<3	353	(3	0.11	1.7	22	18	53	4.93	0.10	0.72	806	10	0.06	9	0.10	27	<2	<2	44	<5	<3	109
L21W 2+00N	0.4	1.76	(3	285	-(3	0.11	1.0	16	15	38	4.44	0.10	0.69	899	9	0.06	7	0.09	30	<2	<2	38	<5	(3	97
L21W 2+50N	0.4	1.93	(3	444	(3	0.12	0.6	15	17	43	5.05	0.12	0.70	753	9	0.06	6	0.11	40	(2	(2	- 54	(5	(3	95
L21W 3+00N	0.4	1.68	(3	POR	(3	0.11	1.3	16	17	39	3.15	0.11	0.65	732	10	0.06	4	0.13	69	(2	(2	P0	()	<3	94
L21W 3+50N	0.3	1.90	(3	222	(3	0.26	2.1	21	18	46	4.99	0.13	0.90	679	10	0.07	15	0.10	7	<2	(2	31	<5	(3	130
L22W 0+00	0.2	2.61	(3	487	(3	0.18	1.1	16	22	42	4.86	0.12	0.74	753	13	0.06	9	0.08	9	<2	<2	28	(5	(3	117
122W 0+50W	0.2	2.35	(3	402	(3	0.19	1.2	19	23	48	5.24	0.12	0.74	870	13	0.07	9	0.09	17	(2	<2	40	(5	(3	130
1221 1+00N	<0.1	2.73	(3	369	(3	(0.01	1.0	7	16	28	4.79	0.10	0.48	309	12	0.06	(1	0.12	42	(2	<2	43	(5	(3	60
LZZW 1+39N	0,4	1.95	<3	437	(3	0,11	0,4	12	17	37	4.48	0.09	0.69	494	8	0.05	6	0.09	40	(2	<2	48	<5	<3	91
L22W 2+00N	0.3	1.77	<3	379	(3	0,27	9.8	13	12	29	5.44	0.13	0.58	603	13	0.07	4	0.11	58	(2	(2	59	(5	<3	79
L22W 2+50W	0.2	2,64	<3	264	(3	0.13	2.6	40	22	76	4.98	0.13	0.B4	2020	13	0.08	33	0.11	5	<2	(2	33	<5	<3	203
L22W 3+00M	0.4	2.37	<3	274	<3	0.53	1.1	26	14	42	5.21	0.16	0.98	1031	10	0.17	6	0.10	18	(2	<2	92	(5	(3	119
1221 1000 - 04 50 <u>6</u>	5 0.1	1.87	(3	214	(3	0.18	1.3	22	23	42	4.99	0.11	0.73	805	14	0.07	15	0.05	11	<2	<2	25	<5	(3	109
_																									

1

20000

3

1000

Nimious Detection **Haxious Detection** < - Less Than Histow 0.1

0.01

50.0 10.00

) - Greater Than Maximum

3

1000

2000

3

1000

is - Insufficient Sample

0.01

10.00 1000.0

0.1

1

20000

as - Na Samale

1

1000 20000

0.01

10,00

t

0.01

10.00

0.01

10.00 20000

ANONALOUS RESULTS - Further Analyses by Alternate Hethods Sunnested.

1

0.01

10.00

1

1000

0.01

1

20000 10.00

2

20000

2

2000

2

1000

-

1

10000

5

בעמיד לניצו היועה ביו היו היונה במור מצמיל אלאל אלא היונה היונה אותה אלא מינה אותה אותה אלא אותה אותה אותה אותה 1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph1(604)251-5656 Fax:(604)254-5717

1.....

1.1

ICAP GEOCHEMICAL ANALYSIS

Т., Қ

ANALYST: 19-16

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to KHO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT	1: 900630 PA	PRIME EQUIT	IES INC.				PROJECT	: TREATY			DATE	1N: GCT	01 1990	DATE	OUT: NO	IV 05 199	IQ AT	TENTION:	MR, JLM	FOSTER			PAGE	4 OF	4	
Sample	Hase	Ag Dom	A1 T	Ås po≡	Ba op n	Bi gge	Ca I	Cd pps	Co pp≞	Cr p p s	Cu ppe	fe 1	K X	Hg I	Ma ppa	Ko p pe	Ha I	Ni ppm	P 1	Pb p pa	Sb ppe	Sn opa	ST pp=	U ¢₽≜	W ppm in	Zn ppe
1220	1+50\$	0.2	2.14	- 	171	; ;{3	0.16	2.1	22	27	46	5.25	0.12	0.70	809	22	80.0	45	0.07	<2	(2	<2	24	<5 /5	(3	196
L228	2+005	0.5	2.75	(3	173	<3	0.14	1.3	26	30	54	5.54	0.14	Q.75	850	24	0.09	46	0.11	(2	(2	12	23	(J /6	(3)	107
1.22	2+505	0.4	2.97	<3	133	<3	0.19	2.7	34	27	53	6.39	0.16	0.63	1759	22	0.11	41	0.10	<2	<2	42	13	10	10	17/
1 224	3+005	(0.1	3.38	<3	102	(3	0.34	2.2	45	33	118	7.49	0.19	1.11	1324	26	0.15	57	Q.11	{2	Ω.		28	11	13	105
L22W	3+505	(0.1	3.48	<3	193	<3	0.43	2.1	34	46	65	6.16	0.18	1.38	1669	26	0.11	50	0.13	<2	₹2	(2	26	{ 5	3	193
1 220	2000	(0.1	2.68	(3	161	(3	0.23	1.3	24	41	39	5.30	0.13	1.07	1192	18	0.08	33	0,07	(2	(2	<2	16	<5	<3	141
1 224	4+505	(0.1	2.64	(3	105	(3	0.17	2.0	25	29	44	5.59	0.14	0.B2	1224	33	0.10	30	0,08	<2	<2	<2	11	<5	(3	243
1.000	F.000	/0.1	2 75	(3	121	(3	0.25	1.3	24	51	32	5.29	0.13	1.10	1108	17	0,08	31	0.08	<2	<2	₹2	17	(5	(3	141
1.224	0+005 0+005	0.7	3.00	(3	493	(3	0.13	1.0	19	29	46	5.47	0.12	0.67	1267	15	0.08	23	0.10	<2	<2	<2	27	(5	(3	121
L23W	0+50N	0.3	3.03	(3	515	(3	0.10	t.B	23	29	59	5.89	0.14	0.74	2162	14	0.08	21	0.11	3	(2	. <2	26	(5	(3	[07
		<i>(</i> A)	n 70	19	סדר	12	0.05	/6 1	5	21	24	4.95	ñ. 1ñ	0.24	451	13	0.07	4	0.09	12	(2	<2	31	(5	(3	69
1231	1+00N	(0.1	2.60	(3)	2/0	13	0,03	1.4	21	21	29	5.51	0.51	0.39	1720	14	0.07	4	0.11	23	(2	<2	40	(5	<3	82
L236	1+50N	(0,1	2.0/	13	227	13	A 45	1.7	2.1 34	21	50	5 29	0.15	0.97	797	12	0.15	20	0.11	2	<2	<2	60	<5	(3	113
L23¥	2400N	(0.1	2.33	(5)	343	13	A 16	110	17	21	24	4 79	6 11	0.65	730	12	0.07	11	0.09	40	<2	<2	41	<5	<3	101
L23W	2+50N	(0.1	1.33	(3	333	(3	V. 10	1 6	20	70	41	5 75	0.16	0.73	1477	29	0.12	19	0.12	(2	<2	(2	16	<5	<3	176
L231	2+005	(0.1	3.3/	(3	123	(3	0.13	1.0	20	10	74	3.75	V. 10	V. / 4	• • • •	.,							••			
1 224	24505	(0.1	2.75	(3	161	(3	0.24	1.9	28	26	46	6,00	0,15	0.84	1446	31	0.10	24	0.09	(2	(2	(2	20	(5	(3	208
1 234	3+005	0.7	2.52	(3	89	<3	0.08	<0.1	6	26	13	3.01	0.07	0.23	261	12	0.05	a	0.12	(2	<2	(2	10	0	(3	93
1 2 2 4	31505	(0.1	3.77	(3	200	(3	0.28	1.8	38	52	53	6.66	0.18	1.46	2172	22	0.09	34	0.11	<2	<2	(2	19	(5	(3	13/
1.000	41005	(0.1	3.44	(3	352	(3	0.35	2.1	31	34	48	7.15	0.19	1.10	2424	26	0.10	20	0.09	<2	<2	<2	28	<5	G	225
1238	4+505	(0.1	3.74	<3	195	(3	0.22	1.6	32	35	44	6.51	0.17	1.20	2136	16	0.10	19	0.12	<2	(2	(2	18	()	K 3	205
1 741	0±00H	6 2	2 25	(3	158	(3	0.26	1.6	28	34	49	4.47	0.13	0.94	770	16	0.10	36	0.09	<2	<2	<2	28	<5	<3	195
1.240	AT24M	0.2	2.22	(3	203	(3	0.18	(0.1	20	26	47	4.00	0.12	0,72	688	13	0.14	- 14	0.07	2	<2	(2	19	<5	(3	189
1.440	11000	0.2	2 72	12	24R	(3	0.27	1.0	23	29	43	4.54	0.14	0.91	746	14	0.13	19	0.09	<2		<2	33	<5	(3	161
1.040	11200	0.5	2 74	ä	679	3	0.62	1.4	27	24	39	6.38	0.21	1.12	829	15	0.23	12	0,14	30	<2	<2	105	<5	(3	98
L24#	2+00N	0.3	2.52	(3	399	(3	0.12	0.4	15	21	32	4.76	0.10	0.64	794	i 5	0.07	(1	0.11	20	<2	(2	46	(5	(3	92
	3. 548	(0.1	2 45	13	147	(3	6.32	2.0	29	20	33	6.07	0.15	1,06	1540	16	0.09	5	0.08	(2	<2	<2	17	<5	<3	172
1248	ZTOVA	20.1	2.13	/2	149	13	0.20	1.4	24	30	49	6.18	0.15	0.98	1086	16	0.11	22	0.10	<2	<2	<2	23	<5	< 3	211
1.240	01005	(0.1	3.00	/3	102	12	0.04	(0.1	12	19	28	4.19	0.11	0.41	433	15	0.11	<1	0.09	<2	(2	<2	13	(5	<3	119
L24W	1+005	(0.1	3,10	13	147	/2	0.04	0.8	26	29	47	7.53	0.19	0.81	2606	30	0.09	14	0.15	(2	(2	<2	27	<5	(3	236
1.24%	2+005	0.2	2.37	(3	194	(3	0.30	0.7	20	23	28	5.32	0.14	0.60	1423	18	0.07	2	0.14	<2	<2	<2	26	(5	(3	166
														. 50	5000	17	0 12	24	0 11	12	12	0	16	(5	(3	232
L248	2+505	0.5	4.30	<3	196	(3	0.25	2.0	61	56	73	1.84	V. 24	1.33	2320	20	0.13	34 22	6 12	12	(7	(7	22	(Š	(3	257
L24W	3+005	0.3	4.49	(3	237	(3	0.29	2.5	68	23	13	7.90	0.23	1.36	0444	20	0.13	-32	A 16	/3	(7	(7	35	(5	(3	190
L258	0+00N	0.2	3.47	<3	112	(3	0.35	1.0	37	25	42	2.6/	9.17	1.11	2995	17	V.17		0 A3	12	(1	(2	19	(5	(3	200
L25W	0+50N	0.1	3.01	(3	117	()	0.32	2.3	34	22	36	6.72	0.19	1.24	1640	17	0.11		V,V/	10	12	/2	17	/5	(1	220
L25W	1+00N	0.2	2.84	(3	143	(3	0.29	1,8	32	18	38	5.86	0,19	1.09	1921	12	0.10	(1	0.08	12	14	12	1/	1.		
L.25W	1+50N	0.1	2.40	(3	142	(3	0.28	2.5	26	20	34	6.07	0.16	0.99	1581	17	0.09	2	0.07	(2	(2	(2	19	<5 /F	(3	190 176
L25#	2+00N	0.3	1.95	<3	179	(3	0.38	1.9	28	18	33	5.71	0.15	0.93	1571	11	0.09	2	0.08	(2	<u>(2</u>	(2	24	(3	(3	1/0
L251	0+505	0.1	3.26	<3	195	<3	0,10	1.0	27	23	38	6.74	0.15	0.80	2133	15	B0.0	0	0.13	(2	(2	(2	15	()	(3	170
TR L	13W 0+505	0,8	0.98	(3	350	(3	0.08	2.1	5	4	17	6.08	0.13	0.57	495	11	0.07	(1	0.15	297	(2	(2	52	(5	(3	111
Nini	aud Detection	0.i	0.01	3	1	3	9.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1 10000	5 100	3 1000	1 20000
Haxi	and Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	19.00	14.00	20000	- 1944	14+44	40000	TAIAA	74444	1444	1444				

Maxious Detection

(- Less Than Minimum

) - Armater Than Haviens is - Insufficient Samle

ns - No Sample ANGHALOUS RESULTS - Further Analyses By Alternate Methods Suggested.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 25 1-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PRIME EQUITIES INC.DATE: NOV 01 1990ADDRESS: 10th Flr808 W. Hastings St.DATE: NOV 01 1990: Vancouver, BCREPORT#: 900713 GA: V6C 2X6JOB#: 900713

PROJECT#: TANTALUS (TREATY) SAMPLES ARRIVED: OCT 29 1990 REPORT COMPLETED: NOV 01 1990 ANALYSED FOR: Au (FA/AAS) ICP INVOICE#: 900713 NA TOTAL SAMPLES: 148 SAMPLE TYPE: 148 SOIL REJECTS: DISCARDED

SAMPLES FROM: OREQUEST CONSULTANTS - ESKAY CREEK COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: VGC Staff

SIGNED:

Kyll

GENERAL REMARK: None

¥0

JOB NUMBER: 900713

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

PAGE 1 OF 4

L	REPORT NUMBER: 900713 GA
Γ	SAMPLR #
r	TR L12V 1+25N
	TK L128 14/58
L	TR L124 2+758
r	TR 112W 3+250
	TR 6124 3+758
Γ	18 5164 44758 49 1.128 44758
	TR L13W 0+250
~	TR L13V 0+75M
	80 1150 1.5CH
	TH 6134 14230 49 1134 14150
r'	TR L13V 2+25N
-	TR L13W 2+75H
~ _	TR 113V 3+25N
0	
k	TH 6134 37730 TH 1345 44750
	TH L13W 8+25S
ſ	TR L13V 0+75S
	TR 1139 1+255
_	40 F148 04358
	TR 1141 0+750
L	TR L14T 1+258
r	TR L14V 1+758
	TE L14T 2+258
▶	TR 6148 24758
5	TR 1147 3+258
	TR 6144 3+758
	TR 1144 4+258
Γ	IR P14A 84120
L	TR 1159 0+258
_	TR 115W 1+25W
Γ	TR 1154 1+758
	TE 5154 2+250 40 1154 91958
r	48 8758 9,150
	TR 1158 3+258
-	TR 6158 3+758
	TR 115W 4+25M 40 (15W 4+25M
L	10 DTAN 42130
	DETECTION LINIT
-	nd = none detected

Γ.

Г

pbp					
30					
30					
20					
. 30					
20					
20					
20					
 Ka					
120					
167					
10					
**					
V) 414					
140					
60					
30					
. 30					
				-	
30	,				
50					
150					-
90					
110					
100					
100					
60					
70					
30					
20		·			
UL AD					
20					
20					

PRIME BOUITIES INC.

-- = not analysed

20 50

5

is = insofficient sample

Γ

ί.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

REPURT	AVEDEK: 3	7VV/13 GR 308	UNUREK: 200113	> PRIME EQ	ULTIES INC.	PROB Z	UP 4
SAMPLE	ł	Au					
		ppb					
TR 6151	01255	50					
TR LISW	0+758	30					
TR GISE	1+255	· 100					
TH LISE	1+755	10					
TR LIGE	0+258	70					
TR L16W	0+758	90					
TR 616	1+258	190					
TR 6161	1+75#	270					
TR 6168	2+258	80					
TR LIGN	2+75B	90					
TR LIGT	3+251	70					
TR LIGT	3+758	40					
TR 616	4+251	70					
TR LIGT	4+758	50					
TR LIGT	5+25N	50					
TR LIGN	0+25S	110					
TR 1164	0+75s	80					
TR 6178	0+25N	10					
TR LITE	0+75N	20					
TR 6170	1+250	10					
TR 1174	1+758	30					
TR L17	2+25N	20				-	
TR 1171	2+75N	20					
TR L17	3+25M	100					
TR 1174	3+75N	nđ	•				
TR 1174	4+250	nd					
TR 1177	0+258	ba					
TR 1174	1+25\$	20					
TR 6177	1+758	30					
TR LIST	0+25H	20		•		•	
TR 6188	0+75¥	- 20					
TR LIBY	1+258	40					
TR L189	1+758	50					
TR L15T	2+25H	20					
TR 6180	2+758	nd					
TR L167	3+75K	40					
TR LISE	0+258	30					
TR L19V	Q+75N	ba					
TR L191	1+25%	nd					
DETECTI	ON LINIT	5					2 •
	Johnal		i hasuleee	a - inenfficient	asaala		-

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

I

REPORT NUMBER: 900713 GA	JOB NUMBER: 900713	PRIME EQUITIES INC.	PAGE 3 OF 4
SAMPLE 1	Aa		
	թըհ		
TR L19W 1+75K	50		
TR L19W 2+25W	nd		
TR L19W 2+75H	nð		*.
TR L19V 3+25N	nð		
TR 1198 3+758	ba		
TR L19W 0+258	nđ		
TR L19W 0+758	20		
TR 1190 1+258	10		
TR L19V 1+758	20		
TR 1201 0+251	nd		
TR 1200 0+750	bđ		
TR 1.201 1+250	nd		
TR 1.20W 1+75W	30		
TD 1.701 74758	20		
TR 1201 2+751	nd		
40 5.7AB 94758	20		
TE SEVE 3-200 TE 1208 61750	ad ad		
18 8200 07230 PD 1988 81750	20 20		
1K 1298 97130 90 7918 81968	20		
TR L21V 0+75W	30		
40 T 51 K 1195K	40		
18 4414 17678 80 1918 11758	19 6.4		
IK 6614 17178 An 1917 3:358	- 4 - 4		
TH 6/14 24238	8U - 3	:	
TK 1/14 24/38			
TH LZIN SHZOR	BQ		
TR 121V 3+75H	70		-
TR L22Y 0+25H	30		
TR 122W 0+75B	10		
TR L22¥ 1+258	40		
TR L22¥ 1+75H	nð		
TR 6228 2+258	nd		
TR 622¥ 2+758	30		
TR L221 0+255	30		
TR L22V 0+755	30		
TR 6228 1+255	20		
TR L22V 1+755	50		
TR L228 2+255	ad		
TR'622W 2+755	nd		
TR 6228 3+255	nd		
DETECTION LINIT	5		2
nd = none detected	- = not analysed is =	insufficient sample	2

•. •

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900713 GA	JOB NUMBER: 900713	PRIME EQUITIES INC.	PAGE 4 OF 4
SAMPLE #	40		
	ppb		
TR L224 3+755	nđ		
TR L22W 4+255	nd		
TR 1227 4+755	ba		
TR L22W 5+25S	bd		
TR 1234 0+250	10		
TR 623V 9+75N	30		
TR 1231 1+258	40		
TR L23W 1+75M	20		
TR 6238 2+258	30		
TR L231 2+758	30		
TR 1.231 2+255	20		
TR 1.23W 2+15S	nđ		
TR 1237 3+255	ed		
TR 1.23W 3+758	 Ďe		
VR 1.73V 4+255	ba		
TR 5247 0+250	20		
TR 1244 0+750	nd		
TR L244 1+258	nđ		
TR 124W 1+75W	20		
TR L24¥ 2+258	nd		
TR 1247 0+255	nd		
TR 1244 8+755	nd		
TR L24T 1+25S	20		
TR L24V 1+758	nd		
TE L24¥ 2+255	nd		
PD 13/8 31320	ad		
40 1959 A1958	10 ad		
10 DIJH 44830 40 1959 Alysk	uu nd		
40 F35# 1135#	eu ad		
10 1359 11950 10 1359 11950	uu nd		
IR DEJE IT(JR	ц л		
TR L251 0+255	Dđ		

DBTECTION LINIT nd = none detected 5 -- = not analysed

is = insufficient sample

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to HsO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Agulh

REPORT 1: 900713 PA	PRIME EDUI	TIES INC.				PROJEC	T: TANTA	LUS (TREA	(TY)	BATE	IN: BCT	29 1990	DAT	TE DUT: N	IQV 15 19	90 4	TTENTION	: MR, JI	M FOSTER			PA68	t OF	4	
Sample Name	Ág DOM	A1 Z	As DDA	Ba	Bi COM	Ca X	b3 eco	Co one	Cr Com	Cu 800	Fe X	ĸ	Kg X	Kn Do∎	No DDe	Na Z	Ni con	۴ ۲	Pb ann	Sb	Sn DO	Sr DD A	ប ព្រំគ	W Dúm	Zn aos
TR 120 1+250	0.8	0.58	3	376	(3	0.08	1.4	2	4	16	5 02	0.05	0.20	173	7	0 09	5	0 19	62	12	12	67	15		43
TD (120 1.250	0.9 0.9	1 01	/2	428	/2	0.06	1 7	4	12	24	5 57	0.03	A 27	224	,	0.03	5	0.12	45	/5	/2	45	25	/3	20
TR (10) 0.05N	0.0	1 02	/5	400	/2	0.00	1.7	Ē	14	27	5.4	0.00	N 41	224	,	0.00	0 7	0.19	6J 65	12	12	40	, e	13	33 45
TR LIZH 272JN	0,0	1.00	13	940	10	0.07	1.7	J 0	19	23 of	J. 14 E. 05	0.03	0.43	230	1	0.08	,	0,13	33	(2	12	40	(3	10	90
IK LIZH ZH/ON	0.3	1.12	(3	393	(3	0.17	1.8	8	11	26	5.25	0.07	0,49	300	/	0.10	5	0.12	50	(2	(2	54	0	(3	20
IR LIZW 3+25N	Q.2	1.01	, (3	512	(3	0.05	1.5	3	10	19	4.76	0.05	0.35	213	5	0.08	3	0.13	48	<2	<2	46	<5	<3	42
TR L12W 3+75N	0.3	1.26	(3	527	(3	0.03	1.6	4	9	25	5.71	0.06	0.26	366	6	0.09	{1	0.18	37	<2	(2	60	<5	(3	46
TR L12W 4+25N	0.4	3.10	<3	231	(3	0.66	3,8	51	49	63	7.13	0.15	0.89	3136	. 11	0.13	35	0.40	39	2	(2	25	(5	(3	151
TR L12# 4+75N	0.5	4.39	(3	149	<3	0.50	5.2	48	74	101	7.68	0.14	2.31	1547	16	0,16	71	0.16	52	11	<2	17	<5	(3	299
TR 113W 0+25N	0.8	1.19	(3	643	(3	0.18	1.6	6	9	23	2 94	0.05	0.72	528	9	0.06	4	0.09	116	17	(2	77	(5	(3	73
TR LISH 0+75N	0.9	1.25	(3	577	(3	0.10	1.3	5	6	30	4.94	0.05	0.63	617	8	0.07	(1	0.15	120	(2	(2	73	<5	(3	82
		A 96	(0	477	/5	A AF			•		T 10			0 5 (-								<i>(</i> F		
TK LIJW ITZON	V.4	V.85	(3	4b/	5	0.05	1.7	3	1	21	5,18	0.02	0.46	254	1	0.0/	1	0.12	106	<2	(2	46	()	(3	90
TR L13W 1+75W	0.9	1.34	(3	146	{3	0.24	2.7	9	8	47	5.21	0.08	0.83	634	9	0.08	3	0.11	124	(2	<2	50	(5	(3	108
TR L13W 2+25N	0.9	0.80	<3	357	<3	0.06	1.7	3	5	15	5.20	0.05	0.36	264	8	0.07	(1	0.15	104	<2	<2	76	<5	<3	41
TR L13W 2+75N	0.7	0.9B	<3	548	{3	0.04	1.6	3	7	24	6.56	0.06	0.31	223	7	0,10	<l< td=""><td>0.25</td><td>55</td><td><2</td><td><2</td><td>92</td><td>(5</td><td><3</td><td>42</td></l<>	0.25	55	<2	<2	92	(5	<3	42
TR 113W 3+25N	0.7	0.91	(3	513	<3	0.04	1.6	3	6	21	6.45	0.06	0.31	230	6	0,10	()	0,24	60	(2	<2	77	<5	<3	40
TO 1134 9+75N	0.7	1 02	12	447	13	0 02	1.4		10	25	5 93	0.07	A 26	247	0	A 10		A 10	24	e	13		/ e	(1	
	0.7	A 00	/5	704	10	0.03	1.7	7	10	13	9,74 E 75	V.V/	0.30	247	a 7	0.10	1	0.20	62	J (A	12	00	NG / 6	(3	40
	0.0	1 11	10	144	13	0.04	1.0	,	0	24	3.73	0.00	0.33	234		0.09		0.1/	- UC	(2	< <u>2</u>	64	(3	53	49
3K LI3W 0723# 5	0.9	1.21	3	2/3	(3	0.21	1.4	6	10	31	4.33	0.07	0.73	506	9	0.07	(1	0.11	139	(2	- (2	84	<5	{ 3	72
TR LI3W 0+75W 5	0.9	1.23	(3	300	<3	0.20	2.2	6	7	39	6.4B	0.08	0.71	536	9	0.09	(1	Q.17	205	7	<2	69	<5	₹3	97
TR L13W 1+257 5	0,6	1.68	(3	71	(3	0.28	3.0	15	14	68	7.56	0.10	0.89	821	11	0.10	4	0.21	121	2	<2	46	<5	<3	112
TR L14N 0+25N	0.6	1.31	<3	502	(3	0.10	1.7	8	10	31	5.92	0.07	0,7B	522	B	0.07	2	0.14	116	<2	<2	62	{5	(3	56
TR L14W 0+75N	0.7	1.43	(3	681	(3	0.27	2.3	8	B	35	6.15	0.09	0.77	652	10	0,08	<1	0.21	124	(2	<2	76	(5	<3	67
TR L14W 1+25N	0.4	1.25	<3	536	(3	0,08	1.9	6	7	27	5.79	0.07	0.68	584	7	0.07	(1	0.15	106	(2	(2	55	(5	(3	62
TR L146 1+750	1.0	1.33	<3	394	(3	0.10	2.2	5	7	26	6.83	0.07	0.69	625	9	0.09	(1	0.19	104	2	(2	68	(5	(3	58
TR L14N 2+25N	1.1	1.03	(3	525	<3	0.06	1.7	3	5	21	5.30	0.05	0.54	417	8	0.07	(1	0.14	103	<2	(2	70	(5	(3	53
TP 14H 2+75H	1.0	0.06	/2	510	13	0.03	14	2	-	15	5 44	A AE	A 40	204	,	A A7		A 14	00	/3	10	45	/5	(1	46
TO 1141 24950	1.4	0.00	/9	105	/0	0 AE	117	<u></u>	-	10	5 75	0.VJ	0.40	234		4.47		0,17	07	14	14	70	(J //	13	
1K LITH STZUR TO 1449 04700	V.0	V, 70	13	403	13	0.05	1.5	2	Þ	13	3,63	0.05	0.47	302	8	0.08		0.15	90	52		69	(5	(3	41
IK L14H 3+73H	0.6	0.9/	(3	424	(3	0.05	1.6	2	6	20	5.77	0.05	0.49	312	7	0.08	(1	0.16	76	(2	<2	57	<5	<3	41
TR L14W 4+25N	0.8	1,01	<3	677	(3	0.02	1.6	3	7	22	5,64	0.05	0.43	286	6	0.09	<1	0.18	61	<2	<2	62	<5	(3	- 44
TR L14H 4+75N	0.9	1.26	(3	679	(3	0.02	2.0	5	9	29	5.68	0.05	0.51	385	1	0.08	(1	0.17	65	₹2	<2	67	<5	₹3	59
TR L15W 0+25N	0.9	0,98	<3	546	<3	0.02	1.2	4	4	19	4,16	0.04	0.56	395	5	0.06	(1	0.11	74	(2	(2	45	(5	(3	39
TR 115W 1425W	0.9	1.50	(3	412	12	0.54	1 9	7	A	41	6 10	0 07	0.96	605	Q	0.09		0.15	00	10	12	 77	/5	12	6.7
TR L15W 1+75W	v.a 1 Å	1.75	11	755	(2	0.22	2.1	á	g	40	7 17	Δ 10	0 R0	744	10	6 10	24	0.LJ 0.24	100	14	11	00 00	10	(3)	03 27
TD 1150 2435M	A 0	1 44	/5	707	/1	A 10	5.0	ړ د	4	97 1.1	7	A 40	V.UD	946	10	0.10		0 LC	101	7	14		10	10	70
TR L15W 2+75W	0.9	1.60	(3	609	(3	0.04	1.7	5	B	38	5.45	0.06	0,90	713 582	10	0.09	41 	0.15	105	ó	(2	63 61	(3)	(3 (3	/ 1 76
	217			***									****	001			••		100	••	1.	••			~
TR L15W 3+25N	1.0	1.21	(3	579	<3	0.03	1.5	3	5	20	4.52	0.05	0.58	463	7	0.06	(1	0.13	132	(2	<2	65	<5	(3	54
IN LION ST/DN	1.1	1.11	(3	466	(3	0.02	1.5	3	5	19	5.49	0,05	0,52	370	7	0.07	<1	0.12	113	<2	<2	45	<5	<3	50
IR LISH 4+25N	1.4	1.22	(3	436	<3	<0.01	1.7	3	9	37	7.28	0.07	0.57	508	8	0.09	(1	0.18	132	8	<2	72	(5	<3	56
7R L15W 4+75W	2.4	1.52	<3	470	<3	0.01	2.7	4	13	65	8.16	0.08	0.73	759	7	0.11	(1	0.21	136	9	<2	59	<5	(3	103
Niniaua Detection	6.1	0.01	3	1	3	0 .01	6 . J	1	1	ı	0.01	0.01	0.01	1	1	0.01	1	6.61	\$	2	,	1	5	2	
Naxious Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10 00	10 00	10.00	20000	1000	10.00	20000	10 00	20000	2000	1000	10000	100	1000	20000
(+ Loss Than Highman) - Graster "	Than Karis		is - Ines	uffician	- Freela		- 24 81	1.	ANONAL OR	C DCCIP T	C _ Cu-44		1444V	41444444.	. Nath-4	60000 6 Ênas	Leive Lad	40000	7000	1000	10000	100	1000	10000
·	7 - Grester	1140 116A10		6 W - 6 M M	0111227431	, nemits	: # 3	w see	16	********	a ACQULI	@ = rursi	14(40)41	7958 BY 4	*********	E VELV00	o augyers	92U+							

1630 Pandora Street, Vancouver, B.C. V5L 1L6

Ph: (604)251-5656 Fax: (604)254-5717

1.0 1

Η

-

ICAP GEOCHEMICAL ANALYSIS

1 i f

ANALYST: Mysh

ר ר

A .5 gram sample is digested with 5 m) of 3:1:2 HCl to HNO_m to H₂C at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT 1: 900713 PA	PRIME EQUIT	IES INC.				PROJECT	; TANTAL	US (TREA	TY)	DATE	IN: OCT	29 1990	DATE	E OUT: NO	DV 15 199	6) A	ITENTION:	MR. JIM	FOSTER			PAGE	2 OF	4	
Sample Name	Ag ppa	Α1 · χ	As p p a	Ba pp a	Bi ppm	Ca X	Cd pp=	Со рра	Cr ₽₽∎	Си 9 94	Fe X	K Z	Ng Z	កា ទុក្ខ	Mo Add	Na X	Ni DØM	P X	Pb ppm	Sb pom	Sn. pgm	S⊤ pp∎	U opa	W pom	Zn ppe
TR L15W 0+25S	0.6	1.05	(3	597	<3	0.07	1.9	5	9	22	4.90	0.04	0.61	439	8	0.03	8	0.14	93	<2	<2	61	<5	(3	48
TR L15W 0+755	0.6	0.75	<3	491	(3	0,04	0.3	2	7	10	3.41	0.03	0.36	310	5	0.08	6	0.13	91	<2	<2	70	<5	(3	32
TR L15W 1+255	0.7	0.70	<3	404	(3	0.04	0.1	2	9	10	3.84	0.04	0.29	231	6	0.10	5	0.13	78	<2	(2	100	<5	(3	32
TR 1.15N 1+755	0.5	0.47	(3	440	<3	0.02	1.5	1	5	7	3.59	0.03	0.16	166	4	0.08	2	0.12	66	<2	<2	62	<5	<3	31
TR L16W 0+25N	1.3	0.B8	60	431	<3	0.09	2.0	2	6	19	5,20	0.05	0.45	333	5	0.07	2	0.20	84	10	(2	108	(5	(3	54
TR L16W 0+75N	1.4	1.02	60	534	<3	0.08	2.0	4	8	19	5.10	0.06	0.56	367	6	0.08	2	0.21	74	12	<2	95	<5	(3	57
TR L16N 1+25N	1.1	0.87	52	620	(3	0.04	1.8	2	7	21	4.33	0.04	0.40	312	5	0.07	3	0.1B	95	7	<2	112	(5	(3	53
TR 116W 1+75N	1.3	0,93	60	535	(3	0.03	1.4	3	B	22	4.95	0,04	0.43	325	5	0,07	3	0.20	84	8	<2	113	<5	(3	52
TP 16W 2+25N	1.0	0.81	19	508	(3	0.01	1.9	2	6	21	4.23	0.03	0.36	287	5	0.06	<1	0.18	101	<2	<2	105	<5	(3	51
TR LIGH 2+75N	1.5	1.00	(3	227	(3	0.10	1.9	5	8	29	5.05	0.05	0.63	443	7	0.07	5	6,10	80	<2	<2	50	(5	(3	59
TR 116M 3+25N	1.3	1,06	18	742	(3	0.02	1.7	4	6	37	4.50	0.03	0,45	382	5	0.09	4	0.17	115	8	<2	100	<5	<3	73
TR 164 3+75N	0.7	1.44	(3	569	(3	0.11	2.3	7	11	31	5.73	0.06	0.76	568	7	0.08	4	0.14	94	<2	<2	59	<5	<3	61
TP 1 164 4425N	0.6	1.11	(3	5R5	<3	0.12	1.9	5	8	23	4.46	0.04	0.62	465	£	0.06	4	0.13	69	<2	<2	61	<5	<3	50
TO 1 16U 4475N	0.6	0.94	(3	542	ä	0.09	1.5	4	7	t8	3.71	0.04	0.53	395	6	0.06	2	0.09	71	(2	<2	68	<5	<3	48
TR L16W 5+25N	0.6	1.00	<3	478	(3	0.07	2.2	4	9	21	5.50	0.05	0.61	436	6	0.07	2	0.14	75	<2	<2	56	<5	(3	51
TR 1.150 0+255	1.4	0.92	69	523	(3	0.12	2.1	1	5	21	4.18	0.05	0.55	371	4	0.07	۲۱	0.19	90	17	<2	128	<5	(3	53
TR L 16H 0+755	1.7	1.12	25	71B	(3	0.06	1.9	Ż	5	58	5.92	0.06	0.5i	394	8	0.09	<1	0.23	163	14	<2	172	<5	<3	85
10 1 174 0+258	0.5	0.93	(3	567	(3	0.02	1.9	3	6	15	5.10	0.04	0.35	224	8	0.08	- (1	0.16	50	<2	<2	81	<5	<3	52
TP 1 17H 0+75N	0.5	0.85	3	611	(3	(0.01	1.4	2	5	14	4.71	0.04	0.31	195	6	0.07	0	0.14	51	<2	<2	82	<5	(3	43
TR L17W 1+25W	0.5	0,89	(3	498	(3	(0.01	1.7	3	8	22	5.96	0.05	0.34	211	7	0.08	(1	0,15	53	<2	<2	101	(5	<3	47
TR L179 1+75N	0.4	0.79	(3	580	<3	0.04	1.5	4	5	15	4.43	0.04	0.34	194	7	0.07	<1	0.12	45	<2	<2	76	<5	(3	35
TR 117W 2+25N	0.4	0.66	(3	676	<3	0.02	0.7	2	4	12	2.94	0.03	0.27	192	4	0.05	(1	0.08	37	<2	{2	71	(5	<3	30
TR 117W 2+75W	0.4	0.76	(3	563	(3	0,09	1.8	5	5	18	3,64	0.04	0.3B	225	5	0.07	(1	0.10	36	<2	<2	72	(5	(3	37
TR 1 17W 3+25N	1.5	1.25	(3	426	<3	0.06	2.7	5	7	36	5.91	0.07	0.61	467	6	0.10	(I	0.21	132	9	(2	97	(5	<3	26
TR L17N 3+75N	0.5	2,12	(3	327	(3	0.37	2.5	20	36	56	5,69	0.10	1.07	741	9	0.12	29	0.10	42	{ 2	<2	49	<5	(3	105
TR L17H 4+25N	0.5	1.37	<3	451	(3	0.09	2.3	10	17	39	6.23	0.06	0.67	370	8	0,09	13	0.14	43	(2	(2	40	(5	(3	84
TR L17W 0+255	0.4	0.57	(3	525	<3	0.08	0.9	2	2	14	2.78	0.03	0.26	181	5	0.05	<1	0.11	36	(2	(2	BO	(5	<.	39
TR L17W 1+25S	0.5	0.55	<3	538	(3	0.05	1.5	(1	2	9	4.29	0.04	0.19	163	4	0.06		0.23	39	<2	<2	98	(5	(3	28
TR 17W 1+75S	0.4	0.74	(3	674	(3	0.03	0.3	4	4	12	3.79	0.03	0.29	235	5	0.05	(1	0.20	34	<2	<2	142	<5	<3	27
TR L18W 0+25N	0.5	2.02	(3	225	3\	0.32	3.1	23	18	90	6.44	0.10	0.76	938	10	0.11	25	0.1B	47	3	<2	59	₹5	(3	158
TR LIBN 0+75N	0.6	2.16	(3	246	(3	0.25	4.3	25	21	103	6,69	0.10	0.B2	1102	10	0.11	30	0.16	47	5	(2	50	(5	<3	164
TR L18W 1+25M	1.0	1.26	(3	191	(3	0,08	2.7	10	17	42	7.50	0.07	0.60	377	10	0.10	13	0.18	74	5	(2	25	(5	(3	92
TR 118W 1+75W	0.6	2.41	(3	178	(3	0.22	3.5	26	20	75	7.09	0.10	0.82	1071	11	0.12	21	0.23	46	6	<2	42	<5	(3	150
TP 184 24254	ñ K	1.91	(3	289	(3	0.11	2.6	16	15	68	6.72	0.08	0.73	570	10	0.12	10	0.17	52	3	<2	66	<5	(3	115
TR L18W 2+75N	0.6	2,00	(3	240	(1	0,16	3.0	20	17	77	6.44	0,07	0.76	730	9	0.10	15	0.13	38	<2	<2	40	<5	<3	143
TR L18W 3+75N	0.6	1.91	<3	179	(3	0.11	3.1	19	18	62	7,90	0.08	0.71	702	9	0.11	14	0.19	51	6	<2	4 L	<5	<3	120
TR L18N 0425N	0.5	2.52	(3	169	(3	0.4B	3.7	30	27	72	6,50	0.12	i 24	110B	12	0.15	33	0.09	41	4	(2	43	(5		182
TR L181 0+754	0.5	2.25	ä	144	(3	0.33	3.4	23	23	64	5.71	0.10	1.04	870	10	0.12	32	0,08	31	(2	(2	33	<5	(3	167
TR LIBN 1+25N	0.4	1.88	(3	138	(3	0.31	3.4	22	18	63	5.90	0,10	0.85	804	11	0.13	25	0.10	33	3	<2	33	<5	(3	167
Minimum Detection Maximum Detection	0.1 50.0	0.01 10.00 Theo Hari	3 2000	1 1000 ic - Ioc	3 1000	0.01 10.00	0.1 1000.0	i 20000 - No Sam	1 1000	1 20000 Anchal (11)	0.01 10.00 IS RESULT	0.01 10.00 IS - Furt	0.01 10.00 her Anal	1 20000	i 1000 Alternat	0.01 10.00 e Method	1 20000 Is Suages	0.01 10.00 ted.	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

#* 4 J

1 I

f.

74 35

٦

1

ANALYST: Mala

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with S ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900713 PA	PRIME EQUITIES INC.		PROJECT: TANTALUS	G (TRÉATY) DAT	TE IN: OCT 29 1990	DATE OUT; NOV 15 1990	ATTENTION: MR. JIN FOSTER		PAGE 3 0F 4	
Sample Name TR L19W 1475N TR L19W 2425N TR L19W 2475N TR L19W 3425N TR L19W 3475N	Ag Al ρρα X 0.6 1.90 0.6 2.01 0.9 2.39 0.5 3.64 0.4 1.80	As Ba Bi ppe ppe ppe <3 137 <3 <3 161 <3 <2 135 <3 <3 115 <3 <3 177 <3	Ca Cd 2 ppa 0.31 3.5 0.35 2.8 0.49 2.7 1.28 3.2 0.44 1.9	Co Cr Cu ppm ppm ppm 23 <1 70 26 <1 71 30 <1 67 45 1.04 79 22 <1 48	Fe K χ χ 5.76 0.11 6.31 0.13 6.54 0.16 6.14 0.23 4.05 0.11	Mg Mn No Na 7. ppm ppm 7 0.86 934 11 0.11 0.91 1003 10 0.12 1.09 1067 10 0.15 2.48 1422 11 0.13 0.39 805 6 0.09	N1 P Pb 000 7 ppa 23 0.12 19 22 0.12 24 5 8 0.14 19 8 93 0.09 4 9 62 0.08 20	Sb Sn ppe ppe <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Sr U ppm ppm 34 < 5 42 < 5 53 < 5 43 < 5 32 < 5	W Zn ppm ppm <3 141 <3 141 <3 124 <3 124 <3 116 <3 100
TR L19W 0+255 TR L19W 0+755 TR L19W 1+255 TR L19W 1+755 TR L19W 0+25N	0.5 2.43 0.5 2.12 0.5 1.97 0.6 1.25 0.5 2.17	(3) 184 (3) (3) 104 (3) (3) 150 (3) (3) 104 (3) (3) 104 (3) (3) 104 (3) (3) 104 (3)	0.31 2.2 0.51 3.6 0.43 2.9 0.40 2.6 0.40 3.2	22 <1 68 37 <1 69 28 <1 69 24 <1 58 27 <1 69	5.98 0.13 7.73 0.19 7.11 0.17 6.65 0.15 6.63 0.15	1.03 823 10 0.10 1.21 1555 12 0.13 0.98 949 11 0.15 0.68 1010 12 0.13 1.07 987 13 0.13	16 0.07 11 3 19 0.08 35 3 16 0.10 29 4 7 0.10 39 2 22 0.12 22	<pre><2 <2 4 <2 <2 <2 B <2 /pre>	36 (5 44 (5 42 (5 49 (5 32 (5	<pre><3 145 <3 223 <3 167 <3 179 <3 166</pre>
FR L20H 0+75H TR L20H 1+25N FR L20H 1+75H TR L20H 2+25N FR L20H 2+75N	0.4 1.91 0.4 2.31 0.5 5.26 0.4 1.94 0.3 1.89	(3) 129 (3) (3) 147 (3) (3) 344 (3) (3) 183 (3) (3) 162 (3)	0.33 2.1 0.38 2.6 0.57 6.2 0.35 2.3 0.32 2.1	28 (1 64 29 (1 61 B9 21 147 25 (1 57 24 (1 52	5.30 0.15 5.93 0.15 9.35 0.26 5.85 0.14 5.62 0.14	0.93 1087 11 0.17 1.09 1083 12 0.17 1.67 4412 14 0.31 0.99 993 12 0.11 0.95 1017 10 0.11	2 16 0.11 23 2 17 0.10 17 5 59 0.02 <2 1 17 0.08 21 4 10 0.10 23	(2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	30 (5 29 (5 37 (5 28 (5 27 (5	<pre><3 147 <3 150 <3 314 <3 142 <3 130</pre>
FR L20N 3+25N FR L20N 0+255 FR L20N 0+755 FR L21N 0+25N FR L21N 0+75N	0.3 2.38 0.4 2.83 0.5 3.15 0.4 1.89 0.6 2.32	<pre>{3 144 <3 (3 111 <3 (3 161 33 (3 158 33 (3 271 33)))))))))))))))))))))))))))))))))))</pre>	0.39 2.2 0.37 2.5 0.67 3.0 0.28 2.3 0.26 1.7	21 (1 36 39 (1 59 35 (1 71 22 (1 42 21 (1 53	5.21 0.14 7.29 0.18 7.27 0.22 4.50 0.11 5.24 0.12	1.17 873 10 0.17 1.53 1601 13 0.17 1.68 1320 16 0.17 0.83 922 12 0.16 0.84 944 12 0.17	2 1 0.06 L5 2 1B 0.09 15 3 29 0.08 10 0 9 0.07 32 4 9 0.07 35	<pre>{2</pre>	25 (5 21 (5 42 (5 26 (5 34 (5	 (3 107 (3 143 (3 168 (3 113 (3 132
^{TR} L21W 1+25N ^{TR} L21W 1+75N ^{TR} L21W 2+25N TR L21W 2+75N TR L21W 3+25N	0.5 2.42 0.6 2.45 0.6 2.15 0.4 2.05 0.6 1.70	(3 400 (3 (3 412 (3 (3 579 (3 (3 365 (3 (3 465 (3	0.17 2.1 0.26 2.0 0.20 2.3 0.41 2.2 0.20 2.5	24 (1 64 22 (1 54 30 (1 60 24 (1 50 18 (1 43	5.54 0.12 5.64 0.14 5.26 0.13 5.54 0.15 4.99 0.12	0.80 960 12 0.1 0.94 899 12 0.1 0.82 1384 11 0.1 0.90 1333 9 0.1 0.67 882 30 0.3	1 9 0,10 4B 3 (1 0,12 59 1 6 0,12 49 4 (1 0,19 39 1 <1 0,13 57	<pre>{2</pre>	39 <5 54 <5 39 <5 53 <5 47 <5	 (3 122 (3 103 (3 130 (3 127 (3 98
FR L21W 3+75N FR L22W 0+25N FR L22W 0+75N FR L22W 1+25N FR L22W 1+75N	0.6 2.10 0.6 2.24 0.7 2.30 0.8 2.55 0.6 2.18	(3) 127 (3) (3) 368 (3) (3) 862 (3) (3) 625 (3) (3) 450 (3)	0.36 2.4 0.33 1.8 0.18 2.1 0.16 2.0 0.16 1,7	24 <1 32 19 <1 45 15 <1 41 17 <1 49 12 <1 34	5.30 0.15 4.92 0.14 6.00 0.13 6.09 0.14 4.37 0.10	0.96 1132 12 0.1 0.76 761 12 0.1 0.82 537 12 0.1 0.75 692 12 0.1 0.65 516 11 0.1	4 \$\lambda 1 0.07 33 1 \$\lambda 1 0.08 37 3 \$\lambda 1 0.17 64 3 \$\lambda 1 0.16 73 0 \$\lambda 1 0.10 61	(2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	20 (5 35 (5 75 (5 53 (5 43 (5	 (3) 134 (3) 115 (3) 85 (3) 100 (3) 87
FR L22W 2+25N FR L22W 2+75N FR L22W 0+255 FR L22W 0+755 FR L22W 0+755 FR L22W 1+255	0.9 4.07 0.7 2.32 0.5 3.07 0.5 2.58 1.0 1.99	(3 409 (3 (3 325 (3 (3 309 (3 (3 139 (3 (3 191 (3	0.18 2.4 0.27 3.1 0.23 2.2 0.14 1.8 0.15 2.0	25 <1 39 33 <1 63 21 <1 43 24 <1 45 22 <1 30	5.63 0.15 5.34 0.14 5.45 0.14 5.56 0.13 4.73 0.12	0.61 1333 13 0.1 0.81 1582 12 0.1 0.79 1381 12 0.1 0.85 1024 14 0.1 0.81 1024 15 0.1	4 (1 0.11 43 4 3 0.10 53 2 (1 0.09 25 4 (1 0.06 32 3 (1 0.06 36	<pre>{2 < 2 (2 < 2 (2 < 2 (2 < 2 (2 < 2 (2 < 2) (2 < 2)</pre>	43 <5 43 <5 23 <5 23 <5 23 <5 26 <5	<3 108 <3 151 <3 123 <3 120 <3 128
TR L22M 1+75S TR L22M 2+25S TR L22M 2+75S TR L22M 2+75S	0.5 2.52 0.5 2.98 0.4 2.76 0.4 3.57	 <3 249 <3 <3 126 <3 <3 101 <3 <3 114 <3 	0.17 3.0 0.27 2.4 0.24 2.4 0.96 2.6	23 (1 39 30 (1 48 31 (1 62 38 (1 47	5.54 0.14 5.99 0.16 6.08 0.16 6.06 0.24	0.91 1001 21 0.1 1.15 1248 18 0.1 1.09 1074 19 0.1 2.00 1145 17 0.2	5 2 0.09 29 5 6 0.06 20 5 5 0.06 18 8 6 0.08 16	<pre>{2</pre>	29 (5 17 (5 19 (5 71 (5	<pre><3 161 <3 163 <3 166 <3 166 <3 146</pre>
liniaus Detection Saxious Detection 2 - Less Than Minimum	0.1 0.01 50.0 10.00) - Greater Than Maxia	3 i 3 2000 1000 1000 mun is - Insufficien	0.01 0.1 10.00 1000.0 20 at Sample ns - No	i i i 2000 1000 20000 Io Saple ANDHALO	0.01 0.01 10.00 10.00 NUS RESULTS - Further	0.01 1 1 0.0 10.00 20000 1000 10.0 r Analyses By Alternate Meth	1 1 0.01 2 0 20000 10.00 20000 ods Suggested.	2 2 2000 1000	1 5 10000 100	3 1 1000 20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604) 251-5656 Fax: (604) 254-5717

7 Ъ

ICAP GEOCHEMICAL ANALYSIS

ANALYST: Andh

ſ

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to HgO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT : 900713 PA	PRIME EQUII	TIES INC.				PROJEC	T: TANTA	LUS (TREA	TY)	DATE	E IN: OCT	r 29 1 9 90	DA	TE OUT: N	OV 15 19	190 4	TTENTION	I: MR. JI	N FOSTER			PAG	E 4 OF	4	
Sample Name	Ag	A)	As	Bá	Bi	Ca	Cď	Co	Cr	Cu	Fe	K	Mg	Mn	flo	Na	Ni	P	РЬ	Sþ	Sn	Sr	U	¥	ln
75 1000 0.950	ppe.	Å	pçe ZD	pp =	ope (n	6 0.05	ppe o c	pp#	ρpe Γο	ppa 75	6 E 05	4 • • • •	4 1 00	100 100	рр е 10-	6 A 14	ope. ec	<i>ا</i> ،	ppe o	рри Из	ypa 20	μραι	γγ∎ ∕5	vo Nhe	µµ∎ 145
IK LZZW 3+735	0.6	4,31	(3	109	(3	0.30	3.3	29	50	10	5.10	0.14	1.98	1101	VI 11	0.11	26	0.19	د 20	(2	72	17	13	/3	140
18 LZZN 4+200	V, 4 A C	3,10 5,74	(3	133	(3	0,19	2.7	21	33 34	6U 44	3.19	0.10	1.11	1104	19	0.12	9-ა ი-ი	0.00	20	\ <u>/</u> 2	14	14	\J /5	13	212
IN LZZH 4+705	V.6	0.09 0.00	1.5	10	\3	V. 24	1.7	11	ېن 44	49	1.0/	0,10	1.05	1299	10	0,14	33 16	0.12	14	12	20	21	15	10	151
TR 1228 5+255	0.3	2.80	13	163	(J (D	0.38	2.0	29	99	-90 -10	4.8/	0.07	1.20	1039	11	0.03	64 04	0.00	5	\ (/ 2	14	21	10	10	100
TR 123W 0425N	0.4	3.21	٢3	233	(3	0.05	1.1	14	23	43	5.21	0.07	0.60	/43	э	0.07	29	0.09	10	<u>\</u> 2	14	20	10	(3	120
TR L23W 0+75N	0.5	2,58	<3	268	<3	0.08	3.0	13	24	55	5.94	0.08	0.54	857	9	0.07	20	0.12	39	<2	<2	25	<5	(3	102
TR L23W 1+25W	0.5	2.74	<3	819	(3	0.16	2.2	25	22	52	6.55	0.12	0.62	3451	9	0.10	21	0.13	44	<2	<2	54	<5	<3	107
TR L23W 1+75N	0.3	2.47	<3	385	<3	0.26	1.9	21	19	+2	4.84	0.09	0.68	1067	9	0.08	19	0.07	36	<2	<2	41	<5	(3	112
TR L23W 2+25N	0.4	2.22	(3	421	<3	0.17	2.2	15	21	54	4,42	0.07	0.69	584	В	0.09	26	0.10	38	<2	<2	38	<5	<3	120
TR 123W 2+75N	0.6	2.16	<3	382	<3	0.13	2.1	11	17	38	4.59	0,06	0.56	54!	8	0.07	18	0.10	53	<2	≺2	37	<5	<3	102
TR 234 2+255	0.2	3.00	(3	125	(3	0.16	2.7	29	21	65	6.32	0.11	0.85	1282	33	0.15	46	0.05	3	<2	<2	20	(5	(3	226
TR 1 234 2+755	0.2	3.69	3	145	(3	0.14	2.0	26	27	50	5.91	0.10	0.82	_1259	16	0.11	38	0.07	(2	(2	<2	9	<5	(3	208
TR 1231 3+255	0.2	3,90	(3	112	(3	0.25	3.1	33	47	56	5.05	0.13	1.66	2010	14	0.11	54	0.06	<2	(2	<2	14	<5	<3	182
TR 1 23W 3+755	0.3	3.41	3	178	3	0.34	3.3	22	39	44	5.26	0.12	1.16	1243	13	0.03	43	0.08	(2	(2	<2	23	<5	<3	191
TR L23N 4+25S	0.5	2.79	(3	192	₹3	0.34	2.7	24	34	51	5.03	0.11	1.10	1139	11	0.09	42	0.07	4	<2	<2	24	₹5	₹3	164
TO 1.244 04251		2 65	13	122	13	0 19	20	19	22	45	4 29	0 A9	0.74	913	11	0 16	38	0.04	,	()	ϕ	16	(5	(3	178
TO 1944 01758	V.7 0 5	2.00	75	150	/2	0.17	2.0	24	17	57	1.00	0.03	A 97	070	10	0.12	45	0 07	15	(2	17	23	(5	(3	202
TO 1240 1+250	0.5	2,00	(3	154	23	0.17	2.2	24	19	74	4 99	0.10	63.0	773	13	0.12	46	0.08	58	12	(7	19	(5	ä	260
TD 1 744 14758	0.5	2 67	/3	413	/3	0.19	3 1	20	21	52	5 90	A 10	0.80	1078	10	0.10	28	0.12	34	0	0	43	(5	(3	129
TO 1244 24250	0.4	2 29	(3	125	/3	0.29	3.4	25	18	45	5.50	0.11	0.00	1315	10	0.11	35	0.06	16	(2	(2	14	(5	(3	190
IN LETH LYLUN	V.7	2127	10	100	10	v		1.5	10	14	2101	V. 11	4.2,	1010				****							
TR 1240 0+255	0,2	2.76	(3	145	<3	0.23	3.0	18	22	49	3.79	0,09	0.72	678	10	0.16	47	0.04	3	<2	<2	15	<5	<3	202
TR L24W 0+75S	0.1	3.85	(3	119	(3	0.09	2.7	16	- 19	43	5.41	0.09	0.49	1012	10	0.12	43	0.05	(2	<2	<2	7	<5	<3	228
TR L24W 1+255	0.2	2.41	<3	166	<3	0.10	2.1	9	15	35	3.25	0.05	0.40	358	11	0,06	33	0.08	6	<2	<2	20	<5	<3	136
TR 124W 1+75S	(0.1	3.65	<3	202	(3	0,18	3.5	33	27	69	6.46	0.12	0.94	2466	26	0.12	54	0.09	10	<2	<2	15	(5	<3	222
TR L24W 2+25S	0,4	4.15	<3	289	(3	0.36	4.7	49	27	80	7.63	0.19	1.04	6045	12	0.23	46	0.12	17	<2	<2	26	<5	<3	278
TR 1 249 2+755	0.2	4.48	(3	255	(3	0.36	4.4	83	39	107	8,02	0.20	1.48	9019	12	0.20	67	0.13	(2	{2	(2	24	(5	(3	299
TR L25W 0+25N	0.1	3.32	(3	76	(3	0.11	2.8	16	21	45	4.45	0.08	0.63	1052	10	0.11	36	0.12	3	<2	<2	8	(5	(3	160
TP 1 258 0+758	0.4	3.55	(3	113	(3	0.35	3.6	41	22	54	7.49	0.16	1.53	2144	10	0.15	43	0.03	9	(2	<2	19	<5	<3	203
TP 1258 14258	0.3	2.70	(3	125	(3	0.30	3.8	27	19	45	6.03	0.13	1.12	1515	11	0.13	39	0.04	13	(2	<2	14	<5	<3	203
TR 125W 1+75N	0.9	2.23	(3	131	(3	0.41	4,4	23	17	44	5.56	0,13	1.07	1034	10	0.11	44	0.06	15	(2	<2	25	<5	(3	194
TR L25W 0+25S	0.5	3,44	<3	193	(3	0.19	4.2	42	23	47	5.66	0.11	0.77	3533	10	0.12	41	0.17	17	(2	<2	13	<5	(3	263
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	t	t	0.01	0.01	0.01	1	t	0.01	t	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10,00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
(- Less Than Minimum	> - Greater 1	Than Maxin	eva	is - Ins	ufficien	t Sample	ns	- No Samp	le	ANONALOU	IS RESULT	is - Furt	her Anal	iyses By i	Alternat	e Method	ls Sugges	sted.							

09/07/	/90 12:55 VGC	2	NO.618 P002/	006
			VANCOUVER, BC - VSL 116 (604) 251-5656	
\		EOCHEM LAB LIMIT	MAIN OFFICE 1968 TRIUMPH ST. VANCOUVER, B.O. V5L-11 • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
				_
	GBOCH	EMICAL ANAI	YTICAL RE	PORT
		ه کو پي من ٿو پو جد خو کو کر ان	بن يروي المثلة الثلية بيرو الأليَّ الروي الثليَّة المُرور	
	CLIENT: ADDRESS:	PRIME EQUITIES INC. 10th Flr Box 10 80	DATE: D8 W. Hastings St.	SEPT 07 1990
	:	Vancouver, BC V6C 2X6	REPORT#: Job#:	900280 GA Vr 900280
	PROJECT#:	TANTALUS (TR)	INVOICE#:	900200 NA
F	SAMPLES ARRIVED: REPORT COMPLETED:	AUG 22 1990 SEPT 07 1990	TOTAL SAMPLES: Sample Type:	67 67 SOIL
	ANALYSED FOR:	Au ICP	REJECTS:	DISCARDED
	SAMPLES FROM: COPY SENT TO:	OREQUEST CONSULTANTS PRIME EQUITIES INC.	LTD.	
		PREPARED FOR: MR. J	IM POSTER	
		AWAT VORD DV. MAA	- Cha ff	
		ANALISED SII VGC	J J	

. *

GENERAL REMARK: None

09/07/90 12:56 VGC	2	NO.618 PØ	03/006
		VANCUUVUN, BUUVUI (604) 251-5656	. ::u
	OCHEM LAB LI	MAIN OFFICI -1080 TRIUMPH (VANCOUVER, B.C. V • (604) 251-565 • FAX (604) 254-5	BRANCH OFFICES T. PASADENA, NELD. BATHURST, N.B. BATHURST, N.B. MISSISSAUGA, ONT. 56 MISSISSAUGA, ONT. 5717 RENO, NEVADA, U.S.A.
REPORT NUMBER: 900240	GL JOB WHEER: 900280	PRIME ROUITIES INC.	PIGE 1 OF 2
SAMPLE 1	ÅQ		
	99D		
TE 14+000 0+00	að		
T2 644887 - 84588	5		
TR L4+00# E+00#	ba		
TH L4+000 1+501	10		
TE 64+869 2+008	2d		
40 T.J.1804 53548	16		
40 LALAAN 21400 40 LALAAN 21400	10		
LA DUTDUT JIVVA TR 1.44887 74588	15 24		
TO LALBAT BUSA	55		
TR 144888 14005	20		
TR L4+809 1+585	5		
T2 L4+899 2+805	5đ		
TH LS+\$\$ ¥ 8+\$\$ \$	5		
TR L5+88# 0+588	5		
YR L\$+867 1+683	15		
			•
TE 13+999 24948 99 (21649 74549	1¢ 1¢		
TE 637999 27398 De feidem diége	-1 12		
TH GJTHUP 97390 Min feldar 1260/	D44		
TE BJYUDE 17343 WE TEADOR 34844	DC 1A		
72 P31AAA 14449	10		
TR 154888 24588	20		
TH L5+809 3+868	15		
TH LEFOOR OFBERL	10		
TR 16+667 6+56K	15		
tr 15+00% 0+505	5		
	14		
<u>TH 688 14898</u> Du 169 14898	14		
18 19 17 19 19 16 19 17 19	16		
IE 698 44948 Wo fer 418As	E 13		
47 47 47 54 54 54 54 54 54 54 54 54 54 54 54 54	1 5		
16 741 7400	,		
TR 167 3+508	10		
TE LEY 4+000	15		
TR 164 6+508	29		
TR LET 5+80H	5		
TE LEV S+500	ađ		
so the side	14		
IK 108 91988 An 114 41444	14		
TE 6/8 41988 ma 194 - 51544	44 C		
IC UIF 47300 40 rig 314AF	ə IC	<i></i>	
IK PLA JACAN	T9		
DETECTION LIBIT	5		
nd = pone detected	= not analysed is + i	nsefficient sample	
	-	-	

.

.

5

.

09/07/90 12:56	VGC	NU.618 PU	047006
•	<u></u>	VANCOUVER, DC Vat (604) 251-5656	116
∜GC ⊻	ANGEOCHEM LAB	MAIN OFFIC 1900 TRIUMPH VANOOUVER, B.O. N • (604) 251-56 • FAX (604) 254-	E BRANCH OFFICES ST. PASADENA, NFLD. SL 1K5 BATHURST, N.B. 56 MISSISSAUGA, ONT. 5717 RENO, NEVADA, U.S.
REPORT KUNBE	R: 900240 GA JOB NUMBER: 90024	a print posities inc.	PAGE 2 OF 2
SIMPLE I	j a		
	pob		
TR LIV 34500	r nd		
TR 177 4+500	5		
TR LTV 5480	10		
YR 1.77 54500	10		
PR 1.18 6+868	he la		
48 277 6+580	78		
PR 1.10 1+840	ал Ал		
40 F 85 31888	34		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	1. C		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	÷ 1A		
IK PAN 9+AAN	14		
88 FB# 51588			
IK 644 37344 An few 1.384			
	2 6		
IN 196 97398	2 12		
TE 100 34043	13		
<u> 28 feb 2438</u>	3		
	••		
TR LET 6+DOR	25		
TE 677 1+408	30		
TR 197 1+50F	20		
TE LIT 2+003	20		
TR 694 - 24588	15		
	•		
TR LIV 3+808	5		
TR 1.94 34508	5		
78 65V 4400T	5		
TR 137 - 4+598	ad		
TR LIV 5+008	5		
TR 198 5+508	15		
TR LIT GLODE	15		
<u>TR L91 6+548</u>	25		

1 . .

....

κ.

-

.

~

....

-÷.

-

Γ **i.**...

> -) •-----

> > ~

•

P004/006

NO.618

LILATEN

M ECI

1530 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

1 1 1 1

•• 1

- Loss Than Misiana

V . Branker that P

1

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H_O at 95 °C for 90 minutes and is diluted to 10 ml with water. This deach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Ma, Ma, P, Sn, Sr and H.

ANALYST: Ant

FINDER'S PLONGER'S

REPORT \$1 900280 PA	PRINE EQUIT	f INC.				PROJECT	: TANTALI	IS (TR)		DATE	IN: AUG	22 1990	PATE	e out: Se	EPT (9 1	990 AT	TENTION	NR, JI	FOSTER			PAGE	1 06	2	
Sample Name	Ag.	A1 7	As 004	84	Bi	Ca T	Сб 1006	Co	Çr	Çu	F#	K 1	116g 2	Mr.	No 000	Na T	Wi COR	7 T	P 5	Sb	Sn	St	U	¥	Zn
78 2 4 4000 A.S/W	рун рун	1 09	79	705	12	<u>م</u> م	4 1	11	142 142	71	2 90	A 12	1 70	1242	19	/A Å1	bin a	A 94	e a co	998	pp	90	444	pp -	pp
TE LATOUR DESCH	0.8	4.70	10	762 040	13	0.70	711	21	- 30-	n #	D. 3V	0.13	1.75	1763	13	(0.01	33	V. Z1	25	19	15	47	<\$	G	165
IK LATONE ITSUR	¥+1	2.67	G	398	(3	6.23	Z .1	30	30	80	5.04	0.12	1.4	1258	13	(0.9[24	0.20	52	24	- 14	46	G		261
TR L4+000 1+500	Q.4	4.04	<3	684	G	2.25	1.6	37	92	75	7.39	9.28	2,62	1497	12	{0.0]	64	0.21	- 54	26	20	84	<5	(3	177
TE 14+008 2+008	0 .1	3.26	(3	535	(3	1.87	0.9	31	75	- 74	6.60	0.21	2.26	1357	11	{0.01	53	0.72	51	14	19	80	(5	(3	172
TR 14+001 2+501	0.1	3.74	<3	560	(3	0.99	1.4	39	81	63	7.92	0.17	Z. 4 2	1594	12	<0.01	65	0.26	66	25	19	59	3	<3	193
FR L4+001 3+001	0.3	4.05	(3	482	a	i.03	1.7	45	75	103	1.28	Q.18	2.54	1937	14	<0,01	63	0.30	73	39	20	66	<5	(3	218
(R 14+000 3+500	0.4	3.48	(3	427	(3	9.94	0.7	37	72	79	7.36	0.10	2.34	1657	12	(0.01	57	0.74	71	33	19	51	7	(3	202
19 3 4+010 0+505	0.2	2.99	(3	536	(3	1.40	1.1	31	58	71	7.35	0.17	2.65	1512	10	(8.6)	38	0.74	57	17	16	61	1.	/2	117
	A 4	2 22	12	791	12	n 96	1 7	47	71	110	8 45	0 16	1 91	2017	26	20 AI	29	0 25	121	75	14	51	78	10	194
IN CALONE THOUS	A 7		14	417		A (3	41J 1.E	74	21	417	4.24 0.45	A 10	1 65	1031	20	14/41 /a 44	23	V.23	141	23	10	20	1.2	1.5	24#
18 TA4008 14302	V.3	3.04	(3	417	13	V. 63	1.3	31	21	63	<i>4</i> .12	V •12	1.75	1323	13	(0.V)	73	V. Z3	104	А	17	34	(3	(3	235
R L4+408 2+005	0.1	3.11	(3	530	(3	Ø.62	1.6	40	15	81	7.99	0.14	1.75	2145	14	<0.01	21	0.22	84	26	17	34	<5	(3	195
X C24000 G4000	0.1	2.76	3	423	4	0.87	0.5	- 40	14	8/	8.11	0.13	1,24	1/60	13	0,4L	40	9.27	23	20	1/	20	Q	(3	203
R LSHOOR DHSOR	0. Z	3,40	{3	583	3	1.10	1.4 .	33	67	72	7.27	4.18	2.96	1426	12	{0,01	50	9.25	67	20	17	62	(5	(3	181
TE 1.5+000 1+000	0.3	3.60	(3	590	<3	1.11	1.1	38	75	93	6.21	4. 17	2,43	1836	13	(0.0i	49	9.29	132	36	19	80	- <5	3	246
R 15+000 2+000	9.1	3.01	(3	263	(3	\$.94	4. 3	39	38	88	5.55	0.17	1.55	1190	12	Q, 91	42	0.24	53	20	19	56	(5	(3	157
R 15+000 2+500	4. 2	3.34	(3	366	(3	9.51	1.1	33	43	84	7.81	0.13	2.12	1592	13	(0,01	44	0.26	58	22	18	44	<5	(3	212
R L5+001 0+505	0.2	3.03	(3	344	(3	1.15	0.7	38	66	95	1.20	0.19	2.00	1493	12	<0,0L	- 44	0.22	52	26	15	67	C 5	<u></u>	162
R L5+001 1+505	0.3	3.43	(3	449	(3	1.24	0.8	35	62	75	1.11	9.17	2,63	1456	12	(8,0]	44	0.26	55	20	14	62	(S	(3	172
2 151900 21905	6.6	2.45	(3	755	a	1:18	2.7	37	28	84	5.32	9.17	2.66	2227	15	(0.0)	31	0.24	144	28	14	51	CS .	(3	134
R L5+008 2+505	0.8	2,98	22	832	(3	0.71	1.6	50	16	130	9.82	9,16	1,66	3662	26	(0.01	24	0.25	138	37	16	57	ĊŞ	3	275
£ L5+000 3+005	0.7	2.79	(3	729	(3	0.54	2.7	52	10	106	9.87	0,14	1.36	3892	21	(0.01	30	4. 26	179	32	15	36	(5	<3	337
2 L6+000 0+000L	¢.2	4.11	(3	374	C)	2,64	0.3	42	65	110	\$.98	0.30	2,30	1255	13	(0.91	53	0.27	61	30	19	84	G	(3	735
R L6+00E 0+50K	¢.z	3.74	(3	495	<3	1.05	1.3	41	57	143	1. 77	9,17	2.59	1762	13	<0.01	59	4.25	75	34	20	57	< 5	(3	241
R L6+04E 0+505	0.3	3.56	(3	359	(3	1.17	2.0	43	64	59	9.50	0,1E	2,37	1284	17	0.04	ស	0.78	50	34	23	86	(5	(3	246
R 1.68 3+000	0.3	3,19	₹3	447	3	9. M	2.1	23	40	79	7.23	0.13	1.92	1323	13	(0.0]	44	0.25	62	25	17	43	(5	(3	1 %
R LSIF (+500	\$. 5	3.32	6	378	(3	9.92	0.8	32	44	ß	7.85	0,13	2.05	1385	13	{0,0 }	44	0.28	68	28	17	42	(5	(3	200
1 LEE 24008	0.5	3.07	(3	274	(3	4.%	1.1	31	36	75	6.99	9.14	1.52	1251	13	0.04	43	0.73	55	19	17	63	(5	G	174
2 1.68 2+508	0.5	3.13	(3	350	G	0.75	(9.1	29	40	π	7.74	0,12	1.12	1303	13	(0.01	- ü	Å.75	54		IR	24	15	ä	176
P 1 64 34008	6.4	2.73	*	785	a	0.90	6.7	27	15	71	6.70	0.13	1.62	1167	12	8.81	41	0.25	64	26	54	47	15		176
2 LSH 2450E	4.3	2.83	16	147	ā	1.42	6.5	36	24	14	7.65	0,12	1.15	1265		0,06	38	4.22	n	29	15	44	<5	3	225
1 1 CH 4400H	£ 3	7 64	x	201	(7	6. 67		27	11	61	118.00	6 11	4 (1	7480	14	(& A1	76	6 74	(4A	44		45	16	/5	
3 1 69 445/8	¥.4	1 64	20 172		14 25	A 14	***		44	ده جع	744444	V.11	4.93 4 44	1000	1.	74 A4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₩+4¶ ▲ ▲/)9W 	9 1	"	10	(2	د) ه.	<u>7</u> 12
C 4,000 YT JVN 5 C 21 C 404	4.3	1.31		201	1 3	4.14	1-4	75	14		1.1L	0,08	4,12	1000	14	(0.01	A	9.24	87	3		9	G	(3	271
CLINE 27WW	0.2	2.20	2/1	104	G	9.33	1.3	35	U .	68	8.90	¥.03	1./1	1776	13	(0.01	20	P. 21	108	20	12	12	(5	(3	390
STOCKE BALL 2	0.4	6.64	(3	[3]	(3	2.11	671	43	54	191	6.62	9,29	2,33	Z 15	10	0,01	ମ୍	9.32	84	52	23	212	(5	<3	273
2 1.64 6+00H	0.1	4.15	16	148	(3	0.13	2.3	44	40	π	9.36	0.09	1.46	2714	33	(0.01	86	0.19	163	38	19	20	(5	<3	709
1 L70 2+000	0. 3	2.85	3	305	(3	0.77	0.9	24	36	64	6.50	0,11	1.75	1093	11	(0.01	35	9.21	59	20	36	36	(5	(3	176
: 17H 2+50H	0.1	3.15	21	132	(3	0.07	0,4	26	18	57	7.69	0.10	0.79	1885	17	0.03	31	0.20	77	30	14	24	(5	(3	227
2 L71 1+001	\$.1	4.01	17	115	<3	9,03	(0.1	18	21	43	6.38	0.04	9.56	549	16	9.02	13	0.17	79	31	16	21	(5	(3	15
₹ 1.711 3+50 10	0.1	1.55	178	607	(3	0.40	4,0	57	8	133	>10.00	9.11	0.4 9	2010	15	(0,01	25	0.28	117	24	11	32	<2	(3	430
aims Detection	Q. 1	0.01	3	1	3	9.01	0.1	1	1	1	0,01	9.01	9.01	1	1	0.01	L	0.01	2	Z	2	t	5	3	ł
unione Princilae	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	18.00	20000	1000	18,00	70604	10.00	34444	-			- * *		44444

]= == { 1630 Pandora Street, Vancouver, B.C. VSL 1L6 Phi(604)251-5656 Faii(604)254-5717

.

•

1

1

۲

=== =

2

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HRO_m to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al₄ Ba, Ca, Cr, Fe, K, Hg, Hn, Na, P, Sn₂ Sr and H.

EPORT 1: 900280 PA	PRIME EQUI	TY INC.				PREJ	FCT: TAN	TATUS (TR)	1										ANAL	YST;		lynt	<u>lh</u>		
lagely Tree									,	DA D	E THE W	6 22 199	o Di	TE OUT:	SEPT 19	1990	ATTENT	ŪN: NR.	JIN FOSTA	9			~ ~ ~		
AND DESCRIPTION OF THE PARTY OF	Ag	4)	As	Ra	h	Ca	Cđ	Če.	<u>^-</u>	•	-											r M	64. Z UP	2	
10 1 711 4. CAN	pps	2	pps	phe	004	ī				មេ	16	K	Ng	Ha	No	Na	NS	P	Ph	F 1		_			
K E/H 41208	0.5	2.76	{3	190	3	6 R1	1 3		9PE	<u>op</u> e	1	1	1	ppa	ppa	Z	008			30	Sa	Şr	ų	L I	ln
X L/N 3+000	1.0	5.33	(3	162	ä	A 62	1.2	10	43	59	6.64	0.15	1.09	1340	11	0.16	57	0.77	50 10	ppe	<u>pp</u> =	ppe	p ç a	ppe.	(pp a
R L71 51500	0.7	3.57	(3	57	(3	0,03	V.2	18	28		6.52	Q. 13	0.83	1437	14	0.40	20	V . 27	62	22	17	69	<5	(3	160
1 171 5+001	0.5	2 49	24	**	13	0,14	(0.1	5	30	28	3.05	<0.01	0.20	198		0.14	30	V.16	/3	43	22	67	<5	(3	196
R L7W 6+50K	(0.1	2 75	27	/3	(3	0.06	1.5	28	17	77	7.15	0.06	0.57	1590	11	/4 44	13	9,14	66	22	14	21	(5	(3	47
		3.33	7 0	393	<3	0.34	(0,j	38	29	64	9.50	6 12	4 67	7010	10	(0.01	36	0.19	69	21	14	12	6	21	201
R LON 1+001		1 57								•1		4-14	A*01	2215	13	(0.01	43	0.32	67	31	16	30	(5	72	260
R L RV 2+00W	V.J	4.3/	3	355	(3	0.63	1.1	24	32	7)	6 49											••		13	213
B I DU TAKAN	V.5	3.B0	<3	226	(3	0.07	0.9	20	~	74 40	6.40	W. VO	1.50	1149	14	(0.01	35	0.21	71	12	14	77	15		
8 104 21-044	0.5	1.75	92	410	<3	0.23	1.5	45		40 77	D. 67	0.05	0.81	1175	15	0.03	17	0.77	111	77	10	**	13	(3	193
	(0. i	1.86	24	287	(3	0.44	1 9	1.1	14		8,34	0,05	0.66	1472	15	(0.01	23	6.15	94	34	15	A	(5	<3	174
r Lin 34500	(0.1	2.88	(3	217	12	6 11	112		21	74	5.7	0.03	0.76	870	10	(0.01	39	0 19	23	23	11	28	<2	<3	193
					14	4-31	2.4	27	- 47	67	6.81	0.10	1.15	2261	13	6 07	44	A 14	13	11	11	45	(5	<3	195
CLENT 4HOON	<0.1	2.31	a	105	12		• -									~.~*	**	V. 20	29	21	13	33	(5	<3	177
? LON 4+50N	(6.3	1 24	17	140	13	6.0P	0,2	3	- 30	11	3.69	(0.01	0.68	180	,	/A 41									.,,
tibli 5+000t	(0.1	1 74	17	113	(3	9.73	0.3	32	39	74	7.34	0.10	1 90	1007		10.01	4	9.18	53	4	10	15	σ	(7	
t UBM SISON	(4.1	41/3	(3	163	<3	0.33	- 1.1	17	- 44	30	3.18	0.61	1+20	10/00	12	(0.41	41	0.24	85	27	18	90	/5	1.4	40
	(0.1	31.25	3	152	(3	0,38	0.3	19	77	51	6 67	4.01	0.34	101	9	{ 0. 0}	18	0.21	51	6	11	ñ	2	(1)	196
	1.4	4.89	(3	177	(3	0.12	0.7	70			3.8/	4.9 8	Q.9Z	- 774	13	0.15	29	0.21	80	26	14	40		(3	113
					-		***		- 30	ÇĽ	3.M	0.08	1.15	1995	15	<0.01	43	0.14	8 1	20 E1	17	40	Q	(3	168
: LINE IFOCH	0.1	2.84	17	457	12	A 44	74.1													71	Ą	16	<\$	<3	257
: 1.9H 1+50H	(0.1	2.74	26	536	/2	V.V	(0.1	1	- 11	23	5.17	<0.91	0.39	569	10	0.04									
: L98 2+008	(0,1	3.67	17	200	10	V-11	(0.1	20	13	33	7.09	0.05	0.80	7320	12	78 61		9.27	30	15	- 14	60	(5	(3	83
LSR 2+500	(0.1	5 56	11	223	G	0.92	<0.1	7	13	- 22	6.83	0.11	4.91	601		14.41	Б	0.3Z	192	21	13	52	(5	(3	167
: 1.98 34008	/4 1	1.40	43	. 362	. (3	9.27	1.3	34	24	86	1.99	4.67	1.85		1.9	(0.01	a	9,15	53	25	15	22	6	12	100
	·••1	3.57	(3	415	(3	9.66	9.5	33	74	53	1 57	4 11	1+45	1395	14	(9. 81	25	0.2	84	34	19	53	15	/9	111
· J · · · · · · · · · · · · · · · · · ·											e + e 1	¥+11	1115	А Д	10	(0.01	23	0.30	57	2	16	44	/6	(3	2/1
	<0.1	1.96	70	247	(3	ŧ.25	ð.9	*	~	67	<i>t</i>		• _										13	(3	177
	(0.1	1.85	56	227	(3	6.20	6.4	37		32	9,63	0.06	9.35	2038	14	(0,01	54	6.71	51	12					
LINE TTUNE	{0,1	2.06	264	#43	(3	1.15	₹0.1		32	23	6.68	0.07	0.31	1994	15	(0.01	45	1.72	20	12	14	21	G	<3	233
	<0. <u>1</u>	3.34	4	621	(3	4.90	8.7	4A	63	NQ	1.7	0.21	9.38	6835	9	(0.01	103	8.4	41	0	11	19	<5	(3	236
F28 24208	0.5	4.71	(3	296	/3	6 14	446		93	13	8.72	0.iS	1.52	6862	11	(0.01	61	8.74		19	13	49	<5	<3	149
				~~~	14	1+11	<b>(V.</b> 1	41	70	101	8.90	4,17	2.36	5816	17	20 MS		4 71			U I	58	<5	<3	172
L'98 \$4000	(0.1	4.84	(3	152	/4											14141		9.Z/	13	36	26	<b>90</b>	<5	(3	736
L98 6+500	(0,1	3.76	74	1007	1.4	4,29	(0,1	24	- 57	65	6.71	4.66	1.26	1530	13	70 AS									
14+000 0+00	78.9	0.00	47	<i>(</i> 0 <i>1</i>	(3	Q. 30	2,1	51	27	144	9.31	0.10	1.45	1277	1.0	(V-VI	39	0.30	75	77	21	51	<5	(3	192
•	1413	4.76	(1	(97	(3	1.22	<b>{0.1</b>	31	-54	64	7.4	6 18	7 65	1921	17	(4.6)	52	0,19	72	34	17	33	(5	10	4/7 555
iina Detection										-,	1011	4+10	2.VZ	1.566	10	<b>{0.0</b> 1	23	0.23	52	16	15	5	/5		J23
timm Intection	V.1	0,01	3	1	3	0.01	0.1	1	ť	1	0.01											~	19	13	163
- Long Theo Minito	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	200.00	44.04	4.01	0.01	1	1	0.01	1	0.01	2	2	,		F		
(1733   R.M. R. R. M. MANN	) - Greater Th	an Naxim	la je	s - Insu	fficient	Samle		- Ho Cu1	1444		10,00	10.00	10,00	20000	1000	10.00	20000	10.00	20000	2000	1000	4	3	3	1
							-3	wa seedat	E I	ANUTALUES	KESULT!	5 - Furth	er Analy	ises by A	liternati	e Nethod:	s Suggest	ted.		6404	1444	19000	100	1000	20000

÷

ŗ

การ อีรเอาซ ตล์โดยเพ

I.

MAIN OFFICE

+968-TRIUMPH ST -VANCOUVER, B.C.: V5L 1K5 • (604) 251-5656

FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD BATHURST, N.B MISSISSAUGA, ONT. RENO, NEVADA, U.S.A

### GEOCHEMICAL ANALYTICAL REPORT

VANGEOCHEM LAB LIMITED

CLIENT:	PRIME EQUITIES INC.		DATE:	SEPT 13 1990
ADDRESS:	10th Flr 808 W. Hastings	st.		
:	Vancouver, BC		REPORT#:	900400 GA
:	V6C 2X6		JOB#:	900400

PROJECT#: TANTALUS (TR) SAMPLES ARRIVED: SEPT 06 1990 REPORT COMPLETED: SEPT 13 1990 ANALYSED FOR: AU ICP INVOICE#: 900400 NA TOTAL SAMPLES: 31 SAMPLE TYPE: 31 SOIL & SILT REJECTS: DISCARDED

SAMPLES FROM: MR. W. RAVEN - OREQUEST CONSULTANTS COPY SENT TO: PRIME EQUITIES INC.

PREPARED FOR: MR. JIM FOSTER

ANALYSED BY: VGC Staff

SIGNED:

Kardh

GENERAL REMARK: None



MAIN OFFICE <del>1988 TRIUMPH ST.</del> <del>VANCOUVER, D.C. VSL 1K5</del> • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B. MISSISSAUGA, ONT, RENO, NEVADA, U.S.A

I

REPORT NUMBER: 900400 GA	JOB NUKBER: 900400	PRINE BOUITIES INC.	PAGE 1 OF 1
SAMPLE I	۲a		
	ppb		
TR L64 1+50S	ba		
TR L7V 0+50S	ba		
TR L9V 0+508	ba		
TR L9V 1+005	nd		
TR LION BL 0+00B	DĂ.		
TR LION 0450N	nd		
TR 610V 1+50N	nd		
TR LIOV 2+00N	nđ		
TR LION 2+50N	nd		
TR LLOW 3+00N	ba		
TE L10V 3+50B	nd		
TR L104 5+50H	nd		
TR 110¥ 0+50S	nd		
TR L104 1+005	bà		
<b>TR LIOU</b> 1+50S	nd		
TR LIIU OFOON	ba		
TR 1111 0+50N	ba	-	
TR £110 1+00B	nđ		
TR LILY 1+508	n an <b>nd</b> an	•	
TR LIIN 2+00X	ba		
TR L11W 2+50H	nd		
TR L110 3+008	ba		
TR LILV 3450B	nd		
TR L110 4+008	อนี้		
TR 6118 4+508	bđ		
TR L118 5+008	ba		
TR LIIV 0+505	ba		
TR L11T 1+005	nd		
TR L124 0+50K	ba		
TR L12V 1+00M	ba		
TR 5-351	ρą		

.

ĸ.

ŝ.

ANALYST: logath

1630 Pandora Street, Vancouver, B.C. V51 116

Ph:(604)251-5656 Fax:(504)254-5717

#### ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HND, to MgD at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

EPORT #1 900400 PA	PRIME EQUIT	TES INC.				PROJEC	CT: TANTA	NEUS (TR)		<u>Ĵa</u> ti	E IN: SER	1 08 199	0 DA	TE OUT: O	ùi 05 19	96	ATTENTION	I: MR. GE	OPGE CAVE	Ę¥		PAG	1 01	ì	
ample Name	Ag SD <b>e</b>	Al X	As co≛	Ba oo <b>e</b>	Bi Dom	Ca Z	C d D d a	មិត ស្ត្	Ūr Boda	Cu AD <b>A</b>	fe X	Ķ	Mg Y	Mn DDA	Mo OD <b>e</b>	Na Z	N) DOB	ף ז	Pb Do	Sb	50 00 <b>0</b>	Sr 000	U ∌0a	ы Пре	Li Doi
R LEW 14509	0.1	2.23	<3	552	3	1.16	3.6	21	54	45	4.8t	0.17	1.44	824	7	0.05	29	0. ±0	22	(7	11	45	15		101 101
P 170 0+505	0.1	2.49	13	246	(2	0 30	6.6	20	23	102	>10.00	0.19	1 17	941	15	0.00	26	0.22	62	22	16	21	15	, Q	179
R L9W 0+50S	0.7	1.20	<3	227	63	0.03	3.7	- E	17	33	6.97	0.17	1.58	355	4 (U	0.05 0.05	13	0.12	134	7	R I	44 54	10 15	\Q \U	7
R 19W 1+00S	2. ú	0.25	Ġ	51000	< 3	(0.01	2.2	()	5	10	2.05	(0.01	0.09	59	Ē	6 ú1	5	0.03	105	66	ž	79	75	(3	3
R LION BL 0+00N	0.5	1.50	(3	437	< <u>3</u>	0.24	3.6	11	12	23	6.43	0,10	0.63	478	ŝ	0.08	13	0.21	57	10	10	71	:5	<3	7
R LIQN OFSON	0.2	1.93	(3	514	⟨3	0.03	3.0	8	1	20	5,96	0.07	0.43	914	7	0.08	11	0.14	51	2	10	59	(5	<3	8
R LIOW 1+SÓN	0.5	2.06	73	339	< 3	0.15	2.8	15	13	32	5.86	0.0Ĥ	0.55	990	9	0.08	14	0.19	51	<ż	11	64	<5	3	8
R L10W 2+00N	0.3	1.54	<2	329	<3	0.13	2.1	3	12	27	4.62	Ú. 96	0.58	429	;	0.05	51	0.11	54	<2	8	43	(5	<3	É
R L10W 2+50N	(0.1	2.30	<b>(3</b>	399	<3	0.12	3.0	21	24	41	6.28	Ú.0Ĥ	0.67	1477	6	0.06	25	0.13	44	<2	10	31	(5	3	11
R L10W 3+00N	0.2	1.68	<3	159	₹3	0.09	3.0	19	13	32	4.08	0.04	0.33	1628	12	0.05	21	0.09	53	<2	6	37	<5	٨3	19
R L10W 3+50N	<0.1	1.52	۲3	>1000	(3	0.45	2.5	16	19	23	4.67	0.11	0.39	1908	4	0.07	19	0.15	27	<2	7	28	<5	₹3	9
R L10W S+SON	<0.1	3.97	(3	405	(3	0.22	3.4	30	41	65	5.07	0.11	1.97	4705	10	0.10	37	0.13	42	<2	LS.	32	<5	<3	13
R L10₩ 0+505	0.2	1.34	₹3	213	<3	0,06	2.6	11	14	34	4.08	Ú.Ú4	0.51	439	7	0.04	4	0.09	67	(2	8	27	< 5	<3	6
R 110₩ 1+005	0.3	1.15	<3	221	<3	0.05	2.1	8	13	34	5.08	0.06	0.43	282	7	0.04	4	0.10	93	<2	8	28	<5	<3	5
R 110W 1+505	0.3	0.84	<3	694	(3	0.03	1.5	5	10	24	4,]4	0.04	0.39	175	5	0.03	{1	0.06	48	<2	6	23	<5	(3	5
R LEIN OFOON	0.7	0,57	(3	257	(3	0.04	1.4	3	2	7	4.26	0.05	0.20	121	6	0,06	$\langle 1 \rangle$	0.13	61	<2	5	70	<5	(3	3
R LIIN 0+50N	0.3	0.60	<3	369	<3	<0.01	1.5	3	5	9	3.74	0.03	0.26	126	7	0.04	(1	0.08	61	<2	5	36	<b>(</b> 5	<3	2
R L11W 1+00N	0.4	1.06	<3	341	(3	0.21	1.5	8	8	18	4.30	0.07	0.47	211	8	0.06	1	0.08	56	<2	8	52	<5	(3	3
R L11N 1+50N	0.4	2.15	<3	283	<3	(0.01	1.6	9	11	24	5.36	0.05	0.42	593	9	0.06	1	0.14	55	2	11	44	<5	<3	9
R L110 2+00N	0.1	1.54	<3	292	<3	<0.01	2.4	14	6	27	5.02	0.06	0.43	688	8	0.07	<1	9.11	61	<2	8	52	<5	<3	9
R L11W 2+50N	0.2	1.43	(3	211	<3	<0.01	0.5	3	9	14	2.29	0.03	0.29	127	6	0.04	()	0.08	38	<2	6	23	9	(3	3
R LILW 3+00N	0.2	2.41	(3	227	{3	0.79	2.5	25	10	35	5.55	0.16	1.10	730	9	0.14	7	0.11	41	<2	16	102	(5	(3	8
R L11W 3+50N	(0.1	1.51	(3	573	<3	0.02	0.7	12	13	20	4.43	0,06	0.37	\$70	13	0.05	L	0.0B	39	(2	2	66	(5	(3	7
R 111W 4+00N	(0.1	0.90	(3	86	(3	0.02	0.7	6	7	11	2.76	0.04	0.22	196	8	0.04	<1	0.05	24	(2	5	١٥	9	(3	2
R L11W 4+50N	<0.1	1.17	3	229	(3	0.22	2.8	13	13	25	4.15	0.08	0.31	1000	13	0.06	3	0.07	61	<2	7	22	<5	(3	18
R LILW SHOON	(0.1	2.80	(3	417	<3	0.31	2,7	27	48	43	6.17	0.12	0.98	1983	6	0.07	32	0.14	33	(2	12	37	<5	(3	11
R L110 0+505	0.3	1.08	(3	372	<3	<b>{0.01</b>	0.9	8	9	27	4,15	0.04	0.36	303	5	0.04	<1	0.09	62	<2	7	38	(5	(3	5
R L11W 1+00S	0.4	0.93	(3	243	<3	0.12	1.5	4	4	8	4.93	0.07	0.49	368	8	0.05	<1	0.25	139	(2	7	98	<5	(3	6
R L12W 0+50N	0.5	0.64	<3	329	<3	<0.01	1.2	2	$\langle 1 \rangle$	6	5.08	0.05	0.33	227	6	0.03	<1	0.09	117	2	6	57	<5	(3	3
R L12W 1+00N	0.3	0.61	(3	195	<3	0.05	1,9	6	4	3	6.60	0.09	0.33	215	6	0.06	4	0.24	59	8	8	96	12	(3	4
R S-351	23.0	0.45	52B	93	<3	0.09	14,6	8	<1	117	9.05	0.12	0,04	3532	24	0.06	(1	0.14	<b>B3</b> 73	78	8	46	(5	<3	35
liniaus Detection	0.1	0.01	3	I	3	0.01	0,1	1	L	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	L	5	3	
laxious Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10,00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	2000
- Less Than Miniaua	🔷 👌 - Greater T	han Maxie	lu <i>i</i>	is - Insu	ificien	t Sample	ΠS	- No Samo	le	ANOMALOU	IS RESULT	5 - Furt	her Anal	yses By A	lternati	e Method	s Sugges	teć.							





2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 664

S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St Vancouver, B.C. V6C 2X6



INVOICE #: 15276 P.O.: R-2298

SAMPLE(S) OF Soil

W. Raven Project TR - Tantalus

REMARKS: OreQuest Consultants

Au ppb 120

LOW	3+	00N		120	
LOW	2+3	50N		85	
LOW	1+	50N		140	
LOW	1+(	00N		30	
LOW	0+!	50N		30	
LOW	0+0	00		15	
LOW	0+	50s		35	
LOW	1+0	005		170	
LOW	1+	50s		90	
LlW	3+!	50N		30	
L1W	3+0	OON		80	
1.1W	2+	50N		35	
LIW	2+0	DON		110	
LlW	1+!	50N		35	
L1W	1+(	ООМ		130	
T.1W	0+!	50N		45	
	0+(	00		160	
L1W	0+9	50s		30	
L1W	1+(	00s		150	
LIW	1+	50S		60	
COPTE	ZS.	ΤO	Т	Fo	
					•

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

SIGNED .

Sep 10/90

÷

Bunic Vun

 Page 1 of 3





DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd 10th Floor, Box 10-808 West Hastings St REP Vancouver, B.C. S V6C 2X6



INVOICE #: 15276 P.O.: R-2298

SAMPLE(S) OF SOIL

W. Raven Project TR - Tantalus

REMARKS:

OreQuest Consultants

Au ppb 35

LIW	2+00S	35
L1W	2+50S	25
L1W	3+00S	25
LIW	3+50S	75
l2W	3+50N	110
L2W	3+00N	150
L2W	2+50N	120
L2W	1+00N	210
L2W	0+50N	290
L3₩	4+50N	110
L3W	4+00N	50
LЗW	3+50N	210
ГЗМ	3+00N	50
гзм	2+50N	70
r3M	2+00N	110
L3W	1+50N	35
l3w	1+00N	250
L3W	0+50N	220

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

140 60

Sep 10/90

L3W 0+00

L3W 1+00S

Renie ( 2 of 3 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED _
|--|



2 - 302 - 48ih STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX (306) 242-4717

### CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Exploration Ltd 10th Floor,Box 10-808 Vancouver, B.C. V6C 2X6	West Hastings	st	REPORT No. S9819
SAMPLE(S) OF SO	il		INVOICE # P.O.: R-	: 15276 2298
	W. Raven Project TR - Tantalus			
REMARKS:	OreQuest Consultants			
	Au ppb			
L3W 1+50	5 45			
	· · ·			

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Sep 10/90

Bernie Dum SIGNED .

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. T S L LABORATORIES

2-302-481H STREET, SASKATOON, SASKATCHEWAN S/H 6A4 TELEPHONE #: (306) 931 ~ 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Ölgestion

PRIME EXPLORATION LTD.	7,9,17	REPORT	NO.	:	5 - 9819 - 1
IVEN FIDDE BOX IV	1.3	File	NO.	:	SE12MA
806 West Hastings St.	7.S.L.	Invoice	NO.	:	15433
Vancouver B.C. V6C 2%6					

PROJECT: IR TANTALUS OREQUEST CONSULTANTS R-2298 ALL RESULTS PPM ATTN: J. FOSTER

		LOW 3+00N	COW 2+50N	LOW 1+50N	LOW 1+00N	LOW ()+50N	<b>L0₩</b> 0+00	LOW 0+50S	£0₩ 1+005
ELEMENT									
Aluminum	(A1)	15000	14000	15000	24000	24000	i 7000	22000	20006
Iron	[Fe]	38000	40000	<b>35</b> 060	36000	34000	35000	36000	32000
Calcium	[Ca]	4200	3500	2000	1800	720	2300	1800	2700
Magnesium	[Mg]	5700	5200	59(X)	5600	3800	5600	5800	5700
Sodium	[Na]	200	340	130	150	300	130	160	720
Potassium	(K )	740	710	400	530	526	590	660	796
Titanium	(T1]	390	370	<u>3</u> 40	1206	1100	1100	1500	i P(), j
Manganese	[Mn]	<b>98</b> 0	1400	776	<b>68</b> 0	1400	930	<b>78</b> 0	òđó
Phosohorus	(P ]	1100	660	<b>6</b> 50	950	830	1000	<b>98</b> 0	710
Barium	(Ba)	290	390	<u>2</u> (i()	110	120	120	110	95
Chromium	(Cr]	30	16	4 E 100	Sa	36	ið	20	16
Zirconium	[[r]	6	7	5	5	5	5	ò	4
Copper	{Cu]	41	58	55	22	16	30	49	25
Nickel	[Ni]	20	11	26	21	17	19	20	18
Lead	CP63	45	42	21	26	22	27	23	31
Zinc	[Zn]	120	110	63	94	70	110	66	96
Vanadium	£V 3	54	51	52	72	58	49	67	55
Strontium	[Sr]	21	21	13	12	7	15	14	25
Cobalt	[Co]	15	18	13	12	7	13	15	12
Molybdenum	[Mo]	< 2	< 2	× 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	<ul> <li>1</li> </ul>	· 1	1 L	< i	x <u>1</u>	× 1	< 1	ι 1
Cadmium	{Cd}	ì	< 1	1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	τ 1
Boron	(B ]	< 10	< 10	< 10	$\sim 10$	< 10	< 1Û	< 10	V 10
Antimony	(Sb)	15	5	5	× 5	× 5	iŷ	< U	(5
Yttrium	£Y ]	11	11	5	6	ò	11	9	8
Scandium	(Sc)	4	5	÷	Z	1	5	5	4
Tungsten	[W]	< 10	< 10	x 10	< 10	< 10	< 10	v 10	< 10
Niobium	(Nb)	< 10	< 10	6 IÙ	× 10	$\sim 10$	$\sim 10$	< 10	10
Thorium	[Th]	30	4()	30	30	20	30	30	50
Arsenic	[As]	30	35	15	25	30	25	70	- <b>2</b> 4 0
Bismuth	(B1]	< 5	< 5	< <b>9</b>	< 5	< 5	< 5	< 5	< 5
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Lithium	[[1]	10	10	10	15	5	15	26	15
Holmium	(Ho]	< 10	< 10	< 10	< 10	× 10	< 10	× 10	10

SIGNED : Dem's Pilipick

131 LABORATOR LEE 2-302-4878 STREET, SASKATOON, SASKATOHEWAN 57: 644 TELEPHONE #: (306) 931 - 1033 우수는 #국 - 366: 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Regia Digestion PRIME EXPLORATION LTD. 7.9.L. REPORT No. : 5 - 9819 - 3 10th Floor Box 10 Ξ.Ξ.Σ. File No. : SE12MA 808 West Hastings St. T.S.L. invoice No. : 15433 Vancouver B.C. V6C 2X6 PAOJECT: IR TANTALUS ATTN: J. FOSTER GREQUEST CONSULTANTS R-2296 ALL RESULTS PPM LOW 1+508 LIW 3+50N CIN 3+00N LIN 2+50N LIW 2+00N LIW 1+50N LIW 1+00N (1₩ 0+50M ELEMENT 16000 Aluminum (All 22600 16000 15000 1700015000 15000 21000(Fe) Iron 33006 37000 38000 39000 37000 35000 37000 37000 Calcium [Ca] 2000 760 3300 4300 5400 3200 3000 2500 Magnesium [Mg] 5500 3800 5800 5800 5900 5800 5900 6400 Sodium (Na) 280 100 100 ₹() - 96 100 100 100 Potassium (K ] 680 400 850 760 910 720 330 370 Titanium (Ti) 11001700 260 290270 310 310  $\hat{\varphi}_{i}(x)$ Manganese (Mn.) 720 520 920 1000 980 920 600 850 Phosonorus (P ] 750 540 1000 1100 940 890 **96**0 850 Barium [Ba] 200 - 82 340 350 420 310 200 110 Chromium [Cr] 21 15 24 la. 15 14 12 43 Zirconium (Zr) 8 ş ÷ ċ 8 6 - 7 6 Copper (Cu) 32 23 38 4ò 42 41 52 36 Nickel (Ni) 18 12 14 16 10 9 Ģ 31 89 Lead [Pb] 26 - 47 49 27 38 27 38 71 Zinc [Zn] 120 130 130 98 95 85 140 Vanadium [V] 44  $\mathbb{C}^{2}$ 54 53 58 54 54 60 Strontium (Sr) 22 11 14 20 19 14 -12 10 Cobalt (Co) 12 3 15 16 15 13 14 17 < 2 Molybdenum (Mo) < 2 3 2 < 2< 2 < 2 < 2 < 2 [Aq] Silver < 1 $\sim 1$ 1 1 < 1 4 1 < 11 ×, 1 Cadmium [63] < 1 5, 1 < 1  $\leq 1$ < 1 < 1 < 1 2 Beryllium (Be) < 11 × 1 < 1 < i < 1 < 1 1 ₹. (B ]  $\langle -10 \rangle$ Boron < 16 < 10 < i0 - 10 < 10 < 10 < 10 5 Antimony [Sb] 10 . 5 λ β 10 < 5 5 10 Yttrium [Y] 11 5 10 11 10 9 10 15 Ž Scandium {Sc} 4 4 5 5 4 4 ò Tungsten (W ) < 10 . 10 < 10 < 10 < 10 $\leq 10$ < 10 < 101. 10 Niobium [Nb] 10 0 10 < 10< 10< 10 < 10[75] Thorium 50 20 30 30 30 40 30 40 25 [As] 25 Ansenic 25 30 36 30 10 40Bismuth [Bi] 4, 5 < 3< 5 < 5 ; 5 < 5 < 5 < 5 Tin 10 [Sn] < 10 t. 10 - 10 10 10 < 10 < 10 15 15 Lithium 611) 10 10 10 10 20 < 10 Holaium (Ha) < 10 10 10 10 i < 10< 10 < 10

SIGNED :

Dem Viljick

IS L LABORATORIES

Γ

Ľ

C

E

L

2-302-48TH STREET, SASKATOON, SASKATOHEWAN 574 544 TELEPHONE #: (306) 931 - 1003 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION L 10th Floor Box 10	Τΰ.			1.8.6. 7.8 :	REPORT	No.:	5 - 9819 - 3 Efioxa
808 West Hastings 5 Vancouver B.C. V6C	t. 2X4			T.S.L.	invoice	No.:	15433
ATTN: J. FOSTER	PROJECT: TR TANTALUS	GREQUEST CONSULTANTS	8-2298		ALL RES	ULTS PI	3 <b>M</b>

LIW 0+00 LIW 0+508 LIW 1+008 LIW 1+505 LIW 2+005 LIW 2+505 LIW 3+005 LIW 3+505 ELEMENT

Aluminum	[A1]	25000	21000	19()(a)	21000	18006	17000	18000	71000
Iron	[Fe]	39000	32000	36000	39000	39000	35000	36000	41000
Calcium	(Ca)	3400	1500	2166	2000	2400	760	5:00	2766
Magnesium	[Mg]	7200	5300	5800	5900	5500	4200	6000	<b>49</b> 00
Sodium	(Na]	260	230	460	160	120	240	7600	
Potassium	(K )	790	630	700	74()	<b>64</b> 0	690	1400	830
Titanium	[Ti]	1300	1300	1400	590	220	410	2400	900
Manganese	[Min ]	1100	650	776	996	1000	730	500	14()()
Phosphorus	[P]]	1100	870	<b>7</b> 00	950	i100	720	650	880
Barium	(Ba]	190	98	100	<b>;4</b> 0	220	150	74	160
Chromium	(Cr]	110	21	18	21	17	13	15	41
Zirconium	[Zr]	7	7	ę	5	ć	5	14	13
Copper	[Cu]	73	28	40	46	46	34	29	47
Nickel	[Ni]	63	19	23	26	28	16	16	22
Lead	[Pb]	36	38	67	110	77	40	27	19
Zinc	[ Zn ]	160	<b>9</b> 8	150	240	150	120	92	110
Vanadium	EV ]	74	50	51	62	50	40	63	65
Strontium	[Sr]	17	14	23	18	20	11	51	21
Cobalt	[Co]	23	12	15	16	16	12	13	20
Molybdenum	[Mo]	< 2	< 2	< 2	2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	N 1	< <u>1</u>	< 1	< 1	< 1
Cadmium	[b3]	Ì	< 1	< 1	1	1	< i	< 1	< 1
Beryllium	[Be]	< 1	< 1			< 1	1	< 1	< 1
Baran	(B )	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	5	< 5	< 5	10	15	10	< 5	10
Yttrium	[Y]	14	9	11	12	12	14	10	13
Scandium	[Sc]	6	C.4	Ę.	a <del>t</del>	3	2	6	6
fungsten	[₩]]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
liobium	ENID]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
horium –	[Th]	20	50	30	30	<b>4</b> ()	30	40	30
Arsenic	(As]	65	40	40	÷5	50	35	20	10
lismuth	[B1]	< 5	< 5	< 5	< S	ξ 5	< 5	< 5	€ 5
in	[Sn]	< 10	< 10	10	. 10	< <b>1</b> 0	< 10	< 10	< 10
ithium	(Li)	25	15	20	20	15	10	10	20
olmium	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Dim Pilipick

7 S.L. LABORATORIES

ELEMENT

Ľ

Ľ

Ľ

2-302-487H STREET. SASKATOON, SASKATOHERAN STA GAG 

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.				7.5.E.	REPORT	No. :	5 - 9819 - 4
10th Floor Box 10				T.S.C.	File	No. :	SE12MA
808 West Hastings St.				T.S.L. 1	nvoice	NO. :	15433
Vancouver B.C. V6C 2%6							
ATTN: J. FOSTER P	ROJECT: TA TANTALUS	GREQUEST CONSULTANTS	8-2298		ALL RES	ULTS PP	Ħ

- L2W 3+50N - L2W 3+00N - L2W 2+50N - L2W 1+00N - L2W 0+50N - L3W 4+50N - L3W 4+00N - L3W 3+50N

Aluminum	(A1)	19000	$(j_{i})$	ZOAA)	16000	15000	16000	1 8000	17066
lron	(Fe]	38000	34000	39(a)()	41000	39000	37000	38000	37(66)
Calcium	[Ca]	4200	3600	7000	3 <b>B</b> 06	3800	3700	3800	3406
Magnesium	[Mg]	6300	5800	<b>64</b> ()()	6000	5700	6100	6300	5100
Sodium	[Na]	320	110	120	150	150	160	120	150
Potassium	[K ]	980	550	1500	6 <b>4</b> 0	570	660	860	730
Titanium	[71]	626	480	330	390	440	<b>67</b> 0	3 <b>9</b> 0	280
Manganese	(Mn )	890	840	960	920	930	<b>9</b> 00	970	810
Phosphorus	(P 1	1000	1000	930	740	1100	1000	950	790
Barium	[Ba]	470	440	<b>58</b> 0	330	320	330	440	320
Chromium	[Cr]	29	23	<u>e</u>	29	24	37	37	25
Zirconium	[Zr]	6	Ą	ę	ċ	8	9	ē	7
Copper	[Cu]	32	32	38	42	44	39	42	35
Nickel	[Ni]	17	13	16	15	16	23	22	19
Lead	[Pb]	26	22	27	30	34	17	17	17
Zinc	[Zn]	96	81	110	100	100	82	88	86
Vanadium	EV 3	66	53	65	άð	53	62	62	42
Strontium	[Sr]	26	18	29	21	19	18	18	18
Cobait	[Co]	14	13	15	15	16	16	16	14
Malybdenum	[Mo]	< 2	< Ž	Λ 2	< 2	< 2	< 2	< 2	< 2
Silver	(Ag)	< 1	< 1	< 1	< 1	$\sim 1$	< 1	< 1	< 1
Cadmium	[Cd]	1	< 1	< 1	1	< 1	< 1	< 1	< 1
Beryllium	[Be]	× 1	< 1	< 1	- 1		1	< 1	< 1
Boron	(B)	< 10	< 10	10	: 10	< 10	< 10	< 10	< 10
Antimony	(Sb)	< 5	< 5	· 5	5	< 5	10	5	< 5
Yttrium	EY 3		<u>{</u> ()	11	11	* - 1	11	11	11
Scandium	(Sc)	E.	4	÷.	Ę	5	5	5	5
Tungsten	(W 3	10	1 <b>i</b> V	10	. 10	< <u>10</u>	< 10	< 10	< 10
Niobium	ENb 3	< 16	. 10	·	s 10	s 10	< 10	< 10	< 10
Thorium	[Th]	4.)	30	4.2	40	20	30	50	<b>5</b> 0
Arsenic	[As]	15	15	13	0	25	20	15	25
Bisauth	(Bi)	< 5	- 5	5	ν 5	< 5	< 5	( 5	< 3
Tin	[Sn]	ξ (	· 10	- 10	10	·. <u>1</u> 0	s 10	< 16	$< 10^{-1}$
ithium	(ci)	10	1.2	20	10	10	15	15	5
-olaiua	іна]	< 10	16	10	· 10	5 10	4 141	< 10	i 16

SIGNED : Dimin Pilorik

TIS L LABORATORIES

Ľ

Ľ

2-302-487H STREET, SASKATCOM, SASKATCHEWAN 57K 644 TELEPHONE #: (306) 931 - 1033 F4X #: (306) 242 - 4712

I.C.A.P. PLASMA SCAN

Aqua-Regia Dicestion

PRIME EXPLORATION LTD. 10th Floor Box 10	1.S.L.	REPORT	NG. :	S - 9819 - 5
808 West Hastings St. Vancouver R.F. 046 274	1.5.L.	Invarce	ма. : No. :	5612ma 15433
ATTHN: J. FOSTER PROJECT: TR TANIALUS OREQUEST CRASHI TANTS 8-2298			:# 70 00	x

PROJECT: TR TANTALUS OREQUEST CONSULTANTS R-2298 ALL RESULTS PPM

							ALL ALUGLIG	£ # FL	
	r	13M 3+00N	L <b>3W</b> 2+50N	L3W 2+00N	L3W 1+50N	L3W 1+00N	L3W 0+50N	L3₩ 0+00	L3W 1+00S
Aluminum	[A]]	16000	13000	16000	15000	:8000	: 7000	16000	• Onivn
Iron	[Fe]	37000	35000	35000	36006	25006	38000	78000	17000 77000
Calcium	[Ca]	5900	3800	<b>6</b> 000	7660	10000	11000	6100	07000 77000
Magnesium	[Mg]	5900	5400	5600	6100	6300	5800	9700	4500 4500
Sodium	[Na]	120	120	120	160	120	1 (x)	116	100
Potassium	(K )	1200	800	1200	680	1300	1400	::00	140 590
Titanium	(Ti)	250	310	240	4.36	780	170	780	570 500
Manganese	(Mn )	840	780	820	730	900	940	1100	020 00A
Phosphorus	[P]	880	1000	910	850	880	850	540	210
Barium	[Ba]	460	350	460	240	520	410	410	270
Chromium	(Cr)	32	26	30	120			14	200 70
Zirconium	[Zr]	7	8	8	8	 9	7	ģ	
Copper	(Cu)	37	34	34	41	34	79	49	47
Nickel	ENi I	19	15	17	52	13	13	 9	
Lead	[Pb]	13	14	17	22	27	63	.30	74.
Zinc	[Zn]	84	76	53	89	- 99	160	100	100
Vanadium	[V]]	52	4ó	47	53	δġ	57	50	54
Strontium	[Sr]	27	18	24	30	33	36	24	18
Cobalt	[Co]	14	13	13	15	14	14	15	16
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< I	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< <u>1</u>	< 1	< 1	2	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	<ul> <li>1</li> </ul>	< 1	1	$\langle 1$	< 1
Boron	[B]	< 10	< 10	< 10	× 10	× 10	< 10	< 10	< 10
Antimony	[55]	< 5	< 5	10	10	ς 5	10	5	5
Yttrium	[Y]	10	11	11	9	9	10	10	10
Scandium	(Sc)	5	5	Ę		5	5	5	5
Tungsten	[W]]	< 10	< 10	< 10	< IV	× 10	10	< 1Ú	< 10 [°]
Niobium	{No]	< 10	< 10	< 10	× 10	< 10	< 10	< <b>1</b> 0	< 10
Thorium	[Th]	30	30	30	1Ó	40	30	40	50
Arsenic	[As]	15	15	20	30	iÛ	10	25	35
Bismuth	[Bi]	< 5 .	< 5	< 5	< 5	< 5	< 5	< 5	(5
710	[Sn]	< 10	< 10	× 10	10	< 10	10	< 10	· 10 ·
Lithium	[[1]	10	10	10	15	15	зŵ	10	15
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-12-1990

L

C

SISNED :

Um Pilouk

T S L LABORATORIES

2-302-467H STREET, SASKATOON, SASKATEHEMAN ECH daa TELEPHONE #: (306, 931 - 1053 FAX #: -306 242 - 4117

L.C.A.F. PLASMA SCAN

Aqua-Regia Digestion

8-2295

PRIME EXPLORATION LTD. 10th Floor Box 10 800 West Hastings St. Vancouver B.C. V&C 2X& ATTN: J. FOSTER PROJECT: TR TANTALUS GREQUEST CONSULTANTS

L3₩ 1+505

20000

39000

4200

6500

70

950

550

1100

920

380

25

8

49

23

25

100

ói

23

17

< 2

1

< 1

< 1

< 10

10

12

é

< 10

 $\sim -10$ 

50

45

< 5

. i0

< 16

15

ALL RESULTS PPM

1.S.E. Invalce No. : 15433

7.S.L.

1**8.**6.

REPORT No. : 5 - 9819 - 0

File No. : SE12MA

ELEMENT

[Fe]

[Ca]

[Na]

[Ba]

(LCu)

EN13

(Pb)

[Zn]

[Co]

(Aq]

(Cd)

[B]

[Sb]

EY ]

[₩]

[Nb]

[Th]

[As]

Aluminum (Al)

Magnesium [Mg]

Potassium [K]

Titanium [Ti]

Manganese [Mn]

Phosphorus (P )

Chromium (Cr)

Zirconium [[r]

Vanadium (V ]

Strontium [Sr]

Molybdenum (Mol

Beryllium [Be]

Scandium (Sc)

Iron

Calcium

Sodium

Barium

Copper

Nickel

Lead

Zinc

Cobalt

Silver

Cadmium

Boron

Antimony

Yttrium

Tungsten

Niobium

Thorium

Arsenic

[	BC Va AT
[	
C	
[	
a for a second second second	
-	

I

[

ſ

Bismuth (Bı] Tin (Sn) Lithium (Li) Holmium (Ho)

Dim Pilipick SIGNED :











VOLCANIC AND SEDIMENTARY ROCKS TRIASSIC TO JURASSIC

MIDDLEJURASSICSPATSIZIGROUP5SALMONRIVERFORMATION5bRhythmically bedded siltstone5cThickly bedded sandstone5dLimestonelenses

5e Andesite tuffs

LOWER JURASSIC: HAZELTON GROUP

- 4 MOUNT DILWORTH FORMATION Felsic volcanic sequence of dacitic to rhyolitic composition including dust tuff, crystal and lithic tuff.
- 3 BETTY CREEK FORMATION

Massive, green	and grey andesitio	to dacitic tuff,
lapilli tuff, tuff	breccia and minor	r flows



Зa

Bedded, heterogeneous, red, green, and grey volcanic breccia, lapilli tuff, crystal and lithic tuff, commonly hematitic.

3c

3f

Basaltic to andesitic pillow lavas

Bedded, hematitic siltstone, sandstone, and conglomerate; locally fossiliferous



OUTCROP, SMALL OUTCROP

FOLIATION (vertical, inclined) BEDDING (vertical, inclined) FRACTURE VEIN GEOLOGICAL CONTACT

Same Fault

ALTERATION ZONE: Pyrite-quartz-sericite ± carbonate ± clay, locally foliated to schistose. •

.

۲

ŧ

F FLOAT

- ■, 1990 ROCK SAMPLE LOCATION 33253- <5,<0.1,(<0.01), (<0.01), (0.01) No. Au Ag Cu Pb Zn ppb ppm % % %



# GEOLOGICAL BRANCH ASSESSMENT REPORT







1990 ROCK SAMPLE LOCATION

Au Ag Cu Pb Zn

ppb ppm ppm ppm ppm

46001-20,0.8,22,35,50

oz/t

BRACKETED VALUES

17

13

## LEGEND:

---- SOIL SAMPLE LOCATION

TS 201 SILT SAMPLE LOCATION & NUMBER

I 30 , 2.8 , 48 , I40 Au Ag Cu As (ppb) (ppm) (ppm) (ppm)

A 1989 ROCK S	AMPLE L	OCATIO	Ν		
15907 - 20, 0.8,	22,13	0.038,	2.55*	, 37 ,	19
Assay Tag Au Ag Nº. (ppb)(ppm)(	Cu As ppm)(ppm)	Au (t/zo)	Ag (oz/†)	 (ppm) ( p	4s (pm)
F = FLOAT SA	WPLE				

NS = NO SAMPLE TAKEN





. . . **.** ....

- - -----





C Z	u n	VALU VALU	IE IE	IN IN	ррі ррп	n
6	0	ppm	Cu	C	oni	lou
10	0	ppm	Cu	ı C	ont	QU

E-1400.00 E-1200.00 E-1800.00 00 E-2000.00 -1600. E-2400.00 -2200.00 -2500.00 10 511 20 +.5 -1-3 -9 **A**¹⁰ Ci D - .8 1.3 1.4 1.2 - .8 9 13 +2 +1.3 N+.00 +1.4 17 12 14 -<u>†</u>3 +7 +;4 40 50 20 Mg 0.0 -0 -0 -0 -0 -0 -0 -0 .



	-					
L 2200 W	L 2100 W	L 2000 M	L 1900 W	L 1800 W	L 1700 W	L 1600 W
700 N						57430. 57512. 57503
600 N	:				57482. 57458. 57467. 57462. 57463.	57478 7462. 57468. 57468. 57458. 57471. 57471. 57473. 57471.
500 N	•			57453. 57451. 57455.	57482. 57459. 57452. <b>57461.</b> 57461. 57460. 57463. 57473.	57454. 57454. 57454. 57455. 57455. 57448. 57445. 57447. 57451. 57457.
400 N	57480. 57458. 57470. 57464. 57457.	57451. 57458. 57458. 57458. 57455. 57453. 57453. 57455. 57467.	57457. 57451. 57458. 57448. 57457. 57450	57448. 57445. 57449. 57448. 57451. 57451. 57454. 57454. 57454.	57 460. 57 460. 57 458. 57 458. 57 451. 57 449. 57 449. 57 453. 57 453.	57453. 57453. 57442: 57458. 57458. 57460. 57463. 57463. 57483. 57481.
300 N	57448, 57454. 57458. 57458. 57458. 50482. 57458. 57458.	57458. 57459. 57459. 57458. 57453. 57451. 57456. 57450.	57450. 57455. 57459. 57459. 57455. 57460. 57452. 57454.	57453. 57453. 57452. 57452. 57451. 57451. 57451. 57451.	57475. 57475. 57538 57538 57538 57538 57538 57484 57484 57484. 57488. 57468.	57481. 57481. 57449. 57452. 57459. 57459. 57455. 57484. 57483.
200 N	57459. 57462. 57462. 57462. 57457. 57460. 57461.	57454. 57440. 57445. 57454. 57455. 57455. 57487. 57443.	57457. 57458. 57458. 57487. 57487. 57455. 57455. 57455. 57478. 57482.	57447. 57454. 57458. 57451. 57450. 57454. 57454. 57454. 57458.	57455. 57455. 57452. 57454. 57459. 57459. 57463. 57494.	57403. 57468. 57485. 57487. 57454. 57485. 57455. 57473. 57485.
100 N	57450. 57463. 57485. 57452. 57454. 57454. 57451. 57448. 57447.	57452. 57459. 57459. 57450. 57451. 57470. 57455. 57460.	57487. 57484. 57489. 57488. 57482. 57462. 57469. 57461. 57461.	57441. 57480. 57480. 57445. 57454. 57452. 57453. 57454. 57454. 57452. 57453.	57451. 57458. 57458. 57465. 57464. 57471. 57461. 57471.	57468. 57453. 57456. 57456. 57464. 57464. 57464. 57464. 57464. 57464. 57467.
0 57521. 57510. 57502. 57490. 57495. 57475	57432. 57439. 57440.	57454. 57485. 57485. 57482. 57457. 57454. 57454. 57454. 57454.	57487. 57482. 57481. 57481. 57489. 57489. 57487. 57487. 57480.	57475. 57459. 57444.	57458.         57450.         57451.         57454.         57464.         57484.         57481.         57482.	57481. 57484. 57472. 57457. 57487. 57487. 57472. 57482. 57470.
100 S 57473. 57488. 57432. 57401. 57527. 57592. 57592. 57552. 57508.		57482. 57482. 57470. 57484.	57487. 57483. 57483. 57483. 57483. 57483. 57485. 57483.		57462. 57463. 57457. 57457. 57471. 57472. 57487. 57487. 57471. 57476.	57471. 57470.
200 S 57481. 57480. 57481. 57481. 57482. 57475.			57484.		57476. 57483. 57477.	
300 5						
L 2200 W	L 2100 W	L 2000 W	L 1900 W	L 1800 W	L 1700 W	L 1600 W









