LOG I	NO: May 21/91	RD.
FILE	NO:	
	LOG NO: 9/1105	RD.
	ACTION: Date report	returned
	from amendmen	75
		-

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT ARC RESOURCE GROUP LTD. LAVA PROJECT

> LIARD MINING DIVISION NTS 104 B/10 NW BRITISH COLUMBIA

Latitude: 56⁰44'N Longitude: 130⁰39'W

GEOLOGICAL BRANCH ASSESSMENT REPORT

319

Brett R. LaPeare, B.Sc.

November 30, 1990

SUMMARY

A limited reconnaissance mapping, prospecting and sampling program was carried out on the Lava 1 and 2 mineral claims on October 2, 1990. The property, under option to Arc Resource Group Ltd., is situated within the Liard Mining Division in northwestern British Columbia. The claims lie immediately south of the confluence of Forrest Kerr Creek with the Iskut River, 100 km northwest of Stewart, B.C.

The Lava claims are underlain by Upper Triassic Stuhini Group basaltic flows in the northwest half and Recent flows in the southeast half. The latter mask the contact between the Stuhini Group rocks and Upper Triassic to Middle Jurassic Hazelton Group formations mapped to the south. Much of the exploration activity in the area has focused on the Hazelton rocks in view of discoveries such as the nearby Snip, Johnny Mountain and Eskay Creek deposits.

A total of 31 soil and 9 rock grab samples were collected. Four soil samples produced gold values above the 5 ppb detection limit, ranging from 10 to 90 ppb, all of which were collected from areas underlain by the Recent volcanics. The ICP results for soils show no significant values. The rock samples failed to produce any detectable gold values or significant values in the ICP data. These were collected from Stuhini Group rocks, as well as from outcrops thought to be Recent lavas. Four old drillhole collars were noted, located in the Recent flows on the east side of the river. These holes were drilled by B.C. Hydro in the 1980's to determine structural features as part of a damsite study and are unlikely to provide useful exploration data.

This cursory examination of the Lava claims has not revealed any exploration targets however much of the area northwest of the Iskut River has not been prospected. The geology traversed to date has provided little indication of economic potential but if any further work is contemplated it should be to complete prospecting coverage of the area northwest of the Iskut River.

TABLE OF CONTENTS

1.18.0

Summary	
Introduction	1
Property Description	1
Location and Access	1
Claim Status	1
Physiography and Vegetation	2
Regional Geology	2
Property Geology and Geochemistry	3
Conclusions and Recommendations	5
Statement of Expenditures	6
Statement of Qualifications	
B. LaPeare, B.Sc.	

Bibliography

,

LIST OF FIGURES

1	Location Map	Following	Page	1
2	Claim Map	Following	Page	2
3	Property Geology	Following	Page	3
4	Rock and Soil Sample Location Map	Following	Page	4
	1 2 3 4	 Location Map Claim Map Property Geology Rock and Soil Sample Location Map 	1Location MapFollowing2Claim MapFollowing3Property GeologyFollowing4Rock and Soil Sample Location MapFollowing	1Location MapFollowing Page2Claim MapFollowing Page3Property GeologyFollowing Page4Rock and Soil Sample Location MapFollowing Page

LIST OF TABLES

Table IClaim InformationPage 2

LIST OF APPENDICES

Appendix I Rock Sample Descriptions

Appendix II Assay Certificates

Appendix III Analytical Procedures

INTRODUCTION

This report, prepared by OreQuest Consultants Ltd. on behalf of Arc Resource Group Ltd., presents the results of reconnaissance mapping, prospecting and sampling carried out on October 2, 1990 on the Lava 1 and 2 claims.

PROPERTY DESCRIPTION

Location and Access

The Lava property is located in northwestern B.C. (Figure 1), 100 km northwest of Stewart. The NTS map reference is 104 B/10 and the centre of the property is at latitude $56^{\circ}44'N$, longitude $130^{\circ}39'W$. It is less than 20 km northwest of the gold-silver-base metal discovery at Eskay Creek. The Iskut River runs through the property with the north boundary of the claims 450 metres south of the confluence of Forest Kerr Creek and the Iskut River.

Access to the property is by helicopter from either the Bronson Creek airstrip 27 km to the west of from Bell II on the Stewart-Cassiar Highway 51 km to the east. The work described herein was carried out by helicopter from the camp at Eskay Creek.

Claim Status

The Lava property consists of 2 contiguous claims comprising 24 units, owned by John Robins, located within the Liard Mining Division (Figure 2). Claim information is summarized in the following table:

TABLE #1

<u>Claim</u>	Name	Record No.	<u>No of Units</u>	Record Date	Expiry Date
Lava	1	7330	18	May 22/90	May 22/91
Lava	2	7331	6	May 22/90	May 22/91

The work described in this report, when filed for assessment, would extend the expiry date to May 22, 1992.

Physiography and Vegetation

Elevations on the property range from 750 m (2500 ft) in the northwest corner of the property to less than 250 m (800 ft) at the Iskut River. The property is characterized by mature timber stand and evil's club undergrowth near the Iskut River which flows through a steeply walled gorge incised in flat lying Recent lava flows.

REGIONAL GEOLOGY

The Lava claims lie on the northern edge of the Stewart Complex as first described by Grove (1986). The Complex comprises the Upper Triassic Stuhini Group, Upper Triassic to Middle Jurassic Hazelton Group and Middle Jurassic Salmon River Formation, an assemblage of volcanic and sedimentary rocks intruded by plutonic rocks of varied compositions in both Jurassic and Tertiary times. The Hazelton Group is the principal host of significant mineral deposits in this region, most notably the Snip, Johnny Mountain and Eskay Creek deposits in the immediate area of the subject property.

Į

Regional mapping by both Grove (1986) and Logan et al (1990) fails to cover the claim area in any detail however both indicate extensive Recent lava flow cover in the southeast portion. Grove's map also indicates the presence of a Cenozoic monzonite plug in the southwest part of the Lava 1 claim however this has not been confirmed. According to Logan et al, the northwest portion of the property is mapped as Stuhini Group volcanics and sediments (undivided) and features a north-south fault paralleling the western claim boundary.

PROPERTY GEOLOGY AND GEOCHEMISTRY

Two traverses were completed over the Lava claims, one on each side of the Iskut River. On the northwest side only minimal outcrop exposure was encountered, much of which was noted to be massive basaltic flows with few distinguishing features. The fault shown on Logan's regional map was identified on the ground as a linear topographic depression. No evidence of structural deformation or associated mineralization and alteration was encountered. The traverse on the west side of the Iskut River followed this fault trace south to the river then proceeded eastward along the base of the slope.

Toward the east a vesicular basalt with plagioclase and carbonate-filled vesicles was observed and a marked increase in quartz-carbonate stringers locally containing up to 2% disseminated pyrite was observed near the Iskut River. The stringers constitute

3

up to 20% of the outcrop in some instances. This unit may in fact be the margin of the large Recent lava flow underlying the area east of the river. A second traverse on the east side of the river encountered no outcrops, however soil samples were collected.

A total of 31 soil and 9 rock grab samples were collected along the traverse lines (Figure 4) and sent to Vangeochem Labs in Vancouver for analysis for gold by atomic absorption plus 25 elements by inductively coupled plasma (ICP) spectrophotometry. Soils were collected from the B horizon at a depth of 10 to 30 cm and stored in kraft paper bags. Rocks were collected in plastic bags.

None of the rocks, all collected on the northwest side of the property, returned detectable gold values or significant values for elements in the ICP package. Four soil samples produced detectable gold values, ranging from 10 to 90 ppb, however no elevated values of any kind are evident in the ICP data for all soil samples, collected from an area underlain by Recent volcanic flows.

Four old drillhole collars were found on the east side of the river. These were drilled by B.C. Hydro in the 1980's for structural information as part of a damsite study and it is unlikely they would provide useful exploration data.

Sample No.	Туре	Au (ppb)	Ag (ppm)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Sample No.	Туре	Au (ppb)	Ag (ppm)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Sample No.	Туре	Au (ppb)	Ag (ppm)	Cu (ppm
							FK001	soil	nd	0.5	55	111	<2	FK016	soil	nd	2.3	30
33921	rock grab	nđ	1.0	177	93	2	FK002	soil	nd	3.1	52	132	~2	FK017	soil	nd	3.3	27
33922	rock grab	nd	0.5	196	58	2	FK003	soil	nd	1.5	57	116	<2	FK018	soil	90	1.6	70
33923	rock grab	nd	0.3	222	99	2	FK004	soil	nd	1.1	58	166	<2	FK019	soil	70	2.8	44
33924	rock grab	nd	0.6	20	96	2	FK005	soil	nd	1.5	39	153	<2	FK020	soil	10	2.5	43
33925	rock grab	nd	0.5	168	61	2	FK006	soil	nd	1.8	34	136	<2	FK021	soil	30	1.1	43
33926	rock grab	nd	0.5		79	2	FK007	soil	nd	1.4	49	174	<2	FK022	soil	nd	1.2	43
33927	rock grab	nd	0.2	129	76	3	FK008	soil	nd	1.7	48	166	<2	FK023	soil	nd	0.1	62
33928	mck grab	nd	0.2	124	59	-2	FK009	soil	nd	1.4	60	204	<2	FK024	soil	nd	0.5	57
33929	rock grab	nd	0.2	57	25	~	FK010	soil	nd	0.8	59	181	~2	FK025	soil	nd	0.8	39
	reek gius		•	•.	20		FK011	lioa	nd	1.2	35	135	<2	FK026	soil	nd	0.5	51
00004		moto loo	ation on	d numbe			FK012	soil	nd	1.1	40	146	<2	FK027	soil	nd	1.1	20
33921	A NUCK Sa	inple loc		1 Humbe	1		FK013	soil	nd	0.7	65	183	<2	FK028	soil	nd	3.0	24
001	Soil sam	ple location	tion and	number			FK014	soil	nd	2.1	33	119	<2	FK029	soil	nd	1.4	30
	20 Results	in ppb A	u				FK015	soil	nd	3.2	35	164	<2	FK030	soil	nd	1.7	25
	(values<	5 ppb no	ot shown)										FK031	soil	nd	1.8	21

CONCLUSIONS AND RECOMMENDATIONS

The Lava claims are underlain by two principal rock units massive basalt flows of the Upper Triassic Stuhini Group on the west side of the Iskut River and Recent intermediate to mafic flows on the east side. The Recent flows mask the contact between Stuhini rocks and units of the Upper Triassic to Middle Jurassic Hazelton Group which have been the focus of most of the recent exploration activity in the region.

Both geological and geochemical results from the cursory examination conducted give little indication of economic potential. The minimal outcrop exposure of the Stuhini rocks revealed only nondescript massive basalts with no alteration, mineralization or geochemical anomalies. Samples of vesicular lavas containing pyritebearing quartz carbonate veining, possibly outcrops on the margin of Recent flows, also failed to produce anomalous results. Gold values in 4 of 31 soil samples ranged from 10 to 90 ppb however no other significant values for other elements were recorded in any of the samples. They were all collected from an area underlain by Recent volcanics. The significance, if any, of the gold values recorded is impossible to determine given the limited and somewhat random coverage of the sampling.

If further work is contemplated it would be to complete prospecting coverage of the area northwest of the Iskut River, however the potential for the property in general is considered quite low.

6

-

÷.

t L

.

i

STATEMENT OF EXPENDITURES

Mobilization/Demobilization	\$	744.71
Wages: B. LaPeare (geologist) 4.5 days @ \$225/da C. Churchill (field assistant) 3 days @ \$190/da	У У	637.50 190.00
Camp Costs	:	62.93
Communications		4.31
Helicopter		966.26
Analyses		670.40
Report Costs		475.00
Administration Costs (15% on disbursements) Total Expenditures	\$4	<u>301.29</u> ,052.40

CERTIFICATE of QUALIFICATIONS

I, Brett R. LaPeare, of 640 Crystal Court, North Vancouver, British Columbia hereby certify:

- I am a graduate of the Lakehead University (1990) and hold a BSc. degree in Geology.
- 2. I am presently employed as a geologist with OreQuest Consultants Ltd. of 306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed in my profession by various companies and have worked on projects in Canada and the United States.
- 4. The information contained in this report was obtained by direct onsite supervision of the work done on the Lava property by OreQuest Consultants Ltd. in 1990 and a review of all data listed in the Bibliography.
- 5. Neither OreQuest Consultants Ltd. nor myself have or expect to receive direct or indirect interest in the property or in ARC Resource Group Ltd.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Brett Ja Pene

Brett R. LaPeare, B.Sc.

DATED at Vancouver, British Columbia, this 30th day of November, 1990.

BIBLIOGRAPHY

ALLDRICK, D.J., BRITTON, J.M., WEBSTER, I.C.L., RUSSELL, C.W.P. 1989: Geology and Mineral Deposits of the Unuk Area, BCMEMPR Open File Map 1989-10.

ALLDRICK, D.J. 1989: Volcanic Centres in the Stewart Complex in Geological Fieldwork, 1988, Paper 1989-1, British Columbia Ministry of Energy, Mines and Petroleum Resources.

GROVE, E.W. 1971: Geology and Mineral Deposits of the Stewart Area, B.C., British Columbia Department of Mines and Petroleum Resources, Bulletin No. 58.

1986: Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area, B.C., Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.

LOGAN, J.M., KOYANAGI, V.M., DROBE, J.R. 1990: Geology, Geochemistry and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern British Columbia, BCMEMPR Open File 1990-2.

APPENDIX I

:

-

-

-

į

•

-

~

•---

.

....

~

- ; -

ROCK SAMPLE DESCRIPTIONS

LAVA PROJECT

-

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization
33921			Basalt	Weakly chloritized, one quartz stringer	
33922			Basalt	Massive, weakly carbonitized	
33923			Basalt	Weakly chloritized	
33924			Basalt	Massive, thin quartz stringer	
33925			Basalt	Massive, thin rusty quartz stringe	rs
33926			Basalt	Amygdaloidal, plagioclase and carbonate	
33927			Basalt	Oxidized, silicified, numerous quartz-carbonate stringers	≤ 2% diss py
33928			Basalt	20% stringers of quartz+carbonate	
33929			Andesite	Porphyritic flow, K-feldspar phenocrysts	

APPENDIX II

and the second second

÷

.

ĺ,

1

ASSAY CERTIFICATES

...

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: OREQUEST CONSULTANTS LTD. ADDRESS: 306 - 595 Howe St. : Vancouver, BC : V6C 2T5 DATE: OCT 11 1990

REPORT#: 900656 GA JOB#: 900656

PROJECT#: LAVA INVOICE#: 900656 NA SAMPLES ARRIVED: OCT 09 1990 TOTAL SAMPLES: 9 REPORT COMPLETED: OCT 11 1990 SAMPLE TYPE: 9 ROCK ANALYSED FOR: AU (FA/AAS) ICP REJECTS: SAVED

SAMPLES FROM: B.R. LaPEARE - OREQUEST COPY SENT TO: OREQUEST CONSULTANTS LTD.

PREPARED FOR: MR. LARRY LeBEL

ANALYSED BY: VGC Staff

SIGNED:

Agula

GENERAL REMARK: None

C VANGEOCHEM LAB LIMITED

.

5

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900656 GA	JOB NUMBER: 900656	OREQUEST COESULTANTS LTD.	PAGE 1 OF 1
SAMPLE #	Au		
	ppb		
33921	nd		
33922	nd		
33923	nd		
33924	nd		
33925	nd		
33926	nd		
33927	nđ		
33928	nd		
33929	nd		

DETECTION LIMIT nd = none detected -- :

5 -- = not analysed

is = insufficient sample

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ŗ

1

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Mn, Na, P, Sn, Sr and W.

ANALYST: Mulh

:

REPORT #: 900656 PA	OREQUEST C	ONSULTAN	TS LTD.			PROJE	CT: LAVA			DAT	E IN: OC	T 09 199	O DA	TE OUT: I	NOV 07 1	990	ATTENTIO	N: MR. L	ARRY LeBE	L		PAG	E 1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ħg	ที่ก	No	Na	Ni	P	РЬ	Sb	Sn	Sr	ប	¥	Zn
	pp a	7.	ppe	op e	ppa	I	pps	ppa	pps	ppm	Ĭ.	z	Z	ppe	ppm	2	ppa	1	ppa	00 4	ppa	ppe	pp≞	ppe	ppa
33921	1.0	3.30	<3	668	11	1.25	1.6	56	105	177	5.20	0.20	1.91	891	14	0.09	73	<0.01	<2	<2	<2	71	<5	<3	93
33922	0.5	2.42	(3	>1000	<3	2.03	0.7	48	92	196	3.69	0.19	1.16	725	10	0.08	46	0.02	<2	<2	<2	98	<5	<3	56
33923	0.3	4.24	<3	44	<3	1.69	1.1	71	80	222	6.65	0.27	2.10	1212	12	0.12	55	<0.01	<2	<2	<2	52	<5	<3	99
33924	0.6	4,91	<3	53	(3	1.49	1.2	39	146	20	4.81	0.21	2.84	932	15	0.21	63	<0.01	<2	<2	<2	36	<5	(3	96
33925	0.5	2.59	<3	27	<3	1.51	0.3	53	128	168	4.01	0.16	1.29	637	9	0.09	53	0.01	<2	<2	<2	52	<5	<3	61
33926	0.5	2.37	<3	74	4	4.74	0.9	21	20	9	4.21	0.24	2.06	964	12	0.07	1	0.06	<2	<2	<2	79	<5	(3	79
33927	0.2	0.96	(3	63	<3	3.89	0.2	17	13	129	3.68	0.22	1.21	1164	7	0.08	<1	0.17	3	5	<2	285	<5	<3	76
33928	0.2	1.54	· (3	132	(3	8.52	0.2	13	15	124	4.21	0.13	0.99	1847	8	0.08	<1	0.15	<2	<2	<2	379	<5	<3	59
33929	0.2	1.17	<3	413	<3	4.71	<0.1	6	8	57	3.95	0.24	0.30	740	5	0.07	<1	0.18	<2	3	<2	161	<5	<3	25
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater T	han Maxi	AUA	is - Insu	ufficien	t Sample	ns	- No Samp	le	ANOMALOU	S RESULT	S - Furt	her Anal	yses By <i>i</i>	Alternat	e Method	s Sugges	ted.							

10 - 10 - 10 - 10 -

CONTRACTOR VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 25 1-5656 FAX (604) 254-57 17 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

 CLIENT: OREQUEST CONSULTANTS LTD.
 DATE: OCT 11 1990

 ADDRESS: 306 - 595 Howe St.
 .

 : Vancouver, BC
 REPORT#: 900657 GA

 : V6C 2T5
 JOB#: 900657

PROJECT#: LAVA SAMPLES ARRIVED: OCT 09 1990 REPORT COMPLETED: OCT 11 1990 ANALYSED FOR: AU (FA/AAS) ICP INVOICE#: 900657 NA TOTAL SAMPLES: 31 SAMPLE TYPE: 31 SOIL REJECTS: DISCARDED

SAMPLES FROM: B.R. LaPEARE - OREQUEST COPY SENT TO: OREQUEST CONSULTANTS LTD.

PREPARED FOR: MR. LARRY LEBEL

ANALYSED BY: VGC staff

SIGNED:

Kanth

GENERAL REMARK: None

••

•

MAIN OFFICE MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

SAMPLE J Au ppb FK 001 nd FK 002 nd FK 003 nd FK 004 nd FK 005 nd FK 006 nd FK 007 nd FK 008 nd FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	OF 1
PF 001 ad FK 002 ad FK 003 ad FK 004 ad FK 005 ad FK 006 nd FK 007 ad FK 008 nd FK 009 ad FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 015 nd FK 015 nd FK 015 nd FK 019 70 FK 020 10 FK 021 30 FK 021 30 FK 023 nd FK 025 nd FK 025 nd	
FK 001 nd FK 003 nd FK 005 nd FK 005 nd FK 005 nd FK 007 nd FK 009 nd FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 pd FK 017 nd FK 018 po FK 019 pd FK 020 pd FK 021 pd FK 022 nd FK 023 nd FK 025 nd	
FK 002 nd FK 003 nd FK 006 nd FK 005 nd FK 006 nd FK 007 nd FK 008 nd FK 009 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 10 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd	
FK 003 nd FK 005 nd FK 005 nd FK 006 nd FK 007 nd FK 008 nd FK 009 nd FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd	
PK 004 nd PK 005 nd PK 006 nd PK 007 nd PK 008 nd PK 010 nd PK 011 nd PK 012 nd PK 013 nd PK 015 nd PK 015 nd PK 019 70 PK 020 10 PK 021 30 PK 022 nd PK 023 nd PK 025 nd PK 026 nd	
FK 005 nd FK 006 nd FK 007 nd FK 008 nd FK 009 nd FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd	
FK 006 nd FK 007 nd FK 008 nd FK 009 nd FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd FK 026 nd	
PK 007 nd PK 008 nd PK 009 nd PK 010 nd PK 011 nd PK 012 nd PK 013 nd PK 014 nd PK 015 nd PK 016 nd PK 017 nd PK 018 90 PK 019 70 PK 020 10 PK 021 30 PK 022 nd PK 023 nd PK 025 nd PK 026 nd	
FK 008 nd FK 009 nd FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd FK 026 nd	
PK 009 nd PK 010 nd PK 011 nd PK 012 nd PK 013 nd PK 014 nd PK 015 nd PK 016 nd PK 017 nd PK 018 90 PK 019 70 PK 020 10 PK 021 30 PK 023 nd PK 024 nd PK 025 nd	
FK 010 nd FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd	
FK 011 nd FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd FK 025 nd	
FK 012 nd FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 013 nd FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 014 nd FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 015 nd FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 025 nd FK 025 nd	
FK 016 nd FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 017 nd FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 018 90 FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd FK 026 nd	
FK 019 70 FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 020 10 FK 021 30 FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 021 30 PK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 022 nd FK 023 nd FK 024 nd FK 025 nd	
FK 023 nd FK 024 nd FK 025 nd FK 026 nd	
FK 024 nd FK 025 nd FK 026 nd	
FK 025 nd FK 026 nd	
FK 026 nd	
FK 027 nd	
PK 028 nd	
FK 029 nd	
FK 030 nd	
FK 031 nd	

DETECTION LIMIT nd = none detected

5 -- = not analysed

1-1 e.... ------1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

i.

١

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with S ml of 3:1:2 HCl to HNO, to H_O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT \$: 900657 PA	OREQUEST C	ONSULTAN	TS LTD.			PROJE	CT: LAVA			DAT	E IN: OC	T 09 1990) DA	TE OUT:	NOV 07 1	390	ATTENTIO	N: MR. L	ARRY LeBE	L		PAG	E 1 OF	1	
Sample Name	Ag	Al Y	As noe	Ba	Bi	Ca Y	Cd apa	Co	Cr DDB	Cu DOM	fe Z	K Z	Kg Z	Hn DO B	Mo DO D	Na Z	Ni OD n	P X	Pb DDe	Sb 00	Sn DOS	Sr ope	U Oda	W DD a	Zn
FK 001	0.5	2.46	3	307	(3	0.32	1.5	19	54	55	3.81	0.09	0.96	836	10	0.05	60	0.03	(2	(2	(2	26	、 、 5	<3	111
FK 002	3 1	3.32	(3	191	4	0.23	2.5	20	52	52	4.10	0.12	0.74	1139	14	0.07	35	0.16	(2	(2	(2	20	<5	(3	132
FK 002	1.5	2.59	(3	346	ĥ	0.28	4.0	15	51	57	3.51	0.09	0.55	1153	10	0.05	30	0.26	(7	(2	(2	29	(5	(3	116
EK 004	1 1	2 19	(3	217	(3	0.25	27	22	65	59	4 59	0.13	1 05	1083	14	0.06	65	0 11	(2	0	(2	23	(5	(3	166
FK 005	1.5	3.45	<3	208	<3	0.25	2.9	20	62	39	4.38	0.12	0.87	888	13	0.06	52	0.15	<2	<2	<2	23	<5	(3	153
FK 006	1.8	3.18	<3	252	9	0.30	3.7	18	57	34	3.98	0.12	0.77	1111	14	0.07	39	0.21	<2	<2	<2	29	<5	<3	136
FK 007	1.4	3.69	<3	217	<3	0.25	2.5	23	70	49	4.88	0.14	1.06	1046	15	0.06	73	0.09	<2	<2	<2	24	<5	(3	174
FK 008	1.7	3.22	<3	211	5	0.25	2.7	22	66	48	4.61	0.13	1.01	1127	14	0.06	63	0.13	<2	<2	<2	22	<5	<3	166
FK 009	1.4	3.87	<3	228	<3	0.25	3.5	25	78	60	5.29	0.13	1.11	1001	15	0.06	68	0.12	<2	<2	<2	22	<5	<3	204
FK 010	0.8	3.35	<3	219	<3	0.26	1.8	26	75	59	5.22	0.12	1.21	1238	17	0.06	84	0.10	<2	<2	<2	23	<5	<3	181
FK 011	1.2	3.05	<3	196	<3	0.25	2.6	19	54	35	3.89	0.10	0.77	1061	11	0.06	39	0.22	<2	<2	<2	23	<5	(3	135
FK 012	1.1	3.12	<3	190	<3	0.24	3.1	18	58	40	4.04	0.11	0.85	879	14	0.05	47	0.21	<2	<2	<2	21	<5	(3	148
FK 013	0.7	3.54	<3	186	<3	0.21	2.3	32	77	65	5.29	0.13	1.24	1491	16	0.06	89	0.04	<2	<2	<2	19	<5	<3	183
FK 014	2.1	3.33	<3	263	<3	0.39	4.8	11	60	33	3.99	0.11	0.57	1335	13	0.06	22	0.43	<2	<2	<2	30	<5	<3	119
FK 015	3.2	3.50	<3	233	6	0.21	2.1	19	69	35	4.54	0.11	0.86	860	15	0.06	51	0.28	<2	<2	<2	18	<5	<3	164
FK 015	2.3	3.44	<3	163	<3	0.20	2.3	16	68	30	4.39	0.09	0.85	586	13	0.05	50	0.28	<2	<2	<2	19	<5	(3	139
FK 017	3.3	3.18	<3	280	<3	0.30	9.6	37	47	27	4.71	0.12	0.50	2260	14	0.10	20	0.48	<2	(2	(2	29	(5	<3	144
FK 018	1.6	3.03	<3	230	<3	0.33	2.3	30	77	70	5.36	0.13	1.23	1311	17	0.06	91	0.06	<2	(2	<2	29	<5	(3	189
FK 019	2.8	3.30	<3	198	<3	0.22	1.3	25	79	44	5.05	0.11	1.06	921	16	0.06	74	0.06	<2	<2	<2	20	<5	(3	184
FK 020	2.5	3.34	<3	180	<3	0.21	2.1	22	73	43	4.82	0.10	1.00	851	13	0.05	64	0.08	<2	<2	<2	19	(5	<3	17
FK 021	1.1	2.92	<3	226	5	0.25	1.7	21	67	43	4.44	0.10	0.95	826	15	0.06	60	0.03	<2	<2	<2	21	(5	<3	13
FK 022	1.2	2.84	(3	214	(3	0.22	2.5	19	60	43	4.08	0.09	0.90	718	12	0.05	58	0.02	(2	(2	(2	19	()	(3	13
FK 023	0.1	2.68	<3	243	<3	0.26	2.4	25	64	62	4.41	0.10	1.10	11/3	12	0.05	/6	0.02	(2	(2		22	()	(3	13.
FK 024	0.5	2.70	<3	225	<3	0.25	2.3	22	65	57	4.40	0.11	1.07	1023	15	0.06	12	0.05	(2	· (2	(2	21	(2	(3	129
FK 025	0.8	3.71	<3	200	<3	0.21	2.4	24	76	39	5.17	0.13	1.03	829	15	0.06	65	0.03	<2	(2	(2	19	(5	(3	173
FK 026	0.5	3.50	<3	201	<3	0.22	1.2	33	71	51	5.23	0.12	1.11	1162	16	0.07	79	<0.01	<2	(2	<2	19	(5	<3	201
FK 027	1.1	3.22	<3	175	7	0.20	3.0	15	55	20	4.14	0.07	0.64	501	13	0.05	34	0.16	(2	(2	(2	1/	()	(3	14
FK 028	3.0	3.44	(3	152	(3	0.23	1.3	15	61	24	5.20	0.08	0.60	419	13	0.06	28	. 0.29	(2	(2	(2	13	()	(3	2/
FK 029	1.4	3.50	<3	131	<3	0.17	1.7	12	64	30	4.64	0.10	0.65	392	17	0.06	31	0.10	(2	(2	(2	15	()	(3	103
FK 030	1.7	3.82	<3	211	<3	0.29	1.7	24	54	25	4.99	0.13	0.52	949	15	0.08	. 26	0.33	{2	. (2	<2	24	<5	<3	93
FK 031	1.8	2.52	<3	155	<3	0.15	1.5	11	46	21	3.08	0.05	0.36	216	14	0.04	19	0.14	<2	<2	<2	14	<5	<3	62
Minigum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	2000
Maxieue Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	2000
C - Less Than Minimum	> − Greater T	han Maxi	8U 8	is - Insi	ufficient	t Sample	ns –	- No Samp	18	ANUNALUU	S KESULT	s - Furti	ner Anal	lyses By	Alternat	e nethod	is sugges	120.							

> - Greater Than Maximum C - Less Than Minimum

ANALYST: Mylh

APPENDIX III

÷

ANALYTICAL PROCEDURES

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 25 1-5656 FAX (604) 254-57 17

.1

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 19, 1990

TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5

- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. <u>Method of Extraction</u>

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The gold is extracted by cupellation and parted with diluted nitric acid.
- (d) The gold beads are retained for subsequent measurement.

3. Method of Detection

- (a) The gold beads are dissolved by boiling with concentrated aqua regia solution in hot water bath.
- (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
- 4. Analysts

-:]

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

Km/L

Raymond Chan VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 25 1-5656 FAX (604) 254-57 17

÷

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 19, 1990

- TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.

1. <u>Method of Sample Preparation</u>

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" X 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2 <u>Method of Digestion</u>

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCl:HNO3:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Analyses

The ICP analyses determined elements were by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disketts.

4 Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Kurch

Raymond Chan VANGEOCHEM LAB LIMITED