LOG NO: MA ACTION: FTLE NO:		RD.
GEOLOGICAL REPORT		
ON THE		
ROB 15 AND 16 MINERAL CLAIMS		
FOR		
SUB-KECORDER TYMAR RESOURCES INC./		
CONSOLIDATED GOLDWEST RESOURCES LTD.		
M.R. #\$		
VANCOUNER B.C.		
Located in the Iskut River Area		
Liard Mining Division		
NTS 1048/11E		
131°10' Mast Langitude		
- Prepared by - A.T. MONTGOMERY, Geologist S.L. TODORUK, Geologist C.K. IKONA, P.Eng.	GEOLOGICAL BRANCH ASSESSMENT REPORT	
March, 1991	-	

GEOLOGICAL REPORT on the ROB 15 and 16 MINERAL CLAIMS

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	LIST OF CLAIMS	1
3.0	LOCATION, ACCESS AND PHYSIOGRAPHY	2
4.0	AREA HISTORY	3
5.0	REGIONAL GEOLOGY	7
6.0	PROPERTY AREA GEOLOGY	11
7.0	PROPERTY GEOLOGY	12
8.0	GEOCHEMISTRY	14
9.0	GEOPHYSICS	16
10.0	MINERALIZATION	16
11.0	DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS	17

LIST OF FIGURES

		Following <u>Page</u>
Figure 1	Property Location	1
Figure 2	Claim Map	1
Figure 3	Regional Mineral Occurrence Map	3
Figure 4	Simplified Regional Geology	7
Figure 5	Property Area Geology	11
Figure 6	Generalized Property Geology	pocket
Figure 7	Detailed Property Geology - South Grid	12
Figure 8	Detailed Property Geology - West Grid	pocket
Figure 9	Detailed Property Geology - East Grid	pocket
Figure 10	Geochemistry West Grid - Au, Ag	pocket
Figure 11	Geochemistry West Grid - Cu, Pb, Zn	pocket
Figure 12	Geochemistry South Grid - Au, Ag	15
Figure 13	Geochemistry South Grid - Cu, Pb, Zn	15

GEOLOGICAL REPORT on the ROB 15 and 16 MINERAL CLAIMS

TABLE OF CONTENTS

		Following Page
Figure 14	Overburden Drill Geochemistry West Grid - Au, Ag	pocket
Figure 15	Overburden Drill Geochemistry West Grid - Cu, Pb, Zn	pocket
Figure 16	Geophysical Survey Interpretation - West Grid	pocket
Figure 17	Total Magnetic Field - West Grid	pocket
Figure 18	Total Magnetic Field Upward Continued - West Grid	pocket
Figure 19	VLF-EM Seattle Dip Angle - West Grid	pocket
Figure 20	VLF-EM Seattle Quadrature - West Grid	pocket
Figure 21	VLF-EM Seattle Dip Angle Fraser Filtered - West Grid	pocket
Figure 22	VLF-EM Annapolis Dip Angle - West Grid	pocket
Figure 23	VLF-EM Annapolis Quadrature - West Grid	pocket
Figure 24	VLF-EM Annapolis Dip Angle Fraser Filtered - West Grid	pocket
Figure 25	Geophysical Survey Interpretation - South Grid	pocket
Figure 26	Total Magnetic Field - South Grid	pocket
Figure 27	VLF-EM Seattle Dip Angle - South Grid	pocket
Figure 28	VLF-EM Seattle Quadrature - South Grid	pocket
Figure 29	VLF-EM Seattle Dip Angle Fraser Filtered - South Grid	pocket
Figure 30	VLF-EM Annapolis Dip Angle - South Grid	pocket
Figure 31	VLF-EM Annapolis Quadrature - South Grid	pocket
Figure 32	VLF-EM Annapolis Dip Angle Fraser Filtered - South Grid	pocket
Figure 33	Rock Sample Locations/Results	pocket
APPENDICES		

Appendix I	Bibliography
Appendix II	Cost Statement
Appendix III	Rock Sample Description Forms
Appendix IV	Analytical Procedures
Appendix V	Assay Certificates
Appendix VI	Geophysical Data, Procedures and Interpretation
Appendix VII	Statements of Qualifications
Appendix VIII	Engineer's Certificate

1.0 INTRODUCTION

At the request of Tymar Resources Inc. and Consolidated Goldwest Resources Ltd. Pamicon Developments Ltd. has completed an exploration program on the company's Rob 15 and 16 mineral claims (26 units), located in the Iskut River area of northwestern British Columbia. Work was carried out between July and September, 1991.

Renewed interest in the immediate area has recently been brought on by the discovery in 1990 and ongoing development of Thios Resources Ltd./Eurus Resource Corp.'s polymetallic Black Dog volcanogenic massive sulphide prospect, located four kilometres to the west of the subject claims. To date, the only other known VMS occurrence in the camp is the world-class Eskay Creek deposit 50 kilometres to the east.

Property mapping completed in 1990 on the Rob 15 and 16 claims outlined volcanosedimentary stratigraphy belonging to the Triassic Stuhini Group, the probable host to the Black Dog prospect and Prime/Cominco's Snip deposit.

Mapping and prospecting lead to the discovery of narrow auriferous quartz veining near the east central part of the Rob 16 claim, numerous quartz stringers hosting molybdenum mineralization along an intrusive contact near the northern claim boundary of the Rob 16 claim, and elevated precious and base metals in metasediments on the northeast Rob 16 claim.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the Rob 15 and Rob 16 claims are held by Mr. I. Hagemoen although currently there is an option to purchase agreement by Teryl Resources Corporation. In turn, Tymar Resources Inc. and Consolidated Goldwest Resources Ltd. have entered into a joint venture agreement with Teryl Resources Corporation.

Claim <u>Name</u>	Record <u>Number</u>	No. of Units	Record Date	Expiry Date
Rob 15	3892	16	February 19, 1987	February 19, 1996
Rob 16	3864	10	December 22, 1986	December 22, 1994

3.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The Rob 15 and Rob 16 mineral claims are situated 75 kilometres northeast of Wrangell, Alaska and 126 kilometres north of Stewart, British Columbia (Figure 1).

The coordinates of the claims are approximately 56°44' north latitude and 131°10' west longitude within the Liard Mining Division.

Access to the property is via helicopter from the Bronson Creek gravel airstrip, Bob Quinn Lake or the Forrest Kerr airstrip located 15 kilometres to the northwest at the headwaters of the Forrest Kerr River. Daily scheduled flights to the strip from Smithers, Terrace and Wrangell, Alaska have been available during the field season using a variety of fixed wing aircraft.

The Province of British Columbia has recently completed a study on possible road access to the Iskut River, Eskay Creek and Sulphurets areas. Construction of a road from the Stewart-Cassiar Highway from Bob Quinn Lake down the Iskut valley to Bronson Creek is anticipated in the near future.

Geographically the upper quarter of Rob 15 and all of Rob 16 is typically rugged, steep and heavily forested ground. The lower three quarters of Rob 15 cover portions of the Iskut River valley bottom and consist of former river gravels and areas of swamp (Figure 2). Elevations range from approximately 66 metres to 762 metres.

4.0 AREA HISTORY

Figure 3 of this report presents a regional scale map of northwestern B.C. from the town of Stewart in the south to near Telegraph Creek in the north, a distance of 225 kilometres. Within this area, a semi-arcuate band of Hazelton Group equivalent volcanic and sedimentary rocks (Unuk River Formation, Betty Creek Formation, Salmon River Formation) with their metamorphic equivalents trend northwest and contain most of the known mineral occurrences. This group is bounded by the Coast Range intrusive complex to the west and by the much younger sediments of the Bowser Basin to the east.

This area of approximately 10,000 square kilometres has historically been referred to as the Stikine Arch. Mining activity within it goes back to the turn of the century. Due to the large size of the region it has been referred to in more specific areas which range from the Stewart area to Sulphurets, Iskut and Galore Creek areas. Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area can be considered as one large mineralized province with attendant subareas.

The history of the area can be divided into two time periods: circa 1900 to the mid-1970s and the more recent activities of the late 1970s, 1980s and early 1990s.

1900 - 1975

The original discovery of mineralization in the area can be attributed to miners either en route to or returning from the Klondike gold fields at the turn of the century. Rivers flowing through the Alaska Panhandle served as access corridors and mineralization was noted along the Iskut and Unuk Rivers and at the head of the Portland Canal. Highlights of this period were:

* discovery of copper, gold, silver mineralization at Bronson Creek in the Iskut

- * location of similar mineralization along the Unuk and at Sulphurets Creek
- * discovery of the Silbak-Premier gold-silver mine near Stewart plus a number of other rich silver occurrences along the Portland Canal
- * the location by Tom MacKay of the original mineralization at Eskay Creek near the headwater of the Unuk River

Development and production at this time was largely limited to the area around Stewart where a number of mines produced high grade silver. The most significant producer was the Silbak Premier some 12 km north of Stewart which from 1920 until 1936 produced some 2,550,000 tons grading 16.8 g/tonne gold and 409.5 g/tonne silver.

After World War II the area was explored for base metals, notably copper. This era led to the discovery of the Granduc, Galore Creek and Schaft Creek copper deposits and the E & L copper-nickel deposit. Published reserves of these are listed below and shown on Figure 3.

	<u>Tons</u>	<u>Cu</u> (%)	$\frac{Au}{(g/t)}$	<u>Ag</u> (g/t)	<u>Mo</u> (%)	<u>Ni</u> (%)
Granduc	10,890,000	1.79				
Galore Creek	125,000,000	1.06	0.397	7.94		
Schaft Creek	910,000,000	0.30	0.113	0.992	0.02	
E&L	3,200,000	0.60				0.80

Of these Granduc was taken to production by Newmont Mining but a combination of low copper prices and high operating cost resulted in suspension of activity.

1975 - Present

The more recent activity in the area dates to the rise of precious metal prices in the 1970s. Significant early events at this time were:

- * acquisition by Skyline Explorations of their property on Mt. Johnny near Bronson Creek in the Iskut in 1980
- * continued work by Esso Minerals on Granduc Mining's properties on Sulphurets Creek in the Unuk River area
- * re-organization of the Silbak-Premier property and participation by Westmin Resources Ltd.

Work on these properties led to the following reserves being published for the properties listed below as well as stimulating exploration activity in the area. This activity led to the definition drilling of the Snip deposit by Cominco/Prime, the reserves of which are also shown.

Company	<u>Deposit</u>	<u>Area</u>	<u>Short Tons</u>	(oz/t)	<u>Ag</u> (oz/t)	<u>Ref</u> .
Cominco/Prime	Snip	Iskut	1,032,000	0.875		Note 1
Newhawk/Lacana	West Zone Sulphurets Lake Zone	Sulphurets Sulphurets	550,400 20,000,000	0.420 0.08	18.00	Note 2 Note 3
Catear Resources	Gold Wedge	Sulphurets	295,000	0.835	2.44	Note 4
Westmin Silbak	Silbak	Stewart	5,770,000	2.06 g/t	86.3 g/t	
Note 1: News Re Note 2: News Re Note 3: News Re Note 4: Pers. (elease, Vanco elease, North elease, Vanco Comm., Catear	ouver Stockwa nern Miner, H ouver Stockwa r Resources	atch, Novembo February 19, atch, August	er 7, 1988 1990 24, 1989		

Between August, 1988 and July, 1990 Skyline Gold Corp. produced 210,000 tons grading 0.45 oz/ton Au (pers. comm., D. Yeager) from its Reg property.

These successes have generated extensive exploration activity in the area which has led to the discovery of a large number of mineral occurrences which are in a preliminary stage of evaluation. The most notable of these to date is on Tom MacKay's old Eskay Creek showings. The 1988/89/90 work on this project of Calpine/Stikine Resources indicates a major gold-silver-base metal

mineral deposit of possible volcanogenic massive sulphide and epithermal affinity with a minimum strike length of 1800 metres. Some notable recent results on the project are:

DDH	#CA 89-93	91.8 feet	0.453	oz/ton	Au	and	16.9	oz/ton	Ag
DDH	#CA 89-109	682.2 feet	0.875	oz/ton	Au	and	0,97	oz/ton	Ag
	including	62.3 feet	7.765	oz/ton	Au	and	1.35	oz/ton	Ag

These intersections are considered to be close to the true width of the mineralization. A great many other excellent intersections have been published by the companies and exploration is continuing with drilling and underground bulk sampling tests. Reserves based on this drilling indicate probable reserves of 4,364,000 tons grading 0.77 oz/ton Au and 29.12 oz/ton Ag (news release, September 14, 1990).

During the 1990 season American Fiber Corp./Consolidated Silver Butte intersected encouraging results in drilling on their adjoining claims south of Eskay Creek. Hole 90-30 returned 46.9 feet of 0.421 oz/ton Au and 30.91 oz/ton Ag (pers. comm. J. Bond, American Fiber).

Drilling on Gulf International Minerals' Northwest Zone near Newmont Lake has been ongoing between 1987 and 1990. A few of their more significant intersections are provided below (annual reports and news releases).

1 + >
(ton)
.404
.250
.520
.140
.605
.810
.645
.320
.340
268
-

In September 1989 Bond International Gold Inc. announced initial drill results from their Red Mountain project. This project is located 20 kilometres east of Stewart. A 66 metre intersection on the Marc Zone reportedly graded 9.88 gm/tonne gold and 49.20 gm/tonne silver. On the Willoughby Gossan Zone a 20.5 metre intersection is reported as 24.98 gm/tonne gold and 184.2 gm/tonne silver.

A great many other companies active in the areas have released assays from preliminary trenching and/or drilling. Many of these show excellent values in gold, silver and base metals and it is anticipated that additional properties with mineral reserves of possible economic significance will emerge. Of recent interest in the area is the discovery in 1990 of a Kuroko-type polymetallic volcanogenic massive sulphide occurrence on Eurus Resource Corp./Thios Resources Inc.'s Rock & Roll project. Trench samples range up to 0.317 oz/ton Au, 100 oz/ton Ag, 8.15% Pb, 4.24% Zn and 0.65% Cu over 4.6 feet while in drilling a 31.7 foot intersection graded 0.80 oz/ton Au, 25.7 oz/ton Ag, 2.07% Pb, 5.35% Zn, 0.58% Cu.

The locations of a number of these occurrences are indicated in the accompanying figure. At this time these represent only a fraction of the reported results in this rapidly developing area.

5.0 REGIONAL GEOLOGY

The geology of the Iskut-Galore-Eskay-Sulphurets area has undergone considerable study in the past few years by industry, federal and provincial geologists (Figure 4). Much of this work stemmed from Grove's mapping of the Stewart Complex (Grove, 1969, 1970, 1973, 1982, 1987). Earliest geological mapping of the area was carried out by Kerr (1948) during the 1920s and 1930s although Operation Stikine undertaken by the Geological Survey of Canada in 1957 produced the first publications. R.G. Anderson of the Geological Survey of Canada is presently mapping the area covered within NTS 104B.

Grove defined a northwest trending assemblage of Upper Triassic and Jurassic volcanics and sedimentary rocks extending from Alice Arm in the south to the Iskut River in the north as the Stewart Complex. Paleozoic limestone and volcanics underlie the complex while Mesozoic to Tertiary aged intrusives cut the units. Tertiary felsic plutons forming the Coast Plutonic Complex bound the area to the west while clastic sediments of the Spatsizi and Bowser Lake Groups overlap on the east.

Age dating of mineralization within the various mining districts suggests a close cospatial and coeval relationship with late Triassic to early Jurassic volcanics and intrusives. This has directed exploration efforts toward these members.

A stratigraphic column of the area's lithologies is presented on the following page.

PALEOZOIC

Stikine Assemblage Volcanic and Sedimentary Rocks

Paleozoic Stikine assemblage rocks commonly occur as uplifted blocks associated with major intrusive bodies as exposed along the southwest flanks of Johnny Mountain and Zappa Mountain.

At the base of the Stikine assemblage stratigraphic column, at least four distinctive limestone members have been differentiated interlayered with mafic volcaniclastics, felsic crystal tuffs, pebble conglomerate and siliceous shale.

Mississippian rocks consist of thick-bedded limestone members interbedded with chert, pillowed basalt and epiclastic rocks.

Stratigraphy of the Iskut River Area (after descriptions by R.G. Anderson and J.M. Logan)

Stratigraphy		Lithology	Comments
BOWSER GROUP)		
M. Jurassic	conglomerate, s sandstone, shal	siltstone, le	Successor basin
SPATSIZI GRO	UP	to unconformable	
L. Jurassic	shale, tuff, li 	imestone Le	
HAZELTON GRO	UP		
E. Jurassic	coeval alkalic,	/calc-alkalic	contractional event? Island Arc rocks
STURINT CROU	——gradational	to unconformable	
L. Triassic	intrusions; mai the east, bimod	fic volcanic rocks in Hal in the west	extensional in western area
	polymictic cong andesitic volca and hornblende)	glomerate basaltic to anics (plagioclase)	no Triassic clasts; limestone clasts common
M. Triassic	sedimentary roo	cks	atreational event
STIKINE ASSE	MBLAGE		ittactional event
Permian	thin bedded con limestone (over fossiliferous; and volcaniclas	ralline to crystalline r 1000 m thick), intermediate flows stics	volcanic units resemble Hazelton Group rocks
E. Permian	rusty argillite	2 a	
	'siliceous' tu lapilli tuff	bidite, felsic	extensional event
Missis- sippian	mafic meta- volcanics and	upper coralline limestone and	thick bedded
	metasediments	conglomerate lower limestone with tuff layers	limestone commonly bioclastic, coarse crinoids, corals
E. Devonian	limestone; inte volcanics	ermediate to felsic	contractional events; rocks highly deformed

Plutonic Rocks - Coast Plutonic Complex

L. Tertiary	granodiorite, diorite, basalt	
E. Tertiary	quartz diorite, granodiorite, quartz monzonite, feldspar porphyry, granite	
M. Jurassic	quartz monzonite, feldspar porphyry, syenite	
L. Jurassic	diorite, syenodiorite, granite	
L. Triassic	diorite, quartz diorite, granodiorite	
? Not determined	quartz diorite, ?	

Lower Permian units comprise thin- to thick-bedded corraline limestone interbedded with volcanic mafic to felsic volcanic flows, tuffs and volcaniclastics.

MESOZOIC

Stuhini Group Volcani and Sedimentary Rocks

Upper Triassic Stuhini Group volcanic and sedimentary rocks are characterized by a distinct facies change from bimodal mafic to felsic flows and tuffs interbedded with thick sections of limestone in the northwest to predominantly mafic volcanics with minor shale members in the southeast.

Hazelton Group Volcanic and Sedimentary Rocks

Lower Jurrasic Hazelton Group volcanic and sedimentary rocks predominantly occur in the southeast, northwest corners and central portions of the Galore-Iskut-Sulphurets area. Hazelton Group stratigraphy consists of the lowermost Unuk River Formation (Grove, 1986) comprised of mafic to intermediate volcanics with interbedded shale, argillite and greywacke sediments capped by feldspar porphyry flow; the Betty Creek Formation (Grove, 1986) overlying the Unuk River Formation consists of maroon and green volcanic conglomerate and breccia often containing diagnostic jasperoidal veins, with the youngest uppermost member of the Hazelton Group consisting of dacite to rhyolite, spherulitic rhyolite welded tuff and tuff breccia with basal sediments and upper pillow basalts correlative with Grove's (1986) Salmon River Formation and Alldrick's (1987) Mount Dilworth Formation.

Lower Jurassic volcanics of the area are commonly correlated with the Telkwa Formation of the Hazelton Group. A close spatial and coeval relationship has long been recognized (Alldrick, 1986, 1987 and others) between Lower Jurassic volcanism and early Jurassic intrusive activity and its metallogenic import

ance in precious metal mineralization (Premier porphyry). Because of the relationship, lower members of the Hazelton Group are considered the most favourable targets for exploration.

Spatsizi Group Sedimentary Rocks

Spatsizi Group shales, tuffs and limestone of upper Lower and lower Middle Jurassic age overlie Hazelton Group rocks in the eastern part of the map area. Buff, sandy bivalve and belemnite fossil bearing limestone units decrease in abundance in the north parts of the area at the expense of shale. Here, black radiolarian-bearing siliceous shale alternately interbeds with white tuffs giving the units an informal name of 'pyjama beds'. This pyjama bed sequence serves as an important marker for identifying the favourable underlying Hazelton Group.

Bowser Group Sedimentary Rocks

Bowser Lake Group Middle and Upper Jurassic clastic sediments cover most of the northeast quadrant of the map area. Interbedded shale and greywacke units predominate in the south while thick-bedded shales dominate toward the north. Near the highlands toward the northern reaches of the Bowser Basin, basal chert-rich conglomerates identify the Bowser Group as an overlap assemblage.

CENOZOIC VOLCANIC ROCKS

Recent mafic flows and ash of the Hoodoo Formation, Iskut Formation and Lava Fork Formation cap specific areas within the region.

PLUTONIC ROCKS

The Coast Plutonic Complex, forming the western boundary of the Stewart Complex, is generally characterized by felsic Tertiary plutons. Late Triassic Stuhini Group and Early Jurassic Hazelton Group plutonic styles suggest coeval and cospatial relationships with surrounding volcanics via distinctive porphyritic dykes such as the Premier Porphyry. Tertiary Coast Complex plutons lack these dykes and volcanic equivalents.

6.0 PROPERTY AREA GEOLOGY

Figure 5 illustrates the geological setting surrounding the Rob 15 and 16 property. The area is characterized by Paleozoic and Upper Triassic volcanosedimentary packages cut by several Triassic to Tertiary intrusive events. Recent age basalt flows cover Hoodoo Mountain immediately west of the property.

Alldrick et al has mapped volcanic and sedimentary rocks underlying the property as part of the Triassic Stuhini Group. This group includes mafic to intermediate volcanic and volcanoclastic rocks, fine grained sedimentary rocks and minor limestone beds, lenses and clasts. Rock types grade to meta-equivalents. This geology hosts several of the immediate mineral occurrences in the region. Prime/Cominco's Snip deposit and Eurus/Thios' Black Dog VMS showing both occur within Triassic sediment-volcanic packages. Recent drilling of the Black Dog showing has returned several encouraging massive sulphide intersections. Some better sections include:

DDH No.	Width (feet)	Au (oz/ton)	Ag (oz/ton)	Pb (ሺ)	Zn (%)	Cu (%)
RR90-1	31.7	0.080	25.7	2.07	5.35	0.58
RR91-26	9.8	0.459	0.65	0.02	1.26	1.68
RR91-36	19.7	0.080	20.05	2.16	6.41	1.08

LEGEND

		OLND							
RECENT									
7	HOODOO VOLCANICS	: Basalt							
TERTIARY	6								
6	COAST PLUTONIC C Biotite-hornblende	OMPLEX : Biotite gr granodiorite	anite,						
JURASSIC									
5	TEXAS CREEK PLU	TONIC SUITE:							
	5a Gregor Stock 5h Iskut Stock	: coarse k-Feldspar	r porphyry						
	5c Bronson Stock	: coarse k-Feldspo	ir porphyry						
TRIASSIC	5d Red Bluff Sto	ck: coarse k-Felds	par						
	STIKINE PLUTONIC	SIIITE - Hornhlanda -	Biotite quartz diarit						
MESOZOIC									
ME302010	Dissite Connedical								
TRIACCIO	biorrie, oronourorr	re							
TRIASSIC									
2	2 a Andesite	Icanosedimentary S	Sequence:						
	2 v Undifferentio	oted Volcanics							
	2s Undifferentio	ited Sediments	101.2						
	2w Tuffaceous	Wacke	ginite						
	21 Mainly Limes	tone							
PALEOZO	IC								
1	STIKINE ASSEMBLA	GE:Deformed Met	amorphic Rocks						
	MINERAL SHOWING,	DEPOSIT							
	GEOLOGICAL CONTACT, APPROXIMATE								
. 1	FAULT. ASSUMED								
1									
-									
		SCALE I:	50 000						
	Km O O	.5 1.0	2.0	3.0 Km					
			_						
٨									
0	TYMAR RESOURCES INC./ CONSOLIDATED GOLDWEST RESOURCES LTD								
Ŷ	R	ROB 15, 16 CLAIMS							
	PROPERTY AREA GEOLOGY								
1	LIARD MINING DIVISION, B.C.								
1	PAMIC	PAMICON DEVELOPMENTS LTD.							
	Drawn.	N.T.S.	Date.	FIG. 5					
	J. W.	1048/11	March, 1991	5					

Several small to large intrusive bodies outcrop in the area. In the Iskut region intrusives play a significant role in the localization of mineral occurrences, possibly acting as a heat, plumbing and/or metals source for ore deposits.

7.0 PROPERTY GEOLOGY

The Rob 15 & 16 claims are bisected by the Iskut River, which with its flood plain, covers approximately two-thirds of the Rob 15 claim, where no outcrop is exposed. Mapping at 1:2,500 scale was completed north and south of this area along 100 metre and 200 metre spaced cut and uncut flagged grid lines. Rock exposure is generally less than 20% except along steep hill sides.

The property is underlain by sedimentary and volcanic rocks of the Upper Triassic Stuhini Group and by Tertiary age Coast Plutonic Complex granodiorite. Older rocks are generally weakly metamorphosed displaying metasedimentary and metavolcanic textures. Gneiss outcrops in contact with the above granodiorite (Figure 6).

South of the Iskut River, fine grained intermediate volcanic rocks are mapped as ash tuff, crystal tuff, lapilli tuff and volcanic sandstone (Figure 7). Fine grained textures absent of good sedimentary features characterize these units. Sedimentary rocks south of the Iskut include dark grey argillite and dull brown greywacke to siltstone, locally tuffaceous. Sediments are often interbedded and gradational. Rocks are weakly foliated and weakly Fe-carbonate and sericite altered \pm minor fine pyrite. Quartz veining is rare. A distinctive k-feldspar megacryst porphyry with centimetre-sized pink euhedral feldspar crystals in a fine grained strongly epidotized groundmass was noted in float, in several locations in this area.

North of the Iskut, volcanic rocks occur as a discontinuous northwest trending belt in a dominantly sedimentary sequence (Figures 8 and 9). Rock types

mapped include volcanic breccia, lithic lapilli tuff, subvolcanic plagioclase porphyry and porphyritic andesite flow. These units host narrow quartz veining and are weakly limonite-chlorite altered. Sedimentary rocks occur immediately south and to the northeast, forming a northwest striking and moderately southwest dipping package, with the volcanic rocks apparently near the stratigraphic top of this sequence. Sedimentary rock types include interbedded greywacke, argillite and siltstone, with tuffaceous horizons. Minor dark green augite porphyry flow (?), andesite and chert-chert breccia occur within this package. The augite porphyry is often autobrecciated. Sedimentary units are weakly to moderately foliated, locally phyllitic to slatey. Small scale 2-folds occur near intrusive contacts in the northeast claim area, outlining northwest trending fold axis. Alterations include pervasive weak biotite alteration + quartz, sericite and rare epidote.

In the northeast Rob 16 claim coarse grained biotite-hornblende granodiorite of the Tertiary Coast Plutonic Complex forms a sharp irregular contact with older sedimentary rocks. Silification occurs along contacts. Within the granodiorite leucocratic quartz rich phases occur with quartz veining and limonitic weathering. This intrusive stock extends for several kilometres to the northeast. A second intrusive phase outcrops in this area as small scale plugs of fine grained granodiorite. Mapping in 1989 by Keewatin Engineering shows gneiss bordering the granodiorite, inferred to represent a contact metamorphic product.

8.0 GEOCHEMISTRY

A 1990 geochemical program on Tymar Resources/Consolidated Goldwest Resources' Rob 15 & 16 property included conventional B-horizon soil sampling, deep overburden drill sampling (Vibracore), and reanalysis of select 1989 soil pulps for molybdenum.

Sampling programs in 1988 and 1989 established 100 metre and 200 metre spaced cut grid lines over much of the property north of the Iskut River. In 1990,

100 metre spaced fill-in lines were cut in the north Rob 15 claim. Two hundred and ninety-two B-horizon and 95 Vibracore samples were collected at 25 metre spacings along approximately 8 kilometres of line. B-horizon samples were collected from depths of between 10 and 35 cm utilizing mattocks. Vibracore samples were collected along select lines to test geophysical conductors. Samples were collected from depths to 3.0 metres. The objective was to sample the bedrock-overburden interface, however in practice this was not always accomplished and these samples are therefore best considered deep overburden. South of the Iskut River, a 100 metre spaced cut grid was completed over the south Rob 15 claim. Here 136 B-horizon soil samples were collected at 25 metre spacings along approximately 3.4 kilometres. A11 samples were analyzed for Au plus multi-element ICP packages at TSL Laboratories in Saskatoon or alternatively by Vangeochem Labs Ltd. of Vancouver. Re-analysis of 1989 soil pulps from sampling on the Rob 16 claim was handled by Bondar-Clegg & Co. Ltd. of Vancouver. Two hundred and eighteen samples were analyzed for 27 element ICP, with particular interest in Mo, following the discovery of molybdenite within intrusives in this area. Results for Au, Ag, Cu, Pb and Zn are plotted on Figures 10 to 15. Contouring was performed by selecting cut-offs based on past experience with soil programs and statistical analyses of results in the region.

Several weak to moderate strength soil anomalies occur on lines north of the Iskut River (Figures 10, 11, 14 and 15). A multi-station Au anomaly along L11+00N between 6+00W and 8+00W includes several values from 15 ppb Au to 230 ppb Au. Other spot highs >20 ppb Au occur over the grid. Au results in Vibracore sampling reach 30 ppb along L1+00W. Silver results are generally below background with only a few clusters of higher values to 7 ppm Ag on lines 3+00W to 9+00W. Copper results range from 1 ppm Cu to 185 ppm Cu in B-horizon samples and to 207 ppm Cu in Vibracore samples. Higher values are distributed over much of the grid area. Results for Pb indicate background levels for this element in soils. The exception is several high values to 73 ppm Pb in the northeast corner of the grid. Moderately high Zn values >200 ppm to a high of 310 ppm occur as clusters of highs and spot highs over much

of the grid. A 310 ppm Zn value returned from station L9+00W/8+25N occurs with several other elevated Zn results and weakly elevated Au of 15 and 20 ppb in the area. Samples collected in 1988 along adjacent lines 8+25W and 10+00W also returned high Zn to 446 ppm Zn. Vibracore sampling over the grid returned several results >300 ppm Zn with a high of 477 ppm Zn at L4+00W/ 7+00N.

Anomalous Mo and Ni were returned from three samples in the northeast grid area. B-horizon samples at L11+00N/0+00W and L13+00N/2+75W returned 239 ppm Mo and 924 ppm Ni, and 71 ppm Mo with 360 ppm Ni, respectively. Vibracore sample L2+00W/9+00N assayed 747 ppm Mo with 2,927 ppm Ni.

In the northeast Rob 16 claim prospecting led to the discovery of coarse molybdenite within quartz-argillic altered intrusive. Soil samples collected in this area in 1989 were not originally analyzed for Mo. As a result these sample pulps were re-analyzed for Mo as part of a 27 element ICP package. Assay certificates are appended to this report. All Mo results are considered within background. It is interpreted that Mo values are masked because of the extensive clay and overburden cover.

South of the Iskut River, soil sampling outlined weakly geochemically anomalous areas (Figures 12 and 13). A 55 ppb Au result occurs at the west extent of L2400S and a 45 ppb Au result occurs at the east extent of L2800S. Spot high Au results to 40 ppb Au outline a roughly defined northwest-southeast trending band from 1000W/2625S to 2900S/750W, with coincident weakly elevated Cu, Pb and Zn to 73 ppm Cu, 49 ppm Pb and 270 ppm Zn. Elevated Ag values to 5.3 ppm Ag occur near the west end of L2900S.

9.0 GEOPHYSICS

Geophysical surveys were completed over the West grid and South grid including total magnetics and VLF-EM. Field work, compilation and interpretation of data was done by F.J.R. Syberg, Geophysicist under the direction of Pamicon

Developments Ltd. The West grid survey totalled approximately 21 kilometres; the South grid survey, approximately 3.3 kilometres. Instrumentation utilized was a Scintrex IGS-2 Proton Magnetometer/VLF-EM field unit and a Scintrex MP-3 base station magnetometer. VLF-EM measurements were collected due to primary signals transmitted from stations located at Annapolis, Maryland and at Seattle, Washington. Incoming signal directions were reasonably coupled to major regional geological and structural trends of 120° to 150° and 210° to 240°, recognized in the area.

A detailed account of these surveys and a listing of data is appended to this report. Figures 16 through 32 display results, including interpretive summary maps (Figures 16 and 25).

Interpretations of results by F.J.R. Syberg are as follows:

WEST GRID

A northwesterly striking magnetic high in the central part of the survey area could suggest intrusive units potentially of volcanic origin.

Several conductors string easterly and a conductor with conductive shearzone continuations are likely related to events indicated by the magnetic high.

The geophysical surveys suggest several northeasterly striking faults which, if they exist, are thought to be of a later age than the above.

Five relatively strong conductors are to be target areas for further exploration efforts.

SOUTH GRID

The more interesting feature appears to be a fault/contact type anomaly from

2700S and 900E, across approximately 2800S and 1100E, then gently turning due south. While examining all geophysical plans it would appear that this anomaly is potentially a contact between volcanics and sediments. The volcanic units appear to be northwesterly of this anomaly, and the sediments to the east.

The VLF-EM quadrature over the suspected sedimentary units is somewhat less negative than the same is positive over the potential volcanic units. The fact that the negative amplitudes are smaller than the positive amplitudes may indicate alterations, say, K-spar alteration with quartz stringers and veins in the negative quadrature area.

A magnetic linear has been noted in the eastern part of the survey area between 2800S and 2900S. This linear is not well understood due to the lack of survey coverage. It could indicate a contact or a fault.

10.0 MINERALIZATION

As part of the 1990 exploration program initial prospecting was completed over most of the Rob 15 & 16 claim area. Several quartz veins, pyritization and alteration zones were sampled with 56 rock samples in total collected (Figure 33). Significant results include auriferous quartz veins in granodiorite, coarse molybdenite with quartz veining and silicification and argillic alteration in granodiorite, and anomalous Au, Ag, Cu, Pb, Zn with altered metasediments near intrusive contacts.

Several widely spaced 4 to 10 cm wide quartz veins cut quartz-hematitelimonite altered granodiorite at L15+00N/11+50E, near the sediment contact in the northeast Rob 16 claim. An initially discovered 4 cm wide vein assayed 0.162 oz/ton Au with anomalous bismuth. Follow-up sampling results included 0.036 oz/ton Au and 0.097 oz/ton Au. To the northwest at L18+00N/4+50E coarse blebs of molybdenite occur in quartz veins and quartz-limonite-clay altered granodiorite. Weakly anomalous Au values occur with elevated Mo. This

mineralization has been located over an area of several hundred metres. Re-analysis of soil samples previously collected in this area for Mo failed to return any apparently anomalous results, possibly suggesting an extensive impervious overburden layer. At L18+00N/7+00E and 14+70N/11+50E near sediment-intrusive contacts, silicified, metasomatized fine grained sediments returned anomalous Au, Ag, Cu, Pb, Zn values. Though not well exposed, these zones appear to be in the order of <1 metre wide.

On other properties in the area several showings of merit have been located. Immediately to the east of the Rob 15 & 16 property, on Prime/Golden Band/ American Ore's joint venture property three showings have been recently drill tested. The Gorge and RPX zones, mesothermal shears, returned 1.293 oz/ton Au over 5.98 metres and 0.427 oz/ton Au over 3.25 metres, respectively (pers. comm. R. Pegg). The Gregor zone, a tuff breccia discovered in 1989 trenching, returned a drill intersection of 0.085 oz/ton Au over 5.1 metres (Vancouver Stockwatch, November 30, 1990). Less than 4 kilometres to the west Eurus/ Thios' recently discovered Black Dog volcanogenic massive sulphide showing is presently being drill tested, with better intersections reported in Section 6.0 of this report. Approximately one kilometre southwest of the property, trenching of Magenta/Crest's Phiz vein in 1988 returned 2.567 oz/ton Au across 9.9 feet. Prime/Cominco's Snip Mine and Skyline's Johnny Mountain deposit are located less than 10 kilometres to the southeast.

11.0 DISCUSSION AND CONCLUSIONS

Field work in 1990 on Tymar Resources Inc./Consolidated Goldwest Resources Ltd.'s Rob 15 and 16 mineral claims consisted of cut grid line establishment, geological mapping, soil sampling, prospecting and geophysical surveying.

On the Rob 16 claim, narrow quartz veins were found which assayed up to 0.162 ounces per ton gold while elsewhere on the claim numerous quartz stringers/ veins were found which host significant molybdenite mineralization. Addition-

ally, elevated base and precious metals are associated with altered metasediments.

Soil sampling on the claims has identified several weakly anomalous geochem targets which remain to be evaluated. On the West grid several elevated Au results to 230 ppb occur along L11+00N, in an area probably underlain by argillite.

Geophysical surveys included VLF-EM and magnetometer. In the West grid, magnetics have distinguished volcanic from sedimentary rock types very accurately. Five strong conductors occur along the northeast contact between volcanic and sedimentary rocks, where several northwest trending shears or faults were interpreted through mapping. These conductors present a future exploration target. Several northeast trending faults interpreted by geophysics cross the West grid. This trend corresponds with airphoto linears seen to cross the property in this area. Geological mapping suggests that these faults do not offset stratigraphy.

On the South grid, faulting is east-west and north-south, reflecting a distinct structural orientation from the West grid area. A fault/contact anomaly identified through geophysics overlies an approximate contact between volcanic and sedimentary rocks types. A second feature identified by mapping, a north-south trending fault, may be reflected in geophysical surveys by a series of offset fault/contact anomalies located in the west of the grid.

Geological mapping indicates the claims are underlain by stratigraphy similar to and of the same age as that found on Thios Resources Inc./Eurus Resource Corp.'s Rock & Roll project 4 km to the west where those companies have discovered polymetallic massive sulphide mineralization. The only other known occurrence of this style of mineralization occurs at the Eskay Creek deposit 50 km to the east. Continued work on the Rob 15 & 16 claims is recommended for 1991 and should consist of expanded grid establishment, geological mapping, conventional and overburden soil sampling, prospecting and geophysical surveying. This phase could be followed by a success contingent diamond drill testing program.

Respectfully submitted,

A.T. Montgomery, Geologist

S.L. Todoruk, Geologist

APPENDIX 1

BIBLIOGRAPHY

_

BIBLIOGRAPHY

- Alldrick, D.J., J.K. Mortensen, and R.L. Armstrong (1986): Uranium-Lead Age Determinations in the Stewart Area; <u>in</u> Geological Fieldwork, 1985, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 217-218.
- Alldrick, D.J. (1987): Geology and Mineral Deposits of the Salmon River Valley, Stewart Area, NTS 104A and 104B; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File Map 1987-22.
- Alldrick, D.J., J.M. Britton, M.E. Maclean, K.D. Hancock, B.A. Fletcher and S.N. Hiebert (1990): Geology and Mineral Deposits of the Snippaker Area (NTS 104B/6E, 7W, 10W, 11E), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File 1990-16.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia; <u>in</u> Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.
- Britton, J.M., I.C.L. Webster and D.J. Alldrick (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 198, Paper 1989-1, pages 241-250.
- Bilodeau, P.J. and C.K. Ikona (1989): Geological Report on the Rob 15 & 16 Mineral Claims.
- Calpine Resources Inc.: News Release, Vancouver Stockwatch, December 13, 1988.

Costin, C.P. (1973): Assessment Report 4150, Dirk Claims, Newmont.

Clendenan, A.D. and P. Holbeck (1982): Report on Geology and Geochemistry of the Hoodoo Claim Group, Kerr Addison Mines Ltd., BCDM Geological Branch Assessment Report No. 11,331.

de Carle, R.J. (1988): Report on a Combined Helicopter-Borne Magnetic, Electromagnetic and VLF Survey, Iskut River Area, Liard Mining Division, British Columbia.

Delaware Resources Corp.: Progress Report, Snip Prospect, November 19, 1987.

- Delaware Resources Corp.: News Release, Vancouver Stockwatch, November 11, 1988.
- Delaware Resources Corp.: News Release, Vancouver Stockwatch, January 16, 1989.
- Dewonck, Bernard (1990): Summary Report on Avondale Resources Inc. Forrest Project.

Equity Preservation Corp. (1988): Stewart-Sulphurets-Iskut Map Handbook.

- Eurus Resources Corp. and Thios Resources Inc.: News release dated February 18, 1991.
- Franklin, J.M., J.W. Lydon and D.F. Sangster (1981): Volcanic-Associated Massive Sulphide Deposits, Economic Geology, 75th Anniversary Volume, pp 485-627.
- Fraser, R.J. (1984): Report on Geology, Geophysics, Rock Trenching and Sampling Hoodoo Claim Group, Kerr Addison Mines Ltd., BCDM Geological Branch Assessment Report No. 12,614.

Gulf International Minerals Ltd.: Annual Report, 1987.

Gulf International Minerals Ltd.: Annual Report, February 1988.

- Grove, E.W. (1968): Unuk River, Annual Report, Ministry of Mines and Petroleum Resources, British Columbia, p. 45-46.
- Grove, E.W. (1972): Geology and Mineral Deposits of the Stewart Area; B.C. Department of Mines and Petroleum Resources, Bulletin 58.
- Grove, E.W. (1973): Detailed Geological Studies in the Stewart Complex, Northwestern British Columbia, Ph.D. Thesis, McGill University.
- Grove, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas; Ministry of Energy, Mines and Petroleum Resources.
- Grove, E.W. (1985): Geological Report and Work Proposal on the Skyline Explorations Ltd. Inel Property.
- Grove, E.W. (1986): Geological Report, Exploration and Development Proposal on the Skyline Explorations Ltd. Reg Property.
- Grove, E.W. (1987): Geology and Mineral Deposits of the Unuk River, Salmon River, and Anyox Map Areas; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.
- Hancock, K.D. (1990): Geology of Nickel Mountain (109B/10W), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1.
- Holbeck, P. (1983): Report on the Geology and Geochemistry of the Hoodoo West Claim Group, Kerr Addison Mines Ltd., BCDM Geological Branch Assessment Report No. 12,220.
- Kerr, F.A. (1948): Lower Stikine and Western Iskut River Areas, British Columbia, GSC, Memoir 246, 94 pages.

Pamicon Developments Ltd. -
Lefebure, D.V. and M.H. Gunning (1987): Exploration in British Columbia 1987, in press, B.C. Geological Survey Branch publication.

- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990): Geology of the Forrest Kerr Creek Area, Northwestern British Columbia (104B/15); British Columbia Geological Survey, Geological Fieldwork 1989, Paper 1990-1, p. 127-139.
- Logan, J.M., V.M. Koyanagi and J.R. Drobe (1990): Geology and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern B.C., British Columbia Geological Survey Open File 1990-2.

Meridor Resources Ltd.: News Release, Vancouver Stockwatch, January 11, 1988.

Montgomery, A. and C.K. Ikona (1989): Geological report on the Rob 17, 19, 20, 21 Mineral Claims.

- Ohmoto, H. and B.J. Skinner, ed. (1983): The Kuroko and Related Volcanogenic Massive Sulphide Deposits, Economic Geology Monograph 5.
- Pegg, R. (1989): Summary Report of the 1989 Exploration Program on the Teryl Option Property.
- Poloni, J.R. (1987): Report on the Preliminary Evaluation of the Rob 15, Rob 16 Mineral Claims, Iskut River Area for Teryl Resources Corporation.

Scroggins, E.A. and C.K. Ikona (1989): Geological Report on the Rob 13 & 14 Mineral Claims.

Skyline Explorations Ltd.: Annual Report, 1987.

Skyline Explorations Ltd.: Annual Report, 1988.

4

Souther, J.G., D.A. Brew and A.V. Okulitch (1979): Geology of the Iskut River, GSC Map 1418A.

Ticker Tape Resources Ltd.: News releases dated September 21, 1987 and October 13, 1987.

Tungco Resources Corporation: News release dated December 1, 1987.

Webster, I.C.L. and W.J. McMillan (1990): Structural Interpretation of Radar Imaging in Sulphurets-Unuk-Iskut River Area (NTS 104B), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Open File 1990-7.

Western Canadian Mining Corp.: News release dated November 12, 1987.

APPENDIX II

COST STATEMENT

COST STATEMENT

TERYL RESOURCES CORP.

ROB 15 AND 16 MINERAL CLAIMS

LIARD MINING DIVISION

JULY 1, 1990 TO OCTOBER 31, 1990

WAGES

K. Milledge - 12 days @ \$250 \$ 3,000.00 Geologists R. Darney - 1.5 days @ \$425.00 2,975.00 S. Todoruk - 7 days @ \$425.00 2,975.00 M. Stammers - 7 days @ \$425.00 2,975.00 A. Montgomery - 9 days @ \$325.00 2,925.00 L. Vanzino - 3 days @ \$325.00 2,925.00 K. Curtis - 1 day @ \$325.00 325.00 K. Curtis - 1 day @ \$325.00 325.00 Prospectors E. Debock - 15 days @ \$300.00 4,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 200.00 J. Gordon - 1 day @ \$225.00 2,025.00 B. Munroe - 14 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 12 days @ \$225.00 450.00 B. Anderson - 12 days @ \$225.00 2,700.00 C. Duuglas - 1 day @ \$225.00 2,700.00 J. Gordon - 8.5 days @ \$225.00 2,700.00 J. Gordon - 1 day @ \$225.00 2,700.00 J. Bilmore - 1 day @ \$225.00 2,700.00 J. Bungrey - 3 days @ \$225.00 2,500 J. Gordon - 8.5 days @ \$225.00 2,25.00 J. Elmore - 1 day @ \$225.00 <td< th=""><th>Manager/Coordinator</th><th></th></td<>	Manager/Coordinator	
Geologists 637.50 R. Darney - 1.5 days @ \$425.00 2,975.00 M. Stammers - 7 days @ \$425.00 2,975.00 A. Montgomery - 9 days @ \$325.00 2,925.00 L. Vanzino - 3 days @ \$325.00 2,925.00 R. Gerhardt - 1 day @ \$325.00 325.00 R. Gerhardt - 1 day @ \$325.00 325.00 K. Curtis - 1 day @ \$325.00 325.00 Prospectors 2. Debock - 15 days @ \$300.00 1,500.00 J. Anderson - 2 days @ \$250.00 200.00 J. Gordon - 1 day @ \$250.00 200.00 J. Gordon - 1 day @ \$250.00 200.00 J. Gordon - 1 day @ \$250.00 200.00 J. Maderson - 2 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 12 days @ \$225.00 2,700.00 J. Hontgomery - 3 days @ \$225.00 2,700.00 J. Gordon - 8.5 days @ \$225.00 2,700.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Flinn - 4 days @ \$225.00 1,912.50 J. Gordon - 8.5 days @ \$225.00 1,237.50 J. Elmore - 1 day @ \$225.00 225.00 J.	K. Milledge – 12 days @ \$250	\$ 3,000.00
Geologists 637.50 R. Darney - 1.5 days @ \$425.00 2,975.00 S. Todoruk - 7 days @ \$425.00 2,975.00 M. Stammers - 7 days @ \$425.00 2,975.00 A. Montgomery - 9 days @ \$325.00 2,925.00 L. Vanzino - 3 days @ \$325.00 325.00 R. Gerhardt - 1 day @ \$325.00 325.00 K. Curtis - 1 day @ \$325.00 325.00 Prospectors E. Debock - 15 days @ \$300.00 4,500.00 J. Gordon - 1 day @ \$250.00 250.00 J. Gordon - 1 day @ \$250.00 200.00 J. Gordon - 1 day @ \$250.00 2,025.00 Samplers E. Munroe - 14 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 2,025.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 450.00 J. Anderson - 12 days @ \$225.00 2,700.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 25.00 J. Gordon - 8.5 days @ \$225.00 2,25.00 3,750 J. Gordon - 8.5 days @ \$225.00 2,25.00 2,25.00 J. Gordon - 8.5 days @ \$225.00 2,25.00 2,25.00 J. Gordon - 8.5 days @ \$225.00 2,25.00 2,25.00		
R. Darney - 1.5 days @ \$425.00 637.50 S. Todoruk - 7 days @ \$425.00 2,975.00 M. Stammers - 7 days @ \$325.00 2,925.00 A. Montgomery - 9 days @ \$325.00 2,925.00 L. Vanzino - 3 days @ \$325.00 2,925.00 R. Gerhardt - 1 day @ \$325.00 325.00 R. Gerhardt - 1 day @ \$325.00 325.00 Prospectors 2 E. Debock - 15 days @ \$300.00 4,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 200.00 J. Gordon - 1 day @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 2,0025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00	Geologists	
S. Todoruk - 7 days @ \$425.00 2,975.00 M. Stammers - 7 days @ \$425.00 2,975.00 A. Montgomery - 9 days @ \$325.00 2,925.00 L. Vanzino - 3 days @ \$325.00 975.00 R. Gerhardt - 1 day @ \$325.00 325.00 R. Gerhardt - 1 day @ \$325.00 325.00 Prospectors 2. E. Debock - 15 days @ \$300.00 4,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 200.00 J. Gordon - 1 days @ \$225.00 2,025.00 Samplers 2. E. Munroe - 14 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 1,800.00 K. Russel1 - 2 days @ \$225.00 1,800.00 K. Russel1 - 2 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,500 J. Gordon - 8.5 days @ \$225.00 225.00 J. Elmore - 1 day @ \$225.00 225.00 J. Elmore - 1 day @ \$225.00 225.00	R. Darney - 1.5 days @ \$425.00	637.50
M. Stammers - 7 days @ \$425.00 2,975.00 A. Montgomery - 9 days @ \$325.00 2,925.00 L. Vanzino - 3 days @ \$325.00 975.00 R. Gerhardt - 1 day @ \$325.00 325.00 K. Curtis - 1 day @ \$325.00 325.00 Prospectors 2. E. Debock - 15 days @ \$300.00 4,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 250.00 Samplers 2. E. Munroe - 14 days @ \$225.00 3,150.00 P. Lingard - 9 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 1,800.00 K. Russell - 2 days @ \$225.00 450.00 D. Anderson - 8 days @ \$225.00 2,700.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,500 J. Gordon - 8.5 days @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,237.50 J. Elmore - 1 day @ \$225.00 1,237.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00	S. Todoruk - 7 days @ \$425.00	2,975.00
A. Montgomery - 9 days @ \$325.00 L. Vanzino - 3 days @ \$325.00 R. Gerhardt - 1 day @ \$325.00 K. Curtis - 1 day @ \$325.00 Prospectors E. Debock - 15 days @ \$300.00 N. Debock - 5 days @ \$300.00 J. Anderson - 2 days @ \$250.00 J. Gordon - 1 day @ \$250.00 Samplers E. Munroe - 14 days @ \$225.00 B. McAdam - 2 days @ \$225.00 J. Anderson - 8 days @ \$225.00 J. Anderson - 8 days @ \$225.00 J. Anderson - 12 days @ \$225.00 J. Gordon - 1.5 days @ \$225.00 J. Gordon - 8.5 days @ \$225.00 J. Gordon - 8.5 days @ \$225.00 J. Elimor - 1 day @ \$225.00 J. Elimore - 1 day @ \$225.00 J. Elimore - 1 day @ \$225.00 J. Bins - 1.5 days @ \$225.00 J. Elimore - 1 day @ \$225.00 M. Wiggins - 1 day @ \$225.00 J. Cordon - 8.5 days @ \$225.00 J. Elimore - 1 day @ \$225.00 J. Cordon - 1 day @ \$225.00 J. Elimore - 1 day @ \$225.00 J. Elimore - 1 day @ \$225.00 J. Cordon - 1 day @ \$225.00 J. Elimore - 1 day @ \$225.00 J. Elimore - 1 day @ \$225.00 J. Cordon - 2 days @ \$400.00 J. Gordon - 2 days @ \$400.00 J. Gordo	M. Stammers - 7 days @ \$425.00	2,975.00
L. Vanzino - 3 days @ \$325.00 975.00 R. Gerhardt - 1 day @ \$325.00 325.00 K. Curtis - 1 day @ \$325.00 325.00 Prospectors E. Debock - 15 days @ \$300.00 4,500.00 N. Debock - 5 days @ \$300.00 1.500.00 J. Anderson - 2 days @ \$250.00 200.00 Samplers E. Munroe - 14 days @ \$225.00 2,0025.00 Samplers E. Munroe - 14 days @ \$225.00 450.00 Samplers 2,025.00 450.00 B. McAdam - 2 days @ \$225.00 450.00 M. Russell - 2 days @ \$225.00 2,000 B. Anderson - 8 days @ \$225.00 450.00 D. Flinn - 4 days @ \$225.00 2,000.00 D. Flinn - 4 days @ \$225.00 450.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,912.50 D. Lightle - 5.5 days @ \$225.00 225.00 B. Lightle - 1 day @ \$225.00 225.00 B. Lightle - 1 day @ \$225.00 225.00 B. Lightle - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 5,850.00 P. Nielson - 2 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 L. Gordon - 1 0 days @ \$250.00 5,850.00 P. Nielson - 2 days @ \$250.00 5,850.00 P. Nielson - 2 days @ \$250.00 5,850.00 P. Nielson - 2 days @ \$250.00 70 D. Sourd - 1 0 day @ \$225.00 70 D. Sourd - 1 0 days @ \$225.00 70 D. Sourd - 10 days @ \$225.00 70 D. S	A. Montgomery - 9 days @ \$325.00	2,925.00
R. Gerhardt - 1 day @ \$325.00 325.00 K. Curtis - 1 day @ \$325.00 325.00 Prospectors E. Debock - 15 days @ \$300.00 4,500.00 N. Debock - 5 days @ \$300.00 1,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 250.00 Samplers E. Munroe - 14 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 12 days @ \$225.00 2,025.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 J. Gordon - 8.5 days @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,912.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 B. Lightle - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00	L. Vanzino - 3 days @ \$325.00	975.00
K. Curtis - 1 day @ \$325.00 325.00 Prospectors E. Debock - 15 days @ \$300.00 4,500.00 N. Debock - 5 days @ \$200.00 1,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 250.00 Samplers 2,025.00 E. Munroe - 14 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 2,000.00 K. Russell - 2 days @ \$225.00 2,000.00 B. Anderson - 12 days @ \$225.00 2,000.00 D. Flinn - 4 days @ \$225.00 2,000.00 J. Gordon - 8.5 days @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 P. Nielson - 2 days @	R. Gerhardt - 1 day @ \$325.00	325.00
Prospectors E. Debock - 15 days @ \$300.00 4,500.00 N. Debock - 5 days @ \$250.00 1,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 250.00 Samplers 2. Munroe - 14 days @ \$225.00 2,025.00 P. Lingard - 9 days @ \$225.00 2,025.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 2,700.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 25.00 J. Gordon - 8.5 days @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00	K. Curtis – 1 day @ \$325.00	325.00
E. Debock - 15 days @ \$300.00 4,500.00 N. Debock - 5 days @ \$300.00 1,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 250.00 Samplers E. Munroe - 14 days @ \$225.00 3,150.00 P. Lingard - 9 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 M. Russell - 2 days @ \$225.00 2,000 B. Anderson - 8 days @ \$225.00 450.00 D. Flinn - 4 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 675.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,912.50 J. Elmore - 1 day @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 Geophysical F. Syberg - 13 days @ \$450.00 225.00 Geophysical F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 20.00 H. Gordon - 10 days @ \$250.00 225.00 P. Nielson - 2 days @ \$450.00 225.00 P. Nielson - 2 days @ \$250.00 225.00 P. Nielson - 2 days @ \$450.00 225.00 P. Nielson - 2 days @ \$450.00 225.00 P. Nielson - 2 days @ \$250.00 225.00 P. Nielson - 2 days @ \$250	Prospectors	
N. Debock - 5 days @ \$300.00 1,500.00 J. Anderson - 2 days @ \$250.00 500.00 J. Gordon - 1 day @ \$250.00 250.00 Samplers 3,150.00 E. Munroe - 14 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 450.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 2,700.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 J. Gordon - 8.5 days @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225	E. Debock - 15 days @ \$300.00	4,500.00
J. Anderson - 2 days @ \$250.00 J. Gordon - 1 day @ \$250.00 Samplers E. Munroe - 14 days @ \$225.00 P. Lingard - 9 days @ \$225.00 B. McAdam - 2 days @ \$225.00 J. Anderson - 8 days @ \$225.00 M. Russell - 2 days @ \$225.00 Anderson - 12 days @ \$225.00 D. Flinn - 4 days @ \$225.00 J. Gordon - 8.5 days @ \$225.00 J. Gordon - 8.5 days @ \$225.00 J. Gordon - 8.5 days @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Lightle - 5.5 days @ \$225.00 J. Young - 1 day @ \$225.00 J. Young - 1 day @ \$225.00 J. Gordon - 1 day @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Kontgomery - 3 days @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Elmore - 1 day @ \$225.00 J. Young - 1 day @ \$225.00 J. Young - 1 day @ \$225.00 J. Charlton - 1 day @ \$225.00 J. Charlton - 2 days @ \$450.00 P. Nielson - 2 days @ \$450.00 J. Gordon - 10 days @ \$250.00 J. Son - 10 days @ \$250.00 J. Son - 2 days @ \$400.00 J. Gordon - 10 days @ \$250.00 J. Son - 2 days @	N. Debock - 5 days @ \$300.00	1,500,00
J. Gordon - 1 day @ \$250.00 250.00 Samplers E. Munroe - 14 days @ \$225.00 3,150.00 P. Lingard - 9 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 1,800.00 J. Anderson - 8 days @ \$225.00 1,800.00 K. Russell - 2 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 675.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,912.50 J. Elmore - 1 day @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 E. Charlton - 1 day @ \$225.00 225.00 Geophysical F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00	J. Anderson - 2 days @ \$250.00	500.00
Samplers 8, 150.00 P. Lingard - 9 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 1,800.00 K. Russel1 - 2 days @ \$225.00 2,700.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 1,912.50 J. Gordon - 8.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.	J. Gordon - 1 day @ \$250.00	250.00
Samplers E. Munroe - 14 days @ \$225.00 3,150.00 P. Lingard - 9 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$250.00 1,800.00 K. Russel1 - 2 days @ \$225.00 450.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 1,912.50 J. Gordon - 8.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 B. Charl		
E. Munroe - 14 days @ \$225.00 3,150.00 P. Lingard - 9 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$250.00 1,800.00 K. Russell - 2 days @ \$225.00 2,700.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 1,912.50 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 1,912.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 Geophysical F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2000 2000 2000	Samplers	
P. Lingard - 9 days @ \$225.00 2,025.00 B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$225.00 1,800.00 K. Russell - 2 days @ \$225.00 450.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 25.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 5,850.00 P. Nielson - 2 days @ \$40	E. Munroe - 14 days @ \$225.00	3,150.00
B. McAdam - 2 days @ \$225.00 450.00 J. Anderson - 8 days @ \$250.00 1,800.00 K. Russell - 2 days @ \$225.00 450.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 2 days @ \$400.00	P. Lingard - 9 days @ \$225.00	2,025.00
J. Anderson - 8 days @ \$250.00 1,800.00 K. Russel1 - 2 days @ \$225.00 450.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 5,850.00 B. Kordon - 2 days @ \$400.00	B. McAdam - 2 days @ \$225.00	450.00
K. Russell - 2 days @ \$225.00 450.00 B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2500.00	J. Anderson - 8 days @ \$250.00	1,800.00
B. Anderson - 12 days @ \$225.00 2,700.00 D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 B. Charlton - 2 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2 500.00	K. Russell - 2 days @ \$225.00	450.00
D. Flinn - 4 days @ \$225.00 900.00 T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 225.00 J. Elmore - 1 day @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 Geophysical F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00	B. Anderson - 12 days @ \$225.00	2,700.00
T. Montgomery - 3 days @ \$225.00 675.00 G. Douglas - 1 day @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 225.00 D. Young - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 J. Gordon - 2 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2500.00	D. Flinn - 4 days @ \$225.00	900.00
G. Douglas - 1 day @ \$225.00 225.00 J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 J. Gordon - 2 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2500.00	T. Montgomery - 3 days @ \$225.00	675.00
J. Gordon - 8.5 days @ \$225.00 1,912.50 D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 J. Gordon - 2 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2500.00	G. Douglas - 1 day @ \$225.00	225.00
D. Enns - 1.5 days @ \$225.00 337.50 J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 J. Elmore - 10 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2500.00	J. Gordon - 8.5 days @ \$225.00	1,912.50
J. Elmore - 1 day @ \$225.00 225.00 B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 Geophysical 5,850.00 F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2500.00	D. Enns - 1.5 days @ \$225.00	337.50
B. Lightle - 5.5 days @ \$225.00 1,237.50 D. Young - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 Geophysical 5,850.00 F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2 500.00	J. Elmore - 1 day @ \$225.00	225.00
D. Young - 1 day @ \$225.00 225.00 W. Wiggins - 1 day @ \$225.00 225.00 P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 Geophysical 5,850.00 F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2 500.00	B. Lightle - 5.5 days @ \$225.00	1,237.50
W. Wiggins - 1 day @ \$225.00 P. Hoffman - 1 day @ \$225.00 B. Charlton - 1 day @ \$225.00 Geophysical F. Syberg - 13 days @ \$450.00 P. Nielson - 2 days @ \$400.00 J. Gordon - 10 days @ \$250.00 2500.00	D. Young - 1 day @ \$225.00	225.00
P. Hoffman - 1 day @ \$225.00 225.00 B. Charlton - 1 day @ \$225.00 225.00 Geophysical 5,850.00 F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 L. Gordon - 10 days @ \$250.00 2 500.00	W. Wiggins - 1 day @ \$225.00	225.00
B. Charlton - 1 day @ \$225.00 225.00 Geophysical 5,850.00 F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2 500.00	P. Hoffman - 1 day @ \$225.00	225.00
Geophysical F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2 500.00	B. Charlton - 1 day @ \$225.00	225.00
F. Syberg - 13 days @ \$450.00 5,850.00 P. Nielson - 2 days @ \$400.00 800.00 J. Gordon - 10 days @ \$250.00 2 500.00	Geophysical	
P. Nielson - 2 days @ $$400.00$ 800.00J. Gordon - 10 days @ $$250.00$ 2 500.00	F. Syberg $- 13$ days @ \$450.00	5.850.00
$I. \text{ fordon} = 10 \text{ days } (8250, 00) \qquad 2500, 00$	P. Nielson - 2 days @ \$400.00	800.00
	J. Gordon -10 days @ \$250.00	2 500,00

Linecutters - 89 days @ Total Wages	\$300.00	26,700.00	\$ 73,725.00
CAMP AND EQUIPMENT EXPE	NSES		
Room and Board Pamicon Crew Linecutters Helicopter Crew	152.5 days 89.0 days 25.0 days 266.5 days @ \$125.00	\$33,312.50	
Field Equipment and Supp	plies	6,112.50	39 425 00
Project Supervision			4,167.10
GENERAL EXPENSES			
Travel, Accommodation an Space Tel Communications Fixed Wing Helicopter Reproductions Geophysical Equipment Re Overburden Drill Rental Assays Freight Report	nd Airfare S ental		56,899.22
Management Fee @ 15%			174,216.32
TOTAL THIS PROGRAM			\$200,348.77

2

APPENDIX III

.

ROCK SAMPLE DESCRIPTION FORMS

PA DE	MICO	MEN'	rs limi	TED	Geochem	ical Data S	St. : - ROO	CK SAMPLING				2]	L
		11 terom			Ductors	TFOVI		Loostie	NTS	S				
San	ipier	income P	90	. 1		0 1 15:	10			÷۱				
Date)	l.n.+/.Ju	y_10_	. 1	property	1×c6 1:5 t	16	Air Pho	DIO IN	0			<u></u>	
				Sample	· [DESCRIPTION			•		ASS	AYS		
¢ or	NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	ny ppb	Au 9/1	Aŋ	PPM	٩٢	th
20	1901	14100W/ 61500	cyrab		9/3 11.	~	~	Som- 3cm wide lens in	45	-		410		
29	802	18400W/ 9125N	gmb		pyritic or which e	Imenite	1.2% time	see KERWATIN KAT. 1789: semplos # 30579-550, 30563 - 567.	40	-				
23	803	6+500	grab		9tz un.	Inconite/	-	several norman unity, massive	45	-				
23	804	L 19 100N 01 15W	float		gtz - sericite phyllite	otz-senate	12 diss My		<5	-				
25	3805	L19+00N 1+15W	grub	4-6 cm	qtz verilit	limente		cuts growk	15	-				
29	3306	2+50W	float	3am	gtz vem	limenite	-	subanopular	<5	-				
2	8807	L 15100N 4150E	select		granodiante atz vein	linenite.	N <1% course Mo52	V. city rich leverate intrusive	45	-				
2	8809	L 19100N THODE	4	20-30-	siltstene	strucy	1%-3% py, on, prh.	v. liscol.	200	-	13.0	420	2700	4600
2	3310	L 12114 E	select		ofts varined	linenite	<12 pg, 1	silicous grunadurite new sect.	40	-		130		
24	3511	L 12190E	grub	5%	973 vein	-'	1% fine maginetile	one of a few giz venis in biotile - hubbl. rich avalv.	45	-				
2	8812	L19100N	select		siltstone	strency	1% dissemining	ted at intrusive contact rite.	25	-				
2	8813	L16130N 6160E	grib		ofts veins	hound:	-	In the minimum shake	5		21	10		6
2	8811	LISIOON 11+SDE	schect		oft 3 vein	-	1% M.S.J.?)	cause bluts of blue year sulphale	>1000	0.162	21	8	24	7
28	508	L 18toun 7toue	Select	500	QV in diarite				290	-				
28	3815	L13100N 9115E	11		silts.	Strenes 973-		resuple of 18957 (1988)	80	-	21	38	ß	38
20	3816	L12 +00N	**		4	linenite-giz-		6.3 × 71.0 2000	60	-	21	140	41	810
	`													
	<u></u>													
									·					

PRINTED IN CANADA

PAMIC(DEVEL	PMEN	ts lim	ITED	ե շchem	ical Data	S.⊖t - RO	CK SAMP⊾ _i		8	ł	
Complex	A.K a	/ ,-		D	Rall	C+1(.		NT	S		
Sampier	T	-160		Project	To 1	1-	Locali	on R	əf		
	Jun - 02	1911		Property	reey !	/ lymor	Air Ph	oto N	0	•	
CAMPLE	,	0.1151.5	Samplo	1	DESCRIPTION	N		[SAYS	
NO.	LOCATION	TYPE	Width Tiuo Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Ag Ma		
28901	Troy/	91-16		Intouside		Pyrchot.to	Feld. porth In Jusie	<5	pp- ppn	1 ppm	
Jul. 2/8	,			•			Ploat				
	Tery	Brab				•	· · · · · · · · ·				
28902	I.	10		Interside	ØTZ	py arity	First groined intersion	25	27	-	
03	<i>"</i>	7		Ope les	,	Chaleo moly assence	Some Merchad Introsior as 02	340	< 7	-	
all	4				10	chokes	(there are a second sec	20			
09	*	-7-		x	11	Not,		20		1010	'
				Jatancis	Grisen	MON	- Some messive maky	< <u>s</u>	< 2		
06	11	A		7	*	-	12	90	1300	1	
07						Arsen O		35	1000		
08		1				moly	/ 'oa /	45	20		
- 09	• • • • • • • • • • • • • • • • • • • •							100	34	0	
July 03/90		<i>n i</i>		1							
	1ery/	Grab		14 J	marker	male	75 Pm think wait				
28910				420	1 - Carry	Chales	materie 1	10	250	0	
11	<i>K</i>	4		11		Chale O arseno	12 mwide 15m long	5	360	> 190	
12	""			17		pyrit+	heavily exictized in intrusive	<5	110	,	
				M. 4							

	•	
DEVELO	AENTS	LIMITED

Geochemical Data Sh - ROCK SAMPLING

		NTS
Sampler <u>Aeboek</u>	Project Try Tymer	Location Ref
Date <u>July 3 /90</u>	Property Rob 15+16	Air Photo No

· · ·

SAMPLE		SAMPLE	Sample Width		DESCRIPTION	I				ASS	SAYS		
(,NO.	LOCATION	TYPE	Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	An	Mo	CU	Pb	Zn
28912	Tery/	Gmb		Meta sec	lyretized	Charles Artity	On contact of meta seeds & intrusion	15		Yr		ff _	ppm
4.4						Ayrodosit							
28 913	1	r		4	4		1 11	310	11.0		1300	130	5500
289/4	11	"						290	7.0		2000	320	35∞
July 5/10	4	17		9tz	ORHIZY	choled	float houlder						
289151								560	39.0	×	4000		410
sh 07/90				A . 1			· · · · · · · · · · · · · · · · · · ·						
28916	1204	Grap		φU	OX 141240	yuite	20 cm wise 9/2 Veig	20	3.0	500	570		
						Maly							
17	11	"(11	11	Arsmo	1. 5- 9.0.	10			450		
18	11	4		"		-	Interess y 4/ rema	5					
							Intous: sp						
		L											

Geochemical Data Suget - ROCK SAMPLING

Sampler <u>Debuck</u> Date 90

- South Grid Project Par Property_ 15 6

NTS	
Location Ref	
Air Photo No	

SAMPLE		SAMPLE	Sample		DESCRIPTION	1			ASS	AYS	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	AU			Zn
	Rub 15-6										18
28919	4	7		Siltstune	QE V		3 cm wide plan	nd			375
20	11	10		1	4	٨	· //	nd			
							-				

PAMICO DEVELO	GM D! VEN	'' Ts lim	ITED	Geochen	iical Data	She ` - N OC	K SAMPLING	••					
Sampler Date	N. Del July	Воск -/90		Project Property	Robi	16	NTS Location Ref Air Photo No						· · · · · · ·
SAMPLE NO,	LOCATION	SAMPLE TYPE	Somplo Width Nuo Width		DESCRIPTIO Altoration	Minoralization	ADDITIONAL OBSERVATIONS			ASS	AYS		··- ··-
28701	East end Rob-16	chip	10cm 5cm	Фtz "	Change	Mag + Moly	· · · · · · · · · · · · · · · · · · ·				·		
	··· · · ·	- · · ·	······································										
•••••	·····	· · · · · · · · · · ·	······································						<i>.</i>				
· · · · · · · · · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·										
		· · · · · · · · ·		••									
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·												
											-		
		- · · · · · ·	······································										
	· · · · · · · ·												
 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											

.

· ·

THEFT IS BUT ADALM

· ·

P. "IIC ~--' DEVELO MENTS LIMITED

Sampler <u>R. Gerhardt</u> Date <u>July 27 (90</u>

Geochemical Data Sh - ROCK SAMPLING

Project Tery I Property Rob 16

NTS	
Location Ref	
Al Dhata Na	

1 .

Air Photo No

SAMPLE		SAMOLE	Sample	DESCRIPTION					ASSAYS PP-				
NO.	LOCATION	TYPE	Width True Width	Поск Туре	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Au 9/1	Ag	Рь	Zn	Ga.
28703	1700 dev 1200 E 1550 N	grab	02m	siliceous graywadie	Silicification	dissen py 1-290 tracecou		25	~	4	82	190	120
28704	1825'elev 1160E/1575N	grab	0.2m 0.2m	granodiorite	silication minor ham	to moly (?)		<5	1	<1	26	30	רו
							· · · · · · · · · · · · · · · · · · ·		··•• -				·· .
							· · · · · · · · · · · · · · · · · · ·						
					1017 a.e			• • • • • •					·
					•••• • • • •	1. al·1. 1. al·1.							··· ·· ·
							. 117 - • • • • • • • • • • • • • • • • • •						
	-												
						· · · ·	·····		- ·				** .
					-		· · · · · · · · · · · · · · · · · · ·		• •				
							and a second						
								44 g					

PRIMIED IN CADADA

P AC DEVEL	U AEN	rs lim	ITED	Geochem	nical Data S	Sh - RO	CK SAMPLING		;		1		
								NT	·S				
Sampler _	N. Deba	k		Project	Teryl		Locat	ion R	ef				
Date	July 27	/90		Property	Rob 16) 	Air Ph	noto N	lo	-			
SAMPLE		SAMPLE	Sample Width		DESCRIPTION	١				ASS	SAYS		
NO.	LOOMION	TYPE	Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	Au	Hy 9t	Ag	Pb	Zn	Cer
28705	1850 elen 1245 E/585N	grab	Olm O.lm	qu'in grenodiorite	hem staining linarite	tr dissem py		H	0.036	<u>دا</u>	31	50	35
28706_	1890'elev 1155E/1600N	grab	0.100.hm	qu in granodionite	coide linguite			25	-	4	15	24	9
28707	1850'elau 11556/1595N	greb	0.20	s qu in area	Imériple Steinbry	trey		15	-	• •	7	15	48
28708	SOME OS 2004	grap		QV	bullish	none seen	151001411+50E		0.097	4	18	26	17
	And the second sec												·
		- I Martin Constanting in a constanting in the second second second second second second second second second s			·····								
						-							
		a a contente que a fair policie de contente en proviendor en a la			• • • • • • • • • • • • • • • • • • • •								
					1811 Mile								
							······································		1967 - 2		- 11		
				•••••••			· · · · · · · · · · · · · · · · · · ·						
· make they want the strate strate by some							-						
						н. н	· · · · · · · · · · · · · · · · · · ·	•					
0 10 MT 441 441 46				-									
L		l		I	I				1				1

FIREFUL D. RECALINDA

.

PAMICON DEVELOPMENTS LIMITED

Geochemical Data Sheet - ROCK SAMPLING

Project Tery Property____

NTS _ Location Ref Air Photo No

and and and and	an na Na Manana an Anna Anna		Bample		DESCRIPTION					ASS	AYS		
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	ADDITIONAL OBSERVATIONS	AND	AD				
55851	16N11+50G	Grab	500	Qtz	lette beet	~	Resample of 28814	920					
852	50cm E	y.	2 cm	n.	2)	-	Parallel A171 90°	20				1	
853	Betweenalon		20 cm	Ote /porch	Fe Alt.	lette pr		240	2.5	5 g.			
854	50 cm of	851 4	2	Qtz	, n			το					
855	5m E of as	<u>(</u>	1cm		. 21	71		110					
856	15750E IGN	Л 👬 ,	10 cm	1	V	1]	Resample of 28705	1570					
		(1) 建筑					V						
				- 45									
		n gaal ah ginnaada Galaxii ah ginnaada											
							•				ant t		
						r	••••		$(\frac{1}{2},\frac{1}{2})$	an an			
												• • •	
												14 J.	
		建立的核											
				t Autorite					d M				
												3.	
3/15.55			A STATE OF STATE						35.2				
314 A		an substa											
		S. Store		and the second									

Constraint and the second of the second of

P_IIC_ I DEVELC_MENTS LIMITED

Geochemical Data SI - ROCK SAMPLING

.

			NTS
Sampler	E. Flonree J. Gordon	Project leryl.	Location Ref
Date	291 August 90	Property	Air Photo No

SAMPLE	LOOATION	SAMPLE	Sample Width	DESCRIPTION		1		ASSAYS					
NO.	LOCATION	TYPE	Width	Rock Type	Altoration	Mineralization	ADDITIONAL OBSERVATIONS	Au					
55857	BILAtz	Compasile	ben.	QV		-	i miner muscevite.	1170					
55858	Veins. Cf. 28814	Grab	250-	G V	-	-	2 phases of gtz + translucent.	40					
55859	"		1.0m	QV-carb		-	i minor nuscouite	50					
55860			0.5	GV	_		Milky Like gtz.	40					
-													
							· · · · · · · · · · · · · · · · · · ·	at 1 10000-1 1					a
				• •									
					·····		· · · · · · · · · · · · · · · · · · ·						
								,					
-		Martin and Strange and Strange and Strange and Strange										1 ge 10 ⁰⁰ 0 11	
	-				· · · · · · · ·				•••				
							· · · · · · · · · · · · · · · · · · ·						· · •
							· · · · · · · · · · · · · · · · · · ·	1.000.1	-				
-						· · · · ·	· · · · · · · · · · · · · · · · · · ·						
							a a construction of the second se						
L	l	L				l						l	l

ampler ∠	V. Del	Back		Project	Tre			Loca	NT tion R	S ef			
ale <u>–</u>	- pr 2°	470		Property_	1 ery			Air P	noto N	0	•		
SAMPLE NO.	LOCATION	SAMPLE TYPE	Sample Width True Width	Rock Type	DESCRIPTION Alteration	N Mineralization	ADDITION	AL OBSERVATIONS	Au		ASS	AYS	· · · · ·
5-86	7+25 N.	Chip	20 cm	Tuffse	1	?	K125 0	65° NNE	180				
	HHISW]			· · ·					
								•					
											-		
								:	-		•		
						÷							
										<u>``</u>			
				· .			`						
						-							
•													
				÷ .									
								·					
-													
								·····					

APPENDIX IV

~

÷

ANALYTICAL PROCEDURES

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

November 21, 1990

- TO: Mr. Steve Todoruk PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, BC V6B 1N4
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples.

1. <u>Method of Sample Preparation</u>

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Digestion

- (a) 5.00 to 10.00 grams of the minus 80-mesh portion of the samples were used. Samples were weighed out using an electronic micro-balance and deposited into beakers.
- (b) Using a 20 ml solution of Aqua Regia (3:1 solution of HCl to HNO3), each sample was vigorously digested over a hot plate.
- (c) The digested samples were filtered and the washed pulps were discarded. The filtrate was then reduced in volume to about 5 ml.

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (d) Au complex ions were then extracted into a di-isobutyl ketone and thiourea medium (Anion exchange liquids "Aliquot 336").
- (e) Separatory funnels were used to separate the organic layer.

3. <u>Method of Detection</u>

The detection of Au was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out onto a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values, in parts per billion, were calculated by comparing them with a set of gold standards.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

November 21, 1990

TO: Mr. Steve Todoruk PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, BC V6B 1N4

- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.

1. <u>Method of Sample Preparation</u>

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" X 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2 <u>Method of Digestion</u>

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCl:HNO3:H2O in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Analyses

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disketts.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Raymond Chan VANGEOCHEM LAB LIMITED

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 ❷ (306) 931-1033 FAX: (306) 242-4717

SAMPLE PREPARATION PROCEDURES Rock and Core

- Entire sample is crushed, riffled and the subsequent split is pulverized to -150 mesh.

Soils

- Sample is dried and sieved to -80 mesh.

2 - FIRE ASSAY PROCEDURES

Geochem Gold (Au ppb) -

A 30g subsample is fused, cupelled and the subsequent dore' bead is dissolved in aqua rega. The solution is then analyzed on the Atomic Absorption.

Assay Gold (Au oz/ton) -

A 29.16g subsample is fused, cupelled and the subsequent dore' bead is parted with a dilute nitric acid solution. The gold obtained is rinsed with DI water, annealed and weighed on a microbalance.

Assay Silver (Ag oz/ton) -

A 2.00g sample is digested with 15mls HCl plus 5mls HN03 for 1 hour in a covered beaker; diluted to 100mls with 1:1 HCl. The solution is then run on the Atomic Absorption.

3 - BASE METALS

- Geochem A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the Atomic Absorption.
- Assay A 0.500g sample is taken to dryness with 15mls HCl plus 5mls HN03, then redissolved with 5mls HN03 and diluted to 100mls with DI H20. The solution is run on the Atomic Absorption.

T S L LABORATORIES

DIVISION OF BURGENER TECHNICAL ENTERPRISES LIMITED 2 - 302 - 48th STREET, SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

Page 2.

5. ICAP Geochemical Analysis -A 1g subsample is digested with 5mls of aqua rega for 1 1/2 to 2 hours, then diluted with DI H20. The solutions are then run on the ICAP.

6. Heavy Mineral Concentrates -

The sample is initially wet sieved through -1700 micron, then placed on a shaker table. A heavy liquid separation is performed, Methylene Iodide, (S.G. - 3.3); diluted to give a S.G. of 2.96. The heavies were then analyzed for Au by Fire Assay plus an ICAP Scan.

7. Mercury Analysis -

A 1 gram subsample is digested with 4mls of nitric acid plus 1ml of sulfuric acid in a water bath for 1 1/2 to 2 hours, diluted with DI water. A couple of drops of a potassium permangante solution are then added to each sample solution. An aliquot of each solution is then analyzed on the A.A. by a cold vapor procedure.

Yours truly,

Bernie D.

Bernie Dunn BD/vh

Non Lory

APPENDIX V

.

_

.

Ì

-

ASSAY CERTIFICATES

E0.9 JATOT

TSL LABORAT

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN 57K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. \$9221

INVOICE #: 14297 P.O.: R-2023

SAMPLE(S) OF ROCK

A. Montgomery Project: Teryl

REMARKS: Wrangell Samples - Pamicon Developments

> Au ppb

28909 100

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Jul 25/90

Р.03

n

SIGNED _

2 of 2

Page

For enquiries on this report, please contact Customer Service Department, 07/25/1990 09:51 FROM PRIME EXPLORATIONS LTD. TO PAMICON

TSL LABOF

DIV. BURGENER TECHNICAL ENTERPHISES LIMITED

P. 2

2-302-48th STREET, EAST SASKATOON, SASKATCHEWAN \$7K 6A4 306) 937-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9221

INVOICE #: 14297 P.O.: R-2023

SAMPLE(S) OF ROCK

A. Montgomery Project: Teryl

REMARKS :

Wrangell Samples - Pamicon Developments

	Au ppb	
28801	<5	
28802	40	
28803	<5	
28804	<5	
28805	15	
28806	<5	
28807	45	
28808	290	
28809	200	
28810	40	
28811	<5	
28812	25	
28901	<5	
28902	<5	
28903	340	
28904	20	
28905	<5	
28906	4 0	
28907	35	
28908	<5	
COPIES	то: с.	Idziszek, J. Foster
INVOICE	TO: Pri	me - Vancouver
Jul 25/9	90	
		SIGNED

1 of 2

Page

For enquiries on this report, please contact Customer Service Department.

Р.02 \bigcirc 07/25/1990 09:51 FROM PRIME EXPLORATIONS LTD. TO PAMICON

08/15/1990 07:08 FROM PRIME EXPLORATIONS LTD. TO

P. 5

Aug. 14 190 21:36 0000 TSL LABORATORIES 306-242-4717

TS-L	LABORA	Tories 2-302	~4814 STR 11 Ff	EET, SASKA ELEPHONE (AX #:	.700n, 843 : (306) 9 (306) 24	Katchewan 31 - 1033 2 - 4717	57K. 6	4			
		I.C.A.F	, plasma s	SCAN	Aqua-Regi	a Digestion	for	ced	Aug 19	s to	Pomicon
FRIME EXPLORATION	DN LTD. 10-808 WES	t hastin	53 57				T.S.L. T.S.L. T.S.L.	REPORT File Invaice	No.: 5 - No.: No.: 146	9221 -	1
ATTN: J. FUSTER	PROJECT:	TERYL	- PAMICI	H 9.	0. 8-2023			ali resi	alts PPM		
		28801	28902	25803	28804	26505	28806	29607	28606	288/17	28910
ELEMENT											
		11 004	F000	(756		1740	(100	1160	740	76000	3500
Aluninum	[AI]	16006	6000	5390 10000	4000	1300	2800	1100	7.000	27000	9600
Iron	{Fe1	24000	29000	120440	71000	2200	2400	1000	1.44)	14000	1600
Calcium	(Ca)	2000	2/00	21350	TOCA	2200	2009	210	350	3500	1300
Magnesium	[20]	4800	\$100 TE 0	2500	2000	550	510	210	40	ž40	350
Sodium	[Na]	230	000	214	2477	350	200	524	250	3300	1600
Potassium	{K 2	5600	5200	20049	20%/	120	77 A	~~~	20	706	390
Titanium	(11)	600	190	571)	170	120	20		52	710	66
Manganese	Effn3	230	220	390	179	150	0 2	27	52	740	260
Phosphorus	ip 3	510	860	650	500	66	66	40	10	307	260
Barium	[Ba]	280	79	110	38	30	10	7	14	. 20	10
Chromium	[Cr]	\$ 5	15	Ĵć	120	58	52		<u>ب</u>	54	2
Zirconium	[Zr]	5	3	2	2	15	ن -	5 4 5	ς í ε	A00	170
Cooper	[Cu]	410	6?	24	41	16	8	Ũ	7 2	429	100
Nickel	(Ni }	17	£	2	120	10	3	2	<u>ن</u> ۲۵	00	7 +50
Lead	[P51	5	Ŷ	2	1	97	13	4	30	2690	190
Zinc	{Zn}	46	46	45	17	23	7	ڻ -	4	4600	170
Vanadium	(¥ 3	67	23	21	35	4	2	2		4 <u>7</u> 0	15
Strontius	[St]	10	13	32	55	5	8	4	1	120	15
Cobalt	(Co)	à	ō	3	13	1	< i	: 1	< 1	6	ు గా
Moivbdenum	(Mo)	< 2	< 2	14	4. 2	Ź	< 2	38	6	< 2	20
Eilver	[Ao]	< i	< 1	< i	4 :	< 1	< 1	< 1	< 1	13	< 1
Cadmise	Cb33	< 1	< 1	< 1	: 1	< 1	< 1	< 1	< 1	35	5
Bervllitt	(Bel	< 1	< 1	< 1	5 1	< 1	< :	K 1	< 1	< 1	× 1
Boron	EB 1	< 10	< 10	< 19	< 10	< 10	K 10	< 19	< 19	< 10	10
Antianny	(Sb)	< 5	< 5	(5	; 5	. 5	< 5	< 5	4, 5	5	5
YETTIM	EY 1	2	4	2	2	3	< 1	< i	< 1	< 1	i
Scandige	[Sr]	5	2	: 1	÷ 1	÷ 1	< 1	: 1	< 1	2	4 1
Tuposten	[#]	< 10	< 10	< 10	< 10	10	< 16	< 10	< 10	7ÿ	4 10
Ninhiua	(ND)	< 10	< 10	< 10	. 10	4 10	< 10	< 19	< 10	< 10	< 10
Thorica	(Th)	10	80	< 10	: 10	< 10	(10	< 10	< 10	< 10	< 10
Arsanic	[As]	15	30	: 5	: 5	25	(5	ς ξ	< 5	720	60
Ricauth	(Bi]	10	5	15	20	50	30	15	160	45	20
Tin	[Sn]	(10	: 10	< 10	10	< 10	< 10	< 10	< 10	< 10	< 10
l i thiste	(Li)	15	5	ζ 5	15	5	ξ 5	< \$	< 5	10	< 5
Kolaiun	(Ho]	< 10	< 10	: 20	< 10	10	< 10	K 10	< 10	< 13	< 10

i

SIGNED ;

08/15/1990 07:08 FROM PRIME EXPLORATIONS LTD. τо

P ...

6

AUQ: 14 190 21:37 0000 TSL LABORATORIES 306-242-4717

T S L LABORATORIES

10TH FLOOR, BOX 10-BOB WEST MASTINGS ST

2-302-48TH ETREET, SASKATOON, SASKATCHEMAN 57K 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASHA SCAN

Acua-Regia Digestion

T.S.L. REPORT No. : E - 9221 - 7 7.5.1. File No. : T.S.L. Invoice No. : 14411

ALL RESULTS PPM

VANCOLIVER, B.C. V6C 2X6

PRIME EXPLORATION LTD

PROJECT: TERYL - PAMICON P.G. R-2023 ATTN: 1. FOSTER

		28811	26612	26901	26902	28993	28904	28905	2590%	28907	28908
ELEMENT											
Alumi 006	1417	1300	27000	5200	1200	390	680	590	1200	550	1000
1000	[fe]	4100	25000	\$300	2200	2300	2300	6600	4000	67002	4600
Esictua	ECal.	240	11000	6700	640	100	340	299	240	140	140
Mannecium	FMo 3	220	7000	2400	230	50	39	100	50	50	40
Sodiua	IN-1	240	2600	340	210	÷0	420	90	390	220	230
Potracium	tk :	590	7500	2700	870	220	180	410	590	470	790
701432104 Titatia	ETTT	56	1260	470	50	10	9	6	60	17	5
Managana	IMA 1	44,	320	370	59	25	110	140	14	7	Ži
Charabanus	EP 7	27	760	310	36	10	6	240	54	22	10
Prosunorus	[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		54	39	- 8	5	¢.	17	11	4	17
DECIUM	1001 1001	47	140	25	44	82	73	76	36	48	5?
	47=3			5	÷ 1	5 1	< 1	6 1	27	4	Ž
	1547	23	55	5		: 50	89¢	66	13	24	23
Nickel	2001 2002	20	77	5	2	6	5	2	< 1	4 1	2
RICKEL	- BH 7	:2	:5	3	4	12	29	4	< 1	2	3
<u>l</u> eac	(70]	30	ĒĊ	19	F	15	36	16	< 1	2	4
Deardium	10 1	7	76	23	1	5 1	< 1	2	37	ş	1
Vallavium	78-1	;	190	54	5	1	2	1	5	2	4
54(1)(410# Cebal+	(Col	: !	11	2	4 1	Z	2	2	< 1	< <u>1</u>	1
	2003 2Mal	2.2	62	< 2	< 2	Ó	< 2	< 2	13000	1000	20
Ciluan	fån T	2 2	$\overline{\langle 1 \rangle}$	< 1	< 1	3	6	< 1	$\langle 1 \rangle$	< 1	< 1
Silver Silver	trat	2 1	21	6.1	4 1	(1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1
Caterilling Damilling	(Da)			4 1	< 1	5 1	< 1	< 1	< 1	< 1	< 1
DELATION	15 7	10	10	6 10	< 10	< 10	< 10	< 10	< 10	(10	< 19
	1672	2 5	5	3 5	(5	13	< 5	< 3	< 5	< 5	< 5
Ser Stand	(002 (V 3	2 1	č 1	2	< 1	≤ 1	2	< 1	< 1	S 1	< 1
Formelium	15-1	2 3		< 1	< 1	< 1	< 1	< 1 -	< 1	1 1	
Scancium	1923	2 10	< 10	(19	< 10	s 10	ć 10	< 10	< 10	< 19	< 10
10NGS18N	(AE)	< 10 < 10	10	< 10	4 10	10	< 10	< 10	- 10	< 10	< 10
Therita	(75)	: 10	10	19	< 19	10	< 19	< 10	< 10	C 10	< 19 •
	[Ac]	10	< 5	5	< 3	10	. : 5	< 5	:0	3	~
Ricanth	(Bi)	15	20	iŞ	15	340	110	20	450	60	2.3
Tin	(56)	< 10	< 19	5 10	4 10	: 10	< 10	: 10	(10	. 10	
t i thine	[Li]	< 5	25	: 5	(\$	< 5	< 5	< 5	()	/ 10	2 10
Holmium	(Ho)	10	< 10	< 19	÷ 10	< 10	< 10	< IQ	(10	1 10	

SISNED :

08/15/1990 07:09 FROM PRIME EXPLORATIONS LTD. TO

6840279 P.07

P. 7

Aug. 14 190 21:37 0000 TSL LABORATORIES 306-242-4717

T S L LABORATORIES

2-302-48TH STREET, EASKATOON, SASKATONEWAN S7K 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

1.C.A.P. PLASHA SCAN

Aqua-Regia Digestion

 PRIME EXPLORATION LTD
 T.S.L. REPORT No. 1 3 - 9221 - 3

 10TH FLOOR, BOX 10-808 WEST HASTINGS ST
 T.S.L. File No. 1

 VANCOUVER, B.C.
 T.S.L. Invoice No. 1

 V6C 2X6
 ALL RESULTS PPM

 ATTN: J. FOSTER
 PROJECT: TERVL - PAMICON P.O. R-2023

28905

ELEMENT

Alusinua	(A1)	580
Iron	[Fe]	4700
Calcium	(Ca)	80
Maonesium	[Mg]	24
Sodiua	[Nz]	120
Potassium	LK 1	460
Titanium	(Ti)	4
Manganese	(Mn)	Ģ
Phosphorus	:P]	24
Barius	(Bal	5
Chromium	[[r]]	56
Zirconiua	[[1]	4
Cooper	ECu3	16
Nickel	EN13	2
Lead	(26)	3
Zinc	[[n]	2
Vanadium	[V]	4
Strantium	[Sr]	2
Cobalt	[63]	< 1
Molybdenua	[Mo]	1300
Silver	(Ao)	° < 1
Cadmium	(Cd)	< 1
Beryllium	[Be]	< 1
Boron	CB]	< 10
Antimony	(Sb)	< 5
Yttrium	{Y]	< 1
Scandium	(Sc1	< 1
Tungsten	(¥ 1	< 10
Niobium	[Nb]	、 10
Thorium	[Th]	く 10
Arsenic	(As)	s,
Bisauth	(Bi)	65
Tia	[Sn]	< 10
Litnium	[Li]	₹ 5
Holmium	{Ho]	< i¢

516XED :

TSL LABORATC DRIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 308) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. \$9225

INVOICE #: 14312 P.O.: R-2032

SAMPLE(S) OF ROCK

S. Todoruk Project: Rob 15+16 Tery1/Tymar

REMARKS:

Wrangell Samples - Pamicon Developments

	Au	Au
	ppp	ozt
28910	10	
28911	· 5	
28912	<5	
28913	310	
28914	290	
28915	560	
28916	20	
28917	10	
28918	5	
28813	5	
28814	>1000	.162/.162
28815	80	
28816	60	

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Jul 26/90

SIGNED .

For enquiries on this report, please contact Customer Service Department. Samples. Pulps and Rejects discarded two months from the date of this report.

08/15/1990 07:09 FROM PRIME EXPLORATIONS LTD. ТΟ

P. 3

14 190 21:36 0000 TSL LABORATORIES 306-242-4717 Aug.

28912

LABORATORIES TS-L

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57X 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 faxed Aug 15 to Permicon

> > 28913

I.C.A.P. PLASHA SCAN

Aqua-Regia Digestion

28914

22915

PRIME EXPLORATION LTD 10TH FLOOR, BOX 10-BOB WEST HASTINGS ST VANCOUVER, B.C. V6C 2X6

ELEMENT

T.S.L. REPORT NO. : 5 - 9225 - 1 T.S.L. File No. : T.S.L. Invoice No. 1 14515

28917

29915

22813

ATTN: J. FOSTER PROJECT: TERYL/TYMAR - PANICON P.O. R-2032

28911

28910

ALL RESULTS PFH

28916

<u>Aluminus</u>	7517	900	540	246	:7000	47000	3000	650	480	7200	360
Land	ttal	2900	5400	7700	-2000	1.000	8700	16000	13000	9600	1700
Calcium	1[2]	540	426	:00	8760	19:00	2000	200	100	820	100
MARRET UR	TMa T	200	~~~ ?iii:	50	990	5.7(x)	690	80	60	BCO	80
Radius	(Ma)		200 411	80	440	7:00	:20	80	60	140	40
Batterius		500	740	141	ማልስ የ	STATE	540	220	300	700	170
Titonium	17:1	57	:4	100	170	1500	140	15	13	:20	14
TITOTANA Kana saaca	CM-1	-747	72	:2	170	2000	27	19	24	56	14
Phoenhose	72 7	:5	17	17	200	570	:40	22	(7	320	28
Barium	12-1	77	:7	· Å	72	76	9	11	5	;7	
Chermius	(Pa)	05.	00	20	27	74	49	110	100	52	6B
7inconium	£7+3	70 4		2 1	7	ğ	< 1	3	1	4	< 1
Former	[[u]	#5	120	23	1300	2000	4000	570	450	79	:0
Niekal	CN: 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1/4 E	3	19	13	4	5	8	1	2
HALKEL Jand	(Øh1	2.5		< 1	130	320	23	2	< 1	5	į
Ting	[7n]	17	14	τ.	5500	6500	410	43	13	25	6
Vanadium	1433 1477	10	4	ī	78	92	9	3	2	21	2
Ctentium	ren1	4	2	1	:20	220	i6	2	2	4	1
Cohalt	10.1	< 1	ŝ	<u>ا</u>	43	18	6	é	25	3	< 1
Malubdenun	CMoli	2556	560	110	1Ū	4	\$ 2	500	6Ú	14	4
Silvar	[ôn]	÷ 1	4 1			7	39	3	< 1	< 1	5. L
Codmisson	(C4)	c î		4 1	55	120	< 1	< 1	< 1	く 1	< 1
Rarvilium	[Rel	i i	< 1	< 1	< :	< 1	< 1	ζ 1	(1	< 1	1 1
Boom	(8.)	< 10	: 19	< 10	< 10	< 10	< 10	< 10	< 19	t 10	< 10
Antimov	(Sb)	< 5	(5	4 5	< 5	. 5	10	< 5	Κ 5	< 5	《 5
Yttrico	TY 1	< 1	< 1	< 1	7	5	1	i i	< 1	2	· 1
Scandium	[Sc]	4 1	1	÷ 1	< 1	6	< ;	ĊÍ	< 1	< :	< 1
Tunosten	[14]	< 10	< 10	< 10	÷ 10	< 10	10	\$ 10 .	< 10	< 10	< 10
Nicolium	EN63	< 10	< 10	< 10	< 10	20	< 10	< 10	< 10	< 1Q	< 10
Thorius	[Th]	< 10	< 10	< 10	20	10	< 10	< 19	< 10	< 10 [°]	< 10
Arsenic	(As)	15	15	3	360	× 3	10	5	5	1.5	· • •
Bismuth	(B1)	75	4.5	÷ 5	25	45	< 5	10	< 5		() ()
Tin	£5n3	< 10	10 j	< 10	< 10	< 19	< 10	< 10	< 10	< 10 E	< 19
Lithium	[[1]	< 5	< 5	< 5	× 5	15	4 5		(5	2	1 J 2 10
Holmium	(Ho]	< 10	< 1G	< 10	(10	10	< 10	(10	< 10	ς 10	× 10

SIGHED 1

08/15/1990 07:10 FROM PRIME EXPLORATIONS LTD. TO

P. 4

Aug. 14 190 21:36 0000 TSL LABORATORIES 306-242-4717

T S L LABORATORIES

ŗ

Z-302-40TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

28816

I.C.A.P. PLASMA SCAN

23815

Aqua-Regia Digestion

T.S.L. REPORT No. : 5 - 9225 - 2 T.S.L. File No. : T.S.L. Invoice No. : 14615

PRIME EXPLORATION LTD 10TH FLOOR, BOX 10-BOS WEST HASTINGS GT VANCOUVER, B.C. VGC 216 ATTN: J. FOSTER PROJECT: TERYL/TYMAR - PAMICON F.D. R-2032

28814

ALL RESULTS PPM

ELEMENT				
Aluminum	(AI)	530	12000	25000
Irdh	[Fe]	2300	27000	36000
Calcium	[Ca]	550	3100	8200
Haonesium	[fig]	370	6100	6500
Sodius	[Na]	29	400	1400
Potassium	CK 1	230	7700	11000
Titanium	[Ti]	6	1700	2300
Manganese	EMn)	34	320	510
Phosphorus	EP 1	36	1100	730
Barium	(Baĵ	5	86	270
Chromium	(Cr)	91	33	170
Zirconium	{Zr]	< 1	?	10
Copper	{ Cu 3	8	38	140
Nickel	EN13	13	5	\$0
iead	(Pb)	24	3	
Zinc	EZn3	7	38	810
Vanadium	{¥ }	i	120	78
Strontium	[Sr]	5	47	130
Cobalt	[[0]]	K 1	11	10
Holybdenum	(Mo]	4	< 2	< 2
Silver	[QA]	< 1	< 1	
Cadmium	[[4]]	K 1	<1	19
Beryllium	[98]	< 1	< 1	< I
Boron	<u>[8]</u>	< 10	< 10	< 10
Antimony	(SP)	25	< 5	< 3
Yttrium	{Y]	1	6	Ó
Scandium	[5c]	< 1	3	ş
Tungsten	E W3	< 10	< 10	< 10
Nichium	(Nb 3	< i€	10	< 19
Thorius	[Th]	< 10	40	< 10 / E
Arsenic	[A⊴]	40	< 3 	< 5 ~~
Risouth	(Bi]	510	60	23
Tin	[\$n]	< 10	< 10 av	· · · · · · · · · · · · · · · · · · ·
Lithium	[Li]	< 5	20	29
Holaius	(Ho)	< 10	- 10	10

DATE : AUG-14-1990

SIGNED :

- - ----

P.02

TSL LABORATORIES

ON. BURGENER TECHNICAL ENTERNISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATOHEWAN \$7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

REPORT No. S9422

INVOICE #: 14520 P.O.: R-2133

SAMPLE(S) OF ROCK

S. Todoruk Project: Teryl Option

REMARKS: W

Wrangell Samples - Pamicon Developments

	Au ppb	Au ozt .036	
28703 28704 28705 28706 28707	25 <5 >1000 <5 15		
28708	>1000	.097	

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 10/90

SIGNED .

Page 1 of 1

For enquiries on the report, please contact Customer Service Department.

23 '90 20:38 0000 TSL LABORATORIES 306-242-4717 Aug.

T S L. LABORATORIES

7-302-48TH STREET. SASKATOON, SASKATCHEWAN 97K 644 TELEFHONE #1 (206) 931 - 1033 FAI HI 13061 342 - 4717

Adua-Regia Digestion

L.C.A.F. PLASMA SCAN

lug 24 -7 PAM

A

T.S.L. REPORT No. : 8 - 9422 - 1 T.S.L. File No. : 1.S.L. Invoice No. : 14850

FRIME EXPLORATION LTD. 10th Floor Box 10 BUB West Hastings St. Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: TERYL OFTIM - PANICON 2.0. R-2133

ALL RESULTS PPM

		28703	26704	28705	26708	28707	28708
ELEMEN	11						
Aluminum	(Ai)	30000	2296	(40)	490	570	1200
Iron	[Fe]	16000	3600	5300	1000	4600	3500
Calcium	(Ca]	21660	620	.750	170	60	200
Magnesium	(Mọ]	3900	276	410	53	20	360
Sodium	[Na]	1400	150	110	160	:00	170
Potassium	(K)	7.800	440	536	150	420	660
Titanium	(11)	E50	42	53	ç	3	53
Manganese	[Ma]	160	36	(10	24	;4	22
Phosohorus	5 [F]	726	52	32	5	14	42
Sarium	[Ba]	54	16	11	Ξ	5	16
Coromium	[[1]]	140	5÷	89	100	110	86
2irconium	[2r]	1	·. :	2	< 1	< 1	< 1
Ecoper	EEd3	120	17	35	ę	15	17
Nickel	(21)	42	5	10	3	3	3
Lead	(Pb1	62	24	21	15	7	18
Zinc	[[n]]	影神田島	26	59	24	15	26
Vanadium	(¥ 3	44		i:	3	: 1	3
Strontium	{5r]	44:	(7	4	1	2	4
Cabalt	(Co)	1:	1	2	: :	< ;	< 1
Molybdenua	[Mo]	4	2	÷	5 2	ċ	20
Silver	EAg]	i	·. 1	< 1	5 1	5 1	4 1
Casimium	(Cd)	i	· i	< 1	4 1	4 1	\$ 1
Bervillium	(Sel	< ±	× 1	· 1	1 1	- 1	< 1
Earon .	(B]	< 10	: 10	: 16	. 10	4 10	< 10
Antimony	(55)	\$ 5	• 5	7.5	: 4	6 5	4. 5
Yttrive	[¥]	3		< 1	· 1	< 1	< 1
Scandium	(Sc 3	1	N 1	: i	· 1	< 1	< 1
Tunosten	EH 3	š 10	< 10	·. 36	. 10	· 10	< 10
Nicoiun	ENb 3	< 12	× 10	× 16	- 10	4. 10	<. 19
Thorium	[Th]	< 10	÷ 10	ι :Ú	÷ - 10	< i¢	i 10
Arsenic	(As1	CP2240	10	10	: 5	5	< 5
Eisauth	EB13	3	5 5	.: 4	1.5	< 5	90
Tin	[5n]	K 16	5 10	. 19	- 10	< 10	< 10
lithium	(Li)	15	÷	5	6 5	ζ Ξ	5
'claium	(Ha)	< 10	: 19	· 1a	: :0	: ;ò	< 1¢

-

÷

10.00

P. 5

1630 PANDORA STREET VANCOUVER. BC V5L 1L6 (604) 251-5656

MAIN OFFICE -1988 TRIUMPH ST. /ANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

PROJECT#: TERYL OPTION SAMPLES ARRIVED: AUG 29 1990 REPORT COMPLETED: SEPT 04 1990 ANALYSED FOR: Au (FA/AAS) ICP DATE: SEPT 04 1990

REPORT#: 900328 GA JOB#: 900328

INVOICE#: 900328 NA TOTAL SAMPLES: 6 SAMPLE TYPE: 6 ROCK REJECTS: SAVED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Rymba SIGNED:

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

1630 PANDORA STREET VANCOUVER, BC V5L 1L6 (604) 251-5656

VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988 TRIUMPH ST.--VANCOUVER, B.C. V5L-1K5-● (604) 251-5656 ● FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B. MISSISSAUGA, ONT

MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

RBPORT NUMBER:	: 900328 GA JOB	NUMBER: 900328	PANICON DEVELOPMENTS LTD.	PAGE 1 OF 1
SAMPLE #	Au			
	ppb			
55851	920			
55852	50			
55853	240			
55854	70			
55855	110			
55856	1570			
AN DO IM AB IN TEL

1630 Pandora Street, Vancouver, ...C. V5L 1L6

Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to HzO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

1

:

Ī,

111

ANALYST: Kyrdh

REPORT #: 900328 PA	PAMICON DEV	ELOPHENT	S LTD.			PROJE	CT: TERY	L OPTION		DATE	IN: AU	6 29 1990) DA	TE OUT: S	EPT 26 1	990	ATTENTIO	N: MR. S	TEVE TODO	RUK		PAG	1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Ħo	Na	Ni	P	Pb	Sb	Sn	Sr	U	H	Zn
	ppæ	ĩ	ppa	ppe	pps	ĩ	ppa	ppm	ppe	ppa	X.	X	X	000	00 m	Z	poe	z	00 m	ope.	ppe	ppe	p0 📾	ppe	pp
55851	<0.1	0.33	55	63	449	0.01	0.4	2	183	73	0.91	<0.01	0.03	77	49	0.01	. 1	0.01	22	(2	(2	7	<5	(3	23
55852	<0.1	0.44	43	65	16	0.04	(0.1	2	145	103	0.95	(0.0)	0.15	105	45	(0.01	(1	0.01	12	(2	(2	10	(5	(3	21
55853	2.5	0.15	53	25	370	(0.01	(0.1	(1	197	17	0.51	(0.01	<0.01	45	29	(0.01	(1	(0 01	25	(2	(2	5	(5	(3	5
55854	(0.1	0.27	49	45	67	<0.01	(0.1	2	126	15	0 70	(0.01	0 01	44	36	(0.01		0 01	15	12	12	ŝ	(5	344	17
55855	<0.1	0.17	59	19	76	<0.01	<0.1	<1	207	10	0.48	<0.01	<0.01	37	5	<0.01	<1	<0.01	13	<2	<2	4	<5	<3	6
55856	<0.1	0.14	60	17	<3	<0.01	<0.1	2	211	8	0.77	<0.01	<0.01	148	3	<0.01	<1	<0.01	9	<2	<2	2	<5	<3	6
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	i	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	i
Naxioum Detection < - Less Than Minimum	50.0 > - Greater Th	10.00 nan Maxim	2000 u n i	1000 is - Insu	1000 fficien	10.00 E Sample	1000.0 ns	20000 - No Samp	1000 le /	20000 Andmalous	10.00 RESULT	10.00 5 - Furti	10.00 her Anal	20000 yses By A	1000 Iternati	10.00 e Method	20000 s Sugges	10.00 ted.	20000	2000	1000	10000	100	1000	20000

SEP 28 190

1630 PANDORA STREET VANCOUVER, BC V5L 1L6 (604) 251-5656

VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988-TRIUMPH-ST: -VANCOUVER, B.C. V5L-1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

DATE: SEPT 21 1990

REPORT#: 900505 GA JOB#: 900505

PROJECT#: TERYL/TYMAR SAMPLES ARRIVED: SEPT 17 1990 REPORT COMPLETED: SEPT 21 1990 ANALYSED FOR: Au (FA/AAS) ICP INVOICE#: 900505 NA TOTAL SAMPLES: 4 SAMPLE TYPE: 4 ROCK REJECTS: SAVED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Ryalh SIGNED:

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

1630 PANDORA STR	EET
VANCOUVER, BC V	5L 1L6
(604) 251-5656	

VGC VANGEOCHEM LAB LIMITED

40

MAIN OFFICE

• VANCOUVER, B.C. V5L-1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER	: 900505 GA	JOB NUMBER: 900505	PANICON DEVELOPMENTS LTD.	PAGE	1	OF	1
SAMPLE		Au					
		ppb					
55857	1	1170					
55858		40					
55859		50					
	RBPORT NUMBBR SAMPLE # 55857 55858 55859	REPORT NUMBER: 900505 GA SAMPLE # 55857 55858 55859	REPORT NUMBER: 900505 GA JOB NUMBER: 900505 SAMPLE # Au ppb 55857 1170 55858 40 55859 50	REPORT NUMBER: 900505 GA JOB NUMBER: 900505 PANICON DEVELOPMENTS LTD. SAMPLE # Au ppb 55857 1170 55858 40 55859 50	REPORT NUMBER: 900505 GA JOB NUMBER: 900505 PAMICON DEVELOPMENTS LTD. PAGE SAMPLE # Au ppb 55857 1170 55858 40 55859 50	REPORT NUMBER: 900505 GA JOB NUMBER: 900505 PANICON DEVELOPMENTS LTD. PAGE 1 SAMPLE # Au ppb 55857 1170 55858 40 55859 50	REPORT NUMBER: 900505 GA JOB NUMBER: 900505 PAMICON DEVELOPMENTS LTD. PAGE 1 OF SAMPLE I Au ppb 55857 1170 55858 40 55859 50

55860

VANGEOCHEM LA / LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

					Thi	is leach	i is part	ial for A	l, Ba,	Ca, Cr, F	'e, K, Mg	1, Mn, Ni	a, P, Sn	, Sr and	Ν.				ANAL	YST:	1	\sim	6		
REPORT #: 900505 PA	PANICON DE	VELOPMENT	IS LTD.			PROJE	CT: TERY	L/TYNAR		DATE	E IN: SEF	PT 17 19	90 DA	TE OUT: C	OCT 17 19	390	ATTENTION	N: MR. S	TEVE TODO	RUK		PAG	E 1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Ħg	Ma	Ho	Na	Ni	Р	Pb	Sb	Sn	Sr	U	¥	Zn
	ppe	X.	00e	ppe	pps	ĩ	ppe	ppe	ppe	pps	ĩ	۲.	ĩ.	ppa	ppa	z	ppe	7.	ppe	pps	pps	ppe	pps	pp∎	pp n
55857	0.1	0.45	<3	63	<3	0.09	1.1	3	92	4	1.00	0.02	0.17	229	13	0.03	. 9	0.02	17	<2	3	9	<5	<3	22
55858	<0.1	0.16	<3	25	<3	<0.01	1.2	<1	140	2	0.21	<0.01	<0.01	61	<1	0.02	(1	<0.01	10	<2	<2	6	<5	<3	3
55859	<0.1	0.14	<3	21	<3	<0.01	1.2	(1	107	6	0.44	<0.01	<0.01	56	39	0.02	142	<0.01	15	<2	<2	5	<5	<3	9
55860	<0.1	0.13	<3	38	<3	<0.01	1.4	<1	115	10	0.54	<0.01	<0.01	24	10	0.01	<1	<0.01	8	<2	<2	4	<5	<3	2
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	í	0.01	0.01	0.01	i	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
<- Less Than Minimum	> - Greater T	han Maxi	u	is - Insu	ufficien	t Sample	e ns	- No Samp	ie	ANOMALOUS	S RESULT	5 - Furt	her Anal	yses By A	lternati	e Method	s Sugges	ted.							

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

DATE: OCT 04 1990

REPORT#: 900639 GA JOB#: 900639

INVOICE#: 900639 NA TOTAL SAMPLES: 1 SAMPLE TYPE: 1 ROCK REJECTS: SAVED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: TERYL

SAMPLES ARRIVED: OCT 02 1990

ANALYSED FOR: AU (FA/AAS) ICP

REPORT COMPLETED: OCT 04 1990

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

6, Mh SIGNED:

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

SC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

RBPORT NUMBER: 900639 GA	JOB NUMBER: 900639	PANICON DEVELOPMENTS LTD.	PAGE 1 OF 1
SAMPLE #	Au		
55861	ррb 180		

DETECTION LIMIT nd = none detected -- =

5 -- = not analysed

is = insufficient sample

VANGEOCHEM LAB LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

.

;

ANALYST: Much

REPORT 1: 900639 PA	PAMICON DE	VELOPHENT	IS LTD.			PROJE	CT: TERY	L		DAT	E IN: OC1	02 199) DA	TE OUT: N	NOV 05 19	990 1	ATTENTION	I: MR. S1	TEVE TODO	RUK		PAG	E 1 OF	1	
Sample Name	Ag	A1	As	Ba	Bi	Ca	63	Co	Cr	Cu	Fe	K	Mg	Ħn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn
	ppe	7.	ppa	00 6	ppa	7.	ppe	ppe	ppa	pp ≞	ĩ	7	X	ppa	008	X	000	۲.	0 ₽ ∎	000	ppa	pps	ppe	00.	004
55861	0.5	3.74	<3	>1000	<3	0.35	4.4	21	69	63	5.61	0.18	0.96	539	12	0.08	39	0.08	<2	<2	<2	36	<5	<3	97
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection < - Less Than Ninimum	50.0 > - Greater T	10.00 han Maxim	2000 aua	1000 is - Insu	1000 Ifficient	10.00 Sample	1000.0 ns	20000 - No Samp	1000 le	20000 ANOMALOU	10.00 5 RESULTS	10.00 5 - Furti	10.00 ner Anal	20000 yses By /	1000 Alternate	10.00 e Method	20000 s Suggest	10.00 ed.	20000	2000	1000	10000	100	1000	20000

CO VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

DATE: OCT 16 1990

REPORT#: 900677 GA JOB#: 900677

INVOICE#: 900677 NA TOTAL SAMPLES: 2 SAMPLE TYPE: 2 ROCK REJECTS: SAVED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: TERYL

SAMPLES ARRIVED: OCT 12 1990

ANALYSED FOR: AU (FA/AAS) ICP

REPORT COMPLETED: OCT 16 1990

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

SIGNED: Routh

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

RBPORT NUMBBR: 900677 GA	JOB NUMBER: 900677	PANICON DEVELOPMENTS LTD.	PAGE	1	OF	1
SAMPLB I	Au					
	ppb					
28919	nd					
28920	nđ					

VANGE CLAREPERT OF A DEST 1.12 1630 Pandora Street, Vancouver, J.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

					Thi	s leach	is part	ial for A	1, Ba,	Ca, Cr,	Fe, K, M	g, Mn, N	a, P, Sn	, Sr and	W.			a + C f •	ANAL	YST:	4	\sim	<u>'</u>		
REPORT #: 900677 PA	PANICON DE	VELOPMEN	IS LTD.			PROJE	CT: TERY	L		DAT	E IN: OC	T 12 199) DA	TE OUT: P	NOV 08 19	990	ATTENTIO	N: MR. S	TEVE TODO	RUK		PAG	E 1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	. Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	H	Zn
	00a	z	ppe	ppa	bbe	ĩ	ppm	ppa	ppe	pp∎	ï.	7.	7.	008	008	z	000	7.	005	004	004	004	pp 🛚	000	008
28919	0.3	0.29	<3	72	<3	0.17	1.8	6	139	102	2.29	0.03	0.05	970	13	0.05	17	0.05	19	(2	12	21	<5	(3	375
28920	0.3	0.40	<3	83	<3	4.14	1.0	9	83	38	3.76	0.21	1.02	1429	6	0.05	17	0.06	20	<2	<2	342	<5	(3	67
Minimum Detection	0.1	0.01	3	i	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	i	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - Greater Ti	han Maxín	AU 40.	is - Insu	ufficien	: Sample	กร	- No Samp	le	ANDMALOU	S RESULT	S - Furti	ner Anal	yses By i	Alternati	e Method	s Sugges	ted.							• • •

1

:

÷ ÷

Ē.							
				TS		RATORIES	
		4		1.4	DIV. BURGENHH	ECHNICAL INTERPRISES I IMITED	
;					2	- 302 - 480 STREET, EAST	
,					DASK	ATUON SASKATCHEWAN	
•					(306) 931 -	1033 FAX: (306) 242-4717	
			CERTIFICATE	OF ANALYSI	S		
		Prime	Exploration Ltd	West Hastin	ngs St.	REPORT NO.	
	SAMPLEANTROM	10th F	100r, Box $10-80$		•	59831	
		Vancou	14êL' D'C'				
		V6C 22	70		TARIATCI	# 15253	
					TROUTO	R-2458	
		il.			1.0		
	SAMPLE(S) OF GO						
		Teryl	option				
				_			
	DEMONS.	Wrang	eil Samples - F	amicon Devel	opmenc		
	REMARKS.						
		•	Au				
			qqq				
			45				
	L28+00	4+25W	45				
	L28+00	4+50W	10				
	L28+00	6+70W	30				
	L28+00	5+25W	10				
),28+00	Q . _. .					
	1.28+00	5+50W	10				
	L28+00	5+75W	10				
	L28+00	6+00W	<u>ጋ</u>				
	L28+D0	6+25W	10				
	L28+00	6+50W	10				
		6.04.0	10				
	L28+00	9+75W	5				
	L28+00	7+251	10				
	178+00 178+00	7+50W	20				
	1.28+00	7+75W	10				
	D20100						
	L28+00	8+00W	10				
	L28+00	8+25W	15				
	L28+00	8+50W	10				
	128+00	8+75W	10				
	L28+00	9+00W	10				
		m0 -	I Foster, P. LO	ugheed			
	COPIES	TO: 1	Prime - Vancouve	ĩ			
	TNVOLCE	1 10: 1					
	0 07/	/9/)					
	Sep 0//	20		RIGNED			
				300000		Page 1 of 5	~
				a Deuxitment.			

7 190 17:27 0000 TSL LABORATORIES 306-242-4717

P.20

i,

i

٩

----ê ÷.

- Province -

÷

Ï 3

ļ

÷

. . . .

÷

Sep.

القنية

i.

Ę

Ē

For enquiries on this report, please contact Customer Service Department Samples, Pulps and Rejects discarded two months from the date of this report

				TŞL L	ABO	RATO	RIES	
					NY BURGENOR	TECHNICAL PRITER		
					SASK	ATOON, SASK	ATCHEWAN S7K RA4	
					(304) 931-	-1033 FAX. (3	nn) 242 4717	
, –		CERTIFICATE	OF ANA	LYSIS				
	Prime Exp	ploration Ltd.			¢+	REPOR	T No.	
SAMLIE(SI LUAM	10th Floo Vancouver	or, Box 10-808 r, B.C.	Westh	vartnäe	36.	S98	31	
	V6C 2X6				TNUOTO	t #: 15	/ 253	
SAMPLE(S) OF SC	110			, •	P.O.:	R-2458		
	Teryl Opt	tion						
	_				ant			
REMARKS :	Wrangeil	Samples - Pa	micon L	AAATO T uuc	311.6			
		Λu						
		ppo						
L28+00	9+25W	40						
L28+00	9+50W 9+75W	5						
L28+00	10+25W	5						
L28+00	10+50W	5						
L28+00	10+75W	5						
L28+00	11+00W	5						
L28+00	11+25W	5						
L28+00	11+75W	10						
L28+00	12+00W	<5						
L28+00	12+5UW 0+252	<5						
1.10+DOW	25+00\$	<5						
L10+00W	25+25\$	10						
L]0+00W	25+50s	5						
L10+00W	25+755	5						
L10+00W	26+00\$	<5 25						
710+00M 710+00M	26+255	5						
COPI ES INVOICE	TO: J. Fo TO: Prime	oster, P. Loug 9 - Vancouver	heed					
Sep 07/9	90							
		SIC	GNED					\mathbf{M}

 \bigcirc

about the or :

......

7 •

•

.

Bandwardshardshardshardshardshardshardshardsh		4			TSL L		RATORIES	
NUMBER Control of the second of						2	- 302 - 4AIL STREET, EAST	
CERTIFICATE OF ANALYSIS AMPLE(S) FROM Prime Exploration Ltd. 10th Floor, Boc. Vancouver, B.C. Vaccouver, B.C. VGC 2X6 Implements (St. 19931 INVOICE #: 15253 P.O.: R-2458 Prime - Vancouver INVOICE #: Prime - Vancouver						SASN	1024 FAX (306) 212-4717	
AMPLENS FROM Prime Exploration Ltd. 10th pricor, Bact. Vancouver, B.C. V6C 2X5 MMPLENS OF Sol1 Toryl Option REMARKS: Wrangell Samples Pauloon Development Au ppb L10+00W 26+75S 35 L10+00W 27+705S 45 L10+00W 27+75S 15 L10+00W 27+75S 15 L10+00W 27+75S 15 L10+00W 27+75S 5 L10+00W 28+75S 5 L26+00S 10+50W 45 L26+00S 11+75W 45 L26+00S 11+75W 45 L26+00S 12+150W 45 L26						G (300) 531		
AMPLE(S) FROM Prime Exploration Ltd. 10th Floor, Box 10-808 Weet Heatings St. Vancouver, B.C. Vancouver,			CERTIFICA	TE OF AN	ALYSIS			
AMPLE(S) FROM 10th Floor, Box 10-100 west independent vaccouver, B.C. \$3931 Vancouver, B.C. Vancouver, B.C. Invoice #: 15253 SAMPLE(S) of Soll F.O.: R-2458 Toryl Option REMARKS: Wrangell Samples Pauloon Development Au ppb L10+00W 26+75S 35 L10+00W 27+25S 45 L10+00W 27+5S 10 L10+00W 27+5S 10 L10+00W 27+5S 10 L10+00W 27+5S 15 L10+00W 28+25S 5 L10+00W 28+25S 5 L10+00W 28+75S 5 L26+00S 10+75W 45 L26+00S 11+75W 45 L26+00S 11+25W 45 L26+00S 11+25W 45 L26+00S 12+2		Prime Exp	loration I	td.	Westinus	St.	REPORT NO.	
Varcouver, Dict VGC 2X6 INVOICE #: 15253 F.O.: R-2458 F.O.: R-2458	SAMPLE(S) FROM	10th F100	r Box 10.	1108 WBSC			59831	
IMMPLE(S) OF Sol1 INVOLCE #: 15253 Foryl Option REMARKS: Wrangell Samples Paniloon Development Au ppb L10+00W 26+75S 35 L10+00W 27+50S 10 L10+00W 28+50S 5 L26+00S 10+50W L26+00S 11+50W L26+00S 11+50W L26+00S 11+50W L26+00S 11+50W L26+00S 11+50W L26+00S 12+50W L26+00S 12+50W C0PIES To: J. Fowler, P. Loug		Vancouver V6C 2X6	, 0.0.					
SAMPLE(S) OF Sol1 P.0.: Kr400 Toryl Option REMARKS: Wrangell Samples Pauloon Development Au ppb L10+00W 26+75S 35 L10+00W 27+208 <5						INVUIC	<u>s</u> #: 15253	
Toryl Option REMARKS: Wrangell Samples Pamicon Development Au ppb L10+00W 26+75S 35 L10+00W 27+008 <5	BALLER OF SU	11				P.O.:	R-2450	_
Toryl Option REMARKS: Wrangell Samples Panulcon Development Au ppb L10+00W 26+75S 35 L10+00W 27+008 <5 L10+00W 27+25S <5 L10+00W 27+75S 15 L10+00W 27+75S 15 L10+00W 28+75S 5 L10+00W 28+75S 5 L10+00W 28+75S 5 L10+00W 28+75S 5 L10+00W 28+75S 5 L26+00S 10+25W <5 L26+00S 10+25W <5 L26+00S 11+25W <5 L26+00S 11+25W <5 L26+00S 11+25W <5 L26+00S 11+25W <5 L26+00S 11+25W <5 L26+00S 12+25W <5 L26+	SAMPLE(5) OF							
REMARKS: Wrangell Samples Paulcon Development Au ppb L10+00W 26+75S 35 L10+00W 27+008 <5 L10+00W 27+25S <5 L10+00W 27+50S 10 L10+00W 28+20S 10 L10+00W 28+25S <5 L10+00W 28+25S 55 L10+00W 28+75S 5 L10+00W 28+75S 5 L10+00W 28+75S 5 L26+00S 10+25W <5 L26+00S 10+25W <5 L26+00S 11+00W <55 L26+00S 11+75W <55 L26+00S 11+75W <55 L26+00S 11+75W <55 L26+00S 11+75W <55 L26+00S 12+50W <5 C0PIES TO: J. FowLer, P. Lougheed INVOICE TO: Primo - Vancouver		Toryl Opt	tion					
REMARKS: Wrangeli i bangiton Au ppb L10+00W 26+75S 35 L10+00W 27+00S 45 L10+00W 27+25S 45 L10+00W 27+75S 15 L10+00W 28+25S 45 L10+00W 28+25S 45 L10+00W 28+25S 55 L10+00W 28+75S 5 L26+00S 10+25W 45 L26+00S 10+75W 5 L26+00S 11+25W 45 L26+00S 11+25W 45 L26+00S 11+75W 45 L26+00S 11+75W 45 L26+00S 12+00W 45 L26+00S 12+25W 45 C0PIE8 TO: J. Fowler, P. Lougheed INVOICE TO: Primo - Vancouver 414			¢emnle5	Paulcon	Develop	ent		
Au ppb h10+00W 26+75S 35 h10+00W 27+25S 45 h10+00W 27+25S 45 h10+00W 27+75S 10 h10+00W 28+75S 55 h10+00W 28+75S 55 h10+00W 28+75S 5 h10+00W 29+00S b h26+00S 10+75W h10+00W 29+00S 5 h26+00S 11+75W h26+00S 11+75W h26+00S 11+75W h26+00S 11+75W h26+00S 12+50W h26+00S 12+50W h10+00W 5 h26+00S 12+50W h10+00W 5 h10+00W 5 h10+00W 5 h10+00W 5 h10+00W 5 h10+00W 5	REMARKS:	Wrangeri	0 dulp 1 ou					
ppb L10+00W 26+75S 35 L10+00W 27+00S <5			Aц					
L10+00W 26+75S 35 L10+00W 27+00S 55 L10+00W 27+25S 55 L10+00W 27+50S 10 L10+00W 28+25S 55 L10+00W 28+25S 55 L10+00W 28+75S 5 L10+00W 28+75S 5 L10+00W 29+00S 5 L26+00S 10+25W 55 L26+00S 10+75W 55 L26+00S 11+25W 55 L26+00S 11+25W 55 L26+00S 11+25W 55 L26+00S 12+25W 55 L26+00S 12+25W 55 L26+00S 12+25W 55 L26+00S 12+25W 55 L26+00S 12+50W 5			ррр					
L10+00W 27+00S <5 L10+00W 27+25S <5 L10+00W 27+75S 10 L10+00W 27+75S 15 L10+00W 28+25S <5 L10+00W 28+25S 5 L10+00W 28+75S 5 L10+00W 29+00S 5 L26+00S 10+25W <5 L26+00S 10+75W <5 L26+00S 11+75W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 11+75W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <	T 10+00W	26+75\$	35					
L10+00W 27+255 (5 L10+00W 27+755 15 L10+00W 28+00S 10 L10+00W 28+255 (5 L10+00W 28+255 5 L10+00W 28+755 5 L10+00W 29+00S 5 L26+00S 10+25W (5 L26+00S 10+75W (5 L26+00S 11+75W (5 L26+00S 11+25W (5 L26+00S 11+25W (5 L26+00S 11+25W (5 L26+00S 12+25W (5 L26+00S 12+25W (5 L26+00S 12+25W (5 L26+00S 12+25W (5 L26+00S 12+50W (L10+00W	27+005	<5					
L10+00W 27+50S 15 L10+00W 27+75S 15 L10+00W 28+25S <5 L10+00W 28+25S <5 L10+00W 28+75S 5 L10+00W 29+00S 5 L26+00S 10+25W <5 L26+00S 10+75W <5 L26+00S 11+75W <5 L26+00S 11+25W <5 L26+00S 11+25W <5 L26+00S 11+75W <6 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W	L10+00W	27+255	<5 10					
L10+00W 27+733 L L10+00W 28+00S 10 L10+00W 28+25S <5 L10+00W 28+50S 10 L10+00W 28+50S 5 L10+00W 29+00S 5 L26+00S 10+25W <5 L26+00S 10+75W <5 L26+00S 11+75W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <	L10+00W	27+505	15					
L10+00W 28+00S 10 L10+00W 28+25S <5 L10+00W 28+25S 5 L10+00W 28+75S 5 L10+00W 79+00S 5 L26+00S 10+25W <5 L26+00S 10+75W <5 L26+00S 11+75W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 11+75W <5 L26+00S 12+100W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Fowler, P. Lougheed INVOICE TO: Primo - Vancouver	L10+00W	27+755	2 .0					
L10+00W 28+25S <5 L10+00W 28+50S 10 L10+00W 28+75S 5 L10+00W 29+00S 5 L26+00S 10+25W <5 L26+00S 10+75W <5 L26+00S 11+75W <5 L26+00S 11+75W <5 L26+00S 11+75W <5 L26+00S 12+50W <5 L26+00S 12+50W <5 L26+00S 12+50W <5 L26+00S 12+50W <5 COPIES TO: J. FowLer, P. Lougheed INVOICE TO: Primo - Vancouver	1.10+00W	284005	10					
L10+00W 28+50S 10 L10+00W 28+75S 5 L10+00W 29+00S 5 L26+00S 10+25W <5 L26+00S 10+50W <5 L26+00S 11+75W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 L26+00S 12+50W <5 L26+00S 12+50W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Primo - Vancouver	1.10+00W	28+258	<5					
L10+00W 28+75S 5 L10+00W 29+00S 5 L26+00S 10+25W <5 L26+00S 10+75W <5 L26+00S 10+75W <5 L26+00S 11+00W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 12+00W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Fowler, P. Lougheed INVOICE TO: Primo - Vancouver	L10+00W	28+50S	10					
L10+00W 29+00S J L26+00S 10+25W <5 L26+00S 10+75W <5 L26+00S 10+75W <5 L26+00S 11+00W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 12+75W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Fowler, P. Lougheed INVOICE TO: Primo - Vancouver	L10+00W	28+755	5					
L26+005 10+25W <5 L26+00S 10+75W <5 L26+00S 10+75W <5 L26+00S 11+00W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 12+75W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Fowler, P. Lougheed INVOICE TO: Primo - Vancouver	L10+00M	29+005	5					
L26+005 10+50W <5 L26+005 10+75W <5 L26+005 11+00W <5 L26+005 11+50W <5 L26+005 11+75W <5 L26+005 12+00W <5 L26+005 12+25W <5 L26+005 12+25W <5 L26+005 12+25W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	404.000	10+25W	<5					
L26+00S 10+75W <5 L26+00S 11+00W <5 L26+00S 11+25W <5 L26+00S 11+75W <5 L26+00S 11+75W <5 L26+00S 12+00W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	126+00	10+50W	<5					
L26+00S 1J+00W <5 L26+00S 11+25W <5 L26+00S 11+50W <5 L26+00S 11+75W <5 L26+00S 12+00W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	1.26+005	10+75W	<5					
L26+00S 11+25W <5 L26+00S 11+50W <5 L26+00S 11+75W <5 I.26+00S 12+00W <5 L26+00S 12+25W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	126+00	5 1]+DOW	<5					
L26+00S 11+50W <5 L26+00S 11+75W <5 I26+00S 12+00W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Fowler, P. Lougheed INVOICE TO: Prime - Vancouver	L26+00	s 11+25W	< 5					
L26+00S 11+75W <5 I.26+00S 12+00W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	126+00	5 11+50W	<5					
L26+00S 12+00W <5 L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Primo - Vancouver	(.26+00	S 11+75W	<5					
L26+00S 12+25W <5 L26+00S 12+50W <5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	126+00	\$ 12+00W	<5					
L26+00S 12+50W <> COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	L26+00	s 12+25W	<5					
COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver	L26+00	s 12+50W	< 5					
INVOICE TO: Primo - Vancouver		TO: .T.	Foster, P.	Loughsed				
	COPIES	TO: Pri	no - Vanco	uver				
07 (0)	THACTOR							CTA
sep 07/90	Sep 07/	90						- 1

.....

Samples, Pulps and Rejects discarded two months from

 \odot

وتواينا بدأمه ويعزين بالدائمة التقالية لاعتقاد وتركيمك ليسط الأحطا وتركيمك تسمل والمتكار للروارة المتناك ومعلمك

-	4		٦		ORATORIE	IMITED
					2 - 302 - 48th STREET, AACKATINON, SASKATCH	FAST
					57 0.001 V/133 FAX: (306) 24	к баа 2 -47 17
				(30	01 331-1032	
	_		OF ANAL	YS15		
	and the Rate	Invation Ltd	•	-linge St.	REPORT NO	D,
SAMPLE(S) FROM	10th Floo	r, Box 10-80	8 West Hø	Etings por	\$9831	
	Vancouver wer 216	, B.C.				
	VOL AND			INV	OTCE #: 15253	\$
S	511			P.0		
SAMPLE(S) OF						
_	Toryl Opt	1011				
		comples -	Pamicon D	evelopment		
REMARKS:	Wrangell	Sembros				
		Au				
		ppo				
L11+50	22+50W	10				
L11+50	\$ 22+75W	5				
L11+50	\$ 23+25W	<5				
L11+50	S 23+50W	<5				
T.11+50	\$ 23+75W	<5				
L1]+50	\$ 24+00W	10				
L11+50	S 24+25W	5				
L11+50 L11+50	\$ 24+35W	<5				
• • • •	18 25+00W	<5				
L11+5(S 25+25W	<5				
L11+50	DS 25+50W	15				
L11+50	05 25+75W 05 10+50W	<5				
P24+0		<5				
L24+0	08 11+00W	<5				
L24+0	OS 11+25W	5				
1.2410	OS 11475W	<5				
L24+0	05 12+0UW	< 5	3			
COPIES	5 TO: J.	Foster, P. L	ougheed			
INVOIC	E TO: Pri					<u>C</u>]
5 arx 0'	7/90					[
SOP V						~ 5 V

.....

the state of the s

:

11. . . L

A REAL PROPERTY.

Par. Co. Werth an

:

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

e.

 \bigcirc

فيعكم والانتخاب فالمحادين ومعالسا كالمطريقاتكم ومحدور وأستحاث لوارنانه كالبكر

وتحركم محاذات المرازع إرجازكم والاخادان والألور ويتركم للمتحرب فتراز الرامع والملوطرة بالملحة

P.24

:S TSL LABORATO DIV. BURGENER TECHNICAL ENTERPHISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. REPORT No. 10th Floor, Box 10-808 West Hastings St. SAMPLE(S) FROM S9831 Vancouver, B.C. V6C 2X6 INVOICE #: 15253

P.O.: R-2458

SAMPLE(S) OF SOIL

Teryl Option

Wrangell Samples - Pamicon Development REMARKS:

Au ppb L24+00S 12+25W <5 55 L24+00S 12+50W

J. Foster, P. Lougheed COPIES TO: INVOICE TO: Prime - Vancouver

Sep 07/90

لى

SIGNED _

services on this report, please contact Customer Service Department.

T S L LABORATORIES

2-302-46TH STREET, SASKATCON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Repia Dipestion

PRIME EXPLORATIO	IN LTD.				T.S.L. REPOR T.S.L. File	7 No. : S - 98 No. : SE12MZ	31 - 1
808 West Hasting	os St.				T.S.L. Invoice	No.: 15450	
Vancouver B.C. \	V6C 2X6						
ATTN: J. FOSTER	Ĩ	PROJECT: TERYL OPTION	- PAMICON	R-2458	ALL RE	SULTS PPM	
		L28+00 4+25₩	L28+00 4+50W	L28+00 4+75W	L28+00 5+00₩	L28+00 5+25₩	128+00 5+50W
Aluminum	[A]]	10000	12000	16000	21000	9700	7200
Iron	[Fe]	29000	21000	29000	41000	15000	13000
Calcium	[Ca]	940	2500	3100	2800	1100	1200
Magnesium	[Mg]	1900	2700	2300	5100	2200	1300
Sodium	[Na]	100	110	60	160	110	100
Potassium	EK 3	250	250	280	3300	520	360
Titanium	[Ti]	320	330	420	930	300	270
Manganese	[Mn]	160	110	190	930	150	74
Phosphorus	[P]	260	250	430	510	560	380
Barium	(Ba]	110	130	200	270	69	92
Chromium	[Cr]	32	29	41	110	· 33	18
Zirconium	[Zr]	2	2	2	4	< 1	< 1
Copper	(Cu)	28	15	21	84	15	11
Nickel	[Ni]	21	16	23	54	13	8
Lead	[P5]	29	8	10	6	7	4
Ziac	[Zo]	130	52	109	91	32	37
Vanadium	[V]	69		67	97	48	 48
Strontium	[Sr]	Ģ	15	19	19	11	32
Cobalt	[[0]]	5	4	9	17	3	
Molvodenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ao]	< 1	< 1	< 1	< 1	< 1	< ;
Cadmium	[Cd]	< 1	< 1	$\langle 1$	< 1	< 1	< 1
Bervllium	(Be]	< 1	< 1	< 1	< 1	< 1	< 1
Boron	(B)	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb)	< 5	5	< 5	< 5	< 5	< 5
Vttrium	(Y]	3	3	-	5	2	2
Scandium	(Sc)	2	2	1	5	$\langle 1$	1
Tunosten	[W]]	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[N5]	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	20	10	20	< 10	< 10	< 10
Arsenic	[As]	10	10	220	90	10	5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	< 5	· •	< 5	< 5	< 5
Holmium	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Demis Pilipink

é

•---

PANICON

TSL LABORATORIES

> 2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

R-2458

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6

REPORT No. : 5 - 9831 - 2 T.S.L. T.S.L. File No. : SE12MZ T.S.L. Invoice No. : 15450

ALL RESULTS PPM

ATTN: J. FOSTER PROJECT: TERYL OPTION

128+00 5+754 L28+00 6+00W L28+00 6+25W 128+00 6+50W L28+00 6+75W 128+00 7+00# ELEMENT Aluminum [A]] 10000 21000 12000 16000 17000 20000 Iron (Fe) 17000 31000 25000 23000 34000 38000 Calcium [[a]] 1300 1700 95QQ 1400 3600 1300 Magnesium [Mg] 2000 4900 3200 2700 480ú 3660 Sodium [Na] 110 80 140 180 140 7Q Potassium [K] 250 440 420 730 630 350 Titanium [Ti] 340 376 25û 390 360 510 93 250 Manganese (Mn) 780 950 1800 200 Phosphorus [P] 350 370 910 2100 900 340 Bariua [Ba] 110 150 170 200 140 99 Chromium [Cr] 47 25 23 29 44 41 Zirconius [Zr] 3 1 < 1 2 5 6 27 Copper (Cu) 14 21 42 38 18 Nickel [Ni] 10 36 25 21 42 25 Lead [Pb] 5 7 4 7 9 5 Zinc [Zn] 43 24 86 72 120 58 Vanadium EV 3 59 60 96 74 44 55 Strontiue [Sr] 14 15 57 21 23 12 Cobalt [Ca] 3 ó 9 7 11 4 < 2 Molybdenum (Mo) ί2 < 2 $\langle 2$ < 2 < 2 < 1 Silver [Ag] < 1< 1 Ś ś 1 1 4 1 Cadmium [b3] < 1 < 1 { i ć 1 < 1 < 1 Beryllium [Be] < 1 < 1 < 1 < 1 \langle < 1 1 Boron < 10 10 < 10 (B) < 10 < 10 < 10 Antimony [56] < 5 < 3 5 Ł 5 < 5 ζ. 5 ٢. Yttrium [Y] 2 3 7 7 17 4 2 Scandium {5c} 3 < i 3 2 3 Tungsten < 10 [#] < 10 < 10 く 10 < 10 < 10 Nichium < 10 [Nb] i 10 < 10 × 10 < 10 < 10 Thorium {Th} < 10 20 20 40 20 20 Arsenic [As] 5 < 5 10 < 5 < 5 5 Bisauth (Bi) < 5 < 5 < 5 < 5 < 5 < 5 Tin < 10 [Sn] < 10 < 10 < 10 < 10 < 10 Lithium (L1) < 5 < 5 < 5 < 5 < 5 < 5 10 Holaiua [Ho] < 10 \$ 10 < 10 < 10 < 10

P.16

τ 5	- -	Aboratories 2-302-48th stri te F/	EET, SASKATOON, ELEPHONE #: (30) X #: (30)	5askatc hewan 6) 931 - 1033 6) 242 - 4717	57K 6A4		
		I.C.A.P. PLASMA S	CAN	Dan in Alanakian			
			edna-	Regia Digestion			
PRIME EXPLORATION FLOOR BO	FION LTD × 10	•			T.S.L. REPORT	No.: 5 - 98 No.: 5F12M7	31 - 3
908 West Hast	ings St.				T.S.L. Invoice	No. : 15450	
Vancouver B.C.	. V6C 2X	6					
ATTN: J. FOST	R	PROJECT: TERYL OPTION	PAMICON	R-2458	ALL RE	SULTS PPM	
ELEMEN	IT	L28+00 7+25H	128+00 7+50W	L28+00 7+75₩	L28+00 8+00#	128+00 8+25 4	L28+00 8+50¥
Aluminum	[A] }	22000	17000	23000	27000	30000	25000
1 ron	[Fe]	35000	49000	41000	37000	58000	40000
Calcium	[Ca]	3900	2300	920	3900	540	600
Magnesium	[Mg]	4100	4200	730	2000	590	700
Sodium	(Na)	150	80	130	300	120	200
Potassiua	EK 3	1100	1500	280	820	220	320
Titanium	LT13	530	380	1100	700	1100	970
Малдалезе	[Mn]	1700	1500	120	1200	110	250
Phosphoru	5 (P]	920	880	230	590	350	230
Barium	(Ba]	170	190	75	250	97	. 91
Chromium	[Cr3]	41	45	26	29	32	28
Zirconium	[Zr]	5	5	64	15	55	140
Copper	(Cu]	49	73	10	26	19	12
Nickel	ENIL	38	42	6	19	9	9
Lead	[Pb]	ዮ	7	16	12	17	18
Zinc	(Zn)	160	140	44	160	59	10 6 4
Vanadius	{V 3	61	75	74	31	73	50
Strontius	(Sr)	28	22	9	34	11	7
Cobalt	[Co]]	10	20	1	7	2	2
Malybdenus	[Mo]	< 2	< 2	2	< 2	2	4
Silver	(Ag]	< 1	× 1	< 1	< <u>1</u>	< 1	< 1
Cadmium	[63]	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	i	2	× 1	6	1	1
Baron	[B]	× 10	< 10	< 10	ζ 10	< 10	< 10
Antimony	[Sb]	(5	5	< 5	3 5	< 5	< 5
Yttrium	[¥]	40	53	6	110	9	8
Scandium	[Sc]	3	6	2	2	3	2
Tungsten	EW 1	ć ių	× 10	< 10	< 10	< 10	< 10
Niobium	(Nb)	< 10	< 10 · ·	20 ·	20	20	20
Thoriua	(Th]	30	20	40	30	20	40
Arsenic	[As]	(5	15	€ \$	< 5	< 5	5
Bismuth	{Bi]	< 5	× 5	< 5	÷ 5	< 5	< 5
Tin	[5n]	(10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	5	< 5	< 5	₹ 5	< 5	< 5
Holmium	(Hp)	₹ 10	10	< 10	< 10	< 10	< 10

۱

T	SL LAB	Xoratories 2-302-48th str t F	EET, SASKATOON ELEPHONE #: (30 AX #: (30	, saskatchewan 36) 931 - 1033 36) 242 - 4717	57K 6A4		
		I.C.A.F. PLASMA	SCAN Aqua	-Regia Digestion			
PRIME EXPLORA 10th Floor Bo 808 West Hast Vancouver B.C. ATTN: J. FOSTI	TION LTD. x 10 ings St. . V&C 2X6 ER	PROJECT: TERV! OPIIC	ромістри	2-7450	T.S.L. REPOR T.S.L. File T.S.L. Invoice	11 No. : S - 9 No. : SE12MZ No. : 15450	831 - 4
ст. см. т.		L28+00 8+75#	128+00 9+00W	L28+00 9+25W	HEL RE	L28+00 9+75W	L28+00 10+25W
titat	41						
Aluminum Iron Calcium	[A1] [Fe] [Ca]	24000 34000 3000	16000 44000 1800	9300 29000 3200	13000 23000 700	21000 35000 2400	37000 56000 1800
Sodium Potassium Titasium	EK 3	2500 210 530	1400 (40) 520	1900 120 480	610 100 290	430 120 230	7800 90 4200
Phosphorus Banuar	[Mn] 5 [P]	2500 970	560 660	890 270 330	780 120 290	880 110 400	1500 1200 750
Chromium Zirconium Cooper	[Cr] [Cr] [Cu]	24 7 26	76 35 9 78	23 5	79 21 . 6	91 23 34	95 220 15
Nickel Lead Zinc	(Ni) (Pb) (Zn)	19 12 150	17 15 65	12 11 44	8 15 33	13 8 17 43	55 75 5
Vanadiua Strontium Cobalt	[V] [Sr] [Co]	43 19 7	60 15 5	88 13 3	50 8 2	51 13 1	140 12 24
Molybdenum Silver Cadmium Bervllium	(Mo) (Ag) (Cd) (Be)	<pre>< 2 < 1 < 1 </pre>	<pre>< 2 < 1 < 1 < 1 < 1</pre>	<pre>< 2 < 1 < 1 < 1 < 1</pre>	< 2 < 1 < 1	< 2 < 1 < 1	<pre> < 2 < 1 < 1 < 1 </pre>
Boron Antimony Yttrium	[B] [Sb] [Y]	< 10 < 5 30	< 10 < 5 7	< 10 10 3	< 10 < 5 4	< 10 < 5 6	< 10 5 7
Scandium Tungsten Niobium Thorium	(Sc) [W] [N6] (T6]	1 < 10 10 30	i < 10 10 · 70	1 < 10 < 10	1 < 10 10	10 20	13 < 10 < 10
Arsenic Bismuth Tin	(As) [Bi] [Sn]	 ₹ 5 < 5 < 10 	15 < 5 < 10	15 ≤ 5 ≤ 10	< 5 < 5 < 10	 ₹ 5 ₹ 5 ₹ 10 	<pre>< 10 < \$ < 5 < 5 < 10 < 10</pre>
Lithium Holmium	(Li) [Ho]	< 5 < 10	< 5 < 10	< 5 < 10	< 5 < 10	< 5 < 10	15 < 10

SIGNED :

•

75	i L LA	Boratories 2- 302-48t h Stf T F	EET, SASKATOON, ELEPHONE #: (30 AX #: (30	, Saskatchewan 26) 931 - 1033 26) 242 - 4717	57K 644		
		I.C.A.P. PLASMA	SCAN Aqua	-Regia Digestion			
PRIME EXPLORAT	FION LTD. x 10				T.S.L. REPO	RT No. : 5 - 9 e No. : 5F1287	631 - 5
808 West Hast: Vancouver B.C.	ings St. . V&C 2Xd	6			T.S.L. Invoic	e No. : 15450	
ATTN: J. FOSTE	ER	PROJECT: TERYL OPTION	PAMICON	R-2458	ALL A	ESULTS PPM	
ELEMEN	ग	£28+00 10+50#	L28+00 10+75W	L28+00 11+00W	L26+00 11+25W	L28+00 11+50W	11+75W
Aluminum	(A1)	32000	32000	32000	43000	33000	34000
Iron	(Fe)	34000	35000	39000	38000	43000	39000
Calcium	[Ca]	1300	1200	1900	460	500	580
Magnesium	[Hg]	6800	2200	750	1200	940	810
Sodium	ENa]	280	270	150	600	220	260
Potassium	(K)	1000	820	240	780	44Ú	570
Titanium	[1]	1400	900	700	71 Ø	740	730
Manganese	[Mn]	1100	52ü	330	970	870	1100
Phosphorus	s [P]	500	1100	560	3 B Ú	710	980
Barium	[Ba]	120	77	110	64	41	40
Chromium	[Cr]	100	32	27	18 .	28	29
Zirconium	[]r]	35	27	49	340	28	38
Copper	(Cu)	22	13	15	13	19	23
Nickel	ENi]	31	12	9	16	13	19
Lead	[Pb]	11	15	14	22	17	15
Zinc	(Zn)	140	100	63	210	85	100
Vanadium	£ V3	5	35	37	17	30	28
Strontium	(Sr]	B	7	Ió	3	4	4
Cobalt	(Co)	i 1	3	2	4	4	5
Molytodenum	i [Ma]	< 2	< 2	× 2	< 2	Κ 2	4
Silver	[Ag]	< 1	$< \pm$	< 1	< 1	< 1	< 1
Cadmium	[b]]	< i	< 1	× 1	1	K 1	< 1
Beryllium	[Be]	3	3	1	5		3
Baron	(8)	< 10 10	< 10	< 19	< 10	< 10	< 10
Antimony	[55]	10	5	4 5	()	K 3	< 5
YTTTIUM	iYJ	14	10	7	24	9	14
5Canolum	ISC:	S	2	4	2	2	1
lungsten	LW J	< 10 10	< 10 55	< 10 50	< IV	< 10 50	< 10
N1001UA	(ND)	10	20 -	20	· 20	20	20
INOFILM	101	20	20 E	69 / E	λĈ	40	4 7)
HISENIC	LHSJ CD: 7	< 0 / 5	С. Е.	1 3 / E	× 5	J	10
0150HUTN 7:-	1013	< J	5 J	< J (16	× 5	5 3	< 3 / / / /
119	1003	5 IU 40	5 19	5 10 7 E	< 10 	< 10 (5	< 10 / E
	LLLI CULI	10	x 3 4 (1)	5 0	х Э	()	<u> </u>
7018108	1401	× 10	S 1V	< 10	× 10	3 10	× 10

PAMICON

128+00 12+00W 126+00 12+50W

2

T S L LABORATORIES

2-302-46TH STREET, SASKATOON, SASKATCHEWAN 57K LA4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASHA SCAN

Aqua-Regia Digestion

R-2458

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2XA ATTN: J. FOSTER PROJECT: TERYL OPTION T.S.L. REFORT No. : S - 9831 - 6 T.S.L. File No. : SE12M2 T.S.L. Invoice No. : 15450

ALL RESULTS PPM

128+00 9+25E L10+00W 25+00S L10+00W 25+25S L10+00W 25+50S

ELEMENT

Aluminum	EAL]	11000	41000	15000	35000	19000	13000
Iron	(Fe]	23000	39000	43000	52000	49000	45000
Calcium	[Ez]	2700	320	640	1600	1000	1700
Magnesiu	un EMg]	530	650	4400	6000	1400	710
Sodium	[Na]	290	470	50	7 0	100	120
Potassiu	ar EK 3	550	670	330	1900	270	300
Titanium	(Ti]	510	820	440	1200	870	1200
Manganes	e [Mn]	2500	610	340	250	110	140
Phosphor	us [P]	1600	340	450	170	230	340
Barium	[Ba]	140	44	100	210	130	120
Chromium	£Cr]	30	13	75	2E9	58	31
Zirconiu	₩ {Zr]	3	600	24	70	27	12
Copper	[Cu]	17	6	72	71	15	14
Nickel	ENil	23	7	35	240	17	11
Lead	(69)	7	26	4	Ġ	17	21
linc	[[n]	88	130	58	76	42	43
Yanadium	EN 3	33	14	84	95	130	110
Strontiu	[Sr]	18	3	8	13	13	15
Cobalt	[Ca]	7	3	9	25	3	2
Molybdenu	um [Mo]	< 2	2	< 2	< 2	2	2
Silver	[Ag]	< i	< 1	(1)	< 1	< 1	< 1
Cadmium	(Cd)	< 1	3	< 1	× 1	< t	< 1
Beryllium	[Be]	1	5	< i	2	< 1	< 1
Baron	(B)	< 10	3. 10	< 10	< 10	< 10	₹ 10
Antimony	[56]	< 5	c,	< 5	< 5	: 5	₹ 5
Yttrium	EY 1	6	17	4	10	5	4
Scandium	[Sc]	< 1	5	4	9	3	2
Tungsten	EM 3	、 10	< 10	< 10	< 10	< 10	< 10
Niobium	(Nb)	< 10	30 ·	< 10	· < 10	10	20
Thorium	កោរ	< 10	110	20	< 10	10	20
Arsenic	[As]	35	< 5	25	< 5	10	19
Bismuth	(B1)	< 5	< 5	< 5	< 5	< 5	< 5
Tia	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	(Li]	、 5	< 5	₹ \$	15	< 5	< S
Holaium	EHo3	< 10	< 10	< 10	< 10	< 10	< 10

P.19

DATE : SEP-13-1990

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Regia Digestion PRIME EXPLORATION LTD. 10th Floor Box 10 1.S.L. REPORT No. : 5 - 9831 - 7 T.S.L. File No. : SE12MZ 808 West Hastings St. T.S.L. Invoice No. : 15450 Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: TERYL OPTION PAHICON R-2458 ALL RESULTS PPM L10+00W 25+755 L10+00W 26+005 L10+00W 26+255 L10+00W 26+505 L10+00W 26+755 L10+00W 27+005 ELEMENT Aluninum [A1] 26000 44000 14000 18000 27000 28000 Iron [Fe] 37000 40000 55000 47000 49000 62000 Calcium (Ca3 1400 1900 1300 1200 2000 3000 Magnesium [Mg] 810 770 1500 2300 6400 600ú Sodium [Na] 170 150 110 140 6û 100 Potassium [K]] 340 250 410 530 800 4000 Titanium (Ti) 770 600 360 410 630 1300 Manganese (Mn) 150 230 2800 1200 3700 1500 Phosphorus [P] 250 320 650 770 620 1500 Barium [Ba] 120 100 190 150 140 180 Chronium [Cr3] 30 55 73 110 190 210 Zirconium [Zr] 72 94 8 ó 12 6 [Cu] Copper 13 19 73 34 50 47 Nickel [Ni] 11 17 160 74 45 63 Lead [Pb] 15 19 7 46 49 4 Zine [[n] 53 60 270 190 130 110 Vanadium EV 3 63 47 57 59 110 110 Strontium [Sr] 11 12 i3 12 14 20 Cobalt [[03] 2 3 27 13 18 25 Molybdenum [Mo] 2 2 2 < < 2 < 2 < 2 ٢, Silver [Aq] 1 < 1 < Ś 1 < 1 < 1 < 1 Cadmium [63] < 1 1 1 2 ζ. 1 { 1 ζ. 1 Beryllium [Ba] < 1 Z ÷ 1 i 4 1 1 Baron (B) < 10 < 10 ÷ 10 < 10 < 10 < 10 Antiaony 5 [55] ٢, Ł 5 15 < 5 İÒ 5 Ś Yttrium [Y] £ 7 17 8 5 ó Scandium (Sc) 2 3 3 2 10 έ Tungsten 10 [#] < < 10 10 Ś < 10 < 10 Ł 10 Niobium [Nb] 20 10 < 10 ₹. 10 Ł 10 ć. 10 Thorium 10 [Th] 40 < 10 < 10 < 10 < 10 Arsenic [As] 10 < 5 120 1Û 95 5 ζ. Bisauth {Bil < 5 < 5 < 5 < 5 < -5 < 5 Tin [Sn] { 10 < 10 < i0 < 10 ٢. 10 < 10 < 5 < 5 Lithium (Li) ς 5 < 5 5 10 Holmium (Ho) < 10 < 10 20 10 < 10 < 10

TSL

LABORATORIES

TSL LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN \$7K. 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Regia Digestion PRIME EXPLORATION LTD. REPORT No. : 5 - 9831 - 8 T.S.L. 10th Floor Box 10 T.S.L. File No. : SE12MZ 808 West Hastings St. T.S.L. Invoice No. : 15450 Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: TERYL OPTION PAHICON R-2458 ALL RESULTS PPM L10+00W 27+255 L10+00W 27+505 L10+00W 27+755 L10+00W 28+005 L10+00W 28+255 L10+00W 28+505 ELEMENT Aluminum [41] 26000 34000 17000 6600 25000 17000 Iron [Fe] 38000 33000 48000 15000 26000 37000 Calcium [Ca] 600 380 2000 1400 660 960 Magnesium Elfig] 810 590 2100 1100 410 460 Sodius [Na] 230 190 210 120 190 120 Potassium EK 1 380 290 620 450 290 380 Titaniua [Ti] 970 660 580 300 610 560 Manganese (Mn) 580 176 1900 250 160 300 Phosphorus [P] 870 430 880 540 400 440 Barium (Bal 70 35 72 68 57 83 Chromium [Cr] 28 21 39 20 17 24 Zirconium [Zr] 19 83 6 < 1 23 21 Cooper (Cu) 16 11 46 12 11 39 Nickel ENi I 6 8 37 11 6 21 Lead [Pb] 20 14 17 ò 14 20 Zinc [[n]] 44 63 120 48 55 120 Vanadium EV 1 53 35 37 43 26 45 Strontium [Sr] 5 5 Ξí 8 6 8 Cobalt [[0]] 2 1 13 3 < 14 Malybdenum [Ma] 2 < 2 < 2 2 < 2 ć < 2 Silver [Aq] $\langle 1 \rangle$ ٢. ţ < 1 < 1 < 1 < 1 Cadmium [Cd] < 1 < 1 2 < 1 < : < 1 Beryllium [Be] 1 1 Ż $\overline{2}$ \$ 1 1 < 1 Bāran [8] < 10 < 10 < 10 < 10 < 10 < 10 Antimony {Sb} 1 5 < 5 < 5 15 < 5 < 5 Yttrium [Y] 7 8 11 Ž 6 5 Scandium {5c] 1 i < 1 í < 1 i Tunosten EW I < 10 < 10 < 10 < 10 < 10 < 10 Nichium [Nb] 20 20 < 10 < 10 20 10 Thorium [Th] 50 < 10 20 < 10 < 10 < 10 Arsenic < 5 (As) < 5 180 < 5 10 15 Bismuth [Bi] < 5 < 5 < 5 < 5 < 5 < 5

Tin

Lithium

Holaium

{Sn}

(Li)

[Ho]

< 10

< 5

< 10

SIGNED :

10

< 5

< 10

< 10

< 5

< 10

< 10

< 5

< 10

< 10

< 5

< 10

< 10

、 5

< 10

T S L LABORATORIES

.

-

		2-302-48TH ST	reet, Saskatoon Telephone #: (34 Fax #: (34	, Saskatchewan 26) 931 - 1033 26) 242 - 4717	57K 6A4		
		I.C.A.P. PLASMA	SCAN				
			Aqua	-Regia Digestion	n		
PRIME EXPLORAT 10th Floor Box	ION LTD				T.S.L. REPO T.S.L. FI	NRT No. : 5 - 5 Le No. : SE1243	831 - 9
808 West Hasti	ngs St.				t.S.L. Invoid	e Na. ; 15450	
Vancouver B.C.	V6C 2X	6					
ATTN: J. FOSTE	R	PROJECT: TERYL OPTIO	n Pamicon	8-2458	ÁLL F	ESULTS PPM	
ELEMEN	T	L10+00W 28+75\$	L10+00W 29+005	126+005 10+25¥	L26+005 10+50W	L26+005 10+75W	L26+005 11+00W
Aluminum	[6]]	00050	70000	00000	0500		
1500	EFa7	23000	30,000	20000	9500	35000	1100¢
Calcium	(Ca)	53000	37000 74A	2200	27000	37000	30000
Mannesius	EXe1	450	470	2200	1000	1700	1200
Rodiua	[N ₂]	140	10	1000	1500	1000	1200
Patacciua	CK 3	210	175	200	200	270	130
Titanium	fTil	210	110	400	300	-570	370
Mannanaea	EMal	020 97	00V 270	4/0	420	760	540
Phoenhonue	10 1	70 770	220	2100	760	S20	850
Ranium	[Da]	2.99	400	330	44Q 57	440	1000
Phonesium	(Da)	04. 04.	6V 55	140	3/	84	90
7ieconius	[76]	75	25	28	. 4ن	22	25
Cossan	1003	72	120	4	2	120	4
Nickal	1603 FM13	11	11	17	16	17	13
land	2023 7963	0	7	20	38	10	15
Ziac	57-1	1/	18	10	۶ 1	18	8
Lin, Umadium	50 3	.)K/	0/ 00	78	51	91	54
Vanabium Chanabium	10 3	. cc	28	43	57	31	61
C-5-14	10-1	/		14	8	12	10
	(44)	1	1	6	7	2	5
noiyouenum Citure	1001	× 4	<u>\</u>	< 2	< 2	< 2	< 2
21146L	thg)	× Σ	1	K 1		< 1	< 1
	[L0]			< 1	≤ 1	< 1	< 1
Deryllium Deryllium	1081		2	1	< 1	2	< 1
boron	18 J	N 10	- 10	< 10	< 10	(10	< 10
AULTWORA	1201		< 5 7	. (9	5	< 5	< 5
YETPIUM	1 13	5	1	1	4	9	3
Scandium	1501	8	i	< 1	< 1	1	< 1
rungsten	116 J	< 10 00	\$ 10	< 10	< 10	< 10	< 10
	101	20	20	< 10	10	20	< 10
INOFIUM Annonia	£10J	< 10 / F	K 10	40	< 10	10	< 10
HFSCRIC Discutt	1853			1 B	25	< 5	10
21- 212世行2日	1911	< 5	< 5 	< 5	< 5	< 5	< 5
	1501	< 10	< 10	< 10	< 10	< 10	< 10
		< 2	< 5	10	< 5	(5	< 5
HOIRIUM	1H01	< 10	K 10	K 10	< 10	< 10	< 10

T S L LABORATORIES

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASHA SCAN

Aqua-Regia Digestion

R-2456

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X& ATTN: J. FOSTER PROJ.

ELEMENT

T.S.L. REPORT No. : S - 9831 - 10 T.S.L. File No. : SE12MZ T.S.L. Invoice No. : 15450

ALL RESULTS PPH

ITN: J. FOSTER PROJECT: TERYL OPTION PAMICON

L26+005 11+25W L26+005 11+50W L26+005 11+75W L26+005 12+00W L26+005 12+25W L26+005 12+50W

Aluminum	[A]]	24000	52006	33000	33000	36000	43060
Iron	[Fø]	37000	63000	46000	62000	44000	30007
Calcium	(Ca)	960	1300	680	1100	440	440
Magnesiu	EMg]	670	1100	500	1800	410	1700
Socium	(Na]	130	350	190	210	230	:⊊⁄∨ ≎7ስ
Potassiu	• (K]	280	580	280	590	350	510
Titanium	[Ti]	740	1200	1100	1000	1166	700
Manganese	[Mn]	630	810	180	2000	250	500
Phosphoru	is (P]	530	280	390	570	370	340
Bariya	[Ba]	37	63	41	55	32	51
Chronium	[Cr]	23	39	22	76 .	22	20
Zirconium	[[]	26	ĊŢ	140	40	150	220
Copper	(ໂມ)	16	30	11	41	13	14
Nickel	(Ni]	16	Zù	4	89	8	17
Lead	[25]	15	26	21	21	23	18
Zinc	[7n]	62	120	63	93	84	120
Vanadium	{V 3	35	67	41	45	40	22
Strontium	[Sr]	5	7	6	7	3	3
Cobalt	(Co)	3	4	K 1	18	3	4
Molybdenue	i [Mo]	< 2	2	4	< 2	2	2
Silver	[Ag]	< 1	i 1	< 1	< 1	< 1	< 1
Cadmium	[[4]]	< t	4 I	< 1	< 1	< 1	< 1
Beryllium	[Be]	1	7	1	3	2	2
Baron	(B)	< 10	< 10	< 10	< 10	< 10	< 19
Antimony	[25]	< 5	< \$	< 5	< 5	< 5	< 5
Yttrium	[Y]	6	13	5	30	19	12
Scandium	[Sc]	< i	2	2	4	2	2
Tungsten	[#]	< 10	\$ 10	< 10	< 10	÷ 10	< 10
Nicolum	EN63	20	40	30	20	30	20.
Thorium	[Th]	< 10	20	30	10	.30	40
Arsenic	(As]	< 5	10	< 5	15	< 5	< 5
Bismuth	[Bi]	₹ 5	< 5	κ 5	< 5	< 5	₹ 5
Tin	[5n]	< 10	iù	< 1Ŭ	< 10	< 10	10
Lithium	[[1]	< 5	5	< 5	5	< 5	5
Holaium	[Ha]	< 10	< 10	< 10	< 10	(10	/ 10

TEL LABORATORIES 2-302-48TH STREET, SASKATDON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 . I.C.A.P. PLASMA SCAN Aqua-Regia Digestion PRIME EXPLORATION LTD. 10th Floor Box 10 T.S.L. REPORT No. : \$ - 9831 - 11 T.S.L. File No. : SE12MZ 908 West Hastings St. 7.S.L. Invoice No. : 15450 Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: TERVL OPTION PAMICON R-2458 ALL RESULTS PPH L11+505 22+50W L11+505 22+75W : 11+505 23+00W L11+505 23+25W L11+50S 23+50W L11+50S 23+75W ELEMENT [A]] Aluminum 14000 15000 14000 16000 14000 20000 Iron [Fe] 27000 25000 24000 27000 24000 29000 Calcium [Ca] 2800 2300 1900 2400 1700 2800 Magnesium [Mo] 3100 2400 2700 2000 2000 2100 Sodium [Na] 110 110 11ú 160 120 220 Potassium [K] 270 220210 360 330 490 Titanium [Ti] 290 300 35û 480 510 630 Manganese [Mn] 290 170 220 750 840 1300 Phosphorus (P) 310 290 310 310 260 650 Barium [Ba] 140 150 150 96 75 93 Chronium (Cr3) 26 25 25 24 23 29 Zirconius [Zr] 3 2 2 3 2 5 Copper [Eu]] 17 18 15 16 14 19 Nickel ENi) 17 12 12 13 10 13 Lead [Fb] 7 8 7 8 8 10 Zinc [2n] 56 46 49 76 60 87 Vanadium [V] 72 70 73 59 64 48 Strontium [Sr] 18 15 14 14 13 13 Cobalt [Co]] 9 4 4 8 6 8 Molybdenum [Mo] < 2 < 2 < 2 2 < 2 < < 2 Silver [Ao] < 1 < 1 < 1 < 1 < 1 < 1 Cadmium [Cd] < 1 < 1 < 1 < 1 < 1 < 1 Beryllium (Be) < 1 < 1< 1 < 1 < i < 1 Boron (B] < 10 < 10 < 10 < 10 < 10 < 10 Antimony [Sb] < 5 < 5 ; 5 < 5 5 ś < 5 Yttrium [1] ú 4 4 6 4 7 Scandium (Sc] 2 î 1 1 1 1 Tunosten EW 3 < 10 < 10 < 10 ; 19 < 10 < 10 Nicolus [Nb] < 10 (10 < 10 < 10 < 10 < 10 Thorium [Th] 30 20 30 < 10 < 10 50 Arsenic (As) 15 : 5 < 5 < 5 5 5 Bismuth [Bi] < 5 < 5 < 5 < 5 < 5 < 5 Tin [5n] < 10 < 10 ¢ 10 : 10 < 10 < 10 Lithium [Li] 5 5 < 5 10 10 5

Holmium

(Ho)

< 10

SIGNED :

< 1¢

: 10

< 10

< 10

< 10

.. .

T S L LABORATORIES

.

		2-302-48TH ST	REET, SASKATOON TELEPHONE #: (3 FAX #: (3	, Saskatchewan 06) 931 - 1033 06) 242 - 4717	57K 644		
		I.C.A.P. PLASMA	SCAN				
			Adia	z-Regiz Diğestice	7		
PRIME EXPLORA 10th Floor Bo 808 West Hast	TION LTD x 10 ings St.				T.S.L. REPU T.S.L. Fil T.S.L. Invoit	BRT No. (S − 9 Le No. (SE12M2 Sé No. (15450	2831 - 12 I
ATTN: J. FOSTE	er Er	PROJECT: TERYL OPTION	PAMICON	R-2458	ALL F	ESULTS PPM	
FI TO		L11+505 24+00w	L11+505 24+25W	£11+505 24+50#	£11+505 24+75W	L11+508 25+00W	L11+505 25+25W
t L L ALA	"						
Aluminum	[A]]	14000	30000	39600	26000	43000	49666
Iron	[Fe]	28000	34000	38000	35000	32000	35000
Calcium	[Ca]	1500	1300	660	2500	560	2200
Magneszum	E Ma 3	2300	1700	710	1900	430	470
Sodium	[Na]	43û	180	90	280	100	90 90
Potassium	EK 3	510	330	170	520	180	170
Titanium	[7 i]	550	610	560	700	410	740
Manganese	(Mn)	1100	410	140	3900	720	140
Phosphoru	s (P)	470	440	476	770	.390	170 470
Bariua	(Ba]	57	82	53	120	67	50
Chromium	[Cr]	26	32	34	73	22	22
Zirconium	[2r]	2	16	46	6	77	110
Copper	[Cu]	14	19	39	18	14	10
Nickel	ENi 3	12	10		17	7	7
Lead	[Pb]	8	11	13	14	17	76
Zinc	[[n]	63	50	32	18ú	59	27 11
Vanadium	£V 3	55	51	 38	73	27) 24)	20
Strontium	(Sr)	10	10	é.	17	7	20
Cobalt	[Co]	5		1	5	;	+ (1
Malybdenus	[Mo]	< 2	÷ 7	\$ 2	2	\$ 7	< 7 < 7
Silver	{Aq}}	< 1	<. 1 < 1	< 1	< 1 (1	< 1 < 1	4 1
Cadmium	[[b]]	$\langle 1$	< 1	3	< 1	3 1	
Beryllium	{Be}	< 1	2 I	: 1	4	1	· · ·
Baron	(B)	< 10	< 10	< 10	< 18	< 10	< 10
Antimony	[56]	< 5	< 5	< 5	< 5	< 5	< 5 < 5
Yttrium	(Y)	6	8	ß	28	7	10
Scandium	[Se]	i	2	2	1	6 1	7
Tunostan	[#]	; 10	: 10	< 10	< 10	< 10	< 10
Niobium	END]	< 10	< 10	10	16	10	20
Thorium	(Th)	40	40	30	70	< 10	< 1à
Arsenic	(As)	< 5	< 5	ς 5	10	< 5 < 5	· · · · · · · · · · · · · · · · · · ·
Bismuth	(Bi]	< 5	< 5	: 5	< 5	< 5	< 5
Tin	[5n]	< 10	< 10	()0	< 10	< 10	< 10
Lithium	[Li]	< 5	< 5	< 5	10	5	< 5
Holaisa	[Ho]	< 10	< 10	< 10	< 10	₹ 10	< 10

516NED :

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

		I.C.A.P. PLASHA	SCAN				
			Âqu	a-Regia Digestion	ı		
PRIME EXPLORAT 10th Floor Bo 808 West Hast: Vancouver B C	rion ito x 10 ings St. VAC 28				T.S.L. REPC T.S.L. Fil T.S.C. Invoid	187 No. : 5 - 9 le No. : SE1211 ce No. : 15450	2 831 - 1 3 Z
ATTN: J. FOSTE	ER ER	PROJECT: TERYL OPTION	PAMICON	R-2458	ALL F	iesults ppm	
ELEMEN	łī	L11+505 25+504 L	11+505 25+75W	L24+005 10+50W	L24+005 (0+75W	L24+005 11+004	L24+00\$ 11+25W
Aluminum	[4]]	13000	56000	21000	25000	19030	10000
Iron	{Fe}	31000	38000	42000	33000	22000	17000
Calcium	[Ca]	320	300	786	1700	22550 7800	2500
Maonesium	[Mo]	750	300	7.30	14141	59VV 270/1	2100
Sodiua	[Na]	70	100	1.30	14000 140	170	21(0)
Potassium	[K]	250	280	196	770	170	110
Titanium	[]]]	280	550	740	473 5(x)	410	200 000
Manoanese	(Mn)	390	190	Ç1	500 150	420	270
Phosohoru	5 (P]	470	356	र 70	172	470	140
Barius	[8a]	48	59	160	100	92V 110	200
Chronium	fCr1	52	18	100 7A	120	110	100
Zirconium	[7r]	2	055		20.	Úć E	21
Conner	8Cu 3	9	17	20 20	17	2' 10	1
Nickel	[Ni]	Ŗ	5	10	19	17	1.1 11
Lead	[267	۵. اب	18	+4	10	17	11
Zinc	{7n}	41	10 44	40	1V Ø5	10	0 47
Vanadium	10.1	4L	10	40 50	70	00	90 54
Stratiu	{Sr1	40 L	5	17	4.2	47	J4 15
Cohalt	[[a]	7	2 1	17	10	13	15
Holubdaqua	(Wa)	2 2		2 7 5	4 2 M	3	4
Giluan	[00]		× 2 2 1	< ₽< ₽	× <u>×</u>		< 2
Cadmium	1041		са 1				$\langle 1 \rangle$
	1001		1	N. 1	1 i		< 1 ()
Deryllium	1841	× 1 / 10	2	5 1 7 40	i	1	
Antinani	נס ז נפגז	5 10 7 E	< 1V 2 A	< 10 	< 10 •	< 10	< 10
VEENLIN	1001	1. D 1	K 3 0	5	ά Ο -	< 5	< 5 -
Furium Searchium	11 1	4 	ы ,	¢	<i>i</i>	ы	5
	ເວເງ ເບັງ		4 2 - 10	i	2	1	× 1
iungsten Némeium	28 J 286 1		< 10 20	: Hù	× 19	< 10	< 10
Thorium	LINU J 1716 1	7 10 7 10	29 -	10	- 10	< 10 CO	< 10
Anari-	11112	5 IV	< 19 2 =	10	40	20	< 10 (1
HUSENIC Discutt	toi 1	× 3	5 D	1 J	< 3	10	10
DISAUTT Tio	1811	< J	< 3 	< 5	< 5	< 5	< 5
110	1201	< 10	< 10	< 10	< 10	< 10	< 10

\$7K 644

P.26

DATE : SEP-13-1990

Lithium

Holmium

[[i]]

[Ho]

< 5

< 10

TSL

,

.

LABORATORIES

SIGNET :

< 5

< 10

10

< 10

5

< 10

< 5

< 10

< 5

< 10

2-302-48TH STREET, SASKATOON, SASKATCHEWAN

TELEPHONE #: (306) 931 - 1033

FAX #: (306) 242 - 4717

\$7K 6A4

P.27

			Agu	a-Regia Digestio	n	
PRIME EXPLORATI	ON LTD.				T.S.L. REPOR	T No. : 5 - 9831 - 1
10th Floor Box	10				T.S.L. File	No. : SE12MZ
808 West Hastin	gs St.				T.S.L. Invaice	No. : 15450
Vancouver B.C.	V6C 2X6					
HIN: J. FUSIER	PH	JELI: JENTE UPTION	n <u>Pamicun</u>	<u>8-245</u> 8	ALL RE	SULTS PPM
ELEMENT		L24+005 11+75#	L24+005 12+00#	£24+00\$ 12+25W	L24+005 12+50W	
Aluminum	[A]]	15000	19000	70000	17644	
Iron	[Fe]	39000	11000	47000	13000	
Calcium	fCa3	1500	796:3	0000	22100	
Maonesium	{Mg]	1700	4700	1000	1700	
Sodium	[Na]	110	130	2017 1077	1700	
Potassium	EK 3	350	750	RBO	77 70	
Titznium	(Ti)	550	410	870	570	
Manganese	(Mn)	570	B30	560	610	
Phosphorus	[P]	44 Q	480	290	710	
Barius	(Ba]	69	160	110	63	
Chronium	[Cr]	71	48	43	24	
Zirconium	[Zr]	4	3	180	5	
Copper	[Cu]	17	29	24	10	
Nickel i	CNi J	ŁŮ	46	34	9	
Lead I	[Pb]	ti	8	19	10	
Zinc I	[Zn]	51	140	140	70	
Vanadium (ני	77	59	44	46	
Strontium [Sr]	10	19	۶	15	
Cobalt [[o]	â	10	7	Ş	
Molybdenum (Mo]	< 2	< 2	4	4	
Silver [Ag3	< i	× 1	: 1	< 1	
	Cd J	< 1	< 1	< 1	< 1	
Deryllium L	293 293	≤ 1	1	2	3	
	6 1 G 1	× 10	< 10	3 10	< 10	
VEENIUM F	נסכ יי	1. J 1. E	1 J	2	< 5	
Seanding D	(<u>)</u> C~}	Ū 1	15	18	11	
Junneten (1	มา เมา	10	د. ۱۵ ک	5		
Nichius []	NH 7	< 10 ≤ 10	< 10 7 10	× 19	< 10 < 10	
Thorius (Th J	20	20	20	· · 10	
Arsenic [4	As]	< 5	10	5	× 49 2 5	
Bismuth []	Bi]	< 5	₹ 5	< 5	× • < 5	
Tin (S	sn)	< 10	< 10	< 10	< 10	
Lithium EL	.i]	< <u>5</u>	20	10	10	
Holerus [H	lo]	K 10	₹ 10	< 1G	< 10	

· ·

.

T S L LABORATORIES

.

SIGNED :

.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Lougheed

SIGNED _

Prime Exploration SAMPLE(S) FROM 10th Floor-Box 10 808 West Hastings Street Vancouver, B. C., V6C 2X6

REPORT No. \$9868

INVOICE #: 15361 P.O.: R2457

SAMPLE(S) OF SO11

Project: Teryl Option

REMARKS: Wrangell Samples-Pamicon Development

			Au ppb	
L3+00W	0+00	N	<5	
L3+00W	0+50	N	<5	
L3+00W	0+75	N	<5	
L3+00W	1+00	N	<5	
L3+00W	1+25	N	<5	
L3+00W	1+50	N	<5	
L3+00W	1+75	N	10	
L3+00W	2+00	N	<5	
L3+00W	2+25	N	<5	
L3+00W	2+50	N	10	
L3+00W	2+751	N	<5	
L3+00W	3+001	N	<5	
L3+00W	3+251	N	<5	
L3+00W	3+501	N	<5	
L3+00W	3+751	И	<5	
L3+00W	4+001	4	<5	
L3+00W	4+251	1	<5	
L3+00W	4+501	1	<5	
L3+00W	4+751	1	<5	
L3+00W	5+001	1	<5	
COPIES	то:	J. Fos	ter,	P.L
INVOICE	TO:	Prime-	Vanco	buver
Sep 11/9	0			

TSL LABORATOR ES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration SAMPLE(S) FROM 10th Floor-Box 10 808 West Hastings Street Vancouver, B. C., V6C 2X6

REPORT No. \$9868

INVOICE #: 15361 P.O.: R2457

SAMPLE(S) OF Soil

Project: Teryl Option

Wrangell Samples-Pamicon Development **REMARKS:**

			Au ppt)	
L3+00W	5+251	1	<5		
L3+00W	5+501	1	<5		
L3+00W	5+75	1	<5		
L3+00W	6+001	1	<5		
L3+00W	6+251	1	<5		
L3+00W	6+50N	1	<5		
L3+00W	6+751	1	<5		
L3+00W	7+001	1	<5		
L3+00W	7+25№	1	<5		
L3+00W	7+501	1	<5		
L3+00W	7+751	1	5		
L3+00W	8+001	7	<5		
L3+00W	8+251	1	<5		
L3+00W	8+501	1	<5		
L3+00W	8+751	1	<5		
L3+00W	9+001	1	<5		
L3+00W	9+251	1	<5		
L3+00W	9+50N	7	<5		
L3+00W	9+75N	1	<5		
L3+00W	10+00)N	<5		
COPIES	TO:	J.	Foster	, P.	Lougheed
INVOICE	TO:	Pri	ime-Var	couv	er

Sep 11/90

SIGNED ____

For enquiries on this report, please contact Customer Service Department.

TSL LABORATORIES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 Ø (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM 10th Floor-Box 10 808 West Hastings Street Vancouver, B. C., V6C 2X6

REPORT No. S9868

INVOICE #: 15361 P.O.: R2457

SAMPLE(S) OF SOIL

Project: Teryl Option

REMARKS: Wrangell Samples-Pamicon Development

		Au ppb
L3+00W	10+25N	<5
L3+00W	10+50N	<5
L3+00W	10+75N	<5
L3+00W	11+00N	<5
L3+00W	11+25N	<5
L3+00W	11+50N	<5
L3+00W	11+75N	<5
L3+00W	12+00N	<5
L5+00W	0+75N	10
L5+00W	1+25N	<5
15+00w	1+50N	<5
L5+00W	1+75N	<5
L5+00W	2+00N	<5
L5+00W	2+25N	<5
L5+00W	2+50N	<5
L5+00W	2+75N	<5
L5+00W	3+00N	<5
L5+00W	3+25N	<5
L5+00W	3+50N	<5
L5+00W	4+00N	<5
COPIES	TO: J. Fo:	ster, P. Lougheed
INVOICE	TO: Prime	-Vancouver
Sep 11/9	90	

For enquiries on this report, please contact Customer Service Department.

SIGNED ____

TSL LABORATORIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th \$TREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM 10th Floor-Box 10 808 West Hastings Street Vancouver, B. C., V6C 2X6

REPORT No. \$9868

INVOICE #: 15361 P.O.: R2457

SAMPLE(S) OF Soil

Project: Teryl Option

REMARKS: Wrangell Samples-Pamicon Development

			Au ppb			
L5+00W	4+25N	ſ	<5			
L5+00W	4+50N	ſ	<5			
L5+00W	4+75N	ſ	<5			
L5+00W	5+00N	ſ	<5			
L5+00W	5+25N	ſ	<5			
L5+00W	5+75N	ſ	<5			
L5+00W	6+00N	ſ	<5			
L5+00W	6+25N	ſ	<5			
L5+00W	6+50N	ľ	<5			
L5+00W	6+75N	Г	<5			
L5+00W	7+00N	r	<5			
L5+00W	7+25N	I	<5			
L5+00W	7+50N	[<5			
L5+00W	7+75N	I	<5			
L5+00W	8+00N	r	<5			
L5+00W	8+25N	I	<5			
L5+00W	8+50N	T	5			
L5+00W	8+75N	T	<5			
L5+00W	9+00N	ŧ	<5			
L5+00W	9+25	t	<5			
COPIES	TO:	J. Fos	ster,	P.	Loug	pheed
INVOICE	TÔ:	Prime-	-Vanco	ouve	r	

Sep 11/90

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

P. 2

(306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM 10th Ploor-Box 10 808 West Hastings Street Vancouver, B. C., V6C 2X6

INVOICE #: 15361 P.O.: R2457

SAMPLE(S) OF Soil

Project: Teryl Option

REMARKS: Wrangell Samples-Pamicon Development

		Au ppb	
L5+00W	9+50N	<5	
L5+00W	9+75N	<5	
L5+00W	10+00N	<5	
L7+00W	5+00N	<5	
L7+00W	5+25N	<5	
L7+00W	5+50N	<5	
L7+00W	5+75N	<5	
L7+00W	6+00N	<5	
L7+00W	6+25N	<5	
L7+00W	6+75N	<5	
L7+00W	7+00N	<5	
L7+00W	7+25N	<5	
L7+00W	7+50N	<5	
L7+00W	7+75N	5	
L7+00W	8+00N	<5	
L7+00W	8+25N	<5	
L7+00W	8+50N	<5	
L7+00W	8+75N	<5	
L7+00W	9+00N	<5	
L7+00W	9+25N	5	
COPIES	то: ј.	Foster, P.	Lougheed
INVOICE	TO: Pri	me-Vancouv	er
Sep 11/9	0		

SIGNED _

Р. З

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM 10th Floor-Box 10 808 West Hastings Street Vancouver, B. C., V6C 2X6

INVOICE #: 15361 P.O.: R2457

SAMPLE(S) OF Soil

Project: Teryl Option

REMARKS: Wrangell Samples-Pamicon Development

			Au ppb		
L7+00₩	9+501	1	<5		
17+00W	9+751	4	15		
L7+00W	10+00	N	<5		
L7+00W	10+25	δN	<5		
L7+00W	10+50	N	<5		
1.7 +00₩	10+75	ōN	<5		
L7+00W	11+00)N	<5		
L7+00W	11+25	5N	<5		
L7+00W	11+50)N	<5		
L7+00W	11+75	5N	<5		
L7+00₩	12+00	N	<5		
L9+00W	5+001	1	<5		
L9+00W	5+501	1	<5		
L9+00W	5+751	1	<5		
19+00W	6+001	1	<5		
L9+00W	6+25	1	<5		
L9+00W	6+501	1	15		
L9+00W	6+751	1	<5		
L9+00W	7+001	1	<5		
L7+00W	6+501	1	<5		
COPIES	TO:	J. Fos	ter,	р.	L
INVOICE	TO:	Prime-	Vanco	ouve	r

Sep 11/90

SIGNED _

P. Lougheed

T S L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX *: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V&C 2X& YOUR REFERENCE - 89868

.

T.S.L. REPORT No. : S - 9668 - 1 T.S.L. File No. : M - 8001 T.S.L. Invoice No. : 15567

ALL REBULTS PPM

	r	L3+00W 0+00N	L3+00W 0+50N	23+00W 0+75N	L3+00W 1+00N	1+25N	1+50N 1+50N
Aluminum	[A]]	24700	7940	8530	52190	44750	577B0
Iron	[Fe]	35220	13530	10250	32880	33390	35080
Calcium	[Ca]	660	10720	24340	2520	1200	140
Maonesium	[Mo]	5530	1170	790	6470	4170	360
Sodium	(Na]	70	160	290	600	750	170
Potassium	EK 1	520	390	340	2420	876	100 070
Titanium	[7i]	212	299	228	2299	1758	704
Manganese	[Ma]	4 90	314	2143	466	747	107
Phosphores	[P]	160	512	76B	418	324	797
Barium	[Ba]	87	83	157	111	71	272 77
Chromium	60 m]	43	16	13	84	44	15
Zirconium	[[n]	4	5	19	23	104	444
Copper	[Cu]	331	12	24	52	41	8. 100
Nickel	ENil	62	12	31	41	20	3
Lead	[Pb]	8	5	5	4	8	17
Zinc	[Zn]	98	58	56	113	101	66
Vanadium	EV 1	63	24	35	75	62	19
Strontium	[Sr]	8	69	141	41	18	2
Cobalt	[Co]	10	4	3	10	5	< 1
Malyadenum	[Mo]	· < 2	< 2	6	< 2	2	2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	шэ
Cadmium	[Cd]	< 1	< 1	< i	< 1	< 1	2
Beryllium	{Be}	< 1	< 1	< 1	1	2	2
Baran	[B]	< 10	10	10	< 10	< 10	10
Antimony	(Sb)	< 5	< 5	< 5	< 5	< 5	(5
Yttrium	[Y]	3	6	9	7	8	13
Scandium '	[Sc]	4	<u>1</u>	< 1	9	5	2
Tungsten	[₩]	< 10	10	-< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	10	10	< 10	< 10 50	< 10 #A
Thorium	[Tn]	20	< 10	$\langle 10$, 20	2V , -	40
Arsenic	[As]	<∴5	5	15	< 3 	< 3 E	1. D 2. E
Bismuth	[Bi]	< 5	< 5	10	15	3 2 3 4	\ ↓ / (A
Tin	[Sn]	< 10	< 10	< 10	< 10 70	< 1V 50	∿ 1V =
Lithium	ELi]	35	E)	× 5	20	20	Q
Holmium	[Ho]	< 10	10	< 10	< 10	< 10	< 10

SIGNED : Jemis Pilpink
.

2-302-4BTH STREET, SASKATOON, SASKATCHEWAN 37K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORAT 10th Floor Box 808 West Hastin	ION LTD. 10 ngs St.			T.S.L. REPORT No. : S - 9868 - 2 T.S.L. File No. : SE14MB T.S.L. Invoice No. : 15567				
Vancouver B.C. ATTN: J. FOSTE	V6C 2X6 R	PROJECT: TERVL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM		
ELEMEN	•	L3+00W 1+75N	L3+00W 2+00N	L3+00W 2+25N	L3+00W 2+50N	L3+00W 2+75N	13+00W 3+00N	
Aluminum	[A]]	37590	43460	43310	37300	32980	33800	
Iron	[Fe]	36920	30700	34720	39110	36376	38140	
Calcium	[Ca]	6180	2660	6600	11940	1460	1200	
Maonesium	[Ma]	5130	4800	6330	6660	4060	5870	
Sodium	[Na]	1030	410	1220	2210	440	230	
Potassium	CK 3	3030	1370	3270	7890	680	420	
Titanium	[Ti]	1353	1416	1932	1512	1632	1738	
Manoanese	[Mn]	1522	583	641	1106	254	423	
Phosohorus	; [P]	466	654	572	586	236	740	
Barium	[Ba]	138	127	149	215	79	148	
Chromium	[Cr]	57	42	34	61	43	788	
Zirconium	[Zr]	40	10	9	10	148	35	
Copper	ECu3	51	69	87	174	45	41	
Nickel	ENi]	37	28	56	71	28	121	
Lead	[Pb]	:1	5	3	2	10	R	
Zinc	[Zn]	146	113	98	125	82	104	
Vanadium	(V)	61	67	72	79	72	107	
Strontium	[Sr]	63	48	99	189	28	19	
Cobalt	[Co]	8	8	13	18	6	15	
Molybdenum	(Ma)	< 2	< 2	< 2	< 2	2	< 2	
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	
Beryllium	(Bel	ą	< 1	< 1	< 1	2	< 1	
Baron	EB]	< 10	10	< 10	< 10	< 10	< 10	
Antimony	[55]	< 5	< 5	< 5	< 5	< 5	< 5	
Yttrium	EY]	36	8	9	19	8	4	
Scandium	(Sc]	4	4	7	7	4	6	
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	
Niobium	EN6 3	20	< 10	< 10	$\langle 10$	< 10	< 10	
Thorium	[Th]	30	20	20	30	30	< 10	
Arsenic	[As]	105	< 5	< 5	< 5	< 5	15	
Bismuth	[Bi]	15	5	10	15	< 5	< 5	
Tin	[Sn]	< 10	< 10	< 10	< i0	< 10	< 10	
Lithium	[Li]	70	30	25	30	20	25	
Holmium	[Ha]	< 10	< 10	< 10	< 10	< 10	< 10	

DATE : SEP-20-1990

SIGNED :

ilonih m

,

2-302-48TH	STREET, SASKATOON,	SASKATCHEWAN	37K	5A4
	TELEPHONE #: (306)	931 - 1033		
	FAX #: (306)	242 - 4717		

I.C.A.P. PLASMA SCAN

PRIME EXPLORATION 10th Floor Box 10	LTB.			T.S.L. REPOR	T No. : 5 - 99	X49 - J
808 West Hastinos	St.			T.S.L. Invaire	No. : 15547	
Vancouver B.C. V6C	2X4				(101 1 1000)	
ATTN: J. FOSTER	PROJECT: TERYL OPTIO	N PAMICON	R-2457	ALL RE	SULTS PPM	
ELEMENT	L3+00W 3+25N	13+00w 3+50N	i3+00₩ 3+75N	L3+00W 4+00N	L3+00W 4+25N	L3+00W 4+50N
Aluminum [A	11 36430	31430	9150	24500	74006	10170
Iron [Fi	2] 34280	30410	(5640)	74740	10120 10120	12170
Calcium [C	1740	1160	470	740	7/120 7/0	210 0 0 100
Maonesium [Mo	1 67R0	4540	220	200 #10		460 7710
Sodium (Na	1] 140	150	170	190	270 110	- 10 - 10
Potessium (K	340	736	2120	770	100	190
Titanium (Ti	14:3	1572	590	1100	200	1070
Mañganese [Mr	1] 344	597	7,000 7,2,7	1107	1000	2974
Phosphorus (P	3 774	384	190	124	107	101 100
Barium (Ba	101	74	270 Rå	74	100	920 14/
Chromium (Cr	-1 718	77	177	17	42	140
Zirconium [Zr	47	37		550 550	13 76:	с 0
Copper (Cu		44	ta ta	200		7
Nickel [Ni	114	13	47 10	7	् र	2 7 - K
Lead (P5	3 6	0	4			N 1 a
Zinc [7n	 1 128	132	4.7	74	40 50	4
Vanadium (V	7 94	74	7 -	די די	00 07	00 70
Strontium [Sr	1 17	14	8	20 7	<u>_</u> + <i>t</i>	77
Cobalt (Co	1 17	7	4	2 2 1		2
Malvadenum IMn	3 · < 7	< 7	< 7	· ·	× 4	/ 5
Silver (Ao	1 (1	$\langle \overline{i}$	< 1	7	र र	× 2 / 1
Cadmium [Cd	1 (1	< 1	2.5	<u>ل</u> ۲	2	× 1 / 1
Bervllium [Be	3 2	2	< 1	2	2	× 1 2 1
Boroo (B	1 < 10	< 10	< 10	< 10	< 10	< 10
Antimony [55	1 (5	< 5	< 5	< 5	2 5	< 1
Yttrium (Y] 4	5		, e	, o Q	्य
Scandium ESc	3 9	4	-	2	4	1
Tunosten (W] < 10	< 10	< 10	< 10	< 10	< 10
Nichium [Nh]	1 < 10	< 10	< 10	< 10	< 10	< 10
Thorium (Th	1 (10	40	< 10	< 10	76	60
Arsenic [As]	1 (5	< 5	< 5	< 5	< 5	< 5
Bismuth [Ri]	1 < 5	< 5	< 5	< 5	< 5	< 5
Tia (So)		< 10	< <u>10</u>	< 10	< 10	2 10
Lithium fii	25		5	5	5	10
Holmium [Ho]	i < 10	< 10	< 10	< 10	< 10	< 10

SIGNED :

Verm Pilonik

· .

-

2-302-48TH STREET, SASKATODN, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

FR 10 80	IME EXPLORATI th Floor Box B West Hastir accumen B C	ION LTI 10 10s St. VAC 21). //		1.5.L. REPORT No. : S - 9868 - 4 T.S.L. File No. : SE14MB T.S.L. Invoice No. : 15567				
AT.	TN: J. FOSTER	,00 2, (PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM		
	ELEMENT	Γ	L3+00W 4+75N	L3+00W 5+00N	13+00W 5+25N	L3+00W 5+50N	L3+00W 5+75N	L3+00W 6+00N	
	Aluminum	[A]]	26660	33610	11540	29360	30570	36840	
	Iran	[Fe]	35430	37220	25270	40420	28150	37540	
	Calcium	[Ca]	1220	160	690	1200	280	240	
	Maonesium	[Ma]	6370	620	4040	5120	930	560	
	Sodium	[Na]	150	270	150	210	310	220	
	Potassium	EK 1	1470	540	730	590	330	320	
	Titanium	[Ti]	2143	937	1202	1732	911	957	
	Mancanese	[Ma]	519	202	135	526	337	296	
	Phosohorus	CP]	390	184	300	388	440	318	
	Barium	[Ba]	312	33	290	103	27	28	
	Chromium	(Cr]	67	10	4	118	16	12	
	Zirconium	[Zr]	16	423	5	18	75	206	
	Copper	(Cu)	52	5	3	19	12	Ģ	
	Nickel	EN13	28	3	Ę.	4 Q	3	3	
	Lead	[Pb]	<u>4</u>	17	5	6	14	16	
	Zinc	[Zn]	109	110	69	72	57	72	
	Vanadium	[V]]	119	18	103	74	24	26	
	Strontium	[Sr]	17	2	9	12	3	3	
	Cobalt	[Co]	11	< 1	2	10	< 1	< 1	
	Malvbdenum	[Mo]	< 2	6	< 2	< 2	2	2	
	Silver	[Ao]	< 1	4	< 1	$<$ $\frac{1}{2}$	< 1	2	
	Cadmium	[Cd]	< 1	1	< 1	< 1	< 1	< 1	
	Bervllium	[Be]	$\langle 1$	3	< 1	< 1	2	3	
	Baran	(B]	< 10	< 10	< 10	< 10	< 10	< 10	
	Antimonv	(55)	< 5	< 5	< 5	< 5	< 5	< 5	
	Yttrium	EY 3	10	10	3	3	7	12	
	Scandium	(Sc)	7	1	3	<u>A</u>	< 1	1	
	Tunosten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	
	Niabium	EN6]	< 10	< 10	< 10	< 10	40	20	
	Thorium	[Th]	20	70	50	< 10	< 10	30	
	Arsenic	[As]	< 5	< 5	10	< 5	< 5	< 5	
	Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	
	Tin	(Sn)	< 10	< 10	< 10	< 10	· •	< 10	
	Lithium	CL i I	40	15	10	30	10	10	
	Holsium	(Ho]	< 10	< 10	< 10	(10	< 10	< 10	
							· • •	5 A 19	

Vermis Pilipick SIGNED :

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (366) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORAT	ION LTD	•			T.S.L. REPOR	T No. : 5 - 98	68 - 5
10th Floor Box	10				T.S.L. File	No.: SE14MB	
808 West Hastin	nos St.				7.5.L. Invoice	No. : 15567	
Vancouver E.C.	V6C 2X	6					
ATTN: J. FOSTER	2	PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RES	ULTS PPM	
	-	L3+00# 6+25N	L3+00W 6+50N	L3+00W 6+75N	13+00W 7+00N	L3+00W 7+25N	L3+00W 7+50N
ELEMENT	e e e e e e e e e e e e e e e e e e e						
Aluminum	[A]]	54200	50060	(9 500	70110	75440	10040
Iron	[Fe]	36340	35760	21840	70120	77540	42040
Calcium	[Ca]	320	100	21000 BB0	200	140	33330 54A
Maonesium	[Ma]	1250	280	2320	450	100	000
Sodium	[Na]	250	160	750	747	240	3120 13A
Potassium	(K 1	430	300	540	520	240	770
Titanium	[71]	1184	784	1157	717	400	1200
Manpanese	[Ma]	403	744 244	197	710	767	1018
Phosohorus	(P)	787	710	710	040 133	040 454	202
Barium	(Bal	74	74	010 AR	170	424	268
Chromium	[Cn1	14	10	70 10	ون م	26	66
7isconium	[7:]	970	494	10	7 275	7	23 700
Concer	f0.1	17	. 7	20	0/0 T	307	302
Nickel	ENG1	د ج	, र	20	7	7	22
leari	(Ph]	17		0	्र 1 त	2	12
7 i o c	[76]	29 99	90 21	ت ۲۸	14	17	11
Vanadium	50 7	77	.0	40 50	72	/0	115
Strootium	[Sp]	00 4	20	02 17	10	10	48
Cohalt	CON 3 [Pal		2 4	10	<u> </u>	2	8
Malvhdanum	C001 [Ma]	4 ·	× 1 7	/ 2	N 1 A	< i	4
Silvar	(461)	5	5	× 4 2 4	4	4	4
Cadmium	1641		2	× 1 2 3	4	ن •	ٹ
Baryllion	(Bal	- 7	5	× 1 2 1	1	1	1
Baroa	CB 1	< 10	< 10	/ 10	2 7 4 A	ن ۲۰۰۸	4
Antimony	EB 1	. <u>.</u> .	< 5	× 10 7 5	× 10 2 5	10	< 10 / E
Yttrism	CUU1	17	74	× •	N 2 11	G /	× 0
Scandium	(Q-1	7	1			14	27
Tunneten	LOLJ FW 1	د ۲ ۱۸	Z 10	2 7 30	1	1	4
Nichium	28 J	20	7 10	< 10 7 10	10 7 10	\ 10 ∠ +0	< 10
Thorium	[15]	20	AU	/ 10	10 7 ±0	10	< 10
Ancanic	[Δ=]	207 / 5	+v / s	< 10 / 5	10	× 10 =	- <u>-</u>
Riemuth	[Bi]		× 0 7 5	\ J / 5	N 0 7 5	2	< 3 / E
Tio	(011 [Ca]	N U Z 10	2 10	4 10	× 0 2 10	< 5 / VO	< 5 / / î
i thium	5141	10	10	10	10	< 10 E	< 10
Holmium	(Hal	10	/ 10	/ 10	10	0	20
ROINICR	001	× 1V	10	× 10	~ 10	$\langle 10 \rangle$	< 10

SIGNED : Dom's Pilonik

•

2-302-48TH STREET, SABKATCON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 731 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATI	ION LTD. to			T.S.L. REPORT No. : S - 9868 - 6			
808 Wast Hastin	10 St				7 C / Jourice	NO.: 301400	
Vancouver B.C.	192 041 1767 797				fidici involce	190. i 10007	
ATTN: J. FOSTER		PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM	
ELEMENT	ſ	L3+00W 7+75N	L3+00W 8+00N	L3+00W 8+25N	L3+00W 8+50N	L3+00W 8+75N	L3+00W 7+00N
Aluminum	[A1]	36760	39520	36440	29350	46730	22120
Iron	[Fe]	29840	30140	36580	34450	41080	24540
Calcium	[Ca]	260	760	160	280	100	180
Maonesium	[Mo]	1320	3220	500	2230	340	260
Sodium	[Na]	250	230	220	270	80	120
Potassium	CK 3	480	1230	440	1100	120	700
Titanium	ET1]	854	1217	794	1018	1011	769
Manganese	[Mn]	409	403	223	676	125	55
Phosphorus	EP 3	212	398	156	274	242	747
Barium	[Ba]	49	87	31	45	28	37
Chromium	[Cr]	30	33	11	17	17	B
Zirconium	[Zr]	278	109	420	247	261	
Cooper	(Cu]	18	35	6	15	10	12
Nickel	ENi]	11	18	4	7	7	1
Lead	(Pb]	17	10	14	10	17	14
Zinc	[Zn]	82	92	113	174	47	70
Vanadium	EV]	27	50	15	74	7 8	72
Strontium	[Sr]	3	10	2	3	23	4
Cobalt	[Co]	2	5	< 1		- - 1	
Malvbdenum	[Mo]	2	< 2	4	4	ż ż	< 1 < 2
Silver	[Ao]	3	< 1	4	2	·	× ± 2 •
Cadmium	[Cd]	< 1	< 1	1	< 1	- 1	< 1
Bervllium	[Be]	4	3	5	7	2	1
Baron	[B]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[56]	< 5	< 5	< 5	< 5	 	< 1
Yttrium	[Y]]	16	:4	34	79	(T	< U 5
Scandium	(Sc]	1	7	7	7	7	/ •
Tunosten	[W]	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	20	< 10	< 10	< 10	το το
Thorium	[Th]	50	30	60	60	70	
Arsenic	(As)	< 5	< 5	< 5	< 5	< 5	< 5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	 V V S 	 < 5
Tia	(Bol)	< +ñ	< to	< 1Å	< 10	√ u ⊰ ta	< 10
i this	[] i]	• • • • • • • • • • • • • • • • • • •	20	10	25	× 4∨ / 5	× 49 ∠ 5
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10
		· • •	· - •	· • •		N ▲ ¥	N 4 M

SIGNED : Dem Pilmik

· .

...

.

2-302-46TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 57K 6A4

I.C.A.P. PLASMA SCAN

PRIME EXPLORATION LTD. 10th Floor Box 10	T.S.L. REPORT No. : S - 9868 - 7 T.S.L. File No. : SE14MB
808 West Hastings St.	T.S.L. Invoice No. : 15567
Vancouver B.C. V&C 2X6	
ATTN: J. FOSTER PROJECT: TERYL OPTION PAMICON R-2457	ALL RESULTS PPM

		L3+00W 9+25N	L3+00W 9+50N	L3+00W 9+75N	L3+00W 10+00N	L3+00W 10+25N	13+00W 10+50N
ELEMENT	-						22.908 19.998
Aluminum	[A]]	24440	28150	29070	61780	19410	23810
Iron	{Fe]	46580	35750	32340	37960	32670	28530
Calcium	[Ca]	140	1460	120	80	420	400
Magnesium	[Mg]	160	6410	710	200	220	4280
Sodium	[Na]	7 0	140	190	150	150	140
Patassium	5K 3	160	5560	44()	240	230	1270
Titanium	[Ti]	1841	2294	921	587	666	1725
Manganese	(Ma	S ()	1105	329	280	94	371
Phosphorus	[P]]	. 334	576	190	274	268	216
Barium	[Ba]	18	146	31	47	25	
Chromium	(Cr]	13	31	9	13	11	22
Zirconium	[Zr]	205	14	269	588	142	28
Copper	[Cu]	6	60	. 7	6	5	53
Nickel	ENi]	3	10	3	3	ć	10
Lead	EP63	21	2	11	15	13	5
Zinc	[Zn]	36	105	97	76	45	89
Vanadium	{V]	47	128	24	14	21	87
Strontium	[Sr]	3	11	1	< 1	5	5
Cobalt	[Co]	< 1	12	< 1	< 1	< 1	8
Molybdenum	[Mo]	4	< 2 .	4	4	< 2	< 2
Silver	[Ag]	< 1	< 1	2	7	< 1	< 1
Cadmium	[b0]	< 1	< 1	< 1	3	< 1	< 1
Beryllium	[Be]	< 1	1	4	2	< 1	1
Boron	5 B]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[55]	< 5	5	< 5	< 5	< 5	< 5
Yttrium	EY 3	5	8	14	15	4	14
Scandium	[Sc]	< 1	7	1	2	< 1	6
Tungsten	(W]	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	(Nb]	40	< 10	< 10	< 10	20	< 10
Thorium	[Th]	50	30	< 10	80	< 10	20
Arsenic	[Âs]	< 5	< 5	< 5	< 5	< 5	5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	30	10	< 5	< 5	25
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Vening Pilipich

7.5.C LABORATORIES

ELEMENT

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD						T.S.L.	REPORT	No.	:	5 - 9868 - 6
10th Floor Box 10						T.5.L.	File	No.	:	SE14MB
808 West Hastings St.						T.S.L.	Invoice	No.	:	15567
Vancouver B.C. V6C 2X	2									
ATTN: J. FOSTER	PROJECT:	TERYL	OPTION	PAMICON	R-2457		ALL RESU	ILTS	PP	1

L3+00W 10+75N L3+00W 11+00N L3+00W 11+25N L3+00W 11+50N L3+00W 11+75N L3+00W 12+00N

Aluminum	[A]]	27820	45730	34460	40910	27620	22660
Iron	[Fe]	27810	30260	28150	24730	30520	28740
Calcium	[Ca]	280	120	80	100	60	280
Magnesium	[Ma]	1850	270	220	290	370	4440
Sodium	[Na]	300	120	170	350	190	140
Potassium	CE 3	930	210	250	440	300	1640
Titanium	[Ti]	1623	562	B74	503	722	2086
Manganese	[Mn]	623	165	167	212	146	231
Phosphorus	(P_]	326	276	216	136	130	218
Barium	[Ba]	42	26	18	23	16	79
Chromium	[Cr]	12	10	8	8	6	17
Zirconium	[Zr]	111	291	312	655	365	47
Capper	(Cu]	27	é	á	4	3	44
Nickel	ENi]	4	2	2	2	2	7
Lead	[Pb]	12	14	15	16	13	4
Zinc	[In]	124	61	50	91	69	64
Vanadium	EV 1	29	13	14	10	13	94
Strontium	[Sr]	3	1	< 1	< 1	< i	5
Cobalt	[Co]	3	< 1	< 1	< 1	< 1	5
Molybdenum	[Mo]	4	< 2	4	2	4	< 2
Silver	[Ag]	< 1	3	3	7	4	< 1
Cadmium	[[b]]	< 1	· < 1	1	3	2	< 1
Beryllium	[Be]	3	2	3	3	3	< 1
Baran	[B]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[55]	< 5	< 5	< 5	Κ 5	< 5	< 5
Yttrium	[Y]	51	11	15	<u>1</u> 4	14	6
Scandium	[Sc]	2	1	<u>1</u>	2	< 1	6
Tunosten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	20	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	10	< 10	< 10	< 10	< 10	30
Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	< 5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	< 5	< 5	5	5	20
Holmium	{Ho]	< 10	× 10	< 10	< 10	< 10	< 10

min Pilovik SIGNED :

.

.

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATI 10th Floor Box 808 West Hastin	ION LTI 10 195 St.) .			T.S.L. REPOR T.S.L. File T.S.L. Invoice	XT No. : 5 - 98 No. : 3E14MB No. : 13567	866 - 9
Vancouver B.C. ATTN: J. FOSTER	V6C 2) \	(6 PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	EGULTS PPM	
ELEMENT	-	L5+00W 0+75N	1+25N 1+25N	L5+00W 1+50N	L5+00W 1+75N	L5+00W 2+00N	L5+00W 2+25N
Aluminum	(A1)	15220	18330	19340	20830	23170	51400
Iron	[Fe]	31720	25200	27080	30540	26940	33070
Calcium	(Ca]	3440	1140	540	5040	1740	4060
Magnesium	[Mg]	2420	3770	4920	3620	3120	6460
Sodium	[Na]	70	60	70	100	90	780
Potassium	EK 3	770	800	500	960	560	2190
Titanium	[Ti]	344	431	274	295	340	2048
Manganese	[ħin]	1425	147	294	2799	226	526
Phosphorus	(P)	446	220	114	954	256	514
Barium	[Ba]	105	84	78	133	86	124
Chromium	[67]	35	43	41	44	36	78
Zirconium	[2n]	4	3	5	5	7	10
Copper	[Cu]	12	15	27	27	23	93
Nickel	[Ni]	10	31	35	32	24	39
Lead	[64]	7	9	7	4	6	7
Zinc	[Zn]	71	68	78	9 0	9 0	91
Vanadium	[V]	83	E2	5B	70	59	P 7
Strontium	[Sr]	27	11	7	35	18	74
Cobalt	[Co]]	14	4	8	15	5	11
Molybdenum	[Mo]	12	6	< 2	· 8	2	< 2
Silver	[QA]	< 1	< 1	< 1	1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1
Baron	[B]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[55]	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	[Y]	3	2	ā.	7	4	9
Scandium	[3c]	<u>:</u>	2	4	2	2	10
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	30	20	40	10	40	30
Arsenic	(As]	25	30	10	< 5	30	< 5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	10
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	20	20	20	25	30
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10

Dam's Pilmin SIGNED :

.

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATE	ION LTD	•		T.S.L. REPORT No. : S - 9868 - 10			
10th Floor Box	10				T.S.L. File	No.: SE14MB	
808 West Hastin	nos St.				T.S.L. Invoice	No.: 15567	
Vancouver B.C.	V6C 2X	6					
ATTN: J. FOSTER	2	PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM	
		L5+00W 2+50N	L5+00W 2+75N	15+00W 3+00N	L5+00W 3+25N	L5+00W 3+50N	L5+00W 4+00N
ELEMENT							
Aluminum	(A1]	43260	474 40	32360	43490	78730	07070
Iron	[Fe]	32580	33950	30420	37940	24800	31780
Calcium	[Ca]	1560	10000	800	1160	1820	970
Maonesium	[Ma]	4530	6310	2240	4730	4600	5840
Sodium	[Na]	290	1910	230	150	BO	170
Potassium	EK 3	660	1740	490	1330	360	470
Titanium	[T1]	1790	1944	1136	1447	:775	1407
Manoanese	[Mn]	37E	509	272	1	204	207
Phasaharus	(P)	478	604	274	718	20 4 474	447
Barium	[Ba]	R()	:73	54	174	400	74
Chromium	[Ce]	57	34	12	77	73 741	/ T 17
7irronium	57m]	 1A	23	-10 714	170	170	2.00 1 1
Cooper	(Cn)	10 41	117	म्बन देव	270 Pû	4-2 4	11
Nickel	IN: 1	37	77	8	.00 :0	171	4
iead	[Ph]		1	- 11	4	101	् र
7in-	[76]	96	85	105	144	55	100
Vanadium	7V 1	87	108	45	42	55 70	144
Stroction	[Sr]	57	142	12	19	7.2 10	10
Cobalt	(Col	10	15		2	14	5
Malvhdenum	[Ma]	2 7	7.5	<u>د</u>	/ 7	/ 5	
Silver	(An]	<pre>< 1</pre>	× ± 7 1	2	× 4 7 1	× 2 / 1	× 4 2 +
Cadmium	1041	< 1	< 1 < 1	< 1	× 4 2 1	× 1 Z 1	× 1 Z 1
Raryllium	(Bal	2 t	× - < t	* * T	4 / T	× + / +	× 1 7 4
Baran	CDE1	< 10	< 10	2 7 10	7 10	× 1 7 10	× 1 Z 10
Antimany	(261	× •• / 5	< 5	2 E	 	× 10 7 5	< 10 5
VEEnium	rv i	· · ·	· · ·	10 10	17	\ .≜	0
Cenedius	re_1		5	1 / T	17 2	4	2
Tussetas	ruci ruci	9 / 10	7 7 36	2 7 10	0 / 10	7 / 1A	4 / (A
Niebius	149 1 7 MH 7	10 7 ±0	< 10 Z 10	× 10 7 40	× 10 7 (A	< 10 7 1A	10 7 ±0
NIDDIDR Thereiter	LNUJ FTER	N 10 7 10	N 10 70	× 1V ZA	∧ 10 70	< 10	< 10
Appania	L1111	N 1V / E	30 / E	5V / E	00 2 - 2	< 10 / E	√ E 20
Hrsenic D	1851 rn:1	√ 3 / =	√ 3 +∧	<pre>< 0</pre>	4 3 7 F		< 3 / F
515MUTA T:-	1511	3 / •0	10	× 5	< 3 / /2	< 5	< 5
110	เปกม์ การก	 ↓ 10 ★ 	< <u>10</u> 75	< 10 D0	< 10 	< 10	< <u>10</u>
11 6110 0		30	23	20	30	45	20
Heimium	снај	< 10	< 10	< 10	< 10	< 10	< 10

Jem's Pilinik SIGNED :

.

.

2-302-48TH STREET, SASKATCON, SASKATCHEWAN 87K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATE 10th Floor Box 808 West Hastin	ION LTD 10 ngs St.).		T.S.L. REPOR T.S.L. File T.S.L. Invoice	RT Na. : 5 - 90 ≥ No. : SE14MB ≥ No. : 15567	368 - 11		
Vancouver E.C.	V6C 2X	6						
ATTN: J. FOSTER		PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RESULTS PPM			
ELEMENT		L5+00W 4+25N	15+00W 4+50N	L5+00W 4+75N	L5+00W 5+00N	L5+00W 5+25N	15+00W 5+75N	
Aluminum	[A]]	12220	40540	25130	18120	14780	14520	
Iron	[Fe]	28510	31090	28740	19950	16250	73000	
Calcium	[Ca]	520	220	380	2100	5440	1020	
Maonesium	[Ma]	8 30	840	860	2040	3700	5270	
Sodium	[Na]	170	260	200	110	140	170	
Potassium	EK 3	330	410	340	320	710	750	
Titanium	(Ti]	868	675	859	747	554		
Manoanese	(Mn)	198	219	234	858	1994	705	
Phosphorus	; [P]	188	236	270	787	500	070 704	
Barium	[Ba]	28	104		202 07	200	274	
Chromium	[Cr]	18	10	10	14	57 57		
Zirconium	[Zr]		511	153	2-1 2	20	0 4	
Copper	[Cu]	- · · · · · · · · · · · · · · · · · · ·	7	100 4		2 ·	4	
Nickel	[Ni]	Ē	5	5	4 4	10	्य र	
Lead	EP53	17	17	े ! र	7	10	ಲ -	
Zion	57n]	50	150	 11A	110	ت د د د	<u>ک</u> ۱۰۰	
Vanadium	EV 3	31	14	212	74	111	116	
Stractium	[Sr]	ц. Ц		20 A	00 77	27 E (
Cohalt	[[0]]	· ?	2 1 2 1	7	2.ú .k	01	7	
Maluhdanum	[Ma]	2	· · ·	2	4	4 /. a	2	
Silvan	[Dol	7	<u>~</u>	2 / 1	× Z Z +	× 2	< 2	
Codmium	rra)	× 2 / 1			× 1 / 1		< 1	
Banullium	7Dal	N 1 1		× 1 7	\ 1	× 1	< 1	
Papas	50 J	1 / 10	Z 36	4 7 10	1	1 <u>1</u>		
Actiecay	60 I 605 I	N 10	V 1V V 5	\ 10 E	< 10 / E	× 10	< 10	
VEEnium	rv n	5	N 0 R2		· · ·	< 3	< 5	
filicium Constitue	LT 1 70-1	ر. ۱	<u>دن</u> :	11	11	10	4	
Juacetan	tuli fili i	1	1	1 7 30	<u> </u>	1	4	
Nichium	2 W 2	N 10 20	X 10 Z 10	\ 1V DO	< 10 10	< 10	< 10	
Thosius	5757	Z0 Z 10	× 10 20	20	10	< 10 70	< 10 55	
Anconic	ι	15	20 / 5	N 10 / E	\ 1V / E	60 / =	20	
Ricouth	(85) (6)	1.) / S	\ 3 ∕ ⊑	N 0 7 5	N 3 2 E	< 3 7 E	< 3 / F	
Dismolvii Tia	(861) (861	N 0 7 46	 ∕1∧	N 0 7 3 A	5 3 2 4A	< J / / î	× 5	
i 201 E i th irean	CUN12 [[]	N 19 Ę	N 1V 19	N 10 1A	N 10 4A	4 10	< 10	
LI GILLIN Halmium	ccij [Wa]		10 7 10	1V 2 1A	10 7 (A	10	15	
COLUCTOR CON	C ((G) 4	$\sim 1 V$	< 1 ₽	N 1V	N 10	< 19	< 10	

SIGNED : Dim Pilpink

.

2-302-48TH STREET, SASKATODN, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATI 10th Floor Box 808 West Hastin Vancouver B.C.	0N LTI 10 195 St. V6C 2)). (6			T.S.L. REPOR T.S.L. File T.S.L. Invoice	T No. : S - 98 No. : SE14MB No. : 15567	68 - 12
ATTN: J. FOSTER		PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM	
ELEMENT		L5+00W 6+00N	L5+00₩ 6+25N	L5+00W 6+50N	L5+00W 6+75N	L5+00W 7+00N	L5+00W 7+25N
Aluminum	[A]]	24130	41250	27800	33010	47940	36320
Iron	[Fe]	31000	35560	26880	29370	29390	36670
Calcium	[Ca]	240	200	240	160	140	2540
Magnesium	[Mg]	530	160	370	540	150	3950
Sodium	[Na]	240	80	240	300	120	430
^p otassium	5K 3	290	150	3 90	430	150	1640
Titanium	[Ti]	707	727	725	749	455	1463
Manganese	[Mn]	248	239	286	242	250	338
Phosphorus	[P]	226	236	176	182	190	378
Barium	[Ba]	25	19	30	45	34	138

11750100	2112	707	121	/ 23	749	455	1463
Manganese	[Mn]	248	239	284	242	250	338
Phosphorus	CP 3	225	234	176	182	190	378
Barium	[Ba]	25	19	30	45	34	138
Chromium	[Cr]	11	13	9	P	9	27
Zirconium	[2r]	128	267	323	406	521	163
Copper	iCul	6	8	6	ė	8	49
Nickel	ENi 1	2	< i	2	3	2	11
Lead	[Pb]	15	15	14	13	23	9
Zinc	[Zn]	77	40	107	122	71	105
Vanadium	EV 1	22	23	17	14	13	84
Strontium	[Sr]	3	3	2	6	1	36
Cobalt	[Co]	< 1	< 1	1	1	< 1	10
Molybdenum	[Mo]	2	4	4	4	< 2	< 2
Silver	[Ag]	1	3	3	4	6	< 1
Cadmium	[Ca]	< 1	1	1	1	3	< i
Beryllium	[Be]	. 2	1	4	<u>4</u>	4	3
Boron	CB]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[56]	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	E Y 3	8	7	20	20	17	10
Scandium	[Sc]	1	1	1	2	< 1	6
Tunosten	E W 3	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	EN63	20	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	< 10	< 10	< 10	< 10	< 10	30
Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	< 5
Bismuth	(Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[S n]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	10	< 5	10	15	< 5	25
Holmium	[Ho]	< 10	< 10	< 10	< 10	< i0	< 10

's Vilon SIGNED :

.

2-302-48TH STREET, SASKATGON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

Vancouver s.L. V62 225 ATTM: J. FORTER PROJECT: TERVL OFTION PANIDON R-2457 ALL RESULTS PPK L5400W 7+50N L5400W 7+73N L5400W E+00N L5400W 6+25N L5400W 6+50N L540 L540 L540 L540 L540 L540 L540 L540	PRIME EXPLORATI 10th Floor Box 808 West Hastin	ION LTI 10 ngs St.).		I.S.L. REPORT No. : 5 - 9868 - 13 T.S.L. File No. : SE14MB T.S.L. Invoice No. : 15567			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATTN: J. FOSTER	V6C 2) R	PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM	
Aluminum (All) 32060 25710 36460 33670 28720 27600 39010 Calcium (Cal Cal 1620 760 3300 530 $B80$ 240 Magnessum (Mg) 3760 3770 2280 2740 2360 2180 Sodium (Mal 250 220 340 250 200 130 Fortassum (K I) 740 1310 960 770 470 350 Maganese (Mm) 1310 960 770 470 350 111 Phosphorus (P I) 238 338 272 290 534 196 Bartium (En I) 114 76 75 88 433 322 200 1111 Phosphorus $(P I)$ 16 13 2266 1446 134 2098 200 1111 Phosphorus $(P I)$ 61 233 53 17 15 6	ELEMENT	Г	L5+00W 7+50N	L5+00W 7+75N	L5+00W 8+00N	L5+00W 8+25N	L5+00W 8+50N	L5+00W 8+75N
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Aluminum	[A1]	32060	25710	36460	35690	39880	28780
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Iron	[Fe]	26780	22310	32870	26920	27600	39010
Magnesium(Ng) 3760 3070 2200 2740 2360 2180 Sodium(NI250220340250200130Potassium(K)7401310960770470380Titanium(Til116713551202114112741325Manganese(Mn)3594228424375280111Phosphorus(B111476738643372Dhromium(En11617132729222Lircontum(En1)1617132729222Dhromium(En1)16123366146134208Lopper(Du1)612353473218Nickel(Nil95517156Lead(Pb)277135914Zinc(Zin)11558921509458Vanzium(V)826155454347Strontium(En1)33151911134Cobalt(Col8347441Cobalt(Col8347441Strontium(En1)33151911134Cobalt(Col834443 <td>Calcium</td> <td>[Ca]</td> <td>1620</td> <td>960</td> <td>1300</td> <td>520</td> <td>880</td> <td>240</td>	Calcium	[Ca]	1620	960	1300	520	880	240
Botium(Na)250220340250200130Potassium(K1)7401310960770470390Titamim(Ti)110713251202114112241326Manganese(Pn)359422424355260111Phosphorus(P-1)286338272290334196Barium(Dr)1617132729222Chronium(Dr)1613266146134208Copper(Du)612353473218Nickel(Ni)95517156Lead(Pb)277135914Zinc(Zn)11559981509458Vanadium(V)826155454347Strontum15733151911134Cobalt(Do)8347441Belybernum(Ho)<1	Magnesium	[Mo]	3960	3070	2280	2740	2360	2180
PotassiunEK I7401310960770470290TitanumCTII110715351202114112741325ManganeseEM1359428424375280111PhosphorusEP I288338272290.334196BariumEBal11476973888433322ChroniumChr316171132729222LinconiumChr31613266146134208CapperCUJ6123534732188NickelCMI955171156LeadCP0J2771359144ZinconiumCD1115559813094588VanadiumCCJ115554544347StrontiumEr133151911134CobaltCOD8347441CadmiumCOJ41244431BrontiumEr133151911134CobaltCOJ4124441DivorumCOJ4124441DivorumEr1331519111444	Sodium	(Na]	250	220	340	250	200	130
Itanium110713651202114112741326ManganeseIM1357428424355260111Phosphorus IP I288336272290534196BariumIB3111476758843322DhroniumICrI1617132729222ZirconiumICrI1617132729222LirconiumICrI161713272922LirconiumICrI161713272922LirconiumICrI161713272922LisadIPb1277139914LincICAI11558781509458VanadumIV926155454547StrontiumISr133151911134CobaltICbI63474<	Potassium	5K 3	740	1310	960	770	470	390
Manganese[Mn]359428424375260111Phosphorus[P]238338272290334196Barium[B]11476938843322Chronium[Ch]1613266146134208Copper[Cu]612353473218Nickel[Ni]95317156Lead[Po]277135914Zinc[Cn]11559981509458Vanaium[V]826455454547Strontim[Sn]33151911134Cobait(Co)8347441Molybdenum[Mo] < 2 < 2 < 2 2 2 2 2 2 SilverIAg] < 1 < 1 2 < 1 < 1 2 < 2 <t< td=""><td>Titanium</td><td>[Ti]</td><td>2107</td><td>1345</td><td>1202</td><td>1141</td><td>1274</td><td>1326</td></t<>	Titanium	[Ti]	2107	1345	1202	1141	1274	1326
Phosphorus (P 1)288338272290334176Barium (BB1)1147673884332Chromium (Cr)161713272922Zirconium (Zr)161713272922Signer (Cu)612353473218Nickel (Ni)95517136Lead (Pb)277135914Zinc (Zn1)11559981509458Vanatum (V)826155454347Strontium (Sr)33151911134Cobalt (Coi83474<	Manganese	[Mn]	359	428	424	395	280	111
Barium IBa3 114 76 73 88 43 32 Dromium ICr1 16 17 13 27 29 22 Zirconium ICr1 16 17 13 27 29 22 Zirconium ICr1 16 13 266 146 134 208 Copper ICu1 61 23 53 47 32 18 Nickel INil 9 5 5 17 13 6 9 14 Zinc IZn3 115 58 98 150 94 58 Vanadium IV 3 62 61 55 45 43 47 Strontium ISP1 33 15 19 11 13 4 4 Cobalt Cobi 8 3 4 7 4 4 1 Cobalt Cobi 6 3 4 7 4 4 1 Cobalt Gobi 41 1 <td>Phosphorus</td> <td>[9]</td> <td>288</td> <td>338</td> <td>272</td> <td>290</td> <td>334</td> <td>196</td>	Phosphorus	[9]	288	338	272	290	334	196
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Barium	[Ba]	114	76	73	88	43	32
Zirconium[Zr1]1613266146134208Copper[Ou]612353473218Nickel[Nii]95517156Lead(Pb)277139914Zinc[Zn]11559981509458Vanatium[V]826155454347Strontium[Sr]33151911134Cobalt(Col83474<1	Chromium	[Cr]	16	17	13	27	29	
CopperCui612353473218Nickel[Nii]95517136Lead(Pb)277135914Zinc[Zni]11558921509456Vanadium(V)626155454347Strontium[Sri]33151911134Cobalt(Col83474<1	Zirconium	[7]	16	13	266	146	134	208
Nickel [Nii] 9 5 5 17 15 6 Lead (Pb) 27 7 13 9 9 14 Zinc [Zn] 115 55 98 150 94 58 Vanadium [V] E2 61 55 45 43 47 Strontium [Sr] 33 15 19 11 13 4 Cobalt (Col 8 3 4 7 4 4 1 Molybdenum [Mol 4 2 2 4 7 4 4 1 Molybdenum [Mol] 4 2 2 4 7 4 4 1 Boron [B] 4 1 4 3 3 1 1 Boron [B] 4 10 4 20 9 14 4 Scandium [Sc1] 4 20 9 14 4 3 Tungsten [W] 4 4 <td>Copper</td> <td>[03]</td> <td>61</td> <td>23</td> <td>53</td> <td>47</td> <td>32</td> <td>18</td>	Copper	[03]	61	23	53	47	32	18
Lead(Pb)277135914Zinc[Zn]11559981509458Vanadium[V]826155454347Strontium[Sr]33151911134Cobalt[Coi]83474<1	Nickel	[Ni]	9	5	5	17	15	
Zinc[Zn]11559981509458Vanadium[V]E26155454347Strontium[Sr]33151911134Cobalt[Coi]83474<1	Lead	(Pb)	27	7	13	9	 9	14
Vanadium IV 1 E2 61 55 45 43 47 Strontium ISr1 33 15 19 11 13 4 Cobalt ICol 8 3 4 7 4 <1	Zinc	[Zn]	115	58	98	150	94	59
Strontium [Sr] 33 15 19 11 13 4 Cobalt (Co) 8 3 4 7 4 <1	Vanadium	[V]	82	61	55	45	43	47
Cobalt (Co) 8 3 4 7 4 < 1 Molybdenum (Mol) < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	Strontium	[Sr]	22	15	19	11	13	<u>.</u>
Malybdenum [Mo] $\langle 2$ $\langle 1$ <td>Cobalt</td> <td>(Co)</td> <td>8</td> <td>3</td> <td>4</td> <td> 7</td> <td>4</td> <td></td>	Cobalt	(Co)	8	3	4	7	4	
Silver IAg1 $\langle 1$ $\langle 1$ $\langle 1$ 2 $\langle 1$ $\langle 1$ 2 Gadmium EG0 $\langle 1$ $\langle 1$ $\langle 1$ 1 $\langle 1$ $\langle 1$ $\langle 1$ $\langle 1$ Beryllium IBe1 $\langle 10$ Antimony ISb1 $\langle 5$	Molybdenum	[Mo]	< 2	< 2	< 2	2	, , ,	· · ·
Cadmium LOGI $\langle 1$ <	Silver	[Aq]	< 1	< 1	2	< 1	< 1 < 1	2
Beryllium [Be] $\langle 1$	Cadmium	[Cd]	< 1	< 1	1	< 1	< 1 < 1	< 1
Boron [B] $\langle 10$	Bervllium	(Be]	$\langle 1 \rangle$	< 1	4	3	* * ₹	1
Antimony (5b) $\langle 5 \rangle$ $\langle 6 \rangle$	Baron	(B]	< 10	< 10	< 10	< 10	< 10	< 10
Yttrium IY I IX	Antimonv	(Sb)	< 5	< 5	< 5	< 5	< 5	× •• / 5
Scandium (Sc) 6 3 4 4 4 3 Tungsten [W] $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10	Yttrium	[Y]	4	4	70	, o g	14	
Tungsten [W] I \langle 10 <td>Scandium</td> <td>(Sel)</td> <td>÷</td> <td>3</td> <td>4</td> <td>4</td> <td>2 (A</td> <td>τ.</td>	Scandium	(Sel)	÷	3	4	4	2 (A	τ.
Niobium [Nb] \langle 10 \langle	Tunosten	[W]	< 10	< 10	< 10	< 10	< 10	2 10
Thorium ITh 30 60 80 30 30 40 Arsenic IAsl < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Niobium	EN63	< 10	< 10	< 10	2 10	< 10	< 10
Arsenic [As] $\langle 5 \rangle$ $\langle 10 \rangle$ \langle 10 \rangle \langle 10 \rangle	Thorium	[Th]	30	60	RO	30	το το	40
Bismuth [Bi] $<$ 5 $<$ 5 $<$ 5 $<$ 5 $<$ 5 $<$ 5 Tin [Sn] $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 Lithium [Li] 20 10 20 20 20 15 10 Holmium [Ho] $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 <	Arsenic	[As]	< 5	< 5	< 5	< =	÷ 5	
Tin [Sn] $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10	Bismuth	[Bi]	× • < 5	< 5	< 5	< 5	< 5	< 5 < 5
Lithium Lil 20 10 20 20 15 10 Holmium [Ho] $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 <t< td=""><td>Tin</td><td>[Sn]</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10 < 10</td><td>< t0 ∠ t0</td></t<>	Tin	[Sn]	< 10	< 10	< 10	< 10	< 10 < 10	< t0 ∠ t0
Holmium [Ho] $\langle 10 \rangle$ \langle	Lithium	[[i]	20	10	20	20	15	10
	Holmium	(Ho)	< 10	< 10	< 10	< 10	< 10	(10

DATE : SEP-20-1990

Jem Pilinik SIGNED :

ELEMENT

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Macrowwan P.C. 146 204					T.S.L. T.S.L. T.S.L.	REPORT File Invoice	Nc. No. No.	: S - : 5E14⊁ : 15567	9868 - 14 18 7	
ATTN: J. FOSTER	PROJECT:	TERYL OPTION	PAMICON	R-2457		ALL RES	UL75	PPM		
	£5-	+00W 9+00N	L5+00W 9+25N	L5+00W 9+50N	£5+00₩	9+75N	L5+00	W 10+00N	1 L7+00W	5+00N

Aluminum	[A1]	12700	31400	15650	33420	23250	5610
Iron	[Fe]	16360	26890	39250	25280	51410	13690
Calcium	[Ca]	320	600	340	100	100	660
Maonesium	[Mై]	1720	2540	220	580	160	1580
Sodium	[Na]	160	350	50	130	110	150
Potassium	[K]]	730	1340	170	360	260	190
Titanium	[71]	637	1234	875	514	942	961
ñanganese	(Min]	204	528	137	262	99	117
. Phosphorus	(P.)	298	330	194	180	254	122
Barium	[Ba]	61	. 76	18	32	17	16
Chromium	[Cr]	16	38	10	7	14	4
Zirconium	[Zr]	27	119	E 3	341	167	7
Copper	[60]	16	22	7	1 i	IJ	3
Nickel	EN13	6	ίć	4	1	2	< i
Lead	CP51	5	10	23	20	21	10
Zinc	[Zn]	45	80	26	71	32	28
Vanadium	[V]	29	48	14	13	25	44
Strantium	[sr]	5	6	4	1	2	7
Cobalt	[Co]]	2	5	< 1	< 1	< 1	< 1
Molybdenum	[Mo]	1 < 2	2	4	< 2	2	2
Silver	[Ag]	< 1	< 1	< 1	4	1	< 1
Cadmium	[Cd]	< 1	< 1	< i	1	1	< 1
Beryllium	[Be]	< 1	2	< 1	Z	< 1	< 1
Boron	(B]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[55]	< 5	< 5	5	< 5	< 5	< 5
Yttrium	[Y]	5	10	5	12	5	1
Scandium	[Sc]	< 1	3	< 1	< 1	< 1	< 1
Tunosten	[W]	< 10	< 10	10	< 10	< 10	< 10
Niobium	[Nb]	10	< 10	40	< 10	20	< 10
Thorium	[Th]	< 10	40	< 10	< 10	50	< 10
Arsenic	[As]	10	< 5	10	< 5	< 5	< 5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	15	< 5	10	< 5	5
Holmium	[Ho]	< 10	< 10	< 10	≤ 10	< 10	< 10

emis Pilmik SIGNED :

•

.

2-302-48TH STREET, SASKATODN, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATION	LTD.		T.S.L. REPORT No. : 5 - 9868 - 15			
RAR Wast Hostine	<u>c</u> +			1.5.L. 1118	No.: SE14MB	
Usnoniuan B C - 94	00. P 944			1.5.L. invoice	No.: 1556/	
ATTN: J. FOSTER	PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM	
ELEMENT	17+00W 5+25N	17+00¥ 5+50N	L7+00₩ 5+75N	L7+00W 5+00N	L7+00W 6+23N	L7+00W 6+75N
Aluminum (A	A1] 16350	18590	14580	31170	37490	17820
Iron (f	Fe] 23330	20400	22880	32110	37210	23240
Calcium EC	Cal 200	540	1520	140	170	25200
Magnesium (M	1 a] 340	1890	3930	500	-20 790	1400
Sodium E≀	va] 200	240	120	230	370	1070
Potassium (k	(] 230	320	1090	430	500	500
Titanium (T	Fi] 828	1002	1169	719	497.	570
Manoanese [M	fn] 162	206	874	146	148	1040
Phosphorus (P)] 126	194	374	130	100	2040
Barium (E	3a] 35	38	117	25	- 10 7 <u>4</u>	974 151
Chromium (C	Cr] 11	34	14	20 g	94 B	17
Zirconium (Z	[r] <u>102</u>	116	4	449	0 497	10
Copper [[) 10 10 10 10 10 10 10 10 10 10 10 10 10	5	É.	Ä	402	17 L
Nickel [N	63 3	1:	4	7 7	4	0 L
Lead [P	[6] 13	10	7	13	، ۲۸	0 7
Zinc [Z	n] 47	59	107	99 99	10	100
Vanadium (V	1 22	77	58	15	120	207
Strontium [S	ir] 2		12	1	14	20
Cobalt [C		2	4	2 2 1	1	20
Molvodenum [M	o] 4	< 2	$\langle \dot{\gamma}$	× 1 4	× 1 ∦	2 ()
Silver EA	 o] (1	< 1	< <u>1</u>	т =	4 5	× 2 7 4
Cadmium [C	= d] < 1	2 I	< 1		J N	× 1 / 4
Bervllium [B		1	1	2 A	2 =	\ 1 7
Baron [B	3 < 10	< 10	< 10	/ 10	/ 10	ు / గం
Antimony [S	h] < 5	< 5	× ••	× 10 7 5	× 10 / E	N 1V
Yttrium (Y		, v q		\ <i>⊎</i> 1≣	\ (=	N 0 17
Scandium (Sc	-1 (1	•	t	20 5	10	10
Tunosten IW	3 < 10	< 10	< 10	<u>د</u> ۲ ۱۸	2	× 1 / 10
Niobium (N	n] 20	10	< 10	< 10 Z 16	× 10 Z 10	× 10 70
Thorium [Th	10	< 10	50	< 10 < 10	< 10 Z 10	- 30 Z - 10
Arsenic (A-		< 5	~ S	< 10 / 5	× 10 7 S	10
Bismuth (Bi	()] (5	< 5	< 5	< 5	\ ∂ ∕ ⊆	<pre>< 0</pre>
Tia (Br	1] (10	< 16	< 10	< to	× 3 7 10	∂ ∠∧∧
Lithium IIi		5	25	10	10	× 10 15
Holmium [Ho	i] (_10	< 10	< 10	< 10	- 10 < 10	10 < 10
	• •		· • · ·	N 4.9	N 4V	N 1V

SIGNED :

mi Pilpick

.

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (305) 242 - 4717

I.C.A.P. PLASMA SCAN

PRIME EXPLORATION 10th Floor Box 1 808 West Hasting	DN LTD. 10 25 St.			T.S.L. REPOR T.S.L. File T.S.L. Invoice	lT No. : S – 98 No. : SE14MB No. : 15567	168 - 16	
Vancouver B.C. \ ATTN: J. FOSTER	/60 2X6 PR:	OJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	SULTS PPM	
ELEMENT		L7+00W 7+00N	L7+00W 7+25N	(7+00₩ 7+50N	L7+00W 7+75N	L7+00W 8+00N	L7+00W 8+25N
Aluminum	[A]]	25190	33120	15010	22260	33680	27850
Iron	[Fe]	25320	30200	30680	44610	37090	26420
Calcium	(Ca]	620	120	120	190	240	220
Magnesium	[Mg]	1500	440	220	420	810	310
Sodium	[Na]	170	240	120	100	140	530
Potassium	EK 3	380	500	160	220	320	490
Titanium	[Ti]	824	581	718	1133	875	3 87
Manganese	[Mn]	670	303	116	148	499	175
Phosphorus	EP 3	. 376	156	142	258	240	162
Barium	[Ba]	71	45	26	28	27	36
Chromium	[Cr]	14	7	Ģ	12	11	11
Zirconium	[7]	100	444	119	130	299	469
Copper	(Cu)	10	4	. 3	8	6	5
Nickel	[N:]	5	5	1	2	3	4
Lead	EP53	11	11	14	17	14	17
Zinc	[Zn]	128	143	41	62	89	80
Vanadium	EV]	22	7	37	44	27	13
Strontium	[Sr]	6	× 1	2	2	2	2
Cobalt	[Co]	1	1	< 1	< i	< 1	< i
Molybdenum	(Mo)	4	4 -	4	6	4	2
Silver	[Ao]	< 1	5	< 1	< 1	3	5
Cadmium	EC43	< 1	2	< 1	< 1	1	2
Beryllium	[Be]	6	4	< 1	< 1	2	3
Baron	(B_]	< 10	10	< 10	< 10	< 10	< 10
Antimony	[86]	< 5	< 5	5	< 5	< 5	< 5
Yttrium	EY 3	43	15	5	2	6	12
Scandium	(Sc]	<u>i</u>	1	< 1	< 1	1	< 1
Tunosten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[N6]	30	< 10	20	30	< 10	< 10
Thorium	[Th]	< 10	< 10	< 10	60	70	< 10
Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	< 5
Bismuth ([Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin ([Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium I	[Li]	25	15	< 5	< 5	10	< 5
Holmium i	Ho]	< 10	< 10	< 10	< i0	< 10	< 10

Jim Pilnik SIGNED : 🔟

.

٠

,

2-302-48TH	STREET, SASKATOON, SASKATCHEWAN	87K	644
	TELEPHONE #: (306) 931 - 1033		
	FAX #: (306) 242 - 4717		

I.C.A.P. PLASMA SCAN

PRIME EXPLORAT	TON LTI 10).		T.S.L. REPORT No. : 5 - 9868 - 17 T.S.L. File No. : 2514MD			
808 West Hasti	nos St.				T.S.L. Invoire	No. : 15567	
Vancouver B.C.	V6C 2)	6			HOLL MODE		
ATTN: J. FOSTE	R	PROJECT: TERYL OPTION	PAMICON	R-2457	ALL RE	ISULTS PPM	
ELEMEN	Ī	L7+00₩ 8+50N	L7+00W 8+75N	L7+00₩ 9+00N	L7+00₩ 9+25N	17+00W 9+50N	L7+00W 9+75N
Aluminum	[A]]	37000	42350	34720	34140	29140	12130
Iron	[Fe]	30090	35520	31770	27030	43720	20280
Calcium	[Ca]	160	120	180	1820	1620	14140
Magnesium	[Mo]	330	220	260	5180	3630	1830
Sodium	(Na)	500	260	410	850	BO	1000
Potassium	EK 1	520	360	480	2500	10.30	390
Titanium	67i3	781	722	B06	1784	7744	200 205
Manganese	[Mn]	241	144	266	457	740	7584
Phosphorus	= (P]	170	234	170	178	370	697
Barium	(Ba]	22	17	46	171	79	174
Chromium	ECr1	17	25	17	28	40	13
Zircanium	[Zr]	433	360	365	46	60	B
Copper	(Cu]	4	6	4	73	32	23
Nickel	[Ni]	Ł	4	6	14	9	10
Lead	2203	18	13	17	<u> </u>	7	4
Zinc	[n]	80	42	75	78	50	130
Vanadium	CV 3	14	17	12	84	165	36
Strontium	[Sr]	< 1	2	2	37	13	76
Cobalt	[Co]	< 1	< 1	< 1	8	5	4
Molybdenum	[Mo]	2	4	2	< 2	< 2	6
Silver	[Ao]	4	4	3	< 1	< 1	< 1
Cadmium	[Cd]	2	2	2	< 1	< 1	< 1
Beryllium	[Be]	2	2	2	2	< 1	3
Boron	[B]	< 10	< 10	< 10	< 10	< 10	10
Antimony	(Sb)	< 5	< 5	5	< 5	< 5	< 5
Yttrium	EY 3	11	10	10	12	4	29
Scandium	[Sc]	1	2	1	7	7	< 1
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[No]	< 10	< 10	< 10	< 10	< 10	20
Thorium	ETH 3	< 10	30	< 10	30	20	< 10
Arsenic	[As]	< 5	< 5	< 5	< 5	5	5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< i0
Lithium	[Li]	5	< 5	5	30	10	20
Holmium	[Ho]	< 10	10	< 10	< 10	< 10	< 10

SIGNED : Dim Pilonik

2-302-40TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

L7+00W 10+00N L7+00W 10+25N L7+00W 10+50N L7+00W 10+75N L7+00W 11+00N L7+00W 11+25N

PRIME EXPLORATION LTD.	T.S.L.	REPORT N	Vo.:	S - 9868 - 18
10th Floor Box 10	T.S.L.	File (Va. :	SE14MB
808 West Hastings St.	7.S.L.	Invoice N	Vo. :	15567
Vancouver B.C. V6C 2X6				
ATTN: J. FOSTER PROJECT: TERYL OPTION PAMICON R-2457		ALL RESUL	TS PP	Ą

ELEMENT

.

,

Aluminum	[A]]	15710	10390	29220	35410	25530	13850
Iron	[Fe]	22660	20580	40250	32760	31500	23280
Calcium	[Ca]	560	500	1020	540	500	740
Magnesium	[Mo]	3030	1760	6570	4630	1800	3390
Sodium	[Na]	330	130	120	190	460	200
Potassium	[K]	1120	540	4060	2470	1000	3170
Titanium	(Ti]	1144	1292	2465	1755	1037	1762
Manganese	[Mn]	241	108	509	745	499	837
Phosphorus	; [P]	194	244	. 354	422	238	330
Barium	[Ba]	50	24	111	106	41	52
Chromium	(Gr]	43	14	15	20	12	28
Zirconium	[Zr]	60	13	12	51	172	7
Соррег	(Cu3	32	16	56	43	. 25	18
Nickel	[Ni]	15	5	7	8	5	 9
Lead	[Pb]	7	6	< 1	5		4
Zinc	[Zn]	90	36	74	174	129	53
Vanadium	[V]	51	74	157	73	30	100
Strontium	[Sr]	á	5	12	6	6	10
Cobalt	[Co]	4	4	10	6	3	5
Molybdenum	[Mo]	< 2	< 2	< 2	· < 2	2	2
Silver	[Ag]	< 1	< 1	< 1	< 1	2	< 1
Cadmium	[Ca]	< t	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	2	< 1	$\langle 1$	4	Ó	< 1
Boron	(B]	< 10	< 10	< 10	< 10	< i0	< 10
Antimony	[96]	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY 3	10	2	4	13	54	3
Scandium	(Scl	2	2	10	6	2	3
Tunosten	EW 1	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	EN5]	10	< 10	< 10	10	10	< 10
Thorium	[Th]	30	< 10	30	30	70	30
Arsenic	[As]	15	10	< 5	< 5	< 5	< 5
Bismuth	[Ei]	< 5	< 5	< 5	< 5	< 5	< 5
ī in	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	< 5	35	25	15	15
Hoimium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED: Dennis Pilinik

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6						T.S.L. T.S.L. T.S.L.	REPORT File Invoice	No. No. No.	:	S - 986 SE14MB 15567	8 - 19	
ATTN: J. FOSTER	PROJECT:	TERYL O	PTION	PAMICON	R-2457		ALL REG	JL TS	PPM			
	۲+(XOW 11+5	ION L7	7+00w 11+75N	L7+00W 12+00N	19+004	5+00N	L9+()0W	5+50N	19+00k	√ 5+75N

ELEMENT

Aluminum	[A]]	20820	23280	19B10	14610	1730	32490
Iron	[Fe]	24020	25130	26230	19460	6470	39410
Calcium	{Ca]	320	220	920	1560	3B0	120
Maqnesium	[Mo]	1680	290	3430	1830	240	240
Sodium	[Na]	190	290	140	150	70	150
Potassium	[K]	620	340	1380	360	130	200
Titanium	[Ti]	1003	731	873	515	323	1041
Manganesc	[Mn]	217	137	1736	444	38	80
Phosphorus	(P]	352	210	534	600	44	128
Barium	[Ba]	31	35	59	52	Ģ	26
Chromium	[13]	17	11	31	8	2	13
Zirconium	[][]	36	132	É	7	< 1	421
Capper	(Cu]	16	7	35	5	4	5
Nickel	[Ni]	5	3	12	2	< 1	2
Lead	[26]	<u>1</u> 0	17	8	6	< 1	13
Zinc	[2n]	45	40	162	84	14	61
Vanadium	[V]	46	23	71	25	20	30
Strontium	[Sr]	4	2	8	ó	4	2
Cobalt	[Ca]	2	< 1	5	1	< 1	< 1
Molybdenum	[Mo]	2	4	4	2	< 2	6
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	4
Cadmium	[[63]	< 1	< 1	< 1	< 1	< 1	2
Beryllium	[Be]	< 1	< 1	6	2	< i	2
Baran	[B]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	ī Sb]	< 5	< 5	1.5	< 5	< 5	< 5
Yttrium	[Y]	5	7	68	12	< 1	7
Scandium	(Sc]	1	K 1	2	< 1	< 1	2
Tungsten	[₩]	< 10	< 10	< 16	< 10	< 10	< 10
Niobium	[Nb]	20	30	30	20	< 10	< 10
Thorium	[Th]	< 10	< 10	20	< 10	< 10	60
Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	< 5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	10	< 5	50	10	< 5	5
Holmium	[Ha]	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-20-1990

Dem Piloik SIGNED :

ELEMENT

.

r

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA 5CAN

Aqua-Regia Digestion

PRIME EXPLORATION LT	D.				T.S.L.	REPORT	No.	: 5	- 986	8 - 20	
10th Floor Box 10					T.S.L.	File	No.	: 5	E14MB		
808 West Hastings St					T.S.L.	Invoice	No.	: 1	5567		
Vancouver B.C. V&C 2	X6										
ATTN: J. FOSTER	PROJECT: TE	ERYL OPTION	PAMICON	R-2457		ALL RES	ULTS	PPM			
	٤9+(00W 6+00N	L9+00W 6+25N	19+00W 6+50N	L9+00W	6+75N	49+0	0₩ 7-	+00N	L7+00W	6+50N

Aluminum	[A]]	16770	16830	18340	35570	36720	107 9 0
Iron	[Fe]	28440	21440	21050	35120	33940	23900
Calcium	[Ca]	1020	220	260	140	100	140
Magnesium	[Mg]	4740	550	1090	360	240	190
Sodium	[Na]	70	60	190	260	140	160
Potassium	EK 1	1420	100	260	430	240	190
Titanium	[Ti]	1716	1106	941	787	778	872
Manganese	[Mal	438	52	165	210	134	79
Phospharus	E 91	306	104	166	212	182	62
Barium	(Ba]	67	25	24	31	21	15
Chromium	[Cr]	5	5	÷	12	13	9
Zirconium	[Zr]	11	21	124	456	340	115
Copper	[Cu]	2	3	3	6	6	4
Nickel	[Ni]	< 1	< 1	2	3	< 1	2
Lead	[Po]	2	4.	8	15	18	12
Zinc	[2n]	89	28	79	104	79	33
Vanadium	CV 3	84	56	26	18	20	25
Strontium	[Sr]	11	4	3	1	1	2
Cobalt	[Co]	4	< 1	2	1	< 1	< 1
Molyadenum	[Mo]	< 2	< 2	< 2	4	2	· 4
Silver	[Ag]	< 1	< 1	< 1	5	3	< 1
Cadmium	[Cd]	< 1	< 1	< 1	2	2	< 1
Beryllium	[Be]	< 1	< 1	2	4	2	< 1
Baron	[B]	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	CSb3	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY]	3	3	11	25	11	4
Scandium	(Sc]	2	4	1	2	<u>i</u>	< 1
Tungsten	EW 3	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	(Nb]	< 10	< 10	10	< 10	< 10	10
Thorium	[Th]	30	< 10	< 10	40	< 10	< 10
Arsenic	[As]	< 5	< 5	< 5	< 5	< 5	10
Bismuth	[Bi]	< 5	< 5	< 5	Κ 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	20	5	10	10	5	< 5
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-20-1990

im Pilpich SIGNED :

1630 PANDORA	STREET
VANCOUVER, BC	V5L 116
(604) 251-5656	

VANGEOCHEM LAB LIMITED

MAIN OFFICE -1988-TRIUMPH ST.--VANCOUVER, B.C. V5L 1K5-• (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	PAMICON DEVELOPMENTS LTD.	DATE:	SEPT 07 1990
ADDRESS:	/11 - 6/5 W. Hastings St. Vancouver, BC	REPORT#:	900329 GA
:	V6B 1N4	JOB#:	900329

PROJECT#: TERYL OTPION SAMPLES ARRIVED: AUG 29 1990 REPORT COMPLETED: SEPT 07 1990 ANALYSED FOR: AU ICP INVOICE#: 900329 NA TOTAL SAMPLES: 37 SAMPLE TYPE: 37 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Rynth SIGNED:

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

1630 PANDORA STREET VANCOUVER, BC V5L 1L6 (604) 251-5656

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE

+988 TRIUMPH 6T. .VANCOUVER, B.C. V5L 1K5 ● (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT AURBER: 900329 GA	JUB RUNBER: JUUJ72	FARICUN DEVELOPRENTS LTD.	PAGE 1 UF 1
SAMPLE #	<u>Au</u>		
1.11+00¥ 0+00¥	ppd 15		
L11+00N 0+25W	15		
L11+00N 0+50W	nở		
L11+00N 0+75W	15		
L11+00N 1+25W	nd		
1.11+00N 1+50N	15		
L11+00W 1+75W	nð		
T.11+00W 2+00W	nð		
T11+00N 2+25W	10		
L11+00N 2+50W	25		
L11+00N 2+75V	5		
L11+00N 3+00W	15		
L11+00N 3+25W	nđ		
L11+00N 3+50W	nd		
L11+00H 3+75W	5		
L11+00N 4+00W	5		
L11+00N 4+25W	nd		
L11+00N 4+50W	5		
L11+00N 4+75W	5		
L11+00N 5+00W	25		
L11+00N 5+25W	5		
L11+00N 5+50W	10		
L11+00N 6+00W	90		
L11+00N 6+25W	80		
L11+00N 6+50V	60		
L11+00N 6+75W	15		
L11+00N 7+00V	15		
L11+00N 7+50W	30		
L11+00N 7+75¥	nd		
L11+00N 8+00W	nd		
L11+00N 8+25W	230		
L11+00H 8+50W	25		
L11+00N 8+75W	35		
L11+00N 9+00W	15		
L11+00N 9+25W	5		
L11+00N 9+50W	30		
L11+00N 10+00W	20		

-A 20 E.C. IEL L. I ΤE

•

ANALYST: Kindh

• .

1630 Pandora Street, Vancouve C. V5L 1L6 Ph: (604) 251-5656 Fax: (604) 254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H_2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900329 PA	#: 900329 PA PANICON DEVELOPMENTS LTD.					PROJE	CI: TERY	L OPTION		DAT	E IN: AUG	i 29 1990	DA	TE OUT: 9	GEPT 29 1	990	ATTENTIO	N: MR. SI	EVE TODO	RUK		PAG	1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	Ma	Mn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	H	Zn
	00 a	X	pom	ppa	ppa	X	pps	ppe	ppa	00.	X.	Х.	7.	00 0	ppe	ï	ppe	X,	ppe	ppe	ppe	000	000	D D B	004
L11+00N 0+00W	0.2	5.53	<3	118	<3	0.23	2.6	26	242	85	6.45	0.16	1.22	489	239	0.04	924	0.06	<2	<2	24	20	<5	<3	1 4 8
L11+00N 0+25W	0.3	1.39	<3	30	<3	0.04	0.6	9	14	13	3,10	0.04	0.03	151	20	0.02	6	0.02	42	5	22	4	<5	<3	61
L11+00N 0+50W	<0.1	0.60	<3	29	<3	0.04	0.9	6	11	11	1.53	<0.01	0.03	96	12	0.01	5	0.03	35	5	16	8	<5	<3	73
L11+00N 0+75W	<0.1	4.38	<3	140	(3	0.08	1.9	20	31	60	5.76	0.13	0.52	499	19	0.04	11	0.04	(2	$\dot{\alpha}$	24	6	(5	(3	117
L11+00N 1+50W	<0.1	2.51	<3	166	<3	0.93	2.3	5	13	14	5.15	0.18	0.08	2367	26	0.05	7	0.15	6	<2	16	54	<5	⟨3	189
L11+00N 1+75W	(0.1	3.60	(3	51	(3	0.09	2.0	٩	17	13	4 65	0.08	0.03	287	22	0 03	4	0.03	10	()	23	7	(5	(3	101
L11+00N 2+00W	0.6	8.22	(3	24	(3	0.03	1.7	5	24	12	5 16	0 11	0.04	297	26	0.04	1	0.03	(2	(2	25	1	(5	(3	104
L11+00N 2+25W	0.7	5.97	(3	26	(3	0.02	1 7	Š	24	16	4 57	0.07	0 07	199	22	0.03	(1	0.04	()	(2	23	2	(5	(3	72
111+00N 2+50W	(0.1	1.80	(3	30	(3	0.02	2.2	4	12	11	2 62	0.07	0.02	122	12	0.00	, i	0.07	10	12	14	6	<5 (5	/2	F2
L11+00N 2+75W	<0.1	4.82	(3	63	<3	0.03	2.4	10	24	28	4.78	0.13	0.40	721	18	0.02	12	0.01	(2	<2	18	3	(5	(3	185
111+00N 3+00W	0.2	4.96	(3	65	(3	0.04	1.8	10	35	50	4 52	0 09	0.26	200	10	0.04	12	0.02	12	12	20	4	75	12	105
111400N 2425H	0.1	4 30	10	20	10	0.04	1.0	10	33	30	4.33	0.03	V. 30	233	10	0.04	12	0.02	14	14	20	-	10	10	105
111+00N 3+50H	0.5	1 12	13	20	13	0.04	2.3	0	20	21	4.00	0.10	0.15	912	21	0.05		0.02	12	12	18	3	(0) /E	(3	101
111400N 2475U	(0.1	1.15	13	20	()	0.06	1.1	0	12	15	2.10	0.02	0.09	298	10	0.02	(1	0.06	20	14	10	3	< 0 (5	\J (0	62
	(0.1	9.93	(3	31	(3	0.06	1.6	8	20	26	4.35	0.10	0.13	3082	22	0.04	5	0.19	(2	(2	17	2	(5	<3	136
LII+UUN 4+UUW	1.1	2.65	(3	36	(3	0.03	1.4	9	33	30	3.44	0.05	0.36	302	13	0.02	8	0.06	<2	<2	17	6	<5	₹3	89
L11+00N 4+25W	(0.1	0.57	(3	22	(3	0.03	<u>0.2</u>	5	6	12	1.61	(0.01	0 03	122	8	0.01	(1	0.03	31	4	17	8	15	(3	47
L11+00N 4+50W	0.5	1.24	(3	24	(3	(0.01	1.4	5	11	14	4.03	0.05	0.03	279	14	0.03	(1	0.03	41	Ŕ	19	ş	(5	(3	82
L11+00N 4+75W	(0.1	1.53	(3	23	(3	(0.01	0.7	e e	12	14	3 96	0.04	0.02	195	15	0.02	(1	0.03	25	4	20	Š	(5	<3 <3	50
L11+00N 5+00W	0.1	4.13	(3	47	(3	0.04	1.6	18	30	R1	4 96	0.09	0.02	1124	15	0.02	0	0.03	/2	12	17	5	/5	/2	164
L11+00N 5+25W	0.2	2.85	<3	26	(3	0.02	1.2	6	13	16	5.12	0.08	0.03	185	15	0.03	(1	0.03	18	<2	18	4	<5	(3	87
L11+00N 5+50W	0.1	8.30	<3	49	<3	0.01	2.2	6	24	15	5.53	0.11	0.07	337	24	0.03	<1	0.02	<2	<2	25	1	<5	<3	84
L11+00N 6+0W	(0.1	4.12	(3	34	<3	(0.01	2.5	6	18	12	6.33	0.11	0.02	141	19	0.04	(1	0.02	7	<2	23	1	<5	<3	74
L11+00N 6+25W	0.2	4.46	(3.	. 62	<3	<0.01	1.0	12	23	43	3.66	0.07	0.34	199	13	0.02	1	0.03	<2	<2	21	7	<5	<3	94
L11+00N 6+50W	<0.1	5.66	<3	39	<3	<0.01	1.7	10	20	20	5.70	0.11	0.11	302	23	0.04	1	0.06	<2	< 2	22	2	<5	<3	145
L11+00N 6+75W	<0.1	8.88	<3	56	<3	0.01	1.5	26	19	77	5.34	0.15	0.17	1501	25	0.05	<1	0.02	<2	<2	19	2	<5	<3	153
L11+00N 7+00W	<0.1	4.31	<3	138	(3	0.07	2.2	26	25	107	5.53	0.16	1.44	961	13	0.03	7	0.06	<2	<2	20	9	<5	<3	119
L11+00N 7+50W	<0.1	8.82	<3	44	<3	<0.01	0.9	7	20	24	5.01	0.13	0.10	634	26	0.06	<1	0.01	<2	<2	24	1	<5	₹3	139
L11+00N 7+75W	<0.1	1.09	(3	30	<3	<0.01	1.2	6	6	12	2.17	(0.01	0.02	87	11	0.01	(1	0.02	33	2	17	3	<5	<3	49
L11+00N B+00W	1.5	3.78	<3	25	<3	<0.01	1.7	4	13	16	3.91	0.05	0.04	334	20	0.03	(1	0.04	<2	(2	18	2	<5	(3	73
L11+00N 8+25W	<0.1	8.34	<3	103	<3	0.11	2.9	13	33	47	3.92	0.09	0.73	425	24	0.04	2	0.03	<2	<2	23	24	<5	₹3	139
L11+00N 8+50W	(0.1	>10.00	<3	114	(3	0.03	1.5	19	46	49	5.40	0.13	0.77	919	29	0.04	7	0.03	()	(2	25	7	(5	(3	156
L11+00N 8+75W	(0.1	4.66	(3	125	(3	0.18	1.7		15	15	3 27	0.08	0.50	613	19	0.04	(1	0.06	()	12	20	21	(5	(3	190
111+00N 9+00W	(0.1	8 46	12	26	(2	/0.01	2 2	,	25	14	5 40	0.10	0.04	114	25	0.01		/0.00	12	12	20		/5	/2	07
111+00N 9+25W	(0.1	2 54	13	20	12	(0.01	0.4	, 0	17	17	2 95	0.10	0.04	114	23	0.03		0.01	12	12	20	1	25	/3	61
111400N 9450U	(0,1	7.0	()		()	(0.01	0.4	0	17	1/	3.75	0.03	0.13	172	14	0.02	(1 	0.01	8	12	15	4	11	13	10
LIITUUN STJUN	(0.1	1.68	(3	42	<3	(0.01	2.0	8	23	19	5.73	0.14	0.13	3/4	26	0.06	(1	0.02	<2	(2	22	2	< 5	< <u>3</u>	1/1
L11+00N 10+50W	(0.1	1.59	<3	47	(3	0.01	0.9	4	6	8	2,56	0.01	0.29	103	8	0.01	(1	0.01	<2	<2	8	7	(5	⟨3	51
L11+00N 1+25W	<0.1	2.99	<3	133	(3	0.69	1.2	5	13	21	1.42	0.11	0.31	244	12	0.05	(1	0.11	<2	<2	13	38	<5	<3	209
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	t	0.01	0.01	0.01	1	1	0.01	1	0.01	2	,	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10 00	10.00	10 00	20000	1000	10 00	20000	10 00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - Greater 1	lhan Maxim	ue i	is - Insu	ufficient	t Sample	ns	- No Samp	1e	ANOMALOU	S RESULT	5 - Furth	ner Anal	yses By	Alternati	e Method	s Sugges	ted.	20000		1000		4 * *	••••	2

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4

DATE: OCT 02 1990

REPORT#: 900541 GA JOB#: 900541

INVOICE#: 900541 NA TOTAL SAMPLES: 57 SAMPLE TYPE: 57 SOIL REJECTS: DISCARDED OCT 24 1990

.

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: TERYL

SAMPLES ARRIVED: SEPT 20 1990

REPORT COMPLETED: OCT 02 1990

ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Kynth SIGNED:

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

VGC VANGEOCHEM LAB LIMITED

.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

I

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900	541 GA JOB NUMBER:	900541 I	ANICON DEVELOPMENTS	LTD.	PAGE 1 OF 2	
SAMPLE	λu					
	ppb					
L100W COON	ba					
L100W 025N	5					
L100W 050N	5					
L100W 075N	10					
L100W 100N	20					
L100W 125N	10					
L100W 150N	nd					
L100W 175W	nd					
L100W 200N	nð					
L100W 225N	nd					
L100W 250W	5					
L100W 275W	nd					
L100W 325N	nd					
L100W 350N	nđ					
L100W 375N	10					
1.100W 400N	15					
L100W 425N	nd					
L100W 450N	5			•		
L100W 475W	nd					
L100W 500N	nd					
L100W 525N	15					
L100W 550N	nð					
L100V 575H	nd					
L100W 600N	5					
L100W 625N	5					
L100W 675N	nd					
L100W 700B	10					
L100W 725N	nđ					
L100W 750N	5					
L100W 775N	10					
L100W 825N	10					
L100W 850N	nd					
L100W 875N	10					
L100W 900N	5					
L100W 925N	15	·				
L100W 950N	5					
L100V 975N	15					
L100W 1000N	15					
L100W 1025N	nd					
DETECTION LIMIT	5					
nd = none detected	= not analysed	is = insuffi	icient sample			

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REFORT NUMBER: 900541 GA	JOB NUNBER: 900541	PANICON DEVELOPMENTS LTD.	PAGE 2 OF 2
SANPLE I	<u> </u>		
	ppb		
L100W 1050N	5		
L100W 1100N	5		
L900W 700N	10		
L900W 725N	15		
L900W 750N	nd		
L900W 775H	15		
L900W 800N	15		
L900W 825W	15		
L900W 850N	S		
L900W 875N	20		
L900W 900N	15		
L900W 925W	15		
L900W 950N	20		
L900W 975N	20		
L900¥ 1000N	nd		
L900W 1025W	20		
L900W 1050N	5		
L900W 1075N	10		•

VANGEDUHEM LAT LIMITED

1630 Pandora Street, Vancouver, B.C. VSL 116 Phi1604)251-5656 Faxi (604)254-5717

۲. ICAP GEOCHEMICAL ANALYSIS

....

ADARGUS MELL

A-.5 gram sample is digested with 5 ml of 3:1:2 HCl to HMO, to H2O at 95 °C for 90 minutes and revoluted to 10 ml/with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr ang/W/ 2

			, ,		Thi	s leach	is parti	al for A	1, Ba, C	a, Cr, F	e, K, Mç	, Mn, Ni	, P, Sn	Sr ang	ME -	5		99 <u>0</u>	ANAL	ST:	K	m	4		
REPORT #: 900541 PA	PANICON DE	EVELOPHEN	TS LTD.			PROJE	T: TERYL			DATE	E IN: SEF	T 20 199	O DA	TE OUT: O	CT 22 19	90 1	UTENTION	- he f	EVE ODO	RUK		PAGE	E L OF	2	
Sample Name	Ag	A1	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Kn	Ho	Na	Ni	••• •••	Pb	Sb	Sn	Sr	U	W	Zn
	ppe	ĩ	ppe	ppm	pps	ï	ppe	ppa	ppe	ppe	1	X	ĭ	ppa	ppe	X	ppe	ĩ	ppa	pps	ppa	ppe	ppe	₽ ₽ ∎	ppe
L100W 000N	1.1	4.89	<3	45	<3	0.08	<0.1	7	44	35	4.04	0.07	0.27	144	12	0.03	16	0.05	<2	<2	16	14	<5	<3	91
L100W 025N	0.2	9.47	<3	36	<3	0.05	<0.1	2	22	10	4.83	0.11	0.03	178	14	0.05	<1	0.02	<2	<2	<2	6	(5	<3	88
L100W 050N	0.3	4.37	<3	79	<3	0.08	<0.i	9	35	21	4.38	0.09	0.23	581	11	0.06	13	0.03	<2	<2	16	12	<5	<3	168
L100W 075N	0.2	7.19	<3	144	<3	0.19	<0.1	26	154	80	5.11	0.13	2.15	923	10	0.05	97	0.03	<2	<2	<2	30	<5	<3	186
L100W 100N	0.3	5.61	<3	117	<3	0.10	<0.1	18	122	57	4.66	0.09	1.02	310	9	0.06	58	0.03	<2	<2	7	18	<5	<3	108
L100W 125N	0.1	6.89	<3	102	<3	0.03	(0.1	5	14	16	4.96	0.13	0.07	484	t4	0.10	6	0.01	<2	<2	<2	3	<5	<3	242
LIVON IOUN	0.4	7.86	(3	223	<3	1.85	<0.1	26	72	104	4.01	0.30	1.31	623	9	0.29	40	0.10	<2	<2	<2	382	(5	(3	123
L100W 175N	0.7	4.85	(3	99	<3	0.11	(0.1	18	70	42	4.06	0.09	0.54	275	11	0.07	33	0.02	<2	<2	27	23	<5	<3	100
L100W 200N	0.6	5.60	(3	232	<3	1.09	<0.1	21	126	105	3.85	0.24	1.38	545	10	0.25	57	0.09	<2	(2	22	166	(5	(3	129
L100H 225N	••.4	>10.00	· (3	28	<3	0.02	<0.1	4	25	20	5.95	0.14	0.10	268	13	0.05	<1	0.02	(2	- <2	<2	3	(5	(3	126
L100W 250W	0.6	5.21	<3	57	<3	0.01	(0.1	6	8	12	4.68	0.15	0.06	479	12	0.15	7	0.01	<2	<2	41	2	<5	<3	255
L100N 275N	0.3	8.92	<3	-71	(3	0.01	-(0.1	- 7	11	-12	8.14	0.13	0.03	735	12	0.10	· (1)	0.02	(2	(2	<2	1	(5	(3	138
L100W 325N	0.6	5.79	<3	124	<3	0.30	(0.1	· 20	53	71	4.56	0.15	0.96	930	11	. 0.12	41	0.03	(2	<2	8	72	(5	(3	194
L100W 350N	· 0.3	4.53	<3	119	<3	0.24	(0.1	17	42	63	4.73	0.14	0.71	589	10	0.12	35	0.03	<2	<2	<2	36	<5	<3	256
L100W 375N	0.2	4.84	<3	34	<3	0.04	<0.1	7	20	24	4.22	0.08	0.17	355	12	0.07	5	0.03	<2	<2	<2	12	<5	<3	136
L100W 400N	0.2	6.39	<3	69	<3	0.08	<0.1	13	44	46	4.74	0.13	0.62	492	13	0.09	22	0.02	<2	<2	<2	18	<5	<3	185
L100W 425N	<0.1	6.12	<3	54	(3	<0.01	<0.1	7	13	20	4.91	0.13	0.10	661	15	0.11	4	<0.01	<2	<2	<2	2	<5	<3	234
L100W 450N	0.9	5.08	<3	78	(3	0.08	<0.1	14	60	48	3.91	0.08	0.70	364	10	0.05	21	0.03	<2	<2	<2	26	<5	<3	118
L100W 475N	0.3	4.45	<3	146	<3	0.82	0.2	32	50	147	4.26	0.23	1.29	1096	8	0.18	36	0.11	<2	<2	<2	143	<5	<3	148
L100W 500N	0.5	5.21	<3	87	<3	0.33	<0.1	18	47	86	4.68	0.12	0.94	555	10	0.10	27	0.04	<2	<2	<2	81	۲5	<3	131
L100W 525N	0.5	6.35	<3	138	<3	0.43	(0.1	24	30	113	5.34	0.18	1.04	565	6	0.13	22	0.06	<2	<2	<2	109	<5	≺ 3	146
L100W 550N	0.4	5.49	<3	25	(3	(0.01	(0.1	3	17	26	3.87	0.07	0.14	115	9	0.04	3	0.03	(2	<2	<2	8	(5	(3	43
L100W 575N	0.1	8.16	<3	56	(3	(0.01	(0.1	5	30	28	4.65	0.09	0.21	392	12	0.06	7	0.03	<2	<2	<2	2	<5	<3	110
L100W 600N	(0.1	>10.00	(3	40	(3	(0.01	(0.1	4	11	16	5.08	0.13	0.04	1010	11	0.09	(İ	<0.01	(2	<2	<2	(1	(5	<3	140
L100W 625N	0.5	6.36	<3	21	(3	<0.01	<0.1	1	13	21	4.87	0.08	0.04	155	13	0.05	<1	0.03	<2	<2	<2	3	(5	<3	63
L100W 675N	0.3	6.27	<3	483	(3	0.11	<0.1	33	64	119	5.69	0.18	2.14	841	7	0.07	22	0.02	<2	₹2	<2	19	(5	(3	189
L100W 700N	0.3	8.24	<3	41	<3	<0.01	(0.1	2	8	18	4.66	0.09	0.05	284	12	0.08	<1	0.01	<2	<2	<2	(1	<5	<3	136
L100W 725N	0.2	>10.00	<3	33	<3	<0.01	<0.1	<1	8	20	5.25	0.12	0.03	204	7	0.07	<1	<0.01	<2	<2	<2	<1	<5	<3	49
L100W 750W	0.4	6.81	<3	62	<3	0.03	<0.1	12	11	42	5.12	0.13	0.60	611	13	0.09	2	0.03	<2	<2	<2	10	<5	{3	164
L100W 775N	0.4	8.87	<3	77	(3	<0.01	<0.1	4	11	21	4.61	0.10	0.09	471	11	0.09	4	0.01	<2	<2	<2	L	<5	<3	205
L100W 825N	0.3	8.38	(3	43	∢ 3	<0.01	<0.1	4	12	18	4.90	0.13	0.09	376		0.08	· · · 6	<0.01	<2	<2	<2	1)	(5 1)	<3	247
L100W 850W	-0.1	6.19	{3	- 55	(3	<0.01	<0.1	9	10	- 35	5.70	0.13	0.35	620	11	0.10	- 4	0.01	(2)	<2	<2	1	(5	<3	191
L100W 875W	• • • • • • • • • • • • • • • • • • • •	4.66	<3	58	<3	<0.01	(0.1	- 6	5.	29	5.09	0.13	0.24	833	12	0.13	6	(0.01	· (2	<2	<2	(1	(5	(3	253
L100W 900W	<0.1	5.02	<3	48	<3	<0.01	(0.1	3	3	18	5.21	0.13	0.09	882	10	0.16	2	<0.01	<2	<2	· (2	12	(5	(3	231
L100W 925N	0.3	7.34	<3	53	<3	<0.01	<0.1	2	6	21	4.63	0.09	0.09	362	10	0.08	t)	0.02	<2	<2	<2	(1	<5	<3	189
L100W 950N	0.4	6.20	<3	79	(3	<0.01	<0.1	4	5	26	5.28	0.12	0.16	840	12	0.13	(1	0.02	<2	<2	<2	<1	<5	{3	228
L100W 975W	0.4	4.23	(3	29	<3	(0.01	<0.1	2	9	16	5.51	0.07	0.03	75	10	0.06	(1	0.02	<2	<2	14	2	<5	(3	49
L100W 1000N	0.4	5.02	<3	185	<3	(0.01	<0.1	22	21	111	5.30	0.11	1.46	507	6	0.05	13	0.01	<2	<2	14	6	<5	<3	146
L100W 1025N	0.3	5.43	<3	31	(3	<0.01	(0.1	3	9	23	5.19	0.08	0.05	284	13	0.05	(1	0.02	<2	<2	9	6	<5	<3	64
Minimum Detection	0.1	0.01	3	ı	3	0.01	0.t	1	1	i	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - Greater	Than Navi	Alta	is - Ins	ufficiøn	t Samla		- No Saa	sta .	TRUKTI UN	9. 2591H T	5 - Furt	har Losl	vene Rv I	Altarnat	a Nothad	e Sunnøe	had							

,

VANGEOCHEM LAL LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HHMG₂ to H₂O at 95 ℃ for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: flyndh

REPORT 8: 900541 PA					· • • • •	- PROJE	CT: TERYL	• • •		** DATI	E 1N: SEI	PT 20 1 99	D DA	TE 100T: 0	CT 22 19	190	ATTENTIO	N: NR. S	TEVE TODO	RUK		PASE	2		
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	K n	Mo	Na	Ni	· P	Pb	Sb	Sn	Sr	U.	W	Zn
	ppe	L	ppe	ppm	ppm	I	ppe	ppn	ppe	ppe	1	ĩ	ĩ	ppe	ppe	· · 1	-ppa	ĩ	ppe	ppe	ppe	ppe	ppa	ppa	ppe
L100W 1050N	0.1	4.48	<3	223	<3	0.13	0.7	29	29	117	5.35	0.14	1.21	676	8	0.09	18	0.01	<2	<2	32	8	<5	<3	156
L100W 1100N	0.1	>10.00	<3	41	<3	0.02	(0.1	1	17	18	4.12	0.09	0.05	246	9	0.06	<1	<0.01	<2	<2	<2	<1	<5	<3	99
L900W 700N	0.1	2.66	<3	34	<3	0.04	<0.1	3	13	10	4.07	0.05	0.03	144	9	0.04	<1	0.01	<2	<2	52	5	<5	<3	76
L900W 725N	(0.1	2.29	<3	123	(3	0.12	(0.1	13	7	7	3.05	0.05	0.88	558	5	0.03	4	0.02	(2	<2	58	16	<5	<3	105
L900W 750N	· (0.1	3.15	<3	165	<3	0.18	<0.1	9	14	9	4.06	0.09	0.28	1357	10	0.10	3	0.04	<2	<2	38	12	<5	<3	209
L900W 775N	<0.1	2.20	(3	199	<3	0.24	<0.1	14	10	8	3.56	0.09	1.14	1230	5	0.04	<1	0.06	<2	<2	39	16	<5	∢ 3	182
L900W 800N	<0.1	3.44	<3	84	(3	0.11	(0.1	13	12	13	4.36	0.08	0.60	418	6	0.04	(1	0.01	<2	(2	34	13	<5	<3	138
L900W 825N	(0.1	3.58	(3	162	(3	0.21	(0.1	19	14	12	4.11	0.10	0.58	880	9	0.09	4	0.04	(2	(2	18	19	<5	<3	310
1900W 850N	(0.1	1.01	(3	61	(3	0 07	(0 1	.,	10		3 04	0.04	0 11	178	Å	0.02		(0 01	12	17	52	15	(5	(3	56
L 900W 875W	(0.1	5.25	(3	117	(3	0 07	0.7	á	15	15	4 69	0.04	0 14	675	12	0.02		0.02	12	17	19		(5	(3	222
		0120					•••	,		10	1.00	v. iv	V.11	0/5	. "	0.03	••			••	•••	•	••		
L900W 900N	<0.1	5.66	<3	70	<3	0.02	(0.1	5	11	11	5.14	0.11	0.08	301	11	0.09	(1	<0.01	<2	<2	<2	4	<5	<3	224
L900W 925N	<0.1	4.65	<3	57	<3	0.01	<0.1	4	10	10	4.74	0.11	0.07	399	13	0.11	(1	<0.01	<2	<2	23	2	<5	<3	234
L900W 950N	<0.1	1.39	<3	78	<3	<0.01	(0.1	3	4	2	1.15	(0.01	0.15	57	3	<0.01	(1	<0.01	<2	(2	30	6	<5	<3	39
L900W 975N	(0.1	0.68	8	31	(3	(0.01	(0.1	4	3	1	1.84	(0.01	0.07	48	1	(0.01	(1	(0.01	0	(2	40	2	<5	<3	21
L900W 1000N	0.1	9.05	<3	58	(3	<0.01	<0.1	3	16	10	4.43	0.10	0.13	251	14	0.07	ä	0.01	<2	(2	(2	2	(5	<3	143
L900W 1025W	0.1	1.74	<3	63	(3	0.03	(0.1	2	6	5	1.32	(0.81	0.15	160	4	0.01	(1	0.06	(2	(2	35	10	(5	(3	63
L900W 1050M	0.1	4.46	(3	16	(3	(0.01	(0.1		12	Ř	3.75	0.04	0 02	122	12	0.03	- 11	0.01	0	ö	35	× 1	(5	(3	49
19004 10758	0.2	4 51	/2	21	/2	/0 01	70.1				4 97	A A9	0 07	250	10	A A0	/1	A A1	12	12.	40	•	/5	(3	47
C300W 1073R	4.3	4.31	13	21	13	10.01	10.1	٦	. 1		4.3/	0.03	0.07	233	10	V.V0	~	0.01	12	12	٩v	4	10	13	
Minimum Detection	• • • • 0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater	Than Maxie	ua :	is - Ins	ufficien	t Sample	ns ·	- No Samp	le j	ANOKALOU	S RESULT	S - Furth	er Anal	yses By A	lternate	e Nethod	s Sugges	ited.							

.

٦

١

i .

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENTS LTD. ADDRESS: 711 - 675 W. Hastings St. : Vancouver, BC : V6B 1N4 DATE: OCT 15 1990

REPORT#: 900618 GA JOB#: 900618

INVOICE#: 900618 NA TOTAL SAMPLES: 59 SAMPLE TYPE: 59 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: TERYL

SAMPLES ARRIVED: OCT 01 1990

REPORT COMPLETED: OCT 15 1990

ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Romath SIGNED:

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 9006]	LU GA JOB NUMBER:	900618 PANICON DEVELOP	MENTS LTD.	PAGE 1 OF 2
SAMPLE #	Au			
	ppb			
L2500S 1000W	nd			
L25008 1025W	15			
L2500S 1050W	nd			
L2500S 1075W	nd			
L2500S 1100W	15			
L2500S 1125W	nd			
L2500S 1150W	5			
L2500s 1175W	nd			
L2500S 1200W	nd			
L2500S 1225W	5			
L2500S 1250W	5			
L27005 900W	nd			
L2700S 925V	15			
L2700S 950W	nd			
L2700S 975W	15			
L27005 1000W	nð			
L2700S 1025W	nd			
L2700S 1050W	15			
L2700S 1075W	nd			
L2700S 1100W	nd			
L2700S 1125W	nd			
L2700S 1150W	10			
L2700S 1175W	5			
L2700S 1200¥	nd			
L2700S 1225W	5			
L2700S 1250W	nd			
L2900S 400W	15			
629005 425W	nd			
L2900S 450W	nd			
L2900S 475W	nd			
L2900S 500W	nd			
629008 525W	nd			
L2900S 550W	5			
L2900S 575W	nd			
L2900S 600W	nd			
L2900S 625W	5			
L2900S 650W	nd			
L2900S 675¥	5			
L2900S 700¥	nd			
DETECTION LINIT	5			
nd = none detected	= not analysed	is = insufficient sample		

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT	NUMBER :	900618	GA JO	B NUMBER:	900618	PANICON	DEVELOPMENTS	LTD.	PAGE	2	OF	2
SAMPLE	ŧ		y	1								
			pp)								
L2900S	725		n	1								
L2900S	750W		2)								
L2900S	775 T		D	1								
L2900S	800W		1)								
L2900S	825¥		2)								
T.2900S	850W		1	1								
1.29005	975W											
1.29005	9008		2	•								
1.29005	9258		1									
L29005	950W		1									
			-									
L2900S	975 v		n	1								
L2900S	1000W		n									
L2900S	1025W		n	l								
L2900S	1050W		nd									
L2900S	1075		1	i								
L2900S	1100W		10	l								
L2900S	1125₩		1	1								
L2900S	1150W		1									
L2900S	1175		1!	ı.								
L2900S	1200W		10									

1 e 1 e

-Inferme au Canada

1

1

4

×.

· · ·

e trate de les séries sets et les regeles

1630 Pandora Street, Vancouve D. 351 116 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

una truzzar ur la al

.

1.

ん

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900618 PA	PAMICON DEV	ELOPMENTS	S LTD.			PROJEC	T: TERYL			DATE	IN: OCT	01 1990	DAT	E OUT: N	OV 5 1990	0 - A	TTENTION	: MR. ST	EVE TODOR	RUK	5	PAGE	1 OF	2	
Sample Name	Ag	A1 7	As one	Ba	Bi	Ca z	Cd DO	Со	Cr on#	Cu	Fe X	K	Mg Z	Mo	No	Na Z	Ni	P ሂ	Pb	Sb	Sn nna	Sr	U oo n	W	Zn
125005 10008	0.8	1.63	(3	143	(3	0 23	(01	5	41	16	2 48	0.05	0.23	97	7	0 03	22	0.02	()	(2	12	18	1/5	1/2	29
125005 1025	0.6	6 09	13	106	/2	0 11	10	7	55	25	5 79	0 12	0.07	272	, 0	0.00	15	0 02	12	12	12	7	(5	12	00
125005 10504	1 7	5.01	12	153	/2	0.25	1.0	10	55	25	A 09	0.11	0.07	1171	7	0,00	20	0.02	/2	/2	12	17	/5	/2	154
125000 10750	1.7	5 22	(3	133	(3)	0.33	1.0	10	20	30 07	4.03	0.11	0.21	11/1	7	0.00	33	0.00	(1)	(2	12	7	(5	/2	150
	1.0	J.23 D.E0	13	70	()	0.13	0.4	5	30	25	4.03	0.10	0.13	1108		0.09	22	0.05	(2	12	12		10	10	1.30
L25005 1100W	0.5	8.09	13	28	(3	0.13	(0.1	ь	40	30	3.95	0.11	0.05	928	<1	0.08	в	0.05	(2	(2	(2	b	()	(3	116
L2500S 1125W	0.3	6.42	(3	85	<3	0.07	<0.1	6	39	21	4.54	0.15	0.06	871	4	0.13	20	0.03	<2	<2	<2	3	<5	<3	233
L2500S 1150W	0.8	2,99	<3	164	(3	0.44	1.0	9	77	23	3.59	0.11	0.25	2854	11	0.10	34	0.06	<2	<2	<2	29	<5	<3	160
L2500S 1175W	1.0	8.10	(3	69	(3	0.09	(0.1	4	56	25	4.79	0.11	0.03	118	5	0.06	8	0.04	(2	(2	(2	8	(5	(3	56
125005 12004	03	2 70	12	58	/3	0.00	0.8	r.	20	24	5 05	0 09	0 20	125	o o	0 04	17	0.02	12	12	(2	8	(5	(3	50
L25005 1225W	0.3	4.00	(3	50 64	(3	0.05	0.6	7	28	13	6.43	0.12	0.05	179	10	0.08	3	0.02	<2 <2	<2	(2	5	(5	(3	76
															•••		-								
L25005 1250W	0.2	3.63	<3	47	<3	0.06	<0.1	9	23	11	2.73	0.05	0.09	363	8	0.06	3	0.02	<2	<2	<2	8	<5	(3	96
L2700S 900W	0.2	2.48	<3	137	<3	0.13	(0.1	1	28	14	3.84	0.07	0.14	202	7	0.05	3	0.08	<2	<2	<2	13	(5	(3	26
L2700S 925W	1.4	6.03	<3	98	<3	0.14	<0.1	4	25	23	3.76	0.10	0.08	151	6	0.06	10	0.03	<2	<2	<2	11	<5	(3	81
L2700S 950W	0.9	3.35	<3	67	<3	0.09	0.4	5	48	27	6.89	0.13	0.07	58	9	0.05	2	0.04	<2	<2	<2	10	<5	<3	45
L27005 975W	0.4	3.38	<3	182	<3	0.17	1.1	19	184	25	4.04	0.11	2.44	463	7	0.06	29	0.03	<2	<2	<2	14	<5	(3	73
127005 10008	0.8	3 49	13	184	(3	0 32		24	173	50	6 57	0.16	0 77	000	0	0.05	96	0 10	12	(2	12	23	(5	(3	102
1 27005 10250	0.0	2 20	/2	140	()	0.02	/0.1	27	100	40	5 43	0.14	0.77	2000		0.00	50	0.10	/2	/2	/2	21	/5	/2	155
127005 10258	0.0	5.00	()	140	(3)	V. 23	10.1	20	100	92	5.02	0.14	0.6/	2323	4	0.07	JZ	0.03	12	12	12	21	(J /5	(3	110
107000 10300	0.7	3.90	(3	31	(3	0.05	(0.1	10	34	30	3.43	0.12	V.35	411	1	0.07	30	0.03	(2	(2	(2			(3)	110
L2/005 10/3W	0.6	9.24	3	119	(3	0.16	(0.1	8	24	16	4.35	0.10	0.0/	366	/	0.06	6	0.03	(2	(2	(2	11	()	(3	89
L2/005 1100W	0.8	2.5/	(3	70	(3	0.14	(0.1	6	18	16	2.60	0.06	0.14	2556	3	0,05	(1	0.06	<2	{2	(2	10	(5	(3	33
L27005 1125W	0.8	7.83	<3	33	<3	0.02	(0.1	4	27	27	3.78	0.09	0.04	394	3	0.06	<1	0.06	<2	<2	<2	3	<5	(3	80
L2700S 1150W	0.5	6.33	<3	100	(3	0.03	(0.1	6	15	14	3.80	0.09	0.07	480	6	0.07	<1	0.03	<2	<2	<2	5	(5	<3	130
L2700S 1175W	0.7	6.64	<3	46	<3	0.03	<0.1	4	19	15	4.02	0.09	0.07	343	5	0.07	2	0.04	<2	<2	<2	- 4	<5	<3	127
L27005 1200W	1.2	4.30	<3	65	(3	0.02	(0.1	6	29	19	5.03	0.10	0.08	418	9	0.07	6	0.03	<2	<2	(2	5	(5	(3	108
L27005 1225W	0.8	3.71	<3	47	<3	0.13	0.1	5	26	21	4.98	0.11	0.06	1352	9	0.05	<1	0.08	<2	<2	<2	12	<5	<3	76
127005 12504	0.4	1.01	(3	59	(3	0 02	(0 1	4	14	6	1 86	0 02	0 07	149	5	0 02	(1	0.03	12	()	(2	10	(5	(3	40
129005 4004	0.4	2 37	(3	121	(3	0.02	20.1	14	44	20	2 26	0.02	0.07	647	5	0.02	21	0.05	(2	12	12	18	(5	(3	96
129005 4250	0.4	1 57	/3	72	10	0.10	20.1	17	91 01	30	5.20	0.03	0.03	55	0	0.07	21	0.03	12	12	12	10	/5	/3	49
129005 4500	0.0	2.07	/2	160	10	0.00	10.1	15	41	14	2 10	0.10	0.07	JJ 511	2	0.03	44	0.05	/2	12	12	17	/5	/3	114
129005 4750	1 1	4 02	/2	702	12	0.10	/0.1	13	21	10	5 74	0.00	0.01	311	5	0.00	71	0.03	12	12	12		/5	/3	49
227003 1758		1,03	(5	12	13	V.VJ	1011	5	21	10	2127	v. 11	v.v5	43	0	0.00	~ ~ ~	0.04	12	12	12	,	10		
L2900S 500W	0.3	0.78	<3	36	<3	<0.01	<0.1	4	11	4	1.59	0.01	0.04	27	6	0.02	<1	0.02	<2	<2	<2	8	<5	<3	22
L2900S 525W	0.2	9.51	<3	62	<3	0.02	<0.1	7	31	27	5.50	0.15	0.05	213	2	0.09	(1	0.02	<2	<2	<2	3	<5	(3	110
L29005 550W	0.2	1.53	<3	45	(3	<0.01	<0.1	9	36	10	5.17	0.09	0.04	36	15	0.04	<1	0.02	2	<2	<2	5	<5	<3	32
L29005 575W	0.3	0.98	<3	157	<3	1.10	<0.1	5	13	11	1.31	0.09	0.17	542	5	0.03	<1	0.05	(2	<2	<2	99	(5	(3	49
L2900S 600W	0.3	0.85	<3	64	<3	0.11	0.2	4	13	7	1.66	0.03	0.10	54	5	0.02	<1	0.04	<2	<2	<2	18	<5	(3	41
100000 0050	<u>, , , , , , , , , , , , , , , , , , , </u>							-												/0	10		/5	12	75
L27005 623W	0.4	/.64	(3	64 	(3	(0.01	(0.1	2	29	20	5.65	0.13	0.03	119	4	0.07	0	0.03	(2	(2	(2	1	(3	(3	13
L23005 650W	0.7	6.48	<3	70	<3	0.02	(0.1	5	28	15	4.67	0.10	0.04	81	1	0.05	(1	0.01	(2	(2	(2	1	(5	(3	16
L29005 675W	1.3	6.04	<3	101	(3	0.04	<0.1	9	26	28	4.55	0.11	0.21	305	7	0.08	5	0.02	<2	<2	<2	8	(5	<3	208
L29005 700W	1.1	5.76	<3	73	<3	0.02	<0.1	4	22	. 14	4.37	0.09	0.04	90	7	0.05	(1	0.03	<2	<2	<2	10	(5	(3	66
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
K - Less Than Minimum	>–Greater T	han Maxim	u n i	is - Insu	ufficien	t Sample	ns	- No Samp	le	ANONALOUS	G RESULT	S - Furth	er Anal	yses By A	Alternate	e Method	s Suggest	ted.							

VANGEOCHEM LA LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to H=O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST:	Kom	16

REPORT #: 900618 PA	PANICON DE	EVELOPMEN	TS LTD.			PROJE	CT: TERYL	-		DATE	IN: OCI	01 1990	DAI	TE OUT: N	IOV 5 199	0	ATTENTION	: MR. 51	EVE TODO	RUK		PAG	E 2 OF	2	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn
	ppm	7.	ppe	ppa	ppm	ĩ	ppm	ppm	ppe	ppm	X.	X	7.	ppm	ppm	X	ppm	7.	008	ppe	ppe	ppm	pp s	ppø	004
L29005 725W	0.5	>10.00	<3	46	<3	0.07	0.4	3	34	25	4.35	0.11	0.03	108	<1	0.05	11	0.03	<2	<2	<2	5	<5	(3	74
L2900S 750W	0.7	0.96	<3	51	<3	0.04	<0.1	4	12	8	1.73	0.01	0.05	89	5	0.01	5	0.02	<2	<2	<2	7	<5	(3	28
L29005 775W	<0.1	3.20	<3	69	<3	0.19	1.0	5	24	16	4.32	0.08	0.05	152	7	0.05	4	0.02	<2	<2	<2	13	<5	(3	51
L2900S 800W	0.4	4.61	<3	125	<3	0.21	<0.1	7	30	22	4.38	0.11	0.07	436	10	0.06	11	0.05	<2	<2	<2	13	<5	<3	102
L29005 825W	0.2	5.66	<3	37	<3	0.06	<0.1	5	17	23	4.12	0.10	0.07	1149	7	0.11	6	0.05	<2	<2	<2	2	<5	(3	168
L2900S 850W	0.2	1.09	(3	65	<3	0.27	1.0	6	16	12	2.09	0.05	0.24	1971	2	0.04	1	0.15	<2	<2	<2	18	<5	(3	54
L2900S 875W	0.5	2.81	(3	92	(3	0.19	<0.1	9	28	27	3.99	0.09	0.21	391	4	0.06	4	0.04	<2	<2	<2	15	<5	<3	90
L2900S 900W	0.4	3.11	<3	94	<3	0.06	(0.1	6	27	14	5.05	0.08	0.04	75	9	0.04	<1	0.02	<2	<2	<2	10	<5	<3	42
L29005 925W	0.4	6.42	<3	52	<3	0.03	0.5	6	22	17	4.42	0.09	0.05	231	7	0.07	<1	0.03	<2	<2	<2	3	<5	<3	87
L2900S 950W	0.9	0.95	<3	47	<3	0.03	<0.1	1	11	5	0.99	<0.01	0,05	26	<1	<0.01	<1	0.03	<2	<2	<2	8	<5	{3	22
L2900S 975W	0.6	2.45	<3	124	<3	0.16	0.4	11	39	28	5.02	0.10	0.22	467	5	0.04	40	0.05	<2	<2	<2	12	<5	<3	86
L2900S 1000W	0.9	1.39	<3	43	<3	0.05	<0.1	5	14	9	4.17	0.06	0.04	134	8	0.04	<1	0.02	<2	<2	<2	7	<5	<3	35
L29005 1025W	1.4	5.53	<3	169	<3	0.22	0.1	24	78	38	5.63	0.15	0.59	904	6	0.07	45	0.10	<2	<2	<2	22	(5	<3	182
L29005 1050W	5.3	2.31	<3	110	<3	0.04	<0.1	7	50	30	5.35	0.08	0.06	716	8	0.04	10	0.05	<2	<2	<2	6	(5	<3	54
L2900S 1075W	2.4	1.72	123	72	<3	0.11	(0.1	29	53	82	7.45	0.14	0.05	5755	5	0.06	79	0.13	<2	3	<2	9	<5	<3	138
L2900S 1100W	1.0	3.58	<3	47	<3	0.07	0.4	8	33	25	3.68	0.07	0.21	1690	7	0.06	8	0.08	<2	<2	<2	6	۲5	<3	1 36
L29005 1125W	1.9	4.50	<3	79	<3	0.07	<0.1	16	76	32	5.87	0.14	0.29	1894	7	0.09	58	0.11	<2	<2	<2	6	۲5	<3	137
L29005 1150W	2.1	4.30	<3	32	<3	0.02	<0.1	4	29	22	4.54	0.07	0.03	306	9	0.04	<1	0.05	<2	<2	<2	2	<5	<3	54
L29005 1175W	2.7	4.52	<3	53	<3	0.03	<0.1	10	23	26	4.85	0.11	0.06	897	11	0.09	3	0.03	<2	<2	<2	3	(5	<3	111
L29005 1200W	0.4	5.25	<3	40	<3	0.07	<0.1	6	21	14	4.41	0.10	0.06	357	6	0.06	<1	0.04	<2	<2	<2	4	<5	<3	1 23
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	i
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
<- Less Than Minimum	> − 6reater	Than Maxi	au a	is - Insu	ufficien	t Sample	? NS	- No Samp	le	ANOMALOU	S RESULT	5 - Furth	er Anal	yses By A	Alternati	e Method	s Suggesi	ted.							

5 : VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: ADDRESS:	PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St.	DATE:	OCT 18	1990
:	Vancouver, BC V6B 1N4	REPORT#: Job#:	900645 900645	GA

PROJECT#: TERYL SAMPLES ARRIVED: OCT 02 1990 REPORT COMPLETED: OCT 18 1990 ANALYSED FOR: AU ICP INVOICE#: 900645 NA TOTAL SAMPLES: 102 SAMPLE TYPE: 102 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC staff

SIGNED: 6-16

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

RBPORT NUMBER: 900645 (JOB NUMBBR: 900645	PANICON DEVELOPHENTS LTD.	PAGE 1 OF 3
SAMPLE #	A u		
	ppb		
L400W 600H	20		
L400W 625W	5		
L400W 650N	5		
L4VVV 6758	5		
L400W /00M	20		
L400W 725N	nd		
L400W 750N	5		
L400W 775N	5		
L400W 800W	10		
L400V 825N	\$		
L400W 850N	5		
L400W 875H	nd		
L400W 900N	nd		
L400W 925N	5		
L400W 950H	nd		
L400W 975N	nd		
L400W 1000N	nd		
L400W 1025N	5		
L400W 1050H	5		
L400W 1075N	5		
L400W 1100N	5		
L500W 1125N	25		
L500W 1150N	nđ		
L500W 1175N	nd		
L500W 1200W	nd		
L500W 1225N	nd		
L500W 1250N	20		
L500W 1275N	5		•
L500W 1300N	15		
L1200N 000W	15		
L1200H 025W	15		
L1200N 050W	15		
L1200H 075W	nđ		
L1200H 100W	nd		
L1200H 125W	nd		
L1200H 150W	5		
L12008 175W	nđ		
L1200N 200W	15		
L1200N 225W	nd		
DETECTION LINIT	5		

nd = none detected -- = not analysed

is = insufficient sample

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900645 G	A JOB NUMBBR: 900645	PANICON DEVELOPHENTS LTD.	PAGE 2 OF 3
SAMPLE #	Au		
	daa		
L1200N 250V	10		
L1200N 325W	nd		
1.1200W 350W	5		
L1200N 375W	15		
1.1200H 400W	10		
47 AN AN AN AN AN AN AN AN AN AN AN AN AN	••		
L1200N 425W	- 5		
L1200N 450W	15		
L1200H 475W	nd		
L1200H 525W	5		
L1200N 550W	5		
L1200H 575W	nd		
L1200N 600W	15		
L1200B 625W	15		
L1200N 650W	10		
L1200H 675W	nd		
1.1200x 780w	nd		
L12008 725W	15		
112008 758W	20		
11200H 195W	5		
112008 #AAW	10		
PITONU COOM	10		
L1200H 825W	15		
L1200H 850W	nd		
L1200W 875W	10		
L1200N 900W	nd		
L1200N 925W	nd		
	1.4		
LIZUUN YJUW	10		
LIZUUR J/JW			
LIZUON IUUUW	15		
LIJOOV COUV	10		
L1300W 025W	15	· · · · · · · · · · · · · · · · · · ·	
L1300V 050V	nd		
L1300W 075W	nd		
L1300W 100W	10		
L1300V 125V	nð		
L1300W 150W	10		
	••		
LIJUUW 175W	10		
61300W 200W	15		
L1300V 225V	10		
L1300W 250W	nd		
DETECTION LINIT	5		
nd = none detected	= not analysed is =	insufficient sample	

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT HUNBER: 900645 GA	JOB NUMBER: 900645	PANICON DEVELOPMENTS LTD.	PAGE 3 OF 3
SAMPLE #	Au		
	ppb		
L1300W 275W	10		
L1300N 425W	nd		
L1300N 450W	20		
L1300N 475W	15		
L1300H 525W	nd		
L1300N 550W	nð		
L1300N 575W	15		
L1300N 600W	nđ		
L1300N 625W	15		
L1300H 650W	15		
L1300N 675W	5		
L1300M 700W	nd		
L1300H 725W	nd		
L1300N 750W	20		
L1300H 775W	10		
L1300H 800W	nđ		
L1300H 825W	10		
L1300N 850W .	15		
L1300H 875W	nd		
L1300N 900W	nd		
L1300N 925W	nd		
L1300N 950W	nd		
L1300N 975V	nd		
L1300N 1000W	5		
	•		
ICAP GEOCHEMICAL ANALYSIS

1630 Pandora Street, Vancouver, ... V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

INPRIME AU CANADA

3

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H2O at 95 °C for 90 minutes and is deluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W

1 E

. -----

.

REPORT #: 900645 PA	PAMICON DEVELOPMENTS LTD. PROJECT: TERYL									DATE	IN: OCT	02 1990	DAT	E OUT: N	JV 07 19	90 Å	TTÉNTION	. MR. ST	EVE TODOR	UK		PAGE	1 OF	3	
Sample Name	Ag ppe	Al X	As ppm	Ba pp m	Bi pp∎	Ca X	Cd ppm	Co pp∎	Cr pps	Cu ppe	Fe X	K X	Mg X	Mn 908	Mo DDan	Na %	Ni ppm	Р 7.	Pb ppe	Sb pp n	Sn pp n	Sr ppra	U ppm	W ppa	Zn 90e
L400W 600N	0.6	6.01	(3	32	<3	0.07	0.2		23	18	5.10	0.10	0.08	351	16	0.16	15	0.02	· (2	(2	(2	3	<5	<3	117
L400W 625N	0.4	7.01	<3	32	<3	0.03	<0.1	6	14	17	5.00	0.09	0.04	307	12	0.10	6	0.02	(2	(2	(2	1	<5	(3	116
1.400W 650N	1.7	6.37	(3	128	(3	0.08	0. B	16	59	63	4.47	0.07	0 71	781	14	0 09	33	0.04	()	(2	(2	8	<5	(3	173
1400H 675N	A 2	6 92	/2	50	/0	0.02	/0 1	10	22	10	5 00	0.07 0.00	0.05	400	17	0.03	20	0.00	/2	12	12	2	/5	/2	120
	v.j	0,33	(3	32	()	0.03	(0.1	,	21	10	J.20	0.00	. 0.03	400	10	0.10	3	0.02	14	(2	14	2	(J /E	()	130
LAVON /OUN	1.0	5.51	3	/1	(3	0.04	(0.1	8	14	15	3.33	0.11	0.07	/45	18	0.17	/	0.03	{2	<2	(2	2	13	3	208
L400W 725N	0.2	5.62	<3	40	<3	0.03	<0.1	9	19	16	5.01	0.04	0.06	394	17	0.08	7	0.02	<2	<2	<2	4	<5	<3	108
L400W 750N	0.5	8.52	<3	73	<3	0.08	<0.1	11	38	41	4.25	<0.01	0.34	408	14	0.05	14	0.04	(2	<2	<2	26	<5	<3	106
L400W 775N	0.2	6.90	<3	46	<3	0.08	(0.1	9	18	17	5.73	0.06	0.09	873	21	0.14	9	0.03	<2	<2	<2	7	<5	<3	154
L400H 800N	0.5	3.91	<3	69	<3	0.11	0.5	13	33	47	3.63	(0.01	0.33	461	11	0.05	18	0.05	<2	<2	<2	23	<5	<3	106
L400W 825N	0.3	5.95	<3	53	<3	0.04	0.2	10	25	22	4.26	<0.01	0.12	839	14	0.05	10	0.04	<2	<2	<2	5	<5	<3	136
L400W 850N	0.6	4.93	(3	121	(3	0.13	(0,1	14	32	83	3.68	(0.01	0.61	1448	13	0.02	19	0.08	(2	(2	(2	32	<5	<3	153
L400W B75N	0.4	4.91	(3	186	(3	0.15	0.7	27	149	90	4.47	(0.01	1.87	1113	15	0.09	76	0.06	(2	(2	(2	18	۲5	(3	276
1400H 900N	0.3	6.61	12	49	12	0.10	(0 1	10	22	112	5 67	20 01	0.62	1095	12	0 02	16	30.0	12	12	12		45	12	138
14004 9258	0.5	A 10	/2	22	/2	/0 01	/0.1	, u	10	112	2.0/	(0.01	0.02	1033	10	/0.05	5	0.00	/2	12	12	,	/5	/2	47
L400W 950N	0.4	7.30	3	52	(3	0.02	0.4	7	19	11	4.70	(0.01	0.04	333	15	0.05	7	0.04	<2	<2	<2	6	<5	3	183
14000 9750	0.4	2 (7	12	150	10	A 2A		20	40	170	4.04	/		1070	10	/0 01	22	A 12	12	12	12	15	/5	12	120
	0.4	5.0/	()	160	(3	0.20	1.2	30	90	162	9.81	(0.01	1,36	13/2	12	(0.01	33	0.12	14	12	(2	1.1		()	120
L400W 1000N	0.4	5.70	(3	84	(3	0.08	0.8	16	35	/3	4./5	(0.01	0.68	1192	17	0.04	19	0.06	(2	(2	(2	10	(5	(3	18/
L400W 1025N	0.4	6.94	<3	36	<3	(0.01	<0.1	7	25	14	5.55	<0.01	0.04	258	17	<0.01	3	0.05	<2	<2	<2	3	<5	< 3	53
L400W 1050N	0.4	3.74	<3	94	<3	0.49	1.8	8	17	19	3.99	<0.01	0.11	4921	23	0.09	20	0.13	<2	<2	<2	26	<5	<3	280
L400W 1075N	0.5	5.47	<3	41	<3	0.01	0.5	. 8	24	18	5.84	<0.01	0.03	281	21	<0.01	9	0.06	<2	<2	<2	7	<5	(3	69
L400W 1100N	0.8	7.96	<3	29	(3	<0.01	(0.1	6	26	11	4.64	<0.01	0.03	291	18	<0.01	24	0.06	<2	<2	<2	2	<5	<3	57
L500W 1125N	0.9	4.43	(3	73	<3	0.01	0.1	18	44	76	5.20	<0.01	0.76	409	14	<0.01	25	0.06	<2	<2	<2	8	<5	<3	111
L500W 1150N	1.1	3.91	<3	71	<3	(0.01	0.2	15	30	54	4.22	<0.01	0.62	350	12	<0.01	14	0.08	<2	<2	<2	6	<5	<3	82
L500W 1175N	0.6	3.31	<3	151	<3	0.08	(0.1	22	28	74	4.38	(0.01	1.10	540	12	(0.01	23	0.08	<2	<2	<2	13	<5	<3	93
L500W 1200N	0.5	6.39	<3	59	<3	<0.01	0.5	10	34	16	4.86	<0.01	0.18	535	18	<0.01	21	0.07	<2	<2	<2	5	<5	<3	134
L500W 1225N	0.4	4,43	(3	62	(3	<0.01	0.8	17	32	51	4.82	(0.01	0.58	452	17	<0.01	19	0.07	<2	<2	<2	8	<5	<3	140
L500W 1250N	0.8	9.11	(3	25	(3	(0.01	(0.1	8	30	13	6.0B	(0.01	0.04	523	19	(0.01	14	0.07	(2	(2	(2	1	<5	(3	76
1500W 1275N	0.6	6.02	(3	37	(3	(0.01	0.5	10	29	16	4 03	(0 01	0 10	291	15	(0 01	12	0.05	in	0	ö	3	(5	(3	81
1500H 1300N	0.4	6 20	/2	05	/2	/0 01	0.5	+2	24	25	4 35	70 01	0.20	220	14	70 01	17	0.00	12	12	12	- -	/5	/2	134
11200N 000U	0.7	10.00	13	20	10	10.01	20.3	12	29	- J - E	9.33	(0.01	0.30	330	14	(0.01	1/	0,00	12	12	12	2	/5	/2	50
LIZVON UUUN	0.3	710.00	(3	30	(3	(0.01	(0.1		23	3	3.36	(0.01	0.03	1/5	12	(0.01	3	0.03	\ 2	12	12	2	13	13	20
L1200N 025W	0.1	4.93	<3	28	<3	<0.01	(0.1	9 .	22	8	4.37	<0.01	0.04	204	17	<0.01	15	0.06	<2	<2	<2	2	<5	<3	95
L1200N 050W	0.3	7.30	<3	78	<3	<0.01	(0.1	- 16	27	37	4.47	(0.01	0.32	968	17	<0.01	20	0.07	<2	<2	<2	3	<5	(3	214
L1200N 075W	0.5	8.65	<3	46	<3	<0.01	<0.1	8	23	8	3.76	<0.01	0.04	279	14	<0.01	16	0.08	<2	<2	<2	2	<5	<3	96
L1200N 100W	0.2	5.62	(3	22	(3	(0.01	(0.1	8	23	12	4.48	(0.01	0.03	391	18	(0.01	11	0.08	(2	(2	(2	3	<5	(3	59
L1200N 125W	0.2	5.95	(3	25	(3	<0.01	<0.1	10	28	10	4.42	<0.01	0.03	412	20	<0.01	16	0.07	<2	<2	<2	2	<5	<3	81
11200N 150H	٥٥	1 55	13	74	12	0 04	۸ ۲		41	51	5 05	/0 01	A (5	997	15	/0 01	10	A A7	12	12	12	5	/5	/2	90
11200N 175P	0.2	0.00	13	/ 4 0E	13	/0.09	V.D	11	71	34	3.83	(0.01	0.63	33/	13	10.01	13	0.07	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14	14	J	\u /=	10	30
LIEVVN I/JN	V.3	0.93	(3	33	(3	(0.01	0.2	13	25	Zb	2.10	(0.01	V.1/	161	11	(0.01	20	0.08	46	10	(2	8	0	(3	71
L1200W 200W	0.2	2.93	<3	157	<3	0.24	0.8	23	112	64	3.79	<0.01	1.20	941	13	<0.01	73	0.14	17	<2	<2	19	<5	(3	151
L1200N 225W	0.2	2.87	<3	173	<3	0.33	1.0	25	105	71	3.56	<0.01	1.26	922	14	<0.01	80	0.14	14	<2	<2	26	<5	<3	147
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	t	1	1	0.01	0.01	0.01	1	· 1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
C - Less Than Minimum	> - Greater T	han Maxim	un i	s - Insu	fficient	Sample	ກຣ	- No Samp	le	ANOMALOUS	RESULTS	5 - Furtl	ner Anal	yses By A	lternate	Nethod	s Sugges	ted.		-					

and the second AND AN AN A SHARE CARACTER THAT AND AND AND AND AND

PROJECT: TERYL

REPORT #: 900645 PA

PANICON DEVELOPMENTS LTD.

1630 Pandora Street, Vancouver, 1.C. V51 116 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P,

DATE IN: OCT 02 1990

Sn, Sr and W.	ANALYST:	Raule
CATE DUT: NOV 07 1990	ATTENTION: MR. STEVE TODORUK	PAGE 2 OF

	Sample Name	Ag ppm o 2	Al %	As pp s	Ba pp n	Bi ppm	Ca X	Cd ppm	Co ppm	Cr ppm	Cu ppa	Fe X	K X	Mg X	Mn ppm	Mo ppm	Na X	Ni ppm	P X	Pb ppa	Sb ppm	Sn pp n	Sr ppe	U ppm	y ppe	Zn ppa
	L1200N 325W L1200N 325W L1200N 350W L1200N 375W L1200N 400W	0.3 0.6 0.3 0.2 0.1	2.87 6.54 8.13 7.85 4.51	<3 <3 <3 <3 <3	183 37 15 43 55	<3 <3 <3 <3 <3	0.39 0.04 0.03 0.07 0.05	<pre>2.0 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	21 5 3 13 12	88 19 18 29 49	86 19 15 30 55	4.05 4.94 4.80 6.14 4.71	0.12 0.10 0.09 0.17 0.07	1.29 0.11 0.04 0.28 0.60	895 182 123 806 346	9 11 10 18 10	0.09 0.08 0.08 0.19 0.09	76 4 <1 5 19	0.08 <0.01 <0.01 <0.01 <0.01	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	21 2 2 7 6	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	140 66 55 172 114
)	L1200N 425W L1200N 450W L1200N 475W L1200N 525W L1200N 550W	0.5 0.2 0.2 0.4 <0.1	3.57 4.38 4.56 5.33 5.40	<3 <3 <3 <3 <3	32 72 96 54 91	<3 <3 <3 <3 <3	0.08 0.11 0.15 0.10 0.11	<0.1 0.3 <0.1 <0.1 <0.1	14 19 25 13 27	108 72 313 100 141	37 80 126 38 91	5.34 5.13 5.59 6.42 4.98	0.03 0.11 0.13 0.13 0.12	0.50 1.09 1.30 0.48 1.69	407 559 893 1178 786	9 10 11 16 11	0.07 0.08 0.07 0.11 0.08	30 20 103 27 76	<0.01 <0.01 <0.01 <0.01 <0.01	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	(2 (2 (2 (2 (2	5 8 16 7 11	<5 <5 <5 <5 <5	<pre>(3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (</pre>	72 109 130 110 168
ALICANADA	L1200N 575H L1200N 600H L1200N 625W L1200N 650H L1200N 675W	0.4 0.2 0.1 0.3 0.7	3.92 5.71 5.21 4.89 4.58	<3 <3 <3 <3 <3	33 40 52 48 81	<3 <3 <3 <3 <3	0.02 0.02 0.05 0.09 0.13	<0.1 <0.1 <0.1 <0.1 <0.1	3 4 14 9 16	17 14 48 32 59	14 12 53 29 53	3.62 4.34 4.27 4.50 3.70	0.05 0.09 0.10 0.11 0.09	0.08 0.07 0.84 0.35 0.88	236 1200 463 536 878	10 13 9 10 9	0.07 0.14 0.10 0.12 0.06	<1 <1 15 3 15	<0.01 <0.01 <0.01 <0.01 <0.01 0.04	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	<pre><2 <2 pre>	4 2 6 8 13	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	61 136 140 120 154
ницани •	L1200N 700H L1200N 725H L1200N 750H L1200N 775H L1200N 800H	0.2 0.4 0.2 0.1 0.3	5.53 7.28 >10.00 >10.00 2.14	<3 <3 <3 <3 <3 <3	40 35 24 49 80	<pre><3 <3 <3 <3 <3 <3</pre>	<0.01 0.02 <0.01 0.07 0.09	<0.1 <0.1 <0.1 <0.1 <0.1	3 7 2 6 13	15 16 23 19 27	13 12 12 12 49	3.08 4.53 6.20 5.75 2.73	0.05 0.11 0.13 0.13 0.05	0.04 0.03 0.01 0.04 0.52	390 1630 138 714 613	10 18 15 15 9	0.07 0.12 0.09 0.14 0.05	<1 <1 <1 <1 <1 <1	0.02 <0.01 <0.01 <0.01 <0.03	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	3 3 1 3 10	<5 <5 <5 <5 <5	(3 (3 (3 (3 (3	49 91 69 151 62
))	L1200N B25W L1200N B50W L1200N B75W L1200N 900W L1200N 925W	0.4 0.4 0.4 0.3	5.58 5.34 4.69 6.21 5.84	<3 <3 <3 <3 <3	31 35 56 71 39	<3 <3 <3 <3 <3	0.03 <0.01 0.02 0.10 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	4 5 13 16 4	14 15 23 44 20	11 11 39 64 10	5.13 4.60 4.53 4.68 6.70	0.11 0.08 0.10 0.10 0.12	0.05 0.01 0.39 0.63 0.02	418 151 540 759 608	15 14 12 12 17	0.15 0.06 0.14 0.08 0.10	<1 <1 <1 <1 <1	<0.01 <0.01 <0.01 0.03 0.39	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	1 2 4 9 2	<5 (5 (5 (5 (5	(3 (3 (3 (3 (3	107 37 130 123 51
)	L1200N 950W L1200N 975W L1200N 1000W L1300W 000W L1300W 025W	0.2 0.1 0.3 0.1 0.4	5.48 3.84 3.53 1.41 0.15	<3 <3 <3 <3 <3	35 80 128 215 36	<pre><3 <3 <3 <3 <3 <3</pre>	<0.01 0.09 0.27 1.25 0.17	<0.1 <0.1 <0.1 <0.1 <0.1	3 14 13 8 1	12 46 29 34 3	9 43 57 30 7	4.54 4.20 3.54 1.93 0.32	0.09 0.09 0.09 0.15 0.02	<0.01 0.67 0.60 0.57 0.03	190 397 2251 392 20	12 10 10 6 3	0.09 0.07 0.11 0.05 0.01	<1 <1 <1 <1 <1	<0.01 0.01 0.09 0.10 0.08	<2 <2 <2 51 29	<2 <2 <2 <2 <2 8	<2 <2 <2 <2 <2 <2	3 9 28 60 18	<5 <5 <5 <5 <5	(3 (3 (3 (3 (3	62 83 177 77 44
9)	L1300W 050W L1300W 075W L1300W 100W L1300W 125W L1300W 125W	0.1 0.5 <0.1 0.6 0.6	2.70 5.15 1.14 6.54 3.77	<3 <3 <3 <3 <3	120 68 46 28 53	<3 <3 <3 <3 <3 <3	0.16 <0.01 0.03 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	18 3 11 2 4	100 8 44 12 10	59 5 26 7 13	4.24 3.84 2.78 3.59 3.65	0.10 0.09 0.05 0.07 0.06	1.13 0.05 0.42 <0.01 0.07	367 379 243 176 322	11 14 7 12 12	0.08 0.13 0.05 0.07 0.09	30 <1 <1 <1 <1	0.04 <0.01 0.02 <0.01 <0.01	<2 <2 11 <2 <2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	14 1 6 2 2	<5 <5 <5 <5	<3 <3 <3 <3 <3	118 133 48 52 75
	L1300W 175W L1300W 200W L1300W 225W L1300W 250W	0.1 <0.1 0.3 <0.1	3.14 4.34 0.29 0.66	<3 <3 <3 <3	219 31 22 16	<3 <3 <3 <3	0.36 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1	20 5 2 8	96 10 2 6	67 11 6 6	3.94 3.97 0.44 2.42	0.14 0.07 <0.01 0.04	1.23 0.06 <0.01 <0.01	761 272 24 157	9 10 5 18	0.11 0.10 0.02 0.05	47 (1 (1 (1	0.08 (0.01 0.06 (0.01	<2 <2 66 73	<2 <2 6 7	<2 <2 <2 <2 <2	22 <1 6 2	<5 <5 <5 <5	<3 <3 <3 <3	163 69 41 38
)	Miniaum Detection Maximum Detection	0.1 50.0	0.01 10.00	3 2000	1 1000 5 - Insu	3 1000 fficient	0.01 10.00 Samle	0.1	1 20000 No. Sano	1 1000	1 20000 20000	0.01 10.00	0.01	0.01	1 20000	1 1000	0.01 10.00 Methods	1 20000 Suggest	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000

3

VANGEOCHEM LAB LIMITED

;

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOg to HgO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

					Th	is leach	is part	ial for A	1, Ba, I	Ca, Cr, F	'e, K, M	g, Mn, Na	, P, Sn	, Sr and	W.				ANAL	YST:		2~1/	1h		
REPORT #: 900645 PA	PANICON DE	VELOPMEN	TS LTD.			PROJE	CT: TERY	L		DATE	E IN: OC	T 02 1990	DA	TE OUT: N	NOV 07 19	90	ATTENTIO	N: MR. S	TEVE TODO	IRUK		PAG	E 3 OF	3	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn
	ppm	X	o p s	ppe	004	7.	D 0 B	ppe	004	ppm	7.	X	X.	008	006	X	ppm	2	ppa	ppe	pp s	ppm	pos	0 p e	DDS
L1300N 275W	0.5	2.65	<3	200	<3	0.65	4.3	22	141	80	4.35	0.16	1.32	1116	71	0.06	360	0.11	<2	<2	<2	31	<5	<3	135
L1300N 425W	0.1	2.56	<3	78	<3	0.21	3.9	18	76	58	4.50	0.09	0.97	481	12	0.08	43	0.04	<2	<2	<2	15	<5	<3	110
L1300N 450W	0.4	3.55	<3	282	<3	0.30	3.0	34	64	185	5.82	0.20	1.73	1583	11	0.10	41	0.07	<2	<2	<2	20	<5	<3	1 20
L1300N 475W	0.8	3.55	<3	84	<3	0.05	2.4	16	38	53	4.15	0.08	0.96	341	7	0.06	19	(0.01	<2	<2	<2	5	<5	<3	83
L1300N 525W	0.2	3.91	<3	139	<3	0.09	2.5	23	37	93	5.23	0.09	1.49	531	11	0.09	21	<0.01	<2	<2	<2	8	<5	<3	131
L1300N 550W	0.2	4.30	<3	108	(3	0.14	2.8	27	48	127	5.18	0.13	1.70	910	7	0.06	24	0.02	<2	<2	<2	12	<5	<3	112
L1300N 575W	0.3	3.85	<3	73	<3	0.11	1.5	20	46	66	4.27	0.09	1.23	449	10	0.06	19	0.02	<2	<2	<2	9	<5	(3	95
L1300N 600W	0.4	9.33	<3	53	<3	0.01	0.7	3	19	20	5.02	0.11	0.09	336	10	0.11	2	(0.01	(2	<2	<2	3	<5	(3	182
L1300N 625W	0.6	4.28	<3	69	<3	0.04	1.9	15	22	51	4.99	0.16	0.83	1103	13	0.31	8	<0.01	(2	(2	(2	7	(5	(3	247
L1300N 650W	0.3	6.39	<3	37	<3	<0.01	1.1	2	25	18	5.92	0.09	0.05	220	13	0.03	<1	<0.01	<2	<2	<2	3	<5	<3	47
L1300N 675W	0.4	3.45	<3	121	<3	0.50	1.6	11	31	45	3.76	0.15	0.61	2902	11	0.18	26	0.10	(2	(7	(2	31	(5	(3	237
L1300N 700W	0.5	5.83	(3	42	(3	0.11	1.0	3	11	31	4,19	0.13	0.11	1613	16	0.22	(1	0.03	0	(2	12	12	(5	(3	238
L1300N 725W	0.8	7.44	(3	32	(3	(0.01	0.5	1	15	11	4.53	0.07	0.03	197	15	0.08	(1	(0.01	(2	(2	(2	(1	(5	(2	- 54
L1300N 750W	0.5	5.03	(3	33	(3	(0.01	0.9	4	18	17	5 66	0 09	0 04	119	15	0.00	(1	/0 01	12	12	12	5	/5	/2	40
L1300N 775W	0.5	>10.00	<3	29	<3	<0.01	<0.1	1	23	14	5.68	0.14	0.03	273	16	0.11	<1	<0.01	<2	<2	<2	<1	(5	(3	69
L1300N 800W	0.5	5.57	(3	62	<3	0.01	0.5	24	68	85	4.21	0.11	1.04	1194	٩	0.15	30	(0.01	(2	(2	(2	6	(5	(3	157
L1300N 825W	0.2	2.70	(3	139	(3	0.34	1.1	25	80	78	4.33	0.10	1.12	818	ģ	0.07	24	0.10	(2	0	(2	20	(5	(3	110
L1300N 850W	0.3	9.38	(3	51	(3	(0.01	0.1	(1	13	11	3.57	0.05	0.05	141	10	0.05	(1	(0.01	(2	0	(2	(1	(5	(3	56
L1300N 875W	0.4	5.72	(3	51	<3	<0.01	0.7	16	69	55	4.52	0.09	0.81	454	11	0.13	23	(0.01	(2	(2	(2	3	(5	(3	200
L1300N 900W	0.6	7.47	(3	49	<3	<0.01	(0.1	9	27	40	4.39	0.08	0.59	312	12	0.08	<1	<0.01	<2	<2	<2	4	(5	(3	124
L1300N 925W	1.2	6.77	(3	51	<3	<0.01	0.2	4	16	16	4.97	0.09	0.10	414	14	0 13	(1	(0.01	(2	(2	(7	(1	(5	(3	120
L1300N 950W	0.3	5.86	(3	54	(3	(0.01	1.9	26	74	112	7.16	0.16	1.42	872	10	0.12	18	(0.01	0	12	(2	4	(5	(3	83
L1300N 975W	0.6	5.70	(3	63	(3	0.01	0.2	19	76	89	4.86	0.10	0.89	583	13	0.13	29	(0.01	(2	2	12	ġ	(5	(3	115
L1300N 1000W	0.3	4.88	<3	113	<3	<0.01	0.1	20	67	80	4.31	0.08	1.23	568	11	0.07	22	<0.01	<2	(2	<2	6	(5	(3	163
Minimum Detection	0.1	0.01	3	1	3	0.01	0,1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10 00	10.00	20000	1000	10 00	20000	10 00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater 1	lhan Maxi	aua	is - Ins	ufficien	t Sample	e ns	- No Samp	le	ANOMALOU	5 RESULT	S - Furti	ner Anal	yses By a	Alternati	e Method	ls Sugges	sted.	20000	2000		10000			2

)

)

)

CO VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	PAMICON DEVELOPMENTS LTD.
ADDRESS:	711 - 675 W. Hastings St.
:	Vancouver, BC
:	V6B 1N4

DATE: OCT 19 1990

REPORT#: 900678 GA JOB#: 900678

INVOICE#: 900678 NA TOTAL SAMPLES: 85 SAMPLE TYPE: 85 SOIL REJECTS: DISCARDED

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD.

PROJECT#: TERYL

SAMPLES ARRIVED: OCT 12 1990

REPORT COMPLETED: OCT 19 1990

ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC staff

SIGNED:

Page 1 K

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

SAMELS I Au DPD DPD L1400 500% 30 L1400 5257 5 L1400 5258 30 L1400 5258 30 L1400 5258 30 L1400 5258 30 L1400 575 20 L1400 5758 30 L1400 758 30 L1400 758 20 L1400 758 30 L1400 758 30 L1400 758 20 L1400 758 30 L1400 878 30 L1400 878 30 L1400 859 30	REPORT	NUMBER ;	900678 GI	JOB	NUMBER :	900678	PANICON	I DEVELOPMENTS	LTD.	PAGE	1	OF	3	
Opb L1400 5258 L1400 5258 L1400 550 L1400 5258 L1400 5759 L1400 5759 L1400 758 L1400 1008 L1400 1008 L1400 1058 L1400 1058 L1400 1058 L1400 10758 L1400 10758 L2400 550 L2400 550 L2400	SAMPLE	ł		Au										
1.1000 5000 1.1000 5500 1.1000 5500 1.1000 5500 1.1000 6600 1.1000 6600 1.1000 6600 1.1000 6600 1.1000 6600 1.1000 6600 1.1000 6600 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 7500 1.1000 100000 1.1000 5 1.1000 7500 1.1000 10000 1.2000 7500 1.2000 7500 1.2000 7500 1.2000 7500 1.2000 7500 1.2000				ppb										
L1400 5259 5 L1400 539 10 L1400 6259 nd L1400 6259 nd L1400 7557 20 L1400 7557 20 L1400 7558 nd L1400 7558 nd L1400 7558 nd L1400 7558 nd L1400 7558 10 L1400 7558 30 L1400 7558 30 L1400 7558 20 L1400 7558 30 L1400 7558 30 L1400 7558 30 L1400 10258 nd L1400 7558 30 L1400 10258 nd L1400 7558 30 L1400 1258 nd L1400 1258 nd L1400 1258 nd L1400 1258 10 L1400 1258 nd L1400 1258 nd L2400 758 5 L2400 758 7 L2400 7 L2	L1+00W	500N		20										
L1400 5560 nd L1400 5575 10 L1400 6257 nd L1400 6500 nd L1400 7575 20 L1400 7575 20 L1400 7575 nd L1400 7575 nd L1400 7575 nd L1400 7575 nd L1400 8505 20 L1400 8505 20 L1400 8505 20 L1400 8505 20 L1400 8505 20 L1400 8505 10 L1400 1055 nd L1400 1055 nd L2400 5508 5 L2400 5508 5 L2400 5508 10 L2400 5508 nd L2400 5508 10 L2400 55	L1+00W	525N		5										
L14007 5758 10 L14007 6509 nd L14007 6509 nd L14007 6509 nd L14007 7558 20 L14007 7508 nd L14007 7509 nd L14007 7509 nd L14007 7559 5 L14007 8509 30 L14007 8509 30 L24007 8509 5 L24007 8509 nd L24007 8509 nd L24007 8509 10 L24007 8509 10 L2407 850	L1+00W	550N		nd										
L1400 600v nd L1400 625v nd L1400 650v nd L1400 675v 20 L1400 725v nd L1400 725v nd L1400 750v nd L1400 800v nd L1400 800v nd L1400 800v nd L1400 800v 5 L1400 800v 5 L1400 950v 5 L2400 550v 5 L2400 550v 5 L2400v 650v 6 L2400v 650v 6 L2400v 75v 5 L2400v 75v 10 L2400v 650v 10	L1+00W	575N		10										
L1+00v 625m nd L1+00v 650m nd L1+00v 650m nd L1+00v 750m nd L1+00v 725m nd L1+00v 750m nd L1+00v 850m 30 L1+00v 950m 30 L1+00v 1050m 5 L1+00v 950m 30 L1+00v 950m 5 L2+00v 950m 5 L2+00v 950m 5 L2+00v 950m 30 L2+00v 950m 30 L2+00v 950m 30 L2+00v 950m	L1+00W	600N		nd										
L1400 650	L1+00W	625N		nd										
L1+00T 675H 20 L1+00T 700H nd L1+00T 72B nd L1+00T 75B nd L1+00T 75B nd L1+00T 800H nd L1+00T 850H 30 L1+00T 95B 20 L1+00T 95B 20 L1+00T 95B 30 L1+00T 95B 30 L1+00T 95B 30 L1+00T 95B 5 L1+00T 95B 5 L2+00T 95B 5	L1+00W	650N		nd										
L1+00T 700H nd L1+00T 725H nd L1+00T 75H nd L1+00T 75H nd L1+00T 825H 5 L1+00T 825H 5 L1+00T 825H 5 L1+00T 825H 5 L1+00T 825H 20 L1+00T 825H 20 L1+00T 925H 20 L1+00T 95H 30 L1+00T 975H 10 L1+00T 105H 5 L2+00T 55H 5 L2+00T 65H 5 L2+00T 65H 10 L2+00T 65H 10 L2+00T 65H 10 L2+00T 75H 10 L2+00T 75H 10 L2+00T 75H 10 L2+00T 75H 10 L2+00T 85H 15 L2+00T 85H 15	L1+00W	675 N		20										
L1+00T 725# nd L1+00T 758 nd L1+00T 758 nd L1+00T 828 5 L1+00T 828 5 L1+00T 828 30 L1+00T 828 20 L1+00T 928 20 L1+00T 928 20 L1+00T 958 30 L1+00T 958 30 L1+00T 958 30 L1+00T 958 nd L1+00T 1058 5 L1+00T 1058 5 L1+00T 1058 5 L2+00T 525# 10 L2+00T 525# 10 L2+00T 558 5 L2+00T 650 nd L2+00T 850 nd L2+00T	L1+00W	700N		nd										
L1+007 7504 nd L1+007 7554 nd L1+007 8009 nd L1+007 8254 5 L1+007 8504 30 L1+007 9505 20 L1+007 9508 30 L1+007 9758 10 L1+007 10258 nd L1+007 10258 nd L1+007 10509 5 L1+007 10509 5 L1+007 10509 5 L2+007 5508 5 L2+007 5508 5 L2+007 5508 5 L2+007 6508 nd L2+007 5508 5 L2+007 6508 nd L2+007 6508 nd L2+007 558 5 L2+007 6508 nd L2+007 6508 10 L2+007 550 15 L2+007 1509 nd L2+007 150 nd L2+007 150 nd L2+007 150 nd L2+007 150 nd L2+007 150 nd L2+007 15	L1+00W	725 H		nd										
L1400 775H nd L1400 800H nd L1400 825H 5 L1400 825H 20 L1400 900H 5 L1400 925H 20 L1400 975H 10 L1400 975H 10 L1400 1025H nd L1400 1050H 5 L1400 105H 5 L1400 105H 5 L1400 105H 5 L1400 105H 5 L2400 550H 5 L2400 550H 5 L2400 800H 10 L2400 855H 5 L2400 850H nd L2400 850H nd L2400 850H nd L2400 850H nd L2400 850H 15 L2400 85 L2400 85 L2400 85 L2400 85 L2400 85 L2400 85 L2400 85 L2400 85 L2400 85 L240	L1+00W	750N		nd										
L1+00V 800W nd L1+00V 850W 300 L1+00V 850W 300 L1+00V 875B 20 L1+00V 925B 20 L1+00V 975B 10 L1+00V 975B 10 L1+00V 975B 10 L1+00V 105B nd L1+00V 105B 5 L1+00V 525B 10 L2+00V 525B 5 L2+00V 550B 5 L2+00V 650B 10 L2+00V 650B 5 L2+00V 650B 10 L2+00V 650B 10 L2+00V 650B 10 L2+00V 75B 5 L2+00V 75B 5 L2+00V 75B 5 L2+00V 75B 15 L2+00V 7	L1+00W	775N		nd										
L1+00V 825N 5 L1+00V 850N 30 L1+00V 9000 5 L1+00V 925N 20 L1+00V 975N 10 L1+00V 975N 10 L1+00V 975N nd L1+00V 1025N nd L1+00V 105N 5 L1+00V 105N 5 L1+00V 105N 5 L2+00V 55N 5 L2+00V 55N 5 L2+00V 600N 10 L2+00V 650N nd L2+00V 650N nd L2+00V 650N nd L2+00V 55N 5 L2+00V 650N nd L2+00V 55N 5 L2+00V 650N nd L2+00V 75N 5 L2+00V 800N 10 L2+00V 80N 10 L2+00V 80N 10 L2+00V 80N 10 L2+00V 85N 5 L2+00V 75N 5 L2+00V 75N 5 L2+00V 85N	L1+00W	800N		nd										
L1+00T 850N 30 L1+00T 900N 5 L1+00T 925N 20 L1+00T 950N 30 L1+00T 975N 10 L1+00T 975N 10 L1+00T 1050N 5 L1+00T 1055N nd L1+00T 1055N 10 L2+00T 555N 5 L2+00T 555N 5 L2+00T 600N 10 L2+00T 655N 5 L2+00T 650N nd L2+00T 650N nd L2+00T 650N nd L2+00T 75N 5 L2+00T 650N nd L2+00T 75N 15 L2+00T 850N nd L2+00T 75N 15 L2+00T 75 L2+00T 75 L2+00T 75 L2+00T 75 L2+00T 75 L2+00T 75 L2+00T 75 L2+0	L1+00W	825N		5										
L1+00V 875N 20 L1+00V 925N 20 L1+00V 975N 30 L1+00V 975N 10 L1+00V 975N 10 L1+00V 1025N nd L1+00V 1025N nd L1+00V 105N 5 L1+00V 105N 5 L1+00V 55N 5 L2+00V 525N 10 L2+00V 575N 5 L2+00V 650N 10 L2+00V 655N 5 L2+00V 650N nd L2+00V 655N 15 L2+00V 75N 10 L2+00V 75N 5 DESTECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L1+00W	850N		30										
L1+00V 900H 5 L1+00V 925M 20 L1+00V 975M 10 L1+00V 975M 10 L1+00V 1000H 5 L1+00V 1005H 5 L1+00V 105H 5 L1+00V 105H 5 L1+00V 525M 10 L2+00V 525M 5 L2+00V 575M 5 L2+00V 625M 5 L2+00V 655M nd L2+00V 655M nd L2+00V 75M nd L2+00V 75M nd L2+00V 75M nd L2+00V 75M 15 L2+00V 75M nd L2+00V 75M 15 L2+00V 75M 15 L2+00V 75M 15 L2+00V 75M 15 L2+00V 75M 15 L2+00V 85N 25 L2+00V 85M 15 L2+00V 85M 15	L1+00W	875N		20										
L1+00V 925W 20 L1+00V 975W 30 L1+00V 975W 10 L1+00V 1000W 5 L1+00V 1025W nd L1+00V 1075W nd L2+00V 555W 5 L2+00V 555W 5 L2+00V 555W 5 L2+00V 655W 5 L2+00V 655W nd L2+00V 655W nd L2+00V 755W 5 L2+00V 755W 10 L2+00V 755W 10 L2+00V 755W 10 L2+00V 75W 10 L2+00V 75W 10 L2+00V 75W 10 L2+00V 75W 10 L2+00V 75W 15 L2+00V 75W 16 L2+00V 80W 16 L2+00V 8	L1+00W	900N		5										
L1+00V 950N 30 L1+00V 975N 10 L1+00V 1000M 5 L1+00V 1025M nd L1+00V 1050N 5 L1+00V 1075W nd L2+00V 525N 5 L2+00V 550N 5 L2+00V 650N 10 L2+00V 650N nd L2+00V 650N nd L2+00V 650N nd L2+00V 650N nd L2+00V 75N 15 L2+00V 800N nd L2+00V 75N 15 L2+00V 800N nd L2+00V 800N solution	L1+00W	925N		20										
L1+00V 975N 10 L1+00V 1000N 5 L1+00V 1025N nd L1+00V 1050N 5 L1+00V 1075N nd L2+00V 550N 5 L2+00V 550N 5 L2+00V 600N 10 L2+00V 600N 10 L2+00V 650N nd L2+00V 650N nd L2+00V 755N 5 L2+00V 755N 15 L2+00V 755N 10 L2+00V 755N 10 L2+00V 755N 10 L2+00V 755N 10 L2+00V 850N 25 L2+00V 850N 25 L2+00V 850N 25 L2+00V 850N 5 DBTECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L1+00W	950N		30										
L1+00V 1000H 5 L1+00V 1025N nd L1+00V 1050H 5 L1+00V 1050H 5 L1+00V 1075R nd L2+00V 525N 10 L2+00V 550N 5 L2+00V 600N 10 L2+00V 625H 5 L2+00V 650N nd L2+00V 650N nd L2+00V 700H nd L2+00V 750N nd L2+00V 750N nd L2+00V 750N nd L2+00V 750N s DETECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L1+00W	975N		10										
L1+00V 1025W nd L1+00V 1050M 5 L1+00V 1075W nd L2+00V 525W 10 L2+00V 550N 5 L2+00V 500N 10 L2+00V 600N 10 L2+00V 650N nd L2+00V 650N nd L2+00V 650N nd L2+00V 775W 15 L2+00V 750N nd L2+00V 750N nd L2+00V 75N 10 L2+00V 800N nd L2+00V 850N 25 L2+00V 850N 25 L2+00V 850N 25 L2+00V 850N 5 DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L1+00W	1000N		5										
L1+00W 1050M 5 L1+00W 1075M nd L2+00W 525M 10 L2+00W 575M 5 L2+00W 600N 10 L2+00W 625M 5 L2+00W 675M 5 L2+00W 675M 5 L2+00W 700M nd L2+00W 725M 15 L2+00W 750M nd L2+00W 775H 10 L2+00W 800N nd L2+00W 800N nd L2+00W 800N s DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L1+00W	1025N		nd										
L1+00W 1075H nd L2+00W 525H 10 L2+00W 525H 5 L2+00W 600H 10 L2+00W 625H 5 L2+00W 650H nd L2+00W 700H nd L2+00W 700H nd L2+00W 705H 15 L2+00W 775H 10 L2+00W 800H nd L2+00W 800H nd L2+00W 800H nd L2+00W 800H nd L2+00W 800H 15 L2+00W 850H 25 L2+00W 850H 25 L2+00W 875H 5 DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L1+00W	1050N		5										
L2+00V 525N 10 L2+00V 550N 5 L2+00V 600N 10 L2+00V 625N 5 L2+00V 650N nd L2+00V 650N nd L2+00V 650N nd L2+00V 75N 5 L2+00V 725N 15 L2+00V 750N nd L2+00V 800N nd L2+00V 800N nd L2+00V 800N 25 L2+00V 850N 25 L2+00V 850N 25 L2+00V 875N 5 DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L1+00W	1075N		nd										
L2+00V 550N 5 L2+00V 675N 5 L2+00V 625N 5 L2+00V 650N nd L2+00V 675N 5 L2+00V 675N 5 L2+00V 75N 5 L2+00V 70N nd L2+00V 725N 15 L2+00V 800N nd L2+00V 800N nd L2+00V 800N nd L2+00V 800N 15 L2+00V 850N 25 L2+00V 875N 5 DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	525N		10										
L2400V 575N 5 L2400V 600N 10 L2400V 625N 5 L2400V 650N nd L2400V 675N 5 L2400V 700N nd L2400V 700N nd L2400V 725N 15 L2400V 750N nd L2400V 750N nd L2400V 75N 10 L2400V 800N nd L2400V 825N 15 L2400V 825N 25 L2400V 875N 5 DBTECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	550N		5										
L2+00V 600N 10 L2+00V 650N nd L2+00V 650N nd L2+00V 675N 5 L2+00V 70N nd L2+00V 70N nd L2+00V 725N 15 L2+00V 775N 10 L2+00V 800N nd L2+00V 800N 15 L2+00V 850N 25 L2+00V 850N 25 L2+00V 875N 5 DETECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	575N		5				•						
L2+00W 625H 5 L2+00W 650N nd L2+00W 675N 5 L2+00W 70N nd L2+00W 70N nd L2+00W 725N 15 L2+00W 75N nd L2+00W 775N 10 L2+00W 800N nd L2+00W 825N 15 L2+00W 850N 25 L2+00W 850N 25 L2+00W 875N 5 DETECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	600N		10										
L2+00W 650N nd L2+00W 675N 5 L2+00W 700N nd L2+00W 725N 15 L2+00W 750N nd L2+00W 775N 10 L2+00W 800N nd L2+00W 800N nd L2+00W 800N nd L2+00W 800N 25 L2+00W 850N 25 L2+00W 875N 5 DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	625N		5										
L2+00W 675N 5 L2+00W 700N nd L2+00W 725N 15 L2+00W 775N 10 L2+00W 800N nd L2+00W 800N 15 L2+00W 850N 25 L2+00W 875N 5 DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	650N		nd										
L2+00W 700H nd L2+00W 725H 15 L2+00W 750N nd L2+00W 775H 10 L2+00W 800N nd L2+00W 800N nd L2+00W 800N nd L2+00W 800N nd L2+00W 825N 15 L2+00W 850N 25 L2+00W 875N 5 DBTECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00¥	675N		5										
L2+00W 725H 15 L2+00W 750N nd L2+00W 775N 10 L2+00W 800N nd L2+00W 800N 15 L2+00W 825N 15 L2+00W 850N 25 L2+00W 875N 5 DETECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	700N		nd										
L2+00W 750N nd L2+00W 775N 10 L2+00W 800N nd L2+00W 825N 15 L2+00W 850N 25 L2+00W 875N 5 DETECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	725N		15										
L2+00W 775H 10 L2+00W 800N nd L2+00W 825N 15 L2+00W 850N 25 L2+00W 850N 25 L2+00W 875N 5 DETECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	750N		nd										
L2+00W 800N nd L2+00W 825N 15 L2+00W 850N 25 L2+00W 875N 5 DETECTION LINIT 5 nd = none detected = not analysed is = insufficient	L2+00¥	775N		10										
L2+00W 825N 15 L2+00W 850N 25 L2+00W 875N 5 DETECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	800N		nd										
L2+00W 850N 25 L2+00W 875N 5 DETECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00¥	825N		15										
L2+00¥ 875k 5 DETECTION LIMIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	850N		25										
DBTECTION LINIT 5 nd = none detected = not analysed is = insufficient sample	L2+00W	875N		5										
nd = none detected = not analysed is = insufficient sample	DRTRCTT	ON LINT		ς										
	nd = no	ne detec	ted -	- = not a	nalysed	is =	= insufficient	sample						

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

ABEVAL HUNDER, JUVO/	O OR UUD NUNDBR. JU	1070 FARLOU DAVBOURN	SHID LIV.	PAGE 2 UP
SAMPLE #	Au			
	ppb			
L2+00W 900N	10			
L2+00W 925N	10			
L2+00W 950N	5			
L2+00W 975N	20			
L2+00W 1000N	10			
L3+00W 600N	10			
L3+00W 625N	10			
L3+00W 650N	nd			
L3+00W 675N	nd			
L3+00W 700N	10			
T.3+00W 725N	10			
1.3+00V 750N	5			•
1.3+00W 775N	10			
1.3+00W 800N	10			
L3+00W 825N	15			
L3+00W 850N	nd			
L4+00W 500N	nd		· .	
L4+00W 525N	15			
L4+00W 600N	5			
L4+00W 625N	5			
L4+00W 650N	nd			
L4+00W 675N	5			
L4+00W 700N	5			
L4+00W 725N	20			
L4+00W 750N	nd			
L4+00W 775N	nd			
L4+00W 800N	5			
L4+00W 825N	10			
1.4+00W 850N	10			
L11+00N 200W	nd			
T.11+00N 225W	5			
L11+00N 250W	10			
L11+00N 275W	5			
T.11+00W 300W	nd			
L11+00N 325W	10			
T.11+00W 350W	5			
L11400N 375W	10			
TIITON AND	nd			
1111408 3008 1111408 3008	10			
DITIANU 475M	τv			
DETECTION LINIT	5			
nd = none detected	= not analysed	is = insufficient sample		

VANGEOCHEM LAB LIMITED

10

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT N	UNBER: 900678 GA	JOB NUMBER: 900678	PANICON DEVELOPHENTS LTD.	PAGE 3 OF 3
SAMPLE #		Au DDb		
L11+00N	450¥ 3'	25		
L11+00N	475¥ 4.5'	5		
L11+00N	475¥ 5'	5		
L11+00N	500W	5		
L11+00N	850W	10		
L11+00N	900w	15		

L11+00N 900W L11+00N 925W VANGEOCHEM LAR LUMINED

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST:

REPORT #: 900678 PA	PANICON DEV	VELOPMEN	TS LTD.			PROJE	CT: TERYL			DATE	IN: OC	[12 1990	DA	TE OUT: N	10V 08 19	990	ATTENTIO	I: NR. ST	FEVE TODO	RUK		PAGE	E 1 OF	3	
Sample Name	Ag ope	Al X	Ás DD e	Ba ope	Bi DOM	Ca X	Cd DO R	Co DO G	Cr ope	Cu Dom	Fe X	K X	Mg X	Ma oo	Ho	Na X	Ni	- የ ኚ	Pb	Sb	Sn	Sr	U DO R	¥	Zn
L1+00W 500N	0.5	8.94	3	168	<3	0.59	2.3	24	56	178	5.03	0.18	1.49	721	13	0 22	56	(0.01	(2	(2	(2	197	(5	(3	158
11+00W 525N	0.2	6.42	(3	222	(3	0 40	2.0	26	45	112	6 11	0.17	1 12	700	14	0.10	10	20.01	/2	/2	/2	101	/5	/3	110
11+00W 550N	0.3	5.30	(3	156	(3	0 27	15	26	114	40	4 62	0.15	1 15	967	15	0.10	41	10.01	12	/2	12	27	/5	/2	107
11400U 575N	/0.1	5.00	/2	150	()	0.17	1.0	20	117	10	4.03	0.13	1.13	100	13	0.10	91	(0.01	(2	12	(2	11	\J /5	13	107
	10.1	1 70	10	152	13	0.10	1.3	29	118	93	9,90	0.12	1.29	616	10	0.18	60	(0.01	(2	(2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	()	(3	298
LITUUW DUUN	0.1	1.72	(3	152	3	0.25	1.7	16	88	4/	3.61	0.09	0.85	495	1	0.09	27	0.05	(2	{2	<2	14	<5	<3	71
L1+00W 625N	0.2	3.58	(3	169	<3	0.17	2.0	25	98	109	4.93	0.15	1.51	906	13	0.15	54	(0.01	<2	<2	<2	21	<5	<3	164
L1+00W 650N	0.3	3.87	<3	102	<3	0.08	1.2	18	46	39	5.35	0.17	0.63	3764	18	0.22	14	<0.01	<2	<2	<2	8	<5	<3	194
L1+00W 675N	0.3	3.64	(3	148	<3	0.15	0.4	22	27	89	4.56	0.13	1.15	567	13	0.10	8	<0.01	<2	<2	<2	15	<5	<3	119
L1+00W 700N	0.4	4.00	<3	70	(3	0.08	1.0	13	20	47	5.65	0.18	0.45	1915	18	0.39	7	(0.01	()	(2	(2	10	<5	<3	306
L1+00W 725N	0.6	4.25	<3	66	<3	0.07	0.6	14	23	24	5.37	0.19	0.40	1829	19	0.32	4	<0.01	(2	<2	<2	9	<5	<3	198
L1+00W 750N	0.2	3.07	(3	175	(3	0.12	2.1	22	35	105	3.99	0.11	1.47	765	11	0.13	15	(0.01	(2	(2	(2	15	(5	(3	113
1 1+00W 775N	0 3	5 40	(3	99	12	0.05	1 0	10	21	21	5 79	0 21	0.21	1640	10	0.29		/0 01	12	12	12	7	/5	13	298
LI+OON BOON	0.3	4 98	/2	130	/2	0.04	1 2	26	40	112	5 51	0.12	1 25	602	10	0.14	15	70.01	12	12	/2	10	/5	/2	124
	0.5	4.01	10	10	10	0.04	1.5	20	70	112	5.51	0.12	1.23	002	10	0.14	13	(0.01	12	12	12	13	10	()	101
	0.4	9.31	(3	67	(3	0.04	0.5	3	9	11	5.88	0.19	0.08	1921	21	0.34	(1	(0.01	<2	(2	(2	2	()	(3	186
LITUW DJUN	0.2	J.62	(3	123	(3	0.04	0.3	19	16	93	5./5	0.24	0.69	2004	18	0.30	1	<0.01	(2	<2	<2	2	(3	<3	342
L1+00W 875N	0.2	2.99	(3	290	(3	0.39	0.9	30	23	157	5.55	0.22	1.40	2539	10	0.10	7	0.14	0	(2	(2	29	<5	(3	105
L1+00W 900N	0.2	2,93	(3	247	(3	0.09	1.5	43	102	192	4 54	0 17	1 26	2837	11	0.20		(0.01	12	12	(2	14	(5	(3	121
11+00W 925N	0 3	6 92	(3	97	13	(0 01	0.2	10	26	202	5 72	0.12	0.22	402	10	0.20 0.10	/1	70.01	12	12	12	2	/5	12	163
11+004 9504	0.3	2 57	/3	44	()	10.01	0.2	10	20	30	5.72	0.13	0.33	102	13	0.10		(0.01	12	12	12		10	()	220
L1.000 075N	0.3	3.3/	(3	11	13	0.04	1.0	J	6	11	3.33	0.15	0.0/	1/29	18	0.30	1	(0.01	(2	12	(2	10	()	(3	333
C1+00W 3/3M	0.1	3.92	(3	108	(3	0.06	0.8	27	44	79	4.44	0.15	1.41	1160	11	0.18	15	<0.01	(2	{2	<2	8	()	(3	148
L1+00W 1000N	0.4	3.93	<3	113	(3	0.05	0.9	21	19	78	5.55	0.22	0.76	3337	20	0.41	2	<0.01	<2	<2	<2	5	<5	<3	326
L1+00W 1025N	0.3	3.13	(3	154	(3	0.14	0.5	11	9	37	5.00	0.17	0.54	1412	15	0.39	 	(0.01	(2	(2	(2	8	(5	(3	216
L1+00W 1050N	0.5	3.13	(3	533	(3	0.73	1.6	41	34	207	6.25	0.26	1.61	1544	13	0.12	15	0.14	0	0	0	26	(5	(3	107
L1+00W 1075N	0.3	4.53	/ (3	210	G	0.28	(0.1	17	19		5.57	0.22	0.63	1404	16	0.27	i.	(0.01	ö	12	(2	15	<5	(3	210
L2+00W 525N	0.2	1.53	(3	137	(3	0.43	0.5	15	93	43	5.57	0.15	0.82	412	7	0.10	23	0.05	<2	(2	<2	32	<5	<3	58
1.2+004 5508	0.4	6 29	(2	82	/2	0 16	/0.1	15	40	47	2 54	A 40	0 71	240	12	0 11	/1	70.01	12	12	12	47	/5	12	96
12+000 5750	0.5	6 76	/2	220	10	0.10	/0.1	13	70	17	3.34	0.03	1.50	343	10	0.11	11	10.01	10	12	/2	77	/5	/2	111
	0.3	5.07	13		()	V. 20	(0.1	29	/3	53	9.70	0.14	1.52	971	12	0.17	31	(0.01	12	12	12	11	13	13	111
LZTUUW DVUN	0.4	3.8/	(3	63	(3	0.03	(0.1	y 	13	22	5.36	0.15	0.22	382	19	0.21	4	(0.01	<u>, (</u> 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< <u>\</u>	10	()	(3	179
LZTUUM BZJN	0.3	5.95	3	199	(3	0.05	0.2	34	48	86	4.50	0.12	0.94	1226	12	0.13	8	(0.01	(2	< <u>2</u>	< <u>,</u>	33	()	3	233
L2+00W 650N	0.3	6.30	(3	331	<3	0.25	0.5	35	51	148	6.86	0.26	1.39	2046	18	0.30	29	(0.01	(2	<2	(2	91	K 5	(3	307
L2+00W 675N	<0.1	5.60	<3	103	<3	<0.01	0.3	9	79	25	5.46	0.20	0.21	1480	16	0.30	5	(0.01	<2	<2	<2	24	<5	<3	350
L2+00W 700N	0.6	6.86	<3	181	(3	0.13	0.4	23	67	98	5.50	0.17	0.90	787	14	0.22	3	(0.01	(2	(2	<2	31	<5	<3	239
L2+00W 725N	0.2	4.66	(3	369	(3	(0.01	(0.1	19	49	83	5.06	0.13	0.91	976	14	0.15	Ä	(0.01	0	0	(2	16	(5	(3	218
12+008 7508	0.6	6 23	(3	72	12	(0 01	/0 1		50	21	5 20	0 12	0.22	072	16	0 16		70 01	12	12	12	.,	/5	12	170
L2+00W 775N	0.4	2.86	(3	89	<3	0.01	0.7	25	30	104	4.88	0.12	1.06	1321	13	0.23	2	(0.01	<2	<2	(2	15	<5	K 3	157
10.000 BAAN								-									-			/A					105
LZTUUN BUUN	0.5	4.05	(3	229	(3	0.10	0.6	31	30	182	5.28	0.16	1.91	1318	12	0.14	3	0.04	<2	(2	(2	13	()	G	125
L2+00W B25N	0.2	3.85	(3	162	<3	0.05	0.8	47	42	196	7.38	0.21	1.12	2541	21	0.29	20	<0.01	<2	<2	<2	13	<5	<3	318
L2+001 850N	0.6	8.08	<3	39	(3	(0.01	<0.1	8	6	19	6.46	0.36	0.06	7665	42	0.38	(1	<0.01	<2	<2	<2	<1	<5	<3	195
L2+00W 875N	0.1	5.11	<3	264	<3	0.05	0.9	42	41	100	6.87	0.24	2.33	2546	16	0.20	<1	<0.01	<2	<2	<2	26	<5	<3	297
Minimum Detection Maximum Detection	0.1 50.0	0.01 10.00	3 2000	1 1000	3 1000	6.01 10.00	0.1 1000.0	1 20000	1 1000	1 20000	0.01 10.00	0.01	0.01 10.00	1 20000	1 1000	0.01	1 20000	0.01 10.00	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000
/ Inne This Ministra	V - Crasher T	5							1.	190921-010	-	C . C			41 + a - a - b -		e Cuenne	had							

INFROME TO POLICY ACA

e .1 CH ≞.M ΔE 1.1 C ie

- ----------

1630 Pandora Street, Vancouver V5L 1L6

Ph: (604)251-5656 Fax: (604)20+-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO5 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900678 PA	PANICON DI	EVELOPHEN	TS LTD.			PROJE	CT: TERY	L		DAT	E IN: OC	F 12 1990) DA	TE OUT:	NOV 08 1	990	ATTENTIO	N: MR. S	TEVE TODO	RUK		PAG	E 2 OF	3	
Sample Name	Ag Dom	Al X	As DO	Ba DO R	Bi	Ca X	Cd	Co	Cr	Cu	Fe 7	K ۲	Hg 7	Ha ao s	fio	Na 7	Ni	۴ ۲	Pb	Sb	Sn	Sr	U	N	Zn
12+00H 900N	0.2	5.30	(3	82	(3	0.08	10 4	10	635	47	4 75	0 12	0 24	1002	747	0 17	9017 7007	/0 01	/ 1 / 2	44	/2	<u>م</u>	μμ . /5	10 10	175
12+000 9258	0.2	5 76	12	140	10	0.00	10.7	10	633	۳ <i>1</i> /	4.75	0.12	0.34	1003	/4/	0.17	2327	(0.01	12	(2	12	3	()	(3	1/5
121004 9204	0.3	5.00	()	190	(3)	0.10	1.3	10	33	12	9.33	0.11	0.84	/92	32	0.14	82	(0.01	(2	(2	(2	12	()	(3	212
LATON SJON	0.2	3.28	(3	138	(3	0.13	0.4	19	38	105	6.35	0.22	1.1/	3632	25	0.48	45	<0.01	<2	<2	<2	11	<5	<3	354
L2+00W 975N	0.6	6.13	(3	80	{3	0.08	0.4	7	19	19	5.84	0.14	0.12	926	18	0.23	11	<0.01	<2	<2	<2	10	<5	<3	259
L2+00W 1000N	0.5	3.42	<3	657	4	0.84	2.1	30	53	112	4.74	0.21	2.14	838	11	0.08	38	0.11	<2	<2	<2	31	<5	<3	83
L3+00W 600N	0.3	5.11	<3	213	<3	0.47	1.5	15	34	61	5.69	0.22	0.71	2511	16	0.44	24	<0.01	<2	<2	<2	79	<5	<3	306
L3+00W 625N	0.4	6.86	<3	9i	<3	0.19	<0.1	14	41	71	5.10	0.12	0.57	592	17	0.13	26	<0.01	<2	<2	<2	32	<5	<3	149
L3+00W 650N	0.2	5.16	(3	55	<3	0.12	0.9	11	196	32	5.39	0.15	0.20	1319	19	0.39	76	(0.01	(2	(2	<2	13	(5	(3	219
L3+00W 675N	0.1	5.32	(3	94	(3	0.05	0.2	7	99	15	4.91	0.15	0.10	1491	16	0.23	72	(0.01	(2	0	(2	3	(5	(3	190
L3+00W 700N	0.1	4.18	<3	82	(3	0.11	0.2	6	34	11	5.37	0.14	0.10	1350	17	0.26	14	<0.01	<2	<2	(2	11	<5	<3	151
L3+00W 725N	0.2	5,00	(3	78	(3	0.07	(0.1	7	16	22	5 34	0 14	0 20	1757	19	0.27	10	(0.01	12	(2	12	6	/5	13	1.99
13+00W 750N	0.2	5 48	(3	529	(3	A 15	1 9	25	76	202	7 01	0.20	2 12	1200	12	À 10	50	/0.01	/2	/2	12	20	/5	/2	100
13+00N 775N	0.5	4 29	/3	75	13	0.15	/0.1	33	20	202	2 02	0.20	2.13	2000	12	0.10	10	0.01	12	12	12	20		(3)	100
13+004 POON	0.5	2 72	/0	100	(3	0.00	1.4	.7	52	23	3.02	0.00	. 0.20	2000	12	0.10	10	0.03	12	12	12	~	(J /F	(3)	105
L3+00W 825N	0.6	6.92	<3 <3	60	(3	0.16	<0.1	10	26 23	40	4.96	0.10	0.18	716	13	0.10	39 18	0.05 (0.01	<2 <2	<2 <2	(2	24	<5 <5	<3 (3	165
12400H BEAN			10											• • •								_			
LATON BOON	0.5	4.62	(3	44	(3	0.06	0.7	6	16	23	4.54	0.10	0.08	641	13	0.16	11	<0.01	<2	<2	<2	4	₹5	(3	104
LATUR SUUN	0.3	2.01	(3	101	(3	0.14	0.9	12	14	11	3.41	0.05	0.51	875	7	0.06	13	<0.01	2	<2	<2	15	<5	<3	128
L4+00W 525N	0.1	1.32	<3	6V	7	0.11	1.0	9	10	11	3.54	0.06	0.55	289	6	0.06	5	<0.01	13	<2	<2	11	<5	<3	92
L4+00W 600N	0.2	6.90	<3	76	(3	0.05	<0.1	6	13	- 15	5.10	0.18	0.08	1114	16	0.38	13	<0.01	<2	<2	<2	4	<5	<3	211
L4+00W 625N	0.2	4.46	<3	94	<3	0.11	1.2	15	32	34	5.51	0.18	0.57	1814	17	0.33	23	<0.01	<2	<2	<2	9	<5	<3	227
L4+00W 650N	0.5	6.37	<3	151	<3	0.11	0.8	17	72	71	5.21	0.11	0.86	1020	18	0.11	47	<0.01	<2	<2	(2	10	<5	(3	145
L4+00W 675N	0.2	6.49	(3	36	(3	0.04	0.3	7	20	19	7.07	0.13	0.07	314	16	0.13	8	(0.01	0	17	12	2	(5	(3	104
L4+00W 700N	0.2	3.68	(3	168	3	0.16	1.6	28	44	92	4.97	0.16	1.18	1398	13	0.52	43	(0.01	17	ö	17	21	(5	(3	477
L4+00W 725N	0.3	3.90	<3	37	(3	0.08	1.0	5	9	15	5.49	0.16	0.09	1833	17	0.33	3	(0.01	12	12	12		(5	(3	207
L4+00W 750N	0.4	5.47	<3	151	<3	0.20	1.0	15	37	54	4.05	0.09	0.61	666	12	0.13	29	<0.01	<2	(2	(2	49	<5	(3	116
L4+00W 775N	0.2	5.43	<3	187	(3	0.43	1.3	30	224	96	4.97	0.16	1.37	909	11	0.19	143	(0.01	0	(2	0	151	(5	(3	150
L4+00H BOON	0.4	4.02	(3	81	(3	0.20	0.5	15	38	55	2 92	0 08	0 47	720	11	0 10	20	0.01	(7	12	12	40	(5	(3	118
14+00W 825N	0.4	6.94	ä	63	(3	0 06	0.5	10	32	36	5 01	0.10	A 20	400	15	0.12	17	/0.01	12	12	12	0	/5	(3	163
14+00H 850N	P 0	4 74	(3	122	/2	0 12	1 0	16	32	104	4 40	0.10	0.23	103	1.5	0.12	17	\V.VI	12	12	12	22	10	/9	100
L11+00N 200W	0.3	3.49	(3	242	<3 <3	0.07	1.8	20	25	78	4.85	0.16	1.10	1431	10	0.08	30 18	<0.03 <0.01	<2 <2	(2	<2	55	(5	(3	274
111+000 2250	0.4	2 52	12	250	/2	A 55		24	24		4 00				•					<i>(</i>)	10		/ .	15	
	V. 1	2.00	10	202	(3	0.00	1.4	29	24	101	4.30	V.16	1.3/	6//	3	0.08	30	0.11	(2	(2	(2	21	()	(3	100
LIITUUN ZOUN	0.4	4.32	(3	43	(3	0.08	1.5	9	10	29	5.54	0.18	0.27	1855	19	0.40	10	(0.01	<2	<2	<2	4	<5	(3	157
LII+UUN Z/3W	0.2	4.15	(3	194	8	0.11	2.6	23	51	73	5.10	0.17	1.70	1128	12	0.40	44	<0.01	<2	<2	<2	13	<5	<3	312
L11+00N 300W	0.2	3.06	<3	83	(3	0.12	2.3	23	55	91	4.83	0.16	1.33	984	9	0.18	45	<0.01	<2	<2	<2	20	<5	(3	152
L11+00N 325W	0.1	3.27	<3	91	<3	0.10	1.5	21	35	118	4.29	0.10	1.17	1123	10	0.17	31	<0.01	<2	<2	<2	13	<5	<3	169
L11+00N 350W	0.2	3.75	{3	126	<3	0.10	<0.1	26	53	146	4.56	0.14	1.19	1121	10	0.22	50	<0.01	<2	<2	(2	11	<5	(3	212
L11+00N 375W	0.2	2.62	<3	47	<3	0.15	1.4	4	6	14	4.82	0.14	0.11	1301	10	0.31	11	(0-01	(2	(2	(2	29	(5	(3	317
L11+00N 400W	0.4	2.90	(3	64	(3	0.19	1.6	12	19	59	4.23	0.14	0.61	1156	Ŗ	0.36	24	(0.01	(7	ö	ö	14	(5	(3	196
L11+00N 425W	0.4	5.57	(3	58	<3	0.0B	3.9	14	9	43	5.28	0.52	0.15	14294	70	0.63	21	<0.01	<2	(2	(2	4	(5	(3	348
Minimum Detection Maximum Detection	0.1 50.0	0.01 10.00	3 2000	1 1000	3 1000	0.01 10.00	0.1 1000.0	1 20000	1 1000	1 20000	0.01 10.00	0.01	0.01 10.00	1 20000	1 1000	0.01 10.00	1 20000	6.01 10.28	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000
2 1 TH MY 1														_ `			_								

< - Less Than Minimum ns - No Sample ANOMALOUS RESULTS - Further Analyses By Alternate Methods Suggested. > - Greater Than Maximum is - Insufficient Sample

ť

(

1

í.

ANALYST: And

VANGEDCHEM LA' LIMITED

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, F, Sn, Sr and W.

ANALYST: Rymith

1

f

REPORT 1: 900678 PA	PAMICON DE	VELOPMENT	S LTD.			PROJE	CT: TERY	L		DATE IN: OCT 12 1990 DATE DUT: NOV 08 1990 ATTENT				ATTENT10	N: MR. S	TEVE TODO	RUK		PAG	E 3 OF	3				
Sample Name	Ag	Al	As	Ba	Bi	Ĉa	Cd	Co	Cr	Cu	fe	K	Mg	ňn	No	Na	Ni	P	fb	Sb	Sn	Sr	U	W	Zn
	pp e	X.	ppe	ppe	ppe	X	ppe	ppa	pps	ppe	7.	X	X	ppe	ppe	7.	ppa	2	pp	ppe	ppe	pps	ppe	ppe	pp ∎
L11+00N 450W 3'	0.3	3.46	<3	35	<3	0.06	0.2	6	8	8	5.21	0.12	0.08	1399	13	0.28	9	<0.01	<2	<2	<2	10	<5	<3	291
L11+00N 475W 4.5'	0.2	3.69	<3	174	<3	0.15	0.9	25	57	112	4.70	0.12	1.33	964	9	0.12	34	<0.01	<2	(2	<2	19	<5	<3	93
L11+00N 475W 5'	0.6	7.61	<3	54	<3	0.05	<0.1	7	16	23	4.49	0.11	0.15	817	11	0.14	<1	<0.01	<2	<2	<2	4	<5	<3	110
L11+00N 500W	0.3	4.84	<3	29	<3	0.08	(0.1	5	11	11	5.01	0.13	0.10	1485	15	0.27	2	<0.01	<2	<2	<2	9	<5	<3	219
L11+00N 850W	0.3	3.69	<3	47	<3	0.05	<0.1	6	19	14	4.95	0.10	0.13	1153	15	0.19	16	<0.01	<2	<2	<2	11	<5	<3	253
L11+00N 900W	0.2	4,25	<3	76	\3	0.09	<0.1	13	48	36	5.01	0.14	0.60	1389	17	0.26	15	<0.01	<2	<2	<2	7	<5	<3	210
L11+00N 925W	0.4	6.19	<3	74	<3	0.12	<0.1	10	41	32	5.80	0.10	0.27	297	17	0.08	1	<0.01	<2	<2	<2	12	<5	<3	60
Minigue Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater T	'han Maxia	ua.	is - Insu	fficien	t Sample	ns	- No Samp	le	ANOMALOU	S RESULT	S - Furtl	her Anal	yses By	Alternat	e Method	s Sugges	ted.							

CONTRACTOR VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	PAMICON DEVELOPMENTS LTD.
ADDRESS:	711 - 675 W. Hastings St.
:	Vancouver, BC
:	V6B 1N4

DATE: OCT 19 1990

REPORT#: 900682 GA JOB#: 900682

I	NVOICE	C#: 90	00682	NA
TOTAL	SAMPLE	cs: 1	3	
SAMP	LE TYP	'Е: 1	3 SOII	L .
	REJECI	'S: D	ISCARI	DED
	M	P		山
D.		NUN	3 103	Û
		JUE	SUU	SU

SAMPLES FROM: BRONSON CAMP COPY SENT TO: PAMICON DEVELOPMENTS LTD

.

PROJECT#: TERYL SAMPLES ARRIVED: OCT 16 1990 REPORT COMPLETED: OCT 19 1990 ANALYSED FOR: AU ICP

PREPARED FOR: MR. STEVE TODORUK

ANALYSED BY: VGC Staff

Kanth SIGNED:

GENERAL REMARK: RESULTS FAXED TO BRONSON CAMP.

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT	NUMBER:	900682 GA	JOB	NUMBER:	900682	PANICON	DEVELOPHENTS	LTD.	PAGE	1	OP	1
SAMPLE	ŧ		۸u									
			ppb									
L1100N	525W		nð									
L1100N	550W		nd									
L1100N	575 T		nd									
L1100N	600W		5									
L1100N	625¥		nd									
r.1100w	650W		ç									
11100m	0JV# (76#		ر م									
L11000	9/JW .		00									
LIIVUN	/00₩		na									
LIIOON	1251		5									
L1100N	750W		nd									
L1100N	115		5									
L1100N	800W		5									
L1100N	825W		nd									

VANGEOCHEM LA LIMITEL

1630 Pandora Street, Vancouver, B.C. V5L 1L6

Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Mynth

REPORT #: 900682 PA	PANICON DEV	VELOPMENT	S LTD.			PROJE	CT: TERY	L		DATE	IN: OCT	16 1990	DA	TE OUT: N	iOV 08 19	190 1	ATTENTIO	N: MR. S	TEVE TODO	RUK		PAG	E 1 OF	1	
Sample Name	Ag	A1	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	∦n	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	Zn
	po e	۲	ppe	ppa	ppe	۲.	ppe	a qq	pps	ppa	ĩ	ĩ	Y.	ppe	ppa	X.	ppa	z	ppm	ppa	ppa	ppm	ppa	ppe	pp∎
L1100N 525W	0.4	4.92	<3	22	<3	0.10	0.5	6	10	23	5.76	0.22	0.10	2398	19	0.34	6	<0.01	<2	<2	<2	6	<5	<3	156
L1100N 550W	0.3	2.79	<3	9	<3	0.06	<0.1	4	8	9	5.15	0.14	0.09	1329	12	0.31	3	(0.01	<2	<2	<2	17	<5	<3	253
L1100N 575W	0.1	3.76	<3	173	<3	0.22	2.4	29	53	116	5.89	0.18	1.02	3682	16	0.21	38	<0.01	<2	<2	<2	23	<5	<3	231
L1100N 600W	0.6	5.14	32	117	<3	0.10	1.8	19	21	94	4.98	0.24	0.32	2245	14	0.41	19	<0.01	<2	<2	· <2	9	<5	(3	346
L1100N 625W	0.1	3.82	<3	249	<3	0.42	2.1	30	54	120	5.01	0.20	1,54	1553	11	0.13	38	0.02	<2	<2	<2	35	<5	<3	1 36
L1100N 650W	0.1	3.85	<3	50	<3	0.07	1.0	5	7	33	5.46	0.20	0.12	2905	18	0.32	3	<0.01	<2	<2	<2	9	<5	<3	223
L1100N 675W	0.1	4.98	<3	107	<3	0.06	0.9	19	23	63	5.56	0.12	0.93	630	12	0.11	13	<0.01	<2	<2	<2	7	<5	<3	146
L1100N 700W	0.4	3.59	<3	81	<3	0.06	1.0	17	19	73	5.32	0.19	0.26	2043	17	0.27	10	<0.01	<2	<2	<2	7	<5	<3	204
L1100N 725W	0.9	2.94	<3	44	<3	0.03	1.0	9	18	35	4.25	0.07	0.22	1065	13	0.08	7	<0.01	<2	<2	<2	6	<5	<3	75
L1100N 750W	0.2	5.41	<3	74	<3	0.06	<0.1	13	14	96	5.32	0.19	0.25	2613	17	0.34	9	<0.01	<2	<2	<2	5	<5	<3	218
L1100N 775W	0.5	3.84	<3	50	<3	0.10	0.8	13	14	62	5.40	0.19	0.23	2487	18	0.37	9	<0.01	<2	<2	<2	9	<5	<3	221
L1100N 800W	0.2	3.12	<3	62	<3	0.02	0.9	4	5	14	4,72	0.10	0.09	1176	11	0.19	<1	<0.01	<2	<2	<2	2	<5	<3	218
L1100N 825W	0.3	9.50	<3	182	<3	0.24	<0.1	17	32	70	4.33	0.12	1.07	560	13	0.15	13	<0.01	<2	<2	<2	45	<5	<3	167
Minimum Detection	0.1	0.01	3	t	3	0.01	0.1	1	1	i	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	i	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater T	han Maxin	u	is - Insu	Ificien	t Sample	ns	- No Samp	le	ANOMALOUS	S RESULT	6 - Furth	er Anal	yses By /	Alternate	e Nethod	s Sugges	ted.							

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V90-01321.0 (COMPLETE)

REFERENCE INFO:

CIIENT: KEFWATIN FNGINEERING INC. PROJECT: C SUBMITTED BY: J. FORBES DATE PRINTED: 24-JUL-90

	ORDER		ELEMENT	NUMBER OF Analyses	LOWER Detection limit	EXTRACTION	METHOD
	1	Ag	Silver	169	0.2 PPM	HN03-HCI Hot Fxtr.	Ind. Coupled Plasma
	2	Cu	Copper	169	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	3	РЬ	l ead	169	2 PPM	HN03-HCI Hot Fxtr.	Ind. Coupled Plasma
	4	Zn	Zinc	169	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	5	Mo	fiolybdenum	169	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	6	Ni	Nickel	169	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	7	Co	Cobalt.	169	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
4	8	Cd	Cadmium	169	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	9	Bi	Bismuth	169	5 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	10	As	Arsenic	169	5 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	11	Sb	Antimony	169	5 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
! 	12	Fe	Iron	169	0.01 PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	13	М'n	Manganese	169	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	14	Te	Tellurium	169	10 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	15	Ba	Barium	169	5 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	16	Cr	Chromium	169	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	17	V	Vanadium	169	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	18	Sn	Tin	169	20 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	19	μ	Tungsten	169	10 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	20	La	Lanthanum	169	1 PPN	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	21	AI	Aluminum	169	0.02 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	22	Mg	Magnesium	169	N.05 PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
	23	Ca	Calcium	169	0.U5 PCT	HN03-HC1 Hot Extr.	Ind, Coupled Plasma
	24	Na	Sodium	169	0.05 PCT	HN03-HCI Hot Extr.	Ind, Coupled Plasma
	25	к	Potassium	169	0.05 PCT	HN03-HC1 Hot Fxtr.	Ind, Coupled Plasma
	26	Sr	Strontium	169	1 PPM	HN03-HCI Hot Extr.	Ind, Coupled Plasma
	27	Y	Yttrium	169	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma

~

-

Geochemical Lab Report

REPORT: V9N-D1321.N (C	COMPLETE)			REFERENCE INFO:
CIIENT: KEFWATIN FNGINE PROJECT: C	FRING INC.			SUBMITTED BY: J. FORBES DATE PRINTED: 24-JUL-91
SAMPLE TYPFS	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
S SOILS	169	1 -8N	169	SAMPLES FROM STORAGE 169
REMARKS: Originall	y report number (was V89-N686N.N		
REPORT COPIFS TO:	MR. JIM FOSTER MR. STEVE TODORU)	Κ	INV	DICF TO: MR. JIM FOSTER MR. STEVE TODORUK
		<u></u>		
:				

.

Geochemical Lab Report

REPORT: V90-01321.II							PROJECT: C				PAGE 1A	
SAMPLE NUMBER	EI FMENT UNITS	Ag PPM	Cu PPM	РЬ PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM
S1 89CLS 17+U	N 110+32E	Π.8	61	19	130	2	9	9	<1	<5	16	<5
S1 89CLS 17+D	IN 1+DDE	0.6	93	7	119	<1	15	11	<1	<5	<5	<5
S1 89CLS 17+IIF	N 1+50F	0.8	7	16	95	3	5	2	<1	<5	<5	<5
S1 89CLS 17+0	IN 2+DAE	0.9	36	10	168	3	103	18	<1	<5	<5	<5
S1 89CLS 17+11	N 2+50E	1.5	7	12	72	5	4	2	<1	<5	20	<5
S1 89CLS 17+0	IN 3+ONE	0.6	37	10	114	2	33	8	<1	<5	49	<5
S1 89CLS 17+UC	N 3+50E	1.4	6	19	47	5	4	<1	<1	<5	<5	6
S1 89CLS 17+0	IN 4+DNE	1.1	35	14	136	5	47	8	<1	<5	.35	9
S1 89CLS 17+III	N 4+50E	0.5	31	12	176	4	37	9	<1	<5	28	<5
S1 89CLS 17+D	IN 5+NNE	0.3	55	<2	161	<1	70	15	<1	<5	6	<5
S1 89CLS 17+U	N 5+50F	0.8	34	16	102	8	27	17	<1	<5	31	<5
S1 89CLS 17+00	IN 6+NNE	0.5	64	2	121	<1	80	16	<1	<5	137	6
S1 89CLS 17+11	N 6+50F	1.2	11	19	50	10	4	1	<1	<5	29	6
S1 89CLS 17+D	IN 7+ONE	1.8	17	26	53	21	6	1	<1	<5	15	6
\$1 89CLS 17+U	N 7+50E	N.4	11	18	175	14	8	3	<1	<5	17	<5
S1 89CLS 17+DI	IN 8+NNE	0.3	26	17	214	4	41	19	<1	<5	52	<5
\$1 89CLS 17+UI	N 8+50F	N.9	10	11	89	5	5	2	<1	<5	11	<5
S1 89CLS 17+N	IN 9+DDE	1.3	11	12	62	4	3	1	<1	<5	9	<5
\$1. 89CLS 17+III	N 9+50E	1.6	19	16	49	7	8	2	<1	<5	<5	<5
S1 89CLS 17+DF	N 1N+NNE	1.4	13	20	62	8	6	1	<1	<5	<5	5
\$1 89CLS 17+UI	N 10+50E	0.5	28	5	112	4	33	6	<1	<5	39	<5
S1 89CLS 17+N	N 11+NNE	<11.2	8	15	89	11	18	3	<1	<5	49	<5
\$1 89CLS 17+III	N 11+5DE	1.1	20	22	69	11	5	1	<1	<5	8	9
S1 89CLS 17+N	N 12+DDE	1.2	7	17	36	5	4	2	<1	<5	20	7
\$1 89CLS 14+III	N 16+50E	0.3	16	7	102	3	9	7	<1	<5	<5	<5
S1 89CLS 14+D	N 17+DNE	0.4	6	15	213	6	3	2	<1	<5	<5	<5
S1 89CLS 14+110	N 17+50E	0.5	14	15	147	27	3	3	<1	<5	5	9
S1 89CLS 14+Nr	N 18+NNE	1.3	5	15	94	6	3	1	<1	<5	13	<5
\$1 89CLS 14+UN	N 18+50E	0.4	6	13	91	29	3	3	<1	<5	<5	<5
S1 89CLS 14+00	N 19+DNE	0.8	7	13	86	10	3	5	<1	<5	<5	<5
\$1 89CLS 14+UN	N 19+50E	0.5	8	11	92	12	3	6	<1	<5	<5	<5
S1 89CLS 14+NN	N 20+00E	0.5	12	8	96	13	3	8	<1	<5	6	5
\$1 89CLS 14+UN	V 20+50E	<0.2	5	13	36	12	<1	2	<1	<5	<5	<5
S1 89CLS 14+NN	N 21+NNE	1.3	11	22	54	10	2	<1	<1	<5	20	6
\$1 89CLS 14+UA	N 21+50E	0.4	7	11	37	2	3	3	<1	<5	<5	<5
S1 89CLS 14+DD	N 22+DNE	1.2	7	17	71	9	2	1	<1	<5	<5	5
S1 89CLS 14+III	V 22+50E	0.9	8	12	86	6	2	4	<1	<5	7	<5
S1 89CLS 14+DD	N 23+NNE	0.4	7	10	82	<1	4	15	<1	<5	<5	<5
S1 89CLS 14+III	1 23+50F	0.9	7	18	136	7	3	3	<1	<5	7	<5
S1 89CMS 17+50	N N+NNW	0.8	14	11	129	5	8	3	<1	<5	<5	<5

.

Geochemical Lab Report

				0 <u>0</u>	IF PRINTE	D: 24-JUL	<u>24-JUL-90</u> PAGE 1B					
KEPURT: V9U-D13	21.0]				Pr				PAGE 15	i
SAMPLE	ELEMENT	Fe	Ĭn	Te	Ba	Cr	V	Sn	ų	la	AL	Ma
NUMBER	UNITS	PCT	PCT	PPM	PPM	PPM	PPM	PPH	PPM	PPM	PCT	PCT
\$1 89CLS 17+UNN	(10+32E	6.14	0.03	11	103	22	88	<20	<10	23	3.81	0.73
S1 89CLS 17+DAN	1+00E	6.91	0.04	11	96	35	134	<20	<10	10	2.38	0.70
S1 89CLS 17+UNN	1+50E	5.48	0.04	<10	40	13	9	<20	<10	18	6.03	<0.05
S1 89CLS 17+00N	2+0NE	6.61	0.04	<10	29	194	70	<20	<10	48	3.86	0.88
S1 89CLS 17+1JON	2+50E	6.15	0.03	<10	29	14	10	<21	<10	24	6.24	<0.05
S1 89CLS 17+DAN	3+NNE	4.20	0.03	<10	87	94	89	<20	<10	11	3.12	0.94
\$1 89CLS 17+110N	3+50E	6.41	0.02	<10	22	17	15	<20	<10	18	5.92	<0.05
S1 89CLS 17+00N	4+0NE	7.15	0.03	10	115	124	105	<20	<10	15	2.91	1.11
S1 89CLS 17+URN	4+50E	5.03	0.05	<10	116	85	54	<20	<10	41	4.02	0.54
S1 89CLS 17+DDN	5+00E	5.06	0.05	<10	317	186	114	<20	<10	12	3.12	2.11
S1 89CLS 17+11/1N	5+50F	6.01	0.07	<10	46	34	31	<20	<10	55	3.85	0.21
S1 89CLS 17+00N	6+NNE	4.35	0.03	<10	188	208	125	<20	<10	4	2.92	1.67
S1 89CLS 17+1IfIN	6+50F	9.15	0.01	15	18	21	32	<20	14	18	3.76	<0.05
S1 89CLS 17+00N	7+NNE	>10.00	0.02	20	32	27	23	<2N	15	19	2.95	<0.05
S1 89CLS 17+U(IN	7+50F	6.11	N.15	<10	55	10	14	<20	<10	105	2.12	0.06
S1 89CLS 17+N/IN	8+NNE	4.35	0.07	<10	48	8 5	68	<20	<10	24	2.23	0.59
S1 89CLS 17+HIIN	8+5(IF	4.49	0.114	<10	40	11	5	<20	<10	34	6.52	<0.05
S1 89CLS 17+DAN	9+NNE	4,75	0.03	<10	31	12	8	<20	<10	19	5.71	<0.05
S1 89CLS 17+IIIIN	9+50E	9.05	0.01	11	19	47	40	<20	11	22	4.88	0.11
S1 89CLS 17+NNN	10+00E	8.13	<0.01	11	27	28	32	<21	14	18	4.44	0.11
S1 89CLS 17+11/IN	10+50F	4.79	0.02	<10	95	122	61	<20	<10	9	5.50	0.64
S1 89CLS 17+00N	11+NNE	2.43	0.02	<10	49	86	62	<20	<10	14	D .8 6	0.40
\$1 89CLS 17+UON	11+50E	9.54	0.03	10	12	26	21	<20	12	62	4.07	<0.05
S1 89CLS 17+DDN	12+00E	8.59	0.02	<10	33	21	12	<20	<10	19	6.38	<0.05
\$1 89CLS 14+110N	16+50E	3.72	0.04	<10	78	32	57	<20	<10	23	2.42	0.32
S1 89CLS 14+DNN	17+NNE	5.45	0.13	<10	55	8	5	<20	<10	6D	3.04	0.06
S1 89CLS 14+UNN	17+50F	5,56	0.11	<10	39	11	12	<20	<10	102	4.71	<0.05
S1 89CLS 14+00N	18+NDE	5.30	0.01	<10	29	13	10	<20	<10	20	6.45	<0.05
S1 89CLS 14+(INN	18+50E	4.43	0.03	<10	37	11	33	<20	<10	48	2.85	0.10
S1 89CLS 14+00N	19+DNE	7.43	0.03	13	85	16	81	<20	<10	35	2.37	0.23
\$1 89CLS 14+UNN	19+50F	4.88	0.06	<10	82	12	58	<20	<10	21	2.15	0.30
S1 89CLS 14+00N	2N+DNE	5.64	0.05	<10	75	15	8 6	<20	<10	16	1.71	0.42
S1 89CLS 14+UNN	20+50E	2.39	0.01	<10	19	6	81	<20	<10	6	0.41	0.08
S1 89CLS 14+DNN	21+00E	>10.00	0.02	19	13	17	9	<20	16	18	2.74	<0.05
\$1 89CLS 14+UNN	21+50F	4.86	0.01	<10	20	18	79	<20	<10	6	0.87	0.12
S1 89CLS 14+DNN	22+NNE	9.86	0.03	13	12	15	12	<20	10	25	3.50	<0.05
S1 89CLS 14+110N	22+50F	4.84	0.114	<10	56	12	45	<20	<10	26	3.30	0.16
S1 89CLS 14+00N	23+NNE	3.42	0.10	<10	79	12	61	<20	<10	20	1.49	0.36
S1 89CLS 14+HIN	23+5DE	5.68	0.06	<10	43	11	22	<20	<10	25	3.32	0.12
S1 89CMS 17+5IIN	N+NNY	5.45	0.04	<10	30	26	24	<20	<10	19	5.15	0.12

L

L

L

Geochemical Lab Report

			A DIVISIO	ON OF INCHCA	PE INSPECTI	ON & TESTING	SERVICES DATE PRINTED: 24-JU	-90
REPORT: V90	-01321.0						PROJECT: C	PAGE 1C
SAMPLE	ELFMENT	Ca	Na	ĸ	Sr	Y		
NUMBER	UNITS	PCT	PCT	PCT	PPM	PPH		
\$1 89CLS 17	UNN 110+32E	0.06	<0,05	0.13	3	17		
S1 89CLS 17	+00N 1+00E	0.07	<0.05	0.22	6	5		
S1 89CLS 17	+00N 1+50E	0.07	<0.05	<0.05	5	13		
S1 89CLS 17	+00N 2+00E	0.14	<0.05	<0.05	18	28		
\$1 89CLS 17	+11NN 2+50F	<0.05	<0.05	<0.05	<1	21		
S1 89CLS 17	+00N 3+00F	D.13	<0.05	Π.13	12	6		
S1 89CLS 17	100N 3+50E	<0.05	<0.05	<0.05	1	9		
S1 89CLS 17	+00N 4+00E	0.23	<0.05	0.12	24	12		
\$1 89CLS 17	10N 4+50F	Π.12	<0.05	0.15	11	28		
S1 89CLS 17	+00N 5+00E	0.10	<0.05	0.76	11	10		
C1 8901 C 17		20.05	20.115	1 17	3	68		
01 070L0 17	100N (100E	NI.0.0	20.05	0.07	.) 10	ου Γ		
SI 070LS 17		20.05	20.05	20.05	10	9		
01 07CLO 17		20.05		20.05	1	8		
S1 89CLS 17	100 7+50E	0.12	0.05	0.09	11	74		
S1 89CLS 17	+00N 8+00E	0.21	0.06	0.13	20	17		
S1 89CLS 17-	UNN 8+50F	<0.05	<0.05	<0.05	<1	21		
S1 89CLS 17	+NUN 9+DNE	<0.05	<0.05	<0.05	<1	10		
S1 89CLS 17	110N 9+50F	0.05	<0.05	<0.05	6	14		
S1 89CLS 17	+00N 10+00E	<0.05	<0.05	<0.05	4	8		
\$1 89CLS 17-	UON 10+50F	0.10	<0.05	0.17	12	6		
S1 89CLS 17	+00N 11+00E	<0.05	<0.05	0.23	4	4		
\$1 89CLS 174	UON 11+50E	<0.05	0.07	0.06	<1	36		
S1 89CLS 17	+00N 12+00E	<0.05	<n.05< td=""><td><0.05</td><td>2</td><td>10</td><td></td><td></td></n.05<>	<0.05	2	10		
\$1 89CLS 14+	UON 16+50E	0.11	<0.05	0.07	7	15		
S1 8901 S 14	+00N 17+00E	<0.05	Π_Π6	0.10	9	37		
S1 89CLS 14	UDN 17+50E	R.12	<0.05	<0.05	8	87		
S1 89CLS 14	+00N 18+00F	0.06	<0.05	<0.05	5	14		
S1 89CLS 14	UON 18+50F	0.06	<0.05	0.06	5	27		
S1 89CLS 14	+NNN 19+NNE	0.24	<0.05	0.06	24	21		
C1 89CLC 4/		0.00	<u>20 (IE</u>	0.08	28	15		
01 070L0 141	UUN 17+38C	n 2/	20.05	0.00	19	1.J 10		
SI 070L0 14		10,04 D DZ	20.05	20.15 20.05	11	2		
01 070L3 141	1000 20730F	້ມູແດ	20.05		11	10		
SI 070LS 14	UDN 21+UUC	CII.UZ		10.05	~	2		
	DOM STADIC	0.07	10.05	NU-UJ	4	2		
S1 89CLS 14	INN 22+DDE	<0.05	N.06	0.05	2	15		
S1 89CLS 14+	IIIN 22+50E	0.08	0.05	0.09	6	16		
S1 89CLS 14	NNN 23+DNE	0.26	<0.05	0.11	21	9		
S1 89CLS 14+	UON 23+50E	0.08	0.05	0.07	7	18		
S1 89CMS 17-	SON D+DAW	<0.05	<0.05	<0.05	3	14		

Geochemical Lab Report

	REPORT: V90-01321.0					Pf						PROJECT: C PAGE 2A				
	SAMPLE NUMBER	FI FMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPN	Cd PPM	Bi PPM	As PPM	Sb PPM			
	S1 89CMS 17+II	IN 3+004	0.7	74	7	178	2	11	21	<1	<5	7	8			
	S1 89CMS 17+D	DN 2+50W	0.6	114	5	104	<1	20	24	<1	5	<5	7			
	S1 89CMS 17+III	1N 2+(I(IM	Π.4	98	<2	87	<1	10	19	<1	5	<5	<5			
	S1 89CMS 17+N	NN 1+5NW	0.6	69	6	61	<1	19	9	<1	<5	<5	<5			
	S1 89CMS 17+11	IN 1+(IOW	0.5	24	9	75	1	8	10	<1	<5	<5	<5			
	S1 89CMS 17+0	DN N+5NW	0.8	10	10	109	5	4	3	<1	<5	15	8			
	S1 89CMS 16+U	IN 2+50W	1.1	26	16	39	7	10	3	<1	<5	9	<5			
	S1 89CMS 16+D	N 2+NNW	1.2	19	16	57	9	5	2	<1	<5	22	6			
	S1 89CMS 16+III	IN 1+50W	1.2	25	17	82	7	4	3	<1	<5	6	<5			
	S1 89CMS 16+D	N 1+00W	0.4	6	15	244	6	4	2	<1	<5	7	<5			
	S1 89CMS 16+U	IN 0+504	(1.8	5	16	108	5	4	2	<1	<5	<5	5			
	S1 89CMS 16+0	IN N+NNE	1.2	6	13	60	5	2	1	<1	<5	7	<5			
	S1 89CMS 16+U	IN (1+5(1E	0.8	19	12	119	3	6	3	<1	<5	10	<5			
	S1 89CMS 16+N	DN 1+00E	0.9	26	13	147	4	12	5	<1	<5	<5	<5			
	S1 89CMS 16+U	N 1+50E	1.1	60	9	174	4	11	9	<1	<5	18	<5			
[S1 89CMS 16+0	1N 2+00E	0.9	12	14	105	6	5	3	<1	<5	6	5			
	S1 89CMS 16+00	N 2+50F	1.0	2	17	76	5	4	2	<1	<5	<5	<5			
	S1 89CMS 16+DI	IN 3+DRE	1.0	44	7	104	2	45	9	<1	<5	8	7			
1	S1 89CMS 16+U0	N 4+00E	1.4	9	14	54	3	4	1	<1	<5	<5	6			
	S1 89CMS 16+DI	IN 4+5NE	1.2	18	16	72	8	7	2	<1	<5	<5	<5			
	S1 89CMS 16+U	N 5+00E	0.6	17	6	88	2	32	5	<1	<5	<5	<5			
	S1 89CMS 16+D0	IN 5+50E	1.0	7	11	61	3	3	2	<1	<5	12	<5			
	\$1 89CMS 16+00	N 6+00E	0.9	21	12	74	4	21	4	<1	<5	38	7			
	S1 89CMS 16+DF	IN 6+50E	0.7	29	7	98	1	53	8	<1	<5	14	<5			
	\$1.89CMS 16+U0	N 7+00F	0.7	41	14	129	5	45	9	<1	<5	77	<5			
	S1 89CMS 16+DC	IN 7+5NE	n.5	43	12	130	2	55	9	<1	<5	46	<5			
i.	S1 89CMS 16+UI	N 8+00F	0.6	24	13	110	3	45	6	<1	<5	124	<5			
	S1 89CMS 16+DF	IN 8+5DE	1.3	8	18	94	6	7	3	<1	<5	8	<5			
	\$1 89CMS 16+III	N 9+110F	1.4	33	13	90	4	24	10	<1	<5	85	<5			
	S1 89CMS 16+Nr	N 9+5NE	1.0	8	13	132	12	11	4	<1	<5	7	<5			
	S1 89CMS 16+110	N 10+00E	0.5	13	15	39	6	18	3	<1	<5	94	<5			
	S1 89CMS 16+00	N 10+50E	0.6	41	17	139	7	41	15	<1	<5	28	<5			
	S1 89CMS 16+110	N 11+UDE	0.4	46	8	256	2	70	23	<1	<5	23	<5			
	S1 89CMS 16+NN	N 12+NNE	1.1	10	16	87	9	3	3	<1	<5	29	<5			
	S1 89CMS 16+(())	N 12+50E	0.3	84	3	1(18	<1.	102	17	<1	<5	61	6			
	S1 89CMS 15+00	N 3+NNU	1.0	7	9	30	3	1	<1	<1	<u> </u>	11				
	S1 89CMS 15+U0	N 2+50W	1.1	10	12	81	4	3	2	<1	<5	8	<5			
	S1 89CMS 15+NN	N 2+00W	1.1	15	13	54	4	3	2	<1	<5	< <u>5</u>	5			
	\$1 89CMS 15+IIN	N 1+50W	0.4	80	3	319	2	21	23	<1	<5	<5	6			
	S1 89CMS 15+DN	N 1+00W	1.1	11	12	78	5	3	2	<1	<5	25	<5			

Geochemical Lab Report

REPORT: V90-013					11	ATE PRINT	-D: 24-JUL	PAGE 2B				
												,
SAMPLE	FI EMENT	Fe	Mn	Te	Ba	Cr	V	Sn	μ	la	AI	Mg
NUMBER	UNITS	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT
S1 89CMS 17+110N	3+00W	8.27	0,89	<10	100	21	185	<20	<10	34	3.96	1.51
S1 89CMS 17+NNN	2+5NW	7.79	N.10	12	169	38	224	<20	<10	8	3.34	2.14
S1 89CMS 17+UNN	2+U0W	6.10	0.09	<10	244	18	177	<20	<10	5	3.24	2.67
S1 89CMS 17+00N	1+504	4.75	0,03	<10	57	62	109	<20	<10	7	2.70	0.74
S1 89CMS 17+UUN	1+00W	6.15	0.05	<10	68	23	99	<20	<10	6	2.57	1.03
S1 89CMS 17+000	N+5NU	4 86	0.04	<10		13	9	<20	<u> </u>	23	5.81	<u></u>
S1 89CMS 16+110N	2+500	6 84	0.04	(10)	21	56	103	<20	<10 <10	19	1 85	0.05
S1 89CMS 16+00N	2+00W	9.54	N.06	11	20	33	47	<20	<10	22	4.21	<0.17
S1 89CMS 16+110N	1+504	8.02	0.04	12	32	26	20	<20	<10	23	4 38	0.06
S1 89CMS 16+DDN	1+00W	5.61	0.11	<10	36	10	7	<20	<10	61	3.98	0.05
C1 200MC 17 HON	0.000	E / 4				4.5	4.0	(00				(0.05
S1 07CH3 16+DUN S1 09CMS 17+DUN	0,00C	J.41	0.03 0.03	<10	24	15	10	<20	<1U <10	20	4.75	<u.u5< td=""></u.u5<>
S1 89CMS 16+UUN S1 89CMS 16+UUN	11+100C 0+50E	6.43 5.10	ບ.ບ2 0.05	<10 Z10	26	16	10 20	<20 20	<10 210	21	/,116 / nc	<u.u5 U.12</u.u5
S1 890MS 16+00M	1+005	4 05	0.0J 0.07	×10 Z1D	04 4.2	14 24	.)U 21	<20 Z20	<10 <10	- 32 · 19	4.05	U.13 N 40
S1 89CMS 16+00N	1+50E	6.28	0.07	<10 <10	62 90	20	. 31 70	<20 <20	<10 <10	17	4.17	U.17 D 73
			0.00		///		70	×20	\10	**	4./4	0.75
S1 89CMS 16+DNN	2+00E	5.50	0.03	<10	33	15	17	<20	<10	28	5.02	0.06
S1 89CMS 16+URN	2+50E	4.77	0.02	<10	24	11	7	<20	<10	25	6.25	<0.05
S1 89CMS 16+00N	3+00E	5.16	0.03	<10	107	127	8 5	<20	<10	9	4.19	1.40
S1 89CMS 16+110N	4+00F	5.93	0.01	<10	25	30	14	<20	<10	11	6.84	<0.05
S1 89CMS 16+00N	4+5NE	6.45	0.01	<10	27	28	31	<20	<1N	18	4.01	0.07
S1 89CMS 16+UNN	5+00E	4.44	0.02	<10	47	90	44	<20	<10	20	5.88	0.54
S1 89CMS 16+DDN	5+50E	4.86	0.02	<10	27	15	7	<20	<10	16	6.92	<0.05
S1 89CMS 16+11(IN	6+00E	5.31	0.02	<10	36	81	51	<20	<10	13	5.15	0.40
S1 89CMS 16+DUN	6+5NE	6.47	0.02	<10	36	185	118	<20	<10	9	4.16	1.09
S1 89CMS 16+UNN	7+00F	4.52	0.05	<10	80	93	74	<20	<10	18	2.86	0.76
S1 890MS 14+00N	7.505	5 28	0.03	<u></u>	119	199	115	/20			2 70	1 11
S1 890MS 16+00N	8+110E	5 23	0.03	<10	87	100	97	20	×10 Z10	4	2 29	1.11
S1 89CMS 16+BON	8+50F	6.00	0.04	<10	49	21	26	<20	<10	29	3 59	0.72
S1 89CMS 16+UNN	9+UUF	2.58	0.08	<10	25	72	57	<20	<10	6	2.77	0.45
S1 89CMS 16+00N	9+5DE	8.49	0.06	<10	28	20	20	<20	<10	31	2.16	0,09
	10+005	2 00	0.04	210	24	90	0		/10		1 00	0.25
	101000	2.70	0.07	<10 Z10	452	07 102	00	<20 220	×10 ×10	0 20	2.42	1 12
S1 87CHS 164HIN	11+005	4.01	0.07	×10 210	193	112	8/	20	×10 Z10	27	J.4J / 22	1.13
S1 89CMS 16+000	12+00F	5 55	0.07	<10 <10	20	112	10	<20 <20	×10 ×10	20	3.88	20.05
S1 89CMS 16+00N	12+50F	4.51	0.03 N N4	<10	362	176	11N	<20	<10 <10	25 7	2 97	2 117
	+ C · UUL					***	*10	·LU		,	C.//	2.07
S1 89CMS 15+DNN	3+DNW	4.57	0.01	<10	24	14	6	<20	<10	17	5.99	<0.05
S1 89CMS 15+UNN	2+50W	4.70	0.03	<10	82	12	7	<20	<10	25	5.77	<0.05
S1 89CMS 15+00N	2+001	6.03	0.02	<10	19	16	29	<20	10	18	5.22	<0.05
S1 89CMS 15+00N	1+50W	7.89	0.10	<10	166	41	218	<20	12	26	3.42	1.60
S1 89CMS 15+00N	1+DUM	5.85	0.03	<10	24	16	10	<20	<10	22	8.03	<0.05

Geochemical Lab Report

·								DAIL PRINTED: 24	<u>UL-90</u>
	REPORT: V9D-D13	821.0						PROJECT: C	PAGE 2C
.'				J					
	SAMPLE	FI FMFNT	Ca	Na	K	Sr	Y		
	NUMBER	UNITS	PCT	PCT	PCT	PPM	PPM		
. L									
	\$1 89CMS 17+UON	3+00W	0.11	<0.05	0.38	17	30		
	S1 89CMS 17+00N	2+504	N.45	<0.05	1.27	28	11		
	S1 89CMS 17+UNN	2+000	0,15	<0.05	1 08	8	8		
1	C1 00CHC 17-004	1 4.500	0.10		1.UV 1.40	ט ר	ט ר		
	01 07CH0 17 UH	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0.00	<0.00 20.00	0.12	, r	;		
L		1+000	U.U7	CU.U2	00		4		
	C1 29CMC 17+00k	0.500	n nc	<u></u>	<u>/0 05</u>	ς	45	· · · · · · · · · · · · · · · · · · ·	
	01 07CH0 17TUUM	2'EUN 9'EUN	0.00	<0.0E	<0.05	ر ۱	1)		
	01 07CHO 107UUN		0.07	<0.05	<0.05	4	0		
	51 07CH5 16+UUM		<0.05	<u.u5< td=""><td><0.05</td><td>2</td><td>11</td><td></td><td></td></u.u5<>	<0.05	2	11		
I	51 89CHS 16+UUN	1+5UW	<0.05	<0.05	<0.05	4	12		
	S1 89CMS 16+UUN	1+000	0.05	0.06	0.09	10	47		
ſ	04 00CMC 47 .00M	0.000	40 OF		(0, 0 °		47		
	51 07CH5 16+HUN	WUC+II	<0.05	<0.05	<u.u5< td=""><td>1</td><td>14</td><td></td><td></td></u.u5<>	1	14		
	S1 89CMS 16+UUN	11+005	<0.05	<0.05	<0.05	<1	16		
1	S1 89CMS 16+UUN	0+50F	0.06	<0.05	0.07	4	17		
	S1 89CMS 16+NNN	1+DNE	0.07	<0.05	<0.05	7	10		
1	S1 89CMS 16+UNN	1+50F	<0.05	<0.05	0.29	5	18		
	S1 89CMS 16+00N	2+NNE	<0.05	<0.05	0.05	1	26		
1	S1 89CMS 16+11NN	2+50F	<0.05	<0.05	<0.05	<1	16		
	S1 89CMS 16+DNN	3+NNE	0.05	<0.05	0.13	5	6		
1	\$1 89CMS 16+110N	4+()()F	<0.05	<0.05	<0.05	<1	6		
	S1 89CMS 16+NDN	4+50E	<0.05	<0.05	<0.05	1	13		
	S1 89CMS 16+110N	5+UUF	<0.05	<0,115	0.05	2	13		
	S1 89CMS 16+00N	5+50E	<n.05< td=""><td><0.05</td><td><0.05</td><td>1</td><td>10</td><td></td><td></td></n.05<>	<0.05	<0.05	1	10		
	S1 89CMS 16+1111N	6+00F	0.07	<0.05	0.06	7	8		
	S1 89CMS 16+00N	6+5DE	<0.05	<0.05	<0,05	7	5		
ı	S1 89CMS 16+UDN	7+00F	0.14	<0.05	0.15	12	17		
L									
	S1 89CMS 16+00N	7+5DE	0.06	<0.05	0.30	8	4		
	\$1 89CMS 16+UNN	8+00F	0.35	0.08	Π.19	34	9		
	S1 89CMS 16+00N	8+50F	<0.05	<0.05	0.06	2	17		
	S1 89CMS 16+UUN	9+00F	0.15	<0.05	<0.05	12	5		
	S1 89CMS 16+00N	9+505	20.05	0.05	0.06	3	20		
L							20		
	S1 89CMS 16+UNN	10+00F	N. N6	<0.05	<0.05	9	3		
	S1 89CMS 16+00N	10+50F	0 33	0.07	Π 45	, 27	22		
	S1 89CMS 16+00N	11+005	n / 9	0.02	0.15	46	22		
	NUD-01 00000 10	131000	20.05	20.00	20.05	40	26		
	S1 89CMS 14-00M	121000	NU.UJ	20.05		\1 7	.J4 1 D		
		TTATIOL	0.1/		U.77		10		
	S1 89CMS 15+00N	3+000	<0.05	<0.05	<0.05	<1	8		
	S1 89CMS 15+110N	2+500	(0.05	< <u>1</u> 115	<0.05	4	14		
	S1 89CMS 15+00N	2+000		(0.05	20.05	τ ς	11		
	S1 89CMS 15+00N	1+500	20.05	20.05	U 01	ך ב	17		
	01 01010 TOTUON	1.000	X0.07	\U₁UJ ∠0_0r	0.70 20.05	ن ۲	47		
	51 07UIS 15+0HN	1.111)M	50.05	<11°112	<u.82< td=""><td>1</td><td>17</td><td></td><td></td></u.82<>	1	17		

Geochemical Lab Report

	REPORT: V90-01321.0							PR	OJECT: C	U: 24-JUL	-70	PAGE 3A	
	SAMPLE NUMBER	FLEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPN	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM
	\$1 89CMS 15+11NN	N+50₩	0.9	6	13	170	5	4	3	<1	<5	<5	<5
1	S1 89CMS 14+00N	1 3+0NW	1.3	4	17	189	6	4	4	<1	<5	27	5
	S1 89CMS 14+110N	2+50W	0.4	65	4	129	2	48	15	<1	<5	46	<5
	S1 89CMS 14+DDN	1 2+00W	0.4	27	14	115	7	5	5	<1	<5	16	<5
L	S1 89CMS 14+UDN	1+504	1.1	13	14	113	5	4	4	<1	<5	5	<5
[S1 89CMS 14+00N	1+000	1.0	15	13	152	3	5	5	<1	<5	15	<5
	S1 89CMS 14+UON	N+50W	0.4	92	7	114	1	60	20	<1	<5	32	8
	S1 89CMS 14+00N	1N+50E	1.5	7	11	67	6	3	2	<1	<5	8	<5
1	S1 89CMS 14+UON	11+00E	0.9	8	16	93	6	3	2	<1	<5	<5	7
	S1 89CMS 14+NNN	11+5NE	0.4	45	8	76	2	57	9	<1	<5	7	<5
	S1 89CMS 14+110N	12+00E	0.7	5	13	91	6	4	2	<1	<5	<5	<5
	S1 89CMS 14+000	12+5NE	1.7	9	25	88	5	5	2	<1	<5	<5	<5
	S1 89CMS 14+UNN	13+00E	0.5	70	6	105	<1	36	10	<1	<5	<5	<5
	S1 89CSS 17+DUN	12+5NE	0.5	82	. 5	93	2	5fi	13	<1	<5	52	<5
I	S1 89CSS 17+IIIIN	13+00E	1.3	12	8	34	3	29	4	<1	<5	18	<5
	S1 89CSS 17+00N	13+50E	<0.2	32	8	54	5	9	7	<1	<5	10	<5
	S1 89CSS 17+11(IN	14+00E	N.5	27	3	27	2	4	2	<1	<5	<5	<5
	S1 89CSS 16+NNN	13+NNE	0.8	61	14	64	5	10	8	<1	<5	<5	<5
i	\$1 89CSS 15+11/1N	N+00F	0.9	8	19	99	5	4	3	<1	<5	15	<5
	S1 89CSS 15+DNN	N+SNE	Π.6	65	8	212	2	39	8	<1	<5	31	6
	S1 89CSS 15+UUN	1+00E	0.7	99	4	130	2	11	12	<1	<5	<5	<5
	S1 89CSS 15+DAN	1+5NE	1.1	42	15	105	4	6	4	<1	<5	6	<5
	\$1 89CSS 15+110N	2+00E	0.5	98	9	110	2	31	14	<1	<5	15	7
	S1 89CSS 15+00N	2+5NE	1.4	7	12	42	4	2	1	<1	<5	30	<5
	\$1 89CSS 15+110N	3+00E	0.9	6	11	81	4	4	2	<1	<5	22	<5
	S1 89CSS 15+00N	3+50E	0.6	38	9	126	4	27	8	<1	<5	17	<5
	\$1 89CSS 15+UNN	4+00E	1.0	7	16	69	4	3	1	<1	<5	<5	<5
	S1 89CSS 15+DAN	4+50E	0.5	46	11	107	1	154	13	<1	<5	105	9
1	\$1 89CSS 15+UNN	5+U0E	0.7	8	17	9 8	5	3	2	<1	<5	<5	<5
	S1 89CSS 15+00N	5+50E	0.5	6	16	104	7	5	3	<1	<5	<5	<5
[S1 89CSS 15+UIIN	6+U0E	0.9	13	19	35	5	3	<1	<1	<5	<5	<5
	S1 89CSS 15+00N	6+5NE	0.2	49	11	212	3	68	11	<1	<5	17	<5
	\$1 89CSS 15+110N	7+110E	0.6	42	9	171	2	63	10	<1	<5	122	6
	S1 89CSS 15+DNN	7+50E	0.5	42	23	303	2	67	14	<1	6	25	<5
_	\$1 89CSS 15+110N	8+00F	0.4	.37	14	137	2	45	7	<1	<5	<5	<5
	S1 89CSS 15+00N	8+5NE	0,8	13	16	49	4	6	<1	<1	<5	<5	<5
	\$1 89CSS 15+UNN	9+UUF	1.0	6	15	103	4	5	2	<1	<5	<5	<5
	S1 89CSS 15+NON	9+5NE	1.N	15	22	52	7	7	<1	<1	<5	<5	<5
	\$1 89CSS 15+11/1N	10+00E	0.7	26	14	1(14	10	22	4	<1	<5	29	<5
	S1 89CSS 15+NDN	1N+5NE	1.0	7	211	51	5	4	<1	<1	<5	<5	<5

.

Geochemical Lab Report

REPORT: V90	REPORT: V90-01321.0						PROJECT: C PAGE 3B					
												,
SAMPLE	FLEMENT	Fe	Ħn	Te	Ba	Cr	V	Sn	W	La	AI	Mg
NUMBER	UNITS	S PCT	PCT	PPM	PPN	PPN	PPM	PPM	PPN	PPM	PCT	PCT
S1 89CMS 15+	110N 0+504	5.27	Ω.Ω5	<10		10	8	<u>ر</u> 20	<10	36	6 49	20.05
S1 89CMS 14	DON 3+00W	5.83	0.08	<10	53	11	6	<20	<10	27	5.01	<0.05
S1 89CMS 14+	00N 2+50W	4.55	0.07	<10	217	92	109	<20	<10	8	1.73	1.31
S1 89CMS 14	DON 2+DOW	5.12	0.11	<10	36	16	24	<20	<10	23	3,89	0.16
S1 89CMS 14+	UNN 1+5NW	6.15	0.03	<10	22	17	28	<20	<10	30	4.59	0.07
	0011 4 0011									<u> </u>		
S1 890MS 144	1000 1+1000	4.81	8.04 n.no	<10	35	14	28	<20	<111	24	4.36	0.21
01 07010 14+ 91 890MG 144	00N 0+30W 00N 40.50E	4.0.) 5.90	0,117 0,02	<10 <10	220	0/ 12	106	<20 <20	<10 <10	10	1./0	1.20
S1 89CMS 144		5.70	11,110 fi fi 0	210	14	10	16	<20 <20	<10 210	24	4.17	<0.05
S1 89CHS 14+	NNN 11+50E	J.44 4 21	<0.00	<10 <10	40	190	108	<20 <20	<10 <10	24 9	4.03 2.84	1 45
		7121						~~~~	< <u>.</u>		2.04	
S1 89CMS 14+	UON 12+00F	5,41	0.03	<10	34	12	14	<20	<10	32	3.13	<0.05
S1 89CMS 14+	NON 12+50E	5.93	0.02	<10	40	16	9	<20	<10	27	7.47	<0.05
S1 89CMS 14+	10N 13+00E	6.29	0.03	<10	131	119	132	<20	<10	7	3.06	1.31
S1 89CSS 17+	NNN 12+50E	3.82	0.03	<10	103	8N .	73	<20	<10	14	3.15	0.97
S1 89CSS 17+	13+00E	1.75	0.01	<10	100	105	56	<20	<10	3	1.08	0.61
S1 89CSS 17+	NNN 13+50E	3.05	0.02	<10	90	31	119	<20	<10	5	11.86	0.59
S1 89CSS 17+	IN 14+UOF	2.10	<0.01	<10	94	11	60	<20	<10	· 5	0.73	0.15
S1 89CSS 16+	00N 13+0NE	3.26	0.02	<10	43	24	110	<20	<10	7	1.57	0.50
S1 89CSS 15+	UNN 0+00F	5.29	0.06	<10	38	16	7	<20	<10	17	6.71	<0.05
\$1 89CSS 15+	NNN 0+5NE	3,88	0.03	<10	53	75	73	<20	<10	16	3.99	0.86
<u> </u>		5 35	Π ΠΛ	<u>/10</u>	118	21	1(1)	(20	<u></u>	10	2 10	n 61
S1 890SS 15+	NON 1+50E	7.27	0.04	<10 <10	44	18	23 TOU	(20)	<10 <10	22	3.U7 4.SO	0.71 0.14
S1 89CSS 15+	ION 2+00E	4.04	0.05	(10)	114	55	118	20	<10 210	18	4.JU 2.74	0.10
S1 890SS 15+	NON 2+50E	5.67	0.04	<10	26	15	7	<20	<10 <10	15	7.40	20.05
S1 89CSS 15+	JON 3+00E	4.25	0.02	<10	20	17	, 11	<20	<10	15	5.44	<0.05
· · · · · · · · · · · · · · · · · · ·	·····							· · · · · · · · · · · · · · · · · · ·				
S1 89CSS 15+	00N 3+50E	4.22	0.05	<10	58	92	79	<20	<10	27	3.76	0.64
\$1 89CSS 15+1	10N 4+00E	4.66	0.02	<10	29	14	9	<20	<10	18	5.46	<0.05
S1 89CSS 15+	NNN 4+5NE	3.98	0.03	<10	51	340	78	<20	<10	7	5.17	1.67
S1 89CSS 15+1	IUN 5+OUF	5.48	0.06	<10	32	15	11	<20	11	23	5.97	<0.05
<u> </u>	IIIN 5+5IJE	6.38	13.118	<10	83	15		<20	<111	25	/.16	<0.05
\$1 89CSS 15+1	INN 6+UUF	7.49	0.03	<10	18	21	16	<20	<10	27	5.81	<0.05
S1 89CSS 15+	DIN 6+5NE	4.17	0.05	<10	125	137	86	<20	<10	17	2.93	1.31
\$1 89CSS 15+I	ION 7+00F	4.91	Π.Π4	<10	123	155	87	<20	<10	11	4.50	1.32
S1 89CSS 15+	10N 7+5NE	3.91	0.08	<10	187	128	98	<28	<10	6	2.54	1.33
S1 89CSS 15+1	INN 8+(10F	5.03	0.03	<10	93	180	115	<20	<10	9	4.42	1.64
S1 89055 15+1	10N 8+50F	6 76	£ D2	<10	5%	<u></u>	67	(20	11	19	3 59	Π 12
S1 89CSS 15+1		5.45	0.02	<1日	46	14		<20	۰۱ ۲۱	43	7 79	<0.12 <0.05
S1 89CSS 15+1)NN 9+5NF	>10.00	0.03	13	34	25	21	<20	15	27	4.02	<0.05
S1 89CSS 15+1	ON 10+00F	6.02	0.03	<10	64	42	30	<20	<10	51	4.99	0.22
S1 89CSS 15+1	INN 10+50E	9.18	0.02	<10	17	24	19	<20	12	24	6.55	<0.05
								-				

Geochemical Lab Report

	REPORT: V90-01321.N							PROJECT: C	PAGE 3C
									• · · · · · · · · · · · · · · · · · · ·
	SAMPLE	ELEMENT	Ca	Na	K	Sr	Y MUD		
	NUUBER	UN115	PU1	PU1	PUT	PPN	PP n		······
	\$1 89CMS 15+()	IN N+SOW	<0.05	<0.05	0.06	<1	35	······································	
	S1 89CMS 14+N	IN 3+NNW	<0.05	0.05	0.08	1	20		
	S1 89CMS 14+11	N 2+50₩	0.57	<0.115	0.50	25	9		
	S1 89CMS 14+N	N 2+NNW	<n.05< td=""><td><0.05</td><td>0.09</td><td>2</td><td>17</td><td></td><td></td></n.05<>	<0.05	0.09	2	17		
	S1 89CMS 14+III	IN 1+50W	0.05	<0.05	<0.05	3	24		
	S1 890MS 14+0	1+DOU	(0.05	<u><1)</u> D5	n n4	1	18		
	S1 890MS 14+11	N N+5NU	0.56	20.05	0.00	22	11		
	S1 890MS 14+0	N 10+50E	20.05	20.05	20.05	22 (1	13		
	S1 89CMS 14+00	N 11+00F	<0.05	20.05	0.05	<1	16		
	S1 89CMS 14+N	IN 11+50E	<0.05	<0.05	0.24	4	5		
	S1 89CMS 14+11	N 12+00E	<0.05	<0.05	<0.05	1	21		
	S1 89CMS 14+N	IN 12+50E	<0.05	<0.05	<0.05	<1	21		
	S1 89CMS 14+11	N 13+00E	0.08	<0.05	0.38	11	6		
	S1 89CSS 17+D	IN 12+5NE	.0.13	<0.05	0.46	8	11		
	S1 89CSS 17+III	N 13+00E	0.07	<0.05	0.30	8	2		
	S1 89CSS 17+0	IN 13+50E	0.13	<0.05	0.30	8	3		
	S1 89CSS 17+00	N 14+00E	0.09	<0.05	<0.05	7	3		
	S1 89CSS 16+D	IN 13+00E	0.41	<0.05	0.26	19	3		
	\$1 89CSS 15+00	N N+UOE	<0.05	<0.05	<0.05	1	15		
	S1 89CSS 15+DI	IN N+SNE	0.14	<0.05	0.16	7	10		
	C1 89000 15,110		<u>20 05</u>	20 0 E	D 17			· · · · · · · · · · · · · · · · · · ·	
	107030 10701 16 101701 00000 16	N 1100C	20.05	<0.05	U.1/ D D/	4	0 1 8		
	31 07033 1J+III	N 2±00E	NU.UJ B 24	20.05	0.00 0.20	2	12		
	S1 89055 15+86	N 2+50F	20.05	20.05	20.05	2J (1	13		
	S1 89CSS 15+00	N 3+UDE	<0.05	<0.05	<0.05	2	11		
	S1 89CSS 15+00	IN 3+50E	0.06	<0.05	0.05	6	25		
	\$1 89CSS 15+III	N 4+00F	<0.05	<0.05	<Ո.U5	<1	11		
	S1 89CSS 15+00	N 4+50E	0.18	0.08	0.19	27	6		
	S1 89CSS 15+III	N 5+110E	<0.05	<0.05	0.05	1	17		
	S1 89CSS 15+N	IN 5+5NE	<11.05	0.07	0.08	4	19		
<u> </u>	\$1 89CSS 15+III	N 6+00F	<0.05	<0.05	<0.05	1	14		
	S1 89CSS 15+0	N 6+50E	0.26	<0.05	0.35	22	12		
	\$1 89CSS 15+III	N 7+00E	0.14	<0.05	0.15	24	8		
	S1 89CSS 15+0f	N 7+50E	0.14	<0.05	N.43	13	8		
	S1 89CSS 15+III	N 8+110E	0.12	<0.05	0.10	10	6		
	C4 80000 45 00	N. 0. EDE	<u> </u>	20 DC	<u> </u>				
	51 07635 15+111 01 00000 15+111	N Ø+SUE	<0.05	<0.05 ∠n n⊑	<u.u5 D DZ</u.u5 		1 29		
	01 07000 10+(()) 01 07000 10+(())	N 9150E	עויווס אויווס	20.05	0.00 20.05	2	2.7 11		
	S1 890SS 15+00	N 10+806	20,07 AD D	20.0	ΝΟ.ΟΟ Π 1Π	5 1	40 20		
	S1 890SS 15+00	N 10+50F	נוס. ג∩ חק	<0.05	20.05	- - 1	12		
	01 07000 10700	. IU-JUL	.u.U.		10.00	1	¥ C.		

,

Geochemical Lab Report

REPORT: V90-F	REPORT: V90-01321.0						PF	ROJECT: C	0.24-000	PAGE 4A			
SAMPLE NUMBER	FIEMENT UNITS	Ag PPM	Cu PPM	РЬ РРИ	Zn PPH	Mo PPN	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM	
\$1 89CSS 15+II	(IN 11+U0F	0.4	68	11	121	7	45	9	<1	<5	29	7	
\$1 89CSS 15+F	ON 11+50E	Ŋ.4	65	7	118	6	72	28	<1	<5	<5	9	
S1 89CSS 15+II	NN 12+(IDE	Π.4	40	3	82	1	54	10	<1	<5	7	<5	
S1 89CSS 15+F	NN 12+60E	0.9	26	4	64	4	11	8	<1	<5	8	<5	
S1 89CSS 15+II	IN 13+UUE	0.5		2	63	9	7	10	<1	<5	6	<5	
S1 89CSS 13+F	NN N+NNE	0.4	94	8	104	2	59	17	<1	<5	22	6	
\$1 89CSS 13+U	NN 0+50F	0.6	15	15	139	5	6	3	<1	<5	20	<5	
S1 89CSS 13+0	NN 1+DNE	1.5	9	15	71	4	2	1	<1	<5	<5	<5	
S1 89CSS 13+1	IN 1+50E	0.6	69	8	51	1	6	6	<1	<5	<5	<5	
S1 89CSS 13+	IN 2+DIE	1.2	15		110	5	6	3	<1	<5	22	<5	
\$1 89CSS 13+U	DN 2+50E	1.2	21	11	167	5	9	5	<1	<5	19	<5	
S1 89CSS 13+0	NN 3+DNE	1.1	10	12	88	4	3	2	<1	<5	8	5	
S1 89CSS 13+U	1N 3+50F	1.0	16	17	93	5	15	4	<1	<5	26	<5	
S1 89CSS 13+0	DN 4+NNE	0.7	22	13	127	4	21	7	<1	<5	<5	<5	
\$1 89CSS 13+U	IN 4+50E	0.4	17	15	198	6	24	6	<1	<5	<5	<5	
S1 89CSS 13+0	NN 5+00E	0.4	4	16	155	5	10	3	<1	<5	8	7	
\$1 89CSS 13+II	IN 5+50E	0.7	61	11	135	4	44	12	<1	<5	37	<5	
S1 89CSS 13+D	NN 6+NNE	N.7	12	15	71	4	7	1	<1	<5	<5	<5	
\$1 89CSS 13+II	3N 6+50F	1.8	7	17	61	3	4	<1	<1	<5	8	5	
S1 89CSS 13+N	NN 7+NNE	0.5	109	9	121	<1	115	22	<1	<5	15	<5	
\$1 89CSS 13+III	IN 7+50E	[1.9	8	14	87	5	5	2	<1	<5	<5	<5	
S1 89CSS 13+0	N 8+NNE	0.4	47	7	152	3	58	14	<1	<5	<5	<5	
\$1 89CSS 13+U	IN 8+50F	N.8	25	14	149	5	- 17	4	<1	<5	17	6	
S1 89CSS 13+0	IN 9+NNE	0.8	44	8	95	2	25	4	<1	<5	<5	6	
\$1 89CSS 13+00	IN 9+50F	0.9	8	15	84	5	5	1	<1	<5	<5	<5	
S1 89CSS 13+0	N 10+00E	0.8	11	10	57	3		1	<1	<5	16	<5	
\$1 89CSS 13+00	IN 10+50E	0.3	37	8	147	2	44	13	<1	<5	<5	<5	
S1 89CSS 13+D	N 11+NNE	1.2	4በ	8	153	3	28	8	<1	<5	115	<5	
\$1 89CSS 13+III	IN 11+50E	0.8	16	14	101	5	22	4	<1	<5	25	<5	
S1 89CSS 13+0	DN 12+0NE	0.8	40	24	144	15	134	12	<1	<5	21	<5	
\$1 89CSS 13+00	N 12+50E	0.8	12	20	166	5	17	4	<1	<5	10	<5	
S1 89CSS 13+D	IN 13+NNE	<0.2	123	7	142	<1	124	17	<1	<5	48	<5	
\$1 89CSS 13+U	N 13+50E	0.5	27	11	80	3	9	5	<1	<5	5	<5	
S1 89CSS 13+N	IN 14+0NE	0.5	95	8	121	4	33	17	<1	<5	<5	<5	
S1 89CTS 13+U	N 16+50F	0.9	9	14	91	7	4	2	<1	<5	16	6	
S1 89CTS 13+N	IN 17+00E	0.6	9	18	240	7	6	4	<1	<5	15	7	
S1 89CTS 13+110	N 17+50E	0.7	8	16	76	7	2	5	<1	<5	<5	8	
S1 89CTS 13+0	IN 18+ONE	0.7	11	16	112	20	4	3	<1	<5	16	<5	
\$1 89CTS 13+U	N 18+50E	0.6	10	13	113	53	4	6	<1	<5	7	<5	
S1 89CTS 13+0	IN 19+DNE	1.0	6	15	59	13	3	1	<1	<5	<5	<5	

Geochemical Lab Report

.

REPORT: V90-1	J1321.N						PR	OJECT: C	0. 24-00C	- 70	PAGE 4E	}
SAMPLE NUMBER	FI FMENT UNITS	Fe PCT	Mn PCT	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	N PPM	la PPM	A I PCT	lig PCT
\$1 89CSS 15+1 \$1 89CSS 15+1	ION 11+00E ION 11+50E	7.03	0.02 0.07	<10 <10	127 182	168 125	111 87	<20 <20	<10 <10	12 40	5.N3 2. 8 3	1.04
\$1 89CSS 15+L	ION 12+00E	3 .8 0	0.03	<10	219	158	94	<20	<10	4	2.26	1.12
S1 89CSS 15+6	DDN 12+60E	4.20	0.05	<10	136	30	134	<20	<1N	5	1.07	0.65
51 89055 15+0	IUN 13+UUE	4.94	0.04	<10	157	15	110	<20	<10		2.55	0.55
S1 89CSS 13+6	INN N+NNE	5.24	0.05	<10	145	113	127	<20	<10	8	2.46	1.30
\$1 89CSS 13+U	ION 11+50E	5.76	0.04	<10	41	17	30	<20	<10	36	5.06	0.17
01 89000 1341 51 89000 1341	NN 1+101E	6.62	U.UZ 0.02	<1U <10	211	10	117	<21) 220	<1U Z10	23	5.21	CU.U>
S1 89CSS 13+1	INN 2+DAE	6.07	0.02	<10 <10	-37 94	16	15	<20	<10	24	7.27	<0.05
S1 89CSS 13+0	NN 2+50E	6.47	0.05	<10	119	18	47	<20	<10	41	4.79	0.13
51 87655 13+1 \$1 89655 13+1	10N 3+1111E	5.04	U.U5 D D4	<10 <10	36	14 38	/	<20 <20	<10 <10	26 24	1.27	<u.u5 0.21</u.u5
S1 89CSS 13+6	INN 4+NNF	5.36	0.11	<10		-50 -68	45	<20	<10	36	3.76	0.21
S1 89CSS 13+0	(IN 4+50E	5.78	0.12	<10	52	73	19	<20	<10	106	3.01	0.40
S1 89CSS 13+F	INN 5+00E	5.54	D.15	<10	56	12	4	<20	<10	57	6.01	<0.05
S1 89CSS 13+1	N 5+50F	6.DÍ	0.12	<10	47	101	38	<20	<10	30	4.59	0.66
S1 89CSS 13+F	INN 6+NNE	4.58	0.02	<10	19	29	24	<20	<10	22	3.65	0.11
\$1 89CSS 13+II	UN 6+50F	5.40	0.01	<10	24	19	11	<20	<10	16	7.22	<0.05
S1 89CSS 13+F	INN 7+NNE	5.07	0.07	<11	3611	171	128	<20	<10	10	3.48	2.34
S1 89CSS 13+II	(IN 7+5(IF	6.06	0.03	<10	29	16	15	<20	<10	23	6.06	<0.05
S1 89CSS 13+D	NN 8+NNE	4.44	0.06	<10	103	111	72	<20	<10	21	3.73	1.06
\$1 89CSS 13+U	ON 8+50E	5.36	0.05	<10	90	49	33	<21	<10	32	4.95	0.38
S1 89CSS 13+0	IN 9+DIE	4.92	0.05	<10	242	135	124	<20	<10	8	3.91	2.08
	UN 7+5UF	6.64	0.03	<10		18	17	<211	<10		6.43	<0.05
S1 89CSS 13+0	NN 10+00E	6.69	0.03	<10	4በ	18	10	<20	<10	29	6.46	<0.05
S1 89CSS 13+U	NN 10+50E	4.04	0.05	<10	199	130	105	<20	<10	15	2.92	1.62
S1 89CSS 13+0	NN 11+00E	4.48	0.06	<10	54	6f) 0 0	41	<20	<10	14	5.29	1.00
51 89055 13+0 S1 89055 13+0	NN 11+50F NN 12+00F	5.95	U.119 (L.28	<1U <10	68 242	ZU 76	13 57	<20 <20	<10 <10	29 25	2.17	0,11 0.63
S1 89CSS 13+U	N 12+50F	6.10	0.04	<10	97	15	6	<20	<10	36	7.29	<0.05
S1 89CSS 13+D	ON 13+00E	4.66	0.05	<10	260	151	90	<20	<10	18	2.72	1.31
S1 89CSS 13+II	IN 13+5UE	5.31	0.02	<10	66	41	87	<20	<1U	18	4.12	0.31
01 89010 13+11 01 89010 13+11	UN 14+UNE NN 16±505	5.14 6 19	0.116 0.02	<10 Z10	123	19	137 24	<20 <20	511) 710	11 29	6 66	0.04
	UN 10+JUC	0.10	0.03	<10	10.		20	~20	<1U		4.00	0.00
S1 89CTS 13+D	NN 17+00E	5.70	0.11	<10	79	11	1	<20	<10	56	4.19	0.06
51 87615 13+U	IN 1/+5UE	6.43	U.U4 n.n2	<1U 240	4(I 5/	15	.36 29	<20 220	<10 210	37 77	4.21 / 72	U.UØ N 1/
51 07015 13+1J	UN 10+UNE NN 18+50E	5,4U 5,52	0 U 2	<10 210	36 7.1	16 15	30 31	<20 <20	<10 <10	21 59	4.75 5.04	0.14
S1 89CTS 13+0	N 19+NAF	7.54	0.02	11	59	18	43	<20	< <u>1</u> 0	18	7.10	<0.05
		1.04	13.02	11		10			• • • •	1.		

Geochemical Lab Report

SAMPLE FLFMINI C.a. Ha K. Sr. Y MUNER BLIIS PCL PCL PPL PPL PPH S1 #SCSS 15-UNI 11-USE B82 GLUS D.4.7 18 42 S1 #SCSS 15-UNI 11-USE D23 GLUS D.4.7 18 42 S1 #SCSS 15-UNI TALE D.2.9 GLUS D.4.3 17 3 S1 #SCSS 15-UNI TALE D.2.9 GLUS D.4.3 17 3 S1 #SCSS 15-UNI TALE D.2.9 GLUS D.4.9 TALE TALE S1 #SCSS 15-UNI TALE GLUS GLUS GLUS TALE		REPORT: V90-013	321.N						PROJECT: C	PAGE 4C
NUMBER UNTIS PCI PCI PCI PCI PPN 31 BYCGS 15-000 11-00F 0.08 40.05 0.477 18 42 51 BYCSS 15-000 12-00E 0.29 40.05 0.477 18 42 51 BYCSS 15-000 12-00E 0.29 40.05 0.23 24 3 51 BYCSS 13-000 1-00F 0.13 C0.25 49 5 51 BYCSS 13-000 1-00F 0.13 C0.05 1 12 51 BYCSS 13-000 1-00F 0.13 C0.05 1 12 51 BYCSS 13-000 1-00F 0.105 0.105 0.105 1 12 51 BYCSS 13-000 1-00F 0.105 0.105 1 14 51 BYCSS 13-000 1-00F 0.105 0.106 1 14 51 BYCSS 13-000 100F 0.107 0.107 1 16		SAMPLE	FLFMFNT	Са	Na	ĸ	Sr	Y		
S1 89CS 15-000 11-50E 0.108 Ch.05 0.18 6 10 S1 89CS 15-000 11-50E 0.12 Ch.05 0.43 17 3 S1 89CS 15-000 11-50E 0.29 Ch.05 0.43 17 3 S1 89CS 15-000 11-50E 0.13 CA 17 3 3 S1 89CS 13-000 10-00E 0.36 Ch.05 0.43 14 9 S1 89CS 13-000 10-00E 0.13 Ch.05 0.12 4 9 S1 89CS 13-000 10-00E 0.13 Ch.05 0.12 4 7 S1 89CS 13-000 10-00E 0.13 Ch.05 0.12 6 26 S1 89CS 13-000 10-00E 0.15 0.12 6 26 26 S1 89CS 13-000 10-00E 0.16 0.12 6 26 26 S1 89CS 13-000 10-00E 0.16 0.16 0.16 14 21 S1 89CS 13-000 10-00E 0.16 0.05 10 44 21 S1 89CS 13-000 10-00E 0.16 0.05 10 44 21 S1 89CS 13-0000 10-00E 0.105 <	I	NUMBER	UNITS	PCT	PCT	PCT	PPM	PPN		
S1 89CS3 15-000 11-50E 0.22 c0.05 0.43 17 3 S1 89CS3 15-000 12-60E 0.29 c0.05 0.33 24 3 S1 89CS3 15-000 12-60E 0.31 c0.05 0.33 24 3 S1 89CS3 13-000 12-60E 0.31 c0.05 0.44 16 9 S1 89CS3 13-000 14-00E d0.05 0.45 1.05 0.17 c1 29 S1 89CS3 13-000 14-00E d0.05 d0.05 1 12 12 12 S1 89CS3 13-000 14-00E d0.05 d0.05 1 12 12 12 S1 89CS3 13-000 14-00E d0.05 d0.05 1 12 12 13 14 S1 89CS3 13-000 14-00E d0.05 d0.05 d0.05 1 14		S1 89CSS 15+UUN	11+00F	0.08	<0.05	0.18	6	10		
S1 99CS 13-0HN 12-0HE 0.20 0.05 0.43 17 3 S1 99CS 13-0HN 13-0HE 0.01 0.05 0.25 49 5 S1 89CS 13-0HN 13-0HE 0.36 0.05 0.40 16 7 S1 89CS 13-0HN 13-0HE 0.36 0.05 0.40 16 7 S1 89CS 13-0HN 15-0H 0.105 0.105 0.105 1 12 S1 89CS 13-0HN 15-0H 0.105 0.105 0.105 3 14 S1 89CS 13-0HN 2-5HF 0.116 0.105 0.05 3 14 S1 89CS 13-0HN 3-0HE 0.105 0.126 6 26 6 S1 89CS 13-0HN 3-0HE 0.166 0.125 6 26 6 S1 89CS 13-0HN 3-0HE 0.167 0.165 0.25 3 14 S1 89CS 13-0HN 4-5HF 0.117 0.105 10 44 6 S1 89CS 13-0HN 4-5HF 0.116 0.165 10 44 6 S1 89CS 13-0HN 4-5HF 0.117 0.105 3 13 14 S1 89CS 13-0HN 4-5HF 0.116		S1 89CSS 15+00N	11+5DE	0.32	<0.05	0.47	18	42		
S1 99CS 13-40N 12-60E 0.29 40.05 0.33 24 3 51 99CS 15-40N 13-40E 0.31 40.05 0.25 49 5 51 99CS 13-40N 1-50F 0.16 0.36 40.05 0.40 16 9 51 99CS 13-40N 1-50F 0.16 0.05 40.05 1 12 51 99CS 13-40N 1-50F 0.16 0.16 0.18 4.7 51 99CS 13-40N 2-40E 40.05 40.05 40.05 1 12 51 99CS 13-40N 2-40E 40.05 40.05 40.05 3 14 51 99CS 13-40N 2-40E 40.05 40.05 40.05 3 14 51 99CS 13-40N 3-50F 0.16 40.15 0.12 4 24 51 99CS 13-40N 3-50F 0.16 40.15 0.12 4 24 51 99CS 13-40N 3-50F 0.16 40.15 0.16 5 14 51 99CS 13-40N 4-50F 0.10 40.15 0.16 5 14 51 99CS 13-40N 4-50F 0.10 40.15 0.16 5 10 51 99CS 13-40N 4-50F 0.10 40.15 0.19 10 20 51 99CS 13-40N 4-50F 0.10 40.15 0.19 10 20 51 99CS 13-40N 4-50F 0.10 40.15 0.09 13 13 51 89CS 13-40N 4-70F 0.10 5 0.15 41 10 51 89CS 13-40N 4-70F 0.10 5 0.15 41 10 51 89CS 13-40N 4-70F 0.10 5 0.10 5 1.15 44 16 51 89CS 13-40N 4-70F 0.0.6 0.10 5 0.44 10 5 51 89CS 13-40N 4-70F 0.0.6 0.10 5 0.44 10 5 51 89CS 13-40N 4-70F 0.0.6 0.10 5 0.45 1 15 51 89CS 13-40N 4-70F 0.0.6 0.05 40.05 1 15 51 89CS 13-40N 4-70F 0.0.8 40.05 1.15 51 89CS 13-40N 14-50F 0.0.9 40.05 1.15 51 89CS 13-40N 14-50F 0.0.9 40.05 1.15 51 89CS 13-40N 14-50F 0.0.9 40.05 1.15 51 89CS 13-40N 14-50F 0.0.9 40.05 1.15 51 89CS 13-40N 14-50F 0.0.6 0.54 12 51 89CS 13-40N 14-50F 0.0.6 0.54 12 51 89CS 13-40N 14-00F 0.0.8 40.05 1.17 51 89CS 13-40N 14-00F 0.0.6 0.0.54 12 51 89CS 13-40N 14		S1 89CSS 15+URN	12+00E	0.20	<0.05	0.43	17	3		
S1 89CSS 15400N 1-000E 0.31 c0.05 0.25 49 5 S1 89CSS 13400N 1-000E 0.36 c0.05 0.40 16 9 S1 89CSS 13400N 1-000E c0.05 c0.05 112 22 S1 89CSS 13400N 1-500E c0.05 c0.05 112 S1 89CSS 13400N 2-500E c0.05 c0.05 314 S1 89CSS 13400N 2-500E c0.05 c0.05 c1 12 S1 89CSS 13400N 2-500E c0.05 c1 14 c1 S1 89CSS 13400N 2-500E c0.05 c1 14 c1 S1 89CSS 13400N 3-000E c0.05 c1 14 c1 S1 89CSS 13400N 3-000E c0.05 c1.05 c1 14 S1 89CSS 13400N 4-000E 0.07 c0.05 c1 14 S1 89CSS 13400N 4-000E 0.07 c0.05 c0.05 c1 14 S1 89CSS 13400N 4-000E 0.07 c0.05 c0.05 c1 10 S1 89CSS 13400N 4-000E c0.05 c0.05 c1 10 21 S1 89CSS 13400N 4-000E c0.05 c0.05		S1 89CSS 15+NNN	12+6DE	0.29	<0.05	0.33	24	3		
S1 87CSS 13+000 0+50F 0.15 0.05 0.10 16 9 S1 87CSS 13+000 0+50F 0.115 0.05 0.05 12 S1 87CSS 13+000 1+50F 0.10 0.05 0.05 12 S1 87CSS 13+000 1+50F 0.10 0.05 3 14 S1 87CSS 13+000 2+00F 0.105 0.05 14 14 S1 87CSS 13+000 3+00F 0.105 0.05 14 14 S1 87CSS 13+000 4+00F 0.105 0.105 14 14 S1 87CSS 13+000 0.06 0.07 0.105 21 14 S1 87CSS 13+000 0.06 0.06 10 44 18 18 14 S1 87CSS 13+000 0.06 0.05 10 44 18 19 14 10 14 14 14 14 14 14 14 14 14	<u> </u>	\$1 89CSS 15+1JAN	13+UNE	0.31	<0.05	0.25	49	5		
S1 89CSS 13+000 h-S0F c1,05 c1,05 c1,05 c1 29 S1 89CSS 13+000 h-100F c1,05 c1,05 c1,05 c1 12 S1 89CSS 13+000 2-00F c1,05 c1,05 c1,05 3 14 S1 89CSS 13+000 2-00F c1,05 c1,05 c1,05 3 14 S1 89CSS 13+000 2-50F 0,165 c1,05 c1 14 S1 89CSS 13+000 2-50F 0,165 c1,05 c1 14 S1 89CSS 13+000 2-50F 0,165 c1,05 c1 14 S1 89CSS 13+000 2-50F 0,166 0,105 c1 14 S1 89CSS 13+000 2-50F 0,166 0,105 c1 14 S1 89CSS 13+000 2-50F 0,16 0,105 c1 14 S1 89CSS 13+000 2-50F 0,11 0,105 c1 10 S1 89CSS 13+000 2-50F 0,10 0,105 c1 10 S1 89CSS 13+000 2-50F 0,10 10,10 11 20 S1 89CSS 13+000 2-50F 0,10 10,5 10 21 S1 89CSS 13+000 2-50F 0,10 10,5<		S1 89CSS 13+00N	N+DNE	0.36	<0.05	0.40	16	9	-	
$ \begin{array}{c} \text{St 89CSS 13-00N 1-00E} \\ \text{St 89CSS 13-00N 2-00E} \\ \text{Ch 0.15} \\ \text{Ch 0.05} \\ Ch 0.0$		S1 89CSS 13+UON	0+50F	<0.05	<0.05	0.07	<1	29		
\$1, 89CSS 13+00N 1+50F 0.1,05 0.0,05 3 14 \$1, 89CSS 13+00N 2+00F 0.0,05 0.0,05 3 14 \$1, 89CSS 13+00N 2+00F 0.0,05 0.0,05 3 14 \$1, 89CSS 13+00N 3+50F 0.0,05 0.0,05 14 4 \$1, 89CSS 13+00N 3+50F 0.0,6 5 21 5 \$1, 89CSS 13+00N 4+00F 0.0,6 5 21 5 \$1, 89CSS 13+00N 5+50F 0.0,6 0.0,6 5 21 \$1, 89CSS 13+00N 5+50F 0.1,0 0.1,05 0.0,6 5 21 \$1, 89CSS 13+00N 5+50F 0.1,0 0.1,05 0.1,05 3 13 \$1, 89CSS 13+00N 5+50F 0.1,0 0.1,05 0.1,05 3 13 \$1, 89CSS 13+00N 5+50F 0.1,05 0.1,05 10 44 \$1, 89CSS 13+00N 5+50F 0.1,05 0.1,05 10 44 \$1, 89CSS 13+00N 5+50F 0.0,05 0.0,05 1 10 \$1, 89CSS 13+00N 5+50F 0.0,05 0.0,05 1 10 \$1, 89CSS 13+00N 1+50F 0.0,05 0		S1 89CSS 13+DNN	1+00E	<n.05< td=""><td><0.05</td><td><0.05</td><td>1</td><td>12</td><td></td><td></td></n.05<>	<0.05	<0.05	1	12		
S1 89C5S 13+01N 2+50F 0.105 0.05 0.05 14 S1 89C5S 13+01N 3+01E 0.105 0.105 0.12 6 26 S1 89C5S 13+01N 3+01E 0.105 0.105 0.105 1.4 14 S1 89C5S 13+01N 3+01E 0.106 0.105 0.105 21 14 S1 89C5S 13+01N 4+01E 0.07 0.05 0.06 5 21 S1 89C5S 13+01N 4+01E 0.07 0.05 0.06 5 21 S1 89C5S 13+01N 4+01E 0.07 0.05 0.06 10 44 S1 89C5S 13+01N 4+01E 0.107 0.18 10 44 S1 89C5S 13+01N 4+01E 0.105 0.108 10 44 S1 89C5S 13+01N 4+01E 0.105 0.105 11 10 20 S1 89C5S 13+01N 4+01E 0.105 0.105 11 10 21 S1 89C5S 13+01N 4+01E 0.16 0.15 11 10 11 S1 89C5S 13+01N 4+01E 0.16 0.05 14 16		S1 89CSS 13+110N	1+50F	0.10	<0.05	0.08	4	7		
S1 89CSS 13+UIN 2+50F 0.165 0.12 6 26 S1 89CSS 13+UIN 3+50F 0.165 0.105 0.105 14 S1 89CSS 13+UIN 3+50F 0.166 0.105 1.06 5 21 S1 89CSS 13+UIN 4+50F 0.17 0.105 0.105 3 76 S1 89CSS 13+UIN 4+50F 0.107 0.109 1.18 5 70 S1 89CSS 13+UIN 4+50F 0.107 0.109 10 20 S1 89CSS 13+UIN 4+50F 0.107 0.109 11 44 S1 89CSS 13+UIN 4+50F 0.107 0.109 13 3 S1 89CSS 13+UIN 4+50F 0.101 1.105 4 16 S1 89CSS 13+UIN 4+50F 0.101 1.10 0.15 4 16 S1 89CSS 13+UIN 4+50F 0.105 0.14 17 5		S1 89CSS 13+00N	2+01)E	<0.05	<0.05	<0.05	3	14		
S1 89CSS 13+00N 3+00E <0.05		S1 89CSS 13+IIIIN	2+50F	0.05	<0.05	0.12	6	26		
51 89CSS 13+000 3+50F 0.06 5 21 51 89CSS 13+000 4+00F 0.07 (0.05 3 26 51 89CSS 13+000 4+00F 0.07 (0.05 3 26 51 89CSS 13+000 4+00F 0.10 (0.15 0.06 10 44 51 89CSS 13+000 4+00F (1.05 0.06 0.08 10 44 51 89CSS 13+000 4+00F (1.05 0.05 3 13 51 89CSS 13+000 4+00F (1.05 (0.05 3 13 51 89CSS 13+000 4+00F (1.05 (0.05 3 13 51 89CSS 13+000 4+00F (1.05 (0.05 (1.05 10 51 89CSS 13+000 4+00F (1.05 (0.05 (1.05 10 51 89CSS 13+000 8+00F 0.11 (0.05 0.09 8 14 51 89CSS 13+000 9+00F 0.66 (0.05 1 15 5 51 89CSS 13+000 9+00F 0.66 (0.05 1 15 51 89CSS 13+000 9+00F 0.67 (0.55 1 15 51 89CSS 13+000 11+00F 0.80 (0.05 1 1		S1 89CSS 13+00N	3+00E	<0.05	<0.05	<0.05	<1	14		
S1 89CSS 13:00N 4:00E 0.07 (0.05 0.05 3 26 S1 89CSS 13:00N 4:00E 0.07 0.19 0.18 5 70 S1 89CSS 13:00N 5:00E (1.05 0.06 0.08 10 44 S1 89CSS 13:00N 5:00E 0.10 (1.05 0.07 3 13 S1 89CSS 13:00N 6:00E (0.05 (0.05 3 13 S1 89CSS 13:00N 6:00E (0.05 (0.05 (1.05 (1.05 S1 89CSS 13:00N 6:00E (0.05 (0.05 (1.05 (1.05 (1.05 S1 89CSS 13:00N 7:0E (0.15 (0.05 0.09 8 14 S1 89CSS 13:00N 8:00E 0.11 (0.05 0.09 8 14 S1 89CSS 13:00N 9:00E 0.06 0.05 0.05 3 17 S1 89CSS 13:00N 9:00E 0.06 0.05 0.05 3 17 S1 89CSS 13:00N 9:00E 0.07 <0.05		S1 89CSS 13+UUN	3+50F	0.06	<0.05	0.06	5	21		
S1 89CSS 13+HIN 4+SDF 007 019 0.,18 5 70 S1 89CSS 13+UIN 5+DF 006 008 10 44 S1 89CSS 13+UIN 5+SDF 010 (015 009 10 20 S1 89CSS 13+UIN 7+SDF 0105 (0105 (1.015		S1 89CSS 13+NNN	4+NNE .	0.07	<0.05	<0.05	3	26		
S1 87CSS 13+00N 5+00F 0.105 0.106 0.08 10 44 S1 87CSS 13+00N 6+00F (0.105 (0.105 3 13 S1 87CSS 13+00N 6+00F (0.105 (0.105 (1.05		S1 89CSS 13+1111N	4+50F	0.07	0.(19	0.18	5	70		
S1 89CSS 13+00N 5+50E 0.10 <0.05		S1 89CSS 13+00N	5+NNE	<11.05	0.06	0.08	10			
S1 89CSS 13+00N 6+00E <0.05		S1 89CSS 13+UUN	5+50E	0.10	<0.05	0,09	. 10	20		
S1 89CSS 13+00N 6+50E <0.05		S1 89CSS 13+DIN	6+NNE	<0.05	<0,05	<0.05	3	13		
S1 89CSS 13+00N 7+00E 0.51 0.10 1.15 44 16 S1 89CSS 13+00N 8+00E (0.05 (0.05 0.09 8 14 S1 89CSS 13+00N 8+00E 0.06 0.05 0.07 5 26 S1 89CSS 13+00N 9+00E 0.06 (0.05 0.07 5 26 S1 89CSS 13+00N 9+00E 0.06 (0.05 0.05 3 17 S1 89CSS 13+00N 9+50E 0.07 (0.05 1 15 S1 89CSS 13+00N 10+50E 0.08 (0.05 1 15 S1 89CSS 13+00N 10+50E 0.08 (0.05 14 7 S1 89CSS 13+00N 12+50E (0.05 0.06 0.08 3 37 S1 89CSS 13+00N 12+50E (0.05 0.54 12		\$1 89CSS 13+00N	6+50E	<0.115	<0.05	<0.05	<1	10		
\$1 89CSS 13+00N 7+50F <0.05		S1 89CSS 13+NNN	7+00E	0.51	0.10	1.15	44	16		
S1 89CSS 13+00N 8+00E 0.11 <0.05		S1 89CSS 13+UNN	7+50E	<0.05	<0.05	0.05	<1	23		
S1 89CSS 13:00N 8:50F 0.06 0.05 0.07 5 26 S1 89CSS 13:00N 9:50F 0.06 <0.05		S1 89CSS 13+DON	8+00E	0.11	<0.05	0.09	8	14		
S1 89CSS 13+00N 9+50E 0.06 <0.05		\$1 89CSS 13+UDN	8+50F	0.06	0.05	0.07	5	26		
\$1 89CSS 13+00N 9+50F 0.07 <0.05 0.05 3 17 \$1 89CSS 13+00N 10+00E <0.05		S1 89CSS 13+00N	9+DNE	0.06	<0.05	0.44	10	5		
S1 89CSS 13+00N 10+00E <0.05		\$1 89CSS 13+UNN	9+50E	0.07	<0.05	0.05	3	17		
\$1 89CS\$ 13+U0N 10+50E 0.08 <0.05		S1 89CSS 13+DNN	10+0NE	<0.05	<0.05	<0.05	1	15		
\$1 89CSS 13+DNN 11+ONE 0.18 <0.05		S1 89CSS 13+UNN	10+50E	0.08	<0.05	0.58	7	11		
S1 89CSS 13+U0N 11+50F <0.05		S1 89CSS 13+00N	11+0NE	0.18	<0.05	<0.05	14	7		
S1 89CSS 13+DDN 12+DDE 0.89 <0.05 0.14 67 28 S1 89CSS 13+UDN 12+50E <0.05		\$1 89CSS 13+00N	11+50F	<0.05	<0.05	0.05	2	20		
\$1 89CSS 13+00N 12+50E <0.05		S1 89CSS 13+DNN	12+0NE	0.89	<n.05< td=""><td>0.14</td><td>67</td><td>28</td><td></td><td></td></n.05<>	0.14	67	28		
S1 89CSS 13+00N 13+00E 0.24 <0.05		S1 89CSS 13+UUN	12+50E	<0,05	0,06	0,08	3	37		
\$1.89CSS 13+IINN 13+50E 0.06 <0.05		S1 89CSS 13+DDN	13+00E	0.24	<0.05	0.54	12	20		
S1 89CSS 13+00N 14+nne 0.33 <0.05		S1. 89CSS 13+110N	13+50E	0.06	<0.05	0.07	5	13		
\$1 89CTS 13+URN 16+50E <0.05 <0.05 <0.05 1 17 \$1 89CTS 13+0RN 17+0RE 0.06 0.07 0.11 14 42 \$1 89CTS 13+0RN 17+50F <0.05		S1 89CSS 13+00N	14+00E	D.33	<0.05	0.56	11	8		
S1 89CTS 13+000 17+00E 0.06 0.01 14 42 S1 89CTS 13+000 17+50F <0.05		\$1 89CTS 13+UNN	16+50E	<0.05	<0.05	<0.05	1	17		
S1 89CTS 13+10N 17+50F <0.05		S1 89CTS 13+00N	17+00F	0.06	(), ()7	<u>[].11</u>	14	42		
\$1 89CTS 13+RRN 18+RRE 0.09 <0.05		S1 89CTS 13+11/1N	17+50F	<0.05	<0.05	0.06	3	24		
\$1 89CTS 13+110N 18+50F 0.06 <0.06		S1 89CTS 13+111N	18+NNE	Π.09	<0.05	0.06	6	20		
S1 89CTS 13+00N 19+00E <0.05 <0.05 3 12		S1 89CTS 13+110N	18+50F	0.06	<0.05	0.06	5	50		
		S1 89CTS 13+00N	19+MNE	<n.05< td=""><td><0.05</td><td><0.05</td><td>3</td><td>12</td><td></td><td></td></n.05<>	<0.05	<0.05	3	12		

Geochemical Lab Report

			A DIVISION	OF INCHCA	PE INSPECTI	ON & TESTIN	G SERVICES DA	TE PRINTE	D: 24-JUL	-90		
 REPORT: V90-01321.0							PR	OJECT: C		PAGE 5A		
SAMPLE NUMBER	ELFMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM
 S1 89CTS 13+110N	19+50E	0.6	8	15	43	8	3	2	<1	<5	<5	6
S1 89CTS 13+00N	2N+ONE	0.4	5	15	133	9	4	3	<1	<5	10	<5
\$1 89CTS 13+UNN	20+50E	0.3	10	8	294	13	7	8	<1	<5	<5	<5
S1 89CTS 13+DON	21+00E	0.3	11	20	106	9	3	3	<1	<5	7	<5
 S1 89CTS 13+UNN	21+50F	1.0	5	19	27	6	2	1	<1	<5	14	<5
 S1 89CTS 13+00N	22+NNE	0.3	9	12	57	5	3	2	<1	<5	5	6
S1 89CTS 13+110N	22+50E	0.8	9	20	51	3	3	2	<1	<5	<5	8
S1 89CTS 13+00N	23+NNE	0.7	1N	27	84	5	4	2	<1	<5	11	<5
S1 89CTS 13+110N	23+5(1F	0.9	8	13	48	7	2	2	<1	<5	12	7

Geochemical Lab Report

 							Ur	<u>ALE PRINIE</u>	D. 24-JU	-911		
 REPORT: V90-013	21.0						PF	ROJFCT: C			PAGE 58	
 SAMPLE NUMBER	ELEMENT UNITS	Fe PCT	Mn PCT	Te PPM	Ba PPM	Cr PPM	V PPM	Sn PPM	W PPM	La PPM	AI PCT	Mg PCT
 S1 89CTS 13+DDN	19+50E	7.19	0.01	<10	57	16	93	<20	<10	9	2.51	0.16
S1 89CTS 13+UUN	20+00E	5.56	0.04	<10	58	12	25	<20	<10	40	4.04	0.10
S1 89CTS 13+NNN	20+50E	4.53	0.15	<10	93	12	48	<20	<10	142	4.15	0.47
S1 89CTS 13+1111N	21+00F	4.89	11.19	<10	41	11	25	<20	<10	131	2.74	0.09
 S1 89CTS 13+NDN	21+5NE	6.94	0.02	<1N	8	17	8	<20	<10	32	7.38	<0.05
 S1 89CTS 13+UUN	22+00F	4.98	0.03	<10	51	16	73	<20	<10	13	3.33	0.15
S1 89CTS 13+DON	22+5NE	8.35	0.01	<10	31	20	41	<20	10	18	5.42	0.10
\$1 89CTS 13+UUN	23+00E	5.47	0.04	<10	53	14	34	<20	<10	24	3.60	0.14
S1 89CTS 13+NNN	23+5NE	9.6N	0.01	16	17	19	63	<21	12	18	2.85	0.08

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 24-JUI -90

_									70
	REPORT: V90-013	821.0						PROJECT: C	PAGE 5C
	SAMPLE	FI FMENT	Ca	Na	K	Sr	Y		
	NUMBER		PCT	PCI	PC1	PPN	PP f		
	S1 89CTS 13+11(IN	19+50F	0.07	<0.05	0.08	12	3		· · · · · · · · · · · · · · · · · · ·
1	S1 89CTS 13+1111	2N+NNE	0.21	<0.05	0.07	24	29		
	S1 89CTS 13+110N	20+50F	0.32	<0.05	0.08	45	113		
	S1 89CTS 13+00M	1 21+NNE	0.12	0.07	0.09	9	115		
	\$1 89CTS 13+1111N	21+50E	<0.05	<0,05	<0.05	<1	18		
	S1 89CTS 13+NDN	22+NNE	0.06	<0.05	0.07	6	5		
	\$1 89CTS 13+00N	22+50E	0.06	<0.05	<0.05	9	8		
	S1 89CTS 13+DAN	23+NNE	0.24	<0.05	0.06	14	13		
	S1 89CTS 13+UON	23+50F	<0.05	<0.05	<n.05< td=""><td>4</td><td>10</td><td></td><td></td></n.05<>	4	10		
·									

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V9N-D1333.N (COMPLETE)

REFERENCE INFO:

SUBMITTED BY: J. FORBES

DATE PRINTED: 24-JUL-91

CLIENT: KEEWATIN FNGINFERING INC. PROJECT: C

			NUMBER OF	LOWER		
O RDER		ELEMENT	ANAL YSES	DETECTION LIMIT	EXTRACTION	METHOD
1	Ag	Silver	49	0.2 PPN	HN03-HCI Hot Extr.	Ind. Coupled Plasma
2	Cu	Copper	49	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
.3	РЬ	Lead	49	2 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
4	Zn	Zinc	49	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
5	Мo	Molybdenum	49	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
6	Ni	Nickel	49	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
7	Co	Coba I t.	49	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
8	CH	Cadmium		1 DDN	HND3-HCL Hot Extr	Ind Coupled Plasma
u u	R:	Ricouth	47		UNO2-UCI Hat Evty	Ind. Coupled Plasma
7 10	Δn	Anconic	47	С ОРМ	HNO2-HCI Hot Extr	Ind. Coupled Plasma
11	на Сь	Antinany	47	ЈГГЛ Б. ББМ	UNOD UCI Hat Euto	Ind. Coupled Plasma
10	50	Tree	47		UNA2 UCI MAL EVEN	Ind. Coupled Plasma
 12	гę 	11.00	47			
 13	Mn	Manganese	49	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
14	Тe	Tellurium	49	10 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
15	Ba	Barium	49	5 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
16	Cr	Chromium	49	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
17	V	Vanadium	49	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
 		· · · · · · · · · · · · · · · · · · ·				
18	Sn	Tin	49	2N PPM	HN03-HCI Hot Extr.	Ind, Coupled Plasma
19	W	Tungsten	49	10 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
20	La	Lanthanum	49	1 PPM	HN03-HCI Hot Extr.	Ind. Coupled Plasma
21	A I	Aluminum	49	0.02 PCT	HN03-HCI Hot Fxtr.	Ind. Coupled Plasma
22	Мg	Magnesium	49	0.05 PCT	HN03-HCI Hot Extr.	Ind. Coupled Plasma
 32	<u>(</u> 2	Calcium	/.9		HNO3-HCI Hot Evto	
20	Va No	Carcium	47		UND2 UCL Hot Evty	Ind. Coupled Flasma
24	na v	Botage ive	47	0.00 FC1 0.05 0CT	UNION UCI UNE EXTERN	Ind. Coupled Flagma
2.5 27	<u>г</u>	r OtdSSIUM Ctmost ive	47	U_110_FUT 4_00M	NNO2 UCL Net Eute	Ind. Coupled Plasma
26	or v	STFORTIUM	47	1 FFA	THUS-HUI HOT EXTR.	Ind. Coupled Plasma
21	Y	TTTTIUM	47	1 880	HNUS-HUI HOT EXT.	ING. COUPIEG MIASNA

Geochemical Lab Report

REPORT: V9N-01333.0 (C	DMPLETE)	7		REFERENCE INFO:
CIIFNT: KEEWATIN FNGINE PROJECT: C	RING INC.			SUBMITTED BY: J. FORBES DATE PRINTED: 24-JUL-9N
SAMPLE TYPFS	NUMBER	SIZE FRACTIONS	NUMBFR	SAMPLE PREPARATIONS NUMBER
S SOILS	49	1 -80	49	SAMPLES FROM STORAGE 49
REMARKS: Originally	y report number i	was V89-06984.N		
REPORT COPIES TO: 1	1R. JIM FOSTER 1R. STEVE TODORUN	<	INVO	DICE TO: MR. JIM FOSTER MR. STEVE TODORUK
	<u></u>	<u></u>		

Geochemical Lab Report

	REPORT: V90	1-01333.0						PF	OJECI: C	<u>U: 24-JUI</u>	-7[]	PAGE 1A	
	SAMPLE NUMBER	ELEMFNT UNITS	Ag PPM	Cu PPM	РЬ РРМ	Zn PPM	Mo PPM	NT PPM	Co PPM	Cd PPM	Bi PPM	As PPN	Sb PPM
	\$1 89CM-S L	19+00N 3+00W	0.6	123	8	149	2	28	19	<1	<5	94	<5
1	S1 89CM-S L	.19+00N 2+50W	0.8	33	16	62	6	6	6	<1	<5	<5	<5
	S1 89CM-S L	19+00N 2+00W	0.4	35	13	159	3	11	8	<1	<5	<5	<5
	S1 89CM-S L	19+DNN 1+5NW	D.6	98	7	117	<1	15	15	<1	<5	<5	<5
L	\$1 89CM-S L	19+(INN 1+00W	0.5	75	14	150	2	55	16	<1	<5	7	<5
r	S1 89CM-S L	19+00N 0+50W	1.1	91	8	548	3	28	11	<1	<5	18	<5
	\$1 89CM-S L	18+50N 0+00E	1.3	9	19	109	7	7	4	<1	<5	14	<5
1	S1 89CM-S L	18+00N 3+00W	1.0	22	11	139	5	11	4	<1	<5	15	7
1	\$1 89CM-S L	18+UNN 2+50W	0.5	15	13	147	5	6	4	<1	<5	<5	7
	S1 89CM-S L	18+00N 2+00W	1.1	91	4	112	<1	12	14	<1	<5	<5	<5
	S1 89CM-S L	18+()[N 1+004	0.3	123	8	120	1	69	17	<1	6	16	<5
1	S1 89CM-S L	18+00N 0+50W	0.7	27	13	154	6	13	6	<1	<5	<5	<5
	S1 89CM-S L	18+110N 0+110F	0.8	9	16	90	6	4	4	<1	<5	12	9
1	S1 89CM-S L	18+00N 0+50E	0.7	23	13	118	5	9	4	<1	<5	<5	<5
	\$1 89CM-S L	18+11/1N 1+50E	Π.3	9	15	237	7	16	6	<1	<5	<5	<5
	S1 89CM-S 1	18+00N 2+50F	fl.6	46	8	154	3	38	14	<1	<5	49	5
	S1 89CH-S 1	18+(INN 3+(INF	1.6	33	15	169	7	13	6	<1	<5	25	6
•	S1 89CM-S L	18+00N 3+50E	1 3	74	11	206	4	87	23	<1	۲ <u>۲</u>	23	5
	S1 89CM-S L	18+110N 4+00F	1.0	25	11 1日	165	6	20	6	<1	<5	<5 <5	5
	S1 89CM-S L	18+NNN 5+NNE	0.4	34	9	145	4	38	11	<1	<5	16	6
	C1 890M-0 1				10	110		47	c			 с	
1	51 07CH-5 L	10+00N 2+000	1.1 D /	11.	12	112		10	15) 19	<0 25
	51 0701-3 L	10-001 0-000 10-001 0-000	0.4	70	10	199	2	01 41	10	(1	0 /E	10	°
i.	01 07CH-5 L	13+00N 2+30W	U.D n c		12	102	3	11	10			< 5 05	0
1	S1 89CM-S L	13+110N 1+50U	υ.5 Π.4	104 91	9 10	112	2	57 68	20 19	<1 <1	<5 <5	25 47	رى ۲
				<i>,</i> ,	10	1.3.5				·•			
	S1 89CM-S L	13+00N 1+00W	0.5	77	7	140	3	48	22	<1	<5	38	6
1	\$1 89CM-S L	13+UON 0+50W	0.3	90	7	127	<1	53	18	<1	<5	20	<5
	S1 89CT-S L	19+00N 7+00E	1.2	31	18	119	8	12	7	<1	<5	9	9
i	S1 89CT-S L	19+110N 8+00E	0.9	14	10	44	5	3	3	<1	<5	<5	<5
L	S1 89CT-S L	19+0NN 8+5DE	0.6	15	20	111	6	6	6	<1	<5	<5	<5
	\$1 89CT-S L	19+(INN 9+00E	0.5	14	16	121	7	8	4	<1	<5	<5	<5
	S1 89CT-S L	19+00N 9+90E	0.4	8	12	84	4	4	2	<1	<5	7	<5
:	\$1 89CTS L19	7+00N 10+50E	1.3	6	24	50	5	3	<1	<1	<5	7	<5
÷	S1 89CTS L1	9+00N 11+00E	0.9	8	19	56	8	3	2	<1	<5	13	<5
	S1 89CTS L19	+UON 11+50E	0.9	8	18	73	8	3	2	<1	<5	<5	9
	S1 89CTS 11	9+00N 12+00F	Π.4	8	20	183	8	4	3	<1	<5	<5	<5
	S1 89CT-S 11	18+110N 6+50F	Ω.6	23	8	62	2	30	5	<1	<5	20	<5
÷	S1 890T-S L	18+00N 7+00F	n.8	7	9	56	27	5	5	<1	<5	6	<5
	S1 8901-S L1		n 4	, 28	, 10	162	5	21	11	< <u>(1</u>	۰.5 ۲5	27	<u>رج</u>
	S1 890T-S L	18+00N 8+00F	n 4	20	10	91	<1	52	9 11	<1	<5 <5	11	رج دج
	OT UTCITO L	TALININ ALINE	0.4	U.U.	o	/1	11	JJ	,	1	L,		、J

Geochemical Lab Report

REP	ORT: V90-01333.0					PF	ROJECT: C	0. 24-00	<u> </u>	PAGE 1	3	
SAM	PLE ELFMENT	Fe	 Mn	Te	Ba	Cr	V	Sn	W	la	AI	Ma
NUM	BER UNITS	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPN	PCT	PCT
\$1 8	89CM-S L19+110N 3+00W	6.81	0.11	<10	84	62	145	<20	<10	19	4.87	1.38
S1 5	89CM-S L19+DNN 2+5NW	8.27	0.03	<10	63	28	129	<20	<10	18	2.48	0.46
S1 8	89CM-S L19+110N 2+00W	6.02	0.05	<10	70	35	74	<20	<10	26	4.03	0.47
S1 3	89CM-S L19+00N 1+50W	6.33	0.05	<10	215	30	153	<20	<10	12	3.04	1.24
S1 8	89CM-S L19+11NN 1+110W	5.31	0.07	<10	185	124	60	<20	<10	31	4.48	0.92
S1 (89CM-S L19+DUN 0+50W	6.82	0,04	<10	110	55	156	<20	<10	16	4.81	1.16
S1 8	89CM-S L18+50N 0+00F	6.97	0.05	<10	69	19	7	<20	<10	40	9.10	<0.05
S1 1	89CM-S L18+NNN 3+DNW	6.01	N.05	<10	8 6	20	24	<20	<10	32	6.46	0.16
S1 8	89CM-S L18+(INN 2+50W	6.27	0.07	<10	95	15	20	<20	<10	55	6.16	0.10
S1 8	89CM-S L18+00N 2+00W	8.06	0.06	16	155	34	236	<20	<1N	9	3.41	1.62
S1 8	89CM-S L18+00N 1+00W	4.86	0.07	<10	244	115	126	<20	<1[]	7	2.42	1.58
S1 8	89CM-S L18+00N 0+50W	6.39	0.05	<10	70	27	43	<20	<10	49	5.21	0.28
S1 8	89CM-S L18+(INN N+0UF	7.36	0.07	<10	62	20	11	<20	<10	27	9.06	<0.05
S1 8	89CM-S L18+00N 0+50E	5.74	0.03	<10	51	28	49	<20	<1/1	37	4.36	0.18
	89CM-S L18+00N 1+50F	6.48	0.08	<10	107	18	8	<20	<10	71	5,93	0.08
S1 8	89CM-S L18+00N 2+50E	5.11	0.05	<10	172	113	108	<20	<10	11	3.37	1.38
S1 8	89CM-S L18+00N 3+00E	7.16	0,10	<10	80	31	49	<20	<10	85	5.60	0.30
S1 8	89CM-S L18+00N 3+50E	4.80	0.08	<10	208	176	117	<20	<10	11	4.51	1.73
S1 8	89CM-S L18+00N 4+00E	5,90	0.05	<10	70	45	31	<20	<10	27	5,77	0,28
S1 8	89CM-S L18+DNN 5+DNE	4.98	0.09	<10	155	102	90	<20	<10	28	3.10	0.93
	39CM-S L18+UNN 5+50E	7.44	0.05	<10	122	42	19	<20	<10	30	6.86	0.07
S1 8	89CM-S L13+00N 3+00W	4.84	0.08	<10	221	109	126	<20	<10	18	2.72	1.53
S1 8	89CM-S L13+00N 2+50W	4.95	0.04	<10	119	25	110	<20	<10	33	5,50	1.01
S1 8	89CM-S L13+00N 2+00W	5.71	0.08	<10	228	110	140	<20	<10	12	2.39	1.54
S1 8	190M-S L13+00N 1+50W	5.64	0.09	<10	2 9 7	105	125	<20	<10	15	2.19	1.40
S1 8	39CM-S L13+00N 1+00W	6.3N	0.11	10	195	104	133	<20	<10	10	2.38	1.25
S1 8	9CM-S L13+110N 0+50W	5.27	0.06	<10	151	105	134	<20	<10	16	2.77	1.45
S1 8	39CT-S L19+DON 7+DOE	5,98	0.11	<10	89	49	57	<20	<10	85	4.01	0.31
S1 8	9CT-S L19+110N 8+00F	5.34	0.02	<10	99	16	143	<20	<10	8	1.71	0.46
S1 8	39CT-S L19+DNN 8+50E	5.16	0.11	<10	112	40	70	<20	<10	46	3.03	0.47
S1 8	9CT-S L19+110N 9+110F	6.40	٥,03	<10	104	51	68	<20	<10	25	3.48	0,41
S1 8	90CT-S L19+00N 9+90F	2.81	0.02	<10	96	19	55	<20	<10	25	2.00	0.23
S1 8	9CTS 19+110N 10+50F	7.54	0.02	<10	21	23	9	<20	(10	31	7 41	<0.05
S1 8	BOTS 119+00N 11+00F	9 31	0 04	<10	22	18	14	<20	17	112	5 67	<0.05
S1 8	9CTS L19+U(IN 11+50E	7.25	0.02	<10	22	18	19	<20	13	66	5.48	<0.05
		C /D	0.07	<u></u>		4/	2/	(20	/10	4.05	2 20	0.00
010 C1 0		J.011 2 24	0.26 0.02	<10 Z10		14 100	110	<20 200	240 ZTH	COT	2,30 2,74	0.07
01.0	201-0 LIVTUNN 01000	10.C	ח חס ח חס	×10 ×10	04 57	100 101	117	5211 200	12	4	2./J 5.40	U.73
010	0/T_C 140.004 7.505	0.30	0.03	<1D <10	37 400	26	02	NZII 200	13	1/	2.12	0.17
6 16 6		4.00	0.00	<1U 210	107	٥ <u>८</u>	72	۲ <u>۲</u> ۳	<1U 210	Z3	J.04	0.05
	701-0 LIO+UUN 0+UUE	4.47	0.02	<10 	102	163	114	<zij< td=""><td><10</td><td>4</td><td>5.47</td><td>1.33</td></zij<>	<10	4	5.47	1.33

Geochemical Lab Report

 REPORT: V91					PROJECT: C PAGE 10				
SAMPLE	EI EMENT	Ca	Na	K	Sr	Y			
 NUMBER	UNITS	PCT	PCT	PCT	PPM	PPM			
 S1 89CM-S L	19+110N 3+00W	0.30	0.05	0.49	35	20			
S1 89CM-S L	19+00N 2+50W	0.10	<1.05	0.25	6	7			
S1 89CM-S L	19+00N 2+00W	0.11	<0.05	0.09	4	15			
S1 89CM-S L	19+00N 1+50W	D.33	<0.05	D.68	22	7			
 S1 89CM-S L	19+110N 1+00W	0.12	<0,05	0.19	6	20	-		
 S1 89CM-S L	19+00N 0+50W	0.11	<0.05	0.09	15	9			
S1 89CM-S L	18+50N 0+00E	<0.05	0.09	0.08	2	34			
S1 89CM-S L	18+00N 3+00W	0.08	<0.05	0.06	10	15			
\$1 89CM-S L	18+(INN 2+50W	0.05	0.09	0.10	2	54			
S1 89CM-S L	18+00N 2+00W	11.31	<0.05	0.54	18	10			
 S1 89CM-S 1	18+00N 1+00W	Π .44	<0.05	0.67	20	9			
S1 89CM-S 1	18+00N 0+50W	0.07	<0.05	0.11	10	32			
S1 89CM-S L	18+110N 0+00E	<0.05	0.06	0.06	<1	20			
S1 89CM-S L	18+00N 0+50E	<0.05	<0.05	0.07	4	28			
S1 89CM-S L	18+00N 1+50E	<n.u5< td=""><td>0.06</td><td>0.10</td><td>4</td><td>58</td><td></td><td></td></n.u5<>	0.06	0.10	4	58			
 S1 89CH-S I	18+00N 2+50E	0.33	0.05	Π 48	21	8			
S1 89CM-S L	18+(INN 3+NDF	0.08	0.06	0.11 0.11	8	61			
S1 89CH-S L	18+00N 3+50E	n.44	0.08	Π 61	34	17			
S1 89CH-S L	18+110N 4+00F	0.11	<0.00	0.01	10	21			
S1 89CM-S L	18+NNN 5+NNE	0.31	0.09	0.34	25	22			
 C1 900M C 11		<u> </u>	(0.05	0.07		4.7			
01 0701-0 L	12+00N 2+00U		<u.u></u.u>	U.U/ 0.CO	6	17			
SI 890M-S L	13+00M 3+50H	U.67 D.77	0.05	U.37 n /1	21	17			
S1 890M-S L	13+00N 2+J0W	0./0 0.5/	U.UJ 20.05	0.72	.))))	12			
\$1 89CM-S L1	13+00N 1+50W	0.75	0.06	0.63	30	12			
 C1 000H 0 1									
51 87CH-5 L	13+111N 1+111W	U.4/ 0.25	<u.us< td=""><td>U.36</td><td>24</td><td>12</td><td></td><td></td></u.us<>	U.36	24	12			
SI 0701-5 L	1.3*UUN U*SUN 49.00N 7.00E	0.40	<0.0C	U.41 D.DO	18	16			
SI 0701-3 L.	17+1313N 7+1311E	0.17	<0.05	U.U7	12	0C			
\$1 89CT-S L	19+00N 8+50E	0.16	<0.05	0.09	23 8	4 28			
 (1 90CT 0 14		0 40	<u> </u>			45			
SI 0701-5 []	7+111N 7+110F	U.1U	<u-u5< td=""><td>0.00</td><td>9</td><td>15</td><td></td><td></td></u-u5<>	0.00	9	15			
51 0901-5 L	17+111N 7+9UE	U.43	0.06	U.U9	29	11			
51 89UIS L19	+UUN 10+50E	<0.05	<0.05	0.05	<1	16			
S1 89015 L19	7+UNN 11+UNE	<11.115	11.06	<0.05	<1	50			
 51 89CIS L19	+11(IN 11+5UE	<u.u5< td=""><td><u,u5< td=""><td><0.115</td><td>3</td><td>38</td><td></td><td></td></u,u5<></td></u.u5<>	<u,u5< td=""><td><0.115</td><td>3</td><td>38</td><td></td><td></td></u,u5<>	<0.115	3	38			
 S1 89CTS L19	+NON 12+NNE	0.29	0.06	0.08	13	84			
S1 89CT-S L1	8+(10N 6+50E	Π.16	0.07	0.23	22	3			
S1 89CT-S L1	18+00N 7+00E	<0.05	<0.05	0.05	5	10			
S1 89CT-S L1	8+00N 7+50E	0.23	<0.05	0.22	17	13			
51 89CT-S L1	8+DOE	0.06	<0.05	0.40	10	5			

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES NATE PRINTED: 24-JUL-90

REPORT: V	REPORT: V90-01333.0						PROJECT: C			PAGE 2A		
SAMPLE NUMBER	FI EMENT UNITS	Ag PPM	Cu PPM	РЬ РР 1	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM
\$1 89CT-S	S1 89CT-S L18+UNN 8+50E		9	13	55	4	3	<1	<1	<5	<5	<5
S1 89CT-S	S1 89CT-S L18+00N 9+00E S1 89CT-S L18+00N 9+50E S1 89CT-S L18+00N 10+00E		29	28	218	28	49	20	<1	<5	.36	7
\$1 89CT-S			5	16	50	6	3	2	<1	<5	6	8
S1 89CTS			10	13	103	6	7	5	<1	<5	<5	<5
S1 89CTS	L18+110N 10+50F	0.7	15	25	79	14	3	<1	<1	<5	12	5
S1 89CTS	L18+00N 11+00E	0.5	45	13	165	5	48	12	<1	<5	11	<5
\$1 89CTS	L18+(ION 11+50E	N.7	.35	8	101	5	33	7	<1	<5	<5	<5
S1 89CTS	L18+00N 12+00E	0.6	13	19	46	7	7	1	<1	<5	9	<5
S1 89CTS	L18+00N 12+50F	0.3	23	9	135	6	25	8	<1	<5	19	<5
Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 '604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 24-JUL-90

						U	UE LUTION	<u>U, 24-00</u>	/11		
REPORT: V90-01333.0						PF	OJFCT: C			PAGE 2E	3
SAMPLE ELEMEN NUMBER UNIT	T Fe S PCT	Mn PCT	Te PPM	Ba PPM	Cr PPM	V PPH	Sn PPM	u PPM	La PPM	AI PCT	Ng PCT
S1 89CT-S L18+DDN 8+5D	E 6.12	0.02	<10	20	18	14	<20	<10	27	7.33	<0.05
S1 89CT-S L18+00N 9+00	F 6.44	0.67	<10	120	.33	34	<20	<10	55	3.64	0.23
S1 89CT-S L18+00N 9+50	E 6.17	0.04	<10	39	15	8	<20	<18	31	8.31	<0.05
S1 89CTS L18+UNN 10+00	5.79	0.10	<10	39	14	6	<20	<10	34	7.19	<0.05
S1 89CTS L18+DNN 1D+5D	E >10.0N	0.04	12	9	21	14	<20	16	46	2.59	0,05
\$1 89CTS L18+UON 11+00	5.77	0.09	<10	151	146	90	<20	<10	40	4.55	1.37
S1 89CTS L18+DAN 11+50	E 4.85	0.06	<10	101	108	78	<20	<10	20	2.69	0.77
S1 89CTS L18+110N 12+00	6.18	0.02	<10	24	27	40	<20	<10	25	3.60	<0.05
S1 89CTS L18+DON 12+50	E 5.05	0.05	<10	49	73	58	<20	<10	43	3.98	0.61

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

.

Geochemical Lab Report

	REPORT: V90	D-01333.N						PROJECT: C	PAGE 2C
_	SAMPLE	EL FMENT	Ca	Na	K	Sr	Y		
_	NUMBER	UNITS	PCT	PCT	PCT	PPM	PPN		
	\$1 89CT-S L	18+(ION 8+50E	<0.05	<0.05	<0.05	2	15		
	S1 89CT-S L	18+00N 9+00E	0.26	0.05	0.11	18	56		
	S1 89CT-S L	.18+(INN 9+50E	<0.05	<0.05	<0.05	<1	21		
	S1 89CTS L1	8+00N 10+00E	<0.05	<0.05	0,06	<1	25		
	\$1 89CTS L1	8+00N 10+50E	<0.05	<0.05	0.10	<1	19		
	S1 89CTS L1	8+00N 11+00E	Ø.14	0.05	0.41	13	30		
	S1 89CTS L1	8+(INN 11+50E	0.17	<0.U5	0.20	9	13		
	S1 89CTS L1	8+0NN 12+0NE	0.13	<0.05	<0.05	6	11		
	S1 89CTS L1	8+00N 12+50E	0.17	0.05	0.11	13	31		

APPENDIX VI

GEOPHYSICAL DATA, PROCEDURES AND INTERPRETATION

.

.

INTRODUCTION

This report deals with geophysical surveys on the property described in previous sections.

The field work was carried out by the writer of this report. The compilation, presentation and interpretation of the field data was done by the writer of this section of the report.

The geophysical surveys consisted of total magnetic field measurements, as well as anomalous VLF-EM measurements due to primary signals transmitted from stations located at Annapolis, Maryland (NSS 21.4 kHz) and Seattle, Washington (NLK 24.8 kHz). The VLF-EM measurements recorded the vertical in-phase and out-phase induced magnetic fields together with the horizontal field due to the transmitted signals.

The VLF-EM stations are operated on a continuous basis subject to a weekly preventative maintenance period. During these periods no signals are transmitted, and hence no geophysical surveying can be conducted. The scheduled weekly maintenance periods are:

NSS, Annapolis, Maryland, Tuesdays 1200-2000 GMT NLK, Seattle, Washington, Thursdays 1500-2300 GMT

The incoming direction of the signals from the above two transmitter stations appear to respond to conductivity contrasts related to major structural trends in the property

The apparent directions to VLF-EM transmitter stations area. in the general area of the property are: Annapolis 091 degrees, and Seattle 142 degrees. Therefore, primary signals are reasonably coupled with the more significant geological trends. A very general approximation considers the more significant geological trends as striking, one, 120-150 degrees, two, 210-240 degrees. In the property area the 120-150 degree trends are usually associated with basemetal occurrences, which may be of volcanic exhalative origin. The 210-240 degree structures could be seen as representing a somewhat broader spectrum of mineralization events. Whereas the 210-240 degree structures most commonly are detected as en echelon off-sets of basemetal horizons, they may also be seen as SNIP type depositions. The 210-240 degree en echelon off-set of basemetal horizons are frequently associated with auriferous "overprint" mineralization on basemetal horizons. For this reason it is important configure a grid survey layout capable of detecting both these structural directions. The simplest way of doing so is via a box-grid survey , e.g. a set of survey lines perpendicular to each other. It would be worthwhile to note that the interpretation of field data over a box-grid survey is within reason directionally independent, therefore, the direction of the survey lines is not of ultimate importance.

The purpose of the geophysical surveys has been to arrive at

anomalous interpretations which are believed to be coincident with geological features below surface potentially important to the occurrences of sulphide mineralization.

Apart from the reasonable primary signal couple with major geological trends it worthwhile noting that in the Iskut River area conductive overburden, or conductive swamp conditions are virtually nonexistent. In addition, sulphide mineralizations, potentially auriferous, in the Iskut River area are seldom massive to a point which might be considered ideal for electromagnetic surveying. In these situations it is appropriate to use electromagnetic survey methods configured to use the highest possible transmitter signal frequency. The VLF-EM method incorporates the higher signal frequencies in applied geophysics and has proven to be a reliable survey method for locating conductive zones or contrasts in the near surface geological column. The maximum depth of detectable electromagnetic sources in the geological column and within the reported survey area is thought to be about 200 meters. This maximum depth of penetration is a factor of experience after several years of geophysical surveying in the Iskut River area.

The surveys have been denoted as the West Grid and the South Grid. These grids consist of; West Grid 21,000 meters and South Grid 3,325 meters.

The survey instrumentation consisted of a Scintrex IGS-2 Proton Magnetometer/VLF-EM field unit and a Scintrex MP-3 base station magnetometer. Both units incorporate a micro processor which stores recordings made during the survey day. At the end of the survey day all recorded information was dumped to a computer for processing, presentation and storage.

The presentation and interpretation of the field data has been done based on contour plans. The reason for following this approach has been in recognition of the fact that a field measurement participating in reflecting an anomalous condition may not necessarily be located vertically below the survey line. Therefore, field measurements along perpendicular survey lines can be used in producing the contour plans, without being concerned about the orientation of the survey line with respect to the respective transmitter stations.

The numerical measurements made along the survey grid are attached to this report.

The location of the survey grids is described elsewhere in this report.

SURVEY PROCEDURES

At the beginning of each survey day the field instrument and the base station internal clocks were initialized. They were synchronized to within one second. The base station was set up to record the total magnetic field every fifteen seconds. The variation over this time window was mostly less than one nanotesla (nT). The purpose of the base station recordings was to correct for diurnal variations due to solar activities. During survey periods when solar activities were noted to have been excessive survey data was rejected and the grid coverage affected in this manner resurveyed when conditions improved.

The IGS-2 instrument was initialized so that measurements were made sequentially. That is, when making a measurement the previous measurement was displayed to check for potentially erroneous gradients between stations. Throughout all surveys the measurement sequence was as follows:

- 1) Total Magnetic Field.
- 2) Seattle VLF-EM responses.
- 3) Annapolis VLF-EM responses.

DATA REDUCTION

The computer program for downloading field instrument and base station data to a computer was supplied by Scintrex Ltd. The total magnetic field measurements were adjusted according to the base station reading taken approximately at the same

time as the field reading and with respect to a base value of 57,250 nT at the base station. In this respect, the total magnetic field measurements are absolute to within plus/minus 2.5 nT. The latter being the standard error in computing the mean value at the base station (57,250 nT).

The VLF-EM field measurements were used to compute the quadrature and dip angle values at the station. These values were computed using formulas supplied by Scintrex Ltd.

Survey control point coordinated were entered using a text editor. A computer program was used to interpolate the coordinates of intervening survey stations. The final data base consisted of all valuable geophysical information, listed as per attachments.

The above data base was used to interpolate grid matrices. Whereas a survey station interval of 12.5 meters was used throughout all survey grids, a matrix node interval of 10 meters was specified. The interpolation procedure used to compute the matrices can expect erratic attributes in field observations. As a general rule erratic attributes tend to decay rapidly in space. Therefore, a 20 meter lowpass filter was applied to the interpolated matrices, thereby, establishing approximately the original sample space, with some suppression of erratics. By erratics is meant the uncertainty in making a field measurement due to possible

location errors, inexactness in reoccupying a station, unaccountable drift in signals or instrument, or any other possible random events.

The interpolated dip angle matrices were Fraser filter, rather than applying this filter to original measurements. The reason for filtering in this manner was to optimize the suppression of topographic effects and orient the Fraser filter in a direction perpendicular to the apparent signal direction. Since a "box" grid was surveyed it would not have been possible to Fraser filter the original data along survey lines which were striking within, say, 30 degrees, or so, towards transmitter stations.

The contour plans of the survey results are attached to this report. They are noted as figure numbers 16 to 24, inclusive, for the West Grid, and figure numbers 25 to 32, inclusive, for the South Grid.

INTERPRETATION

The objective of interpretations has been to arrive at opinions about the location of structural features within the survey areas. The intent of the approach has been to provide information which can be correlated with other types of exploration data in defining exploration targets.

It should be noted that geophysical anomalies are ensamble averages. This means that when correlating data and information reflecting geological conditions at surface, that lateral shift regarding interpreted locations may have to be considered. Such shifts are most often due to dipping structures.

The interpretational results are illustrated in Figures 16 and 25.

WEST GRID

A northwesterly striking magnetic high in the central part of the survey area could suggest intrusive units potentially of volcanic origin.

Several conductors string easterly and a conductor with conductive shearzone continuations are likely related to events indicated by the magnetic high.

The geophysical surveys suggest several northeasterly striking faults which , if they exist, are thought to be of a later age than the above.

Five relativly strong conductors are to be target areas for further exploration efforts.

SOUTH GRID

The more interesting feature appears to be a fault/contact type anomaly from 2700 SOUTH and 900 EAST, across approximately 2800 SOUTH and 1100 EAST, then gently turning due south. While examining all geophysical plans it would appear that this anomaly is potentially a contact between volcanics and sediments. The volcanic units appear to be northwesterly of this anomaly, and the sediments to the east.

The VLF-EM quadrature over the suspected sedimentary units is somewhat less negative than the same is positive over the potential volcanic units. The fact that the negative amplitudes are smaller than the positive amplitudes may indicate alterations, say, K-spar alteration with quartz stringers and veins in the negative quadrature area.

A magnetic linear has been noted in the eastern part of the survey area between 2800 SOUTH and 2900 SOUTH. This linear is not well understood due to the lack of survey coverage. It could indicate a contact or a fault.

F.J.R. Syberg, Geophysicist.

CERTIFICATE OF QUALIFICATION

I, F.J.R. Syberg, 2257 Franklin Street, Vancouver, B.C., hereby certify that:

- I graduated from the University of British Columbia in 1967 having obtained a B.Sc. degree majoring in geophysics and geology.
- 2) I have practised my profession since graduation.
- I have been engaged in mining exploration and production since 1956.
- I am responsible for all computer programs used to process the field data.
- 5) I have no interest whatsoever in the securities of Tymar Resources Inc. or Consolidated Goldwest Resources Ltd.
- 6) I grant Tymar Resources Inc. and Consolidated Goldwest Resources Ltd. permission to use all data and information contained in this report as the company may see fit.

Dated: March 21, 1991.

F.J.R. Syberg, Geophysicist.

Listing of Geophysical Data

South Grid

,

Column

1	Line number
2	Station number
3	Relative x-coordinate
4	Relative y-coordinate
5	Total Magnetic Field - diurnally corrected
	VLF-EM Seattle, 24.8 kHz
6	Vertical in-phase anomalous magnetic field
7	Vertical out-phase anomalous magnetic field
8	Horizontal magnetic field
9	Computed quadrature
10	Computed dip angle
	VLF-EM Annapolis, 21.4 kHz
11	Vertical in-phase anomalous magnetic field
12	Vertical out-phase anomalous magnetic field
13	Horizontal magnetic field
14	Computed quadrature
15	Computed dip angle

				~ (40.0		14 0	7	•	۷ ۸	0 0	10
2900S	1200W	-1200.0	-2900.0 57202.6	26	16	19.0	1/.1	14.9		<u> </u>	0.0	7.0	4.0
2900S	1187W	-1187.0	-2900.0 57204.9	21	12	21.8	12.5	12.0	6	/	6.0	/.0	3.5
2900S	1175W	-1175.0	-2900.0 57206.6	18	12	21.0	12.4	10.3	1	6	6.2	6.0	.6
2900S	1162W	-1162.0	-2900.0 57229.9	30	10	19.4	10.9	16.8	1	5	6.3	5.0	.6
29005	1150	-1150.0	-2900.0 57236.3	10	4	24.7	4.0	5.7	-6	2	6.1	2.0	-3.4
29005	1137	-1137.0	-2900.0 57228.0	0	-1	25.7	-1.0	.0	-11	-1	6.0	-1.0	-6.3
20000	1125	-1125 0	-2900 0 57249.9	-6	-5	25.6	-5.0	-3.4	-13	-5	6.1	-5.1	-7.4
27005	111200	-1112 0	-2900 0 57263 6	-13	-10	26.1	-10.2	-7.5	-16	-9	6.3	-9.2	-9.2
27005	11000	_1100_0	-2900 0 57295 3	-16	-12	24 6	-12.3	-9.2	-20	-10	5.8	-10.4	-11.4
29005	10070	-1100.0	-2900.0 57271.7	-12	-14	23.9	-14 2	-7 0	-20	-14	5.7	-14.6	-11.5
29005	108/W	-1087.0	-2900.0 57271.7	_17	_17	23.4	-17 5	-9.9	-21	-15	5.5	-15.7	-12.1
29005	10/5W	-10/5.0	-2900.0 57280.3	-17	-17	23.4	-15 4	-9.9	-21	-14	5 1	-14 6	-12.1
29005	1062W	-1062.0	-2900.0 57230.0	-1/	-10	22.7	-12.2	_0 1	_10	-0	5 2	-9.3	-10.8
2900S	1050W	-1050.0	-2900.0 5/241.2	-14	-12	23.0	-12.2	-0.1	-17	-6	5.2	-6.3	-11 9
2900S	1037W	-1037.0	-2900.0 57228.1	-15	-8	22.7	-8.2	-8.6	-21	-6	5.5	-0.5	-11 0
2900S	1025W	-1025.0	-2900.0 57231.8	-21	-9	23.2	-9.4	-11.9	-21	-4	5.2	-4.2	-10.2
2900S	1012W	-1012.0	-2900.0 57258.3	-17	-4	23.7	-4.1	-9.7	-18	-2	5.4	-2.1	-10.2
2900S	1000W	-1000.0	-2900.0 57239.6	-24	-2	22.9	-2.1	-13.5	-22	1	5.2	1.0	-12.4
2900S	987W	-987.0	-2900.0 57233.2	-23	-2	22.1	-2.1	-13.0	-24	0	5.2	.0	-13.5
2900S	975W	-975.0	-2900.0 57261.5	-25	-4	21.1	-4.3	-14.1	-20	-2	5.1	-2.1	-11.3
2900S	962W	-962.0	-2900.0 57257.5	-30	-7	19.6	-7.6	-16.8	-25	-2	5.1	-2.1	-14.0
29005	950W	-950.0	-2900.0 57266.7	-35	-7	20.0	-7.9	-19.4	-27	-5	4.8	-5.4	-15.1
29005	937W	-937.0	-2900.0 57264.6	-38	-7	17.8	-8.0	-20.9	-23	-6	4.8	-6.3	-13.0
29005	9254	-925 0	-2900.0 57247.7	-35	-8	16.1	-9.0	-19.4	-17	-5	4.8	-5.1	-9.7
27005	91.2U	-912 0	-2900 0 57261 8	-31	-7	17.1	-7.7	-17.3	-21	-5	4.7	-5.2	-11.9
27005	712W	-900 0	-2900 0 57270 5	-25	-6	16.7	-6.4	-14.1	-13	-3	4.8	-3.1	-7.4
29005	900W	- 700.0	-2900.0 57279.6	-32	-5	17 7	-5.5	-17.8	-17	-3	4.7	-3.1	-9.7
29005	88/W	-867.0	-2900.0 57526.6	-25	-7	17.0	-7 4	-14 1	-20	-2	4.5	-2.1	-11.3
29005	8/5₩	-8/5.0	-2900.0 57232.5	-20	_(14 5	-4 3	_12 0	-16	-2	4 6	-2.1	-9.1
29005	862W	-862.0	-2900.0 57220.6	-23	-0	10.5	-0.5	_12.4	-16	-2	4.0	-3 1	-9 1
29005	850W	-850.0	-2900.0 57200.5	-22	-5	16.4	-5.2	-12.4	-10	-2	4.7	-2 0	-6.8
2900S	837W	-837.0	-2900.0 57211.1	-1/	-3	16.2	-3.1	-7./	-12	~2	4.0	2.0	-5 1
2900S	825W	-825.0	-2900.0 57216.0	-10	-3	15.4	-3.0	-5./	-9	0	4./	.0	-3.1
29005	812W	-812.0	-2900.0 57223.0	-13	-2	17.0	-2.0	-/.4	-6	1	4.8	1.0	-3.4
2900S	800W	-800.0	-2900.0 57225.9	-10	-4	16.0	-4.0	-5.7	-9	0	4.8	.0	-5.1
2900S	787W	-787.0	-2900.0 57229.4	-8	-3	16.6	-3.0	-4.6	-3	0	4.8	.0	-1./
2900S	775W	-775.0	-2900.0 57240.0	-12	-3	18.2	-3.0	-6.8	-8	1	4.9	1.0	-4.6
29005	762W	-762.0	-2900.0 57232.9	-7	-3	17.5	-3.0	-4.0	-7	0	4.8	.0	-4.0
2900S	750W	-750.0	-2900.0 57234.9	-14	-3	17.8	-3.1	-8.0	-16	0	4.7	.0	-9.1
29005	737W	-737.0	-2900.0 57248.2	-10	-5	17.7	-5.1	-5.7	-10	0	4.9	.0	-5.7
29005	725	-725.0	-2900.0 57221.9	-7	-8	17.2	-8.0	-4.0	-8	-3	4.9	-3.0	-4.6
29005	7124	-712 0	-2900.0 57221.1	-13	-8	18.0	-8.1	-7.5	-9	-4	5.0	-4.0	-5.2
20000	7000	-700 0	-2900 0 57202 2	-12	-7	17.4	-7.1	-6.9	-5	-1	5.0	-1.0	-2.9
27005	/ UUW	-497 0	-2000 0 57235 4	-2	-8	16 6	-8.0	-1.2	-3	-1	5.1	-1.0	-1.7
29005	00/W	-00/.0	-2900.0 57255.4	<u>د</u>	-8	16.8	-8.0	0	-5	0	5.2	.0	-2.9
29005	6/5W	-6/5.0	-2700.0 57207.4		-7	17.0	-7.0	-2.2	-5	-2	5 1	-2 0	-2.9
29005	662W	-662.0	-2900.0 5/213.5	-4	-/	1/.7	-7.0	-2.5	_2	<u>د</u>	5.1	2.0	-1 7
2900S	650W	-650.0	-2900.0 5/21/.9	-1	-4	18.5	-4.0	0	-3	~	5.1		1 1
29005	637W	-637.0	-2900.0 57219.0	0	-2	18.7	-2.0	.0	2	U 1	5.2	.0	1.1
2900S	625W	-625.0	-2900.0 57233.4	2	0	19.5	.0	1.1	-2	1	5.1	1.0	-1.1
29005	612W	-612.0	-2900.0 57241.7	10	1	18.8	1.0	5.7	6	2	5.2	2.0	3.4
2900S	600W	-600.0	-2900.0 57230.1	-2	-1	21.8	-1.0	-1.1	-5	0	5.2	.0	-2.9
29005	587W	-587.0	-2900.0 57260.7	-4	-2	20.8	-2.0	-2.3	-10	0	4.9	.0	-5.7
2900S	575W	-575.0	-2900.0 57225.9	-23	-3	20.7	-3.2	-13.0	-17	0	4.6	.0	-9.6
2900S	562W	-562.0	-2900.0 57219.1	-30	-6	20.3	-6.5	-16.8	-22	-2	4.6	-2.1	-12.4
29005	550W	-550.0	-2900.0 57258.4	-16	-6	18.3	-6.2	-9.1	-19	-1	4.4	-1.0	-10.8
29005	537W	-537.0	-2900.0 57233.9	-17	-12	16.9	-12.4	-9.8	-19	-4	4.4	-4.1	-10.8
2900S	525W	-525.0	-2900.0 57234.5	-14	-6	16.8	-6.1	-8.0	-9	-2	4.2	-2.0	-5.1

2900S	512W	-512.0	-2900.0	57249.3	-11	-5	17.2	-5.1	-6.3	-15	0	4.0	.0	-8.5
29005	500W	-500.0	-2900.0	57222.5	-6	-7	16.4	-7.0	-3.5	-9	-1	4.3	-1.0	-5.1
2900S	487W	-487.0	-2900.0	57201.5	-4	-6	16.1	-6.0	-2.3	-5	-1	4.2	-1.0	-2.9
29005	475W	-475.0	-2900.0	57199.8	3	-1	16.3	-1.0	1.7	-6	5	4.2	5.0	-3.4
29005	462W	-462.0	-2900.0	57159.4	2	1	17.1	1 0	1 1	-3	2	4 4	2.0	-1 7
29005	4500	-450 0	-2900 0	57196 2	17	12	16.7	12 4	9.8	1	- 9	43	9.0	6
28005	12500	-1250.0	-2800.0	57097 8	1		21.8	3 0	2.0	-7	2	4.0	2.0	-1 0
20000	12271	-1227 0	-2000.0	57012 5	14	11	21.0	11 2	2.5	1	J 4	4 5	3.0	~ 4. V
20005	12078	-1237.0	-2000.0	57213.5	10	10	20.0	11.5	7.2	1 C	4	0.5	4.0	0. 0 C
20005	12200	-1225.0	-2000.0	57206.5	2 40	17	24.0	17.0	3.0	с 10	D A	0.0	6.0	2.7
28005	1212W	-1212.0	-2800.0	5/248./	19	1/	20.4	17.6	11.1	10	4	7.0	4.0	5./
28005	1200W	-1200.0	-2800.0	5/216.1	4	9	25.3	9.0	2.3	-11	4	6.2	4.0	-6.3
28005	1187W	-1187.0	-2800.0	57173.6	10	10	22.8	10.1	5.8	0	5	7.2	5.0	.0
28005	11/5W	-1175.0	-2800.0	57198.0	10	7	23.0	7.1	5.7	-3	2	6.8	2.0	-1.7
28005	1162W	-1162.0	-2800.0	57195.1	3	6	24.0	6.0	1.7	-7	4	6.5	4.0	-4.0
2800S	1150W	-1150.0	-2800.0	57203.3	-5	5	22.9	5.0	-2.9	-20	1	5.3	1.0	-11.3
28005	1137W	-1137.0	-2800.0	57238.0	1	4	22.9	4.0	.6	-10	2	6.2	2.0	-5.7
2800S	1125W	-1125.0	-2800.0	57216.7	4	3	23.0	3.0	2.3	-13	3	6.3	3.1	-7.4
28005	1112W	-1112.0	-2800.0	57226.5	-4	1	23.5	1.0	-2.3	-15	0	6.0	.0	-8.5
2800S	1100W	-1100.0	-2800.0	57237.1	-16	-1	22.5	-1.0	-9.1	-20	-1	5.8	-1.0	-11.3
2800S	1087W	-1087.0	-2800.0	57220.6	-10	-3	23.1	-3.0	-5.7	-18	0	5.9	.0	-10.2
2800S	1075W	-1075.0	-2800.0	57231.2	-10	-2	23.2	-2.0	-5.7	-22	1	5.6	1.0	-12.4
2800S	1062W	-1062.0	-2800.0	57198.8	-4	-1	22.1	-1.0	-2.3	-13	0	5.9	.0	-7.4
2800S	1050W	-1050.0	-2800.0	57209.2	-14	0	23.5	.0	-8.0	-21	0	5.9	.0	-11.9
2800S	1037W	-1037.0	-2800.0	57224.2	-13	0	23.6	.0	-7.4	-23	1	5.6	1.1	-13.0
2800S	1025W	-1025.0	-2800.0	57235.8	-11	-1	22.7	-1.0	-6.3	-20	Ō	5.6	.0	-11.3
28005	1012W	-1012.0	-2800.0	57241.8	-27	-1	22.9	-1.1	-15.1	-20	-1	5.8	-1.0	-11.3
28005	1000	-1000.0	-2800.0	57222.0	-21	-3	21.3	-3.1	-11.9	-31	-1	5.2	-1.1	-17.2
28005	987W	-987.0	-2800.0	57306.6	-28	-4	19.7	-4.3	-15 7	-26	-6	5.0	-6 4	-14 6
28005	975W	-975.0	-2800 0	57310 7	-34	-4	19.5	-4 5	-18.8	-25	-6	47	-6 4	-14 1
28005	9621	-962 0	-2800 0	57300 7	-34	-4	18.9	-4 5	-18.8	-24	-4	47	-4.2	-13 5
28005	9504	-950 0	-2800 0	57292 5	-32	-4	18 4	-4 4	-17.8	-24	-4	4 7	-4 2	-13 5
28005	937W	-937 0	-2800 0	57321 0	-34	-3	17 7	-33	-18.8	-19	-3	47	-3 1	-10.8
28005	925	-925 0	-2800 0	57303 6	-30	-4	17.9	-4 4	-16.7	-15	-3	47	-3 1	-8.5
28005	9124	-912 0	-2800.0	57304 4	-24	-3	16.8	-3.2	-13 5	-9	-3	4.7	-3 0	-5 1
28005	9000	-900 0	-2800.0	57284 3	-27	-4	17.6	-4 3	-15 1	-13	-2	4.8	-2 0	-7 4
28005	8876	-887 0	-2800.0	57273 7	-19	-2	17.0	-2 1	-10.8	-8	-1	4.0 A Q	-1 0	-4.6
28005	8751.1	-875 0	-2800.0	57285 1	-17	-1	17.1	-1 0	-9.6	-6	_1	4.9	-1 0	-2 4
20000	86211	-942 0	-2900.0	57203.1	-14	-2	17.1	-2 0	-9.0	_0		4.7	-2 0	-6.6
20000	950U	-950 0	-2000.0	57202 1	_17	_2	10.4	-2.0	_0.7	-12	-2	4.0	-2.0	-4.0
20003	837U	-030.0	-2000.0	57203.4	-1/	-2 -A	10.0	-2.1 -4 1	-7./	-10	-2	4.0 5 A	-2.0	-7.4
20005	007W	-037.0	-2000.0	57277.5	-10	-4	10.0	-4.1	-7.1	-10	-2	5.0	-2.0	-5./
20005	0200	-025.0	-2000.0	57204.0	-21	-0	10.0	-5.2	-11.9	-14	-3	4.0	-3.1	-0.0
20005	012W	-812.0	-2800.0	5/317.0	-21	-4	19.1	-4.2	-11.9	-12	-4	5.0	-4.1	-6.9
28005	800W	-800.0	-2800.0	5/301.6	-1/	-5	18./	-5.1	-9.7	-10	-3	5.0	-3.0	-5./
28005	/8/W	-/8/.0	-2800.0	5/304.9	-15	-5	18.3	-5.1	-8.6	-/	-1	5.0	-1.0	-4.0
28005	775W	-//5.0	-2800.0	5/300.9	-19	-6	18.6	-6.2	-10.8	-14	-3	4.8	-3.1	-8.0
28005	762W	-/62.0	-2800.0	5/315.6	-18	-6	18.6	-6.2	-10.2	-14	-3	4.8	-3.1	-8.0
28005	750W	-750.0	-2800.0	57298.0	-24	-8	18.1	-8.5	-13.6	-19	-5	4.6	-5.2	-10.8
28005	737W	-737.0	-2800.0	57318.7	-20	-9	17.9	-9.4	-11.4	-15	-4	4.7	-4.1	-8.5
28005	725W	-725.0	-2800.0	57341.2	-26	-8	17.9	-8.5	-14.7	-20	-5	4.6	-5.2	-11.3
28005	712W	-712.0 ·	-2800.0	57308.4	-29	-9	17.3	-9.8	-16.3	-25	-6	4.4	-6.4	-14.1
28005	700W	-700.0 -	-2800.0	57319.4	-29	-7	15.5	-7.6	-16.2	-24	-4	4.2	-4.2	-13.5
28005	687W	-687.0 -	-2800.0	57296.2	-15	-10	15.8	-10.2	-8.6	-14	-2	4.4	-2.0	-8.0
28005	675W	-675.0 -	-2800.0 !	57299.1	-17	-4	15.7	-4.1	-9.7	-19	0	4.1	.0	-10.8
2800S	662W	-662.0 -	-2800.0	57306.3	-11	-4	16.4	-4.0	-6.3	-16	-1	4.3	-1.0	-9.1
2800S	650W	-650.0 -	2800.0 3	57293.5	-16	-6	15.8	-6.2	-9.1	-14	-3	4.2	-3.1	-8.0

28005	637W	-637.0	-2800.0	57311.1	-11	-7	16.6	-7.1	-6.3	-9	-3	4.4	-3.0 -5.1
28005	625W	-625.0	-2800.0	57282.8	-13	-8	16.0	-8.1	-7.5	-12	-2	4.2	-2.0 -6.8
28005	612W	-612.0	-2800.0	57284.2	-2	-5	16.3	-5.0	-1.1	-4	0	4.3	.0 -2.3
28005	600W	-600.0	-2800.0	57281.4	7	3	17.1	3.0	4.0	3	6	4.6	6.0 1.2
2800S	587W	-587.0	-2800.0	57292.5	-4	0	17.8	.0	-2.3	-4	3	4.7	3.0 -2.3
28005	575W	-575.0	-2800.0	57309.7	-3	2	18.1	2.0	-1.7	-5	4	4.6	4.0 -2.9
2800S	562W	-562.0	-2800.0	57294.3	1	2	18.6	2.0	.6	-4	4	5.1	4.0 -2.3
28005	550W	-550.0	-2800.0	57315.1	-4	2	19.3	2.0	-2.3	-4	6	4.9	6.0 -2.3
2700S	1250W	-1250.0	-2700.0	57201.2	0	10	23.6	10.0	.0	-16	11	6.0	11.3 -9.2
2700S	1237W	-1237.0	-2700.0	57242.0	-26	17	24.9	18.2	-15.0	-43	21	5.2	25.0 -24.1
2700S	1225W	-1225.0	-2700.0	57236.4	-40	28	21.2	32.8	-23.2	-51	24	4.9	30.5 -28.1
2700S	1212W	-1212.0	-2700.0	57223.0	-16	28	17.5	28.8	-9.8	-19	17	6.0	17.6 -11.1
27005	1200W	-1200.0	-2700.0	57255.5	-10	24	20.5	24.3	-6.1	-23	16	5.9	16.9 -13.3
27005	1187W	-1187.0	-2700.0	57182.2	-6	20	19.8	20 1	-3.6	-18	13	6.2	13 4 -10 4
27005	1175	-1175 0	-2700 0	57177 8	-4	17	20.4	17 0	-2 4	-22	15	5.8	15 7 -12 7
27005	1162	-1162 0	-2700 0	57221 2	-11	14	21 9	14 2	-6 4	-17	12	6.0	12.7 12.7
27005	11504	-1150 0	-2700.0	57241 0	-6	12	21.7	12.0	-2 5	-14	12	4 1	12.4 7.0
27005	11271	-1127 0	-2700.0	57241.0		12	20.7	12.0	-6.4	-22	10	5.1	10 5 -12 5
27003	11250	-1125 0	-2700.0	57247.5	7	11	21.5	12.1	-0.4	-24	10	5./	10.5 - 12.5
27003	111200	-1123.0	-2700.0	57237.5	-/	11	21.4	11.1	-4.1	-20	7	۵./	7.0 -14./
27005	1112W	1100.0	-2700.0	57237.0	-/	10	21.3	10.0	-4.0	-1/	11	0.2	11.3 -9.8
27005	10070	-1100.0	-2700.0	5/236./	-8	10	20.8	10.1	-4.6	-22	9	6.1	9.4 -12.5
27005	108/0	-1087.0	-2700.0	5/233.8	-14	У 7	21.8	9.2	-8.0	-25	8	5.8	8.5 -14.1
27005	10/50	-10/5.0	-2700.0	5/266.5	-14		21.7	/.1	-8.0	-24	5	5.9	5.3 -13.5
27005	1062W	-1062.0	-2700.0	5/254.3	-13	4	21.0	4.1	-/.4	-16	4	6.0	4.1 -9.1
27005	1050W	-1050.0	-2/00.0	5/231./	-1/	2	20.9	2.1	-9.7	-22	3	5.9	3.1 -12.4
27005	103/W	-1037.0	-2/00.0	5/243.8	-20	0	19.6	.0	-11.3	-24	2	5./	2.1 -13.5
27005	1025W	-1025.0	-2/00.0	5/264.9	-14	0	15.9	.0	-8.0	-15	1	5.8	1.0 -8.5
27005	1012W	-1012.0	-2700.0	57229.9	-20	0	18.8	.0	-11.3	-25	2	5.7	2.1 -14.0
27005	1000W	-1000.0	-2700.0	57248.9	-22	0	19.3	.0	-12.4	-30	0	5.6	.0 -16.7
2700S	987W	-987.0	-2700.0	57242.3	-10	3	12.8	3.0	-5.7	-26	4	5.5	4.3 -14.6
27005	975W	-975.0	-2700.0	57274.2	-19	3	18.7	3.1	-10.8	-22	2	5.9	2.1 -12.4
27005	962W	-962.0	-2700.0	57270.3	-14	0	16.3	.0	-8.0	-27	0	5.6	.0 -15.1
27005	950W	-950.0	-2700.0	57272.8	-25	0	18.8	.0	-14.0	-22	0	5.7	.0 -12.4
2700S	937W	-937.0	-2700.0	57259.1	-20	0	17.4	.0	-11.3	-14	0	5.5	.0 -8.0
2700S	925W	-925.0	-2700.0	57258.8	-26	-1	18.4	-1.1	-14.6	-23	0	5.7	.0 -13.0
2700S	912W	-912.0	-2700.0	57274.3	-26	-1	18.1	-1.1	-14.6	-18	1	5.7	1.0 -10.2
2700S	900W	-900.0	-2700.0	57257.2	-19	-4	16.1	-4.1	-10.8	-13	-1	5.5	-1.0 -7.4
2600S	1250W	-1250.0	-2600.0	57224.2	4	13	23.3	13.0	2.3	-7	14	5.1	14.1 -4.1
2600S	1237W	-1237.0	-2600.0	57227.6	3	18	25.4	18.0	1.8	-13	18	5.6	18.3 -7.6
2600S	1225W	-1225.0	-2600.0	57249.2	-21	22	26.1	23.0	-12.4	-13	21	6.5	21.4 -7.7
2600S	1212₩	-1212.0	-2600.0	57256.3	-24	31	20.5	33.0	-14.8	-28	24	5.6	26.0 -16.5
26005	1200W	-1200.0	-2600.0	57241.5	-20	27	21.2	28.2	-12.1	-28	19	5.5	20.5 -16.2
2600S	1187W	-1187.0	-2600.0	57217.9	-8	25	20.2	25.2	-4.9	-28	20	5.1	21.6 -16.2
2600S	1174W	-1174.0	-2600.0	57234.7	-9	21	21.1	21.2	-5.4	-23	15	5.3	15.8 -13.2
2600S	1162W	-1162.0	-2600.0	57241.5	-8	18	21.6	18.1	-4.7	-23	12	5.6	12.6 -13.1
2600S	1150W	-1150.0	-2600.0	57242.5	-6	15	20.6	15.1	-3.5	-28	10	5.4	10.8 -15.8
2600S	1137W	-1137.0	-2600.0	57243.5	-12	11	20.5	11.2	-6.9	-27	6	5.6	6.4 -15.2
2600S	1125W	-1125.0	-2600.0	57244.3	-10	12	19.9	12.1	-5.8	-25	8	5.7	8.5 -14.1
2600S	1112W	-1112.0	-2600.0	57251.1	-11	10	19.3	10.1	-6.3	-27	7	5.4	7.5 -15.2
2600S	1100W	-1100.0	-2600.0	57244.2	-8	9	18.3	9.1	-4.6	-19	6	5.8	6.2 -10.8
2600S	1087W	-1087.0 .	-2600.0	57253.9	-12	8	18.2	8.1	-6.9	-26	4	5.2	4.3 -14.6
2600S	1075W	-1075.0	-2600.0	57242.5	-14	8	19.1	8.2	-8.0	-19	7	5.7	7.3 -10.8
2600S	1062W	-1062.0 -	-2600.0	57252.9	-16	9	19.1	9.2	-9.2	-20	7	5.6	7.3 -11.4
26005	1050	-1050.0 -	-2600_0	57257.3	-8	8	18.0	8.1	-4.6	-21	5	5.5	5.2 -11.9
26005	1037W	-1037.0 -	-2600.0	57255.4	-12	7	18.9	7.1	-6.9	-19	5	5.5	5.2 -10.8
						•			/		-		

Page 3

2600S	1025W	-1025.0	0 -2600.	0 57265.7	-13	6	19.0	6.1	-7.4	-21	5	5.4	5.2	-11.9
26005	1012W	-1012.0	0 -2600.	0 57264.5	-9	5	18.3	5.0	-5.2	-15	3	5.5	3.1	-8.5
2600S	1000W	-1000.0	-2600.	0 57275.9	-17	3	18.7	3.1	-9.7	-15	1	5.4	1.0	-8.5
2500S	1250W	-1250.0	0 -2500	0 57204.4	-19	11	23.7	11.4	-10.9	-23	10	6.0	10 5	-13 1
25005	12374	-1237 (-2500	0 57240 1	-33	23	23 0	25.6	-19 1	-34	17	55	10.0	-10 2
25000	12251	-1225 (-2500	0 57255 A	-25	21	20.0	25.0	-20 0	-24	17	5.0	10.2	-20.2
20000	12120	-1210 /	-2500.0	0 07200.0	-00	27	10 4		-20.7	-00	17	5.0	17.3	-20.3
25005	1212W	-1212.0		J 37214.2	-30	33	10.4	30.3	-22.8	-29	13	5.3	14.1	-16.4
25005	12000	-1200.0) -2500.0	0 5/226.5	-31	32	17.8	35.4	-18.9	-35	13	4.8	14.6	-19.6
25005	118/W	-1187.0) -2500.0	57266.5	-22	28	17.7	29.5	-13.4	-25	14	5.1	14.9	-14.3
25005	1175W	-1175.() -2500.0	0 57247.9	-16	25	18.5	25.7	-9.7	-27	10	5.1	10.7	-15.2
2500S	1162W	-1162.() -2500.0	57247.8	-11	22	18.0	22.3	-6.6	-19	9	5.5	9.3	-10.8
250 0S	1150W	-1150.0) -2500.0	57232.2	-9	19	18.3	19.2	-5.3	-18	7	5.5	7.2	-10.3
2500\$	1137W	-1137.0	-2500.(57256.9	-4	17	16.9	17.0	-2.4	-14	7	5.6	7.1	-8.0
2500\$	1125W	-1125.0) -2500.(57253.3	-12	15	19.4	15.2	-7.0	-18	7	5.6	7.2	-10.3
2500S	1112W	-1112.0) -2500.0	57272.0	-8	13	18.5	13.1	-4.7	-16	5	5.6	5.1	-9.1
25005	1100	-1100 0) -2500 (57269 0	-11	10	19 1	10 1	-6.3	-14	4	5 4	<u>4</u> 1	-8.0
25005	10876	-1087 (-2500 (57272 1	-13	10	10 3	10.2	-7 5	-13	2	57	2 1	-7 1
25000	10751	-1075 (-2500.0	57272.1		10	17.5	10.2	-7.5	-13	່ ເ	5.7	3.1	-7.4
20000	10/00	-10/5.0	-2000.0) 5/2/1./	-3	7	17.3	9.0	-1./	-14	2	5.8	2.0	-8.0
20005	1002W	-1062.0	-2500.0) 5/284.1	-8	8	18.7	8.1	-4.6	-15	3	5.4	3.1	-8.5
25005	1050W	-1050.0	-2500.0) 5/284.6	-/	8	18.5	8.0	-4.0	-13	0	5.5	.0	-7.4
2500S	1037W	-1037.0	-2500.0	57284.4	-12	5	19.4	5.1	-6.9	-12	1	5.7	1.0	-6.8
2500S	1025W	-1025.0	-2500.0	57289.1	-6	2	17.7	2.0	-3.4	-16	0	5.8	.0	-9.1
2500\$	1012W	-1012.0	-2500.0	57307.9	-13	-2	18.6	-2.0	-7.4	-10	-3	5.6	-3.0	-5.7
2500S	1000W	-1000.0	-2500.0	57276.8	-16	-6	17.8	-6.2	-9.1	-15	-5	5.7	-5.1	-8.6
1250W	2812S	-1250.0	-2812.0	57181.9	10	2	21.7	2.0	5.7	-2	2	6.5	2.0	-1.1
1250W	2800S	-1250.0	-2800.0	57202.9	7	2	22.1	2.0	4.0	-2	4	6.5	4.0	-1.1
1250	27875	-1250.0	-2787 0	57209 0	8	4	22 1	4 0	4.6	-6	5	6.6	5.0	-3 4
12504	27755	-1250.0	-2775 0	57207 6	-2	5	23 1	5.0	-1 1	-20	Ř	5 1	83	-11 /
12504	27625	-1250.0	-2762 0	57212 2	2	4	23.1	4.0	1 7	-12	7	2. 4 4 1	7 1	-7 /
12500	27023	-1250.0	2702.0	57212.3		7	23.2	7.0	1./	-10		0.1	/.1	-7.4
12500	27000	-1250.0	-2730.0	57210.1	-5	7	23.0	7.0	-1./	-10	7	4.7	9.3	-10.5
12500	2/3/5	~1250.0	-2/3/.0	57215.5	4	/	23.3	7.0	2.3	-15	10	5.2	10.2	-8.6
12500	2/255	-1250.0	-2/25.0	5/195.1	6	8	21.0	8.0	3.5	-/	8	6.5	8.0	-4.0
1250W	2/125	-1250.0	-2/12.0	5/188./	1	9	23.0	9.0	.6	-12	1	6.2	7.1	-6.9
1250W	26255	-1250.0	-2625.0	57231.9	12	10	23.5	10.1	6.9	0	10	5.5	10.0	.0
1250W	2612S	-1250.0	-2612.0	57235.5	17	8	22.8	8.2	9.7	-1	8	5.6	8.0	6
1250W	2600S	-1250.0	-2600.0	57236.4	15	5	23.6	5.1	8.6	4	6	6.4	6.0	2.3
1250W	2587S	-1250.0	-2587.0	57226.5	6	3	25.1	3.0	3.4	-2	2	5.8	2.0	-1.1
1250W	25755	-1250.0	-2575.0	57202.5	8	2	26.1	2.0	4.6	-5	1	6.4	1.0	-2.9
1250W	25625	-1250.0	-2562.0	57202.9	11	1	25.8	1.0	6.3	-11	1	6.2	1.0	-6.3
1250W	2550S	-1250.0	-2550.0	57222.5	-2	-3	25.7	-3.0	-1.1	-12	Ö	7.4	.0	-6.8
1250	25375	-1250 0	-2537 0	57201 4	-6	-1	26 7	-1 0	-3 4	-27	ñ	6 1		-15 1
12501	25255	-1250.0	-2525 0	57222 1	-9	1	20.7	1 0	-4.6	-21	4	4.9	1.2	_11 Q
12500	20200	-1250.0	-2525.0	57223.4	-0	2	22.0	2.0	-4.0	-21	4	0.0	4.2	10 4
1250W	20120	-1250.0	-2012.0	5/170.7	-13	2	20.3	2.0	-/.4	-22	4	5.3	4.2	-12.4
1100W	288/5	-1100.0	-2887.0	5/231./	-8	-13	22.7	-13.1	-4./	-19	-11	5.5	-11.4	-10.9
1100W	28755	-1100.0	-2875.0	57247.1	-1	-13	20.6	-13.0	6	-11	-9	5.6	-9.1	-6.3
1100W	28625	-1100.0	-2862.0	57220.7	-6	-9	21.8	-9.0	-3.5	-8	-6	5.6	-6.0	-4.6
1100W	28505	-1100.0	-2850.0	57242.7	2	-9	20.6	-9.0	1.2	-7	-6	5.5	-6.0	-4.0
1100W	2837S	-1100.0	-2837.0	57216.1	-4	-10	19.6	-10.0	-2.3	-11	-6	5.7	-6.1	-6.3
1100W	28255	-1100.0	-2825.0	57216.1	0	-6	20.1	-6.0	.0	-6	-3	5.6	-3.0	-3.4
1100W	28125	-1100.0	-2812.0	57236.0	2	-5	20.1	-5.0	1.1	-13	-1	5.5	-1.0	-7.4
1100W	2800S	-1100.0	-2800.0	57229.7	-4	-2	21.8	-2.0	-2.3	-14	0	5.6	.0	-8.0
1100	27875	-1100 0	-2787 0	57220 8	0	ō	22 7	•		-14	2	5.6	20	-8.0
11004	27759	-1100.0	-2775 0	57222 2	-2	2	22 1	2 0	-1 1	-12	1	5 5	£.0 A 1	-7 /
1100.	27620	-1100.0	-2762 0	57210 2	-12	J 1	22 A	J.U / 1	_4 0	-22	4 A	5.5 5.4	11.1 10.0	12 A
11000	21023	-1100.0	-2760 0	57240.3	-12	4	23.4	4.1 c ^	-0.7	-22	4	ວ.4 ⊏ 4	4.2	10 0
TTOOM	21000	-1100.0	-2/00.0	3/247./	-/	3	66.1	5.V	-4.0	-13	4	J.4	4.1.	-10.9

1100W	27375	-1100.0) -2737.0	57226.8	-11	6	22.5	6.1	-6.3	-12	7	5.4	7.1	-6.9
1100W	27255	-1100.0) -2725.0	57235.2	-13	8	22.5	8.1	-7.5	-19	6	5.4	6.2	-10.8
1100W	27125	-1100.0	-2712.0	57253.9	-8	9	22.6	9.1	-4.6	-26	8	5.2	8.5	-14.7
1100W	27005	-1100.0	-2700.0	57246.8	-8	9	21.4	9.1	-4.6	-12	8	5.5	8.1	-6.9
1100W	2687S	-1100.0) -2687.0	57232.3	-3	11	19.3	11.0	-1.7	-23	9	5.0	9.5	-13.0
1100W	26755	-1100.0) -2675.0	57245.4	-5	10	20.0	10.0	-2.9	-24	9	5.0	9.5	-13.6
1100W	2662S	-1100.0	-2662.0	57254.3	-11	9	21.7	9.1	-6.3	-18	8	5.2	8.3	-10.3
1100W	26505	-1100.0	-2650.0	57261.3	-12	9	21.3	9.1	-6.9	-21	8	5.1	8.4	-11.9
1100W	2637S	-1100.0	-2637.0	57265.8	-17	9	21.3	9.3	-9.7	-29	8	4.6	8.7	-16.3
1100W	26255	-1100.0	-2625.0	57237.6	-18	9	21.4	9.3	-10.3	-21	7	5.0	7.3	-11.9
1100W	26125	-1100.0	-2612.0	57242.6	-18	8	20.7	8.3	-10.3	-23	6	4.8	6.3	-13.0
1100W	2600S	-1100.0	-2600.0	57258.4	-19	8	20.2	8.3	-10.8	-20	7	4.7	7.3	-11.4
1100W	25875	-1100.0	-2587.0	57281.6	-12	10	19.0	10.1	-6.9	-20	9	4.6	9.4	-11.4
1100W	25755	-1100.0	-2575.0	57273.5	-18	10	19.3	10.3	-10.3	-16	8	4.6	8.2	-9.1
1100W	25625	-1100.0	-2562.0	57254.1	-21	12	18.5	12.5	-12.0	-20	8	4.5	8.3	-11.4
1100W	2550S	-1100.0	-2550.0	57260.6	-18	12	18.6	12.4	-10.3	-25	8	3.9	8.5	-14.1
1100W	25375	-1100.0	-2537.0	57263.4	-18	13	18.0	13.4	-10.4	-24	8	3.7	8.5	-13.6
1100W	2525S	-1100.0	-2525.0	57271.0	-11	12	19.1	12.1	-6.4	-17	9	4.1	9.3	-9.7
1100W	25125	-1100.0	-2512.0	57263.2	-6	11	18.4	11.0	-3.5	-6	5	4.6	5.0	-3.4
1000W	2687S	-1000.0	-2687.0	57248.2	-14	1	17.1	1.0	-8.0	-20	3	5.8	3.1	-11.3
1000W	26755	-1000.0	-2675.0	57251.5	-13	3	17.0	3.1	-7.4	-14	5	5.5	5.1	-8.0
1000W	26625	-1000.0	-2662.0	57274.2	-19	2	17.7	2.1	-10.8	-17	6	5.6	6.2	-9.7
1000W	26505	-1000.0	-2650.0	57245.6	-15	4	18.3	4.1	-8.5	-24	4	5.5	4.2	-13.5
1000W	26375	-1000.0	-2637.0	57281.6	-18	4	18.9	4.1	-10.2	-24	6	5.2	6.3	-13.5
1000W	26255	-1000.0	-2625.0	57262.9	-15	3	18.4	3.1	-8.5	-13	4	5.6	4.1	-7.4
1000W	26125	-1000.0	-2612.0	57278.9	-14	4	18.6	4.1	-8.0	-10	2	5.5	2.0	-5.7
550W	29255	-550.0	-2925.0	57169.7	-5	-3	15.3	-3.0	-2.9	-17	-1	3.7	-1.0	-9.6
550W	29125	-550.0	-2912.0	57240.7	-13	-3	16.6	-3.1	-7.4	-16	3	3.7	3.1	-9.1
550W	2900S	-550.0	-2900.0	57183.5	-3	-11	14.2	-11.0	-1.7	-3	-3	4.0	-3.0	-1.7
550W	28875	-550.0	-2687.0	57205.1	-2	-2	15.9	-2.0	-1.1	-2	4	3.9	4.0	-1.1
550W	2875S	-550.0	-2875.0	57253.2	-3	0	16.6	.0	-1.7	-2	3	4.2	3.0	-1.1
550W	28625	-550.0	-2862.0	57328.1	1	0	16.8	.0	.6	-4	6	3.8	6.0	-2.3
550W	2850S	-550.0	-2850.0	57310.4	2	2	16.8	2.0	1.1	1	4	3.5	4.0	.6
550W	28375	-550.0	-2837.0	57301.0	3	3	17.6	3.0	1.7	-4	7	4.4	7.0	-2.3
550W	28255	-550.0	-2825.0	57306.9	1	3	18.4	3.0	.6	-1	8	4.6	8.0	6
550W	2812S	-550.0	-2812.0	57304.9	0	3	18.3	3.0	.0	-3	6	4.8	6.0	-1.7

•

Listing of Geophysical Data

West Grid

Column

1	Line number
2	Station number
3	Relative x-coordinate
4	Relative y-coordinate
5	Total Magnetic Field - diurnally corrected
	VLF-EM Seattle, 24.8 kHz
6	Vertical in-phase anomalous magnetic field
7	Vertical out-phase anomalous magnetic field
8	Horizontal magnetic field
9	Computed quadrature
10	Computed dip angle
	VLF-EM Annapolis, 21.4 kHz
11	Vertical in-phase anomalous magnetic field
12	Vertical out-phase anomalous magnetic field
13	Horizontal magnetic field
14	Computed quadrature

.

15 Computed dip angle

5000N	4700E	4700.0	5000.0	57415.9	9	4 18.6	4.0	5.2	9	3	3.1	3.0	5.1
5000N	4712E	4712.0	5000.0	57394.5	8	2 18.8	2.0	4.6	8	4	3.1	4.0	4.6
5000N	4725E	4725.0	5000.0	57420.4	6	3 18.9	3.0	3.4	8	5	3.0	5.0	4.6
5000N	4737E	4737.0	5000.0	57402.1	4	2 19.1	2.0	2.3	6	6	3.1	6.0	3.4
5000N	4750E	4750.0	5000.0	57434.1	2	1 18.7	1.0	1.1	5	10	3.0	10.0	2.9
5000N	4762E	4762.0	5000.0	57449.0	0	-2 18.0	-2.0	.0	2	8	3.0	8.0	1.2
5000N	4775E	4775.0	5000.0	57380.8	-1	-4 16.9	-4.0	6	-1	8	3.0	8.0	6
5000N	4787F	4787.0	5000.0	57372.6	6	-4 16.2	-4.0	34	-1	8	3.0	8.0	- 6
5000N	4800F	4800 0	5000.0	57428 5	17	-4 13 8	-4 1	97	Ô	5	27	5.0	.0
5000N	4812F	4812 0	5000 0	57403 8	22	1 15 1	1 0	12 4	2	7	23	7 0	1 2
5000N	4825F	4825 0	5000.0	57409 9	22	0 18 0	0	12 4	5	, 5	2.9	5.0	29
5000N	4020C	4827 0	5000.0	57406 8	19	-3 19 1	-3 1	10 8	ب ج	1	2 0	1 0	29
5000N	4007 C	4850 0	5000.0	57400.0	25	1 19 9	1 1	14 0	11	ς	3.0	5 1	6 3
5000N	4000L 1862E	4862 0	5000.0	57384 3	23	4 99 A	4.3	13 0	20	10	3.0	10 1	11 /
50000	40020	4002.0	5000.0	57/15 9	12	2 24 4	20	13.0	11	12	2.5	12 2	LT.4 2 1
50000	407 JL 40075	4073.0	5000.0	57422 0	τ <u>ς</u>	2 22 4.0	2.0	5 1	Δ 11	12	27	12.2	0.4 1 4
SOOON	4007 5	4007.0	5000.0	57423.0	7	-1 22 2	-1 0	J. 1 1 1	0	12	2.1	7 0	4.6
SUUUN EDOON	47000	4700.0	5000.0	57422.J	ے 1	-1 22.2 2 22 E	-1.0	1.1	2	2	3.0 27	2.0	
SUUUR	47125	4712.0	5000.0	57446.0	2	-3 22.3	-3.0	.0	-2	<u>د</u>	24	2.0	
5000N	47235	4923.0	5000.0	5/525.8	2	-/ 22.5	-/.0	1.4	~0	1	3.0	1 0	-3.4
5000N	493/E	4937.0	5000.0	5/373./	۲ ح	-4 23.7	-4.0	7.1	ט~ ד	1	3.0	1.0	-4.0
5000N	4762E	4962.0	5000.0	5/448.1	-3	-3 24.6	-3.0	10 2	12		3.0	7 1	-4.0
5000N	49/5E	49/5.0	5000.0	5/433.2	~18	0 24.3	.0	-10.2	~13	10	4.4	10.0	-7.4
5000N	498/E	4987.0	5000.0	5/42/./	-9	6 20.5	6.0	~3.2	-3	10	4.4	10.0	-1./
5000N	5000E	5000.0	5000.0	5/460.2	~4	6 18.8	6.0	-2.3	10	8	4.1	0.0	10.0
5100N	4512E	4512.0	5100.0	5/35/.2	18	4 20.9	4.1	10.2	18	୪ ଚ	4.7	8.3	10.3
5100N	4525E	4525.0	5100.0	57358.5	1/	4 21.1	4.1	9./	18	8	5.1	8.3	10.3
5100N	4537E	4537.0	5100.0	57366.3	11	3 21.8	3.0	6.3	14	4	5.2	7.2	8.0
5100N	4550E	4550.0	5100.0	57385.7	15	3 21.5	3.1	8.5	10	10	4.8	10.1	5.8
5100N	4562E	4562.0	5100.0	57382.7	18	1 22.1	1.0	10.2	19		4./	7.3	10.8
5100N	4575E	4575.0	5100.0	57407.8	8	0 21.7	.0	4.6	12	/	4.3	/.1	6.9
5100N	4587E	4587.0	5100.0	57379.8	17	0 22.2	.0	9.6	22	5	4.3	5.2	12.4
5100N	4600E	4600.0	5100.0	57463.5	11	0 22.1	.0	6.3	14	5	4.3	5.1	8.0
5100N	4612E	4612.0	5100.0	57503.8	12	1 21.3	1.0	6.8	15	8	4.0	8.2	8.6
5100N	4625E	4625.0	5100.0	57496.0	10	3 20.6	3.0	5.7	16	9	4.2	9.2	9.2
5100N	4637E	4637.0	5100.0	57488.1	13	2 21.7	2.0	7.4	19	10	4.2	10.4	10.9
5100N	4650E	4650.0	5100.0	57426.0	14	2 21.3	2.0	8.0	15	9	4.2	9.2	8.6
5100N	4662E	4662.0	5100.0	57429.0	20	2 20.9	2.1	11.3	20	8	4.2	8.3	11.4
5100N	4675E	4675.0	5100.0	57436.7	23	0 20.3	.0	13.0	21	6	4.0	6.3	11.9
5100N	4687E	4687.0	5100.0	57357.7	31	0 17.0	.0	17.2	30	6	2.9	6.5	16.8
5100N	4700E	4700.0	5100.0	57352.3	25	0 19.4	.0	14.0	16	0	3.8	.0	9.1
5100N	4712E	4712.0	5100.0	57336.7	31	1 18.8	1.1	17.2	16	0	3.5	.0	9.1
5100N	4725E	4725.0	5100.0	57350.9	35	3 19.9	3.4	19.3	28	4	3.6	4.3	15.7
5100N	4737E	4737.0	5100.0	57351.1	29	3 20.8	3.3	16.2	27	9	3.5	9.7	15.2
5100N	4750E	4750.0	5100.0	57366.1	30	7 22.4	7.6	16.8	47	11	3.8	13.5	25.4
5100N	4762E	4762.0	5100.0	57361.0	15	0 21.9	.0	8.5	46	11	3.8	13.4	24.9
5100N	4775E	4775.0	5100.0	57353.9	26	3 18.1	3.2	14.6	52	11	3.6	14.0	27.7
5100N	4787E	4787.0	5100.0	57380.2	37	7 17.2	8.0	20.4	57	10	3.8	13.3	29.9
5100N	4800F	4800.0	5100.0	57364.7	48	10 20.6	12.3	25.8	56	10	4.3	13.2	29.4
5100N	4812F	4812 0	5100_0	57368_9	55	10 22.4	13.0	29.0	61	13	4.6	17.9	31.7
5100N	4825F	4825 0	5100.0	57381_4	52	8 24 9	10.2	27.6	59	16	4.7	21.7	31.0
5100N	4837F	4837 0	5100 0	57356 2	36	2 27 1	2.3	19.8	43	11	4.7	13.1	23.5
51000	48505	4850 0	5100 0	57354 7	31	2 27 0	2.2	17.2	40	10	5.3	11.6	22.0
S100N	4000L 1862F	4862 0	5100.0	57444 1	21	2 24 4	2 1	11.9	31	12	3.9	13.2	17.4
S100N	4002L 1875F	4875 0	5100.0	57626 4	25	3 26.5	3.2	14.0	39	12	5.2	13.8	21.6
STOON	18975	4887 0	5100.0	57432 3	24	4 26.7	4.2	13.5	32	12	4.8	13.2	18.0
DTOON	40076	400/ .V	~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									

5100N	4900E	4900.0	5100.0	57417.9	20	5 29.2	5.2	11.3	33	13	5.7	14.4	18.5
5100N	4912E	4912.0	5100.0	57418.0	11	5 30.4	5.1	6.3	14	15	5.1	15.3	8.1
5100N	4925E	4925.0	5100.0	57430.7	2	1 27.9	1.0	1.1	6	13	5.0	13.0	3.5
5100N	4937E	4937.0	5100.0	57435.4	5	1 26.1	1.0	2.9	4	17	4.3	17.0	2.4
5100N	4950E	4950.0	5100.0	57433.4	9	4 24.9	4.0	5.2	10	19	4.2	19.2	5.9
5100N	4962E	4962.0	5100.0	57427.5	5	8 26.2	8.0	2.9	12	16	4.7	16.2	7.0
5100N	4975E	4975.0	5100.0	57431.3	-2	5 25.1	5.0	-1.1	14	16	5.3	16.3	8.2
5100N	4987E	4987.0	5100.0	57520.0	-4	5 22.4	5.0	-2.3	16	20	4.9	20.5	9.5
5100N	5000E	5000.0	5100.0	57397.2	5	13 20.0	13.0	2.9	21	22	4.9	23.0	12.4
5200N	4500E	4500.0	5200.0	57349.3	26	-1 14.5	-1.1	14.6	21	15	4.1	15.7	12.1
5200N	4512E	4512.0	5200.0	57358.3	32	-4 15.3	-4.4	17.8	11	16	4.3	16.2	6.4
5200N	4525E	4525.0	5200.0	57383.2	38	-2 16.9	-2.3	20.8	20	16	4.1	16.7	11.6
5200N	4537E	4537.0	5200.0	57391.7	32	-3 17.7	-3.3	17.8	16	17	4.1	17.4	9.3
5200N	4550E	4550.0	5200.0	57409.9	30	-4 18.6	-4.4	16.7	18	12	4.3	12.4	10.3
5200N	4562E	4562.0	5200.0	57467.7	23	-2 18.3	-2.1	13.0	5	12	3.8	12.0	2.9
5200N	4575E	4575.0	5200.0	57402.1	43	0 18.2	.0	23.3	30	10	4.2	10.9	16.8
5200N	4587E	4587.0	5200.0	57326.2	36	0 18.5	.0	19.8	34	9	4.1	10.0	18.9
5200N	4600E	4600.0	5200.0	57268.3	31	1 18.8	1.1	17.2	46	11	3.7	13.4	24.9
5200N	4612E	4612.0	5200.0	57346.6	24	1 18.8	1.1	13.5	46	13	3.8	15.8	25.0
5200N	4625E	4625.0	5200.0	57354.6	25	2 17.8	2.1	14.0	53	14	3.5	18.0	28.3
5200N	4637E	4637.0	5200.0	57355.1	27	3 18.6	3.2	15.1	46	11	4.0	13.4	24.9
5200N	4650E	4650.0	5200.0	57353.7	17	4 18.4	4.1	9.7	45	11	4.0	13.3	24.4
5200N	4662E	4662.0	5200.0	57350.9	28	4 19.8	4.3	15.7	38	8	4.0	9.2	20.9
5200N	4675E	4675.0	5200.0	57378.7	22	4 20.4	4.2	12.4	34	8	3.8	8.9	18.9
5200N	4687E	4687.0	5200.0	57374.8	22	6 20.8	6.3	12.4	37	8	3.8	9.1	20.4
5200N	4700E	4700.0	5200.0	57336.8	29	5 21.0	5.4	16.2	51	7	3.9	8.8	27.1
5200N	4712E	4712.0	5200.0	57388.2	17	8 20.6	8.2	9.7	39	6	4.0	6.9	21.4
5200N	4725E	4725.0	5200.0	57381.3	24	5 21.0	5.3	13.5	50	8	4.2	10.0	26.7
5200N	4737E	4737.0	5200.0	57377.8	33	9 20.9	10.0	18.4	49	8	4.3	9.9	26.2
5200N	4750E	4750.0	5200.0	57402.7	37	8 20.8	9.1	20.4	42	3	4.5	3.5	22.8
5200N	4762E	4762.0	5200.0	57380.5	33	7 20.9	7.8	18.3	57	1	4.1	1.3	29.7
5200N	4775E	4775.0	5200.0	57388.8	36	11 21.1	12.4	20.0	41	6	4.7	7.0	22.4
5200N	4787E	4787.0	5200.0	57398.8	20	11 21.9	11.4	11.4	57	7	4.5	9.3	29.8
5200N	4800E	4800.0	5200.0	57386.9	40	12 21.3	13.9	22.0	60	7	4.7	9.5	31.1
5200N	4812E	4812.0	5200.0	57412.5	48	12 20.4	14.8	25.9	45	7	4.8	8.4	24.3
5200N	4825E	4825.0	5200.0	57413.4	33	9 22.1	10.0	18.4	44	8	4.9	9.6	23.9
5200N	4837E	4837.0	5200.0	57424.4	41	7 21.5	8.2	22.4	47	10	4.9	12.2	25.4
5200N	4850E	4850.0	5200.0	57473.8	36	10 22.3	11.3	20.0	39	13	5.0	15.0	21.6
5200N	4862E	4862.0	5200.0	57424.6	31	9 24.0	9.9	17.3	37	15	4.7	17.1	20.7
5200N	4875E	4875.0	5200.0	57422.1	32	6 25.8	6.6	17.8	45	12	5.0	14.5	24.5
5200N	4887E	4887.0	5200.0	57417.9	47	6 27.3	7.3	25.2	-9	9	5.7	9.1	-5.2
5200N	4900E	4900.0	5200.0	57430.7	44	10 25.3	12.0	23.9	48	12	5.4	14.8	25.9
5200N	4912E	4912.0	5200.0	57439.5	31	3 24.5	3.3	17.2	30	12	5.2	13.1	16.9
5200N	4925E	4925.0	5200.0	57454.5	-16	0 23.7	.0	-9.1	-1	10	4.8	10.0	6
5200N	4937E	4937.0	5200.0	57468.9	10	5 22.4	5.1	5.7	52	16	5.0	20.4	28.0
5200N	4950E	4950.0	5200.0	57463.2	2	4 22.4	4.0	1.1	40	12	5.0	13.9	22.0
5200N	4962E	4962.0	5200.0	57447.0	31	5 21.9	5.5	17.3	1	14	4.3	14.0	.6
5200N	4975E	4975.0	5200.0	57418.1	-35	6 21.7	6.7	-19.3	-10	15	5.0	15.2	-5.8
5200N	4987E	4987.0	5200.0	57509.3	13	8 20.1	8.1	7.5	15	15	5.0	15.3	8.7
5300N	4500E	4500.0	5300.0	57321.8	33	7 17.1	7.8	18.3	30	19	3.8	20.8	17.2
5300N	4512E	4512.0	5300.0	57357.5	34	7 17.1	7.8	18.9	24	18	3.7	19.1	13.9
5300N	4525E	4525.0	5300.0	57575.5	37	5 16.0	5.7	20.3	36	16	3.8	18.1	20.2
5300N	4537E	4537.0	5300.0	58053.6	28	0 17.8	.0	15.6	29	13	3.7	14.1	16.4
5300N	4550E	4550.0	5300.0	57408.6	24	-4 17.0	-4.2	13.5	31	10	3.6	11.0	17.4
5300N	4562E	4562.0	5300.0	57169.8	31	-3 16.5	-3.3	17.2	31	7	3.8	7.7	17.3

5300N	4575E	4575.0	5300.0	57364.0	34	-1 16.6	-1.1	18.8	25	10	3.4	10.6	14.2
5300N	4587E	4587.0	5300.0	57333.6	34	0 15.9	.0	18.8	25	11	3.3	11.7	14.2
5300N	4600E	4600.0	5300.0	57251.8	39	-1 16.8	-1.2	21.3	37	10	3.7	11.4	20.5
5300N	4612E	4612.0	5300.0	57277.1	46	2 16.9	2.4	24.7	43	8	3.7	9.5	23.4
5300N	4625E	4625.0	5300.0	57270.2	43	4 16.9	4.7	23.3	38	11	3.6	12.6	21.0
5300N	4637E	4637.0	5300.0	57300.3	52	4 18.0	5.1	27.5	46	9	3.9	10.9	24.8
5300N	4650E	4650.0	5300.0	57308.6	51	5 18.7	6.3	27.1	57	11	3.6	14.6	29.9
5300N	4662E	4662.0	5300.0	57328.8	43	6 20.0	7.1	23.3	43	11	3.7	13.1	23.5
5300N	4675E	4675.0	5300.0	57312.1	47	5 19.8	6.1	25.2	45	14	3.2	16.9	24.6
5300N	4687E	4687.0	5300.0	57373.4	55	6 21.0	7.8	28.9	54	12	3.9	15.5	28.6
5300N	4700E	4700.0	5300.0	57257.8	34	4 20.3	4.5	18.8	37	10	3.8	11.4	20.5
5300N	4712E	4712.0	5300.0	57222.9	34	2 22.4	2.2	18.8	43	9	4.1	10.7	23.4
5300N	4725E	4725.0	5300.0	57203.8	37	0 23.9	.0	20.3	43	8	3.8	9.5	23.4
5300N	4737E	4737.0	5300.0	57319.3	25	-1 24.0	-1.1	14.0	37	6	4.0	6.8	20.4
5300N	4750E	4750.0	5300.0	57371.0	15	-1 23.4	-1.0	8.5	35	8	3.8	9.0	19.4
5300N	4762E	4762.0	5300.0	57368.1	14	-6 25.7	-6.1	8.0	31	3	4.0	3.3	17.2
5300N	4775E	4775.0	5300.0	57389.6	7	-5 27.3	-5.0	4.0	27	6	4.2	6.4	15.2
5300N	4787E	4787.0	5300.0	57417.0	4	0 25.9	.0	2.3	33	13	3.5	14.4	18.5
5300N	4800F	4800.0	5300.0	57433.3	9	8 26.2	8 1	5 2	32	12	4.4	13.2	18.0
5300N	4812F	4812.0	5300.0	57442.6	7	5 25 1	5 0	4 0	26	12	5.2	12.8	14.8
5300N	4825F	4825.0	5300.0	57345 0	5	6 22 9	6.0	2.9	15	15	4.7	15.3	8.7
5300N	4837F	4837 0	5300 0	57469 2	10	8 22 6	8 1	57	38	13	4 8	14.9	21.1
5300N	4850F	4850 0	5300.0	57455 0	16	8 23 3	8.2	9 1	32	15	3.8	16 6	18 1
5300N	4000E	4862 0	5300.0	57466 4	14	7 23 3	7 1	8 0	31	15	4.6	16 5	17 6
5300N	4875F	4875 0	5300.0	57423 3	15	7 23 7	7 2	8.6	27	15	4 2	16.1	15.4
5300N	4887F	4887 0	5300.0	57432 1	-5	6 23 4	6 0	29	12	19	3.6	19.3	7 1
5300N	4900F	4900.0	5300.0	57410 3	-3	3 21 4	30	-1 7	14	12	4 7	12.2	8.1
5300N	4912F	4912 0	5300.0	57446 6	2	8 19 6	8.0	1 2	20	17	43	17 7	11.6
5300N	4925F	4925 0	5300.0	57469 3	ล	11 19 2	11 1	4 6	22	16	4.7	16.8	12.7
5300N	4937F	4937 0	5300.0	57485 2	22	15 16 3	15 7	12 7	26	14	5 2	15 0	14.8
5300N	49505	4950 0	5300.0	57473 4	31	17 17 3	18 7	17 7	34	15	5 1	16.8	19.1
5300N	4962F	4962 0	5300.0	57458 9	31	17 19 1	18 7	17 7	29	16	5 1	17 4	16 5
5300N	4975F	4975 0	5300.0	57483 5	27	17 20 9	18 3	15 5	24	16	5 1	16.9	13.8
5300N	4987F	4987 0	5300.0	57476 2	28	16 20 7	17.3	16 0	36	15	5.2	17.0	20.2
5300N	5000F	5000 0	5300.0	57480 1	21	6 20 3	6.3	11 9	29	9	5 1	9 8	16.3
5500N	4175F	A175 0	5500.0	57114 5	1	12 17 5	12 0	/ 6	ς	19	37	19 0	3.0
5500N	4187E	4187 0	5500.0	57481 2	10	13 17 6	12.0	5 8	30	19	34	20.8	17 2
5500N	42005	4200 0	5500.0	57703 3	<u>8</u>	14 17 3	1/ 1	17	24	18	2.7 2.8	19 1	12 9
5500N	4200E	4212 0	5500.0	57019 6	17	13 18 0	13 /	9.2	25	18	1 0	19 2	14 5
5500N	4225F	4225 0	5500 0	57590 8	11	13 17 2	13.7	6.4	15	18	37	18 4	8.8
5500N	42375	4237 0	5500.0	57414 0	11	11 18 1	11 1	6.4	22	14	3.9	14 7	12 6
5500N	4250F	4250 0	5500.0	57340 7	τŢ	13 15 6	13 0	29	รก	14	39	15 3	17 0
55000	42500	4250.0	5500.0	56993 8	15	12 18 0	12 3	87	32	13	29	14 4	18 0
5500N	42020	4202.0	5500.0	57225 6	22	12 17 R	12.5	12 6	10	15	3.2	17 1	22 2
55001	42700	4273.0	5500.0	57299 1	10	7 17 7	7 1	5 7	33	12	4 0	12 2	18 5
SSOON	42070	4207.0	5500.0	57614 0	19	9 17 7	03	10 8	30	12	39	13.0	21 6
SSOON	43000	4300.0	5500.0	57044.5	20	9 17 7	9.0	11 /	16	10	25	12 1	24 9
55000	43120	4312.0	5500.0	57194 7	19	10 17 2	10 1	10 9	22	12	35	13 7	13 2
5500N	43235	4323.0	5500.0	57194 2	21	9 17 5	10.4 Q /	11 9	20	11	3.5	12 0	16 9
5500N 5500N	4337 E	4337.0	5500.0	57162 0	21 21	χ 1Q 2	7.4 2 K	13 4	30 A0	с ТТ	7 9 7 9	10 5	21 9
5500N	43305	4350.0	5500.0	57222 0	21	8 17 Q	0.J 2 5	13.0	42	6	२.४ २.४	7 1	23 3
S SOON	43025	4302.U 1275 N	5500.0	57025 0	29 20	0 17.7 7 17 A	7 4	16 7	73 27	1	⊿ 1	Λ.Υ.	20.3
SSOON	43/JE 12075	43/3.0	5500.0	57560 0	67 27	7 17.4 Q 10 7	γ.ο Ω 4	15 2	12	7	A 0	8 3 4.J	22.J
S S D O N	430/ 5	4307.0	5500.0	57212 2	20	0 10.4 Ω 17 Ο	υ,ο Ω 7	16 2	43 2Ω	Ω Ω	37	8 4 8 4	15 7
SSOON	4400E 1117E	4400.0	5500.0	57292 9	67 36	9 1 2 5	10.7	19 9	40	7	1 2	8 1	21.9
JUVN	~~~	~~**~ • V	2200.0	~~~~~	00				-1 V	'	7 H ben	~	/

5500N	4425E	4425.0	5500.0	57236.6	32	6 17.8	6.6	17.8	34	8	4.4	8.9	18.9
5500N	4437E	4437.0	5500.0	57676.9	40	5 19.1	5.8	21.8	36	9	4.5	10.2	19.9
5500N	4450E	4450.0	5500.0	57966.8	30	3 20.8	3.3	16.7	31	7	4.6	7.7	17.3
5500N	4462E	4462.0	5500.0	57687.4	30	2 20.7	2.2	16.7	32	7	4.4	7.7	17.8
5500N	4587E	4587.0	5500.0	57904.0	31	-1 22.0	-1.1	17.2	38	0	3.2	.0	20.8
5500N	4600E	4600.0	5500.0	58390.8	36	-3 21.3	-3.4	19.8	41	0	3.4	.0	22.3
5500N	4612E	4612.0	5500.0	58371.8	39	-2 22.1	-2.3	21.3	54	1	3.2	1.3	28.4
5500N	4625E	4625.0	5500.0	58360.8	42	-3 23.0	-3.5	22.8	46	-1	3.5	-1.2	24.7
5500N	463/E	4637.0	5500.0	5/594.9	45	-3 20.5	-3.6	24.2	46	-2	3.8	-2.4	24.7
5500N	4650E	4650.0	5500.0	5/005.8	39	-4 24.0	-4.6	21.3	42	-3	3./	-3.5	22.8
5500N	4662E	4662.0	5500.0	5/138.1	40	-5 23.6	-5.8	21.8	42	-4	3.8	-4./	22.8
5500N	46/5E	46/5.0	5500.0	5/340.0	చ4 నా	-5 24.9	-5.6	18.8	39	-T	3.9	-1.2	21.3
SSUUN	468/E	468/.0	5500.0	5/2/6.7	27	-5 26.8	~5.4	15.1	33	U	4.0	.0	17.3
SECON	47006	4700.0	5500.0	5/344.5	40	-5 27.5	-5.8	21.8	49	-4	4.1	~5.0	20.1
S SOON	47125	4712.0	5500.0	5/354.3	20	-6 28.5	-6.8	20.4	48		4.2	-3./	23.1
5500N	47235	4723.0	5500.0	57/10 0	24	-7 26 6	-0.0	10.0	45	-3	4.3	-3.0	24.2
55000	47505	4757.0	5500.0	57/91/10	34 21	-7 20.0	-7.0	17 2	47	- <u>~</u> _1	4.3	-2.4	25.2
5500N	47500	4750.0	5500.0	57/55 5	27	-0 20.4	-0.0	15 2	47	~T	4.2	-1.2 0	23.2
5500N	4702C	4702.0	5500.0	57453.5	29	-5 26 1	-5 1	16.2	45	ň	4.3	-0	23.3
5500N	47732	47787 0	5500.0	57498 5	25	-3 26 3	-3.2	1/ 0	45	ς	4.5	6 1	24.2
5600N	4025F	4025 0	5600.0	57385 5	16	17 16 3	17 4	93	25	22	32	23 4	14.7
5600N	40375	4037 0	5600.0	57352 1	13	17 16 5	17 3	7.6	15	23	3 5	23 5	9 0
5600N	4050F	4050.0	5600.0	57341.8	14	16 16 6	16.3	8.2	20	21	3.4	21.9	11.8
5600N	4062E	4062.0	5600.0	57271.9	17	15 16.8	15.4	9.9	27	20	3.4	21.5	15.7
5600N	4075E	4075.0	5600.0	57331.2	20	15 17.0	15.6	11.6	22	20	3.6	21.0	12.9
5600N	4087E	4087.0	5600.0	57105.1	22	14 16.6	14.7	12.6	21	18	3.7	18.8	12.2
5600N	4100E	4100.0	5600.0	57116.2	10	14 15.8	14.1	5.8	9	19	3.1	19.2	5.3
5600N	4112E	4112.0	5600.0	57138.6	21	12 16.8	12.5	12.0	21	15	3.7	15.7	12.1
5600N	4137E	4137.0	5600.0	57834.3	15	10 17.0	10.2	8.6	18	15	3.7	15.5	10.4
5600N	4150E	4150.0	5600.0	57693.7	18	8 17.6	8.3	10.3	25	14	3.6	14.9	14.3
5600N	4162E	4162.0	5600.0	58287.1	21	7 18.1	7.3	11.9	31	12	3.7	13.2	17.4
5600N	4175E	4175.0	5600.0	58028.7	24	6 17.5	6.3	13.5	24	12	3.8	12.7	13.7
5600N	4187E	4187.0	5600.0	57750.2	14	5 16.8	5.1	8.0	21	12	3.7	12.5	12.0
5600N	4200E	4200.0	5600.0	57036.2	20	5 18.1	5.2	11.3	29	10	3.7	10.8	16.3
5600N	4212E	4212.0	5600.0	56993.3	19	4 18.2	4.1	10.8	25	10	3.8	10.6	14.2
5600N	4237E	4237.0	5600.0	57289.8	22	4 17.9	4.2	12.4	36	7	3.7	7.9	19.9
5600N	4250E	4250.0	5600.0	57330.2	25	5 18.0	5.3	14.1	33	7	3.7	7.8	18.3
5600N	4262E	4262.0	5600.0	57452.5	26	5 18.1	5.3	14.6	37	9	3.8	10.2	20.4
5600N	4275E	4275.0	5600.0	57152.7	24	4 18.2	4.2	13.5	34	7	3.9	7.8	18.9
5600N	4287E	4287.0	5600.0	57319.2	29	4 18.7	4.3	16.2	34	6	3.9	6.7	18.8
5600N	4300E	4300.0	5600.0	57224.0	26	2 19.1	2.1	14.6	33	6	3.9	6.7	18.3
5600N	4312E	4312.0	5600.0	57176.7	27	1 19.0	1.1	15.1	33	5	3.8	5.5	18.3
5600N	4325E	4325.0	5600.0	57223.7	22	3 19.0	3.1	12.4	31	7	4.1	7.7	17.3
5600N	4350E	4350.0	5600.0	57075.7	31	0 17.2	.0	17.2	36	5	4.3	5.6	19.8
5600N	4362E	4362.0	5600.0	57444.8	30	2 19.7	2.2	16.7	36	3	4.2	3.4	19.8
5600N	4375E	4375.0	5600.0	57250.0	26	2 20.0	2.1	14.6	29	4	4.2	4.3	16.2
5600N	4387E	4387.0	5600.0	57397.2	25	2 18.0	2.1	14.0	32	5	4.1	5.5	17.8
5600N	4400E	4400.0	5600.0	5/363.4	33	3 20.2	3.3	18.3	40	4	4.4	4.6	5T-8
5600N	4412E	4412.0	5600.0	5/567.1	33	2 19.2	2.2	18.3	38	ර r	4.5	<u>చ.4</u>	20.8
5600N	4425E	4425.0	5600.0	5/529.1	<u>న/</u>	3 20.2	3.4 0 r	20.3	42	כ ר	4.5	3.7 / /	22.0 27 E
5600N	443/E	443/.0	5600.0	5/678.2	37	3 20.0	చ.ప సార్	21.3	52	ے ا	4.2	ь.4 7 0	21.5
56UUN	445UE	4450.0	5600.0	5/35/.8 57007 7	41 41	3 20.5	3.5 ⁄ 7	22.3	43 15	Б г	4.) / (/ . L L D	24.3
2600N	4402E 11755	4462.0	5600.0	5/32/./	41 77	4 20.6	4.7	26.3	40 10	っ っ	4.0 1 ^r	0.U 27	24.3
SPOON	44/ JC	447 0. 0	2000.0	J/JJ0,7	40	5 20.2	0 . T	<u> </u>	47	ు	4.0	3./	CO"T

5600N	4487E	4487.0	5600.0 57216.	8 43	4 22.4	4.7	23.3	43	4	4.8	4.7	23.3
5600N	4512E	4512.0	5600.0 57409.	5 66	-9 21.0	-12.9	33.6	62	-6	4.2	-8.3	31.9
5600N	4525E	4525.0	5600.0 57350.3	B 54	-7 21.8	-9.0	28.5	52	-7	4.3	-8.9	27.6
5600N	4537E	4537.0	5600.0 57200.	956	-5 22.0	-6.6	29.3	55	-5	4.3	-6.5	28.9
5600N	4550E	4550.0	5600.0 57301.	5 56	-8 21.9	-10.5	29.4	54	-4	4.2	-5.2	28.4
5600N	4562E	4562.0	5600.0 57236.3	3 54	-6 22.2	-7.8	28.4	53	-6	4.2	-7.7	28.0
5600N	4575E	4575.0	5600.0 57272.	9 56	-5 22.7	-6.6	29.3	52	-6	4.4	-7.6	27.5
5600N	4587E	4587.0	5600.0 57375.0	D 55	-6 23.5	-7.8	28.9	53	-6	4.4	-7.7	28.0
5600N	4600E	4600.0	5600.0 57329.8	3 56	-5 23.3	-6.6	29.3	55	-7	4.2	-9.1	28.9
5600N	4612E	4612.0	5600.0 57323.2	2 58	-2 23.5	-2.7	30.1	55	-7	4.3	-9.1	28.9
5600N	4625E	4625.0	5600.0 57374.3	3 59	0 19.4	.0	30.5	53	-3	4.4	-3.8	27.9
5600N	4637E	4637.0	5600.0 57361.2	1 51	0 23.7	.0	27.0	53	-4	4.5	-5.1	28.0
5600N	4650E	4650.0	5600.0 57407.4	4 49	-1 26.0	-1.2	26.1	59	-6	3.7	-8.1	30.6
5600N	4662E	4662.0	5600.0 57431.4	4 45	0 26.4	.0	24.2	54	-3	3.9	-3.9	28.4
5600N	4675E	4675.0	5600.0 57465.6	5 44	1 27.2	1.2	23.8	52	-1	4.4	-1.3	27.5
5600N	4687E	4687.0	5600.0 57467.	5 39	0 27.9	.0	21.3	49	-1	5.1	-1.2	26.1
5600N	4700E	4700.0	5600.0 57472.6	5 33	-3 27.2	-3.3	18.3	39	-1	4.5	-1.2	21.3
5600N	4712E	4712.0	5600.0 57476.	5 29	-10 25.6	-10.8	16.3	49	-7	3.8	-8.7	26.2
5600N	4725E	4725.0	5600.0 57473.3	3 28	-7 23.6	-7.6	15.7	45	1	3.8	1.2	24.2
5600N	4737E	4737.0	5600.0 57466.2	L 38	0 23.5	.0	20.8	50	3	4.6	3.8	26.6
5600N	4750E	4750.0	5600.0 57504.0) 26	-6 27.4	-6.4	14.6	33	-5	4.5	-5.5	18.3
5600N	4762E	4762.0	5600.0 57526.2	2 21	-7 27.2	-7.3	11.9	23	-3	5.4	-3.2	13.0
5600N	4775E	4775.0	5600.0 57497.9	9 18	-7 28.0	-7.2	10.3	24	-4	5.4	-4.2	13.5
5600N	4787E	4787.0	5600.0 57474.1	L 13	-7 27.7	-7.1	7.4	21	0	5.2	.0	11.9
5600N	4800E	4800.0	5600.0 57496.3	3 9	-7 29.1	-7.1	5.2	17	0	4.2	.0	9.6
5700N	4012E	4012.0	5700.0 57994.3	32	16 16.5	17.7	18.1	33	15	3.5	16.7	18.6
5700N	4025E	4025.0	5700.0 57715.5	5 32	14 17.2	15.5	18.0	28	14	3.7	15.1	15.9
5700N	4037E	4037.0	5700.0 57619.1	26	11 18.1	11.8	14.7	35	11	3.5	12.4	19.5
5700N	4050E	4050.0	5700.0 57803.0) 29	9 17.7	9.8	16.3	25	10	3.7	10.6	14.2
5700N	4062E	4062.0	5700.0 58030.9	9 27	8 17.3	8.6	15.2	27	10	3.7	10.7	15.2
5700N	4075E	4075.0	5700.0 58511.5	5 27	7 17.5	7.5	15.2	24	10	3.7	10.6	13.6
57 00 N	4087E	4087.0	5700.0 58056.3	3 23	6 17.1	6.3	13.0	23	10	3.5	10.5	13.1
5700N	4100E	4100.0	5700.0 57812.2	33	6 17.6	6.7	18.3	28	14	3.5	15.1	15.9
5700N	4112E	4112.0	5700.0 57687.6	, 30	6 18.0	6.5	16.8	31	10	3.6	11.0	17.4
5700N	4125E	4125.0	5700.0 57950.3	37	5 17.4	5.7	20.3	30	12	3.7	13.1	16.9
5700N	4137E	4137.0	5700.0 57952.5	34	3 17.3	3.3	18.8	33	12	3.6	13.3	18.5
5700N	4150E	4150.0	5700.0 57687.0	30	3 18.0	3.3	16.7	28	12	3.4	13.0	15.8
5700N	4162E	4162.0	5700.0 57643.7	37	3 17.9	3.4	20.3	38	11	3.8	12.6	21.0
5700N	4175E	4175.0	5700.0 57672.0	38	4 18.0	4.6	20.8	39	9	3.9	10.4	21.4
5700N	4187E	4187.0	5700.0 57507.1	. 32	3 18.2	3.3	17.8	36	12	3.5	13.6	20.0
5700N	4200E	4200.0	5700.0 57542.6	28	4 17.9	4.3	15.7	34	11	3.8	12.3	19.0
5700N	4212E	4212.0	5700.0 57565.0	38	4 18.7	4.6	20.8	43	10	3.8	11.9	23.4
5700N	4225E	4225.0	5700.0 57614.9	33	4 18.0	4.4	18.3	46	7	3.9	8.5	24.8
5700N	4237E	4237.0	5700.0 58215.0	32	0 19.0	.0	17.7	46	7	4.0	8.5	24.8
5700N	4250E	4250.0	5700.0 57246.0	36	1 19.4	1.1	19.8	50	8	3.8	10.0	26.7
5700N	4262E	4262.0	5700.0 57332.9	34	0 20.2	.0	18.8	45	5	4.0	6.0	24.3
5700N	4275E	4275.0	5700.0 57430.6	41	2 19.4	2.3	22.3	47	5	4.0	6.1	25.2
5700N	4287E	4287.0	5700.0 57669.7	36	0 19.6	.0	19.8	46	3	4.0	3.6	24.7
5700N	4312E	4312.0	5700.0 57465.3	37	3 19.0	3.4	20.3	47	6	4.1	7.3	25.2
5700N	4325E	4325.0	5700.0 57428.9	38	3 20.1	3.4	20.8	47	4	4.2	4.9	25.2
5700N	4337E	4337.0	5700.0 57743.1	40	3 19.6	3.5	21.8	48	2	4.0	2.5	25.6
5700N	4350E	4350.0	5700.0 58096.9	34	0 20.7	.0	18.8	38	4	3.5	4.6	20.8
5700N	4362E	4362.0	5700.0 57611.5	36	0 19.7	.0	19.8	39	1	4.1	1.2	21.3
5700N	4375E	4375.0	5700.0 58223.3	37	0 20.8	.0	20.3	40	2	4.2	2.3	21.8
5700N	4387E	4387.0	5700.0 57367.6	44	0 20.7	.0	23.7	42	1	4.3	1.2	22.8

5700N	4412E	4412.0	5700.0	57682.0	50	1	19.8	1.3	26.6	55	0	4.1	.0	28.8
5700N	4425E	4425.0	5700.0	57738.2	58	2	18.5	2.7	30.1	54	0	4.2	.0	28.4
5700N	4437E	4437.0	5700.0	57683.5	40	-1	22.8	-1.2	21.8	45	0	4.4	.0	24.2
5700N	4450E	4450.0	5700.0	57812.5	38	-7	21.7	-8.0	20.9	41	-3	4.6	-3.5	22.3
5700N	4550E	4500.0	5700.0	57325.0	48	-6	22.0	-7.4	25.7	60	-10	4.3	-13.6	31.2
5700N	4562E	4513.3	5700.0	57297.3	46	-3	22.4	-3.6	24.7	52	-5	5.1	-6.4	27.5
5700N	4575E	4527.8	5700.0	57329.2	48	-1	22.8	-1.2	25.6	51	-3	5.2	-3.8	27.0
5700N	4587E	4541.1	5700.0	57388.6	53	-1	23.3	-1.3	27.9	51	-2	5.2	-2.5	27.0
5700N	4600E	4555.6	5700.0	57350.1	54	0	22.8	.0	28.4	52	-3	5.3	-3.8	27.5
570 0 N	4612E	4568.9	5700.0	57351.3	51	0	23.7	.0	27.0	56	-2	5.2	-2.6	29.3
5700N	4625E	4583.3	5700.0	57444.9	56	2	25.5	2.6	29.3	55	-3	5.6	-3.9	28.8
5700N	4637E	4596.7	5700.0	57413.5	47	3	24.9	3.7	25.2	50	0	5.9	.0	26.6
5700N	4650E	4611.1	5700.0	57456.8	54	3	24.6	3.9	28.4	48	-1	6.1	-1.2	25.6
5700N	4662E	4624.4	5700.0	57455.0	40	0	27.3	.0	21.8	37	-3	6.5	-3.4	20.3
5700N	4675E	4638.9	5700.0	57436.8	17	-4	29.2	-4.1	9.7	21	-5	6.2	-5.2	11.9
5700N	4687E	4652.2	5700.0	57474.3	19	0	28.8	.0	10.8	25	-2	6.0	-2.1	14.0
5700N	4700E	4666.7	5700.0	57505.5	13	-5	27.2	-5.1	7.4	20	-4	6.3	-4.2	11.3
5700N	4712E	4680.0	5700.0	57468.2	13	-10	26.4	-10.2	7.5	16	-8	6.1	-8.2	9 1
5700N	4725E	4694.4	5700 0	57473 4	14	-2	26.9	-2 0	8 0	17	-2	59	-2 1	97
5700N	4737F	4707 8	5700 0	57468 3	11	-2	29 1	-2 0	63	14	-1	57	-1 0	9 1
5700N	47507	4722 2	5700 0	57453 2		- 2	27 0	-3 0	16	11	-1	6 N	-1 0	6 3
5700N	47625	4735 6	5700.0	57483 8	2	-1	25.8	-1 0	1 1	10	1	5.8	1 0	57
5700N	47758	4750.0	5700.0	57519 8	<u>د</u>	1	26.2	1 0	2 3	11	2	59	3.0	63
5700N	47787E	4750.0	5700.0	57505 1	4	2	22.9	2 0	2.3	13	2	5. <i>7</i> 6 1	3.0	7 /
5700N	48005	4700.0 4777 R	5700.0	57/93 2		ñ	21 1	L.V 0	-1 6	1	1	5 4	1 0	7.4
5700N	40000	47791 1	5700.0	57490 8	-25		14 0			ـــــــــــــــــــــــــــــــــــــ	<u>^</u>	5.0	1.0	-2.2
5700N	40120	4205 4	5700.0	574/0.0		-0	24 1	-0.7	-1/.3 	-4 1	л И	5 1	.0	-2.3
5700N	402JE 4027E	4003.0	5700.0	57525 1	-/	-2	25.2	.0	-4.0	۳. ۳.	4 1	J.I.	4.0	0
5700M	4037L 30505	4010.7	5700.0	57/00 /	-11		23.2	-2.0	-0.3	11	4 5	4.0	4.0	4.7
SZOUN KIDOM	400000	4033.3	5700.0	57460.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	24.4	-3.1		10	с С	5.2 5.2	5.L 5 1	0.3 5 7
5700N \$7008	4004E Kore	4040.7	5700.0	576/7 7	-24	~)	LL.L 10 1	-5.3	-13.5	10	ິ "	5.3	J.1 7 0	3./ 2 E
5700N	4070C 4007C	4001.1	5700.0	57,00 5	-10	~3	17.1 10 r	-3.1	-10.2	11	~	9.4 5.1	7.0	చ.ఎ ⁄ా
5700N	4087E	4874.4	5700.0	57482.5	-10	U	10.0	.0	-5./	1 "	7 7	5.1	7.1	6.3
5700N	47005	4008.7	5700.0	5/473.5	-3	4	10.7	4.0	-1./	C1		5.3	1.2	0.5
5700N	47120	4702.2	5700.0	57502.2	2	4	17.5	4.0	1.1	20	6	5.2	0.2	11.3
5/00N	49256	4916./	5700.0	5/469.9	6	2	19.8	2.0	3.4	18	3	<u>ა.</u> 6	3.1	10.2
5700N	493/E	4930.0	5700.0	5/480.4	9	0	19.4	.0	5.1	20	0	5./	.0	11.3
5/00N	4950E	4944.4	5/00.0	5/523.3	9	0	20.5	.0	5.1	22	0	5./	.0	12.4
5700N	4962E	495/.8	5700.0	5/513.3	15	1	21.5	1.0	8.5	23	0	5./	.0	13.0
5/00N	49/5E	4972.2	5/00.0	5/48/.2	15	3	21.9	3.1	8.5	32	2	5.8	2.2	1/.8
5/00N	498/E	4985.6	5/00.0	5/491.9	13	4	24.1	4.1	7.4	28	2	5.9	2.2	15.6
5700N	5000E	5000.0	5700.0	57487.0	9	3	24.6	3.0	5.1	22	4	6.3	4.2	12.4
5800N	4187E	4187.0	5800.0	57905.0	27	5	19.9	5.4	15.1	37	6	4.1	6.8	20.4
5800N	4200E	4198.6	5800.0	57507.6	36	4	20.1	4.5	19.8	31	6	4.3	6.6	17.3
5800N	4212E	4209.4	5800.0	57761.7	34	2	20.6	2.2	18.8	33	6	4.4	6.7	18.3
5800N	4225E	4221.0	5800.0	57598.9	33	0	20.6	.0	18.3	30	4	4.4	4.4	16.7
5800N	4237E	4231.8	5800.0	57786.3	37	0	20.9	.0	20.3	27	5	4.5	5.4	15.1
5800N	4250E	4243.4	5800.0	57532.9	38	-1	20.4	-1.1	20.8	37	4	4.4	4.5	20.3
5800N	4262E	4254.1	5800.0	58086.8	32	-1	21.0	-1.1	17.7	32	2	4.5	2.2	17.8
5800N	4275E	4265.8	5800.0	57765.0	32	-4	21.4	-4.4	17.8	26	2	4.2	2.1	14.6
5800N	4287E	4276.5	5800.0	57617.9	34	-3	21.0	-3.3	18.8	29	2	4.2	2.2	16.2
5800N	4300E	4288.2	5800.0	58042.5	25	-2	20.7	-2.1	14.0	32	0	4.6	.0	17.7
5800N	4312E	4298.9	5800.0	56955.9	34	-3	23.4	-3.3	18.8	35	1	4.8	1.1	19.3
5800N	4325E	4310.6	5800.0	57654.9	17	-3	22.6	-3.1	9.7	32	2	4.5	2.2	17.8
5800N	4337E	4321.3	5800.0	57635.6	29	-3	22.7	-3.3	16.2	31	1	4.6	1.1	17.2
5800N	4350E	4332.9	5800.0	57729.1	35	-4	21.6	-4.5	19.3	37	0	4.8	.0	20.3

5800N	4362E	4343.7	5800.0	57787.5	27	-6	20.8	-6.4	15.2	33	2	4.6	2.2	18.3
5800N	4375E	4355.3	5800.0	57803.9	27	-5	21.2	-5.4	15.1	35	0	3.9	.0	19.3
5800N	4387E	4366.1	5800.0	57821.8	38	-3	21.4	-3.4	20.8	36	0	4.9	.0	19.8
5800N	4400E	4377.7	5800.0	57833.6	37	-3	22.0	-3.4	20.3	40	0	5.0	.0	21.8
5800N	4412E	4388.4	5800.0	57569.5	34	-5	22.6	-5.6	18.8	44	-3	4.7	-3.6	23.8
5800N	4425E	4400.1	5800.0	57794.9	36	-6	21.6	-6.8	19.9	37	-3	4.8	-3.4	20.3
5800N	4437E	4410.8	5800.0	57117.1	34	-9	23.4	-10.0	18.9	34	-7	4.6	-7.8	18.9
5800N	4450E	4422.5	5800.0	5/1/1.1	39	-12	21.3	-13.8	3 21.6	38	-7	5.1	-8.0	20.9
5800N	4462E	4433.2	5800.0	5/406.5	39	-/	22.4	-8.1	21.4	38	-3	5.1	-3.4	20.8
5800N	44/5E	4444.9	5800.0	5/2/0.3	48	-5	21.6	-6.2	25.7	34	0	5.1	.0	18.8
5800N	4500E	4467.2	5800.0	57278.0	42	-5	23.4	-5.9	22.8	35	-1	5.5	~1.1	17.3
2800M	4550E	4512.0	5800.0	57331.2	35	~1	28.8	-1.1	. 17.3	38 20	-2	6.7	-2.3	20.8
5600N	40020	4020.8	5800.0	57200 4	40	2	30.5	.0	14.0	37	-T	5.7	-1.2	21.3
5000N	43/35	4540.8	5800.0	57368.4	10	2	32.2	2.1 2 0	. 14.0	3/	0	7.4	.0	20.3
SOOON	4387C	4334.5	5800.0	57408.7	13	ے م	33.0	2.0	1.4	17		0.4	.0	10.0
SOUDA	45000	4367.6	5800.0	57415.4			20.0	.0	-1./	7	~ 2	0.1 7 /	-2.0	4.0
SOUCH	40125	4000.4 4500 A	5000.0	57430.3	-5		20.3		-2.7	1	-4	7.4	-4.0	4.U 2 A
SOOON	46230	4576.4	5900.0	57420.3	_1	- 3	24 2	-4.0	· .0	12		4.2	-0.0	3.4 2.9
SECON	40370	4012.2	5200.0	57471 4	I 	- 3	20.2	-3.0	0	12	1	4 n	-1 0	7 /
SOODN	46000	4627.2	5200.0	574/1.0	15	7	20.3	7 2	Q 4	17	~1	6.0	2 1	97
5200N	40020	4641.0	5800.0	57473 4	10	7	29.4	7.2	5.2	20	<u>د</u>	6.7	5 2	11 3
SSOON	467.54	4656.0	5800.0	574/0.4	5	2	20.4	2 N	2.9	14	8	6 1	8.2	9 1
5800N	47005	4667.0	5800.0	57440.0	8	10	27 3	10.0	с., Л К	20	9	6.8	9 1	4 6
5800N	4712F	4698 6	5800.0	57482 8	5	4	28 4	4 0	29	8	á	6 5	4 0	4.6
5800N	4725F	4070.0	5800.0	57485 0	ñ	2	25 1	2 0	<u>د.</u> ر	5	2	6 9	2 0	29
5800N	47375	4727 4	5800 0	57490 0	4	4	27 3	4 0	23	5	2	6.4	2.0	2.9
5800N	4750F	4742 4	5800.0	57529.3	0	۵	28.3	4.0	.0	5	3	6.5	3.0	2.9
5800N	4762F	1756 2	5800.0	57506.1	-1	0	27.4	. 0	6	õ	õ	6.5	.0	_ 0
5800N	477.5E	4771.2	5800.0	57527.8	-8	-4	26.4	-4.0	-4.6	-5	-3	6.3	-3.0	-2.9
5800N	4787E	4785.0	5800.0	57512.4	-6	-3	26.1	-3.0	-3.4	-3	-2	5.8	-2.0	-1.7
5800N	4800E	4800.0	5800.0	57504.5	-9	-3	24.7	-3.0	-5.1	-6	0	5.6	.0	-3.4
5800N	48125	4812.0	5801.5	57492.3	-8	-3	24.4	-3.0	-4.6	0	0	5.4	.0	.0
5800N	4825E	4825.0	5803.1	57495.4	-6	-4	24.0	-4.0	-3.4	1	0	5.4	. 0	.6
5800N	4837E	4837.0	5804.6	57500.0	1	0	22.6	.0	.6	10	5	5.2	5.1	5.7
5800N	4850E	4850.0	5806.3	57514.7	2	0	23.2	.0	1.1	16	5	5.4	5.1	9.1
5800N	4862E	4862.0	5807.8	57533.0	5	0	23.4	.0	2.9	15	4	5.2	4.1	8.5
5800N	4875E	4875.0	5809.4	57551.3	10	0	23.8	.0	5.7	20	3	5.6	3.1	11.3
5800N	4887E	4887.0	5810.9	57535.0	11	1	24.1	1.0	6.3	20	4	5.3	4.2	11.3
5800N	4900E	4900.0	5812.5	57059.3	11	2	24.6	2.0	6.3	21	4	5.7	4.2	11.9
5800N	4912E	4912.0	5814.0	57562.2	6	3	23.0	3.0	3.4	18	6	5.9	6.2	10.2
5800N	4925E	4925.0	5815.6	57515.1	10	4	24.3	4.0	5.7	18	8	6.1	8.3	10.3
5800N	4937E	4937.0	5817.1	57520.1	10	3	25.7	3.0	5.7	14	8	6.2	8.2	8.0
5800N	4950E	4950.0	5818.8	57501.5	-1	3	26.4	3.0	6	10	7	6.3	7.1	5.7
5800N	4962E	4962.0	5820.3	57520.8	0	3	26.6	3.0	.0	7	6	6.4	6.0	4.0
5800N	4975E	4975.0	5821.9	57540.5	-11	1	26.6	1.0	-6.3	0	6	6.4	6.0	.0
5800N	4987E	4987.0	5823.4	57523.4	-21	0	25.0	.0	-11.9	-3	5	6.3	5.0	-1.7
5800N	5000E	5000.0	5825.0	57512.7	-34	-4	22.7	-4.5	-18.8	-17	4	6.2	4.1	-9.7
5900N	4112E	4112.0	5900.0	57872.5	34	2	23.9	2.2	19.8	26	2	4.4	2.1	14.6
5900N	4125E	4125.0	5900.0	58140.9	28	0	24.8	.0	15.6	26	0	4.5	.0	14.6
5900N	4137E	4137.0	5900.0	58396.5	45	0	21.2	.0	24.2	24	1	4.4	1.1	13.5
5900N	4150E	4150.0	5900.0	57657.7	42	-1	22.8	-1.2	22.8	25	0	4.4	. 0	14.0
5900N	4162E	4162.0	5900.0	57804.4	33	-1	23.9	-1.1	18.3	26	-1	4.6	-1.1	14.6
5900N	4175E	4175.0	5900.0	57822.2	41	-1	23.5	-1.2	22.3	34	-2	4.6	-2.2	18.8
5900N	4187E	4187.0	5900.0	57734.9	38	-3	24.4	-3.4	20.8	21	-3	4.3	-3.1	11.9

5900N	4200E	4200.0	5900.0	57640.7	28	-6 2	25.4	-6.5	15.7	18	-4	4.0	-4.1	10.2
5900N	4212E	4212.0	5900.0	57804.0	24	-6 2	25.2	-6.3	13.5	25	-4	4.5	-4.3	14.1
5900N	4225E	4225.0	5900.0	57521.5	19	-8 2	25.5	-8.3	10.8	22	-6	4.5	-6.3	12.4
5900N	4237E	4237.0	5900.0	57798.1	23	-10 2	25.2	-10.5	13.1	19	-7	4.6	-7.3	10.8
5900N	4250E	4250.0	5900.0	57079.7	15	-11 2	25.3	-11.3	8.6	18	-7	4.6	-7.2	10.3
5900N	4262F	4262 0	5900.0	56987.1	- 9	-14 2	23.3	-14 1	5.2	13	-12	3.9	-12.2	7.5
59000	42755	4275 0	5900.0	57142 8	2	-17 2	23 8	-17 0	1 2	1 /	-11	1 8	-11 2	2 1
59000	427075	4207 0	5900.0	57251 5	ے م	_14 2	22.2	_14_1	5.2	1 /	_10	4.0	-10 2	8 0
5700N	4207 5	4207.0	5200.0	571/0 5	10	10 2	10.1 75 5	10.1	10 0	20	-10	4.5	10.2	11 2
5700N	43000	4300.0	5900.0	57160.5	17	-12 2	20.0	-12.4	10.7	20	0	4.5	-0.2	11 0
S 700N	4312E	4312.0	5900.0	57263.8	1/	-10 2	20.1	-10.3	· 7./	20	-4	4.1	~4.2	11.3
5900N	43256	4325.0	5900.0	5/259.9	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23.7	- చ. చ	11.4	18	-3	4.1	-3.1	10.2
5900N	433/E	4337.0	5900.0	5/284.0	18	-92	26.2	-9.3	10.3	13	-/	4.3	-/.1	/.4
5900N	4350E	4350.0	5900.0	57308.1	13	-10 2	27.4	-10.2	7.5	12	-8	4.4	-8.1	6.9
5900N	4362E	4362.0	5900.0	57321.4	7	-12 2	27.1	-12.1	4.1	5	-11	4.1	-11.0	2.9
5900N	4375E	4375.0	5900.0	57363.9	8	-11 2	27.2	-11.1	4.6	12	-11	4.6	-11.2	6.9
5900N	4387E	4387.0	5900.0	57362.8	14	-8 2	26.5	~8.2	8.0	8	-5	4.4	-5.0	4.6
5900N	4 40 0E	4400.0	5900.0	57367.8	24	-8-2	24.0	-8.5	13.6	14	-6	4.4	-6.1	8.0
5900N	4412E	4412.0	5900.0	57353.8	8	-6 2	27.1	-6.0	4.6	7	-3	4.2	-3.0	4.0
5900N	4425E	4425.0	5900.0	57382.6	8	-5 2	27.3	-5.0	4.6	10	-3	4.3	-3.0	5.7
5900N	4437E	4437.0	5900.0	57386.8	3	-1 2	26.0	-1.0	1.7	0	0	4.0	.0	.0
5900N	4450E	4450.0	5900.0	57393.0	9	0 2	27.3	.0	5.1	-1	2	4.0	2.0	6
5900N	4537E	4500.0	5900.0	57442.3	8	03	32.5	.0	4.6	0	-1	7.3	-1.0	.0
5900N	4550E	4520.6	5897.3	57417.1	6	32	9.6	3.0	3.4	0	.1	6.6	1.0	.0
3900N	4562E	4539.7	5894.8	57429.9	7	72	29.0	7.0	4.0	1	3	6.6	3.0	.6
5900N	4575E	4560.3	5892.2	57444.9	6	10 2	9.9	10.0	3.5	5	8	6.3	8.0	2.9
5900N	4587E	4579.4	5889.7	57402.0	6	10 2	29.3	10.0	3.5	1	9	5.7	9.0	.6
5900N	4600F	4600.0	5887.0	57474.5	2	8 2	9.3	8.0	1.2	3	7	6.1	7.0	1.7
5900N	4612F	4612 0	5886 3	57512.5	3	8 2	28.6	8.0	1.7	2	6	5.9	6.0	1.1
5900N	4625E	4625 0	5885 5	57495 1	0	8 2	77	8.0	. 0	-1	6	5.8	6.0	5
5900N	4637F	4637 0	5884 8	57485 8	-2	6 2	26 0	6 0	-1.1	1	4	5.8	4.0	. 6
5900N	4650F	4650 0	5884 0	57521 2	3	5 2	26.0	5.0	1 7	-3	4	5.6	4.0	-1.7
5900N	4650C	4650.0	5883 3	57469 7	16	5 2	26.2	5 1	9 1	ñ	3	55	3.0	0
5900N	46755	4602.0	5882 5	57477 7	Ĩq	12	5 9	<i>x</i> n	5 2	7	ې ۲	5.2	3.0	4 0
59000	407 JL 14875	467 3.0	5881 8	57500 4	11	5 2	5 6	5 1	63	7	3	5.2	3.0	A 0
5900N	47005	4700 0	5881 0	57501 3	12	5 2		5 1	2.0 2.9	10	Å	5.2	1 0	57
50000	47000	4700.0	5001.0	57512 9	· 0	2 2	20	2.1	10.2	15	4	5.2 5.1	4.0	84
SOOCH	4714E 47955	4712.0	100V.3 1070 5	57471 0	17	202	5.0	0.2 7 7	10.2	17	4	5.2	4 2	9.0
5700N	472020	4723.0	JO/7.J	57471.0	17	7 4		7.4	2.7	20	0	J	0.4	11 1
D 700N	47372	4737.0	5678.0	57507.8	1/	1 2	0.0	1.2	7./	20	ن ر	5.4	0.3	11 2
STUUN	47000	4/30.0	3878.0	5/503.5	17	52	1.0	0.2	10.3	20	ь г	5.8	0.2 5 7	10 2
5900N	4/620	4762.0	5877.3	5/4/9.9	1/	5 2	8.2	5.1	7./	18	2	5.7	5.2	10.2
5900N	4//52	4775.0	58/5.5	5/525.0	16	22	ອີ. ລິ ອີ. ລິ	2.1	7.1	17	2	ວ.ິ ເດ	2.1	7./
5900N	4/8/E	4/8/.0	58/5.8	5/515.8	1 1	22	7.2	2.0	6.3	1/	2	6.0	2.1	9./
5900N	4800E	4800.0	58/5.0	5/54/.2	13	02	7.2	.0	/.4	14	Ţ	6.1	1.0	8.0
5900N	4812E	4312.0	5875.0	5/553.3	12	0 2	7.6	.0	6.8	13	0	6.1	.0	7.4
5900N	4825E	4825.0	5875.0	57538.1	11	12	7.8	1.0	6.3	11	0	6.0	.0	6.3
5900N	4837E	4837.0	5875.0	57548.6	13	12	8.8	1.0	7.4	16	3	6.1	3.1	9.1
5900N	4850E	4850.0	5875.0	57556.5	9	13	0.0	1.0	5.1	14	2	6.4	2.0	8.0
5900N	4862E	4862.0	5875.0	57546.3	7	12	9.6	1.0	4.0	12	5	6.3	5.1	6.9
5900N	4875E	4875.0	5875.0	57543.6	0	12	7.2	1.0	.0	8	3	5.8	3.0	4.6
5900N	4887E	4887.0	5875.0	57567.4	-6	02	6.4	.0	-3.4	5	4	6.1	4.0	2.9
5900N	4900E	4900 .0	5875.0	57550.2	2	0 2	7.4	.0	1.1	10	5	6.6	5.1	5.7
5900N	4912E	4912.0	5876.8	57568.3	-6	23	1.7	2.0	-3.4	-2	4	6.8	4.0	-1.1
5900N	4925E	4925.0	5878.8	57551.2	-13	1 3	2.0	1.0	-7.4	-6	5	6.9	5.0	-3.4
5900N	4937E	4937.0	5880.5	57576.4	-27	03	2.4	.0	-15.1	-13	5	7.2	5.1	-7.4
5900N	4950E	4950.0	5882.5	57577.6	-28	0 2	9.5	.0	-15.6	-15	7	6.5	7.2	-8.6

	(0/07	(0)00	50000	-	~ ~	•	o (
5700M	47621	4962.0	5884.3	5/549./	-30	4	25.1	2.2	-16./	-14	8	6.1	8.2	-8.0
5900N	4975E	4975.0	5886.3	57543.6	-34	-1	24.6	-1.1	-18.8	-12	11	5.8	11.2	-6.9
5900N	4987E	4987.0	5808.0	57564.9	-32	0	23.5	.0	-17.7	-13	11	5.3	11.2	-7.5
5900N	500 0 E	5000.0	5890.0	57442.4	-28	0	23.0	.0	-15.6	-9	11	5.6	11.1	-5.2
6000N	4525F	4500.0	6000.0	57455 1	-10	6	24 1	6 1	-5 7	-13	6	53	6 1	-7 4
6000N	1537E	4512 6	6000 0	57/91 2	-12	6	23 1	6 1	-4 9	_Q	7	5 1	7 1	-5 2
4000N	45505	4012.0	4000.0	57472 (5	20.9	с. <u>т</u>	5 7			5.1	/ 0	2.4
6000N	43306	4528.5	6000.0	57473.6	- 7	د ،	23.3	5.0	-3.2	~0	5	5.4	5.0	-3.4
SUUUN	4562E	4538.9	6000.0	5/491.6	-15	4	23.2	4.1	-8.5	-/	5	5.1	5.0	-4.0
6000N	45/5E	4552.6	6000.0	5/495./	-10	3	22.1	3.0	-5.7	-6	4	5.1	4.0	-3.4
6000N	4587Ë	4565.3	6000.0	57464.0	-8	3	22.6	3.0	-4.6	-8	3	5.1	3.0	-4.6
6000N	4600E	4578.9	5000.0	57451.8	-18	3	22.4	3.1	-10.2	-5	5	4.8	5.0	-2.9
60 0 0N	4612E	4591.6	6000.0	57491.7	-16	3	22.7	3.1	-9.1	-8	4	4.9	4.0	-4.6
6000N	4625E	4605.3	6000.0	57465.1	-7	4	22.4	4.0	-4.0	-3	5	5.0	5.0	-1.7
6000N	4637F	4617.9	6000.0	57467 2	-7	7	22 0	7 0	-4 0	-1	6	5 1	6.0	- 6
6000N	4450E	4631 6	6000 0	57/93 2	- 1	Ω	22 0	8 0	-2 3	Ô	4	<u>л</u> л	6.0	
2000N	40000	4001.0	4000.0	574/3.0	7	7	22.0	7 0	1 2.5	4	ں د	ч.ч с л	5.0	
	4/025	4747.5	6000.0	57467.0	2		23.1	7.0	1.4	4	5	5.4	5.0	2.3
SUUUN	4775E	4/63.2	6000.0	5/526.4	3		24.6	2.0	1./	8	4	5./	4.0	4.6
6000N	468/E	46/0.5	6000.0	5/526.9	5	5	24.8	5.0	2.9	6	2	5.8	2.0	3.4
6000N	4700E	4684.2	6000.0	57536.3	4	4	25.8	4.0	2.3	3	1	6.0	1.0	4.6
6000N	4712E	4696.8	6000.0	57516.0	3	3	26.5	3.0	1.7	7	1	6.1	1.0	4.0
6000N	4725E	4710.5	6000.0	57553.7	1	1	27.3	1.0	. 6	4	0	6.0	.0	2.3
6000N	4737E	4723.2	6000.0	57521.9	0	C	26.5	.0	.0	6	0	6.0	.0	3.4
6000N	4750E	4736.8	6000.0	57546.0	1	1	27.0	1.0	.6	6	· 0	6.2	.0	3.4
6000N	4762E	4749.5	6000.0	57520.9	1	0	28.7	.0	.6	2	0	6.1	.0	1.1
6000N	4775E	4763.2	6000.0	57551.5	0	0	29.4	. 0	.0	3	ō	6.6	.0	1.7
6000N	4787F	4775 8	6000 0	57580 8	-6	-2	30 3	-2 0	-3 1	-5	-2	67	-2 0	-29
4000U	49005	4729 5	4000.0	57508 4	-11	-3	29.3	-3 0	-4 3	- 1	-2	4 7	-2 0	-2 3
4 0 0 0 N	40000	4002 1	4000.0	57495 0		2	20.0			4	2	2.0	<u> </u>	
C000H	40125	4004.1	(000.0	57475.0	-14	-2	27.2	-2.0	-0.0	-0	1	0.7	.0	-3.4
6000N	48236	4313.8	6000.0	5/5/1.5	-10	0	30.0	.0	~7.1	-0	Ť	5.8	1-0	~ 4.7
6000N	4837E	4828.4	6000.0	5/588.2	-21	0	30.6	.0	-11.9	-12	0	6./	.0	-6.8
6000N	48502	4342.1	6000.0	57573.2	-30	0	27.1	.0	-16.7	-20	-1	6.4	-1.0	-11.3
6000N	4862E	4854.7	6000.0	57558.3	-27	0	25.5	.0	-15.1	-22	0	6.0	.0	-12.4
6000N	4875E	4868.4	6000.0	57593.4	-23	2	25.6	2.1	-13.0	-17	2	5.6	2.1	-9.7
6000N	4887E	4881.1	6000.0	57576.2	-18	4	25.3	4.1	-10.2	-17	3	5.5	3.1	-9.7
6000N	4900E	4894.7	6000.0	57545.5	-17	5	24.6	5.1	-9.7	-19	4	5.3	4.1	-10.8
6000N	4912E	4907.4	6000.0	57585.9	-10	6	25.3	6.1	-5.7	-15	6	5.3	6.1	-8.6
6000N	4925E	4921.1	6000.0	57629.5	-11	5	24.8	5.1	-6.3	-8	5	5.3	5.0	-4.5
6000N	4937F	4933 7	6000 0	57640 7	-10	3	23.9	3 0	-57	-9	5	5.2	5.0	-5.2
6000N	4950E	1947 A	6000 0	57439 4	-1	5	22.3	5 0	-23	-2	7	5 2	7 0	-1 2
40000N	47002	1940 D	4000.0	57544 0	- 1	<u>ح</u>	22.5	5.0	3	0	ć	ς 1	9.0	<u>ົ</u> ກ
	4702L	4/00.0	2000.0	57500.5	ц х	2	20.J	2.0	~ 2.0	2	10	5.0	10.0	1 7
CORANI CORANI	47/05	47/3./		57603.7	~4	ు	23.0	3.0	~∠.3 1 7	3 7	11	5.0	11 1	1./ A 1
CUUUN	4987E	4986.3	6000.0	5/602.6	J	3	23.2	3.0	-1./		11	5.1		4.1
6000N	5000E	5000.0	6000.0	5/53/.8	-5	2	23.1	2.0	-3.4	11	12	5.1	12.1	6.4
6100N	4175E	4175.0	6070.0	57189.5	16	-10	26.7	-10.3	9.2	18	-9	4.0	-9.3	10.3
6100N	4137E	4187.0	6071.1	57226.2	15	-10	26.7	-10.2	8.6	17	-10	4.2	-10.3	9.7
6100N	4200E	4200.0	6072.3	57263.0	17	-8	26.5	-8.2	9.7	20	-6	3.8	-6.2	11.3
6100N	4212E	4212.0	6073.4	57277.8	16	-6	27.7	-6.2	9.1	11	-5	4.3	-5.1	6.3
6100N	4225E	4225.0	6074.6	57301.5	6	-5	27.7	-5.0	3.4	4	-6	4.3	-6.0	2.3
6100N	4237E	4237.0	6075.7	57312.9	6	-5	26.9	-5.0	3.4	2	-7	4.2	-7.0	1.2
6100N	4250F	4250_0	6076.9	57347.7	-5	-9	27.5	-9.0	-2.9	-6	-10	4.1	-10.0	-3.5
6100N	4262F	4262 0	6078 0	57379 0	-9	-14	24 2	-14 1	-5 2	-11	-14	3.6	-14 2	-6.4
6100N	12755	1275 0	6079 2	57/28 0	-6	-11	22 9	-11 0	-3 5	-7	~10	२.२ २.२	-10 0	-4 0
4100N	12075	4207 0	4000 2	57271 4	ن ۸		21 9	-4 0	2.2	A	_~~ _~~	2.3	-5 0	-2 2
CTOON STOON	42075	4207.U		57202 1	4 r	- 0	61.7 99 A	-0.0	<u> </u>	-4		ა.4 ე /	O	د.J م
OTANN	43000	4300.0	0001.3	J/303.L	2	~ 2	∠3.U	-2.V	6.7	U	- 4	5.4	-4.0	

6100N 4312E 4312.0 6082.6 57373.3 10 0 22.9 .0 5.7 0 0 3.2 .0

.0

6100N	4325E	4325.0	6083.8	57393.3	12	2 23.7	2.0	6.8	4	0	3.3	.0	2.3
6100N	43 37E	4337.0	6085.0	57426.1	12	3 23.5	3.0	6.8	: 5	2	3.3	2.0	2.9
6100N	4350E	4350.0	6086.2	57429.4	14	4 24.4	4.1	8.0	8	4	3.4	4.0	4.6
S100N	4362E	4362.0	6087.3	57424.9	14	4 25.4	4.1	8.0	9	4	3.2	4.0	5.2
5100N	4375E	4375.0	6083.5	57407.9	12	5 27.2	5.1	6.9	8	4	3.3	4.0	4.6
6100N	4387E	4387.0	6089.6	57433.8	6	4 29.1	4.0	3.4	5	7	3.4	7.0	2.9
6100N	4400F	4400 0	6090 8	57445 8	1	3 28 2	3.0	4	2	. 6	3 4	6 0	1 1
6100N	4412F	4412 0	6091 9	57459 2		2 27 5	2 0	-17	n n	e R	3.7	8.0	 0
4100M	441255	441C.0	4097.1	57430 5	- A	1 25 1	4 0	-2 3	3	11	3.0	11 0	17
4100M	442JC 77275	4423.0	209/ 2	57720 0		4 20.1	4.0	-2.0	د ۸	12	2.0	12 0	2.2
4100N	4407 L 88505	4437.0	4095 4	57400.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 24.5	0.0	-1.1 1 7	4	1/	3.0	1(2	2.J
C100N	44300	4400.0	20075.4	57501 7	2 7	7 4 4 4	7.0	1.4	тт ТТ	10	3.0	10.4	0. 4
CIOON (100H	44020	4462.0	6076.5	57581.7	7	8 23.6	0.S	4.0	<u></u> С	14	3.L	14.1	4./
ADDIG STOOM	44736	44/5.0	6097.7	5/486.3	3	6 23.8	6.0	2.9	ਲ -	TT	3.2	11.1	4.6
NUULG	448/E	4487.0	6098.8	5/461.1	4	6 25.9	6.0	2.3		8	3.3	8.0	4.0
6100N	4500E	4500.0	6100.0	5/481.5	1	4 26.4	4.0	.6	2	7	3.3	7.0	1.2
6100N	4512E	4512.0	6100.0	57483.5	6	0 25.3	.0	3.4	6	0	25.3	-99.0	-99.0
6100N	4525E	4525.0	6100.0	57495.6	2	0 24.6	.0	1.1	2	0	24.6	-99.0	-99.0
6100N	4537E	4537.0	6100.0	57486.3	4	0 23.9	.0	2.3	4	0	23.9	-99.0	-99.0
6100N	4550E	4550.0	6100.0	57508.3	9	1 22.4	1.0	5.1	9	1	22.4	-99.0	-99.0
6100N	4562E	4562.0	6100.0	57499.1	8	2 23.2	2.0	4.6	8	2	23.2	-99.0	-99.0
6100N	4575E	4575.0	6100.0	57496.6	13	2 22.6	2.0	7.4	13	2	22.6	-99.0	-99.0
5100N	4587E	4587.0	6100.0	57508.7	12	2 23.8	2.0	6.8	12	2	23.8	-99.0	-99.0
9700M	4600E	4600.0	6100.0	57491.2	15	2 23.4	2.0	8.5	15	2	23.4	-99.0	-99.0
6100M	46125	4612.0	6100.0	57481.9	13	2 25.0	2.0	7.4	13	2	25.0	-99.0	-99.0
6100N	46258	4625.0	6100.0	57506.9	8	-1 25.5	-1.0	4.6	8	-1	25.5	-99.0	-99.0
6100N	4637F	4632.0	6100.0	57551 9	9	0 24 9	0	5 1	9	ñ	24 9	-99 0	-99 0
6100N	46500	4650 0	6100 0	57524 6	11	2 25 3	20	63	11	2	25 3	-99 0	-99 0
6100N	46628	4662.0	6100 0	57553 7		2 25 2	2 0	3 1		2	25.2	-99 0	-99 0
4100N	40000	4632.0	4100.0	57534 4	2	0 25 4	<u> </u>	1 1	2	ñ	25.4	-99 0	-99 0
A 1 OON	407 DE 72976	4070.0	4100.0	57529 8	2	0 27 0	.0	1 1	2	Õ	27 0	-99 0	-99 0
4100H	4007 C 47002	4307.0	4100.0	57540 4	-2	-2 24 2	.0	1 _7	<u>د</u>		2/.0	- 99.0	
2100N	47000	4700.0	6100.0	57541 (-3	-2 20.0	-2.0	-1./	-3	-2	20.0	- 77.0	- 77.0
ATOOM .	47121	4712.0	6100.0	57541.0	-4	-1 26.5	~1.0	- <u> </u>	-4	~T	20.0	~77.0	~77.0
6100N	47205	4723.0	6100.0	5/54/.3	~0	0 28.5	.0	-3.4	-5	0	20.0	~77.0	-77.0
6100M	4737E	4/3/.0	5100.0	5/ 563.4	-/	0 23.7	.0	-4.0	-/	0	23./	~ 77.0	-99.0
6100N	4/ 3VC	4/50.0	5100.0	5/565.3	-11	1 26.7	1.0	-6.3	-11	1	26./	-99.0	-99.0
6100N	4/626	4762.0	6100.0	5/534.5	-18	0 26.8	.0	-10.2	-18	0	26.8	-99.0	-99.0
6100N	4//5E	4775.0	6100.0	57552.0	-30	-5 24.8	-5.5	-16.7	-30	~5	24.8	-99.0	-99.0
6100N	4787E	4787.0	6100.0	57575.8	-33	-4 21.4	-4.4	-18.3	-33	-4	21.4	-99.0	-99.0
6100N	4800E	4800.0	6100.0	57552.2	-28	0 19.5	.0	-15.6	-28	0	19.5	-99.0	-99.0
6100N	4812E	4812.0	6100.0	57536.7	-20	4 19.5	4.2	-11.3	-20	4	19.5	-99.0	-99.0
6100N	4825E	4825.0	6100.0	57536.9	-13	7 19.0	7.1	-7.4	-13	7	19.0	-99.0	-99.0
6100N	4837E	4837.0	6100.0	57550.6	-11	7 18.7	7.1	-6.3	-11	7	18.7	-99.0	-99.0
6100N	4850E	4850.0	6100.0	57559.4	-3	10 19.1	10.0	-1.7	-3	10	19.1	-99.0	-99.0
6100N	4862E	4862.0	6100.0	57580.7	3	11 19.7	11.0	1.7	3	11	19.7	-99.0	-99.0
6100N	4875E	4875.0	6100.0	57577.1	1	10 20.3	10.0	.6	1	10	20.3	-99.0	-99.0
6100N	4900E	4900.0	6100.0	57558.8	-2	7 20.6	7.0	-1.2	-2	7	20.6	-99.0	-99.0
6100N	4912E	4912.0	6100.0	57596.1	-3	4 20.0	4.0	-1.7	-3	4	20.0	-99.0	-99.0
6100N	4925E	4925.0	6100.0	57592.6	-3	5 19.9	5.0	-1.7	-3	5	19.9	-99.0	-99.0
6100N	4937E	4937.0	6100.0	57634.6	0	5 19.7	5.0	. 0	Ō	5	19.7	-99.0	-99.0
6100N	4950E	4950.0	6100.0	57716.7	2	6 20.0	6.0	1.1	2	6	20.0	-99.0	-99.0
6100N	49628	4962 0	6100.0	57622.7	3	6 20.2	6.0	1.7	3	6	20.2	-99.0	-99.0
6100N	49755	4975 0	6100 0	57634 0	3	5 20 3	5_0	1.7	3	5	20.3	-99.0	-99.0
6100N	4987F	4987 0	6100.0	57708 8	1	4 20 0	4 0	- • · · · 4	1	۵ ۵	20 0	-99 0	-99 0
6200N	10005	4000 0	6100.0 4150 0	57232 1	29	-6 21 2	-4 K	16.2	25	-1	<u>_</u>	-4 3	14 1
2200N	4000L X0125	4000.0	6151 O	57555.4 57555 2	20	2 21 2	0.J 2.2	17 0	2 J 7 A	4	ч / 1	9.U A	12 5
020014	40165	4UU	OTOT'C	21666.3	34	J 61.6	3.3	1/.Ö	<u>4</u>	v	4.L	. 0	T2")

620 0 N	4025E	4025.0	6152.5	57305.3	28	4 23.1	4.3	15.7	23	4	4.2	4.2	13.0
6200N	4037E	4037.0	6153.7	57267.9	26	6 23.7	6.4	1 14.6	19	6	4.2	6.2	10.8
6200N	4050E	4050.0	6155.0	57423.1	19	3 24.6	3.1	10.8	17	4	4.2	4.1	9.7
\$200N	4062E	4062.0	6156.2	57324.5	17	2 23 2	21	97	15	۵	4.3	4 1	8.5
6200N	407 SE	4025 0	6157 5	57353 9	10	2 24 4	2 0	57	10	4	4 1	4 0	57
4200N	407 JE	40.87 0	6158 7	57389 1	1	1 23 7	1 0	y 9.7		3	3 9	30	1 7
4200N	400/C	4100 0	4140 D	57379 8	2	3 22 9	2.0	/ .0 \ 1.1	· 5	7	20	7 0	2 9
20008	41100 21105	2112 0	2121 0	57274 4	-	J LL.7	3.0	· · · ·	. o	7	3.0 20	7.0	<u> </u>
2000M	- 54444 85028		0101.C	570/7 5	د ح	4 4 4 7	4.0	/ I./	0	7	<u>ు</u> .ల	7.0	4.0
5200N 7000N	41000	4123.0	CIC2.0	57367.3	1 1	4 4 4 . i	4.0	v 4.0	7	/	3.0	/.⊥	5.2
62UUN COOON	4137 C	4137.0	0103./	57443.5	11	5 21.5	L.ٽ م	. 5.3	10		3./	/.1	5./
6200N	41005	4150.0	5165.0	5/419./	11	3 21.5	3.0	/ 6.చ / 0	14	6	3./	6.1	8.0
6200N	4152E	4162.0	6166.2	5/5/9./	11	1 21.4	1.0	6.3	12	5	3.6	5.1	6.9
6200N	41/5c	41/5.0	6167.5	57430.0	14	1 20.9	1.0	8.0	16	5	3.8	5.1	9.1
6200N	418/E	4187.0	6168.7	57393.9	16	4 20.2	4.1	9.1	19	9	3.7	9.3	10.8
6200N	4200E	4200.0	6170.0	57412.6	23	6 20.8	6.3	13.0	22	9	3.7	9.4	12.5
6200N	4212E	4212.0	6171.2	57402.7	29	6 21.7	6.5	16.2	16	6	3.9	6.2	9.1
6200N	4225E	4225.0	6172.5	57422.9	19	4 23.3	4.1	10.8	13	3	4.0	3.1	7.4
6200N	4237E	4237.0	6173.7	57452.9	16	1 23.1	1.0	9.1	12	2	4.1	2.0	6.8
6200N	4250E	4250.0	6175.0	57460.0	16	0 23.1	.0	9.1	9	Û	4.2	.0	5.1
5200N	4262E	4262.0	6176.2	57502.6	14	-2 22.3	-2.0	0.8	9	-1	4.2	-1.0	5.1
6200N	4275E	4275.0	6177.5	57468.3	11	-2 23.9	-2.0	6.3	7	-3	4.2	-3.0	4.0
6200N	4287E	4287.0	6178.7	57445.3	8	-2 22.6	-2.0	4.6	4	-2	4.3	-2.0	2.3
6200N	43008	4300.0	6180.0	57448.5	12	0 22.5	.0	6.8	8	0	4.2	.0	4.6
6200N	4312E	4312.0	6181.2	57463.3	12	2 23.9	2.0	6.8	10	2	4.2	2.0	5.7
6200N	4325E	4325.0	6182.5	57544.1	10	3 24.2	3.0	5.7	9	1	3.9	1.0	5.1
6200N	4337E	4337.0	6183.7	57489.1	8	3 23.6	3.0	4.6	8	1	4.1	· 1.0	4.6
5200N	4350E	4350.0	6185.0	57544.2	22	4 23.1	4.2	12.4	17	1	4.2	1.0	9.6
6200N	43628	4362.0	6186.2	57548.1	17	2 23.1	2.1	9.7	16	0	4.1	.0	9.1
5200N	4325E	4375.0	6187.5	57611.8	16	1 22.2	1.0	9.1	16	0	4.0	.0	9.1
6200N	4387E	4387.0	6188.7	57644.3	18	0 23.0	. 0	10.2	15	-1	4.1	-1.0	8.5
6200N	4400E	4400.0	6190.0	57432.3	23	0 22.6	.0	13.0	14	-2	4.0	-2.0	8.0
6200N	4412E	4412.0	6191.2	57469.1	22	0 22.2	.0	12.4	14	-1	3.9	-1.0	8.0
6200N	4425E	4425.0	6192.5	57471.7	23	0 22.3	.0	13.0	14	0	4.1	.0	8.0
6200N	4437E	4437.0	6193.7	57494.2	22	1 23.1	1.0	12.4	14	0	4.0	.0	8.0
6200N	4450E	4450.0	6195.0	57516.2	22	1 22.9	1.0	12.4	16	2	4.0	2.1	9.1
6200N	4462F	4462 0	6196.2	57598.0	25	2 22.0	2.1	14 0	15	ō	4.0	. 0	8.5
6200N	4475F	4475 0	6197 5	57445 3	14	4 23 5	4 1	8.0		2	4 0	20	3 4
6200N	447 JE 11875	4487 0	4198 7	57/92 8	<u>-</u>	1 23 8	1 0	3.4	5	2	A 1	2 0	29
4200N	45005	4500 0	4200 0	57/86 1	Q Q	0 23 8	1.0	14	g	2	A 1	2.0	1 4
5200N	45000	4500.0	4200.0	57400.1	5	1 24 3	1 0	29	3	1	A 1	1 0	1 7
4200N	45255	4525 0	4200.0	57490 9	7	2 23 4	2 0	1 0	7	7	4.1	7.0	<i>A</i> 0
4200N	45275	4527 0	4200.0	57509 7	0	2 23.0	2.0	4.V 7 4	10	4	4.5	4 1	57
(200N	45576	4557.0	4200.0	57554 9	7	1 25 2	1.0	4.0	10	6	4.5	4 0	J./
6200N	40000	4350.0	1200.0	57510 0		1 40.0	1.0	4.0	<u>ہ</u>	0 2	4.0	0.0	4.0
62004	43625	4362.0	5200.0	57518.0	0	0 24.8		3.4	4	2	4.0	2.0	2.3
5200M	45/36	45/5.0	5200.0	5/477./	U O	-2 25.3	-2.0	.0	2	0	4./	.0	1.1 1.1
6200N	458/E	4587.0	6200.0	5/564.6	U	-2 25.1	-2.0	.0	<u>د</u>	U	4.6	.0	1.1
6200N	4500E	4600.0	6200.0	5/5/1.1	0	-2 24.8	-2.0	.0	0	0 Ŷ	4.1	.0	.0
6200N	4612E	4612.0	6200.0	5/484.5	-2	-2 24.3	-2.0	-1.1	0	-1	4.5	-1.0	.0
52008	4625E	4625.0	6200.0	57532.0	0	-2 25.1	-2.0	.0	-2	0	4.4	.0	-1.1
5200N	4637E	4637.0	6200.0	57512.0	-2	-1 24.6	-1.0	-1.1	-4	0	4.4	.0	-2.3
5200N	4650E	4650.0	6200.0	57534.5	-5	-2 25.0	-2.0	-2.9	-7	-2	4.4	-2.0	-4.0
6200N	4662E	4662.0	6200.0	57529.6	-6	-1 24.2	-1.0	-3.4	-6	-2	4.3	-2.0	-3.4
6200N	4675E	4675.0	6200.0	57549.5	-7	0 25.1	. 0	-4.0	-8	0	4.2	.0	-4.6
6200N	4687E	4687.0	6200.0	57539.6	-9	4 24.2	4.0	-5.2	-7	4	4.4	4.0	-4.0
6200N	4700E	4700.0	£200.0	57524.5	-18	4 25.3	4.1	-10.2	-12	6	4.3	5.1	-6.9

表が発

 \square

ल्झा कर एक -

Wednesday, March 20, 1991

gera werder en er

Page 12

6200N	4712E	4712.0	6200.0	57592.0	-26	5 23.2	5.3	-14.6	-16	4	4.2	4.1	-9.1
6200N	4725F	4725.0	6200.0	57551 9	-28	2 22 5	2 2	-15 6	-20	1	A 1	1 0	-11 3
42000	17375	4737 0	4200 0	575/4 9	-24	1 20 2	1 1	-14 4	_19	Â	2 0	1.0	_10 0
4 200N	47575	4750 0	4200.0	5755/ 1	-20	1 20.2		-14.0	-17	2	3.0		-10.0
6200N	47 305	4750.0	6200.0	5/556.1		0 18.7	.0	-11.7	-1/	-2	3./	-2.1	-7./
6200N	4/626	4/62.0	6200.0	5/362.2	-14	4 18.1	4.1	-8.0	-15	-2	3./	-2.0	-8.5
6200N	4775E	4775.0	6200.0	57570.0	-9	5 18.2	5.0	-5.2	-8	0	3.5	.0	-4.6
6200N	4787E	4787.0	6200.0	57575.0	-5	5 18.1	5.0	-2.9	2	5	3.6	5.0	1.1
6200N	4800E	4300.0	6200.0	57568.0	-8	3 17.3	3.0	-4.6	6	6	3.5	6.0	3.4
6200N	4812E	4812.0	6200.0	57581.1	0	4 17.6	4.0	.0	10	9	3.3	9.1	5.8
6200N	4825E	4825.0	6200.0	57594.8	3	6 17.8	6.0	1.7	18	12	3.3	12.4	10.3
6200N	4837E	4837.0	6200.0	57587.6	8	7 18.1	7.0	4.6	15	10	3.4	10.2	8.6
6200N	4850F	4850 0	6200 0	57581 3	11	8 12 7	8 1	6 3	14	7	25	7 2	9 1
6200N	4862F	4862 0	6200.0	57600 9	13	8 19 1	Q 1	75	14	ź	25	4.2	9 1
4200N	40020	4002.0	4200.0	57617 2	12	7 10 5	7 1	7.5	10	2	5.5	2.1	7.1
1200N	407 31	407 3.0	(200.0	5753/ 0	13	/ 17.3	/	7.4	13	D A	3.0	0.1	7.4
6200N	488/5	4887.0	5200.0	5/536.8	13	6 19./	6.1	7.4	10	4	3.5	4.0	5./
6200N	4900E	4900.0	6200.0	5/599.6	13	6 19.1	6.1	7.4	11	4	3.5	4.0	6.3
6200N	4912E	4912.0	6200.0	57591.0	16	7 19.6	7.2	9.1	12	1	3.5	1.0	6.8
6200N	4925E	4925.0	6200.0	57606.9	16	7 20.6	7.2	9.1	13	2	3.5	2.0	7.4
6200N	4937E	4937.0	6200.0	57616.1	12	4 20.6	4.1	6.9	11	2	3.5	2.0	6.3
6200N	4950E	4950.0	6200.0	57832.5	9	3 19.8	3.0	5.1	13	1	3.3	1.0	7.4
6200N	4962E	4962.0	6200.0	57690.0	13	4 19.6	4.1	7.4	15	2	3.7	2.0	8.5
6200N	4975E	4975.0	6200.0	57691.3	16	5 19.5	5.1	9.1	16	2	3.7	2.1	9.1
6200N	4987F	4987 0	6200 0	57654 5	17	5196	5 1	97	17	2	37	3 1	97
6200N	50005	5000 0	6200.0	57636 2	14	1 20 1	A 1	Q 1	15	3	37	2 1	Q 5
2200N	40005	4000.0	6200.0	57200 4	15	9 20.1	9.1	7.1 o r	10	5	3./ 20	3.1	0.5
(200N	40000	4000.0	6250.0	5/300.4	17	3 22.0	5.1	0.5	0	0	3.7		4.0
6300N	40126	4012.0	6251.2	5/338./	10	5 22.3	5.1	9.1	7	ۍ. -	3.8	3.0	5.1
6300N	4025E	4025.0	6252.5	5/333.9	1/	10 22.8	10.3	9.7	13	7	3.9	7.1	7.4
6300N	4037E	4037.0	6253.7	57321.4	15	9 23.9	9.2	8.6	9	8	3.8	8.1	5.2
6300N	4050E	4050.0	6255.0	57333.9	11	4 23.5	4.0	6.3	9	3	3.8	3.0	5.1
6300N	4062E	4062.0	6256.2	57360.4	11	2 22.2	2.0	6.3	7	1	3.8	1.0	4.0
6300N	4075E	4075.0	6257.5	57375.6	10	1 22.2	1.0	5.7	7	0	3.7	.0	4.0
6300N	4087E	4087.0	6258.7	57331.4	12	2 21.6	2.0	6.8	8	1	3.6	1.0	4.6
6300N	4100E	4100.0	6260.0	57366.4	15	4 22.0	4.1	8.5	11	2	3.6	2.0	6.3
6300N	4112E	4112.0	6261.2	57445.3	15	2 21.9	2.0	8.5	12	4	3.8	4.1	6.9
6300N	41255	4125 0	6262 5	57448 6	11	0 22 7		8.0	- <u>-</u>	0	37	0	5 1
4200M	A1275	4127 0	4949 7	57402 1	12	-1 22 /	_1 0	2.0	11	ň	20		4.2
(200N	41500	4150 0	12/5 0	57200 7	76	-1 23.4 E 22 0	-1.V	0.0		2	3.0	20	2.2
6300N	4100	4130.0	6265.0	57070.7		-5 23.0	-5.0	4.0	5	-3	3.0	-3.0	2.7
6300N	41621	4162.0	6266.2	5/3/3.0	6	-/ 22.0	-/.0	3.5	3	-5	3.9	-5.0	1./
6300N	41/5E	41/5.0	6267.5	5/460.3	6	-4 23.0	-4.0	3.4	2	-7	4.0	-7.0	1.2
6300N	4187E	4187.0	6268.7	57390.8	9	-2 22.5	-2.0	5.1	2	-3	3.8	-3.0	1.1
6300N	4200E	4200.0	6270.0	57429.8	12	1 23.2	1.0	6.8	6	-1	3.9	-1.0	3.4
6300N	4212E	4212.0	6271.2	57439.3	13	3 22.7	3.1	7.4	7	1	4.0	1.0	4.0
6300N	4225E	4225.0	6272.5	57423.2	10	3 24.9	3.0	5.7	6	1	4.1	1.0	3.4
6300N	4237E	4237.0	6273.7	57490.6	5	0 22.8	.0	2.9	3 -	0	4.0	.0	1.7
6300N	4250E	4250.0	6275.0	57480.5	0	-2 25.5	-2.0	.0	0	-3	4.2	-3.0	.0
6300N	4262E	4262.0	6276.2	57481.6	-3	-4 24.3	-4.0	-1.7	-2	-4	4.2	-4.0	-1.1
6300N	4275F	4275 0	6277 5	57489 9	-4	-3 23 2	-3.0	-2.3	-3	-4	4.1	-4.0	-1.7
6300N	4287F	4287 0	6278 7	57577 2	-1	-3 22 0	-3.0	- 4	-5	-6	<u>1</u>	-6 0	-2 9
1300N	/20/5	4300 0	4280 0	58038 4	_1	-2 21 5	-2 0		-3	- 1	A U	-10	-1 7
5 200N	ACLOF	4212 0	2200.0	57425 5	о Т	Δ 21 L	~ <u>~</u> .0	1 7	- 3		4.0	-2 D	±./
SOUCH	HOIGE Xoore	4312.0	0201.2 0201.2	57463.3	3	1 21 7	1 0	×./	1	- 2	4.U 1	_1 0	.0
SOUUN	45232	4323.0	0202.3	5/442.5		1 21./	T.0	4.0	Ť	-1	4.1 4 -	-1.0	.0
0300N	433/E	4337.0	6283./	5/418./	4	2 22.0	2.0	2.3	2	-1	4.1	-1.0	1.1
6300N	435 0 E	4350.0	6285.0	57424.4	5	3 22.1	3.0	2.9	2	-1	4.1	-1.0	1.1
6300N	4362E	4362.0	6286.2	57479.3	7	3 22.2	3.0	4.0	2	0	4.1	.0	1.1
6300N	4375E	4375.0	6287.5	57416.8	7	4 22.5	4.0	4.0	1	0	4.0	.0	.6

Į.

E

Γ

Γ

Į

ĺ

anner seen

Wednesday, March 20, 1991

Page 13

6300N	4387E	4387.0	6288.7	57465.6	7	5 23.0	5.0	4.0	4	0	4.2	.0	2.3
6300N	4400E	4400.0	6290.0	57510.2	6	5 22.7	5.0	3.4	4	1	4.2	1.0	2.3
6300N	4412E	4412.0	6291.2	57491.1	8	5 21.9	5.0	4.6	5	1	4.1	1.0	2.9
6300N	4425E	4425.0	6292.5	57494.8	10	5 23.4	5.1	5.7	7	4	4.1	4.0	4.0
6300N	4437E	4437.0	6293.7	57480.6	13	6 23.5	6.1	7.4	. 9	٨	4.4	4.0	5.2
6300N	4450F	4450 0	6295 0	57492 9	ŝ	3 25 3	3 0	<i>x</i> 4	ς	n N	- A 5	ο Γ	29
4200N	44000	4450.0	4294 2	57500 4	5	2 25 4	2.0	2 9	0	1	4.5	_1 0	<u> </u>
4200N	44026	4402.0	2207 5	57511 7	2	2 2 3 . 4	2.0	17			4.4	-1.0	-17
(200N	447 JE 44075	4473.0	6277.3	57540 5	3	1 25 2	2.0	1./	-3	-1	4.2	-1.0	-1./
6300N	44075	4407.0	6270.7	57540.3	2	1 23.2	1.0		-4	T	4.4	-1.0	-2.3
CODON	45006	4500.0	6300.0	57522.7	-3	0 24.7	.0	-1./	-8	-3	4.2	-3.0	-4.6
6300N	43120	4512.0	6300.0	57489.1	-7	-4 24.5	-4.0	-5.2	-15	-/	4.2	-7.2	~8.6
6300N	45255	4525.0	6300.0	5/50/.3	-13	-6 22.2	-6.1	-/.4	-14	-9	4.0	-9.2	-8.0
6300N	453/c	4537.0	6300.0	5/482.1	-10	-4 22.2	-4.0	-5.7	-13	-6	4.0	-6.1	-/.4
6300N	4550E	4550.0	6300.0	5/5/8.0	-12	-4 21.5	-4.1	-6.9	-16	-9	4.0	-9.2	-9.2
6300N	4562E	4562.0	6300.0	57525.6	-1	4 21.0	4.0	6	-13	-1	4.1	-1.0	-7.4
6300N	4575E	4575.0	6300.0	57539.0	0	7 21.4	7.0	.0	-15	1	4.4	1.0	-8.5
6300N	4587E	4587.0	6300.0	57513.5	-8	6 22.3	6.0	-4.6	-24	-2	4.1	-2.1	-13.5
630 0N	4600E	4600.0	6300.0	57494.6	-17	8 22.6	8.2	-9.7	-27	0	4.1	.0	-15.1
6300N	4612E	4612.0	6300.0	57520.1	-1	5 22.3	5.0	6	-21	0	4.0	.0	-11.9
6300N'	4625E	4625.0	6300.0	57614.2	0	5 20.2	5.0	.0	-14	0	3.7	.0	-8.0
6300N	4637E	4637.0	6300.0	57548.4	0	4 19.4	4.0	.0	-15	1	3.8	1.0	-8.5
6300N	4650E	4650.0	6300.0	57529.6	0	3 20.4	3.0	.0	-9	0	3.5	.0	-5.1
6300N	4662E	4662.0	6300.0	57623.7	1	5 20.5	5.0	.6	-4	2	3.5	2.0	-2.3
6300N	467 SE	4675.0	6300.0	57675.0	1	4 21.3	4.0	.6	0	5	3.5	5.0	.0
6300N	4687E	4687.0	6300.0	57648.7	-2	2 21.3	2.0	-1.1	6	6	3.3	6.0	3.4
6300N	4700E	4700.0	6300.0	57606.7	-5	-1 19.9	-1.0	-2.9	14	9	3.2	9.2	8.0
6300N	4712E	4712.0	6300.0	57558.8	-4	-1 18.6	-1.0	-2.3	17	9	3.2	9.3	9.7
6300N	4725E	4725.0	6300.0	57554.1	Ó	-1 17.4	-1.0		21	9	3.1	9.4	11.9
6300N	4737E	4737.0	6300.0	57580.2	6	2 17.5	2.0	3.4	20	8	3.3	8.3	11.4
AROON	4750F	4750 0	6300.0	57600.9	8	4 18.3	4.0	4.6	18	5	3.4	5.2	10.2
6300N	4762E	4762.0	6300.0	57594.0	14	6 18.2	6.1	8.0	22	7	3.3	7.3	12.5
AROON	47758	4775 0	6300.0	57595 1	19	6 17 8	6.2	10.8	21	7	35	73	11 9
4300N	47075	4787 0	4300.0	57583 7	1.9	4 18 7	6.2	10.0	21	7	35	73	11 9
4 200N	47070	4200 0	4300.0	57418 9	21	7 19 1	7 2	11 9	22	7	3 5	7.3	12 5
4200N	40000	4800.0	4200.0	57592 1	20	7 19 4	7.3	11 6	21	2	27	4.3	12.5
A200N	40145	4012.0	(200.0	57572.1	20	7 17.4	7.3	12.4	24	0 5	3./	0.J	12.5
(200N	4020E	4825.0	6300.0	57500.1	24	7 20.1 5 20 5	7.4	11.0	24	2 E	3.0	2.3	13.5
6300N	483/E	4837.0	6300.0	5/588.5	20	5 20.5	2.2	11.3	23	2	3.8	⊃. 3	10.0
6300N	4850E	4850.0	6300.0	5/5/6.5	10	3 20.3	3.1	7.1	18	4	3.8	4.1	10.2
6300N	48625	4862.0	6300.0	5/606.8	21	5 19.5	5.2	11.9	17	5	3.7	5.2	10.8
6300N	48/5E	48/5.0	6300.0	5/613.1	22	6 20.1	6.3	12.4	1/	3	4.0	3.1	9.7
6300N	4887E	488/.0	6300.0	5/622.1	20	6 20.7	6.2	11.3	16	3	4.0	3.1	9.1
6300N	4900E	4900.0	6300.0	57624.7	20	5 21.3	5.2	11.3	18	3	4.1	3.1	10.2
6300N	4912E	4912.0	6300.0	57611.0	18	4 20.8	4.1	10.2	19	4	4.1	4.1	10.8
6300N	4923E	4925.0	6300.0	57618.2	15	2 20.6	2.0	8.5	18	3	3.8	3.1	10.2
6300N	4937E	4937.0	6300.0	57703.3	15	2 18.9	2.0	8.5	18	3	4.0	3.1	10.2
6300N	4950E	4950.0	6300.0	57724.6	14	0 18.9	.0	8.0	16	1	4.1	1.0	9.1
6300N	4962E	4962.0	6300.0	57642.0	10	-1 18.7	-1.0	5.7	16	1	3.8	1.0	9.1
6300N	4975E	4975.0	6300.0	57610.8	17	2 18.8	2.1	9.7	15	0	3.9	_ 0	8.5
6300N	4987E	4987.0	6300.0	57606.0	24	6 17.5	6.3	13.5	16	0	3.5	.0	9.1
6300N	5000E	5000.0	6300.0	57642.2	26	6 19.9	6.4	14.6	19	0	3.4	.0	10.8
4000E	5512N	4000.0	5512.0	57321.7	12	15 16.8	15.2	7.0	-2	15	3.9	15.0	-1.2
4000E	5523N	4000.0	5525.0	57325.7	14	15 15.9	15.3	8.1	-1	16	3.9	16.0	6
4000E	5537N	400 0.0	5537.0	57328.6	13	15 16.3	15.3	7.6	7	17	3.6	17.1	4.1
40001	5550N	4000.0	5550.0	57347.5	8	16 16.5	16.1	4.7	0	19	3.7	19.0	.0
40002	5562N	4000.0	5562.0	57367.8	15	17 15.6	17.4	8.8	16	19	3.4	19.5	9.4

E

1

Wednesday, March 20, 1991

Page 14

.

40 006	5575N	4000.0	5575.0 57446.4	15	17 15.9	17.4	8.8	17	21	3.3	21.6	10.1
4000F	558ZN	4000.0	5587.0 57549.4	10	19 15.4	19.2	5.9	15	21	3.6	21.5	8.9
40005	5600N	4000.0	5600.0 57405.1	14	17 15.9	17.3	8.2	15	22	3.7	22.5	8.9
4000E	5612N	4000.0	5612.0 58331.6	17	16 16.0	16.5	9.9	15	20	3.8	20.5	8.9
4000E	5625N	4000.0	5625.0 58022.6	22	16 16.0	16.8	12.7	24	17	3.7	18.0	13.9
40005	5637N	4000.0	5637.0 57783.4	19	16 16.0	16.6	11.0	19	16	3.8	16.6	11.0
4000E	5650N	4000.0	5650.0 57647.2	32	17 14.5	18.8	18.2	27	17	3.7	18.3	15.5
4000E	5662N	4000.0	5662.0 58104.6	27	18 16.2	19.4	15.6	26	18	3.8	19.3	15.0
40005	5675N	4000.0	5675 0 58287 3	27	16 16 6	17.2	15.5	29	18	3.9	19.6	16.6
40000	562 JN	4000.0	5687 0 57931 0	27	15 17 0	16 1	15 4	28	15	4.1	16.2	16.0
4000L	5700N	4000.0	5700 0 57457 9	29	15 16 7	16 3	16 5	26	16	4.1	17.1	14.9
40000	5700N	4000.0	5712 0 57437.7	25	13 17 8	13.8	14 3	22	17	3.8	17.8	12.7
40000	5725N	4000.0	5725 0 57415 9	20	12 18 0	13.0	16 9	21	10	4.3	11.0	17.4
40000	5722N	4000.0	5727 0 57851 9	30	11 18 2	12 0	16 9	29	11	4.3	11 9	16.3
40000	575/N	4000.0	5750 0 58374 5	32	9 18 /	9 9	17 9	29	10	4.0	10.8	16.3
40000	5750N	4000.0	5742 0 57810 A	29	7 18 8	7.6	16 2	24	Ĩġ	4.7	9 5	13.6
ACODE	5775N	4000.0	5775 0 57727 3	30	4 18 8	6 5	16.8	21	5	4.2	55	17.3
20002	5707M	4000.0	3727 0 52019 4	31	5 18 8	55	17 3	29	4	4.5	43	16 2
- 00C	5202N	4000.0	5800 0 57917 2	12	5 17 4	59	22 8	22	3	4 5	33	18.3
4000E	5000A 50125	4000.0	5812 0 57715 4	12	5 18 3	59	22.0	32	5	4.5	55	17.8
40000	5025N	4000.0	5825 0 57447 1	30	5 19 0	5 8	21 3	32	5	4 5	5 5	18.3
40000	SOZDR SOZZN	4000.0	5827 0 57454 3	11	6 19 2	7 2	23 8	25	4	A A	4 5	19.3
40000	5057 N	4000.0	5250 0 57097 8	32	6 17.2 4 19 <i>1</i>	6.6	17 8	31	8	4.7	8.8	17.3
40002	5050N	4000.0	5842 0 578/3 1	11	4 19 4	7 0	22 1	34	7	4.7	78	18 9
40000	5075M	4000.0	5975 0 57/01 1	41	4 19 7	7.0	21 9	31	7	4.0	7 7	17 3
40000	500 2N	4000.0	5007 0 57472 5	30	. 4 19 5	2 9	20.9	34	4	4.0	67	18 8
4000E	5007 N	4000.0	5007.0 57472.5	30 A1	7 20 2	8.7	20.7 22 A	40	4	4.0	4 6	21 8
40000	5700N	4000.0	5700.0 56000.7 5012 0 54024 5	41 20	/ 20.2	۵.۲ ۲ ۵	21 1	25	4	5 1	4.0	19 3
40000	5025N	4000.0	5712.0 56736.5 CODE O E7475 5	25	5 21 1	5.4	10 2	20	7	5 1	7 4	14 8
40000	5725N	4000.0	5723.0 57473.3	30	J 21.1	1.6	20.0	20	5	5 4	5 1	15.0
40000	D73/N	4000.0	575/.U 5/212.7 5950 0 57522 9	25	421.1	2 1	19 2	20	2	53	3.4	14 6
40000	5730N	4000.0	5750.0 57532.7	30 10	2 20 9	2.4	25 4	20	1	5.4	1 1	16 2
40000	3762N	4000.0	5752.0 50501.0 1075 0 50017 1	25	0 21 2	2.5	19 2	21	-2	53	-2 2	17 2
40000	577 JN	4000.0	5907 0 57445 2	22	-2 22 0	.0	10 2	27	- <u>/</u>	5.3	-1 3	15 1
40000	5707 N	4000.0	5707.0 57445.5	33	-2 22.0 12 14 A	12 1	5 2	2/	1 2	3.0	18 1	4 7
41000	SSUUN EE1 ON	4100.0	5500.0 56770.0	10	12 16.4	12.1	J.2 5 Ω	14	22	27	23 5	8 /
41000	SSOEN:	4100.0	5512.0 57075.2	70	12 10.3	12.1	5.0	19	20	2.8	22 7	10.7
41000	5523N	4100.0	5525.0 57136.0	10	12 17.0	12.1	10 1	12	20	2.0	20 3	7 1
41000	SSS2N	4100.0	5550 0 59194 9	10	11 17 2	11 /	10.4	24	18	3 1	19 1	13.9
41000	5550N	4100.0	5542 0 57/21 7	14	11 17 3	11 3	9.2	29	17	3.2	17 8	12 7
41000	0002N 6575N	4100.0	5562.0 57431.7	20	10 17 2	10 4	11 1	21	1 /	3.2	14 6	12.1
41000	507 DN 5507N	4100.0	55/5.0 561/2.4	15	10 17 .2	10.9	Q 2	20	14	3.1	16 7	11 6
41002	5202N	4100.0	5507.0 57772.7	17	10 17 9	10.2	9.7	22	10	3 1	19 0	13 3
41000	5600N	4100.0	5600.0 57767.5	1.0	10 17 0	10.3	10 9	23	14	2.2	14 9	12 7
41000	DDIZN	4100.0	5612.0 57742.5	17	10 17.0	10.4	14 2	22	15	21	14 4	10 1
41005	5497N	4100.0	5623.0 57730.0	10	9 17 4	10.0	10.3	21	17	3.1	18 0	13 9
41000	5057 N	4100.0	5657.0 57420.3	24	9 17 9	9.5	14 7	40	13	3.1	15 1	22.1
41000	5620N	4100.0	5442 A 5777A 5	20	7 19 1	7 4	15 7	27	13	3.0	14.8	20.6
41005	5475N	4100.0	5652.0 57777 2	21	6 18 2	63	11 9	28	13	3.2	14.0	15.9
ALOUE	5497N	4100.0	5687 0 58100 9	32	5 17 4	5.5	17.8	39	13	3.0	15.0	21.6
ALCOR	5700N	4100.0	5700 0 57750 0	33	6 18 0	67	18.3	37	10	3.4	11.4	20.5
41000	571 2N	4100.0	5712 0 57757 9	22	6 18 9	6.5	15 7	37	11	3.4	12.5	20.5
41000	5776N	4100.0	5725 0 57246 2	22	6 18 8	6.6	17 8	36	10	3.5	11.3	20.0
41005	5727M	«100.0	5727 () 57410 5	37	7 18 3	8.0	20 4	35	9	3.7	10.1	19.4
41000	5750N	4100.0	5750 0 57010.5	29	7 19 2	7 4	16 2	36	12	3.5	13.6	20_0
/ · · · · · · · · · · ·	A 111M	21 1 1 1 1 1 1 1 1	3/30 0 3//7/ 3		1 17.1		10.7		16			

Wednesday, March 20, 1991

41002 5762N 4100.0 5762.0 57744.9 34 8 19.3 8.9 18.9 34 10 3.5 11.2 18.9 4100E 5773N 4100.0 5775.0 57666.7 32 8 19.5 8.8 17.8 32 8 3.7 8.8 17.8 4100E 5787N 4100.0 5787.0 57626.9 7 20.0 17.3 34 7.8 18.9 31 8 3.6 8.8 4100E 5800N 4100.0 5800.0 57627.6 42 7 18.9 8.2 22.9 30 3.5 6.5 16.8 6 5812N 4.5 4100E 4100.0 5812.0 57812.9 34 7 20.4 7.8 18.9 3.5 19.8 36 4 4100E 5825N 5825.0 58100.6 4100.0 40 7 20.0 8.1 21.9 37 3.8 4.5 20.3 4 4100E 5837N 4100.0 5837.0 57483.2 43 8 19.9 9.5 23.4 33 4 3.7 4.4 18.3 4100E 5850N 4100.0 5850.0 57314.1 39 7 20.8 4.5 8.1 21.4 35 4 3.8 19.3 4100E 5862N 4100.0 5862.0 57523.1 40 6 21.0 7.0 21.9 33 3 3.8 3.3 18.3 4100E 5875N 4100.0 5375.0 57843.0 39 2 2.2 4 21.5 4.6 21.3 33 3.9 18.3 4100E 5887N 4100.0 5887.0 57890.8 44 5 20.5 23.8 2 2.2 18.8 6.0 34 3.8 4100E 5900N 4100.0 5900.0 57921.3 37 4 22.0 4.5 20.3 36 2 4.1 2.3 19.8 4100E 5912N 4100.0 5912.0 57831.2 2 21.8 20.8 2 17.2 38 2.3 4.4 2.2 31 4100E 5925N 4100.0 5925.0 57820.7 0 22.1 38 .0 20.8 37 0 4.1 .0 20.3 4100E 5937N 4100.0 5937.0 58219.3 37 -1 21.7 -1.120.3 32 0 4.3 .0 17.7 4100E 5950N 4100.0 5950.0 57613.4 34 -2 22.8 -2.2 18.8 31 0 4.4 .0 17.2 5962.0 57480.5 4100E 5962N 4100.0 -4 23.1 17.2 -2.2 31 -4.4 28 -2 4.6 15.6 4100E 597 SN 4100.0 5975.0 57040.7 38 -6 21.1 20.9 -6.9 24 -1 -1.1 13.5 4.4 4100E 5987N 10.8 4100.0 5987.0 57527.3 25 -9 24.3 -9.6 14.1 -8 -8.3 19 4.4 4100E 6000N 4100.0 6000.0 57138.9 23 -10 24.6 -10.5 13.1 19 -9 4.4 -9.3 10.8 41000 6012N 4100.0 6012.0 56782.4 26 -11 24.2 -11.8 -9 -9.4 14.7 20 4.4 11.4 -10 24.6 -10.5 6025M 4100.0 -9 -9.2 4100E 6025.0 56952.3 22 12.5 15 4.2 8.6 4175E 5512N 4175.0 5512.0 57104.3 17 15 16.6 15.4 9.9 26 19 3.3 20.3 15.1 4175E 5525N 4175.0 24 5524.1 57327.4 15 16.8 15.9 13.8 18.7 19 18 3.4 11.1 5537N 4175E 4175.0 5535.3 57566.0 18 14 17.0 14.5 10.4 17 19 3.4 19.6 10.0 5550N 4175.0 10.6 4175E 5547.4 57353.2 24 10 17.1 13.6 32 11 3.4 12.1 17.9 4175E 5562N 4175.0 5558.6 57408.1 27 9 16.9 9.7 15.2 3.6 11.9 15.8 28 11 5573N 4175E 4175.0 5570.7 57294.9 32 8 15.8 8.8 17.8 32 8 3.5 8.8 17.8 4175E 5587N 4175.0 5581.8 57283.5 8 30 6 16.7 6.5 16.8 35 3.4 9.0 19.4 4175E 5600N 4175.0 5594.0 57123.9 26 4 17.2 4.3 14.6 27 10 3.5 10.7 15.2 4175E 4175.0 5605.1 57307.4 3 17.5 16.7 3.4 16.8 5612N 30 3.3 30 9 9.8 3 17.0 4175E 5625N 4175.0 5617.2 57594.0 23 3.2 13.0 25 12 3.3 12.8 14.2 4175E 5637N 4175.0 5628.4 57660.9 27 4 17.9 4.3 15.1 36 12 3.5 13.6 20.0 4175E 5650N 4175.0 5640.5 57125.8 3 17.9 17.2 39 3.5 12.7 21.5 31 3.3 11 4175E 5662N 4175.0 5651.7 57816.7 35 3 17.9 3.4 19.3 35 13 3.6 14.6 19.6 4175E 5675N 4175.0 5663.8 57903.5 32 4 17.8 4.4 17.8 37 12 3.7 13.7 20.5 4175E 5687N 4175.0 5675.0 57654.9 3 18.3 3.4 19.8 35 3.7 12.4 19.5 36 11 3.6 14.5 4175E 4175.0 5687.1 57807.3 5 18.4 21.8 12 24.5 5700N 40 5.8 45 8.1 4175E 5712N 4175.0 5698.3 57523.6 46 4 17.6 4.8 24.7 40 7 4.0 21.9 4175E 4175.0 2 19.3 20.3 9 3.9 10.8 23.9 5725N 5710.4 57854.7 37 2.3 44 3.7 4175E 5737N 4175.0 5721.5 57620.8 2 19.7 20.8 51 10.1 27.1 38 2.3 8 4175E 5750N 4175.0 5733.6 57306.2 34 1 20.6 1.1 18.8 31 8 3.8 8.8 17.3 9 3.5 9.9 4175E 5762N 4175.0 5744.8 58223.8 36 1 20.5 1.1 19.8 31 17.3 4175E 5775N 4175.0 5756.9 57543.5 36 0 20.9 .0 19.8 33 5 4.0 5.5 18.3 4175E 5787N 4175.0 5768.1 57248.1 18.8 44 -1 19.7 -1.2 23.8 34 4.3 4.5 4 4175E 5800N 4175.0 5780.2 57514.7 35 -1 21.6 19.3 30 3 4.3 3.3 16.7 -1.1 4175E 5812N 4175.0 20.8 5791.4 58264.9 43 -1 20.3 -1.2 23.3 38 3 4.3 3.4 4175E 3825N 4175.0 5803.5 58103.1 39 -3 21.8 -3.5 21.3 27 2 4.4 2.1 15.1 4175E 5837N 4175.0 5814.7 58176.3 43 -4 21.1 -4.7 23.3 0 4.5 .0 18.8 34 4175E 5850N 4175.0 5826.3 57765.8 -3 21.8 43 -3.6 23.3 33 -1 4.7 -1.1 18.3 4175E 5862N 4175.0 5837.9 58110.7 -3 21.7 20.8 4.7 -1.1 17.7 38 -3.4 32 -1 4175E 4175.0 28 -2 4.7 -2.2 15.6 5875N 5850.0 58417.2 45 -4 20.6 -4.8 24.3 4175E 5887N 4175.0 5861.2 57516.8 33 -5 23.4 -5.5 18.3 22 -2 4.5 -2.1 12.4 4175E 5900N 4175.0 5873.3 57633.9 34 -6 23.7 -6.7 18.8 21 -3 4.8 -3.1 11.9 18.4 4175E 5912N 4175.0 5884.5 57693.3 33 -8 23.0 -8.9 25 5.2 -4.3 14.1 -4

Page 15

4300E

5837N

4300.0

Wednesday, March 20, 1991

4175E 5925K 4175.0 5896.6 57299.0 30 -9 23.9 -9.8 16.8 23 -6 5.2 -6.3 13.0 4175E S937N 4175.0 5907.8 57151.1 26 -12 24.3 -12.8 14.8 18 -7 5.2 -7.2 10.3 4175E 5950N 4175.0 5919.9 57100.1 29 -15 23.0 -16.3 16.5 14 -10 5.2 -10.2 8.0 4175E 5962N 4175.0 5931.1 57047.1 42 -20 18.6 -23.7 23.5 16 -10 5.2 -10.3 9.2 4175E 5975N 4175.0 5943.2 57276.4 11 -13 25.0 -13.2 6.4 14 -11 4.8 -11.2 8.1 5987N 4175E 4175.0 5954.3 57250.3 20 -11 24.9 -11.4 11.4 10 -7 5.1 -7.1 5.7 6000N 4175E 4175.0 5966.5 57263.6 32 -12 22.8 -13.2 18.0 -6 5.4 -6.1 14 8.0 4175E 6012N 4175.0 5977.6 57316.4 32 -6 22.1 -6.6 17.8 15 -2 5.5 -2.0 8.5 6025N 4175.0 5989.7 57306.1 -5 24.8 -5.1 -2 -1.0 4175E 16 9.1 -1 5.3 -1.1 6059.6 57301.2 417SE 6100N 4175.0 9 -6 23.6 -6.0 5.2 6 -6 3.7 -6.0 3.4 2 -7 4175E 6112N 4175.0 6070.8 57327.7 -8 23.8 -8.0 1.2 -3 4.0 -7.0 -1.7 4175E 6125N 4175.0 6082.9 57336.6 -15 -12 25.2 -12.3 -8.7 -17 4.0 -14.4 -9.8 -14 4125E 6137N 4175.0 6094.0 57334.0 -10 -9 -9.1 -7 21.1 -7.1 -5.7 -10 3.3 -5.8 4175E 6150N 6106.1 57415.5 -2 20.6 .0 -2 -2.0 4175.0 0 -2.0 -2 3.3 -1.1 4175E 6162N 4175.0 6117.3 57384.2 1 21.6 1.0 2.3 2 0 3.3 1.1 4 .0 4175E 6175N 4175.0 6129.4 57397.6 2 20.8 7 5 -2 -2.0 2.0 4.0 3.1 2.9 4175E 6187N 4175.0 6140.6 57382.9 10 4 20.5 4.0 5.7 11 1 3.0 1.0 6.3 4175E 6200N 4175.0 6152.7 57398.5 18 5 20.2 3.1 5.2 10.2 16 5 5.1 9.1 6212N 4175E 4175.0 6163.9 57417.8 23 6 21.5 6.3 13.0 23 2.7 11.6 13.1 11 41752 6225N 4175.0 6176.0 57443.4 22 3 22.9 3.1 12.4 21 6 3.3 6.3 11.9 4170E 6237N 6187.2 57444.0 4175.0 19 2 24.0 2.1 10.8 3 3.7 3.1 17 9.7 4175E 6250N 4175.0 6199.3 57481.1 12 -2 24.3 -2.0 3.6 -1.0 5.7 6.8 10 -1 4175.0É 6262N 6210.4 57430.4 -3 23.4 -3.0 11 -3.0 6.3 7 -3 3.7 4.0 41733 627SN 4175.0 6222.5 57417.9 17 3 22.4 3.1 9.7 3 3.7 3.0 6.3 11 3287N 4175.0 6233.7 57446.6 8 0 24.3 0 3.7 4175c .0 4.6 6 .0 3.4 41/55 6300N 4175.0 6245.8 57427.5 9 3 24.1 3.0 3.6 2.3 5.1 4 1 1.0 4173E 6312N 4175.0 6237.0 57439.9 8 3 24.7 3.0 4.6 3 1 3.5 1.0 1.7 43002 3300N 4300.0 5500.0 57421.2 25 3.3 12 16.5 12.8 14.2 38 16 18.4 21.2 4300E 5312N 4300.0 5512.0 57319.3 30 11 15.4 12.0 16.9 42 12 3.3 14.1 23.0 5525N 4300.0 7 17.5 7.3 9.7 4300E 5525.0 57489.3 20 11.4 28 9 3.1 15.8 7 4300E 5537N 4300.0 5537.0 57204.0 17 5 17.2 9.7 29 3.2 7.6 16.2 5.1 7 5550N 21 6 18.1 29 16.2 4300E 4300.0 5550.0 57657.4 6.3 11.9 3.1 7.6 4300E 5562N 4300.0 6 18.0 3.4 19.3 5562.0 57414.2 30 6.5 16.8 35 5 5.6 4300E 5575N 4300.0 5575.0 57511.6 29 5 18.7 16.2 42 3.3 11.8 23.0 5.4 10 4300E 5587N 4300.0 5587.0 58111.5 26 3 18.8 3.2 14.6 33 9 3.2 10.0 18.4 4300E 5600N 31 3 18.9 5 4300.0 5600.0 57510.7 3.3 17.2 42 3.3 5.9 22.8 4300E 5612N 4300.0 5612.0 57955.5 33 2 18.9 2.2 18.3 33 3.4 5,5 18.3 5 43008 5625N 4300.0 5625.0 57886.1 24 1 18.1 1.1 13.5 33 5 3.0 5.5 18.3 4300E 5637N 4300.0 5637.0 58066.9 2 20.0 20.8 28 2.2 15.6 38 3.6 3.4 3 23.3 4300E 5650N 4300.0 3 20.7 5650.0 57962.7 31 3.3 17.2 43 4 3.3 4.7 4300E 5662N 4300.0 5662.0 57585.7 3 20.1 3.3 3 3.5 3.7 26.1 33 18.3 49 7.3 4300E 5675N 4300.0 5675.0 57428.5 36 3 20.0 3.4 19.8 46 6 3.6 24.8 4300E 3687N 4300.0 5637.0 57497.7 37 1 20.9 1.1 20.3 50 4 3.6 5.0 26.6 5700N 4300.0 5700.0 57925.0 3.7 7.8 4300E 40 3 20.6 3.5 54 28.4 21.8 6 5712.0 57681.3 4300E 5712N 4300.0 38 0 21.6 .0 20.8 45 7 3.8 8.4 24.3 40002 5725N 4300.0 5725.0 57638.9 34 0 21.8 .0 41 5 4.0 5.8 22.3 18.8 20.3 4300E 5737N 4300.0 5737.0 57708.2 37 0 22.3 .0 40 5 4.2 5.8 21.8 4300E 5750N 4300.0 5750.0 57804.9 31 -1 22.6 -1.1 17.2 39 6 4.2 6.9 21.4 .0 5762.0 57902.2 43 0 21.7 23.3 41 3 4.2 3.5 22.3 400UE 5762R 4300.0 2 4.6 2.4 23.3 -1.2 22.3 43 43008 577 SN 4300.0 5775.0 57790.5 41 -1 22.8 5787.0 57791.8 -1.2 25.2 40 1 4.6 1.2 21.8 4300E 5787N 4300.0 47 -1 21.0 4.7 20.8 -3 22.9 -3.4 19.8 3 3.4 4300E 5800N 4300.0 5800.0 57785.9 36 38 5812.0 57774.4 27 -4 24.1 -4.3 15.1 35 1 4.6 1.1 19.3 4300E 5812N 4300.0 19.8 4300E 5825N 4300.0 5825.0 57553.9 32 -6 23.8 -6.6 17.8 36 -3 5.0 -3.4

37

5837.0 57191.5

-6 23.4

20.4

-6.8

30

-3

5.0

-3.3

16.7

Page 16
E

Wednesday, March 20, 1991

4300E 5850N 4300.0 5850.0 57294.7 24 -8 25.1 -8.5 13.6 29 -4 4.9 -4.3 16.2 4300E 5862N 4300.0 5862.0 57380.9 -5 5.0 -5.4 29 -11 25.4 -11.9 16.3 29 16.2 4300E 5875N 4300.0 5875.0 57292.6 31 -12 24.4 -13.2 17.4 29 -6 5.2 -6.5 16.2 4300E 5887N 4300.0 5887.0 57172.2 26 -14 25.2 -15.0 -7 -7.3 14.8 20 5.0 11.4 4306E 5900N 4300.0 5900.0 57196.1 26 -12 25.7 -12.8 22 -7 5.1 -7.3 12.5 14.8 4300E 5912N 4300.0 5912.0 57235.4 27 -11 26.2 -11.8 15.3 18 -5 5.2 -5.2 10.2 4300E 3925N 4300.0 5925.0 57261.8 21 -11 26.3 -11.5 19 -5 5.2 -5.2 12.0 10.8 4300E 5937N 4300.0 5937.0 57289.1 14 -12 27.3 -12.2 8.1 -4 5.4 -4.1 9.1 16 4300E 3950N 19 -11 27.5 -11.4 4300.0 5950.0 57405.7 10.9 13 -4 5.4 -4.1 7.4 4300E 5962N 4300.0 5962.0 57457.0 18 -10 26.9 -10.3 9 5.4 10.3 -4 -4.0 5.2 4300E 5975N 4300.0 5975.0 57454.8 19 -8 26.6 -8.3 10.8 -3 5.3 -3.0 8 4.6 43005 5987N 5987.0 57371.2 4300.0 -7 25.6 -7.2 0 5.2 18 10.3 .0 3.4 6 4300E 6000N 4300.0 6000.0 57347.3 -6 25.2 13 -6.1 7.4 -6 -1 5.1 -1.0 -3.4 4300E 6012N 4300.0 6012.0 57402.2 -3 24.0 -3.1 8.0 8 0 4.7 .0 14 4.6 4300E 602SN 5.7 4300.0 6025.0 57368.6 12 -1 24.3 -1.0 4.4 .0 6.8 10 0 4300E 6037N 4300.0 6037.0 57396.6 14 0 23.9 .0 8.0 10 0 4.5 .0 5.7 4300E 6050N 4300.0 6050.0 57399.4 1 23.4 5 3 16 1.0 9.1 4.1 3.0 2.9 4300E 5100N 4300.0 6062.0 57385.9 16 2 16.6 2.1 9.1 3 0 3.6 .0 1.7 4300E 6112N 4300.0 6074.1 57429.8 18 2 20.3 2.1 10.2 3 3.5 3.0 8 4.6 4300E 5.2 3.4 6125N 4300.0 6087.1 57382.0 20 5 21.2 11.3 8 13 8.1 7.5 4300E 6137N 4300.0 6099.2 57398.1 23 8 20.9 9 9.2 8.4 13.0 16 3.4 9.2 4300E 6150N 4300.0 6112.2 57417.7 22 6 21.4 5 6.3 12.4 15 3.6 5.1 8.6 43001 6124.3 57449.4 3 22.1 2 6162N 4300.0 21 3.1 11.9 13 3.7 2.0 7.4 43000 6175N 4300.0 6137.4 57448.1 19 1 21.7 10.8 11 3 3.8 3.0 6.3 1.0 4300E 6137N 4300.0 9 0 6149.4 57487.2 13 0 23.3 .0 7.4 3.8 .0 5.1 4300E 6200N 4300.0 6162.3 57425.8 0 21.8 7 3.6 11 .0 6.3 -1 -1.0 4.0 4300E 6212N 4300.0 6174.5 57417.3 10 0 23.2 .0 5.7 -2 3.8 -2.0 2.3 4 4300E 6225N 4300.0 6187.6 57449.8 7 0 23.3 .0 4.0 9 -1 3.8 -1.0 5.1 4300E 6237N 4300.0 6199.6 57403.8 0 23.8 2.9 -3.0 5 .0 -3 3.8 .6 1 6212.7 57527.1 -1 22.6 4300E 6230N 4300.0 3 3.8 -4.0 1.7 0 -1.0.0 -4 4300E 6262N 4300.0 6224.8 57536.2 0 -1 21.9 -1.0 .0 0 -4 3.2 -4.0 .0 4300E 527SN 4300.0 6237.8 57525.4 -1 -1 21.8 -1.0 -.6 0 -3 3.4 -3.0 .0 4300E 6287N 4300.0 6249.9 57683.5 -4 -1 21.1 -1.0 -2.3 -2 -3 3.5 -3.0 -1.1 6262.9 57683.7 -2.9 3.7 4300E 6300N 4300.0 -5 -1 21.5 -1.0 -6 -5 -5.0 -3.4 -3.4 6312N 4300.0 6275.0 58011.9 -2 20.5 3.3 4300E -3 -2.0 -1.7 -6 -6 -6.0 5 20.9 4400E 5000N 4400.0 5000.0 57352.7 9 5.0 5.2 8 5 5.0 5.0 4.6 4400.0 5011.7 57339.9 5.0 4400E 5012N 5 4 21.3 4.0 2.9 1 4 4.0 .6 4400E 5025N 4400.0 5024.3 57347.2 10 6 21.0 6.1 5.7 11 8 5.0 8.1 6.3 7 6.9 4400E 5037N 4400.0 5035.9 57398.0 11 6 21.4 6.3 12 4.9 7.1 6.1 5050N 5 21.5 4400E 4400.0 5048.6 57396.0 5.0 11 6 5.1 6.1 6.3 8 4.6 4400.0 3 21.7 4.9 6.2 4400E 5062N 5060.2 57389.7 4 3.0 2.3 18 6 10.2 4400E 5075N 4400.0 5072.8 57386.8 6 2 21.2 2.0 3.4 13 5 5.0 5.1 7.4 4400E 5087N 4400.0 5084.5 57377.3 0 1 20.9 1.0 .0 12 5 4.9 5.1 6.9 4400E **S100N** 4400.0 5097.1 57384.1 2 20.9 2.0 9 3.0 5.1 1 .6 3 4.8 2 20.3 4400E 5112N 4400.0 5108.8 57383.5 -1 2.0 -.6 4 4.7 4.0 3.4 6 4400E 512SN 4400.0 5121.4 57387.7 -3 2 20.1 2.0 -1.7 4 5 4.7 5.0 2.3 4400E 5137N 4400.0 5133.1 57388.9 1 20.7 6.9 -1 1.0 -.6 12 4 4.6 4.1 4400E 5150N 4400.0 5145.7 57392.5 -6 0 19.4 3 3.0 2.3 .0 -3.4 4 4.6 4400E 5162N 4400.0 5157.4 57379.0 -2 0 20.6 8 2 4.7 2.0 .0 -1.1 4.6 4400.0 4400E 5175N 5170.0 57338.1 -1 19.2 4.4 3.0 6.8 0 -1.0 .0 12 3 4400E 5187N 4400.0 5181.6 57336.8 2 0 18.6 1.1 12 4.4 5.1 6.9 .0 5 8.1 4400E 5200N 4400.0 5194.3 57339.4 1 1 18.9 1.0 .6 8 8 4.6 4.6 2 5 19.1 9 13 4.5 13.1 5.2 4400E 5212N 4400.0 5205.9 57336.4 5.0 1.1 4.9 4400E 5225N 4400.0 5218.5 57324.9 0 7 19.3 7.0 15 15.0 2.3 .0 4 -9 17 4.7 17.1 -4.7 4400E 5237N 4400.0 3230.2 57326.6 6 18.2 6.0 -5.2 -8

TERE.XYZ

С.,

[

[]

l

.....

Wednesday, March 20, 1991

440CE	5250N	4400.0	5242.8	57340.1	-7	4 17.3	4.0	-4.0	-2	17	4.2	17.0	-1.2
44008	5262N	4400.0	5254.5	57317.4	-6	5 16.2	5.0	-3.4	-3	17	4.1	17.0	-1.8
4400E	5275N	4400 0	5267 1	57279 8	2	5 15 9	5.0	1 1	6	20	3.6	20.1	3.6
4400F	5287N	4400.0	5278.8	57278.0	3	7 15.7	7.0	1.7	13	21	3.4	21.4	7.7
44005	5300N	4400 0	5291 4	57260 4	13	8 15 8	8 1	7 5	12	18	37	18.3	7.1
44000	5312N	4400.0	5303 1	57231 0	13	10 16 6	10.2	7.5	16	19	25	19 5	9 4
A4002	SROAN	4400.0	5315 7	57265 2	15	11 16 3	11 3	8 4	17	18	25	18 5	10 0
12000	0020N	4400.0	5227 3	57263.2	14	12 14 2	12 3	9.0	1 /	21	37	21 /	83
	1007 N	4400.0	-5240 0	57101 4	20	13 16.3	13.5	11 5	19	22	3.7	22 8	11 3
AAGEE	3342N	4400.0	5251 4	52000 7	20	12 17 3	12.5	31 5	21	20	3.0	21 2	14 6
44001 ∡≜001	000L.N	4400.0	5244 2	57640 6	22	12 17 3	12.5	12 1	23	20	3.0	22 3	18 9
A 4 C C 5	500 7 M	4400.0	5375 9	57725 3	23	10 17 7	12.0	13 1	20	10	3 1	18.7	11 7
AXODG	SADON	4400.0	5322 5	57708 3	23	12 17 2	13 7	13.2	27	15	37	16 1	15 4
44002	5410N	4400.0	5/00 2	57487 1	27	12 17 5	12.0	15 3	23	14	3.1	1/ 8	13 2
44000	5395M	4400.0	5.412 9	5779/ 1	20	11 17 3	12.7	14 9	29	15	3.9	14.0	16 5
44001	SASTN	4400.0	5422.0	57491 2	28	10 17 3	10 8	15 8	21		3.1	4 S	13 4
44000	SACON	4400.0	5/27 1	57441 0	20	10 17 .5	10.0	14 2	20	11	27	12 7	21 5
44002	SALON SALON	4400.0	5437.1	57402 2	21	11 17 7	12 1	17 /	37	11	24	12 2	24 0
44002	5452N 5475N	4400.0	5440.0	57603.2	22	9 17 5	12.1	17.9	44	10	2.7	11 0	29.0
44UUE Zazona	547 313	4400.0	5451.4	57455.1	20	9 17.5	7.7	1/ 7	44 200	10	3.7	11.0	19 1
44066	5467 N	4400.0	54/3.0	57501.5	21	0 17.4	0./	17 0	30 25	Ŷ	4.0	7.0	10 2
44000	6510N	4400.0	5405.7	5/3/6.7	27	8 1/.1 7 17 5	0.0 7 0	10 2	33	7	3.7	0./	20 0
44000	S S D E N	4400.0	5477.3	57427.5	22	/ 1/.5	/.0	10.3	20	~	4.0	0.U 4 5	20.7
44000	2020N 6022N	4400.0	0007.7	57145.1	34	0 1/.7 5 17 0	5./ 5./	10.0	3/ 24	4	4.0	4.0	10 0
44000	SDSZN SDSZN	4400.0	2227.0	57526.6	22	5 17.0	5.0	20.2	34	2	3.7	3.3	22.2
4400C	C C C O NG	4400.0	5534.2 5575 0	57/10.5	37	2 16 .1	2./	10 2	43	3	4.0	3.0 2 A	23.3
44005	CODEN CODEN	4400.0	5545.7	57662.1	33	3 16.7	3.3	10.3	42	2	4.0	2.4	20.2
44002	0070N 60078	4400.0	5550.5	57601.0	3/	3 10.1	3.4	20.3	37	~	4.0	2.3	20.3
44002	570000	4400.0	5570.2	37466.0	41	4 10.0	4.7	10 0	40	4	4.1	4.0	25.2
99000C 	USUUN Kangn	- 400.0 Xing n	0004.C	57542 0	04 ११	5 17.5	3.3	10.0	47	С А	4.6	3.7	22 2
4300 <u>0</u> X.3.365	3014N 6496N	4400.0	5274.4	57250 2	30 A1	2 10 0	2.2	17.3	91	4	4.4 A A	4.7	19 9
44000	5407N	4400.0	5607.1	57002 7	41	2 10 2	2.3	22.3	20	4	4.4	4.5	21 2
4400C	DOD/N E/S/N	4400.0	5610.7	57949 1	00	1 10 0	2.3	20.0	27	2	4.4	4.0 2 /	20.2
44000	- 3630M	4400.0	5631.4	57663.1	37	1 10 0	1 1	21.3	37 20	ວ າ	4.0	2.4	20.3
44000	5476N	4400.0	5045.0	57 544.0	20	1 17.0		20.0	27	2	4.0	2.5	21 2
44000	267 JR 870 71	4400.0	5600.6	57428.1	30 20	0 20.2	.0	20.0	37	ა ი	4.0	3.5	20.2
44000	268/N	4400.0	500/.3	57468.2	30		.0	20.8	37	2	4./	2.3	20.3
4400E	5700N	4400.0	50/7.7	57203.0	ఎం ార	-1 22.1	-1.1	10.0	43	~	5.2	<u>د.</u> 4	23.3
44000	2712B	4400.0	5704 2	5/332.2	30	0 22.1	.0	17.3	40	0	5.2	.0	20.0
44000	5723N 6727N	4400.0	5715 0	57520 4	20	-2 22 1	~2.3	10 0	30		5.5	.0	20.0
4400E	5757N	4400.0	5720 5	57577 2	34	-5 23.1	-3.3	17 0	37	-1	5.2	-1.1	19 2
44000	SZ DUN G DA DN	4400.0	5740.5	57773.3	21	-3 23.0	-3.5	17 2	33	1	5.2	_1 1	10 2
44001	5752N	4400.0	5740.1	50420.1	22	-0 23.0	-0.0	10 4	33 25	- <u>+</u>	5.4	-4 5	10 2
44000	577 SN 5797N	4400.0	5752.0	57063.7	24	-7 24.4	-12.4	10.4	33 22	-4	5.5 č A	-4.5	10 2
44006	5000N	4400.0	5754.4	57007.7	21	-11 22 1	-12 1	17.0	22		5.4	-0.7	19.0
44005	5010N	4400.0	5777.1	57200.0	24	-11 22.1	-14.1	10 0	30	-4	5.7	-4.5	10 2
44000	5012N	4400.0	5001 0	57222 4	24	-6 24.2	-0.7	20.2	22	<u> </u>	2.4	~ .	17.7
44005	1020R 5027N	4400.0	5001.5	57215 2	20	-4 23.8	-9.0	14 7	30	-2	۵.۲ ۲ ۸	-2.2	16 7
AADDE AADDE	STORE STORE	4400.0	5010.0	57314 2	30	-6 27 5	-3.3 -/ /	17 9	26	-2	64	-2 1	14 6
KADDE	5000N 5020M	4400.0	5023.3 KR27 2	57324 2	21	-6 29 7	- <u> </u>	11 9	15	-6	6 7	-6 1	8.6
440011 X X 0.011	NO TEM	4400.0 XX00 0	5007.0 5070 0	57252 7	10	-10 29 2	-10 4	10.9	11	-8	6.9	-8.1	6.3
4400E 4400S	502 DN 5027 M	4400.0 AADD D	5841 2	57327 2	10	-7 28 /	-7 1	57	τ	-5	6.3	-5 0	2.9
44002	SOCAN SOCAN	4400.0	SODT D	57374 4	10	-6 20.4	۰. ۲۰۰۰	7 A	2	-1	6.5	-4 0	3 4
4400E	U 7UUN Sigi on	4400.0	007472 (005 0	5/3/9.4 (7207 4	ي ۲	-5 27 1		7.4 2 Q	-2	-2	5.6	-2 N	-1.1
4400E 4700E	OZLAN KOZEN	4400.0 4400.0	1001.0 (200 1	57385 /	J A	0 25 9	J.U N	2.7	-2	~	5.0 5.5	4 0	-1 1
4400E	in / ش تin	4400.0	2070.2	0/000.4	4	v 23.7		د , د	2	4	J.J	4.4	~ •*

Γ

Wednesday, March 20, 1991

4400.0 5910.1 57427.5 2 5 6.0 4400E 5937N 1 26.2 1.0 3 5.0 1.7 1.1 4400.0 4400E 5950N 5922.8 57445.4 2 -6 -1 24.0 -1.0-3.4 5.5 2.0 -3.4 -6 4400.0 5934.4 57419.7 -5 -1 24.5 4400E 5962N -1.0 -2.9 -6 4 5.4 4.0 -3.4 4400E 5975N 4400.0 5947.0 57417.0 2 1 26.0 1.0 1.1 -4 7 4.8 7.0 -2.3 4400E 5987N 4400.0 5958.7 57454.6 3 5 26.3 -4 9 4.9 -2.3 5.0 1.7 9.0 -1.1 4400E 6000N 4400.0 5971.3 57444.3 1 4 25.7 4.0 .6 -2 4.8 6 6.0 4400E 4400.0 5983.0 57460.1 6012N 3 4 26.6 4.9 4.0 1.7 0 8 8.0 .0 4 26.3 4400E 6025N 4400.0 5995.6 57424.1 -3 4.0 -1.7 -2 8 4.7 8.0 -1.2 4400E 6037N 4400.0 6007.3 57447.5 -1 3 26.3 3.0 -.6 0 8 4.7 8.0 .0 4400E 4400.0 6019.9 57451.1 -13 -7.4 6050N 3 25.0 3.1 -1 9 4.3 9.0 -.6 6068.5 57446.8 -2 2 23.3 4400E 6100N 4400.0 0 5 2.0 -1.1 3.6 5.0 .0 0 5 23.8 4400E 6112N 4400.0 6080.1 57437.8 5.0 10 .0 4 3.4 10.0 2.3 5 23.4 44000 6125N 4400.0 6092.7 57482.0 3 5.0 1.7 12 14 3.5 14.2 7.0 4400E 6137N 4400.0 6104.4 57455.5 14 9 21.5 9.2 12 10 10.1 6.9 0.3 3.8 4400E 6150M 4400.0 6117.0 57506.3 12 5 23.0 9 3.9 5.1 6.9 6 6.0 5.2 4400E 4400.0 6128.7 57585.4 11 2 23.1 2 3.8 6162N 2.0 2.0 2.3 6.3 - 4 440CE 6175N 4400.0 6141.3 57705.0 - 9 3 22.9 3.0 5.1 6 2 3.9 2.0 3.4 4400E 6187N 4400.0 6153.0 57658.4 12 1 23.1 - 5 0 3.8 2.9 1.0 6.8 .0 4 2.3 4400E 6200N 4400.0 616516 57469.3 9 -1 23.4 -1.0 5.1 -3 3.9 -3.0 44002 5 .0 6212N 4400.0 6177.2 57473.2 12 0 22.1 .0 6.8 0 4.0 2.9 4400E 6225N 4400.0 6189.9 57480.9 1 23.2 5.7 10 2 Ű 3.8 1.0 .0 1.1 7 4400E 6237N 4400.0 6201.5 57479.6 12 1 22.9 1.0 6.8 0 4.0 .0 4.0 4400E 4400.0 6214.2 57425.1 11 6.3 0 4.0 · 6250N 2 23.3 2.0 4 .0 2.3 4400.0 4400E 6225.8 57495.2 6262N 10 3 22.8 3.0 5.7 6 0 3.8 .0 3.4 4400E 6275N 4400.0 6238.4 57488.6 3 20.3 3.0 5.7 3 3.6 -1.0 10 -1 1.7 7 4400E 6287N 4400.0 6250.1 57470.6 13 5 20.4 5.1 7.4 1 3.6 1.0 4.0 4400E 6300N 4400.0 6262.7 57475.9 9 5 22.9 5.0 5.2 10 1 3.4 1.0 5.7 4400.0 6274.4 57511.0 9 5 23.3 2 4400E 5312N 5.0 5.2 3.9 2.0 3.4 6 4400e 6325h 4400.0 6287.0 57489.3 10 6 22.7 6.1 5.7 7 4 3.8 4.0 4.0 4500.0 5000.6 32380.3 1 1 20.3 3 40002 5000N 1.0 .6 4.6 3.1 8.0 14 41002 6012N 4500.0 5012.0 57386.3 2 1 20.3 4.6 7.4 1.0 1.1 13 4 4.1 40002 5025N <500.0 5025.0 37886.4 -1 2 20.1 2.0 10 2 4.5 2.0 5.7 -.6 5037.0 57394.3 **-3** 2 13.7 10.2 4000E 5037N 4000.0 2.0 -1.7 18 3 4.2 3.1 - 7 4660E 5050N 4500.0 5050.0 57892.3 -10 1 19.8 -5.7 3 4.5 3.0 4.0 1.0 -2 4500E 5062N 4500.0 5062.0 57394.7 2 20.3 2.0 -1.1 10 4 4.4 4.0 5.7 4500E 5075.0 57367.6 3 2 20.4 1.7 4.3 5075N 4500.0 2.0 14 4 4.1 8.0 4500E 5087N 4500.0 5087.0 57391.2 5 3 20.0 3.0 2.9 13 6 4.3 6.1 7.4 4500E 5100N 4500.0 5100.0 57389.4 4 4 19.8 4.0 2.3 17 8 4.2 8.2 9.7 4500E 4500.0 5112.0 57383.1 0 5 19.5 5.0 9 4.4 9.1 5112N .0 8 4.6 4.2 4300E S125N 4500.0 5125.0 57377.3 3 5 20.1 5.0 1.7 14 10 10.2 8.0 7 9 40002 3137N 4500.0 5137.0 57371.6 0 5 19.1 5.0 .0 4.2 9.0 4.0 4500.0 5150.0 57369.9 0 6 18.3 .0 10 4.3 11.1 5.8 4500E 5150N 6.0 11 4.0 1.1 4500E 5162N 4500.0 5162.0 57364.3 2 4 17.3 10 11 4.4 11.1 5.8 5175.0 57363.0 2.0 4500E 4500.0 0 2 16.6 .0 10 16 16.2 5.9 5175N 4.4 0 16.3 .0 4000E 5187N 4500.0 5187.0 57366.5 4 2.3 5 16 4.3 16.0 2.9 4500E 5200N 4500.0 5200.0 57343.2 3 -2 14.9 -2.0 1.7 -5 16 4.3 16.0 -2.9 4500E 5212N 4500.0 5212.0 57335.3 15 -5 15.6 -5.1 8.6 -3 17 3.9 17.0 -1.8 2 4300E 5225N 4500.0 5225.0 57318.4 23 -3 15.2 -3.2 13.0 17 3.4 17.0 1.2 3.4 45002 5237N 5237.0 57304.6 1 14.7 15.1 20 20.1 4500.0 27 1.1 8 4.8 4006E 5250H 4500.0 3250.0 57290.0 40 8 15.8 9.3 21.9 24 21 3.6 22.3 14.1 45008 4500.0 5262.0 57267.2 36 9 16.6 10.2 19.9 32 22 3.6 24.4 18.5 5262N 4000E 5275N 4500.0 5275.0 57247.9 30 10 18.6 10.9 16.8 25 20 4.3 21.3 14.6 7 19.2 7.3 18.0 13.9 4000E 5287.0 57392.3 20 17 4.0 5207N 4500.0 11.4 24 5300.0 57339.9 20 7 19.4 7.3 20 17 17.7 11.6 40008 5300N 4560.0 11.4 4.1 4000£ 0312N 4500.0 3212.0 57272.3 21 6 18.7 6.3 11.9 24 18 3.9 19.1 13.9

į.

Wednesday, March 20, 1991

	400Cž	5325k	4500.0	5325.0	57281.4	15	5	18.7	5.1	8.6	33	20	3.6	22.3	18.9
	4500E	5337N	4500.0	5237.0	57141.0	22	7	18.3	7.3	12.5	30	19	3.8	20.8	17.2
	45005	3350N	4500.0	5350.0	57705.3	29	7	17.8	7.6	16.2	30	19	3.8	20.8	17.2
·	4500E	5362N	4500.0	5362.0	57558.5	21	. 7	18 4	73	11 9	31	18	3 8	19 8	17 7
	4500E	5375N	4500 0	5375 0	57435 8	20	5	19 0	5.2	11 3	32	18	1 0	19 9	19.2
	45000	5297N	4500.0	5207 0	5/400.0	24		10 5	4.2	10 5	21	12	4.0	17.	17 /
	45000	53671	4500.0	5367.0	57012 0	24	. D.	10.0	5.3 7 4	13.5	20	10	4.0	10 1	17.0
	45000	5400N	4500.0	5400.0	3/013.7	27	. r	10.0	5.4	10.2	28	14	4.1	12.1	13.7
	40005	J412N	4500.0	3412.0	58018.1	27	່ ວ -	17.2	5.4	16.2	34	11	4.1	12.3	19.0
	40000	3423N	4500.0	5425.0	3/786.6	21	5	19.0	5.4	15.1	34	. 7	4.1	10.0	18.9
	45005	543/N	4500.0	5437.0	5/481.3	- 29	6	19.1	6.5	16.2	35	11	4.0	12.4	19.5
	4500E	5450N	4500.0	5450.0	57358.8	34	6	19.4	6.7	18.8	37	7	3.9	8.0	20.4
	4500E	5462N	4500.0	5462.0	57380.5	39	8	18.6	9.2	21.4	39	9	3.9	10.4	21.4
	4500E	042 5 14	4500.0	5475.0	57296.5	41	8	18.0	9.4	22.4	41	9	4.0	10.5	22.4
	4300E	5487N	4500.0	5487.0	57964.3	37	6	18.8	6.8	20.4	41	8	4.1	9.4	22.4
	45002	300N	4300.0	5500.0	57671.3	38	4	17.2	4.6	20.8	35	4	4.1	4.5	19.3
	4500E	3312N	4500.0	5512.0	52754.9	32	2	18.7	2.2	17.8	38	3	4.2	3.4	20.8
	4500E	2025R	4500.0	3525.0	57684.2	32	2	20.0	2.2	17.8	45	4	4.0	4.8	24.3
	4500E	5527N	4500.0	5537.0	57445.3	- 38	3	20.2	3.4	20.8	44	2	4.2	2.4	23.8
	4000E	5550N	4500.0	5550.0	57488.9	35	3	20.2	3.4	19.3	53	1	4.0	1.3	27.9
	45008	556211	4500.0	5562.0	57576.1	39	4	20.5	4.6	21.3	50	1	4.0	1.3	26.6
	4000E	50∕SN	4500.0	5575.0	37473.7	44	4	20.8	4.8	23.8	50	3	4.0	3.8	26.6
	45005	5537N	4500.0	5587.0	57405.9	41	4	20.5	4.7	22.3	4é	2	4.3	2.4	24.7
	4500E	SECON	4500.0	5600.0	57393.6	39	2	21.1	2.3	21.3	39	3	4.2	3.5	21.3
	45005	v612N	4500 0	5612.0	57554 5	41	2	21 1	2.3	22 3	ुर्द	2	1 2	3.4	19 3
	45004	5625N	4500 0	5625 0	57890 7	64	1	20.8	1 2	23.3	A 1	1	1 2	1 2	22 3
	45002	56278	4500.0	5637 0	57666 9	13	1	22 1	1 2	22.2	τ <u>α</u>	ñ	4.5 A 1	A.E.	20 5
	45002	5650N	2500.0	5450 0	57633 9	40	0	27 A	1.6	23.3	37	2	4.1	22	10 0
	2500C	5442M		5330.0	57010 5	40	. 1	22.U	1 2	21.0	30	<u>د</u>	4.4	2.3	21 0
	40002	DODZN Syden	4500.0	5052.0	57610.5	91	-1		-1.2	22.3	40		4.6	· · ·	21.0
	45000	5707M	4000.0 	0/07 0	57 703 2	30	-3 (4 (22.3	-3.4	17.3	30	-3	4.5	-3.4	20.8
	4500	M VOOL	4300.0	5687.0	38534.1	3/	-4	22.7	-4.5	20.3	42	-4	4./	-4./	22.8
	ADUUE	SZUUN	4000.0	5/00.0	5/804./	3/	-6	22.8	-6.8	20.4	4/	-4	4.5	-4.7	25.2
	45005	SZIZN	4500.0	5/12.0	5/966.3	38	-6	23.8	-6.9	20.9	35	-4	4./	-4.5	19.3
	45006	5725N	4506.0	3725.0	57691.5	44	-8	22.0	-9.6	23.9	39	-6	4.8	-6.9	21.4
	4500E	5737N	4500.0	3737.0	57137.7	38	-14	22.3	-16.1	21.1	52	-10	4.4	-12.7	27.7
	4500E	525 0 N	4500 .0	5750.0	57054.3	36	-11 2	23.0	-12.4	20.0	33	-9	5.1	-10.0	18.4
	4500E	5762N	4500.0	3762.0	57838.9	34	-10 2	23.8	-11.2	18.9	33	-7	5.3	-7.8	18.3
	4500E	1773N	4500.0	5775.0	57183.3	39	-7 :	24.3	-3.1	21.4	37	-4	5.3	-4.5	20.3
	4100E	5787N	4500.0	5787.0	57192.2	44	-5 2	25.3	-6.0	23.8	37	-4	5.4	-4.5	20.3
	ನ ೨೦೦೭	5800N	4500.0	5800.0	57314.4	44	-5 2	25.3	-6.0	23.8	32	-3	5.4	-3.3	17.8
	4500E	5 31 2N	4300.0	5812.0	57391.9	47	-5 2	25.5	-6.1	25.2	39	0	6.1	.0	21.3
	4500E	5825N	4500.0	5825.0	57391.5	51	-4 2	26.2	-5.0	27.1	31	-1	6.7	-1.1	17.2
	4500E	5837N	4500.0	5837.0	57363.9	20	-93	31.1	-9.4	11.4	4	-8	6.5	-8.0	2.3
	4500E	SSSON	4500.0	5850.0	57385.2	28	-12 2	27.6	-13.0	15.8	10	-9	7.2	-9.1	5.8
	4500E	5862N	4500.0	5862.0	57389.3	22	-11 2	28.4	-11.5	12.5	3	-7	6.7	-7.0	1.7
	4500E	5875N	4500.0	5875.0	57367.0	7	-8 2	29.2	-8.0	4.0	-8	-4	5.9	-4.0	-4.6
	4500E	5887N	4500.0	5887.0	57386.5	11	-2 2	28.1	-2.0	6.3	Ō	Ó	6.2	.0	.0
	4500E	5900N	4500.0	5900.0	57398.5	20	0 2	26.3	.0	11.3	5	3	6.1	3.0	2.9
	4500E	5912N	4500.0	5912.0	57412.8	18	1 2	27.2	1.0	10.2	10	3	6.0	3.0	5.7
	4300E	5923N	4500.0	5925.0	57401.0	11	0 2	7.9	.0	6.3	0	4	5.9	4.0	.0
	4300F	5937N	4500.0	5937.0	57438.9	1	0 2	28.2	_ 0	. 6	-2	5	5.8	5.0	-1.1
	40000	595GM	4560.0	5950 0	57388 4	7	1 2	181	1.0	4 N	-2	۵	5.5	4.0	-1.1
	4560C 45665	59622	4500.0	5962 0	57411 7	5	1 2	8 2	1 0	29	-2	4	5 6	4 0	-1.1
	40000 ZN008	5975N	2300.0	5975 C	-7651 A	ň	<u> </u>	0.0	10	<u> </u>	-2	Ŕ	5 6	8.0	-1 7
	A: 002	5987N	4500.0 X500.0	5927 N	47497 A	ň	2 C 4 C	8 7	3.0	. U N	-2	8	5 1	8 1	-4.6
	HUVVE Kinne	60007 N	4000.0 7500 N	COON N	ыхных.н Қуқст У	-10	2 0	7 0	2.0		-2	e e	5.2	8 1	-4 4
	4 2 0 0 C	0000N		2000.0	الاستقال المحال	010	వడ	1.7	5.0	0.7	-0	Q	J. 4	⊥د • ∪	4.0

Γ

 $\left\lceil \right\rceil$

Wednesday, March 20, 1991

(100E e0128 4300.0 6012.0 57525.6 -11 0 25.3 -6.3 -15 9 4.6 9.2 .0 -8.6 4600E 6025N 4500.0 6025.0 57489.1 -13 1 24.5 1.0 -7.4 -4 8 4.3 8.0 -2.3 45005 6037N 4500.0 5037.0 57461.6 2 6 23.3 1.1 10 15.2 5.8 6.0 15 4.0 4500E 60SON 4500.0 6050.0 57600.9 7 9 23.9 9.0 4.0 13 4.3 16.3 7.6 16 4500E 6100N 4500.0 6100.0 57488.4 9 4 24.1 3.6 4.0 5.2 11 ε 8.1 6.3 450CE 6112N 4500.0 6112.0 57457.1 7 0 24.3 3.5 .0 4.0 7 5 5.0 4.0 6125.0 57497.9 4500E 6125N 4500.0 5 -1 24.6 -1.0 2.9 8 2 3.7 2.0 4.6 4500E -6137N 4500.0 6137.0 57551.3 3 -2 25.1 -2.0 1.7 - 9 1 3.8 1.0 5.1 -1 -4 24.6 4500E 5150N 4500.0 6150.0 57493.0 -4.0 7 3.7 -.6 1 1.0 4.0 6162.0 57486.7 4500E 4500.0 0 -3 23.5 2 3.4 6162N -3.0 3.8 2.0 .0 6 .0 6175N 4500.0 6175.0 57583.1 4500E -2 -5 22.2 -5.0 -1.1 4 0 3.8 2.3 4500E 6137N 4500.0 6187.0 57459.9 4 -2 23.6 -2.0 2.3 3 0 3.6 .0 1.7 4500E 6200N 4500.0 6200.0 57482.7 6 0 23.8 .0 3.4 3 3.8 3.0 3.4 6 4500E 6212N 4500.0 6212.0 57490.4 12 4 24.3 6.9 3.6 4.1 11 6 6.1 6.3 4500.0 4300E 6225N 6225.0 57505.5 10 3 24.8 5.7 7 4.0 3.0 8 7.0 4.6 4300E 6237N 4500.0 6237.0 57490.3 10 3 26.1 3.0 5.7 7 4 4.0 4.0 4.0 6230N 4500.0 6250.0 57538.6 3 1 24.6 45002 1.0 1.7 3.9 1.0 1 1 . 6 0 26.4 .0 4000E 6262N 4500.0 6262.0 37491.2 3 .0 1.7 0 0 4.1 .0 ±275k 4500.0 6175.0 57520.3 -2 0 26.0 4000Ë .0 -1.1 -4 0 4.0 .0 -2.3 4600E 6227% 4500.0 6287.0 37474.9 0 25.9 -i .0 -.6 -6 -2 4.0 -2.0 -3.4 40002 6304A 4500.0 6300.0 57544.8 -7 0 25.4 -3 .0 -4.0 -4 3.8 -4.0 -4.0 5000.0 57400.9 46008 100**0**M 4600.0 8 3 22.2 8 4 3.0 4.6 4.0 4.0 4.6 ·-.6 0 3.8 46002 5012N 4600.0 S012.0 57405.0 -1 2 22.5 2.0 4 4.0 .0 5025N 4600.0 5025.0 37405.5 0 1 22.7 4600E .0 3 3.9 4.0 1.7 1.0 4 5037.0 57396.5 1.0 1.7 4600E 3032N 4600.0 3 1 22.6 7 3 3.8 3.0 4.0 3050N 4600.0 5050.0 57403.8 -1 0 22.2 .0 2.3 4600E -.5 4 1 3.8 1.0 4600E 5062K 4600.0 5062.0 57424.8 0 0 22.0 .0 17 3.5 9.7 .0 2 2.1 .0 .6 5075N 5075.0 57432.4 1 9 4600E 4600.0 0 22.0 2 3.7 2.0 5.1 4600.0 5087.0 57449.8 .0 4600E 5087N 5 0 21.2 2.9 2 2.0 8 3.6 4.6 46008 5100N 4600.0 5100.0 57475.3 -2 0 21.0 .0 -1.1 8 3 3.6 3.0 4.6 4500E 4600.0 5112.0 57487.6 1 21.1 5 3.4 5112N 6 1.0 3.4 8 5.0 4.6 5125N 4600.0 5125.0 57510.3 1 7.4 4600E 1 21.4 1.0 .6 13 4 3.3 4.1 4600E 5137N 4600.0 5137.0 57518.1 0 0 20.9 .0 .0 22 4 3.0 4.2 12.4 4600E 5150N 4600.0 5150.0 57516.4 3 0 20.9 1.7 21 3.0 4.2 11.9 .0 4 4600E 5162N 4600.C 5162.0 57445.3 5 0 21.1 .0 2.9 17 5 3.2 5.1 9.7 4600.0 5175.0 57412.3 0 .0 4500E -3175N 0 21.2 .0 22 4 3.3 4.2 12.4 .0 4600E 5137N 4600.0 S187.0 57352.4 10 0 22.2 5.7 33 8 2.8 8.9 18.4 5200N .0 46002 4600.0 5200.0 57639.4 0 21.6 7.4 24 3.1 9.5 13.6 13 9 4600E 5212N 4600.0 5212.0 57345.8 23 2 20.5 2.1 13.0 23 12 3.4 12.6 13.1 4600E 5223N 4600.0 5225.0 57333.0 19 1 20.4 1.0 10.8 23 14 3.4 14.8 13.2 4500E 5227N 4600.0 5237.0 57356.5 2 18.5 2.1 10.2 20 12 3.7 12.5 11.5 18 3.2 4600E 5250N 4600.0 5250.0 57343.8 25 4 20.3 4.3 14.1 30 8 8.7 16.8 3.7 4600.0 5262.0 57327.7 4 20.7 7 4600E 5262N 25 4.3 14.1 18 7.2 10.3 4600E 32758 4600.0 5275.0 57328.8 26 1 20.6 1.1 14.6 24 6 3.6 6.3 13.5 5287N 4600.0 5287.0 57299.7 .0 11.3 3.5 15.7 4600E 20 0 18.8 28 5 5.4 5300.0 57288.6 4600E 5300N 4600.0 28 1 20.9 15.6 22 6 3.6 6.3 12.4 1.1 3312N 1 20.7 17.3 4600E 4600.0 5312.0 57175.5 26 1.1 14.6 31 8 3.5 8.3 4600E 0320N 4600.0 5325.0 57148.8 32 2 21.5 2.2 17.8 31 9 3.5 9.9 17.3 4600E 3337N 4600.0 5337.0 57175.4 31 3 21.2 3.3 17.2 37 12 3.4 13.7 20.5 4600E 5350N 4500.0 5850.0 37608.9 38 5 21.5 5.7 20.8 42 10 3.2 11.8 23.0 4600E 4600.0 5362.0 58006.3 33 5 22.4 5.5 18.3 32 11 3.5 12.1 17.9 5362N 5.7 21.0 5375.0 07916.3 37 5 21.9 20.3 38 3.6 12.6 4600E 5373N 4600.0 11 3.4 11.9 4600E 5387N 4600.0 5387.0 57718.7 35 4 22.1 4.5 19.3 43 10 23.4 4600E 5400N 4600.0 5400.0 57223.8 33 4 22.0 4.4 18.3 35 9 4.0 10.1 19.4 3412.0 52397.1 41 3 23.0 22.3 33 3.9 4.4 18.3 4600E 5412N 4600.0 3.5 4

TERL XY1

Wednesday, March 20, 1991

46000 DADOR. 4600.0 5425.0 58027.9 34 2 22.0 2.2 10.0 30 3 4.0 3.3 16.7 54326 4600.0 KS00E 5437.0 58118.7 0 21.7 18.8 3.7 2.4 22.8 34 ~ . 0 42 2 25.2 4600E 5450N 4600.0 5430.0 57641.7 2 22.7 47 2.4 61 3 3.0 4.1 31.4 4600E 5462N 4600.0 5462.0 57454.6 38 1 23.8 20.8 1.1 42 2 3.9 2.4 22.8 4600E 5475N 4600.0 5475.0 57456.3 38 2 24.8 2.3 20.8 39 3 4.0 3.5 21.3 4600E 5487N 4600.0 5487.0 57414.9 41 2 25.0 2.3 22.3 3 19.8 36 4.1 3.4 4600E 5500K 4600.0 5500.0 57455.5 33 2 25.6 2.2 18.3 0 4.3 .0 19.3 35 19.3 4600E 5512N 4600.0 5512.0 57474.3 35 18.8 1 26.2 1.1 34 1 4.3 1.1 4600E 5525N 4600.0 5525.0 57593.4 36 1 25.9 19.8 38 4.2 20.8 1.1 1 1.1 .0 4600E 5537N 4500.0 5537.0 57467.1 35 0 25.8 19.3 34 Û 4.2 .0 18.8 4600E 3550N 4600.0 5550.0 57335.5 31 -2 26.9 17.2 37 -3 20.3 -2.2 4.3 -3.4 4600E 357SN 4600.0 5575.0 57326.5 40 -2 26.6 -2.3 21.8 38 -3 20.8 4.4 -3.4 4600E 5587N 4600.0 5587.0 57259.5 -4 26.9 43 -4.7 23.3 34 -5 4.6 -5.6 18.8 4600E 5600N 4600.0 5600.0 57224.7 37 -4 26.9 -4.5 20.3 34 -6 -6.7 18.8 4.6 4600E 4600.0 -3 27.3 5612N 5612.0 57340.0 35 -3.4 19.3 28 4.2 -6.5 15.7 -6 46008 5625N 4600.0 5625.0 57391.5 -3 26.8 -3.3 17.2 31 20.8 38 -4 4.5 -4.6 4600E 5637N -3 4.8 4600.0 5637.0 57544.1 34 -3 27.6 -3.3 18.8 37 -3.4 20.3 4600E 5650N 4600.0 5650.0 57445.8 35 -2 27.3 -2.2 19.3 35 -2 5.0 -2.2 19.3 45002 3662.0 4600.0 5662.0 57372.6 36 -2 26.8 -2.3 19.8 36 -2 4.8 -2.3 19.8 46002 Se23H 4600.0 5673.0 57363.4 -1 27.5 19.8 -1.1 5.1 -1.1 18.8 35 34 -1 460CE 5687N 4600.0 5687.0 57398.2 -1 28.7 42 -1.2 22.8 39 -1 5.2 -1.2 21.3 45006 0 29.1 23.3 5700A 4600.0 5700.0 37405.2 43 .0 0 .0 22.3 41 5.1 .0 5.4 4600E 5712R 4600.0 5712.0 57447.6 37 0 30.9 20.3 37 0 .0 20.3 4600E 5725N 4600.0 5725.0 37420.1 2 30.9 2.4 5.6 46 24.7 35 -1 -1.1 19.3 5732N 4 33.7 4600E 4600.0 5737.0 57441.2 43 4.7 23.3 71 4 4.2 6.0 35.4 4600E 5750N 4600.0 5750.0 57426.5 38 7 35.4 20.9 38 20.8 8.0 4 6.4 4.6 46002 5762K 4600.0 5762.0 57415.8 25 5.7 6 36.7 6.4 14.1 26 4 4.3 14.6 .0 4600E 5775N 4600.0 5775.0 37434.6 19 1 35.0 1.0 10.8 21 0 6.5 11.9 4600E 4600.0 -3 -3.2 13.5 5787H 5787.0 57445.8 10 -1 32.8 -1.0 5.7 24 5.7 -3 31.1 4600E 5800M -5.0 4600.0 5860.0 57441.9 -14 -3.1 -8.0 -1 -5 -.6 6.1 4600E 5812N 4600.0 5812.0 57448.5 -4 30.2 -3.0 -8 -4.0 -4.6 3 -3 5.8 1.7 1 30.1 4600E 5825N 4600.0 5825.0 57484.8 2 9 2 1.0 1.1 5.8 2.0 5.1 4600E 5837N 4600.0 5837.0 57482.7 0 0 31.4 .0 .0 0 0 6.2 .0 .0 4600E 5850N 4600.0 5850.0 57480.6 -11 0 29.8 .0 -6.3 -3 -1 6.0 -1.0 -1.7 4600E 5862N 4600.0 5862.0 57452.2 -5 1 29.3 0 -6.3 1.0 -2.9 -11 5.6 .0 4600E 5875N 4600.0 5875.0 57483.0 -4 6 28.2 -2.3 -9 5 -5.2 6.0 4.8 5.0 .0 4600E 5887N 4600.0 5887.0 57444.6 0 10 29.0 10.0 -8 8 5.1 8.1 -4.6 4600E 5900N 4600.0 5900.0 57451.8 0 8 28.6 8.0 .0 -10 7 5.0 7.1 -5.7 7 4600E 5912N 4600.0 5912.0 57471.7 9 25.8 2.3 4.7 7.0 .0 4 9.0 0 4600E 5925N 4600.0 5925.0 57454.9 -2 8 27.3 8.0 -1.2 -2 7 4.6 7.0 -1.2 4600E 5937N 4600.0 5937.0 57455.8 -1 7 26.8 7.0 -.6 5 4.5 5.0 -2.3 -4 4600E 5950N 4600.0 5950.0 57482.3 -5 5 25.6 5.0 -2.9 -9 2 4.4 2.0 -5.1 4600E 5962N 4600.0 5962.0 57485.4 -5 2 25.1 -2.9 0 -4.6 2.0 -8 4.2 .0 4600E 5975N -.6 4600.0 5975.0 57477.6 -1 2 23.5 2.0 -2 1 3.7 -1.1 1.0 4600E 5987N 4600.0 5987.0 57491.3 3 24.4 -2.9 -5 3.9 3.0 -3.4 3.0 -6 3 6000.0 57506.1 7 2.3 4600E 6000N 4600.0 -2 4 24.1 4.0 -1.1 4 3.8 7.0 4600E 6012N 4600.0 6012.0 57475.1 -2 2 23.7 2.0 -1.1 1 4 4.0 4.0 .6 4600E 6025N 4600.0 6025.0 57463.9 3 4 24.2 4.0 1.7 7 5 4.0 5.0 4.0 4600E 4600.0 6037.0 57540.3 12 3 24.1 3.0 6.8 10 5 4.2 5.1 5.7 6037N 4.6 4 25.5 5.2 3 4.2 3.0 4600E 6050N 4600.0 6050.0 57519.0 9 4.0 8 14 4.2 8.0 4600.0 6062.0 57501.5 9 4 24.5 4.0 5.2 3 3.1 4600E 6062N 10.2 4.1 4600E 6075N 4600.0 6075.0 57501.5 14 3 25.4 3.1 8.0 18 4 4.1 4.4 1.7 4600E 6087N 4600.0 6087.0 57524.5 3 2 24.8 2.0 1.7 3 3 3.0 6100.0 57490.4 3 6.3 6100N 9 2 21.8 5.1 3.5 3.0 4600E 4600.0 2.0 11 4600E 6112N 4600.0 6112.0 57521.6 9 1 22.3 1.0 5.1 11 3 3.7 3.0 6.3

4700E

5525N

4700.0

5525.0 57027.1

35

-1 28.3

19.3

-1.1

26

-3

4.1

-3.2

14.6

Wednesday, March 20, 1991

6125.0 57522.1 4600E 6125N 4600.0 3.6 9 1 22.9 1.0 5.1 10 3 3.0 5.7 4600E 6137N 4600.0 6137.0 57522.1 9 0 23.1 .0 5.1 12 3 3.8 3.0 6.8 4600E 6150N 4600.0 6150.0 57516.1 9 0 22.7 5.1 12 3.7 4.1 6.9 .0 4 4600E 6162N 6162.0 57521.7 2 23.6 5.7 4600.0 10 2.0 13 5 3.9 5.1 7.4 4600E 6175N 4600.0 6175.0 57535.3 9 2 24.5 2.0 5.1 11 4 4.1 4.0 6.3 4600E 6187N 4600.0 6187.0 57540.4 0 24.9 .0 3.7 4 2.3 9 2 2.0 5.1 4600E 6200N 4600.0 6200.0 57568.4 0 -2 22.2 -2.0 .0 0 1 3.4 1.0 .0 4600E 6212N 4600.0 6212.0 57522.3 -2 -2 24.7 -2.0 0 3.8 -1.1 -1 .0 -.6 -2.0 4600E 6225N 4600.0 6225.0 57523.5 -2 22.1 -3.4 -3 -1.7 -6 2 3.4 2.0 4600E 6237N 4600.0 6237.0 57518.2 -2 23.9 -2.0 -3 -1.7 -4 0 3.8 .0 -2.3 -2 4600E 6250N 4600.0 6250.0 57538.6 -2 23.4 -2.0 -1.1 -7 -2 3.9 -2.0 -4.0 4600.0 -5 -2 22.4 -2.0 -2.9 -12 -2 -2.0 4600E 6262N 6262.0 57531.2 3.6 -6.8 5.0 4700E 5000N 4700.0 5000.0 57420.3 9 6 22.2 6.0 5.2 5 3.9 2.3 4 4700E 5012N 4700.0 5012.0 57394.0 9 6 21.5 6.0 5.2 4 6 3.9 6.0 2.3 9 9.2 4700E 5025N 4700.0 5025.0 57373.9 4 21.0 4.0 3.8 8.0 6 3.4 14 4700E 5037N 4700.0 5037.0 57392.3 6 2 21.6 2.0 3.4 2 9 3.9 9.0 1.2 4700E 5050N 4700.0 5050.0 57395.6 3 21.7 2.3 3.9 10.0 2.3 3.0 4 10 4 4700E 5062N 4700.0 5062.0 57394.2 4 3 22.5 3.0 2.3 -3 11 3.8 11.0 -1.7 2 20.5 4700E 5075N 4700.0 5075.0 57387.8 -2 2.0 -3 7 7.0 -1.7 -1.1 3.7 0 20.2 4700E 5087N 4700.0 5087.0 57375.4 5 .0 2.9 -2 3 3.5 3.0 -1.1 4700E 5100N 4700.0 5100.0 57342.5 9 -1 19.7-1.0 5.1 -10 -2 2.9 -2.0 -5.7 4700E 5112N 4700.0 5112.0 57361.4 0 20.1 2.9 13 .0 7.4 3 1 1.0 1.7 4700E 5125N 4700.0 5125.0 57374.0 18 5 21.5 5.2 10.2 18 9 3.2 9.3 10.3 4700E 5137N 4700.0 5137.0 57412.7 7 23.0 7.3 12.5 25 3.3 8.5 14.1 22 8 4700E 5150N 4700.0 5150.0 57390.9 7 23.5 7.3 11.9 27 9.7 15.2 21 9 3.4 4700E 5162N 4700.0 5162.0 57381.9 27 6 24.8 15.2 3.6 4.2 12.4 6.4 22 4 3 24.8 3.1 4700E 5175N 4700.0 5175.0 57389.5 20 11.3 24 3.5 3.2 13.5 3 4700E 5187N 4700.0 5187.0 57378.2 4 25.9 10.8 16 4.1 9.1 19 3 3.4 3.1 4700E 5200N 4700.0 5200.0 57386.7 3.2 4.3 12 4 26.8 4.1 6.9 27 4 15.1 7 4700E 5212N 4700.0 5212.0 57383.3 10 4 26.6 4.0 5.7 33 3.4 7.8 18.3 4700E 5225N 4700.0 5223.0 57387.5 5 27.1 5.0 26 9 3.4 9.6 14.7 8 4.6 4700E 5237N 4700.0 5237.0 57373.0 7 0 27.1 30 3.5 12.0 16.9 .0 4.0 11 7 12.1 17.9 4700E 5250N 4700.0 5250.0 57367.1 0 28.7 .0 4.0 32 11 3.7 4700E 5262N 4700.0 5262.0 57361.0 3 0 26.6 .0 1.7 32 10 4.0 11.0 17.9 29 4700E 5275N 4700.0 5275.0 57350.8 20 -1 27.1 -1.0 11.3 5 3.8 5.4 16.2 4700E 5287N 4700.0 5287.0 57350.7 1 27.6 14.0 27 3.9 4.3 25 1.1 4 15.1 3.8 4700E 5300N 4700.0 5300.0 57239.7 25 3 26.6 3.2 14.0 24 8 8.5 13.6 4700.0 5312.0 57523.5 17.2 3.9 17.3 4700E 5312N 31 4 26.7 4.4 31 6.6 6 4700E 5325N 4700.0 5325.0 57378.4 27 4 26.5 4.3 15.1 29 8 3.7 8.7 16.3 7 4700E 5337N 4700.0 5337.0 57292.5 31 4 26.8 4.4 17.2 31 3.8 7.7 17.3 4700E 14.7 5350N 4700.0 5350.0 57403.7 30 4 26.8 4.4 16.7 26 8 3.5 8.5 4700E 4700.0 5362.0 56751.8 7 3.7 7.8 18.9 5362N 35 4 26.7 4.5 19.3 34 19.8 7 4700E 4700.0 5375.0 58389.4 3 3.8 7.7 17.3 5375N 36 25.8 3.4 31 4700E 5387N 4700.0 5387.0 58071.3 32 4 27.3 4.4 17.8 29 7 3.8 7.6 16.2 4700E 5400N 4700.0 5400.0 58469.1 2 27.1 2.3 19.8 32 5 3.8 5.5 17.8 36 4700E 4700.0 3 17.2 5412N 5412.0 57858.1 39 3 27.0 3.5 21.3 31 3.8 3.3 4700E 4700.0 3 25.5 5.3 29.3 5425N 5425.0 57468.1 48 3.7 25.7 56 4 3.3 4700E 5437N 4700.0 5437.0 57526.0 33 1 26.3 1.1 18.3 35 3 3.8 3.4 19.3 4700E 5450N 4700.0 5450.0 57460.0 48 2 26.4 2.5 25.6 36 2 4.1 2.3 19.8 4700Ë 4700.0 5462.0 57366.9 35 -1 27.4 -1.1 19.3 30 0 4.0 .0 16.7 5462N 4700E 5475N 4700.0 5475.0 57387.1 -2 25.3 -2.2 17.2 0 3.4 15.6 31 28 .0 15.6 5487.0 57468.0 27.0 .0 20.8 28 4.0 4700E 5487N 4700.0 38 0 0 .0 4700E 5500N 4700.0 5500.0 57552.5 27 -1 27.9 -1.115.1 22 0 3.8 .0 12.4 4700E S512N 4700.0 5512.0 57375.6 33 -1 28.1 -1.1 18.3 31 0 4.3 .0 17.2

.

,

-

Wednesday, March 20, 1991

4700E	5537N	4700.0	5537.0	57195.3	40	-1 27.8	-1.2	21.8	22	-4	4.0	-4.2	12.4
4700E	5550N	4700.0	5550.0	57261.9	33	0 29.3	.0	18.3	25	-3	4.0	-3.2	14.0
4700E	5562N	4700.0	5562.0	57296.3	36	0 29.5	.0	19.8	29	-2	4.3	-2.2	16.2
4700E	5575N	4700.0	5575.0	57356.0	42	0 28.5	.0	22.8	33	-3	4.3	-3.3	18.3
4700E	5587N	4700.0	5587.0	57351.3	42	1 28.5	1.2	22.8	37	-1	4.4	-1.1	20.3
4700E	5600N	4700.0	5600.0	57378.3	36	0 29.4	.0	19.8	34	-2	4.4	-2.2	18.8
4700E	5612N	4700.0	5612.0	57444.3	26	0 29.4	.0	14.6	29	-2	4.3	-2.2	16.2
4700E	562SN	4700.0	5625.0	57380.4	38	1 29.6	1.1	20.8	34	-1	4.6	-1.1	18.8
4700E	5637N	4700.0	5637.0	57408.5	31	0 31.1	.0	17.2	31	-2	4.5	-2.2	17.2
4700E	5650N	4700.0	5650.0	57404.2	42	0 30.4	.0	22.8	30	0	5.1	.0	16.7
4700E	5662N	4700.0	5662.0	57427.2	35	-1 31.7	-1.1	19.3	28	-3	5.3	-3.2	15.7
4700E	5675N	4700.0	5675.0	57462.5	27	-1 33.6	-1.1	15.1	22	-2	4.9	-2.1	12.4
4700E	5687N	4700.0	5687.0	57446.0	14	-1 34.6	-1.0	8.0	22	-2	5.4	-2.1	12.4
4700E	5700N	4700.0	5700.0	57446.3	12	-4 35.1	-4.1	6.9	13	-4	5.6	-4.1	7.4
4700E	5712N	4700.0	5712.0	57452.5	11	-6 33.9	-6.1	6.3	6	-4	5.3	-4.0	3.4
4700E	5725N	4700.0	5725.0	57451.3	9	-4 32.5	-4.0	5.2	10	-3	5.3	-3.0	5.7
4700E	5737N	4700.0	5737.0	57477.4	10	-1 30.7	-1.0	5.7	16	Õ	5.3	.0	9.1
4700E	5750N	4700.0	5750.0	57468.1	8	-1 29.6	-1.0	4.6	10	Ō	5.4	.0	5.7
4700E	5762N	4700.0	5762.0	57485.0	7	-3 30.4	-3.0	4.0	5	ō	5.2	.0	2.9
4700F	5775N	4700.0	5775.0	57487.3	18	-1 27.7	-1.0	10.2	12	2	5.1	2.0	6.8
4700F	5787N	4700.0	5787.0	57506.2	16	2 27.7	2.1	9.1	19	7	4.7	7.3	10.8
4700F	5800N	4700.0	5800.0	57510.7	14	7 27.5	7.1	8.0	- 8	10	5.3	10.1	4.6
4700F	5812N	4698.7	5812.0	57501.6	7	7 29.2	7.0	4.0	õ	6	5.3	6.0	.0
4700F	5825N	4697.3	5825.0	57488.2	4	2 28.4	2.0	2.3	-5	3	5.2	3.0	-2.9
4700E	5837N	4695.9	5837.0	57530.5	3	2 27.7	2.0	1.7	-5	õ	4.6	.0	-2.9
47005	5850N	4694 5	5850 0	57491 2	-5	5.29.2	5 0	-2.9	-12	4	47	4.1	-6.9
4700E	5862N	4693 2	5862 0	57479 3	-1	4 26 6	4 0	- 6	-8	2	4 6	2 0	-4.6
47000	5825N	4691 8	5875.0	57475 2	-10	4 26.8	4.0	-5.7	-11	2	4.3	2.0	-6.3
47005	5287N	4690 4	5887 0	57522 5	-12	3 26 3	3 0	-6 8	-12	6	4.2	4 1	-6.9
47005	5900N	4689 0	5900 0	57511 7	-2	3 24 2	3.0	-1 1	-8	5	3.8	5 0	-4.6
4700E	5912N	4687 7	5912.0	57493.7	-9	5 24.4	5.0	-5.2	-14	6	3.8	6.1	-8.0
47002	5925N	4686 3	5925 0	57494 0	-4	4 24 8	4 0	-2.3	-7	ς	3.8	5.0	-4.0
47005	5937N	4684 9	5937 0	57486 2	n N	4 23 7	4 0	0	-5	2	3.6	2.0	-2.9
47000	5950N	4683 5	5950 0	57482 2	14	5 21 8	5 1	8.0	10	6	3.2	6.1	5.7
4700E	5962N	4682 2	5962 0	57488.3	8	8 23.8	8.1	4.6	-6	8	3.6	8.0	3.5
47005	5975N	4680 8	5975 0	57496 9	10	9 24 7	9 1	58	6	8	3.8	8.0	3.5
47005	5987N	4620.0 A679 A	5987 0	57530 9	15	9 24 9	9 2	8.6	3	7	4 0	7.0	1.7
47000	4000N	4679.0	6000 0	57521 4	14	8 26 0	8 2	8.0	9	6	4.0	6.0	5.2
47000	4012N	4676.7	6012 0	57/98 /	16	7 25 9	7 2	9 1	10	5	4.0	5 1	5.7
47000	4025N	4676.7	6012.0 6025 D	57508 5	ġ	5 26 8	5 0	5 2	1	4	<u>4</u> 1	4 0	- 6
47000	4027N	4673 9	4037 0	57506 9	22	1 24 5	12	12 0	7	ר ר	4 1	3.0	4 0
47000	4050M	4673.7	4050 D	57535 8	20	2 24 8	2 0	1 1	0	2	4.0	2 0	0
47005	6050N	4672.5	6050.0	57573 1	10	0 27 4	<u> </u>	57	ň	1	A 1	1 0	.0
47000	4075N	40/1.2 /449 R	4075 0	57501 8	10	1 26 9	1 0	57	7	2	1 2	3 0	۰. م ۸
47000	40975N	4667.0	4027 0	57544 7	19	2 24 0	2 1	10.9	10	3	1 2	3.0	57
47000	4100N	4660.4	4100 0	57501 7	Δ 2	1 22 0	1 0	10.0	12	2	3.2	2 0	6.8
47001	6100N	4667.0	4112 D	57542 3	g	2 24 3	2 0	4.0	10	2	3.0	3 0	5 7
47000	C1254	4667.0	4125 D	57505 1	5	1 24.5	1 0	29	- Q	3	1 0	3.0	5 1
47000	612JN	4667.0	4137 0	57547 1	2	0 25 2	1.0	1 1	, २	1	<u>4</u> 1	1 0	1.7
4700E 7700S	CT 27 IN	4667.0	4150 D	57530 0	ñ	-1 25 5	-1 0	 0	-3	Ô	4 1		-1.7
47000	CTOON CITON	4667.0	6162 0	57520 9	ň	-1 24 4	-1 0	n	ñ	õ	4 1	_0	
4700E 7700E	CTOCH 7170M	4007.0	6175 0	57518 5	-2	0 23 2	v	-1 1	ñ	1	4.0	1_0	_ 0
47005	017 JN 2107M	4007.0	4197 D	57512 2	ے ب	-2 24 4	-2 0	-2 2	-4	-1	4 1	-1 0	-3.4
4700E	4200M	400/.0	4200 0	57501 1	-4 -4	-2 21 2	-2 D	-2 1	_9	-1	<u>4</u> 1	-1 D	-5.1
47000	0200N 2212M	400/.0	2212 0	57520 5		0 22 9	0.0	-29	-10	ñ	4 0	v	-5 7
47 VVC	OCICIN	400/.0	0212.0	J/ JEV.J	5	v LJ./		L ./	τv	<u> </u>	v		

Page 24

٢

.

.

-

Wednesday, March 20, 1991

4700E	6225N	4667.0	6225.0	57545.8	-5	2 24.2	2.0	-2.9	-12	4	3.9	4.1	-6.9
4700E	6237N	4667.0	6237.0	57535.7	-9	5 25.3	5.0	-5.2	-11	5	4.1	5.1	-6.3
4700E	6250N	4667.0	6250.0	57549.3	-12	5 24.7	5.1	-6.9	-12	7	4.1	7.1	-6.9
4700E	6262N	4667.0	6262.0	57636.4	-13	5 22.4	5.1	-7.4	-17	4	3.9	4.1	-9.7
4800E	5075N	4800.0	5075.0	57336.5	16	-5 16.6	-5.1	9.1	2	4	3.8	4.0	1.1
4800F	5087N	4800.0	5087.0	57324 4	22	1 17.8	1.0	12.4	14	8	3.8	8.2	8.0
4800F	5100N	4800 0	5100 0	57359 3	26	8 18 3	8 5	14 7	24	11	3.8	11 6	13.6
4800F	5112N	4800 0	5112 0	57356 5	19	1 20 1	1 0	10 8	21	Î.	<u>4</u> 1	3 1	11 9
48005	51258	4800.0	5125 0	57365 3	21	0 19 4	1.0	11 9	21	-1	3 6	-1 1	12 5
48008	5137N	4800.0	5137 0	57387 4	26	3 18 4	3.2	14 6	32	Ę	37	5 5	17 8
4000C	SISON	4000.0	5150 0	57422 1	34	10 19 2	:1 2	12 9	11	11	3.7	13.2	24 0
40000	5142N	4200.0	5147 0	57400 1	34	9 19 4	10.2	19.9	50	- a	37	11 3	26 7
4800C	5175N	4800.0	5175 0	57365 1	12	10 19 7	11 8	23 0	49	Ŕ	12	99	26.2
48000	5127M	4800.0	5187 0	57404 0	46	13 20 2	15 8	25.0	47	ں ۸	4.2	1 8	24.7
40000	5200M	4800.0	5200 0	57290 2	40	12 20.2	14 2	25.0	40	4	4.5	7 1	29.7
40000	52001	4800.0	5212 0	57370.3	47	13 20.7	10.2	20.4	43	5	4.0	4 0	23.3
40000	SODEN	4800.0	5212.0	57444.0	45	7 44.4	10.0	24.4	44	2	4.5	0.U 7 0	23.0
48000	522311	4800.0	5225.0	57427.1	44	7 22.8	10.8	23.7	44	6	4.8	1.2	23.8
48005	SOSAN SOSAN	4800.0	5237.0	57424.4	42	13 23.7	15.3	23.1	44	4	4.7	4.8	23.8
40000	SZOUN COLON	4800.0	5250.0	5/452.3	31	9 24.2	7.7	1/.3	32	0	5.1	.0	1/./
4800E	SZEZM	4800.0	5262.0	5/38/./	28	10 23.5	10.8	15.8	3/	2	4./	2.3	20.3
4500E	5275N	4800.0	52/5.0	5/420.3	24	/ 24.2	7.4	13.6	37	0	4.9	.0	20.3
4800E	5287N	4800.0	5287.0	57426.0	23	4 23.9	4.2	13.0	39	-2	5.0	-2.3	21.3
4800E	5300N	4800.0	5300.0	57399.5	21	2 24.2	2.1	11.9	40	0	5.2	.0	21.8
4800E	5312N	4800.0	5312.0	57399.4	24	5 25.5	5.3	13.5	42	1	5.7	1.2	22.8
4800E	5325N	4800.0	5325.0	57421.2	11	1 30.0	1.0	6.3	33	0	6.2	.0	18.3
4800E	5337N	4800.0	5337.0	57489.0	5	0 30.7	.0	2.9	26	1	5.9	1.1	14.6
4800E	5350N	4800.0	5350.0	57416.9	8	4 29.7	4.0	4.6	27	5	5.9	5.4	15.1
4800E	5362N	4800.0	5362.0	57451.5	3	6 29.2	6.0	1.7	26	7	6.0	7.5	14.6
4300E	5375N	4800.0	5375.0	57407.2	0	5 27.7	5.0	.0	22	6	5.6	6.3	12.4
4300E	5397N	4800.0	5387.0	57468.5	0	3 27.3	3.0	.0	21	8	5.5	8.4	11.9
4800E	5400N	4800.0	5400.0	57437.2	2	1 26.8	1.0	1.1	25	5	5.3	5.3	14.1
4800E	5412N	4800.0	5412.0	57443.5	0	-2 28.0	-2.0	.0	20	2	5.4	2.1	11.3
4800E	5425N	4800.0	5425.0	57439.8	-2	-4 27.6	-4.0	-1.1	17	1	5.6	1.0	9.6
4800E	5437N	4800.0	5437.0	57425.8	-5	-9 27.7	-9.0	-2.9	13	0	5.3	.0	7.4
4800E	5450N	4800.0	5450.0	57406.1	-8	-12 26.9	-12.1	-4.6	10	-2	5.3	-2.0	5.7
4800E	5462N	4800.0	5462.0	57429.5	-5	-9 27.6	-9.0	-2.9	13	0	5.1	.0	7.4
4300E	5475N	4800.0	5475.0	57440.2	-4	-10 27.1	-10.0	-2.3	15	0	5.2	.0	8.5
4800E	5487N	4800.0	5487.0	57423.1	-3	-10 27.5	-10.0	-1.7	18	0	5.1	.0	10.2
4800E	5500N	4800.0	5500.0	57411.7	1	-8 27.3	-8.0	.6	20	2	5.1	2.1	11.3
4800E	5512N	4800.0	5512.0	57439.2	1	-8 27.6	-8.0	.6	22	3	4.9	3.1	12.4
4800E	5525N	4800.0	5525.0	57465.1	4	-7 27.6	-7.0	2.3	25	1	5.3	1.1	14.0
4800E	5537N	4800.0	5537.0	57427.9	6	-7 27.8	-7.0	3.5	28	2	5.2	2.2	15.6
4800E	5550N	4800.0	\$550.0	57461.7	8	-4 27.7	-4.0	4.6	28	5	5.4	5.4	15.7
4800E	5562N	4800.0	5562.0	57471.3	10	-3 28.1	-3.0	5.7	29	4	5.7	4.3	16.2
4800F	5575N	4800.0	5575.0	57482.8	7	-5 28.6	-5.0	4.0	27	1	5.9	1.1	15.1
4800F	558ZN	4800.0	5587.0	57453.2	5	-6 29.1	-6.0	2.9	25	-1	5.9	-1.1	14.0
48005	5600N	4800 0	5600 0	57556 1	7	-11 26 3	-11 1	4 1	23	-4	5.9	-4.2	13.0
48004	5612N	4800.0	5612 0	57453 1	3	-8 30 0	-8 0	1 7	20	1	6 2	-1.0	11.3
48000	5425N	4800.0	5425 0	57467 7	2	-9 30 6	-9.0	1 2	18	-1	6.3	-1 0	10.2
40000	5427N	4800.0	5025.0	57422 4	ĥ	-10 28 9	-10 0	÷•÷ ∩	12	-1	6.3	-1 1	7 A
ASUOR	5357 N 53 S.AM	4800.0	5450 0	57/54 1	ň	-8 28 0	-2 0	. U . D	12	-1	6.2	-1 O	7 1
40000	5620N	4800.0	5662 0	57172 0	1	-8 29 0	-2 6	.0	14	ñ	6.2	±.0	9 1
40000	SZZEN	4000.0	5475 0	57/10 0	<u>۲</u>	_7 20 E	-7 0	.0	12	0	4 5	.0	7.4
40000	5207M	4000.0	5675.U 5207 M	57410.7	0	-10 20 /	-7.0	.0	د ب 11	_1	4 4	_1 Ò	4 2
40000	2007 N 5700N	4800.0	5700 0	57507 1	U	-10 30.6	12 0	.0	¥ ۲ ۲	- T	0.0	-7.0	0.3
40000	SZ UUN	4800.0	3/00.0	J/ JUL.1	-ъ	-13 30.1	-12.0	~3.0	4	- 3	0.7	-3.0	د.3

Page 25

-

~

.

.

Wednesday, March 20, 1991

Page 26

r

4800E	5712N	4800.0	5712.0	57493.1	7	-7 29.7	-7.0	-4.0	0	-2	6.9	-2.0	.0
48005	3725N	4800.0	5725.0	57497.3	3 -13	-3 29.0	-3.1	-7.4	-1	ō	6.6	.0	6
4806E	5737N	4800.0	5737.0	57534.9	-9	-1 28.7	-1.0	-5.1	ō	1	6.5	1.0	.0
4800E	5750N	4800.0	5750.0	57529.0) -6	-1 30.0	-1.0	-3.4	-1	3	6.4	3.0	6
4800E	5762N	4800.0	5762.0	57525.3	-14	-3 28.5	-3.1	-8.0	-4	2	6.4	2.0	-2.3
4800E	5275N	4800.0	5775.0	57487.1	-17	-3 28.7	-3.1	-9.7	-4	ō	6.4	. 0	-2.3
4800E	5787N	4800.0	5787.0	57538.1	-19	-4 28 1	-4 1	-10.8	-8	1	6.2	1 0	-4.6
48005	5800N	4800 0	5800 0	57536 2	-21	-5 26 1	-5.2	-11 9	_9	1	6 1	1 0	-5 1
4800F	5812N	4800 0	5812 0	57506 9	-26	-6 24 5	-6 4	-14 6	-9	1	5 7	1 0	-5 1
48002	5825N	4800.0	5825 0	57611 1	-24	-6 23 2	-6 3	-13 5	-11	ñ	5 1	1.0	-6 3
48005	5337N	4800.0	5837 0	57541 3	-17	-1 22 1	-/ 1	-9.7	-5	ñ	5 1	.0	-2 9
42002	5850N	4800.0	5850 0	57517 9	-13	-2 22 4	-2 0	-7 /	1	3	5.4	3.0	۷.۱
4000C 4200E	5862N	4800.0	5862 0	57517 4	-8	-1 21 9	-1 0	-1 6	2	1	51	<i>x</i> 0	17
4000C 4200C	5002N 5075M	4800.0	5002.0	57542 2	- 4	0 22 7	0.1	-4.0	2	4 5	5.2	4.0 5.0	2 1
40000	5007N	4800.0	5007 0	57540 7		1 22 2	1 0	-2.5	0	2	5.2	2.0	5.4
40000	5900M	4800.0	5900 0	57574 2	0	0 24 1	1.0	0	12	7	7.1	0.0 7 1	J.2 2 Q
40000	SQ12N	4800.0	5912 0	57/94 0	1	-1 22 9		.0	12	2	4.7	2.0	0.7
40000	SODEN	4800.0	5075 N	57520 4	2	-1 23.7	-1.0	.0	0 0	2	J.J 5 0	2.0	4.0
40000	50720N	4800.0	5927 0	57530.0 57597 0	ی د	0 24.4	.0	1./	0 /	2 2	2.3	2.0	4.0
40000	5950M	4800.0	5737.U	57545 0	נ ד	0 24.5	20	4.7	10	4	5.5	2.0	5.4
4000£	50420	4800.0	5700.0	57545.0		2 24.7	2.0	4.0	10	4	5.5 5 7	4.0	5./
40000	5076M	4800.0	5762.0	57544.0	7	1 20.2	1.0	5.1	7	3	5./	3.0	D.1
40000	577 DN 500 DN	4800.0	5907 0	57505 5	3	0 25.6	.0	1./	6	2	5.8	2.0	3.4
48000	2787 N	4800.0	2787.0	5/505.5	1	U 26.8	.0	.0	3	U O	5.8 5 7	.0	1./
48000	5000N (010N	4800.0	6000.0	57503.0	-3	-1 27.0	-1.0	~1./	-1	0	5./	.0	5
48000	CODEN CODEN	4800.0	6012.0	5/583.8	-5	-1 26.3	-1.0	-2.9	-3	0	5.6	.0	-1./
4800E	6023N	4800.0	6025.0	5/550.3	~8	0 26.2	.0	-4.6	-3	1	5./	1.0	-1./
4800E	603/N	4800.0	6037.0	5/588.0		0 26.0	.0	-5.1	-/	0	5.4	.0	-4.0
48005	6050N	4800.0	6050.0	5/555.3	-12	-1 25.9	-1.0	-8.5	-12	0	5.4	.0	-6.8
4800c	6062N	4800.0	6062.0	5/548.8	-31	-2 25.6	-2.2	-17.2	-26	-1	5.6	-1.1	-14.6
4800E	6075N	4800.0	60/5.0	5/5/8.1	-35	0 20.8	.0	-19.3	-31	0	4.3	.0	-17.2
48000	SUS/N	4800.0	6087.0	5/5/3.6	-25	5 18.7	5.3	-14.1	-23	2	4.0	2.1	-13.0
4800E	6100N	4800.0	6100.0	5/555.0	-33	-3 23.5	-3.3	-18.3	-27	0	3.6	.0	-15.1
4800c	GLIZN	4800.0	6112.0	5/544.5	-25	-4 19.0	-4.3	-14.1	-14	0	3.3	.0	-8.0
4800E	6125N	4800.0	6125.0	5/539.0	-24	-2 18.5	-2.1	-13.5	-18	2	3.1	2.1	-10.2
4800E	613/N	4800.0	613/.0	5/551.5	-30	0 17.7	.0	-16./	-/		3.0	/.0	-4.0
4800E	6150N	4800.0	6150.0	5/556.8	-23	2 17.7	2.1	-13.0	-9	8	2.9	8.1	-5.2
4800E	6162N	4800.0	6162.0	5/5/1.3	-18	3 1/./	3.1	-10.2	Û	11	3.0	11.0	.0
4800E	61/5N	4800.0	61/5.0	5/54/.6	-9	4 16.5	4.0	-5.2	6	14	3.0	14.1	3.5
4800E	618/N	4800.0	618/.0	5/553.9	-1/	5 16.5	5.1	-9.7	9	15	3.1	15.1	5.3
48005	6200N	4800.0	6200.0	5/538.3	0	4 16.1	4.0	.0	18	11	3.0	11.4	10.3
4800E	6212N	4800.0	6212.0	5/562.4	6	6 16.5	6.0	3.4	18	13	3.1	13.4	10.4
4800E	6225N	4800.0	6225.0	5/5/4.9	8	8 17.6	8.1	4.6	18	9	2.9	9.3	10.3
4800E	623/N	4800.0	6237.0	5/592.6	11	8 17.7	8.1	6.3	4	5	3.0	5.0	2.3
4800E	6250N	4800.0	6250.0	57601.7	10	9 17.8	9.1	5.8	14	7	3.0	7.1	8.0
4800E	6262N	4800.0	6262.0	57580.0	16	9 18.0	9.2	9.2	20	6	3.0	6.2	11.3
4800E	6275N	4800.0	6275.0	57568.0	24	9 17.4	9.5	13.6	20	9	3.2	9.4	11.4
4800E	6287N	4800.0	6287.0	57582.2	12	8 19.2	8.1	6.9	-23	3	3.7	3.2	-13.0
4900E	5000N	4900.0	5000.0	57398.1	4	-1 24.0	-1.0	2.3	0	6	4.6	6.0	.0
4900E	5012N	4900.0	5012.0	57423.6	7	-3 23.7	-3.0	4.0	2	4	4.5	4.0	1.1
4900E	5025N	4900.0	5025.0	5/382.3	9	-3 22.5	-3.0	5.1	6	/	4.3	7.0	3.5
4900E	5037N	4900.0	5037.0	5/420.9	13	-4 21.4	-4.1	/.4	12	3	4.3	3.0	6.8
4900E	5050N	4900.0	5050.0	57408.2	14	-3 21.6	-3.1	8.0	15	3	4.3	3.1	8.5
4900E	5062N	4900.0	5062.0	57419.1	18	-4 22.1	-4.1	10.2	21	2	4.2	2.1	11.7
4900E	5075N	4900.0	5075.0	57456.0	17	-5 22.5	-5.1	9.7	25	4	4.3	4.3	14.1
4900E	5087N	4900.0	5087.0	5/440.9	- 21	-2 23.5	-2.1	11.9	27	4	4.6	4.3	12.1

4900E

5775N

4900.0

5775.0 57535.1

Wednesday, March 20, 1991

4900E 5100N 4900.0 5100.0 57408.8 22 1 24.5 1.0 12.4 35 5 4.2 5.6 19.3 4900E 5112N 4900.0 5112.0 57425.8 22 3 26.0 3.1 12.4 33 4.8 3.3 3 18.3 4900E 5123N 4900.0 5125.0 57444.8 3 26.7 29 20 3.1 11.3 5 4.8 5.4 16.2 4900E 5137N 4900.0 5137.0 57473.2 2 29.8 14 2.0 8.0 5.3 13.5 24 5 5.3 4900E 5150N 4900.0 5150.0 57439.4 2 29.4 10 2.0 5.7 21 3 5.0 3.1 11.9 4900E 5162N 4900.0 5162.0 57467.6 9 3 28.3 3.0 5.1 21 4 5.1 4.2 11.9 4900E 5175N 4900.0 5175.0 57425.4 5 26.6 11 5.1 6.3 23 4 4.9 4.2 13.0 4900E 5187N 4900.0 5187.0 57476.1 12 7 26.8 7.1 6.9 23 7 5.1 7.4 13.0 4900E 5200N 4900.0 5200.0 57395.3 9 27.0 11 9.1 22 5.3 4.2 12.4 6.3 4 4900E 5212.0 57457.1 3 26.9 5212N 4900.0 4 3.0 2.3 19 3 5.5 3.1 10.8 4900E 5225N 4900.0 5225.0 57447.8 2 27.0 3 2.0 1.7 18 2 5.5 2.1 10.2 4900E 5237N 4900.0 5237.0 57486.3 3 2 26.5 2.0 1.7 5.2 3.1 11.9 21 3 4900E 5230N 4900.0 5250.0 57487.0 24.7 2 -1 0 .0 -.6 14 5.6 2.0 8.0 4900E -5 -1.0 5262N 4900.0 5262.0 57473.7 -1 24.8 -2.9 13 0 5.4 .0 7.4 4900E 5275N 4900.0 5275.0 57456.0 -8 0 24.7 .0 -4.6 10 1 5.1 5.7 1.0 4900E 5287N 4900.0 5287.0 57468.0 -11 0 24.8 -6.3 5.2 .0 .0 10 0 5.7 4900E 4900.0 5300N 5300.0 57485.4 -20 0 23.8 .0 -11.3 7 3 5.1 3.0 4.0 49005 5312N 4900.0 5312.0 57508.7 -24 0 21.1 .0 -13.5 8 5 5.3 5.0 4.6 4900E 5323N 4900.0 7 5325.0 57498.0 -23 0 21.9 .0 -13.0 8 5.4 7.0 4.6 5337N 4900E 4900.0 5337.0 57456.0 -16 3 24.1 3.1 -9.1 9 8 5.3 8.1 5.2 5.3 49008 5350N 4900.0 5350.0 57421.7 -17 3 23.9 -9.7 9 9.1 3.1 10 5.8 4900E 5362N 4900.0 5362.0 57409.7 -19 3 22.7 3.1 -10.8 12 10 5.3 10.1 6.9 4900E 5375N 4900.0 5375.0 57460.9 -16 4 21.8 4.9 -9.1 15 11.3 8.6 4.1 11 13.4 4900E 5387N 4900.0 5387.0 57457.9 -10 8 22.0 8.1 -5.7 18 13 5.0 10.4 4900E 5400N 4900.0 5400.0 57464.1 7 22.2 7.0 17 -7 -4.0 12 5.2 12.4 9.8 4900E 5412N · 4900.0 5412.0 57441.7 8 22.3 -8 8.1 -4.6 18 10 5.2 10.3 10.3 4900E 5425N 4900.0 5425.0 57464.4 -1 7 21.6 7.0 -.6 20 10 5.0 10.4 11.4 4900E 5437N 4900.0 5437.0 57461.5 -2 7 22.4 7.0 -1.2 15 12 5.0 12.3 8.7 4900E 5450N 4900.0 5450.0 57495.8 0 9 22.8 9.0 .0 18 13 5.1 13.4 10.4 4900E 5462N 4900.0 5462.0 57517.0 -2 9 23.3 9.0 14 5.2 9.8 -1.2 17 14.4 4900E 7 23.0 7.5 5475N 4900.0 5475.0 57497.3 -7 7.0 -4.0 13 13 5.2 13.2 4900.0 4900E 5487N 5487.0 57500.9 -6 6 24.5 -3.4 21 12 5.4 12.5 12.0 6.0 4900E 5500N 4900.0 5500.0 57462.5 -2 6 25.2 10.4 6.0 -1.1 18 13 5.6 13.4 -9 4900E 5512N 4900.0 5512.0 57502.7 6 25.2 -5.2 12 5.8 12.2 8.1 6.0 14 4900E 5525N 4900.0 5523.0 57528.5 -16 9 9 3 24.4 3.1 -9.1 6.0 9.1 5.2 7 4900E 5537N 4900.0 5537.0 57559.7 -18 2 25.1 7.0 3.5 2.1 - 10.26 5.8 4900E 3550N 4900.0 5550.0 57430.8 -24 2 23.9 2.1 -13.5 3 5.5 8.0 1.7 8 2.2 -16.7 7 4900E 5562N 4900.0 5562.0 57476.6 -30 2 22.6 2 5.6 7.0 1.2 4900E 5575N 4900.0 5575.0 57478.0 -25 2 22.8 2.1 -14.0 3 8 5.4 8.0 1.7 4900E 5587N 4900.0 5587.0 57547.6 -20 3 22.5 3.1 -11.3 3 3 5.4 8.0 1.7 5600.0 57571.1 -21 4900E 4900.0 4 21.7 5.4 2.9 5600N 4.2 -11.9 5 8 8.0 5612.0 57549.7 -24 9 4900E 3612N 4900.0 2 21.5 2.1 -13.5 5 5.3 9.0 2.9 4900E 5625N 4900.0 5625.0 57529.1 -22 2 18.5 2.1 -12.4 6 8 5.3 8.0 3.5 4900E 5637N 4900.0 5637.0 57531.7 -19 2 19.5 2.1 -10.8 7 7 5.4 7.0 4.0 7 4900E 5650N 4900.0 5650.0 57591.3 -17 3 18.9 3.1 -9.7 6 5.2 7.0 3.5 7 4900E 5662N 4900.0 5662.0 57513.1 -12 5 18.6 5.2 5.1 -6.9 6 6.0 4.0 4900.0 5.0 4900E 5675N 5675.0 57561.7 -12 3 19.0 3.0 -6.8 6 7 7.0 3.5 4900E 5687N 4900.0 5687.0 57527.2 3 19.5 7 5.2 7.1 -8 3.0 -4.6 12 6.9 5700.0 57577.8 4900E 5700N 4900.0 -8 2 20.3 2.0 -4.6 5.2 6.3 11 6 6.1 4900E 5712N 4900.0 5712.0 57534.8 -5 1 20.7 -2.9 7 5.4 1.0 10 7.1 5.7 4900E 5725N 4900.0 5725.0 57515.5 -7 -2 21.2 -2.0 -4.0 9 5.2 4.0 5.2 4 4900E 5737N 4900.0 5737.0 57509.2 -7 -4 20.6 -4.0 -4.0 10 3 5.3 3.0 5.7 4900E 5730N 4900.0 5750.0 57501.3 -5 -3 20.7 -3.0 -2.9 12 4 5.1 4.1 6.9 4900E 5762N 5762.0 57556.6 -1 21.3 -1.0 13 4900.0 0 .0 5 5.2 5.1 7.4

0 22.0

.0

1.7

11

4

5.1

3

Page 27

6.3

4.0

Wednesday, March 20, 1991

4900£	5787N	4900.0	5787.0	57584.3	0	2 22.1	2.0	.0	15	3	5.3	3.1	8.5
4900E	5800N	4900.0	5800.0	57530.0	6	3 22.5	3.0	3.4	10	5	5.3	5.1	5.7
4900E	5812N	4900.0	5812.0	57550.7	8	3 23.6	3.0	4.6	14	3	5.4	3.1	8.0
4900E	5825N	4900.0	5825.0	57611.1	5	2 24.7	2.0	2.9	14	5	5.5	5.1	8.0
4900E	5837N	4900.0	5837.0	57554.8	8	2 23.5	2.0	4.6	14	4	5.1	4.1	8.0
4900E	5850N	4900.0	5850.0	57588.2	4	1 26.5	1.0	2.3	13	3	5.3	3.1	7.4
4900E	5862N	4900.0	5862.0	57571.1	0	1 26.9	1.0	.0	9	4	5.4	4.0	5.2
4900E	5875N	4900.0	5875.0	57560.3	-4	1 26.0	1.0	-2.3	2	4	5.7	4.0	1.1
4900E	5887N	4900.0	5887.0	57584.8	-5	2 26.0	2.0	-2.9	ō	4	5.6	4.0	
4900E	5900N	4900.0	5900.0	57574.2	-8	2 25.7	2.0	-4.6	-3	3	5.3	3.0	-1.7
4900E	5912N	4900.0	5912.0	57558.2	-7	3 26.5	3.0	-4.0	-3	6	5.3	6.0	-1.7
4900E	5925N	4900.0	5925.0	57570.6	-9	3 26.4	3.0	-5.1	-7	4	5.4	4.0	-4.0
4900E	5937N	4900.0	5937.0	57580.4	-13	3 27.0	3.1	-7.4	-11	4	5.5	4.0	-6.3
4900E	5950N	4900.0	5950.0	57631.5	-20	1 26.7	1.0	-11.3	-21	1	5.4	1.0	-11.9
4900E	5962N	4900.0	5962.0	57598.0	-25	0 24.7		-14.0	-24	ō	4.8		-13.5
4900E	5975N	4900.0	5975-0	57591.7	-22	2 23 3	21	-12 4	-21	1	4.0	1.0	-11 9
4900F	5982N	4900 0	5937 0	57607 0	-18	4 22 3	4 1	-10 2	-17	2	4 2	2 1	-9 7
4900	6000N	4900 0	6000 0	57596 6	-18	4 21 3	4.1	-10.2	-17	2	4.2	2 1	-97
4900F	6012N	4900 0	6012 0	57595 4	-15	5 20 9	5 1	-8.6	-13	้า	4 1	2 1	-7 4
4900E	6025N	4900.0	6025-0	57566.6	-14	7 20.2	7 1	-8.0	-11	4	3 7	4 0	-6.3
29007	6032N	4900 0	6037 0	57595 9	-10	8 20 5	8 1	-5.7		5	37	5 0	-3.4
49005	6050N	4900.0	6050 0	57585 0	-9	8 20 6	8 1	-5.2	-4	7	3.8	7 0	-2.3
49 00F	6062N	4900 0	6062.0	57612 9	-4	9 20 9	9 0	-23	-3	Å	37	4 0	-1 7
49002	4075N	4900.0	6075 0	57548 4	n N	9 20 9	9 0	2.5	0	- ς	3.2	5.0	/ 0
4900E	60970N	4900.0	6087 0	57582 0	Ř	10 21 4	10 0	1 7	-1	2	37	2 0	- 6
49065	6100N	4900.0	6100 0	57588 1	6	9 21 0	9 0	2 5	ñ	2	37	3 0	.0
50005	5000N	5000.0	5000 0	57486 2	3	9 1 9 6	9.0	1 7	6	10	39	10 0	35
5000E	5012N	5000.0	5012.0	57481_0	7	10 19.6	10.0	<u> 4</u> 0	5	7	3.7	7.0	2.9
5000E	5025N	5000 0	5025 0 9	57463.0	3	9 19 9	9 0	1 7	6	8	39	8.0	3.5
5000F	5037N	5000 0	5037 0	57467.2	2	10 21 3	10 0	1 2	6	11	37	11.0	3.5
5000F	5050N	5000.0	5050.0 3	57457 8	-1	9 20 5	9.0	- 6	Ř	11	3.8	11.1	4.6
5000E	5062N	5000 0	5062.0	57416.3	-6	11 19 0	11 0	-3.5	11	15	3.8	15.2	6.4
5000E	5075N	5000.0	5075 0	57363.6	-5	12 20 7	12.0	-2.9	12	17	3.9	17.3	7.0
50005	5087N	5000.0	5087 0	57473 5	-11	9 20 1	9 1	-6.3	- 9	16	4 0	16 1	5.3
5000E	5100N	5000 0	5100 0	57405 6	-10	10 20 3	10 1	-5.8	11	14	4.0	14 2	6 4
5000E	5112N	5000.0	5112 0 5	57408 3	-8	12 20 2	12 1	-4 6	11	17	4.0	17 2	65
5000E	5125N	5000.0	5125 0 9	57477 4	-11	8 20 8	8 1	-6.3	12	14	4.0	14 2	7 0
5000E	5182N	5000.0	5137 0 3	57522 0	-13	8 20 2	8 1	-7 5	12	13	4.3	13.2	7.0
5000E	51 50N	5000 0	5150 0 3	57513 9	-10	8 20 9	8 1	-5.7	12	14	4.3	14 2	7 0
5000E	5162N	5000 0	5162 0 5	57450 8	-10	9 20 1	91	-5.8	14	11	4.2	11 2	8 1
5000E	5175N	5000 0	5175 0 5	57537 5	-2	12 21 4	12 0	-1 2	12	12	A A	13 4	10 4
50005	5187N	5000.0	5187 0 5	57518 2	-3	12 22 1	12 0	-1 7	16	12	ч.ч л л	12 3	9.2
50005	5200N	5000.0	5200 0 5	57523 2	ñ	12 22 5	12 0	1.7	17	10	45	10 3	97
5000F	5212N	5000 0	5212 0 5	57519 9	2	8 23 2	8 0	1 2	14	8	4.3	8 2	8 0
5000E	5225N	5000 0	5225 0 5	57530 4	ō	10 20 7	10 0	1.2	13	6	4.8	6 1	74
5000E	5222N	5000.0	5237 0 5	57507 9	-1	6 23 6	6.0	- 6	13	7	4.7	7.1	7.4
5000E	5250N	5000.0	5250 0 5	57523.4	-2	8 22 7	8.0	-1.2	14	10	4.7	10.2	8.0
5000F	5262N	5000.0	5262.0 5	57512_0	3	11 21.6	11.0	1.7	15	11	5.0	11.3	8.6
5000F	5275N	5000.0	5275.0 5	7517.3	6	11 23.8	11.0	3.5	16	11	5.0	11.3	9.2
5000E	5232N	5000.0	5287.0 5	7490.2	5	10 24.2	10.0	2.9	15	9	5.0	9.2	8.6
5000F	5300N	5000.0	5300.0 5	7472 0	õ	4 24.5	4.0	.0	9	3	4.9	3.0	5.1
5000F	5312N	5000.0	5312.0 5	7471.5	-2	3 23.3	3.0	-1.1	8	4	4.8	4.0	4.6
5000F	5325N	5000 0	5325.0 5	7456 3	-7	2 21 6	2.0	-4.0	8	4	4.7	4.0	4.6
5000F	5337N	5000 0	5337.0 5	7450 7	-5	3 22.5	3.0	-2.9	7	5	4.7	5.0	4.0
50005	5350N	5000 0	5350 0 5	7485 9	-2	5 22 3	5 0	-1 1	10	6	4.7	6.1	5.7

-

÷

-

Wednesday, March 20, 1991

Fage 29

•

	5000E	5362N	50 00. 0	5362.0	57467.1	-1	7 22.0	7.0	6	10	7	4.8	7.1	5.7
	5000E	5375N	5000.0	5375.0	57470.0	-2	7 20.5	7.0	-1.2	10	7	4.8	7.1	5.7
	5000E	5387N	5000.0	5387.0	57477.1	0	7 21.1	7.0	.0	11	8	4.7	8.1	6.3
	5000E	5400N	5000.0	5400.0	57514.5	-1	7 21.5	7.0	- 6	11	7	4.7	7.1	6.3
	5000F	5412N	5000 0	5412 0	57469 1	0	8 21 1	8 0		15	7	4 7	7 2	8.6
	50005	5425N	5000.0	5425 0	57/95 1	2	7 20 7	7 0	1 2	17	7	4.7	7 2	9.7
	SDODE	SARZN	5000.0	5427 0	57420 4	1	7 20.7	7.0	1.6	1 4	7	4.7	7.6	0.0
	50000	545714	5000.0	5457.0	57400.0	1	7 20.3	7.0	o. د 1	14	/ r	4.0	7.1	0.0
	SUUUE	5450N	5000.0	5450.0	5/4/6.6	ے ر	/ 20.3	7.0	1./	10	2	4.8	5.1	9.1
	SUUUE	5462N	5000.0	5462.0	5/4/8.3	4	/ 20./	/.0	2.3	16	6	4.8	6.2	9.1
	SOODE	54/5N	5000.0	54/5.0	5/46/./	6	8 20.3	8.0	3.5	19	7	4.8	7.3	10.8
	5000E	5487N	5000.0	5487.0	57479.9	5	8 20.7	8.0	2.9	18	8	4.9	8.3	10.3
	5000E	5500N	5000.0	5500.0	57477.0	6	6 20.9	6.0	3.4	18	8	4.9	8.3	10.3
	5000E	5512N	5000.0	5512.0	57475.7	5	4 20.8	4.0	2.9	18	5	4.9	5.2	10.2
	5000E	5525N	5000.0	5525.0	57497.9	5	3 21.0	3.0	2.9	19	4	5.0	4.1	10.8
	5000E	5537N	5000.0	5537.0	57493.3	6	3 21.2	3.0	3.4	20	6	5.0	6.2	11.3
	5000E	5550N	5000.0	5550.0	57507.7	13	4 20.7	4.1	7.4	22	8	5.0	8.4	12.5
	5000E	5562N	5000.0	5562.0	57483.3	9	3 21.6	3.0	5.1	22	9	5.0	9.4	12.5
	5000E	5575N	5000.0	5575.0	57501.0	9	3 21.1	3.0	5.1	23	7	5.2	7.4	13.0
	5000E	5587N	5000.0	5587.0	57503.9	9	4 21.8	4.0	5.2	21	6	5.3	6.3	11.9
	5000E	5600N	5000 0	5600 0	57503 4	7	3 21 2	3.0	4 0	21	6	5.3	6.3	11 9
	53562	5612N	5000.0	5612 0	57495 0	3	3 22 4	3.0	4.6	19	6	5 1	6.2	10.8
	300000	5425N	5000.0	5425 0	57425 4	7	2 22 4	2.0	4.0	10	4	5.4	4.2	10.0
	00000 00000	こうとうが たくつづけ	5000.0	5407 0	57554 2	7	2 22.4	2.0	4.0	10	0 .4	5.4	6.Z	10.2
	000000 60000	56528	5000.0	5657.0	57510 /	7	2 22.5	2.0	4.0	10	4	J.4 E 4	4.1	10.2
	50002	20201	5000.0	3550.0	57505 2		2 22.8	2.0	. 4.0	12	4	5.4	4.1	10.2
	SUUUE	3662N	5000.0	5662.0	5/505.2	5	3 22.8	3.0	3.4	1/	4	5.3	4.1	9./
·	SCOUL	5675N	5000.0	56/5.0	5/486.5	3	2 23.3	2.0	1./	16	3	5.6	3.1	9.1
	5000E	5687N	5000.0	5687.0	57526.0	3	2 24.1	2.0	1.7	18	5	5.6	5.2	10.2
	5000E	5200N	5000.0	5700.0	57544.7	2	2 25.6	2.0	1.1	17	7	5.7	7.2	9.7
	5000E	5712N	5000.0	5712.0	57533.4	0	2 24.9	2.0	.0	13	3	6.1	3.1	7.4
	5000E	5725N	5000.0	5725.0	57558.0	-2	1 25.2	1.0	-1.1	8	3	6.3	3.0	4.6
	5000E	5737N	5000.0	5737.0	57596.6	-3	2 25.1	2.0	-1.7	4	2	6.4	2.0	2.3
	5000E	5750N	5000.0	5750.0	57550.5	-8	1 25.9	1.0	-4.6	0	3	6.4	3.0	.0
	5000E	5762N	5000.0	5762.0	57550.6	-6	2 26.1	2.0	-3.4	0	4	6.2	4.0	.0
	5000E	5775N	5000.0	5775.0	57565.8	-13	2 25.4	2.0	-7.4	-4	5	6.2	5.0	-2.3
	5000E	5787N	5000.0	5787.0	57537.9	-17	2 26.2	2.1	-9.7	-9	6	6.2	6.0	-5.2
	5000E	5800N	5000.0	5800.0	57609.0	-26	0 24.2	.0	-14.6	-13	5	6.0	5.1	-7.4
	5000E	5812N	5000.0	5812.0	57555.0	-31	-124.0	-1.1	-17.2	-17	5	6.0	5.1	-9.7
	5000F	5825N	5000.0	5825.0	57539.7	-36	-3 21.7	-3.4	-19.8	-21	6	5.4	6.3	-11.9
	5000E	5837N	5000 0	5837 0	57573 6	-33	-1 20 8	-1 1	-18 3	-20	6	5.2	6.2	-11.3
	SOODE	5250N	5000.0	5850 0	57577 8	-31	-1 21 2	-1 1	-17 2	-18	6	5 2	6.2	-10.2
	50000	5942N	5000.0	5842 0	57573 0	-38	-/ 19 1	-1 6	-20 8	-20	7	17	73	-11 /
	SCOOL	5002N	5000.0	5002.0	57570 7	24	-4 17.1 1 10 A	4.0	10.0		6	4.7	7.3 0 A	-12 5
	3000 <u>c</u>	507 JN	5000.0	50/3.0	57500 2	-34	~1 10.4	~1.1	1/ 2	12	11	4.0	11 2	-12.5
	SUUUE	5867 N	5000.0	5887.0	5/ 570.3	~ 27	0 10.1	.0	-10.2	-13	11	4.4	11.6	~7.5
	SUUUE	5900N	5000.0	5900.0	5/564.9	-30	0 18.5	.0	-16./	-13	11	4.1	11.2	-7.5
	5000E	5912N	5000.0	5912.0	57692.1	-26	0 18.0	.0	-14.6	-/	11	4.2	11.1	-4.1
	5000E	5925N	5000.0	5925.0	57774.7	-25	-1 17.8	-1.1	-14.0	-4	12	4.3	12.0	-2.3
	3000E	5937N	5000.0	5937.0	57569.7	-26	-2 17.4	-2.1	-14.6	-3	14	4.2	14.0	-1.8
	5000E	5950N	5000.0	5950.0	57645.9	-25	1 16.3	1.1	-14.0	-1	13	4.4	13.0	6
	3000E	5962N	5000.0	5962.0	57629.4	-14	3 17.7	3.1	-8.0	-8	3	4.0	3.0	-4.6
	500 0E	5975N	5000.0	5975.0	57636.9	-19	0 17.2	.0	-10.8	-7	4	3.2	4.0	-4.0
	5000E	5987N	5000.0	5987.0	57659.8	-14	1 18.4	1.0	-8.0	-3	7	3.6	7.0	-1.7
	5000E	6000N	5000.0	6000.0	57620.5	-11	1 18.0	1.0	-6.3	1	10	3.7	10.0	.6
	5000E	6012N	5000.0	6012.0	57522.1	-8	3 18.0	3.0	-4.6	5	10	4.0	10.0	2.9
	5000E	6025N	5000.0	6025.0	57768.9	-9	2 18.2	2.0	-5.1	9	13	4.0	13.1	5.2
	5000E	6037N	5000.0	6037.0	57553.8	-5	3 19.0	3.0	-2.9	8	11	3.9	11.1	4.6
										-				

TERL, XYZ	Wednesday, March 20, 1991	Page 30
5000E 6050 5000E 6062 5000E 6075 5000E 6087 5000E 6087	3000.06050.057732.7-1319.53.065000.06062.057527.80419.84.0.015000.06075.058130.40419.74.0.015000.06087.057746.91319.93.0.65000.06100.057569.21320.03.0.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

.

STATEMENTS OF QUALIFICATIONS

APPENDIX VII

STATEMENT OF QUALIFICATIONS

I, ALLAN T. MONTGOMERY, of 312, 229 Lakewood Drive, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Pamicon Developments Limited, with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology (Honours).
- 3. THAT my primary employment since 1985 has been in the field of mineral exploration.
- 4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. THAT this report is based on data generated by myself, under the direction of Steve L. Todoruk, Geologist and Charles K. Ikona, Professional Engineer.
- 6. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- 7. THAT I hereby grant permission to Tymar Resources Inc./Consolidated Goldwest Resources Ltd. for the use of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

DATED at Vancouver, B.C., this 26th day of March, 1991.

Allan Montgomery, Geologist

STATEMENT OF QUALIFICATIONS

I, STEVE L. TODORUK, of 5700 Surf Circle, Sechelt, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Pamicon Developments Limited, with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.
- 3. THAT my primary employment since 1979 has been in the field of mineral exploration.
- 4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. THAT this report is based on data generated by myself, under the direction of Charles K. Ikona, Professional Engineer.
- THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- 7. THAT I hereby grant permission to Tymar Resources Inc./Consolidated Goldwest Resources Ltd. for the use of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

DATED at Vancouver, B.C., this 26 day of Morch , 1991.

Steve L. Todoruk, Geologist

APPENDIX VIII

ENGINEER'S CERTIFICATE

1

ENGINEER'S CERTIFICATE

I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Consulting Mining Engineer with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- 3. THAT I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. THAT this report is based on work conducted under my direction in 1990 and on extensive knowledge of the immediate area.
- 5. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- 6. THAT I hereby grant permission to Tymar Resources Inc./Consolidated Goldwest Resources Ltd. for the use of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

DATED at Vancouver, B.C., this 26day of MARCH . 1991. Charles K. Ikona, P.Eng.

	SYMBOLS	L.6+00W	L.4 +00 W.	L.3 +00 W. L.2+00)	W. LI+OOW BL,0+OOW.
	OUTCROP				GEOLOGICAL BRANCH
x	SUBCROP, FLOAT				ASSESSMENT REPORT
/	GEOLOGICAL CONTACT, OUTCROP SCALE				01 700
/	GEOLOGICAL CONTACT, MAP SCALE, APPROXIMATE				2 522
~~~~	FAULT, ASSUMED				
28801 🗆	ROCK SAMPLE LOCATION / SAMPLE NUMBER				SCALE I:2500 m 0 50 100 200
/40	SEDIMENTARY BEDDING, DIP				
762	FOLIATION, DIP				TYMAR RESOURCES INC /
A78	FRACTURE, DIP				CONSOLIDATED GOLDWEST
×45	VEIN, DIP	( <b>K</b> )			RESOURCES LTD.
N 01	SMALL FOLD AXIS, PLUNGE				ROB 15, 16 CLAIMS
	1990 CUT LINE				DETAILED
	1988 CUT LINE				PROPERTY GEOLOG
	1989 FLAGGED AND COMPASS LINE				WEST GRID
$\oplus$	HELI-PAD				LIARD MINING DIVISION, B.C.



ESOZOIC					
	Y & VOLCANIC ROCKS	<u>*</u>	SWAMP	~45	SEDIMENTARY BEDDING, DIP
1	1(a) GREYWACKE; 1(b) SILTSTONE; 1(c) ARGILLITE; GRADATIONAL VARIATIONS AND INTERBEDDING	<u>.</u>	CREEK	- 62	FOLIATION, DIP
			OUTCROP	A 68	FRACTURE, DIP
2	AUGITE PORPHYRY FLOW (?)	x	SUBCROP, FLOAT	70	VEIN, DIP
3	ANDESITE		GEOLOGICAL CONTACT, OUTCROP SCALE	18	FOLD AXIS, PLUNGE
4	CHERT BRECCIA & BANDED IMPURE CHERT		GEOLOGICAL CONTACT, MAP SCALE, APPROXIMATE	X	FOLD AXIS TRACE, ANTICLINE WITH PLUNGE
		~~~~	FAULT, ASSUMED		
ITRUSIVE R	OCKS	28803 🗆	ROCK SAMPLE LOCATION /		
Α	BIOTITE-HORNBLENDE GRANODIORITE, QUARTZ DIORITE; COARSE GRAINED		SAMPLE NUMBER .		
	GRANODIORITE, DIORITE; FINE GRAINED, SALT		1989 (KEEWATIN) GRID	1988 (P	AMICON) GRID
В	8 PEPPER TEXTURE			CUT	
			CUT -	FLAG +	COMPASS

PROPERTY

3+50 N. L. 12+00 N. L. II + OON

•

J.W.

DRAWN.

m 0

ROB 15, 16 CLAIMS DETAILED PROPERTY GEOLOGY EAST GRID

LIARD MINING DIVISION, B.C. PAMICON DEVELOPMENTS LTD. DATE. FIG. 9

DATE. MARCH, 1991 N.T.S. IO4B/IIE. I

•

 (\mathbf{H})

L 14+00 N

L. 13 +00 N.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Z22

SCALE 1:2500 50 100 200 m

TYMAR RESOURCES INC./ CONSOLIDATED GOLDWEST RESOURCES LTD.

L.6+00W. L4+00W

LEGEND

1990 GRID LINE 1989 GRID LINE 1988 GRID LINE HELI-PAD (\mathbf{H}) Au Ag (ppb) (ppm) Ag (ppm) Au (ppb) < - NON DETECTABLE Ag

50 ppb Au CONTOUR INTERVALS Ag CONTOUR INTERVALS

GEOLOGICAL BRANCH ASSESSMENT REPORT	
21,322	
SCALE 1:2500 m 0 50 100 200 m	
TYMAR RESOURCES INC./ CONSOLIDATED GOLDWEST RESOURCES LTD.	
ROB 15, 16 CLAIMS	
GEOCHEMISTRY WEST GRI Au, Ag	
LIARD MINING DIVISION, B.C.	

BL 0+00 W.

L.2+00W.

L.3 +00 W.

L (+00W

PAN	ICON DEVELO	OPMENTS LT	D.	
DRAWN. J.W.	N.T.S. IO4 B/ IIE.	DATE. MARCH, 1991	FIG. 10	D

ROPERTY	;3+00N =:	<2< 163	<pre></pre>	<2 <2 <2 <2 110	<2 <2 46 54 77 17 11	<2 <2 238 237 31 45	<2 <2 47 :247 18 :51:	62 62 62 182 95 112 20 66 127	-9353	<2_<2_<2_ 120,134,110 135,53 (85,35,53) <2 81 16 46 42 56	¥ 4	N.S. N.S.	22 7 N.S135 3 20 0 71 ppm Mo 360 ppm Ni	7366 <2 841,	<2 <2 163: 75 +	<2 52 48 + + 7 26	<2 <2 22 133 118 44 5 59 7.	30 	
	 12+00N.	<2 83 57 43 9	$ \begin{array}{c} \zeta_{2}^{2} & \zeta_{2}^{2} & \zeta_{2}^{2} \\ 51 & 123 & 130 \\ 10 & 4 & 37 \\ 10 & 64 & 39 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<2 <2 69 91 12 12 8 182 35	4953. 1353. 1353. 17 40 7	<2 20 140 140 29 53	<2 <2 <2 <2 136 GI	-<2- 110 N.S130 -38126	13 (22 140 51) (22 (24-72- 80 16 37_ 42 93 74	<2 <2 - 114 - 172. - 55 . 30	<2 <2 / 55 66 / 15 19	4 54 14 N.S. N.S. −14 +8 13 69 3	2 14 17 40	46 (41, 40) (26) 54	<2 <2 BI 59 10 12	<2 22 22 22 96 7214, 95 8 37 8	2 <2 58 5	-=
II+OON	N.S. NS.	<2 <2 51 N.S. ۲۰۱۲ 8 ۰.۱۹.۰	8 <2 <2	<2 <2 33 39 73 /49 47 16 JZ	<2 139 N.5 24 129 129 25	10 49 16 53 18 22 19 10 10 17 10 17 17 43 43	$\begin{pmatrix} 2 & 2 \\ 45 & 94 \\ 20 & 43 \end{pmatrix}$	7 C2 74 N.S. 84 12 15	18 81 	41 41 - - - - - - - - - - - - -	<pre> </pre> <pre> <pre> <pre> </pre> </pre> <pre> </pre> </pre> <pre> </pre> <td>20 <2 62 ::isi:. 19 ·.21</td> <td>16 91 4 50 8 2 2 5 5 6 2 2 5 5 12 4 2 7 12 4 2 7</td> <td>9 <2 <2 3 73 104 1 1 16 12</td> <td>10 10 13 13 14 13</td> <td></td> <td>$\begin{array}{c} 3.5. \\ < 2 \\ 2 \\ 111 \\ 73 \\ - 61 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 13 \\ - 11 \\ - 13 \\ - 13 \\ - 11 \\ - 13 \\ -$</td> <td>42 148 85 239 ppm Mo 924 ppm Ni</td> <td></td>	20 <2 62 ::isi:. 19 ·.21	16 91 4 50 8 2 2 5 5 6 2 2 5 5 12 4 2 7 12 4 2 7	9 <2 <2 3 73 104 1 1 16 12	10 10 13 13 14 13		$\begin{array}{c} 3.5. \\ < 2 \\ 2 \\ 111 \\ 73 \\ - 61 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 11 \\ - 13 \\ - 13 \\ - 11 \\ - 13 \\ - 13 \\ - 11 \\ - 13 \\ - $	42 148 85 239 ppm Mo 924 ppm Ni	
			49 8 <2 63 5 24 43 10 22 21 21			74 56 56 16 70 32 4 30 3 13 2		• •		N.S. 21 32 5 20 71 11	22 - 280 - 19 - 53 - 74 - 53 - 74 - 187 - 73 - 120 - 162						2423 24411/2916	-	
		·	229 2 239 2 234 10 224 11 224 11 .22 222 		(532 583 754 B26				23 26 7 10 80 2 5 45 6 45 6 45 6 45 8 5 8			250 21 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20				<ଅ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦		
			260 260 250 200 200 200 200 200 200 200 200 20			B04 785 496 728				9 94 32 150 47 13 93 53 7 58	22 153 33 22 136 22 206 47 26 47 25 4	Ć	······································				22 91 35 247 18 1.5.	· · · · · · · · · · · · · · · · · · ·	
			22 209 			1413 1413 1434 1829				23 27 115 -115 -115 -105 49 -23 	-17 -106 -41 -22 -108 -16 -208 -208	Ċ	18 11 13 17 78 9 14 9 14 9				21.22 24 24 24 24 24 20 24 20 23 25 24 20 23 25 24 20 20 24 20 20 20 20 20 20 20 20 20 20 20 20 20	****	

L.6+00W.

L4+00W L3+00W L2+00W L1+00W GEOLO ASSES

LEGEND

I990 GRID LINE I989 GRID LINE I988 GRID LINE I988 GRID LINE HELI-PAD HELI-PAD Pb(ppm) Cu (ppm) Cu

Zn CONTOUR INTERVALS

GEOLOGICAL BRANCH ASSESSMENT REPORT 200 m SCALE 1:2500 TYMAR RESOURCES INC./ CONSOLIDATED GOLDWEST RESOURCES LTD. ROB 15, 16 CLAIMS GEOCHEMISTRY WEST GRID

BL 0+00 W.

LIARD MINING DIVISION, B.C.

PAMICON DEVELOPMENTS LTD.DRAWN.N.T.S.DATE.FIG.11J.W.IO4 B/ IIE.MARCH, I99IFIG.11

. .

.

PAMICON DEVELOPMENTS LTD.											
DRAWN.		N.T.S.	DATE.	FIG.							
	J.W.	104 B/ 11E.	MARCH, 1991		14						

Au CONTOUR INTERVALS

LECOW LE

BL.0+00 W. L.2+00W L (+00W GEOLOGICAL BRANCH ASSESSMENT REPORT 21,322 SCALE I:2500 100 50 200 m m 0 TYMAR RESOURCES INC./ CONSOLIDATED GOLDWEST RESOURCES LTD. ROB 15, 16 CLAIMS OVERBURDEN DRILL GEOCHEMISTRY WEST GRID Cu, Pb, Zn LIARD MINING DIVISION, B.C. PAMICON DEVELOPMENTS LTD. FIG. 15 ' DATE. DRAWN. N.T.S. MARCH, 1991 104 B/ 11E. J.W.

50 ppm

Cu CONTOUR INTERVALS

Zn CONTOUR INTERVALS

