LOG NO:	ma	1 21/4	71 RD .	
ACTION:	6	/ /		

FILE NO:

SUB-RECORDER RECEIVED					
MAY	10	1991			
M.R. #	<u></u>	\$			
VANCOUVER, D.C.					

ASSESSMENT REPORT ON THE 1990 PHASE II FIELD PROGRAM FOR TYMAR RESOURCES INC. VR PROJECT

ISKUT-SULPHURETS AREA SKEENA MINING DIVISION BRITISH COLUMBIA

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,323

J. Chapman, F.G.A.C. W. Raven, F.G.A.C.

November 21, 1990

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A Phase II exploration program has been completed on the VR Project of Tymar Resources Inc. The program was initiated to follow up anomalous results and areas of favourable stratigraphy located by OreQuest Consultants Ltd. during the 1989 Phase I program.

The majority of the work was focused on two grid areas. Grid #1 (28.67 line kms) was located in an area believed to be underlain by the Mt. Dilworth Formation, a rhyolitic volcanic unit associated with mineralization at the nearby Eskay Creek property. It crosses the CCM-1 and CCM-2 claims. Grid #2 (20.5 line kms) was established over an area of anomalous gold and copper soil samples as determined from the 1989 Phase I program and earlier work done by Teuton Resources Corp. The grid occupies portions of the VR-4 and VR-6 claims. Work on the grids consisted of linecutting, detailed geological mapping, prospecting, soil sampling and ground magnetic and VLF-EM electromagnetic geophysical surveys.

Grid #1, divided into east and west map sheets, was found to be underlain by sandstones, siltstones and conglomerates of the Salmon River Formation, rhyolitic to dacitic volcanics of the Mt. Dilworth Formation, and epiclastic volcanogenic sedimentary rocks and andesitic tuffs and flows of the Betty Creek Formation. All rocks mapped range from Lower to Middle Jurassic in age. The main structural trends are northeast-southwest on the west sheet and northwest-southeast on the east sheet. These trends define a broad open antiform. Grid #2 appears to be underlain wholly by rocks of the Betty Creek Formation including siltstone and volcanogenic sandstone, dacitic tuffs, and andesitic feldspar-hornblende porphyry (Atkins Porphyry). Bedding measurements show a consistent northwestsoutheast strike dipping steeply to the northeast.

Geochemical surveys on grid #1 included rock and soil sampling with a total of 43 rock and 640 soil samples collected. Half the soil samples and all rock samples were sent for assay. Despite the very favorable stratigraphy present (similar to that at the Eskay Creek property of Prime/Stikine) no significant gold results were returned in either the rock or soil samples. Mineralization, if present, may be buried too deeply to have been detected by the surveys.

Analysis of the ICP data for rock samples collected from grid #1 did not reveal any significant results either in base metals or other possible indicator elements. The data for soil samples revealed some anomalous areas, mostly along lithologic contacts or closely paralleling the northeasterly trending fault zone seen on L3E to L6E. Some spot highs were found throughout the grid area with one sample site, L7E, 5+00S, returning 110 ppm copper, 1700 ppm lead and 3400 ppm zinc. The source of these anomalies is not evident.

Grid #2, despite the less favorable geology, contained the better results. Three distinct areas of gold soil geochemical anomalies were outlined based on 239 soil samples and 26 rock samples, all in the

southern half of the grid. The anomalies are labelled Area A, B and C in a north to south trend respectively (Figure 7). The highest gold assays received from each were 310 ppb, 140 ppb and 85 ppb respectively. Rock sampling returned five assays of \geq 100 ppb gold ranging from 100 to 120 ppb, although two of the samples were of float material.

ICP data from the rock samples collected on grid #2 returned moderately anomalous results from various samples though no distinct trends were outlined. Sample results include highs of 22 ppm silver, 1200 ppm copper, 1800 ppm lead, 1500 ppm zinc, 24 ppm molybdenum and 850 ppm arsenic. Soil sample data showed anomalous results confined to two main areas. A copper and arsenic anomaly with lesser lead and zinc correlates with the Area A gold anomaly. Also, anomalous copper and arsenic were found at the north end of L4W and L5W.

In addition to the grid work a limited amount of prospecting and silt sampling was carried out on the CCM-3 claim which included 16 rock samples and 9 silt samples. This was done as follow up to an anomalous bulk silt sample #AHS-551 taken last year which assayed 2700 ppb gold. Mainly bedded argillite and andesitic pyroclastics, believed to be of the Lower Unuk River Formation, were encountered. Prospecting on the CCM-3 claim revealed an area of quartz and/or calcite with pyrite veining on the east side of Ceperley Glacier. Most of the rock sample results are low with the exception of sample #33239 which assayed 0.031 oz/ton gold from a 0.5 m wide quartz vein exposed over a length of 4 m. Weak ICP anomalies in copper and arsenic were returned from a few of the rock samples and no significant results were received from the silt samples.

In addition to the above work, ground magnetometer and VLF-EM electromagnetic surveys were conducted over 28.67 km of grid #1, which failed to reveal any significant trends.

There are no recommendations for further work on the VR Project. The areas of interest outlined by the Phase I program were followed up by this year's Phase II program, which failed to delineate any significant mineralized horizons. Although anomalous zones were outlined on grid #2 by this year's work, geological mapping and evaluation indicate the potential for mineralization of significant grade and extent is minimal.

The target of greatest potential significance on the VR Project was the band of rhyolite volcanics of the Mt. Dilworth Formation seen on the CCM-1 and CCM-2 claims. Detailed mapping, soil sampling, and geophysical surveys did not locate significant mineralization either in, above, or below this unit.

TABLE OF CONTENTS

N. -

Summary, Conclusions and Recommendations	
Introduction	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	3
Property and General Area History	4
Regional Geology	9
Property Geology and Mineralization	11
Grid #1 General Description	11
Grid #1 Geology West Half	12
Grid #1 Geology East Half	14
Grid #2 General Description	15
Grid #2 Geology	16
CCM 3 Claim Geology	18
Property Geochemistry	18
Grid #1 West and East Sheets	18
Grid #2	22
CCM 3 Claim	27
Property Geophysics	29
Statement of Expenditures	
Certificate of Qualifications	
J. Chapman, F.G.A.C.	

W. Raven, F.G.A.C.

Bibliography

LIST OF FIGURES

Figure	1	Location Map	Following	Page	1
Figure	2	Claim Map	Following	Page	3
Figure	2a	Index Map	Following	Page	4
Figure	3	Regional Mineral Occurrence Map	Following	Page	5
Figure	4	Regional Geology	Following	Page	9
Figure	5	Grid #1, East Sheet - Geology and			
		Rock Geochemistry	In Pocket		
Figure	5a	Grid #1, West Sheet - Geology and			
		Rock Geochemistry	In Pocket		
Figure	6	Grid #2 - Geology and Rock			
		Geochemistry	In Pocket		
Figure	7	Grid #1 - Soil Geochemistry	In Pocket		
Figure	8	Grid #2 - Soil Geochemistry	In Pocket		
Figure	9	CCM 3 Claim - Rock and Silt	Following	Page	27
		Sample Locations and Results			
Figure	10	Grid #1 - Magnetic Survey	In Pocket		
Figure	11	Grid #1 - VLF-EM Profiles	In Pocket		
Figure	12	Grid #1 - VLF-EM Contours	In Pocket		

LIST OF TABLES

Table	I	Claim	n Da	ata	l			Page	3
Table	II	Grid	#1	-	ICP	Geochemistry	Statistics	Page	20
Table	III	Grid	#2	-	ICP	Geochemistry	Statistics	Page	25

LIST OF APPENDICES

Appendix I Rock Sample Descriptions Appendix II Assay Reports and Procedures

INTRODUCTION

This report was prepared by OreQuest Consultants Ltd. at the request of Prime Explorations Ltd. on behalf of Tymar Resources Inc. It presents a summary of the Phase II exploration program completed on the VR Project during the 1990 field season. This Phase II program was initiated to follow up anomalous results and areas of favorable stratigraphy located by OreQuest during the 1989 Phase I work program.

The majority of work was focused on two grid areas. Work on the grids consisted of linecutting, geological mapping, prospecting, soil sampling, and ground magnetic and VLF-EM electromagnetic geophysical surveys. In addition to the grid work a limited amount of prospecting and silt sampling was done on the CCM-3 claim. This was done as a follow up to an anomalous bulk silt sample #AHS-551, collected last year, which assayed 2700 ppb gold. The claims were worked on between July 9, 1990 and September 30, 1990.

LOCATION AND ACCESS

The VR Project is located in northwestern British Columbia, approximately 100 kilometres northwest of Stewart as shown in Figure 1. The claims are situated within NTS map-sheet 104B/9W and 9E and centred about $56^{0}37'$ north latitude and $130^{0}15'$ west longitude.

Access to the claims is by helicopter from the Bronson Creek airstrip 50 km to the west, or the Bell II staging area on the Stewart-Cassiar Highway, Highway 37, about 30 km to the east. The

B.C. government and several interested mining companies in the area are presently funding the construction of a road into the Iskut area. Surveying for the road location and environmental testing began this year.

Frequent scheduled and charter flights from Smithers (330 kilometres to the southeast) to the Bronson Creek strip service the exploration and mining activity in the area. The Johnny Mountain airstrip is serviced regularly from Terrace. The Snippaker Creek airstrip, located 34 km west of the VR Project, was used during the 1990 field season by single-engine fixed wing aircraft. Exploration work was done via helicopter and on foot from OreQuest's seasonal camp located at the northeast corner of the property by the VR-6 claim.

PHYSIOGRAPHY AND VEGETATION

Elevations on the VR Project range from 750 m in the valleys at the north end of the property up to 1500 m on the peaks to the south. Slopes range from moderate to very precipitous.

Low lying regions are vegetated by mature mountain hemlock and balsam. This changes to subalpine and alpine vegetation consisting of stunted shrubs and grasses. The claims cover the head waters of Kaypros Creek in the vicinity of the Rounsfell, Atkins and Treaty Glaciers.

Climate in the area is severe, particularly at the higher elevations. Heavy snowfalls in winter and rain in the short summer working season are typical of the Iskut-Sulphurets area. Inclement weather conditions and reliance on helicopter transport make this a high cost area to explore for minerals.

CLAIM STATUS

The property is located in the Skeena Mining Division and consists of six modified grid claims (Figure 2), the status of which is as follows:

TABLE I - CLAIM STATUS

Claim Name	No. of Units	Record No.	Date of Record	Expiry Date
VR-4	20	6194	May 25, 1987	May 25, 1993
VR-6	20	6196	May 25, 1987	May 25, 1993
CCM-1	20	7027	Dec. 5, 1988	Dec. 5, 1993
CCM-2	12	7028	Dec. 5, 1988	Dec. 5, 1993
CCM-3	18	7029	Dec. 5, 1988	Dec. 5, 1993
ATKINS	20	7219	Feb.10, 1989	Feb.10, 1993

The CCM-1 and CCM-2 claims are currently the subject of a complaint under section 35 of the Mineral Tenure Act (B.C.) An examination of the staking has been completed by a Claims Inspector, however a decision regarding the CCM-1 and CCM-2 claims has not yet been handed down. Figure 2 displays the idealized VR Project claim boundary, which may be subject to change depending on decisions rendered. The anniversary date shown above does not reflect any assessment credit applicable from the 1990 exploration program.

PROPERTY AND GENERAL AREA HISTORY

The VR claims were originally staked in 1987 by Teuton Resources Corp. who conducted a rock and silt sampling program in 1988 over the VR-4 and VR-6 claims. Results of this work showed a moderate goldcopper anomaly in silt samples at the confluence of two drainages, with values up to 62 ppb gold and 199 ppm copper.

In late 1988 the CCM-1, CCM-2 and CCM-3 claims were staked followed by the Atkins claim in early 1989, expanding the property to the south and northwest. These 4 claims together with the VR-4 and VR-6 comprise the "VR Project" (Figure 2a).

In the summer of 1989 the first comprehensive exploration program was undertaken on the VR Project by OreQuest Consultants Ltd. Work consisted of an Aeordat airborne geophysical survey followed up by geological mapping, prospecting, and rock, soil and stream geochemistry. This Phase I program outlined several anomalous areas which were the focus of follow up work during the recently completed Phase II program.

The VR Project lies within an historically active mining and exploration area that extends some 225 kilometres from Stewart in the south to near Telegraph Creek in the north. Within this area, which has been referred to as the Stikine Arch, mining activity goes back to the turn of the century. Due to the size of the region it historically has been referred to as more specific areas, ranging from

subareas. region.

the Stewart area to Sulphurets, Iskut River and Galore Creek, however all of these individual camps appear to be related to the Stikine Arch

all of these individual camps appear to be related to the Stikine Arch as a whole and are located in the area now referred to as the "Golden Triangle". Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area can be considered as one large mineralized province with attendant subareas. The location of several deposits and mineral occurrences appears in Figure 3, which also locates the VR Project with respect to these sites. This list of mineral occurrences is by no means comprehensive but is included to illustrate distribution in the region.

The VR Project is located on the northeastern margin of the Iskut-Sulphurets area which has seen extensive exploration in the last three years. The Iskut area originally attracted interest at the turn of the century when prospectors, returning south from the Yukon goldfields searched for placer gold and staked bedrock gossans. In the 1970s the porphyry copper boom drew exploration into the area. The new era of gold exploration began with the 1979 option of the Sulphurets claim block by Esso Minerals Canada and the 1980 acquisition of the Mount Johnny claims by Skyline Explorations Ltd. Skyline (now Skyline Gold Corporation) commissioned its mill in July, 1988, however production has recently been suspended temporarily. Cominco Ltd. and Prime Resource Group Inc. are presently preparing the adjacent Snip deposit for production.

LEGEND FOR FIGURE 3

PROPERTY OWNER AND/OR NAME 1 Westmin Resources Ltd./Silbak Premier Mines 2 Westmin Resources Ltd./Tournigan Mining Explorations Ltd. 3 Noranda (Todd Creek Project) 4 Scottie Gold Mine 5 Granduc 6 Echo Bay Mines/Magna Ventures/Silver Princess Resources (Doc Project) 7 Placer Dome Inc. (Kerr Project) -8 Catear Resources Ltd. (Gold Wedge) 9 Newhawk/Granduc/Corona (Sulphurets Project -West Zone) 10 Prime/Stikine Resources Ltd. (Eskay Creek Project) - 11 Consolidated Silver Standard Mines Ltd. (E & L Deposit) 12 Inel Resources Ltd. 13 Skyline Gold Corporation (Stonehouse Gold Deposit) . 14 Kestrel Resources Ltd. 15 Hector Resources Inc. (Golden Spray Vein) - 16 Tungco Resources Corp. 17 Winslow 18 Cominco/Prime (Snip Deposit) 19 Pezgold Resource Corp. 20 Meridor Resources Ltd. 21 Prime/American Ore Ltd./Golden Band 22 Magenta Development Corp./Crest Resources Ltd. 23 Ticker Tape Resources Ltd. (King Vein) 24 Pezgold Resource Corp. - 25 Consolidated Sea-Gold Corp. 26 Gulf International Minerals Ltd. (Northwest Zone) 27 Kerr Claims 28 Pezgold Resource Corp. (Cuba Zone) ~29 Pezgold Resource Corp. (Ken Zone) 30 Avondale Resources Inc. (Forrest Project) 31 Pass Lake Resources Ltd. (Trek Project) 32 Galore Creek -33 Continental Gold Corp. 34 Bellex Resources Ltd./Sarabat Resources Ltd. (Jack Wilson Project) 35 Pass Lake Resources Ltd. (JD Project) 36 Lac Minerals (Hankin Peak Project) .37 Schaft Creek '38 Paydirt 39 Bond International Gold (Red Mountain)

MINERAL RESERVES AND/OR ELEMENTS

6,100,000 tons 0.064 oz/t Au, 2.39 oz/t Ag 1,860,000 tons 0.09 oz/t Au, 0.67 oz/ton Ag Au Au 10,890,000 tons 1.79% Cu 470,000 tons 0.27 oz/ton Au, 1.31 oz/ton Ag 138,000,000 tons 0.61% Cu, 0.01 oz/ton Au 319,169 tons 0.80 oz/ton Au 550,000 tons 0.42 oz/t Au, 18.0 oz/ton Ag 1,992,000 tons 1.47 oz/t Au, 55.77 oz/t Ag 3,200,000 tons 0.80% Ni, 0.60% Cu Au, Aq, Cu, Pb, Zn 740,000 tons 0.52 cz/ton Au, 1.0 cz/ton Ag Au, Ag, Cu, Pb, Zn Au, Ag Au, Ag, Cu, Pb, Zn Au, Ag, Cu, Pb, Zn 1,030,000 tons 0.88 oz/ton Au Ag, Au Au Au Au, Ag, Cu, Pb Au Aц Au Au, Ag, Cu Ag, Cu, Au Ag, Pb, Zn Cu, Au Au, Ag, Cu Cu, Au 125,000,000 tons 1.06% Cu, 0.397 g/t Au. 7.94 g/t Ag Au, Ag, Cu Au, Cu Au, Cu Au 910,000,000 tons 0.30% Cu, 0.020% Mo, 0.113 g/t Au, 0.992 g/t Ag 200,000 tons 0.120 oz/ton Au Au, Ag

Beyond these projects, and except for limited early placer gold recovery from some creeks, the area has had no mineral production history. Since 1979, more than 70 new mineral prospects have been identified, though ground acquisition was relatively slow until the fall of 1987 when the promising results of summer exploration programs became known and the provincial government announced the upcoming release of analytical results from a regional stream sediment survey. By April 1988, all open ground had been staked. More than 60 companies hold ground in the Iskut-Sulphurets belt but to date only small areas within this 40 x 80 km district have received extensive exploration.

In the Sulphurets Creek camp 15 km south of the VR Project, near Brucejack Lake, the vein-hosted West Zone of Newhawk Gold Mines Ltd. / Granduc Mines Ltd. / Corona Corporation is reported to contain a diluted minable reserve of 550,000 tons grading 0.42 oz/ton gold and 18.0 oz/ton silver (The Northern Miner, Vol. 76, #36; Nov. 12/90) while the Snowfield Gold Zone and Sulphurets Lake gold zone are bulk tonnage low grade deposits containing 7.7 million tons of 0.075 oz/ton gold and 20 million tons of 0.08 oz/ton gold respectively (GCNL Aug. 24, 1989). Newhawk has recently completed a feasibility study which has indicated that current gold and silver prices preclude production at present. Catear Resources Ltd.'s Gold Wedge Property is reported to contain 319,169 tons of 0.80 oz/ton gold in the Golden Rocket Vein in a similar setting (Canadian Mines Handbook, 1990-91). Also located in this area is Placer Dome Inc.'s Kerr property, a porphyry copper-

gold occurrence to which they have assigned a geological resource of 138,000,000 tons grading 0.61% copper and 0.01 oz/ton gold (Placer Dome Inc. Annual Report, 1989).

On the Snip property situated 52 km to the west of the VR Project, the Twin Zone, a 3 to 25 ft thick discordant shear vein cuts a thickly bedded sequence of intensely carbonatized feldspathic wackes and siltstones. Twin Zone reserves in all categories have been reported as 1,030,000 tons of 0.88 oz/ton gold (Canadian Mines Handbook, 1990-1991). This does not include additional reserves which may be developed outside the Twin Zone when mining begins. Twin Zone mineralization occurs in a banded shear zone comprising alternating bands of massive calcite, heavily disseminated to massive pyrite, crackle quartz and thin bands of biotite-chlorite.

At Skyline's nearby Johnny Mountain Mine, reserves in all categories are estimated at 740,000 tons of 0.52 oz/ton gold and 1.00 oz/ton silver with copper, zinc, and lead (Canadian Mines Handbook, 1990-1991). Five major areas of gold-bearing sulphide are known. The most important Stonehouse Zone consists of sulphide-potassium feldspar-quartz vein and stockwork systems which have been only partly explored. The Johnny Mountain Mine has been temporarily shut down, but with the completion of the Iskut road may be economically viable again.

The most recently discovered and perhaps the most exciting gold mineralization occurs on the Eskay Creek property of Prime Resources Group Inc./Stikine Resources Ltd., located 10 km west of the VR Project. Numerous Calpine (now Prime)/Stikine news releases have announced results from over 600 drill holes completed from 1988 to the present, the most spectacular of which is hole CA-89-109 which produced 682.2 feet of 0.875 oz/ton gold. Published preliminary reserve calculations done in-house by Prime, based on drilling up to hole CA90-657, indicate probable geological reserves of 1,992,000 tons grading 1.47 oz/ton gold and 55.77 oz/ton silver (Vancouver Stockwatch, Sept 14, 1990). The company is currently driving an exploration drift to test the deposit at depth for continuity and to conduct metallurgical testing.

Immediately south of the Eskay deposit, American Fibre Corporation and Silver Butte Resources are in a joint venture on the SIB Project, on ground that hosts the same stratigraphy as the Eskay deposit. Results from recent drilling have returned results of 46.9 ft of 0.421 oz/ton gold and 30.91 oz/ton silver from hole 90-30 (Vancouver Stockwatch, October 10, 1990). Results from the final 1990, 26 hole program included values of 6.3 ft of 0.13 oz/ton gold and 19 ft of 0.13 oz/ton gold both in hole 90-38 (GCNL, November 5, 1990).

Elsewhere in the area Tymar Resources and Akiko-Lori Gold Resources have been drilling on the Lakewater Project which adjoins

the Prime/Stikine project to the west. The companies are drilling a 320 m wide gap in the American Fibre/Silver Butte SIB claims within which the favourable Eskay deposit stratigraphy occurs. Results have been encouraging and include the following: 9.8 ft of 1.197 oz/ton gold, 1.7 oz/ton silver, 0.73% lead and 0.72% zinc (LW90-2), 3.3 ft of 0.115 oz/ton gold (LW90-3) and 16.4 ft of 0.042 oz/ton gold (LW90-6), (Vancouver Stockwatch, October 30, 1990).

REGIONAL GEOLOGY

The area is underlain by the Stewart Complex (Grove 1971, 1986). The Stewart Complex encompasses Late Palaeozoic and Mesozoic rocks, confined by the Coast Plutonic Complex to the west, the Bowser Basin to the east, Alice Arm to the south and the Iskut River to the north. A simplified representation of the regional geology setting after Alldrick (1989) appears in Figure 4.

The oldest units in the Stewart Complex are Upper Triassic epiclastic volcanics, marbles, sandstones and siltstones. These, in turn, are overlain by sedimentary and volcanic rocks of the Upper Triassic to Middle Jurassic Hazelton Group. In the Unuk River area, the Hazelton Group had been subdivided (Alldrick et al, 1989) into the Lower Jurassic Unuk River, Betty Creek and Mt. Dilworth Formations, and the Middle Jurassic Salmon River Formation. Upper Jurassic sedimentary rocks were identified as the Nass Formation by Grove (Grove, 1986) and included by him in the Hazelton Group. More

recently the Salmon River Formation has been correlated with the Spatzizi Group, underlying the Ashman Formation which is the basal unit of the Bowser Group (Alldrick, 1989). Both the Salmon River and Ashman Formations occur in the Middle Jurassic.

The Unuk River Formation was deposited during Upper Triassic to Lower Jurassic times and marks a period of submergence (marine sedimentation) followed by emergence marked by volcaniclastic rocks. These rocks include arkosic and lithic wackes, siltstones, conglomerates, tuffites and green and grey intermediate to mafic volcanics.

Unuk River rocks outcrop along a broad north northwesterly trending belt from Alice Arm to the Iskut River.

Subsequent to deposition of the Unuk River Formation, a period of erosion and deformation occurred followed by deposition of the Betty Creek Formation volcanics and marine sediments. Betty Creek rocks are characterized by red and green volcaniclastic agglomerates with intercalated andesitic flows, pillow lavas, chert and minor carbonate lenses.

The Mt. Dilworth Formation was deposited during a period of explosive felsic volcanic activity. Massive to bedded airfall tuffs and welded ash flow tuff characterize this formation. The Salmon River Formation comprises thin bedded, alternating siltstones and mudstones with minor limestone. The overlying Ashman Formation is characterized by turbidites and wackes with lesser intraformational conglomerates and marked by a basal chert pebble conglomerate.

PROPERTY GEOLOGY AND MINERALIZATION

Grid #1 - General Description

This grid is located on the CCM-1 and CCM-2 claims (Figure 2a). The purpose of the grid was to provide control over an area partly underlain by Mt. Dilworth Formation as indicated by mapping in 1989. The grid has an east-west oriented baseline with north-south cross lines. The baseline extends easterly some 2.8 km from a large creek near the middle of the CCM-1 claim, where the Mt. Dilworth Formation was first observed, almost to the eastern border of the CCM-2 claim. Cross lines are spaced 100 m apart, extending variable distances north and south of the baseline but averaging 500 m in either direction.

Plotting of data and results has been done on 2 maps, a west sheet (Figure 5) and an east sheet (Figure 6). The west sheet covers L0 to L11E, while L16E to L28E are found on the east sheet. L12E to L15E were not cut due to topographic considerations. Budget restrictions caused by higher than anticipated linecutting costs precluded completion of all the mapping. Lines that remain unmapped are as follows: L11E, 5+00S to 3+30N and L24E to L28E, all from 0+25S to 5+00S. The areas of most interesting stratigraphy have been covered and it is felt that the unmapped lines do not constitute a serious deficiency of information.

Grid #1 - Geology West Sheet

Mapping on the west sheet, from northwest to southeast, reveals a good stratigraphic section from Middle Jurassic Spatzizi Group sediments through to Lower Jurassic Hazelton Group volcanics and epiclastic sediments. Lithologies encountered along this section from northwest to southeast are as follows.

Thinly bedded to massive greywacke occupies the northwest corner of the grid with minor intercalated siltstone and conglomerate especially along the southeast, or lower, contact. Outcrop exposure is poor, estimated at approximately 5%. The greywacke is bounded to the southeast by a distinctive chert pebble conglomerate. This conglomerate is well indurated and locally forms resistant topographic ridges where outcrop exposure is good. It in turn is bounded to the southeast by a section of intercalated greywacke and argillite. Exposure is quite poor in this area, which is mostly swamp. These three units are believed to be Salmon River Formation sediments belonging to the Middle Jurassic Spatzizi Group.

Next in the succession are rhyolitic to dacitic flows and tuffs of the Mt. Dilworth Formation, the uppermost member of the Lower Jurassic Hazelton Group. Exposures appear mainly as resistant ridges within a broad swampy area. The unit is usually a massive, milky

white rhyolite with very little alteration evident. Some flow banding and shearing were noted. Gossans are prevalent wherever the unit is fractured or sheared and minor clay alteration and carbonate-filled fractures were also observed.

The Mt. Dilworth Formation is in turn bounded to the southeast by sandstone and argillite of the Betty Creek Formation. Very limited exposures of these two lithologies were encountered.

There was virtually no alteration or mineralization of any significance observed in any rock unit except in the rhyolites where minor pyrite (1-2%) occurs as disseminations or fracture coatings. The area of most interest is along the Mt. Dilworth Formation - Salmon River Formation contact as this is where economic mineralization is observed in the Eskay Creek deposit. Unfortunately there is virtually no outcrop exposure along either the upper or lower Mt. Dilworth contacts, which are extensively covered.

All units on grid #1 (west sheet) show a definite northeastsouthwest trend. This trend is observed in the lithological contacts and is parallelled by faulting and shearing as well as bedding, where observed in the sediments. Shearing and bedding show moderate to steep northwest dips.

Grid #1 - Geology East Sheet

Mapping on this sheet has revealed a similar stratigraphic succession to that seen on the west sheet with the major difference being the presence of a thick layer of andesite located stratigraphically below the Mt. Dilworth Formation. Lithologies across this section, from northeast to southwest, are as follows.

Interbedded massive greywacke and argillite with minor siltstone and rare conglomerate occupy the northeast portion of the grid area. These lithologies are considered to be part of the Salmon River Formation. Outcrop exposure is poor throughout this area.

These sediments are bounded to the southwest by rhyolitic to dacitic ash and lapilli tuff of the Mt. Dilworth Formation. It appears as a massive milky white coloured unit or occasionally as a chlorite-sericite altered lapilli tuff with fragments up to 3 x 10 mm.

The Mt. Dilworth formation is bounded to the southwest by a thin unit of intercalated conglomerate, greywacke, and argillite which is visible on L16E to L19E. This unit is in turn bounded by an andesite tuff, which contains minor lenses or pods of more dacitic material. Both these units belong to the underlying Betty Creek Formation. Many variations were observed in the andesite including fine grained tuff, tuff with black augite(?) crystals, hornblende porphyritic andesite, and subporphyritic feldspar crystals. Chlorite alteration is quite prevalent with local sericite and epidote also observed.

Very little mineralization was noted in any of the lithologies. Minor pyrite (trace-3%) was observed in the dacitic lenses or pods within the andesite. Mineralization in the rhyolite occurs as pyritic disseminations and fracture coatings.

Structural trends on grid #1 east sheet are dominantly northwestsoutheast, dipping moderately steeply to the northeast. Measurements were taken along bedding planes and shear trends. One notable exception is an apparent north-south fault between L17E and L18E which indicates sinistral strike slip of some 200 m. It is not known if there was any dip slip motion associated with the fault.

The most obvious difference between the west and east sheets on grid #1 is the change from northeasterly trending lithologies on the west sheet to northwesterly trending on the east sheet. This suggests the presence of a broad antiform whose core lies somewhere between L11E and L15E.

Grid #2 - General Description

This grid is located on the VR-4 and VR-6 claims (Figure 2a) to provide control for surveys over areas of anomalous gold and copper soil samples obtained from the 1989 Phase I program and earlier work by Teuton Resources Corp. The grid has an east-west oriented baseline with north-south crosslines. The baseline extends westerly for 0.9 km along a ridge top from the eastern claim boundary near the common border between the VR-4 and VR-6 claims. Crosslines are spaced 100

m apart and extend for 1.0 km both north and south of the baseline. Parts of L8W and L9W were not fully cut as there is a large gorge which was impossible to cross. Lines were cut to the gorge's north edge and then chained over from L7W and back cut to the south edge.

All results appear on one map (Figure 7). Again, budget constraints precluded completion of the mapping and sampling. L7W was not mapped north of the baseline and L8W and L9W were not mapped north or south of the baseline. It is felt that the unmapped lines do not constitute a deficiency of information as the areas of greatest interest were mapped and correlated with the 1989 Phase I data.

Grid #2 - Geology

Mapping on the grid indicates it is underlain entirely by pyroclastic-epiclastic rocks of the Lower Jurassic Betty Creek Formation. These include siltstone and volcanogenic sandstone, dacitic tuffs, and feldspar-hornblende porphyritic andesite (Atkins Porphyry).

The sediments are comprised of dark grey feldspathic greywackes and banded siltstones and sandstones with visible depositional features such as graded bedding and rip-up clasts which indicate the section is upright. The volcaniclastic units are comprised of dark grey to green dacitic to andesitic lithic and crystal tuffs. A distinctive volcanic breccia unit is found around L3W-L4W at 9+00N.

The entire sequence is intruded by dykes and sills of the Atkins Porphyry.

The segregation of lithologies on grid #2 is not nearly as distinct as was observed on grid #1. Small pods or lenses of dacite or Atkins Porphyry occur within a larger mass of siltstones and volcanogenic sandstones. Bedding, however, where recognized shows a consistent northwest-southeast strike, steeply dipping to the northeast. The beds are generally undeformed and show no distinct cleavage. They are consistently offset by northeast-southwest trending faults with displacements of up to 150 m.

Alteration in the area is minimal to none with the most common being a weak quartz-sericite-carbonate assemblage usually associated with shear zones.

Little indication of definitive precious metal mineralization has been found to date. Some dacite boulders near L3W, 4+50S contained 40-50% massive pyrite, but assayed only 110 ppm gold, and minor disseminated pyrite was found in the volcaniclastics. Up to 5% blebby pyrite occurs in siltstone, which is probably syngenetic, and is accompanied by a canary yellow fracture coating. Massive blow-out quartz veins up to 2 m wide and stockwork veining of barren quartz and carbonate are found within shear zones.

CCM-3 Claim Geology

Limited work was done on this claim (Figure 2a), consisting mostly of prospecting and silt sampling. The area was examined in an attempt to locate the source of a 2700 ppb gold anomaly collected in 1989 from the creek draining Ceperley Glacier near its junction with Atkins Creek.

Prospecting encountered mainly bedded argillite or andesitic pyroclastics believed to be of the Lower Unuk River Formation. These units have been intruded by quartz and/or calcite veins which contain 1-10% disseminated pyrite. Rhyolitic to dacitic float boulders were also found in the creek bed.

PROPERTY GEOCHEMISTRY

Grid #1 - West and East Sheets

Geochemical surveys included rock and soil sampling. Rock samples were collected during the course of mapping with 43 samples sent for assay. Soil sampling was conducted along the grid lines, samples were taken every 25 m with every second sample sent for analyses resulting in a 50 m spacing. A total of 320 soil samples were sent for assay. Budget constraints prevented completion of sampling on the grid (both west and east sheets). Areas not sampled are as follows: L10E and L11E from 0+25N to 5+00N and 0+25N to 3+50N respectively; L18E, 0+25N to 5+00N; L19E and L20E, 5+00S to 5+00N; L21E to L23E, 0+25N to 5+00N; L24E, 5+00S to 5+00N; L25E, 0+25S to 5+00S; and L27E and L28E, 0+25S to 5+00S.

All samples were analyzed for gold by atomic absorbtion and an additional 35 elements by ICP spectrophotometry. Sample preparation and analyses were performed by TSL Laboratories in Vancouver, Saskatoon and Toronto.

The ICP data was analyzed for the major base metals as well as potential pathfinder or indicator elements possibly associated with gold mineralization. Elements considered potentially significant include the following: copper, nickel, lead, zinc, cobalt, molybdenum, silver, antimony and arsenic.

Very few gold anomalies were detected in either the rock or soil samples from the east sheet. Rock sampling was very disappointing with a high of 25 ppb gold received from sample #33512, an altered andesitic to dacitic tuff at L17+95E, 2+25S. All samples collected from the Mt. Dilworth Formation returned negligible gold assays.

ICP data was examined for all rock samples collected on grid #1 but did not reveal any significant results either in base metals or other possible indicator elements.

Soil sample results on the west sheet are similarly low with only two elevated gold responses noted. One sample site at the south end of L10E returned 20 ppb gold and a value of 25 ppb gold occurs at L11E, 3+00S. Both areas are believed to be underlain by sandstone or argillite of the Betty Creek Formation. Values were also low on the east sheet the highest being 45 ppb gold at L23E, 4+00S and 55 ppb gold at L28E, 4+50N. Both areas are underlain by sedimentary rocks of the Betty Creek and Salmon River Formations respectively.

A statistical analysis was undertaken of the soil sample ICP data to determine background values and anomalous threshold levels. The analyses were done with the PC-XPLOR version 1.21 software package, which calculated arithmetic mean and standard deviation for the sample population. Sample populations were confined to the soil samples for grid #1 and grid #2 with separate calculations performed for each grid. Elements for which the statistics were calculated include copper, lead, zinc, nickel and arsenic. Statistically significant results for the above elements are shown on Table II below. Values are rounded off to the nearest integer. The mean plus one standard deviation is defined as "possibly anomalous" while mean plus two standard deviations is defined as "anomalous".

TABLE II - GRID #1-ICP GEOCHEMISTRY STATISTICS

Element	Arithmetic Mean (ppm)	Mean + I x SD* (ppm)	Mean + 2 x SD* (ppm)
Copper	25	40	55
Lead	16	24	31
Zinc	64	105	146
Nickel	21	42	64
Arsenic	18	29	40

* SD = Standard Deviation

Statistical analysis of data for silver, molybdenum, and cobalt produced no anomalous values.

Copper revealed several anomalies throughout the grid area, mostly associated with lithological contacts or paralleling the northeasterly fault trend seen between L3E and 6E south of the baseline. There are also some spot highs found at the northwest and northeast ends of the grid area. Although values are statistically anomalous they are not high, ranging from 40 ppm to a high of 110 ppm at L7E, 5+00S.

Lead anomalies show a more random distribution than copper, although there is still some correlation with lithologic contacts or surficial fault expressions. In real terms the anomalies are quite low with only 3 values ranging from 40-60 ppm and an isolated high of 1700 ppm at L7E, 5+00S. This high occurs at the same site as the 110 ppm copper anomaly.

Zinc shows a strong correlation with the northeasterly trending fault observed on L3E to L6E with 10 anomalous results associated with the fault zone. Most of the higher results (>150 ppm) are found in this area with up to 470 ppm zinc at L4E, 1+50S. Some spot highs are located near the northeast corner of the grid. The highest value on the grid, 3400 ppm, is at L7E, 5+00S which is also the site of highest copper and lead anomalies received from the soil samples.

Nickel anomalies are generally randomly distributed with most occurring between L4E and L6E, north of the baseline. There is some association with lithological contacts around the conglomerate lens

in the same area but this unit does not appear to be a potentially significant host of mineralization. Only 3 values exceed 100 ppm with highs of 220 ppm at L4E, 1+00N and 250 ppm at L6E, 2+50N.

Arsenic anomalies closely parallel the zinc trends with the majority of anomalies following the northeasterly trending fault zone on L3E to L6E. Two of the 3 highest values received, 60 and 85 ppm, are on the east sheet at L23E, 1+50S and L21E, 1+00S respectively. The highest assay received, 110 ppm, is from L7E, 6+00S some 100 m south of the highest copper, lead and zinc anomalies.

In general the anomalous ICP results are confined to lithologic contacts or closely parallel the northeasterly trending fault zone seen on L3E to L6E south of the baseline. In addition, there are spot highs throughout the grid area with one sample site, L7E, 5+00S returning the highest copper (110 ppm), lead (1700 ppm), and zinc (3400 ppm) soil anomalies received within the grid area. No outcrop was mapped in the area of this single station high. The source of the anomaly remains unexplained.

Grid #2

Better anomalous results were received from this grid than from grid #1. A total of 26 rock and 239 soil samples were sent for analysis. Again budget constraints precluded complete soil sampling of the grid with no samples collected from L4W to L9W, 0+25S to 10+00S. The lack of data from these lines is not considered a problem

as there is detailed geological mapping over much of the unsampled area. The mapping did not revel any significant structural features or areas of mineralization.

Rock sample results include the following. Sample #33231 returned 110 ppb gold from a sample of Atkins Porphyry laced with calcite veining carrying up to 2% disseminated pyrite. Sample #33234 assayed 120 ppb gold from brecciated argillite containing pyrite blebs Sample #33308 assayed 100 ppb gold from over a 1 m x 2 m zone. and silicified volcanics containing sheared, brecciated, 5% disseminated pyrite. Sample #33312 (float), consisting of carbonate vein material with a massive pegmatitic texture of interlocking crystals up to 2-3 cm long in gossanous sandstone, also assayed 100 The last anomalous sample is #33410, a float boulder of ppb gold. sericitized and chloritized andesite with 30-40% massive pyrite which assayed 110 ppb gold. All of the above are grab samples.

The ICP analyses returned moderately anomalous results in various elements from some of the rock samples collected on grid #2, as discussed below. Sample #33231, in addition to the 110 ppm gold assay, returned 330 ppm lead, 22 ppm silver, and 160 ppm arsenic. Sample #33234, which assayed 120 ppm gold also assayed 1900 ppm copper. Sample #33308, which assayed 100 ppm gold returned 1800 ppm lead, 1500 ppm zinc, 24 ppm molybdenum, 8 ppm silver, 130 ppm antimony, and 850 ppm arsenic. Samples #33311 and #33313 assayed 330 and 750 ppm arsenic respectively. Samples 33410 and 33411 assayed
1200 and 460 ppm copper respectively, with 61 ppm cobalt and 110 ppb gold also from sample #333410. All of the above are grab samples with the exception of #33311, a 1 m long rock chip sample.

Generally the samples that assayed elevated gold also contained elevated base metals or pathfinder elements. While some of the above results are encouraging they are not economic and do not outline any distinctive trends.

Soil sampling outlined three distinctly anomalous zones within the area sampled (Figure 7). The first zone, Area A, lies between L2W and L5W close to the baseline. Most samples range from 20 to 40 ppb gold with an isolated high of 310 ppb gold at L4W, 0+00. Sampling was not completed to the south on this line so the full extent of the anomaly is unknown. This zone corresponds to the anomalous samples from L5000, 5+00N to 6+00N outlined during the 1989 Phase I program. The area is underlain by sandstone and siltstone which has been intruded by apparently barren blow out and stockwork carbonate veins. A northeasterly trending fault bisects the anomalous area.

The second zone, Area B, shows a well defined northwesterlysoutheasterly trending anomaly from L1W to L3W from 6+00S to 4+00S. It correlates with soil anomalies received on L4500, 1+75N to 3+00N, outlined during the 1989 program, and also with rock sample #15026 collected last year which assayed 0.034 oz/ton gold. The anomaly remains open to the west. Assays range from 20 ppb gold to a high of

140 ppb gold on L2W, 5+00S. There is no outcrop mapped at the heart of the zone but it appears the area is underlain by volcaniclastic sediments with the Atkins Porphyry outcropping at the northwest and southeast ends of the zone.

The last significant anomaly, Area C, is a small area on L3W, 9+00S where a value of 85 ppb gold was obtained. The anomaly remains open to the west and no outcrop was observed in this area to explain these results. This anomaly is approximately 200 m upslope from a 70 ppb gold soil anomaly collected last year on LAL1200, 33+50W.

A statistical analysis of the ICP data was performed in the same manner as that for the grid #1 data. Elements for which statistically anomalous thresholds were determined are copper, lead, zinc, nickel and arsenic, with the results in Table III below:

Blement	Arithmetic Mean (ppm)	Mean + I x SD* (ppm)	Mean + 2 x SD* (ppm)
Copper	68	108	149
Lead	17	28	38
Zinc	120	163	207
Nickel	27	43	59
Arsenic	29	60	92

TABLE III - GRID #2-ICP GEOCHEMISTRY STATISTICS

* SD = Standard Deviation

Copper anomalies are confined to two areas, near the baseline between L1W to L5W in the vicinity of the Area A gold geochemical anomaly and near the north end of L4W and L5W. Other groupings, on L0 to L2W, are in areas underlain by dacitic tuff. Although statistically anomalous the assays are relatively low with only 4 assays over 200 ppm, one underlain by dacite and the other 3 proximal to the Atkins Porphyry.

Lead anomalies are randomly distributed throughout the grid area. There is some association with lithologic contacts but no well defined patterns. Actual assays are relatively low, the three highest results being 74 ppm at L9W, 0+00; 74 ppm at L2W, 2+50N; and, 290 ppm at L0W, 9+00N.

Zinc anomalies are also randomly distributed between L0 to L5W. There are some values associated with the areas of dacitic tuff and also with the Area A gold geochemical anomaly. In total 14 sample sites assayed \geq 200 ppm with a high of 500 ppm from L0, 9+00N.

Nickel anomalies are virtually all found between L4W and L9W from 4+00N to 7+00N. It is the only element that shows a clustering of values in this area of the grid, however nothing was seen during the course of mapping that would indicate why this is so. Only 6 samples assayed > 70 ppm nickel with a high of 210 ppm from L9W, 4+50N. This line was not mapped so the source of the spot high is unknown.

Arsenic is confined to two distinct areas, one at the north end of L4W and L5W and the other by the Area A gold anomaly. A total of 6 samples assayed over 100 ppm, 2 from the northern anomaly, (100 and 120 ppm) 3 from the Area A anomaly (110, 200, 280 ppm) and one isolated value of 650 ppm from the same site (L9W/4+50N) as the 210 ppm nickel anomaly.

In general the anomalous ICP results are confined to two main areas. One area is at the north end of L4W and L5W which contains anomalous copper and arsenic with lesser lead and zinc. The other area is near the baseline from L2W to 5W which has anomalous copper, arsenic, lead, and zinc, all associated with the Area A gold geochemical anomaly.

CCM-3 Claim

A total of 16 rock and 9 silt samples were collected and sent for gold and 35 element ICP analyses. All silt samples were collected from the west side of the creek draining Ceperley Glacier, while rock samples were taken from both sides. The eastern drainages were tested during the 1989 program, the results did not reveal a source for the 2700 ppb gold assay hence the reason for silt sampling only on the west side of Ceperley Glacier (Figure 8).

No anomalous gold assays were returned from the silts - values ranged from 5 to 10 ppb gold. The source for the 2700 ppb gold assay received last year may be the auriferous quartz veining located this year.

Rock samples taken from the west side of the creek are generally low, ranging from <5 to 5 ppb gold with one exception. Sample #33009 assayed 250 ppb gold, from a float sample of argillite with quartz veining containing disseminated pyrite and pyrrhotite.

Better results were received from samples taken on the east side of Ceperley Glacier. Most are samples of quartz-pyrite veining with up to 10% pyrite, hosted within argillite (#33236-33239), some narrow pyrite veins (#33240 and 33241), or contact mineralization between argillite and andesite (#33235). Assays ranged from 15 ppb to 0.031 oz/ton gold. The latter is from sample #33239, a 0.5 m wide quartz vein containing minor disseminated pyrite exposed over a 4 m length.

Some anomalous values were observed in the ICP data for the rock samples, but no significant results were obtained from the silt samples. Rock sample results are discussed below.

Sample #33009 assayed 430 ppm zinc and 110 ppm arsenic, from a rhyolite boulder, for which no specific source was determined. Samples #33012 and #33013 contained elevated copper values of 110 and 130 ppm respectively but are not considered to represent significant mineralization. These samples were all collected on the west side of the creek draining Ceperley Glacier.

Higher results were received from the rock samples collected on the east side of Ceperley Glacier. Sample #33235 assayed 260 ppm

copper and 25 ppm arsenic. Sample #33240 assayed 12 ppm molybdenum and 65 ppm arsenic and sample #33241 assayed 37 ppm cobalt, 1 ppm silver, 25 ppm antimony and 130 ppm arsenic. A high arsenic value of 150 ppm came from sample #33239, which also assayed 0.031 oz/ton gold.

PROPERTY GEOPHYSICS

Magnetic and VLF-EM electromagnetic surveys were conducted over grid #1 only, using the GEM GSM-18 instrument. Only the even numbered lines were surveyed resulting in a 200 m line spacing from L0 to L28E; L12 and L14 were not surveyed, as these lines were not cut. The VLF-EM stations chosen for the survey were Cutler, Maine (24.0 KHz) and Annapolis, Washington (21.4 KHz). Readings were taken at 12.5 m intervals for both magnetic and electromagnetic data.

The magnetic survey revealed local spot highs on the west sheet. These local anomalies are usually at just one station, indicating a restricted source. It is possible that they may be due in part to topography as there are numerous ridges and gulleys spaced quite closely throughout the grid area. In general, the survey does not reveal any significant magnetic anomalies nor does it map out the lithologic contacts as observed on surface. The spot highs have not been plotted on the compilation maps.

The VLF-EM electromagnetic survey outlined several weak conductors on both the west and east sheets. On the east sheet the most prominent anomaly trend parallels a fault as mapped in the field

on lines 2E to 6E. Two spot anomalies are also found on the west sheet. The one at L4E, 4+75S coincides with a contact between Mt. Dilworth Formation and underlying Betty Creek Formation. No significant mineralization was mapped in the immediate area. The other west sheet conductor is located at L6E, 2+25S, over a small pod of sheared rhyolite (Figure 5).

Of the five conductors on the east sheet, 3 are associated with the upper or lower contacts of the Mt. Dilworth Formation. Only one of the conductors, that on L16E, 2+75N shows coincident mineralization with 1-3% disseminated pyrite proximal to the conductor. The other 2 conductors are in areas of no outcrop but are believed to be underlain by greywacke of the Salmon River Formation. No source was seen to explain their existence.

In general the geophysical surveys did not define any significantly anomalous zones, only small spot magnetic highs or local VLF-EM conductors. A line separation of 100 m would provide more detail but would not necessarily yield more significant data.

STATEMENT OF EXPENDITURES

۳ د

•

.

.

5

.

Mobilization/Demob		\$	6,406.35
Labour			56,495.17
Support Costs			57,262.65
Transportation & Communication			3,429.93
Equipment Rentals			2,296.15
Contract Services			39,144.10
Analysis			11,900.81
Helicopter			35,476.72
Report Costs		-	8,221.80
	TOTAL:	\$	220,633.68

STATEMENT OF QUALIFICATIONS

I, Jim Chapman, of 580 West 17th Avenue, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1976) and hold a B.Sc. degree in geology.
- I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia, V6C 2T5.
- I have been employed in my profession by various mining companies since graduation.
- I am a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 5. I am a Fellow of the Geological Association of Canada.
- 6. The information contained in this report was obtained from a review of data listed in the bibliography, an onsite examination of the VR Project and knowledge of the area.
- 7. I have no interest, direct or indirect or in the securities of Tymar Resources Inc.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Jim Chapman Consulting Geologist, F.G.A.C.

DATED at Vancouver, British Columbia the 21st day of November, 1990.

CERTIFICATE of QUALIFICATIONS

I, Wesley D.T. Raven, of #101-2336 York Ave., Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1983) and hold a BSc. degree in geology.
- 2. I am presently retained as a consulting geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia.
- 3. I have been employed as an exploration geologist on a full time basis since 1983.
- 4. The information contained in this report is based on work carried out by OreQuest Consultants Ltd. on the VR Project for which I was the field project manager and a review of information listed in the Bibliography.
- 5. I have no interest, direct or indirect, in the VR Project nor in the securities of Tymar Resources Inc.
- 6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Misley Raven

Wesley D.T. Raven, B.Sc., F.G.A.C.

DATED at Vancouver, British Columbia, this 1st day of November, 1990.

BIBLIOGRAPHY

ALLDRICK, D.J. Volcanic Centres in the Stewart Complex (103P and 104A, B) 1989: BCMEMPR Geological Fieldwork 1988, Paper 1989-1. ALLDRICK, D.J., BRITTON, J.M. Geology and Mineral Deposits of the Sulphurets Area, BCMEMPR 1988: Open File Map, 1988-4. ALLDRICK, D.J., DROWN, T.J., GROVE, E.W., KRUCHKOWSKI, E.R., NICHOLAS, R.F. 1989: Iskut-Sulphurets Gold, Northern Miner Magazine, Jan. 1989, p-46. CANADIAN MINES HANDBOOK 1990-1991 CHAPMAN, J., VAN WERMESKERKEN, M. 1990: Summary Report on the 1989 Field Program for Tymar Resources Inc. VR Project, Iskut-Sulphurets Area, Skeena Mining Division, British Columbia, February 20, 1990. CHAPMAN, J., RAVEN, W. WALUS, A. 1990: Geological, Geophysical, Geochemical and Drilling Report on the Tantalus Resources Ltd. Treaty Creek Project, Iskut-Sulphurets Area, B.C., Jan. 8, 1990. 1990: Phase II Drilling Report on the Tantalus Resources Ltd. Treaty Creek Project, Iskut-Sulphurets Area, B.C., Jan. 10, 1990. CREMONESE, D. 1987: Assessment Report on Diamond Drilling, Geochemical & Geological Work on the TR 4, 5, 8 Claims for Teuton Resources Corp. Assessment Report on Geological, Geochemical and Geophysical 1987: Work on the TR 5, 8 Claims for Teuton Resources Corp. 1987: Summary Report on the Treaty Group Claims for Teuton Resources Corp. 1987: Assessment Report on Geochemical Work on the Treaty, TR 1, TR 2, TR 3, TR 6, TR 7 Claims for Teuton Resources Corp. GROVE, E.W. 1971: Geology and Mineral Deposits of the Stewart area, B.C., British Columbia Dept. of Mines and petroleum Resources, Bulletin No. 58.

GROVE, E.W. 1986: Geology and Mineral Deposits of the Unuk River - Salmon River -Anyox Area, B.C., Ministry of Energy, Mines and Petroleum Resources, Bulletin 63. GEORGE CROSS NEWS LETTER August 24, 1989 February 12, 1990. February 16, 1990. November 5, 1990 MEMPR a: Revised Mineral Inventory Map 104B (MI). Revised Mineral Inventory Map 103P (MI). b: NORTHERN MINER Iskut River Road Study in Progress, Vol 74, No. 50, p-28, 1989: February 20, 1989. SOUTHER, J.G., BREW, D.A., OKULITCH, A.V. 1979: GSC Map 1418A, Iskut River. TEUTON RESOURCES CORPORATION Teuton Resources Corp., News Release November 8, 1988. 1988: VANCOUVER STOCKWATCH 1990: September 14 - Prime Capital Corporation September 20 - Consolidated Rhodes Resources October 10 - American Fibre Corporation October 25 - Corona Corp/Newhawk October 30 - Tymar Resources Ltd./Akiko-Lori Gold Ltd.

λ.

Ν.

ŝ,

APPENDIX I

 \int

5

.

ROCK SAMPLE DESCRIPTIONS

TYMAR VR PROJECT

٠

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33009	16/07/90	CCM-3	ARGILLITE	Float, with qtz veining	Pyrite, Pyrrhotite	
33010	и	ССМ-3	RHYOLITE, OR DACITE	Float same location as 33009	Disseminated Pyrite	
33011	*	CCM-3	GOSSAN	25m x 25m bedrock	Disseminated Pyrite	
33012	"	CCM-3	RHYOLITE, OR DACITE	Float, rusty gossan zone abové	Disseminated Pyrite	
33013	H	CCM-3	?	Bedrock in creek	Disseminated Pyrite	
33014	'n	CCM-3	?	Float boulder	Disseminated Pyrite	
33032	23/07/90	L8+97E 0+10N	RHYOLITE OR DACITE?	Lightly rust coloured	None visible	
33033	н	L10+05E 0+75N	ANDESITE?	Minor rusty staining	None visible	
33034	41	L9+70E 0+47N	RHYOLITE OR DACITE	Fragmental unit	Minor Pyrite	
33035	"	L9+20E 0+22N	RHYOLITE	Blue-grey, siliceous	Minor sulphides	
33036	•	L6+96E 1+75 S	RHYOLITE	Blue-grey colour	Disseminated pyrite	
33037	**	5+95E 1+80S	BRECCIA		Disseminated Pyrite	
33038	n	L5+90E 1+80S	RHYOLITE	Limonite stained	Disseminated Pyrite	

,

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33039	*	L5+65E 1+90S	RHYOLITE		Minor Pyrite	
33040	R.	L3+70E 3+75S	?	Float piece very rusted and altered	None visible	
33041	23/07/90	L4+55E 3+50S	RHYOL1TE	Sub outcrop of rusted rhyolite?	Disseminated pyrite	
33231	Aug 7/90	L5+EOW 2+00S	INTRUSIVE ?	Shot through with calcite	2% pyrite	
33232	tt		RHYOLITE/ DACITE?	A dyke 1m wide in bedded sed.	Disseminated py	
33233	"	L4W+4+50S	DACITE		1-2% Pyrite	
33234	н		BRECCIA	Pyrite/breccia in argillite	Pyrite chunks	
33235	Aug 8/90	CCM-3	CONTACT	Andesite/calcite rich argillite	1% pyrite	
33236	41	CCM-3	ARGILLITE	Qtz veins to qtz blow out	5-10% pyrite	
33237	•	CCM-3	ARGILLITE	Qtz veins to qtz blow out	5-10% pyrite	
33238	4	CCM-3	ARGILLITE SHEAR	Qtz/pyrite veins	5-10% Pyrite	
33239	*	CCM-3	ARGILLITE SHEAR	Qtz/pyrite veins	5-10% Pyrite	

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33240	H	CCM-3	ARGILLITE/ BASALT CONTACT	Pyrite ove 0.3 m x 3 m	Massive pyrite	
33241	н	CCM-3	ARGILLITE	Pyrite vein, 3-4cm wide x 4m long	Massive pyrite	
33247	Aug 13/90	L24+50E 0+25N	BEDDED SED.	Rotten sandstone	1-5% pyrite	
33248		L20E 2+00N	RHYOLITE	Rhyolite/dacite breccia	5-10% pyrite	
33249	H		DACITE	Dacite/rhyolite, chert-like	1-2% pyrite	
33301	18/7/90	L3E/2+80S	ARGILLITE	Highly fractured, brecciated, mod-strongly ferruginous, highly slickensided in places w/shiny sericitic development, grab	5% lattice boxwork w/ sub-rounded ghosts- carbonate veining ?	
33302	91	L4E/1+90S	BRECCIA/ ARGILLITE	Gossanous, hackly fracture black, fine grained, foliated, strongly brecciated, float	Anastomosing veinlets <pre>≤lmm wide (pervasive) minor boxwork w/limonite after py ?</pre>	
33303	k	L5E/1	AS ABOVE	Weak slickensided structure hackly fracture, strongly ferruginous, grab	Highly gossanous, minor lattice boxworks	
33304	23/7/90	L7E 2+75S	RHYOLITE TUFF?	Vuggy boxwork in silicified tuff? weakly gossanous, grab	1% diss py	

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33305	n	L8E 0+50S	RHYOLITE BRECCIA?	Vesicular, green fine grained matrix with siliceous & mafic phenocrysts infilled cavities w/ m. black resinous mineral (sp?)grab	Minor py + sp ? inor py &	
33306	"	L22E 0+50S	ANDESITE TUFF	Green, very hard, strong chl alteration of mafics, grab	Weakly silicified, occ rare py cubes	
33307	Aug 7/90	L1W/3+25N	VOLCANIC? Type (?)	Original texture obscured, gossanous silicified totally,float	1% diss py in fractures, strong ep chl, no carb	
33308		L1W/3+50N	AS ABOVE	Source of 33307-highly sheared and brecciated, gossanous & totally silicified, grab	5% diss py in silicified matrix	
33309 33310	Aug 7/90	L1W/6+50N "	FAULT ZONE	Highly sheared & brecciated seds from arg to siltstone to sst to tuff? often contain argillite clasts in fine grained matrix could be volcanic breccia 130°/60° NE(poo	1% diss py w/chl + ep? d pr)	
33311	Aug 8/90	1+60W/0+25N	SILTSTONE	lm wide pyrite stockwork, gossanous-yellow, orange, veins trending 020° lm chip	Massive py anastomosing veinlets 5 mm wide	

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33312	Η	100m E of BL/LO	CARBONATE VEIN	0.5m wide, 25m long bearing ENE massive pegmatitic texture, interlocking rhombohedral crystals in rusty weathering sst often brecciated or as selvages, grab	Barren looking	
33313	"	150m E of LO/6+50N	GOSSAN	Small float train, weakly foliated minor boxwork, grab	2% diss py	
33314	Aug 13/90	LOW/0+60S	SILTSTONE	Massive qtz vein w/selvages of fine grained siltstone subcrop floa	2% blebby py at	
33315	•	LOW/6+00S	SHEAR/ATKINS PORPHYRY	3m wide shear in Atkins Porphyry dyke (?) qtz-sericite alteration of feldspars, friable, mod. Lim. stain, 3m chip	Anastomosing coarse grai white barren carb ≤5cm wide	ned
33316	11	L1W/6+75S	SILTSTONE	Dull black, massive, weak qtz stockwork veining, rhythmic bedding float	5% blebby py in fracture	s
33317	Aug 15/90	L4W/ 9+40N	MUDSTONE	Highly fractured, fine grained rhythmically bedded w/ intense " "canary yellow" surface & fracture stain 2m long width?, grab	l% diss-blebby py	
33318	8/15/90	L3W 1+25N	CARBONATE VEIN	30 cm->2m wide, barren looking, pegmatitic in texture 50m in strik length 052 ⁰ /90 ⁰ , 2m chip	Barren e	
33319	8/17/90	L6W 9+50N	SANDSTONE/ SILTSTONE	Angular, unsorted clasts in orange medium grained massive matrix, gra	Minor carbonate stockwor b	k
33320	-	L6W 6+50N	SILTSTONE/ SANDSTONE	Weakly gossanous, sheared appearance grey, fine grained to massive texture when fresh 3m chip	Carbonate stockwork from 2mm to 20cm wide fractur bearing 100 ⁰	es

.

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33401	23/7/90	L9+25E 0+35N,	RHYOLITE	Grab/silicification	Limonite	<5
33402	24/7/90	L16+00E 2+00N	CONGLOMERATE	Grab	Limonite	5
33403	*1	L16+25 2+50N,	ANDESITE ASH TUFF	Grab/ser., chl., calcitization	1-3% pyrite, limonite	<5
33404	14	L16+00 3+75N,	ARGILLITE	Grab Sheared rock	Limonite	<5
33405	"	L17+00E,2+20N	FELSIC ASH TUFF	Grab	1-2% py, limonite	<5
33406	41	L17+00E,2+20N	GREYWACKE	Grab/sericitization	Limonite	<5
33407	**	L17+00E,2+20N	CONGLOMERATE	Grab/sericitization	Límonite	<5
33408	Aug 7/90	L2+75W,1+25S	SILTSTONE	Grab/calcitization/calcite stockwork	Limonite	
33409	Aug 7/90	L2+95W 2+20S,	DACITE	Grab/sericitization-silicification	1-2% pyrite	
33410	h	L3+20W 4+005,	ANDESITE	Float/sericitization-chloritizatio	n 30-40% pyrite	
334 11	۹r	L3+20W 4+00S,	DACITE	Grab/sericitization-calcitization	<1% chalcopyrite	
33412	Aug 7/90	L3+20W 4+00S	DACITE	Grab/sericitization-calcitization	2-3% pyrite	
33413	11	Same as above	SAME AS ABOVE	Float/ sericitized	30-4% pyrite	
33414	Aug 15/90	L2+00W 2+50S,	ANDESITE	Grab/sericitization-calcitization	Limonite	
33415	N	L4+95W 4+50S,	BRECCIA	Grab/calcitization	1-2% pyrite	
33501	07/18/90	L4+93E, 3+23S	RHYODACITE?	Tuffaceous, to pseudo breccia	Trace-2% disseminated py	
33502	17	L4+80E, 3+23S	RHYODACITE?	Same as above	Same as above	

·

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33503	•	L5+00E 3+35S	RHYODACITE?	Same as above	Same as above	
33504		L5+00E 4+03S	RHYOLITE ??	Sheared and altered	Trace pyrite	
33505	07/20/90	L6+00E 1+40S	RHYOLITE TUFF	Rusty fractures, dirty greyish- white	Trace-1% py mostly as as blebs	
33506		L6+00E 1+80S	DACITE?	Semi brecciated looking caused by small stringers of quartz- chalcedony, light green coloured rock	Trace py in dacite?, 1-2% py in the chalcedony veins	ł
33507	07/20/90	L5+70E, 2+15S	RHYOLITE TUFF/ LAPILLI	Sheared & foliated @ 233/53 ⁰ NW, strong weathering on surface	No visible sulphides due to heavy gosson	
33508	91	L6+00E 2+48S	DACITE ?	Green-semi-chloritized andesite clasts in fine grained greenish- grey matrix=dacite?	Minor specks of diss py	
33509	07/24/90	L16+00E, 3+75S	DACITE ? ?	Siliceous looking sericitic (greasy) intermediate tuff	Traces of pyrite, carbon coating on surface	ate
33510	P	L16+00E 2+45S	ANDESITE	Fine grained light-med green andesite	Contains 5-8% coarse grained hexagonal black crystals, weakly magnetic white streak, hardness ~	C, 4-5
33511		L17+00E 2+25S	DACITE	Dacitic looking tuff or altered and. greasy lustre with splotchy green and grey colour	Tr - 1% diss py as small cubes and blebs	
33512	N	L17+45E 2+35S	AND./DACITE?	Carb. altered and. or dacite? carb, feldspar & altered mafics. Rock locally cut by 5-8mm wide veins with 1 or 2 specks cpy? carb alteration 1m wide	l or 2 specks of cpy	

•

. .

Sample	Date	Location	Lithology	Remarks/Alteration/Structure	Mineralization	Analysis
33513	11	L19+00E 4+80S	HORNBLENDE- Porphyry and.	Acicular porphyritic hornblende crystals in an altered and. matrix	No visible sulph.	
33514	09/25/90	L18+08E 2+93N	SANDSTONE ?	Very crumbly re-worked sandstone composed mostly of altered feldspar matrix (altered to clay) with some qtz fragments & clayish altered argillite fragments (5x10m	Limonite staining, no visible sulph. m)	
33515	61	L19+10E 3+25N	RHYOLITE	Massive looking milky white rhyolite	Minor rusty staining no visible sulphides	
33516	09/30/90	L19+85E 3+40N	RHYOLITE	Massive looking milky white rhyolite	Minor rusty staining, No visible sulphides	
33517	"	L20+00E 2+75N	RHYOLITE/	Chl - ser rhyolite-dacite tuff with fragments up to 3mm x 10mm	No visible sulphides	

APPENDIX II

ASSAY REPORTS AND PROCEDURES

.

,

-

MAIN OFFICE 1630 PANDORA STREET VANCOUVER B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A

October 19, 1990

- TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine metallic gold by fire assay method and determined gravimetrically.

1. <u>Method of Sample Preparation</u>

- (a) Rock samples would be received at the laboratory in poly ore bags.
- (b) Dried rock samples would be crushed using a jaw crusher and pulverized to 140 mesh or finer by using a disc mill.
- (c) The whole sample or portion of the sample would then be screened through a 140 mesh screen. The +140 mesh fraction (metallics) would be weighed and then put into an envelope for gold analysis with its weight recorded. The 140 mesh fraction would be weighed then rolled and transferred to a new bag with its weight recorded and a portion subsequently used for analysis.

2. Method of Extraction

- (a) The whole +140 mesh fraction is fluxed and fused. 1/2 to 1 assay tonne of the pulp sample (140 mesh fraction) would be used.
- (b) A flux of litharge, soda ash, silica, borax, either flour or potassium nitrite is added. The samples are thoroughly mixed, a liquid Ag inquart is added then fused at 1900 degrees Fahrenheit to form a lead button.

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER B.C VSL 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (c) The lead buttons are cupelled to dore beads. The beads are parted with dilute nitric acid and washed several times.
- (d) The gold beads are then annealled.

3. Method of Determination

The gold beads are weighed using a Sartorius electronic micro-balance. Using the weights of +140 mesh and -140 mesh fraction and the weights of gold, the assay is then calculated and reported in ounces per short tonne or grams per tonne.

4. Analysts

The analyses were supervised or determined by Mr. Raymond Chan or Mr. Conway Chun and his laboratory staff.

Knoch

Raymond Chan VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, BC VSL IL6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A

October 19, 1990

TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5

VANGEOCHEM LAB LIMITED

- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine silver by fire assay method in geological samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were eceived at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in 8" x 12" plastic bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized into 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.

2. Method of Digestion

- (a) 20.0 30.0 grams of the pulp samples were used.
 Samples were weighed out by using a top-loading balance into a fusion pot.
- (b) A flux of litharge, soda ash, silica, borax, either flour or potassium nitrite was added. The samples were thoroughly mixed and then fused at 1900 degrees Fahrenheit to form a lead button.
- (c) The silver was extracted by cupellation, weighed and parted with diluted nitric acid.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

والمحاج محاج أأحجا المكافر المتعاج والمحاج محاج والمعاوي والمحاج والمحاج والمحاج

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Calculation

The silver was calculated by the weigh loss of the bead and then parts per million (ppm) was calculated.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and the laboratory staff.

~1h

Raymond Chan VANGEOCHEM LAB LIMITED

October, 19 1990

- TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine Cu, Pb and Zn assay samples.

1. Method of Sample Preparation

(a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.

n a presenta de la presenta construction de la proprieta de la construction de la presenta de la proprieta de

MAIN OFFICE

1630 PANDORA STREET

VANCOUVER, B.C.

V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES

BATHURST, N.B.

RENO, NEVADA, U.S.A.

- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.

2. <u>Method of Digestion</u>

- (a) 0.200 gram portions of the minus 100 mesh samples were used. Samples were weighed out by using an analytical balance.
- (b) Samples were digested in multi acids in volumetric flasks.

والمراجبة والمراجبة والمحافظ والمحمو والمحمد ومراج

MAIN OFFICE 1630 PANDORA STREET VANCOUVER BC V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

د. د المحصوف بالحاطية المادية الم

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A

-2-

3. <u>Method of Analyses</u>

Cu, Pb and Zn concentrations were determined using a Techtron Atomic Absorption Spectrophotometer Model AA5 with their respective hollow cathode lamps. The digested samples were directly aspirated into an air and acetylene mixture flame. The results, in parts per million, were calculated by comparing them to a set of standards used to calibrate the atomic absorption units.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and their laboratory staff.

Amille

Raymond Chan VANGEOCHEM LAB LIMITED

|--|

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Ϊ Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. S9392 V6C 2X6

INVOICE #: 14494 P.O.: R-2086

SAMPLE(S) OF Silts

W. Raven Project: Tymar

REMARKS:

OreQuest Consultants Ltd.

Au ppb 10 TM-S-1 TM-S-210 5 TM-S-4TM-S-55 TM-S-6 10 TM-S-710 TM-S-8 10 TM-S-10 10 TM-S-11 10

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 08/90

Bernie Jun SIGNED .

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

1 of 1 Page

TS	L LAB	ORATORIES								
		2-302	2-48TH ST	reet, sagki Telepunne i	1700N, SA	SKATCHENAN STI - 1071	57K (544		
			ļ	FAX #:	(306) 2	12 - 4717				
		I.C.A.F	PLASHA	SCAN						
					Aqua-Regi	ia Digestia	M.			
RIME EXPLORATI	ON LTD.						T.S.L.	REPORT	No. : 5	- 9392 -
iOth Floor Box	10						T.5.L.	File	No. :	
XX West Kasti d Jancowege B.C	195 5t. 1946 7t.						T.S.L.	Invaice	NO. ; 14	/61
ATTN: J. FOSTE	700 240 R	PROJECT:	tynar of	equest con	Isultants (TD. R-208	6	all resi	JLTS PPH	
ELETEN		TM-S-1	TH-5-2	TM-5-4	7 #- S-5	TM-5-6	TM-5- 7	TM-5-B	TH-5-10	TH-5-11
Alusinus	[A]]	12000	12000	13000	1.7000	13000	16000	14000	14006	13000
Iron	[Fe]	29000	28000	28000	27000	29000	36000	39000	31000	29000
Calcium	{Ca]	14000	17000	19000	19000	15000	20000	22000	25000	19000
Magnesium	[Hg]	5800	5800	5900	5900	5900	6700	6500	6000	5600
Sodium	[Na]	230	110	150	170	140	100	100	230	100
POT ISSIUS	(K) [T:]	430 Tan	4/0 760	510	040 ALA	340	6YV 400	/49/ 200	100	320 366
Mannandese	(Mn.1	510	330 520	510	40V 550	ዓምን ዓፕስ	400 726	270 1936	600 660	546
Phosphorus	CP 3	1600	1600	1500	1500	1400	1600	1709	1400	1000
Barith	(B a)	75	76	71	79	73	66	100	73	52
Chronium	(Cr)	22	19	18	20	20	18	18	25	20
Zirconium	{Zr]	8	9	8	10	9	10	10	10	9
Coppet	{Cu]	47	50	45	52	50	86	84	70	57
Nickei	141] FR:1	15	13	12	14	14	14	15	16	E 18
Tim	[7n]	, 47		* 57	50 50	0 A4	, 67	77	, 69	з ТЗ
Vanadium	(V)	120	120	120	130	120	140	140	120	75
Streation	[Sr]	79	87	92	95	75	100	7 5	97	70
Cobalt	[Co]	9	9	9	9	9	12	16	13	10
Hotybdenua	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	(Ag)		i 1			$\langle 1 \rangle$	$\{ \}$	$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$	< 1	
LEGELLE Report From	EBa?	4 E 2 E		1 E	- L 				21	
Horon	{R]	2 10	< 10	≺ to	(10)	< 10	< 10	< 10	< 10	< 10
Antimony	(551	₹ 5	< 5	< 5	< 5	< 5	5	10	< 5	< 5
Yttrium	EY 1	9	9	9	9	9	10	11	9	B
Scandium	(Sc)	7	7	7	7	7	9	10	6	7
Tungsten	EM 1	< 10	< 10	< 10	(10	< 10	< 10	< 10	< 10	< 10
Nichium	EN63	< 10	< 10	< 10	< 10	< 19	< 10	< 10	< 10	< 10
inorium Areasic	(1h) [4=1	20	30	20	29	30	40 10	40) 5	96. 21	20
ni aniti. Riemath	5R(1	ν υ 1 ς	1V 2 4	ن ی د ۹	10 2 1	у (5	10 (5	د ≮5	< 5	< 5
	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	(10	(10	< 10
Lithius	[[]]	15	20	20	20	20	25	25	20	20
Holeium	(Ho)	< 10	< 10	< <u>10</u>	: 10	< 10	< 10	{ 10	(10	{ 10

P. 1

Γ

 $\left[\right]$

.

DATE : AUG-20-1990

51**64E0** :

r				
	CERTIFICATE OF ANALYSIS	3		
SAMPLE(S) FROM	Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastin Vancouver, B.C. V6C 2X6	gs St.	REPORT No. S9428	
SAMPLE(S) OF RO	ock	INVOICE P.O.:	#: 14539 :-2142	
	W. Raven Project: TYMAR			
REMARKS:	OreQuest Consultants Samples			
	Au ppb			
33401 33402 33403 33404 33405	<5 5 <5 <5 <5			
33406 33407	<5 <5			

SIGNED _

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 10/90

Bernie Ounn

TSL LABORATO

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

🕑 (306) 931-1033 FAX: (306) 242-4717

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN

ES

S7K 6A4

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

[T S L LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FOR #- (306) 242 - 4717							S7K 6	A4		
1				Г	MA #1	1000) 24	L 4/1/				
L			L.C.A.P.	PLASMA	SCAN						
						Aqua-Regi	a Digestion				
	PRIME EXPLORATI 10th Floor Box 808 West Hastin Vancouver B.C. ATIN: 1. ERSTER	ON LTD. 10 95 St. V&C 2X/ PB/	5 31601+ TAMOR	- NRFQ I	IFST P.O.	H-2147		T.S.L. T.S.L. T.S.L.	REPORT File Invoice	No. : 5 - 9428 - 1 No. : No. : 15009	,
		r 14			1601 [eUz	11 2172			MCL NE30		
	el en ent		33401	33402	33403	33404	33405	33406	33407		
<u></u>	Aluminum	[A]]	2300	3300	7300	9000	25000	5000	10000		
Ĺ	Iron	[Fe]	12000	14000	47000	25000	57000	29000	19000		
.	Calcium	[Ca]	740	2100	38000	2200	2700	380	15000		
~	Magnesium	[Mg]	250	410	3400	3400	7000	770	2800		
	Sodium	[Na]	350	160	230	60	210	260	100		
	Potassiue	(K)	1300	1300	380	1100	890	1600	1300		
_	Titanium	[Ti]	13	7	10	7	11	5	6		
	Manganese	(Ma)	99	160	460	74	100	41	650		
<u> </u>	Phosphorus	(P]	68	550	620	640	130	650	520		
	Barium	[Ba]	190	950	110	210	250	340	180		
<u>_</u>	Chromium	[[7]	100	97	25	60	53	110	20		
į	Zirconium	[[7]	< 1	1	7	2	6	2	< 1		
*	Copper	[Cu]	8	12	9	23	23	10	7		
~	Nickel	ENil	3	10	2	11	19	6	3		
-	Lead	[fb]	9	11	6	12	11	9	12		
1	Zinc	[] n]	19	19	210	130	100	32	56		
_	Vanadiue	{V]	2	14	36	45	58	26	13		
Γ	Strontium	(Sr]	15	18	290	21	33	27	72		
L	Cobalt	[Co]	1	8	4	< i	10	3	4		
	Molybdenum	[Mo]	< 2	< 2	< 2	10	< 2	< 2	< 2		
	Silver	[Ag]	< 1	< 1	< i	< 1	< 1	< i	< 1		
	Cadaium	{Cd]	< 1	< 1	< 1	i	< 1	< 1	< 1		
	Beryllium	(Be)	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
~	Boroa	{B]	20	20	< 10	10	< 10	10	10		
	Antimony	(Sb)	< 5	< 5	< 5	5	< 5	< 5	< 5		
b arra	Yttrium	(¥]	2	9	17	5	5	4	8		
_	Scandium	[Sc]	< 1	3	13	3	13	4	2		
	Tungsten	EW 3	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
L	Nicbiue	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
	Inorium	Lihi	< 10	< 10	40	20	30	< 10	< 10		
Γ	Arsenic	LASI	20	15	10	30	< 3 / 5	25	< 5		
L	515441CD	1013	J / 1A	< J / 4A	J / 4A	< 3 / 1A	< 3 / in	< 3 / 40	10		
	1111 ;+ ; -	19411	× iV	∖iV ∕⊂	 1V 3A 	< 10 (E	< 10 τε	\ iV / c	< 10 +e		
5	LIGHIUM Liniaian	LLII JUAT	× 5 Z 5A	ν. J ζ. 1Λ	29	1.J 2 10	33 2 10	/ 10	13 / 10		
	(れ)に載土は期	1103	1 10	(1V	10	7 IO	10	N 49	\ 10		

DATE : AUG-31-1990

ł

SIGNED : Benie Un

_			
	(\checkmark	
	مر		
P			

ï

.....

-,

TSL LABORATORIES DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN

S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings Vancouver, B.C. V6C 2X6	st.	REPORT No. S9430		
SAMPLE(S) OF RO	ck	INVOICE #: 14521 P.O.: R-2144/TYMAR			
	W. Raven Project: VR				
REMARKS:	OreQuest Consultants Samples				
	Au				
	ppb				
33501	5				
33502	<5				
33503	<5				
33504	<5				
33505	<5				
33506	<5				
33507	<5				
33508	<5				
33509	<5				
33510	<5				
33511	<5				
33512	35				
33513	<5				
33009	250				
33010	5				
33011	5				

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 10/90

Bernie Que SIGNED _

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 1 of 1

ΞSL LABORATORIES 2-302-48TH STREET. SASKATOON, SASKATCHEWAN 97K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASMA SCAN Agua-Repia Dicestion PRIME EXPLORATION LTD. REPORT No. : 5 - 9430 - 1 -1.5.L. 10th Floor Box 10 T.S.L. File No. : 808 West Hastings St. T.S.L. Invoice No. : 14B15 Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: VR TYMAR OREQUEST CONSULTANTS LTD. 8-2144ALL RESULTS PPM 33501 33502 33503 33504 33505 33506 33507 33508 33509 33540 ELEMENT [A]] 15000 16000 8300 2600 19000 Aluminum (1000) 4500 16000 20000 19000 Ĩron [Fe] 64000 55000 51000 14600 47008 26000 15000 45000 40000 39000 [Ca] Calcium 14000 35000 11009 740 5800 43000 1700 32000 163360 11000 Magnesium [Mg] 3300 3100 1900 170 4300 2500 700 2100 7700 5900 Sodium. [Na] 360360 230 70 220 130 310 М 170 500 Potassium (K] 68¢ 360 570 1200 850 1300 1400 110 380490 Titanium [71] 28 61 26 3 39 15 27 849 1300 5 Manganese [Mn] 930 1300 370 740200 1300 440 730 660 480 Phosphorus (P 3 5404R0 2.4 790 996 360 RPO 140 970 1000 Barium {Ba] 72 77 48 150 57 120 20067 70 61 Chroaiua [03] $2\hat{0}$ 13 21 57 21 20 53 23 58 43 Zirconium [Zr] 7 ÿ 4 3 7 5 1 6 ß < 6 7 5 Cooser {Cu] ā, 4 < 1 4 4 3 96 64 Nickel ENi3 3 2 t 3 2 Ċ 2 12 1 < ĩ 14 (Pb) 5 7 5 Lead 7 7 9 4 5 7 6 Zinc (Zn3 38 43 5Ē 38 26 41 120 130 47 56 98 Vanadium EV 3 10052 3 260 110 6 180 120 150 89 79 Strontium [Sr] 110 55 6 140 12 140 40 98 Cobalt {Co]} 30 28 10 1 20 12 7 15 1 16 2 < 2 < 22 < 2 Molybdenum [Ma] Ç, < < 2 2 < 2 ζ. 2 < 2 Silver {**A**o] $\langle \cdot \rangle$ 1 $\langle \cdot \rangle$ 1 < < $\langle \cdot \rangle$ Ĩ 1 1 ì < 1 < 1 $\langle \cdot \rangle$ 1 < 1 Cadmium (b33 $\langle \cdot \rangle$ i $\langle \rangle$ 1 < 1 2 < 1 < 1 < 1 < i < 1 < 1 Bervllium (Be) < 1 < 1 $\langle \cdot \rangle$ 1 1 < 1 < 1 ₹ ł < 1 < 1 < 1 Boron EB 3 < i0 < 10 < 10 20 < 10 < 10 10 < 10 < 10 < 10 < 5 4 5 5 Antimony [Sb] 105 5 5 < 5 $\langle \cdot \rangle$ < 5 5 Yttrium EY 1 18 18 7 4 ş 19 3 21 7 10 7 2 Scandium $\{5c\}$ 12 13 18 11 1 14 6 3 Tunasten [¥] \langle 10 10 e. 10 Ċ 10 Ł 10 < iû < 10 10 < < 10 < 10 Ń Nicolum 10 [帖] ζ. $\langle \cdot \rangle$ 10ζ. 10 $\langle \cdot \rangle$ 10 $\langle \cdot \rangle$ 10 < 10 < 10 ć 10 10 16 < < Thorius (Th) 30 40 20 < 10 30 30 < 10 30 40 40 **A**rsenic (As) 35 35 10 150 < 5 15 10 < 5 < 5 < 5 5 < 5 Bismuth [Bi] 5 < _ 5 5 10 5 5 < 10 10 Tin (Snl) < 10 10< 10 10 < 10÷ <. 10 < 10 < 10< 10 < 10 €. 20< 5 Lithium [Li] 35 4010 25 1025 15 35 Holwium [Ho] 20 -10 < 10 < 10 < 10 10 < 10 < . < 10 < 10 < 10 1

DATE : AUG-22-1990

SIBNED :

Bernie Dun

r	τ = ;	I ADAD	ATOBICE								
	: 3 2		нтоктее 7~302-и	48TH STREE	FT. SASKAT	DEN. SASI	(ATCHEWAN	57% <i>H</i> 4	14		
_			2 014	TE	EPHONE #:	(306) 93	51 - 1033				
-				FA	X #:	(306) 241	2 - 4717				
ł											
			I.C.A.P.	plasma so	AK.						
~						Aqua-Regia	a Digestion	n			
Í											
PR PR	ME EXPLORATE	ON LTD.						T.5.L.	REPORT	No.: 5 -	9430 - 2
100	a Floor Box	10						T.5.L.	File	No.:	_
608	West Hastin	os St.						Τ.S.L.	Invoice	Na.: 1481	5
Var	ICOUVER B.C.	V6C 2X6									
ATI	N: J. FOSTE	R	PRUJECT	VE EYMAR	UKELLESI	CUNSULIAN	45 ETB.	K-2144	ALL RESU	LIS PPN	
<u></u>			775 ((77545	77517	77000	77010	77414			
L			33311	33312	771:7	33007	22010	11000			
Γ	Aluminum	[A]]	16000	2B000	19000	4000	3000	7200			
	Iron	{F#]	34000	44000	37000	17000	47000	35000			
	Calcium	[Ca]	18000	29000	9300	40000	B900 0	69000			
-	Magnesium	[Mg]	6900	B000	6500	2900	8500	7400			
	Sodium	ENa 3	2 9 0	150	640	130	70	120			
~	Potassium	EK 3	4 00	540	1100	230	130	740			
-	Titanium	[Ti]	1300	140	660	290	17	49			
i -	Hanganese	[Mn]	660	84 0	550	320	1100	1100			
المعا	Phosphorus	[f]]	7 B 0	906	910	220	910	910			
	Barium	[Ba]	69	56	200	20 = 1	110	74			
ſ	Chromium	[Cr]	12	31	32	80	8	16			
L	Zirconium	{Zr]	13	6	8	3	10	6			
	Copper	ltu -	/1	B4	66 ()	31 07	57	6B 			
5	NICKei	EN1 J	Í s	13	41 F	27	ă 7	7			
} b aan	Leau 7ing	170] 57-1	4 51	0 13	נ דק	20 A76	5 20	2 40			
	2116L Vanadium	50 1	54 570	02 180	140	400 50	94 190	120			
	Steastius	44 J [Sp]	130 78	40	100	50 50	200	740			
	Cohalt	Con 1	17	17	14	.5	15	10			
	Molvhdenus	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2			
<u> </u>	Silver	[Ao]	< 1	$\langle 1$	< 1	< 1	$\langle 1$	< 1			
	Cadaium	[[6]]	< 1	< 1	< 1	3	< 1	< i			
h	Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1			
~	Boron	[8]	< i0	< 10	< 10	10	< 10	< 10			
	Antimony	[5b]	< 5	10	< 5	< 5	20	10			
	Yttrium	[Y]	11	ş	7	2	10	10			
_	Scandium	{Sc}	10	12	13	3	15	10			
	Tungsten	{¥]	< 10	< 10	< 10	< 10	< 10	< 10			
5	Niobium	[Nb]	< 10	< 10	< 10	< 10	10	< 10			
	Thorium	(75)	30	. 40	30	< 10	50	40			
Г	Arsenic	{As]	< 5	< 5	< 5	110	15	< 5			
L	Bismuth	{Bi]	15	15	10	10	20	15			
	Tin	(Sn]	< 10	< 10	< 10	(10	< 30 / =	< 10			
	110110A V-1-7-	(11) (11-)	23	44) 7 4 A	<u>20</u> 7 - 64	10 7 10	< 5	1J 2 10			
1	HOIAIUO	1HO.	< 30	< 10	< <u>1</u> 0	< 10	< 10	< 10			

Date : AUG-22-1990

[

SIGNED : Bernie Oun

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9433 V6C 2X6

R-2147/TYMAR

P.O.:

SAMPLE(S) OF ROCK

W. Raven Project: VR

REMARKS: OreQuest Consultants Samples

Au ppb 33301 <5 33302 <5 33303 <5 33304 <5 33305 <5

33306 <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 10/90

Bernie Du

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

٢	134	<u></u> 46	CRATERIES						
			2-302·	-481K STA	EET. SASKA	JOGN. GAS	KATCHEWAN	57K 64	14
				Ţ	ELEPHONE #	; (306) 7	31 - 1033		
Γ				F	AI :	(306) 24	2 - 4717		
			1.C.A.P.	. PLASMA	SCAN				
Γ						Aqua-Regi	a Digestion		
L									
_	PRIME EXPLORATE	BA CTU.						T.5.L.	REPORT No. : S - 9433 - 1 🖌
~	10th Flaor Box	10						T.S.L.	File No.:
ł	BOB West Hastin	195 61. 186 581						Τ.5.ζ.	invoice No. : 14851
-	ACTN, 7 CONTER	VGL 187 1 000	utot, jo	2000	CET DO	5 5167/T	WWAR		
~	MING VERVOLOR	. rn⊵	75011 VN	- 170	UCO: 7.0	• 57219771	11787		ALL RESULTS AND
ļ			77701	777/0	17707	10157	777/6	77764	
<u> </u>	EI EMENT		00001	ు⊿చి∨ర	0000	0.0204	400000	ويرزن	
_									
	A) uminum	(A11	45 <i>0</i> 0	<u>3500</u>	8800	14000	140%	<u>8700</u>	
; •	Iran	(Fal	36000	74000	31008	51000	35000	26660	
	Calcium	(Ca)	700	.380	580	6300	5800	5500	
5	Magnesium	(Ma I	2300	48 0	2300	2900	2900	4.300	
-	Sodium	(Na)	120	130	180	210	370	310	
	Patiesium	(K 3	780	47 0	970	750	410	190	
-	Fitanium	(Ti)	12	6	* *	21	72	1200	
	Manganese	(Mn I	79	630	i90	620	260	320	
.	Phaspharus	(P.)	420	130	466	720	1600	830	
_	Bariu n	(Ba)	200	99	56	70	45	220	
i	Chromium	(Cr3	37	73	5B	40	25	92	
<u> </u>	Zirconium	[Zr]	4	6	4	8	9	15	
	Cooper	(Cul	29	16	22	4	< i	40	
	Nickel	ENiJ	23	6	6	2	2	16	
L	Lead	(Pb)	6	3	6	2	1	1	
	Zinc	EZn3	160	61	51	48	120	46	
	Vanadium	CV 0	100	25	58	120	310	170	
	Strontium	[5r]	11	8	15	49	26	22	
	LOCALT	1003	Ž	÷.	4	10	3	14	
	ndiyboenum Tutuua	Liño J	20	4	Ġ.	< 2	< 2	< 2	
1	51199P Zadajus	CHQ: TOUT	<u> </u>						
	usemien Ropulium	1003		<pre>< 1 / 4</pre>					
_	Bergillum Berga	re :	7 10	1 / 2 10	× 1 Z 30	× 1 Z 10	× 1 Z 10	< 1 Z 46	
	Doron Actinacu	CD I ZERI	N 16 70	× 10 16	× 10 Z E	N 19 7 5	\ 10 / द	\ 10 / g	
b	ren saaan y Y≢rra isaa	TV 1	20	10 E	ر × ح	14	17	्र् द	
	Scandung	(S=1	÷			1T Q	01 17	15	
Γ	Tunneten		10	- - 18	φ K iú	< 10 1	.10 < 10	< 10	
-	Niöbrum	(No)	< 16	< 13	< 10	< 10	< 10	< 10	
	តែចករមក	[Tn]	34	10	10	20	40	< 10	
Γ	Arsenic	[HE]	40	20	10	< 5	< 5	5	
L	Bismuth	IBII	< 5	(5	< 5	< 5	< 5	< 5	
	Fin	(En]	< 10	< 10	< 10	< 10	< 10	< 10	
	Lithlam	(1)	10	<u>1</u> 0	15	30	30	15	
ł	molaiom	(Ha)	(10	: 10	< 10	$\langle i0 \rangle$	(<u>1</u> 0	< 10	
-									

DATE : 406-23-1990

ι.

[...

••

STEMED : Bernie Dunn

	INVOI	CE	то:	Prime	- '	Vanc	ouv	er						
	Aug 13	3/9	0								Λ	٢	(7
								SIGNE	ED _		_De	inc	<u> </u>	h
For e Samp	enquiries on bles, P ulps a	this Ind R	report, ejects d	please conta iscarded two	act C o mo	ustom onths fi	er Serv om th	ice Depa e date of	rtmen this r	t. eport.				I

COPIES TO: INVOICE TO:	C. Idziszek, J. Foster Prime - Vancouver	
Aug 13/90	SIGNED	Bernie Vi

33041 <5

	CERTIFICATE OF ANALYSIS		
SAMPLE(S) FROM	Prime Explorations Ltd. 10th Floor,Box 10-808 West Hastings Vancouver, B.C. V6C 2X6	St.	REPORT No. S9473
SAMPLE(S) OF RO	ck	INVOICE P.O.: 1	#: 14554 R-2157
	W. Raven Project: VR		
REMARKS:	OreQuest Consultants - P.O. TYMUR		
	Au ppb		
33012 33013 33014 33015 33016	<5 <5 5 <5 <5		
33017 33032 33033 33034 33035	<5 <5 <5 <5 <5		
33036 33037 33038 33039 33040	<5 <5 <5 <5 <5		

. ...

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 🙆 (306) 931-1033 💿 FAX: (306) 242-4717

TSL LABORAT

1 of 1 Page

T S L LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Regia Digestion T.S.L. REPORT No. : 5 - 9473 - 1 -PRIME EXPLORATION LTD. T.S.L. File No. : 10th Floor Box 10 T.S.L. Invoice No. : 14894 808 West Hastinos St. Vancouver B.C. V6C 2X6 ALL RESULTS PPM ATTN: J. FOSTER PROJECT: VR TYMAR OREQUEST CONSULTANTS LTD. R-2157

			33012	33013	33014	33015	33016	33017	33032	33033	33034	33035
	ELEMENT											
-	Aluminum	[A]]	1700	14000	13000	8700	14000	2100	1800	24000	24000	3500
	Iron	[Fe]	13000	34000	34000	18000	27000	30000	7700	45000	50000	7400
	Calcium	[Ca]	1900	42000	34000	110000	20000	17000	940	2900	4000	360
	Magnesiuæ	(Mg)	210	6400	6100	4000	5100	2700	240	4700	4200	430
	Sodium	[Na]	200	190	310	120	280	440	200	260	320	260
	Potassium	EK 1	1100	1200	760	730	610	200	1200	1100	640	1700
_	Titaniua	[7i]	490	520	2100	300	120	1200	58	19	22	6
	Nanganese	[Xh]	63	720	630	1700	520	230	31	130	130	40
	Phosphorus	{₽]	330	1400	1400	460	1100	1400	96	1200	1200	130
	Barium	(Ba)	52	66	42	41	47	22	160	130	66	260
~	Chromium	(Cr)	59	22	21	12	20	29	56	46	32	72
	Zirconium	[Zr]	7	18	22	7	10	15	2	10	13	2
	Copper	{Cu3}	110	130	85	31	60	96	110	23	6	6
-	Nickel	ENí 3	1	7	6	4	7	7	< 1	7	5	2
	Lead	(Pb)	11	В	5	3	2	45	10	13	5	7
-	Zinc	[Zn]	42	55	54	24	47	63	8	130	110	12
_	Vanadium	EV 1	3	160	230	69	160	190	8	57	87	5
	Strontium	[Sr]	4	230	88	300	66	67	10	32	37	15
	Cobalt	[Co]	3	14	16	6	11	18	2	11	10	1
	Malyadenua	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	4
-	Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Cadmium	[[]]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
-	Beryllium	[Be]	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	$\langle 1 \rangle$	$\langle 1 \rangle$	< 1	$\langle 1 \rangle$	< 1
-	Borda	(B 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Antimony	[55]	< 5	< 5	< 5	5	. < 5	< 5	< 5	< 5	< 5	< 5
	Yttrium	[Y]]	13	10	9	17	11	6	2	23	15	3
	Scandium	[5c]	1	15	11	6	В	10	< 1	6	5	< 1
	Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Thorium	[Th]	< 10	50	40	30	30	20	< 10	20	30	< 10
-	Arsenic	[As]	10	< 5	5	< 5	10	10	20	< 5	< 5	30
	Bismuth	[Bi]	10	5	< 5	< 5	15	< 5	10	20	15	10
	Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
-	Lithium	[Li]	< 5	35	30	20	25	5	< 5	30		< 5
	Haiming	(Hal	< 16	< 10	- 7 A A A A A A A A A A A A A A A A A A	(†ů	< 10	< 10	< 10	< 10	< 10 -	

DATE : AUG-25-1990

SIGNED :

Bernie am

Г	TSŁ	LAE	ORATORIES							
L			2-302-4	BTH ST	REET, SASKAT	DDN, SAS	KATCHENAN	S7K 64	A4	
_					{ <u>t</u> lerhund #: Fay #:	(306) 7 (306) 74	31 - 1033 2 - 4717			
L			[.C.A.P.	Plasma	SCAN					
						Aqua-Regi	a Digestion			
	BRANC CURLOBATIO	-						те;	DCDADT No	C _ 0477 _ 7
	PRIME EXPLORATIO	JAN LEU. KA						T C I	File No. :	9 (#13 E
-	1041 Floor DUX 3	20 35 St						T.S.I.	Invoice No. :	14894
	Vancouver B.C. V	46C 216	'n							
-	ATTN: J. FOSTER	R	PRDJECT: VR T	Y ma r	orequest con	SULTANTS	LTD. R-21	57	ALL RESULTS PR	M
-										
1			33036	33037	33038	33039	33040	3304t		
.	ELEMENT									
^	<u> Áluaious</u>	EA17	2200	22000	12000	24000	3100	12000		
{	Тепа	[Fe]	9000	47000	48000	51000	41000	37000		
	Calcium	(Ca)	860	9000	3200	11000	620	20000		
<u>_</u>	Maonesium	[Ma]	400	3700	2100	3900	350	1900		
	Sodium	[Na]	650	290	360	330	600	490		
•	Potassium	[K_]	300	660	1300	730	400	620		
-	Titanium	[Ti]	11	39	2B	37	25	40		
	Manganese	[Mn]	49	520	300	510	76	440		
L	Phosphorus	{P]	130	740	1100	1100	520	1200		
_	Barium	(Ba)	83	130	37	140	190	50		
	Chromium	[Cr]	87	3/	29	8	45	1/		
.	Zirconium	[26]	2	1/	12	21	7	14 7		
_	Looper	LUUJ CNU T	4	ું 1	44 1	0 1	-+	27		
Γ	NICKE1	5061 5061	4 10	L R	P P	4	11	4		
L	Leau 7ioc	(7n]	25		32	170	23	51		
	Vanatium	īV 1	7	1B0	100	260	110	190		
Γ	Strontium	(Sr)	14	96	33	87	19	B 0		
L	Cobalt	(Co)	3	13	16	11	3	36		
	Molybdenum	[ho]	< 2	< 2	ζ 2	< 2	< 2	< 2		
Γ	Silver	[A]]	< 1	< 1	< 1	1	< 1	< 1		
L	Cadmium	[[1]]	< 1	< 1	< 1	< 1	< 1	< 1		
	Beryllium	(Be]	< 1	< 1	< 1					
5	Boron	[B]	< 10	$\langle 10 \rangle$	< 10 / E	< 10	< 10 / s	< 10 / s		
L	Antisony	1503	۲ J ۲		६ ३ अर	ر × 17	्र र र	15		
	TTTF1UM Fernalium	111		1.) 17	10	17	4	13		
r	Turantan	เอเง เหล่า	1 Z 10	10	< 10	< 10	< 10	< 10		
	Ninkium	CHE L FNE 1	< 16 < 16	< 10	< 10	< 10	< 10	< 10		
-	Thorium	[Th]	< 10	30	20	40	10	20		
r	Arsenic	[As]	10	20	45	30	30	35		
	Bisauth	[Bi]	5	15	5	15	< 5	10		
-	Tin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10		
~	Lithium	[Li]	5	35	20	35	< 5	30		
	Holaium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10		
5										

DATE : AUG-25-1990

ч.

[

SIGNED : Beine Oum

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14961 P.O.: R-2261

SAMPLE(S) OF ROCK

G. Malensek Project: VR Tymar

REMARKS: OreQuest Consultants Ltd.

	Au ppb	Au ozt	
33231	110		
33232	20		
33234	120		
33235	15		
33236	40		
33237	65		
33238	35		
33239	>1000	.031	
33240	25		
22241	20		
33241	20		
33308	100		
33309	5		
33310	<5		
00017			
33311	100		
33312	100		
33408	<5		
33409	15		
COPIES	TO: C. I	dziszek,	J. Foster
INVOICE	TO: Prime	e - Vanco	ouver

Aug 28/90

1

Bernie U SIGNED Page 1 of 2

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

|--|

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 37K 6A4 37K 6A4

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd.								
	10th Floor,Box 10-808 West Hastings St.	REPORT No.							
	Vancouver, B.C.	S9668							
	V6C 2X6								

SAMPLE(S) OF ROCK

G. Malensek Project: VR Tymar

REMARKS: OreQuest Consultants Ltd.

Au ppb

33410	110
33411	10
33412	5
33413	25

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 28/90

SIGNED _

Remie Di

Page 2 of 2

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. TSŁ LABORATORIES

2-302-48TH STREET, SASKATDON, SASKATCHENAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.		T.5.L.	REPORT No. : 5 - 9668 - 1
- 10th Floor Box 10		T.5.L.	File No. : M - 7770
808 West Hastings St.		T.S.L.	Invoice No. : 15150
Vancouver B.C. V6C 2X6			
ATTN: J. FOSTER PROJECT: VR TYMAR	OREQUEST CONSULTANTS LTD.	P.O.: R-2261	ALL RESULTS PPH

•			33231	33232	చెపడచెప	ააკა4	ఎఎచచి)	35770	- 55Z37	చపడనద	332.59	55240
_	ELEMENT											
	Aluminum	EA11	10000	6300	14000	13000	13000	3B00	2700	7900	3400	13000
-	Iron	{Fe}	27000	35000	39000	100000	37000	16000	16000	32000	23000	65000
-	Calcium	{Ca}	47000	7400	29000	12000	7500	22000	28000	33000	34000	5100
	Magnesium	[Mg]	5100	2400	5900	4600	5500	1600	1200	3500	1700	5600
•	Sociua	[Na]	120	100	140	80	150	150	80	110	80	150
	Potassium	[K]	740	1000	960	630	960	1000	820	990	700	690
-	Titanium	[][1]	12	12	33	9	23	7	4	7	7	74
-	Manganese	(Mn)	1200	230	540	240	260	340	370	640	420	210
	Phosphorus	(P]	1100	890	B90	850	790	550	420	500	270	1100
•	Barium	[Ba]	180	55	67	16	38	46	56	32	36	16
_	Chromium	[Cr]	26	37	47	22	41	54	51	44	60	42
-	Zirconium	[Zr]	4	2	9	6	4	1	i	1	1	7
	Соррег	[Cu]	170	320	300	1900	260	43	31	34	29	66
	Nickel	[Ni]	7	20	16	32	23	13	13	14	11	12
•	Lead	[Pb]	330	48	13	39	16	11	10	14	17	32
	Zinc	[] n]	79	23	290	70	74	37	39	61	88	30
-	Vanadium	{V }	85	38	110	48	74	12	40	15	6	130
	Strontium	[Sr]	560	57	180	57	54	95	220	160	200	40
	Cobalt	{Co}}	8	19	16	42	11	5	4	6	4	7
•	Molybdenum	(No]	< 2	< 2	< 2	< 2	4	< 2	6	< 2	2	12
	Silver	[Ag]	22	2	1	i	< 1	< 1	< 1	< 1	< 1	< 1
•	Cadaius	[Cd]	3	< 1	3	1	< 1	< 1	1	< 1	2	< 1
	Beryllium	[Be]	< 1	$\langle 1 \rangle$	< 1	< i	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1
	Boron	(B]	20	40	40	< 10	30	30	30	20	20	< 10
•	Antimony	(Sb]	65	5	5	< 5	5	< 5	< 5	< 5	{ 5	< 5
	Yttrice	EY 1	12	8	6	В	6	7	4	7	3	5
r	Scandium	[5c]	6	3	14	5	3	1	< 1	2	< 1	5
	Tungsten	EW 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1Q	< 10
	Nichium	[裕]	< 10	(10	< 10	< 10	< 10	< i0	< 10	< 10	< 10	< 10
	Thorium	(Th)	40	50	30	50	20	< 10	< 10	20	< 10	30
	Arsenic	[As]	160	35	25	20	25	50	65	40	150	65
•	Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	Fin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Lithium	[Li]	70	95	110	120	110	80	75	75	70	85
	Holeius	[Ho]	< 10	< 10	< 10	20	< 10	< 10	< 10	< 10	< 10	10

DATE : SEP-01-1990

SIGNED : Bernie Arm

.

L

٢ Ĺ

TSE LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASKA SCAN Aqua-Regia Digestion PRIME EXPLORATION LTD. REPORT No. : 5 - 9668 - 2 T.S.L. 10th Floor Box 10 T.S.L. File No. : M - 7770 808 West Hastings St. T.S.L. Invoice No. : 15150 Vancouver B.C. V&C 2X6 OREQUEST CONSULTANTS LTD. P.O.: R-2261 ATTN: J. FOSTER PROJECT: VR TYMAR ALL RESULTS PPH 3330B ELEMENT [A]] Aluminum Iroa [Fe] [Cal Calcium Magnesium [Mg] Sodium [Na] Potassium [K] [Ti] Titanium В < 1 < 1 Manganese [Mn] Phosphorus (P] ζ 2 Barium 8 (Ba] Chromium [Cr] Zirconium [Zr] В Copper (Cu) BB 3B Nickel ENi 3 В Lead EPb 3 { 1 Zinc [[n] [V] Vanadium {Sr] Strontiue Cobalt {Co]} ą < 2 < 2 Molybdenum (Mol B < < ₹ < Silver $\langle 1 \rangle$ В [Ao] < < 1 < 1 < 1 < 1 < 1 ECd3 Cadmium < 1 < $\langle \cdot \rangle$ i < ł Beryllium [Be] < 1 < 1 < < < 1 < < 1 < 1 < Baron {B} < 10 < 10 < 10 < 10 < < 10 < 10 < < Antimony [Sb] ζ. < -5 Yttriua {Y] Ģ Scandium [Sc] Tungsten **[¥**] < < < 10 < -< 10 < < < < 10 Niobius {ND] < < 10 < < 10 < 10 < < < < < Thorius [Th] < < 10 Arsenic [As] **B**Û < 5 < 5 Bismuth [Bi] -5 < 5 < 5 < < 5 $\langle 5$ < 5 Tin {Sn} < 10 < 10 < 10 < _ < 10 < < < 10 < < 10 Lithium ELil < 10 < 10 < 10 Holmium [Ho] < 10 < 10 < < 10

DATE : SEP-01-1990

SIGNED :

Bernie an

T S L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

Γ	PRIME EXPLORATION LTD.		T.S.L.	REPORT No. : S - 9668	- 3
L	10th Floor Box 10		T.S.L.	File No. : M - 7770	
	808 West Hastings St.		T.S.L.	Invoice No. : 15150	
	Vancouver B.C. V&C 2X6				
L	ATTN: J. FOSTER PROJECT: VR TYMAR	OREQUEST CONSULTANTS LTD.	P.O.: 8-2261	ALL RESULTS PPM	

~			33410	33411	33412	33413
	ELEMENT					
b						
-	Aluminum	[A]]	12000	18000	21000	11000
	Iron	[Fe]	94000	34000	40000	65000
h	Calcium	[Ca]	3000	18000	9900	2600
	Magnesium	[Mg]	3400	6200	6600	4500
1	Socium	[Na]	70	160	200	120
	Potassium	{K]	830	780	740	670
	Titanium	{Ti}	8	19	34	17
-	Manganese	(Mn)	63	300	310	120
	Phosphorus	EP]	710	920	710	850
	Bariua	[Ba]	6	95	63	19
_	Chromium	[Cr]	63	67	83	64
	Zirconium	[Zr]	7	6	4	2
	Copper	[Cu]	1200	460	230	210
	Nickel	ENEL	36	23	35	30
1	Lead	[Pb]	12	9	В	12
	Zinc	[Zn]	24	29	35	14
	Vanadium	{V }	42	99	110	8 1
	Strontium	[Sr]	12	130	73	16
	Cobalt	[Co]	61	15	12	14
	Molybdenum	(Mo]	< 2	< 2	< 2	< 2
_	Silver	[Ag]	$\langle 1$	< 1	< 1	< i
	Cadmium	[Cd]	< 1	< 1	< 1	< 1
L	Beryllium	[Be]	< 1	< 1	< 1	< 1
	Boron	(B)	< 10	< 10	< 10	< 10
	Antimony	[55]	< 5	5	10	< 5
	Yttrium	EY 3	3	12	7	4
	Scandium	[Sc]	4	7	6	5
<u>~</u>	Tungsten	EW 1	< 10	< 10	< 10	< 10
•	Nichius	[Nb]	< 10	< 10	< 10	< 10
	Thorium	[Th]	40	30	20	20
_	Arsenic	[As]	45	35	10	10
–	Bismuth	[Bi]	< 5	< 5	< 5	< 5
	Tin	(5n]	< 10	< 10	< 10	< 10
	Lithium	111	65	. 65	65	50
-	Holaiua	[Ho]	$\langle 10$		< 10	< 10

DATE : SEP-01-1990

SIGNED : Benie Dunn

4	$\left. \right\rangle$	

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

57K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd.				
	Prime Capital Place				
	10th Floor-Box 10				
	808 West Hastings Street.				
	Vancouver, B.C. V6C 2X6				

INVOICE #: 15303 P.O.: R2484

SAMPLE(S) OF ROCK

L. Lewis
alian principal and the sec
Project VR

Orequest Consultants

	Au
	ppb
33314	<5
33315	<5
33316	<5
33317	5
33318	<5
33319	<5
33320	5
33247	5
33248	<5
33249	<5
33414	<5
33415	25

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime-Vancouver

Sep 10/90

Ē

SIGNED _____ Bernie Ourn

Page 1 of 1

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. T S L LABORATORIES

2-302-48TH	STREET, SASKATH	DDN, SASKATCHENAN	\$7K	5A4
	TELEPHONE #:	(306) 931 - 1033		
	FAX #:	(306) 242 - 4717		

L.C.A.F. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting	N LTD. 0 15 St.						T.S.L. T.S.L. T.S.L.	REPORT File Invoice	No.: 5 ~ No.: M - No.: 154	9890 - 1 7975 89	
ATTN: J. FOSTER	466 ∠¥6 (PROJECT: 2	VR	OREQUEST	CONSULTANTS	R-2484		ALL RES	ults ppm		
ELEMENT		33314	33315	33316	33317	33318	33319	11120	33247	JJ248	33249
Aluminum	[4]]	3100	11000	1900	3400	420	2500	2300	5700	25000	2300
Iron	[Fe]	29000	31000	19000	28000	5900	20000	28000	25000	51000	16000
Calcium	[Ca]	54000	36000	39000	2000	88000	95000	100000	11000	21000	21000
Magnesius	(Mg)	6700	4500	3900	450	520	6500	7200	1900	7700	1B00
Sodium	(Na)	40	80	180	50	50	70	50	110	160	270
Potassium	EK 1	1400	1500	520	1900	230	1200	920	1100	770	620
Titanium	[Ti]	3	6	3	4	< 1	< 1	< 1	4	26	4
Manganese	[Ma]	1000	950	620	74	2000	1200	2100	250	920	450
Phosphorus	{P]	730	1200	730	1100	< 2	770	260	520	850	46
Barium	[Ba]	68	120	52	93	26	190	85	78	78	160
Chromium	{Cr]	20	18	40	15	3	11	10	43	35	57
Zirconium	{Zr]	6	8	6	4	< i	6	7	6	14	2
Copper	[Cu]	44	85	34	38	2	65	33	23	130	7
Nickel	ENi I	7	6	16	3	< 1	4	4	8	16	2
Lead	[Pb]	7	6	5	27	3	3	2	5	6	20
Zinc	[Zn]	50	120	59	170	8	31	39	27	110	120
Vanadium	(V 3	24	66	38	19	3	45	45	15	130	5
Stroatium	[Sr]	210	100	140	11	290	350	470	34	39	260
Cobalt	[[o]	7	10	8	3	< 1	5	4	10	24	2
Molvbdenua	[Ho]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ao]	< 1	< 1	< i	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1
Cadmium	[[13]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	{Be]	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1
Boron	(B)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimonv	(Sb]	20	< 5	10	< 5	< 5	10	15	< 5	10	< 5
Yttrium	EY]	9	8	10	3	4	10	13	14	12	13
Scandium	(Sc]	3	8	3	2	< 1	4	5	4	11	< 1
Tunosten	{¥]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nicbius	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	{Th]	50	30	20	< 10	< 10	30	40	10	40	< 10
Arsenic	(As)	65	5	40	30	10	15	65	5	< 5	< 5
Bismuth	(Bi)	< 5	< 5	< 5	< 5	10	< 5	< 5	< 5	10	< 5
Tin	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	ILi3	5	10	5	5	5	5	5	5	10	5
Holwism	(Ho)	< 10	< 10	< 10	K 10	30	10	20	< 10	< i0	< 10

DATE : SEP-14-1990

•

SIGNED : Dem Pilonik

C • •

[-7

• • •

T S L LABORATORIES

2-302-4BIH	STREET, SASKA	TODM, SASKATCHENAN	57K	644
	TELEPHONE #	: (306) 931 - 1033		
	FAX #:	(306) 242 - 4717		

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Kastings St. Vancouver B.C. V&C 2X&		VR			T.S.L. T.S.L. T.S.L.	REPORT File Invoice	No. : No. : No. :	5 - 7890 - 2 5E14MZ 15489	
ATTN: J, FOSTER	PROJECT:		orequest consultants	A-2484		ALL RES	ults pi	PM	
	33414	33415							
ELEMENT									
Aluainua [A]]	3200	1300							
Iron [fe]	25000	33000							
Calcium (Ca)	52000	100000							
Magnesiua (Mg)	1100	6500							
Sodium [Na]	100	70							
Potassium (K)	1500	590							
Titanium [Ti]	< 1	< 1							
Manganese [Mn]	920	960							
Phosphorus [P]	1100	76							
Barium [Ba]	130	220							
Chromium (Cr]	19	8							
Zirconium (Zr)	9	8							
Copper [Cu]	52	24							
Nickel [Ni]	4	6							
Lead [Pb]	2	4							
Zinc [Zn]	49	17							
Vanadium [V]	31	9							
Strontium [Sr]	290	780							
Cobalt [Co]	8	5							
Molybdenum [Mo]	< 2	< 2							
Silver [Ag]	< 1	< i							
Cadmium (Cd)	< 1	< 1							
Beryllium [Be]	< 1	< 1							
Boron [8]	< 10	< 10							
Antieony [Sa]	< 5	15							
Yttrium [Y]	10	20							
Scandium [Sc]	7	3							
Tungsten [#]	< 10	< 10							
Niobium [Nb]	< 10	< 10							
Thorium (Th]	< 10	60							
Arsenic [As]	< 5	130							
Bismuth (Bi)	< 5	< 5							
Tin (Sn)	< 10	< 10							
Lithium [Li]	5	5							
Holmium [Ho]	< 10	20							

DATE : SEP-14-1990

SIGNED : Demos Pilipink

TSL LABORATO ES

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

AMPLE(S) FROM	Prime Explorations Ltd.
	Prime Capital Place
	10th Floor-Box 10
	808 West Hastings Street.
	Vancouver, B.C. V6C 2X6

REPORT No.	
S1238	

15829 INVOICE #: P.O.: R-2677

SAMPLE(S) OF ROCK

S

Project VR\TYMAR

REMARKS: Orequest Consultants

> Au ppb

33514	5
33515	5
33516	5
33517	5

COPIES TO: INVOICE TO:

J. Foster, P. Lougheed Prime-Vancouver

SIGNED .

Oct 09/90

Bunie Qu

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

1 of 1 Page

T S L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: 306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

[PRIME EXPLORATION 10th Floor Box 808 West Hasting	IN LTD. 10 15 St.					T.S.L. REPORT No. : S - 1238 - 1 T.S.L. File No. : M - 6264 T.S.L. Invoice No. : 16001
	ATTN: J. FOSTER	406 210	PROJECT: V	r/ty na r	DREQUES	r consultants	ALL RESULTS PPH
	ELEMENT		33514	33515	33516	33517	
	Aluainua	[A]]	2850	1580	1640	23310	
5	Iron	(Fel	12580	4990	4310	53160	
ĺ	Calcium	[Ca]	420	260	1920	2860	
	Hagnesiue	{Kg}	350	100	120	4440	
~	Sodium	[Na]	150	310	390	320	
i i	Potassium	EK 3	1610	910	880	750	
	Titanium	[Ti]	4	4	9	22	·
	Kanganese	[Mn]	73	44	101	269	
	Phosphorus	(P)	354	56	330	1012	
L	Barium	[Bal	309	103	126	113	
	Chrogius	[Cr]	53	106	99	26	
	Zirconium	(Zel	5	3	2	19	
	Copper	[Cu]	5	3	3	12	
	Nickel	(Ni]	3	2	4	8	
_	Lead	(Pb)	9	B	9	4	
	Zinc	[]n]	10	42	92	121	
	Vanadium	{V }	4	< 1	< 1	74	
	Strontium	(Sr]	14	10	36	28	
	Cobalt	(Co)	2	< 1	4	12	
_	Holybdenum	(No)	2	< 2	< 2	8	
-	Silver	[Ag]	< 1	< 1	< 1	< i	
-	Cadmium	[Cd]	< 1	$\langle 1 \rangle$	< 1	< 1	
i t	Beryllium	[Be]	< 1	$\langle 1$	$\langle 1 \rangle$	< 1	
i an	Baran	[B]	< 10	< 10	(10	< 10	
_	Antimony	[56]	< 5	< 5	< 5	< 5	
	Yttrium	[Y]]	2	3	11	1/	
	Scandium	[Sc]	2	< 1	$\langle 1 \rangle$	7	
	Tungsten	EN 1	< 10	< 10	< 10	< 10	
Γ	Nichium	(Nb)	< 10	< 10	< 10	< 10	
L	Thorium	[Th]	< 10	< 10	< 10	50	
	Arsenic	[As]	10	15	10	< 5	
~	Bisauth	[Bi]	< 5	(5	< 5	10	
	Tin	[Sn]	· · · · · · · · · · · · · · · · · · ·	< 10	< 10	< 10	
	Lithium	(Li]	5	< 5	5	40	
	Holeium	(Ho)	< 10	< 10	< 10	< 10	

DATE : OCT-22-1990

·

SIGNED : Demie Vum

.....

(

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET: EAST SASKATOON, SASKATCHEWAN S7K 6A4 ☑ (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14493 P.O.: R-2085

SAMPLE(S) OF Soils

W. Raven Project: Tymar

REMARKS:

: OreQuest Consultants Ltd.

	Au
	$\mathbf{p}_{\mathbf{p}'}$
LO 4+00N LO 3+50N LO 3+00N LO 2+50N LO 2+00N	5 5 5 5
LO 1+50N LO 1+00N LO 0+50N LO 0+00 LO 0+50S	5 <5 5 5 15
LO 1+00S LO 1+50S LO 2+00S LO 2+50S L1E 4+00N	<5 5 5 <5 15
L1E 3+50N L1E 3+00N L1E 2+50N L1E 2+00N L1E 1+50N	5 5 5 <5 <5 <5
COPIES TO: INVOICE TO:	C. Idziszek, J. Foster Prime – Vancouver
Aug 08/90	

Bernie Dunn Page 1 of 3

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

Beine 2 of 3 Page

P.O.:

CERTIFICATE OF ANALYSIS

Foster

SIGNED

10th Floor, Box 10-808 West Hastings St.

INVOICE #: 14493 **R−2**085

SAMPLE(S) OF Soils

SAMPLE(S) PROM

W. Raven Project: Tymar

Vancouver, B.C.

V6C 225

Prime Explorations Ltd.

OreQuest Consultants Ltd. **REMARKS:**

>].∋b

L1E 1+00N	<15
L1E 0+50N	<5
L1E 0+00	<5
L1E 0+50S	<5
L1E 1+00S	<5
L1E 2+00S	<5
L1E 2+50S	<5
L1E 3+00S	<5
L2E 4+00N	<5
L2E 3+50N	<5
L2E 3+00N L2E 2+50N L2E 2+00N L2E 1+50N L2E 1+00N	<15 <15 <13 <13 <15 <15
L2E 0+50N	<3
L2E 0+00	<5
L2E 0+50S	<3
L2E 1+00S	<5
L2E 1+50S	<5
COPIES TO:	C. Idziszek, J. F.
INVOICE TO:	Prime – Vancouver

•			
é			
	ંદ		

2 - 302 - 43th STREET EAST SASKATOON, SASKATCHEWAN S K 6A4 🕑 (306) 931-1033 — CAX: (306) 242-4717

REPORT No.

\$9391

CT.

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14493 P.O.: R-2085

SAMPLE(S) OF Soils

W. Raven Project: Tymar

REMARKS: OreQuest Consultants Ltd.

Au ppb

L2E 2+00S <5 L2E 2+50S <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 08/90

Berniel

Page 3 of 3

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

TSL LABORATORIES 2-302-48TH STREET. BASKATOON. BASKATCHEWAN 37K - 644 TELEPHONE #: (306) 931 - 1033 FAX 🗄 : (306) 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Pegia Digestion PRIME EXPLORATION LTD. 1.S.L. REPORT No. : 5 - 3082 - 1 10th Floor Box 10 T.S.L. File No. : 808 West Hastings St. T.S.L. Invoice No. : 1475 Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: TYMAR OREQUEST CONSULTANTS LTD. R-2085 ALL RESULTS PPM L0 4+00N L0 3+50R L0 3+00N L0 2+50N LO 2+00N L0 1+SCC LO 1403N ELEMENT Aluminua [A]] 21000 20000 19000 17860 21000 16000 29000 Iron [Fe] 41000 **580**00 51000 46000 59000 **650**00 78000 Calcium [Ca] 800 1000 680 1600 440 940 240 Maonesium [Mo] 7000 **29**00 3300 3100 2300 2300 3100 Sodium [Na] 40 156 80 570 120 **9**0 50 Potassium [K] 35034) 350 490 360 340 300 Titanium [Ti] 43 1000 380 1399 650 60t $\mathcal{L}_{1}(\cdot)$ Manganese [Mn] 1100 840 940 390 520 200 67C Phosphorus [P] 460 1100120**0** 1100 1200 134. 720 Barium [Ba] 63 Ξ÷ $\delta \dot{z}$ ± 0 59 ϵ ċ1 Chromium [[7] 83 5; 63 4ġ 37 30 4 F Zirconium [Zr] 5 Ģ 5 21 11 13 Copper {Cu] 65 11 18 10 23 15 20 Nickel [Ni] 85 24 33 2014 - - -11 Lead [Pb] 22 18 ٠ç 16 23 2: 29 Zinc [Zn] 160 130 66 55 83 65 έá Vanadium [V]] 48 75 96 74 110 150 130 Strontium [Sr] 8 10 7 17 7 14 5 Cobalt [Co] 17 7 8 7 4 ŗ 4 Molybdenum [Mo] < 2 < 2 < 2 2 2 < $\langle 2$ < < 2 Silver [Aq] < < 1 1 1 < $\langle 1 \rangle$ < 1 < 1 < 1 Cadmium [b3] < 1 < 1 < 1 $\langle 1 \rangle$ < 1 $\mathbf{2}$ < 1 Beryllium [Be] < 1 < : 1 . < 1 < 1 < : Boron [B] < 10 く 19 < 10 < 10 < 10 < 10 < 10 Antimony [Sb] < 5 5 S < < < Ę 5 < 5 < < 5 Yttrium EY] 4 Ĵ, 2 3 5 3 3 Scandium [Sc] 2 2 2 4 [₩] Tunosten ć 10 < 1010 ζ. < 10 < 10 < i< te Niobium [Nb] 10 Ę. 1020 ζ. 30 < 10 1) Thorium [Th] 40 :0 10 20 30 20 30 Arsenic [As] 10 < 5 20 25 33 5 5 Bisauth {Bi] < < 5 < 5 < 5 < 5 < č < 5 Tin [Sn] \leq 10 $< 1_2$ < 10 < 10 < 10 < :0 < 10 Lithium [Li] 35 15 15 İÛ 10 10 15 Holeium [Ho] < 10 < 10 < 10 < 10 < 10 < 10 < 10

DATE : AUG-20-1990

516 12 :

Cima Dum

TSL CABORATORIES 2-302-48TH STREET, SASKATOON S7K EA4 SASKATCHERAN TELEPHONE #: (306) 931 - 1033 (3-5) 242 - 4717 FAX #: I.C.A.P. PLASMA SCAN Agua-Regia Digestion PRIME EXPLORATION LTD. T.S.L. REFERT No. : 5 - 9391 - 1 10th Floor Box 10 T.S.L. Elle No. : 808 West Hastings St. T.S.L. Invoice No. : 14753 Vancouver B.C. V6C 2%5 ATTN: J. FOSTER PROJECT: TYMAR OREGUEST LOWSULTANTS LTD. 8-2085 ALL RESULTS PPM LO 0+50N L0 0+00 LO 0+50S L0 1+00S LO 1-205 L0 2+005 LO 2+50S ELEMENT Aluminus EA13 25000 24000 14000 22000 19:00 21000 30000 Iron [Fe] 92000 63000 63000 86000 45000 67000 70000 Calcium [Ca] 300 260 5400 860 300 400 160 Maonesium [Mo] 1200 2900 1300 2100 1700 1300 3000 Sodium [Na] 140 100 60 80 90 40 40 Potassium [K] 280 300 330 360 230 370 440 Titanium [Ti] 1500 1300 710 520 8.0540 270 Mandanese [Mn] 200 310 190 310 870 180 370 Phosphorus [P] 640 230 390 900 880 610 840 Barium (Ba) 37 72 15072 67 49 72 Chrcaiua [Cr] 92 64 36 63 57 45 66 Zirconium [Zr] 60 26 13 25 6 10 20 Copper [Cu1 24 22 30 25 73 22 35 Nickel END 15 31 14 28 20 14 35 Lead [P5] 28 24 25 25 12 15 19 Zinc [20] 53 71 73 66 ్చ్ 62 110 Vanadium EV 3 110 87 89 74 100 110 98 Strontium [Sr] 5 9 100 13 7 6 3 Cobalt [Co] 2 4 3 Ģ 3 4 8 Molybdenum [Mo] 6 < 2 2 < < 2 4 < 2 < 2 Silver [Aq] < 1 < 1 < 1 < 1 < 1 < 1 < 1 Cadmium [Cd] < 1 < 1 < 1 $\langle i$ < 1 < 1 < 1 Beryllium [Be] < 1 < 1 < i < 1 $\langle \cdot \rangle$ 1 < 1 < 1 Boron **(B**) < 10 < 10 < 10 < 10 < t0 < 10 < 10 Antimony [Sb] < 5 < 5 < 5 6.4 10K < 5 < 5 Yttrium **[Y**] 3 4 3 3 2 2 3 Scandium [Sc] 3 3 2 2 3 3 5 Tunosten [#] < 10 < 10 Ś. 10 < 10 < 10 < 10 < 10 Nicolua [No] 50 30 30 30 < 0 10 10 Thorium [Th] 20 30 30 30 10 20 30 Arsenic [As] < 5 15 25 35 25 < 5 Biscuth [Bi] < 5 < 5 < 5 < 5 Ę ġ < 5 < 5 Tin [Sa] < 10 < 10 : 10 < i0 (\cdot) < < 10 < 10 Lithium [Li] 10 15 10 10 i5 5 15 Holmium [Ho] < 10 < 10 < 10 < 10 < 10 < 10 < 10

DATE : AUG-20-1990

ETCHED :

Bernie Juna

TIG LABOR TOPIES

.

C

2-302-46TH ETTERS BASKATOON, SACHATCHEWAN STR. 2011 ELEPHONE #: (306) 511 - 1033 FAX F: (306) 272 - 4717

I.C.A.P. PLASEA ECAN

Aqua-Regia Digestion

Γ		HQUarregit Digestion								
	PRIME EXPLORATION LT 10th Floor Bor 10 805 West Hasting 5 St Vaccouver B 5 100 2	D.			7.	S.L. «EPORT – S.L. File – S.L. Invoice –	. : S - 939: . : . : 14753			
_	ATTN: J. FOSICE	PROTECT: TYMAR	BREGUEST	CONSULTANTS LTD.	R-2085	AL REF) fem			
[ELEME	L1E 4+00N	132 3 450N	LIE C+CCK	L1E 2+50N	D€ 2+001	L1E 1450N	L1E 1+00N		
[Aluminum (41) Iron (5e) Calcium (6a)	13000 30000	17000 42000 750	13000 36000	18000 37000	01000 4 9000	15000 450 00	15000 4000 0		
[Magnesium (Mg) Sodium (Na)	780 2400 350 780	520 860 250	750 1800 240	380 2500 60	680 2200 120	500 1 300 110	340 2200 90		
[Titanium (Til Manganes: Lina) Phosphory: 19 1	940 160	1700 1700 380	420 2020 880 - 840	390 690 1200	330 560 1200	410 640 150	440 180 120		
[Barius (93) Chronius (17) Zirronius (17)	49 32 5	- 00 23 20 75	10 A 62 12	1200 44 51	-5100 70 49	600 62 40	1000 90 57		
Γ	Copper (Cu) Nickel (Ni)	13 13 14	20 6 57	10 10 17	+ 14 25	13 25	5 15 15	5 20 29		
	Zinc [[n] Vanadium [V] Strontius [Br]	48 100 13	47 51 5	10 100	62 92	17 98 41	66 150	65 97		
	Cobalt [Co] Molybdener [Ao] Silver [Ao]	4 < 2 < 1	1 < 2 < 1	× 2 × 4	7 〈 2 〈 1	6 (2 / 1	7 4 < 2 / 1	7 4 < 2		
	Cadmium (Ci) Beryllium (Se) Boron (P.)	< 1 < 1 < 10				× 1 × 1 × 2		$\langle 1 \rangle$		
L	Antimony [55] Yttrium [7] Scapdiup [5]	ζ 5 2 τ			< 5 2 5	4 4	× 10 < 5 2	< 10 < 5 2		
[Tungsten (4.) Niobium (15)	10 10 20			 4 /ul>	< 10 30	∠ < 10 < 10	< 10 < 10		
[Arsenic (As) Bismuth [Ai]	20 < 5 < 5	6년 20 11 - 12 12 - 12 12 - 12 12		< 10 15 < 5	20 10 5	30 20 < 5	< 10 15 < 5		
Γ	tin (200 Lithium (21) Holmium (20)	< 10 < 5 < 10	 10 5 10 	< 10 < 5 < 10	< 10 10 < 10	≤ 10 15 < 10	< 10 < 5 < 10	< 10 5 < 10		

DATE : AUG-20-1275

ELECTION Bune Comme

7 5 L LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN en de la companya de TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Regia Disestion PRIME ERELORATION LTD. 1.8.1. 87-067 No.: 5 - 9391 - 4 10th Floor Box 10 5.5.1. - Se Mo. : 808 West Hastings St. M.S.L. Louisce No. : 14753 Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: TYMAR DREQUEST CONSULTANTS LTD. R-2003 TTL MEELCTS PPM L1E 0+56N L1E 0+00 L1E 0+50S L1E 1+600 0.0 L1E 2+505 L1E 3+00S ELEMENT ំ ជាតមណ [A]] 31000 16000 17000 14000 35000 25000 li ca [Fe] 68000 64000 44000 44000 c.030 69000 63000 Calcium [Ca] 160 420 820 160 880 440 960 Maonesium [Mo] 3100 680 2300 1200 3600 2900 1700 Sodium [Na] -60 80 200 -60 376 60 160 Fotassium [K] 400 390 570 480 430 310 400 Titanium (Ti) 180 2600 280 130 530 640 800 Macoanese [Mn] 250 120 310 200-40530 460 Photohorus (P] 1100 620 1200 520 : X* 1600 1100 Barton [Ba] 9c 58 77 70 аŝ 93 94 Chromium [Cr] 75 30 89 35 71 42 28 Zisconium [Zr] 17 24 7 7 18 13 44 Copper [Cu] 29 15 25 38 25 28 24 [Ni] 32 Nickel 8 40 43 11 20 12 1:00 [Pb] 19 39 14 1015 18 27 l.≤c [Zn] 99 - -51 78 89 110 65 Vanadium EV 3 110 130 100 80 :20 130 88 Strontium [Sr] 4 7 12 5 11 7 13 fis-33 [Co]] 4 < 1 5 1ð ć 7 5 Molybdenum [Mo] < 2 < 2 6 2 2 < 2 < 2 Silver [Ao] < 1 < 1 1 <u>1</u> < i < 1 $\langle 1 \rangle$ < 1 Deciaium [Cd] < 1 < 1 < 1< 1 3 1 < 1 Eervilium [Be] < i < 1 < 1 ζ. ţ < 1 < 1 Botion [B] < 10 < 10 < 10 < 10 $2 \frac{1}{2}$ < 10 < 10 Antimony < 5 < 5 [Sb] < 5 < 5 2 < 5 < 5 YCCELUM EY] 3 4 2 2 4 4 6 Scendium [Sc] 4 1 3 4 5 4 3 lenseten [₩] < 10 < 10 < 10 < 10 $\frac{1}{2}$ < 10 < 10 Nithium [Nb] 10 60 < 10 < 10 < 10 40 ີໄປປານຄ [Th] 30 30 10 1 \mathbb{T}^{n} 30 30 Actenic. [As] 15 25 20 15 20 25 45 Elstuth [Bi] < 5 < 5 < 5 < 5 < 5 < 5 < 10 T10 [Sn] 10 < 10 < 16 50 < 10 < 10 < 5 Lithium [Li] 30 5 < 5 30 25 10 Holvium [Ho] < 10 < 10 < 10 < 10 10 < 10 < 10

DATE : 448-20-1990

SIGNED :

Denie Cina

14F1 CORIES 2-302-4518 STREET. SHI ATOON. SASKATCHEWARD 27K 6A4 TELEP:00. +: (306) 931 - 1033 FAX #t (306) 242 - 4717 I.C.A.P. PLASMA SCAN Aqua-Regia Digest.m PRIME EXPLORATION (ND. T.S.L. REPORT No. : 5 - 9200 - 5 10th Floor 10x 10 T.S.L. File No. : 808 West Hastinos it. T.S.L. Invoice No. : 14753 Vancouver E.C. VEC 1X6 ATTN: J. FOUTER ORDJECT: TRAMA OREGULET CONSULTANTS LTD. PHONES ALL RESULTS PPM L2E 44005 **L2E** 3+565 LEE SHOW L2E 3+00N LZE 2+00N L2E 1+505 12E 1+00% ELEXENT. Aluminas 1751 16000 19000 222 41000 28000 19000 22000 **t**í cl Iron 46000 **46**000 54000 37000 58000 60000 Calcium [£3] 660 240 260 **2**10 220 660 120 Maonesium [Mo] 2700 2300 820 4200 3400 1200 1900 Sodiua **{**N≥] 250 90 279 260 60 - 80 - 60 Potassium IN 3 3.0 350 300 870 450 380 Titanie: Cler 670 770 1100 82 130 190 Mangasuse (11) 12.0 310 340 350 130 140 Phosofic Le 18 . 1810 890 46**0** 1000 Ş., 210**54**0 51 Barius - E. - L 50 . . . 30 16068 130 1017 -Chromitt 11. 50 40 55 56 67 Zirconset (C., 2 98 6 15 7 [()] 13 Copper 11 9 : 3 21 14 23 н.» 4-а Ģ Nickel 18 1 [3]__ 36 18 26 Ē ī 14 Lead 10 23 9 18 11 [2-] L 53 Zinc 67 78 50 59 120 Vanadies - EV 3 ēš. 40 - <u>1</u> 75 99 81 Stroation (Fri 5 5 1. ÷ 5 9 4 651 Cobalt 2 2 5 3 11 4 < 2 Molybaeaus [21] € 0 < 2 ---< 22 < 2 Silver [Ae] < 1 < 1 < 1 4 I < 1 < 1 1 11 Cadmics < 1 $\langle 1 \rangle$ < 1 1 < 1< 1 $< \pm$ Bervlins (17) $\langle \cdot \rangle$ < 1< 1 < 1< 1 < 10 Boron < 10< 10 < 10 < 10 < 10 < 5 $\langle \cdot \rangle$ < 5 Antioc < 5 < 5 < 5 t. 2 Yttris 5 2 2 3 5 Scandolin (En) ā. 1 4 2 2 -- $\langle i_{\rm N}$ $\langle -\Sigma \rangle$ **โนกอ**อง (1) < 10 < 10 < 1Ò < 1011 10 Niobies 50 < 10 20 ×2. < 10 -6 11 Thories 20 20 20 20 -20 <u>.</u> Arsenit < 5 < 5 15 20 K 5 Bismutt **T**931 < 5 < 5 < 5 < 5 < 10 11.2 $\langle \cdot \cdot \cdot \rangle$ Tin < 10 < 10 < 10 e Q Lithius ĩε:1 5 10 30 < 5 5 < 10 < 10 < 10 $\langle -\gamma \rangle$ Holmius **[**4-7 < 10 < 10 < 10

DATE : AUG -15-

51GNED :

Dinie Dum

L = 022-0394 F12521, 1284-01 0, 50, 1284-02 575 + +++ 12005 1205 1205 1205 1205 140 1 0, 1205 1205 1400 1205 1400 1205 1400 1205 1205 1205 1205 1205 1205 1205 12	Γ	-		PATORIES						
Lichard View (1997) Lichard (1998) (1998) Lichard (1998) (1997) Lichard (1998) (1997) Reference (1998) (1999) Reference (1997) Reference (1997) Refer	L			2-302-408H 8	STREET, SAGKA	50 yr 80 yr 1	55.ee 276	;		
L I.C.A.P. PLASTP SCRF L.C.A.P. . PLASTP SCRF L.C.A.P.P.PLASTP SCRF L.C.A.P.P.PLASTP SCRF L.C.A.P.P.PLASTP SCRF L.C.A.P.PLASTP SCRF L.C	r				FAX #:	t (06) (106) (1 -	- 1620 4717			
Inc. A.F. Foren Support Image: State	L			t o a o - o ao						
FRIME SPUER: 00 E0 1.1	~			1.U.A.F. FLAS	- SURR	Pres -Re cella	166511.			
FREE 174.09 F						-	-			
Light right right for Ext 10 1.5.1. File Ho, See Next Next 105 Div. TISLL House No. r 14753 ATTN J. FELLE PROJECT: TOSAR EREGUEBT OF BALTE. 170, 0 - 185 0 RESULTB FM L L2E 04504 LSE 0400 122 0407 128 0408 128 0408 LEFIN LSE 0400 126 040 128 0408 128 0408 128 0408 128 0408 LEFIN LSE 04000 70000 56000 56.00 100 23000 1100 Lating IMA 140 1200 2100 1800 1100 1000 2000 1000 Magnesium (Mg) 1200 2100 1800 1100 1000 2700 1900 C Stasses 101 1100 70 6 100 90 100 C Stasses 101 1100 70 6 100 90 100 C Stasses 101 100 70 100 100 90 100 100 90 100 D Stasses 101 100 70 100 100<	-	PRIME ELPLOP	AN DUA				τ.s.	L. PEPORT No	.: S - 9391	• G
Description Total Problem Total Problem ATTNE J. FEL: B. PROJECT: TOMA DREGUEST OF BULTS (10), Frings FL. REFULTS (FM E LZE 04004 LZE 0400 TYDE LIE 14005 LZE 14005 LZE 14005 LZE 04004 This LERC (LZE 04004 TZDE TZDE LZE 04004 TZDE	r	10th Fibor Bur	11				ī.S. To	t. File Pa	4.4757	
attile J. FL.: A PROJECT: TG4R DECLEPS () SULTAIN () TB, () 105 PL RESULTS FPM C L2E 0-50N L2E 0-400 L2E 0-10 C2E 0-408 L2E 1+508 L2E 2+005 C10 1-50 Less FE1 C4000 70000 550000 L2E 1+508 L2E 2+005 C10 1-50 Less FE1 C4000 70000 550000 L2E 3 3200 71000 P1000 Calcium FE1 C4000 7000 1000 1000 1000 P1000 2100 1000 1000 1000 900 1000 900 1000 900 1000 900 1000 900 1000 900 1000 900 1000 900 1000 900 1000 900 1000 900 900 90	L	Usconnes R	ys act Giff fysi				1.5.	C- 18401 08 %0	. : 14/35	
$ \begin{bmatrix} & & & & & & & & & & & & & & & & & & $	-	ATTN: J. FEL.		PROJECT: TAMAR	OREQUEST	SULTA :	170. :185	ALL RESULT	5 FPM	
$ \begin{bmatrix} C_{12} & C_{12} & C_{13} & C_{12} & C_{13} $	ſ				. EE 10.000	. 65 A.1 1				
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	L	ELEN		LZE VHOUN	12E V70V	1.2 2 (74)	116 - 19 95 1	1988 (1 40 05)	C2E 2+00S	eter 2 -50 5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	٢	Alum in g:	[41]	420 00	39000	1700		: 7000	77 000	10.556
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L	Inst	[Fe]	640 00	70000	5 8 000	38.030	51000	71000	2.2.59 0 2.1/6 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Calcium	[Ca]	240	360	760	220	320	380	480
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Γ	Maonesium	[Ma]	1200	2100	1800	1100	1900	2700	1900
Potassi: (C_1^2) 330 410 54° 120 510 270 120 Pristaniu (Ini) 1100 1100 70 100 430 460 110 Pristaniu (Ini) 246 590 411 160 270 230 460 450 730 Pristanua (Ba) 55 73 14° 100 160 72 (20) Constant (Dr) 34 55 4.5 15 26 33 32 Constant (Dr) 250 446 110 72 150 33 32 26 36 33 32 26 33 32 21 15 15 25 30 33 32 32 312 115 133 14 21 15 133 13 14 21 15 133 13 14 21 15 13 14 21 14 11	L	Sodium	[Na]	210	140	9 0	76	60	100	R0
$ \begin{bmatrix} 7:1+anil. (11) & 1100 & 1100 & 7C. (12) & 450 & 460 & 719 \\ finganes (1n) & 266 & 590 & 410 & 640 & 270 & 230 & 759 \\ Prosebor (2P) & 530 & P90 & 1100 & 1.12 & 440 & 460 & 72 & 179 \\ Discent (Cr) & 340 & 55 & 73 & 114 & 1.13 & 440 & 33 & 32 \\ Discent (Cr) & 340 & 55 & 73 & 114 & 1.13 & 440 & 33 & 32 \\ Discent (Cr) & 340 & 55 & 73 & 114 & 1.13 & 440 & 33 & 32 \\ Discent (Cr) & 144 & 15 & 22 & 12 & 125 & 26 & 36 & 73 \\ Uitchel (TM1) & 15 & 222 & 12 & 125 & 26 & 36 & 73 \\ Uitchel (TM1) & 15 & 222 & 12 & 125 & 26 & 36 & 73 \\ Uitchel (TM1) & 15 & 222 & 12 & 135 & 115 & 25 & 30 \\ Discent (Di) & 34 & B4 & 100 & 77 & 110 & 74 & 71 \\ Varadium (V) & 34 & B4 & 100 & 77 & 90 & 97 & 110 \\ Strentin (Sr) & 5 & 6 & 17 & 7 & 90 & 97 & 110 \\ Strentin (Co) & 1 & 3 & 5 & 5 & 5 & 4 & 3 \\ tolytele (TM0) & < 2 & < 2 & 2 & 2 & < 2 & < 2 & 2 \\ Silver (Aq) & 3 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 \\ Curteum (Cd) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 \\ Curteum (Cd) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & 1 \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & 1 \\ Ecolit (Co) & 1 & < 3 & 5 & 5 & 5 & < 4 & 3 \\ Tolytele (Wo) & < 2 & < 2 & 2 & 2 & < 2 & 2 & 2 \\ Silver (Aq) & 3 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & 1 \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & 1 \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & 1 \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & 1 \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & < 1 & \\ Ecolit (Co) & 1 & < 1 & < 1 & < 1 & < 1 & < 1$		Potassi	[K]]	330	410	54	120	510	29 0	540
$ \begin{bmatrix} \text{Hanganes} & (\text{Ho}) & 266 & 590 & 410 & 646 & 270 & 220 & 730 \\ \text{Plosobore CF} & 550 & 890 & 1100 & 1100 & 440 & 460 & 72 & 120 \\ \text{Plosobore CF} & 34 & 35 & 73 & 140 & 150 & 440 & 460 & 72 & 120 \\ \text{Oromatic CF} & 34 & 35 & 40 & 33 & 322 \\ \text{Incont} & (\text{IC}) & 34 & 35 & 40 & 33 & 322 \\ \text{Incont} & (\text{IC}) & 34 & 35 & 20 & 440 & 11 & 7 & 6 & 26 & 21 \\ \text{Orometr} & (\text{CD}) & 34 & 35 & 20 & 33 & 322 \\ \text{Incont} & (\text{IC}) & 34 & 35 & 20 & 33 & 322 \\ \text{Incont} & (\text{IC}) & 250 & 44 & 11 & 7 & 6 & 26 & 21 \\ \text{Orometr} & (\text{CD}) & 14 & 15 & 22 & 10 & 14 & 21 & 15 & 13 \\ \text{Usadive (W1)} & 15 & 22 & 10 & 14 & 21 & 15 & 13 \\ \text{Usadive (W1)} & 56 & 62 & 6 & 77 & 7110 & 74 & 71 \\ \text{Vanadive (W1)} & 36 & 84 & 1000 & 77 & 90 & 97 & 110 \\ \text{Strentie (ISr)} & 5 & 6 & 17 & 7 & 13 & 9 & 14 \\ \text{Cobalt (ICol)} & 1 & 3 & 5 & 5 & 3 & 4 & 3 \\ \text{Molydene (Wa)} & \langle 2 & \langle 2 & \langle 2 & 2 & 2 & \langle 2 & \langle 2 & \langle 2 & 2 &$	C	Titaniu	(Ti)	110 0	1100	70		430	4E0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pasiganes :	(Mn)	2 60	590	41	14. 14. 1	270	230	12g)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	Filosoho -	9 [P]	530	9 7 6	1100		440	480	-30
$ \begin{bmatrix} Crossiv (Cr) & 34 & 56 & 4 & 15 & 40 & 33 & 322 \\ Irconi (Cr) & 250 & 46 & 1 & 3 & 8 & 26 & 21 \\ Croser (Cu) & 14 & 15 & 22 & 25 & 26 & 36 & 33 \\ Rickel (Ri) & 15 & 22 & 19 & 14 & 21 & 15 & 13 \\ Lead (Pb) & 27 & 19 & 22 & & 5 & 15 & 25 & 30 \\ Rickel (Ri) & 55 & 62 & E. & 77 & 110 & 74 & 71 \\ Vanadiva (V) & 36 & 84 & 100 & 07 & 90 & 97 & 110 \\ Strentic (Sr) & 5 & 6 & 10 & 7 & 13 & 9 & 14 \\ Cohait (Col) & 1 & 3 & 1 & 5 & 5 & 4 & 3 \\ Rolyden (Ra) & 42 & 41 & 41 & 41 & 41 & 41 & 41 \\ Cohait (Col) & 1 & 3 & 1 & 5 & 5 & 4 & 3 \\ Rolyden (Ra) & 42 & 42 & 2 & 2 & 42 & 42 & 42 \\ Carciva (Cd) & 1 & 41 & 41 & 41 & 41 & 41 & 41 & 41$	_	Barium	(Ba)	5. 2.2	73	14		160	72	:50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Charamius	(Ce)	34	56	- -	1 90 10 10	4()	33	32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	Zirconi:	EZr0	250	46	•	ā.	6	26	21
$ \begin{bmatrix} \text{Nickal} & \text{Nil} & 15 & 22 & 17 & 14 & 21 & 15 & 13 \\ \text{Lead} & (Pb) & 27 & 19 & 20 & 5 & 15 & 25 & 30 \\ \text{Zinc} & (Za) & 56 & 62 & 62 & 6 & 77 & 110 & 74 & 71 \\ \text{Vatadius, } (V) & 36 & 84 & 106 & 77 & 90 & 97 & 110 \\ \text{Strenti, } (Sr) & 5 & 6 & 17 & 7 & 13 & 9 & 14 \\ \text{Ecbait} & (Co) & 1 & 3 & 6 & 5 & 3 & 4 & 3 \\ \text{Molyden, } (Ma) & \langle Z & \langle Z & 2 & 2 & 2 & \langle Z & \langle Z & 2 & 2 \\ Silver & (Ag) & 3 & \langle 1 & $		<u> Ccoper</u>	iCu3	14	15			26	36	33
$ \begin{bmatrix} 1 & 1 & 2 & 1 & 1 & 2 & 5 & 1 & 2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 3 & 6 & 6 & 6 & 7 & 7 & 11 & 7 & 7 & 7 & 7 & 7 & 7 & $	Γ	Rickel	ENII	15	22	÷s' ≜	1	21	15	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	Lead	(P53	27	19		-5	15	25	30
$ \begin{bmatrix} Vanadice, [V] & 36 & 84 & 106 & 77 & 90 & 97 & 110 \\ Strentic, [Sr] & 5 & 6 & 17 & 7 & 13 & 9 & 14 \\ Cobait, [Cob] & 1 & 3 & 5 & 5 & 5 & 4 & 3 \\ Molybden, [Moi] & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ Silver & [Ag] & 3 & 4 & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 \\ Codelum, [Cd] & 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 \\ Secyllic, [Be] & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 & 4 & 1 & 1$		Zifc	[2n]	54	82	Ε.	77	110	74	71
$ \begin{bmatrix} Strontic [Sr] & 5 & 6 & 19 & 7 & 13 & 9 & 14 \\ Cobalt & (Col & 1 & 3 & 0 & 5 & 5 & 4 & 3 \\ Molybden & (Ma) & \langle 2 & \langle 2 & \langle 2 & 2 & \langle 2 & \langle 2 & \langle 2 & \langle 2 & \rangle \\ Silver & (Ag) & 3 & \langle 1 & \rangle \\ Cachiux & (Cd) & 1 & \langle 1 & 1 \\ Secyllic & (Be) & \langle 1 & 1 \\ Secyllic & (Be) & \langle 1 & 1 \\ Secyllic & (Be) & \langle 1 & 1 \\ Secyllic & (Be) & \langle 1 & 1 \\ Secyllic & (Be) & \langle 1 & 1 \\ Secyllic & (Be) & \langle 1 & 1 \\ Secyllic & (Be) & \langle 1	Γ	Van zdi ue.	EV 3	36	84	100	57	90	97	110
Cobait ICol 1 3 5 5 5 4 3 Molybden IMal $\langle 2$	L	Strentic	[Sr]	С ~	6	1	7	13	9	14
Molyber		Cobait	[Co]	1	3	\$. 2	ž.	5	4	3
Silver [Aq] 3 $\langle 1$ \langle	r	Molybden	(Ma)	< 2	< 2	т. 2	1 2	< 2	< 2	、 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Silver	[Aŋ]	3	< 1	< 1	< 1	< 1	< 1	< 1
Biscyllin IBel $\langle 1$		Cardium	[Cd]	1	< 1	< *		< 1	< 1	ž
$ \begin{bmatrix} \text{Eoron} & \text{IB} & \text{I} & \langle 10 &$	_	Becy112	(Bel	< 1	< 1	Κ	•	< 1	< 1	1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ	Eoran	IB I	< 10	< 10	< 10	< 10	< 10	< 10	(- 10
rttriud ivid 5 4 7 3 4 Scandiar IStid 2 3 1 2 3 2 2 Tungsta IW 3 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	L	B) 1100	1563	< 5	< 5	< t	· · · ·	- 5	K 5	: 5
$ \begin{bmatrix} bcandid & cod & 2 & 3 & 1 & 2 & 3 & 2 & 2 \\ Tungste & (W) & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & < 10 & $		Yttp146	(Y]	5	4	10 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -	-	7	te de	ć,
$ \begin{bmatrix} 1000556 & 10 & 4$	Г	50.2 031 81	1503	2	2 3 7 - 5		2	3	2	2
$ \begin{bmatrix} 1 & 1 & 1 & 2 & 3 & 2 & 4 & 1 & 3 & 3 & 4 \\ \hline 1 & 1 & 1 & 1 & 5 & 2 & 2 & 3 & 4 & 1 & 3 & 3 & 4 \\ \hline 1 & 1 & 1 & 1 & 5 & 2 & 2 & 3 & 4 & 1 & 3 & 3 & 4 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	L	IONGSTE -	18 J 16 J	< 10 77	< 10 75			10	< 10 	10
$\begin{bmatrix} 10 & 100 & 101 & 507 & 207 & 507 & 107$		(V) 20100 7	UNGJ CTNI	<u>0</u> () E ()	30 50	20		< 10	30	40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10.00196 7	LIAJ To-T	37) 66	29) e e	<u>ل</u> ن .		10	30	2Q
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F: 3881C	.851 7547	20 21 =	20 21	1% / =		15	45	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	5130999 716	1011 (0555	N 3 2 M	1 () 7 () 1 ()	5 C 7 47		3		1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~	til Litaium	101/3 {{{}}	N 10 16	N 10 55	N 15 12		< 10 +#	< 10 •=	10
		Lionium Kolmium	illi illi	1V / 10	20 7 10	10	× 0 7 35	13 2 16	13	10

DATE (AUG-1771090

L

• •

IENEL Cani Duan

TSL. LABORATORIES DIV. BURGENCELTECHNICKLENTERPRISES LIMITED

20022 - Sth STREET, EAST SAGMATOCH SASKATCHEWAN S7K 6A4 37K 6A4 306) SOT-1033 - FAX: (306) 242-4717

CERTIFICATE OF ANALYSIC

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. BaPORT No. Vancouver, E.C. 39393 V6C 2X6

> INVOICE #: 14495 P.O.: 1-2087

SAMPLE(S) OF Soils

W. Raven Project: Tymar

REMARKS:

: OreQuest Consultants Ltd.

,	Au ppb
L3E 4+50N	<5
L3E 4+00N	<5
L3E 3+50N	<5
L3E 3+00N	<5
L3E 2+50N	<5
L3E 2+00N	<5
L3E 1+50N	<5
L3E 0+50N	<5
L3E 0+00	<5
L3E 0+50S	<5
L3E 1+00S	<5
L3E 1+50S	<5
L3E 2+00S	<5
L3E 2+50S	<5
L4E 5+00N	<5
L4E 4+50N	<5
L4E 4+00N	<5
L4E 3+50N	<5
L4E 3+00N	<5
L4E 2+00N	<5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Aug 08/90

Ber ie Um SIGNED 1 of 3 2c⊘a

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

2 - 310 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

(306) 931-1000 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIG

Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. V6C 2X6

INVOICE #: 14495 P.O.: R-2087

SAMPLE(S) OF Soils

W. Raven Project: Tymar

REMARKS: OreQuest Consultants Ltd.

	Au ppb
L4E 1+50N	<5
L4E 1+00N	<5
L4E 0+50N	<5
L4E 0+00	<5
L4E 0+50S	<5
L4E 1+00S	5
L4E 1+50S	<5
L4E 2+00S	<5
L4E 3+00S	<5
L4E 3+50S	<5
L4E 4+00S	<5
L4E 4+50S	<5
L4E 5+00S	<5
L4E 5+50S	<5
L4E 6+00S	<5
L5E 5+00N	<5
L5E 4+50N	<5
L5E 4+00N	<5
L5E 3+00N	<5
L5E 2+50N	<5
COPIES TO: INVOICE TO: Aug 08/90	C. Idziszek, J. Foster Prime – Vancouver

& nie Vun SIGNED . Page 2 of 3

CTA

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

2 - 302 - 48th STREELLEAST SASKATOON, SASKATCHEWAN 6A4 🞯 (306) 931-1033 FAX: (306) 🗇 -4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd. SAMPLES FROM 10th Playor, Box 10-808 West Hastings St. Vancouser, B.C. V6C 22.5

INVOICE #: 14495 P.O.: R-2087

SAMPLE OF Soils

W. Raven Project: Tymar

REMARKS: OreQuest Consultants Ltd.

		7.1.1
		F.
L EC2	2+00N	< 7
ISI	1+50N	<
1.EDJ	1+00N	< `
LUM	0+50N	< 3
I t d	0+00	<.;;
ren	5+00N	K 5
L 6E	4+50N	< 5
$\mathbf{L} \in \mathbb{Z}$	4+00N	< 12
LOU	3+50N	< ∄
LEE	3+00N	< 11 12
L 602	2+50N	\mathbf{C}^{*}
LCH	1+50N	<5
LCE	1+00N	< 3
$\mathbf{L}6\mathbb{R}$	0+50N	<€
LG.1	0+00	<0

COPEES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 08/90

Berne SIGNED _ 3 of 3 Page

CTA

For enquiring on this report, please conduct Gustomer Service Department, Samples, Publis and Rejects discarded and months from the date of this report.

C r	ΤSI	[4]	10881ES 2-302-11	STREET, SASKOT Treephone Fax #:	1, 5ASKAT(106) 931 - 106) 242 -	0601 A 57K 2002 2002	684		
L			1. C.A. E. 1.4	ISMA SCAN					
_				-	∵a-Regia Di	igestion			
	PRIME EXPLORATI 10th Floor Box BOE West Hastin Vancouver B.C. ATTN: J. FOSTE	ION LTE. 10 10s St. V6C 2XE R	STATECT: TYPE	OREQUEST COLL	TANTS (TD.	T.S.I T.S.I T.S.I	L. REPORT No L. File No L. Invoice No All REFILT	. : S - 9393 . : . : 14803 5 рри	- 1 /
~								u 1111	
L	ELEMENT	Ī	L3E 4 +500	138 4+00N	03 E 3+50 N	ETE SHOON	L3E 2+50N	L3E 2+00N	L3E 1+50N
r	Aluminum	[4]]	9007	14000	14000	1000	15000	87 <i>1</i> 00	07AA
1	Tran	[Fe]	13060	68000	44000	N 100	32000	27000	7300 74000
-	Calcium	[Ca]	360	420	440	370	740	3700	580
	Maonesium	[Mo]	1500	470	1800	710	2300	4000	1800
	Sodium	[Na]	70	110	120	140	60	1700	150
L	Potassium	EK 1	26 0	230	340		310	800	490
	Titanium	[Ti]	이 것 같다. 또 같다.	1400	400	: 30	210	3100	780
Γ	ดีลก ganese	[Mn]	150	230	120	.130	270	200	140
L	Phosphorus	(P]	<u>.</u>	920	490	/10	2600	390	280
	Berium	[Ba]	26	54	48	-	53	36	56
Г	Chromium	[Cr]	Žé	19	44	53	43	32	53
	Zirconium	[Zr]	1	35	4	23	3	13	
	Copper	[Cu]	12	14	14	8	18	6	13
	Nickel	ENi]	1é	7	16	4	21	19	22
	Lead	CP63	Ş	32	13	27	12	5	10
L	Zinc	[Zn]	4.2.	33	26		51	31	34
	Vanadium	(V]	35	55	120	72	60	62	110
Γ	Strontium	[Sr]	4	6	5	5	4	36	7
L	Cobalt	[Co]	3	2	4	1	2	8	3
	Molybdenum	[Mo]	< 1	4	< 2	< 2	< 2	< 2	< 2
Г	Silver	[Ag]	< 1	< 1	< 1	: 1	< 1	< 1	< 1
	Cadmium	[Cd]	< 1	< <u>t</u>	< 1	ें <u>1</u>	< 1	< 1	< 1
-	Beryllium	[Be]	< 1	< 1	$\langle 1 \rangle$		< 1	< 1	< 1
	Baran	[B]	< 10	< 10	< 10		< 10	< 10	< 10
1	Antimony	(Sb)	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	Storium	[Y]]	1	4	2	2	1	3	2
_	Scandium	[5c]	< i	< 1	2	1	1	3	ž.
Γ	Tungsten	[#]]	1	< 10	< 10	10	< 10	< 10	< 10
L	Miabium	[Nb]	< 10	60	10	ΞŨ	< 10	< 10	< 10
	Therium	(Th)		30	< 10	20	20	20	< 10
Г	Arsenic	(As]		10	20	19	30	< 5	10
L	Bismuth	(Bi]	× 1	5	< 5	- B	< 5	< 5	Κ 5
	15	(5n]	< 19 1	10	< 10		< 10	< 10	< 10
r	Lithium	LLII	< 3 	< 5	< 5		10	< 5	ζ 5
	Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : 402-22-1990

IGNED : Reinie Aun

TIBLI LABORATORE F

ſ

Сного на 467% STS (1010-КАТООМ, SAEMOTCHEWAR) 67К 4АА П. 1016: (3001 73. - 1033 Р. (3107 243 - 4717)

I.C.H.P. PLASMA

Aqua-Regis Digestion

PRIME LXPLOFATION / TO.	T.S.L. REPORT No. : 8 - 9393 - 1
10th Floor Bex 10	T.S.L. Filt No. :
BOB Wast Hastings St.	7. S.L. Invoice No. : 14803
Vancouver B.C. Véc 2%6	

ATTN: J. FOSTER FROJECT: TYMAK GOVERNME FOR SULTANTS LTON R-2087 AND REDUCTS PPN

	L31 6+50N	 LCT 0+508	L3E (+00S	L3E 1+517	L3E 2+005	000 2 -508
ELECENT						

	Aluminun	[41]	19000		15000	11000	30000	12000	000
	Iron	[F<]	52000	. •	67 000	49 000	38000	45000	1.500
	Calcium	[Ca]	380		180	860	200	1200	100
_	Magnesium	[Mg]	1400	~ 10	1800	1500	3900	1700	920
	Sodium	[Na]	100		50	140	50	130	40
_	Potassium	[K]]	260		240	360	340	620	340
	Titanium	(7:1)	300	•	230	1200	140	230	51
	Man gan ese	[#:-]	120		2 9 0	130	416	2000	:50
	Phosphorus	EF 3	330		2200	1000	650	1300	510
	Barium	G E E	78		54	59	74	14 0	30
-	Chronium	[1:3]	78		39	43		32	
	Zirconium	C2:3	6		8	12	ш. С	2	Ę.
ليسا	Copper	1 0: }	19		21	11	35	36	03
_	Nickel	[]] (2	38		20	21	52	35	₫ģ.
	Le 2ó	[1]]	16		17	22	18	16	17
	Zinc	t 7:1	51	2	9 6	43	150	180	<u>92</u>
	Van adi um	[V]	58		75	79	49	47	4 <u>4</u>
	Strontium	[Sr]	10		7	11	3	16	3
-	Cobalt	[Col]	3		4	2	E	13	5
	Kolybdenum	th 5	< 2	<i>*</i> ,	2	4	< 2	< 2	2
-	Silver	[A]	< 1		< 1	< 1	$\langle 1$	2	< 1
	Cadmium	[Cd]	< 1		< 1	< 1	1	2	
-	Beryllium	[Bij	< 1		< 1	< 1	< :	< 1	1 1
-	Boron	H 1	< 10	2	< 10	< (¢	< 10	< 10	10
	Antimony	[50]	< 5		< 5	15	. Ξ	< 5	. 5
-	Yti riu e	E V 3	2		2	3	2	3	
	Scandium	[5:1]	1		1	2	3	< 1	ć
~	Tungsten	[k;]	< 10		< 10	< 10	< 10	< 10	19
_	Nichium	(Nel	20		20	4Q	< 16	< 1 0	10
	Thorius	UTA:	< 10		10	10	20	20	50
-	Arsenic	[Act]	10		25	20	20	20	_ ^
	Bisauth	CE 13	< 5 -		. 5	< 5	< 5	< 5	· · ·
	730	ί£.	< 10		10	K 10	< 16	< 10	s 12
_	Lithiue	[L]]	5		5	< 5	3ē	9	15
-	Holmium	[Ho]	< 10	< 12 -	< 10	< 10	< 10	< 10	× 10

DATE : AUE-12-199 :

ELED: Samie Com

TIS LE 19 - PRES

1

1-302-4BTH STREET, BAER TILLN, SASKATCHEWAN 87N 644 TELEPHONE (1306) 931 - 1033 FAX #: 1306) 242 - 4717

D.A.P. PLAS - STAN

-- Denis Directi

•				-cua-Regia Di	gestion			
. PETER EXPLORATIO	NITT				Ť. S.	L. REPORT NH	. 	
10th Floor Box 1	0				T.S.	L. File No		
- 802 dest Hasting	s St.				7,5,	L. Invoice Na	. : 14800	
Venueuver B.C. V	6C 24.	- -						
ATTO J. FOSTER		TYMAR	OREGUEST CO	SULTANTS LTD.	R-2087	ALL PESULT	S PPM	
-								
ELEMENT		14E 5+00N	L42 4+50M	14 <u>4</u> 4+00N	L4E 3+50N	L4E 3+00N	L4E 2+30%	. D 1+50%
- Aluainum -	7A11	7400	: 5 (4)()	33000	12000	12000	15/200	. 3000
Iran	[Fe]	5500	23000	57000	43000	34000	56000	2000
Calcium	[Ca]	260	760	180	800	820	400	3000
- Maonesium	[Ma]	800	2500	4800	1500	2100	1700	900
Sodium	[Na]	70	200	40	370	180	140	60
Potassium	CK]	270	500	350	370	340	740	120
Titanium	[Ti]	150	150	190	1800	1100	520	41
Manganese	(Mn)	44	200	380	150	320	160	130
- Phosphorus ((P]	130	500	4 80	360	:400	270	7200
Barium I	[Ba]	45	97	83	30	62	4/)	110
Chromium	[Cr]	20	38	91	22	36	110	37
	[Zr]	< 1	< 1	7	41	و	17	2
Copper	[Cu]	7	17	21	6	ę	29	44
, Rickel I	[Ni]	7	17	56	7	15	40	34
ead	[Pb]	5	13	16	18	22	12	17
- Zinc I	[Zn]	23	43	80	31	42	4 T.	69
Vanadium (EV 3	24	74	53	73	76	66	15
Strontium ([Sr]	5	10	3	10	10	E	42
. Cobalt i	[03]	1	4	8	3	3	3	4
Molybdenum ([Mo]	< 2	2	< 2	4	< 2	< 2	< 2
• Silver I	[Ag]	< 1	1	< 1	< 1	< 1	< 1	2
Cadmium ([[6]]	< 1		< 1	< 1	< 1	< 1	1
- Beryllium ([Be]	< 1	2 <u>1</u>	< 1	< 1	< 1	< 1	2
Bo ron (IB]	< 10	i 10	< 10	< 10	< 10	< <u>1</u> 0	10
An timony [:56 3	< 5	÷ 5	< 5	< 5	< 5	Κ. 5	4 5
• Yttrium (IY 3	< 1	2	4	3	2	-	23
Scandium (Sc]	1	: 1	4	1	i	2	· 1
Tungsten (W 1	< 10	< <u>10</u>	< 10	< 10	< 10	< 10	10
, Niobium I	N5)	< 10	< 10 10	< 10	40	30	20	10
Thorium [Th]	< 10	50	20	30	30	K 10	10
Arsenic (lÀs]	10	15	20	15	20	20	15
Bismuth C	Bil	< 5	· 5	5	< 5	< 5	< 5	< 5
Tin C	(5n)	< 10	- 10	< 10	< 10	10	< 1 0	10
Lithium D	Lil	< 5	× 5	35	< 5	< 5	10	1 5
Holmium [Hol	< 10	< 10	< 10	< 10	< 10	< 1 0	- 10

DATE: AUG-22-1996

EIGNED : Beince

- 79	L LAB	ORIES						
-		2-302-48TH	STREET, SASKA TELEPHONE # FAX #:	TOON, SASKATO : (306) 931 - (306) 242 -	HEWAN 97K • 1033 4717	6A4		
-			ACMA COAL					
		1.6.H.F. <i>F</i> 1	100H QUHK	Aqua-Regia Di	gestion			
				-				
PRIME EXPLORA	1100 L10. v 10				T.S.	L. REPORT No	.: 5 - 9393	- 4
_ RAB West Hast	inne St				1.D. T D	L. Flie NO ! Iougics No	. 14007	
Vancouver B.C	. V6C 2X5				1.3.	L' INVOILE NO	.: 14603	
ATTN: J. FOS	TER	PROJECT: TYMAR	GREQUEST CONS	ULTANTS LTD.	R-2087	ALL RESULT	S PPM	
-		L4E 1+00N	L4E 0+50N	L4E 0+00	L4E 0+50S	L4E 1+00S	L4E 1+50S	L4E 2+005
ELEME	NT							
- Aluminum	[A]]	7200	15000	20000	26000	19000	13000	22000
Iron	[Fe]	16000	27000	59000	47000	46000	45000	62000
Calcium	[Ca]	600	2200	420	460	260	180	1400
_ Magnesiu	n [Mg]	870	1600	1300	2000	1800	1400	1800
Sodium	[Na]	160	200	50	60	90	30	90
- Potassiu	n (K)	350	430	290	320	440	380	340
Titanium	[Ti]	420	820	430	240	180	26	460
Manganesi	e [Mn]	96	750	330	420	3500	410	5700
 Phosphore 	ıs (P)	410	790	830	730	1600	380	1300
Barium	[Ba]	28	140	56	65	130	81	220
- Chromium	[Cr]	480	51	120	52	35	23	34
Zirconius	n [Zr]	1	2	6	5	2	4	5
Copper	[Cu]	21	13	17	19	27	57	13
Nickel	[Ni]	220	18	52	29	25	52	25
Lead	[Pb]	4	34	18	16	17	16	12
- <u>/inc</u>	l Zn 1	29	48	53	73	130	470	190
Vanadium	1V J	49	77	76	67	65	34	60
Strontium	1 [57]	4	1/	5	6	6	4	15
	LLOI	5	17	4	5	24	8	19
Molyodenu		6	< 2	4	< 2	< 2	14	< 2
- Sliver	CH31			< 1	< 1	1	1	2
- Danullium	1001 (D-1					< 1	2	1
Beryllius	1023	× 1 7 10			<u> </u>			1
	151	× 10 Z 5	\ 1V / \$	< 10 / E	< 10 / E	< 10 / E	< 10	< 10
- Vttrica	1001 FV 1	N 2 0	्र 2 र	\ J ₹	N 0 N	< 3 7	< 3 •	< 5
e istrium Scoodium	[Sel]	2 2 3		ن م	<u>۲</u>	3	4	<u>6</u>
 Tunneten 	FW 1	× 1 Z 10	× 1 Z 10	4. 7. 46	1	× 1 7 to	2	1
Ninhium	ENH 1	< 10 < 10	× 10 Z 10	× 10 20	N 1V 1A	< 10 7 10	< 10 7 40	< 10
- Thanium	fTh 1	< 10 < 10	20 V 1V	2V 2 10	1V 4 A	N 1V 4A	< 10 76	10
Arcar.ir	[]elli	15	20 16	N 1V 1A	10	10	30 AE	10
- Ricauth	(Bi)	20 / 5		1V 7 5	N 0 2 S	20 / 5	40 / E	40 / E
- Tin	[50]	< 16	< 10	< 16	√ 2 ∠ 10	 3 2 40 	X 3 Z 36	\ J ∕ ⊀A
Lithium	ELil	× -× × 5	5	ν 1V (Δ	14	× 10 15	N 10 E	N 10 DA
Holmium	[Ho]	< 10	< 10 [°]		< 10	< 10	ن د ۱۵	<u>کې</u> د 10
				· •	· · ·	· • • •	N 1V	N 10

L DATE : AUE-22-1990

ſ

SIGNED : <u>Bernie Ounn</u>

-	7.5.1	ΙΔR	ORATORIES						
-			2=302~4	STREET, SASKA	TOON, SASKATI-	. ".			
-				TELEPHONE # FAX #:	+: (306) - 931 - (306) 242				
-			L.C.A.P.	-SMA SCAN					
					Aqua-Regia Big	la cuto t			
- PRIN	E EXPLORATI	ON LTD.					6. Martin († 1	·	- ÷
10th	Floor Box	10				••	L. File K.		
- 608	West Hastin	os St.				· • • • •	. Javoice M:	to sub-sub-	
V anc	ouver B.C.	V6C 2X6							
ATTN	I: J. FOSTE	R	PROJECT: TYPE	OREQUEST CON	SULTANTS LTD.	1+1/37	ALL SIGUE	7, 7,	
-			L4E 3+00	L4E 3+505	L4E 4+00S	ά <mark>‡</mark> Ξ.	L4E 5400S	1.11103	LAS cruss
-	ELEKENT								
-	Aluminum	[A]]	12000	20000	17000		13000		
-	Iron	[Fe]	470 00	64000	67000	000	54060		590C.
	Calcium	[Ca]	1300	220	600	740	320	220	260
-	Magnesium	[Mg]	70 0	1500	1400	890	1200	2100	2700
-	Sodium	[Na]	50	70	290	160	50	60	70
	Potassium	[K]	350	230	250	<u>44</u> 0	560	5 J	300
•	Titanium		150	85	100	210	200		215 -
	Manganese	imaj	같은 동네	410	¥20		4. <u>56</u>		620
	Phosphorus	LP J	스럽다. Alternational	380	420	-404 	1909		E
•	SEPIUR Chanaina	1641	100	64 04	01 V	교가야 는 문헌	e de la companya de la compan		
	Viruaium Zirconium	1683 8781	1 ·	24 0	10	52 =	2 / +		£.
•	Cossas	1203	5.	0 ۲	2	्य स्ट्र			. ·
_	Nirvel	EGUJ ENi 1	2-	12	8	15 95			-
-	lead	(Pb]	ž té	14	د ا			•	4* 1.
•	Zinc	[7n]	Ç,2	56	51	2. 240	23		÷ .
	Vanadium	{V]	<u>4</u> 0	90	130	43	с. 72		17.
•	Strontium	[Sr]	14	3		17			4
	Cobalt	[Co]	4	5	įā	7	2,		-
	Molybdenua	[Mo]	12	< 2	< 2	2	< 2	. .	
•	Silver	[Ag]	< 1	< 1	< 1	5 <u>1</u>	< 1	< 1	< 1
	Cadmium	[[6]]	< 1	< 1	< 1		< 1		< 1
•	Beryllium	[Be]	く 1	< 1	< <u>1</u>	. 1	< t	* .	4
•	Baran	[B]	< 1 0	< 10	< 10	í ív	< 12 ·		< <u>1</u> 51
	Antimony	[Sb]	< 5	< 5	< 5	9	< 1		
•	Yttrium	E¥ 3	ten T		4	ć			
	Scandium	[5c]	1	2	5	1	4		-
-	Tungsten	[₩]	< 10	< 10	< 10		< <u>1</u> 0		< 10
•	Niobium	(Nb)	4.7 4. 2.	< 10 •	< 10 	20 			< 12 1
	(horium	Lipj	60 57	30	30 54	16			
•	Arsenic	LASJ		20 	20				1
	BISGUTA Ti-	1513		· · · · · · ·	< 5 2 + 5				
	115	າວຄືງ ຄາວາ	N 19 2	 10 +≤ 	< 10 55	<u>_</u>	15. ≩1 €		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•	LINCIUM Malaina	LLII [Ho]	2 Z 16	10 2110	29 7 10	. 10	ν 2 Ζ. 1Δ		1. Z 36
_	THJ1811UM	LUUJ	N 1V	N 1V	\ 10	1. 19	N 19	1.4	N 1V

DATE : #36-22-1999

2 () SIGNED : <u>2010</u> - Contactor

E L CHORATORIES

C

57K 664

I.C.A.P. PLASMA SCAN

Figure-capia Digestion

	PRIME EXPLORATION 10th Floor Lox 10 808 West hardings Vancouver 1.2. V5	E 1117 - Se C 126				T.S.I T.S.I T.S.I	. REPORT No. File No. Invoice No.	. : S - 9393 . : . : 14803	- 6
-	ATTN: J. COTER	i.	ROJECT: TYMAR	OREQUEST CON	EL TAXIS LTD.	R-2087	ALL RESULTS	S PPM	
	E		L5E 5+00N	L5E 4+50N	185 4 +00 00	L5E 3+00N	L5E 2+50N	L5E 2+00N	15E 1+50N
-	Aluriton D	A13	34000	4100	1.000	49 00	52000	52000	3300
	Iron (i	Fe]	71000	13000	450 00	14000	26000	26000	17000
	Calcium (Cal	800	520	460	360	280	260	300
-	Magnesium [Mg]	4300	610	1700	520	410	420	500
	Sodium [Na]	300	60	90	80	230	220	40
-	Potassium [К 3	350	350	260	330	290	270	380
	Titalena D	Ti3	350	9 50	1200	960	590	570	240
	Manginese (Ma I	780	110	260	74	120	120	100
-	Phose the El	P 3	2800	420	7 20	390	480	630	240
	Barico (i	Ē2.	57	21	88	34	46	45	54
-	Chroadest Ef	Cr 3	87	78	110	310	38	27	92
	Zircentum U	Zr]	6	<u>+</u>	4	1	170	170	2
	Coop ((Cu]	26	8	<u>4</u>	15	14	13	20
_	Nick [Ni]	40	35	64	140	13	8	22
	Lead [}	Pb]	19	5	14	7	30	28	5
-	Zinc []	Zni	66	26	64	30	34	35	38
	Vanadadina - EV	/ 0	69	46	65	47	14	14	39
	Stronsium E	Sr)	9	4	7	6	4	3	7
_	Cobalt. [[Co)	11	3	5	4	< 1	< 1	4
	Molyt inum Ch	1 0]	< 2	Κ 2	< Z	4	< 2	< 2	4
-	Silver [4	lo 3	< i	< 1	< 1	$\langle 1 \rangle$	2	2	< 1
	Cadations (C	2d2	< 1	< 1	< 1	< 1	< 1	1	< 1
_	Beryll:um [E	}e]	< 1	< 1	< 1	< 1	1	1	< 1
_	Boro: [F	3-1	< 10	く 10	< 10	< 10	< 10	< 10	< 10
	Antis y (S	3 5]	< 5	< 5	× 5	< 5	< 5	< 5	< 5
-	Yttr. CY	(]	4	< 1	5	1	9	9	1
	Scan (15 [8	le l	3	< 1	4	< 1	< 1	< 1	2
	Tung. 19 Ek		< 10	< 10	< 10	< 10	< 10	< 10	< 10
_	Nico. EN	<i>і</i> Б]	< 10	< 10	< 10	< 10	40	40	< 10
	Thor [T	hī	20	< 10	< 10 [°]	< 10	< 10	< 10	< 10
_	Arsa (A	si	40	10	15	5	10	10	15
	Bise (B	8i]	5	< 5	s 5	< 5	< 5	< 5	< 5
-	Tin (S	h]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
_	Lith: (L	.i]	25	< 5	5	< 5	< 5	< 5	< 5
	Holmic (H	61	< 10	≺ 10	< 10	< 10	< 10	< 10	< 10

DATE : + 8 8-1990

ENGER: Bernie Dunn

Г	ī <u>-</u> 1	÷ .	RATORIES						
L			2-302-4870	STREE SAIKAT	Que d'Adres	57K	<u>ene</u>		
				— TEL+ ≪21E #;	신 사람이 나라 가지?				
Г				firs (
-			I.C.A.P. PL-	A.511.					
r					Acte dagia nuj.				
						т е і	OFDOOT No		-
	TIME EXPLORATION	段(⊴ □⊼				1.2.1	KEFUKI NO	.: 1070	- ,
_	STA FIDOR BOX 1					1.0.1	. rile NU Icusica No		
	25 West Hasting	15 at. 16 at.				1.5.0	. HAVOILE NO	· · · · ·	
L	TTM. I EDETER	106 in. N	Sentert. TVMAD	ARE' LUT CANE	18 7 - TZ FRC		ALL DECULT	D DBM	
	int di rudich	(1996 - 117 - 1 99 4	ou d'essa		MUL ALGULA		
Γ			15F 1+00N	181 01604	- Ceele	-00N	1.4F 4+50N		14000-508
L	FI EMENT			100 C	• • • • • • •		202 1.000	D 74	
Г	Aluminum	EA13	10000	j stre_j€}	-i(p(x))	(d)	31000		1 0
	Iron	[Fe]	450 00	200	600	-30	52000		6 - 30
	Calcium	[Ca]	320	520	480	340	480	140	000
r	Magnesium	[Ma]	840	2700	1400	1200	5400	1100	2300
	Sodium	[Na]	40	60	40	30	40	- 40	70
	Potassium	EK 3	380	7.20	380	0	220	Ó.	10
_	Titanium	[Ti]	75	14 14	520	10	91	х. •	10
	Manganese	[Pin]	280	14 <u>0</u>	220	лQ	1300	1 A.	100
L	Phosphorus	[P]	450		1510	<u>`0</u>	1200	-	. 10
	Barium	[Ba]	85		1 <u>7</u> 2 2	1 Q	52		-7
Γ	Chromium	[[]]]	75	·*	리는 가지 우리 아이	13 13	110		
L	Zirconium	[Zr]	5		21 1	2	8		Ē
	Copper	(Cu)	30	· · ·		11	35		<u>1</u>
Г	Nickel	(NE)	29		in the second se	1 2	71	· · ·	:0
	Lead	EP53	12		- 1	5	15		- 1
	Zinc	[Zn]	58		110	14	100		
-	Vanadium	EV 3	30	32	£7	₿.	49		0
	Strontium	[Sr]	5	ŧ.	¥ -	5	6	Č.	6
L	Lobalt	Ho:	3	/	7	2	16	•	4
_	molybdenum	ปกัญ ม	× 2		- <u></u>	4	< 2	1	· 2
Γ	51iver Codeine	LHQ1 LHQ1			<u>i</u> 	1	1	š 1.	< 1
L	Danullium	10-1	N 1 Z 2			<u>.</u>			1
	Papaa	1963 70 1		-	τ <u>Δ</u> 4	1	× 1 Z 16		1
Γ	Antiacov	rekni.	× Z		±) . ±	. v 5	× 10 7 5		· · · ·
L	Vttnico	1001 111 1	N 4 7		-	* *	د ۲ ۲		् ज र
	Scandium	(5-7			-	-			
Г	Tunnsten	Tig T	< 10	÷.	10		< 10		
	Nichium	0.53	< 10 < 10	· ·		 	< 10		
	Thorium	[Ta]	< 10				< 10		3
-	Arsenic	[#s]	10		- · 	à	20		
1	Bismuth	CB12	< 5	- 		5	10		
L	Tin	[5-]	< i		-	, ê	< 10		< - j
-	Lithium	ELII	5	(10	t E	45		5
Γ	Holmium	[Ha]	< 10	< 10	- 1 0	10	< 10	< 10	< i0
L									

™E : AUG-22-1970

• •

L

en lun

Г	T : 101 1						
L	1 L) -302- (+ 1-1	E) SASKA	TCC: EARLINGHE		<u>;</u>	
_			HONE #	: C - <u>51</u> - 1			
Г			:	19 o ZA, H 47			
L		1 A D AS	Davis				
		and a second second		Adussiegis Diget			
Γ							
LP	RIE – HERRYTON LTD.						.: S - 5393 -
1	Onali otr Bet 10				T Aut	. Fila No	. 1
Г 8	08 – Hestings St.				i dies.	. invoice No	.: 14803
LV	ent - 10 B.C. V60 2X6	···· · · · · · · · · · · · · · · · · ·		Note the state of the	· .= ·-	2.1 DT 218 T	אמס ר
A	t (h. 1918) the state of the st	transa	. 251 60	NSC: 0.15 (0.7.	21 - C	ALL ALLULI	o rrn
Γ		E 3400	2+50N	: <u>145</u> 00	270	145 0+30N	L6E 0+00
L							
Γ	lusinum [A1]	2 7 000	- 200	4400	$\sqrt{1}$	8260	2000 0
L	eran (Fe)	59000	1.00 0	2000		29000	47 000
	Calcium (Cal	240	<u>ି</u> 40	1400	320	460	160
Г	Magnesium [Mg]	1200	660	2000	6 4 0	920	1300
	Sodium [Na]	110	180	510	50	90	60
-	∶otassium [K]	280	310	360	<u>2</u> 27	270	190
-	denium (Ti)	1100	510	1200	27	916	30 0
	oraganese (Mn]	5 50	96	110		210	250
	losphores (P]	5100	130	290	and and a second se	260	680
_	eletium [Ba]	72 24	26	38	20	27	65
Γ	tanium (Cr)	23	350	150	-	29	4 <u>;</u>
L	Jaconius [[r]	10	5			. 2	3
	ogen iCul	7	16	11		11	1/
Г	Takel (Nil	9	_3 0	78	·	15	20
L	· 23 · 1201	20 57	4	 د ۳	-	12	14
		8. A1	23	21 7 4	<u> </u>	40 7/	25 77
r	tessolum LV J	41	24 (A	01 47	20	7 Q 2	e/ ^
	* TOATICE LOPI	**	10	10	5. 12	2	۳. ۲
	Control 1993 Control 1993	й 2 го	ل ۲	р 5	-	A	2 5
-	Eiluan IASI	2 1	: 1	- - 1	- -	- - 1	< 1
	admina [[d]	< 1 < 1	1	2 1	;	< 1	< 1
L	rvlling [Rel	× 1 < 1	1		-	: 1	< 1
_			10	10	÷ ;	< 10	X 16
Γ	vilianov (Sh)	< 5	5	. 5		< 5	< 5
L	Steine (V)	4	1	ž		-	r. Z
	todium (Sc)	< :	1	2		1	Ī.
Γ	insten [W]	< 10	10	- 10 		4 10	< 1 0
L	icius (No)	50	10	10	<u>.</u> ".	20	10
	Letium [Th]	20	10	10		: 10	< 10
r	steic [As]	15	5	5. 2	1	10	15
	ath [Bi]	< 5	5	 5 		4 E	< 5
	(En)	< 10	10	10	* . •		K 10
C	ishium (Ci)	10	× 5	: 5	· 1	1 5	15
1	Holmium (Hol	< 10	10	< 10	10	< 10	< 10
L							

DATE 18-21-1917

[

Et: _____

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROMPrime Explorations Ltd.
10th Floor, Box 10-808 West Hastings St.REPOR
S94Vanceuver, B.C.
V6C 2%5S94

REPORT No. S9444

INVOICE #: 14622 P.O.: TYMAR

SAMPLE(S' OF Soils

W. Raven Project: VR

REMARKS: OreQuest Consultants Samples Line 9E Samples Not Rec'd

SIGNED

Au pp**b**

L53 0+50S	5
L5E 1+00S	5
L 5E 1+50S	5
L5월 2+00\$	< 5
L 5% 2+50S	< 5
1 5⊡ 3+00S	< 5
L 5⊠ 3+50S	< 5
L5E 4+00S	<5
15E 4+50S	< 5
L 5표 5+00S	≤ 5
L5⊠ 5+50S	5
L6⊠ 0+50S	< 5
L6E 1+00S	5
L6E 1+50S	< 5
L6B 2+00S	< 5
L 6≅ 2+50S	≪5
L6E 3+00S	<5
L6⊠ 3+50S	1.0
L6⊞ 4+00S	< 5
L6는 4+50S	< 5
COPLES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Aug 14/90

Prince a CTA Page 1 of 2

For enquiries on this report, please contact Customer Service Department. Scorples, Pulps and Rejects discarded two months from the date of this report.

TSL LABOR / TORIES

2 - 10000 800007R2010, EAST SUASKATOLOGI SUCCATOR TWAR 610 6A4 3003; 931-1050000100003000000-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) TROM Prame Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X5

 ;-,	170	:Tr:		
	ΩĢ	<u>: 4</u>	<u>(</u>	

INVOICE 14 24620 **P.O.: T**YPERE

SAMPLE(S) OF Soils

W. Raven Project: VR

REMARKS: OreQuest Consultants Samples Line 9E Samples Not Rec'd NSB Denotes No Sample in Bag

An
p∋p

L6E 5+00S	< 5
L6E 5+50S	NSB
L6E 6+00S	< 5
L8E 5+00N	< 5
L8E 4+50N	< 5
L8E 4+00N	<5
L8E 3+50N	15
L8E 3+00N	<5
L8E 2+50N	<5
L8E 2+00N	<5
L8E 0+00	<#5
L8E 0+50S	<#5
L8E 1+00S	<#5
L8E 2+00S	2 O
L8E 2+50S	<#5
L8E 3+00S L8E 3+50S L8E 4+00S L8E 4+50S L8E 5+00S	 <5 <0 1.0
COPIES TO:	C. Edziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Aug 14/90

Beince Vie SIGNED Pag ...÷ . .

For enquiries on this report, placese contact Customer Specifice Department. Samples, Pulps and Rejects discarded two chorths from the date of the report.

T S t LABORATORIES 2-302-401 - STREET, BASKATOON, 34800 - 87K 644 FAX #: (306, 24 I.C.A.P. PLASMA SCAN Aqua-Reals ... storn T.S.L. REPORT No. : M - 7621 - 1 PRINE EXPLORATION LTD. T.S.L. File No. : 10TH FLOOR.BOX 10-808 WEST HASTINGS ST T.S.L. Invoice No. : 14953 VANCEVER B.C. V60 136 PROJECT: VR ALL REFULTS PPM ATTR: J. FOSTER - OREQUEST P.O. TYMAR 15E 1+505 CC 08 C5E 2+505 C5E 0+005 C5E 3+505 C5E 4+008 L5E 0+508 L5E 1+005 ELEMENT Aluminum [All 15000 29000 10000 33000 25000 19000 20000 48000 43000 77000 54000 Iron [Fe] 34000 66600 53000 Calcium [Ca] 4300 800 560 200 120 160 160 . 13 Magnesium [Mg] 2200 1500 470 320 550 1700 1800)() *6*0 70 Sodium [Na] 180 30 410 50 60 70 Potassium [K] 460 200 510 400 180 190 230 Titanium [Ti] 780 180 230 1400 140 160 270 710 1100 160 280 140 100 Manganese [Mn]
 280
 300
 140

 1100
 700
 250

 31
 81
 30

 24
 14
 34

 220
 15
 8

 13
 17
 21

 3
 4
 14

 38
 12
 10

 42
 45
 46

 24
 79
 130

 3
 2
 3
 Phosphorus (P] 920 1400 860 240 190 120 91 Barium [Ba] 40 9 22 Chromium [Cr] 3 6 2 lirconium [[r]
 -0
 40
 27

 28
 32
 13

 18
 17
 18

 88
 240
 100

 33
 27
 21 Copper [Cu] bickel ENil [РЬ] 198**0** 1.1 [โก] Zinc 43 Vanadium (V-) 140 3 75 18 14 3 2 7 Strontium [Sr] 3 4 < 2 / 5 ī. < 18 4 [Co] ÷ Cobalt 6 < 2 < 2Molybdenum [Mo] 2 $\langle 1 \rangle$ Silver [Ao] < 1 [[d] 1 < ; < 1 Cadmium $\langle 1$ < 1 $\langle \downarrow \rangle$ Bervllium [Be] < 1 $\langle \langle \cdot \rangle$ < 10 CB 3 < 10 < 10 K 19 Boran < 5< 5An**timo**ny [35] < 5 < 5 1 Vitrium IV 1 Ş : 7 2 Scandium (Sc) 1 2 < 10 < 10 < 16 10 10 < 10 Tanasten (W.) 60 < 10[Nb] $\langle 10 \rangle$ < 10 Aiobium 50 26 50 Thorius ETh 3 40 20 Ansenic [As] 45 10 15 17 < 5< 10 < 5 5 Bismuth [Bi] $\langle \langle \rangle$ < 1. -10 10 K 10 6Em 1 < 19 95 Lithium [Li] 130 83 1001日。 < 10 < 10 < 10 < 10 < 10 < 10 Holmium (Hol < 10

DATE: AUG-25-:576

SIGER Permie Com

TIS L LABORATORIES - 1-302-4878 - STREET CORASKATOON, BASKATON CORAS STR. 644 TELL (3042 #: (3047 - 931 -FA) - (305 - 242 -) LICLARP. PERCHARSE Aqua-degia Dick Lot PRIME EXPLORATION CTD T.S.L. REPORT No. : M - 7621 - 2 10TH FLOOR.BOX 10-805 WEST HUSTINGS 51 7.5.L. File No. : VANCOUVER B.C. 1.S.L. Invoice No. : 14955 V6C 2X6 ATTN: J. FOSTER PRODECT: NA - OF MEST F.O. TYMAR ALL RESULTS PPM 155 4+505 CDE 5+600 CDE 5+306 CAE 0+1 + CAE 1+005 CAE 1+505 CAE 2+005 CAE 2+505 ELEMENT Aluminum [Al] 2300 18000 **1800**0 15000 22000 6900 10000 6800 [Fe] 9300 55000 Iron 52000 57000 69000 17000 56000 47000 Calcium [Ca] 640 480 760 600 280 840 900 620 Magnesium [Mo] 640 2000 1800 2800 1800 1200 1200 1200 [Na] 150 40 50 Sodium 110 240 - 30 280 230 Potassium [K] 290 250 350 **26**0 230 420 310 250 Titanium [Ti] 420 480 520 280 1600 150 2900 500 170 45 Manganese [Kn] 190 560 320 110 140 160Phosphorus (P] 210 2300 580 73. 970 370 443 44() 4. 28 110 83 44 19 Barium [52] 100 26 37 22 34 Chromium [Cr] 6 4ċ 8 15 12 < 1 ç 12 5 7 3 Zirconium [2r] $2\dot{\epsilon}$ £ 5 5 7 38 120 25 22 17 87 24 33 (Cu) Zέ 4 Cooper 6 13 Nickel ENI1 4 Ę 14 υ., 8 24 41 88 17 16 38 19 20 Lead (Fb) 6 -6 Zinc [Zn] 28 49 15% 51 41 7 8 Vanadium (V 3 92 63 40 34 170 7 цо С 11 8 Strontium [Sr] 12 8 6 5 2 3 С. Cobalt [Co] 7 2 ć 2 < 2 2 Molybdenua [Mo] < 2 < 1 < 1 < 1 Silver [Aq] < 1< 1 Ź Cadmium [Cd] < 1 < ; < 1 < 1 < **i** < 1 Bervllium (Bel < 1 $\langle \rangle$ < 1 $\langle 1$ < : < 1 < 10 10 < 5 < 5 iù [B] 4 10 < 1020 < 16 Bonan -10 Ę < 5 <u>,</u> Antimony (Sb) < 5 4 < 5 5 24 5 Yttrius (Y] 1 $\begin{array}{cccc} & 1 & & \\ < & 10 & < & 10 \\ & 20 & & 30 \\ & & & 20 \end{array}$ 2 2 2 ÷. Scandium (663) 1 < : 5 1 З 2 < 10 < 10 , 10 < 10 20) 10 (10 < 10 Tunosten (W) $\langle 1 \rangle$ < 10 Niobium END I < 10 < 10 < 1030 30 < 10 20 20 < i0 30 Thorium (Th) 20 ZĒ Arsenic [As] 10 15 15 5 10 15 15 < 5 < 5 (Bi) < 5 < 5 < 5 < : < 5 Bismuth √ √ 10 += . 10 Tin < 10 < 10< 10 < : 55a1 < 10< 16 75 73 75 65 30 65 45 Lithium [11] 40 < 10 < 10 < 10 < 10 < 10 < 10 Holaiua [Ho] < 10 < 10

DATE : 405-29-1950

1115 . Prince Vim

_	T D :									
Γ	1 3 1		7-302-4B	TH STREET.		- 19-3704F9AN	۵A -	A		
				TELEPH		FE: 1033				
r				FAX 4:		142 - 4717				
			I.C.A.P. P	YLASMA SCAN	Α. "					
r	DOTHE CYPINDATT				aquum.	séra préesti	הנ			
	10TH ELOOR.EDX	10					- 2 (REPORT on		1 - 7
	808 WEST HASTIN	IGS ST						File No.	:	1 2
	VANCOUVER B.C.						. .	Invoice No.	: 14930	
	V6C 2X6									
-	ATTN: J. FOSTER	EPC	JECT: VR - (DREQUEST P	.). Tynei			ALL RESULTS	PPM	
Γ			L6E 3+00S	L6E 3+505	고린 속~~~~~~	165 4450S	165 - 00 5	L6E 6+(+)\$	L8E 5-00N	L8E 4+564
L	ELEMEN7									
	Aluminum	FA13	20000	70000	DEDG-	57.000	• 11A	17666	71000	04600
	TOMINUM TPOD	(Fal	58000	27000 33000		10000 50000	10 .54 10 536	17000 76666	31793 15 000	24000 77000
	Calcium	(Ca)	300	5000	440	400	790	4BG	100	12000
~	Magnesium	[Mo]	1900	2500	3306	2100	1000	450	3800	2500
	Sodium	[Na]	50	130	40	70	30	90	30	30
L	Potassium	{K]	160	410	19/-	220	:50	4 30	170	250
_	Titanium	[Ti]	370	290	•	250	: (0	1200	100	300
Γ	Manganese	[Mn]	170	1400		590	î.	576	710	590
L	Ph ospho rus	(P)	540	1400	70	1000		32 00	\$74	1200
	Barium	[Ba]	39	140	-	10	1	5 7	é	
Γ	Chromium	[Cr]	39	31	÷ ;	31	. ė	15	<u>87</u>	7:
L	Lirconium	LZrj	6	2		/	5	24	16	7
	Lopper	1003	24 37	27 70	-	27 77	9 	14	20	28
Γ	NICKEI Kond	19413 2060	10	32 17	<u> </u>	10	1 13	0 74	25 10	22
L	7ior	[76]	61 61	14		10 54	-7 34	ුය අත	17:	10 55
	Vanadium	EV 3	63	33	47	5A	ng.	70	1 14 7 <u>2</u>	110
Г	Strontium	[Sr]	5	74	7	7	7	6	5	6
L	Cobalt	{Co]	2	7	•	7	2	< 1	12	Ĺ
	Molybdenum	(Mo)	< 2	< 2		< 2	< Z	-	< 2	2
Г	Silver	[Ao]	< 1	2	\$ £	< 1	< ≛	< 1	< 1	1
1	Cadmium	[Cd]	< 1	< 1	K L	< 1	< <u>1</u>	< 1	< 1	< 1
-	Beryllium	[Be]	< 1	4	N	< <u>1</u>	÷ -	$\langle 1 \rangle$	$\langle \cdot \rangle$	< 1
C	Boran	LB 1	< 10	10	1	< 10	- 10 -	< 10	< 10 	< 10
	HOTIMONY	(50) 5V 3	< 3	5 2		5		< 5	< <u>t</u>	< 3 2
	TUTTUR Corodium	EN I FØAR	<u> </u>	45 2 4		-	2	Ċ / -	<u>ن</u> سر	- -
~	DLanU1UM Twoneten	COL 3 FW 7	1 7 10	 1 ₹ 10 	i. N	+ 1 2 14	-	N 1 7 10	÷ 7 · · ·	1
	Ninhiam	ENH 1	√ 40 10	× 20 76	5 - 1 7 -	1 4 2 74	N UZ TA	N 1N 46	× 1. ∠ 19	N 19 7 16
L	Thorium	[Th]	10	10	2	20	- * 	20	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	20
_	Arsenic	(As)	30	10	-	25	1	20	25	15
Γ	Bismuth	(Bi)	< 5	< 5	21 - 21 5	5	4. E	< 5	< €	< 5
L	Tin	[Sn]	< 10	< 10	i i	10		< 10	< 10	< 10
	Lithium	[L1]	50	65	5. 2	40	.2	ZV	άÚ	72
Γ	Holmium	[Ho]	< 10	< 10	10	< 10	< 10	< 10	< 10	10
L										

L

Berie Our

	, ·									
Γ	151	. LABO	RAIURIEL tutoi di	ч : ст .	PARKATAS (BACMATAUENAA	270 LA.	R.		
L				LEPH	DNE #: (396)	931 - 1953	476 JR	7		
_				え 着き	(106)	242 - 4717				
Γ				1 A.T						
L			1.1.9.7. 1	1999 - CHAN	۸	ant Diaarin				
_					HÇU 2770	oli riñssu	24			
	PRIME EXPLORATI	ON LTD.					Ŧ.E.C.	REPORT No.	: - 762:	- 4
L	10TH FLOOR, BOX	10-808 W	est hastiged e	T			ī.s.u.	File No.	:	
~	VANCOUVER B.C.						7.5.L. I	invoice Na.	: 1963	
	V6C 2X6									
L	ATTN: J. FOSTER	FRD	JECT: Ve -	ORLE LIST	P.O. TYXAR			ALL RESULTS	PP	
Γ			LBE 3+00%	LET 1-50N	LSE 3+00N	LBE 2+50N	188 2+00N	L8E 0+00	L€_ ે ~50 S	LBE 1+00S
	Aluminum	(A1)	23000	12110	15000	16000	28000	9100	12-00	23000
	Iron	[Fe]	81000	$\dot{z} = 0$	53000	54060	63000	66000	200	66000
	Calcium	[Ca]	100	130	700	120	140	300	440	2400
~	Magnesium	[Mg]	420	0 035	630	1200	1000	560	1200	1200
	Sodium	[Na]	210	:10	60	50	240	9 0	110	60
	Potassium	(K]	350	200	220	170	280	120	230	460
_	Titanium	[Ti]	1400	- 70	1200	820	1100	960		62
	Manganese	[Min]	320	- 30	230	88	216	740	<u> 90</u>	140
L	Phosphorus	[P]	4700	19 .0	1200	360	1300	520	190	900
	Bariua	[Ba]	27		47	71	35	71	40	86
Γ	Chromium	1073 67-3	21 70	· ċ -	24	40	25	9	22	14
L	Zirconium Contum	CCU3	65 7	/ + 1	E	4 77	1/	10	4 	5 17
	Nickal	LUU3 FN:7	12	.o ~a	10 5	40 10	11 G	14	17	10
٢	last	(P61)	-7	40 F		12		14	्र स्	1.0
L	7inc	[7n]	41 41		4 G	12	41 5/1	71	्रम् इ.स्	54
	Vanadium	rv 3	58	AR	106	110	49	320	29	50
r	Strontium	{Sr}	4		10	3	3	7	ç	19
ł	Cobalt	(Co)	< 1	7	1	2		36	Ę.	2
-	Molybdenum	[Mo]	4	· 2	â	2	2	< 2	2	< 2
r	Silver	[Ag]	< 1	1	< 1	< 1	< 1	< 1	. 1	< 1
	Cadmium	[Cd]	< 1	1	< 1	< i	< 1	< i	< i	< 1
	Beryllium	[Be]	< 1	N 1	< 1	< 1	< 1	< 1	1	$\langle 1 \rangle$
~	Baran	[B]	< 10	< 10	< 10	< 10	≤ 10	< 10	: 10	< 10
	Antimony	[Sb]	< 5	N 5	< 5	< 5	< ₹	10	5	< 5
L	Yttrium	[Y]	5	2	2	2	<u>i</u>	5	2	2
_	Scandium	[Sc]	< 1			1		7	2	2
Γ	lungsten	LW] 23163	< 10 =A	< 19 A	8 19 #A	3. 10 7. 05	5 IV M	< 10	99 - • • •	< 10 7 HA
L	NICOIUM	1003	29 70	12 15	4V 50	\ 10 55	49 50	10 N 10	∿ 1⊻ 1 0	N 1V 50
	Ancepic	ιπ: [Δ=]	3V (7,	. V 6	∠ √ 54	20 75	고망 강 북	30 50	122	20 { 5
Γ	Ricauth	[Ri]		av 1 R	40 2 =	20 7 5	1 4 2 5	< 5		् प्र (5
L	Tin	(5n)	< 16	с ч. К		10		< 10	· (*	10
	Lithium	(Li]	20	10	20	25	28	20	15	25
Γ	Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< :0	10
1										

L

CIGNED : Bernie Dum

		1.05								
	181	LAB	URAICRIES		Sanuatety a			4		
			2-302-46%	H SIREEI.	SASKAIOUN, I	SASKA LAEKAN	578 5 8	4		
				TELEPH	ONE #: (306)	931 - 1033				
~				EAX #:	(305)	745 - 471.				
			I.C.A.P. P	lasma scan						
					Aqua-Ri	igia Ergestic	nc			
,										
PRI	ME EXPLORATIO	on ltd					T.S.L.	REFORT No.	: M - 7601	- 5
- 107	H FLOOR, BOX	10-608	WEST HASTINGS S	Τ.			T.S.L.	Eile No.	1	
- VAN	COUVER B.C.						T.S.L.	Invoice No.	: 14903	
VAC	2 7XE									
	N: J. FOSTER	PRO	JECT: VR ~ 0	REQUEST	P.O. TYMAR			ALL SESULTS	PPM	
-			185 7+005	(8F 7+505	185 3+005	.ST 14801	1 PF 4+00S	188 4+50 9	1 85 5-000	
	EI CMENT		202 2,000	202 27000	001 0.000		202 1.000	2011		
-	Aluminum	C 4 4 3	20000	17000	: 7000	11000	0700	17666	5 87.53	
	21 1 #1600	1411	20000	17000	10000	- 1999	000 F	13200	275 V 662 S S	
	LLOU	LFei	48000	63000	47000	/ 3000	36000	33000	460.00	
	Calcium	LCal	1400	480	920	840	400	900	1500	
	Magnesium	[Mg]	4000	960	1400	920	390	1500	2600	
	Sodium	[Na]	80	70	90	50	60	60	140	
	Potassium	EK 1	440	310	320	180	280	260	450	
-	Titanium	(Ti)	180	490	550	E10	8 9 0	790	514	
	Manganese	[Mn]	1100	4 80	220	390	220	: 20	<u>Tene</u>	
_	Phosohorus	[P]	1800	1700	3000	:500	1400	6053	14:00	
	Barium	[Ba]	120	110	74	130	57	130	1.0	
-	Chromium	{Cr]	35	21	29	70	13	27	·	
	Zirconium	[Zr]	5	Ģ		2	3	1.7		
-	Conner	fCul	69	69	78	70	37 87	37	19	
	Nickel	ENi 1	27	10	14	ů,	60	70	·	
	Laad	(Ph1	14	 73	18	76	18	10		
_	7 inc	[70]	100	20 47	57	10 27	10	17 47		
	Uncadium	5U 3	100	07 51	50	74 1360	70	74	1772	
-	Cincolium	10-1	17	101		240	11	17	ಲ್ಲಿ ಕರಾ	
		1013	10	14	14	11	0	1.5	12	
-	CODALV Malufation	1603	14	0 5		1 	ź		15	
	noiyodenum		× Z	<u> </u>	× 2	2	4	< <u> </u>	× _	
-	Silver	LHQJ	$\langle 1 \rangle$	1		1	< 1	< 1	< 1	
_	Cadmium	[[0]]	< 1	< 1	< 1	1	< 1	< 1	1	
-	Beryllium	[Be]	< 1	< 1	< 1	5. <u>1</u>	< 1		-	
-	Saron	[B]	< 10	< 10	< 10		< 10	< 10	< 10	
	Antimony	[56]	< 5	< 5	4.5	n, 5	< 5	i 5	< 2	
-	Yttrium	[Y]	E.	4	3	7 41	3	2	43	
	Scandium	{Sc]	< 1	< 1	5 1	-	< 1	. 1	2	
	Tunasten	[W]	< 10	< 10	< i0	. 10	< 10	< 10	 13 	
	Niobium	[Nb]	< 10	10	20	20	< 10	20	< :0	
-	Thorium	[Th]	30	20	< 10	30	20	20	# 14 212	
	Arsenic	[As]	15	25	20	73 2 232	10	20	17	
	Bismuth	[Bi]	10	< 5	< 1	, =	< 5	< 5	< 1	
-		[5n]	< 10	< 10 (10	< 10	· •	< ι <u>ά</u>		 4 	
	i stat 1 i i i i i i i i i i i i i i i i i i i	ELLIT	л. ДС	5 • • • 70	~		10	16	5	
-	LIGIUM Unlaina	CLLJ FUAJ	57 (10	20 10	لاست ۲. ۱۸	10 10	10 Z 10	10 7 10	2 10	
	1010100	101	N 10	10	\times 1V	11/	\ 1V	N 10	N 19	

L

515NED : Bernie ann

DIV. BURGENER TECHNICAL E CERPRISES LIMITED

2 - 302 - 481, STREET, EAST SASKATOON, SASUATCHEWAN S7K 6A4 ☞ (306) 931-1033 - FALL (JC3) 242-4717

CERTIFICATE OF ANALYSIS

SAMFLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

> INVOICE #: 14643 P.O.: TYMAR

SAMPLE(S) OF Soils

W. Eaven Project: VR

.

REMARKS: OreQuest Consultants Samples

Au p**pb**

COPIES TO: INVOICE TO:	C. Idziszek, J. Foster Prime - Vancouver
L7E 4+50N	<5
17E 4+00N	<5
L7E 3+50N	<5
L7E 3+00N	<5
17E 2+50N	<5
L7E 2+00N	Not Rec'd
57E 1+50N	<5
LTE I+OON	< 5
L7E 0+50N	< 5
17E 0+00	<5
L7E 0+50S	<5
L7E 1+0 0S	<5
L7E 1+50S	<5
L7E 2+00S	<5
L7E 3+50S	<5
17E 4+00S	<5
L7E 4+50S	<5
17E 5+00S	
L7E 0+005	
T77 6-000	4 F

log 15/00

Bernie Dunn SIGNED

For enousiler on the seport, please contact Customer Service Department. Samples, why and clights discarded two months from the date of this report. Page 1 of 3

2 - 302 - 40th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (☑) (306) 931-1033 — IAX: (306) 242-4717

CONCEPTER OF A NALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, or Lo-808 West Hastings St. Vancouver, 2.02 V6C 2X6

INVOICE #: 14643 P.O.: TYMAR

SAMPLE(S) CF Soils

W. Raven Project: VA

R

Ľ

REMARKS: OreQuest Consultants Samples

Au ppb

-			
L/E :	>+00N		<5
L17E	0+00		<5
L17E	0+50S		<5
L17E	1+00S		<5
L 17 E	1+50S		<5
L17E	2+00S		<5
L17E	2+50S		<5
L17E	3+00S		<5
L17E	3+50S		<5
L 17 E	4+00S		<5
L17E	5+00S		<5
L18E	5+00S		<5
L 18 E	4+50S		<5
L 18 E	4+00S		<5
L 18 E	3+50S		<5
T.18F	3+006		/ 5
T 10E	2+509		
7 1 0 1	2+303		
10L0L			
лтог. т 10т	1+000		
2105	T+002		< 3
יחסדדי		C	та

COPIES TO: C. Idziszek, d. Foster INVOICE TO: Prime - Vancouver

Aug 15/90

Bernie U SIGNED .

Page 2 of 3

Ï

or enquiries on this report, please contact Contract Device Departments imples, Fulps and Rejects discarded two measure from the date of this report.

2 - 302 - 464 MREET, EAST SKATOCH CHUNTCHEWAN

S7K 6A4

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prame Explorations Ltd.							
	10th Floor, Box 10-808 West Hastings St.	REPORT No.						
	Vancouver, B.C.	SS449						
	V6C 2X6							

INVOICE #: 14643 P.O.: TYMAR

SAMPLE(S) OF Soils

W. Raven Project: VR

R

REMARKS: OreQuest Consultants Samples

		Au ppb
L18E L18E L21E L21E	0+50S 0+00 5+00S 4+00S	<5 <5 <5 <5
L21E	3+50S	<5
L21E L21E L21E L21E L21E L21E	3+00S 2+50S 2+00S 1+50S 1+00S	<5 <5 <5 <5 <5
L21E L21E L7E 2	0+50S 0+00 2+50S	<5 <5 <5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 15/90

Bene Page 3 of 3

;

For enquiries on this report, a case contact Customer Service Department, Samples, Pulos and Rejects of conded two months from the date of this report.

SIG ED .

T S L LABORATORIES

2-302-48TH STREET, CASKATOON, SASKATAAAWAN S7K 6A4 TELEPACAE #: (306) 931 - 1033 FAX #: (306) 242 - 717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. KEPOKI No.: S - 9449 - 1 -
10th Floor Box 10	T.S.L. File No. :
808 West Hastings St.	T.S.L. Invoice No. : 15010
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: VR - OREQUEST CO. TYMAR	ALL REPELTS PPM

LTE 6+005 LTE 5+508 LTE 1+005 LTE 4+505 LTE 4+005 LTE 3+508 LTE 2+0.0 LTE 1+505 LTE 1+005 LTE 0+505

ELEMENT

E

Ľ

E

E

L

Ľ

Γ

Γ

...

Aluminum	[A]]	13000	21000	2600	23000	120 00	9700	22000	28000	24000	18000
Iron	(Fe]	32000	28000	28000	58000	620 00	47000	61000	66000	63000	29000
Calcium	[Ca]	6200	9600	31000	1000	560	660	360	520	220	900
Magnesium	[Mg]	6300	7400	6100	3700	2500	900	2300	1600	2300	830
Sodium	[Na]	110	200	90	50	50	90	130	110	90	80
Potassium	EK 1	1300	1100	2500	460	350	450	340	310	250	310
Titanium	[Ti]	69	300	11	280	820	690	360	570	270	86
Manganese	[Mn]	250	1100	1010	450	400	400	300	150	290	330
Phosphorus	[P]	1100	540	<u> 1</u> 74	1500	67 00	2800	£00	1000	650	840
Barium	(Ba]	170	9 3	12	69	50	57	64	71	45	86
Chromium	{Cr}	64	93	13	43	61	28	45	37	40	11
Zirconium	[Zr]	5	5	- J	7	12	6	8	54	11	2
Copper	{Cu}	38	26	1.0	50	36	20	22	13	25	10
Nickel	[Ni]	23	29	.2	28	26	11	iS	13	21	7
Lead	[Pb]	60	15	1700	44	26	18	22	30	13	14
Zinc	[Zn]	240	9 9	3400	85	50	51	67	57	92	43
Vanadium	[V]	48	97	9	87	71	57	70	65	150	31
Strontium	[Sr]	51	34	170	9	6	8	11	8	4	9
Cobalt	[Co]]	10	9	3	6	6	3	Ŀ	1	5	3
Molybdenum	[Ma]	< 2	< 2	< 2	< 2	2	< 2	< 2	2	2	< 2
Silver	[Ag]	< 1	< 1	3	< 1	< 1	< i	< 1	< 1	< 1	< 1
Cadmium	[b3]	2	< i	17	< 1	< i	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb)	10	< 5	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	[Y]	3	5	•	4	3	4	3	4	3	3
Scandium	[Sc]	4	7	2	1	< 1	< 1	2	2	5	1
Tungsten	[₩]	< 10	< 10	10	< 10	< 10	< 10	< 16	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	K 10	20	30	20	20	40	< 10	< 10
Thorium	(Th]	20	20	.)	20	20	< 10	30	30	30	< 10
Arsenic	[As]	110	25	5	10	15	20	35	< 5	20	25
Bismuth	[Bi]	5	5	ζ 3	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	K 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	20	20	10	25	15	10	20	20	25	20
Holmium	(Ho)	< 10	< 10	〈 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Bernie Com

	•											
r	T 5 (: AR	ORATORIES									
L	1 66 6	E 1124	2-302-	48TH STRI TI	EET, SASKAT ELEPHONE #:	rdon, SAS : (306) 9	KATCH EWAN 31 - 1033	57K 6	A4			
Г				F	AX #:	(306) 24	2 - 4717					
L			I.C.A.P.	Plasma (ecan	A D:	- Toireati-					
C						напа-кедт	a proestion	1				
L	PRIME EXPLORATIO	DA LTD.						T.S.L.	REFEREN	No.: 5 -	9449 - 2	
	10th Floor Box	10						T.S.L.	Fils !	No.:		
ſ	808 West Hasting	o≘ St.						T.S.L.	Invoice (No .: 150 1	10	
L	Vancouver B.C.	V6C 2 X6										
	ATTN: J. FOSTER	PRI	OJECT: VR	- OREQU	EST P.O.	TYMAR			ALL FESS	LTS PPM		
[ELEMENT		L7E 0+00	L7E 0+50N	L7E 1+00N	L7E 1+50N	172 2+50N	L7E 3+00N	L7E 3+50N	L7E 4+00N	L7E 4+50N	L7E 5+00N
Г	Aluminum	[A]]	4300	7300	22000	14000	11000	45000	35 000	25000	31000	18000
L	Iron	{Fe]	28000	26000	51000	68000	28000	39000	50 00-2	65000	65 000	28000
	Calcium	[Ca]	1000	2300	700	400	840	260	5 80	400	260	220
ſ	Magnesium	[Mg]	590	1400	3700	1500	1400	1200	26 00	1400	2100	1200
L	Sodium	[Na]	100	370	130	60	90	300	200	90	40	60
	Potassium	(K 1 (7:1	420	420	380	270	2/0	410	250	190	210	170
Г	Altanium Magaagaga	[1]] [Me]	37V 07	1200	270	230	240	1300	tii Sie	6/V 140	32V 776	100
L	Phoenhorus	ER 1	580	70 420	1200	1700	74 410	300 770	4755 1755	140 050	000 890	100
-	Rariua	(B:1	44	-20	1200	54	77	44	1	58	78	54
Г	Chromium	(Cr)	9	13	65	67	33	24	. 7	65	77	36
Ľ	Zirconium	[2r]	2	6	7	7	2	150		12	8	3
-	Copper	[Ca]	29	73	21	37	22	15	11	17	21	10
r	Nickel	[Ni]	12	10	35	38	24	13		13	21	11
Ľ	Lead	(45)	8	32	15	17	9	25		23	14	10
-	Zinc	[Zn]	100	40	110	71	47	130	С. 	38	58	31
Г	Vanadium	LV]	65	46	90	/9	64	51 7	20	89	110	84
1	STRONTIUM Cobalt	1551 1751	11 T	-34 - A	14 L	5 1	11 A	ა ∠		11	/ 5	0 7
-	Maluhdanua	teor (Mal	20	 	< 7	۵ ۲	،	()	2 2	4	< 2	< 2 < 2
	Silver	[Aa]	< 1	< 1	$\langle 1$	< 1	< 1	1	λ. Έ	< 1	< 1	< 1
	Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	ζ.:	< 1	1	< 1
-	Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	1	< 1	< i	< 1	< 1
r	Baron	IE 1	< 10	< 10	< 10	< 10	< 10	< 10	$\langle 0 \rangle^{2}$	< 10	く 10	< 10
	Antimony	[55]	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
-	Yttrium	[Y]	2		2	2	2	8		3	2	1
r	Scandium	1563	1		ن د به	ن ۱۰ ۲		د ۱۰ /		Z (10	2 7 10	Z 10
1.	lungsten	EK J EMR 2	< 10 Z 10	< 10 Z 10	× 10 Z 10	< 10 Z 10	∖ 10 ∉ 10	\ 10 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N 102 	۲0 × 10	× 10 < 10	\ 1V { 10
-	Ni UU I UA Thorium	1903 1751	< 10	< 10 < 10	10	× 10 20	40	30 20	14 - 14 14 - 14 14	20	20	10
_	Arcenic	Cou {ê≂]	40	10	< 5	15	10	10	4- 5-15	< 5	15	5
	Bismuth	EB(]	< 5	< 5	< 5	< 5	< 5	< 5	< 2	< 5	< 5	< 5
	Tin	(9n]	< 10	< 10	< 10	< 10	< 10	< 10	K S	< 10	< 10	< 10
_	Lithium	[Li]	< 5	< 5	35	10	5	10	15	15	30	10
Ľ	Holmium	(Ho)	< 10	< 10	< 10	10	< 10	< 10	< 1 0	< 10	10	< 10

DATE : AUG-31-1950

SIGNED : Bernie

[·											
C	TSL	LABC	RATORIES 2-302-	-48TH STRI Ti Fi	EET, SARKA Elephone # AX #:	T OON, SASS : (306) S (306) 243	- TCHEWAN 11 - 1033 2 - 4717	5. 6	94			
L				DI 2014								
			1.C.A.P	. PLASMA :	SCAN	Aqua-Regi	Dicestion	1				
	PRIME EXPLORATIO 10th Floor Box 1 808 West Hasting Vancouver B.C. V	DN LTD. 10 35 St. 76C 2X6						7.2. 1. 1.3. 1. 1.3. 1.	REPORT File Invoice	Na.: 8 - No.: No.: 1501	9449 - 3 10	
1	ATTN: J. FOSTER	PROJ	ECT: VR	- OREQUE	ST P.O. 7	rymar			ALL RESU	LTS PPK		
[ELEMENT		L17E 0+00	17E 0+50S	L17E 1+00SI	.17E 1+503:	. 175 2+005 0	.17a 2-30 5 1	.17E 3+005I	. 17E 3 +509	.17E 4+00SL	.17E 5+00S
	Iron Calcium Magnesium Sodium Potassium Titanium Manganese Phosphorus Barium Chromium Zirconium Copper Nickel Lead Zinc Vanadium Strontium Cobalt Molybdenum Silver Cadmium Beryllium Boron Antimony Yttrium Scandium	[Hi] [Fe] [Ca] [Mg] [Ma] [K] [Ti] [Mn] [P] [Ba] [Cr] [Ca] [Mn] [P] [Ba] [Cr] [Cu] [Ni] [Pb] [Zn] [V] [Sr] [Co] [Mo] [Ag] [Cd] [Be] [Sb] [Y] [Sc]	$ \begin{array}{c} 18000\\ 61000\\ 1100\\ 1300\\ 150\\ 340\\ 2500\\ 260\\ 340\\ 130\\ 17\\ 24\\ 25\\ 9\\ 24\\ 53\\ 150\\ 17\\ 2\\ 4\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 5\\ 7\\ 2 \end{array} $	$\begin{array}{c} 13000\\ 54000\\ 740\\ 980\\ 60\\ 160\\ 1200\\ 120\\ 370\\ 62\\ 29\\ 15\\ 19\\ 16\\ 26\\ 37\\ 140\\ 10\\ 2\\ 4\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 1\\ < 5\\ 3\\ < 1\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 3\\ < 1\\ \end{array}$	7700 22000 980 1100 510 950 120 1000 70 11 2 27 6 12 31 80 8 3 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	14000 26000 1900 2400 270 600 1300 430 1800 79 17 2 77 13 50 84 13 4 < 2 < 1 < < < < < < < < < < < < < < < < < < < < < < < <	$\begin{array}{c} 13000\\ 22000\\ 2700\\ 1600\\ 320\\ 470\\ 640\\ 66\\ 800\\ 89\\ 15\\ 3\\ 30\\ 13\\ 6\\ 53\\ 24\\ 24\\ 24\\ 24\\ 4\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 6\\ < 1 \end{array}$	25000 27000 2500 110 2500 100 2500 100 2500 100 2500 100 250 25	$\begin{array}{c} 25000\\ 52000\\ 640\\ 3100\\ 50\\ 620\\ 300\\ 370\\ 1800\\ 120\\ 25\\ 5\\ 78\\ 10\\ 120\\ 25\\ 5\\ 78\\ 10\\ 17\\ 52\\ 120\\ 4\\ 5\\ < 2\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 3\\ 2\end{array}$	10000 450000 920 1900 80 600 280 2600 210 211 411 410 411 411 411 411 411 411 411 411 411 411 411 411 410<	$ \begin{array}{r} 1000 \\ 60000 \\ 420 \\ 1000 \\ 50 \\ 490 \\ 370 \\ 1000 \\ 7000 \\ 80 \\ 30 \\ 5 \\ 57 \\ 10 \\ 18 \\ 43 \\ 160 \\ 5 \\ 6 \\ < 2 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ $	$\begin{array}{c} 13000\\ 29000\\ 9400\\ 2800\\ 130\\ 320\\ 91\\ 310\\ 1200\\ 420\\ 15\\ 5\\ 34\\ 12\\ 10\\ 59\\ 56\\ 69\\ 6\\ < 2\\ < 1\\ < 1\\ < 1\\ < 1\\ < 10\\ < 5\\ 17\\ 1\\ \end{array}$
[[[Tungsten Niobium Thorium Arsenic Bismuth Tin Lithium Holmium	(W] [Nb] (Th] [As] [Bi] [Sn] [Li] [Ho]	<pre>< 10 20 20 10 < 5 < 10 < 5 < 10 < 5 < 10</pre>	<pre>< 10</pre>	< 10 < 10 < 10 < 5 < 10 < 5 < 10 < 10	< 10 < 10 40 20 < 5 < 10 < 5 < 10	< 10 < 10 < 10 < 5 < 10 < 5 < 10 < 5 < 10	< 15 < 10 10 < 5 < 10 < 20 < 10	< 10 < 10 20 20 < 5 < 10 20 < 10	<pre>< 10 < 10 10 15 < 5 < 10 10 4 10 < 10 < 10</pre>	< 10 < 10 20 10 < 5 < 10 5 < 10	< 10 < 10 20 5 < 10 20 < 10

DATE : AUG-31-1990

SIGNED : Dire Ann

T S L LABORATORIES

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION UTD.	T.S.L.	REPORT	No.:	5 - 9449
10th Floor Box 10	T.S.L.	File	No.:	E:M7631
808 West Hastings St.	T.S.L.	Invoice	No.:	
Vancouver B.C. V&C 2X6				
YOUR REFERENCE - S9449		ALL RES	ults pp	H

LISE 5+005LISE 4+505LISE 4+005LISE 3+505LISE3+005LISE 2+505LISE 2+005LISE 1+505LISE 1+0000019E 0+505

ELEMENT

E

L

Ľ

L

Γ

•

Aluminum	[A]]	29000	15000	7300	6600	8500	6800	18000	18000	100 00	17000
Iron	[Fe]	42000	32000	35000	30000	32000	20000	51000	62000	4700 0	56000
Calcium	[Ca]	2700	78 00	2000	380	860	1700	980	740	240	540
Magnesium	[Mg]	1600	2300	820	620	620	2300	2600	1800	89 0	1600
Sodium	[Na]	130	60	70	40	120	360	130	40	6 0	100
Potassium	EH: 1	270	350	350	290	260	430	230	180	230	320
Titanium	[T]]	280	56	980	420	1800	9 90	310	480	88 0	1100
Manganese	[tin]	910	300	340	190	250	750	2200	560	28 0	370
Phosphorus	(P)	1200	1300	760	940	500	780	980	1200	160 0	530
Barium	(Ba]	150	380	89	39	53	73	130	63	4 9	53
Chromium	[[r]]	18	17	14	11	21	10	16	53	22	41
Zirconiua	[Zr]	3	6	5	3	12	2	4	9	É	8
Copper	[Cu]	45	49	28	28	26	16	77	37	18	24
Nickel	[Ni]	7	10	9	9	9	5	6	16	11	15
Lead	[Pb]	6	10	13	9	16	7	8	16	18	19
Zinc	[Zn]	53	59	61	38	51	38	62	52	45	49
Vanadium	[V]]	85	55	67	91	88	97	140	83	72	100
Strontium	[Sr]	18	63	21	5	9	16	13	9	<i>b</i>	9
Cobalt	[Co]	13	7	4	4	3	6	17	5	2	3
Molybdenum	[Mo]	< 2	< 2	2	2	8	< 2	< 2	4	2	< 2
Silver	[Ap]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	{5e]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	(E_)	< 1 0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	₹ 1 0	< 10
Antimony	{Sb}	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	(Y]	9	14	5	2	4	3	7	3	4	3
Scandium	[Sc]	< 1	2	< 1	< 1	1	< 1	1	< 1	< 1	2
Tungsten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 €	< 10
Niobium	[池]	< 10	< 10	20	< 10	20	< 10	< 10	20	4 0	10
Thorium	[Th]	20	40	50	< 10	40	< 10	30	30	< 1 0	10
Arsenic	[As]	< 5	15	15	15	10	10	40	5	15	20
Bismuth	[Ei]	20	< 5	< 5	< 5	< 5	< 5	< 5	< 5	Κ 5	< 5
Tin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	く 10	< 10
Lithium	[Li]	15	30	< 5	< 5	< 5	< 5	15	5	< 5	- 5
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1 0	10

.

Bernie Our

ſ												
L		LAE	3084100113 1+1/2 -	48TH STR	eer, saska	TOON, SAS	Katchewan	S7K 6	A4			
Γ					Elephone # Le s:	: (306) 9 (306) 24	31 - 1033 7 - 4717					
L					••••••							
Г			LC.S.P.	Plasma	SEAN	Anus-Reni	a Ninastin	1				
L						nqua negi	a niĝesvia	•				
	PRIME EXPLORATI	ON LTD.						T.S.L.	REPORT I	No.: S -	9449 - 5	
Π	10th Floor low BAR Wast N stin	10 Inc. St.						1.5.L. TSI	File I	No. : No. • 150	16	
L	Vancouver B.C.	V6C 2X6	ò						invoice i			
	ATTN: J. FUETER	PF	NOJECT: VR	- OREQU	EET P.	D. TYMAR			all resu	LTS PPM		
L			1161 64661	21E 5+009	S 5 4+005	215 3+505	215 3+005	21E 2+50S	121E 2+005	21F 1+50S	21E 1+005	215 0+505
_	ELE"ENT		CIOL VILVE	210 01000				.210 2.000				216 01000
Γ												
L	Aluainas	[A]]	17000 54000	16000	16000	4400	22000	17000	4500	21000	22000	16000
	Calcium	[Ca]	260	260	7000	1400	43000	1100	1000	400	600	5900
	Magnesium	[Ma]	1400	1500	3500	400	2500	3000	810	510	1900	2100
-	Sodium	[Na]	160	150	280	110	60	220	160	310	100	90
-	Potassium	{K]	290	29 0	400	390	300	440	250	410	230	430
	Titanism	[Ti]	1400	1500	400	660	150	720	1700	1500	2700	800
L	Manganese	[Ma]	140	140	560	160	840	180	42	290	560	880
	Phospic rus	[P]	330	310	699	3000	1300	430	360	410	580	870
Γ	Barius	[Ba]	69	6 8	100	49	95	95	38	23	76	140
L	Chronista	[Cr]	30	29	27	11	22	33	9	16	18	19
	Zirconica	[Zr]	16	15	3	4	4	3	2	86	17	4
Γ	Copper	LUUJ	13	13		39	64	19	6	23	27	31
L	Nickei	ENI]	12	12	19	4	8	20	4	4	5	13
	Lead	[PD] [7-]	21 872	Z3 41	10	10 74	5 70	14	7	১/ /চ	1/	9 57
Г	Linc Vacadium	1413	52 70	41 10	10 10	ትር. እለ	0ن ۱۸۸	44 71	24 AL	00 21	کن ۱۶۸	37 90
L	Steartice	[¥] [Sn]	/ 0 0	07 Q	84	11	140	17	11	21 7	150 L	70 10
-	Cobali	[[n]	, {	2	10	4	6	4	3	< 1	4	11
	Molybdenua	[Mo]	ζ 2	4	< 2	< 2	< 2	< 2	< 2	2	< 2	< 2
	Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
-	Cadmies	[b3]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1	1	< 1
r	Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< i	< 1
1:	Baron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Antinony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	10	< 5	< 5
-	Yttric	[Y]	4	4	13	1	6	4	1	12	ن د	6
	Scandia.	LSC J) Z (A	1	2		1	1	1	1	2	Z 10
C	fungsven Nieker	1 W J C MIL 1	< 19 55	< 10 AO	(10)	< 10 7 10	< 10 < 10	< 10	< 10	< 10 PO	< 10 Z 10	< 10 / 10
-	Theric	1001 [Th]	238 615	4V 20	< 10 < 10	× 10 < 10	01 / 07	× 1V 10	< 10 < 10	ου ΔΩ	× 10 ₹0	10
	Arcen	(Δς1	-9 75	25	15	10	15	5	< 5	25	85	25
L	Bisact	(Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
_	Tin	{Sn}	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Г	Lithium	[Li]	5	5	25	< 5	20	5	< 5	< 5	< 5	20
L	Holmies	[Ho]	K 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	10	< 10

[• •

ľ

SIGNED : Bernie Au

Г						
L	TSL		BORATORIES			
			2-302-	4858 STREET,	SASKATOON, SASKATCHEMAN	S7K 6A4
Г				TELEPH	1842 #: (306) 931 - 1833	
				FAX #:	(30 6) 242 - 4717	
~			I.C.A.P.	plasma scan		
					Aqua-Regia Digestion	
L						
	PRIME EXPLORATION	DN LTD	•			1.5.L. REPURI No. : 5 - 36-7 - 6
Γ	10th Floor Box	10				I.S.L. File No. :
L	808 West Hastin	gs St.				1.5.L. Invoice No. : 15010
	Vancouver B.C.	V6C 2X	6			
	ATTN: J. FOSTER		ROJECT: VR	- Orequest	P.O. TYMAR	ALL RESULTS PPM
E						
-			L21E 0+00	L7E 2+50S		
r	ELEMENT					
1				15000		
L	Aluminum	LALI	22000	15000		
_	Iron	LFe]	36000	4/000		
Γ	Calcium	[Ca]	1200	220		
L	Magnesium	[Mg]	1900	1500		
	Sodium	[Na]	140	90		
C	Potassium	E K]	360	340		
	Titanium	[Ti]	610	300		
	Manganese	[Mn]	180	240		
_	Phosphorus	(P]	620	590		
Γ,	Barium	(Ba)	85	68		
L	Chromium	[[1]	26	19		
	Zirconium	[Zr]	6	6		
Г	Copper	(Cu)	28	24		
L	Nickel	ENi]	14	12		
_	Lead	[Pb]	14	16		
r	Zinc	[Z n]	49	71		
	Vanadium	[¥]	57	52		
	Strontium	[Sr]	11	5		
	Cobalt	[Co]	4	4		
Γ	Molybdenum	[Ma]	< 2	< 2		
L	Silver	[Ag]	< 1	< 1		
	Cadmium	[[b]]	< 1	< 1		
r	Beryllium	[Be]	< 1	< 1		
E	Boron	[B]	< 10	< 10		
-	Antimony	[Sb]	< 5	< 5		
~	Yttrium	EX]	5	2		
	Scandium	[Sc]	1	3		
L	Tungsten	[₩]	< 10	< 10		
	Niobium	[Nb]	20	10		
Γ	Thorium	[Th]	20	10		
L	Arsenic	[As]	< 5	< 5		
	Bismuth	[Bi]	< 5	< 5		
r	Tin	[Sn]	< 10	< 10		
	Lithium	[Li]	10	10		
-	Holaium	(HG)	< 10	< 10		
-						

L

[. . .

IGNED : Bernie Cum

2 - 302 - 48th STREET, EAST SASKATOCAL SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Ĺ Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9450 V6C 2X6

> INVOICE #: 14695 P.O.: TYMAR

SAMPLE(S) OF Soils

W. Raven Project: VR

Ľ

REMARKS: OreQuest Consultants Samples

	Au
	ppb
L16E 0+50S	<5
L16E 1+00S	<5
L16E 1+50S	<5
L16E 2+00S	10
L16E 2+50S	<5
L16E 3+00S	<5
L16E 3+50S	<5
L16E 4+50S	<5
L16E 5+00S	<5
L16E 0+50N	<5
L16E 1+00N	<5
L16E 1+50N	5
L16E 2+00N	5
L16E 2+50N	<5
L16E 3+00N	<5
L16E 3+50N	<5
L16E 4+00N	<5
L16E 4+50N	<5
L16E 5+00N	<5
L17E 0+50N	<5
CODIES TO.	C Idziezok I Footom
INVOICE TO:	Primo - Vancouvor
INVOLUE IU.	TITWE - AUTOUAET
Aug 17/90	
1. U.Y. 1/ JU	

Bunic Vu n SIGNED

1 of 2 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd.							
	10th Floor, Box 10-808 West Hastings St.	REPORT No.						
	Vancouver, B.C.	S9450						
	V6C 2 X6							

INVOICE #: 14695 P.O.: TYMAR

SAMPLE(S) OF Soils

W. Raven Project: VR

į

Ŀ

REMARKS: OreQuest Consultants Samples

	Au p pb
1+00N 1+50N 2+00N 2+50N 3+00N	10 10 5 ≲5
3+50N 4+00N 4+50N 5+00N 0+00	5 <5 <5 <5 5
0+50S 1+00S 1+50S 2+00S 2+50S	5 <5 <5 <5 <5
	1+00N 1+50N 2+00N 3+00N 3+50N 4+00N 4+50N 5+00N 0+00 0+50S 1+00S 1+50S 2+00S 2+50S

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

5

<5

<5

<5

<5

Aug 17/90

L22E 3+00S

L22E 3+50S

L22E 4+00S

L22E 4+50S

L22E 5+00S

Bernie V SIGNED

Page 2 of 2

ĊTA

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

r	T 5 L	LABORATORIES						
L		2-302-4	STH STREET, SAE TELEPHONE FAX #:	BKATOON, SASKA 1 #: (306) 931 (306) 242 -	TCHEWAN 574 - 1033 - 4717	K 6A4		
Γ		τηδρ	PLACMA CRAN					
		Isterne: s		Aqua-Regia I	Digestion			
Γ	PRIME EXPLORATION	LTD.			Т.(S.L. REPORT	No.: M - 7632	-1
L	10th Floor Box 10	.			T.(S.L. File	No. :	
Γ	808 West Hastings Vancouver B.C. VAC	St. - 2X4			i • 5	5.1. Invoice	No.: 14952	
L	ATTN: J. FOSTER	PROJECT: VR -	OREQUEST P	.O. TYMAR		ALL RESL	ILTS PPM	
[ELEMENT	L16E 0-	+505 L16E 1+0	XOS L16E 1+50)5 L16E 2+00)S L16E 2+5	ios L16E 3+00S	L16E 3+50S
	Aluminum [A	1] 6600	6300	94 00	15000	15000	13000	3900
	Iran [F	e] 14000	11000	9800	17000	45000	13000	9300
	Calcium (C	a] 6100	2000	960	740	1000	500	2800
-	Magnesium [M	2600 او	1600	1100	920	1400	820	630
	Sodium [N	a] 560	400	130	140	90	260	170
L	Potassium [K	3 430	490	390	270	240	360	520
	Titanium [T	i] 1500	1300	540	360	2900	2100	1200
Γ	Manganese (M	n] 160	90	41	50	490	9 0	47
L	Phosphorus (P	1 510	49 0	650	1200	750	510	490
	Barium [B	a] 84	53	56	41	77	39	58
Г	Chromium (C	r] 10	9	14	18	26	16	13
L	Zirconium [Z	r] 9	6	1	2	10	16	2
_	Copper (C	u) 13	10	13	22	22	13	8
r	Nickel [N	i] 10	6	7	7	6	3	5
	Lead [P	b] 15	8	12	15	11	29	14
	Zinc [Z	n] 58	49	29	27	38	37	<u>ە</u> ن
_	Vanadium IV	3 37	36	32	35	250	62	48
	Strontium ES	dد In	23	10	7	15	8	22
L	Cobalt IC	oj 6	4	/ 2 / 2	1	3		/ 5
	Molyodenum Lm Cáluar (A		× 2 / *	× 2 / 4	× 2 2 •	4	× 2 7 1	× 4 7 •
Γ	Sliver (A Codeine (C	0.1 V 1 1.1 V 1	× 1 / 1			× 1 / 1		
L	Cadmium LU Denviliae (D	-7 (1	× 1 7 \$					< 1 / 1
	Derviitum ID		× 1 7 10	1	× 4 Z 10	< 10	< 10	< 10 < 10
Г	Actinopy [S	1 \ 10 51 / 5	× 10 7 5	< 1V / 5	< 5	< 5	5	< 5
	Vitaium IV	ניע ניט ד ו	2	· · · · · · · · · · · · · · · · · · ·	ч У Т	3	3	:
-	Reportium (R	-1 7	- 1	۲ ۲	< 1	3	2	1
r	Tunnstan (W		< 10	< 10	< 10	< 10	< 10	< 10
	Ninhium (N		< 10	< 10	< 10	< 10	< 10	< 10
	Thorium (T	h] < 10	< 10	< 10	< 10	20	< 10	< 10
_	Arsenic (A	5] 10	5	15	10	15	10	Κ 5
Γ	Bismuth LB	i] < 5	< 5	< 5	< 5	< 5	< 5	ζ 5
L	Tin (5	n] < 10	< 10	< 10	< 10	< 10	< 10	< 10
	Lithium [L	i] < 5	< 5	< 5	< 5	< 5	< 5	< 5
Γ	Holmium [H	o) < 10	< 10	< 10	< 10	< 10	< 10	< 10
1								

SIGNED : _____ Bernie Quem

C	· ·							
	теі							
Γ	156	CABURATORIES	INTE STREET RAS	ИАТППЫ САСИАТ	ГН Г ШАМ 974	(ΔΔ.4		
L		1 971 -	TELEPHONE FAX #:	#: (306) 931 (306) 242 -	- 1033 4717	. un		
Γ						,		
L		I.C.A.P.	PLASMA SCAN	Aqua-Regia D	igestion			
Г				· -	•			
L	PRIME EXPLORATION	LTD.			T.9	I.L. REPORT N	io.: M - 7632	- 2
	10th Floor Box 10				T.9	S.L. File M	la. :	
Γ	BUB West Hastings	55. r 797			1.5	.L. invoice r	4 0.: 14732	
L	ATTN: J. FOSTER	PROJECT: VR -	OREQUEST P.O	TYMAR		ALL RESUL	.TS PPM	
_							· · · · · · · · · · · · · · · · · · ·	
	FLEMENT	L16E 4	+505 L16E 5+0	0S L16E 0+50	N L16E 1+00	N L16E 1+50	N 116E 2+00N	L16E 2+30N
-								
Γ	Aluminum (A1] 320(17000	9400	26000	13000	6 500	3400
L	iron (Fei 12000	00000 ST	64000	5/000 700	20000	25000	42000
	Calcium D	Lai 1100 Mai 70/) 2700) 1900	300 500	280 280	260	2000	5000
Г	Ragnesium (กญา 300 พรา 64		10	0400 70	070 70	1300	20
L	Bothesium D	NG 00	ου Δ1Ο	20	570	410	580	940
	Titanium (τί] PQ/	230	1100	86	120	140	15
Г	Mannanaca []	Mol 64	410	120	830	150	95 0	430
	Phosphorus (P] 780	1300	3400	1100	1300	850	640
	Barium [Ba] 95	82	42	86	83	710	180
	Chromium (Cr] 7	24	15	18	14	21	4
	Zirconium E	Ir] 2	2	10	7	2	2	6
	Copper (i	Cu] 25	42	37	71	23	20	55
_	Nickel [Ni] 7	9	4	10	5	10	29
	Lead []	Pb] £	13	15	10	12	27	22
L	Zinc Li	Zn 3 47	53	28	56	33	48	130
	Vanadium []	V] 44	130	150	110	53	27	19
Γ	Strontium [Sr] 17	15	6	4	6	16	56
L	Cobalt [[Col 3	6	$\langle 1$	10	2	19	19
	Molybdenum [Mol < 2	2	< 2 / /	< Z	< Z	× Ζ	× 4
Г	Silver Li	Aõl < 3		< i / i		2 / \$	1 1 / 1	1 2 1
L		LOI (1		× 1 / 1	1 1 1 1	× 1 2 1		× 1 7 1
_	Beryillum Li	58j (10	× 1 / 10	× ¥ Z 10	× 1 / 10	× 1 7 10	× 1 < 10	< 1A
Г	Boron Li	6] \1V 653 / 9	· 10	× 10 Z 5	\ 10 / E	< 10 / 5	v 1 V 5	R 10
	Antimony C	L X L L L L L L L L L L L L L L L L L L	ن ۲ ح	۲ کا ۲	4 × 2	N 4 7	ġ.	12
	Ceredium II	1] 2-1 / 1		2 I	U T	< 1	2	7
~	Junostan (l	DCJ 10	< 10	< 10 < 10	< 10	< 10	< 10	, 10
	Ninhium (*	n⊒ (10 Nh] (10	< 10 < 10	< to	< 10	< 10	< 10	< 10
L	Thorism E	10 Th1 (10	30	30	30	< 10	< 10	50
_	Arsenir [4	As] 10	25	15	15	15	25	35
Γ	Bismuth fi	Bi] < 5	< 5	< 5	< 5	< 5	< 5	< 5
L	Tin (S	Sn] < 10	< 10	< 10	< 10	< 10	< 10	< 10
	Lithium []	Li] < 5	15	< 5	30	5	< 5	< 5
Γ	Holmium []	+o] < 10	< 10	10	< 16	< 10	< 10	< 10
L		, – –						

L

L

SIGNED : Bernie Ar

	. ``										
			0 A 7 00 1 5 5								
C	1 S L	. Labu	2-30 2-48TH S	TREET, SASKATO TELEPHONE #:)ON, SASKATCHE (306) 931 - 1	Ewan 57k : .033					
_				FAX #:	(306) 242 - 47	'17					
				A							
L			1.5.8 .7. 7146 0	h Schn A	iqua-Regia Dige	stion					
Γ						TO : DEPONTN M 7/70 7					
L	TOTA Floor Box	10 LID.				T.S.I.	File No.	: 11 - 7002	J		
	808 West Hastin	as St.				T.S.L.	Invoice No.	: 14952			
Γ	Vancouver B.C.	V6C 2X6					· · · · ·				
L	ATTN: J. FOSTER	PRO	JECT: VR - OREQU	EST P.O. TYM	IAR		ALL RESULTS	PPM			
Ľ	ELEMENT		L16E 3+00N	L16E 3+50N	L16E 4+00N	L16E 4+50N	L16E 5+00N	L17E 0+50N	L17E 1+00N		
~	Aliminia	[4]]	17000	73000	14000	28000	78000	17000	9500		
	Iron	[Fe]	69000	73000	35000	71000	45000	51000	40000		
L	Calcium	(Ca]	180	540	440	1300	920	980	240		
_	Maonesium	[Ma]	1200	880	1100	4100	1900	1700	890		
Γ	Sodium	[Na]	60	260	60	70	110	130	30		
L	Potassium	[K]]	300	310	270	460	290	320	430		
	Titanium	[Ti]	1000	1400	860	480	470	410	20		
Γ	Manoanese	(Mn]	150	170	140	530	290	280	200		
L	Phosphorus	(P]	1600	1200	2300	1600	710	2800	920		
	Barium	[Ba]	75	46	57	170	65	100	45		
n	Chromium	[[1]	27	22	39	150	68	46	12		
	Zirconium	[2r]	46	88	6	7	15	5	4		
	Copper	(Cu)	16	13	24	23	20	29	79		
~	Nickel	ENi]	13	5	14	44	22	12	17		
	Lead	[Pb]	31	32	14	20	16	11	17		
L	Zinc	[Zn]	50	49	53	73	62	34	72		
_	Vanadium	[V]]	96	50	76	110	57	150	29		
Γ	Strontium	[Sr]	6	10	9	27	11	11	5		
L	Cobalt	[Co]	2	< 1	3	6	4	3	5		
	Molybdenum	[Mo]	4	4	< 2	< 2	< 2	< 2	< 2		
Γ	Silver	[Ao]	$\langle 1 \rangle$	1	< 1	< 1	< 1	$\langle 1$	1		
L	Cadmium		$\langle 1 \rangle$								
	Beryllium	rpel						< 1 (10			
r	Boron	18 1	< 10	< 10 Z =	< 10 / f		< 10	< 10 7 S	× 10 10		
	Antimony	1501	2	< 0 E	< 3 5	< 3 0	× 3 7	< 3 5	10		
	Yttriue	LY 1 20-1	4	5 +	2	a 7	ა ი	<u> </u>	2		
~	Scandium Turreter	1561	<u>ل</u> د ده	1	Z 7 10	Z / 10	2 / 10	× 1 Z 10	Z 10		
	lungsten	LW J ZNHJ	\ 10 5∆	× 10 70	× 10 Z 10	N 10 10	20	< 10	< 10 < 10		
L	N1001UM	1803 (Th)	00 00	70 #0	< 10	10 7 10	20 < 10	10	τ <u>ο</u>		
		ιη] [Δ=]	20	7V / 5	10	√ ±∨ 20	\ 1 9 √ 5	10 10			
Γ	Dismith	imol (Ril	20 / ⊑	× 3 2 5	17 2 5	10	< 5	< 5	< 5		
Ľ	oismuth Tin	101J (Gal	3 ∠1∩	 ∕_10	< 10	±∨ ⊰ 10	< 10 < 10	< 10	< 10		
	1111 1145-1	cana Flit	\ 19 ∕ 5	N 44 Z 5	× 19 7 5	20	75	< F	\ <u>.</u> v		
r	LI WILUM Herlaina	(Ha)	√ J ∠ 10	< 10	< 10	20	< 10	10	< 10		
L	notwitem	1101	× 1V	N 18	X 1V	20	· • •	14	N 40		

SIGNED : Bunie Dum

	• • •								
_	~ ~ ,	1 4 5 6	24703160						
	131	LABUR	7-302-487H S	TREFT. SASKATO	JON. BASMATCHE	WAN S7K F	÷		
L			2 502 10111 2	TELEPHONE #:	(306) 731 - 1	033	• •		
-				-	(306) 242 - 47	17			
				A T-1-11					
			I.C.A.P. PLASM	R HUAN Z	Neus-Pacis Dies	ation			
r				•	Adna-veñiz niñe	50100			
	PRIME EXPLORATIO	ON LTD.				T.S.L.	REPORT NO.	: (- 7632 -	4
	10th Floor Box	10				T.5.L.	File Mo.	•	
r	808 West Hasting	gs St.				T.S.L.	invoice No.	: 14952	
	Vancouver B.C.	V6C 2X6							
-	ATTN: J. FOSTER	PRO	JECT: VR - ORE	DEEY P.O. 1	TYMAR		ALL RESULTS	20% 	
r			1175 115AN	1 77 DLOON	1175 D4RON	1175 T+00N	175 3450W	. 177 4+00N	117F 4+30%
			LIVE ITJUN	CITE ZTOUN	L1/C 2/00M		EINE CHERN		LIL INCO
_									
r	Aluminum	[A]]	7600	₽ 600	12000	19000	23000	17000	22000
	Iran	(Fe)	48000	300 00	6300 0	45000	30000	55000	29000
-	Calcium	[Ca]	480	1700	340	200	4300	2100	4600
r	Magnesium	[Mg]	390	3100	94 0	1600	3600	3200	2500
	Sodium	[Na]	50	30	60	50	90	160	160
L	Potassium	[K]	370	±20	310	42 0	420	420	470
_	Titanium	{Ti]	410	41	190	59	160	1100	360
Γ	Manganese	[Min]	84	240	370	460	2300	270	880
L	Phosphorus	[P]]	6700	860	3200	1300	1300	200 70	1100
	Barium	[Ba]	54	200	// 53	82	179	14	120
Г	Chromium	[[7]]	20	14	20 7	12 1	ېن ج	70 Q	5
L	LIFCORIUM	1203 (Cul	ם דר	د ۲۲	, t <u>2</u>	77	74	, 76	24
	Lopper Nickal	COUJ ENGT	27 K	16	10	16	53	28	30
ſ	laad	[Ph]	19	15	39	14	15	24	13
L	7inc	[7n]	34	100	54	130	250	59	140
	Vanadium	[V]]	65	41	83	48	36	90	41
С	Strantium	[Sr]	Ł	12	14	7	91	32	75
L	Cobalt	[Co]	1	11	77 22	5	15	4	3
	Molybdenum	[Mo]	< 2	< 2	< 2	4	< 2	4	< 2
Г	Silver	[Ag]	2	< 1	< 1	2	2	× 1	
L	Cadmium	[Cd]	< 1	< 1	< 1	1	2	× 1	<u>``</u>
-	Beryllium	[Be]	$\langle 1 \rangle$	× 1		< 1 Z 3A	1	· 1	- 1A
Г	Baron	(B)	< 10 / =	4 IV 5	N 10 7 5	× 10 7 5	< 1V 2 5	 3 € 	< 5
	Antimony	(50) (V)	< 3 7	·. J 7	N 4 T	\ ↓ 4	23	4	12
	Frenum	11 1 [5c]	2 (1	1		7	< 1	:	< 1
r	Tunacten	EUCI FM R	< 10	< 10 (< 10	$< 10^{-1}$	10	14	< 10
	Niobium	[Nb]	20	< 10	40	< 10	< 10	20	10
-	Thorium	[Th]	20	30	20	10	20	20	10
~	Arsenic	[As]	15	20	75. 20	30	25	20	10
	Bismuth	[Bi]	< 5	< 5	< 5	< 5	4 5	5	< 5
L	Tin	[Sn]	< 10	- 10	< 10	< 10	10	10	< 10
-	Lithium	[Li]	< 5	15	< 5	20	40	3 • -	43
Γ	Holmium	(Ho]	< 10	< 10	10	< 10	< 10	10	< 10

SIGNES : _ Bernie Dum

	TCI	:755	SATODICE							
C	136	LHDU	2-302-48TH 3	TREET, SASKAT TELEPHOME #: FAX #:	(OON, BABKATCHE : (306) S31 - 1 (306) D-3 - 47	MAR 578 F 032 17	24.			
L			I.C.A.P. PLAEM	A SCAN	a o o:					
_					Hdns-večie niče	51100				
	PRIME EXPLORATIO	DN LTB. 10 25 St.				T.S.L. REPORT No. : M - 7632 - 5 T.S.L. File No. : T.S.L. Pownice No. : 14952				
L	Vancouver B.C. V PTTN: J. FOSTER	460 2%6 FR3	JECT: VR - GREG	UEST P.Q. 1	TYMAR		ALL RESULTS	PFn		
[ELEMENT		L17E 5+00N	122E 0+ 00	L22E 0≁5 0S	L22E 1+00S	L22E 1+505	L22E 2+00S	L 22E 2+ 503	
٢	Aluminum	(A1)	22000	B6 00	14000 54000	17000	12000	1300 0 47000	9500 29000	
L	Iron	trei toui	37000	12000	04000 7000	1/0	37000	47000) 74 0	20000	
	Calcium	LL3J	500 500	1600	2800	160	4200	340	1100	
Г	nagnesium	LTIQ I	320 770	1000	1300	7.30	270	910	90	
L	5001um	LNAJ FM J	000 750	360	360	200	720	270	70 750	
	FOG3551UM Titacium	UN 1 7713	000	330	230	200	1200	420 670	470	
Г	111201100	1111 FM-3	200	110	200	110	200	170	110	
	กสกฎสกรรร	17812 25 0	199 570	110	200	210	200 800	193	2000	
	Phosphorus	17 J 5543	330	¥60 ±00	410 73	270	470	74	2000	
_	5drium Changing	1043	27 27	100	74 53	77	74 70	т : А	24	
		1949 7743	소교 1 코 :	10	4 * 1 T		40 Q	27 2		
L	LIPCOLUM Company	1111 7701	1.2.7	4	10	20	0 † #	29	19	
	copper.	1603	14	17	2.V 2	21 D	17 D	2, O	10	
Γ	NICKEI	LNLI FRLI		4	⊂ #∠	21	20	10	10	
L	Lead	LFD] 57-3	21 67	10	10	70	20	:7 /A	12	
_	Linc	64.5	90 70	26 70	40 11.5	30 100	47	40 170	30 47	
-	Vanao 1000	LV 3 EE-3	2V 2	/0	160	100	00 24	130	02	
	Strontium	1571	с 	15	10	2	27	о Э	7	
L	JIEGOJ	110)	· 1	2		2 A	2	2	2.2	
_	molyodenum Cilua-	1003	4 / 1	× 2 7 4	∠ ∕ 4	1	2	0 / 1	2 1	
Γ	51iver	(HQ]	× 1				× 1 / 1	× 1	< 1	
L	Cadmium Deschleine	10-1	2		N 1 7 4	× 1 / 1		× 1 / (X 1	
	Bery!ilum D	C22 3		\ 1 / ⊀∧	N 1 Z 35	× 1 Z 10	× 10	× 1 Z 10	< 10	
Г	Boron	(8 j 605 j	N 17 7 E	\ 1V .: c	N 10 Z 2	× 10 7 5	× 10 7 5	< 10 / 5	25	
1	HOLIMONY	(50) av 7	5 -		N 9 5	\ J 7	· · ·	7	N 9 2	
	Yttrium	LY J	1	4	2	ن -	6	ن + ۲	2 / 1	
~	Scandium	1503	4 4 2	2 7 8 6	2 4 A		7 10	× 1 Z 10	/ 10	
I	lunosten	LW J	N 111 Art	< 10 7 iA	N 19 Z AA	N 1V 54	N 10 DA	N 10 DA	× 1V Z 16	
L	NICOLUM	LNGI	±0 ≂	5. 19 2. s.s.	N 10 EA	2V 90	29 70	29 10	< 10 < 10	
	Inorium	LINI CARI	습년 21년	< 1U +A	20 17.	2V 20	30 50	15 70	15	
Γ	HPSenic	LHEJ Koko	40 . z	1V / =	1V 2 =	20 / 5	30 Z =	1.1 2 5	13 2 S	
L	Bismuth T:	LBII		X 3 7 (A	N V 7 40		× 0 Z 10	× 9 2 10	 Z 10 	
	110	6583	3. 10 2 F	× 10 7 E	N 1V Z E	× 10 Z E	× 1V / E	× 10 7 5	< 1V Z 5	
r	Lithium		(B) / AA	< 0 / •^	 3 4 	× 3 2 46	ل \ مە	× J Z 10	× J 7 10	
L	Holmium	LHO]	< 10	< 10	< 10	< 10	10	× 10	× 10	

SIGNED Beinie Our

-	TC,	1 350	RATORIES					
	1 4 4		2-391-48TH S	TREET. SASKATO	ION. SASKATCHE	NAN 57K 6	<u>A</u> 4	
				TELEPHONE #:	(306) 931 - i	033		
-				FAX #:	(306) 242 - 47	17		
			I.C.A.P. PLASM	A SCAN				
~				Ĥ	idna-xeðra prós	ST10A		
						TCI	REPORT No. :	× - 7637 - 6
L	TRIME EXPLORATION	14 CID. 10				T.S.L.	File No. :	
_	- 10th Floor Box 1 - 2000 Mart Martine	:V Ne 5t				T.S.L.	Invoice No. :	14952
	Vancouver B.C. N	25 30. 786 286						
L	ATTN: J. FOSTER	PRO	JECT: VR - OREQ	JEST P.O. T	TYMAR		ALL RESULTS P	PM
ſ			1225 3+008	1.22E 3+50S	L22E 4+005	L22E 4+505	122E 5+008	
L	FI FMENT							
	has be best they? T i							
Γ	Aluminum	[A]]	23000	7200	10000	18000	6500	
L	Iran	(Fa]	34(30)	20000	24000	53000	36000	
-	Calcium	(Ca)	1100	32000	98 0	800	1600	
0	Magnesium	[Mg]	4100	960	550	2100	1200	
	Sodium	[Na]	130	100	60	50	90	
-	Potassium	EK 3	490	110	180	280	610	
-	Titanium	[Ti]	270	220	1000	470	900	
	Manganese	[Mn]	740	3600	100	170	770	
L	Phosphorus	(P)	750	1100	500	2700	760	
_	Barium	(Ba)	32	320	130	57 70	77 12	
	Chromium	1003	27	7	10	49 47	10	
L	Lirconium	1273	4 00		17	14 7.1	10	
	Lopper	ruu i	49 77	23 75	7	13	ę	
Γ	land	(Ph)	17	4	17	 15	14	
L	7ioc	[7o]	85	73	23	29	50	
	Vanadium	[V]]	73	14	60	94	110	
Γ	Strontium	[Sr]	9	180	11	7	13	
L	Cobalt	[Co]	£	11	4	3	5	
	Molybdenum	[Mo]	< 2	4	2	Κ 2	< 2	
Γ	Silver	[Ao]	2	< 1	< 1	< 1	$\langle 1 \rangle$	
L	Cadmium	[Cd]	< 1	1	< 1		< 1	
	Beryllium	[Be]	4. 1	< 1	< 1			
r	Boron	[8]	< 10	< 10	< 10	K iv Z E	5 10 2 =	
1	Antimony	1503	() -	< 3 0	< 3 7		N 4 1	
	Yttrium	17 J 50-3	2 2 - 2	7	2 / 1	2 2	2 1	
r	Scandlum	1961 14 1	N 1 Z 40	× 1 Z 10	< 10 < 10		< 10 < 10	
	Nistius	EM 1 ENHI	× 1V Z 10	< 10 < 10	70	· · ·	. < 16	
-	in the second	[Tb]		< 10 < 10	< 10	10	20	
~	Arsenic	[As]	12 20	5	10		15	
	Bismuth	[Bi]	< 5	< 5	< 5	Κ 5	< 5	
L	Tin	(Sa)	< 10	< 10	10	< 10	< 10	
_	Lithium	[Li]	25	< 5	< 5	5	< 5	
Γ	Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	

SIGNED : Bernie Durn

		DIV. BURGENER TECHNICAL ENTERPRISES LIMITED						
				2 - 302 - SASKATOO	48th STREET, EAST			
				🕑 (306) 931-1033	S7K 6A4 FAX: (306) 242-4717			
	CERTI	CATE OF AN	ALYSIS					
SAMPLE(S) FROM	Prime Exploratic	as Ltd.						
	10th Floor, Box 1 Vancouver, B.C. V6C 2X6	ੇ-808 West H	lastings St	;. R	EPORT No. S9624			
SAMPLE(S) OF SO:	ils		I F	NVOICE #: .0.: R-22	14836 236			
	W. Raven Project: VR GR	# <u>1</u>						
REMARKS:	OreQuest Consult	ants						
	Au ppb							
TML9 0+50	0s <5							
TML9 1+00 TML9 1+50								
TML9 2+00	DS <5							
TML9 2+50	DS 5				· • ·			
TML9 3+00	DS <5							
TML9 3+50	DS <5							
TML9 4+00 TML9 4+50	JS <5)s 5							
TML9 5+00	DS <5							
TML10 0+0	00s <5							
TML10 0+5	50S 5							
TML10 1+(00S 15							
$\frac{\text{TML10} 1+3}{\text{TML10} 2+6}$	0S <5 0S 5							
	500 ZE							
TML10 2+: TML10 3+(005 < 5							
TML10 3+5	50S 5							
TML10 4+0	00s 5							
TML10 4+5	50S 5							
COPIES TO INVOICE TO): C. Idziszek,): Prime – Vanco	J. Foster uver						

Aug 23/90

C

SIGNED Bernie Page 1 of 2

TSL LABORATOR

ES

V

CTA

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORAT

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd.	
	10th Floor, Box 10-808 West Hastings St.	REPORT No.
	Vancouver, B.C.	S9624
	V6C 2X6	

14836 INVOICE #: P.O.: R-2236

SAMPLE(S) OF Soils

REMARKS:

W. Raven Project: VR

OreQuest Consultants

		Au ppb
TML10	5+00S	20
TML11	0+00S	15
TML11	0+50S	10
TML11	1+00S	< 5
TML11	1 + 50S	<5
TML11	2+00S	10
TML11	2+50S	10
TML11	3+00S	25
TML11	3+50S	10
TML11	4+00S	5

TML11 4+50S

TML11 5+00S

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

<5

5

Aug 23/90

Bernie Dun SIGNED .

2 of 2 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. T S L LABORATORIES

τ

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S76 514 TELEPHONE %: (306) 931 - 1033 FAX %: (306) 242 - 4707

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.G. REPORT No. : 5 - 9624 - 1 -
10th Floor Box 10	T.S. File No. : E:M7730
808 West Hastings St.	T.S.I. Invoice No. : 15148
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: VR OREQUEST CONSULTANTS R-2236	ALL RESULTS PPM

TML9 0+505 TML9 1+005 TML9 1+505 TML9 2+005 TML9 2+505 TML9 3+005 TML9 3+505 TML9 3+505 TML9 4+005

ELEMENT

Aluminum	[A]]	29000	34000	11000	84 00	140 00	11000	18000	3800
Iran	[Fe]	41000	49000	32000	40000	5700 0	51000	57000	11000
Calcium	[Ca]	320	5100	1500	4300	1800	1400	620	2800
Magnesium	[Mg]	600	1600	2000	1000	1000	1300	3300	700
Sodium	[Na]	270	80	410	210	130	190	80	130
Potassium	[K]]	340	220	520	310	24 0	280	280	200
Titanium	[Ti]	820	:20	270	970	500	340	170	840
Manoanese	(Ma)	020	120	910	300	740	190	410	49
Phosohorus	CP I	569	620	1200	500	7 50	3300	820	420
Barium	[Ba]	23	250		57	130	220	81	110
Chromium	{Cr]	14	16	13	13	26	24	46	9
Zirconium	[Zr]	42	10	2	8	é	6	5	5
Cooper	(Cu3)	3	20	19	28	37	26	33	25
Nickel	[Ni]	9	14	8	11	10	14	29	9
Lead	[Pb]	24	15	15	23	27	11	15	4
Zinc	[Zn]	60	86	40	40	69	44	47	55
Vanadium	[V]]	28	18	44	100	140	95	67	23
Strontium	[Sr]	5	83	22	22	18	16	9	20
Cobalt	[Co]	1	<u> </u>	5	3	7	4	6	3
Molvodenum	[Mo]	4	< 2	< 2	6	6	2	< 2	< 2
Silver	[Ao]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[[0]]	< 1	< 1	< 1	< 1	< i	< 1	< 1	< 1
Bervllium	(Bel	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baron	(B]	< 10	< 10	< 10	10	10	20	< 10	30
Antimonv	(Sb)	5	< 5	< 5	5	< 5	< 5	< 5	< 5
Yttrium	[Y]	á	8	3	Â	3	2	3	2
Scandium	(Sc)	< 1	2	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1
Tunasten	[₩]	< 10	< 10	< 10	10	< 10	< 10	< 10	< 10
Nicbium	[No]	20	< 10	< 10	20	< 10	< 10	< 10	< 10
Thorium	[Th]	2 I.D	99	< 10	< 10	3 6	50	20	√ 10
Arsenic	(As)	(0	< 5	15	10	10	< 5	< 5	Ę.
Bismuth	[Bi]	Κ 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< â	20	< 5	< 5	< 5	< 5	10	< 5
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : AUS-31-1990

Bern Du SIGNED :

•

T S C LABORATORIES

1

Γ

Ľ

Ľ

Ľ

L

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPL	LORATION LTD).					T.S.L.	REPORT	No.:	5 - 9624 - 2
10th Floor	r Box 10						T.S.L.	File	No.:	E:M7730
808 West H	Hastings St.						T.S.L.	Invoice	No. :	15148
Vancouver	8.C. V6C 2X	6								
ATTN: J.	FOSTER	PROJECT:	VR	OREQUEST	CONSULTANTS	R-2236		ALL RESI	LTS PP≯	

TML9 4+50S TML9 5+005 TML10 0+005 TML10 0+505 TML10 1+005 TML10 1+505 TML10 2+005 TML10 2+505

ELEMENT

Aluminum	[A]]	6800	6100	13000	9400	3500	13000	8700	15000
Iron	[Fe]	30000	33000	51000	42000	13000	60000	31000	73000
Calcium	[Ca]	1500	720	520	1300	960	480	880	11000
Magnesium	(Mg)	2100	600	710	1200	580	1800	380	1900
Sodium	[Na]	450	100	120	160	150	90	60	70
Potassium	EK 1	500	460	260	450	360	380	480	390
Titanium	[Ti]	1400	1000	650	780	2400	540	180	170
Manganese	[Mn]	310	150	340	640	100	300	91	610
Phosphorus	[?]	640	2500	620	740	560	4100	2100	2100
Barium	[Ba]	71	59	71	57	53	110	160	170
Chromium	[Cr]	14	19	31	22	12	30	17	25
Zirconium	[7]	6	6	7	5	5	6	2	10
Copper	[Cu]	39	39	22	29	32	29	43	36
Nickel	[Ni]	13	10	8	10	7	13	8	8
Lead	[Pb]	13	19	22	18	14	16	10	14
Zinc	[Zn]	70	54	47	51	39	37	39	53
Vanadium	[V]	63	71	52	110	40	160	55	170
Strontium	[Sr]	17	Ŷ	10	14	12	10	10	71
Cobalt	[Ca]	6	3	2	4	3	5	3	7
Molybdenum	[Mo]	6	4	6	8	< 2	4	< 2	2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	1	1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	(B]	20	10	< 10	10	30	< 10	10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	[Y]	4	i.	4	3	2	2	2	6
Scandium	(Sc]	1	< 1	< 1	1	1	1	< 1	< 1
Tungsten	{₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[N5]	< 10	< 10	10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	< 10	< 10	20	< 10	< 10	20	< 10	20
Arsenic	[As]	20	10	< 5	10	< 5	10	10	20
Bisauth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	10

DATE : AUG-31-1990

SIGNED : Bernie Ou

1 3 L LABORATORIES

a a

Ľ

L

C

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9624 - 3
10th Floor Box 10	T.5.L. File No. : E:M7730
808 West Hastings St.	T.S.L. Invoice No. : 15148
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: VR OREQUEST CONSULTANTS	-2236 ALL RESULTS PPM

TML10 3+005 TML10 3+505 TML10 4+005 TML10 4+505 TML10 5+005 TML11 0+005 TML11 0+505 TML11 1+005

ELEMENT

Aluminum	[A]]	15000	9200	10000	12000	16000	19000	11000	12000
Iran	[Fe]	44000	24000	53000	56000	55000	48000	38000	3 200 0
Calcium	(Ca)	900	820	2100	2300	2000	800	96 0	2100
Magnesium	[Mg]	1200	700	1400	1500	1700	3100	970	2400
Sodium	[Na]	60	110	190	160	150	70	70	230
Potassium	[K]]	380	510	380	260	500	220	260	470 470
Titanium	[]]]	300	300	1000	820	740	120	1100	520
Manganese	(Mo)	170	130	1300	250	540	270	130	SeQ.
Phospherus	[F]	1400	2000	1000	1100	790	1900	2900	10.00
Barium	[Ea]	92	83	61	52	36	64	100	130
Chromium	[Cr]	21	13	20	25	17	40	22	20
Zirconium	[2r]	E.	2	6	15	11	6	5	6
Copper	[Su]	38	34	42	45	30	25	16	35
Nickel	[Ni]	10	8	16	19	17	28	10	14
Lead	[25]	14	11	26	18	21	13	20	13
Zinc	[Zn]	39	42	79	51	68	61	37	51
Vanadium	(V]	68	40	90	97	60	40	81	58
Stroctium	[Sr]	ę	8	14	14	14	10	11	20
Cobalt	(Co)	3	7	7	4	3	4	2	Ę,
Molybdenum	[Mo]	4	4	4	2	4	< 2	4	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	(Cd)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[8e]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	:0
Antimony	[55]	< 5	< 5	< 5	< 5	15	< 5	< 5	< 5
Yttrium	[Y]]	3	2	4	3	10	3	4	ą
Scandium	(Sc]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Tuno sten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[:16]	< 10	< 10	< 10	10	20	< 10	10	< 10
Thorium	[Th]	< 10	< 10	9 0	50	40	20	< 10	K 10
Arsenic	[As]	15	< 5	15	< 5	20	10	10	10
Bismuth	(Bil	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	< 5	< 5	< 5	< 5	10	< 5	< 5
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : AUG-31-1990

SIGNED : <u>Bernie Dum</u>

.....

T S L LABORATORIES

L

2-302-48TH STREET, SASKATODN, SASKATCHEWAN 87K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.		T.S.L. REPORT No. : 5 - 9624 - 4
10th Floor Box 10		T.S.L. File No. : E:M7730
BOB West Hastings St.		T.S.L. Invoice No. : 15148
Vancouver B.C. V6C 2%6		
ATTN: J. FOSTER PROJECT: VR 0	REQUEST CONSULTANTS R-2236	ALL RESULTS PPM

TML11 1+505 TML11 2+005 TML11 2+505 TML11 3+005 TML11 3+505 TML11 4+005 TML11 4+505 TML11 5+005

ELEMENT

Aluminum	[A]]	9860	7900	17000	3700	46 00	41000	9600	10000
Ігол	[Fe]	40 000	50000	43000	240 00	37000	23000	29000	47000
Calcium	[Ca]	1900	1800	2300	480	840	9000	1300	2300
Maonesium	[Ma]	1300	98 0	1900	540	870	1200	770	1200
Sodium	[Na]	100	130	120	80	100	170	90	90
Potassium	E K 3	590	330	190	790	570	230	440	350
Titanium	ETi]	220	1200	170	47 0	1500	420	400	450
Manganese	[Mn]	1500	410	150	160	410	2800	240	170
Phosphorus	[P]	2000	3500	2400	750	2500	1800	1100	2300
Barium	[Ba]	70	100	120	5.	36	77	84	88
Chromium	[Cr]	21	25	27	10	24	16	13	22
Zirconium	[27]	2	8	6	2	23	5	3	6
Copper	ECu3	23	31	41	63	35	45	37	39
Nickel	[Ni]	7	10	20	11	14	9	8	13
Lead	[Pb]	13	20	9	5	19	φ	10	15
Zinc	[2n]	37	50	54	70	69	71	41	45
Vanadium	٤٧]	120	130	61	56	46	29	71	96
Stroatium	[Sr]	11	16	18	ċ	8	48	12	15
Cobalt	[Co]	:0	3	4	11.5	4	22	4	3
Molybdenum	[Mo]	4	8	4	÷	6	< 2	4	2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	3	< 1	$\langle 1$
Cadmium	{b]}	· < 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1
Boron	[B]	10	< 10	20	20	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY 3	3	4	3	-	ó	19		ذ
Scandium	[Sc]	< 1	< 1	< 1	2	1	< 1	< 1	
Tungsten	EW]	< 10	10	< 10	< <u>1</u> 9	< 10	< 10	10	3.10 7 10 7 10 7 10
Niobium	[Nb]	< 10	10	< 10	< 10	10	< 10	< 10	< 10
Thorium	[Th]	< 10	50	< 10	< 10	< 10	< 10	< 10	< 1V • •
Arsenic	[As]	5	15	< 5	19	15	< 5	5	10
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	()
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10 / F	< 1V / =
Lithium	[Li]	< 5	< 5	< 5	< 5	< 5	5	< 5 / / /	< 3
Holaium	[Ha]	< 10	< 10	< 10	< i0	< 10	< 10	< 10	< 10

DATE : AUG-31-1990

SIGNED : _ Bernie Our

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14969 P.O.: R-2268

SAMPLE(S) OF Soils

W. Raven Project: VR Tymar #2

REMARKS:

S: OreQuest Consultants Ltd.

Au ppb

LOW 10+00N	<5
LOW 9+50N	<5
LOW 9+00N	10
LOW 8+50N	5
LOW 8+00N	<5
LOW 7+50N	5
LOW 7+00N	<5
LOW 6+50N	5
LOW 5+00N	<5
LOW 4+50N	<5
LOW 4+00N	<5
LOW 3+50N	<5
LOW 3+00N	<5
LOW 2+50N	5
LOW 2+00N	<5
LOW 1+50N	<5
LOW 1+00N	<5
LOW 0+50N	<5
L1W 10+00N	<5
L1W 9+50N	<5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime - Vancouver

Aug 28/90

Beinie her SIGNED 1 of 2 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATORIES

2 - 302 - 48th STREET, EAST SANDETOON, SASKATCHEWAN S7K 0AT

306) 201-0033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. BEPORT No. Vancouver, B.C. S9701 V6C 2X6

> INVOICE #: 14969 P.O.: R-2268

SAMPLE(S) OF Soils

W. Raven Project: VR Tymar #2

REMARKS:

S: OreQuest Consultants Ltd.

Au ppb

L1W	9÷00N	<5
LlW	8+50N	<5
LlW	8+00N	<5
L1W	7+50N	<5
L1W	7+00N	<5
L1W	6+50N	<5
L1W	6+00N	<5
L1W	5+50N	<5
L1W	5+00N	15
L1W	4450N	<5
L1W	4+00N	<5
L1W	3+50N	10
L1W	3+00N	5
L1W	2+00N	10
L1W	1+50N	<5
L1W	1+00N	<5
L1W	0+50N	<5
L1W	0+00	5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 28/00

SIGNED ______ Lage 2 of 2

For enquiries on this report, please contact Customer Service Department. Semples, Pulps and Rejects discarded two months from the pate of this report. T S L LADORATORIES

.

2-300-48TM ECCEPT, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. PLASHA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.			T.S.L.	REPORT	No.	:	S - 9701 - 1
10th Floom Sox 10			T.S.L.	File	No.	:	E:#7806
808 Mast Histings St.			T.S.L.	Invoice	No.	:	15219
Vancouver D.C. VIC 2X6							
ATTN: J. FOSTER PROJECT: VA TYMAR #2	OREQUEST CONSULTANTS	R-22 68		ALL REE	ULTS	PPI	f

		LOW 10+CON	LOW 9+50N	LOW 9+00N	LOW 8+50N	LOW 8+00N	LOW 7~50N	LOW 7+002	LOW 6+50N
ELEVENT									
Aluminen Iron	[A1] [Fe]	160 00 390 00	160 00 34000	5500 38000	11000 390 00	12000 42000	10000 33000	4300 39000	3900 43000
Calcium	[Ca]	540 0	8700	13000	15000	5900	15000	14000	16000
Magnesium	[Mg]	460 0	5500	1500	4100	4300	3500	1400	1500
Sodium	(Na]	50	50	40	60	30	20	20	50
Fotassium	FK]	7 80	91 0	1000	1100	910	1400	1100	1200
\i ta niu≂	[]i]	22	27	10	24	14	8	3	4
hanganese	(Ma)	1400	100 0	1600	1200	1200	1300	1100	1200
Phospherus	(P]	1400	1500	1400	1600	1100	1100	1100	1300
lariu:	[Ba]	310	270	210	230	470	370	200	130
Carosica	[Cr]	15	23	18	14	16	13	15	9
Zirccalum	[Zr]	E	8	7	7	8	3	_7	7
Coppet	[[u]]	83	65	100	110	97	F1	75	95
Nicke l	[Ni]	16	15	16	14	26	11	17	15
Lead	[fo]	63	24	29 0	20	19	22	67	28
Zinc	[Zn]	25 0	140	500	110	120	160	250	150
Vanadium	[V]]	9 9	110	66	77	76	73	58	50
Strontium	[Sr]	22	28	39	55	26	44	65	67
Cobalt	[Ca]	17	14	19	15	19	14	15	20
holybdenum	[Ho]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmius	[[4]]	< 1	< 1	4	< 1	< 1	< 1	2	< 1
Deryllica	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	4 1	< 1
Earon	[8]	< 1 0	< 10	< 10	K 10	< 10	< 10	< 10	< 10
Entimoy	[3b]	< €	< 5	10	10	10	< 5	10 -	10
Yt tri sa	LY]	11	11	10	11	12	10	9 -	10
Scandium	[Sc]	ę	12	10	10	12	12	9	8
Tungston	[#]	< 10	< 10	20	K 10	< 10	< 10	20	10
Niobius	[16]	₹ 1 0	< 10	< 10	< 10	< 10	K 10	< 10	< 10
Thorica	[Th]	30	30	40	40	30		40	30
Ersenic	(As)	35	10	75	25	30	1 1 1 1	45	40
Bisauto	[Bi]	20	15	< 5	10	< 5	5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	20	< 5	10	15	10	< 5	< 5
Holaice	[Ho]	< 10 [−]	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-15-1890

SIGNED : Bernie Que

T S L LABORATORIES

,

C

E

C

2-302-48TH STREET, SASKATOON, SASKATCHEVER S7K 704 TELEPHONE #: (306) 931 - 1030 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLOR 10th Floor E 808 West Has	ATION LTD lox 10 tinos St.).					T.S.L. T.S.L. T.S.L.	REPERT No. File No. Invoice No.	: S - 970 : E:M7806 : 15219	1 - 2
Vancouver B. ATTN: J. FC	C. V6C 2) STER	(6 PROJECT:	VR TY	Mar #2 Ore	QUEST CONSULT	rants R-2268		ALL RESOLTS	PPH	
ELEM	ent	LOW	5+00N	LOW 4+50N	LOW 4+00N	LOW 3+50X	LOW 3+00%	LOW 2450N	LOW 2+00N	LOW 1+5 0N
A1	. 7611		1000	10000	10000	1/000	11000	11000	10000	7000

科工程職工的任務	[11]	14(AN)	17000	18000	10000	11000	16000	10000	7700
Iron	[Fe]	34000	37000	33000	38000	36000	43000	49000	39000
Calcium	[Ca]	3800	3900	3400	2400	3300	3600	7700	6300
Magnesium	[Mg]	4500	5200	6100	4300	3300	4500	2700	1700
Sodium	(Na]	80	40	30	100	110	50	40	40
Potassium	CK 1	790	750	570	660	680	690	1300	1700
Titanium	[Ti]	41	19	21	77	81	30	23	13
Manganese	EMn 3	540	750	1100	700	820	620	1300	1100
Phosphorus	[P]	1100	1200	1100	1100	1100	1222	1900	1200
Barium	[Ba]	150	220	210	120	140	160	310	280
Chromium	{Cr}	19	12	12	17	15	25	24	18
Zirconium	[[7]	6	6	7	2	3	ç	12	7
Copper	(Cu)	71	67	74	85	90	EF	130	110
Nickel	[Ni]	28	14	14	20	31	26	28	22
Lead	[Pb]	12	6	4	10	14	8	10	11
Zinc	[2n]	120	79	60	97	99	96	110	98
Vanadium	[V]	70	110	110	75	41	53	88	67
Strontium	[Sr]	22	17	14	12	19	18	36	25
Cobalt	[Co]	12	14	13	14	15	15	25	16
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	1	1	< 1
Cadmium	[b3]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	5	< 5	10	5	< 5	E.	35	5
Yt]	10	6	9	12	10	17	14	12	
Scandium	[Sc]	8	7	11	2	4	12	16	12
Tungsten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobiua	[Nb]	< 10	< 10	< 10	< 10	< 10	K 10	< 10	< 10
Thorium	[Th]	40	20	40	30	20	20	20	40
Arsenic	[As]	15	10	5	30	35	30	40	35
Bismuth	[Bi]	10	10	15	10	5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	20	20	20	15	15	15	5	< 5
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-05-1990

SIGNED : _ Reinie Quen

TSIL LARGERIES

[

[

Ľ

2-302-4636 - 20REEN, CASKAGUDA, CONVERSEMAN - GO 644 Telen CWE (1, 1903) - 500 - 500 FAX (1, 1905) - 520 - 4717

L.C.A.P. PLECTA SCE

inva-Repla Digestion

PRINE LA-LORATION LTE. 10th F. pr Box 10	7.5.1. REFORT to. : 5 - 9701 - 3 7.5.1. File Mo. : E:M7806
808 K Hastings St.	U.S.L. Invoice Do. : 15219
Vanceller B.C. M.C. 2X6 ATTN: 1. FOSTEX PROVENT: VR TYMAR AR CELOUEST STROUGRAUTS R-2268	ALL RESIDES PRO

LER 1+00N LOW 0+50% L1N 16490N L1N 9+50N L38/5400N L1N 8+00N L1N 8+00N L1N 8+00N L1N 7+500

ELEMENT

Continum	f A 1 3	7500	1000	14000	1/ 0 00	19000	1 4 000	17000	15000
11.00	[Fe]	43000	35000	36 000	3 20 00	360 00	45000	26000	46000
Calcium	[Ca]	6300	1900	2200	2400	920	5100	480	2500
Magnesium	[Mg]	1800	2800	3700	4300	340 0	4900	3600	4100
Socium	[Na]	50	40	60	60	40	7 0	70	20 0
Folissium	[K]]	1200	970	c. 0	: 90	÷30	660	530	6 5.)
โรรอสโมล	[Ti]	30	35	2	35	24	2. 2.	27	72
No canese	[ha]	840	610	1167	-10	100 0	1263	480	12(4)
Fillephores	12-1	2100	760		590	620	1500	610	12 00
E. Ism	(Dal	190	88	1.2	240	180	230	77	190
Diconium	[Cr]]	13	16	12	27	23	11	31	<u>7</u> 4
1 conium	[[n]]	8	3		2	3	10	I	ć
Concer	(Ca]	120	72	- · · ** -	51	47	E-1	29	110
ti pa el	[#1]	20	24	17 a	35	23	10 C	28	- 39
£ ∈∧đ	(P5]	11	23		14	16	1	14	25
Zint	[Zn]	110	140	52	93	98	70	73	150
Vacadium	{V]]	73	32	£5	68	75	110	38	80
Strontium	(Sr]	29	16	12	15	7	21	5	17
(*. =)t	[Co]	17	14	1	13	13	22	8	35
Nolyb denu a	(Ka]	< 2	< 2	< 2	< 2	· 2	< 2	< 2	< 2
Stiven	[Ag]	1	< 1	K 1	< 1	1	< 1	< 1	(1
U ium	{Cd}	< 1	< 1	K (1	1	1	< 3	< 1	
E llium	[88]	< 1	· 1	< 1. C	1	- 1	× 1	< 1	
£ can	EB]	< 10	10	< 14 J	< 10	× 10	(1 (< 10	< 10
£. ∷ ≊ony	1699]	5	÷ Ş	K	÷ 5	< 5	K Q	< 5	10
Y: Tium	[Y]	15	8	•	70	6	11	6	15
Eccidium	[Sc]	11	2	1	2	2	1		j.
% gsten	【副】	< 10	- 10	 19 	< 10	< :0	1	< 10	< 10
he ium	(ස)	< 10	·: 10	$\mathbf{X} = \mathcal{A}$	K 10	10	·. 1/-	. 10	< 19
The Link	[] h]	40	40		30	<u>.</u>	N.	30	20
f hic	i(s)	30	35	, ,	20	20	25	10	45
Elecath	[3 1]	< 5	< 5	4. 5.	< 5	5		< 5	< C.
₹ 3<	(Sa]	< 10	i 10	< 10	< 10	< 10	< 10	< 10	< 10
Linium	(Li]	< 5	10	20	20	15	15	20	15
\$P\$11 (QA	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	4 10

DATE : 0.2-05-1990

ter fine Comment

T E LABORATORIES

•

Ľ

ľ

E

C

C

C

l

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TEAEPHONE #: (306) 581 - 1033 FAC #: (306) 242 - 4717

I.C.A.P. PLASMA ECAN

Aqua-Regia Digestion

PRIME EXPLORATIO	N LTD.					T.S.L.	Report N	o.:	S - 9701	- 4
10th Floor Box 1	0					T.S.L.	File N	lo. :	E:M7806	
808 West Hasting	s St.					T.S.L.	Invoice N	io.:	15219	
Vancouver B.C. V	6C 2X6									
ATTN: J. FOSTER	PROJECT:	VR TYMAR #2	OREQUEST	CONSULTANTS	R-2268		ALL RESUL	ts pp	M	
	L1W	7+00N LIW 6	SON LIW	6+00N LIW	5+50N L1	W 5+00N	L1W 4+50	N L	1W 4+00N	L1W 3+50N

ELEMENT

Aluminus	[A]]	14000	13000	13000	12000	13000	14000	14000	15000
Iron	[Fe]	42000	36000	29000	34000	34000	35000	29000	22000
Calcium	[Ca]	3500	3900	2500	3000	3500	4000	980	540
Magnesium	[Mg]	4000	4100	4500	3900	4200	4600	3400	2600
Sodium	[Na]	130	70	60	120	280	1200	90	60
Potassie	{K]	840	760	650	700	730	9 00	420	560
Titanium	{Ti]	61	27	58	64	130	810	58	44
Manganese	[Mn]	1100	1200	1000	680	500	7 50	490	170
Phosphorus	[P]]	1400	1400	720	960	1000	95 0	630	760
Barium	[Ba]	150	130	140	94	86	100	110	76
Chromium	[Cr]	24	33	68	23	22	20	24	16
Zirconius	[[7]	6	6	3	4	4	7	2	< 1
Copper	(Cu)	120	120	56	64	64	58	42	42
Nickel	[Ni]	32	58	86	36	30	31	38	11
Lead	[P6]	15	12	15	29	21	23	16	26
Zinc	[Zn]	110	140	170	170	150	200	130	87
Vanadium	{V]	72	63	38	56	61	58	40	52
Strontium	[Sr]	20	25	23	26	28	33	9	4
Cobalt	[Co]	34	35	20	14	12	15	10	4
Mol ybdenum	(Mo]	< 2	Κ 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< i	< 1	< 1	< 1
Cadmium	[Cd]	< t	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Berylliu s	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]	< 10	< 1○	< 10	< 10	< 10	K 10	< 10	< 10
Antimony	[Sb]	e e	10	< 5	< 5	< 5	5	< 5	< 5
Yttriue	[Y]	12	13	9	10	9	10	7	5
Scandium	[5c]	9	9	5	6	7	Ŀ	1	< 1
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobius	[Nb]	〈 10	< 10	< 10	< 10	< 10	< 1 0	< 10	< 10
Thoriua	[Th]	30	26	10	20	30	30	20	< 10
Arsenic	[As]	30	20	- 10	30	25	30	15	20
Bismuth	[Bi]	< 5	10	5	5	5	10	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	20	25	20	20	15	15	10
Holaiua	[Ho]	< 1 0	K 10	< 10	< 10	< 10	K 10	< 10	< 10

Beinie Oum SIGNES : _

T S L LABORATORIES

•

E

2-302-48TH STREET, SASE JON, SASKATCHEMAN S7K 6A4 TELEPHONE : (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

moua-Regia Disestion

PRIME EXPLORATION	ON LTD.					T.S.L. T.S.L. T.S.L.	REPORT No. File No.	No.: S - 9701 - 5 No.: E:M7806 No.: 15219
ROB West Hastin	os St.						Invoice No.	
Vancouver B.C.	V6C 2X6							
ATTN: J. FOSTE	R PR	OJECT: VR TYM	IAR #2 ORE	QUES CONSULT	TANTS R-226	В	ALL RESULTS	PPM
		L1W 3+00N	L1W 2+00N	L18 MASON	L1W 1+00N	L1W 0+50N	E1W 0+00	
ELEMENT								
Aluminum	[A1]	13000	6500	11360	18000	16000	120 00	
Iron	[Fe]	47000	36000	35000	35000	32000	4 50 00	
Calcium	[Ca]	5300	5300	2400	1600	1300	4200	
Magnesium	[Mg]	3900	2000	2 40 0	3000	4200	3800	
Sodium	[Na]	60	30	40	40	40	60	
Potassium	(K 1	940	920	630	570	540	850	
Titanium	[Ti]	36	25	1:7	42	49	88	
Manganese	[Mn]	1300	1100	510	840	850	1300	
Phosphorus	[P]	1600	1700	1 (3)	1500	650	12 00	
Barium	[Ba]	190	150	\÷0	160	120	2 30	
Chromium	(Cr)	17	10	20	18	28	18	
Zirconium	[Zr]	10	5	< 1	1	3	9	
Copper	{Cu}	130	110	52	73	47	110	
Nickel	[Ni]	18	18	21	14	40	27	
Lead	[Pb]	27	25	12	22	11	17	
Zinc	[Zn]	150	130	94	92	97	120	
Vanadium	EV 1	94	53	55	86	45	60	
Strontium	{Sr}	24	24	12	11	10	31	
Cobalt	{Co}}	20	15	10	8	13	20	
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	
Silver	[Ag]	1	2	< 1	1	< 1	< 1	
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	
Beryllium	[Be]	< 1	< 1	į	< 1	< 1	< 1	
Boron	{B]	< 10	< 10	< 10	< 10	< 10	< 10	
Antimony	(Sb)	10	5	< 5	< 5	< 5	10	
Yttrium	[Y]]	15	13	7	15	9	19	
Scandium	[Sc]	14	8	1	< 1	3	8	
Tungsten	[W]	< 10	< 10	<10	< 10	< 10	< 10	

C C C E [

Niobium

Thorium

Arsenic

Bisauth

Lithium

Holaiua

Tin

[N6]

[Th]

[As]

[Bi]

[Sn]

[Li]

[Ho]

< 10

30

35

10

< 5

< 10

< 10

SIGNED :

< 10

 $\langle i \rangle$

0.5

< 10

10

- 10

30

< 10

70

45

< 5

< 10

< 5

< 10

< 10

20

- 30

< 5

< 10

10

< 10

< 10

30

5

5

20

Bunie D.

< 10

< 10

< 10

30

35

10

< 5

< 10

< 10

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14968 P.O.: R-2271

SAMPLE(S) OF Soils

W. Raven Project: VR Tymar #2

OreQuest Consultants Ltd.

REMARKS:

		Au ppb		
L7W(TM2)0+00)	<5		
L7W(TM2)0+50	N	15		
L7W(TM2)1+00	N	<5		
L7W(TM2)1+50)N	<5		
L7W(TM2)2+00	ON	<5		
L7W(TM2)2+50	N	15		
L7W(TM2)3+00	N	5		
L7W(TM2)3+50	N	<5		
L7W(TM2)4+00)N	<5		
L7W(TM2)4+50)N	<5		
L7W(TM2)5+00)N	<5		
L7W(TM2)5+50)N	5		
L7W(TM2)6+00)N	<5		
L7W(TM2)6+50	N	<5		
L7W(TM2)7+00)N	<5		
L7W(TM2)7+50)N	<5		
L7W(TM2)8+00)N	5		
L7W(TM2)8+50)N	<5		
L7W(TM2)9+00)N	5		
L7W(TM2)9+50)N	<5		
COPIES TO:	C. Idz	szek	Л.	Foster
INVOICE TO:	Prime -	- Vanco	uve	r

Aug 28/90

Bernie (SIGNED 1 of 3 Page

CT/

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

	<u> </u>

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 37K 6A4 37K 6A4

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14968 P.O.: R-2271

SAMPLE(S) OF Soils

W. Raven Project: VR Tymar #2

RI

ł

REMARKS: OreQuest Consultants Ltd.

	Au ppb
L7W(TM2)10+00N	15
L6W(TM2)0+00	<5
L6W(TM2)0+50N	10
L6W(TM2)1+00N	<5
L6W(TM2)1+50N	<5
L6W(TM2)2+00N	40
L6W(TM2)2+50N	5
L6W(TM2)3+00N	5
L6W(TM2)3+50N	5
L6W(TM2)4+00N	<5
L6W(TM2)4+50N	<5
L6W(TM2)5+00N	<5
L6W(TM2)5+50N	<5
L6W(TM2)6+00N	<5
L6W(TM2)6+50N	<5
L6W(TM2)7+00N	<5
L6W(TM2)8+00N	10
L6W(TM2)8+50N	<5
L6W(TM2)9+00N	<5
L6W(TM2)9+50N	5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 28/90

Bernie (2 of 3 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14968 P.O.: R-2271

SAMPLE(S) OF Soils

W. Raven Project: VR Tymar #2

REMARKS: OreQuest Consultants Ltd.

Au ppb

5

L6W(TM2)10+00N

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 28/90

Reinie (3 of 3 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

SIGNED

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L.	REPORT No. : S - 9702 - 1	
10th Floor Box 10	T.S.L.	File No. : E:M7805	
808 West Hastings St.	T.S.L.	Invoice No.: 15184	
Vancouver B.C. V6C 2X6			
ATTN: J. FOSTER PROJECT: VR TYMAR #2	OREQUEST CONSULTANTS R-2271	ALL RESULTS PPM	

L7W(TM2)0+00 L7W(TM2)0+50N L7W(TM2)1+00N L7W(TM2)1+50N L7W(TM2)2+00N L7W(TM2)2+50N L7W(TM2)3+00N

ELEMENT

Aluminum	[A]]	19000	20000	14000	18000	17000	11000	180 00
Iron	[Fe]	23000	35000	33000	31000	28000	43000	330 00
Calcium	[Ca]	360	780	480	480	11000	5500	840
Magnesium	[Mg]	680	3700	910	3500	2300	3200	1200
Sodium	[Na]	200	110	90	80	150	50	150
Potassium	{K]	310	430	460	380	480	1000	40 0
Titanium	[Ti]	220	88	55	70	290	42	120
Manganese	[Mn]	260	990	1400	550	630	2200	8 70
Ph ospho rus	[9]	660	640	1000	550	1300	1400	1000
Barium	[Ba]	56	120	140	81	210	310	84
Chromium	[Cr]	13	24	10	25	14	23	15
Zirconium	[[r]	7	7	< 1	< 1	8	6	< 1
Copper	[Cu]	15	74	27	33	30	160	18
Nickel	[Ni]	7	36	7	32	17	29	12
Lead	{Pb]	15	17	13	10	19	42	22
Zinc	{Zn]	54	160	85	100	160	150	84
Vanadium	[V]	35	43	47	47	26	71	28
Strontium	[Sr]	4	7	6	5	9 8	34	8
Cobalt	[Co]	2	12	5	8	3	19	4
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	1	< 1	< 1	< 1	< 1	1	< 1
Cadmium	[[d]	< 1	< 1	< 1	< 1	< 1	1	< 1
Beryllium	[Be]	< 1	1	< 1	< 1	1	< 1	< 1
Boron	[8]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	5	< 5
Yttrium	[Y]	5	21	3	4	20	24	5
Scandium	{Sc]	< 1	3	< 1	< 1	< 1	8	< 1
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	20	10	< 10	< 10	30	< 10	20
Thorium	[Th]	< 10	20	< 10	< 10	50	30	< 10
Arsenic	[As]	10	15	10	20	< 5	45	10
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	20	< 5	20	15	15	10
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-04-1990

SIGNED : Bernie Dunn

L C [[[Ŀ E E Ľ Ľ

۲

.

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 9702 - 2
10th Floor Box 10	T.S.L. File No. : E:M7805
808 West Hastings St.	T.S.L. Invoice No. : 15184
Vancouver B.C. V&C 2X&	
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-	-2271 ALL RESULTS PPM

17W(TM2)3+50N L7W(TM2)4+00N L7W(TM2)4+50N L7W(TM2)5+00N L7W(TM2)5+50N L7W(TM2)6+00N L7W(TM2)6+50N

ELEMENT

A1	5017	10000	17000	10000	41000	45334		
អាមណាតា	1411	19000	1/000	18000	16000	12000	12000	13000
100	lfel	32000	27000	23000	29000	42000	47000	46000
Calcium	[Ca]	580	320	780	2000	2400	3700	4900
Magnesium	[Mg]	4100	2900	2500	4600	3700	3700	4600
Sodium	[Na]	60	110	90	50	210	280	1200
Potassium	(K]	400	330	300	400	610	800	980
Titanium	[Ti]	50	200	73	34	76	190	98 0
Manganese	[Mn]	850	370	350	670	1200	9 80	830
Phosphorus	[P]	650	620	610	520	1100	1300	1200
Barium	[Ba]	110	61	100	130	150	130	140
Chromium	[Cr]	35	26	23	38	25	20	23
Zirconium	{Zr]	< 1	< 1	< 1	2	4	7	8
Copper	[Cu]	37	23	20	42	66	76	73
Nickel	[Ni]	49	25	19	64	42	29	31
Lead	[Pb]	13	9	11	10	10	14	10
Zinc	[Zn]	110	68	58	120	98	110	100
Vanadium	[V]	41	47	47	36	51	69	73
Strontium	[Sr]	9	5	9	16	18	24	41
Cobalt	{Co]}	14	5	5	14	16	17	18
Molybdenua	[Ma]	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[[b]]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	5	< 5	< 5	5	5	5	5
Yttrium	{Y }	5	3	3	6	15	16	14
Scandium	{Sc}	< 1	< 1	< 1	3	6	13	11
Tunqsten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	(Th]	20	30	30	20	20	20	40
Arsenic	[As]	10	< 5	10	25	30	25	15
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	(Li]	25	15	15	30	20	20	20
Holaiua	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Bernie Cum

E Ľ [E [[Ľ

2-302-48TH STREET, SASKATOON, SASKATCHEHAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASKA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L.	REPORT No. :	S - 9702 - 3
10th Floor Box 10	T.S.L.	File No.:	E:M7805
808 West Hastings St.	T.S.L.	Invoice No. :	15184
Vancouver B.C. V6C 2X6			
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-2271		ALL RESULTS P	PM

L7W(TM2)7+00N L7W(TM2)7+50N L7W(TM2)8+00N L7W(TM2)8+50N L7W(TM2)9+00N L7W(TM2)9+50NL7W(TM2)10+00N

ELEMENT

Aluminum	[A]]	5200	15000	5300	13000	14000	17000	9800
Iron	[Fe]	37000	29000	40000	37000	30000	37000	41000
Calcium	[Ca]	4200	660	4200	2300	4200	3700	3300
Magnesium	[Mg]	2200	3700	1700	2300	2600	4500	3600
Sodium	[Na]	290	60	30	150	110	1000	680
Potassium	[K]	770	570	900	770	770	950	760
Titanium	[Ti]	130	24	8	120	43	540	420
Manganese	[Ma]	1100	850	1700	620	390	1200	1500
Phosphorus	[P]	1100	900	1400	1300	1300	1100	1000
Barium	[Ba]	150	80	230	130	160	140	120
Chromium	[Cr]	12	32	13	16	14	24	17
Zirconium	[]r]	4	< 1	7	1	< 1	5	4
Copper	(Cul	97	49	100	73	52	63	88
Nickel	[Ni]	30	40	27	17	13	33	32
Lead	{Pb]	16	5	12	11	8	16	23
Zinc	[20]	120	92	110	90	74	110	120
Vanadium	{V]	40	37	59	71	72	68	59
Strontium	[Sr]	36	7	21	15	25	33	29
Cobalt	[Co]	16	12	15	9	6	15	18
Molybdenum	[Ho]	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	(Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	(CJ)	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[8]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[96]	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	[Y]]	12	7	17	15	10	15	14
Scandium	(Sc]	7	< 1	11	2	2	6	8
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	EN6]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	40	< 10	50	50	20	20	20
Arsenic	[As]	20	15	25	20	< 5	10	20
Bismuth	[B1]	< 5	< 5	< 5	< 5	< 5	5	10
Tin	[En]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	< 5	20	10	10	15	25	15
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-04-1990

Γ

Ŀ

SIGNED : Bernie Dun

.

.

ŀ

C

,

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE **1**: (306) 931 - 1033 FAX **1**: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 8702 - 4
10th Floor Box 10	T.S.L. File No. : E:M7845
808 West Hastings St.	T.S.L. Invoice No. : 15184
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-227	ALL RESULTS PPM

L6W(TM2)0+00 L6W(TM2)0+50N L6W(TM2)1+00N L6W(TM2)1+50N L6W(TM2)2+00N L6W(TM2)2-30N L6W(TM2)3+00N

ELEMENT

	****		(8444					
Aluminum	LALI	11000	19000	21000	23000	15000	12000	11000
Iron	(Fe)	45000	36000	41000	31000	68000	220 00	36000
Calcium	[Ca]	2200	680	400	460	2600	11000	6200
Magnesium	[Mg]	1400	1500	1800	2500	3900	2000	3400
Sodium	[Na]	70	50	120	110	690	110	70
Potassium	[K]	530	680	330	430	800	50 0	1300
Titanium	[Ti]	47	22	190	120	310	140	31
Manganese	[Mn]	1400	890	990	320	2100	1000	1300
Phosphorus	[P]	1500	1200	890	830	1400	1700	1700
Barium	[Ba]	230	170	91	120	140	270	570
Chromium	[Cr]	13	10	17	18	17	13	8
Zirconium	[Zr]	< 1	2	< 1	2	6	¢.	6
Copper	(Cu)	83	46	60	48	240	28	74
Nickel	[Ni]	15	15	12	17	26	15	11
Lead	[Pb]	18	9	16	14	26	10	10
Zinc	{Zn}	83	84	100	90	130	130	77
Vanadium	[V]]	83	56	64	54	84	24	65
Strontium	[Sr]	26	7	5	5	23	94	26
Cobalt	[Co]	14	13	7	5	27	7	14
Molvbdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ao]	< 1	< 1	< 1	< 1	1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	1	< 1	< 1	< 1	< 1
Bervllium	[Be]	< 1	< 1	< 1	< 1	< 1	< :	< 1
Boroo	(B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb)	< 5	< 5	< 5	< 5	10	< 5	< 5
Yttrius	ΓY]	9	4	7	18	22	18	14
Scandium	(Sc]	< 1	1	< 1	1		< 1	9
Tunneten	[11]	< 10	< 10	< 10	< 10	< 10	< 16	< 10
Nichium	[Nh]	(10	< 10	< 10	< 10	< 10	< 16	< 10
Thorium	[75]	40	60	40	30	30	(16	20
Arcanic	[ac]	75	10	P0	10	45		5
Ricouth	[Ri]		< 5	< 5	< 5	5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	2. 10	< 10
lithica	6113	5	5	10	15	20	c c	10
Haim	[Her]	2 10	< 10	20	< 10	<u>کې</u> د 10	ن د ا ۵	< 10
I COLUMN T COM		10	× 10	· 10	10	10	× 10	× 1V

DATE : SEP-04-1990

SIGNED : ____ Bernie Ann

Ľ E

L

Ľ

, **,**

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 8 - 9702 - 5
10th Floor Box 10	T.S.L. File No. : E::7805
808 West Hastings St.	T.S.L. Invoice No. : 18184
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-2271	ALL RESULTS PPM

L6W(TM2)3+50N L6W(TM2)4+00N L6W(TM2)4+50N L6W(TM2)5+00N L6W(TM2)5+50N L6W(T(2)6+00N L6W(TM2)6+50N

ELEMENT

Aluminum	[A]]	14000	18000	15000	21000	16000	12000	14000
Iron	[Fe]	38000	33000	30000	30000	32000	39000	30000
Calcium	[Ca]	6000	460	2400	720	1200	4500	1800
Magnesium	[Mo]	3900	4100	4200	2000	4500	4400	4700
Sodium	[Na]	90	80	50	100	120	960	70
Potassium	EK 1	1100	440	440	370	480	⊜40	470
Titanium	[Ti]	41	54	56	240	43	440	39
Manganese	[Mn]	1300	770	540	190	820	1:00	1000
Phosphorus	[P]]	1600	640	720	780	640	100 0	65 0
Barium	[Ba]	370	71	120	90	120	14 0	130
Chromium	[Cr]	100	34	30	24	37	20	37
Zirconium	[Zr]	3	< 1	1	< 1	< 1	5	2
Copper	(Cu)	71	40	38	18	46	63	48
Nickel	[Ni]	56	50	47	21	56	35	65
Lead	[Pb]	10	13	9	14	11	14	12
Zinc	[Zn]	120	170	130	91	130	: 20	95
Vanadium	[V]]	76	44	41	41	41	50	34
Strontium	(Sr]	31	5	21	9	12	35	14
Cobalt	{Co]	14	14	9	3	14	17	17
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	$\langle 1 \rangle$	< 1	< 1	< 1	< 1	< 1	< 1
Cadaium	{Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Baron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb)	< 5	5	< 5	< 5	< 5	5	< 5
Yttrium	[Y]	13	5	5	12	5	12	10
Scandium	[Sc]	5	< 1	1	< 1	1	7	4
Tungsten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	< 10	20	20	50	20	20	20
Arsenic	[As]	< 5	10	20	5	15	20	20
Bismuth	{Bi]	5	< 5	10	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	25	25	15	30	15	25
Holaiua	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Beinie Our

3 L LABORATORIES

2-002-48TH STREET, SASKATOON, SASKATCHEWAN S7K (A4 TELEPHONE #: (306) 971 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLATION LTD.	T.S.L. REPOLT No. : 5 - 5702 - 6
10th Floor Box 10	T.S.L. File No. : E:M7205
808 West Hastings St.	T.S.L. Invoice No. : 15188
Vancouver B.C. V6C 2X6	
ATTN: J. FUSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-2271	ALL GEBOLTS PPM

L6W(TM2)7+00N_L6W(TM2)8+00N_L6W(TM2)8+50N_L6W(TM2)9+00N_L6W(TM2)8450NL6W(TM2)8450N

ELEVENT

. .

E

C

L

L

C

Ľ

E

Γ

L

Aluminary	[A]]	:40 00	15000	14000	12000	120 06	210 00
Iron	[Fe]	310 00	38000	38000	27000	290 00	31000
Calcium	[Ca]	1800	5000	4200	300	1000	28 0
Magnesium	[Mg]	4600	4300	3600	1200	1500	3400
Sodium	[Na]	150	50	90	40	70	70
Potassium	EK J	520	650	64 0	510	5 00	330
Titaniam	[Ti]	74	62	100	27	-	
Manganase	[Mn]	950	1100	1200	320	₫ć.:	420
Phospieru	s (P]	730	1200	1200	910	92 0	725
Baries	(Ba)	110	170	180	74	120	50
Chroaica	[Cr]	35	19	21	14	1a	51
Zircosium	[Zr]	3	3	1	< 1	< :	< 1
Copper	[Cu]	53	82	87	36	- 1	40
Nicksl	[Ni]	61	24	18	11	12	<u>n</u> - ∠7
Lead	[Pb]	12	11	15	8	13	17 17
Zinc	[Zn]	110	82	50	63	75	\$ 7
Vanadium	{V }	38	78	75	54	63	41
Strontium	[Sr]	17	26	24	4	8	4
Cobalt	[Co]	18	16	15	5	f.	E
Molybdanui	a (Mo]	< 2	< 2	< 2	< 2	Κ 2	Κ 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< i	< 1
Cadaium	[63]	< 1	< 1	< 1	< 1	< 1	< :
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]	< 10	< 10	< 10	< 10	K 16	く 19
Antiecay	[56]	< 5	10	ş	< 5	< 5	< 5
Yttrien	[Y]]	9	23	17	2	5- 11-	- 12
Scand ion	[Sc]	3	5	τ.	< 1	< 1	< - E
Tung atan	[W]	< 10	< 10	< 10	< 10	$\langle 1^{\circ}$	< 1.0
Niobius	[Nb]	< 10	< 10	< 10	< 10	< 5-	< 1∵
Thories	[Th]	20	20	30	< 10	< 10	1.7
Arsenic	[As]	25	20	15	20	23	内丘 金小
Bismuth	(Bi]	< 5	< 5	< 5	< 5	< 3	< 5
Tin	[Sn]	< 10	< 10	< 1 0	< 10	< <i>10</i>	< 1 5
Lithiga	[Li]	25	25	20	5		20
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : _____Renne - Com

TSL LABORAT

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 14977 **P.O.:** R-2270

SAMPLE(S) OF Soils

REMARKS:

W. Raven Project: VR

OreQuest Consultants

	Au ppb
L9W0+00N	5
L9W0+50N	10
L9W1+00N	5
L9W1+50N	<5
L9W2+00N	10
L9W2+50N	<5
L9W3+00N	<5
L9W3+50N	5
L9W4+00N	5
L9W4+50N	<5
L9W5+00N	<5
L9W5+50N	<5
L9W6+00N	<5
L9W6+50N	<5
L9W7+00N	<5
L9W7+50N L9W8+00N L9W8+50N L9W9+00N L9W10+00N	<5 5 5 <5 5 5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Aug 28/90

.

Bernie Durn SIGNED Page 1 of 2

For enquiries on this report, placese contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

DIV. BURGENER TECHNICAL ENTERPRISES LIMITEI

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9740 V6C 2X6

> INVOICE #: 14977 P.O.: R-2270

SAMPLE(S) OF Soils

W. Raven Project: VR

F

REMARKS: OreQuest Consultants

	Au ppb
L8W0+00N	<5
L8W0+50N	<5
L8W1+00N	<5
L8W1+50N	<5
L8W2+00N	<5
L8W2+50N	<5
L8W3+00N	<5
L8W3+50N	<5
L8W4+00N	<5
L8W4+50N	<5
L8W5+00N	10
L8W5+50N	10
L8W6+50N	30
L8W7+00N	10
L8W7+50N	10
L8W8+00N	10
L8W8+50N	10
L8W9+00N	10
L8W9+50N	10
L8W10+00N	10
COPIES TO:	C. Idz
	-

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

SIGNED

Aug 23/90

Bernie Cu

For enquiries on this report, please contact Customer Souvice Department, Samples, Pulps and Rejects durharded two months from the date of this report.

Page 2 of 2

•

Ľ

[

Ľ

C

Γ

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 9740 - 1
10th Floor Box 10	T.S.L. File No. : E:M7813
808 West Hastings St.	T.S.L. Invoice No. : 15292
Vancouver B.C. V&C 2X&	
ATTN: J. FOSTER PROJECT: VR TYMAR OREQUEST CONSULTANTS R-2270	ALL RESULTS PPM

		L9W0+00N	L9W0+50N	L9W1+00N	19W1+50N	L9W2+00N	L9W2+50N	L9W3+00N	L9W3+50N
ELEMENT									
Aluminum	[A]]	17000	7600	13000	17000	14000	13000	15000	19 000
Iron	[Fe]	40000	26000	32000	48000	33000	31000	30000	36 000
Calcium	[Ca]	2400	6300	2700	E4 0	700	520	1200	2 000
Magnesium	[Mg]	2300	2100	2500	2900	1900	2100	4700	2500
Sodium	[Na]	170	500	120	120	160	130	110	210
Potassium	[K_]	730	990	680	690	560	510	490	470
Titanium	[Ti]	25	97	45	18	130	69	44	140
Manganese	[Mn]	1600	340	460	1200	670	730	660	8 40
Phosphorus	[P]	1600	1400	1200	2000	1600	1200	560	1500
Barium	[Ba]	160	150	120	160	92	100	120	150
Chromium	[Cr]	14	6	26	18	20	24	35	15
Zirconium	[Zr]	3	3	2	4	3	2	6	ċ
Copper	[Cu]	40	33	29	66	15	29	51	5.00 2.4
Nickel	[Ni]	12	6	22	19	14	22	57	
Lead	[Pb]	74	16	10	19	20	19	10	12
Zinc	[Zn]	240	110	180	120	120	120	140	130
Vanadium	[V]	60	40	49	74	42	57	35	20
Strontium	[Sr]	22	47	23	11	11	8	15	19
Cobalt	[Co]	13	6	4	9	4	7	14	E.
Molybdenum	(Mo)	< 2	< 2	< 2	Κ 2	< 2	< 2	< 2	$\langle 2 \rangle$
Silver	[Aq]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$
Cadmium	[[1]]	< 1	< 1	< 1	< i	< 1	< 1	< i	< 1
Beryllium	(Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	:
Boron	[B]	< 10	20	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[56]	Κ 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY 3	8	8	4	4	4	3	11	• • • :-
Scandium	[Sc]	< 1	2	< 1	< 1	< 1	< 1	2	< :
Tunosten	[₩]	< 10	< 10	< 10	< 1 0	< 10	< 10	< 10	$\langle -1 \rangle$
Niobius	[Nb]	< 10	< 10	< 10	< 10	10	< 10	< 10	5. 1 1. 12
Thorium	[Th]	40	< 10	50	20	40	10	30	4,1
Arsenic	[As]	< 5	5	15	30	5	10	1 17	20
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	K 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
Lithium	[Li]	50	35	45	40	35	35	60	5 C. 1 C
Holaium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Bunie Our

.

.

2-302-45TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 9740 - 2
10th Floor Box 10	T.S.L. File No.: E:M7813
808 West Hastings St.	T.S.L. Involte No. : 15292
Vancouver B.C. V&C 2X6	
ATTN: J. FOSTER PROJECT: VR TYMAR OREQUEST CONSULTANTS R-2270	ALL FEB ULTS PPM

		1904+00N	L9W4+50N	L9W5+00N	L9W5+50N	L9W6+00N	LESSE+50N	L9W7+00N	L9W7+50N
ELEMENT									
Aluminum	[A]]	3 4 000	10000	8500	16000	21000	82 00	19000	19000
Iron	[Fe]	38000	26000	37000	31000	34000	400 00	38000	41000
Calcium	[Ca]	920	19000	6400	2600	2300	310 0	460	1900
Magnesium	[Mg]	1600	5000	2306	4100	3900	19 00	3900	3900
Sodium	[Na]	250	170	180	140	130	130	110	120
Potassium	[K]]	330	3900	1700	780	850	1000	640	640
Titanium	[Ti]	300	35	62	44	51	4 4	42	55
Manganese	[Mn]	8 60	450	1300	790	910	250	740	1100
Phosphorus	[F]	690	750	1900	1200	1600	160 0	670	930
Barium	[Ba]	110	34	560	160	220	:70	61	130
Chromium	[5:1	17	60	89	23	22	10	33	31
Zirconium	[27]	12	11	9	4	7	5	3	5
Соррег	[Cu]	15	22	98	50	39	:10	51	52
Nickel	ENi]	18	210	49	29	26	16	41	42
Lead	[64]	14	28	4	7	19	7	14	12
Zinc	[2n]	99	58	73	91	130	81	120	120
Vanadium	EV 1	28	19	47	44	50	60	50	73
Strontium	[Sr]	9	130	26	13	13	19	5	16
Cobalt	[Co]	8	10	14	10	10	15	12	15
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Aġ]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	(Be]	3	2	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]	< 10	10	< 10	10	< 10	< 10	< 10	< 10
Antimony	[66]	< 5	350	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY 3	29	12	16	8	8	14	4	11
Scandium	[6:]	< 1	3	9	3	1	5	< 1	2
Tungsten	[W]	< 16	< 10	< 10	< 10	< 10	10	< 10	< 10
Niobium	(N6)	40	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[76]	59	 	< 10	20	20	40	20	50
Arsenic	LAS]	10	600	20	10	< 3	20	10	13
Bismuth	LET J	< 5 / •/	< 3 / /A	< 5 / •>	< 5 / •4	< 3 / •A	(3	()	 < 3 < 4A
110	1203	< 20 **	< 10 ac	< 10 76	< 10 50	< 10 EA	< 10 te	< 10 EE	< IV 50
1101104	1111	43 	40	35 () (30 7 3 6	3V 4 0	ා 	33	UC (
HOIMIUM	(noi	$\langle 10 \rangle$	<10	< 10	< 1V	< 10	< 1 0	< 10	< 10

SIGNED : Bernie Prim

.

C

C

C

,

2-302-48TH STREET, SAEKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE *: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASER SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 5 - 9740 - 3
10th Floor Box 10	T.S.L. File No. : E:M7613
808 West Hastings St.	T.S.L. Invoice No. : 15292
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: VR TYMAR OREQUEST CONSULTANTS R-2270	ALL RESULTS PPM

		LSW8+OON	LEX8+50N	19 19 9+00N	L9W10+00N	LBW0+00N	L8W0+50N	L8W1+00N	LBW1+50N
ELEMENT	-								
Aluminum	[A]]	19000	2000	21000	16000	22000	16000	12000	21000
Iron	[Fe]	63000	3a0 00	36000	32000	51000	28000	33000	36000
Calcium	[Ca]	1100	1400	1500	1800	1200	8500	6700	560
Magnesium	[Mg]	4100	4700	45 00	4400	3200	3000	1700	4200
Sodium	[Na]	510	280	170	110	100	120	130	110
Potassium	EK 3	870	910	820	730	920	750	1300	540
Titanium	[Ti]	250	100	110	35	21	54	33	20
Manganese	[Min]	1600	:200	1100	650	1300	280	1600	790
Phosphorus	(P]	1400	990	590	970	1700	1300	1900	670
Barium	[Ba]	74	120	120	150	150	360	340	73
Chromium	[Cr]	27	34	34	34	29	17	9	28
Zirconium	[Zr]	8	3	3	3	6	6	2	8
Copper	[Cu]	110	78	62	61	84	24	28	45
Nickel	[Ni]	32	43	40	45	27	17	7	48
Lead	[Pb]	19	12	17	11	9	14	17	16
Zinc	[Zn]	130	120	130	120	73	130	170	190
Vanadium	[V]]	53	63	62	47	87	48	57	41
Strontium	[Sr]	13	14	16	17	13	82	61	6
Cobalt	[Co]	21	17	15	11	30	4	8	15
Molybdenum	[Mo]	< 2	× 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< i	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	(B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(56)	5	< 5	< 5	5	< 5	< 5	< 5	< 5
Yttrium	[Y]	15	1 I 1 I	14	12	10	10	11	ά
Scandium	[Sc]	4	2	4	2	2	2	< 1	2
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	40	20	30	20	30	60	< 10	30
Arsenic	[As]	25	< 5	10	< 5	< 5	< 5	Ĵ	< 5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 3
Tin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	50	55	55	50	55	50	25	50
Holaiua	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Bernie Aum

• .

E

Ľ

E

E

E

2-302-4BTH STREET BASKATION, SASKATIONAL S7K 6A4 TELECTINE F: (306) 901 1000 Faxor (306) 242 - 000

I.C.A.P. PLASMA SCHOOL

Aq**ua-Regia** (jestion

PRIME EXPLORATION LTD.	T.S.	REPORT No. : 5 - 9740 - 4
10th Floor Box 10	T.S.	
808 West Hastings St.	T.S.I	Invoice No. : 15292
Vancouver B.C. V6C 2X6		
ATTN: J. FOSTER PROJECT: VR TYMA	ORECHIST CONSULTANTS (F. LER)	ALL RESULTS PPM

		LBW2+00N	L8₩2+ 504.	L8%3+00N	18.1.597	LEW4+00N	LEW4+50N	LBW5+00N	L8W5+50N
ELEMENT	•								
Aluminum	[A]]	20060	17000	17000	15:00	18000	14000	19000	19000
Iron	[Fe]	32000	33000	33000	31.5	35000	31000	33000	32000
Calcium	[Ca]	200	1200	320	·	820	3800	280	500
Magnesium	[Mg]	2600	1500	3300	2200	3400	2700	4200	4100
Sodium	[Na]	210	180	140	: 30	120	180	110	140
Potassium	EK 3	510	540	540	(30)	680	480	450	540
Titanium	[Ti]	95	२०२	97	62	47	4B 0	77	120
Manganese	[Mn]	370	440	800	4 (j.	790	1000	480	540
Phosphorus	(P]	930	1100	710	s = - <u>-</u>	720	690	570	830
Barium	[Ba]	60	82	54	Ŧ,	130	190	64	71
Chromium	[Cr]	22	19	53		29	22	38	34
Zirconium	[27]	3	Ê.	3	-	2	3	2	2
Copper	[[60]	21	14	29		36	24	34	35
Nickel	[Ni]	23	10	34	1.2	30	21	43	40
Lead	{Pb]	12	28	27	1.2	14	12	10	10
Zinc	[Zn]	100	130	:20		94	69	110	100
Vanadium	[V]]	39	58	51		59	62	45	49
Strontium	[Sr]	4	10	7	9	11	43	5	7
Cobalt	[Co]	4	Č.	9	7	11	11	8	7
Molybdenum	{Mo]	< 2	4	< 2	1 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	÷ :	< 1	< 1	< 1	$\langle 1 \rangle$
Cadmium	{Cd}	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	t. <u>1</u>	1 - C	< 1	< 1	< 1	< 1
Baron	[B]	< 10	< 10	< 10	4.14	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5		< 5	< 5	< 5	K 5
Yttrium	[Y]	4	2,	4	-	4	4	4	7
Scandium	[Sc]	< i	< 1	1 - 1	š 1	< 1	< 1	< 1	< 1
Tungsten	[₩]	< 10	< 10	< 10	< 13	< 10	< 10	< 10	< 10
Niobiua	{N5}}	10	20	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	60	< 1 0	20	12	20	30	20	10
Arsenic	{As]	< 5	< 5	< 5	. ÷1	< 5	5	5	15
Bismuth	[Bi]	< 5	ζ 5	< 5	1.5	< 5	< 5	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10		< 10	< 10	< 10	< 10
Lithium	[Li]	35	30	33	2.2	35	30	45	40
Holaiua	(Ho]	< 10	< 10	< 10	< 19	< 10	< 10	< 10	< 10

SIGNED : Bernie Dun

2-202-48TH STREET, BASKATOON, BASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.F. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9740 - 5
10th Floor Bax 10	T.S.L. File No. : E:M7813
808 West Hastings St.	T.S.L. Invoice No. : 15292
Vancouver B.C. V6C 2X6	
ATTN: 7. FOSTER PROJECT: V7. TYMAR OREQUEST CONSULTANTS R-22	270 ALL RESULTS PPM

		LBW6+DON	LEW7+00N	L8W7+50N	L SWB+00N	LBW8+50N	LEW9+00N	L8W9+50N	LBW10+00N
ELEMENT									
Aluminum	[A]]	1 8 0(+)	17000	16000	17000	19000	18000	17000	17000
lron	[Fe]	380 60	31000	29000	32000	34000	31000	37000	37000
Calcium	[Ca]	67 00	1000	460	7200	420	2600	1000	560
Magnesium	[Ma]	5500	3700	4200	4000	4100	4500	4700	3500
Sodium	[Na]	2400	160	110	140	100	110	140	90
Potassium	EK 1	1400	540	460	650	590	770	700	460
Titaaium	[Ti]	15 60	130	32	170	23	26	41	21
Manoa nes s	[Mn]	770	450	270	550	380	520	1100	520
Phosohorus	(P]	1100	1000	730	1200	980	1100	820	1300
Earium	[Ba]	150	90	55	260	80	160	61	79
Chroaium	[Cr]	# 4 - 1	28	37	29	46	37	40	35
Zirconius	[75]	1	3	4	4	2	4	8	4
Соорег	(Cu)	<u>47</u>	30	35	41	29	47	64	48
Nickel	ENi 3	<u>.</u>	29	43	34	39	44	65	35
Lead	[Pb]	<u>:</u> @	11	6	9	7	10	10	24
Zinc	[Zn]	100	82	110	87	92	100	130	130
Vanadium	٤٧]	60	52	45	54	48	52	45	50
Strontium	[Sr]	60	11	7	65	6	25	11	6
Cobalt	[Co]	13	6	5	8	7	8	18	7
Molybdenua	[Ma]	Κ 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	(Cq)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bervilius	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Borch	(B)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	[Y]		3	3	14	2	10	26	4
Ecendium	[Sc]	-	< 1	< 1	2	< 1	2	4	1
Tungs ten	(W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nisbium	[Nb]	K 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	2 0	20	20	20	20	30	20	10
Arsanic	[As]	5 2	< 5	< 5	< 5	< 5	< 5	10	15
Bismuth	[Bi]	ζ 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	[Sn]	K 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Litaium	{Li]	4 ()	40	4 0	45	40	50	50	35
Holmium	(Ha)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Bunie Dunn

•

E

C

C

L

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

C - 302 - 48th STREET, EAST SASH TOON, SASKATCHEWAN S7K 6A4 37K 6A4 30(306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE/SI EDOM	Prime Explorations Ltd.	1
SAMITLE(S) FROM	10th Floor, Box 10-808 West Hastings St. Vancouver, B.C.	REPORT No. S9741
	V6C 2X6	

INVOICE #: 14996 P.O.: R-2273

SAMPLE(S) OF Soils

W. Raven Project: VR

REMARKS:	OreQuest	Consultants

	Au ppb
L5W0+00N	20
L5W0+50N	40
L5W1+00N	20
L5W1+50N	10
L5W2+00N	5
L5W2+50N	5
L5W3+00N	10
L5W3+50N	5
L5W4+00N	10
L5W4+50N	5
L5W5+00N	<5
L5W5+50N	5
L5W6+00N	10
L5W6+50N	5
L5W7+00N	10
L5W7+50N	15
L5W8+00N	10
L5W8+50N	10
L5W9+00N	15
L5W9+50N	15
COPIES TO:	C. Idz
INVOICE TO:	Prime

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 29/90

Beine Dum SIGNED .

For enquiries on this report, please contact Customer Barvice Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 1 of 3

CTA

|--|--|

E

E

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

CAMPLE(C) EDOM	Prime Ex	olorations Ltd.		
SAMPLE(S) FRUM	10th Floo Vancouve: V6C 2X6	or,Box 10-808 West r, B.C.	Hastings St.	REPORT No. S9741
SAMPLE(S) OF SO	ils		INVOICE P.O.:	R-2273
	W. Raven Project:	VR		
REMARKS:	OreQuest	Consultants		
	Au ppb			
L5W10+00) L4W0+00N L4W0+50N L4W1+00N L4W1+50N	N 15 310 40 15 40			
L4W2+OON L4W2+5ON L4W3+OON L4W3+5ON L4W4+OON	10 25 10 10			
L4W4+50N L4W5+00N L4W5+50N L4W6+00N L4W6+50N	10 10 15 10 15			·
L4W7+OON L4W7+5ON L4W8+OON L4W8+5ON L4W9+OON	15 15 15 15 15			
COPIES TO INVOICE TO	D: C. Id: D: Prime	ziszek, J. Foster - Vancouver		
Aug 29/90		SIGNED -	Beinia Dun	

Page 2 of 3

	$\boldsymbol{\gamma}$

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd.					
	10th Floor,Box 10-808 West Hastings St.	REPORT No.				
	Vancouver, B.C.	S9741				
	V6C 2X6					

INVOICE #: 14996 P.O.: R-2273

SAMPLE(S) OF Soils

W. Raven Project: VR

REMARKS: OreQuest Consultants

	Au p pb
L4W9+50N	15
T.4W10+00N	15

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 29/90

Remie Vun SIGNED

Page 3 of 3

Ŵ

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

2-362-48TH STREET, SASKAT652:, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033

FAX **#:** 42 - 4717

I.C.A.P. PLASMA SCAN

Acua-Regia Digestion

PRIME EXFLORATION LTD.			T.S.L. REPORT No. : S - 9741 - 1
10th Floor Box 10			T.S.L. File No. : E:M7808
808 West Hastings St.			T.S.L. Invoice No. : 15218
Vancouver B.C. V&C 2X6 ATTN: J. FOSTER PROJECT: VR TYMAR #2	OREQUEST CONSULTANTS	R-2273	ALL RESULTS PPH

L5W0+00N L5W0+50N L5W1+00N L5W1+50N L5W2+00N L5W2+50N L5W3+00N L5W3+50N L5W4+000 L5W4+50N ELEMENT Alucinum [A]] [Fe] Iron Calcium [Ca] [Mg] Maonesium Sodium [Na] Potassius EK 3 [Ti] Titanium Manganese [Na] Phosphorus (P] Barius [Ba] [Or] Chromium [25] Zirconium Copper [Ca] [#i] Nickel Lead [Pb] {Zn] Zinc [V] Vanadium [Sr] Strontium [Co] Cobalt < 2 < 2 < 2 < 2 < 2 < < Molybdenum [Mo] < 1 < 1 < < < < 1 < 1 [Ag] < < < Silver < 1 < < 1 < < < 1 < $\langle \rangle$ < < [Cd] Cadmium < < 1 < 1 < < 1 < 1 < < 1 Beryllium [Be] < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < Boron (B] < 5 < 5 < -5 < - 5 < ₹. Antimony [55] < < [Y] Yttrium < 1 < 1 < 1 < [Sc] Scandium < 10 < 10 < < 10 < < 10 < 10 < 10 < < 10 Tunosten [#] < 10 < < < 10 < < 10 < < < < Niobium [85] < Thorium [Th] < [As] Arsanic < 5 < 5 < 5 < < -5 < 5 < 5 [Bi] < 5 < Bisouth < < < < < < < < < 10 < Tin [Sn] Lithium [Li]

Holeium

[Ho]

SIGNED :

< 10

< 10

< 10

Bunie au

< 10

< 10

< 10

< 10

<

< 10

< 10

Ē

Ľ

C

C

E

2-302-76TH STREET, SAN TOON, SASKATINEWAN S7K 694 TELEPHONT : (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLAS A SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT :: S - 9741 - 1
10th Floor Box 10	T.S.L. File : E:M7808
808 West Hastings St.	T.S.L. Invoice 15218
Varicouver B.C. V&C 2X6 ATTN: J. FOSTEL: PROJECT: VR TYMAR (2	CREQUERY CONSULTANTS R-2273 ALL RESULT. PPM
L5W5+00N L5W5+50N	L5W6+000 L5W6+50N L0W7+00N L5W7+50N L5W8+00K L5W8+50N L5W9+000 L5W9+50N
ELEMENT	

Aluminum	[A]]	23000	1 8 00 ::	1800 0	20000	21000	21000	13000	19000	65 00	15000
Iron	[Fe]	34000	360 00	3700 0	43000	470 00	51000	51000	63000	75000	73000
Calcium	[Ca]	1900	1900	2100	2700	3100	3800	3900	4500	4800	5300
Maonesium	[Ma]	4100	5800	590 0	4200	4600	4900	3700	3700	1300	4200
Sodium	[Na]	150	70	35 0	120	360	300	160	40	70	420
Potassiua	(K)	650	870	916	1200	1100	1400	1400	1200	140 0	1400
Titanium	[]]]	190	64	24	52	140	150	64	62	23	170
Manoanese	1fa] .	610	12.0	921	1000	1500	1100	1300	2100	1800	3500
Phosohorus	(S]	930	6 5%	65	860	990	1200	1200	1500	1600	1400
Barius	(Ba]	2 20	100	130	210	170	180	270	400	59 0	370
Chronius	[C r]	33	49	4 5	35	31	27	40	25	13	17
Zirconiue	[Zr]	3	÷	i.	8	5	11	9	12	14	14
Copper	(Gu 3	26	ŧS	5-	67	79	88	100	120	220	200
Nickel	(Ni]	48	9 3	73	50	38	32	46	29	28	36
Lead	[? 5]	12	52	12	15	20	6	12	14	19	25
Zinc	[Zn]	160	150	150	190	160	130	140	130	140	190
Vanadium	[V]]	52	42	47	63	74	87	74	80	71	86
Strontiur	[Sr]	25	23	24	21	25	25	35	29	5 9	40
Cobalt	[Co]	ş	33	15	13	20	19	21	27	33	39
Molvodenua	[fio]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Aa]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadaiua	[[b]]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1
Bervllius	(Be]	1	X (1)	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	(3]	< 1 0	< 1 5	< 1C	< 10	< 10	< 10	< 10	< 10	< 1 0	< 10
Antimoov	(35)	< 5	<.	< :	10	10	5	10	10	15	20
Yttrium	{Y]	13	14	11	17	19	20	18	41	2 3	29
Scandius	[Sc]	1	4	t,	5	4	12	9	ç	13	12
Tunosten	18.1	< 1 0	< 1 0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobiua	(15)	< 10	< 15	< 1 0	< 10	< 10	< 10	< 10	10	< 10	< 10
Thorium	[]ħ]	40	30	3 0	20	50	40	30	30	4 0	40
Arsenic	lês]	15	< 0	2 0	20	40	25	40	35	35	65
Bismuth	18 i]	K 5	Κ 5	< 5	< 5	< 5	< 5	5	10	30	25
Tin	(En]	< 1 0	< 10	< 10	< 10	< 10	< 10	< 10	· 10	< 1 0	< 10
Lithium	[Li]	25	30	30	25	30	30	20	25	< 5	20
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Comie Dun

LANDITORIES 7 S L

2-302-48TH STOLL, SASKATTER, BROKATCHOW S7K CA4 F-.: #: (306) 242 - 4010

I.C.A.P. PLASMA STAN

Aqua-Regia Diocotico

PRIME ET LORATION LTE.	T.S.L. REFORT No. : 5 - 9741 - 3
20th F1 Box 10	T.S.L. Filt No. : E:M7808
608 West dastings St.	T.S.L. Invoid. No. : 15218
Marcourte B.C. V6C 2X	
ATTN:FOSTER	ALL FIGULTS PPN

USWIDHOON LAWDHOON LAWDHOON LAWIHOON LAWIHOON LAWIHOON LAWZHOON LAWZHOON LAWZHOON LAWZHOON LAWZHOON LAWIHOON LAWIHOON EMENT Alectous [A]] 220.00 Irea [Fe] 50000. [Ca] Calcium Magnesium [Mg] Sodium [Na] . J Fet asium [K] 10N0 Tilliua [Ti] Ĵ -82 : 55 Malinese [Mn] 1.00Pt Horus (P) 13. Ballia [Ba] Charline. [Cr] [0]7.7 ेंद्र . . Zistaium [Zr] ç $\mathbf{1}^{t-1}$ $c_{\rm eff} = r$ (Cu] $\hat{v}\hat{z}$ Nichel [Ni] Ĵ [Pb] Lett Zi [Zn] Vanstium [V]] Struction [Sr] τ. ~~ •

Le. t	[[o]]	22	17	21	18	14	19	1	6	8	23
Holy: denue	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silerp	[Ag]	< 1	< 1	< 1	< 1	2	< 1	7	< 1	< 1	< 1
Car lum	[Cd]	2	< 1	1	2	2	1	< 8	< 1	< 1	.
Ectilium	[Be]	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	< 1	Κ	< 1	< 1	$\langle \cdot \rangle$
Eo :	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 10	< 10	< 19
Aa∵i b⊓y	[Sb]	10	10	10	Ę	< 5	10	: :	< 5	< 5	
YU: UB	[Y]	16	20	19	16	12	19	2	14	6	• 5
Sc เป็นต	{Sc}	3	10	10	Ę,	7	10	1	7	3	6
Та степ	EW 3	< 10	< 10	< 10	< 10	< 10	< 10	K 19	< 10	< 10	< 10
Million Lian	[Nb]	< 10	< 10	< 10	$\langle -10 \rangle$	K 18	< 10	< i	< 10	< 10	< 1)
ਸ ਿ - 99	[Th]	30	40	50	50		40	$t^{(1)}$	< 1 0	2 0	ť.)
Å∷ ∷tc	[As]	100	45	30	110	210	65	2	Ę	20	
Bis th	(Bi]	5	15	15	57 1.7	$<$ \downarrow	5	•	< 5	< 5	$\langle \cdot \rangle$
T 1.	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 11 -	< 16	< 1 6	< :)
Listian	[Li]	5	15	15	20	15	15	15	10	30	20
Holm I an	[Ho]	< 10	< 10	< 10	< 10	K 10	< 10	< 1 0	〈 10	< 10	< 10

Ŀ

Pine Cin 516602 :

÷ :: ÷ ٠ŗ

TIS LI LABORATI TES

CH302-4815: STRUCT, BASKATOON, BABA CHEWAN S7K 6A4 TELEPHONE : (306) 93: 1033 FAX #: (306) 247 - 4717

L.E.A.P. PLASMA ECAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9741 - 4
10th Floor Box 10	T.S.L. File No. : E:M7808
808 West Hastings St.	T.E.L. Invoice No. : 15218
Vancouver B.C. V&C 2X6	
ATTN: J. FOSTER PROJECT: VR TYDAR #2 OREQUEET CONSELLTANT: 2-2273	ALL RESULTS PPH

EX. 1950N LAWS+00N LAWS+50N LAWS+00N LAWS+50N LAW7+00N LAW7+50N LAWS+00N LAWS+00N LAWS+00N

.

ELEPENT

•

Ľ

Ľ

Ľ

L

Ľ

[

Ľ

Ľ

Ľ

E

L

L

Aluminum	[A]]	1:000	17000	22000	12000	14000	10000	18000	6 700	12000	19000
Iron	{Fe]	41000	45000	35000	54000	44000	58000	55000	59000	49000	570 00
Calcium	[Ca]	5600	6500	1500	4400	3100	2600	4100	5000	4300	6600
Magnesium	[Mg]	3200	5400	4800	3700	4800	3300	5400	2600	3700	6000
Sodium	[Na]	170	1800	110	90	80	130	240	350	210	1500
Potassium	C K 1	1500	1400	930	1300	95 0	1100	1000	1300	1200	1300
Titanium	[Ti]	110	1200	65	49	49	70	120	140	120	1100
Manganese	[Ma]	(20	5 80	640	5.20 0	1200	1500	1200	2400	1300	1500
Phosphorus	[P]	: 300	98 0	780	1.00	1100	1300	1200	1600	1500	1100
Barium	[Ba]	140	130	180	∷10	150	160	150	340	180	180
Chromium	(Cr)	17	23	42	27	37	22	30	14	23	28
Zirconium	[[7]	8	12	5	9	7	9	12	11	8	13
Copper	[Cu]]	120	77	45	160	88	160	100	180	130	100
Nickel	[Ki]	25	38	53	60	65	41	35	36	38	36
Lead	[Fb]	26	17	12	33	14	18	23	35	25	28
Zinc	[Zn]	180	170	140	260	140	160	140	190	160	150
Vanadium	{V }	64	81	59	54	54	72	110	66	71	110
Strontium	[Sr]	44	55	18	37	26	23	29	42	30	51
Cobalt	[Co]	12	16	12	29	26	32	21	32	21	25
Molybdenum	{Ko]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	× 1	< 1	· · < 1	< 1	< 1	< 1	< 1	< 1
Cadmium	£Cd]	× 1	< 1	< 1	1	< 1	< 1	1	1	1	2
Berylliua	[Be]	(1	< 1	< i	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[B]]	< 10	< 10	< 10	< 10	< 10	< 1 0	< 10	< 10	< 10	< 10
Antimony	(St)	10	5	< 5	20	10	15	15	20	20	15
Yttrium	[Y]	15	15	10	16	12	15	18	19	15	19
Scandium	[Sc]	ç	11	3	8	7	10	12	9	9	13
Tungsten	(₩)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[15]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	60	-30	20	40	4 0	30	40	20	20	60
Arsenic	[As]	30	15	10	40	30	45	65	70	45	120
Bismuth	[Bi]	5	< 5	< 5	15	< 5	15	10	20	10	10
Tin	[5a]	10	< 10	< 10	< 10	· 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	15	25	15	25	15	20	10	15	20
Holmium	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

STONED : Ben ie Dunn

2-302-497% ETREET, SASKATOON, SASKATCHEWAN E' 644 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT: VR TYMAR #2 DREQUEST CONSULTANTS R-2273

ALL RESULTS PPM

Test. Invoice No. : 15218

 Total.
 REPORT No. : S - 9741 - 5

 Total.
 File No. : E:M7808

L4W9+50N L4W10+00N

ELEMENT

· . .

E

Ľ

Ŀ

Aluminum	[A1]	7200	13000
Iron	[Fe]	89000	53000
Calcium	[Ca]	4300	2000
Magnesium	EMg]	3200	3900
Sodium	[Na]	510	170
Potassium	[K]	1100	880
Titanium	[Ti]	240	65
Manganese	[Mn]	2500	1400
Phosphorus	[P]	1700	1700
Barium	[Ba]	270	150
Chromium	{Cr]	22	22
Zirconium	[2r]	18	9
Copper	[Cu]	150	110
Nickel	[Ni]	58	28
Lead	[Pb]	36	23
Zinc	[ไก]	150	180
Vanadium	[V]]	90	83
Strontium	[Sr]	36	15
Cobalt	[Co]	48	21
Molybdenum	[Mo]	< 2	< 2
Silver	[Ag]	2	< 1
Cadmium	[b3]	2	1
Beryllium	{Be}	< 1	< 1
Boron	[B]	< 10	< 10
Antimony	(Sb]	25	15
Yttrium	[Y]	24	14
Scandium	(Sc]	14	8
Tungsten	[₩]	< 10	< 10
Niobium	[Nb]	< 10	< 10
Thorium	[Th]	50	ψÓ
Arsenic	[As]	190	93
Bismuth	[Bi]	< 5	10
Tin	[Sn]	< 10	< 10
Lithium	[Li]	5	15
Holmium	[Ho]	< 10	< 10

SIGNED : Bee ie Dunn

Ð

Γ

L

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) CROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. VEC 2X6

INVOICE #: 15047 P.O.: R-2272

SAMPLE(S) OF Soils

W. Raven Ploject: VR Tymar

RI

REMARKS: OreQuest Consultants Ltd.

	Au ppb
L265(TM)0+50S L26E(TM)1+00S L26E(TM)1+50S L26E(TM)2+00S L26E(TM)2+50S	5 10 <5 <5 5
L26E(TM)3+00S L26E(TM)3+50S L26E(TM)4+00S L26E(TM)4+50S L26E(TM)5+00S	5 5 10 5
L23E(TM)0+00 L23E(TM)0+50S L23E(TM)1+00S L23E(TM)1+50S L23E(TM)2+60S	<5 5 5 15
L23E(TM)2+50S L23E(TM)3+00S L23E(TM)4+00S L23E(TM)4+50S L23E(TM)5+00S	5 10 45 5 5

COPIES TO: C. Idziszek, J. Foster INVOICE TO: Prime - Vancouver

Aug 30/90

Bunie Dum SIGNED Page 1 of 1

CTA

For enquiries that report, elease contact Customer Service Department, Samples, Palph and Rejects contacted two months from the date of this to prt.

. .

T S L LABORATORIES 2-302-48TH STREET, SASKATOON, SASKATCHEWAN TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717 S7K 6A4

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestico

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St. Noscowan P. F. 940 204		T.S.L. T.S.L. T.S.L.	REPORT Harmonic File File Harmonic Harmonic Invoice Harmonic Harmonic	S - 9703 - 1 E:M7798 15222
ATTN: J. FOSTER PROJE	eot; vr tymar orequest co nsul	JANTS R-2272	ALL RESULTS FO	2 <u>4</u>
ELEMENT	126E(TM)0+50S 126E(TM)1+009	L26E(TM)1+505 L26E(TM	1)2+005 (1146 T)	02+50S L26E(TM)3+00S

Aluminum	[A]]	14000	17000	13000	20000	-20 00	21000
Iron	[Fe]	37000	59000	59000	59000	~∂0 00	65000
Calcium	[Ca]	600	540	1900	790	1400	1200
Magnesium	[Mg]	2900	2300	1200	2400	2100	2200
Sodiuma	[Na]	80	60	90	70	240	440
Potassium	(K)	560	230	300	380	320	420
Titanium	[7:]	84	760	680	880	25 00	5000
Manganese	[65]	810	450	300	1100	320	440
Phosphorus	; [P]]	690	500	760	710	400	320
Barium	[B:]	200	64	160	120	100	59
Chromium	[Er]	24	32	34	38	28	29
Zirconium	[2]]	5	6	6	7	5	25
Copper	[[0]	60	32	40	42	31	20
Nickel	[Ni]	19	18	12	15	10	10
Lead	[Fb]	8	12	13	15	12	12
Zinc	[Zn]	83	63	60	75	47	50
Vanadium	[V]]	53	130	120	140	220	110
Strontium	[Sr]	4	6	16	8	15	12
Cobalt	[Co]	14	6	4	8	5	4
Molybdenu	(Mol	< 2	4	4	2	2	< 2
Silver	(Ag)	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	1 0:1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	{Bel	< 1	< 1	< 1	< 1	 1 	< 1
Boron	(E-1	< 10	< 10	< 10	< 10	10	< 10
Antimony	[5];2	5	10	10	< 5	·. 5	5
Yttrium	[¥]]	10	4	5	5	3	15
Scandium	[5:1	4	< 1	< 1	1	3	2
Tungsten	(H]	< 10	< 10	< 10	< 10	10	< 10
Niobium	[A52]	< 10	< 10	< 10	< 10	10	< 10
Thorium	E 353	30	30	30	30	-0	40
Arsenic	[6:3]	5	5	10	15	10	< 5
Bismuth	E EE	< 5	< 5	5	< 5	< 5	< 5
Tin	E £. 3	< 10	< 10	< 10	< 10	10	< 10
Lithium	[[i]	5	< 5	< 5	10	< 5	< 5
Holmium	[Ho]	< 10	< 10	< 10	< 10	20	20

Electer: Prince Durger

Ľ C Γ L L C Ľ

TISIL RESOLUTION ES

L

C

E

1-302-48TH STREE , SASKATOON, SAGE CHELSN S7K 6A4 TELEPHONE #: (306) 90 - 1003 FAC a: (306) 242 - 4717

I.C.A.P. PLASMA SEAN

Aqua-Regia injestion

L26E (TM)3+505 L26E (TM)4+005 L26E (2%)4+505 L26E (TM)5+005 L23E (TM)0+00 L23E (TM)0+505

PRIME EXPLORATION (TD.	T.S.L.	REPORT	No.:	S - 9703 - 2
10th Floor Box 10	T.S.L.	File	No.:	E:M7798
208 West Hastings St.	T.S.L.	Invoice	No.:	15222
Vancauver B.C. V&E RX6				
ATTN: J. FOSTER PROJECT: VR TYMAR OREGUEST CONSULTANTS FROM 72		all resu	jlts pp	М

ELEMENT

Aluainum	EA?)	27000	18000	0.200	18000	9400	7700
iron	(Fel	59000	21000	870 0	36000	27000	16000
Calcium	[Ca]	460	740	7 80	320	1100	700
Magnesium	[Mg]	840	2000	1100	3600	1100	800
Sodium	[Na]	170	280	170	70	110	90
Potassium	[7]	340	550	l₀50	310	280	390
Titanium	ET SIL	1500	470	1.30	480	2000	680
Manga nese	(Mai	260	140	5 8	110	140	55
Fhosphorus	s LP 🗋	600	800	510	230	520	310
Darium	[Bal	37	59	6 3	61	63	37
Chroaium	[Cr]	32	29	15	58	18	24
linconium	EZr_	19	3	< <u>1</u>	2	4	1
Copper	[DO]	28	22	11	17	28	11
Nickel	[Ni]	8	15	5	35	7	10
Lead	[P6]	28	12	8	5	10	13
Zinc	C Za 3	58	49	25	42	40	29
Vanadium	[V]]	52	36	28	110	140	65
Strontium	(Srl	4	9	ç	6	9	6
Cobalt	[Co]]	< 1	3	2	4	3	2
Kalybdenur	(Mo)	8	2	< 2	< 2	< 2	2
Silver	[A g]	< 1	× 1	< 1	< 1	< 1	< 1
Cidatum	[[]]	< 1	< 1	s 1	< 1	< 1	< 1
Feryllium	(Bol	· K 1	< 1	< 1	< 1	< 1	< 1
Baran	[3] }	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	(Sb]	5	< 5	< 5	< 5	< 5	Κ 5
Yttrium	€Y D	11	5	2	2	2	1
Scandium	[9:1]	1	< 1	. 1	1	2	< 1
Tungs ten	[₩]]	< 10	< 10	< 10	< 10	10	< 10
ation ham	[N-1	20	< 10	< 10	< 10	< 10	< 10
Therium	Ω	40	< 10	< 10	20	< 10	< 10
árstaic	lê≞.	5	10	20	< 5	10	172
Bisauth	(B) [< 5	< 5	< 5	< 5	< 5	< 5
Tin	[<u>8</u> 0.	< 10	< 10	< 10	< 10	< 10	〈 10
Lithium	[Li]	< 5	< 5	< 5	5	< 5	< 5
Holmium	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10

511E : 5 P-06-1990

SIGNED : Bunie Dum

TISIL REPORT (TES

1-302-401- STREET, BASKATOON, SASKATCH: S7K 6A4 TELEPHONE #: (306) 931 - 1 FAX #: (306) 242 - 44

ALLA.P. PLASMA SCAN

Aqua-Regia Diger con

1/23E (TM) 14005 L23E (TM) 14505 L23E (TM) 2406 L23E (TM) 34005 L23E (TM) 44005 L23E (TM) 44505

PRIME EXPLANTION TO.	T.S.L. REFERENCE: S + 9703 - 1
10th Floor Cox 10	T.S.L. File day : E:M7798
808 West Fluxings to.	T.S.L. Invoice that : 15222
Vancouver 1.0. V&L 116	
ATTN: J. FUSTER PROJECT: VR TYMAR OREQUEST CONSULTANTS R-227	ALL REPLICE PPN

ELECENT

. ε

C

E

Alumista	1 430	17000	180 00	9300	11000	7600	11000
Iron	(Fe)	71000	67000	270 00	64000	22000	38000
Calcium	(Ca)	160	2100	1700	6300	3500	4200
Magnesium	EMg]	1400	4700	2100	1000	1500	3100
Sodius	EN: P	90	400	350	150	800	560
Potassium		340	390	431	350	440	1000
Titanica	111.	1100	1900	19 00	1800	29 00	1 40 0
Manga 🗉 se	f 1.1	120	2800	3 90	280	140	2500
Phesplatorus	[f]	444	760	470	1600	940	150 0
Bariu	EF .	62	120	72	170	47	120
Chroadina	EC: .	4.7	35	14	16	7	18
Zircentum	[]	17	8	r -	38	12	4
Copper	E C:://	16	23	1÷	31	21	24
Nickel	C NE 1	13	14	10	8	5	10
Lead	(F): 1	16	8	Ł	30	5	14
Zinc	[Z ₁ ·]	10 40	59	47	67	39	68
Vanadium	(V 3	150	220	160	96	47	130
Stron	[Shi]	Ę	18	18	29	30	37
Cobal:	11	- 	24	7	1	4	15
Molybeenum	[Mat]	6	< 2	< 2	10	< 2	< 2
Silver	[^]	< 1	< 1	< 1	< 1	< 1	< 1
Cadmi	[{:	< 1	1	< 1	< 1	< 1	< 1
Berylilam	11	< i	< 1	< 1	< 1	< 1	< 1
Earan	E5 2	< 10	< 10	< 10	< 10	< 10	< 10
Antis y	E.	< 5	10	< 5	15	< S	S
Yttric	EY .	2	4		8	3	4
Scandica	Eent	2	3	r.	< i	2	1
Tungston	(*)	< 10	< 10	< 10	< 10	< 10	< 10
Niobi	CP .	10	< 10	< 10	40	< 10	< 10
Thories	[]:	30	50	$< 1^{\circ}$	30	< 10	6 0
Arseni	1 6.2 ·	15	60	1	20	< 5	10
Bisaci	C:	20	15	< 3	15	$\langle - \zeta \rangle$	< 5
Tin	E.S.	< 10	< 10	< 10	< 10	< 10	< 10
Lithius	(Li)	Κ 5	5	< 5	< 5	< 5	< 5
Holmin	(H5)	K 10	20	< 10	< 10	< 10	< 10

DATE : SE -06-1991.

SIGNED : Bernie Our

TIS LE LARGE CORTES

2-302-ALDER SECOND, SECONDONE AT DECEMBER AND ALE AND THE EPHE WRITE (300 - 431 - 1033 ECONTR: (300 - 4217)

1.C.A.P. CASMA CAN

Aquin _____ia Digestion

ET. E EXPLORATION LTD.

Floor Box 10

West Hastings St.

Daiver B.C. VED 2X6

PROJECT: VR TOPPO - ENTRUEST CONSULTANCE R-2272

ALL COMPLETE TO A

T.-... Invci. No. - 1522.

Y.C., **REP**(1) No. 5 + 15 - 4 Terrar FIC No. 5 Ε**:Η7**25 - 4

123E(TEC: +005

ELEMENT

Aluminum	[41]	61 0
Iron	[Fe]	170 00
Calcium	[Ca]	70 0
Magnesium	[Mg]	1400
Sodium	[Na]	140
Potassium	(K 1	4
Titanium	$[1_2]$	167
Manganese	(t.n)	20.
Phosphorus	s (f. 1	40
Barium	[Sa]	E
Chromium	[Cr]	4 15 4
Zirconium	[??]	4
Copper	69a 1	
Nickel	(Ni]	
Lead	(Fb)	3
Zinc	[Zn]	*r-
Vanadium	[V]	9 3
Strontium	[Sr]	11
Cobalt	[Co]	1
Molybdenum	(Ma)	н. 4
Silver	[Aŋ]	< :
Cadmium	[[4]]	< :
Beryllium	(Se]	$\langle \cdot \rangle$
Boron	(£]	< i
Antimony	(F3)	$\langle \cdot \rangle$
Yttrium	(¥]	e
Scandium	[8:]	< 1
Tungsten	[1]]	< 1
Nicbium	[to]	< 1 ⁰
Thorium	[la]	< 1.
Arsenic	(4s)	1
Bismuth	[Fi]	ζ.,
Tin	[80]	< 1<
Lithium	[Li]	Κ 5
Holmium	[Ho]	< 10

P. 10 : SEP-06-19.3

State: Bernin Direct

TISILI APORATI (18

COLA.P. CLASMA SCAN

Acce-Regia Digestion

 FRIME EXPLORATION 10.
 D.

 FRIME EXPLORATION 10.
 D.

 10th Floor, Box 11
 T.C.L.

 10th Floor, Box 11
 T.C.L.

 908 West Hastings
 T.C.L.

 Vancouver, BC
 VS. D16

 ATTN:
 J. FOSTER

 PROJECT+
 VR TOLAR

 DAUBULTENTS
 R-2272

 ALL RESULTS PPM

 L25E.FM124PCC

ELEMENT

Aluminum	$C^{1,1}$	H200
Iron	5	° 48 00
Calcium	[(_)	1800
Magnesium	EM: 1	2800
Sodium	(N)	390
Potassium	Į.	550
Titanium	Ē .	300
Manganese	5	170
Phosphorus	F L	÷40
Barium		49
Chromium	No. 1	21
Zirconiua	f El P	4
Copper	۲.	12
Nickel	C. C.	12
Lead	E :	5
Zinc	t.	47
Vanadium	{ ∀]	71
Strontium	[51]	19
Cobalt	E	5
Nolybdenum	[].	< 2
Silver	[A]]	< 1
Cadmium	C ·	< 1
Beryllium	Et a	1
Boron	€?	20
Antimony	E +	5
Yttrium	(* 1	3
Scandium	L:	1
Tungsten	[.	- 10
Niobium	[]	10
Thoriua		- 10
Arsenic	Ē:	. 5
Bismuth	È.	. 13
Tin	[.]	10
Lithium	[< 5
Holmium	(Ho)	< 10

ED: Dem Pilipiak

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 15185 P.O.: R-2295

SAMPLE(S) OF Soil

Project: VR

REMARKS: OreQuest Consultants

	Au ppb	
L1W10+00S L1W9+50S L1W9+00S L1W8+50S L1W8+00S	<5 5 25 5 <5	
L1W7+50S L1W7+00S L1W6+50S L1W6+00S L1W5+50S	5 <5 <5 <5 60	
L1W5+00S L1W4+50S L1W4+00S L1W3+50S L1W2+50S	<5 <5 <5 <5 <5	
L1W2+00S L1W1+50S L1W1+00S L1W0+50S L3W0+00	<5 10 5 <5 <5	
COPIES TO: INVOICE TO:	C. Idziszek, J. Foster Prime – Vancouver	C

Sep 05/90

Pernie Vun SIGNED

1 of 2 Page

CT7.

For enquiries on this report, please contact Customer Service Department, Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATO ES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd. SAMFLE(S) FROM REPORT No. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. S9759 V6C 2X6

> INVOICE #: 15185 P.O.: R-2295

SAMPLE(S) OF Soil

Project: VR

REMARKS:

OreQuest Consultants

	Au ppb
L3W0+50S	<5
L3W1+00S	<5
L3W1+50S	<5
L3W2+00S	25
L3W2+50S	<5
L3W3+00S	15
L3W3+50S	<5
L3W4+00S	40
L3W4+50S	40
L3W5+00S	30
L3W5+50S	15
L3W6+00S	<5
L3W6+50S	5
L3W7+00S	<5
L3W7+50S	<5
1.3W8+00S	10
L3W8+50S	25
1.3W9+00S	85
1.3W9+50S	5
1.3W10+00S	<5
COPIES TO:	C. Idziszek, J. Foster
INVOICE TO:	Prime – Vancouver

Sep 05/90

Beinic Du SIGNED .

CT/

For enquiries on this report, please contact Customer Service Department. Samples, Fulps and Rejects discarded two months from the date of this report. T S L LABORATORIES 2-302-367% STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX *: (306) 242 - 4717

1.C.A.P. PORMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : 8 - 9759 - 1
10th Floor Box 10	T.S.L. File No. : E:#7848
808 West Hastings St.	T.S.L. Invoice No. : 15349
Vancouver B.C. V&C 2X6	
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-2295	ALL RESULTS PPH

		L1W10+00S	L1W9+50S	L1W9+00S	L1W8+505	L1W8+00S	L1W7+50S	L107+005	£1₩6+50S
ELEMENT									
Aluminum	[A]]	5300	16000	20000	9000	20000	180 00	160 00	16000
Iron	[Fe]	23000	25000	29000	22000	37000	39000	220 00	41000
Calcium	[Ca]	2600	720	10000	2300	1800	3400	360	1700
Magnesium	[Mg]	1100	2800	2400	2100	4200	4800	1400	1800
Sodium	[Na]	80	120	170	80	120	99 0	90	110
Potassium	EK 1	69 0	420	600	1000	670	1100	510	590
Titanium	[Ti]	160	220	490	110	150	710	140	1800
Manganese	[Ma]	1400	210	1000	960	1300	1100	170	1400
Phosphorus	[P]	810	720	1600	1000	1100	64 ()	510	670
Barium	[Ba]	170	73	240	110	110	130	120	130
Chromium	[Cr]	10	17	26	17	22	17	11	15
Zirconium	[2r]	< 1	2	11	1	5	ó	1	7
Copper	(Cu)	24	33	38	42	82	e :>	40	39
Nickel	[Ni]	9	13	18	14	25	21	7	12
Lead	[Pb]	11	10	13	12	12	13	10	18
Zinc	[Zn]	75	56	130	78	120	110	50	83
Vanadium	[V]]	56	55	41	59	92	77	65	110
Strontium	[Sr]	23	7	79	18	12	29	6	14
Cobalt	[Co]	5	4	5	8	16	15	3	12
Malybdenum	[Mo]	2	< 2	2	< 2	< 2	Κ 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[[b]]	< 1	< 1	< 1	< 1	< 1	< 1	1	< 1
Beryllium	{Be}	< 1	< 1	2	< 1	< 1	< 1	 1 	< 1
Baron	(B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	[7]	2	4	41	3	16	15	3	4
Scandium	[Sc]	< 1	< 1	2	< 1	5	6	4. 1	2
Tungsten	EW]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	< 10	40	40	< 10	30	<u>4</u> .)	< 10	40
Arsenic	[As]	20	< 5	< 5	< 5	< 5	< 5	< 5	5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	ζ ξ	5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	K 10	< 10	< 10
Lithium	[Li]	< 5	15	25	5	25	20	5	15
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-08-1990

SIGNED : Dinis Pilipink

 $\left[\right]$

L

C

.

•

C

C

C

[

L

C

 $\left[\right]$

•

2-302-48TH STREET, SASKATOON, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD. 10th Floor Box 10 808 West Hastings St.			T.S.L. REPOR T.S.L. File T.S.L. Invoice	T No. : S - 9 No. : E:M784 No. : 15349	759 - 2 B
Vancouver B.C. V6C 2X6 ATTN: J. FOSTER PROJECT:	vr tymar #2 orequ	est consultants R-2295	ALL RE	SULTS PPM	
L1W6	+00S L1W5+50S	L1W5+005 L1W4+505	L1W4+005 L1W3	+50S L1W2+50	S L1W2+00S

ELEMENT									
≙luminum	[A]]	12000	24000	16000	28000	21000	15000	22000	220 00
Iron	[Fe]	36000	45000	37000	35000	39000	34000	35000	36000
Calcium	{Ca}	1900	4600	700	4300	540	820	140	600
Magnesium	[Mg]	1100	2500	1600	1400	2000	1700	2400	4200
Sodium	[Na]	70	140	70	320	80	70	60	60
Potassium	[K]]	680	700	520	590	560	680	650	610
Titanium	[Ti]	560	320	260	740	110	45	37	69
Sanganese	[Mn]	2400	2600	910	710	490	760	360	600
^e hosphorus	[P]	1300	2200	1000	800	840	1200	660	580
Barium	(Ba]	150	290	97	130	86	110	71	110
Chromium	[Cr]	16	20	16	12	17	18	16	20
Zirconium	[[r]	2	2	4	25	4	2	2	5
Copper	[Cu]	42	33	45	27	39	35	33	41
bickel	[Ni]	11	15	14	15	15	13	12	22
tead	[Pb]	21	19	13	19	12	18	7	10
linc	[[n]	92	230	74	110	80	100	83	87
Vanadium	[V]	100	69	100	22	71	68	68	64
Strontium	[Sr]	14	34	7	31	6	10	3	4
Cobalt	[Co]	21	11	8	2	5	5	5	9
Molybdenua	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	{Ag]	< i	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	(Be]	< 1	1	< 1	3	< 1	< 1	< 1	< 1
So ron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
≙a timony	[56]	< 5	< 5	5	< 5	< 5	< 5	< 5	< 5
Yttrium	[Y]]	5	13	3	43	5	3	5	5
Scandium	[Sc]	< 1	< i	< 1	2	< 1	< 1	< 1	2
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[N5]	< 10	< 10	< 10	20	< 10	< 10	< 10	< 10
Thorium	[Th]	< 10	10	50	30	40	40	40	20
Arsenic	[As]	25	< 5	< 5	< 5	< 5	< 5	< 5	Κ 5
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
៍រត	(Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	5	15	5	20	20	10	20	30
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED : Dom Pilonik

.

Ľ

E

C

[

ſ

L

2-302-4000 STREET, SASKATOON, SASKATCHEWAN 607K 6A4 TELEPHONE #: (306) 931 - 1033 FAX **#:** (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

				Aqua-H	egia Digestion	١			
PRIME EXPLORATI 10th Floor Box 808 West Hastin Vancouver B.C. ATTN: J. FOSTE	ON LTD. 10 gs St. V6C 2X6 R PR(DJECT: VR TYM	AR #2 0reg	iuest consul'	Tants R-2295	T.S.L. T.S.L. T.S.L. 1	REPORT No. File No. Invoice No. ALL RESULTS	: S - 9759 : E:M7848 : 15349 PPM	7 - 3
FI FMENT		L1W1+50S	L1W1+005	L1W0+50S	13W0+00	1340+5 05	L3W1+005	L3W1+50S	L3W2+0 0S
Alum inum	[A]]	19000	14000	16000	13000	2200 0	16000	22000	21000
Iron	{Fe]	39000	44000	45000	40000	37000	31000	35000	37000
Calcium	[Ca]	1400	5700	8900	1400	880	320	540	3900
Magnesium	[Mg]	4000	4100	6100	1700	1200	1300	2100	5000
Sodium	[Na]	420	1000	3400	170	150	60	80	1500
Potassium	EK 3	820	1300	1900	790	490	550	610	1300
Titanium	[Ti]	190	560	2 90 0	87	160	59	110	770
Manganese	[Mn]	1400	1300	1100	1800	920	620	430	1400
Phosp horus	[P]	970	1100	94 0	1500	1100	1200	1200	1100
Barium	[Ba]	96	180	120	190	56	94	84	97
Chrom ium	[Cr]	17	11	11	12	9	15	17	15
Zirconium	[]r]	4	7	11	2	5	2	2	7
Copper	(Cu)	73	79	59	69	30	22	35	75
Nickel	[Ni]	21	15	16	13	8	11	12	17
Lead	[P5]	13	12	9	13	15	7	11	24
Zinc	[2n]	96	100	88	110	110	65	69	76
Vanadium	EV 3	74	74	89	90	28	54	72	87
Strontium	[Sr]	12	50	80	14	8	4	6	34
Cobalt	[Co]	18	17	20	14	5	4	6	17
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Aq]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bervllium	[Be]	< 1	< 1	< 1	< 1	2	< 1	< 1	< 1
Boron	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	5	5	< 5	< 5	< 5	< 5	< 5
Yttrium	£Y 3	8	19	15	4	10	3	5	10
Scandium	[Sc]	2	6	9	< 1	< 1	< 1	< 1	7
Tunasten	[W]]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	10	< 10	< 10	< 10
Thorium	[Th]	30	30	40	50	< 10	< 10	50	20
Arsenic	[As]	< 5	10	< 5	15	5	< 5	< 5	10
Bisauth	{Bi]	< 5	< 5	10	< 5	5	< 5	< 5	< 5
Tin	[5n]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	20	20	15	< 5	15	10	20	20
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-08-1990

SIGNED :

Jon's Vila

1

T S L LEIMRATORIES

•

E

ſ

C

 $\left[\right]$

Ŀ

2-302-48MH STREET, BASKATOON, BERKATCHEWAN 87K 6A4 TELEPHONE #: (306) 31 - 1033 FêX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9759 - 4
10th Floor Box 10	T.S.L. File No. : ExCB48
808 West Hastings St.	C.S.L. Invoice No. : 15.49
Vancouver B.C. V6C 2%6	
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREGUEST CONSULTANTS R-2295	ALL RESULTE PPM

		L3W2+50S	L3M3+00S	L3W3+509	.3W4+00S	LU#4+50S	L3W5+008	L3#1~50S	L3W6+005
ELEMENT									
Aluminum	[A]]	17000	14 000	17000	21000	17000	14000	19000	7200
Iran	[Fe]	43000	58000	37000	40000	43000	30000	33000	26000
Calcium	[Ca]	1200	46 00	2200	600	1500	4600	9400	1900
Magnesium	[Mg]	3000	3700	4000	2500	1800	2100	5000	1400
Sodium	[Na]	100	400	450	110	60	250	2400	130
Potassium	[K]	1000	1100	790	560	520	900	1000	670
Titanium	[Ti]	75	530	420	63	44	420	1700	72
Manganese	[Mn]	1900	1000	940	530	980	300	1000	1500
Phosohorus	[P]	1300	1440	1000	1300	:300	1400	670	1200
Barium	[Ba]	260	3.20	140	97	110	190	160	220
Chromium	[67]	16	1.0	19	17	18	17	17	11
Zirconium	{Zr]	6	11	7	3	2	3	3	2
Copper	[Cu]	110	150	67	110	110	35	-,8	45
Nickel	[Ni]	20	27	27	15	15	11	29	12
Lead	[Pb]	13	ċ1	16	9	13	8	7	12
Zinc	[Zn]	92	120	120	80	75	72	ē1	110
Vanadium	[V]	58	78	63	64	64	65	74	57
Strontium	[Sr]	8	39	18	8	15	43	6 8	19
Cobalt	[Co]	19	27	13	7	12	5	4	7
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	$\langle 1 \rangle$
Bervllium	[Be]	1	he ch	< 1	< 1	< 1	< 1	< 1	< 1
Baroa	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY]	35	32	18	6	5	4	0.0	4
Scandium	[Sc]	4	2	5	< 1	< 1	< 1	4	< 1
Tungsten	[W]	< 10	く 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	10	70	30	30	40	40	10	< 10
Arsenic	[As]	< 5	10	< 5	5	20	< 5	< 5	15
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	5	< 5
Tin	ESn]	< 10	K 20	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	20	20	20	15	10	10	25	5
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNA: Durin Pilmick
· · ·

E

C

C

2-302-48TH STREET, SASKATOON, SASKATCHEWAG S7K 6A4 TELEPHONE #: (306) 931 - 1033 (306) 242 - 4717 FAX #:

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9759 - 5							
10th Floor Box 10	T.S.L. File No. : E:M7848							
808 West Hastings St.	T.S.L. Invoice No. : 15349							
Vancouver B.C. V6C 2X6								
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS F	R-2295 ALL RESULTS PPM							

		L3W6+50S	L3W7+00S	L3W7+50S	L3W8+00S	L3WB+50S	L3W9+005	L3#9+50S	L3W10+00S
ELEMENT									
Aluminum	[A]]	170 00	22000	23000	20000	15000	6400	10000	8600
Iron	[Fe]	360 00	36000	38000	3 400 0	28000	28000	42000	27000
Calcium	[Ca]	880	4700	740	1000	6300	2300	2100	4100
Magnesium	[Mg]	3100	1600	2000	2600	3600	1100	1300	1400
Sodium	[Na]	100	180	240	100	110	80	90	80
Potassium	[K]	58 0	510	610	510	750	1000	670	870
Titanium	[Ti]	190	730	650	79	140	42	29	56
Manganese	[Mn]	1300	410	900	630	450	3900	1100	710
Phosohorus	(P]	750	660	820	990	1300	1500	1800	1400
Barium	[Ba]	78	110	66	68	240	350	140	190
Chromium	[Cr]	17	14	18	16	35	13	16	16
Zirconium	[Zr]	2	9	7	2	8	1	3	< 1
Copper	[Cu]	63	13	26	44	40	57	48	31
Nickel	[Ni]	21	8	8	12	24	11	13	13
Lead	[66]	17	17	14	16	11	16	11	8
Zinc	[Zn]	110	85	65	86	90	130	100	85
Vanadium	[V]	54	47	61	58	55	87	86	56
Strontium	[Sr]	8	38	8	9	48	27	14	40
Cobalt	[Co]	14	3	10	8	7	14	6	5
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[[4]]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	{Be}	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	(B)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	Κ 5	< 5	Κ 5	< 5	< 5	< 5	< 5	< 5
Yttrium	EY 1	9	7	11	4	15	2	2	3
Scandium	{Sc}	< 1	< 1	1	< 1	3	< 1	< 1	< 1
Tunosten	(W]	< 10	< 10	< 10	< 10	< 10	10	< 10	< 10
Niobium	END 3	< 10	10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	40	40	30	40	20	< 10	50	< 10
Arsenic	[As]	20	< 5	< 5	< 5	< 5	30	25	10
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	15	10	15	20	< 5	5	10
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-08-1990

SIGNED : Dimis Pilpick

C E Ŀ

	7		
		5	

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Exploration Ltd.				
	10th Floor, Box 10-808 West Hastings St.	REPORT No.			
	Vancouver, B.C.	S9789			
	V6C 2X6				

INVOICE #: 15213 P.O.: R-2409

SAMPLE(S) OF Soil

W. Raven Project VR

٦,

đ

REMARKS: OreQuest Consultants

> Au ppb

L2W 10+00S	<5 <5	
L2W 8+50S	<5	
L2W 8+00S	<5	
L2W 7+00S	<5	
L2W 6+50S	<5	
L2W 6+00S	10	
L2W 5+50S	10	
L2W 5+00S	140	
L2W 4+50S	25	
L2W 4+00S	<5	
L2W 3+ 50S	<5	
L2W 3+00S	<5	
L2W 2+50S	10	
L2W 2+00S	45	
TOT 1. FOO	-	
LZW 1+505	5	
$L_{2W} 0+30S$	20	
	30	
LZW IU+UUN	N 0	
COPIES TO: INVOICE TO:	P. Lougheed, Prime - Vanco	J. Foster Duver

Sep 06/90

Bunie Que SIGNED

1 of 2 Page

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 🕝 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Exploration Ltd. SAMPLE SE FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S9789 V6C 2X6

> INVOICE #: 152**13** P.O.: R-2409

SAMPLESS OF SOIL

W. Raven Project VR

REMARKS: OreQuest Consultants

> Au ppb

121 121 121 121 121 121	9+00N 9+00N 8+50N 8+00N	<5 <5 <5 <5
D2W	7+50N	5
L2W L2W L2W L2W L2W	7+00N 6+50N 6+00N 5+00N 4+50N	<5 <5 <5 <5 5
1,2W 1,2W 1,2W 1,2W 1,2W 1,2W	4+00N 3+50N 3+00N 2+50N 2+00N	25 10 5 20 <5
L2M L2W L2U	1+50N 1+00N 0+50N	<5 5 45

COPIES TO: P. Lougheed, J. Foster INVOICE TO: Prime - Vancouver

Sep 06/90

Bunie U. SIGNED

2 of 2 Page

CTA

For enquiries on this report, please contact Customer Service Department. Samples, Fulps and Rejects discarded two months from the date of this report.

•

C

2-302-48TH STREET. BASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	J.S.L. REPORT No. : 5 - 9789 - 1
10th Floor Box 10	T.S.L. File No. : E:M7871
806 West Hastings St.	T.S.L. Invoice No. : 15362
Vancouver B.C. V&C 2X6	
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-2409	ALL RESULTS PPM

ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-2409

		L2W 10+005	L2W 9+00S	L2W 8+50S	L2W 8+00S	12₩ 7+0 05	L2W 6+50S	L2W 6+00S	L2W 5+50S
ELEMENT									
Aluminum	[A]]	8900	7400	8700	190 00	16000	18000	20000	17000
Iron	[Fe]	23000	30000	32000	26000	27000	39000	36000	30000
Calcium	[Ca]	6700	1800	800	6700	360	340	1500	2600
Magnesium	(Mg)	1800	1100	1000	19 00	2000	2500	3900	3400
Sodium	(Na]	110	100	90	150	100	100	550	590
Potassium	(K)	590	590	430	340	350	500	650	730
Titanium	(Ti]	180	100	49	210	110	230	330	550
Manganese	[Ma]	1500	760	720	490	620	1900	970	570
Phosphorus	(P]	1400	890	1100	1700	730	1000	850	760
Barium	(Ba]	290	150	100	140	71	52	99	88
Chromium	[Cr]	10	ę	12	13	15	20	19	16
Zirconium	[Zr]	5	2	2	3	2	3	5	4
Copper	(Cu)	22	24	40	14	38	50	66	58
Nickel	[Ni]	10	7	10	8	9	11	22	18
Lead	[Pb]	10	9	10	10	9	16	17	12
Zinc	[Zn]	120	69	88	84	59	70	110	100
Vanadium	(V]	47	60	76	38	68	67	63	55
Strontium	[Sr]	71	24	9	53	6	4	15	23
Cobalt	[Co]	8	5	6	÷	6	17	13	7
Malybdenum	(Mo)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Aq]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[C4]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Be]	< 1	< 1	< 1	1	< 1	< 1	< 1	< 1
Boron	(B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	5	5	< 5
Yttrium	[Y]	7	2	2	12	4	5	15	16
Scandium	[Sc]	< 1	< 1	< 1	< 1	< 1	1	4	2
Tungsten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	< 10	< 10	< 10	< 10	< 10	30	30	40
Arsenic	[As]	10	15	10	< 5	< 5	15	25	10
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	10	< 5	< 5	10	10	10	20	20
Holmium	(Ho)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-10-1990

mins Pilmink SIGNED :

TISIL CHORATORIES 2-302-000H STREET, SASKATOON, PASKATOHE S7K 644 TELEPHONE #: (306) 931 - 1000 FAX #: (306) 042 - 470

I.C.A.P. PLASMA SCAN

[

Aqua-Regia Digestion

RIME EXPLORATI	ON .T.					T.S.L.	REPORT .	: 5 - 978	9 - 2
Oth Floor Box	10					T.S.L.	File	: E:M7671	_
08 West Hastin	los St.					T.S.L.	Invoice	: 15362	
ancouver B.C.	V6C (236)								
TTN: J. FOSTE	R PP	OJECT: VR TH	1AR #2 ORE	quest consul	VANTS R-240	9	ALL RESENTS	P P M	
		L2W 5+00S	L2W 4+505	L2W 4+00S	L2W 3+510	L2W 3+005	12W 2 +561	12W 2+00S	12 4 - 30
ELEMENT									
Alusinum	(A)]	15000	11000	15000	19 000	21000	95 00	5800	12.0
Iron	[Fe]	46000	35000	30000	350 00	37000	360 00	30000	3 50 0
Calcium	[Ca]	660	1300	420	220	240	3200	5100	6 400
Magnesium	[Mg]	1400	1100	1600	2900	1200	2800	770	1700
Sodium	[Na]	80	100	90	70	260	510	70	70
Potassium	(K.)	390	480	400	310	400	670	700	7 M.
Titenium	CT15	36	180	160	69	310	28-	43	. ÷
Manganese	(Mn)	510	660	e00	5 30	640	810	430	ರೆಗಿ
Phoschorus	(P]	1300	890	300	620	660	1000	1100	
Bartum	[Ba]	94	100	86	54	42	160	280	10
Chromium	(Cr)	17	12	14	20	12	24	13	2 2
Zirconium	[aZa	÷	3	2	5	4	6	7	:
Copper	[Co]	140	32	30	77	16	P 1	76	
Nickel	[Ni]	12	8	11	18	6	21	15	
Leid	(Pb)	11	10	10	Ģ	11	16	6	-
Zina	[[n]	70	77	64	82	57	84	57	
Vanadium	[V]]	67	81	£2	65	45	54	53	4.7
Strontium	[Sr]	9	12	5	3	3	22	20	72
Cobalt	(Ca)	8	5	5	7	3	14	8	13
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cacolum	[b3]	< 1	< t	< 1	< t	< 1	< 1	< 1	$\langle -1 \rangle$
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	$\mathbf{x} \in \mathbb{C}$
Boron	EB ()	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 15
Antisony	(S b)	< 5	< 5	< 5	10	< 5	# 12	< 5	4 - ¹⁷
Yttrium	EV ?	3	3	3	4	9	13	16	
Scandium	(Sc)	< 1	< 1	< 1	< 1	< 1	цг.)-	6	**
Tungsten	[#]]	< 10	< 10	< 10	< 1 0	< 10	< 10	< 10	< 11
Niccian	(#6)	< 10	< 10	< 10	< 10	10	< 16	< 10	 4
โ hori น ณ	[Th]	30	< 10	< 10	30	< 10	50	< 10	$\langle -1 \rangle$
Arsenic	(As)	15	5	< 5	< 5	< 5	30	50	•
Bisauth	(Bi)	< 5	< 5	< 5	Κ 5	< 5	< 5	< 5	4.00
T10	[8a]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	4
Lithium	[Li]	5	< 5	10	15	5	10	< 5	÷.
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< :0

DATE : EP-10-1990

SIGNE : Denis Piljak

2-302-48TH ETREET, TREKATOON, SAEGATCHEWAG S7K 6A4 VELEPHINE #: (306) 900 - 1003 ETAX #: (306) 240 - 4717

I.C.A.P. PLAST SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L.	REPORT	No.	÷	5 - 9789 - 3
10th Floor Bax 10	T.S.L.	File	No.	:	i #7871
808 West Hastings St.	T.S.L.	Invoice	No.	÷	193 52
Vancouver B.C. V6C 2X6					

ATTN: J. FOSTER PROJECT: VR TYMAR #1 ORERUEST CONSULTANTS R-2409 ALL REPULTS PRO

L2N 1+005 L2x: 0+505 L2N 0+00 L2% 10+000 L2N 9+500 L2N 4-000 L2X: 0+500 L2N 8+000

C

,

ിuminum	[A]]	9500	17000	15000	13000	13000	14000	000	16000
lron	[Fe]	35000	4 <i>₀</i> 0 00	55000	47000	29000	26/00	C 000	30000
Calcium	[Ca]	5000	2600	2900	1800	2500	650	2900	900
Magnesium	{Mg]	1600	4000	3500	3300	4100	4500	3100	3900
Sodium	[Na]	60	720	170	80	80	90	70	80
Potassium	EK 3	870	1200	1100	620	650	÷ 10	590	510
Itanium	[Ti]	26	750	250	22	39	17	35	34
്≊nganese	[Ma]	440	:~00	2200	1200	810	()	80	710
Shosphorus	[P]	1300	1200	1600	1300	840	570	940	780
Barium	[Ba]	210	<u>:</u> 30	290	150	150		:40	100
Caronium	{Cr}}	13	15	16	31	22	<u></u>	20	28
2irconium	[][]	7	8	11	7	5	5	6	6
Copper	(Cu)	80	99	150	80	44	. ;	68	52
Cackel	[Ni]	15	16	20	18	49	56	27	34
l ead	[Pb]	11	16	22	8	14	3	17	11
Zinc	[Zn]	94	\10	130	75	140	9	120	110
Vanadium	[V]]	63	91	96	110	43	-0	50	46
Strontium	[Sr]	21	25	23	12	19	9	18	8
Cobalt	[Co]]	ዮ	29	29	17	13	:4	11	10
Kalybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	· 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	× 1	< 1	< 1	· 1	< 1
Beryllium	[Be]	< 1	< i	< 1	< 1	< 1		1	< 1
Ban an	(B]	< 10	< 10	< 10	< 10	< 10	< 10	10	< 10
<u>Antimony</u>	[56]	< 5	5	15	10	10		10	5
Mtrium	[Y]	20	16	24	6	6	Č5	10	10
Scandium	[Sc]	7	8		5	4		6	4
Tungsten	[₩]	< 10	< 10	< 10	· 10	< 10	$\langle \cdot \rangle$	- 10	< 10
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	K G	10	< 10
Teorium	[Th]	20	30	30	30	20		30	30
Ansenic	[As]	20	40	75	15	30	< 11	20	15
Eismuth	[Bi]	< 5	5	< 5	< 5	< 5	S. 18	. 5	< 5
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	$\langle \cdot \rangle$	10	< 10
Lithium	[Li]	10	15	15	15	20	6.2	15	25
Holmium	(Hə]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

SIGNED :

imis Visia 1

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION LTD.	T.S.L. REPORT No. : S - 9789 - 4
10th Floor Box 10	T.S.L. File No. : E:M7871
808 West Hastings St.	T.S.L. Invoice No. : 15362
Vancouver B.C. V6C 2X6	
ATTN: J. FOSTER PROJECT: VR TYMAR #2 OREQUEST CONSULTANTS R-2409	ALL RESULTS PPM

		L2W 7+50N	L2W 7+00N	L2W 6+50N	L2W 6+00N	L2W 5+00N	12W 4+50N	12x 4+00N	12W 3+50N
ELEMENT	ſ								
Aluminum	[A1]	15000	11000	12000	14000	13000	11000	22000	12000
Iron	(Fe]	38000	38000	34000	34000	28000	34000	30000	50000
Calcium	{Ca}	2000	2400	2300	2300	1900	2900	740	5600
Magnesium	[Mg]	4100	3400	4200	4400	3800	3300	1800	2900
Sodium	[Na]	120	120	160	150	200	560	260	80
Potassium	[K]	810	710	590	580	540	730	480	840
Titanium	[Ti]	69	47	84	100	73	350	130	40
Manganese	[Ma]	1500	1400	910	780	590	650	390	1600
Phosphorus	; [P]]	1000	1000	800	730	680	69 0	700	1700
Barium	[Ba]	160	140	130	130	120	120	120	150
Chromium	[Cr]]	27	23	29	29	24	16	16	26
Zirconium	{Zr]	10	8	7	8	6	15	6	14
Copper	(Cu)	94	96	61	57	42	61	42	100
Nickel	[Ni]	35	36	49	46	41	27	17	30
Lead	[25]	41	22	8	9	8	15	17	19
Zisc	[Zn]	190	140	110	130	170	150	110	120
Vanadium	{V]	63	54	48	51	43	44	40	100
Strontium	[Sr]	15	18	19	19	17	23	6	30
Cobalt	{Co}	17	20	18	15	10	12	6	30
Molybdenum	(Ma)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Aq]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2
Cadmium	(CJ)	i	< i	< 1	< 1	< 1	< 1	< 1	1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	1	< 1
Baran	[B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Actimony	[Sb]	10	5	5	5	< 5	10	5	10
Yttrium	[Y]]	14	14	11	12	9	13	13	16
Scandium	(Sc]	10	9	7	7	4	7	2	16
Tungs ten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Nichium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	10	< 10
Thorium	[Th]	30	20	20	30	20	40	< 10	30
Arsanic	[As]	30	25	15	15	5	20	5	60
Bismuth	[Bi]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Tin	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	25	15	25	25	20	15	15	20
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-10-1990

Γ

Dennis Pilipiuk

. . .

2-302-48TH STREET, SASKATODN, SASKATCHEWAN 57K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

		1.6.8.6. 1	"LHONH OLHN					
				Aqua-R	egia Digesti	DN		
RIME EXPLORATIO Oth Floor Box 1 008 West Hasting	W LTD. 0 15 St. 140 2X A					T.S.L. T.S.L. T.S.L.	REPORT No. File No. Invoice No.	: S - 9789 - 5 : E:M7871 : 15362
ITTN: J. FOSTEP	Pf	ROJECT: VR TYN	1ar #2 Orei	QUEST CONSUL	TANTS R-240	7	ALL RESULTS	РРМ
ELEMENT		L2W 3+00N	L2W 2+50N	L2W 2+00N	L2W 1+50N	L2W 1+00N	L2W 0+50N	
Aluminum	[A]]	10000	13000	14000	19000	16000	18000	
Iron	[Fe]	41000	46000	34000	36000	30000	64000	
Calcium	[Ca]	6000	5200	540	980	400	5200	
Maonesium	[Ma]	2000	3200	3200	2400	4100	4900	
Sodium	[Na]	80	160	80	90	70	130	
Potassium	[K]	1500	1100	580	440	4 00	920	
Titanium	ITi 1	22	140	38	75	29	150	
Manganese	Crin I	1600	2000	720	2000	710	3400	
Phosphorus	EP 1	1700	1500	870	1500	510	1300	
Barium	[Ba]	190	230	75	130	88	350	
Chromium	{Cr]	18	26	26	17	26	17	
Zirconium	[Ir]	9	13	3	5	6	15	
Copper	(Cu]	120	120	44	34	55	250	
Nickel	ENII	23	25	29	16	37	27	
Lead	[Pb]	50	74	20	13	10	52	
Zinc	{Za]	280	250	140	93	110	270	
Vanadium	[V]]	59	79	45	54	40	120	
Strontium	[Sr]	29	34	5	8	4	40	
Cobalt	[Co]	19	20	11	6	10	39	
Molybdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	
Silver	[Ag]	< 1	3	< 1	< 1	< 1	2	
Cadmium	[63]	2	1	< 1	< 1	< 1	1	
Beryllium	[Be]	< 1	< 1	< 1	< 1	$\langle 1 \rangle$	< 1	
Boron	[8]]	< 10	< 10	< 10	< 10	< 10	< 10	
Antimony	[Sc]	10	10	< 5	5	5	20	
Yttrium	EY 1	15	17	4	7	11	34	
Scandium	[Sc]	11	12	< 1	< 1	5	15	
Tungsten	[₩]	< 10	< 10	< 10	< 10	< 10	< 10	
Niobium	[N5]	< 10	< 10	< 10	< 10	< 10	< 10	
Thorium	[Th]	30	30	40	50	20	40	
Arsenic	[As]	55	50	15	5	25	280	
Bismuth	[Bi]	Κ 5	< 5	< 5	< 5	< 5	< 5	
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	
Lithium	[Li]	15	25	15	15	25	25	
Holaissa	(Ha]	< 10	< 10	< 10	< 10	< 10	< 10	

DATE : SEP-10-1990

SIGNED : Denn Pilmak

E L

DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd. SAMPLE(S) FROM Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

V V REPORT No. S9927

INVOICE #: 15374 P.O.: R2497

SAMPLE(S) OF Soil

W. Raven Project VR

[

REMARKS: Orequest Consultants

Au
ppb

L25E L25E L25E L25E L25E	0+00 0+50N 1+00N 1+50N 2+00N	55 <55 <55 <55
L25E L25E L25E L25E L25E L25E	2+50N 3+00N 3+50N 4+00N 4+50N	<55 <55 <55 <55
L25E L26E L26E L26E L26E L26E	5+00N 0+50N 1+00N 1+50N 2+00N	<55 <55 <55 <55
L26E L26E L26E L26E L26E L26E	2+50N 3+00N 3+50N 4+00N 4+50N	<5 <5 <5 <5 <5
	S TO: CE TO:	J. Fo Prime

ster, P. Lougheed me-Vancouver

Sep 12/90

Demis Vili SIGNED

Page 1 of 3

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

TSL LABORATORIES DIV. BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4

S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. Prime Capital Place 10th Floor-Box 10 808 West Hastings Street. Vancouver, B.C. V6C 2X6

INVOICE #: 15374 P.O.: R2497

SAMPLE(S) OF Soil

W. Raven Project VR

REMARKS: Orequest Consultants

			Au ppb
L26E L27E L27E L27E L27E	5+00N 0+00 0+50N 1+00N 1+50N		<5 NSB <5 <5 <5 <5
L27E 2 L27E 2 L27E 2 L27E 2 L27E 2 L27E 4	2+00N 2+50N 3+00N 3+50N 4+00N		<5 NSB <5 <5 <5 <5
L27E 4 L27E 5 L28E 0 L28E 0 L28E 1	4+50N 5+00N 0+00 0+50N 1+00N		5 10 <5 <5 <5
L28E 2 L28E 2 L28E 2 L28E 2 L28E 3	1+50N 2+00N 2+50N 3+00N 3+50N		5 NSB <5 5 <5
COPIES	то:	J.	Fost

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime-Vancouver

Sep 12/90

1 im Mila SIGNED

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report. Page 2 of 3

TSL LABORATORIES DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 48th STREET, EAST

SASKATOON, SASKATCHEWAN S7K 6A4 37K 6A4 37K 6A4 57K 6A4 57K 6A4 57K 6A4

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Explorations Ltd.
	Prime Capital Place
	10th Floor-Box 10
	808 West Hastings Street.
	Vancouver, B.C. V6C 2X6

INVOICE #: 15374 P.O.: R2497

SAMPLE(S) OF SOIL

W. Raven Project VR

REMARKS: Orequest Consultants

Au ppb

L28E	4+00N	<5
L28E	4+50N	55
L28E	5+00N	<5

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime-Vancouver

Sep 12/90

im Pilipian 1 SIGNED Page 3 of 3

CTA

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

,

C

.

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (306) 931 - 1033 FAX #: (306) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORAT 10th Floor Box 808 West Hastin Vancouver B.C. ATTN: J. FOST	ION LTD 10 ngs St. V6C 2X ER). /6 PROJECT: V	R TYMAR #1 (Drequest consi	JLTANTS R-2	T.S.L. T.S.L. T.S.L. 2497	REPORT No File No Invoice No ALL RESULTS	. : S - 992 . : M 8007 . : 15736 S PPM	27 - 1
ELEMEN	T	L25E 0+	00 L25E 0+50 ł	N L25E 1+00N	L25E 1+50N	L25E 2+50N	L25E 3+00N	L25E 3+50N	L25E 4+00N
Aluminum	[A]]	11000	25000	17000	24000	19000	22000	24000	19000
Iron	[Fe]	36000	34000	80000	34000	40000	55000	57000	59000
Calcium	[Ca]	4600	240	840	4900	2400	940	200	746
Maonesium	[Mo]	3800	4800	2100	3600	4300	4300	4200	7400
Sodium	[Na]	190	50	100	180	50	390	4200	0440
Potassium	[K]	1100	380	260	500	500	550	300	230
Titanium	[Til	110	100	200 450	300 300	240	500	300 ATO	750
Mannanaca	[Ma]	790	740	007	1100	240	500	430	330
Phoenharus	- (P]	1100	740	400	1200	1100	300 770	540	270 400
Parius	[D-]	700	240 18	100	1200	1100	//V /0	130	460
Cheenium	[Da]	UVV 17	0 1 //	100 AD	130	100	00 54	120	120
Zipcosius	[[] []	10	44	40	42		34 7	ىر -	63 7
Crease	1211	ن 57	1.3	10	2 70	1	ن + ۳	J 77	ن مە
copper.	5543 5543	20 115	-11- A(20	ىنى مە	34 E 4	1/	23	24
NICKEI		23	40	21	44	04 45	-34 10	43	37
Leao	(10)	15	15	25	10	15	10	13	12
2100	1201	150	62	47	110	100	/9	69	5/
Vanadium		50	38	59	38	54	97	64	77
Strontium	[Sr]	30	4	14	78	40	12	8	10
Cobalt	[Co]	14	5	4	18	14	7	5	6
Molybdenum	a [Mo]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	2	< 1	< 1	< 1	< 1
Cadmium	[Cd]	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	{Be]	< 1	< 1	< 1	1	< 1	< 1	< 1	< 1
Boron	{B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	{Sb}	10	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Yttrium	[Y]	11	4	3	20	ę	3	3	2
Scandium	{Sc}	6	2	< 1	< 1	< 1	3	2	2
Tungsten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium	[Nb]	< 10	< 10	20	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	70	20	20	10	30	10	20	10
Arsenic	[As]	30	< 5	10	< 5	15	< 5	< 5	< 5
Bismuth	[Bi]	< 5	< 5	< 5	5	10	< 5	< 5	< 5
Tin	(Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[Li]	15	25	< 5	36	20	15	20	5
Holmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-30-1990

.....

SIGNED : Burie Our

.

E

[

[

2-302-480H SIGGET, PISKATOON, SASKATIKEN SIG SA

18189- - 5 **#:** (306) - 93- - 11 FAX #: - - (1064) 240- - 11

I.C.A.P. PLASMA SCAN

				Aqua-F	legia briger				
PRIME EXPLORATION 10th Floor Box E08 West Hastin	DN LTD. 10 25 St.					T.E.L. T.S.L. T.S.L.	REPORT No. File Ma. Lavoice Ha.	. * S - 9 92 : SE15MA . * 15736	7 - 2
ATTN: J. FOSTE	R PF	NOJECT: VR TY	MAR #1 GRE	ROEST CONSUL	TANTO	÷.	ALL REFECTS	N. T. M	
ELEMENT		L25E 4+50N	125E 54008	17 4E 0+50N	1265 (H)	. :3E 1450N	1245 2+00N	JC6E 2+50M	124E 3+0
Aluminum	[A]]	23006	17000	13000	316A)	14000	93 66	16000	20000
Iron	[Fe]	590 00	59000	50060		48000	43 669	42000	61000
Calcium	[Ca]	2200	300	6700	300	1600	2800	440	220
Magnesium	[Mg]	3600	2800	2700	4100	2900	1200	2600	2600
Sodium	[Na]	60	80	150	150	80	250	90	70
Potassium	[K]]	320	220	440	410	310	450	350	2 9 0
Titanium	[Ti]	560	440	1300	127	410	440	350	440
Manganese	[Mn]	220	:40	310		200	280	260	180
Phosphorus	[P]]	430	420	440	1. s. s.	440	752	780	59 0
Barium	[Bal	150	110	170		2 <u>1</u>		92	47
Chromium	[Cr]	50	52	31		52	5. 	35	51
Zirconium	[7]	ŝ		Ğ		4	-	2	
Copper	{Cu]	23	25	15		30	27	20	14
Nickel	[Ni]	39		1.1		37		29	24
Lead	[Pb]	14	12	18		15	11	11	15
Zinc	[Zn]	67	50	64	11	56	2 D	45	4c
Vanadium	[V]]	45	62	89	47	67	52	61	77
Strontium	[Sr]	32	1	100	Ê	46	62	10	5
Cobalt	[[0]]	4		2	7	5	4	4	
Molybdenum	[Mo]	< 2	< 2	2	4 2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1 	< 1	5 B	< 1		$\langle 1$	
Cadmium	[[0]]	< 1	< 1	< 1	A 1		× 1		
Beryllium	(Bel	< 1	N 1	< 1					< 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Eoron	[B]	$\langle 10$	< 20	< 10			1 iti	< 10	
Antimony	1561	< 5	1. D	< 5	-	< 3	< 2	< 5	< 5
Yttrium	EY 1	4	2	12		ن.	÷	2	2
Scandium	LSCJ	1	2	-	2 				-
Tungsten	[W]	(10	< 10	< 10		4 10	< 19 7 7 7	< 10	< 10
Niobium	LNO	20	<. 10 	20		10	< 30 2.5	$\langle 10$	10
Inorium	LINI	20	29 -	20	<u>.</u>	20	4(j 1 -	< 10 17	10
Arsenic	LASI	< 5	1 E	13	· · · ·	10	15	15	< 3 2 -
Bismuth	1811	< 5 		K 5		< 3	3 7 7 7	< 3 / **	< 3 / / /·
118	1501	4. IV 5.	 4.40 - 	< 10 	1. <u>1</u> .	< <u>10</u>	1 IV 1	< 10	$\langle 1^{\circ}$
Lithlum	1111	20) (< 5			$\Lambda = D$	5	Q.

BATE : SEP-30-1990

SIGNED : Beinic Um

2-302-49TH STREET, SASKATOON, SASKATCHEWAN 87K 6A4 TELEPHONE #: (308) 931 - 1033 FAX #: (308) 242 - 4717

I.C.A.P. FLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATION ETA.				T.S.L. REFERT No. : S - 9927 - 0
10th Floor Box				T.S.L. File No.: SE15MA
808 West Hastings 20.				T.S.L. Invoice No. : 15736
Vancouver B.C. Net 136				
ATTN: J. FOSTER PROJECT:	VR TYMAR #1	OREQUEST CONSULTANTS	R-2497	ALL RESULTS PPM

L26E 3+50N L26E 4+00N L26E 4+50N L26E 5+00N L27E 1+00N L27E 1+50N L27E 2+00N L27E 3+00N

· .

Aluminum	1413 1	17000	36000	25000	15000	16000	15000	14000	5700
Iroa	(51)	50000	4 2000	47000	47000	48000	570 00	68000	520 00
Calcium	EG21	420	940	260	1700	1600	540	3500	840
Magnesium	[Mo]	2600	3900	4800	2100	960	3500	3100	1000
Sodium	[Na]	80	120	100	110	100	90	140	80
Potassium	EK 1	420	650	360	600	360	390	470	400
Titanium	C 13	790	400	130	1800	1600	430	410	1200
Manganese		280	1400	450	240	170	330	360	200
Phosp horus	[?]	700	1100	510	390	560	760	1100	390
Barium	(1) t.)	61	110	73	76	67	28	79	120
Chromium	£1.	44	50	48	34	23	66	77	29
Zirconium	[]-]	4	5	5	12	7	4	4	2
Copper	12.3	18	35	20	22	19	20	24	20
Nickel	612	24	57	38	25	13	41	39	19
Lead	(P1)	14	13	10	18	18	15	15	19
Zinc	17-3	52	150	69	48	52	51	61	55
Vanadium	I.: 5	78	45	45	120	64	54	55	110
Strontium	ESel	8	18	7	19	30	9	63	13
Cobalt	052	3	23	5	3	3	5	5	3
folybdenur.	{. <e]< td=""><td>< 2</td><td>< 2</td><td>< 2</td><td>2</td><td>4</td><td>< 2</td><td>< 2</td><td>4</td></e]<>	< 2	< 2	< 2	2	4	< 2	< 2	4
Silver	[Aç]	< 1	1	< 1	< 1	< 1	< 1	< 1	. 1
Cadmium	EEd 3	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Beryllium	[Ed]	< 1	2	< 1	< 1	< 1	< 1	< 1	- 1
Boroa	57 B	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Antimony	-1555	< 5	< 5	< 5	10	< 5	< 5	< 5	6 5
Yttrium	NY 1	3	32	3	4	15	4	6	3
Scandium	21	1	< 1	2	2	1	< 1	< 1	s 1
Tungsten	())	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Niobium		20	10	< 16	20	20	10	< 10	30
Thorica	E12	< 10	20	20	20	40	10	20	40
Arsenic	là t :	< 5	< 5	< 5	20	< 5	< 5	10	15
Bismuth	(13)	< 5	< 5	< 5	< 5	< 5	× 5	< 5	5
Tin	18-19	< 10	< 10	< 10	< 10	< 10	< 10	< 10	t. 19
ithium	21-0	< 5	40	25	< 5	< 5	10	10	5
Holmium	inci -	< 10	< 10	< 10	< 10	< 10	< 10	< 10	10

SIGNED : Beinic Den

T 5 : LABORATORIES

1 ×

E

2-20-48TH STREET, SABRATOON, SASKATCHEWAN S7K 644 TELEPHONE +: (306) 931 - 1033 FAX #: 106: 242 - 4717

I.C.A.A. PLASMA SCAN

Acus-Regia Digestion

PRIME EXPLORA	TIGN LTD.								
809 West Hast Vancouver B.C	ings St. . V 6C 2X6					1.5.L. 7.5.L. 7.5.L.	REPURI No. File No. Invoice No.	: S - 992 : SE15MA : 15736	27 - 4
ATTN: J. FOS	TER P F	ROJECT: VR TY	Mar #1 Ore	QUEST CLASUL	TANTS R-244	97	ALL RESULTS	PPM	
ELEME		L27E GROOM	L27E 4+00N	L27E - +50M	L27E 5+00N	1285 0 +00	128E 0+50N	L28E 1+00N	L28E 1+50N
Aluminum Iron Calcium Magnesiu Sodium	(A1) [Fe] [Ca] m [Mo] [Na]	17000 37/005 340 2200 100	26000 41000 360 3000 170	15000 47,000 750 3300 50	14000 43000 1100 1600 160	26000 34000 1400 5500 100	15000 42000 1000 1600 70	17000 49000 760 4200 70	15000 29000 6200 1500 180
Potassiu Titanium Manganes Phosobop	e [Mo]	4 50 430 220	410 460 160 510	220 ± 70 200	270 1100 160 420	740 110 1400 720	340 250 140	350 870 210	410 710 1300
Barium Chromium Zirconiu	EB21 [82] A [27] A [27]		46 45 15	65 73 5	420 69 32 11	, 20 74 4	83 37 2	500 73 58 4	1200 110 28 2
Copper Nickel Lead Zinc	1923 [N1] [Po] [Zo]		13 24 17 50	16 19 14 47	7 12 14 49	57 89 11 130	27 18 13 50	17 42 13 65	32 23 10 68
Vanadium Strontiu Cobalt Molybden	[/] m [Sr] [Co] um [Mc]	70 7 4 < 2	47 6 3 < 2	52 18 4 7 2	73 16 3 < 2	48 19 25 ≪ 2	64 13 3 < 2	61 17 5 < 2	52 150 12 4
Silver Cadmium Berylliu	[Ag] [Cd] m [Ba]						$\begin{pmatrix} 1 \\ \langle 1 \\ \langle 1 \\ \rangle \end{pmatrix}$	$\begin{pmatrix} 1 \\ \langle 1 \\ \langle 1 \\ \rangle \end{pmatrix}$	$\begin{array}{c} \langle 1 \\ \langle 1 \\ \langle 1 \\ \langle 1 \\ \rangle \end{array}$
Boron Antimony Yttrium Scandium	(8) (85) [7] (6c]	X 10 < 3 2 2 2	< 10 < 5 5 2		< 10 < 5 2 1	< 10 < 5 14 5	< 10 < 5 3 < 1	< 10 < 5 4 2	< 10 < 5 13 < 1
Tungsten Niobium Thorium	(W) [N6] [Th]		< 10 20 20	0 10 19 50	< 10 10 50	< 10 < 10 20	< 10 < 10 20	< 10 10 20	< 10 < 10 < 10
Arsenic Bismuth Tin Lithium	195] [Bi] [Sn] [117	41 (x) E (x) 12 (x) 12 (x) 12	<pre>< 5 < 5 < 10 15</pre>		<pre>< 5 < 5 < 10 < 5</pre>	20 5 < 10 35	15 < 5 < 10 < 5	5 < 5 < 10 10	<pre>< 5 < 5 < 10 5</pre>
Holmium	(Ho)	< 16	< 10	K 10	< 10	< 10	< 10	< 10	< 10

DATE : SEP-30-1990

SIGNED : Bernie Du

C C C C Γ

2-302-48TH STREET, SASKATOON, SASKATCHEWAN S7K 6A4 TELEPHONE #: (206) 931 + 1033 FAX #: (206) 242 - 4717

I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

PRIME EXPLORATI 10th Floor Box 808 West Hastis Vancouver B.C.	10N LTD. 10 1gs St. V6C 2X6					T.S.L. T.S.L. T.S.L.	REPORT No. File No. Invoice No.	: S - 9927 - 5 : SE15MA : 15736
ATTN: J. FOSTE	ER PI	ROJECT: VR TY	1AR #1 ORE	QUEST CONSUL	TANTS R-24	97	ALL RESULTS	PPM
ELEMENT	г	L28E 2+50N	L28E 3+00N	L28E 3+50™	L28E 4+00N	L28E 4+50N	128E 5+00N	
Aluminum	[A]]	23000	32000	42000	7200	21000	18000	
Iron	[Fe]	48000	38000	280 00	25000	28000	79000	
Calcium	(Ca)	860	6800	9100	1900	7100	420	
Maonesium	[Mo]	3800	1200	2100	1300	3400	2100	
Sodium	{Na}	60	220	220	150	340		
Potassium	[K]]	330	220	360	390	440	180	
Titanium	{Ti}	270	520	570	1400	630	1900	
Mannanese	[Mn]	220	300	1600	88	1100	190	
Phosoherus	: [P]]	590	1200	1000	350	B10	430	
Barium	[Ba]	65	68	140	140	93	48	
Chroaium	(Cr]	46	39	31	20	25	41	
Zirconium	[Zr]	1	5	Ģ		5	28	
Cooper	[Cu]	20	44	30	21	73	21	
Nickel	[Ni]	38	27	61	16	39	23	
Lead	(Pb]	11	16	14	11	11	22	
Zinc	[Zn]	67	60	170	38	110	48	
Vanadium	[V]]	45	38	26	48	36	81	
Strontium	[Sr]	12	130	170	33	130	12	
Cobalt	[Co]	4	3	15	2	11	3	
Molvbdenum	[Mo]	< 2	< 2	< 2	< 2	< 2	< 2	
Silver	[Ag]	< 1	2	< 1	< 1	< 1	< 1	
Cadmium	(Cq)	< 1	< 1	< 1	< 1	< 1	< 1	
Beryllium	[Be]	< 1	< 1	2	< 1	1	< 1	
Baron	[B]	< 10	10	< 10	< 10	< 10	< 10	
Antimony	[56]	< 5	< 5	< 5	5	< 5	< 5	
Yttrium	[Y]	9	20	39	3	27	4	
Scandium	{Sc]	< 1	< 1	1	< 1	1	1	
Tunosten	[W]	< 10	< 10	< 10	< 10	< 10	< 10	
Niobium	(Nb]	10	< 10	20	< 10	< 10	30	
Thorium	[Th]	30	40	< 10	< 10	20	30	
Arsenic	[As]	< 5	< 5	< 5	20	< 5	10	
Bismuth	[Bi]	< 5	5	10	< 5	5	< 5	
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	
Lithium	[Li]	20	5	15	< 5	5	< 5	
Holmium	(Ho]	< 10	< 10	< 10	< 10	< 10	< 10	

DATE : SEP-30-1990

SIGNED : Bernie Oum

C

C

C

• • • ~

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 ☑ (300) S31-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. REPORT No. Vancouver, B.C. S1527 V6C 2X6 INVOICE #: 16218 SAMPLE(S) OF Soils P.O.: R-2774 W. Raven Project: VR **REMARKS:** OreQuest Consultants TYMAR 2 Au ppb L3W 0+50N 5 L3W 1+00N 20 L3W 1+50N 10 20 L3W 2+00N L3W 2+50N 5 L3W 3+00N 5 L3W 3+50N 10 L3W 4+50N 25 L3W 5+00N 10 L3W 5+50N 5 L3W 6+00N <5 L3W 6+50N 5 L3W 7+00N 5 L3W 7+50N 5 L3W 8+00N 5 L3W 8+50N 15 L3W 9+00N 25 L3W 9+50N 10 L3W 10+00N 10 LOW 0+00 5 COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver Nov 05/90 Bernie L SIGNED

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report.

Page 1 of 3

For enquiries on this report, please contact Customer Service Department.
Samples, Pulps and Rejects discarded two months from the date of this report.

Prime Explorations Ltd. SAMPLE(S) FROM 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

> INVOICE #: 16218 P.O.: R-2774

SAMPLE(S) OF Soils

W. Raven Project: VR

Au

REMARKS: OreQuest Consultants TYMAR 2

	ррЪ
LOW 0+50S	15
LOW 1+00S	5
LOW 2+50S	<5
LOW 3+00S	<5
LOW 3+50S	5
LOW 4+00S	15
LOW 4+50S	5
LOW 5+00S	10
LOW 5+50S	5
LOW 6+00S	15
LOW 6+50S	5
LOW 7+00S	<5
LOW 7+50S	<5
LOW 8+00S	<5
LOW 8+50S	<5
LOW 9+50S LOW 10+00S L9E 0+00 L9E 0+50N	<5 <5 <5 <5 <5
COPIES TO:	J. Foster,P. Lougheed
INVOICE TO:	Prime - Vancouver

Nov 05/90

Runie (SIGNED _ 2 of 3 Page

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 306) 931-1033 FAX: (306) 242-4717

REPORT No.

S1527

1 î

2 - 302 - 48th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Explorations Ltd. 10th Floor, Box 10-808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 16218 P.O.: R-2774

SAMPLE(S) OF Soils

W. Raven Project: VR

F

REMARKS: OreQuest Consultants

TYMAR 2

		Au
		aqq
L9E	1+00N	NSB
L9E	1+50N	NSB
L9E	2+00N	NSB
L9E	2+50N	5
L9E	3+00N	<5
T.OF	3+50M	25
196	4 · 00M	()
LAR	4+00N	< 5
L9E	4+50N	5
L9E	5+00N	<5

COPIES TO: J. Foster, P. Lougheed INVOICE TO: Prime - Vancouver

Nov 05/90

Bernie Du SIGNED Page 3 of 3

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this re_{i} bit.

ſ	·								
5	TSL	LA	BORATORIES					_	
Γ			2-302-48TH	STREET, SASKA	TOON, SASKATC	HBKAN S7K Abd	6A4	3	
L				FAX #:	(306) 242 -	4717			
Γ			I.C.A.P. PLA	SMA SCAN					
L					Aqua-Regia Di	gestion			
nRI	NE EXPLORATIO	ON LTD				T.S.	L. REPORT No	. : 8 - 1527	- 1
Øt	h Floor Box	10				T.S.	L. File No	. : N- 8434	-
508	West Hasting	gs St.				T.S.	L. Invoice No	. : 16304	
Van	COUVER B.C.	V6C 2XI	טע געערטער. מערטער	ABPANPOT CONC		5 5		יאחס ד	
	N: J. FUDIBR		PRUJBCI: VR	OURĂOROI CONS	ULIANIO IIMA	R 2	ALL FSSULI	o rra	
-			L3W 0+50N	L3W 1+00N	L3W 1+50N	L3W 2+00N	L3W 2+50N	L3W 3+00N	L3W 3+50N
Γ	ELENENT								
L									
	Aluminum	[A1] [Ro]	17000	17600	15000	4400	11000	15000	17000
Γ	lium Calcium	[re] [Ce]	35000 1400	32066 2890	43000 3188	40000 3888	34000	14000 1100	1300 1300
L	Vacnegium	[Va] [Na]	2966	4789	4300	949	1600	660	3200
	Sodium	[Na]	140	640	210	60	60	60	320
ſ	Potassium		720	1100	1100	1100	1600	720	760
L	Titanium	[T1]	210	330	189	27	36	24	110
	Kanganese	[Mn]	1000	2300	1360	1400	1103	1200	630
Γ	Phosphorus	[P]	940	1200	1200	1200	1200	1300	840
L	Barium Channium	[Ba]	120	180	160	300	290	170	130
	Virconium	[C[] [7r]	23	18	28 A	13	29	14	20
ſ	Conner	[Cn]	57	140	110	170	0 Q 5	<u>،</u> ۶4	5
L	Nickel		27	24	27	17	22	12	24
	Lead	[Pb]	10	19	16	16	24	24	15
C	Zinc	[Zn]	110	120	110	100	140	120	128
L	Vanadium	[\]]	60	80	83	86	52	60	51
	Strontium	[Sr]	14	24	21	27	29	10	13
Г	CODAIL Nolubdonum		10	22	18	17	12	8	9
Ľ	Silver	[00]				± ∠ 1	4	₹ ∠ 1	4 2 1
	Cadmium	[Cd]	1	3	2	< 1	< 1	< 1	< 1
Γ	Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
L	Boron	(B]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
	Antimony	[Sb]	10	5	5	< 5	< 5	< 5	< 5
Γ	Yttrium	[Y]	7	20	13	22	11	4	8
L	Scandium	[Sc]	< 1	9	8	19	5	< 1	3
	Tungsten	[K] (N51	20	< 10	20	< 10	< 10	20	20
ſ	Thorium	[ND] [Th]	< 10	< 10 8a	< 10 50	< <u>10</u>	< 10	< 10	< 10
L	Arsenic	[As]	40	130	45	30	30	30	30
	Bismuth	[B1]	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Г	Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
L	Lithium	[L1]	30	30	35	15	20	15	25
	Helmium	[08]	< 10	< 10	< 10	< 10	< 16	< 10	< 10

[ATB : NOV-12-1990

[

SIGNED : Bernie Our

101	μπυ	2-302-48TH	STRBET, SASKA TBLBPHONB # FAX #:	TOON, SASKATC : 06} 931 - 1 {306} 242 -	HBWAN S7K 033 4717	5A4	3	
		I.C.&.P. PL	ASMA SCAN	Agua-Regia Di	gestion			
RINE RXPLORATIO	IN LTD.				T.S.	L. REPORT NO	. : 8 - 1527	- 2
Att Floor Box 1	0				T.S.	L. Pile No	. : NO09MB	
08 West Hasting	gs St.				T.S.	L. Inveice No	. : 16304	
ANCOUVER B.C. V NTW. 1 ROSTRR	16C 2X6		PROURST CONSUL	TANTO TVNA	P 2	ALL ST DET	אַכָּס א	
LIN: DI FUDIBR		rhobert vn C	WBĀGBDI COMPOR				• • • •	
		138 4+50N	L3W 5+00N	L3W 5+50N	L3W 6+00N	L3W 6+1 .3	L3W 7+00N	L3W 7+52
ELENENT								
Juminum	[81]	0166	15000	16000	10000	16020	12000	24620
Trop	[81]	04 00 (38 86	36888	10000 70000	21000	46020	13000 Agaag	20000 43022
Colaium	[re]	2000	1044	1100	1000	3880	3000	25882
Varcium Nachagium	[Va] [Na]	2600	1344	AQAA	4300	5332	2500	6288
Sodium	[Ng]	2000 Q A	50	70	88	1468	80	44
Dotaggium	[K]	860	660	598	670	1480	1160	1000
Titenium	[4] [9]]	38	73	93	86	1100	57	38
Yanganege	(⊥⊥] [Nn]	1600	940	620	620	1588	1800	1489
Phosphorus	[P]	1:00	780	560	710	1180	1500	1000
Eartum	[Ba]	180	190	100	130	132	170	188
Chromium	ICrl	22	31	35	35	2	23	23
7irconium	[Zr]		5	4	5	S	6	12
Copper	[Cu]	100	61	39	39	23	110	143
Nickel	INIT	32	50	54	43	33	28	25
Lead	(Pb)	11	8	6	8	1 I + *	92	13
2inc	[Za]	130	150	140	140	130	730	120
Van adium	įv j	58	51	36	43	79	66	110
Strontium	[Sr]	23	17	12	12	38	21	22
Co balt	[00]	22	16	12	10	22	16	24
Molybdenum	[No]	4	< 2	2	< 2	< 2	< 2	< 2
Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	[Cd]	2	1	1	< 1	< 1	2	< 1
Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	[8]	< 10	< 10	< 10	< 10	< 11	< 10	< 18
Ant imony	[Sb]	5	5	5	< 5	< 5	10	10
Yttrium	[Y]	17	13	11	8	13	15	20
Scandium	[Sc]	12	7	3	2	12	9	16
Tungsten	[W]	< 10	30	20	< 10	< 11	50	< 18
Niobium	[Nb]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Thorium	[Th]	< 10	90	110	40	3	< 10	48
Brsenic	[A s]	35	15	15	15	38	30	30
Eismuth	[Bi]	< 5	< 5	< 5	< 5	< 3	< 5	< 5
Tin	[Sn]	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Lithium	[L1]	25	35	35	35	30	25	40
Ealmium	[Ho]	< 10	< 10	< 10	< 10	< 10	< 10	< 18

ATE : NOV-12-1990

C

1

SIGNED : Bernie Om

LABORATORIES TSL

J

Ľ

2-302-48TH STRBET, SASKATOON, SASKATOON, SASKATOON, TELEPEON F: 06) 931 - 1033 PAX L: (306) 240 - 4717 S7E 6A4 3

I.C. PLASKA SCAR

Agua-Regi Ligestion

PRI	MS EXPLORATE	🗄 LTD.				T.S.I	. REPORT No.	: S - 1527	- 3
Øt	h Floor Bo:					T.S.I	. File fo.	: NO09NB	
688	- West Hast 🖂	St.				î.S.H	L. Invoice to.	: 16304	
Van	couver B.C.	.IC 2X6							
Ti T	N: J. POSTII		PROJECT: VP	OREQUEST CONSU	LTANTS 17	R 2	ALL REGISTS	PFX	
L									
			LBL EFCON	L3W 8+505	L3W 9+ 0.11	L3K S+50N	L3W 1040"N	13M 8+80	LOW 0+505
	ELSMEEL								
L	Mariana	• • • • •	1 - 4 - 5 - 5	2000	11001	10000	10001	: 2000	10000
	Aluainus Iror	.81] (201	11600	1200	1100:	13000	17000	13000	16666
ſ	1100 Colainm	el	20000	24000	4/000	52840	40000	40000 1600	93000
L	Varanagium	(µa) [⊖a]	1929 7000	3100 3000	1365	C (U 7860	1000	2000	2160 2566
-	Ragiestu. Codium	[ng]	4300	2000	2906	2000	4000	1066	3300
~	Botaggium	(17.1) [310]	90 520	920 020	40 790	10 630	00	40 746	1200 1200
	PULASSIUM Titonium	(N] (973.1	330	11	100	010	000	140	220
	Manganga	111 [Vn]	15	11	4J 1102	605 606	33	1000	32 0 1788
	Dheanhar	្រាររ	400	1400	1100	1780	247	1000	1/00
Γ	Filospilor: Decom	_1	100 100	1460	100	1200	01 C1	1000	158
L	Chropiur	_ua] [0r1	120	1 /	101	10	95 95	15	11
	7iraaniu:	2+1 7+1	4 J 5	17	10	;	20	1	2
Г	Connar	1-41 7011	25	130	- 103	/0	к. Б.	51	138
L	Ninkal	501 201	9.2 2.0	136	23	55 16	00 32	10	21
	Lood	.⊒h1	5	12	17	- 4	10	15	11
~	Zinc	- 201 - 201	118	110	180	25	125	87	120
	Vapadiut	1 V 1	28	61	66	68	17	71	64
L	Stropting	Srl	12	19	11	Ŕ	£	22	38
	Cobalt	Col	9	24	15	Ģ	17	q	17
Γ	Nolvbdenus	[80]	< 2	< 2	2	4	< 2	4	4
L	Silver	(ag)	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	Cadzium	Cdl	< 1	1	2	< 1	< 1	< 1	< 1
	Bervllium	Bel	< 1	< 1	< 1	< 1	< 1	< 1	< 1
L	Borcn	3 1	< 10	< 10	< 10	< 10	< 18	< 10	< 10
-	Antimony	Sbj	5	< 5	< 5	< 5	5	< 5	35
C	Yttrium	Y 1	8	15	14	6	3	4	19
	Scandium	Scj	4	11	8	< 1	4	< 1	12
L	Tungsten	π.		< 10	< 10	< 1î	< 10	< 10	< 10
-	Richium	[]b]	< 10	< 18	< 10	< 10	< 10	< 10	< 10
Γ	Thorium	Th	113	< 10	< 10	< 10	33	< 10	40
L	Arsenic	as]	13	75	80	35	40 20	15	30
	Eismuth	[21]	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Г	Tin	[Sn]	< 10	< 10	< 16	< 10	< 10	< 10	< 10
L	Lithium	11	20	20	26	15	35	10	20
—	Holmium	[B0]	< 1.	< 10	< 10	< 10	< 10	< 10	< 10

CACE + POV-11-198

J

SIGNED

Ouris Dun

E

E

2-302-4018 STRBBT, BURLATOR D. SASKATCHEMAN S7K FA4 3 TBLBPHRUD #: 4:0 931 - 1030 PAX #: 242 - 4007

...C.A.P. MASHA SCAN

277. -Regia Digestion

	NE EXPLORATIO h Fleer Box 1 Kest Hasting	N LTD. (s St.				T.S. T.S. T.S.	L. REPORT No L. Pile M L. Invoice No	. : S - 227 . : NO2: 1 . : 163	- 4
F IT	N: J. FOSTER	UC ZAU	FDDJBCT: VF	OREQUEST (CARS	ULTETS TYR	AF 2	ALL RESULT	S PPN	
r	ELBNENT		LOW 14005	16W 2+500	1998 3+005	LOW 3+505	LOW 4+005	LOW (C)	L611 (+005
L	3 Junioum	(75)	10000	1740/	1 3 4 4	12846	17200	110	1:10
	Aluminum Tren	[51] (\$2)	1 3 0 0 L 3 7 8 8 0	1700L 2000C	. 3000 S2000	13000	17000	115.	
	Colcium	[[6]	1100	2260	20000	1300	1200	170%	50
L	Magnagium	[Co] (Mal	1700	2300	1700	1500	2400	1201	.00
-	Codium	[RY] [No]	100	2000	1/00	2000	500	1300	110
C	Dotaccium	[NG]	1998	1289	600	076	770	360	11 0
1	Titenium	[N] [T]	170	29	050 24	974 81	15	340	110
	Manganege	[11] [Nn]	510	1780	44 44	850	10 660	75	. 00
_	Dhoonhorug	[00] [D]	889	1480	1700	1990	1400	161	23
	Farina	1 1 [Rs]	800	990	150	132	110	197 27	
L	Chromium	(Cr)	12	10	19	27	10	· ·	. 6
	Tirconium	[01] [77]	1	⊥ 4. 	< 1	د آ		•	1
Г	Connar	ICul	35	<u>.</u>	41	50	G	* .	23
Ľ	Nickel	[20]	50	7	12	10	19		
	Lead	(Ph]	6	7	6	10	18		5
	Zipc	[25]	72	6 4	74	110	118	(57
1.	Venedium	[V]	52	61	59	65	63	<u>~</u>	48
	Strontium	ISEL	ç	14	6	12	11	1	8
_	Cobalt	1001	5	11	7	10	9		4
Γ	Kolvhdenum	[No]	4	< 7	4	4	< 7	۰. ۲	4
L	Silver	[Ac]		2 1	< 1	۰ ۲	< 1	<u> </u>	. 1
	Cadzium	[[]]	< 1	< 1	< 1	< 1	1	<	< 1
	Bervllinm	[Re]	< 1	< 1	< 1	< 1	< 1	č -	< 1
L	Boron		< 10	< 18	10	< 10	< 18	< ···	< 19
-	Antimony	12 J [Sh]	< 5	< 5	< 5	< 5	< 5	<	5
~	Vitrium	[~~]	5	12	3	5	7		3
	Scandium	1501	< 1	1	< 1	< 1	< 1	<	. 1
	Tungsten		< 16	20	10	< 10	< 16	<	< 10
	Diching	ne i	< 16	< 10	e 10	< 10	< 10	<	< 10
ſ	Thorium	(7h)	< 10	< 18	- 10	< 10	< 10	<	. 18
L	Arsenic	[As]	15	< 5	10	15	20	•	10
	Bisputh	(Bi)	< 5	< 5	< 5	< 5	< 5	<	- 5
C	Tin	(Snl	< 16	< 10	10	< 10	< 12	<	< 10
	Lithius	111	15	20	15	15	30		5
	Holmium	[Ee]	< 10	< 10	10	< 10	< 12	<	< 3

ATE : NOV-12-1997

Ľ

BD: Ben - Que -

Ξ									
_ 	TSL	LL	330 RATORIES 2-302-48TH	STREBI SASKA Telefione # Pax	TOON, SEL TC : 06) 93 1 (306) 1	HBKAN S7% 033 4717	FA4	3	
Г			D.C.K.F. PLA	SMA SCI					
L					Aqua-Requi Di	gestion			
PRIME E Øth Fl 808 Wes	XPLORATI oor Box (t Hastin	ON LTE. 10 gs St.				T.S. T.S. T.2.	L. REPORT No 5. File No 5. Inverce No	. : S - 1527 . : NO09KB . : 16304	- 5
TTN:J.	FOSTER	VUC 2 .	PROJECT: VR O	REQUES: CORSUL	TANTS IYLLE	2	ALE RESULTS	5 PPM	
			10K 5+50S	LOK -005	LOW Ett.	LOW 7+005	LON 7+508	LCW 8+00S	LOW 8+505
Γ	KLEMENT								
	uminum Ton	[A]] [Fe]	21020 25000	17000 46000	1800: 3700:	23000 40000	15000 36000	14000 26000	20000 29000
Ca Na	ilcium Ignesium	[Ca] [Mg]	520 440	6/3 2200	260) 4600	500 2800	899 2100	3000 1600	5600 3400
So Po	dium tassium	[Na] [K]	310 390	50 560	1200 1000	210 600	170 480	130 500	200 830
L T1 Ma	tanium Inganese	[T1] [Mn]	900 170 500	190 1100 55	980 1000	249 1000 920	1700 1400	650 450 860	560 330 940
	iciuz Iromium	[Ea] [Cr]	500 44 10		950 80 17	92 23	94 15	190 15	27 0 28
Z1 Co	rconium	[3r] [Cu]	14 9	< <u>1</u> 	3	3 58	5 31	3 23	5 55
L N1 Le	ickel ad	[N1] [Pb]	3 30	25 28	15 11	18 14	10 12	9 6	15 10
C Zi Va	nc inadium	[2n] [V]	56 29 7	- 48 75 7	11' £1 26	100 65	72 9 4	62 65	140 47 45
	balt Nybdenum	[0:] [Co] [Xo]	2	12	14 < 2	14 < 2	9 2	6 2	5 < 2
Si Ca	lver Idniun	[Ag] [Cd]	1	× 1 2	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1
Be Bo	r yllium Fon	[Be] [B]	< 1 < 10	< 1 < 12	< 1 < 10	< 1 < 10	< 1 < 10	< 1 < 10	1 < 10
An Yt	timony trium	[Sb] [Y]	< 5	< 5 5	< 5	< 5	< 5	< 5	< 5 33
L'SC Tu	andium Ingsten Ingium	[SC] [N] [Nh]	< 1 10 30		< 1°	< 10	3 20 - 10	< 10 < 19	< 10 < 10
$\begin{bmatrix} {}^{\rm A1}\\{\rm Th}\\{}^{\rm Ar}\end{bmatrix}$	orium senic	[RD] [Th] [As]	< 10 < 5	< 12 < 12 13	13	< 10 15	< 10 < 10 < 5	< 10 20	< 10
Bi Ti	snuth	[51] [Sc]	< 5 < 10	< 5 < 10	< 10	< 5 < 10	< 5 < 10	< 5 < 10	< 5 < 10
L Li Ho	thium Imium	[11] [E0]	15 < 10	<	25 < 1(25 < 10	15 < 10	15 < 10	40 < 10

TB : NOV-12-1990

Ľ

SIGNE Bernie Oum

Ľ			2-302-481)	E SIMER, SASKAT TELBPHONE #: MAX #:	ruon, SASKATCHE : 06) 931 - 103 (306) 242 - 47	WAN S7K 3 17	5.4	3	
Γ			E.C.A.P. PI	LASKE SCAN	Inter Dente Dána				
					Aqua-Regia Dige	stion			
PRIN Oth 208	E EXPLORATIO Ploor Box 1 West Hasting	N LTD. 0 s St.				T.S.I T.S.I T.S.I	L. REFORT No. 2. File No. 2. Invelse No.	: S - 1527 : 0009NE : 15304	- 6
vone ITR	: J. FOSIER	06 280	PRODECT: VR	OREQUEST CONSULT	TANTS TYNAR 2		ALLRSULTS		
			LOW 9+005	LCN 9+508	LOW 10+00S	L98 0+00	19E (-50N	112 1+061	198 1 +50 N
-	ELENENT								
	Aluminum	[A1]	19000	18000	10000	16000	22000	< 10	< 10
-	Iron	[Fe]	35000	26000	32000	49000	94010	< 18	< 10
	Calcium	[Ca]	2900	440	580	240	: <u>2</u>	260	< 20
	Kagnesium	[Ng]	4900	1700	880	1800	1600	50	< 10
	Sodium	[Na]	1200	140	40	40	400	10	< 10
ł.	Potassium	[K]	1100	480	540	490	370	60	< 10
-	Titanium	[T1]	1200	450	110	420	240	5	3
-	Manganese		VE/	270	1500	300	li)e⊉ titot	14	
	rnosphorus		0001	0/0	900	800		14	< 2
	Safium Chromium	[Ba] [Cr]	22	80 1.4	210	12	· • • •	2	
	Sicconius	[CI] [7r]	22 F	14	12	31 2	2	~ 1	
1	Connor	[41] [Cu]	ں ج	23	<u>43</u>	22	- 1		
	Eickel	INTI	23	23 Q	10	16	5	L 1	< 1
	Lead	[Pb]	16	7	13	12	ş	< 1	< 1
•	Zinc	[Zn]	99	79	79	77	2	2	< 1
_	Vanadium		68	50	70	82	58	< 1	< 1
	Strontium	[Sr]	29	7	10	8	12	2	< 1
•	Cobalt	[00]	13	4	8	4	13	< 1	< 1
	Molybdenum	[No]	< 2	6	4	< 2	5	< 2	< 2
•	Silver	[Ag]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
•	Cadmium	[Cd]	< 1	< 1	< 1	1	1	< 1	< 1
	Beryllium	[Be]	< 1	< 1	< 1	< 1	< 1	< 1	< 1
•	Boron	[B]	< 10	< 10	< 10	< 10	< 13	10	20
_	Antimony	[Sb]	< 5	< 5	< 5	< 5	< 5	< 5	< 5
	Yttrium		14	4	5	3	. e	< 1	< 1
	Scandlup	[80]	0	< 1	< 1	4	نا ن م	< 1	< 1
	Tungsten	[₩] [₩]	< 10	20	< 10	20	< _0	10	< 10
	N10D1UE Thorium	[ND] [Th]	< 10	< 10	< 10	10	< 1V 13	× 10 > 10	< 10
	inutium Treenie	[111] [30]	20 100	< 10	< 10 10	< 10 19	 2 A	10	< 10
-	ALSCIIC Riomuth	[01] [03]	20	∼ c ⊺≬	10	10	+V 2 \$	10	د) د
•	DISMUUL Dis	[D1] [Cn1	< j 2 16	< J - 14	< J 2 10	 10 	نۍ کې اند ر	J - 10	J 2 10
	lithium	[DIL] [T+1	< 10 nc	< TA 20	× 10 10	10	S 28	· 1V 15	< 10 20
	HILLIUM -	լուլ	23	20	ΤU	10		T J	20

ATE : NOV-12-1990

SIGNED : Berni Com

Γ	•								
	TSL	LABO	RATORIBS 2-302-487"	STREET, SASKA Telephone f Nox f;	TOON, SASKATC (15) 931 - 1 (203) 242 -	HEKAN STR 233 4710	6A4	3	
Γ			I.C.A.P.	EMA SCAN					
L					Aque-Regia Di	gestion			
	NB EXPLORATION h Floor Box 1 Nest Hasting hcouver B.C. N	DN LTD. .0 js St. 16C 2X6		OPROVIDER CONC	11 1 1 100 1003	5.8.1 1.9.1 1.3.1	. EFFORT No . Tile No . Intlice No	. : S - 1527 . : NO0955 . : 16305	- 7
Ľ	IN: J. FUSTER		PROJECT: VN	JERGARRI CONDI	JELENIS LINE.	R 2	h RIBUHI	o rra	
- r	BLBNENT		L9B 2+061	198 2+50N	LSE 3+00N	148 3+ 500	L91 4+00N	198 4+53N	198 5 +00N
	Aluminum Iron Calcium Magnesium	[A1] [Fe] [Ca] [Ng]	< 10 < 10 < 20 < 10	29000 53000 120 3200	45000 32000 160 410	1902(4700(140 2200	14000 85000 120 2900	45000 55000 200 3900	15000 34000 620 3200
3	Potassium Titanium Manganese Phosphorus	[K] [K] [T1] [Mn] [P]	< 10 < 10 3 4 2	260 370 280 600	410 710 200 840	300 570 520 810	220 910 190 1400	260 190 290 600	260 1100 420 590
	Barium Chromium Zirconium Copper	[Ba] [Cr] [Zr] [Cu]	< 1 < 1 < 1 < 1	69 53 10 19	32 15 110 15	61 48 5 13	52 50 33 19	58 96 16 20	110 110 3 22
2	Nickel Lead Zinc Vanadium Strontium	[N1] [Pb] [Zn] [V] [Sr]	< 1 < 1 < 1 < 1 < 1	13 82 55 5	10 48 12 2	13 70 71 5	24 22 40 74 7	€9 52 5	45 45 120 11
	Cobalt Molybdenum Silver Cadnium Boryllium	[Co] [No] [Ag] [Cd]	< 1 < 2 < 1 < 1	5 8 < 1 < 1	2 2 1	5 4 < 1 < 1 < 1	4 8 < 1 < 1 < 1	9 6 < 1 1 < 1	8 4 < 1 < 1 < 1
L L	Berylliam Boren Antimony Yttriam Scandiam	[B] [Sb] [Y] [Sc]	30 < 5 < 1 < 1	< 10 < 5 3 3	< 10 < 5 8 1	< 10 < 5 2 2	< 10 < 5 3 2	< 10 < 5 4 5	< 10 < 5 3 3
2	Tungsten Niobium Thorium Arsenic	[W] [Nb] [Th] [As]	< 10 < 10 < 10 < 5	< 10 20 70 15	< 10 50 < 10 < 5	< 10 20 < 10 < 5	< 10 40 40 15	< 10 < 10 < 10 < 5	20 < 10 < 10 10
C	Bismuth Tin Lithium Holmium	[B1] [Sn] [L1] [H0]	10 < 10 25 < 10	< 5 < 10 40 < 10	< 5 < 10 10 < 10	< 5 < 10 20 < 10	< 5 < 10 15 < 10	< 5 < 10 41 < 10	<pre>< 5 < 10 25 < 10</pre>

[\T**B** : \\OV-12-1998

C

·

SINED: Drie Durn

			<u> </u>							
1 <u>5</u> <u>1</u>	CABOP/1	ORIES								
		2-302-487H	E SPREET, SA	SKATOON, CA	SKATC	500. 6 ⁹⁴				
			TELEPHON	E #: (306) /76/\ 1	931 - 184 M9 - 7713					
			FAX BI	(206) 7	42 - •					
		LC.A.P. PI	ASHA SCAN							
				Hous-Reg	ia Diecelter					
						T.C.I.	PEPERT No.	5 - 9727	- 1	
NDE EXPLORATION	LT9.					T.S.E.	File No.	: K 6000		
)th Floor Bo s id	; 					Tist. B	voice No.	t 1573é		
2 West Hastiegs	n tri i									
1990 I. FOSTER	FRO	JECT: VE TY	HAR #1 ORE	ZUEST CONSUL	tants Sec. 4	7	el results i	PFH.		
						and or the	: ∽ระ ₹∔กณ	1955 345 (r)	125E 4+00%	
		125E Q+00	L25E 0+50N	125E 1+00%	LZAR 18508	LOE COLVER	CLUL COUR	y∎er e v∼	•	
ELEMENT										
		(1500	25000	1700G	24000	19600	22000	24000	19000	
Aluminum	[8]] [Ea]	74000	34000	80000	34000	40000	55000	57000	59000	
fron ([[]]] [[]]]	4600	240	840	4900	240 0	940	200	240 T100	
Mannesiue	[Mo]	3800	4800	2100	3600	4300	4300	4200	00+0	
Sodium	[Na]	190	50	100	1E0	29 815	ು7V ್.50	300	230	
Potassius	EK 1	1100	380	260	200 200	51A	530	430	350	
Titanius	(Til	110	100	630 750	ಭಟನ 110ದಿ	2900	500	280	290	
Manganess	8651 	790	269 740	320 500	1765	1105	770	5.0	46%)	
Phosphorus	(F 3 rran	1100		100	130	169	68	120	120	
Bariut	1843 1843	13	44	48	27	55	54	57	53 ۲	
	EZn3	5	13	10	r.	1	د ۲	ວ ງ າ	74	
CODDEL	[Cu3	53	31	25	30	24 63	17 7,4	45	37	
Nickel	[81]	25	46	21	ዱት ታር	15 15	10	13	12	
Lead	(Pb)	18	13 20	2.3 49	110	100	79	69	57	
Zinc	EZal	100	38	57	38	54	97	64	77	
Vanadius	10-1	30	4	į4	98	4.9	12	E	19	
Cohalt	1073 [Co]	14	5	4	16	14	1	3 (7	< 2	
Molybdenum	Etta 3	< 2	< 2	< 2	< 2	< 2 2 3	× 4 3 1		< 1	
Silver	[sɔ]	÷ 1	< 1		<u> </u>	< 1 < 1	< 1	< E	≺ i	
Cadmius	[63]	< 1 / 1		× 1 2 1		< 1	4	< 1	< 1	
Beryllium	{8e]	× 1 7 10	< 10	< 10	< 10	< 10	< 10	< 1€	< 16 . 5	
Boron	të 1 FRA1	10	< 5	< 5	< 5	< 8 8	< 5 7	< 2 		
Vetrius	[Y]]	11	4	3	29		7	с 5	2	
Scandius	[Sc]	ť	2	< 1		< 1 Z 10	< 10	< 10	< 10	
Tungstein	(H 1	< 10	< 10 10	< 10 50	< 10 2 10	< 19 < 10	< 10	< 10	< 40	
Niobius	116]	< 10 	< 10 na	20 70	10 10	32	10	20	10	
W 4	(3h1	70 Ta	20 5	10 10	4 5	10	÷ 5	$\langle \cdot \rangle$	4 5 2 5	
Inorius	1041	30	, <u>,</u>		Ë	10	5.5		× 5 2 16	
Arsenic Branic	reit	< S	5 st	• •						
inorius Arsenic Bismuth Tin	(81] [5n]	< S < 10	< 19	< 19	< <u>10</u>	< 10	< 10	, 10 20	5	
inorian Arsenic Bismuth Tin Lithiun	(81] [5n] (11]	<pre> < 5 < 10 <15</pre>	< 10 25	< 10 < 5	< 10 30	< 10 20 2 10	< 10 15 < 10	× 10 20 ≺ 13	5 (10	

54**16 : SEP**-D9-1930

516NED : _____

<u>ר</u>	De 3 190)	3:10 0	300 TS 	L LABO	RATORI	ES 306	-242-40			P.2)
C C	T5L LABOR	2-302-4871	ESTREET, S TELE FHC FAX #:	ASKATOON, S NE #: (306) (306)	ASKATCHEWAN 931 - 1033 242 - 4717	57 K - 564				
Γ		I.C.A.P. Pi	.asma scan	Aqua-Re	oia Digestion	n				
נ [PRIME SEPEORATION LTD. 10th Filton Box 10 808 for Hastings St. Vancturer B.C. V&C 2X6		07 #1 0 85	na stati - CONICI II I	ГАМТЪ 8 -749	T.S.L. T.S.L. T.S.L. I	REPORT No. : File No. : avoice No. :	्रि :88 ि:0 %A ्रि:36	7 - 2	
[ATTAL 1. FOSTER PR	125E 4+50N	rr #1 Unda	126E 0+50N	L26E 1+00N	1268 1+50N	1265 2+00N L.		1945 3400M	
Ľ	ELEMENT	23000	17000 5900 0	13066 50000	- 31000 45000	14000 48000	9300 43000	- 000 0 420 00	20000 61000	
[Calcium (Ca) Calcium (Ca) Cagnesium (Mg)	2200 3606	300 2800	6700 2700	500 4100 150	1600 2900 80	2800 1200 250	440 0500 90	220 2600 70	
~	padium (Na)	60 320	89 220	440	410	310	450	350	2%)	
{		560	440	1360	260	410	440 540	000 140	449 180	
	anese (Mn]	220	140	310	440	200	200	120	590	
r	encosphorus [P]	430	410	440	600 64	440	53	52	47	
	LBal	150	110	i/0 Ti	04 57	52	36	55	52	
	comium [Cr]	50	<u>১</u> ১ ব		14	4	2	2	4	
~	Seconium (In)	6 70	5 16	16	32	30	37	20	16	
	00000 11013	20 39	29	19	50	37	19	29	22	
L	Cond (Pb3	14	12	18	12	15	11	11	15	
	Cor [26]	67	52	64	75	56	45	- 40 	77	
	Canadium (V)	45	62	89	42	67	62 67	10 10	5	
L	Contium [Sr]	33	11	100	8	40 5	4	4	2	
~	Logalt (Co)	4	4	2	27	< 2	< 2	2	< 2	
	Molybdenum [Mo]	< 2	< <u>7</u>	2	 	< 1	1	. 1	2 1	
	Elver [Ag]	3 - 3 2 - 9	< 1		< i	÷ 1	K 1	: 1	< 1	
-	Cadmium (LOJ	 1 1 	< 1	< 1	< 1	< 1	š. 1	1	< 1	
	Seven (B)	< 10	< 10	< ;ů	< 10	10	< 10	10		
L	Catiensev [Sb]	< 5	: 5	ζ 5	< 5	< 5	š 5	: 5		
-	Strium (Y)	4	2	12	7		- -	- 1	2	
	Sandium (Sc)	1	2	1	4	1 X 10	10	10	< 1 0	
L	Sungsten (W 1	< 10	< 10	< 10 To	< 10 1A	10	< 10	10	10	
_	Michium (Nb)	20	< 10 50	29 20	20	20	40	10	10	
	logrium [Th]	20	20	2V 15	< <u>5</u>	10	15	15	5	
L	essenic LASI	N 9 2 5	 5 	< 5	< 5	5 5	5	· 5	< S	
_	is sauch (B))	< 10	< 10	< 10	< 10	< 1 0	< 10	10	< 10 E	
	(ithium []1]	20	5	< 5	30	< 5		0 • • •	, 16	
L	Cimium [Ho]	< 10	< 10	< 10	< 10	< 10	iņ	- IQ	× 10	

SIGNED :

∵ 5 L	LABOUT	1	STREET SA TELCTION FAV 1	5KATOC - 34 E K: (1 - 4 (2 - 2	KATCHEWA 731 - 1033 12 - 4717	87K - 6 24			
		P. PL	BMA SCER	Act - Ltg	ja Digestica				
RINE CORATION Oth First Box 10	LTD.) - 8+					T.5.L. T.5.L. T.5.L. 3	REPORT No. : File No. : avoice No. :	s - 9927 Seisma 15736	- 3
ANCOUSE B.E. W	50 2X6 Frid	agrie VR TYSI	1. #1 - 60.59U	EST COLLER	NTS R-2497		ALL RESULTS P	PM	
	·]	.26 E 4 +09% 1	.26E 4+500 1	26E 5+00N 1	278 1+00%	127E 1+50N L	27E 2+00N	27E 3+00
LEMENT	[A]]	3.7 00 €	26000	25000	15000	16000	15000 57000	14008 6800 8	8700 52000
Iron	[Fe]	50 00	42000 F40	47000 760	47000	1600	540	3500	840
Calcium	[Ca]	420	740 3900	490 0	2100	960	3500	3100	1000 Să
ña ∴ 851ü ff C∈ (a s	tngs (Na]	89	120	10%	110	100 740	70 3 9 0	140 470	400
i ssium	[K]	420	650	30.	600 1900	080 1600	43A)	410	1200
กับส	ETil	790	400 1400	15.2	240	170	330	360	200
30626	EMa 3	280	14323 1170	5. j.	390	560	760	1100	590
ahorus	[P]	1993 4 1	110		76	87	28	79	120
. เหล	163] (Cn)	44	59	•	<u>1</u> 4	23	65	i ł 4	2,
([] []	4	ž	:	12	10	20	24	20
790	{Cu]	18			22	17	41	39	19
i vel	(Ni)	24	57	ಲೆಗೆ. ಕಿಗ	15	16	15	15	19
t.đ	[96]	14	10	19	48	52	51	61	55
295 ⊈	[[n]	52 78	140 43	ŧ.	120	64	54	55	110
	(V) (V)	8	10	Ŷ	19	30	У е	6.) 5	3
trontium Debait	[Co]		23	5	3	ن 4	ند د 2	< 2	4
v Pagenta	(EMO)	< 2	< 2	₹ 2 2 2	2 7 1	< 1	< 1	< 1	< 1
ver	(Ag]	1			$\langle 1 \rangle$	4 1	< 1	< 1	{]
ក្សបរព័	[[6]]	< 1	× 1 7		< 1	< 1	< 1	< 1	
yilium	{B43	10	3 13		(10	< 10	< 10	< 19 2 S	
non in the second se	(8) (Sb)	< 5	ج ک		10	(5)	≺. ਹ 4	· 5 6	
. 1 HULLY	EY 3	- 	n ar an	• • •	4	10	т К 1	< 1	K.
- แก่มีเปล	[Sc]	i		2 - x	2 7 10	< 10	< 10	< 10	< 1
.gster	[N]	10			20	20	10	< 10	3
obium	(Nb.)	20. 1. (5 s.) 2		20	40	10	20	4
orium	1161 14-1	1. IV 7. 5	τ 5 1	×	ZÚ	< 5 	< 5	10 2 5	
56010	insj Tril	< 5	: 5	K. 1.	< 5	< 5	< 3 2 10	< 10	- È
Tin	[5n]	: 19	< 10	(<u>10</u>	(10	< 10	10	10	i k
i thium	[Li]	< 3	4 0	1	 ₹_10	< 1 6	< 10	< 10	< 1
3	[Ho]	1 ič	$\mathbf{x} = \mathbf{x}$	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					

Bet 5EP-30-1990

CIENED :

P.22

		_								
- : L		11115 11115 - 1111 11111 - 1111	trata i et	ISKATONI. SI	TCHEWAN	57% 6 44				
		2-012-*010		Æ #: (396)	- 1033					
				(306)	4717					
		L.C.A.P. PL	AS		• • • • • •					
				нал а-к ес	a fiðserig.	I				
						T.S.L.	REFORT In	: S = 902	4	
RINE EXPLONATIO	N 1:0.					1.S.L.	File No.	: SE15NA		
Oth Floor COR 1	9 2012					T.S.L.	CYDICE C	: 15736		
NG KESY ASSUND	RU 319							0.04		
TTU: 1. FOITER	PRE	NELTO VE TYM	AR to CREO	UEST CONSULT	8115 R-249 7	?	ACT BERRY	rrn		
	-					1000 0400	1755 645-11	+ 28F 1+605	- 38E 1+50N	
		1272 3+50N 4	27E - CIN	127E 4+50N	ことうせいれ	LISE UNVO	CLUL VINCT		•	
ELEYLINT										
	****	17000	T ad da	15000	14000	26000	15000	17000	15000	
Aluminum	1A13	17000	41660	47000	43000	34000	42000	47000	29000	
iron Caleine	[[3]	340	203	760	1106	1400	1000	760	1500	
Mannesius	[Mo]	2200	1. j.	3300	1600	5500	1600	4200	180	
Sodium	[Na]	100	н. Т у	£9	160	199 746	79 340	359	410	
Potassium	E K 0	450		229	270	110	250	870	710	
Titanium	[Ti]	410		530 976	160	1400	146	210	1300	
Manganase	Ettal	220		270 420	420	720	540	300	1200	
Prosphores	18 3 65-2	4989		45	69	7 5	83	73	110	
Barina	LBEJ	4E		45	32	74	ج. د ت	58	28	
taruato -	[75]	1		2	11	à		4	ے حت	
Cooper	[[U]]	14		18	. 9	59	2 · • c	17 47	23	
Nickel	ENE 3	- 24	5. 1911 -	28	12	87	10 1	13	10	
Lead	[Fb]	10		14	14	11 130	1⊒ 50	65	68	
Zinc	(20)	47		47 50	77. 77.	48	64	61	52	
Vanadium	٤٧ 3		;	18	16	19	12	17	150	
Strontium.	15r1	, ,		4	3	25	7	5	12	
Cobait	LCO) LMol	() ()	 ₹ 	< 2	< 2	< 2	< 2	< 2	4	
Silver	[£0]	$\overline{\langle 1}$	1	< 1	< 4	< 1				
Cadaites	[63]	< 1		< 1	< 1			1. 1. 2. 1.	1	
Eeryllium	[F 2]	< i		< 1		< 1 - 10	2 36	10	< 10	
Eoron	[E]	< <u>10</u>	1. +	< 10 - E	114	χ.υ ζ.ς	i i	< 5	< 5	
Antiscoy	(65) (11)	< 5 5	* <u>*</u>	× 9 5	× 5 2	14	-	Ę	13	
Yttrius	[Y]		51 12	د ۱	-	5	< 1	2	< 1	
Scandium T	1501 FR 1	∠ ∢1ù	. :0	< 10	< 10	. 10		3、10	4 10	
10005199 Niekow	us i Eshi	÷ 10	• 7	20	10	; 10		10	< 19 2 16	
Therier	[Th]	20	. 7	20	50	20	Etc. ea	<u>د</u> ۲.	× .γ ∕ 5	
Arsenic	[45]	1ª	, Ś	< 93 -		20			· 5	
Bismath	(B1)	< 5	r.	5	< 3 2 10	י ג'ינה	× × 7 40	< <u>1</u> 0	< 10	
Tin	[Sn]	₹ 10	< 10	< 10 10	5 10 7 5	35	< 5	10	5	
Lithius	ELi]	< 5 2 40	10	10 ∠ th	< 10	< 10	 1.7 	; 1 0	< 10	
11_ 1 _1 + n	1.01	4 11	5 Q	5 4 0	• ••					

DATE : SU-30-1980

L

Š.

SIG: 27 :

	TSL	LABO	RATO				0 1 1/ / /	<i></i>	
			2-48T	H STREET, S	egekatoon, e	AER PENAN	578 - Ch		
				TELEPH	1943 H (3 403) 1960 -	- HUL - 1033 - 202 717			
				197 £1	n de la companya de l La companya de la comp	<u>2</u> 48 - 197			
			tCaP. P	ASMA SCAN					
			T # 0 month for a second		Aqua-Re	egia linestic	2ñ		
							- 6 -	SEDERT No. (E_ 0007 -
PR	THE EXPLORATION	LTD.					1.5.1.	ELLA No. 4	SEISKA
10	th Floor Box 10)					1.5.1.	Thuning No. 1	15736
808	8 West Hasting	₅ St.					1.0.5.	invoice nor a	
Va	ncouver B.C. Ve	SC 2X6			AUCOT CONCIN	7AN30 D_08	לס	ALL RESULTS P	PM
AT	TN: 1. FOSTER	99	DJECT: VR TYM	AR #1 LIRE		HIG D 1744	17		
			1807 S 6(4)	: 705 3+00N	128E 34508	LZEE - HOON	128E 4+50%	128E 5+00N	
	the second state		(_28) 7+90H						
	ELEMENT								
	A. Luminus	[4]]	23000	32000	42000	7200	21000	18000	
	Iroo	[Fe]	4800G	38000	28000	25000	28000	/90,000 #20	
	Calcium	[[2]	860	6800	71¢¢	1900	7100	420 2100	
	Maonesium	[Ma]	2800	1200	2100	1300	3400	40	
	Şodium	[Na]	60	220	220	:0V 1100	140 110	160	
	Potassium	(K 1	330	220	369 570	070 1200	630	1900	
	Titanium	[T1]	270	520	070 1400	88	1100	190	
	Manganese	[fh]	220	1200	1900	350	81C	430	
	Phosphorus	[P]]	ୁକ୍ଷ / ୯	12040	1000	40	93	48	
	Barium	[Ba]	6.1 2.5	39	<u>7</u>	20	25	41	
	Chromium	1663	1	ç	5	6	د	28	
	LIPCONTUM Crosset	1011	20	44	30	<u>Z</u> 1	73	21	
	bunper Pi-tel	ENI 1	38	27	61	16	19 19	20 77	
	l ead	[Pb]	11	16	14	11	110	48	
	Zinc	(Zn]	£7	60	{70	كان 10	710 76	81	
	Vanadium	[V]]	45	38	25	10 77	130	12	
	Strontium	[Sr]	12	150	15	2	11	3	
	Cobait	[[0]]	4	/ 7	< 2	< 2	< 2	< 2	
	Molybdenum	Lion	· · · · · · · · · · · · · · · · · · ·	2	4 1	\cdot i	< 1	< 1	
	<u>Silver</u>	1891 1741	- - 1	< 1	< 1	< 1	< 1	< 1 · · ·	
	Laumium Parvilium	[Be]	< <u>1</u>	< i	7	1	- + +A	≤ ↓ ∠ ±0	
	Bacoo	{B} }	10	10	< 1 0	< 10 E	2 C	< 5	
	Antimony	[\$ b]	< 5	< 5	(δ. πα	2 T		4	
	Yttrium	EY]	Ŷ	20	ېږ	2 2 1	÷	1	
	Scandium	{\$c]	< 1		2 10	< 10	< 19	< 10	
	Tungsten	EW 3	× 10	C 19 Z 10 Z	N 20 26	< 10		30	
	Nichium	[Nb]	10	 10 ∆Ω 	< 10	÷ 10	2 0	30	
	Thorium	Lini In-1	دین ج	- 12 - 13	< 5	20	ζ 5	10	
	Arsenic	เหริง รูซุรา	< 5	5	10	(S	Ę	5	
	HISMUTA Tin	(Sn)	< 10	< 10	< 10	< 10	< 10	< 10 E	
	tithium	[Li]	20	4 U	15	< 5	3 2 10	⊒ ∕1Ω	
	4, 4, 411 & LAR		10	2 10	2. 19	s 10-	< 10	\times 19	

DATE : SEP-30-1990

1

516MED (_

P.24

LEGEND JURASSIC SPATZIZI GROUP? Middle Jurassic Siltstone Sequence - Salmon River Formation 5c 1 Chert peoble conglomerate and arenite 5t Rhythmically bedded siltstone and shale (turbidite) 5₩ Thinly bedded to massive wacke HAZELTON GROUP Lower Jurassic Felsic Volcanic Sequence Mt. Dilworth Formation Dacitic to rhyolitic tuffs and flows 3 Pyroclastic - Epiclastic Sequence **Betty Creek Formation** 3a Green and grey, massive to poorly bedded andesite 3d Grey, green and purple dacitic tuff

30 Massive grey arkosic rocks and greywacke

SYMBOLS

3t Black, thinly bedded siltstone, shale and argillite (turbidite)

ABBREVIATIONS

ait ang	altered angular	and ard	andesite arcillite	▲ ³³⁴¹⁰	Rock sample location and number
aph brx carb	aphanitic brecciated carbonate	bik calc chaic	black calcitite chalcopyrite	(<5) 100	Assay result (Au ppb), Ag ppm, Cu ppm, Zn ppm, Pb ppm, Sb ppm, As ppm, Mo ppm
chl xal(s) diss	chlorite crystal(s) disseminated	cong dac ep	conglomerate dacite epidote		Geologic contact, defined, assumed
fsp gwke hbl	feldspar greywacke hornblende	fn hem FeOx	fine hematite iron oxide (stain)	<i>O</i> {] ★	Outcrop, defined, interred Small outcrop
lap lim py	lapilli limonite pyrite	lst po qtz	limestone porphyry or porphyritic quartz	× /27	Strike and dip of bedding, vertical, inclined
rhy ser	ryholite sericite	sst sit	sandstone siltstone	f /27	Strike and dip of foliation, vertical, inclined
volc	volcaniclastic		nac u	21 م الم لم	Strike and dip of vein, vertical, inclined
	I		· ·	° s` s V ⊽	Talus or scree
		, ' -		× ×	Swamp
	•			~~~	Fault, assumed
	: 	GEO ASS	LOGICAL ESSMENT	BRAI	Major break in slope NCH DChim Pst
			A ·		

ABBREVIATIONS

100

metres

200

alt	altered
ang	angular
aph	aphanitic
brx	brecciated
carb	carbonate
chl	chlorite
xal(s)	crystal(s)
diss	disseminated
Ísp	feldspar
wke 👘	greywacke
hbl	hornblende
lap	lapilli
lim	limonite
РУ	pyrite
rhy	ryholite
ser	sericite
str	strong
volc	volcaniclastic

a a d	andonita
anu	anuesite
arg	argillite
bik	black
caic	calcitite
chalc	chalcopyrite
cong	conglomerate
dac	dacite
өр	epidote
Ín	tine
hem	hematite
FeOx	iron oxide (stain)
lst	limestone
ро	porphyry or porphyritic
qtz	quartz
sst	sandstone
sit	siltstone
tr	trace

LEGEND

JURASSIC SPATZIZI GROUP? Middle Jurassic Siltstone Sequence - Salmon River 5 Formation 5C Chert pebble conglomerate and arenite 5t Rhythmically bedded siltstone and shale (turbidite) Thinly bedded to massive wacke 5w HAZELTON GROUP Lower Jurassic 4 Felsic Volcanic Sequence Mt. Dilworth Formation Dacitic to rhyolitic tuffs and flows 3 Pyroclastic - Epiclastic Sequence **Betty Creek Formation** 3a Green and grey, massive to poorly bedded andesite 3d Grey, green and purple dacitic tuff

- 3e Massive grey arkosic rocks and greywacke
- 3t Black, thinly bedded siltstone, shale and argillite (turbidite)

SYMBOLS

33410 Rock sample location and number

Assay result (Au ppb), Ag ppm, Cu ppm, Zn ppm, Pb ppm, Sb ppm, As ppm, Mo ppm

Geologic contact, defined, assumed

Outcrop, defined, inferred

Small outcrop

(<5) 100

X

 \mathcal{O}

 \star

mmm

 $/_{27}$ Strike and dip of bedding, vertical, inclined

127. Strike and dip of foliation, vertical, inclined

\$27" Strike and dip of fracture, vertical, inclined

Strike and dip of vein, vertical, inclined

Talus or scree

Swamp

Fault, assumed

Major break in slope

Claim post

2

AR 21,323

TYMAR RESOURCES INC.

GRID No.1 West Sheet Skeena Mining Division British Columbia NTS 104B/9

Figure 5a VR PROJECT PROPERTY GEOLOGY

XY3

OREQUEST

January 1991

	00.		200.00		400.00		600.00		800.00		000.00		
	+ Li		÷.		+ 1		+ 11		÷.		E +1		
]		1				I				I		
N 500.00 —					†7	⁻¹	$+^{-1}_{11}$	1 ⁻¹	-1 25	1		[
				118^{-1}	-1 17	-1 8	-1 35	-1 21	-1 28				
N 400.00	5 [65	15 13	11^{-1}	-1 14	-1 21	-1 41	-1 16	-1 17	-1 12				
	-1 11	5 6	-1 13	-1 14	-1 6		-1 11	-1 18	15 16				
	5 18	5 10	-1 9	-1 8	-1 9	-1 15	-1 7	-1 15	-1 13				
	5 13	5 14	-1 13	-1 18		-1 14	-1 16	-1 22	-1 23				
N 200.00	5 15	-1 13	-1 21	-1 6	-1 19	-1 13			-1 11				
	5 28	-1 15	-1 14	-1 13	-1 44	-1 20	-1 11	-1 37					
	-1 28	-1 20	-1 23		-1 21	-1 30	-1 16	-1 21					
	5 24	-1 29	-1 14	-1 19	-1 13	-1 31	-1 11	-1 73					
N+.00	5 22	-1 15	-1 15	-1 13	-1 19	-1 27	- <u>1</u> 17	-1 29	-1 14		-1 22	15 25	
	15 30	-1 25	-1 26	-1 21	-1 19	5 23	-1 33	-1 10	-1 17	-1 8	5 29	10 16	
	-1 25	-1 36	-1 25	-1 11	5 27	5 40	5 25	-1 25	-1 16	-1 20	15 32	-1 35	
	5 23		-1 26	-1 35	-1 57	5 27	-1 5	-1 13		-1 19	-1 29	-1 23	
S 200.00	5 22	-1 26	-1 36	-1 36	-1 13	-1 15	-1 9	-1 22	10 69	-1 28	5 43	10 31	
	-1 135	-1 28	↓-1 33	-1 35		-1 13	-1 13	-1 6	-1 69	5 37	-1 36	10 41	
		-1 24			-1 21	-1 17	-1 24		-1 38	-1 26	-1 38	25 63	
					-1 13	-1 21	10 27	-1 20	-1 30	-1 33	5 34	10 35	
S 400.00					-1 7	-1 21	-1 30	-1 36	-1 38	-1 25	5 42	5 45	
					-1 14	-1 6	-1 39	-1 50	-1 37	5 39	5 45	-1 37	
					-1 30	-1 26	-1 30	-1 110	15 79	↓-1 39	20 30	15 139	
					-1 22	15 126		-1 26					
S 600.00 —					↓-1 17		↓-1 19	↓-1 38					
						T							

0_____100 metres

	E+1600.00	E+1800.00	E+2000.00	E+2200.00			E+2600.00		E+2800.00
	$ \begin{array}{c} -1\\ 20\\ -1\\ 23\\ -1\\ 24\\ -1\\ 13\\ -1\\ 16\\ -1\\ 55\\ 5\\ 20\\ 5\\ 23\\ -1\\ 71\\ -1\\ 37\\ -1\\ 37\\ -1\\ 13\\ -1\\ 10\\ -1\\ 13\\ 10\\ 22\\ -1\\ 22\\ -1\\ 13\\ 10\\ 22\\ -1\\ 22\\ -1\\ 13\\ 10\\ 22\\ -1\\ 22\\ -1\\ 25\\ -1\\ 42\\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 28 5 11 5 16 5 12 10 31 45 24 5 24 5 12 10 31 45 24 5 12		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 10\\ 9\\ 5\\ 18\\ -1\\ 13\\ -1\\ 14\\ -1\\ 20\\ -1\\ 20\\ -1\\ 19\\ -1\\ 0\\ \end{array} $	-1 21 55 73 -1 21 -1 30 5 44 -1 20 5 32 -1 19 -1 27 -1 59 59
						21	32	3	
							<u>DUES</u> TYMAR R	ESOUR	CES IN
							F	igure	7
							VR Skeena	PROJ Mining [ECT Division
		LEGEND: 10 Au VALUE IN	I ррb		• •	GRID	#1 SO		
: {		,56 Cũ VALŬE IN	i ppm				ט & C Britisl	UPPEF n Colu	(KES Imbia
		"—1" INDICA"	tes au values less than detect	ION LIMIT.			NTS: 10	04 B/9)E &
						MAY 199	1		D

	900.006	800.00		600.00		/ 400.00		/ 200.00		00.	
	>	> 		> 		> 		ء 			
N 1000.00	5 61	10 48	15 88 -1	5 42 5	15 130	15 110 15		-1 80 -1	-1 51 -1	$\begin{bmatrix} -1 \\ 81 \\ -1 \end{bmatrix}$ N 1000.0	00
	-1	64 10	63 5	41 -1	200 15	150 15		44 -1	51 -1	85 10	
	82 5 78	47 10 29	-1 73	36 -1 87	10 120	15 130		-1 68	-1 84	5 110	
N 800.00	5 110	10 41	5 100	10 82	10 100	15 180		-1 52	-1 29	-1 97 N 800	0.00
	-1 52	10 35	-1 49		15 88	15 100		5 94 –1	-1 110 -1	5 91 -1	
	51 -1	30 30	97 1	53 1	99 5	160 15		96 -1	120 -1	76 5	
N 600.00	110 -1 39	47	73 -1 76	48 -1 83	67 10 56	88 10 160		61 -1 57	120 1 56	95 — N 600	0.00
	-1 50	10 35	5	-1 46	5 63	15 45			-1 64		
	-1 88	10 34	-1 42	-1 1B	-1 36 =	10 77		-1 42	15 64	-1 71	
	22 5	-1 24 -1	20	38 1	56 10	120 10	• .	61 25	58	67 -1 N 400	1.00
N 400.00	15 5	36 -1	23 -1 37	40 5 71	52 5	77 10 46		42 10 100	42 10 42	74	
	-1 51	-1 29	5 18	5 74	10 77	10 61		5 120	5 130	-1 90	
	-1 29	-1 14	15 160	5 28	5 88	25 150		20 120	10	5 89	
N 200.00	10 15 -1	-1 21 -1	-1 30 -1	40 240 -1	5 34 10	10 100 40		$\begin{bmatrix} -1 \\ 44 \\ -1 \end{bmatrix}$	10 110 -1	130 -1 N 200	0.00
	166 5	45 -1	[†] 33 -1	48 -1	45 20	88 15		34 5 55	52 -1 73	110 -1 120	
	10 33	-1 24	15 74	10 46	40 120	40 150		45 250	-1 47	-1 72	
N+.00	5 40	-1 84	- <u>1</u> 15	- <u>1</u> 83	20 39	<u>310</u> 170	- <u>1</u> 69	30 150	5	—— N·	+.00
							-1 30 -1	-1	59 5		
							122 -1	[80 5	79 10 73		
s 200.00 —							25 76	45 76	-1 41	2 500	0.00
							-1 110	10 91	-1 33		
							15 110	-1 16			

i

•

Ì

.

.

.