LOG NO:	may	23/91	RÐ.	
ACTION:	0	-7		
		<u>, , , , , , , , , , , , , , , , , , , </u>	·····	

FILE NO:

GEOLOGICAL REPORT ON THE MAX CLAIMS

<u>Claim</u> <u>Name</u>	<u>Record No.</u>	<u>Units</u>	<u>Recording Date</u>
Max 1 Max 2 Max 3 Max 4 Max 5 Max 6 Max 7	3680 3681 3682 3683 3684 3685 3686	20 20 12 20 20 20 20 8	May 24, 1990 May 24, 1990 May 25, 1990 May 25, 1990 May 25, 1990 May 24, 1990 May 24, 1990 May 24, 1990
Max 8 Max 9	3687 3743	20 <u>8</u> 148	May 25, 1990 July 23, 1990

Asp Creek Area,

Similkameen Mining Division, British Columbia N.T.S. Map Areas 92H/7E and 92H/10E Latitude 49° 25'N Longitude 120° 35'W

for

SIMILCO MINES LTD. Box 520 Princeton, B.C. VOX 1W0

by

K.V. Campbell, Ph.D.

May, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

2. 1,328

TABLE OF CONTENTS

ે પ્રત

1	INTRODUCTION 1.1 Location, Access and Topography 1.2 Claim Ownership and Status 1.3 History	1 1 3 3
2	GEOLOGY	4
3	<pre>1990 WORK PROGRAM</pre>	6 6 7
4	RESULTS 4.1 Silt Sampling 4.2 Soil Sampling 4.3 Rock Sampling	7 7 8 9
5	CONCLUSIONS AND RECOMMENDATIONS	9
6	BIBLIOGRAPHY	13
7	ITEMIZED COST STATEMENT	14
8	CERTIFICATE	15

TABLES

Table	1	Claim Particulars	4
Table	2	Rock Sample descriptions	10

TABLE OF CONTENTS

1

 \overline{a}

and all a state of the second se

المسادية والمؤاكرة والإساسية والمار

. . . .

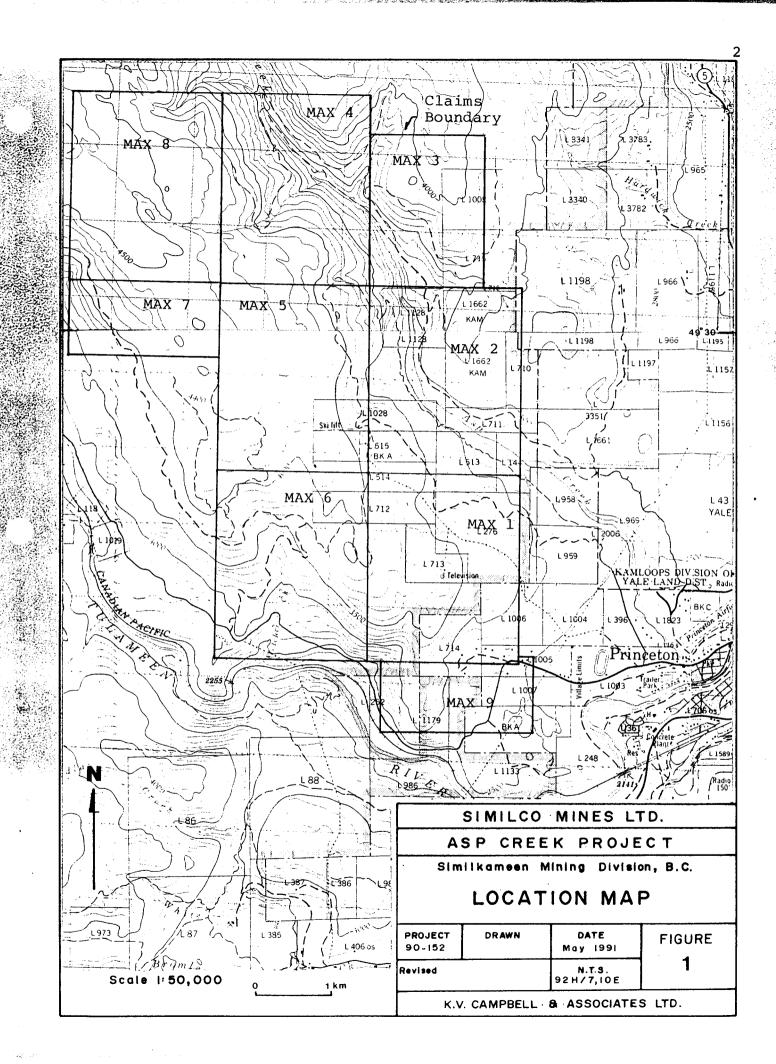
(Continued)

FIGURES

Figure	1	Location Map	2
Figure	2	Claim Map page	3
Figure	3	Geology Sketch	5
Figure	4	Rock and Silt Samples, Location and Analyses in pocke	t
Figure	5	Soil Samples, Location and Analyses in pocke	ŧ٤

APPENDICES

Appendix I Analytical Procedures and Certificates


1 INTRODUCTION

At the request of Similco Mines Ltd., Princeton, B.C., K.V. Campbell & Associates Ltd. conducted a preliminary geological and geochemical reconnaissance of the Max claims northwest of Princeton, B.C. The program included interpretations of aeromagnetics, color air photos, geochemical soil and silt sampling, prospecting and rock chip sampling, geological mapping and petrographic studies. Field work was performed intermittently between the May 30 and September 18, 1990.

1.1 Location, Access and Topography

The Max Claims are located in the Similkameen Mining Division about 10km northwest of Princeton (Figure 1). The claims are centered approximately at 49° 25' North latitude and 120° 35' West longitude, situated within National Topographic Series map sheets 92H/7E and 92H/10E. Access to the southern part of the claims between the Tulameen River and Asp Creek is given by the Tulameen road. The Snowpatch Ski area road, which brances north from the Tulameen road about 1½km west of Princeton, gives good access to the central part of the southern claims. The Asp (or China) Creek road, which branches southwest from Highway 5 just north of the Princeton airport, gives access to the claims in the north part of the claims area.

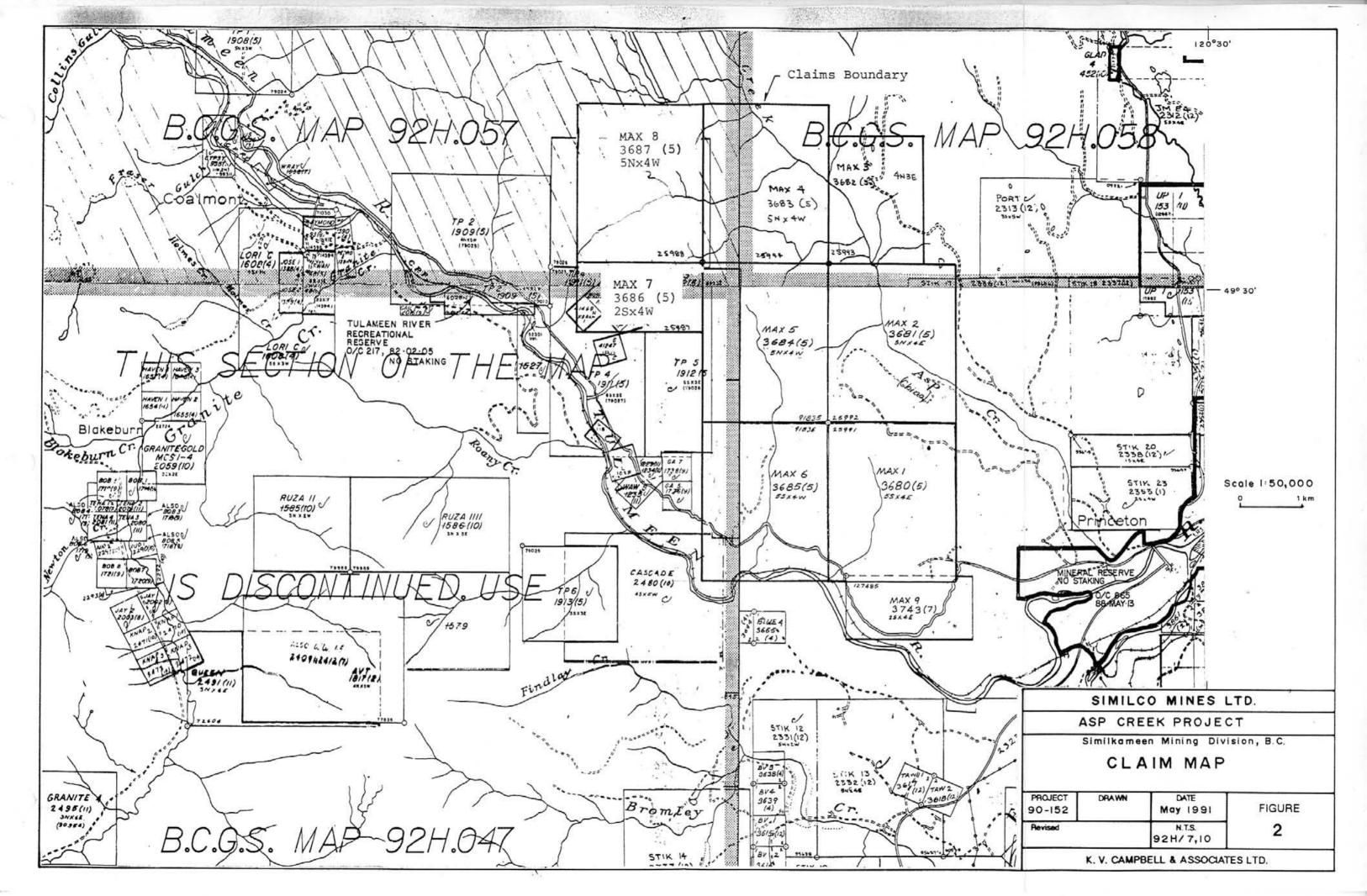
The claims lie on the gently rolling hills north of the Tulameen River immediately west of Princeton. Relief is about 2,350ft (715m), from the 4,600ft (1,402m) elevation on the ridge on Max 8 claim to 2,250ft (685m) elevation on the Tulameen River. The claims are, for the most part, sparsely

forested (pine and fir). Sections of Asp Creek valley are densely choked with brush. Much of the relatively flat, lower eastern slopes on the claims are farm or ranch lands.

a se construction de la construction

The claims area is located on the northwest margin of the Tertiary Princeton Basin.

1.2 Claim Ownership and Status


The property consists of nine four post claims whose particulars are summarized in Table 1. Similco Mines Ltd. is the owner of all of the claims, shown in Figure 2.

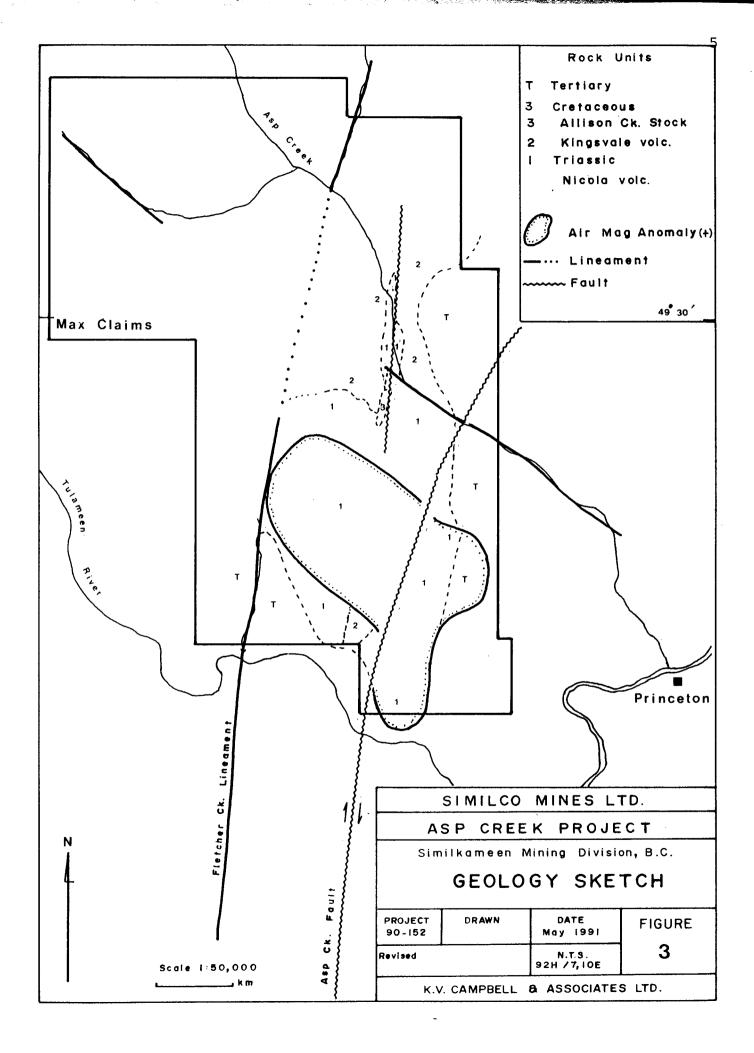
<u>Clain</u> Name	nRecord	<u>No.</u>	<u>Units</u>	<u>Recording</u>	Dat	e							
Max	1	3680	20	Мау	24,	1990							
Max	2	3681	20	Мау	24,	1990							
Max	3	3682	12	May	25,	1990							
Max	4	3683	20	May	25,	1990							
Max	5	3684	20	May	25,	1990							
Max	6	3685	20	May	24,	1990							
Max	7	3686	8	May	24,	1990							
Max	8	3687	20	May	25,	1990							
Max	9	3743	8	July	23,	1990							
			$1\overline{4}8$										

Table 1. Summary of claim particulars

1.3 History

Two assessment reports cover parts of the easternmost Max claims. Macrae and Conto (1969) undertook a reconnaissance IP survey with results whose implications are described by the authors as 'obscure'. Borovic (1986), describes reconnaissance ground magnetometer, VLF-EM and radiometric surveys along roads crossing what are now the Max 9, Max 1 and Max 2 claims. Three north-south trending fault

structures were interpreted.


No mineral occurrences are reported on the Max property.

2 GEOLOGY

The geology of the area is shown in Figure 3, adapted from McMechan (1983) and Read (1987). The Max property is underlain by Upper Triassic Nicola volcanics on the west and by Middle Eocene sedimentary and volcanic rocks of the Princeton Group on the east. Cretaceous Kingsvale Group volcanics (rhyolitic to dacitic breccias and flows, feldspar porphyries) and small bodies of leucogranite mapped as Cretaceous Allison Creek Stocks have also been mapped in the area.

The major structure reported is the north to northeast trending Asp Creek Fault, mapped as an east-dipping fault with apparent dextral strike slip and reverse dip slip displacements (Read, 1987). This fault is marked by a zone of brecciation along which rhyolitic to basaltic dykes have been emplaced locally. Associated with the brecciation and faultinmg a calcite veining, epidotization and hematization. At least some of the dykes that have been intruded in the vicinity of the Asp Creek fault have metamorphosed bedded carbonates of the Nicola Group into calc-silicate skarns.

To the west of the Asp Creek fault lies the north trending Fletcher Creek lineament. No rock exposures were found along its length north of the Tulameen River.

3 1990 WORK PROGRAM

3.1 Geochemistry

Silts were found at only a few places on the claims. The location of the nine samples collected are shown in Figure 4. Conventional practices were followed, the fine grained fraction placed in 4x6" Kraft paper bags. 30 element ICP and gold by fire assay combined with ICP on a 10gm sample were performed by ACME Analytical Laboratories Ltd. of Vancouver, B.C.. Analytical methods and certicates are given in Appendix I.

A total of 167 soil samples were collected from the Max claims. Several more samples were taken across the Mine Fault at Copper Mountain for orientation and comparison purposes. Conventional soil sampling procedures were followed, with soils placed in Kraft paper bags and air dried prior to analyis by 30 element ICP and Au by fire assay and ICP. Two soil profile pits were dug on the Max claims, both in areas believed to be underlain by Nicola Group andesites (Figure 5). Four samples were collected from each pit; surface organic material and three samples at increasing depth into the B/C horizons. Soil profiles are not well developed in the hilly areas. Because there is a general tendency for copper, nickel, arsenic and gold values in the test pits to increase with depth, sampling from as deep as possible in the B horizon or in the C horizon is recommended. Soil collected on the sample traverses were from the top of the C horizon, which in many cases was an angular rubbly gravel with pale, washed out colors.

Four soil sample traverses were done (Figure 5); along the south bank of Asp Creek, along the north side of the logging road on the Max 7 and 8 claims, along the Fletcher Creek lineament and along the Asp Creek fault zone north on the Max 1 and 9 claims.

a sa sangar ng sangar sa

3.2 Rock Sampling and Prospecting

Ten man-days were spent in prospecting mapped faults and lineaments interpreted to be fracture traces. Rock sample locations and analytical results are shown in Figure 4.

4 RESULTS

4.1 Silt Sampling

an sultanet er

Of the nine samples collected sample 203 (Fletcher Creek, north of Tulameen road) reported weakly anomalous gold (10ppb). No other samples are of particular interest except sample 301 (between Asp Creek and the Snowpatch road) which carried the highest values of copper (65ppm), nickel (36ppm), iron (3.68%), arsenic (11ppm) vanadium (90ppm), magnesium (1.37%) and titanium (0.26%).

4.2 Soil Sampling

The statistics for the entire 167 samples are summarized in the table below.

Element	Minimum	Maximum	Mean	Std. Dev.	Mean + 2 SD	Units
copper	4	325	37	49	136	ppm
lead	2	19	6	2	11	ppm
zinc	43	189	85	25	136	ppm
arsenic	2	34	5	4	14	ppm
nickel	4	47	13	6	25	ppm
iron	0.88	7.08	3.1	0.9	5	8
chromium	4	300	30	40	109	ppm
gold	1	51	5	6	17	ppb

Soil samples with elevated gold values occur:

1) along Asp Creek at three locations;

- two sites (23, 28ppb Au) near the inferred northern projection of the Fletcher Creek lineament,

- three sites (10,10,31ppb Au) near the inferred trace of the Asp Creek fault. Two of these have anomalous copper and one has anomalous arsenic, and

- two sites (14, 42ppb) on the eastern edge of the claim block.

2) two separated sites on the logging road crossing the Max 7 and 8 claims (21, 51ppb Au). Several of the sites at the north end of the sample traverse have weakly anomalous arsenic.

3) Several sites on the south end of the north-south ridge on the Max 1 claim have anomalous copper values, and two have weakly anomalous gold values (10, 11ppb Au).

4.3 Rock Sampling

Table 2 describes the rock samples from the Max claims. Analyses certificates (ICP and gold by FA/ICP) are given in Appendix I.

5 CONCLUSIONS AND RECOMMENDATIONS

The 1990 prospecting program included rock chip, silt and soil sampling in addition to prospecting and geological examinations. The results substantiate the presence of two north trending faults (Fletcher and Asp Creek faults) shown on the accompanying sketch. A third major fault trending northwesterly along Asp Cree, is interpreted from aeromagnetics. It could be the extension of the Main Fault. Elevated, but not greatly anomalous, gold values occur in soils and rocks at a few places along Asp Creek, especially near the Asp Creek fault. Several soil samples along the Asp Creek fault in the south part of the Max claims have elevated copper values. There is good geological and physiographic evidence of the interpreted Fletcher Creek fault but no geochemical expression has been found.

Several small outcrops of K-feldspar porphyry, rhyolite and felsite were found intruding into the Nicola volcanics that underlie most of the property. Many of these rocks are intensely brecciated and silicified. Their presence is taken to indicate a good possibility of larger intrusive at depth.

Table 2. Rock Sample Descriptions.

19 **Sector (2011) Antonio de Constante de Constan Constante de Constante**

Sample No.	<u>Location</u>	Brief Description	Significant Analytical Results
005	north end Max 5	float; rusty, altered Nicola andesite	221ppm Qu
006	Max 2, west Asp Ck.	altered volcanic	
007	88	1-2cm wide calcite + feldspar vein	
008		In wide fault gouge, stringers of calcite	
009	87	1-lm wide, rusty fault breccia	156ppm As, 11ppb Au
010	11	hematite and epidote stringers in 30cm wide fault zone	
011		rusty breccia from fault zone	212ppm As
013	north end Max 1	fine marble with epidote-filled shears	
015	••	medium grained feldspar porphyry basalt	
016	Max 1	marble skarn, calcite-veined, hematite stained	
017		epidote-rich skarn	
018	south end Max 1	altered volcanic, rusty	
019	**	float; epidote, calcite veins	
020	88	calcite veins in epidotized volcanic	
021	**	calcite filling of joint set in andesite	
022	11	1-3cm wide calcite vein	
023	Max 4	rusty felsite	
026	Max 1	carbonate altered volcanic	
027	Max 1	carbonatized, silicified volcanic	
029	west of Max 5	rusty, fine grained rhyolitic volcanic	
034	Asp Ck.	30cm wide rusty breccia zone in lapilli tuff	
035C	Asp Ck.	5-10cm wide breccia zone in rhyolite	
036	north end Max 2	float; quartz breccia in area of vesicular dacite	
037	north end Max 1	skarn at contact with Nicola volcanics	
039	n	epidote-rich fault breccia	357ppm Cu
101	Asp Ck, Max 4	rusty, altered, pyritic volcanic with clay altered veins	7ppm Mo, 44ppb Au

10

Table 2 (continued).

AND A REPORT OF A

Sample No.	Location	Brief Description	Significant Analytical Results
A103	Tulameen road	30am wide rusty fault zone	
A104	11	2-10cm wide fault zone with calcite veins	
A105	**	2-1m wide fault zone with minor calcite	223ppm Cu, 41ppm Ni, 25ppb Au
106	11	2-3m wide breccia and gouge zone	202ppm Cu, 34ppm Co, 19ppb Au
107	11	5-10cm wide calcite vein	243ppm As, 7ppb Sb, 168ppm Ba
108		Im wide fault zone, calcite stringers with tr. chalcopy.	246ppm Cu, 134ppm As
109	**	m wide rusty zone, green staining (malachite?)	411ppm Cu, 190ppm As
_110	11	10cm wide gouge zone on footwall of felsite dike	270ppm Cu
111	**	gouge zone in Nicola volcanics	
112	11	2m wide gouge zone with chlorite and calcite stringers	
113	**	float; gossan boulder of pyritic Nicola andesite	
114	Asp Ck, Max 2	calcite cemented breccia of Nicola andesite	
115	- 11	rusty, brecciated Nicola andesite	
CV90152-47	Tulameen road	Im wide zone of calcite-rich fault gouge	
CV90152-48	11	m wide fault zone, rusty, pyritiferous, calcite veined	
CV90152-49	11	calcite stringers in andesite	
CV90152-50	п	20-30cm wide calcite veins in andesite	

and a second second

11

Additional exploration is recommended on the north slope of the principal aeromagnetic anomaly, indicated in Figure 3. A program of ground mag, VLF and induced polarization with the objective of targeting possible drill holes is also recommended.

6 BIBLIOGRAPHY

Borovic, I., 1986; Report on the Regional Geophysical Exploration of the Stik Property, for Kettle River Resources Ltd., Assessment Report 15279, 8pp.

- Fahrni, K.C., Macauley, T.N. and Preto, V.A.G., 1976; Copper Mountain and Ingerbelle, Canadian Institute of Mining and Metallurgy, Special Volume 15, pp. 368-375.
- Macrae, R. and Conto, T.A., 1969; A Geophysical Report on an induced Polarization Survey, Tul Claim Group, for Anaconda American Brass Ltd., Assessment Report 2352, 7pp.
- McMechan, R.D., 1983; Geology of Princeton Basin, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1983-3.
- Preto, V.A., 1972; Geology of Copper Mountain, British Columbia Department of Mines and Petroleum Resources, Bulletin 59.
- Read, P.B., 1987; Tertiary Stratigraphy and Industrial Minerals, Princeton and Tulameen Basins, British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987-19.
- Rice, H.M.A., 1947; Geology and Mineral Deposits of the Princeton Map-Area, British Columbia, Geological Survey of Canada Memoir 243, Map 888A.
- Wheeler, J.O., McFeely, P., 1987; Tectonic Assemblage Map of the Canadian Cordillera and adjacent parts of the United States of America, Geological Survey of Canada, Open File 1565.

7 ITEMIZED COST STATEMENT

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF

Period: May 29, 1990 to May 15, 1991 Field Work Dates: May 30 - June 7, July 14,18,23, September 18

Fees:

K.V. Campbell, Ph.D., Geologist	\$ 4 400 00
11 days @ \$400/d	\$ 2,537.50
C.J. Campbell, B.Sc., Geophysicist 9 hours @ \$50/h	
Prospector (L. Allen) 9 days @ \$225/d	\$ 2,025.00
Total	\$ 9,412.50

Disbursements:

Reports, maps, air photos	\$	191.66
Meals, groceries		354.91
Telephone, fax, courier	\$	107.98
Accomodation	\$	457.92
Analyses	\$	2,586.45
Fuel	\$	378.81
Vehicle rental	\$	1,215.60
Drafting	\$	398.78
Reprographics	\$	300.19
Field Supplies	\$	257.44
Thin Sections		240.00
Travel	\$	45.00
Overhead	<u>\$</u>	333.73

Total \$ 6,534.74

Total Cost \$16,280.97

Keromen Qo

K.V. Campbell, Ph.D., F.G.A.C.

8 CERTIFICATE

I, KENNETH VINCENT CAMPBELL, resident of Vancouver, Province of British Columbia, hereby certify as follows:

- I am a Consulting Geologist with an office at #4 84 Lonsdale Ave., North Vancouver, British Columbia.
- 2) I graduated with a degree of Bachelor of Science, Honours Geology, from the University of British Columbia in 1966, a degree of Master of Science, Geology, from the University of Washington in 1969, and a degree of Doctor of Philosophy, Geology, from the University of Washington in 1971.
- 3) I have practised my profession for 24 years. I am a Fellow of the Geological Association of Canada (F0078).
- 4) This report, dated May 15, 1991, is based on my review of available reports, air photo interpretation and geological field work on the Max claims between May 29 and September 18, 1990. I directly organized, managed surpervised and performed field work on the Max claims.
- 5) I have no direct, indirect or contingent interest in the shares or business of Similco Mines Ltd. nor do I intend to have any such interest.

Dated at Vancouver, Province of British Columbia, this 15th day of May, 1991.

Eau 200

K.V. Campbell, Ph.D., F.G.A.C. Geologist

APPENDIX I

Analytical Procedures and Certificates

GEOCHEMICAL ANALYSIS CERTIFICATE

Similco Mines Ltd. PROJECT P-06

File # 90-1777 P.O. Box 520, Princeton BC VOX 1WO Submitted by: JOHN DAVIS

Page 1

SAMPLE#	Mo ppm	Cu	Pb	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au	Th ppm	Sr Co ppm ppm	2	Bi ppm	V ppm	Ca P X X		Cr Mg ppm %	Ba Ti ppm %	BAL ppm %	Na %	K %		u** ppb
002 005 006 007 008	2 1 1 1	55 221 63 70 17	5 11 14 8 13	72 96 44 29 81	.1 .1 .1 .2 .1	24 17 7 5 3	11 22 6 8 10	715 968 761 471 904	6.73 1.95 2.72	12 4 10 12 11	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	47 .2 52 .2 100 .2 179 .2 45 .2	2 2 3	2, 2 2 2 2 2	67 166 70 116 70	2.76 .079 2.80 .096 8.47 .083 9.53 .067 5.79 .141	7 6 5 2 15	231 .86 56 2.22 29 .70 16 .88 33 1.13	16 .09 12 .28 3 .11 4 .09 7 .02	10 1.43 7 2.98 10 3.31 16 6.08 5 2.51	.03 .03 .02 .05 .02	.05 .03 .06 .07 .05	1 1 1 1 1	4 1 6 9 1
009 010 011 013 015	1 1 1 1	115 141 114 10 40	5 9 11 29 7	80 86 97 63 65	.3 .2 .2 .1 .1	10 16 21 5 9	11 17 20 6 13	928	5.40 1.03	156 13 212 66 9	5 5 5 5 5	ND ND ND ND	1 1 1 1	43 .2 198 .2 52 .2 76 .2 51 .2	2 2 2	2 2 2 2 2	45	.80 .103 4.14 .100 1.17 .114 14.01 .080 1.50 .080	4 4 7 3 6	45 1.58 46 2.32 59 2.08 45 .46 71 1.30	5 .03 14 .21 9 .11 1 .13 16 .19	7 2.12 6 4.87 9 2.30 198 2.21 10 1.60	.02 .01 .03 .01 .07	.04 .10 .01 .01 .07	1 2 1 1	11 7 9 2 6
016 017 018 019 020	1 1 1 1	12 58 98 173 163	4 6 8 6	37 45 69 57 67	.1 .1 .1 .1 .1	4 11 7 9 8	8 13 15	396 1382 468 992 1388	1.68 2.36 2.79	7 7 5 8 14	5 5 5 5 5	ND ND ND ND	1 1 1 1	210 .2 99 .3 73 .2 226 .2 110 .2	3 2 2	2 2 3 3 2	20 56 73 106 90	23.15 .102 9.68 .088 .83 .103 7.58 .150 8.24 .119	2 3 5 7 6	26 .85 80 .51 44 1.00 58 1.25 71 1.32	10 .09 14 .15 36 .10 33 .21 30 .13	12 .68 9 1.04 11 1.03 6 1.40 5 1.19	.01 .01 .01 .02 .01	.04 .04 .04 .06 .04	1 1 3 1	1 6 7 2 5
021 022 023 026 027	1 1 4 4 1	108 41 23 34 21	2 5 9 2 8	50 6 57 4 86	.1 .1 .3 .1 .1	7 1 15 37 17	13 2 5 6 11	924 995 544 801 820	.34 1.77 .59	5 2 4 6 6	5 5 5 5 5	ND ND ND ND	1 1 2 1 1	104 .2 166 .2 10 .3 47 .2 65 .2	3 2 2	2 2 3 2	8 13	11.98 .083 33.94 .011 .43 .034 11.56 .008 7.21 .084	3 2 15 2 5	47 1.15 5 .10 207 .05 452 .06 126 .69	14 .15 1 .01 31 .01 1 .01 10 .18	6 1.19 2 .14 7 .34 6 .10 9 .93	.02 .01 .03 .01 .02	.04 .02 .08 .01 .06	1 1 1 1	2 2 6 1 5
029 034 035C 036 037	5 1 2 1 1	29 79 46 36 7	7 10 12 2 9	3 78 76 17 65	.1 .2 .1 .1	35 14 18 22 8	8	62 1025 617 1363 946	2.06 1.10	2 6 7 2 25	5 5 5 5 5	ND ND ND ND	1 1 2 1 1	5 .2 68 .2 59 .3 128 .2 76 .4	2 2 3	2 2 2 2 2	43	.14 .005 3.17 .125 3.77 .042 13.28 .027 8.57 .074	2	466 .03 91 1.88 232 .59 161 .62 58 .71	19 .01 24 .10 11 .07 81 .01 4 .18	4 .16 7 2.51 5 1.49 5 .13 8 2.71	.03 .03 .02 .01 .01	.05 .05 .07 .03 .02	1 1 1 1	5 1 1 1 4
039 101 102 Co Mtu A102 103 Co Mtu	1 7 4 1 7	357 17 3974 480 3021	11 13 9 5 19	65 56 90 21 94	.2 .1 1.5 .1 1.1	3 2 47 15 47	4 29 9	1770 457 990 427 1098	3.36 5.41 2.31	20 66 57 4 71	5 5 5 5 5	ND ND ND ND	1 1 1 1	80 .2 104 .2 145 .3 82 .2 150 .2	2 10 2	2 2 8 4 6	55 40 73 114 69	5.82 .106 1.52 .123 7.07 .103 2.87 .124 7.94 .099	8	40 1.13 26 .72 43 2.36 148 2.14 46 2.12	4 .15 20 .26 14 .01 121 .22 14 .01	9 1.33 10 2.31 8 2.38 9 1.24 2 2.16	.02 .02 .01 .04 .01	.01 .10 .11 .40 .10	1 1 1 1	2 44 54 32 56
A103 104 Cu mti A104 105 A105	2 15 1 1	160 15528 141 206 223	2 66 6 5 6	112 410 84 101 49	.1 10.6 .1 .2 .3	13 41 12 15 41	18 28	823 1295 2042 1030 1027	4.14 3.73 4.92	23 163 7 12 27	5 5 5 5 5	ND ND ND ND	2 1 1 2 1	146 .2 166 7.1 245 .2 124 .2 221 .2	29 2 3	2 8 2 4	137 70 110 165 129	.83 .139 10.31 .063 4.99 .134 1.24 .181 7.22 .091	11 3 10 12 6	25 1.57 85 1.45 59 1.32 58 2.09 100 2.40	93.0611.0371.0680.1370.11	8 2.09 4 1.04 6 1.65 8 2.24 5 2.10	.03 .02 .02 .03 .03	.68 .09 .25 1.05 .25	1 1 1 1	1 987 6 16 25
106 STANDARD C/AU-R	1 17	202 58	8 43	109 135	.1 7.3	20 67		1121 1051		21 44	5 19	ND 6	2 37	108 .2 47 18.1		4 23	205 57	2.34 .179 .48 .096		80 1.81 56 .87	54 .11 175 .09	11 2.15 32 1.80	.04 .06	.21 .14	1 11	19 535

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95-DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock Pulp AU** ANALYSIS BY FA\ICP FROM 10 GM SAMPLE.

DATE RECEIVED: JUN 14 1990 DATE REPORT MAILED:

•

_age 2

SAMPLE#	Mo ppm		Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm (Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg %	Ba Ti ppm %		Al %	Na %	K W/ X ppm	Au** ppb
107 108	1		2 9	68 82	.1 .1	6 8		1578 1014		243, 134	5 5	ND ND	1	513 219	.2 .2	7 5	2	108 166	12.96		8 9		1.17	168 .14 75 .21	21. 121.			.37 1	5 5
109	2		4	74	.1	11		1350		190	5	ND	1	207	.2	6	2	145	4.29		10		1.08	130 .08	61.			.19 1	7
110 111	1	270 65	12 8	42 73	.2 .1	14 7	9 20	501 1157		12 4	5 5	ND ND	2	24 102	.2 .2	25	2 2	46 137	.59 4.44		21 5		.32 2.33	80 .01 37 .27	4. 33.			.29 1	9
	1.	05	Ŭ			•	20	1121		7	2	~~~	•	105	•	2	Ľ	1.51			,	02	2.33			••			-
112	1	69	3	55	1	18		1150		4	5	ND	1	62	.2	2	2	115	5.07		7		2.30	26 .24	73.			.06 1	2
113 114		46	. 2 2	103 50	.1 .2	3 14	7 12	371 514		9 15	5 5	ND ND	5	60 143	.2 .2	4	2 2	44	.49 11.09		27 4		1.20	21 .01 18 .18	52.			.07 1	4
115	1	63	2	40	1	8	5	402		74	5	ND	i	72	.2	2	4	94	.67		2		1.54	6 .34	31.			.03 1	6
EXP 201	2	25	10	64	-1	17	9	652	2.83	5	5	ND	1	31	.2	2	2	46	.55		11	177	.69	66 .10	31.			.07 2	1
EXP 202	3	27	6	60	1	29	14	614	3 57	6	5	ND	1	50	.2	2	2	68	.69	071	9	288	.94	76 .17	21.	44	.04	.08 3	4
EXP 203	1	35	6	59	1	10	6	949		3	5	ND	i	64	.2	ž	2	36	8.21		ś	28	.55	56 .07	11 1.			.09 1	10
EXP 301	3		7	70	.1	36	14	915		11	5	ND	1	78	.2	2	3	90		.082	11		1.37	60 .26	81.			.08 1	1
EXP 401 EXP 402	1	254 234	12 9	56 62	.1 .2	17 17	13 11	726 446		6 7	5	ND ND	2	37 52	.2 .2	2 2	23	77 74		.039	14 23	72 78	.54 .57	54 .12 48 .13	32. 31.			.08 2	13 8
	'	234	,	02	•	17		440	2.13		2	NU		2	•=	2	2	/4	.07	.042	25	10		40 .IJ	51.	72	.04	.07	°
EXP 403	1	103	2	78	.2	16		1126		3	5	ND	1	27	.2	2	3	47		.211	5	60	.33	151 .11	61.			.08 1	8
EXP 404		127	6	99 136	.2 .2	30 33	13	818		8	5	ND	2	32	.2	3	2	74		.145	8	139	.97	111 .18	31.			.11	3
EXP 405 EXP 406	1		12 11	133	.1	32		1343 1165		7 5	5	ND ND	1	31 29	.2 .2	2 2	2 3	64 72		-145 -140	6 6	136 127	.73 .83	194 .15 252 .18	51. 52.	-		.10 1 .18 1	3
EXP 407	i		4	108	.2	27		1030		6	5	ND	i	39	.2	3	2	84		.110	7		1.08	142 .17	41.			.15 2	10
EXP 408	2	162	9	147	.3	37	17	1651	2 57	8	5	ND		39	7	3	2	68	F /	. 163	4	180	.75	245 .17	51.	04	.04	.14 1	1
EXP 400	1		6	143	.2	27		1071		° 4	5	ND	1	31	.7 .2	3	2	54		.154	6	108	.65	208 .15	41.			.14 1	4
EXP 410	1	189	12	90	.2	32	12	544	2.84	7	5	ND	1	36	.2	3	2	83	.63	.104	7	107	1.12	116 .16	41.			.14 1	12
EXP 411	1		2	149	.3	31				5	5	ND	1	32	.4	3	2	61		.161	6	84	.80	181 .15	22.			.09 2	5
XP 412	ר	158	10	125	.3	28	12	815	2.71	5	5	ND	1	36	.2	2	2	73	.0/	.142	6	119	.97	192 .15	21.	92	.03	.12 1	4
EXP 413	1	199	7	114	.2	36	12	544	2.61	4	5	ND	2	35	.2	2	2	71	.57	.103	7	121	.90	125 .14	81.	66	.03	.09 1	13
EXP 414	1		3	134	.2	24		1105		3	5	ND	1	29	.2	2	2	60		.169	6	88	.64	233 .13	61.			.12 1	1
EXP 415 EXP 416	1		6 5	162 128	.2 .3	26 26		1326 1088		43	5 5	ND ND	1	38 35	.5 .2	2 2	2	65 59		.174	7	90 101	.86 .70	212 .14	81. 41.			.14 1	3
EXP 601	~ - z		8	51	1	19		-		2	5	ND	ź	24	.2	ź	3	45		.047	10	201	.49	54 .10	3 1.			07 1	2
		_									_					_	-												
EXP 602 EXP 603	3	24 32	8 9	61 61	.1	19 26	10 11	438 685		5	5	ND ND	1	36 29	.2 .2	23	2 3	56 57		.039	10 12	199 300	.59 .68	53 .10 51 .11	21.	- ·		.06 1	
EXP 604	z		11	63		18	11	686		4	5	ND	1	30	.2	2	2	56		.047	14	148	.53	71 .10	21.			.08 1	2
EXP 605	3	29	7	60	.1	23	10	529	2.87	- 4	5	ND	1	21	.2	4	2	52	.41	.076	8	238	.59	56 .12	21.	20	.03	.06 1	1
EXP 606	1	16	14	67	.2	10	7	833	2.38	3	5	ND	1	30	.2	2	2	49	.41	.123	7	72	.40	108 .11	81.	29	.02	.06 1	1
EXP 607	1	37	4	70	.1	20	11	805	3.09	3	5	ND	1	46	.2	2	2	68	.77	.083	11	103	.72	80 .12	21.	50	.02	.13 1	23
STANDARD C/AU-			37		7.3	67		1059		40	18	7	36	47 1		16	20	57		.096	38	56		175 .09	33 1.		.06		526

توافرهم بمنهمين المحجج الاراني البدران

and the construction of the transmission of the

بالمتعادية فيعاد فيروي بالتر

Page 3

SAMPLE#	Mo	Cu	Pb	Zn Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr Cd	Sb	Bi	V	Ca P	La	Cr	Mg	Ba Ti	B AL	Na	K W AL	u**
	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	% ppm	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	X X	ppm	ppm	*	ppm 🕺	ppm %	*	X ppra p	ppb
	· · · · ·								;			88888												
EXP 608	3	27	10	48 ,1	21	10	373 2	2.72 9	5	ND	1	37 .2	2	2	57	.49 .059	12	229	.61	37 .13	2 1.31	.03	.07 3 1	128
EXP 609	1	15	5	75 .1	13	8	848 2	2.47 6	5	ND	1	53 .7	2	2	52	.49 .148	5	80	.44	114 ,13	2 1.78	.04	.07	7
EXP 610	1	31	8	72 .1	21	11	818 3	3.01 7	5	ND	1	31 .2	2	2	58	.48 .046	12	166	.64	73 .10	2 1.51	.02	.09	3

Page 1

GEOCHEMICAL ANALYSIS CERTIFICATE

Similco Mines Ltd. PROJECT P-06 File # 90-1717 P.O. Box 520, Princeton BC VOX 1W0 Submitted by: JOHN DAVIS

SAMPLE#	Mo	Cu	Pb ppm	Zn ppm	Ag	Ni	Co	Mn ppm	Fe X		U ppm	Au	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca X	P X	La	Cr	Mg X	Ba	Ti Z	B All		K M A X ppm
630	1	16	8	100		10	11	934	3.58	3	5	ND	2	45	.5	2	2	87		.076	8	21	.53	77	.16	6 1.33		.10 1
631	1	8	4	83	_1	7	5	504		6	5	ND	2	19	.2	2	Z	38		.068	3	10	.17	97	.11	5 1.22		.05 1
632 633		13 12	5 3	90 97	.1	777	6	462 825		22	5	ND ND	2	25 30	-2 -2	2	2	56 49		.056	8 6	14 13	.32 .30	77 121	.13	4 1.59		.11 1
634		31	د ۲	75	-1 -2	8	6 8	622		8	5	ND	2	41	• 4	2	2	58		.078	15	15	.50	81	.12	4 1.37		.07
-	· · ·	•				•	•				•		_				-											
635	1	18	8	79		10	2	602		3	5	ND	2	39	-2	2	2	57		.D44	8	18	.63	. 95	.12	2 1.72		.10 1
636	1	47	4	60	.3	2	7	864		2	5	ND	2	57	-6	2	2	48		.034	13	18	.40	115	.10	2 1.28		.06 1
637		15 18	6	83 80	1	7 7	777	472 404		2 10	5	ND ND	2	28 31	.2 .2	2	2	52 57		.075	6	16 17	.34 .36	103 105	.11	6 1.25 2 1.27		.07 1
638 639		12	3	91	.2	6	6	404 967		3	5	ND	2	36	.2	ž	2	48		.123	4	13	.26	192	.10	2 1.42		.08 3
0.5	'	16	5	71	•	0	U	907	2.40		-		-			-			• • • •		-	1.2						
640	1	34	7	80	্ৰ1	11	10	848	3.11	2	5	ND	3	66	-4	2	2	61	1.83	.081	15	18	.77	104	.11	2 1.80		.09 1
641	1	16	5	90	.2	8	8	821	2.84	2	5	ND	3	39	.3	2	2	56		.056	12	16	.50	117	.12	3 1.45		. 15 1
642	1	26	7	71	3	10	9	740		4	5	ND	2	60	-2	2	2			.080	14	17	.59	95	.12	2 1.45		.10 1
643	1	27	6	73	.2	9	9	634		2	5	ND	2	- 44	-2	2	4	58		.059	14	16	.56	94	.11	2 1.55		.08 1
644	1	24	7	73	.2	10	10	548	3.20	4	5	ND	2	42	.3	2	2	68	.58	_079	10	18	.56	77	.13	5 1.47	.02	.08 1
645	1	18	5	76		8	. 8	675	2.93	2	5	ND	2	42	.4	2	2	57	.56	.056	10	17	.48	82	.12	6 1.56	.02	.10 1
646	l j	10	3	106	1	5		1027		3	5	ND	1	33	.2	ž	2	33		196	4	8	.12	159	.10	8 1.25		.03 1
647	1	29	5	122	.3	15	9	890	3.17	ંડ	5	ND	1	69	6	2	2	64	1.45	.112	12	21	.59	107	.14	7 2.45		.11
648	1	26	8	123	.2	9	9	740	2.75	2	5	ND	2	- 66	.5	2	2	54		.143	11	16	.42	112	.10	9 1.58		.12 1
649	1	37	6	79	.4	12	10	788	3.14	2	5	ND	2	72	.3	2	3	65	.93	.061	19	21	.58	88	.11	2 2.03	.02	.09 1
650	4	27	6	101	.2	9	0	1128	3 01	5	5	ND	2	54	.5	2	2	64	.67	.044	13	18	.41	92	.13	2 1.59	.02	.09 1
651		67	4	83	3	15		1082		2	ŝ	ND	2	101		5	2	-		.071	8		1.50	34	.05	2 3.85		.07 1
652	1	23	6	93	3	10	9	843		7	5	ND	ž	55	4	2	2	56		.171	12	19	.50	135	.08	2 2.07		.08 1
653	1 1	29	10	71	.3	8	9	686		2	6	ND	3	79	.4	2	Ž	63		.047	12	17	.57	87	.11	2 2.56		.15 1
654	1	23	10	121	.2	9	10	1141		4	5	ND	2	77	.7	2	4		1.15	.091	13	17	.53	141	.08	5 1.84		.13 1
		• •				_	_				-		-			-	•				•	• •	•					
655	1	21	4	101	-2	6	7	898		6	5	ND	2	45	-2	2	2	49		.070	2	14	.26	158	.12	13 1.36		.12 1
656	1	14	6	72		6	6	477		6	5	ND	2	31	-2	2	2	47		.069	5	13	.31	99	.13	5 1.15		.05 1
657		11 14	777	44	.2 .2	6 7	35	392 778		7 7	5 5	ND ND	2	19 25	.Z .2	2 2	2 2	18 33		.264	5	4 8	.09	97 188	.12	7 2.33		.07 2 .07 1
658 659		27	5	115 70	-4	7	7	698		2	5	ND	23	44	.2	2	ź			.031	14	17	.34	117	12	7 1.82		.07 1
		21		70		'	'	070	2.00			RD	2		• •	2	2	40						••••		1.00		•••
660	1	8	4	113	1	5	4	564	1.92	2	5	ND	1	40	.2	2	Z	41	.39	.149	4	9	.11	219	.11	10 .84		.07 1
661	1	9	2	89	1	4	4	761	1.60	2	5	ND	1	27	.2	2	2	32	.21	.167	2	8	.09	231	.10	8.96		.03 1
662	1	10	4	90	-2	9	7	457		3	5	ND	2	33	.2	2	- 3	61		.049	6	16	.33	58	. 19	2 1.63		.12 1
663	1	17	7	98	-2	7	6	524		6	5	ND	2	51	.2	2	2	44		.081	7	12	.28	78	.13	5 1.29		.11 1
664	1	28	6	95		10	8	911	2.80	5	5	ND	2	60	.3	2	2	60	.60	.047	9	16	.43	96	.16	2 1.64	.03	.17 1
STANDADD C (ALL-C	40	44	77	170		77	74	10/2	7 45	43	19	7	40	55	20.0	15	22	58	54	.086	39	60	.93	182	.10	32 1.96	.05	.13 13
STANDARD C/AU-S	18	61		152	7.3			1042	2.07		17	<u> </u>	40		20:00	12				.000			. 75	102		JE 1.90		• • • • · · · · · · · · · · · · · · · ·

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh AU** ANALYSIS BY FA\ICP FROM 10 GM SAMPLE.

DATE RECEIVED: JUN 12 1990 DATE REPORT MAILED:

ACKE

a a ser la factura en la contra de la contra d

а

.

Page 2

· · • • •

SAMPLE#	Ho ppm	Cu	Pb ppm	Zn ppm	1000	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au	Th ppm	Sr Co ppm ppm		Bi ppm	V ppm	Ca X	P X	La ppm	Cr Ppm	Mg X	Ba ppm	Ti X	8 ppm	Al X	Na X	K yu X ppm	Au** ppb
665 666 667 668 669	1 1 1 1	16 137= 179: 9 10		44 95 98 85 61	.1 .3 .6 .1 .1	6 21 12 7 6	5 17 29 5 6	252 826 1267 317 268	4.04 5.45 2.14	2 5 34 2 2	5 5 5 5 5	ND ND ND ND	2 2 3 3	41 .2 124 .5 142 .5 29 .2 37 .2	23	2 2 2 2 2		3.10 3.92 .32	.143 .070 .120 .039 .031	4 9 7 5 8		.12 1.49 1.33 .21 .26	56 39 28 121 63	.11 .10 .12 .12 .15	4 2 2	1.92 3.01 3.26 1.74 1.30	.03 .03 .02 .02 .02	.06 1 .11 1 .13 1 .07 1 .11 1	1 10 10 31 3
670 671 672 673 674	1 1 1 1	38 55 29 23 10	7 5 3 6 3	88 90 99 62 85	.2 .3 .2 .1 .1	12 20 9 9 7	11 15 8 7	855 914 855 426 290	4.02	2 4 4 3 2	5 5 5 5 5	ND ND ND ND ND	5 4 3 3 3	63 .3 85 .3 50 .2 42 .2 42 .2	22	2 2 2 2 2		.55	.080	18 19 13 14 9	21 30 18 18 16	.75 1.20 .46 .43 .28	117 96 143 62 102	.09 .10 .10 .08 .13	2 4 4	1.71 2.35 1.54 1.42 1.64	.02 .03 .02 .02 .02	.16 1 .15 1 .15 1 .09 1 .11 1	1 3 4 1 42
675 676 677 678 679	1 1 1 1 1	35 16 16 19 10	5 3 8 7 3	61 76 121 80 72	.2 .1 .1 .1 .1	12 11 11 11 8	9 8 7 6 7	373 396 567 422 351	2.65 2.63 2.38	5 5 11 2 7	5 5 5 5 5	ND ND ND ND ND	4 3 3 2	51 .2 39 .2 44 .2 42 .2 35 .2	2 2 2	2 2 2 2 2 2	69 57 47 45 57	.48 .51 .48	.055 .045 .045 .050 .050	18 7 8 11 6	23 20 17 16 16	.67 .35 .39 .33 .29	71 114 151 113 98	.12 .18 .16 .15 .15	4 2 4	2.03 1.92 2.75 2.37 1.50	.02 .02 .03 .03 .02	.14 1 .14 1 .15 1 .13 1 .12 1	14 3 5 1 4
680 681 682 683 684	1 1 1 1	16 19 22 24 21	8 6 6 4	119 106 95 96 81	1. 1 1 1 1 1 1	10 10 9 12 10	9	468 519 420 501 719	2.28 2.36 2.74	5 5 5 2 6	5 5 5 5 5	nd Nd Nd Nd	2 2 1 2	42 .2 36 .2 34 .2 48 .2 48 .2	2 2 2	2 2 2 2 2	39 41 48 54 42	.43 .37 .49	.074 .042 .032 .085 .048	7 7 6 7 11	15 14 16 16 13	.33 .29 .29 .36 .32	160 133 121 1 3 6 150	.16 .14 .14 .12 .12	4 : 4 : 2 :	2.53 2.27 1.74 2.00 2.15	.03 .03 .02 .02 .03	.13 1 .19 1 .10 1 .12 1 .13 1	1 6 1 14 5
685 686 687 688 689	1 1 1 1	15 4 12 43 24	5 5 3 7 9	59 67 87 46 139	.1 .1 .1 .3 .2	7 6 5 10 14	6 5 3 7	469 393 200 227 675	1.48 1.30	8 2 16 2 4	5 6 5 5 5	nd Nd Nd Nd	2 3 1 1 3	33 .2 29 .2 23 .3 149 .4 52 .2	2 8 2	2 2 3 3		.39 .31 9.14	.049 .048 .025 .089 .035	6 5 3 8 6	11 8 10 9 15	.24 .18 .18 .33 .39	105 97 74 48 80	.10 .08 .08 .04 .12	2 2 5	1.48 1.35 1.31 1.28 2.24	.02 .02 .02 .03 .03	.10 1 .10 1 .03 1 .06 2 .11 1	3 1 4 4 1
690 691 692 693 694	1 1 1 1 1	16 22 21 19 22	6 10 5 7 8	131 87 119 104 90	.2 .1 .1 .1 .1	11 11 12 11 11	7	687 482 690 459 671	2.47 2.33 2.42	3 11 11 7 4	5 5 5 5 5	nd Nd Nd Nd Nd	3 2 2 2 3	40 .2 37 .2 36 .2 35 .2 31 .2	2 2 2	2 2 2 3	43 48 44 46 47	.44	.083 .043 .102 .067 .032	5 9 7 6 9	15 18 15 16 15	.31 .40 .28 .30 .30	116 115 164 126 97	.13 .15 .14 .16 .16	7 5 3	1.79 2.17 2.28 2.23 2.51	.02 .03 .03 .03 .03	.13 1 .13 1 .13 1 .13 1 .16 1 .08 1	1 1 1 6 5
695 696 697 698 699	1 1 1 1 1	19 27 12 13 35	9 9 6 5 6	89 102 165 71 71	.1 .2 .1 .1 .1	11 11 6 6 10	7 8 4 6 9	575 398	2.47	11 5 4 4 7	5 5 5 5 5	nd Nd Nd Nd	3 3 2 1 1	36 .2 39 .3 27 .2 26 .2 38 .2	2 2 2	2 2 2 2 2	41 43 32 41 52	.44	.029 .030 .048 .025 .030	11 12 4 5 8	17 17 10 11 17	.33 .37 .15 .17 .30	93 111 90 74 68	.16 .15 .10 .12 .14	2 1 9 1 2 1	2.81 2.79 1.30 1.40 1.61	.03 .03 .02 .03 .02	.11 1 .11 1 .08 1 .11 1 .16 1	5 1 8 8 3
700 STANDARD C/AU-S	1 18	49 57	6 39	123 131	.1 7.3	11 71	10 31	965 1029		7 42	5 21	ND 7	1 39	46 _3 54 19_5		2 20	50 58		.034 .084	12 39	18 58	.38 .91	95 181	.13 .09		1.75 1.93	.02 .06	.18 1 .13 13	1 52

•

ومتحدث والمتحمة فتحدث والمتحد والمتح

.

•

SAMPLE# Cu Pb Zn Ag Ni Co Mn Fe As ម Au Th Sr Cd SЬ Bí v Ca P La Сг Mg 8a Ti R AL Na No * * X X X cpa ppb **DDR** DDM **DDR** POR ppm ppm ppm DDIE ppm ppm * pon ppm DDR * ppn * DOM DOM DOR DDR DOR DDM **DDM** 8 1030 2.43 2 2 47 2 47 1.19 041 .13 5 1.77 701 126 .2 12 6 ND .2 2 11 15 .33 76 .02 .09 63 5 1 2 106 11 744 2.47 2 7 1 54 .2 2 49 1.13 .035 9 15 .34 62 .13 702 46 4 1 8 MD 6 1.61 .02 .12 1 1 4 703 1 38 6 98 -2 19 12 695 3.67 8 5 ND 2 60 -2 2 2 75 .93 .073 12 26 .74 81 .17 2 2.15 .02 .16 1 1 5 2 .2 704 23 13 689 2.96 5 ND 50 2 2 63 .82 .039 10 20 .45 72 5 1.61 .02 .23 1 4 84 1 10 .16 1 1 54 5 2 78 .2 705 1 3 109 1 17 16 1014 4.17 2 ND 2 2 78 .93 .056 11 32 1.09 97 .09 8 2.69 .01 .50 1 1 71 138 2.34 .067 706 1 172 6 113 .3 22 24 1146 5.51 9 5 MD 2 .9 3 2 8 52 1.74 61 . 15 4 2.96 .01 .27 1 10 707 98 .1 15 16 1147 4.55 2 5 ND 2 92 .2 2 2 110 2.46 .058 10 33 1.02 68 .15 5 2.78 .01 .25 1 86 4 1 3 57 19 52 69 .1 959 3.41 3 5 2 .2 2 2 71 .87 .043 9 .49 81 4 2.14 .02 .22 708 1 4 10 10 ND , 18 1 7 3 63 -2 709 175 5 75 ् 1 15 16 760 4.54 3 5 ND 2 2 92 .99 .037 10 31 .89 81 .20 2 3.29 .02 .17 1 1 1 2 104 .2 17 1404 4.32 3 76 .2 3 2 95 1.18 .033 9 26 .97 98 710 176 12 6 6 ND .18 2 2.66 .01 .20 1 1 4 711 13 795 4.06 2 3 62 .2 2 85 .92 .035 36 83 3 2.81 1 111 4 81 21 14 5 ND 2 10 .69 .20 .02 . 18 1 1 65 14 740 4.24 2 5 ND 3 57 .2 2 2 105 .83 .030 10 44 .86 90 .21 4 2.28 .01 712 1 126 8 **.**1 14 .20 ं 7 3 24 7 67 3 52 _2 74 .73 .026 .51 713 49 1 11 10 780 3.30 5 ND 2 2 10 102 .20 4 1.94 .02 .24 ٩. 1 4 7 90 4 3 67 76 1.24 .051 27 714 1 109 .1 12 11 922 3.70 5 ND -2 2 2 9 -61 128 .18 7 2.32 .02 .33 1 1 2 5 3 58 .3 1.46 98 123 87 .2 21 905 4.77 ND 5 2 98 1.17 .045 7 104 .01 .18 715 1 6 18 .19 3 2.77 1 5 716 6 2.12 910 3.81 3 5 2 49 .2 2 2 82 .56 .025 23 .52 138 .02 1 58 5 112 **.**1 10 11 ND 6 . 18 .20 1 2 .2 65 .81 717 60 79 .2 9 9 982 3.18 5 ND 2 52 2 2 .048 9 19 .42 116 .17 3 1.89 .02 .16 1 6 11 718 126 5 71 <u>_1</u> 12 597 4.61 4 5 ND 3 57 .2 2 2 97 .88 .040 9 23 .69 93 .19 2 2.88 .02 .26 1 1 10 1 9 96 5 3 78 .7 152 1.39 .082 30 1.63 78 .17 719 1 270 4 .2 13 23 1385 5.55 ND 3 2 9 .23 5 2.98 .01 1 4 3 720 1 322 8 109 .2 14 21 1721 5.53 14 5 ND 69 .7 2 2 137 1.49 .057 10 24 1.16 114 . 18 3 3.03 .01 .24 1 9 721 1 257 6 116 :1 11 22 1469 5.20 2 5 ND 3 97 .7 2 2 129 1.61 .096 10 25 1.39 108 .21 7 2.64 .01 .43 1 2 722 325 131 .2 10 28 1981 5.74 2 5 ND 3 94 ...8 3 2 138 1.47 .071 11 16 1.93 104 .25 5 2.85 .01 .60 1 7 1 4 723 5 3 38 59 1.55 .034 5 1.56 33 72 2 ..2 2 2 12 24 .51 61 .17 -03 .11 2 1 6 .1 16 10 603 3.07 ND 1 3 36 724 19 71 _1 14 10 576 3.27 6 5 ND .2 2 2 80 1.04 .034 10 24 .47 60 .21 6 1.35 .03 .08 1 2 1 8 725 22 628 3.73 5 3 39 .2 2 90 1.37 .026 13 30 .55 60 .24 3 1.50 .03 66 ្នា 19 12 4 ND 2 .11 1 1 1 4 726 369 2.62 58 1.08 .027 20 .39 59 . 15 9 1.46 .02 1 15 78 13 8 4 3 31 .2 2 2 .10 1 6 1 6 ND 8 1 3 .2 85 .82 22 .49 54 727 5 68 .1 13 10 534 3.37 5 ND 2 36 2 2 .035 9 .25 5 1.17 .03 .07 1 1 14 1 7 3 35 .45 43 .24 728 11 4 65 **_1** 13 10 455 3.31 6 ND .2 2 2 86 1.01 ,029 8 22 5 1.14 .03 .09 1 3 1 75 37 20 .47 51 .18 1 729 30 .1 12 9 540 2.74 10 5 ND 2 .2 2 2 68 1.10 .033 7 8 1.25 .02 .11 10 1 6 43 290 2.57 5 3 2 21 .52 40 730 1 15 5 ্য 11 7 6 ND 51 -2 2 56 2.33 .031 10 .15 5 1.38 .05 .08 1 1 ्3ः 731 44 5.92 .038 55 6 1.54 1 1 24 2 51 ្វា 14 9 466 2.54 9 5 ND 2 64 2 2 11 22 .65 .16 .04 .09 3 2 1.76 732 7 99 15 1456 4.63 7 5 ND 4 49 .5 2 2 129 1.04 .049 9 29 .72 77 .26 .02 .12 1 1 1 67 .1 16 78 2 5 32 .2 2 2 56 .78 .038 9 20 51 2 1.75 .03 1 1 733 5 514 3.08 4 .46 .19 .12 1 24 10 10 ND 2 734 21 7 49 **,**1 14 7 352 2.29 5 5 ND 2 41 .2 2 2 45 2.73 .024 11 15 .58 39 .13 5 1.27 .04 .07 1 1 735 13 5 55 10 325 2.49 4 5 ND 2 27 -2 2 2 .58 .019 7 17 .34 45 .21 2 1.46 .03 .10 1 3 1 .1 46 8 736 5 .2 13 9 294 2.73 2 5 ND 3 25 .2 2 2 47 .79 .014 10 22 .41 32 .18 4 1.49 .03 .10 1 19 -59 1 7 58 48 STANDARD C/AU-S 19 58 37 132 7.2 71 31 1031 3.92 36 17 39 53 19.7 16 20 58 .51 .086 39 .93 182 32 1.97 .06 .14

Page 3

Page 4

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni ppm	Co ppm	Mn ppm	Fe X		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8î ppm	V ppm	Ca X	Р Х	La ppm	Cr ppm	Hg X	8a ppm	Ti 7	8 ppm	Al %	Na X	K VAU" X ppm pc
737	1 1	16	5	51	.2	12	7	454	2.12	2	6	ND	2	38	.2	2	2	44	1.25	.031	9	15	.33	45		51.		.03	.12 3
738		24	5	56		16		412		2	5	ND	3	39	.2	2	2	52	1.03	.021	10	19	.47	45	.18	51.		.04	.12 1
739	;	16	ś	85		11	8		2.64	2	5	ND	3	38	.2	2	2	56	.51	.045	7	20	.35	115		21.		.02	.14 1
740		24	10	182		15	-	414		4	5	ND	2	31	.2	2	2	46	.97	.047	5	21	.50	98		61.		.02	.15 1
	1	16	11	123	22	36	6		1.85	4	6	ND	3	36	2	2	2	31	.78		4	21	.64	- 77	.13	72.	.35	.03	.11
741	1 '	10		12		~	Ŭ		1.05		•		-			_	_												
742	1	16	11	189	1	12	5	162	1.73	7	5	ND	3	41	.7	2	2	32	.76	.246	5	15	.19	123		21.		.03	.07 1
743		55	ġ	141	.2	14	9		3.14	2	5	ND	3	49	.3	2	2	61	2.19	.059	9	22	.50	121		63.		.03	.12 1
744		15	Á	103	1	8	Ś		1.76	2	-	ND	2	28	.2	2	2	36	.82	.184	4	10	.12	80		21.		.03	.05 2
745		10	5	94	1	7	4		1.83	2		ND	1	29	.2	2	3	37	.47	.229	4	8	.11	- 79		41.	.19	.03	.06 2
		61	ź	45	.3	6	3	221	.88	2	12	ND	1	143	.4	2	2	22	13.50	.104	3	17	. 16	- 35	.04	7.	.60	.02	.06
746	1	01	2	42		0	5					ND.	•	140		-	-												
747		27	5	98	.1	34	21	795	4.98	8	5	ND	2	44	.2	3	2	60	1.05	.045	8	25	1.19	45		23.		.06	.23 1
		16		75	1	18	13		4.06	2		ND	3	36	.2	2	2	83	.50	.029	8	26	.56	58	.33	22.	.37	.03	.08 1
748		18	2	120	.1	19	12		3.69	2		ND	3	46	.2	2	2	59	.67	.045	8	19	.53	75	.29	7 2.	.85	.05	.18 1
749						22	15		4.07	4	-	ND	3	41	22	2	2	70	.57		7	31	.73	73	.37	8 2	.65	.04	.24 1
750		25	2	107	.1					2		ND		33	.2	2	2	43		.035	15	20	.40	79		2 2	.51	.03	.10 1
751	ין	32		100	.1	20	10	1008	2.01	- 2005	,	RU	-			•	-		••••										
		75		117	1	21	11	50/	3.16	2	5	ND	4	55	.2	2	2	53	.59	.057	11	23	.52	108	.21	2 2	.41	.03	.13 1
752		25	5		- COMPANY (199	18		1066		2		ND	3	40	.2	2	2	53	.61	.040	8	24	.47	93	.28	3 2	.29	.04	.17
753	1 1	18	5	152			13		3.32			ND	3	46	.2	2	3	58		062	11	24	.54	88		2 2	. 19	.03	.21
754		28	6	118	-1	17	10				-	ND	4	44	.2	ž	ž	57	.51		12	21	.38	76	.19	2 1	.53	.02	.16 1
755	1	14	4	72	.1	14			2.93	2		ND	3	31	.2	2	2	48	.44		10	15	.26	88		2 1		.03	.12 1
756	1	12	5	82	.1	10	8	0/0	2.52	2		RU	5	51		-	-		• • •										
			E	74		10	8	404	2.54	6	5	ND	7	31	.2	2	2	55	.39	.029	13	16	.29	72	.19	11 1		.02	.16 1
757		12	2		1	9	7		2.36	ž		ND	2	32	.2	2	2		.45		8	14	.21	139	.14	2 1	.28	.02	.11
758	.]	19		87					3.10	3		ND	3	33	2	2	2	58	.41		5	17	.32			72		.04	.12 1
759	1 1	14	5	110		15	10		2.99			ND	2	27	.2	2	2		.40		4	16	.32		.26	22	.35	.04	. 13 1
760	1	13	د	104	.1	17	?					ND	2	31	.2	2	2	-	.43		3	25	.54	45		22	.78	.05	.10 1
761	1	14	4	126		19	11	234	3.69	2	: >	ND	4	31		-	-	0.			-								
			-			17	11	797	3.71	2	5	ND	2	31	-2	2	2	74	.41	.027	4	24	.40	39	.36	42	.25	.04	.08 1
762		10	2	77			12		3.70		-	ND	2	35	.2	2	2	68	.45	- Y	5	26	.50	44		72	.38	.05	.13 1
763	1 1	10	3	88		18						ND	3			2	2	52	.59				.86			72		.05	.25 1
764		31	3	82		20	12		3.66			-	-		.2		_		.88		9	25	.74			4 2	.55	.02	.24 1
765	1	56	3	107	1		13		4.52			ND	2		.2	2	2	69		.022	6	22	.33			2 1		.03	.14 1
766	1	16	2	76		11	8	436	3.22	2	5	ND	2	22	-2	2	2	07	. 47	- 766	Ŭ	~~~					• ••		
			-				•	507	7 40		5	ND	2	45	.2	2	2	65	.65	.025	•	21	.35	63	.23	3 1	.51	.04	.10 1
767	1	16	2	76			9		3.18				3	37			2	76	.54		· ·	23	.35		500 C	2 1		.03	.14 1
768	1	16	3	69		13	2		3.45			ND	-				2		.34			15	.20			31		.03	.11 1
769	1	12	3	88			7		2.33			ND	3	31	.Z						· ·	19	.31			2 1		.03	.11 1
770	1	20	2				9		2.86			ND	3	42	-2	2						17	.24			3 1		.03	.16 1
771	1	13	2	89	:.1	9	7	646	2.59) 2	5	ND	3	43	-2	2	3	54	.54			17	• 44	74			• • •		
						_	-							77			3	58	.45	.027	6	16	.23	68	3 .19	51	.41	.03	.10 1
772	1	13	2	65			7		2.70			ND	2							2 .087			.93			32 1		.05	.14 11 .
STANDARD C/AU-	s 19	61	- 38	132	7.3	72	- 31	1034	4.00	37	22	7	40	23	19.6	: 14	24	20					.,,,						

Page 5

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	- 165 - - 16	Ni ppm	Co ppm	Min ppm	1.15.6	s m p	U Spini	Au ppm	Th ppm	Sr ppm	Cd PPIE	Sb ppm	8i ppm	V ppm	Ca X		La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B A ppm	L Na K X		K Sala Xappana	pp:
773	1	8	10	65		9	7	619	2.85	2	5	ND	2	43	.2	2	2	62	.53	.031	7	19	.27	91	19	6 1.34	3.03	.0	9 1	2
774	1	21	6	78	្មា	19	10		3.69	8	5	ND	2	34	_3	2	2	82	.59	.050	8	32	.67		22	5 2.3			•	Ę
775	1	26	7	63	1	21	11	333		6	5	ND	3	44	2	2	ī	83	.54	.063	10	35	.67		20	2 2.3				1
775												-	-		-4															ć
776	1	11	6	46	্ৰ1	10	7	265		2	5	ND	2	32	.2	2	2	62		.033	6	19	.37		19	2 1.4	.02			1
777	2	19	19	70	1	19	11	447	4.14	2	5	ND	3	59	.2	2	5	83	.71	.078	15	33	.73	69	22	2 2.9	0.03	.1	7 8	4
778	1 1	17	6	71	.1	13	9	436	3.36	9	5	ND	2	48	.2	2	2	76	.70	.046	8	22	.55	53 🔅	22	5 1.74	4 .03	.0	9	3
779	1	29	13	77	1	14	18	1074		2	5	ND	2	56	6	2	2	109	.72	.047	11	22	1.58	- 44 🐘	04	2 3.3	5.01	.1	3	7
780		23	6	75	S	14	11	638	7 47	2 5	5	ND	2	73	.2	2	2	72		.052	12	25	.67		18	3 2.2				
		~~~	7											150	.3		2			.076	13	77	1.02		22	2 2.4				4
781		33		76	1	19	15	835		9	5	ND	3		<u>,                                    </u>	2														1
782	1	36	7	81	.1	18	11	486	4.33	5	5	ND	3	64	-2	2	2	87	.73	-051	14	33	.73	79 .	23	4 2.9	8.03	.1	6 1	,
783	1	34	10	84	1	19	12	616	4.33	3	5	ND	2	75	.3	2	2	86	.83	.072	14	36	.93	80 🖗	22	4 3.0	2.03	.1	6 1	4
784	1	19	6	77	1	12	, o	482		4	5	ND	2	42	.2	2	2	67		041	8	23	.53		16	2 1.8				•
785		13	ž	87	1	9	7	401		2	ś	ND	ž	46	.2	2	2	47	.37	.062	5	15	.37		11	2 1.7				2
			-				•				-		_		<u> </u>															
786		26	2	58	<b>.</b> 1	13	9	315		8	5	ND	2	32	-2	2	2	68	.49	.046	7	21	.60		13	4 1.4				
787	1	70	8	77	:1	47	16	638	4.60	0	5	ND	3	51	.3	2	2	88	.75	.069	11	78	1.38	94 🔅	19	2 3.43	.02	.1	3 1	1(
788	1 1	65	6	53	1	36	14	502	4.10	8	5	ND	1	46	-2	2	2	90	.97	.039	8	68	1.31	53	26	3 2.5	.03	.0	3 1	5
789	1	53	6	73	1	33	20	1084		5	5	ND	2	58		2	2	100	1.06	<b>.</b> 050	8		1.55		22	5 2.7	7 .02	.0	8	÷
790		39	č	102		17	11	755		ž	5	ND	2	36	.2	2	2	69			7	25	.69		09	5 2.0				
791													_													7 2.0				<i>.</i>
	1	28	7	64	.2	11	11	592		9	5	ND	3	63	-2	2	2	80		.053	12	23	.69		21					4
792	1	23	5	91	-2	10	9	498	3.41	6	5	ND	3	40	.2	2	2	80	.56	.041	7	19	.44	56	20	3 1.54	.02	.1	3 1	2
793	1	21	6	84		11	8	351	3.56	4	5	ND	3	43	-2	2	2	75	.52	.043	13	21	.46	72	21	2 2.04	.02	.1	3 1	1
794	1	12	7	62	.2	9	7	343		2	15	ND	Ĩ.	29	.2	2	2	53	.30	.039	6	15	.32		13	2 1.6		.0		
795			5				-						*	33	2		2	73	.30	.034	8	21	.35		19	2 1.2				5
795		13	-	- 44		9	7	261		4	5	ND	2	22		2									C				0.0000000000000000000000000000000000000	
796	1 1	24	2	60	- <b>1</b>	14	10	445		6	5	ND	2	52	.2	3	2	78	.66		13	27	.63		19	2 2.13				ż
797	1	34	9	70	.2	18	11	443	4.46	7	5	ND	3	55	.3	2	2	91	.68	.083	15	36	.71	77 .	21	4 3.18	3.02	.1	6 1	3
798	1	45	7	91	1	10	12	549	3.76	<b>f</b>	5	ND	2	41	.2	2	2	82	.57	.041	7	17	.58	79	23	2 2.2	.02	.1	2 1	
799	1	22	7	70	.2	10	8	349	3.18	3	5	ND	3	38	-2	2	2	72	.49	.036	7	20	.34	74 🔍	24	7 1.7	7 .02	.1	2 1	
800	1 1	32	8	70	1	15	11	584		2	5	ND	2	68	.2	2	ž	84	.78	.069	14	30	.68		22	3 2.4				i.
801		37	ŏ		10.00		13	617			-		3	76	.3	ž	2	83	.81	.063	14	32	.80		21	5 2.5				
				72	-2	16				0	5	ND	-																	
802	1	33	5	63	.1	11	10	335	4.53	2	5	ND	3	54	.3	2	2	121	.67	.057	11	28	.58	49	22	3 1.9	5 .02	.1	3 1	
803	1	18	4	53	1	10	15	533	3.42	7	5	ND	2	105	2	2	2	78	.89	.077	12	18	.53	68 .	20	4 1.10				2
804	1 1	36	4	54	ំា	9	10	412	4.11 🎬	3	5	ND	1	50	.3	2	2	89	.74	.052	11	23	.61	52 🔒	21	5 2.1	5 .03	.0	6 1	7
805	1	14	, o	88	1	6		1227		4	5	ND	1	46	.2	Ž	2	38	.54	.031	4	10	.20		11	2 1.2	2 .02	.0	6 2	•
806		20	6	78	.2	11	8	486		4	6	ND	ż	38	2	2	ž	65	.46		7	18	.37		19	6 1.9				•
807			9				-			0.20			3		.2	2	2				ģ	22			21	2 1.9			200000000000000000000000000000000000000	
001		21	8	69	.1	12	10	350	J.44	2	5	ND	د	46	-6	2	2	76	.54	.048	У	22	.46	76 .	<b>5</b> 1	2 1.90	5 .02		•	٢
808	1	16	9	70	.1	12	9	357		8	5	ND	2	49	.2	2	2	75	.57		11	21	.47		20	5 1.92				Ξ
STANDARD C/AU-S	18	61	37	131	7.2	72	31	1052	4.03	3	17	6	39	56	19.9	15	19	59	.52	.088	39	61	.93	183 😳	09	32 1.9	3.06	. 1	4 11	49

Page 6

F

Similco Mines Ltd. PROJET P-06 FILE # 90-1717

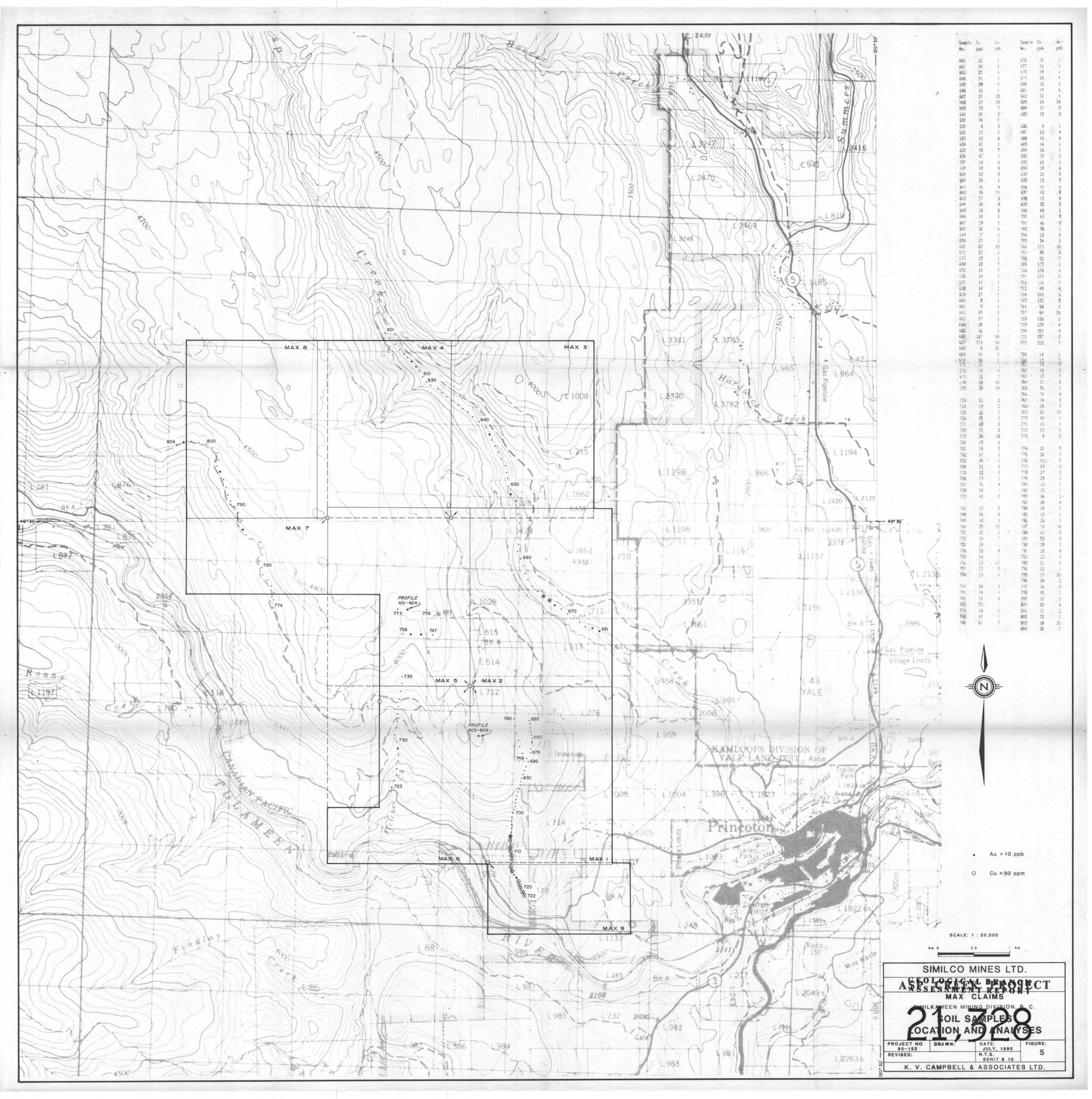
SAMPLE#	No ppm	Cu ppm	Pb ppm	Zn Ag pom pom	Ni ppm	Co ppm	Mn ppm	Fe X	As ppin	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti <b>X</b>	8 ppm	AL X	Na X		Au** ppb
204	1	22	11	71 .2	10	9	1018	2.87	6	5	ND	1	- 46	.2	2	3	61	1.06	.066	11	17	.52	72	.11	2 1	1.34	.02	.05 1	2
205	1	24	8	62 .1	10	5		1.76	4	5	ND	1	92	.2	2	2	36	9.43	.044	5	7	.46	- 38	.08	3	.93	.03	.06 1	1
206	1	17	3	63 .1	12	7		2.66	3	5	ND	1	33	.2	2	2	74	2.25	.038	6	20	.40	- 39	.20	2	.85	.02	.06	1
207	1	22	15	77 .1	21	15	1127	2.32	4	5	ND	2	50	.2	2	2	47	1.06	.052	12	14	.49	81	.11	2 1	1.28	.03	.07 1	1
302	1	12	4	53 .1	7	6		2.13	2	5	ND	1	28	.2	2	2	59	.55	-026	5	15	.30	46	,18	2 1	1.01	.02	.03 1	1
P401	1	11	8	103 .2	5	5	<b>99</b> 8	1.78	Z	5	ND	1	28	.4	2	2	37	.45	.062	3	11	.21	115	.13	2 1	1.41	.02	.10 1	1
P402	1	9	6	76 .2	8	6	390	1.99	3	5	ND	1	20	.2	2	2	42	.31	.049	4	13	.23	71	.16	2 1	1.70	.02	.08 1	1
P403	1	16	12	60 .1	10	9	361	2.93	4	5	ND	1	30	.2	2	2	65	.48	.036	9	22	.44	66	.23	2 1	1.75	.03	.06	1
P404	1	28	7	70 .2	16	12	584	3.90	8	5	ND	1	56	.4	4	5	75	.75	2074	13	30	.76	118	.21	2 2	2.42	.03	.06	2

ACME ANAL TICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL NALYSIS CERTIFICATE

Similco Mines Ltd. PROJECT P-06 File # 90-2650 P.O. Box 520, Princeton BC VOX 1W0 Submitted by: K.V. CAMPBELL


SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As	U	Au	Th	Sr	Cd	SÞ	Bi	V	Ca P	La	Cr	Mg	Ba Ti	B A	Na	ĸ		Au#
	ррп	nqq	ppn	ppm	ppre	ppm	ppm	ppm	% ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	× ×	ppm	ppiit	*	ppm X	ppm 7	<u> </u>	<b>7</b>		ppb
CV-90-152 45	92	5734	48	231	3.4	21	14	2161	2.46 174	8	ND	3	428	3.4	28	2	31	24.16 .017	4	9	.84	5.01	2.69		- <b>**</b> - 23	1	440
CV-90-152 46	1	93	10	53	<b>T</b>	32		_	4.21 55	5	ND	2	353	.8	6	2	• •	10.99 .087	7	54	2.50	0000000000	2 2.20		52		52
CV-90-152 47	1	146	4	42		- 4	9	3737	3.02 21	6	ND	2	331	.6	2	2		19.71 .096	9	3	.81	70 13					2
CV-90-152 48	1	100	7	66	.1	9			4.96 25	5	ND	2	215	.7	5	2	165	4.79 138	9		1.53	146 .07	8 1.90	_			1
CV-90-152 49	1	133	7	58	•1	10	16	1991	4.96 26	5	ND	3	249	.9	5	2	178	11.88 .127	8	8	1.56	32 .20	18 2.8	.03	.03		2
CV-90-152 50	1	39	4	36	.3	14	13	2067	3.09 17	6	ND	3	340	.5	3	2		16.96 .062	4	27		123 .15	5 1.4				1
STANDARD C	19	58	43	132	7.0	72	28	1046	4.08 42	23	8	39	53	18,8	15	20	58	.53 _100	39	60	.96	181 .09	37 1.9	.06	. 13 🐰	11	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Rock AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: JUL 19 1990 DATE REPORT MAILED:

: July 23/90 SIGNED BY......D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS



