FREEMONT GROUP

Omineca Mining Division

British Columbia

DIAMOND DRILLING REPORT

Anthony L'Orsa, F.G.A.C.

Smithers, B.C.

12 July 1991

•

LOG NO:	AUG	09	1991	RD.	
ACTION:					

TABLE OF CONTEMESNO:

Page

1

4

SUMMARY	1
INTRODUCTION	1
LOCATION AND ACCESS	1
PHYSIOGRAPHY	1
CLAIMS AND OWNERSHIP	2
PREVIOUS WORK	2
GEOLOGY	2
DISCUSSION	2
CONCLUSIONS	3
REFERENCES	3
STATEMENT OF COSTS	4
STATEMENT OF QUALIFICATIONS	4
APPENDIX 1: Drill logs	
APPENDIX 2: Analyses	
ILLUSTRATIONS: Location map, following page	1

Claims map, following page

GEOLOGICAL BRANCH ASSESSMENT REPORT

21.34

SUMMARY

A diamond drill hole, 170.69 m in length, intersected an IP anomaly generated by a graphite-bearing fault zone at the contact between amygdaloidal rhyolitic rocks and calcareous andesitic tuffs. Anomalous amounts of fracture-filling Cu, Pb, Zn, Ag, Ba and other metals were found.

INTRODUCTION

A diamond drill hole (A91-1), 170.69 m (560 ft) in length, was drilled on the April 2 mineral claim to test an IP anomaly associated with felsic volcanic rocks. The contractor was J.T. Thomas Diamond Drilling Ltd of Smithers, B.C. An Acker drill (A-21) was used, and the core size is NQ. Water for drilling was obtained from a roadside ditch. The core is stored in Smithers by Habsburg Resources Inc. Geochemical analyses were done by Min-En Laboratories of North Vancouver, B.C.

LOCATION AND ACCESS

The drill hole is 39.4 km east-southeast of Smithers, at about 54° 42' 40" north latitude and 126° 32' 10" west longitude, map area 93L/10, at an elevation of about 1115 m. The Chapman Lake Forest Road provides excellent access all year, from either Smithers or Houston, to the summer-only logging roads that lead to the drill site. The area is generally free of snow from May until late October.

PHYSIOGRAPHY

The area is one of moderate relief, cut by the shallow valley of Guess Creek which is a major northeasterly-flowing stream. Stands of balsam fir and spruce are common in the area, although clearcut logging has been extensive.

CLAIMS AND OWNERSHIP

The Freemont group comprises the following mineral claims:

<u>Claim</u>		<u>Units</u>	<u>Title No.</u>
April	1	12	6161
April	2	16	6162
April	3	2	6163
Chris		20	6135
Fort		8	6167
Mag	1	16	6129
Ophir		15	6174
Oro		10	6188

Habsburg Resources Inc. (formerly Teeshin Resources Ltd), 1200 South Service Road W., Oakville, Ontario, L6L 5T7, is the recorded holder of the claims, subject to several agreements.

PREVIOUS WORK

Mineral exploration work on the Freemont group includes limited prospecting, soil and silt sampling, line cutting, trenching, diamond drilling (L'Orsa, 1989a,b; Price, 1987), and both aerial and ground geophysical surveys (Scott, 1989; Sheldrake, 1985).

GEOLOGY

The claims lie on the Skeena Arch, near the southern edge of the Bowser Basin. The area has been mapped by Tipper (1976) and described by Tipper and Richards (1976) who have assigned the rocks to the Lower Jurassic formations of the Hazelton Group. These formations have been intruded locally by dioritic rocks, and by northwest-striking plagioclase porphyry dykes. Small occurrences of base and precious metals have been found in volcanic and intrusive rocks on the claims (L'Orsa, 1989a,b; Price, 1987).

DISCUSSION

This drill hole tested an IP anomaly (Scott, 1989) in felsic volcanic rocks at a locality where fracture-filling Cu-Pb-Zn-Ag and Ba mineralization have been found. Anomalous, but subeconomic, amounts of Ag, Cu, Pb, Zn, and other metals were discovered, mainly in a graphitic fault zone that appears to have caused the IP response. The fault zone marks the contact between amygdaloidal felsic volcanics and generally calcareous andesitic tuffs. Three corrected whole rock analyses of the felsic rocks plot near the rhyolite/trachyte boundary on a TAS diagram (Sabine, 1989), with two on the rhyolite side (4479, 4480) and one on the trachyte side (4481). Whole rock analyses (4482, 4483) of samples collected below the contact fault plot in the andesite field.

-2-

CONCLUSIONS

The drill hole tested an IP anomaly at a contact between amygdaloidal rhyolitic rocks and andesitic tuffs. The IP anomaly was generated by a graphitic fault zone, weakly mineralized at the point of intersection.

REFERENCES

- L'Orsa, A., 1989a, April group, Omineca Mining Division, British Columbia, diamond drilling report: Assessment Report 18909, 18 p.
- _____1989b, Chris group, Omineca Mining Division, British Columbia, diamond drilling report: Assessment Report 18910, 14 p.
- Price, B., 1987, Dome Mountain gold property (April, Chris, Mag, Fort, Ophir, Sally, Ben, West Dome claims): Report for Freemont Gold Corp., 25 p.
- Sabine, P.A., 1989, Setting standards in petrology: The Commission on Systematics in Petrology: Episodes, v. 12, p. 84-86.
- Scott, A., 1989, Geophysical report, induced polarization/ resistivity surveys, Dome Mountain property, Smithers area, Chris, April 1, April 2, April 3, and Mag 1 claims ...: Assessment Report 19923, 16 p.
- Sheldrake, R.F., 1985, Report on a helicopter-borne multifrequency electromagnetic and magnetometer survey in the Dome Mountain area, British Columbia: Assessment report 13707, 41 p.
- Tipper, H.W., 1976, Smithers map area, British Columbia: Geol. Survey of Canada, O.F. 351 (geological map).
- Tipper, H.W., and Richards, T.A., 1976, Jurassic stratigraphy and history of north-central British Columbia: Geol. Survey of Canada, Bull. 270, 73 p.

STATEMENT OF COSTS

DIAMOND DRI	ILLING:	170.69 m	(all	inclu	ded)	\$13,212.36
GEOLOGIST:	A. L'O	rsa, superv	vision	and r	eport	1,725.00
ANALYSES:	12 ICP	and 5 whole	e rock.	••••		398.84
						\$15.336.20

STATEMENT OF QUALIFICATIONS

I, Anthony T. L'Orsa of Smithers, British Columbia, hereby certify that:

- I am a geologist with business address at Adams Road, R.R. 2, Smithers, B.C., VOJ 2NO.
- 2. I am a graduate of Tulane University, New Orleans, Louisiana, U.S.A., with the degrees of B. Sc. (1961) and M. Sc. (1964) in geology.
- 3. I have practised my profession in mineral exploration since 1962 in western Canada, Australia and Mexico.
- 4. I am a fellow in good standing of the Geological Association of Canada, and a member of the Society for Geology Applied to Mineral Deposits.

Anthony L'Orsa

APPENDIX 1

ł

Diamond Drill Logs

TITUDE EVATION ARTED8	DEPARTURE <u>5 m ± azimuth 090°</u> DIP <u>-45°</u> <u>April 1991</u> FINISHED <u>21 April 1991</u>						LOGGE	D BY	<u>A. Lo</u>	esa
METRES		1		SAMF	,ΓE				ASSAY	s
ROМ ТО	DESCRIPTION		NO. SULP	H-FROM	TRES TO	TOTAL	76	ж	AU-PPS	Ag-PPN
0 6.10 6.10 7.31 7.31 75.65	CASING (pulled) BARITE - QUARTZ VEIN. Coerree, white be fills numerous fractures in white quartz Small amounts of Fo & Ha Oxides. #4467 composite Sample of Vein RHYOLITE. Hematilice. Porphyritice. Approx. 14 (E = 3 ha) lath - shaped white faldspar crystells generally make up = 2% of the rock. The matrix is very fine. grained, A ango oidal. The anggedules are generally a (e.g. 144) & are megascopically difficult 4 idailify. They are filled with clear g & have red hematite rims. Locally the anggedules are glowing the	conto vein. del. fuell o uetz the	467 40.	1 6.4	7.3	6.90			5	0.2

FORM 1

DIAMOND DRILL RECORD

 NAME OF PROPERTY
 April
 (Freemant Grosp)

 HOLE NO.
 A91-1
 SHEET NO.
 2 g 7

 SAMPLE
 ASSAYS
 T

METR	ES	DESCRIPTION			SAMP	E				ASSAYS		
FROM	то	DESCRIPTION	NO.	% SULPH	FROM	TETRES	TOTAL	ه،	7.	OZ/TON	UZ TON	
6.55	75.65	RHYOLITE (cart.). Colour is almost always a										
		shade of red, generally pregist red to blackish										
		red. In places, the core is a mottled pole										
		brownish red & blackish red. Locally the colour										
		is medium grey. In & around fault										
		zones, the rock is bleached to pale red,										
		pale alive or light yellowish grey - especially										
		73.56-75.65 n where an extensive zone	-									
		of faulting marks the base of the wait.										
		The RQD is high, except in faulte.										
		See whole rock analyses # 4479, 4480 & 4481										
		in appondix.										
		· Metallie Minerals. Very small amounts of										
		chaleopyrite present in fracture - controlled										
		dissemin etime, & diss. in bence - quarty vene. For amor chalcopyriti - dark chlorite veiklets." Pyrite in found in very minor amounts as										
		diss. & practure fillings in fault zones.										
		Specularite in minor dies. & local free. fill.										
		Red hematile is common.		,								
		Rock is weakly magnetic locally.										

FORM 2

LANGRIDGES - TORONTO - 366-1168

DIAN

METRES FROM

			н	DLEN	oA9	1-1		Sн	EET NO.		q 7	
TRE	s I	DESCRIPTION			SAMP	LE				ASSAYS		_
4	то	DESCRIPTION	NO.	% SUL PH	FROM	METRES	TOTAL	7	7	OZ / TON	UZ TON	
55	75.65	RHYOLITE (cont.).										
		. Veins. <u>Barite - quartz</u> veins, some with										
		mi. chalcopyrite in the vein & in wallrock,										
		are present; notably at 22.25-22.33 n										
		(60° to core axis), 30- 30.4 (± 2.5 cm m.d., sub-										
Ì		perallel to core), 39.7- 39.76, 43.93- 43.96,										
		46.30-46.60 (@ 20° to c.a.), 48.11-48.22 (45° to ch										
		51.80-52.33 (irregular fracture filing sub-paral. to CA)										
		54.35 - 55.20 (top contact @ 20° to Coro Axis),										
		Cartonaly (se carto >> calente) vembers are										
		Common, D-70° to CA generally, Typically										
		= then in diameter tuctudes gash verniers.										
		averat for the second former yours are										
		3597, 36 50 Q 40° to and avi										
		39.28-39.38 39.42 29 18 10 40 10 40										
		\$1.25- A1.35 A1 LA- A1.67										
				٠		1			1			

3

#²

FORM 2

LANGRIDGES - TORONTO - 366-1168

1

DIAMOND DRILL RECORD NAME OF PROPERTY April HOLE NO. A9(-1 4 47 SHEET NO. METRES SAMPLE ASSAYS DESCRIPTION % SULPH METRES FROM то NO. AU PPO AS PPM Zu 1. ζuž P6" FROM TOTAL IDES 6.55 75.65 RHYOLITE (cont.). Elongated anygolules in places give the core a bended appearance, especially at 32.9 m (e 55° to core axin), \$ 43.60 - 48.0 (which rode analysis # 4481 - trachite). Lowest evidence of banding noted at \$1.60. · Submit. 67.75-69.90 Tuff, andesitic to falsie. Dark red to dark gray. Weakly magnitic. clasts generally 4 1mm. Bottom contact at 30° to core axie. Looks like first appearance of whit below. . Analyses (ICP; An fire + dA) #4468 - vein of white barite & white to chear quest, 4468 0 19.51 19.53 +~ 0.Z 2 cm tr ++ # 4469 - proite in < Ina vein. Vfg py dies. in joints 0.4 0.046 4469 41 27.58 27.68 16 " tr +-2 ++ 1.9 ++ 54.86 54.96 # 4470 - barite fracture filling. Hi. dis. chalcopy. 4470 41 10 . 0.069 1.1 0.023 4471 41 # 4471 - sheared, bleached rhyolite; shear @ 35° to CA t٣ 0.034 75.23 75.33 10 " 3.5 0.586 # 4472 - contact faulty. Graphite abundant. 60" to ch (4472 21 tr 0.019 77.33 77.43 10. 14 . RQD. High , except in fault zones.

FORM 2

FOR

DIAMOND DRILL RECORD

NAME OF PROPERTY April HOLE NO. <u>A91-1</u> SHEET NO. <u>5 9 7</u>

METR	ES ·	DESCRIPTION			SAMP	LE				ASSAYS		
FROM	то	DESCRIPTION	NO.	% SULPH	FROM	TETRES TO	TOTAL	2	~	OZ/TON	UZ. TON	
73.50	79. 25	FAULT ZONE. Harks the rhyolite / andesitie										
		tuff contact & extends into both whits.										
		= 40° - 60° to core axis. Highly actored ->										
		light dive grey to yellowish grey. Huch										
		sheared. Local fault braccia. Local fault										
		gouge, especially 75.50 - 76.20. Queity -										
		carbonate veins common. Hinar very fine.										
		grained disseminated pyrite & hematite.										
		Local graphite (1. P. anomaly), & Local chlorite										
		on slick ansiden. See ICP analyces # 4471 -72										
		(above) of #44.73 (below).										
75.65	170.69	ANDESITIC TUFFS. Generally fine grained										
	EOH	in appearance (local lepilli "ghosts" suggest										
		cogpto coarse sections), & calcareous. Colsite										
		is normally present in matrix & in veinlete.										
		Local coarse lithic try with a few lapilli.										
		Local, thin, coystal tuffs (fildspor gen. 2 1 MM)										
		with lithic fragmente & chlorite + quartz in matrix										
		(dacite?). Marine fossil (?) @ 120 M (palesypod,										
		1.4 x O. 8 cm, Plauromyidae ??).		۲ ۲								
		RAD high, except is fault zone.										

FORM 2

DIAMO

		IN WRITE UFAND	н	OLE NO	bA	91-1			EET NO.		69
METRES		OFSCRIPTION			SAMP	LE				ASSAYS	r
ом	то	DESCRIPTION	NO.	% SULPH	FROM	TO TO	TOTAL	7.	~	OZ/TON	OZTON
5.65 17	0.69	ANDESITIC TUPPS (cart.).									
(E	6н)	· colours . Med. light grey to grezish black . Hed . light to sud . grey			1						
		predominate below 145 m. Includes local greenish going									
		to greenish black of dark tet.						l			
		. clasts. Includes pale cline, queenish grey of reddish clasts.									
		some of the reddich clasts are gelice. Augular to									
		rounded. Some contain heavily dies. pyrite.									
		· Metallic minarals. Pyrite common as the (e.g. 0.14m)									
		diss. Cubic of proitakedral x15 noted. Few narrow results									
		Generally LIN , 45%									
		. Veins, gaugue. Caleite veinlets, white to clear, are									
		common. Randy exceed I cm. Gamerally (?) 30°-									
		45° to core axis; range 0°-90° in at									
		least two populations.									
		. structure. See fault zone above.									
		Fault breecia 87.35- 87.54 @ 30° to core axis.									
		Badding. 80.30 @ 50° CA, Coare tuff. 109.73 - 40°									
		138 ··· 16° ··· _··		e.							
								1			

FORM 2

LANGRIDGES - TORONTO - 366-1168

÷

DIAMO

METRES

75.65 170.69 EOH

то

FROM

ND DRILL RECORD	и Н	AME O		RTY A	mil	ѕні	EET NO.	7	/7
DESCRIPTION	NO.	3 SULPH	SAMPL	ETRES			7. 1	ASSAYS	
NDESITIC TUFFS (cont.).		IDES	FROM	то	TOTAL		24	40 999	NS PPN
Analyses (ICP).									
# 4473 Contact fault zone. Composite, graphite section	4475	<u> </u>	78.75	79.25	0.5	0.04	0.27	3	2.9
# 4474 Pyrite, dies. of joint filling in dark red tuff.	4474	3	84.0	84.10	0.1	1 ++	++	13	6.9
4 4475 Py, diss., most < 0.5 nn. Cacos die. sheared yn sy tuff	4475	2	108.10	108.20	0.1		-	5	1.2
# 4476 Py, ned. dk gray tuff	4476	2	118.7	118.8	0.1			7	1.1
# 4477 Py, cubic, dies. & lining Q2 veins. light alive your try	4477	£ 5	150.84	150.96	0.1		••	5	0.9
# 4478 Py, dies, Vfg (±0.1 mm), in Vfg (clasts gen ≤ 0.2 m	4478	2	164.57	164.47	0.1			3	0.7
med. light goen calcaroous tuff. Cacoz									
abundant in matrix.									
#4482-3 : Whole rock, appendix.									
							1		

LANGRIDGES - TORONTO - 366-1168

APPENDIX 2

1.2.6.19

1

Analyses

COMP: TEESHIN RESOURCES LTD.

MIN-EN LABS - ICP REPORT

FILE NO: 15-0030-RJ1

DATE: 91/05/06

-

كالمكتب الكاليا الكلا

ATTN: A. L'ORSA

PROJ: DOHE

-

705 WEST 15TH ST., NORTH VANCOUVER, B.C. 47N 1T2 (604)980-5814 OR (604)988-4524

* ODRE * (ACT:F31)

	SAMPLE NUMBER	AG PPN	AL PPN	AS PPN	B PPM	BA PPN	BE PPN	BI PPN	CA PPN	CD PPM	DO PPN	CU PPM	FE PPN	K P p m	LI PPH	NG I PPN	MN P PN	nd PPN	NA PPN	N I PPN	P PPN	PB PPN	Sib Pipim	SR PPH (TH P PN I	U	V PPH	ZN PPN	GA PPN	SN PPH	PPM	CR / PPN	PPB
the subscript of a second of	4467 4468 4469 4470 4471	.2 .2 .4 1.9 1.1	90 80 2090 360 2600	13 13 12 6 14	22 1 12 15 12	3903 4051 1093 3344 774	.2 .1 .5 .2 1.1	1 1 1 1	260 240 14270 15830 63720	.2 .1 .6 .1	2 2 18 2 14	4 2 16 692 64	1330 2770 21880 6340 30050	10 10 1870 320 1860	1 1 1	40 40 5630 410 40470	54 89 1925 392 2304	3 1 7 1	10 10 10 10	3 6 2 1 9	40 20 390 230 390	8 22 16 23 342	2 1 1 2 18	101 123 12 106 152	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1.1 1.1 7.5 4.5 20.0	27 8 456 41 229	1 1 1 1	1 1 1 1	1 6 5 1 1	71 210 165 41 47	5 3 2 4 6
	4472 4473 4474 4475 4476	3.5 2.9 .9 1.2 1.1	3150 2930 22060 19280 8530	232 92 1 25 59	12 14 20 14 10	277 253 91 117 107	1.0 .5 1.2 .7	1 2 1 2 2	56610 75670 48340 65440 77710	18.1 12.1 .1 .1	10 7 16 19 10	55 24 35 23 21	27670 21750 51680 40830 21180	1560 1310 2420 310 180	1 19 23 1	30390 10190 24040 17320 8870	1137 1086 468 832 888	15 22 1 1	10 10 10 10 10	16 16 5 19 11	790 1100 2450 2350 4110	186 405 26 22 37	7 8 1 1 2	41 44 3 16 2	1 1 1 1	1 1 1 1 1	16.0 11.1 56.4 90.0 38.0	5864 2717 113 105 31	13144	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1	64 71 48 69 47	14 3 13 5 7
	4477 4478	.9 .7	20140 1170	40 30	8 9	54 74	.6 .2	1	56430 66960	.1	21 7	49 13	40760 9570	270 300	7	23320 2860	785 436	1	10 10	37 10	1720 1980	29 34	1 2	9 1	1	1	116.8 10.7	268 27	1	1	2	95 35	5 3
						<u>.</u>													<u>.</u>					_							•		
																										<u></u>			<u>.</u>				
													•																				
			<u></u>																		- <u>.</u>									<u>.</u>			
																											<u></u>						
																<u></u>																	
															<u></u>																		
		i																															

COMP: TEESHIN RESOURCES LTD.

MIN-EN LABS - ICP REPORT

FILE NO: 15-0030-RL1

PROJ: DONE

ATTN: A. L'ORSA

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7N 112 (604)980-5814 OR (604)988-4524

* CORE * (ACT:F26)

DATE: 91/05/06

SAMPLE NUMBER	AL 203	BA X	BE X	CAO X	00 (X	CR203	CU X	FE203	K20 X	MGO X	1002 X	MO X	NA20 X	N8 X	W] X	P205	PB X	RE S X	102 X	SM X	SR X	T102	Y X	u X	ZN X	ZR
4479 4480 4481 4482 4483	12.77 12.53 13.70 10.35 11.08	.005 .630 .005 .005 .005	.001 .001 .001 .001 .001	1.69 1.27 1.29 7.71 8.15	.005 .005 .005 .005 .005	.03 .02 .02 .01 .01	.005 .005 .005 .005 .005	3.03 2.79 4.32 7.57 8.15	6.61 7.04 8.95 .58 .59	.40 .33 .41 4.44 4.78	.15 .12 .09 .09 .10	.005 .005 .005 .005 .005	3.33 2.70 1.72 2.46 2.60	.01 .01 .01 .01 .01	.005 .005 .005 .005 .005	.01 .01 .01 .41 .39	.005 .005 .005 .005 .005	.01 68 .01 69 .01 66 .01 50 .01 53	.33 .31 .17 .11 .56	.005 .005 .005 .005 .005	.01 .01 .01 .01 .01	.44 .43 .50 .57 .61	.005 .005 .005 .005 .005	.005 .005 .005 .005 .005	.015 .010 .025 .005 .005	.010 .010 .010 .005 .010
												_														
											-															
																		_								
																					<u></u>					
						<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>																				
																										-1

. . . .

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

THUNDER BAY LAB.: TELEPHONE (807) 622-8958 FAX (807) 623-5931 SMITHERS LAB .:

TELEPHONE/FAX (604) 847-3004

Analysis Certificate Geochemical 1S-0030-RG1

TEESHIN RESOURCES LTD. Company:

Project: DOME A. L'ORSA Attn:

Date: MAY-10-91 Copy 1. TEESHIN RESOURCES, OAKVILLE, ONTARIO 2. TEESHIN RESOURCES, SMITHERS, B.C. 3. MIN-EN LABS., SMITHERS, B.C.

He hereby certify the following Geochemical Analysis of 5 CORE samples submitted APR-23-91 by MIN-EN SMITHERS LAB.

and the contract of the second s	
.02	
.02	
. 01	
.48	
.31	
	.02 .01 .48 .31

Certified by

