			a constant of a constant second
	LOG NO:	0527	RÚ
	ACTION:		
REPORT ON THE			
TIC GROUP (TIC 6-7, ARC 8-9 MIN ARC 10 GROUP (ARC 10, TIC 8-9 MIN	ERAL CL	AIMS) LAIMS)	
1990 GEOCHEMICAL SAMPLING	PROG	ANVOV 22	1991 RD.
	ACTION		Sterre .
ISKUT RIVER AREA LIARD MINING DIVISI BRITISH COLUMBIA	ON THE N		1131151
56°48' NORTH LATITU 130°46' WEST LONGITU N.T.S. 104 B/15		VED	
	MMY 6 Gold Comm VANCO	2 3 1991 hissioner's Uthce DUVER, B.C.	

Work Period:

July 1, 1990 to September 15, 1990

Owner and Operator:

KESTREL RESOURCES LTD. 506 - 675 West Hastings Street Vancouver, B.C. V6B 1N2 (604) 683-9177

By:

S. J. Tennant

May 10, 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

L.35

TABLE OF CONTENTS

INTRODUCTION	1
LOCATION, ACCESS AND TOPOGRAPHY	1
PROPERTY AND LIST OF CLAIMS	2
AREA HISTORY	2
REGIONAL GEOLOGY	3
PROPERTY GEOLOGY	5
GEOCHEMICAL PROGRAM	5
DISCUSSION OF RESULTS	6
RECOMMENDATIONS	7
BIBLIOGRAPHY	8
STATEMENT OF QUALIFICATIONS	9
PROGRAM COSTS	10

List of Figures

•

Figure 1	Index Map
Figure 2	Claim Map; Scale 1:50,000
Figure 3	Regional Geology; Scale 1:200,000
Figure 4	Property Geology; Scale 1:50,000
Figure 5	Sample Location Map; 1: 1 0,000

In pocket

List of Appendices

Appendix I Appendix II	Sample Assay Results Sample Descriptions

INTRODUCTION

During the summer of 1990, Kestrel Resources carried out a lithogeochemical sampling program on a selected area of the ARC-TIC claims, located 10 kilometres southeast of Newmont Lake, within the Liard Mining Division of northwestern British Columbia.

The claims are accessible by helicopter from a base camp at the Forrest Kerr airstrip located 15 kilometres to the north. A total of 86 rock chip samples were collected.

The claims are predominantly underlain by a composite Jurassic intrusive with a wedge of Paleozoic metavolcanics-metasediments and limestone outcropping in the eastern part of the claim block.

Results of the 1990 exploration program are discussed in the text of this report and the data plotted on the accompanying map.

LOCATION, ACCESS AND TOPOGRAPHY

The claims are located approximately 10 kilometres southeast of Newmont Lake within the Liard Mining Division of northwestern British Columbia. Access to the property is via fixed wing aircraft from Smithers or Terrace to Bronson, which is located 110 kilometres northwest of Stewart, or the Forrest Kerr airstrip located at the headwaters of the Forrest Kerr River. Access from Bronson or Forrest Kerr is via helicopter and via foot traverse within the claims.

Most of the property is accessible by foot or helicopter. Elevations range from 900 metres to 1,800 metres A.S.L. Above 1,200 metres the claims are devoid of vegetation except grasses and shrubs, and exhibit abundant outcrop. Below 1,200 metres, the usual coast mountain evergreens, alder and devils club predominate. Precipitation exceeds 4,000 millimetres annually; temperatures range from -40° to $+25^{\circ}C$

PROPERTY AND LIST OF CLAIMS

<u>Claim Name</u>	<u>Record No.</u>	<u>No. of Units</u>	Record Date	Expiry Date
TIC 6	4505	20	Feb. 24, 1988	Feb. 24, 1991
TIC 7	4506	12	Feb. 24, 1988	Feb. 24, 1991
TIC 8	4507	20	Feb. 26, 1988	Feb. 24, 1991
TIC 9	4508	12	Feb. 24, 1988	Feb. 24, 1991
ARC 8	4497	20	Feb. 24, 1990	Feb. 24, 1991
ARC 9	4498	20	Feb. 24, 1990	Feb. 24, 1991
ARC 10	4499	20	Feb. 24, 1990	Feb. 24, 1991

So far as the writer is aware, the claims were properly staked and recorded and are in good standing as indicated by the expiry dates.

AREA HISTORY

The first recorded work from the Iskut River region was in 1907 when a staking party from Wrangell, Alaska recorded nine mineral claims north of Johnny Mountain. The Iskut Mining Company worked the claims and in 1917 shipped a ton of high grade ore which reportedly assayed \$1.20 gold, 44.2 ounces silver and 12.45% copper (B.C.M.M.A.R., 1917).

In 1954 Hudson Bay Mining and Smelting Limited discovered high grade goldsilver-lead-zinc mineralization, known as the "Pickaxe" showing, on the slopes of Johnny Mountain.

Throughout the 1960's several major mining companies undertook reconnaissance prospecting and exploration programs in search for porphyry copper-molybdenum deposits resulting in the location of several claims on Johnny Mountain and on Sulphurets Creek.

Skyline Exploration Limited staked the Inel property in 1969 following the discovery of massive sulphide in float on the Bronson Creek glacier. In 1980 the company

staked the Reg property. During the 1980's, Skyline has developed both these properties discovering high grade veins and polymetallic massive sulphide mineralization on the Inel and Reg properties.

The joint venture partners of Cominco Ltd. and Prime Resources Corporation have developed their Snip property which is located immediately north of the Reg property on the northern slopes of Johnny Mountain. The combined geological reserve for the Snip property is 1,000,000 tons grading 0.80 opt gold.

Other advanced prospects currently undergoing intense exploration efforts in the area include Gulf International Mineral Ltd.'s Inel and McLymont properties, Placer Dome Ltd.'s Kerr porphyry copper-gold deposit and Calpine's Eskay Creek gold deposit, as well as the redevelopment of the Silback Premier/Big Missouri mines by Westmin.

The discovery of the Eskay Creek gold prospect in November 1988 has done much to stimulate exploration activity in the Iskut region. Drill hole intersections varying from 5 to 10 metres (16 to 33 feet) and grading to 100 grams gold per tonne (2.92 opt) with an average 1,000 grams or more of silver per tonne (29.2 opt), are not uncommon. The Eskay Creek deposit is probably the most significant precious metal deposit discovered in British Columbia.

Recently completed road access studies has resulted in a proposed shared cost road which would commence at the Stewart-Cassiar highway near Bob Quinn Lake and extend into the Iskut Valley.

REGIONAL GEOLOGY

Generally the area consists of a northerly trending succession of Upper Triassic and Jurassic volcanic and sedimentary rocks underlain in part by Paleozoic volcanic and sedimentary units. All of these units have been intruded by Mesozoic and Tertiary intrusive rocks and cut by extensive fault zones. These country rocks form the Stewart Complex bounded on the west by the main Coast Plutonic Complex, and on the east by the Bowser Basin sedimentary assemblage.

LEGEND

QUATERNARY

STRATIFIED ROCKS

MIDDLE TO UPPER JURASSIC BOWSER LAKE GROUP JBp

Į

IURASSIC	
Ju	

UNDMDED VOLCANICS AND SEDMENTS

Jłw	
dvL	

SRICEOUS WACKE, TUFF, CONGLOMERATE PILLOW BASALT, BRECCIA FLOWS, SAUCEOUS SEDIMENTS

- Upi SHALE, SANOSTONE, LESSER LIMESTONE, TUFF

UPPER TRIASSIC STUHINI GROUP

URVI	MAROON AND GREEN EPICLASTICS, AUGITE AND PLAGIOCLASE-PHYRIC VOLCANIC BRECCIA
u'hvp	DARK GREEN PLADIOCLASE PHYRIC /LOWS
u'hva	OREY-GREEN APRIMITIC TUFF

UAW

TUFFACEOUS WACKE, ARGELITE, LIMESTONE, CONGLOMERATE WITH LIMESTONE CLASTS, PLAGIOCLASE-PORPHYRITIC ANDESTE

MIDDLE TRIASSIC

m'As CARBONACEOUS CALCAREOUS SETSTONE

PALEOZOIC STIKINE ASSEMBLAGE

WESTERN ASSEMBLAGE

FELSIC WELDED TUFF, VOLCANIC SANDSTONE AND SILTSTONE, RHYOLITE FLOWS

THIN LAMINATED, GREY ALGAL LIMESTONE

- Pvb INTERMEDIATE TUFF AND EPICLASTICS, MARCON LANAR, BRECCIA FLOWS
- Pci MEDIUM-BEDDED BIOCLASTIC LIMESTONE WITH CHERTY INTERBEDS

MISSISSIPPIAN

Mct

Mv

SILTSTONE, SANDSTONE, TURBIOITES, LESSER LAPILLI TUFF

POLYMICTIC VOLCANIC CONGLOMERATE

INTERBEDOED SRICEOUS SILTSTONE AND LIMESTONE, THICK-BEDDED CRINOIDAL

PILLOW BASALT, HYALOCLASTITE, ASHFLOW FELSIC TUFF

EASTERN ASSEMBLAGE

PERMIAN Pic

Pc

INTERMEDIATE TO MAJIC META-TUFF, THIN-BEDDED UMESTONE AND METASEDIMENTS

MEDIUM-BEDOED BIOCLASTIC LIMESTONE

PERMIAN AND OLDER

Pms . SAUCEOUS TURBIOITES, PHALITES, LESSER CHERTY TUFFS

Pmv MATIC TO FELSIC METAVOLCANICS, METASEDIMENTS, LIMESTONE LENSES

LOWER DEVONIAN

IDC LIMESTONE, SILICEOUS TUFF

INTRUSIVE ROCKS

CRETACEOUS AND YOUNGER (7)

PLAGIOCLASE OUARTZ PORPHYRY

JURASSIC

PINK HORNBLENDE BIOTITE GRANTE OUNRIT MONZONITE

HORNBLENDE DIORITE, HORNBLENDE DUARTZ DIORITE

EARLY JURASSIC

	۹Jm	
--	-----	--

HORMBLENDE-PLAGIOCLASE-PORPHYRITIC MONZONITE, SYENITE

PALEOZOIC ¥qd

DEFORMED HORNBLENDE QUARTE DIORITE

ALTERED DIORITE

y relationships and as

Since 1948, Government workers have attempted to clarify relationships and assign ages to various lithological units of the area. Work completed by Kerr, 1948, <u>G.S.C.</u> <u>Memoir 246</u>; G.S.C. maps <u>9-1957</u>, <u>1481-1979-Iskut River</u>, and Grove, E.W., 1986, <u>Bulletin No. 58</u> B.C. Department of Mines, form the basis of earlier government mapping. Recently work completed by the G.S.C. - <u>Open File o. 2094 (1989)</u> and the B.C. Department of Mines <u>Open File 1990-2</u> has greatly enhanced the geological data base.

The oldest known rock of the area are limestone, dolomite and low grade metamorphosed sediments (quartzite, slate, phyllite) of Lower Cambrian age that have been correlated with the Cache Creek Group prevalent in the southern half of the province. The limestone unit contains fossil crinoids and is unconformably overlain by Upper Triassic Hazelton volcanics and sediments.

Overlying the Triassic Hazelton volcanic-sedimentary assemblage is a similar group of volcanic-sedimentary rocks of Middle Jurassic age tentatively named the Betty Creek Formation.

Cretaceous to Tertiary Coast Plutonic intrusions of granite, granodiorite and diorite occupy large portions of the map area. In addition, smaller bodies of monzonite or syenite, as well as subvolcanic acidic porphyries, are sparsely distributed.

Tufa, hot spring deposits and pyroclastic material of Pleistocene and Recent age occur at several localities within the area, notably at Hoodoo Mountain.

The foliated rocks, present in the area, are not of great lateral extent and owe their origin to low grade metamorphism, rather than high temperature regional metamorphism.

Structurally, the map area is bisected by a prominent thrust fault along the Iskut River from Forrest Kerr Creek to the Stikine River Junction. The thrust separates unconformably, Mississippian-Pennsylvanian rocks from middle Jurassic strata and is thought to override rock formations to the south. Regionally, a dominant northeast trending and a subdominant northwest trending faulting system complicate the local geology, especially where folding of the strata, which is common, has occurred.

PROPERTY GEOLOGY

Open File Report No. 1990-2 - <u>Geology, Geochemistry and Mineral Occurrences of</u> <u>the Forrest Kerr-Iskut River Area, Northwestern British Columbia</u>, prepared by the British Columbia Department of Mines and released in the winter of 1990 describes the geology of the ARC-TIC property at a scale of 1:50,000 and reveals the distribution of Middle and Lower Jurassic volcanic-sedimentary rocks and their associated Coast plutonic intrusions. These rocks are significant in that a number of the precious metal vein occurrences such as the Big Missouri, Silbak-Premier and Sulphurets deposits are associated with them.

Figure 4 shows the location of intrusive rocks underlying the claims and surrounding area, as well as nearby volcanic and sedimentary units of Paleozoic age. Majority of the Jurassic intrusive phase that underlies the claims is a quartz-rich granitoid suite comprised principally of biotite granite. The granite is coarse- to medium-grained and deeply weathered producing a rubbly outcrop surface. In the southeastern part of the claim block is an older (age unknown) medium grained, locally foliated and altered hornblende quartz diorite. Paleozoic metavolcanics-metasediments and limestone outcrop as a wedge on the eastern margin of the claim block. The limestone unit is the oldest known unit in the Paleozoic assemblage. Interbedded with the limestone are pebble conglomerate, siliceous and carbonaceous shales and both mafic and felsic tuffs.

1990 EXPLORATION PROGRAM

The 1990 exploration program was undertaken to assess the exploration potential of a selected area on the ARC-TIC claims. The field program was conducted during the month of July.

Access was via helicopter (provided by Northern Mountain Helicopters) from a base camp at Forrest Kerr Airstrip some 15 kilometres to the north. Field work was conducted by employees of Kestrel Resources Ltd. under the supervision of the author. A total of 86 rock chip samples was collected.

LEGEND for Figure 4

(geology from BCMEMPR Open File 1990-2, J Logan, V Koyanagi and J Drobe)

Quarternary

Ry recent volcanics.

upper Triassic Stuhini Group

uTS undivided volcanics and sediments.

uTSwcg marcon volcanic conglomerate with limestone closts

Permian and Older Eastern Stikine Assemblage

Pms

Pmv

metasediments and minor limestone; sitistones are grey to light green phylitic and interlayered with graphic anglite and sliceous phylite and thin lenses of dark brown limestone; green and white sliceous turbidite couplets and cherty tulls (Pmst) occur high in the stratigraphy

matic to felsic metavolcanics, rare limestone lenses; variably folated to schistose, purple to dark green plagioclase porphyritic flows and tuffs

lower Devonian Eastern Stikine Assemblage

Dc

deformed coraline limestones; lesser interbedded pebble conglomerate, siliceous and carbonaceous shales and both malic and felsic tuffs

INTRUSIVES

Jurassic and younger

g	biotite granite; pink coarse to medium grained, equigranular, to 'quartz eye' parphyritic, less commonly hornblende is the matic constituent, quartz exceeds 30 percent, quartz rich phases (50 percent) are spatially related to fault structures
Jqm	hornblende quartz manzonite to manzonite; coarse to medium grained hornblende averages 20 percent as 5 millimetre crystal laths and pokilitic clots, biotite where present is fine grained and less than 5 percent
Jd	hornblende diorite, hornblende quartz diorite; hornblende is chloritic and comprises more than 40 percent of the rock

middle Jurassic

	Jdi	diorite to gabbro; coarse grained, occurs as stocks and sils, plogioclase crystals are euhedral and subhedral acicular clots which impart a distinctive felty interlocking texture, these subvolcanic intrusions may represent feeders to the pillow basats (not on this map)
early	Jurassic	
	eJg	hornblende biotite potassium feldspar megacrystic granite
age	unknown	
	qd	homblende quartz diorite; medium grained, locally folioted and attered, contains irreaular malic inclusions (up to 100 centimetres) of amphibolite
	d	diered dorite

The lithogeochemical samples were properly bagged, described and labelled in the field. Later, they were shipped by air and ground freight to Vangeochem Lab Ltd. in Vancouver, B.C. for analysis under the supervision of professional assayers. All of the samples were analyzed for gold using fire assay and atomic absorption procedures, and for a 25-element suite by inductively coupled argon plasma (ICAP) methods.

At Vangeochem Lab Ltd., each rock sample was ground to -100 mesh and an 0.5 gram pulp was digested with 5 millilitres of 3:3:1 hydrochloric acids to nitric acid to water at 95°C for 90 minutes, and then diluted to 10 millilitres with water. The resulting precipitate was then analyzed by ICAP methods for: silver, aluminum, arsenic, barium, bismuth, calcium, cadmium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, lead, antimony, tin, strontium, uranium, tungsten and zinc.

A 20.0 to 30.0 gram pulp was split from each of the ground samples, mixed with flux, fused at 1,900° to form a button, and subsequently digested in an aqua regia solution. This solution was then analyzed for gold by a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp.

Prospecting traverses and all sample locations are shown on Figure 5 of this report. The lithogeochemical sample descriptions and analytical results accompany this report as Appendices I and II respectively.

DISCUSSION OF RESULTS

A total of 12 man days was spent lithogeocheming a selected area of the ARC-TIC claims. As the majority of the property is underlain by Jurassic intrusives varying from biotite granite to hornblende quartz diorite, the lithogeochem program was designed to check the contact areas between the intrusives and the wedge of Paleozoic metavolcanics and metasediments on the eastern part of the claim block. It is a known fact that Paleozoic metasediments and volcanics in the immediate vicinity are known to carry gold-bearing quartz veins as at Kestrel (KRL claims) to the south and Avondale's Forrest claims to the east. Both Kestrel and Avondale completed diamond drill programs on their respective properties in 1990.

Generally assay results did not return significant values in gold or silver. Only two samples assayed better than 100 ppb gold, with the average value about 20 ppb gold. Silver assays averaged less than 1 ppm. Base metal analysis done by ICAP show that copper and zinc values tend to be erratic however, samples 92863 and 92866, taken in a skarn, assayed up to 2% zinc with coincident arsenic values greater than 2,000 ppm.

The metavolcanic-metasedimentary assemblage is cut by northeast-southwest trending shears and fractures. Mineralization is composed of pyrite, chalcopyrite, sphalerite, arsenopyrite, and zones of chloritic alteration and quartz. The limestone unit is a host for some skarn zones which contain massive sulphide lenses composed of magnetite, pyrite, arsenopyrite and sphalerite.

RECOMMENDATIONS

Paleozoic metasediments and metavolcanics in the general area are known to carry gold-bearing quartz veins as at Avondale (Forrest claims) and Kestrel (KRL claims). In addition, Gulf International Minerals has encountered a number of significant drill intersections within calcareous rocks on its McLymont property south of Newmont Lake.

Additional work on the ARC-TIC claims should continue to concentrate on the contact areas between the intrusives and metavolcanics as well as further sampling on the limestone skarns. Detailed geological mapping along with a geochem soil grid followed up by some trenching would further evaluate the mineral potential.

BIBLIOGRAPHY

Logan, J.M.; Koyanagi, Victor M.; Drobe, John R. <u>Geology, Geochemistry and</u> <u>Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern</u> <u>British Columbia</u>, Open File 1990-2, Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch.

GSC Open File No. 2094 (1989).

Kerr, 1948: GSC Memoir 246; GSC Maps 9 - 1957; GSC Maps 1481-1979" "Iskut River".

STATEMENT OF QUALIFICATIONS

I, STUART J. TENNANT, of Kestrel Resources Ltd., do hereby certify that:

- 1. I am a Geologist employed by Kestrel Resources Ltd. during the period October 1989 to present.
- 2. I am a graduate of the University of British Columbia with a B.Sc. in Geology in 1959.
- 3. From 1959 until present, I have been engaged in exploration primarily in Western Canada.
- 4. I personally supervised and participated in the field work and have compiled, reviewed and assessed the data resulting from the work.

Stuart J Sannant

Stuart J. Tennant

DATED at Vancouver, British Columbia, this 10^{th} day of May, 1991.

PROGRAM COSTS

S. Tennant Geologist	2 days @ \$325/day	\$ 655
J. Buchholz Geologist	1 day @ \$325/day	325
B. Chase Prospector	3 days @ \$275/day	825
C. Bilquist Prospector	2 days @ \$200/day	400
D. Witiuk Prospector	2 days @ \$175/day	350
J. Lee Prospector	2 days @ \$175/day	_350

<u>Field Expense</u>

Room and Board	12 man days @ \$125/day	\$ 1,500
Helicopter	3.6 hours @ \$800/hour	2,880
Assaying	86 @ \$18/sample	1,376
Report Preparation		624
		<u>6,380</u>

TOTAL COST

\$ <u>9,280</u>

\$

<u>2,900</u>

APPENDIX I

г

Sample Assay Results

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

÷

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900123 GA	JOB NUNBER: 900123	SULLIVAN NAMAGENENT/KESTREL RES.	PAGE 1 OF 1
SAMPLE #	Ag Au		
92431	1.0 10		
92432	.1 10		
92433	.1 20		
92435	.1 10		
92436	nd 10		
92437	nd 10		
92438	.3 nd		
9 2439	.2 nd		
92440	•1 nd		
92441	.1 10		
32442	.2 10		
92443	•1 20		
92444	.4 20		
92445	.4 40		
92446	3.3		
92447	.1/ 10		
92448	.2 20		
92449	.1 20		
		an a	

0.1 5 -- = not analysed

is = insufficient sample

VANGEOCHEM LAT LIMITED

1986 Traumph Street, Vencouver, V5. :-5

ANALYST: Rynally

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSES

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HKO₅ to H₂O at 95° C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Kn, Na, F, Sn, Sr and W.

REPORT #: 900123 PA	SUL	LIVAN NA	NAGEMENT	/ KESTR	EL RES.	PR	OJECT: TI	C 7/9			DATE	IN: JUL	Y 20 199	0 DAT	E OUT: J	ULY 25 1	1990	ATTENTIO	i: MR. JO	hn Buchh	DLZ		PAG	1 DF 1	e de la composición de
Sample Name	Ag	Al	As	· Ba ·	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ħg	Mn	Ho	Na	Ni	P	Pb	Sb	Sn	5r	U	- 11	Zn
	ppa	· 1	pps	pps	p p n	7	225	pps	ppe	ppe	<u> </u>	1	1 . 1	· pps	pps		pps	1	ppe	ppa	ppa	ppe	pps	ppz	ppa
92431	1.0	2.03	50	116	17	.53	5.9	22	37	3577	3.95	.08	1.21	884	14	.03	13	.05	62	11	13	26	- 15	5	127
92432	.1	2.15	45	387	17	>10.00	5.6	25	61	359	3.21	1.19	2.56	1412	10	.06	40	.06	48	5	11	206	29	23	70
92433	.1	1.43	33	115	7	2.03	4.5	10	73	49	2.63	.28	1.12	669	9	.04	-18	.05	34	<2	. 7	32	9	(3	67
92434	R 5	n5	រាទ	ns	ns	กร	ns	กร	ns	ns	15	ns	115	ns	n 5	ns	NS	ns	ກຣ	ns	ħs	ns	ns	05	ns
92435	t	1.55	36	36	8	>10.00	4.8	8	- 31	20	1.50	1.32	2.67	1386	11	.02	4	.02	41	3	- 10	343	38	25	51
92436	(0.1	3.03	55 /	30	12	7.62	4.8	40	94	24	4.07	.87	3.17	2053	13	.07	78	.07	59	12	14	142	32	29	131
92437	{0.1	1.55	53 ′	57	11	1.11	4.7	70	65	22	5.92	. 16	1.16	976	11	.05	121	.04	53	. 11	10	25	18	12	109
92438	.3	.14	29	21	12	>10.00	5.3	8	15	18	1.89	1.56	5.48	2240	9	.07	20	.04	35	(2	9	104	24	34	50
92439	.2	1.75	65	63	22	6.51	5.8	32	108	201	5.92	.78	2.02	2004	19	.03	144	. 07	33	18	16	61	43	29	105
92440	.1	2.13	50	110	17	1.16	4.4	20	30	156	3.63	.18	1.17	663	12	.01	15	.06	52	11	11	22	22	12	89
92441	.1	1.27	31	70	. 5	4.58	3.2	7	49	31	1.50	.61	.67	11B6	8	.01	(1	.05	33	2	7	58	25	14	58
92442	.2	.72	20	86	<3	>10.00	3.8	4	22	86	1.36	1.29	.43	1653	- 5	.02	7	.02	22	(2	2	658	25	19	54
92443	.1	.69	49	90	9	1.92	3.3	B	175	51	1.26	.28	.35	363	34	.01	50	.32	39	B	6	55	37	8	64
92444	.4	-63	79	98	5	.85	4.0	8	90	67	1.44	.13	.32	241	58	.01	70	.04	39	6	6	13	27	7	71
92445	.4	1.30	52	67	4	2.80	3.6	10	102	55	2.46	.39	.92	625	28	.01	27	.03	45	7	7	32	29	16	95
92446	3.3	3.19	130	190	23	9.97	32.3	18	22	1034	9.35	1.04	1.96	7335	18	.89	18	.05	793	28	20	86	30	56	# 309 g
92447	.1	5.46	103	55	23	6.09	7.6	11	28	61	>10.00	.73	2.74	5344	27	.11	13	.05	125	38	24	119	39	43	້ 359 ັ
92448	.2	1.51	51	52	. 7	1.72	4.7	16	23	93	3,10	.26	1.17	939	10	.02	11	. 09	54	10	9	78	30	22	137
92449	.1	.97	39	29	7	2.89	4.1	10	130	45	2.85	.41	1.31	1260	. 9	.02	14	.05	36	6	7	122	29	20	87
Ninisus Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	5.51	0.01	1	1	0.01	1	0.01	2	2	. 2	1	5	3	1
Maxisus Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) - 6r	eater Tha	an Naximu	i is	i - Insu	fficient	Sample	as -	No Sampi	le A	NORALOUS	RESULTS	- Furthe	er Analys	ies By Al	Iternate	Hethods	Suggest	ed						

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REFURI A	INNERS: JUNINO GA	JOR NAWREN: JOOTO2	SULLIVAN NANAGEREN	T/LESTREL RES.	PAGE I OF I
SAMPLE	l	dg du			
		ppn ppb	•		
92814		.5 10			
92815		.4 30			
92816					
92817		1.0 LIQUA	· .·		
92818		.3 20			
92819		1.1 nd		•	
92820		.4 20			
92821		.9 nd			
92822		1.1 nd			
92823		.2 10			
	1 Ste				
92824		.6 10			
92825		.6 10	and the second	• <i>•</i>	
2,51	and the second states of the second		And Andrew States and Andrew States		
		e stationer en			
10.0	a stand and a start			and the second	
	(金) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1				
	Nyesik Alexan Visiona				
n territori Altor		알 방법 가슴에 가슴을 가슴다. 이 것은			
185		en e			
		ang tang tang tang tang tang tang tang t			
а. С.	an a		Alter and the second second second second	n geografie Tangki a sena si se tan	e a a contra de la participa
•.			an a		an a
		er i i i i i i i i i i i i i i i i i i i			

٠.

DETECTION LIMIT 0.1 5 nd = none detected -- = not analysed is = insufficient sample Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSES

A .5 gram sample is digested with 5 ml of 3:1:2 HCi to HNOs to H2O at 95° C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: funther

•																									
REPORT #: 900105 PA	SUL	LIVAN HA	NAGEMENT	/ KESTR	EL RES.	PR	OJECT: TI	C 7+9			DAT	E IN: JUL	Y 16 199	0 DAT	E OUT: J	ULY 20 1	990 /	ATTENTION	i: MR. JO	HN BUCHH	91.2		PAG	1 OF 1	· .
Sample Hame	. Ag	EA .	A 5	Ba	Bi	G	Cd	Co	Cr	Cu	Fe	K	Ng	ňn	Ko	Na	Ni	P	Pb	Sb	Sn	Sr	U	8	In
	ppa	1	pps	ppa	pps	. 1	pps	ppz	ppe	pps	1	1	. I	ppa	. bbe	1	p pa	1	ppe	pps	ppe	: ppa	ppe	. pps	pps
92814	.5	2.94	- 114	63	12	2.13	3.9	33	134	- 158	4.76	.24	1.24	702	19	.02	144	.12	. 34	5	20	19	16	\mathbf{z}	. 123
92815	.4	1.50	161	30	13	3.46	6.4	29	76	73	8.04	.32	. 92	1474	123	.07	97	.05	56	21	17	74	20	41	326
92816	1.2	.47	245	290	24	>10.00	6.0	28	30	3934	8.19	.53	4.19	3953	12	. 05	25	. 14	85	28	15	120	10	77	54
92817	3.5	.80	163	26	37	>10.00	7.7	59	33	120000	8.33	.49	4.58	3263	12	.09	33	.03	- 99	71	19	125	21	64	237
92B1B	.3	1.94	36	50	{3	1.44	2.2	16	103	594	2.72	.19	.9 2	543	6	.01	30	.05	16	<2	13	46	9	11	48
92819	1.1	1.97	270	12	23	4.60	7.9	53	91	277	>10.00	.36	.73	2649	37	.08	214	.06	100	55	26	12	21	57	- 48
92820	4	1.96	57	65	<3	1.36	3.1	16	33	56	4.03	.18	1.29	957	9	.02	17	.06	17	<2	10	16	(5	12	55
92821	.9	.10	112	32	20	>10.00	6.0	7	. 9	1318	9.34	.53	3.13	8200	9	.05	23	.04	84	33	14	195	(5	62	29
92822	1.1	.08-	- 137	18	21	>10.00	6.6	9	10	2597	\$ >10.00	.51	3.93	9579	. 9	. 07	23	.05	87	35	15	113	(5	59	31
92823	.2	y.78	36	38	(3	1.56	1.3	13	70	102	2.65	.20	.83	700	6	.01	24	.05	10	(2	11	44	₹ 5	7	- 41
92824	.6	.24	137	169	23	>10.00	5.4	30	15	25	9.97	.49	3.06	7834	9	.05	25	.08	73	29	: 13	95	(5	65	22
92825	.6	.94	19	136	<3	.34	1.2	. 4	54	75	2.66	.06	.59	665	6	.01	16	.04	. 6	<2	4	8	(5	<3	30
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	. 1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minigue) - 6r	ater Tha	in Maximu	• is	i - Insi	fficient	Sample	ns -	No Samp	ie A	NOKALOUS	RESULTS	- Furth	er Analys	es By A	lternate	Nethods	Suppest	ed						

SAC ADES

 $[x_{i},y_{i}] = \{x_{i},y_{i}\} \in \{x_{i},y_{i}\} \in \{y_{i}\} \in \{y_{i}\}$

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

CONVANGEOCHEM LAB LIMITED

à.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

DRTECTION LIMIT 0.1 5 nd = none detected -- = not analysed is = insufficient sample MANNER OFFICIENT 1.7 CONTRACTOR

1988 Triurph Street, Vancouver, ... V5L 1+5 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSES

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95° C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and K.

Ramph ANALYST:

REPORT \$: 900114 PA	SL	ILLIVAN I	HANAGEHEN	t / Kesti	REL RES.	PR	OJECT: T	IC 7/9			DAT	E IN: JU	LY 18 19	190 DA	TE OUT:	JULY 23	1990	ATTENTIO	N: NR. J	DHN BUCH	IOLZ		PA6	E 1 OF :	2
Sample Name	Ag	A	A5	Pa	Bi	Ca	Cd	Co	Cr	i Ci	FE	K	fig	. Kn	Ho	Na	a Ni	Ŧ	Pb	Sb	Sn	Sr	U	W	2n
	pps	1	L pps	ppe	ppe	1	ppe	ppe	. pps	ppi	1 1	1	7	pps	ppa	1	l ppi	1	ppe	ppe	ppe	ppa	pps	pps	pps
92826	.8	1.0	29	40	<3	1.05	1.9	E E	19	32	2 4.10	.16	.67	374	26	.03	3 🗄 1	.13	23	<2	5	18	<5	<3	71
92827	.8	.1) (3	- 7	<3	.06	.8	3	. 93	- 19	2.09	.01	.05	67	8	.01	11	.01	11	(2	2	2	< 5	(3	19
92828	.5	.3) (3	47	<3	.03	1.2	4	272	25	. 96	.01	.13	466	8		2	.01	13	<2	3	4	<5	<3	53
92829	.3	.3	9 175	89	15	2.58	3.8	19	130	225	>10.00	.32	1.07	1506	18	.06	5. 11	.06	29	6	. 8	46	<5	17	52
92830	.1	.9	3 36	65	<3	3.23	1.8	19	21	45	4.84	.40	1.07	.1654	7	.02	2 11	.19	22	<2	ч н <mark>Б</mark>	59	j (5	8	37
92831	(0.1	.2	2 (3	138	-{3	1.35	.7	4	103	49	1.20	.20	.56	324	- 2	.01	12	.03	8	<2	3	100	<5	(3	13
92B32	4	2.4	2 227	. 24	8	.98	2.2	17	72	88	6.46	.14	.43	242	69	.03	33	.04	50	26	14	33	(5	5	45
92233	.7	1.14	52	181	(3	.11	1.3	. 5	. 89	. 36	2.99	.01	.54	144	12	.01	30	· .09	31	7	6	. 9	(5	(3	48
92834	.6	.81	97	104	(3	.03	1.1	17	89	39	1.67	.01	.62	134	Đ	.01	124	.01	14	<2	3	4	(5	(3	32
92635	8	.26	72	142	(3	.01	1.0	5	76	25	2.18	.01	.03	49	. 19	.01	. 34	.06	21	<2	3	5	18	(3	19
92836	.4	.56	5 19	173	{3	.20	.3	8	46	17	1.59	.03	.21	103	6	.01	24	.13	- 19	<2	• 4	13	(5	<3	15
92837	{0.1	.57	(3	>:000	- 16	>10.00	3.9	20	22	- 4	3.86	.75	4.91	3521	5	.04	41	.02	26	<2	£	292	(5	59	50
92638	.2	43	: (3	15	<3	>10.00	5.4	<1	19	26	. 69	.80	70	562	7	.05	29	.03	21	<2	2	286	<5	27	370
92839	.5	2.55	- 93	99	{3	2.69	2.1	- 22	39	85	4.56	.35	1.64	647	8	.03	17	.08	42	18	12	37	<5	23	70
92840	.8	3.88	214	12	59	.60	- 10.3	86	71	621	>10.00	.05	1.04	1379	32	.11	1B4	.07	224	123	24	7	<5	51	364
92841	.4	91	128	12	27	1 47	4.6	28	105	183	310 00	10	37	#22	7 2	•	174	10		40	17	120	/5	16	64
97847	,,	3.84	123	37	6	2 87	5.0	19	-44	78	33 4 55	-17	1 16	792	17	•••	2/1	.1V	- 10	40	10	107	24	-10	274
97843	.?	3.09	81	£1	14	1.61	5.5	21	6.0	122	4.02		1.10	£93	51	30	51	30.	47	29	15	7	29	27	440
97844	1	19	129	20	83	2 05	10 5	R	25	7	310 00	22	2 00	8251	12	12	49	- 04	7/	75	10	12	/5	101	20
92845	(0.1	.57	17	20	8	4.31	1.7	8	75	11	2.93	.49	1.71	1304	8	.01	19	.11	20	<2	7	159	23	23	25
92846	(0.1	.14	12	>1000	24	9.56	3.0	8	46	89	3.29	.73	4.30	1930	7	.03	37	.03	25	<2	7	557	· (5	66	65
92647	<0.1	.08	(3	602	<3	4.68	1.8	7	127	419	1.74	.52	2.23	883	4	.01	23	.01	18	<2	6	288	26	27	. 41
92848	.1	2.05	98	31	9	3.97	2.6	27	43	122	6.93	.45	.87	1973	10	.03	45	.12	52	29	12	33	15	27	51
92849	.1	.68	47	36	15	>10.00	2.2	. 1	9	9	.90	.86	4.81	714	6	.02	13	.03	31	<2	6	300	(5	60	18
92850	.4	.45	41	32	<3	.61	1.3	20	21	53	3.59	.09	.10	91	5	.01	9	.18	30	7	5	43	26	{3	14
92851	.2	1.82	49	40	(3	1.25	1.7	16	82	47	2.58	.18	.80	432	7	.01	26	.06	37	18	12	45	30	7	40
92852	1.3	41	84	36	₹3	.21	1.1	21	64	639	3.70	.02	.04	27	7	.01	8	.16	31	3	5	48	13	<3	7
92853	.2	1.84	270	20	30	8.82	12.2	30	64	191	>10.00	.69	.42	2859	22	.13	289	.15	77	76	18	5	<5	49	858
92854	.3	2.64	110	27	22	.51	3.1	30	78	125	6.52	.07	1.81	757	13	.03	47	.05	57	35	15	11	<5	19	66
92855	.4	1.70	48	35	(3	1.28	1.3	13	50	53	3.15	.19	.70	532	7	.02	38	.06	25	9	9	31	< 5	5	94
92856	1.2	.68	19	159	(3	.35	1.4	23	21	163	4.39	.05	.12	302	6	.01	11	.18	30	<2	5	60	(5	(3	30
92857	.6	.40		() 61	(3	.39		13	50 E (1/5	2.62	.05	.04	68	3	.01	4	.19	3	(2	. 3	103	2	(3	11
32838		. 30	12	21	13	. 50	.5	. 15	34	14	2.43	.08	. (95	161	3	.01	5	.19	10	C.	3	62	2	(3	8
92859 92860	3.4	.33 2.05	70 44	22 128	31 6	210.00	3.5	3 10	10 70	#120 #970	2.91	.83	9.30 1.26	3109 713	5	.05	12	.02	25 28	<2	8	296 53	(5	83 12	165
					-			••				•••		F 4 6		••4		••/	20	F	v	55	15	14	10
\$2861	.2	2.25	28	88	<3	2.72	1.2	9	49	78	3.46	.36	1.37	858	24	.02	8	.06	15	(2	. 6	42	(5	17	47
92862	.3	2.12	43	66	3	.41	1.1	5	44	8019	ş 3.39	.05	1.38	621	10	.02	6	. 06	14	<2	ť	- 5	6	<3	60
92863	.3	1.04	>2000	16	78	.92	204.0	6	22	61	>10.00	.05	.48	6945	20	1.54	30	.04	629	216	24	15	<5	7	16614
92864	1.9	.29	1161	4	61	1.01	277.4	6	33	119	>10.00	.07	.38	9037	18	2.23	30	.03	2692	175	23	11	<5	∢ 3	>20000
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
NEXIBUR Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

VANDE OCHEM 17 SUIMITED

1356 Triumph Street, Vancouver, V5L 1K5 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSES

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNDs to HgD at 95° C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

						. Th	is leach	is parti	al for #	11', P2,	Ca, Cr,	Fe, K, M	iş, Ma, N	a, P, Sn	, Sr and	¥.				ANALY	ST:	Ray	-1	<u>~</u>	
REPORT #: 900114 PA	SULI	LIVAN MA	NAGEMENT	/ KESTRE	L RES.	PRC	JECT: TI	C 7/9			DATE	IN: JUL	Y 18 199	O DAT	L JUT: J	UK Y 23 1	990 A	TTENTION	: NR. JO	HR BUCHHO	DLZ		PAGE	2 OF 2	•
Sample Name	hg	A1	Ås	Ba	Bi	£a	Cd	Co	Cr	Cu	Fe	ĸ	ħg	ħn	Ho	Na	. Ni	P	Pb	Sb	Sn	Sr	ť	¥	Zn
	pps	. 1	o ppe	ppa	pps	- 1	pp	ppa	ppe	ppa	· 7	7	· 1	ppa	pps	1	pşe	ĩ	ppe	ppe	ppe	ppz	pps	pps	ppa
92865	.2	-09	>2000	17	81	.54	127.7	6	24	9	>10.00	.01	.20	7707	19	1.49	30	.02	188	251	- 23	6 -	(5	4 B	12048
92866	.5	.14	>2000	25	88	.21	62.8	6	17	21	>10.00	.01	.25	9 594	18	.69	28	.04	237	263	24	3	<5	103	4739
92867	2.1	.63	>2000	3	61	1.52	19.B	7	47	56	>10.00	.16	.43	922	18	.30	33	.09	557	165	20	17	<5	53	1683
92868	.2	2.92	311	15	31	1.44	6.2	23	35	100	7.98	.20	1.64	809	23	.05	30	.07	91	53	18	25	1.7	- 39	231
92859	.1	7.64	348	-18	62	19	6.8	. 29	57	22	>10.00	.01	5.27	406	28	.08	76	.13	120	126	28	<u>,</u> 3	< 5	90	128
92870	.1	1.53	147	202	8	.59	4.2	. 7	61	B 1	4.54	.09	.94	479	48	. 05	111	.31	58	18	10	10	12	٢3	399
92871	.1	1.84	44	40	(3	.84	1.3	11	66	44	2.60	.13	.80	373	6	.01	29	.05	28	<2	9	34	<5	(3	56
92872	4	3.07	202	10	-24	.70	4.7	30	57	- 108	>10.00	.10	1.11	358	29	.05	56	.12	71	53	19	14	<5	32	93
92873	.2	3.53	125	72	14	1.69	2.6	24	30	135	5.33	.24	1.52	781	13	.02	23	. 09	57	36	15	15	<5	30	59
92874	1	3.04	1909	15	20	1.51	3.3	38	64	121	7.2E	.21	1.41	£76	24	.03	53	.10	61	45	16	26	(5	35	67
92875	.2	3.82	324	B	38	1.05	5.6	67	70	269	>10.00	. 14	2.95	9 91	32	.05	75	.14	87	72	-22	10	(5	64	88
92876	.1	3.26	124	43	15	1.25	2.7	21	30	81	5.38	. 19	1.48	355	12	.02	17	.08	55	37	14	17	(5	26	40
92877	.1	2.34	67	42	<3	1.26	1.2	22	28	138	3.47	.19	.98	227	. 9	.02	13	.07	31	9	11	5	(5	(3	26
92878	.2	4.09	121	15	23	1.55	3.6	55	29	152	6.34	.22	2.20	520	- 14	.03	. 22	. 09	56	45	16	6	(5	28	36
92879	.4	.80	620	43	24	.13	4.7	76	34	31	>10.00	.01	.22	197	15	.05	33	.05	99	43	11	23	<5	4	22
92880	.2	2.53	103	149	7	.66	2.7	13	31	51	3.70	.10	1.16	455	12	.02	26	.06	52	26	13	21	(5	8	. 87
Ninieum Detection	0.1	0.01	3	1	3	0.01	0.1	1	. 1	1	0.01	0.01	0.01	1	1	0.01	:	0.01	2	2	2	1	5	3	1
Naximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
<- Less Than Miniaue) - Sre	ater Th	an Kaximu	ie is	- Insu	fficient	Sample	NS -	No Sampl	e /	KOMALDUS	RESULTS	- Furth	er Analys	ses By A	Iternate	Rethods	Suggest	ed						

04/30/91 09:26 VGC

NO. 779 P002/002

a la construction de la construction

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

April 30, 1991

- TO: Mr. Stuart Tennant KESTREL RESOURCES LTD. 506 - 675 W. Hastings St. Vancouver, BC V6B 1N2
- FROM: VANGEOCHEM LAB LIMITED 1650 Pandora Street Vancouver, BC V5L 1L6

SUBJECT: Analytical procedure for soil samples preprations.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags.
- (b) Dried soil and silt samples were sifted by hands using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.

2. Analysts

The sample preparations were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Conway Chun / VANGEOCHEM LAB LIMITED

VANGEOCHEM SAMPLE ANALYSIS DESCRIPTION

The lithogeochemical samples were properly bagged, described and labelled in the field. Later, they were shipped by air and ground freight to Vangeochem Lab Ltd. in Vancouver, B.C. for analysis under the supervision of professional assayers. All of the samples were analyzed for gold, using fire assay and atomic absorption procedures, and for a 25-element suite by inductively coupled argon plasma (ICAP) methods.

At Vangeochem Lab Ltd., each rock sample was ground to -100 mesh and a 0.5 gram pulp was digested with 5 millilitres of 3:2:1 hydrochloric acid to nitric acid to water at 95°C for 90 minutes, and then diluted to 10 millilitres with water. The resulting precipitate was then analyzed by ICAP methods for: silver, aluminum, arsenic, barium, bismuth, calcium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, lead, antimony, tin, strontium, uranium, tungsten and zinc.

A 20.0 to 30.0 gram pulp was split from each of the ground samples, mixed with flux, fused at 1,900°F to form a button, and subsequently digested in an aqua regia solution. This solution was then analyzed for gold by a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp.

APPENDIX II

ŗ

Sample Descriptions

				Geochen	nical Data	Sileet - RO	CK SAMPLING					
ł	•							NT	гs	104	<u>-6-</u>	2
Sampler _	DARRELL	.w. +.	IASON.L.	Project	Tic	7-9	Locat	ion	-	ISK	<u>u</u> T	
Date _	July 16	190	-	Property			M.D.		_	LIAF	20	
		·		x					<u>. </u>			
SAMPLE	LOCATION	SAMPLE	Sample Width	Ļ	DESCRIPTION	N ·	OBSERVATIONS	10	149	ASSA	XS T	
NO.		TYPE		Rock Type	Alteration	Mineralization		PPB	PPm			
92431		ROCK	20cm		LIMEONITE	MALAKITE	SMALL OUTCROP ON SHOW SHOOT	10.	1.0		1	
92432		ROCK	1550	SEDIMENTARY		PURITE	STRIKE 320° N DIP 200/SAMPLE	10	0.1			
92433		· 15	30 cm		LIMEONITE	QUARTZ PVRITE	DIRECTLY BELOW SAMPLE 92432	20	0.1	\Box		
92434		11.	GRAB			QUARTZ PYRITE	EXPOSED ROCK IN SLIDE CHUTE					
92435		0 .	15 cm			QUARTZ PURITE	ELEPHANT SKIN COLOR STRIKE 110° VEIN 1/2 m WIDE 4 m LONG DIP 10°	10	0.1			
92436		11	GRAB	VOLCANIC		QUARTZ	CARBONATE ROUGE COLOR	10	nd		\neg	_
92437		n	GRAB	VOLCANIC	·		BLACK ROCK.	10	nd			
								1				
										\square		
				·								
											1	
									•		1	
												-

1

.

Sampler	J.LEE		Project
Date	JULY 17	90	Property

.

NTS _____ Location

M.D.

NOLLOCATIONTYPEMaterialRock TypeAlterationMineralizationDBSENATIONS H_{U} A_{gg} Q2U3B1490mGRBS SMM0.2mDRANGE (ARBONATE - HAD) ROCR.nd-3-3Q2U391520m11LINEONITE STAWING, QURETZ, KALCOE PARINE.nd-2-2Q2U40HB0m*150mGREBANOLCANIC & BLACK ROCK.nd-1Q2U40HB0m*150mGREBANOLCANIC & BLACK ROCK.10-1Q2U40HB0m*20mGURTZ, GREBANGREBANPOLCA.10-2Q2U40H40m*20mGURTZ, GREBANGREBANPOLCA.10-2Q2U42H70m*20mGURTZ, GREBANConto.10-2-2Q2U431580m20cmGURATZUE(NIUMEONTRE STAWNOG, GREGON20-1Q2U431580m20cmGUARTZUE(NIUMEONTRE STAWNOG, GREGON20-1Q2U451580m11****33-Q2U451580m11****33-Q2U451580m11****33-Q2U451580m11****33-Q2U451580m11****33-Q2U451580m12****101Q2U451590m </th <th>SAMPLE</th> <th></th> <th>SAMPLE</th> <th>Sample</th> <th></th> <th>DESCRIPTION</th> <th></th> <th></th> <th></th> <th>·•···</th> <th>ASSAYS</th> <th>ý </th>	SAMPLE		SAMPLE	Sample		DESCRIPTION				·•···	ASSAYS	ý
Q2438 1490m GRAB SAMO. 2m ORANGE GARBONATE - HADD ROCK. nd .3 Q2439 1520m 11 LINEDNITE STANUNG, QUARTZ, KALCOE PARIAE. nd .2 Q2440 1460m 150m GREEN JOLCANIC & BLACK ROCK. nd .1 Q2440 1460m 150m GREEN JOLCANIC & BLACK ROCK. 10 .1 Q2441 1490m N PARITE, QUARTZ, GREEN ROCK. 10 .1 Q2442 1470m N 200 cm 16411, 5m conto. 10 .2 Q2443 1580m 200m QUARTZ UE(N 160m MIDE PARITE STANDO) CHARCOS 20 .1 Q2443 1580m 200m QUARTZ UE(N 160m MIDE PARITE STANDO) CHARCOS 20 .1 Q2444 1580m 6268 CHARCORE COLOR , LUNEONTE STANDOS , 20 .1 .1 Q2444 1580m 11 11 n n 1 (3m NIE OF 94444) 40 .4 Q24445 1580m 11 11 n n 1 (3m NIE OF 94444) 40 .4 Q24445 1580m 12 10 1 10 .4 .4	NO.	LOCATION	TYPE	Widdi	Rock Type	Alteration	Mineralization	OBSERVATIONS	Au	Ag		
Q2U39 150m 11 UNBONITE STANUA, AVARTZ, KALCOE PILITE. nd .2 Q2U40 1460m 150m GREEN JOLANIK E BLACK ROCK. 10 .1 Q2U41 1490m 1 PYRITE, AVARTZ, GREEN ROCK. 10 .1 Q2U42 1470m 1 PYRITE, AVARTZ, GREEN ROCK. 10 .1 Q2U43 1500m 200m CUMATZ, SALONE. 10 .2 Q2U43 1500m 200m CUMATZ, VEIN IOCN NIDE PYRITE STANDON, CHARCO, 20 10 .2 Q2U44 1500m COLAR COLARTZ, VEIN IOCN NIDE PYRITE STANDON, CHARCO, 20 Q2U44 1500m COLAR CHARCOLE COLOR, LUMEONTE, STANDON, CHARCO, 20 Q2U44 1500m COLAR MARTA, MARCOLE, MARTE, MARTE, STANDON, CHARCO, 20 Q2U44 1500m 11 Q2U44 1500m 200m Q2U44 1500m 150n PREP STAN, PYRITE, AVARTE, CHARCONE COCOCARE	92438	1490m	GRAG SAMD.	2m	ORANGE (ARBONATE	- HAED	ROCR.	nd	•3		
Q2440 1480m 150m GREEN INCANIC 8 BLACK ROCK Ind 1 Q2441 1490m N PHRIFE, QUARTZ, GEBEN ROCK 10 10 10 10 Q2442 1470m N 300 011100 (QUARTZ, GEBEN ROCK 10 10 2 10 Q2443 1560m 20cm QUARTZ, UEIN IOCNIG UMEONITE STRIMINO, CHARCO, CHARCO, 20 11 10 2 10 2 10 2 10 2 10 2 10 2 10 10 2 10 10 2 10 11 10 11 10 11 10 11 10 11 10 11 </td <td>92439</td> <td>1520 m</td> <td>1)</td> <td></td> <td>LINEONIT</td> <td>STAINING</td> <td>, QUARTZ</td> <td>, KALCOE PYRITE.</td> <td>nd</td> <td>•2</td> <td></td> <td></td>	92439	1520 m	1)		LINEONIT	STAINING	, QUARTZ	, KALCOE PYRITE.	nd	•2		
92441 1190m 1 10.1 10.2 92142 1470m 10.2 10.2 10.2 92142 1470m 10.2 10.2 10.2 92143 1580m 20cm 10.1 10.2 10.2 921441 1580m 20cm 10.1 10.2 10.2 921442 1580m 20cm 10.1 10.2 10.1 921441 1580m 20cm 10.1 10.1 10.1 921441 1580m 10.1 11.1<	92440	1480m	A	15cm	GREEN	VOLCANIC	& BLACK	ROCK	nd	•1		
921442 1470m 10	92441	1490m	<u>አ</u>		PYRITE,	QUARTZ,	GREEN A	lour	10	•/		
Q24443 ISBOM 20cm QUARTZ UEIN IVEN IVENTE IVENTE IVENTE IVENTE 20 ·1 Q2444 ISBOM GRAB CHARCOR COOR, LUNDONITE STAINING, CHARCOR 20 ·1 Q2444 ISBOM GRAB CHARCOR COOR, LUNDONITE STAINING, CHARCOR 20 ·4 Q2444 ISBOM II II III III IIII IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	92442	1470m	N	He	citatico/au zo cm VE	ARTE.	ont.		10	•2		
Q2444 1580m GRAB CHARCORE COOR, LIMEONITE SPANNANT, 2000 2000000000000000000000000000000000000	92443	1580m	ZOCM		QUARTZ	VEIN 100	m WIDE	LIMEONITE STAIMINO, CHALCO, PYRITE IN BLEBS.	20	•1		
92445 1580 m 11 1 n n n 1580 m 10 3.3 92446 1590m 20cm MALIULITE 37710 or OUTCEOPAINS, PURITE. 10 3.3 10 92441 1590m 150n MALIULITE 37710 or OUTCEOPAINS, PURITE. 10 3.3 10 92441 1590m 150n MED STAW. PURITE. QUARTE. QUARTE. 204207 10 11 10 92448 1450m 15cm QUARTE. PURITE. LIMEONITE. 20 20 20 2 92449 1440m 20cm QUARTE. LIMEONITE. STRIKE. 80° JB DIP 30° K 20 1 1 92449 1440m 20cm QUARTE. UE IN STRIKE. 80° JB DIP 30° K 20 1 1 92449 1440m 20cm 0 <td< td=""><td>Ŷ2444</td><td>1580m</td><td>GRAB</td><td></td><td>CHARCON</td><td>r color</td><td>, LIMBOR QUAR</td><td>VITE STAINING, TZ VVEIN. AURITE</td><td>20</td><td>•4</td><td></td><td></td></td<>	Ŷ2444	1580m	GRAB		CHARCON	r color	, LIMBOR QUAR	VITE STAINING, TZ VVEIN. AURITE	20	•4		
92446 1590m 20cm MALILITE 3THIN ON OUTCROPAIND, PURITE. 10 3.3 92447 1590m 15cn PED STAN. PURITE. QUART 2, CHARCOMIC COCOR POCK. 10 10 11 92448 1450m 15cm QUART 2. PURITE. QUART 2, CHARCOMIC COCOR POCK. 20 22 92448 1450m 15cm QUART 2. PURITE. LIMEONITE STANNING. 20 20 22 92449 1440m 20cm QUART 2. NURITE STANNING. 20 20 11 92449 1440m 20cm QUART 2. NURITE STANNING. 20 20 11 92449 1440m 20cm QUART 2. UEIN STRIKE B0° BOIP 30° E 20 11 92449 1440m 20cm QUART 2. UEIN STRIKE B0° BOIP 30° E 20 11 92440 1440m 20cm 10 10 10 11 92440 1440m 20cm 10 10 10 11 92440 1440m 10 10 10 10 10 10 9240 1440m 1440m 10 10 </td <td>92445</td> <td>1580 m</td> <td>11</td> <td></td> <td>· c1</td> <td>n</td> <td>n</td> <td>4 (3m NE OF 92444)</td> <td>40</td> <td>•4</td> <td></td> <td></td>	92445	1580 m	11		· c1	n	n	4 (3m NE OF 92444)	40	•4		
Q2447 1590m 150n RED STAM. PHRIFE. QUARTZ CHARCOML COLOR ROCK. MITTALIFE, MADUSTE 20m W OF 92440 10 1 Q2448 1450m 150m QUARTZ. PYRIFE. UMEONIFE STAMMING. 20 20 2 Q2448 1450m 150m QUARTZ. PYRIFE. UMEONIFE STAMMING. 20 20 2 Q2449 1450m 150m QUARTZ USIN STRIKE BO® BOR OFF 20 1 1 Q2449 1440m 200m STRIKE BO® BOR OFF 20 1 1 1 Q2449 1440m 200m STRIKE BO® BOR OFF 20 1 1 1 Q2449 1440m 200m STRIKE BO® BOR OFF 20 1 1 1 Q2449 1440m 200m 1 1 1 1 1 Q2449 1440m 200m 1 1 1 1 1 1 Q2449 1440m 200m 1 <td< td=""><td>92446</td><td>1590m</td><td>ZUCM</td><td></td><td>MALILITE</td><td>SPAIN ON</td><td>OUTCROT</td><td>PARINE.</td><td>10</td><td>3.3</td><td></td><td></td></td<>	92446	1590m	ZUCM		MALILITE	SPAIN ON	OUTCROT	PARINE.	10	3.3		
92448 1450m 15cm QUARTZ 1921115 11115 37771111100 20 20 1 92446 1440m 20xm QUARTZ UBIN STELKE 80° # 01P 30° E 20 1 1 92446 1440m 20xm QUARTZ UBIN STELKE 80° # 01P 30° E 20 1 1 92446 1440m 20xm 1400m 1400m 1000m 1	92447	1590m	15cm		RED STAN	N. PYRITE MALA	LITE, AN	2, CHARCOML COZOR ROCIZ. VDISINE ZOM WOR 92440	10	0/		
Q24449 14410m 20cm QUARTZ UBIN STRIKE B0°% DIP 30° E 20 ·1 1 Image: Comparison of the strength of the strengt of the strenge strength of the strengeh of the strengt o	92448	1450m	15cm		QUARFZ	. PYRIK	LIMEO	NISTE STAINING.	20	•2		
	92449	1440m	202m		QUARTZ	UEIN	. STRI	KE BOOK OIP 30°E	20	»/		
						i						
										·		

				dependen	noui Duiu	oneer no				1	
Sampler Date	Bch	use 1) 90		Project Property	Bur	mac e	Energy 19	Locatio M.D.	NTS or adj	104B Avond LIAN	15 ale_ 0
SAMPLE NO.		SAMPLE TYPE	Sample Width	Rock Type		Mineralization	OBSERVAT	IONS	·	ASSAYS	
92814	4230'	select	60	med green	chlorite	massive	abundant angula Alorat available @	TA			
15	4105'	select chips	50	ned green chert?	chlorife.	dis to nue sulphind Cu	black cliffs. py, cha	a. 8C Lao.			
16	4120'	chips	10cm 2	altered Linestone	dis, stringer chalco A	p banding	80% for sure in place	-			
17	4120'	chips	6 cm	54	Chlowite py	blebs Chelco	angular float (in	place?)			
18	4120'	select chips	1 ^m m	Constatine limestone	1/4 Cru ankurte Stringers	dispy chelco	muss carb. alteres	hon			
19	4130'	Select chipo, taluo		uncertain	mang. oxide	heavily inin. massive sulphi	& angular float, ta	his fam			
92820	3925'	selectchips	1 ² m	deterre volc.	Stringers	(dis) Py	chloritiz, fresh				
21	4020'	chips.	Im?	Linestone	blebschele	Thended suepinder	chlorite banding	ace)		 	
22	4020'	select	1500 ?	и и	gress bearded	abundent chilco	of 92821.	<u>د</u> سر		 	<u> </u>
23	3960'	select	10m	(120): Limestone	ankerite	py cholar	Somen luphili Side un	·····			
24	3960'	chips	250	Linestone	Carkonste	ais py				 	 _
92825	4180'	select	Im	seds?	gtz-florty	ais py	very rusty				
											╂──┨
											$\left - \right $
			$\langle \rangle$								╂{
! 4											

PRINTED IN

1 i

-

		í				, ,	, 21	NT	rs _10	14 B/15	5
Sampler _	Bill	Chise	-	Project	- Clif.	ton i	Hav Loca	tion V	vest o	FAvore	dal
Date _	Jul	g 13/90	2	Property	Ţ	$\frac{1}{7}$	<u>9</u> M.D.		(-IARD	
			· · · · · · · · · · · · · · · · · · ·		(4	cont):	see also 92814-25		·		
SAMPLE		SAMPLE	Sample Width	Ļ	DESCRIPTION	J ·	OBSERVATIONS	D.,	Dal	ASSAYS	, ——
NO.	LOCATION	TYPE		Rock Type	Alteration	Mineralization		ppb	<u>ррм.</u>		
92826	4585'	grab	TALUS	vok	chlorite	30% py	(mess, dissen.)	nd	0.8		
27	u	talus grab		black vock	silicified	mass dis sulphides	prob. avg. Vite	nd	0.8		
29	h	en 4		metaseds?	Very Large	moty	0	nd	0.5		
29		clum	150 cm	gtz floodin	stand o	range,		nd	0.3		
30	4430'	talwant		green	pt certo.	fine dis		nd	0.1		
31		h "		6	siliclous chilorite	4 4	as per 92830, w/ to fresh fac	e nd	nd		
32	ч	L 4		L	Limitiz Chloritiz	drs, miso	· · · · · · · · · · · · · · · · · · ·	nd	0.4		
23	4420'	4 4		messed up shale?		fine py iron, hu	in stun	nd	0.7		
34	<u>и</u>	hn		dk green	silicified	Ane		20	0.6		
35	ч	hh		med-grey cherty	bleached?	fine dis,	hard not glassy	20	0.8		
36	4270'	n 4		shale	sheared	dis py	prob. dk unit of metasede	? 30	0.4		
37	Ч	4 4		mafiz Vole?	Penrasive chloritic	moty	epidite	nd	nd		
38	h	h 6		limestone		Fore, distin	A (Linestone '2 (White)	30	0.2		
39	h	h h		med green	Sheered	dis, blebo	possible py shear healin	30	0.5		L
40	4250'	h h		8 h h	silicified chilevitiz	dis, meso	pos. Silver sulphide	10	0.8		
41	4200'	hn		med gran	opidate	mass. Sulpinde	· · · · · · · · · · · · · · · · · · ·	10	0.4		
42	n	h h		h h	gtz flood x	~ ~ ~	less altered than 9284	40	0.2		! !
43	h	h 11		shele?	rustz	dit striken	shode (prob same as 92836	, 50	0.2		
44	<u>`</u> Ь	h h		(metaseda)	forbonite breccia		chor brown	10	0.1		
45.	4140'	n 11		green voles.	10cm qV major tale	stringers	chalce, mal	20	nd		
					Chilonte	,				2 7 21	

				,	Geochem	nical Data :	Sheet - RO	ick Sampling			1	
									NT	s 104	B/15	,
		Ral	γ		Broject	litto	~ 8]	Locati	00.64	est of f	formed	ale.
	Sampler	<u> </u>	none				C 7			L17	ARD	
1	Date _	July	15/10	-	Property		8-01	M.D.				
		,	17 		C	sul The	m 7281	<u>4 - 7 = 8c</u>	·			
	SAMPLE	LOCATION	SAMPLE	Sample Width	L	DESCRIPTION		OBSERVATIONS	Au	Pg		
	NO.		TYPE		Rock Type	Alteration	Mineralization	4. Sugar at 2	ppto	- 699 -		
	92846	4120'	grato		volco	chilor, tale	blebs py.	2 July 2 July 2 July	50	nd		ļ
	47	ч	n 4		Ut. coloured Seds?	very silicific	dis py, dulco, m	1 in abundut float.	40	nd		
	48	4020'	n h		green vok		mass sul	r stan	30	0.1		4
	49	3945'	n n		Linestone		fine dis		50	0.1		
4	50	<u> </u>	~ ~			Sery sham	in y	grey sulphides (blebs, chiz)	nd	0.4		-
	51	39201	chings	T-2 THE	Fresh green		chel, mel	(dionte pluse) pos	40	0.2		
	52	3975'	telusant		vol	highly Silicero	major diz	chel Bonite	30	1.3		
•	53	511 <u>5</u>	a =		4		very me	float	20	0.2		
	54	4025'	hh		it grey	Silicified	dis, mas		20	0.3		
	55	5	4 4		vole	5	dis, mas		30	0.4		
¥	<u> </u>	4625 chor		1.2m ?	withe	abloritie	heavy in	any, iron (ved, yellow)	10	1.2		
20	50	4630'	u n	14cm ?	100h	highly	dis, mens	minorchil	nd	0.6		
141	54	- <u>10.00</u>	h	1/2 m 7	green	pt. silicitie	Sulphite		60	0.4		
ily	59	4730'	ч	18 000	limestre	pt carb.	py, mel, c	heles, 100 86°/phinge	40	3.4		
5	60	4810'	Sefect	talus	dirite		Ry chet.	Suppliedes: dis, free. filling	Ind	0.5		
	61	48201	n n	10m.	4	chlorite	chal. mel. az.	(up to 5% chalco?)	nd	0.2		
	62	4820'	nn	20m	dionte		abund. dis. blep	o chiel mal.	nd	0.3		
	43	5060'	chips	1500	Skam		neg, phyr.	large purple gossan :	40	0.3		
	64	6	n	20000	4		h 4	adjacent limestone	30	1.9		
	65.	n	n	2000	6		6 h	0	100	0.2		
1		I	I								1	ANTED T

							7		NT	rs <u>//</u>	<u>248/15</u>	2
Sampler	Bruch	use		Proiect	Ci-fi	on S	ar	Locati	ion h	restot	Avono	lele
Date	July	4190		Property	- -	1C 7/0	<u> </u>	M.D.		_2	-IARD	<u>></u>
	J		-	Cont	from	92814-	92865			•	-	
CHURIE		SAMPLE	Sample		DESCRIPTION	۹ .		OBSERVATIONS		<u> </u>	ASSAYS	
NO.	LOCATION	N TYPE		Rock Type	Alteration	Mineralization		ppb	P19 ppm		1	
97.866	5060'	chips	20000	skam		mag, phy mas.sn	hr c	adjacent huneston	50	0.5		
67	Ь	и	2000	и		massive	Sul.	5	30	2.1		
68	5580'	Select		green vole.	chilor.	Senitor Sul,	reso.		20	0.2		
69	5580'	chips	2500	Contact @ limestone		noty Zone			10	0.1		
70	5600'	и	1.5mu?	chest		fine dis			nd	0.1		
71	5620'	4	200 000	green		Semiton	raso Zone	strike N60°E	nd	0.1		
72	· h	и	25mit	Vola	Stacher	~ ~ ~	لر	h h m	nd	0.4		
73	5670'	h	2000	med green chert		weak to strong dis. p	, adi. v	olas	nd	0.2		
74	4	ч	1300	vole.		mass, diz	- J		10	0.1		·
75	И	h	ISCH TW+	'n		mass.s	uldude c	ove of 92874.	20	0.2		
76	5790'	. h	2 ^D m	rhyolite	intense Frac.	py ars?	strike	N 75E?	60	0.1		
77	5860'	boulder jubble		medgreen		dis, smea	s (dist	hart has	30	0.1		
78	h	5		Fresh areen vok		dis-me	ž		10	0.2		
79	6000'	Select	tatus	Subor?	Siliceors bleached	grey Su	e. (b	leached)	60	0.4		
80	5880'	chips	11	chert (green)	blinched	dl3, frac	filling al	50 ND 32352	20	0.2		
				0	009				. 			<u> </u>
								<u> </u>				

i

