LOG NO:

IFIE NO:
KOKANEE EXPLORATIONS LID.

ASSESSMENT REPORT ON DIAMOND DRILL HOLE L90-2

IEG PROPERTY

TAG CLAIM
FORT STEELE MINING DIVISION
CRESTON AREA
N.T.S. 82F/2E + 7E

LAT: $\quad 49^{\circ} 13.5^{\prime N}$
GEOLOGICALBRANGOHE: $116^{\circ} 33^{\prime} \mathrm{w}$ ASSESSMENTREPORT

KOKANEE EXPLORATIONS LTD.
Suite 104, 135-10th Avenue South
Cranbrook, B.C.
vlC 2N1

Worked Performed from September 13, 1990 to September 24, 1990
Report by: L. Stephenson
Submitted: May, 1991

TABLE OF CONTENTS

PAGE
1.00 Introduction 1
2.00 Claims 1
3.00 Location and Access 1
4.00 Work History. 1
5.00 Regional Geology. 2
5.10 Local Geology 2
6.00 1990 Drilling Program 3
6.10 Drill Hole L90-2. 3
7.00 Conclusion and Recommendation 4
Exhibit "A" - Statement of Expenditures 5
Affidavit 6
Author's Qualifications 7
Claim and Drill Hole Location Map 8
Section 2050N 9
Drill Log - L90-2 + Assays Attached

KOKANEE EXPLORATIONS LTD.

LEG PROPERTY
TAG CLAIM

DIAMOND DRILLING REPORT ON HOLE L90-2

L. Stephenson

May, 1991

1.00 Introduction

This report describes one diamond drill hole completed during the 1990 exploration program on the Legion Resources Ltd. claims in Southeastern British Columbia. The purpose of the exploration was to evaluate the sulphide zone located along Wilds Creek and to evaluate its down dip and along strike potential.

$2.00 \quad$ Claims

The property consist of ten 4-post claims and twenty-nine 2-Post claims, totalling 180 units.

3.00 Location and Access

The mineral claims are located approximately 14 km north of the town of Creston, British Columbia in the Nelson Mining Division. The claims cover the western flank of a broad northsouth ridge between Kootenay Lake to the west and Duck Creek to the east (on Map 82F/2E + 7E).

Access to the property is excellent. Highway 3 A cuts the west side of the property and numerous logging roads transect.

4.00 Work History

The first recorded exploration activity in the area is reported in 1924 when the ground was staked as the Sarah claims. Showings in Wilds Creek were explored by two adits and some trenching. The mineralization occurred as disseminations, stringers and lenses in the limestone, grading from nearly barren material to ore containing 32% zinc. The silver values vary from a trace to 2 or $3 \mathrm{oz} / \mathrm{ton}$. In the 1950's, Newmont Mining Corporation optioned the property and drilled 6 drill holes. In 1961, claims were restaked and optioned to Sheep Creek Gold Mines Ltd. Sheep Creek drilled two holes to try and prove the zone to the southwest.

In 1963, the property was examined with geological mapping and sampling of trenches being carried out and a preliminary reserve estimate of 150,000 tons grading 6% zinc was estimated. In 1964, exploration extended the mineralization some 100 m to the south of the main showing. The entire main zone was surface trenched and 5 drill holes completed by the end of 1965.

In 1968-70, a VLF-EM and two magnetic surveys were completed over the main showing. In 1977, Cominco staked the ground north and south of the Liz claims and, in 1978, completed a soil survey along Wilds Creek.

In 1982, limited geochemical sampling was completed by Aspen Grove Mines. In 1984, a further soil sampling was undertaken on the claims.

In 1988, an extensive program of line-cutting, geochemistry, induced polarization and geological mapping was carried out.

In 1989, a program to fill in missing information, soil geochem, geophysics surveying and testing the main zones was commenced.

5.00 Regional Geology

The regional geology surrounding the claim group was mapped by H.M.A. Rice in 1941 and described in G.S.C. Memoir 22. The claim area is underlain by various units within the late Precambrian Purcell Supergroup. The Purcell Supergroup has been subdivided by a major unconformity into an upper unit consisting of the Dutch Creek and Mt. Nelson Formations and a lower unit consisting of the Aldridge, Creston and Kitchener-Siyeh Formations.

Intruding the Purcell Supergroup in the claim area is the discordant post-tectonic Bayonne Batholith. The composition varies from a granite to a granodiorite. The intrusion has been dated (KAr) at $100 \mathrm{~m} . \mathrm{y}$. (Hoy et al. 1981).

5.10 Local Geology

The local geology of the claim area was mapped as a northeasterly-trending succession of sediments (limestone, dolomitized limestone), greenstones and schists. Younger granites and granodiorites are found to the northwest. Bedding attitudes on the property strike generally at about 035 degrees and dip at about 80 degrees to the southeast.

The rocks on the property consist of a quartzite, a dolomitized limestone, a phyllite and fissile shale (Dutch Creek?).

While structure is difficult to determine due to lack of outcrop, there appears to be a slightly overturned anticline striking NNE with both limbs dipping easterly.

$6.00 \quad 1990$ Drilling Program

Kokanee focused its exploration program on developing the strike and depth extent of the main zone. Five diamond drill holes were completed.

6.10 Drill Hole L90-2

Diamond drill hole $490-2$, totalling 318 m , was completed on the property during September, 1990. This hole was designed to test the zone encountered in previous drilling.

The hole collared in micaceous limestone sediments which were dolomitic to argillaceous with some interbedded phyllites. An extremely porous limestone and an intraformational conglomerate (with angular clasts and some quartz and quartz veins - remnant "karst"?) were found within this upper limestone section. The drill hole intersected thin to medium bedded quartzites in the vicinity of the projected extension of the mineralized zones and below the rock types resembled the phyllitic siltites seen previously.

Two zones of elevated base metal values were intersected at $162.1 \mathrm{~m}-172.2 \mathrm{~m}$ and 201.0 m - 212.0 m pyritiferrous zones.

The upper zone was associated with phyllitic siltites while the lower zone with up to 30% pyrite was associated with medium to thick bedded quartzite unit.

Below the lower zone, the phyllitic to argillaceous siltite exhibited more metamorphism (hornfels) with depth with some minor calc-silicate and silicified zones, andesite sills and pegmatitic sediments.

Kokanee has confirmed the presence of stratiform to stratabound base metal mineralization associated with carbonaceous siltites, argillaceous limestones and quartzites.

The results to date have only tested a 400-600 metre stretch of the strike length of the zone of mineralization. It remains open along strike and at depth.

With the encouraging results to date, it is recommended that exploration be continued.

Report by:

EXHIBIT "A"
 STATEMENT OF EXPENDITURES
 DIAMOND DRILLING PROGRAM
 (Drill hole L90-2)
 ON TAG CLAIM
 NELSON M.D.

Covering the period of September 13 th to September 24 th, 1990

INDIRECT

SALARIES:
$\begin{array}{llr}\text { D. Weeks - Geologist - Site preparation/Supervision/ } \\ \text { Core logging } 12 \text { days @ } \$ 250 / \text { day } & \$ 3,000.00 \\ \text { L. Stephenson - P. Eng. - Report writing/ } & \$ 00.00\end{array}$
DOMICILE: Hotel + meals - 1 man for 8 days @ $\$ 60 /$ day $4,80,00$
TRANSPORTATION: 1 - 4X4 truck; 8 days @ $\$ 50 /$ day 400.00

DIRECT

Connors's Drilling Ltd. 2007 West Trans Canada Highway, Kamloops, B.C.

IN THE MATTER OF THE

B.C. MINERAL ACT

AND

IN THE MATTER OF A DIAMOND DRILLING PROGRAM
 CARRIED OUT ON THE LEG PROPERTY
 CRESTON AREA

in the Nelson Mining Division of the Province of British Columbia

More Particularily N.T.S. 82F/2E+7E

AFFIDAVIT

I, L. Stephenson, of the City of Cranbrook, in the Province of British Columbia, make oath and say:

1. That I am employed as a Geologist by Kokanee Explorations Ltd. and as such have a personal knowledge of the facts to which I hereinafter depose:
2. That annexed hereto and marked as Exhibit " A " to this my Affidavit is a true copy of expenditures incursedion a diamond drilling program, on the Leg-Tag mineral claims;
3. That the said expenditures were inglared between the l3th day of September, 1990 and the 24 thy dary of September, 1990 for the purpose of mineral exploration

LAUS
B.SC., M.B.A., P.Eng.

AUTHOR'S QUALIFICATIONS

I, Laurence Stephenson, of the City of Cranbrook, in the Province of British Columbia, do hereby certify that:

1. I graduated from Carleton University in 1975 with a Bachelor of Science degree in Geology then, in 1985, graduated from York University with a Masters of Business Administration;
2. I am registered as a Professional Engineer for the Province of Ontario (1981) and currently a member in good standing;
3. I have had over 24 years experience in the field of mining exploration.

DRILL LOG
ε

ASSAYS

$K O K A N E E$ EXPLORATIONS LTD-

Property: L	ion Hole No.:	L-90-2			Location: Tag Claim				
From To	TO	No.	From To		Au peb	Ag RPm	$\begin{aligned} & \mathrm{Pb} \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{Zn} \\ \% \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPm} \end{array}$
14.1-24.3	Medium to finely foliated light grey, tan,	2708	14.90	15.10	5	0	0.005	0.005	1
	medium brown argillaceous limestone; similar	2709	16.20	16.30	5	0	0.005	0.005	1
	in character to interval $7.5-14.1 \mathrm{~m}$ in most	2710	16.90	17.00	5	0	0.005	0.005	1
	respects except colour. This is largely a	2711	18.30	18.40	5	0	0.005	0.005	1
	result of a decrease in iron content. This	2712	19.10	19.20	5	0	0.005	0.005	3
	unit on average is not as finely foliated as	2713	20.10	20.20	10	0	0.005	0.005	1
	above. The thicker more limy units contain	2714	21.60	21.80	5	0	0.005	0.01	11
	a dark green mineral possibly chloritoid.	2715	22.50	22.60	20	0	0.005	0.005	3
	Pyrite is still disseminated throughout.	2716	24.00	24.10	5	0	0.005	0.005	5
24.3-25.5	Limestone; finely foliated medium to dark brown grey limestone.	2717	25.20	25.30	5	0	0.005	0.01	10
25.5-40.5	Porous Limestone Unit; grading from minor	2718	25.70	25.90	10	0	0.005	0.03	2
	porosity, which makes washing the core easy,	2719	26.80	26.90	5	0	0.005	0.02	1
	to extremely porous friable white limestone	2720	28.20	28.40	5	0	0.005	0.06	2
	which is difficult to clean. This unit may	2721	29.50	29.70	5	0	0.01	0.03	4
	make a good marker if it proves continuous.	2722	31.00	31.20	5	0	0.01	0.03	3
	Partings along fractures are rusty, as is the	2723	31.80	32.00	5	0	0.01	0.01	2
	core, except where it has been washed.	2724	33.10	33.30	10	0	0.01	0.01	3
	Fractures also contain a black massive	2725	33.90	34.10	10	0	0.01	0.01	5
	mineral, possibly goethite (non magnetic).	2726	36.30	36.50	15	0	0.01	0.01	5
	There are also occasional quartz crystals	2727	37.60	37.80	20	0	0.02	0.005	3
	present. Overall the unit becomes more	2728	38.10	38.30	20	0	0.02	0.01	3

Property: Legion Hole No.: L-90-2 Tag Claim

Property: Legion Hole No.: L-90-2 Lacation: Claim

by several quartz veins primarily at the end of the section. The quartz veins cut the core at 64°.
116.1 - 117.4 Quartzite; grey, mauve-grey, banded, medium grained. Core is badly broken and has caved rock from above.
poor core recovery.
117.4-122.0 Argillaceous Limestone; grey-green, bluegrey, in part finely foliated argillaceous limestone. This sequence contains numerous crushed zones. Which contain quartz clasts and country rock in a calcareous mud matrix. Poor core recovery.
122.0-126.0 Phyllitic siltite; mauve and green-grey banded phyllitic siltite. As above, this sequence contains numerous crushed zones. Occasional pyrite veinlets ((3.0mm thick) are observed as are minute disseminated grains. Some of the bands are kinked and show small chevron-shaped folds. Core recovery is poor, core is badly broken.
126.0-129.7 Limestone; light green-grey foliated. Some parts of the sequence are finely foliated. As with previous sequences, crushed zones occur in numerous intervals and contain clasts of country rock in a sandy, sometimes

KOKANEE EXPLORATIONS LTD

 DRILL HOLE RECORD
calcareous matrix. The crushed zones are poorly cemented and can be broken by hand.
133.6 - 141.0 Black Phyllitic Argillite; cut surfaces show a satiny sheen. Extremely fine foliations, possibly fine bedding at one time Occesional interbeds of grey-green limestone Occasional interbeds of grey-green limestone up to 20.0 cm occur at the top and the bottom of the sequence. Rare grains of pyrite, up to 2.0 mm , across are scattered throughout. very fine grains of pyrite are disseminated throughout.
133.6-141.0 Argillaceous Limestone: light green to blue grey. May be similar to 61.0-64.0m in L90-1.
Note this sequence contains a crushed zone from 134.2-138.7m.
Core loss for this sequence is about 40\%. Competent sequences in this section are fine to medium foliated and contain disseminated pyrite throughout. Pyrite content increases slightly with depth.
141.0-143.9 Phyllitic siltite; light green and mauve banded. Bands are discontinuous and exhibit boudinaged and crenulated textures.

KOKANEE EXPLORATIONS LTD-

DRILL HOLE RECORD
Property: Legion Hole No.: L-90-2 Tacation: Claim

Property: Leg	ion Hole No.:	L-90-2			Location: Tag Claim				
METERAGE D		Sample					$\begin{aligned} & \mathrm{Pb} \\ & \% \end{aligned}$	$\begin{array}{r} \mathrm{Zn} \\ \% \\ \hline \end{array}$	
From To		No.	From	To	Au	Ag			$\begin{gathered} \mathrm{Cu} \\ \mathrm{pem} \end{gathered}$
					ppb	pem			
201.0-212.0	Quartzite; grey, green-grey, medium grained,	2581	201.0	202.0	10	7	0.01	0.09	58
	medium to thick bedded quartzite.	2582	202.0	203.0	5	8	0.01	0.03	86
	The upper $2 / 3$ of the unit is very pyritic (up	2583	203.0	204.0	5	8	0.01	0.06	89
	to 30\% pyrite). The pyrite occurs in wispy	2584	204.0	205.0	40	3	0.005	0.03	39
	bands and lenses. The bottom $1 / 3$ of the unit	2585	205.0	206.0	5	3	0.005	0.02	34
	is much less pyritic decreasing to <3\% pyrite	2586	206.0	207.0	5	2	0.005	0.01	102
	at its contact with the next unit.	2587	207.0	208.0	5	5	0.01	0.06	40
		2588	208.0	209.0	5	11	0.03	0.10	53
212.0-224.0	Phyllitic siltite; mauve, green, green-grey,	2589	209.0	210.0	5	7	0.01	0.07	71
	finely foliated. Many of the foliations are	2590	210.0	211.0	5	2	0.01	0.01	22
	crenulated and run parallel to the core.	2591	211.0	212.0	5	0	0.005	0.005	20
	Fine disseminated pyrite throughout <3\%	2592	212.0	213.0	5	0	0.005	0.005	6
	pyrite by volume.	2593	213.0	214.5	5	0	0.005	0.005	5
		2594	214.5	215.5	15	0	0.005	0.005	9
224.0-226.2	Phyllitic Siltite; green silicified finely	2595	224.0	224.8	5	0	0.005	0.005	23
	foliated with occasional thicker units of phyllitic siltites. Pyritic bands are more common with this unit than the unit above it.								
226.2-230.8	silicified siltite; green-grey, grey, mauve silicified siltite. Finely foliated, some	2596	226.0	227.6	5	0	0.005	0.005	34
	silicified siltite. Finely foliated, some foliations are crenulated and run near								
	parallel to the core. Occasional pegmatic quartz veins and occasional bands of pyrite.								
230.8-232.1	Siltite; phyllitic green, blue-grey mauve	2597	230.8	232.1	5	0	0.005	0.005	47
	pegmatic siltite. Abundant pyrite quartz and green mineral (quasi-sphalerite) as well as dark green chlorite, brown sphalerite.								

KOKANEE EXPRLORATIONS LTD
 DRILL HOLE RERORD

CORE STORED IN RACKS AT VINE PROPERTY

10041 EAST TRANS CANADA HIY.
 KAM LOOPS, B.C. V2C $2 \mathrm{J3}$ PHOME - 604-573-5700 FAX - 604-573-4557

104-135 10th ANE SOUIT
CRAMBRCOK, B.C
UIC 2NI

OCTO8ER 2, 1990
UALUES IN PPH UNLESS OTHERUISE REPORTED AGE

41 CORE SAMPLES RECEIVED SEPTEKBER 28,1990

PAGE 2																																
EH	DESCRIPIIOWS		AUU（ppb）			AS	8	BA	BI CA（ 5 ）		CD	C0	CR	CU FE（s）	K（ y ）	LA 1.6 （ 3 ）		M	H0 MAM ${ }^{\text {（ }}$ ）		NI	p	P8	SB	SN	SR II（ $\mathbf{y}_{\text {）}}$		0	V	H	$\gamma \quad Z n$	
：$=$	－＝：＝：＝		－＝＝＝＝																													ニミニニ
643	－ 2702	580	15	1.0	． 67	18	5	17	18	． 70	1	20	78	225.72	． 39	23	． 70	313	16	＜． 01	20	555	35	（5）	＜20	1	． 04	10	9	26	5	166
643	－ 2802	581	10	7.3	． 13	42	6	$(5$	38	． 15	3	24	58	5815.00	． 07	37	． 25	54	9	（．01	7	101	100	（5）	$(20$	$(1$	． 01	110	1	4	11	891
643	－ 2902	582	5	8.4	． 18	27	4	12	（S	． 83	7	21	51	869.74	． 07	46	． 48	325	6	＜．01	4	122	102	8	＜20	11	． 02	110	！	29	11	333
643	－ 3002	583	15	7.9	． 15	33	8	14	15	． 59	3	21	55	8913.13	． 04	62	． 58	259	5	\．01	3	145	93	17	$(20$	11	． 02	110	11	26	1	616
643	－ 3102	584	40	3.3	． 15	12	2	6	4	． 89	${ }^{1}$	5	42	396.72	． 03	32	． 78	409	4	（．01	1	104	35	（5）	＜20	11	． 02	110	11	$(10$	1	271
643	－ 3202	585	5	2.6	． 19	10	4	15	36	1.04	1	10	38	34 11．38	（．01	27	1.05	518	4	（．01	1	104	37	6	（20	11	． 01	110	1	106	（1）	196
643	－ 3302	586	5	2.4	． 21	6	4	7	38	． 83	1	13	33	10214.35	． 02	35	． 97	410	11	＜． 01	2	89	22	（5	（20	1	． 02	$(10$	1	32	1	124
643	－ 3402	587	15	4.7	． 21	17	5	8	14	． 41	2	14	48	4012.36	． 14	31	． 37	201	5	（．01	2	75	84	15	（20）	，	． 01	＜10	$(1$	12	11	611
643	－ 3502	588	15	10.7	． 18	24	4	17	37	． 56	4	16	45	5314.34	． 07	36	． 34	212	3	1.01	5	82	254	15	（20	$(1$	． 01	22	11	18	11	988
843	－ 3602	589	（5）	7.4	． 29	15	4	11	30	． 94	3	11	44	7112.68	． 12	32	． 46	352	4	（．01	3	117	124	15	（20	11	． 91	18	11	＜10	11	660
643	－ 3702	590	15	2.3	． 27	16	（2	16	24	1.11	1	11	38	228.06	． 15	32	． 38	357	4	（．01	16	318	55	15	20	11	． 01	26	11	（10	11	105
643	－ 3802	591	＜ 5	$(.2$	． 27	15	12	4	9	2.15	（1）	11	47	$20 \quad 1.69$	． 00	（10	． 68	727	2	（．01	3	77	5	（S	（20	11	． 01	37	1	＜10	1	20
643	－ 3902	592	＜ 5	＜． 2	1.00	15	3	15	132	． 93	1	42	54	$6) 1500$	． 44	17	． 91	444	5	1．01	25	711	2	（5	（20	1	． 08	（10	16	55	15	17
643	－ 4002	593	15	． 3	1.35	15	3	14	75	． 87	1	25	54	512.15	． 65	13	． 91	427	3	（．01	23	1075	2	（5	（20	$(1$	． 09	110	15	19	12	18
643	－ 4102	594	15	＜． 2	1.34	15	2	21	32	． 79	1	5	95	95.13	． 57	110	． 85	457	5	（．01	6	488	8	15	（20	11	． 09	110	12	17	10	21
643	－ 4202	595	（S	＜． 2	． 35	＜ 5	12	1	29	1.08	4	6	61	$23 \quad 4.55$	． 06	110	． 54	298	5	（．01	6	242	28	15	120	11	． 06	16	2	24	9	8
643	－ 4302	596	（5	1.2	． 40	（5）	12	15	42	1.47	11	13	62	$34 \quad 6.87$	． 07	10	． 66	437	6	（．01	5	248	13	15	120	11	． 05	110	4	50	9	10
643	－ 4402	597	（5	$(.2$	． 43	（5	3	（5	47	． 74	11	17	58	477.47	． 13	（10	． 61	249	84	（．01	6	219	7	15	120	4	． 06	（10	4	40	7	15
NOIE： $1=$ LESS IHAN												Putte d																				
fax ：489－1121												EEO－TECH LABORATORIES LTD． JUTIA JEALOUSE 8．C．CERIIFIEO ASSAYER																				

SC90／KOKANEES

10041 EAST TRANS CAMADA HETY.
KAMLOOPS, B.C. VZC 2 JB
PHONE - 604-573-5700
FAX - 604-573-4557

SUITE 104-135 loth ane. 5
CRAMBRCOK, B.C.
VIC 2NI

OCTOBER 19, 1990
values In PPh uniess otherwise reporied

14 CORE SAMPLES RECEIVEO OCTOBER 10, 1990

ET:	

NOTE: $<=$ LESS THAN

FAX: 489-1121

SC90/KOKANEETS GEOCHEMICAL ©

$\frac{\text { Kokanee Explorations Ltd. File \# }}{104-135-10 \text { th Ave S., Cranbrook BC vic }}$ 2

ISP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH HATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ISP IS 3 PPM. - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

10041 bast frais camad hit.
AKLLOOPS, 8.C. V2C 2 J 3
PHOVIR - 601-573-5700
PAI - 601-573-455?

SEPTBKBER 28, 1990

VLLUES II PPM URLESS OTHERNISB REPORTBD

PACE 1

KOKANEE EXPLORATIONS LTD. - ETK 90-621
104 - 135 10ta avs. soura
CRAMBROOR, B.C.
VIC 2:1

56 CORR SAMPLESRCBITED SEPPBMBER 24, 1990 provect : LRG

ECO-TECH LABORATORIES LTD. KOKANEE EXPLORATIONS LTD. - ETK 90-621

HOTE: < = LBSS THAI

Sc90/ROK13

