LOG NO: ACTION:	0521	RD.
FILE NO:		

KOKANEE EXPLORATIONS LTD.

ASSESSMENT REPORT ON DIAMOND DRILL HOLE L90-2

LEG PROPERTY

TAG CLAIM

FORT STEELE MINING DIVISION

CRESTON AREA

N.T.S. 82F/2E + 7E

GEOLOGICAL BRAN<u>Com</u>: 116°33'W ASSESSMENT REPORT

OWNER

KOKANEE EXPLORATIONS LTD.

Suite 104, 135 - 10th Avenue South Cranbrook, B.C. VIC 2N1

Worked Performed from September 13, 1990 to September 24, 1990

Report by: L. Stephenson Submitted: May, 1991

LAT: 49º13.5'N

TABLE OF CONTENTS

. [

	PAGE	2
1.00	Introduction	L
2.00	Claims	L
3.00	Location and Access	L
4.00	Work History	L
5.00	Regional Geology	2 2
6.00	1990 Drilling Program	3 3
7.00	Conclusion and Recommendation	4
	Exhibit "A" - Statement of Expenditures	5
	Affidavit	6
	Author's Qualifications	7
	Claim and Drill Hole Location Map	8
	Section 2050N	9
	Drill Log - L90-2 + Assays	ed

KOKANEE EXPLORATIONS LTD.

LEG PROPERTY TAG CLAIM

DIAMOND DRILLING REPORT ON HOLE L90-2

L. Stephenson May, 1991

1.00 Introduction

This report describes one diamond drill hole completed during the 1990 exploration program on the Legion Resources Ltd. claims in Southeastern British Columbia. The purpose of the exploration was to evaluate the sulphide zone located along Wilds Creek and to evaluate its down dip and along strike potential.

2.00 <u>Claims</u>

The property consist of ten 4-Post claims and twenty-nine 2-Post claims, totalling 180 units.

3.00 Location and Access

The mineral claims are located approximately 14 km north of the town of Creston, British Columbia in the Nelson Mining Division. The claims cover the western flank of a broad northsouth ridge between Kootenay Lake to the west and Duck Creek to the east (on Map 82F/2E + 7E).

Access to the property is excellent. Highway 3A cuts the west side of the property and numerous logging roads transect.

4.00 Work History

The first recorded exploration activity in the area is reported in 1924 when the ground was staked as the Sarah claims. Showings in Wilds Creek were explored by two adits and some trenching. The mineralization occurred as disseminations, stringers and lenses in the limestone, grading from nearly barren material to ore containing 32% zinc. The silver values vary from a trace to 2 or 3 oz/ton. In the 1950's, Newmont Mining Corporation optioned the property and drilled 6 drill holes. In 1961, claims were restaked and optioned to Sheep Creek Gold Mines Ltd. Sheep Creek drilled two holes to try and prove the zone to the southwest. In 1963, the property was examined with geological mapping and sampling of trenches being carried out and a preliminary reserve estimate of 150,000 tons grading 6% zinc was estimated. In 1964, exploration extended the mineralization some 100m to the south of the main showing. The entire main zone was surface trenched and 5 drill holes completed by the end of 1965.

In 1968-70, a VLF-EM and two magnetic surveys were completed over the main showing. In 1977, Cominco staked the ground north and south of the Liz claims and, in 1978, completed a soil survey along Wilds Creek.

In 1982, limited geochemical sampling was completed by Aspen Grove Mines. In 1984, a further soil sampling was undertaken on the claims.

In 1988, an extensive program of line-cutting, geochemistry, induced polarization and geological mapping was carried out.

In 1989, a program to fill in missing information, soil geochem, geophysics surveying and testing the main zones was commenced.

5.00 <u>Regional Geology</u>

The regional geology surrounding the claim group was mapped by H.M.A. Rice in 1941 and described in G.S.C. Memoir 22. The claim area is underlain by various units within the late Precambrian Purcell Supergroup. The Purcell Supergroup has been subdivided by a major unconformity into an upper unit consisting of the Dutch Creek and Mt. Nelson Formations and a lower unit consisting of the Aldridge, Creston and Kitchener-Siyeh Formations.

Intruding the Purcell Supergroup in the claim area is the discordant post-tectonic Bayonne Batholith. The composition varies from a granite to a granodiorite. The intrusion has been dated (K-Ar) at 100 m.y. (Hoy et al. 1981).

5.10 Local Geology

The local geology of the claim area was mapped as a northeasterly-trending succession of sediments (limestone, dolomitized limestone), greenstones and schists. Younger granites and granodiorites are found to the northwest. Bedding attitudes on the property strike generally at about 035 degrees and dip at about 80 degrees to the southeast.

- 2 -

The rocks on the property consist of a quartzite, a dolomitized limestone, a phyllite and fissile shale (Dutch Creek?).

While structure is difficult to determine due to lack of outcrop, there appears to be a slightly overturned anticline striking NNE with both limbs dipping easterly.

6.00 <u>1990 Drilling Program</u>

Kokanee focused its exploration program on developing the strike and depth extent of the main zone. Five diamond drill holes were completed.

6.10 Drill Hole L90-2

Diamond drill hole L90-2, totalling 318m, was completed on the property during September, 1990. This hole was designed to test the zone encountered in previous drilling.

The hole collared in micaceous limestone sediments which were dolomitic to argillaceous with some interbedded phyllites. An extremely porous limestone and an intraformational conglomerate (with angular clasts and some quartz and quartz veins - remnant "karst"?) were found within this upper limestone section. The drill hole intersected thin to medium bedded quartzites in the vicinity of the projected extension of the mineralized zones and below the rock types resembled the phyllitic siltites seen previously.

Two zones of elevated base metal values were intersected at 162.1m - 172.2m and 201.0m - 212.0m pyritiferrous zones.

The upper zone was associated with phyllitic siltites while the lower zone with up to 30% pyrite was associated with medium to thick bedded quartzite unit.

Below the lower zone, the phyllitic to argillaceous siltite exhibited more metamorphism (hornfels) with depth with some minor calc-silicate and silicified zones, andesite sills and pegmatitic sediments. 7.00 <u>Conclusions and Recommendations</u>

Kokanee has confirmed the presence of stratiform to stratabound base metal mineralization associated with carbonaceous siltites, argillaceous limestones and quartzites.

The results to date have only tested a 400 - 600 metre stretch of the strike length of the zone of mineralization. It remains open along strike and at depth.

With the encouraging results to date, it is recommended that exploration be continued.

Report by: B.Sc., M.B.A. nson P. Eng.

- 4 -

EXHIBIT "A"

STATEMENT OF EXPENDITURES

DIAMOND DRILLING PROGRAM (Drill hole L90-2)

> ON TAG CLAIM NELSON M.D.

Covering the period of September 13th to September 24th, 1990

INDIRECT

SALARIES:

D. Meeks - Geologist - Site preparation/Supervision/ Core logging 12 days @ \$250/day \$3,000.00
L. Stephenson - P.Eng. - Report writing/ Interpretation 2 days @ \$400/day 800.00
DOMICILE: Hotel + meals - 1 man for 8 days @ \$60/day 4,800.00
TRANSPORTATION: 1 - 4X4 truck; 8 days @ \$50/day 400.00

DIRECT

Connor's Drilling Ltd. 2007 West Trans Canada Highway, Kamloops, B.C. TOTAL INDIRECT AND DIRECT = <u>\$ 40,755.26</u> LAURENCE STEPHENSON B.Sc. J. P.A., P.Eng.

IN THE MATTER OF THE

B.C. MINERAL ACT

AND

IN THE MATTER OF A DIAMOND DRILLING PROGRAM

CARRIED OUT ON THE LEG PROPERTY

CRESTON AREA

in the Nelson Mining Division of the Province of British Columbia

More Particularily N.T.S. 82F/2E+7E

AFFIDAVIT

I, L. Stephenson, of the City of Cranbrook, in the Province of British Columbia, make oath and say:

- That I am employed as a Geologist by Kokanee Explorations Ltd. and as such have a personal knowledge of the facts to which I hereinafter depose:
- 2. That annexed hereto and marked as Exhibit "A" to this my Affidavit is a true copy of expenditures incurred on a diamond drilling program, on the Leg-Tag mineral claims;
- 3. That the said expenditures were incurred between the 13th day of September, 1990 and the 24th day of September, 1990 for the purpose of mineral exploration.

LAURENCE STEPHENSON ,M.B.A.,P.Eng.

AUTHOR'S QUALIFICATIONS

I, Laurence Stephenson, of the City of Cranbrook, in the Province of British Columbia, do hereby certify that:

- I graduated from Carleton University in 1975 with a Bachelor of Science degree in Geology then, in 1985, graduated from York University with a Masters of Business Administration;
- 2. I am registered as a Professional Engineer for the Province of Ontario (1981) and currently a member in good standing;
- 3. I have had over 24 years experience in the field of mining exploration.

LAURENCE STEPHENSON B.S.C., M.B.K., P.Eng.

N PARTY STATE

DRILL LOG

.

à

and the second second

&

ASSAYS

KOKANEE EXPLORATIONS LTD.

	D	R	Ι	L	L	-	ł.	\mathbf{o}	L	E	R	E	-	C	O	R	C	>
--	---	---	---	---	---	---	----	--------------	---	---	---	---	---	---	---	---	---	---

....

S. 8. 1.

Page NO. 1	P	ag	е	No		1
------------	---	----	---	----	--	---

Name of Property: Leg	Corr. Dip:	Remarks:
Hole No: L90-2	Length: 318.0 meters	
Location: Tag Claim	Start Date: Sept. 13/90	Finish Date: Sept. 20/90
Elevation:	Azimuth:	Collar Dip:
Core Size: NQ	Tests at: 61.0, 152.5, 244.0 + 318.0 m	Logged by: D. Meeks Date:

METERAGE DESCRIPTION Sample

From To		No.	From	Το	Au	Aq	Pb	Zn	Cu
<u></u>					<u>P</u> PP	PPm	*	*	ppm
0.0 - 6.7	Overburden								
6.7 - 7.5	Grey and tan micaceous dolomitic limestone appears to be well foliated but poorly lineated. Locally contains some isolated crystalline textures contains disseminated pyrite throughout as well as limonite after pyrite.	2701	7.10	7.20	5	0	0.005	0.005	20
7.5 - 14.1	Finely foliated tan to medium brown pyritic argillaceous limestone abundant fractures filled with calcite run at 22° to core and at 58° to core. The foliations which may have been bedding planes at some time cut the core at 38°. Some of the fractures are rimmed	2702 2703 2704 2705 2706 2707	8.40 9.60 10.80 12.60 13.20 13.70	8.60 9.80 11.00 12.70 13.30 13.90	5 5 5 5 5 5		0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.005 0.005 0.005 0.005 0.005	8 7 9 10 9 1

A crumbled zone starts at <u>40.1m</u> and ends at <u>40.5m</u>. Zone contains some green phyllitic argillaceous material. Zone could be a shear

zone.

Property: Legion

Location: Tag Claim

METERAG	E DESCRIPTION	Sa	mple	Э					
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
					PPb	PPM	*	*	PPM
14.1 ~ 24.3	Medium to finely foliated light grey, tan,	2708	14.90	15.10	5	0	0.005	0.005	1
	medium brown argillaceous limestone; similar	2709	16.20	16.30	5	0	0.005	0.005	1
	in character to interval 7.5 - 14.1m in most	2710	16.90	17.00	5	0	0.005	0.005	1
	respects except colour. This is largely a	2711	18.30	18.40	5	0	0.005	0.005	1
	result of a decrease in iron content. This	2712	19.10	19.20	5	0	0.005	0.005	3
	unit on average is not as finely foliated as	2713	20.10	20.20	10	0	0.005	0.005	1
	above. The thicker more limy units contain	2714	21.60	21.80	5	0	0.005	0.01	11
	a dark green mineral possibly chloritoid.	2715	22.50	22.60	20	0	0.005	0.005	3
	Pyrite is still disseminated throughout.	2716	24.00	24.10	5	0	0.005	0.005	5
24.3 ~ 25.5	<u>Limestone</u> ; finely foliated medium to dark brown grey limestone.	2717	25.20	25.30	5	0	0.005	0.01	10
25.5 - 40.5	Porous Limestone Unit; grading from minor	2718	25.70	25.90	10	0	0.005	0.03	2
	porosity, which makes washing the core easy,	2719	26.80	26.90	5	0	0.005	0.02	1
	to extremely porous friable white limestone	2720	28.20	28.40	5	0	0.005	0.06	2
	which is difficult to clean. This unit may	2721	29.50	29.70	5	0	0.01	0.03	4
	make a good marker if it proves continuous.	2722	31.00	31.20	5	0	0.01	0.03	3
	Partings along fractures are rusty, as is the	2723	31.80	32.00	5	0	0.01	0.01	2
	core, except where it has been washed.	2724	33.10	33.30	10	0	0.01	0.01	3
	Fractures also contain a black massive	2725	33.90	34.10	10	0	0.01	0.01	5
	mineral, possibly goethite (non magnetic).	2726	36.30	36.50	15	0	0.01	0.01	5
	There are also occasional quartz crystals	2727	37.60	37.80	20	0	0.02	0.005	3
	present. Overall the unit becomes more	2728	38.10	38.30	20	0	0.02	0.01	3
	competent toward the end of the section.	}							

Property: Legion

common.

Hole No.: L-90-2

Location: Tag Claim

Æ

METERAG	E DESCRIPTION	<u>Sa</u>	mple	9					
From To		No.	From	To	Au	Ag	Pb	Zn	Cu
					ppb	ppm	*	%	ppm
40.5 - 45.1	Green, Mauve and Grey Phyllites Interbedded	2729	40.50	40.70	5	0	0.01	0.08	11
	with Argillaceous Porous Limestone;	2730	42.20	42.40	10	0	0.005	0.01	5
	fractures have rusty partings and contain abundant disseminated limonite pseudomorphs of euhedral pyrite. The mauve and grey green phyllites are more competent as was observed in L90-1.	2731	43.70	43.90	5	0	0.005	0.005	1
45.1 - 46.3	Limestone; vuggy with occasional wispy structures. Rust weathering on fractured surfaces. Limonite pseudomorphs after euhedral pyrite.	2732	45.50	45.70	5	0	0.005	0.005	1
46.3 - 55.9	Phyllitic Limestones; light grey to grey	2733	46.70	46.90	10	0	0.005	0.005	1
	green with interbeds of green and mauve	2734	48.80	49.00	5	0	0.005	0.01	1
	phyllitic siltites. The unit overall becomes	2735	49.90	50.10	5	0	0.005	0.005	1
	less limy toward the bottom of the section.	2736	51.60	51.80	5	0	0.005	0.01	1
	Fine grained pyrite is present throughout as	2737	52.20	52.30	10	0	0.005	0.01	3
	are pyrite casts.	2738	53.40	53.50	5	0	0.005	0.005	2
55.9 - 57.7	Mauve and Dark Green Phyllite; a small	2739	56.00	56.10	5	0	0.005	0.01	42
•	section from <u>56.7 - 56.9m</u> is finely banded with (chopped up) boudinaged green bands of phyllite floating in a less resistant matrix of mauve phyllite - possible marker? Fractured surfaces weather rusty. Pyrite is	2740	55.90	56.10	5	0	0.005	0.01	47

Property: Legion

4.

Location: Tag Claim

Pb

Ζn

Ag

Au

METE	ERAGI	E D	ΕS	CRI	РТ	I	ON	Ş	a m p l	e
From	То							No.	From	То

					ppb	PPM	*	*	ppm
57.7 - 80.8	Porous Limestone Chalk Unit; very soft and	2741	58.80	59.00	10	0	0.005	0.005	8
	friable. Clean surface is white but often	2742	61.60	61.80	5	0	0.01	0.02	7
	contains yellow reddish mud or fires.	2743	62.50	62.70	5	0	0.01	0.01	3
	Vigorous scrubbing of the core results in	2744	64.50	64.70	5	0	0.01	0.09	9
	erosion of the surface being washed. The	2745	65.40	65.60	5	0	0.005	0.01	1
	upper section is a transition zone with the	2746	66.40	66.60	5	0	0.005	0.01	2
	last competent green phyllitic material	2747	67.30	67.50	15	0	0.005	0.01	3
	occurring at <u>64.3m</u> . The limy units are	2748	68.30	68.40	5	0	0.005	0.01	4
	extremely vuggy. As can be expected with	2749	69.30	69.50	5	0	0.005	0.01	3
	such friable rock the core exhibits evidence	2750	71.20	71.40	55	0	0.005	0.01	12
	of grinding. Clean partings occur at a core	2751	72.00	72.20	15	0	0.005	0.01	7
	angle of 41°. Quartz crystals are scattered	2752	73.00	73.20	5	0	0.005	0.01	7
	throughout the interval. Remnants of fine	2753	74.70	74.90	5	0	0.01	0.03	25
	grained pyrite are also present. Wispy,	2754	75.20	75.30	15	0	0.005	0.02	8
	swirly, textures are common.	2755	76.70	76.90	5	0	0.005	0.01	8
	Occasional more rusty weathering sections	2756	79.40	79.60	20	0	0.01	0.01	4
	occur at 70.2m, 72.3m and 76.8m								

An interbed of green phyllitic material occurs at 70.8 to 71.0m.

- 80.8 92.4 <u>Silty Argillaceous Limestone</u>; silty argillaceous sections vary in colour from light green mat grey to dark grey and grey green. Buff colour layers are common and appear to have associated rusty pyrite. Some sections are foliated but not well lineated.
- 92.4 95.0 <u>Black Phyllitic Argillite Unit</u>; very satiny lustre. As is common with phyllites on the dry surface the lustre is still evident but

Page 4

Cu

Property: Legion

4

-142-2

Location: Tag Claim

METERAG	E DESCRIPTION	<u> </u>	<u>ampl</u>	e					
From To		No.	From	To	Au	Ag	Pb	Zn	Cu
	could be mistaken for grey colour. On the wet surface, the rock appears to alternate between black and medium grey. The unit also contains small veinlets of pyrite as well as veinlets of ochre after pyrite? Approximately 30% core loss.				<u>ppb</u>	<u>PPm</u>	3	<u> </u>	<u> </u>
95.0 -105.2	<u>Phyllitic Siltites;</u> green-grey and mauve banding. Well foliated sections occur throughout. Core angles are inconsistent indicating coring problems. 50% or more core loss. Minor pyrite throughout.								
105.2 - 109.6	Intra Formational Conglomerate; consists of angular clasts of black and green argillaceous material, white quartz crystals and brown angular laminated clasts that appear to have been very pyritic at one time. A rough grading appears to take place with larger clasts occurring as depth increases. The "conglomerate" is cemented by calcareous cement.								
109.6 - 116.1	Intra Formational Conglomerate Unit "B"; similar to unit above but contains much larger clasts. Clasts do not appear to be as altered as the upper unit but this may be a result of the lithologies being more resistant. The matrix changes from a green dirty calcareous cement. The unit is cut								

Property: Legion

1,054

Location: Tag Claim

\$

METERAG	E DESCRIPTION	S	ampl	e					
From To		No.	From	То	_ Au	Ag	Pb	Zn	Cu
	by several quartz veins primarily at the end of the section. The quartz veins cut the core at 64° .				ppb	<u> </u>	X	<u> </u>	<u>PPm</u>
116.1 - 117.4	<u>Quartzite</u> ; grey, mauve-grey, banded, medium grained. Core is badly broken and has caved rock from above. Poor core recovery.								
117.4 - 122.0	Argillaceous Limestone; grey-green, blue- grey, in part finely foliated argillaceous limestone. This sequence contains numerous crushed zones. Which contain quartz clasts and country rock in a calcareous mud matrix. Poor core recovery.								
122.0 - 126.0	Phyllitic Siltite; mauve and green-grey banded phyllitic siltite. As above, this sequence contains numerous crushed zones. Occasional pyrite veinlets (<3.0mm thick) are observed as are minute disseminated grains. Some of the bands are kinked and show small chevron-shaped folds. Core recovery is poor, core is badly broken.								
126.0 - 129.7	<u>Limestone</u> ; light green-grey foliated. Some parts of the sequence are finely foliated. As with previous sequences, crushed zones occur in numerous intervals and contain clasts of country rock in a sandy, sometimes								

Property: Legion

Location: Tag Claim

4

METERAG	E DESCRIPTION	S	ampl	e					
From To		No.	From	Το	Au	Ag	Pb	Zn	Cu
	calcareous matrix. The crushed zones are poorly cemented and can be broken by hand.				<u>ppp</u>	<u></u> 99m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>ppm</u>
133.6 - 141.0	Black Phyllitic Argillite; cut surfaces show a satiny sheen. Extremely fine foliations, possibly fine bedding at one time. Occasional interbeds of grey-green limestone up to 20.0cm occur at the top and the bottom of the sequence. Rare grains of pyrite, up to 2.0mm, across are scattered throughout. Very fine grains of pyrite are disseminated throughout.								
133.6 - 141.0	Argillaceous Limestone; light green to blue grey. May be similar to $61.0 - 64.0m$ in L90-1. Note this sequence contains a crushed zone from $134.2 - 138.7m$. Core loss for this sequence is about 40%. Competent sequences in this section are fine to medium foliated and contain disseminated pyrite throughout. Pyrite content increases slightly with depth.								
141.0 - 143.9	<u>Phyllitic Siltite</u> ; light green and mauve banded. Bands are discontinuous and exhibit boudinaged and crenulated textures.								

Property: Leg	ion Hole No.:	L-90-	2			Locat	ion: Tag	Claim	
METERAG	E DESCRIPTION	Sa	m p l e	1					
From To		No.	From	То	_ Au	Ag	Pb	Zn	Cu
143.9 - 144.5	<u>Quartzite</u> ; grey, grey-green, fine grained to massive. This unit contains some dark bands as well. Unit is thin to medium bedded.				bbp	PPM	*	<u>*</u>	<u>ppm</u>
144.5 - 153.8	Argillaceous Limestone; light grey, blue- grey, green-grey coloured with fine black foliations. Thicker beds up to 6.0cm occur throughout. Very crystalline sections are common and often coloured green-grey or blue- grey. Pyrite is disseminated throughout. Some green-yellow sphalerite near end of section.	2554 2555 2556	150.5 151.5 152.8	151.5 152.8 153.8	5 5 10	0 0 0	0.005 0.005 0.005	0.04 0.01 0.15	10 34 30
153.8 - 154.3	Pegmatite Zone with Large Crystals of Orthoclase Feldspar; pyrite, zinc and altered green siltite, probably green because of chlorite.	2557	153.8	154.3	5	0	0.005	0.01	11
154.3 - 155.6	Phyllitic Siltite; mauve, green and grey.	2558	154.3	155.3	5	0	0.005	0.01	32
155.6 - 156.4	<u>Quartz Vein Zone</u> ; with irregular and regular contacts with green and mauve phyllitic siltite. Minor pyrite.								
156.4 - 184.7	Phyllitic Siltites; blue grey green and mauve phyllitic siltites, very thinly foliated occasional lenses of biotite and pyrite. Possible wispy bands of yellowy-green sphalerite and pyrite. Examples - <u>168.2m</u> , <u>168.9m</u> . Foliations sometimes crenulated	2559 2560 2561 2562 2563 2564	159.8 160.8 162.1 163.2 164.2 166.8	160.8 162.1 163.2 164.2 165.2 167.8	5 5 5 5 5 5 5	0 0 0 0 0 0	0.005 0.005 0.005 0.005 0.005 0.005	0.03 0.01 0.12 0.03 0.05 0.06	21 25 25 19 22 23

Property: Legion

Hole No.: L-90-2

Location: Tag Claim

METE	RAG	E DESCRIPTION	<u>Sa</u>	<u>mple</u>	l			······································		
From	То		NO.	From	To	_ Au	Ag	Pb	Zn	Cu
						ppb	PPm	*	*	PPM
		and boudinaged. Angles to core are typically	2565	167.8	169.2	5	0	0.005	0.17	21
		38° but vary throughout the section and	2566	169.2	170.2	15	0	0.005	0.01	16
		sometimes parallel the core. Some sections	2567	170.2	171.2	5	0	0.005	0.05	39
		of the unit are silicified and do not scratch readily.	2568	171.2	172.2	5	0	0.005	0.05	15
184.7 -	189.8	Andesite Dike? Sill?; dark grey with white sub angular phenocrysts. Phenocrysts may be amygdules filled with white zeolites. The structure is cut by minor quartz veins. There is also an abundance of yellow green alteration mineral quasi sphalerite. Contact angle with the native rock is sub parallel to bedding at 28 ⁰ (bottom contact).	2569	188.8	189.8	5	o	0.005	0.01	20
189 8 -	192 2	MAGNET ARGILLITE MARKER (M.A.M.): black	2570	189.8	191.0	5	0	0.005	0.01	156
20/10		magnetic, pyritic argillite with abundant yellow-green quasi sphalerite mineral.	2571	191.0	192.0	5	0	0.005	0.005	13
192.2 -	201.0	Silicified Phyllitic Siltite; green, mauve	2572	192.0	193.0	5	0	0.005	0.005	27
		and grey, well foliated.	2573	193.0	194.0	5	0	0.005	0.005	30
		Some quartz eyes develop from 194.8 - 201.0	2574	194.0	195.0	5	0	0.005	0.005	27
		along with pink feldspar?	2575	195.0	196.0	5	0	0.005	0.005	11
		In places the core is quite pyritic.	2576	196.0	197.0	5	1	0.005	0.005	325
		Crenulated foliations are common. Some of	2577	197.0	198.0	5	ō	0.005	0.005	55
		the foliations run at odd angles to the core	2578	198.0	199.0	10	1	0.005	0.005	54
		possibly indicating localized folds	2579	199.0	200.0	15	1	0.005	0.005	36
			2580	200.0	201.0	5	1	0.005	0.02	22

Property: Legion

Location: Tag Claim

Page 10

4

METERAG	E DESCRIPTION	<u>Sa</u>	<u>mpl</u>	<u>e</u>					
From To		No.	From	<u> To </u>	Au	Ag	Pb	Zn	Cu
					ppb	PPM	*	*	PPM
201.0 - 212.0	<u>Quartzite;</u> grey, green-grey, medium grained,	2581	201.0	202.0	10	7	0.01	0.09	58
	medium to thick bedded quartzite.	2582	202.0	203.0	5	8	0.01	0.03	86
	The upper 2/3 of the unit is very pyritic (up	2583	203.0	204.0	5	8	0.01	0.06	89
	to 30% pyrite). The pyrite occurs in wispy	2584	204.0	205.0	40	3	0.005	0.03	39
	bands and lenses. The bottom 1/3 of the unit	2585	205.0	206.0	5	3	0.005	0.02	34
	is much less pyritic decreasing to <3% pyrite	2586	206.0	207.0	5	2	0.005	0.01	102
	at its contact with the next unit.	2587	207.0	208.0	5	5	0.01	0.06	40
		2588	208.0	209.0	5	11	0.03	0.10	53
212.0 - 224.0	Phyllitic Siltite; mauve, green, green-grey,	2589	209.0	210.0	5	7	0.01	0.07	71
	finely foliated. Many of the foliations are	2590	210.0	211.0	5	2	0.01	0.01	22
	crenulated and run parallel to the core.	2591	211.0	212.0	5	0	0.005	0.005	20
	Fine disseminated pyrite throughout <3%	2592	212.0	213.0	5	0	0.005	0.005	6
	pyrite by volume.	2593	213.0	214.5	5	0	0.005	0.005	5
		2594	214.5	215.5	15	0	0.005	0.005	9
224.0 - 226.2	<u>Phyllitic Siltite</u> ; green silicified finely foliated with occasional thicker units of phyllitic siltites. Pyritic bands are more common with this unit than the unit above it.	2595	224.0	224.8	5	0	0.005	0.005	23
226.2 - 230.8	<u>Silicified Siltite</u> ; green-grey, grey, mauve silicified siltite. Finely foliated, some foliations are crenulated and run near parallel to the core. Occasional pegmatic quartz veins and occasional bands of pyrite.	2596	226.0	227.6	5	0	0.005	0.005	34
230.8 - 232.1	<u>Siltite</u> ; phyllitic green, blue-grey, mauve pegmatic siltite. Abundant pyrite quartz and green mineral (quasi-sphalerite) as well as dark green chlorite, brown sphalerite.	2597	230.8	232.1	5	0	0.005	0.005	47

Property: Legion

Hole No.: L-90-2

Location: Tag Claim

đ

<u>METERAG</u>	E DESCRIPTION	<u> </u>	<u>mple</u>						
From To		NO.	From	To	Au	Ag	Pb	Zn	Cu
232.1 - 236.2	<u>Argillaceous Siltite</u> ; grey-green, thinly bedded argillaceous siltite. Occasional thinly foliated mauve bands. Disseminated euhedral pyrite scattered in patches throughout.				PPD	<u>. ppm</u>	3	<u> </u>	<u>ppm</u>
236.2 - 241.0	<u>Siltite</u> ; phyllitic green-grey and mauve siltite. Occasional blobs of crystalline pyrite. Minor disseminated pyrite throughout.								
236.2 -241.0	<u>Siltite</u> ; phyllitic green-grey and mauve siltite. Occasional blobs of crystalline pyrite. Minor disseminated pyrite throughout.								
241.0 -242.1	Argillaceous Siltite; grey, finely laminated argillaceous siltite, limy in part. Small sections of crackle breccia. Minor disseminated pyrite throughout.								
242.1 - 254.3	<u>Phyllitic Siltites</u> ; grey, green, mauve phyllitic siltites. Occasional blobs of crystalline pyrite as well as scattered grains of euhedral pyrite. Occasional quartz eyes surrounded by green pseudo-sphalerite mineral and pyrite - example at <u>252.8m</u> , <u>252.0m</u> , <u>249.8m</u> .	2598	250.4	251.9	15	0	0.005	0.005	15

Property: Legion

Hole No.: L-90-2

Location: Tag Claim

đ,

METERAG	E DESCRIPTION	Sa	mple					· · · · · · · · · · · · · · · · · · ·	
From To		No.	From	To	_ Au	Ag	Pb	Zn	Cu
254.3 - 256.5	Green, Pink, Calcareous Silicate - Actinolite - Tremolite Quartz and Pink Feldspar; disseminated pyrite and blobs of pyrite. Some veinlets of Iron ochre. Green pseudo- sphalerite red sphalerite	2599 2600	254.3 255.4	255.4 256.5	<u>ppb</u> 5 5	<u>ррм</u> 0 0	% 0.005 0.005	* 0.005 0.005	22 8
256.0 - 258.4	<u>Phyllitic Siltite</u> ; green, blue-green, occasional mauve. In part silicified.								
258.4 -258.8	<u>Andesite Sill</u> ; contact follows direction of foliation. Porphyritic texture, disseminated pyrite throughout.								
258.8 - 281.0	<u>Green and Mauve Hornfels</u> ; occasional pegmatitic sections as well as occasional pyritic sections. Foliations run in all directions including parallel to core. The most common angle is 30 ⁰ . Ochre staining on fracture surfaces.	2601 2602 2603	262.20 256.60 279.00	263.00 266.50 280.00	15 10 10	0 0 0	0.005 0.005 0.005	0.005 0.005 0.005	21 26 13
281.0 - 282.0	<u>Silicified Siltite</u> ; light green grey. Distorted foliations as in the previous section. The layers are broken but not displaced large distances. The impression is that of a crackle breccia.								
282.0 - 286.5	<u>Silicified Hornfels</u> ; light green grey. Well foliated. Foliations are crenulated and boudinaged foliations cut the core at various angles. Scattered quartz veining at								

Property: Legion

Location: Tag Claim

d.

METERAG	E DESCRIPTION	Sa	mple						
From To		No.	From	То	Au	Ag	Pb	Zn	Cu
	various angles. Rock is extremely chloritic and has some chloritic slickensides.				ppb	<u>PPm</u>		%	<u>PPM</u>
286.5 - 290.6	Grey limestone and green dolomitic limestone interspersed with green and mauve banded hornfels.	2604 2605 2606	286.50 287.70 288.70	287.70 288.70 289.70	15 10 15	0 0 0	0.005 0.005 0.005	0.005 0.005 0.005	6 6 9
290.6 - 293.9	Pyritic Hornfels; blue-grey, green, mauve, pyritic hornfels. Well foliated. Foliations are crenulated and boudinaged. Apple green pseudo-sphalerite at <u>292.9m</u> .	2607 2608	290.60 291.80	291.80 293.20	15 20	0 0	0.005 0.005	0.005 0.005	14 24
293.9 - 296.3	<u>Black Magnetic Argillite</u> ; with blobs of pyrite and disseminated and bedded pyrite as well a abundant green pseudo-sphalerite. Abundant yellow sphalerite occurs from 295.8 - 296.3m.	2609 2610 2611	293.90 294.90 295.80	294.90 295.80 296.30	10 7 5	0 0 0	0.005 0.005 0.005	0.01 0.01 0.01	58 82 55
296.3 - 304.3	<u>Green, Mauve, Chloritic, Siliceous Hornfels;</u> some sections are pegmatitic- example <u>302.1m</u> and pyritic- example <u>302.1m</u> . Occasional thin limy beds. Well foliated with foliations running at various angles to the core.	2612 2613	296.30 301.80	297.20 302.60	5 5	0 0	0.005 0.005	0.005 0.005	12 39
304.3 -307.5	<u>Siltite;</u> green and pink. Well foliated, in part silicified, in part argillaceous. Very infrequent mauve bands. Quartz vein from <u>307.2 - 307.5m</u> contact with host rock is very irregular. In part the lower contacts give a sense of tension gash filling?								

Property: Legion

Hole No.: L-90-2

Location: Tag Claim

METERA	E DESCRIPTION	Sa	m p l e	•					
From To		No.	From	То	Au	Ag	Pb	Ζn	Cu
					ppb	<u>PPm</u>	%	%	PPM
307.5 - 309.8	Mauve, Finely Foliated Silicified Siltite;	2614	308.00	309.00	2	0	0.005	0.005	42
	foliations are crenulated and run at various angles to the core.	2615	309.00	310.00	1	0	0.005	0.005	8
309.8 - 314.9	Siltite; green and grey-green quartzite with	2616	310.00	311.00	2	0	0.005	0.005	12
	interbeds of mauve and green silicified.	2617	311.00	312.20	4	0	0.005	0.005	25
	finely foliated, siltite. Possible bands of	2618	312.20	313.20	3	0	0.005	0.005	22
	yellow and white sphalerite - example 310.5m.	2619	313.20	313.70	3	0	0.005	0.005	8
	311.3m, 310.1m. NOTE: Abundant quartz veins at various contact angles, widths up to 30.0cm.	2620	313.70	314.90	1	0	0.005	0.005	12
314.5 - 318.0	Mauve, Green, Silicified, Finely Foliated	2621	314.90	315.90	1	0	0.005	0.005	3
	Hornfels with abundant quartz veining	2622	315.90	317.00	1	0	0.005	0.005	6
	throughout. Possible yellow sphalerite in bands at <u>315,4m</u> , <u>315.9m</u> .	2623	317.00	318.00	6	0	0.005	0.005	9

318.0 meters END OF HOLE

CORE STORED IN RACKS AT VINE PROPERTY

10041	EAST	TRAN	s cana	da hny
KANLO	DPS, I	3.C. I	V2C 2J	3
PHONE	- 604	1-573	-5700	
FAX -	604	1-573	-4557	

KOKANEE EXPLORATIONS LTD. - ETK 90-643

٠

104 - 135 10th AVE. SOUTH CRANBROOK, B.C. V1C 2N1

OCTOBER 2, 1990

VALUES IN PPN UNLESS OTHERWISE REPORTED

L40 2

PAGE 1

44 CORE SAMPLES RECEIVED SEPTEMBER 28, 1990

513	DESCRIPTIONS	AU(ppb)	AG I	AL(X)	A5	8	88	81 CA(X)		C0	UR) (3)	LA Mai X.) nn	nu na(3)	R1	۴		58	5N		11(3)	U 	V	¥ 	I 	
643	- 1 02 554	5	٢.2	1.45	(5	(2	26	(5 8.8)	1	4	21	10 .2.2	7 1.59	(10 3.42	2809	3 (.01	4	221	6	5	(20	(1	.06	78	17	21	8	373
643	- 202555	5	(.2	.98	(5	(2	43	6 9.00	1	4	- 14	34 2.2	3 1.03	(10 3.30	2957	1 (.01	2	202	3	7	(20	4	.05	35	15	(10	- 4	145
643	- 3 02 556	10	(.2	1.36	(5	(2	126	5 8.33	6	5	18	30 2.0	5 1.37	(10 3.24	3107	1 (.01	3	183	9	5	(20	(1	.06	32	10	25	7	1478
643	- 4 02 557	(5	(.2	.28	(5	(2	73	(5 3.91	(1	6	44	11 1.7	5 .14	(10 .55	1029	24 (.01	6	543	6	(5	(20	(1	.03	34	3	(10	3	70
643	- 5 02 558	ය	٢.2	1.06	(S	(2	- 54	26 1.90	(1	24	42	32 3.8	5 .59	17 1.26	929	4 (.1	12	787	7	(5	(20	(.09	24	23	18	17	52
643	- 6 02 559	5	٤.2	.89	(5	(2	82	(5 1.16	1	7	23	21 1.5	.45	(10 1.08	500	2 (.01	6	306	14	(5	(20	(1	.09	17	9	(10	7	291
643	- 7 02 560	5	(.2	.59	5	(2	(5	(5 1.46	4	5	35	25 1.3	2.26	(10 .85	459	5 (.01	8	264	28	(S	(20	(1	.08	(10	8	35	8	132
643	- 8 02 561	5	٢.2	.83	6	3	27	(5.87	5	14	50	25 2.0	.43	10 .82	427	3 (.01	12	269	21	(5	(20	(1	.09	14	12	31	7	1191
643	- 9 02 562	5	(.2	.56	9	2	8	(5 1.00	1	5	42	19 1.4	.23	(10 .67	430	3 (.01	8	315	12	(5	(20	(1	.08	25	7	(10	6	273
643	- 10 02 563	(5	(.2	.40	(5	2	9	(5 1.06	2	4	41	22 .9	3 .14	(10 .53	353	3 (.01	7	313	7	(5	(20	(1	.07	30	5	16	7	516
643	- 11 02 564	5	(.2	.73	5	2	0	(5 1.04	2	4	- 44	23 1.0	i .35	(10 .94	503	3 (.01	6	286	14	(5	(20	(1	.09	13	11	28	8	579
643	- 12 02 565	(5	(.2	.93	10	3	13	(5.89	7	10	47	21 2.0	.60	(10 1.09	469	3 (.01	11	285	17	- (5	(20	(1	.10	(10	15	32	7	1710
643	- 13 02 566	15	(.2	.79	S	(2	13	(5.84	(1	6	36	16 1.3	.47	(10 .97	370	4 (.01	9	292	7	(5	(20	(1	.10	24	11	(10	7	148
643	- 14 02 567	5	۲.۷	.76	6	(2	10	(5 1.18	2	9	37	39 1.4	.42	(10 1.15	442	9 (.01	8	239	8	(5	(20	<1	.09	26	8	21	7	498
643	- 15 02 568	5	(.2	.74	5	(2	22	(5 1.11	2	5	- 44	15 .9	.43	(10 1.03	421	6 (.01	5	262	7	(5	(20	1)	.11	20	8	16	10	462
643	- 16 02 569	5	٤.2	1.56	5	(2	257	9 1.12	(1	11	- 44	20 3.6	.86	12 1.08	554	2.04	0	1679	22	(5	(20	85	.19	(10	55	37	8	113
643	- 17 02 570	(5	(.2	1.61	(5	(2	54	(5.83	(1	27	33	156 4.44	1.35	21 1.63	495	(1 .02	20	728	9	(S	(20	10	.28	(10	156	(10	1	101
643	- 18 02 571	(5	۲.۷	1.46	(5	(2	36	(5 .49	(1	6	42	13 1.3	.93	(10 1.16	469	i (.01	5	206	10	(5	(20	6	.13	(10	21	(10	2	- 29
643	- 19 02 572	5	۲.۷	1.03	6	(2	(S	6 1.25	{1	7	57	27 1.9	.47	(10 1.14	577	3 (.01	7	391	10	(5	(20	6	.11	(10	20	43	9	32
643	- 20 02 573	(5	(.2	.89	5	2	15	(5.80	(1	5	68	30 1.13	.48	(10 .86	489	6 (.01	6	253	8	(5	(20	(1	.11	17	14	(10	7	22
643	- 21 02 574	(5	(.2	.76	(5	(2	(5	(5 7.16	(1	7	31	27 1.3	.26	(10 1.52	2574	5 (.01	2	293	3	5	(20	(1	.06	85	15	24	11	- 15
643	- 22 02 575	(5	۲.2	.77	(5	(2	12	(5 1.18	()	13	48	11 1.17	.40	(10 1.26	518	3 (.01	6	293	7	(5	(20	(1	.08	(10	11	15	8	22
643	- 23 02 576	(5	.8	.54	(5	(2	29	(5 1.30	(1	56	92	325 2.9	.19	10 .92	373	6 (.01	13	250	6	(S	(20	(1	.06	35	7	22	7	16
643	- 24 02 577	5	.3	.85	5	3	17	(5.76	(1	20	79	55 2.04	_44	10 1.07	327	10 (.01	11	640	11	(5	(20	(1	.08	15	13	(10	11	22
643	- 25 02 .578	10	.8	1.06	9	(2	20	10 1.22	(1	15	72	54 2.84	.46	13 1.28	531	5 (.01	14	560	12	(5	(20	- (ł	.08	20	17	21	10	35
643	- 26 02 579	15	.7	.94	11	2	52	6 1.01	(1	15	46	36 2.57	.56	12 .98	436	3 (.01	14	884	13	(5	(20	(1	.07	20	16	(10	10	26

PAGE	2																															
ET#	DESCR	IPTIONS	AU(ppb)	A6	AL(1)	AS	8	BA	BI	CA(X)	CD	CO	CR	CU FE(\$)	K(%)	LA	MG(X)	JW	MO	NA(X)	NI	р 	PB	SB	SN	SR	TI(X)	U	٧	¥	Y	ZN
643	- 27 02	2 580	(5	1.0	.67	18	5	17	18	.70	 1	20	78	22 5.72	.39	23	.70	313	16	(.01	20	555	35	(5	(20	()	.04	(10	9	26	5	166
643	- 28 03	2 581	10	7.3	.13	42	6	(S	38	.15	3	24	58	58 15.00	.07	37	.25	54	9	(.01	7	101	100	(5	(20	(1	.01	(10	(1	64	(1	891
643	- 29 02	2 582	5	8.4	.18	27	4	12	(5	.83	7	21	51	86 9.74	.07	46	.48	325	6	(.01	4	122	102	8	(20	(1	.02	(10	(1	29	(1	333
643	- 30 02	2 583	(5	7.9	.15	33	8	14	(5	.59	3	21	55	89 13.13	.04	62	.58	259	5	(.01	3	145	93	19	(20	(1	.02	(10	(1	26	(1	616
643	- 31 02	2 584	40	3,3	.15	12	2	6	(5	.89	a	5	42	39 6.72	.03	32	.78	409	4	(.01	(1	104	35	(5	(20	0	.02	(10	(1	(10	(1	271
643	- 32 02	2 585	5	2.6	.19	10	4	(5	36	1.04	1	10	38	34 11.38	(.01	27	1.05	518	4	(.01	1	104	37	6	(20	(1	.01	(10	(1	106	(1	196
643	- 33 02	2 586	5	2.4	.21	6	4	7	38	.83	1	13	33	102 14.35	.02	35	.97	410	11	(.01	2	89	22	(5	(20	(1	.02	(10	(1	32	(1	124
643	- 34 02	2 587	(5	4.7	.21	17	5	8	14	.41	2	14	48	40 12.36	.14	31	.37	201	5	(.01	2	75	84	(5	(20	1	.01	(10	0	12	(1	611
643	- 35 02	2 588	(5	10.7	.19	24	4	17	37	.56	4	16	45	53 14.34	.07	36	.34	212	3	(.01	5	82	254	(5	(20	0	.01	22	(1	18	(1	988
643	- 36 02	2 589	(5	7.4	.29	15	4	ii ii	30	.94	3	П	44	71 12.68	.12	32	.46	352	4	(.01	3	117	124	(5	(20	(1	.91	18	(1	(10	0	660
643	- 37 02	2 590	(5	2.3	.27	16	(2	16	24	1.11	1	11	38	22 8.06	.15	32	.38	357	4	(.01	16	318	55	(5	(20	(1	.01	26	(1	(10	()	105
643	- 38 02	2 591	(5	(.2	.27	(5	(2	(5	9	2.15	a	(1	47	20 1.69	.00	(10	.69	727	2	(.01	3	77	5	(5	(20	a	.01	37	a	(10	ł	20
643	- 39 02	2 592	(5	(.2	1.00	(5	3	(5	132	.93	1	42	54	6 > 1500	.44	17	.91	444	Ś	(.0)	25	711	2	(5	(20	(1	.08	(10	16	55	15	17
643	- 40 02	2 593	(5	.3	1.35	(S	3	14	75	.87	1	25	54	5 12.15	.65	13	.91	427	3	(.01	23	1075	2	(5	(20	a	.09	(10	15	19	12	18
643	- 41 02	594	15	(.2	1.34	(5	2	21	32	.79	a	5	95	9 5.43	.57	(10	.85	457	5	(.01	6	488	8	(5	(20	0	.09	(10	12	17	10	21
643	- 42 02	595	(S	(.2	.35	(5	(2	1	29	1.08	ä	6	61	23 4.55	.06	(10	.54	298	ŝ	(.01	6	242	29	(5	(20	0	.06	16	2	24	9	8
643	- 43 02	596	6	(.2	.40	(5	(2	(S	42	1.47	0	13	62	34 6.87	.07	10	.66	437	6	(.01	5	248	13	(5	(20	ä	.05	(10	4	50	9	10
643	- 44 02	597	· ő	()	13	(5	3	is	17	74	ä	17	58	47 7 47	13	(10		249	R.	(01	4	219	7	is	(20	ä		(10	1	10	,	15

NOTE: (= LESS THAN

FAX: 489-1121

Autta : Marca

ECO-TECH LABORATORIES LTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAYER

SC90/KOKANEES

KANLOOPS, B.C. V2C 2J3

PHONE - 604-573-5700

FAX - 604-573-4557

10041 EAST TRANS CANADA HWY.

KOKANEE EXPLORATIONS - ETK 90-677

SUITE 104 - 135 10TH AVE. S. CRANBROOK, B.C. VIC 2N1

.

OCTOBER 19, 1990

٠,

۰.

VALUES IN PPM UNLESS OTHERWISE REPORTED

PROJECT: LEG 14 CORE SAMPLES RECEIVED OCTOBER 10, 1990

ET#	DESCRIPTION AU	(ppb)	AG I	AL(%)	AS	B	BA	81 CA(%)	CD	03	CR	CU F	E(\$)	K(%)	LA	MG(X)	MN	NO	NA(%)	NI	P	PB	SB	SN	SR 1	1(1)	U	V 	¥	Y	ZN
															_																
677 -	02598	15	(.2	.47	(5	(2	32	(5 1.47	(]	5	129	15	.83	.17	(10	.53	502	11	(.01	8	233	9	(5	(10	(1	.06	(10	9	(10	6	37
677 -	5 02599	(5	.2	.52	(5	(2	15	(5 2.20	a	10	55	22	1.09	.14	(10	1.29	808	10	(.01	6	269	6	(5	(10	(1	.04	(10	14	(10	4	25
677 -	5 02600	3 5	(.2	.34	(5	(2	9	(5 1.60	(1	2	29	8	.46	.05	(10	1.02	457	5	(.01	4	299	10	(5	(10	(1	.04	(10	5	(10	4	18
677 -	02601 4240	7/15	(.2	.59	(5	(2	5	(5 3.16	(1	4	63	21	.79	.19	(10	1.30	970	14	(.01	4	162	4	(5	(10	(]	.05	(10	11	(10	1	30
677 -	02602	10	(.2	.99	(5	(2	19	(5.93	(1	5	71	26	1.14	.74	10	1.38	547	8	(.01	7	276	6	(5	(10	(1	.07	(10	13	(10	5	33
677 -	02603	10	(.2	.82	(5	(2	15	(5 4.24	(1	- 4	55	13	1.02	.65	(10	1.48	1422	5	(.01	6	191	4	5	(10	(1	.06	(10	12	(10	6	40
677 -1	02604	15	(.2	.41	(5	(2	5	(5 6.12	(1	3	44	6	.76	.16	(10	1.36	1656	- 4	(.01	3	169	3	6	(10	(1	.03	(10	5	(10	5	15
677 -1	02605	10	(.2	.44	(5	(2	9	(5 4.02	(1	3	64	6	.81	.18	10	. 98	1428	5	(.01	4	193	7	(5	(10	(1	.03	(10	9	(10	7	20
677 -1	02606	15	(.2	.38	(5	(2	(5	(5 8.94	(1	4	49	9	.77	.11	10	.89	2820	5	(.01	4	127	3	(5	(10	()	.01	11	7	(10	7	16
677 -1	02607	15	(.2	.54	(5	(2	6	(5 3.28	(1	5	65	14	.86	.23	(10	.95	1075	8	(.01	6	204	5	(5	(10	(1	.05	(10	7	(10	6	17
677 -1	02608	20	(.2	.42	(5	(2	(5	(5 2.28	(1	6	57	24	1.15	.12	(10	.72	744	7	(.01	6	192	8	(5	(10	(1	.04	(10	6	(10	3	18
NOTE: (= LESS THAN																														

FAX: 489-1121

their ECO-JECH LABORATORIES L JUTTA JEALOUSE B.C. CERTIFIED ASSAYE

12

SC90/KOKANEE#5

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (104) 253-1716

10

GEOCHEMICAL MALYSIS CERTIFICATE

290-2

Kokanee Explorations Ltd. File # 90-5227 104 - 135 - 10th Ave S., Cranbrook BC V1C 2N1

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ça	P	La	Cr	Mg	Ba	Ti	В	AL	Na	K 🔜 🕯	Au*
	ррп	ppm	ppm	ррт	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	<u>×</u>	*	ppm	ppm	<u>×</u>	ppm	*	ppm	<u>×</u>	<u>×</u>		i ppb
02609	1	58	5	115		42	24	1237	5.93	2	5	ND	2	33	7	2	2	145	2.62	. 103	6	57	2.29	71	.29	2	2.66	.01	1.41	10
02610		82	5	113	2	27	25	681	6.38	3	5	ND	3	35	2	2	2	107	1.53	190	8	23	1.73	75	.25	- 4	2.30	.03	1.06	ê 7
02611	1	55	5	89	- 19 A	39	22	1845	5.84	2	5	ND	2	33	2	2	2	198	6.07	.087	12	50	2.07	50	.06	- 4	1.72	.01	.64	Ê 5
02612	24	12	9	15		7	-4	733	.86	2	5	ND	7	17	.2	2	2	11	1.82	.024	8	8	.56	52	.06	6	.52	.01	.14	Ê 5
02613	30	39	7	16		7	4	673	.90	2	5	ND	7	19	.2	2	2	10	1.49	.025	8	9	1.27	20	.08	6	.67	.01	.13 📰	6 5
																													****	à.
02614	63	42	7	8		14	18	250	.65	9	5	ND	10	8	.2	2	2	5	.86	.014	17	35	.43	41	.03	8	.62	.01	.31	6 2
02615	5	8	9	10		6	5	175	.52	2	5	ND	10	6	.2	2	2	5	.52	.015	17	5	.31	40	.03	8	.51	.01	.27	<u>8</u> 1
02616	23	12	9	8	88 -1	12	5	294	.62	2	5	ND	7	7	.2	2	2	4	.94	.025	16	45	.31	20	.02	6	.42	.01	. 19 💮 1	įš 2
02617	15	25	19	7	3	10	9	159	1.07	33	7	ND	15	6		2	2	- 4	.54	.021	- 36	6	.18	30	.01	6	.42	.01	.23 📰 1	<u>8</u> 4
02618	26	22	9	9		14	11	328	1.05	3	5	ND	6	9	.2	2	2	4	1.21	.009	14	49	.25	17	.01	5	.33	.01	.13 🚮	83
	- I	_				_	_				_			_		_	-					_				_				š _
02619	8	8	11	6	 2	5	5	122	.62	2	5	ND	18	- 3	. 2	2	2	- 4	.36	.007	31	5	. 18	16	.01	9	.37	.01	.23	<u> </u>
02620	92	12	5	6		10	- 3	188	.52	2	5	ND	8	4	.2	2	2	- 3	.55	.010	13	45	.22	30	.02	6	.40	.01	.22 🔅 1	ĝ 1
02621	15	3	6	7		6	2	169	.52	6	5	ND	11	5	.2	2	2	- 4	.52	.013	15	7	.25	23	.02	5	.43	.01	.24 💮 1	ê 1
02622	11	6	5	6		11	5	177	.52	3	5	ND	13	7	.2	2	2	3	.83	.091	19	48	.20	32	.01	8	.48	.01	.25	<u>8</u> 1
02623	7	9	8	8		15	17	213	.94	2	5	ND	9	7	.2	2	2	5	.58	.022	9	7	-40	23	.04	6	.59	.01	.26 1	6
CTANDADD C/AIL-D	17	50	74	124	7.	73	74	1050	X 0/	8 . L	22	7	40	57	10 6	15	10	57	72	~ /	72	50	07	187	07	3/	1 80	0 4	14	540
STANDARD C/AU-R	1 17	27	20	121	V	12	21	1020	3.74		22		40	33	17.7	12	19	21	.47	.074	20	37	.96	102	- UI		1.07	.00	• 14 2000101	<u></u>

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

KOKANEE EXPLORATIONS LTD. - ETK 90-621

104 - 135 10th AVE. SOUTH CRANBROOK, B.C. VIC 281

190-2

1.1.1

56 CORE SAMPLES RECEIVED SEPTEMBER 24, 1990 PROJECT : LEG

DESCRIPTION AU(ppb) AG(ppn) AL(h) AS B BA BI CA(h) CD CO CE CU PE(h) K(h) KH KO BA(h) FI P PB SB SF T(h) -U V<
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} 621 & -2 \\ 621 & -2 \\ 621 & -3 \\ 621$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
621 -9 02 709 <5 <.2 .80 <5 <2 851 <5 14.47 <1 2 8 1 1.33 .43 6 5.09 3193 1 <.01 <1 184 <2 5 <20 <1 .03 15 1 <10 2 <1 1.61 <1 1.61 <1 1.61 <1 <1.61 <1 1.61 <1 1.61 <1 <1.61 <1 <1.61 <1.61 <1.61 <1 <1 <1.61 <1.61 <1.61 <1.61 <1.61 <1.61 <1 <1.61 <1.61 <1.61 <1.61 <1.61 <1.61 <1.61 <1.61 <1.61 <1.61 1.61 1.61
621 -10 02 710 5 <.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
621 -12 02 712 <5
521 -13 02 713 10 <.2
521 -14 02 714 5 <.2
621 -15 02 (.2 .49 (5 (2 10.04 (1 4 9 3 .97 .39 4 3.36 2092 2 (.01 2 364 3 6 (20 9 .01 13 2 (10 2 (4) (5) (2) 10.04 (1 4 9 3 .97 .39 4 3.36 2092 2 (.01 2 364 3 6 (20 9 .01 13 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (11 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2 (10 2
621 - 16 02 716 <5
621 - 17 02 717 <5
621 - 18 02 718 10 <.2 .38 <5 <2 571 <5 >15.00 2 2 4 2 .37 .14 5 .98 953 <1 <.01 1 164 35 5 <20 <1 .01 36 2 <10 3 26 621 - 19 02 719 5 <.2 .24 <5 <2 304 <5 >15.00 <1 3 4 1 1.24 .13 7 2.28 1062 <1 <.01 5 113 20 5 <20 <1 .01 27 <1 <10 1 16
621 - 19 02 719 5 <.2 .24 <5 <2 304 <5 >15.00 <1 3 4 1 1.24 .13 7 2.28 1062 <1 <.01 5 113 20 5 <20 <1 .01 27 <1 <10 1 16
621 - 20 02 720 <5 <.2 .33 <5 <2 279 <5 >15.00 2 2 2 247 .23 5 2.25 711 <1 <.01 1 100 6 <5 <20 <1 .01 28 <1 <10 2 55
521 - 21 02 721 <5 <.2 ,23 6 <2 355 <5 >15,00 3 1 2 4 ,43 ,11 6 ,62 662 <1 <.01 <1 150 126 <5 <20 <1 .01 34 <1 <10 3 28
621 - 22 02 722 5 <.2 .25 7 <2 404 <5 >15.00 1 1 2 3 .59 .13 6 .60 596 <1 <.01 1 204 112 <5 <20 <1 .01 30 1 <10 2 31
521 - 23 02 723 5 <.2 ,11 8 <2 227 <5 >15.00 2 1 2 7 .45 .09 5 .29 569 <1 <.01 <1 175 71 <5 <20 <1 <.01 42 <1 <10 1 12
671 - 74 07 774 10 < .2 .09 10 < 7 388 < 5 > 15 .00 1 1 1 3 .70 .09 6 .75 517 < 1 < .01 1 184 74 5 < 20 < 1 < .01 35 < 1 11 1 8
521 - 25 02 225 10 (2 16 6 (2 502 (5 15 00 1 3 2 5 53 06 4 24 572 1 (01 7 232 55 (5 (20 (1 01 37 2 (10 (1 0
521 - 76 02 726 15 - C - 10 9 - C - 542 - C - 515 00 1 - 7 1 5 - 68 - 09 6 - 75 - 556 - (1 - 601 - C) - 782 - 80 - C - (1 - 601 - 36 - C) - 76 - 80 - 76 - 76 - 76 - 76 - 76 - 76 - 76 - 7

10041 BAST TRANS CANADA HWY. KANLOOPS, B.C. V2C 2J3 PHONE - 604-573-5700 PAX - 604-573-4557

SEPTENBER 28, 1990

VALUES IN PPN UNLESS OTHERWISE REPORTED

PAGE 1

KOKANEE EXPLORATIONS LTD. - ETK 90-621

4

P AGB	2																															
BT	DE	SCRIPTION	AU(ppb) 1	AG(ppm)	AL(\$)	λS	B	BX	BI CA(%)	CD	C0	CR	CU	PB(%)	K{3}	LA	HG(\)	NU 	NO	HA(3)	NI.	P	PB	SB	SN	SR	TI(\$)	U 	¥ 	¥ 	Ĭ	7N
671	- 7	7 87 777	28	()	.85	7	()	613	(5.)15.08	,	1	3	3	. 39	. 06	4	.19	646	1	(.01	1	117	158	(5	<20	· (1	<.01	31	<1	(10	(1	45
671	- 7	8 07 778	28	0.1	.10	ł	\dot{i}	192	(5)15.00	2	ī	i	3	. 48	.09	6	.28	691	<1	<.01	(1	306	150	(5	(20	(1	<.01	42	(1	<10	(1	57
621	- 7	9 82 729	(5	0.2	. 79	(5	ä	676	(5 14.04	3	3	i	11	.61	.11	6	1.78	667	(1	(.01	1	131	122	(5	(20	(1	.03	14	4	<10	2	821
671	- 3	0 07 730	10	(.7	.91	(5	1	859	(5 11.48	a	3	12	-5	. 80	.11	Š	1.58	571	(1	<.01	2	302	1	(5	<20	(1	.04	17	6	<10	6	117
621	- 3	1 02 731	(5	(.2	.22	(5	ä	139	(5 >15.00	a	ż	1	1	.49	.02	4	.49	1095	(1	<.01	1	85	<2	(5	<20	(1	.01	45	1	<10	T	28
621	- 3	2 02 732	(5	<.2	. 29	(5	ä	100	(5 >15.00	(1	2	2	1	.86	.04	6	2.83	1253	(1	<.01	(1	105	<2	5	<20	(1	.01	31	1	<10	5	36
621	- 3	3 02 733	10	(.2	.12	(5	<2	90	<5 >15.00	(1	4	1	(1	1.35	.01	8	. 50	1350	<1	(.01	2	86	<2	(5	<20	(1	<.01	39	1	<10	5	10
621	- 3	4 02 734	(5	(.2	. 47	(5	<2	35	(5 5.75	Ω	2	12	1	. 35	.13	2	.73	274	1	<.01	1	333	10	<5	<20	<1	.02	<10	2	(10	2	60
621	- 3	5 02 735	5	٢.2	. 42	<5	<2	16	<5 >15.00	(1	1	9	·(1	.53	.02	5	. 92	1044	1	<.01	<1	98	<2	<5	<20	(1	.02	35	1	<10	10	42
\$21	- 3	6 02 736	(5	<.2	2.43	<5	(2	248	(5 .91	(1	5	46	<1	1.76	1.55	5	3.48	150	<1	<.01	6	378	10	<5	<20	<1	.12	<10	36	21	1	108
621	- 3	7 02 737	10	٢.٧	1.02	(5	<2	94	<5 1.17	(1	6	26	3	.83	.71	- 4	1.29	99	(1	.01	6	393	9	<5	<20	<1	.06	<18	11	<10	2	50
621	- 3	8 02 738	<5	<.2	.19	<5	<2	1117	<5 12.08	α	- 4	5	2	.54	.04	4	. 31	818	(1	<.01	1	163	3	(5	<20	<1	.01	22	<1	<10	1	17
621	- 3	9 02 739	5	۲.>	2.61	(5	<2	49	13 .44	<1	30	60	42	4.49	1.41	13	2.15	206	2	.02	15	653	8	<5	<20	2	.11	<10	74	<10	2	83
621	- 4	0 02 740	5	۲.۷	2.23	(5	(2	217	9.42	<1	23	101	47	4.14	.93	ņ	1.69	177	2	.02	46	744	13	<5	<20	4	.09	<10	75	<10	(1	106
621	- 43	1 02 741	10	۲.>	.17	(5	<2	911	<5 >15.00	1	1	5	8	. 35	. 20	5	.43	652	1	<.01	(1	239	25	(5	(20	(1	(.01	33	5	<10	2	43
621	- 1	2 02 742	<5	٢.٢	. 50	<5	<2	166	<5 >15.00	<1	2	5	1	.86	.17	1	1.16	974	2	<.01	2	265	62	5	<20	<1	.01	30	6	<10	1	173
621	- 4	3 02 743	5	٢.٧	. 29	(5	<2	468	<5 >15.00	<1	2	3	3	.67	. 22	7	.72	924	1	<.01	1	205	64	<5	<20	(1	.01	36	1	(10	1	133
621	- 4	4 02 744	<5	۲.>	.67	<5	<2	346	<\$ >15.00	<1	7	6	9	1.23	.21	6	1.11	653	1	<.01	5	284	10	<5	<20	(1	.02	24	2	<10	(1	858
621	- 4	5 02 745	<5	<.2	.10	<5	<2	125	<5 >15.00	(1	1	1	1	.41	.09	5	. 30	1067	a	(.01	(1	115	8	<5	<20	(1	<.01	40	(1	(10	1	95
621	- 4	6 02 746	<5	٢.٢	.16	<\$	<2	165	<5 >15.00	<1	1	1	2	.47	.16	5	. 46	995	1	<.01	(1	136	5	<5	(20	(1	<.01	30	(1	(10	a	93
621	- 4	7 02 747	15	<.2	. 26	<5	<2	161	<5 >15.00	4	1	Z	3	. 57	.18	5	.68	855	1	<.01	(1	218	11	3	(20	(1	.01	32	1	(10	1	133
621	- 41	8 02 748	5	<.2	.24	(5	(1	268	<5 >15.00	a	1	2	4	.67	.16	6	. 61	864	1	(.01		250	36	(S	<20	(1	.01	33	(I	(10	1	148
621	- 49	9 02 749	5	<.2	.15	<5	~2	560	<5 >15.00	1	(1	1	3	. 42	.15	6	.43	951	1	(.01	a a	201	5	(5	(20	0	<.01	34	4	(10	1	101
621	- 5	0 02 750	55	(.2	.09	(5	<2	994	<5 >15.00	(1	1	1	12	.62	.06	6	. 28	511	1	<.01	(1	229	48	G	(20	(1	<.01	36	1	11	1	18
621	- 53	1 02 751	15	<.2	.05	<5	<2	415	<5 >15.00	a	1	1	1	. 42	. 06	5	.15	541	1	<.01	(1	- 310	17	0	(20		(.01	32	(1	(10	0	69
621	- 57	2 02 752	(5	<.2	.08	S	(2	627	<5 >15.00	4	1	1	1	.61	.08		. 30	514	1	(.01	<u> </u>	214	33	<u></u>	<20		(.01	36	1	(10	1	98
621	- 5	3 02 753	(5	<.Z	.86	()	(2	453	(5)15.00	1	2	. 5	25	2.03	. 07	10	.11	264	1	(.01	1	246	96		<20		(.01	29		56	1	319
621	- 54	4 02 754	15	<.2	.11	0	(1	587	(5)15.00	(]	1	11	8,	69	.11	1	. 35	242	1	(.01		204	45	0	< 20 (20	(1	(.01	23	(1	10	1	122
b/1	- 51	D 07 755	5	(.2	.17	0	(1)	632	(5)15.00	1	(1	4	8		.11	!	. 55	012	1	(.01		331	54	()	< 20	0	(.01	29	1	(10	1	117
621	- 51	6 02 756	Z0	(.1	.10	(5	(1	476	(5)15.00	2	(1	1	- 4	. 38	.1)	2	. 57	- 124	1	(.01	(1	217	87	()	(20	(1	(.01	29	1	10	- 2	103

1.

NOTE: < = LESS THAN

we. ECO-TECH LABORATORIES UTD. JUTTA JEALOUSE B.C. CERTIFIED ASSAUER

SC90/KOX13