LOG NO:	0528	RD.
ACTION:		
FILE NO:		

GEOLOGICAL and GEOCHEMICAL REPORT and REVIEW of GEOCHEMICAL and GEOPHYSICAL DATA SUS 1 to 4 CLAIMS

Omineca Mining Division, BC

February, 1991

for

GOLDEN RULE RESOURCES LTD. #410, 1122 - 4th Street SW Calgary, AB T2R IM1

Ъy

Michael Fox, B.Sc., P.Geol. Consulting Geologist

GEOLOGICAL BRANCH ASSESSMENT REPORT

35

GEOLOGICAL and GEOCHEMICAL REPORT

and

REVIEW OF GEOCHEMICAL and GEOPHYSICAL DATA

SUS 1 TO 4 CLAIMS

Latitude 56 deg.31'N Longitude 126 deg.46'W

NTS 94-D-10E and 10W

Omineca Mining Division, British Columbia

for

GOLDEN RULE RESOURCES LTD. #410, 1122 - 4TH STREET S.W. CALGARY, AB T2R 1M1

by

Michael Fox, B.Sc., P.Geol. Calgary, Alberta

February, 1991

Y.

TABLE OF CONTENTS

			<u>Page</u> ‡	Ł
		SUMMARY	i	
		CERTIFICATE	ii	
1		INTRODUCTION	1	
	1.2 1.3	Location and Access Claims and Ownership Physiography and Glaciation Previous Work and History 1990 Program	1 1 1 4 4	
2		GEOLOGY	5	
	2.2	Regional Geology Property Geology Economic Geology	5 5 5	
3		GEOCHEMISTRY	9	
	3.2	Sampling and Analytical Techniques 1990 Results Results from Earlier Surveys A) Stream Silts B) Soil Geochemical Surveys	9 9 11 11 11	
4		GEOPHYSICS	12	
	4.2	General - Review of Earlier Surveys 1985 Ground Magnetic Survey 1985 Ground VLF-EM Survey	12 12 13	
5		CONCLUSIONS	13	
6		RECOMMENDATIONS	14	
7		STATEMENT OF 1990 COSTS	16	
8		BIBLIOGRAPHY	17	

LIST OF TABLES

.

Table 1	Claims List	1
Table 2	Trench Sample Summary	10

TABLE OF CONTENTS continued

<u>Page #</u>

LIST OF APPENDICES

APPENDIX I Analytical Techniques APPENDIX II Analytical Results Fire Assay /AA Data for Au and Ag ICP Multi-element Data

LIST OF FIGURES

Figure 1	General Location Map	2
Figure 2	Claims Location Map	3
Figure 3	Regional Geology (1:250,000)	6
Figure 4	Property Geology (1:50,000)	7

LIST OF MAPS

Map	1	Compilation:Reconnaissance Geology,	
-		Geochemistry and Geophysics	(1:5,000)
Map	2	Location of Trenches and Trench Samples	(1:250)
Map	3	Cu-in-rock Analyses in Trenches	(1:250)
Map	4	Au-in-rock Analyses in Trenches	(1:250)

SUMMARY

During the period September 14 to October 4, 1990, a helicopter supported program of hand trenching and blasting was carried out at the SUS 1 to 4 claims to better evaluate a previously known narrow shear zone containing interesting Cu and Au values.

After deepening and extending three existing trenches positioned to test the shear zone, a number of additional trenches were blasted and sampled over a maximum width of 80 m and strike length of 175 m to investigate a porphyry type quartz stringer stockwork system carrying magnetite and chalcopyrite. The stockwork is developed in a small syenomonzonite or monzonite stock with dimensions of at least 350 m by 800 m. A total of 14 trenches aggregating 201 m in length were blasted and 201 samples were collected from the trenches at 1 m sample intervals.

This work has partly delineated a zone of Cu-Au mineralization within the quartz-magnetite +/-chalcopyrite stringer stockwork. At the easterly end of the area trenched, a width of at least 62 m has been demonstrated, and is open to the north. Towards the west, the zone is exposed in the face of a 30 m to 60 m high escarpment and is concealed by talus at the base of the escarpment.

The best result obtained to date is a weighted average of 0.121% Cu and 0.016 oz/ton Au over 62 m. Comparable values were returned from samples collected from outcrops and trenches over a strike length of at least 175 m. The zone is open to the north and in both directions along strike. Anomalous Cu- and Au-in-soil analyses suggest a strike length of at least 400 m. Some leaching of copper has occurred in the near surface oxidized zone, and it is considered very likely that Cu values may be higher, on average, in unoxidized rocks within the zone of Cu-Au mineralization.

CERTIFICATE

- I, Michael Fox, hereby certify that:
- 1. I reside at 5008 Varsity Dr., N.W., Calgary, Alberta.
- 2. I received a B.Sc. in geology from the University of British Columbia in 1974.
- 3. I have worked in the field of mineral exploration since 1965 and I have practiced my profession as a mineral exploration geologist continuously since 1974.
- 4. I am a member of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.
- 5. I am the author of the report entitled "Geological and Geochemical Report and Review of Geochemical and Geophysical Data on the SUS 1 to 4 Mineral Claims", Omineca Mining Division, British Columbia.
- 6. This report is based on the references cited in the bibliography, and on field work carried out from September 14 through October 4, 1990.
- 7. I have no interest, direct or indirect, in the securities of Golden Rule Resources Ltd., nor any of its affiliated companies, nor do I expect to receive any.

Michael Fox, P.Geol.

February, 1991

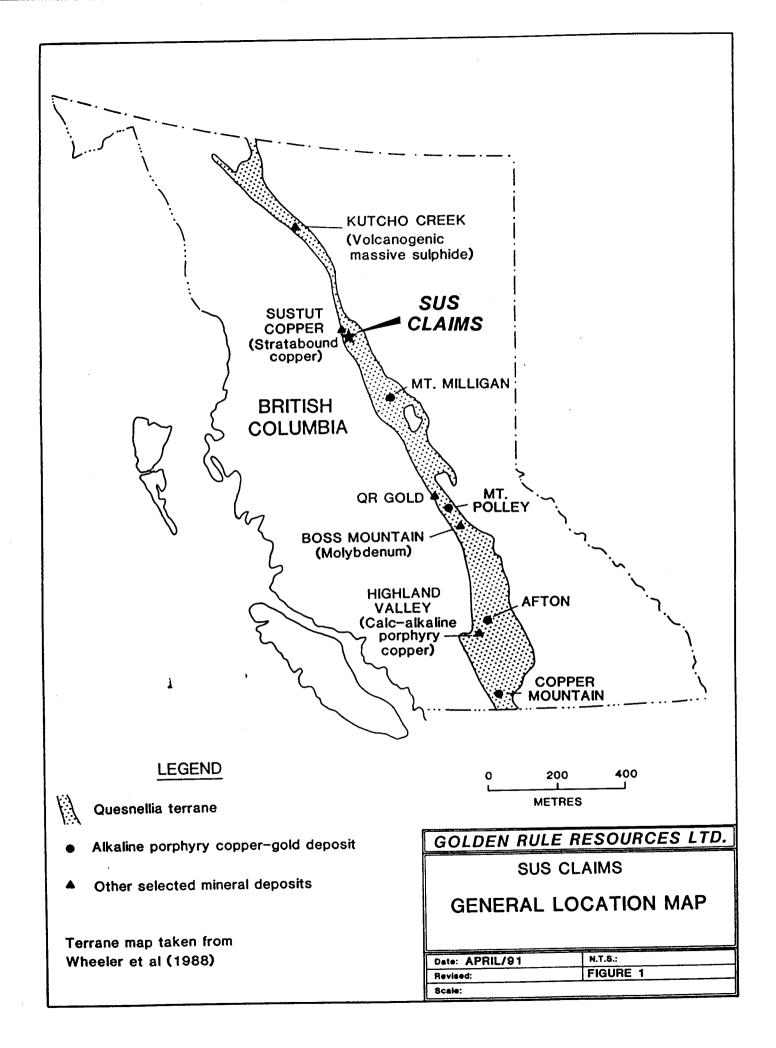
INTRODUCTION

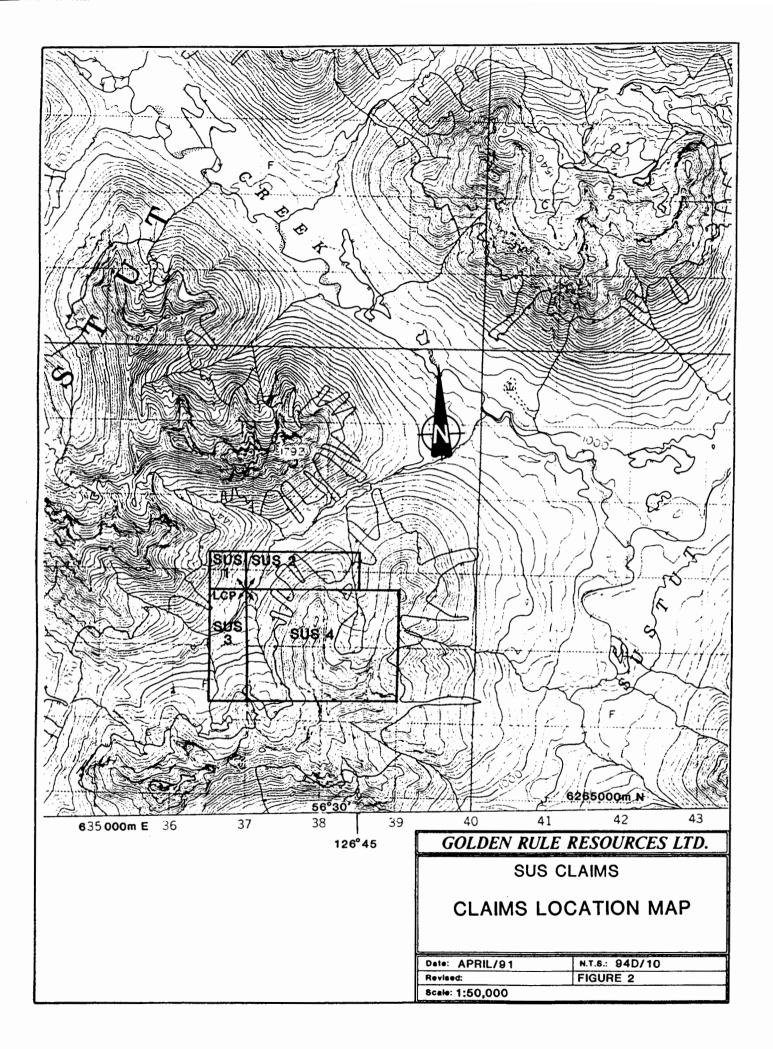
1.1 Location and Access

The SUS 1, 2, 3, and 4 mineral claims are located within N.T.S. map-areas 94-D-10E and 94-D-10W approximately 400 km northwest of Prince George, B.C. and about 12 km north of the confluence of the Sustut and Asitka Rivers (Figure 1). The central area of the claims group lies at approximately 56 degrees 31'N Latitude and 126 degrees 46'W Longitude (Figure 2). Access to the property is by helicopter.

1.2 Claims and Ownership

The SUS 1, 2, 3, and 4 claims are located in the Omineca Mining Division and are owned by Golden Rule Resources Ltd. of Calgary, Alberta.


TABLE 1 CLAIMS DATA


<u>Claims Name</u>	Record No.	<u>No. of Units</u>	<u>Date of Record</u>
SUS 1	2704	1(reduced)	April 8, 1980
SUS 2	2705	3(reduced)	April 8, 1980
SUS 3	2706	3	April 8, 1980
SUS 4	2707	12	April 8, 1980

1.3 Physiography and Glaciation

The claims lie within the Omenica Mountains, an entirely glaciated region characterized by wide U-shaped major valleys and deeply cut V-shaped upland valleys. Mountain peaks in the area average 1980 to 2143 m ASL, and rise fairly abruptly from the major valleys.

The claims are situated over the northwest facing slopes of a northeasterly trending ridge located immediately to the west of the confluence of Two Lake Creek and Sustut River. Three northerly trending ridge spurs divide the southern half of the property into a series of high alpine cirque basins. A northeasterly flowing tributary of Two Lake Creek transects the SUS 2 claim, resulting in extreme relief of approximately 1000 m. Sheer cliffs dominate the mountain slopes on the northwest side of this tributary.

1.4 Previous Work and History

Following the Falconbridge discovery of the Sustut copper deposit 10 km to the north of the present SUS claims in the early 1970's exploration in this area intensified. Cu mineralization was discovered in the area of the SUS 4 claim on what is referred to as the Roy Cu-Au-Zu showing and in 1973 McIntyre Porcupine-Zn Mines Limited and Esso Minerals Limited carried out a program of geological mapping, geochemical sampling, and trenching.

In 1980 after restaking the property Golden Rule Resources Ltd. carried out an airborne magnetometer and EM survey of the claims, followed in 1981 by a reconnaissance prospecting, geological mapping, and geochemical sampling program. In 1984, Golden Rule carried out additional geological mapping, prospecting, and sampling over the Roy occurrence. In 1985, Suncor Inc. (Resources Group) carried out a program of detailed geological mapping, VLF-EM and magnetometer surveys, and soil geochemical sampling while holding the property under option from Golden Rule Resources Ltd.

Suncor's option was subsequently assigned to Ritz Resources Ltd. In 1989 Ritz conducted a 2 day program of geological mapping, soil sampling, and rock chip sampling.

Previous to 1990, work at the property focussed on a prominent rusty weathering, malachite stained 1 - 2 m wide shear zone carrying interesting Cu and Au values. The 1990 program evaluated this shear zone as well as a surrounding porphyry type quartz-magnetite-chalcopyrite stringer stockwork.

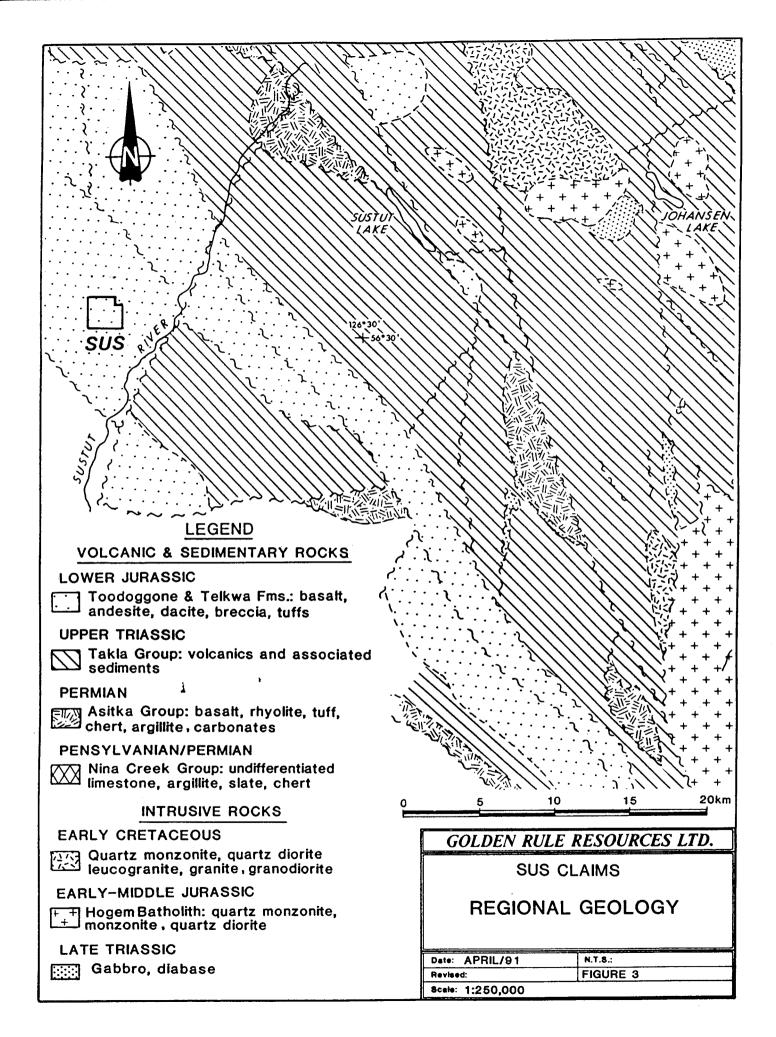
1.5 <u>1990 Program</u>

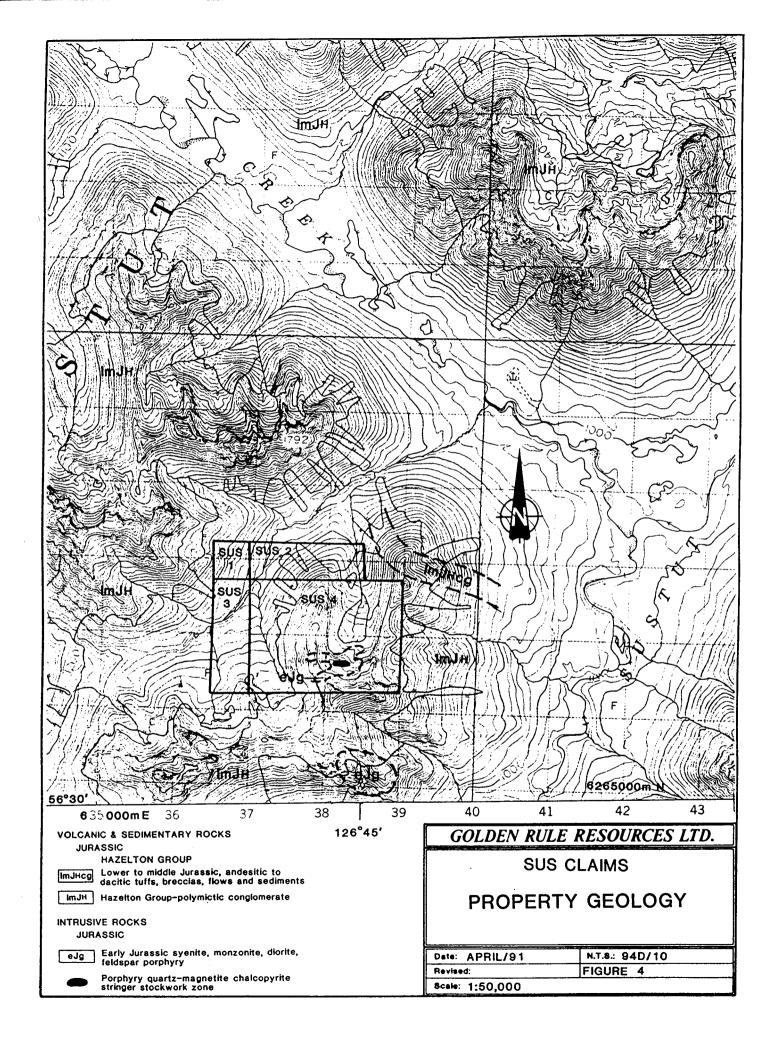
Work carried out at the property during the period September 14 to October 4, 1990 consisted of a helicopter supported program of hand trenching and blasting. A total of 14 trenches (including three existing trenches which were deepened and extended) aggregating 201 m in length were blasted to investigate the above described shear zone and a more widespread surrounding quartz-magnetite-chalcopyrite stringer stockwork developed in the monzonite stock. A total of 201 rock samples were collected from the trenches at 1 m sample intervals and analysed for Au and Ag by Fire Assay/Atomic Absorption and for Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, %Fe, As, U, Au, Th, Sr, Cd, Sb, Bi, V, %Ca, %P, La, Cr, %Mg, Ba, %Ti, B, %Al, %Na, %K, and W (30 elements) by I.C.P.

<u>GEOLOGY</u>

2

2.1 <u>Regional Geology</u>


The claims are underlain by volcanic rocks of the lower Jurassic Telkwa Group which have been intruded by a small monzonite or syenomonzonite stock in the area of the SUS 4 claim. Telkwa Group rocks are considered to be correlatable with the Toodoggone volcanics to the northwest, and include calc-alkaline basalt, andesite, dacite, and rhyolite flows, breccias, tuffs, lahars, intravolcanic fanglomerates, conglomerate, sandstone and siltstone. Distinctive marker horizons within the Telkwa Group consist of thick beds of polymictic conglomerate containing Permian and Triassic volcanic clasts.


2.2 Property Geology

Telkwa Group rocks outcropping at the property include northwards dipping purple (andesitic?) tuff overlying a somewhat porphyritic andesite, which grades into a porphyritic dacite, and dacitic fragmental beds. These volcanic rocks generally exhibit only minor alteration, consisting of calcite, epidote, and carbonate. A dark green andesite flow containing 1% - 2% pyrite occurs in the southeast corner of the SUS 4 claim, and forms a prominent gossan in the cliffs on the east side of the basin. In the south central part of the SUS 4 claim a small syenomonzonite or monzonite stock intrudes the volcanics. Weak gossans occur within the monzonite stock on the west slopes of the basin where it is mineralized with 0.5% to 1% disseminated pyrite.

2.3 <u>Economic Geology</u>

The zone of current interest at the SUS claims is a quartzmagnetite-chalcopyrite stringer stockwork developed in the syenomonzonite/monzonite stock described above. The stockwork consists of closely spaced sets of fractures and stringers with dominant attitudes of 074-085/80-83N (principal mineralized set) 120/75S, 122/83N, 160/80E, 174/80W, 022/80E, and 052/80W. Although the dips of stringers and fractures are variable, the strikes can be grouped into an east-northeasterly trending group (074-085), a northeasterly trending group (022-052), and a southeasterly trending group (120-122-126-140). The syenomonzonite host is very strongly fractured with potassium feldspar alteration strongly developed along fracture planes, but not penetrating pervasively to any great extent into the walls of This fracturing and potassic alteration appears the fractures. to be earlier than the quartz-magnetite-chalcopyrite stringer stockwork constitutes The guartz-stringer stockwork. approximately 5% - 10% of the total rock volume, with magnetite comprising about 10\% to 20\% of the stringer volume and chalcopyrite comprising about 5% - 10% of the volume. The overall abundance of chalcopyrite is about 0.5% to 1% of the

total rock volume with some samples containing as much as 4% or 5% chalcopyrite. The quartz stringers range from 0.1 to 5 mm width, do not exhibit potassic alteration envelopes, and have relatively clean walls with only minor recrystallization and silicification of the syenomonzonite host adjacent to the stringers.

Most of the outcrops examined are strongly weathered and the quartz stringer stockwork stands out in relief against the less resistant syenomonzonite host rock. Copper minerals have been leached out of the outer few inches of outcrops except in cliff faces or other steeply sloping areas where exfoliation is Considerable malachite was proceeding fairly rapidly. encountered deeper in the trenches indicating that Cu is being mobilized within the zone of oxidation. Copper minerals such as chalcocite, covellite, or cuprite were not observed. Available assay data suggest a trend of higher copper grades in samples Available collected at deeper levels within the trenches, but it is not clear if this is due to enrichment due to precipitation of Cu carbonate minerals on weathered fracture planes, or if it is due to a lesser degree of leaching at greater depths within the mineralized zone.

Trenching carried out at the property during the 1990 program consisted of deepening and extending three existing trenches to try and obtain unoxidized samples from an easterly striking, northerly dipping shear zone, previously reported to carry high Cu and Au values, which transects the larger quartzmagnetite-chalcopyrite stringer stockwork. Two additional short trenches 6 m long (Trench No. 1) and 8 m long (Trench No. 6) were blasted at the west and east ends respectively, of the three preexisting trenches (Trench No.'s 2, 4, and 5). A small pit ("Trench" No. 3) between Trench No. 2 and Trench No. 4 was also deepened and resampled.

Attention was then shifted to evaluating the quartzchalcopyrite-magnetite stringer stockwork. Taken together, Trench No.'s 6, 6A, and 7 provide an 80 m long sample section across the east-southeasterly trend of the mineralized stockwork. Assay data indicate a series of alternating panels of higher grade and lower grade mineralization across this width, with values ranging as high as 7940 ppb Au and 9974 ppm Cu. The best results over this 80 m width are a weighted average of 0.121% Cu and 0.016 oz/ton Au over 62 m.

Approximately 100 m to the west, Trench No.'s 8, 9, and 12 together form a partial or discontinuous sampling section across about 50 m, more or less at right angles to the trend of the mineralized zone. Weighted average values of Cu and Au here are 0.083% Cu and 0.011 oz/ton Au over 6 m (Trench No. 12), 0.112% Cu and 0.027 oz/ton Au over 12 m (Trench No. 8), and 0.067% Cu and 0.017 oz/ton Au over 19 m (Trench No. 9), for a total weighted average of 0.085% Cu and .019 oz/ton Au over 36 m. It would be reasonable to assume that similar Au and Cu grades are present in the unsampled gaps between these trenches, given the stockwork nature of the mineralization, and assay data indicates that the zone is still open to the northeast and southwest, <u>across</u> the strike trend of the mineralized zone, and it therefore has dimensions probably at least as great as those indicated by assay data for Trench No.'s 6, 6A, and 7 (62 m) where the mineralized zone is still open to the north, <u>across</u> the strike trend.

Further to the west of Trenches 8, 9, and 12, the mineralized stockwork is partially exposed along a series of cliff faces, in places stained with malachite, before it disappears underneath talus deposits at the base of the escarpment. Samples collected more or less randomly along the base of the cliffs indicate that the mineralized stockwork extends along strike trend for a distance of at least 175 m and is open in both directions along strike.

3 GEOCHEMISTRY

3.1 Sampling and Analytical Techniques

A total of 201 continuous chip rock samples were collected at 1 m sample intervals from the trenches, and 6 rock samples were collected at differing intervals along the base of the cliffs to the north and northwest of the trenches. Several "character" samples were collected for thin section analyses and for reference purposes.

Since most of the 109 samples submitted for analysis returned high or geochemically anomalous Au and Cu values, no statistical analysis of geochemical data was done.

Gold analyses were performed by Terramin Research Labs Ltd. of Calgary, Alberta utilizing a combined Fire Assay and Atomic Absorption analytical technique. Pulps were sent to Acme Analytical Laboratories Ltd. of Vancouver, BC for a 30 element ICP analysis. All geochemical analyses are appended to this report.

3.2 1990 Results

Cu and Au analyses returned from trench samples are summarized in Table 2 below. Trench sample results are also plotted on Maps 3 and 4, accompanying this report.

BC-36

ς.

SUS CLAINS - 1990 TRENCHING

CU-IN-ROCK ICP ANALYSES AND AU-IN-ROCK FA/AA ANALYSES

	COPP	ER	Galb	
TRENCH NO.	WEIGHTED AVERAGE	BEST INTERSECTIONS	WEIGHTED AVERAGE	SEST INTERSECTIONS
	2176 pps (.218%)/5m	2176 pp# (.218%)/5m	1722 ppb (.050oz)/5#	1997 pcb (.058cz)/4m
2	1514 ppm (.15%)/13m	2160 ppm (.216%)/8m	1269 ppb (.037cz)/15m	2552 ppb (.074oz)/5m
3	3987 ppm (.399%)/2m	5244 gpm (.52%)/1m	3147 ppb (.092gz)/2m	3147 ppb (.092oz).2m
4	2532 ppg (.253%)/11m	3781 ppm (.378%)/6m	1331 ppb (.039oz)/11m	2024 ppb (.059cz1/6m
5	5263 ppm (.526%)/8m	5942 ppm (.594%)/7m	1721 ppt (.050azi/8æ	5440 ppb (.139oz)/2m
6	4270 gpm (.427%)/7m	4952 ppc (.495%)/6m	2161 ppb (.063cz)/7m	2511 ppt (.073sz)/6m
6A	667 ppm (0.7%)/35m	1058 ppm (.106%)/17#	284 pcb (1008cz)/35m	361 ppb (.011az)/25m
6B	213 ppm (.021%)/13m		83 ppb (.003oz)/13m	N/A
60	151 ppa (.015%)/3a		90 ppb (.003ez)/3m	N/A
7	734 ppg (.073%)/40a	910 opm (.091%)/25m	334 ppb (.010oz1/40m	363 opb (.011cz)/24m
8	1133 ppm (.113%)/12m	1133 ppm (.113%)/12m	919 ppb (.027oz)/12m	919 ppb (.027)oz)/12m
9	672 ppm (.067%)/18m	1672 ope (.067%)/18m	594 ppb (.017oz1/18c	594 ppb (.017oz1/18m
10	248 ppm (.025%)/19m	NZA	135 ppb (.004oz)/19m	N/A
11	7105 ppm (.09%)/8m	7105 ppm (.09%)/8m	335 pp5 (.010cz)/7a	335 9P9 (.01sz)/9m
12	834 ppa (.083%)6e	834 ppm (.083%)/5m	369 ppb (1011ez)/6m	369 ppb (.011sz)/6m

3.3 <u>Results from Earlier Surveys</u>

A) <u>Stream Silts</u>

Au analyses returned from stream silt samples collected in 1981 in the vicinity of the quartz-magnetite-chalcopyrite stringer stockwork zone gave no indication of the presence of the mineralized zone, although a number of higher Au-instream silt values were obtained elsewhere on the property. Of particular interest is the 480 ppb Au value returned from sample number MP-36 (See Map 1), approximately 1.5 km north of the stockwork zone and sample number MP-61 (240 ppb Au) as well as sample number MP-53 (95 ppb Au). A several hundred meter long moderately anomalous Au-in-stream silts trend is indicated by sample numbers HL-1 to HL-6, ranging from 30 ppb Au to 85 ppb Au. Sample number MP-36 was collected a considerable distance downstream from the stockwork zone on the SUS 4 claim, and may indicate another zone of gold mineralization. Sample number MP-61 (240 ppb Au) occurs along the flanks of a 1 km long aeromagnetic "high" (1980 airborne survey) which probably reflects the presence of an underlying intrusive body. Reconnaissance geological mapping carried out in 1985 indicates an exposure of "dioritic" feldspar porphyry upstream from this location. Sample number MP-53 (95 ppb) similarly occurs in close proximity to a small 600 m diameter magnetic high (1980 airborne magnetic survey) and, although coverage is incomplete, sample numbers HL-1 to HL-6 also occur in close proximity to a strong aeromagnetic high, only partially defined by the 1980 survey in the area of the southwest corner of the claim block. All of these areas should be closely prospected and sampled in greater detail.

B) <u>Soil Geochemical Surveys</u>

Although stream sediment sampling did not indicate the presence of the mineralized porphyry hosted stockwork underlying the SUS 4 claim, grid-controlled soil sampling carried out in 1985 very clearly indicates a coincident Cu Au-in-soils anomaly over the mineralized zone. and Anomalous Cu-in-soil values range up to 748 ppm and the dimensions of the Cu-in-soils anomaly (>100 ppm Cu contour) range from an average of 100 m in width up to 300 m in width, and the anomalous zone extends the full length of the grid (400 m) and is open along strike in both directions. Anomalous Au-in-soils values exhibit an almost identical configuration (>40 ppb Au contour) and show a very strong correlation with anomalous Cu-in-soil values. Anomalous Pb and Zn-in-soil values also exhibit strongly correlative The anomalous Cu, Au, Pb, and Zn-in-soil results trends. located to the west and east of the area trenched in 1990 are clearly not related to downslope geochemical dispersion

of Cu and Au from the "known" or outcropping zone of mineralization in the vicinity of the trenches and strongly suggest a strike length in excess of 400 m for the mineralized stockwork.

Approximately 400 m to the north-northeast of the trenched area, there is another zone of coincident, strongly anomalous Cu and Au-in-soil values with dimensions of about 100 m in width and 100 m in length, open along strike to the east. The cause of this anomalous zone is unknown, but is likely related to another zone of intrusive-hosted mineralization, as there is a lobe of an aeromagnetic high extending into this area from a larger magnetic high lying along the east boundary of the claim block (1980 airborne magnetic survey). Grid-controlled ground magnetic surveying (1985 survey) also indicates a fairly continuous magnetic high in this area.

4 <u>GEOPHYSICS</u>

4.1 General - Review of Earlier Surveys

During the 1980 field season, approximately 30 line kilometers of airborne magnetic and electromagnetic surveying was carried out at the SUS 1 to 4 claims. A Geometrics G803 magnetometer and Totem 1A VLF-EM were utilized (Transmitter: Jim Creek, Washington). Line separations were nominally 200 m and nominal heighth above terrain was 20 m for the magnetometer sensor and 30 m for the VLF sensor. Horizontal control was provided by a photomosaic and vertical control was maintained by radar altimeter.

No significant VLF-EM response was obtained, but the survey did outline a number of small discrete magnetic highs which may indicate the presence of magnetite-bearing intrusive rocks.

In 1985, five (5) line kilometers of ground magnetic and VLF-EM surveying was done over a 400 m by 1000 m grid-area in the southeast corner of the SUS 4 claim. A Scintrex MP-2 magnetometer and Geonics EM-16 VLF-EM unit were used.

4.2 1985 Ground Magnetic Survey

The ground magnetic survey identified a 100 m to 200 m wide, 450 m long, magnetic high encompassing the area of the quartzmagnetite-chalcopyrite stringer stockwork trenched during the 1990 season. Areas underlain by the syenomonzonite stock exhibit an obvious spatial relationship to magnetic "highs", whereas areas underlain by volcanic rocks are indicated by relative magnetic "lows". A strong east-northeasterly trending magnetic gradient along the north side of the trenches coincides with the inferred contact between the syenomonzonite stock and dark green andesitic tuffs. Magnetic highs show a close spatial coincidence with Cu- and Au-in-soil anomalies, although not all of the magnetic highs have associated anomalous Cu and Au-in-soils values. Soil sampling coverage and ground magnetic survey coverage is not continuous in the northwest part of the grid-area which makes interpretation of the results there more difficult.

4.3 1985 Ground VLF-EM Survey

A number of conductors were interpreted from the 1985 ground VLF-EM survey data, although none were interpreted in the vicinity of the quartz stringer stockwork occurring in the southeast corner of the SUS 4 claim. A review of the ground VLF-EM data suggests that there is at least one weak conductive trend proximal to the syenomonzonite stock, but it probably reflects the contact between the intrusive and the volcanics to the north, rather than the zone of mineralization within the intrusive.

5 <u>CONCLUSIONS</u>

Trenching carried out at the SUS claims in 1990 has partially delineated a zone of porphyry type Cu-Au mineralization occurring as a quartz-magnetite-chalcopyrite stringer stockwork within a small monzonite or syenomonzonite stock. Analyses returned from trench and outcrop samples indicate that the zone has dimensions of at least 62 m (still open) across the strike trend of the mineralized stockwork, and at least 175 m (still open) along the strike trend of the zone. An associated coincident Cu- and Au-in-soils anomaly suggests a minimum strike length for the zone in excess of 400 m. The tonnage potential suggested by these dimensions is in the order of 15,000,000 to 20,000,000 tons, assuming an average width of at least 62 m along the indicated strike length of 400 m and assuming a continuity at depth of at least one half the indicated strike length of the zone.

The best result obtained to date is a weighted average of 0.121% Cu and 0.016 oz/ton Au over a width of 62 m. Approximately 100 m to the west along the strike trend of the zone, a series of three unconnected trenches cut across a width of about 50 m, more or less perpendicular to the strike trend of the zone, returned a total weighted average of 0.085% Cu and 0.019 oz/ton Au over 36 m. Stockwork type mineralization is open across the strike trend in both directions from these trenches.

Near surface leaching of copper minerals has taken place. Analytical data suggest a trend of higher Cu values in samples collected at deeper levels in the trenches, but it is not clear if this is due to the redeposition of Cu (as malachite and chrysocolla) on fracture planes, or to a lesser degree of leaching of depth. Since all trench samples collected were oxidized to some extent, and secondary Cu minerals such as chalcocite, cuprite, and covellite were not observed, it is considered a strong possibility that Cu grades may be higher in fresh unoxidized rock.

A well-defined magnetic anomaly is associated with the syenomonzonite stock which hosts the mineralized stockwork.

Several other magnetic anomalies (airborne and ground surveys) as well as several Cu and Au-in-soils and Au-in-stream silt anomalies constitute exploration targets. The coincident Cu and Au-in-soils anomaly located at approximately 4+00N on L0+00 and L1+00W possibly indicates the subsurface presence of another zone of porphyry type mineralization similar to that described above.

6

RECOMMENDATIONS

A Small (1000 m) program of diamond drilling should be undertaken to test the grades and continuity of mineralization at depth and along strike in the main stockwork zone. Four holes, each in the order of 250 m deep, spaced at 75 m intervals and inclined at 45 degrees to the south, would be appropriate. A contingency plan for four additional holes is also recommended, to be drilled if results from the initial four holes are sufficiently encouraging, and to provide for additional alongstrike delineation of the zone.

The Au - Cu soils anomaly at 4+00N on L0+00 and L1+00W should be carefully prospected with a view to trenching any mineralized zone. If it is not feasible to trench the zone, then it should be tested by drilling, since there is a high probability that the anomaly indicates the presence of mineralization similar to that in the main stockwork zone. A contingency of 500 m of drilling (two 250 m holes) is included in the attached budget for drilling this zone.

Areas along the west side of the property in the vicinity of the Au-in-stream sediment anomaly (sample HL 1 to 6) should be thoroughly prospected and evaluated, as should areas in the vicinity of sample numbers MP - 53 and MP - 61. Aeromagnetic "highs" within the property should be prospected and, where warranted, tested by soil geochemical traverses. Other Cu/Au occurrences located within the environs (say, a 20 km radius) of the property, which show spatial relationships to magnetic highs should be evaluated, and a number of magnetic highs nearby the property should also be prospected. Any unmapped intrusive bodies found in the course of this "regional" exploration should be prospected and geochemically tested.

Respectfully submitted,

Michael Fox/ B.Sc., P.Geol. Consulting Geologist

February, 1991

STATEMENT OF COSTS

Supervisory Geological Personnel	\$ 8,092.50
Project Geological Personnel	69.30
Support Personnel	6,150.00
Camp Costs	2,091.25
Field Costs (incl. explosives, disposable supplies, freight, etc.)	5,701.83
Helicopter and Fixed Wing Support	24,416.66
Travel Expenses	272.15
Expediting	171.31
Contractor; Trenching and Stripping	7,600.00
Contractor; Geochemical Analyses	3,662.50
Contractor; Drafting	300.00
Secretarial/Computer Time/Reproduction	500.00
TOTAL:	\$59,027.50

BIBLIOGRAPHY

MacLeod, J.W. (1973):

8

Geological and Geochemical Report for the Sus Mineral Claims, Assessment Report #4595, September, 1973.

Shearer, J.T. (1990):

Geological and Geochemical Report on the Sus 1-4 Mineral Claims for Ritz Resources Ltd., April 8, 1990.

Wilson, G.L. (1984):

Geological and Geochemical Report on the Sus 1-4 Mineral Claims for Golden Rule Resources Ltd., November 30, 1984

APPENDIX I

....

-

ANALYTICAL TECHNIQUES

14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

GOLDEN RULE RESOURCES

ANALYTICAL METHOD FOR GOLD AND SILVER

Approximately 1 assay ton of prepared sample is fused with a litharge/ flux charge to obtain a lead button. The lead button is cupelled to obtain a prill. The prill is dissolved in nitric/hydrochloric acids (aqua regia), and the resulting solution is analysed by atomic absorption spectroscopy. TERRAMIN RESEARCH LABS LTD.

14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

GOLDEN RULE RESOURCES

SAMPLE PREPARATION

Soil and sediment samples are dried and sieved to -80 mesh (approx. 200 micron).

Rock Samples:

The entire sample is crushed to approx. 1/8" maximum, and split divided to obtain a representative protion which is pulverized to -200 mesh (approx 90 micron).

APPENDIX II

•

ť,

ANALYTICAL RESULTS

l,

10

854 E. HASTINGS ST. VANCOUVER B.C. VOA 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

Golden Rule Resources Ltd. File # 90-5252 Page 1 410 - 1122 - 4th St. S.W., Calgary AB T2R 1M1

	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm		As ppm	U ppm	Au	Th	Sr ppm	Cd ppm	Sb ppm	Bi	V ppm	Ca X	P X	La ppm	Cr	Mg X	Ba ppm	Ti X	B	AL X	Na %	K W X ppm
	74982 74983 74984 74985 74985 74986	13 12 2 1 5	148 66 70 72 284	2 2 8 7 4	9 1 69 73 38	.1 .1 .1 .1 .6	7 3 11 8 20	9 4 16 18 15		.48 4.39 5.65	5 2 5 6 107	55555	ND ND ND ND ND	1 1 1 1	4 1 12 18 8	.2 .3 .2 .2 1.1	22342	32224	8 37 64 25	.03 .61 .92	.005 .002 .054 .067 .066	2 2 2 2 3		.22 .06 1.51 1.74 .67	12 8 50 34 62	.01 .01 .07 .19 .09	2 :	.37 .13 2.35 2.67 1.35	.01 .01 .03 .05 .02	.03 1 .02 1 .16 1 .10 1 .15 1
inge c- 30	74987 74988 74989 74990 74991	4 4 10 2	114 69 75 16 21	2 5 8 2 4	26 61 80 22 43	.1 .5 .7 .1 .1	22 34 27 9 6	13 17 18 6	603 665 989 469 597	4.40 5.40 1.52	32 16 15 3 6	5 5 5 5 5 5 5	ND ND ND ND	1 1 1 1	13 32 17 6 15	.2 1.2 .9 .7 1.2	2 6 4 3	23222	19 40 40 13 12	.85 .53 .13	.060 .076 .075 .015 .095	2 6 2 7		.49 1.32 1.87 .62 .83	68 69 57 21 70	.10 .07 .03 .01 .02	2 2 2	1.23 1.86 2.43 .84 1.42	.03 .02 .01 .01 .02	.17 1 .17 1 .14 1 .05 1 .15 2
	74992 74993 74994 74995 74995 74996	42343	85 44 13 35 52	22433	68 95 47 43 66	.2 .2 .1 .3 .1	23 17 10 12 12	17 13 7 19 17	634 578 373 933 1053	4.94 1.86 4.11	8 4 2 4 5	5 5 5 5 5	ND ND ND ND	1 1 1 1	12 22 150 28 28	1.2	44445	22222		1.11	.060 .053 .048 .060 .061	5 4 4 2 3	37 48 33	1.88 1.79 .89 1.51 1.67	64 58 258 79 74	.02 .06 .01 .03 .02	222	2.45 2.53 1.35 2.18 2.76	.01 .01 .04 .02 .03	.18 1 .15 1 .09 1 .19 1
	74997 74998 74999 75000 86407	11 5 14 4 1	51 96 64 71 379	27242	9 117 83 83 93	2.5 .2 .2 .1 .2	13 22 12 12 3	26 18 13 16 11	348 958 1003 778 935	5.68 4.82 5.27	.7 4 9 9 4	5 5 5 5 5	ND ND ND ND	1 1 1 1	13 18 56 31 43	.5.4.4.3.5	2 4 3 3 4	42222	21 77 42 55 62	.91 .41 6.28 .83 .57	.011 .066 .052 .043 .066	2 3 2 8	23	.44 1.97 1.49 1.49 .96	18 87 59 74 31	.01 .17 .12 .14 .06	2	.59 2.69 2.22 2.21 1.74	.01 .03 .02 .04 .04	.03 1 .12 1 .13 1 .10 1
CUND'Z	86408 86409 86410 86411 86412	1 1 2 1	377 420 791 814 1160	2 2 10 3 2	553 873 458 108 114	.2 .3 .3 .3 .7	43444	9 9 10 11 10	848 811 986 922 886	3.69 [.] 4.32 4.10	35432	5 5 5 5 5	ND ND ND ND	1 1 1 1	63 52 42 30 29	2.8 5.9 1.7 .4 1.1	23444	22422	51 57 69 69 65	.61	.057 .060 .071 .069 .073	6 6 7 8 9	23 24	1.01 .92 1.11 1.10 .84	27 26 31 38 35	.08 .08 .14 .13 .11	5 5 3	1.92 1.73 1.77 1.55 1.41	.04 .03 .04 .05 .04	.08 1 .11 1 .13 1 .13 1 .15 1
TREA	86413 86414 86415 86416 86417	733	2570 2256 1893 2605 2023	9 11 6 2 2	127 104 110 90 76	13.7 8.7 2.5 .9 .8	45453	13 10	1561 1440 1358 1013 816	9.28 6.00 6.00	69 72 11 2 2	5 5 5 5 5	93 ND 2 ND 2	1 1 1 1	6 5 12 27 32	.3 .2 .2 .8 .2	14 17 6 5 3	32432		.15 .13 .48 1.21 1.07	.035 .044 .071 .061 .064	5 4 6 7	35 45 28 30 30	.58 .50 .79 .88 .76	20 17 31 29 44	.07 .06 .11 .10 .12	736	1.94 1.93 1.95 1.36 1.19	.01 .01 .02 .05	.14 .15 .16 .08 .12
4 7.3	86418 86419 86420 86421 86422	3 5 3	1055 3337 2729 5244 205	52242	60 101 94 114 80	.6 1.9 2.2 1.1 .1	3 5 5 5 3		801 979 1177 1279 734	6.27 7.21 6.62	2 3 11 5 2	55555	ND ND 3 2 ND	1 1 1 1	19 23 32 46 27	.3 .7 .8 .8 .5	3 2 4 5 2	22223	82 85 78 77 70	.63	.074 .061 .036 .051 .074	8 6 3 5 7	27 29 35 32 23	.49 .71 .82 .81 1.12	42 36 17 33 29	.10 .10 .08 .07 .16	4 3 3	1.04 1.29 1.94 2.10 1.49	.04 .04 .02 .02 .05	.16 1 .13 1 .09 1 .12 1 .11 1
4	86423 STANDARD C	2 18	991 58	4 42	83 131	7.1	4 72	12 31	757 1056		2 41	5 20	ND 7	1 38	27 52	.7 18,3	2 15	2 19	73 56		.069 .100	6 38	22 60	1.11	27 183	.15 .07		1.60 1.89	.05 .07	.11 1 .14 13

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL PAU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: PULP

() Second

Golden Rule Resources Ltd. FILE # 90-5252

 $1 \le \frac{1}{2}$

Page 2

	SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe X		U ppm	Au	Th	Sr ppm	Cd ppm	Sb ppm	Bi	V	Ca X	P X	La	Cr	Hg	Ba Ti ppm X		Al X	Na X	ĸ	W PPm
ENCH NO A	86424 86425 86426 86427 86428	5 3 2 2	4931 4056 4545 3396 2278	22 10 7 17 14	121 118 108 91	4.6 1.8 1.1 1.8 2.0	1 1 12 1	19 15 20	1359	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	22 3 2 7 2	5 5 5 5	ND ND ND ND 3	1 1 2 1 2	25 12 18 71 78	1.1 1.2 1.3 .2 .9	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	91 95 91 105 87	.34 .53 1.09	.027 .047 .067 .066 .074	2 2 6 6 9	34 38 36	.79 .89 .85 1.24 .79	18 .06 26 .07 31 .09 30 .18 34 .15	2 2 2 4	2.61 1.83 1.66 2.38 1.81	.01 .02 .04 .04 .04	.10 .09 .12 .08 .11	1 1 1 1 1
12	86429 86430 86431 86432 86433	2 1 1 1	3479 346 684 2937 479	8 40 15 13 11	56 373 158 69 89	1.4 .3 .3 1.1 .4	2 41 27 1 2	26 22	1103 2108 1801 1133 870	5.03 7.34 6.55 5.14 4.09	22222	5 5 5 5 5	ND ND ND ND	1 1 2 3	84 69 62 65 36	.8 3.6 .2 .2 1.0	22322	222222	164 142	1.77 1.32 1.09	.066 .068 .070 .066 .077	7 5 6 7	47 25	.88 2.64 2.12 1.00 1.41	27 .15 53 .40 29 .30 23 .11 25 .15	3 4 2	2.24 3.72 2.61 1.83 2.06	.03 .08 .05 .04 .04	.08 .06 .05 .07 .11	1 1 1 1 1 1
RENCH No	86434 86435 86436 86437 86438		1398 20613 11287 3494 2227	11 29 19 14 8	86 90 122 123 99	.4 6.8 7.9 .8 1.0	1 5 2 1 1		666 747 1236 1088 933	4.15 5.96 9.03 8.88 4.81	3 7 15 2 2	5 5 5 5 5	ND ND ND ND	3 2 1 2 3	40 21 11 9 25	.4 3.6 1.3 .8 .3	22222	2 5 2 2 2		1.08 .41 .26	.072 .041 .042 .058 .077	8 5 4 5 7	23 31 42 36 24	.90 .36 .45 .82 .85	30 .14 21 .07 18 .07 29 .04 29 .12	322	1.67 1.48 1.89 1.30 1.64	.04 .02 .01 .03 .03	.18 .18 .15 .10 .15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11.6 T	86439 86440 16441 86442 86443	22377	2093 514 181 4486 9974	5 3 11 21		1.2 .3 .1 14.7 38.1	1 1 3 5	13 10	1048 1172 1119 1040 967	4.92 4.24 3.84 5.76 9.15	2 5 5 18 29	5 5 5 5 5	ND ND ND ND 3	3 3 2 2		.2 .9 1.1 3.6 4.7	22222	25222	88 83 72 54 87	.62 1.13 .40	.078 .072 .072 .061 .032	97794		.67 1.23 1.43 .38 .35	32 .11 23 .15 24 .13 41 .04 24 .04	322	1.54 1.80 2.32 1.83 1.57	.03 .04 .05 .02 .01	.14 .07 .06 .23 .15	11111
4	86444 86445 86446 86447 86448	44451	4554 5290 2914 2494 1140	22 9 10 27 2	264 523 196	5.1 2.6 3.2 4.6 1.3	2 1 1 2 1	17 14	1208 983 1104 1166 901	8.07 6.94 5.94 5.75 4.08	22352	5 5 5 5	ND ND ND ND	2 2 2 2 3	12 15 28 33 63	1.5 2.6 3.3 .2 .3	22222	4 2 2 2 2 2	79 92 99 81 63	.44 .70 .72	.059 .059 .069 .066 .076	6 6 7 7	40 35 38 38 25	.72 .80 .93 .69 .73	30 .06 32 .09 45 .13 31 .12 39 .15	232	1.76 1.36 1.44 1.99 2.00	.02 .03 .05 .03 .03	.15 .12 .11 .14 .18	1 1 1 1 1 1
10 TRENCH	86449 86450 86451 86452 86453	2 2 4 2 1	3164 2917 3812 2025 546	10 13 27 8 8	180 116	2.0 3.7 16.0 2.8 .3	42 4 31 3	12 13 16	1317 933 947 1028 1564	7.30 6.52 8.38 6.89 6.57	23942	5 5 5 5 5	ND ND ND ND	1 2 2 2 2	18 24 16 15 31	.7 .6 .2 2.0 .2	2 23 2 2	3 2 2 2	116 85 75 94 102	.67 .54 .59	.062 .058 .058 .066 .073	5 6 5 6 6	114 37 38 44 34	1.64 .74 .59 1.10 .90	29 .21 69 .13 68 .12 34 .14 29 .13	252	2.13 1.65 1.85 1.83 1.51	.04 .03 .03 .03 .04	.08 .10 .16 .10 .09	1 1 1 1
CONCH No.	86454 86455 86456 86457 86458	1 1 2 3	826 219 322 186 325	11 4 10 12 115	81 85 98 120 126	.5 .2 .1 .1 1.2	2 1 3 1 3	9 10 10	1487 1469 1594 2001 2080	5.19 7.07 6.90 6.58 9.17	2 2 2 2 2 2 22	5 5 5 5 5	ND ND ND ND	22222	20 47 26 21 30	.2 .3 .2 .2	22225	22222	92 98 98	1.87 1.41 1.40	.074 .064 .065 .079 .063	7 5 6 8 6		.88 .84 .83 1.15 1.05	28 .13 24 .11 32 .13 34 .12 25 .12	222	1.39 1.42 1.38 1.73 1.89	.05 .04 .04 .04 .04	.09 .08 .08 .09 .08	1 1 1 1 1 1
	86459 Standard C	1 18	197 63	11 42	120 133	.3 7.3	1 72		1667 1057	6.78 3.97	2 43	5 20	ND 8	2 39	46 53	.2 18.5	2 14	2 21	95 56		.071 .099	7 39	28 60	.93 .89	34 .10 181 .07		1.63 1.89	.04 .06	.09 .13	1 11

Golden Rule Resources Ltd. FILE # 90-5252

Page 3

1

	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au	Th	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P X X	La ppm	Cr	Hg X	Ba Ti ppm 🛣	B AL ppm %	Na X	K V X ppm
Nb. 10	86460 86461 86462 86463 86464	43243	317 209 130 156 342	5 3 3 5 7	136 125 183 252 214	.5 .4 .3 .3 .6	2 2 18 1 2	10 16 11	1751 1579 2814 1880 2016	6.83 7.13 6.85 6.15 5.93	9 7 9 27 27	5 5 5 5 5	ND ND ND ND	4 4 3 4	27 20 54 25 33	.3 .5 1.3 1.0	2 2 3 2 2	43222	94 91 100 91 90	.56 .067 .51 .064 .66 .060 .42 .070 .68 .069	8 8 9 8	45 42 55 44	.86 .88 1.58 .95 1.07	44 .12 37 .15 43 .15 48 .14 39 .14	4 1.89 2 1.41 5 2.88 4 1.43 3 1.86	.03 .04 .02 .04 .04	.13 1 .09 1 .15 1 .11 1 .10 1
TRENCH	86465 86466 86467 86468 86468 86469	23233	66 183 108 92 113	24332	109 134 102 95 105	.3 .2 .2 .1 .3	1 2 1 1	9 8 8	1474 1717 1337 1299 1227	4.65 5.31 4.26 4.60 5.05	8 12 9 11 3	5 5 5 5 5	ND ND ND ND	3 4 3 3 3	27 129 104 31 23	.3 .3 .3 .3 .4	24222	23223	76	.68 .069 .68 .068 1.77 .063 .86 .070 1.35 .069	6 7 6 7 6	37	.88 1.05 .92 1.00 .98	40 .09 38 .08 26 .13 34 .15 25 .13	4 1.38 4 1.72 4 1.60 4 1.55 3 1.58	.04 .04 .04 .05	.10 1 .11 1 .06 1 .09 1 .07 1
. 7	86470 86471 86472 86473 86474	4	154 229 371 1017 592	5 11 2 17 9	108 130 122 182 180	.1 .3 .3 1.0 .7	2 2 1 1 1	10 9 12	1300 1167 1840 1954 1692	6.64 6.25 5.70 7.65 8.66	13 11 8 71 34	5 5 5 5 5	ND ND ND ND	3 3 2 3	44 29 29 77 19	.5 .5 .4 .6 .7	3 2 2 3 2	24322	93 111 103 97 107	1.17 .067 .88 .071 .96 .075 .88 .058 .49 .061	6 7 8 5 6	34	.91 1.02 .99 1.05 .89	27 .14 38 .15 34 .12 34 .13 39 .14	6 1.72 2 1.42 3 1.45 4 1.84 4 1.25	.04 .04 .04 .04	.05 1 .10 1 .08 1 .07 1 .09 1
	86475 86476 86477 86478 86479	3 4 4 3	563 1009 862 1278 687	53443	152 125 92 135 88	.5 .5 .2 .5 .4	1 1 1 1	11 9 10	1667 1778 1638 1879 1825	7.53 8.17 5.59 6.65 5.27	23 6 2 14 6	5 5 5 5 5	ND ND ND ND	3 2 3 3 3	42 21 25 49 24	.8 ,4 .3 .5 .3	22222	23222	100 100 94 101 84	1.72 .067 .94 .071 .81 .076 .50 .073 .98 .072	6 6 6 6	33 36 43 41 38	.94 .95 .89 1.15 .93	30 .13 31 .13 33 .13 34 .15 22 .11	2 1.41 3 1.35 5 1.35 2 1.39 5 1.51	.04 .04 .05 .04 .05	.07 1 .10 1 .06 1 .06 1 .06 1
S	86480 86481 86482 86483 86483	3233	584 483 244 242 389	44254	84 67 78 77 83	.4	21122	9 10 10	1522 1509 1523 1025 1241	6.81 6.36 7.20 8.98 7.81	12 9 3 10 12	5 5 5 5 5	ND ND ND ND ND	3 3 2 3	15 16 13 9 23	55423	3 2 2 2 2	22222	85 90 80 85 105	.80 .069 .90 .077 .51 .060 .12 .023 .27 .056	7 7 5 3 6	38 42 34 41 34	.99 .81 .95 .69 .83	29 .09 28 .12 35 .04 41 .04 38 .08	3 1.34 4 1.46 4 1.50 2 1.09 2 1.23	.05 .05 .04 .04 .04	.07 1 .07 1 .08 1 .09 1 .09 1
-	86485 86486 86487 86488 86489	3 7 3 4 3	783 628 1350 433 588	4 12 3 3 3	86 77 88 75 71	,1 ,2 ,3 ,2 ,1	1 2 1 2	12 12 10	1468 1036 1516 1519 1601	8.04 10.02 7.30 7.62 6.94	6 26 15 3 11	5 5 5 5 5	ND ND ND ND	3 2 2 3 2	19 13 22 18 21	.5 .4 .4 .4	222222	22222	107 95 100 103 106	.39 .063 .17 .044 .42 .067 .86 .064 .60 .070	6 4 7 6 7	34 54 35 37 37	1.01 .67 .88 .85 .96	40 .13 33 .02 31 .05 31 .09 42 .12	2 1.37 3 1.13 2 1.17 2 1.23 2 1.28	.04 .03 .03 .03 .04	.08 1 .08 1 .06 1 .07 1 .09 1
TRENCH No.	86490 86491 86492 86493 86494	3	567 539 1671 891 1009	7 5 2 4 2	59 71 97 74 75	.9 .1 .2 .2	1 2 1 1 2	10 11 10	1182 1184 1554 1340 1313	5.19 5.02 4.74 4.66 4.36	18 9 6 7 10	5 5 5 5	ND ND ND ND	3 3 2 2	30 33 22 24 29	.3 .4 .5 .4	6 2 2 3 3	2 3 2 2 2	80 97 100 101 102	.46 .079 .60 .075 .85 .077 1.03 .075 .99 .082	11 8 8 8 9	37	.66 .88 1.17 .93 1.08	37 °.11 35 .14 32 .13 32 .13 36 .15	2 1.83 2 1.54 2 1.54 3 1.33 4 1.56	.02 .04 .05 .05	.15 1 .10 1 .07 1 .07 1 .07 1
	86495 STANDARD C	3 19	1740 62	3 38	78 133	.2 7.3	1 72		1181 1053	4.37 3.96	9 42	5 19	ND 7	1 40	29 53	.5 19.3	2 15	2 19	96 61	1.04 .078		38 60	.85 .90	30 .13 181 .07	4 1.50 32 1.90	.05 .06	.07 1 .13 12

1

....

Golden Rule Resources Ltd. FILE # 90-5252

Page 4

1000

	SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni	Co	Mn	Fe /	225		Th	Sr ppm	Cd ppm	Sb ppm	Bi	V ppm	Ca P X X		Cr ppm	Mg	Ba Ti ppm X		Al X	Na X	K X p	W pm
LEGNCH No.8	86496 86497 86498 86499 86500	33	2614 608	2 5 3 5 17	89 82 95 150 460	.3 1.1 .1 .3 1.2	3 1 1 2 1	9 9 11	1446 1508 1440 1507 1432	4.79 5.46 7.78	5 5 5 5 5 5 5 5	ND 3 ND ND 2	1 1 1 1 1 1	122 60 58 20 35	.2 .2 .6 .3 1.6	232	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	86 83 93 103 97	1.19 .071 1.55 .066 .67 .071 .51 .083 .65 .076	7 10 7 7 7	31 34 32	1.04 .96 1.09 1.09 .83	22 .12 28 .11 34 .12 37 .09 30 .12	5 3 2 3	1.89 1.49 1.41 1.53 1.54	.04 .06 .05 .05 .04	.07 .07 .07 .06 .08	1 1 1 1
FF"TRENCH	86501 86502 86503 86504 86505	1 2 2 2 2 2 2	695 910 708 879 787	75322	156 87 119 167 96	.7 .4 .3 .3	3 2 1 1 2	10 10 10	1925 1432 1535 1268 1348	5.11	4 5 5 5 3 5 4 5 2 5	ND	1 1 1 1	30 29 26 26 42	.2 1.0 1.7 2.1 .2	22222	22222	112 91 89 85 85	.52 .087 1.52 .077 1.59 .078 1.69 .069 .67 .076	9 8 8 8 9	25 28 26 26 25	.94 .99 1.08 .75 .88	36 .11 34 .06 27 .10 28 .03 28 .06	242	1.82 1.41 1.40 1.26 1.40	.04 .07 .05 .04 .04	.08 .09 .07 .10 .08	1 1 1 1 1
"CCI	86506 86507 86901 86902 86903	2 2 10 4 1	1400 322 11 109 70	3 2 5 7 23	111 101 39 80 119	.4 .1 .2 .3	1 14 22 15	10 17	1491 1805 926 1043 930	4.73 4.42 7.04	2 5 3 5 2 5 3 5 4 5	ND ND ND ND	1 1 1 1	14 24 59 16 55	.6 .2 .4 .8 .3	2 3 2 5 2	22222	90 97 37 83 66	.71 .074 1.04 .086 3.37 .042 .55 .068 1.45 .095	8 10 2 2 5	22 31 35	1.07 1.18 1.71 2.27 1.99	28 .03 34 .11 36 .02 67 .05 62 .08	2 2 2	1.33 1.47 2.28 3.39 2.98	.04 .05 .02 .02 .02	.09 .08 .18 .29 .13	1 1 1 1 1
	86904 86905 86906 86907 86908	4 2 3 12	242 72 81 57 510	1867 72 45 389	117 103 103	3.2 .5 .2 .5 2.0	18 24 23 16 16	14 18 19 14 7	705 653 866 772 159	5.19	2 5 5 5 8 5 8 5 2 5	ND ND ND ND	1 1 1 1	34 40 19 64 32	6.2 1.3 .3 1.3 4.8	5 3 5 2 2	22222	41 37 50 36 8	.96 .085 1.18 .087 .37 .070 1.14 .087 .10 .016	5 5 7 2	34 43	1.29 1.66 1.96 1.34 .20	47 .04 66 .01 68 .02 71 .04 22 .02	2	1.79 2.14 2.72 1.93 .37	.02 .02 .02 .03 .01	.09 .14 .13 .16 .04	1 1 1 1 1
nge J.30	86909 86910 86911 86912 86913	2 4 2 2 5	33 41 24 26 59	8 109 35 12 265	86 136 77 55 110	.1 .5 .2 .1 1.2	8 14 13 13	8 9 8 8 4	397 566 446 425 980	2.80 2.39 2.25	2 5 9 5 2 5 3 5 8 5	ND ND ND ND	4 2 4 5 1	45 38 88 109 784	.2 1.1 .3 .4 2.0	3 2 3 2 2	22222	24 21 21 19 8	.90 .117 .67 .110 .91 .090 1.46 .099 18.58 .039	15 10 14 19 6	57 42	1.05 1.01 1.06 1.02 .25	71 .01 81 .01 65 .02 68 .01 23 .01	34	1.66 1.50 1.56 1.45 .30	.06 .04 .05 .05 .01	.11 .15 .10 .12 .07	1 1 1 1
	86914 86915 86916 86917 86918	5 1 8 5 12	87 55 47 83 5307	489 7 828 460 19146	102 78	1.5 .3 4.1 2.2 58.0	24 18 8 18 24	23 4	975 1108 386 1096 198	7.66 1.18 3.58	5 5 7 5 3 5 6 5 2 5	ND ND ND ND 13	1 1 1 1 1 1	139 34 227 464 13	3.3 .4 .9 3.1 320.5	4 3 3 13	2 2 2 2 39	29 103 8 16 11	.65 .098 .99 .092 5.77 .036 16.69 .043 .15 .032	52		1.08 2.22 .23 .50 .42	80 .02 23 .08 12 .01 23 .02 26 .01	24	1.64 3.64 .29 .64 .63	.01 .03 .01 .01	.17 .07 .04 .06 .07	1 1 1 1
	86919 86920 86921 86922 86923	16 4 14 20 6	187 313 232 125 246	81 2 6 3 10	39 140 9 15 57	.6 .5 .4 .1 .3	5 28 6 6 16	6 23 7 7 17	65 1208 166 281 801	7.36 .85	2 5 3 5 2 5 2 5 2 5	ND ND ND ND	1 1 1 1 1	1 16 4 16 46	.2 .5 .2 .2	23224	32222	8 171 16 22 109	.02 .001 .47 .079 .41 .006 1.73 .010 6.12 .050	2 2 2 2 2 2	66 134 106	.07 3.01 .14 .26 1.24	1 ⁻ .01 86 .22 10 .01 13 .01 102 .19	23	3.65	.01 .04 .01 .01	.01 .35 .03 .05 .64	1 1 1 1
	86924 STANDARD C	4 19	142 60	3 43	58 133	7.3	16 73		661 1056		z 5 0 18	ND 8	1 39	41 52	.2 18.8	2 15	2 19	83 57	1.28 .059 .44 .095		63 59	1.53	45 .23 178 .08		1.84	.04 .07	.21 .14	1 13

. .

Golden Rule Resources Ltd. FILE # 90-4927

Page 5

12 12	SAMPLE#	Mo	C++	Pb	7-			-					-							1.1							÷			ruge J
	SAMPLE#	ppm	Cu ppm	ppm	Zn ppm	Ag PPM	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th	Sr ppm	Cd PPM	Sb ppm	Bi	V ppm	Ca X	р Х	La	Cr ppm	Mg X	Ba ppm	T1 %	B	Al X	Na X	K W X ppm
12.36	86835 86836 86837 86838 86839	2 3 6 8 7	27 66 19 375 10807	22424	58 49 4 1 88	.4 .4 19.7 40.5 4.7	64736	13 11 34 1 27	285	3.72 3.18 14.41 2.29 7.51	5 3 2 7 9	55555	ND ND 12 16 5	1 1 1 1 1	20 20 19 5 7	22222	3 3 2 2 2	2 2 2 4 2	54 36 35 8 64	.52 .38 .02	.035 .030 .037 .002 .027	2 2 2 2 3	40 50 68 138 72	1.79 1.18 .26 .01 .46	14 31 8 16	11 06 06 01 04	7726	2.51 1.83 .72 .03 1.58	.11 .09 .03 .01 .01	.02 1 .04 1 .16 5 .02 168 .10 1
15-36 5-36 BC-32 ?	86840 86841 86842 86853 86856	4 2 2 1 1	1264 92 53 19 208	32264	70 79 70 12 35	.7 .4 .3 .1 .8	3 6 17 1 4	2	889 646 530 3548 1740	6.51 4.68 4.06 1.06 8.54	2 2 7 7 22	5 5 5 9 5	ND ND ND ND	2 1 1 7 3	14 28 36 234 39	22225	2 3 4 3 2	22222	95 58 42 8 214	.56 .66 25.97	.069 .077 .039 .010 .102	7 2 12 11	43 35 62 14 16	.54 2.35 1.33 .26 1.04	56 114 62	.11 .24 21 01 .01	8	1.14 2.41 1.92 .23 .69	.03 .04 .03 .01 .03	.15 1 .27 1 .30 1 .04 1 .03 1
	86857 86858 86859 86860 86861	9 6 5 7 1	8 30 42 70 73	42924	38 30 199 27 54	.3 .2 .4 .1 .2	5 19 28 103 7	25	965 580 811 894 1669	2.42 1.80 4.54 8.48 8.60	11 11 5 7 10	5 5 5 6	ND ND ND ND	1 1 3 2 2	30 20 26 4 46	.2 .2 .8 .2 .7	322222	3 3 2 2 2	17 12 103 245 74	1.25 3.56 .61	.022 .021 .050 .055 .069	2 10 4 5	49 80 38 180 15	.62 .53 .94 3.07 1.49	17 11 10	01 01 10 51 01		.23 .19 1.39 3.12 .27	.04 .06 .06 .07 .03	.03 1 .01 1 .01 1 .02 1 .10 1
Barte	86862 86863 86864 86865 86865 86866	1 1 5 1	82 87 78 90 11	5 2 2 7 2	141 62 43 75 30	.2 .1 .1 .2 .3	14 98 108 18 44	35 34 17	1026 715 1077 652 1321	7.01 6.20 7.61 6.48 6.73	3 2 2 11 9	8 5 7 8	ND ND ND ND	2 1 3 1 2	16 14 20 15 13	.8.2.2.3.5	22222	22222	191 169 205 131 42	3.19 2.50 1.65	.043 .076 .075 .041 .059	5 3 4 3 6	25 197 247 46 37	1.26 2.40 3.15 2.01 .25	11 26 17	40 34 41 32 01	25 19	1.67 4.89 5.10 3.14 .42	.09 .03 .02 .03 .02	.04 1 .02 1 .02 1 .04 1 .12 1
¢	86867 86868 86869 86870 86871	3 6 9 1 6	19 15 25 40 59	2 22 7 10	30 1 9 56 54	.1 .3 .2 .1	3 3 14 9	11 4 4 10 17	1035 916 149 432 471	3.38 1.47 9.43 4.25 9.46	25438	5 5 5 5 5	ND ND ND ND	1 1 2 1 2	5 5 1 53 5		22222	22222	6 4 39 36 111	1.14 .03 1.47	.085 .072 .020 .041 .050	13 7 2 4 9	67 92 102 54 29	.06 .10 .18 .91 1.10	8 7 74	01 01 01 13 29		.41 .22 .70 2.63 1.54	.08 .08 .02 .05 .07	.10 1 .07 1 .02 1 .09 1 .02 1
	86872 86873 86874 86875 86875 86876	5 8 7 1 4	1 16 4 229	6 13 6 3 28	43 69 17 27 126	,1 ,2 ,1 1,1	2 6 6 2 4	1 4 2 4 12	129 248 206 309 1094	.49 .66 1.28 3.76 6.18	2 2 2 3 18	7 5 5 5 5	ND ND ND ND	7 1 1 2 3	6 12 3 7 27	59226	22223	22222	1 12 1 56 157	.25 .08 .06	.020 .041 .020 .035 .189	6 7 11 3 9	73 111 109 30 17	.04 .02 .02 .60 2.00	205 12 18	01 14 .01 .14 43	5 5 6 10 8	.44 .33 .25 .79 2.52	.06 .05 .08 .07 .06	.18 1 .08 1 .05 1 .10 1 .05 1
	86877 86878 86879 86880 86881	3 2 1 2 1	.4815 510 10 462 1	44632	89 126 114 137 6	1.2 .2 .6 .3 .1	3 43 3 1258	11 30 11	1395 1639 1683 1309 335	6.04 5.10 8.39 4.83 3.78	7 6 13 3 137	6 8 5 8 5	3 ND ND ND ND	3 3 1 3 1	25 28 5 20 111	.4.2.2.4.3	222222	222222	97 88 143 107 15	1.12 .49 1.12	069 070 089 079	6 6 4 9 2	33 34 110 34 728	.99 1.39 3.10 1.25 14.15	41 15 45	12 14 .06 .13 .01	11 4	1.40 1.67 2.62 1.62 .07	.04 .06 .05 .05	.08 1 .10 1 .02 1 .09 1 .01 1
Jucord	86882 86883 STANDARD C	1 13 17	8 15 59	23 27 37	74 78 130	.1 1.2 7.0	24 10 73	9 1 32	223 210 1052	3.73 .44 3.95	6 2 45	12 5 22	ND ND 7	18 1 39	12 7 52	.2 .5 19.5	3 6 15	2 2 20	6 3 58	.12 .04 .46	.048 .009 .096	41 2 39	50 196 60	.92 .04 .89	44	.01 .01 .08	3	1.66 .06 1.90	.01 .01 .06	.21 1 .01 1 .14 12

852 8- HASTINGS ST. VANCOUVER B.C. VAN IR6 0 PHONE (604)253-3158 FAX (604)253-1716

- 1 A.C. and the states of the

GEOCHEMICAL ANALYSIS CERTIFICATE

TerraMin Research Labs Ltd. File # 90-5505 Page 1 14 - 2235 - 30th Ave M.E., Calgary AB 12E 7C7

SAMPLE#	Ppm		Pb	Zn	Ag PPM	Ni ppm	Co	Kn		Ppm	U pps	Au	Th		pon	Sb	- Bi ppm	V ppm		12		Cr ppm	Hg X	6a ppm		B	AL X	Na X	K PP
86508	4	2021	8	115	1.6	2	13	959	4.57	1113	5	ND	1	35		2	. 2	88		070	7	31	.76	33	1113	-	1.63	.04	.10
86509		1003	9	128	14	1	11		4.43	1.2	5	ND	1		1.0	ž	2	99		078	8	28	.94	40	1.11		1.43	.06	.09
86510	2	1388	2	119		2	12	890	4.66	1103	5	ND	1	41	1.7	2	2	96	.81	.076	8	29	.76	36	: 12		1.49	.05	.08 10
86511	1000	2021	7		2.9	. 4	14		4.79	116	5	ND	1	30	1.8	2	2	84	.61	1080	8	31	.49	108	110		1.43	-05	.14 100
86512	2	1060	8	217	1.2	3	13	905	4.41	15	5	ND	1	31	1.2	2	2	93	.70	:074	7	28	.87	43	1311	2	1.54	.06	.09
86513	5	939	14	446	2.1	5	13	1017	4.72	6	5	ND	1	19	2.9	2	2	95	.74	.074	7	48	1.06	32	Hi	2	1.54	-06	.08
86514	3	523	2	196	17	3		1.3.0.5.	4.90	11.4	5	ND	1	21	2.2	2	5	95	.71	.075	7	28	1.06	39	1211	2	1.50	.07	.10
36515	2	812	9		2.2	3	121.51		4.35	1. 7.	5	ND	1		6.3	2	2	75	.63	.079	9	14	.53	37	12		1.53	.03	.18
86516	2	393	12		144	4			4.31	6	5	ND	1		-3	2	2	86	.62	-084	10	18	.56		.13		1.47	-04	.13
86517	2	386	9	149		3	11	1070	4.07	1.Z	5	ND	1	25	1.0	2	2	93	1.22	.079	8	25	1.05	28	80.0	2	1.47	-06	.08
86518		1189	.4	170	4	4			4.30	.2	5	ND	1	24	- 5	2	2	93	1.67	2077	8		1.07	28		2	1.52	.06	.08
B6519		1868	6	910	14	3			4.93	112	5	ND	1	38	7.3	2	2	98	1.73	:080	7	28	.83	31	2411	2	1.60	.05	.08
86520	2	722	11	116	-2	2			4.02	1.3	5	ND	1	30	2.2	2	2				7	27	1.02		1.10	2	1.56	.06	.08
B6521	2		3	94	444	4	15.07.01		4.12	HZ:	- 5	ND	1	18	1.Z	2	2	96	.86	1082	7	27	.98		110		1.34	.06	.08 31
86522	•	2141	2	95	1.0	2	14	1111	4.82		5	. ND	1	28		2	2	100	.94	.080	7	28	.84	42	311	2	1.41	.07	.08
86523	2	506	7	99		3	11	1316	4.18	12	5	. ND	1	23		2	2	93	.84	2081	7	24	1.01	31	1.10	2	1.64	.05	.06
86524	2	404	10	53		3			3.58	16(系)	5	ND	. 1	47	12Z	2	.2	67	.71	.067	6	14	.62	28	1.07	2	1.78	.03	.09
86525	1 1	311	12	41 3	月 9	4			3.74	18:18:	5	ND	1	57	4	2	, 2	26	.77	:054	4	5	.36	29	1104	2	2.18	.01	.13
86526	17	277	17	40	118	7			4.02	415	5	, ND	1	16	 2	3	2	38	.34	:076	6	7	.39	58		4	1.64	.01	.21
B6527	2	183	; 7	56		3	10	1034	3.85		5	ND	+*	48	6	2	· 2	86	.87	:087	. 7	12	.63	38		2	1.85	.04	.11
86528	2	401	9	79		3			4.68	K/Z	4 5.	ND.	T	22	2	-2	2	104	.75	083	7	15	.95	35	112	2	1.53	-05	.10
86529	1	695	5	66	<u>0</u> .1	3			4.33	184	5	, ND	12.1	22	T'F	2		96	.96	1084	. 8	22	.97	32	10	4	1.44	.07	.09 112
86530	1	262	2	77		5			4.04	293	5	ND	1	23		2	2		1.15	2085	7		1.15	20	09	3	1.62	.06	.05
86531	1 4	459	. 4	69	247 P	3			4.11		. 5	- ND	1	20	1, 2	2	2	93	.83	.081	- 7		1.04	30		2	1.34	.06	.08
86532	2.4	403	- 4	61		•	10	947	4.25		5	ND	1	101	2.3	2	× 2	98	.97	1094	. 9	23	.87	. 92			1.50	-06	.10
B6533	2	279	2	46	2	3			3.85		. 5	KD	1	. 74	2	2	. 2	88	.80	.087	9	15	.50	80	10	2	1.39		.12
86534	1	288	11	59	1.6	5			4.53	10	- 5	ND	. 1	34	1.2	2	2	87	.72	1082	9	16	.67	. 38	111	4	1.76		.11 8
86535 86536	2	156	10	69	相要	4			4.04	122	: 5	ND	1	40	1.3	2	ch: 2	. 95		:084	. 8	18	.88	31			1.55	.05	.07
86537	1 2	124	5	67	113.	5			3.93	122	5	KD	1	21		2	2		1.37	.084	.7	20	.89	30	.09	3	1.56	.07	.07
, ,	•	103	2	0		4	10	1004	3.96		5	ND	- 1	19	13	5 S ²	2	93	.84	.083	7	18	1.01	31	-09	2	1.48	.07	.07
86538	3	210	10	69		4			4.07		. 5	KD	1	26	12	2	2	93	.76	.083	7	19	.86	37	Hat	2	1.46	.06	.09
66539	2	276	2	51 \$		4			3.77	115	5	RD	1	20	12	2	2		.98	084	. 7	21	.79	22	1.10	N			.06
B6540 B6541	3	300	1	53]		2			4.20	19192	5	ND	1	18	1.0	2	2		1.18	.088	7	17	.96	21		3	1.67		.05
	4	441	8	64	發达	-		2.2.2.2	4.15	152	5	ND	1	17	13	2	2		1.03	2083	. 6		1.06	26		3	1.70	.06	.07
86542	3	144	. 2	51		6	9	1108	3.88		5.	ND	1	20	12	.2	- 2	92	1.11	-084	7	22	.90	31	1209		1.51	.05	.07
86543	2	153	7	54		5	10	1050	4.09	10	5	ND	1	28	2	2	2	88	.67	.088	9	15	.66	34	140	3	1.40	S. 1999	.11
STANDARD C	19	63	41	131	7.5	73	31	1057	3.98	12	20	7	36	53	18:9	15	18	56		095	38	60	.89	181	1			.06	.14

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3HL 3-1-2 MCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND ALO AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PULP

1.1.1

Sec. 6 .

DATE RECEIVED: OCT 24 1990 DATE REPORT MAILED: OCT 26/90 왕 주 유. 전

9927 5

IrraMin Research Labs Ltd.

FILE # 90-5505

Page 2

12

3.1

SAMPLE#	Mo ppm	Cu	Pb ppm	Zn }*	Ag pm	Ni ppm	Co In ppr ppra		PDM	U ppm	Au	Th		22 Cd	Sb ppm	Bi ppm	ppnt	Ca X	P.X	La	Cr ppm	Mg X		in.	ppm	AL X	Ka X	K X	P
86544	2	264	2	60		1	10174	4.7	1.2	5	ND	1	23	13:2	2	2	91	.63	081	17	22	.92	45 .	:09	2 *	.42	.10	.12	1000
86545	1 3	210	ž	71		÷	10 562		1.	5	ND	- i	19	2.2	2	2	90		1084	7	22	1.22	38	.08	3 1	1.58	.10	.08	112
	1 1			79			10 816			5	ND	- 2	24	144	3	ž	92		1085	8		1.37	1000000000	:07			.10	.09	ģ.?
86546	1 1	91	2	- 201		2			1852	-	1000	- 1		14.12			90	.88						.08		1 - C - C - C - C - C - C - C - C - C -	.08	.08	24
86547	2	85	2	59	1	2	9231		1.4	2	ND	1	21	法任任	2	2			086	6	23	.90		22.22.26		.35			177
86548	2	445	2	65	1	1	\$274	4.6	112	5	ND	្រា	19	-2	2	2	93	.89	.086	7	23	1.06	36	C09	2	1.50	.09	.08	
86549	2	389	5	62		2	1114	4.0	6	5	ND	1	19	12	2	2	93	.95	.081	6	21	.90		10	4	1.45	.06	.06	
86550	1 5	178	2	61	21	1	527	4.4	2	5	MD.	1	19	2.9	2	2	96	1.06	.085	6	22	1.01	39	1.09	4	1.60	.09	.09	6¥
86551	1 3	375	10	71 54	52	ŝ	1012		2;	5	ND	1	22	12	2	2	07	1.61	:081	6	22	.94	27	.08	4	1.58	.09	.06	23S
	1 1			10	22	-				5					2	2	91	.87	2083	Ť		1.03		.08		1.28	.07	.06	18
86552	2	145	5	65	44.4	1	10 2%		3.5		ND		22	1:2		-								A				.07	18
86553	2	147	2	76	1	7	10 535	4.5	25.	5	ND.	1	26		2	2	85	1.21	1086	. 8	25	1.26	24	2.08	۲	1.61	.10	.01	in the second se
86554	1	150	19	112 1		33	14 655	4.4	2.3.	5	ND	1	95	11.4	4	. 2	95	1.16	2064	5		1.58	81	1.15	3	2.41	.07	.06	1
86555	1	138	17	116 7	1	61	21256		2	5	ND-	1	73	1.7.	3	2	95	.99	1049	14	49	2.24	84	120	3	2.84	.09	.05	13
	1 2		2	70		3	549		1 s	5	ND		37	5 .	2	1 2	92	.87	1088	7		1.21	30	1.09		1.65	.10	.06	122
86556	1 1	161			100	-			12. 3				1.	HC.		2. 5		1.32	2-1	7			22	07		1.45	.06	.06	1244
86557	1 1	198	2	51		3	£ 920		1 C	5	ND	1	. 19	J.Z	2	2			1082		21	.71	22	4. 62					627
86558	2	95	2	52		2	£ 0'9	4.5	12	5	ND.	- 1	23	11:2	2	2	. 94	1.24	1085	1	19	.74	29	1.08	. ?	1.49	-08	.07	
86559	1.1	837	3	99	3	3	11 440	4.5	6	5	ND	1	15	17.2	2	2	90	61	080	6	20	1.10	39	illi (2	1.64	.08	.10	
36560	1 1	785	2	107	1.7	3	149		illin.	5	ND	1	18	1 2	2	2	94	.63	1087	6	. 19	.93	40	(B10	3	1.65	.08	.12	
86561	1 4	1022	10	116	int.	ž	12 415				ND	1. 1	18	11.3	2	2.2	101	.59	1084	6	20	.77	42	1.09		1.43	.08	.12	翻
	1 2				15.15	-			55		a			4	2 2	144	86	.97	081		4	.87	31	10			.06	.08	20
86562	2	878	2	99	11	2	12 241		3:6	5	ND	Set.	127	1.		10-5	1000				18			12					鎆
86563	1 1	969	9	100	Dir	4	11 056	5.3	2	5	ND	12.0	-15 27	12	1	2	, 92	.99	1075	6	. 20	-81	32	;10	2	1.59	-06	.09	
86564		847	2	93	5	2	11 157	5.1	12	1.5	ND	21	26	15	~ 2	1.2	88	.87	.072		21	4.82	: 31	C109	. 2	1.58	.05	.10	
86565	14	1021	ž	81 4	1.8	- 7	1: 972	-	207	2.5		1	14	1-5	1 2	2 2		.77	2085	7	16		30	211	2	1.57	.07	-10	123
			6	130	44		11 012		10.1		- KD	1.	Star	1	24.9		95	.60				1.05	29	- 44		1.59		.07	57
86566	1 1	743		2+		5			H			No.	39.11	55										17.72					32
86567		1005	- 4	87		3	12 215		11.9	1 C	(** FD	19 C	. 91	11:2		2		92			18		- 25	110		1.61		-06	
86568	2	1183	2	94		3	12 274	5.2	j 45	. 5	, ND	dt er 1	19	12	2022	× 2,	94	.72	1076	6	26	1.07	37	1.09	- Z	1.40	80.5	.09	100
86569		1467	9	96	13	4	1: 957	4.5	18	5	10	44-1	30	Tiz	2002	22.2	7 65	2.39	1076	6	16	.48	33	1108	2	1.48	.06	.21	
86570		1457	9	217	7		1' 150		1. 7	5			\$ 39			2 2		88		- A	17	.63	26	1209	. 3	1.28	.05	.12	23
			2	147					174.00	5			40						1080	2 1 1 A A	21	.88		109	- C.	1.33	.09	.07	×+
86571	2		4			2	1: 43		124		- NO						1 C			5 · · · · ·							A	10112000	
86572	2		4	276	13	5	1: 754		1215		ND	10.01	21	10.					1085	K 3		1.23		14		1.65	-07	.08	11
86573	1	267	2	106		4	1: 259	45	14	5	ND	1.1	18	117Z	2	12, 2	97		1084	7	22	.99	38	209	2	1.35	.08	.09	
86574	2	524	7	131		4	1' 365	6.5		5	ND		40	1. 7	2	. 2	93	.64	.084	6	23	1.15	38	109	3	1.62	.09	.09	N
	2		ż	131	13	3	1. 220		11	5	ND	i	34	162	5		88	.96						108		1.70		.05	22
86575					:5				53	-	_			24	-	5							_	12 1 3	s				35
86576	1 1	573	8	122 1	43	2	1' 179		22	5	ND	1	40	13 2 7	2	. 5	93	.88						1209	2	1.61		.06	174
86577	2		14	131	16	4	1' 056		112		ND	1				2						.97				1.47		-08	-
86578	2	612	2	124	23	4	1: 059	45	112	: 5	ND	1	27	11:2	2	2	92	1.02	. 080	6	. 23		30	1109	2 2	1.31	.07	.08	
	1 -		100		121	100		10000	9			8	: :	105	1.12				1215				17 mail	100	1	er poste	5°.		10410
86579		1280	5	148	16	5	1: 156		116		ND		24	1.0.1	2	2		1.61	076					1:09		1.52		.08	
STANDARD C	18	61	38	131 💱	73	73	3, 051	4.5	::37	19	- 7	38	53	18.2	18	22	56	.48	1094	36	58	.90	180	1.07	÷ 52	1.90	.06	.13	33

10

2.2

TerraMin Research Labs Ltd.

FILE # 90-5505

Page 3

SANPLE#	Mo	Cu ppm	Pb ppm		Ag pom	NÍ	Co PPm	Hn ppn	Fe X		U ppm	Au	Th	Sr ppm	Cd ppm	Sb ppm	Bi	V ppm		P	La	Cr	Ng Z		174 172	8 ppm	Al Z	Na X	**	ppn
6580		1334	21	125	1.5	1		1107	4.57	2.7	5	KD	2	33	.2	2	2		1.87		6	19	.92	19	30	2	1.46	.04	.07	id.
6581	1.11	1047	8	124	5	1	10	979	4.57	104	5	ND	2	27	12:	2	2		1.50	-072	6	21	.83		110		1.41	-06	-10	
6582 6583	2	398 347	4	132 140	1127	2		1229	4.50	£113	5	ND	2	19	2.2	2	2	93		.076	7		1.13		10	1000	1.40	-05	.07	100
6584	2		6	408	115	2		1130		3	5	ND	22	20 24	.2 3.2	2	2	98 86		.078 2076	7	20	1.10		110 111		1.41	-05	.07 .09	
6585		1071	6	135		.1	10	924	5.01		5	ND	2	19	.2	2	2	87	1.21	071	6	21	.67	34		2	1.20	.05	.12	
6586		1883	5	165	1.0	1	11	889	4.92	112	5	ND	1	19	6	2	2	83		1075	7	18	.53	31	-10		1.25	.04	.13	
6587		1683 1978	12	150 190	1.3	22		1132	4.83	10	5	ND	1	26	-2	2	. 2	84		080	. 8	15	.73	33	12		1.63	.05	.13	
6589		993	8	146	125	3		1029		IZ.	Š,	ND	1	59	12	22	22	83	1.50	081	85	16	.93		-12 -11		1.79	-06	.11	
6590	1	727	6	119		1		947		105	5	ND	1	254	2	2	÷ 2	69	1.63	066	4	24	.67	19		2	2.03	.05	.05	
6591	1	812	7	137	:::3	1		1098	4.03	183	. S.	ND	3.14	100		2	2	79	.86	-071	6		1.10	31	: 12°		1.85	.05	.08	
6592 6593		431 498	3	131		1		1189 931	3.91 3.16	10,	5	ND		78	2	3	22		1.14	1075	. 6		1.38	26			1.90	-05	.08	
6594	ાં	206	9	90		ž		1105	3.56	2	5	ND	i	33	.2	2	2	65	1.05	1071	6		1.12	15 23	.13 11		2.02	.05	.04	
6595	1	154	5	91	11.4	2	10.20			6	5	ND	1	33	2	3	2	64	1.04	.070	5	18	1.37	20	10	2	2.00	.07	.06	
6596	1	353	2	92	封闭	1		1114	3.42	10,2	. 5	ND	1	: 42	2.2	3	2	59		.070	5		1.31	17	:09		1.92	.06	.06	谺
6597	2	552 82	7	83 87	324	23		1043	3.67	KIIZ.	5	ND	1	19	2	2	2	64	.99		5		1.16	20			1.73	.06	.06	202
6599	៍	100	4	76		ž	8	932	3.50	1.6	. 5	ND	1,	21	2	2	2	S	1.47	071 070	ŝ		1.19	22 20	112 14		1.68	.06	.07	
6600	1	322	4	79		1	9	889	3.70	3	5	KD	1	19	:2	2	2	65	1.09	069	. 6	17	1.00	22	112	2	1.53	.06	.07	
6601	.5	140	2	71	推到	1	10	897	3.29	115	5	ND	1	49	1.2	2	2	58		_075	- 6	16	.80		114	. 2	1.57	.05	.11	錋
6602 6603	2	172	2	64 70	ingi.	1	10	856	3.47	SP 2	5	ND	1	21	1.Z	307	2	58		.077	. 7	14	.74		115		1.54		.15	32
6604	៍	327	6	95		ź	10	882	3.49	3	5	ND ND	ાં	19	2	22	2	60 60		_070 _069	6	16	.83		112			.05	.12	
6605	-1	288	2	111	15	2	9	937	3.64	4	5	ND	1	21	.2	3	× ·2	62	.66	.068	5	17	1.35	23	113	2	2.00	.04	.08	
6606	- 4	317	20	486	1.6	1		1096	4.36	21	: 5	. ND	1	. 19	2.2	3	2	60	.49	.070	6	14	1.12	22	4.14:		1.91	.04	.11	
6607 6608		1269 2110	4	70 106		1	.9	701	3.32	, 2	5	ND	1	21	1.2	3	1 2	39	.46		10	11	.34		1.12		1.59	.03	.22	
6701	1	472	2 8	32		39	19	636	6.78 5.36	152	5	2 ND	1	21	2	25	22	52 111		-052	75	21	.38		207		1.79	.01	.18	
6702	1	342	5	18		6	6	389	4.17	105	5	ND	1	18	.2	3	2	79	.39	116	5	36	1.24	45	.09	2	1.75	.04	-11	
6703	6	407	.7	76	.Z.	19	18	360	8.69	3396	5	ND	1	38	1.2	14	2	58	1.82	2084	3		1.23	31	.01	6	2.19	.01	.10	
6704	5	424	12	20		30	10		10.63		5	ND	1	11	122	7	5	90	.44	106	4		1.67	16	.02		2.75	.01	.17	
6705	7	459 554	57	12 21	1.1	11 13	9 9		11.51 11.71		5	ND ND	1	22	12	77	22	67 62	.17	.100 .097	2	100 C 100 C	1.25	33 26	.01 .01		2.72	.01	.12	
6707	3	425	5	23	11	12	5	222	8.16	169	5	ND	1	15	12	6	2	87	.71	111	4	45	1.32	24	.D1	5	2.21	.01	.13	
TANDARD C	18	60	43	131	7.4	70	31	1057	4.00	12	17	7	36	52	8.6	14	21	55		.093	37	60			107		1.90	.06		扔

1 < 1• .

States

11:50

7							2	Cerr	aMi	n R	ese	arc	h I	abs	Lt	d.	F	ILE	#	90-	550	5					in _g aint	P	age	12	
SANPLE#	Mo	Cu ppn	Pb ppm	Zn ppm	Ag PPN	Ni ppa	Co ppm	Ha ppn	Fe X	A R	U ppill	Au	Th ppm	Sr ppa	PCM	sb ppn	Bi ppm	V ppm	*	H.X	ppn	Cr ppa	Mg	Ba	TA ,	B A	L Ka	; ;			
56409 56811 14	3 1 1	67 50 24	237	37 69 54	a teta	20 23 24	10 13 9	392 948 333	2.77 4.04 2.29	-K-NN	5 10 5	ND ND	228	38 93 40	KKN	322	222	102 9 90 9 36	5.21 9.86 .67	035 050 077	4 8 16		.92 .82 .72	12 66 89	2:22	18 3.3 10 2.2 4 1.1	7 .01 9 .01 6 .02		334X34	200	
															je.		y .			1	at ti t				•		<i></i>		÷.,		,
														, 6	•													, i			
																		2		8 23										1. 1. 1.	
							œ2											- 18 M 1							2					4	
																1				6 J.				2		• .1 .			-		
								-	÷		4	0	2			3					1	14				201		1		•	
		1.4						2	e ag					4.14	i si	[•	r-Sie						н н На 4				i vi				
		2) 1911							10	an an An an An ann			1.41								1						の記念		lagen († 19 Gebeure Aussieren		i i
		2 ca - 5 -							- 3		97 - 5 - 1. 1914 - 1.															2.4					
ار بر این کار این کار این کار این کار این کار این کار این کار این کار									•										n pris Mila		30.0	Тф. На								37	
		•				•				-	- 1969 -	9 1 19	2 - 1			- / :			204. 1	k e		1945) 	197			1. SIX P					
														1.00			е. 4	÷								÷					
							1			4			0			2.	-2			53				1. 					an Sanga	41 (4) (4)	
														×.				4	' · .				ex.								
		а с					a.			- - 1 - 4			s ŝ									1						inel all'	in l		2
		8			ю См.				1.00	\mathcal{M}	99	14	Ċ,			Č,	- 6														
	а ЧС	6 1								1. 6. 1. 9.9 1. 915-		л. t						9.49 • • •			4. 4.						9				
• 	8		8						12				9											1		å					
(4.,)										1. 1.	e Filo			À					5	Į.	3	ē.		-8 ^{- 1}			•				
															14	-	4 S •	1	4	•				3.3	1	4			3 11 - 4		

_

Project:	BC-36	
Sample	Au	Ag
Number	ppb	ppm
86508	924	2.20
86509	322	0.45
86510	660	1.08
86511	932	3.20
86512	272	1.30
86513	376	2.40
86514	224	0.88
86515	398	2.50
86516	160	0.49
86517	142	0.19
86518	434	0.55
86519	788	1.66
86520	238	0.24
86521	228	0.17
86522	906	0.51
86523	206	0.13
86524	382	0.31
86525	266	1.22
86526	140	0.60
86527	66	0.18
86528	158	0.23
86529	274	0.17
86530	108	0.06
86531	162	0.09
86532	248	0.16
86533	86	0.18
86534	110	0.54
86535	42	0.05
86536	42	0.06
86537	40	0.06
86538	100	0.10
86539	138	0.10
86540	146	0.09
86541	180	0.14
86542	48	0.13
86543	48	0.18
86544	80	0.07
86545	70	0.06
86546	48	0.03
86547	54	0.03

and the second second second

Project:	BC-36	
Sample	Au	Ag
Number	ppb	ppm
86548 86549 86550 86551 86552	76	$\begin{array}{c} 0.13 \\ 0.11 \\ 0.05 \\ 0.11 \\ 0.05 \end{array}$
86553 86554 86555 86556 86557	86 42 22 108 94	0.08 0.05
86558 86559 86560 86561 86562	68 308 260 268 316	0.36 0.38
86563	456	0.44
86564	330	0.40
86565	472	0.46
86566	268	0.22
86567	332	0.39
86568	362	0.35
86569	492	1.27
86570	462	0.67
86571	146	0.19
86572	174	0.20
86573	130	0.14
86574	160	0.24
86575	110	0.18
86576	210	0.25
86577	340	0.39
86578	188	0.23
86579	330	0.44
86580	1492	1.90
86581	430	0.48
86582	136	0.21
86583	110	0.16
86584	268	0.41
86585	370	0.54
86586	498	1.00
86587	748	1.25

:

Job#:	90-256

Project: Sample Number 86588 86589 86590 86591 86592 86593 86593 86594	BC-36 Au ppb 566 288 270 554 238 120 52	Ag ppm 0.93 0.47 0.35 0.54 0.31
Number 86588 86589 86590 86591 86592 86593 86593 86594	ррЬ 566 288 270 554 238 120	ppm 0.93 0.47 0.35 0.54 0.31 0.24
Number 86588 86589 86590 86591 86592 86593 86593 86594	ррЬ 566 288 270 554 238 120	ppm 0.93 0.47 0.35 0.54 0.31 0.24
86589 86590 86591 86592 86593 86593 86594	288 270 554 238 120	0.47 0.35 0.54 0.31 0.24
86589 86590 86591 86592 86593 86593 86594	270 554 238 120	0.35 0.54 0.31 0.24
86591 86592 86593 86594	554 238 120	0.54 0.31 0.24
86592 86593 86594	238 120	0.31 0.24
86592 86593 86594	120	0.24
86593 86594		
86594		
	52	
		0.11
86595	58	0.09
86596		0.13
86597	218	0.21
86598	20	0.04
86599		0.04
86600		0.12
86601		0.14
86602	40	0.12
86603	56	0.29
86604	102	0.11
86605	88	0.11
86606	318	0.60
86607	372	0.47
86608	2920	2.10
	86596 86597 86599 86600 86601 86602 86603 86604 86605 86606 86606 86607	86596 92 86597 218 86598 20 86599 22 86600 124 86601 56 86602 40 86603 56 86604 102 86605 88 86606 318 86607 372

•

Project:

••••

r

r	•,				•
×	Sample	Au	Ag	Au	
				oz/ton	
~	Number	ррЬ	P pw	027 0011	
	74953	14	0.34		
۱.	74954	12	0.16		
)	74055	24	0.13		
4.30 6	/4900				
~]	74957	2	0.10		
	74954 74955 74957 74958	2	0.01		
_ \					
- x · 32 1x · 31	74960	4	0.04		
12.31	74000	2`	0.03		
12	74962	2			
·	74963	2	0.02		
	ς 74968	2	0.02		
15c - 38	74969	2	0.28		
· 7 -					
ath	0/077	2	0.01		
BC-50	- 86277				
36.50	86812	48	4.80		
V •	86816	6	0.03		
1	86817	10	0.33		
· (86818	30	1.02		
· .	00010	00			•
	•	-			т. С
	86819	6	0.05		21 201 -19
	86820	294	5.40		36-32 28
	86822	2	0.08		61-36 2
	86823	6	0.01		
1		32	0.08		FX - 36 2 5(· 37 <i>S</i>
, C. 3 V X	86824	32	0.00		
1.3 2					BC-38 7
76	86825	26200	41.0	0.764	
l l	86826	128	0.22		
	86828	24	0.19		
1		44	1.27		
1	86829				
	86830	10	0.05		
1					
	86831	12	0.13		
	86832	10	0.12		
	86833	10	0.16		
1	86834	2	0.05		
\	86835	2	0.04		
					· · · · ·
	86836	32	0.10		
	86837	12180	21.0	0.355	
	86838	14640	37.8	0.427	
				0.189	
BC-36	> 86839	6480	5.30	0.105	
•••	(86840	514	0.53		
	,				
G. 32	5 86841	4	0.13		
60.70	186842	2	0.07		
	< 86881	2	0.03		
ላይ		4			
gr. je	5 86882		0.05		
*	(86883	4	0.96		

Project:

-

16

of its

	Sample	Au	Ag
	Number	ppb	ppm
/	86859 86860 86861 86862 86863	2 2 2 2 2 2	0.18 0.13 0.10 0.08 0.04
	86864 86865 86866 86867 86868	2 4 4 2 2	0.04 0.08 0.01 0.06 0.06
	86869	4	0.27
	86870	6	0.01
	86871	2	0.23
	86872	6	0.01
	86873	2	0.06
	86874	2	0.04
	86875	30	0.03
	86876	134	1.02
	86877	4400	1.70
	86878	240	0.21
	86879 86830	240 22 200	0.78 2.2%

BC-32	14
BC-30	6
BC-37	7
130-38	B3
36-42	24
136-43	3

Page 4

TERRAMIN RESEARCH LABS Ltd.

Job#: 90-250

Project:

-	Sample Number	Au ppb	Ag ppm
-	↑ 74982 74983 74984 74985 74985 74986	14 16 6 8 76	0.30 0.18 0.13 0.13 0.70
Ingl C-30	74987 74988 74989 74990 74991	32 66 46 6 10	0.18 0.48 1.12 0.04 0.05
C-30	74992 74993 74994 74995 74995 74996	52 46 4 142 4	0.18 0.24 0.04 0.31 0.14
	74997 74998 74999 74999 75000 85407	540 12 22 12 204	2.90 0.21 0.14 0.15 0.22
•	86408 86409 86410 86411 86412	186 268 348 266 468	0.29 0.35 0.47 0.33 0.66
-US 13C-36	86412 86413 86414 86414 86415 86415 86416 86417	5120 3200 1520 1790 1132	13.1. 10.2 2.90 1.08 0.78
	86418 86419 86420 86421 86422	502 1492 4720 1574 112	0.47 2.40 3.20 1.15 0.15
•	86423 86424 86425 86426 86427	498 4700 1944 1326 1536	0.39 4.80 1.60 1.03 1.26

TERRAMIN RES TERRAMIN RESEARCH LABS Ltd. 843 PØ3

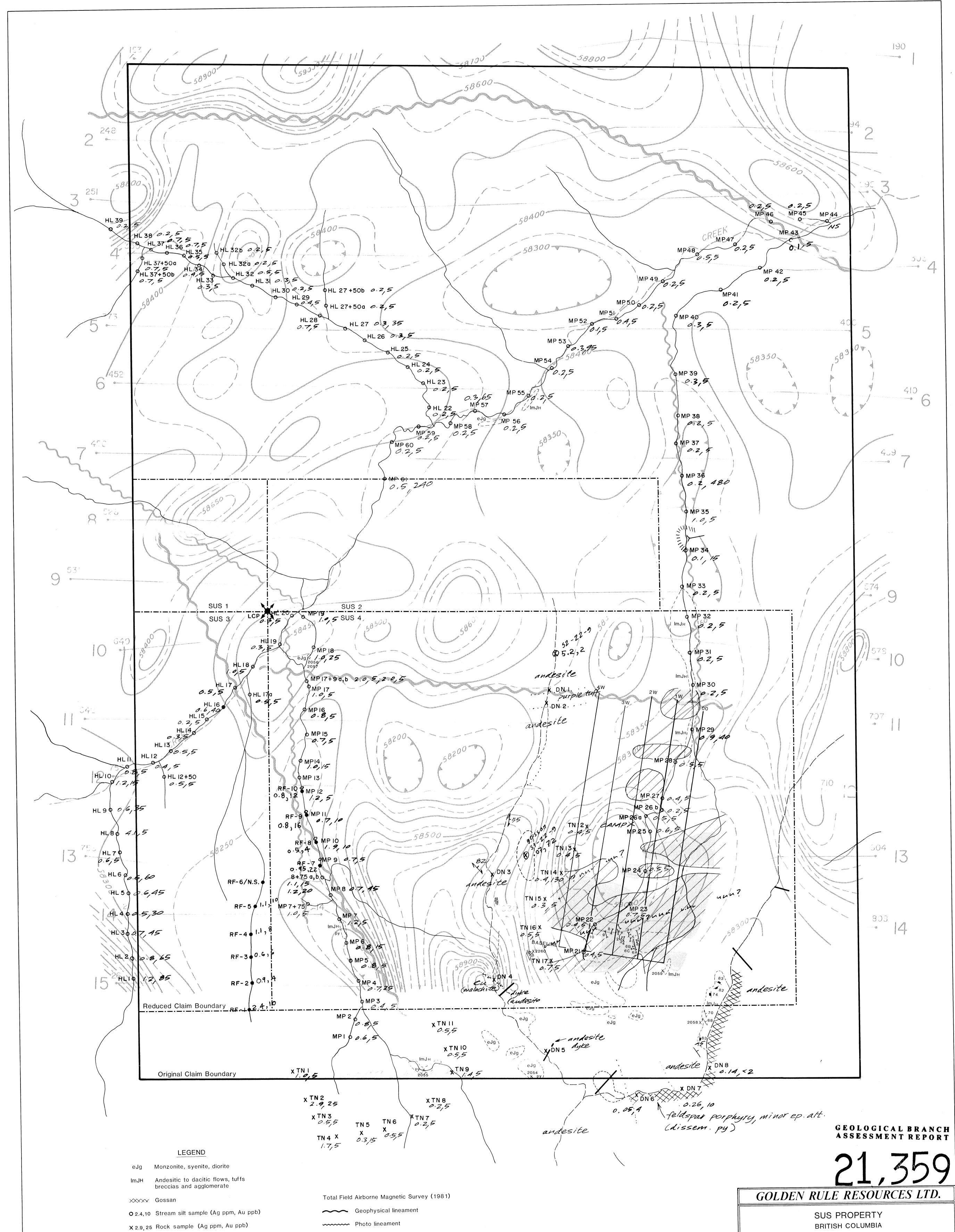
.

Project:

Job#: 90-250

	Projecti				
•	Sample Number	Au ppb	Ag ppm		
- +	86428 86429 86430 86431 86432	1340 1300 122 392 1376	1.19 1.07 0.18 0.26 0.85		
7-5	86433 86434 86435 86435 86436 86437	124 375 4920 5960 648	0.18 0.38 6.10 9.10 0.52		
	86438 86439 86440 86441 86442	802 725 212 58 1540	0.83 1.11 0.24 0.13 1.31		
2-6	86443 86444 86445 86446 86447	7940 1512 1860 982 1234	40.0 4.50 2.60 3.20 4.10		
545 15-36 1-	86448 86449 86450 86451 86452	624 1152 1464 4180 1192	0.79 2.30 4.00 15.3 2.80		
	86453 86454 86455 86455 86456	358 656 138 172 110	0.24 0.30 0.08 0.10 0.06		
7-10	86458 86459 86460 86461 86462	136 118 104 42 58	0.70 0.11 0.26 0.11 0.12		
	86463 86464 86465 86466 86466	62 238 · 26 44 52	0.30 0.39 0.08 0.10 0.09	•	

T 09 '90 08:54

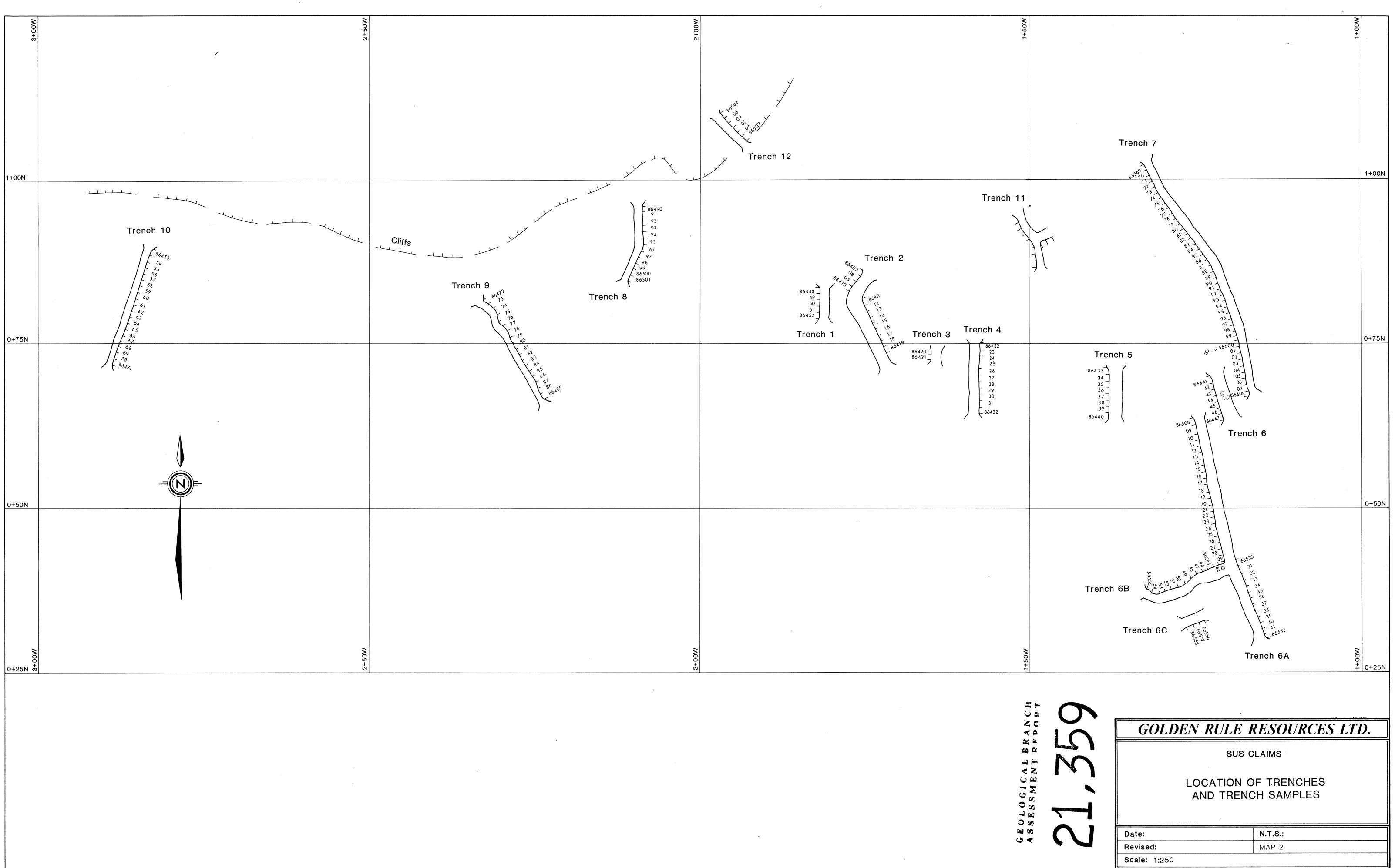

TERRAMIN RES TERRAMIN RESEARCH LABS Ltd.

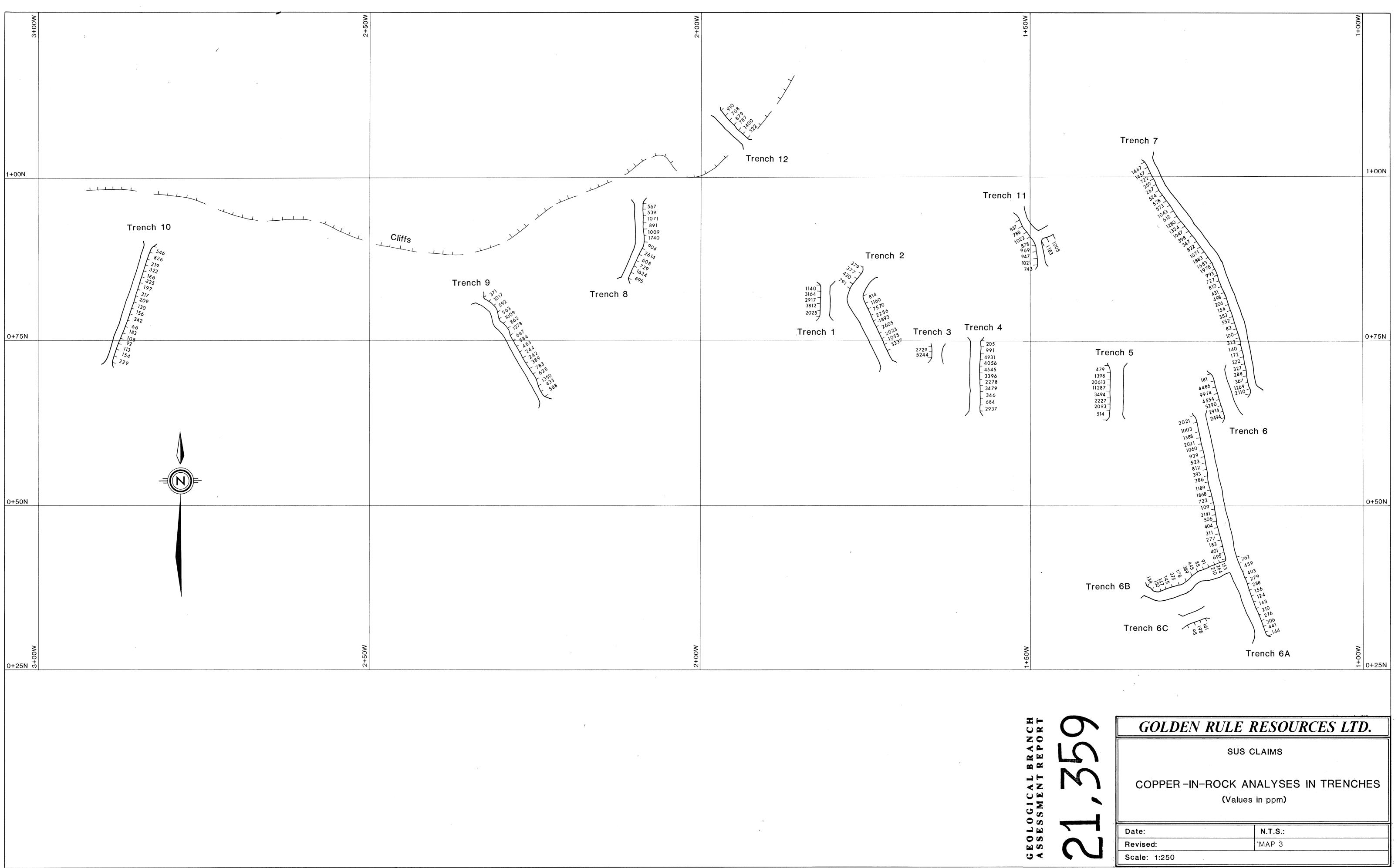

Job#: 90-250

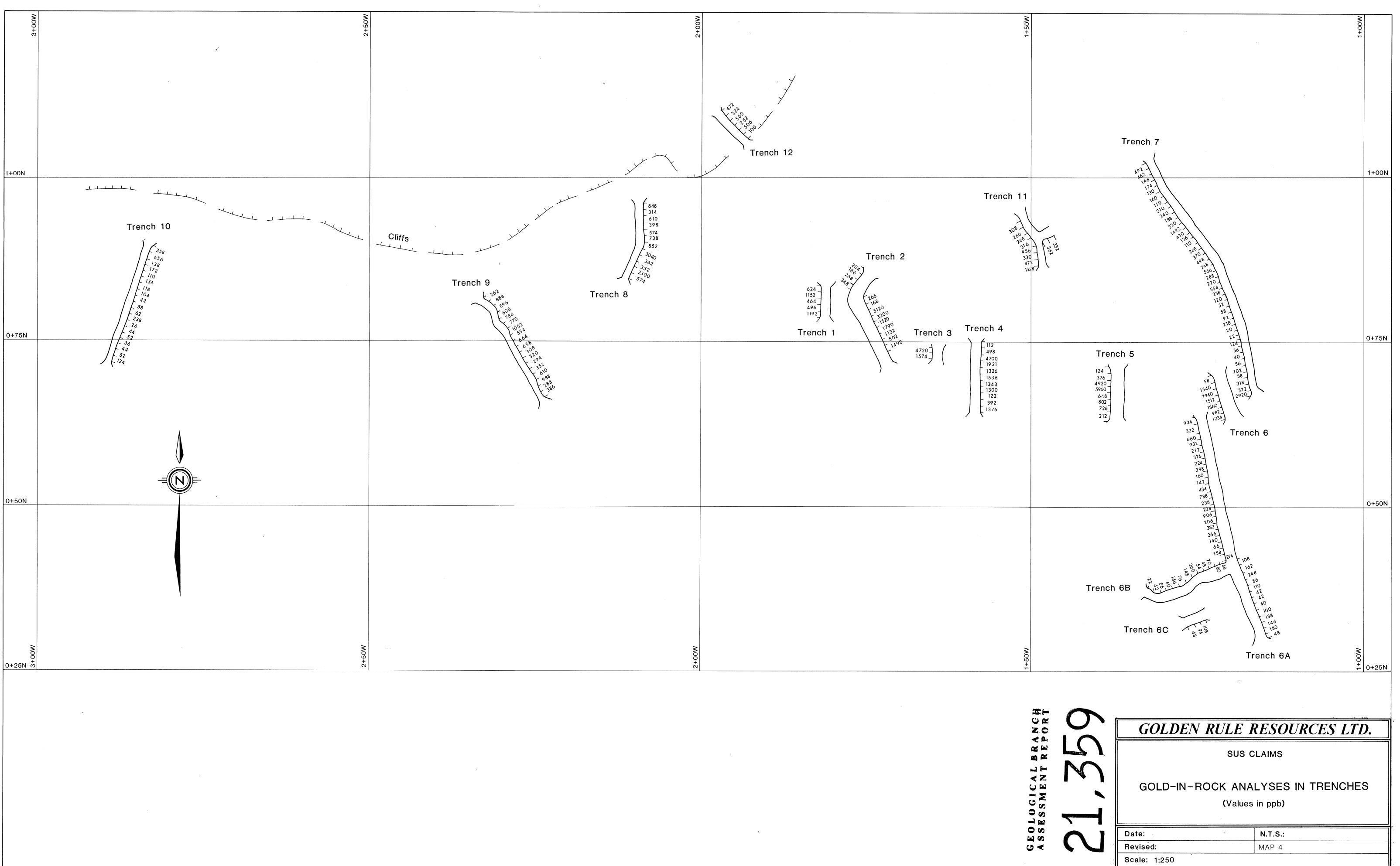
Project:

			•	
	Sample Number	Au ppb	Ag ppm	
110	86468 86469 86470 86471 86472	36 44 52 124 262	0.07 0.07 0.11 0.15 0.19	
	86473 86474 86475 86476 86476	888 896 608 786 770	0.89 0.69 0.48 0.42 0.28	
6-1	86478 86479 86480 86481 86482	1052 554 664 658 308	0.36 0.28 0.25 0.25 0.12	
ſ	86483 86484 86485 86485 86486 86487	320 294 352 610 988	0.10 0.13 0.18 0.43 0.43	
	86488 86489 86490 86491 86492	288 386 848 314 610	0.22 0.26 0.65 0.17 0.29	
7-8	86493 86494 86495 86495 86496 86497	398 574 738 852 3040	0.20 0.25 0.40 0.33 0.99	
	86498 86499 86500 86501 86502	362 352 2360 574 470	0.18 0.21 1.20 0.63 0.25	
TREWCH	86503 86504 86505 86506 86507	324 560 252 506 100	0.20 0.31 0.12 0.31 0.13	

i






Copper in soil anomaly (50 ppm contour) \bigcirc

Gold in soil anomaly (20 ppb anomaly)

COMPILATION MAP								
RECONNAISSANCE GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS								
Date: N.T.S.:								
Revised: MAP NO. 1								
Scale: 1:5000 0	100	200	300	400	500m			

.