

TABLE OF CONTENTS

Page

1.0 INTRODUCTION 1
2.0 LOCATION, ACCESS, TOPOGRAPHY 1
3.0 CLAIM INFORMATION 4
4.0 EXPLORATION HISTORY 6
5.0 REGIONAL GEOLOGY 7
5.1 Introduction 7
5.2 Triassic-Jurassic Volcanic-Plutonic Arc Assemblage 7
5.3 Intrusives 12
5.4 Structure 14
6.0 ECONOMIC GEOLOGY - REGIONAL 14
6.1 "Golden Triangle" - NW British Columbia 14
6.2 Bronson Trend 18
7.0 PROPERTY GEOLOGY 21
7.1 Introduction 21
7.2 Rock Types 23
7.2.1 Volcanic - Sedimentary 23
7.2.1.1 Black Argillite Unit (BA) 23
7.2.1.2 Banded Siltstone Unit (BS) 23
7.2.1.3 Green Volcanic Unit (GB) 23
7.2.2 Intrusive Rocks 23
7.2.2.1 Granodiorite-Diorite 23
7.2.2.2 Orthoclase Porphyry 23
7.2.2.3 Felsite and Alkali Basalt Dykes 24
7.3 Alteration 24
7.3.1 Sericite Alteration 24
7.3.2 Silicification, Pyritization 24
7.4 Structure 25
7.5 Mineralization 27
7.5.1 SJ Zone 27
7.5.2 Southeast Grid 27
7.5.3 Pelican 37
7.5.4 Lake - NG1 - NG2 37
7.5.5 Snow 45
7.5.6 Pins West 45
7.5.7 Additional Targets 45
7.5.8 Skarn Mineralization - Iskut Region 53
8.0 SOIL GEOCHEMISTRY 56
8.1 Introduction 56
8.2 SJ Grid 56
8.3 Southeast Grid 57
8.3.1 Features Affecting Geochemical Interpretation 57
8.3.2 Conclusions 57
8.4 Pelican Grid 58
8.5 Pins Grid 58
9.0 GEOPHYSICS 59
9.1 Introduction 59
9.2 Pelican Target 61
9.3 Southeast Target 63
9.4 Sericite - SJ Zone 65
9.5 Pins - Airborne EM 65
9.6 Snow Zone 65
9.7 Lake Airborne EM 66
9.8 Lake Reconnaissance Line (Lake Line) 66
9.9 An Overview and Conclusions 66
10.0 REFERENCES 69
11.0 STATEMENT OF QUALIFICATIONS 71

LIST OF TABLES

Page
TABLE 1 Claim Information - Pelican Property 4
TABLE 2 Characteristics of Selected Deposits in the 'Golden Triangle' 16
TABLE 3 Rock Sample Descriptions - SJ Zone 31
TABLE 4 Rock Geochemistry - SJ Zone 32
TABLE 5 Rock Sample Descriptions - Southeast Grid 33
TABLE 6 Rock Geochemistry - Southeast Grid 35
TABLE 7 Rock Sample Descriptions - Pelican Grid 39
TABLE 8 Rock Geochemistry - Pelican Grid 40
TABLE 9 Rock Sample Descriptions - Snow 41
TABLE 10 Rock Geochemistry - Snow 43
TABLE 11 Rock Sample Descriptions - Additional Targets 48
TABLE 12 Rock Geochemistry - Additional Targets 50

LIST OF FIGURES

Page
FIGURE 1 Location Map 2
FIGURE 2 Claim Map ($1: 50,000$) 5
FIGURE 3 Regional Geology ($1: 250,000$) 8
FIGURE 4 Facies Changes Triassic-Jurassic Strata- Iskut River Area 9
FIGURE 5 Stratigraphic Column - Iskut River Area 10
FIGURE 6 Intrusive Suites - Iskut River Area 13
FIGURE 7 Island Arc - Ore Deposit Features 15
GEOLOGY
FIGURE 8 Bronson Trend 20
FIGURE 9 Area Geology (1:50,000) 22
FIGURE 10 Target Areas (1:50,000) 28
FIGURE 11 Property Geology ($1: 10,000$) back
FIGURE 12 Rock Sample and Grid Location (1:10,000) back
FIGURE 13 Geology - Southeast Area $(1: 2,500)$ back
FIGURE 14 Geology - SJ Zone back
GEOCHEMISTRY
FIGURE 15 SJ Zone-Au Geochemistry (1:2,500) back
FIGURE 16 Southeast Grid-Au Geochemistry ($1: 2,500$) back
FIGURE 17 Pelican Grid-Au Geochemistry (2:500) back
FIGURE 18 Pins Grid - Au Geochemistry (2:500) back
FIGURE 19 SJ Grid-Geophysical/Geochemical Compilation (2:500) back
FIGURE 20 Southeast Grid - Geophysical/Geochemical Compilation (2:500) back
FIGURE 21 Pelican Grid - Geophysical/Geochemical Compilation (2:500) back
FIGURE 22 Pin Grid - Geophysical/Geochemical Compilation(2:500) back
FIGURE 23 Snow Grid - Geophysical Compilation (2:500) back
FIGURE 24 Lake Airborne EM Anomaly - Geology (1:500) 52
LIST OF PLATES
PLATE 1 Pelican Camp looking NW towards Sericite Ridge and SJ Zone 3
PLATE 2 Bronson Trend - Looking NW from Pelican Property towards Brinco's Pyramid and Khyber Zones 19
PLATE 3 Strong Shear - Southeast Grid (Sample Site) J-1 to 8 26
PLATE 4 SJ Zone Shear 29
PLATE 5 SJ Zone Shear 29
PLATE 6 SJ Zone (Note crosscutting greyish granodiorite dykes) 30
PLATE 7 SJ Zone-Sericite-Silica-pyrite alteration and quartz-pyrite veining 30
PLATE 8 Talus Slope below Pelican Cliff looking west towards SJ Zone 38
PLATE 9 West Sericite Ridge looking westward 47

APPENDICES

APPENDIX I Cost Statement
APPENDIX II Geophysical Equipment Descriptions
APPENDIX III SJ Zone Geophysical Plots
APPENDIX IV Southeast Grid Geophysical Plots
APPENDIX V Pelican Grid Geophysical Plots
APPENDIX VI Pin Grid Geophysical Plots
APPENDIX VII Snow Grid - Geophysical Plots
APPENDIX VIII Lake Reconnaissance Line-Geophysical Plots
APPENDIX IX Geochemical Analyses
APPENDIX X Statistical Report - Rock Geochemistry
APPENDIX XI Statistical Report - Soil Geochemistry
APPENDIX XII Rock Sample Descriptions - 1990

1.0 INTRODUCTION

This report describes the 1990 Exploration Program on the Pelican Property, Iskut River Area of northwestern British Columbia. The field portion of the program was completed during the period August 14 -September 14, 1990. Aim of the program was to locate goldbearing mineralized structures through geophysical and geochemical surveys as well as geological mapping and prospecting. Previous work by Lonestar (1983), Western Canadian (1987), Cathedral Gold Corporation (1988) and Aerodat (1989) had outlined several target areas to focus exploration on. To prepare for the 1990 program a camp was constructed in the central portion of the property. Grids were laid out on several of the target areas. These grids consisted of lines spaced every 100 m and marked by wooden pickets every 25 m . The geophysical section of this report was written by Mr. Roger Caven, Consulting Geophysicist. Mr. Caven conducted or supervised all of the geophysical surveys.

20 LOCATION, ACCESS, TOPOGRAPHY

The Pelican Property is located in the Iskut River Area of northwestern British Columbia on NTS map sheet $104 \mathrm{~B} / 10 \mathrm{~W}$.

The property is located along branches of Snippaker Creek approximately 16 km southeast of the Bronson Airstrip currently servicing the Cominco/Prime Snip Project.

Access to the property is by aircraft from either Smithers (320 km), Terrace (280 km) or Wrangell, Alaska (80 km) to one of three airstrips: Bronson, Johnny Mountain or Snippaker airstrip. The Snippaker airstrip is located along Snippaker Creek 1 km east of the Pelican Property. This strip is still in use but has not been maintained and can be used only by small aircraft. The Bronson airstrip has now been upgraded to enable large aircraft to land. Access to the property is by helicopter from either of the three airstrips. An alternative access route is by helicopter from the Bobquin airstrip - Highway Maintenance camp located along the Stewart-Cassiar Highway, 50 km to the east.

The property occurs within the Coast Range Mountains which are characterized by rugged, steep, glaciated terrain. Elevations on the property range from 600 m to 2300 m above sea level. The upper elevations are marked by ice caps and valley glaciers. The southwestern

PLATE 1 Pelican Camp looking NW towards Sericite Ridge and SJ Zone
portion of the property is marked by extremely rugged relief with many areas only accessible with mountain climbing gear. Movement about other portions of the property although time consuming is not overly difficult.

Vegetation ranges from thick alder growth along the valley bottoms to alpine grasses along the ridge tops. Stunted ($1 \mathrm{~m}-3 \mathrm{~m}$) spruce trees cover the slopes to most ridges.

3.0 CLAIM INFORMATION

The Pelican Property is comprised of 11 claim blocks totalling 188 units. The claims are located on NTS map sheet $104 \mathrm{~B} / 10 \mathrm{~W}$ in the Liard Mining Division. The property has been divided into the following groups for assessment purposes:

TABLE 1
Claim Information - Pelican Property
GROUP 1

Claim Name	Units	Record No.	Recording Date	Year of Expiry
Gossan 1	20	2378	August 12/82	1994
Gossan 2	20	2379	August 12/82	1993
Gossan 3	20	2394	August 12/82	1993
Gossan 6	20	2397	August 24/82	1999
Gossan 7	$\underline{20}$	2398	August 24/82	1993
100 units				

GROUP 2

Claim Name	Units	Record No.		Recording Date	Year of Expiry
Gossan 4	20	2395		August $24 / 82$	1993
Gossan 5	20		2396		August $24 / 82$

The Pelican Property was staked by Mr. Chris Graf in 1982-83 as part of his Gossan Claim Group. In 1985, Western Canadian Mining Corporation signed an option agreement with Mr. Graf whereby Western Canadian could earn a 60% interest in the Gossan Property. In August 1988, Cathedral Gold Corporation signed an option agreement whereby Cathedral Gold Corporation could earn Western Canadian's 60% interest in two separate portions of the Gossan Property. One of these portions is now called the Pelican Property. In 1990 an agreement was signed with Cross Lake Minerals whereby Cross Lake Minerals could earn an interest in the Pelican Property.

4.0 EXPLORATION HISTORY

Mineral exploration in the area dates back to 1907 with the discovery of mineralization near Johnny Mountain. Since then the area has undergone sporadic episodes of mineral exploration for both precious metals and base metals. One such period was in the 1960-1970s when several of the prominent large gossans were examined as possible copper porphyry targets. One such gossan examined occurs on the ridge abounding the property to the north and east (Sericite Ridge Gossan). This large gossan was first explored by Great Plains Development in 1972. Subsequent work was done by Teck Corporation and Lonestar Resources Ltd. This work included geological mapping, soil geochemical surveys and silt geochemical surveys. Exploration in the area of the Pins Showing located in the southern portion of property was first recorded in 1972 by Cobre Explorations. This work consisted of prospecting, geological mapping, soil geochemical surveys, magnetometer surveys and ground electromagnetic surveys.

The present Pelican Property was staked in 1982-82 by Mr. Chris Graf as part of the larger Gossan Property which extended a further 10 km to the northwest. In 1983, Lonestar Resources Ltd. completed an extensive regional mapping, silt sampling and soil sampling program over the entire Gossan Property.

In 1987, Western Canadian completed a geological mapping, soil sampling and silt sampling program over portions of the Pelican Property.

In 1988, Cathedral Gold completed a rock chip sampling-prospecting program during which 237 rock chip and 383 soil samples were taken. The results returned from this program
include: 0.5 m wide quartz vein the area within the present Southeast Grid which returned a gold value of $6,205 \mathrm{ppb}$, a float sample from the Snow Grid area which returned $11,025 \mathrm{ppb}$ Au and mineralized float near the Pelican Grid samples of which returned gold values of up to $2,895 \mathrm{ppb}$ Au.

In 1989, Aerodat Ltd. was contracted to complete an airborne electromagnetic and magnetometer survey over the entire property. This survey outlined several electromagnetic and magnetic anomalies worthy of follow-up.

5.0 REGIONAL GEOLOGY

5.1 Introduction

Past geological mapping in the area by Kerr (1948) and Grove $(1971,1986)$ is currently being revised and updated by both the Federal and Provincial governments (Anderson, 1989); (Britton et.al, 1990). Although this work is not yet finished there is now a clearer understanding of the geology of the area.

The Iskut map area is located near the boundary of the Intermontane Belt and the Coast Plutonic Complex. Anderson (1989) has proposed four tectonostratigraphic assemblages to define the geology of the area:

1. Tertiary Coast Plutonic Complex
2. Middle-Upper Jurassic Bowser Assemblage
3. Triassic-Jurassic volcanic-plutonic arc assemblage
4. Paleozoic Stikine Assemblage

The Pelican Property is underlain by rocks belonging to Triassic-Jurassic volcanic-plutonic arc assemblage within $5-10 \mathrm{~km}$ of the Coast Plutonic Complex.

5.2 Triassic-Jurassic Volcanic-Plutonic Arc Assemblage

The Triassic-Jurassic Volcanic-Plutonic Arc Assemblage has been divided into the following stratigraphic units:

a) Upper Triassic Stuhini Group
i) Eastern Facies
ii) Western Facies
b) Lower Jurassic Hazelton Group
i) Unuk River Formation
ii) Betty Creek Formation
iii) Mount Dilworth Formation
c) Lower and Middle Jurassic Salmon River Formation

A brief description of the above stratigraphic units follow:
a) Stuhini Group
i) Eastern Facies:

This facies grades to the northeast from a largely intermediate to mafic tuff sequence to a sequence containing abundant greywackes and siltstone. This facies lacks the thick limestone and felsic tuff units of the western facies.
ii) Western Facies:

This facies consists of a lower unit of limestone and conglomerate which changes towards the east to a largely feldspathic greywackesiltstone unit at Bronson Creek. This sedimentary unit is overlain by a bimodal volcanic suite consisting of volcanic breccia, limestone and felsic tuff. Overall the character of the sequence becomes more sedimentary towards the east.
b) Hazelton Group
i) Unuk River Formation:

This formation consists of andesitic breccias and lavas which grade into siltstones, conglomerates and greywackes west of the Bowser River.
ii) Betty Creek Formation:

This formation contains volcanic-siltstone, greywacke, conglomerate and breccia. A maroon colour characterizes this formation.
iii) Mount Dilworth Formation:

Consisting of felsic tuff, tuff breccia and dust tuff. This unit represents the final episode of Hazelton volcanism.
c) Salmon River Formation

The formation contains a basal calcareous sandstone unit overlain by one of three north trending facies:
i) East - Troy Ridge Facies:

Siltstone shale, tuff turbidite
ii) Central - Eskay Creek Facies:

Pillowed lava, limy to siliceous shale and siltstone
iii) West - Snippaker Mountain Facies:

Andesitic volcaniclastics

5.3 Intrusives

The northwestern area of British Columbia is characterized by four episodes of intrusive activity:

Hyder Suite	(Tertiary)	$44-46 \mathrm{My}$
Three Sisters Suite	(Middle Jurassic)	$175-180 \mathrm{My}$
Texas Creek Suite	(Early Jurassic)	$189-196 \mathrm{My}$
Stikine Suite	(Late Jurassic)	$213-226 \mathrm{My}$

These episodes appear to be coeval with volcanic rocks of the Stuhini Group, Hazelton Group and Salmon River Formation. The composition of plutons, associated with the various intrusive episodes are as follows:

After Anderson and Bevier (1990)

INSTRUSIVE SUITES ISKUT RIVER AREA

Hyder Suite (Tertiary) - monzogranite, quartz monzonite and granodiorite with minor monzodiorite and microdiorite dykes.

Three Sisters Suite (Middle Jurassic) - Plutons of this age have not yet been recognized in the Iskut River area.

Texas Creek Suite (Early Jurassic) - a) calc-alkaline quartz monzodiorite and granodiorite characterized by widespread chlorite-epidote alteration, b) alkaline syenite often associated with gold and porphyry copper-gold deposits.

Stikine Suite (Late Jurassic) - gabbro, diorite, and quartz monzonite.

5.4 Structure

Detailed structural studies within the Iskut area have not yet been done. Extensive deformation is essentially limited to the Paleozoic strata whereas Mesozoic units are for the most part flatlying. Faults fall into northwesterly, northeasterly and north-south sets. These faults are the most part steep-angled. Recent mapping in the area has also suggested that flatlying faults often occur between rock units of differing competency.

6.0 ECONOMIC GEOLOGY - REGIONAL

6.1 "Golden Triangle" - NW British Columbia

The mineral deposits of the area can be divided into four main classes: vein, porphyry/disseminated, stratabound massive sulphide and skarn. High-grade gold-quartz-base metals veins are by far most abundant type of deposit and have constituted the main exploration target until recently. Recent exploration programs on porphyry targets such as the Kerr property and several properties in the Galore Creek area as well as exploration programs for massive sulphide targets such as Eskay Creek have significantly widened the scope of exploration.

Figure 7. Distribution of ore deposits within a stratovotcano (modified from Branch, 1976).

TABLE 2
CHARACTERISTICS OF SELECTED DEPOSITS IN THE 'GOLDEN TRIANGLE'

DEPOSTT	DEPOSTI TYPE	HOST FORMATION	NEARBY INTRUSIVE	MINERALOGY	TRACE ELEMENTS
SNIP	VEIN	STUHIN GP.	MONZODIORITE	PYRITE	AU
	(SHEAR)	UPPER	-MONZONITE	PYRRHOTTTE	AG
	120/60SW	TRIASSIC		SPHALERITE	ZN
		SILTSTONE-	TEXAS CK	ARSENOPY.	CU
		WACKE	SUTTE	GALENA	PB
				MOLYBDENITE	BI
				CHALCOPY.	CD
					AS
					SB
					HG

STONEHOUSE	VEIN	SIMILIAR	SIMILIAR	PYRITE	AU
-JOHNNY	065	TO INEL	TO INEL	CHALCOPY.	AG
MTN.				SPHALERITE	CU
				GALENA	PB
					ZN
SILBACK.	VEINS	UNUK RIVER	PORPH.	PYRITE	AU
PREMIER	STOCKWORK		DACITE	SPHALERITE	AG
	BRECCIA		GRANODIORITE	CHALCOPY.	CU
		andesite		TETRAHED.	PB
	MAIN-050	DACITE		Galena	ZN
	WEST-290	FLOWS,TUFFS,		ARSENOPY.	AS
		BRECCIAS		PYRRHOTITE	

DEPPOSTT	DEPOSTT TYPE	HOST FORMATION	NEARBY INTRUSIVE	MINERALOGY	TRACE ELEMENTS
MCLYMONT	VEIN AND	MISS. OR	QUARTZ	PYRITE	AU
NORTHWEST	MANTOS	PERMIAN	SYENITE	SPHALERITE	AG
	REPLACEMENT	SANDSTONE	AT DEPTH	GALENA	CU
	$?$	CHERT		CHALCOPY.	PB
	SKARN ?	MARBLE		BARITE	ZN
					AS
					BA
				GYPSUM	SB
				MAGNETITE	SB
				TETRAHED.	BI
ESKAY	STRATABOUND	MOUNT	FELDSPAR	PYRITE	AU
CREEK	MASSIVE	DILWORTH	PORPH.	SPHALERITE	AG
	SULPHIDES	SALMON		GALENA	PB
		RIVER		ARSENOPY.	ZN
	VEINS	LOWER TO		STIBNITE	CU
	STOCKWORK	MIDDLE		CINNABAR	AS
		JURASSIC		TERAHED.	SB
				ORPIMENT	HG

The vein deposits occur at a variety of stratigraphic levels from the Permian/Mississippian (e.g. McLymont Creek) to the lower Middle Jurassic (e.g. Eskay Creek). With the exception of the Eskay Creek, which is now believed to be at least in part a massive sulphide deposit, the deposits do not appear related to specific stratigraphic horizons but several do appear to be related to Early Jurassic intrusions (Texas Creek Suite) (Premier, Kerr, Inel, Snip). In Table 2 some characteristics of several vein deposits are listed.

6.2 Bronson Trend

In the Iskut Gold Camp gold mineralization has been discovered within a NW-SE trending corridor approximately 2 km in width extending from Cominco/Prime's Snip deposit to Cathedral Gold's Pelican Property. Mineralized zones discovered to date include:
a) Snip (Twin Zone) - Cominco/Prime
b) Bronson Creek and Bonanza West - Placer Dome/Skyline
c) S and T Zones - Cathedral Gold Corporation/Ecstall Mining
d) AK Zone - Gulf International
e) Khyber - Vector Industries International/Graf
f) SJ - Cathedral Gold Corporation/Ecstall Mining

The above mineralized zones all trend NW-SE and appear to have similar mineralogy: gold, pyrite, pyrrhotite, sphalerite, chalcopyrite, galena, calcite and quartz.

THe information and data on this corridor obtained to date is insufficient as to why this corridor should be the focus of these mineralized zones. However it seems quite likely that additional exploration will uncover additional gold mineralization within the corridor.

A few kilometres southwest of the "Bronson Trend" workers in the area have mapped a major fault, the Sky Fault, which parallels the "Bronson Trend". The Sky Fault may have some economic significance in that no substantial mineralization has been found west of the Sky Fault.

PLATE 2 Bronson Trend - Looking NW from Pelican Property towards Brinco's Pyramid and Khyber Zones

7.0 PROPERTY GEOLOGY

7.1 Introduction

The volcanic and sedimentary rocks on the property were divided into the following lithological units by Lonestar Resources (1984):
a) Black Argillite Unit (BA)
b) Banded Siltstone Unit (BS)
c) Green Volcanic Unit (GB)

Alldrick et al (1990) in their recent geological mapping of the area have mapped most of the volcanic-sedimentary rocks on the property as belonging to the Jurassic Hazelton Group with the exception of the area south of the Sky Fault and west of "Southeast" Creek where they mapped the rocks as belonging to the Triassic Stuhini Group.

Lonestar Resources (1984) divided the intrusive rocks on the property into five suites:
a) Granodiorite-Diorite
b) Orthoclase Porphyry
c) Felsite Dykes
d) Coast Range Batholith
e) Alkali Basalt Dykes

Alldrick et al (1990) defined the following intrusive episodes in the immediate area of the property.
a) Triassic hornblende diorite dykes and plugs associated with adjacent Triassic volcanics.
b) Jurassic hypabyssal stocks and plutons. They include the Lehto Batholith, which underlies much of the northeastern portion of the property, within this intrusive category. Other stocks of this type have been mapped on the Johnny Mountain, Snip, Inel and Khyber properties and there is evidence that the significant mineralization occurring on these properties is directly related to these intrusives. The orthoclase porphyry plugs and dykes mapped on the Pelican property would be included in the above intrusive type.
c) Felsite, basaltic, andesitic sills and dykes.

7.2 Rock Types

7.2.1 Volcanic - Sedimentary

7.2.1.1 Black Argillite Unit (BA)

This unit is the lowermost litho-stratigraphic unit and is largely restricted to the area of the Pins Ridge in the southern part of the property. The unit consists of black, generally well bedded argillite.

7.2.1.2 Banded Siltstone Unit (BS)

This unit overlies the Black argillite unit and consists of thinly bedded siltstone with thin (1 to 3 cm) alternating bands of finer and coarser material giving the unit a distinctly banded appearance. Occasional 1-3m horizons of greywacke occur.

7.2.1.3 \quad Green Volcanic Unit (GB)

This unit overlies the Banded Siltstone Unit and consists of andesitic to basaltic pyroclastics and breccias. The unit characteristically has a green colour.

One should not that Alldrick et al (1990) have mapped some of volcanics in the Pins-SnowLake area of the property as "Premier" Porphyry. Such rocks have been mapped near several of the significant deposits of the "Golden Triangle".

7.2.2 Intrusive Rocks

7.221 Granodiorite-Diorite

These rocks occur as small stocks and dykes throughout the property. These rocks are generally fine to medium grained and occasionally magnetic.

7.2.22 Orthoclase Porphyry

The term "orthoclase porphyry" was first termed by J. Kerr (1948) to describe the distinctive porphyritic intrusive occurring throughout the Iskut area. This intrusive is characterized by very large orthoclase phenocrysts ($1-3 \mathrm{~cm}$). Such intrusives are often associated with sericitization and pyritization both within the intrusive. Such alteration is most common with the smaller bodies.

7.2.23 Felsite and Alkali Basalt Dykes

Light coloured fine grained siliceous dykes have been mapped on Sericite Ridge but have not been mapped on the Pelican Property.

Very dark coloured basalt dykes up to 2 m thick have been mapped on the property, although few in number. The dykes are fine grained and magnetic.

7.3 Alteration

7.3.1 \quad Sericite Alteration

Sericite-pyrite alteration largely occurs within the Banded Siltstone Unit associated with shears and over much larger areas along Sericite Ridge. The intensity of alteration and the amount of disseminated pyrite varies.

Such alteration is less commonly found within the Green Volcanic Unit although Western Canadian (1987) mapped an area of sericite-altered volcaniclastics in the North Sericite area of the property.

7.3.2 Silicification, Pyritization

Areas of intense quartz veining and silica flooding occurring throughout the property. Such zones also contain a variable amount of disseminated pyritic.

These zones are generally associated with small shears and faults. For the most part, they are quite narrow and not extensive.

Some of the more extensive zones of silicification occur in the Snow and Lake target areas. Such alteration is often intermixed within sericite-pyrite alteration especially near the SJ Zone.

7.4 Structure

The structural history of the area has not yet been determined. Regionally four sets of faults have been mapped:
a) Northwest-Southwest

Since all significant mineralization in the Iskut Camp is structurally controlled the presence of shears and faults is an important feature of any property. Within the "Bronson" Trend NW-SE structures appear to be especially significant as the larger mineralized zones all occur along such structures. On the Pelican property one of the larger of these structures is associated with the SJ Zone.

The "Sky" Fault is one of the most extensive of the faults and extends from Johnny Mountain through the Pelican property to the Pins Ridge.
b) North-South

Such faults are very prominent in the Pelican property especially within the Sericite, Lake, Pelican and Snow portions of the property.
c) Northeast-Southwest

These faults are generally younger than the other sets and often offset the other faults. Mineralization has also been found along such faults in the Iskut Region.

On the Pelican property at least three of these faults have been mapped. These faults occur along the three major drainages of the property.Geological, Geophysical and Geochemical Report PELICAN PROPERTY April 1991

PLATE 3 Strong Shear - Southeast Grid (Sample Site)

d) Flat Faults

Flat faults have been mapped in the area largely near the contact between volcanic and sedimentary sequences. Examples of such include those occurring on the Inel and Johnny Mountain properties.

On the Pelican property such faults were noted on the Pelican Grid and SJ Zones.

7.5 Mineralization

7.5.1 SJ Zone

Talus fines samples in 1990 returned up to $3,090 \mathrm{ppb} \mathrm{Au}$ and defined a 200 m (+) area of greater than 500 ppb Au. In 1990 a prominent, 5 m wide NW-SE shear was mapped along the upper edge of this anomalous area. The shear dips moderately to the southwest.

The area is underlain by rocks of the Banded Siltstone unit which has been variably affected by sericite alteration and silica flooding. Disseminated pyrite occurs throughout and appears to increase with more intense alteration. Pyrite content varies between $2 \%-10 \%$ although the presence of numerous iron stained vugs suggests that much pyrite has been leached from surface exposures.

Rock samples from the shear and nearby sericite-silica-pyrite rock returned anomalous gold, copper and zinc including highs of $340 \mathrm{ppb} \mathrm{Au}, 478 \mathrm{ppm} \mathrm{Cu}$ and 351 ppm Zn .

A sample of a (8 cm thick) galena vein ($\mathrm{J}-113$) returned $6,910 \mathrm{ppb} \mathrm{Au}$ and 39.4 ppm Ag . The underlying 10 cm of sericite-silica-pyrite rock with 70% disseminated pyrite returned 2,180 ppb Au.

7.5.2 Southeast Grid

In 1988 a sample ($\mathrm{J}-88-82$) of a 0.5 m wide quartz-pyrite vein within the Southeast grid area returned $6,205 \mathrm{ppb} \mathrm{Au}$. The vein occurs along a NE-SW structure. Additional mapping in 1990 discovered similar but narrow quartz-pyrite veins (2-10\% pyrite) also trending NE-SW.

Geological, Geophysical and Geochemical Report PELICAN PROPERTY

Geological, Geophysical and Geochemical Report PELICAN PROPERTY
April 1991
Page 30

SAMPLE NUMBER

PEL-90-J-65
66
67
68
69
70

71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
109
110
111
112
113
114
115
PEL-90-G-62

DESCPIPTION

FLOAT;QUARTX VEIN,2\% PYRITE FLOAT;GOSSAN BOXWORK
GRAB;SHEAR,FRACT.,SILICIFIED,50M WIDTH GRAB;4-4CM QTZ VEINS,CHLORITE CLOTS GRAB 4CM;QTZ VEIN,CHLORITE,160/20W GRAB;SILTSTONE,BLEACH.,SERICITIZED.3\% PY GRAB 3CM;QUARTZ VEIN;8\% PYRITE GRAB;SLICIFIED,3-5\% DISS. PYRITE GRAB;SLICIFIED,3-5\% DISS. PYRITE GRAB;SLICIFIED,3-5\% DISS. PYRITE GRAB:SILICFIED,FRACT.,5-10\% DISS. PYRITE GRAB:SILICFIED,FRACT.,5-10\% DISS. PYRITE GRAB 5M;SHEAR,SERICITE SCHIST, 1 MM PY SEA GRAB;GOSSAN
GRAB;GOUGE,SHEAR IN SAMPLE \#77
CHIP 2M;SHEAR
CHIP 2M;SHEAR
CHIP 2.5M;SHEAR AND ADJ PY-SILICA
GRAB;SILICIFIED,PYRITIZED
GRAB;QUARTZ VEIN,10\% PYRITE GRAG,VERY SILICIFIED,1\% PYRITE grab 30 cm ;silica rock,30-40\% pyrite grab;silicified,fractured, 2% diss. pyrite grab;gossan boxwork,estimate 40\% py grab;diorite,silicified, 10% diss. pyrite grab $18 \mathrm{~cm} ; 8 \mathrm{~cm}$ galena, 10 cm silicifed rock grab 1.5 m ;silicified rock adjacent to \#113 grab 40 cm;rusty qtz vein, 133/60w FLOAT;QUARTZ-PYRITE VEIN
$\underline{S A M P L E \#} \quad \mathrm{AU}(P P B) \quad \mathrm{CU}(P P M) \quad \mathrm{ZN}(P P M) \quad \mathrm{AG}(P P M) \quad \mathrm{AS}(P P M) \quad \mathrm{SB}(P P M) \quad \mathrm{BI}(P P M)$

PEL-90-G-62R	3	11	19	0.4	4	2	2
PEL-90-G-62R	8	156	48	1.3	19	3	2
PEL-90-J-109R	340	31	67	0.8	2	2	2
PEL-90-J-110R	30	211	24	0.2	14	2	2
PEL-90-J-111R	320	33	8	0.5	6	2	7
PEL-90-J-112R	164	10	64	0.5	4	2	2
PEL-90-J-113R	6910	106	281	39.4	367	32	29
PEL-90-J-114R	2180	98	805	5.5	306	8	2
PEL-90-J-115R	94	32	7	0.9	136	2	2
PEL-90-J-65	18	32	49	0.1	2	2	2
PEL-90-J-66	540	478	351	0.3	18	2	29
PEL-90-J-67	300	348	104	1	20	2	2
PEL-90-J-68	13	141	216	0.2	11	2	2
PEL-90-J-69	32	163	251	0.8	6	2	2
PEL-90-J-70	69	84	156	0.5	5	2	2
PEL-90-J-71	28	277	177	5.4	10	2	2
PEL-90-J-72	89	9	131	0.8	31	2	2
PEL-90-J-73	31	11	58	0.1	15	2	2
PEL-90-J-74	29	18	60	0.7	19	2	2
PEL-90-J-75	27	12	28	0.2	22	2	6
PEL-90-J-76	110	11	9	0.3	93	2	2
PEL-90-J-77	61	42	26	1.7	6	2	2
PEL-90-J-78	31	23	38	0.1	14	2	2
PEL-90-J-79	82	320	192	2.2	26	2	2
PEL-90-J-80	125	251	138	2.8	29	2	2
PEL-90-J-81	9	39	15	0.1	3	2	2
PEL-90-J-82	92	39	77	1.2	26	2	2
PEL-90-J-83	200	25	48	2.8	85	2	2
PEL-90-J-84	133	21	8	1.8	20	2	2
PEL-90-J-85	73	15	86	0.8	35	2	2

SAMPLE NUMBER

DESCRIPTION

GRAB;QUARTZ-PYRITE VEIN ALONG CREEK FLOAT;10 CM QTZ-PY,25\% PY,COARSE QTZ FLOAT;10 CM QTZ-PY,25\% PY,COARSE QTZ grab;qtz-py vein near site 87-521 grab;pyritized highly fractured float;quartz-pyrite vein 5\%-10\% py float;quartz-pyrite vein 5\%-10\% py float;quartz-pyrite vein 5\%-10\% py grab;ferricrete 3 m thick above shear grab;granodiorite;mod. fract.,5\% py grab; $1-2 \mathrm{~cm}$ qtz veins at 205/60N float;sercitized, pyritized granodiorite GRAB;FERRICRETE,4-5M THICK GRAB;SILIC.,BLEACH.GRANODIORITE,5\% PY GRAB;STRONG SHEAR,SERCITE SCHIST,5\%PY GRAB;ORTHO.PORPH.,INTENS.FRACT.,3\% PY GRAB;GRAB;ORTH.PORPH.SILIC..3\%PY GRAB;FRACT. SILTSTONE,SERIC.,3\%PY GRAB;SILTSTONE,BLEACH.,SERIC.,3\% PY QTZ.VEINS,1-10CM,VUGGY,COARSE,CHLORITE GRAB;SHEAR GOUGE,315/75E GRAB;SHEAR GRAB;QTZ.VEIN,5CM,GRANOD.,N-S/85W GRAB;SHEAR, 5%, PY,BLEACHED INTRUS. GRAB;SHEAR,5\%,PY,BLEACHED INTRUS. GRAB;GOSSAN EXTREMELY FRACT. GRAB;GOSSAN EXTREMELY FRACT. GRAB;SHEAR,2M,170/60E GRAB;SILTSTONE,BLEACH.,3\%PY,SILIC. 5CM;RUSTY SHEAR,090/85N GRAB;GOSSAN,EXTREMELY WEATHERED GRAB;SILTSTONE,SERICITIZED,5\%PY GRAB 20CM;150/60W
GRAB;DIORITE,SHATTERED,MODER. FE STAIN GRAB;DIORITE,SHATTERED,MODER. FE STAIN GRAB 5CM;QUARTZ VEIN,150/70S GRAB;QTZ-CALCITE-CHLORITE VEIN,5CM

54	GRAB;SHEAR,DIORITE,N-S/45E
55	GRAB;SHEAR,DIORITE,N-SI45E
56	GRAB;RUSTY SHEAR,DIORITE
57	FLOAT;QUARTZ VEIN,CHLORITE,FE-CARBONATE
58	FLOAT;QUARTZ VEIN,CHLORITE,FE-CARBONATE
59	GRAB;SHEAR,DIORITE,8\% DISS. PY
60	GRAB 40CM;SHEAR,DIORITE,SILICIFIED
61	GRAB;GOUGE AND INTERMIXED PYRITE
PEL-90-J-1R	GRAB;SILTSTONE,3\% DISS. PY,FE STAINED
2	GRAB 3M;SHEARED SERICITE SCHIST
3	GRAB 3M;SHEARED SERICITE SCHIST
4	GRAB 3M;SHEARED SERICITE SCHIST
5	CHIP 10CM;GOSSAN WITH FLAT SHEARING
6	GRAB 4CM;QUARTZ VEIN
7	GRAB;SHEARED DIORITE,2-3\% DISS. PY
8	GRAB;SHEAR,DIORITE,060/85W,3\% DISS. PY
9	GRAB;DIORITE,3\% DISS. PYRITE
10	FLOAT;4CM PYRITE BAND IN QUARTZ VEIN
11	FLOAT;SAME ROCK AS \#10 QUARTZ ONLY
12	FLOAT;QUARTZ,4\% PYRITE IN 5CM CLOTS
13	GRAB;SHEAR,CHLORITIC,3\% DISS. PYRITE
14	GRAB;SHATTERED DIORITE,2\% PY,3CM QTZ VEIN
15	GRAB 15CM;QUARTZ WITH 3-5\% COARSE PYRITE
16	GRAB 15CM;QUARTZ WITH 3-5\% COARSE PYRITE
17	GRAB;DIORITE,UNALTERED,WITIN 50 CM OF \#16
18	GRAB 25CM;QUARTZ VEIN WITH 5\% PYRITE
19	CHIP 2M;SILICIFIED ROCK,PYRITIZED
20	CHIP 1M;SILICIFIED ROCK,PYRITIZED
21	GRAB 20 CM;QUARTZ VEIN ,10\% COARSE PYRITE
22	GRAB 20 CM;QUARTZ VEIN,8\% COARSE PYRITE
23	GRAB 20 CM;QUARTZ VEIN ,10\% COARSE PYRITE
24	GRAB;SILICIFIED,5-10\% DISS. PYRITE(88-J-81)
25	FLOAT;20 CM QUARTZ VEIN,10\% COARSE PYRITE
35	GRAB 3M;SHEAR,DIORITE,SILICIFIED,1-2\% PY
36	GRAB;SHATTERED CHERT,1-2\% DISS. PYRITE
37	GRAB;SHATTERED CHERT,1-2\% DISS. PYRITE
38	GRAB;SHATTERED CHERT,1-2\% DISS. PYRITE

SAMPLE\# \quad AU(PPB) CU(PPM) ZN(PPM) AG(PPM) AS(PPM) SB(PPM) Bl(PPM)

PEL-90-G-1	1121	39	9	0.4	2	2	2
PEL-90-G-16	1796	15	39	0.2	2	2	3
PEL-90-G-17	40	21	26	0.4	8	2	2
PEL-90-G-18	15	12	15	0.1	3	2	2
PEL-90-G-19	13	19	48	0.1	2	2	2
PEL-90-G-2	25	76	8	0.4	15	2	7
PEL-90-G-20	27	17	8	0.1	4	2	3
PEL-90-G-21	9	34	77	0.3	3	2	2
PEL-90-G-22	599	4	11	0.2	2	2	2
PEL-90-G-23	33	79	9	4.5	2	3	2
PEL-90-G-24	85	5	8	0.1	2	2	2
PEL-90-G-25	12	12	57	0.3	2	2	2
PEL-90-G-26	10	6	40	0.1	2	2	2
PEL-90-G-27	5	5	35	0.3	2	2	2
PEL-90-G-28	10	66	77	0.1	2	2	2
PEL-90-G-29	15	10	30	0.2	3	2	2
PEL-90-G-3	11	36	8	0.3	7	2	5
PEL-90-G-30	4	10	10	0.2	6	2	2
PEL-90-G-31	3	5	36	0.2	25	2	2
PEL-90-G-32	1	1	31	0.1	2	2	2
PEL-90-G-33	4	1	32	0.1	3	2	2
PEL-90-G-34	1	2	64	0.2	2	2	2
PEL-90-G-35	21	30	38	0.1	8	2	2
PEL-90-G-36	2	1	35	0.1	2	2	2
PEL-90-G-37	7	158	92	0.3	2	2	2
PEL-90-G-38	10	51	89	0.3	9	2	2
PEL-90-G-39	4	14	21	0.1	2	2	2
PEL-90-G-40	26	21	11	0.3	4	2	2
PEL-90-G-41	25	27	33	0.2	5	2	2
PEL-90-G-42	10	1	46	0.2	5	2	2
PEL-90-G-43	12	30	11	0.2	9	2	2
PEL-90-G-44	51	18	482	0.2	20	2	2
PEL-90-G-45	25	23	50	0.1	12	3	5
PEL-90-G-46	220	62	20	0.9	23	2	7
PEL-90-G-47	15	11	6	0.2	334	2	2
PEL-90-G-48	59	728	1336	1.1	73	2	4
PEL-90-G-49	12	10	246	0.3	5	2	2
PEL-90-G-50	4	13	32	0.1	4	2	2
PEL-90-G-51	4	11	25	0.1	9	2	2
PEL-90-G-52	4	7	21	0.2	2	2	3
PEL-90-G-53	1	8	122	0.1	2	2	2
						2	2

PEL-90-G-54R	55	197	108	0.7	6	11	2
PEL-90-G-55R	12	241	126	0.5	2	4	2
PEL-90-G-56R	7	9	78	0.3	5	2	2
PEL-90-G-57R	4	33	14	0.4	16	2	2
PEL-90-G-58R	5	39	30	0.1	3	2	2
PEL-90-G-58R	10	802	86	3.3	113	4	13
PEL-90-G-60R	7	87	42	1.1	23	2	2
PEL-90-G-61R	7	133	55	1.5	43	3	5
PEL-90-J-1	63	76	120	1.8	251	8	2
PEL-90-J-10	33400	29	6	5.2	33	25	275
PEL-90-J-10RD	46600	29	1	7.1	30	24	297
PEL-90-J-11	970	11	5	0.1	7	3	9
PEL-90-J-12	600	6	2	0.1	8	2	4
PEL-90-J-13	74	588	247	3.6	29	2	3
PEL-90-J-14	58	30	78	0.5	56	2	2
PEL-90-J-15	1260	19	5	0.7	2	2	7
PEL-90-J-16	470	30	1	0.3	8	2	8
PEL-90-J-17	45	14	18	0.1	10	2	4
PEL-90-J-18	3360	3	8	0.2	2	2	18
PEL-90-J-19	370	7	13	0.1	2	2	2
PEL-90-J-2	22	8	36	0.1	10	2	2
PEL-90-J-20	980	1	7	0.2	2	2	8
PEL-90-J-21	740	8	4	0.1	2	2	6
PEL-90-J-22	1010	3	1	0.1	4	2	2
PEL-90-J-23	140	7	3	0.1	2	2	2
PEL-90-J-24	18	4	1	0.2	3	2	2
PEL-90-J-25	610	5	1	0.1	7	2	2
PEL-90-J-3	18	29	37	0.3	6	2	2
PEL-90-J-35	4	1	2	0.1	2	2	2
PEL-90-J-36	8	4	13	0.2	2	2	2
PEL-90-J-37	24	22	11	0.3	2	2	2
PEL-90-J-38	15	16	2	0.2	2	2	2
PEL-90-J-4	32	12	32	0.2	7	2	2
PEL-90-J-5	36	27	25	0.5	4	2	2
PEL-90-J-6	21	18	17	0.3	2	2	2
PEL-90-J-7	61	26	58	0.3	11	2	2
PEL-90-J-8	83	87	63	1	16	2	2
PEL-90-J-9	34	76	25	0.3	27	2	2
					2	2	

Samples of these veins returned up to $3,360 \mathrm{ppb}$ Au. Similar quartz-pyrite float, containing 4 cm seams of massive pyrite was discovered about 100 m north of J-88-82. Samples of this float returned up to $46,600 \mathrm{ppb} \mathrm{Au}, 25 \mathrm{ppm} \mathrm{Sb}$, and 297 ppb Bi .

The above mineralization suggests that similar mineralization will occur along the EM conductors outlined in this area.

7.5.3 Pelican

To date narrow discontinues sphalerite-galena-chalcopyrite-magnetite \pm chlorite, quartz veins have been discovered on the Pelican Cliff. Samples taken to date have failed to return economic gold values although highly anomalous in gold, copper, zinc, silver and arsenic. Samples taken in 1990 include highs of $1,796 \mathrm{ppb} \mathrm{Au}, 4,152 \mathrm{ppm} \mathrm{Cu}, 23,124 \mathrm{ppm} \mathrm{Zn}, 30.8$ ppm Ag and 527 ppm As. This geochemistry compares to that of other mineralization within the Iskut Camp and suggests that there maybe other more substantial higher grade zones of mineralization within the Pelican area.

The veins occur in a variety of orientations including, E-W, N-S and flat-lying. It is unclear if one of the veins orientations is more significant than the others.

7.5.4 Lake - NG1 - NG2

To date narrow discontinuous quartz-sulphide veins have been discovered samples of which returned anomalous but uneconomic precious and base metal values.

More substantial showings NG1 and NG2 were discovered in 1988 along NW-SE shears in the vicinity of orthoclase porphyry plugs. The NG1 showing is 130 m long and 5 m wide and consists of $3-5 \%$ pyrite. Local pods of up to 30% pyrite also occur. The mineralization at the NG2 showing is similar but exposed over a shorter strike length. Samples taken in 1988 failed to return anomalous values.
Geological, Geophysical and Geochemical Report
PELICAN PROPERTY
April 1991

PLATE 8 Talus Slope below Pelican Cliff looking west towards SJ Zone

SAMPLE

 NUMBERPEL-90-G-4R
5
6
7
8
9
10
11
12
13
14
15
PEL-90-J-86
87
88
89
90
91
92
93
94

DESCRIPTION

GRAB;PYRITIZED BOULDERS AT EDGE OF CLIFF GRAB;PYRITIZED BOULDERS AT EDGE OF CLIFF GRAB;PYRITIZED SILICIFIED SILTSTONE GRAB;PYRITIZED SILICIFIED SILTSTONE GRAB;PYRITIZED SILICIFIED SILTSTONE GRAB;MASSIVE E-W PY VEIN,DIP 80 S FLOAT;PYRITIZED,SILICIFIED BOULDERS FLOAT;PYRITIZED,SILICIFIED BOULDERS GRAB;1-4CM PYRITE VEINS, 20 DIP S GRAB;1-4CM PYRITE VEINS, 20 DIP S GRAB;HYDROZINCITE,DISS.PYRITE GRAB 20 CM;VERTICAL N-S QTZ-PY VEIN GRAB;GOSSAN ABOVE MAIN ZONE GRAB 40CM;SHEAR,N-S,VERTICAL GRAB;SHEAR,065/90 GRAB 5CM;QUARTZ VEIN 2-3\% PY,060/90 GRAB 50CM;QUARTZ VEIN,090/70S GRAB 15 CM;QUARTZ VEIN,2\% SPHALERITE GRAB 1.5M;FLAT SHEAR,FE STAINED GRAB 1.5M;FLAT SHEAR,FE STAINED GRAB;20 CM;TOP OF FLAT SHEAR,40\% PY

SAMPLE\# AU(PPB) CU(PPM) ZN(PPM) AG(PPM) AS(PPM) SB(PPM) Bl(PPM)

PEL-90-G-10	200	4152	1604	15.1	337	7	7
PEL-90-G-10D	140	272	1891	22.5	288	8	2
PEL-90-G-11	333	1034	18217	14.2	319	9	2
PEL-90-G-12	276	639	15981	5	375	6	2
PEL-90-G-13	128	389	13020	6.7	499	8	2
PEL-90-G-14	1796	177	734	30.8	527	5	10
PEL-90-G-14D	77	93	570	6.6	457	8	2
PEL-90-G-15	98	316	3802	1.7	54	2	2
PEL-90-G-4	827	2478	1081	7.2	401	4	2
PEL-90-G-5	21	312	378	16	334	4	2
PEL-90-G-6	27	446	242	2.1	45	2	2
PEL-90-G-7	99	77	5693	1.1	162	2	3
PEL-90-G-8	105	233	1312	5.9	304	5	3
PEL-90-G-9	285	1124	21319	10.7	116	2	2
PEL-90-J-86	105	99	630	4.7	139	3	2
PEL-90-J-87	93	877	11726	4.2	109	2	2
PEL-90-J-88	340	332	3874	5.3	31	2	2
PEL-90-J-89	370	663	2197	11.3	319	4	2
PEL-90-J-90	320	1923	2116	8.7	459	5	2
PEL-90-J-91	860	1516	23124	7.7	151	2	2
PEL-90-J-92	280	322	3125	6.2	373	5	2
PEL-90-J-93	720	1053	12315	22.7	231	4	2
PEL-90-J-94	210	89	566	4.3	496	5	2

TABLE 9 ROCK SAMPLE DESCRIPTIONS-SNOW GRID

SAMPLE NUMBER

PEL-90-G-63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
PEL-90-J-49
50
51
52
53
54

DESCRIPTION

FLOAT;QUARTZ VEIN MINOR PYRITE GRAB 5CM;QUARTZ-CARBONATE VEIN GRAB;QUARTZ VEIN 070/STEEPN FLOAT; QUARTZ VEIN
GRAB;RUSTY GOSSAN ABOVE STRONG SHEAR GRAB;SHEAR,BLEACH.QTZ VEINING,MALACHITE GRAB;SHEAR,BLEACH.QTZ VEINING,MALACHITE GRAB;SHEAR,BLEACH.QTZ VEINING,MALACHITE FLOAT?;RUBBLE WITHIN TRACE OF SHEAR 4CM;VUGGY QUARTZ-CHLORITE,N-S/62W FLOAT;EPIDOTE,BLEACH.,MALACHITE,PY FLOAT;EPIDOTE,BLEACH.,MALACHITE,PY FLOAT;SILTSTONE,MALACHITE GRAB 2CM;BLEACH.,PYRITIZATION ALONG SHEAR GRAB 2CM;BLEACH.,PYRITIZATION ALONG SHEAR FLOAT;RUSTY,COARSE QUARTZ GRAB 40 CM ;QUARTZ IN FLAT SHEAR,MINOR PY GRAB 40 CM;QUARTZ IN FLAT SHEAR,MINOR PY GRAB 40 CM ;QUARTZ IN FLAT SHEAR,MINOR PY GRAB 40 CM;QUARTZ IN FLAT SHEAR,MINOR PY GRAB;BRECCIATED VOLC.,IRREG.PY INFILLING GRAB;BRECCIATED VOLC.,IRREG.PY INFILLING FLOAT;SILTSONE,MALACHITE,DISS. PY FLOAT;SILTSONE,MALACHITE,DISS. PY 4 CM;QUARTZ IN SHEAR,120/68S GRAB 50 CM ;INTERMIXED PY \&BRECCIATED VOLC. GRAB 50 CM ;INTERMIXED PY \&BRECCIATED VOLC. FLOAT;QUARTZ-PYRITE ,30\% PYRITE FLOAT;QUARTZ-PYRITE ,30\% PYRITE FLOAT;QUARTZ-PYRITE ,30\% PYRITE FLOAT;QUARTZ-PYRITE ,30\% PYRITE FLOAT;VUGGY QUARTZ-PYRITE GRAB 5CM;QUARTZ VEIN @005/70W FLOAT;QUARTZ VEIN WITH 25\% PYRITE GRAB;WEAKLY PYRITIZED BASALT GRAB 10CM;QUARTZ VEIN 30\% PYRITE GRAB 20CM;IRREGULAR QUARTZ VEINS GRAB 3M;SILICIFIED,1M QTZ VEINS,1\% DISS. PY GRAB 5M;SILICIFIED
GRAB;QUARTZ VEIN ,5\% PYRITE

55
56

57

58
59
60
61
62
63
64
124
125
126
127
128
129
130

GRAB 20CM;QUARTZ VEIN IN BASALT?,DIORITE? GRAB:GOSSAN,4\% DISS. PYRITE GRAB:GOSSAN,4\% DISS. PYRITE GRAB:GOSSAN,4\% DISS. PYRITE GRAB:GOSSAN,4\% DISS. PYRITE GRAB;FRACT.,SILICIFIED SILTSTONE GRAB;BOXWORK GOSSAN GRAB;BOXWORK GOSSAN GRAB 10 CM;QUARTZ,25\% PYRITE GRAB;IRREGULAR QUARTX VEIN, 5% pyrite grab $30-60 \mathrm{~cm}$;irregular qtz vein, 8% py grab 25 cm;quartz vein,10-20\% pyrite grab;pyrite intermixed with quartz grab 1 m ;shear, $1-2 \mathrm{~cm}$ seams of pyrite float; 95% pyrite intermixed with quartz grab;irregular qtz-pyrite veins grab;silicified,1-2\% diss py,fractured

PEL-90-G-63R	7	20	8	3.6	96	2	4
PEL-90-G-64R	45	1751	112	9.8	10	5	2
PEL-90-G-65R	22	96	141	3.2	36	6	6
PEL-90-G-66R	15	75	22	1.6	44	2	3
PEL-90-G-67R	27	29	111	2.3	27	6	2
PEL-90-G-68R	5	4835	98	14.3	4	2	2
PEL-90-G-69R	2	9866	53	9.9	3	2	3
PEL-90-G-70R	5	455	182	0.6	3	3	2
PEL-90-G-71R	45	121	118	1.6	152	11	2
PEL-90-G-72R	55	407	145	0.3	5	2	2
PEL-90-G-73R	5	2219	87	3	2	6	2
PEL-90-G-74R	11	4986	290	6.8	6	2	2
PEL-90-G-75R	9	4663	266	4.7	9	2	2
PEL-90-G-76R	21	151	257	0.8	36	7	2
PEL-90-G-77R	16	102	175	1.3	324	7	2
PEL-90-G-78R	270	47	33	4.8	231	2	3
PEL-90-G-79R	22	533	2181	0.6	21	2	2
PEL-90-G-80R	16	22	19	1.1	24	2	2
PEL-90-G-80R	32	292	508	1.2	37	2	2
PEL-90-G-81R	16	193	595	0.6	15	2	2
PEL-90-G-82R	72	200	2128	1.2	171	2	2
PEL-90-G-83R	62	27	165	2.6	26	7	2
PEL-90-G-84R	13	50	236	2	18	7	2
PEL-90-G-85R	13	3953	512	2.9	2	4	2
PEL-90-G-86R	6	6548	295	4.5	2	2	2
PEL-90-G-87R	42	1698	128	3	118	3	6
PEL-90-G-88R	168	209	366	2.1	163	2	3
PEL-90-G-89R	122	231	325	1.4	144	3	2
PEL-90-G-90R	48	4187	69	6.7	14	2	11
PEL-90-G-91R	37	5717	76	7.8	12	2	2
PEL-90-G-92R	46	2163	54	15.7	11	2	11
PEL-90-G-93R	42	3353	104	16.2	10	2	6
PEL-90-G-94R	207	86	85	3.9	41	2	5
PEL-90-G-95R	112	84	106	0.1	6	2	4
PEL-90-G-96R	27260	22	1	1.2	2	2	9
PEL-90-J-49	1	18	58	0.1	4	2	2
PEL-90-J-50	1	361	94	2.6	186	2	3
PEL-90-J-51	280	127	175	5.9	285	2	5
PEL-90-J-52	13	63	56	13.7	248	6	2
PEL-90-J-53	151	49	64	5.9	203	4	2
PEL-90-J-54	860	82	63	17.7	45	2	3

PEL-90-J-55	290	153	1944	35	74	6	2
PEL-90-J-56	184	21	20	1.8	20	2	3
PEL-90-J-57	46	23	45	2.1	13	2	6
PEL-90-J-58	8	144	76	2.5	17	2	6
PEL-90-J-59	123	2160	111	6.1	81	2	2
PEL-90-J-60	5	101	164	1	25	2	2
PEL-90-J-61	88	23	18	3.3	13	2	10
PEL-90-J-62	30	22	14	1.7	40	2	6
PEL-90-J-63	980	87	197	18.8	1018	3	13
PEL-90-J-64	206	47	25	2.4	74	2	4
PEL-90-J-124R	93	25	12	16.2	8	2	75
PEL-90-J-125R	87	432	52	0.4	87	2	2
PEL-90-J-126R	240	65	226	1.4	123	2	3
PEL-90-J-127R	37	33	35	1.4	77	2	2
PEL-90-J-128R	520	646	5	3.3	56	2	2
PEL-90-J-128R	730	876	10	3.4	58	2	2
PEL-90-J-129R	320	508	59	8	815	2	6
PEL-90-J-130R	89	8	2	0.9	10	2	7

7.5.5 Snow

Previous work has located narrow quartz-sulphide within silicified zones in the Snow Zone. Such altered zones generally contain several percent pyrite and weather gossanous.

Samples taken to date have returned anomalous values in gold, copper, zinc, silver and arsenic, including highs of $980 \mathrm{ppb} \mathrm{Au}, 9,866 \mathrm{ppm} \mathrm{cu}, 2,181 \mathrm{ppm} \mathrm{Zn}, 18.8 \mathrm{ppm} \mathrm{Ag}$, and 1,018 ppm As for samples taken in 1990.

In 1990 malachite was commonly found along fractures and along occasional small shears. Previous work by Great Plains Development (1973) reported chalcopyrite-malachite mineralization within granite porphyry which samples of which returned up to $7.07 \% \mathrm{Cu}$ and $0.08 \mathrm{oz} /$ ton Au .

7.5.6 Pins West

Numerous galena-sphalerite quartz veins occur within NW trending shears on the Pins Ridge. A $10-15 \mathrm{~cm}$ wide zone of sericite-carbonate alteration occurs alongside the mineralized shear.

Samples of this mineralized generally return several percent $\mathrm{Pb}+\mathrm{Zn}$ with anomalous silver and low gold values. One sample in 1988 returned $1.1 \% \mathrm{~Pb}, 4.8 \% \mathrm{Zn}$ and $3,605 \mathrm{ppb} \mathrm{Au}$.

7.5.7 Additional Targets

Additional targets examined in 1990 include:
a) Sericite North

Previous work by Western Canadian (1987) and Aerodat (1989) outlined soils anomalous in gold and airborne conductors respectively. A brief visit in 1990 indicated zones of sericite-silica-pyrite alteration and widespread ferricrete. One sample of sericite-silica-pyrite altered rock returned a value of 630 ppb Au .
b) West Sericite

Previous work by Western Canadian (1987) in the West Sericite area included a soil sample which returned $1,190 \mathrm{ppb}$ Au. In 1990 this area was briefly visited and additional soil samples taken to test significance of anomaly. Soil samples returned up to 390 ppb Au which enhances significance of the 1987 anomaly. A sample of a iron-stained silica boxwork in this area returned $1,290 \mathrm{ppb} \mathrm{Au}, 9.3 \mathrm{ppm} \mathrm{Ag}, 1.411 \mathrm{ppm}$ As and 52 ppm Bi . Further work will be required in this area to develop in exploration target.
c) Lake Ridge West

The Lake Ridge West Showing is listed in the B.C. Minfile as 104B-135, where it is described as consisting of narrow arsenopyrite-galena-quartz veins in a silicified shear.

The showing occurs along a steep face overlooking the Nee Glacier. In 1990 attempts were made to visit showing although actual showing could not be reached due to steep terrain. A quartz vein within a gossanous shear was sampled but returned only low values. This area is of interest due to the North Pins Glacier mineralized float which likely has a source within the Nee Glacier basin.
d) Lake - EM Airborne Conductor

The 1989 Aerodat airborne EM survey detected a strong, >30 moh, conductor in the Lake area of the Pelican property. Ground follow-up was carried out with the Apex double dipole EM systems and the airborne conductor was found to be caused by a 1 m wide graphitic pyritic basalt dyke trending 140° intruding a host diorite.

The double dipole registered a $>1,000 \mathrm{ppm}$ positive response with a 1 m conductor width at the location of the airborne conductor. The strongest ground response corresponds to the outcrop of the basalt dyke but the conductor was only extended over a 60 m strike length under shallow overburden. Outcrops further along strike had no conductive response.

The basalt dyke contains $2-3 \%$ disseminated coarse pyrite and follows a strong narrow shear at 140°. Irregular 10 cm patches of the basalt dyke contain $20-30 \%$ white 4 mm feldspar laths in a black groundmass.

PINS GRID

SAMPLE NUMBER

SAMPLE

NUMBER

DESCRIPTION
grab 3.5m;shear,125/45sw grab;siltstone,silicified grab;sheared diorite dyke grab;sheared diorite dyke grab;gossan,silicified,2-3\% pyrite grab,float;quartz,5\% pyrite grab;silicified,2-3\% pyrite grab 60 cm ;vuggy quartz vein, no pyrite

WEST SERICITE

DESCPIPTION

GRAB;RUSTY SHEAR IN DIORITE GRAB;5\% PYRITE IN 1CM CLOTS GRAB;BOXWORK GOSSAN,3\% DISS. PYRITE FLOAT;SILICA ROCK,3\% diss. pyrite FLOAT;SILICA ROCK,3\% diss. pyrite grab 20 cm ;quartz vein grab;quartz vein unkown width grab;siltstone,rusty grab;silicified,trace pyrite

SERICITE NORTH

SAMPLE

DESCRIPTION
NUMBER
GRAB;SERICITE SCHIST,SILICA,3\% PY GRAB;SERICITE SCHIST,SILICA,3\% PY GRAB;SERICITE SCHIST,SILICA, < 1% PY CHIP 2M:SERICITE-SILICA ROCK,FE STAINED FLOAT;VERY SILICIFIED SERICIT ROCK,FE STAIN FLOAT;TALUS
GRAB;DIORITE?,HYROZINCITE? GRAB;SHATTERED,SICIFIED ROCK,1-2\% PY FLOAT;CHLORITIC,SILICA ROCK,GREEN STAIN

LAKE AIRBORNE-EM

SAMPLE DESCRIPTION
NUMBER
PEL-90-J-2627
DIORITE,SILICIFIED,5\% DISS. PYRITE DIORITE,SILICIFIED,5\% DISS. PYRITE BASALT DYKE,BLACK,3-5\% DISS. PYRITE GRAB;GOSSAN,SILICIFIED,2\% DISS. PYRITE GRAB;GOSSAN,SILICIFIED,2\% DISS. PYRITE GRAB;GOSSAN,SILICIFIED,2\% DISS. PYRITE GRAB;BASALT DYKE,DK GREEN,2-3\% DISS. PY GRAB;DIORITE,SILICIFIED,FE STAINED, 2% PY GRAB;DIORITE,SILICIFIED,FE STAINED,2\% PY

AIRBORNE ANOMALY-K

SAMPLE
 DESCRIPTION

NUMBER
PEL-90-J-95
ARGILLITE,SILTSTONE,BANDED,FE STAINED
96 ARGILLITE,SILTSTONE,BANDED,FE STAINED

LAKE RIDGE WEST

SAMPLE

DESCRIPTION
NUMBER

TABLE 12
ROCK GEOCHEMISTRY-ADDITIONAL TARGETS
PINS GRID

SAMPLE \#

PEL-90-J-116R
PEL-90-J-117R
PEL-90-J-118R
PEL-90-J-119R
PEL-90-J-119R
PEL-90-J-120R
PEL-90-J-121R
PEL-90-J-122R
PEL-90-J-123R
PIN-J-B-1 SOIL
PIN-J-B-2 SOIL
PIN-J-B-3 SOIL

AU(PPB) CU(PPM) ZN(PPM) AG(PPM) AS(PPM) SB(PPM) Bl(PPM)

280	33	2
189	46	19
119	40	50
1	53	35
1	13	8
18	25	110
3	15	31
1	12	36
3	27	25
6	235	141
8	259	94
29	574	318
12	467	60

0.1	37	2	2
1	9	2	2
0.1	2	2	2
0.2	2	2	3
0.2	2	2	2
0.6	4	2	2
0.2	2	2	2
0.4	3	2	5
0.1	8	2	2
0.5	14	2	2
0.4	17	2	2
0.4	59	5	2
0.4	9	2	2

WEST SERICITE

SAMPLE \#

	39
PEL-90-J-100	39
PEL-90-J-101	470
PEL-90-J-102	1290
PEL-90-J-103	27
PEL-90-J-104	32
PEL-90-J-105	4
PEL-90-J-106	35
PEL-90-J-107	27
PEL-90-J-108	540
WS-9081 SOIL	123
WS-90B2 SOIL	200
WS-90B3 SOIL	49
WS-90B4 SOIL	45
WS-90B5 SOIL	24
WS-90B6 SOIL	66
WS-90B7 SOIL	330
WS-90B8 SOIL	155
WS-90B9 SOIL	65
WS-90B10 SOIL	79
WS-90B11 SOIL	40
WS-90B12 SOIL	390
WS-90B13 SOIL	51
WS-90B14 SOIL	103

SERICITE NORTH

SAMPLE \#	AU(PPB)	CU(PPM)	ZN(PPM)	AG(PPM)	AS(PPM)	SB(PPM)	Bl(PPM)
BR-90-J-1	4	3	4	0.2	7	2	2
PEL-90-J-39	630	266	83	1.6	14	2	2
PEL-90-J-40	1	56	8	0.2	2	2	2
PEL-90-J-41	2	11	50	0.1	16	2	2
PEL-90-J-42	1	104	42	1	16	2	2
PEL-90-J-43	3	35	46	1	13	2	2
PEL-90-J-44	1	64	99	0.4	9	2	2
PEL-90-J-45	2	21	35	0.4	11	2	2
PEL-90-J-46	1	154	71	0.3	2	2	2
PEL-90-J-47	1	36	104	0.4	13	2	2
PEL-90-J-48	5	27	89	1.6	4	2	2

LAKE AIRBORNE-EM

SAMPLE\# \quad AU(PPB) CU(PPM) ZN(PPM) AG(PPM) AS(PPM) SB(PPM) BI(PPM)
PEL-90-J-26

5	8	30	0.1	2	2	2
14	4	42	0.3	4	2	2
1990	83	277	0.9	10	2	2
2240	193	293	1	27	2	2
41	12	185	0.7	2	2	3
36	6	89	0.7	2	2	2
16	5	168	0.5	3	2	2
56	9	199	0.9	23	2	2
11	18	108	0.4	2	2	2
17	20	63	0.5	2	2	2

AIRBORNE ANOMALY K

K-B-90-1 SOIL	9	215	223	0.7	7	2	2
K-B-90-2 SOIL	13	135	99	0.6	15	2	2
K-B-90-3 SOIL	6	212	243	0.8	24	2	2
PEL-90-J-95	6	84	371	0.7	9	2	2
PEL-90-J-95D	780	28	56	1.1	130	3	2
PEL-90-J-96	3	105	94	0.6	2	2	2

LAKE RIDGE WEST

PEL-90-J-97	10	198	45	3.5	11	6	4
PEL-90-J-98	4	71	168	0.6	20	3	2
PEL-90-J-99	6	50	114	0.5	18	2	2

The 5 m of outcrop south of the basalt dyke is gossanous and strongly silicified with 2% disseminated pyrite. The gossanous area and the basalt dyke were sampled.

Results from the 1990 sampling included a high of $2,240 \mathrm{ppb} \mathrm{Au}$ (pyritic basalt).
e) Pins - Airborne EM Anomalies

The 1989 Aerodat airborne Em survey outlined several conductors on the central portion of the Pins Ridge. In 1990 several lines of reconnaissance soil samples and VLF-EM electromagnetic survey were completed as preliminary follow-up. This work outlined several EM anomalies one of which was associated with marginally anomalous gold ($>15 \mathrm{ppb} \mathrm{Au}$).

Rock samples of pyritic shears returned up to 280 ppb Au .
f) Airborne Anomaly K

The 1989 Aerodat Airborne EM Survey outlined an EM anomaly on the southernmost portion of the property on the Gossan 25 mineral claim.

A brief visit was made to the area in 1990. Soil samples returned low gold values but up to 215 ppm Cu . A rock sample of rusty argillite returned 780 ppb Au .

Further work will be required in this area.

7.5.8 Skarn Mineralization - Iskut Region

The extensive exploration efforts in the Iskut region in the last few years has discovered skarn mineralization in addition to the more well known vein deposits such as the Snip mine.

There are two areas of skarn mineralization:
a) McLymont/Forrest-Kerr

- McLymont Northwest, Ken, Dirk, Kerr 1, Tic and Dundee Prospects
b) Snippaker Creek
- Stu, Shan, Kirk and Pyramid Hill Prospects

The McLymont Northwest Zone is the most significant and developed of the prospects. The mineralization consists of pyrite and magnetite, with lesser chalcopyrite, galena sphalerite and gold. The mineralization is hosted by a Mississippian sequence of tuffs, siltstones and marbles. A major NE-SW fault and marble members of the sequence appear to be the main ore controls.

As with many of the Iskut gold deposits diamond drilling has intersected some very high grade mineralization, such as DD87-29 which returned 11.2 m assaying $55.02 \mathrm{gr} /$ tonne $\mathrm{Au}, 1,362$ gr/tonne Ag and $0.97 \% \mathrm{Cu}$.

The Snippaker Creek skarns include:
a) Shan

The mineralization is located near the northern contact of the Lehto Batholith and is hosted by a sequence of interbedded andesitic tuffs, limestones and siltstones.

The mineralization consists of pods of sphalerite pyrite, magnetite, galena and tetrahedrite within epidote-actinolite-garnet-quartz altered rock. Samples taken to date indicate only low gold values.
b) Kirk

This prospect is also located near the northern margin of the Lehto Batholith within similar rocks to the Shan. The main zone is a $2-8 \mathrm{~m}$ thick massive magnetite horizon within a 150 m thick marble unit, nearby intrusive rocks are altered (chlorite, epidote, carbonate veins). The skarn contains some potassium feldspar.

Mineralogy consists of magnetite, pyrite and chalcopyrite. Some carbonate-barite veins occur.
c) Stu

Located south of the previous two prospects. This showing is hosted by a tremolite-actinolite-quartz-carbonate skarn within a 20 m thick marble unit of a tuff-sediment sequence similar to the above.

The mineralization occurs as irregular veins and pods over a 600 m strike length. Mineralogy consists of magnetite, pyrite an pyrrhotite with lesser chalcopyrite, galena and sphalerite. Crosscutting pyrite-quartz veins also occurs. Gold values reported to date have been low.

Western Canadian (1987) considered much of the mineralization on the Pelican property to be related to skarns and certainly the mineralogy within the Pelican, Snow and Lake target areas is similar to that of the skarns in the area. However the quartz-pyrite gold mineralization sampled in the southeast area and the information to date on the SJ Zone suggest that additional types of mineralization are also present. One should note the rocks underlying the Pelican property do not contain carbonate horizons such as those found on the described skarn prospects.

8.0 SOIL GEOCHEMISTRY

8.1 Introduction

Soil samples were taken on several flagged grids to keep locate mineralization. Since significant portions of the property are above treeline in alpine conditions, soil development in such areas differs from those areas at lower elevations. Of the grids soil sampled in 1990 only the SJ Grid would fall in the above category. The SJ grid is well above treeline in steep terrain in which there is little or no soil development. Samples ($300 \mathrm{gr} \mathrm{)} \mathrm{taken} \mathrm{were} \mathrm{of} \mathrm{fine}$ grained highly weathered talus. These samples were taken at $5-10 \mathrm{~cm}$ depths using a soil mattock.

The other Pelican, Southeast and Pins Grids are all near treeline and are characterized by intermixed alpine meadows and small stands of stunted evergreens. The eastern half of the southeast grid would extend into forested terrain. On the above grids soil samples were taken at B-horizon at depths of $\mathbf{1 5 - 2 0} \mathrm{cm}$ using a soil mattock.

All samples were submitted to Acme Labs of Vancouver for 30 element ICP analysis and gold by atomic adsorption. A description of basic statistics and correlations can be found in Appendix V.

8.2 SJ Grid

Previous soil sampling by Western Canadian (1987) outlined a $400 \mathrm{~m} \times 400 \mathrm{~m}$ area which returned greater than 50 ppb Au including a high of 650 ppb Au . Results for Cu, Ag and Zn also included anomalous values although more sporadic than that of gold.

Additional detailed sampling was completed by Cathedral Gold Corporation in 1990 within the above 1987 anomaly to more accurately delineate the source of anomalous gold.

Gold analyses returned indictate a sharp upper cutoff to the anomaly striking NW-SE. This cutoff is located near the strong NW-SE shear mapped in 1990 suggesting that the source of anomalous gold is located along the shear. Lead, arsenic and silver values indicate coincident although less pronounced anomalies. It is interesting to note that the above NW-SE trend
also marks the edge of a copper anomaly but instead of higher values occurring below the trend (towards the east) as with gold, copper values increase above the trend in the west.

8.3 Southeast Grid

8.3.1 Features Affecting Geochemical Interpretation

Line $8 W$ roughly defines the boundary between rocks containing several percent disseminated pyrite to the west from rocks with or minor disseminated pyrite. One should also note that elevations increase towards the southwest end of the grid with a corresponding increase in the amount outcrop and with a corresponding ever thinning layer of surface cover.

A third feature of the grid area is a seemingly quite widespread layer of ferricrete as much as 6 m thick. The ferricrete is observed mainly where streams have cut deeply into surface material forming small canyons. The ferricrete is found just above outcrop and is generally covered by gravel, soils, etc. The ferricrete consists of a iron stained fine cement with abundant talus, gravel, and boulders. The ferricrete appears limited to basin like depression in the northern portion of the grid between L4W and L9W. Two samples of the ferricrete (Pel-90-G25, 29R) were taken which returned only low values It seems quite likely that the presence of the ferricrete would affect geochemical patterns and could well suppress anomalies.

8.3.2 Conclusions

Gold Gold values from L8W to L12W are noticeably higher than those from L4W to L7W. The best values are from the southwestern portion grid (L11W, L12W) where eight samples returned greater than 100 ppb Au including a high of 250 ppb . Contouring of values suggest NE to NNE anomalies which broaden towards the southwest.

Copper The northern half of the grid contains several areas of moderately anomalous copper values ($>60 \mathrm{ppm}$) including a high of 710 ppm).

Silver Occasional moderately anomalous but scattered values. No discernable patterns.

Zinc/Lead

Arsenic \quad Occasional marginally anomalous values ($>20 \mathrm{ppm}$ As) but no discernable pattern.

8.4 Pelican Grid

Gold Several marginally anomalous ($>20 \quad \mathrm{ppb} \quad \mathrm{Au}$) roughly northtrending anomalies, including a high of 172 ppb Au .

One should note that much of the western and northwestern portion of the grid are not suitable for soil sampling due to thick talus cover.

Copper A few marginally anomalous values ($>60 \mathrm{ppm}$) with some suggestion of north-south trends.

Silver \quad Two sharply defined north-south anomalies ($>1.0 \mathrm{ppm} \mathrm{Ag}$) including a high of 3.8 ppm Ag. Such values would be considered as marginally anomalous.

Zinc/Lead \quad A few marginally anomalous zinc values ($>100 \mathrm{ppm} \mathrm{Zn}$) several of which are also anomalous in lead ($>100 \mathrm{ppm} \mathrm{Pb}$).

85 Pins Grid

The soil sampling done in 1990 returned a few marginally anomalous $\mathrm{Au}, \mathrm{Zn}, \mathrm{Ag}$ and As values. The most notable result is a northwest trending 15 ppb Au anomaly in the centre of the grid area.

9.0 GEOPHYSICS

9.1 Introduction

A. The 1990 geophysical exploration program on the Pelican Project had three aims, to locate structures, sulphide mineralization along structures, and also to determine suitability of various geophysical techniques for the property.
B. To fulfill the aims of the geophysical program Roger Caven, Consulting Geophysicist for Robert S Middleton Exploration Services Inc, brought five different instruments to the property. These instruments consisted of: Induced Polarization, Horizontal Loop EM, VLF-EM, Double Dipole EM, and Magnetometer.

The induced polarization equipment consisted of a Scintrex IPR-11 time domain receiver, a Scintrex TSQ-3 transmitter with motorgenerator and auxilliary items, such as wire, current and potential electrodes.

The horizontal loop electromagnetometer was an APEX MaxMin I unit with a 50 m cable to connect transmitter and receiver loops. The MaxMin I instrument has eight frequencies, of which five, $220,880,3520,7040$, and 14080 Hz , were used for this project.

In presenting the results, the inphase data were corrected by subtracting the 220 H readings from the four higher frequencies, thereby removing the effects of terrain induced differencies in coil separation.

The VLF-EM surveys were conducted with a Geonics EM-16 unit with receiver crystals for Cutler, Maine (NAA), and Jim Creek, Seattle (NLK), transmitter frequencies respectively. Both inphase equivalent and quadrature readings were recorded.

The Double Dipole EM instrument consists of a stable 1.5 m long wooden beam with transmitter and receiver coils mounted one at each end such that the primary signal from the transmitter coil is eliminated at the receiver coil, and thus only secondary signals are recorded, i.e. signals from the ground. The instrument operates at a frequency of 5000 Hz .

In mineral exploration it is usually helpful to know what the magnetic response of a potential target is. A Barringer GM122 portable proton precession magnetometer was included with the instruments. This magnetometer has a resolution of 1 nanoTesla (gamma).
C. On the Pelican project six target areas had been selected based upon earlier geological mapping work. These were: the Pelican Showing, the Southeast area, the Sericite - SJ target, the Pins area, the Snow Zone, and the Lake area, the latter was divided into two survey targets: an airborne EM anomaly, and a ground survey line, the Lake Line.
a. The Pelican Showing was closest to the camp and also the subject of immediate interest due to mineralized samples obtained from the talus on the north side of a cliff, and a gossan on the cliff face. Mapping had shown the possible existence of three intersecting faults or shears in the vicinity. Four east-west survey lines were available within the area of immediate interest: $P 1 N, P 2 N, P 3+25 N$, above the cliff, and P $4+75 \mathrm{~N}$ below the cliff.

The three first lines were surveyed with induced polarization and horizontal loop EM, and all four lines with VLF-EM, Double Dipole EM and magnetics.
b. The Southeast area grid was surveyed on 9 lines: 1 W to 9 W . The grid was cut by a creek, deeply incising overburden and rock. Two of the lines, 5 W and 6 W were covered by horizontal loop EM, 8 lines with VLF-EM, and lines 5 W to 9 W with Double Dipole EM and magnetics.
c. The Sericite - SJ gossan was surveyed by horizontal loop EM by Mr Michael Jones.
d. Further southeast was the Pins area, which was covered by VLF-EM on three lines.
e. Another large gossan area, the Snow Zone, to the east of the camp on or near the top of a mountain, was tested with induced polarization.
f. A helicopter borne EM survey had picked up a sharp, apparently near surface conductor high up on a mountain nearly due south of the camp. In order to locate, and if possible examine this anomaly, the area indicated on the airborne survey was traversed with the Double Dipole EM.
g. Approximately 500 m south of Pelican line P 1 N the Lake line was laid out east to west across the valley. This line was surveyed partly with horizontal loop EM, Double Dipole EM, and magnetics, and the easterly portion with VLF-EM.

The target areas are shown on the location map at a scale of $1: 50,000$, and the grids on the "Grid Locations (1990)" map at a scale of $1: 10,000$. The results of the surveys will be discussed below, and shown on accompanying pseudosections for the induced polarization and VLF-EM surveys. The Double Dipole, horizontal loop EM and magnetics are shown as profiles for each line.

The interpretations are compiled unto individual grid maps at a scale of $1: 2,500$, except for the Lake line for which there are only the profiles and pseudosection.

9.2 Pelican Target

A. The induced polarization survey was carried out with an array of six potential dipoles, each 25 m in length ($a=25 \mathrm{~m}, \mathrm{n}=1-6$), where each increment in n increases the depth penetration to give the pseudosection. The locations of the resulting data points are by convention plotted as shown in the legend to the pseudosections.

The IP survey was done on the three lines above the cliff only since the line below the cliff was almost entirely on coarse talus, unsuitable for an electrical survey. The length of the lines which could in practice be covered was limited, and also the ground conditions in several places made it difficult, if not impossible, to inject sufficient current into the ground for synchronization of the receiver to the current pulses, and therefore no readings could be obtained. The area is heavily pyritized, hence the background is quite high. The line P 1 N presented another difficulty in that it passed through the camp, with ensuing interference which most likely caused the negative apparent resistivity values. The results as interpreted from the pseudosections show two or more relatively thin lenses plunging to the south and possibly dipping shallowly to the west. Depth to
significant mineralization is estimated at $20-25 \mathrm{~m}$ under line $\mathrm{P} 3+25 \mathrm{~N}$, although some may be present at shallower depth as it is difficult to separate background from desired response.
B. The horizontal loop EM survey results were influenced by the uneven terrain and the station spacing which had been chained to even distance along the surface. The resulting true coilseparation therefore varied with the topography, with even relatively small differences being amplified by the short, 50 m cable, and hence a noisy inphase response. The quadrature readings are much less affected and have been used in the interpretation. All anomalies are weak, visible only on the two highest frequencies, and especially the highest, 14080 Hz , which is in the VLF-EM range. The horizontal loop EM responds well to horizontal targets, and indeed there is some correspondence between IP and EM anomalies. No conventional "conductor" was found however. On line P 3+25N the EM and IP anomalies are in close proximity about the 100 W station, and also on line P 1 N at $210-215 \mathrm{E}$.
C. As mentioned with the horizontal loop method the responses were best at the highest frequency, in the VLF-EM range. It is then not surprising that the EM-16 VLF-EM instrument would produce better results in terms of outlining anomalies. On the Pelican target the EM-16 survey was done at a station spacing of 12.5 m , and the inphase readings filtered with a type of Hjelt filter to produce pseudosections. The original readings for inphase and quadrature are shown for each station, together with the pseudosection. All the anomalies are weak, but the best one corresponds with the horizontal loop EM and is adjacent to the interpreted IP anomaly at $75-100 \mathrm{~W}$, and flanking on a small magnetic anomaly situated to the west. A remnant of this anomaly on line P 2 N is also associated with the IP anomaly, but is not to be found on line P 1 N , as the depth penetration would be insufficient for a dipping body. Another anomaly is found on line $P 2 N$ at $75-100 \mathrm{E}$ and continues weaker at P 1 N ,but the association with the IP is uncertain due to the interference at the camp. A broader and deeper anomaly occurs further east at $200-225 \mathrm{E}$, also coincident with an IP response. The EM-16 responses on line $P 4+75 N$ were very weak.
D. The Double Dipole EM (DDEM) instrument is intended to locate near surface conductors or narrow conductive features. The responses on the Pelican target grid were very weak, confirming the absence of such features here.
E. The magnetic survey was mostly conducted parallel to the DDEM survey and the results are plotted together also as profiles. The magnetic profiles show some sharp peaks indicating narrow features, some crosscutting the interpreted IP and EM trends. The magnetic peaks are indicated with an M on the anomaly map.

F. CONCLUSIONS

The VLF-EM survey appears to show structures, or mineralized structures, and the correspondence with the IP is encouraging. The weak anomalies indicate both depth and poor conductivity as seen also with the horizontal loop survey, and confirmed by the DDEM. The magnetic responses associated with the IP tend to indicate the presence of pyrrhotite, as magnetite would be expected to produce stronger peaks than is the case.

Several targets were located during the surveys as shown on the grid/ compilation map. The IP responses were very high, although this can be at least in part explained by the background disseminated pyritic mineralization seen in the rocks.

9.3 Southeast Target

A. Horizontal loop EM was used on two lines of the SE grid. In common with the results on the Pelican grid, the anomalies on the SE grid were also weak, although more distinct. The noisy inphase due to topography does not allow a quantitative conductivity thickness to be estimated, but qualitatively the conductivity is poor, as only the two highest frequencies clearly show the anomalies on the quadrature. The anomalies also coincide with VLF-EM anomalies. The anomaly widths are less than 10 m , and centred on L5W/6N and L6W/5N.
B. The EM-16 VLF survey was conducted at two separate frequencies, i.e. using two transmitter stations, NAA at Cutler, Maine, and NLK at Seattle, Washington. The anomalies are mostly different in strength, but also location. The NAA transmitter gave the better responses overall, but it is likely that two different structures were located, one (the NLK induced) being at an oblique angle to the grid. The NAA responses show good line to line correlation for two structures, one near baseline and the other to the south thereof, and on lines 5 W and 6 W also coincide with the horizontal loop anomalies, confirming that the anomalies are more than topographic expressions, and likely to be at least somewhat mineralized along structure. North of the baseline the line to line
correlation is of shorter length. The readings were taken at 25 m intervals so the anomaly resolution is not as high as would have been the case with shorter intervals, but the anomalies do show clearly. While some correlation with magnetics exists it is not consistent. The results are shown in pseudosection form and on the grid/compilation map.
C. The Double Dipole EM survey on the SE grid did not produce any clear anomalies except for an one station response at the baseline on line 7 W which also is coincident with a sharp magnetic peak. A narrow feature is indicated, but not seen in the VLF-EM data, although likely to be a continuation of the horizontal loop anomaly on line 6 W , and not extending to depth. This feature very likely continues to line 8 W where two magnetic peaks coincide with DDEM quadrature responses. However, the inphase response is negative, possibly caused by the magnetics, which also makes an interpretation uncertain. The VLF-EM response is stronger.
D. The magnetic survey shows larger anomalies to the west, and near the baseline magnetic peaks correlate with EM anomalies suggesting sulphide mineralization.

E. CONCLUSIONS

The EM-16 VLF survey using the Cutler, Maine, transmitter produced the best and most consistent responses. The horizontal loop EM confirmed one of the anomalies, near the baseline, on the two lines surveyed, but this method was plagued by the topographic difficulties. From the results it would appear that the first priority on the SE grid should be placed on the anomaly along the baseline, unless geochemical or other data would favour other targets. The relatively deep overburden of a till-like material seen in the creek gorge has reduced the signal so that few anomalies can be determined with the DDEM.

Apart from the anomaly which closely follows the baseline, two other "conductors" merit attention. One is approximately 125 m south of the baseline, the other approximately 250 m north thereof. The results are shown on pseudosections and as profiles, and also plotted on the map.

9.4 Sericite - SJ Zone

A. The Sericite - SJ zone survey grid is situated on a steep slope near the top of a mountain approximately NW of the camp. Two lines of MaxMin I horizontal loop EM were read, lines L2S, and L2+50S. In common with other horizontal loop EM surveys there were difficulties with the inphase readings, and only the quadrature data could be used for interpretation. The two highest frequencies defined a weak anomaly on each line. On L2S the anomaly is very wide, estimated to be about 60 m , while on line L2+50S the anomaly is about 6 m wide. The anomalies are centred at 230 E and 233E, respectively.

9.5 Pins - Airborne EM

A. The PINS target area, situated in the southern part of the Pelican property was surveyed by VLF-EM on three lines, L1S, L1N, and L2N, using both the NAA and NLK transmitters. Both transmitter directions gave good anomalies but not usually in the same location. A true north trending set of structures appears most likely, but this cannot be established definitely from the data obtained in this survey. The results are shown in pseudosection form. The anomaly strengths suggest that relatively good conductors exist under this grid. The airborne EM anomalies also show good conductivities, but are not definite regarding anomaly axes. The flight lines are NNE - SSW which would be close to the expected N-S trend of the ground EM anomalies, and thus would not produce recognizable trends in the airborne data. Short but conductive targets trending approximately E-W cannot be ruled out.

9.6 Snow Zone

A. Several gossanous outcrops on top of the mountain were the targets of an attempted induced polarization survey. Only a limited amount of data could be obtained since the area is mainly outcrop or coarse talus, thus lacking places to inject sufficient current into the ground to obtain readings. Parts of the baseline and line $4 \mathrm{~N}(4+50 \mathrm{~N}$?) were read, and some good anomalies were found.

9.7 Lake Airborne EM

A. A very sharp airborne EM response was recorded high on the mountain due south of the Pelican target and the camp. It was an one line feature, but its conductivity thickness product was high with an indicated surface exposure, and of interest for exploration. In order to locate the anomaly the area was traversed with the Double Dipole EM instrument. A very thin graphitic conductor was found, giving DDEM readings of several parts per thousand. The lateral extent was found to be small, since it could only be traced $10-20 \mathrm{~m}$ in each direction from the strongest response. It is assumed that the helicopter traversed right over the best conductivity to produce the recorded response. Other anomalies were found towards the edge of the cliff, though not as strong as the first one, and all of short lateral extent. The rough topography precluded the determination of single or multiple trends. The anomalies were marked but no grid was established. No mineralization of interest could be located.

9.8 Lake Reconnaissance Line (Lake Line)

A. The western part of the Lake line was surveyed with horizontal loop EM, but no anomalies were found. Time did not permit continuation of this survey.
B. The eastern part $(0-1100 \mathrm{E})$ was read with EM-16 VLF-EM, at a station spacing of 12.5 m . Several weak to very weak anomalies are seen in the pseudosection.
C. Double Dipole EM and magnetic surveys were done from 275W to 612.5 E . Three very weak DDEM anomalies and three magnetic anomalies (not correlated) were found.

9.9 An Overview and Conclusions

Although the survey time was short for a large property such as the Pelican Project, the results were very encouraging, at least from the view of using geophysical techniques to locate targets. Without other corroborating data, however, the economic potential cannot be determined since only physical properties are measured, and in most cases little will be revealed about the actual minerals present.

For future exploration of the Pelican Project it is recommended that the SE and Pins grids be resurveyed with EM-16 at a shorter station interval, and the SE grid be explored further west. The anomaly quality tended to increase somewhat in this direction. The Pins grid also would benefit from fill-in lines and some line extensions to the west, with one or more lines added to the south, topography permitting.

The Snow Zone remains an interesting target, and is recommended for testing with EM-16, and also an SP survey using high impedance electrodes to overcome the ground conditions (except for coarse talus where no technique requiring ground contact would be likely to succeed).

The Pelican property would appear to be well suited to induced polarization surveys from a mineralization point of view, however, the ground conditions and topography would make such surveys generally unsuitable. The IP method requires a current of sufficient amplitude to be injected into the ground to synchronize the receiver, without which no readings are possible. Normally a moist soil is required to make sufficient contact with the current electrodes, thus in an area with outcrop or talus difficulties are encountered. On outcrop sometimes moist soil can be brought in and packed down to produce the contact, but this is a time consuming and cumbersome procedure. On thick talus it becomes impossible to provide the right conditions. The till-like material found n many places also turned out to be too poorly conductive to be of use in for current injection.

The VLF-EM technique using the EM-16 and appropriate filtering to produce pseudosections appears to give the most consistent results. While many of the anomalies will be caused by faults and shears without economic potential they none the less aid in the mapping of an area. Other techniques need to be used to discriminate between responses. A station spacing of $10-15 \mathrm{~m}$ is recommended for the EM-16 surveys to give good definition of the anomalies.

The MaxMin I horizontal loop EM confirmed that the frequencies in the VLF-EM range (15 kHz and above) are generally the most useful in this area. The inphase readings of the HLEM method are critically dependent on a consistent and accurate coil separation. The degree of accuracy depends also on the nominal separation, with higher accuracy required for the shorter cables. On even slopes or in flat terrain it is sufficient to measure the grid along surface, but in uneven terrain chaining to the horizontal plane is most desirable. The horizontal distance together with recorded average slope angles ensures that the appropriate
corrections can be made to obtain smooth data and profiles. On the Pelican property the average slope angles were measured where line of sight existed, however no assurance existed that the station intervals were consistent or corrected for rough topography.

The Double Dipole EM is designed to quickly locate shallow conductive features, such as the Lake Airborne EM anomaly, and would possibly be useful on the PINS grid also to determine anomaly axes. The conditions on the other grids did not appear to favour this technique.

The magnetic surveys were a useful adjunct to the EM surveys.

Roger J. Caven, P. Eng. Consulting Geologist

January 29, 1991

10.0 REFERENCES

Alldrick, D.J., Britton, J.M., MacLean, M.E., Hancock, K.D., Fletcher, B.A. and Hiebert, S.N., 1990: Geology and Mineral Deposits of the Snippaker Area (104B/6E, 7W, 10W, 11E); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-16.

Anderson, R.G., 1990: A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E, pages 145-154.

Anderson, R. G. and Bevier, M.L., 1990: A Note of Mesozoic and Tertiary k-Ar Geochronometry of Plutonic Suites, Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-1E, pages 141-147.

Anderson, R.G. and Thorkelson, D.J., 1990: Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E., Geological Survey of Canada, Paper 90-1E, pages 131-139.

Bending, D.A., 1984: 1983 Summary Report on the Snippaker Creek Area, British Columbia; Unpublished Report for Lonestar Resources Ltd.

Britton, J.M., Fletcher, B.A. and Alldrick, D.J., 1990b: Snippaker Map Area (104B/6E, 7W, 10W, 11E): B.C. Ministry of Energy, Mines and Petroleum Resources. Geological Fieldwork 1989, Paper 1990-I, pages 199-209.

Burton, G.B., 1989: Report on the Combined Helicopter-Borne Magnetic electromagnetic and VLF Survey, Iskut-Unuk River Area, British Columbia; Aerodat Ltd. July 31, 1989.

Butterworth, B.P., Peterson, D.B., 1987: Geological and Geochemical Report of the Gossan 6, 9-13, 21 Claim Group; Western Canadian Mining Corporation, Report \#988.

Butterworth, B.P., Peterson, D.B., 1987b: Geological and Geochemical Report of the Gossan 14-17, 23, 30 Claim Group; Western Canadian Mining Corporation, Report \#989.

Butterworth, B.P., Peterson, D.B., 1987c: Geological and Geochemical Report on the Gossan 1-4, 7 Group, Gossan 5, 8, 22 Group and Gossan 25 Claim; western Canadian Mining Corporation, Report \#991.

Gorc, D., Jones, R.M., Johannessen, D., 1989: Geological and Geochemical Report, Pelican Property; Cathedral Gold Corporation; June 1989.

Grove, E.W., 1971: Geology and Mineral Deposits of the Stewart Area, British Columbia. B.C. Department of Mines and Petroleum Resources, Bulletin No. 58.

Grove, E.W., 1986: Geology and Mineral Deposits of the Unuk River - Salmon River Anyox Area; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin No. 63.

Kerr, F.A., 1948: Lower Stikine and Western Iskut River Areas, British Columbia, Geology Survey, Canadian Memoir 246.

Meyers, R.E., 1986: Geochemical Sampling and Reconnaissance Mapping Gossan 1-4-7 Claim Group, Gossan 14-17, 23 Claim Group; Western Canadian Mining Corporation (WCM) Ltd., Report \#995.

Peterson, D.B., Woodcock, J.R., Gorc, D., 1985: Geologic, Trenching and Diamond Drilling Report on the Gossan II Claim; Brinco Mining Limited, Report \#840.

Ray, G.E. and Webster, I.C.L., 1991: Skarns in the Iskut and Scud River Region, Northwestern British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1990, Paper 1991-1, this volume.

11.0 STATEMENT OF QUALIFICATIONS

I, DENNIS M. GORC, residing at 103-2083 Coquitlam Avenue, in Port Coquitlam, British Columba, V3B 1 J 4 state that:
(1) I graduated from Queen's University, Kingston, Ontario with a B.SC. (Eng.) degree in mineral exploration in May 1976.
(2) Since 1976, I have supervised mineral epxploration programs in British Columbia, N.W.T., Manitoba and Ontario.
(3) I am presently employed as a geologist with Cathedral Gold Corporation, Suite 800-601 West Hastings Street, Vancouver, B.C. V6B 5A6
(4) I supervised the 1990 exploration program on the Pelican property.

Dated this 22 day of \qquad , 1991, in the City of Vancouver, Province of British Columbia.

CATHEDRAL GOLD CORPORATION

Vancouver, B.C.

APPENDIX I

—n

 COST STATEMENT
COST STATEMENT

Geological-Geophysical-Geochemical Program August 25-September 15, 1990

Wages

D. Gorc Aug. 25-27, 29-31, Sept. 2-15 \$5,000
R. M. Jones Aug. 28-Sept. 13 4,000
N. Bertrand Aug. 25-31, Sept. 1-12, 14 2,500
B. Murphy Aug. 25-31, Sept. 1-3 1,200
A. Saltiel Aug. 25-29 500
D. Philip Aug. 25-29 500
D. Ross Sept. 7-12, 14 700
K. Palm Aug. 29-31, Sept. 1-12, 14 1,600
Travel = Transportation
Airline tickets: Vancouver-Smithers-Vancouver 1,000
MJ, RC (Geophysicist)
Air freight - Air charter (Central Mountain Air) 8,500
Smithers-Bronson Strip
Helicopter - Trans North; Northern Mountain 24,000 33,500
Camp = Equipment
Food 3,000
Field and camp equipment and supplies 3,500
Radio rental 5007,000
Geophysical
Consulting fees-Geophysics (Roger Caven) Aug. 28-Sept. 13 5,750

Geochemical

494 soil samples analyzed for 30 element ICP + gold by Atomic adsorption240 rock samples analyzed for 30 element ICP + gold by atomic adsorption11 Hg analysis by flameless atomic adsorption6,900
Miscellaneous
Report (geologist, secretary, drafting, computer, reproductions) 10,000
Shipping 500
Miscellaneous (courier, telephone, truck rental) $\underline{350}$
10,850
Cost Summary
Wages $\$ 16,000$
Travel-Transportation 33,500
Camp-Equipment 7,000
Geophysical 5,750
Geochemical 6,900
Miscellaneous 10,850
Pelican SW Group - Gossan 4, 5, 8, 9, 22, 25 $\$ 30,000$
Pelican NE Group - Gossan 1, 2, 3, 6, 7 50,000$\$ 80,000$

APPENDIX II

GEOPHYSICAL EQUIPMENT

GEOPHYSICAL EQUIPMENT

The induced polarization equipment consisted of a Scintrex IPR-11 time domain receiver and the Scintrex TSQ-3 transmitter with a 3 kVA motorgenerator. The transmitter output is a squarewave current of 2 seconds on and 2 seconds off with every second on pulse alternating in polarity. The receiver reads the primary voltage during current on to determine resistivity, and the secondary decaying voltage during off intervals. The decaying secondary, or induced voltage is measured in 10 consecutive intervals, windows (or slices $0-9$), of which the slice number 7 is normally used for the interpretation of chargeability (IP effect). The IPR-11 is able to read the voltage between six pairs of potential electrodes simultaneously. The electrode pairs form an array with each pair probing to a depth determined by its order and the ground resistivity. The results are shown as a pseudosection.

The chargeability is interpreted relative to the background readings, and therefore the anomalies are not absolute, but apparent.

The MaxMin I horizontal loop EM system is the latest development by APEX Parametrics, and features eight frequencies from $220-14080 \mathrm{~Hz}$, five of which were used on the Pelican Project. The horizontal loop EM has two coils (or antennas) to be held co-planar, one transmitting the sine-wave signal and the other receiving a combination of primary and secondary voltage, out of phase with the transmitted signal. The connecting reference cable enables the receiver to determine the phase shift, and thus determine the inphase and quadrature components of the received signal. The inphase component includes the primary voltage, the strength of which is determined by the intercoil separation to the third power. When the received signal is of low amplitude, as was the case at the Pelican property any errors in the coil separation cause large variations in the inphase component overwhelming the desired signal. Accurate determination of true coilseparation and a coplanar alignment of the coils makes possible precise corrections. The quadrature component is but little affected. The anomaly width is the width of the conductor plus the coilseparation.

The Geonics (Ronka) EM-16 is a low frequency radiowave receiver in the $15-25 \mathrm{kHz}$ range. The radio transmitters are the Naval submarine communications transmitters located in the US and other parts of the world. The magnetic component of the long radio waves locally follow the topography unless a conductive feature cause them to tilt relative to the ground surface. This tilt angle is measured together with an out of phase component. The tilt angle is a measure of the inphase component, and because of the great distance to the transmitter the radiowaves behave as plane waves and provide an even "illumination" over a large area, unlike the very local behaviour of the primary signal in the horizontal loop configuration.

Since the tilt angle is measured in the VLF (Very Low Frequency) survey, the direction of measurement determines the sign of the tilt. In the direction of travel and reading the change of tilt from positive to negative, relative to ground slope, signals the presence of a "conductor". Since the measurement of ground slope for each station is cumbersome, a filter technique is employed to remove the ground slope from the data, and at the same time convert the change of tilt angle into a positive peak over the conductor. The present filter is sensitive to weak conductors and effectively removes topographic effects. In order to avoid undue noise created by less than exact readings a lowest contour of +1 is used throughout, and attention is usually paid to values above +2 . Values of filtered data less than 10% are classified as weak, although they may signify important mineralization or other ground condition to be investigated.

The Double Dipole EM by APEX Parametrics consists of a stable wooden beam with inclined parallel transmitter and receiver coils, one at each end. A sine wave at 5000 Hz is transmitted. The principle is similar to the horizontal loop EM except that the inclination of the coils combined with a precise separation makes it possible to eliminate the primary transmitted signal from the receiver coil, which then only records the secondary voltages emanating from the ground. Sensitivity is thus enhanced, and it is possible to read signals in ppm of primary voltage. The 1.5 m coil separation diminishes the depth penetration, especially in conductive terrains.

The DDEM has been useful in locating small conductive targets, and because it can be read while traversing precise locations can be obtained quickly without grids. Coincident positive inphase and quadrature peaks indicate conductors. Good conductors normally read 1000 $10,000 \mathrm{ppm}$, as did the graphite band at the airborne anomaly. The Pelican and SE grids had much smaller values.

APPENDIX III

SJ ZONE - GEOPHYSICAL PLOTS

Max-Min Horizontal Loop EM

Sericite L2S, L2+50S

APPENDIX IV
SOUTHEAST GRID - GEOPHYSICAL PLOTS
EM-16 (Seattle, Washington)
L1W, L2W, L3W, L4W, L5W, L6W, L7W, L8W
EM-16 (Cather, Maine)L1W, L2W, L3W, L4w, L5W, L6W, L7W, L8W
Max-Min Horizontal Loop EM
L5W, L5W
Double Dipole EM and Magnetics
L5W, L6W, L7W, L8W, L9W

Project: Cathedral Gold Corp/ Pelican Line\#: SE 1 EM16 Seattle

Project: Cathedral Gold Corp/ Pelican Line\#: SE 2 EM16 Seattle

Project: Cathedral Gold Corp/ Pelican Line\#: SE 3 EM16 Seattle

- Str Inch Quad n ni ni ni ni ns
$-250 \mathrm{~N} \quad 16.0 \quad 4.0$
$225 \mathrm{~N} \quad 13.0 \quad 6.0$ $200 \mathrm{~N} \quad 16.0 \quad 7.0$ $175 \mathrm{~N} \quad 14.0 \quad 6.0$ $150 \mathrm{~N} \quad 16.0 \quad 8.0$ $125 \mathrm{~N} \quad 19.08 .0$ LON $20.0 \quad 10.0$ $75 N \quad 19.0 \quad 8.0$ $50 \mathrm{~N} \quad 16.0 \quad 5.0$ $25 \mathrm{~N} \quad 16.0 \quad 2.0$ $000 \quad 15.0 \quad 3.0$ $25 \$ 17.0 \quad 3.0$ $505 \quad 17.0 \quad 3.0$ $755 \quad 17.0 \quad 3.0$ $1005 \quad 17.0 \quad 4.0$ 125522.02 .0 $1505 \quad 18.0 \quad 3.0$ $175521.0 \quad 4.0$ 2005 24.0
4.0
225524.0 .4 .0
$2505 \quad 22.0 \quad 6.0$

Project: Cathedral Gold Corp/ Pelican Line\#: SE 4 EM16 Seattle

Project: Cathedral Gold Corp/ Pelican Line\#: SE 7 EM16 Seattle

| Stn | Inph Quad | $n 1$ | $n 2$ | $n 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$[\quad 275 \mathrm{~N} \quad 5.0 \quad 0.0$
$250 \mathrm{~N} \quad 8.0 \quad 0.0$

-2.1	-5.3	-2.4

-3.9	-6.1	-4.2

$100 \mathrm{~N} \quad 11.0-5.0$
$75 \mathrm{~N} \quad 12.0 \quad 2.0$
$50 \mathrm{~N} \quad 13.0-4.0$
$25 \mathrm{~N} \quad 12.0-1.0$
$000 \quad 8.0-2.0$
$255 \quad 9.0-2.0$
$505 \quad 8.0-1.0$
$75 \$ \quad 7.0-2.0$

1005 5.0-2.0
$1255 \quad 0.0-2.0$
$-2.7 \quad-4.6$
-0.1
-2.1
-1.5
-2.0
$2005-7.0 \quad 2.0$
$2255 \quad 0.0 \quad 3.0$

Project: Cathedral Gold Corp/ Pelican Line\#: SE 8 EM16 Seattle

Project: Cathedral Gold Corp/ Pelican Line\#: SE 1 EM16 Cutler

T 300N 20.02 .0 $275 \mathrm{~N} \quad 22.0 \quad 3.0$ $250 \mathrm{~N} \quad 16.0 \quad 2.0$ $225 \mathrm{~N} \quad 15.0 \quad 2.0$ 200N $\quad 15.0 \quad 2.0$ $175 \mathrm{~N} \quad 12.0-1.0$
$150 \mathrm{~N} \quad 9.0 \quad 0.0$ $125 \mathrm{~N} \quad 13.0 \quad 2.0$

100N 20.0-2.0 $75 \mathrm{~N} \quad 14.0 \quad 0.0$ $50 \mathrm{~N} \quad 18.0 \quad 0.0$ $25 \mathrm{~N} \quad 22.0-2.0$
$000 \quad 22.0-2.0$ $255 \quad 20.0 \quad 0.0$ $505 \quad 15.0 \quad 2.0$ $755 \quad 17.0 \quad 2.0$
$1005 \quad 15.0 \quad 0.0$
$1255 \quad 15.0 \quad 1.0$
$1505 \quad 18.0 \quad 4.0$
$1255 \quad 18.0 \quad 4.0$
$2005 \quad 20.0 \quad 4.0$
$225515.0 \quad 6.0$
$2505 \quad 15.0 \quad 7.0$
$2755 \quad 17.0 \quad 10.0$
$300515.0 \quad 10.0$
-3.5
-0.2
$0.2-0.0$
$-1.6 \quad-1.4 \quad-3.5$

$\begin{array}{lll}-0.9 & -4.2 & -1.1\end{array}$
$\begin{array}{lll}-2.9 & -3.4 & -4.8\end{array}$

$\underbrace{1.3}_{1.4} \frac{1.3}{1.0}$
-3.0
-3.0
0.2

* 1.3

Project: Cathedral Gold Corp/ Pelican Line\#: SE 2 EM16 Cutler

Project: Cathedral Gold Corp/ Pelican Line\#: SE 3 EM16 Cutler

Project: Cathedral Gold Corp/ Pelican Line\#: SE 4 EM16 Cutler

Project: Cathedral Gold Corp/ Pelican Line\#: SE 5 EM16 Cutler

T $275 \mathrm{~N} \quad 22.0 \quad 0.0$

- 250N 20.0-3.0
$225 \mathrm{~N} \quad 25.0-3.0$

-1.8

-3.5
$200 \mathrm{~N} \quad 20.0-3.0$
$175 \mathrm{~N} \quad 25.0-2.0$
$150 \mathrm{~N} \quad 20.0-3.0$
$125 \mathrm{~N} \quad 21.0 \quad 0.0$
100N $\quad 14.0-4.0$
75N $14.0-4.0$
$50 \mathrm{~N} \quad 16.0-8.0$
$25 \mathrm{~N} \quad 5.0-8.0$
$000 \quad 20.0 \quad 8.0$
$25 \$ 14.0 \quad 2.0$
$505 \quad 15.0 \quad-3.0$
$755 \quad 15.0 \quad 4.0$
$1005 \quad 10.0 \quad 2.0$
$1255 \quad 19.0 \quad 5.0$
$1505 \quad 15.0 \quad 8.0$
$1755 \quad 13.0 \quad 7.0$
$2005 \quad 12.0 \quad 6.0$
$225511.0 \quad 5.0$
$250510.0 \quad 10.0$
27598.07 .0
$3005 \quad 9.0 \quad 9.0$

Project: Cathedral Gold Corp/ Pelican Line\#: SE 6 EM16 Cutler

Project: Cathedral Gold Corp/ Pelican Line\#: SE 8 EM16 Cutler

SE Gind L 5 K

Cathedral Cold Corponation - Pelican Project
se Girid 4 6H

Cathedral Gold Conponation - Pelican Project
sk Girid 4 in

Cattedral Cold Corporstion - Pelican Project

SI Grid L 8 \%

SE Grid L g g

APPENDIX V

PELICAN GRID - GEOPHYSICAL PLOTS

EM-16 (Seattle, Washington)
L1N, L2N, L3+25N, L4+75N
Max-Min I Horizontal Loop EM
L1N, L2N, L3+25N
Double Dipole EM and Magnetics
L1N, L2N, L3+25N, L4+75N
Induced Polarization
L1N, L2N, L3+25N

Project: Cathedral Gold Corp/ Pelican Line\#: P $1 N$ EM16 Seattle

Project:	Cathedral/ Pelican				Line:	IN Con	d. . . 2
Stn	Inph	Quad	n1	n2	n3	n4	n5
25W	-2.0	6.0		-1.0		-1.4	
			0.1		-1.3		-1.6
37.5W	-2.0	6.0		-0.1		-1. 5	
			-0.3		-0.3		-1.9
50W	-2.5	6.0		-0.4		-0. 5	
			-0.2		-0.6		-1
62.5W	-3.0	6.0		-0.5		-0.9	
			-0.2		-0.6		-1.0
75W	-3.5	5.0		-0.4		-0.7	
			-0.3		-0.4		-2.0
87.5W	-4.0	6.0		-0.1		-1.7	
			0.1		-1.5		-1.7
100W	-4.0	6.0		-1.1		-1.5	
			-1.2		-1.2		-1.4
112.5 W	-6.0	5.0		-1.2		-1.2	
			0.1		-1.3		0.1
125W	-6.0	5.0		-0.1		0.0	
			-0.1		1.2		0.7
$137.5 W$	-6.0	5.0	\square-1	1.2		2.0	
	-4.0	6.0	$\square 1.1$	1.7	1.8	1.	2.0
150W			0.5		1.9		2.0
162.5 W	-3.0	6.0		0.5		1.9	
			-0.1		0.5	\bigcirc	
175W	-3.0	6.5		-0.1		0.7	
			-0.0		-0.1		
187.5W	-3.0	7.0		0.0			
			0.1		-0.7		
200W	-3.0	7.0		-0.6			
			-0.6				
212.5W	-4.0	6.0		-0.5			
			0.1				
225W	-4.0	5.0					
			0.1				
$237.5 W$	-4.0	6.0					
250W	-5.0	5.0					

Project: Cathedral/ Pelican Line: $P 2 N$ cont'd... 2

- stn Inph Quad n 100W-10.0 9.0
n1 n2 n3 n4 n5 $112.5 \mathrm{~W}-10.0 \quad 8.5$ 125W-10.0 9.0 $137.5 \mathrm{~W}-10.0 \quad 11.0$ 150W -8.0 12.0 $162.5 \mathrm{~W}-8.0 \quad 11.0$ $175 \mathrm{~W}-6.0 \quad 12.0$ 187.5W -7.0 13.0 200W-8.0 12.0 $212.5 \mathrm{~W} \quad-8.0 \quad 11.0$ 225W-9.0 10.0 237.5W-10.0 9.0 250W-11.0 7.0

Project: Cathedral Gold Corp/ Pelican Line\#: P $3+25 N$ EM16 Seattle

Stn	Inph	Quad	$n 1$	n2
112.5W	-16.0	3.0		0.0
			-0.1	
125W	-16.0	2.5		-0.3
			-0.1	
137.5W	-16.0	2.0		0.4
			0.6	
150W	-15.0	2.0		
			-0.1	
162.5W	-15.0	1.0		
$175 W$	-14.0	0.5		

Line: $P 3+25 N$ cont'd... 2
n3 n4 n5

Project: Cathedral Gold Corp/ Pelican Line\#: P 4+75N EM16 Seattle

$$
\begin{array}{lrr|cccccc}
\text { Project: Cathedral/ Pelican } & & \text { Line: P } 4+75 \mathrm{~N} & \text { cont'd...2 } \\
\text { Stn } & \text { Inph } & \text { Quad } & \mathrm{n} 1 & \mathrm{n} 2 & \mathrm{n} 3 & \mathrm{n} 4 & \mathrm{n} 5 \\
337.5 \mathrm{~W} & -16.5 & -1.5 & & -0.7 & & & \\
350 \mathrm{~W} & -17.0 & 0.0 & -0.3 & & -0.7 & & \\
362.5 \mathrm{~W} & -17.0 & -2.0 & 0.1 & -0.3 & & & \\
375 \mathrm{~W} & -18.0 & -2.5 & -0.6 & -0.6 & & & \\
387.5 \mathrm{~W} & -17.0 & -2.0 & 0.6 & & & & \\
400 \mathrm{~W} & -17.0 & -2.0 & & & & & \\
3
\end{array}
$$

Cathedral Gold Conponation - Pelican Pruject
rellican la 4

Cathedral Gold Corponation - Pelican Project

Logarithmic Contours 1.1.5.2.3.5.7.5.10....
Receiver: Seintrex IPR-11
Transmitter: Scintrex TSO-3
Operator: Roger J Caven
INTERPRETATION

- Strong increase in polarization acconpanied
by narked decrease in resistiving
- Well defined increase in polarization
without marked resistivity decrease.
- Poorly defined polarization increase
with no resistivily signature
- Low resistivity feature.

RGBERT S. MIDDLETON

 EXPLORATION' SERVICES INC. CATHEDRAL GOLD CORPGRATIONNDUCED POLARIZATION SURVEY PELICAN PROJECT NW British Coluct

NW British Columbia	
Date: September 1990	Scale $=1: 1250$
Interp. by: R JC	M

APPENDIX VI

PINS GRID - GEOPHYSICAL PLOTS

EM-16 (Seattle, Washington)
L1S, L1N, L2N

EM-16 (Cather, Maine)
(L1S, L1N, L2N)

Project: Cathedral Gold corp/ Pelican Line\#: PIN 15 EM16 Seattle

Project: Cathedral Gold Corp/ Pelican Line\#: PIN $1 N$ EM16 Seattle

Project: Cathedral Gold Corp/ Pelican Line\#: PIN $2 N$ EM16 Seattle

Project: Cathedral Gold Corp/ Pelican Line\#: PIN 15 EM16 Cutler

Project: Cathedral Gold Corp/ Pelican Line\#: PIN $1 N$ EM16 Cutler

Project: Cathedral Gold Corp/ Pelican Line\#: PIN 2N EM16 Cutler

APPENDIX VII

 SNOW GRID - GEOPHYSICAL PLOTS

 SNOW GRID - GEOPHYSICAL PLOTS}

Induced Polarization

LB1, LAN

APPENDIX VIII

LAKE - GEOPHYSICAL PLOTS

EM-16 (Seattle, Washington)

Max-Min I - Horizontal Loop EM

Double Dipole EM and Magnetics

resican lake une

Cathedral Gold Corporation - Pelican Project

Project: Cathedral Gold Corp/ Pelican Line\#: Lake-line EM16 Seattle

- 1100E $38.0 \quad 9.0$
1087.5E $35.0 \quad 8.0$ $28.0 \quad 6.0$ $1062.5 E$ 1050E $\begin{array}{rrr}1037.5 \mathrm{E} & 32.0 & 8.0 \\ 1025 \mathrm{E} & 35.0 & 8.0\end{array}$ $\begin{array}{rrr}1012.5 E & 34.5 & 8.0 \\ 1000 E & 32.0 & 6.0 \\ 987.5 E & 28.0 & 6.0 \\ 975 E & 27.0 & 3.0\end{array}$ $962.5 \mathrm{E} \quad 27.0 \quad 2.0$

950 E 937.5
$925 E$ 912.5 E
$900 E$ 25.5
8.0 $887.5 \mathrm{E} \quad 25.0 \quad 7.0$ 875E $25.0 \quad 7.0$ $862.5 E \quad 23.0 \quad 6.0$

850 E $837.5 \mathrm{E} \quad 24.0 \quad 4.0$

825E 18.53 .0 812.5E $17.0 \quad 3.0$

800E 19.0 3.0
$787.5 \mathrm{E} \quad 15.0 \quad 3.0$
$.775 E 14.5 \quad 4.0$
762.5E $14.0 \quad 5.0$

APPENDIX IX

GEOCHEMICAL ANALYSES

Cathedral Gold Corp．PROJECT 8103
800－601 W．Hastings St．Vancouver BC V6B 5A6
File \＃90－4205
Submitted by：D．GORE
Page 1

SAMPLE\＃	$\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Cu } \\ \text { ppm } \end{array}$	Pb ppm	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	ing $\text { ppn } p$	$\begin{array}{r} \text { Ni } \\ \text { ppon } \end{array}$	$\begin{array}{r} \text { Co } \\ \text { pppm } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$		$\begin{gathered} \text { Rs. } \\ \text { ppm. } \end{gathered}$	$\begin{array}{r} U \\ \text { ppon } \end{array}$	Au ppm	Th ppm	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\stackrel{\mathrm{cd}}{\mathrm{ppm}}$	Sb	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Ca } \\ \text { \% } \end{gathered}$	$\%$	$\begin{aligned} & \mathrm{La} \\ & \mathrm{pppm} \end{aligned}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Mg} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$			$\begin{gathered} \mathrm{Al} \\ \boldsymbol{X} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \boldsymbol{\%} \end{gathered}$		ppint	$\begin{aligned} & A^{*} \\ & \mathrm{ppb} \end{aligned}$
PE	4	39	37	9	，4	10	4	169	6.05	2	5	ND	1	4	2	2	2	3	． 08	\％009	2	9	． 04	22	\％ 01	2	． 09	． 01	． 04	1	1121
PEL－90－	5	76	5	8	\％	43	76	567	16.20	15	5	ND	1	18	8	2	7	5	． 45	． 005	． 2	7	． 39	6	OS	2	． 34	． 01	． 01	1	25
PEL－90－G－3	6	36	2	8	3	32	57	445	14.19	7	5	ND	1	13	． 5	2	5	7	． 27	． 010	2	40	． 52	9	01	2	． 53	． 01	． 03	\％	11
PEL－90－G－4	8	2478	782	1081	1\％2	12	20	132	14.42	401	5	ND	1	3	6.7	4	2	12	． 03	，022	4	10	． 10	9	\％18．	3	． 21	． 01	． 04	\％	827
PEL－90－G－5	1	312	271	378	16.0	20	9	2879	8.12	334	5	ND	2	289	2．3	4	2	99	1.77	180	11	34	1.58	18	32	2	2.12	． 01	． 02		21
PE	4	446	47	242	2	7	14	1890	5.16	45	5	ND	1	65	\＄9	2	2	12	1.56	－025	2	31	． 16	6	08		． 20	． 01	． 01	\％ 1	27
PEL－90－6	8	77	48	5693	1.1	7	7	993	20.80	162	5	ND	2	4	32．8．	2	3	7	． 12	，003．	＋ 3	7	． 07	22	01	2	． 04	． 01	． 02	10.	99
PEL－90－6－8	31	233	210	1312	5．9	11	12	645	9.88	304	5	ND	1	129	8．9．	5	3	42	． 98	． 61	3	14	． 10	9	34	2	． 44	． 01	． 01	2	105
PEL－90－G－9	1	1124	171	21319	10．7	2	23	2823	25.08	116	5	ND	2	10	132.8	2	2	5	． 88	．003．	－ 4	3	． 08	6	01	2	． 03	． 01	． 01	30.	285
PEL－90－G－10	12	4152	174	1604	15	21	39	1425	9.10	337	5	ND	1	207	12，6	7	7	40	1.92	\％99\％	5	23	． 40	7	29	2	． 75	． 01	． 02	！	200
PEL－90－G－10（	3	272	1895		22.5	25	18	1378	6.68	288	5	ND	1	175	10．2	8	2	64	1.35	＊64	＋ 5	61	． 55	22	32		． 86	． 01	． 05	\％\downarrow	140
PEL－90－G－11	2	1034	2064	18217	14.2	14	20	708	10.77	319	5	ND	1	34	105．8．	9	2	23	． 26	8023	＋ 3	16	． 27	3	．04	2	． 36	． 01	． 01	\％$\%$	333
PEL－90－G－12	9	639	494	15981／	5．0	34	20	1526	7.87	375	5	ND	1	71	86．2	6	2	36	． 77	\％104	＋ 3	66	． 52	7	18.	2	． 69	． 01	． 02	$\geqslant 7$	276
PEL－90－G－13	5	389	762	13020／／	6．7．	33	23	1495	8.26	499	5	ND	1	122	68.8	8	2	42	． 92	． 132	2 3	77	． 66	13	17.	2	． 98	． 01	． 01	4	128
PEL－90－G－14	3	177	193	734	30．8．	2	6	695	21.09	527．	5	ND	1	5	2.2	5	10	5	． 19	006	3	3	． 14	10	O1．	2	． 02	． 01	． 01	14.	1796
PEL－90－G－14（A）	4	93	746	570	6．6．	68	50	1948	12.57	457．	5	ND	1	178	5.5	8	2	59	1.74	． 192	5	74	． 85	10	，30		1.29	． 01	． 02	\％	77
PEL－90－G－15	1	316	151	3802	17\％	7	40	2466	16.91	54	5	ND	1	36	12．5	2	2	8	4.07	．002	5	5	． 06	2	， 01	2	． 05	． 01	． 01	7.	98
PEL－90－G－16	5	15	，	39	$\stackrel{2}{2}$	8	7	478	7.99	2	5	ND	2	19	$\cdots 3$	2	3	2	． 56	．030	2	35	． 19	22	． 01	2	． 19	． 01	． 10	4	1796
PEL－90－G－17	2	21	4	26	－4	6	11	508	5.28	8	5	ND	7	42	． 2	2	2	5	1.13	． 077	5	4	． 23	40	014	2	． 35	． 01	． 12	1 ，	40
PEL－90－G－18	6	12	4	15		7	10	804	2.83	3	5	ND	6	38	， 2	2	2	4	1.08	． 074	3	6	． 35	55	． 01	2	． 40	． 01	． 13		15
PEL－90－G－19	4	19	2	48	\％<1	6	9	511	4.33	2	5	ND	5	25	． 2	2	2	3	． 64	．050	， 3	6	． 25	36	01，		． 33	． 01	． 10	\％	3
PEL－90－G－20	5	17	4	8	\％1	7	12	447	4.98	4	5	ND	4	32	－2	2	3	3	． 78	． 055	3	28	． 18	36	04	2	． 32	． 01	． 12	1	27
PEL－90－G－21	1	34	5	77	$\stackrel{+}{3}$	9	26	976	8.66	3	5	ND	3	55	¢， 2	2	2	81	． 33	， 098	4	30	2.29	40	． 28	2	1.97	． 02	． 06	1.	9
PEL－90－G－22	3	4	2	11	\bigcirc	9		48	2.31	2	5	ND	1	，	$\stackrel{2}{2}$	2	2	1	． 01	． 004	＋ 2	8	． 01	22	．01	2	． 03	． 01	． 01	1	599
PEL－90－G－23	6	79	3	9	4.5	13	3	42	1.46	？	5	ND	1	2	$\stackrel{2}{2}$	3	2	1	． 01	0012	2	9	． 01	15	O1，	3	． 03	． 01	． 02	＊	33
PEL－90－	8	5	2	8	¢	16	10	261	1.97	\％	5	ND	1	2	\％ 2 。			1	． 01	－004	4	69	． 01	7	，01，	2	． 02	． 01	． 01	\％	85
PEL－90－G－25	3	12	3	57	\bigcirc	5	4	565	3.06	\％ 2	5	ND	3	87	\％∇^{3}	2	2	38	． 41	\％44	＋ 5	6	1.24	33	13	2	1.64	． 03	． 09	1	12
PEL－90－G－26	4	6	2	40	\％ 1	6	7	238	3.27	2	5	ND	9	35	\％$\% 2$	2	2	42	． 30	8095	5	7	． 96	40	．09．	2	1.13	． 06	． 06	－	10
PEL－90－6－27	4	5	2	35	\％ 3	7	4	273	2.15	2	5	ND	5	48	－3	2	2	35	． 37	．083	5	7	． 99	28	09	2	1.17	． 05	． 05	1	5
PEL－90－G－28	2	66	3	77	相	18	12	494	4.12	2	5	ND	1	28	，	2	2	64	． 33	．096	＊ 2	47	2.16	66	10	2	1.81	． 05	． 13	\％	10
PEL－90－G－29	2	10	7	30	＊ 2	3	2	265	2.31	\％	5	ND	5	46	的 ${ }^{3}$	2	2	44	． 32	\＄36	5	6	． 87	116	15．	2	1.11	． 03	． 14	\％	15
PEL－90－G－30	10	10	4	10	\％ 2	15	56	185	4.03	\％ 6	5	ND		209	\＃$\geqslant 2$	2	2	14	． 95	－052	＋	12	． 19	47	06		． 97	． 01	． 10	\％	＋ 4
PEL－90－G－31	2	5	3	36	，2	32	13	413	5.49	25	5	HD	2	14	3	2	2	37	． 24	157．	2	27	1.70	69	17	2	1.51	． 02	． 18	\％ 1	3
PEL－90－G－32	4	1	6	31	$\stackrel{1}{1}$	5	5	580	2.66	2	5	ND	3	125	2	2	2	24	． 68	117	7	11	1.44	412	10	2	1.75	． 02	． 11	\％	1
PEL－90－G－33	3	1	4	32	$\stackrel{1}{2}$	5	17	558	3.54	3	5	ND	2	189	2	2	2	24	． 86	120	6	4	1.13	81	09	2	1.64	． 01	． 11	\％	4
PEL－90－G－34	3	2	3	64	2	6	5	639	2.22	2	5	ND	1	123	3	2	2	19	． 61	－074	4	6	1.12	392	－07．	2	1.39	． 01	． 08	1	1
STANDARD C／AU－R	19	58	40	133	7．1	73	31	1047	3.97	41	20	7	40	52	19．0	16	20	60	． 52	． 098	40	60	． 89	176	09.	36	1.89	． 06	． 13	11	520

ICP－． 500 GRAM SAMPLE IS DIGESTED HITH 3ML 3－1－2 HCL－HNO3－h20 at 95 DEG．C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER．
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B 4 AND LIMITED FOR NA K AND AD AU DETECTION LIMIT BY ICP IS 3 PPM
－SAMPLE TYPE：P1－P3 ROCK P4 SOIL AU＊ANALYSIS BY ACID LEACH／AA FROM 10 GM SAYPLE．

Cathedral Gold Corp. PROJECT 8103 FILE \# 90-4205

SAMPLE\#	$\begin{array}{\|c} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{Z n} \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Ag } \\ \text { pplit } \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{cc} \text { Mn } \\ n & p p m \\ \hline \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	ppris	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	Au ppm	Th ppm	$\begin{gathered} \mathrm{Sr} \\ \mathrm{n} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{S b} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\%$	$\begin{array}{r} \mathrm{La} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	Mg	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	$\stackrel{1}{2}$	$\begin{array}{r} B \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Al } \\ \mathbf{\%} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & K \\ & \chi \end{aligned}$	${\underset{p p l}{1}}^{u_{1}}$	$\mathbf{A u}^{\star}$ ppb
PEL-90-G-35	2	30	2	38	$\stackrel{1}{4}$	2	1	366	3.94	8	5	ND	2	6	2	2	2	19	. 21	1333	3	4	. 66	77	16	2	. 94	. 01	. 19	,	21
PEL-90-G-36	1	1	2	35	$\stackrel{1}{4}$	1	2	522	. 79	2	5	ND	3	28	2	2	2	5	. 23	<038	7	1	. 20	405	,02		. 45	. 02	. 16	2	2
PEL-90-G-37	50	158	2	92	$\stackrel{3}{3}$	20	42	1854	5.49	2	5	ND	1	12	7	2	2	50	. 06	\%111	7	47	1.37	44	\% 05.	2	2.56	. 04	. 10	\% 1	7
PEL-90-G-38	32	51	3	89	\%	19	14	969	6.51	0	5	ND	2	86	. 7	2	2	73	. 29	-095.	2	61	2.32	28	*28	2	2.51	. 04	. 08	1	10
PEL-90-G-39	4	14	2	21	\&\%	5	3	388	1.28	2	5	ND	4	19	. 2	2	2	6	. 18	-041	6	5	. 36	69	03.	2	. 65	. 03	. 09	2	4
PEL-90-G-40	5	21		11	-3.	1	2	184	3.58	4	5	ND	5	25	- 2	2	2	18	. 14	<092	2	3	. 26	86	16	+ 4	. 66	. 01	. 27	¢	26
PEL-90-6-41	4	27	2	33	2	4	3	464	4.77	5.	5	ND		17	. 3	2	2	37	. 21	181	3	12	. 79	74	22	2	1.00	. 01	. 25	1	25
PEL-90-G-42	1	1	4	46	$\stackrel{2}{2}$	3	2	248	2.62	\% 5	5	ND	2	16	4	2	2	44	. 31	160	3	9	. 91	74	16	2	. 99	. 03	. 18	2	10
PEL-90-G-43	1	30	2	11	$\stackrel{2}{2}$	1	2	87	7.84	$\stackrel{9}{1}$	5	ND	2	8	-3	2	2	27	. 03	014	3	5	. 26	53	18.	2	. 73	. 01	. 19	2	12
PEL-90-J-1	1	76	93	120	18.	26	25	2156	6.81	251.	5	ND	2	216	1.	8	2	74	1.49	250	7	45	1.52	10	32	2	1.94	. 01	. 02	2	43
PEL-90-J-2	4	8	2	36	\%	,	2	329	3.82	10	5	ND	4	32	2	2	2	30	. 21	+125	3	2	. 80	77	,17	2	. 96	. 03	. 17	\%	22
PEL-90-J-3	4	29	8	37	, 3	13	7	483	4.22	8	\% 5	ND	4	17	/2	2	2	52	. 38	204	5	21	1.18	76	20	3	1.13	. 04	. 17	§	18
PEL-90-J-4	3	12	9	32	+2	7	4	261	4.28	7	5	ND	3	15	2	2	2	24	. 27	221	5	8	. 63	89	15	2	. 77	. 02	. 18	1	32
PEL-90-J-5	5	27	6	25	5	10	2	275	4.18	\% 4	5	ND	3	17	3	2	2	46	. 22	207	5	34	. 78	106	\$22	2	. 86	. 03	. 21	\%	36
PEL-90-J-6	18	18	2	17	$\stackrel{3}{3}$	10	3	218	1.71	2	5	ND	1	8	. 2	2	2	10	. 18	1087	3	10	. 30	84	, 1	3	. 44	. 01	. 13		21
PEL-90-J-7	1	26	4	58	+3.	4	2	693	4.17	11	5	ND	3	45	$\stackrel{3}{5}$) 2	2	76	. 46	262	6	14	1.33	62	¢8.	2	1.20	. 04	. 12	\%	61
PEL-90-J-8	1	87	5	63	1.0	15	20	1241	9.67	16	5	ND	5	74	1.5	2	2	74	. 58	+295	7	35	1.47	27	34.	2	1.30	. 01	. 09	, 1	83
PEL-90-J-9	1	76	2	25	$\stackrel{3}{3}$	46	27	453	5.56	27.	5	ND	2	82	. 6	2	2	49	1.04	278	14	68	. 74	30	30.	2	. 85	. 04	. 11	\%	34
PEL-90-J-10	4	29	9	6	5*2	10	20	49	17.02	33.	5	15	1	7	6	25	275	2	. 05	-015	2	9	. 01	5	\%0\%	2	. 08	. 01	. 05	*	33400
PEL-90-J-10 REF	1	29	4	1	7,	5	18	32	16.90	30.	5	23	1	7	,	24	297	1	. 05	-013	2	5	. 01	5	015	3	. 03	. 01	. 03	1	46600
PEL-90-J-11	6	11	3	5	1	17	5	78	2.65	寿	5	ND	1	3	2	3	9	2	. 03	-005	. 2	13	. 01	21	0\%	2	. 08	. 01	. 04	\%	970
PEL-90-J-12	1	6	2	2	\% \%	7	16	64	3.63	8.8	. 5	ND	1	1	$\stackrel{2}{2}$	2	4	1	. 01	-003	- 2	4	. 01	5	- 01	2	. 04	. 01	. 01	\%1	600
PEL-90-J-13	5	588	10	247	3.6	34	29	1705	10.27	29	5	ND	2	31	1.6	2	3	121	. 80	\$305.	5	86	4.09	30	18.	2	3.72	. 01	. 06	\%1	74
PEL-90-J-14	1	30	20	78	\%	22	20	88	6.06	56	5	ND	1	18	\% 4	2	2	19	. 46	104	2	7	. 35	14	\% 01	2	. 71	. 03	. 12	\% 1	58
PEL-90-J-15	6	19	2	5	\% 7	10	12	101	5.63	2	5	3	5	7	, 2	2	7	9	. 16	073	3	8	. 13	30	\%1	2	. 36	. 01	. 16	1	1260
PEL-90-J-16	7	30	3	1	$\stackrel{3}{ }$	4	26	18	7.54	\% 8	- 5	ND	6	6	2	2	8	5	. 12	-055	2		. 02	19	-01	3	. 28	. 01	. 17	布	470
PEL-90-J-17	6	14	2	18	+1	7	26	448	4.11	10	5	ND	8	44	, 2	2	4	12	. 96	,082	11	3	. 66	69	-01	2	1.11	. 01	. 23	1	45
PEL-90-J-18	1	3	2	8	$\stackrel{2}{2}$	1	6	88	2.75	2	5	2	2	9	\%2	2	18	8	. 15	\%068	7	1	. 31	61	-1\%	3	. 56	. 02	. 17	\% 1	3360
PEL-90-J-19	3	7	2	13	\&1	5	6	368	3.62	2	5	ND	10	22	$\geqslant 2$	2	2	13	. 48	092	4	3	. 46	60	\% 01	3	. 70	. 03	. 16	1	370
PEL-90-J-20	2	1	2	7	-2	1	2	72	3.63	2	5	ND	9	10	\%2	2	8	8	. 09	064	3	1	. 28	60	\% 0	2	. 53	. 02	. 15	1	980
PEL-90-J-21	13	8	3	1	\geqslant	5	8	94	6.08	2	5	ND	7	9	2	2	6	5	. 17	-073	4	4	. 22	28	-04	5	. 53	. 02	. 19	\%	740
PEL-90-J-22	1	3	2	1	$\stackrel{1}{1}$	2	4	96	3.31	\% 4	5	ND	2	8	$\stackrel{2}{2}$	2	2	2	. 17	-024	2	2	. 05	28	0\%	2	. 17	. 01	. 07	1	1010
PEL-90-J-23	13	7	2	3	\cdots	7	2	875	2.86	2	5	ND	5	33	$\stackrel{2}{2}$	2	2	3	. 78	047	2	5	. 24	53	01,	2	. 30	. 01	. 15	\%	140
PEL-90-J-24	16	4	2	1	$\stackrel{2}{2}$	4	32	53	6.16	3	5	ND	2	12	\% 2	2	2	6	. 07	\% 019	2	1	. 04	22	,03.	2	. 23	. 01	. 11	1	18
PEL-90-J-25	5	5	2	1	\%	20	8	52	3.66	7	5	ND	1	1	\%2	2	2	1	. 01	00\%	2	11	. 01	22	, 01	2	. 04	. 01	. 01	<	610
PEL-90-J-26	1	8	2	30	$\stackrel{1}{ }$	12	29	214	3.18	2	5	ND	3	45	3	2	2	35	. 56	1488	3	10	1.32	34	10	3	1.22	. 05	. 15	1	5
STANDARD C/AU-R	19	57	39	132	7.2	72	31	1048	3.97	40	20	7	40	52	19.2	16	19	60	. 52	. 094	40	60	. 89	183	.09.	36	1.89	. 06	. 13	13	530

Cathedral Gold Corp. PROJECT 8103 FILE \# 90-4205
Page 3

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{2 n} \\ \text { ppm } \end{array}$	$\stackrel{\text { Ag }}{\text { ppm }}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{aligned} & \mathbf{e} \\ & \boldsymbol{z} \end{aligned}$	$\begin{gathered} \text { As } \\ \text { Ppmit } \end{gathered}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{A u} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\stackrel{\mathrm{cd}}{\mathrm{ppm}}$	$\begin{array}{r} \text { Sb } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ \text { pom } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{Z} \end{gathered}$	\%	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathbf{X} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\stackrel{1}{2}$	$\begin{array}{r} \text { B } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Al } \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & K \\ & \boldsymbol{Z} \end{aligned}$	$\underset{\mathrm{PQ}}{\mathrm{~m}}$	$\begin{aligned} & \mathrm{Au}^{*} \\ & \mathrm{ppb} \end{aligned}$
PEL-90-J-27	3	4	7	42	-3	9	8	301	2.90	4	5	ND	7	17	2.	2	2	31	. 18	088	3	7	. 67	40	\% 06	2	. 69	. 08	. 11	2	14
PEL-90-J-28	1	83	6	277	$\stackrel{9}{ }$	14	14	1086	18.72	10	6	ND	2	76	\$19.	2	2	64	. 48	104	2	15	3.02	9	\%13	2	3.28	. 02	. 03	3	1990
PEL-90-J-28 REF	1	193	7	293	1.0	4	20	1296	26.59	27	13	ND	2	17	1.6	2	2	60	. 14	-056	2	4	3.43	7	\% 10	2	3.76	. 01	. 05	, 1	2240
PEL-90-J-29	4	12	44	185	\% 7	11	19	970	7.76	2	5	ND	2	55	1, 4	2	3	79	. 42	185	2	17	2.02	60	\% 20	2	1.97	. 15	. 16	1 ,	41
PEL-90-J-30	1	6	32	89	$\stackrel{7}{2}$	4	5	347	5.38	2	5	ND	1	63	$\stackrel{2}{2}$	2	2	41	. 25	1085	4	7	. 59	71	,17.	2	. 97	. 07	. 20	,	36
PEL-90-J-31	2	5	6	168	. 5	7	18	439	3.29	3.	5	ND	1	81	\% 8	2	2	24	. 45	075	4	22	. 54	25	\%09	2	. 90	. 16	. 08	\%	16
PEL-90-J-32	2	9	55	199	$\stackrel{ }{ } 9$	6	11	1073	10.73	23	5	ND	2	28	\% $\%$	2	2	141	. 16	,142	2	10	3.11	40	\% 28	2	2.92	. 10	. 12	1	56
PEL-90-J-33	4	18	23	108	-4	11	14	477	5.85	2	5	ND	2	97	, 5	2	2	84	. 40	.147	4	13	1.62	65	\% 24	2	1.71	. 17	. 15	1	11
PEL-90-J-34	2	20	17	63	, 5	14	39	461	8.91	2	5	ND	2	49	4.0	2	2	82	. 33	175	2	9	1.63	47	\%22	2	1.64	. 15	. 13	\% 1	17
PEL-90-J-35	25	,	3	2	\% 1	2	2	41	2.01	2	5	ND	8	6	\%2	2	2	6	. 07	\$049	2	12	. 05	110	\$05	2	. 52	. 02	. 33	§, 1	4
PEL-90-J-36	2	4	4	13	2	4	4	129	2.51	2	5	ND	3	38	, 2	2	2	34	. 43	-200	3	5	. 44	200	16:	2	. 82	. 10	. 24	1	8
PEL-90-J-37	4	22	11	11	3	1	1	76	5.57	2	5	ND	3	14	2	2	2	42	. 09	. 049	2	5	. 25	190	29	2	. 82	. 05	. 35	2	24
PEL-90-J-38	19	16	2	2	2	1	1	10	5.65	2	5	ND	2	2	2	2	2	13	. 01	. 0001	2	1	. 04	230	\% 17	2	. 73	. 01	. 32	》1	15
BR-90-J-1	5	3	3	4	2	10	3	288	. 99	7	5	ND	1	24	$\stackrel{2}{2}$	2	2	6	. 91	. 020	2	45	. 03	31	\% 0	2	. 14	. 01	. 08	, 1 ,	4
STANDARD C/AU-R	18	59	38	132	172	72	31	1049	3.97	42	20	7	39	55	19.5.	15	18	58	. 52	,097	39	59	. 90	182	. 09	35	1.90	. 06	. 13	13.	520

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4205
Page 4

SANPLE\＃	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathbf{p P R} \mathbf{R}^{2} \end{array}$	$\stackrel{\mathrm{A}_{\mathrm{p}},}{ }$	$\underset{\substack{\mathrm{pi} \\ \hline}}{ }$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} M n \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathbf{\%} \end{gathered}$	$\stackrel{\text { ppon }}{ }$	$\begin{array}{r} \mathrm{U} \\ \text { ppm } \end{array}$	Au ppm	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{cd} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { ppin } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	\forall	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pprin} \end{gathered}$	$\begin{array}{r} \mathrm{Mg} \\ \mathbf{X} \end{array}$	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	$\%$	$\begin{array}{r} \mathbf{B} \\ \mathbf{p p m} \end{array}$	$\begin{gathered} \text { AI } \\ \mathbf{X} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & k \\ & \mathbf{x} \end{aligned}$		A u^{*} ppb
PEL－90－DS－1	12	91	18	71	\％	2	7	825	7.75	11	9	ND	11	9	\％	2	4	25	． 06	\％048	30	8	． 15	30	¢18．	2	3.71	． 06	． 07	\cdots	9
PEL－90－DS－2	5	31	39	104	8	12	3	850	3.69	16	5	ND	3	65	2	2	2	51	． 37	105．	18	32	1.24	380	． 24	2	1.88	． 01	． 14	！	12
PEL－90－DS－3	15	103	20	112	5．	9	7	724	5.47	7	5	ND	6	50	－3	2	2	50	． 25	\％144．	15	17	． 98	90	22	2	2.09	． 03	． 08	疗	40
PEL－90－DS－4	7	43	41	91	－ 9	14	5	614	4.74	13	5	ND	4	66	3	2	3	52	． 24	168	13	35	1.02	304	\％ 30	2	1.97	． 02	． 11	\％	89
PEL－90－DS－5	7	84	44	111	$\geqslant .0$	12	16	776	5.16	\％1\％	5	ND	4	60	$\stackrel{5}{5}$	2	3	81	． 20	\％086	11	45	1.12	104	4 47.	3	2.86	． 02	． 06	\％	190
PEL－90－DS－6	9	14	18	96	，\％	2	5	1154	9.25	\％ 15	7	ND	11	2	． 8	2	4	32	． 03	\％039	35	13	． 08	9	\％20	2	3.43	． 06	． 08	水	10
PEL－90－DS－7	7	748	8	75	1．5．	10	57	1059	1.02	30	5	ND	1	28	\％ 8	2	2	7	． 31	， 127	39	3	． 04	26	， 02	2	10.10	． 01	． 01	ィ	29
PEL－90－DS－8	7	28	51	70	， 7	7	3	360	4.58	6	5	ND	3	31	4	2	2	51	． 13	．087	19	19	． 51	109	，31，	2	2.34	． 02	． 07	1	38
PEL－90－DS－9	7	27	212	70	10	8	2	411	3.49	17	5	ND		49	2	2	2	46	． 20	101	10	22	． 87	170	24	2	1.68	． 01	． 06	，	12
PEL－90－DS－10	7	31	27	84	＊ 3 \％	16	7	888	5.68	14	5	ND	5	33	\％ 2	2	2	43	． 15	＊ 122	20	23	． 80	137	\％ 23.	2	2.88	． 02	． 06	＊	32
PEL－90－DS－11	14	112	150	292	， 7 \％	20	32	992	28.09	157	5	ND	2	42	1.3	2	2	15	． 04	\％ 514	28	6	． 19	154	\％8．	2	3.26	． 01	． 04	9	99
PEL－90－DS－12	7	35	44	80	\％	6	4	361	6.16	13.	5	ND	5	16	2	2	4	43	． 09	113．	17	13	． 57	58	\％ 36	2	2.36	． 03	． 05	行	85
PEL－90－DS－13	22	44	46	67	．	9	8	369	5.20	23．	5	ND	4	54	\％ 8	2	2	54	． 39	，081	11	15	． 81	67	445	2	1.83	． 13	． 11	迷	350
PEL－90－DS－14	43	137	17	91	\％ 6	16	20	797	14.53	15	9	ND	8	43	2，	2	5	118	． 15	$\stackrel{292}{ }$	5	44	1.40	92	40．	2	2.50	． 04	． 06	\}	56
PEL－90－DS－15	169	215	10	42	\％ 4.	7	28	802	15.59	5	7	ND	14	17	1，4	2	4	35	． 07	348	3	14	． 44	51	． 20	2	1.17	． 01	． 07	，	69
PEL－90－DS－16	10	35	19	59	， 3	6	6	452	4.03	9．	5	ND	3	75	2	2	2	39	． 35	\％168	7	10	． 86	228	24．	2	1.27	． 05	． 10	\％	21
STANDARD C／AU－S	18	57	40	131	\％\％	72	31	1048	3.97	4	20	7	39	53	19．3	15	19	57	． 51	\％093	39	58	． 90	181	． 09.	35	1.90	． 06	． 14	11	48

Cathedral Gold Corp. PROJECT 8103 File $\underset{800-601 ~}{4}$. Hastings st. Vancouver BC V6B $\underset{56}{\#} 90-4290 \quad$ Page 1

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { ppp } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{pppm} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{pp} \mathrm{~m} \end{array}$	$\begin{array}{r} 2 n \\ p p m \end{array}$	$\begin{gathered} \text { Ag } \\ \text { ppon } \end{gathered}$	$\begin{array}{r} \text { Ni } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{rr} \mathrm{Mn} \\ \mathrm{n} & \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \mathbf{\%} \end{array}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} U \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Au } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	Sr	$\begin{gathered} \mathrm{cd} \\ \text { pen } \end{gathered}$	$\begin{aligned} & \text { Sb } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ \mathrm{ppom} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \boldsymbol{\%} \end{gathered}$		La ppin	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{Pp} \text { PII } \end{array}$	$\begin{array}{rl} \mathrm{n} & \mathrm{Mg} \\ \boldsymbol{X} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	T1,		$\begin{aligned} & \text { A! } \\ & \text { \% } \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \boldsymbol{x} \end{gathered}$			$A u^{*}$ ppb
PEL-90-G-44	3	18	38	482	2	\% 7	4	414	3.92	20	2	ND	1	8	1.4	2	2	37	. 16	. 098	+ 2	16	1.32	98	17		1.15	. 02	. 15	3	51
PEL-90-G-45	2	23	4	50	1	- 7	5	359	2.52	12	2. 5	ND	1	20	. 5	3	5	20	. 33	. 077	2	7	1.07	99	12	5	1.28	. 03	. 19	3	25
PEL-90-G-46	16	62	5	20	9	6	10	37	13.33	23) 5	ND	4	9	. 4	2	7	35	. 03	. 055	3	25	. 06	74	10	8	. 40	. 01	. 13	2	220
PEL-90-G-47	9	11	584	6	2	2	17	8	40.74	334	4 5	ND	6	6	$\stackrel{\circ}{\circ}$	2	2	167	. 01	4.484	2	44	. 02	29	-02	3	. 68	. 01	. 02	3	15
PEL-90-G-48	5	728	88	1336	1.1	460	52	2410	8.55	73	7	ND	2	57	72	2	4	79	. 77	284	6	643	3.50	23	13.	5	4.10	. 01	. 06	2	59
PEL-90-6-49	16	10	2	246	3.	22	45	4879	3.54	5	5	NO	9	29	1.4	2	2	19	. 59	097	\% 13	3	3.85	115	- 04		1.76	. 04	. 12	1	12
PEL-90-G-50	13	13	2	32	$\stackrel{1}{1}$	5	18	625	2.11	4	5	ND	7	73	$\stackrel{7}{ } 8$	2	2	45	. 55	104	8	10	1.16	177	08	3	1.43	. 05	. 08	2	4
PEL-90-G-51	15	11	16	25	1	4	6	404	2.71	9	2 5	ND	6	63	-4	2	2	46	. 49	164	8	5	1.00	140	. 06	2	1.19	. 05	. 07	1.	4
PEL-90-G-52	3	7	2	21	2	13	1	504	. 79	2	2 5	ND	1	20	. 4	2	3	8	. 75	. 024	8	14	. 27	23	-01.	3	. 40	. 01	. 04	1	4
PEL-90-G-53	2	8	3	122	11	7	9	4170	4.72	2	2 5	ND	6	3306	$\stackrel{9}{ }$	2	2	61	12.64	. 019	6	3	31.25	182	-01.	5	2.05	. 01	. 05	1	1
PEL-90-J-65	8	32	8	49	3	19	13	417	2.44	2	2. 5	ND	1	17	$\stackrel{2}{ }$	2	2	15	. 20	. 095	3	46	. 50	126	02	3	. 76	. 01	. 13	2	18
PEL-90-J-66	15	478	24	351	$\stackrel{3}{3}$	5	13	208	22.28	18	2. 5	ND	2	87	2	2	29	147	. 33	.282	5	10	. 10	25	114	5	. 85	. 01	. 01	1	540
PEL-90-J-67	39	348	23	104	1.0	23	20	344	18.02	20	. 5	ND	1	172	1.1.	2	2	80	. 44	.201	8	31	. 15	92	13	2	1.01	. 01	. 08	2	300
PEL-90-J-68	6	141	3	216	2	13	7	1610	7.63	11	5	ND	1	78	17	2	2	66	. 22	178	. 13	8	1.75	76	13	4	1.96	. 01	. 03	1	13
PEL-90-J-69	7	163	23	251	. 8	16	9	927	8.22	6	5	ND	3	36	$\stackrel{4}{4}$	2	2	63	. 03	. 192	17	44	1.65	161	06	4	2.43	. 03	. 15	1	32
PEL-90-J-70	4	84	23	156	5	28	31	873	12.37	5	5	ND	,	24	1.4	2	2	51	. 04	. 069	4	45	1.18	59	25	2	1.54	. 01	. 11	1	69
PEL-90-J-71	7	277	93	177	5.4		10	772	6.07	10) 5	ND	1	171	$\stackrel{9}{9}$		2	60	. 43	. 098	10	31	1.38	143	+28	2	1.79	. 03	. 10	1	28
PEL-90-J-72	3	9	16	131	-8	8	7	769	5.82	31	5	ND	1	200	¢ 9	2	2	85	. 85	. 104	6	27	1.18	25	. 35	6	1.49	. 01	. 10	2	89
PEL-90-J-73	3	11	21	58	1	6	16	814	6.45	15	5	ND	1	204	1.0	2		72	1.02	. 085	5	19	1.49	21	33.	3	1.66	. 02	. 03	1	31
PEL-90-J-74	2	18	4	60	7	7	28	1260	9.79	19.	5	ND	2	39	7	2	6	69	. 50	178	4	12	2.37	61	17.	5	2.20	. 05	. 29	3	29
PEL-90-J-75	3	12	7	28	2	4	22	353	4.16	22	5	ND	,	63	$\stackrel{2}{2}$	2	2	37	. 34	. 056	4	6	. 63	52	15	4	. 78	. 06	. 13	1	27
PEL-90-J-76	5	11	16	9	3	17	16	113	8.23	93.	5	ND	1	106	1.1	2	2	114	. 33	. 095	4	42	. 15	32	43	2	. 51	. 04	. 09	1	110
PEL-90-J-77	1	42	2	26	1.7	6	3	62	1.12	6	5	ND	1	11	2	2	2	8	. 22	. 099	4	5	. 08	55	. 05.	2	. 68	. 01	. 19	1	61
PEL-90-J-78	1	23	12	38	\cdots	40	9	439	5.61	14	5	ND	1	26	$\stackrel{5}{5}$	2	2	85	. 25	122	5	67	1.54	74	24.	6	1.36	. 05	. 06	2	31
PEL-90-J-79	4	320	13	192	2.2	59	71	3542	5.42	26	5	ND	1	11	$\stackrel{0}{ }$	2	2	17	. 17	200	6	6	. 46	132	01.	2	2.39	. 01	. 12	1	82
PEL-90-J-80		251	16	138	2.8	43	116	5385	4.93	29	5	ND		7	-6.	2		15	. 12	137	5	6	. 41	91	05	3	1.39	. 01	. 15		125
PEL-90-J-81	2	39	2	15	$\stackrel{1}{1}$	8	11	708	. 44	3	5	ND	14	7	-2	2	2	2	. 11	033	5	11	. 05	114	01	2	. 43	. 01	. 17	1	9
PEL-90-J-82	5	39	10	77	1.2	12	8	260	3.57	26.	5	ND	1	15	$\stackrel{6}{6}$	2	2	16	. 35	183	5	5	. 66	85	14	2	. 98	. 01	. 19	1	92
PEL-90-J-83	4	25	37	48	2.8	14	8	206	4.70	85	5	ND	1	98	-6	2	2	53	. 60	101	4	25	. 32	54	29	6	. 70	. 04	. 07	1	200
PEL-90-J-84	4	21	21	8	1.8	14	13	112	7.31	20	5	ND	1	49	$\stackrel{2}{2}$	2	2	20	. 23	. 044	2	11	. 03	29	10	2	. 29	. 02	. 06	1	133
$\begin{aligned} & \text { PEL-90-J-85 } \\ & \text { STANDARD C/AU-R } \end{aligned}$	20	$\begin{aligned} & 15 \\ & 62 \end{aligned}$	14 42	86 130	7\%	10 73	3 32	$\begin{array}{r} 761 \\ 1053 \end{array}$	4.21 3.97	35	5 18	ND 7	1 39	21	19.2	2	20	53 57	.36 .52	163 .095	6 40	$\begin{aligned} & 15 \\ & 59 \end{aligned}$	2.19 .90	76 183	-29.	3	$\begin{aligned} & 2.01 \\ & 1.89 \end{aligned}$. 04	.16 .13	11	73 510

> ICP - . 500 GRAM SAMPLE IS DIGESTED WITH $3 M L 3-1-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
> THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 ROCK P2 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Cathedral Gold Corp. PROJECT 8103 FILE \# 90-4290
Page 2

SAMPLE\#	$\begin{aligned} & \text { Mo } \\ & \text { ppm } \end{aligned}$	$\underset{\text { ppm }}{\mathbf{C u}}$	Pb ppm	$\begin{array}{r} \mathbf{Z n} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { ng } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \mathbf{X} \\ \hline \end{array}$	$\begin{gathered} \text { As } \\ \text { ppin } \end{gathered}$	$\begin{array}{r} \mathbf{U} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \text { Au } \\ \text { ppmin } \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{cd} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \mathbf{B i} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} V \\ p p i n \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{x} \end{gathered}$	$\boldsymbol{*}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{~K} \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	7	$\begin{array}{r} B \\ p p n_{n} \end{array}$	$\begin{gathered} \text { Al } \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{x} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{x} \end{aligned}$	ppin	$A u^{*}$ ppb
PEL-90-DS-18	7	18	53	80	6	9	6	433	4.44	15	5	ND	5	53	. 2	2	3	56	. 43	-064	17	18	. 82	85	$\stackrel{43}{ }$	2	2.54	. 13	. 11	1.	46
PEL-90-DS-19	31	99	229	138	$\stackrel{.}{ }$	15	45	1182	6.77	29	6	ND	5	52	3	3	3	52	. 44	+118	15	18	. 79	175	. 33	2	4.37	. 15	. 13	1	66
PEL-90-DS-20	10	48	34	84	¢ 4	6	12	599	6.65	12.	5	ND	8	48	2	2	2	43	. 21	-086	14	16	. 60	34	. 26	3	2.09	. 01	. 05	2	19
SER-90-B-1	6	208	36	189	7.	24	14	1284	10.72	17.	5	ND	5	75	1.4	2	3	88	. 22	. 363	16	33	1.63	170	$\stackrel{30}{ }$	2	2.83	. 07	. 10	1	104
SER-90-B-2	4	231	39	218	6	24	23	1916	10.37	13.	5	ND	4	72	1.4	2	2	109	. 35	+330	13	27	1.77	139	$\stackrel{36}{ }$	2	2.92	. 11	. 13	1.	65
SER-90-B-3	5	160	23	190	${ }^{6}$	22	18	1566	9.67	18	5	ND	7	54	1.2	2	2	87	. 21	+307	21	23	1.41	145	+39	2	3.13	. 08	. 11	1.	67
SER-90-B-4	4	222	23	179	. 6	31	26	1719	9.19	19	5	ND	4	68	1.4	2	2	114	. 42	, 316	14	28	1.91	170	-39	2	3.22	. 14	. 13	1	52
SER-90-B-6	5	190	26	250	. 7	44	38	3573	8.79	10	5	ND	5	64	1.7		2	72	. 50	-205	19	23	1.52	286	. 37	2	3.14	. 18	. 12	1	65
SER-90-B-7	5	118	26	172	1.0	25	21	1701	8.87	26.	5	ND	5	66	$\stackrel{\square}{9}$	2	3	77	. 28	$\stackrel{263}{ }$	16	33	1.44	188	34	2	3.25	. 09	. 10	1.	280
SER-90-B-8	4	78	75	160	2.0	21	9	976	8.58	33	5	ND	4	67	$\stackrel{\bigcirc}{\circ}$	3	2	99	. 20	217	23	48	1.48	278	41	2	2.86	. 07	. 10	$\stackrel{1}{*}$	134
SER-90-B-9	5	117	50	153	1.3	27	18	1192	7.73	26	5	ND	4	62	. 6	2	2	77	. 33	,228	16	34	1.29	197	$\stackrel{35}{ }$	3	3.07	. 11	. 10	$\stackrel{1}{ }$	90
SER-90-B-10	6	174	26	220	$\stackrel{6}{6}$	35	29	3015	8.94	13	5	ND	7	35	1.4	2	2	57	. 11	.227	22	24	1.09	189	,24	2	3.25	. 04	. 08	1	57
SER-90-B-12	4	231	25	178	${ }^{6}$	31	27	1840	9.12	17.	5	ND	4	62	1.3		2	109	. 33	324	14	27	1.80	151	. 34	2	3.11	. 11	. 11	1	52
SER-90-8-13	4	200	32	204	8	24	21	1738	9.66	15	5	ND	4	67	1.3	2	2	98	. 29	, 322	14	26	1.67	130	$\bigcirc 35$	2	2.75	. 09	. 13	1	760
SER-90-B-14	5	213	34	179	$\stackrel{7}{7}$	22	15	1237	10.09	20	5	ND	5	73	1.3	2	2	85	. 23	,337	15	27	1.44	184	-33.	2	2.63	. 07	. 10	,	141
SER-90-B-15	4	47	27	139	1.2	11	8	532	7.32	32	5	ND	3	55	3	2	3	81	. 37	, 158	17	27	. 99	109	.36	2	2.73	. 13	. 09	1	140
SER-90-B-16		54	18	108	$\stackrel{\circ}{6}$	39	12	568	9.93	40	5	ND	3	55	1.2	2	2	116	. 41	¢201	9	31	1.55	74	$\stackrel{45}{ }$	2	2.21	. 14	. 09	1	79
SER-90-8-17	5	105	29	115	1.0	22	11	810	8.96	46	5	ND	5	70	1,1	2	4	79	. 27	-254	15	26	1.21	188	$\stackrel{38}{ }$	2	2.70	. 08	. 78	1	145
SER-90-8-18	6	219	43	155	1,1	25	15	1106	12.58	51	5	ND	11	73	1.5	2	4	74	. 17	+364	20	26	1.34	337	. 29		2.98	. 05	. 11	1	110
SER-90-8-19	5	223	55	183	1.4	30	23	1527	10.01	59	5	ND	5	51	1.7.	2	4	68	. 12	. 309	17	24	1.38	210	-39	2	2.80	. 04	. 08	1	320
STANDARD C/AU-S	18	57	38	131	6.8	70	32	1049	3.97	38	21	7	38	53	18,4	15	20	55	. 52	.094	37	57	. 90	180	.09	35	1.90	. 06	. 14	11	45

 GEOCHEMICAT ANATYSIS CERTIFICATE
Cathedral Gold Corp．PROJECT 8103 File \＃90－4294
Page 1

SAMPLE\＃	$\begin{array}{r} \text { Mo } \\ \text { pppa } \end{array}$		$\begin{array}{r} \mathrm{Pb} \\ \mathrm{pp} \mathrm{~m} \end{array}$	$\text { b } \quad 2 n$		$\begin{gathered} \mathrm{Ni} \\ \hline \mathrm{pp} \end{gathered}$	$\begin{aligned} & \text { Co } \\ & \text { ppin } \end{aligned}$	$\begin{aligned} & \text { Mn } \\ & \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{Fe} \\ \mathbf{x} \end{array}$	$\begin{array}{\|c\|} \text { nsp } \\ \text { pp } \end{array}$	$\begin{array}{r} \text { U } \\ \text { Ppm } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { Th } \\ & \text { ppin } \end{aligned}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppp} \end{gathered}$		$\begin{aligned} & \text { Sb } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathbf{8 i} \\ \text { ppin } \end{array}$	$\begin{array}{r} V \\ \text { ppim } \end{array}$	$\begin{gathered} \mathbf{C a} \\ \boldsymbol{\chi} \end{gathered}$		La	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \mathbf{Z} \end{gathered}$	$\mathrm{g} \text { Ba }$			$\begin{gathered} \mathbf{A !} \\ \mathbf{X} \end{gathered}$	$\begin{array}{r} \mathrm{Na} \\ \mathbf{Z} \end{array}$	$\ddot{\%}$		lub
－12＋004	6	48	10	63	外2	8	16	1542	5.89	$\stackrel{2}{2}$	5	ND	1	48	＊${ }^{2}$	2	2	72	． 37	098	16	17	． 58	97	3 S	5	3.35	11	． 08		7
8 11＋7	4	26	5	579	＊ 1	15	7	777	5.26	\％	5	ND	1	127	\＄ 4	2	2	65	． 73	，098	4	26	1.00	107	和 3	6	1.86	． 07	． 10	\％	7
8 $11+25 \mathrm{~W}$	6	27	18	65	\％2	3	2	285	7.02	\％ 3	5	ND	6	10	2	2	2	57	． 06	， 059	39	20	． 11	16	\％27	7	4.42	． 04	． 05	$\stackrel{1}{ }$	2
B 10＋254	7	34	21	90	\＆ 2	6	3	299	3.56	\％	5	ND	1	58	4	2	2	58	． 25	07\％	16	17	． 70	172	交2	5	2.46	． 01	． 04	＊人去	32
8 10＋00N	3	33	16	71	\％ 2	9	5	471	3.35	12	5	ND	2	84	\%	3	2	49	． 41	103	8	20	1.06	282	82	4	1.77	． 05	． 19		148
B 9＋75W	5	20	19	49	的	3	2	132	6.99	6	5	ND	2	12	紬	2	2	106	． 08	\％062	16	17	． 13	25		7	1.43	． 02	． 05	納	7
B 9＋504	9	20	13	90	\％ 3	4	3	439	9.30	85	5	ND	6	6	者	2	2	35	． 09	\％05\％	57	14	． 01	18		5	3.76	． 05	．06	納	3
B 9＋25W	9	23	19	67	\％2	5	4	477	8.77	8	5	ND	4	12	\％	2	2	94	． 11	133	15	17	． 25	25	\％ 6	6	1.99	． 02	． 04	\％	8
B 9＋00N	3	19	49	32	3	2	1	147	5.42	16	5	NO	6	13	2	2	4	36	． 04	，047	2	5	． 22	51	苼 5	6	． 50	． 01	． 06	2	68
B 8＋75W	5	27	45	85	\％	10	4	440	6.38	24	5	ND	1	59	\％	2	2	75	． 31	\％06\％	7	29	． 78	264	\％	5	2.42	． 01	． 10		40
B 8＋50W	10	41	13	72	就	6	3	118	1.35	\％ 4	5	ND		20	\％＊		2	49	． 26	\％ 0^{0}	42	20	.41	35	年 ${ }^{\text {\％}}$	2	4.97	． 03	． 03	納	8
B 8＋25W	1	65	33	68	寺	6	4	87	15.34	6	5	No	4	14	＊ 8 \％	3	2	118	． 12	\％063	17	22	． 20	18 ：	\％ 0	3	2.87	． 04.02	． 02	＊＊	1
B 8＋004	31	17	2	34	\％ 2	3	2	35	7.39	2	5	ND	2	62	＊ 5	2	2	23	． 48	\％ 067	16	3	． 03	10	\％等皿	2	10.17	． 02	． 01	4	3
BLI 10＋00N 3＋00N	8	45	19	86	\％ 2	11	10	571	5.24	11	5	NO	5	74	\％ 2	3	2	61	． 43	148	21	16	． 90	214	的	7	2.19	． 10	． 11		22
BLI 10＋00N 2＋75N	8	48	14	60	\％ 1	8	5	277	6.65	\％$\%$	5	ND	4	39	郎䜌	2	4	81	． 28	， 12	20	20	． 60	53	率納	9	3.05	． 07.	． 06		33
BLI 1 10＋00W 2＋50	7	41	11	85	\％	13	11	614	5.38	\％	5	ND	5	75	\％的 4	2	2	69	． 55	寺 2%	15	18	1.01	156	洨 0	7	2.52	． 18	． 12	＊	54
BLI 10＋00N $2+25 \mathrm{~N}$	11	51	14	66	4	11	27	974	6.67	－	5	ND	7	59	就2	5	2	64	． 33	88\％	11	16	． 90	220	シ， 3	6	1.90	． 07.	． 08	䊽	56
BLI 10＋00N 2＋00N	7	49	13	128	\％	14	10	857	5.58	7	5	ND	4	85	先	2	2	69	． 54	155	22	26	1.16	448	＊ 3	6	2.38	． 10	． 14	＊＊	84
BLI 10＋00N 1＋75N	5	63	12	320	＋	16	30	3784	6.99	5	5	ND	1	59	\％	3	2	81	． 53	\％ 215	14	29	1.62	358 ；	蒳	6	3.44	． 08	． 08	＊㸚	26
BLI 10＋00N 1＋50N	1	23	6	83	\％ 2	18	17	538	4.66	？	5	ND	1	109	行	2	2	94	1.06	\％98	4	18	1.20	76	\％为䅋	6	1.80	． 36.	． 14		14
BLI 10＋00W 1＋25	48	53	14	75	\％	8	16	608	4.33	\％ 3	5	ND	1	50	\％	2	2	72	． 29	－094	21	24	． 64	144	侍	7	2.81	． 02.	． 05	緢	41
BLI 10＋00N 0＋50N	10	71	12	66	\％	5	6	410	6.63	\％$\%$	5	ND	1	57	\％${ }^{\text {s }}$	2	2	52	． 19	\％092	14	13	． 71	135	\％ 16	5	2.56	． 01.	． 05		23
BLI 10＋004 0＋25N	7	25	3	54	\％	3	2	168	9.12	10	5	ND	6	5	\％$\%$	2	2	37	． 05	052	43	20	． 01	14	＊ 22	7	5.23.	． 03.	． 04		4
BLI 9＋00N 3＋00N	9	46	13	78	＋	9	4	339	6.04	10	5	ND	5	28	\％	2	2	55	． 14	\％ 109	26	20	． 56	50		7	3.41.	． 04.	． 07		16
BLI 9＋00W 2＋75N	9	23	17	105	＊	7	5	533	7.16	\％10	5	ND	15	9	\％ 3	2	2	38	． 10	\％ 058	22	11	． 21	25		7	3.94 ．	． 13.	． 09		3
BLI 9＋00W $2+50 \mathrm{~N}$	7	32	11	75	令	4	2	214	7.39	15	5	ND	8	5	\％$\%$	2	2	37	． 07	\＄07\％	37	14	． 11	9	\％ 22	6	4.21.	． 06.	． 08		11
BLI 9＋00N $2+25 \mathrm{~N}$	8	38	16	73	\％ 1	10	6	372	5.02	＊	5	ND	3	46	\％ 2	2	2	61	． 29	097	18	19	． 74	63	＊$\%$	6	2.50.	． 08.	． 07	＊約	36
BLI $9+00 \mathrm{~N} 2+00 \mathrm{~N}$	11	33	18	71	＊	9	5	342	4.91	\％	5	ND	2	55	\％ 4	2	2	60	． 29	\％ 108	13	18	． 79	125		7	2.10	． 05	． 06	紬	38.
BLI $9+00 \mathrm{~N} 1+75 \mathrm{~N}$	31	64	11	68	\＆	10	5	371	6.84	10	5	ND	1	42	行	2	2	56	． 19	3134	19	38	． 70	95		6	5.04	． 01.	． 03	\％isk	31
BLI $9+00 \mathrm{N1+50N}$	6	49	16	56	\％ 2	6	4	137	4.78	4	5	ND	1	18	\％ 2	2	2	87	． 20	080	22	29	.33	28	多新	6	4.30 ．	． 04.	． 04	絞	6
BLI $9+00 \mathrm{~W} 1+25 \mathrm{~N}$	10	24	13	63	＊	3	2	341	12.38	\％${ }^{\text {a }}$	9	Ho	11	4	\％ 1 \％	2	2	41	． 04	\％093	26	17	． 01	13		4	3.49.	． 03.	． 03	紬	1
BLI 9＋00N 1＋00N	10	22	13	73	2	4	6	1039	8.79	13	5	NO	8	7	紷 6	3	2	63	． 06	\％4\％	34	21	． 10	9	考尔	4	2.89.	． 04.	． 05	＊	1
BLI 9＋00N 0＋75N	8	20	15	69	戍	3	2	557	7.89	14	5	ND	8	4	\％ 2	2	4	30	． 06	\％ 050	36	15	． 01	6	多埰	6	4.66 .05	． 05.	． 04	＊	1
BLI 9＋00W 0＋50N	7	14	12	87	，\％	4	3	442	6.09	14	8	ND	14	4	\＆ 2	2	2	16	． 06	033	48	8	． 08	27	䋛寊	6	5.05.	． 07.	． 07	＊	34
BLI 9＋00W $0+25 \mathrm{~N}$	24	115	26	116	\％ 2	11	24	973	9.09	38	5	ND	3	52	10	4	2	58	． 49	V70	8	12	． 89	74	多 88	3	1.90.	． 18.	． 08	i_{i}	59
BLI 8＋00W 3＋00N	9	27	7	74	\％	6	4	357	4.45	5	5	ND	1	50	新	3	3	58	． 25	125	7	14	． 63	152	－20	7	2.21.	． 02.	． 05	效	27
STANDARD C／AU－S	19	60	37	131	6．8．	72	31	1048	3.97	39	19	6	39	52	18．6．	15	18	59	． 52	09\％	38	57	． 90	182	80\％	40	1.89.	． 06.	． 14	\％	45

ICP－． 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3－1－2 HCL－HNO3－H2O AT 95 DEG．C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER．
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI 8 H AND LIMITED FOR NA K AMP AlP AU DETECTION LIMIT BY ICP IS 3 PPM．
－SAMPLE TYPE：P1－6 SOIL P7 ROCK AU＊ANALYSIS BY ACID LEACH／AA FROM 10 GM SAMPLE．f

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4294
Page 2

SAMPLE\＃	$\begin{aligned} & \text { Mo } \\ & \text { Pppm } \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \text { ppm } \end{array}$	ing	$\begin{gathered} \mathbf{N i} \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { pprn } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\underset{\text { prus }}{\boldsymbol{n}}$	$\begin{array}{r} \mathrm{U} \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Au } \\ \text { ppm } \end{gathered}$	$\begin{aligned} & \text { Th } \\ & \text { ppprin } \end{aligned}$	$\begin{array}{r} \mathbf{S r} \\ \mathrm{pppm} \end{array}$		$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} B i \\ \text { ppom } \end{array}$	$\begin{array}{r} \mathrm{V} \\ \mathrm{ppn} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{\%} \end{gathered}$	$\stackrel{\otimes}{8}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Cr}}$	$\begin{aligned} & \hline \mathbf{M g} \\ & \boldsymbol{\%} \end{aligned}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{pppm} \end{gathered}$	$\begin{aligned} & \text { Kive } \\ & \text { kisisisis } \\ & \hline \end{aligned}$	$\begin{array}{r} B \\ \text { ppin } \end{array}$	$\underset{X}{A l}$	$\begin{gathered} \mathrm{Na} \\ \boldsymbol{\%} \end{gathered}$	\mathbf{Z}		$\begin{aligned} & \text { Au } \\ & \text { Ppb } \end{aligned}$
BLI $8+00 \mathrm{~W} 2+75 \mathrm{~N}$	8	33	19	99	\＄3．	15	7	811	6.70	16	5	ND	12	26	\％ 8	2	2	44	． 13	\％084	30	21	． 69	85	24		3.50	． 05	． 07	\％s\％	31
8LI $8+00 \mathrm{~N} 2+50 \mathrm{~N}$	12	121	21	65	约	7	3	207	10.72	15．	5	HD	9	16	\％	2	2	63	． 08	8085	26	24	． 31	17	\％\％		2.89	． 05	． 05	\％	79
BLI $8+00 \mathrm{~N} 2+25 \mathrm{~N}$	25	175	8	107	\％2	4	13	812	5.77	\％	5	ND	6	71	\％$\%$ 。	2	2	51	． 25	16\％	9	8	． 96	57	六2．		1.64	． 02	． 05	有	20
8L1 $8+00 \mathrm{~N} 2+00 \mathrm{~N}$	9	19	12	74	＊	3	3	217	6.44	18 18	5	NO	15	4	\％为8．	3	2	14	． 05	\％ 040	40	10	． 04	10	k 18		4.87	． 07	． 05	湤	6
6LI 8＋00N 1＋75N	34	61	13	69	緃	5	8	448	5.62	\％2	5	ND	6	7	\％㳰	3	2	34	． 07	\％ 040	37	15	． 16	11 維	的 2.		3.97	． 07	． 06		3
BLI $8+00 \mathrm{~N} 1+50 \mathrm{~N}$	13	31	24	48	\％	4	4	290	3.79	17	5	ND	3	15	s2	2	2	31	． 09	\％ 05	4	8	． 42	54		4	． 89	． 02	． 06	＊	98
BLI $8+00 \mathrm{~N} 1+25 \mathrm{~N}$	4	43	76	123	曻	14	4	709	3.19	21	5	ND	2	61	引細	3	2	56	． 20	\％${ }^{\circ} 8$	8	29	1.12	404	渋的盎		1.62	． 01	． 13	\％	55
8LI $8+00 \mathrm{~W} 1+00 \mathrm{~N}$	5	40	145	125	碞	51	4	905	4.14	外	5	ND	2	65	\％	2	2	60	． 27	\％08\％	11	96	1.42	281	26		2.12	． 01	． 08	跤	80
BLI $8+00 \mathrm{~N} 0+75 \mathrm{~N}$	7	24	16	57	\％ 2	5	4	280	7.29	10	5	ND	7	7	納为	3	2	65	． 07	S048	29	22	． 22	15			2.97	． 04	． 06	行	4
BLI $8+00 \mathrm{~N} 0+50 \mathrm{~N}$	1	91	6	30	＊ 2	3	4	36	41.65	2	5	ND	4	3	42	7	2	52	． 02	§4＊	5	6	． 01	6	令为		1.03	． 01	． 01	\％为	2
BLI $8+00 \mathrm{~N} \quad 0+25 \mathrm{~N}$	75	12	7	49	\％	5		196	． 91 \％	\％ 17	5	ND	1	383	认約	2	2	6	2.91	\％\％	24	4	． 01	21 \％	紋0，	2	1.88	． 02	． 01	\％9	1
BLI 7＋00W 3＋00N	5	200	2	39	\％2	4	3	66	7.29	20	5	ND	2	6	人考	5	2	27	． 04	\％2	36	16	． 05	12	＊it		7.10	． 01	． 01	＊納	8
BLI 7＋00N $2+75 \mathrm{~N}$	13	97	70	146	\％ 8	11	21	1117	9.02	48	5	ND	3	55	\％ 5	6	2	70	． 25	323	12	29	． 97	150	\％ 26		1.86	． 04	． 08	＊＊	102
BLI $7+00 \mathrm{~N} 2+50 \mathrm{~N}$	6	22	9	70	的	4	4	450	6.90	14	5	ND	6	6	\％$\%$ \％	2	2	41	． 06	8053	35	21	． 10	15	\＄2\％		5.01	． 05	． 05	行	3
BLI 7＋00W 2＋25N	8	55	110	73	\％ 8	7	3	432	4.08	29	5	ND	3	53	\％${ }^{2}$ 。	2	2	51	． 20	180	6	20	． 81	80	2%		1.58	． 01	． 05	㾧	53
BLI 7＋001 2＋00N	7	17	22	110	\％${ }^{\text {\％}}$	4	5	832	7.41	\％ 18	5	ND	8	5	\％$\%$	3	2	33	． 06	－038	38	16	． 11	14	\％22		4.13	． 09	． 09	\％	3
BLI 7＋00N 1＋75N	7	13	11	77	\＆2	3	3	1089	6.27	14	5	ND	6	4	\＃，\％	3	2	20	． 05	\％ 05	45	11	． 06	14	＊ 3		5.16	． 06	． 06	行	2
BLI 7＋00N 1＋50N	6	28	26	51	\％	5	2	266	7.61	17	5	ND	9	30	\％$\%$		2	50	． 15	847	19	21	． 45	43	， 25		4.35	． 01	． 03	\％	17
BLI $7+00 \mathrm{~N} 1+00 \mathrm{~N}$	9	36	21	71	＊ 4 \％	5	2	311	8.28	15．	5	ND	12	23	K\％	2	5	58	． 10	878	16	22	． 30	41	＊ 2 \％		4.55	． 03	． 05	碞	25
BLI $7+00 \mathrm{~N} \quad 0+75 \mathrm{~N}$	10	26	15	76		6	4	350	8.74	13	5	ND	6	16	\％紬	2	2	58	． 09	\％ 0.6	26	20	． 28	20	兗3＊		2.72	． 03	． 05		4
BLI 7＋00H $0+50 \mathrm{~N}$	38	75	13	119	就	11	28	2196	4.22	8	5	ND	4	56	\％	2	2	27	． 37	－ 5	21	10	． 64	132			2.39	． 01	． 03	行	8
8L： $7+00 \mathrm{~N} \quad 0+25 \mathrm{~N}$	14	46	19	84	＊	6	12	587	4.70	8	5	MD	2	45	\％	2	2	62	． 28	\％78	11	15	． 59	49	＊		2.60	． 03	． 04.	納䊽	100
BLI $6+00 \mathrm{~N} 3+00 \mathrm{~N}$	8	18	13	85	豹	3	5	1006	6.71	\％ 88	5	ND	16	4	\％ 6	2	2	20	． 06	\％34	33	11	． 08	10	約		4.53	． 08	． 07	场	，
BLI $6+00 \mathrm{~N} \mathrm{2+75N}$	7	15	18	76	＊	3	3	634	6.07	\％ 88	5	ND	11	3	，	2	2	20	． 06	8044	38	10	． 05	9	＊ 1%		4.86	． 06	． 06	晾	2
BLI 6＋00N 2＋50N	6	12	10	54	$\%$	4	6	559	4.09	6	5	ND	1	43	＊${ }^{\text {\％}}$	2	2	46	． 21	3067	11	12	． 48	41	晈紷	4	2.00	． 02	． 04		87
BLI 6＋00W 2＋25N	6	18	15	78	的	4	5	1169	6.17	3	5	ND	7	4	\％ 2	4	2	31	． 07	\％048	34	15	． 09	13	洔20		3.82	． 06	． 07.05	葹	10
BLI 6＋001 2＋00N	5	39	13	73	\％ 1	5	15	942	4.34	\％	5	ND	7	84	＊	2	2	34	． 51	多68	10	10	． 86	160	＊ 0%		1.86	． 01	． 05	＊${ }_{\text {\％}}$	10
BLI $6+00 \mathrm{~W} 1+75 \mathrm{~N}$	16	41	19	68	\％	7	12	747	5.31	12	5	ND	3	51	\％$\%$	2		53	． 39	\％2	29	12	． 72	51	＊納		2.39	． 08	． 06		120
8LI $6+00 \mathrm{~W} 1+50 \mathrm{~N}$	2	18	9	48	\＆	4	10	739	2.46	2	5	NO	2	90	\％ 2	2	2	26	． 67	\％ 40	8	5	． 74	54			1.31	． 01	． 03	2	4
BLI 6＋00N 1＋25N	7	19	15	70	＊\downarrow	6	4	461	9.78	＋14	5	NO	6	19	的	2	3	49	． 15	\＄052	25	17	． 15	19	＊ 8 \％	3	3.38	． 03	． 04		2
BLI 6＋00W 1＋00N	7	20	16	83	紷	4	4	846	7.49	18	5	ND	10	5	\％的客	3	2	34	． 06	－ 04	37	17	． 08	12	8，${ }^{2}$		4.69	． 06	． 06	\％	2
BLI 6＋004 0＋75N	2	10	10	49	\％	2	5	916	2.03	2	5	ND	2	47	就	2	2	61	． 30	－ 85	7	6	． 45	34	30		1.00	． 03	． 03	¢	3
BLI $6+00 \mathrm{~N} 0+50 \mathrm{~N}$	35	40	15	131	\％	5	4	478	6.74	22	5	ND	18	22	效	2	2	19	． 22	O4\％	39	12	． 23	63	\％ 8		4.36	． 08	． 08	得	3
BLI $6+00 \mathrm{~N} \quad 0+25 \mathrm{~N}$	6	32	12	58	\％	5	15	2158	4.45	4	5	ND	4	43	\％$\%$ \％	2	2	43	． 22	\％92	15	13	． 57	23	＊		2.44	． 03	． 04		1
BLI 5＋00W 3＋00N	1	710	4	49	$\$.5$	10	7	200	3.23	2	5	ND	1	16		5	2	64	． 25	\％ 16	37	18	． 61	27	＊ 48	3	6.58	． 04	． 05		
BLI 5＋00W 2＋50N	3	401	9	61	\％	12	14	311	3.38	2	5	ND	2	96		2	2	77	1.04	\％94	32	14	． 85	47	50．		3.20	． 39	． 16	，	1
STANDARD C／AU－S	18	58	36	131	\％．$\%$	71	32	1048	3.97	38	20	7	40	52	18．4＊	18	19	57	． 52	－088	37	57	． 90	182	．09\％	37	1.90	． 06	． 14	䍃	46

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4294
Page 3

SAMPLE＊	$\begin{array}{r} \text { Mo } \\ \text { pppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \text { ppom } \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{pppm} \end{array}$	$\begin{array}{r} \text { 2n } \\ \text { ppm } \end{array}$		$\begin{array}{r} \mathbf{N i} \\ \text { ppom } \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} M n \\ \text { Mpm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \\ \hline \end{gathered}$	ispre	$\begin{array}{r} \mathbf{U} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Au } \\ \text { ppin } \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\underset{\text { prin }}{\mathbf{S r}}$		$\begin{array}{r} \mathbf{S b} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \mathbf{B i} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} v \\ \text { pprin } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{x} \end{gathered}$	$\hat{N}_{\mathrm{k}}^{\mathrm{k}}$	$\begin{array}{r} \text { La } \\ \text { pppa } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppp} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Hg} \\ & \mathbf{\%} \end{aligned}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$		$\begin{array}{r} \mathbf{8} \\ \text { ppan } \\ \hline \end{array}$	$\begin{gathered} \text { A! } \\ \text { K } \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \boldsymbol{\%} \end{gathered}$	\mathbf{z}		$\begin{aligned} & \text { Au } \\ & \text { ppb } \end{aligned}$
BLI 5＋00N 2＋25N	10	40	16	58	，	7	8	375	4.07	4	5	ND	4	54	， 2	3	3	73	． 45	057\％	15	21	． 73	30	＊ 40		2.40	． 08	． 05	絃	17
BLI 5＋00N $2+00 \mathrm{~N}$	21	18	8	65	4	3	2	151	5.24	14	5	ND	20	5	\＆	5	2	15	． 09	8，028	32	11	． 07	22	22\％	3	2.75	． 21	． 12	納㐫	
BLI 5＋00N 1＋75N	13	18	12	92	\％	4	3	465	7.18	20	9	ND	12	6	\％\％	4	2	33	． 07	055	60	13	． 11	23	23．		4.44	． 08	． 07	㐫	
BLI 5＋00N 1＋50N	20	27	12	84	S	4	2	345	7.38	15	5	ND	11	4	率 2	2	2	28	． 07	\＄086	49	14	． 10	17	\％20		3.99	． 09	． 09	約	
BLI 5＋00N 1＋25N	12	30	11	91	\％	8	9	1987	6.83	\％ 17	5	ND	7	6	納8	5	2	49	． 10	8076	41	21	． 26	22	湦2\％	8	4.33	． 09	． 08		
BLI 5＋00N 1＋00N	9	14	15	80	＊	2	4	927	6.96	20	5	ND	17	3	＊is\％	3	2	17	． 07	4039	35	10	． 02	12	弾\％		4.24	． 08	． 07		
BLI 5＋00N 0＋75N	7	18	9	67	2	3	5	703	6.69	13	5	MD	6	4	娄	5	2	29	． 05	8063	39	15	． 04	13	埧18	5	4.42	． 06	． 06	納	
BLI 5＋00N $0+50 \mathrm{~N}$	8	24	8	92	2	5	7	1745	6.65	14	5	ND	2	10	組娄	3	2	43	． 09	807\％	44	15	． 14	18	洨 1	5	3.79	． 05	． 05		
BL！5＋00N 0＋25N	14	17	8	104	2	7	9	844	4.27	6	5	ND	3	55	餃娄	3	2	48	． 50	088	33	15	． 51	68	曻5		2.48	． 03	． 06	洨紋	
BLI 4＋00N 3＋00N	4	61	13	71	2 0	9	8	461	4.53	星	5	ND	2	31	䏣务	2	2	61	． 33	\％080	51	21	． 53	41	\％ 26	2	3.16	． 08	． 07		
BLI 4＋00N $2+75 \mathrm{~N}$	12	94	18	67	3	8	18	888	3.83	14	5	ND	3	71		2	2	39	． 58	\％ 0 \％	17	11	． 77	49		2	1.97	． 06	． 05	紷	34
BLI 4＋00N 2＋50N	8	20	10	58	， 2	6	5	311	3.44	5	5	ND	4	58	学	2	2	81	． 39	04\％	11	18	． 70	32	36	2	2.26	． 04	． 04	\％繆顛	30
$8 \mathrm{LI} 4+00 \mathrm{~N} 2+25 \mathrm{~N}$	10	23	8	67	\％	8	4	381	6.96	10	5	HD	6	13	郎 2	2	2	72	． 12	\％08\％	23	19	． 36	20	38	4	2.20	． 07	． 07	樃䊽	12
BLI $4+00 \mathrm{~N} 2+00 \mathrm{~N}$	4	24	7	80	， 4	14	12	587	5.31	5	5	ND	3	60	晾 ${ }^{\text {S }}$	2	2	98	． 58	，062	8	21	． 84	50	脑4	2	2.35	． 19	． 09	納	
BLI 4＋00W 1＋75M	8	16	14	106	\＆ 1	4	4	736	6.66	\％${ }^{\text {\％}}$ \％	5	ND	18	4	ψ_{i}	2	2	22	． 07	\％030	38	13	． 10	19	＊ 24	5	4.44	． 12	． 10	\% \%	
BLI 4＋00W 1＋50N	11	20	2	82	，	12	25	1051	7.01	10	5	ND	10	86	8	3	2	65	． 80	8123	15	16	． 97	45	\＄ 6		2.61	． 26	． 11	紷	
8LI $4+00 \mathrm{~N} \mathrm{1+25N}$	12	28	3	125	， 3	17	16	1389	5.26	－	6	no	7	72	3	2	2	68	． 64	\％24	51	22	． 75	108	考3	3	4.15	． 11	． 09	行䊽	
8LI $4+00 \mathrm{~N} 1+00 \mathrm{~N}$	4	41	4	92	，2	14	9	337	5.16	9	5	ND	6	46	\％	2	2	95	． 50	， 102	20	23	． 73	53	60		3.86	． 14	． 08		
8L！ $4+00 \mathrm{Na} 0+75 \mathrm{~N}$	9	19	12	69	，	6	4	310	8.60	14	5	ND	9	10	\％ 8	2	2	66	． 11	\％048	24	20	． 23	16	\％ 0	4	2.57	． 09	． 09	\＃	
$81: 14+00 \mathrm{Na}$	8	24	9	73	$\geqslant \%$	5	3	370	7.96	14	5	NO	6	8	就家	2	2	43	． 09	062	38	20	． 14	15		4	3.79	． 07	． 07	者効	
8LI $4+00 \mathrm{Na} 0+25 \mathrm{~N}$	10	16	21	84	\％$\%$	3	3	713	8.92	\％ 17	5	ND	14	4	\％	3	2	32	． 06	\％ 037	43	15	． 04	9	\％ 28	3	3.55	． 06	． 07	行	
IL $4+000+255$	10	21	5	88	\％ 2	5	3	181	6.02	16．	5	ND	7	10	\％$\%$	5	2	29	． 09	\％072	32	18	． 11	22			5.33	． 05	． 05	\％	
IL 4＋00 0＋505	4	25	6	93	\％ 1	13	9	554	4.75	10	5	NO	7	42	\％ 2	3	2	57	． 33	做103	25	19	． 66	39	\％ 37		2.78	． 09	． 07	行	
IL． $4+000+755$	5	24	7	55	\％ 4	5	4	568	5.75	8	5	ND	2	26	\％ 3	2	2	44	． 16	，068	30	18	． 30	23	効	4	3.69	． 03	． 03	紬	
IL 4＋00 i＋00S	8	8	9	82		4	2	372	9.09	\％15	5	ND	9	5		2	2	37	． 05	\％35	51	18	． 09	9		2	2.89	． 07	． 08	$\boldsymbol{\psi}$	
IL． $4+00$ 1＋25s	8	15	6	60	\％$\%$ 2	4	5	494	8.45	\％ 1%		ND	4	11	紬	2	2	59	． 07	\％054	26	18	． 10	14	交29	2	2.77	． 02	． 05	多	
IL． $4+001+505$	10	13	8	76	\％	4	5	652	8.64	\％ 10	5	ND	5	7	就	2	2	47	． 06	\％ 066	35	17	． 09	15	做		3.25	． 03	． 05	＊	
IL 4＋00 1＋755	9	17	16	73	\％$\%$	5	4	398	8.53	\％ 10	5	ND	5	10	人\％	2	2	66	． 08	\％ 06	25	20	． 17	13	食 3		3.15	． 03	． 04	䋛	
IL $4+002+005$	15	21	12	81	＊	7	13	1833	7.26	10	5	ND	2	11	的 6	3	2	80	． 11	\％076	31	22	． 24	28	\％${ }^{\text {3 }}$		3.35	． 04	． 04		
IL． $4+00$ 2＋25s	5	21	13	50	$\stackrel{*}{*}$	3	5	683	3.86	29	13	ND	6	3	ξ_{i}	19	2	33	． 04	\％ 03%	25	12	． 11	9	湤	6	2.52	． 03	． 04		
IL 4＋00 2＋505	，	25	2	33	，\％\％	2	6	399	2.97	45	15	ND	7	8	8＊＊	34	2	30	． 03	\％028	22	12	． 03	3	的只		1.89	． 03	． 05	多	
IL 4＋00 $2+75 \mathrm{~s}$	13	12	26	67	\％	7	6	735	9.19	8	6	NO	7	8	\％ 2	2	15	85	． 06	8042	18	23	． 22	19	S2	2	3.16	． 03	． 03	\％	8
IL． $4+003+005$	9	23	12	88	， 1	5	5	907	7.14	18	5	ND	7	4	\％	3	2	45	． 06	\％047	35	22	． 14	16	\％ 30		4.08	． 07	． 08	\％	
IL． $5+000+25 s$	3	21	3	50	约	11	7	200	5.68	14	5	ND	4	17	量	3	2	113	． 24	\％06\％	29	23	． 72	20	\％ 88		2.40	． 05	． 05	行	7
IL 5＋00 0＋50S	8	18	14	52	$\$ 2$	5	3	202	6.10	9	5	NO	1	17	紷	3	2	76	． 11	0.059	32	18	． 21	23		2	2.72	． 03	． 03	§\#\#	2
IL 5＋00 0＋75S	12	21	15	59	新	4	3	261	8.35	17	5	ND	4	19	\％	3	3	76	． 24	\％064	34	12	． 11	24	＊ 47	4	1.87	． 03	． 06		2
SIANDARD C／AU－S	19	58	37	131	8.9	70	32	1047	3.98	4！	21	7	39	52	38，4	14	20	56	． 52	\％ 088	37	57	． 89	182	\％ 0%	33	1.89	． 06	． 14	3／	48

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4294
Page 4

SAMPLE\＃	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$		$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppon } \end{array}$	$\begin{array}{r} M n \\ \text { ppn } \end{array}$	Fe	$\stackrel{\boldsymbol{o}_{1}}{\text { Ppon }}$	$\begin{array}{r} \mathrm{U} \\ \text { ppin } \end{array}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{pppa} \end{gathered}$	$\begin{aligned} & \text { Th } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{pppm} \end{array}$		$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 8 i \\ \text { ppm } \end{array}$	$\begin{array}{r} V \\ p p x^{\prime} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{X} \end{gathered}$	$\stackrel{\psi}{\psi}$	$\begin{array}{r} \text { La } \\ \text { pppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \text { ppinin } \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \boldsymbol{\%} \end{gathered}$	$\begin{array}{r} 8 \mathbf{8 a} \\ \text { ppan } \\ \hline \end{array}$	$\stackrel{1}{2}$	$\begin{array}{r} \mathbf{B} \\ \text { ppin } \end{array}$	$\begin{gathered} \text { A! } \\ X \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{x} \end{aligned}$		$\begin{aligned} & \mathbf{A} \mathbf{u}^{\boldsymbol{k}} \\ & \mathrm{pppb} \end{aligned}$
IL．5＋00 1＋00S	7	14	10	65	㐫\％	5	4	458	6.95	12	5	MD	2	1	\％ 8	3	2	63	． 08	\％ 050	28	13	.17	12	等98．	8	2.54	． 03	． 04	\％	
IL． $5+001+255$	6	14	7	55	＊ 3 ，	5	4	275	4.84	\％	5	ND	1	11	$\stackrel{5}{5}$	3	2	45	． 12	， 052	37	15	． 26	10	28	8	3.02	． 05	． 05	\％	
IL． $5+001+505$	6	16	11	59	\％	5	5	442	6.21	8	5	ND	2	11	＊${ }^{5}$	2		62	． 07	058	28	17	． 19	8	318	8	2.57	． 03	． 04	\％	2
IL 5＋00 1＋75s	8	15	7	65	\％	5	8	1554	7.08	\％	5	NO	2	11	行	2	2	67	． 06	\％ 049	24	19	． 19	14	\＄8．	8	2.70	． 02	． 04	納	
IL 5＋00 $2+005$	10	18	14	59		5	2	281	6.36	\％\％$\%$	5	ND	3	7	綡	3	4	80	． 06	\％036	24	17	.13	14	\％ 60	9	1.50	． 03	． 06	令紬	
11．5＋00 $2+25 s$	8	20	8	62	行	4	3	591	7.05	16	5	ND	3	6	＊9	4	2	56	． 05	\％060	22	17	． 09	12	約2	10	3.39	． 04	． 04	，	7
IL 5＋00 2＋755	7	21	9	78	\％	7	4	521	7.81	17	5	MO	5	，	紬，	4	2	57	． 05	\％ 0 \％	28	21	． 19	12	法37	9	2.30	． 05	． 07	\＆	2
IL． $6+000+255$	11	11	10	58	好	4	3	279	8.33	8	5	ND	3	6	为\％	3	2	70	． 04	\％ 058	19	17	． 04	10	\％	7	2.23	． 03	． 05	\＆	1
IL $6+000+505$	6	14	4	66	就	5	7	674	5.43	\％	5	ND	1	9	＊\％	4	2	62	． 09	05\％	16	14	． 16	12	年5	8	2.15	． 03	． 06	\％	2
IL $6+000+75 \mathrm{~s}$	27	14	10	80	行	2	2	746	5.88		7	ND	15	12	的	3	2	14	． 09	103\％	37	9	． 03	26	\％ 8	7	3.95	． 10	． 08	¢	2
IL． $6+001+005$	64	11	10	73	\％	6	8	724	3.87	8	5	ND	1	59	\％	3	2	94	． 34	\％ 066	31	15	． 47	43	的88	7	1.77	． 03	． 05	¢	1
IL $6+001+255$	9	12	13	64	\％ 2	7	11	532	3.12	\％	5	no	1	76	\％	2	2	56	． 56	明6	10	9	． 83	40	令 4	6	1.46	． 12	． 08	浐	8
IL 6＋00 1＋505	10	19	8	60	数	4	2	320	9.12	15	5	ND	5	19	\％	5	2	101	． 08	\％ 097	20	19	． 15	30	\％s\％	7	2.27	． 01	．04	行	1
IL $6+001+755$	10	27	15	66	䋛	4	3	369	9.13	18	5	ND	12	23	1，2\％	7	2	67	． 10	\％ 188	24	17	． 27	28	新		3.19	． 02	． 04	行	1
IL $6+002+005$	12	32	14	78	紬的。	6	5	436	9.57	\％ 20	5	ND	22	13		3	2	46	． 07	做60	28	22	． 19	21	今部5	5	3.56	． 03	． 05	兗納	1
IL． $6+002+255$	8	22	10	68	\％	5	3	325	9.58	15	5	ND	4	12	\＆o	5	2	81	． 09	\％06\％	23	23	． 10	15		6	2.96	． 02	． 04	\％	5
IL 6＋00 $2+505$	9	24	13	78	\％	5	6	895	7.80	9	5	ND	5	14	\％	2	2	84	． 08	\％059	17	23	． 25	17	\％为䅑	8	2.10	． 03	． 05	行	2
IL 6＋00 2＋75s	8	19	12	50	\％	4	4	325	6.62	14	5	ND	2	11	， 3	3	2	85	． 07	\％052	18	16	． 14	17	\％\％	9	1.88	． 03	． 05	＊i	2
IL．7＋00 0＋25s	6	22	10	65	， 2	8	4	255	6.53	14	5	ND	4	21	， 3	3	4	65	． 14	\％ 04%	19	32	． 45	31	＊ 33	8	3.74	． 03	． 03	＊＊	7
IL 7＋000 $0+505$	5	21	16	54	$\%$	6	5	353	4.82	11\％	5	ND	3	21	\％$\%$ \％	2	2	57	． 14	\％ 082	20	19	． 40	35		7	3.19	． 04	． 04	范	4
IL． $7+000+755$	4	16	26	62	约	6	2	379	3.42	16	5	MD	2	40	＊ 2	2	2	42	． 18	\％ 045	6	19	． 81	37	＊22	6	1.28	． 01	． 03	\％	80
IL 7＋00 1＋00s	9	16	13	75	縣	4	6	1457	8.54	22	5	no	10	6	\％ 8	3	2	49	． 05	\％ 085	24	22	． 14	15	30．	10	2.33	． 05	． 07	\％	4
IL 7＋00 1＋25s	5	21	7	50	\％	5	3	313	4.77	12	5	no	2	44	\％ 2	4	2	48	． 21	\％6\％	12	19	． 58	37	㐫 6	7	2.20	． 02	． 04	2	16
IL． $7+001+505$	9	15	11	77	方	3	3	623	7.64	19．	6	ND	15	7	\％ 5		2	19	． 07	\％ 038	28	15	． 09	12		9	3.47	． 06	． 06	＊s．	3
11． $7+00$ 1＋75s	7	14	12	71	\％，\％	3	2	435	9.05	\％ 19	6	no	6	5	\％$\%$	3	2	44	． 05	\％ 0 全	44	12	． 01	14	的里。	6	3.14	． 04	． 05		
IL 7＋00 2＋00S	10	25	21	72	\％s	6	4	805	8.01	13	5	ND	5	14	\％si	4	3	74	． 08	\％ 05	21	21	． 19	22	\％$\% 3$	7	2.38	． 02	． 04	納	1
11． $7+002+255$	10	15	9	52	的多	4	2	223	9.94	23	5	ND	10	5	\％	5	2	74	． 04	\％ 83	20	16	． 01	18	＊站	7	1.85	． 05	${ }^{(7}$	＊玄	2
IL． $8+000+255$	10	15	55	54	\％$\%$	4	4	328	6.73	18	5	ND	1	21	＊$\%$	5	3	57	． 10	苓 036	22	21	． 27	26	\％	8	2.11	． 01	． 03	晾	34
IL．8＋0000 $0+505$	10	23	90	30	\％	4	2	59	4.55	14	5	ND	1	14	\％	2	2	44	． 08	\％ 30	30	14	． 17	22	㖠	8	3.02	． 01	． 03	＊称	7
IL 8＋00 0＋75S	30	103	58	93	$\%$	10	96	3149	14.93	43	5	ND	5	32	的	4	2	76	． 21	\％3\％	8	22	． 44	47	\％${ }^{\text {\％}}$	5	3.06	． 07	． 05	ψ_{8}	110
IL 8＋00 1＋25s	7	31	2	81	\＆	12	32	1720	3.45	\％	5	ND	5	97	5	2	2	42	． 67	\％10\％	8	14	1.07	116	\％ 4	7	2.53	． 09	． 07	＊	8
IL． $8+00$ 1＋505	18	49	2	126	＊	19	74	3692	6.17	15	5	ND	10	93	＜	4	2	53	． 72	\％220	10	16	1.03	193	令22	9	4.20	． 14	． 07	\％	9
IL 8＋00 1＋75s	10	88	12	145	约	12	65	4662	6.17	34	5	ND	4	19	\％$\%$ \％	9	3	23	． 21	\％106	12	15	． 34	90	\％ 0 \％	9	10.01	． 04	． 01	\％	6
IL 8＋00 $2+005$	16	37	55	65	＊	7	19	1065	6.48	20	5	ND	3	36	\％	4	2	49	． 19	\％ 67	8	17	． 66	127	\％8：	6	3.24	． 01	． 03	\％s	48
IL 8＋00 $2+25 \mathrm{~S}$	12	94	18	119	i_{i}	7	11	657	4.73	6	5	ND	3	68	${ }_{3}$	3	2	49	． 41	\％24	9	13	． 86	66		10	1.37	． 03	． 04		57
1L．8＋00 2＋50s	22	105	20	90	＊＊	6	12	737	5.40	13	5	ND	2	61	\％	2	2	42	． 41	\＄134	14	12	． 78	59	\％ 10	10	1.78	． 01	． 04	，	93
STANDARD C／AU－S	18	58	37	130	\％ 6	70	321	1047	3.97	39	20	7	39	52	$18 \leqslant 3$	16	20	56	． 52	\％ 088	36	57	． 90	182	\％09	38	1.89	． 06	． 14	令	46

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4294
Page 5

SAMPLE＊＊	$\begin{aligned} & \text { Mo } \\ & \text { pppa } \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppin} \\ \hline \end{array}$	$\begin{array}{r} \mathbf{P b} \\ \mathbf{P p} \\ \hline \end{array}$	$\begin{array}{r} 2 n \\ \mathrm{ppm} \end{array}$		$\underset{\substack{\mathrm{Mi} \\ \hline \boldsymbol{p} \\ \hline}}{ }$	$\begin{array}{r} \text { Co } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{Fe} \\ & \mathrm{n} \\ & \mathrm{X} \\ & \hline \end{aligned}$	prpm	$\begin{array}{r} \text { U } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$		$\begin{array}{r} \text { Sb } \\ \text { ppin } \end{array}$	$\begin{array}{r} 8 i \\ \text { ppm } \end{array}$	$\begin{array}{r} v \\ \text { ppm } \end{array}$	$\begin{aligned} & \mathrm{Ca} \\ & \mathbf{x} \end{aligned}$	$\stackrel{\ominus}{\ell}$	$\begin{array}{r} \text { La } \\ \text { ppom } \end{array}$	$\begin{array}{r} \text { Cr } \\ \text { ppan } \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \mathbf{z} \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	龄	$\begin{array}{rr} 8 & A 1 \\ \operatorname{ppa} & \chi \end{array}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$			$\begin{aligned} & \text { Au* } \\ & \text { ppb } \end{aligned}$
IL．8＋00 2＋75S	15	108	20	94	\％ 3 3	7	20	867	4.80	\％ 13	5	ND	1	53	＊ 2	3	2	39	． 36	＊116	11	12	． 79	49	\％	101.61	． 02	． 04	\％	168
IL． $8+003+005$	9	14	18	32	\％${ }^{2}$	3	3	188	2.24	6	5	ND	1	37	\％ 2	2	2	52	． 16	－034	5	9	． 39	22	雬	51.31	． 01	． 02	＊	39
IL 9＋00 0＋25s	4	21	42	55	疎 4	9	4	320	5.34	14	5	ND	3	27	\％ 2	4	2	80	． 19	\％092	8	22	． 76	74	的0	112.08	． 02	． 08	率2	47
IL 9＋00000505	8	25	58	153	的	25	5	1479	5.58	28．	5	ND	5	61	率 6	3	2	65	． 23	\％106	24	61	1.14	529	\＄26	102.83	． 02	． 09	組	40
IL 9＋000 $0+755$	7	24	14	44	\％$\%$ \％	5	3	180	6.87	原	5	ND	2	15	i 2	3	2	69	． 09	\％062	24	23	． 18	50	泫 27	92.71	． 02	． 04	雱	26
IL．9＋00 1＋00s	1	12	9	41	2	5	3	76	． 6.69	3	6	ND	4	16	洨9	2	5	56	． 12	350	15	18	． 30	27	䫆9	31.94	． 05	． 03	－	2
IL． $9+001+255$	5	32	15	61	交	9	5	297	5.01	嘌覀	5	NO	1	38	洨法2	3	2	75	． 20	\％08	8	17	． 64	70	的配	101.79	． 04	． 06	瑯納	15
IL 9＋00 1＋50S	5	18	20	50	较	6	3	349	3.09	\％	5	MD	1	46		2	2	49	． 25	\％ 4	5	17	． 72	78	数	71.27	． 03	． 06	，	44
IL 9＋00 1＋75s	4	34	23	56	＊	10	6	353	4.09	－	5	MD	1	55	\％	2	2	61	． 36	\％ 07	9	19	． 87	101	沴20	81.68	． 10	． 08	＊約	37
IL 9＋00 2＋00S	5	14	6	42 絧	约	5	2	153	3.83	17	5	ND	6	6	洤	6	2	49	． 07	\％ 062	17	19	． 07	15	$\text { 㢳 } 2$	93.52	． 05	． 06		3
II．9＋00 $2+255$	8	12	8	52	号	4	2	193	9.43	10	5	ND	5	7		2	2	47	． 05	\％052	23	18	． 02	17	泫30	83.22	． 02	． 03	\％isk	1
IL．9＋00 $2+505$	6	17	7	50		8	6	354	6.68	\％	5	ND	2	26	待	4	2	95	． 25	\％06\％	9	16	． 51	26	約 5	121.85	． 09	． 06	＊	3
IL 9＋00 $2+755$	5	17	7	49	的4	8	6	363	5.43	8．	5	ND	1	28	\％ 3	2	2	84	． 25	\％06\％	12	17	． 43	22	50	122.17	． 09	． 06	\％sisk	1
IL 9＋00 3＋005	1	22	2	71	\％納	18	16	412	3.67	？	5	ND	1	120	有	2	2	71	1.20	\％080	70	16	4.30	63	积6	103.05	． 46	． 16	組	1
IL 10＋00 0＋25s	6	31	17	69	动，	7	4	338	3.66	\％	5	ND	2	59	考	2	2	48	． 23	\％ 338	15	13	． 78	256	全22	101.71	． 02	． 07		64
IL 10＋00 0＋50s	4	35	10	47	，	6	3	166	5.10	\％	5	ND	3	21	K	4	2	92	． 17	\％068	12	20	． 38	49	\％ 4.	122.89	． 03	． 04	＊s＊	15
IL 10＋00 0＋75s	9	23	33	66	晾	7	5	897	8.33	2\％	5	NO	4	27	者8	3	2	71	． 12	\％76	15	27	． 45	36	夜	102.05	． 03	． 06	納納	11
IL 10＋00 1＋00s	5	51	34	80	\％ 6	10	6	498	4.46	14	5	ND	1	42	\％	3	2	74	． 18	\％08\％	15	26	． 75	88	食6	112.20	． 03	． 07		90
IL 10＋00 1＋25s	7	40	13	61 \％	\＃	5	6	528	7.90	翰	5	ND	4	13	率\％	4	3	41	． 08	\％058	27	17	． 19	23	成4	122.95	． 03	． 04	＊納	15
IL 10＋00 1＋50S	6	42	40	69	\％ 5	5	1	116	5.01	\％2．	5	No	4	16	\％	3	2	64	． 07	\％064	24	30	.16	23	教24	113.63	． 04	． 04	\％＊＊	20
IL 10＋00 1＋75S	6	17	7	50	年4	3	2	133	6.57	\％ 18	5	ND	3	6	\％ 5	6	2	49	． 06	． 084	21	20	． 06	8	傢 0	94.88	． 04	． 04		5
IL 10＋00 2＋25s	1	12	3	59	娄	11	10	249	3.53 3	2	5	ND	1	65	\％	2		93	． 64	07\％	3	15	． 79	56	納为	81.26	． 18	． 08	碞	3
IL 10＋00 $2+505$	2	8	15	48	\％	8	7	269	2.42	${ }^{6}$	5	ND	1	64	就	2	2	64	． 48	\％074	9	16	． 78	64	沙＊	61.31	． 14	． 07	的	14
IL 10＋00 3＋00s	2	19	7	47	\％\％	9	7	189	3.63	年，	5	ND	1	38	繧	3	2	112	． 37	088，	6	19	.61	33	絲	81.70	． 13	． 08		65
IL 11＋00 0＋25s	5	35	25	86	泼晾	13	10		4.56	＊ 8 －	5	ND	4	92	水	2	2	73	． 65	10\％	14	21	1.11	143	沙为颔	92.43	． 22	． 14		65
IL 11＋00 0＋505	5	35	19	108	\％ 2	12		536	5.82	2	5	ND	11	29	\％ 2		2	64	． 20	\％0\％	24	21	． 64	87		123.45	． 11	． 12		31
IL 11＋00 0＋75s	5	14	23	40	\％ 3	5	1	116	4.18	¢	5	ND	1	23	\％	2	2	90	． 09	\％ 038	21	14	． 12	27	\％ 3	81.33	． 01	． 04		14
IL．11＋00 1＋00s	2	43	36	53	\％	6	4	216	6.59 3	28	5	ND	1	31	颠	4	2	131	． 11	\％ 68	2	20	． 38	57	沙號	91.03	． 01	． 03	相	19
IL 11＋00 1＋25s	1	16	4	115	的 6	12	12	1264	2.52 ：	6	5	ND	1	73	的	2	2	44	． 86	\％\％\％		11	． 77	80	\％${ }^{2}$	71.17	． 19	． 17		3
IL 11＋00 1＋50S	6	36	58	85	\％	34	2	671	3.49		5	ND	2	133	\＄	2	2	60	． 33	\％ 078	8	60	1.17	339	\％ 10	61.76	． 01	． 11		250
IL 11＋00 1＋755	2	68	298	104	就	11			4.88	40	5	ND		241	縞	3	2	119	． 55	\％ 20	17	45	1.07	145	約	92.38	． 04	． 05	童	139
IL．11＋00 2＋00S	6	16	35	45		7	3	277	4.91	28	5	ND	2	84	紷	3	2	147	． 35	洘	7	22	． 52	155	洮	81.34	． 03	． 05	2	73
IL 11＋00 3＋00N	6	35	14	78	效2	6	6		4.07 ：	9	5	ND	4	83	\％2	3	2	43	． 32	\％85	20	11	． 90	274		91.80	． 03	． 11	洨	30
IL 11＋00 $2+75 \mathrm{~N}$	8	27	7	122	\％	9	9	959	6.10	＊1．	5	ND	12	33	㐫 ，	4	2	40	． 27	\％ 0 \％ 6	26	12	． 57	57	22	103.03	． 14	． 11	納	
IL 11＋00 $2+50 \mathrm{~N}$	9	34	7	74	$\stackrel{\psi}{\psi}$	11	6	351	7.72	$\$$	5	ND	5	27	$\%$	5	3	87	． 16	\％0\％	20	22	． 62	39	家	102.74	． 03	． 04		16
IL 11＋00 $2+25 \mathrm{~N}$	12	39	13	72	¢！	7	8	583	5.16	\％	5	ND	1	40	\％	4	2	59	． 18	\％08	14	17	． 67	55	\％ 2 \％	102.54	． 03	． 05	数	18
STAMDARD C／AU－S	18	57	38	130	\％$\%$	71	32	1048	3.97	39．	21	7	40	52	18，	14	22	55	． 52	\％089	37	56	． 89	187	洨0\％	391.89	． 06	． 14		49

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4294
Page 6

SAMPLE\＃	$\begin{aligned} & \text { Mo } \\ & \text { pppm } \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{Pp} \text { 侣 } \end{gathered}$	$\begin{array}{r} 2 n \\ p p m \end{array}$		$\begin{gathered} \mathbf{M i} \\ \mathbf{p p r i n} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppim } \end{array}$	$\begin{gathered} \text { Mn } \\ \text { ppan } \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{y} \\ \hline \end{gathered}$		$\begin{array}{r} \mathbf{U} \\ \text { ppin } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{pppin} \end{array}$	$\begin{gathered} \text { Th } \\ \text { ppim } \end{gathered}$	$\begin{array}{r} \mathbf{S r} \\ \text { pppm } \end{array}$		$\begin{array}{r} \text { Sb } \\ \text { ppiu } \end{array}$	$\begin{array}{r} \text { Bi } \\ \text { ppin } \end{array}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{\%} \end{gathered}$		$\begin{array}{r} \text { La } \\ \text { pppim } \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \boldsymbol{Z} \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \text { ppm } \\ \hline \end{gathered}$		$\begin{array}{r} \mathbf{B} \\ \text { ppman } \end{array}$	$\begin{aligned} & \text { A! } \\ & \mathbf{Z} \end{aligned}$	$\begin{gathered} \mathrm{Ka} \\ \mathbf{Z} \end{gathered}$	$\begin{aligned} & K \\ & \chi \end{aligned}$		$\begin{aligned} & \text { Au* } \\ & \text { Ppb } \end{aligned}$
IL 11＋00 $2+00 \mathrm{~N}$	12	79	14	105	＋	10	11	579	5.84	\％	5	ND	5	41	\％	2	2	66	． 24	\＄106	15	17	． 79	64	\％ 30		3.27	． 04	． 05	荥	20
IL 11＋00 1＋75N	24	218	18	169	等	21	56	2242	6.57	13	6	ND	8	74	4．9	3	2	59	． 55	212	24	19	． 96	163	\％22		2.49	． 09	． 10	納令	35
IL $11+001+50 \mathrm{~N}$	15	38	34	72	\％	6	6	447	4.10	5	6	ND	3	95	洨 2	3	2	50	． 30	\％4x	11	12	． 95	549	\％9		1.70	． 02	． 16	沙絡	50
IL．11＋00 1＋25N	1	26	8	75	就	24	24	706	5.59	7	7	ND	3	151	安，	3	2	106	1.62	\％7\％	6	23	1.86	90	离5		2.17	． 71	． 27	橀約	10
IL．11＋00 0＋75M	5	25	15	93	＊＊	8	22	534	5.50	\％ 13.	5	ND	3	99	納 2	3	2	47	． 48	109	6	8	． 71	1480	郎 3		1.57	． 07	． 07		31
IL 11＋00 0＋50N	8	62	20	95	积	9	11	534	4.71	§納 4	5	ND	4	69	行	2	2	48	． 32	3 38	13	12	． 82	177	\％${ }^{\text {\％}}$		1.71	． 06	． 09	多	25
IL 11＋00 0＋25N	6	66	22	75	\％	10	16	603	4．48	\％	7	MD	4	80	\％	2	3	55	． 48	喲放	19	16	． 97	286	2\％		2.23	． 13	． 13	＊	44
IL 12＋00 0＋25s	7	56	24	81	\％	7	5	502	3.58	\％	5	ND	4	63	4	2	2	48	． 25	\％ 05	25	19	1.04	392	洨娄采		2.04	． 01	． 16	\％埧納	59
IL．12＋00 0＋50s	5	44	19	68	納 S	9	5	409	3.77	\％	5	NO	3	57	紋 2	2	2	57	． 21	\％19\％	13	20	． 88	163	洛26\％		1.88	． 02	． 08		24
IL 12＋00 0＋75s	5	44	28	69		8	5	413	3.44	12	5	NO	4	80		3	2	60	． 26	4192	10	21	． 96	168			1.61	． 04	． 08		180
IL．12＋00 1＋00s	6	47	36	73	\％	9	3	455	3.76	12	5	ND	3	105	納\％	2	2	62	． 24	\％ 288	13	23	． 94	274	沙数		1.73	． 02	． 09	\％納	190
IL 12＋00 1＋25s	7	48	26	64	教	7	4	454	4.98	15	7	ND	5	60	尔多	2	2	51	． 22	等0\％	18	19	． 75	163	洨 1		1.99	． 01	． 08	絃	160
IL 12＋00 1＋50s	5	41	28	72	\％2	9	6	417	3.76	8	5	NO	2	91	\％ 2	2	2	63	． 40	行0\％	12	19	． 94	181			1.79	． 11	． 10	樃納	87
IL 12＋00 1＋75s	4	27	20	79	碞	7	4	410	2.96	\％	5	ND	2	84	\％ 22	2	2	58	． 43	\％07\％	6	21	1.08	95	年\％	2	1.54	． 11	． 11	絡々	47
IL 12＋00 2＋00s	5	23	26	57	納絞	6	2	268	2.83	\％	6	ND	2	63	紬 5	2	2	54	． 22	＜089	14	20	． 74	107	脑絡		1.98	． 02	． 06	洨洨絃	101
IL 12＋00 2＋25s	4	25	29	56	＜2	8	2	277	2.23	6	5	ND	1	66	，2	2	2	46	． 19	\％09	13	22	． 74	100	爯		1.53	． 01	． 05		210
IL 12＋00 2＋50s	5	29	28	84	㨥	15	2	391	3.66	114	6	ND	2	56	的 ${ }^{\text {s }}$	2	2	51	． 22	\％09\％	13	39	． 81	122	沙为		2.24	． 02	． 05	数	220
IL 12＋00 2＋75s	5	27	30	77	\％ 3	9	3	343	3.67	安	5	ND	1	66	＊， 3	2	2	53	． 23	093	12	21	． 78	134	納 1		1.56	． 02	． 06	喲	96
IL 12＋00 3＋00N	9	98	12	98	水	17	20	876	6.15	5	5	ND	4	88	\％ 0	2	2	90	． 79	\％ 05	9	18	1.27	66	交8		2.29	． 29	． 13	\％	25
IL 12＋00 $2+50 \mathrm{~N}$	8	77	18	97	納	17	19	719	5.86		5	ND	6	88	\％ision	2	2	84	． 71	838	11	20	1.17	71	絃縭		2.43	． 24	． 14		18
IL 12＋00 $2+25 \mathrm{~N}$	9	96	13	117	\＆	16	18	865	6.06	8	6	MD	8	61	倆	2	2	81	． 35	\％ 72	16	21	． 96	116	紪如		2.92	． 07	． 10		22
IL 12＋00 2＋00N	12	130	19	122	，	11	21	1183	6.48	9	5	ND	9	71	紬	2	2	65	． 26		12	15	． 95	229	多\％		1.86	． 04	． 09		20
IL 12＋00 1＋25N	7	40	18	66	\％ 2	8	7	344	5.53	17	5	ND	3	43	\％	2	2	58	． 22	＊ 87	11	15	． 64	76			2.07	． 03	． 07	＊s＊	33
IL 12＋00 1＋00N	3	25	19	61	，	8	7	192	5.45	18	5	ND	1	42	給	3	2	72	． 33	\％ 0%	5	13	． 48	34			1.94	． 06	． 05	納䊽	34
IL 12＋00 0＋75N	2	13	8	45		5	5	131	2.47		5	ND	1	36		2	2	61	． 26	\％ 068	3	10	． 35	52		2	． 90	． 05	． 05	苑	17
STAMDARD C／AU－S	19	60	38	131	6．7\％	73	31	1048	3.97	40	15	7	39	52	18．6	15	21	61	． 52	091	39	59	． 90	183	㿽埌	40	1.89	． 06	． 14	紋安交	45

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4294
Page 7

SAMPLE\＃	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{Pppm} \end{gathered}$	$\begin{array}{r} \text { Pb } \\ \text { Ppm } \end{array}$	$\underset{\text { Ppon }}{2 n}$	$\begin{aligned} & \text { 品 } \\ & \text { ppr } \end{aligned}$	$\underset{\mathrm{pppm}}{\mathrm{Mi}}$	$\begin{array}{r} \text { Co } \\ \text { ppp } \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \boldsymbol{Z} \end{gathered}$	As pprit	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppma} \end{array}$	$\begin{gathered} \text { Th } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$		$\begin{array}{r} \text { Sb } \\ \text { Pppm } \end{array}$	$\begin{array}{r} 8 i \\ \text { ppm } \end{array}$	$\begin{array}{r} V \\ p p m \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{x} \end{gathered}$	8	$\begin{aligned} & \text { Le } \\ & \text { ppen } \end{aligned}$	$\begin{gathered} \text { Cr } \\ \text { ppma } \end{gathered}$	$\begin{gathered} \mathbf{M g} \\ \boldsymbol{x} \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { ppan } \end{array}$		$\begin{array}{r} \mathbf{B} \\ \text { ppn } \end{array}$	$\begin{gathered} \mathrm{Al} \\ \mathbf{x} \end{gathered}$	$\begin{gathered} \mathrm{Ma} \\ \boldsymbol{z} \end{gathered}$	$\begin{aligned} & \boldsymbol{K}_{\boldsymbol{\chi}} \end{aligned}$		$A u^{*}$ ppb
PEL－90－6－39	7	266	21	83	1.6	5	10	126	4.30	14.	5	ND	3	24	2	2	2	10	． 14	Or\％	5	3	． 18	45	0\％	3	． 68	． 01	． 25	§納	630
PEL－90－5－40	1	56	12	a	3		1	2	9.26	§\％	5	ND	1	32	S	2	2	2	． 01	\＄02，	2	3	． 01	349	景賋	2	． 08	． 01	． 01	，	${ }^{1}$
PEL－90－5－41	1	11	20	50	4	3	4	442	3.76	16	5	MD	2	84	\％	2	2	12	． 07	24\％	5	13	1.01	58	\％	2	1.12	． 04	． 22	，	2
PEL－90－5－42	2	104	45	42	140	1	1	179	5.10	16	5	no	2	448	2．	2	2	36	． 06	\％ 22	20	10	． 29	249	先	2	1.01	． 01	． 32		1
PEL－90－5－43	3	35	53	46	\％	4	2	192	1.74	33	5	No	1	141	${ }^{2}$	2	2	25	． 11	\％103	2	4	． 16	221	䜌	3	1.08	． 01	． 25	2	3
PEL－90－5－44	4	64	23	99	＋	7	13	1021	4.86	\％\％	5	MO	2	49	\％	2	2	103	． 75	\％182	4		2.56	67	交枵		2.15	． 04	． 14		1
PEL－90－5－45	1	21	7	35	\％	5	5	557	2.51	1	5	no	1	88	\％	2	2	67	． 95	152	4		1.34	53	娄		1.33	． 12	． 09	！	2
PEL－90－5－46	2	154	21	71	S	5	5	253	1.89	§2	5	N0	4	35	\％	2	2	29	． 55	\％0\％	5	4	． 55	41	\％	3	． 90	． 13	． 11	，	1
PEL－90－5－47	1	36	26	104	䘨	3	1	1095	7.46	13	5	no	1	13	\％	2	2	120	． 20	123	2		2.70	120	\％		2.47	． 02	． 19		1
PEL－90－5－48	6	27	25	89	令为	6	36	800	9.88	\％	5	No	3	31	\％	2	2	39	1.41	枟	5		1.35	73	9 ${ }^{\text {曷 }}$	2	1.87	． 05	． 34	，	5
PEL－90－5－49	1	36	12	58	＊	59		12	20	§\％	5	MD	1	282	\％	2	2		2.47		6	120	． 66	213	品碞		1.69	． 01	． 25		
PEL－90－5－50	2	361	31	94	2.6	25	27	1561	7.54	186	5	no	2	73	\％	2	3	54	1.25		11		1.64	52	帾		1.97	． 01	． 13	\＄	1
PEL－90－5－51	1	127	647	175	\＄\％$\%$	9		1175	7.91	285	5	NO	2	138	9．	2	5	104	． 19	190	18	66	1.79	160	（1）		2.07	． 01	． 13		280
PEL－90－5－52	3	63	321	56	13．7	10	2	247	3.37	248	5	ND	1	116	，	6	2	38	． 45	\％\％	6	26	． 12	35	\％2）		． 49	． 01	． 02	，	13
PEL－90－5－53	19	49	332	64	\＄＊	13	11	317	5.52	203	5	NO	1	94	2	4	2	25	． 40	\％04\％	3	36	． 27	27	的	2	． 58	． 01	． 09	\％	151
PEL－90－5－54	3	82	95	63	17\％	8	－	654	6.47	4．	5	ND	1	49	\％	2	3	23	． 22	\％ 0,0	2	12	． 54	20		2	． 69	． 01	． 08	．	860
PEL－90－5－55	2	153	328	1944	34．0．	10	3	699	5.51	74	5	mo	1	25	12\％	6	2	42	． 21	\％70	15	19	． 84	41	\＄p\％	2	． 99	． 01	． 06	\＄	290
PEL－90－5－56	2	21	13	20	1\％	10	6	197	6.80	20	5	ND	1	145	3	2	3	29	． 85	\％07	3	17	． 16	64	＊ 6	3	． 69	． 01	． 12	\＄	184
PEL－90－5－57	3	23	19	45	2.1	15	14	802	8.34	13	5	ND	1	52	7	2	6	37	． 43	）090	3		1.47	36	H2		1.89	． 01	． 13	\％	46
PEL－90－5－58	2	144	28	76	2 s．	16	25	970	8.87	17	5	MD	1	59	\％2	2	6	47	． 63	13／4	4		2.10	34	\＄1积	2	2.25	． 01	． 09	，	8
PEL－90－5－59		2160	45	111	6．1）	20	10	1537	6.74	81	5	ND	4	212	\％	2	2	76	1.57	\％260	18		2.25	37	立2		2.74	． 01	． 07	\％	123
PEL－90－5－60	2	101	179	164	10	4	2	64	9.51	25.	5	ND	2	27	\％	2	2	32	． 03	128	9	16	． 02	100	18		． 41	． 01	． 12	¢	5
PEL－90－5－61	9	23	64	18	33	7	9	63	7.10	13.	5	No	2	5	\％	2	10	21	． 03	\％06\％	2	36	． 03	56	\％	3	． 22	． 01	． 12	．	88
PEL－90－5－62	30	22	31	14	$\stackrel{1}{2}$	5	14	159	9.97	40	5	No	2	44	\％	2	6	70	． 22	0084		19	． 21	46	4	4	． 45	． 01	． 05	，	30
PEL－90－5－63	2	87	183	197	88：8	42	44	222	11.29	1018	5	ND	1	48	23	3	13	13	． 24	\％12	2	12	． 37	12	\％	3	． 48	． 01	． 03	\＄	980
PEL－90－7－64	3	47	40	25	2\％	11	7	102	2.60	74.	5	ND	1	2	，2	2	4	2	． 02	\％00\％	2	9	． 01	14	\％ 0		． 03	． 01	． 02	8	206
Standard c／au－r	18	59	40	130	8．9．	71	31	1051	3.98	45	21	7	39	55	19．＊＊	15	19	57	． 52	－19\％	39	59	． 91	182	唯\％	36	1.91	． 06	． 13	3	540

Cathedral Gold Corp．PROJECT 8103 File \＃90－4390 Page 1

SAMPLE＊	$\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$	Cu ppm	$\begin{gathered} \text { Pb } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathbf{2 n} \\ \mathrm{ppm} \end{array}$		$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { pprin } \end{array}$	$\underset{\text { Mn }}{\mathrm{Mn}}$	$\begin{gathered} \mathrm{Fe} \\ \mathbf{\%} \end{gathered}$	As ppro	$\begin{array}{r} U \\ \text { Ppm } \end{array}$	$\begin{gathered} A u \\ p p m \end{gathered}$	Th ppra	$\begin{array}{r} \mathrm{Sr} \\ \mathbf{p p m} \end{array}$		$\begin{gathered} \text { Sb } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Bì } \\ \text { ppm } \end{array}$	$\begin{array}{r} V \\ \text { pppin } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \text { \% } \end{gathered}$		La	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pppm} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{pp} \mathrm{~m} \end{gathered}$	維	$\begin{array}{r} B \\ \text { Ppin } \end{array}$	$\begin{gathered} \mathbf{A !} \\ \mathbf{Z} \end{gathered}$	$\begin{gathered} \mathrm{Ha} \\ \text { \% } \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{aligned} & \mathrm{Acm} \\ & \text { ppb } \end{aligned}$
PEL－90－DS－20	6	138	45	112	20\％	18	11	827	10.67	46	5	ND	4	121	，${ }^{\text {\％}}$	2	4	100	． 21	等225	16	23	1.13	305	2\％		2.20	． 10	． 12	\％	1020
PEL－90－DS－21	5	702	21	421	＊ 8 \％	79	74	2102	17.05	54	5	ND	5	8	界曻	2	2	51	． 03	\％60\％	6	8	． 78	172			4.64	． 01	． 02	\＆iov	340
SER－L2＋00S 0＋25E	7	148	27	153	新	23	17	1246	7.06	21．	5	ND	8	34	\％ 3	3	2	56	． 20	16\％	20	28	． 83	106	\％ 28		3.14	． 09	． 10	相	48
SER－L2＋00S O＋50E	5	171	44	171	\％	20	14	1437	10.22	19	5	ND	6	92	＋＊＊	2	2	93	． 27	約数	26	30	1.54	338	迷	2	2.93	． 07	． 12	\％sis	68
SER－L2＋COS 0＋75E	4	172	25	153	晾	26	17	1143	11.39	16	5	MD	5	81		2	2	118	． 46	\％ 20	13	33	1.49	157	約	2	2.80	． 18	． 12	行	51
SER－L2＋00S 1＋00E	3	171	44	173	䊉	24	15	1163	10.71	18	5	ND	5	80	令㐫	2	2	109	． 40	考78	13	34	1.59	209			2.75	． 16	． 12	紋	93
SER－L2＋00S 1＋25E	4	216	45	193	\％乐	25	12	1126	11.86	2	5	ND	5	69	洨 9	3	2	105	． 15	等69	13	37	1.39	193	単効		2.68	． 05	． 07	勆納	184
SER－L2＋00S 1＋50E	4	207	46	198	\％	25	12	1120	11.43	行	5	ND	5	65	－ 8	2	2	105	． 13	\％\％62	14	36	1.46	181	2\％		2.87	． 05	． 09		97
SER－L2＋00S 1＋75E	4	212	31	173	＊${ }_{\text {\％}}$	30	19	1464	10.74	2\％	5	ND	5	55	\％	2	2	102	． 13	玄里考安	13	31	1.47	159	年移		2.91	． 05	． 09	\＄	65
SER－L2＋00S 2＋00E	3	164	31	179		28	18	1208	9.63	\＄ 8 ．	5	ND	4	72	汹納	2	2	104	． 42	苓52	12	32	1.60	129	令		2.83	． 15	． 14	$\$$	65
SER－L2＋00S 2＋25E	4	190	28	203	\％	37	24	1657	10.56	20	5	ND	5	72	䋛	2	2	86	． 53		14	26	1.71	126	薬＊		2.71	． 21	． 15	玄紬	122
SER－L2＋00S 2＋50E	3	111	39	179	，${ }^{\text {\％}}$	19	13	1074	9.63	12\％	5	ND	5	89	交 2	5	4	118	． 32	等6＊	15	17	1.18	177	亦＊＊		1.98	． 10	． 12	的	1480
SER－L2＋00S 2＋75E	2	50	185	89	\％＊s	8	7	792	8.74	248	5	ND	5	165	\％ 0	6	2	142	． 30	漦3	22	16	． 87	322	玄40		1.60	． 10	． 19	＋	2270
SER－L2＋00S 3＋00E	4	51	185	128	\％	12	8	818	9.87	8\％	5	ND	4	116	就	3	10	175	． 17	対22	33	24	1.29	327	的\％	2	2.30	． 10	． 19		2090
SER－L2＋00S 3＋25E	4	36	35	80	\％${ }^{\text {\％}}$	12	6	602	7.60	50	5	ND	4	113	\％$\%$	4	3	128	． 19		16	31	1.09	272	約䊽	2	1.95	． 09	． 13		450
SER－L2＋00S 3＋50E	4	50	25	83	\％	13	6	653	8.60	54	5	ND	4	112	\％	4	2	123	． 23	\％ 180%	16	27	1.14	236			2.98	． 06	． 10		280
SER－L2＋50S O＋50E	5	112	44	192	\％	22	19	1556	7.97	2\％	5	ND	6	72	\％	6	2	79	． 23	223	31	31	1.39	324	＋32		3.18	． 05	． 10		49
SER－L2＋50S 0＋75E	5	157	30	142	＊ 6	24	18	1123	7.93	\％	5	ND	6	78	\％	3	2	96	． 53	23）	45	28	1.64	137	紬	2	2.63	． 17	． 13	納	140
SER－L2＋50S 1＋00E	4	184	27	155	\％	26	30	1711	9.77	＊ 17	5	ND	5	89	㬉	3	2	103	． 58		14	27	1.78	156			2.81	． 21	． 16		65
SER－L2＋50S 1＋25E	5	207	30	192	\％去	25	20	1452	11.51		5	ND	5	76	的	2	2	103	． 24	翏9\％	16	28	1.65	131	＊ 2	2	2.89	． 08	． 09		79
SER－L2＋50S 1＋50E	4	214	33	187	\％	24	17	1293	11.19	25	5	ND	6	71	\％	2	2	97	． 21	\％ 7%	14	26	1.49	114			2.71	． 06	． 09	行	107
SER－L2＋50S 1＋75E	3	218	20	186	的。	33	26	1707	9.32	13	5	ND	5	81	ท\％	4	2	100	． 55	洤品	15	23	1.75	168	納納		3.10	． 19	． 14		53
SER－L2＋50S 2＋00E	3	232	23	195	\％ 6	32	26	1793	9.61	\＄12	5	ND	5	74	\＄	3	2	97	． 42	3\％	15	22	1.70	147			3.07	． 14	． 12	行	93
SER－L2＋50S 2＋25E	5	220	30	194	＊	29	23	1715	10.08	\％6	5	ND	6	55	＜	2	2	91	． 17	552	17	25	1.46	127	的 ${ }^{2}$		3.18	． 05	． 10	\％	96
SER－L2＋50S 2＋50E	6	253	22	272	＊	37	26	1931	10.99	24	5	ND	6	54	\％$\%$ \％	2	2	97	． 24	令80	14	24	1.63	137	水2	2	3.49	． 07	． 10		88
SER－L2＋50S 2＋75E	5	126	27	144	\％	18	11	1161	8.64	21	5	ND	5	39	\％		2	85	． 15	的92	18	24	1.08	118	全沓		3.75	． 04	． 07	行	75
SER－L2＋50S 3＋00E	3	33	33	60	令	5	4	479	8.08	37		ND	2	43	\％	2	3	98	． 14	洔如	12	22	． 57	59	＊渋的		2.58	． 03	． 05	䊽	620
SER－L2＋50S 3＋33E	3	38	27	90	\％${ }^{3}$	12	8	688	7.09	35	5	ND	3	106	＊	3	2	111	． 36	药85	15	25	1.23	192	＊		2.32	． 12	． 12	行	290
SER－L2＋50S 3＋58E	3	41	31	83	\％$\%$	11	5	587	7.11	45．	5	ND	3	70	\％	3	2	109	． 25		16	27	1.04	161		2	2.78 3.97	． 06	． 08		310
SER－L2＋50S 3＋83E	3	68	33	113	\％	15	8	1085	11.59	80	5	ND	4	73	組\％	2	2	179	． 11	薌5	23	39	1.07	201	令 ${ }^{\text {d }}$	2	3.97	． 04	． 09		480
SER－L2＋505 4＋08E		45	49	95	23	10	6	766	8.26	61	5	ND	3	88	\％	4	3	136	． 22	\％88	14	26	1.12	265	\％		2.47	． 04	． 09	的㑊	570
WS－90－8－1	13	55	35	124	方4	84	46	2613	9.22	40	5	ND	3	78	守 8	2	5	84	． 31	252	9	102	1.82	188	\％ 28		3.08	． 10	． 12	，${ }^{1}$	123
WS－90－8－2	7	57	27	129	\％\％	32	18	972	8.19	4	5	ND	7	101	， 3	2	3	72	． 32	\％89	8	28	1.44	134	22		3.15	． 09	14	，	200
WS－90－8－3	8	26	21	92	，	17	7	515	4.82	50	5	ND	1	75	\％	2	2	54	． 94	304．	5	26	1.16	90	\％	4	2.07	． 02	． 09	\％	49
WS－90－8－4	7	77	21	101	\％\％	49	12	797	6.40	30	5	ND	2	69	\％ 2	2	2	74	． 39	\％088	6	105	1.53	68	－	2	2.84	． 03	． 08		45
WS－90－8－5	9	47	23	83	\％	24	19	1139	5.68	26	5	ND	88	65	2	2	2	72	． 34	\％10	5	33	． 87	51	¢3	2	2.14	． 01	． 05	＜	24
StANDARD C／AU－S	18	57	36	131	\％\％	71	31	1048	3.97	\％ 38	20	7	38	53	19，0	16	18	56	． 52		37	59	． 90	181	\％\％．	36	1.90	． 06	． 14	\％	49

ICP－． 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3－1－2 HCL－HNO3－H2O AT 95 DEG．C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER． THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA II B W AND LIMITED FOR NA K AND AL．AU DETECTION LIMIT BY ICP IS 3 PPM． －SAMPLE TYPE：P1 TO P2 SOIL P3 ROCK AU＊ANALYSIS BY ACID LEACH／AA FROM 10 GM SAMPLE，

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4390
Page 2

SAMPLE\＃	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{cu} \\ \mathrm{ppm} \end{array}$	Pb ppm	$\begin{array}{r} \text { 2n } \\ \text { ppm } \end{array}$	$\sum_{\mathrm{pq}, \mathrm{mi}}^{\mathrm{A}}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	$\stackrel{\text { As }}{\text { ppm. }}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	Au ppm	Th ppm	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$	$\begin{gathered} \text { cod } \\ \text { ppme } \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathbf{B i} \\ \mathbf{p p m} \end{gathered}$	$\begin{array}{r} v \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{\%} \end{gathered}$	$\stackrel{\rightharpoonup}{*}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{M g} \\ \mathbf{Z} \end{array}$	Ba ppm	$\stackrel{1}{8}$	$\begin{array}{r} \mathbf{B} \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Al} \\ \boldsymbol{X} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{Z} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{\%} \end{aligned}$		$\begin{aligned} & \mathrm{A} \mathrm{u}^{*} \\ & \mathrm{ppp} \end{aligned}$
WS－90－8－6	7	66	41	140	¢9	26	37	1491	5.69	18	5	ND	3	58	1，3．	5	7	66	． 42	＊ 135	10	26	1.26	101	， 17		3.04	． 08	． 08	行	66
WS－90－8－7	4	36	27	132	8.7	33	18	1121	6.39	17	5	ND	3	71	令	2	12	82	． 26	\％179	7	36	1.67	271	＊ 8	2	5.34	． 02	． 50	\％\％	330
WS－90－B－8	10	35	55	128	8，	52	19	1216	6.27	63	5	ND	1	57	\％ 0	4	7	105	． 22	148	6	72	1.35	138	＊ 4		3.01	． 05	． 08	\％	155
WS－90－B－9	14	51	20	122	\％	24	44	1464	7.18	12	5	ND	1	89	1 \％\％	4	8	65	． 19	＋15	7	31	1.15	133	＊\leqslant		4.18	． 02	． 13 S	䋛	65
WS－90－B－10	6	14	11	127	\％	29	21	1164	11.56	25	5	ND	2	109	2 2	2	5	102	． 16	$\stackrel{153}{ }$	7	64	2.60	283	叔䍃		4.44	． 04	． 99 䊽	坛就	79
WS－90－8－11	18	90	37	183	S．	29	48	2012	6.21	\％ 19	5	ND	1	69	\％	2	6	70	． 31	\％108	6	27	1.40	245	， 3	5	3.81	． 02	． 19	紬	40
WS－90－8－12	10	86	146	230	1， 7	33	53	2915	7.02	$\geqslant 17$	5	ND	1	64	1， 8	5	3	70	． 21	$\stackrel{1}{33}$	14	25	1.36	671	＊	2	4.60	． 02	． 12	\％χ^{*} \％	390
ws－90－8－13	7	70	74	240	2．8	16	39	3733	5.91	\％ 26	5	ND	2	36	1\％	3	7	52	． 15	102	16	21	． 71	100	\％$\%$	3	4.06	． 01	． 06	約	51
WS－90－8－14	9	89	68	215	\％	26	37	2008	5.95	29	5	ND	1	77	\％\％	2	10	67	． 32	\％41	9	25	1.20	115	就 1	4	3.20	． 02	． 09	晾文	103
STANDARD C	20	59	36	133	7，6	73	32	1055	3.98	39.	20	7	39	55	19， 3	15	20	57	． 52	\％996	39	58	． 90	181	＊ 08	38	1.89	． 06	． 14	納	－

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4390
Page 3

SAMPLE\＃	$\begin{gathered} \text { Mo } \\ \text { Ppim } \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { ppin } \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppp} \end{gathered}$	$\begin{array}{r} 2 n \\ \text { pprin } \end{array}$		$\begin{array}{\|c} \mathrm{Ni} \\ \mathrm{Pp} \mathrm{~m}^{2} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { pprn } \end{array}$	$\begin{array}{ll} \text { O } & \text { Mn } \\ 0 \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathbf{Z} \end{gathered}$		$\begin{array}{r} U \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathbf{A u} \\ \text { ppran } \end{array}$	$\begin{aligned} & \text { Th } \\ & \text { ppin } \end{aligned}$	$\begin{aligned} & \mathbf{S r} \\ & \text { pppan } \end{aligned}$		$\begin{aligned} & \text { Sb } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathbf{B i} \\ \text { ppm } \end{array}$	$\begin{array}{r} v \\ \text { in ppm } \end{array}$	$\begin{array}{cc} 1 & \mathrm{Ca} \\ \mathrm{n} & \end{array}$	粦	$\begin{gathered} \text { La } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pppm} \end{gathered}$	$\begin{array}{ll} \mathrm{r} & \mathrm{Mg} \\ \mathrm{~m} & \boldsymbol{K} \end{array}$	$\begin{aligned} & 9 \mathrm{Ba} \\ & \mathrm{Bpm} \end{aligned}$	落	$\text { 离 } \mathrm{Bp}$	$\begin{array}{cc} \text { B } & \text { Al } \\ \text { pm } & X \end{array}$	$\begin{gathered} \mathrm{Na} \\ \boldsymbol{Z} \end{gathered}$			$\begin{aligned} & \text { Au* } \\ & \text { ppb } \end{aligned}$
K－	2	215	4	223	新	162	37	1336	6.88	7	5	ND	2	195	2 5	2	2	102	1.90	36\％	7	56	51.19	262	\％30		24.81	． 28	． 78	＜	9
K－B－90	1	35	7	99	\％	60	19	974	3.51	15．	5	ND	2	103	\＄ 8	2	2	78	1.21	809\％	＋ 7	49	1.13	150	2\％		22.96	． 30	． 50	＊	13
K－B－90－3	1	212	7	243	\％	88	33	1134	6.21	24	5	ND	2	234	\％\％$\%$	2	2	95	2.32	\％2\％	6	37	1.24	127	50．		25.16	． 57	． 46	¢	6
PEL－90－J－86	1	99	60	630	\％	18	13	598	8.26	139\％	5	ND	1	189	娄	3	2	44	1.45	\％36	4	84	． 15	11	\％		2.82	． 01	． 01	＊	105
PEL－90－J－87	2	877	77	11726	\％\％2	15	14	2090	9.57	109\％	5	MD	2	166	60\％	2	2	54	2.61	\％198	4	22	． 55	22	30		21.06	． 01	． 02	\％ 6	93
PEL－90－J－88	1	332	20	3874	\％${ }^{\text {\％}}$	1	4	894	14.64	3．	5	ND	1	8	48＊	2	2	23	． 25	，00\％	4	2	2.17	12	8		2.14	． 01	． 01	\％	340
PEL－90－J－89	5	663	235	2197	徰采	6	5	5 404	11.18	319	5	ND	1	44	－ 0	4	2	33	． 30	304\％	2	16	． 16	4	約		2.39	． 01	． 01	，	370
PEL－90－J－90	4	1923	377	2116	\％\％	11	22	408	6.68	849\％	5	ND	1	95	＊3 ${ }^{1}$	5	2	27	． 50	805\％	2	10	． 15	9	数賋		2.41	． 01	． 01	\％	320
PEL－90－J－91	15	1516	438	23124	效	13	7	1064	5.12	\＄ 5%	5	2	1	62	17\％	2	2	41	． 53	洖	2	43	． 65	5	淫\％		2.87	． 01	． 01	令5	860
PEL－90－J－92	4	322	156	3125	\％\％	17	26	1169	8.91	373．	5	ND	2	262	翏＊＊䜌	5	2	47	1.99	等 5	4	22	． 25	11	維		2.96	． 01	． 01	的	280
PEL－90－J－93	1	1053	249	12315	2\％）	3	6	1092	20.93	23.	5	ND	1	30	\％ 4.8	4	2	22	． 29	时为吅	6	11	． 04	14			2.19	． 01	． 01	\％ 8	720
PEL－90－J－94	1	89	159	566	\％\％＜	21	28	1305	8.20	49\％	5	ND	2	331	的紋	5	2	53	2.25	\％ 28	7	22	． 67	4	\％		31.48	． 01	． 01	，	210
PEL－90－J－95	1	84	5	371	㳽数	19	14	734	6.16	，${ }^{\circ}$	5	ND	2	23	＊等約	2	2	149	． 48	\％\％\％	4	37	2.12	408	㜢		24.15	． 07	2.37	\％	6
PEL－90－J－95（0UP）	，	28	13	56	㐫納	14	16	11164	5.76	130．	5	ND	2	114	喲2	3	2	65	1.18	26\％	5	16	1.26	26	缕年		21.31	． 01	． 08	2	780
PEL－90－J－96	1	105	3	94	納 6	6	6	805	5.74	\％ 2 ．	5	ND	2	50		2	2	179	． 70	\％32	4	34	2.00	99	洔		23.79	． 24	1.85		3
PEL－90－J－97	1	198	123	45	\％ 5	6	3	576	1.36	！	5	ND	1	9	行	6	4	2	． 01	8003	－ 2	4	． 01	10	\％ 0		2.04	． 01	． 01	\％${ }^{2}$	10
PEL－90－J－98	1	71	20	168		7	11	2193	4.45	20	5	ND		544	響\％	3	2	28	5.30	＊ 20	9	3	1.20	60	Sis		4.61	． 02	． 21	\％	4
PEL－90－J－99	1	50	10	114	\％	8	15	1850	5.01	18	5	ND		496	就	2	2	36	4.76	10\％	9	4	1.27	47	澵曾		3.91	． 02	． 18		6
PEL－90－J－100	16	44	13	92	绊	59	135	9858	5.55	8	5	ND	3	36	\％	2	2	17	． 14	\％08\％	10	11	． 59	436	8is		21.65	． 01	． 15	\％	39
PEL－90－J－101	10	10	23	122	35	59	25	1213	6.22	18．	5	ND		144	行	2	20	90	． 89	\％ 5	2	24	3.07	15	数全		22.70	． 01	． 03	\％	470
PEL－90－J－102	83	25	279	29	令	11	7	288	27.77	14\％	5	ND	3	92	者	2	52	111	． 05	\％\％	＋ 4	11	． 47	52	\％		2.95	． 07	． 06	䊽	1290
PEL－90－J－103	1	6	6	76	，	24	24	837	6.13	15	5	ND	1	61	\％	2	2	53	． 52	\％8\％	2	13	2.21	31	樃2		22.50	． 03	． 26		27
PEL－90－J－104	35	7	12	6	\％ 3	17	23	146	3.80	33	5	ND	1	200	\％	2	2	31	． 94	8036	2	16	． 10	14	\％ 20		2.78	． 01	． 02	涂	32
PEL－90－J－105	3	10	3	6	就	4	4	111	1.60	\％	5	ND	1	12	22	2	3	4	． 04	8008	2	4	． 05	11	很采		2.11	． 01	． 01	\％	4
PEL－90－J－106	25	18	7	18	\％	3	18	112	24.92	\％2	5	ND	9	52		2	7	61	． 18	\％4\％	2	2	． 01	95	80		2.78	． 01	． 11	¢	35
PEL－90－J－107	5	20	12	50	\％ 2	9	3	366	4.33	\％ 27	5	ND	1	187	的	2	2	79	． 81	80\％	2	25	． 96	13	\％26		21.57	． 01	． 01		27
PEL－90－J－108	47	63	22	51	\％	14	10	480	2.31	2 2	5	ND	1	10	\％	2	2	10	． 15	8030	2	8	． 09	54	84）		2.45	． 01	． 06	\％	540
STANDARD C／AU－R	19	61	37	131	6．8\％	72	32	1049	3.96	39\％	20	7	40	55	\％ 2 S	16	20	57	． 52	809\％	39	60	． 90	182	80	35	351.90	． 06	． 14	\％	530

Cathedral Gold Corp．PROJECT 8103 File \＃90－4553 Page 1

SAMPLE＊	$\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{pppm} \end{gathered}$	$\begin{array}{r} \text { Pb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\stackrel{\sim}{\text { ppon }}$	$\begin{array}{r} \mathrm{Ni} \\ \mathbf{p p m} \end{array}$	$\begin{aligned} & \text { Co } \\ & \text { ppon } \end{aligned}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{array}{cc} \mathrm{Fe} \\ \mathrm{n} & \mathrm{Z} \end{array}$		$\begin{array}{r} \text { U } \\ \text { ppin } \end{array}$	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppm} \end{gathered}$	Th ppm	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$	$\stackrel{\text { pd }}{\text { PPII }}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\underset{\text { Ppin }}{\mathbf{B i}}$	$\begin{array}{r} v \\ p p i n \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{x} \end{gathered}$	$\stackrel{\rightharpoonup}{\mathrm{F}}$	$\begin{array}{r} \text { La } \\ \text { pppm } \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Cr}}$	$\begin{aligned} & \mathrm{Mg} \\ & \mathrm{X} \end{aligned}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\% \%$	$\begin{array}{r} \text { B } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Al } \\ \boldsymbol{X} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & K \\ & \mathcal{Z} \end{aligned}$		Ac^{*} ppb
PL1－0＋75N	3	36	36	68	\％ 2	10	4	285	3.79	13	5	ND	1	23	\％	3	4	50	． 15	，083	13	19	． 60	113	\％19	2	1.81	． 04	． 07	\％	10
PL1－0＋50N	6	22	39	45	＋ 4	5	5	147	5.18	－	5	ND	1	16	\％	2	3	113	． 09	\％，050	8	15	． 26	47	\％35	2	1.34	． 01	． 04	＊	20
PL1－0＋25N	2	9	18	40	， 4 \％	2	1	104	1.68	\％	5	ND	1	15	2．	2	8	49	． 09	－053	7	6	． 15	37	\％22	3	． 74	． 01	． 04	\％	45
PL1－0＋00N	7	30	11	66	星 6	1	5	331	6.05	13	10	ND	8	2	2	2	6	10	． 06	038	32	8	． 06	8	\％ 5	5	4.55	． 07	． 06	\％	18
PL2－0＋75N	5	29	26	69	$\%$	10	6	309	6.72	\％\％\％	5	ND	4	19	1．6．	2	2	80	． 14	\％080	16	26	． 67	155	\％ 42	4	2.77	． 02	． 07	\％$\%^{2}$	17
PL2－0＋50N	5	54	34	88	\％	10	6	420	5.07	\％12	5	ND	5	27	\％	2	2	43	． 17	\％18	22	18	． 70	168	－23	3	2.36	． 06	． 09	的	66
PL2－0＋25N	5	62	46	112	\％ 4	8	6	431	5.06	श 17	5	ND	3	41	－	3	2	44	． 13	\％ 38	15	17	． 79	468	＋18	2	1.87	． 02	． 10	\％$\frac{1}{*}$	48
PL2－0＋00N	5	55	71	100	－ 6	9	5	371	4.90	\％ 17	5	ND	2	24	2	5	4	47	． 15	\％103	23	18	． 71	179	$\underline{17}$	2	2.36	． 04	． 09	\％\％	29
PL3－0＋00N	7	85	59	85	\％	9	11	613	7.73	\％16	5	ND	4	20	6．	2	2	53	． 14	\％ 147	19	21	． 63	72	\％22	2	2.37	． 04	． 07	\％${ }^{\text {d }}$	57
PLI－2＋50N	2	15	6	52	1，0	9	8	273	6.73	$\geqslant, 82$	5	ND	3	17	1，\％	2	2	118	． 24	\％19	6	20	． 45	31	\％ 62	2	1.52	． 03	． 04	\％\geqslant	4
PL1－2＋25W	6	34	27	75	为	8	8	741	6.95	17	5	ND	5	23	， 2	2	2	42	． 11	\％20	19	18	． 55	130	\％88	2	2.94	． 03	． 09	\％	31
PL1－2＋00N	3	7	18	34	\％ 2	6	4	230	2.75	\％	5	ND	1	33	1＊	2	2	68	． 27	\％56	6	9	． 28	44	\％ 3	2	． 99	． 04	． 04	\％	8
PL1－1＋75	3	11	13	70	\％2．	7	6	731	4.53	12	5	ND	1	24	， 3	3	2	68	． 24	107	7	12	． 37	50	29．	3	1.16	． 03	． 08	\％	4
PL1－1＋50N	4	13	17	71	\％$\%$	12	14	384	4.25	3	5	ND	1	70	＊ 4	2	2	70	． 80	，087\％	12	13	1.11	45	\％${ }^{29}$	2	1.72	． 29	． 14	\％	3
PL1－1＋25W	4	11	19	39	\％ψ^{4}	3	4	144	4.62	3	5	ND	1	14	\＄${ }^{\text {\％}}$	3	2	65	． 11	\％074	9	15	． 16	40	2\％	2	1.68	． 01	． 03	$\stackrel{1}{2}$	7
PL1－1＋00N		8	46	38	\％	7	8	291	2.37	\％$\%$ \％	5	ND	1	38	9	3	2	52	． 37	\％054	4	8	． 47	39	\％35	2	． 82	． 10	． 06	\％	12
PL1－0＋75	2	3	26	16	\％	1	1	49	． 55	\％ 4	5	ND	1	17	\％${ }_{\text {\％}}$	2	4	37	． 09	\％024	5	4	． 09	35	\％ 17	3	． 75	． 01	． 03	ง	29
PL1－0＋50N	4	7	24	39	， 6	3	3	102	4.81	\％ 6.	5	ND	1	20	－2	3	2	60	． 16	062	10	10	． 08	66	\％ 16	2	1.15	． 01	． 03	！	3
PL1－0＋25W	12	15	25	56	，	4	5	235	6.28	¢\％	5	ND	3	9	1，2	3	2	102	． 05	\％030	23	11	． 11	18	\％		1.44	． 01	． 03	\％	4
PL1－0＋50E	5	13	20	43	\％ 1.6	2	4	94	6.24	\％	5	ND	2	6	\％ 2	5	2	34	． 06	075	18	14	． 07	16	\％ 12	2	3.62	． 02	． 03	1	4
PL1－0＋75E	5	75	30	85	， 5	10	9	694	5.37	24	5	ND	3	27	， 2	3	2	37	． 14	\％25	15	16	． 74	158	\％16	2	1.74	． 02	． 09	\％	27
PL1－1＋00E	6	23	29	75	＊$\stackrel{5}{ }$ ，	4	4	223	3.57	\％，$\%$	5	ND	1	17	4．	2	2	40	． 15	，082	27	13	． 34	41	\％ 19	3	2.80	． 06	． 05	\％	7
PL1－1＋25E	6	169	16	66	1， 3	7	6	298	4.94	\％ 8 ，	7	ND	3	14	\％	2	2	55	． 20	\％098	23	15	． 36	26	\％33	2	4.58	． 06	． 05	\％	3
PL1－1＋50E	9	75	10	69	1， 3	10	10	394	4.80	\％$\%$	5	ND	1	41	100	2	4	58	． 48	． 0995	30	15	． 67	54	\％28		3.29	． 17	． 09	\％	5
PL1－1＋75E	5	50	23	88	\％	12	13	619	5.64	\％ 16	6	ND	7	32	\％ 0	2	4	50	． 24	\＄21	21	15	． 64	127	\％33	2	2.78	． 08	． 10	\％ 8	49
PL1－2＋00E	9	40	18	98	$\stackrel{\square}{4}$	11	16	1039	6.31	\％ 14	5	ND	8	42	1， 3	2	2	45	． 41	， 112	20	13	． 77	149	29	5	2.63	． 16	． 12	\％$\%$	22
PL1－2＋25E	5	44	27	92	\％	10	12	566	5.34	\＆17	5	ND	6	35	\％ 3	4	2	41	． 20	136	21	14	． 67	174	24．	2	2.38	． 06	． 10	\％${ }^{\text {\％}}$	51
PL1－2＋50E	4	28	16	80	\＆ s	11	9	450	4.62	13	5	ND	5	33	\％ 2	2	3	45	． 22	\％107	21	12	． 61	138	\％28	2	2.40	． 05	． 07	¢	43
PL2－2＋50W	5	25	24	81	\％$\%$	7	4	527	3.27	10．	5	ND	2	67	\＄3．	3	2	44	． 30	，133	8	18	． 99	354	＋4．	3	1.58	． 02	． 18	2	32
PL2－2＋25	5	35	26	112	3	10	5	456	3.25	， 14	5	ND	7	105	\％	2	2	45	． 22	\％122	7	19	． 96	376	21	2	1.70	． 01	． 18	\％${ }^{\text {\％}}$	34
PL2－2＋00H	4	23	55	60	， 2	6	6	408	6.63	\％ 13	5	ND		36	2	2	2	53	． 14	\％09\％	8	25	． 60	164	\＄4	2	2.29	． 01	． 08	\％${ }^{\text {\％}}$	15
PL2－1＋754	7	47	293	73	4，2	5	14	1036	8.49	\％ 3	6	ND	3	15	18．	3	4	55	． 07	\％16	15	18	． 28	60	\％ 8	2	2.49	． 01	． 06	\％	7
PL2－1＋50W	6	22	20	52	\％ 4	7	6	200	7.03	\％$\%$	6	ND	1	14	\％$\%$	2	2	57	． 12	089	18	19	． 24	40	20．		1.93	． 03	． 05	\％	10
PL2－1＋25W	5	44	25	85	＋4	10	6	519	4.55	13	5	ND	5	58	\％$\%$	2	2	43	． 17	10\％	18	20	． 77	277	19．	2	2.15	． 04	． 14	\＆	15
PL2－0＋754	6	50	34	87	4	13	8	599	5.70	16	5	ND	5	30	\％ 2	2	2	42	． 14	124．	17	25	． 83	127	\％${ }^{\text {\％}}$ ，	2	1.95	． 02	． 08	\＄	28
PL2－0＋50W	3	33	30	100	㟶	10	5	572	4.56	20	5	ND	2	36	－8	2	2	35	． 14	139	17	21	． 93	296	\％4	2	1.51	． 01	． 11	\％	35
STANDARD C／AU－S	19	61	35	130	6．9．	72	31	1054	3.98	\％ 40	18	7	37	53	39\％	15	22	55	． 52	\％098	38	56	． 90	181	\％ 07	37	1.89	． 06	． 14	\％ 12	50

ICP＝． 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3－1－2 HCL－HNO3－H2O AT 95 DEG．C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B \mathbf{H} AND LIMITED FOR NA K AND AL C_{A} AU DETECTION LIMIT BY ICP IS 3 PPM． －SAMPLE TYPE：P1－P6 SOIL P7－P8 ROCK AU＊ANALYSIS BY ACID LEACH／AA FROM 10 GM SAMPLE．

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4553

SAMPLE＊	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Pb } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ \text { ppm } \end{array}$	$\sum_{\mathrm{pp}}^{\mathrm{m}} \mathrm{~g}$	$\underset{\substack{\mathrm{Ni} \\ \mathrm{pp} \\ \hline \\ \hline}}{ }$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \boldsymbol{\chi} \end{gathered}$	As ppra	$\begin{array}{r} U \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	Th ppm	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\stackrel{6}{\mathrm{eq}} \mathrm{p}$	$\begin{array}{r} \mathbf{S b} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Bi } \\ \text { ppan } \end{gathered}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{x} \end{gathered}$	$\stackrel{\%}{*}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Mg} \\ \mathrm{x} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppan} \\ \hline \end{array}$	$\stackrel{1}{2}$	$\begin{array}{r} B \\ \text { ppin } \end{array}$	$\underset{X}{A l}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{Z} \end{aligned}$	ㅇㅏㅜㄹ	$\begin{aligned} & \mathrm{A} \mathrm{u}^{*} \\ & \mathrm{ppb} \end{aligned}$
PL2－0＋00W	2	24	19	101	， 3	13	11	625	5.56	8	5	ND	5	21	， 2	2	4	58	． 28	， 102	19	19	． 54	50	37．		3.20	． 10	． 09	\％	14
PL2－0＋25E	6	22	41	83	－	4	12	1666	9.57	34	5	MD	4	8	2	2	6	20	． 10	\＄36	15	12	． 23	18	16		2.68	． 05	． 05	¢	10
PL2－0＋50E	7	9	27	90	\％	3	3	324	5.54	9	7	ND	10	3	2	2	7	13	． 05	\％ 01	22	6	． 11	13	，15，		3.52	． 09	． 08	1	4
PL2－0＋75E	9	18	40	94	\＆	8	6	603	7.25	14	5	ND	6	13	2	2	4	50	． 07	Y09\％	12	24	． 38	38	\％ 30	2	1.73	． 02	． 05	\％	13
PL2－1＋00E	11	143	179	59	1，3	2	12	891	13.40	126	5	ND	1	8	\％ 2	7	6	12	． 09	24	2	8	． 33	26	．05	2	1.14	． 01	02	1	33
PL2－1＋25E	2	18	27	53	3，8．	5	2	163	5.96	41．	5	ND	1	19	，	2	4	48	． 11	8076	8	16	． 19	56	\％ 15	2	1.74	． 01	． 02	1	12
PL2－1＋50E	3	64	47	107	1，2	8	36	2274	3.94	12	5	ND	1	14	2	3	6	34	． 17	20\％	27	15	． 31	95	＋15	2	4.67	． 03	． 04	¢	22
PL2－1＋75E	4	6	16	44	\％ 8	3	2	172	5.62	8	5	MD	1	15	2	2	5	42	． 10	\％ 104	12	7	． 07	60	\％19	2	2.03	． 01	． 03	\％ k_{1}	6
PL2－2＋00E	4	5	17	46	\％ 8	3	2	116	5.27	4	5	No	1	7	2	2	5	78	． 05	\％060	26	12	． 09	16	\＄38	2	1.99	． 01	． 03	㤽	6
PL2－2＋25E	2	3	26	21	\％ 4	1	1	333	． 60	\％${ }^{3}$	5	ND	1	29	\％ 6	3	5	27	． 10	\％20．	4	2	． 06	113	需	4	． 86	． 01	． 05	3	9
PL2－2＋50E	1	1	12	36	1．9	4	3	134	1.66	\％ 2	5	ND	1	26	5	3	8	69	． 27	5057	5	9	． 22	60	\％6．	2	． 74	． 05	． 05	2	7
PL3－1＋754	1	90	101	56	2．6	6	4	689	10.21	\％\％	5	ND	1	27	．2	2	2	68	． 15	\％80	2	40	． 52	103	\％20	2	1.31	． 01	． 06	\％	34
PL3－1＋504	1	7	43	33	＊ 6	5	3	179	3.18	\％	5	ND	1	24	2	2	5	101	． 18	＊062	3	11	． 22	49 納	\％ 47	2	1.13	． 02	． 04	2	10
PL3－1＋25W		7	37	60	1，6	7	7	235	2.43	4	5	ND	1	45	－ 4	3	2	70	． 46	\＄082	4	14	． 33	41	\％ 25	2	． 96	． 13	． 07	2	7
PL3－1＋00N	3	25	144	70	\％\％	5	2	334	6.27	\％23	5	ND	1	35	\％ 2	2	2	69	． 10	，515	6	22	． 55	327	， 12	2	1.57	． 01	． 10	\％	18
PL3－0＋754	3	21	43	56	\％\％	4	2	281	6.04	\％88	5	MD	1	24	，	2	3	72	． 09	\％1\％	9	16	． 35	162	19	2	1.66	． 01	． 06	1	11
PL3－0＋50N	5	28	27	53	20，	3	3	415	6.32	8	5	ND	1	8	2	2	2	38	． 12	\％2t	16	11	． 13	26	\％ 18	2	3.00	． 01	． 03	行	18
PL3－0＋25H	6	13	27	59	＊ 8	4	4	465	6.77	10	5	ND	，	12	\％ 2	2	2	67	． 08	\％070	10	16	． 19	25	\％ 33	2	1.46	． 02	． 05	ไ	12
PL3－0＋25E	3	16	20	47 \％	\％ 5.	2	1	140	3.99	2	5	ND	1	9	\％ 2	2	2	47	． 08	064	14	11	． 15	27	＋26		2.40	． 03	． 03	¢	5
PL3－0＋50E	3	48	35	139	\％${ }^{\text {\％}}$	12	9	753	4.42	15	5	ND	2	31	22	2	2	37	． 16	\％00	19	20	． 68	179	19．	2	2.07	． 04	． 10		172
PL3－0＋75E	4	24	31	47 3	\％${ }^{6}$		6	952	5.06	\％ 5		ND	1	11	\％ 2	2	2	92	． 07	\％26	5	11	． 14	54	＋26	2	1.02	． 01	． 03	\＄	8
PL3－1＋00E	4	20	36	40	\％ 4	4	3	665	6.21	221	5	ND	1	17	$\geqslant 2$	2	5	89	． 07	116	8	14	． 23	36	， 27	2	1.76	． 01	． 02	＜1	79
PL3－1＋25E	5	40	23	70	\％	7	13	1134	6.50	\％ 13	5	ND	2	18	\％2	2	3	41	． 16	V48	26	17	． 46	33	\％25		3.20	． 05	． 05	¢	22
PL3－1＋50E	7	9	27	49	\＄1，	4	3	218	4.47	\％ 11	5	ND	1	23	\％ 2	2	2	69	． 14	\％1／	16	14	． 17	53	＋30	2	1.04	． 02	． 04	2	13
PL3－2＋00E	1	13	14	55	12\％	6	2	92	2.19	2	5	ND	1	13	\％3．	2	2	77	． 14	\％88	6	16	． 19	39 ；	\％ 46	3	1.91	． 02	． 03	3	4
PL3－2＋25E	2	31	27	59	＋3	9	10	797	4.44	10	5	ND	1	33	\％ 2	2	2	48	． 19	$\bigcirc 135$	10	14	． 56	125	25	2	1.87	． 03	． 06	2	32
PIN L1－0＋00E	3	25	32	63	\％ 6	10	9	338	5.23	2	5	ND	1	22	\％2	2	3	88	． 18	083	12	21	． 39	31 ；	40	4	3.08	． 03	． 04	2	8
PIN L1－0＋25E	7	39	28	79	4	8	7	516	8.75	6	5	ND	2	13	\％ 2	2	2	66	． 07	\％061	16	34	． 36	23	\％28		2.79	． 04	． 06	\＄1	4
PIN L1－0＋50E	9	34	29	74	，2	8	7	489	7.37	5	5	ND	1	17	＋2	2	2	95	． 08	054	13	31	． 28	27	\％ 38	2	2.36	． 02	． 04	\％	3
PIN L1－0＋75E	6	28	20	67	－2	9	9	636	6.53	t	5	ND	1	15	\％ 2	2	2	79	． 15	\％070	12	21	． 29	24	\％ 40	2	2.60	． 04	． 06	\}	4
PIN L1－1＋00E	5	40	30	74	，	9	9	454	8.39	5	5	ND	2	12	2	2	2	73	． 07	－049	15	35	． 37	23	\％ 31	2	3.47	． 03	． 05	\％	15
PIN L1－1＋25E	1	21	19	66	，	11	9	231	5.44	2	5	ND	1	28	\％2	3	2	102	． 41	\％085	14	25	． 61	35	\％ 63	2	4.29	． 09	． 05	\％1	3
PIN 11－1＋50E	4	36	48	92	\％$\%$	13	10	651	5.17	3	5	ND	1	64	， 2	2	2	75	． 61	182	13	31	1.04	65	\％ 36		2.79	． 21	． 11	\％	21
PIN L1－1＋75E	6	20	23	66	\％ 7	7	14	838	5.82	3	5	ND	1	14	2	2	2	80	． 13	6\％2	14	22	． 28	22	＋40	2	2.61	． 04	． 05	2	8
PIN L1－2＋00E	3	17	25	63	\％	11	6	267	6.80	2	5	ND	1	16	2	2	2	105	． 19	1074	9	27	． 58	26	\％ 55	2	2.57	． 04	． 06	\％	5
PIN L1－2＋25E	，	19	12	70	，4	10	14	556	6.24	3	5	ND	1	21	2	2	2	100	． 30	2086．	11	24	． 54	28	6\％	2	4.00	． 07	． 06	行	3
STANDARD C／AU－S	17	59	42	133	\％\％2	72	31	1059	3.98	39	21	7	36	53	18，6．	16	21	56	． 53	－09\％	36	60	． 90	180	． 07	39	9.89	． 06	． 14	机	46

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4553
Page 3

SAMPLE\＃	Mo ppm	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{pppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\mathrm{N}_{\mathrm{p}}^{\mathrm{g}} \mathrm{~g}$	$\underset{\mathrm{ppm}}{\mathrm{Ni}}$	$\begin{array}{r} \text { Co } \\ \text { ppom } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathbf{\%} \end{gathered}$	$\sum_{\mathrm{p} \boldsymbol{p} \boldsymbol{p}}^{\mathrm{H}}$	$\begin{array}{r} \text { U } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { Th } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$	$\begin{gathered} \text { cd } \\ \text { pprig } \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Bi } \\ \text { ppm } \end{array}$	$\begin{array}{r} V \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{\%} \end{gathered}$	ψ_{i}	$\begin{array}{r} \text { La } \\ \text { pppm } \end{array}$		$\begin{array}{r} \mathrm{Mg} \\ \mathbf{Z} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\geqslant \% \text {, }$	$\begin{array}{r} \text { B } \\ \text { ppin } \end{array}$	$\begin{gathered} \text { Al } \\ \text { R } \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & K \\ & \% \end{aligned}$	ppon	Au＊ ppb
PIN L1－2＋50E	6	23	21	82	\％ 9	6	20	870	6.91	8.	5	ND	1	11	． 2	2	4	72	． 13	\＄059	26	24	． 22	21	\％ 3	5	3.27	． 05	． 05	\％	
PIN L1－2＋75E	9	13	27	62	\％ 4	2	3	183	6.50	5	5	ND	2	7	， 3	2	2	82	． 05	， 036	19	21	． 11	14	36	2	2.09	． 05	． 06	\％	
PIN L1－3＋00E	3	25	19	74	\％ 5	9	9	330	7.84	5	5	ND	3	31	\％	6	2	105	． 43	\＄10	14	29	． 57	34	63	3	4.33	． 12	． 07	¢	
PIN L1－3＋25E	4	41	33	131	，	19	14	560	5.43	13．	5	ND	5	24	相	2	2	69	． 28	186	25	28	． 64	43	\％ 4	5	3.79	． 12	． 09	\％	
PIN 11－3＋50E	4	17	24	80	鲳	12	8	309	4.59	\％，$\%$	5	ND	2	42	2	3	5	91	． 46	\％070	12	24	． 68	33	\％ 5 \％	4	2.54	． 17	． 10	\％	
PIN L1－4＋00E	1	13	13	84	\％	19	32	1822	5.66	5．	5	ND	1	112	1， 8	5	2	96	1.65	，097	10	23	1.27	70	，44．	3	2.45	． 40	． 16	\％	
PIN 11－4＋25E	2	19	21	137	\％ 7	14	12	419	5.91	8.	5	ND	1	49	3．4	3	2	107	． 64	\％09\％	14	22	． 60	43	\％88	2	2.84	． 16	． 09	\}	
PIN L1－4＋50E	3	15	27	69	\％$\%$	9	8	307	4.92	\＄10	5	ND	2	23	\％ 6	4	2	80	． 30	，08\％	12	22	． 48	25	＋ 15	2	2.96	． 07	． 06	\}	
PIM L1－4＋75E	3	42	22	121	\％ 5	25	23	835	6.09	\％ 14	5	ND	1	96	\％2	5	2	81	1.14	103	13	30	1.46	64	42	2	2.97	． 44	． 18	2	
PIN L1－5＋00E	2	57	21	139	$\stackrel{\theta}{2}$	35	27	1316	7.37	83	5	ND	1	81	\％ 6	6	2	76	． 99	\％ 5 50：	13	31	1.46	58	\％88	2	2.96	． 38	． 16	\％	6
PIN L1－5＋25E	2	81	22	211	\％$\%$	55	45	1967	9.92	208	5	ND	1	55	\％ 6	9	2	64	． 66	203．	21	33	1.05	51	28．	2	3.05	． 23	． 11	，	
PIM L\}-5+50E	3	13	13	74	\％	11	11	518	5.84	10．	5	ND	1	31	88	5	2	95	． 40	8075	18	21	． 54	32	48	4	2.94	． 10	． 06	多	
PIN L2－0＋00E	8	30	24	72	\％ 8	7	6	532	6.80	5．	5	ND	2	13	， 2	2	4	84	． 14	－058	13	26	． 32	22	4	5	2.86	． 05	． 06	\％	
PIN L2－0＋25E	8	27	17	80	4	4	11	1303	7.82	8	5	ND	2	6	2	2	3	42	． 05	046	27	23	． 16	14	23	2	2.87	． 04	． 07	¢	
PIN L2－0＋50E	8	27	23	61	\％	4	15	851	7.71	5．	5	ND	2	8	＋2	2	3	69	． 06	\％04\％	22	20	． 16	19	835	2	2.49	． 03	． 06	\％	
PIN L2－0＋75E	6	20	21	58	水3．	4	15	680	5.53		5	ND	1	13	5．	2	5	73	． 10	8046	25	17	． 15	26	， 37	2	2.55	． 03	． 04	娄	11
PIN L2－1＋00E	6	25	20	85	\％ 4	5	26	1224	8.25	6．	5	ND	1	8	2		2	56	． 09	049	31	28	． 16	19	，27	2	3.01	． 05	． 05	\＄	
PIN L2－1＋25E	9	27	27	92	\％ 6	12	29	1157	9.00	\％ 13	5	ND	4	14	， 4	5	3	112	． 11	． 054	21	46	． 34	36	48．	3	2.81	． 04	． 07	\＄	15
PIN L2－1＋50E	6	53	57	111	粦 0	16	8	561	4.62	5	5	ND	3	31	\％7	2	3	73	． 19	\％28	20	35	． 93	90	35	2	3.10	． 04	． 06	＊	25
PIN L2－1＋75E	6	28	26	78	\％\％	7	12	615	6.94	9	5	ND	3	8	＊ 4	2	2	50	． 08		21	27	． 20	18	2\％	2	3.54	． 05	． 06	永	
PIN L2－2＋00E	3	41	33	135	\％\％	13	10	378	6.39		5	ND	3	30	\＆2		2	109	． 33	\％13	15	30	． 59	41	\％ 68	2	4.76	． 10	． 07	行	
PIN L2－2＋25E	9	30	34	101	\％ 2	8	16	1974	8.03	13．	5	ND	3	7	\％${ }^{\text {a }}$	2	2	54	． 05	\％057	17	31	． 35	16	25	2	2.59	． 04	． 06	\＄	
PIN L2－2＋50E	10	21	23	56	＋3	7	6	480	5.30	2	5	ND	2	11	\％ 3.	2	3	71	． 12	1052	17	17	． 23	19	\％44	2	2.38	． 04	． 05	\＄	
PIN L2－2＋75E	8	15	20	75	$\geqslant 2 \%$	2	2	570	7.51	， 14	5	ND	8	2	2	2	2	15	． 05	\％043	28	12	． 05	8	15．	2	4.01	． 06	． 06	㐫	
PIN L2－3＋00E	2	1	7	62	\％ 4	11	6	210	4.85	\％ 2	5	ND	3	25	4．	2	2	130	． 30	\％080	6	17	． 42	23	\％7\％	2	1.68	． 09	． 06		
PIN L2－3＋25E	3	40	23	145	\％ 5	20	22	1431	6.60	\％	5	ND	1	19	． 9	3	2	63	． 26	\％23	13	25	． 73	57	\％ 4 4	2	3.11	． 04	． 05	\＆	
PIN L3－2＋00E	3	33	43	108	\％ 5	17	10	357	4.29	\％ 8 \％	5	ND	2	39	\％ 5	3	2	105	． 43	009\％	16	34	． 74	47	， 57	3	4.10	． 14	． 08	\％	
PIN L3－2＋25E	3	32	15	93	\％ 5	13	8	286	6.74	\％11	5	ND	3	25	\％ 4	4	4	98	． 35	， 092	15	26	． 55	32	\％ 61	2	4.47	． 09	． 06	\％	
PIN L3－2＋50E	3	17	22	77	\％ 2	14	12	457	5.26	2	5	ND	1	55	\％ 7	2	2	85	． 63	－07\％	11	22	． 85	38	\％ 47		2.62	． 23	． 11	\％	
PIN L3－2＋75E	1	6	10	71	\％	17	15	410	4.77	2	5	ND	1	102	\％$\%$	2	2	93	1.16	\％078	7	20	1.23	54	56．	2	2.17	． 42	． 17	$\%$	
PIN L3－3＋00E	2	26	15	62	\％ 2	13	9	282	4.94	2	5	ND	2	36	， 3	2	3	98	． 51	－099	10	25	． 66	30	\％ 67.	2	3.98	． 13	． 06	\％	
PIN L3－3＋25E	1	11	12	100	\％$\%$	15	11	705	4.62	2	5	ND	1	40	\％ 4	2	2	89	． 50	\％13	7	19	． 48	53	－38	2	2.83	． 12	． 06	\％	
PIN L3－3＋50E		4	2	100	\％ 4	23	24	1116	5.64	2	5	ND	1	165	4．	5	2	96	2.26	\＄12	9	24	1.96	91	\％62	2	2.51	． 77	． 28	\％	
PIN－90 1	2	10	14	51	\％$\%$	10	5	218	4.55	2	5	ND	2	21	， 2 ．	4	2	86	． 26	5093．	8	18	． 38	25	\＄48	2	2.53	． 06	． 05	\％	
PIN－90 2	2	17	14	57	\％${ }^{\text {\％}}$ \％	9	5	171	4.08	5	5	ND	3	19	\％ 6.	2	3	85	． 25	\％080	13	25	． 37	26	488	2	3.82	． 05	． 04	$\$$	
PIN－90 3	3	21	16	72	，	12	8	303	5.38	S．	5	ND	2	37	3	4	3	87	． 44	\％88．	14	24	． 57	34	50	2	3.73	． 14	． 08	，	2
STANDARD C／AU－S	19	60	39	135	172	72	31	1058	3.98	39．	16	7	37	53	18，4	16	22	55	． 53	\％094．	37	60	． 90	181	07.	40	1.90	． 06	． 14	12	55

Cathedral Gold Corp．PROJECT 8103 FIIE \＃90－4553
Page 4

SAMPLE＊	$\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{pppm} \end{array}$	Pb ppa	$\begin{array}{r} \mathbf{2 n} \\ \text { pprn } \end{array}$		$\begin{gathered} \mathrm{Ni} \\ \mathrm{pppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { pppm } \end{array}$	Mn ppm	$\begin{gathered} \mathrm{Fe} \\ \boldsymbol{\%} \end{gathered}$		$\begin{array}{r} u \\ \text { pprn } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	Th ppin	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppm} \end{array}$	$\mathrm{F}_{\mathrm{c}}^{\mathrm{cd}}$	$\begin{array}{r} \mathbf{S b} \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathbf{B i} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} V \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\stackrel{\vartheta}{*}$	La ppm	$\begin{gathered} \mathrm{Cr} \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathbf{\%} \end{gathered}$	$\begin{array}{r} \mathbf{B a} \\ \text { ppm } \end{array}$	$\stackrel{\%}{2}$	$\begin{array}{r} B \\ \text { ppm } \\ \hline \end{array}$	$\begin{gathered} A l \\ \chi \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{Z} \end{aligned}$	pront	$\begin{aligned} & A u^{*} \\ & \text { Ppob } \end{aligned}$
PIN－90 4	1	25	12	57	2	13	12	390	3.84	5	5	ND	1	88	22	2	2	71	． 95	064	7	15	1.04	49	$\stackrel{1}{0}$		1.87	． 35	． 13	\％	11
PIN－90 5	5	51	24	87	2．	12	6	434	6.12	4	5	ND	3	23	2	2	2	72	． 21	072	17	29	． 71	31	37．		3.87	． 05	． 05	寿	7
PIN－90 6	3	45	17	83	， 3	13	17	1277	5.90	3	5	ND	3	52	2	2	2	86	． 55	－087	11	29	． 92	42	478		3.51	． 18	． 09	ข	15
PIN－90 7	5	41	16	82	， 3 ．	7	11	2019	5.39	行	5	ND	2	13	， 2	2	2	57	． 13	080	20	22	． 36	25	29．		3.21	． 05	． 06	\％	2
PIN－90 8	3	47	27	85	数	16	15	630	5.40	4	5	ND	2	124	＊ 4	3	2	92	1.28	1092．	12	22	1.19	77	6\％		3.16	． 53	． 21	1	1
PIN－90 9	2	32	16	54	的	8	6	139	3.39	5	5	ND	1	39	． 2	2	2	99	． 37	060	4	17	． 58	35	84．		1.76	． 09	． 05	寿	7
PIN－90 10	3	32	9	75	，	16	18	632	5.15	2	5	ND	1	141	3	2	2	92	1.48	\＄081	6	16	1.27	68	68．		2.51	． 62	． 23	1	2
PIN－90 11	4	34	17	64	\＆	10	12	523	4.76	\％	5	ND	1	55	－2	2	2	82	． 55	1080	7	15	． 75	40	52．		1.79	． 20	． 09	\＆	3
PIN－90 12	2	39	6	47	\％	9	6	202	5.82	2	7	ND	2	23	2	2	2	96	． 29	－07\％	6	20	． 61	29	59\％		3.15	． 04	． 03	2	2
PIN－90 13	4	43	16	78	\％$\%$	11	7	239	5.06	S	5	ND	1	31	．2	2	2	93	． 26	\％7\％	7	20	． 56	34	42．	5	1.75	． 08	． 07	\＆$\%$ ，	2
PIN－90 14	4	41	14	71	\％ 1	14	13	583	5.74	4	5	ND	2	82	－2	2		104	． 82	－078：	8	23	． 97	47	＊ 67		2.39	． 33	． 14	\％	8
PIN－90 15	2	47	6	54	$\geqslant{ }^{\text {\％}}$	12	9	247	6.54	2	7	ND	3	30	4	2	2	110	． 33	1093．	6	22	． 78	40	83，		3.32	． 05	． 04	\％	3
SER L．150S 0＋25E	4	131	23	182	44	33	35	1657	7.42	\％	5	ND	6	82	1.2	2	2	76	． 82	， 151	19	26	1.14	135	4 4 ．		2.80	． 32	． 18	1	28
SER L150S 0＋50E	6	201	31	306	\％ 2	47	119	7583	12.47	34	7	ND	7	39	2.0	2	4	71	． 14	5337\％	17	28	． 84	191	20，		2.50	． 04	． 07	1	56
SER L150S 0＋75E	9	165	33	255	\％ 4	42	45	3982	10.76	\％ 14	5	ND	7	39	1.5	2	3	68	． 16	\＄269	19	32	． 92	163	23．		2.64	． 06	． 08	\＄\％	53
SER L1505 1＋00E	4	119	31	176	\％${ }^{\circ}$	19	14	1262	9.72	\％ 6	5	ND	6	68	13.3	3	2	105	． 21	240	19	40	1.12	189	，36．		2.57	． 07	． 09	\％1	166
SER L150S 1＋25E	5	70	22	135	\％	18	11	1041	8.10	＋10．	5	ND	6	37	\％ 8	3	2	82	． 15	，89．	21	35	． 87	105	28		3.28	． 06	． 07	\％	44
SER LIS0S 1＋50E	6	121	23	169	\％ 4	24	18	1605	8.41	20	5	ND	7	60	－6	2	2	74	． 23	\＄235	17	30	1.04	179	30．		3.21	． 08	． 09	\％	41
SER L1505 1＋75E	8	128	25	185	＊$\%$	39	24	1526	7.32	15	5	ND	5	61	\％	2	2	74	． 33	2336	15	33	1.03	193	\％ 3.		3.74	． 11	． 09	\％	93
SER L150S 2＋00E	6	124	27	173	＊ 7 \％	35	23	1653	8.50	24．	5	ND	6	60	1．0．	3	2	85	． 25	272．	16	37	1.05	231	334．		3.23	． 08	． 09		185
SER L150S 2＋25E	5	84	44	115	＊${ }^{\text {\％}}$	21	13	961	8.21	29．	5	ND	5	91	－ 8	3	5	87	． 29	260	12	30	． 96	169	\％6．	2	1.85	． 10	． 09	很	880
SER L150S 2＋50E	4	59	172	74	2， 0	11	8	668	7.72	40，	5	ND	4	171	． 6	4	4	128	． 36	207\％	15	27	． 86	330	88．	2	1.48	． 12	． 13	\％	1040
SER L150S 2＋75E	5	49	99	37	1.1	5	4	356	6.70	24	5	ND	7	167	\％2	2	5	87	． 21	2254	14	18	． 50	314	39．	3	． 90	． 05	． 09	2	860
SER L150S 3＋O0E	6	38	55	63	\％ 8	13	9	568	12.56	27	5	ND	4	83	1，4	2	2	105	． 42	4．65	6	35	． 90	190	09．	2	1.24	． 13	． 11	\％	690
PEL 90－DS 22	42	344	3	97	\％ 5	16	77	2014	13.29 紟	\％ 4	6	ND	6	8	1．9	2	2	37	． 07	＊61	6	18	． 70	22	19．	2	5.73	． 02	． 03	π_{1}	89
PEL 90－DS 23	18	300	19	132	\％ 7 ，	11	28	1067	16.64	寿	5	ND	9	5	\％${ }^{2}$	3	7	69	． 05	4 48	13	20	． 78	21	22，		2.45	． 01	． 03	\％	81
PEL 90－DS 24	14	155	11	114	\％ 2	20	52	1830	11.10	8	5	ND	6	15	\％	2	6	52	． 08	578	12	35	． 98	60	18		2.22	． 02	． 05	\}	69
PEL 90－DS 25	20	132	10	140	\％2	63	72	1971	11.31	2	5	ND	6	12	1．5	2	3	43	． 09	324	9	69	1.05	36	20．	2	1.89	． 03	． 04	\％	80
PEL 90－DS 26	30	64	11	86	\％${ }^{\text {\％}}$	7	23	1433	5.80	$\underline{6}$	5	ND	1	56	$\bigcirc 2$	2	2	50	． 23	170	13	11	． 78	41	12.		2.48	． 02	． 06	！	11
PEL 90－DS 27	31	87	9	93	， 1	6	47	1628	6.60	5	5	ND	2	71	， 3	2	2	43	． 33	259	8	9	． 76	59	，08．	4	2.57	． 02	． 0 ．		11
PEL 90－DS 28	12	83	17	76	＋4	5	20	1027	6.03	7	5	ND	2	48	， 2	2	2	56	． 17	咼	17	11	． 56	32	18.		3.33	． 02	． 06	\％．	10
PEL 90－DS 29	46	703	55	117	\％ 1.8	3	49	1142	11.17	62	5	ND	5	49	\％$\%$	2	16	46	． 18	， 125	11	7	． 46	52	， 14		2.08	． 02	． 10	\％	18
PEL 90－DS 30	6	403	111	135	＊${ }^{5}$	16	13	951	11.79	28	5	ND	6	44	\％．4	2	2	121	． 18	174	13	57	1.03	64	45．	2	3.31	． 01	． 04	\％	47
PEL 90－DS 31	5	156	65	117	\％ 8.	12	20	1113	5.78	$\stackrel{9}{8}$	5	ND	3	37	， 2	2	2	62	． 26	100	17	23	． 68	118	27，		2.85	． 03	． 06	2	17
PEL 90－DS 31 （ A$)$	86	903	96	116	\％${ }^{8}$	26	157	4820	13.98	178．	5	ND	3	35	2，	4	8	98	． 19	283	4	33	． 90	169	\％ 32	2	2.41	． 04	． 04	2	65
PEL 90－DS 32	18	2861	276	428	2．8	38	65	4433	8.22	92．	5	ND	3	39	3．9	3	3	81	． 36	181	19	29	． 89	335	12\％		3.04	． 04	． 08	，	80
STANDARD C／AU－S	19	62	42	132	6．9．	72	31	1049	3.98	39	20	7	40	52	18．4．	15	19	56	． 52	－093	38	56	． 90	182	．09．	38	1.89	． 06	． 13	13.	48

Cathedral Gold Corp. PROJECT 8103 FILE \# 90-4553
Page 5

SAMPLE*	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{cu} \\ \text { ppom } \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\stackrel{q}{\text { qog }}$	$\underset{\substack{\mathrm{Ni} \\ \text { ppm }}}{ }$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{array}{r} M n \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\stackrel{\text { spris }}{\text { pen }}$	$\begin{array}{r} U \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Th } \\ \text { pppm } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$	$\begin{gathered} \text { col } \\ \text { ppm, } \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { pppm } \end{array}$	$\begin{gathered} \text { Bi } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} V \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \boldsymbol{\%} \end{gathered}$	$\stackrel{\otimes}{\mathrm{F}},$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \text { Mg } \\ & \text { \% } \end{aligned}$	$\begin{array}{r} \mathbf{B a} \\ \mathrm{ppm} \end{array}$	$\sum_{8} \boldsymbol{q}_{1},$	$\begin{array}{r} 8 \\ \text { ppom } \end{array}$	A!	$\begin{gathered} \mathrm{Na} \\ \mathrm{Z} \end{gathered}$	$\begin{aligned} & K \\ & \boldsymbol{z} \end{aligned}$	\sum_{i+1}	$\begin{aligned} & \mathrm{A} \mathbf{u}^{\star} \\ & \mathrm{ppb} \end{aligned}$
1460-1	6	178	45	125	2.4	20	12	977	10.01	39.	5	ND	6	135	8	2	2	123	. 32	432	22	25	1.05	322	\$ 30	2	2.34	. 16	. 22	, \%	500
1460-2	9	406	28	154	\% 1	39	70	3093	9.55	31	6	ND	12	71	12\%	4	6	104	. 21	383	26	31	. 96	218	28	2	3.99	. 09	. 07	1	320
1460-3	5	93	29	91	1,8	12	7	658	7.53	40	5	ND	3	68	\% 4	2	2	109	. 11	\%229	12	23	. 88	299	27.	2	2.24	. 03	. 06	¢	310
1460-4	3	103	83	107	2. 6	11	8	1048	9.08	185	5	2	8	133	8.	3	2	178	. 22	\%24	20	20	. 94	269	4.4.	6	2.01	. 09	. 14	\% 1	4540
1460-5	2	45	188	58	3, 1	6	5	476	6.20	218.	5	ND	6	349	,2.	5	2	152	. 26	, 185	47	13	. 70	398	, 54.	21	. 91	. 09	. 13	<	2260
1460-6	7	56	32	68	1	14	11	594	8.06	44	5	ND	9	223	\%	2	2	115	. 35	432	26	22	. 83	628	\% 32	4	1.78	. 17	. 12	1	430
1460-7	6	48	436	28	3.0	3	7	356	4.09	77	5	2	7	431	\% 2	3	4	98	. 23	, 7	41	10	. 33	557	\% 60	6	. 65	. 05	. 07	, \%	3080
1460-8	5	51	85	59	\%18	10	4	384	5.90	31	5	NO	7	198	2	2	2	83	. 10	248	21	31	. 75	415	+35	7	1.26	. 08	. 10	\%	470
1460-9	6	64	108	61	24.	8	4	418	5.16	30.	5	ND	5	238	2	2	2	90	. 21	\$239	20	21	. 64	401	S 50	6	1.05	. 07	. 16		2110
1460-10	15	76	61	80	就,	15	5	436	8.28	31.	5	ND	5	122	. 2	2	3	190	. 19	226	12	39	. 93	300	. 53	2	2.57	. 08	. 11	\%	670
1460-11	8	81	34	122	\% $\% 4$	22	9	1388	7.17	22	5	ND	4	88	\%	2	2	101	. 10	2\%	19	41	. 88	425	, 24	5	3.48	. 04	. 08	1	135
1460-12	4	106	53	84	\%	31	9	366	11.89	71	5	ND	4	113	8.	2	2	127	. 21	61\%	13	61	. 88	189	13.	2	1.62	. 13	. 15	\%	270
1460-13	7	142	22	94	\% 0	23	8	503	12.02	152	5	ND	5	109	, 4	2	6	125	. 15	503	13	71	. 73	222	25.	2	1.62	. 09	. 08	\%	102
1460-14	3	267	24	156	\% 1 \%	37	13	605	12.98	99	5	ND	4	106	\%	2	6	165	. 17	542	10	71	. 93	170	*27	2	2.34	. 04	. 07	,	115
1460-15	7	270	46	116	\%22	19	12	633	10.77	185.	5	ND	4	306	1.3.3	3	2	153	. 24	349.	24	57	. 79	224	27,	2	1.72	. 14	. 13	\%	290
1460-16	3	272	27	148	12	30	18	1032	9.88	89\%	5	ND	4	91	\% +	2	2	129	. 26	\$67	13	62	1.10	150	\% 27.	2	2.43	. 07	. 09	\% $\%$	108
1460-17	3	187	36	166	1 1\%	29	10	691	7.72	57	5	ND	3	66	* 5 ,	3	2	112	. 17	240	16	34	. 95	124	23.	4	2.47	. 05	. 06	\%	111
1460-18	3	117	44	111	\% 10	14	9	1606	8.89	65.	5	ND	2	78	. 6	4	2	138	. 15	$\geqslant 220$	12	48	. 81	209	19.	3	2.07	. 02	. 10	1.	65
1460-19	3	196	47	225	\%\%	31	16	1527	7.72	65.	5	ND	4	90	*3.	3	2	92	. 14	+336	20	38	1.07	615	- 26	4	2.65	. 02	. 09	\%	141
1460-20	5	403	66	264	12	38	43	2196	7.66	57.	5	ND	7	76	1.2	2	2	104	. 20	\$329	24	41	1.20	327	\$32.	3	3.40	. 04	. 11		164
1460-21	3	533	83	233	\% $\%$	34	34	2049	8.72	49.	5	ND	6	114	1, 6	2	2	111	. 24	319	21	56	1.21	303	\% 30	2	2.75	. 06	. 11	<	109
1460-22	3	415	172	286	3 3	35	44	3134	10.41	94	5	ND	6	54	2.3.	4	2	129	. 19	44t	11	58	1.55	199	24.	2	3.37	. 02	. 15	¢	123
1460-23	4	237	49	170	\% 10	27	38	2707	9.40	68	5	ND	8	56	1.0	2	3	112	. 26	576	15	49	1.33	127	29.	2	3.37	. 08	. 13	1	83
1460-24	6	92	74	107	1, 3	14	8	853	7.12	30	5	ND	7	45	\% 2	2	2	76	. 09	180	27	28	. 86	248	.24.	4	2.81	. 03	. 06	1	94
1460-25	5	107	31	126	\% + \%	19	11	943	7.18	35.	5	ND	8	72	. 2	2	2	83	. 20	220	22	27	1.00	283	. 30	4	2.25	. 08	. 10	\%	101
1460-26	4	75	35	101	1.2	12	7	610	6.28	19	5	ND	7	88	2	2	2	66	. 12	$\stackrel{223}{ }$	25	18	. 82	401	24.	5	1.48	. 06	. 10	1	68
1460-27	8	55	25	88	1.5	13	12	570	6.58	24	5	ND	6	102	.2.	2	2	62	. 37	228	18	12	. 81	331	, 26	5	1.28	. 16	. 15	碞	30
1460-28	7	59	25	89	\% 1 4	12	11	589	6.38	23	5	ND	6	96	$\stackrel{2}{ }$	2	2	56	. 33	-227	18	11	. 75	290	$\stackrel{26}{ }$	5	1.26	. 14	. 14	\%	26
1460-29	5	123	61	145	2,2	18	10	1001	7.28	40	5	ND	6	76	3	2	2	81	. 11	8186	18	32	1.00	649	+28		2.46	. 03	. 11	,	150
1460-30	4	41	47	54	2.2	5	3	328	4.79	2\%	5	ND	6	106	\%	2	2	34	. 04	2665	24	6	. 41	466	$\stackrel{18}{ }$	5	. 85	. 03	. 10	\%	29
1500-1	6	164	20	111	\%	21	12	965	8.45	16	5	ND	7	90	1.0	2	2	111	. 29	347	17	25	1.04	223	< 32	2	2.38	. 12	. 13	2	97
1500-2	6	258	42	177	§\%	25	16	1260	9.77	16	5	ND	7	78	< 0	2	2	105	. 13	374	18	31	1.06	237	24.	2	2.48	. 05	. 08	\%	200
1500-3	6	293	23	185	\% ${ }^{5}$	35	29	1763	8.85	23.	5	ND	8	54	\$12.	3	5	110	. 12	\% 86	19	25	1.05	170	-28	2	2.80	. 05	. 07	\%	73
1500-4	6	254	34	169	,	32	25	1571	9.83	\% 15	5	ND	8	57	12	3	2	123	. 13	\$449	17	34	1.06	199	26.		2.97	. 07	. 09	\%	64
1500-5	6	255	31	220	\& \downarrow	39	31	1572	12.70	\%69	5	ND	8	48	43,	5	2	84	. 16	\$498	17	21	. 83	139	+18.	2	1.77	. 08	. 06	\$	330
1500-6	6	117	43	139	§ 1	27	12	905	9.66	42	5	ND	8	63	$\stackrel{9}{ }$	3	2	88	. 12	4 45	19	27	. 95	259	25.	2	2.20	. 06	. 07	1.	210
STANDARD C/AU-S	20	65	41	134	6.7.	74	33	1050	3.98	42	20	7	40	54	18.6.	15	21	57	. 52	\%097.	49	59	. 90	182	-09.	40	1.89	. 07	. 13	12	46

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4553
Page 6

SAMPLE\＃	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{pppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\stackrel{\pi}{\text { ipg }}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{pppm} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \mathrm{Fe} \\ & \boldsymbol{X} \end{aligned}$	$\begin{aligned} & \text { iss } \\ & \text { ip } \end{aligned}$	$\begin{array}{r} \mathbf{u} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { Th } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \mathbf{S r} \\ \mathbf{p p m} \end{gathered}$	$\stackrel{\operatorname{cod}}{ }$ \#pomp	$\begin{array}{r} \text { sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathbf{B i} \\ \text { ppin } \end{array}$	$\begin{array}{r} v \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \boldsymbol{z} \end{gathered}$	$\boldsymbol{*}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\text { } \gtrless_{i}, \frac{1}{2}$	$\begin{array}{r} B \\ \text { ppm } \\ \hline \end{array}$	$\begin{gathered} A! \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & k \\ & \chi \end{aligned}$		$\begin{aligned} & \mathbf{A \mathbf { u } ^ { \star }} \\ & \mathbf{p p b} \end{aligned}$
1500－7	4	63	134	125	2.6	17	9	891	8.08	10%	5	ND	1	82	．2	3	5	71	． 21	37\％	16	29	1.24	297	\＄ 30	2	1.81	． 08	． 13	的	220
1500－8	3	70	60	78	7\％	16	7	486	11.03	130	5	ND	1	69	，	2	4	95	． 29	\％ 381	9	61	． 87	196	\％ 26	2	1.51	． 11	． 10	\％	153
1500－9	1	39	28	86	1＊1	12	7	1381	6.19	25	5	ND	1	77	\％ 6	2	2	104	． 29	188	9	37	． 81	218	\％ 25	4	1.34	． 05	． 09	行	32
1500－10	3	55	57	96	2	13	6	652	8.15	40	5	MD	2	88	， 2	4	2	98	． 15	278	17	33	． 74	188	27，	3	2.26	． 06	． 09	\％	50
1500－11	1	23	27	72	๗1	13	8	454	4.98	15	5	ND	1	48	，2	2	4	78	． 29	\＄123	8	22	． 63	101	\％2\％	6	1.76	． 07	． 06	$\mathbb{\$}$	29
1500－12	1	75	47	147	1－2	26	13	730	7.59	28	5	ND	1	84	，2	2	2	94	． 39	230	14	37	1.18	216	\＄30．		2.26	． 14	． 12	\％	28
1500－13	3	83	26	136	数	20	5	508	6.25	30	5	ND	1	44	家	2	2	59	． 10	\％179	16	32	． 82	146	雱，		2.58	． 02	． 05	\％ 1	29
1500－14	3	433	25	493	\％$\%$	53	49	2572	12.21	78	5	MD	1	53	4，	2	2	41	． 22	\％ 628	11	47	1.10	493	， 8 \％	2	5.55	． 08	． 09	\％ 1	23
1500－15	1	188	57	272	1上	27	34	2466	10.78	93．	5	MD	，	46	$\stackrel{2}{2}$	2	2	102	． 21	428	10	54	1.55	235	23．	2	3.15	． 05	． 09	＊1	26
1500－16	3	33	32	76	\％	10	3	374	4.61	17	5	ND	1	23	\％ 2	2	2	57	． 09	\＄092	14	27	． 52	87	\％ 17	6	2.48	． 02	． 04	\％	14
1500－17	3	64	36	111	1．5	15	10	873	6.94	32	5	ND	1	41	\％2．	2	2	62	． 19	\％6\％	17	29	． 84	120	21．		2.64	． 07	． 08	1	36
1500－18	1	212	134	342	12，	30	44	2606	9.34	87	5	ND	1	47	． 5.	3	2	85	． 39	3 303	12	43	1.89	74	24．		3.08	． 03	． 08	＜	26
1500－19	1	194	44	125	＊ 8	12	9	865	10.23	32	5	ND	1	45	\％ 2	2	2	72	． 09	\％187	17	43	． 80	120	16．		2.69	． 01	． 05	\％	48
4500－20	1	118	25	122	\％	18	14	1039	9.18	37	5	ND	2	70	\＄ 2.	2	2	77	． 15	27\％	15	40	1.10	145	29．		2.43	． 04	． 0	\％	24
1500－21	2	87	33	119	$\ddot{10}$	19	14	930	7.73	36	5	ND	2	84	\％ 2	2	2	70	． 24	\％22	17	30	1.06	178	\％28	3	2.05	． 08	． 10	＜	26
1500－22	2	137	27	121	\％	24	20	1228	8.79	48	5	ND	1	88	3	2	2	70	． 25	\＄69	11	40	1.21	213	\％24．		2.06	． 06	． 08	\％	48
1500－23	2	57	27	95	令	18	12	708	7.86	23	5	ND	2	80	\％ 2	2	2	75	． 42	205	14	30	1.24	188	3 3 \％		2.01	． 16	． 13	\％	66
1500－24	2	98	25	129	\％$\%$	17	11	1075	7.91	30	5	ND	2	64	2	3	2	65	． 17	241	16	27	1.08	251	23．	3	2.21	． 05	． 10	\％	128
1500－25	2	90	34	132	\％${ }^{\text {\％}}$	19	12	934	8.28	31	5	ND	2	74	\％	2	2	69	． 31	216	19	30	1.24	186	－29．		2.23	． 11	． 11	\％	33
1500－26	1	35	24	83	紂	10	7	505	6.06	2\％	5	ND	3	82	相	2	2	46	． 22	194	17	15	． 73	274	20．	4	1.33	． 08	． 11	行	10
1500－27	8	30	28	69	＋4．	5	5	372	6.59	30	7	ND	2	97	，	2	3	29	． 13	¢259	15	5	． 34	267	15．	3	． 82	． 03	． 11	ไ	10
1500－28	4	67	29	114	\％ 1	5	12	1153	7.20	28	5	ND	2	65	\％	2	3	30	． 11	227	13	9	． 49	250	\％ 16	3	1.08	． 04	． 09	ィ	15
1500－29	2	49	39	109	2，	6	7	502	6.32	28	5	ND	3	67	\％ 2	2	2	26	． 08	230	15	6	． 37	288	18.	3	． 81	． 03	． 09	\％	14
1500－30	2	32	43	64	シ， 5	4	4	494	5.30	23	5	ND	3	101	\％ 3	2	2	30	． 05	221	17	6	． 40	377	\％18	4	． 81	． 03	． 10	2	23
PIN－J－8－1	12	235	35	141	$\%$	67	66	1588	8.82	14	5	ND	5	94	\％ 3 ，	2	2	57	． 11	5337	23	76	1.18	679	109	2	3.98	． 03	． 12		6
PIN－J－B－2	34	259	34	94	\％ 4	32	68	1577	12.70	17	5	ND	5	28	， 2		2	47	． 04	＋401	18	50	． 96	699	， 0 \％		3.10	． 01	． 09	\％	8
PIN－J－B－3	18	574	456	318	\％ 4	62	73	1969	8.89	59	5	ND	2	47	， 4	5	2	80	． 33	224	20	108	1.41	550	\％ 08	2	3.51	． 01	． 09	1	29
PIN－J－8－4	26	467	36	60	， 4	17	35	818	9.20	9.	10	ND	12	34	$\stackrel{3}{ }$	2	2	12	． 04	461	29	8	． 31	560	\％ 01	3	2.71	． 01	． 04	\＄	12
STANDARD C／AU－S	18	58	40	131	6．8．	70	32	1055	3.98	39.	18	7	36	52	18．4．	15	21	55	． 52	1094．	35	58	． 89	179	，07．	41	1.89	． 06	． 14	12	45

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4553

SAMPLE＊	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Pb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\sum_{\mathrm{r} \rho \mathrm{p}}^{\mathrm{g}} \mathrm{~g}$		$\begin{gathered} \text { Co } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Mn } \\ \text { pppn } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \boldsymbol{\alpha} \end{gathered}$		$\begin{array}{r} \mathrm{U} \\ \text { ppin } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p m} \end{array}$		$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Bi } \\ \text { ppm } \end{array}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{aligned} & \mathbf{e a} \\ & \mathbf{x} \end{aligned}$	$\stackrel{\otimes}{\forall}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \mathbf{\%} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\hat{8}$	$\begin{array}{r} \mathbf{B} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Al } \\ \mathbf{x} \end{array}$	$\begin{gathered} \mathrm{Na} \\ \mathrm{Z} \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & \mathbf{\chi} \end{aligned}$	$\gtrless_{\mathrm{p}}^{\mathrm{n}} \mathrm{H}$	$\begin{aligned} & \mathbf{A u ^ { * }} \\ & \text { ppb } \end{aligned}$
PEL－90－G－54R	26	197	13	108	\％	12	12	1205	7.90	\％	5	ND	2	4	88	11	2	59	． 25	\％93	6	32	1.95	53	\％ 19		5.03	． 01	． 10	3	55
PEL－90－G－5	21	241	14	126	\％	20	60	2619	7.12	2	5	ND	1	9	4		2	57	． 64	¢198	8	27	2.12	77	\％12	3	5.65	． 01	． 08	1	12
PEL－90－G－56R	3	9	6	78	\％	5	3	719	4.89	\％	5	ND	4	6	， 2	2	2	26	． 20	174	6	16	1.22	104	\％05．	3	1.36	． 01	． 16	4	7
PEL－90－G－57R	6	33	18	14		6	4	162	2.30	16	5	ND	3	7	$\stackrel{*}{*}$	2	2	7	． 10	103\％	2	8	． 18	37	\％0\％	5	． 55	． 01	． 14	¢	4
PEL－90－G－58R	3	39	9	30		5	7	217	2.00	3	5	ND	4	14	\％$\%$	2	2	13	． 21	\＄035	14	8	． 41	37	\％ 0 \％	3	． 81	． 03	． 10		5
PEL－90－G－58R（A）	29	802	12	86	3， 3	1	61	258	28.35	\％13	12	ND	4	35	\％ 2	4	13	30	． 19	\％ 052	2		． 38	24	09．	5	1.45	． 01	． 08	\％	10
PEL－90－6－60R	22	87	26	42	1，	1	48	328	7.33	\％ 23	5	MD	1	230	＊2	2	2	19	1.02	070	3	13	． 40	42	\％ 07	2	1.37	． 01	． 14	＊	7
PEL－90－6－61R	86	133	57	55	1.5	3	72	689	9.26	43	5	ND	1	199	，${ }^{3}$	3	5	21	． 75	\％67\％	2	12	． 44	60	\％06	2	1.53	． 01	． 21	\％	7
PEL－90－G－62R	5	11	10	19	－	11	2	221	． 90	4	12	MD	1	13	苼	2	2	2	． 03	019	2	10	． 11	16	时	4	． 29	． 01	． 03	行	3
PEL－90－G－62R（A）	9	156	7	48	1，	2	18	839	8.02	\％ 19	5	ND	1	153	\％$\%$	3	2	32	． 61	\％480	4	13	1.35	24	\％ 10	3	2.37	． 01	． 09		8
PEL－90－6－63R	7	20	81	8	346	10	2	91	2.30	9	5	ND	1	57	－2	2	4	14	． 16	\％18	2	59	． 05	187	䊉	2	． 19	． 01	． 03	，	7
PEL－90－G－64R	4	1751	24	112	98．	24	28	1238	5.63	10	5	ND	1	112	\％ 4	5	2	70	． 91	139	6	44	2.16	31	2\％	3	2.12	． 01	． 02	\％	45
PEL－90－G－65R	1	96	264	141	3．2	27	20	1536	5.96	36	5	ND	1	288	\％ 4	6	6	89	． 99	210	6	59	3.21	28	\％ 24	2	2.90	． 01	． 01	2	22
PEL－90－G－66R	7	75	35	22	1，6．	6	7	184	4.75	44	5	ND	1	69	\％$\%$	2	3	39	． 24	－050	2	24	． 28	294	19．	5	． 53	． 01	． 02	\％	15
\|PEL-90-G-67R	5	29	93	111	2\％	17	25	1481	10.12	27	5	ND	1	90	\％ 2	6	2	112	． 97	275	13	73	2.72	88	\％ 30	2	3.13	． 01	． 08	2．	27
PEL－90－6－68R	5	4835	68	98	4．3．	42	8	1233	4.05	\％ 4	5	ND	1	86	－5	2	2	30	． 78	g101	11	28	1.56	1054	O7．	2	2.03	． 01	． 11	寿	5
PEL－90－6－69R	6	9866	88	53	9．9	26	5	1078	2.39	\％	5	MD	1	112	\％ 8	2	3	28	1.14	809\％	12	17	． 78	747	07	2	1.33	． 01	． 13	1	2
PEL－90－G－70R	1	455	11	182	\％	34	12	1841	3.66	3	5	ND	1	99		3	2	28	1.88	123	15	31	1.79	280	05．	2	2.39	． 01	． 14	＊	5
PEL－90－G－71R	4	121	59	118	1．6．	24	24	1298	9.55	152	5	ND	2	112	，${ }_{\text {\％}}$	11	2	97	1.19	\％ 305	11	86	2.28	64	， 34	3	2.80	． 01	． 05	\％ 2	45
PEL－90－6－72R	4	407	4	145	，${ }^{3}$	11	10	981	1.72	5.	5	ND	1	65	\％	2		17	． 45	04\％	3	12	． 47	143	04．	3	． 85	． 01	． 02	1	55
PEL－90－G－	1	2219	40	87	3．0	17	16	1894	7.51	2	5	ND	1	92	6．	6	2	79	． 98	， 158	6	24	3.32	192	10．	2	3.89	． 01	． 06	1	5
PEL－90－6－74R	19	4986	112	290	6．8	7	15	627	2.04	6	5	ND	－	363	4．5	2	2	25	2.08	192	6	10	． 20	92	10	5	1.25	． 01	． 08	1	11
PEL－90－G－75R	1	4663	119	266	4．7，	78	16	1813	5.08	3	5	ND	，	51	Y\％	2	2	26	2.25	128	8	52	1.05	242	－07．	2	2.36	． 01	． 28	\％	9
PEL－90－G－76R	3	151	12	257	， 8	30	25	1760	8.99	36	5	ND	1	107	，	7	2	69	． 71	140	3	44	2.23	16	，17．	2	2.38	． 01	． 09	$\stackrel{1}{1}$	21
PEL－90－G－77R	1	102	23	175	1ss．	13	14	1144	9.30	324	5	ND	1	95	\％	7	2	90	． 50	\％+1	4	54	2.11	22	19	2	2.22	． 01	． 04		16
PEL－90－G－78R	2	47	177	33	\％$\%$ \％	4	2	114	3.88	231	5	ND	1	96	－	2	3	36	． 32	\％0，4\％	4	15	． 02	61	，13．	2	． 36	． 01	． 08	2	270
PEL－90－6－79R	4	533	14	2181	\％ 6	10	5	525	2.64	21	5	ND	，	6	10．0		2	2	． 19	\＄004		37	． 28	68	0 0 ，	4	． 29	． 01	． 02	\％	22
PEL－90－6－80R	2	22	19	19	1， 2	3	2	76	2.46	24	7	ND	1	165	\％ 2	2	2	11	． 17	100\％	2	5	． 07	244	10．	2	． 32	． 01	． 16	＊＊	16
PEL－90－G－80R（A）	2	292	19	508	1.2	5	5	383	3.92	37	5	ND	1	12	\％．7．	2	2	4	． 22	\＄007	3	6	． 21	99	－01．	2	． 17	． 01	． 01		32
PEL－90－G－81R	2	193	25	595	\％$\%$	7	4	409	2.89	\＄15	5	ND	1	7	时 8	2	2	4	． 16	\％00\％		7	． 22	108	－	3	． 25	． 01	． 01		16
PEL－90－G－82R	4	200	49	2128	1．2．	10	7	306	3.87	\％17	5	MD	1	34	10．6	2	2	7	． 28	＜13	2	37	． 12	38	－04．		． 14	． 01	． 01	＜	72
PEL－90－G－83R	2	27	61	165	2．6．	25	53	988	12.52	26	5	ND	，	88	，\％	7	2	65	． 92	19\％	4	54	2.17	6	24．	2	2.29	． 01	． 09	4	62
PEL－90－G－84R	3	50	39	236	2.0	29	55	1750	12.13	18	5	NO	1	81	， 4	7	2	73	1.58	253	6	63	3.32	23	\％19		3.33	． 01	． 08	2	13
PEL－90－G－85R		3953	2	512	2.	38	31	2473	6.27	2	5	ND	1	121	\％\％\％	4	2	89	1.82	313	6	76	3.87	86	\％ 23.	3	3.29	． 01	． 01	，	13
PEL－90－G－86R		6548	2	295	\％．5．	43	38	2223	7.61	2	5	ND	1	116	2， 3 ，	2	2	100	1.71	37\％	6	86	4.56	80	\％25	4	3.79	． 01	． 01	1	6
PEL－90－G－87R	3	1698	29	128	3， 0	37	31	653	5.83	118	5	ND	1	122	\％	3	6	41	． 96	\％15	4	45	． 91	15	¢17	2	1.09	． 01	． 01	，	42
STANDARD C／AU－R	18	59	39	133	\％2	72		1058	3.98	40	18	7	36	53	18， 8	15	19	55	． 52	8099	38	59	． 90	180	， 07	38	1.90	． 06	． 14	13	540

Cathedral Gold Corp．PROJECT 8103 FILE \＃90－4553
Page 8

SAMPLE＊	$\begin{gathered} \text { Mo } \\ \text { pppm } \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	Pb ppm	$\mathbf{Z n}$ ppm		$\begin{gathered} \mathrm{Ni} \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{z} \end{gathered}$	$\begin{aligned} & \text { \%pin } \\ & \text { ppon } \end{aligned}$	$\$_{i} \mathrm{U}$	$\begin{gathered} \text { AU } \\ \text { ppm } \end{gathered}$	Th ppm	$\begin{array}{r} \mathrm{Sr} \\ \text { ppm } \end{array}$	$\hat{N}_{\mathrm{H}}^{\mathrm{g} 日 \mathrm{~m}}$	$\begin{array}{r} \text { sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} v \\ \text { ppon } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \boldsymbol{z} \end{gathered}$		$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathbf{C r} \\ \mathbf{p p r i n} \end{array}$	$\begin{array}{r} \mathrm{Mg} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	多	$\begin{array}{r} B \\ \text { Ppm } \end{array}$	$\begin{gathered} \text { AL } \\ \text { X } \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & k \\ & \% \end{aligned}$		$A u^{*}$ ppb
PEL－90－G－88R	18	209	144	366	2\％	15	31	466	12.70	163	5	MD	1	20	$\geqslant 2$	－ 2	3	24	． 11	\％04\％	3	15	． 37	8	80%	2	． 79	． 01	． 05	2	168
PEL－90－G－89R	10	234	71	325	\＄ 4 \％	11	41	159	17.17	146	5	ND	1	13	\％${ }^{2}$	3	2	22	． 08	8029	2	11	． 08	2	S04	2	． 34	． 01	． 04	2	122
PEL－90－G－90R	2	4187	12	69	6\％\％	11	147	253	17.96	14．	5	ND	2	129	\％ 2	2	11	35	． 37	1047．	3	15	． 56	11	220	7	． 81	． 01	． 05	3	48
PEL－90－6－91R	2	5717	9	76	7 ${ }^{2}$	13	177	268	19.89	82	5	ND	1	40	\％ 2	2	2	31	． 07	－054	2	11	． 61	8	809	4	． 72	． 01	． 01	， 3	37
PEL－90－G－92R	3	2163	9	54	15．\％	11	129	103	19.68	\％1＊	5	ND	1	62	约	2	11	40	． 14	0533	2	13	． 20	9	\％ 8	2	． 42	． 01	． 02	13．	46
PEL－90－G－93R	3	3353	15	104	162	11	117	127	18.08	10	5	ND	2	51	\％ 2 \％	2	6	41	． 12	\％075．	2	18	． 29	11	\％\％	2	． 57	． 01	． 03	\％	42
PEL－90－G－94R	1	86	333	85	\％	1	5	59	3.17	4	5	ND		364	＊$\%$	2	5	14	． 11	$\bigcirc 020$	2	1	． 04	25	\％	6	． 33	． 01	． 19	䊽	207
PEL－90－G－95R	1	84	8	106	\％	8	6	606	2.09	\％	5	ND	1	108	2.	2	4	32	． 67	\％068	2	15	． 83	297	\％3	5	． 89	． 01	． 01	§	112
PEL－90－6－96R	3	22	2	1	\％$\geqslant 2$	11	60	25	14.45	2	5	24	1	3	\％ 2	2	9	1	． 01	\％002	2	5	． 01	4	S61	6	． 05	． 01	． 01	永	27260
PEL－90－J－109R	8	31	18	67	疎 8	21	33	500	11.95	＊ 2	5	ND	1	70	就\％	2	2	33	． 38	\＄048	2	10	． 91	10	\＄20	2	1.02	． 01	． 10	\％	340
PEL－90－J－110R	1	211	7	24	\％	23	6	193	2.16	\％${ }^{2}$	5	ND	1	33	\％ 2	2	2	45	． 44	\％061	2	15	． 52	34	＊24	6	． 79	． 04	． 20	食	30
PEL－90－J－111R	4	33	12	8	約	1	6	68	11.42	6	5	ND	2	17	， 2	2	7	52	． 04	， $0 \% 2$	2	12	． 06	115	\％3	2	． 30	． 01	． 06	，	320
PEL－90－J－112R	2	10		164	＊$\stackrel{3}{ }$	13	7	660	5.99	4	5	MD	3	82	22	2	2	76	． 20	\％085	4	60	1.59	16	\％19	4	1.37	． 05	． 13	2.	164
PEL－90－J－113R	4	106	17723	281	3\％ 4	1	7	95	16.79	367	5	5	2	220	2．3．	32	29	23	． 23	\％ 860	44	22	． 05	40	35	2	． 60	． 01	． 09	納	6910
PEL－90－J－114R	2	98	956	805	\％ 5	5	7	148	7.17	806	5	2		113	\％\％ 2	8	2	29	． 16	10\％	23	9	． 06	27	\％\％	5	． 33	． 01	． 09	\％t	2180
PEL－90－J－115R	9	32	187	7	\＆\％	＋ 1	6	119	10.23	136	5	ND	3	122	＊ 2.	2	2	62	． 03	\％ 632	3	14	． 14	159	㮯3	7	． 33	． 02	． 17	\％	94
PEL－90－J－116R	3	33	26	2	絞	＋ 3	4	24	8.91	878	＋ 5	ND	3	5	＊ 2 2	2	2	17	． 01	102	2	7	． 03	106	今80	6	． 28	． 01	． 13	\％	280
PEL－90－J－117R	9	46	979	19	\％ 1.	1	5	32	3.24	\％	5	ND	3	39	\％	2	2	12	． 02	\％078	19	2	． 03	1117	018	4	． 48	． 03	． 12	\％	189
PEL－90－J－118R	12	40	17	50	\％$\%$ \％	5	20	872	4.61	\％ 2	5	ND	4	16	2	2	2	24	． 06	\％165	14	1	． 44	95	\％7	4	． 91	． 05	． 25	§	119
PEL－90－J－119R	6	53	12	35	\％2	4	3	89	2.07	\％2	5	ND	9	26	\＄ 2	2	3	13	． 08	\＄082	31	1	． 38	105	\％01	2	． 85	． 02	． 14		1
PEL－90－J－119R（A）	15	13	2	8	就2	6	11	91	1.77	2	5	ND	1	\％	$\geqslant 2$	2	2	18	． 04	\％018	5	4	． 30	87	\％ 01	5	． 48	． 02	． 16	紬	1
PEL－90－J－120R	9	25	122	110	\％$\%$	38	20	471	9.57	4	5	ND	2	16	\％ 8 \％	2	2	82	． 73	262	7	50	1.45	19	\％6	3	1.51	． 03	． 13	紬	18
PEL－90－J－121R	5	15	9	31	\pm	4	11	400	4.96	2	5	ND		54	$\geqslant 2$	2	2	55	． 71	158	7	1	． 97	28	\％3	5	1.11	． 07	． 08	\％ 1	3
PEL－90－J－122R	4	12	21	36	星	4	9	426	3.60	3	5	ND	5	43	\％${ }^{2}$	2	5	26	． 50	102	8	1	． 91	44	\％0	6	1.01	． 05	． 11	\％	1
PEL－90－J－123R	4	27	10	25	\%	13	5	393	1.08	8	5	ND	1	2	22	2	2	14	． 02	\％007．	2	10	． 14	45	\％018	3	． 37	． 01	． 06	\％	3
PEL－90－J－124R	3	25	51	12	16．2	． 8	136	26	7.54	8	5	ND	1	10	\％2	2	75	3	． 02	8003	2	7	． 02	2	301．	3	． 05	． 01	． 02	\％	93
PEL－90－J－125R		432	6	52	， 4	65	46	301	16.93	87	5	ND		59	\％2	2	2	9	． 27	1004	2	11	． 37	5	\％or	2	． 48	． 01	． 01	\％	87
PEL－90－J－126R	8	65	130	226	\％\％	27	51	285	15.40	123	5	ND	1	86	\＄4．	2	3	13	． 42	\％020	3	6	． 33	4	80\％	2	． 63	． 01	． 06	䊽	240
PEL－90－J－127R	109	33	49	35	14 4	12	37	471	7.22	77.	5	MD	1	42	\％ 2	2	2	15	． 93	\％088	2	2	． 57	11	801	2	． 98	． 01	． 18	\％	37
PEL－90－J－128R	5	646	20	5	\％${ }^{3}$	58	53	39	17.68	56	5	ND	2	32	\％2	2	2	3	． 11	100\％	2	6	． 01	6	6018	3	． 12	． 01	． 02	\％	520
PEL－90－J－128R（REF）	3	876	9	10	3 3	55	34	73	18.45	58	5	ND	2	29	\％ 2	2	2	4	． 11	\％0014	2	2	． 01	11	\％0\％	2	． 14	． 01	． 03	䜌	730
PEL－90－J－129R	18	508	73	59	8.0	52	36	200	16.96	815	5	ND	2	7	\％ 2	2	6	29	． 09	\％ $0 \$ 5$	4	21	． 29	4	\％ 0	6	． 47	． 01	． 08	\％	320
PEL－90－J－130R	10	8	17	2	\％${ }^{\text {\％}}$	5	14	21	4.14	10，	5	ND	，	3	\％	2	7	3	． 02	\＄009	2	1	． 01	13	\％ay	4	． 26	． 01	． 16	\％	89
PIN L1 1＋05－1＋15E	17	41	9	22	\％${ }^{\text {\％}}$	4	4	103	4.49	56	5	ND	2	3	\％	5	2	16	． 04	\％085．	10	5	． 47	42	\％ 06	4	1.31	． 01	． 17	\＄	14
STANDARD C／AU－R	18	59	38	131	8．\％	67	32	1052	3.97	38	19	7	37	53	18．\％	15	20	55	． 51	\＄0\％\％	37	56	． 90	181	107	39	1.89	． 06	． 14	13	480

GEOCHEMICAL ANALYSIS CERTIFICATE

Cathedral Gold Corp. FILE \# 90-4390R

SAMPLE\#	Hg ppb
SER L2+OOS 2+50E	20
SER L2+00S 2+75E	10
SER L2+00S 3+00E	20
PEL-90-J-91	680

GEOCHEMICAL ANAI.YSIS CERTIFICATE

Cathedral Gold Corp. PROJECT 8103 FILE \# 90-4294R

SAMPLE\#	Hg ppb	
1 L	$12+00$	$1+00 S$

- Sample type: soil pulp hg analysis by flameless an.

SIGNED BY. C.:. D. TOYE, c.leong, J. WANG; CERTIFIED b.c. ASSAYERS

ACME ANALYTICAL LABORATORIES LTD.

dAte received: Nov 271990
852 E. HAStings St. VANCOUVER B.C. V6A 1 R6 PHONE(604)253-3158 FAX(604)253-1716 date report mailed: oneç.3/90.

GEOCHEMICAL ANALYSIS CERTIFICATE

Cathedral Gold Corp. PROJECT 8103 FILE \# 90-4205R

SAMPLE\#	Hg ppb
PEL-90-G-11	230
PEL-90-G-14	30
PEL-90-J-10	20

- SAMPLE TYPE: ROCK PULP HG ANALYSIS by flameless an.

SIGNED BY... D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

GEOCHEMICAL ANALYSIS CERTIFICATE

Cathedral Gold Corp. PROJECT 8103 FILE \# 90-4553R

SAMPLE\#	Hg pp
PEL-90-G-96R	10
PEL-90-J-113R	20
PEL-90-J-114R	10

APPENDIX X

STATISTICAL REPORT - ROCK GEOCHEMICAL DATA

```
lon
```

Detail Report

Variable: CU

Mean - Average	375.8677	No. observations	257
Lower 95\% c.i.limit	240.6831	No. missing values	0
Upper 95\% c.i.limit	511.0523	Sum of frequencies	257
Adj sum of squares	3.129907E+08	Sum of observations	96598
Standard deviation	1105.721	Std.error of mean	68.973
Variance	1222620	T-value for mean=0	5.44949
Coef. of variation	2.941783	T prob level	0.0000
Skewness	5.008907	Kurtosis	29.83405
Normality Test Value	0.641	Reject if > 1.021 (10\%)	1.035 (5\%)
100-\%tile (Maximum)	9866	90-\%tile	663
75-\%tile	193	10-\%tile	7
50-\%tile (Median)	46	Range	9865
25-\%tile	18	75th-25th \%tile	175
0-\%tile (Minimum)	1		
	-Line P	t / Box Plot-	
$\text { ZZL8652221 } 111121$	112	1111	

Distribution \& Histogram

-ate/Time	$01-21-1991 \quad 13: 56: 24$
Datel	
Data Base Name $C: \backslash s t a t s \backslash n c s s \backslash d a t a \backslash p e l 90 r n c ~$	
Description	Imported from $A: p e l 90 r n c . p r n$

Detail Report
Variable: PB

Distribution \& Histogram

Date/Time	01-21-1991 13:55:16
Data Base Name	C: \stats \backslash ncss \backslash data $\backslash p e l 90 r n c$
Description	Imported from A:pel90rnc.prn

Detail Report
Variable: MO

Mean - Average	7.377432	No. observations	257
Lower 95\% c.i.limit	5.889842	No. missing values	0
Upper 95\% c.i.limit	8.865023	Sum of frequencies	257
Adj sum of squares	37900.39	Sum of observations	1896
Standard deviation	12.16751	Std.error of mean	. 7589887
Variance	148.0484	T-value for mean=0	9.720081
Coef. of variation	1.649289	T prob level	0.0000
Skewness	4.917408	Kurtosis	31.14831
Normality Test Value	0.636	Reject if > 1.021(10\%)	1.035 (5\%)
100-\%tile (Maximum)	109	90-\%tile	16
75-\%tile	7	10-\%tile	1
50-\%tile (Median)	4	Range	108
25-\%tile	2	75th-25th \%tile	5
0-\%tile (Minimum)	1		
$\begin{aligned} & \text { ZZWJM79735445211 } 22 \\ & \text {-[mX]a---- } \end{aligned}$	12111	Box Plot----------1	

				Distr	bution	n \& Hi	togra	
Variable: MO								
Bin	Lower		Upper	Count	Prent	Total	Prent	Histogram
1	0		2	53	20.6	53	20.6	: ******************
2	2		4	67	26.1	120	46.7	: **********************
3	4		6	51	19.8	171	66.5	:*****************
4	6		8	22	8.6	193	75.1	: *******
5	8		10	16	6.2	209	81.3	:*****
6	10		12	7	2.7	216	84.0	: **
7	12		14	7	2.7	223	86.8	: **
8	14		16	5	1.9	228	88.7	:**
9	16		18	4	1.6	232	90.3	: *
10	18		20	7	2.7	239	93.0	:**
11	20		22	1	0.4	240	93.4	:
12	22		24	1	0.4	241	93.8	:
13	24		26	2	0.8	243	94.6	
14	26		28	2	0.8	245	95.3	
15	28		30	2	0.8	247	96.1	
0	Values	s out	of range	10	3.9			:

Date/Time	01-21-1991 13:57:12
Data Base Name	C: \stats\ncss\data\pel90rnc
Description	Imported from A:pel90rnc.prn

Detail Report

Variable: AG

Distribution \& Histogram

Date/Time	01-21-1991 13:57:56
Data Base Name	C: \stats ${ }^{\text {a }}$ css \backslash data $\backslash p e l 90 r n c$
Description	Imported from A:pel90rnc.prn

Detail Report

Variable: NI

Mean - Average	18.18677	No. observations	257
Lower 95\% c.i.limit	14.10662	No. missing values	0
Upper 95\% c.i.limit	22.26692	Sum of frequencies	257
Adj sum of squares	285121	Sum of observations	4674
Standard deviation	33.37296	Std.error of mean	2.081748
Variance	1113.754	T-value for mean=0	8.7363
Coef. of variation	1.835013	T prob level	0.0000
Skewness	9.62718	Kurtosis	121.518
Normality Test Value	0.644	Reject if > 1.021 (10\%)	1.035 (5\%)
100-\%tile (Maximum)	460	90-\%tile	40
75-\%tile	21	10-\%tile	3
50-\%tile (Median)	10	Range	459
25-\%tile	5	75th-25th \%tile	16
0-\%tile (Minimum)	1		
YZZPIC662373 111	```1 Line Plot / Box Plot------------------------------460```		
- [ma----			

Distribution \& Histogram

Variable: NI								
Bin	Lower		Upper	Count	Prent	Total	Prent	Histogram
1	0		3	25	9.7	25	9.7	: *****
2	3		6	44	17.1	69	26.8	: *********
3	6		9	43	16.7	112	43.6	:*********
4	9		12	31	12.1	143	55.6	: ******
5	12		15	22	8.6	165	64.2	:****
6	15		18	17	6.6	182	70.8	:***
7	18		21	10	3.9	192	74.7	:**
8	21		24	7	2.7	199	77.4	: *
9	24		27	12	4.7	211	82.1	:**
10	27		30	6	2.3	217	84.4	: *
11	30		33	5	1.9	222	86.4	: *
12	33		36	6	2.3	228	88.7	: *
13	36		39	3	1.2	231	89.9	: *
14	39		42	1	0.4	232	90.3	:
15	42		45	5	1.9	237	92.2	: *
0	Values	s out	of range	20	7.8			:

Date/Time	01-21-1991 14:05:42
Data Base Name	C: \stats\ncss\data \pel90rnc
Description	Imported from A:pel90rnc.prn

Detail Report

Variable: FE\%

Mean - Average	7.364436	No. observations	257
Lower 95\% c.i.limit	6.668376	No. missing values	0
Upper 95\% c.i.limit	8.060495	Sum of frequencies	257
Adj sum of squares	8297.931	Sum of observations	1892.66
Standard deviation	5.693311	Std.error of mean	. 355139
Variance	32.41379	T-value for mean=0	20.73677
Coef. of variation	. 7730818	T prob level	0.0000
Skewness	2.040741	Kurtosis	5.936097
Normality Test Value	1.389	Reject if > 1.021 (10\%)	1.035 (5\%)
100-\%tile (Maximum)	40.74	90-\%tile	16.2
75-\%tile	8.91	10-\%tile	2.2
50-\%tile (Median)	5.91	Range	40.3
25-\%tile	3.63	75th-25th \%tile	5.28
0-\%tile (Minimum)	. 44		
.44--------	--L	/ Box Plot	
166EI9FJ9BKGB8CA87932	3242141	111211111	

Distribution \& Histogram

Variable: FE\%		
Bin Lower		
1	0	Upper
2	1	1
3	2	2
4	3	3
5	4	4
6	5	5
7	6	6
8	7	7
9	8	9
10	9	10
11	10	11
12	11	12
13	12	13
14	13	14
15	14	15
0	Values out of range	

Count	Prent	Total	Prant	Histogram
5	1.9	5	1.9	$: *$
12	4.7	17	6.6	$: * *$
32	12.5	49	19.1	$: * * * * * *$
27	10.5	76	29.6	$: * * * * *$
26	10.1	102	39.7	$: * * * * *$
30	11.7	132	51.4	$: * * * * * *$
23	8.9	155	60.3	$: * * * * *$
21	8.2	176	68.5	$: * * * *$
18	7.0	194	75.5	$: * * * *$
15	5.8	209	81.3	$: * * *$
5	1.9	214	83.3	$: *$
5	1.9	219	85.2	$: *$
6	2.3	225	87.5	$: *$
1	0.4	226	87.9	$:$
4	1.6	230	89.5	$: *$
27	10.5			$:$

Date/Time	01-21-1991 14:06:09
Data Base Name	
Description	Imported from A:pel90rnc.prn

Detail Report
Variable: AS

Mean - Average	67.65759	No. observations	257
Lower 95\% c.i.limit	48.89713	No. missing values	0
Upper 95\% c.i.limit	86.41805	Sum of frequencies	257
Adj sum of squares	6027872	Sum of observations	17388
Standard deviation	153.4483	Std.error of mean	9.57184
Variance	23546.38	T-value for mean=0	7.068399
Coef. of variation	2.268013	T prob level	0.0000
Skewness	4.733779	Kurtosis	30.33678
Normality Test Value	0.735	Reject if > $1.021(10 \%)$	1.035 (5\%)
100-\%tile (Maximum)	1411	90-\%tile	231
75-\%tile	41	10-\%tile	2
50-\%tile (Median)	14	Range	1409
25-\%tile	4	75th-25th \%tile	37
0-\%tile (Minimum)	2		
	--L	/ / Box Plot	
2ZJ754434321 2222511212111 [m]-a---------			

Distribution \& Histogram


```
\begin{tabular}{|c|c|}
\hline Date/Time & 01-21-1991 14:08:16 \\
\hline Data Base Name & C: \stats ncss \(\backslash\) data \(\backslash\) pel \(90 r n c ~_{\text {c }}\) \\
\hline Description & Imported from A:pel90rnc.prn \\
\hline
\end{tabular}
```

Detail Report
Variable: SB

Mean - Average	2.945525	No. observations	257
Lower 95\% c.i.limit	2.567673	No. missing values	0
Upper 95\% c.i.limit	3.323378	Sum of frequencies	257
Adj sum of squares	2445.237		Sum of observations

100-\%tile	(Maximum)	32	90-\%tile	5
75-\%tile		2	10-\%tile	2
50-\%tile	(Median)	2	Range	30
25-\%tile		2	75th-25th \%tile	0
0-\%tile	(Minimum)	2		
2--------	7551	2	/ Box Plot	

Distribution \& Histogram

Variable: BI

Distribution \& Histogram

Distribution \& Histogram

Variable: CA								
Bin	Lower		Upper	Count	Prent	Total	Prent	Histogram
1	0		. 1	47	18.3	47	18.3	: ****
2	. 1		. 2	40	15.6	87	33.9	: ****
3	. 2		. 3	35	13.6	122	47.5	: ***
4	. 3		. 4	25	9.7	147	57.2	: **
5	. 4		. 5	21	8.2	168	65.4	: **
6	. 5		. 6	12	4.7	180	70.0	: *
7	. 6		. 7	8	3.1	188	73.2	:*
8	. 7		. 8	12	4.7	200	77.8	:*
9	. 8		. 9	7	2.7	207	80.5	:*
10	. 9		1	15	5.8	222	86.4	:*
11	1		1.1	4	1.6	226	87.9	:
12	1.1		1.2	4	1.6	230	89.5	:
13	1.2		1.3	2	0.8	232	90.3	:
14	1.3		1.4	1	0.4	233	90.7	:
15	1.4		1.5	3	1.2	236	91.8	:
0	Values	s out	of range	21	8.2			:

Date/Time	01-21-1991 14:15:07
Data Base Name	c: \stats \ncss\data \pel90rnc
Description	Imported from A:pel90rnc.prn

Detail Report

Variable: NA\%

Mean - Average	2.750973E-02	No. observations	257
Lower 95\% c.i.limit	$2.130102 \mathrm{E}-02$	No. missing values	0
Upper 95\% c.i.limit	$3.371844 \mathrm{E}-02$	Sum of frequencies	257
Adj sum of squares	. 6602062	Sum of observations	7.07
Standard deviation	$5.078317 \mathrm{E}-02$	Std.error of mean	3.167767E-03
Variance	$2.578931 \mathrm{E}-03$	T-value for mean=0	8.684264
Coef. of variation	1.846008	T prob level	0.0000
Skewness	6.542815	Kurtosis	56.92672
100-\%tile (Maximum)	. 57	90-\%tile	. 05
75-\%tile	. 03	10-\%tile	. 01
50-\%tile (Median)	. 01	Range	. 56
25-\%tile	. 01	75th-25th \%tile	. 02
0-\%tile (Minimum)	. 01		
.01------	------Line	/ Box Plot----	
ZP HD D24 2131212	1111		
mXa]---			

Distribution \& Histogram

Variable: NA\%							
Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	0	. 02	192	74.7	192	74.7	: *****************
2	. 02	. 04	30	11.7	222	86.4	:***
3	. 04	. 06	15	5.8	237	92.2	:*
4	. 06	8.000E-02	6	2.3	243	94.6	: *
5	8.000E-02	. 1	4	1.6	247	96.1	:
6	. 1	. 12	1	0.4	248	96.5	:
7	. 12	. 14	1	0.4	249	96.9	:
8	. 14	. 16	3	1.2	252	98.1	:
9	. 16	. 18	1	0.4	253	98.4	:
10	. 18	. 2	0	0.0	253	98.4	:
11	. 2	. 22	0	0.0	253	98.4	:
12	. 22	. 24	1	0.4	254	98.8	:
13	. 24	. 26	0	0.0	254	98.8	:
14	. 26	. 28	1	0.4	255	99.2	:
15	. 28	. 3	1	0.4	256	99.6	:
0	Values out	of range	1	0.4			:

Date/Time	01-21-1991 14:15:35
Data Base Name	$\mathrm{C}: \backslash \mathrm{stats} \backslash$ ncss \backslash data \backslash pel90rnc
Description	Imported from A:pel90rnc.prn

Detail Report
Variable: K\%

Mean - Average	. 1244747	No. observations	257
Lower 95\% c.i.limit	9.896116E-02	No. missing values	0
Upper 95\% c.i.limit	. 1499882	Sum of frequencies	257
Adj sum of squares	11.14855	Sum of observations	31.99
Standard deviation	. 2086841	Std.error of mean	1.301735E-02
Variance	$4.354904 \mathrm{E}-02$	T-value for mean=0	9.562212
Coef. of variation	1.676518	T prob level	0.0000
Skewness	7.586895	Kurtosis	71.00193
Normality Test Value	0.826	Reject if > 1.021 (10\%)	1.035 (5\%)
100-\%tile (Maximum)	2.37	90-\%tile	. 21
75-\%tile	. 15	10-\%tile	. 01
50-\%tile (Median)	. 09	Range	2.36
25-\%tile	. 03	75th-25th \%tile	. 12
0-\%tile (Minimum)	. 01		
. 01	--Line	/ Box Plot-	-
ZSZZZNG57323 12	11		
-[Xma] --			

Distribution \& Histogram

Var	able: K\%	Upper	Count	Prent	Total	Prent	Histogram
1	0	. 02	55	21.4	55	21.4	:*****
2	. 02	. 04	18	7.0	73	28.4	:**
3	. 04	. 06	24	9.3	97	37.7	:**
4	. 06	8.000E-02	23	8.9	120	46.7	:**
5	8.000E-02	. 1	25	9.7	145	56.4	:**
6	. 1	. 12	24	9.3	169	65.8	:**
7	. 12	. 14	22	8.6	191	74.3	:**
8	. 14	. 16	17	6.6	208	80.9	:**
9	. 16	. 18	6	2.3	214	83.3	:*
10	. 18	. 2	16	6.2	230	89.5	:*
11	. 2	. 22	4	1.6	234	91.1	:
12	. 22	. 24	2	0.8	236	91.8	:
13	. 24	. 26	6	2.3	242	94.2	:*
14	. 26	. 28	2	0.8	244	94.9	:
15	. 28	. 3	1	0.4	245	95.3	:
0	Values out	of range	12	4.7			:

Date/Time	01-21-1991 14:16:29
Data Base Name	C: \stats\ncss\data\pel90rnc
Description	Imported from A:pel90rnc.prn

Detail Report
Variable: AUPPB

Mean - Average	624.4397	No. observations	257
Lower 95\% c.i.limit	139.5043	No. missing values	0
Upper 95\% c.i.limit	1109.375	Sum of frequencies	257
Adj sum of squares	$4.027585 \mathrm{E}+09$	Sum of observations	160481
Standard deviation	3966.454	Std.error of mean	247.4206
Variance	$1.573276 \mathrm{E}+07$	T-value for mean=0	2.523799
Coef. of variation	6.35202	T prob level	0.0116
Skewness	9.559584	Kurtosis	95.95003
Normality Test Value	0.640	Reject if > 1.021(10\%)	1.035 (5\%)
100-\%tile (Maximum)	46600	90-\%tile	610
75-\%tile	151	10-\%tile	4
50-\%tile (Median)	36	Range	46599
25-\%tile	10	75th-25th \%tile	141
0-\%tile (Minimum)	1		
1----------	Line	/ Box Plot-------1	

ma

Distribution \& Histogram

Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	0	5	34	13.2	34	13.2	:***
2	5	10	26	10.1	60	23.3	:**
3	10	15	21	8.2	81	31.5	: **
4	15	20	14	5.4	95	37.0	:*
5	20	25	9	3.5	104	40.5	:*
6	25	30	13	5.1	117	45.5	:*
7	30	35	10	3.9	127	49.4	:*
8	35	40	6	2.3	133	51.8	: *
9	40	45	5	1.9	138	53.7	:
10	45	50	8	3.1	146	56.8	: *
11	50	55	2	0.8	148	57.6	:
12	55	60	5	1.9	153	59.5	:
13	60	65	4	1.6	157	61.1	:
14	65	70	3	1.2	160	62.3	:
15	70	75	3	1.2	163	63.4	:
0	Values	out of range	94	36.6			:

Date/Time $\quad 01-21-1991 \quad$ 14:16:56
Data Base Name $C: \backslash s t a t s \backslash n c s s \backslash d a t a \backslash p e l 90 \mathrm{rnc}$
Description \quad Imported from A:pel90rnc.prn

Detail Report
Variable: AUPPB

Mean - Average	624.4397	No. observations	257
Lower 95\% c.i.limit	139.5043	No. missing values	0
Upper 95\% c.i.limit	1109.375	Sum of frequencies	257
Adj sum of squares	$4.027585 \mathrm{E}+09$	Sum of observations	160481
Standard deviation	3966.454	Std.error of mean	247.4206
Variance	$1.573276 \mathrm{E}+07$	T-value for mean=0	2.523799
Coef. of variation	6.35202	T prob level	0.0116
Skewness	9.559584	Kurtosis	95.95003
Normality Test Value	0.640	Reject if > 1.021(10\%)	1.035 (5\%)
100-\%tile (Maximum)	46600	90-\%tile	610
75-\%tile	151	10-\%tile	4
50-\%tile (Median)	36	Range	46599
25-\%tile	10	75th-25th \%tile	141
0-\%tile (Minimum)	1		
	---Line	/ Box Plot-	
ZR732 1 1		11	

Distribution \& Histogram

Correlations -Rock.

AS	SB	BI	PB	AG	FE\%
1.0000	0.2395	0.0601	0.2045	0.4786	0.3799
0.2395	1.0000	0.6289	0.6251	0.4537	0.2106
0.0601	0.6289	1.0000	0.0489	0.1369	0.2083
0.2045	0.6251	0.0489	1.0000	0.4958	0.1312
0.4786	0.4537	0.1369	0.4958	1.0000	0.2924
0.3799	0.2106	0.2083	0.1312	0.2924	1.0000
0.0101	0.6021	0.8754	0.0930	0.1075	0.1996

APPENDIX XI

STATISTICAL REPORT - SOIL GEOCHEMICAL DATA

Date/Time	$01-21-1991 \quad 13: 31: 11$
Data Base Name $C: \backslash$ stats \backslash ncss \backslash data 1 pel 90 snc	
Description	Imported from $A: p e l 90 s n c . p r n$

Detail Report

Variable: MO

Mean - Average	7.754202	No. observations	476
Lower 95\% c.i.limit	6.749097	No. missing values	0
Upper 95\% c.i.limit	8.759306	Sum of frequencies	476
Adj sum of squares	59460.24	Sum of observations	3691
Standard deviation	11.18836	Std.error of mean	. 5128177
Variance	125.1795	T-value for mean=0	15.12077
Coef. of variation	1.442877	T prob level	0.0000
Skewness	8.321219	Kurtosis	99.82639
Normality Test Value	0.691	Reject if > 1.011(10\%)	1.019 (5\%)
100-\%tile (Maximum)	169	90-\%tile	12
75-\%tile	8	10-\%tile	2
50-\%tile (Median)	6	Range	168
25-\%tile	4	75th-25th \%tile	4
0-\%tile (Minimum)	1		
	-----Li	/ Box Plot	
ZZZZZID23323124111 2	111	1	

Distribution \& Histogram

Variable: MO								
Bin	Lower		Upper	Count	Prent	Total	Prent	Histogram
1	0		2	31	6.5	31	6.5	:****
2	2		4	87	18.3	118	24.8	:************
3	4		6	117	24.6	235	49.4	:*****************
4	6		8	97	20.4	332	69.7	:**************
5	8		10	61	12.8	393	82.6	: *********
6	10		12	26	5.5	419	88.0	:****
7	12		14	17	3.6	436	91.6	: **
8	14		16	9	1.9	445	93.5	: *
9	16		18	2	0.4	447	93.9	:
10	18		20	3	0.6	450	94.5	:
11	20		22	3	0.6	453	95.2	:
12	22		24	2	0.4	455	95.6	:
13	24		26	3	0.6	458	96.2	:
14	26		28	1	0.2	459	96.4	:
15	28		30	2	0.4	461	96.8	:
0	Values	s out	of range	15	3.2			:

Date/Time	01-21-1991 13:32:17
Data Base Name	C: \stats dncss \backslash data \backslash pel90snc $^{\text {a }}$
Description	Imported from A:pel90snc.prn

Detail Report

Variable: CU

Mean - Average	79.40966	No. observations	476
Lower 95\% c.i.limit	64.60574	No. missing values	0
Upper 95\% c.i.limit	94.21359	Sum of frequencies	476
Adj sum of squares	1.289905E+07	Sum of observations	37799
Standard deviation	164.7905	Std.error of mean	7.553159
Variance	27155.9	T-value for mean $=0$	10.51344
Coef. of variation	2.075194	T prob level	0.0000
Skewness	11.11722	Kurtosis	173.7125
Normality Test Value	0.614	Reject if > 1.011 (10\%)	1.019 (5\%)
100-\%tile (Maximum)	2861	90-\%tile	190
75-\%tile	83	10-\%tile	14
50-\%tile (Median)	36	Range	2860
25-\%tile	21	75th-25th \%tile	62
0-\%tile (Minimum)	1		
$\begin{aligned} & \text { ZZZWGHJ721 } 51 \quad 1 \quad 31 \\ & - \text { ma--- } \end{aligned}$	$1{ }^{---L i n e}$	/ Box Plot	

Distribution \& Histogram

Variable: CU								
Bin	Lower		Upper	Count	Prent	Total	Prent	Histogram
1	0		20	103	21.6	103	21.6	: ***************
2	20		40	147	30.9	250	52.5	: *********************
3	40		60	76	16.0	326	68.5	: ***********
4	60		80	28	5.9	354	74.4	: ****
5	80		100	23	4.8	377	79.2	:***
6	100		120	18	3.8	395	83.0	: ***
7	120		140	12	2.5	407	85.5	:**
8	140		160	6	1.3	413	86.8	:*
9	160		180	11	2.3	424	89.1	:**
10	180		200	7	1.5	431	90.5	:*
11	200		220	15	3.2	446	93.7	:**
12	220		240	7	1.5	453	95.2	:*
13	240		260	4	0.8	457	96.0	:*
14	260		280	3	0.6	460	96.6	:
15	280		300	2	0.4	462	97.1	:
0	Values	out	of range	14	2.9			:

Date/Time	01-21-1991 13:32:45
Data Base Name	C: \stats\ncss\data\pel90snc
Description	Imported from A:pel90snc.prn

Detail Report

Variable: PB

Mean - Average	31.63235	No. observations	476
Lower 95\% c.i.limit	27.96047	No. missing values	0
Upper 95\% c.i.limit	35.30423	Sum of frequencies	476
Adj sum of squares	793562.7	Sum of observations	15057
Standard deviation	40.87369	Std.error of mean	1.873442
Variance	1670.658	T-value for mean=0	16.88461
Coef. of variation	1.292148	T prob level	0.0000
Skewness	4.932584	Kurtosis	32.53784
Normality Test Value	0.749	Reject if > $1.011(10 \%)$	1.019 (5\%)
100-\%tile (Maximum)	436	90-\%tile	55
75-\%tile	33	10-\%tile	8
50-\%tile (Median)	22	Range	434
25-\%tile	13	75th-25th \%tile	20
0-\%tile (Minimum)	2		
HZZZZXVHP4E333 312121 -[Xma]----			

Distribution \& Histogram

Date/Time	01-21-1991 13:33:17
Data Base Name	C: \stats\ncss\data\pel90snc
Description	Imported from A:pel90snc.prn

Detail Report
Variable: ZN

Mean - Average	96.05462	No. observations	476
Lower 95\% c.i.limit	90.96709	No. missing values	0
Upper 95\% c.i.limit	101.1422	Sum of frequencies	476
Adj sum of squares	1523415	Sum of observations	45722
Standard deviation	56.63205	Std.error of mean	2.595726
Variance	3207.189	T-value for mean=0	37.00492
Coef. of variation	. 5895817	T prob level	0.0000
Skewness	2.674068	Kurtosis	10.93403
Normality Test Value	0.848	Reject if > $1.011(10 \%)$	1.019 (5\%)
100-\%tile (Maximum)	493	90-\%tile	170
75-\%tile	112	10-\%tile	50
50-\%tile (Median)	79	Range	477
25-\%tile	63	75th-25th \%tile	49
0-\%tile (Minimum)	16		

Distribution \& Histogram

Variable: ZN								
Bin	Lower		Upper	Count	Prent	Total	Prent	Histogram
1	0		20	1	0.2	1	0.2	Histogram
2	20		40	16	3.4	17	3.6	: **
3	40		60	81	17.0	98	20.6	: ************
4	60		80	141	29.6	239	50.2	: ********************
5	80		100	90	18.9	329	69.1	: *************
6	100		120	46	9.7	375	78.8	: *******
7	120		140	31	6.5	406	85.3	: ****
8	140		160	17	3.6	423	88.9	:**
9	160		180	18	3.8	441	92.6	:***
10	180		200	14	2.9	455	95.6	: **
11	200		220	4	0.8	459	96.4	:*
12	220		240	4	0.8	463	97.3	:*
13	240		260	2	0.4	465	97.7	:
14	260		280	3	0.6	468	98.3	:
15	280		300	2	0.4	470	98.7	:
0	Values	out	of range	6	1.3			:

Date/Time	01-21-1991 13:33:59
Data Base Name	C: \stats\ncss \data \pel90snc
Description	Imported from A:pel90snc.prn

Detail Report
Variable: AG

Mean - Average	. 6352941	No. observations	476
Lower 95\% c.i.limit	. 5683304	No. missing values	0
Upper 95\% c.i.limit	. 7022579	Sum of frequencies	476
Adj sum of squares	263.9271	Sum of observations	302.4
Standard deviation	. 7454099	Std.error of mean	3.416581E-02
Variance	. 5556359	T-value for mean=0	18.59444
Coef. of variation	1.17333	T prob level	0.0000
Skewness	3.975503	Kurtosis	25.68104
Normality Test Value	0.990	Reject if > 1.011(10\%)	1.019 (5\%)
100-\%tile (Maximum)	7.2	90-\%tile	1.4
75-\%tile	. 8	10-\%tile	. 1
50-\%tile (Median)	. 4	Range	7.1
25-\%tile	. 2	75th-25th \%tile	. 6
0-\%tile (Minimum)	. 1		
. 1	--L	/ Box Plot	-
ZZZZXZ MKEIA9B855 13 - [XmXXaX]------	131213	11	

Distribution \& Histogram

Variable: AG							
Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	0	. 2	93	19.5	93	19.5	: *************
2	. 2	. 4	116	24.4	209	43.9	: *****************
3	. 4	. 6	79	16.6	288	60.5	:***********
4	. 6	. 8	57	12.0	345	72.5	: ********
5	. 8	1	34	7.1	379	79.6	: *****
6	1	1.2	28	5.9	407	85.5	: ****
7	1.2	1.4	20	4.2	427	89.7	:***
8	1.4	1.6	13	2.7	440	92.4	:**
9	1.6	1.8	6	1.3	446	93.7	:*
10	1.8	2	6	1.3	452	95.0	:*
11	2	2.2	5	1.1	457	96.0	:*
12	2.2	2.4	4	0.8	461	96.8	:*
13	2.4	2.6	6	1.3	467	98.1	:*
14	2.6	2.8	0	0.0	467	98.1	:
15	2.8	3	3	0.6	470	98.7	:
0	Values	out of range	6	1.3			:

Variable: FE\%

Mean - Average	6.840715	No. observations	476
Lower 95\% c.i.limit	6.551989	No. missing values	0
Upper 95\% c.i.limit	7.12944	Sum of frequencies	476
Adj sum of squares	4906.543	Sum of observations	3256.18
Standard deviation	3.213964	Std.error of mean	. 1473118
Variance	10.32956	T-value for mean=0	46.43698
Coef. of variation	. 4698287	T prob level	0.0000
Skewness	3.590145	Kurtosis	32.1059
Normality Test Value	0.918	Reject if > 1.011 (10\%)	1.019 (5\%)
100-\%tile (Maximum)	41.65	90-\%tile	10.08
75-\%tile	8.305	10-\%tile	3.69
50-\%tile (Median)	6.49	Range	41.1
25-\%tile	4.915	75th-25th \%tile	3.39
0-\%tile (Minimum)	. 55		
. 55	-L	/ Box Plot-	-----
$32357 \mathrm{FNQZZZZZSSNRJEB664431} 2112$			

Distribution \& Histogram

Date/Time $\quad 01-21-1991 \quad 13: 37: 00$
Data Base Name $C: \backslash s t a t s \backslash n c s s \backslash d a t a \backslash p e l 90$ snc
Description \quad Imported from A:pel90snc.prn

Detail Report
Variable: AS

Distribution \& Histogram

Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	0	4	43	9.0	43	9.0	:******
2	4	8	88	18.5	131	27.5	: *************
3	8	12	79	16.6	210	44.1	:***********
4	12	16	79	16.6	289	60.7	:***********
5	16	20	57	12.0	346	72.7	: ********
6	20	24	32	6.7	378	79.4	: *****
7	24	28	8	1.7	386	81.1	:*
8	28	32	22	4.6	408	85.7	:***
9	32	36	9	1.9	417	87.6	: *
10	36	40	5	1.1	422	88.7	:*
11	40	44	9	1.9	431	90.5	:*
12	44	48	5	1.1	436	91.6	: *
13	48	52	6	1.3	442	92.9	:*
14	52	56	1	0.2	443	93.1	:
15	56	60	3	0.6	446	93.7	:
0	Values out	of range	30	6.3			:

Variable: SB

Mean - Average	2.714286	No. observations	476
Lower 95\% c.i.limit	2.540229	No. missing values	0
Upper 95\% c.i.limit	2.888342	Sum of frequencies	476
Adj sum of squares	1783.143		Sum of observations

100-\%tile	(Maximum)	34	90-\%tile	4
75-\%tile		3	10-\%tile	2
50-\%tile	(Median)	2	Range	32
25-\%tile		2	75th-25th \%tile	1
0-\%tile	(Minimum)	2		
Z Z Y L	732		$\begin{aligned} & \text { / Box Plot } \\ & 1 \end{aligned}$	

Distribution \& Histogram

Date/Time	01-21-1991 13:40:11
Data Base Name	C: \stats\ncss \backslash data \backslash pel90snc
Description	Imported from A:pel90snc.prn

Detail Report
Variable: BI

Mean - Average	2.510504	No. observations	476
Lower 95\% c.i.limit	2.387057	No. missing values	0
Upper 95\% c.i.limit	2.633951	Sum of frequencies	476
Adj sum of squares	896.9475	Sum of observations	1195
Standard deviation	1.374158	Std.error of mean	$6.298444 \mathrm{E}-02$
Variance	1.88831	T -value for mean=0	39.85912
Coef. of variation	. 5473634	T prob level	0.0000
Skewness	5.015595	Kurtosis	36.55122
100-\%tile (Maximum)	16	90-\%tile	4
75-\%tile	2	10-\%tile	2
50-\%tile (Median)	2	Range	14
25-\%tile	2	75th-25th \%tile	0
0-\%tile (Minimum)	2		
2	---Li	/ Box Plot	---
Z Z V V E	92	1	1

Distribution \& Histogram


```
-------------Descriptive Statistics-------------------------------------
Date/Time 01-21-1991 13:41:23
Data Base Name C:\stats\ncss\data\pel90snc
Description Imported from A:pel90snc.prn
```

Detail Report

Variable: CA\%

Mean - Average	. 2611975	No. observations	476
Lower 95\% c.i.limit	. 2368418	No. missing values	0
Upper 95\% c.i.limit	. 2855532	Sum of frequencies	476
Adj sum of squares	34.91442	Sum of observations	124.33
Standard deviation	. 2711163	Std.error of mean	$1.242659 \mathrm{E}-02$
Variance	$7.350404 \mathrm{E}-02$	T-value for mean=0	21.01923
Coef. of variation	1.037974	T prob level	0.0000
Skewness	4.237563	Kurtosis	28.61817
Normality Test Value	0.911	Reject if > 1.011(10\%)	1.019 (5\%)
100-\%tile (Maximum)	2.91	90-\%tile	. 5
75-\%tile	. 325	10-\%tile	. 06
50-\%tile (Median)	. 2	Range	2.89
25-\%tile	. 1	75th-25th \%tile	. 225
0-\%tile (Minimum)	. 02		
. 02	-----Line	t / Box Plot	---2.91
4ZZZZZZLQK8I97A42523	321112111	111	1

Distribution \& Histogram

Date/Time	$01-21-1991 \quad 13: 47: 07$
Data Base	Name $C: \backslash s t a t s \backslash n c s s \backslash d a t a \backslash p e l 90 s n c$
Description	Imported from A:pel

Detail Report
Variable: NA\%

Mean - Average	7.313025E-02	No. observations	476
Lower 95\% c.i.limit	6.527023E-02	No. missing values	0
Upper 95\% c.i.limit	8.099028E-02	Sum of frequencies	476
Adj sum of squares	3.636236	Sum of observations	34.81
Standard deviation	. 0874942	Std.error of mean	4.01029E-03
Variance	$7.655234 \mathrm{E}-03$	T-value for mean=0	18.23565
Coef. of variation	1.196416	T prob level	0.0000
Skewness	3.880473	Kurtosis	20.75063
Normality Test Value	0.831	Reject if > $1.011(10 \%)$	1.019 (5\%)
100-\%tile (Maximum)	. 77	90-\%tile	. 14
75-\%tile	. 09	10-\%tile	. 01
50-\%tile (Median)	. 05	Range	. 76
25-\%tile	. 03	75th-25th \%tile	. 06
0-\%tile (Minimum)	. 01		
.01-------	--Line	/ Box Plot-	
ZZZZZTRPMDB8AC26463 --[XmXaX]-----	41211211	111111	11

Distribution \& Histogram

Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	0	. 02	112	23.5	112	23.5	:******
2	. 02	. 04	115	24.2	227	47.7	:******
3	. 04	. 06	74	15.5	301	63.2	:****
4	. 06	8.000E-02	52	10.9	353	74.2	:***
5	8.000E-02	. 1	35	7.4	388	81.5	:**
6	. 1	. 12	19	4.0	407	85.5	: *
7	. 12	. 14	22	4.6	429	90.1	:*
8	. 14	. 16	8	1.7	437	91.8	:
9	. 16	. 18	4	0.8	441	92.6	:
10	. 18	. 2	10	2.1	451	94.7	: *
11	. 2	. 22	5	1.1	456	95.8	:
12	. 22	. 24	3	0.6	459	96.4	:
13	. 24	. 26	1	0.2	460	96.6	:
14	. 26	. 28	0	0.0	460	96.6	:
15	. 28	. 3	2	0.4	462	97.1	:
0	Values out	of range	14	2.9			:

```
----------------------------Descriptive Statistics----------------------------------
Date/Time 01-21-1991 13:47:49
Data Base Name C:\stats\ncss\data\pel90snc
Description Imported from A:pel90snc.prn
```

Detail Report
Variable: K\%

Mean - Average	$7.680672 \mathrm{E}-02$	No. observations	476
Lower 95\% c.i.limit	$7.330445 \mathrm{E}-02$	No. missing values	0
Upper 95\% c.i.limit	. 080309	Sum of frequencies	476
Adj sum of squares	. 7219462	Sum of observations	36.56
Standard deviation	$3.898573 \mathrm{E}-02$	Std.error of mean	$1.786908 \mathrm{E}-03$
Variance	1.519887E-03	T-value for mean=0	42.98304
Coef. of variation	. 5075822	T prob level	0.0000
Skewness	1.285731	Kurtosis	2.929319
Normality Test Value	1.032	Reject if > $1.011(10 \%)$	1.019 (5\%)
100-\%tile (Maximum)	. 28	90-\%tile	. 13
75-\%tile	. 1	10-\%tile	. 04
50-\%tile (Median)	. 07	Range	. 27
25-\%tile	. 05	75th-25th \%tile	. 05
0-\%tile (Minimum)	. 01		
. 01	--Line	t / Box Plot	. 28
	$\begin{array}{ccc} \mathrm{Z} & \mathrm{X} & \mathrm{O} \\ \mathrm{XXXXX} \end{array}$	$\begin{array}{lllllll}\text { C } & 4 & 8 & 2 & 4 & 3 & 1\end{array}$	111

Distribution \& Histogram

Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	0	. 02	12	2.5	12	2.5	:*
2	. 02	. 04	83	17.4	95	20.0	: ****
3	. 04	. 06	125	26.3	220	46.2	:*******
4	. 06	8.000E-02	86	18.1	306	64.3	: *****
5	8.000E-02	. 1	77	16.2	383	80.5	:****
6	. 1	. 12	39	8.2	422	88.7	:**
7	. 12	. 14	29	6.1	451	94.7	:**
8	. 14	. 16	12	2.5	463	97.3	:*
9	. 16	. 18	2	0.4	465	97.7	:
10	. 18	. 2	7	1.5	472	99.2	:
11	. 2	. 22	1	0.2	473	99.4	:
12	. 22	. 24	1	0.2	474	99.6	:
13	. 24	. 26	0	0.0	474	99.6	:
14	. 26	. 28	2	0.4	476	100.0	:
15	. 28	. 3	0	0.0	476	100.0	

Date/Time	01-21-1991 13:48:56
Data Base Name	C: \stats ncss \backslash data \backslash pel 90 snc $^{\text {a }}$
Description	Imported from A:pel90snc.prn

Detail Report
Variable: AUPPB

Mean - Average	92.42017	No. observations	476
Lower 95\% c.i.limit	66.78626	No. missing values	0
Upper 95\% c.i.limit	118.0541	Sum of frequencies	476
Adj sum of squares	$3.867534 \mathrm{E}+07$	Sum of observations	43992
Standard deviation	285.345	Std.error of mean	13.07877
Variance	81421.77	T-value for mean=0	7.066428
Coef. of variation	3.087476	T prob level	0.0000
Skewness	6.628696	Kurtosis	50.94736
Normality Test Value	0.590	Reject if > 1.011 (10\%)	1.019(5\%)
100-\%tile (Maximum)	3080	90-\%tile	164
75-\%tile	65.5	10-\%tile	2
50-\%tile (Median)	19.5	Range	3079
25-\%tile	4	75th-25th \%tile	61.5
0-\%tile (Minimum)	1		
	------Line	/ Box Plot-	
$\mathrm{m}-\mathrm{a}--$	22	112	

Distribution \& Histogram

Variable: AUPPB							
Bin	Lower	Upper	Count	Prent	Total	Prent	Histogram
1	0	5	125	26.3	125	26.3	:*******
2	5	10	57	12.0	182	38.2	: ***
3	10	15	31	6.5	213	44.7	:**
4	15	20	25	5.3	238	50.0	:*
5	20	25	17	3.6	255	53.6	: *
6	25	30	21	4.4	276	58.0	: *
7	30	35	23	4.8	299	62.8	:*
8	35	40	8	1.7	307	64.5	:
9	40	45	9	1.9	316	66.4	:
10	45	50	12	2.5	328	68.9	:*
11	50	55	10	2.1	338	71.0	:*
12	55	60	9	1.9	347	72.9	:
13	60	65	2	0.4	349	73.3	:
14	65	70	17	3.6	366	76.9	: *
15	70	75	3	0.6	369	77.5	:
0	Values	out of range	107	22.5			:

Date/Time	01-21-1991 13:49:19
Data Base Name	C: \stats\ncss\data \pel90snc
Description	Imported from A:pel90snc.prn

Detail Report
Variable: AUPPB

Mean - Average	92.42017	No. observations	476
Lower 95\% c.i.limit	66.78626	No. missing values	0
Upper 95\% c.i.limit	118.0541	Sum of frequencies	476
Adj sum of squares	$3.867534 \mathrm{E}+07$	Sum of observations	43992
Standard deviation	285.345	Std.error of mean	13.07877
Variance	81421.77	T-value for mean=0	7.066428
Coef. of variation	3.087476	T prob level	0.0000
Skewness	6.628696	Kurtosis	50.94736
Normality Test Value	0.590	Reject if > 1.011(10\%)	1.019 (5\%)
100-\%tile (Maximum)	3080	90-\%tile	164
75-\%tile	65.5	10-\%tile	2
50-\%tile (Median)	19.5	Range	3079
25-\%tile	4	75th-25th \%tile	61.5
0-\%tile (Minimum)	1		
ZZZKD83552 2211121			
m-a--			

Distribution \& Histogram

Variable: AUPPB							
Bin	Lower	Upper	Count	Prent	Total	Pront	Histogram
1	0	100	399	83.8	399	83.8	:*********************
2	100	200	38	8.0	437	91.8	: **
3	200	300	11	2.3	448	94.1	:*
4	300	400	7	1.5	455	95.6	:
5	400	500	4	0.8	459	96.4	:
6	500	600	2	0.4	461	96.8	:
7	600	700	3	0.6	464	97.5	:
8	700	800	1	0.2	465	97.7	:
9	800	900	2	0.4	467	98.1	:
10	900	1000	0	0.0	467	98.1	:
11	1000	1100	2	0.4	469	98.5	:
12	1100	1200	0	0.0	469	98.5	:
13	1200	1300	0	0.0	469	98.5	:
14	1300	1400	0	0.0	469	98.5	:
15	1400	1500	1	0.2	470	98.7	:
0	values	out of range	6	1.3			:

Correlations - Soil

	AS	SB	BI	PB	AG	FE\%
\pm	1.0000	0.1871	0.1541	0.4757	0.5902	0.3674
31	0.1871	1.0000	-0.0273	0.0106	0.0380	0.0410
31	0.1541	-0.0273	1.0000	0.1510	0.2196	0.1171
? B	0.4757	0.0106	0.1510	1.0000	0.5182	0.1165
15	0.5902	0.0380	0.2196	0.5182	1.0000	0.1446
\cdots	0.3674	0.0410	0.1171	0.1165	0.1446	1.0000
\pm IUPPB	0.5197	0.0408	0.1336	0.5416	0.5551	0.0986

APPENDIX XII

ROCK SAMPLE DESCRIPTIONS - 1990

ROCK SAMPLE DESCRIPTIONS-1990

ALL SAMPLES

SAMPLE NUMBER	TARGET AREA	DESCRIPTION
PEL-90-G-1R	SOUTHEAST	GRAB;QUARTZ-PYRITE VEIN ALONG CREEK
2	SOUTHEAST	FLOAT;10 CM QTZ-PY,25\% PY,COARSE QTZ
3	SOUTHEAST	FLOAT;10 CM QTZ-PY,25\% PY,COARSE QTZ
4	PELICAN	GRAB;PYRITIZED BOULDERS AT EDGE OF CLIFF
5	PELICAN	GRAB;PYRITIZED BOULDERS AT EDGE OF CLIFF
6	PELICAN	GRAB;PYRITIZED SILICIFIED SILTSTONE
7	PELICAN	GRAB;PYRITIZED SILICIFIED SILTSTONE
8	PELICAN	GRAB;PYRITIZED SILICIFIED SILTSTONE
9	PELICAN	GRAB;MASSIVE E-W PY VEIN,DIP 80 S
10	PELICAN	FLOAT;PYRITIZED,SILICIFIED BOULDERS
11	PELICAN	FLOAT;PYRITIZED,SILICIFIED BOULDERS
12	PELICAN	GRAB;1-4CM PYRITE VEINS, 20 DIP S
13	PELICAN	GRAB;1-4CM PYRITE VEINS, 20 DIP S
14	PELICAN	GRAB;HYDROZINCITE,DISS.PYRITE
15	PELICAN	GRAB 20 CM;VERTICAL N-S QTZ-PY VEIN
16	SOUTHEAST	grab;qtz-py vein near site 87-521
17	SOUTHEAST	grab;qtz-py vein near site 87-521
18	SOUTHEAST	grab;qtz-py vein near site 87-521
19	SOUTHEAST	grab;qtz-py vein near site 87-521
20	SOUTHEAST	grab;qtz-py vein near site 87-521
21	SOUTHEAST	grab;pyritized highly fractured
22	SOUTHEAST	float;quartz-pyrite vein 5\%-10\% py
23	SOUTHEAST	float;quartz-pyrite vein 5\%-10\% py
24	SOUTHEAST	float;quartz-pyrite vein 5\%-10\% py
25	SOUTHEAST	grab;ferricrete 3m thick above shear
26	SOUTHEAST	grab;granodiorite;mod. fract.,5\% py
27	SOUTHEAST	grab;1-2cm qtz veins at 205/60N
28	SOUTHEAST	float;sercitized, pyritized granodiorite
29	SOUTHEAST	GRAB;FERRICRETE,4-5M THICK
30	SOUTHEAST	GRAB;SILIC.,BLEACH.GRANODIORITE,5\% PY
31	SOUTHEAST	GRAB;STRONG SHEAR,SERCITE SCHIST,5\%PY
32	SOUTHEAST	GRAB;ORTHO.PORPH.,INTENS.FRACT.,3\% PY
33	SOUTHEAST	GRAB;GRAB;ORTH.PORPH.SILIC..3\%PY
34	SOUTHEAST	GRAB;FRACT. SILTSTONE,SERIC.,3\%PY
35	SOUTHEAST	GRAB;SILTSTONE,BLEACH.,SERIC.,3\% PY
36	SOUTHEAST	QTZ.VEINS,1-10CM,VUGGY,COARSE,CHLORITE
37	SOUTHEAST	GRAB;SHEAR GOUGE,315/75E
38	SOUTHEAST	GRAB;SHEAR
39	SOUTHEAST	GRAB;QTZ.VEIN,5CM,GRANOD.,N-S/85W
40	SOUTHEAST	GRAB;SHEAR,5\%,PY,BLEACHED INTRUS.
41	SOUTHEAST	GRAB;SHEAR,5\%,PY,BLEACHED INTRUS.

42 SOUTHEAST
43 SOUTHEAST
44 SOUTHEAST
45 SOUTHEAST
46 SOUTHEAST
47 SOUTHEAST
48 SOUTHEAST
49 SOUTHEAST
50 SOUTHEAST
51 SOUTHEAST
52 SOUTHEAST
53 SOUTHEAST
54 SOUTHEAST
55 SOUTHEAST
56 SOUTHEAST
57 SOUTHEAST
58 SOUTHEAST
59 SOUTHEAST
60 SOUTHEAST
61 SOUTHEAST
62 SJ ZONE
63 SNOW
64 SNOW
65 SNOW
66 SNOW
67 SNOW
68 SNOW
69 SNOW
70 SNOW
71 SNOW
72 SNOW
73 SNOW
74 SNOW
75 SNOW
76 SNOW
77 SNOW
78 SNOW
79 SNOW
80 SNOW
81 SNOW
82 SNOW
83 SNOW
84 SNOW
85 SNOW
86 SNOW
87 SNOW
88 SNOW
89 SNOW

GRAB;GOSSAN EXTREMELY FRACT.
GRAB;GOSSAN EXTREMELY FRACT.
GRAB;SHEAR,2M,170/60E
GRAB;SILTSTONE,BLEACH.,3\%PY,SILIC.
5CM;RUSTY SHEAR,090/85N
GRAB;GOSSAN,EXTREMELY WEATHERED
GRAB;SILTSTONE,SERICITIZED,5\%PY
GRAB 20CM;150/60W
GRAB;DIORITE,SHATTERED,MODER. FE STAIN
GRAB;DIORITE,SHATTERED,MODER. FE STAIN
GRAB 5CM;QUARTZ VEIN,150/70S
GRAB;QTZ-CALCITE-CHLORITE VEIN,5CM
GRAB;SHEAR,DIORITE,N-S/45E
GRAB;SHEAR,DIORITE,N-S/45E
GRAB;RUSTY SHEAR,DIORITE
FLOAT;QUARTZ VEIN,CHLORITE,FE-CARBONATE FLOAT;QUARTZ VEIN,CHLORITE,FE-CARBONATE GRAB;SHEAR,DIORITE,8\% DISS. PY
GRAB 40CM;SHEAR,DIORITE,SILICIFIED
GRAB;GOUGE AND INTERMIXED PYRITE
FLOAT;QUARTZ-PYRITE VEIN
FLOAT;QUARTZ VEIN MINOR PYRITE GRAB 5CM;QUARTZ-CARBONATE VEIN
GRAB;QUARTZ VEIN 070/STEEPN FLOAT; QUARTZ VEIN
GRAB;RUSTY GOSSAN ABOVE STRONG SHEAR GRAB;SHEAR,BLEACH.QTZ VEINING,MALACHITE
GRAB;SHEAR,BLEACH.QTZ VEINING,MALACHITE
GRAB;SHEAR,BLEACH.QTZ VEINING,MALACHITE FLOAT?;RUBBLE WITHIN TRACE OF SHEAR 4CM;VUGGY QUARTZ-CHLORITE,N-S/62W FLOAT;EPIDOTE,BLEACH.,MALACHITE,PY FLOAT;EPIDOTE,BLEACH.,MALACHITE,PY FLOAT;SILTSTONE,MALACHITE
GRAB 2CM;BLEACH.,PYRITIZATION ALONG SHEAR GRAB 2CM;BLEACH.,PYRITIZATION ALONG SHEAR FLOAT;RUSTY,COARSE QUARTZ
GRAB 40 CM;QUARTZ IN FLAT SHEAR,MINOR PY GRAB 40 CM; QUARTZ IN FLAT SHEAR,MINOR PY GRAB 40 CM;QUARTZ IN FLAT SHEAR,MINOR PY GRAB 40 CM;QUARTZ IN FLAT SHEAR,MINOR PY GRAB;BRECCIATED VOLC.,IRREG.PY INFILLING GRAB;BRECCIATED VOLC.,IRREG.PY INFILLING FLOAT;SILTSONE,MALACHITE,DISS. PY FLOAT;SILTSONE,MALACHITE,DISS. PY 4 CM;QUARTZ IN SHEAR,120/68S
GRAB 50 CM;INTERMIXED PY \&BRECCIATED VOLC. GRAB 50 CM ;INTERMIXED PY \&BRECCIATED VOLC.

90	SNOW	FLOAT;QUARTZ-PYRITE ,30\% PYRITE
91	SNOW	FLOAT;QUARTZ-PYRITE ,30\% PYRITE
92	SNOW	FLOAT;QUARTZ-PYRITE ,30\% PYRITE
93	SNOW	FLOAT;QUARTZ-PYRITE ,30\% PYRITE
94	SNOW	FLOAT;VUGGY QUARTZ-PYRITE
95	SNOW	GRAB 5CM;QUARTZ VEIN @005/70W
96	SNOW	FLOAT;QUARTZ VEIN WITH 25\% PYRITE
PEL-90-J-1R	SOUTHEAST	GRAB;SILTSTONE,3\% DISS. PY,FE STAINED
2	SOUTHEAST	GRAB 3M;SHEARED SERICITE SCHIST
3	SOUTHEAST	GRAB 3M;SHEARED SERICITE SCHIST
4	SOUTHEAST	GRAB 3M;SHEARED SERICITE SCHIST
5	SOUTHEAST	CHIP 10CM;GOSSAN WITH FLAT SHEARING
6	SOUTHEAST	GRAB 4CM;QUARTZ VEIN
7	SOUTHEAST	GRAB;SHEARED DIORITE,2-3\% DISS. PY
8	SOUTHEAST	GRAB;SHEAR,DIORITE,060/85W,3\% DISS. PY
9	SOUTHEAST	GRAB;DIORITE,3\% DISS. PYRITE
10	SOUTHEAST	FLOAT;4CM PYRITE BAND IN QUARTZ VEIN
11	SOUTHEAST	FLOAT;SAME ROCK AS \#10 QUARTZ ONLY
12	SOUTHEAST	FLOAT;QUARTZ,4\% PYRITE IN 5CM CLOTS
13	SOUTHEAST	GRAB;SHEAR,CHLORITIC,3\% DISS. PYRITE
14	SOUTHEAST	GRAB;SHATTERED DIORITE,2\% PY,3CM QTZ VEIN
15	SOUTHEAST	GRAB 15CM; QUARTZ WITH 3-5\% COARSE PYRITE
16	SOUTHEAST	GRAB 15CM;QUARTZ WITH 3-5\% COARSE PYRITE
17	SOUTHEAST	GRAB;DIORITE,UNALTERED,WITIN 50 CM OF \#16
18	SOUTHEAST	GRAB 25CM;QUARTZ VEIN WITH 5\% PYRITE
19	SOUTHEAST	CHIP 2M;SILICIFIED ROCK, PYRITIZED
20	SOUTHEAST	CHIP 1M;SILICIFIED ROCK,PYRITIZED
21	SOUTHEAST	GRAB 20 CM ;QUARTZ VEIN, 10\% COARSE PYRITE
22	SOUTHEAST	GRAB 20 CM;QUARTZ VEIN,8\% COARSE PYRITE
23	SOUTHEAST	GRAB 20 CM;QUARTZ VEIN, 10\% COARSE PYRITE
24	SOUTHEAST	GRAB;SILICIFIED,5-10\% DISS. PYRITE(88-J-81)
25	SOUTHEAST	FLOAT; 20 CM QUARTZ VEIN,10\% COARSE PYRITE
26	LAKE-AIRBORNE EM	DIORITE,SILICIFIED,5\% DISS. PYRITE
27	LAKE-AIRBORNE EM	DIORITE,SILICIFIED,5\% DISS. PYRITE
28	LAKE-AIRBORNE EM	BASALT DYKE,BLACK,3-5\% DISS. PYRITE
29	LAKE-AIRBORNE EM	GRAB;GOSSAN,SILICIFIED,2\% DISS. PYRITE
30	LAKE-AIRBORNE EM	GRAB;GOSSAN,SILICIFIED,2\% DISS. PYRITE
31	LAKE-AIRBORNE EM	GRAB;GOSSAN,SILICIFIED,2\% DISS. PYRITE
32	LAKE-AIRBORNE EM	GRAB;BASALT DYKE,DK GREEN,2-3\% DISS. PY
33	LAKE-AIRBORNE EM	GRAB;DIORITE,SILICIFIED,FE STAINED,2\% PY
34	LAKE-AIRBORNE EM	GRAB;DIORITE,SILICIFIED,FE STAINED,2\% PY
35	SOUTHEAST	GRAB 3M;SHEAR,DIORITE,SILICIFIED,1-2\% PY
36	SOUTHEAST	GRAB;SHATTERED CHERT,1-2\% DISS. PYRITE
37	SOUTHEAST	GRAB;SHATTERED CHERT,1-2\% DISS. PYRITE
38	SOUTHEAST	GRAB;SHATTERED CHERT,1-2\% DISS. PYRITE
39	SERICITE NORTH	GRAB;SERICITE SCHIST,SILICA,3\% PY
40	SERICITE NORTH	GRAB;SERICITE SCHIST,SILICA,3\% PY
41	SERICITE NORTH	GRAB;SERICITE SCHIST,SILICA,<1\% PY

42	SERICITE NORTH	CHIP 2M:SERICITE-SILICA ROCK,FE STAINED
43	SERICITE NORTH	FLOAT;VERY SILICIFIED SERICIT ROCK,FE STAIN
44	SERICITE NORTH	FLOAT;TALUS
45	SERICITE NORTH	GRAB;DIORITE?,HYROZINCITE?
46	SERICITE NORTH	GRAB;SHATTERED,SICIFIED ROCK,1-2\% PY
47	SERICITE NORTH	FLOAT;CHLORITIC,SILICA ROCK,GREEN STAIN
48	SERICITE NORTH	CHLORITIC ALTERED ROCK,NUMEROUS QTZ VEINS
49	SNOW	GRAB;WEAKLY PYRITIZED BASALT
50	SNOW	GRAB 10CM; QUARTZ VEIN 30\% PYRITE
51	SNOW	GRAB 20CM; IRREGULAR QUARTZ VEINS
52	SNOW	GRAB 3M;SILICIFIED,1M QTZ VEINS,1\% DISS. PY
53	SNOW	GRAB 5M;SILICIFIED
54	SNOW	GRAB;QUARTZ VEIN ,5\% PYRITE
55	SNOW	GRAB 20CM;QUARTZ VEIN IN BASALT?,DIORITE?
56	SNOW	GRAB:GOSSAN,4\% DISS. PYRITE
57	SNOW	GRAB:GOSSAN,4\% DISS. PYRITE
58	SNOW	GRAB:GOSSAN,4\% DISS. PYRITE
59	SNOW	GRAB:GOSSAN,4\% DISS. PYRITE
60	SNOW	GRAB;FRACT.,SILICIFIED SILTSTONE
61	SNOW	GRAB;BOXWORK GOSSAN
62	SNOW	GRAB;BOXWORK GOSSAN
63	SNOW	GRAB 10 CM;QUARTZ,25\% PYRITE
64	SNOW	GRAB;IRREGULAR QUARTX VEIN,5\% pyrite
65	SJ ZONE	FLOAT;QUARTX VEIN,2\% PYRITE
66	SJ ZONE	FLOAT;GOSSAN BOXWORK
67	SJ ZONE	GRAB;SHEAR,FRACT.,SILICIFIED,50M WIDTH
68	SJ ZONE	GRAB;4-4CM QTZ VEINS,CHLORITE CLOTS
69	SJ ZONE	GRAB 4CM;QTZ VEIN,CHLORITE,160/20W
70	SJ ZONE	GRAB;SILTSTONE,BLEACH.,SERICITIZED.3\% PY
71	SJ ZONE	GRAB 3CM;QUARTZ VEIN;8\% PYRITE
72	SJ ZONE	GRAB;SLICIFIED,3-5\% DISS. PYRITE
73	SJ ZONE	GRAB;SLICIFIED,3-5\% DISS. PYRITE
74	SJ ZONE	GRAB;SLICIFIED,3-5\% DISS. PYRITE
75	SJ ZONE	GRAB:SILICFIED,FRACT.,5-10\% DISS. PYRITE
76	SJ ZONE	GRAB:SILICFIED,FRACT.,5-10\% DISS. PYRITE
77	SJ ZONE	GRAB 5M;SHEAR,SERICITE SCHIST, 1 MM PY SEAMS
78	SJ ZONE	GRAB;GOSSAN
79	SJ ZONE	GRAB;GOUGE,SHEAR IN SAMPLE \#77
80	SJ ZONE	CHIP 2M;SHEAR
81	SJ ZONE	CHIP 2M;SHEAR
82	SJ ZONE	CHIP 2.5M;SHEAR AND ADJ PY-SILICA
83	SJ ZONE	GRAB;SILICIFIED,PYRITIZED
84	SJ ZONE	GRAB;QUARTZ VEIN,10\% PYRITE
85	SJ ZONE	GRAG,VERY SILICIFIED, 1% PYRITE
86	PELICAN	GRAB;GOSSAN ABOVE MAIN ZONE
87	PELICAN	GRAB 40CM;SHEAR,N-S,VERTICAL
88	PELICAN	GRAB;SHEAR,065/90
89	PELICAN	GRAB 5CM;QUARTZ VEIN 2-3\% PY,060/90

PELICAN
PELICAN
PELICAN
PELICAN
PELICAN
AIRBORNE ANOM. K AIRBORNE ANOM. K LAKE RIDGE WEST Lake ridge west LAKE RIDGE WEST SERICITE EAST-SJ PINS PINS PINS PINS PINS PINS PINS PINS SNOW SNOW SNOW SNOW SNOW SNOW SNOW

GRAB 50CM;QUART \angle VEIN,090/70S
GRAB 15 CM;QUARTZ VEIN,2\% SPHALERITE
GRAB 1.5M;FLAT SHEAR,FE STAINED
GRAB 1.5M;FLAT SHEAR,FE STAINED GRAB;20 CM;TOP OF FLAT SHEAR,40\% PY ARGILLITE,SILTSTONE,BANDED,FE STAINED ARGILLITE,SILTSTONE,BANDED,FE STAINED GRAB 3M;FLAT SHEAR WITH 1-5 CM QUARTZ VEINS GRAB 3M;FLAT SHEAR WITH 1-5 CM QUARTZ VEINS GRAB 3M;FLAT SHEAR WITH 1-5 CM QUARTZ VEINS GRAB;RUSTY SHEAR IN DIORITE GRAB;5\% PYRITE IN 1CM CLOTS GRAB;BOXWORK GOSSAN,3\% DISS. PYRITE FLOAT;SILICA ROCK,3\% diss. pyrite FLOAT;SILICA ROCK,3\% diss. pyrite grab 20 cm ;quartz vein grab;quartz vein unkown width grab;siltstone,rusty grab;silicified,trace pyrite grab 30 cm ;silica rock, $30-40 \%$ pyrite grab;silicified,fractured,2\% diss. pyrite grab;gossan boxwork,estimate 40\% py grab;diorite,silicified, 10% diss. pyrite grab $18 \mathrm{~cm} ; 8 \mathrm{~cm}$ galena, 10 cm silicifed rock grab 1.5 m ;silicified rock adjacent to \#113
grab 40 cm;rusty qtz vein,133/60w
grab 3.5 m ;shear, $125 / 45 \mathrm{sw}$
grab;siltstone,silicified
grab;sheared diorite dyke
grab;sheared diorite dyke
grab;gossan,silicified,2-3\% pyrite
grab,float;quartz,5\% pyrite
grab;silicified,2-3\% pyrite
grab 60 cm ;vuggy quartz vein, no pyrite
grab $30-60 \mathrm{~cm}$;irregular qtz vein, 8% py
grab 25 cm ;quartz vein, 10-20\% pyrite grab;pyrite intermixed with quartz grab 1m;shear, 1-2 cm seams of pyrite float;95\% pyrite intermixed with quartz grab;irregular qtz-pyrite veins grab;silicified, 1-2\% diss py,fractured

