-Gewargis Geological Consulting Inc. -

LOG NO:	0530	RD.
ACTION:		

ASSESSMENT REPORT ON A 1990 DIAMOND DRILLING AND GEOLOGICAL PROGRAM ON THE INDEPENDENCE PROPERTY STEWART,B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

.367

ASSESSMENT REPORT ON A 1990 DIAMOND DRILLING AND GEOLOGICAL PROGRAM

ON THE

INDEPENDENCE PROPERTY SKEENA MINING DIVISION ,BRITISH COLUMBIA

NTS 104 A/4W

ON BEHALF OF

56°06', 129°54'

SUB-RECORDER

1

MAY 28 1991

M.R. # \$______ VANCOUVER, B.C.

AREMENO RESOURCES INC. 500-1111 WEST HASTINGS STREET VANCOUVER, BRITISH COLUMBIA V6E 2J3

ΒY

WILSON A.GEWARGIS, B.Sc., F.G.A.C, F.Aus.I.M.M. SCOTT TOMLINSON, B.Sc.

GEWARGIS GEOLOGICAL CONSULTING INC. SUITE 204-475 HOWE STREET VANCOUVER,BRITICH COLUMBIA V6C 2B3 TEL:(604) 687-2208

SEPTEMBER 10, 1990

١

مهالت بالأكار بالأغاب فالمتاكلة كالمقاطأ الاستكأ

Page

TABLE OF CONTENTS

SUM	MAR	Y	1-3 /		
1.0	INTRODUCTION				
	1.1 1.2 1.3	Location, Access, Physiography Property Status & Ownership Previous Exploration & Property History	4 6 9-11		
2.0	GEOLOGY				
	2.1 2.2 2.3	Regional Geology Property Geology Property Mineralization	11-12 / 13-16 / 17-19 /		
3.0	1 99 0	EXPLORATION & DIAMOND DRILLING PROGRAM	20 /		
	3.1	Current Exploration Work	20-21 /		
	3.2	Geochemistry Survey 3.2.1 Soil Sampling 3.2.2 Rock Sampling	22 / 22 / 23-24 /		
	3.3	Geophysic Survey 3.3.1 Magnetometer Survey 3.3.2 VLF-Electromagnetometer	24 24 25 /		
	3.4	Trenching 3.4.1 Trenching Geology 3.4.2 Trench Sampling 3.4.3 Results	26 26-27 × 27 × 27 ×		
4.0	1990	DIAMOND DRILLING PROGRAM	28 /		
	4.1 4.2 4.3	Description of Drill Holes 90-1 to 90-6 Lithology, Structure & Mineralization Possible Ore Reserves	29-40 / 41-46 / 46 /		
5.0	CON	ICLUSIONS	51 /		
6.0	REC	COMMENDATIONS	52-53 /		
7.0	EST	IMATED BUDGET	54-55 /		
8.0	STA	TEMENT OF QUALIFICATIONS	56-57 /		
9.0	BIBI	58 /			

-Gewargis Geological Consulting Inc.

مساهدهم فليفرخ فالاستركار التشكية فليعد التنابي والتنابي المرابية المنابية المرابي

2424-21-324

Page

1770 C 2510

ILLUSTRATIONS

Tables

Í

Table 1:	Claim Status	6 /
Table 2:	Summary of 1990 Diamond Drill hole Coordinates	30 /
Table 3:	Summary of Rock Types Percentage Encountered	
	in Each Drill Hole	43 🗸
Table 4:	Summary of Significant Mineralized intersections for	
	Gold, Silver and Copper	47 🗸

Figures

Figure 1:	Location Map	5 /
Figure 2:	Topography Map	7 /
Figure 3:	Claim Map	8 /
Figure 4:	Regional Geological Map	12 /
Figure 5:	Property Geological and sampe Location Map	(in pocket) 🗸
Figure 6:	Rock Sample Locations and Assay results Map	(in pocket)
Figure 7:	Vein#1,2,3,4 Drill Locations, Trenches and	
•	Underground Development Map	(in pocket)
Figure 8:	1990 Trenching Map	(in pocket)
Figure 9:	Cross-Section-Diamond Drill Holes DDH# 90-1	(in pocket) /
Figure 10:	Cross-Section-Diamond Drill Holes DDH# 90-2	
-	and DDH# 90-3	(in pocket) 🗸
Figure 11:	Cross -Section-Diamond Drill Hole DDH# 90-4	(in pocket)
Figure 12:	Cross-Section-Diamond Drill Holes DDH# 90-5	••••
U U	DDH# 90-6	(in pocket) /
Figure 13:	Sampling of Adit #1 (Lower Tunnel) by Tournigan	
.	Mining Exploration Ltd.	50 🗸

Appendices

Appendix 1:	Diamond Drill Logs 🗸
Appendix 2:	Drill Core Sample Results
Annendix 3	Analysis Techniques

- Appendix 3:Analysis TechniquesAppendix 4:Assay Report-Chip Sample DescriptionsAppendix 5:Chemex Lab Assay Results Certificates
- Appendix 6: Statement of Cost 🗸

30.00

and a second second

ILLUSTRATIONS

Plates

\checkmark	Plate 1:	Panoramic view of the property facing north and showing the Independence and Fitzgerald Creeks	
1	Plate 2:	Hagby Bruk Onram-1000 Drill Rig with BQ T.K. Rod size	31
1	Plate 3:	Photo illustrates Vein #1, 2 exposed on surface in Trenches #6 and 7	32
/	Plate 4:	Photo illustrates Drill Holes 90-1 to 90-3 Site Locations and Hagby Bruk Onram 1000 - Drill rig	34
,/	Plate 5:	Photo illustrates core from Hole 90-1 with intersected Mineralized Zone from 45.1 m to 49.4 m	35
`	Plate 6:	Photo illustrates core from Hole 90-2 with intersected Mineralized Zone from 57.8 m to 64.5 m	36
1	Plate 7:	Photo illustrates core from Hole 90-3 with intersected Mineralized Zone from 93.9 m to 95.0 m	38
Ý	Plate 8:	Photo illustrates core from Hole 90-5 with intersected Mineralized Zone from 106.5 m to 108.0 m and from 112.8 m - 113.5 m	40

Plate 1:

Panoramic view of the property facing north and showing the Independence & Fitzgerald Creeks

- 1 -

SUMMARY

The Independence Property is located within the Boundary Ranges of northwestern British Columbia. The nearest community is Stewart, B.C., located 16 km to the southwest of the property (Figure 1). This part of B.C. is now being called the "Golden Triangle" and is the most active mineral exploration area in B.C.

In 1986 and 1988 exploration programs consisting of geological mapping, trenching, geophysical and geochemical surveys were conducted on the Independence property by Moche Resources Inc. The results of this work confirmed the presence of four mineralized zones (Veins #1, 2, 3 and 4) that contain high economical values of up to 28 oz/ton silver and 0.18 oz/ton gold.

In July and August of 1990, a geological mapping, prospecting, geochemical and geophysical survey, trenching, and diamond drilling program was conducted on the property. The initial goals of this program was to:

- (1) further evaluate and test the potential of the Vein #1 and #2 zones (Target Area #1);
- (2) evaluate and test the existence of volcanogenic massive sulphide mineralization on the property (Target Area #2);
- (3) explore and prospect the north-south extension of the main grid; and
- (4) explore the northwest and northeast boundary of the Claim Block to better assess the potential of this area.

Vein #1, 2 zones (Figure 7) was the main focus of the diamond drilling program. Veins #3 and 4 (Figure 7) are located in extremely rugged terrain and thus hampered the exploration efforts in a large portion of the easternmost part of the property. These veins were not evaluated during the 1990 program, and therefore will not be mentioned in this report.

- 2 -

From July 20 to August 5, 1990, six diamond drill holes totalling 764.13 m (2,507 ft) were completed on the property. Four drill holes, 90-1, 90-2, 90-3 and 90-5, returned significant silver, gold and copper values as outlined in Table 4 (Page 47).

The drilling was conducted over a strike length of 225.5 m (740 ft) along the main grid in the area between Lines 0+36N to 2+07S, 0+13E to 0+78E at wide spaced intervals, at three drill site locations (Figure 7).

Diamond drill holes, 90-1 to 90-4, were drilled at the north extension of the grid area above the main workings on Vein #1 and 2 in order to test the silver mineralization potential along the strike and to the depth. Drill Hole 90-1, 90-2 and 90-3 intersected these vein structures and the best results from Hole 90-1 returned (15.20 oz/ton silver) over 0.7 m (2.3 ft); Hole 90-2 (0.04 oz/ton gold), (54.3 oz/ton silver) over 0.8 m (2.6 ft).

Diamond drill holes, 90-5 and 90-6, were drilled at the south extension of the grid below the main workings to test the potential of the gold mineralization in Vein #1 and 2 at depth. Hole 90-5 intersected Vein #1, with a massive sulphide section within the mineralized zone, and the best results from this hole returned (0.001 oz/ton gold), (4.53 oz/ton silver), and (6.04% copper) over 0.3 m (1 ft). The second intersection of (0.188 oz/ton gold), (2.72 oz/ton silver), (2.54% copper), (1.02% lead), and (4.48% zinc) over 1.1 m (3.5 ft).

The weighted average of the mineralized zones intersected in each drill hole, including the rock types encountered, are summarized in detail under "1990 Diamond Drilling Program" Section (Page 28-46), Table 3 and 4 (Page 43 and 47), Assay Results in Appendix 2 and 5.

The 1990 Diamond Drilling Program confirmed and accomplished its prime objective of tracing the silver/gold mineralization on the Vein #1 zone along the strike and to the depth. It also established the possibility of a massive sulphide mineralization occurrence at the south extension of the main grid and at depth as in Hole 90-5. Finally, it narrowed down the potential exploration targets to an area between A dit #1 and 5.

- 3 -

A preliminary attempt was made by the author to calculate the "possible ore reserves" for Vein #1 in the area between the surface to the main underground workings at A dit #1. The author at the present time cannot confirm the reserves because of the limited amount of drilling, wide-spacing of mineralized intersections and the limited exposure of Vein #1 on the surface. However, these figures can only be considered as a guide for further exploration on the property.

The ore reserves are classified under the category of "possible reserves" for the Vein #1 zone, from the main workings (A dit #1) to the surface, and is estimated at 196,041 tons grading 7 to 10 oz/ton silver.

A Phase II Program is proposed to further test and evaluate the massive-sulphide mineralization potential below Adit #1 in an area between Adit #1 and 5, and to test the north and south extension of Vein #1 in the vicinity of Hole 90-1. The estimated cost of the Phase II Program is \$200,000.

Contingent upon favourable results from the Phase II Program, a Phase III Program of detailed drilling on the prospective target areas is proposed at an estimated cost of \$300,000.

- 4 -

1.0 INTRODUCTION

The author was engaged by Armenex Resource Canada Inc. to supervise a diamond drilling program on the Independence Property located 16 km north of Stewart, B.C. In addition to diamond drilling, geological mapping, prospecting, trenching, geochemical and geophysical surveys were conducted on the property.

764.13 m (2,507 ft) of diamond drilling was completed during the Phase 1 Program in July-August 1990. The initial goal of the drilling program was to test replacement Veins #1, 2 mineralization represented by the highest silver values obtained in previous exploration work (Target Area #1), and to test the existence of massive sulphide mineralization on the property, mainly in the south extension of the grid area (Target Area #2). Veins #3, 4 and also the A & T Showings were not evaluated or drilled during the 1990 program, and therefore will not be mentioned in this report.

This report describes the entire exploration program conducted on the property between July 3 and August 5, 1990, as well as summarizing previous work.

1.1 Location, Access & Physiography

Location (Figure 1): The Independence Property lies within the Boundary Ranges of northwest British Columbia, in the Skeena Mining Division, 16 km north of Stewart, B.C., on the southeast slope of the Bear River Ridge at 56° 05' North latitude and 129° 55' West longitude, NTS Map 104A/4W.

Access: At present, the only access to the property is by helicopter from either Stewart or a staging area on the Stewart-Cassiar Highway at the east side of the Bear River near Bitter Creek. Road access to Stewart, B.C. is by a paved all-weather highway travelling from Terrace on Highway 16 northeast for 91 km to Kitwanga, and then northwest 172 km on Highway 37 to Maziadin Junction and 67 km west on Highway 37A to Stewart, B.C.

- 6 -

<u>Physiography</u> (Figure 2): The claims area is located on the southeast slope of Bear River Ridge overlooking the Bear River. The topography of the area is very rugged and steep. The lower southern portion of the Claim Block is at approximately sea level and rises to an elevation of more than 1,500 m in less than 1 km.

The surface and underground showings are at an approximate elevation of 800 and 1,200 m on a steep slope. The slope has many locales of near vertical rock bluffs especially in the proximity of the two creeks (Independence and Fitzgerald) which bound the above area to the east and west respectively. Drainage is southeastwards to the Bear River. The upper slopes of the Bear River Ridge are fairly gentle, but covered by an icefield. Rock exposures are scarce and generally confined to the main mineralized zones on the grid, creeks, and steep slopes.

1.2 Property Status and Ownership (Figure 3)

The Independence Property comprises 2 mineral claims totalling 35 units, located within the Skeena Mining Division and held by Mr. D. Javorsky of Stewart, B.C. Mr. Javorsky optioned the property to Remington Creek Resources Inc. who then optioned the property to Armeno Resources Inc. on May 22, 1990. Pertinent claim information is summarized in Table 1 below:

TABLE 1

Mineral Claims

<u>Claim Name</u>	Record No.	<u>Uni ts</u>	Expiry Date
Big Casino	5382	15 Units	June 2, 1992
Independence	5383	20 Units	June 2, 1992

- 9 -

1.3 Previous Exploration & Property History

The Stewart area has been the scene of numerous prospecting, mineral exploration and mining activities since 1898. Massive sulphide base and precious metal deposits have been the focus of development during this period. Recent activity in the area has largely focused on the potential for stratabound "exhalative" type precious metal deposits.

The most successful properties with a production record are the Premier located approximately 3 km west of the Independence Property. A total of 1.8 million ounces of gold, 41.1 million ounces of silver, and millions of pounds of copper, lead, zinc and cadmium were recovered up until 1968 (Grove, 1971).

The Premier has a stratabound deposit reported to contain 6,000,000 tons grading 0.05 oz/ton gold and 2.5 oz/ton silver (Westmin Resources; Northern Miner, November 10, 1986).

Second to the Premier in production is the Big Missouri deposit, located 4 km north of the Independence Property. Between 1927 to 1942, some 58,000 ounces of gold were recovered from silica lenses on the Big Missouri system (Grove, 1971).

The Big Missouri has current reserves estimated at 3,000,000 tons grading 0.075 oz/ton gold and 0.95 oz/ton silver (Westmin Resources; Northern Miner, December 1, 1986).

The lithologies which contain the Premier and the Big Missouri deposits have been mapped by both Grove (1971) and Aldrich (1984) as occurring within the Independence project area.

The Independence Property has been investigated since 1917 when a surface exposure of veining was first discovered. Up to 1919, work consisted of prospecting and minor stripping. In 1919, short adits and open cuts were excavated.

1917 - 1923 The Fitzgerald brothers uncovered and traced several vein zones on surface and developed six underground adits on the Independence Property. Several assay results from this work were recorded in the British Columbia Minister of Mines Annual Report as follows: - 10 -

<u>In 1920</u> an open cut on the Big Casino uncovered a 14 ft wide vein assaying 18 oz/ton silver; further work in this area produced a grab sample in 1922 which assayed 0.04 oz/ton gold and 28 oz/ton silver.

Adits driven on the Big Casino from <u>1925 to 1929</u> encountered 16 ft of mineralization assaying 18 oz/ton silver, and 15 ft of 1.8 oz/ton silver and 3.8 oz/ton zinc.

Shear zones found on the Independence Claim were reported to assay at 0.18 oz/ton gold, 1.3 oz/ton silver, and 2.7% copper.

1920's Two angled diamond drill holes were drilled in the <u>early 1920's</u> in the vicinity of the open cuts above Adit #1 for a length of 155 m. One hole was not long enough to reach vein material, but the other intersected soft and broken vein material; both core recovery and assay results in this intersection were poor.

1965 Documented work began again in 1965 when a portion of the Independence Property was examined by Canex Aerial Exploration Company. Geological mapping, magnetometer survey, soil geochemistry, and limited trenching was conducted on the property.

1979 - 1985 Exploration work was carried out by Tournigan Mining Exploration Limited, mainly in the form of geological mapping. In 1980, limited geological mapping and sampling was performed, mainly on the Vein #1 zone. Eight (8) samples were taken from the underground workings in Adit #1 area (Figure 13), and the assay results from these samples shows that gold values range between 0.005 to 0.46 oz/ton gold, 0.50 to 2.72 oz/ton silver, 0.07 to 4.66% copper, 0.07 to 4.4% lead and 0.52 to 2.96% zinc.

A chip sample of a narrow vein (30 cm wide) assayed 0.13 oz/ton gold, 1.57 oz/ton silver, and 1.27% copper (Smitheringale, 1984).

1986 Moche Resources Inc., optioned the property from Mr. D. Javorsky of Stewart, B.C. and conducted a geological, geochemical, magnetometer and VLF-Electromagnetic, and airborne geophysical surveys over the property. The aim of their exploration program was to define zones of economic potential in an area of known precious metal-bearing structures. No drilling was performed during that period. The results of this work is described in the report by F. DiSpirito (1986).

1988 Further work was conducted by Moche Resources Inc., under the supervision of G. Richmond, P.Eng. This program consisted of geological mapping, trenching, and sampling. The aim of the 1988 program was to increase the known strike length of the previously trenched Vein Zones containing massive sulphide.

No new trenches were excavated due to deep snow, and as an alternative, the existing trenches were deepened and extended. New trenches were excavated on the exposed veins and also geological mapping and prospecting was performed at a lower elevation of the property and in the underground workings. No diamond drilling was performed during the 1988 program.

1990 In May 1990, Armeno Resources Inc. optioned the Independence Property from Remington Creek Resources and Armenex Resources Canada Inc. conducted the July/August 1990 Exploration and Drilling Project which is covered in this report.

2.0 GEOLOGY

2.1 Regional Geology (Figure 4)

The regional geology of the Independence Property occurs within the Stewart area, and is described in detail by E.W. Groves in the B.C. Department of Mines, Bulletin No. 58 (1971), and by D.J. Alldrick of the B.C. Department of Mines, geological field work (1982, 1984)

and most recently by F. DiSpirito, P.Eng. et al (1986) and G. Richmond, P.Eng. et al (1988).

The regional geology of the Stewart area is characterized by a series of Lower to Middle Jurassic sedimentary and volcanic rocks of Hazelton assemblage which lies within the contact between the intrusions of the Coast Crystalline Belt (Texas Creek granodiorite) and the sedimentary rocks of the Bowser Basin.

Three phases of intrusions have been identified in the above areas:

- 1. Mesozoic Texas Creek Granodiorite.
- 2. Tertiary Hyder Quartz Monzonite.
- 3. Portland Canal Dyke Swarm.

The northwesterly trending Tertiary Portland Canal dyke swarm intrudes the Hazelton assemblage at the northeast portion of the Independence Property. Also the above dyke swarm extends approximately 40 km and crosses the Bear River Ridge in the vicinity of Bitter Creek in a belt approximately 3.5 km wide.

2.2 Property Geology (Figure 5)

Aspects of the general geology of the Independence Claims group have been described by F. DiSpirito, P.Eng. et al (1986), G. Richmond, P.Eng. et al (1988) and in 1990, the geological mapping was performed by S. Tomlinson, B.Sc., and a description of his work is as follows:

A complete examination of the property and drill core in July/August 1990 reveals that the essential features on the Independence Property are dominantly volcanic units, with conformably layered volcano-sedimentary rock units intruded by silic dykes.

The andesite rock is the main dominant volcanic unit exposed in the area of the main grid and has formed several variations. From examination of the drill core, the andesite has been found to consist of seven different variations. All these variations of andesite types has been fully described in the drilling section (Page 28-46). - 14 -

The surface examination of the most common variation shows that the andesite comprises dark grey to green and texturally fine grained to massive and occasionally porphyritic and rarely dykes.

The phenocrysts consist of plagioclase, biotite and hornblende with crystal up to 3 mm and represents up to 30% of the rock content. Another distinctive variation of the andesite is red andesite. Texturally similar to the main andesite but is reddish in colour, and varies in extent from patches of red in a green matrix to completely red massive rock.

Other variations of the andesite which has been observed on the property is the andesitic dykes. These dykes are texturally and mineralogically identical to the andesite country rock; their only distinguishing features is a pair of parallel fractures. An example of these dykes occurs near A dit #1, where two parallel andesitic dykes, 1.5 m apart and each 30 cm wide, have an attitude of $128^{\circ}/90^{\circ}$.

The andesite rock unit may be altered in various ways, and more pronounced alteration is in the form of fine-grained to disseminated pyrite which occurs in most of the andesite variations in which may be diagenetic.

Quartz-carbonate stringers are also Omnipresent. Occasionally the andesite are slightly sheared and have a chloritized appearance, but there is no other direct evidence of any faulting. Epidization may occur in any andesite variation, but also may occur in certain parts of the property more than others, especially the south half of the grid and within the red andesite.

The epidote may occur up to 5% as disseminated, amygdules, irregular, stringers. The other major rock type bound in the main grid area and in the drill core is the silic dykes, namely diorite. It is light grey to white, occasionally greenish, and often speckled black and white. Grain size is fine-to-coarse grained. Mineralogy as determined from hand specimens is typically 10-30 percent quartz, 30-60 percent plagioclase, 10-30 percent biotite, and 5-15 percent hornblende. Crystals may be up to 1 cm long.

- 15 -

The quartz-rich dykes are quartz diorite; other types of diorite is the microdiorite which is mineralogically identical to the diorite, and consists of fine-grained matrix with phenocrysts of plagioclase, biotite and hornblende.

Other variations of the diorite occurs at L2+50N, 2+00E on the main grid, where some potassic feldspar is introduced into diorite; the rock thus grades into granodiorite. The only alteration observed in the diorite is occasionally subparallel interfingering of quartz veins and epidote as in A dit #1. Structurally, the diorite forms near vertical, 1 to 20 metre wide dykes, trending north to northwest.

A minor rock type was exposed adjacent to L2+00N near the baseline. It is the rhyolite which is light in colour and usually massive, although flow textures are weakly evident. It forms a contact with the andesite and is trending 135°. The above rock type has not been intersected in the drill core.

Although only the main grid area was mapped in detail, prospecting was done over a much larger portion of the Claim Block. The area covered extends from approximately Line 10+00S to the peak of Mount Bunting north, and from Fitzgerald Creek west, and east of the Independence Creek. Rock units observed during prospecting are shown on Figure 5 and their geological descriptions are as follows:

The lowest unit noted was a porphyritic andesite, similar to the porphyritic andesite described earlier. Stratigraphically higher and near Line 5+00S is a lithic tuff, this is a green-to-white finely layered tuff with clasts of subrounded 0.1 to 1 cm volcanics. The layering has an attitude of $172^{\circ}/90^{\circ}$. Stratigraphically above the lithic tuff is the dominant andesite as described in the main grid section.

At a higher elevation above Line 2+00N, of the main grid area to a more complex sequence involving volcanics, pyroclastics and sedimentary rocks.

- 16 -

Some of the rock units include: andesites, often porphyritic; andesite dykes; red andesites, with calcite and epidote amygdules; maroon volcanics fine-grained red volcanic with 0.1 to 1 cm lithic clasts; crystal tuffs fine-grained purple volcanics with 1 to 2 mm crystals of plagioclase and biotite; quartzites, fine-grained greenish sediment with fine lamallae and quartz grains; cherts, cryptocrystalline greenish chert, banded or massive; and conglomerates 0.1 - 3 cm subrounded clasts of various rock types, fine-grained matrix with larger clasts. This last unit is very minor, and was only observed west of Mount Bunting.

An exposure above the Independence Creek and southeast of Mount Bunting shows the following stratigraphy (from bottom to top):

- Andesite
- Quartzite
- Maroon Volcanics, 1-5 m thick with 1 m andesitic dykes
- Quartzite, 5 m thick
- Interlayered chert/quartzite, 10 m thick with each layer 0.1-1 m thick, 1710/380W bedding attitude
- Crystal tuff, 20 m thick

All of the volcanic, pyroclastic and sedimentary units throughout the property are crosscut by variations of the diorite dyke. These are mostly northerly trending and steeply dipping, and may form dyke swarms.

There is no direct evidence that any faulting occurs on the property. However, the Fitzgerald and Independence Creeks are presumed to be parallel faults due to their linear nature.

- 17 -

2.3 Property Mineralization

From surface observation, four types of mineralization are evident; disseminated pyrite, gossan zones, simple veins, and complex veins. These four types of mineralization are described as follows:

Disseminated Pyrite

The most common mineralization type is the **disseminated pyrite**. Pyrite occurs to some extent in most of the andesite rocks, ranging from less than 1-10 percent. In most cases, the pyrite is primary, and an example of this type is disseminated pyrite which occurs in Trench #90-3.

Gossan Zones

Gossan zones are mostly concentrations of pyrite, from 10 to 30 percent sulphides which are frequently altered to limonite. The pyrite in the gossan zones is not all diagenetic, as it may form stringers, bands, clasts, and, locally masses. In addition to the pyrite, chalcopyrite, and galena may occasionally be present. The most prominent area of gossan exposure on the property is the upper section of the Independence Creek (Figure 5) and the northwest corner of the Claim Block. The gossan zone occurs in an area approximately 10 metres wide with minor pyrite stringers. Four samples were taken from the gossan in the upper section of the Independence Creek and the results ranged between 0.001 oz/ton gold and 0.2 to 15.2 ppm silver, with low values in copper, lead, and zinc.

Quartz veins may cross-cut these zones, and some gossan zones are limited to the adjacent country rock of mineralized veins. An example of this is a 2 metre wide mineralized vein near Cave 2 which is a gossanous, slightly sheared zone with anomalous values.

- 18 -

Simple Veins

The other type of mineralization is a **Simple vein.** These veins represent an hydrothermal episode, and are usually narrow up to 0.5 m thick. They are dominantly quartz with calcite and/or barite gangue. Sulphides are mostly pyrite with minor chalcopyrite, galena, and sphalerite. An example of this type of vein is exposed at Adit #6 which returned anomalous values in silver of up to 0.90 oz/ton silver. These veins have economic potential, and they are probably just an incomplete phase of the more important complex vein.

Complex Veins

These veins have had multiple hydrothermal events, and indicates mesothermal at depth, and displays the characteristics of a replacement vein. They are dominantly quartz, and have equal amounts of red jasper, barite, which is very common, and calcite is present. All of these gangue minerals show several episodes of introduction, a form of complex patterns of layering, banding, crustifying and brecciation.

Later, sulphide minerals were introduced, though they may also be subject to subsequent periods of emplacement. The sulphide mineralization consists of pyrite, magnetite and minor amounts of both sphalerite and galena, however, the 1990 diamond drilling revealed that massive chalcopyrite exists within the sulphide mineralization mainly in the southern exposure of the main grid, and was intersected in Hole 90-5 (Figure 12).

In general, these veins strike 132° and dip 70° SW to 90° and follow the contact where quartz-diorite dykes have intruded the volcanic units. These veins vary in size from 2 m to 6.6 m wide and were explored between 1917 to 1923 by several adits, and most recently in July - August 1990, Vein #1, 2 zones were explored and tested by diamond drilling. The following is a brief description of some of the mineralized zones which exist on the property:

Adit #1 (Figure 7) explored the Vein #1 zone for a distance of 190 m. A lower caved Adit #2 also explored the above vein at depth for a distance of 50 m, and three Trenches (#5, 6, 7) (Figure 7), at approximately 170 m north of Adit #1.

- 19 -

Trench #7 exposed the Vein #1 zone at surface and results from this trench assayed 17.62 oz/ton silver over 5.0 m. Trench #6 exposed Vein #2 which is parallel to Vein #1, and assayed 3.90 oz/ton silver over 3 m and Trench #5 exposed a third vein to the east, parallel to Vein #1, 2 and assayed 3.05 oz/ton silver over 6.5 m. Veins #1, 2, and the parallel structure were the focus of the 1990 Drilling Program, and Holes 90-1, 90-2, 903 and 90-4 was drilled in the vicinity of Vein #1 and other parallel veins. Significant results were obtained from Holes 90-1, 90-2 and 90-3 and are listed in Appendix 1, 2, 5 and Figure (9,10,11).

Trenches #2, 3, 4 were excavated over mineralized and silicified breccia zones within sheared felsic dykes, parallel to the Vein #1 zone, approximately 150 m north of Trench #5 (340 m north of Adit #1 portal). A sample collected across a 2 metre wide breccia zone in this area assayed 3.40 oz/ton silver and 1 ppb gold (1986). No drilling was conducted in this area during the 1990 Drilling Program.

Two other Adits (#3 & 4) explore a mineralized zone (Vein #4) which is located 200 m to the east of Trench #5 (Figure 7). Mineralization occurs within a replacement zone in tuffaceous andesite horizon which is flanked by two dykes. A representative chip sample from the upper Adit #4 across 5 m assayed 0.12 oz/ton gold and 2.74 oz/ton silver. This area was not tested and evaluated during the 1990 Drilling Program as it is located in an extremely rugged terrain which can only be reached with the help of professional mountaineers.

Adit #5 is situated approximately 500 m southeast of Adit #1. This Adit has been driven for 9 m in sheared greenstone. A selected sample taken in 1986 of sheared, silicified pyrite-chalcopyrite mineralized greenstone assayed 0.227 oz/ton gold and 1.17 oz/ton silver. This mineralization is discontinuous with an average width of about 4 metres. In 1990, the prospecting in this area failed to locate this Adit.

The significant chalcopyrite massive sulphide and gold mineralization occurs in both Adit #5 and Hole 90-5 proves that the south extension of the main grid area between Line 2+00S, L5+50S and 1+00E to 2+00E, and at depth, is considered a major target area for further exploration.

- 20 -

3.0 THE 1990 EXPLORATION AND DIAMOND DRILLING PROGRAM

3.1 Current Exploration Work

The exploration work which was performed between July 3 to August 5, 1990 consisted of reconnaissance and detailed geological mapping, prospecting, trenching, geophysical (Magnetometer and VLF-Electromagnetic) surveys and a total of 764.13 m (2,507 ft) of diamond drilling. The program was conducted as follows:

Prospecting and Geological Mapping

Rock sampling and geological mapping was conducted within the main grid area between Line 2+00S to Line 3+00N and the north boundary of the Claim Block, and the most accessible northeast and northwest area of the Independence Property.

Mapping and prospecting was carried out on a scale of 1:5000. The aim of this program was to assess the areas of contact between the dykes and the country rocks, and to examine mineralized zones along the contact. Old trenches were re-examined, and new trenches were excavated, mapped, and sampled.

A total of 63 rock samples were collected and the locations and results are listed in Appendix 4 and 5.

Prospecting, mapping, and sampling was conducted by T.S. Tomlinson, B.Sc.

Geochemistry

A soil sampling survey was conducted over a small portion of the grid area to include the following lines: L3+50S, from 1+00E extended to 1+80E, Line 4+00S, from 1+30E extended to 1+90E and Line 4+50S from 1+00E extended to 1+60E. The grid was terminated due to the rugged terrain.

- 21 -

This survey was conducted to test and outline the south extension of Vein #1 at a lower elevation, and other vein zones between Adit #1 and Adit #5 where high gold values have been reported.

A total of 23 soil samples were collected from the above-mentioned lines at 10 metre intervals. The analysis technique and the assay results are listed in Appendix 4 and 5.

Geophysical

Reconnaissance magnetometer and VLF-EM surveys were conducted on a portion of the main grid area between Line 2+00S to Line 2+00N and 0+75W to 0+75E. The purpose of this survey was to delineate the magnetite-sulphide mineralized shear zones which cause detectable anomalies and reveal and trace other conductive zones.

The Mag and VLF-EM Surveys were conducted by T.S. Tomlinson, B.Sc. The results of both surveys were disappointing and no further evaluation of the results were carried out.

Trenching

Four trenches (90-1 to 90-4) were excavated using drilling and blasting techniques. All four trenches were excavated to the north of L1+00N to test the strike extension of Vein #1 and 2 along the contact between quartz diorite and country rocks, and to also test the high magnetometer anomalies that were outlined in the 1986 Geophysical Surveys.

Diamond Drilling

Six diamond drill holes totalling 764.13 m (2507 ft) have been completed on the property and a total of 200 core samples were taken from the drill holes.

Soil and rock samples were geochemically analyzed by Chemex Lab of North Vancouver, B.C. for 32 elements using standard ICP analysis techniques and core samples were assayed for gold, silver, copper, lead, and zinc by fire assay with atomic absorption. - 22 -

A complete description of soil, chip rocks, core sample locations, Chemex Assay Results Certificates, and Lab Analytical and Preparation Techniques are listed in Appendix 1 - 5.

3.2 Geochemistry

3.2.1 Soil Sampling

Twenty-three (23) soil samples were taken from a small grid near the Independence Creek (Figure 6). The aim of this survey was to expose the southern extension of Vein #1 between the Adit #1 and Adit #5 area and the possible parallel mineralized structures.

Samples were taken at 10 metre intervals along a marked survey grid. A hole was dug at each site until the 'B' soil horizon was exposed, (usually 15 cm below the surface), and this was then sampled and put in paper bags which were appropriately labeled. Assay results and analysis techniques are listed in Appendix 3 and 5. The interesting values are summarized below:

All nine of the samples from Line 3+50S assayed high iron values, ranging from 1.43% to 9.39%. The highest silver value from Station 1+20E on this line assayed 5.8 ppm Ag. Only three samples had gold values above the detection limit:

Line 3+50S, 1+80E (5 ppb), Line 4+50S, 1+10E (10 ppb), Line 4+00S, 1+90E (30 ppb).

This last station also had high values in barium (370 ppm), lead (78 ppm), and zinc (312 ppm).

Several samples detected anomalous gold values at the end of the grid lines, therefore these lines should be extended to further evaluate this area.

3.2.2 Rock Chip Sampling

A total of 63 rock chip samples were taken from various locations on the property and sample locations, assay results, and rock descriptions are shown and listed in Figures 5, 6 and Appendix 4, 5. Seven sample numbers 24851 to 24857 were analyzed by the FA-AA Method for gold, silver, copper, lead and zinc. The other 56 samples were analyzed for 32 elements using the ICP technique. The most encouraging results are listed below:

SAMPLE NO.	ROCK TYPE	ASSA Y RESULTS
24852	Shear Zone	0.005 oz/ton Au, 6.90 oz/ton Ag, 380 ppm Pb
24853	Hi-grade quartz	6.96 oz/ton Ag, 320 ppm Pb
24854	Quartz Vein	4.84 oz/ton Ag
24856	Quartz Vein	0.90 oz/ton Ag
24857	Hi-grade quartz	0.83 oz/ton Ag, 250 ppm Pb
24869	Gossan zone	200 ppm As, 232 ppm Pb
24870	Pyritic andesite	170 ppm As, 208 ppm Pb
24871	Quartz Veins	190 ppm As
24873	Rusty andesite	14.0 ppm Ag, 380 ppm As, 10.65% Fe, 368 ppm Pb, 628 ppm Zn
24874	Pyritic andesite	15.2 ppm Ag, 365 ppm As, 330 ppm Pb, 1035 ppm Zn
24907	Quartz Vein	228 ppm Pb
24908	Quartz Vein	6.6 ppm Ag, 6890 ppm Ba, 200 ppm Pb

The following anomalous values were obtained from the five main mineralized areas (Figure 6):

 Samples 24852, 24853, and 24854 are all from the area of Cave 2, and represent quartz veins or shear zones. All the values from these samples are higher than 4 oz/ton silver. Sample No. 24852 has the highest gold values at 0.005 oz/ton gold.

- 2) The second anomalous area is Adit #6, from which Samples 24856 and 24857 were taken. The silver values indicate that the quartz vein in Adit #6 is similar to Cave 2 and Adit #1.
- 3) Samples 24864, 24870, 24871 and 24873 were taken from a gossan zone within the andesite, cross-cutting quartz veins located northwest and east of the main Gossan Zone along the Independence Creek. All of these samples were anomalous in arsenopyrite and galena. Sample 24873 had the highest silver values and assayed 14.0 ppm silver.
- 4) The fourth anomalous area is a large Gossan Zone near the Independence Creek and located east of Line 2+00N to Line 4+50N. Sample 24874 was taken from this area and returned high silver values associated with high arsenic and lead values, very similar to the gossan zone mentioned in Item 2.
- 5) The fifth area to have anomalous values is the north portion of the main grid near Line 1+80N. Two samples #24951 and 24908 were both taken from outcropping quartz veins.

3.3 Geophysics Survey

3.3.1 Magnetometer Survey

A reconnaissance magnetometer survey was conducted over the main grid area, from Line 2+00S to 2+00N, totalling 1.6 line kilometres. The purpose of this survey was to determine if the banded magnetite, which is present in mineralized veins, would cause a detectable magnetic anomaly, and thus allow these veins to be traced.

The survey was carried out using a Scintrex MP2 Proton Magnetometer, following procedures outlined in the operating manual. A flagged grid had previously been laid out with stations marked every 25 metres. A time record was kept with the readings, and a base station was periodically checked to correct for diurnal drift. Whenever a large (greater than 300 gammas) difference occurred between two successive stations, an intermediate reading was taken.

- 25 -

The values were not corrected for diurnal variation as the maximum rate of change was only 0.24 gammas/minute, which is not significant relative to the range in the field values. The results of the magnetometer survey confirm a general north-northwest trend in the geology as observed in mapping. Unfortunately, the magnetite bearing veins were not delineated. This is in part due to the extreme variability of magnetometer readings over even short distances; up to a 500 gamma difference may occur over six metres. The diorite dykes which intrude the andesite country rock are probably the source of these magnetic anomalies. Against such a heterogeneous background it is impossible to distinguish a magnetic signature from the quartz veins, and therefore no further interpretation data, plotting, has been carried out in this report.

This survey was conducted by T.S. Tomlinson, B.Sc.

3.3.2 VLF-EM Survey

A Very Low Frequence - Electromagnetic (VLF-EM) survey was also conducted over the main grid, from Line 1+00S to 1+50N, totalling 0.9 line kilometres. The aim of this survey was to test for any electromagnetic anomalies, particularly faults and/or shear zones.

The survey was carried out using a Sabre VLF-EM using procedures outlined in the operating manual. A flagged grid had previously been laid out with stations marked every 25 metres. The survey was run twice, once using the VLF submarine transmitting station located at Hawaii, and once using the Annapolis transmitter.

Results indicate that no major electromagnetic conductors exist in the survey area. Although the dip angle readings are moderately large, averaging 20 degrees from the horizontal, this is due to the general steepness of the terrain. Profiles of the dip angle readings for both transmitting stations show remarkably little variation; Fraser Filter values are also nondescript. The limited amount of VLF survey data indicates that no major shears or other conductive alteration zones have been outlined by this survey.

This survey has not detected or shown any response to any known mineralized vein zone that exists in the area surveyed, therefore no further VLF-EM work should be carried out and the interpreted data for this survey is not included in this report.

This survey was conducted by T.S. Tomlinson, B.Sc.

- 26 -

3.4 Trenching

3.4.1 Trench Description & Geology

Four trenches were excavated in the main grid area, using explosives. They are shown schematically in Figure 8.

Trench 90-1 located at L1+13N, 0+57W, is 3 m long, and exposes fresh bedrock along a strike of 071°. This trench was excavated to expose the northern extension of the diorite-andesite contact adjacent to the mineralized Vein #1.

The diorite dyke varies to microdiorite in texture with plagioclase and hornblende phenocrysts to 3 mm. The andesite exposed is siliceous and porphyritic with up to 30% plagioclase and occasional pyrite disseminations and clast up to 1 cm in size. Near the contact with the diorite the andesite has occasional xenoliths of up to 2 cm in size. The fracture set in the andesite is $083^{\circ}/60^{\circ}$ N, $147^{\circ}/52^{\circ}$ SW, and $048^{\circ}/90^{\circ}$. The attitude of the contact between the dyke and the andesite is $120^{\circ}/90^{\circ}$.

Trench 90-2 located at L1+64N, 0+22E, is 3 m long, and exposes fresh bedrock along a strike of 140° . This trench was excavated to test the north extension of a mineralized zone that was exposed in the 1986 Trenches #2, 3, and 4.

The country rock exposed in this Trench consists of a rusty siliceous porphyritic andesite with up to 30% biotite and hornblende phenocrysts up to 2 mm. Mostly the andesite is very cherty and light coloured. There are occasional quartz and/or epidote stringers. Pyrite content varies from 5 - 30% and is mostly disseminated, although there are occasional massive and banded pieces up to 5 mm thick. The fracture set in the andesite is $118^{\circ}/78^{\circ}NE$, $058^{\circ}/63^{\circ}SE$, and $034^{\circ}/90^{\circ}$. At the northwest end of the trench, two extremely irregular quartz veinlets are also exposed. They are from 0.5 cm - 3 cm wide and are composed of milky white quartz with an average of 10% red brecciated jasper. The veins have small vugs and some quartz crystals up to 5 mm. The veins are almost ptygmatic in nature. -Gewargis Geological Consulting Inc. -

- 27 -

Trench 90-3 is located at L2+55N on the Baseline and comprises five small pits, 5 cm - 15 cm deep, a main total area of approximately 4 m², spread over a 12 m^2 area. This trench was excavated to test the gossan zone that occurs in this location.

The bedrock is a rusty siliceous and esite and contains up to 10% disseminated pyrite. The fracture set is $146^{\circ}/90^{\circ}$, $045^{\circ}/75^{\circ}NW$, and $016^{\circ}/08^{\circ}NW$.

Trench 90-4 is located at L3+05N, 2+00W and is a round pit 2 m in diameter and up to 1 m deep. This trench was excavated to explain a large magnetometer anomaly encountered in a 1986 Geophysical Survey.

3.4.2 Trench Sampling

A detailed description of the samples is included in Appendix 4. The trenches were sampled using procedures appropriate for each trench. Trench 90-1 had three channel samples taken from the diorite, and the andesite with 0.5 m of the contact area. Two samples were taken from Trench 90-2, one channel sample of the andesite excluding major quartz veins, and a grab sample of the quartz/jasper veins. Trenches 90-3 and 90-4 each had one grab sample taken from the bedrock exposed.

3.4.3 <u>Results</u>

The assays and analysis results are listed in Appendix 4, 5, and the sample numbers, trench numbers, rock descriptions, and significant analysis results are tabulated below:

SAMPLE NO.	TRENCH <u>NO.</u>	ROCK DESCRIPTION	SIGNIFICANT RESULTS
24910	90-3	Andesite	200 ppm Pb
24913	90-2	Andesite	780 ppm Ba, 216 ppm Zn
24914	90-3	Quartz Veins	1290 ppm Ba, 244 ppm Zn

- 28 -

Trench 90-1 successfully exposed the eastern contact of the diorite dyke with the andesite country rock. Although no quartz veining or mineralization was exposed, it is believed that based on geological mapping that this dyke is the one adjacent to Vein #1. Analysis support the theory that only the quartz vein along the dyke/country rock contact carries economically significant silver, gold values.

Trench 90-2 exposed not only pyritic andesite, but also a quartz/jasper vein that would otherwise not have been noticed. Although this vein has no economic value, it is anomalous in barite, indicating that it is a complex vein type, and therefore has economical potential.

Trench 90-3 allowed fresh sampling of a gossan zone. The anomalous lead value indicates that galena is in the system, which may in turn be related to silver values.

Trench 90-4 did not expose anything that might account for the high magnetometer values in the area. However, serpentine and serpentinized outcrop and float is present in the vicinity, and this could account for the geophysical anomalies. No significant values were returned from this trench.

4.0 1990 DIAMOND DRILLING PROGRAM

The previous surface and underground exploration work has outlined and confirmed the presence of silver-gold mineralization within the volcanic rock units that exist on the Independence Property. Between July 20 and August 5, 1990, a diamond drilling program was conducted on the Independence Property. This program was designed to test and evaluate the potential of silver-gold mineralization exposed on surface in Vein #1 & 2 (Target Area #1), and possible massive sulphide mineralization to the south of the main grid between Adit #1 to #5 (Target Area #2). A total of 764.13 m (2507 ft) of diamond drilling was completed. Table 2 summarizes the 1990 drill hole locations and coordinates (Page 30).

The drilling was undertaken by Tonto Drilling Co. of Burnaby, B.C. using Hagby Bruk Onram-1000 diamond drill rig (Plate 2). - 29 -

Four Holes 90-1 to 90-4 were drilled at the north extension of the main grid above Adit #1 on the Vein #1, 2 zones in order to test the silver mineralization potential along the strike and to the depth. Hole 90-1, 90-2 and 90-3 intersected Vein #1, 2 zones.

Two Holes 90-5 and 90-6 were drilled at the south extension of the main grid below Adit #1 to test the gold-silver mineralization below the underground workings at depth, and Hole 90-5 intersected Vein #1 and exposed significant massive sulphide (chalcopyrite and gold) mineralization.

All the core from the above drilling was examined and 200 samples were taken and sent to Chemex Lab in North Vancouver, B.C. for analysis. The results are recorded in Chemex Lab Assay Certificates and Drill Log Sheets in Appendix 1, 2 and 5.

4.1 <u>Description of Drill Holes 90-1 to 90-6</u> (Figures 9-12)

Hole 90-1 (Figure 9) (Plate 4 and 5)

This hole was drilled from Line 0+89S, 0+14E to the east in order to test and intersect the westerly dipping Vein #1, 2 zones which were exposed in Trenches #6 and 7 (Plate 3) and intersected both Veins #1 and 2 zones at depth. This hole was drilled at -45° , Az 061° to the depth of 102.41 m (336 ft).

The 1986 and 1988 assay results from these trenches are as follows:

Trench #6 assayed 3.9 oz/ton silver over 3.0 m (1986) and 3.85 oz/ton silver over 2.0 m (1988). Trench #7 assayed 10.9 oz/ton silver over 4.8 m (1986) before blasting, and 17.62 oz/ton silver over 5.0 m (1988) after blasting. Hole 90-1 intersected the first mineralized zone, Vein #1 from 45.1 m to 49.4 m (Plate 5) at an approximate depth of 45 m below Trench #7.

-

and the second second

- 30 -

TABLE NO. 2

Summary of 1990 Diamond Drill Holes Coordinates

DDH	l otal Footage			Collar Coordinates			Core	Average
_#	Drilled	Dip	Az	North	East	Elev.	Rec.	Drilling
90-1	102.41M (336 ft)	-450	0610	0+89S	0+14E	1050M	95%	25.6M (84 ft)
90-2	106.68M (350 ft)	-450	032 ⁰	0+875	0+13E	1050M	95%	26.7M (87.5 ft)
90-3	103.94M (341 ft)	-700	032 ⁰	0+87S	0+13E	1050M	97 %	20.8M (68.2 ft)
90-4	109.73M (360 ft)	-60°	250°	0+36N	0+78E	1100M	98 %	21.9M (72 ft)
95-5	192.02M (630 ft)	-500	080 ⁰	2+07S	0+1 <i>5</i> E	980M	97 %	19.2M (63 ft)
90-6	149.35M (490 ft)	-60°	0800	2+07S	0+1 <i>5</i> E	980M	97%	24.9M (81.7 ft)

Total Footage: 764.13 M (2507 ft)

Hagby Bruk Onram-1000 Drill Rig with BQ T.K. Rod size

- The first mineralized zone, Vein #1, comprises banded-silica with 20% jasper and up to 60% quartz-barite. Within this zone, a section of massive sulphide, mainly pyrite occurs from 45.6 m to 45.8 m and from 46.6 m to 47.4 m, and galena from 48.1 m to 48.7 m. Also associated with the mineralization is weak-to-strong magnetite throughout this section.
- The Vein #1 zone assayed 0.0035 oz/ton gold, 5.59 oz/ton silver over 4.3 m. The best results within this section at Hole 90-1 is 15.20 oz/t silver over 0.7 m (2.3 ft).

The second mineralized zone, Vein #2, intersected from 88.1 to 89.3 m at an approximate depth of 74 m below Trench #6. This zone comprises dark grey to reddish, banded-silica with jasper-barite and fine to disseminated pyrite mineralization with weak to strong magnetite.

A section within the second mineralized zone, from 88.7 m to 89.3 m is highly mineralized with 35% pyrite and galena. This zone assayed 0.001 oz/ton gold, 0.34 oz/ton silver over 1.2 m.

Hole 90-2 (Figure 10) (Plate 6)

This hole was drilled from Line 0+87S, 0+13E to the east in order to test and intersect the westerly dipping Vein #1 and 2 zones which are exposed in Trench #6 and 7, along the strike and to depth. This hole was drilled at -45°, Az 032° to a depth of 106.68 m (350 ft), and intersected the Vein #1 zone from 57.8 m to 64.5 m at an approximate depth of 45 m below Trench #7, but failed to intersect the Vein #2 zone.

The intersected Vein #1 zone comprises white-to-reddish banded silica, with 25% jasper, slightly weak-to-strong magnetite with stringer to disseminated sulphide mainly up to 30% pyrite and galena at 60.4 m, and from 63.4 m to 63.5 m. This zone assayed 0.006 oz/ton gold, 7.78 oz/ton silver over 6.7 m, and the best results within this section at Hole 90-2, assayed 0.040 oz/ton gold and 54.3 oz/ton silver over 0.8 m.

Photo illustrates Vein #1,2 exposed on surface in Trenches #6 and 7

Photo illustrates Drill Holes 90-1 to 90-3 Site Locations, and Hagby Bruk Onram 1000 Drill Rig Plate 5:

Photo illustrates core from Hole 90-1 with intersected Mineralized Zone from 45.1 m to 49.4 m $\,$

Photo illustrates core from Hole 90-2 with intersected Mineralized Zone from 57.8 to 64.5 m.

Hole 90-3 (Figure 10) (Plate 7

Hole 90-3 was drilled from the same set-up as Hole 90-2 from Line 0+87S, 0+13E to the east in order to test the down-dip extension of the mineralized zone which intersected Hole 90-2. This hole was drilled at -70° , Az 032° to a depth of 103.94 m (341 ft), and has intersected the Vein #1 zone from 93.9 m to 95.0 m at an approximate depth of 90 m below Trench #7.

The Vein #1 mineralized zone comprises banded-silica, 20% jasper-barite with stringers to disseminated sulphide up to 30% pyrite, mainly from 94.2 m to 94.6 m and slight-to-strong magnetite, and assayed 0.007 oz/ton gold and 1.19 oz/ton silver over 1.1 m.

Hole 90-4 (Figure 11)

Hole 90-4 was drilled at Line 0+36N, 0+78E to the west in order to test the parallel vein structure to the Vein #1, 2 zones at depth. The parallel vein is exposed on surface at Trench #5, and assayed 3.05 oz/ton silver over 6.5 m. This hole was drilled at -60° , Az 250° to a depth of 109.73 m (360 ft).

Hole 90-4 failed to intersect any mineralized zones at depth, but intersected a quartz diorite dyke from 31.8 m to 43.3 m which cut the exposed surface mineralized zone.

Hole 90-5 (Figure 12) (Plate 8)

Hole 90-5 was drilled from a location west of Adit #1 from Line 2+07S, 0+15E to the east in order to test the westerly dipping Vein #1 below Adit #1. It was drilled at -50°, Az 080°, to a depth of 192.02 m (630 ft), and intersected three very significant mineralized zones.

The first mineralized zone was intersected from 71.3 m to 73.3 m at an approximately depth of 51 m below the surface and comprises dark green andesite with quartz veinlets and disseminated to massive sulphide, mainly pyrite, chalcopyrite, sphalerite and magnetite. The samples from this zone assayed 0.006 oz/ton gold, 1.61 oz/ton silver, and 1.77% copper, over 1.4 m. The best results within this zone returned 0.0111 oz/ton gold, 4.53 oz/ton silver and 6.04% copper over 0.3 m.

Plate 7:

Photo illustrates core from Hole 90-3 with intersected Mineralized Zone from 93.9 m to 95.0 m.

- 39 -

The second mineralized zone intersected Hole 90-5 from 016.5 m to 108.0 m at an approximate depth of 75 m below the surface, and represents the down-dip extension of Vein #1 below Adit #1. This zone comprises banded-quartz vein, jasper in dark green andesite with massive sulphide mainly chalcopyrite, pyrite and magnetite. Samples from this zone assayed 0.152 oz/ton gold, 2.17 oz/ton silver and 2.02% copper over 1.5 m. The best results from this zone returned 0.188 oz/ton gold, 2.72 oz/ton silver, 2.54% copper, 1.20% lead and 4.48% zinc over 1.1 m.

The third mineralized zone Hole 90-5 from 112.8 m to 113.5 m (Plate 8), is approximately 79 m below Adit #1, and comprises banded silica-jasper veins within the dark green andesite, with disseminated to massive sulphide mineralization, chalcopyrite, pyrite, galena, magnetite with a small section of 60% massive sulphide mainly from 107.7 m to 108.0 m. This zone assayed 0.068 oz/ton gold, 2.33 oz/ton silver, and 2.72% copper, over 0.7 m.

Hole 90-5 intersected the best gold-copper mineralized zone (massive-sulphide), in the 1990 Drill Program and proved that the best gold-copper mineralization increased at depth, in the area of the south extension of the main grid. Therefore, this area will be the main focus of the Phase II Exploration Program on the Independence Property.

Hole 90-6 (Figure 12)

Hole 90-6 was drilled from the same set-up as Hole 90-5 from Line 2+07S, 0+15E, west of A dit #1, and drilled to the east in order to test the down-dip extension of the mineralized zones intersected in Hole 90-5 at depth. It was drilled at -60°, Az 080°, to a depth of 149.3 m (490 ft).

This hole intersected several quartz-diorite dyke sections, mainly from 8.2 m to 25 m, 35.7 m to 44.6 m, 64.7 m to 94.9 m, 96.8 m to 118.50 m, and from 122.3 m to 138.0 m. The quartz-diorite sections which were intersected in an area between 64.7 m to 138.0 m has cross-cut all the mineralized zones intersected in Hole 90-5, but failed to intersect any mineralized zone at depth in this hole.

Plate 8:

Photo illustrates core from Hole 90-5 with intersected Mineralized Zone from 106.5 m to 108.0 m and from 112.8 m to 113.5 m.

-Gewargis Geological Consulting Inc. -

- 41 -

4.2 Lithology, Structure & Mineralization

Lithology (Figures 9-12)

The rock type most commonly encountered in the drill core is the andesite unit which comprises several variations in colour and slightly different in composition and texture. The andesite unit represents about 71.7% and quartz diorite dyke represents 28.3% of the total rock type intersected in the drilling. The percentage of rock types encountered in each drill hole is listed in Table 3 (Page 43), and is summarized as follows:

ROCK TYPES	PERCENTAGE
Andesite dyke	0.1%
Andesite with quartz stringers	3.0%
Andesite with breccia and fragments	5.3%
Andesite dark green	10.0%
Andesite porphyritic	10.3%
Andesite Maroon-reddish/green	18.0%
Andesite light-grey to green	25.0%
Quartz-diorite dykes	28.3%
TOTAL ROCK TYPES	100.0%

Andesite Dyke (0.1%)

This rock type is intersected only in Hole 90-1, from 44.4 m to 45.1 m, and comprises finegrained, dark green groundmass with less than 1.0% plagioclase phenocryst and trace of pyrite mineralization.

Andesite with Quartz Stringer (3.0%)

Light grey-to-green in colour, medium to coarse-grained groundmass, slightly fractured with 65° to the core axis; 10-35% quartz veinlets or stringer up to 1 cm wide at 70° - 80° to the core axis, and 2-4% epidote; cavity filling with trace to 5% pyrite mineralization.

- 42 -

Andesite with Breccia & Fragment (5.3%)

This rock type intersected at depth in both Holes 90-5 and 90-6. It is dark green in colour, coarse-grained with 10-15% rock fragment up to 2 cm in size. A section of fine-grained, dark green andesite occurs within this rock type, with 15-20% plagioclase phenocryst, scattered quartz veinlets at 30° to the core axis and up to 1/2 cm wide with associated disseminated pyrite and epidote stringers.

Andesite Dark Green (10%)

Dark green, medium to massive groundmass, 10% quartz veinlets up to 1/2 cm wide at 15°-75° to the core axis, 5-50% epidote chloritic alteration, trace to 10% pyrite mineralization and a section with dark green hornblende and plagioclase phenocryst up to 25%.

Andesite Porphyritic (10.3%)

This rock type represents a transection between the andesite to quartz diorite type with 5-20% light green hornblende phenocrysts to pink phenocryst, slightly fractured 10% epidote alteration, 1% quartz veinlets up to 1/2 mm wide at 65° to the core axis.

Andesite Maroon-Reddish/Green (18%)

Fine-grained to massive, red in colour, and ranges in patches of red in green matrix to a complete red-massive andesite, 10-15% quartz veinlets 1 mm - 1 cm wide at 45° to 80° to core axis; porphyritic texture with 20% phenocryst and 2-3% disseminated pyrite mineralization, 20-40% epidote-chlorite alteration as stringers at 45° - 80° to the core axis. A section of dark green andesite dyke intersected this rock type mainly in Hole 90-4 from 93.6 m to 94.0 m at 70° to the core axis. 10 to 40% pink phenocrysts occurs within this type of rock.

- 43 -

TABLE NO. 3

Summary of Percentage of Rock Types Encountered in Each Drill Hole

DDH	And. Dyke	And. <u>Qtz.</u>	And. <u>Breccia</u>	And. Green	And. Proph.	And. <u>Red</u>	And. Grey	Qtz. Diorite
90 - 1	1%	3%	0	4%	41%	12%	37%	2%
90-2	0	1%	0	5%	6%	29%	21%	38%
90-3	0	8%	0	10%	15%	40%	23%	4%
90-4	0	8%	0	15%	0	18%	34%	25%
95-5	0	0	24%	11%	0	3%	25%	37%
90-6	0	0	8%	14%	0	6%	8%	64%

- 44 -

Andesite Light Grey-to-Green (25%)

Fine to coarse-grained, slightly fractured with chlorite epidote alteration and 1 mm wide quartz veinlets at 55° to 88° to the core axis; trace of jasper and up to 5% pyrite mineralization, 5-10% plagioclase phenocryst. A section of brecciated andesite with rock fragment up to 2 cm in size and some cavity filling, banded silica-jasper, pyrite magnetite mineralization highly silicified up to 30% occurs within this unit. Drill Hole 90-5 has intersected massive sulphide with very significant gold-copper mineralization within this rock.

Quartz diorite dyke (28.3%)

Light grey to light green, fine-grained, 10-30% white-pink plagioclase, 5-25% green hornblende subhedral phenocryst. Contact angle with andesite ranges between 30° to 75° to the core axis, slightly magnetic with a trace of pyrite mineralization scattered epidote and chloritic alteration.

Structure

Numerous narrow 0.1 m - 1.3 m gouge, clay, and minor fault zones were encountered in the drill holes at various depths. Several of these fault zones correlated between Drill Holes 90-2, 90-3 and Drill Holes 90-5, 90-6 where they were drilled from the same section. In general, these fault zones occur either along the contact between the mineralized zone and quartz-diorite, or within quartz-diorite rock units.

Drill Hole 90-1 intersected several fault zones. The most significant fault zone was intersected from 31.9 m to 32.5 m, and 66.8 to 66.9 m; both these faults are related to Vein #1 and #2 zones and dip westerly at 70° (Figure 9).

Several fault zones intersected in Drill Hole 90-2 and 90-3. The most significant fault is intersected at 38.2 m to 39.5 m in Hole 90-2. The same fault was also intersected in Hole 90-3 from 61.5 m to 62.5 m, and is related to Vein #1 zone in the area of Trench #7, and dips westerly at 75° (Figure 10).

- 45 -

Hole 90-4 intersected a fault zone from 53.1 m to 55.4 m with gouge and clay from 54.8 m to 55.4 m. This fault zone occurs along the quartz-diorite rock unit and dips easterly at 75° (Figure 11).

Several fault zones have been intersected in both Drill Holes 90-5, 90-6. The most significant fault has been intersected in Hole 90-5 from 63.4 m to 65.6 m, 74 to 74.4 m, and Hole 90-6 from 80.5 m to 80.6 m. This fault zone occurs in quartz-diorite rock units and dips westerly at 85° (Figure 12).

A surface examination of the geology of the main grid area and drill core revealed that these minor fault zones have a similar attitude as the mineralized zones and occurs along the contact between the mineralized zone and quartz-diorite. The significance of these fault zones has not yet been clearly defined.

Mineralization

Several types of mineralization was encountered in the 1990 drill core, and consisted mainly of (1) simple vein structure with stringer to disseminated pyrite with disseminated pyrite as fracture coating and veinlets in most rock types; and (2) a complex vein structure of 60% banded silica, 20% jasper, 30% fine-disseminated pyrite, trace of chalcopyrite, galena, sphalerite, 5% barite, and magnetite. Mineralized types (1) and (2) intersected Drill Holes 90-1, 90-2, and 90-3. Finally, (3) disseminated-magnetite with chalcopyrite-pyrite up to 0.237 oz/ton gold, 7.98 oz/ton silver and 7.92% copper, trace of galena, sphalerite, magnetite within the banded quartz-vein structure in dark green and brecciated andesite, was intersected in Hole 90-5. This mineralized zone is related to the mineralization intersected in the Adit #5 area, located 500 m southeast of Adit #1. A selected sample taken in 1986 from the Adit #5 area consisted of sheared, silicified pyrite-chalcopyrite greenstone, assayed 0.227 oz/ton gold and 1.17 oz/ton silver.

The concentration of sulphides varies from one hole to another, whereas the pyrite concentration increases to the north of the grid area (Holes 90-1 to 90-3), and chalcopyrite increases to the south of the grid area (Hole 90-5). An inverse relationship between magnetite and chalcopyrite-pyrite was commonly observed, and also the possible relation

- 46 -

between chalcopyrite and gold mineralization, as in the case of Hole 90-5 where the increase in chalcopyrite values was associated with an increase in gold values.

Results: Table 4 summarizes the most significant mineralized intersections for gold-silver and copper obtained from the 1990 Drilling Program on the Independence Property.

The mode of occurrence of mineralization initially encountered in Holes 90-1 to 90-3 demonstrates that silver mineralization exists at depth, along the strike, and also between the surface and underground workings (A dit #1) on the Vein #1 zone. Hole 90-5 intersected massive sulphide with chalcopyrite mineralization, demonstrating that copper and gold mineralization exists at depth below A dit #1 and to the south of the main grid area.

The previous and recent data pertaining to the property has established a mineralization zoning model whereby the silver values increase to the north of the grid, and at higher elevations, with gold-copper values increasing to the south of the grid area approximately 500 m south of A dit #1 (1986 sampling) and at depth.

4.3 **Possible Ore Reserves**

A preliminary attempt was made to calculate the possible ore reserves, tonnage and grade (silver only) for the Vein #1 zone.

Calculations

- a) The ore reserves were calculated for an area between the surface and the Adit #1 workings, which occur approximately 95.9 m below the surface (this figure represents an approximate thickness of Vein #1 zone).
- b) The underground workings in the main A dit #1 have been developed on the Vein #1 for a distance of 1.90 m, most of which were sampled previously. The approximate strike length of Vein #1 (from underground workings) is estimated at approximately 152.1 m.

A REAL PROPERTY OF A REA

- 47 -

TABLE 4

Summary of Most Significant Mineralized Intersections for Gold, Silver and Copper

DDH #	From (M)	То (М)	Footage (M)	Au Oz/t	Ag Oz/t	Cu %	Remarks
	, <u> </u>						
90-1	45.1	49.4	4.3	0.0035	5.59	-	Test Vein ∦1
	*(48.0	48.7	0.7	0.001	15.20)		2 at Depth
	88.1	89.3	1.2	0.001	0.34	-	n n n
90-2	57.8	64.5	6.7	0.006	7.78	-	Test Vein #1
	*(60.6	61.4	0.8	0.04	54.3)		along strike
9 0-3	93.9	95.0	1.1	0.007	1.19	-	Test Vein #1 at Depth
90-4	Returne	d no m	ineralized	values.			
90-5	71.9	73.3	1.4	0.006	1.61	1.77	Test Vein #1
	*(71.9	72.2	0.3	0.011	4.53	6.04)	below A dit #1
	106.5	108.0	1.5	0.152	2.17	2.02	11 11 11
	*(106.9	107.7	0.8	0.237	0.75	0.32)	
	*(107.7	108.0	0.7	0.068	2.33	2.72	11 11 11

90-6 Returned no mineralized values.

* () = narrower widths within preceding interval

d) The width and grade of the Vein #1 zone was calculated as 10.28 oz/ton silver over
4.2 m. This was calculated from the following data:

Surface:

Trench #7 was sampled in 1986, and assay results after blasting returned 17.62 oz/ton silver over 5.0 m.

Underground:

The weighted average grade and width for Vein #1 zone, from the 1980, 1986, underground sampling of Adit #1 returned 1.47 oz/ton silver over 2.6 m (1980) (Figure 13), and 1.77 oz/ton silver over 1.5 m (1986) (Figure 7). The weighted average for these surveys is 1.58 oz/ton silver over 2.1 m.

Diamond Drilling: (between surface and underground)

The 1990 diamond drilling program Hole 90-1 intersected the Vein #1 zone at 45 m below the surface (Trench #7), assayed 5.59 oz/ton over 4.3 m. Hole 90-2 intersected Vein #1 at 45 m below the surface (Trench #7), assayed 7.77 oz/ton silver over 6.7 m. The weighted average for both Holes 90-1 and 90-2 is 6.92 oz/ton silver over 5.5 m.

The Tonnage Calculation for Vein #1 Zone:

Strike length x thickness x width. 152.1 m x 95.9 m x 4.2 m = 61,262.838 m³.

The specific gravity is $3.2/\text{tons/m}^3$. Therefore, $61,262.838 \times 3.2 = 196,041$ tons.

The possible tonnage for Vein #1 zone is 196,041 tons at an average garde ranging between 7 to 10 oz/ton silver.

The author at the present time cannot confirm these reserves, due to the limited widespaced drilling conducted on the property, and the limited exposure of Vein #1 on surface. These figures can only be used as a guideline for further exploration on the Independence Property.

								//	1
							ut 389-4* {Cut 3270' ein		
						-		Yein	
	SAMPI F NA	WIDTH	C u	Ph	7.5	A.	•	Vein	-
1	SAMPLE No. 77889	WIDTH 3.0 m	Cu	Pb 0.07	Z n 0.60	▲ g 1.98	B B 0.046	Vein	
1	SAMPLE No. 77889 77890	WIDTH 3.0 m 3.0 m	Cu	РЬ 0.07 0.27	Zn 0.60 2.61	Ag 1.98 0.50	Au 0.046 0.030	Vein	
1 2 3	SAMPLE No. 77889 77890 77891	WIDTH 3.0 m 3.0 m 6.0 m	Cu 0.07	Pb 0.07 0.27 0.41	Zn 0.60 2.61 0.54	Ag 1.98 0.50 1.36	Au 0.046 0.030 0.020	Vein	No. Tunnel 2960'
1 2 3 4	SAMPLE No. 77889 77890 77891 77892	WIDTH 3.0 m 3.0 m 6.0 m 3.0 m	Cu 0.07 0.15	Pb 0.07 0.27 0.41 4.40	Zn 0.60 2.61 0.54 2.13	Ag 1.98 0.50 1.36 1.26	Au 0.046 0.030 0.020 0.028	Vein	No. 1 Tunnel 2960'
l 2 3 4 5	SAMPLE No. 77889 77890 77891 77892 77893	WIDTH 3.0 m 3.0 m 6.0 m 3.0 m 1.5 m	Cu 0.07 0.15 0.33	Pb 0.07 0.27 0.41 4.40 0.25	Zn 0.60 2.61 0.54 2.13 0.21	Ag 1.98 0.50 1.36 1.26 0.80	Au 0.046 0.030 0.020 0.028 0.040	Vein	No. 1 Tunnel 2960'
l 2 3 4 5 6	SAMPLE No. 77889 77890 77891 77892 77893 77894	WIDTH 3.0 m 3.0 m 6.0 m 3.0 m 1.5 m	Cu 0.07 0.15 0.33 0.51	Pb 0.07 0.27 0.41 4.40 0.25 0.26	Zn 0.60 2.61 0.54 2.13 0.21 1.99	Ag 1.98 0.50 1.36 1.26 0.80 1.82	Au 0.046 0.030 0.020 0.028 0.040 0.005	Vein	No. I Tunnel 2960'
1234567	SAMPLE No. 77889 77890 77891 77892 77893 77894 77895	WIDTH 3.0 m 3.0 m 6.0 m 3.0 m 1.5 m 1.5 m 1.5 m	Cu 0.07 0.15 0.33 0.51 0.15	Pb 0.07 0.27 0.41 4.40 0.25 0.26 0.21	Zn 0.60 2.61 0.54 2.13 0.21 1.99 2.96	Ag 1.98 0.50 1.36 1.26 0.80 1.82 2.06	Au 0.046 0.030 0.020 0.028 0.040 0.005 0.020	Width unknown	No. I Tunnel 2960'
12345678	SAMPLE No. 77889 77890 77891 77892 77893 77894 77895 77896	WIDTH 3.0 m 3.0 m 6.0 m 3.0 m 1.5 m 1.5 m + 1.0 m 2.0 m	Cu 0.07 0.15 0.33 0.51 0.15 4.66	Pb 0.07 0.27 0.41 4.40 0.25 0.26 0.21 0.27	Zn 0.60 2.61 0.54 2.13 0.21 1.99 2.96 0.52	Ag 1.98 0.50 1.36 1.26 0.80 1.82 2.06 2.72	Au 0.046 0.030 0.020 0.028 0.040 0.005 0.020 0.024	Width unknown	No. I Tunnel 2960'
123456789	SAMPLE No. 77889 77890 77891 77892 77893 77893 77894 77895 77896 77897	WIDTH 3.0 m 3.0 m 6.0 m 3.0 m 1.5 m 1.5 m 1.5 m 1.5 m 2.0 m 3.0 m	Cu 0.07 0.15 0.33 0.51 0.15 4.66 0.09	Pb 0.07 0.27 0.41 4.40 0.25 0.26 0.21 0.27 0.24	Zn 0.60 2.61 0.54 2.13 0.21 1.99 2.96 0.52 0.39	Ag 1.98 0.50 1.36 1.26 0.80 1.82 2.06 2.72 2.08	Au 0.046 0.030 0.020 0.028 0.040 0.005 0.020 0.024 0.005	Width unknown Surface cut No.1	No. I Tunnel 2960'
1 2 3 4 5 6 7 8 9 10	SAMPLE No. 77889 77890 77891 77893 77893 77895 77895 77896 77897 77898	WIDTH 3.0 m 3.0 m 6.0 m 1.5 m 1.5 m 1.5 m 1.0 m 2.0 m 3.0 m Grob-dum p	Cu 0.07 0.15 0.33 0.51 0.15 4.66 0.09 0.01	Pb 0.07 0.27 0.41 4.40 0.25 0.26 0.21 0.27 0.24 0.04	Zn 0.60 2.61 0.54 2.13 0.21 1.99 2.96 0.52 0.39 0.07	Ag 1.98 0.50 1.36 1.26 0.80 1.82 2.06 2.72 2.08 4.18	Au 0.046 0.030 0.020 0.028 0.040 0.005 0.020 0.024 0.005 0.005 0.003	Width unknown Surface cut No.1 Surface cut No.2 (Grab)	No. I Tunnel 2960'

Vein - Zone

NOTE

ľ

Survey by Geological Survey of Canada

TOURNIGAN MINING EXPLORATIONS LTD. INDEPENDENCE PROPERTY

SEPT. 1980

- 51 -

5.0 CONCLUSIONS

The general geologic setting of the Independence Property consists of a wide variety of volcanic and sub-volcanic rocks of Hazelton assemblage. Previous investigators explored the replacement-mesothermal vein system which occurs at the contact between the quartz diorite dyke and the country rocks. These dykes have been mapped over a distance of approximately 1.1 km, and the gold-silver bearing mineralization has been noted in an area spread over a distance of 400 m on the main grid between L2+00S to L2+00N.

Compilation of all previous data along with the 1990 exploration and drilling results have led to the definition of two mineralized zones which have economical potential. The first zone is a mesothermal vein, represented by Vein #1, and was the focus of the 1990 drilling program. The second zone is represented by a massive sulphide (precious base metal) mineralization which occurs in the vicinity of Adit #1 at depth. During the 1990 Drilling Program, Vein #1 was intersected by Holes 90-1, 90-2, 90-3 and 90-5 along the strike and to the depth, confirming the existence of substantial precious-base metal mineralization Table 4 (Page 47).

The massive sulphide (second zone) was intersected by diamond drill Hole 90-5. The best results were obtained from this hole, assaying 0.188 oz/ton gold, 2.72 oz/ton silver, 2.54% copper, 1.02% lead, and 4.48% zinc over 1.1 m.

The discovery of the massive sulphide zone during the 1990 drilling program indicates that a possible volcanogenic sulphide mineralization may exist in the southern portion of the property between A dit #1 and 5, that will enhance the property's potential to host significant precious base metal mineralization.

This section of property has undergone limited exploration in the past due to the overburden coverage, the limited amount of outcropping exposure, and rugged terrain. Therefore, the proposed Phase II Program is designed to focus mainly in testing the massive-sulphide mineralization at the south extension of the grid area between Adit #1 and 5.

- 52 -

6.0 **RECOMMENDATIONS**

A two-phase exploration program, totalling \$500,000 is recommended for the Independence Property. This would involve:

i) Phase II (\$200,000 budget, see proposed budget attached)

The Phase II program should consist of detailed drilling, extensive prospecting and geological mapping. The main focus of the program will be to evaluate the economic potential of the massive-sulphide (gold-copper) mineralization in the volcanic sequence, located between A dit #1 and 5.

Other areas that should be tested in this program will include the area north and south of Hole 90-1 in the Vein #1 zone, between Lines 2+00S and 2+00N, and Cave 2 area which assayed high silver values.

The Phase II Program is summarized as follows:

- 1. A detailed ground survey of all the drill hole locations, underground adits, and other known mineralized zones that exist on the property.
- 2. Detailed prospecting and geological mapping over the area of Vein #1 south of the grid area between Line 2+00S to 7+00S in order to better understand the Lithology and structural relations of massive sulphide-chalcopyrite mineralization.
- 3. Diamond drilling totalling 914.4 m (3,000 ft) of BQ core size to include:
 - a) Systematic drilling to be conducted over the Vein #1 zone and south of the grid between A dit #1 and 5 (referred to in Figure 7) as the proposed 1991 drill holes.
 - b) Exploratory drilling in the area north and south of the Vein #1 zone in the vicinity of Hole 90-1 between Lines 1+00S to 2+00N.

c) Exploratory drilling of other significant mineralized zones that exist on the property such as Cave #2.

ii) Phase III (\$3000,000 budget, contingent on favourable results from Phase II)

This phase would call for a 1,524 m (5,000 ft) drill program on prospective targets located during the Phase II program, and to further evaluate the underground workings.

---Gewargis Geological Consulting Inc. --

- 54 -

THE INDEPENDENCE PROPERTY - PROPOSED BUDGET - PHASE II

7.0 ESTIMATED BUDGET

PHASE II ESTIMATED BUDGET COSTS

The budget for the Phase II Program is as follows:

Drilling Contract

ł

1)	Drilling 3,000 ft of BQ core size at \$23.00/ft, including camp, food, fuel, core boxes	\$ 69,000	
2)	Mob and demob of drill crew	4,000	
3)	Mob and demob from the point of unloading to the camp and drill site	10,000	
4)	Moving between drill sites and standby time	9,000	
5)	Drill supplies, including drill mud and soluble oil	 2,000	\$ 94,000
Dril	Site Preparation		7,500
<u>Heli</u>	copter Support		30,000
<u>Assa</u> Assa 400	a ying aying rock and core for Au, Ag, Cu, Pb, Zn samples at \$30.00/sample		 12,000
Sub-	total		143,500
Geo	logical Contract		
1)	Pre-Programming	2,500	
2)	Mob and demob of geological crew of 3 (Vancouver/Stewart and return)	3,000	
3)	Geological support: Crew of 3, supervision, (geological mapping, sampling, core logging): 35 days at \$750.00/day	22,500	
4)	Truck rental (including fuel, insurance)	2,750	
5)	Camp for geological crew	8,500	

and the second se

- 55 -

INDEPENDENCE PROPERTY

	TOTAL ESTIMATED COSTS OF PHASE II DRILLING PROGRAM		<u>\$ 200,000</u>
11)	Geological Report, drafting	 6,500	56,500
10)	Property surveying	3,250	
9)	Communications: radio, telephone charges	2,000	
8)	Shipment of samples	1,500	
7)	Expeditor	1,500	
6)	Field supplies	\$ 2,500	

PROPOSED BUDGET - PHASE III

Drilling - 1,524 m (5,000 ft) (all inclusive)

300,000

Respectfully submitted by GEWARGIS GEOLOGICAL CONSULTING INC.

M, N.S-ARSIS

Wilson A. Gewargis, B.Sc., F.G.A.C., F.Aus.I.M.M. Consulting Geologist

Gewargis Geological Consulting Inc. -

- 56 -

8.0 STATEMENT OF QUALIFICATIONS

I, Wilson A. Gewargis, B.Sc., F.G.A.C., F.Aus.I.M.M., of Richmond, British Columbia, hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada, and a Fellow of the Australian Institute of Mining and Metallurgy.
- 2. I have two years of post-graduate studies in geology and geophysics at the University of Stuttgart, West Germany (1971-73), and one year of post-graduate studies at the University of Technology, Syndey, Australia (1989-90). I am a graduate of the University of Mosul, Iraq, B.Sc. (1970).
- 3. I have practiced as a geologist in mining and exploration work for a period of twenty (20) years in Canada, U.S.A., Europe, Middle East, Australia, Fiji, and the Phillipines.
- 4. I performed and supervised the work described in this report.
- 5. To the best of my knowledge, all the information in this report is factual, correct, and true.
- 6. I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Armenex Resources Canada Inc., in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia, this 10th day of September, 1990.

Respectfully submitted,

5) w. (-ARSis

Wilson A. Gewargis, B.Sc., F.G.A.C., F.Aus.I.M.M.

-57-

STATEMENT OF QUALIFICATIONS

I Scott Tomlinson, B.Sc., of 2511 Trinity Street, Vancouver, B.C., do certify that;

- 1. I am a Geologist, and a Member of the Geological Association of Canada.
- 2. I am a graduate of the University of British Columbia, B.Sc. in Geology, 1983.
- 3. I have practiced as a Geologist in mineral exploration work since 1983.
- 4. This report is based on field work carried out by a Gewargis Geological Consulting crew from July 3 to August 6, 1990, and I personally carried out prospecting, geological mapping, and geophysical and geochemical surveying.
- 5. I have no interest, direct or indirect, in the properties or securities of Armenex Resources Canada Inc. or Armeno Resources Inc., nor do I expect to receive any such interest.
- I consent to the use of this report, or summary thereof, by Armener Resources Ganada Inc. or Armeno Resources Inc. in a prospectus or statement of material facts.
- 7. I consent to a review of this report by other Geologists or Engineers for the Vancouver Stock Exchange or the Superintendent of Brokers Office.

September 10,1990

cate Cal Scott Tomlinson, B.Sc.

Gewargis Geological Consulting Inc. -

9.0 **BIBLIOGRAPHY**

B.C. Ministry of Energy & Mines Annual Report, 1910-1930.

- Grove, E.W., 1971, Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C. Department of Mines & Petroleum Resources, Bulletin No. 58.
- Wares, R. and Gewargis, W.A., 1982, Scottie Gold Mines Surface Geology Mapping; B.C. Department of Mines & Petroleum Resources Assessment Report 10708.
- Alldrick, D.J., 1983, Salmon River Project, Stewart, B.C. 104B/1; B.C. Ministry of Energy, Mines and Resources & Geological Field Work 1982, Paper 1983.
- Smitheringale, 1974, Report on Geological and Stream Sediment Geochemical Surveys on the Independence Claim Group for Tournigan Mining Exploration Ltd.
- Alldrick, D.J., 1985, Stratigraphy and Petrology of the Stewart Mining Camp; B.C. Ministry of Energy Mines and Resources; Geological Field Work, 1984, Paper 1985-1.
- Gewargis, W.A., 1986, Geological Report on East Gold Mines, Stewart, B.C.; Sun Valley Gold Mines Inc.
- Di Spirito, F. et al, 1986, Reconnaissance Geological, Geophysical & Geochemical Survey on the Independence Project for Moche Resources Inc.
- Richmond, G. et al, 1988, Geological Investigations on the Independence Claim Group for Moche Resources Inc.

Gewargis, W.A., 1988, Technical Notes on Stewart Area.

1

APPENDIX 1

DIAMOND DRILL LOGS

The core is stored on the property (camp). T.K.

GEWARGIS GEOLOGICAL CONSULTING INC.

DDH NO. 90-1

and the second second

DIAMOND DRILL RECORD

.

Page I/ _____ of 1____

LOCATION INDEPENDENCE PROPERTY, STEWART, B.C. MAP SHEET 104 A/4W

COLLAR	Northing Easting	L0 +89 S 0 +14 E	REMARKS <u>Core recovery : 95 %</u> Average drilling per shift = 25.6m (84 ft)
	Elevation	Approx. 1050m	The hole has intersected ;
	Lievanon	0	from 0-2.1m overburden and
DRILLED	Azimuth	61	2.1-40.2m andesite ranging from
	Dip	-45	lit grey to green and
	Depth	102.4m (336 ft)	prophyritic.
	·		40.2-41.8m qtz diorite dyke
Da Mo Yr-	Started	July 20.90	41.8-44.4m andesite green
	Completed	july 22.90	44.4-45.1m andesite dyke
	Logged	July 21,22.90	45.1-49.4m mineralized zone
			49.4-88.1m andesite prophyritic
EQUIPMENT	Machine	Hagby Bruk	88.1-89.3m mineralized zone
	Core Size	Bq T.k	89.3-102.4m andesite red to dark
	Dip Tests	None	green
	·		(44) core samples were taken from
			this hole.
PURPOSE	This hole w westerly dip 7 at depth.	as drilled from line	0+89 S,0+14E to the east to test the 2 zones exposed in trenches # 6 and
RESULTS	Vein # 1 w gold and 5. from 48.0 t Vein # 2 y gold and 0.	as interested from 4 59 Oz/t silver over 4 to 48.7m assayed 15.5 was intersected from 34 Oz/t silver over 5	5.1m to 49.4m and assayed 0.0035 Oz/t 4.3 m, within this zone best results returned 2 Oz/t silver and 1.25 % zinc. 88.1m to 89.3m and assayed 0.001 Oz/t 1.2m
GEOLOGIST	Wilson Gew	argis D	a·Mo·Yr _September ,1990

LOCATION:			HOLEI		DEDE	HOL	e no. 90-1		page no. 1 of 7						
AZIM:		ELEV:			р	IP TEST			PROPERTY: 11		NDEN				
DIP:			[
			FOOTAGE	READING	CORREC	FOOTAG	EREADING	CORRECT	CLAIM NO:	~					
STARTED:					<u> </u>	_			SECTION:	Vilaon	- C-				
COMPLETED):				 				LOGGED BY:	VIISOII	A. G	ewargi	<u>s</u>		
PURPOSE:									DATE LOGGED:	DATE LOGGEO:					
									DRILLING CO:	onto	Drillin	<u>g Co.</u>		D C	
CORE RECO	VERY:				L				ASSATED BT: Chemiex Lab, Vancouv					, в.С.	
F001	AGE (M)	DESCRIPTION				SAMPLE	F001	AGE(m)	LENGTH OZ/T OZ/T ASSAYS						
FROM	10				ł	NU,	FROM	10	(m) Au	Ag	Cu%	PD%	<u>Zn%</u>	ļ	
0	2.1	<u>Casing</u> , no core recovered	overed.				4.0	4.7	<u>0.7 K0.001</u>	0.04		Ļ	<u> </u>		
						502	4.7	5.2	-0.5 K0.001	0.03	Į	ļ			
2.1	20.0	Andesite, light to dark_gri	en, fir	<u>ie grai</u>	ined.	503	5.2	5.8	0.6 KU.001	0.03			L		
		slightly fractured, mainly	in the	upper		504	5.8	7.3	1.5 20.001	0.03		ļ	Į		
		<u>portion of the drill hole f</u>	<u>om 2.</u>	<u>1 to 9</u>	<u>.1 ф</u> ;	500	7.3	8.1	0.8 KU.001	0.04				ļ	
		<u>10% of cavity filling. Bro</u>	<u>ken co</u>	<u>re fro</u>	m	506	8.1	8.6	0.5 K0.001	0.02			ļ	ļ	
		<u>2.4 to 3.0 m, 6.5 m to 6.</u>	<u>8 m, 7</u>	<u>8 to 9</u>	9.0m.	507	8.6	9.5	0.9 K0.001	0.02			ļ		
						508	9.5	10.0	0.5 K0.001	0.02					
		From 4.0 to 5.2m; light g	ey, 5	10%		509	10.0	11.5	1.5 20.001	0.01			Į		
		cavity filling with qtz vei	<u>ilets a</u>	nd 109	6	5101	11.5	12.4	0.9 0.001	0.01					
		<u>to 20% disseminated pyrit</u>	9, 5%	oxidiz	atioh	, 511	12.4	13.3	0.9 0.001	0.01			ļ	i	
		and 2% epidote alteration.				{							<u> </u>		
						= = 10	15 0	16 7	1 5 10 001	0.01				 	
		From 5.2 to 8.1 m light	to dark	<u>gree</u>	<u> </u>	512	10.4	10.1	1.0 K0.001	0.01				↓	
		andesite, 15% fractured w	ith 5%	Dyrite	<u>}</u>	513	10.7	10.1	1.6 KU.001	0.01				┟╾╼╾╼┨	
		mineralization and 10% ja	sper.			- 3 14	18.3	19.1	0.8 KU.WI	0.01					
					{-									├ ────┤	
		<u>From 8.1 m to 9.5 m, hig</u>	niy tra	clured	-+									┟────┨	
		green andesite with 10% of	avity	illing,										┠────┨	
		2% silica and 2% jasper, s	catter	ed thre	ougn.	+								┟┈───┤	
		out this section and 1 to	by tin	2										<u>├</u> ────┤	
		disseminated pyrite				ł								┝┥	
		Enom 117 to 10 4 4												┠────┤	
	 	From 11.7 to 12.1 m dtz	veiniet	with	<u> </u>										
		epidote alteration.													
						ł								┝┦	
		<u>From 12.4 to 12.7 m, 20%</u>	<u>gtz-v</u>	einlet-				<u> </u> -			 				
		with asper and epidote al	alteration, quartz			ł									
	 	vennets at 70° to the cor	ore axis.			———									
								l_	l						

•

GEWARGIS GEOLOGICAL CONSULTING INC.

.

and a second

LOCATION:				D	01111	01 5 1	00					HOLE	No.		AGE NO.	
				U	KILL I	IULEL	UG				DEDEN		<u>10-1</u>	12		
AZIM:		ELEV:			DIP	TEST			PROPE	RTY: INI	JEPEN	DENC	<u>E</u>			
017:		LENGTH:	-		Loopor		1									
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT		NU:						
STARTED:						 			SECTIO	W. W	ilson	A Cov	vormis			
COMPLETED	:				ļ				LOGGE	DBT: W	115011	A. Gev	vargis			
PURPOSE:						 			DATEL	DATE LOGGED:						
									DRILLI	NG CU:						
CORE RECO	VERY:							1	ASSAT			224				
FOOT	AGE (M)	DESCRIPTION	1		S		FOOT	AGE (III)	LENGTH	oz/t	oz/t	A33	Dh 0/	7-0/		
FROM	то					NU.	FROM		(m)	Au	Ag	<u>Cu%</u>	PD%	<u></u> Zn%		
		From 12.7 to 13.3 m, dar	k green	andes	ite					·						
		with 5-10% quartz veinlet	l													
		From 14.2 to 15.2 m dark	green	andesi	te											
		with 30% epidote alteration	on and	2% Ja	sper					ļ						
		From 15.2 to 18.3 m Jasp	er and	epidot	e											
		alteration, slightly magnet	ic mair	ly fro	m											
		17.6 to 18.3 m.														
												<u> </u>				
		From 18.5 to 19.1 m, ligh	t green	andes	site				<u> </u>						_	
		highly fractured with epid	ote alte	eration	·											
		At 18.5 m, a shear zone	with 59	<u>% clay</u>	<u> </u>											
		material at 70° to the co	re axis													
												<u> </u>				
20.0	20.7	Andesite (Porphyritic); da	<u>rk grey</u>	<u>fine</u>	<u> </u>					_ <u></u>						
		grained with 5-10% pheno	peryst (feldsp	ar)	· · · · · ·										
		in fine-grained, green ch	oritic_r	netrix.												
		In some intervals the phe	nocryst	s_incr	eased											
		mainly from 20.6 to 20.7	_m													
		Contact at 20 m is 65° a	and at	20.7 m	·											
		is 65°.														
						045.45		- 24 0	1.0	0 001	0.01					
20.7	27.7	Andesite light to dark gr	een; M	edium		510	23.8	24.8	1.0	NU.001	0.01					
		grained, slightly fracture	d with	scatte	red	516	24.8	20.3	1.0		0.02					
		fine disseminated pyrite	<u>up_to_2</u>	<u>-5% r</u>	uainly_	517	20.3	20.2	1.4		0.04					
		from 23.8 to 24.8 m.				510	21.1	29.2	1.0	N0.001	0.20		 			
						219	29.2	30.1	0.9	K0.001	0.35					
												I	1			

.

·

GEWARGIS GEOLOGICAL CONSULTING INC.

•

LOCATION:		D	RILLI	IOLE L	OG					HOLI	: No. 90-1	ľ	AGE NO. 3 of 7		
AZIM:		ELEV:							PROPE	ERTY: IN	DEPEN	IDENC	CE		
017:		LENGTH:			DIP	TEST									
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIN	NO:			_		
STARTED:									SECTI	0N:			_		
COMPLETED):		•						LOGG	ED SY:	Wilson	A. G	ewargi	S	
PURPOSE:				DATE LOGGED:											
				DRILLING CO: Tonto Drilling Co.								•			
CORE RECO	VERY:			ASSAYED BY:							Chen	<u>iex La</u>	b, Var	ncouve	r, B.C
FOOT	AGE (M)	DESCRIPTION	N			AMPLE	FOOT	AGE	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	то					NO.	FROM	то	(m)	Au	Ag	Cu%	<u>Pb%</u>	Zn%	
contin	ued	From 24.8 to 27.7 m fine	<u>e clast</u>	s of p	vrite										
		up to 2%.						I							
											<u> </u>				[
		From 24.8 to 26.0 m scat	tered a	<u>itz</u>							ļ				L
		veinlets.									ļ				
					<u> </u>										
27.7	31.5	Andesite dark grey to gre	en; fin	<u>e to</u>											
		medium grained, slightly f	racture	<u>ed with</u>	<u> </u>										
		5% cavity filling and 3%	epidote	<u>strin</u>	ger 🔶					ļ	I				
		alteration.													
							ļ			ļ					
		<u>Scattered 5% quartz veinl</u>	<u>ets up</u>	<u>to 1.0</u>							 	ļ			
		wide and trace of pyrite	mineral	Izatior		<u> </u>				<u> </u>	[
		throughout this section.								 					
	·	Erem 20.6 to 20.8 broken				+				<u> </u>					
		From 30.6 to 30.8 Droken	tore ($\frac{\text{DOSSIDI}}{21.2}$									·		
		Tault zoner mainly from a	<u>.1.0 10</u>	21-0-11											
	·	(U' LO LUE COFE AXIS.						{		<u> </u>					
315	37 7	Andesite light grey to gr	een• fi	ne orei	ned 5	01520	33.1	33.4	0.3	20.001	0.02				
01.0		highly fractured and broke	n a or o	moin		521	36.4	37 7	13	0.001	0.02				
		from 31.5 to 32.5 m (mai	or shoe		 y				1.0	0.001	0.02				
		with 2% any filling)	or snea		·										
i		with 470 cavity thing).						t-				 	~~~~		
		Broken core from 32.9 m	to 39	1 m								 			
		34.0 to 34.1 m and 34.7	to 35.0) m		[-				1					
					1										
		From 32.6 to 32.7 m and	from 3	33.1 to		1							I		
		33.4 m scattered quartz v	3.4 m scattered quartz veinlet at 45°												
		to the core axis.													

•

GEWARGIS GEOLOGICAL CONSULTING INC.

÷,

3

4

LOCATION:				ח		IN FI	00					HOL	E No.		PAGE NO.	
		EI EV-			4111.1.1.1		u u		80085	TTY. IN	NEDE			ł	4 01 1	
ALIM:		LENGTH-			DIP	TEST				ALL: IIV	DEFE	NDEN				
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT		NO:						
STARTED:				· · · · ·	<u> </u>	1	1		SECTIO)N:						
COMPLETER):					<u> </u>	<u> </u>		LOGGE	DBY: V	Vilson	A. Ge	ewargi	5		
PURPOSE:						[1		DATE	OGGED:			0			
							1		DRILLI	ING CO:						
CORE RECO	VERY:								ASSAY	ED BY:						
F001	rage (m)	DESCRIPTION			S	AMPLE	FOOT	AGE(m)	L CNOTIL	loz/t	oz/t	AS	SAYS			
FROM	то	DESCRIPTION				NO.	FROM	то	(m)	Au	Ag	Cu%	Pb %	Zn %	6	
contin	ued	From 35.4 to 37.7 m fine	grain,	with								1	1	·		
		scattered specks of pyrite	miner	alizatio	on											
		and broken core from 37.3	to 37	.7 m.												
							_				_					
37.7	40.2	Andesite with quartz vein	et: lig	nt gree	en 50)1522	37.7	38.4	0.7	K0.001	0.14	0.02	0.09	0.12		
		with 10% guartz veinlet, s	lightly	fracti	ured	523	38.4	39.1	0.7	K0.001	0.04	0.01	0.01	0.09		
		and broken core mainly fr	om 37.	<u>7 to 3</u>	8.4n	524	39.1	40.2	<u> </u>	K0.001	0.06	K0.01	0.02	0.09		
		and 40.0 to 40.2 m.														
												ļ				
		5% pyrite mineralization s	<u>cattere</u>	ed thro	ough							[l	
		out this section. At 39.2	<u>m irac</u>	ctured	at			{					ļ		i	
		65° to the core axis at 3	<u>.7 m f</u>	ractur	ed	<u> </u>		ł				 				
		at 65° to the core axis.										 	<u> </u>			
10.9	110	Quanta dianita dukas light	mou t	o light	50	1525	40.2	41.8	16	0 001	0.01	}				
40.2	41.0	guartz diorite dyke; light	pling			1020	10.2		1.0	<u>C0.001</u>	0.01					
		phonogrust broken gore fr	$-p_{1}ag_{1}$	5 to											+{	
		41.8 m At 41.8 m contr	oct and	le at	700			i								
		to the core axis	une ang								· · · · · · · ·					
								f								
41.8	44.4	Andesite: dark green in co	olor: fi	ne gra	in.	526	41.8	43.3	1.5	< 0.001	0.06					
		slightly fractured with 5%	fine d	issemi	nated	527	43.3	44.4	1.1	< 0.001	0.03				·	
		pyrite.														
		From 41.8 to 44.4 m, brol	cen cor	e											<u></u>	
			<u></u>													
44.4	45.1	Andesite dyke: fine grain,	dark g	reen	5(11528	_44.4	45.1	0.7	<0.001	0.02					
L		with less than 1% phenocr	ysts, s	lightly.											 	
		fractured with a trace of	<u>fine p</u>	vrite											 	
		mineralization.				<u>l</u>										

.

.

GEWARGIS GEOLOGICAL CONSULTING INC.

U.

.

「日本の時間

			DRILL HOLE LOG									HOL	: No. 90-1	ľ	PAGE NO. 5 of 7
AZIM:		ELEV:							PROPE	rty: INI	DEPEN	IDENC	Е		
DIP:		LENGTH:			10	P TEST									
		CORE SIZE:	FOOTAGE	READING	COAREC	T FOOTAG	E READING	CORRECT	CLAIM	NO:					
STARTED:						_	-		SECTIO)N;					
COMPLETED):								LOGGE	DBY: W	ilson _	A. Gev	vargis		
PURPOSE:									DATE	OGGED:					
									DRILLI	DRILLING CO:					
CORE RECO	VERY:									ED BY:					
F001	rage (m)	DESCRIPTION				SAMPLE	FOOT	AGE(M)	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	то					NO.	FROM	<u> </u>	(m)	Au	Ag	Cu%	Pb%	Zn%	
45.1	49.4	Mineralized zone; banded	<u>silica-j</u>	asper _	<u>with</u> ;	501529	45.1	45.6	0.5	0.003	1.09	0.01	0.05	0.16	
		<u>up to 6% quartz. 20% Ja</u>	o <u>6% quartz</u> , <u>20% Jasper and 5%</u> e. A section of massive pyrite					46.6	1.0	0.008	8.34	0.02	0.32	0.63	
		pyrite. A section of mass	A section of massive pyrite					48.0	1.4	0.003	2.29	0.05	0.14	0.38	
		mineralization mainly from	1 45.6	<u>to 45.</u>	<u>8 m</u>	532	48.0	48.7	0.7	<u>K0.001</u>	15.20	0.03	0.47	1.25	
		and 46.6 to 47.4 m.				533	48.7	49.4	0.7	0.001	1.89	0.02	0.16	0.49	
		From 48.1 to 48.7 m, sea	ttered	galena											
		<u>mineralization and slightly</u>	weak	<u>to str</u>	ong (
		magnetite													
		Broken core from 45.1 to	<u>45.6 m</u>	<u>n with</u>											
		0.4 m core missing from	<u>48.8 m</u>	<u>to 49</u>	<u>_0m</u>										
		<u>At 46.0 m stringer of ma</u>	ssive p	<u>yrite a</u>	ut								{		
		70° to core axis and 49.4	<u>m at</u>	65° to			<u> </u>	·							
		core axis.													
10 1	522	Andosita porphynitia, man	on/rod	in aol		01524	10 1	50.0	1 5	1 001	0.70				
40.4	52.5	fine grain with 10 15% wi	th que	ntr voi		535	50.0	52 2	1 4		0.07				
		with trace of purite minor	<u>uliroti</u>	on	mer_	536	52 2	52 0	- <u>1.4</u>	$\frac{20.001}{20.001}$	0.07				
		alightly broken cone		011,	~		- 92.0			20.001	0.01		<u> </u>		
		signity proken core.													
52 2	88 1	Andesite popphynitics light	(TROOP	in acl								├ ─── ┤			
	_00.1	fine grain porphyritic wit	L SOOL	nhon~								 			
	 	mic gram, porphyritte wit	<u>11 JU 70</u>	fuence					[{		
		From 52.3 to 54.0 m dark groop 2.50													
 		phenocryst, scattered thro	ughout	this											
		section. slightly fractured	and hr	oken		t							<u> </u>		
		core from 54.4 to 54.9 m	ore from 54.4 to 54.9 m				<u> </u> -								
[IN VIAL LY, HAAL III.													
	From 52.3 to 54.0 m dar phenocryst, scattered thr section, slightly fractured core from 54.4 to 54.9 m			2-5% this oken											

٠

GEWARGIS GEOLOGICAL CONSULTING INC.

.

LOCATION:				ח		INF I	nc					HOL	E No. 1		PAGE NO.	
6 7112. E1 EV.			DRILL NULL LUG								TEDEN		90-1	L	6 01 7	
A4IM: ELEVI									PROPE	ALL: UNI	JEPEI	DENC	<u>_C</u>			
UP:		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:						
STARTED:									SECTIO	DN:						
COMPLETED:									LOGGE	LOGGED BY: Wilson A. Gewargis						
PURPOSE:						 	1		DATE	DATE LOGGED:						
									DRILL	DRILLING CO:						
CORE RECOVERY:						· · · · ·			ASSAY	ASSAYED BY:						
FOOTAGE (m)				t		AMPLE	FOOTAGE		CHICTH OZ/T OZ/T ASSAYS							
FROM	то	DESCRIPTION	•			NO.	FROM	TO	(m)	Au	Ag	Cu%	Pb%	Zn%		
1		From 54.9 to 64.6 m quai	/ke					1		1		1				
		with 60% pliagoclase phenocryst, broken														
		core from 64.5 to 64.6 m and 64.8 to														
	65.0 m.															
												ļ	<u> </u>			
		From 66.8 to 66.9 m fault zone with										ļ				
	gouge and clay. From 72.8 to 73.0 m											ļ		ļ		
	andesite, maroon/red in color with Jasper									ļ		ļ	ļ	ļ		
	10% guartz and disseminated pyrite.									ļ		ļ		ļ		
			4 500										 	<u> </u>		
		At 72.8 m contact angle	e at 70° to core			1537	72.8	73.0	0.2	<u>K0_001</u>	0.03	 		{	i	
	axis and at 73 m contact angle at 65°											<u> </u>	 	<u> </u>	┠┩	
	to the core axis.										 					
		Sections of broken core f	rom 75	1 to		1520	97.1	00 1	1.0	0 001	0.04					
		75.6 m 77.8 to 78.3 m s	and 78	7 to 7	<u>0</u> 4 m			- 00+ 1	I.a.V		U.U.					
				<u></u>	<i><i>u</i>.<u>.</u><u>.</u><u>.</u><u>.</u></i>							}				
	From 79.4 to 81.1 m. perforated dyke															
		light green in color.														
88.1	89.3	Mineralized zone, reddish	sh to dark grev			1539	88.1	88.7	0.6	K0.001	0.04					
		in color, banded silica-ias	per-bar	ite, ar	nd	540 8	38.7	89.3	0.6	(0.001	0.19	0.02	0.01	0.05		
		fine to massive pyrite mi	neraliz	ation v	with	541 8	39.3	90.4	1.1	<u> </u>	0.09	K 0.01	0.01	0.03		
		weak to strong magnetite				542	0.4	91.9	1.5	<0.001	0.08	0.01	0.01	0.06		
		From 88.7 to 89.3 m. hig	<u>hly mi</u> r	neraliz	ed											
		section with 35% pyrite.	galena,	_40%_												
		banded silica, and 15% J	asper.													
					<u> </u>										{	
		The vein structure is from	<u>88.7</u> to	0 89.3	_m_[l		L.		l		إيريك		1		

at 75° to the core angle.

GEWARGIS GEOLOGICAL CONSULTING INC.
LOCATION				D	RIL	HOLEI	OG					HOL	E No. 90_1		PAGE NO.
A71M:		ELEV:		-					PROPE	RTY: INI	JEDEN		<u>ידיטט</u> די		
DIP:		LENGTH:			0	IP TEST				1111					
		CORE SIZE:	FOOTAGE	READING	CORRE	CT FOOTAC	E READING	CORRECT	CLAIM	NO:			····		
STARTED:							1		SECTIO)N:					
COMPLETE	0:		•						LOGGE	D .Y:	Wilson	A. Ge	ewargi	S	
PURPOSE:									DATE L	OGGED:					
									DAILLI	NG CO:					
CORE RECO	VERY:		L		L				ASSAY	ED BY:		·			
F00'	TAGE (m)	DESCRIPTION				SAMPLE	FOOT	AGE	LENGTH	oz/t_	oz/t	ASS			
FROM	то					NO.	FROM	то	(m)	<u>Au</u>	Ag_	Cu%	<u>Pb%</u>	Zn%	
89.3	91.9	Andesite: dark green in co	olor: fi	ne gra	in.								<u> </u>	<u> </u>	+
		with 10% quartz silica ve	inlet. J	asper	and						[1			
		slightly fractured. Fine d	issemin	ated r	ovrite	<u>،</u>					[1			
		mineralization along the o	uartz-J	asper					-			1			
		veinlet. Quartz veinlet a	t 70° t	o core	axis							1			
91.1	94.2	Andesite maroon/red in co	olor: fir	ie grai	in.	501543	91.9	93.4	1.5	0.901	0.02	¢0.01	0.05	0.05	
		slightly fractured with 2 -	<u>. 3% q</u>	<u>iartz</u>		544	99.3	100.8	1.5	0.001	0.02	\$0.01	0.01	0.11	
		veinlet up to 2 mm in wi	dth_and	2%]	[aspe	r						ļ			
												_		{	┟╍╍╍┤
94.2	102.4	Andesite: maroon/red to g	reen; 2	<u>0% p</u> ł	en0										╉╼╼╾╼┥
		cryst, scattered 2-3% line		semina	ited							<u> </u>			+
		Dyrite, quartz stringer up	10 3%	and								1		<u> </u>	┼───┤
		570 Jasper.													
		From 97.8 to 97.9 m. fine	grain.	light											
		green andesite.										1			
	11														
	1	From 102.0 to 102.2 m re	d Jasp	er wit	hin										
		the andesite.	T												
															<u> </u>
102.4		END OF HOLE			[
															
															
							ł					ļ		ļ	
ļ					<u> </u>										
[{	ł								 {
	<u> </u>					Į	ŀ	}-							
L															<i>___</i> _ <i>__</i> _ <i>__</i>

.

GEWARGIS GEOLOGICAL CONSULTING INC.

.,

States of the second

GEWARGIS GEOLOGICAL CONSULTING INC.

DDH NO. 90-2

1. A state of the state of t

DIAMOND DRILL RECORD

l

4

Page I/ of 1

LOCATION INDEPENDENCE PROPERTY, STEWART, B.C. MAP SHEET 104A/4W

11 T 1

COLLAR	Northing Easting Elevation	<u>L+89S</u> <u>0+13E</u> <u>Approx.1050m</u> 023 ⁰	REMARKS <u>Core recovery: 95 %</u> <u>Average drilling per shift = 26.7m (87.5ft)</u> <u>This hole has intersected from;</u> <u>0-3.1m overburden</u>
DRILLED	Azimuth Dip Depth	<u>-45</u> 106.68m(350ft)	<u>3.1-57.8m</u> andesite section ranging from green to red to porphyritic. 57.8-64.5m mineralized zone
Da·Mo·Yr-	Started Completed Logged	July 22.90 July 24.90 July 23,24.90	64.5-99.0m quartz diorite dyke 99.0-106.68m andesite red to green
EQUIPMENT	Machine Core Size Dip Tests	Hagby Bruk ONRAM-1000 BQ T.K None	(31) core samples were taken from this hole.
PURPOSE	This hole wa <u>Vein # 1 ar</u> the strike a	s drilled from Line nd 2 zones exposed o and to depth.	0+87 S ,0+13E to test the westerly dipping on surface in Trenches # 6 and 7 along
RESULTS	Vein # 1 zor 0.006 Oz/t g returned 0.04 was possibly gold ,0.04 Oz	ne was intersected fr rold,7.78 Oz/t silver 40 Oz/t gold, 54.3 O intersected from 99 z/t silver over 1.4m	oom 57.8m to 64.5m and assayed over 6.7m within this zone best results z/t silver over 0.8m. Vein #2 zone .9 to 101.3m and assayed 0.001 Oz/t
GEOLOGIST	Wilson Gewa	rgis Do	J'Mo'Yr September ,1990

LOCATION:				D	RILL	HOLE	LOG					HOLE	No. 0-2		PAGE NO. 1 of 6
AZIM:		ELEV:			D:	PTEST			PROPE	RTY: IN	DEPEI	NDENC	CE		
017:		LENGTH:	FOOTACE	READING							<u> </u>	<u></u>			
			FOUTAGE	READING	WANEC	FOUTAC	E READING	CORRECT		NO:					
STARTEU:		1			[SECTIO		A7:1	1 0	<u> </u>		
BURBOSE.	• 							<u> </u>			vilson	<u>A. Ge</u>	wargis	š	
PURPUSE.								+			onto	Drilling	T Co		
CORE RECOV	VERY:								ASSAY	FO BY (Thomas	v Lob	<u>y co.</u>		7.0
FOOT	AGE (m)					SAMPLE	E00T	AGE (m)						ouver,	B.C.
FROM	TO	DESCRIPTION				NO.	FROM	TO	LENGTH		$\frac{0Z}{1}$		Dha	7n94	
	3.05	Casing no gono recovered			<u> </u>				<u>(III)</u>		<u>ng</u>	Culo	10.20	2.1170	<u>├</u> ────┤
		Casing no core recovered.										├ }			
3.05	20.0	Andesite light grey to gre	on: fin	o moi		501545	8.9	9.4	0.5	0 001	0 14				
		to medium grain, fracture	d. brok	en cor		546	9.4	10 4	10	0 001	0.19				
		mainly from 3.7 to 8.3 m.	nossih	le fau	11	547	10.4	11.4	1.0	0.001	0.0				
		zone with gouge and clay	at 7.5	m.		548	11.4	12.0	0.6	P0.001	0.38				
						549	12.0	12.6	0.6	0.001	0.11				
		5 to 10% oxidization from	3.05	to 10.0) m.	550	12.6	13.4	0.8	0.001	0.09				
		From 9.4 to 12.6 m quart	z veinl	et_wit	h	551	13.4	14.7	1.3	k0.001	0.01				
		fine to massive up to 30%	pyrite	e and	5%										
		oxidization.												•	
		From 12.6 to 17.3 m redd	ish gre	en	·										
		andesite with Jasper, sligh	<u>tly fra</u>	ctured											
		and quartz veinlet with di	ssemina	ated 5	%										
		pyrite and epidote.													
		<u>From 14.7 to 16.4 m scatt</u>	ered q	uartz											
		veinlet and epidote alterat	10n												
		Enom 17.0 44 17.0	<u> </u>	<u> </u>	<u> </u>	501550	17 7	10 0	-0 -	0 004	0.01				
		to 6 am wide	z vein	let up	{	001002		10.0	0.3	<u></u> 1	0.01				
	ł	to o cili wide.									<u>}</u>				
20 0	225	Andosito node fine and	with ~								}		ł		
20.3	<u></u>	In to 20% quanta voisited	with S	CHITEL	ea					~ 	}		ł		
		throughout this section	<u>. z mn</u>								}				{
		in oughout this section.		<u></u>			·		{		{	<u> </u>			
		From 22.2 to 22.6 m 22.9	to 23	6 m							—{				
 		0.2 m core missing & foul	t zono	at 92							ł				
		the sole missing & fam		40.											
										l					

GEWARGIS GEOLOGICAL CONSULTING INC.

•

20 - 22

LOCATION	:			ם	RIL	HOLEI	NG					HOL	E No. 90-2		PAGE NO. 2 of 6
A71M*		ELEV:							PROPE	ATY. INI	DEPEN	IDENC	E		
010:		LENGTH:			D	IP TEST									•
		CORE SIZE:	FOOTAGE	READING	CORRE	CT FOOTAC		CORRECT	CLAIM	NO:					
STARTED:						-	1		SECTI)N:					
COMPLETE	D:		·					1	1000	D .Y: W	ilson	A. Gev	wargis		
PURPOSE:									DATE	LOGGED:					
									DAILL	ING CO:					
CORE RECO	VERY:		<u> </u>		L				ASSAY	ED BY:					
F00'	tage (m)	DESCRIPTION				SAMPLE	F001	AGE(m)	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	то					NO.	FROM	то	(m)	Au	Ag	Cu%	Pb%	Zn%	
continu	ed	From 26.8 to 27.7 m, fau	lt_zone	with		501553	26.3	27.7	0.9	0.001	0.01				
		gouge and clay. At 26.8,	contac	<u>t at f</u>	35°										
		to the core axis.													
<u> </u>															
	ļ	<u>From 27.7 to 28.1 fault z</u>	one								·	<u> </u>			ļ
		T					21.0		4 17	20.001	0.00	ļ		ļ	<u> </u>
		From 30.0 to 30.2 m faul	t zone	at 559	' to	004	31.8	33.5	1.7	<u>KU.UUI</u>	0.02	ļ		 	<u> </u>
		the core axis.										 		 	
		From 30.2 to 31.2 m redd	ish and	lesite.					·			<u> </u>			
			<u></u>				· · · · · ·		<u> </u>						
		From 31.4 to 32.5 m fault	t zone	and fr	om							1			
		31.6 to 31.7 m gouge.													
									-						
		From 31.7 to 32.6 m, 15	<u>em of</u>	core											
		missing.													L
				<u> </u>						20.004					
33.5	39.5	Andesite green: fine grain	ed, fra	ctured		555	<u> </u>	35.Z		<u>v.uu</u>	0.01	 			├ ───┤
	<u> </u>	and broken core mainly fr	<u>om 33.</u>	<u>5 to 3</u>	5.3m.							 			┝───┤
	[]	(fault zone with gouge and	<u>i chlor</u>	itic											
		alteration).													<u>├</u> ───┤
	<u> </u>	Fractures at parallal angle	to th	0 0000											┠{
	┟────┤	avis souttored quarte usi-	$\frac{1}{10}$ $\frac{1}{10}$												┟────┤
	<u> </u>	wide at 60° to the come of	ueis_L				——			·					{
	┟╌┈┈┤	cavity filling						f			<u> </u>				1
	├ ╏														
		From 38.2 to 39.5 m brok	en core	e fault											
	<u> </u>	zone with gouge and clay	throug	hout											
		this section.												_	

GEWARGIS GEOLOGICAL CONSULTING INC.

.

LOCATION:				n	RII I	HOLFI	NG					HOLI 9	E No. 0-2	1	PAGE NO. 3 of ⁽
4 7134		ELEV:		-			• •		PROPE	ату: IN	DEPE	NDEN	CE		
DIP:		LENGTH:			Di	P TEST									
0		CORE SIZE:	FOOTAGE	READING	COAREC	FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:					[1	1	SECTIO)N;					
COMPLETED	:		· ·		1			1	LOGGE	D .Y: \	Vilson	A. G	ewarg	IS	
PURPOSE:							1	1	DATE	OGGED:					
									DRILL	ING CO:					
CORE RECOV	VERY:								ASSAY	ED BY:					
FOOT	AGE (M)	DESCRIPTION				SAMPLE	FOOT	AGE (M)	I ENGTH	oz/t	oz/t	ASS	AYS		
FROM	то	DESCRIPTION				NO.	FROM	TO	<u>(m)</u>	Au	Ag	Cu%	Pb%	Zn%	
39.5	40.8	Andesite red to green; fir	e-grair	ed wit	th										
		10% atz veinlet up to 3	nm_in_	width	at										
		70° to the core axis: slig	ntly fra	ctured	<u>1. </u>							1			<u> </u>
		, , ,													<u> </u>
40.8	41.5	Andesite porhyritic; fine-	rained.	<u>5% g</u>	reer									ļ	ļ
		phenocryst and 20% pliage	oclase (<u>& sligt</u>	ntly					 		ļ		<u> </u>	ļ
		fractured, contact angle a	t 41.5	m at	<u>70°</u>	ł.				L		ļ		ļ	
		to core axis.								ļ		<u> </u>			<u> </u>
						ED JEEC				20 004		ļ		ļ	
41.5	45.9	Andesite, grey to green; of	coarse-	grained	<u>1</u>	50 1556	42.8	43.6	0.8	K0.001	0.01	<u> </u>		<u> </u>	
		with quartz veinlets. mair	ly fror	<u>n 42.8</u>	_m									 	<u>-</u>
		to 43.6 m at a parallel a	ngle to	<u>the</u>			ł					<u> </u>		<u> </u>	<u>├</u> ────
		core axis.									[<u> </u>	<u> </u>
														<u> </u>	<u> </u>
		Sections of broken core f	com_41	<u>5 m t</u>		<u> </u>									[
		42.8 m and 43.9 to 45.9	<u>n. </u>		<u> </u>										
45 0	46.5	Andosite grov with quart	z voinl	oter 20	196	557	45.9	46.5	20.6	0.001	0.15		·		
- 10.0	40.5	Andesite, grey with quart	rod 50	$\frac{1}{4}$ nuri	to										
		and covity filling at 54.9	m of '	70° to								1			
		the core axis.	<u>m ar </u>	<u>u 10</u>											
		the core axis.										1			•
46.5	47.7	Andesite grev to green, f	ne-gra	ined.								1			
		slightly fractured, and bro	ken co	re											
		throughout this section.	3%. <u>au</u> a	rtz											
		veinlets up to a few mm	wide.												
47.7	48.7	Andesite Prophytitic: lig	nt grev	to gr	een.										
		fine grained; 10% - 15%	reen r	henoc	ryst										
		and slightly fractured wit	n 1% o	tz vei	nlets										J
•		up to ½ mm wide at 60°	to the	core a	axis.						GE	WARGIS G	EOLOGICA	L CONSUL	TING INC.

LOCATION:				n	0111	101 - 1	0.0					HOLE	No,	r	PAGE NO.
				U	UILL	UULCL	UG						90-2		<u>40f_6</u>
AZIM:					DI	TEST			PROPE	tr: IN	DEPER	NDENC	<u>Е</u>		
017:			FOOTAGE	READING	CORRECT	L FOOTACI	READING	CORRECT		NO:					
ETARTED:						round	AEAUING	WARECI	SECTIO	MU:					
STANTED:	•								10005	n. nev: W	ilson	A. Ge	wargis		
PURPOSE							_	1	DATEL	OGGED:					
								1	DRILLI	NG CO:					
CORE RECOV	VERY:	· · · · · · · · · · · · · · · · · · ·				1	1		ASSAY	D BY:					
FOOT	AGE (M)	DESCRIPTION				AMPLE	FOOT	AGE(M)		oz/t	oz/t	ASS	AYS		
FROM	то	DESCRIPTION				NO.	FROM	то	(m)	Au	Ag	Cu%	Pb%	Zn%	1
49.1	50.0	Andesite Prophyritic; as in	i sectio	on 47.7	7 m										
		to 48.7 m.													
50.0	53.7	Andesite red/green; fine t	<u>o medi</u>	um gra	ained	501558	51.8	53.0	1.2	<0.001	0.02				
		with scattered qtz veinlet	s up to	20%		559	53.0	53.7	0.7	40.001	0.03				
		trace of pyrite mineraliza	tion.	Quartz											
		veinlets at 50° to the cor	e axis.												
		<u>From 52.8 to 53.7 m gree</u>	n ande	<u>site.</u>										L!	
					\longrightarrow	E04E00			- 0 - 5	70 004	0.04			!	
53.7	56.2	Andesite Prophyritic: light	grey	to gree	en.	501560	53.7	56.Z	2.5	CU.UU	0.01				
		fine grained, 5 - 10% gree	en pher	locryst	L <u>.</u>									<u> </u>	
		slightly fractured with nar	row 10	<u>1% que</u>	irtz									┝────┩	
		stringer up to 1 mm wide	•												
		From 527 m to 542 m t	nokon										<u> </u>	 	
		From 55.7 m to 54.5 m, t	proken	core.											
56.2	57.8	Andesite red/green: fine_g	rained	with c	17 5	01561	56.2	56.7	0.5	0.001	0.30	0.02	0.14	0.61	
		veinlet - Jasper and from	56.2	m to		562	56.7	57.8	1.1	(0.001)	0.14	0.03	0.02	0 11	
		56.7 m disseminated pyrit	e atz	veinlet	e l							0.02	0.02		
		at 80° to the core avis	<u> </u>	venues	<u></u>										
			· . · · · · · · · · · · · · · · · · · ·												
		From 56.7 to 57.1 m gree	n ande	site.								i i			
		From 57.1 to 57.5 m red	andesit	е											
57.8	64.5	Mineralized zone: white/re	d.band	ed sili	са_ 5	01563	57.8	58.9	1.1	0.003	3.41	0.04	1.37	1.08	
		jasper, slightly weak to st	rong m	agneti	te	564	58.9	59.2	0.3	(0.001	0.13	10 01			
		From 63.4 to 63.5. 25% J	asper,	30 ⁵ %_p	yrite	565	59.2	59.8	0.6	0.002	1.00	(0.01	0.15	0.06	
		and at 63.4 m. galena mi	neraliza	ation		566	29.8	60.3	0.5	0.001	0.27	0.01	0.03	0.04	
		<u>From 61.1 to 61.4 m & 6</u>	2 <u>.5 to</u>	<u>63.0 n</u>	<u>1, t</u>	567	60.3	60.6	0.3	0.001	1.09	0.02	0.12	0.85	
		broken core.									GEI	WARGIS G	EOLOGICAL	. CONSULT	ting inc.

LOCATION:				D	RILL H	IOLEL	OG					HOL 9	E No. 0-2	ľ	PAGE NO. 5 of 6
AZIM:		ELEV:							PROPE	TY: IN	DEPE	NDEN	CE		
DIP:		LENGTH:			DIP	TEST			-						
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:									SECTIO	N:					
COMPLETED):		·						LOGGE	DBY: V	Vilson	A. G	ewargi	S	
PURPOSE:							ļ		DATEL	OGGED:				·	
						ļ		<u> </u>	DRILLI	NG CO:					
CORE RECO	VERY:					L			ASSAY	ED BY:					
FOOT	AGE (M)	DESCRIPTION	1		s	AMPLE	FOOT	AGE (M)	LENGTH	<u>oz/t</u>	oz/t	ASS	SAYS		
FROM	то		-			NO.	FROM	TO	(m)	Au	Ag	Cu%	Pb%	Zn%	
contir	nued	From 58.9 to 59.2 m, per	forated	andes	site 🕴	01568	60.6	61.4	0.8	0.04	54.3	0.06	0.20	0.24	
		dyke, and at 59.2 m at 7	<u>0° to t</u>	<u>he cor</u>	<u>e</u>	569	61.4	62.5	1.1	0.01	0.33	<u>K0.01</u>	0.01	0.03	
		axis. From 64.0 to 64.4	<u>m grev</u>	to		570	62.5	63.0	0.5	0.001	0.84	K0.01	0.02	0.05	
		<u>reddish andesite with 20%</u>	guartz	z veinl	ets 📃	571	63.0	64.5	1.5	0.001	1.98	0.01	0.09	0.45	
		at 70° to the core axis.										<u> </u>	<u> </u>	 	[
						4550				10.004	0.00	 	 	ļ	
64.5	83.0	Quartz diorite dyke: light	grey t	o gree	n, 51	<u>J1572</u>	64.5	65.5	1.0	KU.001	0.02	 	 	ļ	ļ
		<u>fine to medium grain wit</u>	<u>h 40%</u>	phenoc	ryst							ļ			
		<u>(pliagoclase), 2% quartz v</u>	einlet_	at par	allel		·					ļ	<u> </u>		
		angle to the core axis.										 			
- 09 0	00.4					ł									
83.0	92.4	Quartz diorite dyke; light	<u>grey</u> I	<u>o gree</u>	n, [ł		· · · · · · · · · · · · · · · · · · ·		· · · · ·			
		coarse grained, 40/40% w		green	<u>-</u>										
		<u>Dhenocryst with scattered</u>	<u></u>	ariz			<u> </u>								
		Vennet up to 1.0 min wid	C.												
92.4	99.0	Quartz diorite dyke: light	grev t	o gree	n. 50	01573	98.7	99.9	1.2	0.001	0.03				
02.1		fine grained with 3% whi	te nhen	oervst						<u></u>		[
		and 5% green phenocryst	<u>te prici</u>	<u></u>											
		<u></u>										1		1	
		From 97.2 m to 97.6 m b	roken	core.											
															•
99.0	106.7	Andesite red/green; coarse	e grain	ed wit	h50)1574	99.9	101.3	1.4	<0.001	0.04	0.01	0.01	0.03	
		possible mineralized section	on (Vei	n #2)		575	101.3	102.1	0.8	(0.001	0.02	C 0.01	0.01	0.03	
		from 99.9 to 101.3 m wit	h quart	z vein	lets										
		and fine to massive pyrite	e miner	<u>alizati</u>	ion										
		with pyrite stringer at 65	<u>o to 7(</u>	<u>o to t</u>	he										
		core axis. Scattered chlo	ride_er	oidote_											
		alteration.													
					I	L						l			
						1					GE	WARGIS G	EULOGICAL	. CONSULT	IING INC.

LOCATION:			,	D	RILLH	IOLE L	DG					ног 9	e ne. 0-2	P	AGE NO. 6 of 6
AZIM:		ELEV:							PROPE	RTY: I	NDEPE	ENDEN	CE		
DIP:		LENGTH:			01P	TEST					_				
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:							·		SECTIO	N:					
COMPLETED):				<u> </u>		L		LOGGE	DBY: V	Vilson	A. Ge	wargis		
PURPOSE:			J		ļ				DATE L	OGGED:					
						<u> </u>			DRILLI	NG CO:					
CORE RECO	VERY:			L	L	1			ASSAY	ED BY:					
F001	AGE (m)	DESCRIPTIO	N		s	AMPLE	FOOT	AGE(III)	LENGTH	$\frac{oz}{t}$	$\frac{oz/t}{1 A \pi}$	ASS		Volk	
FROM	TO	D	<u> </u>			NU.	FROM	10	(m)	Au	Ag	Cu 🛪	, PD%	211%	
continu	ation	From 102.4 to 103.2 m,	broken	core.											
		From 106.5 to 106.7 m,	broken	core.											
												<u> </u>			
106.7		END OF HOLE.								ļ					
												ļ			
												ļ			
									<u> </u>	<u>_</u>					
								+				<u> </u>			
											+			- <u>.</u>	{
					{										
		· · · · · · · · · · · · · · · · · · ·	·····								+	<u> </u>			
							· ·								
											1				
										_	I				
															
			·					<u>+</u>							
							<u> </u>				 				
											<u> </u>			ł	
														ł	{
							{-	-			 				{
					<u> </u>			<u> </u> _						<u> </u>	{
l															

.

GEWARGIS GEOLOGICAL CONSULTING INC.

11

GEWARGIS GEOLOGICAL CONSULTING INC.

DDH NO. 90-3

DIAMOND DRILL RECORD

Page 1/ of 1

LOCATION INDEPENDENCE PROPERTY, STEWART, B.C. MAP SHEET 104A/4W

COLLAR	Northing Easting Elevation	<u>L0 +87 S</u> <u>0 +13 E</u> Approx. 1050m	REMARKS Core recovery : 97 % Average drilling per shift : 20.8m(68.2ft) This hole has intersected from ; 0-3.1m overburden
DRILLED	Azimuth Dip Depth	023 ⁰ - 70 ⁰ 103.94m(341 ft)	3.1-11.5m andesite prophyritic <u>11.5-27.1m andesite grey-green</u> <u>27.1-93.9m andesite ranging from</u> green porphyritic to
Da Mo Yr-	Started Completed Logged	July 24.90 July 26.90 July 25,26.90	grey green to reddish 93.9-95.0m mineralized zone 95.0-100.3m andesite reddish 100.3-103.9m quartz diorite dyke
EQUIPMENT	Machine Core Size Dip Tests	Hagby Bruk ONRAM-1000 BQ T.K. None	(18) core samples were taken from this hole.
PURPOSE	<u>This hole w</u> from line 0	as drilled from the s	same set-up as drill hole 90-2. St down dip extension of Vein # 1 zone
RESULTS	Vein # 1 zc 0.007 Oz/t	one has been intersed gold, 1.19 Oz/t silve	eted from 93.9m to 95.0m and assayed r over 1.1m .

GEOLOGIST <u>Wilson Gewargis</u> Da Mo Yr <u>September</u>, 1990

LOCATION:				D	RILLH	OLEL	OG					но ц 90	E No.)-3	1	PAGE NO. 1 of 6
A 7164+		ELEV:		-					PROPE	RTY: IN	DEPE	NDEN	CE		
012:		LENGTH:			DIP	TEST			<u> </u>						
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:	<u>.</u>				
STARTED:									SECTIO	N:					
COMPLETED	;		·						LOGGE	DBY: W	ilson_/	A. Gev	vargis		
PURPOSE:									DATE	.OGGED:					
							<u> </u>	L	DRILL	NG CO: 1	<u>`onto</u>	<u>Drillin</u>	<u>g Co.</u>		
CORE RECOV	ERY:								ASSAY	ED BY:	<u>Cheme</u>	<u>x Lab</u>			
FOOT	AGE	DESCRIPTION			S	MPLE	FOOT	AGE (M)	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	TO					NO.	FROM	TO	(m)	Au	_Ag_	Cu%	Pb%	Zn%	
0	3.1	Casing with 0.6 m core re	covery								<u> </u>				
3.1	11.5	<u> Qtz diorite dyke: dark gre</u>	<u>y to gr</u>	een, r	ned.					<u> </u>	ļ				
		to coarse grain, 20% dark	green.	pheno											
		cryst, scattered_throughout	<u>this se</u>	ction.											
		<u>Slightly oxidized</u> , and up t	<u>o 2% c</u>	uartz		ł						 			
		veinlets, less than 1 mm v	vide at	70° t	<u> </u>										
		the core axis.								[
		From 7.2 to 11.0 m broke													
		From 7.3 to 11.0 m broke	r core.												
11.5	27.1	Andesite grev/green: highly	y silicif	ied,	50	01576	11.5	13.0	1.5	0.001	0.01			·	
		slightly fractured with sec	tion of	cavit	v	577	18.0	18.6	0.6	K 0.001	0.01				
		fillings and quartz veinlets	, main	ly fror	n										
		11.5 to 13.5 m.													
							<u> </u>								
		From 11.9 to 12.0 m quar	<u>tz vein</u>	lets -			<u> </u>								
		2 cm wide with 30° oxidiz	ation v	vith											
		scattered green epidote al	teration].					· · · · · · · · · · · · · · · · · · ·						
		From 15.0 to 10.0 m /four	t gone	<u></u>				ł							
┝────┤		From 15.9 to 18.0 m (180)	t zonej	•							<u></u>				
		From 14.0 to 14.5 m 16.	to 16	0 m					·····						
		From 14.0 to 14.5 m, 10.4		<u>.9 III</u>											
		broken core.													
		From 18.0 to 18.6 m 30.9	otz v	einlets						-					
{		and 10% epidote alteration	<u></u>					f							
<u> </u>		and to to epidote atteratio					·								
┟────┤		From 18.6 to 22.4 m. der	grev	to gre	en										
├────┤		massive andesite with 10%	atzv	einlets											
		up to 3 mm wide, and 40°	% epide	ote alt	eratior	.									

.

GEWARGIS GEOLOGICAL CONSULTING INC.

÷.

LOCATION:				D	RILL H	OLEI	.0G			· ·	<u></u>	HOLE	No. 0-3		PAGE NO. 2 of 6
AZIM:		ELEV:							PROPE	RTY: IN	DEPE	NDENC	CE		
DIP:		LENGTH:			DIP	TEST									
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAG	E READING	ORRECT	CLAIM	NO:					
STARTED:									SECTIO)N:					
COMPLETED:			•		L				LOGGE	DBY: WI	Ison A	. Geware	gis		
PURPOSE:									DATE	LOGGED:					
							_		DAILL	ING CO:					
CORE RECOV	ERY:			Ļ	L	I		<u> </u>	ASSAY	ED BY:					
FOOT	AGE	DESCRIPTION	I		S	AMPLE	FOOT	AGE (M)	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	TO					NO.	FROM	TO	(m)	Au	Ag	Cu%	Pb%	Zn%	6
11.5	27.1	Continued	_												
		The quartz veinlets are 6	<u>0° to t</u>	he cor	e										
		axis, and epidote stringer	<u>s at 75</u>	o to t	he										
		core axis.													
									_						
		From 22.4 to 22.7 m, qtz	<u>veinle</u>	<u>ets wit</u>	<u>h 5</u>	01578	22.4	22.7		K 0.001	K 0.01				
		trays of pyrite, slightly r	nagneti	<u>c with</u>											
		fractured and cavity filling	<u>ngs, and</u>	<u>1 5%</u>											
		epidote alteration.													
		From 23.4 to 23.9 m, fai	<u>ilt zone</u>											•	
		<u>From 24.8 to 25.5 m. fai</u>	<u>ilt zone</u>	e with											
		gouge at 55° to the core	axis.												
				<u> </u>		{									
		<u>From 25.2 to 27.1 m, por</u>	phyriti	<u>c ande</u>	site										
		dark green to reddish in	color w	<u>rith 10</u>	<u>% </u>										
<u> </u>		<u>phenocryst</u> and slightly fr	actured	<u>with</u>				<u> </u>							
		broken core mainly from	<u>26.4 tc</u>	27.1	_m										
		Contact angle at 25.5 m	<u>at 70°</u>	to the	<u>}</u>							├ ──── ├			
		<u>core axis and 27.1 m at</u>	<u>65° to</u>	the_co	pre								ł		
		axis,						ł							
07.4	- 20.0											┝───┤			
<u> </u>	30.2	Utz diorite dyke; light gr	ey to e	<u>reen</u> i	un	ł	——					┝────╂	<u> </u>		┠┨
├─── ┤		scattered 10% pliagonalogo	uned w	<u>ith</u>		 ł	{					├			
		Scattered fractured with	broless	Cryst.											
 		from 28.8 to 20.0 - M	Droken	_core					<u> </u>			<u> </u>			
┝━━━━		ata voiplota at 600 to the	urrow 1	<u> </u>									<u> </u>		
	ł	yiz vermets at but to the	<u>core</u>	HXIS.								┝━━━╋			
				_		L									

.

GEWARGIS GEOLOGICAL CONSULTING INC.

LOCATION:				D	R11 1	HOIFI	າເ					HOLE	No. 0 3	ľ	PAGE NO.
AZIM:		ELEV:		-					PROPE	RTY. IN	DEPE	NDEN	<u></u>		<u>J 01 0</u>
DIP:		LENGTH:			DI	PTEST									
		CORE SIZE:	FOOTAGE	READING	СОЛЛЕС	FOOTAGE	READING	CORRECT		NO:					
STARTED:									SECTIO	N:					
COMPLETED):		•						LOGGE	DBY: W	Vilson	A. G	ewarg	s	
PURPOSE:									DATE L	OGGED:					
									DRILLI	NG CO:					
CORE RECO	VERY:				L	<u> </u>	<u> </u>		ASSAY	ED BY:					
F001	rage M	DESCRIPTION				SAMPLE	FOOT	AGE (M	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	то					NO.	FROM	то	<u>(m)</u>	Au	Ag	Cu%	Pb%	Zn%	
Continu	ied	From 29.5 to 29.8 m; dar	<preen< pre=""></preen<>	andes	site										
		with 5% green epidote alt	<u>eration</u>	. Cont	act										
		angle at 30.2 m is 40° to	the co	<u>re axi</u>	s										
30.2	32.7	Andesite dark green: medi	<u>um to</u>	coarse											
		grained with 40% epidote	alterat	ion an	d										
		<u>5 to 10% atz veinlets up</u>	<u>to a fe</u>	ew mn											
		wide.			{	{	{								{
		From 22.6 to 22.7 m atr	voinlot	with								┟───┥			
		to 10% opidate alteration	vennet	s with	-3							├		· · · · ·	
32.7	33.7	Otz diorite dyke: light gre	en fin	e grai	ned										
		with 20% pinkish phenocry	st. 109	6 epid	ote					• • • • • • • • • • • •					
		and slightly fractured with	broke	n core			- <u>.</u>								
		mainly 33.4 to 33.6 m.													
		Contact angle at 32.7 m	<u>s 55° 1</u>	to the											
		core axis and at 33.7 m i	<u>s 60° t</u>	o the											
		core axis.													
		·													
33.7	38.4	Andesite grey to green; m	edium	to cos	rse]		
		grained, highly silicified w	<u>ith up</u>	to 309	<u>*</u>]		
		<u>quartz and 15% epidote a</u>	<u>45° t</u>	<u>o 65º</u>	to	<u> </u>		l_							
		the core axis.			[<u> </u> .							
							<u></u>					-			
		From 38.1 to 38.4 broken	core										ł	ł	
39.1	10 C	Andonito nod/means acons	to me	scive									ł	ł	
30.4	40.0	slightly fractured with 100		issive,									ł	ł	
L		sugnity fractured with 10.		/emiet	۹			Ł							J

throughout this section at 45° to 50° to core axis.

GEWARGIS GEOLOGICAL CONSULTING INC.

.

· · · · · · · · · · · ·

ter a tata tatu ta

100-001

LOCATION:				D	RILL H	OLEI	.0G					HOL	No. 90-4		PAGE NO. 4 of 6
AZIM:					018	TECT			PROPE	ATY: IN	NDEPE	NDEN	CE		
OIP:		LENGTH:				1531			, <u> </u>						
			FOOTAGE	READING	COARECT	FOOTAG	E READING	CORRECT	CLAIM	NO:					
STARTED:								<u> </u>	SECTIO)N:					
COMPLETED):		· .					ļ	LOGGE	0 BY:	Wilson	<u>A. Ge</u>	wargi	<u>s</u>	
PURPOSE:								<u> </u>	DATE	LOGGED:					
								<u> </u>	DRILL	ING CO:					
CORE RECO	VERY:					L		<u> </u>	ASSAY	ED BY:				·	
F001	AGE IVI	DESCRIPTION	l		S	MPLE	FOOT	AGE(M)	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	TO					NO.	FROM	TO	-(m)	Au	Ag	Cu%	Pb%	Zn%	
continu	ed.	From 41.6 to 42.4 m qtz	veinlet	<u>with</u>											
		cavity fillings and epidote	altera	tion.											
				<u> </u>											
		<u>From 46.8 to 46.9 m up 1</u>	<u>o 20%</u>	atz										_	
		veinlets, and broken core.													
		<u>From 48.3 to 48.6 m. 3</u>	<u>mm wi</u>	<u>de epi</u>	<u>dote</u>										
		stringer alteration at 45°	<u>to 60°</u>	to the	e			·		L					
		core axis.													
											1				
48.6	52.4	<u>Andesite dark grey to gre</u>	en: ma	<u>ssive,</u>						L	L			·	
		slightly fractured, silicifie	<u>d with</u>	10%	ıtz										
		veinlets, 5% epidote alter	ation n	nainly											
		<u>from 49.8 to 52.4 m and</u>	with 5	<u>to 10</u>	%						ļ	I			
		<u>gtz veinlets at 75° to the</u>	core a	axis.							L				
															
		<u>From 50.0 to 40.4 m brok</u>	en cor	e, and							L				
		<u>from 51.4 to 52.4 slightly</u>	Iractu	rea.								 			
60 /	- 60 0		1			1501	600		1.0	20-00-	120 004	 			
52.4	60.6	Andesite grey to green in	<u>color;</u>	mediu	m 50	1581	55.3	57.6	1.3	K 0.001					
		to coarse grained with 35	<u>% qtz</u>	veinle	IS	582	57.6	59.1	1.3		KU.001				
		scattered through this sec	tion. Q	uartz		- 283 - E07	59.1	<u> </u>	10.1		KU.UI				l
		<u>veinlets up to 2cm wide a</u>	ind a p	aralle	<u> </u>	584	39.8	00.0	1.0	CU.UU	KU.WI		Į	·····	
		angle to the core axis an	<u>d 70° t</u>	<u>0 80°</u>	to								ł		
		the core axis. 2 to 3% e	pidote	altera	tion										
		throughout this section wi	th a tr	ace of	Ĕ	<u>}</u>									
		pyrite mineralization.				——									
						<u> </u>									
						—{	<u></u>								
							l.								

GEWARGIS GEOLOGICAL CONSULTING INC.

.

.....

 S^{k}

1

ġ.

LOCATION:				D	RIL	HOLFI	nc					HOL	E No.		PAGE NO.
A 7194-		EI EV.		U	42 J Ja Ja		, vu		-		NDEPE	NDEN	CE		5 01 0
A4IM:		LENGTH:			DI	P TEST				<u></u>					
007		CORE SIZE:	FOOTAGE	READING	CORREC	FOOTAG		CORRECT	CLAIM	NO:					
STARTED.									SECTIO	DN:		—			
COMPLETED		میں میں ^{اور} ایک اور	· · ·					+	LOGGE	DEY: V	Vilson	A. Ge	wargis		
PURPOSE						1			DATE	LOGGED:			Wai Bio		
						-	1		DRILL	ING CO:					
CORE RECO	VERY:								ASSAY	ED BY:					
FOOT	AGE			· <u></u>		SAMPLE	FOOT	AGE (m)		oz/t	oz/t	ASS	AYS		
FROM	то	DESCRIPTION				NO.	FROM	TO	(m)	Au	Ag	Cu%	Pb%	Zn%	
60.6	64.4	Andesite green; medium t	o coars	e grai	ned,	501585	62.5	62.8	0.3	0.001	0.05				
		slightly fractured with up	to 309	6 gtz											
		veinlets mainly from 62.8	to 63.	<u>6 m a</u>	t 80P										
		to the core axis.													
										L	<u> </u>				<u> </u>
		From 63.7 to 64.4 m 10%	qtz ve	einlets						L					
		at 75° to the core axis.									ļ	ļ			<u> </u>
	·									<u> </u>	ļ				
		<u>From 61.5 to 62.5 m brok</u>	en cor	<u>e (fau</u>	t							ļ	ļ		
		zone) with gouge at 61.5	<u>m_and_</u>	fractu	re					 	ļ	<u> </u>			ļ
		<u>zone at 62.6 m at 40° to</u>	the co	re_axi	s[_						 				<u></u>
			<u> </u>	A	5	01506	65 7	-66 1	0.4	20 001					
_64.4	83.3	Andesite red/green in cold	or: nne	<u>lo m</u>	ea. J	01000	00.1		0.1	10.001	0.001				
		grained with scattered ep		tz unro				{							
		OUL LINS SECTION AL 45° 10	<u></u>	<u></u>											
		<u>core axis</u>	<u> </u>												1
		From 65.8 to 66.1 m. 209	6 enido	te											
		alteration		<u></u>											
		From 68.5 to 69.0 m. 70.	3 to 70	.4 m.							<u> </u>				
		74.7 to 75.3 m. 76.4 to 7	7.7 and	1											ŀ
		79.3 to 79.6 m. broken co	ore.												
		From 71.3 to 71.9 m and	74.7 to	0 75.9	m										
		green andesite with epido	te alte	ration.											
															
83.3	87.6	Andesite green: massive,	with 39	6									<u>.</u>		
		pliagoclase and scattered	narrow	quart	z										
		veinlets with trace of pyr	ite; 2%	<u>epido</u>	te	<u> </u>									L
		alteration throughout this	section	1.		:					GE	WARGIS G	EOLOGICAL	. CONSUL	TING INC.

LOCATION:				D	RILL	HOLE	LOG					HOLE 9	No. 0-3	P 6	of 6
AZIM:		ELEV:							PROPE	ATY: IN	IDEPE	<u>NDEN</u>	<u>CE</u>		
DIP:		LENGTH:				- 1631									
			FOOTAGE	READING	CORREC	T FOOTAG	E READIN	G CORRECT	CLAIM	NO:					
STARTED:								_ <u></u>	SECTIO	ON:					
COMPLETED	:		·		ļ		_			0 8Y: W	ilson	<u>A. Ge</u>	wargis		
PURPOSE:					ļ	-			DATE	LOGGED:					
									DAILL	ING CO:	·			-	
CORE RECOV	VERY:				L	1		1	ASSAY	ED BY:					
FOOT	AGE	DESCRIPTION				SAMPLE	F00	TAGE (III)	LENGTH	<u>02./t</u>	<u>oz/t</u>	ASS	AYS		
FROM	TO					NO.	FROM		(m)	Au	Ag	Cu%	Pb%	Zn%	
87.6	93.9	Andesite red; fine grained	with	<u>10% g</u>	reen	501587	91.4	92.3	0.9	K0.001	0.12				
		<u>andesite, 5% qtz veinlet</u>	at 80°	<u>to the</u>		588	92.3	93.9	1.0	0.001	0.16				
		<u>core axis and 2% epidote</u>	alterat	tion.					<u> </u>						
		<u>From 89.0 to 89.2 m, bro</u>	<u>ken co</u>	re				 		ļ					
		<u>From 92.3 to 93.9 m. 409</u>	<u>6 pink</u>	pheno	<u>cryst</u>					 					
		with trace of pyrite.						l l							
						501500	02 0	01 5	0.6	0.000	1 70	0.02	0.05	0 10	
93.9	95.0	Mineralized zone: banded	silica-j	asper-	{-'	500	93.9	94.5	0.0	0.008	1.78	0.23	0.65	3.13	
		barite veinlets with string	<u>er to</u>	massiv	e	- 590	94.5	95.0	0.5	0.005	0.48	0.04	0.42	0.88	
		<u>30% pyrite, slightly to st</u>	rongly	magne	tic										
		mainly from 94.2 to 94.6	mat	<u>80° 10</u>	_tnel_		· · · ·	├ ───┤	<u> </u>						
			-					<u>├</u>							
		Contract apple at 02.0 is	700 to	the e											
		<u>Contact angle at 35.3 15</u>	10- 10	the co	<u>ле</u>			t							
			•••••••			·									
95.0	100.3	Andesite red: same as see	etion fr	 'OM		591	95.0	96.5	1.5	0.001	0.07	C 0.01	0.01	0.04	{
	100.0	87.6 to 93.9 m		<u>v</u> 111		592	96.5	98.0	1.5	20.001	₹0.01				
100.3	103 93	Quartz diorite dyke, fine	graine	1 with									{		
100.0	100.00	10% white phonograph and	1 504 m	roon											
		phenocryst.	<u>– 1 – 6</u>												
			••••••••••••••••••••••••••••••••••••••												
		From 101.3 to 101.4 m fi	ne grai	ned											
		andesite.													
													.		
103.93		END OF HOLE													

GEWARGIS GEOLOGICAL CONSULTING INC.

.

1 × 7 × 1 × 1 8×

3. E

GEWARGIS GEOLOGICAL CONSULTING INC.

DIAMOND DRILL RECORD

DDH NO. 90-4

Page I/ _of 1

INDEPENDENCE PROPERTY, STEWART, B.C. MAP SHEET 104A/4W LOCATION

COLLAR	Northing	L 0+36 N	REMARKS Core recovery : 98 %
	Fasting	<u>0 + 78 E</u>	Average drilling per shift = $21.9m(72 \text{ ft})$
	Elevation	Approx 1100m	This hole has intersected from ;
			0-1.83m overburden
DRILLED	Azimuth	254	1.83-31.8m andesite ranging from
	Dip	-60	light to dark green
	Depth	<u>109.73m (360 ft</u>)	31.8-43.3m quartz diorite dyke
	• • • • • • • • • • • • • • • • • •	July 26.90	43.3-48.9m andesite dark dyke
Da Mo Yr	Started	<u></u>	<u>48.9-57.9m quartz diorite dyke</u>
	Completed	July 28.90	<u>57.9-62.9m</u> andesite dark grey
	Logged	July 27,28.90	62.9- 69.5m quartz diorite dyke
			69.5- 109.73m andesite ranging from
FOUIPMENT	Machine	Hagby Bruk	grey, red and grey,
	Core Size	BQ_T_K	red to dark grey to
	Din Tests	None	green.
	DID TESIS		(40) core samples were taken from
			this hole.
		was drilled to test the	a potential of Veins structure which is

Hole 90-4 was drilled to test the potential of Veins structure which is PURPOSE parallel to the Vein # 1 and 2 zones. This hole was drilled to the west and below Trench # 5 which has assays results of 3.05 Oz/t silver over

6.0m.

This hole failed to intersected any mineralized zone at depth, but has RESULTS intersected instead a quartz diorite dyke from 31.8 to 43.3m which has cut the mineralized zone.

Wilson Gewargis _____ Dg·Mo·Yr ___September .1990 GEOLOGIST

LOCATION:				D	RIII	HOLEI	ng					HOLE 9	No. 0-4		PAGE NO. 1 of 6
A 71M-		ELEV:		-					PROPE	RTY: INI	DEPEN	IDENC	E		
018-		LENGTH:			t	DIP TEST									
		CORE SIZE:	FOOTAGE	READING	CORRE	CT FOOTAG	E READIN	GCORRECT	CLAIM	NO:					
STARTED:	·				1		1	1	SECTIO	N:					
COMPLETED):		·				1	1	LOGGE	DBY: 1	Vilson	A. Ge	wargis	3	
PURPOSE:									DATEL	OGGED:					
									DRILLI	NG CO:	Fonto	Drilling	g Co.		
CORE RECO	VERY:								ASSAY	ED BY: (Cheme	x Lab,	Vance	ouver	, B.C.
FOOT	AGE (M)	DESCRIPTION				SAMPLE	F007	rage (m)	LENGTH	oz/t	oz/t	ASSA	AYS		
FROM	то					NO.	FROM	то	(m)	Au	Ag	Cu%	Pb%	Zn%	
0	1.83	Casing, no core recovered	•								· ·				
								I							
1.83	14.8	Andesite grey to green: m	<u>nedium</u>	to co	arse	501594	5.7	6.4	0.7	K0.001	0.11				
		grained with scattered qui	<u>artz an</u>	d epid	ote						ļ		{		<u> </u>
		veinlets throughout this se	ection.	mainly	<u> </u>							——			<u> </u>
		from 5.7 to 6.4 m, and 1	1.3 to	<u>14.8_n</u>	<u> </u>										┟────┤
····			10.0	- 11	<u> </u>	501505	10.2	11 5	1 2	0 001	0.02				
		From 6.4 to 6.6 m. 9.7 to	$\frac{10.0}{2}$	$\frac{111}{mht}$	<u>5 III</u>	001000	10.0	11.5	1.2	0.001	0.05				
		10 12.2 III 8110 14.8 10 16.	2.10.10	gur gr	een					<u> </u>		┠────┼			
		andesite.	<u> </u>		{										
		From 5.7 to 6.2 m, 9.1	to 10.3	m.		596	11.5	13.2	1.7	k0.001	0.03				
		13.2 to 13.5 m, and 16.2	to 17.2	. m.		597	13.2	14.8	1.6	0.001	0 08				
·		broken core.													
							•								
14.8	16.2	Andesite green: fine-grain	ed. slig	htlv											
		fractured with broken cor	e, cont	act ar	gle										
_		at 14.8 m at 70° to the o	ore ax	is.											
16.2	31.8	Andesite grey; medium to	coarse	<u>grain</u>	ed,	598	16.2	17.4	1.2	<u><0.001</u>	0.04	l			
		silicified with 10% quartz	veinle	<u>t, slig</u> l	htly										
		to strongly magnetic in so	ome see	etions.									ł		·
		From 20 5 to 20 1 back				500	20.5	210	05	20 001	0.01		ł		
		From 20.5 to 20.1 m Drok	en cor	e and		000 000	20.5	22 5	15		0.01	-	<u> </u>		
		apidote alteration		s and g	лее ц	601	$\frac{21.0}{22.5}$	24.0	1.5	20.001	0.02				
		epidote alteration.				602	24.0	25.5	1.5	20.001	0.02	<u></u>			
		From 21.0 to 27.6 m der	k grov	to gre	en	603	25.5	27.0	1.5	20.001	0.02		<u> </u>		
		andesite, slightly to strong	rlv mer	rnetie		604	27.0	28.5	1.5	20.001	0.02				
		with 20% scattered epide	to phen	orvet		605	28.5	30.0	1.5	20.001	0.02				
L		with 20/0 Stattered epide	us - funsi	una yst	,	606	34.0	31.8	1.8	(0.00 1	0.02	WARGIS GE	OLOGICAL	CONSUL	TING INC.

LOCATION:							~~~					HOL	Na,	1	PAGE NO.
				IJ	KILL	HULEL	UG						00-4		2 of 6
AZIM:	فسير است	ELEV:				19 TE CT			PROPE	RTY: IN	IDEPE	NDEN	SE.		
DIP:		LENGTH:					·								
·			FOOTAGE	READING	CORREC	FOOTAG	READING	CORRECT	CLAIN	NO:					
STARTED:								<u> </u>	SECT	ON:					
COMPLETED):		<u> </u>				<u> </u>	<u> </u>	LOGG	ED BY:	Vilson	A. Ge	wargi	5	
PURPOSE:						_	·		DATE	LOGGED:					
							<u> </u>		DRILL	ING CO:					
CORE RECO	VERY:							[ASSAY	ED BY:					
FOOT	AGE (M)	DESCRIPTION	1			SAMPLE	FOOT	AGE (III	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	TO					NO.	FROM	TO	(m)	Au	Ag	Cu%	Pb%	Zn%	
contin	ued	trace of pyrite and 10% (<u>uartz</u>	<u>veinlet</u>						<u> </u>					
		<u>1 mm wide and at low ar</u>	<u>igle to</u>	the co	ore				·	<u> </u>	L				L
		axis								ļ					[
			~ · · ·	- 4 -						L	L				l
		<u>From 23.6 to 23.7 m, 10</u>	% epid	ote						<u> </u>					<u> </u>
		alteration.								ļ	L				i
										L	l				
		<u>From 24.2 to 24.3 m, 20</u>	<u>% atz</u>	veinle	ts.										
		From 27.6 to 29.4 m fin	moin	d and						 					
		From 27.6 to 28.4 m, 1m	or 6 m	eu anu	esice_										
		intersects this section at	<u>21.0 III</u>	•			ł							<u>.</u>	
		<u>contact angle at 65° to t</u>													
		<u>and at 28.4 m, contact a</u>	igle at	<u></u>	2									<u></u>	
		the core axis.													
31.8	38.4	Quartz diorite dykes: fine	-graine	d. grey	i to				······						
		green in color. From 31.	8 to 33	3.0 m.											
		broken core with 20 to 2	5% phe	nocrvs	t.										
		Contact angle at 31.8 m	is 55°	to the			t								
		core axis, and at 43.3 m	is 55°	to_the											
		core axis.		<u></u>											
												i			·
38.4	39.6	Slightly magnetic with tra	ace of	pyrite.											
		From 39.6 to 43.2 m. bro	ken co	re.											
39.6	48.9	Andesite dark grey to gre	en in c	color:	5	01607	41.8	43.3	1.5	0.001	0.01				
		coarse grained. fractured	with b	roken	cord	608	43.3	44.8	1.5	(0.001	0.05	T			
		mainly from 44.0 to 44.5	m. 45	i.1 to 4	5.1m	609	44.8	46.3	1.5	0.001	0.06		<u> </u>		
		48.0 to 48.2 m. 48.0 to	48.9 m	scatte	ered	610	46.3	47.8	1.5	(0.001	0.05				
		fractured at 5 to 10° to	the cor	e axis	with	611	47.8	48.9	1.1	(0.001	0.02	T			

GEWARGIS GEOLOGICAL CONSULTING INC.

.....

all i a la

LOCATION:				D	RILL	HOLEI	.0G					HOLE	No. 90-4	P	AGE NO. 3 of 6
AZIM:		ELEV:							PROPE	кту: 11	NDEPE	NDEN	CE		
DIP:		LENGTH:	[1							
			FOOTAGE	READING	СОЯЯЕ	T FOOTAG	E READING	CORRECT		NO:					
STARTED:								╂	SECTIO	IN:	lilcon	A Car	voncia		
COMPLETED	:					-					lison	A. Gev	wargis		
PURPOSE:					1					NG CO:					
						-		ł	ASSAY						
CORE RECO	VERT:			l I		SAMPI S	FOOT	AGE (M)	1		07/1	ASS	AYS		
F001	AGE (111)	DESCRIPTION				NO.	FROM	TO	LENGTH	$\frac{ 02/1 }{ \Delta11 }$		Cu%	Ph%	7n%	
FROM		and filling mainly from	15 5 t	0 15 0					(11)	<u> </u>			10/0		
contin	ued	cavity mings manny from	40.0 1	0 45.0							<u> </u>				
		and 4(.7 10 48.2 III.						<u> </u>			·				
		From 45.5 to 46.0 m and	17.6 to	48 1	m			·		[
		southered atz veinlets with	trace		vite				·						
		Scattered dta vennets with	<u> </u>	<u> </u>							<u> </u>				
48.9	57.9	Quartz diorite dyke: coars	e-grain	ed wit	h										
		80% phenocryst up to 5 m	in in c	liamet	er.										
		30% pink pliagoclase 15%	green	chlori	te										
		alteration, slightly fractur	ed with	brok	en										
		core mainly from 49.4 to	50_0 m											·	
		From 53.1 to 55.4 m, pos	<u>sible fa</u>	<u>ult_zo</u>	ne						ļ				
		with gouge at 54.8 to 55.4	<u>l m.</u>												
		<u>From 56.0 to 56.6 m, bro</u>	<u>cen co</u> i	'e					······						
		<u>From 54.2 to 57.9 m scat</u>	<u>tered</u> e	plaote								┝────┤			
		alteration.					<u> </u>					┟────┤	·		
		Contact angle at 19.0 m	c 300	to com											
		$\frac{1}{1000}$ and at 57.0 m is 250	to the		ovid										
		axis and at 51.5 m is 55		CULE											
57.9	62.9	Andesite dark grev: mediu	m to c	coarse		501613	57.3	57.9	0.6	0.001	0.01				
		grained, scattered light or	een 15	to 20	%	614	57.9	59.4	1.5	(0.001	0.01				
		epidotite alteration through	hout t	nis sec	tion	615	59.4	60.9	1.5	(0.001	0.01				
		2% quartz yeinlets with t	race of	Dvrit		616	60.9	62.9	2.0	(0.001	0.01				
		mineralization and 5% fra	cture a	at 60°											
		to the core axis.													
		From 59.8 to 60.0 m atz	veinlet	s at 3	50]							
		to core axis.									GE	WARGIS G	EOLOGICAI	L CONSULT	ING INC.

•

.

LOCATION:					DUI		0.0			HOLE No.		PAGE NO.
				U	KILL	HULFL	UG			90-4		<u>.4 of 6</u>
AZIM:		ELEV:				DTECT			PROPERTY: INDEPE	NDENCE		
DIP:		LENGTH:	·		,	r 1851						
		CORE SIZE:	FOOTAGE	READING	CORREC	T FOOTAGE	READING	CORRECT	CLAIM NO:			
STARTED:							<u></u>		SECTION:			
COMPLETED	3				<u> </u>		<u> </u>		LOGGED BY: Wilson	A. Gewar	gis	
PURPOSE:									DATE LOGGED:			
							ļ		DRILLING CO:			
CORE RECOV	ERY:				<u> </u>		L		ASSAYED BY:			
FOOT	AGE (M)	DESCRIPTION				SAMPLE	FOOT	AGE	LENGTH OZ/T OZ/T	ASSAYS		
FROM	то					NO.	FROM	то	(m) Au Ag	Cu% P	5% Zn%	
62.5	69.5	Quartz diorite dyke: light	green.	mediu	<u>m</u>	501617	69.5	71.0	1.5 20.001 0.08	K0.01		
		grained with 10% white pl	iagocla	se, 5%		618	71.0	72.5	1.5 (0.001 0.14	K 0.01		
		green phenocryst, 5% gree	n pheno	<u>ocryst</u>	and	619	72.5	74.0	1.5 (0.001 0.07	< 0.01		
		2% scattered epidotite alt	eration	Fract	tured	620	74.0	75.5	1.5 (0.001 0.14	(0 .01		
		and broken core mainly fr	om_65.	5 to 6	5.9m	621	75.5	77.0	1.5 (0.001 0.09	K0.01		
		66.6 m and 67.2 - 67.4 m	Con	tact a	ngle	622	77.0	78.5	1.5 KO.001 0.02	K0.01		
		at 62.9 m at 70° and 69.	<u>5 at 75</u>	0	_	623	78.5	80.0	1.5 (0.001 0.01			
						624	80.0	81.8	1.8 (0.001 0.02			
						<u> 625 </u>	81.8	82.4	1.6 (0.001 0.17			
69.5	78.5	Andesite: dark grey, medi	um-coa	rse gr	ained	626	85.1	86.1	1.0 (0.001 0.01		· · · · · · · · · · · · · · · · · · ·	
		with 30 - 40% calcite ve	<u>nlets u</u>	<u>p to a</u>						<u></u>		<u> </u>
		few mm wide at 45 - 850	to the	core	axis.					<u> </u>		
		<u>10% quartz veinlets with</u>	Jasper,	<u>main</u>						<u> </u>		
		<u>from 75.8 - 76.0 m at 45</u>	<u>° to co</u>	<u>ore axi</u>	<u>s.</u>					<u> </u>		<u></u>
										ļ		
78.5	86.1	Andesite; reddish to green	<u>i in co</u>	lor,								
		<u>coarse grained with 30 to</u>	<u>_40%_</u> e	pidoti	te					<u>↓</u>		╂╼╼╼┥
 		veinlets at 80 to 85° to c	ore ax	is.	<u> </u>	<u> </u> .				 		┟╍╍┛
		<u>1 - 2 mm wide quartz ve</u>	inlets a	<u>at_80°</u>	to			<u></u>		┨	_	↓
		the core axis. Trace of	pyrite_	minera	li- -					┠┣		╂┩
		zation. Broken core from	80.7	to 81.(<u>) m</u>	<u>}</u>				╂───┼──		╂╼╼╼┥
		83.9 to 84.4 m.								 		┟╴╴╸┥
		B	······		<u> </u>	<u> </u>				├ ─── ├ ───		╂┅╼╍╍┥
l		<u>From 81.8 to 82.4 m quant</u>	<u>tz veir</u>	ilets a	<u>t </u>					╂╂───	_	
		<u>50° to core axis, a cm w</u>	ide, w	<u>ith fin</u>	e	——				<u>}</u> }_──		┠╼╼╼┥
		pyrite mineralization. Fr	<u>om 85.</u>	<u>1 to</u>				ł		<u>├</u>		<u> </u>
 		86.1 m epidotite alteratio	n							<u>├</u>		
	00.0						07 0	07.0	0 0 0 001 0 00	├		<u> </u>
86.1	89.8	Andesite: dark grey, medi	um gra	ined w	∕ith[_0Z(81.2	81.8	<u>0.0 KU.UUI U.U8</u>	<u>├───</u>		
		scattered 5-10% quartz v	<u>einlets</u>	mainly						L		ليستعمد

...

GEWARGIS GEOLOGICAL CONSULTING INC.

 ${\cal L}_{\rm eff} = -2$

3i •

LOCATION:				D	RILLH	IOLEI	.0G					HOL	.e No. 90-4		PAGE N 5 of
AZIM:		ELEV:							PR071	ERTY: IN	IDEPE	NDEN	ICE		
DIP:		LENGTH:			DIP	TEST									
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAG		CORRECT	CLAIN	NO:					
STARTED:									SECTI	ON:					
COMPLETED:	:		•						LOGG	ED BY: 1	Wilson	A. G	ewarg	is	
PURPOSE:									DATE	LOGGED:					
							<u> </u>		DRILL	ING CO:					
CORE RECOV	VERY:	·	<u> </u>			1			ASSA	ED BY:					
FOOT	AGE (m)	DESCRIPTIO			s	AMPLE	FOOT	AGE(m)	LENGT	oz/t	oz/t	AS	SAYS		
FROM	то		-			NO.	FROM	то	<u>(m)</u>	Au	Ag	Q1%	Pb%	Zn%	
continu	led	from 87.2 - 87.9 m with	oanded	silica											
		with Jasper and pyrite mi	neraliza	tion							<u> </u>				
		From 86.1 to 89.8 m brok	en_core	<u>د</u>								<u> </u>			<u> </u>
														<u> </u>	
89.8	96.7	Andesite; reddish green in	<u>color</u>	<u>with u</u>	<u> </u>	<u>01628</u>	93.2	_94.0	0.8	K 0.001	0.11	1			<u> </u>
		to 30% quartz veinlets th	oughou	<u>t this</u>							ļ	1			<u> </u>
		section at 80° to core axi	s. Fro	<u>m 93.2</u>	<u>m</u>										
		94.0 m. a section with 50	<u>% quar</u>	<u>tz veir</u>	lets_					.					↓
		at 75° to 80° to core axis	Fro	<u>n 93.6</u>	to					· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		<u> </u>	ļ
		94.0 m fine grained dyke	with co	ontact_	<u> </u>				·	ļ		<u> </u>	ļ		
		angle at 93.6 m at 70° to	<u>core</u> a	<u>xis, an</u>	<u>d</u>					ļ	ļ	ļ.,			_
		at 94.0 m fine grained a	ndesitic	dyke.				<u>+</u>					·		
		<u>From 95.4 to 95.9 m bro</u>	ken_cor	e									+		╂────
96.7	103.0	Andesite dark grey in col	or: fine	e grain	ed		· · · ·								
		with 5% quartz veinlets,	<u>1 mm</u>	wide a	t					<u> </u>					
		75 to 85° to core axis.	Stringe	<u>c of py</u>	rite					ļ		<u> </u>	<u> </u>	ļ	
		mineralization at 100 to	<u>101.0 n</u>]							 	_			┼──
		From 97.5 to 98.4 and 99	<u>.6 to 1</u>	<u>00.0 n</u>	┡—————————————————————————————————————					ļ		<u> </u>		┟────	
		broken core.							·			<u> </u>		<u> </u>	┨
								400 5		0.004	0.00	K0.04	120.01	0.00	
103.0	107.7	Andesite reddish/green in	<u>color;</u>	mediu	n5	U1629		103.5	0.5	<u>CU.001</u>		KU.UT	KU.U1		<u> </u>
		to coarse grained, with s	ections _.	of que	rtz	630	103.5	104.0	- 1.0	N 01	0.01	Di ni	K0.01	1- <u>8-81</u>	
		banded veinlets with jasp	<u>er, pyri</u>	ie,		632	104.0	107.0	- 0.4 - 0.1		0.11	0.01	K0.01	0.01	
		magnetite and barite mai	nly froi	<u>m 103.</u>	∪	622	107.0	107 7	07			Do 01	20.01	$\frac{0.01}{0.01}$	
		10 103.5 m. a cm wide a	nd para	ulet to	<u> </u>		101.0		0.1	0.001	0.02	P0.01	P	1	
						···		<u></u>		 		1			
		From 104 5 to 104 0 m h	ondod -										<u> </u>	<u> </u>	<u> </u>
{		issper megnetite and 200		mariz,									<u> </u>		
		$107.0 \pm 0.107.7 \pm 0.10$			<u> </u>		l	l-		L		WARGIE		L CONSIN	TING #

LOCATION:				D	RILL H	OLEL	OG					HOL	<mark>E No.</mark> 90-4		PAGENO. 6 of 6
AZIM:		ELEV:							PROPE	rty: INI	DEPEN	NDEN	CE		
DIP:		LENGTH:			DIP	TEST			••••••••						
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:									SECTIO	N:					
COMPLETED	:		· .		L				LOGGE	D 8Y: 1	Wilson	-A. G	ewargi	S	
PURPOSE:						L			DATEL	OGGED:					
									DRILLI	NG CO:				_	
CORE RECO	VERY:		L		L	L	<u> </u>	<u> </u>	ASSAY	ED BY:					
F007	AGE (M)	DESCRIPTION			S.	AMPLE	FOOT	AGE (m)	LENGTH	oz/t	oz/t	AS	SAYS		
FROM	то		<u> </u>			NO.	FROM	TO	(m)	Au	Ag	Cu %	<u>Pb%</u>	Zn%	
107.7	109.7	<u>Andesite dark grey to gre</u>	<u>en in c</u>	olor:							<u> </u>				
		medium to coarse grained	with :	3 - 5%								<u> </u>			
		<u>quartz veinlets up to 2 m</u>	<u>m in w</u>	<u>ridth a</u>	ut						ļ	<u> </u>			
		45 to 75° to core axis	·····								<u> </u>	ļ			
												ļ			
		<u>From 108.7 to 109.0 m. b</u>	roken (<u>core_a</u>	nd										<u> </u>
		slightly fractured with tra	ce of	<u>pyrite</u>								ļ			
		<u>mineralization and epidoti</u>	te alte	ration.								 			<u> </u>
100.7		END OF HOLE		······.							ļ	<u> </u>			<u> </u>
109.7		END OF HOLE										<u> </u>		· · ·	<u> </u>
							 								i
							ł	ł				<u> </u>			<u> </u>]
				<u></u>								┠			
								· · · · ·				<u> </u>			
		······································										<u> </u>			
					<u> </u>							<u> </u>			
												<u> </u>			<u> </u> [
												t			
	f														<u> </u>
												·			
															· · · · · ·
									i						

GEWARGIS GEOLOGICAL CONSULTING INC.

.

GEWARGIS GEOLOGICAL CONSULTING INC.

DDH NO. 90-5

and the second secon

DIAMOND DRILL RECORD

Page I/ of 1

LOCATION	INDEPENDE	NCE PROPERTY, STEWART, B.C. MAP SHEET 104 A/ 4W
COLLAR	Northing Easting Elevation	$\frac{L 2 + 07 S}{0 + 15 E}$ <u>Approx. 980m</u> REMARKS <u>Core recovery 97%</u> <u>Average drilling per shift = 19.2m(63 ft)</u> (49) core samples were taken from
DRILLED	Azimuth Dip Depth	080° this hole. -50°
Da·Mo·Yr-	Started Completed Logged	July 29.90 <u>August.2.90</u> July30,31,Aug.2.90
EQUIPMENT	Machine Core Size Dip Tests	Hagby Bruk ONRAM-1000 BQ T.K. None
PURPOSE	Hole 90-5 w westerly d possible ma	was drilled from line 2+07 S ,0+15 E, to the east to test the ipping Vein # 1 below the main Adit #1 , also to test for ssive sulphide mineralization to the west of Vein #1 zone.
RESULTS	Three zones 106.5-108 m zone which i 2.17 Oz/t sil 0.188 Oz/t g zinc over 1.	of mineralization were intersected , from 71.3-73.3m , and from 112.8-113.5m and best assays results returned from ntersected from 106.5-108m and assayed 0.152 Oz/t gold, ver and 2.02% copper over 1.5m with significant zone of old , 2.72 Oz/t silver , 2.54% copper,1.02% lead and 4.48% 1m.
GEOLOGIST	<u>Wilson Gewa</u>	rgis Da'Mo'Yr September ,1990

LOCATION:				D		0151	00					HOL	E Na.		PAGE NO.
				U	UILL II		D.G				TATION		90-0		1 01 14
AZIM:		ELEV:			DIP	TEST			PROPE	KIT: II	DEPEN	DENCE			
DIP:			FOOTACE	READING	manser	COOTACT		meer	<u> </u>						
			FUUTAGE	READING	WARECI	FOUTAGE	READING	WARECI		MU:					
STARTED:			<u> </u>				+		SECTIO	in:	Vilson	A G	MATO POT I	<u> </u>	
COMPLETED):								LUGGE	087: 7	113011	A. U	swargi	3	
PURPOSE:									DATE	.06660:	onto	Drill	na Co		
									DHILLI					•	DO
CORE RECO	VERY:		1					1.05 (m)	ASSAT		<u>Juenex</u>	Lao,	vanco	uver,	B.C.
F001	AGE (III)	DESCRIPTION	1		5	AMPLE	1001	AGE (M)	LENGTH	$\frac{oz}{t}$	$\frac{oz/t}{t}$	AS.	Di al		
FROM	TO					NU.	FRUM		<u>(m)</u>	Au	Ag	101%	PD%	<u> Zn%</u> _	+
0	1.8	Casing, no core recovere	d							<u> </u>	ļ	<u> </u>	<u> </u>		
													ļ	 	╞━━━┥
1.8	2.8	Andesite: dark green, med	lium-coa	arse								 	<u> </u>	ļ	
		grained, broken core, sligh	tly fra	ctured						<u> </u>	_	<u> </u>	ļ	<u> </u>	
										 	ļ				
2.8	34.3	Quartz: dark grey with 10	<u>-15% p</u>	henoci	yst						<u> </u>	 	<u> </u>	ļ	
		mainly (white plagioclase	<u>, 2% g</u> i	een							 	<u> </u>	<u> </u>	<u> </u>	
		phenocryst).									ļ		 		{
											ļ	ļ		ļ	-↓
		From 5.5 to 5.7 m and 6.	<u>4 to 7.</u>	<u>2 m.</u>							<u> </u>	ļ	 	<u> </u>	
	_	broken core, slightly fract	ured.								 	ļ	l		i
					-+							ļ	<u> </u>		┽╾╼╾┥
		From 7.7 to 25.8 m, porp	<u>hyritic</u>	diorite	è						ļ	_			
		coarse-grained 70-80° phe	nocryst	(40%								<u></u>	ļ		┨╼╍╼╼┥
		plagioclase and 10% green	pheno	<u>eryst).</u>									ļ	<u> </u>	╉╾╾╾┥
			<u> </u>								<u> </u>	 	<u> </u>		+
		From 8.5 to 12.0 m, brok	en core	A									<u> </u>		┟╍╍╍┥
					 							<u> </u>	 	<u> </u>	╂────┨
		From 12.4 to 12.7 m. bro	ken cor	e	<u> </u>						 	 	Į	 	┟┉───┨
·		slightly fracture with asso	ciated_	<u>clay a</u>	nd										╆{
		gouge at 40° to the core	axis		<u> </u>						<u> </u>	<u> </u>	<u> </u>		╂━━━━┫
											<u> </u>	ļ	ļ		<u> </u>
		From 24.3 to 25.0 m, bro	ken_cor	e							ļ	ļ			∔{
											ļ		ļ	ļ	
		<u>From 25.8 to 32.6 m, ligh</u>	t grey	to gre	en						 	ļ			╂╼╼╼╼┥
		fine-grained. 5-10% pheno	cryst (3	% pla	gio-l						ļ	ļ	<u> </u>		┟───┥
		clase, 2% dark green).										ļ	ļ	[↓
							·						 	ļ	
		From 25.8 to 27.4 m, 29.	<u>3 to 30</u>	<u>.5 m.</u>							 	ļ			
[and 32.4 to 32.6 m.										I	I	L	

4

•

GEWARGIS GEOLOGICAL CONSULTING INC.

-

LOCATION:				ם		HULLI	00					HOL	E No.	ľ	PAGE NO.
				U	UILL	HOLL L	DQ			IN	DEDE	NDEN	<u>0-0/</u> CF		2 01 1
AZIM:					D	IP TEST			PHOPE	ALT: 114		ND EN			
DIP:		LENGTH:	FOOTAGE	READING	COBBEC	TEOOTACI	READING	CORRECT		NO:			_		
						1001.00			SECTIO	N*					
STARTED:			· · · · ·						LOGGE		lilcon	A C	wongi		
COMPLETED	:					-	+		DATE	OGGED:	VIISOII	A. Ge	wargi	>	
PURPOSE:		······					+		DBILL	NG CO:					
		······································					1		ASSAY	ED BY:					
600T	AGE (m)				<u> </u>	SAMPLE	FOOT	AGE (m)	l	07/+	07/t	ASS	AYS		
FROM		DESCRIPTION	İ.		Ì	NO.	FROM	то	(m)			Cug	Ph%	7n%	
FROM		$\Gamma_{max} = 22.6 \pm 0.24.4 \text{ m}$ light	t groon	auer	t 7 5	501634	40.1	40.8	0.7	0 002					
		dionito with 35% white gr	on nla	gioclas		635	40.8	42.1	1.2	0.002	< 0.01	· · · · ·	1		
		phonoanyst with 3% groon	nhonog	ruct o	nd	636	42.1	42.4	0.3	0.001	K 0.01				
		294 dark biotite phenogras	t the the the test of test	ayst a	<u></u>										
		27 Oark Dionne-phendrys	L												
34.3	40.1	Andesite: reddish, fine-gra	ined, w	ith 19	6										
		epidote-chloritc stringer a	nd plag	icclase	e l										
		phenocryst scattered through	ghout t	this se	ction										
		From 34.4 to 35.7 m, bro	ken cor	e. pos	sible										L
		fault zone, with light gree	en, fine	-grain	edu.									·	
		quartz diorite from 34.7 t	0 34.9	<u>m.</u>									ļ		
												ļ			
		<u>From 36.3 to 36.5 m, and</u>	<u>38.6 t</u>	<u>o 38.8</u>	_m, [<u> </u>	 		
		broken core and slightly f	racture	d	<u> </u>				·			 	<u> </u>		
- 10 1	50.4											 			
40.1	53.1	Andesite: dark grey to gre	en me	dium-	1						·				
		coarse-grained with 10-15	<u>a quari</u>	z ven	nera										
		throughout this section.										<u> </u>			
		From 40.4 to 40.6 m quar	ta voin	lots w	uith										
		From 40.4 to 40.0 m dual	ho con	ovic									1		·
		green chiorite at 85° to 1	ne_core	AXIS.											
		From 40.8 to 41.7 m see	ttered	auartz											
		veinlets up to 10 cm wide	with	green											
		chlorite issper													
		MINTIN MURIT													
		From 42.1 to 42.3 m. qua	rtz vei	nlets											
		with dark green chlorite.	and qua	artz											
		veinlets at 45 to 80° to t	he core	e axis.								L			

GEWARGIS GEOLOGICAL CONSULTING INC.

٠

- -

÷

LOCATION:						n		101 E 1	00					HOL	No.		PAGE NO.
						U	ULL I		UU			T.)	DERE		0-0		3 01 14
AZIM:			ELEV:				DIP	TEST			PROPE	ATY: IN	DEPE.	NDEN	CE		
DIP:			LENGTH:		FOOTAGE	READING	CORRECT	1500TACE	READING	CORRECT.		NO.					
					FOOTAGE	nexoling	- COARCEI	FOULAGE	- AEADING	WARECI					h=-		
STARTED:								{				in av. W	Vilson	A Ge	wardis		
COMPLETED	•										DATE	00050	113011		wai gio		
PURPOSE:										 	08111	ING CO:					
CORE RECO	VERY				·			<u> </u>			ASSAY	ED BY:					
FOOT	AGE(m)	<u></u>					s	AMPLE	FOOT	AGE(m)	1	oz/t	oz/t	ASS	AYS		
EROM	TO			DESCRIPTION			-	NO.	FROM	TO	(m)	A11	Ασ	Cu%	Pb%	Zn%	T
		From	42.7 to	42 9 m 44 6	to 44	9 m						110			10/0		
		17 6	to 48.0 m	49.6 to 49	9.7 m.	and											
		510	to 51.8 m	broken co	re.	und											
		0.1.0										1					
		From	50.2 to	50.3 m, quai	rtz vei	nlets v	vith										
		dark	green chl	orite and tr	ace of	pyrite						[
53.1	69.6	Quar	tz diorite	: light grey,	pinkisl	n,	50) 1637	50.0	50.3	0.3	0.001	0.04				
		porph	vritic, m	edium to coa	arse gr	ained		638	50.3	51.1	0.8	0.001	0.01				
		pheno	pervst. (2))% green ph	enocrys	st. 409	6	639	51.1	51.9	0.8 0	0.01	<0.01				
		pinkis	sh.					_640	51.9	52.5	0.6	0.001	0.02			·	
								641	52.5	53.1	0.6	<u>0.001</u>	K 0.01				ļ
		From	62.8 to	<u>64.2 m, slig</u>	<u>htly_fr</u>	<u>acture</u>	d										
		and t	oroken co	<u>re with goug</u>	re and	clay.			{								+
		<u> </u>		0.5.0					·								{
		From	<u>63.4 to</u>	65.6 m fault	t zone	and				<u> </u>							<u> </u>
		Iract	ured at 4	<u>0-45° to the</u>	core	axis.											1
				00.5													+
		From	<u>_bb.2 to</u>	bb.7 m, proi	ken cor	'e				<u> </u>							<u>+</u> {
		Enom	69 1 to	60.6 m brol	ion aor			1642	69.6	60.6	0.0	0.001	0.01				
		riom		09.0 III. DIO	Nen cor	<u> </u>	00	1044	<u>uo.u.</u>	03.0			- V.V.I				1
		From	68.1 to	68.4 m. red	dish gr	een											
		alter	ation with	<u>un quartz di</u>	iorite	0011											
		ancer		m. yuu uz u													
		From	69.3 to	69.6 m. brol	ken cor	e witl	1										
		quart	z veinlet	s at 75° - 8	0° to t	he co	e I										
		axis.	contact	angle at 69.	6 m -	75°.											
													GE	WARGIS G	EOLOGICA	L CONSUL	LTING INC.

.

.

LOCATION:				n	ווות		0.0					HOL	E No.		PAGE NO.
				n	KILLI	IULE L	VG						<u>10-5</u>		<u>4 of 14</u>
AZIM:		ELEV:			Dis	TEST			PROPE	ATY: IN	DEPE	NDEN	CE		
017:		LENGTH:						<u> </u>							
			FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT		NO:					
STARTED:									SECTIO	N:					
COMPLETED	:		·			<u> </u>			LOGGE	D 8Y: V	Vilson	<u>A. Ge</u>	ewargi	5	
PURPOSE:						·	- 		DATE	OGGED:					
L							┦────		DRILLI	NG CO:					
CORE RECO	VERY:				L	<u> </u>	1		ASSAY	ED SY:					
FOOT	AGE (m)	DESCRIPTION			5		FOOT	AGE (III	LENGTH	oz/t_	oz/t	ASS	AYS		
FROM	TO					NO.	FROM	то	<u>(m)</u>	<u>Au</u>	Ag	<u>Cu%</u>	Pb%	Zn%	
69.6	71.3	Andesite: dark green, med	<u>ium to</u>	coars	e5	01643	69.6	70.7	<u>_1.1 ·</u>	0.001	< 0.01				
		grained with dark green pl	henocry	<u>yst an</u>		644	70.7	71.3	0.6	0.004	0.05		L		
		2% quartz veinlets scatter	ed thro	oughou	t	645	71.3	71.7	0.4	0.001	0.20	0.16	<u>K0.01</u>	0.08	ļ
		this section at 60°-75° to	the_co	<u>re axi</u>	s	646	71.7	71.9	0.2	0.001	0.04	0.02	K0.01	0.01	
															
71.3	73.3	Mineralized Zone: dark gre	en and	<u>lesite.</u>		647	71.9	72.2	0.3	0.011	4.53	6.04	<u>K0.01</u>	0.09	
		medium to coarse grained	with a	secti	on	648	72.2	72.8	0.6	0.003	0.81	0.44	K 0.01	0.03	
		<u>of banded quartz veinlets</u>	<u>with m</u>	assive		649	72.8	73.3	0.5	0.007	0.82	0.81	K0.00	0.05	
		<u>sulphide (chalcopyrite), ma</u>	inly_fro	om		650	73.3	74.0	0.7	0.002	0.01		-		<u> </u>
		<u>71.5 to 71.7 m with quart</u>	<u>z veinl</u>	<u>ets wi</u>	th										
		20% chalcopyrite and splal	<u>erite</u> a	ind										·	
		magnetite.													
		D													
		From 71.7 to 71.9 m, dar	grey,	quart											↓
		diorite prophyritic with 10	% Wnit	te plag	<u>10-</u>										
		clase phenocryst.													↓
						ł									
		<u>From (2.2 to (2.8 m dark</u>	green	andes											╂┩
		with trace of pyrite, mala	<u>cite st</u>	ringer											┟───┤
		at 77.7 m and 2 cm quart	<u>z veinl</u>	<u>ets at</u>		<u> </u> -		<u> </u>							╂
		parallel to 30° to the core	axis_	with	 										<u> </u>
		<u>сру - ру</u>				_									
		Tree 70 0 40 72 2			-+-										
			riz vel	mets 8	╨										
		5° to the core axis, 2-3 C		<u>: with</u>											
		15% cpy, py, and magneti			·m_								·		┟╼╼╼╼┫
		<u>quartz veins at 70° to the</u>	core	axis.											
							ł-								
															L

GEWARGIS GEOLOGICAL CONSULTING INC.

.

LOCATION:				D	RILL	HOLE	LOG					HOL	E No. 90-5		PAGE NO. 5 of 14
AZIM:		ELEV:			-				PROPE	ату: []	NDEPH	ENDER	NCE		
017:		LENGTH:	~~~~~			IP TEST									
		CORE SIZE:	FOOTAGE	READING	CORRE	CT FOOTAG	SE READING	CORRECT	CLAIM	NO:					
STARTED:									SECTIO)N:					
COMPLETED):	·					_		LOGGE	0 SY:	Wilson	A. G	iewarg	is	
PURPOSE:			<u> </u>			_			DATE	LOGGED:					
									DAILL	NG CO:					
CORE RECO	VERY:							<u> </u>	ASSAY	ED BY:					
F001	AGE	DESCRIPTION	I			SAMPLE	FOOT	AGE	LENGTH			AS	SAYS		
FROM	то					<u>NO.</u>	FROM	TO							
73.3	77.8	Quartz diorite: light grey.	porphy	ritic.											
		medium to coarse grained	with 3	0%_wh	ite										
		phenocryst, slightly fractur	ed wit	<u>h 2%</u>											
		quartz veinlets, narrow -	1 <u>mm</u>	vide a	t				_						
		75° to the core axis.													
		<u>At 70.3 m - contact angle</u>	<u>at 70°</u>	<u>o to th</u>	ie 🔤										
		core axis.													
		At 77.8 m contact angle a	t 70° 1	to the						L			<u> </u>		
		core axis.												L'	
												L	L		
77.8	82.1	Andesite: dark green, ma	ssive, v	vith	<u> </u>	<u>501651</u>	77.8	79.3	_1.5_	0.001	0.12				
		scattered narrow veinlets	of quar	<u>tz up</u>						_					4
		to 1 mm wide at 70° to t	he_core	<u>axis.</u>		<u>501652</u>	80.7	81.1	0.4	0.002	0.23	0.21	(0.01	0.10	4{
			.		<u> </u>	653	81.1_	_82.1	_1.0	0.002	0.17	0.04	ļ		
		From 79.3 to 80.1 m, quar	<u>tz veir</u>	ilets,									<u> </u>		
		10 - 15% White Diagioclase	e pneno	eryst.			ł	{				 	┠	<u> </u>	┽╾╾╾┥
		3% green Dnenocryst, narre	<u>ow qua</u>	riz									 		+
		veiniets at 70° to the core	e axis.									 	<u> </u>	 	
													ļ	<u> </u>	<u>+</u>
		At 79.3 m, contact angle	<u>at 60°</u>	to the				ł					 		┟╌╌╌┥
		core axis												<u> </u>	∔
		At 90.1 m contact and	at 650	to the											╂────┤
		At SU.I M. CONTACT Angle	<u>ai 65°</u>	to the				ł				<u> </u>			╂╼╼╼╼┥
		core axis.											 	<u> </u>	+
		From 905 to 907 m limb	t mour	auont.											∤ ∤
		dionito pomphymitic alight	<u>e grev</u>	unad -										<u> </u>	╂━━━━┥
		70% to the serie aris	y tract	ured a	┶╼╼┟╾	——		 ł	——					 	┟───┤
		IU UNE CORE AXIS.						L						L	

GEWARGIS GEOLOGICAL CONSULTING INC.

.

LOCATION:				D	RILL	HOLEL	OG					HOL	E No. 90-5		PAGE NO. 6 of
AZIM:		ELEV:			~				PROPE	aty: IN	IDEPE	NDEN	CE		
DIP:		LENGTH:				P 1651									
		CORE SIZE:	FOOTAGE	READING	CORREC	T FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:					 				SECTIO	N:					
COMPLETED):				ļ				LOGGE	D 8Y: 1	Wilson	<u>A. Ge</u>	ewargi	<u>s</u>	
PURPOSE:			ļ						DATEL	OGGED:					
									DAILLI	NG CO:					
CORE RECO	VERY:				έγ_	-L	L		ASSAY	D BY:					
F001	AGE (m)	DESCRIPTION]		1	SAMPLE	FOOT	AGE (m	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	то					NO.	FROM	то	(m)	Au	Ag	Cu%	Pb%	Zn%	4
		At 80.5 m, - Contact ang	<u>le at 6</u>	<u>5° to</u>							ļ				+
		the core axis.									 			 	
·											<u> </u>			ļ	
		<u>At 80.7 m - Contact angl</u>	<u>e at 75</u>	o to							<u> </u>				
		the core axis.												 	+
											·				
		<u>From 80.2 to 82.1 m, qua</u>	<u>rtz veu</u>	<u>nlets</u>							ł			<u> </u>	
		with stringer of pyrite mi	neraliza	ation.											+{
		From 80 to 82.1 m. broke	n core.												
											<u> </u>			· · · · · ·	<u></u>
82.1	88.8	Quartz diorite: light greer	i, proph	<u>vritic</u> ,	-+										4
		<u>medium to coarse grained</u>	pheno	<u>erysts</u>	up									 	
		to 10%, mainly dark green	<u>n pheno</u>	cryst,										 	{
		<u>scattered narrow quartz v</u>	einlets	at 70°	<u> </u>		· · · · · · · · · · · · · · · · · · ·								+
		to the core axis.													<u>+</u>
			3-4												 {
			iore an	erallo	He										<u> </u>
		From 92 1 to 93 5 m 94 1	1 to 94	50 m								. <u>.</u>			+
		and 85.8 to 86.9 m broke	$\frac{1004}{1000}$	<u></u>											<u>+</u>
		and 65.6 to 60.9 m. Droke	n core,												
88.8	92.0	Andesite: dark green, fine	to me	dium	<u> </u>					· · · · · · · · · · · · · · · · · · ·					t
	02.0	grained with quartz vein	ets un	to $1/2$	mm										
		in diameter at 80° to the	core a	xis. w	ith										
		speck of pyrite and quarty	z and w	vhite			·								
		phenocryst plagioclase up	to 10%	from											
		9.0 to 92.0 m.													
		From 89.7 to 89.8 m, epic	ote alt	eratio	n.										

GEWARGIS GEOLOGICAL CONSULTING INC.

LOCATION:				D	RILL	IOLEI	LOG					HOLE	No. 90-5		PAGE NO. 7 of 14
AZIM:		ELEV:		-					PROPE	RTY: II	IDEPI	ENDEN	CE		
DIP:		LENGTH:			DI	TEST									
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAC	E READING	ORRECT	CLAIM	NO:					
STARTED:									SECTIO)N:					
COMPLETED):		•						LOGGE	D SY:	Wilson	n A. Ge	ewargi	is	
PURPOSE:									DATE L	.OGGED:					
							_		DAILLI	NG CO:					
CORE RECO	VERY:				l			<u> </u>	ASSAY	ED BY:					
FOOT	rage (m)	DESCRIPTION			s	AMPLE	FOOT	AGE(m)	LENGTH	oz/t	_oz/t	ASS	AYS		
FROM	то			· · · · ·		NO.	FROM	то	(m)	Au	Ag	Cu%	<u>Pb%</u>	Zn%	
		From 88.8 to 89.0 m, brol	<u>cen_cor</u>	'e											
															<u> </u>
92.0	99.7	Quartz diorite: light grey	to ligh	t gree	<u>n, </u>					ļ		ļ			
		porphyritic, with less than	<u>10% e</u>	reen											
		phenocrsts and with 1-2%	epidote	2.											{
				0											┼
		From 97.1 to 97.2 m. 97.7	10 98	<u>.9 m.</u>					···				·····		
		broken core and lightly in	lenurea	•											+{
		At 09.0 m Contact Angle	ot 70	1º to											+
		At 92.0 III. Contact Angle	<u>at - ((</u>	<u> </u>					·			++			
		the core axis.										1 1			
99.7	103.8	Andesite: dark green, with	scatte	ered	50	1654	99.7	100.4	0.7	0.001	0.03	0.02			
		epidote up to 40% in som	e secti	ons		655	100.4	101.9	1.5	0.001	0.01	K0.01			
		mainly from 100.8 to 101.	0 m.			656	101.9	103.3	1.4	0.001	0.01	0.01			
		101.3 to 101.4 m. 101.6 to	<u>o 10'1.7</u>	<u>m,</u>		657	103.3	103.8	0.5	0.001	0.02	K 0.01			
		<u>102.1 to 102.3 m, with qu</u>	<u>artz v</u> e	einlets											↓
		and trace of pyrite.										<u> </u>			
															┟───┤
103.8	106.5	Mineralized Zone: banded-	<u>quartz-</u>	<u>lasper</u>	[5]	01658	103.8	104.7	0.9	0.001	0.06		0.12	0.31	┟┅╍┙┨
		veinlets within the dark g	reen ar	idesite	<u> </u>	<u> </u>	104.7	105.2	0.5	0.002	0.04		0.08	<u>0.29</u>	<u> </u>
ļ		with chalcopyrite, pyrite,	magnet	<u>ite an</u>		660	105.2	105.5	0.3	0.024	0.19	0.02	0.19	0.65	
		epidote alteration along v	einlets	and			_105.5_	_106.5		0.001	0.02	KU.U.I	0.04	0.74	
			-									┼╌╌╌┤			
	[At 1047 m 2 am wide	iespor	voins								<u> </u>			
		$A_1 = 104.6 \text{ m} = 4 \text{ m} \text{ where}$	Jasper_	venis				i				<u> </u>			
		мии совеорусие.										11			
		From 105.2 to 105.4 m a	uertz i	asper								11			
		with chalcopyrite, pyrite	<u>. 141 - 141 - 1</u>												
	F	men charcopyritor pyritor						·····			GE	EWARGIS G	EOLOGICA	. CONSUL	TING INC.

LOCATION:				מ	RII	HOLE	100					HOLE	No. 90_5		PAGE NO.
AZIM:		ELEV:		-					PROPE	RTY: IN	DEPE	NDEN	<u>50-5</u> 7E		<u> </u>
DIP:		LENGTH:			I	DIP TEST				11	DDI L				
		CORE SIZE:	FOOTAGE	READING	CORR	ECT FOOTAG		CORRECT	CLAIM	NO:					
STARTED:								1	SECTIO	N:					
COMPLETED):		·					1	LOGGE	DBY: V	Vilson	A. Ge	wargi	S	
PURPOSE:									DATE	OGGED:	······				
									DAILLI	NG CO:		<u></u>			
CORE RECO	VERY:								ASSAY	ED BY:					
F001	rage (m)	DESCRIPTION				SAMPLE	F001	rage(m)	I ENGTH	oz/t	oz/t	ASS	AYS		
FROM	то					NO.	FROM	TO	(m)	Au	Ag	Cu%	Pb%	Zn%	
		From 105.3 to 105.5 m. b	roken o	ore											
		with narrow quartz veinle	ts at 4	5° to	65°										
		to the core axis.													
106.5	108.0	Mineralized Zone: highly r	nineral	ized		501662	106.5	106.9	0.4	0.055	0.65	0.58	0.36	0.64	
		banded-quartz-jasper, vein	<u>lets up</u>	<u>to 90</u>	%	663	106.9	107.7	0.8	0.237	0.75	0.52	1.37	6.08	
		within dark green andesite				664	107.7	108.0	0.3	0.056	7.98	7.92	0.08	0.23	
		<u>From 106.5 to 106.9 m. s</u>	ection_	of ma	ssive									L	
		sulphide (2% chalcopyrite.	<u>pyrite</u>	galer	<u>18.</u>							[]			
		<u>magnetite) with 30% quar</u>	tz, 209	<u>jaspe</u>	r.										
		44 400 F	4 4 77	CO 40											
		At 106.5 m. quartz veime	<u>is at 7</u>	5° 10											
		the core axis.									·				
		Enom 106 0 to 107 7 m m	accivo	ahola								┝}			
		pyrite galena 40% jasper	and 2	0% α	artz										[]
		veinlets	ung b	<u>v /v qu</u>	~1.02										
		V 011120 (D)		- <u></u>											
		From 107.7 to 108.0 m 5	0% വാട	ntz.	{										
		5% jasper and 30% chlorit	tic alte	ration											
		with 60% chalcopyrite and	d pyrite	2.	†										· ·
								t							
108.0	112.8	Andesite: dark green, fine	-graine	d, slig	htly	501665	108.0	109.5	1.5	0.003	0.06	0.04			
		fractured with quartz veir	nlets w	ith		666	109.5	111.0	1.5	0.001	0.05	0.02			
		associated pyrite minerali	zation	at 45°		667	_111.0	112.8	1.8	0.001	0.04	0.02			
		to 70° to the core axis.													
													•		
		From 111.70 to 112.8 m,	broken	core	with										
		trace of pyrite mineraliza	tion th	roughe	ut										

this section.

GEWARGIS GEOLOGICAL CONSULTING INC.

LOCATION:				ת	0111	101 E I	0.0					HOL	E No.		AGE NO.
				U	UILL I		Vu			TNT	DEDE		<u>90-5</u>		<u>9 of 14</u>
AZIM:					DIP	TEST			PROPE	ATY: IIN	DEPE	NDEN	JE		
DIP:			FOOTAGE	READING	CORRECT	FOOTAC	READIN	C CORRECT							
CTARTED.						1.001-01		d WAREET	SECTIO						
STARTEU:									10665	0	lilcon	A Co	wondia		
PURPOSE:									DATE	06650	115011	<u>A. Ge</u>	wargis		
ronrose.					·		<u> </u>		DBILLI	NG CO:					
CORE RECO	VERY:					1	<u> </u>		ASSAY	ED BY:		······			
FOOT	AGE (m)	DECORIBIION			s	AMPLE	FOO	TAGE (m)		oz/t	oz/t	ASS	AYS		
FROM	TO	DESCRIPTION				NO.	FROM	TO	(m)	Au	A g	Cu%	Pb%	Zn%	
112.8	113 5	Mineralized Zone: 60% qu	artz ve	in wit	h 50	1668	112.8	113.5	0.7	0.068	2.33	2.72	0 12	0.30	
		massive sulphide up to 60	% mair	ilv cha			1.1.21				1			<u>u.u.u.</u>	
		pyrite up to (2% copper).	dark g	reen						l					
		andesite with medium to	coarse	graine	d					r					
		with chlorite.		<u> </u>											
									-						
		At 112.8 m – quartz vei	<u>nlets</u> w	<u>ith 1%</u>	5										
		jasper at 35° to the core	axis.												
113.5	117.2	Andesite: dark green, mas	sive, w	<u>ith 50</u>	% 50	1669	113.5	114.3	0.8	0.002	0.14				
		epidote and 25% white pla	igioclas	se phe	no-									•	
		cryst throughout this sect	ion, sli	ghtly				[]				ļ			
		<u>fractured at low angle to</u>	the co	re axi	s					_					
		<u>From 114.7 to 115.0 m ar</u>	ld 115.	<u>9 to </u>	{		· · ·	···							
		116.3 m, broken core.													
117 9	123 0	Andesite: light green find	graino	d with	50	1670	199 6	102 4	10	b 001	0.02				{
	120.0	green and white fine phone	-grame	throu	mb l		144.0	123.4	_ <u></u>	J.UU.I	0.00				
		out this section mainly fu	$\frac{001}{10}$	$\frac{1}{2}$ 6 m				 		-					
		121.5 m.	<u>vm_11</u>												
								-							
		From 122.6 to 122.8 m. s	tringer	of				f							
		pyrite within narrow fract	ure ma	inly											
		from 122.6 to 122.9 m.													
123.9	127.2	Andesite: light green, med	lium to	coars	e 51	1671	125.9	127.2	1.3	0.002	0.001				
		grained with 20% chlorite	altera	tion w	ith]	
		quartz veinlets 1 - 2 mm	wide_a	t 45º											
		to the core axis, and trac	<u>e of p</u>	yrite									1		J
		throughout this unit.		-		1					GE	WARGIS G	EOLOGICAL	. CONSULT	TING INC.

LOCATION:				D	RIL	HOLFI	NG					HOL	E No. 90-5		PAGE NO. 10 of 1
AZIM:		ELEV:		-					PROPE	RTY: IN	DEPE	NDEN	°E		
DIP:		LENGTH:			DI	TEST							<u> </u>		
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAG		G CORRECT		NO:					
STARTED:						1	1	1	SECT	ON:					
COMPLETED	:		·			1			LOGG	ED BY: V	Vilson	A. Ge	wargis		
PURPOSE:									DATE	LOGGED:					
									DRILL	ING CO:					
CORE RECO	VERY:								ASSAY	ED BY:					
FOOT	AGE (m)	DESCRIPTION				AMPLE	F001	rage(m)	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	то		<u> </u>			NO.	FROM	то	(m)	Au	Ag	Cu%	Pb%	Zn%	
		From 124.8 to 127.2 m, b	roken o	ore.											
127.2	134.2	Andesite: light green, fine	-graine	d, mas	sive_									L	
		with 5-10% green phenocr	<u>vst. sli</u>	ghtly								L		ļ	
		fractured with quartz vein	lets.	less (1	han					<u> </u>				 	<u> </u>
		1 mm wide, scattered thro	oughout	this 1	init					 	ļ				<u> </u>
		at 45° to 75° to the core	axis.	· · · · · · · · · · · · · · · · · · ·		<u>+</u>								[↓ {
		Enom 121 4 to 121 5 m on	1 120	4- 100						┣───	<u> </u>				<u> </u>
		From 131.4 to 131.5 m an	<u>a 132</u>	10 132	<u>.60m</u>						 				{
		broken core.								<u> </u>		}			
		From 132.9 to 133.0 m d	ark gro	<u></u>						┠───					
		andesite breccia	IIN GIU							<u> </u>					
		andobite breceiu.													
134.2	140.4	Andesite: light green, fine	-graine	d with											
		1% green phenocryst, sligh	tly fra	ctured											
		At 134.2 m, contact angle	_at_60°	<u>, to th</u>	ne										
		core axis.													
		At 140.4 m, contact angle	<u>at_60°</u>	<u>to th</u>	1e										
		core axis.		·											line l
-140-2	100 0						· · · · · · ·								
140.4	162.0	Andesite breccia: dakr gre	en, coa	rse-gr	aindd	1070	145 0	145 5	0.2	0.000	0.01				
		with 10-13% epidote throu	gnout 1	.ms	2000	1072	143.2	143.5	0.3	0.002	0.01				
		Section with 2% rock frag	ments	up to	<u>2011</u>	679	150 4	150 7	0 2	0.003	0.91	0 30			├ ───┥
┝────┤		From 143.2 to 143.6 m 1	tht ore	on fir		013	150.4	150.1	0.0	_0.003	0.41	0.30			
		grained andesite	sni gre	<u>en, 11</u>	<u>16-</u> -	674	150 /	150 4	1.0	0.001	70.01				
		At 142.2 m Contact and	ot 00	0 40 41		_0/4	199.4	198.4		0.00	0.01				{
		AL 143.4 III, CONTREL Angle		<u>~_10_11</u>	le_L_	L_				L	L	_			

core axis.

LOCATION:				n	1110		0.0					HOL	E No.		PAGE NO.
				U	KILL	NULE L	UG						90-5		<u>110f 14</u>
AZIM:					DI	PTEST			PROPE	RTY: IN	DEPE	<u>ENDEN</u>	CE		
DIP:			FOOTACE	READING		1.000									
		(UNE SIZE:	FOUTAGE	READING	CONNEC	FOUTAG	E READING	S CORRECT	CLAIM	NO:					
STARTED:									SECTR	in:	Vilson	XC	OWORG	i d	
CUMPLETEL); 						+				115011	A. 0	ewarg.	15	
PURPUSE:										.DGGED:				**	
CORE RECO	VERY:		<u> </u>						ASSAY	ED BY:	· · · · · · · · · · · · · · · · · · ·				
FOOT	AGE (m)	0.5000.07101	•			SAMPLE	FOOT	AGE (m)		loz/t	oz/t	AS	SAYS	·····	
FROM	то	DESCRIPTION	4		ļ	NO.	FROM	TO	LENGTH	Au	Ag	ICu%	IPb%	Zn%	1
		At 143.6 m - Contact ang	le at 6	0° to	5	01675	161.6	162.0	0.4	0.001	0.01	10.01			
		the core axis.	10 41 0	<u> </u>						0.001	0.01				
												1		1	
		At 145.3 m - Contact ang	le at 5	5° to	the							1	t	1	<u> </u>
		core axis.										1	1		
														1	
		At 145.9 m - Contact ang	<u>le at 5</u>	5° to	the										
		core axis. Quartz veinlet	s <u>, 1/2</u> d	em wi	de										
		with pyrite, chalcopyrite,	<u>at 30°</u>	to the											
		core axis.										<u> </u>			
														·	i
		<u>From 147.2 to 147.5, brok</u>	en core	e_with										Į	
		gouge and clay fault zone	4									ļ			
												ļ		<u> </u>	
		<u>From 157.0 to 157.4 m, li</u>	ght gre	en								 	 	<u> </u>	
		andesite, the grained and	Contac	t angi	<u>e </u>								}		
		at 40° to the core axis										<u> </u>			
		From 158.4 to 159.4 m li	oht ore	en							<u> </u>	<u> </u>	<u> </u>	<u> </u>	
		andesite with 1/2 mm wid	e diart	z vein								 			
		at 50° to the core axis at	nd fine	to	<u> </u>							<u> </u>			
		disseminated 2-3% purite		<u></u>				t					l <u></u>		
		Giosommated 4-070 pyrile.													
		At 158.4 m, Contact angle	e at 45	° to t	he							1			
		core axis.								· · · · · ·					
		At 159.4 m. Contact angle	e_at_50	<u>o to t</u>	he										
		core axis.													
		···	<u></u>												
														L	
											GE	WARGIS G	EOLOGICA	L CONSUL	TING INC.

.

.

LOCATION:			······································	D	RILL	HOLEI	.0G					HOLE	No. 90-5		PAGE NO. 12 of 1
AZIM:		£LEV:			n	PTEST			PROPE	RTY: 1	NDEPI	ENDEN	UCE		
OIP:		LENGTH:	[<u>coortec</u>	Lac vourie				1	1						
				READING	WARE .	LI FOOTAG	E READING	CORRECT		NO:					
STARTED:			 		I——		_	<u> </u>	SECTIO)N:		4 0			
COMPLETED):				├ ───				LOGGE	D TY:	wilson	<u>A. Ge</u>	ewargi	S	
PURPOSE:		<u></u>				_		<u> </u>		LOGGED:					
					<u> </u>		+			ING CO:					
CORE RECO	VERY:				L				ASSAY	ED BY:					
F001	FAGE (M)	DESCRIP	PTION			SAMPLE	FOOT	AGE(M)	LENGTH	oz/t	oz/t	ASS	ATS		
FROM	TO					.UN	FROM		(m)	Au	Ag	Cu%	Pb%	Zn%	
		<u>From 160.6 to 161.0 </u>	n, light gro	een											
		andesite, fine grained.									L				
				<u> </u>											{
		<u>At 161.9 m. 2 cm w</u>	ide banded	<u>quartz</u>	z					ļ	<u> </u>				
		veinlets with 15% pyr	ite at 75°	to the											+
		core axis.								ļ	ļ				↓
						504050	100 0	400.0	1.0	0.001	0 001	70 01			
162.0	169.0	Andesite: light green,	fine-graine	d <u>, slig</u>	htly	501676	162.0	163.0	1.0	KU.UU I	0.001	$\langle 0.01$			↓ {
		fractured from 162.0	to_164.5_m	fine-	ł-	677	163.0	164.5	1.5	<u>KU.UU1</u>	<u>KU.U I</u>	K0.01			↓
		<u>disseminated trace of</u>	<u>pyrite_alor</u>	g the							ļ	ļ			
		fracture.								 	ļ				<u> </u>
		Dec. 107.0 4- 100.7	· · · · · · · · · · · · · · · · · · ·				<u> </u>			<u> </u>					
		From 167.6 to 168.7 (lark green	andesi	te						 				+
		breccia with rockiragi	<u>nents up to</u>	<u> </u>	՟ՠֈ										
		size.					<u>·</u>								<u>}</u>
160.0	102 02	Andosito broggiot dark	<u> </u>	dium	to	501678	171 8	172.3	0.5	0.004	0.09	0.03			
109.0	192.04	Andesite Dreccia: dark	green, me	nto ur	<u>-0</u>	670	172 3	173 3	10	0.004	0.00	0.01			i
		to 2 am wide and 5 1	00 opidata			013	179 2	17/ 9	15	0.002	0.01				
		throughout this south		anter		 	17/0	176 7	1.0	0.001	0.01				
		urougnout this sectio	La			00	-114-0	1.0.1	U						
		Enom 171 0 to 170 0	tonk moon	with		604	100 0	100 77	0.5	0.001	0.01				<u> </u>
	[discominated punite	lark green.			004		-100.1			0.0.1				
		uissemmated pyrite, q	UMELS SHOL	-DICIOLE											<u> </u>
		veimets.													
		From 172 3 to 172 2 .	n light gr	on fi	no.										
		grained with discoming	tod punito	minor								├		··	 1
		ization	neu pyrne	nmer	au . 	t									
		12411011.						ł							
		At 173.3 m - Contact	angle at	30º to	the										
		Core axis.	angle at t	<u></u>	TTIG:		I						FOLOGICAL	CONSUL	TING INC.

LOCATION				D	RILL	HOLEI	LOG			IN	DEDE		E No. 0-5	P	AGE NO. 13 of 14
AZIM:					0	DIP TEST			PROPE	RTY: 111	DELE	NDEN			
017:			FOOTAGE	READING	CORRE	CT FOOTAC		CORRECT		NO:					
STARTED:							-		SECTIO)N:					
COMPLETE	0:		· ·					1	LOGGE	DEY: V	Vilson	A. Ge	wargis		
PURPOSE:									DATE	OGGED:					
									DAILL	NG CO:					
CORE RECO	OVERY:			<u> </u>	<u> </u>				ASSAY	ED BY:					
F00	TAGE (M)	DESCRIPTION	1		1	SAMPLE	FOOT	AGE(m)	LENGTH	oz/t	oz/	t ASS	AYS		
FROM	то					NO.	FROM	то	(m)	Au	Ag	Cu%	Pb%	Zn%	
		From 173.3 to 176.7 m da	ark gree	en,											
		andesite breccia with diss	eminate	ed pyri	te					 	Į	ļ			
	<u> </u>	up to 3-5%.										Į			
		From 176 7 to 177 9 m 1	abt and	on fi											
		grained and with 30% oni	doto alt	tonatio	ne-			{			<u> </u>				
		and trace of purite Scat	tored r		u	·			·		<u> </u>				
		«1 mm quartz veinlets a	t 750 t	o the							<u> </u>				
		core axis.	Å⊷ÅA	<u> </u>							<u> </u>				
		At 176.7 m and 177.2 m,	- Cont	act an	gle									·	
		at 60° to the core axis.								-					
						· · · · · ·									
		<u>At 178.3 m, quartz veinle</u>	ts 2_	em wi	de.										
		From 179 3 to 179 5 m b	nolvon o												
		From 178.5 to 178.5 m. D	roken c	ore.											
		From 181.7 to 182.8 m	oht ore	en	[-			·							——— í
		porphyritic diorite, 15-209	6 white	nlagi	5-1										
	 	clase phenocryst up to 1	mm in	size											
		slightly fractured and 2%	epidote	string	rer.										
															·
		From 183.5 to 184.0 m, li	ght gre	en, wi	th										
		narrow quartz veinlets up	<u>to 1 m</u>	<u>m</u>		 						 			
	ļ	A4 100 F						ļ				└─── ┨			
		At 183.5 m - Contact ang	<u>le at 7</u>	<u>'5° to</u>	the .									ŀ	
		dore axis and at 184.0 m	15_80°_	to the								├}	<u> </u>	<u> </u> -	
		core axis.					·····					 	<u> </u>	<u>-</u>	
									{		·				{
L	I				L				l						

GEWARGIS GEOLOGICAL CONSULTING INC.

٠

.....
LOCATION:				D	RILL H	IOLE L	OG					HOLI	E No. 90-5		PAGE NO. 14 of 1
AZIM:		ELEV:			DIP	TEST			PROPE	RTY: IN	DEPEI	NDENC	CE		
DIP:		LENGTH:					r		۔ . د						
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:						ļ			SECTIO	N:					
COMPLETED	:								LOGGE	DBY: W	llson	<u>A. Ge</u>	wargis		
PURPOSE:							 		DATEL	OGGED:					
		<u></u>							DRILLI	NG CO:				-	
CORE RECOV	VERY:				L	L			ASSAY	ED 8Y:					
FOOT	AGE (M)	DESCRIPTION			S.	AMPLE -	FOOT	AGE (III	LENGTH	oz/t	oz/t	ASS	AYS		
FROM	то					NO.	FROM	TO	<u>(m)</u>	Au	Ag	Cu%	Pb%	Zn%	
		From 184.5 to 184.9. light	green.												
		<u>Contact at 184.5 m is 50°</u>	to the	<u>core</u>											
		axis, and at 184.9 m, is 6	<u>5° to t</u>	<u>he cor</u>	e										
		axis.										l			
								$ \longrightarrow $							
		From 186.2 to 186.7 m qu	<u>artz ve</u>	einlets											
		with chloritic and epidote	alterat	<u>in wit</u>	<u>h</u>										
		trace of pyrite.													
		At 186.2 m - Contact ang	<u>le at f</u>	i <u>0°.</u>											
															<u> </u>
		From 189.0 to 192.0 m, so	attere	<u>d</u> quar	tz										
		<u>veinlets up to 1/2 cm_wid</u>	<u>e sligh</u>	tly											
		fractured.													
												L			<u></u>
		<u>From 189.5 to 189.6 m, fa</u>	<u>ult zo</u>	<u>ne at</u>											
		<u>60° to the core axis.</u>													
															↓
														<u> </u>	↓
															
															
															Line I
															
												 			
							ļ_								
							l.						<u> </u>		
															L

.

GEWARGIS GEOLOGICAL CONSULTING INC.

.....

DDH NO. 90-6

an the state of the

DIAMOND DRILL RECORD

1

Page I/ of 1

LOCATION	INDEPENDE	NCE PROPERTY, S	TEWART , B.C.	MAP SHEET 104A/4W
COLLAR	Northing Easting Elevation	<u>L 0+07 S</u> 0 + 15 E <u>Approx. 980m</u>	REMARKS Average drill Hole 90-6 ha 0-1.8m	Core recovery : 97 % ing per shift= 24.9m(81.7 ft) as intersected from ; overburden
DRILLED	Azimuth Dip Depth	080 -60 149.35m(490ft)	1.8-25.8m 25.8-64.7m 64.7-138.0m 138.0-149.35	andesite green andesite grey to green quartz diorite dyke im andesite breccia.
Da•Mo•Yr•	Started Completed Logged	Aug.2.90 Aug.5.90 Aug.4,5.90	(18) core sa this hole.	mples were taken from
EQUIPMENT	Machine Core Size Dip Tests	Hagby Bruk ONKAN - 1000 BQ T.K. None		
PURPOSE	Hole 90-6 to test the hole 90-5	was drilled from th down dip extension	e same set-up as of mineralized z	s hole 90-5 zones intersected in
RESULTS	This hole fa	ailed to intersected	any mineralized	zones. The assay results
	returned fro	om this hole range l 0.35 Oz/t silver and	etween 0.001 to 0.001 to 0.309	5 0.004 Oz/t gold, % copper.
GEOLOGIST	Wilson Gewa	irgis [a·Mo·Yr	ember ,1990

LOCATION:				D	RILLH	IOLEL	DG					HOLI	E No. 10-6	ľ	PAGE NO. 1 of 7
AZIM:		ELEV:							PROPE	rty: IN	DEPE	NDEN	CE		
DIP:		LENGTH:			DIP	TEST									-
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:							1		SECTIO	N:					
COMPLETED):								LOGGE	DBY: W	ilson_	<u>A. Gev</u>	vargis		
PURPOSE:			L			ļ	[DATEL	OGGED:					
						<u> </u>			DAILLI	NG CO: T	onto	Drilling	<u>r Co.</u>	······	
CORE RECO	VERY:		<u> </u>		L	<u> </u>	l	L	ASSAY	ED BY: C	<u>lheme</u>	x_Lab,	Vanc	ouver,	B.C.
FOOT	AGE (m)	DESCRIPTION	1		S		FOOT	AGE (m)	LENGTH	$oz/t_$	oz/t	ASS	AYS	r	
FROM	TO					NO.	FROM	TO	(m)	Au	Ag	Cu%	<u>Pb%</u>	Zn%	
0.	1.8	Casing, no core recovery.									ļ	 			
1.8	8.2	Andesite: light to dark g	<u>reen, f</u>	ine gra	in,							ļ		ļ	
		From 1.8 to 3.6 m. dark	<u>green</u> a	ndesit	e,						 	_			
		slightly fractured and bro	<u>ken cor</u>	e,							 	<u> </u>	 		
		fractures at 45° to core a	ixis.									 			
			<u> </u>									+			
		<u>From 2.3 to 2.5 m - ½ cr</u>	n wide	Iracti	ire						<u> </u>				
		with chloritic-epidote alte	ration :	and .qt	z	ł.									
		veinlets at 55° to the cor	e axis.		{									·	[
		From 6.6 to 9.9 m broke		and f											
		7 0 to 8 2 m 0 1 m of or	<u>n core.</u>												
		7.9 10 0.2 III. U.I III OI C	ne ms	sing;				t							
		possible tauti zone.													
8.2	25.8	Quartz diorite: light greet	medi	um ore	in				<u> </u>						
0.2	20.0	40% white plaigoglase an	d 2006	fine m	roon										
		phenocryst and 40% quart	z pheno	cryst.											
			M. MANNE												
		From 8.2 to 8.6 m. 12.1	to 13.3	m.											
		14.0 to 14.6 m. and 15.4	to 16 1	m.											
		broken core slightly fracti	ured at	45° to	0			· · · ·							•
		65° to the core axis and	with ca	vity f	illind										
					ľ			1							
		From 9.8 to 11.2 m. light	green	andesi	te.										
		fine grain, slightly fractur	ed and	broke	n										
		core throughout this secti	on.												
		At 9.8 m contact angle a	t 75° to	o_core	axis										
		At 11.2 m contact angle	<u>at 55°</u>	to_cor	e avis										
		At 25.8 m contact angle	at 70°	<u>to cor</u>	<u>e axtis</u>		<u> </u>	I							

•

GEWARGIS GEOLOGICAL CONSULTING INC.

.

.

4

ų

14

LOCATION:				•			0.0					HOL	E Na.	1	PAGE NO.
				IJ	RILL	. HULE L	UG						90-6	!	2_of_7
AZIM:		ELEV:			-				PROPE	RTY: IN	IDEPE	NDEN	CE		
DIP:		LENGTH:				DIP TEST									
		CORE SIZE:	FOOTAGE	READING	СОЯЛЕ	CT FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:									SECTIO)N:					
COMPLETED	:		·				<u> </u>		LOGGE	0 8 Y: W	ilson	A. Ge	wargis		
PURPOSE:							<u>.</u>	ļ	DATE	.06660:					
							<u> </u>		DRILLI	NG CO:					
CORE RECOV	VERY:			l	L		l.		ASSAY	ED BY:					
FOOT	AGE (m)	DESCRIPTION	1			SAMPLE	FOOT	AGE (m)	LENGTH	oz/t_	oz/t_	ASS	SAYS		
FROM	TO		- 			NO.	FROM	TO	(m)	Au	Ag	Cu%	Pb%	Zn%	
25.8	35.7	Andesite: reddish, medium	<u>-graine</u>	<u>ed with</u>		<u>501683</u>	29.9	30.5	0.6	0.001	0.001	L		ļ	
		quartz, chlorite alteration	mainly	from							ļ	ļ	<u> </u>	ļ	
		25.8 to 26.1 m (chloritic	alterati	on), ar	nd					ļ	ļ		1	ļ	
		from 29.9 t0 30.5 m (chlo	<u>rite an</u>	d quar	tz).							ļ	ļ	ļ	
												 	ļ	ļ	
		At 33.4 m, stringers of ep	<u>pidote a</u>	alterat	ion.								 	ļ	
		From 33.5 to 33.7 m, bro	ken cor	e							l	 			
		At 35.7 m, contact angle	<u>at 55°.</u>						·			 	<u> </u>		
											ļ	ļ		<u> </u>	
35.7	44.6	Quartz diorite: light green	, medi	um to								 	 		
		coarse grained with 20%	laigocl	ase,											
		40% quartz and 10-15% g	reen ph	encrys	ts.									<u> </u>	
			14.0		·							 	 		
		From 36.5 to 38.0, 40.4 t	2,41.6	m, bro	ken	<u> </u>		<u> </u>			·	┠─────			
		core with slightly fracture	ed				····					}			
}		Enom 426 to 424 m light	t moon	ondor	ita								<u> </u>		
		From 42.6 to 43.4 III. Ing	<u>t-green</u>										<u> </u>		
		with 4-570 quartz phenoer		+0 +5				t			¦				
		angle at 44.0 m and 43.4	<u>111, 00°</u>	<u>brok</u>	Ľ					<u> </u>					
		core axis. From 43.4 IO	44.4 []]	DFOR				†							
		core.				t				ŀ			i		
44.6	10.8	Andesite: derk grev to ro	idish r	nodium	<u> </u>	······									
U.FT	0.01	to goongo grainod with gu	anta ph	onoon	et								I		
		and quantz usinlate through	hout th	vic uni	+										
 		And guariz vernets throug	+++++++++++++++++++++++++++++++++++++++	•• 											
		At 45.2 m - 2 cm wide o	uartz v	einlet	<u></u>										
		at 70° to core axis.													
		At 46.9 m - 1 cm wide o	uertz v	oinlot											
		at 30° to core axis													
·	l	LAL MU LIGHT LAD													

•

GEWARGIS GEOLOGICAL CONSULTING INC.

......

100

LOCATION:				D	RILL	HOLEI	LOG					HOL	e no. 90-6	F	AGE NO. 3 of 7
AZIM:		ELEV:			_				PROPE	RTY: II	IDEPE	ENDEN	ICE		
DIP:		LENGTH:	_		C	IP TEST									
		CORE SIZE:	FOOTAGE	READING	COARE	CT FOOTAC	E READING	CORRECT	CLAIM	NO:					
STARTED:									SECTIO)N:					
COMPLETED);				I	_			LOGGE	D SY: W	ilson	<u>A. Ge</u>	wargis		
PURPOSE:						_		ļ	DATE	LOGGED:					
					l				DRILL	ING CO:					
CORE RECO	VERY:	·			L				ASSAY	ED BY:					
FOOT	AGE (M)	DESCRIPTIO	1		Ì	SAMPLE	FOOT	AGE(M)	LENGTH	oz/t	_oz/t	ASS	AYS		
FROM	TO					NO.	FROM	то	(m)	Au	Ag	Cu%	Pb%	Zn%	
		From 48.0 - 48.2 m, quar	tz vein	up to						L					
		1 cm wide at 70° to the	ore_axi	<u>s. </u>											
		From 48.9 to 48.6 m quar	tz vein	with_											
		chalcopyrite 3-5% pyrite,	magneti	te						L		<u> </u>			
		mineralization.								<u> </u>		L			
						04004	40.0					<u> </u>			
49.8	62.3	Andesite: dark green, med	um_gra	ined,	P	01684	48.2	48.6	0.4	0.001	0.003	0.01			
		with quartz veinlets through	<u>rh this</u>	unit a	nd .	685	48.6	49.8	1.2	0.001	<u>K0.01</u>				
		chlorite alteration.			<u> </u>	686	49.8	50.3	0.5	(0.001	0.01	ļ			
						687	50.3	51.8	1.5	0.001	0.04				[
		From 56 to 56.3 m, and 6	1.4 to (<u>61.9 m</u>	┝━━┼	688	51.8	53.2	_1.4_	0.001	0.03				
		broken_core_and_slightly_fi	ectured	L		689_	53.2	53.7	0.5	0.001	0.03	K0.01_			
						690	53.7	54.2	0.5	0.001	0.001				
		<u>From 49.8 to 50.3 m, qua</u>	<u>tz vein</u>	lets,	<u> </u>	<u>691</u>	54.2	54.7	0.5	0.002	0.16				
		chlorite alteration and pyr	ite_min	eraliza	tion	692_	_54:7	55.4	0.7	0.002	0.02				
			<u> </u>		{-	{		{		 					{
		From 50.3 to 51.8 m, quar	<u>tz vein</u>	lets_u	<u>़</u>	602	61.0	<u></u>	4 4	0.001	0.00				{
		to 2 cm wide, with up to	_10%_ру	rite		093	01.2	62.3	لعا	0.001	0.03				
 		stringer at 40° to the core	e axis.												{
								ł							
	 	rrom 53.2 to 53.7 m, stro	ngers_o	<u>pyrit</u>	e		{								
ļi		up to 10% throughout this	section	•	<u> </u>	ł	~{				<u> </u>				
		From 61.2 to 61.7		1 - 4 -			{	ł-							
	 	with trace of purits and	<u>halaar</u>	<u>iets </u>	<u> </u>										
ŀ	{	15° to the core avia	пятсору	rne a											
		to the core axis.			—	{							 	ł	
62.3	64.7	Andonitos donla maga	• • • • • • • • •	h aug											
02.3	04.1	veinlets and quanta phase	IVO WII	u <u>quar</u>									 		
<u> </u>		disseminated purite abole	<u>ryst wr</u>	throw	rhout									+	
L	l	prisoninated pyrite, chale	opyrine	111004	guoui					لسبيها					

this unit.

LOCATION:				D	RILL	HOLEL	OG					HOLE	No. 90-6		PAGE NO. 4 of 7
AZIM:		ELEV:			-				PROPE	RTY: IN	DEPEI	NDENC	CE		
OIP:		LENGTH:				P TEST									
		CORE SIZE:	FOOTAGE	READING	CORREC	FOOTAG	READING	ORRECT	CLAIM	NO:					
STARTED:					<u> </u>	<u> </u>		<u> </u>	SECTIO)N:					
COMPLETED):		·			ļ		<u> </u>	LOGGE	D 84: M	lison	<u>A. Ge</u>	<u>wargis</u>		
PURPOSE:					[<u> </u>	DATE	OGGED:					
				·	<u> </u>			·	DRILLI	ING CO:				· • • • • • •	
CORE RECO	VERY:				L	1			ASSAY	ED BY:					
F001	AGE (M)	DESCRIPTION				SAMPLE	FOOT	AGE(m)	LENGTH	oz/t_	oz/t	ASS	AYS		
FROM	то					NU.	FROM	29.0	<u>(m)</u>	<u> Au</u>	Ag	<u>Cu</u> %	_Pb%	Zn%	ļ
		From 64.3 to 64.0 m broke	en core	with		01694	62.3	02.9	0.0	10.003	0.35	0.3			
		slightly fractured quartz ve	einlets_	<u>at 450</u>	<u>}</u>	690	62.9	64 7	1 11		0.10	0.10			
		to the core axis.					03.7		1.0	0.001	0.21	0.30			
										 					
		At 64.7 m. contact angle	at 60°.		<u> </u>										<u> </u>
64.7	04.0	Quanta dianita, limbt man	<u></u>			607	66.6	66.0	03	0.004	0.02				<u> </u>
04.1	94.9	wuartz diorite: light grey,	Tine-m	eoium		031	00.0	00.5	0.0	0.004	0.02				╆╾╼╍┥
		grained 20-40% phenocryst,	<u> </u>	gree	╹{										
		long phenocryst.							<u> </u>						
		$F_{max} = 68.6 \pm 0.69.1 m = 70.8$	to 71 1											•	
		72 to 72 3 m 73 1 to 73 6	m 74	to 74	L 6m										[*]
		and 74.9 to 75.0 m broker		& fro	atura										
		From 72.0 to 72.1 m. plag	oclase	veinle	ets.										
		From 72.0 to 72.4 m. 73.1	- 73.6	m.											
		74.0 to 74.6 and 74.9 to 7	5.0 m,	broke	n										
		core and fracture.													L
		From 66.6 to 66.7 m, quar	<u>tz vein</u>	lets											
		with trace of pyrite at 60°	to the	e core											
		axis.													<u> </u>
															
		From 75.5 to 77.8 m, quar	<u>tz vein</u>	lets				ł		· · · · ·					┟───┤
		and plagioclase veinlets.						ł					ł		
		From 78,5 to 79.0 m, 80.5	to_80.	<u>6 m, </u>											
		proken core with possible f	ault zo	one								ł			{
		110m (4.0 to (4.4 m.						<u>-</u>							
		AL 94.9 m. contact angle	at 55°	to cor	e akis	<u> </u>									L

.

•

GEWARGIS GEOLOGICAL CONSULTING INC.

1

LOCATION	:			D	RILL	IOLEL	.0G				DEDEI	HOL 9	E No. 0-6		PAGE NO. 5 of 7
AZIM:		ELEV:			פוס	TEST			PROPE	ATY: IN	DEPEI	NDEN.			
017:						1	- <u>r</u>	T	h						
			FOOTAGE	READING	CORRECT	FOOTAG	EREADING	CORRECT		NO:					
STARTED:						<u> </u>		·	SECTK	: •••					
COMPLETE	0:					 				ED BY: V	Vilson	<u>A.</u> G	ewarg	IS	
PURPOSE:							_		DATE	LOGGED:					
						ļ			DAILL	ING CO:					
CORE RECO	VERY:				L	<u> </u>	<u> </u>		ASSAY	ED BY:					
F00'	rage(m)	DESCRIPTION			s	AMPLE	FOOT	AGE(m)	LENGTH	oz/t	oz/t	AS	SAYS		
FROM	то					NO.	FROM	TO	<u>(m)</u>	Au	Ag	Cu%	Pb%	Zn%	
94.9	96.8	Andesite: dark green, coars	<u>e-grain</u>	ed, wi	th								<u> </u>	1	
		<u>10% quartz veinlets throug</u>	<u>nout_th</u>	<u>is unit</u>	t 51	01698	94.0	94.9	0.9	0.001	0.01	<u> </u>	<u> </u>	<u> </u>	
		with disseminated pyrite up	<u>to 2-</u>	<u>3%.</u>		699	94.9	96.8	1.9 (10.001	0.01	L	I	<u> </u>	
		Slightly fractured at 20-30 ^o	to the	<u>e core</u>						<u> </u>			<u> </u>		
		axis.	_									I	I	L	
96.8	109.1	Quartz diorite: dark green	, 70-80	% phe	no-	700	96.8	97.5	0.7	0.001	0.01			<u> </u>	
		cryst. 30% quartz and 20%	plagio	clase a	and								<u> </u>		
		dark green 30%.												<u> </u>	
														ļ	
		From 105.3 to 106.0 m, sli	ghtly f	ractur	ed							L			
		with quartz veinelts, epidot	<u>e alter</u>	ation,											
		and 5% phenocrysts.													
												<u> </u>	<u> </u>	<u> </u>	
		From 108.5 to 109.1 m, br	oken co	ore,								L			
		possible Fault Zone.										<u> </u>	<u> </u>	ļ	
												ļ	ļ	ļ	
109.1	118.5	Quartz diorite: light grey t	<u>o_med</u> i	<u>um to</u>									 		┟────┤
		coarse-grained, 25-30% phe	nocryst	main	ly 🔶							[ļ	 	↓]
		quartz, plagioclase and gre	en pher	ocryst								L	ļ	ļ	
												l	ļ		
		From 109.2 to 109.6 m. br	oken co	ne an	d								[L	ļ
		fractured.											L	L	<u> </u>
														L	
		From 109.2to 109.6 m bro	cen cor	e and										l	
		fracture.										L		L	
															
		From 111.1 to 112.20 m, b	roken_o	core_w	ith .									l	
		gouge, clay, possible Fault	Zone												
							[

.

.

GEWARGIS GEOLOGICAL CONSULTING INC.

LOCATION:					D	RILLH	IOLE L	OG					ноц 91	E Ng.)-6	6	PAGE NO. 5 of 7
AZIM:			ELEV:							PROPE	RTY: IN	IDEPE	NDEN	CÉ		
DIP:			LENGTH:			410	TEST									
			CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:			_		
STARTED:										SECTIO	N:					
COMPLETED):			•				ļ		LOGGE	D 84: M	ilson_	A. Gei	<u>vargis</u>		
PURPOSE:				·			ļ	ļ		DATEL	OGGED:					
							ļ	<u> </u>		DRILLI	NG CO:					
CORE RECO	VERY:					L	<u> </u>	I		ASSAY	ED BY:					
FOOT	AGE (III)		DESCRIPTION			S	AMPLE	FOOT	AGE (M	LENGTH	oz/t_	oz/t	ASS	AYS		
FROM	TO						NO.	FROM	10	(m)	Au	Ag	Cu%	PD%	Zn%	
		From	<u>112.4 to 112.7 m, 11</u>	<u>3.0 to</u>	113.4	<u>m. </u>						 	ļ			
		broker	1 core.													
		From	<u>109.1 to 109.7 m, 11</u>	<u>3.6 to</u>	114.0	<u>m, </u>							 			
		114.5	to 114.8 m, and 115.	<u>9 to 11</u>	18.0 m	·	· · ·						<u> </u>			
		epidot	e alteration, slightly	fractur	ed_wit	<u>h</u>			{-							
		quartz	<u>z veinlets up to 2 mm</u>	wide	<u>80°_tc</u>	<u> </u>										
		the co	ore axis.										┨			
440 -	100 00															{
118.5	122.30	Andes	ite: fine-grained, dark	green	_and			{								
		siignu	v Iractured.					+					<u> </u>			
		From	119 5 to 119 9 m 19	1 9 + 0	101.0											ř
		<u>From</u>	<u>110.5 LO LIA.6 III, 14</u>	1.8.10	141-11	Ш, 							<u> </u>			
		orokei	Core.													
		Δt 11	9.5 m quartz voinlets	ot 85	° to t	ho										
			vic		<u> </u>											
			1013													
		At 19	0.7 m quartz veinlets	et 30	o to t	he										
		core s	axis.													
							-									
		At 12	2.0 m - 1/2 cm quart	z veinl	ets et											
		30° to	the core axis with a	trace	of pv	rite										•
		At 12	2.3 m contact angle a	t 35°	to the											
		core a	axis.													
122.3	138.0	Quart	z diorite: light grev t	o green	. fine											
		mediu	m grained 30% pheno	cryst (green			<u>I</u>						<u>`</u>		
		bheno	cryst and quartz), 109	<u>nink</u>	plagio	clase										
		scatte	red quartz veinlets, t	hrough	out thi	s				1				l		

•

.

•

GEWARGIS GEOLOGICAL CONSULTING INC.

s

1251522

100

1.1

LOCATION:				D	RILL H	OLEL	DG					HOL 9(E No.)-6		PAGE NO. 7 of 7
AZIM:		ELEV:			Die:	TCET			PROPE	TY: INI	JEPEN	IDENC	Ъ.		
DIP:		LENGTH:			0.7	1531									
		CORE SIZE:	FOOTAGE	READING	CORRECT	FOOTAGE	READING	CORRECT	CLAIM	NO:					
STARTED:							L		SECTIO	N:					
COMPLETE):		•				L		LOGGE	DBY: W	ilson /	A. Gev	<u>vargis</u>		
PURPOSE:									DATEL	06660:					
									DRILLI	NG CO:					
CORE RECO	VERY:	· · · · · · · · · · · · · · · · · · ·					l		ASSAY	D BY:					
F001	rage (m)	DESCRIPTION			S/		FOOT	AGE(m)	LENGTH	oz/t	<u>oz/t</u>	ASS	AYS		
FROM	TO					NO.	FROM	TO	(m)	Au	Ag)	Cu%	Pb%	Zn%	
		this unit at 65° to the cor	e axis.								<u> </u>		L		
														<u> </u>	
		From 122.3 to 122.7 m. 12	8.2 to	129.0	m					_					
		and 131.0 to 131.46 m. bro	ken co	re.	<u> </u>			_					[
		At 136.8 m. contact angle	at 60°	to th	e		1					L			
		core axis.								_	l				
		From 136.8 to 137.5 m lig	ht groe	m						_		<u> </u>	ļ	<u> </u>	
		andesite.									L	<u> </u>			I
														<u> </u>	i
		At 138.0 m. contact angle	at 70º	to the	e						ļ	ļ		_	
		core axis.												<u> </u>	<u></u>
															┟────┤
138.0	149.35	Andesite breccia: dark gree	n, coai	se-								ļ		ļ	↓
		grained, with epidote, quart	zand	50-609	8							ļ			↓
		<u>phenocryst and with up to</u>	<u>15% ro</u>	ck										 	┼───┤
		<u>fragments up to 5 cm in si</u>	ze.											ļ	┨────┤
			<u></u>									ļ		ļ	+
		From 140.5 to 140.9 m, gr	en and	lesite_											<u> </u>
		with contact angle at 10°	o_the_	core								<u> </u>		 	┼───┤
		axis.													┟────┥
														<u> </u>	↓
		From 142.6 to 144.1 m. da	<u>k gree</u>	n	<u> </u>										┟╍╍╍┥
		andesite with quartz veinle	ts with	conta	ct	ł_									┟┉╍╍┥
		angle.										[]		ļ	↓
		At 142.6 - 55° to the core	axis.												<u> </u>
		At 144.1 m - 25° to the av	cis										<u>`</u>		
		1												ļ	
END	OF HOI	E AT 149.35 m.													<u> </u>

.

.

GEWARGIS GEOLOGICAL CONSULTING INC.

1

APPENDIX 2

-Gewargis Geological Consulting Inc.

DRILL CORE SAMPLE RESULTS

.

SAMPLES ASSAY SHEET

PROPERTY Independence ASSAYER Chemex

LOCATION Stewart, B.C. SHEET No. 1 of 2

HOLE No. DDH#90-1

SAMPLE	DEF	PTH (M)		o/t	o/tASS	AYS %	%	%LE	ENGTH	x ASS	AY .	AVE	RAGE A	SSAY
No.	FROM	то	LENGTH	Δ11	Aσ	Cu	Ph	Zn						
				- <u>Au</u>	6	<u> </u>	10		· ·					
501501	4.0	A 7	07	0 001	0.04		_							
501501	4.0	5.0	0.5		0.04									
502	4.7	5.2	0.5	0.001	0.03		-	-						
504	5.8	.73	15	10.001	0.03	_		-						
505	73	8 1	0.8	k0.001	-0.04			-						
506	81	8.6	0.5	k0.001	0.03			-						
500	0.0	0.5	0.0	0 001	0.00	······								
507	8.0	9.5	0.5		0.02						·			
508	9.5		0.5		0.02									<u> </u>
509	10.0	11.0	1.5		$-\frac{0.01}{0.01}$		-							
510	11.5	12.4	0.9		0.01									
511	12.4	13.3	0.9	KU.UUT	0.01		-	<u> </u>		ļ	L			_
512	15.2	16.7	1.5	k 0.00T	0.01	-	-	-						
513	16.7	18.3	1.6	k0.001	0.01	-	-	- 1		1	1			
514	18.3	19.1	0.8	F0.001	0.01	-	-	- 1	<u> </u>	t	<u> </u>	┟────┤		
				<u> </u>				<u> </u>		<u> </u>				<u> </u>
515	23.8	24.8	1.0	K0.001	0.01		<u> </u>			<u> </u>	 	┝─────────────┤		
510	20.0	00.0	1.5	-0.001	0.01					<u> </u>				·
516	24.8	26.3	1.5	0.001	0.02				ļ	L	<u> </u>			
517	26.3	27.7	1.4	K 0.00 I	0.04		-	-		<u> </u>				
518	27.7	29.2	1.5	K0.001	0.20	-	-	-						
519	29.2	30.1	0.9	k 0.001	0.35	-	-	-						
														· · · · · · · · · · · · · · · · · · ·
520	33.1	33.4	0.3	< 0.001	0.02	-	-	-						
											· ·			
521	36.4	37.7	1.3	F0.001	0.02	-	-	-			1			
522	37.7	38.4	0.7	k 0.001	0.14	0.02	0.09	0.12	i		1			
523	38.4	39.1	0.7	< 0.001	0.04	< 0.01	0.01	0.09	t	1	<u> </u>			
524	20 1	40.2		k 0.001	0.06	< 0.01	0.02	0.09		<u> </u>				 -
595	10.2	118	16	< 0.001	0.01		_	-						<u> </u>
	40.4	42 2	1.0	K 0 001	0.06				<u> </u>					
	41.0	40.0	1 1 1	0.001	0.00			<u> </u>	<u> </u>	┼	<u> </u>			
<u> </u>	43.3	44.4			0.03		ļ		<u> </u>	<u> </u>	 	 		ļ
528	44.4	45.]		<u>v.001</u>	0.02			- 1 10		+	 			
529	45.1	45.6	0.5	0.003	1.09		0.00	0.10		$\left \left\langle - \right\rangle \right\rangle$	INTER A	TYPET	7738117	
530	45.6	46.6	1.0	1 0.008	8.34		0.32	0.03		<u> / _ №</u>	IINERA		LONE	
531	46.6	48.0	1.4	0.003	2.29	0.05	0.14	0.38		<u> / 5</u>	. <u>59 oz</u>	ton oz	silver	
532	48.0	48.7	0.7	<u>r 0.001</u>	15.20	0.03	0.47	1.25	ļ		bver 4.	<u>3 m</u>		
533	48.7	49.4	0.7	0.001	1.89	0.02	0.16	0.49		<u> </u>				
534	49.4	50.9	1.5	v 0.001	0.70		-	-						
535	50.9	52.3	1.4	k 0.001	0.07	-	-	-						
536	52.3	52.9	0.6	K 0.001	0.01					1				
						·				l				
537	72.8	73.0	0.2	K0.001	0.03	-	-	-		1	·			
										1		┟╾╍╍╌┤		
538	87.1	88.1	1.0	K0.001	0.04									
520	80 1	89.7	0.6	K 0 001	0 10	0 0 2	0.01	0.05	·	 	MINED	AT 17 E	70N	F
- JJJ	00.1	00.1	0.0	K 0 001	0.13	0.02	0.01	0.00		<u> - </u>	A CA			Ĕ
<u> </u>	00.7	07.3			0.49	20 01	0.01	0.00	<u> </u>	<u> '</u>	0.34 0	z/ton s	iiver	
541	03.3	30.4	1.1	0.001	0.03	~ 0.01	0.01	0.00			over 1	<u>2 m</u>		L
<u> </u>	90.4	91.9	1.5	<u>F0.00</u> 1	0.08	0.01	0.01	0.06				1 1		

SAMPLES ASSAY SHEET

PROPERTY Inde pendence ASSAYER Chemex

LOCATION Stewart, B.C. SHEET No. 2 of 2

HOLE No. DDH#90-1

		TH M			44.055	AVS or	01	0/ I F	NGTH .	1224	Y		PACE A	<u> </u>
SAMPLE	DEI		ӏ҄ЕӍ҉ҀҬҤ	0/ t	0/[A33		<u>%</u> Ph	70 LL 71					TAGE A	SSAT
NU.	FRUM	10		Au	Ag	Cu	10							
50143	91.9	93.4	1.5	k0.001	0.02	< 0.01	0.05	0.05			· · · · ·			
544	99.3	100.8	1.5	×0.001	0.02	< 0.01	0.01	0.11						
		·												
E.O	H. AT	102.1	M								-			
														·
	<u> </u>					·								
-														
													·····	
								!						
	 	ļ												
	 		<u> </u>										·	
	 	 	<u> </u>											
												·		
		ļ	<u> </u>											
														
			<u> </u>				<u> </u>	<u> </u>	<u> </u>					
		<u> </u>	<u> </u>				<u> </u>		<u> </u>		 		[
<u> </u>	1	1	1	1			<u> </u>				<u> </u>			<u>+</u>
							ļ							ļ
	ļ	 	<u> </u>					 			<u> </u>		 	<u> </u>
┣	<u> </u>	<u>}</u>	<u> </u>	1	 	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>
 		<u> </u>	 	<u> </u> -		<u> </u>	<u> </u>		<u> </u>		<u> </u>			<u> </u>
[1	[1			1							<u> </u>
L		ļ							<u> </u>					
		<u> </u>	 	 					 				 	
	<u> </u>	<u> </u>		<u> </u>		<u>.</u>	<u> </u>							
<u> </u>		 	<u> </u>	<u> </u>									<u> </u>	<u> </u>
	i	1	<u> </u>											<u>† </u>
													1	<u> </u>
	L	ļ	·											
L	 		 	ļ										
L	<u> </u>	L	J	I	L	l	L	I	l	l	l	L	L	<u> </u>

LOCATION ... Stewart, B.C SHEET No. 1 of 1

HOLE No. DDH#90-2

A CONTRACTOR OF A CONTRACT
SAMPLE	DE	этн (М		o/t	o/tASS	AYS %	%	% LE	ENGTH	x ASSA	۱Y	AVE	RAGE A	SSAY
No.	FROM	ТО	LENGTH	A11	Ag	Cu	Pb	Zn						
									·					
501545	8.9	9.4	0.5	0.001	0.14	-	-	-						<u> </u>
546	9.4	10.4	1.0	k0.001	0.18	-	-	-						
547	10.4	11.4	1.0	×0.001	0.21	-	-	-						
548	11.4	12.0	0.6	<u> <0.001</u>	0.38	-	-	-						
549	12.0	12.6	0.6	<u><0.001</u>	0.11	-	-	-						
550	12.6	13.4	0.8	×0.001	0.09		-	-						
551	13.4	14.7	1.3	<u><0.001</u>	0.01	-	-	-						:
	<u> </u>			<u> </u>										
552	17 7	19.0	03	20 001	0.01									<u> </u>
552	26.8	27 7	-0.0	< 0.001	0.01									
000	20.0	21.1		-0.001	0.0.									
554	31.8	225	1.7	< 0.001	0.02									
555	225	25.2	1 7	0.001	0.02									
	00.0	33.4		0.001	0.01									
EEC	120	136	0.8	20 001	0.03			<u> </u>						
	42.0	40.0	0.0	. 0.001	0.00									
557	15.0	16.5	0.6	< 0.001	0 15			-						
	40.0	40.0		0.001	0.10									
559	51.8	53.0	12	< 0.001	0.02									
000	<u> </u>	33.0	1.2											 -
550	53.0	537	0.7	= 0.001	0.03	-								
560	537	56.2	2.5	0.001	0.01		-			<u> </u>			····-	
561	56.2	56.7	0.5	0.001	0.30	0.03	0.14	0.61		<u> </u>				
569	567	57.9	11	< 0.001	0.14	0.02	0.02	0.11						<u> </u>
563	578	58.9	1.1	0.003	3.41	0.04	1.37	1.08)				<u> </u>
56/	58 9	59.2	0.3	< 0.001	0.13	-	-)	·	<u> </u>		<u></u>
565	592	59.8	0.6	0.002	1.00	< 0.01	0.15	0.06)	······			<u> </u>
566	59.8	60.3	0.5	0.001	0.27	0.01	0.03	0.04)				<u> </u>
567	60.3	60.6	0.3	0.001	1.09	0.02	0.12	0.85) MIN	ERAL	IZED 7	LONE-	
568	60.6	61.4	0.8	0.04	54.3	0.06	0.20	0.24) 7.7	7 oz/t	76.7M		
569	61.4	62.5	1.1	< 0.001	0.33	< 0.01	0.01	0.03) 0.0	06 oz/	Au		<u>†</u>
57(62.5	63.0	0.5	0.001	0.84	< 0.01	0.02	0.05)		<u> </u>		<u></u>
57	63.0	64.5	1.5	0.001	1.98	0.01	0.09	0.45		$\dot{)}$		[<u> </u>
579	64.5	65.5	1.0	< 0.001	0.02	-	-	-				1		<u> </u>
														T
							·	·						
/573	98.7	99.9	1.2	× 0.06	1 0.03	-	-	-						
574	99.9	101.3	1.4	<u>< 0.001</u>	0.04	< 0.01	0.01	0.03						
× <u>575</u>	101.3	102.1	0.8	<0.001	0.02	< 0.01	0.01	0.03						
				L										L
E.	р.н. А	106.71	<u>/1</u>				. <u> </u>							Ļ
														ļ
					· · · · · ·									<u> </u>
}														ļ
			· · ·											
						<u> </u>								
	L	ليسجينها	L	L										L

SAMPLES ASSAY SHEET

/

SAMPLES ASSAY SHEET

)

PROPERTY IndependenceASSAYER Chem

LOCATION Stewart, B.C. SHEET No. 1. of 1

HOLE No. DDH#90-3

SAMPLE	DEF	тн (м			ASS	AYS		LENGTH		x ASSA	λY	AVE	RAGE A	SSAY
No.	FROM	то	(M)	Au	Ag	Cu	Pb	Zn						
501576	11.5	13.0	1.5 <	0.001	0.01	-	-	-						
											_			
577	18.0	18,6	0.6 <	0.001	¢0. 01		-	-						L
FFO	00.4	00.7		0.001	10.01	ļ	<u> </u>	ļ			L			
578	22.4	22.7	0.3 <	0.001	<u> 0.01</u>									
570	33.0	36.0	224	0.001	0.01	<u> </u>		<u> </u>				<u> </u>		
513	00.0	30.0	2.2	0.001	10.01									
580	41.6	42.4	0.8 <	0.001	0.01	_	-	-						
						<u> </u>								
581	56.3	57.6	1.3 <	0.001 <	0.01	-	-	-						
582	57.6	59.1	1.5 <	0.001 <	0.01	-	-	-						
583	59.1	59.8	0.7 <	0.001 <	40.01	-	_	_						
584	59.8	60.6	1.8 <	0.001 <	0.01	_	_	-						
								_						
						-								
585	62.5	62.8	0.3	0.001	0.05									
											-	<u> </u>		I
586	65.7	66.1	0.4 <	0.001	<u> </u>		-	-						L
505	01.1	00.0	0.0	0.004	0.10	 								
587	91.4	92.3	0.9 <	0.001	0.12			-						ļ
588	92.3	93.9		0.001	0.16	-	-	-		MINTE	DATIO	ED 70		
500	93.9	94.5	0.5	0.008	1.78	0.23	0.65	3.13		MINE	RALIZ	ED ZO	NE	
501	94.5	95.0	154	0.005	0.48	K0.01	0.42	0.04						
502	9.5	90.0	15	0.001	CO 01			<u> </u>						
593	98.0	100.3	2.3 <	0.001	¢0.01	-	_							
						1								
E.O.1	H AT	103.93	М					· ·						
					· · · · · ·	 	ļ					l		
					ļ									
														
					<u> </u>	<u> </u>	<u> </u>	{						
	······································					<u> </u>	<u> </u>							<u> </u>
								l						<u> </u>
						<u> </u>						†		
			[1						
								[
													1	
						ļ	Į							
						ļ								ļ
						 								
						 	 							
						 	 						[
				<u> </u>									[
							<u> </u>	 						
	L	1	I	L	I	L	L	1	1	L	i	L	I	I

SAMPLES ASSAY SHEET

LOCATION Stewart, B.C. SHEET No. 1 of 1 Map Sheet 104A-4W HOLE No. DDH#90-4

SAMPLE	DEF	TH (M)			ASS	AYS		LE	INGTH	x ASSA	λY	AVE	RAGE A	SSAY
No.	FROM	то	LENGTH	Au	Ag	Cu	Pb	Zn						
501594	5.7	6.4	0.7	<0.001	0.11	-	-	-						
595	10.3	11.5	1.2	< 0.001	0.03	-	-	-						
596		13.2	1.7	< 0.001	0.03	-	-	-						
597	13.2	14.8	1.6	<0.001	0.08			-						
	10.0	17.4	1.0	0 001	0.04									
598	16,2	1(.4	1.2	0.001	0.04									
599	20.5	21.0	0.5	< 0.001	0.01	-	-	-						
600	21.0	22.5	1.5	< 0.001	0.02	-	-	-						
601	22.5	24.0	1.5	< 0.001	0.02	-	-	-						
602	24.0	25.5	1.5	< 0.001	0.02	-	-	-						
603	25.5	27.0	1.5	k 0.001	0.02	-	-	-						_
604	27.0	28.5	1.5	< 0.001	0.02	-	-	-						
605	28.5	30.0	1.5	< 0.001	0.02	-	-	-						
606	30.0	31.8	1.8	<u>k 0.001</u>	0.02	-	-	-						
607	41.8	43.3	1.5	<u>k 0.001</u>	0.01	-	-	-						
608	43.3	44.8	1.5	<u>< 0.001</u>	0.05		-	-						
609	44.8	46.3	1.5	<u>< 0.001</u>	0.06		-	-						
610	46.3	47.8	1.5	<u>< 0.001</u>	0.05	-	-	-						
611	47.8	48.9	1.1	<u>< 0.001</u>	0.02	-	-	-						
612	48.9	50.1	1.2	<u>< 0.001</u>	<u><0.01</u>			-						
				- 0.001	0.01		<u> </u>							
613	57.3	57.9	0.6			-	-	-						
614	50.4	<u> </u>	1.5	-0.001	0.01									
616	<u> </u>	62.0	2.0		0.01				·					
010	00.9	04.5	4.0	- 0.00	0.01	<u> </u>								ļ
												<u> </u>		
617	69.5	71.0	1.5	< 0.001	0.08	< 0.01	-	-						
618	71.0	72.5	1.5	× 0.001	0.14	K 0.01	-	-						
619	72.5	74.0	1.5	< 0.001	0.07	× 0.01	-	-			i			
620	74.0	75.5	1.5	< 0.001	0.14	× 0.01	-	-						
621	75.5	77.0	1.5	< 0.001	0.09	< 0.01	-	-						
622	77.0	78.5	1.5	< 0.001	0.02	< 0.01	-	-						
623	_78.5	80.0	1.5	< 0.001	0.01	-	-	-						
624	80.0	81.8	1.8	< 0.001	0.02		-	-						
625	81.8	82.4	1.6	< 0.001	0.17	-	-	-						L
626	85.1	86.1	1.0	<u>< 0.001</u>	0.01	-	-	-					ļ	
	07 0	070	0.6		0.00		<u> </u>							
627	01.2	01.0	0.0	- 0.001	0.00	<u>├</u>	<u> </u>							
6.20	02.2	94.0	0.9		0.11	<u> </u>								
	30.4	57.0	0.0	- 0.00	0.11									
629	103	103.5	0.5	< 0.001	0.02	< 0.01	< 0.01	0.02				<u> </u>		
630	103.5	104.5	1.0	< 0.001	0.01	< 0.01	< 0.01	0.01				<u> </u> -		
631	104.5	104.9	0.4	0.001	0.11	k 0.01	k 0.01	0.01					-	
632	104.9	107.0	2.1	< 0.001	0.02	< 0.01	< 0.01	0.01				İ		
633	107.0	107.7	0.7	< 0.001	0.02	40.01	< 0.01	0.01						
E.O.	H. at	109.73												
L		L												

. . .

PROPERTY Independence ASSAYER Chemex

and the second sec

SAMPLES ASSAY SHEET

:

- - -

LOCATION Stewart, B.C. SHEET No. 1 of 2

HOLE No. DDH#90-5

SAMPLE	DEE	тн(М)		o/t	o/tass	AYS	8 %	% I F	NGTH	× ASSA	Y	AVE	RAGE A	SC AY
No	ERON		LENGTH	Δ30	Δσ	Cu	Ph	Zn						<u>5541</u>
	FROM	-10	(101)		<u> </u>	Cu	10							
501634	40.1	10.9	07	0.002	0.01									
625	40.0	40.0	1 2	0.002										
636	40.8	42.4	0.3	10.001	k 0.01									
0.00	72.1	-10.1	0.0	0.001										
637	50.0	50.3	0.3	0.001	0.04									
638	50.3	51.1	0.8	10.001	0.01									
639	51.1	51.9	0.8	0.001	< 0.01									
640	51.9	52.5	0.6	0.001	0.02									
641	52.5	53.1	0.6	¢0.001	× 0.01									
642	68.8	69.6	0.8	0.001	k 0.01									
643	69.6	70.7	1.1	<u>¢0.001</u>	<u> </u>									
644	70.7	71.3	0.6	0.004	0.05									
645	71.3	71.7	0.4	0.001	0.20	0.16	<u>k0.01</u>	0.08						
646	71.7	71.9	0.2	0.001	0.04	0.02	<u> < 0.01</u>	0.01	Au,	Ag oz	/ton, (C u%		
647	71.9	72.2	0.3	0.011	4.53	6.04	k 0.01	0.09	0.0	<u>D6, 1.6</u>	1, 1.77	over	1.4 m	
648	72.2	72.8	0.6	0.003	0.81	0.44	K 0.01	0.03						
649	72.8	73.3	0.5	0.007	0.82	0.81	× 0.01	0.05]					
650	73.3	74.0	0.7	0.002	0.01	-	-	-						
				0.004	0.10	<u> </u>								
651	77.8	79.3	1.5	0.001	0.12	-	-	-						
652	80.7	81.1	0.4	0.002	0.23	0.21	<u> </u>	0.10						
653	81.1	82.1		0.002	0.17	0.04		-						
				<u> </u>										
654	99.7	100 4	0.7	k0.001	0.03	0.02	-	-						
655	100 4	101.9	1.5	0.001	0.01	k0.01	-	-						
656	101.9	103.3	1.4	k0.001	0.01	20.01	-	-						
657	103.3	103.8	0.5	0.001	0.02	0.01	-	-						
658	103.8	104.7	0.9	0.001	0.06	0.01	0.12	0.31	1]			
659	104.7	105.2	0.5	0.002	0.04	0.01	0.08	0.29]	· · ·		
660	105.2	105.5	0.3	0.024	1.19	0.02	0.19	0.65]	Au	Ag	Cu
661	105.5	106.5	1.0	0.001	0.02	(0.01	0.04	0.24]	o/t	· oz/t	%
662	106.5	106.9	0.4	0.055	0.65	0.58	0.36	0.64]]	0.152	2.17	2.01
663	106.9	107.7	0.8	0.237	0.75	0.52	1.37	6.08	1]	over	.5 m	
664	107.7	108.0	0.3	0.056	7.98	7.92	0.08	0.23]					
665	108.0	109.5	1.5	0.003	0.06	0.04	-	-						
666	109.5	111.0	1.5	0.001		0.02	-	-						
667	111.0	112.8	1.8		0.04	0.02	-	-				 ,-,		
668	112.8	113.5	0.7	0.068	2.33	2.72	0.12	0.30				· .		· · · ·
669	113.5	114.3	U.0	<u> 0.002</u>	0.14	<u> </u>		-						
670	122 6	192 /	1.8	K0 001	0.03	<u>-</u>	+					 		
010	144.0	120.4		-0.001	0.00							╂────		
671	125 0	127 2	1.3	0.002	< 0.01		+	-				<u> </u>	<u> </u>	
	40.0			0.002			1							
672	145.2	145.5	0.3	0.002	k 0.01	1						<u> </u>		
				1	1		1							
673	150.4	150.7	0.3	0.003	0.21	0.30	1		i					
									1			1		
674	158.4	159.4	1.0	0.001	< 0.01								1	

PROPERTY Independence ASSAYER Chemex

LOCATION Stewart, B.C. SHEET No. 2 of 2

HOLE No. DDH# 90-5

	DE	ты		0/t	0/+100	AVS OF	0/	0/ 15	INCTH .	1224	v	AVE		CCAV
SAMPLE	DEF	- 1 1	LĘŊĢTH	0/1	0/1455) 70 Dh	70 LC		X A33/		AVE	RAGE A	SSAT
NO.	FROM	10	(M)	Au	Ag	Cu	PD	Zn						
		100.0		0.004	- 0.01	10.01								
501675	161.6	162.0	0.4	0.001	< 0.01	<0.01								
676	162.0	163.0	1.0	20.001	< 0.01	<0.01								·
677	163.0	164.5	1.5	<u><0.001</u>	<u>< 0.01</u>	<0.01								
L				ļ										
	484.0	480.0		0 004	0.00	<u> </u>								
678	171.8	172.3	0.5	0.004	0.09	0.03								
679	172.3	173.3	1.0	0.002	0.01	< 0.01								
680	173.3	174.8	1.5	0.001	0.01					L				
681	174.8	176.7	1.9	0.001	0.01									
682	186.2	186.7	0.5	0.001	0.01									
E.O.	H. AT	192.2	M											
		[1										
														<u> </u>
		1			· · · · · · · · · · · · · · · · · · ·					·				
		-												
									····	·				
							·							
				<u> </u>				•	· · · · ·					
						<u> </u>	····							
		 						·,						
		<u> </u>												
				 										
				 		ļ								
	· · · · · · · · · · · · · · · · · · ·			ļ		ļ					ļ			
L				ļ								ļ		L
										L				
				I										
			l	l										
											i			
			1							-				<u> </u>
				i										
ليستعد وسينعه	· · · · · · · · · · · · · · · · · · ·	l		·	L	l			L	L	L	L	1	L

SAMPLES ASSAY SHEET

1

.

PROPERTY Independence ASSAYER Chemex

LOCATION Stewart, B.C. SHEET No. 1 of 1

HOLE No. DDH# 90-6

SAMPLE	DEF	тн		o/t	o/tASS	AYS %	%	% LE	NGTH :	ASSA	Y	AVE	RAGE A	SSAY
No.	FROM	TO	LENGTH	Δ11	Δœ	Cu	Ph	Zn						
	11.01			Au	Λg	Cu	10	211						
501683	20 0	30.5	0.6	0.001	< 0.01									
001000	20.0	00.0	0.0	0.001	- 0.01									
684	48.2	48.6	0.4	0.001	0.03	< 0.01								
685	48.6	49.6	1.2	×0.001	< 0.01									l
686	49.8	50.3	0.5	0.001	0.01									
687	50.3	51.8	1.5	0.001	0.04									
689	53.2	53.7	0.5	0.001	0.03	< 0.01								
690	53.7	54.2	0.5	< 0.001	< 0.01									
691	54.2	54.7	0.5	0.002	0.16									
692	54.7	55.4	0.7	0.002	0.02									
												· · · · · · · · · · · · · · · · · · ·		· · · · ·
693	61.2	62.3	1.1	0.001	0.03									
694	62.3	62.9	0.6	0.003	0.35	0.30	······							
695	62.9	63.7	0.8	0.002	0.10	0.10			1				·	
696	63.7	64.7	1.0	0.001	0.21	0.30			1					
	<u> </u>	<u> </u>		1										
697	66.6	66.9	0.3	0.004	0.02									
698	94.0	94.9	0.9	×0.001	0.01									
699	94.9	96.8	1.9	<0.001	0.01	0.01								h
700	96.8	97.5	0.7	0.001	0.01			·	t					
												····		
		<u> </u>							1					
E.O.	HAT	149.35	M											
	<u> </u>			1										
				1				1	1					
			1					1	1					
								·						
														[
L														
						 		 	L			L		L
L	L	<u> </u>	L	ļ	L	ļ	ļ	ļ	1	L		L		L
J	ļ		ļ		ļ	ļ		 	ļ			L		ļ
	ļ			 	 	 	l	 	l				 	_
	Ļ	 	 	 		 		 	<u> </u>			ļ		
 	 	·		 	ļ				<u> </u>			 		
	 		<u> </u>	<u> </u>	 				<u> </u>	<u>-</u>			ļ	<u> </u>
<u> </u>	 	 	 	<u> </u>	 		┨	 	 				 	
	 			 									 	
		 	 		 		 			ļ			 	
		 	· · · ·	 	 	 	 	 	 				<u> </u>	┟
<u> </u>		 	ł	 	 			 				 	 	
L	<u> </u>	<u> </u>	I	<u> </u>	L	L	<u> </u>	L	L	l		L	1	

SAMPLES ASSAY SHEET

1

÷

Î

APPENDIX 3

ANALYSIS TECHNIQUE

2

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

PREPARATION METHODS

Rock Geochem Preparation (code 205):

(1) Entire sample is crushed in jaw crusher to approximately 3/4 inch.

(2) Sample is crushed in gyratory cone crusher to approximately 1/8 inch.

(3) Sample is split in Jones Riffler to approximately 200-300 grams.

(4) Sample is pulverized in ring grinder to approximately 150 mesh.

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

CHEMEX LABS LTD ANALYTICAL PROCEDURES

1. TRACE ANALYSIS

32 ELEMENT GEOCHEMISTRY PACKAGE - ICP-AES

Prepared sample (0.5g) is digested with concentrated nitric-aqua regia acid at medium heat for approximately 2 hours. The acid solution is diluted to 25 ml with demineralized water, mixed and analyzed on a Jarrell-Ash 1100 Plasma unit after calibration with proper standards.

Results are corrected for spectral interelement interferences.

*A1	0	.01%	*Cr	1	ppm	Mn	1	ppm	*Na	0.	.01%
Sb	5	ppm	Co	1	ppm	Hg	1	ppm	*Sr	1	ppm
As	5	ppm	Cu	1	ppm	Mo	1	ppm	*Tl	10	ppm
*Ba	10	ppm	Fe	0	.01%	Ni	1	ppm	*Ti	0.	.01%
*Be	0.5	ppm	*Ga	10	ppm	Р	10	ppm	*W	10	ppm
Bi	2	ppm	*La	10	ppm	*K	Ο.	01%	U	10	ppm
Cd	0.5	ppm	Pb	2	ppm	Se	10	ppm	v	1	ppm
*Ca	0	.01%	*Mg	0	.01%	Ag	0.2	ppm	Zn	2	ppm

* Elements for which the digestion is possibly incomplete.

TRACE 10

Samples digested and analyzed as above and reported as Ag, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn. Arsenic analyzed as follows:

Arsenic ppm - Chemex Code 13

A 1.0 gram sample is digested with HN03 - aqua regia acids for approximately 2 hours. The digested solution is diluted to volume and mixed. An aliquot of the digest is acidified and reduced with NaBH4 and arsenic content determined using flameless atomic absorption.

Detection limit: 1 ppm

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

Page 2

2. GOLD AND SILVER

Gold FA-AA ppb - Chemex Code 100

A 10 gram sample is fused with a basic litharge flux inquarted with 10 mg of Au-free silver and then cupelled.

Beads for AA finish are digested for 1/2 hour in 1 ml HN03, then 3 ml HCl are added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and run on the AAS with background correction.

Ag, Au (oz/t): Codes 383 and 396

Silver and gold analyses are done by standard fire assay techniques. In the sample preparation stage the screens are checked for metallics which, if present, are assayed separately and calculated into the results obtained from the pulp assay.

0.5 (14.583 g) or 1 (29.166 gm) assay ton sub samples are fused in litharge, carbonate and silicious fluxes. The lead button containing the precious metals is cupelled in a muffle furnace. The combined Ag and Au is weighed on a microbalance, parted, annealed and again weighed as Au. The difference in the two weighing is Ag.

Cu, Pb and Zn

Pb% - Chemex Codes 301, 312 and 316

A 2 gram sub-sample is digested in hot perchloric-nitric acid mixture for two hours, cooled, then transferred into a 250 ml volumetric flask. Nitric acid is added to the final sample and standard solutions. The solutions are then analyzed on an atomic absorption instrument.

Analytical Chemists

Geochemists

Registered Assavers

1

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 04-352597

Telex: 04-352597 Fax: (604) 984-0218

Copper, Molybdenum, Lead, Zinc, Silver, Nickel, Cobalt, Cadmium, Manganese and Iron ppm:

A 1.0 gram sample is digested with nitric - aqua regia for approximately 2 hours. The digested sample is cooled and made up to 25 ml with distilled water. The solution is mixed and solids are allowed to settle. The metals are determined by atomic absorption techniques correcting for background absorption when necessary.

Detection	limits:	Cu, Ag- Cd- Mn- Fe-	Pb,	Zn,	Мо,	Ni,	Co	- 1 0.2 0.1 5 0.05	ppm ppm ppm ppm
		re-					, c	1.051	6

Analytical Chemists

Geochemists

Registered Assayers

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

19 A 19 19

Soil Preparation - Code 201

Geochemical samples (soils, silts) are dried at 50 deg. C for a period of 12 to 24 hours. The dried sample is sieved to -80mesh fraction through a nylon and stainless steel sieve. If insufficient sample is obtained, sample is sieved to -35 mesh and ring pulverized.

Analytical Chemists

Geochemists

Registered Assayers

8.51.5.000

ালক

 212
 Brooksbank
 Ave.

 North
 Vancouver,
 B.C.

 Canada
 V7J 2C1

 Phone:
 (604) 984-0221

 Telex:
 04-352597

 Fax:
 (604) 984-0218

Gold FA-AA ppb - Chemex Code 990 RUSH

A 10 gram sample is fused with a basic litharge flux inquarted with 2.0 mg of Au-free silver and then cupelled.

Beads for AA finish are digested for 1/2 hour in 1 ml HNO3, then 3 ml HCL are added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and run on the AAS with background correction.

Analytical Chemists

Geochemists

Registered Assayers

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Vers Phone: (604) 984-0221 Telex: 04-352597 Fax: (604) 984-0218

Au (oz/T) : Code 981 RUSH

Gold analysis is carried out by standard fire assay techniques. In the sample preparation stage the screens are checked for metallics which, if present, are assayed separately and calculated into the results obtained from the pulp assay.

0.5(14.583 g) or 1 (29.166 gm) assay ton sub samples are fused in litharge, carbonate and silicious fluxes. The lead button containing the precious metals is cupelled in a muffle furnace. The resulting inquarted bead is parted, dissolved in Aqua Regia and dilute. The solution is run on an atomic absorption against known aqueous standard for gold content. 1

Cherry Service

APPENDIX 4

ASSAY REPORT - DESCRIPTION OF CHIP SAMPLES

			ASSAY	REPO	DRT - C	hip Sar	nple	
PROPERTY	: INDEPENDENCE , STEWAR	т,в.с.						PAGE 1of 4
SAMPLE NO.	LOCATION	WIDTH (M)	Au	As	Cu	Pb	Zn	SAMPLE DESCRIPTION
24851	Cave -2 vein structure	0.75	OZ/T 0.001	OZ/T 0.65	% 0.03	% 0.15	% 0.17	atz vein-rusty o/c with 127°/82°SW
24852	Cave-2 shear zone-channel	0.30	0.005	6.90	0.03	0.38	0.05	v.rusty sil shear zone 016/67 ⁰ NW
24853	Cave-2 -high grade pile	Select	0.002	6.96	0.11	0.32	1.86	Mineralized_atz-jasper-barite_with_pv&mg.
24854	Cave-2A vein	Grab	0.001	4.84	0.01	0.09	0.13	Mineralized atz vein extension of 24851
24855	L1+35S, 1+15E gtz vein	Grab	0.001	0.2	0.02	0.03	0.05	qtz vein with mineralization extention adit
								# 1 vein.
24856	Adit # 6 vein	0.1	0.002	0.90	0.01	0.16	0.23	0 0 Brecciated vein 95/87S
24857	Adit # 6 Dump area	Select	0.002	0.83	0.01	0.25	0.23	Brecciated limonite with banded sil-ms.py.
		1	07/T	РРМ	ррм	ррм	DDM	
24858	90IND-p1 -north of grid	Select	0.001	0.2	25	10	76	rusty sheer enderite 170°/70°SW
24859	90IND-p2- north of grid	Select	0.001	0.2	22	12	20	rusty qtz vein with jasper $170/90^{\circ}$
24860	90IND-P3-north of grid	Select	0.001	0.2	49	2	74	andesite with 30% disseminated pyrite.
24961	90IND_P4-porth of grid	Select	0.001	0.2	15	4	54	sheared cherty volgania 180 ^{0/70W}
2400	00IND B5 porth of grid	Soloot	0.001	1 4	144	3280	00	float of dtz vein with Ms py and gelena
24863	90IND-P6-north of grid	Select	0.003	1.0	11	38	36	rusty sil, andesite with atz stringers
24964	001ND P7 porth of grid	Salaat	0.001	0.0				
24865	90IND-P8-north of grid	Select	0.001	0.4	24	48	118	float of rusty andesite with 30% diss_Ms by
24866	QUIND P9 north of grid	Soloot	0.001	1 0	E 1	20	120	float of rusty andesite with 200% discussion
24867	90IND-P10-north of grid	Select	0.001	0.2	66	6	10	float of rusty undesite with 20% diss.py.
24868	90IND-P11-north of grid	Select	0.001	0.2	2			milky white atz vein with 20% epidote
24869	POIND-P12-north of grid	Select	0.001	2.2	97	232	142	nusty andesite with minor etg. 05/96 S
24870	90IND-P13-north of grid	Select	0.001	2.2	21	232	910	usty andesite adjacent tests usin 100 su
04071	ADINID D14 ponth of mid	Select	0.001	0.0		400	410	rusty andesite aujacent toqtz vem - 10%py.
04070	SUMD-P 14-north of grid	Select	0.001	2.4	14	182	1 190	rusty milky -white qtz 140/90
24872	90IND-P15-north of grid	Select	0.001	0.6	13	52		slighty sheared rusty andesite with gtz.
I	1	1	1	1	1	ł	ł	

ASSAY REPORT - Chip Sample

PROPERTY : INDEPENDENCE ,STEWART ,B.C.

PAGE 2of 4

SAMPLE NO.	LOCATION	WIDTH (M)	Au	A	Cu	Pb	Zn	SAMPLE DESCRIPTION
	,		OZ/T	PPM	РРМ	РРМ	PPM	
24873	90IND-P16-north of grid	Select	0.001	14.0	62	368	628	rusty andesite with manganese.
24874	90IND-P17 north of grid	Select	0.001	15.2	32	330	1035	rusty sil.andesite with 20% py. &qtz veinlets
24875	90IND-P18-north of grid	Select	0.001	0.2	27	22	90	slightly shear andesite 004 ⁰ /72 ⁰ W
24876	90IND-P19-north of grid	Select	0.001	0.2	6	46	68	rusty sil. andesite
24877	90IND-P20-north of grid	Select	0.001	0.2	25	14	52	float of sil. andesite with up to 30% py.
24878	90IND-P21-north of grid	Select	0.001	0.2	33	12	14	gtz vein 54 / 10 ⁰ NW with serpentinized.
24879	90IND-P22-north of grid	Select	0.001	0.2	27	14	122	rusty porphyritic andesite with diss.py.qtz.
24880	90IND-P23-north of grid	Select	0.001	0.2	14	16	130	float rusty andesite withup to 30% diss.py.
24881	90IND-P24-north of grid	Select	0.001	0.2	11	8	72	rusty andesite with 10% diss.py. cherty qtz.
24882	90IND-P25-north of grid	Select	0.001	0.4	22	42	84	rusty qtz vein 127984°SW
24883	90IND-P26-north of grid	Select	0.001	0.2	32	10	72	rusty sheared sil. andesite 080 ⁰ trend.
24884	90IND-P27-north of grid	Select	0.001	0.2	22	10	78	rusty sil.andesite,alt. calcite 153 ⁰ /85 [°] SW
24885	90IND-P28-north of grid	Select	0.001	0.2	3	38	18	rusty qtz,15 Cm wide 164/83SW
24886	90IND-P29-north of grid	Select	0.001	0.2	1	10	26	epidote/qtz vein 129912 ⁰ NE
24887	90IND-P30-north of grid	Select	0.001	0.2	10	20	168	rusty sil. andesite with 5% py.
24888	90IND-P31-north of grid	Select	0.001	0.2	10	8	148	rusty ,sil -brecciated andesite.
24889	90IND-P32-north of grid	Select	0.003	2.4	22	46	28	rusty gtz vein 118°/ 54NE
24890	90IND-P33-north of grid	Select	0.001	1.2	12	26	22	rusty qtz vein with 15% goethite 128 ⁰ /73 ⁰ N
24891	90IND-P34-north of grid	Select	0.001	0.4	29	2	10	milky white qtz vein $,35^{\circ}/60^{\circ}$ SE
24892	90IND-P35-north of grid	Select	0.001	0.2	62	10	114	rusty slightly sheared andesite with some qt
24893	90IND-P36-north of grid	Select	0.001	0.4	29	22	50	rusty qtz vein approx. 3 Cm wide.
24894	90IND-P37-north of grid	Select	0.001	0.2	1	4	286	slightly rusty qtz with dark green volcanic
24895	90IND-P38-north of grid	Select	0.001	0.6	71	6	58	intercalated maroon volcanic and crystal tuf

.

SEWARSIS SEOLOSICAL CONSULTING INC.

ASSAY REPORT - Chip Sample

PROPERTY : INDEPENDENCE, STEWART ,B.C.

PAGE 3 of 4

LOCATION	WIDTH (M)	Au	Ag	Cu	Db	Z.	SAMPLE DESCRIPTION
		OZ/T	PPM	PPM	PPM	PPM	
90IND-P39-north of grid	Select	0.001	0.6	3	20	70	interbeded chertand quartzite, 171°/ 38° W
90IND-P40-north of grid	Select	0.001	0.4	6	52	16	rusty sil. andesite ,possibly with qtz 127 ⁰
90IND-P41-north of grid	Select	0.001	0.4	2	20	14	rusty sil. andesite, 168 ⁰ /45 ⁰ SW
90IND-P42-L1+15N, 0+50W	0.5	0.001	0.2	9	8	42	diorite & alt.proph. andesite with 5%diss.py.
90IND-P43-oldDDh.	0.5	0.001	0.2	14	2	444	dioritewith epidote stringer & sil andesite
90IND-P44old DDh	Grab	0.001	0.2	26	32	434	qtz vein,15 Cm wide 049 ⁰ /78 ⁰ NW
L1+55N ,60W	0.5	0.001	0.2	1	2	98	micro diorite and massive andesite
L1+60N,60W	0.5	0.001	0.8	55	32	50	microdiorite and sil. andesite
L1+95N,75W	Grab	0.001	0.2	6	10	42	slightly rusty andesite with 10% diss py.
Old DDh.	Select	0.001	9.4	57	194	2180	qtz veinlets with jasper, py, and gelena.
L2+00N,40W	Grab	0.001	0.2	3	8	60	rusty prophyritic andesite
L1+95N,10E	Grab	0.001	2.8	19	228	144	slightly rusty milky white qtz with andesite
L1+85N,35E	Grab	0.001	6.6	45	200	204	milky white qtz vein with 30% red jasper
L1+30N,-	Grab	0.001	2.6	33	86	260	rusty sil. andesite with 15% diss .py.
Trench-90-3	Grab	0.001	0.6	15	200	146	rusty sil. andesite with up to 10% py.
Trench 90-4	Grab	0.001	0.2	25	10	58	slightly rusty, light red andesite minor atz.v.
L3+10N,175W	Grab	0.001	0.2	1	2	12	float rusty milky qtz, 25 Cm wide
Trench 90-2	Channel	0.001	2.0	16	38	216	rusty cherty andesite with qtz. & epidote
Trench 90-2	Grab	0.001	1.0	9	52	244	vuggy, milky white qtz veins with jasper
Trench 90-1	0.5	0.001	0.2	1	8	74	contact of diorite with andesite $120^{\circ}/90^{\circ}$
Trench 90-1	0.5	0.001	0.2	11	30	52	sil. porph. andesite with diss. py.
French 90-1	0.5	0.001	0.2	13	12	96	sil. proph. andesite with diss.py.
	1						
	LOCATION 90IND-P39-north of grid 90IND-P40-north of grid 90IND-P41-north of grid 90IND-P42-L1+15N, 0+50W 90IND-P43-oldDDh. 90IND-P43-oldDDh L1+55N, 60W L1+60N,60W L1+95N,75W Old DDh. L2+00N,40W L1+95N,10E L1+85N,35E L1+30N,- Trench-90-3 Trench 90-4 L3+10N,175W Trench 90-2 Trench 90-1 French 90-1 French 90-1 French 90-1	LOCATION WIDTH (M) 90IND-P39-north of grid Select 90IND-P40-north of grid Select 90IND-P41-north of grid Select 90IND-P42-L1+15N, 0+50W 0.5 90IND-P43-oldDDh. 0.5 90IND-P43-oldDDh. 0.5 90IND-P43-oldDDh. 0.5 90IND-P43-oldDDh. 0.5 1+460N,60W 0.5 L1+55N,75W Grab Old DDh. Select L2+00N,40W Grab L1+95N,10E Grab L1+85N,35E Grab L1+30N,- Grab Trench-90-3 Grab Trench 90-4 Grab L3+10N,175W Grab Irench 90-2 Channel Irench 90-1 0.5 French 90-1 0.5 French 90-1 0.5	LOCATION WIDTH (M) Au 90IND-P39-north of grid Select 0.001 90IND-P40-north of grid Select 0.001 90IND-P41-north of grid Select 0.001 90IND-P42-L1+15N, 0+50W 0.5 0.001 90IND-P43-oldDDh. 0.5 0.001 90IND-P43-oldDDh. 0.5 0.001 90IND-P44old DDh Grab 0.001 L1+55N, 60W 0.5 0.001 L1+60N,60W 0.5 0.001 L1+95N,75W Grab 0.001 Cld DDh. Select 0.001 L1+95N,10E Grab 0.001 L1+30N,- Grab 0.001 L1+30N,- Grab 0.001 Trench-90-3 Grab 0.001 Trench 90-4 Grab 0.001 L1+30N,- Grab 0.001 Trench 90-2 Channel 0.001 Trench 90-4 Grab 0.001 Irench 90-1 0.5 0.001 Trench 90-1	LOCATION WIDTH (M) Au Ag 90IND-P39-north of grid Select 0.001 0.6 90IND-P40-north of grid Select 0.001 0.4 90IND-P41-north of grid Select 0.001 0.4 90IND-P42-L1+15N, 0+50W 0.5 0.001 0.2 90IND-P43-oldDDh. 0.5 0.001 0.2 90IND-P43-oldDDh Grab 0.001 0.2 90IND-P43-oldDDh Grab 0.001 0.2 1+55N, 60W 0.5 0.001 0.2 L1+55N, 60W 0.5 0.001 0.2 L1+95N,75W Grab 0.001 0.2 Old DDh. Select 0.001 0.2 L1+95N,10E Grab 0.001 0.2 L1+95N,35E Grab 0.001 2.6 Trench-90-3 Grab 0.001 0.2 L1+85N,35E Grab 0.001 0.2 L1+30N,- Grab 0.001 0.2 Trench 90-3 G	LOCATION WIDTH IM Ae Ae Ce 0Z/T PPM PPM PPM 90IND-P39-north of grid Select 0.00 0.6 3 90IND-P40-north of grid Select 0.00 0.4 6 90IND-P40-north of grid Select 0.001 0.4 2 90IND-P41-north of grid Select 0.001 0.2 9 90IND-P42-L1+15N, 0+50W 0.5 0.001 0.2 14 90IND-P43-oldDDh. 0.5 0.001 0.2 14 90IND-P44old DDh Grab 0.001 0.2 1 L1+60N,60W 0.5 0.001 0.2 1 L1+95N,75W Grab 0.001 0.2 3 L1+95N,10E Grab 0.001 0.2 3 L1+85N,35E Grab 0.001 2.6 33 Trench-90-3 Grab 0.001 0.2 1 Trench 90-4 Grab 0.001 0.2 1 <tr< td=""><td>LOCATION WIDTH (M) Au Au Cu PM 90IND-P39-north of grid Select 0.001 0.6 3 20 90IND-P40-north of grid Select 0.001 0.4 6 52 90IND-P41-north of grid Select 0.001 0.4 2 20 90IND-P42-L1+15N, 0+50W 0.5 0.001 0.2 9 8 90IND-P43-oldDDh. 0.5 0.001 0.2 14 2 90IND-P43-oldDDh. 0.5 0.001 0.2 14 2 90IND-P43-oldDDh. Grab 0.001 0.2 14 2 90IND-P44-ld DDh Grab 0.001 0.2 1 2 L1+55N, 60W 0.5 0.001 0.8 55 32 L1+95N,75W Grab 0.001 0.2 3 8 L1+95N,10E Grab 0.001 0.2 3 8 L1+85N,35E Grab 0.001 2.6 33 86<td>LOCATION WIGTM (M) Au Au Cu PM PPM PM P</td></td></tr<>	LOCATION WIDTH (M) Au Au Cu PM 90IND-P39-north of grid Select 0.001 0.6 3 20 90IND-P40-north of grid Select 0.001 0.4 6 52 90IND-P41-north of grid Select 0.001 0.4 2 20 90IND-P42-L1+15N, 0+50W 0.5 0.001 0.2 9 8 90IND-P43-oldDDh. 0.5 0.001 0.2 14 2 90IND-P43-oldDDh. 0.5 0.001 0.2 14 2 90IND-P43-oldDDh. Grab 0.001 0.2 14 2 90IND-P44-ld DDh Grab 0.001 0.2 1 2 L1+55N, 60W 0.5 0.001 0.8 55 32 L1+95N,75W Grab 0.001 0.2 3 8 L1+95N,10E Grab 0.001 0.2 3 8 L1+85N,35E Grab 0.001 2.6 33 86 <td>LOCATION WIGTM (M) Au Au Cu PM PPM PM P</td>	LOCATION WIGTM (M) Au Au Cu PM PPM PM P

SEWARGIS SEOLOGICAL CONSULTING INC.

ASSAY REPORT - Chip Sample

PROPERTY : INDEPENDENCE ,STEWART,B.C.

٠

PAGE 4 of 4

	·····		1			r		
SAMPLE NO.	LOCATION	(M)	Au	A	Cu	••	Zn	SAMPLE DESCRIPTION
			OZ/T	РРМ	РРМ	РРМ	РРМ	
24918	L0+13S,16E	Grab	0.001	0.2	7	18	90	qtz microdiorite &sil andesite cont.162 ⁰ /74
24919	shangri-la Camp	Grab	0.001	0.2	2	6	42	milky white gtz 1-10Cm wide 148 ⁰ /800sw
24920	L10+00S, 200E	Grab	0.001	1.2	296	28	144	rusty sil. alt. andesite with qtz &5% diss.py
			<u> </u>				<u> </u>	
		·····						
			<u> </u>				L	
				ļ		ļ	ļ	
			<u> </u>	<u> </u>			ļ	
			<u> </u>	ļ	 			
				<u> </u>	<u> </u>		<u> </u>	
			╂	<u> </u>	<u> </u>	<u> </u>		
				<u> </u>	<u> </u>	+	┼	
			1			†		
						<u> </u>		

SEWARGIS SEOLOGICAL CONSULTING INC.

APPENDIX 5

CHEMEX LAB, ASSAY RESULTS CERTIFICATES

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Page Number : 1-B Total Pagus : 1 Invoice Date: 9-AUG-90 Invoice No. : I-9019914 P.O. Number :

Project : INDEPENDENCE Comments: ATTN: B. KALPAKIAN CC: GEWARGIS GEOLOGICAL

		_								CERTIFICATE OF ANAL						SIS	A9019914
SAMPLE DESCRIPTION	PR CO	KIP Die	Mo ppm	Na t	Ni ppm	P ppm	Pb PPm	Sb ppa	Sc ppa	Sr ppm	Ti ¥	Tl PPm	U Ppm	V ppm	W	Zn ppm	
24858 24859 24860 24861 24862	208 208 208 208 208 208	294 294 294 294 294	< 1 < 1 1 < 1 5	0.01 0.01 0.11 0.01 < 0.01	23 2 4 1 2	910 760 1250 520 50	10 12 < 2 4 3280	< 5 < 5 < 5 < 5 5	6 1 7 2 1	10 16 < 78 39 5 <	0.19 0.01 0.26 0.20 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 8 79 13 31	< 10 < 10 < 10 < 10 < 10 < 10	76 20 74 54 98	
24863	208	294	6	0.01	< 1	410	38	< 5	1	9	0.05	< 10	< 10	16	< 10	36	
	CERTIFICATION:													B. Carghi			

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Page Number : 1-A Total Pages : 1 Invoice Date: 9-AUG-90 Invoice No. : I-9019914 P.O. Number :

Project : INDEPENDENCE Comments: ATTN: B. KALPAKIAN CC: GEWARGIS GEOLOGICAL

**

											CE	RTIFI	CATE	OF A	NAL	YSIS	/	49019	914		
SAMPLE DESCRIPTION	PREP		Au oz/T	Ag ppm	Al %	As ppm	Ba ppa	Be ppm	Bi PPE	Ca %	Cd ppa	Co ppm	Cr ppm	Cu ppm	Fe t	Ga ppm	Hg ppm	K ¥	La ppn	Mg t	Mn ppm
24858 24859 24860 24861 24862	208 208 208 208 208 208	294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001	< 0.2 0.2 < 0.2 < 0.2 < 0.2 1.4	2.25 0.45 2.48 1.48 1.20	< 5 < 5 < 5 < 5 < 30	210 340 230 200 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 4 2 4	0.26 0.25 0.83 0.32 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 2 19 5 26	30 91 10 8 45	25 22 49 15 144	3.17 0.56 5.16 1.24 9.16	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.55 0.19 0.25 0.53 0.06	10 10 10 10 < 10	1.21 0.17 1.29 0.63 0.53	675 150 475 580 1065
24863	208	294	0.003	0.2	1.00	< 5	340	< 0.5	< 2	0.09	< 0.5	4	20	11	1.95	< 10	< 1	0.34	10	0.37	130
										;				(CERTIFIC	CATION:		þ	5. (a-g	Ŀ

Г

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARMENO RESOURCES INC.

**

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Page Number : 1-B Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020284 P.O. Number :

Project : INDEPENDENCE Comments: ATTN: BEDO. H. KALPAKIAN CC: GEWARGIS GEOLOGICAL CONSULTING

					<u></u>							CE	ERTIF	ICATE	A9020284			
SAMPLE DESCRIPTION	PF CC	ikp Ioil) P	Mo para '	Na t	Ni ppm	P pp a	Pb ppm	Sb ppa	Sc ppa	Sr ppa	Ti ¥	Tl ppa	U Ppa	V ppa	W Ppa	Zn ppm	
24864 24865 24866 24867 24868	208 208 208 208 208	294 294 294 294 294	<	1 4 10 1 4	< 0.01 0.01 0.01 0.01 0.01 0.01	2 5 10 < 1 2	10 1050 1220 270 30	2 48 32 6 4	< 3 < 5 5 < 5 < 5 < 5	< 1 6 12 1 < 1	86 < 30 < 10 5 < 96 <	0.01 0.01 0.28 0.01 0.01	< 10 20 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 59 166 23 20	< 10 < 10 < 10 < 10 < 10 < 10	< 2 118 136 10 4	
24869 24870 24871 24872 24872 24873	208 208 208 208 208	294 294 294 294 294	<	1 4	0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01	32 1 3 < 1 2	900 890 200 910 650	232 208 182 52 368	5 5 10 < 5 20	3 2 1 2 3	15 < 5 < 3 < 7 < 16 <	0.01 0.01 0.01 0.01 0.01	< 10 10 < 10 < 10 20	< 10 < 10 < 10 < 10 < 10 < 10	47 38 12 23 72	< 10 < 10 < 10 < 10 < 10 < 10	142 210 190 74 628	
24874 24875 24876 24877 24878	208 208 208 208 208	294 294 294 294 294	<	1 2 1 1	0.01 0.02 0.01 0.02 0.03	2 4 1 3 2	740 960 510 1000 530	330 22 46 14 12	10 < 5 < 5 < 5 < 5 < 5	2 5 1 6 3	11 < 11 < 11 < 58 904	0.01 0.01 0.27 0.14	10 < 10 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	28 38 12 48 64	< 10 < 10 < 10 < 10 < 10	1035 90 68 52 14	
24879 24880 24881 24882 24883	208 208 208 208 208	294 294 294 294 294	< < < <	1 1 1 1	0.03 0.03 0.01 0.01 0.01	16 3 2 3 5	1100 1770 840 450 660	14 16 8 42 10	< 5 < 5 < 5 < 5 < 5 < 5	7 12 3 2 5	59 59 22 6 7 <	0.17 0.21 0.12 0.07 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 140 38 27 36	< 10 < 10 < 10 < 10 < 10 < 10	122 130 72 84 72	
24884 24885 24886 24887 24888	208 208 208 208 208	294 294 294 294 294	< < < < <	1 1 1 1	0.02 0.02 0.06 0.06 0.06	2 1 7 5 6	1000 290 620 830 890	10 38 10 20 8	< 5 < 5 < 5 < 5 < 5 < 5	5 < 1 6 14 16	82 < 15 < 655 21 28	0.01 0.01 0.21 0.43 0.56	10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	28 2 93 107 108	< 10 < 10 < 10 < 10 < 10 < 10	78 18 26 168 148	
24889 24890 24891 24892 24893	208 208 208 208 208 208	294 294 294 294 294	<	1 1 1 1 1	0.02 0.02 0.03 0.02 0.02	2 1 3 3 2	390 550 140 1200 810	46 26 2 10 22	< 5 < 5 < 5 < 5 < 5 < 5	1 1 1 4 2	15 < 10 < 51 17 < 11 <	0.01 0.01 0.03 0.01 0.01	< 10 10 < 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	13 8 16 31 24	< 10 < 10 < 10 < 10 < 10 < 10	28 22 10 114 50	
24894 24895 24896 24897 24898	208 208 208 208 208 208	294 294 294 294 294	~ ~	1 1 1 2	0.02 0.03 0.02 0.01 0.03	8 1 1 1 < 1	40 860 80 320 370	4 6 20 52 20	< 5 < 5 < 5 < 5 < 5 < 5	1 5 1 1 1	5 < 63 115 8 < 6 <	0.01 0.24 0.04 0.01 0.01	< 10 < 10 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 53 2 6 7	< 10 < 10 < 10 < 10 < 10 < 10	286 58 70 16 14	
								·										

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

C.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Page Number : 1-A Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020284 P.O. Number :

Project : INDEPENDENCE

Comments: ATTN: BEDO. H. KALPAKIAN SC: GEWARGIS GEOLOGICAL CONSULTING

**

						As ppa			. <u></u>		CERTIFICATE OF ANALYSIS A9020284)284			
SAMPLE DESCRIPTION	PR	er De	Au oz/T	Ag ppm	A1 %		Ba pp a	Be pp a	Bi PP B	Ca ŧ	Cd.	Co ppa	Cr	Cu PP a	Fe t	Ga pp a	Hg ppm	K ŧ	La ppa	Mg	Mn ppa
24864 24865 24866 24867 24868	208 208 208 208 208	294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.2 0.4 1.2 < 0.2 < 0.2	0.30 2.36 2.64 0.43 0.56	< 5 45 45 25 < 5	20 60 250 230 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.28 0.18 0.41 0.01 0.52	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 28 15 1 < 1	239 52 22 72 142	< 1 24 51 66 3	0.69 9.21 6.34 4.13 0.88	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.68 0.40 0.15 0.06	< 10 < < 10 10 < 10 < 10 < 10	< 0.01 1.01 2.69 0.13 0.04	110 850 1210 110 130
24869 24870 24871 24872 24873	208 208 208 208 208	294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	2.2 3.0 2.4 0.6 14.0	1.49 1.29 0.42 1.10 0.70	200 170 190 30 380	190 140 70 140 530	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.10 0.08 0.02 0.09 0.33	< 0.5 1.0 1.5 < 0.5 2.5	4 2 1 4 6	67 43 159 24 56	27 20 14 13 62	3.84 3.29 1.47 3.11 10.65	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 1	0.58 0.42 0.17 0.35 0.24	10 10 < 10 10 10	0.43 0.37 0.09 0.31 0.20	220 290 120 350 780
24874 24875 24876 24877 24878	208 208 208 208 208	294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	15.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.05 2.01 0.67 0.95 2.29	365 < 5 10 15 < 5	210 810 260 190 30	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.11 0.13 0.07 0.88 3.84	7.5 < 0.5 0.5 < 0.5 0.5	8 12 2 9 2	45 20 25 19 225	32 27 6 25 33	4.95 3.89 2.03 4.00 1.47	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.47 0.72 0.32 0.32 0.03	10 20 20 10 < 10	0.15 0.55 0.09 0.15 0.20	205 905 130 530 760
24879 24880 24881 24882 24883	208 208 208 208 208	294 294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.2 < 0.2 < 0.2 < 0.2 0.4 < 0.2	3.16 3.10 2.10 0.79 1.38	< 5 < 5 < 5 15 < 5	430 490 180 60 410	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.16 0.57 1.14 0.14 0.24	0.5 1.0 < 0.5 0.5 < 0.5	15 10 10 6 12	42 18 14 71 3	27 < 1 11 22 32	4.25 7.50 3.38 1.59 3.38	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.52 0.15 0.50 0.18 0.48	10 < 10 10 < 10 20	2.02 2.21 1.15 0.39 0.35	900 1705 1110 320 675
24884 24885 24886 24887 24888	208 208 208 208 208 208	294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.85 0.60 2.72 2.42 2.54	< 5 5 < 5 < 5 < 5 < 5	730 910 40 120 210	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.05 0.04 2.79 0.89 1.41	0.5 < 0.5 < 0.5 0.5 < 0.5	10 < 1 4 7 6	21 30 129 44 31	22 3 < 1 10 10	3.48 1.49 2.69 7.31 7.85	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.34 0.31 0.11 0.02 0.02	10 20 < 10 10 10	0.68 0.04 0.62 0.66 0.69	1055 45 495 860 1255
24889 24890 24891 24892 24892 24893	208 208 208 208 208	294 294 294 294 294	0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	2.4 1.2 0.4 < 0.2 0.4	0.71 0.58 0.45 1.72 1.30	5 < 5 < 5 < 5 < 5 < 5	620 380 20 270 340	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.05 0.07 0.29 0.47 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 1 9 6	108 90 236 11 74	22 12 29 62 29	2.87 3.40 0.86 3.01 2.11	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.19 0.18 0.05 0.47 0.42	< 10 10 < 10 30 10	0.13 0.09 0.12 0.55 0.35	850 355 130 1050 730
24894 24895 24896 24897 24898	208 208 208 208 208	294 294 294 294 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.2 0.6 0.6 0.4 0.4	3.12 1.44 1.88 1.31 1.01	< 5 < 5 < 5 5 < 5 < 5	40 190 230 390 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 2.44 0.43 0.04 0.03	0.5 0.5 0.5 < 0.5 0.5	36 7 2 1 < 1	208 49 31 44 32	< 1 71 3 6 2	3.66 2.54 1.23 1.30 1.82	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.38 0.49 0.67 0.44	< 10 10 30 20 20	3.74 0.85 0.83 0.07 0.11	1690 1185 580 50 120
L	<u> </u>		L							:					CERTIFIC	CATION:	······································	B.	Ca.	-gl	?

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARMENO RESOURCES INC.

**

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Project : INDEPENDENCE Comments: ATTN: BEDO H. KALPAKIAN CC: GEWARGIS GEOLOGICAL CONSULTING

					-							CE	RTIF	CATE	OF A	NAL	SIS	A9020528
SAMPLE DESCRIPTION	PR CO	KIP Dis	Mo PP a)	Na ę	Ni pp n	P PP n	Pb ppm	Sb PPa	Sc ppn	Sr ppa	Ti \$	Tl ppa	n D	V PPB	W	Zn ppa	
24899 24900 24901 24902 24903	208 208 208 208 208 208	294 294 294 294 294	< 1 < 1 < 1 1 5	<	0.04 0.07 0.01 0.06 0.05	< 1 1 5 2	440 870 110 920 440	8 < 2 32 < 2 32	< 5 < 5 < 5 < 5 < 5	1 4 < 1 3 1	12 36 14 80 41	0.04 0.17 0.01 0.21 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 62 14 50 20	< 10 < 10 < 10 < 10 < 10 < 10	42 444 434 98 50	
24904 24905 24906 24907 24908	208 208 208 208 208 208	294 294 294 294 294	1 1 1 40 2	~ ~	0.08 0.01 0.03 0.01 0.01	< 1 1 < 1 2 1	310 350 290 150 80	10 194 8 228 200	< 5 < 5 < 5 < 5 < 5 < 5	2 2 < 1 < 1 1	17 188 8 10 38 <	0.05 0.03 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 33 3 26 38	< 10 < 10 < 10 < 10 < 10 < 10	42 2180 60 144 204	
24909 24910 24911 24912 24913	208 208 208 208 208 208	294 294 294 294 294	3 4 3 < 1 4	~ ~	0.01 0.01 0.23 0.01 0.01	2 < 1 20 2 2	1030 330 1070 90 940	86 200 10 < 2 38	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	8 1 4 < 1 7	28 7 < 104 28 < 47	0.24 0.01 0.31 0.01 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	117 6 148 13 106	< 10 < 10 < 10 < 10 < 10 < 10	260 146 58 12 216	
24914 24915 24916 24917 24918	208 208 208 208 208 208	294 294 294 294 294	2 < 1 < 1 < 1 < 1	<	0.01 0.06 0.03 0.02 0.05	1 2 1 < 1 3	310 760 630 420 870	52 8 30 12 18	5 < 5 < 5 < 5 < 5 < 5	2 2 2 1 6	34 49 15 31 78	0.08 0.22 0.12 0.05 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	83 42 21 16 72	< 10 < 10 < 10 < 10 < 10 < 10	244 74 52 96 90	
24919 24920	208	294	< 1 12		0.01	2 < 1	150 470	6 28	< 5 5	< 1 2	5 < 9	0.01	< 10 < 10	< 10 < 10	15 36	< 10 < 10	42	

CERTIFICATION:

Page Number : 1-B Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020528 P.O. Number :

B. Cargli

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3 Page Number : 1-A Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020528 P.O. Number :

Project : INDEPENDENCE Comments: ATTN: BEDO H. KALPAKIAN OC: GEWARGIS GEOLOGICAL CONSULTING

CERTIFICATE OF ANALYSIS A9020528 Ca Ga K Ma Mn Be Bi Cd Со \mathbf{Cr} Te Bq La PREP **N** λs Ba Cu SMPLE Âu λq CODE or/T ŧ * ppe ppa 8 ppa \$ ppa DESCRIPTION ppa ppa ppa ppa ppa ppa ppa ppa ppa 208 294 < 0.001 < 0.2 1.77 < 1 0.43 10 0.37 820 24899 1.36 5 170 < 0.5 < 2 0.20 < 0.5 4 25 ۵ < 10 24900 208 294 0.001 < 0.2 2.38 25 160 0.5 4 0.67 < 0.5 9 23 14 .2.86 < 10 < 1 0.78 10 1.04 990 208 294 < 0.001 < 0.2 0.34 60 20 < 0.5 0.13 0.5 3 203 26 1.27 < 10 < 1 0.03 < 10 0.11 945 24901 < 2 635 24902 208 294 < 0.001 < 0.2 1.95 < 5 50 < 0.5 < 2 0.82 < 0.5 9 53 1 2.42 < 10 < 1 0.10 10 1.40 208 294 < 0.001 485 0.26 10 0.55 24903 0.8 1.32 5 90 < 0.5 2 0.56 < 0.5 9 60 55 1.72 < 10 < 1 1.58 < 10 < 1 0.26 10 0.34 505 120 2 24904 208 294 < 0.001 < 0.2 1.26 10 0.5 2 0.20 < 0.5 56 6 56 1.26 < 10 0.15 < 10 0.27 2460 24905 208 294 < 0.001 9.4 0.58 15 1780 0.5 < 2 8.65 9.5 8 57 < 1 208 294 < 0.001 < 0.2 180 0.11 < 0.5 1 28 1.40 < 10 < 1 0.44 10 0.23 235 24906 1.22 30 < 0.5 < 2 3 208 294 < 0.001 250 0.15 < 0.5 194 19 1.67 < 10 < 1 0.32 < 10 0.06 505 0.59 25 < 0.5 < 2 1 24907 2.8 < 10 0.18 < 10 0.12 390 208 294 < 0.001 0.58 35 6890 0.5 0.02 < 0.53 163 45 1.19 3 24908 6.6 4 1010 0.18 10 0.61 208 294 < 0.001 55 450 0.5 < 2 0.84 < 0.5 9 38 33 3.40 10 < 1 24909 2.6 1.43 30 0.10 350 54 15 1.45 < 10 < 1 0.49 208 294 < 0.001 5 250 0.5 2 0.10 1.0 1 24910 0.6 0.93 0.31 10 1.27 600 64 25 3.94 < 10 < 1 24911 208 294 < 0.001 0.2 2.15 5 170 < 0.5 4 1.28 < 0.5 14 < 10 0.05 .0.08 110 208 294 < 0.001 0.29 5 20 < 0.5 < 2 0.27 < 0.5 1 118 < 1 0.57 < 10 < 1 24912 < 0.2 0.77 1420 208 294 < 0.001 45 0.62 < 0.5 11 37 16 4.61 < 10 < 1 0.19 10 2.0 1.47 780 < 0.5 < 2 24913 < 0.5 199 3.46 < 10 < 1 0.08 < 10 0.19 480 208 294 < 0.001 1290 0.19 < 0.5 7 9 24914 1.0 0.53 85 < 2 0.86 425 1.66 0.59 < 0.58 47 2.16 < 10 < 1 0.23 10 208 294 < 0.001 < 5 90 < 0.5 2 1 24915 < 0.2 0.52 0.37 480 0.20 < 0.5 6 15 11 2.55 < 10 < 1 10 24916 208 294 < 0.001 < 0.2 1.62 10 310 < 0.5 . 0.37 960 0.46 10 10 200 < 0.5 0.97 < 0.5 4 36 13 1.32 < 10 < 1 24917 208 294 < 0.001 < 0.2 1.32 < 2 0.32 10 1.11 775 34 7 < 10 < 1 24918 208 | 294 | < 0.001 < 0.21.73 < 5 200 < 0.5 2 0.68 < 0.5 9 2.86 2 267 2 1.17 < 10 < 1 0.29 < 10 0.32 615 24919 208 294 < 0.001 < 0.2 0.80 < 5 110 < 0.5 < 2 0.05 < 0.5 7 68 296 5.28 < 10 < 1 0.52 10 0.87 1235 0.14 < 0.5 24920 208 294 < 0.001 1.2 2.21 10 160 < 0.5 4

CERTIFICATION:

<u>B.</u>

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARMENO RESOURCES INC.

##

Page Number : 1 Total Pages : 2 Invoice Date: 2-AUG-90 Invoice No. : I-9019681 P.O. Number :

۰,

.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Project : INDEPENDENCE Comments: ATTN:BEDO H. KALPAKIAN CC:GEWARGIS GEOLOGICAL CONSULTING INC

						CERTIFIC	ATE OF A	NALYSIS	A9	019681		
SAMPLE DESCRIPTION	PREP CODE	Au oz/T	Ag oz/T	Cu %	Pb %	Zn t						
24851	208 294	< 0.001	0.65	0.03	0.15	0.17						
24852	208 294	0.005	6.90	0.03	0.38	0.05						
24853	208 294	0.002	6.96	0.11	0.32	1.86				1		
24854	208 294	< 0.001	4.84	0.01	0.09	0.13						
24855	208 294	< 0.001	0.21	0.02	0.03	0.05						
24856	208 294	0.002	0.90	0.01	0.16	0.23					1	
24857	208 294	0.002	0.83	< 0.01	0.25	0.23					1	
501501	208 294	< 0.001	0.04								1	
501502	208 294	< 0.001	0.03									
501503	208 294	< 0.001	0.03									
501504	208 294	< 0.001	0.03									
501505	208 294	< 0.001	0.04								1	
501506	208 294	< 0.001	0.03									
501507	208 294	< 0.001	0.02									
501508	208 294	< 0.001	0.02									
501509	208 294	< 0.001	0.01									
501510	208 294	< 0.001	0.01									
501511	208 294	< 0.001	0.01									
501512	208 294	< 0.001	0.01									
501513	208 294	< 0.001	0.01									
501514	208 294	< 0.001	0.01								1	
501515	208 294	< 0.001	0.01									
501516	208 294	< 0.001	0.02									
501517	208 294	< 0.001	0.04									
501518	208 294	< 0.001	0.20									
501519	208 294	< 0.001	0.35									_
501520	208 294	< 0.001	0.02									
501521	208 294	< 0.001	0.02									
501522	208 294		0.14	0.02	0.09	0.12						
301523	200 294	~ 0.001	0.04	< 0.01	0.01	0.09					ł	
501524	208 294	< 0.001	0.06	< 0.01	0.02	0.09						
501525	208 294	< 0.001	0.01							1		
501526	208 294	< 0.001	0.06							1		
501527	208 294									1	1	
201228	208 294	< 0.001	0.02									
501529	208 294	0.003	1.09	0.01	0.05	0.16						
501530	208 294	0.008	8.34	0.02	0.32	0.63				1		
501531	208 294	0.003	2.29	0.05	0.14	0.38						
501532	208 294	< 0.001	15.20	0.03	0.47	1.25				1	1	
501533	208 294	0.001	1.89	0.02	0.16	0.49						

Sontmanin CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3 Page Number : 1 Total Pages : 2 Invoice Date: 9-AUG-90 Invoice No. : I-9019915 P.O. Number :

Project : INDEPENDENCE Commonts: ATTN: B. KALPAKIAN GC: GEWARGIS GEOLOGICAL

**

						CERTIFIC	ATE OF A	NALYSIS	A90	19915	
SAMPLE DESCRIPTION	PREP CODE	Au oz/T	Cu ¥	Pb t	Zn ¥	Ag oz/T					
501545 501546 501547 501548 501549	208 294 208 294 208 294 208 294 208 294 208 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001				0.14 0.18 0.21 0.38 0.11					
501550 501551 501552 501553 501554	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>				0.09 0.01 0.01 0.01 0.01					
501555 501556 501557 501558 501559	208 294 208 294 208 294 208 294 208 294 208 294	0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001				0.01 0.03 0.15 0.02 0.03					
501560 501561 501562 501563 501564	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 0.001 < 0.001 0.003 < 0.001</pre>	0.03 0.02 0.04	0.14 0.02 1.37	0.61 0.11 1.08	0.01 0.30 0.14 3.41 0.13					
501565 501566 501567 501568 501569	208 294 208 294 208 294 208 294 208 294 208 294	0.002 0.001 0.001 0.040 < 0.001	< 0.01 0.01 0.02 0.06 < 0.01	0.15 0.03 0.12 0.20 0.01	0.06 0.04 0.85 0.24 0.03	1.00 0.27 1.09 54.3 0.33					
501570 501571 501572 501573 501574	208 294 208 294 208 294 208 294 208 294 208 294	0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.01 0.01 < 0.01	0.02 0.09 0.01	0.05 0.45 0.03	0.84 1.98 0.02 0.03 0.04					
501575 501576 501577 501578 501579	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	< 0.01	0.01	0.03	0.02 0.01 < 0.01 < 0.01 < 0.01 < 0.01					
501580 501581 501582 501583 501584	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>				< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01					
L			L			L	L	I		11-1-1	J

CERTIFICATION: W. San manin

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3 Page Number : 2 Total Pages : 2 Invoice Date: 9-AUG-90 Invoice No. : I-9019915 P.O. Number :

Project : INDEPENDENCE Comments: ATTN: B. KALPAKIAN CC: GEWARGIS GEOLO

.

CERTIFICATE OF ANALYSIS AS

**

EOLOGICAL	
A901991	5

									·		
SAMPLE DESCRIPTION	PREP CODE	Au oz/T	Cu %	Pb &	Zn %	Ag oz/T					
501585 501586 501587 501588 501588 501589	208 294 208 294 208 294 208 294 208 294 208 294	0.001 < 0.001 < 0.001 0.001 0.008	 0.23	 0.65	 3.13	0.05 < 0.01 0.12 0.16 1.78					
501590 501591 501592 501593	208 294 208 294 208 294 208 294 208 294	0.005 < 0.001 < 0.001 < 0.001 < 0.001	0.04	0.42 0.01	0.88 0.04 	0.48 0.07 < 0.01 < 0.01					
							4 4 4 5 1 1 1				
										8.2	
							c	ERTIFICATIO	N: <u>W.</u>	Sent	ulini

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3 Page Number : 1 Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020250 P.O. Number :

Project : INDEPENDENCE Comments: ATTN:B.KALPAKIAN. CC:GEWARGIS GEOLOGICAL

••

						CERTIFIC	ATE OF A	NALYSIS	A90)20250	
SAMPLE DESCRIPTION	PREP CODE	Au oz/T	Ag oz/T	Cu %	Pb ¥	Zn %					
501594 501595 501596 501597 501598	208 294 208 294 208 294 208 294 208 294 208 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.11 0.03 0.03 0.08 0.08								
501599 501600 501601 501602 501603	208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.01 0.02 0.02 0.02 0.02								
501604 501605 501606 501607 501608	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.02 0.02 0.02 0.01 0.05								
501609 501610 501611 501612 501613	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.06 0.05 0.02 < 0.01 0.01								
501614 501615 501616 501617 501618	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.01 0.01 0.01 0.08 0.14	 < 0.01 < 0.01							
501619 501620 501621 501622 501623	208 294 208 294 208 294 208 294 208 294 208 294	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.07 0.14 0.09 0.02 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01							
501624 501625 501626 501627 501628	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.02 0.17 0.01 0.08 0.11								
501629 501630 501631 501632 501633	208 294 208 294 208 294 208 294 208 294 208 294	< 0.001 < 0.001 0.001 < 0.001 < 0.001 < 0.001	0.02 0.01 0.11 0.02 0.02	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	0.02 0.01 0.01 0.01 0.01					

Alphnice CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARMENO RESOURCES INC.

**

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Page Number : 1 Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020399 P.O. Number :

.....

Project : INDEPENDENCE Comments: ATTN: BEDO H. KALPAKIAN CC: GEWARGIS GEOLOGICAL CONSULTING

						CERTIFIC	ATE OF AN	IALYSIS	A90	20399	
SAMPLE DESCRIPTION	PREP CODE	Au oz/T RUSH	Cu ŧ	Pb \$	Zn t	Ag oz/T RUSH					
501634 501635 501636 501637 501638	258 295 258 295 258 295 258 295 258 295 258 295	0.002 0.002 0.001 < 0.001 < 0.001				< 0.01 < 0.01 < 0.01 < 0.04 0.04					
501639 501640 501641 501642 501643	258 295 258 295 258 295 258 295 258 295 258 295	<pre>< 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	< 0.01 0.02 < 0.01			< 0.01 0.02 < 0.01 < 0.01 < 0.01					
501644 501645 501646 501647 501648	258 295 258 295 258 295 258 295 258 295 258 295	0.004 0.001 0.001 0.011 0.003	0.16 0.02 6.04 0.44	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	0.08 0.01 0.09 0.03	0.05 0.20 0.04 4.53 0.81					
501649 501650 501651 501652 501653	258 295 258 295 258 295 258 295 258 295 258 295	0.007 0.002 0.001 0.002 0.002	0.81 0.21 0.04	< 0.01 < 0.01 	0.05	0.82 0.01 0.12 0.23 0.17					
501654 501655 501656 501657 501658	256 295 258 295 258 295 258 295 258 295 258 295	<pre>< 0.001 0.001 < 0.001 < 0.001 0.001 0.001</pre>	0.02 < 0.01 < 0.01 < 0.01 < 0.01 0.01	 0.12	 0.31	0.03 0.01 0.01 0.02 0.06					
501659 501660 501661 501662 501663	258 295 258 295 258 295 258 295 258 295 258 295	0.002 0.024 0.001 0.055 0.237	0.01 0.02 < 0.01 0.58 0.52	0.08 0.19 0.04 0.36 1.37	0.29 0.65 0.24 0.64 6.08	0.04 0.19 0.02 0.65 0.75					
501664 501665 501666 501667 501668	258 295 258 295 258 295 258 295 258 295 258 295	0.056 0.003 0.001 0.001 0.068	7.92 0.04 0.02 0.02 2.72	0.08	0.23	7.98 0.06 0.05 0.04 2.33					
501669 501670	258 295 258 295	0.002				0.14 0.03				, ,	

SCHAN

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

.

To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Page Number : 1 Total Pages : 1 Invoice Date: 16-AUG-90 Invoice No. : I-9020526 P.O. Number :

Project : INDEPENDENCE Comments: ATTN: BEDO H. KALPAKIAN CC: W. GEWARGIS

**

					C	CERTIFIC	ATE OF A	NALYSIS	A90	20526	
SAMPLE DESCRIPTION	PREP CODE	Au oz/T	Ag oz/T	Cu %							
501671 501672 501673 501674 501675	208 294 208 294 208 294 208 294 208 294 208 294	0.002 0.002 0.003 0.001 0.001	< 0.01 < 0.01 0.21 < 0.01 < 0.01	 0.30 < 0.01							
501676 501677 501678 501679 501680	208 294 208 294 208 294 208 294 208 294 208 294	< 0.001 < 0.001 0.004 0.002 0.001	< 0.01 < 0.01 0.09 0.01 0.01	< 0.01 < 0.01 0.03 < 0.01							
501681 501682 501683 501684 501685	208 294 208 294 208 294 208 294 208 294 208 294	0.001 0.001 0.001 0.001 < 0.001 < 0.001	0.01 0.01 < 0.01 0.03 < 0.01	< 0.01							
501686 501687 501688 501689 501689	208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 0.001 < 0.001 0.001 < 0.001 < 0.001</pre>	0.01 0.04 0.03 0.03 < 0.01	 < 0.01							
501691 501692 501693 501694 501695	208 294 208 294 208 294 208 294 208 294 208 294	0.002 0.002 0.001 0.003 0.002	0.16 0.02 0.03 0.35 0.10	 0.30 0.10							
501696 501697 501698 501699 501700	208 294 208 294 208 294 208 294 208 294 208 294	0.001 0.004 < 0.001 < 0.001 0.001	0.21 0.02 0.01 0.01 0.01	0.30 0.01 							
]									

CERTIFICATION: W. Sentmini

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: ARMENO RESOURCES INC.

##

Page Number : 2 Total Pages : 2 Invoice Date: 2-AUG-90 Invoice No. : I-9019681 P.O. Number :

......

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3

Project : INDEPENDENCE Comments: ATTN:BEDO H. KALPAKIAN CC:GEWARGIS GEOLOGICAL CONSULTING INC

						CERTIFIC	ATE OF A	NALYSIS	A90	19681	
SAMPLE DESCRIPTION	PREP CODE	Au oz/T	Ag oz/T	Cu ¥	Pb \$	Zn ¥					
501534 501535 501536 501537 501538	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.70 0.07 0.01 0.03 0.04								
501539 501540 501541 501542 501543	208 294 208 294 208 294 208 294 208 294 208 294	<pre>< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001</pre>	0.19 0.49 0.09 0.08 0.02	0.02 0.09 < 0.01 0.01 < 0.01	0.01 0.01 0.01 0.01 0.01	0.05 0.06 0.03 0.06 0.05					
501544	208 294	< 0.001	0.02	< 0.01	0.01	0.11			•		
									-		
										10.	
					· · · · · · · · · · · · · · · · · · ·		CE	ERTIFICATION	h.S	len fra	duin

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3 Page Number : 1-A Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020527 P.O. Number :

B.C.A.

Project : INDEPENDENCE Comments: ATTN: BEDO KALPAKIAN CC: W. GEWARGIS

••

CERTIFICATE OF ANALYSIS A9020527 SAMPLE PREP Au ppb λq **A1** λs Ba Be Bi Ca Cd Co Cr Cu Fe Ga Bq K La Mg Mn \$ DESCRIPTION CODE RUSH 욯 8 ppa ppa ppe * ppe ppa ppm ppa ppm ppa PPE ppa ppe ppa 201 238 11 < 1 0.08 210 13508 100E < 5 < 0.2 2.17 15 50 < 0.5 < 2 0.05 < 0.5 2 13 6.49 < 10 0.03 10 0.06 0.24 335 L3508 110E 201 238 < 5 < 0.2 3.20 10 70 < 0.5 < 2 < 0.5 14 13 9.11 < 10 < 1 0.04 10 4 < 0.5 15 5.57 < 10 0.06 10 0.15 225 L3508 120E 201 238 < 5 5.8 4.70 10 40 < 2 0.05 < 0.5 3 21 < 1 0.22 275 L350S 130K 201 238 < 5 1.2 1.42 < 5 110 < 0.5 < 2 0.07 0.5 3 6 14 4.67 < 10 < 1 0.08 10 13508 140E 201 238 < 5 < 0.2 3.11 10 60 < 0.5 < 2 0.09 < 0.52 13 15 9.39 < 10 < 1 0.05 10 0.18 335 10 0.45 450 L3508 150B 201 238 < 5 1.2 2.25 10 140 < 0.5 < 2 0.15 < 0.5 6 9 17 3.24 < 10 1 0.10 365 20 0.52 L3508 160E 201 238 < 5 0.6 2.03 < 5 230 0.5 < 2 0.31 0.5 5 R 19 1.43 < 10 1 0.11 0.16 215 < 1 10 201 238 0.10 < 0.52 7 14 7.64 < 10 0.07 L350S 170% < 5 < 0.2 2.18 15 90 < 0.5 < 2 < 10 10 0.15 205 201 238 60 < 2 7 3.66 < 1 0.08 L3508 180E 5 1.2 1.55 < 5 < 0.5 0.09 < 0.53 8 < 0.5 0.06 < 0.5 5 4 2.66 < 10 < 1 0.11 10 0.07 160 L4008 130E 201 238 < 5 < 0.2 1.22 5 80 < 2 1 L4008 140E 201 238 1.08 < 5 150 < 0.5 4 0.13 < 0.5 2 5 3 0.99 < 10 < 1 0.14 10 0.12 155 < 5 1.2 201 238 120 < 0.5 < 2 < 0.5 3 31 3.93 10 < 1 0.08 10 0.12 195 L4008 150E < 5 0.6 1.68 < 5 0.08 9 L4008 160E 201 238 140 13 13 22 4.06 < 10 < 1 0.06 10 0.15 900 < 5 1.6 3.40 - 5 1.0 < 2 0.13 < 0.5 365 L4008 170E 201 238 220 < 0.5 < 2 < 0.5 11 7 3.72 < 10 0.08 10 0.24 < 5 0.4 1.61 5 0.12 4 < 1 < 2 110 L4005 180K 201 238 < 5 0.2 2.00 < 5 160 < 0.5 0.05 < 0.5 1 10 4 2.46 < 10 < 1 0.04 10 0.13 201 238 30 2.30 < 5 370 1.0 < 2 0.59 1.0 7 ٩ 61 3.73 < 10 < 1 0.08 20 0.29 1055 L400S 190E 1.2 15 0.13 L450S 100E 201 238 < 5 < 0.2 1.42 < 5 60 < 0.5 < 2 0.04 < 0.5 1 2 0.89 < 10 < 1 0.06 10 80 0.04 50 L450S 110E 201 238 10 < 0.2 0.65 < 5 40 < 0.5 < 2 0.02 < 0.5 < 1 5 < 1 0.13 < 10 < 1 0.08 10 75 < 0.5 < 0.5 0.79 < 10 0.12 < 10 0.08 L450S 120B 201 238 < 5 < 0.2 1.09 < 5 40 < 2 0.01 1 2 < 1 < 1 < 0.5 0.09 70 L450S 130E 201 238 < 5 < 0.2 1.31 < 5 30 < 0.5 < 2 0.03 < 1 3 < 1 0.91 10 < 1 0.09 < 10 L450S 140B 201 238 < 5 < 0.2 2.40 < 5 80 < 0.5 < 2 0.04 < 0.5 2 7 6 3.74 10 < 1 0.07 10 0.18 165 150 L450S 150B 201 238 < 5 < 0.2 1.48 < 5 60 < 0.5 2 0.04 < 0.5 2 5 5 2.38 10 < 1 0.11 10 0.14 0.11 < 0.5 R 7 3.36 < 10 10 0.46 355 L450S 160E 201 238 < 5 < 0.2 1.66 < 5 60 < 0.5 < 2 5 < 1 0.11

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: ARMENO RESOURCES INC.

500 - 1111 W. HASTINGS ST. VANCOUVER, BC V6E 2J3 Page Number : 1-B Total Pages : 1 Invoice Date: 13-AUG-90 Invoice No. : I-9020527 P.O. Number : -

Project : INDEPENDENCE Comments: ATTN: BEDO KALPAKIAN CC: W. GEWARGIS

**

										CE	RTIF	ICATE	OF A	NAL	SIS	A9020527	
SAMPLE DESCRIPTION	PREP CODE	Mo ppm.'	Na t	Ni ppm	P Pp n	Pb pp n	Sb ppm	Sc ppn	Sr pp a	Ti \$	T1 ppa	D D	V ppa	. W	Zn ppn		
L3508 100E L3508 110E L3508 120E L3508 130E L3508 140E	201 238 201 238 201 238 201 238 201 238 201 238	2 < 2 < < 1 < 2 < 2 <	0.01 0.01 0.01 0.01 0.01 0.01	1 1 1 2 1	180 380 410 270 340	24 38 36 40 36	< 5 < 5 < 5 < 5 < 5 < 5	3 4 6 2 4	13 16 12 18 22	0.16 0.22 0.14 0.19 0.23	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	139 121 95 117 118	< 10 < 10 < 10 < 10 < 10 < 10	38 58 50 68 50		
L3508 150E L3508 160E L3508 170E L3508 180E L3508 180E L4008 130E	201 238 201 238 201 238 201 238 201 238 201 238	1 < < 1 < 3 < 2 < 1 <	0.01 0.01 0.01 0.01 0.01	5 5 1 1 < 1	500 890 400 160 150	46 34 46 16 26	< 5 < 5 < 5 < 5 < 5 < 5	3 2 3 3 2	25 32 17 26 15	0.11 0.07 0.08 0.13 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 36 86 96 106	< 10 < 10 < 10 < 10 < 10 < 10	106 140 50 34 22		
4008 1408 4008 1502 4008 1602 4008 1602 4008 1702 4008 1802	201 238 201 238 201 238 201 238 201 238 201 238	<pre>< 1 < 2 < < < < </pre> < 1 < 2 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	1 3 2 4 1	410 390 910 480 340	46 20 40 38 26	< 5 < 5 < 5 < 5 < 5 < 5	1 2 1 2 2	25 18 18 19 13	0.11 0.09 0.05 0.08 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 76 53 73 50	< 10 < 10 < 10 < 10 < 10 < 10	28 38 66 60 32		
L4008 1908 L4508 1008 L4508 1108 L4508 1208 L4508 1308	201 238 201 238 201 238 201 238 201 238 201 238	5 < < 1 < < 1 < < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	3 3 < 1 < 1 < 1 < 1	1110 270 190 170 160	78 26 18 10 4	< 5 < 5 < 5 < 5 < 5 < 5	1 1 < 1 < 1 1 1	41 10 5 2 6	0.05 0.04 0.02 0.01 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	51 46 16 24 36	< 10 < 10 < 10 < 10 < 10 < 10	312 16 4 8 12		
4508 1408 4508 1508 4508 1608	201 238 201 238 201 238	< 1 < 1 < 2 <	0.01 0.01 0.01	1 2 2	220 230 250	12 20 30	< 5 < 5 < 5	2 1 2	14 10 25	0.11 0.09 0.12	< 10 < 10 < 10	< 10 < 10 < 10	75 59 84	< 10 < 10 < 10	28 24 74		

CERTIFICATION:

Appendix 6

STATEMENT OF COST

STATEMENT OF COST INDEPENDENCE PROPERTY,STEWART, B.C. AREMENO RESOURCES INC. PERIOD OF FIELD WORK : JULY 2-AUGUST 6,1990

GEOLOGICAL CONTRACT

Preprogramming and project preparation	\$ 2500.00
Mobilization and demoblization, Vancouver to Stewart and return	3500.00
Geological Support Crew	
Wilson Gewargis, Senior geologist July 2-August 6,90 35 days at \$275/day	9625.00
Scott Tomlinson, Geologist July 2-August 6,90 35 days at \$142.85/day Huge Carine, Assistant July 18-August 6,90 20 days at \$90/day Dave Javorsky, Blasting and trenching	5000.00 1800.00 1036.00
Truck rental (including insurance) 39 days at \$35.681/day	1391.56
Camp and Field Supplies	4206.99
Food, Room and Board	3195.18
Radio Communication and Tel. calls.	776.66
Expeditor	142.19
Report compliation, drafting, word processing, printing and copying	5000.00
Administration and Accounting	5000.00
<u>Diamond Drilling Contract</u> Tonto Drilling-Vancouver,B.C.	
Total cost of drilling 764.13 m (2507 ft) all cost including at cost of \$120.671/m	\$ 92,208.59
Vancouver Island Helicopters Victoria,B.C.	
For helicopter time during this project	25,402.97

Chemex Lab, Vancouver, B.C

Assaying and analysis of 20 soil samples by ICP and 200 rock and core samples for gold,silver and individual samples for copper,lead and zinc.

÷.,

6,833.95

<u>\$ 167.619.09</u>

WILSON A. GEWARGIS, B. Sc., F.G. A. C., F. AUS. 1.M.M.

2

3

4

5

6

7

8

Ħ

ANDESITE WITH QUARTZ STRINGERS

ANDESITE BRECCIA AND FRAGMENTS

ANDESITE DARK GREEN

ANDESITE PORPHYRITIC

ANDESITE MAROON - REDDISH

ANDESITE LIGHT GREY TO GREEN

QUARTZ DIORITE DYKE

MINERALIZED ZONE (MIN)

NOTE: ASSAY RESULTS FOR MINERALIZED ZONE ARE PLOTTED ON THIS SECTION, AND THE REMAINING RESULTS ARE LISTED IN THE APPENDIX : 2 AND 5

*[] NARROWER WIDTHS WITHIN PRECEDING INTERVAL

VIEW LOOKING NORTH

TO ACCOMPANY A REPORT BY:

WILSON A. GEWARGIS, B. Sc., F.G. A.C., F.AUS.I. M. M.

ARMENEX RESOURCES CANADA INC.

INDEPENDENCE PROPERTY

STEWART, B.C.

SKEENA MINING DIVISION, NTS. 104A-4W

CROSS-SECTION DIAMOND DRILL HOLES

DDH #90-2,90-3

SCALE: 1:500	FIGURE: IO
DRAWN BY: D.G.	DATE: SEPT. 1990

ANDESITIC DYKE

ANDESITE WITH QUARTZ STRINGERS

ANDESITE BRECCIA AND FRAGMENTS

ANDESITE DARK GREEN

ANDESITE PORPHYRITIC

6

ANDESITE MAROON - REDDISH

ANDESITE LIGHT GREY TO GREEN

QUARTZ DIORITE DYKE

MINERALIZED ZONE (MIN)

- NOTE: ASSAY RESULTS FOR MINERALIZED ZONE ARE PLOTTED ON THIS SECTION, AND THE REMAINING RESULTS ARE LISTED IN THE APPENDIX: 2 AND 5
- 90-4 RETURNED NO MINERALIZED VALUES

VIEW LOOKING NORTH

TO ACCOMPANY A REPORT BY:

WILSON A. GEWARGIS, B. Sc., F.G.A.C., F. AUS.I.M.M.

ARMENEX RESOURCES CANADA INC.

INDEPENDENCE PROPERTY

STEWART, B.C.

SKEENA MINING DIVISION, NTS. 104A-4W

CROSS-SECTION DIAMOND DRILL HOLES

DDH#90-4

SCALE:1:500	FIGURE: II	
DRAWN BY: D. G.	DATE: SEPT. 1990	

	LEGEND				
ROCK T	YPES: OVERBURDEN		Ę		
1	ANDESITIC DYKE		CEDIAA		
2	ANDESITE WITH QUARTZ STRINGERS		GEULUG	MENT REPORT	
3	ANDESITE BRECCIA AND FRAGMENTS			MENIKEPUKI	
4	ANDESITE DARK GREEN				
5	ANDESITE PORPHYRITIC		\mathbf{n}		
6	ANDESITE MAROON - REDDISH			<u> </u>	
7	ANDESITE LIGHT GREY TO GREEN			$, \mathcal{I} \mathcal{I}$	
8	QUARTZ DIORITE DYKE				
A	MINERALIZED ZONE (MIN)		ARMENEX RESOURCES CANADA INC.		
NOTE:	ASSAY RESULTS FOR MINERALIZED ZONE ARE PLOTTED ON THIS Section, and the remaining results are listed in the Appendix : 2 and 5		INDEPENDENCE PROPERTY		
*[]	NARROWER WIDTHS WITHIN PRECEDING INTERVAL		STEWART, B.C.		
90-6	RETURNED NO MINERALIZED VALUES		SKEENA MINING DIVISION, NTS. 104A-4W		
			CROSS-SECTION DIAMOND DRILL HOLES		
VIEW LOOKING NORTH			DDH#90-5,90-6		
			SCALE: 1:500	FIGURE: 12	
	TO ACCOMPANY A REPORT BY:		DRAWN BY DG	DATE: SEPT. 1990	
	WILSON A. GEWARGIS, B. Sc., F. G. A. C., F. AUS, I. M. M.				

•