ARIS SUMMARY SHEET

Discrict Geol	ogist, Victoria Off Confidential: 92.03.0
ASSESSMENT RE	PORT 21372 MINING DIVISION: Nanaimo
PROPERTY: LOCATION:	Goldilox LAT 50 40 00 LONG 127 57 00 UTM 09 5613065 574206 NTS 092L12W
CAMP:	031 Island Copper Area
OPERATOR(S): AUTHOR(S): REPORT YEAR: KEYWORDS: WORK DONE: Geo	Goldilox,Bear 4-5 Cons. Paytel Pawliuk, D.J. 1991, 26 Pages Jurassic,Bonanza Group,Tuffs chemical L 240 sample(s) ;ME Map(s) - 3; Scale(s) - 1:5000

کی

4~-

Daiwan Engineering Ltd. 1030-609 Granville Street, Vancouver, B. C. Canada. V7Y 1G5 Phone: (604) 688-1508

LOG NO:	0530	RĐ.
ACTION:		
FILE NO:		•

GEOCHEMICAL ASSESSMENT REPORT

ON THE

GOLDILOX MINERAL CLAIM GROUP

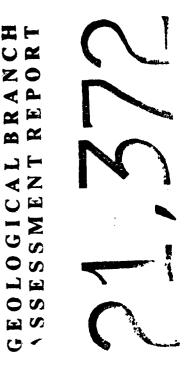
NANAIMO MINING DIVISION

BRITISH COLUMBIA

	CEIV	RDER
MAY	24	1991
M.R. #		•
VANCO	DUVE	ir, B.C.

NTS: 92L/12W

Latitude: 50° 40' N Longitude: 127° 57' W


For

Consolidated Paytel Ltd. 1030 - 609 Granville Street Vancouver, B.C. V7Y 1G5

By

David J. Pawliuk, B.Sc., P.Geol.

February 14, 1991

9

TABLE OF CONTENTS

i

Page

SUMMARY	1
INTRODUCTION	2
LOCATION AND ACCESS	2
TOPOGRAPHY AND VEGETATION	3
PROPERTY	3
HISTORY	4
REGIONAL GEOLOGY	4
REGIONAL MINERALIZATION	6
PROPERTY GEOLOGY	6
SOIL GEOCHEMICAL SURVEY	7
CONCLUSIONS	8
RECOMMENDATIONS	9
CERTIFICATE OF EXPENDITURES	10
CERTIFICATE OF QUALIFICATIONS	11
REFERENCES	12

Figures

Figure 1	- Location Map	Following Page 2
Figure 2	- Claim Map	Following Page 3
Figure 3	- Regional Geology Map	Following Page 4
Figure 4	- Prospecting Map	Following Page 6
Figure 5	- Copper Geochemical Map	In Map Pocket
Figure 6	- Zinc Geochemical Map	In Map Pocket
Figure 7	- Molybdenum Geochemical Map	In Map Pocket

Appendices

Appendix 1 - Geochemical Analysis Certificates

At End

SUMMARY

1

This assessment report details the results of geochemical soil sampling on the GOLDILOX mineral claim, Holberg, B. C.

Bonanza Formation volcanic rocks and Parson's Bay Formation ash tuffs and shales underlie the central and northern portions of Goldilox property, with possibly some older Karmutsen Formation volcanic rocks to the south.

Two hundred forty geochemical soil samples were collected. Anomalous concentrations of copper, zinc and molybdenum exist within soils in the south-central part of the sampled grid area, near the assumed contact between Parson's Bay Formation and Bonanza Formation rocks.

The source of the significant gold values obtained from samples collected within the property during the 1988 B.C.G.S. regional geochemical survey has not yet been determined.

The Goldilox property is within a strongly mineralized belt of Bonanza Formation rocks north of Holberg Inlet. These rocks are coeval with porphyry copper-gold mineralizing events.

Ground magnetometer surveying, additional geochemical soil sampling, detailed investigation of the highest geochemical soil anomalies, and detailed prospecting/geological mapping should be performed on the property.

A total of \$ 12,780.81 was expended on the Goldilox property in December, 1990.

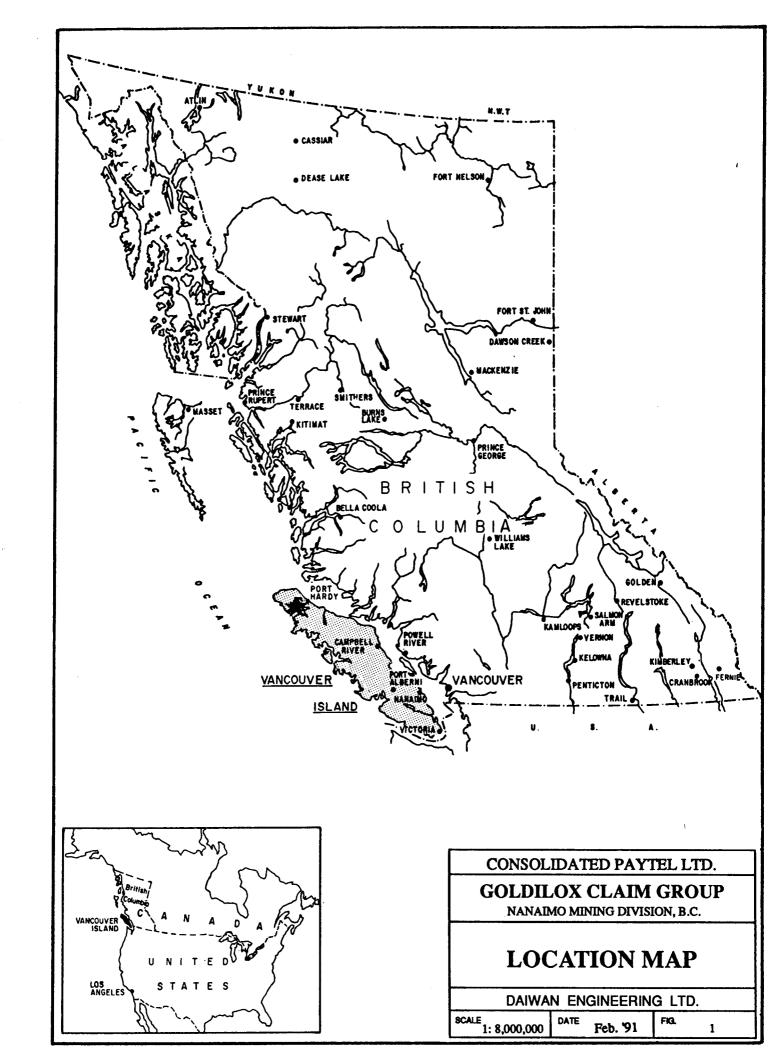
INTRODUCTION

At the request of Ruth Ditto, Director and Secretary of Consolidated Paytel Ltd., Daiwan Engineering Ltd. conducted a mineral exploration program on the GOLDILOX mineral claim group near Holberg, British Columbia. This program consisted of geochemical soil sampling along hipchain-and-compass surveyed grid lines and brushing-out overgrown access trails into the property.

Two hundred forty geochemical soil samples were collected in December, 1990. This assessment report is a description of work completed on the property during this period.

LOCATION AND ACCESS

The Goldilox property of Consolidated Paytel Ltd. is located approximately 360 km northwest of Vancouver, British Columbia (Figure 1). The property is centred approximately 3.5 km northeast of Holberg, within N.T.S. map-sheet 92L/12E.


The Goldilox property can be reached via the gravel road between Holberg and Coal Harbour. This road enters the property near the northwestern corner, turns southeastward near the north centre of the property, then crosses the eastern property boundary at about its midpoint. The property is accessible year-round by road; however, heavy wet snow during mid-winter may cause difficult driving conditions.

Two old, partially overgrown logging roads provide hiking access to the southwestern and northeastern corners of the property. Two lines spaced one km apart were cut in May 1990 to allow access to the central part of the property; the northerly line is 450 m in length and the southerly line 700 m in length.

Port Hardy is the local commercial centre, but Holberg has motel accommodation and supports local forestry industry activity.

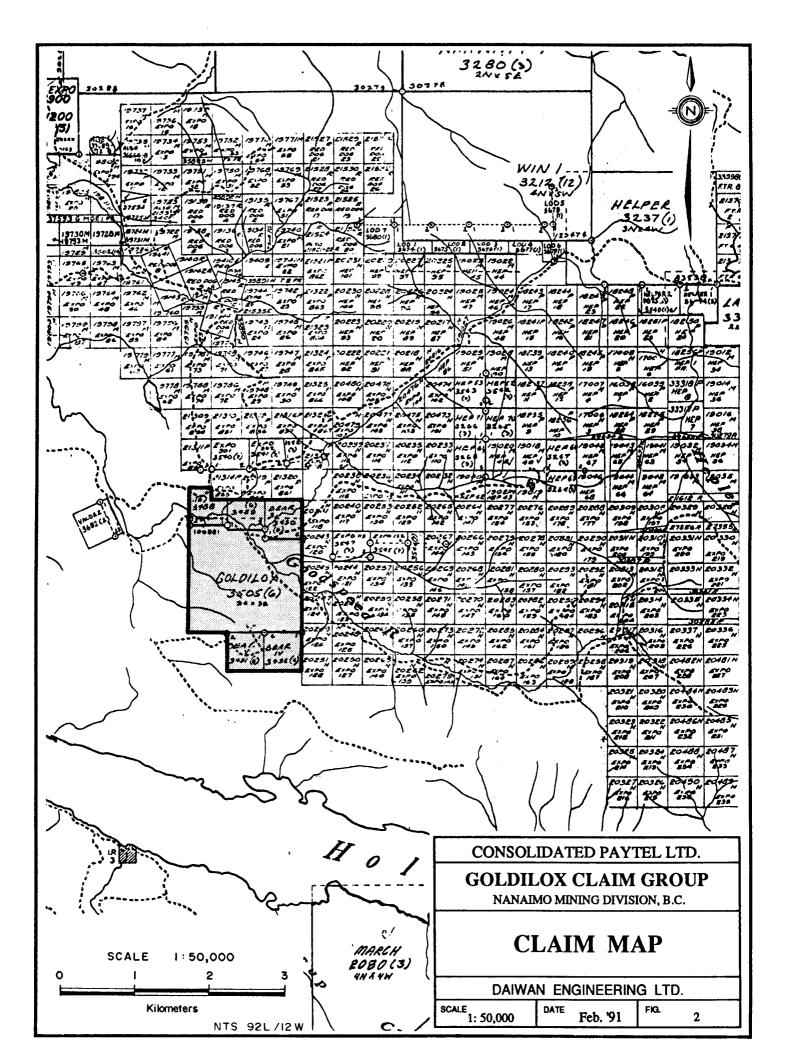
Regular airline service to Port Hardy is provided by both Air Canada and Canadian Airlines International from Vancouver, each on a daily schedule. Alternately there is good highway access with travel from Vancouver taking eight hours.

Daiwan Engineering Ltd. 1030 - 609 Granville Street, Vancouver, B.C. V7Y 1G5 Phone: (604) 688-1508

TOPOGRAPHY AND VEGETATION

The Goldilox property contains a moderately steep-sided, northwesterly trending ridge rising up to 300 m a.s.l. Over half of the property is covered by dense underbrush and "spaced" replanted fir and cedar. The two cut lines on the northern side of the property are necessary for access because of the thick brush. The old road at southern Goldilox property requires chainsaw work to upgrade it for 4x4 vehicle use.

Rock outcrop is moderately well exposed along creeks and old forest tracks, but dense underbrush and thick humus cover large areas of the property.


PROPERTY

The GOLDILOX claim group is comprised of the 12 unit GOLDILOX mineral claim and five adjoining mineral claims (two-post claims numbered BEAR 1-5) recorded within the Nanaimo Mining Division.

The claims are shown in Figure 2 and the claim data are depicted below:

		Record	Record	Current Expiry	
<u>Claim</u>	<u>Units</u>	Number	Date	Date	Owner
GOLDILOX	9	3505	23/06/89	23/06/92	Daiwan Engineering Ltd.*
BEAR 1	1	3488	22/06/89	22/06/92	Daiwan Engineering Ltd.*
BEAR 2	1	3489	22/06/89	22/06/92	Daiwan Engineering Ltd.*
BEAR 3	1	3490	22/06/89	22/06/92	Daiwan Engineering Ltd.*
BEAR 4	1	3491	23/06/89	23/06/92	Daiwan Engineering Ltd.*
BEAR 5	1	3492	23/06/89	23/06/92	Daiwan Engineering Ltd.*

* Daiwan Engineering Ltd. holds the mineral claims in trust for Consolidated Paytel Ltd., the owner of the property.

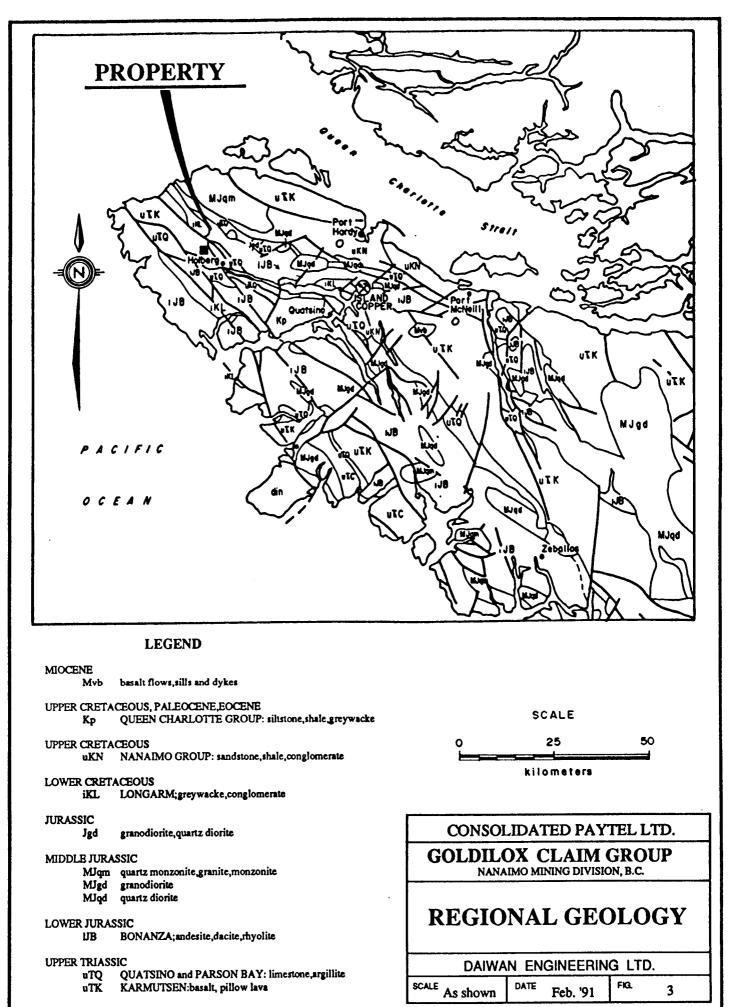
HISTORY

A large copper-molybdenum deposit discovered at the eastern end of Rupert Inlet during the 1960s was developed into Island Copper Mine. This discovery generated a great deal of interest in the area by individuals and companies searching for copper.

Many copper occurrences were located along Holberg Inlet during this exploration activity. One of these copper occurrences is the Hushamu copper-gold deposit, estimated to contain 107,000,000 mineable tons grading 0.29% copper, 0.010% molybdenum and 0.010 opt gold with a stripping ratio of 0.7:1¹. The Hushamu copper-gold deposit is within the Expo mineral claim group. The Goldilox property adjoins the Expo mineral claim group.

A regional geochemical survey completed by the British Columbia government in 1988 covered the Goldilox property area; significant gold and copper values were obtained from samples collected within the property². Two of the gold-bearing samples are plotted on Figure 4.

A limited amount of prospecting was performed on the Goldilox property during May 1990³.


REGIONAL GEOLOGY

Vancouver Island north of Holberg and Rupert inlets is underlain by Upper Triassic to Lower Jurassic rocks of the Vancouver Group. The Vancouver Group rocks are intruded by rocks of Jurassic and Tertiary age, and disconformably overlain by Cretaceous sedimentary rocks. Figure 3 shows a 1:500,000 geological map of the northern part of the island.

Faulting is prevalent in the area. Large-scale block faults with hundreds to thousands of metres of displacement are offset by younger strike-slip faults with displacements of up to 750 metres (2,500 feet).

Sedimentary and Volcanic Rocks

The Vancouver Group includes a basal sediment-sill unit of shales and siltstones invaded by diabase sills, Karmutsen Formation volcanic flows and pyroclastics, Quatsino Formation limestone, Parson's Bay Formation argillite, Harbledown Formation argillite-greywacke and Bonanza Formation tuffs and breccias.⁴

The Vancouver Group is unconformably overlain by the non-marine Cretaceous Longarm Formation sediments which occupy local basins. Early coal mining in the district was from several of these basins.

Intrusive Rocks

The Vancouver Group rocks are intruded by Jurassic stocks and batholiths. A northwest-trending belt of stocks extends from the east end of Rupert Inlet to the mouth of Stranby River on the north coast of Vancouver Island.⁵ Dykes and irregular bodies of quartz-feldspar porphyry occur along the south edge of this belt of stocks. The porphyries are characterized by coarse, subhedral quartz and plagioclase phenocrysts set in a pink, very fine grained, quartz and feldspar matrix. They are commonly extensively altered and pyritized. At Island Copper Mine, these porphyries are enveloped by altered, brecciated and mineralized Bonanza Formation wallrocks. The porphyries are also cut by siliceous veins, pyritized, extensively altered, and are mineralized where they have been brecciated. The quartz-feldspar porphyries are thought to be differentiates of middle Jurassic felsic intrusive rocks.

Other intrusive rocks of lesser significance include felsic dykes and sills around the margins of some intrusive stocks; andesitic dykes which cut the Karmutsen, Quatsino and Parson's Bay formations, and represent feeders for Bonanza volcanism; and Tertiary basalt-dacite dykes intruding Cretaceous sediments.

<u>Structure</u>

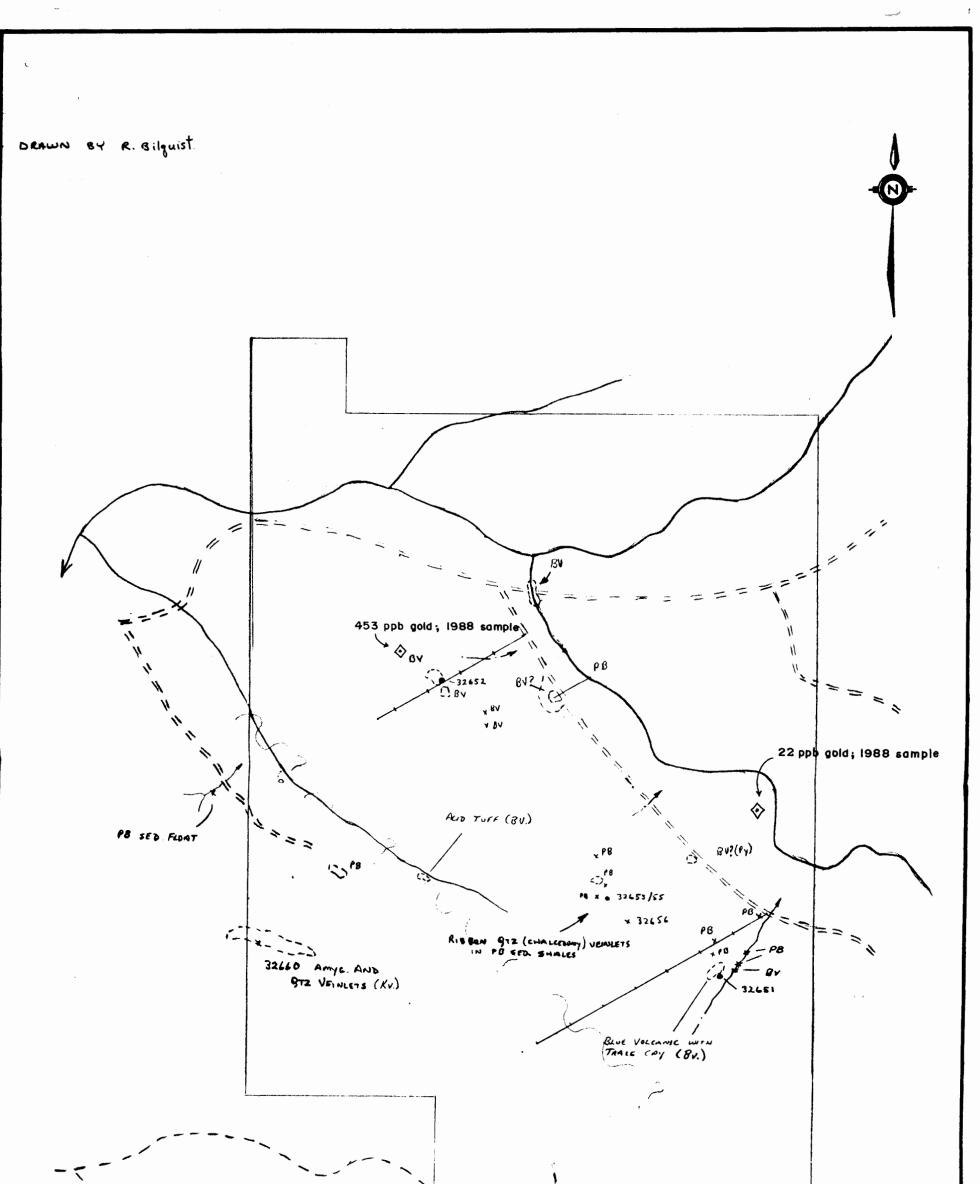
The rocks north of Holberg and Rupert inlets are folded into shallow synclines along northwesterly fold axes. The steeper southwesterly limbs of these folds have apparently been truncated by faults roughly parallel to the fold axes. Failure of limestone during folding may have influenced the location of some of the faults, as indicated by the proximity of the Dawson and Stranby River faults to Quatsino Formation limestone. Transverse faulting is pronounced and manifested by numerous north and northeasterly trending faults and topographic lineaments (Figure 3).

Northeasterly trending faults comprise a subordinate fault system. In some cases, apparent lateral displacement in the order of several hundred metres can be measured on certain horizons. Movement, however, could be entirely vertical with the apparent lateral offset resulting from the regional dip of the beds.

Daiwan Engineering Ltd. 1030 - 609 Granville Street, Vancouver, B.C. V7Y 1G5 Phone: (604) 688-1508 The beds generally dip gently to moderately to the southwest. West of Holberg dips are locally much steeper where measured in close proximity to major faults. There is little folding or flexuring of bedding visible, except along loci of major faults where it is particularly conspicuous in thinly bedded sediments of lower Bonanza Formation. Bedding is generally inconspicuous in massive beds of Karmutsen, Quatsino and Bonanza Formation rocks, particularly inland where outcrops are widely scattered.

REGIONAL MINERALIZATION

A number of types of mineral occurrences are known on northern Vancouver Island. These include:


- 1. Skarn deposits: copper-iron and lead-zinc skarns.
- 2. Copper in mafic volcanic rocks (Karmutsen Formation): in amygdules, fractures, small shears and quartz-carbonate veins, with no apparent relationship to intrusive activity.
- 3. Veins: with gold and/or base metal sulphides, related to intrusive rocks.
- 4. Porphyry copper deposits: largely in the country rock surrounding or enveloping granitic rocks and their porphyritic phases.

PROPERTY GEOLOGY

There has been little geological information recorded for the GOLDILOX mineral claim group area³.

The results of a regional geochemical sediment survey released by the British Columbia government in June 1989 indicate that high gold values exist in the north-central and northeastern parts of the property, and that high zinc values exist in the northern portion of the property^{2,6}.

Prospecting on the Goldilox property shows that Bonanza volcanic rocks and lower Parson's Bay ash tuff underlie the central and northern portion of the claims, with possibly some older Karmutsen volcanic rocks to the south (Figure 4). There is no evidence of Quatsino limestone in the central portion of the property; however, it is well exposed in a small quarry at the north end of the property. It is likely that local faulting significantly displaces the regional geological sequence.

			i J			
PB	OUT CROP WITH ASSOMED ROCK UNIT					
• 32811 • ?~?	ANGULAR (LOCAL) FLORT WITH ASSUMED ROCK UNIT SAMPLE LOCRITION; NUMBER POSSIBLE FAVLT. 1BOLS	- BRUSHED OUT ROI - CUT L-I - CUT L-3	10 ,822 km .45 km .70 km			
BV	BONANZA VOLCANICS		. 70	CONSOL	IDATED PAYT	EL LTD.
PB	PARSON BAY SEDIMENTS			GOLDII	LOX CLAIM	GROUP
Ku	KARMUTSEN VOLCANICS			No	rthern Vancouver]	sland
CPY	CHALCO ØYRITE			GE	OLOGY N	AD
Q72.	QUARTZ.	SCALE 1:10,000		GE	ologi	
Py	Pyaire O	200 400	600	ΠΑΙΜΑΝ	ENGINEER	
Tr	TR 415			SCALE As shown	DATE FEB '91	FIG. 4

A109.6.1

One zone of minor disseminated chalcopyrite with pyrite in the Bonanza volcanics was discovered on the east side of the property (see Figure 4). Northwest of this occurrence silica has intensely flooded the Parson's Bay sediments; here ribboned chalcedonic veinlets cross-cut the sediments. No sulphides were seen in these veinlets. Eight rock samples collected during the spring 1990 prospecting program showed traces of copper (to 103 ppm) and molybdenum (to 14 ppb), but no significant gold mineralization^{3,6}. The samples with higher copper concentrations were also moderately anomalous in barium (to 836 ppm) and strontium (to 387 ppm). In this area Parson's Bay Formation is comprised of thinly bedded black shales and tuffs, and probably intercalates with the tuffaceous horizons of the Bonanza volcanics. The majority of the work program in spring 1990 was focused on cutting access lines into the property; no soil sampling was done.

SOIL GEOCHEMICAL SURVEY

A total of 240 geochemical soil samples was collected along hipchain-and-compass surveyed grid lines at GOLDILOX mineral claim group during December 1990. These soils were taken at 25 m intervals along grid lines 200 m apart. The soils samples were collected at an average depth of about 25 cm from the B soil horizon, where possible, using a soil auger. The soils were shipped to Acme Analytical Laboratories Ltd. at Vancouver, then dried and screened to -80 mesh size. The soils were then analyzed for 30 elements by I.C.P. technique which involves the digestion of 0.5 g of the sample with 3-2-1 HCl-HNO₃-H₂O acid at 95° C for one hour. This solution is then diluted to 10 ml with water and analyzed. The samples were also analyzed for gold by acid leach and atomic absorption by Acme Analytical Laboratories Ltd.

The 240 soils contain up to 168 parts per million (ppm) copper, 536 ppm zinc, 92 ppm molybdenum and up to 13 parts per billion (ppb) gold (Appendix 1).

Soils containing greater than 50 ppm copper concentrations are on Figure 5. These anomalies are elongate, trend southeasterly and increase in extent and strength toward the southern part of the sampled grid area.

Soils containing greater than 150 ppm zinc concentrations are contoured on Figure 6. These anomalies are also elongate, trend southeasterly and generally increase in strength and size towards the southern part of the sampled grid area. The areas of anomalous zinc concentrations largely coincide with areas of anomalous copper concentrations within soils at Goldilox property (Figures 5 and 6).

Daiwan Engineering Ltd. 1030 - 609 Granville Street, Vancouver, B.C. V7Y 1G5 Phone: (604) 688-1508 Soils containing greater than 10 ppm molybdenum have been contoured on Figure 7. The area of greatest molybdenum concentrations is within the south-central part of the sampled grid area, and coincides with anomalous copper and zinc concentrations.

The soil with 13 ppb gold was collected in the northwestern corner of the grid area at 2 + 00S/1 + 25E, on the margin of an area with anomalous concentrations of copper, zinc and molybdenum in soil.

CONCLUSIONS

Knowledge of the geology of GOLDILOX mineral claim group is limited. However, disseminated chalcopyrite traces within the Bonanza volcanics and the nearby chalcedonic quartz veins in Parson's Bay Formation confirm the copper content of B.C.G.S. regional geochemical sediment samples². Additional copper occurrences, as well as other base metal mineralization, are to be expected within the property area. The property is within a strongly mineralized belt of Bonanza Formation rocks north of Holberg Inlet. These rock units are coeval with porphyry copper-gold mineralizing events.

The highest copper, zinc and molybdenum concentrations occur within the south-central part of the sampled grid area, near the assumed contact between Parson's Bay Formation shales and Bonanza Formation acid tuff. A mineralized intrusive centre may underlie this part of the grid area.

The source of the significant gold values obtained from samples collected within the property area during a 1988 regional geochemical survey (see Figure 4) has not yet been determined.

RECOMMENDATIONS

Additional detailed prospecting, geological mapping and geochemical rock sampling should be performed within the grid area.

The area of highest copper, zinc and molybdenum geochemical soil anomalies should be investigated in detail.

Ground magnetometer surveying of the hipchain-and-compass grid lines should be performed with readings taken at 25 m intervals.

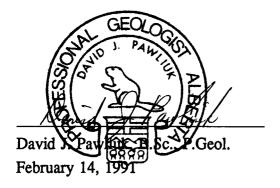
Heavy mineral sediment samples should be collected from stream drainages on the property.

The geochemical soil sampling grid should be extended northward to cover the vicinity of the 1988 regional geochemical sample sites.

CERTIFICATE OF EXPENDITURES

Personnel

1 Project Manager - P. Dasler		
- 2.55 days @ \$380/day	969.00	
1 Project Geologist - D. Pawliuk		
- 2.75 days @ \$340/day	935.00	
1 Geologist - S. Robertson		
- 1.0 days @ \$250/day	250.00	
1 Field Technician - R. Bilquist		
- 8.0 days@ \$260/day	2,080.00	
1 Field Technician - L. Allen		
- 5.5 days @ \$260/day	1,430.00	
1 Field Technician - S. Oakley		
- 3.0 days @ \$250/day	750.00	
1 Office Assistant - T. Sheridan		
- 1.85 days @ \$220/day	407.00	\$ 6,821.00
<u>Disbursements</u>		
Food and Accommodation		
- 19 man days @ \$54.13	1,028.40	
Field Supplies	128.00	
Equipment Rental	176.38	
Vehicle/Supplies		
- 1 4x4 truck for 11 days		
all inclusive @ \$ 98.04	1,078.47	
Airfare	96.39	
Drafting/Maps	119.46	
Office/Secretary	18.13	
Assays - 240 soils, 30 element ICP + Au	2,090.05	
Disbursement Fee	1,029.47	
GST	<u>194.26</u>	<u>5,959.81</u>


TOTAL

\$ <u>12,780.81</u>

.

CERTIFICATE OF QUALIFICATIONS

- I, David J. Pawliuk, do hereby certify that:
- 1. I am a geologist for Daiwan Engineering Ltd. with offices at 1030 609 Granville Street, Vancouver, British Columbia.
- 2. I am a graduate of the University of Alberta, Edmonton, Alberta with a degree of B.Sc., Geology.
- 3. I am a member, in good standing, of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I have practised my profession continuously since 1975.
- 5. This report is based on fieldwork carried out by S. Robertson and S. Oakley, and on reports of others working in the area.
- 6. I have visited the Goldilox property, and have performed field work in the region since April 1990.
- 7. I have no interest, either direct or indirect, nor do I expect to receive any such interest, in the properties or securities of Consolidated Paytel Ltd.
- 8. This report has been prepared for British Columbia Ministry of Energy, Mines and Petroleum Resources assessment purposes only.

REFERENCES

1.	Young, M. (1991)	Hushamu Zone Copper Reserves of 107,000,000 tons now classified as Possible/Probable; News Release for Moraga Resources Ltd.
2.	Matysek, P. et al (1989)	B.C.G.S. Open File 2040 1988 B.C. Regional Geochemical Survey N.T.S. 92L/102I Alert Bay - Cape Scott.
3.	Bilquist, R. (1990)	Prospecting Report on the Goldilox Mineral Claims, North Vancouver Island, British Columbia; private report for Consolidated Paytel Ltd.
4.	Muller, J.E., Northcote, K.E. and Carlisle, D. (1974)	Geology and Mineral Deposits of Alert Bay - Cape Scott Map - Area (92L/102I) Vancouver Island, British Columbia; Geol. Surv. Canada Paper 74-8.
5.	Carson, D.J.T. (1972)	The plutonic rocks of Vancouver Island, British Columbia; Geol. Surv. Canada Paper 72-44.
6.	Dasler, P.G. and Bilquist, R. (1990)	Geological Summary of the Goldilox and Elacrity Mineral Claim Groups, North Vancouver Island, British Columbia; private report for Consolidated Paytel Ltd.
7.	Young, M. (1969)	Geological and Geochemical Assessment Report on the Expo Claim Group for Utah Mines Ltd.; B.C.D.M. Assessment Report #2190.

.

,

Schark 1.14

APPENDIX 1

GEOCHEMICAL ANALYSIS CERTIFICATES

Daiwan Engineering Ltd. 1030 - 609 Granville Street, Vancouver, B.C. V7Y 1G5 Phone: (604) 688-1508

GEOCHEMICAL ANALYSIS CERTIFICATE

Daiwan Engineering Ltd. PROJECT GOLDILOX File # 90-6260 Page 1

1030 - 609 Granville St., Vancouver BC V7Y 1G5 Submitted by: RON BILQUIST

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	TI	B Al	Na X	K X		Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	<u> </u>	ppm	ppm	X	ppm	*	ppm X		A	ppm	ppb
0 175E	5	44	12	119		22	20	834	6.65	2	5	ND	1	15	.6	2	2	131	.08	_043	4	44	.30	54	.03	2 3.38	.01	.03	2	3
0 200E	5	58		131	.5	29	14		8.07	8	5	ND	i	15	.2	2	3	152		.035	5	55	.35	59	.04	2 5.20		.04		3
0 225E	5	21	7	67		12	8		5.55	3	5	ND	i	14	4	2	2	134	.06	.027	2	37	.47	59	.02	2 2.44		.04		1
0 250E	3	42	5	96	.3	16	8		7.83	8	5	ND	1	17	.2	2	2	157		.035	2	41	.23	53	.07	2 2.62		.04	1	÷
	3	53	5	92	1		8			- 366000 Tob	5			23	.2	4	2				3	38	.23	55	202020200	2 3.47		.03		2
0 275E	3	22	2	92		19	0	212	7.50	11	2	ND	1	25	•6	4	2	154	.07	-034	2	20	.29	22	.08	2 3.41	.01	.05		-
0 300E	6	16	6	43	1	7	5	122	3.23	2	5	ND	2	14	.3	2	2	114	.07	.035	2	23	.24	45	.01	2 1.77	.01	.04	2	1
0 325E	8	45	8	192	1	44	25	256	4.95	11	5	ND	2	13	.2	3	2	134	.06	.044	5	46	.62	73	.01	2 4.93	.01	.04	1	2
0 350E	8	27	11	82	1	17	7	303	4.57	2	5	ND	1	14	.2	2	2	114	.06	.047	3	31	.35	52	.01	2 2.97	.01	.04	660 f	4
0 375E	1	18	2	105	.4	3	4	331	.59	4	5	ND	3	37	.2	2	2	18	.31	.040	2	7	.15	66	.01	3.38		.06	1	2
0 400E	11	26	2	75	4	13	7		5.02	15	5	ND	4	10	1.0	4	- 4	187		.022	5	21	.15	41	.04	4 1.42		.04		1
			-	.,			•	247	J.UL			NU	-			-	-	101	,		-			41		7 1876				
0 425E	12	47	4	141	.4	21	11	347	7.49	16	5	ND	1	7	.2	2	2	145	.02	.043	5	36	.26	59	.01	2 3.51	.01	.03	1	- 4
0 450E	8	37	9	123	.1	24	21	705	6.10	11	5	ND	1	17	.2	2	2	140	.08	_050	5	32	.20	96	.02	2 2.47	.01	.03	1	3
0 475E	8	50	15	124	.3	21	10	262	6.77	11	5	ND	1	7	.2	2	3	144	.02	.041	4	32	.14	54	.02	2 2.52	.01	.03	1	1
0 500E	6	61	7	143	.2	25	9		8.10	11	5	ND	1	7	.6	2	2	144	.02		3	39	.17	37	.02	2 3.0				2
0 525E	5	53	8	116	.7		9		5.92	10	5	ND	1	7	.5	2	2	121	.03		4	31	.15	29	.02	2 2.8				1
	-		Ŭ			20	,	270	J./L		,		•			-		1	.05		-			27	•••					
0 550E	5	45	8	126	.1	22	22	587	5.37	6	5	ND	1	17	.3	2	2	133	.22	.038	5	33	.23	59	.02	2 2.30	.01	.02	1	2
0 575E	7	70	ŝ	176	.4	33	18		7.27	10	5	ND	1	8	.3	2	2	122	.04		6	41	.29	44	.02	2 3.7		.02	a franciska se ber	- 4
0 600E	5	42	9	107	1	18			7.54	7	-	ND	1	18	.7	2	2	151	.13	- No 1997	3	34	.30	46	.04	2 2.7		.06	gangda lan	s
0 625E	4	35	6	91	:1	13	8		7.81	9	5	ND	i	16	.3	2	2	170	.07		2	24	.16	48	.04	2 1.7				1
0 650E	5	47	12		1.2	20	11		7.54	12	5	ND		0	.4	2	2	192	.05		4	30	.16	42	.03	2 2.3			Construction Const	e i
0 0506	y	47	12	152	1.4	20	11	213	7.04	14	2	ND	I	У	•4	2	4	172	.05	-042	4	30	. 10	42	.03	2 2.5	.01	.05		2
0 675E	2	20	4	89	.3	16	10	799	3.52	2	5	ND	1	51	.2	2	2	107	.51	.050	2	29	.55	52	.05	2 1.9	5 .02	.04		2
0 700E	4	31	18	73		14	8	325	6.11	- 4	5	ND	1	27	.2	2	5	155	.09	.040	4	39	.44	52	.11	2 5.1	2 .01	.02	2001	2
0 725E	2	51	14	97	.1	19	11	524	7.41	8	5	ND	1	25	.2	2	2	169	.20	,048	6	46	.60	45	.18	2 6.0	.01	.02		- 4
0 750E	1	27	17	76	.4	11	7		7.59	6		ND	1	16	.2	2	2	177	.09		3	36	.40	36	.17					1
0 775E	5	32	17	107	.2		ġ		5.50	7	5	ND	1	56	.2	2		202	.51		7	52	.76	59	.13	2 6.0			12222-1222-1222-1222-	i i
	1	56		101			,	555	3.30				•			-	-	LVL	,			75				2 0.0				- 1
0 800E	1	10	2	52	.2	1	1	46	.43	2	5	ND	3	40	.2	4	2	18	.49	.022	2	7	.10	8	.01	5.3	.02	.02	? 1	1
0 825E	1 11	28	13	85	1	14	6	243	2.76	2	5	ND	2	59	.8	2	2	113	.54	.049	8	42	.59	53	.12	2 5.2				3
2S 00E	20	83	2	301	.3	34	7		5.00	27	5	ND	2	7	1.8	13	2	289	.06		2	37	.08	35	.01	2 1.7				5
2S 025E	7	58	11	255	1.1				5.82	16	5	ND	1	45	2.7	4	2	135	.73		4	44	.33	105	.03	2 2.9	-			4
2S 050E	17	65	ġ		.8	48			6.68	9	5	ND	1	23	1.0	2	2	130	.21		5	43	.26	72	.02	2 3.7				
	"	05	,	520		40		010	0.00				•	¢.3		•	5	150		• •						E J.,	• .01	.05		•
2S 075E	18	54	2		1.3		8		6.17	14	5	ND	1	13	.4	4	2	260	.07		2	28	.09	35	.05	2 1.2				3
2S 100E	12	54	14		.3	35	10	236	4.68	12	5	ND	1	13	.5	3	2	159	.08			53	.51	57	04	2 3.7	7 .01	.04		2
2\$ 125E	7	- 36	2	88	. t	15	6		6.04	10	5	ND	1	11	.2	2	2	177	.03	.032	2	29	.13	39	.03	2 1.9	5.01	.04		13
2S 150E	6	55	6	199	_1	55	24	980	5.59	9	5	ND	1	23	.2	2	2	126	.08	,049	4	50	.81	84	.04	3 4.0			5	5
2S 175E	2	20	6	80	.1		15		3.10	6	5	ND	1	16	.6	2	2	88	.07			32	.32	60	.02					2
			-								-					_	-													-
2S 200E	5	27	5	70	1		5		3.55	<u>8</u>	5	ND		12		2	2			.028		27	.29	49	.03	2 2.2				5
STANDARD C/AU-S	18	61	43	134	7.2	72	51	1055	3.98	43	16	7	39	52	18.4	15	20	58	.46	.094	39	56	.86	181	_08	34 1.8	5.07	'.13	5 11	45

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. OAU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: DEC 10 1990 DATE REPORT MAILED:

D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

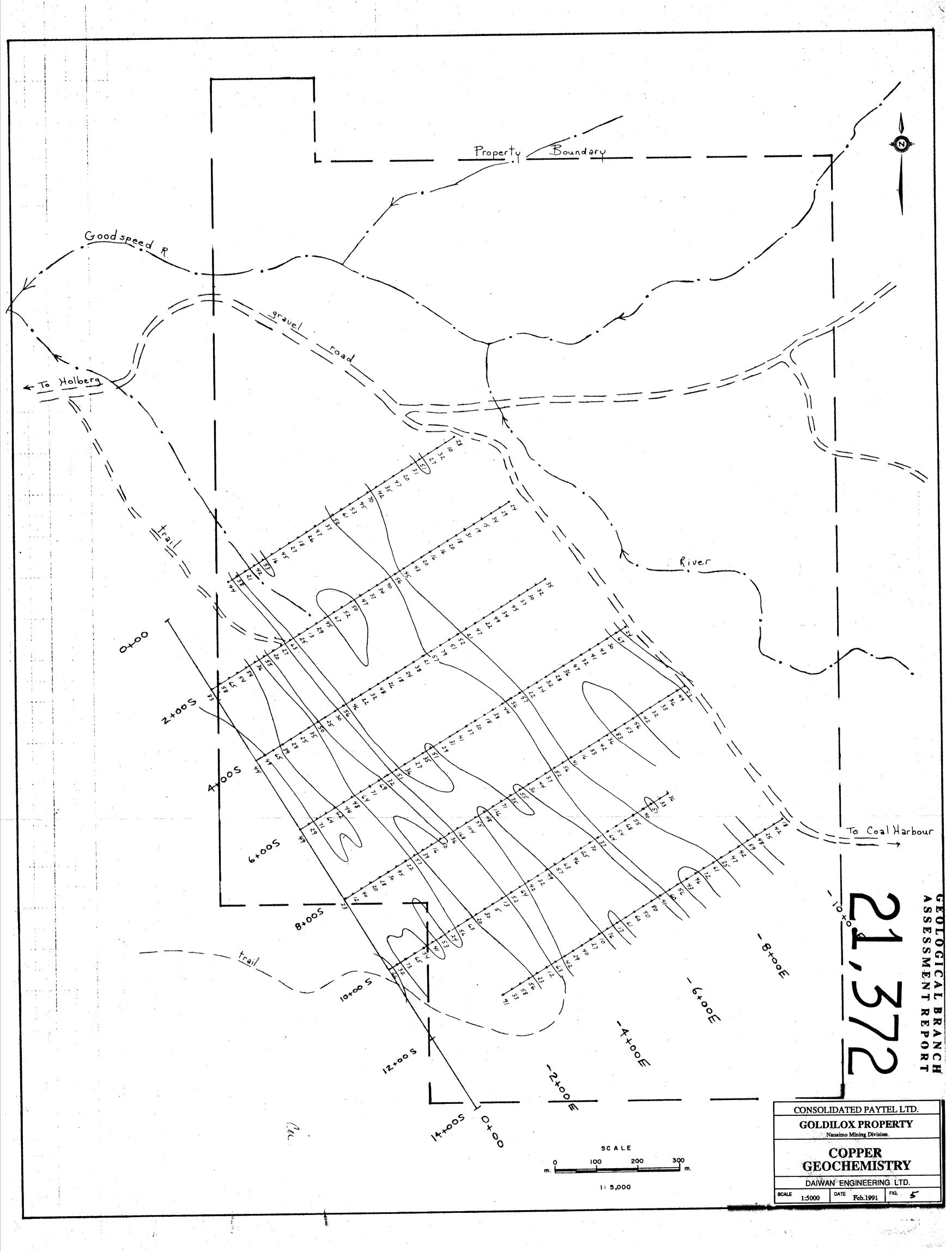
1

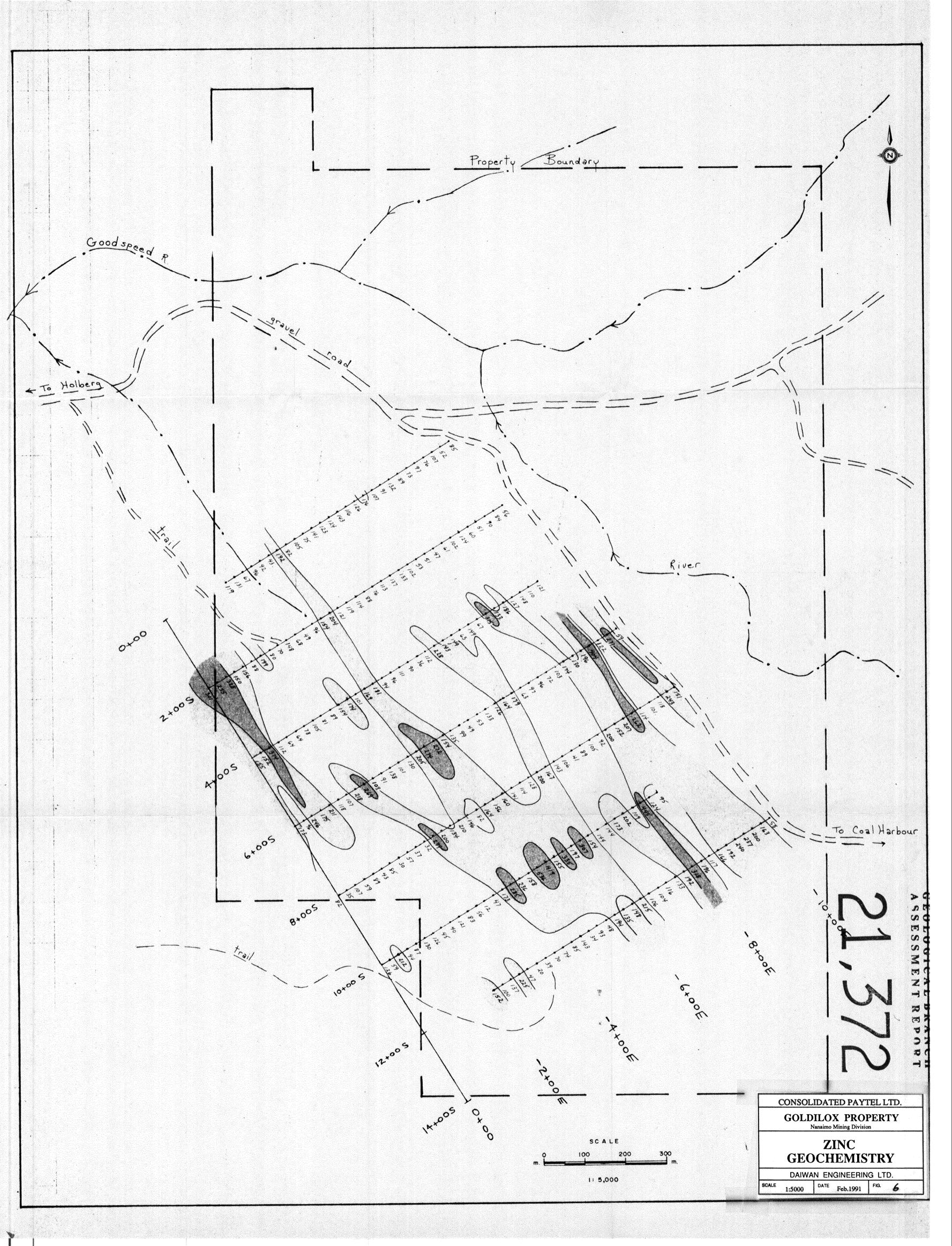
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X		Au* ppb
2S 225E	5	63	10	148	.2	33	13	369	7.28	9	5	ND	1	11	.3	2	3	126	.05	.037	6	52	.40	50	.03	4	4.57	.01	.02	2	6
2S 250E	5	25	6	68	.1	12		1033		2	ŝ	ND	1	8	.2	2	2	95	.03	.052	3	30	.22	41	_01		2.32	.01	.03		4
25 275E	6	13	6	49	1	11	6	474		2	ś	ND		, 9	.5	2	2	105	.03		2	29	.22	30	.01		1.65	.01	.03	1 - C	2
25 300E	14	29	2	96	.2	13	6	209		8	5	ND		9	.7	3	2	137	.04		3	18	.08	40	.02		1.09	.01	.04	1	- 1
	6	45	13		.5		15		5.51	8	5	ND		13	.6	2	2	110		.054	7	31	.25	49	.02		2.85	.01	.03	i i	- 1
2S 325E	•	45	15	104	••	29	15	202	2.21	•	2	NU	•	13	-0	2	2	110	. 10	-034	'	51	.27	47		5	2.05	.01	.05		''
2S 350E	6	67	10	204	.3	48	16	583	6.15	7	5	ND	1	8	.6	2	2	106		.064	9	40	.40	48	.02		4.15	.01	.03	1	3
2S 375E	6	52	2	121	.2	24	10	353	7.11	8	5	ND	1	6	.2	2	2	132	.02		4	39	.19	30	.02		3.06	.01	.03		3
2S 400E	6	50	5	119	.1	21	10	416	6.57	10	5	ND	1	5	.4	2	2	135	.02	.047	4	34	.18	29	.02	4	2.66	.01	.03	1	4
2S 425E	4	47	9	114	.1	21	30	1877	5.74	6	5	ND	1	8	.8	2	2	110	.06	.055	3	31	.17	35	.01	2	2.45	.01	.02	1	2
25 450E	2	37	7	88	1	16	36	2958	4.96	2	5	ND	1	20	.9	2	2	105	.04	.087	4	40	.36	289	.03	3	2.66	.01	.03	1	2
25 475E		77/	~	7/		40	40	0 /4			F			40		-	2		07	AEG	,	74	- 14	67	n /	,	3.55	01	02		
	1 4	34	9		1			946		2	5	ND	1	10	.6	2	2	141		.058	4	31	.21	53	.04			.01	.02		
25 500E	2	40	2		1			6137		5	5	ND	1	14	.6	2	2	107		.097	6	31	.37	63	.04		2.52	.01	.03		1
2\$ 525E		56	7		.1	22	10	831		14	5	ND	1	5	.5	2	2	131	.03		2	29	.15	27	.02		1.44	.01	.03	I	2
2S 550E	8	45	10		.1		10		6.73	8	5	ND	1	8	.9	2	2	116	.03		5	35	.40	47	.01		3.24	.01	.02		4
2S 575E	6	43	6	102	.1	13	7	393	7.33	10	5	ND	1	5	.3	2	2	142	.01	.040	2	29	.13	21	.01	3	1.98	.01	.02		3
25 600E	3	20	5	53	.1	8	5	1253	3.98	7	5	ND	1	8	.2	2	2	149	.05	.037	4	22	.22	30	.16	5	1.73	.01	.03	•	2
2\$ 625E	1 1	16	6	51		5				2	5	ND		13	5	2	2	96		.044	2	12	.12	24		-	2.31	.01	.01	1	- 1
25 650E	1	16	7		1	á		1279		3	5	ND	1	14	.2	ž	2	115		.071	7	17	.16	45	19		3.92	.02	.01	1	
25 675E	3	20	ż		.2		6			2	5	ND	1	34	.7	2	5	103		.047	3	14	.44	82	18		1.55	.02	.03	÷.	1
2S 700E	7	18	7		.2	7		1661		2	5	ND	1	25	1.4	2	4	95	.22		6	23	.26	75	.06		2.90	.01	.02		3
20.7255		74	• /	40/				~ ~ ~			-			•		•								•••							_
2S 725E	8	31	16		.2		10		2.41	4	5	ND	1	84	1.0	2	2	107		.103	6	34	.41	90			5.60	.01	.02		
2S 750E	12	19	3		.1	8	5		4.19	10	5	ND	1	56	-2	4	2	179		.022	3	18	.09	61	.03		1.15	.01	.03	1	1
2S 775E	3	15	4		.1		11		5.16	6	5	ND	1	8	.2	2	2	187		-021	2		1.01	22			1.58	.01	.03	1	
25 800E	5	34	11		.2		10		6.86	12	5	ND	1	26	.3	2	2	166	.09		3	40	.53	47	.09	4	2.16	.01	.02	1	- 3
2S 825E	2	29	10	84	.5	15	8	296	4.84	9	5	ND	1	14	.7	2	6	103	.07	.053	4	32	.27	41	.09	3	6.17	.01	.02	1	4
2S 850E	3	24	3	56	.1	10	5	199	4.02	3	5	ND	1	27	.2	2	4	109	.00	.030	4	20	.24	59	.04	2	2.23	.01	.02	1	2
45 00E	6	44	4		2.2		7		4.64	9	5	ND	i	15	.9	2	2	92		.066	4	30	.06	68			1.12	.01	.03		2
4S 025E	7	49	Ž	152	1.0	22	•	248		13	ś	ND		10	.8	2	2	104	.11		7	33	.05	41	.01		1.29	.01	.03		
45 050E	17	65			.3			1822		12	5	ND	1	22	2.7	3	2	123	.18		7	33	.38	101	.01		1.99	.01	.05	Í	
4S 075E		39	7		.2			405		- 20000000 - 201	5	-		13	10.000		2	135							2000000000						2
45 U/JE	4	39	1	112	•4	25	10	405	0.00	5	2	ND	I	15	.9	2	2	132	.05	.037	3	51	.67	65	,05	۷	2.72	.01	-04		2
45 100E	3	28	2	64	.1	13	5	152	4.61	8	5	ND	1	8	.5	2	2	151	.02	.025	2	21	.12	38	.07	5	1.02	.01	.03	1	2
4S 125E	4	25	8	64	.6	12	5		4.42	10	5	ND	2	11	1.9	2	2	115	.07	.032	5	22	.22	47	.07	8	1.21	.01	.05	1	1
4S 150E	6	35	2	78	.1		6		2.91	6	5	ND	1	4	.6	2	2	155	.01	200.00	2	11	.04	14		C		.01	.03	1	
4S 175E	6	50	4				9		5.81	7	5	ND	1	10	.6	2	2		.04		2	26	.27	29	1000		1.70	.01	.03		2
45 200E	6	25	11		.1		13		4.53	4	5	ND	1	10	.6	2	2	112	.05		2	28	.35	47			2.53	.01	.03	İ	
10 2255	_	70	-				~		/ 00		r			40		~	~				-	24		~~			2.04				_
4S 225E STANDARD C/AU-S	19	30 60	7 43		-4		9		4.08	5 42	19	ND 8	1 38	12	1.0	2	2 20	102			5	24	.29	97		(*	2.06		.03	1	
STANDARD C/AU-S	18	00	43	132	7.1	: 12	21	1044	3.99	- 42	18	0	20	24	18.4	18	20	58	.40	.094	40	61	.87	181	_08	54	1.89	.06	. 13	13	45

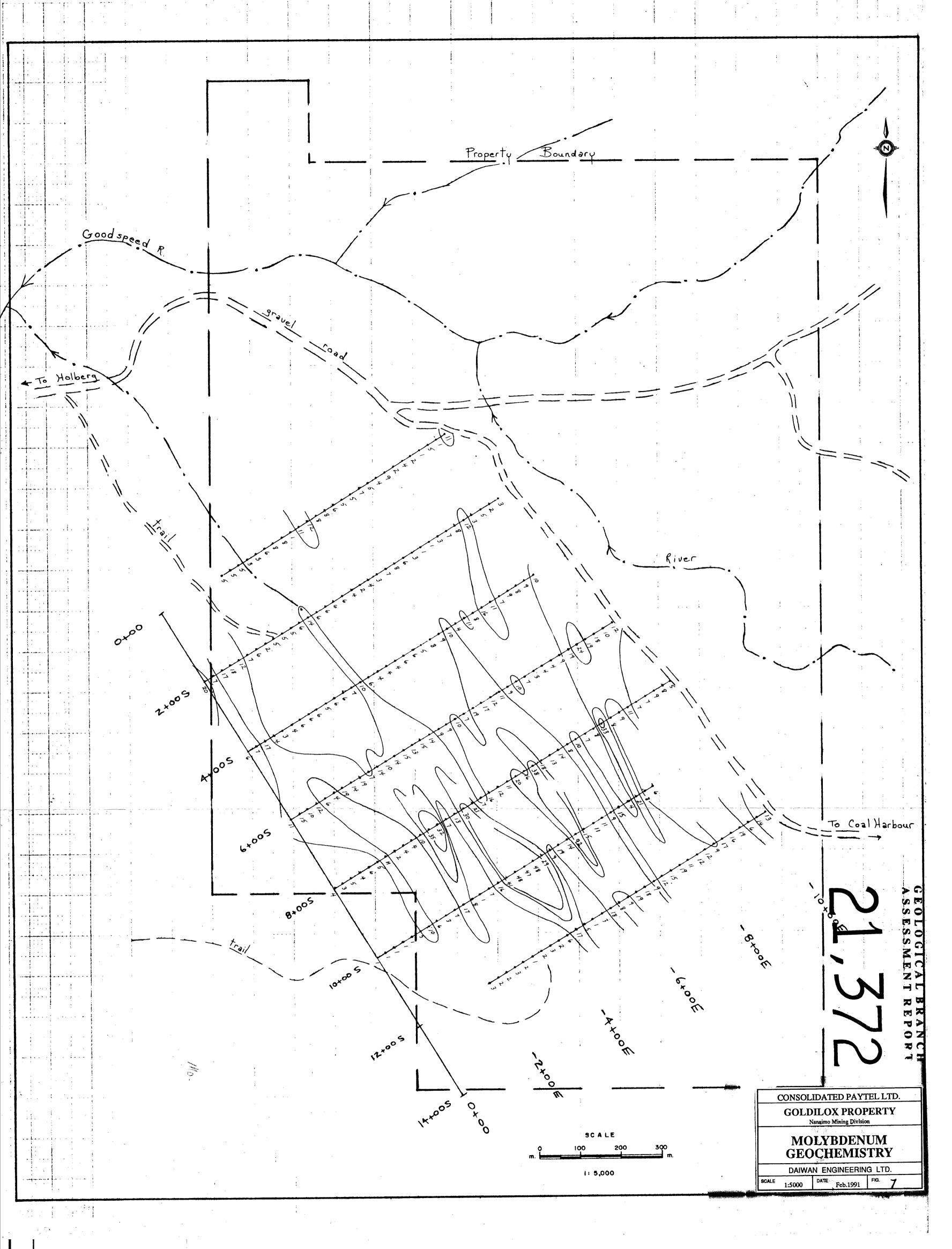
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd pp#	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	8 ppm	Al X	Na X	K X	ppm /	Au* ppb
4\$ 250E	6	56	5	154	.2	43	15	636	6.03	6	5	ND	1	12	1.0	2	4	115		.029	11	40	.65	123	.02		4.33	.01	.03	2	4
4S 275E	6	46	15	174	.2	29	14	328	6.89	. 13	5	ND	1	20	.2	2	2	141	.10	.037	6	44	.52	- 79	.01	2 :	3.77	.01	.03		5
4S 300E	7	22	2	101	.2	14	34	2787	4.68	9	5	ND	1	34	.2	3	2	120	.28	.040	2	28	.22	93	.01	2 3	2.16	.01	.03	1	1
4\$ 325E	10	32	3	169	1	29	21	721		5	5	ND	1	56	.2	2	2	128		.025	3	39	.74	149	.01		3.44	.01	.05	1	5
4\$ 350E	6	48	4	181	.2	29		4628		7	ś	ND	1	33	1.0	2	2	111		.067	5	35	.48	154	.01		2.93	.01	.06		1
43 3302	Ŭ	40	-	101		27	"	4020	0.00		,	NU	•			-	-		• • •							-					
4S 375E	4	26	8	94	_1	11	17	907	5.27	7	5	ND	1	21	.2	2	2	111		.026	2	23	.22	91	.01		1.83	.01	.03	1	2
4S 400E	4	18	8	96	.1	9	10	508		7	5	ND	1	22	.3	2	2	100	.36		3	18	.16	76	.01	2	1.92	.01	.03	t.	2
4S 425E	4	24	2	111	.1	14	28	746	3.35	7	5	ND	1	18	.2	2	2	86	.27	.033	4	17	.10	70	.01	2	1.63	.01	.02	1	4
4S 450E	6	38	7	90	.1	14	7	139	6.42	11	5	ND	1	6	.2	2	2	139	.03	.035	3	27	.23	35	.01	2	2.90	.01	.03	1	2
4S 475E	6	21	8	36	1	5	3	52	4.21	14	5	ND	1	4	.2	3	2	138	.02	.034	2	16	.09	21	.01		1.60	.01	.03	1	2
	-	-	-			-	-				-		-			-	_				_			_							l
4S 500E	5	57	10	112	.1	18	13	768	7.35	16	5	ND	1	5	.2	2	2	136	.02	.082	5	31	.27	- 34	.01	2	3.29	.01	.03	1	3
4S 525E	8	79	9	228	.2	37	20	1752	7.00	13	5	ND	1	6	.7	2	2	132	.02	,101	8	43	.40	61	.01	2	4.75	.01	.04	1	1
4\$ 550E	9	51	5	143	.7	21	10	814	6.29	13	5	ND	1	6	.2	2	2	152	.02	.087	4	30	.15	- 34	.01	2	2.52	.01	.04	1 1	1
4S 575E	10	52	3	149	.3	17	9	423		8	5	ND	1	9	.2	2	2	125	.03		4	32	.24	47	.01		2.82	.01	.03	1	1
45 600E	4	21	5	63	1	11	ź	580		Š	ś	ND	1	17	.2	2	ž	236		.036	4	31	.61	56			2.03	.02	.03	្ម	- i
			-				•				-		•			-	-	200			•	•••				-					
4S 625E	11	47	5	149	.4	20	12	1043	6.23	11	5	ND	1	12	.5	2	2	128	.08	.082	5	37	.33	66	.03	2	3.48	.01	.03	1	3
4\$ 650E	8	22	4	67		8	5	272		11	5	ND	1	16	.2	2	2	138	.16	.062	4	13	.16	72	.01	2	2.34	.01	.03		2
4S 675E	16	49	9	315	.4	35	19	1523		13	Š	ND	1	37	1.3	2	2	103	.41		10	39	.44	145			4.35	.01	.04	1	1
4S 700E	11	34	2	133		14		826		4	5	ND	1	10	.4	2	2	133		.073	7	21	.31	45	- 997-0700		3.78	.01	.04	ê 🖡 🗌	2
4S 725E	7	45	14	186	4	20		1223		8	ś	ND	1	14	.9	ž	2	123		135	8	29	.56	78			5.52	.01	.05		Z
	'		14	100		20			1.20				•			-	-	123	• • •		Ŭ	2)				-					- 1
4S 750E	9	37	6	127	.5	19	9	426	6.10	16	5	ND	1	12	1.2	2	2	148	.05	.055	7	28	.36	49	.02	2	2.57	.02	.04	t i	6
4S 775E	8	30	6	148	1	18	6	226	6.42	11	5	ND	1	12	.2	2	2	150	.04	.262	4	35	.33	45			3.03	.01	.04	1	2
4\$ 800E	9	32	10	110	1		9		6.41	10	5	ND	1	8	.2	ž	2	175	.07		5	31	.44	30			3.07	.01	.03	1	1
4S 825E	10	35	5	121	.2	15	6	316		11	ŝ	ND	1	8	.2	ž	2	156	.04		4	32	.28	36			2.87	.01	.03	÷.	- 21
6S 00E	11	49	8	173	5	61	13	379		17	ś	ND	1	28	.3	ž	2	139	.47		7		.39	138			2.44	.01	.04		- 2
			U			0.		517	0.17		2	NU	•	20		-	.	137			•	40		150		-	£	.01			-
6S 025E	15	29	2	96	.1	25	3	59	1.84	9	5	ND	1	4	.4	3	2	195	.05		2	25	.06	14			.43	.01	.03	2	1
6S 050E	10	71	6	246	1	49	6	117	2.98	12	5	ND	1	3	.7	2	2	99	.01	.037	2	26	.03	10	.,01	2	.51	.01	.03	3	2
6S 075E	12	64	8	175	.8	38	8	316	5.13	16	5	ND	1	7	.2	2	2	107	.07	.063	3	37	.11	29			1.31	.01	.03	1	5
6S 100E	6	62	4	211	.5	43	16			11	5	ND	1	12	.6	ž	2	103	.11		8	43	.14	53			2.16	.01	.04	1	3
6S 125E	4	44	7		1.1	26	8	412		5	5	ND	1	15	.2	2	2	101	.08		4	36	.18	46			2.01	.01	.04	ŧ.	5
							-				-		•			-	-				-			40		-					-
6S 150E	19	48	2		•1	39	5		1.85	14	5	ND	1	4	.6	2	2	150	.01		2	22	.02	6	100000000000000000000000000000000000000			.01	.01	1	2
6S 175E	14	64	5	218	1.9	59	27		5.94	17	5	ND	1	16	1.2	2	2	127		.132	6	35	.17	- 79	_02		2.15	.01	.03	1	2
6S 200E	19	71	9	269	.5	91	17	449	6.31	26	5	ND	1	18	1.5	2	2	149	.23	.126	7	38	.21	80	.01	2	2.00	.01	.03	1	4
6S 225E	7	69	2	108	.1	28	12	246	7.01	12	5	ND	1	8	.2	2	2	173	.06		2	27	.06	20	A	e		.01	.02	1	1
6S 250E	14	32	2	91	.1	16	7	201	3.77	9	5	ND	1	10	.2	2	2	137	.04		2	17	.06	21			.75	.01	.02	1	1
40.0755		~ 4	-			~~		774	. ~		_					_	-	475	•		-					-	•	~-			_
6S 275E	10	51	7	138	.1			370		10	.5	ND		11	.5	2	2	132		-038		32	.30				2.07	.01	.05		- 4
STANDARD C/AU-S	18	58	41	132	6.7	72	52	1043	5.98	41	17	7	37	52	18.4	18	19	56	.44	.086	38	61	.87	180	.08	34	1.88	.06	. 14	13	46

SAMPLE#	Mo	Cu	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr Cd ppm ppm	Sb ppm	Bi ppm	V ppm	Ca X	La La		Mg X	Ba Ti ppm X		X	Na %		Au*
(0. 2007		····			le galaj																	36 .01	2 1.7	m .	01	.03 1	<u> </u>
6S 300E	14	36	5	101	.2	18	7	285			2	ND		6.4	2	2	109	.03 .04			.14						2
6S 325E	15	27	8	130	8 . -1	15	12	1378	6.03	10	5	ND	1	15 .4	2	2	105	.08 .03		21	.35	134 .01	2 2.7			.04 1	4
6S 350E	13	35	10	205	.1	35	11	382	4.30	10	5	ND	1	28 1.2	2	2	78	.20 .05	5 7	' 22	.51	185 .01	3 2.6	52 .	01	.05 1	2
6S 375E	15	51	2	274	.6	37		2782		10	5	ND	1	9 1.2	2	2	98	.04 .05	5 14	28	.44	208 .01	2 4.1	7.	01	.04 1	1
65 400E	14	29	Ž	272	.3	41			3.20	13	5	ND	i	56 1.5	2	2	76	.45 .11			.48	163 .01	5 1.9			.08 1	2 L
05 400E	14	29	2	212	•2	41	10	001	5.20	•••	J	HU.			2	2	10	.47 211		·	.40	105 .01	J 1.3	·		•••	- 1
	•		-					400			-				•	-		~ ~						~	04	A7 A	-
6S 425E	9	31	3		.2		15		2.50		2	ND	1	26 1.2	2	2	111	.24 .04			.20	82 .01	2 2.2		01	.03 1	2
6S 450E	9	41	6	135	.4	17	5		4.31	11	5	ND	1	8.3	2	2	87	.05 .06			.21	56 .01			01	.04 1	2
6S 475E	10	37	2	- 99	.1	17	7	228	4.68	12	5	ND	1	8.7	2	2	146	.05 .03	B 2	2 13	.08	27 .02	5.8	35.	01	.04 1	2
6S 500E	7	20	2	49		9	4	77	2.11	8	5	ND	1	3.4	2	2	117	.01 .01	7 7	28	.02	8 .02	4.	50.	01	.02 1	2
6S 525E	19	18	8	53	1	10	3		5.12	16	5	ND	1	4 .2	2	2	136	.02 .04		2 1Õ	.06	16 .01			01	.04 1	
03 5252	.,	10	Ŭ				2	100	J. 12		-	ND	•				150								••		-
6S 550E	17	38	2	133	1	17	7	545	4.38	12	5	ND	1	10 .5	2	2	113	.03 .07	0 2	2 16	.17	143 .01	5 1.	51	01	.05 1	- 1
			2		10000000000					Addition and a state	-	-		1 T 0000404344		-		E = 376066	77 C - 7			· · · · · · · · · · · · · · · · · · ·				44444444444444	. 1
6S 575E	12	44	-	126	.2		11		5.93	11	5	ND	1	6.6	2	3	116	.02 .14	- CO		.24	37 .01	2 2.		.01	.04 1	- 11
6S 600E	11	56	6	164	.2			2235		12	5	ND	1	4 .5	2	2	107	.01 .16			.30	58 .01			01	.04 1	3
6S 625E	9	57	2	179	.8	21	15	2246	6.45	13	5	ND	1	7 .2	- 4	2	116	.03 .17	3 (5 38	.32	40 .01	4 4.1	. 00	.01	.04 1	5
6S 650E	10	22	- 4	63	.3	11	5	327	4.03	14	5	ND	1	4 .2	3	2	135	.03 .06	3 7	2 20	.09	21 .01	4 1.	19.	.01	.03 1	3
							-				-			1 227	-	-											_
6S 675E	7	34	9	97	.1	13	8	540	7.03	15	5	ND	1	5.2	2	2	140	.02 .08	18 A	4 39	.37	36 .01	3 3.	34	.01	.04 1	1
6S 700E	ż	32	11	96	1		-	1793		10	5	ND		4 .2	2	2	100	.03 .12		7 19	+	42 .01			01	.04 1	
6S 725E		28		72	.3			723		Accession and the	5			5 4		_						37 .03					
	4									10		ND			2	2	174			•					.01		2
65 750E	4	36	11	103	.2			1787		10	5	ND	1	5.2	2	2	115	.03 .08	0.000	5 19		50 .01			.01	.03 1	<u> </u>
6S 775E	9	47	9	174	.2	20	11	989	6.50	16	5	ND	1	6.2	2	2	123	.02 .09	4	5 30	.30	46 .0'	23.	79.	.01	.03 1	3
								_							_								÷				_
6S 800E	19	32	- 4	130	.3	16	8	552		12	5	ND	1	7.8	- 3	2	134	.04 .05		5 15		51 .01		17.	.01	.04 1	3
6S 825E	24	41	6	196	1	23	9	656	5.27	16	5	ND	1	7 .2	3	2	138	.02 .05	0	3 15	.27	61 .01	22.	16.	.01	.05 1	2
6S 850E	19	43	9	404	.9	38	13	627	5.01	15	5	ND	1	6 1.3	5	2	140	.02 .11	0	9 27	.39	75 .0'	34.	77.	.01	.06 1	4
6S 875E	18	30	2		.2		5		2.74	18	5	ND	1	9.4	5	ž	211	.04 .03		2 13		22 .0	6 · · · · · · · ·		.01	.03 1	9
65 900E	10	67	ē		5			1340		12	5	ND		14 1.2	ź	2	118	.07 .10			.71	120 .03			.01	.05 1	
05 900E	10	07	,	2/1		40	10	1,240	3.73	16	2	ΠU		14 1.2	2	2	110	.07 240		5 32	• • • •	120 .0.	2 J.	<i></i>	.01	-03	2
6S 925E	12	2/	5	59		14	5	104	2.05	9	5	ND	4	7 .2	2	2	165	.03 .01		38	07	13 .0		36.	01	A2 4	
1	12	24	-		0000000.000		-			-000000.000	-	ND			2	2		200200							.01	.02 1	2
8S 00E	4	23	9	82			8		4.63	9	5	ND	1	28 .2	2	2	80	.33 .14		B 24		119 .0			.01	.04 1	Z
8S 025E	3	12	2	35	- 1	5	2		2.18	7	5	ND	1	9.8	2	2	- 77	.08 .02	3	2 14		36 .0			.01	.03 1	2
8S 050E	5	40	8	107	.3	21	8	277	5.37	13	5	ND	1	6 .8	2	2	81	.04 .04	1	2 26	.09	32 .0	21.	20.	.01	.04 1	6
8S 075E	4	20	2			10	4		3.89	13	5	ND	1	4 .2	2	2	56	.05 .03		2 19		19 .0			.01	.03 1	2
			-				•				-		•		-	-				,				••••	•••		-
8S 100E	6	28	2	89	.1	18	4	98	1.77	11	5	ND	1	4 .3	2	2	79	.04 .02	2	2 12	.03	15 .D'	5	48.	.01	.05 1	3
85 125E		30	2	43	0000070172				3.57	11	5	ND	-	10 .2	2	2	72	.12 .03		2 14		32 0			.01	.02 1	
85 150E		45	6								5		-			2								-			
	11		-	85					6.80	21	-	ND		9.2	2	2	86	.09 .09		4 19		35 .0			.01	.02 1	
8S 175E	2	22	4	30					8.34	9	5	ND	1	9.2	2	2	61	.09 .06		2 12	.03	39 .0			.01	.02 1	1
8S 200E	4	57	9	57	.1	20	31	2668	7.05	12	5	ND	1	10 .2	2	2	79	.09 .04	3	2 20	.03	37 .0	2.	65 .	.01	.02 1	1
	1	_		_															33 1								
8S 225E	4	39	2		2001000000				3.97	8	5	ND	1	10 .2	2	2	74	.12 .03		2 12			2.	42 .	.01	.01 1	1
STANDARD C/AU-S	18	62	- 43	135	7.5	73	31	1059	3.99	42	20	7	37	52 18.6	16	21	58	.46 .09	0 4	0 58	.87	181 .0	33 1.	88 .	.07	.13 13	47
· · · · · · · · · · · · · · · · · · ·														again the second					<u></u>			<u> </u>	×	~ ~			

SAMPLE#	Mo ppm	Cu	Pb	Zn	Ag ppm	Ní ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au	Th	Sr C ppm pp	36		V ppm	Ca %	P %	La	Cr ppm	Mg X	Ba Ti ppm %	B ppm	AL X	Na X	K ₩ X ppm	Au# ppb
8\$ 250E	10	16	2	32	.2	7	2	36	.87	2	5	ND	1	3	i di secondari di s Secondari di secondari		84	02	.018	2	0	.01	3.01	7	.20	.01	.01 1	1
						•					5	-				_				-				2	.95			
8S 275E	35	50	8	299		32	9	427		21	-	ND		6 .		-	219	.01	.072	4	21	.03	10 .01			.01	.01 1	- 11
8S 300E	32	- 36	2	200	.2	32	6	134	2.42	16	5	ND	1	- 3 🔅	84	. 2	229	.02	.028	2	13	.01	5 .01	6	.20	.01	.01 1	5
8S 325E	7	168	3	134	.3	30	14	290	8.12	9	5	ND	1	4 1.	4 2	2	474	-02	,116	2	61	.06	13 .01	2	.60	.01	.01 1	5
8S 350E	13	104	6	210	.5	32		1259		9	5	ND	1		8 3		237		.131	6	41	.04	14 .01		1.41	.01	.01 1	2
03 JJUE	1.5	104	0	210		JE	21	1639	0.75		,	NU	'	-	• •		231	.01	• 19•	Ŭ				-	1.41			-
8S 375E	30	55	3	146	.2	25	17	932	6.72	17	5	ND	1	11 .	6 2	2 Z	209	.18	.113	3	30	.05	61 .01	2	.95	.01	.01 1	1
85 400E	21	48	7	82	1	17	8	204	5.12	9	5	ND	1	3 🔅	7 3	; 2	205	.01	,043	2	20	.02	17 .01	2	.77	.01	.01 1	1
8S 425E	7	126	13	164	.1		26		9.38	2	5	ND	1	41 1.			141		.073	8	45	.63	107 .01	2	3.49	.02	.04 1	5
			9			-				1000 (March 1000)		-		2010-00-00-00-00-00-00-00-00-00-00-00-00-	1977					-			445-64-69		3.63			
8S 450E	16	71		156	.5			738		13	5	ND			2 2		124	.06	100000000000000000000000000000000000000	4	34	.27	42 .01			.01	2000000000000000000000000000000000000	
8S 475E	12	35	3	160	.2	30	39	8472	6.24	- 3	5	ND	1	372.	3 2	2 2	95	.16	.096	2	32	.28	155 .01	3	3.03	.01	.04 1	2
85 500E	11	55	8	141	.1	23	11	815	6 61	11	5	ND	1	7	2 2	, 2	112	02	.040	2	29	.21	44 .01	2	2.84	.01	.04 1	3
		30	-					327		00000.0100	5	ND								3	17	.16	852-3559		2.50			
8S 525E	20		10	114	.5					16			ļ		2 4	2	216	.01								.01	.05 2	2
8S 550E	16	- 44	7	128	.2		10	1038		12	5	ND	1		32		156	.03		2	27	.29	38 _01		2.47	.01	.05 1	
8S 575E	38	37	5	200	.1	18	6	861	5.83	30	5	ND	1	7	2 4	2	213	.08	.049	- 4	19	.17	23 .01	3	3.29	.01	.05 1	2
8S 600E	18	52	8	167	.3	20	10	558	6.16	14	5	ND	1		33	5 2	141		.065	4	35	.27	38 .01	3	3.51	.01	.06 1	2
			-								-									_						•••		
8S 625E	13	- 56	5	143	•1	19			7.60	10	5	ND	1		2 2		150	.03		2	48	.25	31 .01	2	2.95	.01	.04 1	2
8\$ 650E	14	41	2	106	.1	19	7	286	5.68	12	5	ND	1	5	2 2	2 2	188	.01	,042	2	32	.17	23 .01	3	1.52	.01	.04 1	: 11
8S 675E	8	16	2	41	.1	7	2	82	1.75	3	5	ND	1	4	2 2	2 2	87	.01	.028	2	16	.09	24 .01	6	1.20	.01	.05 1	2
85 700E	10	33	2	89	1		6		4.31	8	5	ND				2 2			.056	2	15	.07	25 .02			.01	.04 1	1
	7		5				-				5																00000000000	
8S 725E	'	42	У	105	.1	16	9	217	6.98	12	2	ND	1	10	2 7	2 2	146	.06	.044	3	39	.26	35 .02	2	2.09	.01	.05 1	6
8S 750E	8	36	2	92	.1	15	7	324	4.91	15	5	ND	1	4	2 7	2 2	170	.01	.045	4	22	.13	27 .02	2	1.87	.01	.04 1	2
8S 775E	33	83	8	200			16		6.06	11	5	ND	1			2 2			.040	7	37	.55	67 .01		2.97	.01	.05 1	1
85 800E	8	53	7	152	.6				6.06	ġ	5	ND							.076	5	35	.26	T 1 100 T 10					. .
	-		•								-									-			TT 207.700		3.77	.01		
8S 825E	9	56	11	207	1.5				6.63	16	5	ND	1	7		23			.067	7	42	.47	68 .01		5.34	.01	.04 1	1
8S 850E	11	42	16	262	.9	31	11	1051	5.75	14	5	ND	1	16	33	5 2	157	.08	.114	20	28	.30	103 .01	2	4.97	.02	.06 1	2
8S 875E	7	32	9	114	.7	13	7	628	7.28	14	5	ND	1	11	2 3	2 2	145	04	.304	8	31	. 14	48 .01	2	4.46	.01	.04 1	3
85 900E	-	33	10	101	- 555555555				5.26	000000000000	5									-			· · · · · · · · · · · · · · · · · · ·	< -				
	1 1				.4					8		ND	1			2 2			.132	5	21	.15	30 ,01		2.64	.01	.04 1	2
8S 925E	9	- 36	8	118	1	16			6.60	14	5	ND	1	9	5 2	22	149			5	32	.28	44 .01	2	3.32	.01	.03 1	4
8S 950E	8	- 49	10	243	1	38	17	1865	5.15	11	5	ND	1	43 3	5	22	91	.35	.103	12	28	.61	160 .01	4	2.66	.01	.08 1	6
8S 975E	5	53	10	151	.3	25			6.98	9	5	ND	1			2 2	140	.06	.038	7	58	.41	56 .01	2	5.02	.01	.03 1	1
			-								_		-					. .		_		•		_		•		
10S 00E	1	66	- 4	126	.3		11		9.23	10	5	ND	1			22				2	: 36	.09	27 .01	o —	1.76	.01	.04 1	3
10S 025E	1	32	5	59	.1	8	9	268	4.91	5	5	ND	1	7	2	22	2 103	.06	.026	2	12	.04	18 .01	2	,50	.01	.04 1	11
10S 050E	1	73	10			49	31		7.97	2	5	ND	1			2 2				13	67	.54	117 .01		4.02	.01	.05 2	9
105 075E		65	4	94					6.29	8	5	ND	i			2 2				2		.11	40000000	÷ –		.01	60000000	
					.1		_			50000000000																		
105 100E	ין	54	6	87	.1	19	10	547	6.81	4	5	ND	1	9	.2	2 2	2 145	-06	.050	3	53	.39	54 .01	5	1.87	.01	.04 1	5
105 125E	5	41	2	130	.3	28	6	392	6.00	11	5	ND	1	5	.3	2 2	. 88	.05	.100	2	38	.05	27 .01	4	.43	.01	.02 1	1
STANDARD C/AU-S	19	61	43						4.00		-	8	39	52 18					.090			.87			1.88	.07		· · · ·
CIANDARD C/AU-3	17				5 + K	10	52	1044	+.00	%C :	17			JE 10	<u>u</u> 1	, 20		.47	.070	-+0	01	.0/	101	<u> </u>	1,00	.07	.13 0013	- 40


SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mri ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a Ti ppm X	00	AL X	Na X	K W X ppm	Au* ppb
10S 150E	10	53	9	126	.7	35	6	139	5.84	16	5	ND	1	9	.2	2	2	172		.105	2	36	.09	21 .01	- C		.01	.03 1	3
10S 175E	6	24	8	45	.2	11	4	159	5.57	13	5	ND	1	8	.2	2	2	117	.03	.096	3	17	.05	18 .01	7	.74	.01	.03 1	1
10S 200E	3	56	2	40	1	21	5	110	4.73	8	5	ND	1	6	.2	2	2	84	.02	.047	2	18	.05	19 .01	8	.64	.01	.03 1	1
10S 225E	7	63	2	121	.3	17	10	189	8.50	19	5	ND	1	14	1.4	4	2	85		.152	4	23	.04	19 .01	5	.49	.01	_01	4
10S 250E	17	20	2	83	1	10	ž	51	1.87	11	5	ND	1	3	.2	ż	2	96		.024	Ż	5	.01	2 .01		.17	.01	.01 1	1
103 2502	••		-	00			-	21			-	ND.	•			-	-				-	-			3	•••			
10S 275E	8	30	2	56		7	7	76	2.10	4	5	ND	1	4	.2	2	2	72	.02	.034	2	6	.01	4 .01	6	.30	.01	.01 1	1
105 300E		5	Ž	12		ż		59	.54	2	5	ND		3	.2	2	2	26		.011	2	ž	.02	4 .03			.01	.02 1	<u>.</u>
	7	13								8				4	•	2	2	65			2		.02	7 .02			.01	.02 1	
10S 325E			2	47		7	2	106	1.11		5	ND	1	•	-2					.028									
10S 350E	16	52	7	173	1	28	8	454	6.34	15	5	ND	1	11	.2	2	6	145		.120	2	24	.08	20 .02		• • • •	.01	.03 1	
10S 375E	41	64	6	285	.4	53	10	1066	6.11	26	5	ND	1	7	.8	4	3	268	.02	.129	13	27	.08	33 ,01	888	1.34	.01	.02 1	3
105 400E	48	42	4	236	.6	39	5	324	1 09	27	5	ND	4	4	.8	5	2	360	.01	442	2	21	.06	14 .01	5	.66	.01	.01 1	
							-		4.08		-	ND	-	6		-	_			.114					90 - E				° 1
105 425E	47	32	7	158	.3	35	4	205	4.26	22	5	ND	1	8	.2	2	2	316			2	24	.11	24 .01	50: T	.87	.01	.01 1	2
10S 450E	48	49	8	536	-1	43	10	576	4.82	26	5	ND	1	42	1.4	2	2	119		.057	5	14	.31	204 .01		2.33	.01	2000000	2
10S 475E	29	57	8	419	.2	60	18	1607	5.57	11	5	ND	1	39	1.6	2	2			.134	6	27	.48	158 .01		3.25	.01	.07 1	2
10S 500E	9	63	9	155	.1	29	17	365	5.68	8	5	ND	1	10	.2	2	2	131	.06	.051	6	71	.60	64 .0'	<u> </u>	4.20	.01	.05	3
100 5255		0/	•/	776			~	457/	7 04					40		~	~	440	~7			=/					••		
10S 525E	19	96	16		.4	53		1534	7.81	16	5	ND	1	10	.2	2	2	112		,104	11	54	.46	66 .0		4.60	.01	.06 1	2
10S 550E	14	65	5	197	.1		17	893	7.63	9	5	ND	1	12	.2	2	2	143		.049	4	42	.40	56 .0'		3.28	.01	.04 1	4
10S 575E	92	70	12		.2			1225	5.85	27	5	ND	1	8	.9	2	3	94		.109	20	17	.35	78 .0		3.25	.01	.05 1	1
10S 600E	15	37	12		.2		9	727	5.93	11	5	ND	1	9	.4	2	2	116		.068	5	22	.25	65 .0		3.06	.01	.06	2
10S 625E	11	64	9	144	.1	18	9	374	6.74	10	5	ND	1	8	.2	2	2	152	.02	.039	2	21	.13	35 .0'	1 3	3 2.12	.01	.05 1	1
10S 650E	11	54	2	144	.1	23	9	632	7.66	19	5	ND	1	7	-2	2	2	175	03	.033	2	31	.11	24 .04		5 1.64	.01	.03 1	
105 675E	9	68	11		2			565	8.29	17	5	ND		8	.2	2	-	152		.057	3	32	.27			2 2.66	.02		
														-			4											55555577	6
10S 700E	15	55	2	202		36		2321	6.36	16	5	ND	1	28	.2	2	5	121		.036	4	26	.53	168 .0		5 2.98	.02	.08	
105 725E	4	40	7				14	701	6.55	_6	5	ND	1	26	-2	2	2	159		.040	6	50	.57	53 .1		2 4.55	.02	— 7 2000000 1	2
10S 750E	21	51	11	445	.2	49	18	1507	6.63	23	5	ND	1	19	.7	2	8	193	.13	. 101	9	43	.45	99 . 0'		2 5.84	.01	.08 1	2
10S 775E	8	33	9	124	.5	20	9	394	6.28	9	5	ND	1	14	.2	2	2	183	٥.	.042	4	38	.30	49 .0		2 3.58	.01	.05 1	i a
105 800E		36	11	95	.4	25	-	270	6.83	9	5						2								100				1
	3						8			SSSSS11736-	-	ND		12	.2	2	_	171		.049	3	90	.54	40 .0		5 4.47		.03 1	2
12S 200E	-	91	6	152	1000000000000			1261	6.65	11	5	ND	1	38	.2	2	7	100		.080	8	25	.29	132 .0		5 1.89	.01		5
12S 225E	2	33	14	100					13.76	10	5	ND	1	51	.2	2	6			.105	8	20	.08			2 1.80	.01	.03 1	3
12S 250E	2	58	3	137	.1	24	13	515	3.87	10	5	ND	1	35	.2	3	2	74	.16	.049	6	18	.10	111 .0		2 1.35	.01	.04 1	2
125 275E	2	56	8	225	.3	57	26	357	3.84	3	5	ND	4	27		2	2	85	77	.078	10	20	24	110	5 5	5 7 05	04	~	
125 200E	2	23	2	47		11	20	107	4.34		-			7	.4						10	28	.21	119 .0		5 3.05	.01	0000000	3
125 300E					1		4			14	5	ND	1	•	-2	2	2		.03		2	13	.06	23 .0		2.91	.01		1
	!	12	2	20		4	1	29	1.76	6	5	ND	1	4	.2	2	2				2	8	.02	14 .0		.63	.01		1
12S 350E	2	63	2	39		18	18	105	4.11	7	5	ND	1	4	.2	2	2		.01		2	4	.02			5.55			5
12S 375E	3	42	4	70	1	14	8	164	4.79	6	5	ND	1	32	.2	2	2	92	.18	.034	2	15	.09	88 .0	1	2 1.29	.01	.03	1
12S 400E	2	29	2	74	.2	10	27	760	5.40	8	5	ND	4	21	.2	3	3	79	20	.042	3	20	.07	77 ,0		2 1.66	04	03	į,
STANDARD C/AU-S	20	62	44						3.99	40	19	7	39		18.3	15	22			.098		61	.07	50000.00	1000	5 1.89			4 5 47
CITADANO CITO-S	L	04		152				1044	3.79		17		37		10.3	<u>, ()</u>			. 44	6U70	41	01	.0/	101 .0	u 3:	1.09	.07	. I J 💮 🗄	<u>%</u> •/


3


• •

Daiwan Engineering Ltd. PROJECT GOLDILOX FILE # 90-6260

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	- 200 - TA	Ni ppm	Co ppm	Mn ppm	fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti X	8 ppm	AL X	Na %	K W X ppm	Au* ppb
12S 425E	6	40	3	85	1	11	5	154	6.36	~ ?	5	ND	1	3	1.0	2	٦	100	.02	.032	2	17	.18	25	.01	2 1.	00	.01	.03 2	4
125 450E	17	27	2	143	.8	18	ś	130	.97	2	ś	ND	i		4.7	2	2		2.33		6	10	.09	178	.01	6 1.		.01	.02 1	
125 475E	5	10	2	34	1	3	1		2.16	ž	5	ND	1	21	.2	2	2	105			ž	10	.06	26	.01			.01	.03 1	Ĩ Ă
12S 500E	1	76	2	93	1	30	26	1204		5	5	ND	i	7	1.2	2	2	241		.067	2		1.97	74	.01	24.		.02	.05 1	1
125 525E	3	17	8	48		6	4	299		6	5	ND	i	5	.2	3	2	54		.046	11	22	.21	33		31.		.01	.07 1	Ż
128 550E	18	61	10	194	.2	25	14	1057	6.75	8	5	ND	1	7	.6	2	4	121	.04	.115	6	43	.34	48	.01	23.	78	.01	.05 1	2
12S 575E	8	60	6	135	-3	23		1170		9	5	ND	1	5	.4	2	2	161		.116	4	78	.60	36		23.		.01	.04 1	á 4
12S 600E	9	50	11	148	.6	18		1338		8	5	ND	1	4	.4	2	2	143		.151	4	41	.40	46	.01	43.		.01	.05 1	2
12S 625E	19	80	7	215	.3	26	18	1492	7.24	12	5	ND	1	3	.4	3	2	111		.110	3	25	.29	32		2 3.		.01	.04 1	<u> </u>
12S 650E	18	41	2	106	.1	14	10	700	5.12	12	5	ND	1	6	.2	2	2	163		.076	2	17	.13	30		2 1.		.01	.04 1	3
12S 675E	9	60	9	104	.1	14	9	452	6.43	2	5	ND	1	4	.2	2	2	110	.02	.066	2	19	.22	21	.01	32.	23	.01	.03 1	3
12S 700E	12	56	2	116	1.0	19	10	558	6.25	7	5	ND	1	6	.2	2	2	142	.06	,129	3	25	.20	27	.01	22.		.01	.03 1	1
12S 725E	15	43	- 4	133	.5	15	13	1978	6.85	15	5	ND	1	6	.3	2	2	163	.03	.116	3	32	.18	34	.01	22.		.01	.04 1	1
12S 750E	19	46	2	192	.1	24	8	416	5.17	15	5	ND	1	14	.2	3	2	167		.102	2	19	.13	31	.01	91.		.01	.04 1	3
12S 775E	11	72	16	318	.3	43	20	1617	6.45	11	5	ND	1	7	1.3	2	2	127		.117	8	34	.50	58		35.		.01	.04 1	2
12S 800E	12	61	3	196		23	10		6.40	12	5	ND	1	4	.2	2	2	141	.01	.075	4	32	.16	25	.01	23.	54	.01	.03 1	1
12S 825E	12	35	5	117	.3	15	6		5.15	13	5	ND	1	6	.2	2	2	142	.03	_048	3	22	.16	25	.01	2 1.	88	.01	.03 1	2
12S 850E	9	47	10	166		18	10		4.93	10	5	ND	2	11	1.7	2	2	97	. 10	.068	8	28	.44	67	.01	23.	33	.01	.06 2	2
12S 875E	17	42	13	192		24	11	519		5	5	ND	1	13	.8	2	2	108			4	29	.35	93	.01	24.	04	.01	.06 1	4
12S 900E	16	59	7	240	.1	33	15	413	6.63	8	5	ND	1	6	.2	2	2	129	.04	_045	5	52	-40	58	.01	25.	47	.01	.03 1	2
125 925E	19	48	6			38		1855		10	5	ND	1	35	.6	2	2	109		.112	9	42	.53	116	.01	24.	65	.01	.05 1	2
12S 950E	6	25	2	200		52	19		4.02	2	5	ND	1	45	1.0	3	2	99		.063	6	101	1.64	145		33.	70	.01	.06 1	§ 1
12S 975E	14	42	9	163	200000000000	25	10		8.28	13	5	ND	1	30	.2	3	2	167		.056	4	50	.54	42	.01	23.	94	.01	.03 1	6
12S 1000E	13	18	2	58		9	4		1.85	8	5	ND	1	29	.5	4	2	121	.32	.018	3	17	.07	30			63	.01	.02 1	i 1
STANDARD C/AU-S	18	58	42	132	6.9	72	32	1043	3.98	39	17	6	36	53	18.5	14	21	56	.46	.096	38	61	.87	180	.07	341.	88	.06	.14 13	45

