ARIS SUMMARY SHEET

District Geologist, Smithers Off Confidential: 92.03.11

ASSESSMENT REPORT 21411 MINING DIVISION: Liard

PROPERTY: B1-N

LAT 56 57 06 LONG 130 49 36

UTM 09 6313277 388893

NTS 104B15W

CLAIM(S): B1-N,B2-N,Rest 3
OPERATOR(S): Kestrel Res.

AUTHOR(S): Tennant, S.J. REPORT YEAR: 1991, 68 Pages

COMMODITIES

LOCATION:

SEARCHED FOR: Gold, Copper

KEYWORDS: Mississippian and older (?), Mafic-felsic volcanics, Biotite granite

Fractures, Quartz veins, Pyrite, Chalcopyrite

WORK

DONE: Drilling, Geochemical

DIAD 339.6 m 2 hole(s);BQ

Map(s) - 3; Scale(s) - 1:2000, 1:50

ROCK 128 sample(s);ME

Map(s) - 1; Scale(s) - 1:10000

RELATED

REPORTS: 18552 MINFILE: 104B 024

LOG NO: JUN 17 1991 RD.
ACTION:

REPORT ON THE

B1-N, B2-N, REST 3-4 MINERAL BLANGS

1990 DIAMOND DRILLING AND GEOCHEMICAL REPORT

ISKUT RIVER AREA LIARD MINING DIVISION BRITISH COLUMBIA

SUB-RECORDER

JUN 1 0 1991

56°57' NORTH LATITUDE 130°50' WEST LONGITUDE N.T.S. 104 B/15

Claim Name	Record No.	No. of Units	Record Date
REST 3	3983	16	Mar. 10, 1987
REST 4	3984	16	Mar. 10, 1987
B1-N	5165	20	Aug. 29, 1988
B2-N	5166	10	Aug. 29, 1988

Work Period:

June 10, 1990 to September 15 1990

Owner and Operator:

KESTREL RESOURCES LTD. 506 - 675 West Hastings Street

Vancouver, B.C.

V6B 1N2 (604) 683-9177

By:

S.J. Tennant

GEOLOGICAL BRANCH June, A9\$SESSMENT REPORT

21,411

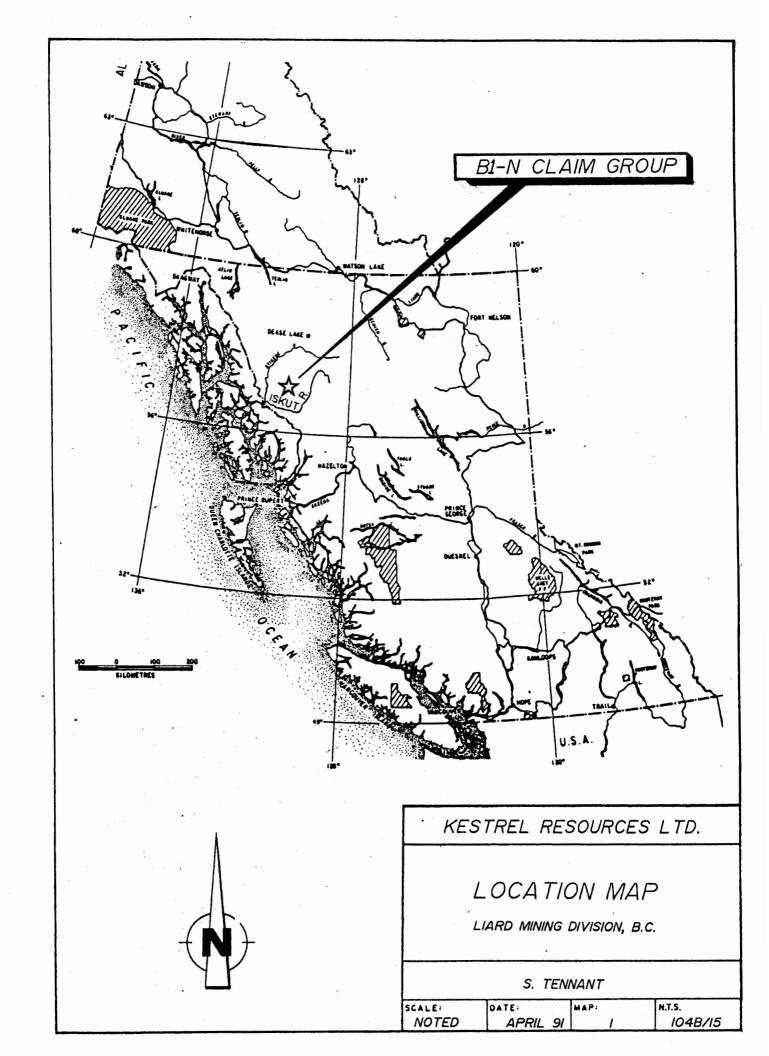
TABLE OF CONTENTS

		Page
INTRODUCTION		1
	SS AND TOPOGRAPHY	
•	LIST OF CLAIMS	
AREA HISTORY		2
REGIONAL GEOL	OGY	3
PROPERTY GEOL	OGY	5
EXPLORATION P	ROGRAM	5
DISCUSSION OF F	RESULTS	6
RECOMMENDAT	IONS	7
BIBLIOGRAPHY		8
STATEMENT OF C	QUALIFICATIONS	9
PROGRAM COSTS	S	10
List of Figures		
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7-8	Geophysical Survey Interpretation; Scale 1:2,000	n pocket n pocket n pocket
List of Appendices		
Appendix II Appendix III	Diamond Drill Logs Sample Assay Results Sample Descriptions	

INTRODUCTION

The B1-N, B2-N, Rest 3 and 4 mineral claims (total of 62 units) were staked August 29, 1989 and March 10, 1987 respectively. The claims are located 12 km northeast of Newmont Lake at the headwaters of the north arm of Forrest Kerr Creek (NTS 104B/15). The claims are accessible by helicopter from a base camp at the Forrest Kerr airstrip located 3 kilometers to the south.

The claims are predominantly underlain by Mississippian and older(?) mafic to felsic volcanics, intruded by a number of biotite granite plugs.


The 1990 exploration program consisted of a 7.25 km geophysical survey, drilling two diamond drill holes and a lithogeochemical sampling survey.

Results of the 1990 exploration program are discussed in the text of this report and the data plotted on the accompanying maps.

LOCATION, ACCESS AND TOPOGRAPHY

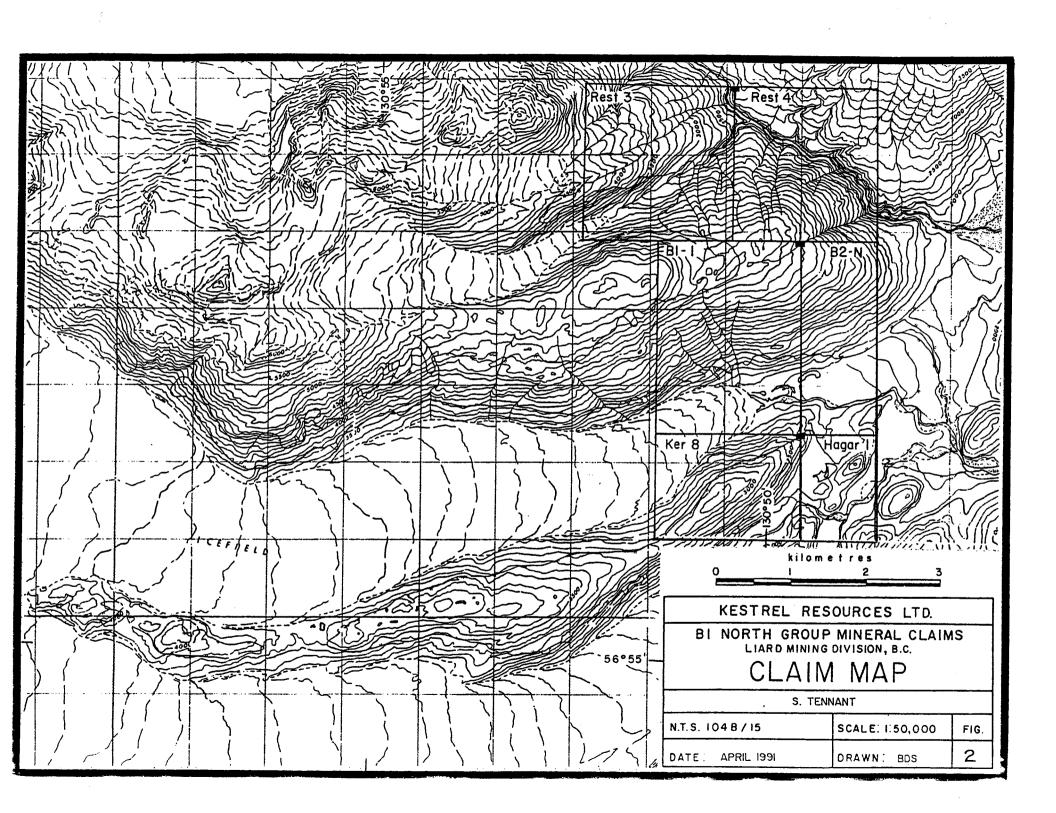
The claims are located approximately 12 kilometres northeast of Newmont Lake within the Liard Mining Division of northwestern British Columbia. Access to the property is via fixed wing aircraft from Smithers or Terrace to Bronson, which is located 110 kilometres northwest of Stewart, or the Forrest Kerr airstrip located at the headwaters of the Forrest Kerr Creek. Access from Bronson or Forrest Kerr is via helicopter and via foot traverse within the claims.

Most of the property is accessible by foot or helicopter. Elevations range from 600 metres to 1,460 metres A.S.L. Above 1,200 metres the claims are devoid of vegetation except grasses and shrubs, and exhibit abundant outcrop. Below 1,200 metres, the usual coast mountain evergreens, alder and devils club predominate. Precipitation exceeds 4,000 millimetres annually; temperatures range from -40° to +25°C

PROPERTY AND LIST OF CLAIMS

The B1-N prospect consists of the following modified grid claims controlled by Kestrel Resources Ltd.

Claim Name	Record No.	No. of Units	Record Date
B1-N	5165	20	Aug. 29, 1988
B1-N	5166	10	Aug. 29, 1988
Rest 3	3983	16	Mar. 10, 1987
Rest 4	3984	16	Mar. 10, 1987


AREA HISTORY

The first recorded work from the Iskut River Region was in 1907 when a staking party from Wrangell, Alaska recorded nine mineral claims north of Johnny Mountain. The Iskut Mining Company worked the claims and in 1917 shipped a ton of high grade ore which reportedly assayed \$1.20 gold, 44.2 ounces silver and 12.45% copper (B.C.M.M.A.R., 1917).

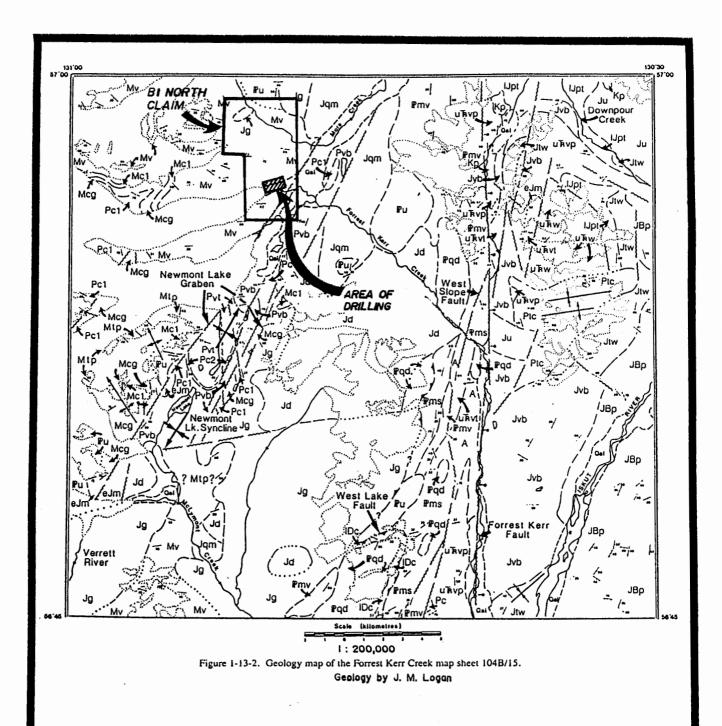
In 1954 Hudson Bay Mining and Smelting Limited discovered high grade gold-silver-lead-zinc mineralization, known as the "Pickaxe" showing, on the slopes of Johnny Mountain.

Throughout the 1960's several major mining companies undertook reconnaissance prospecting and exploration programs in search for porphyry copper-molybdenum deposits resulting in the location of several claims on Johnny Mountain and on Sulphurets Creek.

Skyline Exploration Limited staked the Inel property in 1969 following the discovery of massive sulphide in float on the Bronson Creek glacier. In 1980 the Company staked the Reg property. During the 1980's, Skyline has developed both these properties discovering high grade veins and polymetallic massive sulphide mineralization on the Inel and Reg properties.

The joint venture partners of Cominco Ltd. and Prime Resources Corporation have developed their Snip property which is located immediately north of the Reg property on the northern slopes of Johnny Mountain. The combined geological reserve for the Snip property is 1,000,000 tons grading 0.80 opt gold.

Other advanced prospects currently undergoing intense exploration efforts in the area include Gulf International Minerals Ltd.'s, Inel and McLymont properties, Placer Dome Ltd.'s, Kerr porphyry copper-gold deposit and Calpine's Eskay Creek gold deposit, as well as the re-development of the Silback Premier/Big Missouri mines by Westmin.


The discovery of the Eskay Creek gold prospect in November of 1988 has done much to stimulate exploration activity in the Iskut region. Drill hole intersections varying from 5 to 10 metres (16 to 33 feet), and grading to 100 grams gold per tonne (2.92 opt), with an average 1,000 grams or more of silver per tonne (29.2 opt), are not uncommon. The Eskay Creek deposit is probably the most significant precious metal deposit discovered in British Columbia.

Recently completed road access studies has resulted in a proposed shared cost road which would commence at the Stewart-Cassiar highway near Bob Quinn Lake and extend into the Iskut Valley.

REGIONAL GEOLOGY

Generally the area consists of a northerly trending succession of Upper Triassic and Jurassic volcanic and sedimentary rocks underlain in part by Paleozoic volcanic and sedimentary units. All of these units have been intruded by Mesozoic and Tertiary intrusive rocks and cut by extensive fault zones. These country rocks form the Stewart Complex bounded on the west by the main Coast Plutonic Complex, and on the east by the Bowser Basin sedimentary assemblage.

Since 1948, Government workers have attempted to clarify relationships and assign ages to various lithological units of the area. Work completed by Kerr, 1948, <u>G.S.C. Memoir 246</u>; G.S.C. maps <u>9-1957</u>, <u>1481-1979-Iskut River</u>, and Grove, E.W., 1985, <u>Bulletin No. 58</u> B.C. Department of Mines, form the basis of earlier government

KESTREL RESOURCES LTD.

LIARD MINING DIVISION, B.C.

REGIONAL GEOLOGY B 1 - NORTH

DATE : APRIL 1991 NTS : 104B/15
DRAWN : BDS FIGURE : 3

* Geology by J.M. Logan.

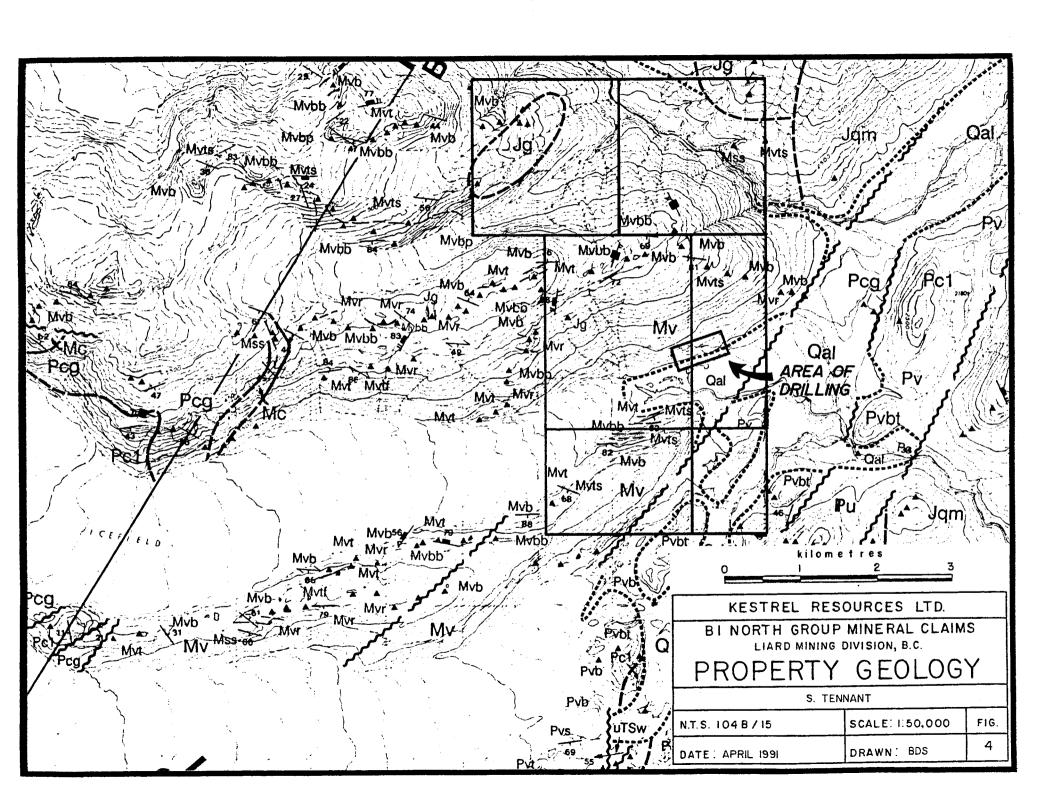
LEGEND

QUATERNARY	
Cel	TILL, ALLUMUM
	STRATIFIED ROCKS
MIDDLE TO UP	PER JURASSIC BOWSER LAKE GROUP
JBp	SA TSTONE, SANOSTONE, MINOR CONGLOMERATE
JURASSIC	
Ju	Undnoed volcanics and sediments
Jiw	SILICEOUS WACRE, TUFF, CONGLOMERATE
Jvb	PILLOW BASALT, BRECCIA FLOWS, SLICEOUS SEDIMENTS
Upt	Shale, Sandstone, Lesser Limestone, Tuff
UPPER TRIASSI	C STUHINI GROUP
NA.	MAROON AND GREEN EPICLASTICS, AUGITE AND PLAGNOCLASE-PHYRIC VOLCANIC BRECCUS
uhvp	DARK GREEN PLAGICICLASE-PHYRIG FLOWS
บสิงธ	OREY-CREEN APHANTIC TUST
uħw	TUFFACEOUS WACKE, ARGILITE, LIMESTONE, CONGLOMERATE WITH LIMESTONE CLASTS, PLAGIOCLASE-PORPHYRITIC ANDESTE
MIDDLE TRIASS	
mhs	CARBONICEOUS CALCAREOUS SILTSTONE
LJ	and the second sections are the second sections as the second section second section second s
PALEOZOIC STI	KINE ASSEMBLAGE
Pu	UNOMOED METAVOLCANICS AND METASEDIMENTS
WESTERN	ASSEMBLAGE
PERMIAN	
PVI	FELSIC WELDED TUFF, VOLCANIC SANDSTONE AND SILTSTONE, RHYOLITE FLOWS
Pe2	THIH-LAMINATED, GREY ALGAL LIMESTONE
Pvb	INTERMEDIATE TUFF AND EPICLASTICS, MAROON LANCE, BRECCIA FLOWS
Pc1	MEDIUM-BEDDED BIOCLASTIC LIMESTONE WITH CHERTY INTERBEDS
MISSISSIPF	MAN
Мір	SILTSTONE, SANOSTONE, TURBIOTIES, LESSER LAPILLI TUFF
Mcg	POLYMICTIC VOLCANIC CONGLOMERATE
Mc1	INTERBEDOED SILICEOUS SILTSTONE AND LIMESTONE, THICK-BEDDED CRIMOIDAL CALCARENTE
_ Mv_}	FILLOW BASALT, HYALOCLASTITE, ASH-FLOW FELSIC TUFF
	ASSEMBLAGE
PERMIAN	
Pic	INTERMEDIATE TO MAJIC META-TUFF, THIM-BEDOED LIMESTONE AND METASEDIMENTS
المثل المثل	MEDIUM-BEDDED BIOCLASTIC LIMESTONE
PERMIAN A	REDIO ON
Pme	SAUCEOUS TURBIOITES, PHYLLITES, LESSER CHERTY TUFFS
Pmv	MAJIC TO FELSIC METAYOLCANICS, METASEDIMENTS, LIMESTONE LENSES
LOWER DE	YONIAN
IDc	LIMESTONE, SILICEOUS TUFF
	INTRUSIVE ROCKS
CRETACIONA	
Kp	AND YOUNGER (?) PLAGOCIASE QUARTE PORPHIRE
لـــــــا	PRODUCTION CONTRACTOR
JURASSIC	
Ją	PIHK HORHBLENDE BIOTITE DRAWTE
Jdw	QUARTZ MONZONITE
Jd	HORNBLENDE DIONITE, HORNBLENDE QUARTI DIONITE
EARLY JURASS	· IC
₽Jm	HORHBLENDE-PLAGIOCLASE-PORPHYRITIC MONZONITE, SYENITE
<u> </u>	
PALEOZOIC	
Pqd	DEFORMED HORNBLENDE OUARTZ DIONTE
UNKNOWN	•

ALTERED DIORITE

mapping. Recently work completed by the G.S.C. - Open File No. 2094 (1989) and the B.C. Department of Mines Open File 1990-2 has greatly enhanced the geological data base.

The oldest known rocks of the area are limestone, dolomite and low grade metamorphosed sediments (quartzite, slate, phyllite), of Lower Cambrian age that have been correlated with the Cache Creek Group prevalent in the southern half of the province. The limestone unit contains fossil crinoids and is unconformably overlain by Upper Triassic Hazelton volcanics and sediments.


Overlying the Triassic Hazelton volcanic-sedimentary assemblage is a similar group of volcanic-sedimentary rocks of Middle Jurassic age tentatively named the Betty Creek Formation.

Cretaceous to Tertiary Coast Plutonic intrusions of granite, granodiorite and diorite occupy large portions of the map area. In addition, smaller bodies of monzonite or syenite, as well as sub-volcanic acidic porphyries are sparsely distributed.

Tufa, hot spring deposits and pyroclastic material of Pleistocene and Recent age occur at several localities within the area, notably at Hoodoo Mountain.

The foliated rocks, present in the area, are not of great lateral extent and owe their origin to low grade metamorphism, rather than high temperature regional metamorphism.

Structurally, the map area is bisected by a prominent thrust fault along the Iskut River from Forrest Kerr Creek to the Stikine River Junction. The thrust separates unconformably, Mississippian-Pennsylvanian rocks from middle Jurassic strata and is thought to override rock formations to the south. Regionally, a dominant northeast trending and a subdominant northwest trending faulting system complicate the local geology, especially where folding of the strata, which is common, has occurred.

LEGEND

4.₇

	•
QUATERNARY	
Rv	RECENT VOLCANICS
Qal	TILL, ALLLANUM
	LAYERED ROCKS
MIDDLE TO	upper jurassic bowser lake group
JBp	PLANAR BEDDED SHILE AND LOCALLY CROSSBEDDED SANDSTONE TURBIDITE COUPLETS
JBcg	CHERT PEBBLE TO GRANULE CONGLOMERATE
JURASSIC	
Ju	UNIONIDED SEDIMENTS AND VOLCANICS
Jw	BRECCIATED AND CRACKLE FRACTURED DARK GREEN AND GREY SLICEDUS SLISTONES AND PHRITC CHIENT CARBONICEOUS TUFFACEOUS WACKES WITH INTERBEDGED CONGLOWERATE CONTAMING CLASTS OF CHERT, BLACK SLISTONE, AND INTERMEDIATE TO FELSIC VOLCHICS [MING]
MIDOLE(?) JURA	SSIC
dvLm	DENSE MEDIUM CREY TO GREEN PILLOW BASALT, LOCALLY AMIGDALODAL, PLAGNOCLASE PHYRIC, PILLOW BRECCIA FLOWS AND FLOW BRECCIAS, HYALOCLASTITE.
wha?	THINLY BEDOED, ALTERNATING BLACK AND WHITE SLICEOUS TUFFS AND SEDIMENTS
LOWER(?) JURA	SSIC
Пр	FISSLE. THIN BEDDED, SILTSTONE AND SANDSTONE WITH CARBONACEOUS WOOD FRACINENTS, GRANULE CONCLOMERATES CONTAINING INTERMEDIATE VOLCANG, SEDIMENTARY AND LIMESTONE CLASTS.
nı	BROWNISH GREY LAPILLI AND CRISTAL TUFF; RHYOLITE CRYSTAL TUFF AND LESSER FLOWS [LW]
· UPPER TR	ASSIC STUHINI GROUP
uTS	UNIDWIDED VOLCANICS AND SEDIMENTS
uTSW	MAROON AND GREEN PLAGLOCIASE AND LESSER AUGITE-PHYRIC LAPILLI TO BLOCK TUFFS AND ASSOCIATED EPICLASTICS
uTSv	MUNOON AND GREEN PORPHIRITIC VOLCANIC FLOW BRECCAS, PLAGICCLASE PHIRIC (UTSIN)
uTSI	Gret-Green applantic tuff
uTSw	TUFFACEOUS WACIE, ARGILLITE, LIMISTONE: CARBONACEOUS AND CALCAREOUS SUITSTONE WITERBEDDED WITH FIVE BRANKED SANDSTONE AND MINCH CONCILOMERATE; MARCON VOLCANIC CONGLOMERATE WITH LIMISTONE CLASTISIUTS SINGLE.

PALEOZOIC STIKINE ASSEMBLAGE

Pu	UNDWIDED METAVOLCANICS AND METASEDIMENTS
WESTER	NASSEMBLAGE
PERM	IIAN
Pv	UNDMIDED PERMIAN VOLCANICS AND SEDIMENTS
Pv	LAPILLI AND PLAGIOCLASE CRYSTAL TUFF, FELSIC WELDED ASH TUFF, THINKLY BEDDED SALCEOUS LIMESTONE LENSES: RHTOLITÉ FLONS (PH): VOLCANIC SANDSTONE, SLISTONE AND MARICON SHALLOW(T) WATER CONCLOMERATES (PH)
Pc	ALGAL LIMESTONE: THIN-LAMINATED, DARK GREY TO BLACK LOCALLY FETID, WEATHERS BUFF, PISOLITE-RICH BEDS AND CUSPATE STACKED CONCAVE ALGAL STRUCTURES COMMON
Pvi	MORNBLENDE-PLAGICCLASE PORPHYRITIC ANDESITE BRECCU FLOWS: LOCALLY ANTIGOAL CONTAINS 30 TO 40 PERCENT EUNEDRAL WHITE PLAGICCLASE AND 15 PERCENT CHLONITIC ACICLAR HORNBLENDE CRISTIALS; MARCON LAHAR AND LAPILLI TUR (AND)
Pc	BOCLASTIC LIMESTONE WITH CHERTY INTERBEDS; MEDIUM-BEDDED TO MASSIVE GREY BOCLASTIC CALCARENTE AND LESSER BLEF SX TY DOLOMITIC LIMITS., THAN BEDDED SECTIONS CONTAIN BLOCK TO YELLOWISH BLEF ANORMOUS SX CA BEDS UP TO 20 CENT
Pc	THICK BEDDED, BOULDER TO PEBBLE CONGLOMERATE, CLASTS ARE AUGITE PHITRIC, PLACKOCLASE PHITRIC, AND SITE, BASALT, AND LIMESTONE CLASTS.
MISS	ssippian - Pennsylvanian
Ma	SIL TSTONE-SANOSTONE TURBIDITES AND LESSER CHERTS
Mo	THICK-BEDDED CRINOIDAL CALCARENITE WITH INTERBEDDED SLICEOUS SLISTONE
My	UNDWIDED VOLCANICS
	MVI MAFIC TO INTERMEDIATE SCORIACEOUS LAPILLI TUFF: SILICEOUS DUST TUFFS AND EPICLASTICS (MING); INTERMEDIATE TO FELSIC ASH FLOW AND WELDED TUFFS (MING)
	MWI AMYOLITE, RIMODACITE, PINK AND ORANGE FLOW BANDED BRECCIAS VARYING TO MASSIVE SUBMOLCANIC BODIES, OLOMEROPORPHIRITIC FELDSPAR AND QUARTZ EYES COMMON.
·	MVB MASSIVE-AUTGON OROM BASALT FLOWS; HYALOCLASTITE DEBRIS FLOWS (MAGO); PILLOW BASALT (MAGO)
EASTERN	ASSEMBLAGE
PERM	IAN .
Pic	DEFORMED CHLORITIC TUFFS AND METAVOLCANCS. INTERBEDDED TUFFACEOUS AND SLICEOUS SLISTOMES AND MUMEROUS THIM BEDDED RECRISTRALIZED LIMESTONES.
Pc	LIMESTONE: BIOCLASTIC, MEDIUM BEDOED, RECRYSTALLIZED, WHITE TO BUFF, SPARSELY CALCULAR CALCALEMITE WHICH LOCALLY IS COMPLETELY RECRYSTALLIZED TO COMPSE CALCULE.
PERM	IAN AND OLDER
Pm	METASEDMENTS AND MINOR LIMESTONE: SILTSTONES ARE GREY TO LIGHT GREEN PHOLLIFIC AND INTERLAYERED WITH GRAPHITC ARGULTE AND SILCEOUS PHOLLIFE AND THIN LENSES OF DANK BROWN LIMESTONE; DREEN AND WHITE SILCEOUS TURNIORE COUPLETS AND CHERTY TUFFSIPMING OCCUR HIGH IN THE STRATIGRAPHY.
Pc	LIMESTONE: RECRYSTALLIZED, THIN BEDOED TO MORE COMMONLY MASSIVE, WHITE TO BLAFF COLOURED.
Pm	MAFIC TO FELSIC METANOL CANCS. RAPE LIMESTONE LENSES; VARIABLY FOLIATED TO SCHISTOSE, PURPLE TO DARK GREEN PLADICCLASE PORPHRINIC FLOWS AND TUFFS.
LOWE	R DEVONIAN
Юс	DEFORMED CORALLINE LIMESTONES: LESSER INTERBEDDED PEBBLE CONQLOMERATE, SACCOUS AND CARBONICEOUS SHALES AND BOTH MAFIG AND FELSIC TUFFS.

INTRUSIVE ROCKS

CRETACEOUS A	nd Younger (?)	
Кр	PLAGIOCLASE CLUARTE PORPHIRIT, OCCURS AS SMULL PLUGS AND DYKES INI MORTH TREMONING FALLTS, PYRITIC AND CRODIZED TO YELLOW AND RED CLOSS	THUOMA SANS.
JURASSIC AND	YOUNGER(?)	
19	BIOTITE GRANTE: PINK, COURSE TO MEDIUM GRAINED, EQUIGRANILLAR TO TO PORPHYRITIC, LESS COMMONLY HORNBLENDE IS THE MAPIC CONSTITUENT, (EXCEEDS 30 PERCENT, QUARTZ RICH PHASES (30 PER CENT) ARE SPATINLLY R FAILT STRUCTURES	NUARTZ EYE" XUARTZ KLATED TO
Jqm	HORNBLENDE CUARTZ MONZONITE TO MONZONITE: COARSE TO MEDIUM GR HORNBLENDE AVERACES ZO PERCENT AS 3 MALIMETRE CRISTIAL LATINS AND CLOTS, BIOTITE WHERE PRESENT IS FINE CRAINED AND LESS THAN 8 PERCEN	ANED POHILITIC T.
Ja	HORNBLENDE DIORITE, HORNBLENDE CLIARTZ DIORITE; HORNBLENDE IS CH COMPRISES MORE THAN 40 PERCENT OF THE ROCK.	LONTICANO
MIDDLE(?) JUR	ASSIC	
Jai	DONTE TO GABBIO. COARSE GRANED, OCCURS AS STOCKS AND SILLS, M. CRISTALS ARE EUROPAL TO SUBHEDIAL ADCULAR CLOTS WHICH MARA! FELTI WIFER DOWN TERTURE, THESE SUBVOLCANC INTRUSIONS MAY REPR TO THE PELLOW BASAL TSAM)	AGIOCLASE A DISTINCTIVE ESENT FEEDERS
EARLY JURASS	ic ·	
•Jm	MORNEL ENDE-PLAGICELASE PORPHYRITIC MONTONITE: CICCURS AS DIVISS PLOS CHARACTERIZED BY A NEMBTIC GROUNOMASS ALTERED WITH PHIM EUREDHAL PLAGICELASE (UP TO 30 PERCENT) AND HORNELENGE CRYSTALS TEXTURES ANE COMMON, STRONGE MAGNETING	SLLS AND SUBHEDRAL TO , TRACHITIC
eJg	HORNBLENDE BIOTITE POTASSIUM FELDSPAR MEGACRYSTIC GRANITE.	
AGE UNKNOWN	1	
qd	NORMBLENDE CUARTZ DIORITE: MEDIUM GRAINED, LOCALLY FOLIATED AND CONTAINS BREGULAR MAFC INCLUSIONS (LIP TO 100 CENTIMETRES) OF AM	ALTERED. PHIBOLITÉS.
d	ALTERED DIORITE	
DYKES	a) AMMRIC ANDESITE AND BASALT; pp) MAFIC PLAGIOCIASE PHIRIG; IJ LAMI IJ RHIOLITE/APLITE	PROPHIRE;
MAP SYMBO	H C	
MICH. O I MICO		
Geological ca	ontact (defined, approximate, assumed)	4
	ble contact (defined, assumed)	
	izontal, inclined, overturned)	× */ */
		*/
	ed, interred)	
•	h angle reverse fault (defined, assumed)	
_	action of plunge indicated)	
•	action of plunge Indicated)	
	is	* ~
		*/
Duka		">

Outcrop visited.....

PROPERTY GEOLOGY

Open File Report No. 1990-2 - Geology and Mineral Occurrences of the Forrest Kerr-Iskut River Area, N.W. B.C. prepared by the B.C. Department of Mines and released in the winter of 1990, describes the geology of the B1-N property at a scale of 1:50,000. The B1-N claim group is generally underlain by Mississippian and older(?) mafic to felsic volcanics which comprise a southwest-dipping homoclinal sequence of pillow lavas, flow breccia, ash-flow tuffs and stratified tuffs and epiclastics. On the west side of the claim block several biotite granite intrusives intrude the volcanics.

Mineralization occurs within two distinct moderately weakly developed fracture systems trending between Az 000°-040°/90° and Az 090°-130°/90°. The northwesterly trending system appears to carry stronger mineralization with pyrite, chalcopyrite and sporadic gold in quartz veins.

EXPLORATION PROGRAM

The 1990 field program on the B1-N claims commenced mid June 1990. Initially, work consisted of laying out a survey grid totalling about 7.25 line km on the B1-N/B2-N claims. The grid was located in an area that had been well sampled in 1989 and had returned values up to 4800 ppb Au. The geophysical survey consisted of total magnetic field and two VLF-EM surveys, using Hawaii and Seattle. Figure 6 is an interpretational plan of the area surveyed. The geophysical work was completed by F.J. Syberg under contract to Kestrel Resources Ltd. The reasonably strong geophysical conductor located roughly between 0+50N, 1+00E and 1+20N, 6+50E with an en echelon fault displacement was investigated by two short diamond drill holes. The proposed holes would test the two faulted portions of the cause of the anomaly as well as the fault itself. Two BQ holes were drilled from two drill pads located as indicated on Figure 6. Total length of drilling comprised 339.6 m. Drill hole information is as follows:

Drill Hole	Northing	Easting	Elevations	<u>Dip</u>	Bearing	Length
B1-N 90-1 B1-N 90-2	20+00N 1+50N	4+0E 3+60E	698 m. 686 m	-60° -55°	200° 200°	18.35m602 ft. 156.1m512 ft. 339.6m 1114ft

The core was flown to Forrest Kerr Camp where it was logged, split and stored in a core rack. Drill logs with assay results are appended to this report.

The lithogeochemical sampling program was carried out mainly on the ridge top between the B1-N and Rest 3/4 claims. This area had not been previously sampled. A total of 128 rock chip samples were collected from an andesite unit that carried quartz veining, carbonate and chlorite alteration with sections of quartz breccia and epidote veins carrying chalcopyrite and pyrite. The lithogeochemical samples were properly bagged, described and labelled in the field. Later, they were shipped by air and ground freight to Vangeochem Lab Ltd. in Vancouver, B.C. All of the samples were analyzed for gold, using fire assay and atomic absorption procedures, and a 25 element suite by inductively coupled argon plasma (ICAP) methods.

Traverses and all sample locations are shown on Figure 5 of this report. The lithogeochemical sample descriptions and analytical results accompany this report as Appendices II and III respectively.

DISCUSSION OF RESULTS

Interpretational results of the geophysical survey indicated that although the anomaly was not considered a first order target, the anomaly could be due to metallics likely to respond to primary VLF fields. Assay results from the drill core show that no significant precious metal values were obtained in any of the intervals assayed. Lithogeochemical samping previously carried out in the area of the grid had established that gold values, up to 4800 ppb Au, had been obtained from shears and fractures. The drill holes indicate that there is no concentration of economic sulphide mineralization related to structural features encountered in the drilling.

Results of the lithogeochemical sampling program do not indicate any significant economic or precious metal targets. Assay values for gold are generally low, in the order of 20 ppb Au, however there are a number of scattered higher values (up to 2000 ppb Au). The higher gold values are generally restricted to widely spaced narrow shears and fractures.

RECOMMENDATIONS

Results of work to date on the B1-N group of mineral claims has not located any concentrations of economic mineralization. The sporadic values obtained appear to be related to shearing and fracturing. Any additional work should be concentrated close to the intrusive plugs intruding the volcanics as the fracturing is probably controlled by the intrusions of the biotite granites.

BIBLIOGRAPHY

Logan, J.M.; Koyanagi, Victor M.; Drobe, John R. <u>Geology, Geochemistry and Mineral Occurrences of the Forrest Kerr-Iskut River Area, Northwestern British Columbia</u>, Open File 1990-2, Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch.

GSC Open File No. 2094 (1989).

Kerr, 1948: GSC Memoir 246; GSC Maps 9 - 1957; GSC Maps 1481-1979 "Iskut River."

STATEMENT OF QUALIFICATIONS

I, STUART J. TENNANT, of Kestrel Resources Ltd., do hereby certify that:

- 1. I am a Geologist employed by Kestrel Resources Ltd. during the period October 1989 to present.
- 2. I am a graduate of the University of British Columbia with a B.Sc. in Geology in 1959.
- 3. From 1959 until present, I have been engaged in exploration primarily in Western Canada.
- 4. I personally supervised and participated in the field work and have compiled, reviewed and assessed the data resulting from the work.

Stuart J. Tennant

Stust & Tennant

DATED at Vancouver, British Columbia, this ______ day of June, 1991.

PROGRAM COSTS

S. Tennant Geologist	4 days @ \$325/day	\$	1,300
J. Buchholz Geologist	3 days @ \$325/day		975
L. Dandy Geologist	3 days @ \$225/day		675
B. Chase Prospector	4 days @ \$275/day		1,100
W. Grier Prospector	1 day @ \$200/day		200
K. Forster Prospector	1 days @ \$200/day		200
D. Wituik Prospector	1 day @ \$175/day		175
J. Lee Prospector	1 day @ \$175/day		<u>175</u>
• • • • • • • • • • • • • • • • • • •	, - , ,	\$	4,800
		•	
Field Cost			
Diamond Drilling 1	114 feet	\$	23,178
Helicopter	9.5 hours @ \$800/hour		7,600
Room and Board	38 man days @ \$125/day		4,750
Assaying	280 @ \$17/sample		4,760
Freight			362
Report Costs			<u>1,200</u>
TOTAL COST OF	1990 PROGRAM	\$	46,650

J. T. HOMAS DIAMOND DRILLING LTD.

Box 394 Smithers, B.C. VOJ 2NO Phone: (604) 847-4361 Kestrel Drill JT 600-16

August 1 - 13, 1990

Branch Office Box 944 Timmins, Ont. P4N 7H5 Phone: (705) 267-6633 Page Une

DIAMOND DRILLING:

	Hole No.	<u>Date</u>	Overburden From To	Coring From To	Total Footage	Rate	Amount
	90- 7	August 1		102 - 194	92	\$ 18.90	, ,,
	90- 8	•	0 - 5		5	18.90	94.50
				5 - 284	279	18.90	5,273.10
	90- 9		0 - 5	2 222	5	18.90	94.50
		•		5 - 332	327	18.90	6,180.30
	90-10	August 2	0 - 5		5	18.90	94.50
				5 - 394	389	18.90	7,352.10
	90-11	August 3	0 - 5		.5	18.90	94.50
			•	5 - 600	595	18.90	11,245.50
			_	600 - 652	52	19.90	1,034.80
	90-12	August 5	0 - 5		5	18.90	94.50
			_	5 - 450	445	18.90	8,410.50
	90-13	August 6	0 - 12		12	18.90	226.80
			_	12 - 600	588	18.90	11,113.20
				600 - 712	112 5	19.90	2,228.80
Δ.	90-14	August 9	0 - 5	r coo	-	18.90	94.50
ST.	BI-N DDH 1			5 - 600	595	18.90	11,245.50
· ***				600 - 602	2 5	19.90	39.80
,	90-15	August 11	0 - 5	E 540		18.90	94.50
	BI-N DDH 2			5 - 5.12	_507	18.90	9,582.30
				TOTAL:	4030'	\$	76,333.00
						:	

55,2%.40

J. T. HOMAS DIAMOND DRILLING LTD.

Box 394 Smithers, B.C. VOJ 2NO Phone: (604) 847-4361 Kestrel Drill JT 600-16

August 1 - 13, 1990

Branch Office Box 944 Timmins, Ont. P4N 7H5 Phone: (705) 267-6633 Page Three

MATERIALS USED, LOST OR DAMAGED:

Date	Quantity	Item	Cost	Amount
August 1	1	10' BQ Rod (anchor)	\$ 120.00	120.00
August 2	1	BQ Bit (ruined in fault)	420.00	420.00
August 3	1	BQ Bit (ruined in fault & cave)	420.00	420.00
-	1	BQ Bit (ruined in fault)	420.00	420.00
	1	5' BW Casing (left in hole)	86.00	86.00
	1	BW Casing Shoe (left in hole)	160.00	160.00
	1	Cellophane	46.00	46.00
August 5	1	5' BW Casing (left in hole)	86.00	86.00
•	1 ·	BW Casing Shoe (left in hole)	160.00	160.00
August 6	1	5' BW Casing (left in hole)	86.00	86.00
-	1	BW Casing Shoe (left in hole)	160.00	160.00
	1	BQ Bit (ruined in broken ground)	420.00	420.00
August 7	1	Cellophane	46.00	46.00
7	1	Cellophane	46.00	46.00
August 8	2	5' BW Casing (left in hole)	86.00	172.00
-	1	2' BW Casing (left in hole)	49.00	49.00
	1	BW Casing Shoe (left in hole)	160.00	160.00
August 10	1	BQ Bit	420.00	420.00
August 11	1	5' BW Casing (left in hole)	86.00	86.00
	1	BW Casing Shoe (left in hole)	160.00	160.00
BI-N	1	Linseed Soap	48.00	48.00
DRILLING	Ĵr -		-	

TOTAL: \$ 3,771.00

3,057.00

J. T. HOMAS DIAMOND DRILLING LTD.

x 394 mithers, B.C. /VOJ 2NO Phone: (604) 847-4361 Kestrel Drill JT 600-16

August 1 - 13, 1990

Branch Office Timmins, Ont. Page Two

MAN & MACHINE HOURS:

<u>Date</u>	Keehn	Sova	Groot	Visser	Drill	Additional Acid Tests
Date	KCCIIII					
August 1	1	1	4	4	N/C	
August 2	21/2	2 1	1	l l	N/C	
August 2	42	L2	· 1	1		
August 3	5 <u>1</u>	5 1		•	3	
 	N /C	N/C	1	1	N/C	
august 4	N/C	N/C	N/C	N/C	. 1170	
August 5	2	2				1
-		01	1	1		
August 6	$2\frac{1}{2}$	2 1	3½	3 1	1½	
August 7	11	1½	. 52		1	
August 8			8	. 8		
August 9	6	6	5 N/C	5 N/C	•	
August 10	5	4	NYC	N/C	4	
August 11	4	4				1
Augsut 12	. 1	1	_			
August 13	3	3	3	3		, <u></u>
BI-MING	34	33	231	23½	91/2	2
BI-MAG					_	

Total Man & Machine Hours: $123\frac{1}{2}$ hours @ \$ 24.00/hour = \$ 2,964.00 Total Additional Acid Tests: 2 tests @ \$ 40.00/test = \$ 80.00

TOTAL: \$ 3,044.00

19 18 8 4 40

1636.00

Appendix I DIAMOND DRILL LOGS

HOLE No. BAN-90-1 SHEET No. I of 7

LOCATION: B1 NORTH BEARING: _________ LATITUDE: 20+00 N CRIMSON STAR DATE COLLARED: AUG 9/1990 LENGTH: 602FT - 183.5 M DEPARTURE: 4+40 E DIP: -60° 9158-59° 183m=-57° ELEVATION: 698 m. (2290ft). - LOGGED BY: JOHN BUCHHOLZ LINDA DANDY Ba CORE SIZE: _ DATE COMPLETED: AUGIL, 1990 SCALE OF LOG: 1cm=2m 1:200 DATE: Aug 17/90 , Aug 22/90 GRAPHIC ASSAY RESULTS LOG ROCK TYPES AND TEXTURES ALTERATION MINERALIZATION REMARKS FOOTAC BLOCKS EST. CORE RI SAMPLE Au EST. GRADI ppb. Om CASIA ANDESITE PYROCLASTIC FLOW 18187 -dk-grey-green to purple carbonate-calare Z-005 fine grained porphyritic matrix
with feldsar subnided themocrysts and subrounded clasts.
Minor chlorite altered mafic
phenocrysts. ankente 81198 2.005 5tringers 5 m generally ~35° minor primary magnetite * 22 81181 <.005 some @ \$00 toa + minor speadar some @ 600 toa. hernatite throughout 2-2 cm width 81190 < .005 section 81191 <.005 5cm gouse © 45°tca? 10m 81192 <.005 81193 1005 42 37 Extensive weak to moderate 8194 < .005 1.5m chlarte alteration. Herritage 52 181195/2005 replaces maties and plag is attered to clay a Sericite. 81196/1005 62 81197K:005 week propyletic attention 20m 81198 < .005 10% calcute amyodules 72 Aveinlets with hamotile Assirate altered fs. 8199 4005 melachite along of 8120014.005 weak to moderate propylitic alteration (epidote, chlouts, calcite, hematite) <-∞5 25m 81202 4.005 92 81203 1005 <.005 NOTE: * 4.6-6.1 m IS LIKELY SAMPLE 81189 AND ALL SAMPLES BELOW HERE SHOULD BE SHIFTED

DATE COMPLETED:	LENGTH:		DI	EPART	URE: ION:		(CORE SIZE: CALE OF LOG:			LOG	GED BY: -				_ .	
ROCK TYPES AND TEXTURES	ALTE	RATION	GR Type Alteration	2 7	JOINT OR CONTACT ANGLES	ā.	MINERALIZATION	RE MARKS	FOOTAGE	EST.	No.	Au	SAY	RESU		EST. GRADE	20
ANDESITE FLOW - contid				1117				25cm calcite- hematite veinlet	102		33.5 81206	<.005 <.005 <.005					
ALTERED ANDESITE - bleached, light brown - sericitic fs + a long stringers	-ankerite fs altere -chloritic	with to sericite							122	*	3.4 81208 3.4 81209	<.005 <.005 <.005			-		35
SILICIFIED, CARCONATIZED VOLCANIC — (RHYOLITE OR HORE LIKELY) ALTERED AND blooched light brown-grey fractured & Dilicified-BRXX	Chlorite with minor	- antente fued on fractures lays sericita ous		<i>X X Y Y Y Y Y Y Y Y Y Y</i>	hema	tile	bady broken pte-ch blebs y stringers gouge 5cm	hematile Chlori epidote, sericil Varnlets W alteration halves	142		4.2 81211 4.2 81212 427 81212 81213	<.005 <.005					40
MICRODIORITE - Intrusive of andesitic Composition grey-green, fine grained, high level intrusive moderately fractived graduational Contacts	-weak chlori Carbonate of	tic and Iterations		1		tr.	cpy-born w.calcite		152		45.7 81215 47.3 81216	_)					45
deformed, attend, hb? + fs ph numerous carbonate veinlets + 80° tca + 30° tca offsetting	i			11111111			siderite veinlets		172		\$1217 \$03 \$1218 513 \$1219 \$1219 \$1220	20 10					50
HICRO) HONZONITE - fine grained ight brown/purph/green Jeformed dyke?	senait, cark	onate alth+ ling		וואווו	45°	onte	specular homatite veinlet ct		182		\$1221 \$1.4 \$1222 \$1.1 \$1223	20					60

KESTREL RESC	DURCES	I TD
--------------	--------	------

HOLE No. 3 of Z

LOCATION:		LATITUDE: PROPERTY:							
DATE COMPLETED:	DIP:	DEPARTURE:	CORE SIZE: SCALE OF LOG:	togged by:					
ROCK TYPES AND TEXTURES	ALTERATION	Alection Alection Alection Feetage OTA Structure OTH JOINT OR CONTACT ANGLES % PYRITE	MINERALIZATION RE MARKS	ASSAY RESULTS SAMPLE AU SAMPLE No. PPb ASSAY RESULTS AGYAGO PPb					
ANDESITE PORPHYRY - gray-green, fine-med grained submedial matics-pyroxene o- groundmoss btz plas moderately broken	-siderite/ankerite veinlets@45 5% epidote altín as blebs -chloritic a lteration throughout section		contact // Scm clay gouge // Scm epifchi/hem py as rare culous / Seriato/cc bando	61226 774					
	with many metics partially to entirely altered to enlonk - Rare hematik		som govje abundant calcite	212 81224 Nd 55.6 81228 Nd 67.1 81229 10 68.6 81230 10					
	·			342 81231 20 81232 nd 81232 nd					
		*.	diss pyrite + along fracture zone veinlets with calcule Jeongouge wisiderite	2-52 81234 20 \$1235 10 11.9 81236 10					
		11111111		272 81237 10 83.8 20 83.8 20 83.8 20 80.4 20					
ELDSPAR ARPHYRY OR RHYOLD light pink/orange, fine grained possibly a dyke rock?)	E - silvieous, potassic?	11: 41 14.19	fractures contact - 5cm gage with clay at unonite 4 sidente on fractures contact - broken	282 83.4 81241 Nd 84.9 81242 20 292 83.4 81243 nd					

KES.	TRFI	RES	OURCE	511	ΓD

HOLE No. ____

LOCATION:	BEARING:	LATITUDE:	PROPERTY:			
DATE COLLARED:	LENGTH:	DEPARTURE:	CORE \$12E:		LOGGED BY:	
DATE COMPLETED:	DIP:	ELEVATION:	SCALE OF LOG:	 	DATE:	·
ROCK TYPES AND TEXTURES	ALTERATION	Rock Type Alteration Alteration Structure JOINT OR ANGLES ANGLES ANGLES	MINERALIZATION REMARKS	FOOTAGE BLOCKS EST.	SAMPLE Au PPb	ST.
ANDESHE FORPHYRY FLOW - Simular to unit before feldspar porphyry (dyke), - sm pyroxene phenocrysts - quartz-earbonate verilets	throughout unit minor sericite, he and limonite epidote-rich zone	metita	sidente veining	302	925 81245 20 930 81246 10	
feldspar phenocrysts attered to secicite	epidote replacing fs. hematite more abunatory fractures	dant = 1		312	74.5 81247 nd 81248 nd 81249 nd	
	along fractures			332	81250 rd 81251 rd 1023 81252 rd	
· · · · · · · · · · · · · · · · · · ·				342	81253 nd 81254 nd 10.7 81254 nd	
	7		6 cm gouse	362 *	91256 nd 1998 81257 nd 1113 81258 nd	
	of z-rb voining for 30	Ocm II	minor magnetite 3cm qtz-ankonte coy + py in veins xminor diss py.	372	81254 nd 81260 nd 1141, 21261	
	lenations for 31	ngle slips	ammor diss py.	382	115.9 81262 nd 117.4 81263 70	

KESTREL RESOURCES LTD.

HOLE No. ____

LOCATION:	BEARING:	LATITUDE:	PROPERTY:							
DATE COLLARED:	_ LENGTH:	DEPARTURE:	CORE SIZE:							
DATE COMPLETED:	_ DIP:	ELEVATION:	SCALE OF LOG:		DATE:					
		GRAPHIC				ASSAY	RESULTS			
ROCK TYPES AND TEXTURES	ALTERATION	Rock Type Alteration Structure JOINT OR CONTACT ANGLES % PYRITE	MINERALIZATION REMARKS	15		Au opb		EST. GRADE		
ANDESITE PORPHYRY A	LOW		low angle fractives		81245 10	,		- W 6		
- Contia.		115 31 1	clay gouge (drill mud)	1 1	12.5					
	slightly chloritic				123.5 81266 40	_				
	signing character	 	Py blebs to 0.5cm broken atz-ch vein py acpy in low angle atz-ch vein veintets low angle atz-ch vein veintets	412	25.0 81268 4	n				
			17 veintets Stringers		126.5 81269 21	. .				
		E		422	81210 4					
				,,,,	12:6	1 .		<u> </u>		
		11		432	81271 2	.		1 1		
ALTON ANDERT House			gradational	102	132 (1				
ALTERED ANDESITE - bleached	minor chlorite 4 hemalite	 	lowangle gtz veinler	4	34.2 91273 20					
INDESITE TUFF	st .	115 31 111		2142	35.1			+		
Mank grey-green grading into	potassic haloes around	1/2	dissem py.	150	1312 81275 30	Į.				
pinkish rock. BLCANIC BRECCIA	ate-cb stringers			452	1387 81276 /0					
<u>bleached</u> autered andeast	pink colour due to potassic	 	-·	 	81277 51					
abundant atz-cb veinlets para	llel alteration	1 E 3 1/8	py a cpy in veins Ifinely diss py.	462	81278 2 MIS					
to core axis pinkish volcanic is bracciated	cky, chlorite & homatil	3 E #	thine of a 133 hd.		11279 2	0		1 1		
and infilled with green and	roit			472	91250 1/2	1				
flow (?) matrix	- day · 11 · CC				81281 2	D,				
ANDESITE FORPHYRY - dk green sl. silicified	minor soldssie alteration of fs hardwelm and veinless +		1% pyrite. contact - warpy but forwards y grant for a	482	81282 n					
OLCANIC BRECCIA	hairline low angle, reinlets + 750 tea veinlets later.	1	contact 50° tca	1 1	91283 50	2				
ALMINIC DECCIPY	Islucic a potassic alth	11 <u> </u>	trite late-ch flooding with	14921	81254 M	4		إلـــــــــــــــــــــــــــــــــــــ		

KESTREL RESOURCES LTD.

NTS: ___

HOLE No. 5HEET No. 6 of 7

LOCATION:	BEARING:	LATITUDE:	PROPERTY:					
DATE COLLARED:	LENGTH:	DEPARTURE:	CORE SIZE: LOGGED BY:					
DATE COMPLETED:	DIP:	ELEVATION:	SCALE OF LOG:	DATE:				
ROCK TYPES AND TEXTURES		GRAPHIC LOG WINERALIZATION	N REWARKS FOOTAGE	SAMPLE No. ASSAY RESULTS	EST. GRADE			
ANDESITE MICROCRYSTALLIA -sm clay blebs -green, no phonocrysts visible -fine grained -bleached zone @ 152 m.	tr. chlorite on fractures	tr.	few high angle ofter to veinlets	152.4 81254 nd 152.4 81285 30 154.6 81286 20 54.0 81287 10	15			
few px phenocrysts-subte ALTERED ANDESITE MARIE broken, clayey, punkish	I TUFF notassic alth	tr. pyrik + hemat	contact-sharp-20°tca	155.5 157.0 157.0 158.5 159.0 10	16			
ANDESITE PORPHYRY	unkerite, chlorite,		contact-broken-gazge	16.1 81291 12d 16.3 81292 10 16.4 81293 10	. 3			
- px faw phonocrysts - bleached anead - LKHIC - ANDESITE LAPILLI TUFF - coarse-grained (appears rearly p - brownish zone are cb altere	ankerite, chlorite, Silicified ematitic) Carbonate alth		minor atz-clo 542 veins w. hemafile gradational contact 552	16.2 16.3 16.3 16.3 16.2	14			
rest is dark green phenocrysts to lam diameter with chlorite/clay/sevicte al Peldspars and homotile/chl altered mafics	carb. alth	diss py dcpy	cb reinlets - some cutting phenocrysto 562	170-7 171-3 171-3 171-3 1812-99 10 173-1 1				
		Llooks in areas like a low-grade porphyry system)		1753 1704 170 174.8 181.302 170 178.4 181.302 170	//////////			

HOLE No. _____ KESTREL RESOURCES LTD. NTS: ___ LOCATION: _____ BEARING: __ ______ LATITUDE: _____ PROPERTY: _ DATE COLLARED: ____ __ LENGTH: __ DEPARTURE: __ LOGGED BY: --___ CORE SIZE: ___ DATE COMPLETED: ___ SCALE OF LOG: ____ - DATE: . Rock 1780
Alteration
Structure
JOINT OR
ANGLES
A PYRITE ASSAY RESULTS SAMPLE No. ROCK TYPES AND TEXTURES Au ALTERATION MINERALIZATION REMARKS EST. GRADE ppb. Rom ANDESTE TUFF-LITHIC-contid. 81304 20 hematike enfroct. 1835 81305 nd. 602 190m

HOLE No. B1N 90 -2

												;	SHEET N	o. / o	16	
LOCATION:	EARING: 200°	_ ı	ATITU	DE: _		50 N	PROPERTY: BINO	RTH	CRI	MSON S	TAR					•
DATE COLLARED: AUG 11, 1990	ENGTH: 156.1 m , 512 FT	<u>.</u> 0	EPART	URE:_	3+	-60E	CORE SIZE: BQ			100	GED BY: _	TONY	BAINES	LIN	29 2	DANDY
DATE COLLARED: HUG 11, 1990 LIDATE COMPLETED: AUG 12, 1990 D	1P: COLLAR - 55°, 113.4m = -56°	E	LEVAT	ION:	68	6m. (2250ft.)	SCALE OF LOG: 1cm	1=2 m	1:2	200	a. DINGU	157 /2	1090 0	2100	- 19	200
	156.1m=-540	_		_			SCALE OF LOG: 15			DAT	E: CINGO	21.12	1710 41 2	TUG X	<u>مرح</u>	70 .
	1	GR	APHK .OG				ļ	}	Ι.		A S :	SAY	RESULT	τs	İ	
ROCK TYPES AND TEXTURES	ALTERATION	- &		ō	PYRITE			W	2		Λ	Δ				
THE THE TEXTORES	ALTERATION	2.5		- 2	1 ≍	MINERALIZATION	REMARKS	Įž×	~	SAMPLE	Hu	Ag		- 1	-	
CASING TO 1.5M		Yet Vite	Footage	ZZZ	•			FOOTAGE	÷ ਵ	No.	1			- 1.	ا\$ نا	
		થ્ ર	<u>.</u>	704	₫ ×			2 2	1 2 S		ppb	PPM.		- 1	GR.T.	. .
PYROCLASTIC FLOW ANDESITE		1 I Ł	: 🚽							100		\vdash				Om
-subrounded clasts of gray- green + reddish anderite	motalis de	1 16	= =	1			i			1.5 CASIAN		1		- 1	- 1	
green theadish anderite	matrix is strongly chlorified throught Section	IJF	: 7					1		8130b	10	nd	1 1		- 1	
within a deep dark green chlouter andesite matrix.	contried Throught	n,	: 1					1		2 1 8 1	10	110		- 1	1	
chouse andered matrix.	Section	;	: ‡	1	1 1					, d	10	nd		i	ı	_
- some clasts are slightly		H	-							4130		 	 		-	5m
magnetic + some contain		F	: ‡	i						4	,					
minor hemalite			: 🗇							81308	nd	nd		- 1	- 1	
-Clasto contain subsound	fed !		: :							77		nd				
calcute amugdules, and	epidote alteration	115	: 🖠							9.1 81309	nd	1,0		- 1	- 1	
minor calcute also occurs	as blebs.	Ш	-	_	\vdash		2cm hamotite -	<u> </u>				 		 -		10m
in matrix	as piecs.	ΙŒ	<u>.</u>	-			2cm hematite- quartz veinlet			81310	20	nd	i i	- 1	- 1	, - , ,
-Few calcite stringers of	·		4				icm cakite/anker	wte/h	mate		. ,	nd.	1 1	i	- 1	
Varying oriento trais some		۱IF	7					Ve		1010	nd	na		- 1	- 1	
-Few calcite stringers at varying orientations, some containing hemotite		۱F	7			•				81812	iO	nd		- 1	- 1	
nemaus		+			\vdash					73	_10	nd				15m
		15	7							15.5 01 013	20	nd				iorn
		11	4							17.1 8134	20	110		ļ	- [
		11	- 1			•				"					- 1	
		11:	. 🖠							51	10	nd	1 1		- 1	
		ᅶ								35	, •	,				20m
		1E	4			•				207					\neg	Zorn
		ΙE	3								nd	nd				درد
•		HF	Ŧ		1					379 81316	110.	İ		1		•••
		1F	- F		- 1					~~	10	nd		- 1	- 1	
	_	1F	7		.					244 41317	10				- 1	7-
		╁	-		_					303	nd	nd				25m
		15	4		- 1		la unay calcute			25.7 813/8	1	1				•
	1	IF	- /				lom viggy calcute veiplet w. miner himatile			274 81319	nd	nd				
	·	ΙĿ	- 1				nematite			81320	nd	nd		- 1	- 1	
	ì		4				socm broken atelo hematite/senate	/and	nte	29.0 81	1.					_
		-44-	ليب				hematite/sencite	veinle	-	81321	20	nd				30m
										•						

KESTREL	RESOURCES	LTD
VED LVEL	KESUUKUES	LIU.

HOLE No.

NTS:		3 IKEL KESGOKOL				SHEET No. 2 of 6
DATE CONPLETED:	_ LENGTH:	DEPARTURE:_	<u> </u>		LOGGED 8'	/:
ROCK TYPES AND TEXTURES	ALTERATION	Alteration Albahabababababababababababababababababab	MINERALIZ	,		S SAY RESULTS
					30.4 & 1321 32.4 & 1322 34.1 & 1323 34.1 & 13234 nd	nd
CARBONATE BRECCIA ZONE-bled with authorite/siderite matrix, h mill ANDESITE/TUFF - may be a PYRUCLASTIC ANDESITE FLOV	ched well rock brearia fragment ematche/chlorite on fractures	5			35.1 81325 nd 36.1 81326 nd 36.1 81321 nd	nd nd nd
Pyrocipatic ANDESITE Flow large clasts (fragments) of andesite - some porphyritic clasts within a chloriti andesite matawi	clast have hemather (purplish) alteration and some small epidote blebs as alt	A 1111111	tr. pyrite	2 cm qtz-cbve	einlet	a a
Rock is consistant throughout section to 10	matrix is strongly chloritic	11111		Fractives - many @ 80° +ca	y	
Ctasts Fragments are roughnd up to be em but gen 1-2 cm diameter	noted oncely	11111111	·			
		40	1 † 85°°	gtz-cb veinlets Nawline to 2cm		

HOLE No. ____ KESTREL RESOURCES LTD. _____ BEARING: ____ PROPERTY: ____ ____ LATITUDE: __ CORE SIZE: _____ LOGGED BY: __ DATE COLLARED: ____ LENGTH: ___ DATE: SCALE OF LOG: _____ DATE COMPLETED: ___ ASSAY Attention

Attention

Attention

Structure

JOINT OR

ANGLES

PYRITE RESULTS SAMPLE No. REMARKS ROCK TYPES AND TEXTURES MINERALIZATION EST. GRADE ALTERATION 60m ANDESITE LITHIC TUFF - contid 3cm qtz/cb/ham (or PYROCLASTIC FLOW) 65m navrow ate-cb stringers Fom more epidote alth 75m 2 cm qt E-cb/ham Veinlets 80 m ruggy atz-cb 85m

NTS:	· · · · · · · · · · · · · · · · · · ·		SHEET No. 4 ol b	<u>-</u>			
	BEARING:	- · · · · · -					
DATE COLLARED:			CORE SIZE				
DATE COMPLETED:	DIP:	ELEVATION:	SCALE OF	.og:	DATE:		_
ROCK TYPES AND TEXTURES	ALTERATION	Rock Type Alteration Alteration Course ANGLES APRITE	MINERALIZATION RE M	FOOTAGE BLOCKS EST.	SAMPLE No.		90m
	more epidote altín	1111111					Je
							95 m
ANDESITE BEDDED TUFF (OR FLOW GANDING?) fine to medium grained	15cm fault gorge		contact bedding				100 m
coarsorgrained bands are generally 2000m wide and exhibit ghost fellspar phenocrysts		- I control	gradational- increase in little	reining -@ Bo tra			105n
ANDESITE LITHIC TUFF - same as previous but with feldspar pheno (subhedial) in matrux	feldspar phenos - attored onists to sevicite/clay chloritic - strongly in matrix epidoted hemolite on fracture	The grant	ts and end to licin eals ained baiding inhorite	rims and			1100
BEDDED ANDESTE THE - fine graine with some beds containing feldsput ANDESTTE LITHIC CRYCTAL TUFF	1		. bets @ 3	po tea			1,5,1
(OR PYROCIASTIC FLOW) FEWSpar popphyry matrix with small lithic fragments-sam	المرات والمرات والمرات المرات الم			·			115n
composition but not perphyri Lithui fragments decrease in size toward lower contact	"I minor hemotited epide	** E					1200

KESTREL	RESOURCES	LTD
---------	-----------	-----

HOLE No.

٠

N12:									•				SHEET No. 4	01/2	
DATE COLLARED:	ENGTH:	_ D	EPART	URE:_		(PROPERTY:				GED BY: _				
ROCK TYPES AND TEXTURES	ALTERATION	GR	APHK OG	ŏ.	RITE	MINERALIZATION	I	FOOTAGE BLOCKS	.:		Au	Ag	RESULTS	EST. GRADE	120m
															1250
BEDJED ANDESITE TUFF— fine to medium grounded beds with Lithic fragments present in the coarser balls LODESITE LITHIC TUFF—(or Fig.	MAY BE FLOW BANDING? Numerous narrow cb veins werped a offset -generally at 20° 4 70° Ha	1 11					bedding 20% tra Vincressing Visteeping badding 50° tra	s							130
subrounded andesitic fragments in a dark green andesitic chloritic matrix	numerous calcite fracture fillings a tension gaster to 10% chlorite altered strongly in matrix, moderatein clasts					tr. limonted hematite on fractures.	fragments increase in size down olip.	e							135
ine to meduin grained beds with siliceous areas which have been broken, slightly offset them re-sealed	brocciated as licitied with 9tz-carbonde/honatite in fills	5	***			L1% cpy as small blobs within silicoius Zoneo purite along fracture and in stringers	padding 40° tra oftz-cc veinlets The ca. Bodding 50° tra								
rey-green, fine-grained with felospars attened to ground mas and majic (hb?) phenocrysts locally to 10% - clongated along one was indicate in flow	weak potossicalth siliceous					pyrite sepa finely diss a along fractur	cc/anterite/side veinlets		ı	HIS 41320 HIS 41320 HIS 41320	30	nd nd nd			140r
linection.			***	<u> </u>		Throughout section	decb veinlets w. tr.cpy@700tca			147 4 81337 147 4 81363 144, 81334	10	nd nd •3			1500

KESTREL RESOURCES LTD.

HOLE No. SHEET No. 6 of 6

LOCATION: B	ARING:	_ [A	TITU	DE:			ROPERTY:									
DATE COLLARED: LE		_ 0	EPART	URE:							GED BY: _					
DATE COMPLETED: D	IP:	_ E(EVAT	10N: _		S	CALE OF LOG:			DAT	E:					
ROCK TYPES AND TEXTURES	ALTERATION	Rock Type Alteration	APHK OG	JOINT OR CONTACT ANGLES	% PYRITE	MINERALIZATION		FOOTAGE BLOCKS	EST. CORE REC.	SAMPLE No.	A S S	Ag	RESUL	TS	EST. GRADE	(50)
ALTERED VOLCANIC - RHYOLITIC more felsic shore of volcanic event (or more intensely altered) -brownish/pink, hand with some greenish-grey zoneo.	-Siliceorls, polassicalth gives pink colour chlorite-minor along fractures		11111111			py on fractures especially@155m tr. cpy dres py.	ota-ankente strusers with chalcedonic quart flooding and rare ankenth Veinlets 11 tca.			152.7 (1334) (1335) (1334) (1334) (1337)	nd nd nd	nd nd nd nd				155
EOH.	ŕ		11111111							EOH	nd	nd	-			160r
		111111	11111111									-				
••		1,111111	1111111													25.4
			11111111													

Appendix II SAMPLE ASSAY RESULTS

对牙 智慧 有機關係 深觀翻翻翻翻翻翻翻翻翻的 经分价

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (804) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

April 30, 1991

TO:

Mr. Stuart Tennant KESTREL RESOURCES LTD. 506 - 675 W. Hastings St. Vancouver, BC V6B 1N2

FROM:

VANGEOCHEM LAB LIMITED 1650 Pandora Street Vancouver, BC V5L 1L6

SUBJECT: Analytical procedure for soil samples preprations.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags.
- (b) Dried soil and silt samples were sifted by hands using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.

2. Analysts

The sample preparations were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Conway Chun

VANGEOCHEM LAB LIMITED

VANGEOCHEM SAMPLE ANALYSIS DESCRIPTION

The lithogeochemical samples were properly bagged, described and labelled in the field. Later, they were shipped by air and ground freight to Vangeochem Lab Ltd. in Vancouver, B.C. for analysis under the supervision of professional assayers. All of the samples were analyzed for gold, using fire assay and atomic absorption procedures, and for a 25-element suite by inductively coupled argon plasma (ICAP) methods.

At Vangeochem Lab Ltd., each rock sample was ground to -100 mesh and a 0.5 gram pulp was digested with 5 millilitres of 3:2:1 hydrochloric acid to nitric acid to water at 95°C for 90 minutes, and then diluted to 10 millilitres with water. The resulting precipitate was then analyzed by ICAP methods for: silver, aluminum, arsenic, barium, bismuth, calcium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, lead, antimony, tin, strontium, uranium, tungsten and zinc.

A 20.0 to 30.0 gram pulp was split from each of the ground samples, mixed with flux, fused at 1,900°F to form a button, and subsequently digested in an aqua regia solution. This solution was then analyzed for gold by a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp.

1630 PANDORA STREET VANCOUVER, BC V5L 1L6 (604) 251-5656

MAIN OFFICE 1988 TRIUMPH ST. • (604) 251-5656

FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

SAMPLE # Cu Ag Au oz/st oz/st 81187	REPORT NUMBER: 90029	5 AA JOB MUMBER: 900295		SULLIVAN MANAGI	EMENT/RESTREL RES.	PAGE 1 OF 2
81188 .01 <.01 <.005 81190 .01 .01 <.005 81191 .01 <.01 <.005 81192 .01 .02 <.005 81193 .01 .01 <.005 81194 .01 <.01 <.005 81195 .01 <.01 <.005 81196 .01 .01 <.005 81198 .04 .01 <.005 81199 .03 <.01 <.005 81200 .03 .01 <.005 81201 .06 .02 <.005 81202 .03 <.01 <.005 81203 .02 <.01 <.005 81204 .01 <.01 <.005 81205 .01 <.01 <.005	SAMPLE #					
81189 .01 .01 <.005	81187		.01	.01	<.005	
81190 .01 <.01	81188		.01	<.01	<.005	
81191 .01 <.01	81189		.01	.01	<.005	
81192 .01 .02 <.005	81190		.01	<.01	<.005	
81193 .01 .01 <.005	81191		.01	<.01	<.005	
81194 .01 <.01	81192		.01	.02	<.005	
81195 .01 <.01	81193		.01	.01	<.005	
81196 .01 .01 <.005	81194		.01	<.01	<.005	
81197 .01 .03 <.005	81195		.01	<.01	<.005	
81198 .04 .01 <.005	81196		.01	.01	<.005	
81198 .04 .01 <.005	81197		.01	.03	<.005	
81199 .03 <.01			.04	.01	<.005	
81200 .03 .03 <.005			.03	<.01	<.005	
81202 .03 <.01			.03	.03	<.005	
81203 .02 <.01	81201		.06	.02	<.005	
81203 .02 <.01	81202		.03	<.01	<.005	
81204 .01 <.01			,			
81205 .01 <.01 <.005						

DETECTION LIMIT

.01

.01

.005

ppm = parts per million < = less than

signed:

1630 PANDORA STREET VANCOUVER, BC V5L 1L6 (604) 251-5656

MAIN OFFICE VANCOUVER, B.C. V5L-1K5

(604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900295 AA	JOB NUMBER: 900295	SAFFIANA HVAV	GRMENT/KESTREL RES.	PAGE 2 OF 2
SAMPLE #	Cu %	Ag oz/st	Au oz/st	
81207	.01	.01	<.005	
81208	.01	<.01	<.005	
81209	.01	<.01	<.005	
81210	.01	<.01	<.005	
81211	.01	<.01	<.005	
81212	.01	<.01	<.005	

DETECTION LIMIT

1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001% ppm = parts per million < = less than

.01 .01 .005

signed:

MAIN OFFICE

1988 TRIUMPH ST.

VANCOUVER, B.C. VSL 1K5

● (604) 251-5656

● FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT N	UNBER: 900277 GA	JOB	NUMBER: 900277	SULLIVAN MANAGEMENT/KESTREL RES. PAGE 1 OF	2 1
SAMPLE !		Ag ppn	Au ppb		
81213		nd	10		
81214		nd	30		
81215		nđ	40		
81216	,	nd	10		
81217		nd	30		
81218		nd	20		
81219		nd	10		
81220		nd	20		
81221		nd	10		
81222		nd	20		
81223		nd	10		
81224		nd	20	Rest.	
81225		nd	10	·高麗多文章和第4。	
81226		nđ	nd		
81227		nd	nd		
81228		nd	nđ	to the first of the second second second second second second second second second second second second second	
81229		nd	10		
81230		nd	10		
81231	2.4	- ad	20		
81232	•	nd	nd		
81233		.1	nd a grad		
81234		nd	20		
81235		nd	10	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
81236		nd	10		
81237		nd	nd		
81238		nd	nđ		
81239		nd	10		
81240		nd	20		

1630 Pandora Street, Vancouver, VSL 11 Ph: (604)251-5656 Fax: (604) 2717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOm to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water.

This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and M.

ANAL YST:

T: Rank

REPORT #1 900277 PA	SULLEVAN M	ANAGEHENI	r / Kestr	REL RES.		PROJE	CT: BE N	ORTH		DAT	E (N: AUG	22 199	D DA	TE OUT: S	SEPT 19	1990	ATTENT (ON	: MR. J(IHN BUCHH	OL1		PAG	E 1 OF	í	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ħg	Ma	Ho	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	Zn
	ppa	7	рр∎	ppe	ppe	1	ρρa	ppa	pps	998	ī	ï		ppe	994	7.	ppa	ž	ppa	ppa	ppa	ppe	ppe	ppe	ppe
81213	⟨0.1	0.93	⟨3	54	⟨3	7.96	3.1	21	27	185	5.60	0.77	3.07	2253	8	⟨0.01	27	0.08	33	⟨2	13	48	₹5	₹3	56
81214	⟨0.1	2.88	(3	30	⟨3	3.17	3.4	28	21	379	7.86	0.51	2.32	1676	12	(0.01	14	0.09	53	24	22	27	₹5	(3	116
81215	(0.1	3.59	⟨3	24	₹3	3.14	3.4	31	29	39	8.56	0.53	2.26	1747	15	⟨0.01	ii	0.10	63	33	25	29	₹5	(3	146
81216	(0.1	3.95	(3	25	⟨3	2.89	3.7	34	46	51	8.59	0.51	3.09	2032	16	(0.01	28	0.10	62	34	25	29	₹5	(3	149
81217	(0.1	4.15	⟨3	32	⟨3	3.74	3.1	37	90	226	7.58	0.56	3.55	2024	17	(0.01	59	0.11	68	32	25	35	₹5	⟨3	140
91217	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	77.10	10	JE	\3	3.77	3.1	21	30	220	7.00	V. Ju	3.33	2027	17	/4.01	33	V. 11	00	32	2.5	30	13	10	110
81218	⟨0.1	3.96	⟨3	35	⟨3	3.42	3.6	32	24	61	8.74	0.57	2.65	2142	16	<0.01	12	0.10	67	34	25	36	₹5	⟨3	175
81219	⟨0.1	3.96	⟨3	22	⟨3	3.26	3.1	32	18	45	8.91	0.54	2.77	2323	16	<0.01	15	0.09	70	30	26	36	<5	<3	188
81220	⟨0.1	4.23	⟨3	26	⟨3	3.42	3.5	34	37	29	8.67	0.57	3.03	2187	18	(0.01	24	0.09	69	33	26	31	₹5	⟨3	164
81221	(0.1	5.89	⟨3	26	⟨3	5.71	3.2	48	243	450	8.35	0.73	4.86	1994	22	(0.01	114	0.14	81	44	32	66	(5	⟨3	138
81222	⟨0.1	3.64	⟨3	194	⟨3	4.23	3.6	27	90	295	5.99	0.57	2.45	1513	15	<0.01	40	0.14	54	25	22	51	∢ 5	₹3	130
81223	<0.1	1.51	₹3	595	₹3	4.08	2.0	- 14	18	131	3.64	0.53	1.61	1262	7"		12	0.20	28	₹2	12	54	₹5	⟨3	73
81224	(0.1	5.12	₹3	87	(3	2.74	3.1	30	29	254	7.18	0.47	4.97	1544	19	<0.01	26	0.12	71	40	29	35	⟨5	(3	143
81225	<0.1	6.14	<3	40	₹3	2.46	3.8	41	40	140	9.08	0.47	5.25	1949	23	<0.01	33	0.08	84	48	33	36	₹ 5	₹3	158
81226	<0.1	4.35	⟨3	39	⟨3	3.34	2.9	28	48	139	6.08	0.52	3.60	1553	17	<0.01	30	0.06	66	30	24	43	₹5	₹3	135
81227	<0.1	3.63	₹3	13	₹3	1.75	2.8	17	30	89	5.92	0.33	2.45	1348	14	<0.01	16	0.12	55	24	22	21	₹5	₹3	137
81228	/	4 07	/2	20	/0	2 17		24	47	50	7 50	A 44	2 (0	1617		/4 41		A 14	70	25	27	27	/5	₹3	140
	<0.1	4.87	⟨3	29	⟨3	2.47	3.6	24	27	58	7.56	0.44	3.18	1617	17	(0.01	18	0.14	70	35			(5		
81229	<0.1	5.87	⟨3	22	⟨3	4.32	4.2	37	45	177	7.87	0.62	5.19	2084	21	(0.01	38:	0.10	81	42	31	47	(5	∢3 ∢3	146 150
81230	(0.1	5.91	⟨3	17	⟨3	3.91	3.5	36	48	186	7.93	0.59	5.19	1871	20	⟨0.01	38	0.11	79	45	33	35	⟨5		
B1231	⟨0.1	5.32	₹3	16	(3	1.94	3.3	30	61	89	7.48	0.38	4.40	1462	19	<0.01	35	0.09	74	42	31	17	(5	⟨3	151
81232	<0.1	6.12	⟨3	16	₹3	2.44	4.0	39	49	641	8.75	0.46	5.33	1836	21	<0.01	37	0.14	84	46	34	28	(5	(3	180
81233	0.1	5.81	⟨3	44	(3	2.94	3.6	38	44	230	8.20	0.50	4.95	1731	21	<0.01	41	0.08	77	45	32	33	⟨5	⟨3	168
81234	⟨0,1	7.28	⟨3	39	⟨3	2.41	4.5	46	42	166	>10.00	0.49	4.53	2310	27	(0.01	35	0.09	100	59	40	25	₹5	⟨3	246
81235	⟨0.1	5.40	(3	46	₹3	2.61	3.4	33	38	193	8.15	0.46	4.23	1712	19	⟨0.01	34	0.08	75	40	29	27	(5	⟨3	195
81236	⟨0.1	3,99	⟨3	40	⟨3	2.51	3.3	19	22	46	6.62	0.43	2.39	1237	16	(0.01	22	0.11	57	25	22	28	⟨5	⟨3	135
81237	<0.1	4.23	₹3	52	₹3	4.73	3.1	25	57	108	6.52	0.63	2.75	1489	16	(0.01	26	0.11	60	25	24	42	⟨5	⟨3	124
81238	⟨0.1	5.49	(3	55	⟨3	7.13	3.2	38	214	79	6.25	0.76	4.43	1540	19	<0.0l	57	0.06	76	35	30	92	₹5	₹3	98
81239	⟨0.1	3.87	⟨3	36	⟨3	3.56	3.4	21	52	63	6.31	0.52	2.38	1435	14	(0.01	23	0.11	58	23	22	34	₹5	⟨3	127
81240	(0.1	3.41	⟨3	18	₹3	2.76	2.9	17	23	72	6.05	0.43	1.88	1376	13	₹0.01	16	0.13	51	19	19	29	₹5	₹3	125
Minimum Detection	0.1	0.01	3	•	3	10.0	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	•	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
Less Than Minimum	> - Greater Th	•		s - Insu				- No Samo											20000	2000	1000	10004	100	1000	7000
· czs inem miniens	A . DIEWEL IN	en nexis	· 1	> _ 1112A	Trians	Stahie	: иъ	- 40 348b	15	NUMBER OF STREET	ו אנסטנו	- ruft	net wigh	ו עם פשבו	er est hat	E (#E/#00	s Suggest	eu.							

MAIN OFFICE 1988 TRIUMPH 6T: VANCOUVER, B.C. VSL 1K5 ● (604) 251-5656

• FAX (604) 254-5717

BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

2

REFORT NUMBER: 900278 GA	JOB	NUMBER: 900278	SULLIVAN HANAGRHI	NT/KESTREL RES.	PAGE 1
SAMPLE # 61138 81139 61186 81241 81242	Ag ppm nd nd nd	Au ppb 380 50 10 nd 20			
81243 81244 81245 81246 81247	nd nd nd nd	nd nd 20 10 nd			
81248 81249 81250 81251 81252	nd nd nd nd				
81253 81254 81255 81256 81257	nd nd nd nd nd	nd nd nd nd			
81258 81259 81260 81261 81262	nd nd nd nd	nd ad nd			
81263 81264 81265 81266 81267	nd .3 nd nd	10 10 40	*. •		
81268 81269 81270 81271 81272	nd nd nd .7	40 20 40 20			
81273 81274 81275 81276	. 2 . 1 nd	10 30			

MAIN OFFICE main UPFICE -1998 TRIUMPH ST. VANCOUVER, B.G. V5L 1K5 ● (604) 251-5656

• FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900278 GA	JOB NUMB	BR: 900278	SULLIVAN MANAGRMENT/KESTREL RES.	PAGE	2 0	P 2
SAMPLE # 81277 81278 81279 81280 81281	Ag ppn .1 nd nd .1	Au ppb 50 20 20 nd 20				
81282 81283 81284 81285 81286	nd nd .1 nd	nd 50 nd 30 20				
81287 81288 81289 81290 81291	nd nd nd nd	10 30 10 10 nd				
81292 81293 81294 81295 81296	nd	10 10 20 10 20				
61297 81298 61299 81300 81301	.1 .2 .2 .1 .2	20 10 10 10			." * .	
81302 81303 81304 81305	.1 .6 .6	10 10 20 nd				

VANGEDEREM LAB LIMITED :

1630 Paccora Street, Vancouver, V51 116 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water.

This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Asseth

																				ANALY	151:	/_					
	REPORT #: 900278 PA	SULLIVAN MA	NAGEHENT	/ KESTR	EL RES.		PROJEC	T: CRIMS	ON STAR B	BIN	DAT	E IN: AUG	22 1990	DAT	E OUT: S	EPT 19 1	990 A	TTENTION	: MR. JO	HN BUCHH	DLZ		PAGE	1 OF	2		
	Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ħg	Mn	Ħo	Na	Ni	P	Pb	Sb	Sn	Sr	IJ	N	Zn	
		ppa	1	ppe	ppe	ppa	7	ppm	pps	ppe	pps	Z	1	i	ppæ	ppm	z.	ppa	1	ppa	ppe	pp€	pps	ppa	ppa	pps	
	81138	<0.1	5.90	₹3	562	(3	3.90	<0.1	€2	286	185	6.67	0.54	4.79	959	15	⟨0.01	216	0.22	53	32	36	192	< 5	₹3	100	
	81139	₹0.1	0.40	14	21		>10.00	₹0.1	(1	17	13	1.10	1.45	0.39	3513	9	(0.01	42	₹0.01	12	₹2	2	833	₹ 5	∢3 ∢3	13	
	81186	₹0.1	3.94	124	12	(3	4.91	₹0.1	41	75	148	7.29	0.55	2.49	864	13	<0.01	49	0.12	29	20	22 20	66 58	₹5 6	(3	113 159	
	81241	₹0.1	3.84	₹3	39	(3	3.82	⟨0.1	27	33	83	9.22	0.53	2.26	2110	13 9	<0.01 <0.01	9 7	0.18 0.09	29 13	27 <2	12	52	⟨5	₹3	102	
	81242	(0.1	1.09	₹3	71	(3	5.42	0.7	18	32	23	7.60	0.66	2.63	2125	3	(0.01	′	0.03	13	12	12	JI	13	13	172	
	81243	<0.1	2.18	, (3	270	₹3	4.21	⟨0.1	16	34	108	5.65	0.50	2.14	1481	8	(0.01	18	0.06	13	⟨2	11	47	(5	₹3	38	1
	81244	₹0.1	5.07	`, ∢3	48	₹3	5.30	(0.1	37	43	41	7.42	0.59	4.21	1946	11	<0.01	33	0.06	25	25	20	50	(5	〈3	122	
	81245	⟨0.1	4.47	₹3	40	₹3	3.35	⟨0.1	29	42	66	8.34	0.46	2.77	1920	12	(0.01	13	0.09	31	28	18	39	₹5 ₹5	₹3	117 119	
	B1246	₹0.1	5.03	₹3	45	₹3	6.02	⟨0.1	24	23	89	9.34	0.71	1.96	2259	14	⟨0.01	5	0.18	29	35 14	21 16	109 84	(5	(3	125	
	81247	₹0.1	3.81	₹3	37	₹3	4.32	⟨0.1	16	23	73	6.33	0.52	1.70	1797	9	₹0.01	₹1	0.14	19	14	10	07	13	(3	125	
	81248	⟨0.1	4.08	₹3	58	(3	3.67	<0.1	19	27	75	7.03	0.46	2.05	1747	9	(0.01	4	0.15	25	16	16	55	< 5	₹3	171	
	81249	<0.1	3.86	₹3	22	₹3	5.05	0.1	18	47	51	7.08	0.62	1.92	1982	9	⟨0.01	(1	0.14	27	23	16	87	₹5 ₹5	⟨3	140 157	
	B1250	(0.1	3.54	₹3	19	₹3	2.91	(0.1	21	30	90	6.92	0.40	1.96	1856	9	(0.01	⟨1	0.15	24	20 19	18 16	79 213	(5	₹3 ₹3	131	
	81251	(0.1	3.44	₹3	15	√(3	3.64	⟨0.1	20	35	66	6.58	0.50	1.65	1705	10	(0.01	2 3	0.15 0.16	25 19	10	15	58	(5	. (3	147	
:	81252	₹0.1	3.03	₹3	45	, <3	3.63	<0.1	20	57	66	7.12	0.46	1.80	1854	8	₹0.01	3	V. 16	17	. 10	13	30	15	. /Á	141	
	81253	₹0.1	2.84	₹3	50	(3	4.13	⟨0.1	18	29	66	6.95	0.53	1.91	2264	8	<0.01	<1	0.14	31	11	13	49	₹5	₹3	136	
	81254	<0.1	3.08	₹3	171	₹3	3.11	<0.1	20	79	83	7.81	0.38	1.95	1996	9	⟨0.01	5	0.16	33	17	17	51	₹5	₹3	127	
	81255	<0.1	2.88	₹3	72	₹3	4.17	⟨0.1	18	45	43	7.81	0.52	2.01	2267	7	(0.01	<1	0.15	32	16	15	48	(5	₹3	125 134	
	81256	₹0.1	2.89	₹3	41	₹3	2.87	₹0.1	21	31	74	7.51	0.40	1.88	1737	10	(0.01	8	0.16	30 48	19 20	13 14	38 39	6 ₹ 5	∢3 ∢3	134	
	81257	₹0.1	2.89	₹3	25	⟨3	3.07	⟨0.1	20	29	53	7.32	0.42	1.91	1699	10	₹0.01	7	0.15	40	20	17	32	13	13	101	
	81258	<0.1	3.14	₹3	37	₹3	2.78	<0.1	20	53	37	7.75	0.35	2.03	1856	10	<0.01	11	0.16	24	16	16	38	< 5	√3	144	
	81259	₹0.1	2.65	₹3	44	₹3	2.27	<0.1	18	47	19	6.84	0.34	1.80	1726	8	(0.01	2	0.15	27	19	14	31	(5	⟨3	113 117	
	B1260	₹0.1	2.75	₹3	29	₹3	2.68	0.7	18	31	141	6.23	0.38	1.80	1672	11	(0.01	6	0.14	27	13 17	14 14	37 49	₹5 ₹5	₹3 ₹3	124	
	81261	(0.1	3.07	(3	38	(3	3.40	(0.1	20	26	24 13	7.97	0.49 0.40	2.10 2.33	1986 1909	11 15	<0.01 <0.01	(1 (1	0.15 0.16	23 31	36	17	3B	(5	₹3	133/	
	81262	⟨0.1	4.25	₹3	30	₹3	2.88	₹0.1	26	40	13	8.64	V. 7V	2.00	1303	15	10.01	**	V. 10	•••	00	••	-			•	
	81263	<0.1	4.53	⟨3	42	₹3	3.98	0.3	27	45	185	9.83	0.55	2.58	2350	15	(0.01	(1	0.18	29	40	21	. 58	(5	(3	153	
	B1264	0.3	4.32	₹3	135	₹3	3.55	⟨0.1	25	28	440	9.03	0.45	2.51	2215	34	(0.01	4	0.13	26	25	20 14	55 47	₹5 ₹5	(3 (3	152 104	
	81265	(0.1	3.22	₹3	52	₹3	4.08	₹0.1	19	39	175	6.81	0.48	2.34	2208	13	(0.01	5 15	0.07 0.08	23 35	11 40	23	55	(5	⟨3	171	
	81266	(0.1	5.59	⟨3	60	(3	4.28	<0.1 -<0.1	38 61	54 74	248 20	>10.00 >10.00	0.55 0.59	3.79 5.74	2813 3527	22 17	<0.01 <0.01	43	0.09	40	74	25 35	62	₹ 5	⟨3	269	
	81267	₹0.1	8.40	₹3	198	₹3	4.29	10.1	61	/1	20	710.00	4.53	3.77	3327	**	14.41	10	V.V.	14	•••	-	*-				
	81268	<0.1	6.66	<3	99	₹3	5.32	<0.1	53	45	1037	>10.00	0.69	4.73	3531	21	(0.01	34	0.07	29	50	29	53	(5	(3	195	
	81269	<0.1	4.76	₹3	107	₹3	4.66	0.4	45	45	2345	>10.00	0.58	3.48	2512	14	(0.01	33	0.07	21	36	21	66	(5	(3	170	
	81270	(0.1	5.08	₹3	75	₹3	3.79	₹0.1	42	111	873	>10.00	0.51	3.37	2785	21	(0.01	26	0.07	31	34	23	39 65	₹ 5 ₹ 5	∢ 3	179 357	
	81271	0.7	7.40	₹3	63	(3	4.25	₹0.1	62	79	2632	>10.00	0.58	5.57	3803	16	(0.01	57 38	0.08 0.08	35 21	56 36	33 24	65 69	· (5	(3	250	
	81272	0.4	5.77	₹3	75	₹3	5.06	⟨0.1	50	59	5/8	>10.00	0.59	4.93	3225	13	<0.01	36	V. U8	21	36	29	לם	. \3	13	250	
	81273	0.2	5.77	⟨3	112	₹3	8.58	<0.1	57	58	382	>10.00	0.87	6.37	4067	14	<0.01	36	0.07	21	33	26	93	₹5	⟨3	261	
	81274	0.1	1.35	₹3	241	₹3	8.59	0.3	32	34	45	8.84	0.84	3.98	2730	9	⟨0.01	21	0.06	10	⟨2	13	111	5	(3	126	
	81275	(0.1	0.93	₹3	169	₹3	4.44	1.0	14	32	35	5.89	0.46	2.32	1601	. 6	₹0.01	4	0.07	4	(2	9	59	(5 /5	₹3	98 148	
	81276	⟨0.1	2.32	₹3	553	(3	3.50	⟨0.1	22	39	121	7.73	0.41	2.33	1751	9	<0.01	1	0.16	20	7	14	80	₹5	13	140	
	Minimum Detection	0.1	0.01	3	i	3	0.01	0.1	1	1	1	0.01	0.01	0.01	i	1	0.01	1	0.01	2	2	2	1	5	3	1	
	Maximum Detection	50.0	10.00	2000	1000	1000		1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000	
	< - Less Than Minimum) - Greater Th	nan Maxim	wa i	s - Insu	fficien	Sample	ns -	No Samp	le i	ANOKALOU	IS RESULTS	6 - Furth	er Analy	rses By A	ll ternat	e Method	s Suggest	ed.								

1630 Pandora Street, Vancouver, 2.0. VSL 118 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₂ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Ryndhy

REPORT #: 900278 PA	SULLIVAN M	IANACEMENT	T / VCCT	0C) 0CC		20015	rī. r oī≌	CON CTAR	Dībi	DAT	C TN. AIM	. 22 100	, p.:-	TC 00T-	CEDT 10	1000	ATTEMTION	1. MD T	nua purun	Oi 7	,		2 OF	2		
KCFUR1 #: 3002/0 FM	SUCCIANG U	MNAGENER	1) KES1	KEL KES.		FRUJE	CI: CKID:	SON STAR	BTM	VAI	E IN: AU	22 133) DA	1E 001:	SEPT 19	1330	AI IENI IUI	ii nk. Ji	OHN BUCHH	ULI		FACE	. 2 Ur	2		
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Ħg	Ħn	Ħo	₩a	· Ni	P	Pb	Sb	Sn	Sr	Ü	N	Zn	
	ppm	7	pps	ppe	ppe	ı	ppa	ppe	ppm	ppa	ĭ	Z	7	pps	pps	7	pps	Z	ppa	ppæ	ppa	pps	pps	ppa	pp≞	
81277	0.1	1.03	₹3	250	⟨3	3.87	3.1	23	50	207	6.20	0.49	2.03	1612	119	<0.01	15	0.10	3 5	5	14	55	₹5	27	96	
81278	(0.1	1.08	₹3	43	₹3	2.50	3.6	21	35	34	6.23	0.39	1.79	1378	12	⟨0.01	17	0.11	35	5	13	43	₹5	33	110	
81279	⟨0.1	0.99	⟨3	90	₹3	3.16	1.5	18	29	60	5.68	0.45	1.86	1486	9	<0.01	15	0.11	30	3	13	47	(5	35	108	
81280	0.1	1.53	⟨3	190	₹3	3.69	3.4	22	48	71	7.18	0.50	2.08	1724	10	⟨0.01	15	0.15	37	. 8	15	54	< 5	47	125	
81281	₹0.1	1.65	₹3	388	₹3	4.02	2.6	22	61	64	6.85	0.54	2.24	1824	10	<0.01	18	0.13	40	13	16,	66	₹5	5 5	127	
81282	<0.1	0.93	⟨3	- 536	⟨3	5.11	2.9	21	39	72	6.88	0.61	2.68	1838	12	<0.01	22	0.10	36	6	14	127	₹5	39	111	,
81283	<0.1	1.86	₹3	76	₹3	3.07	2.9	22	36	507	7.08	0.47	2.12	1802	14	(0.01	17	0.15	44	14	17	49	₹5	59	127	(
81284	0.1	2.89	₹3	39	₹3	2.34	2.6	23	48	98	7.31	0.40	2.07	1478	18	(0.01	18	0.15	52	19	20	39	₹5	89	132	٠.,
81285	₹0.1	2.62	₹3	219	₹3	4.47	2.9	23	71	140	7.48	0.58	2.59	2115	28	<0.01	19	0.15	52	18	21	61	₹5	84	126	
81286	<0.1	2.61	₹3	263	(3	1.79	8.0	23	· 30	148	6.41	0.34	1.79	1315	14	₹0.01	18	0.15	51	17	18	52	₹5	81	110	
81287	<0.1	3.57	⟨3	274	₹3	1.92	2.7	23	29	274	7.41	0.39	2.48	1726	17	<0.01	18	0.15	60	27	23	53	⟨5	105	162	
81288	₹0.1	3.59	(3	218	₹3	2.70	2.9	21	37	77	7.08	0.44	2.54	1772	17	(0.01	19	0.16	59	27	23	52	₹5	100	152	
81289	₹0.1	3.13	₹3	>1000	₹3	2.30	2.3	21	63	84	6.59	0.39	2.18	1624	14	(0.01	21	0.12	54	22	21	125	₹5	91	132	
81290	<0.1	0.81	₹3	155	٠(3	3.00	1.7	16	32	101	5.02	0.41	1.60	1365	11	(0.01	21	0.06	28	₹2	10	136	₹5	38	72	
81291	<0.1	0.88	₹3	>1000	(3	5.20	1.3	17	35	28	5.35	0.56	2.50	2072	9	<0.01	28	0.05	29	<2	11	221	₹5	43	93	
81292	⟨0.1	1.20	₹3	534	(3	4.48	3.1	25	74	147	6.43	0.54	2.61	1821	10	⟨0,01	33	0.05	38	6	14	87	(5	56	125	
81293	₹0.1	4.15	₹3	74	(3	3.54	5.2	58	70	72	>10.00	0.56	4.35	2618	19	(0.01	70	0.09	75	38	30	56	₹5	133	254	
81294	<0.1	4.51	₹3	169	⟨3	6.23	3.4	54	70	22	9.73	0.70	4.81	2567	20	(0.01	66	0.08	79	41	28	78	₹5	140	185	
81295	⟨0.1	4.68	₹3	207	⟨3	3.99	3.7	42	68	23	8.60	0.54	4.61	2147	20	<0.01	47	0.09	74	35	28	60	₹5	140	181	
81296	<0.1	1.84	₹3	545	₹3	2.11	1.0	17	81	6	8.08	0.35	1.91	1395	11	<0.01	24	0.09	42	10	15	105	₹5	73	135	
81297	0.1	1.71	⟨3	679	⟨3	2.04	1.6	11	63	9	4.77	0.31	1.58	1190	9	⟨0.01	26	0.08	34	4	12	141	₹5	71	111	
81298	0.2	1.24	⟨3	291	₹3	3.40	1.4	13	35	36	5.28	0.46	1.88	1592	g	(0.01	25	0.09	35	3	12	66	₹5	63	116	
81299	0.2	1.48	⟨3	273	₹3	2.41	1.9	11	30	18	4.30	0.36	1.39	1215	11	(0.01	24	0.08	29	⟨2	11	59	₹5	67	93	
81300	0.1	2.36	₹3	509	₹3	2.89	1.4	13	61	146	5.13	0.41	1.58	1413	12	(0.01	24	0.10	39	7	15	73	₹5	90	125	
81301	0.2	2.66	₹3	364	₹3	2.79	1.3	11	86	34	4.93	0.40	1.66	1446	12	<0.01	25	0.09	42	9	15	64	₹5	97	139 (
81302	0.1	2.92	⟨3	213	₹3	2.68	2.4	13	35	13	5.67	0.41	2.16	1644	14	(0.01	27	0.11	50	12	17	46	₹5	109	133	
81303	0.6	4.63	₹3	486	₹3	3.17	3.3	26	32	22	8.51	0.51	3.22	2129	21	<0.01	28	0.10	70	32	28	84	₹5	149	135	
81304	0.6	4.04	₹3	>1000	₹3	3.05	2.5	21	78	12	7.18	0.46	2.72	1824	17	(0.01	30	0.11	59	24	23	180	₹5	133	119	
81305	0.3	3.22	₹3	173	₹3	4.17	2.1	16	62	7	5.68	0.52	2.39	1628	14	<0.01	28	0.10	52	11	18	61	₹5	120	105	
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1	
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000	
< - Less Than Minimum	> - Greater T	han Maxim	EU G	is - Ins	ufficient	Sample	ns ·	- No Samp	le i	ANOKALOU	S RESULTS		er Anal	yses By		e Method	s Sugges	ted.								

MAIN OFFICE 1988 TRIUMPH ST. -VANCOUVER, B.C. V5L 1K5-● (604) 251-5656

• FAX (604) 254-5717

BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

PAGE 1 OF 1

REPORT NUMBER: 900323 GA	JOB NUMBER: 900323	SULLIVAN MANAGEMENT/KESTERL RES.
SAMPLE #	Ag Au	
	ppm ppb	
81306	nd 10	
81307	nd 10	
81308	nd nd	
81309	nd nd	
81310	nd 20	
81311	nd nd	
81312	nd 10	
81313	nd 10	
81314	nd 20	
81315	nd 10	
81316	nd nd	
81317	nd 10	
\$1318	nd nd	
81319	nd nd	
81320	nd nd	
81321	nd 20	
81322	nd 10	$\mathcal{A}_{i}(\mathcal{A}_{i},\mathcal{A}_{i})$, where
81323	nd 20	
81324 沙海海	nd nd	
81325	nd nd	
81326	nd · nd	
81327	nd nd	
83128	nd nd	
83129	nd nd	
83130	nd 30	
83131 .	nd 40	
83132	nd 10	
83133	.3 10	•
83134	nd 10	
83135	nd nd	
83136	nd nd	
83137	nd nd	
83138	ba ba	

1630 Pandora Street, Vancouver 2, V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water.

This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and M.

ANAL VET

ST: Kandla

PERSON A. 000222 BA	CIP 2 THAN M	YNY CENER.	T /VOCCTCI	nec		00010	**** *****	0470 200	Dani	547	T Thi. A147	3 00 100		YC 0UT. /	CCOT 00		1775WT10	u. WB 1/	nik buenk	101.7		0400				
REPORT #: 900323 PA	SULLIVAN M	ANAULNEA	I/KKESIEL	. KE5.		PKUJE	LII CKIN	SON STAR	RIM	PAN	E IN: AU(28 1990	J VA	1E 001: 3	SEPT 28	1990	ALIENLLU	i; MK. Ji	DHN BUCHH	IUL1		PAGE	1 OF	1		
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Ħn	Ħo	Na	Ki	P	Pb	Sb	Sn	Sr	U	¥	1 n	
81306	pp s <0.1	1 4.00	β ρ ε (3	99 a 47	99 €	2.95	рр а 1.9	рр и 27	рр а 59	ppa 64	7 6.30	1 0 22	201	4630	ppe	2 0 0 2	ppa	1	ppa /2	ppa (2	ppa 8	99 €	pp∎ <5	ρρ ε ⟨3	рра 115	
81307	(0.1	2.93	(3	31	(3	4.07	1.4	34	129	64 27	5.88	0.33 0.34	3.01 2.70	1630 1169	23 18	0.02 0.01	18 46	0.04 0.03	₹2 ₹2	⟨2 ⟨2	8	27	(5	(3	95	
81308	₹0.1	4.11	₹3	40	(3	3.79	2.5	48	155	37	6.58	0.36	3.25	1294	24	0.02	55	0.02	₹2	₹2	15	23	₹5	₹3	106	
81309	<0.1	4.62	(3	48	₹3	4.47	3.0	53	160	68	7.15	0.38	3.41	1397	26	0.02	59	0.02	₹2	₹2	16	25	₹5	(3	117	
B1310	<0.1	3.76	₹3	34	₹3	6.47	3.9	45	141	13	6.07	0.35	3.23	1274	20	0.02	46	0.03	⟨2	₹2	13	47	₹5	₹3	99	
81311	₹0.1	4.39	₹3	40	₹3	3.62	3.5	48	148	23	6.25	0.36	3.68	1455	24	0.02	53	0.02	₹2 -	(2	15	57	₹5	₹3	108	7
81312	⟨0.1	4.14	₹3	28	₹3	5.84	3.4	37	134	9	6.56	0.38	3.44	1377	25	0.01	52	0.02	₹2	₹2	10	40	<5	₹3	111	1
81313	⟨0.1	4.63	(3	42	₹3	3.09	3.0	37	142	6	7.01	0.37	3.69	1431	25	0.01	56	0.01	⟨2	₹2	9	29	₹5	₹3	125	
81314	(0.1	4.11	₹3	28	(3	3.74	0.7	35	139	12	6.08	0.35	3.37	1329	22	0.01	49	0.02	₹2	₹2	7	35	₹5	₹3	112	
81315	⟨0.1	4.38	₹3	37	₹3	2.83	2.1	45	. 157	4	5.42	0.29	3.47	1329	25	0.01	60	0.01	⟨2	₹2	11	97	₹5	₹3	106	
81316	<0.1	4.73	(3	29	(3	2.26	2.1	44	157	4	6.59	0.35	3.88	1344	24	0.01	54	0.01	(2	⟨2	11	47	₹5	⟨3	122	
81317	(0.1	3.63	₹3	24	₹3	4.98	1.4	41	145	6	6.57	0.36	3.34	1457	23	0.01	46	0.04	(2	(2	10	39	₹5	(3	109	
81318	(0.1	3.59	(3	59	(3	3.56	3.9	44	139	6	6.48	0.35	3.27	1313	22	0.01	46	0.03	⟨2	₹2	14	34	(5	⟨3	102	
81319 81320	<0.1 <0.1	3.69 4.35	₹3	48 66	(3 (3	4.23 3.78	1.3	41 37	149	6	6.63	0.36	3.28	1337	23	0.01	42	0.03	(2	(2	12 9	35 30	(5	(3 (3	105	
01320	(0.1	7.30	13	00	13	3.76	2.4	31	122	183	6.49	0.37	3.33	1347	23	<0.01	50	0.02	⟨2	₹2	7	30	₹5	13	116	
81321	(0.1	3.33	(3	44	(3	5.88	1.5	33	99	20	6.33	0.37	3.49	1788	20	⟨0.01	41	0.01	⟨2	⟨2	6	33	(5	₹3	114	
81322	(0.1	3.52	(3	55	⟨3	3.69	1.9	34	127	11	6.30	0.36	3.04	1264	20	0.01	43	0.01	₹2	(2	7	29	(5	⟨3	96	
81323	(0.1	3.64	(3	61	₹3	2.91	1.3	36	135	6	6.99	0.35	3.47	1440	22	(0.01	51	0.02	₹2	⟨2	8	26	(5	〈3	102	
81324 81325	(0.1 (0.1	2.42 3.16	₹3	39 28	(3	3.71 2.79	1.6 1.5	28 34	109 123	3 4	5.93	0.31 0.34	2.60	1329	14 17	0.01	27 31	0.03	₹2 ₹2	₹2 ₹2	6 8	32 22	₹5 ₹5	₹3 ₹3	73 96	
01323		3.10		20	13	2.73	1.3	31	123	7	6.74	0.31	3.21	1521	17	0.01	31	V.V3	14	12	•	22	\3	10	70	
81326	₹0.1	0.90	₹3	43		>10.00	4.1	21	51	11	6.29	0.23	3.17	2796	12	0.01	12	0.02	₹2	10	5	77	₹5	₹3	113	
81327	(0.1	2.11	₹3	23	₹3	5.56	2.8	26	105	10	5.56	0.32	2.76	1407	15	0.01	29	0.02	(2	₹2	5	47	(5	₹3	77	
81328 81329	<0.1 <0.1	2.40 0.90	₹3 22	91 236	(3	5.74	2.4	21	25	235	5.94	0.36	2.79	2036	14	(0.01	(1	0.04	(2	⟨2	6	50 45	₹5 ₹5	₹3 ₹3	72 38	
81330	(0.1	1.28	(3	236 86	(3 (3	4.75 1.32	0.3 0.3	11 7	44 53	325 31	3.91 3.34	0.27 0.19	1.47 0.82	1428 675	11 8	(0.01	(1 (1	0.06 0.08	⟨2 ⟨2	3 (2	4	14	₹ 5	₹3	43	1
01330	(0.1	1.20	14	ou o	(3	1.32	V.3	,	JJ	31	3.34	0.13	V. DZ	6/3	D	(0.0)	71	0.00	12	12	•	17	13	15	73	1
81331	₹0.1	1.07	35	148	₹3	1.63	0.2	8	60	70	3.16	0.21	0.85	761	8	<0.01	(1	0.08	₹2	⟨2	3	22	₹5	₹3	44	
81332	₹0.1	1.36	7	121	₹3	1.40	(0.1	В	57	25	3.49	0.20	0.87	750	7	(0.01	(1	0.08	₹2	⟨2	4	17	₹5	(3	57	
81333	0.3	1.07	(3	221	₹3	1.84	0.5	8	51	39	3.26	0.19	0.79	759	7	(0.01	(1	0.07	⟨2	(2	2	20	(5	(3	35	
81334 81335	<0.1 <0.1	0.52 0.33	48 36	129 68	(3 (3	1.35 3.94	1.0	6	60 62	29 11	1.93 2.93	0.15 0.23	0.52 1.35	474	1	(0.01	(1	0.07 0.04	₹2 ₹2	5 8	2 3	16 25	₹5 ₹5	₹3	21 25	
01333	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.33	30	00	\3	3.74	1.4	,	02	**	2.73	V. 23	1.33	1181	7	(0.01	(1	0.01	\2	٠	,	23		10	4.0	
81336	(0.1	0.26	44	37	₹3	4.09	0.5	8	63	49	2.62	0.22	1.35	1318	4	<0.01	<1	0.03	3	10	3	23	₹ 5	₹3	39	
81337	(0.1	0.37	25	39	₹3	5.82	1.4	15	59	39	5.11	0.29	1.98	2083	8	(0.01	<1	0.06	⟨2	11	4	36	₹5	(3	52	
81338	₹0.1	0.72	21	96	₹3	2.25	0.2	8	49	48	3.33	0.24	1.01	909	5	(0.01	₹1	0.10	₹2	6	3	20	₹5	₹3	30	
Miniaua Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	t	0.01	2	2	2	1	5	3	1	
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000	
< - Less Than Minimum	> - Greater Ti	han Maxid	oue i	s - Inst	fficien	t Sample		- No Samp									s Sugges							·		
						•		•									• • •									

 BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

AMPLE #	Ag		
	ppm	ppb	
2211	1.4	50	
2212	7.4	80	
2451	.8	60	
2622	.3	20	
2623	1.0	50	
2624	.3		
2625	.5	30	
2626	.4	10	
2627	.2	10	
2628	.3	10	
2629	.2	nd	
2630	. 10 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nd	
2631		20	
2632	n i de la companya da		
	e ka ujuka Prijak basari		
2633			
2634	.2	1 20 1	
2635		50	
2636	.1	10	
2637		30	
2638			
2639			
2640	r Marin Basan Basan Marin Basan		
2641			
2642	.2		
12643	1.4	330	
2644-	1.3		
12645	1.8		
2646	1.1		
12647	.:		
2648	.2	20	
2649	nc		
2650	nd		
2651	1		
2652	nd		
32653	no	10	
2654	.1		
92655	ne		
2656	1.3		
92657	•		

MAIN OFFICE
1988 TRIUMPH ST.
VANCOUVER, B.C. V5L 1K5
● (604) 251-5656
● FAX (604) 254-5717

BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

REPORT NUM	BBR: 900102 GA	JOB NU	MBER: 900102	SULLIVAN NANAGEMENT/KESTREL RES.	PAGE 2 OF 2
92658 92659 92660 92661 92662		Ag ppm .8 .7 1.0 .8	Au ppb 20 10 30 20		
92663 92664 92665 92666 92667		.3 .5 .4 .8	30 20 20 20 20		
92668 92669 92670 92671 92672		.7 .4 .8 1.5	10 nd nd nd		
92673 92674 92675 92676 92677		.3 .7 .5 .4 .6	nd nd nd 30 10		
92678 92679 92680 92681 92682		1.0 8.0 13.5 .5	10 120 30 10 30		
92683 92684 92685 92686 92687		.5 .3 .7 1.0 3.0	10 10 20 20 130		
92688 92689 92690 92691 92692		.8 .5 2.2 .3 .3	20 10 80 20 10		
92693		11.2	120		

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 ● (604) 251-5656 ● FAX (604) 254-5717

SULLIVAN NANAGEMENT/RESTREL RES.

BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

PAGE 1 OF 1

REPORT	NUMBER: 900101	GA JOB	NUMBER: 900101
SAMPLE	•	λg	L u
		ppm	ppb
92694		.4	ba
92695		.2	nd
92696		.2	nd
92697		.2	40
92698		.1	220
92699	•	.2	40
92700		.3	nd
92801	,	.1	40
92802	•	.4	nd
92803		.5	nd
92804		.4	20
92805		.3	20
12806		.4	nd
92807		.3	nd
92808		.2	ba
92809		2.5	40
92810		.4	
92811		1.5	
92812		.4	
92813		2.2	2000

MANUACOCHUM EZO EIMITED

1988 Triumph Street, Vancouver, VSL 1K5 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSES

A .5 grae sample is digested with 5 el of 3:1:2 HCl to HNO₃ to H₂O at 95° C for 90 minutes and is diluted to 10 el with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Bymlh

REPORT #: 900102 PA	SULL	IVAN MAI	NAGEMENT	/ KESTRE	L RES.	PRO	JECT: RO	N			DATE	IN: JUL	Y 16 1990) DATE	OUT: JU	H V 20 19	7A 066	CTENTION:	MR. JOH	N BUCHHO	i 7		PAGE	1 OF 2	
Sample Name	Ag	Al	Ás	Pa	Bi	Ca	Cd	Co	Er	Cu	Fe	K	Hg	fin	Мо	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn
92211	рр е 1.4	.45	pp# 189	pp≋ 27	√3 ppæ	.07	ррв 5.4	ppe 14	ppe 44	pps 45	7.	7.	7.	pp#	ppa	7	ppe	7	ppa 57	pps.	pps	ppe	ppe	pps	ppm
92212	7.4	2,38	220	15	77	.08	14.5	14 15	44 53	45 >20000	3.98 >10.00	.01 .01	.13 2.52	123 1376	4 22	.11 .21	17 20	.02 .05	67 88	9 36	5 19	9 3	₹5 ₹5	⟨3 136	937 1294
92451	.8	.57	98	22	₹3	.04	7.0	12	40	702	5.46	.01	.18	183	7	.15	13	.08	114	(2	£	10	√5 √5	\3	1200
92622	.3	2.04	59	30	7	1.21	3.4	24	50	324	5.74	.16	.97	360	12	.03	15	.05	27	(2	16	175	₹5	55	68
92623	1.0	.34	103	42	₹3	5.39	4.7	32	118	64	7.16	.33	1.02	1471	12	.05	22	.01	46	₹2	В	>10000	₹5	88	134
92624	.3	.62	⟨3	>1000	⟨3	.37	1.6	4	40	77	1.77	.06	.22	534	13	.01	5	.03	7	⟨2	3	321	₹5	⟨3	27
92625	.5	3.92	134	89	34	.57	6.7	34	209	84	9.08	.08	3.31	1232	95	.06	83	. 05	31	8	25	120	₹5	129	138
92626	.4	.63	22	>1000	15	>10.00	6.3	31	63	412	6.00	.46	4.21	2373	10	.08	62	.04	43	(2	9	104	₹5	116	298
92627	.2	.60	59	70	19	>10.00	7.4	34	100	13	6.45	.47	3.91	2448	10	.08	80	.05	62	6	11	74	< 5	139	350
92628	.3	3.45	114	31	27	1.44	5.1	42	72	1 495	7.57	. 19	2.80	1219	15	.05	39	.08	22	₹2	24	30	₹5	113	152
92629	.2	2.51	69	21	4	2.07	3.7	35	131	171	4.76	. 25	2.06	1037	11	.04	67	.06	16	₹2	18	86	⟨5	80	114
92630	.1	.50	₹3	348	₹3	.11	1.6	15	39	61	3.23	.02	.12	689	5	.02	11	.02	13	₹2	5	12	₹5	₹3	74
92631	.5	1.39	25	46	₹3	3.56	2.9	16	88	823	3.94	.32	1.74	925	7	.03	28	.06	14	₹2	9	23	₹5	46	54
92632 92633	.1	1.93 .58	51 <3	30 270	<3	5.61	4.3	35	177	48	5.53	.39	2.12	1403	10	.04	110	30.	24	₹2	11	40	⟨5	96	107
32033	.1	. 36	13	379	₹3	.26	1.3	11	91	17	2.82	. 04	.07	544	5	.01	12	.03	16	₹2	5	13	₹5	₹3	58
92634	.2	.50	₹3	>1000	₹3	.11	1.3	8	39	29	1.77	.02	.03	406	6	.01	7	.02	11	⟨2	3	27	₹5	₹3	34
92635	.2	1.26	109	98	(3	.05	4.1	35	45	141	8.33	.01	.19	1141	12	.05	25	.06	34	8	10	5	₹5	21	147
92636	.1	1.54	34	22	₹3	.22	2.9	12	64	105	4.16	.03	.70	790	9	.02	26	.09	20	₹2	10	4	₹5	₹3	90
92637	.2	1.63	85	179	25	9.51	5.1	29	97	280	5.76	.44	3.27	1798	11	.04	51	.07	43	11	12	41	₹5	123	85
92638	.1	.68	18	26	₹3	.52	2.5	13	36	25	4.30	.08	.15	980	6	.02	16	.07	23	⟨2	E	4	₹5	₹3	89
92639	.1	.B3	33	115	(3	.24	2.7	17	30	6	5.95	.04	.19	1040	£	.04	15	.09	24	⟨2	7	5	< 5	⟨3	140
92640 92641	.1	1.14	64	65 37	12	7.92	5.1	28	13	9	6.41	.41	2.77	1924	10	.05	24	.05	37	4	10	34	(5	117	161
92642	.1	.37 .61	48 29	37 257	21 19	7.85	5.3	21 17	14	68	5.67	.44	5.34	2665	8 8	.06	31	.02 .05	42	(2	9 8	59 238	₹5 ₹5	128 94	147 56
92643	1.4	.30	20	237	17	6.23	4.1 4.1	17	29 58	692 4939	4.38 4.06	.41 .39	3.24 2.28	1788 1446	6	.04 .04	27 20	.03	32 29	(2 13	7	40	\3 √ 5	63	90
							***	•	95	1703	4.00			טדדו		107	10	102	2.5		•		_		
92644	1.3	.71	11	160	₹3	.09	2.1	3	27	45	4.34	.01	.30	146	7	.02	8	.07	20	₹2	6	7	₹5	(3	34
92645 92646	1.8	.65	3	78	(3	.03	2.0	2	59	17	3.69	.01	.18	71	8	.01	6	30.	16	₹2	5	6	(5	₹3	15
92647	1.1	.58 .48	7	128	(3	.04	1.9	3	34	15	4.18	.01	.08	88	7	.01	4	.07	16	(2	5	6 3	< 5	(3	15
92648	.2 .2	2.69	₹3 53	20 17	₹3 4	.01 3.11	.9 2.5	1 28	87 114	7 130	1.98 2.57	.01 .30	.09 1.83	41 1070	5 12	.01 .02	5 70	.01 .05	15 15	₹2 ₹2	3 14	ئ 123	₹5 ₹5	<3 66	17 71
	-	2.07	33	1,	7	J. 1 i	1.0	20	117	190	2.31	.30	1.03	10/0	12	.02	70	.03	13	\4	17	173	(4	00	* *
92649	⟨0.1	2.78	82	30	15	.97	3.8	44	171	165	4.44	.14	2.48	889	12	.03	99	.04	18	(2	16	32	₹5	84	104
92650	(0.1	.55	₹3	808	(3	4.04	2.7	9	23	. 8	3.17	.34	.41	1392	5	.02	9	.11	20	(2	5	48	₹5	9	66
92651	.1	.31	₹3	223	(3	2.11	1.3	6	116	525	1.97	.24	.31	856	3	.01	9	.05	21	₹2	3	19	< 5	₹3	36
92652 92653	<0.1 <0.1	.20 .07	∢3 ∢3	309 203	₹3 ₹3	1.44	1.3	5 3	63 185	339	1.84	.19	.24	703	5	.01	6	.03	12	(2	3	15	₹5 75	(3	35
71000	1011	• • • • •	19	203	/3	.03	1.0	3	185	63	.91	.01	.01	498	2	.01	8	.01	8	₹2	₹2	5	₹5	₹3	21
92654	.1	.35	(3	226	⟨3	.09	1.0	4	57	66	1.23	.01	.03	440	5	.01	5	.03	13	<2	3	11	₹5	₹3	16
92655	⟨0.1	.31	⟨3	486	<3	.05	.9	4	140	129	1.11	.01	.03	320	3	.01	5	. 02	18	₹2	3	13	₹5	₹3	17
92656 92657	1.2	3.91 3.88	114 120	34 17	31 27	3.55 1.03	4.1 4.4	33 41	155 158	2165 46	5,48 5,35	.31 .15	1.49 3.13	774 1029	21 18	.03	65 74	. 05 . 05	17 20	4 {2	18 21	€2 85	(5 (5	117 131	97 126
														1453	10		,-								
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000		1000.0	20000	1000	20000	10,00	10.00	10.00	20000	1000	10.00	20000	10,00	20000	2000	1000	10000	100	1000	20000
C - Less Than Minimum	/ - bre	over ina	n Maxieu	E 15	- Insuf	ficient	Sample	ns = 1	No Sampl	e A	NUMALOUS	RESULTS	- Furthe	r Analys	es By Al	ternate	Rethods	Suggeste	d						

CARRY CHOCK BY SOME FORMS ____ _____

V5L 1K5 1988 Triumph Street, Vancouver, Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSES

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO2 to 4:0 at 95° C for 90 minutes and is diluted to 10 ml with water.

This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Rymothe PAGE 2 OF 2 ATTENTION: MR. JOHN BUCHHOLZ DATE OUT: JULY 20 1990 DATE IN: JULY 16 1990 PROJECT: RON SULLIVAN MANAGEMENT / KESTREL RES. REPORT #: 900102 PA Zn Sb Sn 51 Pb Na Ni Ħо Co Ĉ۲ ٤u Fe Ħg Ħn Bi Ca Cd A1 As Рa Sample Name DOM DD# pps ppa ž ppe pps DDA 7 7. ppe ppe 7. DDE ĭ DOM 008 994 7. 996 200 pps ppa pps ⟨3 2 51 .01 16 ₹2 ₹2 ₹1 .01 3 .03 .11 14 1 2 €1 .01 ⟨3 .01 1 ₹3 (1 .6 .8 .04 92658 23 80 (5 148 94 .35 37 19 15 1153 18 .04 41 103 7.06 .22 2.14 29 22 26 1.72 4.7 2.85 114 92659 .7 8 ₹5 **43** 28 7 <2 15 .02 63 51 .03 292 5.98 .01 .34 134 86 ⟨3 .10 2.9 12 .48 96 13 1.0 ⟨3 7 92560 2 3 **(5** 16 <2 5 .01 252 5 .01 187 15 .59 .01 .05 13 ⟨3 .03 .2 2 .17 **(3** .8 92661 ₹5 ⟨3 25 18 (2 9 .02 14 .28 .34 971 .01 23 1.73 5 35 ₹3 89 (3 2.50 1.5 .5 .45 92662 ⟨3 3 **45** (2 2 .01 9 2 .01 .01 .01 117 .34 (3 .06 2 211 3 .3 .05 ₹3 366 .1 92663 30 ⟨5 ₹3 34 15 <2 3 .05 5 .01 581 54 136 1.63 .20 .07 **<3** 6 .5 .31 (3 444 1.47 1.0 92664 <5 (3 33 19 15 <2 .04 .22 .09 565 3 .01 52 1.33 492 ₹3 1.66 5 137 .29 (3 1.1 .4 92665 **(3** 27 21 **<5** 13 ₹2 .01 .05 4 267 .21 674 5 48 1.56 .11 13 1.63 1.1 ⟨3 313 .8 .26 92666 16 ⟨5 ₹3 30 21 <2 .05 709 .01 352 1.94 .18 .10 116 1.3 .32 ⟨3 182 ₹3 1.29 92667 .6 ₹5 ₹3 52 19 <2 .03 21 797 £ .01 7 .24 .15 579 **(3** 65 248 1.80 1.91 1.8 .7 .28 ⟨3 92668 (5 ₹3 11 6 (2 2 .01 7 .01 3 208 17 .69 .01 .14 210 **<3** .05 .3 3 .23 ⟨3 19 .4 92669 17 ⟨5 <3 48 <2 5 8 .05 21 2.20 .06 .30 1018 7 .01 56 282 238 ₹3 .38 В ⟨3 1.4 92570 .8 .81 ⟨3 ⟨5 41 3 9 7 .04 17 ۷2 .01 .03 716 2459 .03 ⟨3 .18 1.3 10 152 2.18 .27 ⟨3 109 1.5 **(5** ⟨3 26 92671 2 17 .02 12 <2 5 .01 .06 .03 434 75 1435 1.11 779 <3 .33 .8 5 ⟨3 .9 .23 92672 15 ⟨5 (3 ₹2 2 7 .03 9 346 3 .01 .01 .07 148 69 .99 (3 3 ₹3 80 .07 .6 92673 .3 .32 ₹5 <3 20 3 13 .01 .07 11 ⟨2 684 5 345 .02 .12 1.85 **(3** 143 (3 .15 1.1 5 52 .7 -44 92674 ₹5 ⟨3 9 ⟨2 2 1 7 .01 .01 494 3 177 1.49 .01 .02 181 35 (3 .01 .6 6 .09 ₹3 92675 .5 ₹3 5 <2 (5 ⟨2 .01 3 .01 .01 156 4 34 .61 .01 75 .02 ⟨3 £ ⟨3 .01 .2 1 92676 .4 **(5** ⟨3 8 8 .02 ⟨2 2 156 .01 .02 3 3 172 121 1.43 .01 320 ₹3 .04 .8 ₹3 .6 .14 92677 110 **(**5 81 13 12 18 .04 40 12 1.09 472 12 .05 .01 3.9 13 34 72 8.34 86 17 В .10 1.44 92678 1.0 ₹5 95 127 22 14 72 44 .02 593 50 .06 17 .06 1.05 86 6689 9.61 37 26 27 .39 5.0 8.0 2.39 136 **B7** 92679 13 5 **(5** 88 52 23 .07 19 .03 296 86 .01 .78 25 >10.00 44 .09 6.0 32 5718 113 11 13.5 1.37 60 66 92680 **<5** 14 245 25 4 17 .04 .02 .22 .90 619 16 68 634 3.94 24 77 14 ₹3 1.77 2.5 .5 2.70 ₹5 ⟨3 9 92681 12 <2 Е 21 .02 8 .02 .01 .16 76 5.02 48 **<3** 49 ⟨3 .04 2.3 10 44 .66 .4 92682 52 49 ₹5 29 3 11 .03 12 .04 €.20 .01 1.11 422 10 22 58 13 (3 .10 3.5 1.58 62 68 .5 30 92683 10 (5 9 .02 16 <2 В .01 10 373 9 56 .05 .78 16 128 3.02 ⟨3 .30 2.2 1.25 19 2€ 37 14 92684 .3 36 ₹5 68 .02 29 12 .03 13 .69 342 11 473 8.41 .12 35 28 11 . 82 4.0 43 1.42 68 128 .7 **(**5 91 92685 2 16 81 .04 22 .03 20 893 13 .11 2.21 3.3 31 68 385 4.56 2.80 90 5 11 .73 1.0 138 92686 20 ⟨5 188 33 19 50 18 .02 .08 2.15 755 90 .06 3893 >10.00 48 45 49 .55 5.9 3.44 181 13 92687 3.0 185 84 144 ⟨5 20 21 22 .04 25 .04 31 2.78 791 878 .17 35 43 6.71 .8 3.69 148 13 23 1.28 5.0 92688 ⟨5 100 124 18 35 27 .05 27 11 .03 960 16 3755 .16 2.09 3.9 35 52 4.95 3.09 103 15 30 1.12 .5 92689 119 20 37 **<**5 116 16 23 . 05 34 .04 7.38 .12 2.17 797 61 37 1023 19 32 .79 4.7 30 124 92690 2.2 2.59 23 34 57 ⟨5 15 37 4 314 53 .03 13 .03 6.54 .11 .53 22 53 110 83 29 11 .7€ 3.1 1.19 .3 92691 70 35 ₹5 43 .06 15 <2 14 7 10 .02 22 35 3,87 .10 1.14 775 19 18 7 .60 2.5 56 92592 .3 1.85 143 354 19 19 ⟨5 37 52 .08 32 .06 1786 29 40 58 9832 9.17 .04 2.11 6.7 151 12 71 .33 11.2 2.92 92693 3 5 2 2 0.01 0.01 0.01 0.01 1 1 0.01 0.01 0.1 1 1 3 3 0.1 0.01 20000 Minimum Detection 10000 100 1000 1000 20000 10.00 20000 2000 20000 1000 10.00 10.00 20000 10.00 10.00 1000.0 20000 1000

ANDMALDUS RESULTS - Further Analyses By Alternate Methods Suggested

1000

1000

2000

50.0

Maximum Detection

C - Less Than Minimum

10.00

> - Greater Than Maximum

10.00

ns - No Sample

is - Insufficient Sample

lass intemps street, vencouved . Voc 165 Ph: (604)251-5656 Fax: (604)234-5717

ICAP GEOCHEMICAL ANALYSES

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95° C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Lyndh

REPORT €: 900101 PA	SULI	IVAN MA	NAGEMENT	/ KESTRE	L RES.	PRO)JECT: BI	NORTH			DATE	IN: JULY	16 1990) DATE	OUT: JU	JLY 20 19	90 A1	TTENTION:	MR. JOH	N BUCHHO	_1		PAGE	1 OF 1	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Ĉŗ	Cu	Fe	K	Mg	Ăn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	Zn
•	ppe	7	ppe	bbe	pp≘	Z	ppæ	pps	pp∎	ppe	7.	X.	ž	pp≞	pps	7.	pps	7.	ppe	ppe	pp∎	ppa	ppe	pp∉	pps
92694	.4	.16	35	565	8	>10.00	5.4	15	27	229	4.25	.49	4.44	1968	6	.05	28	.04	46	8	10	245	₹5	45	69
92695	.2	1.62	29	67	⟨3	1.19	2.2	13	51	45	2.37	.17	.76	426	6	.01	26	.05	15	₹2	11	44	₹5	₹3	40
92696	.2	.88	21	837	8	5.80	3.9	17	96	18	4.25	.41	2.56	1326	5	.03	37	. 05	31	4	9	57	19	30	30
92697	.2	.63	41	62	10	8.39	4.0	29	43	74	4.43	.48	2.53	1838	6	.04	49	.04	63	7	9	57	18	42	103
92698	.7	.33	142	12	4	3.05	. 4.7	21	60	302	8.45	.30	1.18	1275	7	.04	21	.08	56	18	11	15	11	27	32
92699	.2	.12	52	63	9	>10.00	7.6	22	19	23	5.00	.50	4.53	3089	6	.08	38	.03	54	9	10	55	₹5	43	361
92700	.3	1.02	53	20	10	>10.00	5.5	32	23	51	5.03	.52	4.43	2148	7	.06	54	.02	43	5	11	98	₹5	51	150
92801	.7	2.22	68	11	8	2.01	3.7	31	155	142	5.58	. 24	2.29	722	191	.03	47	.08	39	3	17	40	11	35	87
92802	. 4	1.15	37	14	₹3	8.36	4.0	- 19	46	28	4.40	. 45	2.94	1660	8	.04	40	.12	21	₹2	9	45	₹5	37	50
92803	.5	.49	48	27	7	>10.00	4.3	22	33 `	13	5.26	.50	3.95	2056	9	.05	39	.04	38	5	10	57	₹5	49	54
92804	.4	.65	55	43	10	B. 10	4.1	23	25	30	4.95	. 45	2.91	1954	6	.03	34	.05	42	11	11	43	23	42	47
92805	.3	2.41	87	48	₹3	3.34	3.0	28	152	48	4.10	.32	1.93	820	8	.03	75	.05	30	(2	10	18	27	21	100
92805	.4	1.05	74	473	19	>10.00	7.2	29	61	19	5.97	.47	2.61	2383	12	.05	56	.04	51	12	12	111	15	54	324
92807	.3	.16	60	>1000	16	210.00	6.4	30	15	70	7.06	.53	4.79	3511	11	.05	38	.02	70	26	13	189	₹5	68	136
92808	.2	.20	61	113	18	>10.00	5.4	27	26	11	5.78	.51	5.23	2357	8	.05	37	. 03	64	20	12	74	₹5	61	131
92809	2.5	3.88	87	116	12	4.12	4.2	36	146	7293	5.44	.35	3.11	1252	11	.05	66	.05	26	⟨2	16	48	23	36	217
92810	.4	.39	36	20 6	6	8.17	4.0	20	56	299	3.96	.45	2.70	1517	5	.02	26	.05	38	6	8	35	25	41	33
92811	1.5	1.17	92	47	7	7.74	5.9	19	51	158	4.97	.44	2.99	3131	8	.05	31	.04	3£	4	11	8 5	14	42	264
92812	.4	.13	32	266	8	>10.00	4.6	15	25	210	4.46	.48	4.31	2144	5	.04	22	. 02	43	6	10	260	⟨5	43	83
92813	2.2	.74	80	10	6	.83	5.3	30	34	41	>10.00	.12	.35	410	11	.04	13	.12	52	24	12	14	⟨5	6	42
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maxigus Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
Less Than Miniaus		ater Th	an Maxim	in 19	- Insu	fficient	Sample		No Samp	le A	NOMALOUS	RESULTS	- Furth	er Analys	ses By A	lternate	Methods	Suggest	ed						

MAIN OFFICE -1988 TRIUMPH-ST:-

SULLIVAN MANAGEMENT/KESTREL RES.

BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

PAGE 1 OF 2

REPORT NUMBER: 900193 GA	10B MAN	BER: 9001
SAMPLE #	Ag	Au
	ppn	ppb
1000	nđ	nd
92234	nd	nd
92235	nd	nd
92236	nđ	nd
92237	nd	nd
92238	nd	nd
92239	.4	60
92240	nd	30
.92241	nd	nd
92242	nd	120
92243	nđ	nd
92244	nd	nd
92245	nd	30
92246	nđ	nd
92247	nd	nd
92248	nđ	nd
92249	nd	nd
92250	nd	nd

1630 Pandora Street, Vancouver Phi(604)251-5656 Faxi(604) V5L 1L6 3717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOm to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water.

This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Kymbh

REPORT 6: 900193 PA	SULLIVAN MA	THEMBOAN	/ KESTR	EL RES.		PROJEC	T: NONE	RIVEN		DATE	IN: AUG	i 07 1990	DAT	E OUT: A	WG 25 19	390 <i>l</i>	TTENTION.	: MR. JO	HN BUCHH	OLZ		PAGE	1 OF	2	
Sample Name	Ån	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sn	Sr	U	¥	Zn
25mhie uase	Ag	7				7	ppe	ppe	ppe	ppa	Y	1	ž	рре	ppa	Z	994	7.	ppa	pps	ppe	ppe	ppe	ppa	ρ ρα
00000	ρρ α ⟨0.1	2.24	рр в 23	рр е 16	ppm ⟨3	0.36	9.0	44	53	284	6.99	0.11	1.90	529	18	(0.01	39	0.13	81	73	17	15	₹5	₹3	62
20000					ns	AS	สร	ns	ns	ns	AS	RS	ns	กร	ns	AS	AS	ns	NS	NS	NS	ns	AS	NS	ns
92234	ns <0.1	ns 3.39	ns (3	as 65	43	0.77	8.7	33	31	229	5.99	0.13	2.07	989	17	(0.01	32	0.07	86	88	12	42	₹5	<3	133
		4.79		41	⟨3	1.53	10.3	44	41	342	4.56	0.18	3.11	1145	15	(0.01	39	0.06	100	112	17	140	₹5	₹3	127
92235	(0.1		(3		(3	1.43	12.3	52	80	156	5.42	0.20	5.02	1165	20	<0.01	127	0.18	104	115	27	36	⟨5	₹3	141
92236	(0.1	3.17	24	32	(3	1473	12.3	JZ	90	130	0.74	4.14	J. V.	1100	• ••										
		A 49			/0	7.04	12.2	40	48	36	5.88	0.28	2.99	1578	27	(0.01	39	0.06	87	84	13	42	7	⟨3	114
92237	- <0.1	0.47	35	64	(3	7.94	12.3	40					4.02	1198	18	(0.01	99	0.08	106	113	24	51	8	⟨3	150
92238	⟨0.1	3.27	32	21	₹3	1.82	9.6	50	162	96 2406	4.01 3.86	0.22 0.18	1.90	1327	22	⟨0.01	107	0.05	215	80	18	191	9	⟨3	206
92239	0.4	2.76	12	11	(3	1.62	8.6	35	117				2.39	1618	17	⟨0.01	25	0.09	93	97	23	40	⟨5	₹3	131
92240	⟨0.1	3.45	⟨3	261	₹3	2.77	10.2	39	23	328	8.11	0.18					67	0.07	90	104	27	36	⟨5	⟨3	477
92241	⟨0.1	4.83	⟨3	27	⟨3	0.96	9.2	48	77	262	7.59	0.11	4.00	3481	15	<0.01	9/	4.01	30	144	21	30		••	•••
														764		/A A1	67	0.06	79	56	20	69	10	⟨3	102
92242	⟨0.1	3.27	⟨3	37	₹3	1.39	8.2	34	114	67	4.35	0.14	2.60	764	13	(0.01			68	45	16	34	6	₹3	431
92243	(0.1	3.29	⟨3	92	₹3	2.17	9.9	38	202	44	4.90	0.14	2.78	1082	12	(0.01	140	0.06			17	74	5	⟨3	79
92244	<0.1	2.99	17	16	₹3	5.51	7.6	37	243	58	3.84	0.21	2.52	956	13	<0.01	107	0.08	76	62	16	27		⟨3	110
92245	(0.1	3.95	18	115	₹3	3.49	10.7	49	258	47	6.17	0.23	3.58	1375	17	<0.01	183	0.06	94	111	19	24	⟨5	(3	101
92246	<0.1	3.83	29	25	<3	1.75	13.6	60	326	56	6.76	0.23	3.45	1358	19	<0.01	204	0.06	122	152	13	47	13	\3	141
																			101	100	41	27	7	⟨3	124
92247	(0.1	3.49	41	31	₹3	3.63	13.5	50	38	260	8.92	0.28	2.83	1686	23	(0.01	48	0.08	124	166	21		, ,	⟨3	151
92248	⟨0.1	4.14	23	83	⟨3	4.29	11.2	50	295	69	6.08	0.25	3.83	1647	18	(0.01	163	0.07	105	142	18	24	/5	(3	141
92249	(0.1	2.68	53	100	⟨3	1.22	10.8	47	23	145	8.23	0.20	2.13	1709	20	(0.01	25	0.10	103	123	29	16	⟨5		84
92250	(0.1	3.24	33	25	⟨3	1.33	8.7	37	50	432	5.42	0.16	2.78	981	16	(0.01	38	0.11	90	89	25	37	9	(3	89
		1.77																							

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 ● (604) 251-5656 ● FAX (604) 254-5717 BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

REPORT	NUMBER: 900164	CA JOB M	UNBER: 900164	SULLIVAN MANAGEMENT/RESTREL RES. PAGE 1 OF 1
SAMPLE	i	Àg	lu	
		ppn	ppb	
80510		.1	nd	
80511		.2	nđ	
80512		pd	ad	·
80513	•	nd	ba	
80514	, , t	nd	nd	
80515		nd	· nd	
80516			20	
80517		nd	20	
80518		.1	20	•
80519		.2	nd	
80520	* .	.1	nd	
80521		i	ba	
80522		ba	i nd	
80523		nd .	ba ba	
80524		nd	ba	
*****		. uu	II.	
80525		ba	10	
10526		nd	10	1000
80527		nd	10	
10528	e de la	b 1.1	Ç 4 40 ÷	

1630 Pandora Street, Vancouver, V5L 1L6 Ph: (604)251-5656 Fax: (604)2_ /17

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

> - Greater Than Maximum is - Insufficient Sample ns - No Sample ANOMALOUS RESULTS - Further Analyse's By Alternate Methods Suggested.

Maximum Detection

< - Less Than Minimum

50.0 10.00

																			ANALY	ST:	1/2	~~"	<u> </u>		
REPORT #: 900164 PA	SULLIVAN MA	NAGEMENT	/ KESTR	EL RES.		PROJEC	T: REST	3/4		DATE	E IN: AU	G 01 1990) DAT	TE OUT: A	NUG 23 19	190 /	ATTENTIO	i: MR. ST	UART TENN	IANT		PAG	1 OF	1	
Sample Name	Ag	Al	As	Ba	Bi	Cạ	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Hn	Мо	Na	Ni	ρ	Pb	Sb	Sn	Sr	U	W	Zn
	ρρ∎	I.	pp∎	ppe	ppe	X.	pps	pps	ppa	ρρ e	r.	X.	7.	pp a	ppe	Z.	ppa	7.	ppa	pp∎	op e	ppa	opa.	ppa	ppa
80510	0.1	1.37	⟨3	186	15	0.23	1.5	2	27	7	2.13	0.02	0.64	283	5	0.02	18	0.02	46	13	4	11	₹5	15	125
80511	0.2	1.36	26	138	<3	1.20	1.6	5	41	12	2.89	<0.01	0.69	561	7	0.03	5	0.03	39•	32	4	15	₹5	10	170
80512	<0.1	1.53	46	324	<3	0.55	2.4	9	70	23	2.63	<0.01	0.65	679	14	0.02	(1	0.03	78	61	5	11	₹5	13	131
80513	<0.1	1.12	51	141	₹3	0.36	6.0	12	38	192	2.33	(0.01	0.59	413	22	0.02	5	0.03	96	85	8	6	₹5	(3	135
80514	(0.1	0.98	18	67	⟨3	0.27	4.3	12	33	35	3.89	<0.01	0.42	852	16	0.02	8	0.03	83	62	9	7	₹5	5	138
80515	<0.1	0.52	17	44	⟨3	0.62	⟨0.1	(1	33	11	1.32	0.03	0.11	437	3	(0.01	⟨1	0.02	11	(2	- 5	6	⟨5	6	49
80516	0.4	0.47	32	182	⟨3	1.08	(0.1	1	44	29	1.78	0.05	0.26	560	(1	0.02	<1	0.02	15	⟨2	2	22	₹5	3	120
80517	(0.1	0.46	24	425	⟨3	0.69	(0.1	6	38	16	2.54	(0.01	0.23	390	9	0.02	(1	0.03	43	33	2	17	₹5	3	125
80518	0.1	2.07	48	40	⟨3	2.75	8.8	26	73	294	4.93	(0.01	1.83	1430	14	0.03	11	0.04	96	86	11	17	13	13	100
80519	0.2	4.97	23	27	₹3	2.70	14.3	48	27	236	8.35	<0.01	2.94	1438	24	0.05	21	0.08	260	170	18	16	(5	36	159
80520	0.1	3.82	⟨3	33	⟨3	2.61	9.1	46	18	232	8.86	(0.01	2.19	1700	16	0.05	15	0.08	103	115	17	10	⟨5	29	137
80521	0.1	2.77	⟨3	18	⟨3	4.29	7.6	32	13	228	7.00	<0.01	2.36	1742	10	0.04	7	0.06	64	75	9	20	₹5	17	112
80522	(0.1	2.69	27	30	⟨3	0.15	4.1	7	25	20	2.78	(0.01	1.84	497	11	0.03	3	0.03	78	83	6	1	₹5	20	133
80523	<0.1	1.50	63	57	(3	0.31	3.2	10	41	19	2.64	(0.01	0.72	674	15	0.02	(1	0.03	81	88	7	3	₹5	8	110
80524	(0.1	1.58	74	19	₹3	3.96	6.1	11	28	22	3.75	(0.01	2.47	1806	15	0.03	4	0.03	95	88	8	15	₹5	10	118
80525	(0.1	0.32	⟨3	6	(3	5.32	1.9	3	63	(1	2,53	<0.01	2.08	1536	4	0.02	⟨1	0.02	13	17	6	30	⟨5	₹3	35
80526	(0.1	4.38	12	6	(3	0.99	6.9	36	17	92	7.91	0.12	3.66	1162	6	0.06		0.08	70	76	12	18	(5	34	183
80527	(0.1	0.59	23	199	₹3	1.06	(0.1	3	45	- 4	2,42	(0.01	0.45	686	4	0.02	(i	0.03	32	12	⟨2	12	₹5	12	88
80528	0.1	0.76	41	414	⟨3	1.53	5.8	5	32	30	3.09	⟨0.01	0.63	1010	12	0.02	ά	0.03	46	43	6	21	₹5	8	119
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	i	1	i	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1

2000 1000 1000 10.00 1000,0 20000 1000 20000 10.00 10.00 10.00 20000 10.00 20000 10.00 20000

2000

1000

Appendix III SAMPLE DESCRIPTIONS

Geochemical Data Sneet - ROCK SAMPLING

Sampler _ Date

Project _ Property BI-North Row

NTS 104B /15 Location

M.D.

		I	Sample	<u> </u>	DESCRIPTION	1 .				ASSAYS	
SAMPLE NO.	LOCATION	SAMPLE TYPE	Width TW	Rock Type	Alteration	Mineralization	OBSERVATIONS	Pob	Ag ppm.		
92622	4200'	select		med green chert?		moty	abundant, angular	20	0.3		
23	4	select	2-4m		conb		abundant floot, Sub or Zone: E.W	50	1.0		
24	4	4 4	2 m	Monz.	altered	fine py		10	0.3		
25	4150'	chips	ım	green volc.		very		30	0.5		
26	4100'	4	Im yes	,	gtz. cark	' '	N65°E	10	0.4		
27	4150'	и	3m yes		h 4	4 4	parallels long depression	10	0.2		
28	4150'	И	40m	mafiz/HBQ	actinolite	Py, Phyrr.		10	0.3		
29	4	4	184	h'a'u	u	n 4	other 1/2. of 92628.	nd	0.2		
92630		chips	1m 1.5m		Silicified	very rusty	notable shear 350°	uq	O:1		
31	SE end Ron Ridge	chips	1/2 m	voles	malaz.	py, chalco	shear 340°	20	0.5		
32	4150'	chips	60 cm	и	silicified Shew	very	344°/E	nd	0.1		
33	4000'	Select	3m.	vola	Anc.	Py phyr.		nd	0.1		
34	u	e en	2 m	4	u	4 4	radj.	20	0.2		
35	h	n 4	IM	ч	h	4 4) 3	50	0.2		
36	4100'	h h	30m	vok.		py.		10	0.1		
37	4000'	" grabo		Voc	gtz. carb.	py, mal.	talus below prom. gossan	30	0.2		
38	4100'	chips	3 M	typen	chlorite	dis py	adj. prom houre 40°	30	0.1		
39		select		Purple	consonite		abundant dry. Chips	10	0.1		1_
40		dupo	1m ?	pole,	Carlo. silvicens	major	anhente	10	0.1		
41.	2000'	h	Loo cm	back.	carbs.		(east of Bl good)	10	0.1		
			000				•				FENTED :

Geochemical Data Sileet - ROCK SAMPLING

Sampler __

Date

Project Dundee Location Ronnic Rdy

Property (B1) Row

M.D.

LITED

			Sample		DESCRIPTION					ASS	YS	
SAMPLE NO.	LOCATION	SAMPLE TYPE	Wioth	Rock Type		Mineralization	l		Hy ppm			
92642	Cast of Bland	chips	1500	blue	l	(dis)	N68 E/Steep S.	10	0.2		<u> </u>	·
43	4 4	4	10 cm		ank, chl.	dis py chelco, b	omte	<i>3</i> 30	1,4			
	8/90									\simeq		
92644	4400'	chips	130cm ?	blue	siliceons	(10%)	Raot 5 îde Monnie Ridge	20	1.3			
45	4400'	и	160 cm	и	и	(5%)	adj(N)92644.	10	1.0			
46	Ь	u	150 cm	n	L	less than 50% py	~ (5)9264 4 ,	30	1.1			
47		select		4	hem, lim.	5% py	ang. rubblepile.	10	0.2			
48	4150'		50 cm	volis	,	Py, phyrr	clasts 2-4 cm	-20	0.2			
49	4100'?	и	45 cm	<i>u</i>	hematite Epidote	1 cm massik	Franchides front. Alling Franchine NO3E	nd	nd			
92650		Select	10 m	·	carb	fore des Sulphides	ankerite	nd	nd			
51	4000'	un	5 cm	monz.	anhunte	fre des	one of 8-10 gtz vieno	10	0.1			
52	И	ь h	10 cm	u		Py mal,	u u a a a u	10	nd			
53	ч	h h	1000	Monz.	propolytic	L 47	h h h h i h	10	nd			
54	u	4 4	IDM	ч		rave py.	q. viculets	10	0.1			
55	4	Select	10m	44.	propolytic	dis py	u 4	230	nd			
56	4	n n	20m	mafiz vol	froe., epi hemme	Py, phyrr.		10	1.2			
57	4000'	selecthips	20m				100 m E 92656 58	20	0.2			·
58	3900'	h n	20 m	h	h h h	fine dis. sul		20	0.8			`
59	4150'	h h	30m	ч <i>н</i>		dis, smeans frue sulphade		10	0.7			
92660	15M South 92625	chips	10 cm	ha	ouzzy gtz	brz gobs	NW trend suggested by abundant gtz float	30	1.0			NTED :

Geochemical Data Sneet - ROCK SAMPLING

NTS 1048/15 Ronne Ridge LIARD Location

Sampler Date

Project _ Property__

M.D.

٦				Sample		DESCRIPTION					ASSAYS	
	SAMPLE NO.	LOCATION	SAMPLE TYPE	Width	Rock Type	Alteration	Mineralization	OBSERVATIONS	Pob	Ag ppm		<u> </u>
	92661	+4150'	chips	2 cm	gtz monz.	buggy, hematite		qv @ 322°/rest	20	0.8		
t	62		4	60 cmps?	h H	gtz carb.	fine dispy	pt brecarated	10	0.5		
1	63		и	4cm yes	mon7	gtzv	renlet	flat-home 80/south	30	0.3		
श	64	4000'	Ch .	60 cm jes	Mon2.	qv.(2)	five dis	apper 92651-3, Lowest	20	0.5		
'n	65	ч	ч	70 cm ges	munz	gv.(2)	ninor	ne " next	20	0.4		
7	66	и	u	750mg0	nun, Monz	4 (3)	py. chel,	nox13	ļ	0.8		
	67	h	h	65 cm 40	hn	qu (3)	py chil,	in a a a next 3 mphily	10	0.6		
	68	h	4	70 cm	un	n n	<i>L</i> 4	h h h h	10	0.7		
	69	4200'?	h	10 cm yes	volc, 3 m wolmone	9/2 Sweet	moth		nd	0.4		
T	70	n.side	U	wan yes	min monz.	stranges	0,3 cm.	4. 4. 0. 1. 0	nd	0.8		
Ī	71	Ronnie	grab (float)	monz.	gtz	tru dis.	ang. Flort, monz. bubble	nd	1.5		
1	72	4	chips	bem	nun. monz.	g (rusty)	py, chal.	Suboc?	nd	0.9		
Ī	73	4	select		monz	gvienlets		series of 1 cm qus.	nd	0.3		
	74	4	n		٦	9 4		h ne h	nd	0.7		
T	75	4	Chips	6 cm yes	tope.	gv	py chol,		nd	0.5		
T	76	۲	L	4cm	monz.	9.V.	Ame py	sub oz?	30	0.4		
	77	4	u	5 cm 40	Munz	gv.	Py	· · · · · · · · · · · · · · · · · · ·	10	0.6		
	78	of west prod	5	3000 400	pyroclas	pt ruggyate pt. silicano	major py.	Navy hem. cinnibar?	40	1.0		<u> </u>
	79	4250'	4	30cm yes	dionte	pt. silicano Cordote	az abundent	Shear frac Zone NS	120	8.0		1
	80	L	chips	30 cm 40	L 4	4 4	chiel, mol	heavy much matter, corredord	30	13.5		PRINTED :

Geochemical Data Sileet - ROCK SAMPLING

				NTS	<u> 104 BIIS</u>
Sampler <	Bill Chise	Project	Dundee	Location	Ronne Rid
		<u>-</u>	Ron	M.D.	LIARD

			Sample	1	DESCRIPTION	1 .				ASSA	rs
SAMPLE NO.	LOCATION	SAMPLE TYPE	Width	Rock Type	Alteration	Mineralization	1	Au	Ag		
92681	4250	chips	45cm	vole- dionte	abound.	mel, py	as 2 previous	10	0.5		
92682	- K	Chip	3m. ?	mafic (blue) volc	pt. Si hicean bleaching!	dis. sul	Zone has pos. 3150 trend	30	0.4		
83		"	35m ?	4 4	4 4	64 dy	MONE. INt. 30m W. NW orrentation? Chlo episul- ports/shearfra, occas replaced.	10	0.5		
84		и .	6.5 CM.	matiz vok	epidote gv	Pry heavy asses	porto/shearfing, occas replaced 27 3 am qv. 21/2 m from monz. contact.	10	0.3		
85		n	15cm	mafiz	Shear	muso . Sulf.	Monz contact 2.5 m W	20	0.7		
86		и	100 cm	diorite	chlor, epi frac. Zone	Py Dryer Frac. Faces	etrike 350°?	20	1.0		
87		ч	2000	adj.	of Siliceons	py chal?	nochules replaced by sul chlorita in matiz vole.	130	3.0		
88		4	30cm 3	dionte	much epistote (replacement?	pyrae	one of many goss. fractures outres.	20	0.8		
89		chips	10 m	mafiz trans	Fractured	azurite		10	0.5		
92690		chips	goom	la' g	major epidote	mal, az, py, chalco	inch des 20cm vienmatter.	<i>t</i>	2.2		
91	cost of west Lake.	chips	20 cm	matre Volso	min.frac. Zone	BOWAGE, PHI	trendo N 28°E, vert.	20	0.3		
92		4	50 cm	mafic	frac Zone	huss, dis,		10	0.3		
93		4	30cm ?	matir. vole	2 _	awy wated		120	11.2		
94	DATA	chips/.	12 cm	atranto.	Children of Florence	77.	tresdo iso, vert.				
95	ELSEWHER	E -	10000	u 4/	bleached		250 steep south				
96	BIN	/ n	5km gg	Kroe.	chlor cara gtz	Py. /	190% vert				
93		~/	3m	soli	culo.	4 .	NYTOCK				
48											
											PRINTED

Geochemical Data meet - ROCK SAMPLING

Sampler _ Date

Project _ Property_ Location

NTS 104B/15
Rept of good.

M.D.

			Sample		DESCRIPTION	1 .				ASSAYS	
SAMPLE NO.	LOCATION	SAMPLE TYPE	TW	Rock Type	Alteration	Mineralization	OBSERVATIONS	Au ppb.	Ag parm.		
92694	east end, mujor oc.	chips	12cm	in voles.	myorcht.	Py	trendo 250°, vert.	nd	0.4		
95	.	u	100 cm +	6 4	che, clay		" 250° skep south	nd	0.2	_	
96		u	5 cm yes	trace vole.	chlo. Carlo.gtz	py	190°, vert.	nd	0.2		
97		и.	3 m	vole	gtz flord.	1, '	N 47°E?	40	0.2		
4 98		4	6cm	role	diz ment in Splay	dit mans	strike 348°, plunge steep E	220	0.7		
92699		h	4cm	vole	goz. carb.	Py vugge	gtz. major chlo. alt.	40	0.2		
92700		h	6-8 cm	·	chl- atz	Py	NGG E. Plumas steep N.	nd	0.3		
92801		Select	10m	fresh valos	propelytic	phym.	edge of major fault, sulphides on frac. faces	40	0.7		
	NE Side Ew, NS fauts	chips	100 cm 60	shear in voles.	two die	لمط	• •	uq	0.4		
03		и	40 cm yes	i.	chl.	drs. 17	vert. fault. 252°	nd	0.5		
.04		h	3 m 40	putoce	pt. Carlo.	very Ane	Ew shear /fault (major), includes . 6m clay oft alt. 48 % vert	20	0.4		
05		h	2 men Tw	inalt. Tive	41.1	py(dis)	20 x 2 cm gtz stringers NIOE 5. Side major Ew faut/draw	20	0.3		
06		select		altgreen	chierte alt.	Pot Surphi	inside man En fault, Eend.	nd	0.4		
07		4 4	8 cm	la u	carlo alt.	ruoted	tault adj. above. NGSE	uq	0.3		
08		grato	100000		Carlo temp		70° vert.	nd.	0.2		
09			60 cm Tw?	vole	chlo-epi-	Du cheleo		40	2.5		
92810		Select chips	2 ¹ m	3	Corde carlo	dis smans	TO (DO N down do)	20	0.4		
1/		dupo	15 cm	ч	Show carl	mu shear py. Free sulpholes	Strike N14°E, vert	220	1.5		
12			1000	de 4	che alt.	Fine Sulpholes	N68°E steep south	20	0.4		
13.	4ME L2toon 7+	grab.	GUTW?			miss.	Sugar quarte	2000	2.2		

Geochemical Data Silvet - ROCK SAMPLING

Sampler	Kent Forster Wes Grier	Project Iskut	Location I
-	July 23, 1990	Property B-1 North	Air Photo

NTS 104 B 15

Location Ref More Cr.

Air Photo No

	<u> </u>		Sample		DESCRIPTION	l ·		T		ASSAY	s	
SAMPLE NO.	LOCATION	SAMPLE TYPE	Width True Width			Mineralization	. • ADDITIONAL OBSERVATIONS	Ay	Ag			
92234	14100/04004	Rock	30cm	Andisi te	Limeonite Staining			nd	nol			
92235	124/00/ 10150 E		30ca	li	1,	1.		nd	nd			<u> </u>
92236	1400E		3000	"			No Visible Mineraliza	nd Hip	nd			_
92237	141001 1460E		30cm	Corbonate Shear	Limeonite	Prite	Brox lom Qtz. Strin	nd sers	nd			
90028	141001 121 50 E		30cm	Green Volcani	c			nd	nd			
92239	14100/ 14100/ 1 3 150E 14100/			Andisiter Chlorite	Staining	Fe Pyrite Malichik		60	•4			
92240	14150E		300m	Andisite	No Vi	sible 1	linerclization	30.	nd			
92241	15400 E		30cm	h		Ferrite		nd	ηd			
92242	14100/ 15450 E		30 cm	11		neraliza	ton	120	nd			
42243	14100/ 16100E		3000	ıi .	Limeonik	Rivite.	and the same and the same and the same and the same and the same and the same and the same and the same and the	nd	nd			
92244	L4100/ 6450E		3050	Altered				nd	nd			
92245	14100/ 74 5 05		30cm	11		٠,		30	ncl			
92246	14100/ 8t00E		30cm	Green Vol.				nd	nd			
	14100/ 18150E		30cm	Andisite		Pyrite		nd	nd			
92248			3000	//	•			nd	nd			
92249	14100/91505		3000	11		Fe Rynte		nd	nd			
92250	L4100 /	•	30cm	ll		4		nol	nd			
												1
												N CANA

Geochemical Data Sheet - ROCK SAMPLING

			NTS _10	24 R 15
Sampler	D. WITCIK - J. LEC	Project REST 3/4	Location Ref_K	SKUT .
•	JULY 30/90	Property	Air Photo No _C	IARO.
				•

SAMPLE		SAMPLE	Sample Width 700		DESCRIPTIO	N		<u></u>		ASSAYS	<u>,</u>	
NO.	LOCATION	TYPE	Width True Width	Rock Type	Alteration	Mineralization	!·	A4 ppb	7-19 ppm.			\prod
0510	4593 (400m	ROCK	CRAB	ANTRITE			WHITE BLEACHED CUTCROP	nd	0.1			T
0511	4527 1380m	10	CKI.	ANCHORITÉ			BLEACHED CARROLATE SURFACE:	nd	0.2			Ţ
0512	1350m	h	Colored .	ANCHORITE	·		BLEACHED WHITE SURFACE Som NE SAMPE BOSII	nd	nd	·		Ţ
05!3	1350m	11 -	GRAB	ANCHORITE			SILICIFIED, CARBONATE STAINING SOM NE SAPIPLE 80512	nd	nd			
0514	1350m	l t	SPAZ	ANTISITE			UMEONITE STAIN. SOM NE SAMPLE 80513	nd	nd			
30515	1350m	ų	GRAB	ANTISITE			LIMEONITE STAINED CUTCROP 50M NE SAMPLE 80514	nd	nd			
0516	1350m	1)	GRAB	ANCHORITE			ÓRANGE CARBONATE STAIN 50 M NE SAMPLE 80515.	20 .	0.4			
30517	1350m	£1	S X M	ANCHORITÉ			CRANCE CARBONATE STAIN. 50m NE SAMPLE 80516	20	nd			
0518	4363 1330 m	(1	GOAB				QUARTZ UEIN ECM WIDE LISTBLE 25m STRIKE 10°N DIP 32° 80M NE	20	0./			
05:9	1330m	Į1	CRAB	•		QUARTZ	QUARTZ SCHRT LIMEONITE STAIN. 65m NE SAMPE 80518	nd	0.2			
6520	1330m	h	Liking I	Anchorité			ORANGE CARBONATE STAIN. 50m NE SAMPLE 80519	nd	0.1			
0521	1330 M	11	ا	ANCHORITE			CRANGE CARBONATE ONARTZ. CRYSTALS. 50M N.E. SAMPLE 80520	nd	0.1			
6522	1340m	1)	GRAB	WICANIC GREEN:			CREEN LOICANIC. Som NE SAMPLE 80521	nd	nd			
0523.	1340m	lı	CRAB	AUTIS ITE.			ORANGE CARBONATE STAIN' SOM NE SAMPLE 80527	nd	nd			
0524	1340m	lı	30cm		,	PURITE PHEUSPAR	CHIET CARROLATE STAINING 50n NE SAMPLE EOSZ3	nd	nd			
0525	1340m	લ	3/2/m			PYRITE PHELSPAR	CHIKT CAIBONATE STAIN. 50m NE SAINPLE 80524	10	nd			
0576	1340m	11	100	AUDUSITE			LIMEONITE STAINING. SOM NE SAMPLE 80525	10	nd			
0527	3280 1000m	н	12km	audis ite		QUARTZ.	CARRINATE STAIN BOWDER GUAT.	[0	nd			
30528	1000 m	t (COBS	ANDISITE		QUARTZ PYRITE	CARBONATE STAIN, BONDER FLOAT NECON & GLACIAL TOC	40	0.1			\perp

disseminated

ANDESITE LITHIC APILLI TUFF

shear - serpentinized

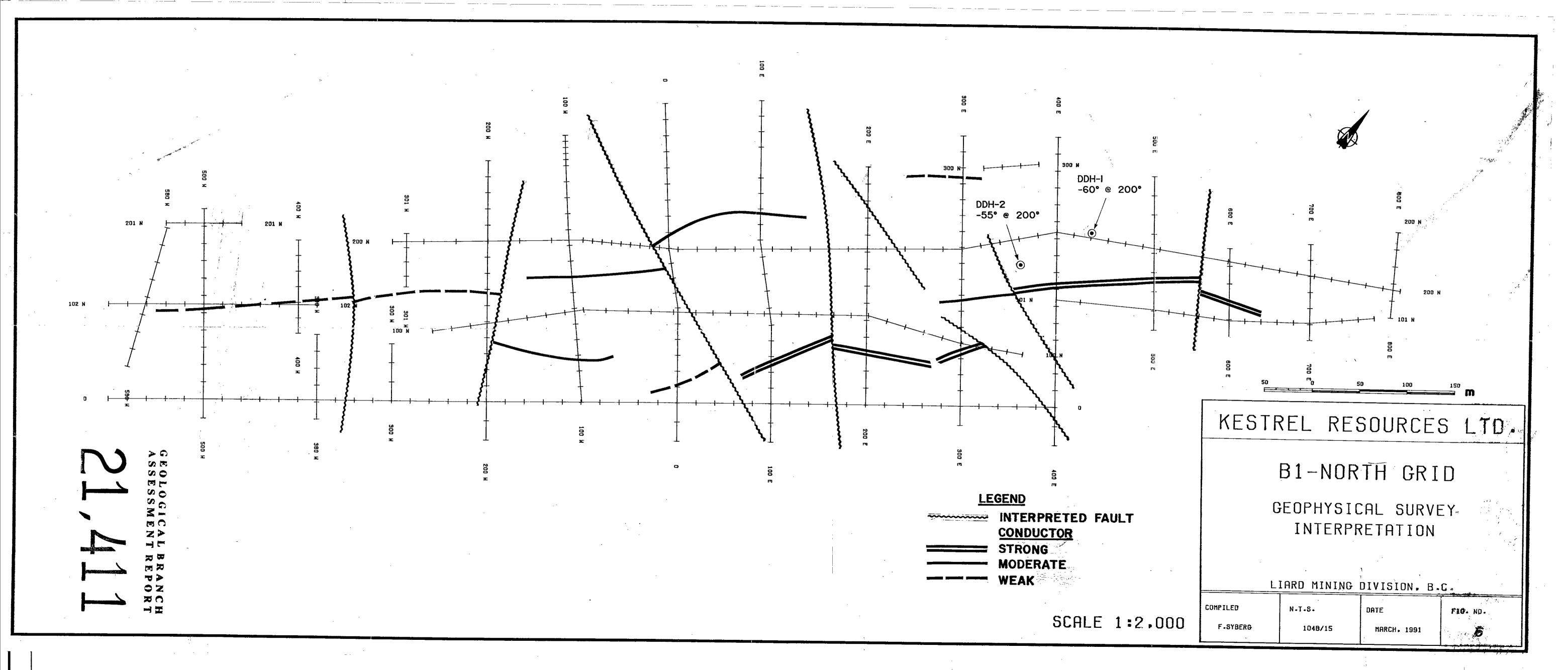
- matics and feldspars to lcm very altered

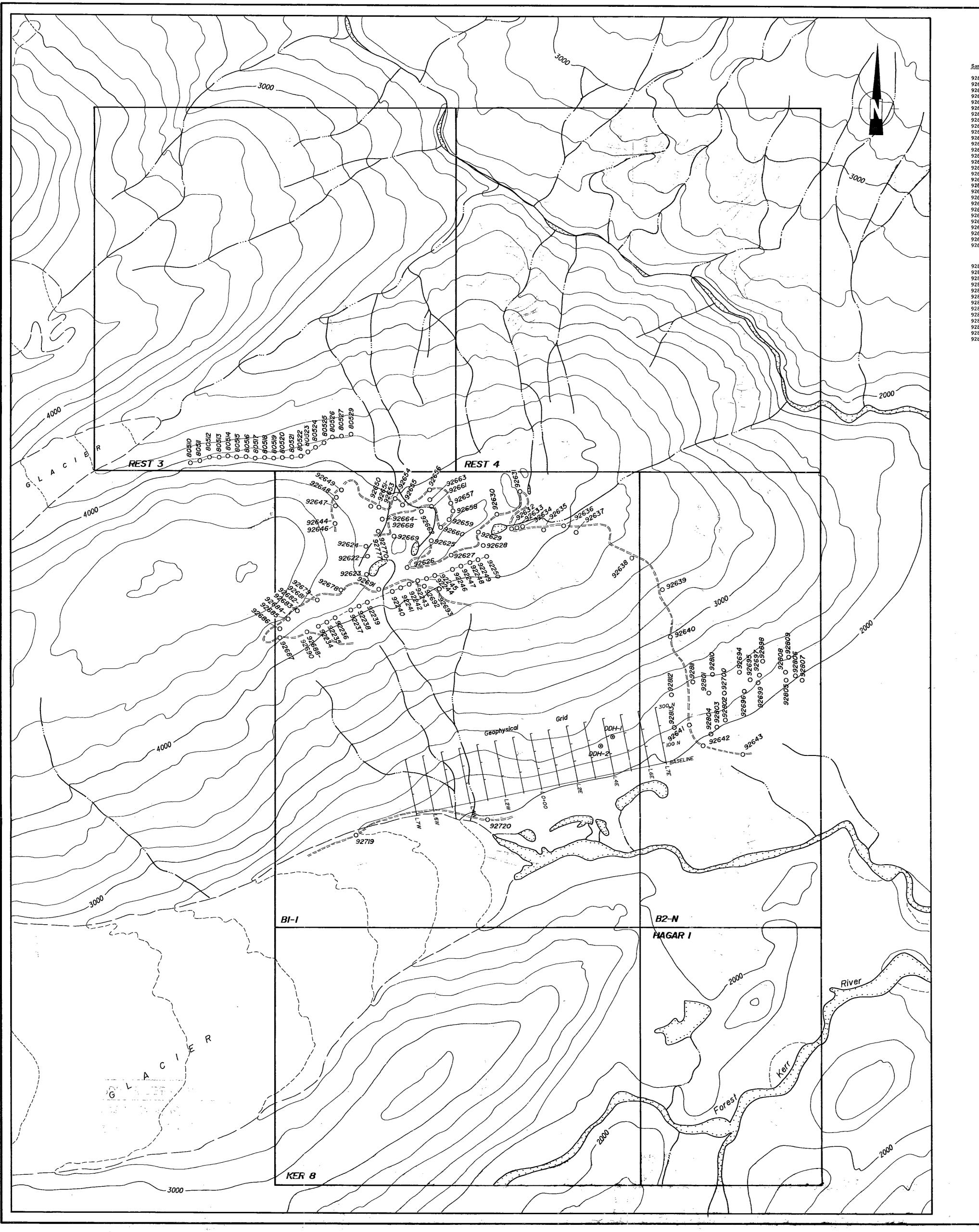
- coarse grained, green except brown where carbonatized

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,411

KESTREL RESOURCES LTD.


Title
B1-N CLAIM GROUP
DDH 90-1
PROFILE


Scale 1:50

Date April 1991

Prawn B.D.S.

Figure 7

92622 92623 92624 92625 92626 92627 92628 92629 92630 92631 92632 92633 92634 92635 92635 92637	20 50 10 30 10 10 10 nd nd 20 nd md 20	0.3 1.0 0.3 0.5 0.4 0.2 0.3 0.2 0.1 0.5	92651 92652 92653 92654 92655 92656 92657 92658	10 10 10 10 230 10	0.1 nd nd 0.1 nd 1.2
92624 92625 92626 92627 92628 92630 92631 92632 92633 92634 92635 92636 92637	10 30 10 10 10 10 nd nd 20 nd md	0.3 0.5 0.4 0.2 0.3 0.2 0.1	92653 92654 92655 92656 92657 92658	10 10 230 10	nd 0.1 nd
22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 42635 42635 42637 42638	30 10 10 10 10 nd 1d 20 nd md 20	0.5 0.4 0.2 0.3 0.2 0.1 0.5	92654 92655 92656 92657 92658	10 230 10	0.1 nd
22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637	10 10 10 nd nd 20 nd md	0.4 0.2 0.3 0.2 0.1 0.5	92655 92656 92657 92658	230 10	nd
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638	10 10 nd nd 20 nd md 20	0.2 0.3 0.2 0.1 0.5	92656 92657 92658	10	
2628 2629 2630 2631 2632 2633 2634 2635 2635 2636 2637 2638	10 nd nd 20 nd md 20	0.3 0.2 0.1 0.5	92657 92658		1.2
2629 2630 2631 2632 2633 2634 2635 2635 2636 2637 2638	nd nd 20 nd md 20	0.2 0.1 0.5	92658	20	
2630 2631 2632 2633 2634 2635 2636 2637 2638	nd 20 nd md 20	0.1 0.5			0.2
2631 2632 2633 2634 2635 2636 2637 2638	20 nd md 20	0.5	02650	20	9.8
2632 2633 2634 2635 2636 2637 2638	nd md 20		92659	10	0.7
2633 2634 2635 2636 2637 2638	md 20	0.1	92660	30	1.0
2634 2635 2636 2637 2638	20	V	92661	20	0.8
2635 2636 2637 2638		0.1	92662	10	0.5
2635 2636 2637 2638		0.2	92663	30	0.3
2636 2637 2638	50	0.2	92664	20	0.5
2638	10	0.1	92665	20	0.4
2638	30	0.2	92666	20	0.8
	30	0.1	92667	10	0.6
	10	0.1	92668	10	0.7
2640	10	0.1	92669	nd	0.4
2641	10	0.1	92670	nd	0.8
2642	10	0.2	92671	nd	1.5
2643					
	330	1.4	92672	nd	0.9
2644	20	1.3	92673	nd	0.3
2645	10	1.0	92674	nd	0.7
2646	30	1.1	92675	nd	0.5
2647	10	0.2	92676	30	0.4
2648	20	0.2	92677	10	0.6
2649	nd	nd	92678	40	1.0
2650	nd	nd	92679	120	8.0
			92680	30	13.5
			92681	10	0.5
2001	10	0.7	92682	30	0.4
2801	40	0.7	92683	10	0.5
2802	nd	0.4	92684	10	0.3
2803	nd	0.5	92685	20	0.7
2804	20	0.4	92686	20	1.0
2805	20	0.3	92687	130	3.0
2806	nd	0.4	92688	20	0.8
2807	nd	0.3	92689	10	0.5
2808	nd	0.2			
2809	40	2.5	92690	80	2.2
2810	20	0.4	92691	20	0.3
2811	220	1.5	92692	10	0.3
2812	20	0.4	92693	120	11.2
2813	2000	2.2	92694	nd	0.4
			92695	nd	0.2
			92696	nd	0.2
			92697	40	0.2
			92698	220	0.7
			92699	40	0.2
			92700	nd	0.3
Sample No.	Au(ppb)	Ag(ppm)	Sample No.	Au(ppb)	Ag(ppm)
92234	nd	nd	80510	nd	0.1
92235	nd	nd	80511	nd	0.2
92236	nd	nd	80512	nd	nd
92237	nd	nd	80513	nd	nd
92238	nd	nd	80514	nd	nd
92239	60	0.4	80515	nd	nd
92240	30	nd	80516	20	0.4
92240			80517		
	nd 120	nd		20	nd
92242	120	nd	80518	20	0.1
92243	nd	· nd.	80519	nd	0.2
92244	nd	nd	80520	nd	0.1
92245	30	nd	80521	nd	0.1
92246	nd	nd	80522	nd	nd
92247	nd	nd	80523	nd	nd
92248	nd	nd	80524	nd	nd
92249	nd	nd	80525	10	nd
92250	nd	nd	80526	10	nd
			80527	10	nd
			80528	40	0.1

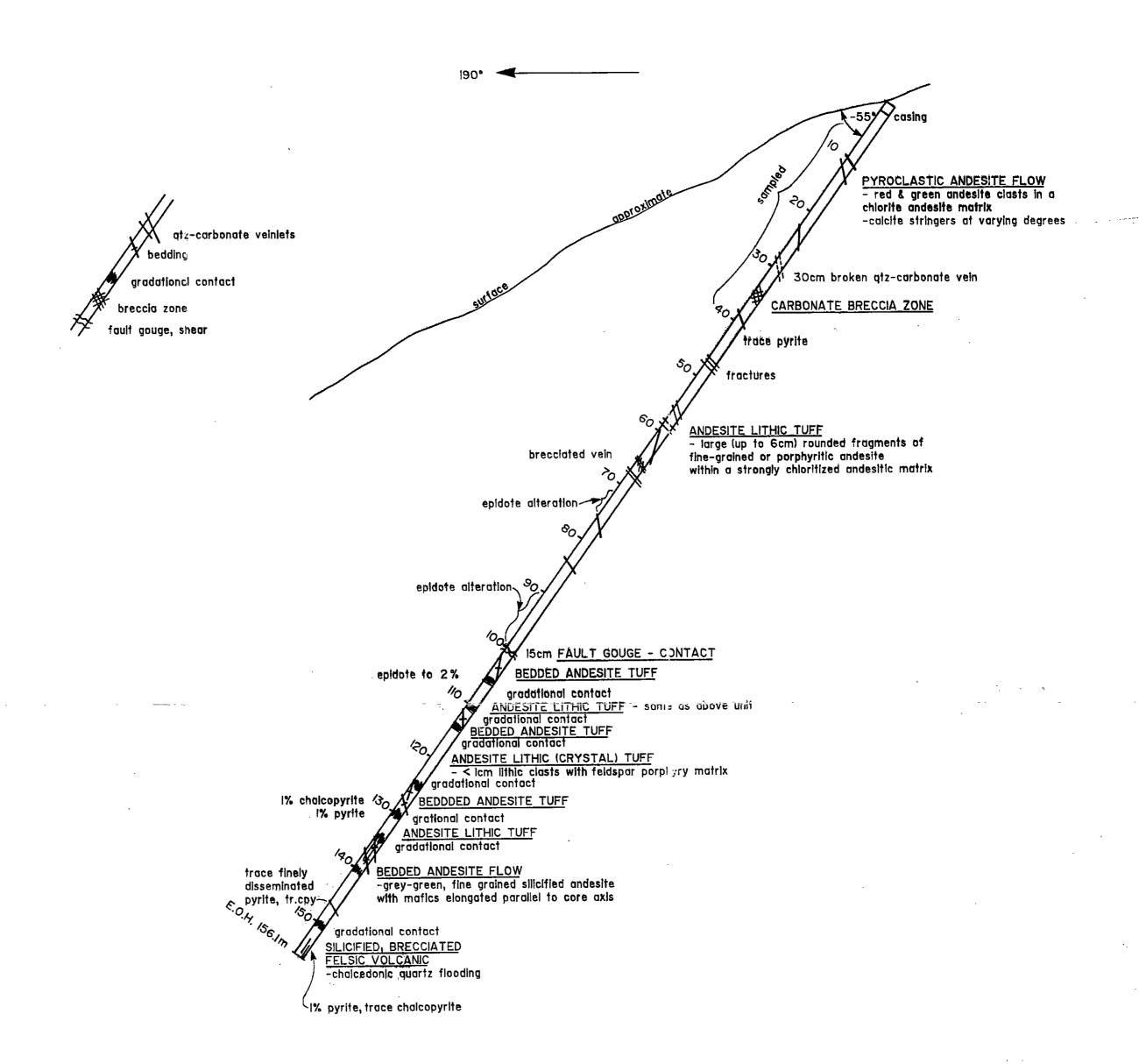
<u>LEGEND</u>

O Rock Chip Sample

=== Traverse

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,411


KESTREL RESOURCES LTD.

B1-N CLAIM GROUP
LITHOGEOCHEMICAL
SAMPLE MAP

LIARD MINING DIVISION, B.C. NTS: 104B/15

DATE: APRIL 1991 SCALE: 1:10000

DRAWN: S. TENNANT FIGURE: 5

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,411

KESTREL RESOURCES LTD. Title B1-N CLAIM GROUP DDH 90-2 PROFILE Scale 1:50 Date April 1991 Drawn B.D.S. Figure 8