PROPERTY AND ASSESSMENT REPORT.

for the

LOG NO:	RD.
ACTION:	
FILE NO:	

1990 WORK PROGRAM

on the GEOLOGICAL BRANCH ASSESSMENT REPORT

WINDY PROPERTY

N.T.S. 93-J-13W

Latitude 54° 57' North Longitude 123° 50' West

Owners: R. Haslinger, Box 355, Fort St. James, B.C. VOJ 1P0 D. Halleran, Box 793, Fort St. James, B.C. V0J 1P0

Operator: Placer Dome Inc. 401 - 1450 Pearson Place, Kamloops, B.C. V1S 1J9

and

Marc Deschenes, B.A.Sc., Geol. Eng.

May 1991

TABLE OF CONTENTS

ŧ

1.0	SUMM	ARY	' .			•••			•••														•		•		1
2.0	INTROE	ouc	TIC)N		•••		•••	•••			•		•	•••	•		•			•	 •	•	 •		•••	2
3.0	3.2 3.3	Loc Phy Cla	atio /sio im (on a gra Sta	PR and phy tus	Acc anc	cess d Cl	s. lima	ate	 	 		 		 	•	 		 	•	• •	 	•••	 		•••	2 4 4
4.0	4.2 4.2 4.2 4.2	Reg Pro .1 .2 .3	gion per Lith Qua Stru	aal (ty (nolo ater uctu	Geol Geol gies nary ure lizat	ogy ogy and / Ge	, d D eolo	vistr Dgy	ribu	 Itioi	 		 		 		 		 	•	•	 	•	 •			8 10 10 13 13 14
5.0	DESCR	IPTI	ON	OF	: wo)RK	: PR	200	GRA	M										•	•		•				15
6.0	DIAMO 6.1 6.2 6.3 6.4 6.5 6.6	Sar Pre Dat Ma Res	nple par ta F p P sults	e Co atio lanc repa s	ING ollec on ar dling arati tion	tion nd A ion	n . Ana 	l y s	is .	· · ·	 		 		 		 		 	•	•	 		 			15 15 16 16 17 17 23
7.0	GEOCH 7.1 7.2 7.3 7.4 7.5 7.6	Sar Pre Dat Ma Res	nple par ta F p P sults	e Co atio lano repa s .	SUR\ ollec on ar dling arati tion	tion nd J ion	n . Ana 	 Iys 	is . 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		· ·		 		 		· ·	•	•	 		 			24 24 25 25 25 25 27
8.0	GEOPH 8.1 8.2 8.3 8.4	Ma Inst Res	gne trur sult:	eton men s .	URV nete itatio tion	r/VI on a	LF-E	EM Pro	oce	dur	es		 	•	 		•••		•••	•		 		 			27 27 28 28 28

i

<u>Page</u>

		ii
9.0 SU	RFACE TRENCHING OVER THE NEW SHOWING	29
9.1	Sample Collection	29
9.2	2 Preparation and Analysis	30
9.3	B Data Handling	31
9.4	Map Preparation	32
9.5	5 Results	32
9.6	6 Interpretation	39
10.0	CONCLUSIONS	41
11.0	RECOMMENDATIONS	42
12.0	REFERENCES	43
13.0	STATEMENT OF EXPENDITURES	44
14.0	STATEMENT OF QUALIFICATIONS	48

1.1

1

LIST OF TABLES

Table 1 Mineral Claim Schedule	5
Table 2 Significant Drill Intersections	18
Table 3 Analytical Extraction and Detection Techniques used by Eco-Tech Laboration	ories
Ltd	31
Table 4 Selected Anomalous Rock Samples in Trenches	33
Table 5 Statement of Expenditures	44

LIST OF FIGURES

فللكلام وفكرت والترابي والمنابع والمنابع والمنابع والمنابع والمنابع والمنابع

FIGURE	1	Location Map	3
FIGURE	2	Claim Location	6
FIGURE	3	Regional Geology	9
FIGURE	4	Geology-Topography-Vegetation-Drill Hole and Trench Location	
		Map: Southern Claim Group, 1:5000 (in pocke	t)
FIGURE	5	Pit, Trench Location Map: New Showing Area, 1:1000 "	
FIGURE	6	Cross-Section 12400N, 1:500	
FIGURE	7	Cross-Section 11600N, 1:500	
FIGURE	8	Cross-Section 10990N, 1:500	
FIGURE	9	Gold in Soils, Symbol Plot, 1:1000	
FIGURE	10	Copper in Soils, Symbol Plot, 1:1000	
FIGURE	11	Arsenic in Soils, Symbol Plot, 1:1000	
FIGURE	12	Stacked Magnetic Profiles, 1:1000	
		Stacked VLF-EM Profiles, 1:1000 "	
FIGURE	14	Trench Plan 1, 1:200	
FIGURE	15	Trench Plan 2, 1:200	
FIGURE	16	Overburden Profile TR90-01, 1:200	
FIGURE	17	Overburden Profile TR90-02, 1:200	
FIGURE	18	Overburden Profile TR90-03, 1:200	
FIGURE	19	Overburden Profile TR90-04, 1:200	
FIGURE		Overburden Profile TR90-05, 1:200	
FIGURE	21	Overburden Profile L.10450N, 1:200	
FIGURE	22	Overburden Profile Longitudinal Section 8670E, 1:200 "	
		=	

LIST OF APPENDICES

- APPENDIX I Explanation of Drill & Trench Log Codes
- APPENDIX II Diamond Drill Logs and Assay Results
- APPENDIX III Trench Logs, Assay Results and Overburden Profile Data
- APPENDIX IV Listing of Rock Sample Data
- APPENDIX V Rock Sample Statistical Summary, Correlation Matrix, Scatter Plots, and Histograms
- APPENDIX VI Listing of Soil Sample Data New Showing
- APPENDIX VII Soil Sample Statistical Summary, Correlation Matrix, Scatter Plots, and Histograms
- APPENDIX VIII Petrographic Study

Į

iii

1.0 SUMMARY

The Windy property is owned by R. Haslinger and D. Halleran, both of Fort St. James, B.C. and is currently under option to Placer Dome Inc. The property is located 65 kilometres northeast of Fort St. James, B.C. The target is a structurally controlled gold and copper deposit generated by a porphyry-type system of mineralization.

The field work focused on drill testing strong, linear and coincident soil geochemical anomalies in copper, gold and arsenic with coincident I.P. chargeability anomalies and VLF-EM conductors. The new discovery of high grade gold and copper values in semimassive sulphide, glacially transported boulders resulted in further geochemical and geophysical surveys followed up by a back-hoe trenching program.

The diamond drilling of six holes showed low-levels of anomalous, structurally-related gold and copper mineralization in the southernmost two holes. The pyrite content in all holes appears to be sufficient to explain the observed chargeability anomalies. The drilling was completed prior to the new discovery of the massive sulphide boulders.

The trenching results indicated highly anomalous bedrock concentrations of gold, copper, silver, and arsenic most commonly associated with narrow, sulphide-bearing fault gouges. Trenching failed to locate the source of the massive sulphide boulders but succeeded in exposing a boulder train elongated parallel to the ice flow direction. The boulder train has been eroded to the south near the edge of a large swamp. In summary, these activities revealed a 25 metre wide train of sulphidic boulders and an overburden geochemical train about 140 metres wide, both glacially transported from a bedrock source to the south.

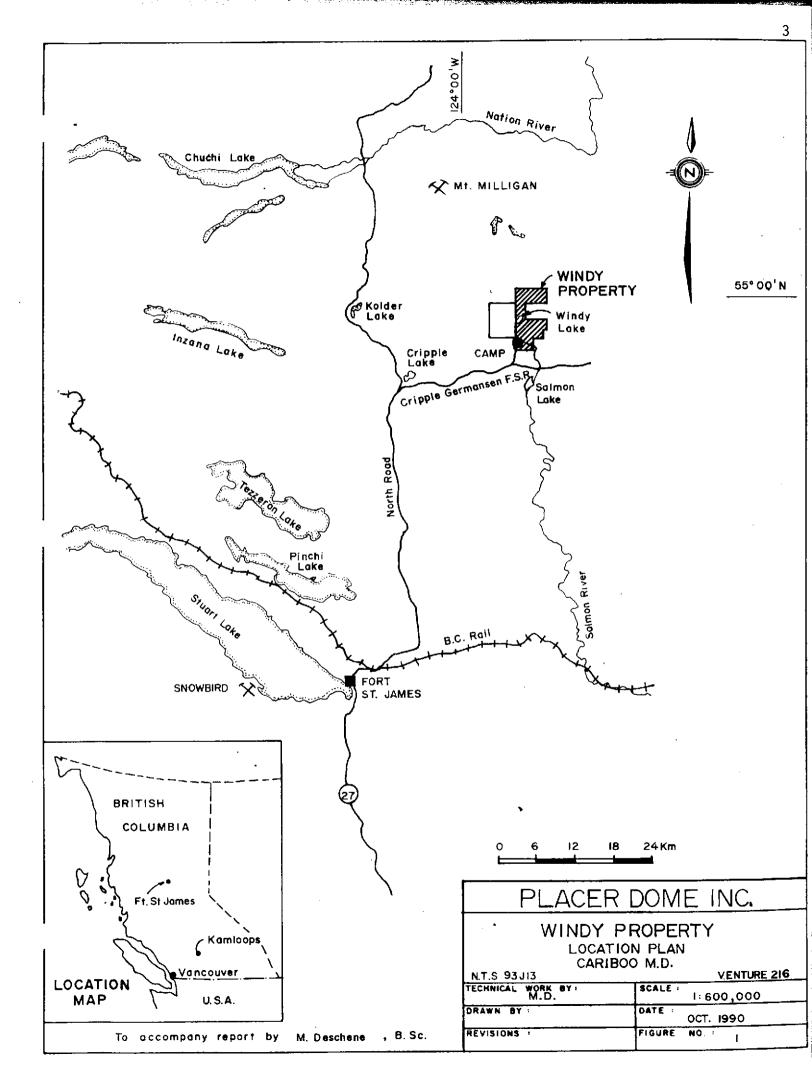
Drilling and trenching intersected rocks of diorite and andesite composition which generally displayed a strong chlorite, quartz, sericite, epidote, and carbonate alteration assemblage. Moderate to strong foliation, shearing, and fault zones are also common and often host quartz-carbonate veins. Abundant fracture fillings and veins of quartz-carbonate, epidote, and lesser sericite and chlorite were intersected. Mineralization occurs as minor disseminations with lesser clots and fracture fillings of pyrite and chalcopyrite.

A winter program consisting of a time domain EM survey, followed with a drill program should be undertaken in the area south of the new showing. The objective would be to establish the trend and size of a target possibly as the source of the massive sulphide boulders.

2.0 INTRODUCTION

The target type on the property is structurally controlled gold and copper mineralization possibly generated by a porphyry type system.

The objective of the 1990 work program was to drill test a strong, linear, gold-copper-arsenic geochemical anomaly with coincident I.P. and VLF-EM anomalies. The program also involved trenching geochemical anomalies following the discovery of a new high grade gold and copper showing in semimassive sulphide-bearing float samples. The work was performed in the southwestern portion of the property and also consisted of the construction of an access road, magnetometer and VLF-EM surveys, and soil sampling.


The work program as described in this report was conducted during the periods of 4 July to 29 July 1990, and 12 September to 27 September 1990.

3.0 DESCRIPTION OF PROPERTY

3.1 Location and Access

The Windy property is located in north central British Columbia and lies 65 kilometres northeast of Fort St. James, B.C. (See Figure 1). The claims are situated mostly within the Cariboo Mining Division except for the northeast corner of the property which lies within the Omineca Mining Division. The claims are roughly centered at latitude 54° 57' North and longitude 123° 50' West on NTS map sheet 93-J-13W.

Access to the property is gained by four wheel drive vehicle along the Takla North Road (Manson Creek Road) to Kilometre 48 north of Fort St. James. Continue east along the Germansen-Cripple Lake forestry road for 20 kilometres and then north along the newly constructed "600" logging road for six kilometres. Otherwise, access is by means of helicopter from either Fort St. James or Mackenzie which are equidistant from the property and are 20 minutes flying time away.

3.2 Physiography and Climate

The property is located on a topographic high with a moderate gradient in all directions from a maximum elevation of 1130 metres, to a low of 915 metres on the Salmon River at the southeast corner of the property.

The Salmon River flows southward along the western property boundary before angling southeast across the southern part of the claims. Salmon Lake is located seven kilometres south of the claim group.

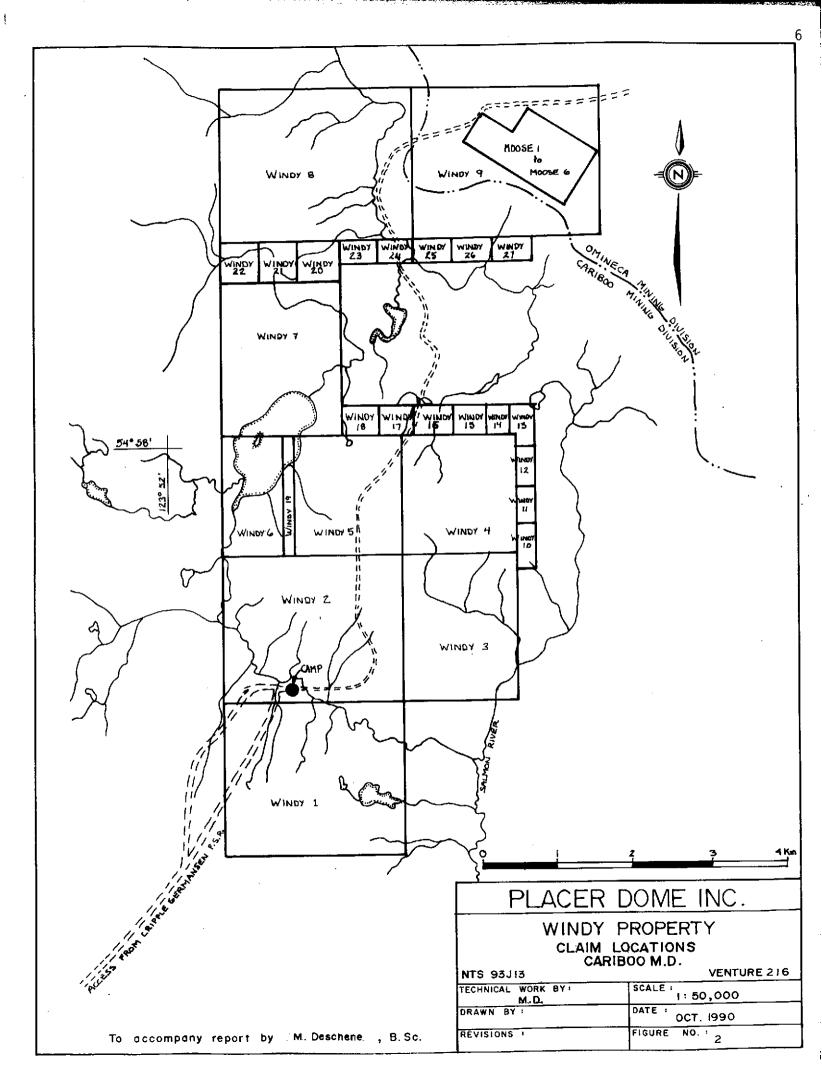
The main grid extends northward from the river to a topographic high in the north central part of the property and then down to a small lake north of this high. The ground south of the river is generally flat with swampy areas. Small rock outcrops are fairly common along the Salmon River, however, outcrop is rare elsewhere.

Forest cover on the property consists of spruce, balsam, fir, and pine mixed with patches of poplar, tag alder, and willow with occasional open meadows.

The property lies within a district of moderate precipitation where winters are cold and summers are mild, with rather abrupt seasonal changes. Exploration work is recommended between early June and early October. Winter snowpack can reach one and a half metres.

3.3 Claim Status

The Windy property consists of nine metric grid claims, 17 two-post claims and one fractional claim, totalling 146 units as shown on Figure 2. All of the claims are wholly owned by R. Haslinger and D. Halleran of Fort St. James, B.C. and are under option to Placer Dome Inc. The expiry dates shown do not take into account the work discribed in this report being filed for assessment credit.


Table 1

!

Mineral Claim Schedule

CLAIM NAME	NUMBER OF	RECORD NO.	EXPIRY DATE
Windy 1	20	6831	May 16, 1997
Windy 2	20	6840	June 3, 1997
Windy 3	12	7836	June 9, 1997
Windy 4	9	7837	June 9, 1997
Windy 5	9	7835	June 9, 1997
Windy 6	6	9599	March 2, 1994
Windy 7	12	9600	March 5, 1994
Windy 8	20	9703	May 12, 1997
Windy 9	20	9704	May 10, 1997
Windy 10	1	9847	June 25, 1997
Windy 11	1	9848	June 25, 1997
Windy 12	1	9849	June 25, 1997
Windy 13	1	9850	June 25, 1997
Windy 14	1	9851	June 25, 1997
Windy 15	1	9852	June 25, 1997
Windy 16	1	9853	June 25, 1997
Windy 17	1	9890	July 4, 1997
Windy 18	1	9891	July 4, 1997
Windy 19 Fr.	1	9892	July 4, 1997
Windy 20	1	10071	Sept. 20, 1997
Windy 21	1	10072	Sept. 20, 1997
Windy 22	1	10073	Sept. 20, 1997
Windy 23	1	10074	Sept. 21, 1997
Windy 24	1	10075	Sept. 21, 1997
Windy 25	1	10076	Sept. 21, 1997
Windy 26	1	10077	Sept. 21, 1997
Windy 27	1	10078	Sept. 21, 1997

C. A CONTRACT OF SHORE

3.4 History

The original prospectors active in the area are unknown but some exploration pits have been noted along the banks of the Salmon River. Current interest was started by Richard Haslinger of Fort St. James who located small amounts of chalcopyrite with low gold and silver values on the north bank of the Salmon River. These showings were examined by W. Pentland of Placer Development Limited (now Placer Dome Inc.). The property was rejected with the suggestion that more prospecting be done.

Additional pits dug by R. Haslinger 200 metres north of the initial discovery contained gold values of 3.51 g/t and palladium values of 0.50 g/t. Copper values were also higher in these pits.

In October 1985, a soil sampling survey was conducted by Cassiar Mining Corporation (Brinco Mining Ltd.) on a small grid with 400 metre line intervals. R. Haslinger dug more pits in an area of anomalous gold and copper 800 metres northeast of the discovery pits. Gold has been repeatedly panned from the overburden in the area.

In June 1986, the property was examined by R. Boyce of Placer Development Limited. The check sampling and conclusions reached were favourable and resulted in the property being optioned by Placer Dome Inc. (formerly Placer Development Ltd.) in August 1986.

In September 1986, Placer Dome established a 20 kilometre grid over the area of most apparent interest and conducted soil sampling, VLF-EM and magnetic surveys, mapping, and sampling of outcrops and test pits. This program outlined three soil geochemical anomalies.

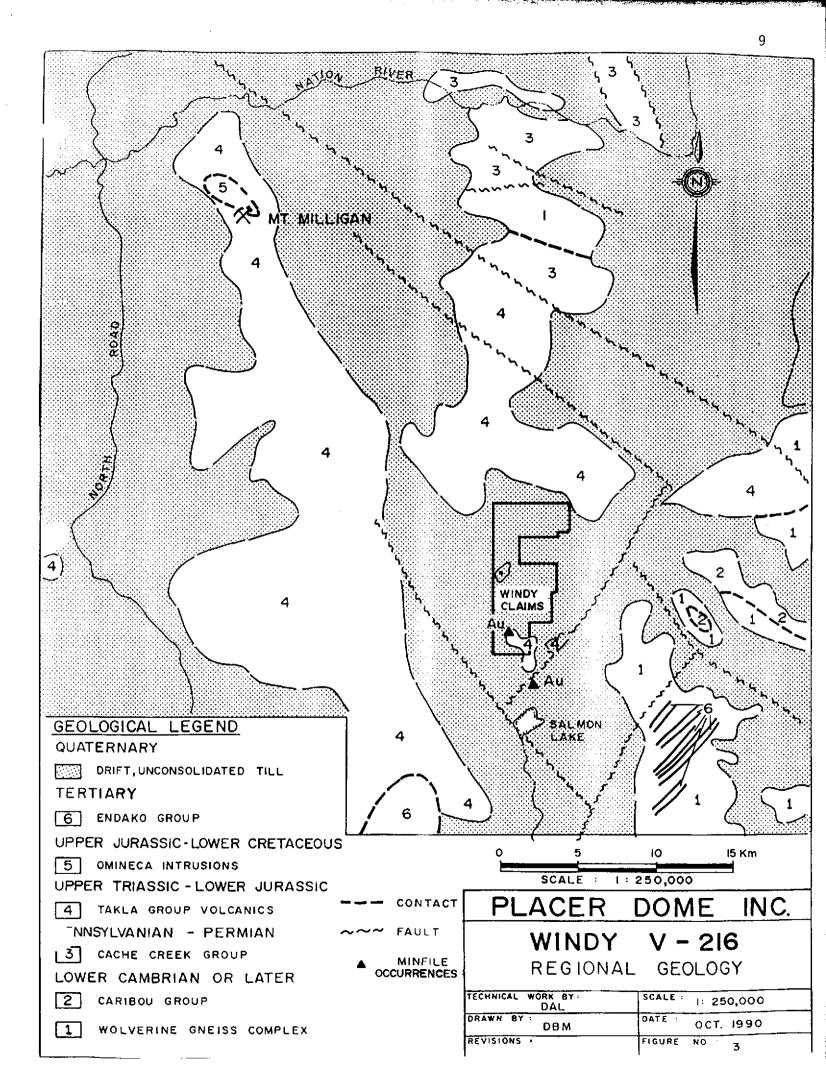
In September 1987, 6.8 kilometres of Induced Polarization was conducted over the three geochemical anomalies. The grid was extended 2.5 kilometres with additional soil sampling, VLF-EM and magnetic surveys to further delineate the northern copper-arsenic anomaly. Five east-west trending trenches were excavated over coincident geochemical and I.P. anomalies for a total of 426 metres. The highest values obtained were from the trench samples on Line 102 N; these returned 0.84 g/t gold and 0.27% copper over 10.0 metres.

From May to July of 1988, the exploration program consisted of 26 kilometres of line cutting, 16.2 kilometres of flagged line, 24.6 kilometres of I.P., soil sampling (557 samples) and geological mapping. Although drill targets had been defined, due to lack of funding from the joint venture partner, a diamond drill program was not undertaken.

The work program in the summer of 1989 consisted of extending the grid 63 line-kilometres on the northern claim group and conducting additional I.P., VLF-EM, magnetometer, and soil sampling surveys. A diamond drill program consisted of nine holes totalling 1500 metres. The most significant gold intersection was 0.38 g/t over 9.38 metres coming from zones of brecciation and quartz-carbonate veining. The soil geochemistry survey outlined a strong, linear gold-copper-arsenic anomaly with coincident I.P. and VLF-EM anomalies trending north-south over two kilometres along the southwestern property boundary.

4.0 GEOLOGY

4.1 Regional Geology


The Windy property is located within the northwestern extension of the Quesnel Trough underlain by volcano-sedimentary rock units of Mesozoic Takla Group. The Takla Group consists mainly of andesitic and basaltic flows, tuffs, and breccias, which have been mapped as Upper Triassic and/or Lower Jurassic in age (see Figure 3).

To the east of this belt of Takla group volcanics, Lower Cambrian through to Pennsylvanian rocks of the Cariboo and Cache Creek groups have been mapped as being in fault contact with the younger Takla group volcanics. Approximately six kilometres to the southeast of the property lies the Wolverine gneiss complex. This complex consists of granite, gneiss, and schist believed to be derived in part from Lower Cambrian Cariboo group rocks. Metamorphism and granitization occurred at some time between Lower Cambrian and Mesozoic times.

Overlying the Takla group rocks and forming prominent knolls are younger Endako group (Tertiary) volcanics often consisting of basaltic flows.

The assemblage is intruded by comagmatic, frequently zoned alkaline plutons. These plutons are most frequently diorite but range from syenogabbro to syenite. The chemical compositions of the plutons are similar to the volcanic rocks they intrude. The plutons occur along linear trends and appear to be controlled by major faults. The size of the plutons varies from small dykes and plugs to batholiths.

As illustrated on Figure 3, this area of north-central B.C. is heavily drift covered and consequently geological contacts are often interpreted through use of regional aeromagnetic data and limited field observations.

4.2 Property Geology

4.2.1 Lithologies and Distribution

The southern claim group is mainly underlain by dioritic rocks which have intruded the overlying Takla Group volcanics. The geology of the rock in outcrops, in the trenches, and the drill core is consistent with the predominance of diorite on the property subjected to varying levels of alteration and metamorphism.

The Takla volcanics consist of a sequence of andesitic flows and pyroclastics. The flows are mainly porphyritic while the pyroclastics are comprised of agglomerates and tuffs. Late stage quartz-diorite and granodioritic dykes along with faulting and shearing cut the dioritic and volcanic rocks.

The following rock unit descriptions are based on a field classification employed in earlier PDI rports, eg. Frostad (1989). The property-scale geology, shown on Figure 4, is taken mostly from previous exploration reports with details of the 1990 trenching and pitting program on Figure 5.

Unit 1 - Andesitic Flows and Pyroclastics - AN/F

These rocks are medium to dark green to greyish-green, fine to medium grained with the andesitic flows being porphyritic. Hornblende phenocrysts are common and may reach 6.0 millimetres in size. Rocks are commonly sheared and foliated. The alteration is predominantly chloritic with epidote common.

Unit 1a - Hornblende Porphyritic Flows - PPAN

Rocks medium to dark green, fine to medium grained with 10 to 20% subhedral hornblende (average size 1 to 2 mm). Occasional leucoxene is developed.

Unit 1b - Agglomerates - AGLM

Light grey to greyish green bombs are 50 to 60 centimetres in size and comprised of 25 to 30% hornblende crystals (average size 3 to 4 mm) within a fine grained matrix. The bombs are contained within a crystalline matrix 40 to 50% amphiboles (average size 1 mm) and 50 to 60% plagioclase (average size 1 mm).

Unit 1c - Crystal Tuffs - ANXL

These rocks are medium grey to green, and comprised of 10 to 20% subhedral amphibole crystals (average size 1 to 2 mm), 10 to 20% plagioclase as subhedral/anhedral crystals and laths (average size 1 mm) within an aphanitic matrix. They are massive to poorly bedded. The bedded nature of this unit is generally recognized by grading and variation in phenoclast size and abundance. Bedding planes have been recognized. The matrix, as identified by petrographic study, is 60 to 70% plagioclase and 30 to 50% amphiboles. This unit was observed bearing 10 to 15% quartz eyes on the northern claim group.

Unit 1d - Quartz-eye Tuffs - ANQE

This rock is a crystal tuff as previously described which contains 5 to 10% subrounded quartz eyes (average size 3 to 4 mm).

Unit 1e - Ash Tuffs - ANAT

These rocks are medium to dark grey, very fine grained and commonly sheared with strong chlorite alteration. This unit may occur with a small percentage of fine mafic and feldspar crystals or display good bedding.

Unit 2 - Dioritic Intrusions - DIOR

The diorites are light grey to greyish green, coarse to fine grained, occasionally porphyritic with hornblende (up to 6 mm) and/or plagioclase (up to 3 mm). Textural and compositional variations are gradational. Observed alteration is primarily propylitic style with pervasive and vein controlled chlorite, epidote \pm sericite \pm silica \pm hematite. The diorite hosts broad zones of pyrite (1 to 3%, occasionally up to 10%) and occasional chalcopyrite blebs within quartz-carbonate veins. Local intense shear zones contain increased quartz veining and sulphides.

Unit 2a - Porphyritic Diorite - PPDR

This rock unit is light to medium grey and contains 30 to 40% subhedral/euhedral amphiboles with average size >3 millimetres and up to four centimetres (megacrystic). It may occur with phenocrysts of feldspar (up to 3 mm) as euhedal crystals or laths. Porphyritic diorite dykes ranging from three to ten metres in width are observed cutting volcanic units.

Unit 2b - Coarse Grained Diorite - CGDR

Rock is light to medium grey in colour and massive to strongly sheared. It commonly occurs as a large unit with a gradational change to porphyritic or medium grained diorite. Modal composition is generally 65 to 70% plagioclase as subhedral crystals (<3mm) or laths and 20 to 25% subhedral/euhedral amphibole (average size of 2 to 3 mm).

Unit 2c - Fine and Medium Grained Diorite - FGDR, MGDR

This unit is medium grey to greyish green and may occur with a mottled appearance. Medium grained diorite is classified as occurring with average amphibole size of 1.0 to 3.0 millimetres. Fine grained diorites have an average amphibole size of less than 1.0 millimetres. Also occurs as dykes (up to 3 metres) and dyklets (10 to 20 cm) crosscutting diorite and volcanic rock units with sharp contacts. With the exception of dykes, this unit is difficult to distinguish from the volcanic rocks due to gradational contacts.

Unit 3 - Quartz Diorite - QZDR

This rock type was observed as an outcrop on the Salmon River near the eastern property boundary. The quartz diorite is leucocratic, medium grained, equigranular and comprised of 60 to 70% subhedral plagioclase, (1 to 5 mm) and 10% quartz grains. The outcrop is weakly foliated, has crackle brecciation, weak sericite alteration and is unmineralized. The fractures and breccia voids are filled with carbonate, chlorite, minor muscovite and trace K-feldspar.

Unit 4 - Granodiorite/Quartz Monzonite Dykes - GRDR, QZMZ

These dykes are light grey, fine to medium grained, massive and equigranular. These dykes are 1.0 to 2.0 metres wide. Model composition is 40 to 50% subhedral plagioclase (1 to 2 mm), 30 to 40% anhedral K-feldspar (up to 2 mm), 15 to 20% quartz grains, 10% biotite and chlorite. The dykes are relatively unaltered and contain 1.0 to 2.0% disseminated pyrite.

4.2.2 Quaternary Geology

Overburden on the Windy property is variable and includes glacial till, glaciofluvial sands and gravels, lacustrine clays and more recent fluvial deposits. Overburden depth encountered in trenches and in drill holes varies from one to 24 metres.

Glacial till consists of locally eroded bedrock lithologies whose source is likely less than one kilometre distant. Till appears to occur as pockets on the topographic highs and along the upper slopes. Glacial striae and oriented cobbles indicate that the direction of the ice movement in the area was approximately 010° azimuth.

Both the glaciofluvial and recent fluvial materials have relatively complex transportation histories. The soils of the most southerly claims are glaciofluvial in origin, comprised mainly of sand and gravel, while zones of silt, washed sands, and lacustrine clays were encountered in the vicinity of the Salmon River. The fluvial materials may represent old stream channels and are not readily traced to source.

4.2.3 Structure

The southern claim group is extensively sheared by subparallel steeply dipping faults that strike north-northwest to north-northeast. Dioritic rocks vary from weakly to intensely sheared with a general trend of 060° to 075° azimuth. The numerous fault zones trending sub-parallel to the general structure are evidenced in drill core, trenches and interpreted from VLF-EM survey data and may be up to 30 metres wide (Cannon, 1989 and Frostad, 1989). The fault zones encountered by diamond drilling and trenching reached 30 metres in width and are associated with strong chlorite/sericite/carbonate alteration, quartz-carbonate vein material (up to 70%) and patchy silicification. Zones of pasty gouge are chloritic with trace to 10% disseminated pyrite. The gouge may host angular to

subrounded, occasionally silicified, rock fragments. The fragments may contain up to 40% quartz carbonate fracture fillings, and up to 10% pyrite as disseminations and/or fracture fillings. The host rock on either side of the gouge is commonly weak to moderately brecciated. The contacts of gouge occasionally host quartz-carbonate veins.

Faulting in the northern claims is not as extensive as the south as evidenced from the outcrops and low number of VLF-EM conductors (Cannon, 1989).

The veins observed within drill core are predominantly quartz-carbonate shear veins that range up to one metre in width. This style of veining occurs within moderate to strongly sheared host rock. Some veins within shear zones are folded and therefore post-date the latest fault movement. The shear veins may contain up to 40% chloritic host rock fragments commonly mineralized with disseminated pyrite, and wisps of black chlorite.

The tensional style of veining (up to 30 cm) occurs within massive rock with sharp, usually parallel, contacts. This style of veining may display sericitic envelopes (bleaching) along with pyrite mineralization within the host rock at vein contacts.

The veins are commonly unmineralized but may contain chalcopyrite as blebs.

4.2.4 Mineralization and Alteration

The sulphide mineralization is mainly composed of broad zones of disseminated and fracture filling pyrite (1 to 3%, occasionally up to 10%) associated with zones of shearing, brecciation and silicification. Blebs and fracture fillings of chalcopyrite, with lesser pyrrhotite and rare bornite were also noted and are associated with quartz-carbonate veins and breccia zones proximal to shear zones.

Alteration on the property consists of extensive, weak propylitic alteration occurring pervasively, as veinlets and as disconnected patchy networks. The alteration assemblage is typically chlorite-epidote \pm sericite \pm carbonate \pm hematite \pm biotite \pm K-feldspar, quartz-carbonate veins commonly develop sericitic envelopes.

5.0 DESCRIPTION OF WORK PROGRAM

Placer Dome Inc. executed the work program during the periods of 4 July to 29 July, and 12 September to 27 September, 1990. Work was concentrated near the southwest property boundary and consisted of the following activities:

- construction of approximately 3.5 kilometres of 4x4 access road;
- diamond drilling of six holes totalling 684 metres of NQ core;
- excavation of six trenches totalling 260 metres;
- collection of 488 rock and drill core samples for geochemical analysis;
- collection of 295 soil samples from a 1.5 kilometre fill-in grid and from trench overburden profiles; and
- 1.8 kilometres of magnetometer and VLF-EM surveys.

Road and drill pad construction, and drill moves were done under contract by M.B. Contracting of Fort St. James, B.C. using a Cat TD-15. The access road was built just east of camp, on the north side of Salmon River, northward across the Windy 2 and 6 claims up to Windy Lake. Ground conditions in several areas were very wet due to groundwater seepage and a skidder was required for some drill moves and for transporting core back to camp.

6.0 DIAMOND DRILLING

The program consisted of 684 metres of NQ wireline diamond drilling spread over six holes. The drilling contractor was Leclerc Drilling of Beaverdell, B.C. A skid-mounted Longyear Super-38 rig was utilized. Drill roads and pads were constructed for all drill sites. Drilling commenced 9 July and was completed 20 July, 1990.

6.1 Sample Collection

The core was transported to the field camp for logging and sampling. A total of 322 core samples was collected. The core was sampled continuously in geologically controlled intervals generally averaging one and a half to two metres. Marked intervals were split using a core splitter, with one half placed in plastic sample bags and the other half returned to the core box. The core is stored on the Windy property.

A total of 26 sludge samples was also collected where recovery was poor, from two of the six holes at the drill sites using a partitioned pipe splitter to collect a one-eighth split. Sample intervals averaged 3.0 metres and were placed in plasticated cloth bags.

6.2 Preparation and Analysis

Rock samples were shipped to the Placer Dome Research Centre in Vancouver for geochemical analysis of gold, copper, silver, and arsenic.

Samples were dried in a hot-air dryer, crushed, pulverized, and sieved to extract the -150 mesh fraction.

For gold analysis a 10 gram portion of the -150 mesh fraction is mixed with aqua regia and heated at 600°C for three hours, then HBr solution is added and allowed to stand overnight. Following a solvent extraction, the solution is analyzed for gold by atomic absorption. The detection range for gold is 5 to 4000 ppb.

For copper, silver, and arsenic analyses, a 0.5 gram portion of the -150 mesh fraction was digested in a hot solution of $HCIO_4$ and HNO_3 for four hours, then cooled, diluted and analyzed by atomic absorption, except for arsenic which was analyzed by Direct Current Plasma (similar to ICP). The detection range for copper is 2 to 4000 ppm, for silver 0.2 to 20 ppm, and for arsenic 2 to 2000 ppm.

Three character core samples were sent to Vancouver Petrographics Ltd. of Vancouver, for petrographic analysis. A detailed report is included in Appendix VIII.

Sludge samples were shipped to the PDI Research facility in Vancouver for geochemical analysis of gold, copper and silver. The samples were dried in a hot-air dryer and sieved to extract the -80 mesh fraction. After digestion in aqua-regia solution, gold, copper, and silver analyses were completed by atomic absorption.

6.3 Data Handling

Drill holes were surveyed using a Brunton compass and a hip chain and tied into the field grid. Survey, geologic, recovery and RQD (rock quality designation) data, and sample data were logged using the GEOLOG System, a software package developed by International Geosystems Corporation of Vancouver, B.C. The core logging was recorded on Geoform II, which allows the user to create a graphic log, code pertinent information and add written descriptions entered as remarks. GEOLOG codes are explained in Appendix I. Information was entered into a Zenith microcomputer and transferred to a Sun Microsystems work station for data processing and plotting of crosssections.

6.4 Map Preparation

Individual cross-sections displaying the drill hole trace, geologic data, target data, trench profiles, gold, copper, and arsenic values were plotted at 1:500 scale using PDI's Sections program. The final maps were produced by a drum-type plotter with additional information drafted by hand.

6.5 Results

Drill logs, sample data, and geochemical results are listed in Appendix II. Geologic cross-sections and target data are included in Figures 6 to 8.

It should be noted that gold values lower than the detection limit of five ppb were posted with a value of three ppb gold for statistical purposes. Rock type codes and other coded geologic data are explained in Appendix 1.

Analylitical data for rock samples collected from drill core, trenches, and test pits (float) were combined to conduct statistical evaluations of the determined gold, copper, silver, and arsenic values. The threshold levels determined were used to separate the anomalous populations from background values. Statistical summaries correlation matrix, scatter plots, and histogram plots for each metal are included in Appendix V.

The following ranges of values are considered to be background, anomalous, and highly anomalous concentrations for each element, as selected from the histograms:

ELEMENT	BACKGROUND	ANOMALOUS	HIGHLY
			ANOMALOUS
Gold	<30 ppb	30 - 100 ppb	>100 ppb
Copper	<50 ppm	50 - 250 ppm	>250 ppm
Silver	<0.35 ppm	0.35 - 1.2 ppm	>1.2 ppm
Arsenic	<7 ppm	7 - 35 ppm	>35 pp m

Examination of the correlation matrix (Appendix V) for this element suite reveals a moderate statistical correlation between gold and silver values (0.45), and gold and arsenic values (0.47), and gold and copper values (0.5), and silver and copper values (0.51). A scatter plot of gold versus arsenic, silver versus copper, do demonstrate a correlation between these elements, but a plot of gold versus silver shows little correlation.

فمصاحبهم وسيعين المترا التنجيب والمع

The following discussion assesses the 1990 drilling results on a crosssection by cross-section basis. Anomalous assay results and related intervals are listed in the following table.

HOLE	FROM	то	LENGTH _(M)	GOLD <u>(ppb)</u>	COPPER (ppm)	ARSENIC	EQUIVALENT COPPER, %*
DDH90-1	51.0	53.3	2.3	55	920	1	0.147
	84.3	98.6	14.3	115	371	111	0.152
DDH90-2	21.9	24.0	2.1	115	1320	6	0.247
	50.0	72.7	22.7	62	215	31	0.084
DDH90-3	46.2	49.8	3.6	3	445	5	0.048
	59.8	97.0	37.2	11	356	4	0.047
DDH90-4	26.4	40.6	14.2	87	274	15.1	0.114
	94.8	103.9	9.1	31	179	1	0.049
DDH90-5	10.3	16.2	5.9	175	135	1	0.188
	32.6	36.9	4.3	240	130	14	0.253
	82.1	96.7	14.6	21	214	99.3	0.042
DDH90-6	71.5	76.5	5.0	145	351	19.3	0.180
	103.7	115.1	11.4	191	141	14	0.205
	126.9	139.4	12.5	85	408	18.3	0.126

TABLE 2

Significant Drill Intersections

* Copper equivalent percentage is arbitrarily taken as the sum of copper in percent and gold in grams per tonne.

Section 12400N

DDH90-1 and DDH90-2 were drilled on Line 12400N to test multiple goldcopper-arsenic soil anomalies and coincident VLF-EM and a >15 millisecond chargeability (n = 2) anomalies (see Figure 6).

DDH90-1 was drilled to a depth of 100.6 metres at a dip of 50° east. Overburden was calculated to be only 2.4 metres thick. Hole 90-1 intersected mainly an altered hornblende-plagioclase andesite porphyry which has undergone moderate to intense alteration and shearing. This unit is principally composed of angular to sub-rounded phenocrysts of hornblende (up to 5 mm wide) and plagioclase (1-3 mm wide), which make up to 30% of the rock, grading down to groundmass size. Original textures are commonly obliterated by alteration. Foliation is common throughout at angles of 070° - 080° to the core axis. A core angle of 75° translates to a true poliation dip of either 55 or 25° to the west.

Alteration is predominantly chloritic throughout with lesser epidote and quartz. The rock contains abundant medium to high angle cross-cutting fractures and veins. These structures are commonly healed by quartz-carbonate, epidote and lesser chlorite, K-feldspar, and hematite and tend to increase in frequency in proximity of shear zones.

Shear zones and fault gouges occur locally up to 3.6 metres wide and commonly appear brecciated, occasionally containing silicified clasts of the host rock.

Mineralization occurs as trace to 3% disseminated and fracture filling pyrite. Chalcopyrite was noted in trace amounts.

Higher gold and copper values were encountered near the bottom of the hole with composite values up to 115 ppb gold and 371 ppm copper over 14.3 metres (Table 2). It was also noted that the arsenic content commonly increases with gold and copper values. This interval is associated with an intensely sheared and altered andesite hosting abundant quartz-carbonate veins and up to 3% sulphides.

Petrographic analysis of a sample taken at 99.8 metres was determined to be an altered medium-grained diorite with veins and veinlets dominated by calcite with less K-feldspar and chlorite (Appendix VIII).

Sludge samples with anomalous gold, silver, and copper values were encountered. An interval from 12.8 - 15.6 metres returned values of 32 ppm silver and 180 ppb gold which appear to correlate with values in drill core yielding 1260 ppm arsenic and 70 ppb gold near the top of the hole.

DDH90-2 was drilled 85 metres to the east of hole 90-1 to a depth of 101.2 metres and intersected porphyritic andesites. The rock is similar in composition to the andesite in hole 90-1 but is much more faulted and brecciated with common inclusions of volcanic and silicified rock fragments. Numerous shear zones and fault gouges were noted which contain abundant fracture fillings and veins of quartz-carbonate and epidote. Quartz-carbonate veins often host chloritic rock fragments which commonly contain pyrite. The angle of the shears and veins is usually between 060° and 080° to the core axis.

Pyrite occurs up to 3% as disseminations and fracture fillings associated with zones of fracturing, faulting, brecciation, silicification, and along vein contacts. Traces of chalcopyrite were noted in quartz-carbonate veins.

Higher gold (up to 200 ppb) and copper (up to 1320 ppm) values are associated with fault-breccia zones containing abundant quartz-carbonate veining. Arsenic values also appear to increase in correlation with gold values. The highest copper value of 1320 ppm is related to an interval of quartz containing a 1.5 centimetre bleb of chalcopyrite.

Sludge samples with anomalous silver and gold values were encountered midway in the hole from 58.5 to 79.9 metres and returned values of up to 59 ppm silver and 290 ppb gold. These intersections appear to correlate with the gold mineralized fault breccia zone, however, core samples throughout this interval contained only about 0.2 ppm silver.

It is unclear whether the gold, copper, and arsenic values in holes 90-1 and 90-2 could explain the observed soil anomalies. The pyrite content appears to be sufficient to explain the observed chargeability anomaly over the section. The observed VLF-EM conductors are believed to be caused by the fault zones in hole 90-2, as indicated from the broken and clay-gouged core.

Section 11600 N

DDH90-3 and DDH90-4 were drilled on a east-west fence to test a goldcopper-arsenic soil anomaly and a coincident VLF-EM conductor.

Hole 90-3 intersected mainly altered andesitic flows and porphyritic andesites after passing through 21.8 metres of overburden. The hole also intersected a 34.6 metres interval of fine to medium grained altered diorite. Alteration in this hole consists of a propylitic suite. The rocks display a moderate foliation at angles of 050° to 080° to the core axis. Abundant fracture fillings and veins of quartz-carbonate, chlorite, epidote, sericite, and pyrite were found, at angles of 040° to 070° to the core axis. Narrow shear and fault zones were noted which commonly contain guartz-carbonate veins up to 70 centimetres wide.

Mineralization occurs mainly as 2-3% disseminated pyrite and traces of chalcopyrite associated with zones of increased fracturing and shearing, and also occurs within chloritic rock fragments hosted by quartz-carbonate veins.

No significant gold intersected in this hole but anomalous copper values up to 830 ppm were encountered within propyliticly altered shear zones hosting quartzcarbonate veins and veinlets and increased pyrite content.

Petrographic analysis of a sample taken at 50.4 metres was determined to be a medium-grained, recrystallized diorite with veins and veinlets of plagioclase and calcite, with less abundant chlorite, K-feldspar, and quartz (Appendix VIII).

Hole 90-4 was drilled 86 metres east of hole 90-3. The hole intersected mainly a series of andesitic flows and porphyritic andesites but also encountered narrow dykes and brecciated fault zones. The hole was ended in a moderately sheared quartz diorite. Alteration is predominantly propylitic; while some intervals display more intense silicification. Foliation is moderate to strong throughout at angles of 040° to 060° to the core axis. Shear and fault zones are common and host quartz carbonate veinlets and veins up to 60 centimetres wide, generally striking parallel to the foliation.

Up to 5% disseminated and fracture filling pyrite and traces of chalcopyrite were found associated with shear, fault and breccia zones, and quartz veins.

Higher gold values were intersected in brecciated fault zones and fault gouges within the altered andesite porphyry. Copper values were generally weaker throughout but one anomalous value yielding 910 ppm was detected within a quartz vein containing traces of chalcopyrite. Higher arsenic values appear to correlate with higher gold values.

The copper and arsenic values in holes 90-3 and 90-4 may explain the observed soil anomalies although doubtfil because of the thick overburden. However, the gold-in-soil anomalies are not likely related to the determined gold values intersected in these holes. The observed VLF-EM conductor is believed to be caused by the fault zone at the top of hole 90-4.

Section 10990N

Holes 90-5 and 90-6 were drilled on a east-west fence to test a zone with a multiple gold-copper-arsenic soil anomaly and coincident VLF-EM anomaly.

Unfortunately, as shown on Figure 8, the I.P. anomaly on this line lies just west of the area tested by the drill holes.

DDH90-5 was collared into a siliceous porphyritic andesite before intersecting mainly fine to medium grained altered diorites. Sheared and brecciated fault zones up to eight metres wide were also encountered. Alteration is predominantly chloritic with lesser quartz, epidote, sericite, and carbonate. Localized zones of moderate propylitic alteration were also noted. Fracture fillings and veins of quartz-carbonate, with lesser epidote and sericite, are common. Foliation is weak to moderate at angles of 050° to 070° to the core axis. Quartz-carbonate veins are more common in zones of increased fracturing and shearing.

Mineralization occurs mainly as disseminated pyrite in amounts of 2-4% and lesser amounts as clots and fracture fillings. Amounts appear to increase in zones of increased fracturing, quartz-carbonate veining, and silicification. Magnetite was also noted in amounts up to 5% occurring as disseminations and associated mainly with porphyritic andesites and andesitic flow units.

Gold and copper values were generally low throughout the entire hole. However, higher gold values were associated with a zone of intense fracturing in the upper part of the hole containing quartz-carbonate veins hosted by a porphyritic andesite which returned a value of 175 ppb gold over 5.9 metres. A brecciated fault zone at about 35 metres containing up to 7% pyrite and 3% magnetite returned a gold value of 240 ppb over 4.3 metres.

Higher copper values deeper in the hole appear to correlate with zones of increase fracturing, shearing, brecciation, and higher sulphide content. Values up to 410 ppm copper were noted.

Hole 90-6 was drilled 75 metres east of hole 90-5. The overburden thickness increases from three metres in hole 90-5 to 16 metres in hole 90-6. DDH90-6 intersected mainly altered and moderately foliated, fine to coarse grained diorites throughout. A 6.2 meter brecciated fault zone hosting a 20 centimetre quartz vein was encountered near the top of the hole. Alteration consists of chlorite, quartz, sericite, epidote, and carbonate. Numerous fractures and veins of quartz-carbonate, epidote and lesser sericite, limonite, and hematite were found. Foliation is weak to moderate at 060° to 080° to the core axis. Abundant quartz-carbonate veins were encountered near the bottom of the hole in a zone of increased silicification and fracturing.

Mineralization consists of 1-3% disseminated pyrite, locally up to 5% disseminated magnetite, and traces of chalcopyrite. Higher sulphide content appears to be associated with zones of silicification, fracturing, and quartz-carbonate veining.

Anomalous gold and copper values were encountered in the lower half of the hole. These values were associated with silicified zones containing quartzcarbonate veins and up to 5% pyrite. Gold values are up to 191 ppb over 11.4 metres and copper to 408 ppm over 12.5 metres. Higher arsenic values to 50 ppm appear to correlate with anomalous gold values.

Petrographic analysis of a sample taken at 97 metres was determined to be a metamorphosed andesite flow or tuff containing replacement patches and veins of calcite (Appendix VIII).

The gold and copper values in holes 90-5 and 90-6 appear high enough to explain the observed soil anomalies. The observed VLF-EM conductor is believed to be caused by the sheared and brecciated fault zone near the top of hole 90-6.

6.6 Interpretation

Rocks intersected in the diamond drilling program indicate a change in lithology from altered andesitic flows and porphyritic andesites in the north to altered fine to medium grained diorites in the south. However, petrographic analysis of rocks taken from holes 90-1 and 90-3 were determined to be altered and metamorphosed diorites. This difference in interpretation is believed to be caused by the difficulty to distinguish the diorites from the volcanic rocks due to gradational contacts and the intensity of alteration.

The drilling intersected only a few anomalous gold and copper values. The best intersections were in the most southerly holes 90-5 and 90-6. Anomalous gold and copper values are most commonly associated with sheared and brecciated fault zones hosting quartz-carbonate veins with up to 5% disseminated pyrite and lesser chalcopyrite. Zones with increased propylitic alteration also seem to be associated with copper mineralization as seen in holes 90-2, 90-3, and 90-4. Anomalous arsenic values have a good correlation with anomalous gold values.

The determined gold and copper values in the drill holes may explain some of the observed soil anomalies. However, gold-in-soil anomalies in holes 90-3 and 90-4 are not reflected in the underlying bedrock, suggesting glacial or hydromorphic transport of the anomalies. The pyrite content in holes 90-1 and 90-2 appears to be sufficient to explain the observed chargeability anomalies. The observed VLF-EM conductors in all the sections are attributed to the fault zones encountered in holes 90-2, 90-4, and 90-6 as indicated from the broken and clay-gouge core.

The restriction of gold-copper mineralization to structural control suggests that VLF-EM conductors may be better exploration targets than I.P. or soil geochemistry.

7.0 GEOCHEMICAL SURVEY OVER THE NEW SHOWING

A limited soil geochemical survey was conducted over the new showing area near the western boundary of the property following discovery of high grade gold mineralization in float samples.

Approximately 1.8 kilometres of fill-in soil sample lines were constructed and tied into the 1989 grid (see Figure 4 for location). Lines were positioned at 50 metre intervals between lines 10400N and 10700N from 8560E to 8860E with a Base Line at 8700E. Stations were marked with black felt pens on orange flagging or white Tyvex tags, and established at 20 metre intervals. Lines were surveyed using a Silva compass and hip chain measurements.

7.1 Sample Collection

ł

A total of 145 soil samples was collected at 20 metre intervals along 50 metre spaced lines (Figures 9-11). Samples of B-horizon material were collected from 20 to 40 centimetre deep holes excavated with narrow-bladed, short-handled shovels. The B-horizon was generally well developed and easily recognized as a tan to orange-brown silty sand (gravel) beneath the shallow organic enriched horizon. Soils in this area were generally well drained and appear to have developed on fluvial sand and gravels.

Twenty-two of these samples were collected from 20 to 80 centimetre deep test pits using a narrow bladed shovel. One sample was collected from the B-horizon (labelled A on Figrues 9-11) and a second from the bottom of the pit (labelled B). The purpose of the deeper sampling was to expose and examine more rock fragments and hopefully determine if glacial till might be found in the "C" horizon.

Samples were placed in brown kraft paper envelopes, and labelled with line and station for identification. Notes were recorded at each sample site regarding site conditions, sample depth, soil composition and grain size, and rock fragment composition.

7.2 Preparation and Analysis

Samples were shipped to the Placer Dome laboratory in Vancouver for geochemical analysis of arsenic, gold, and copper. The samples were dried in a hot-air dryer and sieved to extract the -80 mesh fraction.

For arsenic and copper analyses, a 0.5 gram portion of the -80 mesh fraction was digested in an aqua-regia solution for four hours and then copper was analyzed by atomic absorption, and arsenic by a direct current plasma technique. The detection range for copper is 2 to 4000 ppm, and for arsenic 2 to 2000 ppm.

For gold analysis, a 10 gram portion of the -80 mesh fraction was mixed with aqua-regia for three hours, then HBr solution was added and allowed to stand overnight. Following a solvent extraction, the solution was analyzed for gold by atomic absorption. The detection range for gold is 5 to 4000 ppb.

7.3 Data Handling

Soil geochemical data were entered into a Zenith microcomputer and transferred to a Sun Microsystems work station for data processing and plotting of location plot maps.

7.4 Map Preparation

Soil sample locations were digitized using field coordinates and plotted at 1:1,000 scale using the PDI MAPS program. The final maps were produced by a drum-type pen plotter with additional information drafted by hand.

7.5 Results

The geochemical results of the 1990 soil samples from the new showing grid and test pit overburden profiles are listed in Appendix VI and as symbol plots in Figures 9-11. Results from the grid soil survey were combined to produce basic statistics, scatter plots, correlation matrix and histograms to examine the structure of the results for each element (Appendix VII). Threshold levels were then determined which were applied to separate the anomalous, if present, populations from the background values.

The following range of values are considered to be background, anomalous, and highly anomalous concentrations for each element:

<u>Element</u>	<u>Background</u>	<u>Anomalous</u>	<u>Highly Anomalous</u>
Gold	<30 ppb	30-60 ppb	>60 ppb
Copper	<50 ppm	50-120 ppm	>120 ppm
Arsenic	<10 ppm	10-120 ppm	>120 ppm

Plots illustrating the spatial relationships of the soil sample data are presented in Figures 9, 10, and 11 at a scale of 1:1000. Figure 4 shows the location of the 1990 new showing grid. Element concentrations at each sample site are classified into fixed ranges (class intervals) as determined from the histograms. Symbols of fixed dimension were assigned to each class interval.

Examination of the correlation matrix (Appendix VII) for this element suite reveals good correlation between gold and arsenic values (0.72), and gold and copper values (0.71), and copper and arsenic values (0.70). Scatter plots of arsenic versus gold, and copper versus gold, and copper versus arsenic, do demonstrate correlations between these elements.

Gold values range from less than the detection limit of 5 ppb to a maximum of 3420 ppb. Approximately 52% of the samples returned values less than the detection limit, and 39 samples had values in excess of the 30 ppb anomaly threshold level. The anomalous gold values define one general trend 60 metres wide and 230 metres long, through the centre of the grid. The trend strikes approximately 010° to 015° azimuth. There are also a few single station "spot" anomalies on lines 10400N, 10500N, and 10700N (see Figure 9).

It should be noted that where two samples (A and B) were collected from the same site, the deeper (B sample) C-horizon sample usually returned a higher value.

Copper values range from 20 to 2110 ppm. Approximately 81 samples had values in excess of the 50 ppm threshold level. These samples define a trend very similar to that of gold. Again B samples collected in the deeper sample sites were higher in value than the shallower A samples.

Arsenic values range from 1 to 4100 ppm. Approximately 70 samples had values in excess of the 10 ppm anomaly threshold level. These samples also define a trend similar to the pattern displayed by gold and copper.

7.6 Interpretation

Plots of the geochemical results for the various elements illustrate that underlying bedrock lithology does not appear to control element distribution.

Anomalous concentrations of gold, copper, and arsenic define a multielement geochemically anomalous trend parallel to the ice flow direction (about 010°-015° azimuth). The position of the trend between lines 10400 and 10450N overlies the massive sulphide boulder train exposed in the trenching program. Overburden depth increases substantially from one metre at line 10400N to over five metres at line 10600N which could cause some suspicion as to the source of the anomalous metal values north of line 10450N along the trend. Therefore it is likely that the source of the anomalous metal values originates from the massive sulphide boulders or a common source to the south and soil anomalies farther north on the grid have been glacially transported. The fact that the soil anomalies are scattered over a width of 140 metres while the mineralized boulder train, to be discussed later, is only about 20 metres wide, suggests a broader source or lateral glacial dispersion from a common source some distance south of the trenched area.

Samples collected along line 10400N which lies on the edge of a large swamp, should be considered suspect due to the fluvial nature of the overburden.

8.0 GEOPHYSICAL SURVEYS OVER THE NEW SHOWING

8.1 Magnetometer/VLF-EM

VLF-EM and magnetic surveys were conducted along 1.8 kilometres of line over the new showing grid. The VLF survey was conducted using the Seattle, Washington transmitting station with readings being taken at 10 metre stations except for lines 10600N which had readings taken at 20 metre stations. Magnetometer readings were taken at 10 metre intervals.

8.2 Instrumentation and Procedures

Magnetometer

The magnetometer survey was conducted using a UniMag Proton Precision portable magnetometer. The Uni-Mag measures the total field magnetics in nanoteslas.

The survey was completed in loops where the first station would be read at the beginning and at the end of the loop. No significant variations in magnetic readings were observed in the short time of loop intervals. Drift corrections of under 23 nanoteslas were made to the data. The corrected results were transferred to a Sun Microsystems work station for final plotting.

<u>VLF-EM</u>

The VLF-EM survey employed a Sabre Electronics EM-27 unit. VLF readings were entered onto a Sun Microsystems work station for processing and plots were made of the In-Phase, Quadrature and Fraser Filter data.

8.3 Results

The magnetometer survey results were plotted as a plan map of stacked profile data at a scale of 1:1000 shown on Figure 12.

The VLF-EM survey results were plotted as stacked In-Phase and Fraser Filter profiles on a plan map at a scale of 1:1000 (see Figure 13). The Fraser Filter data was calculated as per the method put forth by Fraser (1969).

8.4 Interpretation

<u>Magnetometer</u>

The magnetometer survey results are of limited use because of the small grid size. However, Figure 12 shows a poorly defined zone of higher magnetic susceptibility crossing the grid in a northwest-southeast direction and flanked by a zone of low magnetic readings to the northeast. This may represent a contact between the porphyritic andesites exposed in trenches 90-03 and 90-04 (Figure 15) and the altered diorites exposed in trenches 90-01, 02, 05, and 06 (Figure 14). This linear zone also correlates with a parallel zone of low magnetic readings detected during the 1989 magnetic survey (Cannon, 1989).

<u>VLF-EM</u>

The predominant directions of the conductors, as interpreted on Figure 13, were from north northwest to north northeast, of between 330° and 030° azimuth. This appears to correlate with schist zones and foliation trends observed in trenches. The apparent concentration of VLF conductors in the area of anomalous soil geochemical values may be coincidental as the conductors are linked to bedrock structures and the geochemistry to glacially transported metals.

9.0 SURFACE TRENCHING OVER THE NEW SHOWING

Six trenches totalling 260 metres were excavated in the new showing area on the Windy 2 claim to test geochemical anomalies. A total of 17 test pits were dug to depths of approximately 7.0 metres and immediately reclaimed. Excavation was done by Hat Lake Logging Ltd. of Fort St. James, B.C. All trenches were dug using a Cat D240 backhoe with an 18 inch toothed bucket and a smooth edge bucket for cleaning. Trench and test pit locations are shown on Figures 4 and 5.

Bedrock was attained in most of the trenches although irregular rock surfaces and deep overburden sometimes slowed progress. Depth of trenches varied from 0.5 to 5.0 metres.

The trenching program was sometimes plagued by problems with relatively thick overburden and/or a shallow water table. Many areas which were targeted by soil geochemistry could not be adequately tested. A practical limit to the overburden thickness which can effectively be trenched is approximately 5.0 metres. Trenches were then mucked out and dewatered using a water pump.

Most of the trenches were reclaimed except those displaying favourable looking bedrock. These include TR90-6 and a section of TR90-2. Trenches are identified in the field with a wooden stake located at the collar position. The fluorescent red painted stakes have an aluminum tag stating the trench name and length.

9.1 Sample Collection

A total of 143 rock samples was collected from the trenches. Continuous chip samples were systematically taken over intervals averaging 2.0 metres in areas of favourable looking bedrock. Sample intervals were marked with red flagging along the trench walls. Each sample contained approximately 5.6 kilograms of rock chips which were double bagged and labelled.

A total of 92 overburden sample profiles was collected from the trench walls at 10 metre intervals. In each profile, samples were collected from the B-horizon (rusty-brown soil) labelled A; the C-horizon (glacial till) labelled B, and the XC-horizon (decomposed bedrock interface) labelled C. Samples were placed in brown kraft paper envelopes and labelled with the trench number, location within the trench, and depth, denoted by a letter (A, B, or C).

A total of 77 overburden profile samples was also collected from test pits. In most pits, samples were collected from the B-horizon, and then every metre down the wall of the pit. Samples were placed in brown kraft paper envelopes and identified with grid coordinates and depth location (A, B, or C).

A total of 45 rock samples (grabs) was collected from outcrops, prospect pits, float, and old trenches in various locations on the property. The majority are from the "new showing" area. Sample locations were identified in the field with flagging tape, and are plotted on Figures 4 and 5. Brief descriptions and geochemical results of rock samples are included in Appendix IV.

9.2 Preparation and Analysis

Rock samples were shipped to Eco-Tech Laboratory in Kamloops where they were oven dried, crushed, pulverized, and sieved to produce a -150 mesh fraction. A sub-sample was weighed for geochemical analysis. Each sample was analyzed for gold, silver, copper, zinc, lead, and arsenic. The digestion and detection techniques used for each element are given in Table 3.

TABLE 3

Analytical extraction and detection techniques used by Echo-Tech Laboratories Ltd.

Element	Unit	Grams	Digestion	Detection	Instrumentation
Copper	ppm	0.5	Aqua- Regia	1 ppm	Atomic Absorption
Zinc	ppm	0.5	Aqua- Regia	1 ppm	Atomic Absorption
Lead	ppm	0.5	Aqua- Regia	2 ppm	Atomic Absorption (background corrected)
Silver	ppm	0.5	Aqua- Regia	0.1 ppm	Atomic Absorption (background corrected)
Gold	ppb	10.0	Fire Assay	5 ppb	Atomic Absorption
Arsenic	ppm	0.5	Aqua Regia	1 ppm	Hydride Gen. A.A.

Four character rock samples were sent to Vancouver Petrographics Ltd. for analyses. The petrographic descriptions are included in Appendix VIII.

The overburden samples from trench and test pit profiles and basal till samples were also shipped to Eco-Tech Laboratory in Kamloops for geochemical analysis of copper, lead, zinc, silver, arsenic, and gold. The samples were dried in a hot-air dryer and sieved to extract the -80 mesh fraction. The digestion and detection techniques used for each element are the same as those listed in Table 3.

9.3 Data Handling

Trenches were surveyed using a Silva compass and a 30 metre fibreglass chain and tied into the field grid. Survey, geologic, recovery, and

RQD (Rock Quality Designation) data, and sample data were logged using the GEOLOG System identical to the one used for drill holes (see Section 6.3).

Information was entered into a Zenith microcomputer and transferred to a Sun Microsystems work station for data processing and plotting of trench plans.

9.4 Map Preparation

Trench plans were plotted at 1:200 scale using PDI's Sections program, and maps were produced by a drum-type pen plotter with additional information drafted by hand. The trench plans display the trench traces, geologic data, target data, gold, copper, and arsenic values.

Trench overburden profiles were hand drafted at 1:200 scale. The sketches display the nature of the overburden, sample locations, and geochemical results.

9.5 Results

Trench logs, geochemical results and overburden profile data are listed in Appendix III. Trench plans and target data are included in Figures 14 and 15. Trench overburden profiles are shown on Figures 16 through 22. It should be noted that gold values lower than the detection limit of 5 ppb were posted with a value of 3 ppb gold.

Statistical analysis for gold, copper, silver, and arsenic from trench samples was combined with drill core samples and is discussed in Section 6.5.

The following discussion assesses the 1990 surface trenching program on a trench by trench basis. Selected anomalous rock samples in trenches are listed in the following table:

TABLE 4

Selected Anomalous Rock Samples in Trenches

Trench	From	То	Length _(m)	Lith	Au <u>ppb</u>	Cu ppm	As ppm	Cu %* <u>Equivalent</u>
TR90-01	20.0	26.0	6.0	AN/F	-	651	-	0.065
89	24.0	26.0	2.0	AN/F	590	448	16	0.635
11	30.4	32.0	1.6	AN/F	435	301	55	0.465
**	43.3	43.5	0.2	GOUG	1310	247	11	1.335
Tr90-02	8.0	18.0	10.0	AN/F	112	387	112	0.151
11	34.0	36.0	2.0	AN/F	400	221	11	0.422
* "	42.0	44.9	2.9	FECR	835	2100	1190	1.045
11	48.6	53.8	5.2	AN/F	875	2000	44	1.075
n	47.7	49.0	1.3	GOUG	6010	4400	112	6.450
TR90-03	10.0	12.0	2.0	MGDR	345	105	9	0.356
"	28.0	30.0	2.0	MGDR	380	141	18	0.394
"	39.0	-	GRAB	MGDR	415	303	25	0.445
TR90-04	29.0	30.7	1.7	PPAN	405	209	23	0.426
TR90-05	8.0	20.0	12.0	FGDR	59	716	46	0.131
TR90-06	6.0	14.0	8.0	QZDFR	185	841	648	0.269
"	17.2	18.4	1.2	QZDR	1130	76	34	1.138
11	10.0	12.5	2.5	GOUG	1560	3298	75	1.890
11	14.2	14.5	0.3	QZDR	2360	615	57	2.422
" *	10.5 See Tal	- ble 2 foi	GRAB r explanatio	OZDR	1680	3640	82	2.044

* See Table 2 for explanation

Trench 90-01

í

This trench was excavated to test a gold-copper-arsenic soil geochemical anomaly and possibly the source of a massive sulphide boulder train. The trench was 55 metres in length with overburden

depth averaging 1.0 metres which consisted of clays and fluvial sand and gravels. Trench 90-01 lies close to a swamp at the southern end of the grid.

Trenching exposed mainly altered and esitic flows interfingered with narrow bands of porphyritic and esite flows and chloritic schist. Original textures are commonly obliterated by intense alteration. Foliation is moderate to strong and trends 010° to 020° azimuth.

Alteration assemblage is typically chlorite, sericite, quartz and lesser calcite, and K-feldspar. Localized zones of increased silicification were noted. The lower half of the trench displays a higher density of fractures and veins. These structures are filled by quartz-carbonate, chlorite and lesser sericite. Shear zones and fault gouges were also noted in this section of the trench and they commonly display quartz-carbonate vein material occasionally hosting chloritic fragments and increased sulphide content. Other quartz-carbonate veins, up to 20 centimetres, are unmineralized. These structures generally strike 035° to 050° azimuth.

Mineralization occurs as 2-3% disseminated pyrite and clots of chalcopyrite in amounts of less than one percent. Sulphide content commonly increases in zones of silicification, quartz-carbonate veining, shearing, and fault gouges.

Chip sampling determined anomalous gold, copper, arsenic, and silver values. A two metre sample taken in a siliceous andesitic flow containing disseminated pyrite and traces of chalcopyrite bordering a chloritic schist, returned values of 590 ppb gold and 448 ppm copper. A 40 centimetre fault gouge hosting quartz material and disseminated pyrite and chalcopyrite, yielded a gold value of 435 ppb. A 10 centimetre fault gouge striking 040° returned an anomalous gold value of 1310 ppb.

Overburden profile sampling showed that gold and copper values are more anomalous in the lower half of the trench (Figure 16) which is still intact. Samples 70 centimetres and one metre deep returned values up to 275 ppb gold and 881 ppm copper. The source of the anomalous values may be the mineralized structures in the underlying bedrock, but all the overburden is transported. Petrographic analysis of a sample taken at 23 metres was determined to be a metamorphosed, fine to medium grained quartzdiorite, deformed and sheared slightly (Appendix VIII) as opposed to andesite flow as logged the trench.

Trench 90-02

This trench was dug to test a zone geochemically anomalous in gold, copper, and arsenic, and to test for the source of massive sulphide boulders uncovered in two separate prospect pits along the trench. Overburden depth ranged from 1.5 metres of fluvial deposits in the west to five metres of fluvial deposits overlying glacial till in the east. A massive sulphide boulder concentration was encountered over a 20 metre width and a 2.5 metre depth. The boulders appear to occur within the upper portion of the till horizon just below the sand and gravel horizon (Figure 17).

Analyses of material from numerous sulphidic boulders are included in Appendix IV. Metal values are variable but some specimens are rather rich with highest values as follows: gold 32 g/t, copper 1.8%, silver 35 g/t and arsenic 23%. Zinc was not determined, but it was moderately anomalous in some of the overburden profile samples.

Highly altered andesitic flows were exposed along the entire trench. An interrupted interval occurs from 42 to 45 metres caused by a ferricrete zone consisting of limonitic and hematitic massive sulphide boulders cemented together through oxidization. Moderate to intense foliation occurs throughout the rock and strikes 020° to 035°. Alteration consists predominately as silicification and increases from west to east.

Shear zones, fault gouges and quartz-carbonate veins occur locally and commonly host chloritic fragments and a higher sulphide content. They generally trend along 060° or 090° direction.

Mineralization occurs as disseminated and fracture filling pyrite in amounts up to 4% and lesser chalcopyrite occurring as disseminations and clots up to 2% locally. Narrow lenses of pyrite and chalcopyrite were noted in some fault gouges.

Chip sampling determined anomalous concentrations of gold, copper, silver, and arsenic commonly within shear-fault structures. A two metre sample, at about 37 metres, taken along a fault gouge returned an anomalous gold value of 400 ppb. Sampling across the

ferricrete interval yielded anomalous values of 835 ppb gold, 2100 ppm copper, 3.7 ppm silver, and 1190 ppm arsenic. However, these values are not in-situ. An intensely altered and foliated andesite at about 50 metres returned values of 875 ppb gold and 2000 ppm copper over 5.2 metres. A 10 centimetre wide, sulphide-bearing fault gouge at about 58 metres striking 056° yielded values of 6010 ppb gold, 6.5 ppm silver, and 440 ppm copper over 1.3 metres which could explain the nearby observed soil anomaly (Figure 14).

Overburden profile sampling determined highly anomalous gold, silver, copper, and arsenic values over a 60 metre width (Figure 17). Surprisingly, several of the higher values were detected outside the massive sulphide boulder train. Anomalous metal values were obtained from all three horizons (A, B, and C), yielding values of up to 7052 ppb gold, 1762 copper, and 7190 ppm arsenic. As concluded in discussion of the surface soil geochemical anomlies (page 27), the geochemical train in the till is much wider than the mineralized bouler train, and the west edge of the till is eroded away in Trench 90-02. Therefore a larger bedrock source for the till geochemical values must lie some distance up-ice, to the south of this trench.

Petrographic analysis of a sample taken at 70 metres was determined to be a metamorphosed and moderately foliated porphyritic (plagioclase) diorite.

Trench 90-05

This trench was dug in a west to east direction between trenches 90-01 and 90-02 to test a zone of gold, copper, and arsenic soil anomalies. Overburden depth ranged from 1 to 1.8 metres and consisted of lacustrine clays and sand and gravels overlying glacial till. A 0.5 to 0.75 metre thick horizon of intensely limonitic and hematitic material was noted just above the till.

Bedrock consisted of a weakly foliated, non-descript fine-grained diorite. This unit is composed of interlocking crystals of plagioclase, hornblende, and lesser quartz with up to 10% of sub-rounded hornblende phenocrysts two to three millimetres in diameter. Foliation strikes approximately 040°. Fracturing is moderate with fractures commonly healed by quartz, epidote, chlorite, and lesser sericite and limonite. Mineralization occurs as three to four percent finely disseminated pyrite and lesser chalcopyrite. Sulphide content appears to increase with level of silicification.

Chip sampling determined low-level anomalous gold values and anomalous copper values. A composite value of 716 ppm copper over 12 metres was associated with a zone of siliceous diorite with three to four percent pyrite and about one percent chalcopyrite. Gold values averaged 59 ppb in this zone.

Overburden profile sampling determined anomalous gold, copper, and arsenic values in the first 10 metres of the trench (Figure 20). Samples taken below one and two metre depths returned values up to 145 ppb gold, 3835 ppm copper, and 4456 ppm arsenic. These anomalous values do not reflect the immediate underlying bedrock which again suggests a glacially transported source.

Trench 90-06

This trench was excavated between trenches 90-05 and 90-02 to better expose the massive sulphide boulder train (Figure 14). Overburden depth ranged from 1.5 metres in the south to five metres in the north and exposed some sand and gravels overlying glacial till as shown on Figure 22. The massive sulphide boulder train is up to three metres thick at the north end of the trench and clearly shows erosion down to less than one metre as it approaches trench 90-05. It's position lies within the till just below the sand and gravel horizon.

The exposed bedrock consists of a weakly foliated, moderately altered, medium-grained quartz diorite. Alteration is predominantly pervasive chlorite with lesser quartz and sericite. Silicification increases from south to north. Fractures are filled by quartz-carbonate and lesser epidote and chlorite. Fault gouges occur locally up to 15 centimetres wide and strike between 060° and 090°. They commonly host massive pyrite lenses and lesser chalcopyrite. Disseminated pyrite also occurs throughout the trench in amounts up to three percent and lesser chalcopyrite, which increases in content in more siliceous zones.

Chip sampling determined anomalous concentrations of gold, copper, silver, and arsenic in the 8 to 18.5 metre interval. A 1.2 metre sample in a highly siliceous chloritic rock returned 1130 ppb gold. Two highly anomalous samples yielded values of 1560 ppb gold, 3.6 ppm silver, and 3298 ppm copper over 2.5 metres and 2360 ppb gold, 2.9 ppm silver, and 615 ppm copper over 30 centimetres, respectively. Both were associated with sulphide-bearing fault gouges.

Overburden profile sampling determined highly anomalous gold, copper, silver, and arsenic values throughout the trench. The higher

values were associated with samples collected within the massive sulphide boulder train and returned values of up to 13,415 ppb gold, 37 ppm silver, 7337 ppm copper, and 15,497 arsenic (Figure 22). Some of the anomalous values could reflect the immediate underlying bedrock but several of them are likely related to the massive sulphide boulders.

Petrographic analysis of a sample taken at 11 metres was determined to be a metamorphosed potassic quartz diorite.

Line 10450 N

Four test pits dug along this line revealed overburden thicknesses in excess of six metres and bedrock was not reached. The geochemical results of overburden profile sampling are shown on Figure 21. The train of sulphide bearing boulders has risen to a higher level in the overburden section. The overburden is anomalous in gold, copper, arsenic, and to some degree zinc, over the full 40 metres distance of the test pits, again indicating the wide dispersion of metals in the till from a source to the south.

Trench 90-03

Location of trenches 90-03 and 90-04 are shown on Figures 5 and 15 (Trench Plan 2). Trench 90-03 was excavated to test a gold, copper, and arsenic soil anomaly. Overburden depth averaged 2.5 metres and consisted of a well developed B-horizon overlying glacial till. A lens of lacustrine clay overlies the till for the eastern-most 10 metres of the trench.

Bedrock consisted of a weakly foliated medium grained diorite interfingered with moderately foliated, highly siliceous andesitic flows. The last nine metres encountered a hornblende porphyritic andesite containing a two metre interval of strongly chloritized and foliated rock, and occasional two centimetre rounded clasts of diorite.

Foliation generally strikes 030° to 040°. Alteration assemblage is composed of chlorite, sericite, quartz, lesser epidote, and carbonate. Fractures are commonly healed by quartz and chlorite and lesser sericite. The porphyritic andesite displays a more propylitic alteration. Mineralization consists primarily of 2-3% disseminated and lesser clots of pyrite and appears to increase in zones of silicification.

Chip sampling determine a few scattered moderately anomalous gold and copper values. A two metre sample across a siliceous diorite containing up to 10% coarse pyrite at about 29 metres returned a value of 380 ppb gold. Another two metre sample across a siliceous andesite with 2-3% pyrite at about 43 metres returned 661 ppm copper. Anomalous metal values in the rocks may explain the observed soil anomalies.

Overburden profile sampling determined anomalous gold, copper, and arsenic values over the most westerly 20 metres. Values up to 130 ppb gold, 451 ppm copper, and 114 ppm arsenic were detected from the deeper samples (B and C Figure 18). These anomalous values may reflect the underlying mineralized bedrock or may be lateral dispersion from the source of the sulphide boulders which may lie some distance to the south.

Trench 90-04

1

This trench was dug to test a gold, copper, and arsenic soil anomaly. Overburden depth averaged 2.3 metres and consisted of a Bhorizon overlying glacial till. Localized clay lenses were found between the two main horizons.

Bedrock consisted mainly of weakly porphyritic (hornblende) andesite similar to the one encountered in the east end of trench 90-03. The rock contains common inclusions and dyke-like bodies of quartz diorite. Alteration shows a weak propylitic signature. Fracturing is weak to moderate with structures healed by epidote, quartz and lesser sericite and carbonate. Mineralization consists of 1-2% disseminated pyrite.

Chip sampling revealed only one anomalous sample which returned 405 ppb gold and 209 ppm copper along the most westerly 1.7 metres of the trench.

Overburden profile sampling determined weakly anomalous gold and copper values as shown on Figure 19.

9.6 Interpretation

Rocks encountered in the trenching program failed to locate the source of the massive sulphide boulders. The bedrock consisted mainly of highly altered and moderately foliated andesitic flows and fine to medium grained diorites and quartz diorites. However, petrographic analysis of samples taken in trenches 90-01, 90-02, and 90-06 indicate a more dioritic composition. This difference in interpretation is believed to be caused by the difficulty to distinguish the diorites from the volcanic rocks due to gradational contacts and the intensity of alteration. All rocks appear to have undergone some degree of strain, evidenced by the level of foliation and shearing, which may indicate nearby large underlying structures. Numerous fault gouges striking approximately 060° and 090° may reflect these larger structures. It is possible that one of these 090° structures may control the abrupt change in the direction of the Salmon River just south of the grid.

Trenching succeeded in exposing a massive sulphide boulder train approximately 25 metres wide and 55 metres long centred over trench 90-02 and 90-06. It appears to lie within the upper level of a glacial till that is overlain by a sand and gravel horizon and reaches up to five metres in thickness in test pits 90-13 and 90-14 (Figure 22) to the north. The southern extremity has clearly been eroded as the fluvial deposits dominate the topographic low near the edge of the swamp.

Chip sampling determined highly anomalous concentrations of gold, copper, silver, and arsenic commonly associated with sulphide-bearing fault gouges and zones of increased silicification and sulphide content. These values could explain some of the observed soil anomalies.

Overburden profile sampling determined highly anomalous concentrations of gold, copper, silver, and arsenic in trenches 90-02, 90-06, parts of trenches 90-01 and 90-05 and test pits 90-12, 13, and 14. This can be best seen in a longitudinal section shown on Figure 22.

These overburden anomalies are believed to derive from the same source as the massive sulphide boulder train, and perhaps some of the mineralized structures in the underlying bedrock. Anomalous values detected in trench 90-01 and the west end of trench 90-02 might have been caused by downslope dispersion or through glacial transport from a larger bedrock source to the south.

Trenches 90-03 and 90-04 located 40 metres to the east detected only a few scattered anomalous metal values in the bedrock which would indicate the lack of mineralized structures in the area. However, the overburden was somewhat anomalous possibly reflecting lateral dispersion in a train of glacially transported metals about 120 meters wide.

10.0 CONCLUSIONS

1. Diamond drilling indicated structurally controlled gold and copper mineralization in the southern most drill holes. Anomalous gold and copper values are most commonly associated with shear /fault zones hosting quartzcarbonate veins and increased sulphide content. Arsenic values show a strong correlation with gold and copper values.

Determined metal values generally seemed sufficient to explain most of the observed soil anomalies.

The observed VLF-EM conductors are believed to be caused by fault zones. The restriction of gold and copper mineralization to structural control suggests that these conductors may be better exploration targets.

- 2. Massive sulphide boulders hosting high grade gold and copper mineralization were discovered on the western part of the property on line 10450N.
- 3. The New Showing grid contains anomalous coincident gold, copper, and arsenic soil geochemistry defining a trend about 140 metres wide and beyond the limits of the 300 metre long grid. This is shown in the surface geochemistry, Figures 9-11, and overburden profiles of trenches 90-02 and 90-03 (Figures 17 and 18). The trend strikes approximately parallel to the ice flow direction and overlies the massive sulphide boulder train. A bedrock source for both the mineralized boulders and the geochemical dispersion tain must lie somewhere south of line 10400N.
- 4. The VLF-EM survey detected a few conductors on the New Showing grid, trending between 330° and 030°. These may be reflecting sheared or schistose zones within the host rocks. There is also a connection between the VLF-EM conductors and the anomalous soil values.
- 5. Trenching on the New Showing grid failed to locate the source of the massive sulphide boulders but did expose a boulder train 25 metres wide by 55 metres long, striking parallel to the ice flow direction. The boulder train lies within the upper part of a glacial till horizon overlain by a sand and gravel horizon and reaches up to five metres in thickness.

Chip sampling of bedrock in the trenches determined anomalous concentrations of gold, copper, silver, and arsenic most commonly associated with sulphide-bearing fault gouges.

11.0. RECOMMENDATIONS

Further exploration in the new showing area should be undertaken during a winter work program to try and locate the source of the massive sulphide boulders.

The objective would be to establish the trend and size of a target by means of a time domain EM survey, followed up with a drill program. A fill-in grid should be constructed over the swamp area for survey control.

If a geophysical anomaly is detected, a diamond drill program should be conducted in a series of fences over the anomaly. If the survey is inconclusive, a reverse circulation drill program should be undertaken in the swamp area in a series of closely-spaced fences and drilled down to bedrock.

12.0 REFERENCES

- Armstrong, J.D. Tipper, H.W., Hoadley, J.W.: 1961, Geology of McLeod Lake, Map 1204A, G.S.C.
- Cannon, R.W.: September 1988, Geophysical Survey Report on the Windy 1-5 Claims; Placer Dome Inc.
- Fraser, D.C.: 1969, Countouring of VLF-EM data; Geophysics, v. 34, p. 958-967.
- Cannon, R.W.: September 1989, Geophysical Report on the Windy 1-18, 19 Fr. Claims; Placer Dome Inc.
- Frostad, S.: December 1989, Geological, Geochemical and Diamond Drilling Report on the Windy 1-27 Claims; Placer Dome Inc.
- Pentland, W., Cannon, R.W., P. Eng., and Thomson, I.: April 1987, A Geological Geophysical, and Geochemical Report on the Windy 1-5 Claims; Placer Dome Inc.
- Price, S.: November 1987, A Geochemical, Geophysical, and Trenching Report on the Windy 1-5 Claims; Placer Dome Inc.
- Price, S.: November 1988, Geochemical and Geological Report on the Windy 1-5 Claims; Placer Dome Inc.

13.0 STATEMENT OF EXPENDITURES

The following lists the approximate expenditures which Placer Dome Inc. incurred on the Windy property during the 1990 work program.

TABLE 5

Statement of Expenditures

<u>Personnel</u>

Marc Deschenes (Project Geologist) 43 days @ \$247/day	\$ 10,621.00	
Doug Leishman (Project Geologist) 17 days @ \$371/day	6,307.00	
Bruno Barde (District Geologist) 1 day @ \$470/day	470.00	
Neil Martin (Technician) 6 days @ \$231/day	1,386.00	
Gilles Demers (Field Assistant) 41 days @ \$194/day	7,954.00	
Scott Knight (Field Assistant) 12 days @ \$155/day	1,860.00	
Dave Turner (Field Assistant) 4 days @ \$155/day	620.00	
Arnd Burgert (Field Assistant) 4 days @ \$155/day	620.00	
Marc McGinnis (Field Assistant) 1 day @ \$151/day	151.00	
Olive Dodd (Cook) 35 days @ \$140/day	4,900.00	\$ <u>34,889.00</u>

Total forward

34,889.00

Total forward		34,889.00
Road and Site Preparation		
M.B. Contracting: TD-15 Cat and operator 14 days @ \$750/day	\$ 10,500.00	
Luckyhouse Contracting: D-6 Cat and operator 3 days @ \$835/day	_2,505.00	13,005.00
Diamond Drilling		
Leclerc Drilling Ltd.: Longyear S-38 rig 684 metres @ \$60/metre Other costs	41,040.00 <u>6,695.00</u>	47,735.00
Trenching		
Hat Lake Logging Ltd.: Cat D240 backhoe and operator 11 days @ \$1,068/day		11,748.00
Labour		
SKD Contracting 20 days @ \$136/day		2,720.00
Consulting		
Vancouver Petrographics Ltd. 7 samples @ \$98 each		682.00
Camp Costs		
PDI 164 man days Contractors <u>81</u> man days		
245 man days @		<u>12,250.00</u>
\$50/man/day Total forward		123,029.00

45

í

Total forward		123,029.00
Analytical		120,020100
Rock and drill core; geochem for Au, Ag, Cu, Pb, Zn, As 488 samples @ \$15 each	7,320.00	
Sludge: geochem for Au, Ag, Cu 26 samples @ \$8 each	208.00	
Soils: geochem for Au, Ag, Cu, Pb, Zn, As 295 samples @ \$12 each	3,540.00	11,068.00
Vehicle rentals: 3 4x4 trucks 32 days @ \$35/day	3,360.00	
Vehicle repairs & maintenance ATV's & trucks	<u>3,315.00</u>	6,675.00
Fuel: Gas, diesel, propane, oil		2,148.00
Expediting & Freight		2,228.00
Communications		406.00
Equipment & Supplies		1,407.00
Travel & Accommodations		1,512.00
Miscellaneous: Fine for avoidable waste		<u>3,429.00</u>

ļ

Total forward

151,902.00

Total forward		151,902.00
Report Preparation		
Compilation and Writing	3,000.00	
Drafting & typing	1,000.00	
Map Reproductions	500.00	4,500.00

Total

1

. . .

March 1997 Annual Constraints

\$ 156,402.00

14.0 STATEMENT OF QUALIFICATIONS

ĺ

I, Marc Deschenes, of the city of Castlegar, B.C., do hereby certify that:

- 1. I am a graduate from l'Ecole Polytechnique de Montreal, Montreal, Quebec, where I received a B.A.Sc. in Geological Engineering (Exploration Option), in May 1984.
- 2. From 1980 until the present, I have been involved in studying geology or working in the mineral exploration field in various regions of Canada. I have been employed by Placer Dome Inc. temporarily since May 1988.
- 3. I am a member of the Order of Engineers of Quebec.
- 4. I personally participated in the field work described in this report, and have compiled, reviewed, and assessed the resulting data.

Respectfully Submitted,

Man Deukine

Marc Deschenes, B.A.Sc., Geol. Eng.

APPENDIX I

and the second second

1.1

1

EXPLANATION

OF

DRILL AND TRENCH LOG CODES

LOGGING CODE EXPLANATION

Column 1 is a key which indicates the type of data or information on each line.

- I Identity information/data
- S Survey data
- / Upper tier geologic data
- L Lower tier geologic data
- R Free form remarks
- A Assay and analysis data

I DATA

Each Drill Hole or trench has two I lines at the start.

The first line indicates: Col. 11 to 16 - ID of Project Col. 17 to 24 - Drill Hole or Trench Name Col. 29 to 35 - Day/Month/Year Logged Col. 36 to 38 - Logger's Initials Col. 39 to 41 - Helper's Initials (if any) Col. 60 to 62 - Coordinate system Col. 63 to 68 - Grid Azimuth (0.0 if True North)

The second line indicates.

Col. 5 to 45 - Company Name Col. 46 to 69 - Property or Project or Sub Project Name

S DATA

The S000 line is the collar survey data. Subsequent S Lines (S001, S002, etc.) are down-the-hole surveys.

/ AND L DATA

Two lines are available to describe a geologic interval, the upper line (/) and the lower line (L). The /NAM line defines the mineral fields for the upper line.

ST_Geocode - upper_(/NAM) line

TRENCHING

DRILLING

					Chlorite
					Carbonate
					Quartz
					K-Feldspar
					Clay
					Pyrite
					Chalcopyrite
					Arsenopyrite
Col.	73,	74	GL	-	Galena

- CL Chlorite
- CB Carbonate
- SI Quartz
- KF K-Feldspar

- P1 Disseminated Pyrite P2 Blebs of Pyrite P3 Fracture Filling Pyrite
- MG Magnetite

ST Geocode - Lower (LNAM) Line

TRENCHING

DRILLING

Col.	57,	58	EP -	Epidote	EP - Epidote
Col.	59,	60	SE -	Sericite	SE - Sericite
Col.	61,	62	HE -	Hematite	HE - Hematite
Col.	63,	64	LI -	Limonite	LI - Limonite
Col.	65,	66	MA -	Malachite	MA - Malachite
Col.	67,	68	PL -	Pyrolusite	PL - Pyrolusite

Upper (/) Geologic Data

					From (decimal inferred between 8 and 9)
					To (decimal inferred between 14 and 15)
Col.	24	to	27	-	Rock Type Code - See Rock Type Chart
Col.	28	to	29	-	Typifying Mineral 1 - see Mineral Chart
Col.	30	to	31		Typifying Mineral 2 - see Mineral Chart
					Main Rock Forming Mineral 1 - See
					Mineral Chart
Col.	34				Rock Forming Mineral Field, Amount of
					Occurrences, See G Scale Chart
Col.	35	to	36	-	Texture 1 - see Texture Chart
Col.	37	to	38	-	Texture 2 - see Texture Chart
Col.	47			_	Essentially always a "P" which stands
					for Principle Geologic Interval. If
					"N", it stands for Nested Interval

which means all of the above interval
description applies, except as noted.
Col. 49 to 50 - Structure 1 - see Structure Chart
Col. 51 to 53 - Azimuth of Structure 1.
Col. 54 to 56 - Dip of Structure 1.
Col. 57 - Mineral Field, Mode of Occurrence - See
H Scale Chart
Col. 58 - Mineral Field, Amount of Occurrence -
See G Scale Chart
Col. 59 to 74 - Mineral Fields, sample pattern
continues
(ie. G. Scale How, Amount) as in
columns 57, 58.

Lower (L) Geologic Data

Col. 28 to 29 - Colour Code - See Colour Chart Col. 30 to 31 - Typifying Mineral 3 - See Mineral Chart	5
Col. 32 to 33 - Main Rock Forming Mineral 2 - See Mineral Chart	
Col. 34 - Rock Forming Mineral Field - Amount of Occurrence - See G Scale Chart	
Col. 35 to 36 - Texture 3 - see Texture Chart	
Col. 43 - Count of Fractures at Steep Angle to Core Axis - See F Scale	
Col. 44 - Count of Fractures at Medium Angle to Core Axis - See F Scale	
Col. 45 - Count of Fracture at Low Angle to Core Axis - See F Scale	
Col. 49 to 50 - Structure 2 - See Structure Chart	
Col. 51 to 53 - Azimuth of Structure 2	
Col. 54 - Dip of Structure 2	
Col. 55 to 56 - Angle to Core Axis of Structure 2	
Col. 57 to 64 - Mineral Fields, as in upper (/) Data	

Note: Columns 43 to 46 not always used

<u>R DATA</u>

These are free form remarks written by the logger to further describe the geologic interval. Note that Rock Type Codes (see Rock Type Charts are often used.

A DATA

This last type of data lists the assay information for the trench or drill hole.

Note that remarks are also used.

Drilling

A001 Split core samples, assay results A002 Recovery, RQD A003 Sludge samples, assay results

Trenching

A001 Chip samples, assay results A002 Structure samples, assay results A003 Grab samples, assay results

The following lines describe and list the assay data.

Col.	17	to	80	-	Define Laboratory
Col.	17	to	30	-	Define Type of Determination
Col.	17	to	80	-	Define Assay Fields
Col.	1	to	4	-	Defines Sample Type
Col.	5	to	10	-	From (decimal inferred between 8 and 9)
Col.	11	to	16	-	To (decimal inferred between 14 and 15)
Col.	21	to	26	-	Sample Number
Col.	27	to	32	-	Gold ppb
Col.	33	to	38	-	Silver ppm
Col.	39	to	44	-	Arsenic ppm
Col.	45	to	50	-	Copper ppm
Col.	51	to	56	-	Lead ppm
Col.	57	to	62	-	Zinc ppm
	Col. Col. Col. Col. Col. Col. Col. Col.	Col. 17 Col. 17 Col. 1 Col. 5 Col. 11 Col. 21 Col. 27 Col. 33 Col. 39 Col. 45 Col. 51	Col. 17 to Col. 17 to Col. 1 to Col. 5 to Col. 11 to Col. 21 to Col. 27 to Col. 33 to Col. 39 to Col. 45 to Col. 51 to	Col. 17 to 30 Col. 17 to 80 Col. 1 to 4 Col. 5 to 10 Col. 11 to 16 Col. 21 to 26 Col. 27 to 32 Col. 33 to 38 Col. 39 to 44 Col. 45 to 50 Col. 51 to 56	Col. 17 to 30 - Col. 17 to 80 - Col. 1 to 4 - Col. 5 to 10 -

CHARTS

1. <u>Rock Type Chart</u>

A four letter code is used to describe rock types. The first four letters of a rock type name is its preferred code. If the fourth letter is a vowel, the vowel is replaced by the next consonant.

Letter Code

Lithology

OVBD BRXX	OVERBURDEN BRECCIA
FABX	FAULT BRECCIA
FWBX	FLOW BRECCIA
VEIN	VEIN
DIOR	DIORITE
QZDR	QUARTZ DIORITE
PPDR	PORPHYRITIC DIORITE
FGDR	FINE GRAINED QUARTZ DIORITE

MSSF	MASSIVE SULFIDE
PGDK	PEGMATITE DYKE
MSSF	MASSIVE SULPHIDE
QZMZ	QUARTZ MONZONITE
MZDI	MONZO DIORITE
FE/D	FELSIC DYKE
SIBX	SILICA BRECCIA
MONZ	MONZONITE
SYEN	SYENITE
IM/D	INTERMEDIATE DYKE
MGDR	MEDIUM GRAINED DIORITE
MF/D	MAFIC DYKE
CGDR	COARSE GRAINED DIORITE
AGLM	AGGLOMERATE
ANLT	LAPILLI TUFF
ANAT	ASH TUFF
ANXL	CRYSTAL TUFF
AN/F	MASSIVE FLOWS
PPAN	PORPHYRITIC ANDESITE
CLPH	CHLORITIC PHYLLITE
ANQE	QUARTZ-EYE TUFF
QZVN	QUARTZ VEIN
QCVN	QUARTZ-CARBONATE VEIN
CBVN	CARBONATE VEIN
FECR	FERRICRETE
FALT	FAULT
SHER	SHEAR
BRXX	BRECCIA
GOUG	GOUGE
STKW	STOCKWORK
CASE	CASING
LOST	LOST CORE GROUND CORE
MCOR	MISSING CORE

The second s

2. <u>Mineral Chart (ie. Mineral short-forms</u>)

Logging Code Explanation, continue	Logging	Code	Explanat	ion,	continue	đ
------------------------------------	---------	------	----------	------	----------	---

•

53	PLAGIOCLASE
PF	
HB	HORNBLENDE
QZ	QUARTZ
SE	SERICITE
SI	SILICA
CP	CHALCOPYRITE
GL	GALENA
AU	GOLD
HE	HEMATITE
MG	MAGNETITE
MO	MOLYBDENITE
РҮ	PYRITE
P1	DISSEMINATED PYRITE
P2	BLEBS OF PYRITE
P3	FRACTURE FILLING PYRITE
PO	PYRRHOTITE
MC	MALACHITE
AG	AUGITE
MF	MAFIC MINERALS
PX	PYROXENE
ТА	TALC
АР	ARSENOPYRITE
GR	GRAPHITE
CU	COPPER
LI	LIMONITE
DR	DIORITE
CV	CALCITE VEIN
QZ	QUARTZ VEIN
C1	CHLORITE VEIN
CE	CHLORITE ENVELOPE
E1	EPIDOTE VEIN
 E2	EPIDOTE ENVELOPE

....

3.	<u>Texture</u>	Chart	(ie.	Texture	Short Forms)
sc				SCHIS	TOSE
BN				BANDE	D
MX				MEGAC	RYSTIC
VG				VUGGY	
LM				LAMIN	ATED
BR				BRECC	IATED
\mathbf{PP}				PORPH	YRITIC
EQ				EQUIG	RANULAR
VF				VERY	FINE GRAINED
FG				FINE	GRAINED
MG				MEDIU	M GRAINED
CG				COARS	E GRAINED
SH				SHEAR	ED

ţ

53	WEAKLY SHEARED
S5	MODERATELY SHEARED
S7	INTENSELY SHEARED
R2	SLIGHTLY REWORKED
R5	MODERATELY REWORKED
R7	STRONGLY REWORKED
RW	REWORKED
AG	AUGEN STRUCTURED
SW	STOCKWORKED
BK	BLOCKY
KR	CRACKLED
vv	VEINED
PA	PATCHY
FO	FOLIATED
F3	WEAKLY FOLIATED
F5	MODERATELY FOLIATED
F7	INTENSELY FOLIATED
FF	FRACTURE FILLED
FZ	FAULTED
SL	SLICKENSLIDED
AM	AMYGDULES
GT	GRANITIC
FR	FRAGMENTAL

4. <u>Structure Chart (ie. Structure Short-Forms)</u>

BN	BANDED
BD	BEDDED
BR	BRECCIATED
QV	QUARTZ VEINS
SH	SHEAR ZONE
<<	MICROVEINS
>>	MACROVEINS
FZ	FAULT
c/	CONTACT
D/	DYKE
FS	FRACTURE SET
GN	GNEISSOSITY
LS	LENS
MX	MASSIVE
V/	VEIN
VE	EPIDOTE VEIN
VC	CALCITE VEIN
VP	PYRITE VEIN
VQ	QUARTZ VEIN
VG	GYPSUM VEIN
FO	FOLIATION
SC	SCHISTOSITY
LN	LINEATED
Н	SHEAR

5. <u>How Chart or H Scale</u>

<u>Symbol</u>

••

ļ

Most Dominant Mode of Occurrence

А	Amygdaloids, cavity fillings
B	Blebs
ь #	Breccia Fillings
# C	Coatings & Encrustations
*	Clasts
Ď	Disseminations & Scat.x'ls
E	Envelopes
E F	Framework Crystals
F G	
	Gouge Halos
H	
I	Eyes, Augen
J	Interstitial
ĸ	Stockwork
L	Laminated/bedded
М	Massive
N	Nodules
0	Spots
Q	Patches, as in quilts'
R	Rosettes & x'tls clusters
S	Salvages
\$	Sheeting
т	Stainings, as in tarnish
U	Euhedral
V	Veins
>	Macroveins
<	Microveins
W	Boxwork
х	Massive and/or laminated/bedding
Y	Dalmationite
Z	Fresh, primary rock
+	Flooding
	*

6. <u>G Scale or Amount Chart</u>

	Code	Assigned <u>Value</u>	Range
х	100	100	÷
9	90	85	to 99
8	80	75	to <85
7	70	65	to <75
6	60	55	to <65
5	50	45	to <55
4	40	35	to <45
3	30	25	to <35
2	20	15	to <25
1	10	7	to <15
=	5	4	to < 7
+	3	2	to < 4
)	1	.5	to < 2
*	.3	.2	to <.5
(.1	.05	to <.2
-	.03	.02	to <.05
•	.01	Trac	ce = <.02
0	0	Nil,	, Absent
1	.07		sent: Estimate impossible
?	0	Poss	sibly Present

7. <u>Colour Chart</u>

Ì

The colour chart can be used in two ways. A lightness can be combined with colour, or two colours can be combined.

eg. 3U - Dark Brown or

RU - Reddish Brown

Lightness Symbol Value Colour Symbol Colour

9	palest	R	Red
-	•		
8	pale	U	Brown (Umber)
7	light	0	Orange
6	lighter	Ť	Tan (khaki)
5	medium	Y	Yellow
4	darker	L	Lime (Y-G)
3	dark	G	Green
2	very dark	Q	Aqua (B-P)
1	darkest	В	Blue
		v	Violet (B-P)
		P	Purple
		м	Mauve
		W	White
		А	Grey
		N	Black (Noir)

8. <u>F Scale or Fractures and Joints Intensity Chart</u>

		nge lue		Assigned Values	<u>Symbol Description</u>
			0	0	Unfractured
0	-	2	1	1	Extremely low intensity
2			3	2	Very low intensity
4	-	8	6	3	Low intensity
8	-	12	10	4	Moderately low intensity
12		18	15	5	Moderate
18	-	24	21	6	Fairly high intensity
24	-	32	28	7	High intensity
32	-	40	36	8	Very intense
40	-	50	45	9	Extremely intense
>	50)	55	х	Shattered

APPENDIX II

DIAMOND DRILL LOGS

AND

ASSAY RESULTS

```
Diamond Drill Hole 90-1
-----
IDEN680201 V216 DDH90-1 NQ 10JUL90 MD LECLJUL90S38 DALGRD 0.0
IPRJ
                                             WINDY PROPERTY
         PDI
                                                 6090339.0 445946.0
                                                                        1052.0
      00 503 MT 100.6 090.0 -50.0
S000
s001 503 1006
                   100.6 90.0 -46.7
/SCL
           MT.2
L SCL
                          LCTM
/NAM
                                                       CLCBSIKFP1P2P3MG
                                                       EPSEHECYCPLIMA
LNAM
R
                THIS DDH COLLARED TO TEST CU-AU-AS SOIL ANOMALIES AND COINCIDEN
                VLF-EM CONDUCTOR & WEAK IP ANOMALY
R
R
       00
            37 CASING TO 3.7M
       00
            37
                      OVBD
                                             Ρ
1
       37
           122
                       PPANHBPFMF*PPFG
                                             P VC
                                                       P3<1
                                                               D)
1
                                                       0*P1
                                                                T
                           AG
                                 FF
                                         3324
t
R
                PALE GREYISH-GREEN, STRONGLY ALT'D HORNBL.ANDESITE PORPHYRY
                VERY BROKEN CORE PIECES, ALT. PARTIALLY OBLITERATED TEXT.,
R
R
                PHENOCRYSTS OF ALT'D HORNB. & LESSER PLAG GRADING DOWN TO
                GROUNDMASS SIZE. ALTERATION PREDOMINANTLY CHLORITE (PERV. &
R
                PHENOS W. LESSER FRACT. FILL.; CARB OCCURS AS FRACT. FILL
R
R
                (10%), SERICITE ALT. OF PLAG X-TALS
                PY O:CCURS AS FINELY DISS X-TALS (1%)
R
                                             P VC
                                                       <1<2*5 D*
                       FABXHBPFSI4BXFG
      122 133
1
                                         3435
                           4A MF*FF
                                                         P2
L
                DARK-GREY, F.G., HIGHLY ALT'D ZONE OF FAULT BRECCIA, VERY
R
R
                BROKEN CORE, GREY SILICIFIED CLASTS IN A F.G. BLEACHED MATRIX
                CUT BY MICROVEINS OF CARB. ALT'N IS CHLORITE IN FRACTURES
R
                AND SERICITIC IN MATRIX, PYRITE OCCURS AS FINELY DISS X-TALS
R
R
                (<1%)
                                              P F0080 P8<3V* D)
      133
           424
                       CLPHHBPFMF F7S5
1
L
                           AG
                                  SCFF
                                          2578 SH060
                                                         P2 G1
                MED. GREYISH-GREEN CALCAREOUS CHLORITIC PHYLLITE DISPLAYING
₽
                LOCAL ZONES OF INTENSE SHEARING/FRACTURING, CLAY ALT'D FAULT
R
                GOUGES & QUARTZ VEINS (UP TO 40 CM WIDE)
R
R
                TEXT. DOMINANTLY FOLIATED SHOWING ALTERNATING BANDS OF CHLOR.
                & CARB 30-80 TO C.A.
R
                INTENSE SHEARING ALONG GOUGE ZONES
R
                FOLIATED PHENOCRYSTS OF ALT'D HORNB & PLAG THROUGHOUT, POSS
R
R
                ORIGINAL PORPH. ANDESITE.
                ALT. PREDOM. PERVASIVE & FRACTURE FILL CHLO;R. & CARB. W.
R
                LESSER PERVASIVE SERICITE. PY OCCURING AS FINELY DISS. W.
R
R
                LESSER FRACTURE FILL.
                14.1-16.2 INTENSELY FRACTURED, BLEACHED ZONE.
R
R
                19.6-23.1
                              Ħ
                                       11
                                             , & ALT'D ZONE.
                23.6-24.8 QZ(CARB)VEIN BOUNDED BY GOUGE ZONES
R
                26.0-26.4 BLEACHED QZ-CARB ALT'D ZONE
R
                27.8-28.3 FAULT GOUGE (60 TO C.A.)
R
R
                28.6-29.1 BLEACHED QZ-CARB ALT'D ZONE
                30.2-40.3 INTENSELY FOLIATED & ALT'D & SHEARED ZONE
R
                32.1-32.3 FAULT GOUGE
R
                33.1-33.3 BLEACHED QZ-CARB ALT'D ZONE
R
                37.1-38.0 CLAY ALT'D FAULT GOUGE
R
                40.3-42.4 WEAKLY PORPH., MOD ALT'D ANDESITE
R
            536
                       PPANHBPFMF PPFF
                                              P VE065 P5<1>* D)
1
      424
                                         2333 <<
                                                        R2P=<=G1
                           3G
                                  SH
L
                DARK GREEN HORNB(PLAG)PORPHYRITIC ANDESITE DISPLAYING TYPICAL
R
                PROPYLLITIC ALT
R
R
                PHENO'S OF HORNB (0.5CM) W LESSSER & SMALLER PLAG MAKE UP
```

and the second of the second second

R		30-40% OF ROCK (ANGULAR TO SUB-ROUNDED), CARB ALT. OCCURS AS
R		FRACT. FILL & VEINS (UP TO 1.5CM)
R		CHLOR. ALT PERVASIVE
R		EPID. ALT OCCURS AS GRAIN CLUSTERS & LESSER AS VEINS (UP TO
R		5 CM) 45-80 TO C.A. +FRACT. FILL
R		HEM ALT OCCURS AS FRACT. FILL
R		43.9 10CM EP VEIN 080 TO C.A. FOLLOWED BY 1.5CM CARB VEIN
R		45.7 3CM EP VEIN 50 TO C.A.
R		48.2 3CM EP VEIN 50 TO C.A.
R		48.7 20 CM EP VEIN 60 TO C.A.
R		50.0 3CM EP VEIN 70 TO C.A.
R		51.0-53.6 INTENSELY ALT'D & FRACT'D ZONE W. LOCALIZED FAULT
R		GOUGES
R		51.7 20 CM QZ-CB VEIN Q 0 TO C.A.
/	53.6	56.7 PPANHBPFMF F3FF P F0070 P3<2>) D*
L		AG SH 2345 << R)P* G*
R		GREYISH-GREEN, F. GR'D, WEAKLY FOLIATED, CALCAREOUS PORPH.
R		ANDESITE, ORIGINAL TEXTURE OBLITERATED BY STRONG ALT.,
R		QZ-CARB ALT. OCCURS AS FRACT. FILL & VEINS
R		MINOR AMOUNTS OF DISS PY
R		54.6-54.8 FAULT GOUGE @ 70 TO C.A.
R	54 7	55.2 1 CM QZ. CARB VEIN 67.4 PPANHBPFMF*PPFF P VCO70 P2>1>+R(<*
/	20.1	AG F3SH 2333 << <1P1<)G+
L R		LIGHT GREYISH-GREEN MOD ALT'D HORNB (PLAG) PORPH. ANDESITE
R		ANGULAR HORNB. PHENO'S & LESSER 1-3 MM PLAG, PHENO'S IN A
R		MATRIX OF SIMILAR COMP?
R		QZ-CARB ALT OCCURS AS FRACT FILL. & MACROVEINS 50-80 TO C.A.
R		MINOR EPID ALT. AS FRACT. FILL & PATCHES
R		TRACES OF KF ALT AROUND 67.4 OCCURING AS PATCHES
R		57.5-58.2: BLEACHED INTENSELY ALT'D F.G. PORPH. ANDESITE W.
R		1.2% DISS PY
R		58.2-59.0: INTENSELY ALT'D ZONE, VERY BROKEN CORE
R		61.8-63.3: DARKER GREEN, WEAKLY FOLIATED ZONE W. LOCALIZED
R		NARROW FAULT GOUGES
R		64.4-64.8: MORE INTENSE ALT ZONE OBLITERATING TEXTURE
7	674	710 SHERCYCL S7BX P SH P2<1<1 <(
L		AGSE F3 5889 << R1 P4 V
R		LIGHT, GREYISH-GREEN, INTENSELY ALT'D SHEAR ZONE W. LOCALIZED
R		BRECCIA ZONES.ORIGINAL HB/PF ANDESITE PORPH. TEXT GENERALY
R		OBLITERATED BY ALT; LOCALY FOLIATED
R		ALT DOMINANTLY CLAY, SER, CHLOR & QZ-CARB VEINING
Ŕ		PY OCCURS <1% AS F.F. & STRINGERS
R		SILICIFIED CLASTS UP TO 3CM OCCUR IN A CLAY MATRIX
R		UNIDENTIFIED WHITE, SOFT MINERAL @ 69.1 & 69.3: POSS.GYPSUM?
1	710	823 PPANHBPFMF1PPBX P VQ P2<=>=Q* <)
L		5G S5FF 1234 SH E*P2<*G1
R		PALE GREEN, MOD ALT'D, C.G. HORNB/PLAG ANDESITE PORPHYRY
R		LOCALY SHEARED & CLAY ALT'D & LOCALY SHOWING FLOW BRECCIA W.SUB
R		ROUNDED MAFIC FRAGS UP TO 10 CM
R		QZ-CARB ALT IS MOD, OCCURING ALONG FRACT; SOME MINOR K-SPAR ASSOC
R		(<1%)AS PATCHES & F.F. CHLOR ALT OF PHENOS, MATRIX & ALONG FRACT W.SOME MINOR PERV SERIC ALT. MINOR EPID ALT (ENV.ALONG QZ-CHLOR
R		
R		VEINLETS) & HEM ALT (F.F.) ~1% PY OCCURING AS F.F.& GRAIN CLUSTERS IN MAFIC FRAGS & LESSER
R R		AS FINE DISS
R		77.5-78.7: FLOW BRECCIA
, /	823	966 PPANHBPFCL4S7BX P VQ P4>=V1R*D) <)R)
, L	523	3G MF=FFPP 5677 VC <+P1<*G2
R		DARK-GREEN INTENSELY SHEARED & CHLORITIC ALT'D ANDESITE (WEAKLY

ł

R			PORPH)_ABUND	ANT QZ	-CARB	ALT OC	CURING	AS IRREG FRACT & VEINS (UP
Ŕ			TO 2 CM).INT	ENSE C	HLOR	ALT THR	OUGHOU	T & LESSER SERIC, EPID & HEM
Ř			ALT AS F.F.	& GRAI	N ÇLU	STERS		
R			INTERMITTENT	FAULT	GOUG	ES & FA	ULT BR	ECCIAS
R			1-2% PY OCCU	RING A	S GRA	IN CLUS	STERS,1	% AS DISS & 1% AS F.F.
R			82.9-83.5: F	AULT G	OUGE			
R			84.5 : 6	CM QZ	VEIN			
R			86.6 : 2	2 CM Q2	VEIN			
R			87.3 : 1	2 CM 0	Z VEI	м		
R			87.5-89.5: F	AULT	OUGE	W.3 CM	QZ VEI	N @ 89.3
R			96.1 : 3	5 CM QZ	-CARB	VEIN		
	966	1006		BPFCL2			P VQ	P2>+V1 D* <)R*
L			A	G MF=	BXFF	7657	7 >>	P2<=G3
R								FRACT'D HORNB(PLAG)AND PORPH
R								D & ALT'D FAULT ZONES W.ASSO
					100 0 - A	3306 #.	TKAGI	D & ALT D TRUES 20463 #.R330
R			QZ-CARB VEIN			07 047		1110 9 3.79 F F 9 DIEDO OF DV
R								IING & 2-3% F.F.& BLEBS OF PY
R			98.5-99.6: 1	NIENSE	LT FR	ACTOR	E CHLOR	CALI'D ZONE
R			E.O.H.					
R			SAMPLES					
A001								
AUMM			SAMPLE	Au	Ag	As	Cu	
R				ppo	ppm	ppm	ppm	
ALAB			PDI RESEARCH	ł				
ATYP			SPLIT CORE					
AMTH			WET GEOCHEM	A.A.				
R	00	37	CASING - NO	RECON	/ERY			
A001	37	67	14176	3	0.1	20	63	
A001	67	87	14177	70	0.4	1260	122	
A001	87	107	14178	3	0.1	20	151	
A001	107	122	14179	10	0.1	300	64	
A001	122	133		10	0.1	24	207	
A001	133	159		15	0.1	128	136	
A001	159	179		10	0.1	12	100	
A001	179	199		15	0.1	66	156	
A001	199	220		45	0.1	44	330	
						16	310	
A001	220	236		30	0,1	10	310	
R		~ ~ ~	QZ VEIN		~ ^	-	~ ~	
A001	236	248		10	0.1	2	94	
A001	248	268		10	0.1	10	96	
A001	268	288		10	0.1	20	40	
A001	288	308	14189	15	0.1	10	89	
A001	308	328	14190	5	0.1	4	58	
A001	328	348	14191	10	0.1	6	132	
A001	348	368	14192	20	0.1	1	310	
A001	368	388	14193	35	0.1	4	212	
A001	388	408	14194	15	0.1	1	172	
A001	408	424	14195	20	0.1	8	128	
A001	424	444	14196	15	0.1	6	110	
A001	444	464		5	0.1	6	116	
A001	464	484		3	0.1	6	130	
A001	484	510		3	0.1	1	120	
A001	510	536		55	0.1	1	920	
	536	556		15	0.1	1	246	
A001							240 90	
A001	556	567		3	0.1	2		
A001	567	582		3	0.1	1	98 150	
A001	582	602		3	0.1	1	150	
A001	602	619		3	0.1	1	111	
A001	619	640		30	0.1	1	176	
A001	640	660	14207	10	0.1	1	130	
AUUT	04V	000	14207	10	0.1	1	150	

A001	660	674	14208	5	0.1	1	155
A00 1	674	694	14209	15	0.1	1	183
A001	694	710	14210	10	0.1	1	105
A 001	i 710	730	14211	10	0.1	1	154
A 001	1 730	750	14212	5	0.1	6	78
A001		770	14213	10	0.1	6	78
A001		790	14214	20	0.1	12	232
A001		810	14215	15	0.1	14	84
A001		823	14216	25	0.1	10	97
A001			14217	20	0.1	14	210
A001			14218	70	0.2	44	390
A001			14219	75	0.4	52	440
A00'			14220	150	1.0	90	540
A001			14221	40	0.3	108	273
A001			14222	40	0.1	74	312
A001			14223	100	0.4	152	330
A001			14224	65 790	0.2	50 720	140
A001			14225	380	1.7	320	540
A001	1 986	1006	14226	15	0.2	4	176
R A002	2		E.O.H.				
AUM				RECOVY	RQD		
R	" 00	37	CASING -				
A00			CASING	32.8	0.0		
A00				72.4	6.6		
A00				52.6	8.6		
A00				65.2	0.0		
A00				56.3	4.7		
A00				58.8	9.8		
A00				26.3	0.0		
A00				69.1	6.6		
A00				55.6	0.0		
A00				65.8	14.5		
A00	2 204	220		55.6	7.1		
A00	2 220	235		78.9	19.7		
A00	2 235	250		49.3	0.0		
A00	2 250	265		52.3	7.2		
A00	2 265	280		39.5	0.0		
A00	2 280	288		•	-		
A00	2 288	311		57.5	4.9		
A00	2 311	320		82.4	0.0		
A00	2 320	338		84.7	0.0		
A00	2 338	354		94.8	8.5		
A00	2 354	369		78.9	0.0		
A00	2 369	384		95.4	0.0		
A00	2 384	399		98.0	6.5		
A00	2 399	408		97.8	0.0		
A00	2 408	424		85.5	6.6		
A00	2 424			98.0			
A00				85.5	7.2		
A00				100.0	0.0		
A00				69.7	18.9		
A00				69.7	0.0		
A00				98.7	30.9		
A00				94.8	15.0		
A00				100.0	36.2		
A00				92.1	0.0		
A00				98.0			
A00				100.0	0.0		
A00	2 555	567		92.0	0.0		

A002	567	570			74.0	0.0	
A002	570	582			95.0	12.0	
A002	582	594			95.0	0.0	
A002	594	607			98.0	14.0	
A002	607	610			95.0	0.0	
A002	610	619			70.0	0.0	
A002	619	646			95.0		
A002	646	661			98.0		
A002	661	674			93.0	0.0	
A002	674	689			90.0		
A002	689	701			94.0		
A002	701	710			100.0	56.0	
A002	710	722			50.0	0.0	
A002	722	735			90.0	11.0	
A002	735	738			100.0		
A002	738	750			90.0		
A002	750	762			94.0	8.0	
A002	762	771			67.0	0.0	
A002	771	789			97.0	22.0	
A002	789	799			100.0		
A002	799	808			98.0	30.0	
A002	808	823			96.0	57.0	
A002	823	829			100.0	33.0	
A002	829	835			100.0	0.0	
A002	835	850			100.0	71.0	
A002	850	860			100.0	19.0	
A002	860	875			100.0	40.0	
A002	875	887			70.0	40.0	
A002	887	893			100.0	42.0	
A002	893	914			80.0	11.0	
A002	914	921			82.0	0.0	
A002	921	935			96.0	63.0	
A002	935	945			92.0	51.0	
A002	945	966			90.0	36.0	
A002	966	982			100.0	13.0	
A002	982	994			62.0	0.0	
A002	994	1006			100.0	33.0	
R			E.0.	.н.			
A003							
AUMM				SAMPLE	Ag	Au	Çu
R					ppm	ppb	ppm
ALAB			PDI	RESEARC	H		
ATYP			\$LU	DGE			
AMTH			WET	GEOCHE	I A.A.		
A003	128	156		15101	32.0	180	245
A003	156	189		15102	0.3	3	143
A003	189	216		15103	0.6	45	760
A003	216	250		15104		40	323
A003	250	280		15105	0.1	15	141
A003	280	341		15106	0.1	3	161
A003	341	372		15107	0.1	30	296
A003	372	402		15108	0.1	5	239
A003	402	433		15109		10	172
A003	771	805		15110	0.1	3	232
A003	805	829		15111	0.1	3	176
A003	829	856		15112		5	250
A003	887	936			10.0		360
A003	951	982		15114			320
/END					÷		
, 2.10							

ł

Diamond Drill Hole 90-2 IDEN680201 V216 DDH90-2 NG 15JUL90 ND LECLJUL90S38 DALGRD 0.0 IPRJ PLACER DOME INC WINDY PROPERTY 6090339.0 446035.0 1067.0 S000 00 506 MT 101.2 090.0 -50.0 s001 506 1012 101.2 90.0 -46.5 /SCL MT.2 LSCL LCTM /NAM CLCBSIKFP1P2P3MG EPSEHECYCPLIMA I NAM R THIS DDH COLLARED TO TEST CU-AU-AS SOIL ANOMALIES AND COINCIDEN R WEAK IP ANOMALY R 00 134 CASING TO 13.4 M 00 43 OVBD Ρ 1 43 137 AN/FHBPFB1=S7BX P SH P3<=V1 D* 1 5678 VQ080 <(P+<*G4 T+ 4G FGPP 1 R DARK GREEN, INTENSELY ALT'D (CHLOR-QZ-CARB) ANDESITIC FLOW, LOCALY R SHEARED, BRECC'D W. QZ-CARB VEINING 8 PY. <1% OCCURS AS FINE DISS ASSOC W.SHEAR ZONES & QZ-CARB VEINING FIRST 10 CM ARE PART'Y OXYDIZED R 6.6-9.8 : FAULT GOUGE W,DISS PY R 8.5-9.8 : FRACT'D QZ-CARB VEIN ₽ R 12.7-12.8: FAULT BRECC W.2-3 CM SILIC'D FRAGS FALTPEHB S7FO P F0050 P3<1Q1 D) <) 137 240 1 5AB1 RWFF 5868 VQ070 <1<*G3B(ŧ INTENS'Y SHEARED & ALT'D (CHLOR-SER-QZ/CARB-SIL), HIGHLY FRACT'D R R ANDESITIC FLOW, GREYISH-GREEN IN COLOUR TEXT DISPLAYED AS TENSIONAL FRACT'G INFILLED W.CHLOR, QZ, CARB & R R SERIC MATERIAL, STRONGLY FOLIATED QZ-CARB VEINS UP TO 15 CM WIDE, COMMONLY WITHIN FAULT GOUGES W. R ASSOC HOST CHLOR ROCK FRAGS, SOMETIMES MINERAL'D (DISS PY), 60-80 R R DEGREES TO C.A.; 1.5CM BLEB CP @ 22.1 SILICIFICATION IS PATCHY R 1-2% PY OCCURS AS FINE DISS & F.F.COMMONLY ASSOC W.GOUGES & R QZ-CARB VEINING R R BEGIN'G & END OF INTERV.CHARACT'D BY INTENSE TENSIONAL FRACT'G, FOLIATION & MICRO FOLDING R 15.3-16.0: SILIC'D ZONE W.TENSIONAL FRACT'G ~10 DEGREES TO C.A. R 16.3-22.0: ZONE OF INTENSE SHEARING W.ASSOC QZ-CARB VN & GOUGES R 240 285 FWBXHBPFMF1PPBX P >>060 P2<+P1 D(<= 1 2122 Q=<)<* 5G FF L LIGHT, MED GREEN, ALT'D FLOW BRECCIA CONSISTING MAINLY OF ALT'D R HORNB ANDESITE PORPH FRAGS, OTHERS ARE ALT'D PLAG ANDESITE (WEAK) R PORPH; CONTACTS ARE GRADATIONAL R PHENOS RANGE FROM 2MM TO 1CM, MOD ALT'D TO CHLOR R CHLOR ALT IS PERV; QZ-CARB VN'G IS WEAK; SILIC IS PATCHY; EPID R IS DOMINANTLY F.F. W.LESSER PATCHES R 25.3-26.4: 1-2CM WIDE FRACT (~10-20 DEGR TO C.A.)FILLED W.QZ-CB R & CHLOR MATER. W.ASSOC 30-40% PY;EPID OCCURS AS ENV. R 285 410 FALTPFHBMF=S7RW P SH060 P3<=V1 D) <) 1 3767 >> *)<+<)G1 FFFO Ł AG MED GREY TO DARKER GREEN, INTENS'Y SHEARED & ALT'D (CHLOR-QZ/CARB R SIL-SERIC) & FRACT'D ANDESITE PORPHYRY R SHEARING HAS PRODUCED TENSIONAL FRACT'S RESULTING IN WEAK-MOD R FOLIATION WHILE MOST OF INTERV HAS BEEN INTENS'Y ALT'D (GOUGE) R HOSTING SUB-ROUNDED SILIC'D, CHLOR'D & EPID'D FRAGS R A NETWORK OF QZ-CARB PATCHES & FRACT IS CONCENTRATED IN SHEARS R SILIC IS SELECTIVELY PERV & SEEMS TO CAUSE BRITTLE FRACT'G R PY OCCURS DISS (1-2%), F.F. (1-2%) INCREASING IN ZONES OF SHEAR'G R

1

the second se

	R			& BRECC, COMMONLY ALONG VEIN CONTACTS, IN CHLOR FRAGS & F.F./DISS
i	R			IN SILIC'D ZONES
-	R			28.5-35.1: INTENS'Y FRACT'D & ALT'D SHEAR ZONE
	R			35.1-36.5: WEAKLY ALT'D ANDESITE PORPH
	R			36.5-37.4: FAULT GOUGE
	R			37.4-40.4: HIGHLY FRACT'D SILIC'D ZONE
	/	410	533	FWBXPFHBMF≖FRRW P VQO7O P2<)P2 D) <)
	L			AG PPFF 3455 << <=<=<)
	R			LIGHT, GREYISH-GREEN, FRAGMENTAL, SELECTIVELY SILIC'D FLOW BRECCIA
	R			OF ANDESITIC COMP. COARSE FRAGS OF ALT'D HORNB & PLAG ANDESITE
	R			PORPHYRIES, MOD-STRONGLY SILIC'D, SOME ARE PARTYY EPID'D
	R			NUMEROUS FRACT FILLINGS OF CHLOR, QZ W.LESSER SER, CARB & EPID
	R			QZ-CARB VEINS W.HOST CHLOR ROCK FRAGS
	R			PY OCCURS AS 1-2% DISS (FINE-COARSE)& F.F. ASSOC W. CHLOR FRAGS
	R			& QZ-CARB VEINING
	R			CONTACTS BTW FRAGS ARE USUALLY SHARP
	R			43.0 : 3 CM QZ-CARB VEIN
	R			43.7 : 5 CM " " "
	R			46.5-48.0: STRONG CHLOR ZONE W. GRAIN CLUSTERS OF FINE-COARSE PY
	R			& CUT BY A 10 CM QZ-CARB VEIN @ 47.6
	R			48.0-53.3: HIGHLY SILIC'D ZONEW. INCREASED FRACT'G, EPID & PY
	/	533	817	FWBXPFHBMF+SHBX P VQ045 P3<=V2 D)D*<+
	L			AG FFRW 4556 SH Q+<=<*G1D(
	R			VARIABLE COLOUR RANGE FROM LIGHT GREY TO DARK GREEN
	R			INTENSELY ALT'D.FRACT'D & SHEARED ANDESITE
	R			MOST OF INTERV MAY BE DESCRIBED AS A FAULT ZONE W.ASSOC MOD-
	R			STRONG CHLOR-SERIC W.LESSER CARB-EPID ALT; QZ-CARB VEINING (UP
	R			TO 30%) & PATCHY SILIC ALSO OCCUR
	R			SHEAR ZONES & FAULT GOUGES OCCUR INTERMITT.CHARACT'D BY INTENSE
	R			FRACT'G,A HOST OF SILIC'D FRAGS,QZ-CARB VEINING (PATCHES & F.F.)
	R			& BRITTLELY FRACT'D SILICIFICATION
	R			GOUGE ZONES ARE OFTEN BOUNDED BY 20-30 CM SEGMENTS OF TENSIONAL
	R			VEINING W.ASSOC CHLOR-SER-CARB ALT
	R			WEAKER FRACT'D SHEAR ZONES DISPLAY A BRECCIATED FLOW TEXT W.UP
	R			TO 10 CM FRAGS OF ALT'D ANDESITE PORPH W.ASSOC MOD-STRONG CHLOR
	R			SER-CARB ALT, A DECREASE IN QZ-CARB VN'G, SELECT'Y PERV SILIC,
	R			LOCALIZED GOUGE ZONES (5-10 CM)
	R			PY OCCURS AS FINE-COARSE DISS 1-2%, F.F. 2-3% THROUGHOUT ROCK &
	R			INCREASES IN ZONES OF SHEAR'G, FRACT'G & SILIC. TRACES OF CP
	R			IN QZ-CARB VNS, PY IS COMMONLY ASSOC W.CHLOR FRAGS & F.F.
	R			54.7-63.5: INTENS'Y SHEARED-FRACT'D ZONE W.ABUNDANT QZ-CARB VN'G
	R			& SILIC'D FRAGS W.ASSOC 3-4% PY
	R			67.0-68.7: AS ABOVE
	R			74.1-74.9: 1-2 CM QZ VEIN(~20DEGR TO C.A.)W.ABUNDANT CHLOR MATER
	R			74.9-81.7: INTENS'Y ALT'D SHEAR ZONE
	R			76.1-80.3: 60-70% QZ-CARB VN'G W.ASSOC 3-5% PY
	1	817	859	AN/FHBPFMF=FFSH P << P4<=<1 D)
	L			4G FGPP 3455 <+ G+
	R			DARK GREEN-GREY, STRONGLY CHLOR'D, MOD FRACT'D & SHEARED ANDESITIC
	R			FLOW? W. QZ-CARB VEINLETS & STRINGERS
	R			WEAK PORPH TEXT OBLITERATED BY INTENSE CHLOR ALT
	R			ZONES OF INCREASED FRACT'G DISPLAY SILIC'D FRAGS & CHLOR-SER-QZ-
	R			CARB ALT AS F.F.(20-30%)
	R			PY (<1%) IS FINELY DISS THROUGHOUT
	R			83.7-85.9: INCREASED FRACT'G W.ASSOC SILIC'D FRAGS
	1	859	1012	PPANHBPFMF=PPSH P << P5<+>= D)
	L			FFBX 5445 SH Q=<+<+G1
	R			INTENSELY ALT'D HORNB ANDESITIC PORPHYRY W. A WEAK PROPYLLYTIC
	R			SIGNATURE. ROCK HAS BEEN MOD FRACT'D & F.F. BY CHLOR-SER-EPID-
	R			QZ/CARB & HEM

R			LOCALIZED SP	IEAR/GO	UGE ZO	NES A	RE CHAI	RACT'D BY INTENSE FRACT'G				
R								D,EPID'D & CHLOR'D FRAGS				
R			PY OCCURS AS	FINE-	MED DI	SS MA	INLY D	N THE SHEAR/BRECC'D ZONES(12				
R			85.9-88.2 : INTENS'Y ALT'D SHEAR ZONE									
R			93.6-95.9 :	AS ABO	OVE							
R			94.8-98.4 :	INCREA	SED EP	ID-RE	M ALT					
R			100.8-101.2: SHEAR/GOUGE ZONE									
R			97.1-97.4 :	CORE F	PIECES	IN PL	ASTIC	BAG DUE TO SPILLAGE DURING				
R				TRANSF	PORTATI	ON						
R			E.O.H.									
R			SAMPLES									
A001												
AUMM			SAMPLE	Au	Ag	As	Cu					
R				ppb	ppm	ppm	ppm					
ALAB			PDI RESEARCH	4								
ATYP			SPLIT CORE									
AMTH			WET GEOCHEM	A.A.								
R	00	43	CASING - NO	O RECON	/ERY							
A001	43	66	14227	3	0.2	1	163					
A001	66	97	14228	3	0.1	1	79					
A001	97	137	14229	3	0.1	1	74					
A001	137	157	14230	3	0.1	1	42					
A001	157	177	14231	10	0.3	10	192					
A001	177	1 97	14232	3	0.3	1	141					
A001	197	219	14233	10	0.3	1	228					
A001	219	240	14234	115	1.2	6	1320					
A001	240	253	14235	3	0.1	12	40					
A001	253	265	14236	25	0.4	26	348					
A001	265	285	14237	3	0.2	2	30					
A001	285	305	14238	5	0.2	1	172					
A001	305	325	14239	20	0.3	18	323					
A001	325	348	14240	10	0.2	1	75					
A001	348	366	14241	15	0.3	1	224					
A001	366	386	14242	10	0.2	1	154					
A001	386	410	14243	15	0.1	1	179					
A001	410	430		3	0.1	2	92					
A001	430	450		3	0.1	14	24					
A001	450	465		3	0.1	6	56					
A001	465	480		- 3	0.1	8	69					
A001	480	500		5	0.1	16	132					
A001	500	520		15	0.2	20	205					
A001	520	535		10	0.1	12	131					
A001	535	555		15	0.2	10	134					
A001	555	575		3	0.2	20	301					
A001	575	595		200	0.1	28	212					
A001	595	615		10	0.2	40	226					
A001	615	635		10	0.2	20	134					
A001	635	655		75	0.5	26	670					
A001	655	670		5	0.2	30	98					
A001	670	687		25	0.2	80	168					
A001	687	707		200	0.3	76	177					
A001	707	727		210	0.2	14	125					
A001	727	749		3	0.2	28	75					
A001	749	769		40	0.1	140	78					
		789 789		40 3	0.1	140	156					
A001	769 780				0.2	14	156					
A001	789 917	817		3	0.2		91					
A001	817	837		3 7		12						
A001	837	859 879		3	0.2	1	114 142					
1004												
A001 A001	859 879	899		3 3	0.2 0.1	20 1	91					

A001	899	920	14269	3		2
A001	920	940	14270	3	0.1	2
A001	940	960	14271	3	0.1	1
A001	960	980	14272	3	0.1	1
A001	980	996	14273	3	0.2	16
A001	996	1012	14274	3	0.4	10
R			E.O.H.			
A002						
AUMM				RECOVY	RQD	
R	00	43	CASING -	NO RECO	VY	
A002	43	52		14.0	0.0	
A002	52	67		46.0	0.0	
A002	67	82		83.0	15.0	
A002	82	98		39.0	10.0	
A002	98	122		12.0	0.0	
A002	122	128		57.0	0.0	
A002	128	137		33.0	0.0	
A002	137	143		90.0	17.0	
A002	143	146		95.0	0.0	
A002	146	158		78.0	11.0	
A002	158	174		56.0	11.0	
A002	174	189		53.0	0.0	
A002	189	195		66.0	0.0	
A002	195	210		50.0	0.0	
A002	210	219		44.0	0.0	
A002	219	235		53.0	0.0	
A002	235	250		92.0	65.0	
A002	250	265		93.0	64.0	
A002	265	271		83.0	40.0	
A002	271	277		100.0	0.0	
A002	277	293		87.0	19.0	
A002	293	307		88.0	20.0	
A002	307	320		65.0	0.0	
A002	320	335		97.0	31.0	
A002	335	341		41.0	0.0	
A002	341	354		69.0	0.0	
A002	354	363		97.0	0.0	
A002	363	366		83.0	0.0	
A002	366	378		75.0	0.0	
A002	378	396		38.0	0.0	
A002	396	411		100.0	45.0	
A002	411	433		85.0	45.0	
A002	433	439		100.0	33.0	
A002	439	442		73.0	0.0	
A002	442	454		75.0	12.0	
A002	454	466		100.0	45.0	
A002	466	482		85.0	23.0	
A002	482	494		92.0	37.0	
A002	494	506		85.0	21.0	
A002	506	521		90.6	40.0	
A002	521	536		70.0		
A002	536	549		85.0	23.0	
A002	549	561		69.0	29.0	
A002	561	570		55.0	0.0	
A002	570	582		67.0		
A002	582	585		100.0	0.0	
A002	585	600		47.0	0.0	
A002	600	616		75.0	26.0	
A002	616	622		83.0	0.0	
A002	622	637		78.0	0.0	

I

ale stream a share she

A002	637	646		94.0	33.0	
A002	646	658		89.0	42.0	
A002	658	674		84.0	12.0	
A002	674	680		42.0	0.0	
A002	680	695		87.0	13.0	
A002	695	698		90.0	0.0	
A002	698	707		78.0	0.0	
A002	707	710		90.0	0.0	
A002	710	728		77.0	19.0	
A002	728	738		85.0	11.0	
A002	738	753		93.0	31.0	
A002	753	765		83.0	30.0	
A002	765	780		89.0	14.0	
A002	780	789		88.0	24.0	
A002	789	802		53.0	0.0	
A002	802	817		64.0	0.0	
A002	817	829		75.0	18.0	
A002	829	841		76.0	0.0	
A002	841	856		87.0	33.0	
A002	856	872		85.0	20.0	
A002	872	887		90.0	27.0	
A002	887	902		93.0	27.0	
A002	902	917		95.0	54.0	
A002	917	933		81.0	0.0	
A002	933	948		90.0	15.0	
A002	948	963		90.0	15.0	
A002	963	980		79.0	23.0	
A002	980	997		79.0	24.0	
A002	997	1012		81.0	16.0	
R			E.O.H.			
A003						
AUMM			SAMPLE	Ag	Au	Cu
R				ррт	ppb	ppm
ALAB			PDI RESEARC	н		
ATYP			SLUDGE			
AMTH			WET GEOCHEM	A.A.		
A003	67	98	15115	0.6	3	183
A003	98	128	15116	0.7	3	179
A003	128	158	15117	0.3	3	190
A003	158	189	15118	0.1	3	168
A003	189	219	15119	0.1	3	136
A003	219	250	15120	0.1	3	266
A003	372	402	15121	0.1	35	278
A003	402	433	15122	0.1	3	299
A003	433	494	15123	1.4	3	225
A003	585	616	15124	59.0	20	510
A003	616	646	15125	28.0	55	560
A003	768	796	15126	34.0	290	243
/END						

Diamond Drill Hole 90-3 IDEN680201 V216 DDH90-3 NQ 17JUL90 MD LECLJUL90S38 DALGRD 0.0 TPR.I PLACER DOME INC WINDY PROPERTY 6089595.0 445740.0 S000 00 514 MT 102.7 090.0 -50.0 1021.0 s001 514 1027 102.7 90.0 -48.0 /SCL MT.2 LSCL LCTM /NAM CLCBSIKFP1P2P3MG LNAM EPSEHECYCPL IMA R THIS DDH COLLARED TO TEST CU-AU-AS SOIL ANOMALY 00 213 CASING TO 21.3 M R 1 00 218 OVBD Ρ P F0050 P3<>>1 D* <* 218 295 AN/FPFMFQZ+LNS3 1 t AG FF 3434 << <+P2<+G1 R MED. GREYISH GREEN LATITIC, ALT'D (PLAG) ANDESITIC FLOW CHARACT'D R MOD-INTENSE CHLOR-SER ALT & MOD.FOLIATED TEXT; QZ-SER-CARB R VEINLETS(10-15%) OCCUR IRREG.THROUGHOUT. 2-4 MM SER-QZ LATHES, 8 MOD.FOLIATED OCCUR IN A CHLORITIC ALT'D MATRIX SHEAR ZONES OCCUR LOCALY & ARE INTENSELY ALT'D TO CHLOR W.INCREA Þ R SED FRACT'G, HEM, EPID & PY PY <1% OCCURS AS FINE DISS (<1%) & F.F.(<1%) INCREASING IN SHEAR R R & FRACT ZONES 23.4 R : 4 CM FAULT GOUGE R 25.8-26.5: INTENS'Y ALT'D SHEAR ZONE: 1% DISS PY, <1% F.F.PY; 40% CHLOR, 10% QZ-SER, 5% EPID, 3% HEM R R 28.0-29.5: IRREG.PATCHY QZ-SER (CARB) ALT W.CHLOR, EP, MINOR PY 295 369 PPANPEME PPVV P VQ050 P4>+V1 D.D-1 2434 VE060 V1P1 YG LNF3 L DARK, YELLOWISH-GREEN, PROPYLLITICLY ALT'D PLAG ANDESITE PORPHYRY R R POSSIBLY A F.G. DIORITE? R 2-4 MM PLAG X-TALS ALT'D TO SER & EPID IN A VERY F.G. PLAG-CHLOR ALT'D MATRIX: TEXT IS SELECTIVELY PORPH & FOLIATED W.ABUNDANT R QZ-CARB & EPID VEINING & LESER PATCHES (UP TO 20 CM) R EPID OCCURS AS F.F. & DISS GRAINS IN MATRIX & AS VEIN & PATCHES R R ASSOC W.COARSER PORPH (PLAG) ANDESITE QZ-CARB ALT OCCURS AS VEINS & PATCHES (5-10%) & HOSTING CHLOR ₽ ALT'D IRREG FRAGS R TRACES OF PY OCCUR AS FINE-COARSE DISS 8 30.4-30.6 : QZ-CARB VEIN (45 DEGR TO C.A.) W.CHLOR HOST FRAGS R 32.3-32.7 : INTENSE EPID/QZ-CARB VEINING & PATCHES R 33.8-34.5 : INCREASED EPIDOTIZED LINEATION 8 34.8-35.4 : QZ-CARB PATCHES W.COARSER GR'D CHLOR-EPID ALT'D GOUG R 35.4-36.9 : DECREASING EPID ALT R AN/FPFMF F3SH 369 430 P SH P4<=G+ D+ 1 FFFG 1323 F0060 P2 5A Ł MED GREY, LATITIC, ALT'D ANDESITIC FLOW, WEAKLY FOLIATED & LOCALY R SHEARED; SMALL 1-3 MM PLAG(PART'Y SER'D) GRAINS DOWNSIZING TO 8 R GROUNDMASS SIZE & FLOODED BY CHLOR ALT WEAK CARB ALT IN F.F. (~2-3%), PERV SER ALT OF PLAG (~20%) R PY OCCURS AS FINE DISS (~2%) R 40.7-43.0 : INTENSYY ALT'D SHEAR ZONE W.CHLOR-SER-QZ/CARB ALT R W.ASSOC DISS PY. CONTACTS SHOW INCREASE IN FRACT'G R R & FOLIATION AN/FPFMF F3PA P VQ060 P4<)Q1 D+ <) 1 430 532 3434 LNO40 P2P=<) D. L AG VVLN SIMILAR INTERV TO PREVIOUS ONE BUT DISPLAYING MORE PROPYLLITIC R ALT. INCREASED PATCHY SILIC & QZ-CARB VEINING W.ASSOC CHLOR HOST R R FRAGS. DARKER GREYISH-GREEN LATITIC (PLAG PORPH) ANDESITIC FLOW

R			SELECTIVYY LINEATED, PATCHY & VEINED
R			ALTERATION:
R			CHLOR IS PERV & LESSER AS F.F. & GRAIN CLUSTERS
R			QZ-CARB OCCURS AS VEINS (5 CM) 3-5% & LESSER AS F.F. IRREG.SHAP
R			SILIC IS PATCHY (~2-3%) & ASSOC W.QZ-CARB VEINS & INCR'D.EP ALT
R			EPID OCCURS AS GRAIN CLUSTERS, CLOTS PATCHES & LESSER AS F.F.
R			SERIC OCCURS AS PERV ALT IN MATRIX & AS MINOR F.F.
R			HEMATITE OCCURS AS F.F. (~1-2%)
R			PY OCCURS AS FINE DISS (2-3%) & F.F.(~1%), INCREASING IN ZONES OF
R			STRONGER FRACT'G W.ASSOC QZ-CARB VEINING HOSTING CHLOR FRAGS
R			TRACES OF CHALCOPYRITE
R			44.8-45.6 : SILIC'D ZONE W.ASSOC QZ-CARB VN'G HOSTING CHLOR FRAG
R			46.2-47.8 : PATCHY SILIC'D, QZ-CARB VN'G & INCREASING EPID ALT
R			50.4 : 1 CM CHLOR VEIN
R			51.7-53.2 : LINEATED & SELECTIVELY PORPH ZONE W.STRONG PROPYL'C
R			FEATURES, LINEATION ~40 DEGR TO C.A.
/	532	878	FGDRPFMF FGF3 P VQ070 P3<+V1 D+B><)
L			GA S5RW 3566 F0080 P=P2<)G1
R			MED, GREENISH-GREY, FINE TO MED GR'D DIORITE (POSS AN ALT'D ANDE-
R			SITE PORPH), CHARACT'D BY A GRAINIER TEXT, LOCALIZED ZONES OF WEAK
R			TO MOD FOLIATION, MOD-STRONG SHEARING W.ASSOC FAULT GOUGE, BRECC
R			& QZ-CARB VN'G, WEAK SILIC OCUURING SELECT'Y
R			ALTERATION:
R			CHLOR: PERV (~30%) BTW INTERLOCKING GRAINS OF PLAG W.LESSER F.F
R			CARB : MINOR F.F. (~2-3%)
R			EPID : SELECTIVE ZONES OF PERV & F.F. (~4-5%)
R			SERIC: PERV (~5-7%) W. LESSER F.F.
R			HEM : AS F.F. (~1-2%) IN ZONES OF SHEARING W.ASSOC EPID ALT
R			CLAY : PERV IN FAULT GOUGES
R			QZ-CARB VN'G OCCURS MAINLY IN HIGHLY FRACT'D SHEAR ZONES AS IRRE
R			SHAPED VEINS & PATCHES HOSTING CHLOR ALT'D FRAGS
R			SHEAR ZONES COMMONLY DISPLAY INTENSE FRACT'G, MINOR FOLDING & A
R			HOST OF CHLORITIC & SILIC'D ROCK FRAGS, OFTEN MINERALIZED
R			PY OCCURS AS DISS (2-3%), BLEBS (1%), F.F.(1%), INCREASING IN ZONES
R			OF MORE INTENSE FRACT'G & FOLIATION & SHEARING
R			CHLOR ALT'D ROCK FRAGS & QZ-CARB VEIN CONTACTS COMMONLY MINER'D
R			53.2-55.7: M.G. DIORITE
R			55.7-59.8: INTENS'Y ALT'D SHEAR ZONE W.ASSOC QZ-CARB VEINING
R			61.9-62.6: MOD ALT'D SHEAR ZONE W.INCREASED MINERALIZATION
R			64.7-68.1: MOD-STRONG ALT'D SHEAR ZONE W.INCREASING EPID-HEM ALT
R			& WEAKER FOLIATION
R			72.2 : 10 CM QZ-CARB VEIN (UNMINERALIZED)
R			73.2-79.6: STRONGLY FOLIATED ZONE W.INCREASING QZ-CARB VN'G &
R			MINERALIZATION (4 CM QZ VEIN @ 74.5)
R			79.6-82.0: INTENS'Y ALT'D SHEAR ZONE DISPLAYING INTENSE FRACT'G,
R			SILIC, BRECC, MICRO-FOLDING , QZ-CARB VN'G & MINER. (30
R			CM QZ VEIN @ 82.9)
R			82.5-86.6: AS ABOVE; QZ-CARB VEINS @ :83.9(2CM), 85.5 (30CM),
R			85.8 (10CM), 86.5 (2CM)
1	878	1027	
L			4A FGVV 2323 VE040 P2P1<*
R			DARKER GREENISH-GREY, F.G. PLAG ANDESITE PORPHYRY CHARACT'D BY A
R			ZONE OF PROPYLLITIC ALT & A ZONE OF PARTIAL SILIC, POSSIB'Y AN
R			ALT'D VARIETY OF F.G. DIORITE?
R			VEINING & FRACT'G OCCUR THROUGHOUT AS QZ-CARB (HOSTING CHLOR
R			FRAGS) VEINS UP TO 10 CM & EPID F.F. (10-15%)
R			PY OCCURS AS DISS (3-4%) & F.F.(1-2%) COMM'Y ASSOC W.CHLOR FRAGS
R			87.8-98.7: STRONG PROPYLLITIC ALT, QZ-CARB VEINS &: 92.6 (6CM),
R			92.9 (2 & 3CH),93.1 (13CH),95.0 (2CH),97.3 (12CH)
R			88.8-90.8: STRONGLY ALT'D SHEAR ZONE W.A 20 CM QZ-CARB VN @ 90.5

;

R			91.3-92.0: 7	ил пи	07-0408	VETN		'D			
R			98.7-102.7:						VEIN	a oo	8
R			E.O.H.		01210 0	LONE	wite 6				
R			SAMPLES								
A001											
AUMM			SAMPLE	Au	Ag	As	Cu				
R				ppb	ppm	ppm	ppm				
ALAB			PDI RESEARCH								
ATYP			SPLIT CORE								
AMTH			WET GEOCHEM	A.A.							
R	00	218	OVBD - NO R	ECOVI	ERY						
A001	218	240	14275	3	0.2	8	281				
A001	240	256	14276	3	0.1	4	127				
A 001	256	265	14277	3	0.2	1	113				
A001	265	284	14278	3	0.1	4	107				
A001	284	295	14279	3	0.1	6	98				
A001	295	315	14280	3	0.1	8	79				
A001	315	335	14281	3	0.1	1	71				
A001	335	355	14282	20	0.1	1	213				
A001	355	369	14283	3	0.1	1	225				
A001	369	390	14284	3	0.1	2	52				
A001	390	407	14285	3	0.1	1	7				
A001	407	430	14286	3		1	20				
A001	430	450	14287	3		1	56				
A001	450	462	14288	3		16	102				
A001	462	478	14289	3		6	340				
A001	478	498	14290	3		4	550				
A001	498	517	14291	3		1	90 57				
A001	517	532	14292	3		1	56				
A001 A001	532 557	557 577	14293	3		4	11				
A001	557 577		14294	3		4	9				
A001	577 598	598 619	14295 14296	3 3		4 16	106 276				
A001	619	626	14298	3		20	830				
A001	626	647	14298	3		20	510				
A001	647	667	14299	10	0.2	1	381				
A001	667	681	14300	20	0.2	1	530				
A001	681	701	14301		0.1	1	195				
A001	701	716	14302	5	0.2	1	180				
A001	716	732	14303	3	0.1	1	167				
A001	732	752	14304	15	0.3	1	364				
A001	752	772	14305	15	0.3	1	369				
A001	772	796	14306	3	0.2	1	176				
A001	796	816	14307	10	0.4	1	490				
A001	816	836	14308	3	0.2	1	132				
A001	836	856	14309	10	0.2	1	329				
A001	856	878	14310	3	0.1	1	88				
A001	878	888	14311	15	0.1	1	202				
A001	888	908	14312	50	0.4	1	680				
A001	908	930	14313	10	0.3	1	500				
A001	930	950	14314	20	0.3	1	378				
A001	950	970	14315	15	0.2	1	350				
A001	970	987	14316	3	0.2	1	116				
A001	987	1007	14317	3	0.1	1	32				
A001	1007	1027	14318	3	0.1	1	7				
R			E.O.H.								
A002											
AUMM			RE	COVY	RQD						
R	00	218	OVBD - NO R	ECOV							
A002	218	229		74.0	0.0						

1.2.2. 1.1.

ł

a service a service of the service o

A002	229	244				93.0	16.0	
A002	244	250				100.0	17.0	
A002	250	280				93.0	0.0	
A002	280	296				87.0	20.0	
A002	296	311				93.0		
A002	311	326				87.0	50.0	
A002	326	341				100.0		
A002	341	357				85.0	37.0	
A002	357	372					48.0	
A002		402				94.0		
A002	402	418				94.0		
A002		433				67.0		
A002		448				100.0		
A002		463				87.0		
A002		479				87.0		
A002		494				93.0		
A002		509				93.0		
A002		524				95.0		
A002		539				98.0		
A002		555				94.0		
A002		570				86.0		
A002		585				86.0		
A002								
		600				80.0		
A002		616				88.0		
A002		631				90.0		
A002		646				93.0		
A002	-	661				93.0		
A002		677				93.0		
A002		692				97.0		
A002		707				100.0		
A002		722				97.0		
A002		738				91.0		
A002		753				97.0		
A002		768				95.0		
A002	768	783				100.0		
A002		799				94.0		
A002	799	814				97.0		
A002	814	829				98.0	33.0	
A002	829	844				97.0	17.0	
A002	844	856				96.0	17.0	
A002	85 6	873				88.0	24.0	
A002	873	878				90.0	24.0	
A002	878	890				92.0	38.0	
A002	890	908				83.0	0.0	
A002	908	920				67.0	17.0	
A002	920	936				91.0	31.0	
A002	936	951				100.0	67.0	
A002	951	966				100.0	60.0	
A002	966	981				90.0	70.0	
A002	981	997				91.0	50.0	
A002	997	1012				90.0	67.0	
A002		1027				93.0	56.0	
R			END	OF	HOLE			
/END								

• 3--

/END

.

ł

```
Diamond Drill Hole 90-4
IDEN680201 V216 DDH90-4 NQ 19JUL90 MD LECLJUL90S38 DALGRD 0.0
TPR.I
         PLACER DOME INC
                                             WINDY PROPERTY
S000
     00 520 MT 103.9 090.0 -50.0
                                                 6089630.0 445830.0
                                                                       1044.0
s001 520 10390
                   103.9 090.0 -53.0
/SCL
           MT.2
I SCI
                          1 CTM
/NAM
                                                       CLCBSIKFP1P2P3MG
LNAM
                                                       EDSERECYCELIMA
R
               THIS HOLE WAS COLLARED TO TEST A CU-AU-AS SOIL ANOMALY AND
R
               A COINCIDENT VLF CONDUCTOR
R
               CASING TO 15.8 METRES
           158
                      OVBD
1
      00
                                             Ρ
      158
           205
                      FE/DPFMF
                                 VFMX
                                             P SH060 <) >= D+B)<*
1
L
                          AWQZ S3F3
                                         1323 F0050
                                                        P3 G1 <+
R
               LIGHT GREYISH WHITE, VERY F.G. WEAKLY FRACTURED FELSIC DYKE
               TEXT. IS MASSIVE AND WEAKLY FOLIATED AND LOCALLY SHEARED WITH
R
R
               SPOTTY F.G. MAFIC MINERALS
               ALTERATION IS MOSTLY SERICITIC (PERV. & F.F.) & SELECTED
R
R
               PERV. SILIC, MINOR LIMONITEIC STAIN IN FRACT.
R
               PY(2-3%) OCCURS AS DISS(2-3%), BLEBS (~1%), F.F.(<1%); AND
R
               INCREASES IN FRACTURED SHEAR ZONES
R
               16.0-16.2: SHEAR ZONE, INTENSE ALT'N
R
               19.0-20.2: HIGHLY FRACT'D, ALT'D SHEAR ZONE WITH INCREASED
R
                          PY CONTENT
1
     205 264
                      PPANPFMF PPF5
                                             P F0050 P3<*>1 D+B)<+
                                         2545 <<050
Ł
                          GÅ.
                                 FF
                                                      P1D+
R
               MED. GREYISH GREEN, MOD. FOLIATED & FRAC'D, WEAKLY PORPH.
               PLAG ANDESITE (POSS. ALT'D F.G. DIORITE)
R
R
               F.G. PLAG X-TALS(~40%) IN FINER GRAINED PLAG-CHLOR-SER MATRIX
               BANDS OF QZ(CB) & CHLOR DISPLAY A FOLIATED TEXTURE
R
R
               ALT'N IS DOMINATELY CHLOR. (PERV.) & LESSER SER.-EPIDOTE IS
R
               SELECTIVELY PERV.
R
               PY(3-5%) OCCURS AS DISS(~1%), BLEBS(2-3%), F.F.(2-3%) AND IS
Ŕ
               COMMONLY ASSOC. WITH CHLOR FILLED FRAC'S
               23.4-24.2: INCREASED EPIDOTE ALT'N(-30%)
R
                                                      P6<+*1 D+B)
     264 347
                      FALTMEPE S7BX
                                             P SH
1
                                         4767
L
                          3G
                                                         P1<)63
R
               DARK GREEN, INTENSLY SHEARED, ALT'D, & BRECCIATED FAULT ZONE
               CHARACTER'D BY STRONG CHLOR. ALT'N, FAULT GOUGE & BRECCIA ZONES
R
               WITH SILIC'D & CHLOR'D FRAGS; QZ-CB VEINING OCCURS IN LESSER
R
R
               ALTER'D ROCK
R
               PY OCCURS DOMINANTELY IN BREECC'D % GOUGED ZONES AS DISS(2-3%)
R
               AND BLEBS(~1%)
R
               26.5-28.0: INTENSLY SHEARED WITH MICRO-FOLDING & BRECC ZONE
               33.9-34.5: GOUGE
R
     347 386
                      PPANPEME
                                 PPF5
                                             P VQ070 P3<(V= D+ <)
1
1
                          GA
                                 W
                                         1323 F0050
                                                         P+
                                                              DY
               SAME AS INTERVAL 20.5-26.4 BUT DISPLAYING OPBVIOUS QZ VEINS
R
               (UP TO 60 CM WIDE) WITH ASSOC. CHLOR FRAGS
R
               PY OCCURS MOSTLY AS DISS X-TALS THROUGHOUT (2-3%) & LESSER AS
R
               F.F. ASSOC WITH CHLOR ALT'N
R
R
               35.0-35.6: QZ VEIN WITH ~1-2% F.F. PY
R
               35.8-36.0: QZ VEIN
R
               36.7
                       : 5 CM QZ VEIN
                        : 3 CM QZ VEIN
R
               37.0
R
               CP OCCURS ASSOC WITH PY IN QZ VEIN (F.F.) (~1%)
                      AN/FMFPF F7VF
                                           P F0060 P6<=V) D) <*
1
     386 427
```

1. 1. J. 2. MT

Ł 4G PPS5 1323 SH060 P1 G+ 8 DARKER GREEN INTENSLY ALT'D. STRONGLY FOLIATED & WEAKLY PORPH. R ANDESITE FLOW STRONG FOLIATION CHARACT'D BY BANDS OF CHLOR (SER.-QZ) R R FG PLAG X-TALS GIVE A SLIGHT PORPH. LOOK R ALT'N IS DOMINANTELY CHLOR (PERV) WITH MINOR SER. & CARB (3-5%) R IN F.F. R PY OCCURS AS DISS(-1%) THROUGHOUT & F.F. (<1%) INCREASING IN R FRACTURED SHEAR ZONES 42.2-42.7: SHEAR ZONE WITH INCREASING QZ-CB VEINING & PY CONTENT R 427 464 1 PPANPEME RWPP P VQ040 P2<*P1 D* <) ŧ GA VVS3 1212 SH060 <=P1<* R LIGHT GREYISH-GREEN, PARTIALLY REWORKED PLAG ANDESITE PORPHYRY CHARACT'D BY FINE-MED. PLAG IN A FINER GR'D MATRIX WITH TEXTURE R R OBLITERATED BY ALT'N (SILIC) QZ-CB PATCHES & VEINS WITH ASSOC CHLOR HOST ROCK FRAGS OCCUR R R THROUGHOUT & APPEAR TO HOST THE MINERALIZATION PY OCCURS AS DISS & F.F. (~1-2%) R R 43.6 : 15 CM QZ-CB VEIN (MINOR PY) 44.7 : 5 CM VUGGY QZ-CB VEIN WITH CHLOR FRAGS & COARSE DISS PY R R 45.9 : ALT'D SHEAR ZONE WITH MINOR PY 1 464 486 FE/DQZPF KRVF P VQ050 02>1P3 D=B><= Ł 7AMF VV 3767 P+ R LIGTH GREY, CRACKLED & SPOTTED SILICIFIED FELSIC DYKE R CHARACT'D BY ABUNDENT DISS & F.F. PY (~8-10%) R STRONG FRACT'G FILLED BY IRREG SHAPED QZ-CB VEINS & PATCHES R HOSTING CHLOR'D FRAGS P VQ050 P4<+V1 D) <(486 545 PPANPEME PPE3 1 L 4G W 2434 F0060 P2P1<* R DARKER GREEN, PROPYLITICALLY ALT'D, M.G. PLAG ANDESITE PORPHYRY R CHARACT'D BY 30-40% PLAG GRAINS IN A FINER GR'D CHLOR'D AND EPIDOT'D MATRIX; QZ-CB & EPIDOTE VEINLETS & PATCHES OCCUR R R THROUGHOUT, FOLIATION IS WEAK PY OCCURS IN MINOR AMOUNTS AS DISS(-1%) AND F.F.(<1%) R R 49.6 : 20 CM QZ-CARB VEIN WITH CHLOR FRAGS R 51.8 : 4 CM QZ-CB VEIN R 53.4 : 3 CM " 11 545 588 AN/FMFPF F7S5 P F0040 P6<1>2 D+ 1 FFVF 2646 <<040 L 4G D≖ R DARKER GREEN INTENSLY ALT'D (CHLORITIC) & STRONGLY FOLIATED R (~40 DEGREES TO C. A.) ANDESITIC FLOW FOLIATION ALSO DISPLAYED BY NUMEROUS PARALLEL QZ-CB-SER R R VEINLETS DISPLAYING FINE TO MED. GRAIN SIZE R SHEARING AND GOUGES OCCUR IN SELECTIVE AREAS R PY OCCURS DISS (~2-3%) THROUGHOUT FAULT GOUGES @ 56.4 (5 CM) & 58.7 (10 CM) R 588 615 BRXXQZCL BXSH Ρ #2<1P5 D+ I #1 G5 L 5APF 6868 R MED. GREY HIGHLY FRAC'D STRONGLY SILIC'D BRECCIA WITH CHLORITIC R AND SERICITIC BX FILLINGS FRAGS (.5-4 CM) ARE SILICIFIED & CHLORITIZED. QZ-CB VEINING R R AND PATCHES OCCUR SPORADICALLY PY IS MINOR & OCCURS AS DISS (~1-2%) R 59.1-59.4: FAULT GOUGE R 615 984 AN/FMFPF F7S5 P F0040 P6<1>2 D+ <> 1 FFVF 2646 <<040 V+D=<)G+ L SAME AS INTERVAL 54.5 - 58.8 R QZ-CB VEINING IS SOMETIMES VUGGY & HOSTS CHLOR FRAGS (VEINS UP R R TO 10 CM WIDE) R SHEAR (GOUGE) ZONES OCCUR SELECTIVELY THROUGHOUT & DISPLAY

The second second

R			CONTACTS WIT	H INC	REASING	PARAL	LELQZ-CI	B VEINLETS
R							•. (-1%)	WITH INCREASING AMOUNTS
R			IN MORE FRAC					
R							F.F. PA	TCHES & VEINS (-3-5%)
R			63.1-63.5 :					
R								5 CM QZ-CB VEINS
R							DED BY A	BRECC'D QZ-CB VEIN (30 CM)
R			69.4 :					
R			70.0-70.2 :					UIA
R			79.1 :					DEACTNO DADALLEL 07-CD
R								REASING PARALLEL QZ-CB CM SILICIFIED ZONE THEN
R							вта 20 31.5 то 3	
R								CM SILIC'D FRAGS & CHLOR
R R					IA FILL		1 0.9-5	CH SILIC D FRAGS & CHLOR
R			83.9-84.3 :			. 1103		
R			85.7-86.0 :		11			
R			89.9-90.3 :	H	н			
R						D SH	EAR ZONE	WITH INCREASING EPIDOTE
R			97.8-98.1 :					
1	984	1039	QZDRP	FMF	MGF3		₽ F0050	J2<*V1 D)
Ĺ			5	AQZ	BXVV	2434	4 VQ040	P1 G=
R			MEDIUM GREY,	M.G.	, WEAKL	Y FOL	IATED, M	OD. SHEARED QZ DIORITE
R			CONTACT WITH					
R			2-4 MM GRAIN	S OF	PLAG &	QZ WI	TH ALTER	ED GRAINS OF CHLORITE
R			(INTERSTITIA	L) &	SERICIT	E ARE	CUT BY	QZ-CB VEINS
R			SHEARED ZONE	S DIS	PLAY IN	ITENSE	ALT'N &	WEAK BRECC'N
R			PY IS MINOR	& 000	URS AS	FINE I	DISS (~1	%)
R			99.2-99.5 :	SHEAR	(GOUGE	E) ZONI	E FOLLOW	ED BY A 5 CM ANDESITE
R				FLOW	FRAG.			
R			100.1-101.1	: HIG	HLY ALT	140 & I	FRAC'D A	NDESITE FLOW (FOLIATED)
R			101.3-101.5			BREC	CIA	
R			103.3-103.5	: QZ	VEIN			
R			END OF HOLE					
A001				•	•	• -	-	
AUMM			SAMPLE	Au		As	Cu	
R					ppm	ррш	ppm	
ALAB ATYP			PDI RESEARCH SPLIT CORE					
ALTP			WET GEOCHEM					
R			CASING TO 15					
A001	158	183		3	0.1	10	14	
A001	183	205		3		.0	14	
A001	205	225	14321	15	0.1	12	234	
A001	225	245	14322	3	0.1	14	168	
A001	245	264		3	0.1	16	134	
A001	264	284		20	0.1	30	275	
A001	284	304	14325	60	0.1	22	200	
A001	304	324	14326	200	0.1	20	188	
A001	324	347	14327	150	0.1	26	146	
A001	347	367	14328	3	0.6	1	910	
A001	367	386	14329	70	0.1	1	137	
A001	386	406	14330	105	0.1	6	60	
A001	406	427		30	0.1	6	73	
A001	427	447		3	0.1	6	142	
A001	447	464	14333	3	0.1	1	147	
A001	464	486	14334	3	0.1	1	218	
A001	486	506	14335	30	0.1	1	143	
A001	506	526	14336	3	0.1	2	150	
A001	526	545	14337	3	0.1	8	143	

ł

Sec. 36.

A001	545	565	14338 3	0.1	4	147
A001	565	588	14339 3	0.1	1	72
A001	588	603	14340 3	0.1	1	102
A001	603	615	14341 3	0.1	1	64
A001	615	635	14342 115	0.1	1	174
A001	635	655	14343 15	0.1	6	92
A001	655	675	14344 3		6	229
A001	675	695	14345 3		4	124
A001	695	715	14346 3		1	165
A001	715	735	14347 3		8	63
A001	735	755	14348 3		6	103
						58
A001	755	775			16	
A001	775	795	14350 3		10	89
A001	795	810	14351 110		1	111
A001	810	828	14352 3		18	88
A001	828	848	14353 3		6	48
A001	848	868	14354 3		16	97
A001	868	888	14355 10		1	133
A001	888	908	14356 10		1	58
A001	908	928	14357 10		1	112
A001	928	948	14358 15	0.1	1	80
A001	948	968	14359 25	0.2	1	201
A001	968	984	14360 55	0.1	1	342
A001	984	1001	14361 3	0.1	1	121
A001	1001	1011	14362 20	0.1	1	202
A001	1011	1021	14363 3	0.1	1	32
A001	1021	1039	14364 80	0.1	1	174
R			END OF HOLE			
A002						
AUMM			RECOVY	RQD		
R			CASING TO 15.8 M		COVERY	
A002	158	171	92.0			
A002	171	177	100.0			
A002	177	189	95.0			
A002	189	204	93.0			
A002	204	210	95.0			
		E10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0		
	210	21A	02 0			
A002		216				
A002	216	232	81.0	25.0		
A002 A002	216 232	232 244	81.0 92.0	25.0 17.0		
A002 A002 A002	216 232 244	232 244 250	81.0 92.0 100.0	25.0 17.0 33.0		
A002 A002 A002 A002	216 232 244 250	232 244 250 265	81.0 92.0 100.0 80.0	25.0 17.0 33.0 6.0		
A002 A002 A002 A002 A002	216 232 244 250 265	232 244 250 265 280	81.0 92.0 100.0 80.0 93.0	25.0 17.0 33.0 6.0 0.0		
A002 A002 A002 A002 A002 A002	216 232 244 250 265 280	232 244 250 265 280 293	81.0 92.0 100.0 80.0 93.0 54.0	25.0 17.0 33.0 6.0 0.0		
A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293	232 244 250 265 280 293 305	81.0 92.0 100.0 80.0 93.0 54.0 83.0	25.0 17.0 33.0 6.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305	232 244 250 265 280 293 305 311	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0	25.0 17.0 33.0 6.0 0.0 0.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293	232 244 250 265 280 293 305	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0	25.0 17.0 33.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305	232 244 250 265 280 293 305 311	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0	25.0 17.0 33.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311	232 244 250 265 280 293 305 311 326	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0	25.0 17.0 33.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326	232 244 250 265 280 293 305 311 326 335	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0	25.0 17.0 33.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335	232 244 250 265 280 293 305 311 326 335 347	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0	25.0 17.0 33.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347	232 244 250 265 280 293 305 311 326 335 347 372	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0	25.0 17.0 33.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372	232 244 250 265 280 293 305 311 326 335 347 372 387	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0	25.0 17.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387	232 244 250 265 280 293 305 311 326 335 347 372 387 402	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 96.0 61.0	25.0 17.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387 402	232 244 250 265 280 293 305 311 326 335 347 372 387 402 415	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 96.0 61.0	25.0 17.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387 402 415	232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 61.0 100.0	25.0 17.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 20.0 33.0 0.0 44.0 17.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433	232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 61.0 100.0 67.0 100.0	25.0 17.0 33.0 33.0 0.0 <		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448	232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448 457	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 96.0 61.0 100.0 67.0 100.0 89.0	25.0 17.0 33.0 33.0 0.0 <		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448 457	232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448 457 472	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 96.0 61.0 100.0 89.0 89.0 87.0	25.0 17.0 33.0 33.0 0.0 <		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448 457 472	232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448 457 472 488	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 92.0 100.0 96.0 61.0 100.0 89.0 87.0 87.0	25.0 17.0 33.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 33.0 0.0 44.0 17.0 47.0 47.0 31.0		
A002 A002 A002 A002 A002 A002 A002 A002	216 232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448 457	232 244 250 265 280 293 305 311 326 335 347 372 387 402 415 424 433 448 457 472	81.0 92.0 100.0 80.0 93.0 54.0 83.0 75.0 80.0 50.0 83.0 92.0 100.0 61.0 100.0 89.0 87.0 75.0 100.0	25.0 17.0 33.0 33.0 0.0 <		

•

A002	515	524			95.0	11.0
A002	524	539			93.0	
A002	539	555			88.0	
A002	555	564			95.0	
A002	564	579			100.0	30.0
A002	579	588			83.0	
A002	588	604			94.0	44.0
A002	604	616			66.0	25.0
A002	616	631			100.0	
A002	631	646			100.0	53.0
A002	646	661			97.0	27.0
A002	661	677			100.0	64.0
A002	677	692			90.0	33.0
A002	692	707			90.0	40.0
A002	707	719			84.0	25.0
A002	719	735			88.0	25.0
A002	735	750			93.0	53.0
A002	750	759			89.0) 17.0
A002	759	768			100.0	22.0
A002	768	777			100.0	22.0
A002	777	783			95.0	
A002	783	799			56.0	0.0
A002	799	808			77.0	0.0
A002	808	814			67.0	0.0
A002	814	829			87.0	0.0
A002	829	841			92.0	0,8 0
A002	841	856			93.0	
A002	856	872			94.0	0 13.0
A002	872	887			93.0	33.0
A002	887	902			100.0	27.0
A002	902	917			93.0	
A002	917	933			94.(
A002	933	948			87.0	0 13.0
A002	948	963			94.(
A002	963	978			100.0	
A002	978	994			91.0	
A002	994	1009			80.0	
A002	1009	1024			97.0	
A002	1024	1039			90.0	20.0
R			END	OF	HOLE	
/END						

```
Diamond Drill Hole 90-5
------
IDEN680201 V216 DDH90-5 NQ 22JUL90 MD LECLJUL90S38 MD GRD 0.0
1PR.I
         PLACER DOME INC
                                             WINDY PROPERTY
$000
     00 628 MT 125.6 090.0 -50.0
                                                 6088990.0 445765.0
                                                                        1021.0
s001 628 1256
                   125.6 090.0 -50.5
/SCL
           MT.2
LSCL
                          LCTM
/NAM
                                                       CLCBSIKFP1P2P3MG
I NAM
                                                       EPSEHECYCPL IMA
                THIS HOLE WAS COLLARED TO TEST A CU-AU-AS SOIL ANOMALY &
R
                COINCIDENT VLF CONDUCTOR & A WEAK IP ANOMALY
8
R
                CASING TO 4.3 M
      00
             43
                      OVBD
                                             Ρ
1
       43
           206
                                             P VQ070 P2<+P1 D) <*D=
1
                       PPANPFMF PPVV
1
                          GA
                                 FES3
                                         4324 <<
                                                         0+ G+ >1
R
               DARK GREENISH-GREY F.G. PLAG ANDESITE PORPHYRY CHARACT'D BY A
R
                WEAK TO STRONG PORPH. TEXTURE
                SPORADIC GOUGE ZONES, QZ-CB VEINING, WEAK TO MOD SILICIFICATION
₽
                & ~5% DISS. MAGNETITE
R
R
                FIRST 19.6 M DISPLAYS OXIDATION AS PATCHY, F.F. & SELECT'Y
                PERVASIVE LIMONITIC COATINGS, INCREASING IN AREAS OF MORE
R
R
                INTENSE FRACT'G
R
                ROCK CONSISTS OF 2-3 MM GRAINS OF PLAG WEAKLY SERICIT'D IN A
                FINER GRAINED CHLORT'D MATRIX. PORPHYRITIC TEXTURE IS COMMONLY
R
                OBLITERATED BY ALTERATION
R
                QZ-CB VEINING COMMONLY OCCUR IN MORE FRACT'D & SHEARED ZONES &
R
                MAY HAVE HOST CHLOR ROCK FRAGS
R
                SHEAR ZONES (GOUGES) MAY DISPLAY A BRECCIAT'D TEXT. CONTAINING
R
R
                SILIC'D FRAGS
Ŕ
                MAGNETITE X-TALS (1-2 MM) OCCUR DISS THROUGHOUT ~5%
R
                PY OCCUR AS -1% DISS & AS F.F. <1%
                5.8-6.8 : INTENSE FRACT'G (OXID'D)
R
                                  H
                                         WITH INCREASED QZ-CB VEINING
Ŕ
                8.1-11.2 : •
                         (10 CM QZ VN @ 9.2)
R
                14.9-16.2 : AS ABOVE
R
                17.6-19.6 : INCREASING SILICIFICATION
R
R
                19.6-20.6 : VERY BROKEN CORE - FAULT GOUGE ?
      206
           220
                       MGDRPFMF MGKR
                                             P <<
                                                       P4<+P1 D)
1
                          GAQZ S5
                                         5767
                                                       <+P+ G1
L
                DARK GREENISH-GREY, M.G., STRONGLY ALT'D FRACTURED (QZ) DIORITE
R
                UPPER CONTACT DEFINED BY FAULT GOUGE, LOWER ONE IS GRADATIONAL
R
                APPROX 50-50 FELSIC (PLAG-QZ) GRAINS WITH INTERSTITIAL MAFICS
R
R
                (ALL CHLOR.), SLIGHTLY CARB'D, EPIDOT'D, & SERIC'D WITH
                MINOR DISS (~1%) PY
R
                                             P VQ070
      220
           246
                       PPANPFMF PPFG
                                                       P5<=V+ D)
                                                                     0)
1
                                 S3W
                                         3566 SH060
                                                         01
L
                          3G
                DARK GREEN, F.G., PLAG ANDESITE PORPHYRY CHARACT'D BY INTENSE
R
                CHLORITE ALT'N
R
                2-3 MM OF ALT'D PLAG X-TALS IN A CHLORITIC MATRIX WITH QZ-CB VN
R
                PORPH. X-TALS SOMETIMES SHOW WEAK FOLIATION
R
                MINOR DISS (~1%) PY, MINOR DISS (~1-3%) MG
R
                       CLPHCLPF SCS3
      246
           277
                                             P SC
                                                       P7<2#) D(
1
                          3G
                                 F3FF
                                         2466 SH060
                                                             G+
L
               DARK GREEN, CARBON'D CHLORITIC PHYLLITE (PROBABLY ORIGINALLY
R
R
                ANDESITE FLOW) CHARACT'D BYSTRONG PERV CHLOR ALT'N, A
                SCHISTOSE TEXTURE & FLOODED BY WISPS OF CB
R
R
                FAULT ZONE OCCUR AT CONTACTS & DISPLAY INTENSE CHLOR ALT/N
                & WEAKER SILICIFICATION & BRECCIATION
Ŕ
```

The second second second press of protocol and protocols and

R <1% DISS PY, INCREASING SLIGHTLY IN FAULT ZONES 24.6-25.3 : FAULT ZONE R 27.5-27.7 : " R 11 P VQ070 <2<)P+ D(<(D(277 293 QZDRPFMF MGF3 1 1233 L AGOZ VV 0+ GREYISH-GREEN, M.G., QZ-DIORITE: 2-4 MM INTERLOCKING GRAINS R R OF PLAG & QZ WITH INTERSTITIAL CHLOR. SILICA FLOODING OCCUR AROUND A QZ-CB VEIN @ 28.3 ; SER-CARB R ALT'N ARE MINOR R PY OCCUR FINELY DISS (<1%) & F.F. ALONG CONTACTS OF QZ VEIN R P VQ040 P3<+V+ D) <.D= 293 306 PPANPEME PPVV 1 5ADZ 2222 P+ <) Ł MED GREY PLAG ANDESITE PORPHYRY CHARACT'D BY 2-4 MM PLAG GRAINS R IN A VERY F.G. CHLORITIC MATRIX WITH MICROVEINS OF QZ & CARB R QZ-CARB VEIN OCCURS @ 29.6 (2 CM) R R PY OCCUR AS MINOR (~1%) DISS & LESSER F.F. MAGN OCCUR AS FINE DISS UP TO 5% R 306 383 FALTPFQZ PPF5 P F0050 P3<1P1 D+ D+ 1 5AMF S7BX 4678 P1 62 <+ L MED GREY INTENS'Y ALT'D SHEARED & BRECCIAT'D FAULT ZONE R CONTACTS SHOW A LATITIC ANDESITIC FLOW OR A PORPH F.G. DIORITE? R ROCK IS EXTREMELY SHATTERED WITH PERV CHLOR, SERIC & CLAY R ALTERATION WITH LESSER SELECTIVE SILIC & QZ-CB VEINLETS R FELDSPAR LATHES DISPLAY MINOR FOLIATION INCREASING IN SHEAR R ZONES. SHEARING HAS PRODUCED MICRO-FOLDING IN SELECTIVE AREAS & R ALSO BRECCIAT'N WITH SILIC'D FRAGS LEFTOVER R PY OCCUR AS FINE TO COARSE (EUHEDRAL X-TALS) ~5-7% THROUGHOUT, R INCREASING IN ZONES OF SHEARING (GOUGES) R MAGNETITE OCCURS AS DISS (~2-3%) R P3<)P1 D)B)<) 1 383 415 QZDRPFMF MGVV Ρ GAQZ S3 2323 P= T) L GREENISH-GREY, VERY BROKEN UP, M.G. QZ-DIORITE @ LOWER CONTACT W. R FAULT ZONE: WEAKLY SHEARED R STRONG CHLORITIC ALT W.LESSER PERV.SERIC & WEAK PERV SIL(SELECT) R PY OCCURS AS DISS, BLEBS & F.F. THROUGHOUT (2-3%) R 10 CM QZ VEIN @ 39.0 & 40.7 R Ρ P7>1 D) D= 415 432 AN/FMFPF MXF3 1 3213 τ+ FF L 3G VERY DARK GREEN, MASSIVE, CARBONATIZED ANDESITIC FLOW (LATITIC) R ALT IS MAINLY CHLOR W.WISPS & F.F.CARB (~10-15%) R MAGN OCCURS DISS THROUGHOUT (~5-7%)DISPLAYING A WEAK FOLIATION R PY OCCURS DISS IN MINOR AMOUNTS (~1%) R MGDRPFMF MGF3 P F0050 P4<=>= D+ <+ 1 432 455 FF 2344 P+ L AG DARK, GREYISH-GREEN, FINE TO MED GR'D DIORITE W. MOD-STRONG CHLOR R ALT & LESSER SER ,QZ-CARB ALT R QZ-CARB VEINS UP TO 1 CM OCCUR IN MORE FRACT'D ZONES W.INCREA'G R R PY CONTENT PY OCCURS AS FINE-COARSE DISS (COMMONLY AS CLUSTERS)& AS F.F. R WITHIN & ALONG THE QZ-CARB VEIN CONTACTS R P7<1>1 D+ FALTPEME S7BX Ρ 455 484 1 P1 G1 6GQZ FF 6878 Ĺ LIGHT, MED GREEN, INTENSELY ALT'D & SHEARED & MOD BRECC'D FAULT ZN R INTENSE ALT HAS DESTROYED ALL ORIGINAL TEXT LEAVING A BRECC'D. R SHEARED ROCK HOSTING SILIC'D & CARB'D FRAGS IN A CHLOR'D MATRIX, R LESSER FRACT'D ROCK DISPLAYS LOCALIZED MICRO-FOLDING OF QZ-CB VN R PY IS FINELY DISS THROUGHOUT (-2-3%) R MGDRPEME MGMX P F0050 P3<=P2 D+ D+ 1 484 587 GAQZ F3FF 1233 <)P+ <) t DARK, GREENISH-GREY, MASSIVE, WEAKLY FRACT'D & MOD ALT'D MG DIORITE

1.5

R

1

AND AND A TRANSPORT SAAD

R FOLIATION IS WEAK & SELECTIVELY PREV. ALT OCCURS AS PERV CHLOR (30-40%)W.LESSER PERV CARB (ALSO AS F.F.) R SILICIFICATION IS WEAK & PERV & INCREASES TOWARDS THE END OF THE R INTERV.W. ASSOC MINOR F.F. EPIDOTE R R PY OCCURS AS MINOR (2-3%)DISS (POSSIBLY PRIMARY?) MAGN OCCURS AS DISS (2-3%) THROUGHOUT R 48.9-49.4:XENOLITH OR DYKE? OF DARK GREEN, CHLOR & CARB'D ANDE-R R SITIC FLOW 55.5-58.7: INCREASED SILICIFICATION & EPID ALT R 587 651 PPANHBPE PPMX P << P5<+<) D-1 P2P+<) L 3GMF FF 1222 <) DARK GREEN, MOD PROPYLLITIC ALT, F.G. HORB-PLAG ANDESITIC PORPHYRY R R W.SHARP EPIDOTIZED CONTACTS SMALL 1-2 MM PLAG GRAINS & 2-4 MM HORNB GRAINS COMPRISE UPTO 50% R ROCK IN A FINER GR'D PROPYLLITIC MATRIX R ALT IS DOMINANTLY CHLOR (-50%) & EPID (ALT OF PLAG X-TALS)-20% R W. LESSER PERV SER & MINOR QZ-CARB & HEM F.F.ALT R R TRACES OF PY P F0060 P3<)V+ D)B)<* 1 651 706 MGDRPFMFPY+MGF3 5AQZ FF 2333 P2P1<) T) L MED GREY, MOD ALT'D M.G.DIORITE CHARACT'D BY SELECTIVE AREAS OF R WEAK FOLIATION & INCREASED PROPYLLITIC ALT R FRACTURES ARE FILLED BY QZ-CARB & EPID W.LESSER LIM & HEM R R PY OCCURS AS DISS (~1%), BLEBS (~1%) & F.F. (<1%) THROUGHOUT 67.1-68.0: INCREASED CHLOR & EPID ALT R 68.8-69.0: AS ABOVE R 68.5 : 13 CM INTERV OF QZ-CARB VEIN'G W.ASSOC EPID & SILIC R & INCREASED PY AS BLEBS & F.F. (~5-7%) R 706 750 FGDRPFMFPY)FGF3 P F0060 P2 P1 D) D. 1 7AQZ FF 1222 VQ060 P1 1 LIGHT GREY. MOD ALT'D F.G. DIORITE CHARACT'D BY WEAK SILIC & WEAK R FOLIATION. QZ ALSO OCCURS IN VEINS UP TO 1 CM (60-70 DG TO C.A.) 8 R BUT APPEAR UNMINERALIZED ALT CONSISTS OF PERV CHLOR, PERV SILIC (~10%) & LESSER SERIC R PY OCCURS DISS(~1%) & TRACES OF MAGN R 70.6-71.2: XENOL OR DYKE? OF DARK FOLIATED, CHLOR'D ANDESITIC R FLOW W. WISPS OF QZ R 72.4 : 1 CM QZ VEIN R 73.6-74.2: COARSER GR'D ALT'D & FOLIATED M.G. DIORITE R MGDRPFMFPY=MGF3 P F0070 P3<*P1 D=B+<)D. 750 947 1 GAQZ FFS3 2333 VQ070 P1 G+D. L MED GREY TO DARK GREENISH-GREY, MOD ALT'D M.G. DIORITE CHARACT'D R BY WEAK FOLIATION & QZ VEINS R FOLIATION IS LOCALIZED, GENERALY WEAK & COMMONLY INCREASING IN R PROXIMITY OF SHEAR/FAULT ZONES R SHEAR ZONES OCCUR SELECTIVELY THROUGHOUT & DISPLAY INCREASED R FRACT'G. INTENSE ALT & QZ VEIN'G HOSTING CHLORITIC FRAGS R QZ VEIN'G OCCURS AS IRREG'Y SHAPED PATCHES &VEINS R ALT IS MAINLY CHLOR W.LESSER SER OF PLAG R PY OCCURS AS FINE-COARSE DISS (-4-5%), BLEBS (-2-3%)W.LESSER F.F. R (~1%), INCREASING IN ZONES OF STRONGER FOLIATION & FRACT'G R 75.2-75.9: INCREASED CHLOR ALT R 76.4-76.6: 20 CM QZ VN HOSTING CHLOR FRAGS (TRACE OF CP) 8 78.7-80.3: DARK GREY, MOD ALT'D, MOD FOLIATED F.G.DIORITE W.5-7% 8 QZ-CARB VEIN'G R 82.1-94.7: INCREASED FOLIATION W.ASSOC INCREAS'G PY (~7%) R 84.8-85.7: INTENSELY FRACT'D & ALT'D SHEAR ZONE R 86.9-89.2: INCREASED SILIC ~20% R 89.2-91.0: INCREASED CHLOR ALT R R 93.0-93.9: FINER GR'D DIORITE

A 100 Bits

1

1	947	993	FGDRPFMFPY)FGF3 P FOO60 P2<)P1 D) <*											
L			5AQZ FF 1344 P1											
R R			MED GREY, MOD ALT'D, F.G.DIORITE CHARACT'D BY SLIGHT INCREASE IN FRACT'G & WEAK FOLIATION											
R			QZ-CARB ALT OCCURS AS F.F.THROUGHOUT; CHLOR IS PERV (AS ALT OF											
R			MAFIC MIN.)~20% W.WEAKER SILIC											
R			PY OCCURS DISS (~1%) THROUGHOUT											
1	993	1020	MGDRPFMFPY)MGF5 P F0070 P3<)P1 D)											
L			GAQZ S3FF 2455 P1											
R R			MED GREENISH-GREY, STRONGLY ALT'D, MOD FRACT'D, LATITIC M.G.DIORITE MOD FOLIATION (~70 DEG TO C.A.)OCCURS THROUGHOUT W.LESSER SHEA'G											
R			PREDOMINANT CHLOR ALT W.LESSER SER-QZ-CARB ALT											
R			PY OCCURS AS DISS (~1%)											
R			100.0 : 5 CM DYKE? OF ALT'D ANDESITIC FLOW											
R			100.2-101.0 : MOD SHEARED ZONE											
1	1020	1078	FALTPFMF BXS7 P FO045 P3<+V2 D+											
L			4AQZ F5VV 4677 P2 G1											
R R			DARKER GREY, INTENSELY ALT'D & FRACT'D FAULT BRECCIA											
R			NE DISPLAYS BRECCIATION W.CHLORITIC,SILIC'D & DIORITIC FRAGS											
R			TIVE AREAS & ABUNDANT QZ-CARB VEIN'G											
R			PY OCCURS AS DISS (~1-2%) THROUGHOUT											
1	1078	1256	FGDRPFHBQZ+FGF3 P F0060 P5<+V+ D)											
L			6GMF PPFF 2333 VQ060 P3P=											
R R			MED-DARK GREEN, MOD PROPYLLITIC ALT F.G.DIORITE W.WEAK PORPH. & FOLIATED TEXT											
R			2-3 MM X-TALS OF PLAG & MAFICS (~25%) IN A FINER GR'D MATRIX OF											
R			SIMILAR COMP.											
R			ALT CONSISTS OF PERV CHLOR (~50%) & EPID ALT OF PLAG GRAINS & FF											
R			FRACT & VEINLETS INFILLED BY QZ-CARB W. LESSER EPIDOTE											
R			WEAK SHEARING OCCURS IN SELECTIVE AREAS DISPLAYED BY INCREASED											
_														
R			FRACT'G & FOLIATION											
R			PY OCCURS AS FINE DISS THROUGHOUT(~1%)											
R R			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D											
R R R			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE											
R R R R R			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN											
R R R R R R			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT											
R R R R R R			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN											
R R R R R R			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT											
R R R R R R R R R A001			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE											
R R R R R R R A001 AUMM R ALAB			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH											
R R R R R R R A001 AUMM R ALAB ATYP			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE											
R R R R R R R A001 AUMM R ALAB ATYP AMTH			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A.											
R R R R R R R R A001 AUMM R ALAB ATYP AMTH R	43	63	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY											
R R R R R R R A001 AUMM R ALAB ATYP AMTH	43 63	63 83	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY											
R R R R R R R AUO1 AUMM R ALAB ATYP AMTH R A001			PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM, SUB-ROUNDED M.G.DIORITE FRAGS, PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D, M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU Ag As CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110											
R R R R R R R A001 AUMM R ALAB ATYP AMTH R A001 A001 A001 A001	63 83 103	83 103 123	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM, SUB-ROUNDED M.G.DIORITE FRAGS, PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D, M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU Ag As CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14367 45 0.1 1 109 14368 190 0.1 1 150											
R R R R R R R A001 A001 A001 A001 A001 A	63 83 103 123	83 103 123 149	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM, SUB-ROUNDED M.G.DIORITE FRAGS, PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D, M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU Ag As CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14367 45 0.1 1 109 14368 190 0.1 1 150 14369 110 0.3 1 126											
R R R R R R R R R A001 A001 A001 A001 A0	63 83 103 123 149	83 103 123 149 162	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM, SUB-ROUNDED M.G.DIORITE FRAGS, PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D, M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14367 45 0.1 1 109 14368 190 0.1 1 150 14369 110 0.3 1 126 14370 225 0.1 1 130											
R R R R R R R R R R A001 A001 A001 A001	63 83 103 123 149 162	83 103 123 149	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU Ag As Cu ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14367 45 0.1 1 109 14368 190 0.1 1 150 14369 110 0.3 1 126 14370 225 0.1 1 130 14371 35 0.1 1 74											
R R R R R R R R R A001 A001 A001 A001 A0	63 83 103 123 149	83 103 123 149 162 182	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM QZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU Ag As CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14368 190 0.1 1 150 14369 110 0.3 1 126 14370 225 0.1 1 130 14371 35 0.1 1 74											
R R R R R R R R R R A001 AUMM R ALAB ATYP AMTH R A001 A001 A001 A001 A001 A001 A001	63 83 103 123 149 162 182	83 103 123 149 162 182 206	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM GZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14367 45 0.1 1 109 14368 190 0.1 1 150 14368 190 0.1 1 150 14369 110 0.3 1 126 14370 225 0.1 1 130 14371 35 0.1 1 74 14372 30 0.5 1 34 14373 3 0.1 6 34 14374 10 0.3 1 94											
R R R R R R R R R R A001 A001 A001 A001	63 83 103 123 149 162 182 206 220 246	83 103 123 149 162 182 206 220 246 253	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM GZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14367 45 0.1 1 109 14368 190 0.1 1 150 14369 110 0.3 1 126 14370 225 0.1 1 130 14371 35 0.1 1 74 14372 30 0.5 1 34 14374 10 0.3 1 94 14375 3 0.4 1 90											
R R R R R R R R R R R A001 A001 A001 A00	63 83 103 123 149 162 182 206 220	83 103 123 149 162 182 206 220 246	PY OCCURS AS FINE DISS THROUGHOUT(~1%) 107.8-110.2: ABSENCE OF PROPYLLITIC ALT 114.3-115.1: WEAKLY SHEARED ZONE 116.0 : 6 CM,SUB-ROUNDED M.G.DIORITE FRAGS,PROPYL'CLY ALT'D 118.9 : 10 CM PROPYL'CLY ALT'D FRAG BOUNDED ON ONE SIDE BY A 1 CM GZ VEIN 125.5-125.6: SILIC'D,M.G.DIORITE W.A SHARP CONTACT END OF HOLE SAMPLE AU AG AS CU ppb ppm ppm ppm PDI RESEARCH SPLIT CORE WET GEOCHEM A.A. CASING TO 4.3 M - NO RECOVERY 14365 25 0.1 1 100 14366 20 0.1 1 110 14368 190 0.1 1 150 14368 190 0.1 1 150 14369 110 0.3 1 126 14370 225 0.1 1 130 14371 35 0.1 1 74 14372 30 0.5 1 34 14374 10 0.3 1 94 14375 3 0.4 1 90											

t

A001	293	306	14378	165	0.1	1	116
A001	306	326	14379		0.2	20	114
A001	326	349	14380		0.2	8	162
A001	349	369					
			14381		0.1	20	128
A001	369	383	14382		0.1	44	86 54
A001	383	400	14383		0.1	1	51
A001	400	415	14384		0.1	1	52
A001	415	432	14385		0.1	1	80
A001	432	442	14386		0.1	1	115
A001	442	455	14387		0.1	1	62
A001	455	475	14388		0.1	1	47
A001	475	484	14389	3	0.1	1	121
A001	484	504	14390	25	0.1	1	130
A001	504	524	14391	3	0.1	10	58
A001	524	544	14392	20	0.1	20	61
A001	544	564	14393	15	0.2	16	53
A001	564	587	14394	5	0.1	12	74
A001	587	607	14395	3	0.1	16	81
A001	607	627	14396	10	0.1	20	82
A001	627	651	14397		0.1	22	88
A001	651	671	14398		0.1	18	63
A001	671	691	14399		0.1	16	45
A001	691	706	14400		0.1	20	72
A001	706	712	14400		0.1	16	45
A001	712	732	14401		0.1	12	16
A001	732	750	14402		0.1		34
						14	
A001	750	770	14404		0.1	16	94
A001	770	788	14405		0.1	16	51
A001	788	803	14406		0.1	20	78
A001	803	821	14407		0.1	14	60
A001	821	841	14408		1.0	6	410
A001	841	861	14409		0.4	20	72
A001	861	881	14410		0.2	54	208
A001	881	893	14411		0.1	26	217
A001	893	910	14412	35	0.4	72	285
A001	910	930	14413	30	0.1	36	200
A001	930	947	14414	10	0.1	540	140
A001	947	967	14415	35	0.2	40	233
A001	967	980	14416	25	0.1	14	138
A001	980	993	14417	25	0.1	10	43
A001	993	1020	14418	105	0.1	16	34
A001	1020	1040	14419	25	0.1	14	22
A001	1040	1060	14420		0.1	20	142
A001	1060	1078	14421		0.1	70	68
	1078	1098	14422		0.1	6	75
	1098	1118	14423		0.1	1	74
	1118	1138	14424		0.1	8	23
	1138	1158	14425		0.2	12	47
	1158		14425		0.1	2	74
		1178				1	
	1178	1198	14427		0.1		20
	1198	1218	14428		0.1	1	100
	1218	1238	14429		0.1	4	67
	1238	1256	14430		0.1	1	56
R			END OF HOL	ε			
A002							
AUMM				RECOVY			
R			CASING TO			COVERY	
A002	43	58		30.0	87.0		
A002	58	67		67.0	0.0		
A002	67	82		97.0	33.0		

Í

		~~		
A002	82	98	91.0	
A002	98	110	75.0	
A002	110	125	97.0	27.0
A002	125	142	94.0	
A002	142	152	90.0	30.0
A002	152	158	83.0	0.0
A002	158	174	84.0	31.0
A002	174	186	100.0	25.0
A002	186	204	78.0	11.0
A002	204	216	100.0	0.0
A002	216	232	88.0	19.0
A002	232	247	93.0	
A002	247	262	97.0	
A002	262	271	13.0	
A002	271	280		
			88.0	0.0
A002	280	296	94.0	
A002	296	311	100.0	
A002	311	323	83.0	0.0
A002	323	338	93.0	0.0
A002	338	354	100.0	0.0
A002	354	369	95.0	0.0
A002	369	384	100.0	0.0
A002	384	390	67.0	0.0
A002	390	393	67.0	0.0
A002	393	399	88.0	0.0
A002	399	402	100.0	0.0
A002	402	411	100.0	0.0
A002	411	415	95.0	0.0
A002	415	427		
			92.0	0.0
A002	427	433	95.0	0.0
A002	433	442	100.0	11.0
A002	442	454	100.0	8.0
A002	454	463	95.0	11.0
A002	463	475	100.0	0.0
A002	475	482	100.0	0.0
A002	482	494	95.0	13.0
A002	494	509	97.0	11.0
A002	509	515	100.0	0.0
A002	515	524	67.0	11.0
A002	524	533	95.0	0.0
A002	533	549	81.0	19.0
A002	549	564	93.0	27.0
A002	564	579	100.0	33.0
A002	579	594	100.0	53.0
A002	594	610	93.0	25.0
A002				
	610	625	100.0	20.0
A002	625	640	93.0	37.0
A002	640	655	100.0	47.0
A002	655	671	94.0	44.0
A002	671	680	100.0	7.0
A002	680	695	100.0	40.0
A002	695	707	75.0	33.0
A002	707	722	100.0	20.0
A002	722	738	94.0	44.0
A002	738	753	100.0	44.0
A002	753	768	93.0	47.0
A002	768	774	66.0	0.0
A002	774	786	95.0	17.0
A002	786	799	77.0	0.0
A002	799	805	75.0	33.0
			1210	2010

İ

مطهد مايكان بالمربق والألف والمركبة المكالك والمعاليات

A002	805	817			1	00.0	50.0	
A002	817	829				75.0	50.0	
A002	829	844			1	00.0	53.0	
A002	844	860				94.0	50.0	
A002	860	875			1	00.0	67.0	
A002	875	890				97.0	30.0	
A002	890	905			1	0.00	40.0	
A002	905	920				97.0	40.0	
A002	920	936				97.0	44.0	
A002	936	951			1	100.0	67.0	
A002	951	966				93.0	26.0	
A002	966	981				90.0	0.0	
A002	981	997				91.0	16.0	
A002	997	1012				93.0	0.0	
A002	1012	1027			1	00.0	33.0	
A002	1027	1036				88.0	11.0	
A002	1036	1042			1	00.0	0.0	
A002	1042	1049				96.0	0.0	
A002	1049	1058			1	100.0	0.0	
A002	1058	1073				73.0	0.0	
A002	1073	1088				87.0	40.0	
A002	1088	1103				93.0	70.0	
A002	1103	1119				87.0	44.0	
A002	1119	1134			1	100.0	60.0	
A002	1134	1149				93.0	33.0	
A002	1149	1164			1	100.0	47.0	
A002	1164	1180				87.0	25.0	
A002	1180	1195			1	100.0	60.0	
A002	1195	1210			1	00.0	67.0	
A002	1210	1225			1	100.0	80.0	
A002	1225	1241				97.0	68.0	
A002	1241	1256			1	0.001	87.0	
R			END	OF	HOLE			

2

V.

ł

/END

IDEN6B0201 V216 DDH90-6 NQ 26JUL90 MD LECLJUL90S38 MDGRD 0.0 L 8 9 1 PLACER DOME INC WINDY PROPERTY \$000 00 750 MT 150.0 090.0 -50.0 6088985.0 445840.0 1021.0 S001 750 1500 150.0 90.0 -50.5 /SCL MT.2 LSCL LCTM /NAM CLOBSTKEP1P2P3MG LNAM EPSEHECYCPI 1MA R THIS HOLE COLLARED TO TEST A AU-CU-AS SOIL ANOMALY R CASING TO 25.3 M - BASAL TILL & ASSORTED BOULDERS 1 00 253 OVBD P 253 261 P2 V= U) 1 MGDRPFMF MGKR ₽ L UAQZ W 3545 Ρ3 RUSTY BROWN-GREY, VERY BROKEN UP, MOD ALT'D M.G.DIORITE CHARACT'D R BY OXYDIZATION OF MAFIC MIN. R R FRACT ARE INFILLED BY CHLOR, QZ & LIM; SERIC ALT OF PLAG X-TALS R W.LESSER PERV CHLOR ALT R PY OCCURS AS OXYDIZED EUHEDRAL X-TALS DISS IN THE MORE BLEACHED R ZONES (~1%) 261 323 1 FALTPEME S7BX P <1 P3 D(1 1407 VVFF 6878 P2 G2 P3 R RUSTY BROWN-GREY; INTENSELY SHEARED, BRECC'D, ALT'D, FRACT'D & OXYD' R FAULT ZONE. FAULT GOUGE OCCURS SELECTIVELY THROUGHOUT.COMMONLY R HOSTING QZ VEIN MATERIAL & SILIC'D FRAGS R QZ VEIN (UP TO 20 CM) ARE CHARACT'D BY BRITTLE FRACT'G.LIMONITIC R VUGS & PATCHES (ALT.OF CHLOR.FRAGS) R SILIC. OCCURS PERVYY IN UNBRECCYD AREAS ASSOC W. INTENSE FRACTYG R QZ PATCHES & VEINS DISPLAY OXYD'D CHLOR.FRAGS, PERV.SERIC.ALT. R PY OCCURS FINELY DISS (<1%). 1 323 365 FGDRPFMF F5FG <2<+P2 D(Ρ OUQZ S3FF P2 Ł 3656 P4 R RUSTY ORANGE-BROWN, INTENSELY ALT'D & MOD.FOLIATED F.G.DIORITE R CHARACT'D BY STRONG OXYDIZATION (~40%)OF MAFICS & A PROMINENT R FOLIATION (~45 DEG.TO C.A.) R ALT. CONSISTS OF F.F.CHLOR., F.F.CARB & QZ (~2-5%). PERV. SERIC ALT R OF PLAG & PERV SILIC. R SHEARING IS LOCALIZED & WEAK, DISPLAYED BY INCREASED FRACT'G, MOD. R SILIC.& QZ-CARB VEINING R PY OCCURS FINELY DISS (<1%). 365 1 482 MGDRPFMF MGF5 ₽ P4<+V= D(D+ Ł GAQZ S3FF 3566 P1 G+ P1 R MED.GREENISH-GREY, MOD.FOLIATED & WEAKLY SHEARED M.G.DIORITE R CHARACT'D BY ZONES OF VARYING OXYD.INTENSITY, GZ-CARB F.F. W.LES-R SER CHLOR.& SER. F.F. R ALT.IS MAINLY PERV CHLOR (~40%) W.LESSER SER ALT. OF PLAG.IN R OXYDIZED AREAS. MAFICS COMMONLY LIMONITIC R QZ VEINS (UP TO 3CM) DISPLAY CHLOR ROCK FRAGS, COMMONLY OXYDIZED NARROW SHEAR ZONES DISPLAY INTENSE ALT, INCREASED FOLIATION & R OCCASIONAL BRECCIATION R PY IS VERY MINOR, MAGN OCCURS DISS (~2-3%) IN SELECTIVE AREAS R R 36.5-38.6: INTENSELY OXYDIZED & MOD.FOLIATED 40.7-41.4: FOLIATED & INTENSELY OXYD.ZONE R 42.3-45.5: 2-3% DISS MAGN R 45.5-46.7: STRONGLY FOL, ALT'D & FRACT'D; WEAKLY BRECC'D SHEAR ZN R R 47.8-48.2: INTENSELY ALT'D SHEAR ZONE MGDRPFHBQZ+MGF3 P F0060 551 P2>+>+ D. 1 482 L 7GBI FFBN 4545 P3P2<+ <1

Diamond Drill Hole 90-6

			LIGHT GREEN, MOD.ALT'D, WEAKLY FOLIATED, EPIDOTIZED M.G.DIORITE
R			WEAKLY BANDED, :ALTER'G FINE-MED GR'D DIORITE, OCCASIONALY HOSTING
R			F.G., SUB-ROUNDED, CHLORITIC FRAGS (@53.1 M).
R			ALT.IS DISPLAYED AS PERV.EPID ALT OF PLAG W.LESSER SER; PERV
R			CHLOR ALT OF MAFICS. QZ-CARB ALT OCCURS AS IRREG. VEINLETS &
R			WISPS (~2-3%). LIM & HEM OCCUR IN OXYDIZED FRACT.
R			2-3 MM MAFIC GRAINS (HORNB OR BIOT?),~30% ALT'D TO CHLOR, INTER-
R			LOCKING W. 60-70% PLAG LARGELY ALT'D TO EPID & SER W.LESSER CARB
R			QZ IS MINOR. TRACES OF PY.
/	551	586	FGDRPFMF FGF5 P F0080 P3<)P1 D.
L			5AQZ BNVV 1233 VQO70 Q1P=<) <+
R			MED.GREY, FINE-MED GR'D, MOD.FOLIATED, WEAKLY BANDED F.G.QZ-DIORITE
R			MOD.FOLIATION (-80 DEG.TO C.A.) IRREG.THROUGHOUT
R			WEAK BANDING DISPLAYED AS ALTERNATING BANDS OF F.G.DIORITE & M.G
R			QZ DIORITE
R			PERV.CHLOR ALT.OF MAFICS W.LESSER PERV.& PATCHES OF SERIC ALT &
R			F.F. EPID ALT. QZ-CARB ALT IS WEAK BUT OCCURS AS F.F.
R			WEAK LIM & HEM STAINING IN FRACT.
R			TRACES OF PY
R			55.2-55.9: SILIC'D & EPID'D F.G.DIORITE W.F.F.& WISPS OF QZ-CARB
R			ALT HOSTING CHLOR FRAGS
R			57.8 : 6 CM QZ VEIN
R			57.2-58.6: INCREASED EPID.ALT.& LIM/HEM STAINING
1	586	663	PPDRPFMF PPVF P P2>+P2 D.
L			7GBI RWFF 1222 P3P1<+ <=
R			LIGHT GREEN, M.G. HORNB DIORITE PORPHYRY
R			3-5 MM ANGULAR HORNB? X-TALS (~30%) IN A FINER GR'D EPIDOTIZED &
R			PARTLY SILIC'D MATRIX
R			ALT OF MAFIC PHENOS TO CHLOR W.SOME OXYDIZ., SILIC. OF MATRIX(20%)
R			& EPID.(~30%)W.LESSER SER. LIM STAIN'G IN FRACT.
R			TRACE OF PY
R			QZ-CARB ALT OCCURS AS VEINS & PATCHES HOSTING CHLOR FRAGS
R			63.1-66.3:DECREASE IN QTY OF MAFIC XENOS & INCREASE OF QZ-CARB-
R			
-			65.0-66.3:DECREASE IN SILIC.ABSENCE OF PORPH.TEXT. F.G.DIORITE
R			W.INCREASE IN MAFIC CONTENT.
1	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D*
/ L	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1
/ L R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING
/ L R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD
/ L R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS
/ L R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D
/ L R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE
/ L R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY &
/ L R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC.
/ L R R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER.
/L R R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE?
/ L R R R R R R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT.
/ L R R R R R R R R R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5-
/ L R R R R R R R R R R R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN @ 71.0)
/ L R R R R R R R R R R R R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.4 - 68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN @ 71.0) 73.8-75.2:VERY BROKEN CORE
/L R R R R R R R R R R R R R R R R R R R			W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN @ 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE
/L R R R R R R R R R R R R R R R R R R R	663	765	W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN @ 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE ANLTPFMF VFF5 P F0080 P5<+<) D(
/ L R R R R R R R R R R R R R R R R R R R			W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN @ 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE ANLTPFMF VFF5 P F0080 P5<+<) D(GA PPS3 3434 P=<) <+
/ L R R R R R R R R R R R R R R R R R R			W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN @ 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE ANLTPFMF VFF5 P F0080 P5<+<) D(GA PPS3 3434 P=<) <+ GREENISH-GREY,INTENSELY ALT'D,MOD.FOLIATED LAPPILLI TUFF (OR F.G
/ L R R R R R R R R R R R R R R R R R R			W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQ2 BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN @ 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE ANLTPFMF VFF5 P F0080 P5<+<) D(GA PPS3 3434 P=<) <+
/ L R R R R R R R R R R R R R R R R R R			W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN & 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE ANLTPFMF VFF5 P F0080 P5<+<) D(GA PPS3 3434 P=<) <+ GREENISH-GREY,INTENSELY ALT'D,MOD.FOLIATED LAPPILLI TUFF (OR F.G DIORITE?).2-6MM FRAGS (ALT'D TO A LIGHT GREEN) IN A VERY F.G. CHLORITIC & FOLIATED MATRIX.
/ L R R R R R R R R R R R R R R R R R R			W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN & 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE ANLTPFMF VFF5 P F0080 P5<+<) D(GA PPS3 3434 P=<) <+ GREENISH-GREY,INTENSELY ALT'D,MOD.FOLIATED LAPPILLI TUFF (OR F.G DIORITE?).2-6MM FRAGS (ALT'D TO A LIGHT GREEN) IN A VERY F.G. CHLORITIC & FOLIATED MATRIX. STRONG ,PREV.CHLORITIC ALT.W.LESSER SER ALT. OF PLAG. QZ-CARB
/ L R R R R R R R R R R R R R R R R R R			W.INCREASE IN MAFIC CONTENT. FGDRPFMF FGF3 P F0080 P2<(P1 D* 4AQZ BNFF 3545 VQ070 Q=P= <1 DARKER GREY,MOD ALT'D,FINE-MED GR'D DIORITE CHARACT'D BY VARYING INTENSITIES OF ALT,GRAIN SIZE W.SELECTIVE AREAS OF WEAK TO MOD FOLIATION; BANDING IS RESTRICTED TO STRONGER FOLIATED AREAS WHERE F.G.MAFIC FRAGS & OXYD.BANDS ARE INTERCALATED W.THE FOL'D DIORITE ALT.CONSISTS OF PERV.CHLOR.OF MAFICS,SELECT.PERV.SILIC.,PATCHY & LOCALIZED EPID.& LESSER PERV.SERIC. FRACT.IS MOD. & MOSTLY FILLED W. QZ-CARB & LESSER EPID & SER. 66.3 : 10CM FRAG OF M.G.MONZONITE? 66.4-68.5: INCREASE IN EPID.ALT. 69.2-71.7: STRONGER FOLIATION W.A HIGHLY SILIC'D ZONE FROM 70.5- 71.6 M (5 CM QZ VEIN & 71.0) 73.8-75.2:VERY BROKEN CORE 75.7-76.5: INTENSELY ALT'D FAULT ZONE ANLTPFMF VFF5 P F0080 P5<+<) D(GA PPS3 3434 P=<) <+ GREENISH-GREY,INTENSELY ALT'D,MOD.FOLIATED LAPPILLI TUFF (OR F.G DIORITE?).2-6MM FRAGS (ALT'D TO A LIGHT GREEN) IN A VERY F.G. CHLORITIC & FOLIATED MATRIX.

_			
R	700	4054	76.5-77.4: INTENSELY ALT'D SHEAR (FAULT?)ZONE
/ L	100	1051	FGDRPFMF FGF5 P F0080 P3<+<= D) <(D)
R			4AQZ S5FF 4677 VQ070 E(P1 G=D.<+
R			DARKER GREY, MOD.ALT'D, FINE-MED.GR'D DIORITE CHARACT'D BY WEAK
R			TO MOD.FOLIATION; VERY SHATTERED CORE,MOD.SHEARING & QZ-CARB VEINLETS. FOLIATION VARIES FROM 60-80 DEG TO C.A.INCREASING IN
R			PROXIMITY OF SHEAR ZONES (VERY F.G.)
R			ALT.CONSISTS OF PERV.(~30%),LESSER PERV SER.(~10%),QZ-CARB F.F.
			USUALLY PARALELL TO FOLIATION BUT OCCASION'Y SUB-PARALELL TO
R			C.A INCREASING IN SHEAR ZONES
R R			PY OCCURS AS DISS THROUGHOUT (~1-2%), SOME GRAIN CLUSTERS (~0.5%)
			& LESSER F.F. ASSOC.W.QZ-EPID VEIN'G
R			
R			TRACE OF CP,MINOR DISS MAGN (~1-2%) THROUGHOUT 81.2-83.0: SHEAR ZONE DISPLAYING 2-3CM WIDE QZ-CARB VEIN PARALEL
R R			TO C.A. & MOD OXYD'D
R			87.0-87.7: SHEAR ZONE, INTENSELY FRACT'D W.INCREASED QZ-CARB VN'G
R			89.6-90.4: AS ABOVE
R			91.3-91.9: AS ABOVE
R			91.3-96.4: VERY BROKEN CORE
R			95.6-96.1: FAULT GOUGE
R			99.4-105.1: VERY BROKEN CORE
R			101.7-103.3:DECREASE IN MAFIC CONTENT, COARSER GR'D ZONE
	1051	1190	
L			5AQZ VVF3 3444 P1 D.
R			MED.GREY, V.FF.G. DIORITE CHARACT'D BY A CRACKLED NATURE, QZ VNS
R			& WEAK TO MOD SILIC.
R			ALT. CONSISTS OF PERV.CHLOR (~30%), W. LESSER SER., SILIC IS SELEC
R			TIVELY PERV. QZ-CARB VEINS OCCUR IRREG THROUGHOUT, DISPLAYED AS
R			FINE NETWORKS IN MORE FRACT'D AREAS
R			PY OCCURS DISS (~2-3%) THROUGHOUT & F.F.~1% ASSOC W.INCREASED
R			FRACT'G & VEIN CONTACTS
R			SILIC'D ZONES ALSO SHOW AN INCREASE IN PY CONTENT
R			MAGN OCCURS DISS IN SELECTIVE AREAS. TRACE OF CP.
R			QZ VEINS @:105.1 (1CM),105.5(1CM),106.3(7CM),108.4(1CM),108.7
R			(2CM),108.8(8CM),108.9(2CM),109.1(2CM),109.2(2CM)
R			110.1(2CM),111.5(10CM),111.9(4CM),118.0(2CM)
R			114.3-116.0: STRONGLY SILIC'D ZONE
1	1190	1269	
L			6AQZ VV 1222 P1
R			LIGHTER GREY, INTENSELY SILIC'D M.G. DIORITE CHARACT'D BY STRONG
R			SILIC.& QZ VN'G. TEXT ALMOST COMPLETELY OBLITERATED BY INTENSE
R			ALT. ALT. IS PERV. SILICEOUS (~30%)& CHLORITIC (~30%)W.LESSER EPID
R			QZ VEINS OCCUR IRREG THROUGHOUT (UP TO 20CM), OCCASION'Y HOSTING
R			CHLORITIC MATERIAL
R			PY OCCURS DISS THROUGHOUT (~1-2%), BLEBS ~1% & F.F.<1%, INCREA'G
R			
			IN SILICEOUS ZONES.
R			MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT
R			MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9
R R			MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM)
R R R			MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS)
R R R R	1240	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE
R R R R	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P FO080 P4<+P2 D+B)<+
R R R / L	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P FO080 P4<+P2 D+B)<+ 4A F3VV 3344 VQ070 P1
R R R L R	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P FO080 P4<+P2 D+B)<+
R R R / L	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P F0080 P4<+P2 D+B)<+ 4A F3VV 3344 VQ070 P1 DARKER GREY,MOD-STRONGLY SILIC'D C.G. DIORITE CHARACT'D BY SILIC GZ-CARB VN'G & 3-5% PY
R R R L R R	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P F0080 P4<+P2 D+B)<+ 4A F3VV 3344 VQ070 P1 DARKER GREY,MOD-STRONGLY SILIC'D C.G. DIORITE CHARACT'D BY SILIC
R R R R L R R R	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P F0080 P4<+P2 D+B)<+ 4A F3VV 3344 VQ070 P1 DARKER GREY,MOD-STRONGLY SILIC'D C.G. DIORITE CHARACT'D BY SILIC QZ-CARB VN'G & 3-5% PY 2-5 MM(50-50%) PLAG & MAFIC MINERALS,PARTLY SILIC'D,MOD.FRACT'D
R R R R R R R R R R	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P FO080 P4<+P2 D+B)<+ 4A F3VV 3344 VQ070 P1 DARKER GREY,MOD-STRONGLY SILIC'D C.G. DIORITE CHARACT'D BY SILIC GZ-CARB VN'G & 3-5% PY 2-5 MM(50-50%) PLAG & MAFIC MINERALS,PARTLY SILIC'D,MOD.FRACT'D SILIC.IS SELECT'Y PERV.& OCCAS'Y OBLITERATES ORIGINAL TEXT
R R R I L R R R R R R R	1269	1500	MAGN OCCURS DISS IN SELECT.AREAS W.ASSOC INCREASE IN PY CONTENT QZ VEINS @: 120.8(2CM),121.4(2CM),123.8(20CM),126.0(2CM),126.9 (4CM) 122.0-122.8: INCREASED MAGN.~3-5% & PY ~5-7% (DISS & CLUSTERS) 124.0-125.4: VERY BROKEN CORE CGDRPFMFPY+RWCG P FO080 P4<+P2 D+B)<+ 4A F3VV 3344 VQ070 P1 DARKER GREY,MOD-STRONGLY SILIC'D C.G. DIORITE CHARACT'D BY SILIC GZ-CARB VN'G & 3-5% PY 2-5 MM(50-50%) PLAG & MAFIC MINERALS,PARTLY SILIC'D,MOD.FRACT'D SILIC.IS SELECT'Y PERV.& OCCAS'Y OBLITERATES ORIGINAL TEXT SELECT.ZONES OF HIGHER MAFIC CONTENT & FINER GR'D DISPLAY MOD.

•

.

R			PERV.CHLOR.A	LT (~4	40%) W.	LESSE	R SER	
R								MARY?), BLEBS1-2%, & F.F2-3%
R			OFTEN ASSOC					
R			126.9-127.5:	INTE!	NS'Y FR	ACT'D	& MOD.	BRECC'D WLASSOC QZ VN'G
R			131.3-136.2:	INTE	NS'Y SI	LIC'D	ZONE W	.QZ-CARB VEIN NETWORK & OC-
R				CASIC	ON. FEL	SIC F	RAGS?	
R			137.2-139.4:	AS A	BOVE			
R			143.4-147.6:	F.G.	,MAFIC,	MOD.FO	DLIATED	W.C.G.DIORITE FRAGS. PY
R				VEIN	(1CH)	144.5	145.0	
R			END OF HOLE					
A001								
AUMM			SAMPLE	Au	Ag	As	Cu	
R				ppb	ppm	ppm	ррт	
ALAB			PDI RESEARCH					
ATYP			SPLIT CORE					
AMTH			WET GEOCHEM	A.A.				
R			CASING TO 25	.3 M	- OVBD			
A001	253	261	14431	25	0.1	1	107	
A001	261	280	14432	45	0.2	12	140	
A001	280	300	14433	10	0.2	14	108	
A001	300	323	14434	15	0.3	18	202	
A001	323	343	14435	65	0.2	20	151	
A001	343	365	14436	75	0.2	14	306	
A001	365	386	14437	30	0.1	4	204	
A001	386	406	14438	40	0.1	1	310	
A001	406	426	14439	10	0.1	1	84	
A001	426	446	14440	3	0.1	1	43	
A001	446	462	14441	25	0.1	6	36	
A001	462	482		10	0.1	2	50	
A001	482	502	14443	10	0.1	14	23	
A001		522			0.1	10	36	
A001		551			0.1	6	46	
A001		559		10	0.1	4	42	
A001		572			0.1	12	86	
A001		586		20	0.1	2	71	
A001		606		15	0.1	10	32	
A001		626		10	0.1	8	53	
A001	626	646		10	0.1	6	28	
A001	646	663		30	0.1	2	55	
A001	663	683		10	0.1	1	32	
A001	683 705	705		20	0.1	2	72	
A001	705	715		30	0.1	20	120	
A001	715	735		110	0.1	6	110 540	
A001	735	757		200	0.5	36	560	
A001	757	765		125	0.3	16	383	
A001	765	788		10	0.1	8	110	
A001	788	814		45	0.1	16	100	
A001	814	831		180	0.3	10	235	
A001	831	851		35	0.1	14	192	
A001	851	868		65	0.1	18	38	
A001	868	878		160	0.5	22	650 120	
A001	878	898		70	0.1	8	120	
A001	898	917		45	0.1	14	56 77	
A001	917	937		25	0.1	1	37 77	
A001	937	957		10 25	0.1	1	77 117	
A001	957	977		25 25	0.1	1	117 50	
A001	977	997		25	0.1	1	50 /5	
A001	997 1017	1017		20	0.1	1	45 40	
	1017	1037		3	0.3	2		
AUUT	1037	1051	14473	425	15	18	177	

A001 105	51 1071	14474	60	0.4	20	234
A001 107	71 1091	14475	70	0.2	12	110
A001 109	21 1111	14476	250	0.1	10	122
A001 11	11 1131	14477	220	0.1	16	100
A001 113	31 1151	14478	120	0.1	8	105
A001 11	51 1171	14479	20	0.1	8	31
A001 11	71 1190	14480	15	0.1	1	34
A001 119	90 1210	14481	40	0.6	20	520
A001 12	10 1230	14482	160	0.5	50	630
A001 12	30 1250	14483	5	0.1	8	52
A001 12	50 1269	14484	15	0.1	18	70
A001 12	59 1289	14485	55	0.5	20	600
A001 12	89 1313	14486	60	0.4	6	510
A001 13	13 1333	14487	55	0.1	10	303
A001 13		14488	100	0.6	24	340
A001 13					28	392
A001 13			40		22	303
A001 13			30	0.1	12	265
A001 14		14492	15	0.1	1	136
	34 1454		55	0.1	2	261
A001 14			40		6	357
A001 14		14495			1	170
R	10 1500	END OF HOLE		0.7	•	
		END OF BOLE				
A002			FOUN	BOD		
AUMM			ECOVY			
R	57 774	CASING TO 2			ELUVER	τ
	53 271		61.0			
	71 280		68.0			
	80 296		50.0			
	96 311		87.0			
	11 326		93.0			
	26 341		93.0			
	41 357		73.0			
	57 372		97.0			
	72 384		83.0			
	84 399		90.0			
	99 415		88.0			
	15 430		95.0			
A002 4	30 445		100.0			
A002 4	45 460		77.0	7.0		
A002 4	60 472		92.0	8.0		
A002 4	72 485		92.0	12.0		
A002 4	85 491		100.0	0.0		
A002 4	91 500		89.0	11.0		
A002 5	00 515		97.0	37.0		
A002 5	15 524		88.0	33.0		
A002 5	24 539		97.0	37.0		
A002 5	39 555		94.0	50.0		
A002 5	55 570		97.0	40.0		
	70 585		95.0	27.0		
	85 600		90.0			
	00 616		94.0			
	16 631		90.0			
	31 646		87.0			
	46 661		100.0			
	61 67 7		81.0	33.0		
	77 692		94.0	30.0		
			100.0			
	07 707					
	92 707 107 722			30.0 60.0		
A002 7	92 707 07 722 22 7 3 8		100.0			

A002 738	750	75.0	0.0
A002 750		94.0	24.0
A002 759		100.0	11.0
A002 768		97.0	16.0
A002 783		88.0	20.0
A002 799	814	97.0	27.0
A002 814		90.0	87.0
A002 829	844	100.0	29.0
A002 844	860	88.0	19.0
A002 860	875	97.0	8.0
A002 875	890	90.0	21.0
A002 890	905	93.0	43.0
A002 905	920	97.0	17.0
A002 920	936	25.0	0.0
A002 936	948	83.0	0.0
A002 948	960	100.0	0.0
A002 960		100.0	
A002 975		91.0	
A002 991		71.0	0.0
A002 1003		97.0	0.0
A002 1012		95.0	
A002 1012		100.0	
		94.0	
A002 1042		100.0	
A002 1058			-
A002 1064		89.0	
A002 1073		83.0	
A002 1082		93.0	
A002 1097		93.0	0.0
A002 1113	1128	82.0	
A002 1128	1155	93.0	
A002 1155	1167	92.0	0.0
A002 1167	1183	72.0	14.0
A002 1183	1195	92.0	75.0
A002 1195	1210	97.0	20.0
A002 1210	1225	100.0	43.0
A002 1225	1241	94.0	44.0
A002 1241	1250	78.0	0.0
A002 1250	1265	100.0	45.0
A002 1265	1280	93.0	35.0
A002 1280	1295	100.0	33.0
A002 1295		70.0	16.0
A002 1305		100.0	
A002 1317		93.0	
A002 1332		97.0	
A002 1332		93.0	
A002 1347		81.0	
		93.0	
A002 1393		93.0	
A002 1408		100.0	
A002 1423		97.0	
A002 1439		100.0	
A002 1454		100.0	
A002 1469		87.0	
A002 1484	1500	94.0	54.0
R		END OF HOLE	
/END			

APPENDIX III

÷

TRENCH LOGS, ASSAY RESULTS

AND

OVERBURDEN PROFILE DATA

<u>Trench 90-01</u>

ī

10 Th 1

			TR90-C		17SEPS PS	0 MD	HLLGSEP90240 WINDY	MDGI	RD 0.	.0	
\$000 \$001 \$002 /SCL	00 140 250	140 250 550 MT.2	5	5.0 5.0 5.0 1	10.0	3.0 4.0 3.0	608841	5.0	4456 ⁻	16.0	970.0
LSCL			-		LCTM						
/NAM										YPYCPAPG	L
LNAM R			THIST	RENCH	WAS EX	CAVAT	ED TO TEST AN AU-		HELIM/ S SOII		м
R							1.0 - 1.3M CONSI				
R R					.55M SA ORIZON.		LAY HORIZON OVERL CKNESS OF THESE H				
R			VARIAE	BLE.	WEATHER	ED BE	DROCK CAN REACH A	DEP	TH OF	0.4M AN	D
R R							IMONITIC STAINING RS AT BASE OF SLO			K SURFAC FK LEVEL	
R			THERE	IS MO	DERATE	WATER	SEEPAGE. SANDY-	GRAV	EL HO	RIZON PI	NCHES
R R							ORIZON PINCHES OU DOMINANTLY CLAYIS			M REMAI	NDER
1	00	120		AN/F		F5FF		P3 1		D=D+ D	C
L R				REYIS	H-GREEN		TZ FLOODED, MODERA		FOLIA		
R R							ITE. MATRIX APPE E SILICEOUS) CONS				
R			AND PL	AGIOC	LASE.	FOLIA	TION IS MODERATE	AND /	APPEA	RS TO BE	
R R							010 DEGREES. ALT LTERATION (ABOUT				
R			PERVAS	SIVE S	ILICA P	LOODI	NG (LESSER LENSES	s). –	FRACTO	URE	
R R						-	OMMONLY HOSTING C ATION OCCURS AS D				•
R			UP TO	10%	LOCALLY) AND	DISSEMINATED CLC	DTS D	F CHA	LCOPYRIT	
R R			• • •				LESSER (<1%) DISS APPEAR ASSOCIATE				
R	120	140	SILICI	FICAT	-	PPF3	P F0020	P3	P1	D.	
/ L	120	140			3g		53	<+	<(-	
R R							ATED, HORNBLENDE ED HORNBLENDE PHE				
R			A FINE	GRAI	NÉD AND	ISITI	C MATRIX. WEAK F	OLIA	TION	STRIKING	020
R R							URING WITH JOINT TE CHLORITIC ALTE				
R	4/0	250	SILIC	. ALTE	RATION.	MIN	OR DISSEMINATED P	YRIT	Ε.		
/ L	140	250		-	HBPF Agqz	F3FF	P F0020	P2 1	rs <1	D+D(
R							RLY MASSIVE, WEAK				CEOUS
R R							GRAINY TEXTURE OLIATION STRIKING				
R							T. ALTERATION IS TEXTURE. CHLORITE				ARS
R R							FILLING (ABOUT 20				IN IS
R R					-		0%). MINERALIZAT OF PYRITE (ABOUT				OF
R			CHALCO	PYRIT	E.				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TRACEO	
/ L	250	300			CLHB 3GPF	SCWV	P SC057 30 7 56)P7		D.	
R	700	705		DARK G	REEN, M		TELY FRACTURED CH				
/ L	300	395			HBPFBI Ag QZ			12<)	۲2 (>	D+<)	
R							FOLIATED AND MOD EXTURE SHOW WEAK				05
R R			HORNBL	ENDE?	QUARTZ	EYES	AND LENSES PARAL	LEL	TO FO	LIATION.	
R R							STRIKES 010 - 02 T. LOCALIZED FAUL				
R			095 DE	EGREES	. QUAF	TZ-CA	RBONATE VEINING A	ND L	ENSES	OCCUR L	
R R							MENTS, LIMONITE RITE AND CHALCOPY				z.
R			MODER	ATE-ST	RONG FF	ACTUR	ING WITH JOINT SE	ET AT	73 D	EGREES A	ND 10
R R							NSISTS OF WEAK, PE CATION, LOCALLY N				ANU

R R R R R R R V L R R R R R R R R R R R	395	530	LIGHTER GRE PORPHYRITIC ALTERATION I HORNBLENDE I PARALLEL TO MODERATE ANI CARBONATE FI 20CM WIDE)	INJEG ZATIG PYRI WITH INCRI INJEG HBPF AGQZ YISH-GG YISH-GG YISH-GG YISH-GT PHENOS FOLIA D TRENI RACTURI AND FA EN OF 1 E. FAI ISSEMII	CTION, DN OCCL TE AND INCREA EASED S CTIONS RWF5 VVPP REEN SI ED AND RTIALLY STILL TION. V DS APPR E FILLI JLT GOU MINERAL JLT GOU NATED S	RUSTY RS AS <1% CH SED SI SILICIF WITH A 7 56 CLICEOU FAULTE 7 OBLIT VISIBL / FAULTE 7 OBLIT VISIBL / FAULTE 1 OBLIT VISIBL / FAULTE / OBLIT VISIBL / FAULTE / OBLIT VISIBL / FAULTE / OBLIT VISIBL / FAULTE / OBLIT / OBL	AND GF ABOUT (ALCOP) LICIF) ICATIC SSOCIA P VQ02 6 F204 (S, M02 E AND ERATEL E AND LICEOU ELY, (NCREAS (UP TO DN AND E INTE S. M1	REENISH 2-3% D (RITE. ICATION ON AND ATED DI 55 P1 60 DERATEL SSITIC OCCUR SED QUA 15CM & OCCUR ENSELY INERALI	-BLUE ISSEMI APPEA AND Q QUARTZ SSEMIN <)P3 Y FOLI FLOW. NAL TE ELONGA , FOLI REES, RTZ VE VIDE). AS MIL CLAY A ZATION	CLAY. MINERALI- NATED WISPS OF RS ASSOCIATED ITZ-CARB VEINING. -CARBONATE ATED PY-CPY. D+<) D) ATED, WEAKLY INTENSE XTURE BUT ITED AND ATION IS VERY SUBTLE INING (UP TO QUARTZ VEINS KY WHITE AND LITERED AND I OCCURS AS	
R R			CHALCOPYRIT	E. GALI	ENA ALS	50 OCCL	IRS AS	<1% DI	SSEMIN	ATIONS	
R			DEGREES.					1. 102	DEGREE		
R R			43.3 - 43.5 46.5 - 47.0	: 15-2	DCM WID	E QUAR					
R R				BRIT	TLE, NO) MINER	ALIZA	TION.		Y WHITE,	
R R			48.0 - 48.2	STRI	KING 30	DEGRE	ES, D	IPPING	45 DEG	REES NORTHWEST.	
R R			48.8 - 48.7 50.6 - 50.8	: 10-1	5CM FAU	JLT GOU	IGE HOS	STING 2	CM QUA		
R /	530	550			CING 50	J DEGKE	P	IPPING	4) DEG	REES NORTHWEST.	
R A001			END OF TREN		••				711		
AUMM R			SAMPLE	AU ppb	AG ppm	AS ppm		PB ppm	ZN PPM		
ALAB ATYP			ECO-TECH LA CHIP SAMPLE	s							
AMTH R	00	20	WET GEOCHEM NO SAMPLE -								
A001 A001	20 40	40 60		120 25	.05 .05	33 16	231 217	12 2	47 41		
A001	60	80		105	.05	12	114	6	42		
A001	80	100		15	.05	6	149 112	4 5	84 56		
A001 A001	100 120	120 140	C105 C106	10 5	.05 .05	13 11	167	6	56		
A001	140	160		5	.2	21	149	8	41		
A001 A001	160 180	180 200	C108 C109	60 15	.3 .2	11 16	138 102	7 5	56 49		
A001	200	220	C110	40	.8	10	962	6	61		
A001 A001	220 240	240 260	C111 C112	35 590	.4 1.7	10 16	542 448	12 19	118 155		
A001	260	280	C112	25	.05	13	262	27	74		
A001	280	304	C114 C115	10	.05 2.3	16	137 301	12	79 110		
A001 A001	304 320	320 340	C116	435 10	.05	55 16	131	28 7	103		
A001	340	360	C117	35	.1	14	128	2	122		
A001 A001	360 380	380 395	C118 C119	30 35	.05 .1	12 9	297 626	4	59 43		
A001	395	420	C120	20	.05	7	349	5	29		
A001 A001	420 440	440 460	C121 C122	85 60	.9 .2	4	411 188	265 9	287 26		
A001	460	480	C123	25	.2	11	169	5	32		
A001 A001	480 500	500 520	C124 C125	80 20	.2 .05	8 2	286 217	7 7	42 34		
A001 A001	500 520	520	C125	15	.05	5	369	6	34		
R 4002	530	550	NO SAMPLE -	OVBN							
A002 AUMM R			SAMPLE	AU ppb	AG ppm	AS ppm	CU ppra	PB ppm	ZN ppm		

. . .

Į

ALAB		ECO-T	ECH LABS							
ATYP			TURE SAMPLI							
AMTH			EOCHEM A.A							
A002	320 32		C127 10		100		108			
R			CHIP ACROS			t gouge	HOST	ING QU	JARTZ F	RAGMENTS,
R			E IS ABOUT							
A002	330 33		C128 3				117			
R			CHIP ACROS				-			
A002	465 47	-		3.1		224	9	-		FORFER
R			CHIP ALONG				:IN, S	IKIKI	16 50 0	EGREES
R A002	/00 /0		IPPING 50 I C130 30				45		,	
	480 48	_					12 14 TED 1			70
R R			FAULT GOUG						RIKING	: 50
A002	486 48		C131 4			547	nwE31			
R 8	400 40		QUARTZ VEI				-	-		
A002	506 50		C132 1				.0, 10			
R	500 50	-	CM FAULT G				-			IG 30
R			ES AND DIP							
A002	433 43	-	C133 131				87		1	
R		-	FAULT GOUG				-	•••		
A003				-						
AUMM		S	AMPLE A	U AG	i AS	CU	PB	Z)	1	
R		-	pp				ppm	ppr	n	
ALAB		ECO-T	ECH LABS	••		••	••	• •		
ATYP		GRAB	SAMPLES							
AMTB		WET G	EOCHEM A.A	-						
A003	65 6	5	C134 7					50		
R			Z FOODED A							
XR			MENTS WITH			NE DISS	SEMINA	TED P	YRITE 🖡	ND ABOUT
R			OTS OF CHA							
A003	90 9	0	c135 4		-		8		-	
R		SAME	AS ABOVE B	UT CONT	AINING	LESSE	C PYRI	LE ANU) CHALC	UPTRIJE.
R										
R		TOERC					TA			
R R		IKCNU	H OVERBURD	EN PROF	TLE SA	mple of	114			
R	SAMP		DEPTH	AU	AG	CU	PB	ZN	AS	
R	SACI		CM	ppb	ppm	ppm	ppm	ppm	ppm	
R			ÇIN	PP-2	ppm	pp	ppin	ppin	PPm	
R	TR90- 1	0.0M	A 30	10	<.1	49	9	47	48	
R	TR90- 1		B 70	<5	< 1	52	13	56	78	
R	TR90- 1			60	<.1	126	10	69	203	
R		10.0M		30	<.1	855	11	258	313	
R		10.0M		<5	<.1	102	13	81	73	
R		10.0M		10	<.1	244	9	140	197	
R	TR90- 1	20.0M	A 20	15	<.1	184	14	158	306	
R	TR90- 1	20.0M	в 60	10	.1	527	11	169	250	
R		20.0M	C 80	5	.1	368	4	124	79	
R	TR90- 1		A 20	<5	<.1	37	11	50	14	
R	TR90- 1		в 70	130	.5	387	24	159	1644	
R	TR90- 1		C 110	15	.3	1 79	14	117	153	
R	TR90- 1		A 30	<5	.1	49	10	59	15	
R	TR90- 1		в 70	275	.5	724	20	138	23	
R	TR90- 1		C 110	85	-2	633	8	74	22	
R	TR90- 1		A 30	10	<.1	38	4	57	12	
R	TR90- 1		B 90	85	.4	400	12	140	29	
R	TR90- 1	50.0M	C 130	135	.5	881	18	320	33	
/FND										

ł

ىكەرلىمىدى **ئۇلىگەن مۇراپ بەرلىمە بەلەرلەرلەرلەرلەر ب**ەر بارى بارىمى بار تەركىيى بار بار

/END

<u>Trench 90-02</u>

IDEN6	B0201V	216	TR90-	-02	20SE	P90 MD	HLLGSEP90240	MDGR	D 0.0	
	LACER						WINDY			070 0
S000	00 260	260			86.0	0.0 15.0	60884	40.0	445592.0	978.0
5001	420	420			94.0					
\$002 \$003	450	570			94.0					
\$004	570				86.0					
/SCL		MT.2	2							
LSCL					LCTM					
/NAM									IKFCYPYCPA	PGL
LNAM R			тите	TOENC		EVCAVATO	D TO TEST A AU-		ELIMAPL	EM
R			ANOM/		n MAS	ENCAVAL	D TO TEST A AU	CU-43	SOIL GEOCH	
R					VARIE	S FROM	.8 (THE WESTERN	END)	TO 5.0M	
R			PLUS	AT TH	E EAST	ERN END				
R							.4M OF TILL OVE			
R							AND SANDY GRAVE			
R R							BEDROCK DEPTH (SPLAYS INTENSE			
R							RE BEDROCK BEGIN			
R							ND TRENCH EXPOS			
R						-	ABOUT 2M WIDE.			
/	00	120		AN/		F5VV	P F0020			
L R			DADK	CREEN	4GQZ		7 66 FOLIATED SUB-HOR		=<1	TERED
R					FLOW?)		ULIAIED SUB-HUK	12UN I A	L LTING AL	IERED
R							YING, DIPPING G	ENTLY	SOUTHEAST.	
R			QUAR	TZ CAR	BONATE	FLOODI	IG OCCURS AS VEI	NLETS	AND LENSES	AND
R							TO FOLIATION.			
R R							PERVASIVE AND O IS LESSER BUT P			RE
R						- · · -	RECTION.	EKVASI	VE AND	
R							STAINING OCCUR A	LONG F	RACTURES A	ND
R					PLANES					
R							WITH JOINT SET A			D 28 DEG.
R R							ISS.AND 1-2% FRA DISSEMINATED CLO			LIZATION
R							H SILICIFICATION			
R			3.0	- 4.5M			CHIST ZONE WITH	INCREA	SED QUARTZ	-CARB
R	430	2/0				•	NOR SULFIDES	000-00	7 0.0	
/ L	120	260		AN/	FHBPF		P FO034 2 5 44	UP2<)	v3 D+D)	
R			GREY	ISH-GR			Y FOLIATED, SIL	ICEOUS	ALTERED A	NDESITIC
R			FLOW	•	•					
R							CUNIT BUT WITH			FICATION,
R R							TZ (CARBONATE) V DCCURS AS FINE D			% AND
R							ING ABOUT 2%.	100200		
R							ISSEMINATIONSE	<1%.		
R							RIKING 034 DEG.			
R							G WITH JOINT SET			
R R			10.0	- 18.			4 FAULT GOUGE, G ABOUT 97 DEGREES			
R							REES TO C.A.)			
R			21.0	- 26.	0: QU/	RTZ-(CA	RBONATE) LENSES			
R							LY HOSTING CHLOR			ITH
R	260	100		A 11 /			INCREASE IN PYR		DNTENT. 24 G+D=D)	
/ L	260	420		AN/	FHBPF 5AQZ			•	24 G+D=D) C1<10)	
R			MEDI	UM GRA			FOLIATED, HIGHL			
R						C FLOW.				
R							ERVALS BUT			
R							IFICATION, INCRE			GES,
R R				•		-	ING AND MINERALI N OBLITERATES OR			
R							PEARS GRAINY.	TGTWN	. ILAIORE.	
R							S, 10-15CM THICK		AR ALONG TH	RENCH
R			WALL	S AND	ARE SU	B-PARAL	LEL TO FOLIATION	. COL	OUR IS	
R							BRITTLE, DOES N			
R			FAUL	i GOUG	ES APP	EAK TU	BE TRENDING ALON	IG UYU-	UAD DERKEE	2 101012

i

R			AND DISPLAY INTENSE CLAY (BLUEISH-GREY) ALTERATION
R			WITH NO VISIBLE SULFIDES BUT OCCASIONAL QUARTZ VEIN MATERIAL.
R			HEMATITE AND LIMONITE COATINGS AND STAININGS ARE MORE ABUNDANT
R			PROBABLY DUE TO HIGHER SULFIDE CONTENT.
R R			28.7 - 30.5: 6CM QUARTZ VEIN, STRIKING 38 DEGREES, DIPPING 30 DEGREES NORTHWEST, SAMPLED ALONG TRENCH WALL
R			32.0 - 34.7: 10CM FAULT GOUGE TRENDING 90 DEGREES
R			41.2 - 42.5: 10CM FAULT GOUGE TRENDING 115 DEGREES, DIPPING 70
R			DEGREES NORTH
!	420	449	
L R			RUCP C2C2O)C1 REDDISH-GROWN, INTENSELY LIMONITIC AND HEMATITIC FERRICRETE
R			HOSTING MASSIVE SULFIDES (PY, CP, AP).
R			ROCK IS VERY HARD AND CEMENTED BY IRON OXYDES, HOSTED BY
R			INTENSELY ALTERED VOLCANIC (ANDESITE), HIGHLY SILICIFIED AND
R			HOSTING 1-5 CM THICK LENSES OF PYRITE AND ARSENOPYRITE AND CLOTS OF CHALCOPYRITE; QTZ VEINLETS ARE ALSO PRESENT
R R			ZONE OCCURS AS PROMINENT NUMP "3.0M WIDE AND APPEARS TO BE PART
R			OF THE OVERBURDEN
R			OVBD IN VISCINITY IS INTENSELY LIMONITIC AND FERRICRETE EXTENDS
R			UP TO 5M THICK.
R R			ORIGINAL TRENCH, DUG WITH A FLAT EDGE BUCKET EXPOSED A 23M WIDE FERRICRETE ZONE TRENDING 20-30 DEGREES NORTHEAST.
ĩ	449	486	AN/FHEPF F3AG P F0033 30P2 P2 D+D+
Ĺ			AGQZ 5 45 VQ <=<=
R			GREYISH-GREEN, WEAKLY ALTERED, SILICEOUS ALTERED ANDESITE
R			SIMILAR TO INTERVAL 12.0 - 26.0M. WEAK FOLIATION STRIKING 022 DEGREES AND DIPPING 054 DEGREES
R R			SOUTHEAST, MODERATE-HIGH FRACTURING WITH JOINT SET AT 108
R			DEGREES AND 25 DEGREES.
R			ALTERATION CONSISTS OF PERVASIVE CHLORITE AND PERVASIVE
R			SILICIFICATION (QUARTZ LENSES, VEINLETS AND EYES).
R			HEMATITE AND LIMONITE COATINGS AND STAININGS THROUGHOUT. PYRITE OCCURS AS DISS. (ABOUT 2-3%) AND LESSER AS FRACTURE
R R			FILLINGS.
R			CHALCOPYRITE OCCURS AS DISSEMINATIONS (ABOUT 2-3%).
R			48.0 - 48.7: MASSIVE SULFIDE BEARING (PY,CP,AP) FAULT GOUGE
R			(10CM WIDE) HOSTING QUARTZ VEIN MATERIAL, STRIKING
R /	486	660	055 DEGREES. AN/FHBPF F7 P F0260 20P3 >1 D)D.
L	400	000	4A 5 45 C=C=
R			DARK GREY, INTENSELY FOLIATED ALTERED ANDESITE (BORDERING ON A
R			CHLORITIC SCHIST)
R			STRONG FOLIATION STRIKING 260 DEGREES AND DIPPING 020 DEGREES
R R			SOUTHEAST. MODERATE-HIGH FRACTURING WITH JOINT SET AT 125 DEGREES AND 37
R			DEGREES.
R			PERVASIVE (ABOUT 30%) CHLORITIC ALTERATION, QUARTZ LENSES AND
R			VEINLETS THROUGHOUT (ABOUT 10%).
R			MINOR DISSEMINATED PYRITE AND TRACES OF CHALCOPYRITE. 53.8 - 57.5M: HIGHLY SILICEOUS ZONE WITH INCREASED LIMONITIC
R R			STAINING AND PYRITE CONTENT (DISS.AND FRACT.FILL.
R			ABOUT 1.2%), ABOUT 20 - 30% PERV.SILICIFICATION.
1	660	745	
L			6A SHVV 5.45 C=<1
R R			LIGHT GREY, HIGHLY SILICEOUS, MODERATLY FOLIATED, ALTERED ANDESITE.
R			SIMILAR TO INTERVAL 26.0 - 42.0M.
R			MODERATE FRACTURING WITH JOINT SET AT 106 DEGREES AND 24
R			DEGREES, STRONG HEMATITE STAINING THROUGHOUT.
R			UP TO 40% PERVASIVE SILICIFICATION.
R R			PYRITE OCCURS DISSEMINATED AND LESSER FRACTURE FILLING UP TO 15% LOCALLY.
R			CHALCOPYRITE OCCURS DISSEMINATED ABOUT 2-3%.
R			GALENA OCCURS DISSEMINATED ABOUT 1%.
R			68.0 - 74.0: 10 - 15CM FAULT GOUGE TRENDING 087 DEGREES
R			(PARALLEL TO TRENCH AXIS)
R A001			END OF TRENCH
AUMM			SAMPLE AU AG AS CU PB ZN
R			pp pp pp pp pp pp pp
ALAB			ECO-TECH LABS

C 14 C 4

				-						
ATYP Amth			CHIP SAMPLE WET GEOCHEM							
A001	00	20	C136	3	.05	11	164	10	41	
A001	20	40	C137	3	.10	15	167	9	103	
A001	40	60	C138	60	.10	33	185	8	110	
A001	60	80	C139	10	.10	28	487	7	92	
A001	80	100	C140	120	.60	180	703	8	105	
A001	100	120	C141	50	.40	206	423	7	70	
A001	120	140	C142	175	-40	143	317	8	95	
A001	140	160	C143	105	.60	32	325	6	129	
A001 A001	160 180	180 200	C144 C145	110 3	.20 .05	21 7	166 41	7 6	81 54	
A001	200	220	C145	70	.05	10	119	6	73	
A001	220	240	C147	80	.05	24	223	7	128	
A001	240	260	C148	35	.05	24	169	8	69	
A001	260	280	C149	60	.05	31	164	10	118	
A001	280	300	C150	85	.10	206	213	8	67	
A001	300	320	C151	75	.05	39	152	9	70	
A001	320	340	C152	65	.10	69	463	10	79	
A001	340	360	C153	400	.20	11	221	10	45	
A001	360	380	C154	40	.20	16	235	8	66	
A001	380	400	C155	45	.10	27	389	9	81	
A001 A001	400 420	420 435	C156 C161	25 600	.05 4.50	34 1200	448 950	10 29	92 126	
A001	435	449	C162	835	2.90	1180	2100	23	188	
A001	449	470	C163	65	.05	144	155	43	47	
A001	470	486	C164	45	.05	95	231	10	49	
A001	486	510	C165	1530	1.30	50	2400	42	153	
A001	510	538		220	.05	38	1600	12	64	
A001	538	550	C167	46	.05	57	106	12	99	
A001	550	575	C168	35	.20	52	121	67	196	
A001	575	590	C169	30	.30	14	226	4	143	
A001	590	610	C170	3	.05	20	200	5	149	
A001 A001	610 630	630 650	C171	20	.20	24	560 1 39	3 2	64 49	
A001 A001	650	660		20 15	.10 .30	10 20	101	8	49 86	
A001	660	680		105	.20	32	85	14	38	
A001	680	700		40	.60	26	112	11	73	
A001	700	720		195	.20	14	165	89	87	
A001	720	740		90	.80	12	125	21	36	
A001	740	745	¢178	15	. 05	7	34	37	60	
A002										
AUMM			SAMPLE	AU	AG	AS	CU	PB	ZN	
R				ppb	ppm	ppm	ppm	ppm	ppm	
ALAB			ECO-TECH LA STRUCTURE S							
ATYP Amth			WET GEOCHEM		•					
A002	160	178		90	.05	25	226	7	94	
R	100									REES, SAMPLED
R			ALONG NORTH							
A002	287	305		20	.05		51	6	22	
R										,STRIKING 38
R					30 DEG	REES N	IORTHWE	ST, SA	MPLED	ALONG NORTH
R			TRENCH WALL							
A002	320	347				62			82	
R							DEGRE	es, sa	MPLED	ALONG TRENCH
R A002	412	425	FLOOR (PARA C160		2.3	, 69	956	12	110	
R 8	412	420								GREES, DIPPING
R			70 DEGREES							
A002	477	490		6010			4400	252	115	
R									TO 20%	PYRITE, 10%
R			CHALCOPYRIT	E, 5%	ASPY?	AND QU	JARTZ V	EIN MA	TERIAL	STRIKING 56
R			DEGREES.							
A002	695	710	-	50	.6	36	190	49	139	
R			10 - 15CM F						, SAMP	LED ALONG
R			TRENCH FLOO	K (SUB	-PARAL	LEL TO) T.A.)			
R										
R R			TRENCH OVER			F CAN		TΔ		
R			INCRUI OVER	JUNDER	. I NVEI	940	O LL DA			
R		SAMPLI	E DEP	TH	AU	AG	CU	PB	ZN	AS
						2				

and the second secon

ļ

R			cm	ppb	ppm	ppm	ppm	ppm	ppm
R					_				
R	TR90-02 0.0M	A	10	25	.3	124	10	66	55
R	TR90-02 0.0M	В	60	<5	.1	73	9	50	15
R	TR90-02 0.0M	Ç	100	<5	.1	- 99	9	51	15
R	TR90-02 10.0M	Α	10	50	1.3	232	11	67	144
R	TR90-02 10.0M	8	80	7052	9.5	752	23	126	5066
R	TR90-02 10.0M	C	130	265	.6	763	9	71	849
R	TR90-02 20.0M	A	30	2535	11.6	286	35	115	1591
R	TR90-02 20.0M	в	110	1385	9.9	685	27	100	3977
R	TR90-02 20.0M	С	200	1205	8.3	971	27	126	1944
R	TR90-02 30.0M	Α	40	<5	.1	73	5	42	35
R	TR90-02 30.0M	в	160	50	.4	1410	9	99	97
R	TR90-02 30.0M	С	300	880	2.0	1305	23	144	623
R	TR90-02 40.0M	Ā	50	75	.7	154	8	46	391
R	TR90-02 40.0M	В	130	750	5.0	1158	27	94	4110
R	TR90-02 40.0M	С	300	110	.5	1762	2	146	662
R	TR90-02 50.0M	Ā	30	315	2.0	154	29	112	936
R	TR90-02 50.0M	в	240	2080	6.3	241	63	53	7190
R	TR90-02 50.0M	Ē	430	290	1.0	891	18	170	2617
R	TR90-02 60.0M	Ā	30	155	1.2	249	23	135	702
R	TR90-02 60.0M	В	130	375	1.4	694	37	99	130
R	TR90-02 60.0M	c	380	15	<.1	282	6	145	55
R	TR90-02 70.0M	Ă	30	20	.2	103	20	79	26
R	TR90-02 70.0M	B	130	295	.2	391	53	146	39
R	TR90-02 70.0M	č	310	185	2.3	383	23	120	62
	11.70 02 10.0M	v	310	102	2.3	200	4.5	120	02

/END

ŧ

Trench 90-03

			(R90-03 23SEP90 MD HLLGSEP90240 MDGRD 0.0											
IPRJP S000		DOME 340	NC. KAMLOOPS WINDY IT 55.0 90.0 2.0 6088475.0 445693.0 978.0											
\$001	340		55.0 84.0 -2.0											
/SCL LSCL		MT.	LCTM											
/NAM			CLCBSIKFCYPYCPAPGL											
LNAM			EPSEHELIMAPL											
R R			THIS TRENCH WAS EXCAVATED TO TEST A CU-AU-AS SOIL GEOCHEM NOMALY.											
R			OVBD DEPTH AVERAGES 2.5M AND CONSISTS OF A 0.2 - 0.5M B-HORIZON											
R R			VITH ROUNDED AND ANGULAR FRAGMENTS OVERLYING ABOUT 2.0M OF SLACIAL TILL HOSTING ROUNDED COBBLES IN THE UPPER LAYER AND											
R			NCREASED ANGULAR FRAGMENTS DOWNWARD, DERIVED FROM LOCAL BEDROCK.											
R R			WEATHERED BEDROCK FRAGMENTS ARE INTERSPACED BY TILL (SILTY SAND) PATCHY LIMONITIC/HEMATITIC FRAGMENTS NEAR BEDROCK.											
R			BEDROCK SURFACE SLOPES GENTLY DOWNWARD WITH A ROLLING SURFACE.											
/ L	00	320	MGDRHBPFQZ+F3MG P F0030 20<=<(P= D) 5ABI 423 P+ P=											
R			AEDIUM GREY, WEAKLY FOLIATED, MEDIUM GRAINED DIORITE WITH ABOUT											
R R			40% HORNBLENDE, ABOUT 50% PLAGIOCLASE, ABOUT 5-10% BIOTITE AND LESSER QUARTZ											
R			WEAK FOLIATION APPEARS SUB-HORIZONTAL ABOUT 030 DEGREES,											
R R			DIPPING GENTLY 020 DEGREES SOUTHEAST MODERATE FRACTURING WITH JOINT SET AT 050 DEGREES AND 140											
R			DEGREES											
R R			ALTERATION CONSISTS OF WEAK PERVASIVE AND FRACTURE FILLING											
R			CHLORITE, LOCAL PERVASIVE SILIC. AND WEAK PERVASIVE SERICITIC ALTERATION. MINOR QUARTZ CARBONATE VEINING											
R R			ABOUT 1-2% MINOR DISSEMINATED PYRITE. 12.0 - 18.0: INCREASED PERVASIVE CHLORITIC ALTERATION,											
R			QUARTZ-CARBONATE VEINING AND DISSEMINATED PYRITE											
R R			(ABOUT 1%) AND PERVASIVE SILICIFICATION. 18.0 - 24.0: INCREASED PERVASIVE SILICIFICATION WITH											
R			PERVASIVE LIMONITIC SPOTTING (HEAVIER LIMONITIC											
R R			OUTER RIND) AND DISSEMINATED PYRITE (COARSER) 24.0 - 32.0: INTERVAL OF GREENISH GRAY, HIGHLY SILICEOUS											
R			DIORITE WITH UP TO 10% DISSEMINATED AND PATCHY PY											
R R			(COARSE 2MM EUHEDRAL X-TALS OCCUR LOCALLY) INCREASE QUARTZ VEINING IN LAST METRE OF INTERVAL AND											
R			CHLORITIC STRINGER NETWORK.											
/ L	320	380	AN/FHBPF F5RW P F0040 20P1 P3 D+ 6AQZ FF P+ C1											
R			IGHT GREY, MODERATELY FOLIATED, HIGHLY SILICIFIED ALTERED											
R R			ANDESITE (FLOW?) MODERATE FOLIATION AGAIN APPEARING SUB-HORIZONTAL DIPPING GENTLY											
R			SOUTHEAST											
R R			STRONG PERVASIVE SILICIFICATION WITH ASSOCIATED INCREASED MINERALIZATION. WEAKER PERVASIVE SERICITIZATION											
R			FRACTURES HEALED BY QUARTZ AND LESSER CHRORITE											
R R			PYRITE OCCURS DISSEMINATED AND AS CLOTS 2-3% THROUGHOUT AND COMMONLY ASSOCIATED WITH QUARTZ-HEALED FRACTURES											
R			HEMATITIC RIND UP TO 1CM THICK ON BEDROCK											
/ L	380	420	MGDRHBPF F3MG P P2P=P2 Q1 6AQZ R¥ P+C1C1											
R			GREENISH-GREY, REWORKED, QUARTZ-CARBONATE FLOODED, WEAKLY											
R R			FOLIATED, MEDIUM GRAINED DIORITE SIMILAR TO INTERVAL 0.0 - 32.0 BUT MORE ALTERED WITH PERVASIVE											
R			CHLORITE AND MODERATE QUARTZ-CARBONATE FLOODING AND INCREASED											
R R			MINERALIZATION. REMATITE AND LIMONITE COATINGS OCCUR THROUGHOUT											
R			PYRITE OCCURS AS PATCHES UP TO 10% LOCALLYS AND LESSER AS DISS.											
R /	420	440	39.0M: GRAB SAMPLE OF PYRITIC MATERIAL AT 39.0 M (C239). AN/FHBPF F5RW P F0040 20P1 P3 D+											
L			6AQZ FF P+ C1											
R R			SAME AS INTERVAL 32.0 - 38.0M >LIGHT GREY, MODERATELY FOLIATED, HIGHLY SILICEOUS, ANDESITIC FLOW.											
1	440	550	PPANHBPFBI)PPF3 P P1<>>= D.											
L R			6AQZ FG <= <+ DARK GREENISH-GREY,WEAKLY FOLIATED,HORNBLENDE PORPHYRITIC											
			· ·											

াই দিনা**ই∿ে** যি নিয়া সমায়তেইইয়ে

R			ANDES	ITE								
R R R			2-5MM	SUB-	RICH MA						A FINE G BOUT 20%	
R			ALTER	ATION					EPIDO	TE FRA	CTURE FI	LLING
R R			OCCAS	IONAL	ROUNDE	D (UP	TO 2CM) CLAS	TS OF	QUARTZ	DIORITE	I
R R					DISSEMI				ORITIC) AND	FOLIATED	INTERVAL
R			END O							,		••••
A001 AUMM			s		E AU	AG	AS	CU	PB	ZN		
R Alab			ECO-T	E.C.H. I	ppb	ppm	ppm	ppm	ppm	ppm		
ALAB			CHIP	SAMPL	.ES							
AMTH R	00	40			M A.A.							
A001	40	60		C204	25	.2	11	39	8	19		
A001 A001	60 80	80 100		C205		.2 .05	18 11	38 390	9 5	24 33		
A001	100	120		C207		.05	9	105	9	35 41		
A001 A001	120 140	140 160		C208		.05 .05	7 9	72 57	4	30		
A001	160	180 200		C210		.05 1.2	11 26	69 65	1 3	42 23		
A001 A001	180 200	200		C212		.1	19	74	6	56		
A001 A001	220 240	240 260		C213		.1 .2	16 19	154 89	8 12	68 67		
A001	260	280		C215		.2	26	64	9	57		
A001 A001	280 300	300 320		C210 C217		.5 .3	18 25	141 87	21 24	84 69		
A001	320	340		C218	3 65	.5	71	228	13	97		
A001 A001	340 360	360 380		C219		.8 .2	18 13	215 128	8 6	61 41		
A001	380	400		C22	I 45	.7	30	294	7	65		
A001 A001	400 420	420 440		C222 C223		.2 .8	16 10	138 661	6 5	34 30		
A001	440	460		C224	100	.2	19	266	3	43		
A001 A001	460 480	480 500		C22		.1 .1	18 12	72 102	47	46 55		
A001	500 520	520	10.00	C22	7 5 - OVBD	.1	7	47	3	33		
R A003	520	וננ	NO 57	AMPLE								
AUMM R			\$	SAMPLI	E AU ppb		AS ppm	CU ppm	PB ppm	ZN ppm		
ALAB			EC0-1	ГЕСН	LABS	- ppm	РМ и	PP-	ppin	Ph.		
ATYP Amth				SAMPI Geochi	LES EM A.A.							
A003	390	390		C23	9 415.	.5	25.	303.	22.	57.	IN COATN	-0
R R			GRAB DIRO	OF A ITE W	LTERED, ITH ABO	QUARIZ UT 10%	PATCHY	AND E	DISSEM	NATED	UM GRAIN	EV
R												
R R			TREN	CH OV	ERBURDE	N PROFI	LE SAP	IPLE DA	ATA			
R R	c	SAMPLI	F	D	EPTH	AU	AG	CU	PB	ZN	AS	
R			L		cm	ppb	ppm	ррп	ppm	ppm	ppm	
R R	TR90	0-03	0.0M	A	20	35	.3	131	10	67	48	
R	TR90	0-03	0.0M	В	120	25	<.1	154	22	68	30	
R R			10.0M 10.0M		30 100	25 130	1.4 <.1	57 195	13 16	132 79	15 19	
R	TR90)-03	10.0M 20.0M	C	200 40	125 20	<.1 1.2	329 96	9 10	54 58	40 17	
R R			20.0M		110	100	.4	338	5	46	20	
R R			20.0M 30.0M		200 30	80 40	.5 .1	243 234	1 11	94 62	21 114	
R	TR90	0 -03 (30.OM	В	160	60	.1	451	13	66	30	
R R			30.0M 40.0M		260 20	40 5	.2 1.1	226 37	13 8	76 128	32 9	
R	TR90	0 -03 -	40.OM	В	100	<5	<.1	90	6	58	19	
R	1R9(0-US -	40.OM	C	170	45	.1	189	9	66	31	

• •

ŧ

. . .

R	TR90-03 50.0M	A	30	15	<.1	39	4	74	13
R	TR90-03 50.0M	В	100	<5	<.1	56	6	58	14
R	TR90-03 50.0M	С	200	30	.1	320	11	67	40
/END									

```
Trench 90-04
```

١

•

			R90-04		20 MD		EP9024	0 M	DGRD	0.0	
\$000 \$001 \$002	00 145	145 M 170 307		95.0 95.0 -2			IINDY 60	88512.	0 445	719.0	985.0
/SCL LSCL		MT.2		LCTM							
/NAM										CYPYCPA	PGL
LNAM R		т	HIS TRENC	H WAS EX	CAVATE	DTOI	EST A		SEHELI AS SOI		EM
R		A	NOMALY								
R R			WBD DEPTH RGANIC LA								ARRIES
R		S	OME LIMON	ITIC AND							
R R			IP TO 0.5M EDROCK SL		NTLY UF	WARDS	то 15.	OM THE	N SLOP	ES DOWN	
R		R	APIDLY TO	A FLAT							
/ R	00	90 R	OVB AMP DUG D		TRENCH	FLOOR	P				
1	90	307		NHBPFDR	+PPND		Ρ		<.>1		
L R		G	REYISH-GR	AGQZBI- EEN. NO					<+ <= RITIC,		D
R		. H	IORNBLENDE	PORPHYI	RITIC #	NDESIT	E		•		
R R			: - 5mm SU Iornb-Plag								RAINED
R		C	BLITERATE	D BY AL	TERATIO	C NC					
R R			EXTURE IS					(OR DY	KE-LIK	E BODIE	s
R		2	-5CM WIDE) OCCUR	IRREGL	JRLARLY	DISTR	IBUTED	THROU	IGHOUT	
R R		-	IORITE IS	COARSEI	R GRAIN	ED AND	CONTA	VINS MC	RE PLA	GIOCLAS	E AND
R		A	LTERATION				RVASIV	E CHLC	RITE C	F MAFIC	s,
R R			PIDOTIZAT				UARTZ	AND LE	SSER B	Y SERIC	ITE
R		A	ND CARBON	ATE		•					
R R			IODERATE F IINERALIZA								
R +001		E	ND OF TRE	NCH							
AOO1 AUMM			SAMPLE	AU	AG	AS	CU	PB	ZN		
R Alab		=	CO-TECH L	ppb APS	ppm	ppm	ppm	ppm	ppm		
ALAB			CHIP SAMPL								
AMTH R	00		IET GEOCHE IO SAMPLE								
к А001	90	110	C181		.05	8	35	10	59		
A001 A001	110	130 150	C182		.05 .05	15 15	37 43	8 3	53 42		
A001 A001	130 150	170	C183 C184		.05	19	43 58	5	61		
A001	170	190	C185		.05	15	34 101	4 2	53 69		
A001 A001	190 210	210 230	C186 C187		.05 .05	16 15	108	3	75		
A001	230	250	C188		.05 .05	15	123 115	4	57 63		
A001 A001	250 270	270 290	C189 C190		.05	17 16	51	ź	65 49		
A001	290	307	C191	405	.2	23	209	89	229		
R R											
R		1	RENCH OVE	RBURDEN	PROFIL	LE SAMI	PLE DAT	TA .			
R R	5	SAMPLE		DEPTH	AU	AG	сu	PB	ZN	AS	
R				cm	ppb	ppm	ppm	ppm	ppm	ppm	
R R	1 R9 0	0-04 0	A MO.0	40	<5	<.1	67	14	106	15	
R	TR90	0-04 10	A MO.C	40 140	20 ~5	.2	87 80	5	121 68	19 38	
R R		0-04 10 0-04 10		140 200	<5 20	<.1 .1	89 93	3 7	68 69	38 23	
R	TR90)-04 20	A MO.C	30	5	<.1	38	3	90	21	
R R)-04 20)-04 20		120 220	10 25	<.1 <.1	86 130	6 6	72 96	21 27	
			-	·							

۵

A REAL AND A REAL PROPERTY OF A REA

1000 C

R R	TR90-04 30.0M TR90-04 30.0M		10 40			
R /END	TR90-04 30.0M					

;

Trench 90-05

	B0201V216 T LACER DOME I 00 110 M 110 250 MT.2	INC. KAMLOOPS			EP9024 INDY 60			0.0 5630.0	973.0
/NAM LNAM R	Ţ	THIS TRENCH WAS E	EXCAVATE	о то т	EST A A	EPS	SEHEL	FCYPYCPAF IMAPL IL GEOCHE	
R R R R R R R R	C W B C C C C C C C C C C C C C C C C C	NOMALY DVBD DEPTH VARIES WALL) AND UP TO 3 BEDROCK SLOPES GE CONSISTS OF A THI GLACIAL TILL. WE DEPTH OF 0.5M. A 0.5 - 1.0M THIG	5.0M ON T ENTLY UP IN ORGAN EATHERED CK "FERR	THE UP WARDS IC LAY BEDRO ICRETE	SLOPE FROM W ER OVE CK APPI " HORI	SIDE (P EST TO RLYING EARS T(IORTH EAST OVER D HAVI	WALL). AND 1.0M OF E AN AVER	AGE
R / L R	00 250	I8.0M WITHIN THE FGDRHBPF AGQZ GREYISH-GREEN, WE	FGF3 NDPP	433	P F004		<+<)<		NED.
R R R R	1 0 5 1	DIORITE INTERLOCKING CRYS DUARTZ WITH WEAK SUB-ROUNDED HORNE WEAK FOLIATION AF	PORPHYR Blende Pi PPEARS Fi	ITIC T HENOCR	EXTURE YSTS (CONSIS ABOUT	ST I NG 5 - 10%	OF 2-3MM	4
R R R R R R R	M A S F S	DIP TO NORTHWEST MODERATE FRACTURI ALTERATION IS WE/ SMALL NODULES AND FRACTURES ARE HE/ SERICITE, SOME LI PY OCCURS AS FINE	ING WITH AK WITH I D LENSES ALED BY 1 IMONITE	PERVAS OF QU QUARTZ IN FRA	IVE CH ARTZ (, EPID CTURES	LORITE ABOUT OTE, CI	, PER 10%). HLORI	VASIVE ST	ILIC. AS ESSER
R R R	F	INE DISSEMINATIO	DNS, [~] 4% REASE IN	SILIC	IFICAT	ION AND	D MIN		ION
R A001	E	END OF TRENCH							
AUMM R Alab	F	SAMPLE AU ppb ECO-TECH LABS		AS ppm	CU ppm	PB ppm	ZN ppm		
ATYP	c	CHIP SAMPLES							
A001 A001 A001	00 20 20 40 40 60	C192 55 C193 40 C194 15	.3 .05 .05	139 109 44	249 203 157	11 4 1	65 84 45		
A001 A001 A001	60 80 80 100 100 120	C195 35 C196 30 C197 65	.3 .05 .4	64 44 25	420 735 1039	1 10 33	58 37 89		
A001 A001 A001	120 140 140 160 160 180	C198 75 C199 60 C200 65	.3 1.0 .2	141 27 26	790 520 519	13 16 11	138 205 99		
A001 A001 A001 R R	180 200 200 220 220 236 236 250 N	C201 60 C202 30 C203 30 NO SAMPLE - OVBD	.2 .1 .1	15 16 20	690 315 180	5 9 5	87 60 109		
R R	T	RENCH OVERBURDE	N PROFIL	E SAMP	LE DAT	A			
R R R	SAMPLE	DEPTH cm	AU ppb	AG ppm	CU ppm	PB ppm	ZN ppm	AS ppm	
R					50	,	80	73	
R R R	TR90-05 C	DLOM A - DLOM B - DLOM C - DLOM A -	10 145 85 <5	<.1 .9 .5	59 3835 636 47	6 12 10 12	807 178 58	4456 766 41	

1

R TR90-05 20.0M B - <5 <.1 97 22 87 17 R TR90-05 20.0M C - 135 <.1 630 40 201 74 /END

200

1

i

Trench 90-06

· ·

ł

			INC. KAML MT 18.5		10.0	\$	VINDY 40	88420.5		477 7		073
00 CL	00	MT.2		0.0	10.0		00	00420	44)	033.1		713.
CL				LCTM								
AM									BSIKF BEHEL1	CYPYCE	PAPGI	_
AM			THIS TREM	ICH UAS	ו הד מווס	EXPOSE	THE # E				ND.	
			POSSIBLY									
			OVBD DEP1								E FRO	DM
			1.5M TO 3									
			OVERLYING									
			- 1.0M TH									
			IN PLACES	S (NORTH	END OF	TRENCI	I), CEM	ENTED	INTO F	ERRIC		
			BEDROCK S		ENTLY U	PWARDS	FROM S	OUTH TO	NOR1	Ή.		
	00	24		/BD			P			D D		
	24	185	Q	ZDRHBPFB AGQZ	I=F3MG SH		P FO		<)P2 >1G=G=	D≃D∙	Ŧ	
			DARK GREY			KLY FO	IATED				MODE	RATEL
			ALTERATE	.MEDIUM	- GRAINE	D QUAR	Z DIOR	ITE.				
			ROCK CONS								LESS	SER
			QUARTZ WI									CAT 10
			AND SERIO			ERATIO	ABOUT	20%,	.=336	C SILI	GIFI	CALLC
			FRACTURES			LED BY	QUARTZ	(CARB	DNATE	ENVEL	OPE?) AND
			EPIDOTE.									
			PYRITE O					HROUGH	DUT AE	BOUT 2	-3%	BUT
			INCREASES					TS AND	LENSE	s (20	мх	4CM)
			ASSOCIATI					NO AND	LENGE			-01.7
			CHALCOPY				AMOUNT	AS DI	SSEMIN	ATION	s ~2	%
			QUARTZ-C/									
			AND ARE (ITH SOM	E MINO	R MINE	ERALIZ	ATIO	
							TT 0011			17-04	DDON	ATC
			0.0			N QUAR	TZ CONT			RTZ-CA	RBON.	ATE
				VEI	NING			ENT AN	O QUAT			
			10.0 - 1	VEI 2.5: PYR	NING	ULT GO	UGE (AB	ENT AN	QUAF	, STRI	KING	060
			10.0 - 12	VEI 2.5: PYR DEG CAR	NING ITIC FA REES, W RIES PY	ULT GO ALL RO RITE	UGE (AB CK IS H	ENT ANI	CHLORI	, STRII ITIZED	KING AND	060 ALS(
				VEI 2.5: PYR DEG CAR 4.5: 2CM	NING ITIC FA REES, W RIES PY X 4CM	ULT GO ALL RO RITE MASSIV	JGE (AB CK IS H E PYRIT	ENT ANI OUT 15 IIGHLY	D QUAF & PY), CHLORI S HOSI	, STRI ITIZED IED BY	KING AND A H	060 ALSO IGHLY
			10.0 - 12	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL	NING ITIC FA REES, W RIES PY X 4CM ICEOUS	ULT GO ALL RO RITE MASSIVI DIORITI	UGE (AB CK IS H E PYRIT E (APPE	ENT ANI OUT 15: IIGHLY IC LEN ARS TO	D QUAF & PY), CHLORI S HOST STRIF	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
			10.0 - 1; 14.2 - 1; 16.0 - 1; 14.0 - 1;	VE1 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG	ULT GO ALL RO RITE MASSIV DIORITI E FOLL	UGE (AB CK IS H E PYRIT E (APPE OWING I	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE	D QUAF & PY), CHLORI S HOST STRIF	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
			10.0 - 1; 14.2 - 14 16.0 - 17	VE1 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG	ULT GO ALL RO RITE MASSIV DIORITI E FOLL	UGE (AB CK IS H E PYRIT E (APPE OWING I	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE	D QUAF & PY), CHLORI S HOST STRIF	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
			10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH	VE1 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH	NING ITTIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL	ULT GO ALL RO RITE MASSIV DIORITI E FOLL ICEOUS	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE E	D QUAF % PY) CHLORI S HOSI STRIF GULAR	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01			10.0 - 1; 14.2 - 1; 16.0 - 1; 14.0 - 1;	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL AG	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLO ICEOUS AS	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE E PB	D QUAF % PY); CHLORI S HOSI STRIF GULAR ZN	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
01 1M			10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH SAMP ECO-TECH	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL ppk LABS	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL AG	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLO ICEOUS AS	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE E PB	D QUAF % PY); CHLORI S HOSI STRIF GULAR ZN	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
D1 MM AB YP			10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH SAMPH ECO-TECH CHIP SAMI	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL PPE LABS PLES	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICT GOUG HLY SIL AG PPM	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLO ICEOUS AS	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE E PB	D QUAF % PY); CHLORI S HOSI STRIF GULAR ZN	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
D1 MM AB YP			10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH SAMP ECO-TECH CHIP SAMI WET GEOC	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1 7.0: FAU 8.5: HIG RENCH LE AL PDE LABS PLES HEM A.A.	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICT GOUG HLY SIL AG PPM	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLO ICEOUS AS	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE E PB	D QUAF % PY); CHLORI S HOSI STRIF GULAR ZN	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
D1 MM AB YP TH	00	24	10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH SAMP ECO-TECH CHIP SAMI WET GEOC NO SAMPLE	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1 7.0: FAU 8.5: HIG RENCH LE AL PDE LABS PLES HEM A.A. E - OVBD	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICT GOUG HLY SIL AG PPM	ULT GOI ALL ROI RITE MASSIVI DIORITI E FOLLI ICEOUS AS ppm	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU ppm	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE E PB ppm	D QUAF % PY), CHLORI S HOSI STRIF GULAR ZN ppm	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM AB YP TH 01	24	24 40	10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH SAMP ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1 7.0: FAU 8.5: HIG RENCH LE AL PDES PLES HEM A.A. E - OVBC 28 45	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICEOUS ICEOUS ICEOUS AG ppm	ULT GOI ALL ROI RITE MASSIVI DIORITI E FOLLI ICEOUS AS ppm	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE E PB	D QUAF % PY); CHLORI S HOSI STRIF GULAR ZN	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM AB YP TH 01 01		24	10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH SAMP ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBD 28 45 29 40	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICEOUS ICEOUS ICEOUS AG Ppm AG Ppm	ULT GOI ALL ROI RITE MASSIVI DIORITI E FOLLI ICEOUS AS ppm	UGE (AB CK IS H E PYRIT E (APPE DWING I DIORIT CU ppm 180	ENT ANI OUT 15: IIGHLY IC LEN ARS TO N IRRE E PB ppm 5	2 QUAF & PY), CHLOR S HOS STRIF GULAR ZN ppm 37	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM AB YP TH 01 01	24 40	24 40 60 80 100	10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 14 END OF TH SAMPH ECO-TECH CHIP SAMM WET GEOC NO SAMPLU C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBC 28 45 29 40 30 140 31 150	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL AG PPM 4 .1 1.9 1.9	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLI ICEOUS AS ppm 26 35 2400 79	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU ppm 180 185 613 565	ENT ANI OUT 15: IIGHLY ARS TO N IRRE E PB ppm 5 3 6 5	2 QUAF % PY) CHLOR S HOST STRIF GULAR 2N ppm 37 53 97 115	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM YP TH 01 01 01 01	24 40 60 80 100	24 40 60 100 120	10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 14 END OF TH SAMPH ECO-TECH CHIP SAM WET GEOC NO SAMPLU C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBG 28 45 29 40 30 140 31 150 32 170	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG INLY SIL AG PPM AG PPM 1 19 1.1 19 1.2	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLI ICEOUS AS PPM 26 35 2400 79 68	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU ppm 180 185 613 565 580	ENT ANI OUT 15: IIGHLY ARS TO N IRRE E PB PPm 5 3 6 5 5 5	2 QUAF 2 PY) CHLOR 5 HOST 5 TRIF GULAR 2N ppm 37 53 97 115 136	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
01 MM YP TH 01 01 01 01 01	24 40 60 80 100 120	24 40 60 100 120 140	10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 12 END OF TH SAMP ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1L 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBD 28 45 29 40 30 140 30 140 31 150 32 170 33 280	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG IKLY SIL AG PPM 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 2 2 1	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLI ICEOUS AS PPM 26 35 2400 79 68 44	UGE (AB CK IS H E PYRIT E (APPE DWING I DIORIT CU ppm 180 185 613 565 580 841	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE PB PPm 5 3 6 5 5 6	2 QUAF 2 PY) CHLOR 5 HOST 5 STRIF GULAR 2N ppm 37 53 97 115 136 189	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
01 MM YP TH 01 01 01 01	24 40 60 80 100 120 140	24 40 60 100 120 140 159	10.0 - 11 14.2 - 14 16.0 - 11 14.0 - 14 END OF TH SAMP ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1L 7.0: FAU 8.5: HIG RENCH LE AL PPC LABS PLES HEM A.A. E - OVBC 28 45 29 40 30 140 31 150 32 170 33 280 34 65	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL AG ppm 4 AG ppm 4 AG ppm 4 AG ppm 4 AG ppm 4 A 1 9 A 4 A 4 A 4 A 4 A 4 A 5 A 4 A 4 A 5 A 4 A 4	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLI ICEOUS AS ppm 26 35 2400 79 68 44 66	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU ppm 180 185 613 565 580 841 222	ENT ANI OUT 15: IIGHLY ARS TO N IRRE PB PPm 5 3 6 5 5 6 5 5 6 5	2 QUAF 2 PY) CHLOR 5 HOST 5 TRIF GULAR 2N ppm 37 53 97 115 136	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM YP TH 01 01 01 01 01	24 40 60 80 100 120	24 40 60 100 120 140	10.0 - 11 14.2 - 14 16.0 - 11 14.0 - 14 END OF TH SAMP ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1 7.0: FAL 8.5: HIG RENCH LE AL LABS PLES HEM A.A. E - OVBC 28 45 29 40 30 140 31 150 32 170 33 280 34 65 35 30	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICEOUS ICEOUS ICEOUS ICEOUS AG PPM A AG PPM 1 1 1 1 1 1 2 2 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLI ICEOUS AS PPM 26 35 2400 79 68 44	UGE (AB CK IS H E PYRIT E (APPE DWING I DIORIT CU ppm 180 185 613 565 580 841	ENT ANI OUT 15 IIGHLY IC LEN ARS TO N IRRE PB PPm 5 3 6 5 5 6	2 QUAF 2 PY), CHLOR 3 HOST STRIE GULAR 2N ppm 37 53 97 115 136 189 35	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
01 MM AB YP TH 01 01 01 01 01 01	24 40 60 80 100 120 140	24 40 60 100 120 140 159	10.0 - 13 14.2 - 14 16.0 - 11 14.0 - 12 END OF TH SAMP ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1 7.0: FAL 8.5: HIG RENCH LE AL LABS PLES HEM A.A. E - OVBC 28 45 29 40 30 140 31 150 32 170 33 280 34 65 35 30	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICEOUS ICEOUS ICEOUS AG ppm A A A A A A A A A A A A A A A A A A	ULT GO ALL RO RITE MASSIVI DIORITI E FOLLI ICEOUS AS ppm 26 35 2400 79 68 44 66	UGE (AB CK IS H E PYRIT E (APPE OWING I DIORIT CU ppm 180 185 613 565 580 841 222	ENT ANI OUT 15: IIGHLY ARS TO N IRRE PB PPm 5 3 6 5 5 6 5 5 6 5	2 QUAF 2 PY), CHLOR 3 HOST STRIE GULAR 2N ppm 37 53 97 115 136 189 35	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHLY
01 MM AB YP TH 01 01 01 01 01 01 01 01	24 40 60 100 120 140 159	24 40 60 100 120 140 159 172	10.0 - 13 14.2 - 14 16.0 - 11 14.0 - 14 END OF TH SAMPH ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBC 28 45 29 40 31 150 32 170 33 280 31 150 33 280 34 65 35 30 UGE MATE 36 1130	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICEOUS ILT GOUG HLY SIL AG Ppm - 1 - 1 - 1 - 1 - 2 - 1 - 1 - 2 - 1 - 1 - 1 - 2 - 1 - 1 - 2 - 1 - 1 - 2 - 2 - 2 - 2	ULT GOI ALL RO RITE MASSIVI DIORITE FOLLI ICEOUS AS ppm 26 35 2400 79 68 44 66 23 34	UGE (AB CK IS H E PYRIT E (APPE I DIORIT CU ppm 180 185 613 565 580 841 222 136 76	ENT ANI OUT 15: IIGHLY IIC LEN ARS TO E PB ppm 5 3 6 5 5 6 5 5 22 8	2 QUAF 2 PY) CHLOR 3 HOST STRIE GULAR 2N ppm 37 53 97 115 136 189 35 60 93	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM AB YP TH 01 01 01 01 01 01 01 01	24 40 60 100 120 140 159	24 40 60 100 120 140 159 172	10.0 - 13 14.2 - 14 16.0 - 11 14.0 - 12 END OF TH SAMP ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM SIL 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBC 28 45 29 40 31 150 32 170 33 280 31 150 32 170 33 280 34 65 35 30 UGE MATE 36 1130 LE AL	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL AG PPM 1 .1 1.9 .2 .1 .1 .1 .1 .1 .1 .2 .2 .1 .1 .2 .2 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	ULT GO ALL RO RITE MASSIVI DIORITE FOLLI ICEOUS AS ppm 26 35 2400 79 68 44 66 23 34 34 AS	UGE (AB CK IS H E PYRIT E (APPG I DIORIT CU ppm 180 185 613 565 580 841 222 136 76 CU	ENT ANI OUT 15: IIGHLY ARS TO PB PPm 5 3 6 5 5 6 5 5 6 5 5 22 8 PB	2 QUAF 2 PY) CHLOR 3 HOST S HOST STRIE GULAR 2N ppm 37 53 97 115 136 189 35 60 93 2N	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM YP TH 01 01 01 01 01 01 01 01	24 40 60 100 120 140 159	24 40 60 100 120 140 159 172	10.0 - 13 14.2 - 14 16.0 - 11 14.0 - 14 END OF TH SAMPH ECO-TECH CHIP SAM WET GEOC NO SAMPLI C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBD 28 45 29 40 30 140 31 150 32 170 33 280 31 150 34 65 35 30 UGE MATE 36 1130 LE AL	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL AG PPM 1 .1 1.9 .2 .1 .1 .1 .1 .1 .1 .2 .2 .1 .1 .2 .2 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	ULT GOI ALL RO RITE MASSIVI DIORITE FOLLI ICEOUS AS ppm 26 35 2400 79 68 44 66 23 34	UGE (AB CK IS H E PYRIT E (APPE I DIORIT CU ppm 180 185 613 565 580 841 222 136 76	ENT ANI OUT 15: IIGHLY IIC LEN ARS TO E PB ppm 5 3 6 5 5 6 5 5 22 8 PB	2 QUAF 2 PY) CHLOR 3 HOST STRIE GULAR 2N ppm 37 53 97 115 136 189 35 60 93	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM AB YP TH 01 01 01 01 01 01 01 01 01 01 01 01 01	24 40 60 100 120 140 159	24 40 60 100 120 140 159 172	10.0 - 12 14.2 - 14 16.0 - 12 14.0 - 14 END OF TH SAMP ECO-TECH CHIP SAMM WET GEOC NO SAMPL C2 C2 C2 C2 C2 FAULT GO C2 SAMP	VEI 2.5: PYR DEG CAR 4.5: 2CM 5.1 7.0: FAU 8.5: HIG RENCH LE AL PDES HEM A.A. E - OVBC 28 45 29 40 30 140 31 150 32 170 33 280 31 150 32 170 33 280 34 65 35 30 UGE MATE 36 1130 LE AL PDS	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ILT GOUG HLY SIL AG PPM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ULT GO ALL RO RITE MASSIVI DIORITE FOLLI ICEOUS AS ppm 26 35 2400 79 68 44 66 23 34 34 AS	UGE (AB CK IS H E PYRIT E (APPG I DIORIT CU ppm 180 185 613 565 580 841 222 136 76 CU	ENT ANI OUT 15: IIGHLY ARS TO PB PPm 5 3 6 5 5 6 5 5 6 5 5 22 8 PB	2 QUAF 2 PY) CHLOR 3 HOST S HOST STRIE GULAR 2N ppm 37 53 97 115 136 189 35 60 93 2N	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSO IGHL
01 MM AB YP TH 01 01 01 01 01 01 01 01 01 01 01 01 01	24 40 60 80 100 120 140 159 172	24 40 60 100 120 140 159 172 184	10.0 - 13 14.2 - 14 16.0 - 11 14.0 - 12 END OF TH SAMPH ECO-TECH NO SAMPLI C2 C2 C2 C2 C2 C2 FAULT GO C2 SAMP ECO-TECH STRUCTUR WET GEOC	VEI 2.5: PYR DEG CAR 4.5: 2CM 7.0: FAU 8.5: HIG RENCH LE AL LABS PLES HEM A.A. E - OVBD 28 45 29 40 30 140 31 150 32 170 33 280 34 65 35 30 UGE MATE 36 1130 LE PR LABS E SAMPLE HEM A.A.	NING ITIC FA REES, W RIES PY X 4CM ICEOUS ICEOUS ICEOUS ICEOUS AG ppm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ULT GOI ALL ROI RITE MASSIVI DIORITI ICEOUS AS ppm 26 35 2400 79 68 44 66 23 34 AS ppm	UGE (AB CK IS H E PYRIT E (APPE DUVING I DIORIT CU ppm 180 185 613 565 580 841 222 136 76 CU ppm	ENT ANI OUT 15: IIGHLY ARS TO N IRRE PB ppm 5 3 6 5 5 6 5 5 6 5 22 8 PB ppm	2 QUAF 2 PY), CHLOR 3 HOST 5 HOST 5 STRIF GULAR 2N ppm 37 53 97 115 136 189 35 60 93 2N ppm	, STRI ITIZED IED BY KE 090	KING AND A H DEG	060 ALSC
01 MM 27 01 01 01 01 01 01	24 40 60 100 120 140 159	24 40 60 100 120 140 159 172	10.0 - 13 14.2 - 14 16.0 - 11 14.0 - 12 END OF TH SAMPH ECO-TECH NO SAMPLI C2 C2 C2 C2 C2 C2 FAULT GO C2 SAMP ECO-TECH STRUCTUR WET GEOC	VEI 2.5: PYR DEG CAR 4.5: 2CM 4.5: 2CM 8.5: HIG RENCH LE AL LABS PLES HEM A.A. E - OVBC 28 45 29 40 31 150 32 170 33 280 31 150 32 170 33 280 34 65 35 30 UGE MATE B SAMPLE HEM A.A. 40 1560	NING ITIC FA REES, W RIES PY X 4CM ICEOUS IC	ULT GOI ALL RO RITE MASSIVI DIORITE FOLLI ICEOUS AS ppm 26 35 2400 79 68 44 66 23 34 45 ppm 75	UGE (AB CK IS H E PYRIT E (APPE DUVING I DIORIT CU ppm 180 185 613 565 580 841 222 136 76 CU ppm 3298	ENT ANI OUT 15: IIGHLY IC LEN ARS TO N IRRE PB ppm 5 3 6 5 5 6 5 5 22 8 PB ppm 26	2 QUAF 2 PY), CHLOR 2 N 5 HOST 5 STRIF GULAR 2N ppm 37 53 97 115 136 189 35 60 93 2N ppm 119	, STRII ITIZED IED BY (E 090 PATTE	KING AND A H DEG RN	060 ALSC IGHLY REES

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

. . .

i

i

A002 R	142	145	ABOUT	6CM P	YRITIC			615 BY A	28 SILICEO	50 SUS QU	ARTZ DI	ORITE,
R A002	159	174		ING 90 C237	100 100	.4	68	492	6	155		
R 8002	124	174									G ABOUT	80
R						ING IR			CLA: 3	IN IN IN	a 70001	00
A003			DEGRE		1410	1110 11						
AUMM			S	AMPLE	AU	AG	AS	CU	PB	ZN		
R					ppb	ppm	ppm	ppm	ppm	ppm		
ALAB			ECO-T	ECH LA		FF	P. P	1.1	FF			
ATYP			GRAB	SAMPLE	S							
AMTH			WET G	EOCHEN	I A.A.							
A003	105	105		C242		4.5		3640	27	213		
R			SILIC	EOUS A	ND CHI	ORITIC	QUART	Z DIOR	ITE WI	TH PYR	ITE LEN	SES FROM
R			FAULT	GOUGE		ROCK						
A003	175	175		C243	70	.6	21	70				
R			SILIC	EOUS Q	UARTZ	DIORIT	E WITH	ABOUT	5-10%	DISSE	MINATED	PYRITE
R												
R												
R			TRENC	N OVER	BURDE	PROFI	LE SAM	PLE DA	TA			
R												
R	S	AMPLI	E	C	DEPTH	AU	AG	CU	PB	ZN	AS	
R					m	ppb	ppm	ppm	ppm	ppm	ppm	
R												
R	TR90		5.OM		I.OM	810	4.9	635	12	155	9828	
R	TR90		5.OM		2.0M	20	.1	465	35	238	618	
R	TR90		10.OM		I.OM	380	1.9	214	55	97		
R	TR90		10.OM		2.OM	605	1.8	2005	40	512	2395	
R	TR90		10.0M		5.OM	1185	2.4	4500	170	540	2564	
R	TR90	-06	15.0M		2.OM	13415	61.5	564	250	169		
R	TR90	-06	15.0M	1	5.0M	3915	37.0	112	25	41		
R	TR90	-06	15.OM	1	. OM	660	.4	6875	16	565		
R	TR90	-06	19.0M	i ().2M	160	1.5	143	12	90	644	
R	TR90	-06	19.0M	[LOM	270	1.1	530	22	78	736	
R	TR90	-06	19.0M	1 2	2.CM	1325	5.9	1378	72	128	15497	
R	TR90	-06	19.0M	1 3	5.OM	9365	26.0	169	140	113	2916	
R	TR90	-06	19.0M	4	4.OM	860	2.1	7337	30	515	1269	
R	TR90		19.0M		5.0M	195	.7	849	45	330	170	
/END				-								

r...

÷

,

APPENDIX IV

!

. .

LISTING OF ROCK SAMPLE DATA

WINDY 1990 PROJECT

-

ROCK SAMPLE DATA

				AU	AG	CU	AS
SAMP	NORTH EAST L	<u>. I T H</u>	DESCRIPTION	(<u>ppb</u>)	(<u>pom</u>)	(<u>ppm</u>)	(<u>ppm</u>)
							_
6801	10200 10180 0		Quartz float on old road.	<5	<0.2	70	2
6802	10880 10120 0		Trench 87-4, quartz float with limonitic wall.	<5	<0.2	56	400
6803	10250 9745 F	FLOT	Float from old road.	15	0.4	530	6
6804	10900 10150		Richard's V.G. prospect pit.	<5	<0.2	140	360
6805	10900 10150 0	ZVN	V.G. prospect pit, quartz float.	<5	<0.2	16	18
6806	10900 10150		V.G. prospect pit, limonitic, veinlets with pyrite.	<5	<0.2	117	240
6807		FLOT	Float along road.	4.65g/t	4.7	1800	N/A
6808		ISSF	Float, massive fine grained pyrite, along road.	1.40g/t	2.7	830	860
6809	10900 10150 N		New showing, sulphide horizon above prospect pit.	2.54g/t	N/A	N/A	N/A
6810	10420 8782 0	DIOR	New showing, altered intrusive?	20	N/A	N/A	N/A
6811	10420 8782 0	DIOR	New showing, float, altered intrusive?, limonitic.	10	N/A	N/A	N/A
6812	10400 8893 F	FLOT	New showing, float.	<5	N/A	N/A	N/A
6813	10447 8674 1	ISSF	New showing, trench, massive arsenopyrite.	2.15g/t	N/A	N/A	N/A
6814	10447 8674 0	ZVN	New showing, quartz vein.	2.84g/t	N/A	N/A	N/A
6815	10450 8663 /	AN/F	New showing, float, chlorite schist, sulphides.	105	N/A	N/A	N/A
6816	10420 8635 4	AN/F	New showing, trench, sulphide, quartz rich.	835	N/A	N/A	N/A
6817	10420 8645 F	FECT	New showing, ferricrete, friable, limonitic.	65	N/A	N/A	N/A
6818	10450 8705 #	AN/F	New showing, trench, limonite, quartz veins, pyrite.	<5	N/A	N/A	N/A
6819	10400 8755 /	AN/F	New showing, trench, limonite, sericite.	<5	N/A	N/A	N/A
6820	10600 8710 8	FLOT	New showing, float?, silicified chert?	20	N/A	N/A	N/A
6821	I	FLOT	Trench 87-7, in swamp.	<5			
6822	1	AN/F	Trench 87-7, V.G.	25			
6823	ſ	DIOR	Norman pickup, felsic intrusive, quartz-pyrite veins	40			
1-15/7/90	ŀ	ISSF	New showing, float, fine grained sulphides.	4.06g/t	17.8g/t	9600	1.50%
2-15/7/90	1	ISSE	New showing, similar to #1.	10.44g/t	11.2g/t	5100	2.22%
3-15/7/90	ł	MSSF	New showing, float, silicification.	15.39g/t	2.2g/t	2000	22.85%
4-15/7/90	ŀ	MSSF	New showing, location as #3, chalcopyrite.	9.21g/t	11.6g/t	7800	4.03%
5-15/7/90	L L L L L L L L L L L L L L L L L L L	MSSF	New showing, float, andesite host?	2.14g/t	4.6	2100	1.77%
6-15/7/90	•	MSSF	New showing, float, sulphide rich sericite schist.	760	3.6	490	1245
7-15/7/90	C	DIOR	New showing, float, altered intrusive?, no veins.	155	0.2	148	170
8-15/7/90	0	DIOR	New showing, float, quartz veins.	10	<0.2	40	115
13391			New showing.	1.15g/t	6.0	3500	2.61%
13392			New showing.	600	12.0	5500	910
13393			New showing.	95	0.6	175	275
13394			New showing.	930	14.0	7000	0.49%
13395	1	MSSF	New showing.	32.17g/t	30.0	1.28%	14.5%
13396			New showing.	8.67g/t	27.0	1.16%	1.19%
59179			New showing.	<5	0.1	108	8
59180			New showing.	50	0.2	58	19
59181			New showing.	35	0.3	747	13
59182			New showing.	30	0.7	1200	69
59183			New showing.	11.99g/t	35.3g/t	1.80%	7.60%
59184	,	MSSF	New showing.	9.14g/t	5.0	840	8.32%
59185		MSSF	New showing.	4.31g/t	19.7	>1000	1.74%
59186			New showing.	<5	0.7	197	160
			nen stenligt	-			

APPENDIX V

ŧ

a said a ta Kalana ana

ROCK SAMPLE STATISTICAL SUMMARY

CORRELATION MATRIX AND HISTOGRAMS

PLACER DOME INC.

PDI Data Analysis System - STATS

run on 91:02:08 at 13:15:05

Current directory: /data/expl/windy/geolog

WINDY 1990 PROJECT: ROCK DATA STATISTICAL ANALYSIS

Summary of data from file : rock90.all

This data file contains an internal header: (5 records) Data grouped into 9 fields with format: (3A8, 2F10.2, 4F10.2)

Character ID fields: DH ROCK SAMP

Coordinate fields: FROM TO

Other data fields: AU AG AS CU

Missing data indicated by NULL value -1.00000

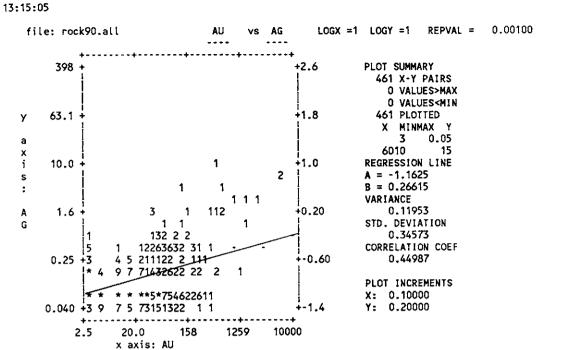
BASIC STATISTICS OF SELECTED DATA FIELDS:

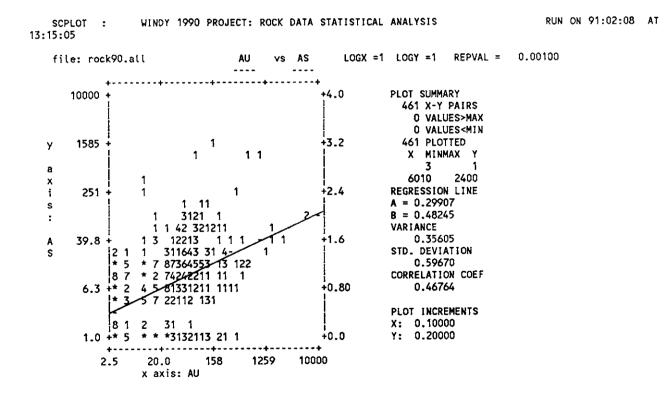
NAME	<u>NDATA</u>	NULLS	MINIMUM	<u>MAXIMUM</u>	MEAN	STD. DEV.	GEOM. MEAN	DISPERSI	ON
AU	461	53	3,00000	6010.00	86.8308	429.791	18.4135	4.08799	82.9398
AG	461	53	0.500000E-01	15.0000	0.305857	0,924767	0.149367	0.613143E-01	0.363869
AS	461	53	1.00000	2400.00	34.0022	152,263	8.11774	1.71835	38.3494
CU	461	53	7.00000	4400.00	232.193	392.925	140.162	54.8202	358.362

1999 - Ala Maria I. 17

CORMAT: RUN ON 91:02:08 AT 13:15:05

Data from file: rock90.all

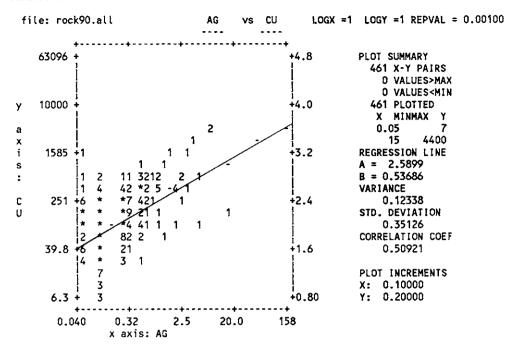

WINDY 1990 PROJECT: ROCK DATA STATISTICAL ANALYSIS


Correlation matrix for 514 records with 4 variables

LOG:	AU 1	AG 1	AS 1	CU 1
AU	1.000	0.450	0.468	0.499
AG	0.450	1.000	0.307	0.509
AS	0.468	0.307	1.000	0.333
CU	0.499	0.509	0.333	1.000

Number of data pairs contributing to correlation

	AU	AG	AS	CU
AU	461	461	461	461
AG	461	461	461	461
AS	461	461	461	461
CU	461	461	461	461



SCPLOT : WINDY 1990 PROJECT: ROCK DATA STATISTICAL ANALYSIS

1

RUN ON 91:02:08 AT

SCPLOT: WINDY 1990 PROJECT: ROCK DATA STATISTICAL ANALYSIS:RUN ON 91:02:08 AT 13:15:05

A state of the sta

Tilo	rock90.al	T	Field nam	no. 811		- 0.00100
rite:	- PUCKYU.at	L	rietu na	ne: AU	LOG - I KEPVAL	- 0.00100
461	SAMPLES WI	TH AU	MINIMUM: 3.000	000	MAXIMUM: 601	0.00
445	VALUES PLC	DTTED:	16 NOT IN RANGE	3.00000	to 350.000	
C	SEOMETRIC M	IEAN:	16.0129	DISPERS	SION: 4.25958	60.1966
SC/	LE OF HIST	OGRAM IS	4.00 COUNTS /PE	RINT POSITI	ION # = 5,50,95	X
N	MIDPOINT	PERCENT			120 . 160	
447	7 0000	# 26 07	III			
116	3.0000					
0	3.3791	0.00			I	
0	3.8060	0.00			1	
0	4.2869	0.00			1	
24	4.8285		I *****		1	
0	5.4386	0.00			1	
0	6.1258	0.00	1		1	
0	6.8998	0.00	I		1	
0	7.7716	0.00	1		1	
0	8.7536	0.00			1	,
55	9.8596	12.36	l*********		1	
0	11.105	0.00	I		1	,
0	12.509	0.00	I		1	
0	14.089	0.00			1	•
38	15.869	# 8.54	I******		1	, ,
0	17.874	0.00			1	•
26	20.133	5.84	I******		1	
Û	22.676	0.00	1		1	
21	25.542	4.72	[****		1	
20	28.769	4.49	*****	~~	. 1	•
	32.404	0.00	1	— 30 рр	נס	
17	36.498				1	
17	41.109		1****		1	
11	46.304		 I***		1	
11	52.154		1***		1	
10	58.744		1***		1	
15	66.166	3.37			1	
7	74.526	1.57			1	l
5	83.943		Ī*		1	I
8	94.549	1.80		400 -	- h	Į
10	106.50		I***	100 p	po l	I
6	119.95	1.35			1	1
2	135.11	0.45			1	1
5		# 1.12	1*		1	1
4	171.41	0.90			1	
8	193.06	1.80			1	l .
4	217.46	0.90	1*	~~-		I
	244.93	0.22		235 p	opo j	
2	275.88	0.45			1	
ō	310.74	0.00	•]	L
2	350.00	0.45]	l
<u>-</u>				I	I	
445			0 40	80	120 160	

HISTO: WINDY 1990 PROJECT: ROCK DATA STATISTICAL ANALYSIS RUN ON 91:02:08 AT 13:15:05

ţ ,

	Field name: AG LOG = 1 REPVAL = 0.00100
461 SAMPLES WITH AG	MINIMUM: 0.500000E-01 MAXIMUM: 15.0000
455 VALUES PLOTTED:	6 NOT IN RANGE 0.500000E-01 to 3.00000
GEOMETRIC MEAN:	0.142291 DISPERSION: 0.647863E-010.312517
SCALE OF HISTOGRAM IS	10.00 COUNTS /PRINT POSITION # = 5,50,95%
N MIDPOINT PERCENT	0 100 200 300 400 111
FO 0 F00007 01# 10 00	
50 0.50000E-01# 10.99	
0 0.55389E-01 0.00	
0 0.61359E-01 0.00	
0 0.67972E-01 0.00	
0 0.75298E-01 0.00	I 1
0 0.83414E-01 0.00	
0 0.92404E-01 0.00	I
247 0.10236 # 54.29	[*************************************
0 0.11340 0.00	
0 0.12562 0.00	I
0 0.13916 0.00	
0 0.15416 0.00	
0 0.17077 0.00	•
0 0.18918 0.00	•
	I ******* I
0 0.23215 0.00	
	-
	•
0 0.28489 0.00	1 *** <u>1</u>
	•
0 0.42904 0.00	•
10 0.47528 2.20	•
0 0.52651 0.00	•
8 0.58326 1.76	•
0 0.64612 0.00	•
2 0.71576 # 0.44	-
5 0.79291 1.10 1 0.87837 0.22	•
	•
3 0.97304 0.66	•
0 1.0779 0.00	•
<u>2 1.1941 0.44</u> 1 1.3228 0.22	
	•
0 1.4654 0.00 4 1.6233 0.88	•
0 1.7983 0.00	•
1 1.9921 0.22	•
3 2.2068 0.66	•
0 2.4446 0.00	•
0 2.7081 0.00	-
-23.00000.44	•
<u> </u>	I1111
455	0 100 200 300 400

HISTO: WINDY 1990 PROJECT: ROCK DATA STATISTICAL ANALYSIS RUN ON 91:02:08 AT 13:15:05

and the second
HISTO: W	INDY 1990	PROJECT:	ROCK DATA	STATISTICAL	ANALYSIS RU	in on	91:02:08 AT	13:15:05

~~ - F

File:	rock90.al	ι	Field na	nme: AS	LOG = 1 REPVA	L = 0.00100
461	SAMPLES WI	TH AS	MINIMUM: 1.00	0000	MAXIMUM: 24	00.00
452	VALUES PLO	TTED:	9 NOT IN RANGE	1.00000	to 200.000	
C	EOMETRIC M	EAN:	7.45231	DISPER	\$ION: 1.76859	31.4019
SC/	LE OF HIST	OGRAM IS	4.00 COUNTS /F	PRINT POSIT	ION # = 5,50,9	'5%
N	MIDPOINT		II	I		I
118	1.0000	# 26.11	[************	******	*****	I
0	1.1416	0.00				I
Ó	1.3033	0.00				I
Ó	1.4879	0.00	I			1
Ō	1.6986	0.00				1
16	1.9392	3.54	I****			I
0	2.2139	0.00				I
ŏ	2.5274	0.00				1
ŏ	2,8854		Ī			1
Õ	3.2941	0.00				1
16	3.7606		1****			1
0	4.2932	0.00	I			1
2	4.9013	0.44	I*			I
Ō	5.5954	0.00				I
29	6.3879	6,42	I******			I
- 6	7.2927		_[**	7 ppn	n	I
17	8.3255	3.76	I****			1
24	9.5047	# 5.31	I *****			1
8	10.851	1.77	I**			I
21	12.388	4.65	I****			I
25	14.142	5.53	I*****			I
32	16.145		I*******			I
15	18.432	3.32	I****			I
33	21.042	7.30	I******			I
10	24.022		1***			I
15	27.425		I****			I
8	31.309			- 35 pp	m	I
7	35.743	1.55	1 ····	00 PF		I
3	40.806	0.66				I
6	46.585	1.33	I** I**			I I
7	53.183	1.55				I
4 11	60.715	0.88 # 2.43				I I
	69.314	# 2.43				I
4 2	79.132 90.339	0.88				I
- 2	103.13		1*	— 100 p	pm	I
2	117.74	0.66	1	•		I
5	134_42	1.11				I
2	153.45	0.44				ī
1	175.19	0.22				1
0	200.00	0.00	1			Ī
			-	I		-
452			0 40	80	120 16	

HISTO: WINDY 1990 PROJECT: ROCK DATA STATISTICAL ANALYSIS RUN ON 91:02:08 AT 13:15:05

ļ

ι

- *1*

Contraction of the state of the state of the

File:	rock90.al	ι	Field name: CU LOG = 1 REPVAL = 0.00100
461	SAMPLES WI	TH CU	MINIMUM: 7.00000 MAXIMUM: 4400.00
456	VALUES PLO	DTTED:	5 NOT IN RANGE 7.00000 to 2000.00
G	EOMETRIC M	EAN:	135.449 DISPERSION: 55.9475 327.921
SCA	LE OF HIST	OGRAM IS	1.00 COUNTS /PRINT POSITION # = 5,50,95%
N	MIDPOINT	PERCENT	0 10 20 30 40 II
2	7,0000	0.44	I** I
ō	8.0630	0.00	•
1	9.2874	0.22	
1	10.698	0.22	-
ò	12.322	0.00	
2	14.194	0.44	1** 1
1	16.349	0.22	
2	18.832	0.44	
3	21.691	0.66	
1	24,985	0.22	
ż	28.779	0.44	
14	33.150	# 3.07	•
10	38.184	2.19	
14	43.982	3.07	1******
-13	50.661	2.85	
16	58.354	3.51	[***** I
20	67.216	4.39	I******
22	77.423	4.82	[********
22	89.180	4.82	I******
34	102.72	7.46	
30	118.32	6.58	-
40	136.29	# 8.77	
34	156.99	7.46	
25	180.83	5.48	-
28	208.28	6.14	
20	239.91	4.39	
11	276.35	2.41	•
19	318.31	4.17	• •
16	366.65	3.51	•
9 10	422.33	1.97 2.19	
- 11	<u>486.46</u> 560.33	2.41	<u> </u>
9	645.42	# 1.97	•
ź	743.43	0.66	•
3	856.33	0.66	-
6	986.37	1.32	
õ	1136.2	0.00	
1	1308.7	0.22	
1	1507.4	0.22	-
Ó	1736.3	0.00	Ī
Ő	2000.0	0.00	I
			II
456			0 10 20 30 40

APPENDIX VI

<u>ىسى ئۆكۈم ئېلىكى بىغ ئىلىمىد ئىلىدىدە بىلىدى بىلەر تەركەر بىڭ بىلەر تەركەر بىلەر بەر</u>

ł

LISTING OF SOIL SAMPLE DATA - NEW SHOWING

WINDY PROJECT

and the state and so the second

1

1990 SOIL SAMPLE DATA

LAB <u>PROJ</u>	FIELD <u>LINE</u>	GRID <u>STATION</u>	UTM EAST	GRID NORTH_	AS <u>PPM</u>	AU <u>PPB</u>	CU PPM
1.1.00	<u></u>	<u>0 + + v</u>					<u></u>
0484	10400N	8630E	445600	6088395	18	2.5	41
0484	10400N	8645EA	445615	6088395	16	2.5	42
0484	10400N	8645EB	445615	6088395	16	2.5	53
0484	10400N	8650E	445620	6088395	14	2.5	38
0484	10400N	8655EA	445625	6088395	6	2.5	30
0484	10400N	8655EB	445625	6088395	6	10	36
0484	10400N	8665EA	445635	6088395	16	2.5	42
0484	10400N	8665EB	445635	6088395	40	2.5	52
0484	10400N	8670E	445640	6088395	6	2.5	53
0484	10400N	8690E	445660	6088395	1	2.5	37
0484	10400N	8710E	445680	6088395	1	2.5	50
0484	10400N	8730E	445700	6088395	1	2.5	54
0484	10400N	8750E	445720	6088395	1	2.5	53
0484	10400N	8755EA	445725	6088395	1	2.5	35
0484	10400N	8755EB	445725	6088395	1	155	116
0484	10400N	8770E	445740	6088395	1	2.5	32
0484	10400N	8790E	445760	6088395	1	2.5	37
0484	10400N	8810E	445780	6088395	1	10	37
0484	10400N	8830E	445800	6088395	1	2.5	40
0484	10400N	8850E	445820	6088395	6	2.5	39
0484	10420N	8620E	445590	6088416	2	20	45
0484	10420N	8635EA	445605	6088416	64	25	117
0484	10420N	8635EB	445605	6088416	2500	1695	1070
0484	10420N	8640E	445610	6088416	128	115	221
0484	10420N	8645EA	445615	6088416	2200	3420	430
0484	10420N	8645EB	445615	6088416	3000	2605	720
0484	10442N	8674EA	445644	6088437	2100	400	670
0484	10442N	8674EB	445644	6088437	4100	640	2110
0484	10450N	8600E	445570	6088468	10	2.5	42
0484	10450N	8620E	445590	6088468	10	10	700
0484	10450N	8635EA	445605	6088468	80	2.5	73
0484	10450N	8635EB	445605	6088468	14	2.5	327
0484	10450N	8640E	445610	6088469	74	2.5	216
0484	10450N	8645EA	445615	6088469	280	10	288
0484	10450N	8645EB	445615	6088469	240	25	460
0484	10450N	8660E	445630	6088469	258	30	197
0484	10450N	8680E	445650	6088469	940	325	610
0484	10450N	8695EA	445665	6088470	32	15	113
0484	10450N	8695EB	445665	6088470	28	40	800
0484	10450N	8700E	445670	6088470	6	45	123
0484	10450N	8705EA	445675	6088470	8	40	75
0484	10450N	8705EB	445675	6088470	36	150	374
0484	10450N	8720E	445690	6088470	18	45	275
0484	10450N	8740E	445710	6088471	6	95	336
0484	10450N	8760E	445730	6088471	6	2.5	163
0484	10450N	8780E	445750	6088472	8	20	59
0484	10450N	8800E	445770	6088472	1	2.5	83

ì

LAB <u>PROJ</u>	FIELD <u>LINE</u>	GRID <u>STATION</u>	UTM EAST	GRID NORTH	AS <u>PPM</u>	AU <u>PPB</u>	CU <u>PPM</u>
0484	10450N	8820E	445790	6088472	1	2.5	44
0484	10450N	8840E	445810	6088473	1	2.5	44
0484	10450N 10500N	8600E	445570	6088522	1	2.5	58
0484	10500N	8620E	445590	6088521	ī	2.5	55
0484	10500N	8640E	445610	6088521	22	40	116
0484	10500N	8660E	445630	6088520	20	2.5	107
0484	10500N	8680E	445650	6088520	32	2.5	45
0484	10500N	8685EA	445655	6088520	1	2.5	35
0484	10500N	8685EB	445655	6088520	112	10	60
0484	10500N	8700E	445670	6088520	6	2.5	31
0484	10500N	8720E	445690	6088519	6	10	113
0484	10500N	8740E	445710	6088519	10	2.5	96
0484	10500N	8760E	445730	6088518	1	2.5	75
0484	10500N	8770EA	445740	6088518	260	65	127
0484	10500N	8770EB	445740	6088518	74	2.5	88
0484	10500N	8775EA	445745	6088518	212	205	97
0484	10500N	8775EB	445745	6088518	380	200	154
0484	10500N	8780E	445750	6088518	1	2.5	31
0484	10500N	8800E	445770	6088518	1	2.5	53
0484	10500N	8820E	445790	6088517	1	2.5	42
0484	10500N	8840E	445810	6088517	1	2.5	28
0484	10550N	8580E	445549	6088575	1	2.5	36
0484	10550N	8600E	445569	6088574	10	5	43
0484	10550N	8620E	445589	6088574	10	2.5	35
0484	10550N	8640E	445609	6088573	10	10	52
0484	10550N	8660E	445629	6088572	40	70	67
0484	10550N	8665EA	445634	6088572	56	2.5	68
0484	10550N	8665EB	445634	6088572	180	200	113
0484	10550N	8675EA	445644	6088572	22	15	52
0484	10550N	8675EB	445644	6088572	62	20	166
0484	10550N	8680E	445649	6088572	38	10	66
0484	10550N	8700E	445669	6088571	204	180	211
0484	10550N	8715EA	445684	6088571	1	2.5	31
0484	10550N	8715EB	445684	6088571	1	2.5	32
0484	10550N	8720E	445689	6088570	4	10	67
0484	10550N	8725EA	445694	6088570	1	2.5	36
0484	10550N	8725EB	445694	6088570	1	20	130
0484	10550N	8740E	445709	6088570	1	2.5	20
0484	10550N	8760E	445729	6088569	1	2.5	30
0484	10550N	8780E	445749	6088569	1	2.5	44
0484	10550N	8800E	445769	6088568	1	2.5	49
0484	10550N	8820E	445789	6088567	6	2.5	31
0484	10550N	8840E	445810	6088567	1	2.5	29
0484	10600N	8590E	445540	6088613	1	2.5	114
0484	10600N	8610E	445560	6088613	10	2.5	190
0484	10600N	8630E	445580	6088613	16	2.5 20	116 104
0484	10600N	8650E	445600	6088613	28 104	2.5	200
0484	10600N	8670E	445620	6088613	240	100	200 219
0484	10600N	8690E	445640	6088614 6088614	760	135	480
0484	10600N	8700EA	445650 445650	6088614	580	250	430
0484	10600N	8700EB	440000	0000014	500	200	-10

LAB	FIELD	GRID	UTM	GRID	AS	AŬ	CU
PROJ	LINE_	<u>STATION</u>	<u>EAST</u>	<u>NORTH</u>	PPM	<u>PPB</u>	<u>PPM</u>
0484	10600N	8710E	445660	6088614	600	150	231
0484	10600N	8710EA	445660	6088614	420	105	207
0484	10600N	8710EB	445660	6088614	1020	350	570
0484	10600N	8730E	445680	6088614	24	30	62
0484	10600N	8750E	445700	6088614	1	20	106
0484	10600N	8770E	445720	6088614	4	2.5	35
0484	10600N	8780EA	445730	6088614	1	2.5	36
0484	10600N	8780EB	445730	6088614	1	2.5	45
0484	10600N	8790E	445740	6088614	1	2.5	34
0484	10600N	8790EA	445740	6088614	16	30	32
0484	10600N	8790EB	445740	6088614	64	10	115
0484	10600N	8810E	445760	6088614	18	2.5	39
0484	10600N	8830E	445780	6088615	16	30	51
0484	10600N	8850E	445800	6088615	18	2.5	35
0484	10700N	8580E	445550	6088715	20	2.5	69
0484	10700N	8600E	445570	6088715	18	155	72
0484	10700N	8620E	445590	6088715	28	20	45
0484	10700N	8640E	445610	6088715	38	35	172
0484	10700N	8660E	445630	6088715	40	150	100
0484	10700N	8680E	445650	6088715	36	20	59
0484	10700N	8700E	445670	6088715	30	165	95
0484	10700N	8720E	445690	6088715	56	5	59
0484	10700N	8740E	445710	6088715	196	45	44
0484	10700N	8760E	445730	6088715	64	2.5	52
0484	10700N	8780E	445750	6088715	56	2.5	41
0484	10700N	8800E	445770	6088715	28	90	91
0484	10700N	8820E	445790	6088715	66	20	86
0484	10700N	8840E	445810	6088715	26	15	48

WINDY 1990 PROJECT

ł

TEST PIT OVERBURDEN PROFILE DATA

TEST <u>PIT</u>	FIELD LINE	GRID <u>STAT</u>	DEPTH	AU (<u>dod</u>)	AG (<u>ppm</u>)	CU (<u>ppm</u>)	AS (<u>ppm</u>)	РВ (<u>ppm</u>)	ZN (ppm)	
90-2	L10470N L10470N L10470N L10470N	8675E 8675E 8675E 8675E	0.2M 1.0M 2.0M 3.0M	60 20 25 5	.4 .1 <.1	86 120 86 83	150 102 50 58	12 40 63 85	50 84 87 86 70	
90-3	L10470N L10500N L10500N L10500N L10500N	8675E 8640E 8640E 8640E 8640E	4.0M 0.2M 1.0M 2.0M 3.0M 4.0M	10 25 95 10 5	<.1 <.1 <.1 <.1 <.1 .2 <.1	76 131 204 96 93 91	35 33 38 21 23 31	22 27 28 25 7 11	79 89 66 69 71 81	
90-4	L10500N L10500N L10500N L10500N L10500N L10500N	8652E 8652E 8652E	4.0M 0.2 M 1.0 M 2.0 M 3.0 M 4.0 M	250 20 35 20 5	<.1 <.1 <.1 <.1 <.1 <.1	235 151 72 71 75	198 53 26 30 22	14 10 8 6 12	56 65 58 51 71	
90-5	L10500N L10500N L10500N L10500N L10500N L10500N	8670E 8670E 8670E 8670E	4.0 M 0.2 M 1.0 M 2.0 M 3.0 M 4.0 M	, 150 20 20 <5 5	.2 <.1 <.1 <.1 <.1	139 80 74 76 75	285 61 32 18 15	11 10 8 8 10	76 70 49 68 75	
90-6	L10515N L10515N L10515N L10515N L10515N L10515N	8670E 8670E 8670E 8670E	4.0 M 0.2 M 1.0 M 2.0 M 3.0 M 4.0 M	35 10 20 <5 <5	<.1 <.1 <.1 <.1 <.1	226 162 95 66 59	94 74 41 26 15	9 11 12 8 6	109 63 74 57 47	
90-7	L10550N L10550N L10550N L10550N	8670E 8670E 8670E 8670E	0.2 M 1.0 M 2.0 M 3.0 M	10 215 10 10	.3 <.1 <.1 <.1 <.1	87 154 100 65 59	85 86 42 20 20	9 15 10 8 8	61 71 74 57 50	
90-8	L10550N L10550N L10550N L10550N L10550N	8680E 8680E 8680E 8680E	4.0 M 0.2 M 1.0 M 2.0 M 3.0 M	50 40 45 110 15	.1 <.1 .2 <.1	103 270 366 67	156 60 33 23	12 18 16 12	61 73 92 54	
90-9	L10550N L10550N L10550N L10550N	8690E 8690E 8690E	0.2 M 1.0 M 2.0 M 3.0 M	85 25 55 5	1.2 .4 .5 .1	185 164 317 93	138 115 82 41 168	10 10 11 7 10	75 66 77 52 95	
90-10	L10600N L10600N L10600N L10600N L10600N	8685E 8685E 8685E 8685E 8685E	8.2M 1.0M 2.0M 3.0M 4.0M	20 195 50 60 160	.5 <.1 .9 .7	150 81 139 145 150	56 134 146 192	7 6 8 6	42 63 91 61	
9 0-11	L10600N L10600N L10600N L10600N L10600N L10600N	8685E 8710E 8710E 8710E 8710E 8710E 8710E	5.5M 0.2M 1.0M 2.0M 3.0M 4.0M	65 75 165 20 55 2 75	.2 .8 <.1 <.1 .2 .8	107 168 435 105 192 406	83 322 137 39 360 1035	4 16 17 9 15 19	64 112 92 79 82 94	
90-12	L10600N L10450N L10450N L10450N L10450N L10450N	8710E 8660E 8660E 8660E 8660E 8660E	5.0M 0.2M 1.0M 2.0M 3.0M	205 95 55 225 410 250	.4 .2 .7 .8 1.0	259 283 436 839 704 859	582 167 37 88 1029 1245	13 2 7 14 12	72 144 75 132 98 104	
90-13	L10450N L10450N L10450N L10450N L10450N	8660E 8660E 8670E 8670E 8670E	5.0M 5.5M 0.2M 1.0M 2.0M	<5 10 645 5125 75	.2 .1 3.4 14.3 3.6	75 81 190 670 430	23 15 2023 8875 4104	7 6 32 260 46	51 42 147 121 64	
	L10450N L10450N L10450N L10450N	8670E 8670E 8670E 8670E	4.0M 5.0M	2215 175 190 355	10.9 .6 .3 .6	589 440 455 1508	6740 155 103 284	90 10 2 10	91 73 62 77	

TEST	FIELD	GRID	DEPTH	AU	AG	CU	AS	PB	ZN
<u>PIT</u>	LINE	STAT	<u>(M)</u>	(<u>ppb</u>)	(<u>pp</u> m)	(<u>ppm</u>)	(<u>pp</u> n)	(<u>ppm</u>)	(<u>pp</u> m)
90-14	L10450N	8680E	0.2M	140	1.0	295	394	17	92
	L10450N	8680E	1.0M	160	.8	1600	96	3	85
	L10450N	8680E	2.0M	25	.3	462	50	6	87
	L10450N	8680E	3.0M	155	.8	1030	201	14	77
	L10450N	8680E	4.0M	<5	.1	197	31	12	97
	L10450N	8680E	5.0H	210	.2	221	29	20	65
90-15	L10450N	8700E	0.2M	155	.5	68	19	21	94
	L10450N	8700E	1_0M	125	.4	394	34	25	85
	L10450N	8700E	2.0M	100	.1	390	29	25	117
	L10450N	8700E	3.0M	35	-1	235	47	12	110
	L10450N	8700E	4.0M	90	.8	279	75	29	96
N/A	L10115N	8590E	0.1 M	5	<.1	45	25	7	44
N/A	L10150N	8 620E	0.1 M	15	<.1	24	9	3	47

ļ

1. 1.

APPENDIX VII

ĺ

SOIL SAMPLE STATISTICAL SUMMARY,

CORRELATION MATRIX, SCATTER PLOTS

AND

HISTOGRAMS

PLACER DOME INC.

Placer Data Analysis System - STATS

. . .

in the second states of the

run on 91:02:08 at 13:58:29

WINDY 1990 PROJECT: SOIL DATA ANALYSIS

Summary of data from file : soilass.90

This data file contains an internal header: (5 records) Data grouped into 8 fields with format: (3A8,A4,A2,3F6.0)

Character ID fields: GRID SAMP SMP2 PROJ TYPE

Coordinate fields:

Other data fields: AS AU1 CU

1

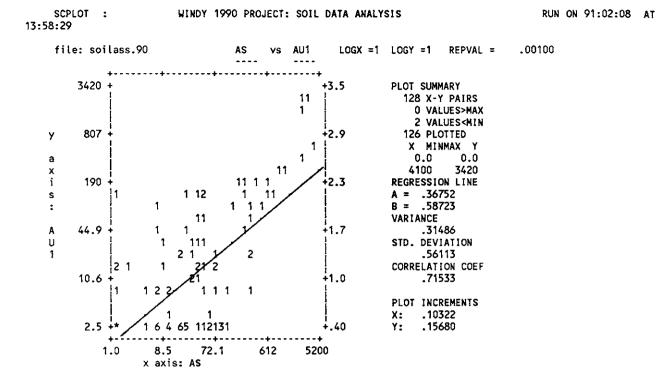
Missing data indicated by NULL value 99999.0

BASIC STATISTICS OF SELECTED DATA FIELDS:

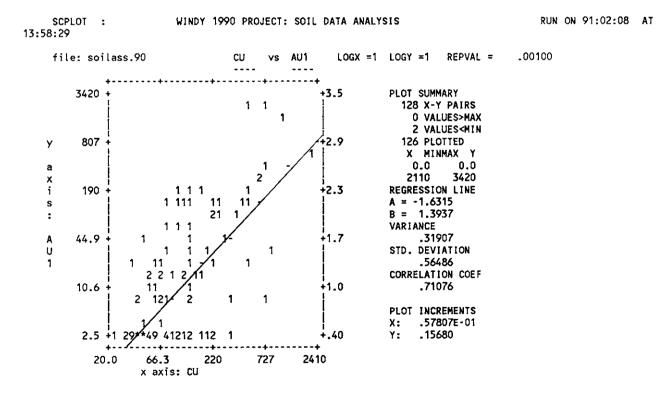
NAME	NDATA N	ULLS	MINIMUM	MAXIMUM	MEAN	STD. DEV.	GEOM. MEAN	DISPER	SION
AS	128	0	.000000	4100.00	177.688	570.838	12.7236	1.01730	159.137
AU1	128	0	.000000	3420.00	102.520	409.233	9.79681	1.12371	85.4116
CU	128	0	.000000	2110.00	148.477	248.449	70.8284	13.0408	384.691

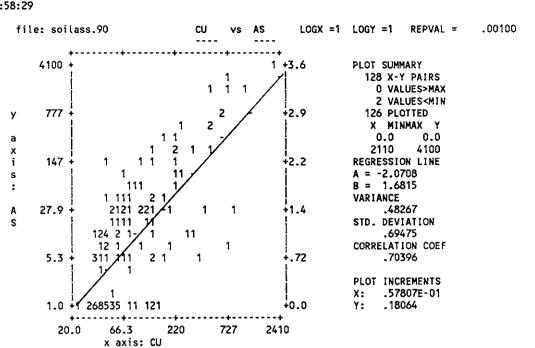
CORMAT: RUN ON 91:02:08 AT 13:58:29

Data from file: soilass.90


WINDY 1990 PROJECT: SOIL DATA ANALYSIS

Correlation matrix for 128 records with 3 variables


LOG:	AS 1	AU1 1	CU 1
AS	1.000	.786	.736
AU1	.786	1.000	.778
CU	.736	.778	1.000


Number of data pairs contributing to correlation

	AS	AU1	CU
AS	128	128	128
AU1	128	128	128
CU	128	128	128

a station of the state of the s

SCPLOT 13:58:29

į

SCPLOT : WINDY 1990 PROJECT: SOIL DATA ANALYSIS

a second s

ile:	soilass.9	0		Field nam	ne: AU1	LOG =	= 1 RI	EPVAL =	.00100
128	SAMPLES WI	TH AU1	MINIMUM	: .0000		MAX	(IMUM:	3420.00	D
122	VALUES PLO	TTED:	6 NOT	IN RANGE	2.50000	to	500	.000	
C	EOMETRIC M	EAN:	9.60	663	DISPER	SION:	1.903	44 48	8.4845
sc#	LE OF HIST	OGRAM IS	2.00	COUNTS /P	RINT POSI	TION	# = 5	,50,95%	
N	MIDPOINT				40	60 I		80 1	
63	2.5000	# 51.64	1*****	*******	******	*****	**	I	
0	2.8541	.00	I					I	
0	3.2583	.00	I					I	
0	3.7198	.00						I	
0	4,2466	.00	I					I	
2	4.8481	1.64	I*					I	
Ô	5.5347	.00	I					1	
Ô	6.3186	.00	1					1	
0	7.2135							I I	
10	8.2352 9.4015	.00						I	
10 0	10.733	.00						i	
ŏ	12.253		T					Ī	
ŏ	17 090	<u>^</u>	1					Ī	
Š	15.970	2.46	I**					Ī	
ō								I	
9	20.814	7.38	I****					I	
2	25.762	1.04	1*					I	
0	27.127	.00	1		o oob			I	
4	30.969	3.28	Inx	3	0 ppp			1	
1	35.355	.82	I*					I	
3	40.363	2.46	1**					I	
	46.079	2.40	1**					I I	
0 0	52.606 60.056	.00		6	0 oob			I	
2			1 1*	0	0 995			i	
0	68.562 78.273	.00	i I					i	
ž	89.358	1.64	I*					Ī	
2	102.01	1.64	I#					1	
1	116.46	.82	I *					I	
1	132.96	~~			EQ nob			I	
- 5	151.79	4.10	1***		150 ppb			I	
2		1.64	I#					I	
3		# 2.46						I	
0		.00	-					I	
1	257.83	-82						I	
0	294.35	.00						1 1	
2	336.04	1.64						I	
1	383.63	-82						1	
0 0	437.97 500.00	.00 .00						Í	
0	300.00		1 1			1		1 ·	

HISTO: WINDY 1990 PROJECT: SOIL DATA ANALYSIS

ļ

فتستشفك ستبدؤ بمنتز سيخر بنبيا المنابط المناط المرتكين بسارا فيعتثان فالمتركي بمراد والمرزا المراجا

RUN ON 91:02:08 AT 13:58:29

1

HISTO: WINDY 1990 PROJECT: SOIL DATA ANALYSIS

and the second se

RUN ON 91:02:08 AT 13:58:29

	soilass.9		Field name: CU LOG = 1 REPVAL = .0010
128	SAMPLES WI	TH CU	MINIMUM: .000000 MAXIMUM: 2110.00
124	VALUES PLO	DITED:	4 NOT IN RANGE 20.0000 to 1000.00
G	EOMETRIC M	IEAN:	80.7308 DISPERSION: 33.8069 192.785
SCA	LE OF HIST	OGRAM IS	.40 COUNTS /PRINT POSITION # = 5,50,95%
Ň	MIDPOINT	PERCENT	0 4.0 8.0 12 16 111
1	20.000	.81	I*** I
ò	22.055	.00	
õ	24.321	.00	
1	26 820	<u>81</u>	T### T
7	29.575	# 5.65	I ******
4	32.614	3.23	;]***** ***
12	35.965	9.68	I*******************************
6	39.660		
13	43.735	10.48	· · · · · · · · · · · · · · · · · · ·
3	48.228	2 / 2	1 *****
<u> </u>	57 197	0 07	
5	58.647	# 4.03	I******
-	64.673	7 7 7	I*****
	71.317		I *****
2	78.645		I***** I
4	86.725	3 23	· I*********
4	95.635		I *****
3	105.46		I*****
ş	116.30	7 24	****
	128.25	2 42	120 ppm I
õ	141.42	.00	
	155.95		I****
2	171.97	1.61	I****
2	189.64		I***** I
	209.13	4 07	I*****
	230.61		I****
	254.31	.00	
	280.44		I****
	309.25	.00	
ž	341.02		I***** I
1	376.06		· · · · · · · · · · · · · · · · · · ·
-	414.70	1.61	1**** I
2	457.31	# 1.61	T××××↓ I
-	504.29	.00	
ĭ	556.10	.81	I*** I
i	613.24	.81	I*** I
	676.24	1.61	I**** I
	745.72		· · · · · · · · · · · · · · · · · · ·
1	822.34	.81	I*** I
	906.83	.00	
	1000.0	.00	
			· · · · · · · · · · · · · · · · · · ·
124			0 4.0 8.0 12 16
144			

l !

HISTO: WINDY 1990 PROJECT: SOIL DATA ANALYSIS

RUN ON 91:02:08 AT 13:58:29

and the second
File	: soilass.9	0	Fi	eld name	e: AS	LOG =	1 REP	VAL =	.00100
128	SAMPLES WI	TH AS	MINIMUM:	.00000	00	MAX	IMUM:	4100.00	
126	VALUES PLC	TTED:	2 NOT IN	RANGE	1.00000	to	4100.	00	
(GEOMETRIC M	IEAN:	14.783	0	DISPERS	ION:	1.56857	139.	.323
SCI	ALE OF HIST	OGRAM IS	1.00 CO	UNTS /PF	RINT POSIT	ION	# = 5,5	0,95%	
N	MIDPOINT	PERCENT	0 10	.0 -1	20	30		40 - I	
36	1 0000	# 28 57	- 1******	- *******	********	******	****	Ī	
0	1.2312	.00						ī	
-								I	
0	1.5158	.00	1					-	
1	1.8662	.79						I	
0	2.2976	.00						I	
0	2.8288	.00	I					1	
0	3.4827	.00						I	
2	4.2878	1.59						I	
ō	5.2791	.00	-					1	
-	6.4994	7 0/	[*******	**				I	
2	8.0020	1.59						I	
		1.39	1					I	
7	9.8518	2.30	<u>I*******</u> I	10	mqq			•	
	12.129	.00	1		1- 1			1	
8	14.933 18.385	# 6.35	I*******					I	
7	18.385	5.56	I ******					1	
3	22.636	2.38	1					1	
6	27.868	4.76	1*****					I	
6	34.311		*****					I	
	42.243	2.38						I	
3	52.008	2.38						Ī	
5	64.031	3 97	[****					ī	
3	78.834	2.38	- 1 ****					1	
1	97.058	.79	1					I	
								•	
	119.50	<u> </u>	<u></u>	12	0 ppm			I	
0	147.12	.00			• •			I	
2	181.13	1.59						I	
4	223.00	3.17	<u>[</u> ****					I	
3	223.00 274.56	2.38						I	
0	338.03	.00	I					I	
2	416.17	1.59	<u>I**</u>					I	
0	512.38	.00	I					1	
	630.82	1.59	.I**	6	00 ppm			I	
1	776.65 956.20	.79						I	
2	956 20	# 1.59						I	
Ō	1177.2	.00	1					ī	
0	1//0 /	.00						I	
	1449.4 1784.5	.00	1					-	
0		.00						I	
2	2197.0	1.59						I	
2	2704.9	1.59						I	
	3330.2	.00	I					I	
1	4100.0	.79						I	
			I	- I	I	I-			
126			0 10	.0	20	30		40	

APPENDIX VIII

PETROGRAPHIC STUDY

WINDY PROPERTY '90

فتقاصيه بالأكامية المعتاكين فيتحدث المالي

Character Rock Samples Sent to Vancouver Petrographics.

52577	-	PPAN: <u>Location</u> : <u>Remarks</u> :	Porphyritic Andesite DDH90-1, Box 18 @ 99.8 metres (Sample # 14226) Greyish-green, weakly foliated, porphyritic diorite? with 3-4 millimetres plagioclase laths (about 50%) in a chloritized matrix. Pyrite occurs a 3-5% disseminations and clots. Contains 176 ppm copper.
52578	-	AN/F: <u>Location</u> : <u>Remarks</u> :	DDH90-3, Box 8 @ 50.4 metres (Sample # 14291)
52579	-	FGDR: <u>Location</u> : <u>Remarks</u> :	÷
52580	-	AN/F: <u>Location</u> : <u>Remarks</u> :	TR90-02 @ 70.0 metres (Sample # C176)
52581	-	AN/F: <u>Location</u> : <u>Remarks</u> :	Sileceous Andesite Flow TR90-01 @ 23.0 metres (Sample # C111) Medium-grey, weakly foliated, fine-grained, altered quartz-diorite or andesite. Mineralization occurs as disseminated and fracture filling pyrite (about 3- 5%).
52582	-	QZDR: <u>Location</u> : <u>Remarks</u> :	Quartz-Diorite TR90-06 @ 11.0 metre (Sample # C232) Medium-grey, medium grained, altered quartz-diorite. Contains about 45% quartz. Weakly foliated. Epidotized fractures. Minor disseminated pyrite. Contains 170 ppb gold, 580 ppm copper.
52583	-	MXSF: <u>Location</u> : <u>Remarks</u> :	Massive Sulfide Float TR90-02 @ 45.0 metres Limonitic, sulfide rich sample taken from till. Massive pyrite and arsenopyrite? lenses parallel to foliation in altered andesite.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist

Report for: Marc Deschenes, Placer Dome Inc., 401 - 1450 Pearson Place, KAMLOOPS, B.C., VIS 1J9

Project: Windy

Samples: 52577 - 52583

Summary:

Samples are grouped as follows:

P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

Job 114a November 1990

A: Metamorphosed Diorite, Quartz Diorite

- Sample 52578 is a medium grained, slightly recrystallized diorite dominated by plagioclase with much less amphibole. Veins and veinlets up to a few mm wide are dominated by one or more of plagioclase and calcite, with less abundant K-feldspar, chlorite and quartz, and local concentrations of chalcopyrite and pyrite.
- Sample 52589 is a metamorphosed porphyritic diorite containing medium grains of plagioclase and a few patches of muscovite-ankeritechlorite after mafic minerals. They are set in a patchy groundmass dominated by much finer grained plagioclase with less chlorite, ankerite, and quartz. The rock was metamorphosed and foliated moderately. Plagioclase was recrystallized slightly to moderately and replaced in patches by sericite and/or ankerite. Irregular metamorphic seams are dominated by quartz with much less muscovite. Late gash veins are of quartz with less interstitial chlorite and calcite.
- Sample 52581 is a metamorphosed, fine to medium grained quartzbearing diorite dominated by plagioclase with much less quartz and secondary biotite and calcite. It was deformed and sheared slightly, and plagioclase was replaced strongly in lenses by sericite.
- Sample 52582 is a moderately foliated, metamorphosed porphyritic potassic quartz diorite containing medium grained plagioclase and less quartz and clusters of biotite in a very fine to fine grained groundmass dominated by plagioclase and quartz with less biotite, epidote, calcite, and K-feldspar. Metamorphic segregations are of quartz, K-feldspar and less calcite. A veinlike recrystallized zone is of plagioclase, calcite, and epidote.

B: Metamorphosed Volcanic Rocks

sample 52579 is a metamorphosed andesite flow or tuff containing crystals of plagioclase and altered hornblende in a groundmass dominated by plagioclase and sericite/muscovite. Replacement patches are dominated by calcite. Veins up to a few mm wide are of calcite-(quartz-muscovite).

C: Metamorphosed Massive Sulfide in Volcanic Rock

Sample 52583 is an altered, metamorphosed, dacite tuff containing
 patches and lenses of quartz (possibly in part altered from
 plagioclase crystals) in a groundmass dominated by quartz and
 sericite. The massive sulfide is dominated by quartz and pyrite.
 On one side of the massive sulfide, the rock contains biotite and
 hematite (after ilmenite), whereas on the other side, it contains
 chlorite and magnetite. This suggests a stratigraphic contact,
 and the possibility of a syngenetic deposit. Late veinlets and
 seams are of limonite. The massive sulfide as the rock was
 recrystallized completely during metamorphism.

D: Altered Diorite

Ł

Sample 52577 is an altered diorite dominated by medium grained plagioclase with interstitial patches dominated by chlorite. Plagioclase is altered moderately to K-feldspar. Several veinlets and veins are of calcite-K-feldspar-(pyrite-quartz).

John G bayne

John G. Payne (604)-986-2928

2.

Sample 52577 DDH 99-1 99.8 m

Altered Diorite; Veins of Calcite-K-feldspar-(Pyrite-Quartz)

The rock is dominated by medium grained plagioclase with interstitial patches dominated by chlorite. Plagioclase is altered moderately to K-feldspar. Several veinlets and veins are of calcite-K-feldspar-(pyrite-quartz).

and the second s

plagioclase	70-758
chlorite	17-20
quartz	3-4
Ti-oxide	Ø.7
pyrite	Ø.3
calcite	minor
apatite	trace
chalcopyrite	trace
veins, veinlets	
calcite	4-5
K-feldspar	1
quartz	0.5
pyrite	Ø.5
chlorite	Ø.1

Plagioclase forms anhedral grains averaging 1-2 mm in size. Alteration is slight to extremely fine grained K-feldspar.

Irregular patches up to a few mm long consists of aggregates of chlorite flakes averaging 0.07-0.15 mm in size. Most contain moderately abundant, disseminated dusty to extremely fine grained Ti-oxide/leucoxene. Chlorite also is common in seams and lenses between coarser plaqioclase grains.

Quartz forms anhedral grains averaging $\emptyset.07-\emptyset.1$ mm in size. It is concentrated with chlorite in seams and patches interstitial to plagioclase.

K-feldspar is concentrated with quartz and chlorite in interstitial patches as grains averaging 0.03-0.07 mm in size.

Pyrite forms disseminated, subhedral to euhedral grains averaging $\emptyset.07-\theta.5$ mm in size. Chalcopyrite forms disseminated anhedral grains averaging $\emptyset.02-\theta.05$ mm in size.

Apatite forms anhedral grains averaging 0.05-0.1 mm in size.

Veinlets and veins ranging from $\emptyset.1-1.5$ mm wide are dominated by calcite with less K-feldspar and chlorite. K-feldspar commonly is concentrated along the borders of the veins as subhedral grains up to $\emptyset.5$ mm in size. Pyrite is concentrated in a few lenses up to 2 mm long as grains up to $\emptyset.7$ mm in size. Quartz forms a few subhedral to euhedral grains averaging $\emptyset.2-\emptyset.4$ mm in size surrounded by coarser grained calcite. Chlorite forms interstitial grains and clusters of grains averaging $\emptyset.02-\emptyset.03$ mm in size.

之義

Sample 52578 DDH 90-3 50.4 m Diorite; Vein Stockwork of Plagioclase-Calcite-(K-feldspar-Chlorite-Quartz-Chalcopyrite)

الماري الأكامية تقاريقا مارار

The rock is a medium grained, slightly recrystallized diorite dominated by plagioclase with much less amphibole. Veins and veinlets up to a few mm wide are dominated by one or more of plagioclase and calcite, with less abundant K-feldspar, chlorite and quartz, and local concentrations of chalcopyrite and pyrite.

plagioclase	70-75%	veins	
amphibole	10-12	plagioclase	8-10%
Ti-oxide	Ø.3	calcite	3-4
apatite	minor	chlorite	2-3
chalcopyrite	minor	K-feldspar	1- 2
pyrite	trace	guartz	Ø.3
		chalcopyrite	minor
		sphene	trace

Plagioclase forms anhedral, slightly interlocking grains averaging Ø.7-1.5 mm in size. Numerous grains are warped slightly. Alteration is slight to sericite and small patches of epidote. Plagioclase grades in grain size down to Ø.05-0.15 mm in diffuse, interstitial patches.

Amphibole forms subhedral prismatic grains averaging $\emptyset.7-1.2$ mm long. Several mafic clusters are up to 3 mm across. Alteration is to pseudomorphic pale green tremolite/actinolite and minor to moderately abundant patches of one or more of epidote, chlorite, and calcite. In mafic clusters, alteration is more commonly to chlorite and epidote, with much less tremolite/actinolite.

Ti-oxide forms anhedral patches averaging Ø.2 mm in size. One mafic cluster contains abundant, irregular, subrounded patches of Ti-oxide/ ilmenite intergrown with chlorite and epidote.

Pyrite forms disseminated anhedral to subhedral grains averaging $\emptyset.03-\emptyset.07$ mm in size. A few grains are up to $\emptyset.3$ mm across. Epidote-rich mafic patches commonly contain very abundant pyrite grains averaging $\emptyset.005-0.01$ mm in size.

Chalcopyrite forms anhedral patches averaging 0.03-0.1 mm in size.

Apatite forms anhedral grains averaging $\emptyset.03-\emptyset.07$ mm in size, and a few up to $\emptyset.3$ mm across. These contain abundant dusty hematite inclusions.

Numerous veins and veinlets up to a few mm wide are dominated by medium to coarse grained plagioclase and calcite. Plagioclase commonly forms elongate prismatic grains oriented perpendicular to vein walls, and contains abundant dusty hematite inclusions. K-feldspar forms clear grains averaging $\emptyset.2-\theta.7$ mm in size, interstitial to plagioclase and calcite. In some veins, patches up to several mm long (in hand sample) are of very fine grained, subradiating chlorite with minor to moderately abundant interstitial calcite. Quartz forms interstitial patches in a few veins, and is concentrated moderately in one as very fine to fine grained aggregates. Chalcopyrite forms a grain $\emptyset.5$ mm across intergrown with chlorite. Sphene forms a few subhedral grains up to $\emptyset.2$ mm long intergrown with plagioclase. In hand sample a large vein contains a cluster of pyrite and chalcopyrite grains averaging $\emptyset.3-\emptyset.7$ mm in grain size.

Sample 52579 DDH 90-6 97.0 m Metamorphosed Porphyritic Andesite Tuff or Flow; Replacement Patches of Calcite; Veins of Calcite-(Quartz-Muscovite)

الله الذكر المحكمة المركز المركز المحكمة المستركز المركز المركز المركز المركز المركز المركز المركز المركز الم المحكمة
Crystals of plagioclase and altered hornblende are set in a groundmass dominated by plagioclase and sericite/muscovite. Replacement patches are dominated by calcite. Veins up to a few mm wide are of calcite-(quartz-muscovite).

crystals		replacement pat	ches
plagioclase	12-15%	calcite	4- 5%
hornblende(?)	4-5	chlorite	Ø.2
groundmass		epidote	Ø.2
plagioclase	45-50	quartz	Ø.2
sericite/muscovite	15-17	chalcopyrite	minor
chlorite	2-3		
biotite	1	veins	
magnetite	1	calcite	7-8
chalcopyrite	trace	quartz	Ø.7
pyrite	trace	muscovite	Ø.2

Plagioclase forms subhedral to anhedral grains averaging 0.5-0.8 mm in size. Alteration ranges from slight to complete to sericite/ muscovite.

Patches up to 1.5 mm in size may be secondary after hornblende grains. They consist of very fine grained aggregates of calcite, quartz, plagioclase, epidote, muscovite, chlorite, and minor biotite, with moderately abundant disseminated grains of magnetite. A few patches are dominated by epidote with moderately abundant magnetite, and much less interstitial quartz and/or chlorite. Some of the epidote-rich patches are surrounded by a zone of extremely fine grained plagioclase as in the groundmass, which in turn is surrounded by a halo of sericite/muscovite with flakes oriented radially.

Magnetite forms subhedral grains averaging 0.1-0.3 mm in size, commonly concentrated in patches of epidote (after hornblende?).

In the groundmass, plagioclase forms equant, commonly slightly to moderately interlocking grains averaging $\emptyset.01-0.03$ mm in size. Sericite and much less muscovite form slender flakes averaging $\emptyset.05-0.08$ mm long. Biotite is pleochroic from pale to dark brown. Chlorite forms wider flakes averaging $\emptyset.05-0.15$ mm in size. Pleochroism is from pale to light green. Magnetite forms abundant disseminated, euhedral grains averaging $\emptyset.015-0.02$ mm in size.

Chalcopyrite forms anhedral patches averaging $\emptyset.02-\emptyset.05$ mm in size. A few are up to $\emptyset.1$ mm across. Pyrite forms a few anhedral to euhedral grains up to $\emptyset.4$ mm in size. The largest contains a few inclusions of chalcopyrite from $\emptyset.01-\emptyset.02$ mm in size.

Calcite forms irregular replacement patches averaging $\emptyset.3-\emptyset.5$ mm in size of grains averaging $\emptyset.07-\theta.15$ mm in size. A few of these also contain slender flakes of chlorite up to $\emptyset.2$ mm long. Many of the larger patches of chalcopyrite are associated with calcite replacement patches.

In the veins, calcite and quartz form equant grains averaging $\emptyset.05-0.2$ mm in size, with a few coarser grained patches up to 0.5 mm in grain size. Muscovite forms disseminated flakes and a few clusters of flakes averaging 0.07-0.1 mm long, and locally up to 0.3 mm long.

Sample 52580 Trench 90-02 70.0 m Metamorphosed Porphyritic Diorite; Metamorphic Seams of Quartz-Muscovite; Late Vein of Quartz-Chlorite-Calcite

The rock contains medium grains of plagioclase and a few patches of muscovite-ankerite-chlorite after mafic minerals. They are set in a patchy groundmass dominated by much finer grained plagioclase with less chlorite, ankerite, and quartz. The rock was metamorphosed and foliated moderately. Plagioclase was recrystallized slightly to moderately and replaced in patches by sericite and/or ankerite. Irregular metamorphic seams are dominated by quartz with much less muscovite. Late gash veins are of quartz with less interstitial chlorite and calcite.

plagioclase		seam	
coarser	5 5-60%	quartz	2- 3%
finer	10-12	muscovite	Ø.3
sericite	8-10	vein	
ankerite	5-7	quartz	3 - 4
chlorite	4-5	chlorite	Ø.7
quartz	2-3	calcite	Ø.3
muscovite	2-3		
Ti-oxide/limonite	Ø.4		
apatite	Ø.2		
magnetite	0.1		
zircon	trace		

Plagioclase forms anhedral grains averaging 0.5-1.5 mm in size. Many are recrystallized moderately to finer subgrain aggregates. Discontinuous albite twins are common; these are characteristic of deformed rocks. Alteration commonly is slight to moderate to sericite and patches of calcite. In moderately abundant patches up to 1.5 mm long, plagioclase is altered strongly to sericite.

Quartz forms interstitial grains up to Ø.3 mm in size.

A few patches up to 2 mm across are dominated by intimate intergrowths of muscovite, ankerite, and chlorite averaging 0.03-0.07 mm in grain size. These probably are secondary after original hornblende (or biotite).

Interstitial patches averaging 0.02-0.07 mm in grain size consists of irregular intergrowths of plagioclase, quartz, chlorite, and ankerite.

Pyrite forms scattered anhedral to subhedral grains averaging 0.05-0.2 mm in size. A few contain inclusions up to 0.05 mm in size of chalcopyrite. Chalcopyrite forms anhedral grains averaging 0.03-0.1 mm in size; most are altered slightly to moderately along their margins to hematite.

Apatite forms anhedral grains up to Ø.4 mm in size.

Ti-oxide containing moderately abundant limonite, in part with calcite forms patches up to 0.3 mm in size, probably after sphene.

Magnetite forms a few equant grains averaging Ø.12-0.3 mm in size in one corner of the section in the largest cluster of muscoviteankerite-chlorite. Some grains are replaced slightly by pyrite.

Zircon forms a few subhedral grains up to Ø.25 mm long.

A few seams of metamorphic origin averaging 0.3-0.7 mm wide are composed of aggregates of quartz grains averaging 0.02-0.07 mm in size intergrown with minor to abundant flakes of muscovite/sericite, which are oriented parallel to the length of the seams.

(continued)

-

Sample 52580 (page 2)

The vein up to several mm wide is dominated by fine to medium grained quartz. In its core at one end of the section is a zone up to several mm long containing subhedral to euhedral quartz and interstitial patches up to 2 mm across of chlorite and calcite with much less muscovite. In these patches, chlorite commonly forms radiating to subradiating aggregates averaging $\emptyset.05-\emptyset.08$ mm across, calcite forms fine to medium grains, and muscovite forms clusters of flakes averaging $\emptyset.05-\emptyset.07$ mm in length. Elsewhere, quartz is anhedral to locally subhedral, and is intergrown with a few interstitial grains up to $\emptyset.5$ mm in size of calcite, a few patches up to 1 mm across of very fine grained intergrowths of calcite and chlorite, and a few flakes of muscovite up to $\emptyset.2$ mm long. Pyrite forms a very few anhedral grains up to $\emptyset.2$ mm across.

Metamorphosed Quartz-bearing

The sample is a fine to medium grained diorite dominated by plagioclase with much less quartz and secondary biotite and calcite. It was deformed and sheared slightly, and plagioclase was replaced strongly in lenses by sericite.

plagioclase		sphene	Ø.7%
coarser	40-45%	pyrite	0.5
groundmass	15-17	apatite	0.2
sericite	15-17	chalcopyrite	minor
biotite	8-10	magnetite	trace
quartz	7-8	zircon	trace
calcite	4- 5		
K-feldspar	1-2		

Plagioclase forms anhedral grains averaging 0.3-0.7 mm in size, with a few up to 1.2 mm across. Alteration ranges widely. In some grains it is slight to sericite. In wispy to dense patches up to 0.7 mm wide and 1.5 mm long, plagioclase is altered strongly to completely to sericite, whose grains are oriented parallel to the length of the patch.

Quartz forms disseminated, anhedral grains averaging Ø.2-Ø.7 mm in size. Most are strained slightly.

Biotite is concentrated moderately to strongly in patches up to 2 mm across in which it forms aggregates of flakes averaging 0.05-0.1 mm in size intergrown with minor to moderately abundant similar grains of plagioclase, quartz and accessory minerals. Biotite is pleochroic from straw to medium green. Concentrations of biotite may be secondary after original hornblende grains.

Interstitial to coarser grained plagioclase and quartz are patches of much finer grained plagioclase, biotite, calcite, quartz, and K-feldspar averaging 0.02-0.05 mm in grain size.

Calcite forms patches up to 1 mm in size of anhedral grains averaging 0.05-0.15 mm in size. One patch also contains an intergrowth 0.3 mm long of very fine grained epidote. Epidote also forms scattered grains averaging 0.05-0.1 mm in size associated with clusters of biotite.

K-feldspar forms anhedral grains averaging Ø.2-Ø.7 mm in size. Many appear to be replacements of plagioclase grains.

Pyrite is concentrated in a few patches and seams as anhedral to subhedral grains averaging 0.07-0.2 mm in size. A few grains are up to 0.3 mm across. Some coarser grains and patches contain inclusions and interstitial grains of chalcopyrite averaging 0.02-0.05 mm in size.

Sphene forms patches averaging $\emptyset.05-0.15$ mm in size, commonly associated with biotite, and commonly altered slightly to moderately along grain borders to leucoxene. A few grains are up to $\emptyset.4$ mm across.

Apatite forms anhedral grains averaging Ø.Ø5-Ø.1 mm in size, with a few up to Ø.2 mm across.

Magnetite forms a few equant, anhedral to subhedral grains up to $\emptyset.2$ mm across.

Chalcopyrite forms disseminated grains and clusters of a few grains averaging 0.03-0.08 mm in size.

Zircon forms a few anhedral, equant grains up to Ø.13 mm across.

· · · ·

Sample 52582 Trench 90-06 11.0 m Metamorphosed Potassic Quartz Diorite; Segregations of Quartz-K-feldspar-(Calcite)

The rock is a moderately foliated, metamorphosed porphyritic quartz diorite containing medium grained plagioclase and less quartz and clusters of biotite in a very fine to fine grained groundmass dominated by plagioclase and quartz with less biotite, K-feldspar, calcite, and epidote. Metamorphic segregations are of quartz, K-feldspar and less calcite. A veinlike recrystallized zone is of plagioclase, calcite, and epidote.

plagioclase		sphene-Ti-oxid	le-leucoxene	0.3%
coarser grains	55-60	calcite	Ø.3	
finer grains	12-15	apatite	Ø.2	
quartz	10-12	magnetite	trace	
biotite	7-8	chalcopyrite	trace	
K-feldspar	4-5	zircon	trace	
calcite	2-3			
epidote	Ø.5			
pyrite	Ø.4			

Plagioclase forms anhedral equant to elongate grains averaging Ø.5-1 mm in length. Alteration varies from slight to strong to sericite. Sericite forms dense replacement patches up to 1.5 mm long in some plagioclase grains. Finer grained plagioclase averages Ø.03-0.1 mm in grain size. Some was formed by subgranular recrystallization of coarser grains during metamorphism.

Quartz forms aggregates of anhedral grains averaging Ø.1-Ø.5 mm in size, and a few coarser patches up to 1.5 mm across with grains up to 1 mm across. Grains are strained slightly to moderately.

Biotite is concentrated in patches up to 2.5 mm in size as grains averaging $\emptyset.07-\theta.15$ mm in size. In these it is intergrown with much less very fine grained plagioclase, quartz, and calcite. Pleochroism of biotite is from very pale to medium green. Associated with biotite are minor to moderately abundant patches of both sphene and epidote averaging $\emptyset.05-\theta.1$ mm in size. Epidote also forms a few patches up to $\emptyset.5$ mm in size of grains up to $\emptyset.15$ mm in size.

K-feldspar forms ragged interstitial grains averaging $\emptyset.2-0.6$ mm in size, in part probably as a replacement of plagioclase. K-feldspar commonly contains minor patches of calcite.

Pyrite forms anhedral grains averaging 0.05-0.15 mm in size, with a few up to 0.3 mm across. It is concentrated slightly in patches and seams.

Calcite forms interstitial patches of grains averaging $\emptyset.1-0.4$ mm in size, and disseminated grains averaging 0.02-0.05 mm in size.

Apatite forms anhedral to subhedral grains up to 0.3 mm in length.

Magnetite forms subhedral grains averaging 0.2-0.3 mm in size.

Zircon forms a few subhedral grains up to 0.3 mm long and a few elongate anhedral grains up to 0.1 mm long.

Chalcopyrite forms anhedral grains averaging 0.02-0.05 mm in size.

Several patches formed by metamorphic segregation are up to 3 mm in size and consist of fine to medium grained aggregates of quartz and K-feldspar with much less calcite. Quartz in these aggregates also is strained moderately and recrystallized slightly.

One recrystallized, veinlike zone 0.5 mm wide consists of very fine to fine grained calcite, fresh plagioclase, and patches of epidote.

Sample 52583 TR-90-2 Float

Altered Metamorphosed Dacite Tuff with Lenses of Massive Sulfide: Pyrite-Quartz at Stratigraphic Contact

The rock contains patches and lenses of quartz (possibly in part altered from plagioclase crystals) in a groundmass dominated by quartz and sericite. The massive sulfide is dominated by quartz and pyrite. On one side of the massive sulfide, the rock contains biotite and hematite (after ilmenite), whereas on the other side, it contains chlorite and magnetite. This suggests a stratigraphic contact, and the possibility of a syngenetic deposit. Late veinlets and seams are of limonite. The massive sulfide as the rock was recrystallized completely during metamorphism.

.....

phenocrysts(?)		other replacement patches			
quartz	17-20%	quartz	2-38		
groundmass		magnetite	0.3		
quartz	2 0-2 5				
sericite	25-3Ø	late veinlets, s	eams		
magnetite	2-3				
chlorite	2-3	limonite	1- 2		
biotite	Ø.4				
hematite(ilmenite) Ø.5					
apatite	Ø.1				
massive sulfide					
pyrite	8-1Ø	chalcopyrite	trace		
quartz	10-12	pyrrhotite	trace		
magnetite	Ø.1	muscovite	trace		

Fragments (?) average Ø.3-1 mm in size and consist of single grains or aggregates of quartz, with or without minor amounts of one or more of actinolite, sericite, and hematite. Quartz grains commonly are strained slightly to moderately.

The groundmass is dominated by quartz and sericite/muscovite. Quartz is concentrated moderately in lenses parallel to foliation. Its grain size ranges from Ø.Ø1-Ø.Ø3 mm. Sericite/muscovite commonly is concentrated in seams parallel to foliation. Locally, coarser grained muscovite flakes (up to Ø.15 mm across) are oriented at a high angle to foliation. Textures suggest that the rock was sheared moderately and finer grained sericite recrystallized locally to coarser grained muscovite. Some muscovite has a subradiating texture.

Magnetite forms equant grains averaging $\emptyset.07-\emptyset.2$ mm in size. A few euhedral grains are from $\emptyset.5-\emptyset.6$ mm across. With chlorite it is concentrated strongly on one side of the massive sulfide. Chlorite commonly forms small porphyroblastic grains oriented at a high angle to the foliation. Pleochroism is from pale to light green.

Hematite, probably after ilmenite, forms patches up to $\emptyset.7 \text{ mm}$ in size of extremely fine grained aggregates with high anisotropism. Some patches have a platy texture. With biotite, it is concentrated on the other side of the massive sulfide. Biotite forms ragged grains and clusters of grains averaging $\emptyset.07-\emptyset.15 \text{ mm}$ in size. Pleochroism is from pale to medium green.

Apatite forms equant grains averaging 0.1-0.15 mm in size, with a few up to 0.3 mm long. They gave an unusual striation parallel to their length defined by abundant semiopaque inclusions.

Sample 52583 (page 2)

Some larger patches of quartz (up to a few mm in size) are somewhat similar to the fragments in texture, but their shapes and sizes indicate that they probably are of replacement origin. A few of these patches contain minor to moderately abundant disseminated pyrite.

The massive sulfide lenses are up to a few mm wide, and contain subhedral to euhedral clusters of pyrite grains averaging 0.05-0.2 mm in size enclosed in very fine grained quartz. A few pyrite grains are up to 0.6 mm across. A few contain inclusions averaging 0.01-0.03 mm in size of chalcopyrite and much less abundant pyrrhotite. Quartz commonly forms feathery to granular aggregates oriented perpendicular to pyrite crystal faces. In one lens, pyrite is altered completely to nearly completely to pseudomorphs of hematite/limonite. Magnetite forms disseminated grains averaging 0.1 mm in size. A few larger grains up to 0.3 mm in size contain abundant tiny inclusions of pyrite, and one is intergrown intimately with coarser grained pyrite. Muscovite forms a few stubby flakes on pyrite-quartz interfaces.

Limonite forms a few veinlets up to 0.15 mm wide and numerous wispy seams, mainly parallel to the foliation.

Sample 52583 TR-90-2 Float

Altered Metamorphosed Dacite Tuff with Lenses of Massive Sulfide: Pyrite-Quartz at Stratigraphic Contact

The rock contains patches and lenses quartz (possibly in part altered from plagioclase crystals) in a groundmass dominated by quartz and sericite. The massive sulfide is dominated by quartz and pyrite. On one side of the massive sulfide, the rock contains biotite and hematite (after ilmenite), whereas on the other side, it contains chlorite and magnetite. This suggests a stratigraphic contact, and the possibility of a syngenetic deposit. Late veinlets and seams are of limonite. The massive sulfide as the rock was recrystallized completely during metamorphism.

phenocrysts(?)		other replacemen	t patches
quartz	17-20%	quartz	2-3%
groundmass		magnetite	Ø.3
quartz	20-25		
sericite	25-3Ø	late veinlets, s	eams
magnetite	2-3		
chlorite	2-3	limonite	1-2
biotite	Ø.4	DUPLICATE	
hematite(ilmenite	e) Ø.5	- CLIC.	
apatite	Ø.1	1201	
massive sulfide		P	
pyrite	8-10	chalcopyrite	trace
quartz	10-12	pyrrhotite	trace
magnetite	Ø.1	muscovite	trace

Fragments (?) average Ø.3-1 mm in size and consist of single grains or aggregates of quartz, with or without minor amounts of one or more of actinolite, sericite, and hematite. Quartz grains commonly are strained slightly to moderately.

The groundmass is dominated by quartz and sericite/muscovite. Quartz is concentrated moderately in lenses parallel to foliation. Its grain size ranges from Ø.01-Ø.03 mm. Sericite/muscovite commonly is concentrated in seams parallel to foliation. Locally, coarser grained muscovite flakes (up to Ø.15 mm across) are oriented at a high angle to foliation. Textures suggest that the rock was sheared moderately and finer grained sericite recrystallized locally to coarser grained muscovite. Some muscovite has a subradiating texture.

Magnetite forms equant grains averaging $\emptyset.\emptyset7-\emptyset.2$ mm in size. A few euhedral grains are from $\emptyset.5-\emptyset.6$ mm across. With chlorite it is concentrated strongly on one side of the massive sulfide. Chlorite commonly forms small porphyroblastic grains oriented at a high angle to the foliation. Pleochroism is from pale to light green.

Hematite, probably after ilmenite, forms patches up to 0.7 mm in size of extremely fine grained aggregates with high anisotropism. Some patches have a platy texture. With biotite, it is concentrated on the other side of the massive sulfide. Biotite forms ragged grains and clusters of grains averaging 0.07-0.15 mm in size. Pleochroism is from pale to medium green.

Apatite forms equant grains averaging 0.1-0.15 mm in size, with a few up to 0.3 mm long. They gave an unusual striation parallel to their length defined by abundant semiopaque inclusions.