listrict Geologist, Prince George Off Confidential: 92.03.01 ASSESSMENT REPORT 21434 MINING DIVISION: Omineca FROPERTY: Ferguson 56 41 24 LOCATION: LAT LONG 125 10 12 UTM 10 6284769 367090 NTS 094C11E CLAIM(S): Frank, Ingenika No. 11, 12, 15-18, Sanders, Yount, Payzant, Charlewood Kelsey, Ferguson, Dorita No. 1, Butler, Swan, Mackay, Campbell Ferguson 1-4, Muir UPERATOR(S): Intl. Impala Res. AUTHOR(S): Chapman, J.; Lewis, T. 1991, 55 Pages FORT YEAR: ()MMODITIES SEARCHED FOR: Lead, Zinc, Silver **KEYWORDS:** Hadrynian, Ingenika Group, Limestones, Quartz-siderite, Sphalerite Galena, Pyrite 1. ORK DONE: Geophysical, Geochemical, Geological 24.0 km;VLF EMGR Map(s) - 1; Scale(s) - 1:5000GEOL 500.0 ha Map(s) - 1; Scale(s) - 1:100007.0 km IPOL Map(s) - 4; Scale(s) - 1:500024.0 km MAGG Map(s) - 1; Scale(s) - 1:500014 sample(s) ; PB, ZN, AG ROCK SOIL 490 sample(s) ; PB, ZN, AG Map(s) - 1; Scale(s) - 1:5000I NFILE: 094C 002

LOG NO:	0624	RD.
ACTION:		
FILE NO:		

GEOLOGICAL, GEOPHYSICAL AND GEOCHEMICAL REPORT ON THE FERGUSON PROJECT FOR INTERNATIONAL IMPALA RESOURCES LTD.

> OMINECA MINING DIVISION BRITISH COLUMBIA

> > 94 C 11/E 56⁰40'N Latitude 125⁰09'W Longitude

SUB-RECORDER RECEIVED JUN 1 4 1991

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,434

J. Chapman, F.G.A.C. T. Lewis, B.Sc.

January 10, 1991

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

International Impala Resources Ltd. has entered into an agreement whereby they may acquire a 100% interest in the reverted crown granted claims that form a portion of the Ferguson project. These claims are located in the Williston Lake area of British Columbia (figure 1) and are all entirely within the Omineca Mining Division.

The property surrounds the Ingenika mine, where exploration work from 1927 to 1932 has outlined four "Manto" type silver-lead-zinc polymetallic replacement deposits. The property is overburden covered and as such has seen little systematic exploration utilizing modern exploration methods.

The property is for the most part underlain by limestone of the Lower Cambrian Ingenika Group which are the host lithologies of the Ingenika mine. In the vicinity of the mine these limestones display considerable structural contortion. Also, to the south of, and proximal to the mine occurs an elliptical body of schists, derived by metamorphism of the Ingenika rocks.

A reconnaissance geological, geophysical, and geochemical program was carried out on the property between October 3 and 24, 1990. In total 22 km of VLF-EM and magnetometer surveys, 7 km of IP, were completed and 490 soil samples and 14 rock samples were collected. This work outlined several areas of interest which warrant followup work. Past exploration concentrated on the main Cominco owned Ingenika Mine. Outside this orebody much of the property is covered by overburden and has seen little or no systematic exploration. The mineralized horizons may be faulted at depth as evidenced by the absence of the strong mineral systems seen at the surface through to adit #4 but not visible in adit #5. The other possibility is that due to the northeast rake of the ore zones the No. 5 adit was driven beneath the mineralization. Drill testing to the east of the No. 5 adit would resolve this question. No apparent exploration was done in the 30's to try and locate the potential offset to this mineralization.

Geophysically, the Ingenika Deposit seems to create an IP anomaly. A co-extensive anomaly associated with this feature and other similar chargeability responses suggest wide spread mineralization on the property. Although this seem implausible there are no other explanations for the anomalies, other than sulphides, available at this time and these anomalies present intriguing targets for follow up. Portions of the IP anomalies appear to be caused by thin, flat lying sheets which is the preferred morphology of the mineralization on the property.

A two phased exploration program is recommended to explore the property. Phase I would consist of detailed follow up of favourable anomalies generated in Phase I and include further geochemical, geophysical, geological surveys, trenching and a preliminary diamond drill program to fill-in the existing grid covering the unexplored parts of the property. Contingent upon successful completion of Phase I a second phase would be a diamond drilling program testing targets generated by Phase I. The two phased program is estimated to cost \$356,000.

TABLE OF CONTENTS

Summary, Conclusions and Recommendations
Introduction
Location and Access
Physiography and Vegetation
Claim Status
History and Previous Work
Regional Geology and Mineralization
Property Geology and Mineralization
Geochemical Survey
Geophysics
Statement of Expenditures
Statement of Qualifications
J. Chapman, F.G.A.C.

-

T. Lewis, B.Sc.

Bibliography

LIST OF FIGURES

- * 60 -9 2	Figure 1	Location Map	Following Summary
- isan	Figure 2	Claim Map	Following Page 3
6 699	Figure 3	Regional Geology	Following Page 6
к- ш	Figure 4	Property Geology	In Pocket
2 X ¹ 499	Figure 5	Sample Location Map	In Pocket
t rinde	Figure 6	Property Geochemistry - Pb, Zn,	In Pocket
67.1.a		Ag Results	
й алта	Figure 7	VLF-EM Profiles	In Pocket
	Figure 8	Total Field Magnetic Survey	In Pocket
1:4 14.	Figure 9	IP Survey - Line 0	In Pocket
. c 4.9	Figure 10	IP Survey - Line 0	In Pocket
	Figure 11	IP Survey - Line 200N	In Pocket
	Figure 12	IP Survey - Line 200S	In Pocket
*	Figure 13	IP Survey - Line 400S	In Pocket
-			
9 449			
***		LIST OF TABLES	
-	Table I	List of Mineral Claims	Page 3
FM			
-		LIST OF APPENDICES	
-			
	Appendix I	Rock Sample Descriptions	
	Appendix II	Assay Procedures and Results	

INTRODUCTION

OreQuest Consultants Ltd. were retained by Prime Explorations Inc. on behalf of International Impala Resources Ltd. to conduct a field exploration program on the Ferguson Project. This report details the results of all work done, and makes recommendations for further work.

The information contained within this report is derived from the references cited in the bibliography, as well as observations made during implementation of the field exploration program, and property examinations conducted on July 04, 1990 by Mr. George Cavey, and Oct 06, 1990 by Mr. Jim Chapman.

LOCATION AND ACCESS

The Ferguson Project is located in north central British Columbia approximately 100 kilometres northwest of the town of Germansen Landing and 95 kilometres north-northeast of the abandoned townsite of Old Hogem (Figure 1). The claim block is located on NTS sheet 94C/11E, being centred at approximately $56^{\circ}40'20"$ N latitude, and 125°09'00" W longitude.

Access to the property is possible by vehicle, over approximately 350 km of gravel road which leaves Highway 97 south of MacKenzie, and travels north along the west side of Williston Lake. The first two hundred km, and the last twenty km of this road are in good repair, due to current logging operations, however the middle section between

the Osilinka River and Ingenika Arm, at Williston Lake, is not maintained on a regular basis, and four wheel drive vehicles are necessary. There are several old roads on the claim block, which are rough, but remain in a usable condition.

Float plane access is possible to Delkluz Lake, where camp was established for the purposes of this years' field program. Alternatively, a new air strip which services a local logging camp located approximately 7 km by road from Delkluz Lake can be utilized. The main supply centres would be; Smithers which is 230 km to the southwest, or MacKenzie which is 200 km to the southeast.

PHYSIOGRAPHY AND VEGETATION

The project lies on the south side of the Ingenika River and covers both the extensive river gravels along the south bank and several limestone knobs, on one of which the Ingenika mine is located. Elevations range from approximately 700 m (2300 feet) above sea level at the river to 980 m (3300 feet) on Lookout Hill. Timberline occurs at approximately 1525 m and so, apart from the flood plain river gravels, the property is covered by open stands of conifers, interspersed with poplar on southeasterly well drained slopes, and cedar in boggy low lying areas.

CLAIM STATUS

The property is composed of 25 reverted crown grants, and eightfour post mineral claims (Table 1) totalling 140 units, as illustrated

on claim sheet 94 C/11 (Figure 2) in the Omineca Mining Division. The area covered by the claim block is slightly less than 3500 hectares.

- starf	Claim Name		Units	Record	Lot	Size	Record	Expiry
-1994				NUMBEL	NO.	(114)	Date	Date
unan	Dorita No. 1		1	11625	3715	19.82	March 22/9	0 March 22/94
	Muir		1	9384	3716	19.89	May 04/8	8 May 04/94
14 990 0	Ferguson		1	11624	3720	20.10	March 22/9	0 March 22/94
	Kelsey		1	11623	3722	18.02	March 22/9	0 March 22/94
	Charlewood		1	11622	3723	20.20	March 22/9	0 March 22/94
- 178	Payzant		1	11621	3724	19.44	March 22/9	0 March 22/94
	Ingenika No.	18	1	11620	3725	18.75	March 22/9	0 March 22/94
	Dorita No. 2		1	9385	3726	17.37	May 04/8	8 May $04/93$
	Yount		1	11619	3727	19.45	March 22/9	0 March 22/94
- 	Ingenika No.	17	1	11618	3728	17.39	March 22/9	0 March 22/94
	Sanders		1	11617	3729	20.02	March 22/9	0 March 22/94
	Ingenika No.	16	1	11616	3731	17.60	March 22/9	0 March 22/94
58 0	Ingenika No.	15	1	11615	3733	17.63	March 22/9	0 March 22/94
	Frank		1	11614	3735	19.69	March 22/9	0 March 22/94
1.100	Ingenika No.	1	1	11613	3736	19.52	March 22/9	0 March 22/94
-	Ingenika No.	2	1	11612	3737	20.23	March 22/9	0 March 22/94
	Sutherland		1	11611	3738	19.96	March 22/9	0 March 22/94
is best	Campbell		1	11609	4998	17.90	March 22/9	0 March 22/94
	Mackay		1	11608	4999	18.16	March 22/9	0 March 22/94
* 19	Swan		1	11607	5000	18.27	March 22/9	0 March 22/94
	Ingenika No.	11	1	11606	5001	18.00	March 22/9	0 March 22/94
	Ingenika No.	12	1	11605	5002	17.51	March 22/9	0 March 22/94
÷.	Butler		1	11604	5003	20.90	March 22/9	0 March 22/94
	Dorita No. 3		1	11603	5004	17.03	March 22/9	0 March 22/94
-	Ingenika No.	14	1	11602	5006	20.04	March 22/9	0 March 22/94
	Ferguson 1		20	12445		500	August 19/9	0 August 19/94
	Ferguson 2		20	12446		500	August 19/9	0 August 19/94
	Ferguson 3		20	12447		500	August 19/9	0 August 19/93
	Ferguson 4		20	12448		500	August 19/9	0 August 19/94
\$ 199	Ferguson 5		20	12449		500	August 19/9	0 August 19/93
-	Ferguson 6		20	12450		500	August 19/9	0 August 19/93
	Ferguson 7		4	12451		500	August 19/9	0 August 19/93
-	Ferguson 8		<u> 16 </u>	12452		500	August 19/9	0 August 19/93
			165				-	-

TABLE I - LIST OF MINERAL CLAIMS

Three crown grants in the centre of the property cover the location of the Ingenika Mine, and are still held by Cominco, another

3

AN,

two crown grants were not included in the property group as they have expired and are not available until such time as new rules are established for the acquisition of reverted crown grants. Expiry dates listed are based on acceptance of work filed on the 1990 program.

HISTORY AND PREVIOUS WORK

The original claims in this area were staked by J. Ferguson in 1917 to cover some lead, zinc, silver showings on a small knoll, now known as Ferguson's Hill, on the south bank of the Ingenika River. These claims were bonded to the Selkirk Mining Syndicate of Victoria in 1926. In 1927 Ingenika Mines Ltd. was formed to develop the property and systematic exploration, in the form of surface stripping, trenching and underground workings, was undertaken. This work culminated in driving the No. 5 Adit, results from which were uneconomic and so operations ceased in 1932.

As the property is composed entirely of crown grants the data available from assessment files is quite limited. A summary of the work carried out at the Ingenika Mine is available in GSC Memoir 274 by E.F. Roots who had access to the corporate files of Ingenika Mines Ltd.

During the period 1927 through 1932 four mineralized zones were outlined, first by surface trenching then further evaluated by four underground workings: the No.'s 1, 2, 4 and 5 adits. These form four

parallel blanket like replacement bodies, ranging from 0.3 m to 2.5 m in thickness, consisting predominantly of galena and sphalerite which trend northwest and dip shallowly $(25^{\circ}-40^{\circ})$ to the northeast. Adits No. 1 and 2 were collared, at the same elevation, just below the lower most surface outcrops of mineralization on Ferguson Hill and intersected zones 2, 3 and 4. Both adits are open and clean. The portal for adit No. 4 was collared 85 feet below No.'s 1 and 2 and intersected zones 1, 2 and 3. A 130 foot raise connects adit No. 4 with No. 1 which for most of its length lies within the No. 2 zone mineralization. The last adit, No. 5, was collared 80 feet below No. 4 and driven due south into the hillside. Approximately 600 feet of main adit and 800 feet of exploratory workings were completed however no significant mineralization was encountered. The adit has not been accessible since the late 1930's but the dump contains a considerable quantity of sheared schistose limestone but no sulphides and little quartz siderite rock.

During the summers of 1956 and 1957 the Consolidated Mining and Smelting Company Ltd. conducted geophysical, and geological work in the vicinity of the Ingenika Mine, and in the Swannell showing area. This was followed up with 10,718 ft of diamond drilling on the Ingenika Mine and 1101 ft in the Swannell area. No results were available for this work.

Dorita Silver Mines acquired the property in 1969 and carried out surface and underground mapping in conjunction with a diamond drill program consisting of 1803 ft in 21 holes.

REGIONAL GEOLOGY AND MINERALIZATION

The Ferguson Project is located within Lower Cambrian rocks of the Ingenika Group on the eastern margin of the Intermontane Belt of British Columbia.

The stratigraphic succession in this area youngs westward with the host rocks for the deposit underlain by quartz-mica schists, quartzites and gneisses of the Proterozoic age Tenakihi Group. Mineralization at the Ferguson deposit as well as the Onward, Burden and Swannell showings located in the general vicinity of the Ferguson deposit are all contained within the limestone units of the Lower Cambrian Ingenika Group.(Figure 3).

The Ingenika Group consists of a lowermost unit of schists, quartzites and phyllites with minor limestone. This is overlain by, and partly interbedded with, a white quartzite unit. The limestone unit, which hosts the replacement ore bodies, is the uppermost of the group and is made up of blue grey and cream coloured, partly micaceous, limestone. Locally this limestone appears to be interbedded with the schistose unit.

These units are in fault contact with a package of unnamed Mississippian to Permian andesitic to basaltic tuffs, flows and intercalated sediments which may be equivalent to the Cache Creek Group. Locally this unit has been intruded by the post Middle Permian - pre Upper Triassic (?) Trembleur suite of ultramafic intrusions.

An erosional interval and faulting separates the possible Cache Creek equivalent rocks from the overlying Takla Group of andesitic to basaltic flows, tuffs, breccias and related sediments. The Takla rocks have been intruded by Upper Triassic to Middle Jurassic intrusions of the Hogem Batholith. The Hogem Batholith is a northwest trending multi phase intrusive ranging in composition from calcalkalic to alkalic.

Structurally the Ferguson deposit lies on a down dropped block between the northwest trending western margin of the Rocky Mountain Trench and the north-northwest trending Pelly Fault. The axis of a regional northwest trending apparently overturned syncline passes about 3 km to the southwest of the property, between it and the Pelly Fault.

Other documented showings within the immediate area include the Onward, Burden and Swannell. The Onward and Swannell occur south of the Delkluz Lake, 2 to 5 km south of the Ferguson deposit, and both exhibit quartz-siderite replacement of Ingenika limestones. Within these zones of quartz-siderite replacement, lenses of galena and

sphalerite are located generally parallel to bedding. Samples from the Swannell showings, which have received the most extensive exploration outside of the Ferguson Project, assayed as high as 0.02 oz/ton gold, 8.14 oz/ton silver, 24.64% lead and 27.36% zinc.

PROPERTY GEOLOGY AND MINERALIZATION

The Ferguson deposit outcrops on a small knoll on the south bank of the Ingenika River approximately 8 km west of Williston Lake. The historic underground work was completed on and under Ferguson Hill which is still held by Cominco. The project area is underlain by limestone of the Lower Cambrian Ingenika Group (Figure 4). In the vicinity of Ferguson's Hill the limestones are intensely contorted and locally converted to a sericitic schist. The limestones are also locally partly to completely silicified and show varying degrees of iron carbonate alteration. A summary of the geology of the Ingenika Mine (Ferguson Group) was written by E.F. Roots in GSC Memoir 274, an excerpt of which is reproduced below:

In most parts of the property the bedding strikes about north 80 degrees west and dips northerly at 20 to 40 degrees. The beds outcropping on the west end of the hill have been partly to completely silicified and show all gradations from relatively pure limestone to white quartz Subsequent to silicification, the limestone was rock. attacked by iron carbonate solutions. In the highly silicified, finely bedded rock, siderite was deposited along the bedding planes so that the rock now consists of parallel laminae of white quartz, 1/10 inch to 2 inches thick, separated by layers of dense, brown siderite. In the most heavily mineralized parts quartz and siderite are in about equal proportion. In places it is possible, within a distance of 100 feet, to trace the changes along a single bed from blue-grey crystalline limestone to greyish white massive quartz rock, with faint traces of original bedding, to banded, quartz-siderite rock. In the

slightly silicified limestone, and to a lesser extent in the highly silicified, massively bedded rock, the siderite is not confined to bedding planes but forms large, irregular masses up to 20 feet in diameter of very coarsely crystalline, nearly pure mineral.

Replacement of the quartz-siderite rock by pyrite, sphalerite, and galena, with lesser amounts of copper and silver sulphides, has resulted in the formation of distance mineralized zone, which in general follow the bedding. A little sulphide mineralization is also evidence along joint planes. The four most prominent mineralized zones have been explored by stripping and underground workings."

These zones, a part of Cominco's holdings, occur over a stratigraphic interval of approximately 30 m with the No. 1 zone being the lowest and the No.4 the uppermost. Zones 2 and 3 coalesce below surface and appear to be a more or less continuous band of mineralization, with local barren horizons.

The No. 1 zone outcrops only at the west end of the hill and includes a 0.3 m to 0.6 m lens of coarsely crystalling galena close to the base of a 6 m band of contorted quartz siderite rock. Overlying the galena is a 0.3 m to 1.9 m band of crystalline siderite which is strongly pyritic and locally sphaleritic. Although internally strongly deformed in small scale, the 6 m thick No. 1 zone including the galena body, shows the general northwest trend and northeast dip common to most units. Where observed, the contacts of the mineralized zones are steep and parallel to bedding.

A zone believed to be the down dip extension of the No. 1 horizon was encountered in Adit No. 4 where it appears as discontinuous lens shaped bodies of siderite, sphalerite and galena,

up to 1.3 m thick, in well bedded slightly silicified blue grey limestone underlain by sheared sericitic limestone.

The No. 2 and 3 zones host the most significant mineralization located to date. On surface they are well exposed at the west end of the summit of Ferguson Hill and have been examined in adit No.'s 1, 2 and 4. These zones occur at approximately the middle of a 15 m thick series of intensely silicified limestone beds that have been irregularly replaced by siderite. The mineralization forms two parallel bands from 1 to 3 m in thickness which are heavily replaced by sulphides, separated by 0.3 m to 2 m of weakly mineralized rock. Approximately 10 m separates the No. 1 zone from the base of the No. 2 zone.

As in the No. 1 zone, the mineralization in the No. 2 and 3 zones is controlled by the bedding planes of the host rock. Additionally the higher grade mineralization occurs in close proximity to those beds which have suffered the most intense silicification, in conjunction with a greater percentage of siderite.

The No. 4 zone occurs approximately 7.5 m stratigraphically above the top of the No. 3 zone. It outcrops on the summit of the hill and can be traced down the north side as far as the No. 2 adit. The strongest mineralization ranges from 0.6 m to 2.5 m in thickness within the same style of host rocks. The mineralogy of the four zones is essentially the same with sphalerite and galena accounting for over 90% of the sulphides. Pyrite is locally abundant and forms pod like bodies up to 0.6 m thick, generally overlying the galena and sphalerite. Silver content appears to be higher in the pyritic zones, due to the presence of tetrahedrite and pyrargyrite, than in the galena-sphalerite sections.

Supergene alteration has produced considerable limonite with minor marcasite, covellite and malachite. Individual sample locations and assays were not available however a report by D. Lay (1930) states that an average of over one hundred samples collected from No.'s 2, 3 and 4 zones produced 7 oz/ton silver, 15% lead and 7.5 % zinc over a 2.5 m width.

Outcrop exposure on and around Ferguson Hill indicates that the mineralized beds are generally much more contorted and drag folded than the unmineralized limestones. The mineralizing event also appears to have been most intense where individual beds are radically thickened due to drag folding.

Ferguson Hill appears to be structurally more complex than the other known sections of the limestone belt in which it occurs. Outcrop is sparse however making an accurate structural interpretation difficult. From the work that has been carried out Fergusons Hill seems to lie near the nose of a large north plunging drag fold on the west limb of an overturned anticline. Ore bodies

are generally lens like being thickest at fold crests and thinning on the limbs.

The mineralized zones intersected in adits 1, 2 and 4 were not reported in Adit 5. Unfortunately this adit is caved and no confirmation of the geology is available. If the mineralized lenses are not present in the #5 adit then the mineralized horizons may have been offset by some faulting in this structurally complex area. This is encouraging for International Impala as the offset to the mineralization may lie on its property. Outcrop exposures on the claim block are limited mainly to the knobs of silicified limestone, where due to differential erosional processes they are elevated today. Elsewhere exposures are mainly found in areas where there is a short, abrupt change in topography, although the odd exposure can be found on fairly flat ground.

The bulk of the property appears to be underlain by the aforementioned Lower Cambrian Ingenika Group blue-grey crystalline Limestone. This limestone shows little variation over the claim area, except for local variations in degree of silicification, and colour. Metamorphism has produced some marble proximal too the elliptical zone of schists, which lies between Lookout and Fergusons Hill. The lithology in this schist zone varies from grey talc schist, to a grey sericite schist, both of which are very fine grained. As previously noted the area around Ferguson's Hill is a structural anomaly, in that strikes there are East-West while on the property strikes tend to be to the northwest, and dips to the northeast. The claim block lies on the limb of an overturned syncline, whose axis is to the west of the claim block.

Quartz veining is present on the property, usually occurring in widths from 5 to 40 cm. These veins were found to be concordant with bedding, and none were noted to host any visible sulphide mineralization.

During the course of the field program fourteen rock samples were collected, and subjected to 20 element ICP analysis by Vangeochem Labs Ltd. in Vancouver, B.C. Five of these were taken form the Ingenika mine (8203-8207) to determine the overall character of mineralization. Samples 8213, and 8214 were taken in the Onward adit on the south shore of Delkluz Lake, and are only weakly mineralized. The rest of the samples were collected from the area of this years grid.

GEOCHEMICAL SURVEY

A 2.7 km brushed, chained and picketed Base Line was established on the property oriented due north. Two kilometres long, chained and flagged crosslines were established to the east, at intervals of two hundred meters, from 10+00N to 12+00S. Stations were flagged at 25 m intervals. A geochemical survey was conducted over the grid, sampling at 50 m intervals. The "B" horizon was sampled almost exclusively, and was present in most locales at depths of 10 cm to 30

cm. However, when the "B" horizon was not present, humus was sampled, these samples were denoted by an H suffix. The samples were collected using a prospectors grub hoe, and stored in standard Kraft soil sample bags. Upon completion of the program the samples were shipped to Vangeochem Labs in Vancouver, where they were subjected to 20 element ICP analysis. In all 490 soil samples collected, and analyzed.

Fourteen rock samples were collected from outcrops on and off the property wherever bedrock was encountered. Five samples were taken on Ferguson Hill in and around the mine area to test the grade of the known area. All of the remaining samples consisted of either blue grey limestone or quartz and quartz-siderite veins hosted by the limestones. Results and locations are shown on Figure 5.

The geochemical survey (Figure 6) was successful in detecting the Ingenika Mine, which is characterized geochemically as displaying moderately anomalous silver values, while lead, and zinc are moderately to very strongly anomalous. Sample 3+00 E, and 3+50 E on L0+00 are more than likely contaminated by mine operations, while sample 4+00 E may not. The anomaly on L2+00 S at sample site 2+50 E, 3+00 E, and 3+50 E is directly below the bluffs on the South side of Ferguson's hill where the deposit outcrops however the ground here does not appear to be mechanically disturbed. A similar three element anomaly occurs on L2+00 N from 12+00 E to 15+00 E. Sample 12+00 E being in the order of 0.5 ounces of silver per ton in soil.

Lead and Zinc values in this area are moderately anomalous. There does not appear to be any expression of this broad geochemically anomalous area either to the north or the south. Further to the east a weak anomaly is located on L2+00 N at 17+00 E - 17+50 E. This anomaly possibly does extend to the north where a weak response was noted on L4+00 N at 17+00 E.

From the results of this survey, the anomaly centered on L2+00 N at 13+50 E clearly is the top priority anomaly from a geochemical stand point, and should be followed up by infill sampling, on decreased line spacing in the immediate area. The narrow, weak anomaly to the east should not be ignored, however, as the anomaly may be the attenuated response of a deposit being affected by depth of burial, or other ground conditions.

GEOPHYSICS

Ferguson Survey

Very low frequency electromagnetic (VLF-EM) (Figure 7), magnetic (Figure 8) and induced polarization (IP) geophysical surveys were carried out on the Ferguson Project.

The VLF-EM and magnetic surveys were done simultaneously with a Gem Systems GSM-19. For the VLF-EM the transmitter at Seattle (NCK 24.8 kHz) was used. Readings were taken at 12.5 m intervals and a total of 24 km of coverage was effected.

The IP survey was done in the time domain with an EDA IP-2 (BRGM ELREC-2) receiver and a Phoenix IPT-1 transmitter. The dipoledipole array with an electrode spacing of 50 m expanded through 4 separations was used. A short section of line 0 over the Ingenika Deposit was detailed with a 25 m spacing (Figure 9). A total of 7 km of coverage on 4 lines was completed with the 50 m spacing and 0.5 km of coverage was implemented with the 25 m spacing. The surveys were carried out the east/west flagged lines that were used for the geochemical survey.

Geophysical surveys are mandatory on the property because of extensive drift and overburden coverage. The IP survey is considered the principal method because the known mineralization in the Ingenika Deposit is carbonate hosted lead and zinc sulphides.

Evaluating the 25 m spacing test IP survey over the Ingenika Deposit first, a moderate chargeability anomaly of over 10 msec against a background of 3 msec or less occurs between 300E and 350E. A region of low chargeabilities in the centre of the anomaly is typical of the response of a thin, flat-lying sheet. Line 0 crosses the waste pile of the No. 4 adit at about 325E making it likely that the chargeability anomaly in evidence is caused by the known mineralization.

The 50 m "production" survey (Figure 10) on line 0 outlined a modest anomaly between 300E and 400E with a more intense core located

between 400E and 500E at a depth of about 25 m. The core creates a modest resistivity low. Moderate resistivities on n=1 and 2 between 600E and 1000E create a shallow resistivity probably caused by overburden. The overburden accounts for the 25 m to 50 m depths to the cause of the chargeability anomaly in this region. Some weakly anomalous chargeabilities at the northeast end of the line give the appearance of elevated background rather than a discrete anomaly. The existence of this large chargeability, apparently connected to the response associated with the Ingenika Deposit suggests that the mineralization is indeed widespread. There are no materials reported in the geology, other than sulphides, that could account for the observed responses. Mineralization in other lead/zinc districts create similarly low IP responses. At Pine Point for example the lead/zinc mineralization is only weakly polarizable and the IP response is actually created by plumes and halos of pyrite that surround the deposits.

A chargeability anomaly similar to the one "associated" with the deposit is also evident on line 200N between 300E and 850E (Figure 11). Portions of this anomaly between 300E and 400E and 600E and 800E are buried at a depth of approximately 25 m. The higher core of the zone sits between 500E and 600E and the elevated background chargeabilities like those at the north end of line 0 are clearly evident.

Line 200S (Figure 12) passes just to the south of Ferguson Hill. A line was not run right over the crest of Ferguson Hill mainly

because of budget constraints but the area would be difficult to survey because it is rocky and largely devoid of soil. On line 200S a similar response as on the other lines is observed. This consists of a modest chargeability anomaly between 200E and 300E which appears to be caused by a shallow, thin, flat lying sheet joined to a large modest anomaly which underlies the entire line. Depths to the source range up to 25 m. The cause of such a widespread anomaly is difficult to fathom here, as well, but there are no explanations other than sulphides available at this time.

Line 400S (Figure 13) exhibits a similar weak chargeability response but moved to the east end of the line between 650E and 1300E. The highlight on line 400S is a moderate to strong chargeability anomaly up to 30 msec between 1050E and 1200E. Characteristics of this anomaly indicate the cause is a thin, flat lying sheet. A double VLF-EM anomaly also occurs at this location.

A section of the anomaly at about 900E appears to be at a depth of 25 m.

The total magnetic field varies from 58150 to 58400 nT giving a relief of 300 nT. The results outlined some broad highs, the most prominent of which consists of a wide northeast trending feature in the southeast part of the grid. The anomalies clearly identify particular geological features but nothing in the known geology can easily explain them, although there is a definite northeasterly topographic trend on the property.

The VLF-EM survey outlined a number of wide generally, weak anomalies which appear to outline a few conductors, in spite of the wide 200 m line spacing. The wide character of the anomalies indicate wide and/or deep conductors. Anomalies at 925E on line 1000S and 1025E on line 800S occur on the east flank of Lookout Hill so they may be caused by topography. The conductor on the east ends of lines 200N to 600S occurs on the edge of one of the magnetic anomalies described above so it is probably a geological contact.

The double anomaly at about 1100E on line 400S correlates with one of the better IP anomalies. An adjacent response on line 200S and some of the other VLF-EM anomalies also are generally situated within IP anomalies.

Correlation between geophysics and geochemistry is not good. Soil anomalies at 250E, 300E and 350E on line 200N are associated with an IP response at an interpreted depth of 25 m. The top priority geochemical anomaly at 1350E on line 200N occurs in an area of elevated background chargeability.

STATEMENT OF EXPENDITURES

Mob/Demob	\$ 6,415.00
Field Labour	17,095.00
Support Costs	5,887.38
Transportation and Communication	3,586.41
Equipment Rentals	2,500.00
Helicopter	4,653.10
Analyses	4,041.70
Report Costs	7,929.56
Total Expenditures	\$52,108.15

.

CERTIFICATE OF QUALIFICATIONS

I, Jim Chapman, of 580 West 17th Avenue, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1976) and hold a B.Sc. degree in geology.
- I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of #306-595 Howe Street, Vancouver, British Columbia, V6C 2T5.
- 3. I have been employed in my profession by various mining companies since graduation.
- 4. I am a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
 5. I am a Fellow of the Geological Association of Canada.
- 6. The information contained in this report was obtained from a review of data listed in the bibliography, a property examination and knowledge of the deposit type.
- 7. I have no interest, direct or indirect or in the securities of International Impala Resources Ltd.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

Jim Chapman Consulting Geologist, F.G.A.C.

DATED at Vancouver, British Columbia the 10th day of January, 1991.

```
BIBLIOGRAPHY
```

B.C.D.M. ANNUAL REPORTS 1926: p.155 1927: p.160 1928: p.182 1930: p.149 p.76 1931: 1956: p.30 1957: p.13 1969: p.109 CAVEY, G., CHAPMAN J. 1990: Compilation Report on the Ferguson Project Unpublished Report ECONOMIC GEOLOGY : Ser. 8, pp. 238-300. E.M.P.R., - MinFile 1977 - Ferguson - File # D94C - 002 GSC MAPS 562A, 1424A, 9079G, 1030A. GSC SUMMARY REPORT 1927: Part A, p. 37, 40. MORRIS, H.T. Descriptive Model of Polymetallic Replacement Deposits. : MOSIER, D.L., MORRIS, H.T., SINGER, D.A. : Grade and Tonnage Model of Polymetallic Replacement Deposits. ROOTS, E.F. 1954: Geology and Mineral Deposits of Aiken Lake Map Area, British Columbia. GSC Memoir 274.

· • •

r cai**n**

APPENDIX I

1100

14.08

tout

100

ROCK SAMPLE DESCRIPTIONS

FUNGUSON PROJECT

Sample:	Date:	Location:	Lithology:	Remarks / Alteration / Structure:	Mineralization:	Analysis:
8201	10/10/90		LMS	black and your micro constaline		
8202	4		Qtz sidentevein	grab - hosted by LMS		
8203	10/11/90		LMS	south side Ferguson Hill Zone 1	mossive ga, + Sp.	
8204	11		LHS	auterop strailicified + sidente Zune 1	nossine sphalesite	
8205		. <u></u>	LMS	" Zone 4		
8206	r		LMS	" Ams. Zone Z	f.g. mossine qa É sp.	
8207	11		LAS	" gtz-sidienite vering Zone Z	some epu	
8208	10/12/90		Qtz vei~	cutting grey black Ims	•	
8209			Qtz vein			
8210	10/13/10		Qtz ven	within silicified blue/grey lons		
8211			1'	trench pubble is siderite é sincite	oxidized sulphides	
8212	10/14/90		n	some sidente in grey blue los		
8213	10/18/20	ONWARD GRP.	LMS 7	from adit - grob from combet	dissem c.q. pyrile togasp	
8214	1 1	11	<u>،</u> ۲	some builtoeen LMS and tale schist		

APPENDIX II

. 15

......

.

ASSAY PROCEDURES AND RESULTS

 γ

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 19, 1990

- TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5
- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine hot acid soluble for 25 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.
- 1. <u>Method of Sample Preparation</u>
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" X 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2 Method of Digestion

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCl:HN03:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with demineralized water and thoroughly mixed.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. <u>Method of Analyses</u>

The ICP analyses elements were determined by using a Jarrell-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disketts.

4 <u>Analysts</u>

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and his laboratory staff.

Kurth

Raymond Chan VANGEOCHEM LAB LIMITED

IGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October, 19 1990

TO: Mr. Bernie Dewonck OREQUEST CONSULTANTS LTD. 306 - 595 Howe Street Vancouver, BC V6C 2T5

FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6

SUBJECT: Analytical procedure used to determine Cu, Pb and Zn assay samples.

- 1. <u>Method of Sample Preparation</u>
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in the new bags for subsequent analyses.

2. Method of Digestion

- (a) 0.200 gram portions of the minus 100 mesh samples were used. Samples were weighed out by using an analytical balance.
- (b) Samples were digested in multi acids in volumetric flasks.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

3. Method of Analyses

Cu, Pb and Zn concentrations were determined using a Techtron Atomic Absorption Spectrophotometer Model AA5 with their respective hollow cathode lamps. The digested samples were directly aspirated into an air and acetylene mixture flame. The results, in parts per million, were calculated by comparing them to a set of standards used to calibrate the atomic absorption units.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and their laboratory staff.

Amlla

Raymond Chan VANGEOCHEM LAB LIMITED

andala 1630 Pandora Street, Vancouver, B.C. VSL 116 Ph: (604)251-5656 Fax: (604)254-5717

-

4

.

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 will of 3:1:2 HCl to HNOs to HgO at 95 °C for 90 minutes and is diluted to 10 will water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

				75.	s leach	is parti	al for A	l, 8a, (a, Cr,	fe, K, M	a, Mn, Na	1, P, Sn	, Sr and	₩.						/	· _ /	12				
PRIME EQUIT	TIES INC.				PROJE	CT: FERGU	JSOK		DAT	ב וא: 00	F 22 1 9 9() DA	TE OUT: N	NOV 13 19	190 .	ATTENTIO	N: MR. F	ANAL' OSTER & M	YST: IR. LOUGH		PAG		1			
Ag	Al	As	Ba	81	Ĉa	Cď	Co	Cr	ບິນ	Fe	к	Mg	Mn	Mo	Na	Ni	٩	Pb	Sb	Sn	Sr	IJ	¥	Zn		
ppn	ĩ	ppa	ppm	ppa	ï.	ppm	ppa	ppa	p0 s	7.	7.	X	ppa	ppa	2	ព្ភព	7.	pp∎	ppa	pp 🖷	p p #	pps	ppa	ppm		
0.1	0.19	<3	18	<3	>10.00	4.9	6	15	11	1.33	0.26	9.25	368	18	0.07	34	<0.01	117	39	<2	207	<5	<3	54		
0.4	0.06	<3	7	3	>10.00	5.0	16	35	7	3.80	0.34	5.98	699	14	0.07	39	<0.01	78	19	<2	184	< 5	<3	63		
>50.0	0.05	(3	2	<3	0.40	9.1	2	18	16	>10.00	0.21	0.24	3858	4	0.09	9	<0.01	>20000	341	<2	14	<5	<3	84		
1.4	0.05	<3	3	<3	0.87	4.7	13	21	10	>10.00	0.82	1.61	11583	13	0.30	13	<0.01	2693	62	<2	5	<5	<3	112		
2.4	0.06	<3	3	<3	0.23	456.8	42	44	124	>10.00	0.58	0.15	14064	35	0.03	19	<0.01	1092	55	<2	5	<5	<3	>20000		
>50.0	0,05	<3	<1	<3	0.10	71.3	8	23	87	8.67	0.10	0.26	3524	8	0.03	<1	<0.01	>20000	1498	<2	<1	(5	<3	>20000		
43.0	0,09	<3	3	<3	0.02	5.0	3	109	8033	>10.00	0.19	0.03	480	5	0.23	<1	<0.01	7188	42	<2	<1	< 5	<3	1081		
2.4	0.07	(3	4	(3	1.49	0.6	<1	264	161	0.75	0.11	0.04	187	16	0.01	5	<0.01	2785	<2	<2	16	<5	<3	207		
1.0	0.15	<3	26	<3	1.39	0.8	5	231	42	0.49	0.12	0.03	156	17	(0.01	5	0.04	1412	(2	<2	17	<5	<3	162		
0.3	0.08	<3	2	<3	2.78	1.1	<1	190	18	0.32	0.17	0.05	35	<1	<0.01	<1	<0.01	518	<2	<2	25	<5	<3	67		
0.5	0.14	<3	12	<3	0.01	0.5	6	241	40	1.77	<0.01	0.03	46	16	<0.01	10	<0.01	173	<2	<2	5	<5	<3	23		
0.2	0.09	<3	2	<3	>10.00	4.4	6	30	19	>10.00	0.59	0.97	9981	7	0.15	16	(0.01	197	31	<2	75	(5	(3	146		
2.6	0.12	465	3	(3	3.89	5.4	27	66	510	>10.00	0.76	1.38	5090	12	0.23	32	(0.01	208	49	(2	56	<5	<3	56		
1.0	0.15	350	3	<3	6.23	9.5	224	36	428	>10.00	0.77	1.56	6604	9	0.28	121	<0.01	486	46	(2	55	(5	(3	719		
A (0.01	2		~	A A.			,			A 44						a 44	•	•	~		r	•		Χ.	
0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1		
- Greater Th	io.00 an Maximu	2000 ⊥∎ i	1000 is - Insu	1000 fficient	:Sample	1000.0 ns -	- No Sampi	1000 le A	NOMALOU	10.00 S RESULTS	10.00 5 - Furth	iu.00 er Analy	zuuuu (ses By A	1000 Alternate	10.00 Method	20000 Suggest	10.00 ted.	20000	2000	1000	10000	100	1000	20000		
	PRIME EQUIT Ag ppm 0.1 0.4 >50.0 1.4 2.4 >50.0 2.4 1.0 0.3 0.5 0.2 2.6 1.0 0.1 50.0 - Greater Th	PRIME EQUITIES INC. Ag Al ppm X 0.1 0.19 0.4 0.06 >50.0 0.05 1.4 0.05 2.4 0.06 >50.0 0.05 43.0 0.09 2.4 0.07 1.0 0.15 0.3 0.08 0.5 0.14 0.2 0.09 2.6 0.12 1.0 0.15 0.1 0.01 50.0 10.00 - Greater Than Maximum	Ag Al As ppm X ppm 0.1 0.19 <3	Ag Al As Ba ppm X ppm ppm ppm 0.1 0.19 (3) 18 0.4 0.06 (3) 7 >50.0 0.05 (3) 2 1.4 0.05 (3) 3 >50.0 0.05 (3) 3 2.4 0.06 (3) 3 >50.0 0.05 (3) (1) 43.0 0.09 (3) 3 2.4 0.07 (3) 4 1.0 0.15 (3) 26 0.3 0.08 (3) 2 0.5 0.14 (2) 12 0.2 0.09 (3) 2 2.6 0.12 465 3 1.0 0.15 350 3 0.1 0.01 3 1 50.0 10.00 2000 1000 - Greater Than Maxisus	Ag Al As Ba Bi ppm X ppm quadratic structure quadratic structure	Ag Al As Ba Bi Ca ppa X ppa ppa ppa Y ppa Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Ag Al As Ba Bi Ca Cd ppm X ppm ppm Y Y Ppm Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Ag Al As Ba Bi Ca Cd Co Old 0.19 C3 18 C3 >10.00 4.9 E 0.4 0.06 Ca Cd O.0 5.0 16 >50.0 0.05 Ca Cd O.0 12 1.4 0.05 Ca Cd 7.13 2.4 0.06 Ca Ca Ca Ca 5.0 3 0.3 0.08 Ca 2 Ca 1.4 3 1.49 0.6	This leach is partial for Al, Ba, C PRIME EQUITIES INC. PROJECT: FERGUSON Ag Al As Ba Bi Ca Cd Co Cr ppm X ppm ppm ppm X ppm ppm	Ag Al As Ba Bi Ca Cd Co Cr Ag Al As Ba Bi Ca Cd Co Cr Cu ppm X ppm ppm ppm X ppm ppm	Ag Al As Ba Bi Ca Cd Co Cr Cu Fe PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: 001 Ag Al As Ba Bi Ca Cd Co Cr Cu Fe ppa X ppa ppa ppa Y ppa ppa Y ppa ppa Y Pa ppa Y Y Y PP Ppa Ppa Y Y Y Pp Ppa Ppa Y Y Y Pp Ppa Ppa Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y </td <td>Ag Al As Ba Bi Ca Cd Co Cr Fe, K, Mg, Mn, Ni PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K 0.1 0.19 (3 18 (3)10.00 4.9 6 15 11 1.33 0.26 0.4 0.06 (3)7 (3)10.00 5.0 16 35 7 3.80 0.34 >50.0 0.05 (3)2 2 0.40 9.1 2 18 16 >10.00 0.21 1.4 0.05 (3)3 (3)0.23 456.8 42 44 124 >10.00 0.82 >50.0 0.05 (3) (1) (3)0.02 5.0 3 109 8033<>10.00 0.19 2.4 0.07 (3)4 (3)1.49 0.6 (1)264 161 0.75<0.11</td>	Ag Al As Ba Bi Ca Cd Co Cr Fe, K, Mg, Mn, Ni PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K 0.1 0.19 (3 18 (3)10.00 4.9 6 15 11 1.33 0.26 0.4 0.06 (3)7 (3)10.00 5.0 16 35 7 3.80 0.34 >50.0 0.05 (3)2 2 0.40 9.1 2 18 16 >10.00 0.21 1.4 0.05 (3)3 (3)0.23 456.8 42 44 124 >10.00 0.82 >50.0 0.05 (3) (1) (3)0.02 5.0 3 109 8033<>10.00 0.19 2.4 0.07 (3)4 (3)1.49 0.6 (1)264 161 0.75<0.11	Ag Al As Ba Bi Ca Cr, Fe, K, Mg, Mn, Na, P, Sn, PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 DA Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg ppa X ppa ppa X ppa Y X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and PRIME EQUITIES INC. PROJECT: FERBUSON DATE IN: OCT 22 1990 DATE CUT: Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn ppa ppa ppa ppa ppa ppa Z Z X ppa 0.1 0.19 (3 18 (3<)10.00	This Jeach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W. PRIME EQUITIES INC. PROJECT: FERGUSON DATE OUT: NOV 13 15 Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn Nov 13 15 Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn Nov 13 15 O.1 0.1 0.1 9 pa ppa ppa ppa ppa ppa Z X X ppa ppa ppa Z X X ppa ppa ppa Z X X Ppa ppa ppa Z X Z Ppa ppa Ppa Z X X Ppa Ppa Z X Z Ppa Ppa Z X Z Ppa Ppa Z Z Z Z Z Z Z<	This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and H. PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 DATE OUT: NOV 13 1990 Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn Nov 13 1990 Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ol.1 0.19 G3 18 Ca Cd Co Cr Cu Fe K Mg Mn No Na 0.1 0.19 G3 18 Ca Cd Co Cr X X pps pps pps pps X X pps pps Qa Qa Qa Qa Qa Qa Qa Qa Qa	Ag Al As Ba Ba Ca, Cr, Fe, K, ng, Mn, Na, P, Sn, Sr and W. PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 DATE OUT: NOV 13 1990 ATTENTIB Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni ppa X ppa ppa X ppa ppa X X X ppa ppa X ppa A No Na Ni 0.1 0.19 <3	This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W. PRIME EQUITIES INC. PROJECT: FERBUSON DATE IN: OCT 22 1990 DATE OUT: HOV 13 1990 ATTENTION: HR. F Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P 0.1 0.19 (3) 18 (3)<0.00	This leach is partial for AL, Ba, Ca, Cr, Fe, K, Ng, Mn, Na, P, Sh, Sr and H. ANAL PRIME EQUITIES INC. PROJECT: FERGUSON DATE DUT: NOV 13 1930 ATTENTION: MR. FOSTER & M Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb 0.1 0.19 (3 18 (3 710.00 4.9 6 15 11 1.33 0.26 9.25 586 18 0.07 34 (0.01 178 0.4 0.06 (3 7 (3)10.00 4.9 6 15 11 1.33 0.26 9.25 586 18 0.07 34 (0.01 78 50.0 0.05 (3 2 0.04 9.1 2 18 16 10.00 0.82 1.61 11583 13 0.30 13 <0.01	This leach is partial for Al, Ba, Ca, Cr, Fe, K, Ng, Mn, Na, P, Sh, Sr and W. ANALYST: PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 DATE OUT: NOV 13 1990 ATTENTION: MR. FOSTER & MR. LOUGE Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Nn No Na Ni P Pb Sb Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Nn No Na Ni P Pb Sb 0.1 0.19 G3 10.00 5.0 16 15 11 1.33 0.26 9.25 368 19 0.07 34 (0.01 78 19 >50.0 0.05 G3 2 30.0 3 0.01 73 20.00 34 5.98 4 0.09 9 (0.01 120000 18 13 0.30 13 (0.01 20000 148 34 0.03	Analysis Analysis <th< td=""><td>Inis leach is partial for Al, Ba, Ca, Cr, Fe, K, Rg, Mn, Na, P, Sn, Sr and W. ANALYST: ANALYST: ANALYST: ANALYST: ANALYST: ANALYST: PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 DATE OUT: HOV 13 1990 ATTENTION: NR. FOSTER & NR. LOUGHEED PABE Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr 0.1 0.19 3 18 Cd Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr 3 2 20 0.01 7.2 207 0.4 0.06 (3 7 3 10 0.0 0.21 0.24 3958 4 0.01 20000 341 (2 14 3 0.00 3 0.3 0.10</td><td><th a="" all="" applied="" be="" by="" classical="" classical<="" of="" product="" td="" the="" to=""><td>And Lyst leach is bartial for Al, Ba, Ca, Cr, Fe, K, Ng, Yn, Na, P, Sn, Sr and W. ANALYST: ANALYST: ANALYST: ANALYST: Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N ppa 1 As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N 0.19 (3 10.00 4.9 6 15 11 1.33 0.26 9.25 358 4 0.07 39 (0.01 177 39 (2 207 5 (3 3 (3 0.27 3 40.01 13 (0.01 20900 341 (2 14 (5 (3 3 (3 0.23 47.0 13 10.00 0.25 0.324 14 0.01</td><td>PRIME EBUITIES INC. PROJECT: FERSUSON DATE IN: OCT 22 1990 DATE OUT: NOV 13 1930 ATTENTION: MR. FOSTER & MR. LOUGHEED PAGE : OF : Ag Al As Ba Bis Ca Cd Co Cr Cu Fe K Mg Nn No Name Ni P Pb Sb Sn Sr U N Nn ppa 1 906 1 2 ppa Dis Ppa X ppa Pp</td></th></td></th<>	Inis leach is partial for Al, Ba, Ca, Cr, Fe, K, Rg, Mn, Na, P, Sn, Sr and W. ANALYST: ANALYST: ANALYST: ANALYST: ANALYST: ANALYST: PRIME EQUITIES INC. PROJECT: FERGUSON DATE IN: OCT 22 1990 DATE OUT: HOV 13 1990 ATTENTION: NR. FOSTER & NR. LOUGHEED PABE Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr 0.1 0.19 3 18 Cd Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr 3 2 20 0.01 7.2 207 0.4 0.06 (3 7 3 10 0.0 0.21 0.24 3958 4 0.01 20000 341 (2 14 3 0.00 3 0.3 0.10	<th a="" all="" applied="" be="" by="" classical="" classical<="" of="" product="" td="" the="" to=""><td>And Lyst leach is bartial for Al, Ba, Ca, Cr, Fe, K, Ng, Yn, Na, P, Sn, Sr and W. ANALYST: ANALYST: ANALYST: ANALYST: Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N ppa 1 As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N 0.19 (3 10.00 4.9 6 15 11 1.33 0.26 9.25 358 4 0.07 39 (0.01 177 39 (2 207 5 (3 3 (3 0.27 3 40.01 13 (0.01 20900 341 (2 14 (5 (3 3 (3 0.23 47.0 13 10.00 0.25 0.324 14 0.01</td><td>PRIME EBUITIES INC. PROJECT: FERSUSON DATE IN: OCT 22 1990 DATE OUT: NOV 13 1930 ATTENTION: MR. FOSTER & MR. LOUGHEED PAGE : OF : Ag Al As Ba Bis Ca Cd Co Cr Cu Fe K Mg Nn No Name Ni P Pb Sb Sn Sr U N Nn ppa 1 906 1 2 ppa Dis Ppa X ppa Pp</td></th>	<td>And Lyst leach is bartial for Al, Ba, Ca, Cr, Fe, K, Ng, Yn, Na, P, Sn, Sr and W. ANALYST: ANALYST: ANALYST: ANALYST: Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N ppa 1 As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N 0.19 (3 10.00 4.9 6 15 11 1.33 0.26 9.25 358 4 0.07 39 (0.01 177 39 (2 207 5 (3 3 (3 0.27 3 40.01 13 (0.01 20900 341 (2 14 (5 (3 3 (3 0.23 47.0 13 10.00 0.25 0.324 14 0.01</td> <td>PRIME EBUITIES INC. PROJECT: FERSUSON DATE IN: OCT 22 1990 DATE OUT: NOV 13 1930 ATTENTION: MR. FOSTER & MR. LOUGHEED PAGE : OF : Ag Al As Ba Bis Ca Cd Co Cr Cu Fe K Mg Nn No Name Ni P Pb Sb Sn Sr U N Nn ppa 1 906 1 2 ppa Dis Ppa X ppa Pp</td>	And Lyst leach is bartial for Al, Ba, Ca, Cr, Fe, K, Ng, Yn, Na, P, Sn, Sr and W. ANALYST: ANALYST: ANALYST: ANALYST: Ag Al As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N ppa 1 As Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn No Na Ni P Pb Sb Sn Sr U N 0.19 (3 10.00 4.9 6 15 11 1.33 0.26 9.25 358 4 0.07 39 (0.01 177 39 (2 207 5 (3 3 (3 0.27 3 40.01 13 (0.01 20900 341 (2 14 (5 (3 3 (3 0.23 47.0 13 10.00 0.25 0.324 14 0.01	PRIME EBUITIES INC. PROJECT: FERSUSON DATE IN: OCT 22 1990 DATE OUT: NOV 13 1930 ATTENTION: MR. FOSTER & MR. LOUGHEED PAGE : OF : Ag Al As Ba Bis Ca Cd Co Cr Cu Fe K Mg Nn No Name Ni P Pb Sb Sn Sr U N Nn ppa 1 906 1 2 ppa Dis Ppa X ppa Pp

)

1 ne in the manual second

1630 Pandora Street, Vancouver, B.C. V5L 116 Ph: (604) 251-5656 Fax: (604) 254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 mi with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

SOIL	900703 PA	PRIME EQUI	TIES INC				PROJE	CT: FERG	USON		DAT	E IN: OC	T 23 199	0 DA	TE OUT: N	40V 08 19	190	ATTENTIO	N: MR. F	OSTER & M	IR.LOUGHE	ED	PAG	EIOF	13	
Sample Na	an e	Ag pom	A1 7.	As ppm	Ba pp∎	Bi pp a	Ca ۲	Cd ppm	Со рря	Cr ppa	Cu ppm	Fe %	K X	Mg %	Mn ppe	Mo ppe	Na X	Ni ppm	P X	ԲԵ 00 4	Sb ppn	Sn oom-	Sr	U DDm	W ODA	Zn ooe
L0+00N 0	+00	(0.1	1.23	(3	84	<3	0.23	<0.1	8	27	8	1.98	0.04	0.35	268	3	0.03	21	0.10	<2	<2	<2	23	(5	(3	38
LO+OON 0	+50E	<0.1	1.23	<3	48	<3	0.18	(0.1	9	25	11	2.05	0.04	0.42	283	3	0.03	25	0.08	(2	<2	<2	15	<5	<3	37
L0+00N 1	+00E	<0.1	1.61	<3	51	<3	0.20	<0.1	11	31	14	2.40	0.04	0.53	282	3	0.03	28	0.05	(2	(2	(2	19	(5	<3	39
L0+00N 1	+50E	<0.1	1.48	<3	46	<3	0.18	(0.1	9	29	11	2.32	0.04	0.50	184	4	0.04	24	(0.01	(2	(2	(2	19	(5	(3	38
L0+00N 2	+00E	<0.1	1.35	<3	60	<3	0.20	1.2	9	28	11	2.05	0.04	0.47	285	4	0.03	23	0.03	(2	<2	<2	19	<5	<3	51
L0+00N 2	2+50E	(0.1	0.98	<3	60	<3	0.18	<0.1	6	26	8	1.68	0.03	0.33	374	3	0.02	14	<0.01	<2	<2	<2	17	<5	<3	33
L0+00N 3	1+00E	1.2	1.48	<3	55	<3	1.07	6.8	10	28	15	2.51	0.13	0.46	561	4	0.39	16	<0.01	815	<2	<2	28	<5	<3	3781
L0+00N 3	1+50E	0.5	1.54	<3	57	<3	1.44	10.6	11	28	10	4.48	0.17	0.29	1843	4	0.57	16	<0.01	1221	<2	<2	29	<5	<3	5609
L0+00N 4	+00E	0.3	1.18	<3	43	<3	0.24	1.9	7	30	7	2.39	0.05	0.33	237	3	0.11	12	<0.01	149	<2	<2	19	<5	(3	792
L0+00N 4	+50E	<0.1	1.32	<3	56	<3	0.24	1.7	10	32	7	2.62	0.05	0.41	566	4	0.10	15	<0.01	83	<2	(2	20	<5	<3	721
L0+00N 5	+00E	<0.1	1.18	<3	37	<3	0.20	<0.1	9	28	6	2.56	0.03	0.38	325	4	0.07	18	(0.01	52	<2	<2	17	<5	<3	478
L0+00N 5	i+50E	<0.1	1.29	<3	61	<3	0.24	1.0	8	29	12	3.63	0.07	0.38	869	4	0.10	20	<0.01	90	<2	<2	17	<5	<3	610
LO+00N 6	+00E	<0.1	1.41	<3	84	<3	0.21	1.7	8	25	10	3.20	0.06	0.36	899	4	0.11	15	<0.01	181	<2	<2	16	<5	<3	800
L0+00N 6	+50E	0.1	1.25	<3	68	<3	0.24	<0.1	7	24	7	2.14	0.05	0.36	508	4	0.07	12	0.02	113	<2	<2	18	<5	<3	490
L0+00N 7	+00E	<0.1	1.39	<3	63	<3	0.21	<0.1	10	27	7	2.10	0.05	0.47	405	3	0.06	14	0.02	74	<2	<2	19	<5	<3	334
LO+00N 7	+50E	<0.1	1.00	<3	43	<3	0.22	0.8	6	20	7	2.18	0.04	0.32	262	3	0.07	14	<0.01	127	<2	<2	16	<5	<3	440
LO+OON B	+00E	<0.1	1.06	<3	32	<3	0.26	<0.1	7	23	9	1.98	0.04	0.43	180	3	0.04	15	<0.01	84	<2	<2	24	<5	< 3	153
L0+00N 8	+50E H	0.3	0.13	(3	54	<3	>10.00	<0.1	<1	5	7	0.16	0.25	0.33	958	2	0.02	4	0.07	14,	<2	<2	258	<5	< 3	37
LO+00N 9	+00E	<0.1	1.25	<3	35	<3	0.26	<0.1	9	30	11	2.25	0.05	0.50	175	3	0.04	16	<0.01	6	<2	<2	20	<5	<3	67
L0+00N 9	+50E	<0.1	1.34	<3	43	<3	0.19	<0.1	10	29	7	2.16	0.04	0.44	295	3	0.03	20	<0.01	<2	<2	<2	19	<5	<3	55
0+00N 1	0+00E	<0.1	1.01	<3	46	<3	0.17	<0.1	7	23	10	1.78	0.03	0.31	248	3	0.02	16	0.10	<2	<2	<2	17	<5	<3	35
L0+00N 1	0+505	(0.1	1.50	(3	56	(3	0.19	(0.1	9	33	12	2.41	0.05	0.51	309	4	0.03	20	0.04	8	<2	<2	18	<5	<3	57
LUTUUN I	1+UVE	(0.1	1.15	(3	20	(3	0.18	(0.1	8	28	D II	2.05	0.03	0.40	264	2	0.04	13	(0.01	8	(2	(2	21	()	(3	40
LOTOON L	1+305	0.2	1.51	(3	99	(3	0.19	(0.1	10	30	11	2.99	0.05	0.55	243	3	0.04	14	(0.01	(2	(2	(2	20	(5)	(3	44
LOTOON 1	2+00E	0.2	0.95	(3	36	(3	0.19	(0.1	/	25	15	1.89	0.04	0.30]44	3	0.03	17	0.02	16	<2	(2	17	<2	(3	31
L0+00N 1	2+50E	0.2	1.35	(3	42	(3	0.18	(0.1	8	28	5	2.17	0.04	0.44	172	4	0.04	11	<0.01	<2	<2	<2	21	<5 (5	(3	38
LOTOON 1	3+505	(0.1	1 22	(3	133	(3	0.70	(0.1	20	25	52	2.17	0.03	0.34	545	2	0.03	37 Q	0.02	(2	12	12	21	\J /5	(3	11
LOTOON 1	4+005	(0.1	1 45	(3	42	(3	0.18	20.1	10	20	10	2.07	0.03	0.55	202	3	0.03	19	0.03	12	12	(2	10	\J /5	(3	42
LOTOON 1	4+50E	<0.1	1.41	<3	73	<3	0.19	<0.1	9	27	9	2.19	0.04	0.41	606	4	0.03	12	<0.01	4	<2	<2	20	< 5	<3	47
L0+00N 1	5+00E	0.4	1.27	<3	97	<3	0.22	<0.1	8	24	6	2.06	0.04	0.39	900	3	0.03	9	0.06	13	(2	<2	25	<5	(3	50
0+00N 1	5+50E	0.1	1.45	(3	53	(3	0.20	0.2	9	30	- 9	2.29	0.05	0.51	296	a a	0.03	14	0.01	3	0	()	22	(5	(7	49
	5+00E	(0.1	1.18	(3	107	(3	0.24	(0.1	á	27	ś	2 16	0.05	0 41	499	4	0.03	10	(0.01	Å	(2	(2	25	(5	(3	22
	6+50E	(0.1	1 50	(3	74	(3	0.17	(0.1	10	27	6	2.17	0.03	0 49	280	Å	0.03	15	0 02	0	0	(2	19	(5	(3	66
L0+00N 1	7+00E	<0.1	1.55	<3	58	<3	0.14	<0.1	10	28	9	2.30	0.04	0.52	301	4	0.03	17	0.01	<2	<2	<2	18	<5	<3	42
L0+00N 1	7+50E	(0.1	1.51	(3	67	(3	0.16	(0.1	10	26	6	2.06	0.04	0.47	443	4	Ú.04	13	(0 .01	(2	<2	(2	20	(5	(3	40
0+00N 1	8+00F	0.3	1.31	(3	86	(3	4.14	(0.1	9	24	19	2.03	0.24	0.82	809	4	0.05	19	0.06	5	(2	12	156	(5	12	42
L0+00N 1	8+50E	0.2	1.25	(3	35	(3	0.18	(0.1	ŕ	24	3	1.91	0.04	0.50	146	4	0.02	11	(0 01	()	(2	()	22	(5	12	20 20
L0+00N 1	9+00E	0.1	1.41	<3	39	<3	0.19	<0.1	10	27	10	2.27	0.04	0.54	225	4	0.04	13	<0.01	<2	<2	<2	23	<5	<3	38
Minimum D	etection	0.1	0.01	3	i	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum D	etection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

Less Than Minimum > - Greater Than Maximum is - Insufficient Sample ns - No Sample ANOMALOUS RESULTS - Further Analyses By Alternate Methods Suggested.

ANALYST: Kynth

1630 Pandora Street, Vancouver, B.C. VSL 115 Ph:(604)251-5656 Fax:(604)254-5717

1

1

÷.

ANALYST: March

ž ž

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO2 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900703 PA	PRIME EQU	UTIES IN	с.			PROJ	ECT: FER	GUSON		DA	TE IN: O	CT 23 19	90 D	ATE OUT:	NOV 13	1990	ATTENTIO	ON: MR, :	FOSTER &	MR. LOUG	HEED	PA	6E 2 DA	13	
Sample Name	Ag Dom	Al Z	As DOM	Ba	Bi	Ca Y	Cd	Co	Ĉr	Cu	Fe 7	K	Mg	Mn	Mo	Na	Ní	P	Pb	Sb	Sn	Sr	U	¥	1
L0+00N 19+50E	0.2	1.13	(3	20	(3	0.21	4 1	μρ. 11	202	12	2 22	0.04	0 E0	50C MUN	្រុម ភូនិ វ	4 م م	ppa (705		pon (O	pom	p p ø	ppm	n co	0 p n	pp
L0+00N 20+00E	(0.1	1 22	(3	57	/2	0.25	1 0	11	55	12	2.11	0.04	V. 3V	225	404	0.04	1/25	(0.01	<2	<2	(2	20	(5	<3	3
12+00N 0+00	0.7	0.42	(3	122	10	V.20	1.0	10	33		1.98	0.05	0.44	544	9	0.03	41	(0.01	<2	<2	<2	23	<5	<3	4
1.2+00N 0+50F	0.7	1 40	/0	132	10	/10.00	2.0	4	12	11	0.41	V.25	0.32	282	3	0.03	12	0.08	8	<2	<2	214	<5	<3	2
L2+00N 1+00E	0.3	1.17	(3	50	9	0.27	(0.1	12	33 30	11	1.75	0.05	0.44 0.41	865 227	3	0.04	26 27	0.07 <0.01	<2 <2	<2 <2	<2 <2	23 22	(5 (5	<3 <3	5
L2+00N 1+50E	0.2	1.32	(3	51	<3	0.23	2.3	11	33	12	2.25	0.05	0.53	185	3	0 04	20	0-01	12	10	12	10	/ E	(2	-
L2+00N 2+00E	0.1	1.40	(3	56	<3	0.27	1.8	12	34	13	2.37	0.06	0 55	210	4	0.04	20	70.01	2	(2	12	13	\J /#	()	3
L2+00N 2+50E	<0.1	1.31	<3	45	(3	0.20	(0.1	8	29		2.10	0.04	0.45	167	2	0.07	25	0.02	12	(1	(2	21	()	< 3 ()	4:
L2+00N 3+00E	<0.1	1.25	(3	34	3	0.19	(0.1	8	28	Ŕ	2.10	0.04	0.43	152	2	0.03	20	0.02	12	12	12	19	()	(3	3
L2+00N 3+50E	0.2	0.95	<3	47	<3	1.06	1.8	7	27	12	1.70	0.11	0.39	199	2	0.03	26	<0.01 <0.01	<2	<2	(2	19 47	(5 (5	<3 <3	3,
L2+00N 4+00E	0.2	1.01	<3	50	<3	2.26	1.2	8	28	16	1.73	0.18	0.52	223	3	0.04	30	0.01	(2	(2	(2	103	(5	10	21
L2+00N 5+50E	0.3	1.16	<3	52	<3	1.29	1.6	9	31	15	1.94	0.14	0.47	276	3	0.04	31	0.02	(2	(2	(2	40	/5	12	2.
L2+00N 6+00E	0.1	1.29	<3	52	3	1.36	1.1	10	32	17	2.24	0.15	0.52	270	4	0.05	36	(0.01	\overline{O}	(2	(2	54	(5	(3	44
L2+00N 6+50E	<0.1	1.30	<3	52	3	0.34	<0.1	10	33	16	2,19	0.07	0.49	188	4	0.05	38	0.01	()	(2	()	27	(5	/2	20
L2+00N 7+00E	(0.1	1.82	<3	72	5	0.24	1.1	12	35	11	2.51	0.07	0.43	314	4	0.05	40	<0.01	<2	<2	<2	21	<5	<3 <3	101
1 2+00N 7+50F	(0.1	1 79	12	64	,	0.00			25																
12+00N 8+00F	(0.1	1.69	(3	51	10	0.20	1.4	13	30	11	2.60	0.07	0.52	312	3	0.05	41	0.03	<2	< 2	<2	23	<5	< 3	90
12+00N 8+50E	(0.1	1 49	(3	49	10	0.27	1.5	12	30	12	2.19	0.07	0.58	233	4	0.05	37	(0.01	<2	<2	<2	23	<5	< 3	48
L2+00N 9+00F	(0.1	1 54	(3	59	7	0.20	70.1	11	33	12	2,00	0.05	0.60	2/9	3	0.05	38	(0.01	(2	<2	<2	22	<5	<3	48
L2+00N 9+50E	0.1	0.93	<3	37	(8	0.24	<0.1	9	27	6	2.35	0.09	0.49	237 140	в 7	0.09	40 35	0.02 0.01	20 36	6 12	<2 <2	25 20	<5 <5	<3 (3	54 32
L2+00N 10+00E	<0.1	1.47	<3	56	<3	0.23	2,1	12	33	10	2.12	0.09	0.46	212	9	0 08	44	0.04	22	ć	12	20	/5	(0	
L2+00N 10+50E	0.2	0.98	(3	38	<3	0.21	(0.1	10	33	10	1.82	0.08	0 34	152	q	0.00	45	20.04	22	15	(2	20	(J /5	(3	93
L2+00N 11+00E	0.1	1.46	<3	33	8	0.28	1.8	15	36	15	2.60	0.10	0.58	216	9	0.00	40	0.01	27	10	(2	18	()	(3	34
L2+00N 11+50E	0.1	1.21	(3	29	8	0.24	2.1	11	32	11	2.24	0.08	0.52	196	8	0.09	43	(0.01	29	10	(2	29	(5)	(3	48
L2+00N 12+00E	14.0	0.24	<3	156	<3	>10.00	4.2	4	13	25	0.45	0.25	0.63	674	8	0.13	38	0.10	65	18	<2	536	<5	(3	363
L2+00N 12+50E	4.1	1.11	<3	52	5	0.46	<0.1	8	25	7	1.65	0.09	0.28	142	8	0.09	47	(0.01	73	9	(2	34	(5	(3	136
L2+00N 13+00E	0.9	0.72	<3	152	7	>10.00	5.0	6	20	31	1.01	0.30	0.62	946	6	0.14	45	0.21	93	13	(2	510	(5	(3	506
L2+00N 13+50E	0.5	1.15	<3	36	<3	0.37	<0.1	14	33	12	2.34	0.10	0.51	318	7	0.09	47	0.02	31	11	(2	27	25	(3	500
L2+00N 14+00E	0.6	1.17	<3	76	4	6.84	2.9	10	27	39	1.90	0.31	0.65	546	7	0.12	56	0.04	64	ß	(2	177	25	(3	283
L2+00N 14+50E	0.4	1.58	<3	48	3	1.02	2.5	19	36	31	3.92	0.20	0.61	563	8	0.15	66	<0.01	345	14	<2	31	<5	(3	229
L2+00N 15+00E	0.5	1.47	<3	50	<3	0.26	2.2	i4	34	9	2.49	0.09	0.50	294	8	0.10	45	<0.01	36	9	(2	22	(5	(2	107
L2+00N 15+00E	0.2	1.57	<3	42	3	0.28	<0.1	15	39	11	2.75	0.11	0.56	250	9	0.10	52	<0.01	28	9	(2	24	(5	(3	114
L2+00N 16+00E	0.2	1.48	<3	84	7	0.31	2.0	14	36	10	2.53	0.10	0.51	652	B	0.11	55	0.04	33	12	<2	24	(5	(3	184
L2+00N 16+50E	0.2	1.69	<3	70	<3	0.29	2.4	15	38	12	2.67	0.10	0,56	501	9	0.11	56	0.04	20	11	(2	23	(5	(3	143
L2+00N 17+00E	<0.1	1.47	<3	45	<3	0.32	2.9	16	38	16	2.69	0.11	0.61	293	8	0.10	57	<0.01	35	12	(2	23	<5	<3	58
L2+00N 17+50E	0.2	1.48	<3	55	16	0.95	2.6	15	37	26	2.74	0.17	0.72	365	8	0.11	64	0.03	21	13	()	47	(5	(3	50
L2+00N 18+00E	0.4	0.82	<3	38	<3	2.93	2.5	11	23	13	1.80	0.24	0.62	272	7	0.10	55	0.06	48	14	(2	100	25	12	τc 00
L2+00N 18+50E	0.3	0.94	<3	32	<3	1.86	<0.1	10	26	12	1.79	0.21	0.63	221	8	0.11	50	0.07	141	18	(2	105	(J (5	(2	164
L2+00N 19+00E	0.2	0.45	٢)	113	16	5.62	2.6	6	18	23	0.82	0.28	0.97	280	9	0.08	59	0.14	38	18	<2	362	<5	<3 <3	32
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	٢	°	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
A Base Theorem Months															-			*****	F	7000	1000	10000	100	1000	20000

C - Less Than Minimum > - Greater Than Maximum is - Insufficient Sample ns - No Sample ANOMALOUS RESULTS - Further Analyses By Alternate Methods Successed.

1630 Pandora Street, Vancouver, B.C. (De 166 Ph: (604)251-5656 Fax: (604)254-5717

in the second second

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H_Q at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900703 PA	PRIME EQUI	TIES INC.				PROJE	CT: FERGL	ISON		DATE	E IN: OC	F 23 1990) DA	TE OUT: N	NOV 13 19	390	ATTENTION	1: MR. FI	DSTER & M	R. LOU6H	IEED	Pag	E 3 OF	13	
Sample Name	Ag ppm	A] 2	As ppne	Ва рр е	Bi ppan	Ca X	Cd pp e	Со рр я	Cr ppm	Ըս թ¢գ	fe X	К 7.	Mg %	Mn ppm	Mo ppna	Na 7.	Ni ppm	۹ ۲	₽b pp e	Sb pp n	Sn pp e	Sr ppna	U ¢¢¢	₩ ppm	Zn pp e
L2+00N 19+50E	<0.1	0.95	<3	57	(3	3.98	7.4	9	289	16	1.82	0.17	0.70	310	313	0.05	1315	0.01	<2	<2	<2	138	<5	<3	44
12+00N 20+00E	0.1	1.38	<3	43	(3	0.24	3.4	10	35	9	2.55	0.05	0.49	235	6	0.04	30	0.01	5	<2	<2	21	<5	<3	80
12+005 0+00E	0.1	1.12	(3	49	(3	0.22	2.5	9	32	11	1.89	0.03	0.38	204	3	0.03	24	0.03	<2	<2	<2	20	< 5	<3	35
121000 01500	0.2	1 50	(3	67	13	0.23	3.2	12	25	12	2 29	0.04	0 49	246	3	0.04	22	0.06	(2	<2	(2	21	<5	<3	50
	0.2	1.30	10	77	(0	0.20	2.7	11	50	11	2 20	0.05	0 10	210	4	0.04	22	0.04	12	12	10	20	25	1	47
L2+005 1+00E	(0.1	1.4/	()	11	13	0.22	2.1	14	20	11	2.23	0.05	V. T.J	517	т	0.01		V. V1	1			20			.,
L2+00S 1+50E	<0.1	1.41	<3	52	<3	0,22	2.4	11	35	14	2.21	0.04	0.52	210	3	0.04	26	0.02	<2	<2	<2	19	<5	<3	48
L2+005 2+00E	<0.1	1.13	(3	39	<3	0.22	2.2	9	30	12	1.89	0.04	0.41	225	2	0.04	18	0.03	<2	<2	(2	21	<5	(3	35
L2+00S 2+50E	0.2	1.05	<3	79	<3	9.12	2.8	7,	22	21	1.93	0.11	1.23	306	2	0.05	23	0.01	26	<2	<2	344	<5	<3	85
12+005 3+00E	0.2	1.04	<3	50	<3	1.23	2.3	12	28	43	5.47	0.14	0.43	1866	3	0.06	22	<0.01	55	<2	<2	39	<5	<3	154
L2+005 3+50E	1.7	0.52	<3	33	<3	4.02	12.4	7	20	82	4.07	0.20	0.34	3073	3	0.40	12	0.07	6944	<2	<2	54	<5	<3	4587
12+005 4+005	Ô 1	1.28	(3	57	(3	0.49	2.4	11	31	56	4.03	0.09	0.38	850	2	0.09	23	<0.01	251	(2	<2	23	<5	<3	439
121005 41505	(0.1	1 63	(3	45	13	0 27	2.0	11	36	15	3 93	0.07	0.42	407	4	0.05	23	<0.01	46	<2	(2	19	<5	(3	69
12+005 5+005	(0.1	1.22	(3	55	(3	0.19	2.6	10	29	10	2.33	0.04	0.37	252	3	0.04	18	<0.01	24	(2	(2	18	(5	(3	73
124005 54505	(0.1	0 GG	(3	41	13	0.19	1 7	8	26	8	1 70	0.04	0.30	167	2	0.03	13	0.04	(2	(2	(2	17	(5	<3	40
	10.1	1 20	(3	05	/2	0.10	1 4	0	20	12	2 05	0.01	0.41	212	2	0.00	15	20.01	(2	(2	()	76	(5	(3	32
L2+003 6+00E	0.1	1.33	13	00	13	2.11	1.4	,	23	15	1.05	V. 10	0.71	512	J	0.04	15	(0.01	(1	12	~	, 0		15	51
L2+00S 6+50E	<0.1	1.03	<3	56	<3	0,40	1.6	9	29	14	1.88	0.05	0.34	169	2	0.04	17	<0.01	<2	(2	<2	28	<5	<3	21
L2+00S 7+00E	<0.1	1.15	<3	43	<3	0.16	1.8	7	25	7	1.59	0.02	0.32	142	2	0.03	8	<0.01	(2	<2	<2	19	< 5	(3	21
L2+00S 7+50E	0.3	1.23	<3	62	<3	0.39	1.6	9	29	10	1.91	0.06	0.37	170	<1	0.04	14	<0.01	<2	<2	<2	30	(5	<3	23
L2+005 8+00E	<0.1	1.04	<3	56	<3	0.24	1.8	8	30	12	1.73	0.03	0.36	141	2	0.04	13	<0.01	<2	<2	<2	23	<5	<3	25
L2+005 8+50E	<0.1	1.36	<3	46	<3	0.20	1.5	9	31	9	2.09	0.04	0.50	159	2	0.04	11	<0.01	<2	<2	<2	20	<5	<3	37
1.2+005 9+00E	<0.1	1.55	<3	41	(3	0.20	2.1	12	38	13	2.58	0.06	0.57	190	4	0.04	22	<0.01	<2	<2	<2	20	<5	<3	42
12+005 9+505	(0.1	1 44	(3	57	(3	0.19	1.9	11	36	12	2.45	0.05	0.54	221	2	0.04	16	0.02	<2	<2	<2	23	<5	<3	46
12+005 10+005	(0.1	1 66	3	73	(3	0.36	1.4	15	36	11	2.54	0.07	0.55	402	3	0.05	17	<0.01	<2	<2	< 2	30	<5	<3	34
124005 104505	(0.1	1 09	(3	59	13	0.25	1.4		26	11	1.77	0.06	0.31	472	3	0.04	7	(0.01	<2	<2	<2	24	<5	<3	32
12+005 11+00F	(0.1	1.22	(3	34	3	0.23	2.6	11	33	11	2.20	0.05	0.45	184	2	0.04	14	(0.01	<2	<2	<2	24	<5	<3	37
				•	-					•••															
L2+00S 11+50E	<0.1	1.64	<3	71	<3	0.21	2.3	12	34	12	2.42	0.06	0.46	424	3	0.05	15	(0.01	<2 (2	<2	(2	23	(5	(3	45
L2+005 12+00E	0.2	1.41	(3	59	<3	0.24	1.7	10	31	9	2.20	0.05	0.44	322	2	0.04	10	0.03	(2	12	(1	21		()	47
L2+005 12+50E	0.1	1.27	<3	72	(3	0.19	2.6	10	30	10	2.15	0.06	0.46	502	3	0.05	9	0.03	(2	(2	(2	20	(3	(3	40
L2+00S 13+00E	<0.1	1.00	(3	82	<3	0.27	2.1	8	26	7	1.66	0.06	0.32	433	1	0.04	5	0.09	(2	<2	(2	26	(5	(3	30
L2+00S 13+50E	<0.1	1.46	<3	92	<3	0.21	2.2	12	33	12	2.43	0.06	0.50	1059	3	0.05	13	0.03	<2	<2	<2	20	<5	<3	43
L2+00S 14+00E	(0.1	1.28	<3	54	(3	0.16	1.8	10	30	10	2.18	0.04	0.45	293	4	0.05	13	(0.01	<2	<2	<2	18	<5	<3	41
L2+005 14+50F	0.3	1.43	<3	50	(3	0.20	2.1	11	33	14	2.62	0.05	0.45	330	4	0.05	18	<0.01	<2	(2	<2	22	<5	<3	35
L2+005 15+00F	0.2	1.43	(3	51	(3	0.17	2.5	11	33	12	2.55	0.06	0.46	260	<1	0.05	15	<0.01	<2	<2	<2	20	<5	<3	40
124006 154505	(0.1	1 45	(3	82	(3	0.33	2.5	16	37	17	2.82	0.09	0.59	892	3	0.07	15	0.02	<2	<2	<2	31	<5	<3	41
124005 154005	(0.1	1 32	(3	92	(3	0.23	2.0	11	61	11	2.08	0.05	0.47	872	2	0.04	17	<0.01	<2	<2	<2	23	<5	<3	34
221003 101002	(011	1151	10	~			210			••	2100		••••		-							-			
L2+00S 16+50E	(0.1	1.58	(3	68	(3	0.20	2.6	12	49	14	2.52	0.06	0.61	374	3	0.05	16	0.03	(2	<2	<2	22	<5	(3	49
L2+00S 17+00E	(0.1	1.38	(3	54	(3	0.22	3.0	12	36	14	2.40	0.06	0.53	418	3	0.05	12	0.00		1	(2	23	()	<u>ن</u> کا د ک	40 6 ^
L2+00S 17+50E	0.2	1.10	(3	108	<3	0.36	3.3	12	31	13	2.03	0.08	0.45	1503	2	0.05	8	0.05	(2	(2	(2	29	()	()	20
L2+005 18+00E	<0.1	1.55	<3	50	<3	0.17	2.6	11	37	13	2.57	0.06	0.55	246	3	0.05	15	<0.01	<2	<2	<2	20	<5	(3	46
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10,00	20000	2000	1000	10000	100	1000	20000

Less Than Ninimum > - Greater Than Maximum is - Insufficient Sample ns - No Sample ANOMALOUS RESULTS - Further Analyses By Alternate Methods Suggested.

2 i i i i i

ANALYST: Mmilh

、

ANALYST: Kynth

1650 Fandora Street, Vancouver, E.C. VSL 100

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900703 PA	PRIME EQUI	PRIME EQUITIES INC.				PROJE	CT: FERG	USON		DAT	E IN: OC	T 23 1990) Da	TE OUT:	NOV 13 1	990	ATTENTIO	IN: MR. F	OSTER & P	IR. LOUGH	HEED	PA	E 4 OF	13	
Sample Name	Ag magg	A1 %	As ppa	Ba pp a	Bi ppm	Ca %	Cd pp#	Co ppm	Cr opa	Cu DOM	Fe X	K X	ng X	Mn Dom	ňo DOM	Na X	N1	۶ ۲	Pb	Sb	Sn	Sr	U	H GOB	2
L2+005 18+50E	(0.1	1,44	<3	48	<3	0,20	0.3	. 9	23	13	2.26	0.04	0.49	183	5	0.04	23	(0.01	()	(2	(2	18	75 25	(3 (3	44
L2+00S 19+00E	(0.1	1.42	(3	68	(3	0.21	0.8	10	27	 9	2 29	0.05	0.50	270	Š	0 04	21	70.01	12	/2	12	10	10	10	7.
L2+00S 19+50E	(0.1	1.21	(3	51	(3	0.21	0.6	10	25	12	2 43	0.05	6.20	220	2	0.04	21	(0.0)	(2)	12	12	10	\J /E	(3	4.
12+005 20+005	70.1	1 27	/2	25	/2	0.21	0.5	10	20	10	2175	0.05	0.50	247		0.04	20	10.01	12	12	10	19	(0)	(3	ک ر
14+00N 0+00E	76.1	1.44	(a) / h	101	10	0.21	0.5	10	30	10	2.04	0.05	0.33	297	6	0.04	25	(0.01	(2	12	(2	22	(5	< 3	3
LATOON OTOOL	10.1	1.44	(s ,	101	13	0.23	V. D	12	30	12	2.33	0.05	0.46	495	2	0.04	25	0.11	<2	<2	<2	22	<5	<3	4:
L4+00N 0+50E	(0.1	1.73	<3	63	<3	0.32	0.4	13	36	18	2.71	0.06	0.62	299	6	0.04	31	0.02	<2	<2	<2	29	<5	(3	41
L4+00N 1+00E	<0.1	1.65	<3	50	<3	0.26	0.6	12	31	11	2.51	0.07	0.54	256	6	0.04	22	(0.01	(2	(2	(2	23	(5	(3	4
L4+00N 1+50E	<0.1	1.47	<3	73	<3	0.25	1.1	12	30	15	2.51	0.06	0.52	336	7	0.05	26	(0.01	(2	(2	(2	19	(5	<3	
L4+00N 2+00E	<0.1	1.67	<3	48	<3	0.28	(0.1	13	39	17	2.75	0.07	0.64	273	7	0.05	33	0.03	(2	()	(2	25	(5	(3	51
L4+00N 2+50E	<0.1	1.43	<3	45	<3	0.23	0.8	11	31	11	2.36	0.07	0.58	219	7	0.05	25	<0.01	<2	<2	<2	23	<5	<3	37
14+00N 3+00F	{0 , 1	1.56	(3	58	(3	0.24	0.4	11	26	12	2 19	0.05	0.50	227	5	0 05	21	0 02	12	10	12	21	/5	10	¢,
14+00N 3+50E	(0.1	1 70	/3	76	10	0.24	0.4	12	21	10	2.17	0.03	0.50	207	7	0.05	21	0.02	(2	14	12	21	\J /5	13	J2
14+00N 4+00F	(0.1	1 69	(3	73	(3	0.25	0.4	12	22	10	2.37	0.00	0,33	370	,	0.05	20	0.04	12	(2	(2	22	()	(3	53
144000 44505	0.1	1.07	10	75	(3	0.25	0.7	12	33	13	2.01	0.08	0.52	24/		0.05	31	0.02	(2	(2	<2	23	<5	<3	45
14400N 5400E	0.2	1.40	(3	5/	(3	0.23	0.3	12	28	13	2.25	0.07	0.51	259	/	0.05	19	0.01	<2	<2	(2	23	<5	<3	47
LATOON JTOUE	(0.1	1.43	(3	44	د)	0.25	υ.δ	12	32	20	2.58	0.07	0.59	213	7	0.05	22	0.03	<2	<2	<2	22	<5	<3	41
14+00N 5+50E	<0.1	1.57	(3	69	(3	0.22	(0.1	12	30	17	2 50	0.05	0.57	222	7	0.05	26	0.05	12	12	12	10	/ c	10	
L4+00N 6+00E	(0.1	1.61	(3	73	(3	0 22	0.7	12	29	17	2.50	0.00	0.57	200	5	0.05	20	0.00	12	12	(2	13	()	(3	90
L4+00N 6+50E	(0.1	1.60	(3	70	(3	0 19	0.5	11	22	11	2.33	0.07	0.03	230	J 5	0.01	23	0.02	12	(2	(2	17	()	(3	4.
14+00N 7+00E	(0.1	1 42	12	54	(3	0.13	0.5		20	10	2.13	0.00	0.31	230	J 0	0.04	21	0.02	(2	(2	(2	1/	(5	(3	40
14400N 7450E	. (0,1	1.72	10	40	(3	0.22	0.0	,	20	10	2.04	0.05	0.45	202	3	0.04	12	0.05	(2	<2	(2	19	<5	<3	4:
C1100A /130C	10.1	1.20	13	40	(3	0.33	0.3	1	18	3	1.82	0.08	0.34	128	4	0.05	8	(0.01	<2	<2	<2	28	<5	<3	27
L4+00N 8+00E	0.2	1.33	<3	82	<3	2.52	0.8	11	23	14	2.15	0.19	0.55	628	4	0.06	17	0.01	<2	<2	<2	60	<5	(3	33
L4+00N 8+50E	0.4	0.71	<3	116	<3	9.71	1.4	6	10	23	0.90	0.08	0.43	362	5	0.05	15	0.12	25	<2	<2	315	<5	<3	28
L4+00N 9+00E	0.2	0.40	<3	114	<3	>10.00	0.3	2	3	21	0.39	<0.01	0.31	496	4	0.06	10	0.10	37	<2	<2	421	<5	(3	37
L4+00N 9+50E	<0.1	1.46	<3	56	<3	0.77	0.8	13	24	18	2.53	0.11	0.63	424	5	0.06	19	0.03	(2	(2	<2	35	(5	(3	39
L4+00N 10+00E	<0.1	1.31	<3	60	<3	0.36	0.9	11	26	14	2.30	0.08	0.51	222	6	0.06	16	<0.01	<2	<2	<2	28	<5	<3	32
L4+00N 10+50E	<0.1	1.88	<3	76	(3	0.22	1.1	13	28	14	2.66	0.08	0.60	241	6	0.05	23	0 02	(2	(2	17	22	(5	12	4
L4+00N 11+00E	(0,1	1.65	(3	57	(3	0.19	0.5	12	24	17	2 35	0 06	0.54	183	7	0.05	21	0.02	(2	12	12	10	/5	/2	14
14+00N 11+50F	(0.1	1.49	(3	67	(3	0.22	0 1	11	22	11	2.11	0.00	0.34	24 t	ć	0.05	14	0.02	/2	12	12	20	\J /5	(3	30
14+00N 12+00E	(0.1	1 41	(3	60	/2	0.10	/0.1	0	10	14	4.11	0.07	0.90	271	, ,	0.03	10	0.03	12	(2	(2	20	()	(3	4/
14400N 12450E	(0.1	1 40	()	50	(3	0.13	10.1	10	13	14	1.03	0.07	0.3/	179	b	0.05	16	0.05	(2	(2	(2	17	(5	(3	37
LATOON IZTING	(0,1	1.40	13	70	(3	0.20	1.0	12	22	14	2.17	0.07	0.51	276	6	0.05	18	0.02	<2	<2	<2	18	<5	<3	54
L4+00N 13+00E	<0.1	1.72	<3	51	<3	0.18	1.0	13	26	16	2.61	0.08	0.58	268	7	0.06	21	0.04	<2	<2	<2	17	(5	(3	40
L4+00N 13+50E	(0.1	1.51	<3	38	<3	0.24	0.9	11	25	14	2.51	0.08	0.59	281	Å	0.05	19	0.02	0	(2	12	22	/5	/2	
L4+00N 14+00E	(0.1	1.49	<3	37	(3	0.20	0.4	ii	23	13	2.51	0.09	0.62	255	Å	0.06	14	(0.01	0	(2	12	23	(5	10	11
14+00N 14+50F	(0.1	1.28	(3	49	(3	0.24	0.9	11	25	<u></u>	2 44	0.09	0.52	242	7	0.00	41	/0.01	12	12	12	22	\J (5	()	92
L4+00N 15+00E	<0.1	1.38	(3	72	<3	0.20	1.3	11	26	11	2.49	0.09	0.51	568	6	0.05	16	<0.01	<2	<2	<2	27	(5 (5	(3)	30 41
1 4 100N 151505		(24	10		<i>(</i> ^									.	_									•-	••
LATUVA 13430L	(0,1	1.30	(3	61	(3	0.26	1.5	11	22	12	2.35	0.09	0.50	516	1	0.05	12	<0.01	<2	<2	<2	25	<5	<3	41
LATUUN INTUOL	(0.1	1.34	(3	138	<3	0.21	0.6	12	20	10	2.28	0.09	0.46	1198	8	0.05	12	<0.01	<2	<2	<2	23	<5	<3	48
L4+00N 16+50E	(0.1	1.50	<3	83	<3	0.21	0.5	12	22	11	2.53	0.10	0.55	727	9	0.06	15	<0.01	<2	<2	<2	23	<5	<3	59
L4+00N 17+00E	<0.1	1.37	<3	79	<3	0.21	0.5	10	20	12	2.45	0.07	0.49	765	7	0.05	12	<0.01	<2	<2	<2	23	<5	<3	59
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
K - Less Than Minimum) - Greater T	han Maxim	un i	s - Insu	ufficien	t Sample	ns	- No Samp	le	ANOMALOU	S RESULTS	6 - Furth	er Anal	yses By A	Alternate	Method	s Sugges	ted.							

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H2O at 95 °C for 90 minutes and is cliuted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Hn, Na, P, Sn, Sr and W.

ANALYST: Maila

-

REPORT 1: 900703 PA	PRIME EQU	ITIES INC				PROJE	CT: FER	GUSON		DAT	E IN: OU	CT 23 199	90 D/	ATE OUT: N	NOV 13 1	990	ATTENTIC	IN: MR. I	FOSTER &	MR. LOUG	HEED	PA	GE 5 OF	13	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Mo	Na	Ni	٩	Pb	Sb	Sn	Sr	U	н	Zn
14+00N 17+50F	1 D	1 54	20 20	10	phe vo	۸ ۵.77	ppm 17	ppn	pp#	a dd	1	1	7.	ppm	ppe.	7.	p o m	7.	pp m	ppm	pp e	pps	pçe	o p e	006
14+00N 19+00E	0.1	1	13	40	13	0.11	1./	10	21	22	2.58	0.09	0.80	213	6	0.05	26	<0.01	20	<2	<2	67	<5	< 3	63_
14+00N 18+50E	0.4	0.03	(3)	83	(3)	210.00	2.5	<1	3	49	0.09	(0.01	0.76	628	2	0.06	4	<0.01	43	<2	<2	611	<5	<3	72
L4100N 10100E	0.1	0.04	()	00	ن) د ا	210.00	1.1	(1	9	/	0.10	<0.01	0.88	164	10	0.06	34	<0.01	93	<2	<2	598	<5	<3	26
L4+00N 13+002	(0.1	0.99	(3	42	(3	0.33	1.7	1	23	5	1.97	0.04	Ú.37	146	4	0.02	10	<0.01	6	<2	<2	25	<5	<3	68
L4+00N 19+30E	(0,1	1.09	<3	48	<3	0.19	1.2	6	20	3	1.81	0.02	0.39	139	3	0.03	9	<0.01	<2	<2	<2	23	<5	<3	46
L4+00N 20+00E	0.3	0.76	<3	79	<3	5,73	2.5	5	16	17	1.37	0.17	1.32	417	5	0.04	17	0,06	38	<2	(2	577	(5	(3	71
L4+00S 0+00	<0.1	1.46	<3	55	<3	0.26	0.7	10	27	13	2.37	0.04	0.54	414	4	0.03	18	0.07	(2	(2	(2	26	(5	(3	41
L4+00S 0+50E	0.1	1.33	<3	64	(3	0.21	0.8	10	26	8	2.09	0.03	0.45	296	2	0,03	14	0.06	(2	(2	(2	19	(5	(3	51
L4+005 1+00E	<0.1	1.33	<3	61	<3	0.19	0.7	8	24	7	2.21	0.02	0.43	243	1	0.03	9	0.05	(2	(2	(2	20	(5	(3	27
L4+00S 1+50E	0.1	0.95	<3	28	<3	0.80	0.6	6	17	9	1.64	0.09	0.46	112	<1	0.02	5	<0.01	<2	<2	<2	45	(5	(3	25
L4+00S 2+00E H	<0.1	0.24	<3	35	<3	5.12	0.6	<1	3	6	0.35	0.15	0.34	209	(1	0.01	(1	0.06	()	(2	(2	209	/5	/2	12
L4+00S 2+50E	<0.1	1.53	(3	65	(3	0.22	0.3	11	27	12	2.44	0.04	0.53	299	2	0.03	13	0.04	12	/2	12	203	()	()	40
L4+00S 3+00E	<0.1	1.33	<3	78	(3	0.21	0.6	8	27	7	1,99	0.04	0.39	258	2	0.02	18	0.04	12	12	12	21	()	(3)	90
L4+00S 3+50E	(0.1	1.45	<3	72	(3	0.21	0.4	9	24	7	2 10	0 03	0.46	222	2	0.02	0	0.01	14	12	12	21	\J (5	(3)	33
L4+005 4+00E	<0.1	1.64	<3	68	<3	0.21	0.5	11	29	17	2.57	0.03	0.50	198	3	0.02	13	0.02	<2	<2	<2	19	<5	(3	43 43
L4+00S 4+50E	(0.1	1.56	(3	64	(3	0.21	07	10	27	11	2 27	0 02	0 52	217		0.00	,	0.01	(1	(2)					
L4+00S 5+00E	(0.1	1.61	(3	52	(3	0.20	(0.1	10	21	11	2.3/	0.03	0.33	217	1	0.02		0.04	(2	(2	(2	19	()	(3	50
L4+00S 5+50E	(0.1	1.34	(3	49	(3	0.46	(0.1	0	22	5	2.3/	0.03	0.50	270	د ۱	0.02	7	0.05	12	(2	(2	18	(5	(3	4/
L4+005 6+00E	(0.1	1.60	(3	59	(3	0.10	0.7	10	24	2	2.52	0.00	0.00	220	1	0.02		(0.01	(2	(2	<2	30	(5	(3	30
L4+005 6+50E	(0.1	1.00	<3	35	<3	0.18	0.5	6	19	2	1.69	(0.02	0.60	161	5	0.02	<1	(0.01	<2	<2 <2	<2 <2	20 20	<5 <5	<3 <3	34 23
14+005 7+005	70.1	1 20	12	25	12	A 19	(0.1	•	40	,	• • •														
141000 71500	(0.1	1.20	()	23	(3	0.13	(0.1	9	43	ь	2.44	<0.01	0.52	186	8	0.02	14	<0.01	<2	<2	<2	16	<5	<3	32
	(0.1	1.11	(3	30	(3	0.12	(0.1	8	20	6	2.39	(0.01	0.39	186	5	0.01	<1	<0.01	<2	<2	<2	15	<5	<3	29
14+005 8+505	(0,1	1.13	(3	23	(3	0.12	(0.1	/	23	4	2.13	<0.01	0.47	174	3	0.02	<1	<0.01	<2	<2	<2	16	<5	<3	27
14+005 9+00E	(0.1	1.90	(3	39 (4	(3	0.17	(0.1	9	25	6	2.12	<0.01	0.46	275	6	0.02	<1	0.05	<2	(2	<2	21	<5	<3	39
24.003 3.002		1.23	13	04	(3	V.22	(0.1	y	24	b	2.20	0.01	0.49	112	4	0.02	<1	0.06	<2	<2	<2	23	<5	<3	42
L4+00S 9+50E	<0.1	1.37	<3	55	<3	0.18	<0.1	7	21	4	2.13	<0.01	0.48	302	4	<0.01	<1	0.02	<2	(2	<2	21	(5	<3	35
L4+005 10+00E	<0.1	1.46	<3	69	<3	0.17	<0.1	8	26	4	2.33	0.01	0.44	274	3	0.02	<1	<0.01	<2	<2	<2	23	< 5	<3	32
L4+00S 10+50E	<0.1	0.89	<3	40	<3	0.14	<0.1	6	15	2	1.58	<0.01	0.34	507	2	(0.01	<1	<0.01	<2	(2	<2	19	< 5	(3	20
L4+005 11+00E	<0.1	1.22	<3	35	<3	0.15	<0.1	7	20	3	2.01	<0.01	0.48	163	3	0.02	<1	<0.01	<2	<2	(2	20	(5	(3	29
L4+00S 11+50E	<0.1	1.62	<3	56	<3	0.34	<0.1	13	26	11	2.40	0.03	0.74	198	3	0.03	<1	0.01	<2	<2	<2	30	<5	<3	33
L4+005 12+00E	<0.1	1.20	<3	86	<3	0.37	<0.1	10	14	6	2.76	0.05	0.33	565	4	0.02	(1	(0.01	17	12	17	27	/5	13	00
L4+005 12+50E	<0.1	1.50	(3	109	(3	0.36	(0.1	12	21	9	2.86	0.06	0.46	1229	3	0.03	<1	(0.01	(2	(2	12	20	15	(3)	20
L4+00S 13+00E	<0.1	1.41	(3	74	(3	4.05	(0.1	10	22	37	2.11	0.18	0.73	371	4	0.04	4	0.04	(2	12	(2	110	15	(3	32
L4+00S 13+50E	(0.1	1.59	(3	82	(3	0.42	(0.1	11	20	15	2 73	0 06	0.53	922	5	0.07	~ ~	70.01	12	12	(2	27	()	(3	23
L4+005 14+00E	(0.1	1.59	(3	63	(3	0.08	<0.1	11	18	.5	2.64	0.03	0.54	210	5	0.02	<1	<0.01	<2	<2	<2	14	<5	(3	32 45
14+005 14+50F	(0.1	1 20	(3	47	()	0.07	(0.1	7	16	2	2 21	0.01	0.40	202	2	0.02		/	10	10					
14+005 15+00F	(0.1	1 42	13	,,, 5,2	10	0.07	10.1	0	10	3	2.21	10.01	0.40	233	3	0.03		(0.01	(2	(2	<2	12	(5	(3	35
14+005 15+50F	(0.1	1 27	13	52	13	0.10	20.1	7	23	4	2.30	<u.u1< td=""><td>0.50</td><td>332</td><td>3</td><td>0.03</td><td></td><td>(0.01</td><td><2</td><td>(2</td><td><2</td><td>18</td><td><5</td><td><3</td><td>34</td></u.u1<>	0.50	332	3	0.03		(0.01	<2	(2	<2	18	<5	<3	34
14+005 15+00F	<0.1 <0.1	1 19	(3	JJ 76	12	0.10	(0.1	d 7	10	<u>ງ</u>	1.31	/0.01	0.43	261	4	0.02		0.02	(2	<2	<2	18	<5	<3	49
	14.1	1.10	13	10	13	0.00	10.1	,	10	2	1,80	(0.01	0.40	202	(1	0.02	(1	(0.01	<2	<2	<2	15	<5	<3	31
Ninigum Detection	0.1	0.01	3 2000	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
K - Less Than Minimum) - Greater 1	io.oo Ihan Maxii	iun i	s - Ins	ufficient	Sample-	1000.0	- No Samp	1000 le	ANONALOUS	RESULT	10.00 5 - Furti	iv.vv ner Anal-	vses Bv Al	1000 Iternate	iv.vo Method	20000 s Suaaest	10.00 ed.	20000	2000	1000	10000	100	1000	20000

.....

100 1000 20000

1630 Pandora Street, Vancouver, B.C. V5L 1L6 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

			to gram	Jumpic	Th:	is leach	is parti	al for A	il, Ba, C	a, Cr, I	Fe, K, M	g, Mn, Na	, P, Sn,	Sr and	W.			4,61,8	ANAL	/ST:	K		6		
REPORT #: 900703 PA	PRIME EQUI	TIES INC				PROJE	CT: FERGU	SON		DATI	E IN: OC	T 23 1990	DAI	TE OUT: N	IOV 14 1'	990	ATTENTIO	N: MR. FO	ISTER & M	R. LOUGH	EED /	PAG	E 6 0F	13	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Ħg	Mn	Mo	Na	Ni	P	Pb	Sb	รก	Sr	U	H	Zn
1 44000 164500		1 19	ρρ ε /2	ppa 51	pp n /2	1	ppe A A	ppa	ppe 24	ppe 10	1 20	2	2	pp e	pp	2	pp a	7	ppa ()	pp e	pp a	ρρ∎ 10	00 1	ppe	pp s
L4+005 10+JVE	(0.1	1.17	()	110	(3	0.13	0.0	7	24	15	2.20	0.04	0.44	205	4	0.04	22	0.03	(2	(2	(2	12	< 5 (5	<3	42
L4+005 17+50E	(0.1	1 47	(2	112	/2	0.21	0.7	10	20	0	2.24	0.05	0.40	913	J 5	0.05	29	(0.01	(2	(2	(2	19	()	(3	50
L41003 17130E	(0.1	1.17	()	10,	10	5.40	0.0	,	21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.35	0.03	0.40	210	3	0.05	20	(0.01	12	(2	(2	19	()	(3	39
L4+005 18+00E	(0.1	1.13	< 3 (2	050	(3	3.43	1.1	9	20	13	2.15	0.21	0.66	357	4	0.06	25	0.02	(2	(2	(2	153	<5	(3	32
L4+005 18+30E H	V.2	0.09	(3	253	(3	4.95	1.0	24	4	10	1.79	0.20	1.12	4/22	5	0.05	20	0.08	31	<2	(2	592	<5	(3	21
L4+00S 19+00E	0.1	0.85	<3	31	<3	0.93	<0.1	6	17	5	1.83	0.13	0.45	132	3	0.05	22	<0.01	<2	<2	<2	76	<5	<3	26
L4+00S 19+50E H	0.1	0.81	<3	135	<3	4.07	0.7	21	21	27	2.73	0.23	1.16	825	7	0.07	42	0.10	14	<2	<2	363	<5	<3	49
L4+00S 20+00E	<0.1	1.62	<3	58	<3	0.22	0.3	13	33	19	2.94	0.07	0.55	307	6	0.06	32	<0.01	7	<2	(2	19	(5	<3	46
L6+00N 0+00E	<0.1	1.51	<3	52	<3	0.28	<0.1	12	32	12	2.54	0.06	0.51	255	5	0.06	26	<0.01	<2	<2	<2	26	<5	<3	35
L6+00N 0+50E	<0.1	1.84	<3	52	<3	0.26	0.1	15	36	21	3.00	0.07	0.70	321	8	0.06	33	0.03	<2	(2	<2	23	(5	<3	48
L6+00N 1+00E	<0.1	1.51	(3	93	(3	0.34	<0.1	13	31	8	2.31	0.08	0.46	659	5	0.05	21	0.10	<2	<2	<2	28	< 5	<3	40
L6+00N 1+50E	<0.1	1.91	<3	78	<3	0.32	0.5	14	33	11	2.39	0.08	0.52	288	4	0.05	27	0.01	<2	<2	<2	28	< 5	<3	47
L6+00N 2+00E	<0.1	1.76	<3	63	<3	0.30	0.3	14	35	15	2.82	0.08	0.62	260	7	0.06	31	0.07	<2	<2	<2	25	<5	<3	45
L6+00N 2+50E	<0.1	1.67	<3	59	(3	0.32	0.3	12	30	9	2.96	0.08	0.45	212	6	0.06	27	<0.01	<2	<2	<2	25	<5	<3	37
L6+00N 3+00E	<0.1	1.77	<3	83	<3	0.35	0.3	15	34	12	2.88	0.08	0.61	424	6	0.06	34	0.07	<2	<2	<2	28	<5	<3	44
L6+00N 3+50E	<0.1	1.59	<3	70	<3	0.30	0.2	13	34	10	2.65	0.08	0.55	313	7	0.06	28	<0.01	<2	<2	<2	27	<5	<3	41
L6+00N 4+00E	<0.1	1.46	<3	69	<3	0.34	0.8	10	27	9	2.19	0.10	0.51	295	6	0.06	25	0.01	<2	<2	<2	29	<5	<3	36
L6+00N 4+50E	<0.1	1.59	<3	58	<3	0.31	<0.1	13	34	18	2.81	0.09	0.59	296	7	0.07	36	0.05	<2	<2	<2	26	<5	<3	44
L6+00N 5+00E	<0.1	1.70	<3	59	<3	0.27	<0.1	13	34	12	2.69	0.08	0.61	403	9	0.06	34	0.11	<2	<2	<2	23	<5	<3	53
L6+00N 5+50E	<0.1	1.78	<3	91	<3	0.26	(0.1	14	34	12	2.63	0.08	0.60	339	7	0.06	36	0.01	<2	<2	<2	23	<5	<3	54
L6+00N 6+00E	0.2	1.77	(3	83	<3	0.28	0.2	15	39	15	2.83	0.09	0.62	410	9	0.07	42	0.02	<2	<2	<2	24	<5	<3	55
L6+00N 6+50E	0.2	1.78	<3	90	(3	0.29	0.3	14	34	13	2.78	0.08	0.57	365	7	0.06	37	0.07	<2	<2	<2	23	<5	<3	47
L6+00N 7+00E	0.1	1.96	<3	11	<3	0.28	0.3	- 14	33	11	2.74	0.07	0.58	330	8	0.07	39	0.08	<2	<2	<2	24	<5	<3	55
L6+00N 7+50E	0.2	1.54	(3	76	(3	0.27	0.6	13	31	11	2.47	0.07	0.55	414	7	0.06	33	0.04	<2	<2	<2	22	(5	<3	49
L6+00N B+00E	0.2	1.86	<3	87	<3	0.27	0.6	14	33	11	2.53	0.09	0.59	356	7	0.07	34	0.01	<2	<2	<2	24	<5	<3	59
L6+00N 8+50E	(0.1	1.69	<3	61	<3	0.27	0.1	13	31	10	2.43	0.06	0.55	352	6	0.06	37	0.04	<2	<2	<2	22	۲)	(3	58
L6+00N 9+00E	(0.1	1./1	<3	71	(3	0.24	<0.1	13	30	14	2.54	0.08	0.58	356	7	0.06	38	0.11	<2	<2	<2	19	<5	<3	47
L6+00N 9+50E	(0.1	1.59	(3	62	(3	0.26	1.0	12	32	13	2.58	0.06	0.55	294	7	0.05	32	0.04	<2	<2	<2	23	<5	<3	40
L6+00N 10+00E	(0.1	1.59	(3	82	(3	0.24	<0.1	9	25	7	2.13	0.03	0.44	387	5	0.04	33	0.04	<2	<2	<2	20	<5	<3	61
L6+00N 10+50E	(0.1	1.44	<3	66	<3	0.22	<0.1	9	25	8	2.13	0.02	0.43	225	6	0.03	36	0.03	<2	(2	<2	17	<5	<3	42
L6+00N 11+00E	<0.1	1.03	<3	44	<3	0.21	<0.1	7	19	8	1.82	0.02	0.33	261	4	0.02	30	<0.01	<2	<2	<2	19	<5	<3	22
L6+00N 11+50E	<0.1	1.94	<3	68	<3	0.27	<0.1	12	32	10	2.83	0.04	0.62	288	6	0.04	36	0.01	<2	<2	<2	24	<5	<3	45
L6+00N 12+00E	<0.1	1.97	<3	66	<3	0.27	0.2	13	33	11	2.85	0.05	0.61	347	6	0.04	37	0.03	<2	<2	<2	23	<5	<3	43
L6+00N 12+50E	<0.1	1.78	<3	71	<3	0.25	<0.1	10	29	9	2.55	0.04	0.57	342	6	0.03	36	0.04	<2	<2	<2	20	< 5	<3	39
L6+00N 13+00E	<0.1	1.50	<3	67	<3	0.31	0.3	9	30	8	2.36	0.03	0.55	247	5	0.02	29	<0.01	<2	<2	<2	28	<5	<3	32
L6+00N 13+50E	<0.1	1.38	<3	48	<3	0.24	(0.1	9	27	5	2.21	0.01	0.51	360	5	0.02	31	<0.01	<2	<2	<2	22	<5	<3	30
L6+00N 14+00E	(0.1	1.54	<3	71	<3	0.24	<0.1	10	36	7	2.41	0.02	0.50	271	5	0.02	39	0.05	<2	<2	<2	19	<5	<3	40
L6+00N 14+50E	(0.1	1.48	<3	67	<3	0.23	<0.1	10	28	7	2.18	0.02	0.50	251	6	0.03	44	0.04	<2	<2	<2	18	<5	<3	44
L6+00N 15+00E	0.3	1.55	<3	62	<3	0.25	(0.1	11	30	10	2.51	0.02	0.52	217	7	0.03	39	<0.01	<2	<2	<2	18	<5	<3	35
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	i	1	0.01	1	0.01	2	2	2	1	5	3	1

Maximum Detection Less Than Minimum > - Greater Than Maximum is - Insufficient Samole ns - No Samole ANOMALDUS RESULTS - Further Analyses By Alternate Methods Suggested.

1630 Pandora Street, Vancouver, B.C. VSc 1.c. Ph:(604)251-5656 Fax:(604)254-5717

1

.

1000 10000

1000 20000

100

i.

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

					ih	us leach	is parti	al for A	il, Ba, C	a, Cr, I	Fe, K, M	lg, Mn, N	a, P, Sn	, Sr and	W.				ANAL	YST:	R	m	6		
REPORT #: 900703 PA	PRIME EQUI	TIES INC.				PROJE	CT: FERGU	ISON		DAT	E IN: OC	CT 23 199	Ú DA	TE OUT: N	IOV 14 14	990	ATTENTIO	N: MR. FI	OSTER & M	IR. LOUGH	EED	PAG	E 7 OF	13	
Sample Name	Ag	A1	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Ħg	Mo	Mo	Na	Ni	P	РЬ	Sb	Sn	Sr	U	H	In
	ppa	7	ppe	ppe	ppe	ĩ	ppe	ppe	ppm	pps	X	X	ĩ	ppm	ppm	z	p p a	X.	ppe	ppe	000	pps	008	pp.a	004
L6+00N 15+50E	0.1	1.97	<3	114	<3	0.31	<0.1	13	49	17	2.73	0.04	0.55	390	8	0.03	44	<0.01	<2	<2	<2	20	<5	<3	61
L6+00N 16+00E	0.2	1.75	<3	127	<3	0.58	0.5	13	33	10	2.66	0.09	0.45	1425	8	0.04	24	0.08	<2	<2	<2	24	<5	<3	111
L6+00N 16+50E	<0.1	1.54	<3	167	<3	2.69	0.4	10	28	18	2.33	0.15	0.47	1814	8	0.05	24	0.24	<2	<2	<2	46	<5	<3	130
L6+00N 17+00E	<0.1	1.72	<3	144	<3	0.71	<0.1	11	29	9	2.69	0.10	0.46	1232	6	0.05	26	0.05	<2	<2	<2	21	<5	<3	95
L6+00N 17+50E	0.4	1.51	<3	228	<3	5.17	1.0	10	28	21	2.28	0.11	0.50	2342	6	0.06	19	0.25	<2	<2	<2	69	<5	<3	159
L6+00N 18+00E	0.2	0.74	<3	106	<3	>10.00	0.6	11	19	14	1.41	<0.01	0.43	1528	8	0.07	11	0.13	15	3	<2	140	<5	<3	62
L6+00N 18+50E	<0.1	0.94	<3	243	<3	9.05	<0.1	5	18	15	1.43	<0.01	0.40	1187	3	0.05	4	0.15	<2	<2	<2	88	<5	<3	153
L6+00N 19+00E	<0.1	1.53	<3	113	<3	1.09	<0.1	10	26	12	2.48	0.12	0.49	719	4	0.03	15	<0.01	<2	<2	<2	23	₹5	<3	85
L6+00N 19+50E	(0.1	1.33	<3	47	<3	0.22	0.8	9	24	9	2.16	0.04	0.40	232	3	0.03	15	<0.01	<2	<2	<2	18	(5	<3	59
L6+00N 20+00E	<0.1	1.23	(3	85	<3	0.16	<0.1	9	23	6	2.03	0.04	0.36	415	1	0.03	13	<0.01	<2	<2	(2	16	(5	<3	86
L6+00S 0+00E	<0.1	1.06	<3	41	<3	0.38	<0.1	8	23	6	1.83	0.04	0.44	129	5	0.03	5	<0.01	<2	<2	<2	39	<5	<3	30
L6+00S 0+50E	<0.1	1.32	<3	50	<3	0.15	<0.1	10	25	7	2.02	0.03	0.33	153	5	0.03	9	0.02	<2	<2	<2	16	<5	<3	40
L6+005 1+00E H	<0.1	0.17	<3	31	<3	2.97	0.5	1	9	5	0.31	0.03	0.69	12	12	0.02	<1	0.08	9	4	<2	201	<5	<3	22
L6+00S 1+50E H	<0.1	0.05	4	32	<3	3.76	<0.1	<1	4	4	0.58	0.02	0.58	173	4	0.02	<1	0.08	(2	4	<2	287	<5	<3	22
L6+005 2+00E H	0.3	0.30	<3	60	<3	4.95	<0.1	<1	6	8	0.42	0.02	0.79	389	1	0.03	<1	0.07	<2	<2	<2	315	<5	<3	31
L6+005 2+50E	<0.1	i.23	<3	32	<3	0.19	0.2	9	24	9	2.17	0.03	0.49	165	3	0.03	6	<0.01	<2	<2	<2	19	<5	(3	33
L6+00S 3+00E	(0.1	1.27	<3	63	<3	0.18	<0.1	8	24	10	2.15	0.02	0.39	196	3	0.02	7	0.13	<2	<2	<2	20	<5	(3	30
L6+005 3+50E	<0.1	1.41	<3	66	<3	0.17	0.6	10	27	6	2.20	0.03	0.45	264	3	0.02	4	0.11	<2	<2	<2	17	<5	<3	40
L6+005 4+00E	<0.1	1.09	<3	62	<3	0.21	0.2	9	21	2	1.79	0.04	0.34	442	2	0.03	<1	0.08	<2	<2	<2	22	<5	<3	37
L6+00S 4+50E	<0.1	1.36	<3	49	<3	0.17	<0.1	11	28	7	2.24	0.04	0.48	210	5	0.03	8	0.02	<2	<2	<2	17	<5	<3	37
L6+00S 5+00E	<0.1	1.45	<3	38	<3	0.16	0.6	12	28	B	2.30	0.04	0.49	209	4	0.03	3	<0.01	<2	<2	<2	18	<5	<3	38
L6+00S 5+50E	<0.1	1.05	<3	40	<3	0.12	1.3	10	22	6	1.85	0.04	0.34	177	2	0.04	(1	(0.01	<2	<2	<2	15	<5	<3	26
L6+00S 6+00E	(0.1	1.37	<3	66	<3	0.13	0.7	9	24	6	1.97	0.02	0.36	160	2	0.03	(1	0.08	(2	<2	<2	16	(5	<3	31
L6+00S 6+50E	0.4	1.49	(3	62	<3	0.16	1.1	10	25	6	2.21	0.02	0.47	182	<1	0.02	<1	0.05	(2	<2	<2	18	<5	<3	36
L6+005 7+00E	<0.1	1.74	<3	67	<3	0.15	<0.1	11	28	6	2.68	<0.01	0.52	256	2	0.02	2	0.11	<2	<2	<2	17	<5	<3	46
L6+00S 7+50E	(0.1	1.20	<3	33	<3	0.10	<0.1	9	23	10	2.07	<0.01	0.43	152	3	0.02	(1	<0.01	(2	<2	<2	13	<5	<3	28
L6+00S 8+00E	<0.1	1.69	<3	61	<3	0.18	0.4	11	27	8	2.51	0.05	0.42	271	3	0.03	<1	<0.01	<2	<2	<2	21	<5	<3	45
L6+00S 8+50E	(0.1	1.40	(3	74	(3	0.16	0.4	11	21	2	2.53	0.02	0.33	244	2	0.02	<1	<0.01	<2	<2	<2	18	<5	<3	41
L6+00S 9+00E	<0.1	1.68	<3	98	<3	0.16	0.7	12	23	15	2.79	0.06	0.52	263	3	0.04	7	<0.01	<2	<2	<2	15	<5	<3	42
L6+00S 9+50E	<0.1	1.20	<3	39	<3	0.13	0.6	8	22	<1	2.09	0.02	0.37	140	3	0.03	<1	<0.01	<2	<2	<2	17	<5	<3	32
L6+005 10+00E	<0.1	1.30	<3	41	<3	0.10	0.6	10	25	5	2.16	<0.01	0.48	184	2	0.02	<1	<0.01	<2	<2	<2	14	<5	<3	34
L6+00S 10+50E	<0.1	1.24	<3	76	<3	0.09	0.5	9	15	2	2.96	0.02	0.33	522	3	0.02	(1	<0.01	(2	<2	{2	13	<5	<3	41
L6+00S 11+00E	<0.1	1.34	<3	74	<3	0.13	0.1	10	23	1	2.93	0.03	0.36	328	- 4	0.03	<1	<0.01	<2	<2	<2	17	<5	<3	33
L6+00S 11+50E	<0.1	1.57	<3	63	<3	0.21	<0.1	12	29	7	2.82	0.04	0.50	291	4	0.03	(1	<0.01	<2	<2	<2	23	<5	(3	40
L6+00S 12+00E	<0.1	1.27	<3	63	<3	0.11	0.2	12	22	5	2.57	0.04	0.39	794	3	0.02	(1	<0.01	<2	<2	<2	15	<5	<3	33
L6+00S 12+50E	0.5	1.76	₹ 3	72	(3	1.20	0.7	12	26	10	2.31	0.10	0.80	583	3	0.04	<1	<0.01	<2	<2	<2	59	<5	<3	39
L6+00S 13+00E	<0.1	1.64	<3	55	<3	0.17	0.3	12	22	4	3.33	0.06	0.46	168	4	0.03	(1	<0.01	<2	<2	<2	17	<5	(3	36
L6+00S 13+50E	<0.1	1.59	<3	92	<3	0.13	0.6	12	21	12	2.64	0.06	0.48	238	3	0.04	(1	<0.01	<2	(2	(2	14	<5	(3	39
L6+005 14+00E	<0.1	1.14	∢ 3	55	. (3	0.04	0.1	7	14	(1	1.92	<0.01	0.40	118	<1	0.01	<1	<0.01	<2	<2	<2	9	<5	<3	36
Miniaum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1

 Maximum Detection
 50.0
 10.00
 2000
 10.00
 1000.0
 20000
 10.00
 10.00
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000
 20000

1630 Pandora Street, Vancouver, S.C. VSL 165 Ph: (604)251-5658 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with vater. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Ma, P, Sn, Sr and W.

ANALYST: March

EPORT #: 900703 PA	PRIME EQUI	ITIES IN	С.			PROJ	ECT: FERG	GUSON		DAI	'S (N: 0)	CT 23 19	90 D	ATE OUT:	NOV 16	1990	ATTENTIO	DN: MR. 1	FOSTER &	MR. LOUG	HEED	PA	GE 8 01	- 13	
ample Name	Ag sps	A1 X	As DDe	Ba ppn	Bi DDM	Ca X	Cd apa	Co 000	Cr DDA	Cu	Fe %	K Y	Ħo 7	ňn ona	No	Na 7	Ni	۶ ۲	Pb	Sb	Sn	Sr	U	H	1
6+00S 14+50E	(0.1	1.47	(3	64	<3	0.18	2.5	10	27	12	7 dd	0.04	0.49	270	μμ ω ζ	0.06	90 H	(0.01	hher A	pha Vo	រូប្ពោ / 2	ppm 	000	pp m	qq
6+005 15+00E	(0.1	1.58	(3	114	(2	0.20	(0.1	10	24	14	2.17	0.04	0.43	270	č A	0.00	33	(0.01	(2	(2	<2	16	<5	<3	6
6+005 15+50E	(0.1	1 63	(2	110	/2	0.24	1 5		27	10	2.22	0.04	0.46	3/4	4	0.06	23	(0.01	<2	<2	(2	17	<5	<3	6
6+005 15+00E	(0.1	1.00	(2)	110	(5	0.24	1.J	11	21	12	2.69	0.05	0.39	900	4	0.05	26	0.03	6	<2	<2	21	<5	< 3	7
61003 16100C	(0.1	1.04	()	122	()	0.25	1.0	10	28	9	2.40	0.05	0.40	628	3	0.05	21	0.02	4	<2	<2	23	<5	<3	63
DT003 10T30E	(0.1	1./1	(3	Б /	(3	0.23	<0.1	10	30	13	2.57	0.04	0.51	235	4	0.05	26	<0.01	<2	<2	<2	22	<5	<3	49
6+00S 17+00E	<0.1	1.99	<3	69	<3	0.18	1.5	13	32	17	2,94	0.04	0.54	226	4	0.05	33	0.02	(2	<2	<2	18	(5	(3	5
6+005 17+50E	0.4	1.22	<3	68	<3	0.26	<0.1	8	23	9	1.87	0.05	0.37	365	3	0.05	15	(0.01	()	12	(2	21	/5	/2	A í
6+00S 18+00E	0.2	1.23	<3	63	<3	0.19	<0.1	8	21	7	1.70	0.04	0.34	317	3	0.04	12	(0.01	12	12	/2	10	/5	(0)	
6+00S 18+50E	0.2	1.22	(3	46	<3	0.18	(0.1	Ŕ	24	, q	1.95	0.04	0 43	224	2	0.04	17	/0.01	12	12	12	12	10	()	3/ 01
6+00S 19+00E	<0.1	1.40	<3	51	(3	0.18	<0.1	8	27	9	2.06	0.04	0.49	208	4	0.04	17	<0.01	<2	<2	(2	18	(5	<3 (3	35
6+005 19+50E	(0.1	1.65	12	84	13	0 47	1.5	14	21	24	2 12	A 1A		574					-						
6+005 20+00E	(0.1	1 44	12	ι ε ο	/0	0.17	20.1	14	31	24	3.12	0.10	0.68	5/4	4	0.12	41	0.04	9	<2	<2	22	<5	<3	58
0.000 20.00L	(0.1	1.77	10	60	13	0.13	(0.1	3	31	13	2.3/	0.03	0.45	296	4	0.06	27	0.02	<2	<2	<2	12	<5	<3	52
	(0.1	1.31	(3	51	(3	0.32	KQ.1	10	31	11	2.43	0.06	0.50	436	5	0.05	20	<0.01	<2	<2	<2	27	<5	<3	42
8+00N 0+50E	(0.1	1.45	(3	74	<3	0.40	1.6	12	32	28	2.77	0.08	0.57	329	4	0.07	25	0.03	<2	<2	<2	31	<5	<3	49
8+00N 1+00E	(0.1	1.47	<3	68	<3	0.36	1.8	11	29	13	2.26	0.06	0.44	380	4	0.05	22	0.08	<2	<2	<2	30	<5	<3	52
8+00N 1+50E	<0.1	1.47	<3	87	<3	0.29	1.3	11	30	15	2.51	0.06	0.52	463	3	0.05	21	0.07	(2	12	12	27	/5	12	51
B+00N 2+00E	<0.1	1.53	<3	55	<3	0.30	0.9	12	29	12	2.57	0.05	0.53	273	4	0.05	17	(0.01	(2	(2	(2	20	(J /S	10	JL 44
8+00N 2+50E	0.3	1.63	<3	63	<3	0.27	1.7	12	30	19	2.59	0.05	0.60	239	4	0 05	23	0.02	()	(2	(2	25	\J /5	(3)	44 51
8+00N 3+00E	<0.1	1.39	<3	54	(3	0.24	(0.1	9	26	12	2 22	0.04	0.46	182	4	0.04	12	/0.01	/2	/2	(2	23		13	10
8+00N 3+50E	<0.1	1.48	<3	58	<3	0.33	<0.1	10	29	12	2.50	0.06	0.51	239	4	0.05	16	0.04	<2	<2	<2	32	<5 <5	(3	46
	(0.1	1 51	(2	41	12	A 40									_										
0.00N 4.50C	(0.1	1.31	13	41	(3	0.28	1.5	11	30	15	2.71	0.06	0.56	236	5	0.05	19	0.02	4	<2	<2	24	<5	<3	53
0100N 5100C	(0.1	1.00	(3	/6	(3	0.2/	(0.1	12	29	14	2.16	0.05	0.55	416	5	0.05	22	0.02	<2	<2	<2	25	<5	<3	62
0+00N 5+50C	(0.1	1.00	(3	01 54	(3	0.29	1.5	13	34	18	2.89	0.06	0.60	249	5	0.05	24	<0.01	<2	<2	<2	26	<5	<3	56
0100N JIJVC	(0.1	1./1	(3	24	(3	0.25	(0.1	12	31	18	2.71	0.06	0.54	258	4	0.05	23	0.05	<2	<2	<2	21	<5	<3	51
DTUUN DTUUL	(0.1	1.66	<3	6/	(3	0.26	<0.1	11	29	13	2.54	0.05	0.52	345	4	0.05	18	0.06	<2	<2	<2	24	<5	<3	53
8+00N 6+50E	<0.1	1.62	<3	90	<3	0.25	1.0	11	30	13	2.48	0.05	0.40	260	4	0.04	21	0.11	<2	(2	(2	24	(5	(3	57
B+00N 7+00E	<0.1	1.16	(3	56	<3	0.46	1.2	B	21	9	2.04	0.07	0.39	171	3	0.05	11	(0.01	3	(2	(2	36	(5	(3	49
8+00N 7+50E	<0.1	1.82	<3	92	<3	0.35	0.8	13	31	16	2.65	0.05	0.54	558	5	0.05	17	0.02	ò	17	12	21	/5	/3	
8+00N 8+00E	0.2	1.56	<3	46	<3	0.33	0.8	12	31	18	2.81	0.06	0.63	239	4	0 06	20	(0.01	12	12	12	21	/5	(3	51
8+00N 8+50E	0.5	1.14	<3	81	<3	0.36	(0.1	9	26	12	1.89	0.06	0.40	767	5	0.05	17	0.01	(2	<2	<2	34	<5	(3	41
8+00N 9+00F	(0.1	1.63	(3	54	(3	0.28	٩٨	11	20	14	2 54	0.00	A 60	200		A AE		A 47	(0		(0				
8+00N 9+50E	/6 1	1 57	10	75	/2	0.21	1.2	10	20	FL	2.04	0.00	0.30	230	4	0.03	1/	0.0/	(2	(2	(2	25	<5	(3	55
3100N 1010C	(0.1	1.3/	(3)	75	(3	0.31	1.0	12	30	13	2.08	0.05	0.54	444	4	0.05	1/	0.11	<2	<2	<2	30	<5	(3	63
DIOON IVIVE	(0.1	1.30	(3	51	(3	0.57	(0.1	11	29	17	2.10	0.09	0.44	812	4	0.04	20	0.04	<2	<2	<2	54	<5	<3	54
5+00M 10+30E	(0.1	1.5/	(3	68	<3	0.25	1.7	12	53	15	2.44	0.04	0.48	372	7	0.05	41	0.04	12	<2	<2	23	<5	<3	50
3+00N 11+00E	<0.1	1.71	<3	66	<3	0.25	1.2	12	30	16	2.54	0.05	0.54	373	4	0.05	18	0.03	<2	<2	<2	23	<5	<3	57
3+00N 11+50E	<0.1	1.86	<3	69	<3	0.25	1.9	15	81	22	2.86	0.06	0.62	260	12	0.05	76	(0.01	<2	<2	(2	23	(5	(3	58
3+00N 12+00E	<0.1	1.75	<3	90	<3	0.49	0.9	11	30	13	2.70	0.07	0.48	736	- 4	0.06	16	0.04	5	()	12	24	/5	/0	20
3+00N 12+50E	0.1	1.98	(3	96	(3	0.35	0.9	11	31	18	2.47	0.05	0.50	222	, ,	0.04	17	(0 01	/2	12	12	24	\J /E	13	30
3+00N 13+00E	(0.1	1.89	(3	130	(3	0.42	2.0	12	31	21	2.79	0.07	0.55	592	J 4	0.04	10	20.01	12	12	(2	20	()	(3	62
						¥17£	***		51		4.10	v. v/	4.00	J72	•	0.00	10	0.03	12	(2	(2	23	(2	(3	83
inimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
INIMUE DEFECTIÓN	30.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000

K - Less Than Minimum > - Greater Than Maximum is - Insufficient Sample ns ~ No Sample ANOMALOUS RESULTS - Further Analyses By Alternate Methods Suggested.

1630 Pandora Street, Vancouver, B.C. V5L 1L6

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO3 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: My L

REPORT #: 900703 PA	PRIME EQUI	TIES INC	•			PROJE	ECT: FERG	GUSON		DAT	E IN: OC	T 23 199	0 D/	ATE OUT:	NOV 14 1	990	ATTENTI	IN: MR. F	TOSTER &	MR. LOUG	HEED	PAI	3E 9 OF	13	
Sample Name	Ag ppe	Al I	As pp∎	Ba pp∎	Bi ppa	Ca Z	Cd pp∎	Co pps	Cr ppa	Cu ope	Fe ۲	K Z	Hg X	tin DD B	No DO B	Na Z	Ni Dee	р Х	Pb	Sb	Sn	Sr	U	W	Zn
L8+00N 13+50E	<0.1	1.70	<3	83	(3	0.45	1.5	11	37	15	2.30	0.10	0.47	363	8	0 04	40	0.05	(2	(2	(2	24	γμ∎ ∕5	2 2	μμ π 21
L8+00N 14+00E	<0.1	1.68	(3	53	(3	0.20	0.5	12	31	13	2.41	0 07	0.52	266	8	0.04	20	0.03	12	12	12	10		10	10
L8+00N 14+50E	<0.1	1.58	(3	64	(3	0.23	1.5	11	31	.0	2.36	0.08	0 47	200	9	0.04	27	0.07	12	12	(2	10	()	(3	43
18+00N 15+00F	(0.1	2.23	(3	89	(3	0.28	(0.1	14	20	14	2 00	0.00	0.10	500	,	0.07	27	0.00	12	1	(2	21	0	(3	45
L8+00N 15+50E	(0.1	2 10	/2	122	()	0.51	A 1	10	30	17	2.33	0.10	0.43	132	,	0.03	32	0.02	(2	(2	(2	21	(5	(3	61
L0.000 13.30L	(0,1	2.10	13	125	13	0.31	0.1	12	30	11	2.19	0.10	V.46	1283	9	0.05	35	0.02	<2	<2	<2	23	45	<3	82
L8+00N 16+00E	<0.1	2.36	<3	95	<3	0.42	<0.1	13	39	15	2.79	0.10	0.50	393	9	0.05	29	0.02	<2	<2	(2	25	۲)	<3	57
L8+00N 16+50E	<0.1	2.35	<3	104	<3	0.37	0.2	12	38	8	3.38	0.11	0.44	1340	8	0.06	34	0.01	<2	<2	<2	23	<5	<3	60
L8+00N 17+00E	<0.1	1.95	<3	123	<3	0.39	0.7	12	33	17	2.58	0.09	0.48	505	9	0.05	32	0.05	<2	<2	<2	22	<5	<3	103
L8+00N 17+50E	0.1	1.77	<3	215	<3	0.76	0.2	11	32	13	2.37	0.12	0.41	1899	7	0.05	36	0.30	(2	(2	(2	22	(5	(3	120
L8+00N 18+00E	<0.1	1.54	<3	83	<3	0.22	0.5	10	27	8	1.90	0.07	0.40	225	7	0.04	28	<0.01	(2	<2	(2	17	<5	(3	57
L8+00N 18+50E	0.2	1.61	<3	107	<3	1.46	0.2	8	28	12	2.23	0.13	0.47	637	7	0.04	24	0 04	4	12	12	20	/5	12	(7
L8+00N 19+00E	(0.1	1.51	(3	83	(3	0.45	0.2	13	31	14	2 43	0 10	0 45	342	ó	0.05	29	0.07	12	12	(1)	20	()	(3	5/
L8+00N 19+50E	(0.1	1.27	(3	45	(3	0.14	(0.1	10	25	10	2 03	0.06	0.75	162	5	0.03	23	20.03	11	(2	12	22	()	(3	12
18+00N 20+00F	(0.1	1 52	(3	45	(3	0.19	1 2	10	20	7	2.03	0.00	0.33	103		0.04	24	(0.01	11	12	(2	13	< 5	(3	50
LB+005 0+00	(0.1	1.71	<3	71	<3	0.25	<0.1	11	33	12	2.51	0.08	0.58	270	8	0.04	30 27	0.02	<2 <2	<2 <2	<2 <2	16 25	<5 <5	(3 (3	57 48
1.8+005 0+50E	(0 t	0.80	(2	36	(2	A 15	0.4	ć	17	2	1 22	A AC	0.04			A 44				-					
18+005 1+00E	(0.1	1 25	(3	50	/2	0.15	0.1	0	20	3	1.32	0.00	0.24	140	3	0.03	13	0.02	3	(2	<2	15	(5	<3	21
18+005 1+505	(0.1	1 59	/2	71	/2	0.23	70.1	10	20	-	1./1	0.03	0.3/	206	6	0.03	19	(0.01	<2	(2	<2	29	<5	<3	24
184005 24005	(0.1	1.32	/2	51	()	0.22	(0.1	12	30	2	2.31	0.09	0.45	312		0.04	20	0.02	(2	(2	<2	22	<5	<3	49
101003 21000	(0.1	1.30	()	31	(3	0.19	(0.1		23	1	1.91	0.0/	0.42	207	5	0.03	19	0.05	(2	<2	<2	19	<5	<3	41
18+005 2+305	(0.1	1.04	3	6/	٢3	0,1/	(0.1	10	26	6	2.08	0.06	0.42	202	7	0.03	21	0.05	<2	<2	<2	16	<5	<3	43
LB+00S 3+00E	<0.1	1.60	≺3	71	<3	0.22	<0.1	11	30	7	2.12	0.08	0.46	240	4	0.04	27	<0.01	<2	<2	<2	21	<5	<3	52
L8+00S 3+50E	<0.1	1.25	<3	56	<3	0.17	0.3	10	24	6	1.91	0.07	0.37	192	5	0.04	23	0.02	2	<2	(2	18	(5	(3	31
L8+005 4+00E	<0.1	1.03	<3	47	<3	0.16	0.4	9	24	3	1.80	0.07	0.32	246	6	0.04	19	0.02	13	(2	(2	16	(5	(3	31
L8+00S 4+50E	<0.1	0,96	(3	35	<3	0.15	(0.1	7	21	3	1.66	0.07	0.31	169	6	0.03	19	(0.01	6	(2	(2	16	(5	(3	25
L8+005 5+00E	<0.1	1.24	<3	42	<3	0.19	0.1	11	27	9	2.17	0.08	0.47	168	7	0.04	20	<0.01	<2	<2	<2	20	<5	<3	34
L8+00S 5+50E	<0.1	i.06	∢ 3	46	<3	0.16	(0.1	8	22	6	1.69	0.07	0.32	142	5	0.03	16	0.02	3	(2	<2	16	۲)	<3	25
L8+005 6+00E	<0.1	1.94	<3	58	<3	1.69	<0.1	10	30	8	2.40	0.12	0.46	751	8	0.04	25	0.05	(2	(2	(2	33	(5	(3	62
L8+00S 6+50E	0.2	1.79	(3	81	(3	0.84	0.2	11	30	8	2.60	0.12	0.42	545	8	0.04	26	0 06	0	10	12	25	/5	12	74
L8+005 7+00E	<0.1	1.66	(3	53	(3	0.23	0.2	12	34	ğ	2.62	0.08	0.58	216	ğ	0.04	30	<0.01	(2	12	12	10	/5	(3	45
L8+00S 7+50E	<0.1	1.76	<3	61	<3	0.32	(0.1	11	30	13	2.56	0.07	0.41	331	6	0.03	26	<0.01	4	<2	<2	18	<5	(3	45
L8+005 8+00E	0.1	1.67	<3	86	<3	1.73	<0.1	11	29	11	2.45	0,12	0.53	622	6	0.04	22	0.05	(2	17	0	41	7 5	12	12
L8+00S 8+50E	(0.1	1.46	(3	65	(3	1.19	(0.1	9	25	9	2.49	0 12	0 40	227	10	0.04	21	(0.01	12	12	12	11	\J /c	10	201
LB+005 9+00E	(0.1	1.72	(3	76	G	0.16	(0.1	12	24	9	2.99	0.13	0.51	402	10	0.05	21	(0.01	14 F	12	12	21	(3)	(3	52
1 84005 94505	(0.1	1 49	12		/2	0 20	/0 1		20		3.70	V. 12	0.31	202	, ,	0.03	31	(0.01	0 E	12	12	19	()	(3	21
L8+005 10+00E	<0.1	1.71	<3	111	(3	0.23	(0.1	12	27	3	3.15	0.10	0.48	1596	8	0.04	23	<0.01	<2	<2	<2	22	<5 <5	<3 <3	35 47
1 84005 104505	A 2	1 21	12	20	10	A 82		1.0		•	A 47														
101003 101000	0.2	1.21	(3	30	(3	0.03	V.3	10	22	2	2.2/	0.09	0,44	123	4	0.03	15	(0.01	5	<2	<2	38	<5	(3	41
101000 111000	0.1	1.5/	(3	23	(3	0.1/	0.1	10	33	6	2.47	0.07	0.54	155	8	0.03	24	(0.01	<2	<2	<2	17	<5	<3	43
LOTVUD 1110VE	(0.1	1.45	(3	41	(3	0.17	<0.1	11	30	5	2.38	0.07	0.53	184	6	0.03	20	<0.01	<2	<2	<2	17	<5	(3	42
L8+005 12+00E	<0.1	1.36	<3	66	<3	0.14	1.7	10	46	3	2.20	0.06	0.44	241	7	0.04	28	<0.01	<2	<2	<2	14	<5	<3	40
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	i
Raximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum) – Greater T	han Maxim	iu a	is - Inse	ufficient	Sample	ns	- No Samp	le	ANOMALOUS	RESULT	6 - Furtl	ner Anal	yses By A	Alternate	. Method	is Sugges	ted.							

1630 Pandora Street, Vancouver, B.C. V5L 116 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: Mall

-

REPORT #: 900703 PA	PRIME EQUI	TIES IN	2.			PROJ	ECT: FER	GUSON		DAI	TE IN: 00	1 23 199	10 D	ATE OUT:	NOV 14 1	1990	ATTENTIO	IN: MR. I	FOSTER &	MR. LOUG	HEED	PA	6E 10 (IF 13	
Sample Name	Ag ppa	Al Z	As 008	Ba	Bi	Ca Z	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Ħn	No	Na	Ni	P	Pb	Sb	Sn	Sr	U	W	Zn
L8+005 12+50E	(0.1	1.64	(3	52	(3	0.18	1 2	974 Q	20	16	2 40	A 00	۰ ۲۰ ۸	101	₽₽∎	۸ ۵.۰۵	pp e		ppa	ppe	ppe	p p n	pp∎	pp∎	pp∎
18+005 13+005	(0.1	1 64	/ 2	50	()	0.10	1.2	,	30	16	2.49	0.05	0.66	191	4	0.09	31	<0.01	5	<2	<2	17	<5	<3	44
18+005 13+505	(0.1	1.07	10	J0	(3	0.22	1.1	9	28	9	2.22	0.05	0.56	191	3	0.06	22	<0.01	<2	<2	<2	20	<5	<3	48
	(0.1	1.83	(3	49	(3	0.21	1.1	12	34	16	2.81	0.06	0.67	270	3	0.06	31	0.02	5	<2	<2	20	<5	(3	47
L8+005 14+00E	0,1	1.68	<3	55	₹3	0.21	1.0	9	30	9	2.43	0.05	0.53	275	4	0.06	24	(0.0)	<2	<2	(2	22	(5	(3	42
L8+005 14+50E	0.1	1.85	<3	95	<3	0.25	0.8	10	29	9	2.53	0.06	0.50	650	4	0.07	25	<0.01	8	<2	<2	19	<5	<3	47
L8+005 15+00E	0.1	1.76	<3	69	<3	0.19	1.1	10	31	12	2.69	0.05	0.51	388	4	0.06	27	(0.01	,	()	()	17	/5	12	40
L8+005 15+50E	<0.1	1.49	<3	49	<3	0.22	1.0	9	32	8	2.43	0.05	0.44	205	3	0.05	20	(0.01	2	/1	10	20	(J /E	(3	VF 07
L8+005 16+00E	<0.1	1.31	<3	63	(3	0.20	0.9	7	24	, q	1.88	0.04	0.39	220	5	0.05	10	(0.01	2	12	12	20	()	(3	3/
L8+005 16+50E	<0.1	1.72	(3	73	(3	0.22	1 4		20	10	2 20	0.01	0.50	200	4	0.03	10	10.01	2	(2	(2	19	(5	(3	32
L8+005 17+00E	(0.1	1.34	<3	45	<3	0.19	0.4	8	25	6	1.98	0.03	0.51	279	3	0.05	25 16	0.03 (0.01	3	(2 (2	<2 <2	21 18	<5 <5	<3 (3	47 41
L8+00S 17+50E	0.1	1.52	(3	67	(3	0.20	1.1	٩	26	5	2 10	0.04	A 4A	222	2	A 45									
L8+005 18+00F	0.1	1 70	13	65	12	0 10	0.7		20		2.10	0.04	0.40	323	2	0.05	18	(0.01	(2	<2	<2	20	<5	<3	42
18+005 18+505	(0.1	1 96	(3	00	13	V.10	0.7		28		2.34	0.04	0.48	400	3	0.06	27	<0.01	6	<2	<2	18	<5	<3	52
1 94000 194000	(0.1	1.70	13	00	()	0.13	1.0	13	38	20	3.16	0.06	0.64	271	4	0.11	37	<0.01	14	<2	<2	14	<5	<3	52
	(0.1	1.69	(3	63	(3	0.22	0.9	10	32	9	2.28	0.05	0.51	303	4	0.07	26	(0.01	6	<2	<2	22	<5	(3	55
18+005 19+50E	<0.1	1.31	(3	68	<3	0.17	0.9	9	30	8	2.22	0.05	0.44	332	3	0.08	21	0.01	8	<2	<2	17	<5	<3	43
L8+005 20+00E	(0.1	1.81	(3	72	12	0 22	0.9	10	20	,	2.20	A A5		~	•										
110+00N 0+00	(0.1	1 34	/2	40	/2	0.20	0.0	10	23		2.30	0.05	0.03	247	3	0.05	20	(0.01	1	<2	<2	23	<5	<3	46
110+001 0+505	(0.1	1 20	10	50	()	0.30	0.3	10	28	1/	2.3/	0.05	0.59	254	2	0.05	16	0.10	<2	<2	<2	25	<5	<3	40
	(0.1	1.20	13	36	(3	0.33	1.1	11	30	16	2.42	0.06	0.57	304	3	0.06	15	0.06	4	<2	<2	29	<5	<3	39
LIGTON ITUE	(0.1	1.31	(3	28	(3	0.29	0.9	11	29	12	2.36	0.05	0.53	306	3	0.05	14	0.03	8	<2	<2	25	(5	(3	33
L10+00N 1+50E	(0.1	1.33	<3	113	<3	0.33	1.0	11	30	10	2.49	0.06	0.53	461	2	0.06	15	0.13	8	<2	(2	30	<5	(3	39
L10+00N 2+00E	0.1	1.32	<3	102	<3	0.46	1.0	11	29	11	2.52	0.07	0.55	584	2	0.06	19	0.11	7	(2	(2	40	(5	(3	50
L10+00N 2+50E	<0.1	1.20	<3	70	(3	0.30	0.8	10	29	8	2.34	0.05	0.51	414	3	0.05	13	0.05		0	12	27	/5	/2	20
L10+00N 3+00E	0.2	1.38	<3	49	<3	0.41	1.0	11	29	21	2.51	0.07	0.53	302	2	0.07	16	0 03	4	12	12	2/	\J /5	(3)	37
L10+00N 3+50E	0.1	1.71	<3	51	<3	0.24	0.7	9	28	15	2.58	0.05	0.47	185	2	0.06	17	(0 01		12	12	24	(5	(3)	39
L10+00N 4+00E	<0.1	1.63	<3	72	<3	0.28	0.8	10	29	13	2.39	0.05	0.50	286	2	0.05	17	0.06	(2	<2	<2	27	(5	(3	30
L10+00N 4+50E	(0.1	1.67	(3	64	<3	0.29	1.0	11	31	13	2.26	0.05	0 49	208	2	A 65	16	A A5	•	12	10	20			
L10+00N 5+00E	0.2	1.63	<3	66	(3	0.30	0.9	11	30	12	2 26	0.05	0.54	224		V.VJ	10	0.01		14	~~~~	29	()	(3	49
L10+00N 5+50E	(0.1	1.67	(3	70	12	0.24	1 4	10	22	11	2.00	0.00	V. J4	337	3	0.05	16	0.05	(2	(2	<2	31	<5	<3	41
E10+00W 6+00F	(0.1	1.54	/2	52	/2	0.21	1.7	10	32	11	2.3/	0.05	0.53	233	3	0.05	15	0.07	8	(2	(2	25	<5	<3	37
	/ /	1.07	(3)	32	(3	V. ZI	0.6	11	31	12	2.40	0.04	0.53	245	2	0.05	16	0.03	3	<2	<2	21	<5	<3	38
CIVTON OTJUE	(0.1	1.60	(3	33	(3	0.24	0.8	10	26	9	2.24	0.03	0.44	684	2	0.04	8	0.06	<2	<2	<2	25	<5	<3	34
L10+00N 7+00E	(0.1	1.68	<3	77	<3	0.24	0.7	11	27	10	2.44	0.04	0.56	410	1	A 65	12	0 05	12	12	12	~~			
L10+00N 7+50E	(0.1	1.73	(3	53	(3	0.28	0.7	11	22	12	2 01	0.01	0.00	200	1	0.03	12	0.03	12	(2	< <u>(</u> 2	26	()	(3	43
L10+00N 8+00F	(0.1	1 20	/2	57	/2	0.20	0.7		33	12	2.01	0.05	0.64	263	3	0.05	19	0.09	9	<2	<2	26	<5	<3	39
104000 94505	(0.1	1.20	()		(3	0.21	0.8	8	23	Ь	2.0/	0.04	0.48	499	2	0.04	7	0.02	<2	<2	<2	25	<5	<3	26
	(0.1	1./1	(3	22	(3	0.26	0.5	10	30	10	2.56	0.05	0.56	259	2	0.05	10	(0.01	<2	<2	<2	32	<5	<3	31
LIV+VVN 3+VVE	(0.1	1.59	(3	43	<3	0.18	0.5	10	31	10	2.67	0.04	0.59	200	3	0.05	10	0.01	5	<2	<2	23	<5	<3	34
L10+00N 9+50E	0.2	1.42	(3	93	(3	1.20	0.8	13	27	17	2.45	0.14	0.67	522	2	0.06	14	0 05	10	12	12		/ 5	12	
L10+00N 10+00E	<0.1	1.73	<3	53	(3	0.25	1.0	11	28	12	2.62	0.05	0 61	247	2	0.05	17	0.00	10	10	14	60	()	(3	39
L10+00N 10+50E	(0.1	1.66	ä	63	(3	0.22	1.2	11	30	11	2.56	0.03	0.01	27/	2	0.00	17	V. V9	•	(2	(2	26	(5	(3	37
L10+00N 11+00E	<0.1	1.76	(3	99	(3	0.22	0.6	10	27	10	2.35	0.04	0.54	446	2	0.03	14	0.02	<2	<2 <2	<2 <2	25 26	<5 <5	<3 <3	36 31
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	,	ſ	1	0.01	0 01	0.01	,		A A1				-			-		
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000 0	20000	1000	20000	10.00	10 00	10.01	20000	1000	10.01	1	0.01	2	2	2	1	5	3	1
(- Locs Than Minimum) - Grastar Ti	an Mavi		ie - 1000	fficiant	San1-	1000.0	- No Ca	10 4		10.00 00010 Tr	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
V FESS INGN UTHINUM	Y - UICANCE II	iait fiatxti		13 - 1050	in ricient	Sample		- no samp	116 1	INUTALUUS	KESULIS	- rurth	er Anal	yses by A	iternate	nethod	s Suggest	ea.							

1630 Pandora Street, Vancouver, b.C. V5L 1L6

ANALYST: Mall

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

REPORT #: 900703 PA	PRIME EQUI	TIES INC.				PROJE	CI: FERGU	SON		DATE	IN: OCT	23 1990	DA	TE OUT: N	IOV 14 19	90	ATTENTIO	1: MR. EI	DSTER & M	R. LOUGH	EED	PAG	E 11 OF	13	
Sample Name	Ag DDe	A1 Z	Ás Dom	Ba pom	Bi DD a	Ca X	Cď ∎gg	Co ppe	Cr ope	Cu ppe	Fe X	ĸ	Mg	Mn ppe	No ppa	Na X	Ni ppe	P X	Pb pp∎	Sb pp n	Sn pp∎	Sr pp∎	U gpm	H Dom	Zn ppe
110+00N 11+50E	(0.1	1.69	(3	52	'{3	0.18	1.6	. 9	29	17	2.44	0.05	0.66	186		0.08	31	<0.01	7	(2	(2	17	<5	(3	47
110+00N 12+00E	(0.1	1.63	(3	58	(3	0.22	1.4	9	29	10	2.22	0.04	0.55	192	3	0.06	23	<0.01	11	<2	<2	20	<5	(3	51
110+00N 12+50E	(0.1	1.77	(3	49	(3	0.22	1.6	12	35	17	2.82	0.05	0.66	275	4	0.06	34	0.02	11	<2	<2	20	<5	<3	50
110+00N 13+00E	(0.1	1 71	(3	55	(3	0.21	1.0	10	29	11	2.41	0.05	0.53	274	4	0.06	26	(0.0)	7	(2	<2	22	<5	(3	47
L10+00N 13+50E	<0.1	1.80	<3	97	<3	0.26	1.2	10	30	10	2.57	0.06	0.49	669	4	0.07	27	<0.01	14	<2	<2	20	<5	<3	49
L10+00N 14+00E	<0.1	1.75	(3	72	(3	0.20	1.1	11	33	14	2.79	0.05	0.51	408	4	0.07	30	<0.01	12	<2	<2	17	<5	(3	45
L10+00N 14+50E	<0.1	1.50	<3	52	<3	0.23	1.3	10	34	11	2.54	0.05	0.45	216	5	0.06	26	<0.01	15	<2	<2	21	<5	<3	42
L10+00N 15+00E	0.1	1.31	<3	63	(3	0.19	0.8	7	24	11	1.84	0.04	0.38	229	3	0.05	18	<0.01	9	<2	<2	19	<5	<3	36
L10+00N 15+50E	<0.1	1.63	<3	73	<3	0.22	0.8	11	29	12	2.45	0.05	0.50	299	4	0.05	29	0.03	11	<2	<2	21	<5	<3	49
L10+00N 16+00E	<0.1	1.34	<3	45	<3	0.18	1.0	8	24	8	1.95	0.05	0.43	272	2	0.06	17	<0.01	6	<2	<2	17	<5	<3	44
L10+00N 16+50E	0.2	1.47	(3	66	<3	0.20	1.1	9	26	8	2.09	0.04	0.39	318	2	0.05	20	(0.01	8	(2	<2	20	۲5	<3	44
L10+00N 17+00E	0.1	1.68	<3	65	<3	0.17	1.3	10	27	10	2.34	0.04	0.48	397	3	0.06	30	<0.01	7	<2	<2	18	< 5	<3	54
L10+00N 17+50E	<0.1	1.79	<3	74	<3	0.13	0.7	11	34	21	2.93	0.06	0.59	249	3	0.10	37	<0.01	18	<2	<2	13	<5	<3	50
L10+00N 18+00E	<0.1	1.73	<3	72	(3	0.23	1.0	10	32	12	2.37	0.06	0.52	312	4	0.06	31	<0.01	10	<2	<2	23	<5	<3	59
L10+00N 18+50E	(0,1	1.33	<3	68	(3	0.17	1.1	9	29	11	2.22	0.05	0.45	329	3	0.07	28	0.01	11	<2	<2	17	<5	<3	46
L10+00N 19+00E	<0.1	1.77	<3	71	<3	0.21	1.3	10	28	10	2.30	0.05	0.53	240	3	0.05	20	<0.01	8	<2	<2	22	<5	<3	48
L10+00N 19+50E	<0.1	1.21	<3	48	<3	0.30	1.0	10	28	19	2.39	0.06	0.55	256	3	0.06	21	0.10	8	<2	<2	25	<5	<3	42
L10+00N 20+00E	<0.1	1.22	<3	54	<3	0.32	1.3	10	29	18	2.38	0.07	0.55	296	3	0.06	20	0.06	12	<2	<2	28	<5	<3	41
L10+005 0+00	<0.1	1.32	<3	59	<3	0.29	1.0	10	29	16	2.39	0.06	0.54	305	2	0.05	19	0.03	9	<2	<2	25	<5	<3	37
L10+00S 0+50E	<0.1	1.31	<3	112	<3	0.32	1.0	10	29	14	2.48	0.07	0.52	455	2	0.06	19	0.12	10	(2	<2	30	<5	<3	42
L10+005 1+00E	<0.1	1.29	<3	99	<3	0.43	1.5	10	27	14	2.45	0.08	0.53	560	2	0.05	22	0.10	9	<2	<2	39	<5	<3	51
L10+00S 1+50E	<0.1	1.21	<3	70	(3	0.29	1.3	9	28	12	2.32	0.06	0.51	405	2	0.05	18	0.06	8	<2	<2	27	<5	<3	41
L10+005 2+00E	<0.1	1.35	<3	49	<3	0.40	0.9	11	28	25	2.52	0.09	0.52	299	3	0.07	22	0.03	10	<2	<2	30	<5	<3	37
L10+00S 2+54E	<0.1	1.61	<3	51	(3	0.24	1.1	9	28	19	2.62	0.06	0.46	185	3	0.06	21	<0.01	10	<2	<2	24	<5	<3	33
L10+005 3+00E	<0.1	1.62	<3	72	<3	0.27	0.7	10	28	17	2.39	0.06	0.50	281	2	0.05	21	0.06	6	<2	<2	27	<5	<3	39
L10+00S 3+50E	<0.1	1.62	<3	63	<3	0.29	0.8	11	31	18	2.28	0.07	0.48	307	3	0.05	20	0.05	7	<2	<2	29	<5	<3	51
L10+005 4+00E	<0.1	1.57	<3	66	(3	0.30	1.0	11	31	17	2.38	0.07	0.54	338	3	0.05	20	0.06	11	<2	<2	32	<5	<3	44
L10+00S 4+50E	<0.1	1.69	<3	70	<3	0.24	0.9	10	30	17	2.59	0.05	0.53	257	3	0.05	17	0.07	8	<2	<2	25	<5	<3	40
L10+005 5+00E	<0.1	1.54	(3	52	<3	0.19	0.7	10	29	17	2.37	0.05	0.53	237	3	0.05	20	0.03	8	<2	<2	21	<5	<3	41
L10+005 5+50E	<0.1	1.56	<3	98	<3	0.23	0.8	10	26	14	2.22	0.05	0.44	682	3	0.04	12	0.06	5	<2	<2	25	<5	<3	37
L10+005 6+00E	0.2	1.52	<3	77	<3	0.24	0.7	11	28	15	2.44	0.06	0.53	419	3	0.05	17	0.05	7	<2	<2	26	<5	<3	46
L10+005 6+50E	0.1	1.73	<3	52	<3	0.26	1.0	11	30	17	2.70	0.07	0.64	252	3	0.05	25	0.09	9	<2	<2	26	<5	<3	- 41
L10+005 7+00E	0.1	1.19	<3	57	<3	0.20	0.7	8	24	12	2.03	0.05	0.48	492	1	0.04	12	0.03	5	<2	<2	24	<5	<3	30
L10+00S 7+50E	0.1	1.65	<3	54	<3	0.25	0.9	9	28	16	2.51	0.06	0.55	253	3	0.05	17	<0.01	8	<2	<2	32	(5	<3	35
L10+005 8+00E	0.1	1.61	<3	43	<3	0.17	1.1	10	29	16	2.65	0.06	0.60	196	3	0.05	15	0.02	9	<2	<2	23	<5	<3	38
L10+005 8+50F	(0.1	1.47	<3	92	(3	1.15	1.2	12	25	24	2.40	0.14	0.68	502	2	0.06	18	0.05	6	<2	<2	64	<5	<3	37
110+005 9+00F	(0.1	1.69	(3	54	(3	0.25	1.0	11	28	19	2.69	0.06	0.61	252	3	0.06	17	0.05	ß	<2	<2	26	<5	<3	41
110+00S 9+50F	(0.1	1.63	(3	63	ä	0.21	1.0		29	17	2.56	0.06	0.56	274	3	0.05	19	0.02	9	(2	<2	25	(5	(3	40
L10+005 10+00E	<0.1	1.59	<3	99	(3	0.22	0.4	10	27	16	2.37	0.06	0.52	460	2	0.04	16	0.04	9	<2	<2	26	۲\	<3	35
Minimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	i	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
< - Less Than Minimum	> - Greater T	lhan Maxi	aua i	s - Ins	ufficien	t Sample	ns	- No Samo	le	ANONALOU	S RESULT	S - Furtl	her Anal	vses By	Alternati	e Method	s Suooes	ted.							

1630 Pandora Street, Vancouver, B.C. VSL 116 Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

EPORT 1: 900703 PA	PRIME EQUI	TIES INC				PROJE	CT: FERG	JSON		DAT	E IN: OC	T 23 199	Ú DA	TE OUT: M	NOV 16 1	990	ATTENTIO	IN: MR. F	OSTER & M	IR. LOUGH	IEED	PAG	E 12 07	13	
ample Name	Ag DDe	A1 7	As	Ba	Bi	Ca 7	Cd	Ĉo DD G	Cr	Cu	Fe	K Z	Mg	Mn	Ho noe	Na 7	Ni	F Y	Pb	Sb	Sn	Sr	U	N	1
10+005 10+50E	(0.1	1.85	(3	62	(3	0.20	2.4	11	30	13	2.62	0.05	0.62	250	4	0.05	24	(0.0)	(2	/2	() ()	2011	25	/2	, vi
10+005 11+00F	(0.1	1.37	(3	53	(3	0.16	1.0	 4	26	16	2,35	0.03	ú 48	287	3	0.04	28	(0.01	á	12	25	16	15	20	
10+005 11+50F	0.2	1.56	(3	92	(3	0.25	19	10	26	10	2 26	0.04	0.45	479	4	0.04	20	0.04	7	12	22	22	1.0 2.5	20	
10+005 12+005	/0.1	1 70	12	71	/2	0.22	1.0		20	12	2.20	0.04	0.55	252	, ,	0.05	20	70.03	10	10	(2)	20	\J /c	10	
10+000 12+000	(0.1	1.70	10	11	10	0.22	1.0	10	20	14	2, 11	0.04	0.00	204	2	0.00	20	10.01	14	14	12	44	13	10	
10+003 12+306	(0.1	1.33	(3	67	15	V. 26	1.5	10	27	11	2.21	0.05	0.45	231	4	0.05	20	0.03	< <u>7</u>	11	12	20	()	ن >	
10+005 13+00E	<0.1	1.35	<3	62	<3	0.25	<0.1	8	25	8	1.98	0.04	0.38	346	3	0.04	17	0.02	<2	$\langle 2$	<2	23	<5	<3	4
10+005 13+50E	<0.1	1.87	<3	56	<3	0.23	1.0	12	32	16	2.87	0.05	0.63	350	4	0.05	33	<0.01	<2	<2	<2	22	<5	<3	
10+00S 14+00E	<0.1	1.41	(3	76	<3	0.15	2.0	9	25	8	2.01	0.03	0.41	348	3	0.04	28	<0.01	<2	<2	<2	16	(5	<3	6
10+005 14+50E	<0.1	1.40	<3	73	<3	0.17	(0.1	7	26	B	2.08	0.04	0.40	335	3	0.05	26	0.04	<2	<2	<2	17	<5	(3	4
10+005 15+00E	<0.1	1.43	<3	64	<3	0.15	1.4	8	26	10	2.27	0.04	0.47	224	3	0.05	27	<0.01	<2	<2	<2	13	<5	(3	5
10+005 15+50E	<0.1	1.26	<3	132	<3	0.18	1.0	10	25	12	2.11	0.03	0.40	1047	2	0.04	30	0.04	2	<2	(2	15	<5	<3	5
10+005 16+00E	<0.1	1.52	<3	73	<3	0.17	1.3	8	28	12	2.35	0.05	0,48	234	2	0.06	28	0.01	(2	(2	<2	16	<5	(3	4
10+00S 16+50E	<0.1	1.69	<3	53	<3	0.24	1.5	11	30	11	2.63	0.06	0.54	292	4	0.04	28	(0.01	(2	<2	(2	24	<5	(3	e
10+00S 17+00E	<0.1	1.35	(3	54	(3	0.22	(0.1	9	27	12	2.35	0.03	0.49	247	3	0.04	25	0.07	(2	(2	(2	20	(5	(3	4
10+00S 17+50E	0.1	1.63	(3	49	<3	0.23	1.6	12	32	14	2.62	0.05	0.51	294	3	0.04	29	0.02	<2	<2	<2	22	<5	<3	5
101005 10105	0.1	1.61	13	54	(2	0.22	1 2	G	21	11	2 22	0.05	0 50	219	2	0.04	26	/0.01	12	12	12	^ 2	/5	12	
10:003 10:000	/0.1	1.01	()	00	(3	0.23	1.0	0	20	11	2.32	0.03	0.52	213		0.07	20	(0.01	12	14	(2	23	(J) (E	(3	
10+005 10+305	(0.1	1.41	(3	20	(3	0.22	1.2	7	30	10	2.92	0.03	0.31	338	2	0.06	16	(0.01	5	(7	(2	21	()	(3	4
10+005 19+00E	0.2	1.93	(3	/0	(3	0.23	(0.1	8	23	4	1.89	0.05	0.4/	530	3	0.03	18	(0.01	3	(2	(2	23	< 5	(3	4
10+005 19+50E	(0.1	0.88	< 3 (3	33	(3	0.20	(0.1	5	21	2	1.68	0.04	0.26	169	3	0.04	13	<0.01	15	<2	<2	19	<5	<3	3
10+005 20+002	(0.1	1.40	(3	101	3	V. 23	1.5	Э	27	у	2.10	0.05	0.45	225	3	0.04	20	0.03	<2	<2	(2	23	<5	(3	4
12+005 0+00E	<0.1	1.22	<3	64	<3	0.22	(0.1	7	23	9	1.74	0.04	0.36	185	2	0.03	20	<0.01	<2	<2	<2	21	<5	<3	4
12+005 0+50E	(0.1	1.73	<3	64	<3	0.23	1.6	10	32	10	2.26	0.05	0.50	224	3	0.04	26	<0.01	<2	<2	(2	24	<5	< 3	5
12+005 1+00E	<0.1	1.33	<3	42	<3	0.23	<0.1	7	24	7	2.04	0.05	0.49	232	2	0.03	18	<0.01	<2	<2	<2	26	<5	<3	4
12+00S 1+50E	<0.1	0.99	<3	40	<3	0.22	(0.1	6	27	9	2.00	0.04	0.33	171	3	0.03	20	<0.01	6	<2	<2	23	<5	<3	3
12+005 2+00E	<0.1	1.19	<3	77	<3	0.20	<0.1	7	23	7	1.72	0.03	0.35	342	2	0.02	17	<0.01	<2	<2	<2	22	<5	<3	4
1 2 +005 2+50E	(0.1	0.99	(3	41	<3	0.17	(0.1	5	20	8	1.61	0.02	0.29	186	(1	0.02	18	0.04	<2	<2	<2	18	<5	<3	3
12+005 3+00E	<0.1	1.19	<3	50	(3	0.24	0.9	7	25	7	2.04	0.04	0.38	369	3	0.03	20	<0.01	4	<2	<2	26	<5	<3	3
12+005 3+50E	0.2	1.44	<3	81	<3	0.29	1.1	12	31	9	2.35	0.05	0.44	1361	3	0.04	26	0.03	<2	<2	<2	32	<5	(3	4
12+005 4+00E	<0.1	1.38	<3	64	<3	0.23	1.6	8	29	9	2.24	0.04	0.47	348	2	0.03	20	<0.01	2	<2	<2	25	<5	<3	4
12+005 4+50E	0.2	1.74	<3	53	<3	0.23	1.6	11	30	9	2.78	0.05	0.48	269	4	0.04	25	<0.01	<2	<2	<2	22	<5	(3	5
19+005 5+00F	(0.1	1.41	(3	64	(3	0.22	1.6	я	27	10	2.21	0.04	0 41	258	3	0.03	24	(0.01	4	()	()	21	/5	13	4
12+005 5+50E	(0.1	2.31	(3	116		0.49	1.4	12	25	22	3 12	0.09	0.56	695	2	0.07	26	(0.01	(2	12	12	29	/5	(2	
10+005 6+00F	0.2	1.90	(3	211	(3	3 31	1 8	13	27	25	2 72	0.26	0.50	2711	ć	0.07	20	0 32		12	12	52	\J /5	10	15
101000 61500	0.2	A 95	()	71	10	10 00	1.0	10	14	17	1.05	0.10	0.32	2711		0.03	30	0.32	ri Ti	12	12	32	(5)	(3	10
18-000 3-000	0.2	0.33	(3)	11	(3)	/10.00	V.0	ں د	14	17	1.03	0.36	0.23	010	(1	0.06	17	0.14	10	(2	12	104	()	(3	
INCTUUS /TUUE	(0.1	2.28	د)	112	(3	V.63	1.4	12	34	13	3,13	V.11	V.43	841	2	V. U6	42	0.01	(2	(2	<2	32	(5	(3	5
12+005 7+50E	<0.1	1.93	(3	77	(3	0.29	1.5	10	32	16	2.88	0.06	0.46	305	2	0.07	32	<0.01	17	<2	<2	19	<5	<3	5
14+005 B+00E	<0.1	1.60	(3	64	(3	0.18	0.6	8	29	8	2.41	0.04	0.47	255	2	0.05	26	(0.01	<2	<2	<2	18	<5	<3	5
12+005 8+50E	<0.1	1.49	(3	80	(3	0.17	1.9	10	49	10	2.38	0.03	0.45	351	5	0.04	42	0.02	<2	<2	<2	17	<5	<3	5
11+005 9+00E	<0.1	1.30	<3	92	(3	0.19	0.8	8	30	6	2.03	0.03	0,42	389	2	0.03	26	0.02	4	<2	<2	20	<5	<3	5
inimum Detection	0.1	0.01	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	
aximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	2000

< Less Than Minimum > - Greater Than Maximum is - Insufficient Sample ns - No Sample ANOMALOUS RESULTS - Further Analyses By Alternate Methods Suggested.

ANALYST: Mg 16

1630 Pandora Street, Vancouver, B.C. V5L 1L6

Ph: (604)251-5656 Fax: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO, to H $_2$ O at 95 °C for 90 minutes and 1s diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sn, Sr and W.

ANALYST: My

REPORT #: 900703 PA PRIME EQUITIES INC.						PROJ	ECT: FER	GUSON		DAT	E IN: 00	T 23 1990) D#	ATE OUT:	NOV 14 1	990	ATTENTIO	DN: MR. :	OSTER &	MR. LOUG	HEED	PA	6E 13 0	F 13	
Sample Name	Ag	Al	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	κ	Ħg	Mn	No	Na	Ni	P	РЪ	Sb	Sn	Sr	U	¥	Zn
		X	op∎	ppa	ppm	ĩ	pps	ppa	pp a	00 n	ĩ.	7.	Z	000	004	7.	000	ĩ	008	00	004	008	0.06	00.	0.04
L12+005 9+50E	<0.1	1.29	<3	62	<3	0.21	1.3	10	32	8	2.30	0.04	0.50	318	6	0.04	23	(0.01	(2	(2	(2	21	(5	(3	46
L12+005 10+00E	(0.1	1.36	<3	101	(3	0.20	0.4	10	28	5	1.99	0.05	0.39	420	6	0.04	20	(0.01	(2	(2	(2	21	(5	(3	60
L12+00S 10+50E	0.1	1.43	<3	i18	<3	0.19	1.0	10	33	10	2,26	0.05	0.39	330	8	0.06	26	<0.01	()	(2	(2	20	(5	/3	86
L12+005 11+00E	0.1	1.55	<3	43	<3	0.20	1.6	11	29	61	2.56	0.08	0.48	226	5	0.10	33	(0.01	(2	(2	12	17	(5	()	572
L12+005 11+50E	<0.1	1.20	<3	52	<3	0.19	0.8	9	28	7	2.04	0.06	0.39	258	6	0.04	21	0.01	<2	<2	<2	21	<5	<3	47
L12+005 12+00E	<0.1	1.32	<3	107	<3	0.20	1.2	10	29	8	2.17	0.06	0.41	590	5	0.04	21	0.03	(2	(2	(2	22	(5	(3	61
L12+005 12+50E	<0.1	1.27	<3	79	<3	0.21	0.7	10,	32	5	2.28	0.06	0.44	891	7	0.05	20	<0.01	(2	(2	(2	24	(5	(2	52
L12+00S 13+00E	<0.1	1.00	<3	55	(3	0.15	0.6	8	33	6	1.93	0.05	0.34	404	6	0.03	27	(0.01	()	(2	(2	20	<5 <5	(3	27
L12+005 13+50E	<0.1	1.43	<3	53	<3	0.13	1.4	8	31	6	2.50	0.06	0.51	324	7	0.06	18	(0.01	(2	(2	(2	16	<5 <5	(3	28
L12+005 14+00E	<0.1	1.29	<3	69	<3	0.17	1.2	8	30	3	2.26	0.05	0.37	562	5	0.05	11	<0.01	<2	<2	<2	20	(5	<3	43
L12+00S 14+50E	<0.1	1.13	<3	42	<3	0.13	1.0	7	28	3	2.05	0.05	0.37	272	6	0.05	9	<0.01	<2	<2	<2	15	(5	(3	35
L12+005 15+00E	(0.1	1.04	<3	39	<3	0.21	0.6	10	28	5	2.09	0.06	0.39	333	6	0.04	15	(0.01	(2	(2	(2	24	(5	(3	39
L12+005 15+50E	<0.1	1.10	<3	41	<3	0.14	0.8	7	23	4	1.88	0.06	0.33	265	4	0.05	6	(0.01	(2	(2	(2	16	(5	(3	36
L12+005 16+00E	<0.1	0.91	(3	24	(3	0.13	0.8	7	24	3	1.81	0.05	0.33	127	6	0.04	7	(0.01	2	(2	(2	17	(5	(3	28
L12+00S 16+50E	0.3	0.88	<3	90	<3	5.45	1.5	8	24	36	1.71	0.17	0.91	366	6	0.06	15	0.07	12	<2	<2	394	<5	<3	40
L12+00\$ 17+00E	0.2	1.12	<3	53	<3	2.89	1.4	7	24	14	2.09	0.18	0.72	194	6	0.06	20	<0.01	32	<2	<2	172	<5	(3	68
L12+005 17+50E	0.1	1.51	<3	77	<3	1.01	1.4	8	27	13	2.13	0.13	0.83	354	7	0.05	10	(0.01	<2	<2	(2	169	(5	(3	39
L12+00S 18+00E	0.1	1.39	<3	44	<3	1.47	1.3	11	31	11	2.48	0.15	0.91	293	7	0.06	14	0.05	<2	<2	(2	106	(5	<3	45
L12+00S 18+50E	0.2	1.18	<3	82	<3	7.45	1.4	8	27	23	1.84	0.18	1.00	365	7	0.06	17	0.04	<2	<2	<2	377	<5	(3	39
L12+005 19+00E	0.1	1.39	<3	57	(3	0.58	0.9	11	34	15	3.46	0.13	0.72	285	8	0.07	19	<0.01	15	<2	<2	77	<5	<3	43
L12+005 19+50E	0.2	1.12	<3	55	<3	0.64	1.5	8	25	7	2.18	0.12	0.57	421	6	0.05	8	<0.01	7	<2	(2	85	<5	(3	28
L12+005 20+00E	0.1	1.28	<3	40	<3	1.45	1.4	11	32	18	2.48	0.16	0.68	253	6	0.06	16	<0.01	4	<2	(2	86	<5	<3	42
Minimum Detection	0.1	0.01	3	i	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	i	0.01	2	2	2	1	5	3	1
Maximum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
<- Less Than Minimum	> − Greater T	han Maxii	nun i	is - Ins	ufficient	: Sample	ns ns	- No Samp	le	ANGHALOU	S RESULT	S - Furth	er Anal	yses By A	Alternate	. Hetho	ds Sugges	ted.							

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

REPORT NUMBER: 900702 AB	JOB NUMBER: 900702	PRIME EQUITIES INC.	PAGE 1 OF 1
SAMPLE #	Pb %	Zn %	
8203	60.20		
8205		21.10	
8206	70.80	2.52	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm .01

.01 1 ppm = 0.0001% ppm = parts per million < = less than

Mgml C signed: - --

VGC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

	REPORT NUMBER: 900702 AA	JOB NUKBER: 900702	PRIME BQUITIES INC.	PAGE	1	OF	1
e	SAMPLE #	Ag oz/st					
	8203	13.77					
	8206	22.71					

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001%

4 Z

pp**n** = parts per million

14

< = less than

	٩	100 E	200	E 300 E	400 E	500 (E 600	E 700	E 800	E 900 E	1000 E	1100 E	1200 E	1300
n = 1 n = 2 n = 3 n = 4		-	3038 5122 7418 6908	1484 18134 36 2638 11818 1396 1456 11 2740 1487	100 52446 311 42876 58527 808 36110 62 9629 4239	149 4799 1 5204 2221 80 2227 2 2983 2912	348 480 917 1884 917 1876 3737 1 5528 5087	911 1154 1 1206 1292 083 1211 1 1077 1017	1417 1652 1 1522 1893 1187 1601 2 1130 1758	1613 1085 160 1848 2027 2120 3005 195 3591 2781	1 1407 817 1846 775 9 688 659 978 754 1	411 120 691 834 1548 942 1346 1570	4 1617 299 1805 1605 1229 163 1474 1630	0 2214 3095 1633 3 2096 1193 2019
n = 1 n = 2 n = 3	0	100 E	200 11.2 6.9	E 300 E 8.4 2.8 2. 9.6 3.8 1.2 10.4 4	400 E .7 2.8 2. 2.8 3.6 5 3.8 3.	500 E 8 1.7 6 2.8 6.8 0 7.9 8	E 600 f 6.1 5.8 7 9.1 8.9 0.6 11.4 13	700 .3 11.1 / 1 12.9 15.8 2.4 /5.8 1	E 800 7.2 13.1 <u>1</u> 11.7 17.9 0.4 16.9 1	E 900 E 3.1 10.1 11.9 16.7 13.5 8.4 17.6 18.4	1000 E 12.6 28.3 19.7 27.8 2 21.9 21.7	1100 E -29.5 22 4 3.8 21.5	1200 E 21.5 20. 26.5 29.2 4.2	1300 19.2 1 17.4 15.8 2 14.1
n = 4	Q	100 E	200 (10.9 10.2	400 E	7.5 9.8 500 E	= 600 E	- 16.0 10.3	15.8 16.2 E 800 E	19.4 23.0 1	1000 E	6.7 28.5 1100 E	25.5 -23.9 1200 E	20!3 \12.9 1300

	0	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200 E	1300
ı = 1 n = 2 n = 3 n = 4		92 <u>0</u> 1200 119 1312 106	807 811 8 786 3 1065 2797 5 3827 2	1830 315 120 534 85 2669 3028 198 4592 262	1501 926 2) 2051 11 942 2208 26 983 21	1192 -940- 068 1319 14 942 1977 061 1884 21	- 1087 <u>823</u> 427 1417 121 <u>1677 17</u> 52 178 2072 156	4010 972 06 1312 94 1178 1105 94 987 97	641 507 12 656 59 867 791 8 988 12	431 528 57 637 57 856 718 43 1028 80	384 429 507 7 634 760 7 851 12	739 1409 78 1713 1 1451 1295 281 1087 1	997 2515 022 1556 1413 2142 649 1920	5 1976 3649 3109 2 4974 5 2887 4936
	0	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200 E	1300
n = 1 n = 2 n = 3 n = 4		-0.5 -1.0 1.3 1.6 13.4	1.8 12.4 11.2 5 12.4 1.1 4.5 7	10 4 22.0 .8 9)8 28. 7.3 15.3 .8 13.7 17.	11.8 18.5 6 18.8 15 30.3 16.7 7 25.5 18	13.1 9.1 .9 16.9 14 16.5 21.4 .2 18.9 18		11.9 10.2 7 19.2 18. 19/8 23.7 5 22.0 24.	14.4 15.9 8 19.7 17. 21.5 15.4 2 15.9 12.	11.6 4.5 .1 12.5 16. 15.7 19.7 .9 19.9 17.	13.2 12.5 9 12.9 18 15.6 18.5 4 20.9 21	11.3 11.9 17 18.5 11 22.8 16.4 .4 18.9 19	10.2 15.0 2.9 15.9 17.2 14.9 3.2 14.9 1	10.9 14.1 17.7 1 16.6 18.2
	0	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200 E	1300 77777

0	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200	E 1300
	78 <u>3</u> 1652 130 2761 312	849 949 33 1098 10 1493 1044 25 1372 10	935 640 03 962 7 930 2021 16 973 1	488 501 744 659 919 788 204 1057	512 530 654 623 774 718 942 807	528 479 673 628 6 691 765 754 824 11	506- 768 12 10 13 8 1830 942 78 901 7	777 621~ 873 765 8 707 824 740 722 1	408 515 960 806 79 1282 1092 151 1584 12	743 898 6 1119 11 1053 1229 74 1147 20	825 1229 71 1714 1 2104 1784 72 2120 2	889 1 419 1417 1884 1 269 1884	702 2147 26 2060 2548 495 2826 24 2231 2691
0 L	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200	E 1300 (
	5.0 9.5 8. 10.1 10:	$\begin{array}{c} 6.1 & 3.0 \\ 5 & 6.0 & 5. \\ 8.4 & 8.5 \\ 1 & 11.2 & 13. \end{array}$	4.3 6.3 8 8.6 1 -10.4 13.6 .4 15.6 1	40.5 8.8 2.1 12.2 1 11.9 14.7 2.9 12.5 1	<u>8.5</u> <u>9.1</u> 3.2 <u>14.7</u> <u>1</u> 18.8 <u>19.7</u> 7.1 <u>19</u> :9 <u>2</u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.3 7.3 . 3 9.8 11 12.9 12.5 .6 15.4 14	4.5 7.2 0.2 8.9 11 12.9 12.9 12.9 4.1 15.7 13	7.3 2.8 2.9 9.7 4. 14.2 11.3 3.4 14.6 11	1.8 3.3 1 2.8 3. 5.6 2.5 1 4.8 4.	2.8 4.5 1 4.8 6.4 4.8 6.3 8	6.7 .3 8.6 .8 7.6	7.5 7.6 10 7.5 10.9 3.3 11.9 11 10.4 10.9
0	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200	E 1300 E

.

.

	Q	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200 E	1300
n = 1 n = 2 n = 3 n = 4		434 844 1374 2	312 394 824 645 32 1537 528 2529 1151 129	381 1497 4 858 2320 715 1452 99 1199 824	4056 2212 0 1109 120 1086 576 57	1220 1032 08 1199 78 1972 1028 6 910 15	370 370 370 370 370 370 370 370 370 370 370 370 370	370 457 572 53 TOGD 558 5 887 55	373 377 0 <u>531 5</u> 628 771 8 768 9	605 577 85 765 87 677 1839 01 1060 119	604 825 9 799 18 1017 942 91 1193 16	1036 1462 42 2093 16 1929 1919 60 1649 30	1265 2418 128 2575 1 2788 1978 100 2035 1	2054 2104 2054 2104 2871 2 2512 31 85
n = 1 n = 2	Q	100 E 3.0 1.8	200 E 2.8 5.6 2.8 6.1 13.	300 E 9.8 1 5.9 0 14.6 998	400 E 10.3 10.3	500 E 10.4 6.9 7 12.9 11	600 E 2.8 1.3 .★ 5.5 5.8	700 E 1.3 3.0 5.6 11.	800 E 8.3 8.4 6 12.8 10	900 E -4. 3 7.3 .6 8.5 7.	1000 E 10.1 10,1 6 (13.1 (8.	1100 E 5.6 7.4 1 t 0.4 10	1200 E 6.2 9.1 1.5 10.6	1300 8.7 9.4 10.4
n = 3 n = 4		1.8	5.6 13.4 12.	-15.2 (5.6 7 10.1 17.4	18.7 15.9 I 14:	17.7 14.1 + 15.9 14	12.9 1 0.2 .6 17.1 12.1	10.2 12.6 2 16.2 15:	14.6 14.7 2 14.1 17	- 15. 0 10.7 .2 15.7 13.	9.2 12.1 2 14.9 11.	7.5) 12.9 .7 11.9 16	13.9 9.4 .1 14.4 1	11.2 13 11.6 12.4
	0	100 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	900 E	1000 E	1100 E	1200 E	1300

LEGEND

LEGEND

.

i.__**i**. . .‡

.

																		•	,	· · · · ·					
	0+00	2+00)E	4+00 	E 	6+00)E 	8+0 	00E	1	10+00E 	1	12+0 	0E	1	14+00E 	1	16+00E 		18+00 	: 	20	0+00E		
N+1000.00		8 8 33 39 0 ,0 +	7 4 4 50 39 3 1 .0	4 2 4 30 3 2 1 1	3 0 6 49 41 9 .0 .2	8 37 	3 0 (38 34 - 0 .0 -	0 9 43 39 .0 1.0 1	0 0 26 31 .0 .0	5 10 34 3) 4 4 37 2 .0	7 2 36 31 0 .0	7 47 .0	11 11 51 50 .0 .0	7 14 47 49 .0 .0	12 15 45 42 .0 .0	5 9 2 36 1 1	11 6 49 44 .0 .0	8 7 44 54 1.2 1.1	18 10 50 55 .0 .0	11 9 46 1.0 1	8 8 48 42 .0 .0	12 41 -0	N+1000.00	
N+800.00	0 0 42 49 -0	2 0 52 51 5	0 0 0 44 51 4 0	0 4 4 46 5) .0 .0	0 0 3 62 56) .0 .0		0 0 53 57 0 .0 .	30 4963 .010	0 0 51 41 .2 .5	0 0 55 6 .0 .0	3 54) .0	12 0 50 57 .0 .0	0 58 	50 9062 .0,1	0 0 83 61 .0 .0	0 0 43 46 .0 .0	6 61 .0	0 0 82 57 .0 ,.0	0 0 60 103 .0 .0	0 0 130 5 .1 .0	7 67 ,2	0 11 72 50 .0 .0	0 57 .0	N+800.00	
														Þ											
N+600.00	0 0 35 48 .0 .0 1	0 0 40 47 .0 1.0 1	0 0 0 45 37 4 0 .0 .0	000 44413 0.0.0	86 44 53 9 .0 .0	0 (3 54 5 	0 0 (55 47 2 2	0 0 55 49 .1 ,2 ,	0 0 59 58 2 0	0 0 47 4 1.0 1.6	0 0 61) .0	0 0 42 22 .0 .0	0 45 .0 +	0 0 43 39 .0 .0	0 0 32 30 1.0 1.0	0 0 40 44 	4 35 	0 0 61 111 .1 ,2	0 0 130 95 .0 .0	0 15 159 66 14 12		0 0 85 59 .0 .0	0 86 .0	N+600.00	
													:												
N+400.00	0 0 43 48 .0 .0	0 0 44 49 .0 ,0 +	0 0 0 57 37 5 .0 .0	000 52534 0100	0 0 9 47 41 0 + ² 0	0 (48 4 1.0 1	0 0 0 47 46 0 ₁ .0 1	0 0 43 22 .0 ,0 +	0 25 33 28 -2 -4	37 0 37 3 .2 .4	9 32 9 ,0	0 0 49 38 .0 .0	0 47 +.0 +.0	0 0 37 54 .0 ,0	0 0 49 41 +.0 +.0	0 0 42 35 	0 5 41 0 1.0	0 0 41 48 .0 .0	0 0 59 59 +.0 +.0	20 4 63 7 1 .4	$\frac{3}{2} \int_{-\frac{1}{2}}^{\frac{93}{26}} \frac{1}{1}$	6 0 68 46 .0 .0	38 71 .3	N+400.00	
• N+200.00	•• 8 0 25. 57 .7 .2	0 0 33 39 .3 <u>.</u> 2 +	0 0 0 45 39 3 1 10 1	0 0 0 34 31 3 5 ,2 ,4	9 8 22	0 (37 - 1.3 - 1	0 0 1 44 39 1 1 .0 1	0 0 101 90 .0 .0 1	0 0 48 46 .0 .0	20 3 54 3 	16 22 12 49 10	39 24 32 48 .2 1 +2 1	28 46 .1 .1	$ \begin{array}{c} 65 - 73 \\ 363 \\ 14.0 \\ 4.1 \\ 14.0 \\ 14.1 \\ $	93 506 7.9 ,5		45 36 28 29 107 114 5 2	33	20 35 143 58 ,2 ,0	21 4 58 6 .2 .4	$ \begin{array}{c} $	38 0 32 44 2 .0	5 80 .1	N+200.00	
	•														· · · · · ·		ļ			Ĺ					LEGEND:
N+.00	0 0 38 37 .0 .0 +	0 0 39 38 .0 ,0 ,		315 1221 1 7781 5609 7 .2 .5	49 83 52 792 721 47 3 .0 .0	2 90 78 610 7 	181 113 800 490 .0 .1 +	74 127 334 440 .0 .0	84 14 153 37 .0 .3	8 0 67 5 .0 1.0	0 5 35 0 .0	8 8 57 40 .0 .0	0 44 	16 0 31 38 .2 ,2	8 0 50 41 1 .0	2 4 43 4 .0 .0	- 13 7 50 - 4	3 4 49 33 .1 .0	0 0 66 42 1 ⁰ 10	0 5 40 4 ,0,3	0 3 28 +2	0 0 38 38 1 ,2	0 46 .0	N+.00	1221 Pb VALUE IN ppm 5609 Zn VALUE IN ppm -,5 Ag VALUE IN ppm -
								/																	51+ ppm Pb SOIL CONTOUR 51+ ppm Zn SOIL CONTOUR
S-200.00	0 0 35 50 .1 .2 1	00 4748 .0.0	0 26 1 35 85 1 .0 .2	55 6944 2 54 4567 4 2 1.7	251 46 24 39 69 73 1	4 0 1 3 40 3 10 1	0 0 32 21 .1 .0 +	0 0 21 23 .0 .3	0 0 25 37 .0 .0	0 0 42 4 .0 .	0 16 34 0 10	0 0 32 37 +0	0 46 + ^{,0} +	0 0 47 43 .2 1	0 0 30 43 10 .0	0 0 41 3: .0 ,3	0 5 40 3 ,2	0 0 41 34 ,0 ,0	0 0 49 46 00	0 0 50 4 	6 45 ,0	0 0 42 35 10 10	0 38 .0	S-200.00	"0" INDICATES Pb VALUES >2 ppm ".0" INDICATES Ag VALUE >.1 ppm
																					-				GEOLOGICAL BRANCH ASSESSMENT DEPR
S -400.00	0 0 41 51 .0 .1	0 0 37 25 .0 <u>1</u>	0 0 0 43 46 3 .0 ₁ .0 ₁ .1) 0 0 33 43 4 0 ₁ .0 ₁ .1	0 0 0 43 50 47 0 ,0 ,0	0 7 30 1.0	000 3423 .0 <u>.0</u>	0 0 32 29 .0 .0	0 0 27 39 .0 .0	0 0 42 3 .0 ,	0 0 35 32 0 .0	0 0 20 29 .0 1.0	0 33 +	0 0 88 32 .0 .0	0 0 29 32 1.0 1.0	0 0 45 3: ,0,0	0 95 34 9 .0	0 0 49 31 .0 .0		0 0 39 3 	2 21 	0 14 26 49 1 1	7 46 .0	S −400.00	1 L 7 L
																									CL,454
S-600.00	0 0 30 40 .0 .0 +	9 0 22 22 .0 1.0 1	0 0 0 31 33 3 .3 .0	0 0 0 30 40 3 0 .0 .	0 0 0 37 37 38 0 .0 .0	0 8 26 .0	0 0 31 36 .0 ,.4 ,	0 0 46 28 .0 .0	0 0 45 41 .0 .0	0 0 42 3) 0 32 34 0 .0	0 0 41 33 +.0 +.0	0 40 +	0 0 33 39 .0 .5	0 0 36 39 +0 +0	0 0 36 6 .0 .0	0 4 61) .0	6 4 74 62 .0 .0	0 0 49 57 1.0 1.0	0 0 40 3 	0 7 35 	0 9 38 58 .0 .0	0 52 .0	S-600.00	0 <u>100</u> 200 metres
																						<i>(</i>			
S -800.00	0 3 48 21 .0 .0	0 0 24 49 .0 .0 +	0 0 0 41 43 5 .0 ,0 ,.		13 6 0 31 26 34 0 10 10	4 25 + ⁰ +	0 0 62 74 .0 ;2 ;	0 4 45 45 .0 .0	0 0 62 32 1 .0	6 51 .0	5 0 35 47 0 .0	5 0 41 43 -2 -1	0 42 .0	2 5 40 44 .0 .0	0 5 48 47 <u>1.0 .0</u>	2 8 43 4 1 1 1	3 7 40 1 1	3 2 37 32 .0 .0	3 4 47 41 + ^{.0} .0	U 6 42 5 .1 .1	2 52 .0	5 43 ,0 ,0	/ 46 .0	S-800.00	INTERNATIONAL IMPALA RESOURCES LT
								- 0					, O	0	0	0 0		2 0	0 0	n n	6	15 3	0		Figure 6 FERGUSON PROJECT
S-1000.00	9 10 37 42 .0 .0 +	9 8 51 41 .0 .0+	10 10 6 37 33 3 .0 10 1	5 / 1 39 51 4 0 1.0 1	11 8 8 44 40 41 0 10 10	1 37 	7 9 46 41 . <u>2 1</u> +	5 8 30 35 .1 .1	98 37 1.1 .0	8 41 -+.0 -+.	7 7 40 35 0 .0	68 51 +.0 +.0	61 .2 +	54 51 .0 .0	43 59 -+ ^{.0} - ^{.0}	63 4 .0 .0	9 55 3 .0	53 46 .0 .0	52 45 +0 -0	53 5 .1 .1	5 49 .0	34 42 .0 .2	47 .0	S-1000.00	Omineca Mining Division PROPERTY GEOCHEMISTRY
		0 (0 0	4 0 4	o n 4	n	9 16	0 17	0 0	A		。(~~	0	0 0	0 0	0 0) n	0 2	12 22	D •	Ω	15 7	4		Pb, Zn & Ag RESULTS British Columbia
-1200.00	44 58 .0 .0	40 32 .0 .0 	Ă6 36 ,0 ,0 ,0	37 45 0 ,2 ,	45 50 4 0 .2 .0	2 57 0 - + +	153 70 ,2 ,2 ++	57 52 .0 .0	53 59 .0 .0 + +	54 ,0 ,	46 60 0 .0	86 57 1 1	'3 47 - ↓ +.0 - ↓	61 53 .0 .0	27 38 .0 .0	43 3 .0	35 39 0 .0	36 28 .0 .0	40 68 1.3 1.2	39 4 11	5 <u>3</u> 9 ,2 †	43 28 1,1 ,2	42 + ^{.1}	S-1200.00	NIS: 94 C/II MAY 1991 Drafting RV

· .

