| LOG NO: | 0628 | RD. | |----------|------|-------| | ACTION: | | , . · | | | | | | FILE NO: | | - | PROSPECTING AND SOIL SURVEY LOG NO: JAN 20 RO. ACTION: LINK CLAIMS CAT MOUNTAIN OMINECA MINING DIVISION NTS MAP 94 C / 3 W USLIKA LAKE LATITUDE; 56' 04" LONGITUDE; 125' 26" LINK 1 - 14 2 POST CLAIMS -- 14 units -- COMMODITY CU, AU, AG. BY DAN ETHIER PROSPECTOR APRIL 10 / 1991 JUNE 18 / 1991 # GEOLOGICAL BRANCH ASSESSMENT REPORT # 21,449 ### INTRODUCTION The Link claims were staked by Rob Reding on June 29/90 and are 14 units. The claims are located in the Omineca Mining Division, in west central BC. The claims are 5 km west of the Cat Mtn. camp of Lysander Gold Corporation. ### LOCATION The Cat Claims are located in west central BC in the Omineca Mining Division, NTS 94 C / 3 W, Uslika lake. From the junction of the Osilinka river and Ha Ha creek, the claims are 1.4 km northwest to the final posts of Link 11 & 12. The claims extend in a west-north-west direction for 3 km and make a group of 2 post claims that are 2 units wide and 6 units long. ### **ACCESS** The Link claims are accessible by road. From Fort St. James to Germansen Landing, north to Osilinka bridge, 10 km up Osilinka on the north side of the river, 7 km on logging road, and then 3 km on foot to the Link claims. ### CLAIM STATUS LINK 1-8 staked June 29/90, Record # 12074-81. LINK 9-12 " October 4/90, Record # 12626-29 LINK 13-14 " June 2 /91 Tags 633743-44. ## PROPERTY HISTORY In 1971-72 Granby Mining Co. Ltd. conducted a work program in this area which involved a soil survey. No Assessment Report was filed. Personal communication with Lorne Warren, and a field copy of the geochemical soil survey map, indicated strong anomalous values for Cu. Minfile occurrences in the vicinity are; 94 C 069, Betty, Cat claims 5 km east of the Link claims Commodities; Cu, Au, Fe. Deposit type; Previously, vein type; currently, Cu porphyry. Assessment Reports 5290, 5897, 6516. Property History (cont.) Minfile 94 C 058, Ha Ha creek 3 km south east of the Link claims Commodities; Au, Cu. Comments; Free gold in qtz veins in sheared qtz diorite. Geology Assessment Report 5290 describes the general geology of the area. Minfile 94 C 069, Betty, is representative of the property. This report is from the Cat claims 5 km east of the Link. Takla Volcanics border the Hogem Batholith contact and strike north-south in this region. The Batholith is composed of diorite compositions near the contact with the volcanics. Most volcanics grade laterally into the batholith and the contact zone is quite wide, (200'). The Takla series of volcanics which underlie the area is composed of grey, green, and black porphyritic and non-porphyritic andesite and basaltic lavas. Many sedimentary rocks not of volcanic origin include argillite, greywacke, and chert, which make up sections within the Takla formation. ### PROPERTY GEOLOGY The property is underlain principally by mesocratic syenite. There are variations in the syenite, some zoning of leucocratic and melanocratic syenite. There is epidote alteration on fractures, and the biotite has been altered. There is evidence in the residual float of dykes. ### **MINERALIZATION** The syenite hosts a copper porphyry. Disseminated chalcopyrite, magnetite, and pyrite exist in outcrop across the 3.5 km length of the property. Values of Cu to 1547 ppm in rock samples and 1300 ppm in soils exist. The Stake Showing located 340 metres east south east from the Initial posts of Link 13 & 14, show mesocratic syenite outcropping on a small irregular ridge that trends north west. Crosscutting the mesocratic syenite is a band of syenite that contains greater than 50% mafics. This band is enriched with magnetite (11%) and chalcopyrite (Cu 0.15%) and is 4-5 metres wide before a change in the grain size occurs (finer). The unit of rock does not appear to have been remobilized however alteration exists in the feldspars on pg. 8 both sides of the band. Concentrations of the disseminated chalcopyrite and magnetite vary over the length of the property. The limited prospecting program indicates an increase in chalcopyrite and magnetite in locations that have been altered (orange kspars) or where the syenite tends towards melanocratic having greater than 50 % mafics. Chalcopyrite has been noted along fracture fills associated with epidote, and hematite. ### SAMPLE DESCRIPTION Rock samples taken during the soil survey, Oct. 2-7/90 RR 90 L2 At Initial Post of Link 2 & 4, rock. Qtz pyr. float (angular), RR 90 L3 Initial post Link 1, 3, 5, 6. rock. Outcrop, Biotite with fine grain pyrite. A 6+45 Rock Large grained feldspar porphyry, angular float. OS RR 90 Qtz. carbonate, mariposite, outcrop. Off claim. Rock samples taken during 2 day prospect, June 2, 3 /91. 91RRL 26+48 creek float, chalcopyrite, hematite, pyrite. Link A soil line coordinates 26 + 48 silt. 91RRL 01 Stake Show, residual float within 10 metres. 340 metres from Initial posts of Link 13 & 14 along the claim line. Small irregular ridge extending for 200 metres in a northwest trend. At the northeast end of the ridge some outcrop is evident and the float is highly angular. 50 metres to the northeast outcrop is abundant trending at 030 degrees. Showing consists of mesocratic syenite, enriched with magnetite and chalcopyrite. Showing appears to be part of an intrusive change-up, several different varieties of grain size and texture of the syenite occur. 91RRL 02 Discovery rock, Stake show, residual float. Magnetite, hematite, and chalcopyrite. 91RRL 03 2-3 cm quartz vein in mesocratic syenite, residual highly angular float rock. On Link A soil line A 17+05 silt sample location 50 metres north on east side of creek. Chalcopyrite, pyrite and possible Au in quartz vein. RR91L 04 Mesocratic syenite, outcrop. On Link A soil line A 17+05 silt sample location 30 metres north on west side of creek. Chalcopyrite .2 cm concentrations. RR91L 05 Mesocratic syenite, residual highly angular float rock. On Link A soil line A 15+37 20 metres north. Chalcopyrite, pyrite. RR91L 06 Mesocratic syenite, outcrop. On Link A soil line A 10+10 5 metres south on 50 metre outcrop ridge trending 030. Hematite, chalcopyrite, malachite. RR91L 07 Mesocratic syenite, outcrop. On Link A soil line A 10+10 5 metres south on 50 metre outcrop ridge trending 030. Hematite, chalcopyrite, malachite. RR91L 08 Mesocratic syenite, outcrop. On Link A soil line A 5+50 20 metres north. Chalcopyrite, pyrite. RR91L 09 Mesocratic syenite, outcrop. On Link A soil line A 5+50 20 metres north. Chalcopyrite, pyrite. ******** June 2 /91 91DEL 01 F UTM coordinate 482-152, helipad used on June 2, in a large talus deposit. Principal rock in talus is mesocratic syenite, however some rock appears altered and some rock is of dyke material. Sample is dyke material with less than 1 % pyrite, hematite. Mainly sampled as a geological rock. Elevation 4100 ft. * Note * Walked down from the helipad at 4100 ft. to the claim line at 3700 ft. sample location Soil line 26 + 48 silt. Float characteristics are considerably different from helipad location, principal geology is still syenite showing varying stages of mafics and alteration. Some pg. 11 feldspars are translucent and appear grey-blue, suggestive of labradorite. The rock has < 0.5 % pyrite, and what appears to be fine grained phenocrysts of chalcopyrite, fractures are coated with hematite. (see sample 91RRL 26 + 48) 91DEL 02 F elev. 3850 ft., approx. 200 metres northeast of the Stake show. Quartz sweat in the syenite, pyrite, hematite, epidote, magnetite. 91DEL 03 Stake show, 91RRL 02,03. The showing is in loose bedrock an attempt was made to procure a sample of solid bedrock Two small trenches 3 * 3 ft. were made but the rock was still loose at 3 ft. depth, and problems concerning tree roots were developing as we did not have the proper tools for trenching. No confirmed data of the orientation of the melanocratic syenite band was obtained. Sample is a hygrade grab from the trench, cpy, mag. June 3 /91 91DEL 04 F elev. 4050 ft. Drop off in talus slope 200 metres west of June 2 drop off. UTM 480-153. Approx. 200 metres above the north corner of units 9 & 11. In this talus we find mesocratic syenite as the dominant rock type with a tendency towards leucocratic on the west side of talus exposure. Sample is mesocratic syenite with stringers and / or fracture fillings of epidote. Rock has minor fractures that contain chalcopyrite in thin sheets and spots. Not much magnetite noted. 91DEL 05 25 metres past and above soil line location 21 + 00 mesocratic syenite, feldspar alteration (orange), minor pyrite. elev. 3600 ft. 91DEL 06 25 metres west of common post 7,8,9,10. Large 2 * 1 metre angular float rock. Syenite, feldspars are orange with hairline fractures of epidote. Very small amount chalcopyrite, pyrite disseminated in the syenite. 91DEL 07 F elev. 3500 ft., float found 10 metres west of soil station A 18 + 00. Syenite altered or weathered and rusty, magnetite, chalcopyrite 0.5 %. * 50 metres west there is an outcrop showing strong mafics with minor magnetite. * Station A 17 + 05 there is a creek with outcrop on the west bank, syenite with very minor pyrite. The outcrop has 2 planes to the blocking and / or jointing, 020 vertical and 110' degrees vertical. 91DEL 08 outcrop 25 to 50 metres west of stream at stn. A17+05. There is more outcrop that arcs west, south, and east. At the west end the strike is 110 degrees vertical. At the base of the rock there is a slightly enriched zone of chalcopyrite in the syenite. Chalcopyrite is seen disseminated throughout the outcrop in minor amounts. ### Work Program Recent activity on the Cat claims has intensified interest in the area. A prominent magnetometer high is located within the Link claim and anomalous Cu values exist. Prospecting, a soil survey, and 3 km of line cutting, were accomplished on the Link claims in June-July and October 1990, and June 1991. June 28/90 to July 1/90, Rob Reding and Dan Ethier prospected and claimed Link 1-8. October 2-7/90 , Rob Reding, Sam Watling, and Ivan Rischmiller, staked, cut trail (3 km) from end of road to claim group, cut base line (3 km), and put the grid stations at 50 meters. Soil samples (49) were taken at 50 meter intervals along the base line, as well as 10 stream sediments and 2 pan concentrates, and 5 rock samples, totaling 67 samples. On June 2 and 3 1991, R. Reding and D. Ethier prospected the Link claims. A coarse geology map was begun as well as locating a showing. A brief sampling of the rock outcrops and float, totalling 18 rock samples. ### SUMMARY The Geochemical result from the 1990 soil survey on the Link claims showed anomalous values for copper > 100 ppm in 17 of the 49 soils, up to 304 ppm. Of the 10 stream sediments 3 samples were anomalous > 100 ppm. The 1990 soil survey was compared to the 1971 Granby field map and values as well as locations coincided. The mapping of the soils show an anomalous zone that exists 150 metres south of the base line, at the location of the Final Posts of Link 1, 3, 5, 6. This zone is 100 meters wide and over 600 meters long. A second anomalous zone takes a horseshoe shape near the Initial Posts of Link 1, 2, 3, 4, the points of the shoe extend to the west. This zone covers an area roughly 500 * 400 meters in dimension. The two zones are separated by a line of soils that did not have anomalies, which may be a result of overburden depth, a stream passes through this locality. A broad anomalous zone appears to form a pattern that is 1700 meters long and 300 meters wide. Numerous float rocks of syenite appear on the claims, they are angular and most likely represent the bedrock. The outcrop is a syenite body which extends over the 3.5 km length of the property. Dyke material has been found in the float. No evidence of a contact with Takla Volcanics has been noted on the property. The float rock discussed in the samples are highly angular and the authour believes this rock is representative of the bedrock, in most cases travelling less than 100 metres. The soil geochemistry shows anomalous values of Cu > 100 ppm extending over large areas, the rock geochem supports the soil anomaly but appears lower in value. It would be reasonable to assume than a larger body of higher concentrations of chalcopyrite and magnetite exist but have yet to be discovered in surface showings. It is suggested that a magnetometer survey be conducted to outline magnetic zones and or the melanocratic syenite, as it appears that copper mineralization coincides with these zones. # Statement of Costs | Mandays | R. Reding
D. Ethier
S. Watling
I. Rischmiller | | = 1,200.
= 900. | |---------------------------------------|--|---------------|--------------------| | | Total | 30 mandays, | 6,000. | | Travel | Truck and Fuel @ \$6 | 50./ day * 14 | 840.00 | | Helicopte | r | | | | · · · · · · · · · · · · · · · · · · · | 1 hour @ 750.00/hi | r | 750.00 | | Analytica | l Services
67 @ \$15./ | | 1005.00 | | | 18 @ \$15./ | | 270.00 | | Supplies | | | | | | \$20./ day * 12 | | 240.00 | | Food and | Accommodation | | | | Francisco to the February | \$40./ day * 26 | | 1040.00 | | | \$100./ day * 3 | | 300.00 | | | #100.7 day * 3 | | 300.00 | | Report Pre | eparation | | 200.00 | | | Drafting | | 150.00 | | | . | | | | | Total | 1 | 0,795.00 | | Total Applicab | le to Assessment Rep | oort 9,800.00 | | for 5 years. ### AUTHOUR'S STATEMENT I, Daniel Ethier am a Prospector , with residence at 3644 3rd ave., Box 184, Smithers B.C. VOJ-2NO. I have worked in exploration activities since 1979. I have been an independent prospector since 1983. I have worked as a prospector for Tom Richard's Prospecting, 1986 -1988. A graduate of the Advanced Prospecting Course of Malaspina College 1987. A graduate of the Advanced Prospecting Course, Petrology for Prospectors 1990. APPENDIX A Soil and rock Geochemistry I.C.P. 30 element Min - En Laboratories COMP; C.J.L. ENTERPRISES PROJ: ATTH: LORNE WARREN MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 05-0664-\$J1 DATE: 90/10/13 * SOIL * (ACT:F31) (604)980-5814 OR (604)988-4524 V ZN GA SN W CR AU MG MN MO NA NI P PB SB SR TH U | SAMPLE
NUMBER | AG
PPM | AL
PPH | AS
PPM | PPM | BA | BE
PPM | B1
PPM | CA
PPM | CD
PPM | CO
PPM | CU
PPM | FE
PPM | PPM | PPM | MG
PPM | MN
PPM | MO
PPM | NA
PPM | PPM | | | PPM | PPM PF | H PPM | PPM | | | PH PPH | PPM F | | |--|-------------------|---|-----------|----------------|-------------------------|----------------------------|-------------|---|-----------------------------|----------------|--------------------|---|---------------------------|---------------------|--------------------------------------|---------------------------------|-----------------|---------------------------------|-----|------------------------------------|----------------------------|-------------|----------------------------|-----------------------------|--|----------------------|----------------------------|-----------------|--|---| | A0+00
A0+50
A1+50
A2+00 | 1.5 | 10710
21880
17620
12520 | 1 | 28
22
13 | 102
163
145
84 | .5
.7 | 2
1
4 | 4930
5490
9720
8300 | .1 | 9
17
16 | 113 | 49820
35850 | 740
710
600 | 32
43
29 | 3830
5690
5190
3590 | 256
334
360
371 | 3 | 1730
210
200
160 | | 380
500
280
420 | 25
33
15 | 2
5
1 | 19
20
37
38 | 2 1 | 96.7
202.2
129.2
114.4 | 39
62
68
51 | 3 | 1 1 1 | 1 | | | A2+50
A3+00 | 1.3 | 12840
13660
14320 | <u>i</u> | 7 5 | 101 | <u>:i</u>
.2 | 2 | 9630
10290 | -1 | <u>11</u> | 100 | 28080 | 790
750 | 18
14 | 5200
4960
4490 | 280
429 | 3 | 230
210 | 1 | 740
710 | 23
20
19 | 1 | 37
41
43 | $\frac{1}{1}$ $\frac{1}{1}$ | 99.5
93.4 | 28
24 | 1 1 | $\frac{1}{1}$! | 1 1 | 2 | | A3+50
A4+00
A5+75 | 1.0 | 131 <u>50</u>
12540 | 1 | 3
2
3 | 120
96
117
60 | - <u>.2</u>
- <u>.3</u> | 2 | 10890
9580
5180
6980 | .1 | 11
10
10 | . <u>156</u>
72 | 25260
23970
36330
32050 | 730
710
1240
640 | 10
9
13
13 | 4620
2180
4970 | 500
339
253
246 | - 2
- 7
1 | 210
1100
140 | | 940
400
1020 | 19
23
14 | - 1
1 | 36
20
29 | - 1 - 1 | 89.7
135.0
115.7 | 23
57
32 | 1 2 | 1 | - | 1 | | A6+75
A7+00
A7+95 | 1.1 | 11630
12350
10160
15870 | 14 | 1 | 159
98
157 | .2 | 2 3 3 | 11260
7800
9920 | .9 | 9
8
13 | 128 | 24760
20610
29500 | 640 | 10
9
12 | 4590
3340
5880 | 340
193
318 | 1 | 220
130
220 | 1 | 990
190
550 | 14
13
12
16 | 1 | 44
32
39 | 1 1 | 97.1
92.1
108.2 | 24
24
35 | 1 | 1 1 | 1 1 | 3 2 | | A5+50
A9+50
A10+12 | 1.2 | 12660
16070
36370 | 1 | 1 | 125
134
282 | .1 | 1 | 9570
10700
8990 | | 15
13
30 | 130
239 | 48280
31730
75670 | 550
650
750 | 10
11
47 | 5070
5340
21410 | 384
423
2148 | 1 | 220
210
1370 | | 820
750
1740 | 14
31 | 1 | 32
35
40 | 1 1 | | 28
24
109 | 6 | 4 | 1 1 | 1 | | A10+50
A10+00
A11+50 | 1.0
.7
2.3 | 16790
9640
18280 | 32
1 | 1 | 51
164
120 | | 2 6 | 8590
8620
15720
9820 | | 10
9
27 | 69
38
261 | 28750
23240 | 540
580
2720 | 7
7
15 | 4780
4940
14080 | 260
343
811
-337 | | 170
3120
220
1680 | 1 | 1520
920
4780
830 | 24
27
19
17 | 1 | 34
30
43 | | 112.5
94.3
282.1
142.8 | 28
26
64
27 | - 1 | | 1 1
3 1
1 T | 5 | | - A12+50
A13+00
A13+50
A14+50
A15+00 | 1.2 | 17940
17940
11830
13730
13680 | 1 | 1 | 102
58
165
101 | - ; | 4 4 2 | 9050
7020
7670
8050 | :1 | 13
10
12 | 114
60 | 31470
28610
36340 | 800
820
710 | 10
10
8
8 | 5830
3960
4770
4500 | 359
259
303
257 | 1 | 2630
200
2000
230 | 1 | 970
410
470
950 | 24
14
19
17 | 1 1 | 33
30
29
31 | 1 1 1 1 1 1 1 1 | 120.1
126.7
161.2
100.7 | 33
26
21
21 | 2 1 1 1 1 | 1 1 1 | | 2 | | A15+50
A16+00
A16+50 | 8.
8. | 24330
1600
2001 | | - 1 | 174
153
118 | .4
3 | 2 2 | 8570
7120
8230
6810 | <u>.1</u>
: 1 | 17
 | 187
130
253 | 47130 | 970
790 | 14
14
13 | 6380
6910
6610 | 1256
670 | <u>1</u> | 210
140
1700
140 | 1 | 980
1320
590 | 30
21
34
16 | 1 | 28
22
28
26 | | 145.3
136.3
127.8 | | 3 | 1 | | 2 | | A17+00
A17+50
A18+00 | .8
.9 | 13610
13610
12500 | | | 70
36
78
105 | | 1 | 8200
10010 | :1 | 10 | 36
49 | 33880
29770
26990 | 550
760 | 5
8 | 2670
4330
4850 | 184 | 1 | 140
1560
220 | 1 | 1130
1460
1180 | 13
19 | 1 | 30
31
34 | | 167.7 | 25 | 31 | 2 | $\frac{1}{1}$ | | | A18+50
A19+60
A19+50
A20+00
A20+50 | 1.4
1.5
1.0 | | | 15
10
7 | 97 | .1 | 3223 | 6290
10400
7910
7720 | | | 35
67
55 | 31680
7 26680 | 570
750
470 | 17
13 | 3700
4480
3880
4750 | 206
351
216
288 | 1 | 160
230
140
200 | 1 | 1940
770
1550
1090 | 25
22
14
20
21 | 1 1 | 30
40
28
29 | 1 | 1 120.
1 108.
1 118.
1 124. | 7 | 26
24
28
24 | 1 1 2 | 1 1
1 1
2 1 | 1 | | A21+00
A21+50
A22+00
A22+50
A23+00 | 1.0 | 12950
14310
10600
15290
14840 | | 7 4 | 96
94
53
56 | . 1 | 5 | 9960
11810
8980
6890
9200 | | 9 |) 60 | 3 26040
9 31590
9 26890
9 29130
2 31790 | 520
590 | 11 | 4870
4940
4010
3320
4290 | 321
343
228
186
232 | 32121 | 200
250
160
150
190 | 1 | 900
1250
1140
1670
490 | 23
26
27
26
16 | 1 1 1 1 | 38
44
31
29
31 | 1 | 1 103.
1 136.
1 112.
1 114.
1 137. | 5
9 | 26
28
24
16
20 | 2 2 2 2 2 2 | 1 1 1 1 1 1 1 1 1 1 1 2 | 1 | | A23+50
A24+00
A24+50
A25+00
A25+50 | 1.3 | 16270
15010
1218
12300
13140 | 0 2 | | 114
100
89
30 |) .1 | 2 | 10210
10340
9940
6320
12660 | | 11 | 8: | 9 31936
5 28296
6 30926
0 34536
7 32466 | 860
720
390 |) 8
) 7
) 6 | 5170
5230
4660
3000
4740 | 416
471
319
166
411 | 1 1 | 240
910
210
130
260 | 1 | 900
1090
960
2760
1430 | 23
28
19
14
17 | 1 1 | 37
39
35
25
36 | 1 1 1 1 | 1 127.
1 115.
1 130.
1 153.
1 135. | 4
1 | 21
21
18
15
18 | 1 3 2 2 2 2 | 4 1 1 1 1 1 1 1 | 1 | | A26+00
A26+50
A27+00 | .9 | 14956
13166
1637 | 0 (| 1 1 | 78
76
61 | . 1 | | 8430
6930
6970 |) [1 | 12
10
10 | 3 | 5 40410
0 32190
5 32310 | 550 | 8 | 3320
3780
3580 | 184
209
197 | 1 1 | 140
150
170 | 1 | 2020
920
1430 | 19
15
19 | 1 1 | 29
25
30 | 1 1 | 1 175.
1 126.
1 134. | 2 | 15
25
15 | 2 2 1 | 1 1 1 1 1 1 | 1 | COMP: C.J.L. ENTERPRISES ATTN: LORNE WARREN PROJ: ### MIN-EN LABS -- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 05-0664-513 DATE: 90/10/13 * SILT * (ACT:F31) | SAMPLE
NUMBER | AG
PPH | AL
PPH | AS
PPM | PPN | BA
PPN | BE
PPH | BI
PPH | CA
PPM | CO
PPM | CO
PPM | CU
PPM | FE
PPM | K
PPM | L1
PPM | MG
PPM | MN
PPN | MO
PPH | NA
PPM | NI
PPM | P
PPM | PB
PPM | SB
PPM | SR
PPM | TH
PPM PP | J V
4 PPM | ZN
PPM | GA
PPH | SN
PPM F | | CR AU | |--|---------------------------------|---|-----------|---------------------------|-------------------------------|-----------|--------------|--------------------------------------|-----------|-----------------------|-----------------------------|---|---------------------------------|--------------|--------------------------------------|---------------------------------|-----------------------|---------------------------------|-----------|------------------------------------|----------------------------|------------------|----------------------------|--------------|--|----------------|------------------|------------------|-----------------------|---------------------------------| | A4+25 \$
A7+50 \$
A9+39 \$
A12+00 \$
A14+18 \$ | 1.8
1.7
1.1
1.0
1.3 | 8600
16940
9800
11610
11530 | 1 1 | 31
15
12
10
8 | 74
186
91
89
83 | .3 | 3 2 | 7800
9800
8040
9770
0140 | .1 | 8
12
10
9 | 178 | 18770
30420
21820
22730
24310 | 560
580
510
600
660 | 19 (
16 (| 3800
4930
4610
4610
4630 | 265
357
403
389
393 | 1
1
1
1 | 160
200
160
180
200 | 1 1 1 1 1 | 720
510
660
850
1100 | 26
42
17
21
18 | 2
1
1
1 | 27
37
24
32
34 | 1 | 1 68.0
1 117.6
1 81.6
1 84.0
1 93.6 | 49
32
36 | 1
2
1
2 | 3
1
1
1 | 1
2
1
1 | 3 2 1 4 1 1 1 2 1 1 | | A21+185
A21+965
A25+505
A26+485
A17+055 | | 16800
11000
9600
9610
11610 | 1 1 | 6
5
3
3 | 161
75
140
105
95 | .1 | 2 1 | 4720
0320
9920
9860
8640 | .1 | 12
10
9
. 11 | 109
57
39
37
90 | 29460
28360
22770
29630
39090 | 990
660
540
570
690 | 11 | 6090
4080
4290
4580
6260 | 457
302
327
297
709 | 2
1
2
1
1 | 300
190
170
190
110 | 1 1 1 | 1080
1150
870
870
1240 | 14
19
15
18
23 | 1 1 1 1 | 42
31
29
29
24 | 1 1 1 | 1 114.2
1 121.0
1 90.0
1 129.9
1 128.4 | 20
21
20 | 2 1 1 1 2 | 1 1 1 | 2
1
1
2
2 | 1 1
1 1
1 1
1 2
1 1 | | A8+84 FI
A15+3711 | | 5280
6410 | 1 | 11 | 39
39 | :1 | 1 57
1 82 | | .1 | 15
32 | | 77160
79140 | 250
400 | | | 237
507 | 1 | 80
40 | | 750
400 | 8
4 | 1 | 14
8 | 1 1 | 399.9
1058.6 | | 1 | 1 | 1 3 | 1 1 1 2 | COMP: CUL ENTERPRISES ATTN: L. WARREN PROJ: MIN-EN LABS - ICP REPORT 705 MEST 15TH ST., NORTH VANCOUVER, B.C. V7H 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 05-0754-RJ1 DATE: 90/12/11 | C 4 1 2 1 2 | | | | | | | | | | | 1001 | בישמני: | 2014 | JR (60 | J4)968· | 4524 | | | | | | | | | | | | ROCK : | • (| ACT : F | £311 | |--|---------------------------------|--|-------------------|--------------------|--------------------------------|----------------------|-------|---|-----------|----------------------------|------------------|---|------------------------------|---------------------------|-----------|-----------------------------------|-----------|----------------------------------|--------|-------------------------------------|--------------------------|---|----------------------|--------|-----|-------------------------------|------|---|-------|--|-------| | SAMPLE
MANGER | PPN | PPM | APPR | | #A
| BE
PPH | PPH | CA.
PPN | CD
PPM | CO
PPN | CU | FE | PPN | LI | MG
PPM | IN PPM | NO
PPW | MA
PPM | HI | , | PB | SI | SR | TH L | · - | V Z | I GA | SN | J | CR A | • | | QC-6
ax 90 L:2
ax 90 L:3
A-6-45 R
OS 88 90 | 2.7
2.0
2.1
1.1
5.5 | 14510
23900
22690
10950
7420 | 1
1
1
30 | 16
11
7
3 | 248
377
83
185
155 | .4
.1
.5
.7 | 35631 | 12320
21300
26250
20590
42980 | .1 | 14
22
26
10
14 | 103
191
75 | 30030
47040
63340
29160
33400 | 2280
5530
1090
4000 | 23
17
37
10
7 | | 688
624
1461
896
1129 | 5 | 680
1250
510
560
140 | 3
8 | 1510
3750
2490
1310
690 | 30
3
4
16
35 | 1 | 36
53
16
63 | PM PPI | | 5 114
5 62
4 84
2 49 | 2 1 | PPM 1 1 1 1 1 1 1 1 1 | 2 2 1 | 98
98
99
56
36
36
36 | 22652 | | | | | | | | | | | | | | | | | | | • | | | | | *************************************** | | | | | | | | <u></u> | | OMP: CJL ENTERPRISES ITH: LORME WARREN ROJ: MIN-EN LABS - ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7H 112 (604)980-5814 OR (604)988-4524 FILE NO: 15-0046-R DATE: 91/06/ * ROCK * (ACT:F3 | SAMPLE
MUNBER | AG
PPN | | AS
PPN | B
PPM | BA
PPM | BE
PPN | BI CA
PPM PPM | CID
PPM | CO
PPM | CU
PPM | FE K
PPM PPN | LI
PPM | MG
PPN | NN
PPH | NO
PPM | IFA
PPH | NI P
PPM PPM | P8
PPM F | | | H U | V
PPM | | | SN
PPM PP | W CR | |--|------------------------|--|---------------------|-------------------------|-------------------------------|----------------------|---|----------------------|----------------------------|---------------------------------|--|-----------------------|---|---------------------------------|-----------------------|---------------------------------|--|----------------------------|-------|-----------------|---|---|----------------|------------------|--------------|---------------------------------------| | 91-DEL01
91-DEL02
91-DEL03
91-DEL04
91-DEL05 | .9
.1 | 3430
12850
9670
16430
14030 | 1 1 1 | 12
6
11
6
5 | 552
180
38
110
51 | .6
.1
.1 | 1 21150
7 9050
1 12370
6 15100
9 11420 | .3
.1
.1
.1 | 12
20
15
17 | 3
7
770
705
136 | 17470 3130
25210 2250
115780 700
44010 1250
43880 1230 | 5
5
7
10 | 800
9970
5270
12880
11660 | 844
542
151
555
809 | 1 4 1 2 1 | 330
220
380
410
390 | 1 520
2 1200
1 1820
1 1770
1 1990 | 33
30
93
45 | 1 1 | 25
42 | 1 1 | 58.0
48.8
193.5
134.8
125.6 | 54
49 | 1
1
1
1 | 1
1
1 | 2 43
5 94
3 41
4 54
4 64 | | 91-DEL06
91-DEL07
91-DEL08
91-RRL01
91-RRL02 | .4
.6
.6 | 15690
12070
16200
9220
16830 | 1 1 1 1 | 4
2
4
7
8 | 55
103
49
87
20 | .1
.1
.1
.1 | 8 14260
6 14260
6 12410
1 10750
6 10550 | .1
.1
.1 | 16
16
24
18
24 | 278
192
532
1547
73 | 38590 1270
42730 1670
56190 1000
82090 750
80580 850 | 6
7
9 | 12060
8600
16710
5750
20330 | 827
634
867
124
277 | 2 1 1 1 1 | 560
640
280
630
510 | 1 1910
1 2440
1 2760
1 2540
1 1720 | 43
38
55
72
67 | 1 1 | 19 | 1 1 1 1 1 1 | 104.8
163.1
209.6
109.0
121.0 | 16
20 | 1
1
1
1 | | 4 57
4 48
4 37
2 29
3 43 | | 91-88L03
91-88L04
91-88L05
91-88L06
91-88L07 | 1.1
1.1
.7
.7 | 6690
10330
11810
4330
7580 | 1
1
11
21 | 2
3
3
1
1 | 46
76
87
73
177 | .1
.1
.2
.2 | 4 8630
6 10850
10 10730
1 4230
1 8480 | ,1
,1
,1
,1 | 10
16
18
4
8 | 428
799
335
383
386 | 26990 770
42650 1170
44030 2470
9720 1100
18320 1090 | 2
4
6
1
5 | 9770
9040 | 320
830
507
193
380 | 2
1
1
6
8 | 360
500
590
380
420 | 1 1430
1 2230
1 2480
2 240
2 570 | 26
43
40
14
22 | 1 1 1 | | 1 1
9 1
9 1 | 94.4
137.7
172.9
18.2
35.4 | 13
26 | 1
1
2
3 | 1 2 1 | 4 76
4 43
4 46
4 82
5 104 | | 91-88L08
91-88L09
91-88L26+48 | 1.0 | 16980
20230
14550 | 1 1 | 2
2
3 | 278
331
118 | .3
.1
.1 | 3 15970
8 18230
8 12540 | .1 | 16
18
16 | 184
61
103 | 43600 2230
49150 6700
41850 2600 | | 14010
13310
10280 | 927
1137
821 | | 730
1780
1090 | 1 1610
1 1720
1 1610 | 44
49
42 | 1 : | 15
30
31 | 1 1 | 148.8
171.0
146.0 | 60
58
45 | 1 1 | 1 1 1 | 5 97
6 96
8 155 | | | | | | | | | | | | | | | 7 | - | | | | | | | <u> </u> | -, | | | | • | | | | | | | | | | | | | | | | | | | | | | ··· | | | | | | | • | | | | | | - | | | | - •• | | | | | | | | | | - | ······ <u>·</u> ··· | | | | | · | | | | | | | | | | | | ··· | , · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | - | | | | | · . <u></u> | ··· | | | | | | | | | - | ### SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTY - ARRAYERS - ANALYETS - GEOCHEMISTS TELEPHONE (604) 980-5814 OR (604) 986-4524 FAX (604) 980-9621, THUNDER BAY LAB .: TELEPHONE (807) 822-8958 FAX (807) 623-5831 SMITHERS LAB.: TELEPHONE/FAX (604) 847-3004 # Assay Certificate 1S-0046-RA1 Company: CJL ENTERPRISES LORNE WARREN Date: JUN-17-91 Project: ENTRE Copy 1: CJL ENTERPRISES, SMITHERS, B.C. Attn: 2. CJL ENTERPRISES, C/O MIN-EN LABS. He hereby certify the following Assay of 13 ROCK samples | submitted | JUN-13-91 | by | LORNE | WARREN. | |-----------|-----------|----|-------|---------| |-----------|-----------|----|-------|---------| | Sampl e
Number | AU
g/tonne | AU
az/tan | | |--------------------------|---------------|--------------|-----| | 91-DEL03 | .01 | .001 | | | 91-DEL04 | .01 | .001 | · | | 91-DEL05 | .03 | .001 | | | 91-DEL07 | .02 | .001 | | | 91-DEL08 | .02 | .001 | | | 91-RRL01 | . 18 | .005 | | | 91-RRL03 | .03 | .001 | | | 91-RRL04 | .01 | .001 | | | 91-RRL05 | .01 | .001 | | | 91-RRL06 | . 05 | .001 | i . | | 91-RRL07 | .01 | .001 | | | 91-RRL08 | .01 | .001 | : | | 91-RRL26+48 | .03 | .001 | | Certified by____ A.R. 21449 NTS 94 C / 3 W JAN . / 92