GEOLOGICAL BRANCH	LOG NO: 16.28	RD.
ASSESSMENT DEDODT 1-	ACTION:	
21,463	FILE NO:	
KINGHORN ENERGY CORE	PORATION	
GEOLOGICAL AND GEOCHEMICAL A	SSESSMENT REPORT	
ON THE		
COP, HAR 1 & HAR 3	CLAIMS	
ISKUT RIVER AR	EA	
SKEENA MINING DIV	ISION	
BRITISH COLUMB	IA	
NTS 104 - B / 1	0 E	
W. Longitude: 130 ⁰ 36' N.	Latitude: 56 ⁰ 35′	
FOR		
SUB-RECORDER RECEIVED JUN 20 1991 KINGHORN ENERGY CORP 430 - 580 Hornby S Vancouver, B.C V6C 386.	treet,	

í.

1

۱

-

M.R. #...... \$....

VANCOUVER, B.C.

BY

V6C 3B6.

Denis A. Collins, Ph.D., P.Geol., F.G.A.C. and Robert F. Brown, P.Eng.

HI-TEC RESOURCE MANAGEMENT LTD. 1500-609 Granville Street, Vancouver, B.C., V7Y 1G5

JANUARY 7, 1991

TABLE OF CONTENTS

Γ

1

-

_

-

.---

~

1.0	SUMMARY	i						
2.0	INTRODUCTION							
	2.1 Location and Access2.2 Physiography2.3 Claim Status	1 2 3						
3.0	REGIONAL HISTORY AND PREVIOUS WORK	3						
4.0	REGIONAL GEOLOGY AND MINERALIZATION	5						
5.0	PROPERTY GEOLOGY	10						
6.0	PROPERTY GEOCHEMISTRY							
7.0	CONCLUSIONS	13						
8.0	RECOMMENDATIONS	14						
9.0	REFERENCES	15						

LIST OF APPENDICES

APPENDIX I:	Statements of Qualifications
APPENDIX II:	Sample Preparation and Analytical Methods
APPENDIX III:	Analytical Data for Samples
APPENDIX IV:	Sample Descriptions
APPENDIX V:	Statement of Costs

LIST OF FIGURES

<u>After Paqe</u>

FIGURE 1:	General Location Map	1
FIGURE 2:	Claim Map	3
FIGURE 3:	Regional Geology Map	4
FIGURE 4:	Property Geology	In Pocket
FIGURE 5:	Sample Locations	In Pocket

LIST OF TABLES

<u>After Page</u>

TABLE 1:	Summary of Major Showings	4
TABLE 2:	Regional Geology Map Legend	4
TABLE 3:	Regional Geology Map Symbols, Prospects and Mines	4
		AL A

1.0 SUMMARY

This summary and evaluation of the Cop, Har 1 and Har 3 claims has been completed at the request of the directors of Kinghorn Energy Corporation. The claims total 60 units within the Skeena Mining Division on NTS Map 104B/10E, approximately 10 km south of the Iskut River and 2.5 km west of Harrymel Creek. The claims are held in the name of Westmar Resources Ltd. and are optioned to Kinghorn Energy Corporation.

This report is based on the results of a \$49,000 work program consisting of bulk stream sampling, prospecting, 1:10,000 scale geological mapping and sampling which was conducted by Hi-Tec Resource Management Ltd. The authors worked on the project during the period July 1990 to September 1990.

The Cop, Har 1 and Har 3 claims are underlain by Upper Triassic volcanosedimentary sequences to Lower Jurassic Unuk River Formation porphyritic andesites and plagioclase phyritic meta-diorite with minor limestones in contact with Lower Jurassic Betty Creek andesites and andesitic lapilli tuffs. These are intruded by the Melville stock, a hornblende-biotite to quartz diorite. A major Tertiary dike swarm intrudes the andesites.

A massive magnetite showing was located along the northern margin of a glacier on the Har 3 claim. This skarn type showing is associated with the contact of granodiorite and a banded limestone unit. Gossanous zones within this showing contain up to 80% magnetite, 5% pyrite and 5% hematite. Brecciated zones of intrusive rock are also evident in this zone. In the southwestern portion of the Har 3 claim a brachiopod

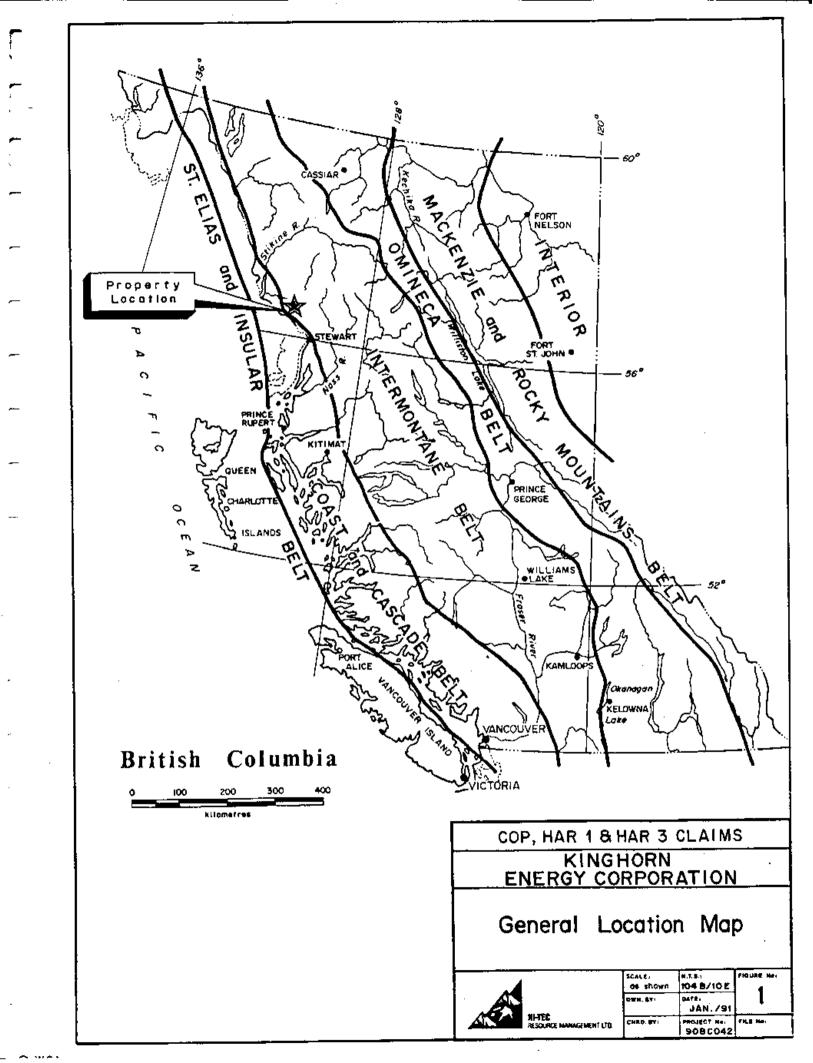
fossil locality was mapped within a sandstone, siltstone, shale and limestone interbedded sequence.

One hundred and forty seven rock samples and three pan concentrate samples were collected on the property. Only spot high Au values were recorded from the samples. The best Au value of 980 ppb was from a rock grab sample (90HJR029) of quartz-carbonate veinlets near the fossil locality on the Har 3 claim. Cu values are elevated throughout the length of the skarn type showing on the Har 3 claim and range from 120 to 998 ppm. No appreciable precious or base metal values were recorded from the samples collected on the Cop and Har 1 claim.

Follow-up work is recommended on the Har 3 claim to determine the nature, size and inter-relation of the skarn and fossil locality showings.

2.0 INTRODUCTION

This summary and evaluation of the Cop, Har 1 and Har 3 claims has been completed at the request of the directors of Kinghorn Energy Corporation who have optioned the property from the registered owner Westmar Resources Ltd.


This report is based on the results of a \$49,000 work sampling, consisting of bulk program stream sampling 1:10,000 scale prospecting, rock and geological mapping which was conducted by Hi-Tec Resource Management Ltd. The authors worked on the project during the period July 1990 to September 1990.

2.1 Location and Access

The property is located within the eastern boundary of the Coast Range Mountains (Figure 1) on NTS Map 104B/10E, approximately 10 km south of the Iskut River and 2.5 km west of Harrymel Creek.

located approximately 300 The property is air kilometers northwest of Smithers, British Columbia, 105 air kilometers east of Wrangell, Alaska and 15 air kilometers east from the Bronson Creek airstrip. Highway 37, connecting the Yellowhead highway at Kitwanga to the Alaska highway at Watson Lake, is at its closest 60 kilometers east-northeast of the The Bob Quinn Highways maintainence yard properties. and newly constructed Bob Quinn airstrip are at this point.

The property can be accessed by using fixed wing aircraft from Smithers, Wrangell, Terrace or Stewart to gravel airstrips at Bronson Creek (15 kilometers east)

and Snippaker Creek. The latter is limited in capacity to a twin engine Beechcraft, Turbo Otter or smaller aircraft. The most economic access to the subject property is by truck from Smithers for a distance of 350 kilometers to Bell II on Highway 37 at the Bell Irving Creek crossing. At the present time, a 205 Helicopter is stationed at Bell II and the claims can be reached by air, a distance of approximately 60 air kilometers to the southwest.

The Provincial Government of British Columbia is to establish a corporation to own, build and maintain an access road into the Iskut River-Eskay Creek area. This road would run east-west approximately 10 kilometers north of the claims.

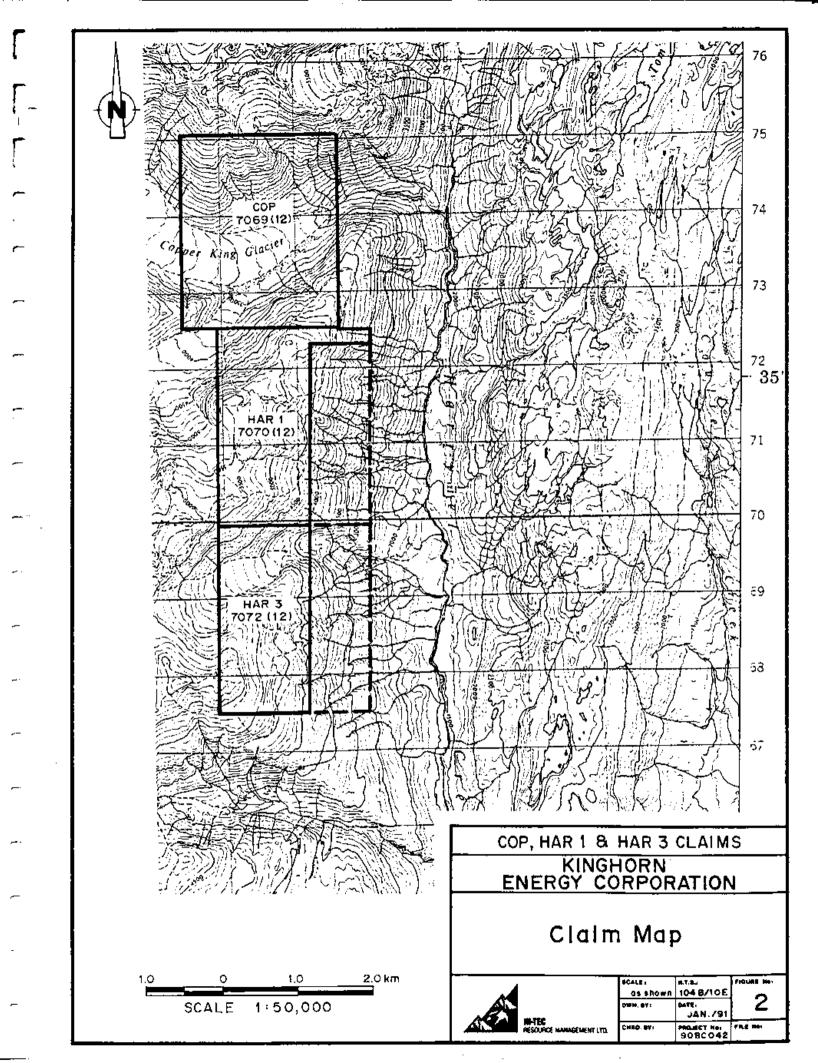
2.2 Physiography

The Cop claim is bisected by the eastern portion of the Copper King Glacier while the Har 1 and 3 claims are located on the steep mountainous east facing slopes of a unnamed mountain immediately south of the Copper King Glacier and west of Harrymel Creek. Relief ranges from 1050 - 1650 m ASL in spectacular but extremely rugged terrain. Tree line is at approximately 1,200 meters ASL in this district.

Snow cover and glacial ice is a limiting factor on the exploration field season. The period of least snow cover occurs between July and September with best exposure in alpine areas during August-September.

2.3 Claim Status

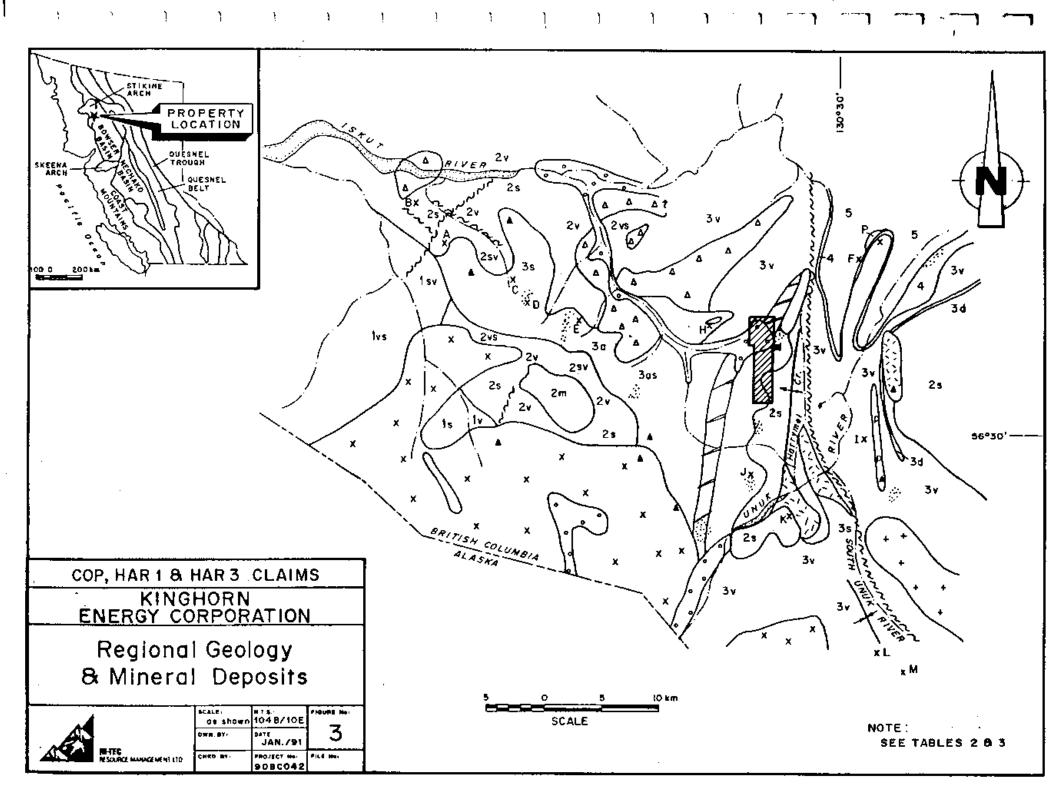
The property consists of the contiguous Cop, Har 1 and Har 3 claims totalling 60 units on NTS map sheet 104B/10E (Figure 2).


The claims are held in the name of Westmar Resources Ltd. and are optioned to Kinghorn Energy Corporation. The claims are located in the Skeena Mining Division and are recorded at the British Columbia Ministry of Energy, Mines and Petroleum Resources as follows:

RECORD DATE EXPIRY DATE CLAIM UNITS RECORD NO. Dec. 19, 1988 Dec. 19, 1990 COP 20 7069 Dec. 19, 1988 HAR 1 20 7070 Dec. 19, 1990 7072 Dec. 19, 1988 Dec. 19, 1990 HAR 3 20 * prior to filing of this report.

3.0 REGIONAL HISTORY AND PREVIOUS WORK

The earliest work in the district (Figure 3, Tables 1-3) was by placer miners in the Unuk River Sulphurets Creek area in the late 1800's. Hardrock mining ventures began around the turn of the century on Au, Ag, Pb veins of the Globe and Cumberland/Daly prospects in the Sulphurets Creek area and on Au, Ag, Cu, Pb veins of the Iskoot and Red Bluff claims (1907) on In 1932, Aq and Au bearing Pb, lower Bronson Creek. Zn, Cu deposits were found east of Tom MacKay Lake on the Tok and Kay claims. Initial work on the gossans at the upper reaches of Sulphurets Creek (Brucejack Lake) started in 1935. The Halport (now Doc) Au, Ag quartz vein was discovered in 1946 by Tom McQuillan, along the south fork of the Unuk River.


With the discovery in 1953 of the Granduc deposit south-east of the region, on Leduc Creek, exploration in the Unuk-Iskut River area increased with the subsequent discovery by Hudson's Bay Mining of the Pick Axe Au, Cu zone and high grade Au, Ag, Pb, Zn float zone on Johnny Mountain (now Skyline Explorations Reg property, Johnny Mountain mine). In 1958 the E & L Ni, Cu deposit on Nickel Mountain was discovered followed by the Max Cu, Fe skarn on McQuillan Ridge in 1960.

The search for porphyry copper deposits in the 1960 -1970's led to the re-evaluation of the Sulphurets and Johnny Mountain area. Cu bearing skarns were discovered in 1962 by Newmont Mining Corp. at the head The VV and Cole porphyry waters of Forrest Kerr Creek. prospects south and north of King Creek were discovered in the early 1970's. The Inel property east of Johnny Mountain was restaked in 1969 after massive sulfide float was discovered at the toe of Bronson Glacier. The McClymont property was staked in 1980 by Dupont Canada Explorations Ltd. as a result of stream sediment sampling, these claims are now controlled by Gulf International Minerals Ltd. The Gossan claims were staked in 1983 subsequent to reconnaissance mapping and geochemical sampling by Lonestar Resources Ltd.

The Snip deposit of Cominco - Delaware was discovered in 1981 in the active area at the lower reach of Bronson Creek.

All the above areas have undergone intermittent mineral exploration over the years to present, some include underground development and definition of ore reserves, (see Table 1).

.

TABLE # 1 SUNMARY OF MAJOR SHOWINGS IN THE ISKUT RIVER - UNUK RIVER AREA

	<u>Showing/deposit</u>	LOCATION	OWNER	NORK HISTORY	RESERVES OR COMMODITIES PRESENT	DEPOSIT TYPE
1)	Sulphurets: Bruce Jack Lake Zones	L04B/8	Sranduc/Corona	£, D, 1	720,000 tonnes @ 28.4g/t Au Equiv.	reins
2)	Sulphurets Snowfield	1048/9	Granduc/Corona	E,2	7,000,000 tonnes & 2.86 g/t Au	disseminated
3)	Ełl	104B/10	Silver Standard Sumitomo	£,9,2	2,800,000 tonnes € 0.7% Ni, 0.6% Ca tonnes	intrusive contact
4)	Johnny Atn.	1048/11	Skyline Expl.	E,D,M (1987-89),1	Au, Cu	veins
5)	Snìp	1048/11	Cominco/Delaware	E, D, H (1990-?), 1	1,100,000 tonnes & 24.0 g/t Au	reins
6)	Doc	104B/8	Silver Princess	E, D, 1	426,000 tonnes & 9.26g/t Au 4.91g/t Ag (Pb, Zn, Cu)	7eias
7)	Eskay	(048/9	Prime/Stikine	E, D, 1	5,025,000 tonnes & 15.6 g/t Au, 441g/t Ag (Pb, In, Cu, Sb, As, Hg)	stratabound
8)	Gossan	1049/10	Lonestar/Western Canadian	E,1	Au	disseminated, vein
9)	Inel	1048/10	Inel Resources	E,0,1	Au, Zn	stockwork, veins
10)	Ψ¥	1048/10	Crest/ Corpteck	E, 2	Cu, Mo (Aw, Ag)	porphyry type dissem- inated and stockwork
Ð	Nax	1048/7		£,2	9,900,000 tonnes 451 Fe	starn

- E surface exploration and drilling
 D underground development
 M Nine Kill complex
 - 1 current expl. (development)
 - 2 dormant

.....

TABLE # 2 (See Figure 3)

REGIONAL GEOLOGY

Legend (from Britton 1988, 1989)

INTRUSIVE ROCKS

TERTIARY

JURASSIC

....

LATE TRIASSIC

1	King Creek dyke swarm
× × × × × × ×	Coast Plutonic Complex
† † _† †	Lee Brant stock
	Lehto porphyry and Iskut River Plutons
<u> </u>	Diorite and Gabbro

STRATIFIED ROCKS

TERTIARY	<i>• , </i>	Basalt flows and Tephra
MIDDLE JURASSIC	5 4	Marine Basin Turbidites Felsic Pyroclastics
LOWER JURASSIC	D 3 V 2 S	Dacite Marker Andesite Volcanics (with <40% sediments)
UPPER TRIASSIC	2 S M	IntermedAnds Volcanics Sediments Basalt
PALEOZOIC	1	Metamorphosed sediment(s) and Tuffs(v)

TABLE #3 (See Figure 3)

REGIONAL GEOLOGY SYMBOLS

CONTACT

anticline, syncline imes imes

MOUNTAIN PEAK

AIRSTRIP

CREEK, RIVER

GOSSAN AND

MINE, PROSPECT × A

PILLOW LAVAS

_

PROSPECTS AND MINES

А	JOHNNY MOUNTAIN	Αu,	Cu,	Ag		
в	SNIP	Au,	Cu,	Ag,	Pg,	Zn
С	INEL	Au,	Ag,	Cu,	Zn,	Рb
D	KHYBER PASS (GOSSAN)	Au,	Cu,	Zn		
Ë	PINS	Au,	Ag,	Cu,	Zn,	Pb
F	MACKAY	Au,	Ag,	Pb,	Zn,	Cu
G	COPPER KING	Cu,	Fe			
H	E & L NICKEL	Ni,	Cu			
I	CUMBERLAND / DALY	Au,	Ag			
J	vv	Cu,	Mo,	Au,	Ag	
К	MAX	Fe,	Cu			
L	DOC	Au,	Ag,	Pb,	Cu	
М	GLOBE	Au,	Ag,	Pb,	Cu	

In 1989 a limited amount of assessment work was completed on the Cop, Har 1 and 3 claims for Westmar Resources Ltd. (Todoruk & Ikona, 1989). A total of 15 rock chip samples were collected but no anomalous results were obtained.

Previous work immediate to the property includes three stream sediment samples taken as part of the NTS 104B sheet regional stream sediment and water data survey (G.S.C. Open File 1645). Samples 871366, 871367, 871168 yielded respectively 2 ppb, 8 ppb and 15 ppb Au. These samples were collected from creeks which drain the Har 1 and Har 3 claims.

4.0 REGIONAL GEOLOGY AND MINERALIZATION

The property is located within the westernmost part of the Intermontane Tectonic Belt, close to its boundary with the Coastal Crystalline Tectonic Belt. As a result of the proximity of this area to a regional tectonic boundary, geologic relationships tend to be quite complex. The geology of this area (Figure 3) has been studied by many people including Kerr (1948 later incorporated into Operation Stikine G.S.C. 1957), Grove (1971, 1986), Gunning (1986), Alldrick et al. (1989) and Anderson & Thorkelson (1990). The Bronson Creek area was mapped in 1987 and 1988 by Lefebure and by Gunning (1989) while the east and west halves of Figure 3 were mapped by Britton, Webster and Alldrick (1988) and Britton, Fletcher & Alldrick (1989) between 1987 -1989. The G.S.C. is re-mapping the entire 104B sheet (Anderson, 1989; Anderson & Bevier, 1990). The area is represented in Geological Survey of Canada Maps 9-1957, 1418A, 1505A, 2094 and B.C.G.S. Open file 1989-10.

The western portion of the Intermontane Belt is formed by the Stikine Terrane. During the Late Triassic period this Terrane was the site of active volcanism which resulted in the deposition of calc-alkaline plagioclase rich andesitic sequences along with sediments which are now collectively termed the Stuhini Group. The volcanism was accompanied by granitic intrusives. At the end of the Triassic this assemblage of volcano-plutonic rocks was uplifted to form the Stikine Arch. Additional uplift in the Cache Creek Terrain to the east resulted in the formation of The Hazelton Trough in north central British Columbia. This trough was infilled by Early Jurassic volcanics and sediments now termed the Hazelton Group.

The strata have been cut by at least four intrusive episodes spanning Late Triassic to Quaternary, including synvolcanic plugs, dykes, dyke swarms and the batholitic Coast Plutonic Complex. The stratigraphic sequence has been folded, faulted and metamorphosed mainly during Cretaceous time, but earlier Paleozoic strata are polydeformed, probably recording an earlier deformational event. Stratigraphic correlations are complicated by a combination of facies changes and north trending high angle regional faults.

During the Lower to Middle Jurassic, Bajocian age, the Bazelton Trough was divided into both the northern Bowser and southern Nechako Basins (Figure 3) by the emplacement of the Topley intrusions which cored the Skeena Arch. Erosional material from the Stikine Arch and Skeena Arch infilled the Bowser Basin up to the Late Jurassic Kimmeridgian age.

The principal component of the Intermontane Tectonic Belt in the Iskut River area is a Mesozoic volcanic and

sequence, correlative sedimentary with the time equivalent Upper Triassic Stuhini Group. The Stuhini Group is characterized in the west section of the Iskut district by limestone and polymictic conglomerate which underlie a bimodal volcanic suite and in the east by feldspathic greywacke and siltstone which interdigitate with mafic and intermediate volcanics. Volcanic rocks (2V) are the most common and comprise basaltic to dacitic pyroclastics to flows. Plagioclase and pyroxene form characteristic phenocrysts. Sedimentary rocks (2V) are mostly rhythmic bedded siltstone with minor fine grained wacke, associated limestone lenses and volcaniclastic material (andesitic ash tuff to volcanic sandstone).

Various local volcanic units have been identified including chloritized pyroxene crystal tuffs in the Olatine Mountain area (unit 2m); dacitic pyroxene plagioclase tuffs on Winslow Ridge; and andesite to dacite pyroclastics with locally distinguishing coarse (lcm) hornblende phenocrysts in the McQuillan Ridge area.

The contact of the Stuhini Group and the overlying Lower Jurassic Hazelton Group is gradational in the Stewart area and is marked by an unconformity in other Granitoiddacite-bearing polymictic and areas. conglomerate and greywacke are characteristic of the transitional unit south of John Peaks area (Anderson & Thorkelson, 1990). Lower Jurassic rocks are mainly andesitic to dacitic fragmental volcanics with minor basaltic tuffs, siltstone, wacke and conglomerate. Pillow lavas and felsic pyroclastic units may service as markers even though the package is marked by lateral facies changes, variable colors and lithologic heterogeneity.

The Hazelton Group is subdivided into the Unuk River Formation (a Norian to Sinemurian andesitic sequence), the Betty Creek Formation (a Pliensbachian to Toarcian pyroclastic to epiclastic sequence), and to the east of the Harrymel Creek fault zone the Mount Dilworth Formation (a Toarcian age felsic volcanic sequence). These are overlain by the Middle Jurassic sedimentary rocks of the Salmon River Formation.

The basal Unuk River Formation is characterized by porphyritic andesites of massive to tuffaceous nature with interbeds of immature siltstones (turbidites), conglomerates and limestone.

The Betty Creek Formation is a pyroclastic - epiclastic sequence. Andesite to rhyolite, variably coloured well bedded lithic tuff to lapilli tuffs dominate with minor interbeds of siltstone, shale and argillite.

Harrymel Creek fault zone the Lower East of the Jurassic is terminated the Mount Dillworth by Formation, a regionally extensive blanket of felsic pyroclastics, which include welded tuffs and rare flows. This Formation is thought to mark the penultimate regionally extensive eruption of Hazelton Group felsic pyroclastics that included welded tuffs and flows.

The Lower Middle Jurassic, Bajocian age, Salmon River Formation overlies the Mount Dilworth Formation. Three important facies occur within this formation on a regionally mappable scale.

In the east of the Eskay/Iskut region the (1) Troy Ridge Facies is characterized by rhythmic alternating

thin shale and tuff beds of turbiditic origin. (2)of John Peaks, limestone, limy West and cherty siltstone and shale interdigitate or overlie thick pillow lava and pillow lava breccias. According to Grove (1986) and Anderson & Thorkelson (1990) the interpillow matrix is locally composed of limestone. This unit has been termed the Eskay Creek facies as it hosts the rich stratabound mineralization of the Eskay Creek deposit. In the west, a third facies termed the Snippaker Mountain facies is not well mapped but of andesitic, calc-alkaline appears to consist volcaniclastics.

Recent and Pleistocene basalt flows and tephra blanket much of the Iskut River and subsidiary drainages. Extinct volcanic domes are exposed, but severely eroded, for example in the Snippaker Creek area. The flows predominantly occupy valley bottoms and are commonly olivine rich basalts.

In the Coast Crystalline Tectonic Belt, Paleozoic and Mesozoic sequences are commonly intruded by dyke swarms, dykes, sills, and plutonic rocks of quartz monzonite to quartz diorite composition. These intrusions are Late Cretaceous to Early Tertiary in age. To the east of the main intrusive complex, Intermontane Stikine Terrane smaller granitic plugs and stocks are prevalent. Triassic dykes, sills and plugs are hornblende diorites contemporaneous with Triassic host volcanics, located typically north of the Iskut River.

Intrusive dykes, sills and plugs, believed to be of Jurassic age, range from dioritic stocks on McQuillan Ridge and near Melville Glacier; gabbroic stocks at John Peaks and Nickel Mountain; felsic stocks on Johnny

Flats and on the Inel property. The recently identified Lehto porphyry is a monzonitic to dioritic porphyritic mass with large, pink euhedral potassium feldspar phenocrysts. This trends east-west and crosses Snippaker Creek north of the airstrip.

The Lee Brant stock, located east of the south Unuk River, covers 40 sq. km and is a hornblende - biotite quartz monzonite. Both the Lehto and Lee Brant intrusions have potassium feldspar phenocrysts and are similar to the Summit Lake and Texas Creek plutons of the Stewart, B.C. region. The latter shows a close spatial and temporal relationship (Britton, 1990) with the Silbak Premier gold, silver and base metal deposits.

The area is complicated by major faults such as the easterly dipping Harrymel Creek (or Melville) fault and by regional folding such as doubly plunging, northeast trending, synclinal folds and numerous parasitic folds in Hazelton and Bowser Lake Group rocks. The Harrymel Creek fault juxtaposes older stratigraphy to the west (footwall block) with younger strata to the east (hangingwall block) and appears to form the western boundary to the Mount Dilworth Formation exposures in the district.

5.0 PROPERTY GEOLOGY

Mapping by Alldrick et al. (1989) in the area of the Cop, Har 1 and Har 3 claims shows Upper Triassic (Carnian to Norian Stuhini Group) volcanosedimentary sequences to Lower Jurassic (Norian to Sinemurian Hazelton Group) Unuk River Formation porphyritic andesites with minor limestones in contact with Lower Jurassic (Pliensbachian to Toarcian) Betty Creek andesites and andesitic lapilli tuffs. These are intruded by the Melville stock, a hornblende-biotite quartz diorite. A major Tertiary dike swarm intrudes the andesites.

Prospecting and mapping on the property by Hi-Tec Resource Management Ltd. has shown that the mapping of Alldrick et al. (1989) is valid, however, the contact of the volcanics and intrusive as mapped by Alldrick et al. (1989) is incorrect. Much of the area previously mapped as Unuk River Formation volcanics on the Har 1 claim is actually plagioclase phyritic meta-diorite.

Mapping and prospecting on the Cop claim confirmed the presence of an unsystematic dyke swarm up to 20 m wide. These contained up to 10% pyrite in tension gash arrays. Mapping also located a minor pyritic lens zone with lenses of 1-3 cm wide by 2 m long associated with the quartz/hornblende dioritic unit which underlies much of the Cop claim. The diorite/volcanics contact zone in the area has up to 10% epidote alteration within the volcanics. The volcanics commonly contain up to 8% disseminated pyrite adjacent to the contact zone. Minor shears within the volcanics and intrusive on the Cop claim occasionally contain up to 5% pyrite. None of these shears are of significant dimensions.

Much of the Har 1 claim is underlain by plagioclase phyritic meta-diorite and diorite which is cut by aplitic dykes. Minor breccia zones within these lithologies are frequently Fe/Mn stained and contain up to 2% pyrite.

A massive magnetite showing was located along the northern margin of a glacier on the Har 3 claim (Figures 4 & 5). This skarn type showing is associated with the contact of granodiorite and a banded limestone unit. Extremely altered gossanous lenses of gouge and quartz-carbonate veinlets are evident in the contact zone. These contain up to 80% magnetite, 5% pyrite and 5% hematite. Brecciated zones of intrusive rock are also evident in this zone. Rock samples 90HVR11 to 032 were taken from this showing (Figure 5).

In the southwestern portion of the Har 3 claim a brachiopod fossil locality was mapped within a sandstone, siltstone, shale and limestone interbedded sequence. Samples 90HJR016-031 were collected in this area. Many of the fossils are replaced by calcite and contain up to 5% disseminated pyrite blebs.

6.0 PROPERTY GEOCHEMISTRY

One hundred and forty seven rock samples and three pan concentrate samples were collected on the property. All samples were submitted to Vangeochem Lab Limited for analysis, analytical procedures are in Appendix II, Au and 25 element ICP results are tabulated in Appendix III, and descriptions in Appendix IV. Sample locations are plotted on Figure 5.

Only spot high Au values were recorded from the samples. The best Au value of 980 ppb was from a rock grab sample (90HJR029) of quartz-carbonate veinlets near the fossil locality on the Har 3 claim. This sample also contained an anomalous As value of 249 ppm. No other anomalous ICP results were recorded for this sample. An adjacent sample (90HJR030) contained 7% pyrite within < 2 cm quartz-carbonate veinlets and this yielded an Au value of 250 ppb.

Many of the samples collected from the skarn showing on the Har 3 claim contained massive magnetite. The Au values recorded from these samples are in the 10-40 ppb range with the exception of sample 90HVR011 which yielded a value of 150 ppb Au. Cu values are elevated throughout the length of this showing and range from 120 to 998 ppm.

One spot high of 3.04% Zn was obtained from sample 90HVR003 which was collected from the peak of an unnamed mountain 0.5 kilometers to the south of the fossil locality on the Har 3 claim.

7.0 CONCLUSIONS

Mapping on the Cop claim has shown that it is underlain by a quartz-hornblende diorite intrusion which is cut by andesitic dykes. This dyke swarm occasionally contains fractures which are infilled with up to 10% pyrite. No appreciable precious or base metal values were recorded from the samples collected on the Cop claim.

Much of the Har 1 claim is underlain by plagioclase phyritic meta-diorite and diorite which is cut by aplitic dykes.

On the Har 3 claim, a massive magnetite skarn type showing was located which is associated with the contact of granodiorite and a banded limestone unit. Only low Au values were recorded from this showing with the exception of sample 90HVR011 which yielded a value of 150 ppb Au. Cu values are elevated throughout the length of this showing and range from 120 to 998 ppm. In the southwestern portion of the Har 3 claim a brachiopod fossil locality was mapped within a sandstone, siltstone, shale and limestone interbedded sequence. The best Au value of 980 ppb was from a rock grab sample (90HJR029) of quartz-carbonate veinlets near this fossil locality.

8.0 RECOMMENDATIONS

Follow-up work is recommended on the Har 3 claim to determine the nature and size of the skarn and fossil locality showings. Trenching of these showings would aid in the interpretation of their geometry and grade characteristics.

No additional work is recommended on the Cop and Har 1 claims.

Respectfully submitted,

HI-TEC RESOURCE MANAGEMENT LTD.

Lenis

DENIS A. COLLINS, Ph.D., P.Geol., F.G.A.C.

January 7, 1991

AL CAL

9.0 REFERENCES

- Alldrick, D.J. Britton, J.M., Webster, I.C.L. and Russell, C.W.P. (1989a): Geology and Mineral Deposits of the Unuk Map Area (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-10.
- Alldrick, D.J., Britton, J.M., MacLean, M.E., Hancock, K.D. Fletcher, B.A., Hiebert, S.N. (1990): Geology and Mineral Deposits of the Snippaker Area (N.T.S. 104B/6E, 7W, 10W, 11E) B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990 - 16.
- Anderson, R.G. (1989): A Stratigraphic, Plutonic, and Structural Framework for the Iskut River Map Area, Northwestern British Columbia, Current Research, Part E; Geological Survey of Canada, Paper 89-1E, pages 145-154.
- Britton, J.M., Webster, I.C.L. and Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pages 241-250.
- Britton, J.M., Fletcher, B.A., Alldrick, D.J.,(1989): Snippaker Map Area (104B/6E, 7W, 10W, 11E); B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1, pages 115-125.
- Grove, E.W. (1971): Geological and Mineral Deposits of the Stewart Area, British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 58, 219 pages.
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63, 152 pages.
- Kerr, F.A. (1948): Lower Stikine and Western Iskut River Areas, British Columbia; Geological Survey of Canada, Memoir 246, 94 pages.
- National Geochemical Reconnaissance 1:250 000 Map Series (1988): Iskut River, British Columbia (NTS 104B), Geological Survey of Canada, O.F. 1645, B.C. Ministry of Energy, Mines and Petroleum Resources, RGS - 18.
- Todoruk, S.L. and Ikona, C.K. (1989): Geological Report on the Cop and Har 1 & 3 claims, B.C. Report prepared for Westmar Resources Ltd. and filed for assessment.

STATEMENTS OF QUALIFICATIONS

APPENDIX I

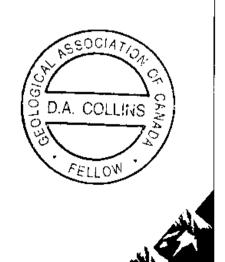
.

ſ

[

1

_


-

Statement of Qualifications

- I, DENIS A. COLLINS, of the City of Vancouver, Province of British Columbia, hereby certify:
- 1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd., with offices at 1500-609 Granville Street, Vancouver, British Columbia.
- THAT I obtained a Bachelor of Science degree in Geology from University College Cork, Ireland in 1980 and a Ph.D. in Structural Geology from the same university in 1985.
- 3. THAT I have been practising my profession as a geologist in Ireland, South Africa, USA and Canada since 1980.
- 4. THAT I am a Fellow, in good standing, with the Geological Association of Canada.
- 5. THAT I am a registered Professional Geologist, in good standing, with a license to practice with the Association of Professional Engineers, Geologists and Geophysicists of the North West Territories.
- 6. THAT this report is based upon a thorough review of published and printed reports and maps on the subject properties and the surrounding area and on the results of a field program of geological mapping and sampling directed by the writer during July to September, 1990.
- 7. THAT I have no interest in the properties described herein, nor in securities of Kinghorn Energy Corporation or Westmar Resources Ltd. or any company associated with the property, nor do I expect to receive any such interest.

Dated in Vancouver, British Columbia, this 7th day of January, 1991.

Denis A. Collins, Ph.D., P. Geol., F.G.A.C.

Statement of Qualifications

- I, Robert F.Brown, of the City of Vancouver, Province of British Columbia, hereby certify :
- 1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd., with offices at 1500-609 Granville Street, Vancouver, British Columbia.
- THAT I obtained a Bachelor of Science (Engineering) degree in Geology from Queens University at Kingston, Ontario, Canada in 1975.
- 3. THAT I have been practising my profession as a geologist since 1975.
- THAT I am a registered Professional Engineer, in good standing, with the Association of Professional Engineers of British Columbia.
- 5. THAT this report is based upon the results of a field program of geological mapping and sampling supervised by the author during July and September, 1990. All published maps and reports on the properties and the surrounding area have been thoroughly reviewed.
- 6. THAT I have no interest in the properties, nor the securities of Kinghorn Energy Corporation or Westmar Resources Ltd. or any company associated with the property, nor do I expect to receive any such interest.

Dated in Vancouver, British Columbia, this 7th day of January, 1991.

R. F. BROWN Rober

APPENDIX II

.

ſ

.....

....

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

SC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 10, 1990

TO: Mr. Robert Brown HI-TEC RESOURCE MANAGEMENT LTD. 1500 - 609 Granville Street Vancouver, BC V7Y 1G5

- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Analytical procedure used to determine Aqua Regia soluble Hg vapour in geochemical samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in wet-strength, 4" x 6" Kraft paper bags. Rock samples were received in 8" x 12" plastic bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new envelope for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized into 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Digestion

- (a) 0.50 gram of the minus 80-mesh portion of the samples were weighed out by using a top-loading balance into the test tubes.
- (b) The samples were digested with agua-regia in a hot water bath for an hour.
- (c) The samples were shaken and diluted with demineralized water to a fixed volume settled.

MAIN OFFICE 1630 PANDORA STREET VANCOUVER, B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

-2-

- (d) The heavy minerals are then removed from the bottom of the buret and filtered. This is then washed several times with acetone and dried on the hot plate.
- (e) The dried heavy minerals are then put into envelopes for subsequent analyses.
- 3. Analysts

The procedures are supervised by Mr. Conway Chun and his laboratory staff.

12

÷ .

Conway Chun VANGEOCHEM LAB LIMITED

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1630 PANDORA STREET VANCOUVER. B.C. V5L 1L6 TEL (604) 251-5656 FAX (604) 254-5717 BRANCH OFFICES BATHURST, N.B. RENO, NEVADA, U.S.A.

October 10, 1990

TO: Mr. Robert Brown HI-TEC RESOURCE MANAGEMENT LTD. 1500 - 609 Granville Street Vancouver, BC V7Y 1G5

- FROM: VANGEOCHEM LAB LIMITED 1630 Pandora Street Vancouver, BC V5L 1L6
- SUBJECT: Anlytical Procedure for Heavy Mineral Separation of Alluvial samples or coarsely ground rocks.

1. Method of Sample Preparation

- (a) Alluvial samples are received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Coarsely ground rocks are received in poly ore bags.
- (b) Samples are wet screened by hand using an 18" diameter, 18-mesh stainless steel sieve. The plus 18-mesh fractions are rejected. The minus 18-mesh fractions are washed free of organic matter and slime particles. These fractions are then dried.
- (c) Dried samples are transferred to new bags for subsequent analyses.

2. Method of Heavy Mineral Separation

- (a) Samples of up to 400 grams are placed into 1000 ml beakers. Tetrabromoethane with a S.G. of 2.95 is added to fill the beakers. The mixture is stirred to free air pockets and to initiate separation. The mixture is left for 15 30 minutes for the plus and minus S.G. 2.95 material to separate.
- (b) The bulk of the lighter than S.G. 2.95 material is removed which floats on top of the tetrabromoethane solution.
- (c) The heavier than S.G.2.95 material and tetrabromoethane is stirred into a large size buret and left for 15 - 30 minutes.

-2-

3. <u>Method of Analysis</u>

- (a) An aliquot of the digested samples were mixed with H2SO4 acid, NaCl and hydroxylamine sulphate-stannous sulfate as the reductant.
- (b) The vapour of the mixture was then drawn into the absorption cell and the Hg vapour was detected by the Techtron Model AA5 Atomic Absorption Spectrophotometer.
- (c) The results were recorded on a strip chart recorder. The concentration were calculated in parts per billion by comparing with a set of Hg vapour standards.
- 4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Raymond Chan and the laboratory staff.

Conway Chun VANGEOCHEM LAB LIMITED

APPENDIX III

_

.

-

[

~--

.

. .

. .

F

ANALYTICAL DATA

<u>/-</u>			1630 PANDORA STREET VANCOUVER, BC VSL 116 (604) 251-5656	· · · ·
	CHEM LAB LI	MITED	MAIN OFFICE 1999 TRIUMPH 6T. VANCOUVER. B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO. NEVADA, U.S.A.
EBFORT NUBBER: 900496 GA	JOB TOMBBE: \$00496	HI-YEC RESO	URCE NAMAGENERY LTD.	PAGE 1 OF 1
SIMPLE #	an Ya			
SPR013	at			
EPROLA	nd			
BPE015	ad			
EPR016	ba			•
eth);]	58			

Γ

Γ

[

ſ

-

DBTECTION LINIT 5 nd = none detected -- * not analysed is = insufficient sample

· · · ·

VANGEOCHEM LAB LIMITED

1

- ----

. .

1

1630 Pandozz Street, Yancouver, D.C. VSL IL6 Ph:(604)251-5656 Fasi(604)254-3717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 3 ml of 3:3:2 HCl to HHO₂ to H₃G at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Wa, P. Sn, Sr and M.

ANALYST:	- Andh
----------	--------

REPORT 0: 900496 PA	HI-TEC RESO	GURCE KAN	AGENENT	LTD.		PROJE	CT: 908C	042		DATE	E IN; SEI	PT (J 199	40 DA	re out: C	XT 16 19	190 1	NTEENTIO	I: NR. DE	ENNIS COL	LUIS		PAG	E LOF	1	
Sample Mane	Ag	Ą	As	B2	Bí	G,	Cd	Co	C†	Cu	Fe	Ķ	Mg	Na	Ko	Wa	Ki	P	P5	56	5n	Sr	U	N	14
HPR013	ope {0,1	5.48	pp4 (3	pp4 24	pp4 {3	1.36	рре 1.1	рра 16	рре 78	604 15	1.95	0,13	0.65	pp4 235	pộ4 B	0.03	pg n 109	0.12	pps (Z	ρρ. (2	ppe L1	рр е 187	рря (5	ppe (3	pp# 22
HPR014	(0,1	1.10	(3	54	(3	1.26		17	ä	40	4.23	0.16	0.37	172	6	0.04		0.73	ä	(2	10	79	(5	3	21
HPR015	(0,1	\$.75	<3	23	<3	1.35	(0.1	17	103	11	1,89	9,13	0.80	243	\$	0.03	98	0.09	(2	(2	11	136	(5	43	21
KP2016	(0.1	3.37	(3	69	(3	2.53	E.4	- 17	101	ទ	1.55	0,18	1.\$2	199	10	0.03	47	0.05	(2	(2	\$1	124	(5	(3	22
HVR023	(0.1	2.13	(3	69	<3	1.20	1.7	28	38	17	\$.92	0.21	1.25	363	11	9.04	38	9.27	<2	<2	16	78	4	(3	45
	•																								
Binigun Betection	0.1	0.01	3	I	3	0,01	0,1	l	. 1	1	0.01	0.01	0.01	1	1	0.01	1	8.01	7	2	7	1	5	3	l
/ Hasinum Betection { ~ Less Than Miniaum	50,0 > - Greater (1	10.00 Han Maxim	2000 un 1	1000 5 - Insu	1000 I(icient	10,00 : Sample	1000.0 ns	20000 - Ko Szep	1000 ale	20000 Anonalou	JO.OD 6 Result	10.00 5 - Furti	18.00 her Anal	20000 yses 8y /	5006 Alternati	10.00 Method	2000D s Sugges	10.00 ted.	20000	2000	1000	10000	100	1000	20000

		1630 FAVOCRA STREET VANCOUVER, BC V5L 1L6 (604) 251-5556	· · · · ·
VGC VANGE	OCHEM LAB LI	MAIN OFFICE 1099 TRIUMPH ST. -VANCOUVER. 9.6. V5L 10(• (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT, RENO, NEVADA, U.S.A.
REPORT NUMBER: 900241 GA	JOB BUNBER: 300241	BI-TEC RESOURCE NAMAGENEET LTD.	PAGE 1 OP 1
SANFLE #	Å1		
	gpb		
906L2001	140		
90ALR002	nd		
90ELE003	nd		
90HLR084	бa		
90ELROO5	ba		
9001R006	nd		
90812087	ba		
90HLR008	nd		
18HERÓD1	bà		
SOELROOZ	ad		

ſ

_

-

- -

.

20 20 30

90HEROO3 90HEROO4 90HEROO5

VANGEOCHEM LAB LIMITED

1

h.

2

•

•

់រ

_______________ 1630 Pandora Street, Vancouver, D.C. V5L 1L6 Phil65043251-5656 Fati(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 graw sample is digested with 5 ml of 3:1:2 HCl to HAO2 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Hg, Hn, Na, P, Sn, Sr and W.

,																									
7EPORT 1: 900241 PA	HI-TEC RESO	HIRCE MAN	AGENEKT	LTD.		PROJE	CT: 908C	042		DATE	lk: Au	5 14 1990	DAT	1E OVT: 9	EPT 06 1	1990	ATTENT SO	1: XR. 9.	LUCAS			PAG	E 10F	t	
Saaple Haae	Ag	AÌ	As	Ba	Di	G	Cd	Co	Cr	Cu	/ fe	ĸ	Rg	M n	No	Ra	Mi	P	Pb	Sb	Sn	Sr	U	H	24
	6 P 4	2	ppe	ppe	90e	1	P Pe	9 0 .	901	p p n	l I	I	1	000	99a	1	66a	1	pp e	p p s	pp.	<u>ppe</u>	60 B	a pe	69 M
Jahl Rods	Q.1	1.52	(3	15	(3	1.79	2.5	23	54	20	2.04	{0.01	0.92	363	33	(0.01	13	0.21	69	(2	27	213	(5	(3	35
JOHL ROO2	(Q.E	3.16	{3	48	(3	1.42	6.7	- 47	82	13	7.16	0.11	2.70	1802	25	(0.01	8	0.20	76	(2	27	59	- (5	(3	145
JOHL ROOZ	9. L	2.78	<3	40	(3	0.68	5.7	36	60	12	3,88	0.12	2.28	727	37	(0.0]	40	0.15	60	(2	23	51	(5	<3	66
JOHL ROOS	0.1	Q.48	(3	33	<3	Q.Q?	3.4	12	62	9	1.07	9.16	Q. QS	78	28	0.03	- C	0.02	80	(2	12	4	(5	(3	8
JOHL RODS	Q.1	0.67.	G	51	(3	0.12	0.7	19	33	5	1.15	0,09	0.20	104	29	0.02	6	0.04	54	α.	18	8	<\$	(3	13
YOHL ROOS	0.3	0.97	(3	48	(3	0.15	6.9	23	110	29	2.43	0.15	0.51	150	30	(Q. DI	q	0.08	58	(2	10	9	<5	a	17
30HL R007	0.5	1.26	(3	214	(3	0.64	4.1	31	58	11	3.08	0.13	0.78	346	30	(0.0)	26	0.10	54	(2	19	40	<5	(3	32
10HL R008	0.2	2.04	(3	136	(3	0.85	6.0	36	61	9	4.44	0.11	1.60	717	30	(0.01		0.18	62	(2	30	50	<5	(3	78
1014 R001	0.4	1.54	9	85	(3	0.62	4.7	41	46	13	3.68	0.14	j. 13	358	39	(0,0)	6	0,15	52	(2	29	41	<5	G	33
10HK R002	0.5	2.33	(3	(8	(3	0.54	6.1	35	75	8	3,95	0.16	1.57	514	32	(0,0)	4	0.11	66	6	22	43	<5	(1	39
IORKROO'S	0.3	0.75	14	47	(3	0.58	5.4	32	40	12	2.83	0,26	0.27	61	(3	0.03	a	0.07	73	11	24	10	₹5	(3	л
19 HT ROO4	0.2	1.65	<3	162	(3	0.38	5.3	30	68	4	2.75	0.15	1.10	464	(2	(0.0)	8	0.97	106	<2	22	29	(5	(I	64
Homkroo5	0.2	2.16	7	129	(3	0.89	5.3	39	65	16	5.20	0.23	0.78	258	35	(0.01	a	0.14	59	16	20	76	<5	(3	40
ligious Detection	0.1	0.01	3	1	3	0.01	Q.	1	Т	t	0.01	0.01	0.01	1	Т	0.01	t	0,01	2	2	2	1	\$	3	١
Jaxyaum Detection	50.0	10.00	2000	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
- Less Than Minimum	> - Greater TH	ian Basia	a a	is - Insu	officien	t Sasple	^	- No Saepi	ie 👘	ANOMAL DUS	S RESULT	\$ - Eurtl	ver Analy												

ANALYST: Rymth

¢

÷

í

4

 O_{2}

¢,

		1630 PANDORA STREET VANCOUVER, BC V5L 1 (604) 251-5656 MAIN OFFICE	BRANCH OFFICES
		VANCOUVER. B.C. VSI ● (604) 251-5650 ● FAX (604) 254-53	MISSISSAUGA, ONT.
BEPORT NUNBER: 900242 GA	JOB WUNBBR: 900242	11-TEC RESOURCE MAINGEMENT LTD.	PAGE 1 OF 1
SIMPLE I	10		
	ppd		
90HLR009	ba		
90BLR010	nđ		
90BLR011	6a		
90HLB012	ba		
90HLR013	<u>tá</u>		
S#HLRO14	bđ		
90ALRO15	10		
SANSR016	20		
SOBLRO17	nd		
9delec1\$	nd		
90 EK 2086	ba		
302E2007	að		
90EKROO8	440		
968KR009	að		
SORKEOID	ba		
908CR001	20	х.,	
90909002	30	× · · · · · · · · · · · · · · · · · · ·	
908CR003	nd		
90HCROD1	ad		
968CH002	nd		

t

ſ

r

- حر

að

90HCH003

VANGEOCHEM LAB LIMITED ~____ 1630 Pandora Street, Vancouver, B.C. VSL 116 Ph: (604)251-5656 Fax: 1604)254-5717

A second s

.

1.14

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 MCL to HHO2 to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. Thus Zeach us partial for A2, Ba, Ca, Cr, Fe, K, Ng, Mn, Ha, P, Sm, Sm and W.

				,		s Zeach	is parts	al for A	1, 8a, 1	Ca, Cr, 1	e, K, B;	, Na, Ki	1, P, Sn.	,`\$r and	u. .				ANALY	/572	Ru	m li	h		
REPORT 8: 900242 PA	NI-TEC RESI	NURCES MAI	IAGENEXI	T LTD.		PROJEC	:1: 90BCÇ	H1 12		DATE	IN: AUG	i 14 1990	bai	IE OUT: S	EP1 04 I	1990 /	TTERTION	: R. 880	3MM			PA6	ELDF	ŧ	
Sauple Kave	Ag	A)	As	Ba	Bi	Ca	Cd	Ca	٤r	Cú	Fe	K	Xg	Ko	No	Na	Ri	P	Pb	Sb	So	Sr	Li I	H	Zn
	ppn	2	ppe	ppn	ppe	I,	b p a	ppe	<u>pp</u> m	ρ ρ α	1	2	1	ppe	pp s	ľ	¢p ▲	I	ppe.	pp b	ppm	DO	ppm	ppe	99.
90NLR009	(0.1	1.5B	(3	185	138	Ô. 40	3.3	19	205	23	2.85	Q, 0B	0,70	298	163	(0.01	731	0.09	7	<2	20	37	(5	(3	27
90HL2010	(0,1	0.84	(3	65	(3	0.23	1.6	16	56	,	2.00	0.14	0.49	163	172	{0.0L	18	0.10	31	<2	13	7	(5	(3	25
90KL R0 1	(0.1	2.41	(3	39	32	0,53	2.7	83	- 14	12	5.74	0.12	1,99	796	21	(0.01	96	0.15	19	<2	28	21	(5	(3	78
90HL R012	(0,1	1.29	(3	13	21	0.33	2.7	207	51	32	9.66	0.13	9,63	443	43	(0.01	49	0.06	- 41	(2	17	17	(5	<3	46
90KLR013	<0.1	1.78	(3	57	រវវ	0.61	1.7	68	62	15	3,95	0.02	1.23	603	18	(0.01	Z6	0.12	14	(2	19	47	<5	(3	65
9041.2014	(0.)	1.42	(3	22	a	0.74	0.6	18	55	6	2.34	(8.61	0.13	154	12	(0.01	16	0.09	19	(2	19	71	(5	(3	19
90HL R015	(0.1	1.90	{3	43	55	1.01	2.3	28	56	7	3.37	(0.01	1.12	424	14	(0.01	23	0. je	23	<2	22	71	(5	(3	71
90KLROL6	(0.1	L. 90	(3	24	(1	1.20	0.6	29	45		2.94	(0.01	0.91	225	10	(0.01	11	0.16	15	<2	16	130	(\$	(3	33
9011L R037	(0,1	0,54 ,	(3	>1000	80	2.79	1.9	6	(3	6	2.50	(0.0)	6.74	664	- I	(0,01	5	0.06	<2	(2	(2	132	(S	(3	58
90HL #018	(0.)	1.75	(3	84	(3	1.17	1.4	25	59	17	2.54	(0.01	1.28	539	10	(0.81	21	Q. 14	13	(2	22	10S	(5	(3	94
50HKR006	(0.1	5.17	(3	52	(3	0.37	1.1	20	54	3	3.05	0.05	0.47	160	п	(0.01	a	Q. 05	21	(2	22	62	(5	(3	19
90HKR007	(0,1	1.54	(3	34	(3	0.74	(0.1	22	23	14	2.48	(0.01	1.02	315	10	(9.01	3	0.15	<2	(2	20	77	(5	(3	28
90HKR008	(0.1	2.67	(3	56	(3	0.47	2.7	199	59)	5.17	0.10	1.76	584	10	(0.01	9	0.13	15	<2	18	21	- (5	(3	78
904KR009	(0.1	2,78	(3	20	(3	0.89	2.3	67	\$2	45	7.49	0.64	2.04	630	25	(0.01	72	0.15	29	(2	21	69	(5	(3	84
90HKR010	(0,1	2.20	3	22	(3	0.95	6.9	24	47	76	3.31	9.05	1.74	437	12	(0.01	12	0.20	25	(2	19	40	(5	{3	203
90HCR001	(0.1	3,75	<3	17	(3	0.68	3.0	219	64	45	>10.00	0.06	2.21	791	14	(0.0)	100	0.19	<2	(2	36	46	(5	(3	112
90HCR002	(0,]	0.54	(3	>1000	20	7.81	0.2	- 17	32	15	4.11	(0.01	2.41	1724	15	(8.01	12	0.10	(2	(2	3	171	(5	(3	129
90HCR003	(0.1	3.23	(3	78	25	1.72	(0.1	38	SI	2	3.69	(0.0)	2.29	967	12	(0.01	19	0.18	8	$\dot{\alpha}$	21	173	(5	(3	157
90HCh001	(0.1	3,45	(3	114	(3	0.98	2.6	42	84	56	4.70	0.19	2.01	1109	12	(0.0)	21	9.12	(2	(2	36	66	(\$	3	172
90HCH002	(0.1	1.22	(3	84	(3	0.93	(0,1	35	76	52	4.30	(0.0)	1.91	(69)	9	(0.01	21	0.11	(2	(2	28	58	(5	(3	158
10HCH403	(0.)	2.46	(3	103	a	1.03	(0,1	37	51	48	4.64	(0.0)	1.53	814	8	(0.9I	20	0,34	(2	(2	26	56	(5	3	104
Kininus Retaction	8.5	8.01	3	!	3	0.01	0.1			1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	2	2	1	5	3	1
Maximum Betection	50.0	10.00	2000	1000	1000	10,00	1000.0	20000	1000	20000	10.00	\$0.00	10.00	20000	1000	10.00	20000	10.00	20000	2000	1000	10000	100	1000	20000
(- Less Than Minioun) - Greater I	han Nazin		is - lase	ussicsen	a Sample	P \$	- No Saep)ie	ANGHALQU	S RESULT	S - fart	her Anal	yses by i	u terhat	e nechos	s Sugges	led.							

· ·

÷

-

З.

1050 CONGREGA STREET VANCOUVER, BC - V5L IL6 (604) 251-5656

VANGEOCHEM LAB LIMITED

ſ

BRANCH OFFICES PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ONT RENO, NEVADA, U.S.A.

SLUPLE I	λ α	
	<u>p</u> pb	
JOBBROCI	nð	
90BBR002	360	
988BR003	ba	
Strar¢04	50	
SUBBROOS	30	
943BR4D6	200	
90KJR001	20	
94XJR002	10	
SCHJROO3	ba	
903JR004	nd	
94838005	ъđ	
90HJROOK	130	
90KJR007	30	
90XJR008	nd	
90838 009	20	
90TJR010	20	\sim
98XJR011	10	[×]
98XJ2012	pđ	
98#JR013	nd	
98132014	ad	
90EJRO15	70	
98332016	ad	
90EJR017	20	
98EJR018	40	
90EJE019	nd	
90138020	nđ	
905JR021	ađ	
901JR022	ed	
90EJR023	ađ	
90EJR024	nd	
90EJR025	20	
90BJR026	10	
90EJR027	10	
902JR028	10	
908JR029	988	
90EJR030	250	
96EJR031	60	
908JR032	20	
90118033	ad	
DETECTION LINIT	5	

VANGEDCHEM LAB LIMITED

.

ì.

1630 Pandora Street, Vancouver, B.C. V5L IL6 Phi (604)251-5656 Faxi (604)254-5717

1

1

ंगे

1

•

λ.

.

3

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with S at of 3:1:2 HCl to HKD_ to H_D at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Rg, Ma, Na, P, Sn, Sr and W.

ANALYST: Marin	ANALYST:	buch
----------------	----------	------

C

REPORT 0: 900361 PA	KC-TEC RES	BURCE MAN	IAGERIENT	LT0.		PROJEC	[: 908CO4	62		OATE	IN: SEF	PT 04 199	00 8 8	ie outr s	EPT 24	1990	ATTENTION	l: MR. DE	NHES COLL	.1NS		PAG	EIOF	2		•
Sample Kane	Ag pp=	AL I	Ås ppe). ppn	Bi ppa	Ca I	Cd ppe	Co ppe	Cr pps	Cu BOR	Ге 1	r I	Ng Z	Xa Bau	Ko PD4	Ka T	Ni 900	7 1	Pb gpa	Sb. ppe	Sa. ppe	Sr 90=	U 905	W PDe	Ia 20a	Ç
SCHEROOL	0.3	1.72	193	26	3	1.6	0.7	22	62	131	3.25	0.03	0.95	331	9	(0.01	37	9.17	15	(2	6	20	(5	5	44	
90488002	9.1	0.41	596	34	G	5.17	0.3	13	31	55	3,63	0.08	1.40	739	į	(0.01	29	0.10	33	ji i	3	235	ŝ	G	46	•
90H9R003	0.3	2.62	27	42	(3	5.61	1.4	38	109	143	4,09	0.05	1.37	791	12	(0.01	79	9,10	21	2	Ā	98	Ğ	, a	71	
90488004	0.2	2.23	396	52	ä	2.28	(0.1	25	B2	96	2.89	0.04	0,97	398		(0.01	35	0.13	ii	(2	7	24	<5	ž	4	
90HBR005	9.2	2.49	60	27	ä	1.28	2.3	39	164	109	4.53	0.03	2.50	527	13	(0.01	139	0.15	20	ä	ģ	37	čš	,	74	C
14114444						1.10	< ···		141		4+84						147	4.14	24	14	,					
90KBR006	0.2	2.61	19	\$5	អ	1.52	3.0	21	79	86	3.50	0.03	1.77	554	\$3	(0.01	44	0.13	45	α	7	73	(5		109	
SOKIROO1	0.5	4.06	ö	86	ä	1.21	4.0	31	49	133	7.47	0.05	3.06	831	10	(0.0)	31	0.28	25	3	ü	83	(5	12	320	
90HJR002	4.1	3.39	ä	45	ä	2.01	2.9	42	104	61	4.61	0.04	2.60	758	14	(0.0)	94	4.12	11	a	10	78	Ġ		79	,
90HJR003	9,4	4.44	(3	59	ä	0.17	3.8	42	54	93	8.50	0.04	3.29	670	15	(0.01	35	0.29	18	(2	10	52	ś	13	93	
SORIROO4	0.3	5.61	ä	118	(3	3.30	3.1	59	131	50	5.92	0.06	6.93	1026	19	(0.0)	315	0.14	24	(2	11	143	<s< td=""><td>17</td><td>82</td><td></td></s<>	17	82	
2004044	••••				1-			••		••					••			•	•7	•••	••	142	14	••		
JOH JR DOS	0.3	2,42	3	21	(3	\$10.00	2.3	13	65	38	3.62	0.07	2.03	1675	10	(0.01	20	0.08	132	(2	5	725	6	7	229	
10H JR005	(0.1	1.88	ũ	ü	6	3.85	1.3	Ū,	63	25	2.85	0.05	1.41	689		(0.0)	74	9.11	7	(2	-	113	6	÷.	53	
SOH JROOT	0.4	3.16	ä	75	(3	5.61	3.0	20	32	56	6.16	0.07	2.04	1270	12	(0.01	19	0.18	20	(2	ĥ	290	Ġ	i.	92	
80081406	9.1	2.17	ä	48	(3	4.72	3.6	26	51	108	\$.25	0.06	3.60	968	10	(0.01	20	0.19	29	à	,	230	(5	i	16	:
9QHJR009	0.3	1.52		47	(3	7.52	3.2	21		96	4.05	0.05	1.49	902		(8.0)	32	0.17	36	(2	,	183	Ğ	Ś	117	3(
			•				••••										••	** 17	~~		•	100		-		5
10H1R010	1.2	1.03	22	37	(3	>10.00	2.0	14	22	23	2.61	0.08	1.02	699	1	(9.0)	17	9,12	97	3		953	45	3	30	2
JOHJROL 1	0.6	2.53	(3	188	(3	5.67	3.6	22	32	138	5.48	0.05	1.74	1531	12	(0.01	38	0.23	30	3	i i	324	6	i	94	10
90438012	6.3	2.25	(3	40	(3	1.73	1.6	15	119	43	2.80	0.03	1.27	582	37	(0.01	29	0.12	Ĩ	ā	5	79	(5	· 1	91	2
90KJR013	0.7	0.26	144	24	(3	>10.00	3.4	18	105	10	4,35	0,08	6.58	1252	9	(0.01	n	0.03	55	24	6	614	(5	G	28	
90H1R014	0.1	1.38	9	35	7	1.31	1.7	19	117	46	2.77	0.03	1.56	366	i	(0.01	115	0.13	ñ	ä	ā.	36	Ġ		53	(
			•		-		•••														•		••	. •		
90KJR015	0.4	2.71	(3	79	(3	0.73	61	23	153	53	5.47	0.03	2.57	850	13	(0.01	- 47	8.17	43	(2	10	33	6	7	109	
90HJR016	1.3	0,30	28	256	18	310.00	1,2	3	16	10	0.88	0.07	4.28	579		(0.0)		0.03	29	(2	2	1093	CS .	(3	57	1
90HJR017	1.2	0.34	45	96	16	210.00	0.9	5	15	- 14	1.45	0.07	0.15	493	5	(0.01	19	0,07	30	(2	2	\$7B	(5	(3	13	
SON JROJE	0.8	1.87	131	115	(3	0.83	1.7	9	59	- 74	5.00	0.03	Q.8 2	215	9	(0.01	15	0.13	36	(2	4	53	(\$	6	65	
SCHIRO19	0.6	1.70	100	76	9	0.26	1.6	6	33	37	3,47	0.02	0.74	\$22	1	(0.01	10	0.51	21	(2		19	6	5	43	(
							_	_		_					_						_					
50HJ80Z0	1.2	0.52	34	45		>10.00	1.2	5	20	12	\$.65	6.07	0.99	630		(0.0)	9	0,11	28	(2	3	768	(5	(3	35	,
90HJR021	1.2	1.17	θ	65	-	>10.00	1.7	10	14	22	2.57	0.07	Q. 84	122	6	(0.01	2	0.03	25	(2	- 1	654	(5	4	60	(
90KJR022	0,2	0.48	43	36		>10.00	1.6	6	12	13	1.63	0.07	0.46	516		(0.01	2	6.07	40	(2	2	615	(5	- (1	19	
10H JR023	0.8	1.01	23	30		>10.00	5.6	0	20	59	2.31	0.07	1.00	1174	•	(0.01	30	0.09	48	(2	3	581	(5	3	473	
90H JE024	0.2	1.29	24	38	(3	210.00	2.6	9	30	38	2.64	0,07	6.15	560	6	(0.01	1\$	0.11	36	(2	4	419	<5		94	ı
64/112475	10.1								84				A /6	340				• • •					10	~	NC	
90HJ2025	(0.1	0.71	32	26	15	0.62	1.4	1	59		1.12	0.01	0.45	208	3	(0.0)	<1	0.03	(2	(2	(2	24	(5	3	25	· ·
90KJR026	0.2	6.05	32	11	6	>10.00	2.0	1	14	49	2.42	0.07	0.62	405	22	(0.61	30	0.13	30			657	(5	-	70	
90HJR027	0,7	1.69	209	22	(3)	7.45	2.6	16	52	52	5.07	0.07	2.49	1900	12	(8.01	95	0.11	48	10	5	292	(5	Ş	120	1
90H1R028	0.2	2.57	21	15	(1	7.94	4,3	13	41	45	4.93	0.07	3.17	1605	11	(0.01	66	0.09	42	2	Þ.	265	(5	Û,	230	
SOHIRO29	0.7	1.32	249	30	₹3	>10.00	3.2	23	167	\$0	4.62	6.08	5.01	1393	10	(0.05	183	0.07	49	19	6	\$40	د)	5	87	
90032030	0.3	2.40	\$5	56	(3	4.22	3.3	21	27	:33	4.48	0.06	2.36	817		(0.0)	12	9.21	31	5	6	233	(5	,	53	
30H1R031	0.2	(,24	(3	47	(3	7.06	3,9	39	36)	41	5.12	0.07	5.41	1656	16	(0.01	318	0.11	5	à	7	583	(5	12	65	
90HJR032	0.2	3.25	(3	1	a	4.66	(.8	35	30/	'n	4.98	0.07	3.33	1151	13	(0.01	44	0.15	14	2	iÓ	53	(5	10	47	
90KJR033	(0.1	1.5	23	22	13	1.00	1.9	33 1	12	41	2.60	9.02	1.66	399	1	(0.0)	21	0.09		(2	5	33 50	(5	5	20	
54114m49.5	74.1	1.41	44			1.00	1-3	••	74	-1	£+90	9,90		÷12		14141	41	0.03	•	14	3	66			14	1
Minipus Detection	0.1	0.01	3	1	3	0.01	0.1	Т	Т	۱	0.01	0.0t	0.01	:	1	0.01	1	0.01	2	2	2	ŧ	5	. 3	Ļ	

	CHEM LAB LI	 (604) 251-5656 MISSISSAUGA, OK
REPORT HOMSER: 908351 GL	JOB NURBER: 960361	• FAX (604) 254-5717 RENO, NEVADA, U:
SIMPLE #	A -	
Same La P	12 nah	
505JR034	ppb nd	
Sabiro35	30	
56832036	30	
38EJ2037	10	
JSEJRO 38	20	
98EPRÓØ1	nd	
90EPR002	ba	
943PR003	nd	/
901P2004	20	
9¢#PROOS	né	
108P2006	10	
96EPROD7	ba	
903P208\$	ba	
94322009	10	
\$63PE016	ad	
90EPR011	ba	
909PR012	ađ	

Γ

the sector that is

-

~

VANGROCHEM LAB LIMITED ______ 1630 Pandore Street, Vancouver, B.C. VSL SL6 Ph1(604)251-5656 Fari(604)254-5717 O ICAP GEOCHEMICAL ANALYSIS d A .5 gram sample is digested with 5 ml of 3:172 HCl to XNO, to N_20 at 95 °C for 90 minutes and is dijuted to 10 pt with yater. This leach is partial for A3, Ba, Ca, Cr, Fe, Ka Hg, Hu, Ha, P, Su, Sr and H. ANALYST: Routh CPROJECT: 908C042 EPGRI 1: 900361 PA NI-TEC RESOURCE NANAGENENT LTD. DATE 10: SEPT 04 1990 DATE OUT: SEPT 24 1998 ATTENTION: NR. BENKIS COLLINS PASE 2 OF 2 ٠. AL. ŧ١. Ca. Cđ C۵ Cr Cu Janple Hane ás. Ē. fe L Aq Ľ Ħ٥ 11n Яa Hz: Рb Sb 5n <u>ج</u>ر u - Ze Ι 2 984 PD = **DDE** 004 pps. 994 ppe. 204 1 1 1 000 694 t ppe ĩ pp. pp b <u>p</u>ga 66e 994 gg n IGHJR034 4.5 4.45 (3 142 (3 5.20 3. B 43 116 69 5.75 0.05 3.63 1313 208 (5 104 17 {0.0J 131 0.19 7 (2 Ð 11 90KJR035 1.86 25 (3 1.96 21 0.1 14 1.7 75 63 3.36 0.04 1.87 747 8 (0.01 30 0.13 38 $\langle 2 \rangle$ 7 77 (5 5 53 132 28 () 45 90038036 1.39 1.04 55 292 1.1 4.7 8.61 0.04 1.37 514 10 (0.0) 61 0.13 102 ì۶ 9 37 (S 4 177 3.77 57 (1 (3 7.43 90HJR037 4.2 3,5 44 429 79 5. (9 0.67 4.14 1070 15 (0.01 337 0.13 16 (2 9 223 (5 \$ 36 \mathbf{O} 90HJR038 (0.1 2.51 <3 63 (1 1.07 2.0 24 72 52 4.07 0.03 1.76 853 j0 (0.01 86 0.13 13 (2 9 49 **(5** 1 97 56 901122001 (0.1 4.60 (3 135 (3 2.41 2.6 39 107 5.37 0.05 2.99 138 14 (0.0) 46 \mathbf{Q} <2 12 121 (5 12 0.54 iD. 90183002 0.1 3.90 · (3 64 (3 7.96 2.8 39 382 69 4.29 0.05 5.20 117 14 (0.01 293 7 (2 7 1881 (5 19 56 0.51 26 33 901098003 0.1 3.16 0 (3)10,00 3.2 488 74 4.48 0.07 4.91 1055 13 (0.01 332 0.12 п Ω 2 322 (5 ß 69 90628004 (4.1 3.29 (3 68 3 3,33 2.8 25 32 96 4.73 0.05 3.09 739 11 (0.01 26 0.11 Ω. (2 5 164 (5 8 87 \mathbf{O} 90HPR005 2.24 (3 59 3 1.86 14 83 **(**5 53 0.3 1.4 45 3.88 0.04 1.56 697 9 (0.01 61 2 (2 39 6 0.16 6 (3 90472006 (0.1 3.29 (3 193 2.99 3.2 34 70 45 4.86 0.05 2.56 770 12 (0.00 5B 73 <5 106 0.16 13 $\langle 2 \rangle$ 16 9 4.60 Q. 90HPR007 0.1 2.84 <3 29 <3 +.57 2.3 25 107 45 0.42 2.71 785 12 (0.0) 45 0.15 11 **{**2 8 10 65 7 64 30102008 Z.29 <3 24 (3 1.67 25 59 3.53 42 0.L 0.2 39 0.03 0.98 454 11 (0.01 n14 (2 17 (5 6 9,16 A (3 23 8 15 90HPR009 4.2 2.24 3.11 2.2 55 73 3.97 0.05 1.34 650 26 a 127 (5 92 8 (0.01 14 0.10 \$ 5 Q. (3 (3 38 90002010 0.3 2.89 18 3.26 3.3 53 157 4.36 645 (S 224 4.05 0.87 11 (0.0) 93 0.18 10 (2 10 42 7 **30HP2011** 0.0 2.43 (3 28 (3 2.02 27 43 **%** 3.38 0.04 1.07 1.0 380 9 (0.01 9 0. IB <2 (2 9 61 (5 6 53 SOMPROL2 0.0 2.71 (1 61 (3 1.82 1.4 29 46 Æ 4.45 0.04 6.62 8(3) 10 (0.01 67 0.13 14 (2 109 (5 7 66 9 **Ninigun Betection** 0.1 0.01 3 1 0.01 0.01 4.01 0.01 0.1 1 1 1 0.01 . . н . 9.81 2 Ż 2 1 5 3 L О Maximum Detection 50,0 10.00 2000 1000 1000 10.00 1000.0 20000 1000 20000 10.00 10.00 10.00 20000 1000 [0.00 20000 10.00 20000 2000 10000 1000 20000 1000 100 C . Less Than Miniout) - Greater Than Basieus is - Insufficient Sample us - No Sample ANDIALOUS RESULTS - Further Analyses By Alternate Methods Suggested,

1

Ċ1

٢.

60

ť.

1

€

	CHEM LAB LI	MITED	1630 PANDORA STREET VANCOUVER, BC V5L 1L6 (COA) 251 ECC MAIN OFFICE 1900 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B.
			• (604) 251-5656 • FAX (604) 254-5717	MISSISSAUGA, ONT, RENO, NEVADA, U.S.A.
INFORT HUNBER: 300337 GA	308 TV8888: 946337	EI-TEC ARSO	PICE KLENCHERT LTD.	PAGE 1 OF 1
SAMPLE	ku ppd			
10x0x041	ia -			
31HD2802	21			
36BDED43	nd			
94102444	10			
90EDR605	ad			
9830886	nð			

-

DETECTION LINET 5 nd = none detected -- = not analyzed is = insofficient sample

- • 006 4141/350 15 - 3130

VANGEOCHEM LAB LIMITED 1630 Pandara Street, Vancouver, D.C. V5L 1L6 Phi (604) 251-5656 Fax: (604) 251-5717

1

1] J

1

ANALYST: lumbh

۰.

1

1

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of J:1s2 HCl to HNO₂ to H₂D at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for A1, Ba, Ca, Cr, Fe, K, Hg, Hn, Na, P, Sn, Sr and W.

REPORT 0: 900337 PA	KI-TEC RES	DURCE NAY	IAGEMENT	10.		PROJE	CT: 908C	042		DAT	E LN: ALI	5 29 3990) DA1	IE OVI: 0	SCT 01 11	990)	ITENTION	o 4. Kur	1K			PAGE	1047	s	
Saaple Haee	Ag pp s	42 I	A5 p9 0	9a ppa	êi Ppe	4	63 996	Ca PP4	Cr ppa	Cu 994/	/ fe I	X I	Xg 1	Mn PSB	No Ppe	Иа 2	X) pp4	р 2	Pb ppn	S6 ppe	Sa ope	Sr PP■	U AQA	W Ppe	la PQQ
90HBR001 90HBR002	1.8 (0,1	4,28 3,13	(3	51 376	(3 (1	1.65	3.9 2,4	37	104 103	1049 62	5.91 7.12	0,27 0,19	3.03 0.75	1329 198	18	0.04 0.04	53 3	0.14 0.05	2	(2 (2	20 9	103 35	G G	(3 (3	96 33
TOKOR003 Schor004	6.2 (0.1	1.34	(3	15	(3 (1	0.22	1.9	29 50	77 98	96 54	8.01 6.38	0.17	0.20 0.58	215	33 48	0.03	33 11	0.06	(2 (2	2	9	45	(5 (5	(3 (3	47 31
90HDR005 -	9.1	2.57	<3	5	a	0,36	4.1	58	47	61	310.00	4.35	0.76	289	31	0.04	41	0,12	{2	2	15	5	(5	(3	102
90402006	(0.1	0.45	{3	130	(3	{0.01	(0.1	99	71	6	3, 35	0.04	9.11	27	37	0.01	<1	Q. Q)	6	1	5	5	(2	(1	9
Minious Relection Naxious Detection C - Less Than Minious	0_1 50.0) - Greater T	0.01 LO.00 ban Aasin	3 2000) 1000 js - Jasu	3 1000 fficient	0.01 60.00 \$ Sample	9.1 1000.0 55	1 20000 - Ha Saopi	 800 Le	L 20000 Andital Du	0.01 10.00 \$ RESULT	0.01 10.00 5 • furti	0.04 10.00 her Anal	l 20000 yses By I	L LOGO Alternati	8.01 10.00 e Kethod	1 20000 s Suggest	0.01 10.00 Ied.	2 20000	2 2000	2 1000	ا 10000	5 100	3 1000	1 20000

	DCHEM LAB LI	MAIN OFFICE	BATHURST, N.8.
		(604) 251-5656 FAX (504) 254-57	6 MISSISSAUGA, ON 17 RENO, NEVADA, U.S
REPORT MUXBBE: 900404 GA	JOB NUMBER: 900404	BI-TEC RESOURCE KANAGERERT LTD.	PLGE 1 OF 2
Sample 1	ka ppb		
90EPB017	2d		
90BPR018	30		
908PR019	20		
908PR020	ad		
\$08PR021	6a 6a		
908PR022	10		
90HPR023	40		
908PR024	40		
904PR026	20		
908PR027	10		
9087R001	10		
90EVR002	90		
9067Rú03	20		
9087R004	30		
90EVEOD5	50		
908VR006	21		
908FR067	pd		
SORABOD?	ad	йн. Хар	
\$087E009	30		
30E27010	10		
10ERV011	150		
90BRV012	40		
908RV013	30		
900EV014	nd		
SOHEACIZ	n¢		
90EBV015	ba		
90ERV017	bđ		
90ERV018	30		
90ER¥019	10		
90ERV020	10		
90EB7021	10		
90BRV022	20		
90ETRO24	20		
90BVB025	30		
90HVRO25	30		
903WR027	30		
SCHVEC28	20		
90EVE029	10		
SCHTRC 30	10		
DETECTION LINIT	5		
	= not analysed is = in	sofficient sample	

<u>,</u>

-

.

-

VANGEOCHEM LAB LIMITED 1630 Fandora Bitrati, Vancouver, B.C. VSL 11.6 Phi (604)251-5656 Faci (604)254-5717

ì

ł.

١

ICAP GEOCHEMICAL ANALYSIS

A .5 gram supple is digested with 5 m) of 3:3:2 HCL to HNO_ to H_0 at 95 °C for 90 minutes and is diluted to 10 m) with water. This leach is partial for A1, Ba, Ca, Cr, Fe, K, Mg, Mm, Ma, P, Sm, B7 and W.

ANALYST: Much

1.01

1

REPORT 0: 500404 PA	HI-TEC RESO	URCE NAM	VEEMENT I	.10.	#	PROJECT	(; 90BCCH	12		DATE	1N: SEP	T 07 1990	DAT	e out; se	PT 20 1	990 A	ITENTION:	NR, DEI	INTS COLL	105	,	PAGE	1 DE - 2	2	
Saaple Kame	٨g	AL	As	81	Bi	Ca .	Cđ	Co	C1	Ċu	Fe 1	K I	Ng I	Kn	Ko	*1	¥i	* 1	Ph	56	Sn	Sr	U	¥	74
	ppa /A i	1 0.80	994 40	ррө 14	рре (З (1	ppe 0.5	p90 13	рре 90	24	1.51	0.09	0.36	211	AD o J	1 <0.01	996 216	0.06	pp • 18	698 4	рря 9	рря 62	ρ9∎ <5	pp€ {3	рря 23
99HPR017 90HPR018	(Q, J (Q, 1	2.56	(3	28		1.4	1.3	27	63	13	4.17	0.21	1.11	255	, ú	(0.0)	19	0.25	(2	a	22	190	ä	(3	ũ.
90%PR019	(0.1	2.19	(3	72		1.02	1.4	25	62	26	3.56	0.18	1.31	362		(0.01	ä	0.20	ä	ä	21	86	(\$	(3	42
90HPR020	(0.1	1.42	ä	>1000		0.00	2.0	20	49	36	4.64	0.58	1.31	1987	11	(0.01	45	0.07	16	6	11	135	(5	a	65
90HP\$021	· (0,1	0.66	42	>1000		2.08	0.5	ĩ	62	17	2.09	0.24	9.11	475	ü	(0.01	179	0,05	6	ŧ	5	55	<5	3	14
90HPR022	(0. 1	2.45	(3	105		1.07	2.1	32	67	36	4.85	0.22	1.46	731	16 .	(0.01	15	9.18	(2	(2	22	40	(5	(3	97
SOHPRO23	(0.1	Q.60	(1	161		Q.Q7	\$. I	1	121	16	2.82	Q. 07	0.11	55	12	(0,9 1	6	0.05	3143		10	10	(5	(3	14
90KPR024	(0.1	2.69	(3	52		2.22	2.5	44	25		6.57	0.32	2.10	1212	15	{0.01	8	0.51	43	(2	36	120	(5	(3	141
Sohpro26	(0.1	4.16	(3	54		2.19	2.4	48	113	29	6.73	0.32	3.11	1052	\$7	(0.01	128	0.26	(2	(2	32	130	(5	(3	102
Sokpro27	£,0	4.42	(3	16	(3	1.92	1.4	146	802	13	5,48	0.30	4.09	[[04	15	{0.01	75	Q. 39	(2	(2	29	163	(5	(3	119
1064VH01	(0.1	2.89	(3 29)	205 289		8.37 0.45	1.9 15.6	24 51	- 69 33	50 97	5.56 }10.00	0.49 1.12	2.24 0.19	124B 4176	11	(0.01 (0.01	24 56	0.27 0.27	<2 175	(2 96	16 42	283 30	(\$ (\$	(3) (3)	LO1 837
70x77002 90x77003	0.B 1.B	1.60	- (1)	55		2.68	246.1	16	53	652	3.53	0.28	0.84	891	ä	(0.0)	16	0.15	128	{2	9	100	š)20000
SOHVEDOL	0.2	0.55	46	10	(3)		24.3	Ĩ	16	12	1.33	0.49	0.53	5202	6	(0.01	31	0.02	80	10	ģ	1016	ä	(3	3091
10XVR005	(0,5	3.39	(3	118		5.53	3.6	21	107	- 94	5, 28	0.44	2.91	1053	14	(0.01	68	0,27	(2	(2	18	305	(\$	<3	380
9041VR006	(0.1	2.56	(3	52	(3))	0.00	1.2	20	42	45	4.75	0.56	1.50	1086	u	(0.01	20	0.22	8	(2	15	362	(5	(3	166
90KVR007	{0.1	1.74	265	374	(3	9.73	11.0	49	144	64	6.73	0.57	4.32	1606	54	(0.0L	330	0. (8	22	34	16	503	<5	(3	1136
90HVR00E	(0.1	4.56	(3	100	G	4.46	3.2	23	59	- 44	7.19	0.44	3.06	1502	16	<0.0L	21	0.29	32	<2	21	135	- (5	<3	255
90HV2009	(0.1	L.60	(3	217	(3	Q. 12	(0.1		32	32	5.18	0.15	0.37	63	0	(0,0]		0.96	30	Q	12	35	(5	- (3	50
SOKVROLO	{0.1	1.36	65	58	(3	2,22	0.9	14	75	52	3.98	0.27	0.95	907	50	{0.0L	89	0.24	14	(2	9	123	(\$	(3	53
90448011	(0.1	1.83	6	19		0.85	5.4	33	142	356	4.89	0.19	1.68	198	15	(0.05	69	0.19	8	(2	21	33	(5	(3	27 76
9aHVROL 2	(0.1	4.41	(3	17		0.98	5.B	175	68		>10.00	0.61	2.24	479	33	(0.01	L03 84	9.18	26 5	14 (2	43 42	22 42	(S (S	(3 (3	71
40HVROS3	(0.1	5.02	3	36		1.10	4.9	92	98	998 504	\$10.00	0.60	2,80	958 512	32 40	(0.01 (0.01	225	0.32 0.23	(2	ä	36	'n	(5	3	4
90HYR014	(0.1	5.42	(3	25		1.53	3.l 4.9	56	265 691	580 729)10.00 5.71	0.40 0.59	4.29 4.54	1359	20	(0.0)	437	0.24	(2	ä	26	276	3	ä	37
90HYR015	(0.1	4.82	3	3	4 /	0.00	¥.7	112	631		9.71														
90HVR016	(0.1	4.42	(3	19		3.12	2.1	65	121	120	1.53	0.40	4.15	[271	20	(0.01	94	0.25	(2	a	37	104	(5	(3	101
90HVR017	(0.1	5,16	(3	19		2.26	2.1	97	650)10.00	0.57	4.78	941	23	(0.01	318	0.19	(2	(2	36	11	(5	3	75
10HVR018	<0, I	3.52	(3	20		1.11	10.0	76	435		360.00	1,08	3.13	462	31	{0.01	200	0.23	83	52	48	•	(5	(3	102
SOHVROLS	(0.1	1.82	(1	15		\$.30	14.2	53	69	360) 10.00	1.64	1.05	542	39	(0.0)	156	0.16	163	E02	58 45	9 18	(5) (5)	(1)	147 99
90HVRO20	(0.1	4.03	<3	19	(3	1.53	7.0	н	297	459)(0.00	9,86	2.93	640	26	{0.0[274	Q. 19	37	22	•2	19	(3		13
50HVR021	(4, 1	0.17	41		(3-)(0.00	0.1	4	19	25	1.31	9,46	0.46	684		(0.01	24	0.04	50	11	9	473	CS .	(3	5
90KVR022	(0.	3.28	49	102	(3	2.84	(Q.1	67	35	25	5.91	0.35	2,12	\$23	- 16	(0.01	41	0.55	11	(2	29	81	(5	(3	н
90572024	(0.1	1.67	60	48		Q.27	5.4	155	45	263	\$10.00	0.23	0.32	122	50	(0.01	31	0.06	25	10	22	38	(5	(3	34
90HVRQ25	{0.L	0.36	46	9		0.67	10.0	82	72	153	210.00	1.16	0.38	301	36	(0.01	23	0.12	197	127	58	5	(5	a	129
90HWR026	(0.1	4.43	a	ť\$	(3	2.83	0.4	68	211	108	8.14	0.39	2.33	236	19	(0.01	78	0.10	<2	(2	30	535	(5	(1	27
SCHWRO27	(0.1	0.73	33	13		0.29	2.9	52	70)[0.00	0.36	0.28	6J 292	75	(0.0)	25 178	Q. 25	52 (7	26	27 38	19 77	(5 (5	(3 (3	29 48
50HV2028	(0,1	3.73	14	19		1.94	1.2	91	101	120	>10.00	0.43	2.58	393 236	23	(0.0)		0.16	11 11	(2 2	38 37	29	(3	(3	48
90NVR029 90NVR030	(0.1 (0.1	2.90	(3 (3	10 19		0.65 0.91	2.1 7.9	123 176	250 192	45 387)10.00)10.00	0.49 0.99	2.81 2.95	462	24 35	(0.01 (0.01	132 202	0.17 0.20	105	47	48	9	(5	3	132
2MILKA1A	10.1	3.22		11				1/0	114	191				194	*		£4£					•			
Nisious Detection Nasious Detection	0.1 50.0	0.01 10.00	3 2000	1 1000 '		-	0,1 1000.0	20000	1000	20000 20000	9.01 10.00	0.01	0.01 10.00	L 20000	1 [000 [[terrate	0.01 10.00 ۱۰۰۰ ۲۰۰	1 20000 5	0.01 10.00	2 20000	2 2000	2 1000	10000	2 00t	3 1000	20000

*		1630 FANDORA STREET VANCOUVER, 6C VSL 116 (604) 251-5636	
VGC VANG	EOCHEM LAB LIN	MAIN OFFICE 	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.S. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
BEFORT RUNBER: 900404 AA	JOB NUNBER: 900404	HI-TRC RESOURCE MADAGENEET LTD.	PAGE 1 OF 1
SAMPLE #	Zn %		
90HVR003	3.04		

DETECTION LIMIT							
1	ťτογ	oz/short	toa =	34.28 ppm			

Γ

7

~

1

.

...

_--

.

...

.01 1 ppm = 0.0001% ppm = parts per million < = less than

signed: lyman h

·			1630 PALIDORA STREET VANCOUVER, BC V5L 1L6 (504) 251-5656	
	CHEM LAB LI	MITED	MAIN OFFICE 1988 TRUMPH ST WANCOUVET: B.C. VSL 11(5) (604) 251-5656 FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
REPORT NUNBER: 900404 GR	JOB KUNBER: 980404	EI-TEC RES	OURCE MANAGEMENT LTD.	PAGE 2 07 2
SIXPLE F	Au			
90HVR031	ppb 20			
90HVR032	40			
90H7R033	20			•
90BVR034	10			
909VE035	10			
90EVR036	20			
SOBVEC37	40			
90HVR038	30			
9067R039	20			
90EVR040	20			

[

[

_

....

								OCF																		
~					Ľ			30 Pandos	ra Stree	t, Yanca		C. VSL			<u>-</u>											
~ _					IC	AP	Ge	eoc	неі	MIC	CAL	- AI	NAL	_YS	ıs											
and the second se		٨	.5 gran	sample i	s diges	ted with	S ml of	3: 5: 2 HC	C] to HM	0, ta K,	0 at 95	•C for 9	0 sinute	s and is	diluted	te 10 a	l uith v	ater.								
					īta;	is Leach	is part	isi tor M	\ Ba, (Ca _r Cr _a	Fe, K, M	g, Hn, H	4, P, Sn	, Sr and	H.				ANALY	/ST:	Kay	rdt	<u>``</u>			
49 20100 th	HE-TEC RES	OURCE NAM	AGENENT	ĻTO,		PROJEC	CT: 908C	642		DAT	E IN: SE	PT 07 19	90 DA	TE OUTI S	EPT 20	1990	AT FENT SO	l: NR. M	ENNES COL				E 2 OF	2		
e Haue	Ag ppd	A) 2	As ppe	B. ppe	Si pp q	Ca 1	Cđ	Co	Er	£	fe 1	ĸ	Ng	Ra	No	N.	Wi	ŗ	Pb	Sh	Sa	Sr	u	U	In	
)E((0.1	3.16	(3	21	<3	1.23	рра 4.4	90 B 108	рр+ 143	994 442	310.00	0.55	I 2.39	pp= 260	рра 26	1 <0.01	pg 0 272	1 0.17	₽₽ ■ 27	вфа 9	804 35	904 24	902 (5	40 (3	pp4 45	
032	0,1	1,91	(3	9	(3	1.29	2.2	227	15		\$10.00	0.54	1.02	164	35	(0.05	208	0.15	39	20	3)	143	(5	(3	41	
)33)34	<0.1 ∢0.1	2.58 3.15	(3 (3	43 44	() ()	1.27	1.0 (0.1	62 17	121 76	36	8.10	0.29	2.06	307	17	(0.0)	55	0.25	5	42	29	130	(5	(3	31	
035	(0.1	L. 90	65	30	(3	1.62	(0.1	35	n.	67 154	5.25 3.43	0.39 0.19	2.16 1.29	(049 232		(0.01 (0.01	25 36	0.23 0.25	(2 2	<2 (2	16 13	L44 21	(5 (5	(3 (3	66 23	
														*-•			•••		•			•1				
036	0.2	5.81	(3	15		>10.00	(0.1	45	133	177	5.09	0.51	1.73	929		<0.01	70	0.20	(2	<2	35	75	(5	(3	64	
037 038	<0.1 (0.1	3. 79 3.20	170 28	35 30	(3 (3	4.02 3.24	(0,1 (0,1	42 27	194 113	128 132	5. Sa 3. SJ	0.36	2.22	490	17		133	0.25	(2	(2	25	63	(5	(3	48	
039	(0.5	1.16	16	126	(3 (3		(0.1	7	9B	134	2.07	0.29 0.03	0,96 0,30	377 95	\$7 14	(0.01 (0.01	សា ព	0.20 0.05	(2 5	(2 (2	. 21 12	40 11	(5 (5	(3 (3	40 12	
040	(0,1	0.40	12)1000)10.00	1.0	36	37		\$19.00	0.66	2.11	3882		(0.01	ñ	0.07	ő	19	ii	130	<5	(3	45	
um Detection num Detection ess Than Mönigum	0,1 50.0) - Greater T	0.01 10.00 han Maxin	3 2000	j Lodo is - lasu	3 SOOD SIIIicien		0.1 1000.0 65	L 20000 - No Samp	ا 1000 پار	I 20000 Angkalou	0.01 10.00 Is result	0.01 10.00 5 - furt	0.01 10.00 her Anal	(20000 YSB5 By A	l 1000 Iternal	0.01 10.00 e Method	L 20000 's Sugges	9.05 10.00 ted.	2 20000	2 2000	2 1000	1 10000	5 100	3 1000	1 20000	

L

ο

APPENDIX IV

.

<u>,</u>

SAMPLE DESCRIPTIONS

PC-IPLOR VERSION 1.30	***	COP-HAR CLAINS, KINSHORN ENERGY CORPORATION	***	NI-TEC RES NHOT LTD.
Exploration Data Manager	***	1990 EXPLORATION DATABASE: SAMPLE DESCRIPTIONS	***	9:31:58 Serial no: 22357

BY GENCON SERVICES INC.

~-

PORATION NET HI-TEC RES NMGT LTD. SCRIPTIONS TER 9:31:58 Serial no: 22357 11/ 1/91 Page: 1

SANPLE DESCRIPTIONS COP. HAR I & HAR 3 CLAINS 90BC042

	SAMPLE #	ROCK TYPE	SAMPLE TYPE	WENERALIZATION	FEATURE	CLAIN
_	90HCR001	Mafic volc zenolith in qtz dior.	Rock grab	(51 Py		Сор
	90808002	Otz. Diorite, intrsv, sil v/ qtz strngrs	Rock grab	(12 Py, Malachite	Calc, Him	Cop
	90HCR003	Inter. Vol. Andesite?	Rock grab		Epid chl alt	Cop
_	90HCH001		Heavy Metal			Cop
-	90HCH002		Heavy Netal			Сор
	90808003		Heavy Netal			Cog
	90HL R001	Diorite, hb/biot., med xtln w/ 10% epdt	Rock grab	trace #y		Сор
-	90HL R002	Andst, Sce frac zn, limonitic	Rock grab	2-42 Py	fracture	Cop
	90HKR001	Andst, silf'd to 40I, gy grn	Rock grab	4-51 Py		Сор
	90HL R003	Andst, gy grn, porph plag, epdt, lim	Rock grab	SI Py	Shear 15 cm	Сор
_	90HL R004	Andst, 4m wd sil zn, silfcatn 40 - 702	Rock grab	27 Py ovrall, 52 frc	silf'd zn	Сор
	90%KR002	Andst w/ sml shrs	Rock grab	1-21 fy		Сор
	90HKR003	Andst, sil to 501, clay arnd sil zn	Rock grab	> 5I Py		Сор
	90%LR005	Int. volc, bleached, mldly sil, brwrk	Rock grab	> 12 Py vis	fractures	Har 1
	90HLR006	Alt volc, bloked, silf'd w/occ zns to 601	Rock grab	up to 10% in sil zns	Sbr/fracs	Har 1
	90HLR007	Andst, silf'd to 601	Rock grab	SI Py		Har I
•	90HLROOB	Andst, propylitic alt	Rock grab	51 Py		Har 1
_	90HL 8009	Tuff, dacitic, it gy grn, mnr hb porphs	Rock grab	(II to II in pods)		Cop
	90HL 8010	Int tuff, 20-251 silf'd	Rock grab	3-51 Py in pods/frac	fractures	Сор
	90HKR004	East dipping skears in andesite	2.5 s chip	fy	Shears	Cop
	90HKR005	Siliceous andesite	Rock grab	(51 py		Сор
•	90HKR005	Py lens	Rock grab		lens	Cop
	90HKR007	Tuff, It gy grn	Rock grab	3I Py		Сор
	30HK8008	Qtz diorite w/ andst frags, pos dike?	Rock grað)51 Py	trend	Cop
	90HLRO11	Otz dior, w/ andst/diabase dikes	Rock grab	up to 101 in pds/frc		Сор
	90HL 8012	As in Oll, occ 10 cm ing gashes 1002 Py	Rock grab	10I and >10I Py		Cop
	90HLR013	As in 011 & 012	Rock grab	101 Py		Сор
	90HKR003	<u> Rtz dior v/ volc fragents</u>	Rock grab	>SI Py		Сор
	90HKR010	Andst, masv, gy grn	Rock grab	52 Py		Cop
	90HL R014	Bior, gtz to hb/biot, cut by mafic dikes	Rock grab	3-51 PY		Cop
	90HLR015	Andst, wasv, gy grn v/ qtz dior dikes	Rock grab	1-31 PY disseminated		Cop
	90H1.R016	Dior, epidotized	Rock grab)5I Py		Ĉop
	90HL #017	Otz dior, silf'd to 651, org-brn wthrng	Rock grab	3-51 Py, tr Cpy, mal		Сор
	90HLR018	Andst, gy grn, epdtz'd, sal dior dikes	Rock grab	31 Py		Cap
	90HDR001	Pod-50cm, in gr ands, small shear zone	Rock grab	massive py	shear	Har 1
	90H08002	V altered lim volc? contact dior/ands	Rock grab		Contact	Har I
	90HDR003		Rock grab	(51 py in patches		Har 1
	90HDR004	Sossanous alt volc? in qtz-diorite	Rock grab	(51 py	Dyke?	Nar i
	90H08005	Gossanous 2m wide alt volc? in diorite	flock grab	(71 py	Dyke?	Har I
	90HDR006	Bossanous 28 wide zone in volc? all ands	Rock grab		Dyte?	Har E
	90WBR001	brecciated SIF SILT	ROCK GRAB	(11PY		HAR 3
	90HBR002	FE-CB ALT. TONE, CV's	rock grab	(Ilpy)	20 thick	HAR 3
	90HR8003	FE-CB ALT. of joints	rock grab	(1Ipo, py		HAR 3
	90HB2004	CHERT, SIL SILT; BAXY	ROCK GRAS	(SIPY	(Se WIDE	HAR 3
	90HBR005	CHERT, SIL SILT; BRXY	ROCK GRAD	(SIPY	(Sa vide	HAR 3
	90HBR006	SANDSTONE, SILT; FLT ZOWE	ROCK GRAB	5194,0,5		HAR 3
		Epicl. brx & cong., argl 1st in fg gy ax	Rock Grab	52 py		Har 3
			Rock Brab	>2I py		Har 3
			Rock Grab	11 py		Har 3

PC-XPLOR VE	RSIDN 1.30	***	COP-HAR CLAII	45, KI	NGHORN .	ENERG	r corpor	ATION	+F	ŀ	81	-TEC RES	INN GT	LTD
Exploration	Data Manager	141	1990 EXPLORAT	ION DA	TABASE:	SAMP	LE DESCR	[PT1DNS	++		9:32:48		nó:	2235
By GENCON SI	ERVICES INC.	• .						,		•	11/ 1/91	Page :	,	, :
								•••••	Buba E dia			••••		
BOH JROO4	Dyke, int feld								Dyke E dip	Har Har				
POHJROOS Pohjroo6	Int teff with Dacite tuff, #				grað Gunk		• •	haierite		nar Har				
	Lithic vacke (-		Rock		Tr p	r y, 12 po			nar Kar				
OHJROOD	Int silty tuff		01 31/154	Rock					Fractures	Rat				
	Siltstone	, utotky		Rock		44 P)		ce brane	LIGENNIES	Har				
	Tuffaceous sil	tetone dk av	ntz-ral vaiac			iT m	dicens.	inated	Voine	Har				
	Grey tuffaceou				67 ab				Fractures					
	Tuffaceous sil			Rock			, (0.1 7	-		Har				
90KJRØE3	Nassive dacite			Rock		Tr gy	-	P -0		Har				
	Lst, int tuff,	-	c dykes.Aach			(21			Amph phyri					
	Silty tuff?		,,	Rock			, r			Har				
OOHJR016	Entbdd sh/si l	ocal folds/fa	ults	Rock	grað	1X di	isseminat	ted py	cb-vnlts	Har	3			
90H3R017	Bossan calc ss	/ls & sh lens								Har				
	Intbdd sh/si F			Rock	-	21 di	sseminal	ted py		Har				
6108LH06	Intbdd sh/si g	ossanous ch-v	alts	Rock	grab	31 p				Har				
OHJRO20	Intbdd calc sk	/si/ss/ls Fe-	rested	Rock	grab		in volt	5	cb-vnlts	Har	3			
OHJRO21	Polys calc con	gl, clasts sh	/ls, atrx ss	Rock	grab		ssenina			Bar	3			
POHJR022	Poly calc cong	l sh/ls clast:	s Fe-rust	Rock	grati	<11 d	liss en ina	sted py	fossils	Har	3			
POHJRO23	Intbdd calc sh	/ts/ss_cb-vnli	ts Is-clasts	Rock	grab	(11 p	y valts/	/diss	fossils	Har	3			
ionjro24	Intbdd calc sb	/si/ss_cb-vnl:	ts	Rock	grab	1Z py	diss/bl	ebs	fossils	Har	3			
ION JR025	Sil qtz arenit	e 3a wide ch-	valts Fe-rust	foct g	gr ab					Har	3			
ionjro26	Intbdd calc sh	/si/ss Fe-rus	t cb-vnlts	Rock (grab	iI di	sseninal	ted py	tops	Har	3			
OHJRO27	Intodd sh/ss g	ossanous broki	en ss beds	Rock	grað	1-21	py diss/	/blebs	cb-valts	Har	3			
OHJR028	Intbdd sk/ss ł	enses gossanor	85	Rock (grab	3-5X	dissenir	nated py	cb-valts-v	is Har	3			
	Calc poly cong			Rock g	grab	21 di	sseainat	ted py		Har	3			
	Gry and slight	ly calc cb-vni	lts-vns <2cm	Rock (grab	71 py	diss/bl	lebs	N.,	Har	3			
	Pyrocl clasts			Rack g	grab	1-22	py along	ynlts -	cb-vnlls	Har	3			
	L gry sil fel -	•		Rock (21 di	sseninat	ted py	10	Har	3			
	Cherty sh Fe-r			Rock (gr 2b	31 py	along m	nlts	cb-vnlts	Har	3			
	Dac dyke .5m F	e-rusted cb-vi	ns 8aa	Rock g	grab	12 di	sseninat	ied py		Har	3			
	Cherty gossan ·			Rock g	grab	<ii p<="" td=""><td>Y</td><td></td><td></td><td>Har</td><td>3</td><td></td><td></td><td></td></ii>	Y			Har	3			
	Sil si Fe/Mn-s		tz-vnlts	Rock {	grab	77. py	along w	alts		Har	3			
	Pyrocl Fe/Mm-s			Rock g		<12 p				Har	3			
	Altrd volt Fe/			Rock y	prab	trace	ру			Har	3			
	Gry sil fin gr	-		Rock g		(11 d	issenina	ited py	dyke in wir	e Har	3			
	Pyrocl tuff cl			Rock g					ch-vn Ica	Nar	-			
	Pyrocl altrd/s			Rock g	jr ab	11 py	along v	alts	q\$z/cb-vnll	s Har	3			
	Gry sil fel tu			Rock (grab	3-42	py diss		qtz-vnits	Har	3			
	0 gry sil and			Rock (11 py	I			Bar	3			
	6ry/vht/grn fi:			Rock y	-		issesina	ited py	cb-vnits	Har	3			
	6ry sil dac Fe			Rock 🤅	•	(11 p	-		dyke	Har				
	Gry/grn sil an		-	Rock	-		w along		qtz-volts	Har				
	Intbdd sh/si/s			Rock (lssemina		bedding	Har	3			
	Gry/wht and tu				.		sseninat			Har			•	
	Gry/vbt and to		-		•		sseninat			Har				
	D gry sil and			Rock ((11 p	iy .		cb-vnlts 3					
	Agglos ask/ls-			Rock	gr a b				brachiopod					
	Extremely rust			Float						Har				
	Cb-yn 2cm in a				grab	il py	,		cb-valts	Har				
	Calcited vn?cl									Har	-			
	0 gry is bleac			Rock (-					Har				
	Agglom ask/ls-			Rock g						Har				
KOHVROO7	Fel vesic taff	Is vide fe-re	asted	Rock g	grab	II py	,		gtz/cb-vns	Har	3			

.....

:

1

. .

-

.

C-THOR AE	RSION 1.30 +++ COP-HAR CLAR	NS, KINGHORN	ENERGY CORPORATION	***		1R	-TEC RES	NNGT LTO
	ERVICES INC.		SAMPLE DESCRIPTIONS			9:33:49 11/ 1/91		no: 223
00097008	Sil I gry rhy/dac calc fractured	Rock grab	trace pyt		Har	_		
909VR009	And taff gossan/Fe-rusted gtz stringers		11 ру		Har	3		
90HVR010	Agglom ash/ls-sh clasts .2-Bcm gossan	Rock grab	LT py		Har			
10RVH0	Sil-massive gossan and gtz-vnlts	Chip 10m	10% py diss/blebs		Нат	-		
90HVR012		•	101 py	alt gtz-volt				
90SIVR013	Clay/gouge altered and gtz-vnlts	Chip 2m	31 py		Нат			
DONYRO14	Massive d gry and slightly calc Fe-rust	,	SI py	qtz- v a-vnit				
90HVR015	Banded blk/gry 15 baked to gouged	Rock grab	(II py	2m vide unit				
90HVR016	Massive D gry sil and qtz/cb-volts	Chip 6e	LZ diss py		Har			
99NV8017	Gossanous lens altrd and qtz-vnlts	Rock grab	31 py		Нат	—		
BOHVRO 18	Massive magnetite co-volts Fe-rusted	Chip 6m	801 mag 51 py 51 hem		Har			
SOHVRO19	Ressive magnetite co-volts Fe-rusted	Rock grab	80I mag 5I py 5I hem		Har			
JOHYRO20	Nassive magnetite co-volts Fe-rusted	Rock grab	BOI mag 51 py		Har			
90HVR021	Banded is unit baked & folded in wide		<12 disseminated py		Har			
90HVR022	Gossanous granodior Fe-rusted qtz-vnlts	Rock grab	22 py		Har			
90HVR023	Intrasive breccia (granite)	Rock grab	2Z py		Har			
30HVR024	Gossanous intrusive heavily rusted	Float	ISI diss py		Har			
90HPR013	Intrus brecc dio/grdio clats-gran atrx	Rock grab	144 UL35 P7		Har			
POHPRO14	Ned gr dior clst in gran mtrx (brecc)	Rock grab			Har			
POHPRO14	Int brect Ba-lan dio class gran matrix	Rock grab		gtz-vnlts	Har	_		
	•	-		det	Har			
OHPROL6	Porphyr dior agglom Poullad iab ann andre ba diar	Rock grab	OT as in ten toor	chessing?	Нат	-		
POHPRO17	Realled int grap grades to dior	Rock grab	21 py in Icm Tens	sbearing?	нат Нат			
OHPRO19	Int breck grdier Fe-rust	Rock grab	(II py		Har			
POHPRO19	Int breck grdio strk volk/dior clsts	Rock grab	(11 diss py					
30HPR020	Fe-rick cb vn Sce hested in grdio	Rock grab	19	vein	Har			
POHPRO21	Dior/grdior Fe-rusted gtz-vnlts	Rock grab	12 py		Har			
POHYRO25	Massive magnetite Fe/An-rest qtz-vnits	Rock grad	LOOZ mag		Har			
OHVRO26	Altrd int Fe-rust epid-alteration	Float	il finely diss py		Har			
OHVR027	Altrd int	Float	.		Har			
POHVR028	Fin-gr blk/wht dior atz-vnlts (3mm	Rock grab	3-51 py		Har			
90HVR029	Altered volcanics	Rock grab	lieonite		Har	_		
Johvro30	Fin gr dior-and volc-mass mag	Chip 10m	51 py, 1001 mag	qtz-volts	Har			
OHVRO31	Basalt flow-mass mag qtz-vnlts	Chip 7a	52 py, 1002 mag	qèz-vas lem				
POHVRO32	andesite flow	rock grab	1-21 diss py		Har			
POHVR033	altered andesite	rock grab	limonite + clay		Nar	_		
90HVRD34	Sil intbod sh/si/ss/volc brecc si	Rock grab	disseminated py	cb-valts	Har			
90HVR035	Gossanous intbdd seds Fe/Mn stain	Rock grab	LI py	qtz/cb-vnlts	Har	3		
POHVR036	andesite	rock grab	limonite	q¢z-cb ¥n	Har	3		
90848037	Gossanous sil intbdd seds/volc flov	Rock grab	2-37 py	qtz/cb-wnits	Har	3		
90HVR03B	Gossanous Ferrosted sil and qtz-volts	Float	21 py		Har	3		
90848039	felsic taffs	rock grab	tr pyrite	gossanous	Har	1		
BOHVR040	andesite	rock grab	cb-qtz-lim vein	gossanoas	Har	1		
90HPR022	Gry sil dac Fe/Mn-stain d gry vesic dyke	-	37 gy	dyka .5-50cm	Har	ŧ		
ONPRO23	Sil gry dac gossanous	Rock grab	17 disseminated py	qtz-vn]ts	Har			
JOHPRO24	D gry and tuff qtz-volts (2mm	Roct grab	11 py diss/volts		Har			
90HPR025	no sample		- • •					
JONPRO26	And tuff Fe/Hn-stain gtz/cb-vnlts (2mm	Rock grab	<11 py		Har	1		
	where a mark a marking the state of the state of the second state					-		

Γ

[

- -

-

.

. .

.

•

:

APPENDIX V

.

C

(

.....

. -

-

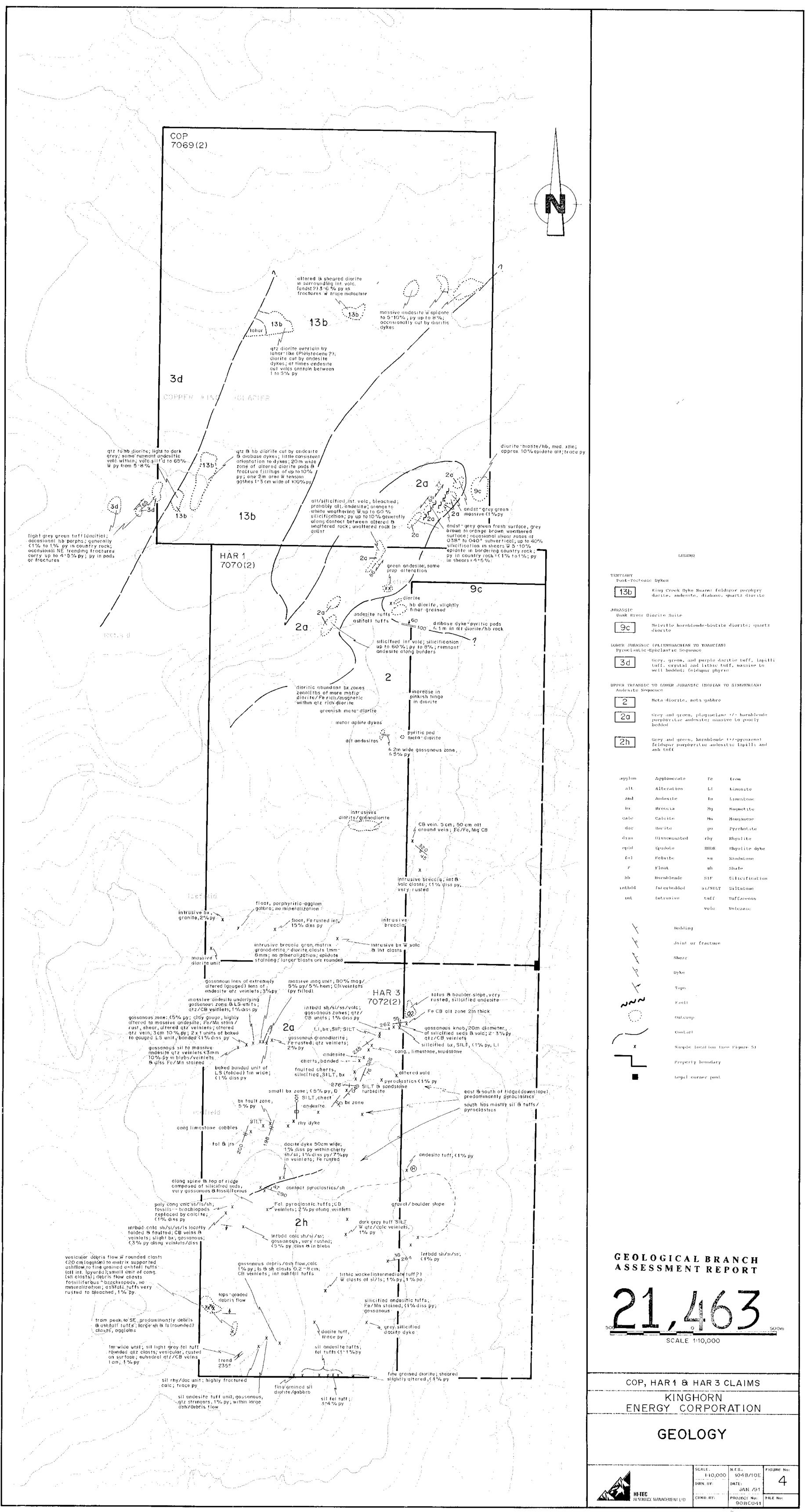
-

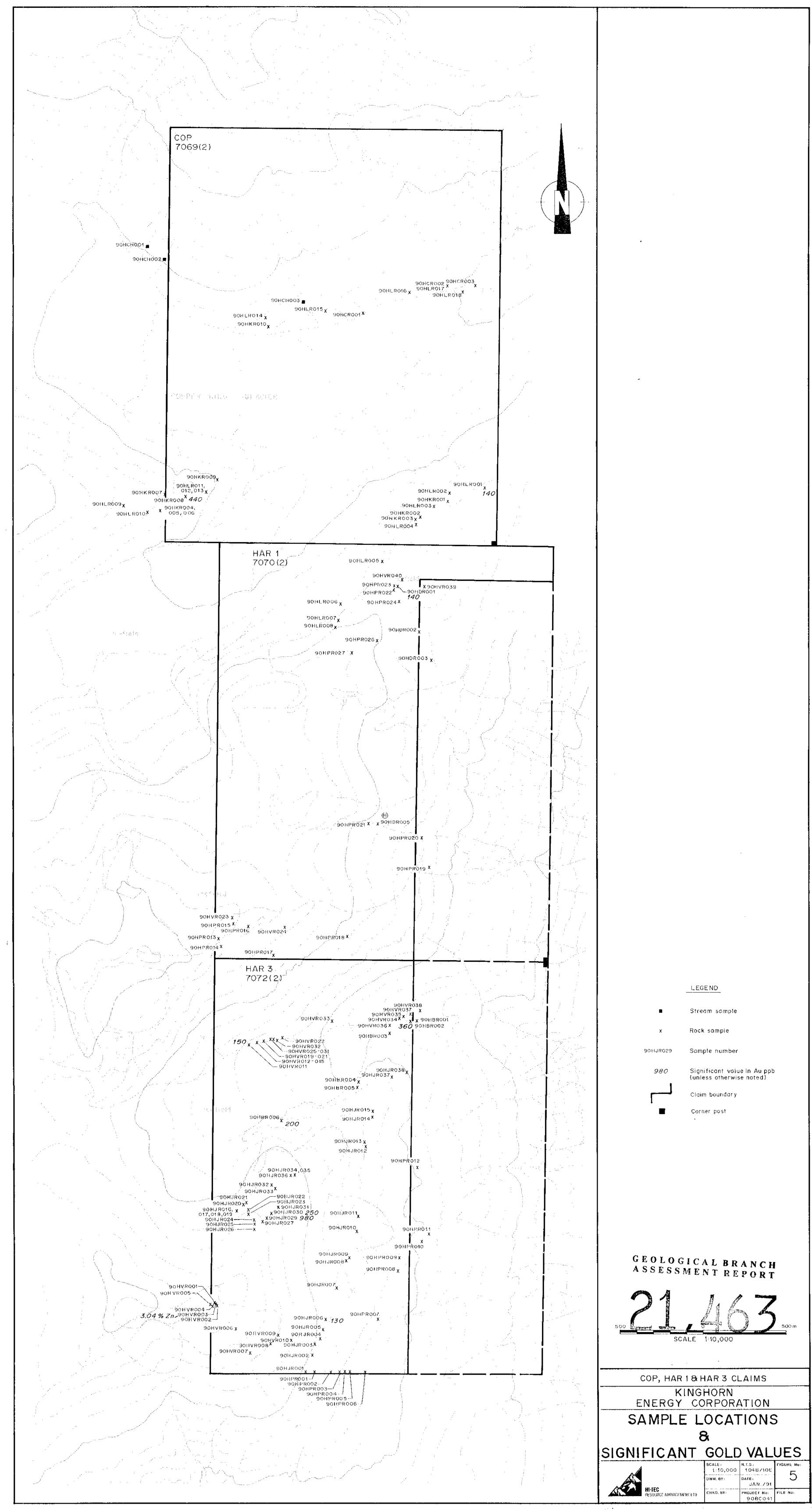
STATEMENT OF COSTS

Ĺ

STATEMENT OF COSTS

Period of Field Work:	KINGHORN ENERGY CORPORATION Project 90BC042 COP and HAR 1, HAR 3 Claims July 31, 1990 to September 01, 1990	
Salaries		
R.Brown Geologist	1 days @ \$400.00 /day \$400.00	
D.Collins Geologist	1 days @ \$400.00 /day \$400.00	
R.Verzosa Prosp/blaster	7 days @ \$350.00 /day \$2,450.00	
· · · · · · · · · · · · · · · · · · ·	3 days @ \$400.00 /day \$1,200.00	
D.Carstens Prospector	1 days @ \$350.00 /day \$350.00	
P.Daigle Geologist	9 days @ \$300.00 /day \$2,700.00	
J.P.Sorbara V. President	1 days @ \$400.00 /day \$400.00	
Tom Kennedy Prosp/Blaster	4 days @ \$350.00 /day \$1,400.00	
J.Cooper Cook	9.92 days @ \$225.00 /day \$2,232.00	
D.Hebditch Repl Cook	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	0.25 days @ \$225.00 /day \$56.25	
J.HimmelrightTechnician	3 days @ \$225.00 /day \$675.00	\$12,263.25
Project Expenses		
Project Preparation		\$2,144.78
Mobilization/Demobilizatio	n	\$2,548.34
		92,010.09
Domicile		
40.17 man days @	\$115.00 /manday	C/ C10 EC
title men dajo e	VIIS.00 / Manuay	\$4,619.55
Geochemistry and Laborator	. Constan	
	y service	
Pan conc		
3 samples	\$3.00 /sample preparation \$9.00	
3 samples	\$12.00 /Au FA/AA,Cu,Pb,Zn,Ag \$36.00	
Rocks	······································	
	\$3.00 /36 elem. ICP/AuFA/AA \$441.00	
· · · ·		
	\$12.00 /sample preparation \$1,764.00	
1 samples	\$6.30 /Au FA/AA, Cu,Pb,Zn, \$6.30	
Freight charges to Vangeoc	hem \$86.15	
		\$2,342.45
Helicopter Support	11.87 hours @ \$665.00/hour	\$7,895.60
······································	11,0. Holib (0000.00/Hbdz	37,032.00
Fixed Wing Support		
Lived wind pubbolc		\$1,361.33
Radio Rental		
Radio Rental	0.5 month @ \$175.00/month	\$87.50
Walkie talkie Rental		\$185.50
Field Supplies		\$706.73
		\$1001JJ
Equipment Rental	30 mandaur 9 can do /dau	0000 00
nderhweite weitegr	30 mandays @ \$20.00/manday	\$600.00
Concertae fuel		
Generator fuel and Propane		\$265.34
.		
Page one (1) of two (2) pa	ges	


ł


Computer Rental		\$180.00
Expediting		\$696.12
Accounting/Communications/Freight		\$2,157.20
Report writing, drafting and compilation		\$4,600.00
15% Management Fees		\$6,398.05
	TOTAL	\$49,051.74

Page two (2) of two (2) pages

ſ .

•

