GEOLOGICAL and GEOCHEMICAL EXPLORATION REPORT

on the

CUB & MINERAL CLAIM NEW KC PROJECT Omineca Mining Division, BC

Galdan Belo Basasaa

GEOLOGICAL and GEOCHEMICAL EXPLORATION REPORT

.

on the

.

CUB | MINERAL CLAIM NEW KC PROJECT Omineca Mining Division, BC

February, 1991

for

GOLDEN RULE RESOURCES LTD.

by

Michael Fox Consulting Geologist GEOLOGICAL and GEOCHEMICAL

EXPLORATION REPORT

CUB 1 MINERAL CLAIM

Latitude 56 Degrees 26'N Longitude 125 Degrees 56'W

NTS 94-C-5W

Omineca Mining Division, British Columbia

for

GOLDEN RULE RESOURCES LTD. #410, 1122 - 4TH STREET S.W. CALGARY, AB T2R 1M1

by

Michael Fox, Consulting Geologist Calgary, Alberta

February, 1991

		IABLE (<u>DF CONTENTS</u>	ш
		CERTIFICATE	LOG NO: JUL 16 1991 RD.	# i
		SUMMARY	ACTION:	i
1	1.2 1.3	INTRODUCTION Location and Access Claims and Ownership Physiography, Glaciat Previous Work 1990 Program	FILE NO:	1 1 1 4 4
2	2.1 2.2 2.3	GEOLOGY Regional Geology Property Geology Economic Geology		5 5 5 7
3	3.1 3.2 3.3	GEOCHEMISTRY Sampling Methods and Statistical Analysis Results	Analytical Techniques of Data	7 7 8 8
4		CONCLUSION AND RECOMM	IENDATIONS ZO	2
5		STATEMENT OF COSTS		3
6		BIBLIOGRAPHY		4
	LIST	OF TABLES		
Table	e 1	Claim List		1
	LIST	OF APPENDICES	T W S C T	
APPEI APPEI		I Analytical Metho II Analytical Resul		
	<u>LIST</u>	OF FIGURES		
Figur Figur Figur Figur Figur	ce 2 ce 3 ce 4 ce 5	Cumulative Proba	Мар	5 9 0

TABLE OF CONTENTS

LIST OF MAPS

Map 1

Compilation Map (Geology and Geochemical Analyses)

CERTIFICATE

I, Michael Fox, hereby certify that:

- 1. I reside at 5008 Varsity Dr., N.W., Calgary, Alberta.
- 2. I received a B.Sc. in geology from the University of British Columbia in 1974.
- 3. I have worked in the field of mineral exploration since 1965 and I have practiced my profession as a mineral exploration geologist continuously since 1974.
- 4. I am a member of the Association of Professional Engineers, Geologists, and Geophysicists of Alberta.
- 5. I am the author of the report entitled "Geological and Geochemical Exploration Report on the CUB 1 Mineral Claim", Omineca Mining Division, British Columbia.
- 6. This report is based on the references cited in the bibliography, and on field work carried out in September, 1990.
- 7. I have no interest, direct or indirect, in the securities of Golden Rule Resources Ltd., nor any of its affiliated companies, nor do I expect to receive any.

Michael Fox, P.Geol.

February, 1991

<u>SUMMARY</u>

Helicopter supported reconnaissance geological mapping and stream silt geochemical sampling carried out at the CUB 1 claim (N.T.S. 94-C-5W) in September, 1990 indicates that a favorable geological environment is present for hosting porphyry and/or skarn type Cu-Au mineralization.

Further work is recommended.

1 INTRODUCTION

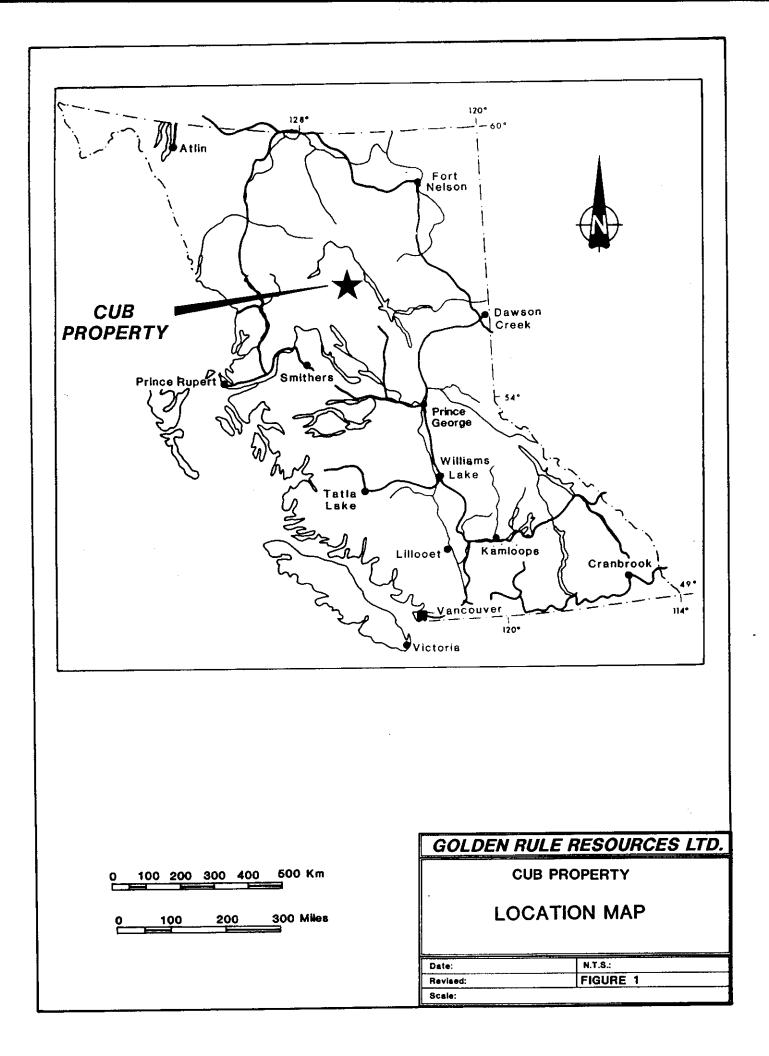
1.1 Location and Access

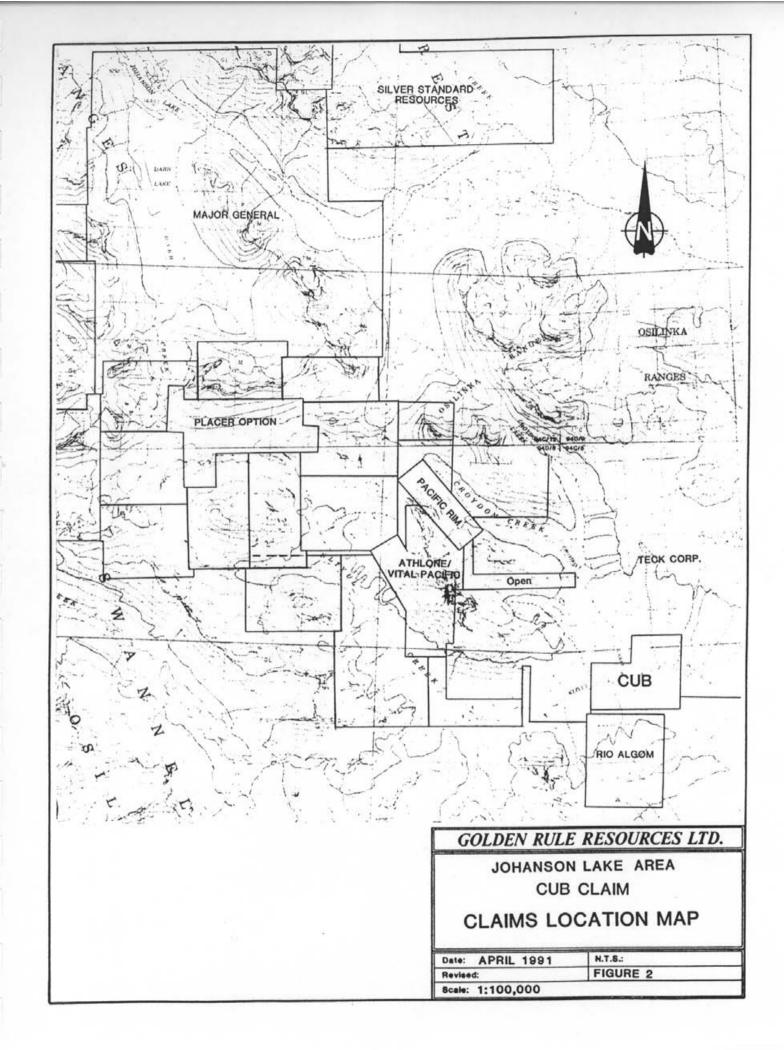
The CUB 1 claim is located in N.T.S. map-area 94-C-5W approximately 360 km northwest of Prince George, B.C., astride the confluence of Kliyul Creek and Croydon Creek (Figure 1) at 56 degrees 26' N latitude and 125 degrees 56' W longitude (Figure 2). An old pack track passes through the claim and extends from the west end of a road along the north shore of Aiken Lake which links with the Omineca Road 6 km to the east. Helicopter support for the reconnaissance geological mapping and geochemical sampling described in this report was provided in part by a Northern Mountain Helicopters Ltd. Bell 206-B helicopter based temporarily at Johanson Lake and in part by a Northern Mountain Bell 206-B helicopter working under contract to Golden Rule Resources Ltd. from a temporary base at Germansen Landing, B.C.

1.2 <u>Claims and Ownership</u>

The claim is situated in the Omineca Mining Division and is entirely owned by Golden Rule Resources Ltd. of Calgary, Alberta. Claim information is summarized below.

The claim is one of 14 claims staked in the Kliyul Creek area by Golden Rule Resources Ltd. in 1990 but is not contiguous with the main claim block.


TABLE 1


CLAIM LIST

CLAIM NAME	NO. OF UNITS	RECORD NO.	RECORD DATE	MAP NO.
CUB 1	20	12256	JUL 13/90	94-C-5W

1.3 Physiography and Glaciation

The claim lies within the Omineca Mountains subdivision of the Interior Plateau. The Johanson Lake region is entirely glaciated and is characterized by wide drift-filled major valleys. Numerous cirque basins, some occupied by tarns, and associated hanging valleys occur along both sides of Kliyul Creek, which was filled by a major valley glacier during Pleistocene time. Permanent icefields are present in the area. The terrain is rugged with steep cliff walls ringing most of the cirques. Narrow crested and razorback ridges, arretes, and cols

are common. Elevations in the immediate area range from approximately 1160 m to 2258 m ASL. Bedrock exposures are scarce and are mainly limited to a steep stream gully on the west side of the claim. The northern 2/3 of the claim is situated over the 1 1/2 km wide, overburden covered valley of lower Kliyul Creek. The southern 1/3 of the claim covers the steep, overburden, and timber covered north facing slopes of a 2100 m high mountain range. The property is situated below treeline, which occurs at about 1500 m ASL. The valley of Kliyul Creek supports a fairly thick stand of timber below about 1400 m ASL, and dense patches of dwarf balsam occur at many locations above treeline.

1.4 Previous Work

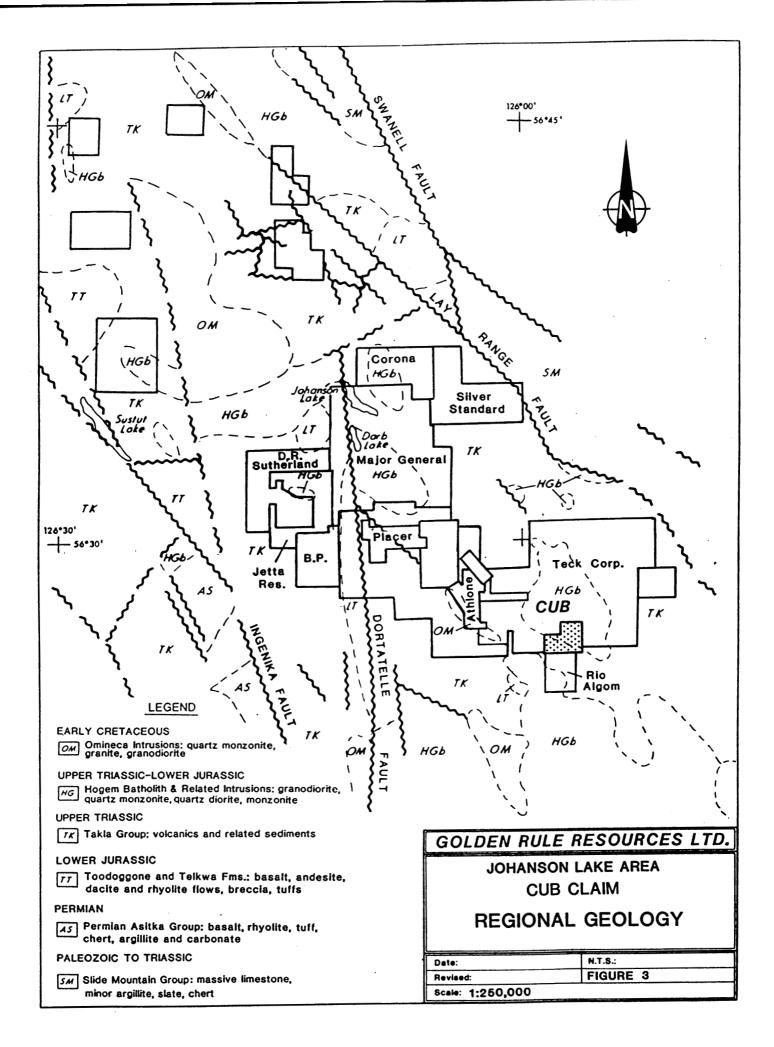
The claim is located adjacent to the Kli Group of claims (Kennco Explorations Ltd.), the KC group (Golden Rule and Ritz Resources), the JO and CRO group (Golden Rule Resources), and the cliam adjoins the SOUP, KLIYUL, and LADY DIANA claims (currently being explored by Teck Corp.). All of these groups, as well as the BAP claims, located internally within the KC 1 and 2 claims, have seen considerable exploration in the past. The results of exploration programs are described in numerous B.C. these Previous work has been directed towards Assessment reports. evaluating the porphyry copper, gold-quartz vein, and copper-gold skarn potential of the area. Numerous gold bearing quartz veins been discovered at the KC claims and gold-enriched have magnetite-chalcopyrite skarns have been identified on the SOUP claims. Vancouver Stock Exchange news releases indicate that, on the Kli claims a drill-indicated tonnage of 1,000,000 tons grading 0.06 oz/t Au, 0.22 oz/t Ag, and 0.43% Cu is present, and at the KLIYUL claim, a large gossaneous zone of hydrothermally altered and mineralized quartz monzonite to hornblende diorite hosting guartz vein and stockwork Au/Cu/Mo mineralization has been drilled.

1.5 <u>1990 Program</u>

Work carried out in 1990 at the CUB 1 claim consisted of helicopter supported reconnaissance geological mapping and stream silt sampling. A total of 1 rock and 9 stream silt samples were collected and analysed for Au and Ag by Fire Assay/AA methods, and a 30 element suite (including Au and Ag) by Induction Coupled Plasma (ICP) analysis.

<u>GEOLOGY</u>

2


2.1 <u>Regional Geology</u>

The region surrounding the claim described in this report is underlain by an assemblage of Triassic to Jurassic basaltic to dacitic tuffs, breccias, and flows, and intercalated limestones, siltstones, sandstones, conglomerates and volcaniclastic rocks referred to as the "Takla Group". The Takla Group rocks, and a variety of plutonic rocks genetically related to Takla Group volcanic rocks comprise, in the Johanson Lake area, the northern extension of a 30 to 100 km wide, several hundred km long island arc assemblage referred to as the "Quesnel Trough", "Quesnel Terrane" and "Quesnellia" in the literature. The regional geology of the Johanson Lake area is illustrated in Figure 3 (Harper Ranch Sub-terrane ("Hr") is considered to be part of Quesnellia).

The CUB 1 claim is located along the northeastern edge of the Hogem batholith in an area of multiple intrusive phases.

2.2 Property Geology

Reconnaissance mapping carried out in 1990 at the CUB 1 claim and the adjacent JO and CRO claims has outlined three major units which comprise the Takla Group in this area. The lower volcanic unit, outcropping extensively along Kliyul Creek consists of a thick section of feldspar porphyritic andesitic flows and tuffs. Along the west side of Kliyul Creek the feldspar rich andesitic lavas are overlain by a southwestward dipping sedimentary package of variable thickness consisting of interlayered thin bedded argillites, calcareous tuffs, silty to gritty limestone, and siltstone. The base of the sedimentary package is marked by a regionally continuous, qossaneous, leucocratic exhalite (?) horizon composed of extremely fine grained guartz, sericite, feldspar, carbonate, and 2 - 15% extremely fine grained to coarse grained disseminated pyrrhotite. These sedimentary rocks correlate with a minor pyrite and traces of chalcopyrite are also present with easterly dipping sequence of sedimentary rocks, including silty limestones, thinly bedded argillites, calcareous tuffs and a basal sulphidic chert or exhalite unit exposed along the east side of Kliyul Creek. Overlying the sedimentary package (on both sides of Kliyul Creek) is a thick package of augite porphyritic basaltic flows and coarse breccias. The similar stratigraphic relationships, but opposing dips of the volcanic and sedimentary rocks on either side of Kliyul Creek suggests that the rocks form different limbs of a large anticlinal structure, the axis of which trends parallel to the northwesterly aligned section of Kliyul Creek. Α number of small amplitude synclinal and anticlinal northeastward trending secondary folds were noted in the sedimentary rocks exposed in the west limb of the "Kliyul Creek Anticline".

The "exhalite" unit referred to above has been described variously by previous workers as a "pyritic ash", a "rhyolitic tuff", and a "silicified volcanic", but its position at the interface of the lower feldspar rich andesitic lavas, and overlying sedimentary rocks strongly suggests an exhalative origin. Disseminated sulphides also occur as bands in the overlying massive to thinly bedded argillites.

The exhalite unit and related sedimentary rocks were not found at the CUB 1 claim, which is underlain basaltic flows and tuffs of the upper volcanic unit.

2.3 <u>Economic Geology</u>

Some encouragement was gained from the mapping, prospecting and sampling carried out at the CUB claim in 1990. Mapping of the claim is incomplete, however, and the economic potential of areas along Kliyul Creek, known to be underlain by intrusive rocks, has yet to be evaluated. Also, the geological significance of certain anomalous geochemical results, described below, has not yet been determined. The along strike proximity and similar geological environment to porphyry type Cu/Mo/Au mineralization immediately northwest of the claim also justifies more detailed geochemical exploration (soils grid) of areas of the claim underlain by intrusive rocks and the intrusivevolcanic contact.

3 <u>GEOCHEMISTRY</u>

3.1 <u>Sampling and Analytical Methods</u>

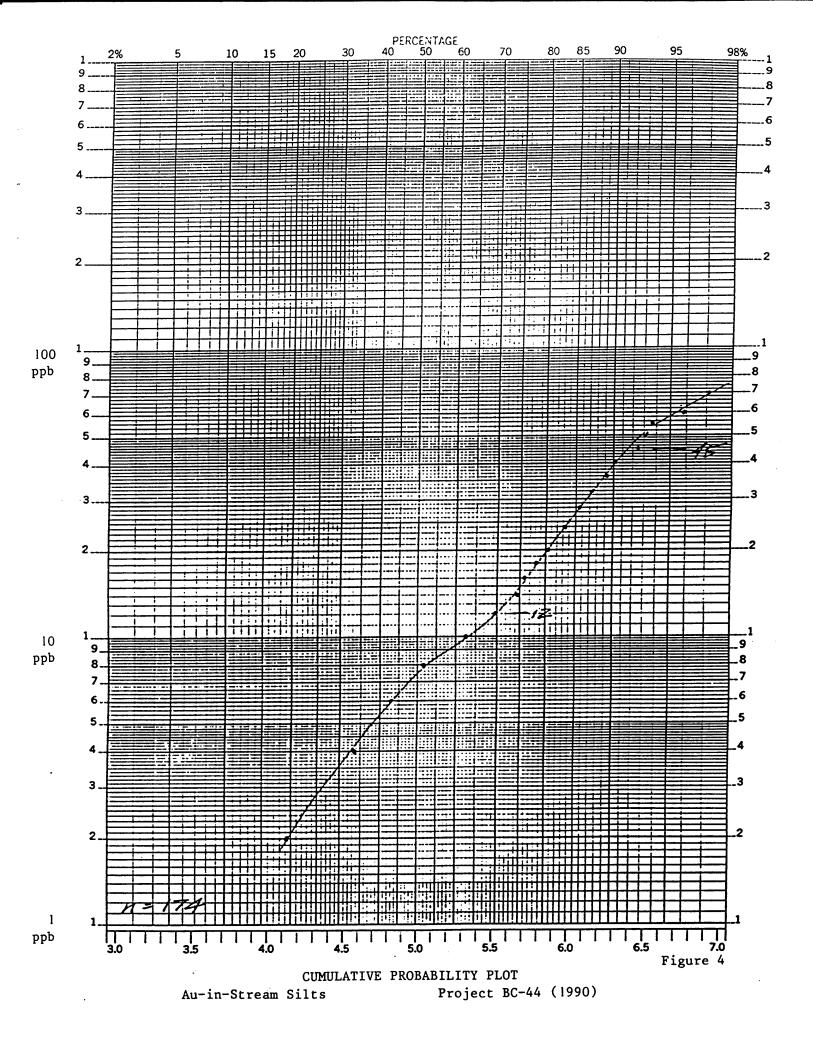
A total of 174 stream silt samples were collected during the 1990 reconnaissance work done in the area of the CUB 1 claim and adjacent JO and CRO claims. Several "character" rock chip samples were collected from the area traversed in the CUB 1 claim and stream silt samples were collected at nominal 200 m to 250 m intervals. Stream silt sample material consisted of fine, "active" silts that samplers were able to obtain at sample sites. No pre-concentration of sample material was carried out, and moss mattes were not used as a sample medium.

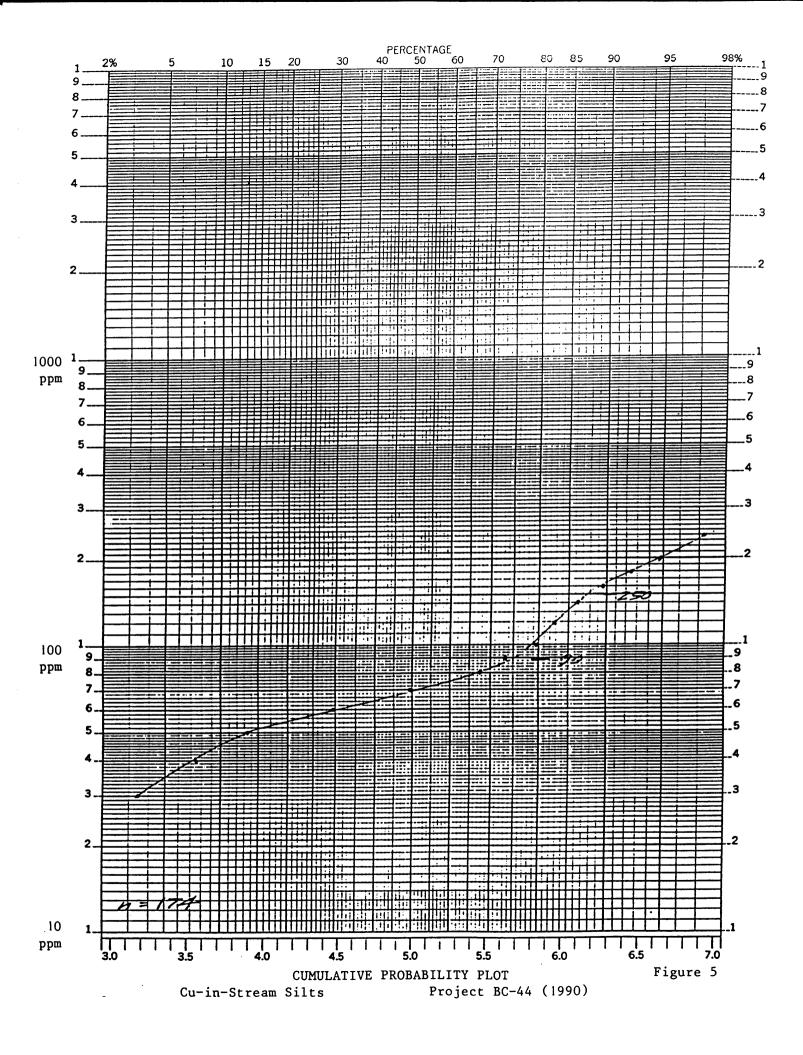
Silt samples were dried and sieved and a -80 mesh fraction was analysed for Au and Ag by Fire Assay/AA techniques by Terramin Research Labs Ltd. of Calgary, Alberta. Sample pulps were shipped to Acme Analytical Laboratories Ltd. of Vancouver, B.C. and analysed for 30 elements including Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, %Fe, As, U, Au, Th, Sr, Cd, Sb, Bi, V, %Ca, %P, La, Cr, %Mg, Ba, %Ti, B, %Al, %Na, %K, and W by Induction Coupled Plasma (ICP) analysis. ICP analysis utilizes a .500 g sample digested with 3 ml of 3-1-2 HC₁-HNO₃-H₂O at 95 Degrees Celsius for 1 hour, followed by dilution to 10 ml with H₂O. This leach is only partial for Mn, Fe, Sn, Ca, P, La, Cr, Mg, Ba, Ti, B, and W, and the leach is limited for Na, K, and Al. Consequently, ICP analyses for the above elements - particularly K - are not reliable indicators of alteration, particularly in volcanic rocks, where the effects of K alteration might be more subtle than in intrusive rocks.

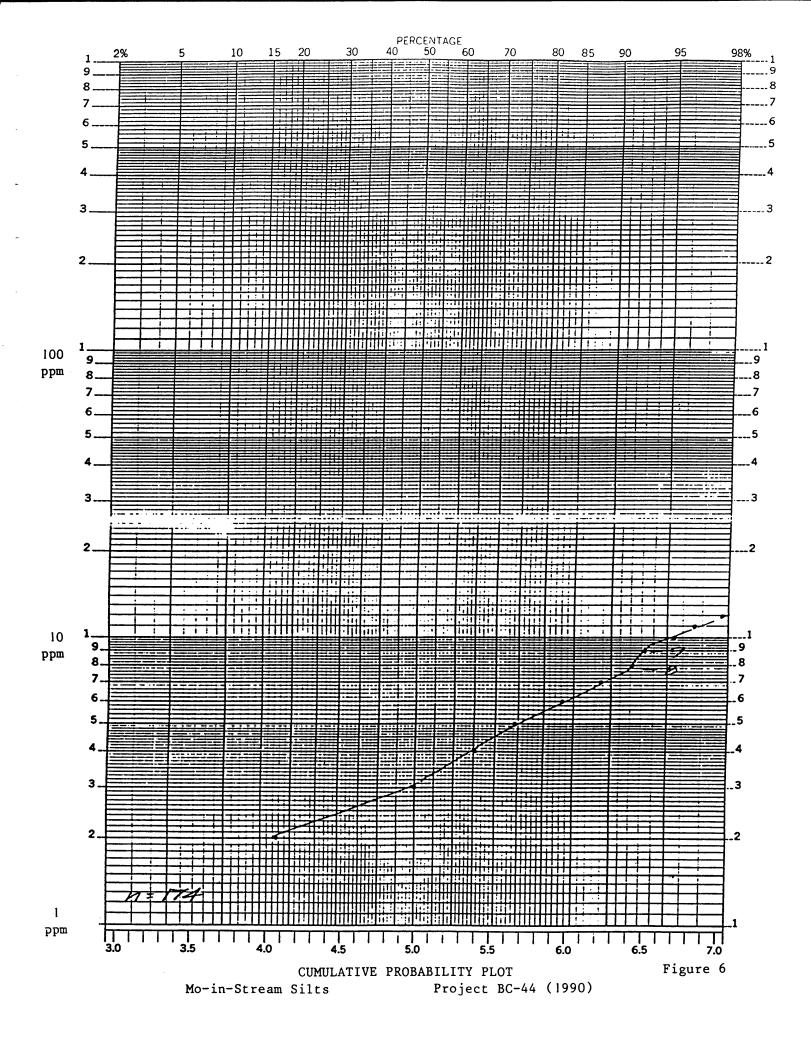
3.2 Statistical Analysis of Data

Cumulative probability graphs for Au, Cu, and Mo-in-stream silts data are shown in Figures 4, 5, and 6 respectively. A total of 9 stream silt samples were collected in the immediate area of the CUB 1 claim, but statistical analyses of the larger population are reiterated here for purposes of interpreting geochemical results at one CUB 1 claim.

The cumulative probability graph for Au-in-stream silt values (Figure 4) indicates that two extensively overlapping lognormal populations are present, with an anomalous threshold of 12 ppb Au, and definitely anomalous concentrations defined by values of 45 ppb Au or greater.


The cumulative probability graph for Cu-in-stream silt values (Figure 5) indicates that two overlapping lognormal populations are present, with an anomalous threshold of 90 ppm Cu and definitely anomalous concentrations defined by values of 250 ppm Cu or greater.


The cumulative probability graph for Mo-in-stream silt values (Figure 6) indicates that two lognormal populations are present, with an anomalous threshold of 8 ppm Mo, and definitely anomalous concentrations defined by values of 9 ppm Mo or greater.


3.3 <u>Results</u>

Mo and Cu-in-stream silt values returned from samples DK-37 to 39 collected along Kliyul Creek downstream from the mouth of Porphyry Creek define a short, coincident, weakly anomalous trend of Mo and Cu concentrations. Two anomalous Mo-in-stream silt values also occurred on Kliyul Creek immediately upstream from the mouth of Porphyry Creek (DK - 35, 36). Sampling was not carried out along Kliyul Creek below the mouth of Croydon Creek due to high water and the difficulty experienced in finding suitable sample material. Most of the CUB 1 claim therefore has not been geochemically tested.

The anomalous Mo and Cu values downstream from the mouth of Porphyry Creek may be related to known mineralization along the Porphyry Creek drainage, but the results from sample numbers DK-35 and 36 suggest another source may also be present.

The favorable geologic environment at the CUB 1 claim can not be properly evaluated by stream silt geochemistry. Grid controlled soil sampling over the steep southern 1/3 of the claim will be required to evaluate areas underlain by intrusive rocks as well as the vicinity of the volcanic - intrusive contact.

CONCLUSIONS AND RECOMMENDATIONS

Reconnaissance geological mapping carried out at the CUB 1 and adjacent JO 1 to 8 and CRO 1 to 5 claims during the 1990 field season has partly defined a stratigraphic sequence within the Takla Group rocks consisting of a lower feldspar rich succession of andesitic lavas and tuffs, overlain by a sedimentary package of variable thickness consisting of sulphide rich chert or exhalite, thinly laminated argillites and calcarious siltstones, and gritty to silty grey limestones. Stratigraphically above the sedimentary package is a thick succession of augite porphyry flows, tuffs, breccias, and intercalated, discontinuous and chaotically bedded laharic units consisting of large volcanic clasts enclosed in thinly bedded, silty limestones and argillites. The CUB 1 claim is underlain by flows and tuffs of the upper volcanic unit which have been intruded by satellitic intrusions of the Hogem batholith.

Previous exploration carried out in the vicinity of the CUB 1 claim at the Shell, Porphyry Creek, and Croydon mineral occurrences has been directed towards evaluating interesting vein and porphyry type Cu/Mo/Au mineralization occurring in quartz-magnetite veins and stockworks in altered, hornblende diorite as well as magnetitechalcopyrite-gold skarns hosted by Takla Group volcanic rocks. The geological environment at the CUB 1 claim is favorable for hosting similar mineralization.

Further work at the property should consist of grid controlled soil sampling at reconnaissance (250 m x 50 m) sample intervals and grid-controlled geological mapping of the steeply-sloping southern 1/3 of the claim underlain by intrusive rocks and transected by the intrusive-volcanic contact.

Respectfully submitted,

Michael Fox, Consulting Geologist

February, 1991

4

STATEMENT OF COSTS

Supervisory Geological Personnel	\$	600.00
Support Personnel		75.00
Field Costs		52.50
Helicopter	:	1,450.00
Geochemical Analyses		178.75
TOTAL:	\$;	2,356.25

14

6 <u>BIBLIOGRAPHY</u>

Bates, C. (1975):

BAP Project, Johanson Lake Area, B.C. Geology and Geochemistry, BP Resources Canada Limited.

Cross, D. (1985):

Geological, Geophysical and Geochemical Report, KC1 and 2 Claims, Suncor Inc. Resources Group.

Fox, M. (1982):

Geological and Geochemical Report, KC1 and 2 Mineral Claims, Omineca Mining Division, Golden Rule Resources Ltd., Taiga Consultants Ltd.

Meyers, R.E.; Smith, H.Q. (1985):

Geological and Geochemical Exploration Program on the KLl Claim Group, Jointly owned by Kennco Explorations (Western) Ltd. and Vial Resources Ltd., Optioned by BP Resources Canada Limited (Assessment Report 13258).

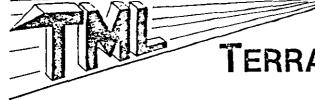
Rebagliati, C.M. P.Eng. (1987):

Phase II Summary Report, 1987 Kliyul Creek Gold Project, SOUP Claims, Johanson Lake Area, B.C., for Lemming Resources Ltd.

Shearer, J.T. (1990):

Exploration Proposal on the KC Claims, Omineca Mining Division, for Ritz Resources Ltd.

Spencer, B.E. (1990):


Report on a Trenching Programme on the KC-BAP Mineral Claims, for Ritz Resources Ltd.

Wilson, G. (1984):

Geological, Geochemical and Geophysical Resport, Golden Rule Resources Ltd., Taiga Consultants Ltd. APPENDIX I

•

ANALYTICAL METHODS

TERRAMIN RESEARCH LABS LTD.

14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

GOLDEN RULE RESOURCES

SAMPLE PREPARATION

Soil and sediment samples are dried and sieved to -80 mesh (approx. 200 micron).

Rock Samples:

The entire sample is crushed to approx. 1/8" maximum, and split divided to obtain a representative protion which is pulverized to -200 mesh (approx 90 micron).

GOLDEN RULE RESOURCES

ANALYTICAL METHOD FOR GOLD AND SILVER

Approximately 1 assay ton of prepared sample is fused with a litharge/ flux charge to obtain a lead button. The lead button is cupelled to obtain a prill. The prill is dissolved in nitric/hydrochloric acids (aqua regia), and the resulting solution is analysed by atomic absorption spectroscopy. APPENDIX II

.

,

ANALYTICAL RESULTS

.ME

GEOCHEMICAL ANALYSIS CERTIFICATE

Golden Rule Resources Ltd. File # 90-4927 Page 1 410 - 1122 - 4th St. S.W., Calgary AB T2R 1M1

	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag I pmi pi	li Co om ppm		Fe As X ppm	U ppns	Au ppm	Th ppn	Sr Cd ppm ppm	sb ppn	81 ppm	V ppm	Ca P X X		Cr ppm	Ng X	Ba Tỉ ppm X	8 ppm	Al X	Na X	K U X ppm
	74919 74920 74921 74922 74922 74923	5 3 3 10 4	27 679 878 597 151	2 3 7 9 2	11 30 13 7 6	.6	4 6 40 25 14 12 11 15 3 7	215 166 106	2.00 3.92 2.94 2.42 1.87 2	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1	99 .2 69 .3 117 .5 79 .2 45 .2	222222	2 3 2 2 2 2	34 60 40 31 31	.72 077 .97 052 1.62 048 1.34 062 .72 095	2 3 3	80 57 37 56 55	.35 .98 .36 .23 .24	29 .08 38 .14 103 13 33 .13 35 .07	4 1	2.05	.13 .17 .14	.05 2 .04 1 .05 2 .06 1 .05 2
.ull klim	74924 74925 74926 74927 74928	11 1 4 15	259 15 65 280 163	4 11 4 8 6	13 66 43 28 37	.6 .2	-	1359 1024 318	f:83 3 5.42 5 4.42 9 3.90 2 4.32 24	5 5 8 5 5	nd Nd Nd Nd Nd	1 1 1 1	49 .2 90 .2 81 .2 36 .2 46 .5	2 2 2 2 6	22222		.66 .091 12.64 .043 17.35 .009 1.25 .082 .81 .050	424	22 50	.22 1.11 2.05 .64 1.08	26 .07 217 .01 19 01 68 .17 27 .26		.70 .51 .33 1.66 1.67	.08 .01 .01 .14 .14	.04 1 .15 1 .11 1 .20 2 .09 1
	74929 74930 74931 74932 74933	3 1 8 1 5	102 38 103 38 95	6 11 5 5 8	49 63 46 47 81	.4 .4 .4	27 16 35 13 27 17 50 18 36 19	834 502 793	5.96 4 3.30 181 4.58 3 3.47 15 5.95 7	5 8 5 12 5	nd Nd Nd Nd Nd	1 1 1 1	48 1.0 83 .2 8 .5 53 .2 14 .8	3 3 2 2 6	22222	113 49 117 61 163	1.44 .070 7.22 .057 1.62 .065 10.98 .021 1.54 .050	3 5 2	53 58 76	1.48 1.51 .96 2.55 2.25	20 .31 130 .01 12 .33 72 .01 12 .34	5 4 1 5	2.55 .46 2.12 .54 3.19	.16 .02 .07 .01 .05	.05 1 .12 1 .01 1 .06 1 .03 1
	74934 74935 74936 <u>74937</u> 74938 -	1 6 21 4	13019 5757 149 630 84	22 8 8 23 6	47 🕷	.6 1 .4 .8	19 22 11 73 12 12 7 59 27 19	728 694 214	6.40 9 4.14 2 5.20 6 14.44 88 5.24 3	5 5 5 11 5		1 1 1 1	55 1.6 27 .8 43 .2 26 .2 57 .2	4 2 2 4 3	2 2 2 4 2	253 146 106 108 56	1.59 .37 .76 .07 .86 .11 .13 .11 3.53 .06	6 4 2 2	164 46 82	1.78 2.35 1.03 .38 1.42	65 .19 167 .24 43 .17 81 .12 40 .14	2 2 4	1.88 2.06 1.82 .74 1.98	.05 .14 .15 .02 .03	.30 1 1.49 1 .72 2 .20 1 .08 1
32 :	74939 74940 74941 74942 7494 3	3 1 11 12 2	76 25 7451 115 1113	6 11 4 9 18	55 32 94 1 20 102	.3 .8 .3 .4 .5	19 10 25 10	5 362 5 795	4.46 2 6.01 2 5.40 7 4.36 10 10.71 5	5 5 12 5 5	ND	1 1 1 1 4	27 .2 23 .3 43 1.0 105 .4 8 .2	3	2 2 4 2 3	20 40 70 67 90	2.80 .05 .36 .04 8.03 .02 1.35 .06 .38 .13	222	29 91 45		61 .20 49 .40 52 .05 15 .23 79 .01	2 2 4	1.62 1.47 1.72 1.74 2.98	.03 .02 .01 .11 .01	.12 1 .10 1 .19 1 .04 2 .20 1
12	74944 74945 74946 74947 74948	3 3 1 1 9	235 99 83 78 31	3 2 14 8 5	18 10 77 53 37	.3 .2 .5 .5 .3	19 2 16 1 39 2 18 1 23 1	2 127 3 1090 7 564	1.94 5 5.82 16 3.93 2			1 2 1 1	54 .2 30 .2 78 .2 70 .5 51 .6	3	3 3 2 2 2	85 39 97 94 70	.93 .08 .49 .06 6.15 .04 1.71 .05 1.12 .05	34 82 12	46 81 42	.31 2.70 1.42	59 .18 257 .18 21 .10 233 .27 43 .19	3 3 2	1.93 .63 3.24 2.46 2.21	.16 .08 .02 .21 .26	.24 1 .16 1 .05 1 .97 1 .59 2
-1141	74949 74950 74951 74952 74953	1 7 7 1 2	5 159 219 80 193	12 7 9 11 7	130 29 16 32 39	.1 .3 .6 .7	8 1 38 2 37 1 5 2 12 2	6 90 2 223	3.53 3 2.83 3 4.84 6	5 5 5 5 5	ND ND ND	2	72 .2 240 .5 254 .7 22 .5 38 .3	2 3 4 3	2 3 2 2 2	164 54 47 81 107	.55 •11 3.11 •07 2.09 •07 .53 •04 .98 •02	25 05 42	65 58 30		9 .14	6 4 2	.42 3.22 2.71 2.26 2.47	.02 .30 .31 .11 .18	.08 1 .10 2 .10 1 .02 1 .02 2
	74954 Standard C	3 18	186 61	9 37	55 131	.5 7.0	9 1 68 3		4.65 4 3.95 40	5 17		-	47 .4 53 18.5	2 16	2 19	67 56	.82 .02 .46 .05			1.49		× –	3.15 1.89	.22 .07	.52 1 .13 11

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

DATE RECEIVED: SEP 27 1990 DATE REPORT MAILED:

- SAMPLE TYPE: PULP

Job#: 90-235

Project:

•.

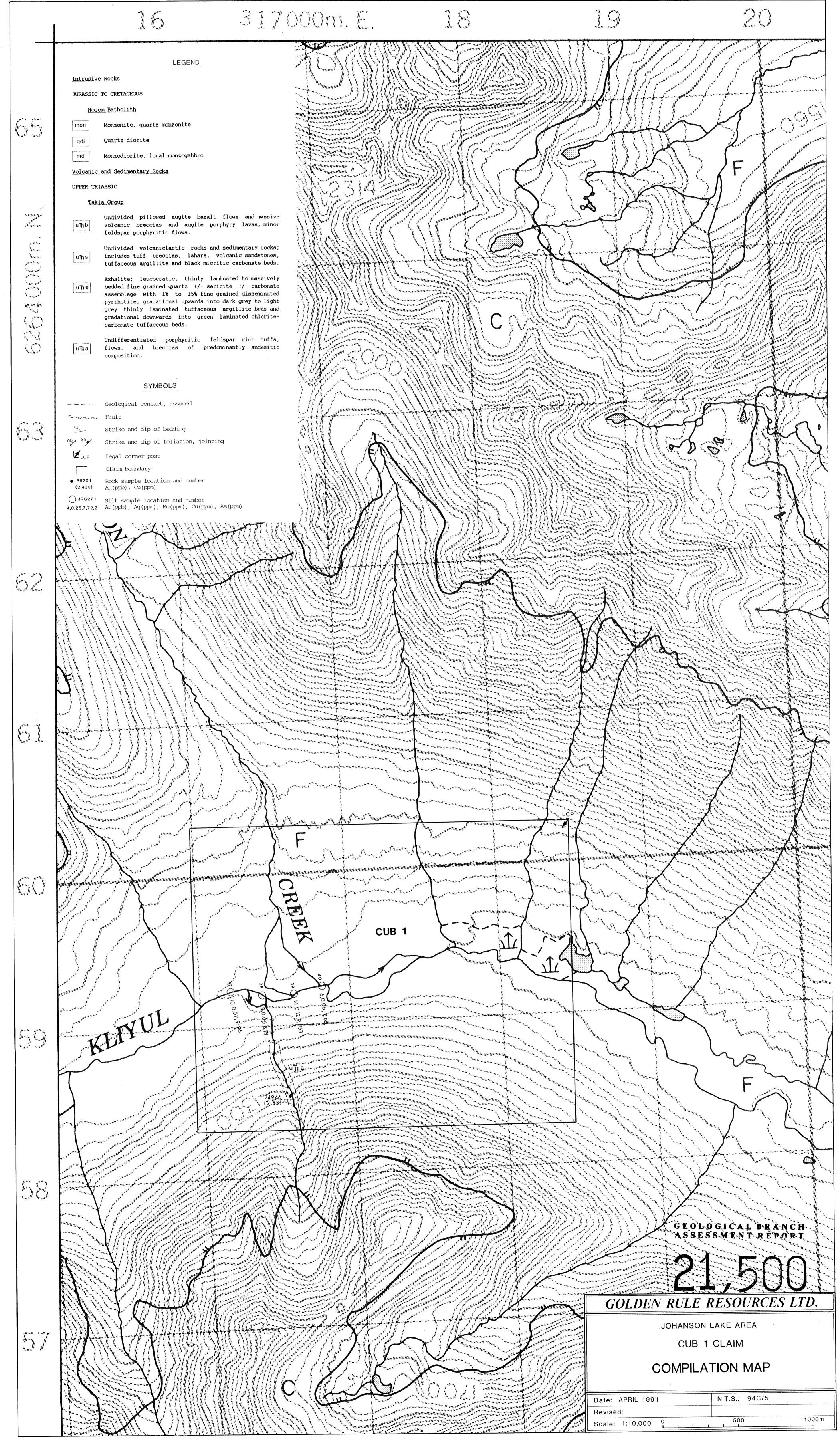
-	Sample Number		Au ppb	Ag ppm
	74919 74920 74921 74922 74923		2 2 16 28 2	0.05 0.45 0.40 0.18 0.01
11	74924 74925 74926 74927 74928		2 2 4 2 2	0.04 0.05 0.13 0.07 0.04
of an	74929 74930 74931 74932 74933		2 4 2 2 4	0.13 0.16 0.02 0.04 0.05
	74934 74935 74936 74937 74938		506 164 8 60 2	8.90 4.40 0.08 5.40 0.17
4.32 J	74939 74940 74941 74942 74943		2 2 410 6 4	0.04 0.32 11.00 0.17 0.22
	74944 74945 74946 74947 74948	~- >	24222	0.14 0.05 0.15 0.14 0.06
4F.32 2	,/4230		2 2 14 12	0.01 0.14 0.10 0.24 0.22
12.37 12.38 (Bait)	74959 74961 74964 74965 74965 74966		2 2 2 2 2	0.25 0.09 0.06 0.06 0.01
(v.				

Golden Rule Resources Ltd. FILE # 90-4718

					-
. D	-	α	~	т	п.
-	u		-		- I -

	SAMPLE#	No ppm	Cu ppn	Pb ppm	Zn ppm	Ag ppm	N1 ppm	Co ppm	Mn ppm		As	U ppm	Au ppn	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	р Х	La ppnt	Cr ppm	Ng X	Ba Ti ppn 7		AL X	Ka X	K X	W
	JRG-19 JRG-20 JRG-21 JRG-22 JRG-22 JRG-23	5 3 3 3 3	36 70 77 78 62	8 2 6 2 4	96 102 83 82 86	.2 .2 .3 .2	28 26 30 30 31			5.65	4 5 2 6 3	5 5 5 5 5 5 5	ND ND ND ND	1 1 1 1	35 34 53 47 39	.2 .4 .2 .4 .2	2 2 2 2 2 2	2 2 2 2 2 2 2	80 96 91 96 96	.63 .89 .86	048 050 060 062 056	2 2 2 2 2 2 2	89 1 83 2 96 2 92 2 93 2	2.45	66 .13 59 .05 44 .16 43 .15 42 .12	4 3 4	2.57 3.54 2.95 3.17 3.40	.05 .04 .04 .04 .04	.08 .07 .06 .06 .06	1
-	JRG-24 JRG-25 JRG-26 JRG-27 JRG-28	3 4 3 4 2	69 62 71 51 72	2 4 7 ~ 2	83 84 77 86 88		31 38 33 34 38	23 23 24	964 969 1105 1048	4.96 5.10	8 6 2 8	55555	ND ND ND ND ND	1 1 1 1	48 53 44 45 45		3 2 2 2 3	22222	103 102 104 97 103	.82 .76 .63 .67	063 060 052 057 057	2 2 2 2 3	96 2 119 2 92 2 104 2 105 2	2.58 2.75 2.48 2.60	52 .14 54 .14 50 .17 48 .14 43 .17	4332	3.30 3.43 3.37 3.24 3.30	.04 .05 .04 .04	.07 .09 .05 .06 .05	1
	JRG-29 JRG-30 JRG-31 JRG-32	2222	55 58 53	2 5 2 2	83 85 83 82 93		36 36 34 34 34	24 23 24 23	935 971 1001	4.85 4.93 4.88 4.86	63529	55555	ND ND ND ND ND	1 1 1 1	47 45 43 45 52	.4.2.4.2.2	2 2 2 2 3	2 2 2 2 2 2 2 2	99 92 98 93 103	.67 .66 .64 .66	060 056 062 059 059	2 2 2 2 2 2 2	97 101 86	2.63 2.60 2.61 2.59	39 41 41 41 39 11 40 11 56 1		3.19 3.23 3.15 3.13 3.39	.03 .03 .03 .03 .03	.05 .05 .04 .05 .08	
	JRG-34 JRG-34 JRG-35 JRG-36 JRG-37	2 2 3	60 59 44 58	4 2 6 2	86 88 69 74	 -1 -1 -3 -1	36 36 27 27	24 24 22	993 999 801 819	5.00 5.06 <u>4.64</u> 4.72	5 5 5 11	5 5 5	ND ND ND ND	1	48 48 40 43	.6 .2 .5	2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	98 98 88 99	.68 .69 .76 .84	056 054 032	2 2 2 2 2 2	98 104 94 96	2.62 2.66 <u>2.54</u> 2.47	45 -1 48 -1 30 -2 31 -2		3.28 3.35 3.30 2.3.30	.03 .03 .04 .04	.05 .05 .04	1
~	JRG-40	v 3 2 2 2 2	48 49 60	4 7 6	73 69 80 86 80		27 29 29 33 32	21 21 22 22 22	812 918 940	4.56 4.71 <u>4.64</u> 5.05 4.89	2 2 2 4 3	5 5 5 5	ND ND ND ND ND	1	-39 45 43 44 43	.2 .2 .4 .5	2 2 2 2 2	2 2 2 2 2	83 94 89 94 94 96	.65 .68	.049	2 2 2 2 2	92 84 91	2.45 2.56 2.43 2.62 2.58	28 .2 35 .1 <u>36 .1</u> 43 .1 43 .1	8	2 3.15 2 3.27 2 3.04 2 3.30 2 3.25	.03 .03 .03 .02 .03	.04 .03 .04 .04 .05	
	JRG-42 JRG-43 JRG-44 JRG-45 JRG-46 JRG-47	3	53 377 75 67	2 4 2 2	96 81 77 79 78	1. 1.0 2.	29 30 29 31	18 22 21 22 22	786 908 909 948	4.50 4.70 4.67 4.80 4.84	-6 7267	5 5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	154 45 41 46 44	.5 .4 .2 .6 .3	2 2 2 3 2	2 2 2 2 2 2 2 2		2.68 .75 .64 .71 .62	.047 .056 .050 .054 .050	2 2 2 2 2 2	80 94 86 94 93	1.92 2.48 2.46 2.53 2.52	54 .1 38 .1 36 .1 41 .1 39 .1	6 7 6 7 6	2 2.81 2 3.13 2 3.07 3 3.20 2 3.14	.03 .04 .03 .04 .03	.04 .05 .04 .05 .04	
	JRG-51 JRG-52	- 3 4 10 3	69 56 95	2 2 15 5	127 105 104	.2. .1 .1 .1	30 35 26 62 28	26 14 22	1361 2313 939 1009	5.26 5.68 2.87 5.68	2 16 21 8 11	5 5 5 5	ND	1 1 2 1	49 25 41 27 37	3 2127 1277	2 2 3	2 2 2 2 2 2	- 94	.42 .70 .38 .69	.052 .070 .049 .057 .043	2 4 2 8 3	115 92 200 87	2.48 2.30 2.48 1.40 2.53	33 88 45	2743	3 3.17 2 3.68 3 3.72 3 2.05 3 3.83	.05 .06 .04	.05 .07 .02 .14 .06	
V ·	JRG-53 JRG-54 STANDARD C	2 2 18	5 77	7 2	94	1	27 30 70		99 1	5.51 5.46 3.95		5 5 18	ND	1 1 39	36 36 53	.6		2	90	.66	.041 .047 .095	3 3 39		2.47 2.42 .92	46	2	2 3.65 2 3.52 4 1.89	.04		1 11

.


٠.

TERRAMIN RESEARCH LABS Ltd.

Job#: 90-228

Pro	ject:	: B	C-32

	Sample	Ац	Ag
	Number	ррђ.	ppm
JRG-	15	2	0.07
	16	8	0.14
	17	2	0.04
	18	10	0.07
	19	28	0.05
	20 ·	36	0.06
	21	6	0.07
	22	10	0.07
	23	2	0.04
	24	4	0.05
	25 26 27 28 29	4 2 6 4	0.03 0.02 0.04 0.05 0.04
	30	2	0.03
	31	6	0.03
	32	32	0.04
	33	2	0.02
	34	14	0.04
	35 36	4	0.04 0.01
	37 38 39 40	6 4 2 8	0.01 0.01 0.01 , 0.03
_	41	18	0.03
	42	4	0.02
	43	6	0.08
	44	2	0.10
	45 46 47 48 49	4 2 2 .6	0.10 0.07 0.05 0.04 0.06
	50 51 52 53 54	 2 8 4 10 10 	0.04 0.18 0.11 0.10 0.09

