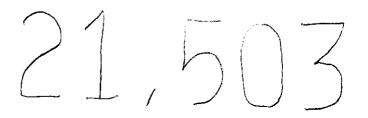
ASSESSMENT REPORT for the

BEAR CLAIM GROUP (Bear 1-3 Claims)

NELSON MINING DIVISION, BC NTS 82F/8

Latitude 49°17' N. Longitude 116°12' W.


Prepared for

OMEGA GOLD CORPORATION Suite 1000 - 789 Pender Street Vancouver, BC V6C 1H2

by

Tim Termuende, B.Sc.(Geol) of Toklat Resources Inc. 1701 Mt. Nelson Cres. Cranbrook, BC V1C 5V6

Submitted: July, 1991

LOG NO:	JUL	16	1091	RD.
ACTION:				
FILE NO:				

TABLE OF CONTENTS

	page
Summary	1
Introduction	2
Location, Access, Physiography, Title	3
Regional Geology	6
Property Geology	7
Mineralization	7
1990 Program	8
Results	8
Conclusion and Recommendations	9
References	10
Certificate of Qualification	11

GEOLOGICAL BRANCH ASSESSMENT REPORT

21,503

LIST OF FIGURES

		page
Figure 1	General Location Map	4
Figure 2	Claim Location Map	5
Map 1	Geology and Sample Location Map	in pocket

LIST OF APPENDICES

Appendix	1	List of Personnel and Expenditures
Appendix	2	Analytical Results
Appendix	3	Program-Related Documents
Appendix	4	Sample Descriptions

SUMMARY

Assessment work on the Bear 1-3 Claims (Bear Group) was carried out in May, 1991. The program consisted of silt-sampling drainages within and proximal to claim boundaries, and contour soil sampling on the western regions of the property area.

Work was hampered by an unusually deep snow pack for this time of year, with elevations above 5000' covered by at least 60 cm of snow. Work was concentrated within the BEAR 1 Claim boundaries, as this was the only accessible terrain under such conditions.

Mineralization was discovered as a result of this work, with significant magnetite and associated ilmenite, malachite and bornite observed near an intrusive contact with Precambrian sediments.

INTRODUCTION

This report provides an evaluation and discussion of results obtained from assessment work conducted in May 1991 on the Bear Claim Group located in the Nelson Mining Division, southeastern BC. The work was carried out by Toklat Resources Inc., and consisted of a crew of four men based in Cranbrook.

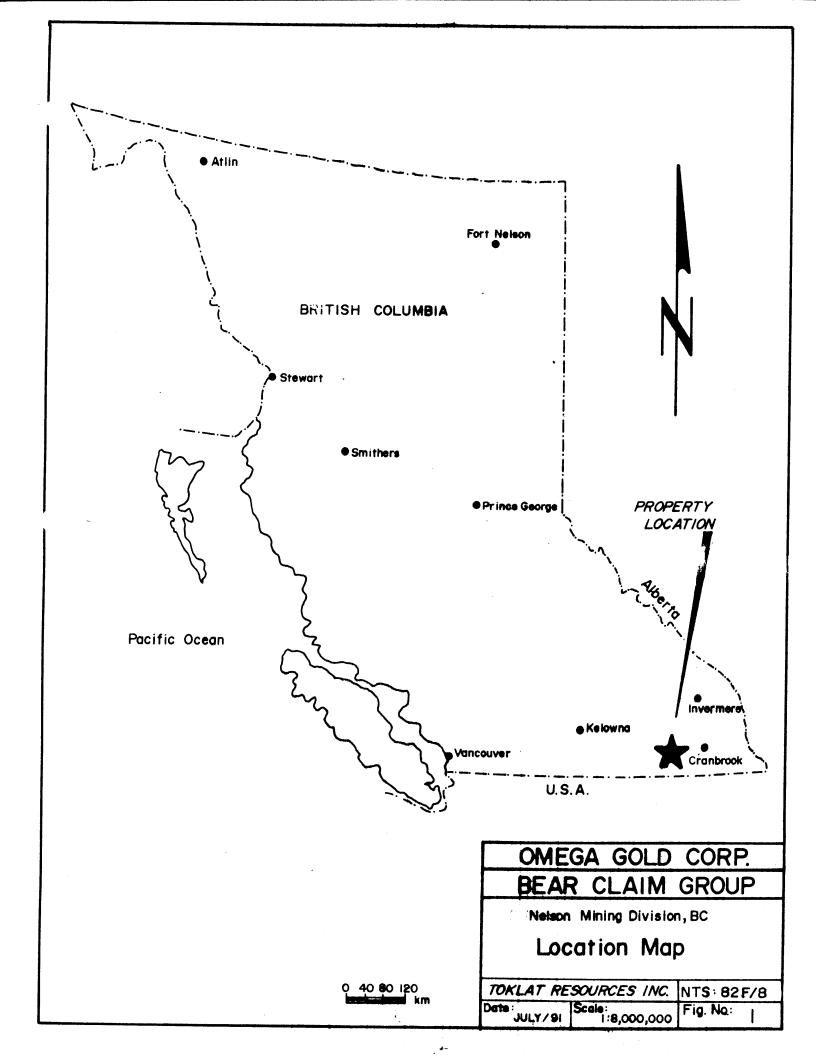
The Bear 1-3 Claims were staked in June 1991, following encouraging drilling results obtained by Kokanee Explorations Ltd. on their 50/50 joint venture Star Property. All of the above claims are contiguous.

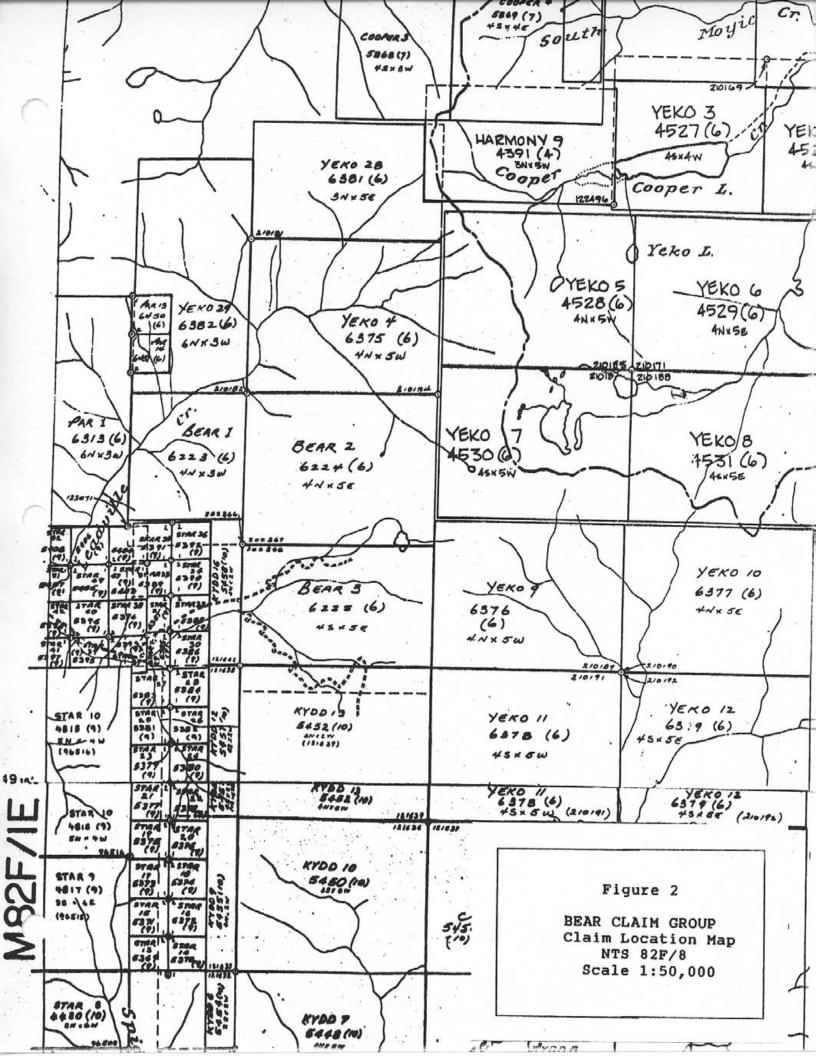
The \$7000.00, 1991 program focused on prospecting and reconnaissance soil and silt sampling of the western portion of the claim group. A total of 49 silt, 1 moss, 5 pan concentrate, 79 soil and 14 rock samples were collected and analyzed by ICP and Au Geochemistry for 30 base- and precious metal elements.

A description of regional geology and brief description of the economic setting is included in addition to the evaluation of property geology and geochemical results.

LOCATION, ACCESS, PHYSIOGRAPHY, TITLE

The Bear Claim Group consists of 52 claims staked in accordance to the Modified Grid System. (see table below). The claims are located 15 km north of Kitchener in the Nelson Mining Division on NTS mapsheet 82F/8 and are centered at $49^{\circ}14'$ N latitude, $116^{\circ}12'$ W longitude (figure 1; following page, Map 1; in pocket)


The claims cover an area of approximately 13 square km. Terrain is relatively steep and densely wooded with moderate undergrowth. Outcrop exposure is moderate, estimated at 10% of the total property area.


Access to the property is made from Kitchener via the Leadville/Goat River Forest Access Road. At km 8.5, a branch road leads to the property. It is presently maintained during the summer months by the BC Forest Service. Access within the property is good, with established logging roads present and in usable condition.

Bear Group Claim Status

<u>Claim</u>	Record No.	<u>Units</u>	Recording Date	*Expiry Date
Bear 1	6223	12	05/06/91	05/06/92
Bear 2	6224	20	05/06/91	05/06/92
Bear 3	6225	20	05/06/91	05/06/92

* After 1991 assessment filed.

REGIONAL GEOLOGY (excerpted from Hitzman, 1990)

The Bear property lies on the western flank of the Purcell Anticlinorium and is underlain by Middle Proterozoic rocks of the Belt-Purcell Supergroup.

The area surrounding and including the Bear claims is predominantly underlain by the Aldridge Formation which in the Purcell Mountains forms the lowest exposed member of the Belt-The Aldridge Formation in Purcell Supergroup. the southern Purcell Mountains is in excess of 4200m thick (Hoy, 1982, Edmunds, 1973, 1977) and has been subdivided into three members. The lower Aldridge, consists of rusty-weathering, laminated to thin-bedded, fine grained guartzite, argillaceous guartzite and Minor black argillite partings, commonly containing siltite. abundant diagenetic iron sulphide (now pyrrhotite) are present. The lower Aldridge has a maximum exposed thickness of approximately 1000m in the southern Purcell Mountains (Reesor, 1958; Edmunds, 1977).

The overlying Middle Aldridge is distinguished from underlying rocks by the predominance of grey, argillaceous quartzite. This unit as a whole is characterized by thin-to thick-bedded, finegrained quartzite and argillaceous quartzite interbedded with massive to laminated ripple cross-laminated siltite and minor laminated argillite. The quartzite and siltite beds are commonly massive but contain sedimentary structures that suggest they are turbidite deposits. A number of laminated marker horizons occur within siltites and argillites of the Middle Aldridge and can be traced throughout the Purcell Mountains southward into the U.S.A. (Huebschman, 1973). Recognition and correlation of these markers makes it possible to stratigraphically locate sections within the monotonous Middle Aldridge.

The upper Aldridge consists of thin-bedded, rusty-weathering dark to medium grey argillite and siltite. It grades upward into the Creston Formation which contains variously coloured argillaceous quartzite, siltstone, argillite and rare quartz lenses containing abundant shallow water depositional textures.

The Bear 1 claims overly the Old Baldy Fault. This structure is a high-angle, reverse fault with right-lateral offset similar, but of less magnitude than the regional Moyie and St. Mary's Faults. These north trending normal faults define a major north trending syncline situated between the Creston Valley anticline and the Purcell anticline. The age of these faults in not known with certainty but is believed to be late Laramide to Tertiary. The effect of the faults is significant for exploration in bringing the Sullivan-hosting lower Middle Aldridge Formation near the surface in a number of locations near Creston and Yahk.

PROPERTY GEOLOGY

The area underlying the Bear Group Claims consists of Middle sediments including fine grained quartzites Aldridge and mudstones with interlayered argillaceous wackes. **A** coarse grained hornblende gabbro unit intrudes the sediments and appears be at least 200m thick. This unit most likely represents to Helikian-aged Moyie intrusives, which pervade the Purcell Mountains as sills and minor dykes. A number of textural variations were noted within the gabbro, with extremely coarse hornblende grains (up to 1.5m) noted near the inferred southern contact. This coarsening is suggested by Rice (1937) to represent a zone found in the upper quarter of many such sills throughout the area.

Bedding features where easily observed, with graded bedding indicating that a non-inverted section was present. Bedding attitudes suggested a northwesterly/southeasterly strike with shallow dips to the northeast overall, with some exceptions near the gabbro contact. Though surface lineations were observed along the suspected trace of the Old Baldy Fault as mapped by Reesor (1981), no outcrop exposure of the structure was located on the property.

MINERALIZATION

Mineralization located as a result of work performed during 1991 consisted of minor malachite and bornite associated with semimassive magnetite discovered within the gabbroic material near it's inferred contact with Middle Aldridge sediments. This mineralization occurred within diopsidic, fine grained gabbroic Sedimentary material seen proximal to the gabbro material. road-cut off of the property showed contact in a marked silicification and increased pyrite content, though returned no significant base or precious metal values. Bull guartz material observed in creeks suggested the presence of vein systems within the sedimentary package.

1991 PROGRAM

The focus of the 1991 program was to perform preliminary reconnaissance-style prospecting and geochemical sampling within and surrounding the immediate property area. Work included stream-sediment sampling, contour soil sediment sampling, and prospecting along an intrusive/sedimentary contact. Work was hindered by unseasonably deep snow conditions which left little of the property area exposed, with the exception of south- and west-facing slopes below 4800 feet within the Bear 1 claim block. It is for this reason that virtually all work was concentrated in this area.

Samples recovered over the course of the program were shipped to Eco-Tech labs, of Kamloops, B.C. where they were dried, sieved to -80 mesh, and analyzed by 30-element ICP procedures.

RESULTS

Results of the 1991 program were somewhat encouraging, especially considering the relatively limited ground exposure due to snow conditions. Prospecting of lower slopes within the Bear 1 claim block resulted in the discovery of skarn-type mineralization in minor quantities, apparently related to a gabbroic/sedimentary contact. Contour soil geochemical sampling to the south of this inferred contact however, failed to produce further evidence of widespread mineralization. Stream-sediment sampling undertaken where possible also failed to suggest the presence of anomalous base or precious metal quantities, with the exception of one pan concentrate sample (GDH9101) which yielded weakly anomalous gold values of 50ppb.

CONCLUSIONS AND RECOMMENDATIONS

Prospecting and geochemical soil sampling conducted over the 1991 season revealed minor skarn-type mineralization near an inferred gabbroic/sedimentary contact. Secondary copper mineralization including malachite and bornite were observed within magnetiterich diopsidic mafic intrusive material. Though contour soil sediment sampling was completed to the south of this mineralization, snow cover prevented sampling of overburden material directly to the north or east of the showing area.

Stream sediment sampling undertaken where possible (considering deep snow conditions), failed to indicate the presence of significant base or precious metal mineralization elsewhere within the property area.

It is recommended that follow-up work be completed to the north and east of the inferred sedimentary/intrusive contact within the Bear 1 claim block. A modest prospecting and soil geochemical program set at less than \$10,000 should suffice to conclusively evaluate whether or not the particular contact should see further detailed inspection. As well, stream-sediment sampling should be completed in areas of the claim group which were inaccessible at the time of this program.

REFERENCES

Edmunds, R.F., 1973: Stratigraphy and lithology of lower Belt Series in the southern Purcell Mountains, British Columbia in Belt Symposium, 1973, V.1: Department of Geology, University of Idaho and Idaho Bureau of Mines and Geology, P. 230-234.

Edmunds, R.F. 1977: Kimberley to Creston, Stratigraphy and lithology of the lower Belt Series in the Purcell Mountains, British Columbia in Hoy T., eds. Lead-zinc deposits of southeastern British Columbia. Geological Association of Canada, field trip #1, Guidebook p. 22-32.

Hoy, T. 1982 The Purcell Supergroup in southeastern British Columbia; sedimentation, tectonics and stratiform lead-zinc deposits in, Hutchinson, R.W., Spence, C.D., and Franklin, J.W., eds., Precambrian Sulphide Deposits Geological Association of Canada Special Paper #25, p. 127-147.

MMPR Assessment Report #19564 (1990): Geological and Geochemical Work on the Kydd Property, Hitzman M.W.

MMPR Assessment Report #17893 (1988): Geophysical Report on the Star Claims, Nelson Mining Division, B.C., Jackish, I. and Price, M.

MMPR Assessment Report #16769 (1987): Fame Program Report on the SHA/STAR Project, Hagen, A.

MMPR Assessment Report #16635 (1986): Geophysical Report on the Star 1,2,4,5 and 12 Claims, Jackish I. and Vyselaar, J.

MMPR Assessment Report #15021 (1986): Geochemical Survey on the Star Claims, Nelson M.D., B.C., Davies, H.

GSC Open File #820 (1980,1981): "Grassy Mountain" Geological Map (1:50,000), Reesor, J.E.

GSC Memoir #207 (1937): Geology of the Cranbrook Map Area, British Columbia, Rice, H.M.A.

CERTIFICATE OF QUALIFICATION

I Timothy J. Termuende, of 1701 Mt. Nelson Crescent, Cranbrook, British Columbia hereby certify that:

- 1) I am a consulting geologist with Toklat Resources Inc. of Cranbrook, British Columbia
- I am a graduate of the University of British Columbia of Vancouver, BC, having received a B.Sc. in Geological Sciences in 1987
- 3) I have practised my profession continuously since 1987, with related industry experience dating to 1975.
- I own 6,000 shares of Omega Gold Corp., I have no other interest in the Bear Claim Group, nor do I expect to receive any.
- 5) This report is based on data collected during fieldwork conducted in May, 1991

Dated at Cranbrook, this 10th day of July, 1991.

T.J. Termuende, B.Sc. (Geol)

(11)

APPENDIX 1

List of Personnel and Statement of Expenditures

.

Statement of Expenditures

The following expenses were incurred on the Bear Claim Group as defined in this report for the purposes of mineral exploration between the dates of May 14th and May 25, 1991.

PERSONNEL:

т.	Termuende - B.Sc.(Geol)	i								
	5.0 days @ \$275/day			• • •					 \$	1,375.00
G.	DePaoli - Geologist									
	2.0 days @ \$240/day								 	480.00
м.	Betker - assistant									
	1.0 days @ \$200/day			• • •					 •	200.00
J.	Betker - assistant									
	2.0 days @ \$200/day						• • •		 	400.00
	-									
EQU	JIPMENT RENTAL									
	4WD Vehicle	5.0	days	х	50.	.00/	day	• • •	 	
	Mileage:) km							
	Hand-held Radios (2)	4.0	days	х	10.	00/	day		 	80.00
	Chainsaw	1.0	days	x	10.	00/	day		 	10.00
			-				-			
ME	LS AND ACCOMMODATION									
	Grocery/meals								 	71.83
	-									
AN	LYTICAL									
	14 Rock samples x 20.	00/s	sampl	e					 	280.00
	79 Soil samples x 20.									1,580.00
	49 Silt samples x 20.	00/s	sampl	e			• • •		 	\$60.00
	1 Moss sample x 20.	00/9	ampl	e					 • • •	20.00
	1 Assay x 20.00/sam	nple.							 	20.00
	3 Pan Concentrates x	: 22.	50/s	amp	ple.		• • •		 	67.50
MIS	CELLANEOUS									
	Fuel		• • • •	•••		• • •	• • •		 	124.99
	Field Supplies: 10 ma									200.00
	Maps/Airphotos									61.14
	Shipping	• • • •		•••		• • •	• • •		 	66.10
	Filing Fees		• • • •	•••		• • •	• • •	• • • •	 • • •	270.00
	Office									30.00
	Misc.:			• • •		• • •	• • •	• • • •	 • • •	10.94
DRJ	FTING AND REPORT REPROD									
	T. Termuende 2.5 days	x 27	15.00	/da	y	• • •	• • •	• • • •	 	550.00
	Drafting Charges 5.2 h									104.00
	Materials									35.00
	Map Reproduction									50.00
	Report Reproduction								 	36.00

-Continued-

HANDLING CHARGES

5% (of	third-party	purchases	37.80
------	----	-------------	-----------	-------

sub-total:\$ 7,578.30

7% G.S.T. (Reg. #122315534): 530.48

TOTAL:\$ 8,108.78

APPENDIX 2

.

1) Certificates of Analyses

JUNE 7, 1991

10041 EAST TRANS CAMADA HHY. KAHLOOPS, B.C. V2C 2J3 PHOKE - 604-573-5700 FAX - 604-573-4557

VALUES IN PPM UNLESS OTHERWISE REPORTED

OMEGA GOLD CORPORATION - ETK 91-304

1000 - 789 W. PENDER STR.

VANDCOVER, B.C. V6C 1W2

								SHIPMENT NUMBER : 01 5 PAN CONCENTRATE SAMPLES RECEIVED MAY 29, 1991
ETI DESCRIPTION	AU(ppb) AG AL(Z) AS	8 BA	BE CA(I) CD			J FECD KCD		MBN MONA(I) NI P PB SB SN SRTI(Z) U V N Y ZA
304 - 1 B6DH 1 304 - 2 B6DH 2 304 - 3 B1TH 20 304 - 4 B1TH 21 304 - 5 B7TH 26	50 <.2 1.31 465 5 <.2 1.37 5 10 <.2 1.74 40 5 <.2 1.70 15 5 <.2 1.18 15	i 6 40 i 6 35 i 6 60 i 6 55 i 6 50	<pre></pre>	18 17	63 32 50 34 124 54 87 34 55 22	2 3.62 (.01 8 3.07 .14 0 3.65 .23	40 .73 3 30 .79 3 40 .66 4 50 .73 5	373 4 .01 16 230 14 5 <20

NOTE: (= LESS THAN

SC91/ONE5A

Ą

••

ECO-TECH LABORATORIES LTD. CLINTON AVERS LABORATORY MANAGER

FROM ECO-TECH KAMLOOPS

ECO-TECH LABORATORIES LTD.

<u>د</u>	PAGE 4 E14		10(ppb)	70 TE(\$	15	8	83	BI CL	(\$)	CD	CQ	œ	CT	78(%)	E{3}	11 11		M	KO B2(%)	11	P	P E	58	ST	SE 11		0	۲	T	I	::
		NHS 91 - 13 *		<.2 1.1	11		50	·····	. 25	<1	11	14	44	1.56	. 20	30	.39	379	<1 <.81	11	330	28	<5	<2€	14	.07	<18	19	(1)	15	50
		BJBS 91 - 14	<5	(.2 1.H	5	- 6	45	6	.23	<1	11	13	42	1.16	. 18	38	.36	351	(1 (.0!	3	340	14	(5	(28	11	.87 .48	<1⊈ ≺1≇	18 21	(14) (14)	12	44 47
		3TTS 91 - 141	<5	(.2 1.23	5	٤	55	<5	.21	<1	12	17	Я	1.55	.21	30	.43	482		11	298 148	34	<5 <5	<28 <28	14	.45	di i	20	(10	16	12
		8775 91 - 192 ±	5	1.1 1.25	15	1	51	(5	.21	4	11	16	57	1.17	.19	30	.46	410 437	<1 (.1) <1 (.1)	10	314	11	<5	(2)	11		(18	22	d	17	44
		5 BTTS 91 - 183	<5	(.2 1.41	5	ŧ	55	3	.32	a .	12	17	31	1.01	.10 .19	38	.3# .34	517	(1 (.01	10	(11	16	Ğ	(2)	22	.17	(18	28	41	22	53
		6 BTTS 91 - 184	<5	.2 1.46	\$		55	(5	.4	1	12	10	12	1.93	.17	20	.39	365	<1 <. 1	11	288	24	<5	(28	11	.#1	(18	20	(1)	10	43
2		7 1775 91 - 105 *	(5	<.2 1.15	5	- 1	46	10	.21	1	21	24		3.0	.26	338		1496	1 (.41	31	194	51	(5	<20	65	. 09	<18	26	(1)	210	52
4	••••	ETTS 51 - 106	(5	.4 3.51	10 11		158 30	() ()	.25	4	19	11	"	2.45	.11	28	.54	279	(1 (.#1	13	248	12	(5	(21	6	.11	(10	53	<10	1¢	41
10		5 BTTS 51 - 187 *	<5	<pre>(.2 1.44 (.2 1.42)</pre>	<5	i	35	č	.23	ä	ij	12	31	1.56	.18	28	.31	336	(1 (.#1	5	198	12	{5	<21	11	.16	{]	17	(10	10	44
_		• BTTS 91 - 89	<5 5	<.2 1.20	65	Ĭ	36	<5	.25	a	22	12	66	2.75	.13	28	.66	327	(1 (.01	14	240	16	<5	(29	5	. 67	<i¢< td=""><td>56</td><td>(1)</td><td>7</td><td>45</td></i¢<>	56	(1)	7	45
66		1 1775 91 - 14 * 2 1775 91 - 15	Ġ	(.2 1.6	ŝ	Ġ	45	(5	.14	(1	13	12	38	2.17	.15	-40	.61	347	(1 (.01	12	310	16	<\$	<20	10	.17	<10	27	(10	15	57
-		1 BTTS 91 - 16	3	(.2 1.5	5	1	45	(5	.17	(1	13	13	35	2.14	. 20	40	.\$2	370	(1 (.11	12	378	16	(5	<26	12	.87	1	21	(1)	10	59 64
12	34 - 11		(5	(.2 1.52	5	- 4	58	<5	.21	<1	13	13	R	2.11	.19	46	.61	453	(1 (.11	12	374	11	<5	<2 8	14	. 14		26		17 33	55
6		5 1775 51 - 10	. (5	(.2 1.12	10	•	48	<5	.39	0	16	15	- 41	2.30	.16	58	.51	359	(1 (.61	14	440	28	(5	<28 7 J	12	.11. .11	(10) (10)	45	(1#	33	46
	380 - 11		5	<.2 1.17	5	6	30	<5	.21	a	15	10	43	2.35	.13	34	.54	338		11	270 630	28	۲5 ۲5	(28 (28	20		a	51	a	31	95
	311 - 11	7 BTTS 51 - 24 1	<5	.1 1.79	15	1	55	<5	.44	I	23	15	- 60	3.68	.13	- EI - (1	.64 .63	993 847	1 (.01	16	658	23	ढ	(20	24	.05	a	ü	(10	32	11
		18 BTTS 91 - 25	<\$.1 1.61	15	ļ	45	(5	.54	1	21 28	14	20	3.18	.11	- 68 - 54	.61	179	1 (.41	36	41	25	<5	(21	15	.16	01	46	(1)	24	81
		15 BTTE 91 - 26	\$	<.2 1.12	-	•	54	۲5 ۲5	.31 .15	0 0	11	16	11	2.07	.31	50	.45	235	a (.11	12	211	28	<5	(21	15	.11	₫.	17	(1	29	41
	•••	20 STTS 51 - 27	G	.2 1.47			#5	(5	.36	ā	is	i	75		.14		.43	738	(1 (.+1	23	570	38	(5	<21	42	.85	41	22	(10	\$1	11
		21 BTTE 91 - 29	6	(.2 2.41 (.2 2.41	-		68	(Š	.21	a	17	11	48		.18	38	. 39	286	(1 C.4L	22	348	16	(5	(26	19	.16	41	25	(19	26	69
		22 BTTE 91 - 34 23 BTTE 91 - 31	Ğ	.2 1.44	-	Ē	58	(5	.36	1	14	14	- 44	1.97	.15	34	.31	666	(1 (.)I	- 10	- 414	24	<5	<2≢	17	.17	d	23	a	28	53
		24 STTS 91 - 32 t	Ğ	<.2 1.2 ¹		6	41	(5	.21	(1	12	18	- 46	2.17	.17	28	. 42	392	a (.11	11	244	16	<5	(24		.66		25	GI	11	52
		25 3715 91 - 33 *	Ğ			6	50	<5	. 32	a	13	21	- 45		.22	30	.42	417	a c.11	11	358	16	6		11	.8		25 23	<18 <18	16 19	55 53
		26 1775 31 - 14	<5			6	55	<5	.42	1	13	19	- 13			30	.37	595	1 (.41	- 14	508	14	0	(74	14	.17	(1) (1)	24	1	23	4
10	31 - 1		<5	.2 1.1	2 <5	ŧ	68	4	.46	1	- 14	17	74			- 48	.31	695	1 6.11	12	690 528	28 15	- (5 - (5	(2) (2)	17		4	24	a	13	54
11.00		24 BTTS 91 - 34	- 65	.2 1.5	r <5	(58	(5	.17	1	12	16	31	1.5	.18	31	.35	544	<1 <.IL	1.	349	14		168			124	•••			•••

IOTI: (= LESS TELM ± = INSTITICIENT - 40 HESN; -40 KESK OSED

ECO-TECH LABORATORIES LTD. CLIPT ATERS LABORATORY BARAGE

ŝ

ECO-TECH LABORATORIES LTD.

-

	FLGI 3 ETI	DESCRIPTION	10(ppb)		L(1)	25	3	91	BI C	•••	0	C D	CR		FE(\)	-		K[\}		20 AJ(1)	[]	f	P8	59	SE	SR 11			1	T	Ĭ	11
		45 / 3 + 75E	(5	<.2	1.74	35	5	45	6	.07	a	1	16	15	2.74	.14	21	. 36	258	(1 (.01	11	374	14	(5	<20	5	.17	đ		(18	1	59
	300 - 65	45 / 4 + 758	(5	۲.2	.72	15	4	65	(S	.07	a	6	1	•	1.31	.05	10	.11	746	(1 (.01		374	1	(5	(21		.47	(11	26	<11	4	38
			(5	<.2		45	4	125	4	.16	4	14	13	3	2.52	.08	- 44		2648	1 .01		1274	28	<5	<20			(10	29	(16	6	177
		45 / 2 + 40 E	(5	(.2		30	4	11	(5	.67	<1	14	12	13	2.58	.16	24	.40	259	(1 (.01	14	234	16	(S	<20			(1)	21	(11	2	18
	•••	45 / 3 + ##E	(5	<.2		35	4	138	- (5	.16	(]	14	11	12	2.13	. 16	20	.20	677	(1 .11		2100	24	<5	<20	-		(10	21	<10	3	\$7
4	•••	45 / 1 + HR	6	۲.2		31	4		<5	.17	4		16	16	2.66	.14	20	.37	158	(1 (.))	10	516	12	<5	<20			<10	32	(10	4	6
		45 / 5 + COR	(5		2.54	30	4	90	3	.17	d	п	11	10	2.28	.15	10	.21	513	11. 1)		3311	14	<5	(21			(1)	21	(10	a	15
-		45 / 6 F 06E	(5		2.26	35	1	90	(5	.11	4	14	14	15	2.16	.27	30	.41	260	(1 (.11	15	450	20	< <u>s</u>	(2)	-		(10	22	<10	4	11
16	••••	45 / 7 + 84B	5		1.49	50	•	78	3	.84	4	17	11	21	2.93	.12	38	.48	588 769	C (.01	15	384	54	3	(21			(1)	19	-{14	3	1 7
195		45 / 1 + 148	5		2.23	34	1	105	<5 /5	.20	4	16	11	5	2.71 3.25	.67	20	.28	1419	1 (.01 1 (.01	3	691	16	<5 /5	(1)			(18	38	(14	4	11
2.1		45 / 3 + 412	(5		1.74	35	- 1	100 100	(5 (5	.12		19 17	14 11	IJ	2.64	.11 .09	31 21	.35	1472		28 15	#2# 354	28	(5	(28			(11	34	-(14	(1	106
-		45 / 10 + 442	(5		2.62	35 45	* *	45	(5	.N .11	a a	1	11	30	3.39	.31	38	.54	357	1 .01 <1 <.81	29	451	24 32	<5 (5	(28 (28			(1)	30	<1 4	a	125
•		45 / 12 + 90E	(5 (5		2.49 2.23	15	2	125	6	.11	a	23	17	21	3.41	.22	38	.4	1116	1 (.01	21	384	42	6	(2#			<10 (10	35 41	(1) (1)	• •	101 119
		45 / 13 + 000 45 / 14 + 000	(5		1.52	10		25	6	.47	a	13	17	27	2.64	.27	30	.45	200	<1 <.11	. 13	201	18	<5	<28			<10	4L 35	(18	2	51
	308 - 78 308 - 75	-	(5		3.39	15		I	3	.19	1	13	10	19	2.19	.16	20	.21	731	1 (.#L		113	20	3	(20			(10	25			129
	394 - 75 394 - 44	• • • • • • •	(5	<.1		ŝ	i	35	Ğ	.15	a	n		24	1.43	.25	30	.27	274	(1 (.11		131	14	(5	(2)			(10	14		11	33
	300 - 41		Ğ	<.2		ŝ	1	35	5	. 85	ä	10	1	ŭ	1.67	.24	20	. 27	240	4 6.11	. í	124	6	<5	(28			<10	18	a	12	33
	343 - 12		(5		1.57	ŝ	Ì	ä	5	. 20	a	12	14	23	2.21	.33	- 61	.37	437	G (.0	13	314	14	Ġ	(21			a	21	(10	31	51
	341 - 13		Ğ		1.27	5	Ì	45	Ġ	.13	ā	11	12	Ū	1.97	.26	48	. 36	372	4 6.41	10	241	14	(5	01	•		4	15	(10	16	51
	301 - 14		(5		1.3	5	6	58	(5	.17	a	12	12	21	1.99	.27	58	.37	117	(1 (.01	11	299	14	(5	(2)		.17	(18	17	a	22	52
	394 - 45		(5		1.51	5	ŝ	- 14	(5	.21	(1	12	13	24	2.12	.26	58	.4	116	(1 (.01	11	404	16	(5	(28		.17	<11	22	(10	25	59
	314 - 14		5		1.29	15		40	<5	.52	3	18	15	283	2.59	. 12	30	.57	727	(1 (.01	15	61)	38	(5	(20	17	.11	(10	12	d	13	184
	314 - 17		Ġ		1.18	LS	6	35	<5	.12	2	16	15	- 34	2.56	.14	30	.51	545	<1 <.01	14	(8)	31	(5	(20	14	.14	(10	(3	(1)	9	14
5	311 - 14	3605 91 - 89	(5	<.2	1.21	15		30	G	.31	2	11	14	11	2.17	.08	30	. 🖬	540	(1 (.11	- 14	371	24	- (5	<20	11	.11	(10	- 11	(1)		144
0005	34 - 13	8JB5 51 - 81 *	5	<.1	1.02	10	5	35	{5	.18	a	10	- 14	- 14	1.41	.15	20	.36		(1 (.#1	- 10	221	32	- (5	<20	1	.17	(18	21	a		57
Ŧ	3H - H	6JBS 91 - 62 *	(5	<.2	1.33	5	6	58	(5	.Я	a	11	15	55	1.86		38	.36		(1 (.01	10	351	11	- (5	(21	- 19	. 17	(1)	13	(1)	15	43
КАМС	341 - 91	NJIS 31 - 03 *	6	<.2	1.35	5	6	58	G	.31	a	11	- 14	12			- 44	.34		<1 <.∎1	10	5H	20	- (5	<28	21	.01	<1€	14	(1)	19	44
	- 394 - 92	BJBS 51 - 44	G		1.44	5	- 6	60	<5	.33	<1	11	15	6			. 4	.35		(1 (.81	- 11		21	- (5	(21	21	.11	41	13	(1)	21	49
ECH	- 384 - 33	BJBS 91 - 45 *	(5		1.21	5	- 6	45	<5	.31	4	11	14	10	1.73		38	.3		(1 (. 11	10	401	1	(5	(21	1\$.96	(1)	11	<10	17	45
	- 3H - M	8385 <u>91</u> - 86	<5		1.27	5	•	51	<5	.23	a	11	14	34			30	.35		(1 (.11	3	340	11	(\$	(2)		.17	(18	11	a	15	46
i Li Li	311 - 95		<\$		1.33	S		55	<\$.27	a	10	14	- 41	1.77		31	.34		1 <.01	11	430	22	(\$	{2	-	.17	a	19	<1 9	11	49
	- Mi - N	BJBS 91 - 08 *	(5		1.44	5	+	35	<5	.22	a	•	12	37			20	.32		<1 <.01	3	338	- 16	(5	<28	13	.16	(10	17	a	11	- 14
ROM	301 - 51		6		1.12	5	6		(5	.11	a	- 11	12	33			20	.34		(1 (.01	9	260	Н	(5	<20	11	.17	(10	17	(1)	11	
<u>к</u> .	394 - 51		<5		1.21	5	5	55	<5	.27	D	1	13	38			34	.32		(1 (.11	10	388	14	<5	<28	17	.07	<14	11	41)	16	43
	384 - 55		-		1.71	5	l	50	<5	.34	D	11	13	56			31	.34		(1 (.11	3		29	<5	<20		.#	(10	11	a	17	17
	341 - 1(N BJBS 91 - 11	5	- C.	2 1.34	5	6	51	(\$. 29	a	1#	15	34	1.76	,11	38	.34	401	(1 (.01	11	454	22	(5	<28	19	.07	(1)	14	(10	19	11

۰.

ECO-TECH LABORATORIES LTD. OHEGA GOLD CORPORATION - ETK 91-300

.

	ITT		DESCE			AD(pp))	16	21 (1)	25	1	82	N C	8(1)	CI,	æ	C1	đ	12(1)	\$(\$)	LÅ M	G(k)	Ø	NO NE(4)	F 1	P	P8	58	SE	SR ?	1(1)	0	f	Ĩ	ľ	11
	306 -		50/		GOE		<.2	2.07	20	2	105	(5	. 20	<1	3	18	9	3.94	.08	20	.20	523	<1 .01	6	2170	20	(5	<20	12	. 20	<10	39	<16	1	11
	300 -		50/	3+	\$08	(5	(.2	1.51	1\$	4	75	3	.05	4	1	10	•	2.42	.16	20	.22	182	4 .01	9	350	10	<5	(20	7	.46	(10	26	<10	i	32
	300 -	- 29	50/	4+	00X	6	<.2	1.84	10	4	75	<5	.07	4	5	11	2	2.24	.18	20	.25	149	<1 .61	10	340	12	<5	<20	8	.16	(10	21	<10	<1	63
	360	- 30	58/	5+	300	(5	<.2	1.31	20	4	50	<5	.85	\mathbf{q}	1	12	13	2.59	.23	20	.34	274	<1 <.01	9	396	16	<5	<20	6	.67	<10	18	<10	2	19
	300	- 31	50/	5+	OBE	(5	<.2	1.60	10	2	80	۲\$.15	-d	10	3	7	1.85	.13	20	.21	575	1 <.01	7	340	8	<5	<20	14	.05	<10	20	<10	3	37
_	300	- 32	50/	7+	SOL	(5	<.2	2.78	15	4	55	C5	.05	<1	1	15	13	3.27	.05	24	. 29	152	1 .01	B	1050	12	(5	<20	5	.12	<10	64	<10	4	26
39	300	- 33	50/	1+	89X	ও	<.2	3.77	10	- 4	80	(5	.06	4	16	13	B	2.17	.11	20	.28	446	1 .01	15	950	20	<5	<20	7	.14	<]0	27	<10	2	84
.0	300	- 34	50/	9+	300	<5	<.2	. 80	10	2	49	<5	. 98	<1	5	3	7	1.32	.03	20	.15	119	<ī.01	6	240	14	<5	<20	9	.05	<10	21	<10	3	15
-	300	- 35	50/	10+	00E	<5	.2	2.92	18	4	109	<5	. 88	\mathbf{q}	11	12	35	2.38	.01	26	.22	2210	1.41	11	190	12	<5	<20	7	.12	<10	24	<18	4	90
16	300	- 36	50/	11+	308	<5	<.2	1.56	25	- 4	90	<\$.12	4	•	13	14	3.35	. 10	30	.34	751	1 .01	9	820	28	<5	<20	14	. 19	(10	39	<14	<1	56
6 i	309	- 37	54/	12+	100	<\$	(.2	1.65	20	- 4	55	<5	.03	4	+	10	10	2.11	.18	30	.26	209	1.01	9	234	20	<5	<20	6	.43	<10	18	<10	<1	22
3	300	- 38	50/	13+	89E	<5	<.2	1.41	15		95	<5	.05	<1	1	11	- £	1.99	.17	20	.23	292	(1 .01	9	189	12	<5	<20	6	.85	<10	19	<16	3	35
-	300	- 39	50/	14+	09 E	· (5	<.2	2.31	30	- F	75	<5	.05	4	15	14	12	2.62	.15	20	. 32	361	1 <.01	- 14	420	16	≺5	<20	1	.08	<10	20	<10	2	76
Ŷ	368	- 40	50/	15+	90E	< 5	<. 2	1.85	25	- 4	100	<5	. 16	\mathbf{q}	9	11	5	2.21	.16	26	.26	221	(1 (.01	1	1170	10	<5	<21	8	.06	<10	18	<10	2	79
	305	- 41	45/	4+	258	(5	.2	4.16	30	- 4	100	<5	.07	\mathbf{q}	16	13	14	2.81	.65	20	.26	543	(1 .01	11	3580	14	3	<20	. 5	.14	<] 1	24	<10	3	107
	300	- 12	- 45/	14	251	<5	.2	1.55	- 45	- 1	65	(5	.01	\mathbf{q}	11	12	14	2.33	.15	20	.35	512	<1 <.01	13	390	36	<5	<20	9	.05	C10	22	<10	4	69
	300	- 13	- 45/	-	251	(5		2.08	29	1	185	4	.07	a	19	12	22	2.35	.24	30	.45	217	1 <.01	17	280	12	<5	<20	14	.10	<10	21	<10	5	127
	300	- 44	- 45/	3+	25E			1.87	25		- 14	<5	.10	4	12	12	it	2.24	.21	30	.31	338	<1 <.€1	12	310	20	<5	<20	12	.08	<10	19	<10	\$	£ 5
	300	- 45	- 15/	- 41	25 E	(5		3.35	10	4		<5	.05	4	12	5	11	2.05	.17	10	.19	253	(1 .01	9	590	10	<5	<20	6	.12	<10	22	<10	1	68
	300	- 46	- 45/	-	541	4		2.63	25	4	70	<5	.11	4	16	14	15	2.71	.05	24	. 32	206	<1 .01	- 14	628	1	(5	<20	5	.14	<19	()	<10	<1	89
		- 17	45/	-	581	G		2.12	25	4	90	<5	-06	4	13	13	17	2.36	.21	28	.34	608	<1 <.01	14	420	16	(5	<20	í.	.07	<19	19	<10	2	63
	309	- 4	45/	-	50 <u>e</u>	(5		5.08	25	•	95	<5	.15	a	14	11	12	2.35	.01	20	.19	457	1 .01		2810	20	<5	<20	12	.16	<18	18	<10	1	102
		- 49	45/		503	4		4.12	50	6	10	<5	.09	a	13	13	17	2.59	.13	30	.27	347	Q (.01	16	830	78	<5	<20	12	.10	<1 0	13	<10	\$	139
		- 50	45/	-	54L	3		2.51	20	- 4	15	<5	.98	4	B	1	17	2.24	. 83	10	.15	562	1 .01		1170	14	(\$	<20	11	.14	<10	31	(10	\mathbf{a}	73
U1		- 51	•		+ 50L	<5		1.11	30	4	<u> 90</u>	<5	.49	a	21	n	n	2.72	_07	20		1697	(1 .1)	-	1210	22	6	<20	12	.14	<11	27	<1¢	4	140
0 D		- 52			50g	< <u>s</u>			20	1	39	45	.04	4	4	1	1	1.37	.14	14	.16	106	CI (.41	5	110	12	<5	<24	5	.94	<19	21	<10	<u>q</u>	32
_ <u>+</u>		- 53	· ·		F 50E	<5		1.30	35	•	30	3	.06	4	12	13	21	2.51	.13	30	.65	225	(1 (.01	12	340	30	6	<28	6	.04	<10	29	<10	2	- 51
КАЙ		- 54		-	F SOE	(5		L L 64	25	Z	135	<\$.21	<1	9		7	2.05	.09	24		2467	<1 <.01	1	820	16	-65	<20	16	.11	di	38	<10	1	71
Ŧ		- 55		-	+ 54E	<5	-	2.61	30	4	115	<5	.14	4	16	12	13	2.71	.12	29	.33	858	1 <.01	22	510	18	3	<20	17	.10	(16	30	<10	4	126
Ê		- 36			+ 54 <u>7</u>	<5	-	2 2.08	34	6	75	(5	.11	4	- 24	13	23	2.81	.21	70	.36	962	1 <.01	33	419	34	<5	<20	13	.09	<10	21	(10	23	126
Ę	310	- 51		-	+ 501	<5	-	2 2.27	34	4	125	S	.25	a	14	13	14	2.57	.17	20	.37	517	<1 <.01	14	514	16	<\$	<29	18	.10	<19	31	<10	2	18
2		- 51			+ 50 E	5	-	2 1.86				3	.13	4	35	12	9	2.39	.13	20	.31	604	a (.11	16	350	16	<\$	<20	13	.09	(10	34	<10	L	146
. 4	304	- 59			+ 592	<5		2 1.73			11	g	.13	4	14	15	11	2.72	.16	20	.43	491	<1 C.11	16	470	26	S	(21	9	.06	4	- 11	<10	q	123
Ĩ	304	- 61			+ 501	<\$		4 2.31			135	<5	.13	A I	16	12	15	2.52	.11	20	.31	979	(1 .01		1310	38	S	<20	11	.12	<11	35	<10	4	162
RON	320				+ 75E	S		2 3.44			85	< ব	.93	4	- 14	12	12	2.61	.07	28	.29	1190	(1 .01		1540	12	S	<20	1	.12	(19	31	<10	1	117
u	308	- 62			+ 75E	4		2 1.43		4	50	3	.46	4		12	10	2.26		20	.42	224	<1 <.01	- 10	230	10	4	<20	6	.05	(19	20	<10	ব	52
	304	- 6	3 45,	/ 2	4 75 K	C.	· (.	2 1.99	30	4	85	<\$.11	q	12	16	18	2.52	.19	20	.53	435	<1 <.01	15	484	16	<5	<20	7	.06	<19	32	<10	3	66

PICE 2

ю ٩. ECO-TECH LABORATORIES LTD.

10041 EAST TRANS CANADA HVT. EAMLOOPS, B.C. Y2C 233 PROME - 604-573-5700 PAX - 604-573-4557

FALUES IN PER UNLESS OTHERVISE REPORTED

PLGE 1

JUE 11, 1991

2

4

10:38

6.12.1991

ECO-TECH KANLOOPS

FŘŐŇ

1040 - 785 T. PERMER STR. PAROCUVER, B.C. 76C 102

> FROJECT DIRER: BELR Shiphent number : 61 128 Soil and Silt Samples beceived may 29, 1991

K 7 8	DESCRIPTION	da(bby)	16 LL(\)	25	I	11	11 CI	(1)	CD	C0	Cî	CD	75(1)	E{\$)	11	(G{\))¶	20 8	L(t)	[]	P	PB	58	51	SR 1	1(1)	Q	I	Ţ	Ţ	IJ
300 - 1	50 / 0 + 25K	(5	.4 3.34	28	(2	100	(5	.16	(1	14	16	25	2.77	.16	£6	.31	215	1	.01	14	244	22	<5	(21	15	.01	(11	13	<10	4	111
348 - 2	50 / 1 + 258	<5	.2 2.97	25	<2	115	<5	.25	<1	21	14	26	3.25	.15	63	.34	646	1	.81	14	114	34	<5	(21	12	.14	(1)	31	<10	3	34
348 - 3	50 / 2 + 25K	<5	.2 4.62	15	<2	1##	(5	.22	4	5	1	5	2.46	.83	24	.15	H 3	1	.#1	ł	4130	14	(5	(21	12	.11	(11	11	<10	3	Ħ
310 - 4	54 / 3 + 252	(5	.2 1.47	28	<1	51	(5	.05	4	1	11	1	2.31	.21	24	.26	101	- a -	(.11	1	321	12	(5	<20	5	.46	<10	11	(14	٥	44
310 - 5	58 / 4 + 251	(5	<.2 1.1 6	20	<2	58	- (5	.4	a	6	10	1	2.61	.14	2#	.26	43	- (L -	(.01	1	244	- 1	(5	(11	- F	.#	<1	21	<1 ¢	1	48
310 - 5	58 / 0 + 50X	(5	(.2 1.5 1	26	4	61	<5	.13	a	1	15	12	2.53	.27	40	.44	244	(1).	.11	12	551	12	6	<20	7	.47	(1)	21	(1#	6	44
310 - 7	38 / 1 + 5NR	(5	₹.2 1.5€	20	0	65	<5	.23	4	11	15	21	2.44	.17	- 44	.15	436	d ((.11	12	118	11	<5	<21	- 14	.#1	di	31	(16	9	52
384 - 6	50 / 2 + 54B	(5	(.2 2.74	34	(2	125	<5	۵ .	4	21	14	15	2.48	.12	30	.3t	\$45	1	.11	14	2144	24	45	(28	16	.12	(1)	32	<1	1	114
314 - 9	50 / 3 + 50B	(5	(.2 2.19	15	(2	50	<5	.83	4	•		5	1.74	.17	10	.11	144	- a -	(.]]	1	180	19	۲۶	<28	•		<11	15	<10	Œ	15
308 - 18	· ·	<5	.2 1.73	34	(2	124	<5	.66	a	11	15	- 16	2.40	. 39	34	.30	911	1	.11	15	(14	32	<s< b=""></s<>	<20	7	.47	<10	12	<14	3	1H
300 - 11	• • •	<5	(.2 1.94	15	1	65	< 5	.6	<1	12	15	13	2.72	.23	34	.11	213	1	-01	12	350	16	(\$	<26		.11	(11	23	<10	4	25
310 - 13		<5	<.2 2.3€	11	6	95	-(5	.4	a	5	12	11	2.35	.19	29	.23	564	1	.11	1	554	10	<5	(2)		.11	<10	31	4	3	54
389 - Li	-	<\$.7 2.24	21	4	10	- (5	.#	a	11	13	12	2.64	.10	24	.11	1222	1	.ØL	9	156	16	(5	(11	\$.10	41	36	(1\$	2	55
399 - 14	50 / 1 + 502	(5	<.2 1 .96	21		£ 5	(5	.15	d	12	15	17	2.69	. 29	60	.41	423	1 -	(.)]	16	354	22	۲5	<20	6	.46	<10	17	-(1#	7	44
310 - 11	-	(5	<.2 1. 4 5	21	- 1	61	<\$.45	a	12	13	- 9	2.68	. 16	20	.11	535	a	.#L	7	286	14	۲۵	(21	4	, 61	al	33	<10	đ	35
398 - 14	50 / 10 + 50X	(5	<.2 4.0 3	<5	4		(5	.17	a	10	11	11	2.01	.#	24		1111	1	.11	11	1214	10	45	(2)	1	.11	<10	11	(1)	3	72
310 - 11		5	(.2 2.59	25	6	111	(5	.15	A	13	13	- 16	2.75		30	.32	452	1	.01	14	190	54	۲۵	<21	- F	,# 1	(1)	24	<10	ŧ	11
34 - U	50 / 12 + 50K	(5		15	- 4	65	(5	.13	a	13	13	- 14	2.69	.25	31	.31	344	<u>a</u> -	(.1 1	12	224	18	(5	(20	F	.46	(18	16	(14	5	32
344 - 13) 50 / 13 + 50 8 -	(5		15	4	61	(5	.11	<1	1	12	1\$	2.42	.14	20	.21	152	<1	. 0L	10	214	14	6	at	•	.46	41	11	<10	3	- 11
34 - Z	1 - 50 / 14 + 50K -	G	(.1 .9	19	2	78	(5	.8	a	ŧ	1	3	1.52	.11	- 28	.11	147	a -	(.1 1	5	178	10	(5	(21	1	.14	(1)	15	40	1	21
	L SE / E + 15E	(5	(.1 2.13	10	4	31	(\$.11	4	. 1	u	- 14	2.44		20	.21	334	1	.11	3	340	14	(5	CTE .	6	.07	at	26	<1 0	t	4
308 - Z	2 50 / 1 + 751	(5		15	2	31	3	.23	4	•	11	9	2.10	.19	21	.26	175	0	(.1]	1	728		(5	(21	11	.44	a	21	41	2	11
341 - Z	3 50 / 2 + 751	(5	<.2 2.47	5	2	144	(5	.15	(1	1	11	1	2.25	.13	24	.11	134	1	.91	1	126	10	(S	(11	5	.16	41	23	<10	2	41
31F° - 2	50 / 3 + 75	<5	<.2 1. 4	15	6	61	<5	.13	4	- 14	14	21	2.72	.45	78	-41	254	a	.11	14	200	- 14	G	(2)	1	.10	(1)	11	(1)	19	21
318 - Z	5 54 / 4 + 758 -	(5	<.2 2. 9 8	15	6	58	- <5	.14	<1	6	u	13	2.24	.15	- 30	.21	141	a	.11	•	140	12	۲5	(21	5	.#1	41	13	(10	•	54
318 - 2	5 50 / 1 + 000 -	cs	<.2 1.3t	15	2	34	<5	.11	a		11	- 11	2.27	.12	31	.23	445	a	.81	1	(11	11	۲5	(20	7	. 19	(1)	31	01	4	21

BCO-TECH LABORATORIES LTD.

ILNLOOPS, B.C. V2C 233

PHORE - 684-573-5788

PAT - \$44-573-4557

ONEGA GOLD CORPORATION - BTK 91-305

1044 - 789 F. PETDER ST2. THECOTTER, B.C. VGC 142

PROJECT SPICER: 8812

JUNE 18, 1991

VALUES IN PON OWLESS OTHERRISE REPORTED

EEFISED SEIPHERT FURBER : 01 14 ROCE SAMPLES RECEIVED HAT 25, 1951 CE CD FE(%) E(%) LA MG(%) 10(00b) 16 11(1) 15 1 ND XA(%) **H**Y P 23 SB S SI 11(V) Ð T 1 Ţ 18 DESCRIPTION 113 22 (S .21 **(1**) 8 94 49 2.74 .11 21 .35 286 4 .01 11 228 78 6 (28 .15 (16 14 (11 . 365 - 1 853-81 (S (.2 .51 11 . 11 1 (.2 1.03 15 2 15 6 .19 đ 9 51 24 3.80 .10 38 .46 322 6 .41 18 198 38 (S (71 **(**1 .01 00 12 (1) 13 38 <5 345 - 2 891-42 C.2 1.53 10 (2 10 ٢) . 69 (1 15 5₽ 42 2.72 .92 (20 .55 318 1.63 24 348 12 65 (21 4 .13 <18 48 (1) 1 25 \$91-83 (5 315 - 3 đ 12 3.88 .15 58 .71 (5 (20 \$ <.01 (11 (15 (I (1 (.2 1.63 28 38 **{5** .11 31 H 272 1 (.41 15 5H 11 4 385 - 4 191-64 ۲S 4 .2 .54 11 32 18 (5 3.17 1 1\$ 216 113 6.95 .11 (11 . 41 316 17 .44 1 154 22 5 (78 31 .16 **(11** 13 (11 3 25 345 - 5 HGDE 51-61 S 50 (2 5 (5 1.00 (1 36 461 3.58 (.41 36 1.56 642 2 4.81 24 568 12 (S (21 .16 10 150 <1¥ a 51 (.2 2.45 -11 Ł 385 - 6 360t 11-92 **(5** 1.6 1.65 48 <2 18 **(**5 .97 1 15 41 569 1.30 .41 30 .4 454 4 .12 1 1910 1144 s (21 2 .61 (1) (1 <10 17 346 8778 91-10 6 365 - 8 134 (1) (1 12 10 .21 a 30 58 25 7.83 28 1.95 **(5** (28 .14 **QI** ۲۵ .2 2.93 38 4 S <.11 120 5 (.01 4 344 156 1 315 - 5 ITTE 51-11 K.2 2.45 45 (2 5 65 .#4 a 28 24 37 9.74 C.M 38 1.36 617 2 .42 1 1564 54 3 (28 2 .11 2 **CH** 9 54 1772 91-12 **(5** 345 - 14 10 (5.52 a 5 .13 - 28 51 (16 6 75 <.2 4.62 25 2 a 17 \$ 5.40 (.01 30 4.94 722 4 (.11 26 1888 " 65 (20 315 - 11 8TTE 91-13 (5 38 .34 15 39 4.32 .22 . 11 22 718 (S (24 .01 (18 2 (18 2 91 (.2 1.66 21 2 (S Æ 11 36 \$35 5 (.1) 44 1 315 - 12 BTTE 51-13 (5 16 (18 <1 12 15 10 0 .II a 13 125 4 2.61 .13 20 .11 - 64 521 16 <5 <20 1 .03 (15 #15 - 13 #TTE 91-22 (5 <.2 .44 6 5 .03 . S s (5 (.)L a 1 179 2 .54 (.41 (10 .44 H <28 (1 (.)) (1) 2 (1) <1 1 (5 (.2 .11 43 12 (.01 3 (1) 3 345 - 14 STTR 51-28

BOTE: < = LESS TEAM

FROM ECO-TECH KAMLOOPS

15:53

25.1991

BCO-THER LABORATORIES LTD.

BCO-TECH LABORATORISS LT. CLINTOR ATERS LABORATORY NAMAGER

SC91/BHEGL

APPENDIX 3

Program- Related Documents 1) Work Approval Letter (section 6) 2) Statement of Work (sections 25, 26, 27) 3) Notice to Group (section 28) Ministry of Energy, Mines and Petroleum Resources Bag 1000 Fernie British Columbia V0B 1M0 Telephone: (604) 423-6884

May 10, 1991

Mr. T. Termuende 1701 Mt. Nelson Cres. Cranbrook, B. C. V1C 5V6

Dear Sir:

Re: Mines Act Approval Number: FER 91-M25 Proposed Mineral Exploration Bear 1-3 Property on the Bear Claims in the Nelson Mining Division

Your Notice of Work and Reclamation Program dated May 5, 1991 for the above has been reviewed. Pursuant to Section 10 of the Mines Act you are authorized to proceed with your proposed mineral exploration.

Because your proposed exploration involves only limited surface disturbance, a Reclamation Permit pursuant to Section 10 of the Mines Act will not be required at this time. However, you are required to submit another Notice of Work and Reclamation Program prior to significantly enlarging your exploration program.

Please ensure that all work complies with the "Guidelines for Mineral Exploration".

Prior to any line cutting or other tree felling activities, please ensure that you have the necessary cutting authority from the appropriate District Office of the Ministry of Forests. You will be billed for the value of any merchantable or immature timber removed.

Please submit the attached "Notice of Completion" at the end of your work season and accept our wishes for a successful program.

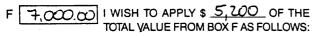
Yours very truly,

Merl

A. M. Whale, P. Eng. Inspector of Mines & Resident Engineer

AMW/lm

Encl.


	Province of British Columbia Ministry of Energy, Mines and Petroleum Resourc MINERAL RESOURCES DIVISION TITLES BRANCH	es		No. OFFICE USE	ONLY
	Mineral Tenure Act Sections 25, 26 & 27			DAI	$\left \right\rangle$
	STATEMENT OF WORK - CASH PAYMENT			°	191
	Indicate type of title MWERAL (Mineral or Placer)		I AMOUN	MENIACENIC	
	Mining Division		TRANS.	AECORDING ST	IAMP
		ent for Or St. 1000	NEGA GOLI (Name)(s -789 W. f	s CORP ENDER	र्वे.
:	(604) 426-3112 VIC-5V6 (1	604) 687	≥~e, BC -2038 g FMC No.	Ve	C-HZ
			OME		
:	STATE THAT: (NOTE: If only paying cash in lieu, turn to reve 1. I have done, or caused to be done, work on the BEAR Record No(s). 6223, 6224, 6225	I, BEA	ik z, bean	R 3	Claim
	Work was done from MAY 14 , 19 c	11 , to	MAY Z	5	, 19 91
•	and was done in compliance with Section 50 of the Mineral Section 19(3) of the Regulation YES V NO		and L No: Fi	ER al-1	425
	I hereby request that the claims listed in Column G on this	Statement of	f Work be Grou	uped and I o	confirm that
	all claims listed are contiguous YES V NO				
		ак.			
	FEE \$10.00	tion, and const	ruction of roads a nent, must be give	nd trails. Detai	ls as required ement.
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclama	tion, and const and cost stater ust be submitte	ment, must be give ed in a technical r	en on this stat eport. Prospec	ement. sting work can
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations m	tion, and const and cost stater ust be submitte , and only durin	ment, must be given ad in a technical r ng the first three y	en on this stat eport. Prospec years of owner	ement. sting work can ship.
· · ·	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details musi	tion, and const and cost stater ust be submitte , and only durin t be submitted % of the approve	ment, must be given ed in a technical r ng the first three y in a technical rep ed value of geologic	en on this stat eport. Prospec years of owner ort conforming cal, geophysica	ement. Sting work can ship. I to sections 5 I, geochemical
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn	tion, and const and cost stater ust be submitted , and only durin t be submitted % of the approve from the owner	ment, must be given ed in a technical r ng the first three y in a technical rep ed value of geologic	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and	ement. Sting work can ship. I to sections 5 I, geochemical
	FEE — \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement.	tion, and const and cost stater ust be submitted , and only durin t be submitted % of the approve from the owner	ment, must be giv ed in a technical r ng the first three y in a technical rep ed value of geologic 's or operator's PA	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and	ement. Sting work can ship. I to sections 5 I, geochemical
	FEE \$10.00 TYPE OF WOR PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement. TYPE OF WORK Clincent Colspan="2">SEDIMENT SAMPLING , SOIL SAMPLING , PROSPECTING	tion, and const and cost stater ust be submitted , and only durin t be submitted % of the approve from the owner 	nent, must be gived in a technical r ng the first three y in a technical rep ed value of geologic 's or operator's PA VALUE OF WORK 'Prospecting 7,000,00	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and "Geological	ement. Sting work can ship. I to sections 5 I, geochemical
	FEE \$10.00 TYPE OF WOR PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement. TYPE OF WORK Clincent Colspan="2">SEDIMENT SAMPLING , SOIL SAMPLING , PROSPECTING	tion, and const and cost stater ust be submitted and only durin t be submitted from the approve from the owner Physical	nent, must be gived in a technical r ng the first three y in a technical rep ed value of geologic 's or operator's PA VALUE OF WORK 'Prospecting 7,000,00	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and "Geological	ement. Sting work can ship. I to sections 5 I, geochemical
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations monly be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement. TYPE OF WORK (Specify Physical (include details), Prospecting, Geological, etc.) STREAM - SEDIMENT SAMPLING , SOIL SAMPLING , PROSPECTING REFORT TO FOLLOW WITHTIN 90 DA/S	tion, and const and cost stater ust be submitted , and only durin t be submitted % of the approve from the owner 	nent, must be gived in a technical r ng the first three y in a technical rep ed value of geologic 's or operator's PA VALUE OF WORK 'Prospecting 7,000,00	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and *Geological etc.	ement. Iting work can ship. I to sections 5 I, geochemical added to th.9
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations monly be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement. TYPE OF WORK (Specify Physical (include details), Prospecting, Geological, etc.) STREAM - SEDIMENT SAMPLING , SOIL SAMPLING , PROSPECTING REFORT TO FOLLOW WITHTIN 90 DA/S	tion, and const and cost stater ust be submitted , and only durin t be submitted % of the approve from the owner 	nent, must be given ed in a technical r ng the first three y in a technical rep ed value of geologic 's or operator's PA VALUE OF WORK Prospecting 7,000,00 B7,000,00	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and *Geological etc.	ement. Iting work can ship. I to sections 5 I, geochemical added to th.9
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map. PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement. TYPE OF WORK (Specify Physical (include details), Prospecting, Geological, etc.) STREAM - SEDIMENT SAMPLING , SOIL SAMPLING , SOIL SAMPLING , PROSPECTING REPORT TO FOLLOW WITHIN 90 DA/S TOTALS	tion, and const and cost stater ust be submitted , and only durin t be submitted % of the approve from the owner 	nent, must be given ed in a technical r ng the first three y in a technical rep ed value of geologic 's or operator's PA VALUE OF WORK Prospecting 7,000,00 B7,000,00	en on this stat eport. Prospec years of owner ort conforming cal, geophysica Caccount and 'Geological etc.	ement. etting work can ship. to sections 5 t, geochemical d added to the d added to the D 7,000
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement. TYPE OF WORK (Specify Physical (include details), Prospecting, Geological, etc.) STREAM - SEDIMENT SAMPLING , SOIL SAMPLING , PROSPECTING RePORT TO FOLLOW WITHIN 90 DA/S TOTALS PAC WITHDRAWAL Maximum 30% of Value in Box C Only from account(s) of	tion, and const and cost stater ust be submitted , and only durin t be submitted % of the approve from the owner 	nent, must be given the first three years in a technical representation of the first three years of the first three years and value of geologic technical representation of the first three years of the first the first thr	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and *Geological etc.	ement. etting work can ship. to sections 5 l, geochemical added to the added to the D 7,000 E F 7,000
	FEE \$10.00 TYPE OF WOP PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamal under section 13 of the Regulations, including the map. PROSPECTING: Details as required under section 9 of the Regulations m only be claimed once by the same owner of the ground, GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must through 8 (as appropriate) of the Regulations. PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 309 and/or drilling work on this statement may be withdrawn work value on this statement. TYPE OF WORK (Specify Physical (include details), Prospecting, Geological, etc.) STREAM - SEDIMENT SAMPLING SOIL SAMPLING , SOIL SAMPLING , PROSPECTING REPORT TO FOLLOW WITHIN 90 DA/S TOTALS PAC WITHDRAWAL — Maximum 30% of Value in Box C Only from account(s) of	tion, and const and cost stater ust be submitted , and only durin t be submitted from the approve from the owner 	nent, must be given ed in a technical r ng the first three y in a technical rep ed value of geologic 's or operator's PA VALUE OF WORK Prospecting 7,000,00 B7,000,00	en on this stat eport. Prospec years of owner ort conforming cal, geophysica C account and *Geological etc. C = TOTAL to reverse sid	ement. Sting work can ship. I to sections 5 I, geochemical d added to the D 7,000 E F 7,000

;

¢

:

•

Columns G through P inclusive MUST BE COMPLETED before work credits can be granted to claims. Col-umns G through J and Q through T inclusive MUST BE COMPLETED before a cash payment or rental pay-ment can be credited. Columns not applicable need not be completed.

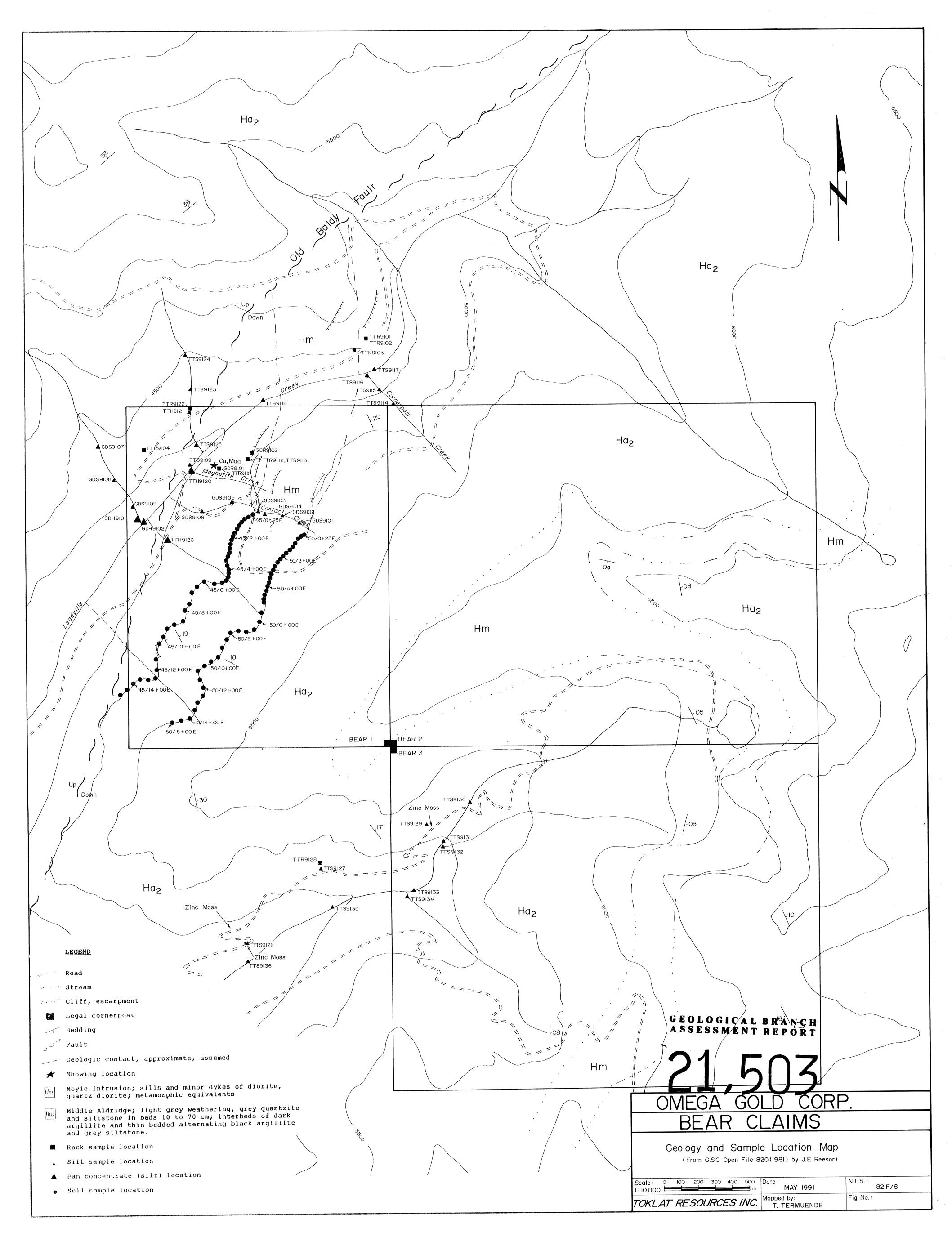
Cash Payment

CLAIM IDENTIFICATION			APPLICATION OF WO						CASH IN LIEU OF WORK OR LEASE RENTAL					
	G	н	<u> </u>	J	ĸ	L	M	N	0	P	Q	R	S	Т
	CLAIM NAME (one claim/lease per line)	RECORD No.	No. OF UNITS*	CURRENT EXPIRY DATE	VALUE	YEARS	Recording Fees	PRIOR EXCESS CREDIT BEING USED	NEW EXPIRY DATE	EXCESS CREDIT REMAINING	C/L	RECORDING FEE	LEASE RENTAL	NEW EXPIRY DATE
1	BEAR 1	6223	12	JUNE 591	1,200	1	60.00		JUNE 5/92					
2	BEAR Z	6224	1	JUNE 5/11	z,000	1	100.00		JUNE 5/92					
3	BEAR 3	6225	20	JUNE SAI	z,000	1	100.00		JUNE SKIZ					
4												· · · · · · · · · · · · · · · · · · ·		
5														
6														
7														
8							• • • • • • • • • • • • • • • • • • • •							
9														
10														
12												1	• • • • • • • • • • • • • • • • • • • •	
13														
14														
15														
16														
17														
18														
					5,2000	<u> </u>	260.00		1	<u> </u>				
	NOTICE TO GROUP No.	RECORD		1.1.28/91	TOTAL OF K		TOTAL OF M				TOTAL OF Q	TOTAL OF R	TOTAL OF S	1
Γ	Value of work to be credited to portable assessment credit (PAC) account(s).							ringly make a false						
	[May only be credited from the	approved value of		applied to claims.		Amo	unt	if the stater	r provide false informents made, or informents	mation given, in	n this Statement o	f Work - Cas	h Payment are	found to be false
•	Name of 1.0	uega Ga	.D G	ORP		\$1,800.0	0	ment, then	ploration and develop the work reported or id vest back to the l	this statement				
C	owner/operator 2.					•			<u></u>	(Tim		enne	4
L	3.									\subseteq	Jim	(No		ature of Applicant

	RAL RESOURCES	es and Petroleun DIVISION — TITLES B Tenure Act CTION 28				
INDICATE TYPE OF		TO GROUP	r Placer)*	COVERINA AMOUNT SP TRANS. 4		K POOK
Cranbrack	(Address) 2 V No. BG Terri ineral titles or	$\frac{BC}{1C 5VE}$ $8 \frac{(Postal Code)}{30}$ $m + \int_{1}^{1}$ $map number(s)$	(604) 68'7- (Telephone) Valid subsisting FMC FMC Code 82 F /84	(Address) 2038 CNO. 3080 OMEGO	BC V6C (Postal C CC	ノ <i>ト</i> ノン Code)
the <u>Nelson</u>		• /				
the <u>Nelson</u> A copy of the mineral/p lacer (• /		the Surveyor Ge		attached.
A copy of the mineral/placer (ck appropriate box)	-titles referend	ce map or a le	gal survey approved by	the Surveyor Ge	neral [] is	
A copy of the mineral/placer (ck appropriate box)	-titles referend	Title Number	gal survey approved by	the Surveyor Ge	neral [] is	attached.
A copy of the mineral/placer (ck appropriate box)	-titles reference No. of Units 12	Title Number	gal survey approved by	the Surveyor Ge	neral [] is	attached.
A copy of the mineral/placer	-titles reference No. of Units 12 20 20	Title Number 6223 6224 6225	gal survey approved by	the Surveyor Ge	No. of Units	s attached. Title Numbe

Appendix 4

Rock Sample Descriptions


		SAMPLE DESCRIPTION RECORD						
			TC	KLAT	RES	SOURC	ES 1	NC.
. coject:	BEAR				====			
Operator	: OMEGA							
Location	: <u>82F/8</u>							
Date:	<u>AY /91</u>	Pageof						
Sample #	Location	Description	Ana	lyse	s (p	opm, A	u-pp) b)
			Cu	Pb	Zn	<u>PA</u>	Au	
BGDR9101	Magnetik Ck 4020'	flat on large scree slope. Vein is ± 1 in thick on exposed face of boulder. -5-10% apidote I diopside? -10-20% apidote I diopside? -minor malachite, bornite	£β1	150	25	().Z	<5	
		-Specular magnetile-epidote pervasive to 15cm from fracture. Similar mineralization to above exposed in fracture surfaces in gabbro arterop above BGDR9101 (117/34°S, 117/30°S). Shearing quite prevalent @ 025/90°						
BGDR910Z	Magnetite Ck 4450'	Above and to the north of BTTR9111. Quartz vein in subcrop, unable to determine orientation. Minizn in both Vein (Icm) and in gabbro. Gabbro quite carbonaceous. Ghearing at 030/58°SE, chloritized, containing magnetite, pyrite, malachite, bornite.	461	12	51	<.2	<5	· · · · · · · · · · · · · · · · · · ·
BTTR9101	Road cut	Siliceous orgillite proximal to gayoro contact. Dark green coloration non calcor- eous no ran to zinc-zap. Oriented. 040/37114 weak clug: 020/731	49	20	7.2	<.2	45	:
BTTR9102	As Above	Qz stringer 2-6 cm wide (160/90). Glazy, light orange coloration. 20% 14 at vein envelope. Schica flooding to 15cm within wallrock.	: 1	30	30	<.2	65	
CTTR9103	As Above	Hornblende Gabbro: Cliff - forming body approx 500mx 500m. Straddlos Leadville cle to bear claims. Contacts obscurred by 0/6, but trends ~170°. Coarse grained. dark coloration No visible sulphidos. Minor late calcile veining	48	12.	25	٢. ٢.	<.5	

SAMPLE DESCRIPTION RECORD

TOKLAT RESOURCES INC.

=======			========	:===:	. = = = =		====	===
Project:		·						
Operator	•							
Location	:	· · · · ·						
Date:		Page_2of_2						
Sample #	Location	Description	Ana	alyse	es (p	opm, A	u-pp	b)
			Cu	Pb	Zn	Aq	Au	
ETTR9104	Road Cut	Quartzites with interbedded wacks (047/66 NW) weak silicification, fire grained, light tan coloration	18	81		K.P		
BTTR9110	magnetite Ck	3-50% fine dis py within coarse grou hornblende gabbro. Proximal to epidote 10	ned 569 hispside	1108	240	1.6	15	

	BTTK9110	Magnetite Ck 4040'	3-50% fine dis py within coarse grained hornslende gabbro. Proximal to epidote kippside magnetite boulders. Hornblende needles to	569	1108	1 <u>9</u> 40	1.6	15	
	BTIR GIII	magnetite (k 41370'	Qz-chlorite breccia within narrow cha hosted by cabbro. Apparent width 20-20	25	156	97	0.2	15	
	TTR 9112	Magnetite (k 41460'	cm. No visible sulphidos non-magnetic, non-calcareous. magnetite (toat nearby Fine grained magnetite (10-20070) within chlorite. opidote - a Hered horn blende gabber.	37	54	59	2.2	<5	
	BTTR 9113	magnetite (k	Magnetic, non-calcoreous. Aliocent gig 25 cm wide g2-chlorite =	8	GC,	79	۲.۲	<5	
	BTTR 9119	'4460' Goat R. Bridge	apidote shear. (0801855). 3-500 py as mm-scale enhedral crystals. Non-calc. Hydrozinicite stain on Aldrichge sods. Marker really	39	44	78	٢.२	<5	
-	BTTR 9122	NW CK. -1140'	Bull quarte float in creek.	પ	16	12	<i>ć</i> .2	25	
•	BTTR 9128	4730'	Bull quark float in creek	Ζ	24	q	2.7	45	
the state of the second state of the second									
								•	

