EXPLORATION STATUS REPORT

.

.

.

.

.

.

.

.

.

.

,

.

.

P

.

e.

- -

TREATY 4, 5, 7 & STAN 1, 2, 4 CLAIMS

SKEENA MINING DIVISION NTS MAP 104B & 104C LAT 56°35-41' N LONG 130°2-12'W

Claim Owner - James F. V. Millar P.Eng. Operator - James F. V. Millar P. Eng.

Author - James F. V. Millar

June 15th 1991

		LOG NOSEP 23 1991 RD.
	TABLE OF CONTENTS	ACTION:
1.0	INTRODUCTION	1
2.0	PROPERTY Claim Data	FILE NO: 2
	Hydrology and Topography Vegetation	3
	Accessibility	د 4
3.0	ORTHOMAP/ORTHOPHOTO PREPARATION	7
4.0	GEOLOGY	8
3.1	Regional Geology	8
3.2	Local Geology	10
4.0	GEOCHEMICAL RESEARCH	15
4.1	Sampling Data	15
	Sampling Programs	15
4.2	Analysis	
	Introduction	17
	Procedures Results of the Subcot An	alucic 20
	Interpretation of the Pe	anita 70 Anita 70
5.0	GEOPHYSICAL SURVEY PROGRAM	52
	Introduction	52
	Equipment	52
	Procedures	52
	ACSUILS	52
6.0	DISCUSSION OF RESULTS	56
6.1	Treaty Group	56
6.2	Stan Group	57

REFERENCES CERTIFICATION EXPENSES

.

.

.

•

۲

.

•

•

•

.

è

.

•

.

-

.

.

.

r

•

APPENDIX

I	GEOCHEMICAL RESULTS
II	LIST OF GEOCHEMICAL ANOMALIES
III	COPIES OF GEOCHEMICAL ASSAY CERTIFICATES
IV	COPY OF GEOPHYSICAL REPORT (POCKET)

FIGURES

.

_

•

.

.

1	Map of Stewart-Stikine Area Showing Location of th	ie
	Treaty & Stan Claim Groups	l
2	Map of the Treaty and Stan Claim Groups	2
3	Geological Map of Upper Unuk and Treaty Drainages	9
4	Geological Map of Treaty Group	11
5	Geological Map of Stan Group	13
6	Map of Stan and Treaty Groups Showing Locations	
	of all Geochemical Samples	Pocket
7	Frequency Graph & Statistics - Gold	20
8	Frequency Graph & Statistics - Silver	21
9	Frequency Graph & Statistics - Copper	22
10	Frequency Graph & Statistics - Lead	23
11	Frequency Graph & Statistics - Zinc	24
12	Frequency Graph & Statistics - Antimony	25
13	Frequency Graph & Statistics - Arsenic	26
14	Frequency Graph & Statistics - Mercury	27
15	Frequency Graph & Statistics - Barium	28
16	Map of Treaty Group Showing Gold Anomalies	31
17	Map of Treaty Group Showing Silver Anomalies	32
18	Map of Treaty Group Showing Copper Anomalies	33
19	Map of Treaty Group Showing Lead Anomalies	34
20	Map of Treaty Group Showing Zinc Anomalies	35
21	Map of Treaty Group Showing Antimony Anomalies	36
22	Map of Treaty Group Showing Arsenic Anomalies	37
23	Map of Treaty Group Showing Mercury Anomalies	38
24	Map of Treaty Group Showing Barium Anomalies	39
25	Map of Stan Group Showing Gold Anomalies	40
26	Map of Stan Group Showing Silver Anomalies	41
27	Map of Stan Group Showing Copper Anomalies	42
28	Map of Stan Group Showing Lead Anomalies	43
29	Map of Stan Group Showing Zinc Anomalies	44
30	Map of Stan Group Showing Antimony Anomalies	45
31	Map of Stan Group Showing Arsenic Anomalies	46
32	Map of Stan Group Showing Mercury Anomalies	47
33	Map of Stan Group Showing Barium Anomalies	48
34	Map of Treaty Group Showing Aeromagnetic Anomalies	53
35	Map of Treaty Group Snowing Aero-electromagnetic	F 4
	Anomalies	54

TABLES

e - 1

•

ь

.

•

.

۳

۲

.

•

`

•

.

.

.

•

•

`

.

1	Statistics on Geochemical Samples Broken into Three Subsets	3(
2	Frequency of Association Between Elements of Samples	51

.

.

<u>PLATES</u>

1	Air Photograph - Orthophoto of Treaty Claim Group	5
2	Air Photograph - Orthophoto of Stan Claim Group	5
3	Orthomap of Upper Treaty Creek and Upper Unuk River (in pocket)	2)

EXPLORATION STATUS REPORT

TREATY 4, 5, 7 & STAN 1, 2, 4 CLAIMS

SKEENA MINING DIVISION NTS MAP 104B & 104C LAT 56°35-41' N LONG 130°2-12'W

1.0 INTRODUCTION

This report covers the preliminary exploration program on the Treaty and Stan Groups of mineral claims located at the divide between the headwaters of the Unuk River and upper Treaty Creek, a main western tributary of the Bell-Irving River, in northwestern British Columbia (Figure 1). It will attempt to synthesize the work previously done but not previously analysed thoroughly as a single data set, and as well, to record the data and results from the most recent work. The specific purpose of this work is as support for an assessment application made in June 1991.

Figure 1 - Map of Stewart-Stikine Area Showing Location of Treaty & Stan Groups

2.0 PROPERTY

Claim Data

The following tabulation shows the 6 claims, organized in two groups of 3 claims each, totalling 120 units.

Groups	Claims	Numbers	Units
Treatv	Treaty 4	5415	20
	Treaty 5	5416	20
	Treaty 7	5418	20
Stan	Stan 1	5419	20
20011	Stan 2	5420	20
	Stan 4	5422	20

The claim groups are located on NTS map 104 B/9 (John Peaks) and Mineral Claim Map M 104B/9E. They lie between latitudes 56°30' and 56°40' North, and between longitudes 130°3' and 130°13' (Figure 2).

Figure 2 - Map of the Treaty and Stan Claim Blocks

These claims are six of ten that were staked on the 25th of June 1986 by E. Kruchkowski. During the subsequent five year period they were first owned by Catear Resources Ltd. and Elan Exploration Ltd., then held under option by Bighorn Development Ltd. for several years. The latter company earned an interest in the property under a joint venture with Wydmar Development Ltd. The original ten claims were subsequently split into two sets of six and four, interests in each of which were assigned to several companies. The six claims of the Treaty and Stan Groups shown above are now held in the following proportions by Millar Western Engineering Ltd. (60%) and the Sheriff (40%). The 40% held by the Sheriff was supposed to be sold at auction this spring, but is now under litigation. Assessment work has been recorded on the claims of these two groups for each year and has consisted primarily of geochemical sampling and analysis. Some geological notes have been included but no systematic survey of the claims has been undertaken.

Hydrology and Topography

The Treaty Group is located at the headwaters of the main source of Treaty Creek, one of the main western tributaries of the Bell-Irving River that flows south into the Nass River (Figure 1). The claims cover the lower ends of both branches of the Treaty Glacier and the Drysdale Glacier, their outwash streams, and the intervening mountains (Plate 2). Streams from both combine to form Treaty Creek that flows easterly for a few miles and then southeasterly to join the Bell-Irving River.

The Stan Group lies a few miles northwesterly from the Treaty Group, covering the upper basins of the southeasterly branch of the Unuk River (Figure 2).

The claims cover an area of high peaks with steep to precipitous topography, and deep U-shaped valleys, that are either still occupied by glacial ice and permanent snowfields, or exhibit fresh scouring of recent glacial cover. Elevations vary from about 2500 feet asl in the valley of the Unuk River, at the north boundary of the Stan Group (Plate 2), to nearly 6500 feet asl at the crest of the peak between the Drysdale and South Treaty Glaciers (Plate 1).

The steep valley-sides along the glaciers and upper Treaty Creek are broken rather conveniently into upper and lower segments by a prominent system of kames terraces, representing a still-stand at a glacial maximum. From the vegetation above and below the kames and the character of the valley bottom, this was very likely the short glacial advance between A.D. 1200 and 1400.

Vegetation

The claim groups straddle the elevational forest limit, about 4500 feet asl, and no part of either group is in the full forest. Most of the area not covered by ice is an alpine tundra, with highly-variable overburden cover. Parts of the higher ground are covered by permanent snow or ice fields (Plates 1 & 2). The creek valleys are characteristically occupied by a ticket of tag alder, willow, and other shrubs, even well above limits of the full coniferous forest. Small patches of grass with White Moss and Red Heather, and Labrador Tea are found on mature slopes up into the higher elevations, separated by areas of talus or mixed talus and morainal remnants. For the most part, rock exposure is excellent in all upper elevations above the kame system, particularly relative to the lower areas where ground moraines cover all the lower parts of the topography, and below timberline the forest obscures much of the region.

Accessibility

Currently, access is only by aircraft to one of several lakes that are located in the valley bottoms, or by helicopter. The main supply base for this part of the mountain area is a small settlement at Bell II on the Cassiar Highway, that follows the Bell-Irving River at this latitude (Figure 1). There are several helicopter bases at this location, only about 20 miles east of the claims, providing rapid access to all parts of the groups. An airstrip is located at Bob Quinn, a similar base about 20 miles north of Bell II, on the Cassiar Highway. A resource access road is under construction from Bob Quinn into the Unuk River valley and will pass about 10 km north of the Treaty/Stan Groups. Construction is now underway but completion date is not known; nor is it clear that it would be of any advantage as an access route to the upper Treaty Creek area over a direct road from Bell II.

1.3 WORK PROGRAM

The climate and local circumstances precluded any field work prior to the anniversary date of the 6 claims of these groups for this year. Thus, the program was designed to provide a sound base for future work by providing several additional data bases and tools, that would ultimately contribute some advance to the status of the property.

a reference base for all future work and records, a As photomosaic and an orthomap were prepared. Preliminary to any field work and as a base for any tentative interpretations of other work, a set of aerial photographs were studied for any structural information that they might contain. These data supplemented the previous observations on the geology made by several geologists that had worked on the claims over the prior several years. The suite of geochemical samples taken over the past three years was examined and a number of additional assays were requested on some incomplete sets. These data were then studied statistically and spatially for any contained information that might be used to guide further work. This work led to the recognition that a geophysical dimension to the data base might be useful. A helicopter survey of the most attractive section of the claims was contracted to include several different instruments. Finally, all of these data were analysed and interpreted to provide a basis for the first field program.

Plate 1 - Aerial Photograph of the Treaty Group

Plate 2 Aerial Photograph of the Stan Group

2.0 ORTHOPHOTO/ORTHOMAP PREPARATION

The absence of large scale topography maps for areas such as the upper Treaty Creek make it necessary to rely on air photographs and mosaics for use as a base for geological and other references for an exploration program. The extreme differences in elevation and the steep topography make it necessary to assign the task of preparing such mosaics to experts, particularly if reliable results are expected. Thus, a contract was made with Optimum Mapping Ltd. of Vancouver to prepare an air photo mosaic of the area around the claim groups and then, to prepare an orthomap at a scale of 1:20,000 and a contour interval of 50 m. The resulting map is used as a base map for the geophysical survey, the accompanying figures and for our permanent map set. A copy of the orthomap is included in the pocket of this report (Figure 3).

3.0 GEOLOGY

8

3.1 Regional Geology

The claim groups are located in the northeastern corner of the Sulphurets Map Area, one that extends from there south nearly to Stewart at the north end of Portland Canal. The following geological framework has been summarized from Grove (1986), Britton and Alldrick (1987) and Britton, Fletcher and Alldrick (1990). The map units used in this report and on the accompanying map (Figure 3) are those from the 1990 report.

The area is underlain by volcanics and sedimentary rocks of upper Triassic to Jurassic age, and included in the widespread Hazelton Group. These were highly-folded, faulted and metamorphosed during the Cretaceous and, during at least three episodes between the late Jurassic and early Tertiary, were intruded by small stocks, dykes and sills. Mineralization is often attributed to one or more of these phases of intrusive activity. The Hazelton Group has been tentatively divided into five stratigraphic units, of which the upper four are much more widespread, and more relevant to the northeastern region. All are sequences of volcanic and sedimentary formations, some units predominantly the former and others more commonly the latter. Unit 2, the Unuk River Formation, consists of a lower sequence of primarily sedimentary rocks and an upper one of mainly massive volcanics. Within the Sulphurets Map Area, the rocks of this unit seems to form a central core area, around which the Unit 3 units are arranged.

The contact between the Unuk River Formation and the overlying Betty Creek Formation (Unit 3) appears conformable, at least locally. The latter is made up of bedded sedimentary rocks, commonly hematitic, from tuffs to various fine sediments. These are interbedded within more-common, massive volcanics of intermediate to felsic in composition. The overlying Unit 4, the Mount Dilworth Formation, is volcanic in origin, primarily felsic pyroclastic, and its distinctive appearance and consistency has made it a useful stratigraphic marker. It overlies conformably Unit 3 but may be unconformable with the overlying Unit 5, the Salmon River Formation. The latter is a siltstone sequence made up of dark grey to black sediments representing sedimentation following the long period of volcanic activity. It extends far to the east and north of the map area. The basal unit is a coarse pyritic sandstone, overlain by bedded siltstones that contain limey lenses, concretions and zones of pyritization. Certain units have been identified as mudstones that are occasionally graphitic and/or pyritic.

These rocks are all late Mesozoic in age and are cut be a series of small stocks and a variety of dykes and sills. Those intrusives that are roughly contemporary with the extrusive rocks are compositionally and tecturally similar, generally monzonitic to granitic. At least one group of these is thought to be related with some of the gold-copper mineralization.

.. .

.

.

.

.

Figure ω ł **Geological** qem 0 H Upper Unuk and Treaty Drainages

9

1

÷

Among the significant secondary structures of relevance are the regional anticlinal elevation of the older Unit 2 rocks in the central region. Superimposed on that basic structure is the dramatic outline of the relatively thin, but readily identifiable, Mount Dilworth formation (Figure 3) as it twists and turns around the periphery. In addition to periodic flexures, this feature is often displaced by a system of faulting that may be much more complicated than it appears even now. Much more local mapping should provide a means of better understanding these features and their significance with respect to mineralization.

3.2 Local Geology

As the region of the Treaty and Stan Groups is peripheral to the main areas of activity in the map area, relatively little systematic geology has been done and published. Stratigraphic and petrographic studies are under way and some additions have been made recently (Kirkham - Personal Communication 1991). A few notes have been included on previous submissions for assessment credit, but more were found in going through the profusion of records covering the reconnaissance geochemical sampling work. In addition, a program of air photograph geological interpretation was carried out this past winter. The maps accompanying this section include the information gleaned from these, although it is primarily structural. Most of these observations remain to be confirmed by ground-truthing and, hopefully, developed more fully as additional work is done on the property. Another source of new data was a very informative letter from R. Kirkham, showing the geology of the western edge of the Treaty Group. In the following discussion, the geology of the two claim blocks is discussed separately; although they are comparable in many ways there are differences that warrant separate consideration.

The western edge of the Treaty Group and the southwestern corner of the Stan Group are underlain by sediments and interbedded andesitic volcanics of the upper part of the Betty Creek Formation. At the western edge of the Treaty Group they strike about north, or slightly northeasterly, and dip to the east at 55 to 70 degrees. In that section they outcrop pretty well continuously across the ridge of the mountain and down onto the glacially-scoured slope in the turn of the South Treaty Glacier. According to Kirkham (Personal Communication 1991), the sequence from the lowest exposed bed upward is as follows - a brown andesite, a conglomerate, an andesitic flow, a band of mudstone and siltstone, and overlain by a mixed band of conglomerate, breccia and sandstone. At the top of the Betty Creek Sequence here there is a maroon volcanic breccia and lapilli tuff. This is overlain conformably by a felsic tuff some 25 to 30 m in thickness (Kruchkowski 1990:11)) and a rusty-weathering sedimentary breccia/conglomerate, both thought to make up the Mount

Figure 4 - Geological Map of Treaty Group

Dilworth Formation or its stratigraphic equivalent in this location. They, in turn, are overlain by the basal part of the Salmon River Formation, represented by a dark pyritic mudstone/siltstone. Above this in the sequence, Kruchkowski (1990:11) reports "...interbedded black argillite with coarse andesitic pyroclastics", exposed along the ridge of the mountain above the point of bifurcation of the South Treaty and Drysdale Glaciers. As noted by Grove (1982) and Kruchkowski (1990:11) and confirmed in the photo interpretation, the rocks of the Salmon River Formation to the east strike generally in a northerly direction, but with erratic dips. To the north of Treaty Creek the strike is more west northwesterly with dips fairly regular to the north. Current opinion seems to consider the Mount Dilworth Formation as an index, given its reasonably distinct but consistent character (Figure 3). Recent discoveries at Eskay Creek have been directly associated with the hanging wall structures of the Mount Dilworth, making it an attractive target for exploration.

In the area underlying most of the Treaty 5 and 7 claims, there is evidence of some faulting and sharp folding of the formations, both on dip and on strike. A major fault is reported at the south extension (Figures 3 & 4) that is thought to have caused a major displacement to the Mount Dilworth and the adjacent formations. Other much more local faults are shown to cross the structure (Grove 1982: accompanying map) in an east-west direction, and still others in a northeasterly direction. The only fault that can be discerned on the photographs follows Treaty Creek (Figure 4), bifurcates about the centre of the Treaty 6 claim, with one branch cutting almost due west across the structure and the other following the fifth north tributary of Treaty Creek and heading across the low divide into the upper Unuk drainage. No particular displacement can be inferred from the photos; in fact, the beds seem to continue through the fault.

Probably the most potentially important feature is the folding, part of which was mapped by Grove (1982) and other noted by Kruchkowski (1990). The bend in the formations at the west end of the ridge lying in the curve of the South Treaty Glacier can be only partly due to faulting, if at all, as the dip of the bedding is parallel with the ridge, which accentuates a pronounced easterly curve. At the north side of the ridge, however, the folding becomes clear, as the beds are re-curved to the west against the slope of the hillside. Immediately north of Treaty Creek the bedding is confused, with overturned sections lying adjacent to discordant attitudes on both sides. The Mount Dilworth Formation can be traced on the photos down to the edge of the morainal cover to the south of Treaty Creek, and it reappears about two miles to the west to the north of the ice cover on the Stan 2 claim. The formations immediately north of Treaty Creek are argillites of the Salmon River Formation, well up from the contact with the Mount Dilworth. There seem to be three possible explanations; namely, that the Mount Dilworth and lower members of the Salmon River were truncated at this point, that the folding becomes tighter under the drift immediately below the toe of the glacier, or that a fault offset the formations to the west. The most recent geological maps show the fold option (Britton et al 1989) in which the formations continue through but are very sharply folded to the west, with the Mount Dilworth being covered by the lower end of the

Figure 5 - Geological Map of Stan Group

Treaty Glacier. No evidence of faulting has been reported and the fold alternative is likely the most efficient under the current circumstances.

The regional attitude of the Salmon River beds is more or less west northwest with dips from 50° to vertical; the occasional southwesterly dip has been noted but is uncommon. This continues through the northern part of the Stan Group where the rock types are predominantly greywacke and sandstone. In the southwest corner of Stan 2 there is a crystalline rock that has been alternatively interpreted as an intrusive (Grove 1982) and an extrusive (Britton et al 1990). It is described by Kruchkowski (1990) as a feldspar porphyry stock.

4.0 GEOCHEMICAL RESEARCH

4.1 <u>Bampling Data</u>

Sampling Programs

This analysis is based on data from sampling programs undertaken in 1987, 1988, 1989, and 1990. All field work was carried out by E. R. Kruchkowski Consulting Ltd. and reported in the following series of reports:

Horne, E. 1987

"Assessment Report on the Treaty 2 & Stan 1-4 Claims: Treaty Creek Area, NTS 104B/9: Skeena Mining Division".

Stream silt and rock sampling during reconnaissance geological and prospecting program - unsystematic.

Horne, E. 1987

"Assessment Report on the Treaty 3 to 7 Claims: Treaty Creek Area: NTS 104B/9: Skeena Mining Division".

Stream silt and rock sampling during reconnaissance geological and prospecting program - unsystematic.

Konkin, K. & E. R. Kruchkowski 1988

"Assessment Report on the Treaty and Stan Claim Groups: Stewart, British Columbia: Skeena Mining Division".

Detailed stream sediment sampling program based on results of 1987 work, and continued reconnaissance prospecting - systematic sampling of selected streams & unsystematic general.

Kruchkowski, E. R. 1990

"Assessment Report on the Treaty and Stan Claim Groups: Stewart, British Columbia: Skeena Mining Division: NTS 104B/9".

Multi-element analysis of previous samples collected, and further reconnaissance sampling of areas not previously covered. Unsystematic.

According to the reports, the sampling procedures were as follows:

- a sample of the sediments was trowelled from a flagged location of the stream bed or low bank onto a goldpan fitted with about a 20 mesh screen cover - the minus 20 mesh fraction was then transferred to a labelled paper soil sample bag which was then sent to Loring Laboratories Ltd. of Calgary for analysis by standard geochemical techniques. The 1990 samples were re-submitted for assay for a suite of elements equivalent to those previously read. The chemical analysis was again carried out by Loring Laboratories Ltd. The location of each sample of rock and sediment analysed in this report is shown on Figure 6, located in the folder with this report. A number of circumstantial factors are highly relevant to the efficacy of stream sediment and rock sampling programs aimed at finding and exploring mineral deposits. For an area such as the upper Treaty/Unuk drainages, the highly varied and intensely dissected topography, the glacial history, the mixture of stream profiles, its relatively young age and consequent time of exposure, and the vegetation combine to influence the nature of the elemental dispersion from a mineral deposit and how it might appear as a pattern from a silt sampling program.

The relatively young topography and steep stream profiles favour the use of clastic over that of hydromorphic accumulations or depositions material as sampling media. Further, the topography does permit a fairly quick separation of some deposits into glacial outwash sediments and local stream transported deposits. With the sharply-dissected hillsides it is also usually clear as to the source of the latter. Thus, for the mountain sides, the area represented by a sample-set may be relatively small, it is usually well-defined and anomalies should be easily localized. It would be expected that the cline in metal concentration would drop off quickly as sampling proceeded from the older de-glaciated sections to the more recently de-glaciated areas underlain by fresher till.

For the areas underlain by glacial outwash sediments, it is considerably less-simple to determine the significance of a set of anomalous samples in terms of identifying a specific source or even source-area. While the distances that glacially-derived material *can* be moved can be very great, it has been recognized that the 'contrast' between anomalous and background elements drops quickly, even in the Canadian Shield of Saskatchewan. Bayrock and Pawley (1967) have showed that most till was locally-derived, making till-sampling effective as one of the most important tools in uranium exploration.

Few data are available on transport of clastics in valley glaciers, although it is known that vast majority of the particulate material is carried in the bottom few meters, and that the sizes of the particles decreases rapidly, down-glacier as a result of crushing and abrasion. One thing seems certain, however, the longer the distance of transport, the more homogeneous the clastic matrix. It would also be expected that sulfides, being easily crushed and ground compared to the silicious matrix, would tend to 'flour' rapidly. Thus, we would expect to find a reasonably uniform dispersion of anomalous results, dropping clinally, but significantly with distance from the source. Outwash streams, usually degrading, could tend to extend the anomalous zone beyond its limits in the morainal deposits, simply by concentrating any heavy mineral content. In contrast, proglacial ponding would tend to localize the concentration to the current glacial-front. It is also obvious that glacial abrasion provides a very favourable environment for leaching sulfides and thus, for providing the elements for chemical transport.

In the case of a receding valley glacier that crosses a mineral deposit of some size, it would be expected that there would be a zone of very high concentration immediately below the deposit, with a dispersion fan down-glacier, containing both clastic and chemical deposits. A model of the distance and consistence of this dispersion would be an important tool for interpreting geochemical sampling results such as those from upper Treaty Creek.

At least partly due to the steep surface gradients, it was not always a simple matter to collect sufficient material to make up a suitable sample. The comments of the samplers and communications with the supervisor indicate that occasionally samples had to be supplemented by material greater than 10 mesh in size. This may or may not have distorted the sampling results form some areas.

4.2 Analysis

Introduction

The sampling results from each year were analysed as independent groups and reported in the yearly reports. This present work is an attempt to review the samples as a single set. While not systematic as individual sets, they can be used together as a systematic set for these purposes, provided certain caveats are recognized.

First, the sample includes both stream sediments and rock samples. The rock samples are relatively straightforward for the most part, but do include a number that were taken from float. The available notes are not always clear about this or as to the significance of any float samples. Given the glacial cover and the confusion of movement patterns not too much importance can be assigned to lone specimens, however high grade they may be.

The stream samples can be analysed on several levels, first as a single set, then as two different cross-cutting sub-sets of samples; based on topography - some are from the steep side hills while some from the stream sorted till of the valley bottoms, based on underlying geology - some were taken from sediments derived from the drainages underlain by the Salmon River sedimentary formations while others were from creeks cutting the contact zone between the Salmon River and Betty Creek volcanics/sediments. The variables affecting transport and deposition make any conclusive statements from such studies hazardous, but potentially useful as a guide in further work.

Procedures

The total sample was digitized with data on the year taken, the sampler, the geological parent material, and with the each element (Appendix A). These were then used to obtain a series of simple statistics on the total sample, then on the several subsets identified by kind of material sampled (silt/rock), parent material (Salmon River/Dilworth), main drainages (Unuk/Treaty/Drysdale). Finally, statistics for each of these controlling variables were obtained for each element assayed (Au/Ag/Cu/Pb/Zn/Sb/As/Hg/Ba).

For the purposes of analysis, the total samples for both silt and rock were examined for each element to determine a local background, a reasonably practical estimate of a threshold value, and a set of three categories of anomalies. These values were then applied to each sample and tentative anomalous readings were identified. These were then plotted on separate maps and certain anomalous locations were identified for further work.

A number of procedures have been developed to attempt to establish meaningful 'threshold' values; ie, the concentration of an element above which a sample is considered anomalous. Few data are published on regional or local surveys in the upper Unuk River area, from which regional background assays can be derived, and the data set that is available is more a series of linear sample sets than a systematic survey. For an area at the stage of exploration of the upper Unuk River/Treaty Creek section the only practical method involves analysis of the data set itself, accepting the inherent weaknesses in the methods. The most common methods include -

1. calculation of threshold from mean plus two or three times the standard deviation.

2. graphical representation and identification of background and threshold from the shape of the resulting curve.

3. recognition of clusters of anomalous readings from two dimensional maps.

All three methods were used in analysing the data set for the claim groups. First, the data base was analysed for range, mean, and standard deviation for silt and rock samples for each element. These statistics were then used to group the sample results for each element based on the mean and standard deviation (SD). Group 1 in each case covered the range from 0 to the mean, often less than one SD. Group 2 extended from the mean to the mean plus one SD, Group 3 the mean plus two SD, Group 4 the mean plus three SD, etc. The 'threshold' used for this first data set was taken at mean plus two SD, or the top of Group 3. Thus, Groups 1 to 3 are considered to cover the background population with a low probability that any significant anomalous readings would be included (Rose, Hawkes & Webb 1979:39). Any reading in the groups above Group 3 would be anomalous, at least to some degree, and thus, would unlikely to represent a sample with a background level.

In a population with a normal distribution, it would be expected that the background and high level anomalies would be clearly identifiable on graph of the distribution, the background as a large concentration in the lowest range and the anomalies as extensions, or even small concentrations, into the higher range. In between is a wide range where the higher background readings and lower anomalies overlap. For that reason, the data from the Treaty/Stan Blocks were analysed to sort out three levels of anomaly above the threshold. For each element, both the silt and rock assay populations were sorted to series of up to 19 groups (silver) representing multiples of SD, and the groups above Group 3 were then divided into three sets, with the lower set identified as Level C, the middle as Level B, and the upper as Level A anomalies. These are shown in the small tables included on Figures 6 to 14, and listed on Table 2 in the Appendix. This method can be seen as somewhat arbitrary, but can be used as a tentative technique lacking any previous estimates for a region, and pending confirmation by additional sampling.

The Level C anomalies are considered unimportant if they occur as isolated readings spatially and as the only one among the suite of elements. If found as one of a number of anomalous elements in a sample, or spatially related to other anomalous readings, the Level C anomaly takes on more significance. Thus, these lie in that range of overlap between background and anomalies. Statistically, Level B and A anomalies represent readings that are among the top several percent of the population and are clearly anomalous.

With the development of a tentative threshold and the three levels of anomalies, the readings were then plotted on a set of graphs for each element to test the proposed threshold and anomalous ranges; these are also shown in Figures 5 to 13.

The identified anomalies of all levels were then plotted on maps of the two claim blocks, separated by element (Figures 15 to 32). These are then analysed for spatial clustering of values, that could then be considered anomalous areas, or geochemical targets.

.

Figure œ 1 Frequency Graph 21 Statistics t Silver

21

4

•

.

. .

. . . .

,

Figure Ø Frequency Graph **\$**7 **Statistics** 1 Copper

٠

.

4 1

.

1

.

.

Figure 10 10 1 Frequency Graph <u>ع</u>م Statistics I. Lead

• •

. .

.

. .

• •

. .

•

٦

۰,

л r

· ·

, ·

ľ

•

Υ.

٦

Figure H 1 Frequency Graph ge, Statistics 1 Zinc

۰ r

٩

٠

.

.

٠

т г

1

* ·

•

Figure 12 1 Frequency Graph **8**2 Statistics Т Antimony

- 1 F

۰.

.

 · · ·

Figure 13 1 Frequency Graph Ř٩ Statistics 1 Arsenic

7

а.

.

.

۰ ۱

•

τ.

• • •

Figure ۲S L Frequency Graph æ Statistics I. Barium

Π.

Results of the Subset Analysis

The raw data from all sampling programs is tabulated in Appendix I of this report. Figure 6 shows the locations of all samples from both groups, the Stan Group of the Stan 1, 2, and 4 claims, and the Treaty Group, of Treaty 4, 5, and 7 claims.

The total data were divided into subsets along three lines -

 using sampling media - silt and rock
using underlying geology -SR = Salmon River Fm Dil/BC = Dilworth & Betty Creek Fm
using drainage basin -Drys = Drysdale Glacier valley TC = Treaty Creek valley Unuk = Unuk River valley

Each subset was subjected to some very simple statistics, derivation of mean and standard deviation (Table 1). The results of gold assays are shown in ppb and the remainder in ppm.

In almost all cases the distribution shows a mean lower than the standard deviation, indicating a maximum frequency at the lower extreme; only the silt assays for lead, zinc and arsenic have means greater than the respective standard deviations. Most of the figures for the silt/rock sets show sharp differences in those two statistics, and these are matched by the ranges. All show marked differences in the means or standard deviations for the sets. Thus, it is clear that separating the total sample along basic material lines is logical and advisable. Comparing silt and rock assays, only in the cases of gold and barium are the means for silt greater than those for rocks; that for gold is the most significant, possibly because of the tendency for gold and barite to concentrate in surficial deposits. It also supports the contention that sulfides of base metals would tend to grind more easily than the matrix rock.

The sample divided according to underlying bedrock shows some distinct differences in both silt and rock assays for most elements. The overall frequency distributions are similar in both cases to those of the total sample. The results are not clear due to the small number of rock samples assayed for base metals; the statistics were not computed for these to obviate spurious comparisons. The means for Au, Ag and Pb were higher for area underlain by the Salmon River Formation, while the remaining elements were higher for that underlain by the Dilworth/Betty Creek Formations.

	GEOCHEMICAL STATISTICS										
FOR THREE SUBSETS OF SAMPLES											
nt	t Total Sample				Set by Underlying Bedrock				Set by Drainage		
& Stat		Silt Rock	5. R.		Dil/BC		Deue				
ш				Silt	Rock	SIL	Rock				
Aυ	N Ave SD	390 62 151	175 41 171	217 70 164	76 48 127	24 42 25	5 2 268	80 39 105	180 87 184	119 38 113	
Ag	N Ave SD	392 0.37 0.69	171 0.91 2.03	218 0.55 2.28	76 0.33 0.41	123 0.61 1.8	15 0.43 0.23	80 0.3 0.23	180 0.5 1	118 0.62 1.88	
CU	N	339	64	187	76	99	15	80	176	94	
РЬ	Ave SD N Ave	19 34 347 22	35 38 63 73	35 17 294 27 42	50 48 76 20	36 18 98 34 34	- - 15 -	47 18 80 20	38 15 171 28 43	36 18 93 35 94	
Zn	N Ave SD	351 161 82	63 178 196	188 138 104	76 183 127	99 187 70	14 - -	80 185 117	176 151 103	94 189 70	
56	N Ave SD	341 2.43 2.7	63 4.83 13.6	181 2.56 2.92	76 1.62 1.27	99 3.46 7.35	15 - -	80 1.65 1.25	70 2.92 2.79	94 3.5 7.51	
Ag	N Ave SD	306 30 27	65 43 94	177 37 36	7 4 4	84 31 48	15 - -	74 4 4	167 40 38	81 29 25	
Нg	N Ave	345 0.73	65 1.77	181 0.68	76 0.45	99 1.57	15 -	80 0.4	170 0.66	94 1.62	
		257	2.45	0.16	0.61	2.0	-	0.50	0.15	2.35	
Du	N Ava	1632	02 1405	101	10	740	15	120		94	
	5D	732	2333	1334	191	1808	-	176	1322	2456 1848	
NC	NOTE / The statistics were not computed for the rock samples from the Dilworth/Betty Creek due to small sample size.										

TABLE 1 - Statistics on Geochemical Samples Broken into Three Subsets - Silt/Rock Set, Silt/Rock According to Underlying Geology, and Silt Sample Set for Three Main Drainages

The results for the silt samples divided by the drainage show an interesting pattern. Those for Au, Ag, and As show Treaty Creek greater than Unuk, greater than Drysdale, while the sample set for Pb, Sb, Hg, and Ba from the Unuk, are greater then Treaty Creek, that are greater than for Drysdale. Copper is higher on the Drysdale Glacier than on Treaty Creek, that exceed the Unuk River tributaries. Those for Zn are higher along the Drysdale than the Unuk, that are higher than on Treaty Creek.

Interpretation of the Results

The Figures 16 to 33 are two sets of maps, one for each claim block, showing the spatial location of the anomalous readings, separated for each element. Both silt and rock samples are shown on the same maps, and both locations (small squares) and anomalous readings (A solid circles, B half-solid circles, and C open circles) are shown with the same symbols for each. However, each kind of sample is clear from the numbering or location on or off a water course.

Rock Samples kk, cc, bn, pa, ek, SR, ST, S4, TR,

Silt Samples dj, ah, dl, jp, aj, T4, T5, T7, T6

The sediment sampling of the Treaty Group was well distributed around the claims and along most of the streams entering both the Drysdale and South Treaty Glaciers, and the upper part of Treaty Creek. Rock specimens were taken along the scoured section north of Treaty Creek and around the headland of the ridge between the lower South Treaty Glacier and Treaty Creek.

For the Stan Group, the silt sampling was restricted to the lower parts of the two main south tributaries of the upper Unuk River, on the Stan 1 and 4. Rock specimens were taken along a number of traverses across the highland parts, mainly those with minimal vegetation and good exposure.

A number of the samples taken were identified as float, and these are informative to some extent. A number of other samples are most likely float specimens but were not identified as such making it difficult to assess their significance. In the following analysis and discussion the results of the following samples are taken with reservation. In some cases they are included in the analysis but with cognizance.

TR3.1, TR7.2, ST1.gs.1, TRS.8, ekr.18, Glacier samples dl88.56,66,67,68,72,73,74,112 & 117

As can be seen from the maps and tables, some of these are anomalous in most metals; consequently they tend to skew the results to some extent.

It should be noted that many of the samples were taken in the valley bottoms in areas of glacial scouring and recent till deposits, probably covered with ice as recently as 600 or so years ago. Thus, it is more than likely that the sampling reflects the influence of mechanical rather than chemical processes. There may also be a dampening effect due to the presence of extensive recent till through which the streams must pass in their courses down the lower parts of the steep mountain sides. Samples taken above the distinct kame terraces should be more responsive to subtle changes in metal content.

Figure 16 - Map of Treaty Group Showing Gold Anomalies

Figure 17 - Map of Treaty Group Showing Silver Anomalies

Figure 18 - Map of Treaty Group Showing Copper Anomalies

Figure 20 - Map of Treaty Group Showing Zinc Anomalies

Figure 22 - Map of Treaty Group Showing Arsenic Anomalies

Figure 23 - Map of Treaty Group Showing Mercury Anomalies

Figure 25 - Map of Stan Group Showing Gold Anomalies

Figure 26 - Map of Stan Group Showing Silver Anomalies

Figure 27 - Map of Stan Group Showing Copper Anomalies

Figure 28 - Map of Stan Group Showing Lead Anomalies

Figure 29 - Map of Stan Group Showing Zinc Anomalies

Figure 30 - Map of Stan Group Showing Antimony Anomalies

Figure 31 - Map of Stan Group Showing Arsenic Anomalies

Figure 32 - Map of Stan Group Showing Mercury Anomalies

Figure 33 - Map of Stan Group Showing Barium Anomalies

There are several interesting elemental associations that appear in the geochemical data. These can be seen most clearly in the following table of the anomalies; all anomalies are included with no attempt to weight for different levels. All samples were included, even those known to be float, and appropriate comments are made on any undue influence that this may cause.

F	FREQUENCY OF ASSOCIATION OF ELEMENTS														
	Au Ag Cu Pb Zn Sb As Hg Ba TR S														
Αυ	X	 5	3	B	2	. 8	9	0	2	17	7				
Ag	5		3	4	3	4	4	1	0	9) (
C C	3	3	×	5	4 :I	- 5 - 1	5	5		9	N C				
Рb	8	4	5	X	3 5	7 4	a		1	17	6				
Zn	2	3	1	3 5	X	6	2	4	0	15	ŗ-				
Sb	8	4	7	7	6	Х	13	1	1 2	15	6				
As	a 0	4	5	دم ا	2	13 2	X	0	0 2	17	2				
нg	0	5	1	4	4	5	0 2	X	۱ 4	3	10				
Ва	$a \begin{vmatrix} 2 & 1 & 1 & 1 & 0 \\ 3a & 0 & 1 & 1 & 1 & 2 & 2 & 4 \end{vmatrix} X$														
Тс	TOTALS FOR GROUPS														

Table 2 - Frequency of Association Between Elements

The number of anomalous readings among those samples from the Treaty Group are twice those of the Stan Group, and the number of Level A anomalies is over three times. There are also differences in the association of different elements. In the samples from the Treaty Group there are two distinctive associations - a Au, Pb, Sb, and As, and a Cu, Zn, and Sb. It is possible that the first has a minor tendency to be accompanied by a low level of Ag. The latter also shows a similar tendency for low levels of Pb and As, particularly with the inclusion of the float samples. In the Stan samples, there is only one prominent cluster of elements, Ag, Pb, Zn, Sb, and Hg.

There are several obvious geographic clusters of these anomalies. On the Treaty Group, there are three clusters of possible economic interest (not resulting from glacial outwash). Cluster TR7-A is located in the northeast part of Treaty 7, just north of Treaty Creek around the lower parts of TT6. A series of anomalies occur, medium or better in Au, Ag, Pb, and low in Sb and As. This group is not, as a whole, consistent, and may have influenced by the flow along Treaty Creek more than that from TT6 area.

Cluster TR7-B is a series of sediment samples across the valley, from the lower part of TT1. These are anomalous in Zn, Cu, and Sb, generally high levels and particularly consistent in the first two elements. A possibly related anomaly TR5-A is located on the lower part of a small steep creek on the South Treaty Glacier side, again in Zn, Cu, and low Sb.

Cluster TR5-B is found in the lower reaches of several streams on the upper part of Drysdale Glacier, particularly DT7. Anomalous readings in Cu and Zn are found in a consistent sequence up from the mouth to the kame terrace.

Only one cluster can be seen on the Stan Group, located at the extreme west part of Stan 2, in the rocks and sediments along the upper part of UT2. Anomalous readings occur in Ag, Pb, Sb with minor Zn, As, Hg and Ba.

All anomalous clusters occur in the general hanging wall section of the Mount Dilworth Formation, although ground work would be necessary to check the specific lithological associations.

5.0 GEOPHYSICAL SURVEY

Introduction

This section of the report will summarize very briefly the contents of the accompanying complete report by Aerodat Ltd. on the equipment, procedures, results and conclusions derived from their helicopter-survey of a portion of the Treaty Group of claims. It will not attempt to provide a full presentation and analysis of the data; rather, it will provide a sketch of the results to be read in the context of the remainder of this report. While every effort is made to adhere to the accuracy of the Aerodat report it is essential that it be read for a complete picture of the geophysical results.

Equipment

The equipment included a four-frequency electromagnetic system, a high-sensitivity cesium vapour magnetometer, and a two-frequency VLF-EM system. A video tracking camera and radar altimeter recorded the actual altitude and track surveyed.

Procedures

The geophysical equipment was towed below a Aerospatiele SA 315B Lama helicopter flown at a mean terrain clearance of 60 m. Flight lines were flown at azimuths of 090/270 degrees and at a planned line spacing of 100 m. Two flights were conducted on May 19th 1991.

Results

The resulting data were recorded digitally and filtered during analysis, and were plotted on an orthophoto mosaic provided by Millar Western Engineering Ltd. The data were analysed and the report was written by Robert J. de Carle, a consulting Geophysicist for Aerodat Limited.

The **aeromagnetic data** shows three large regions of high magnetic intensity that de Carle suspects might reflect top topography of a single deep-seated intrusive. The vertical magnetic gradient calculated from the data shows even more clearly the suspected outline of the intrusive. On the accompanying Figure 5-1 the outline of the anomaly follows the 0 nT line that de Carle infers as the outline of the intrusive. He suggests that the most favourable target areas would be within several hundred feet of this contact, in an "...aureole zone of metamorphism and metasomatism where the alteration processes have absorbed the sulfide mineralization.." de Carle 1991:5-3).

In the **electromagnetic data** there appear to be four anomalous areas of some interest. Two, TC2 and TC4, are associated with broad flat-lying horizons not unlike the pattern accompanying river bottom silts. Both of these are on the mountain sides and are more likely related to broad, flat lying mineralized bodies. Anomaly TC1 resembles more the pattern related to a steeply dipping planar conductor. It is located close to the north side of Treaty Creek and is interpreted as having a strike of about 340°. De Carle recommends reconnaissance surveys for all three of these anomalies. He was able to be a little more specific with respect to anomaly TC3, which he attributes to "...sulfides within a region of intense alteration." He also points out the high degree of 'fit' between the east edge of the southwestern magnetic anomaly and the west edge of the electromagnetic anomaly. There is actually a slight overlap between the two, although this may be more an accident of where the lines were drawn that reality. He has plotted the anomaly TC3 to be terminated by a fault just north of the claim line between Treaty 4 and 5, which fits with a proposed fault that he interpreted from the aeromagnetic data.

In his **recommendations**, de Carle comments on the possibilities that the anomalies reflect polymetallic mineral deposits, but focuses his remarks on the associated magnetic and electromagnetic (TC3) anomalies. He is inconclusive with respect to the question of the nature and age of the suspected intrusive. His recommendations concern ground verification of his observations, where possible, and with some possible follow-up ground geophysical surveys.

Figure 33 - Map Showing Aeromagnetic Anomalies

6.0 DISCUSSION OF RESULTS

The 1990-1991 work program made five main contributions to the status of the Treaty/Stan Groups. The old and new geochemical data have been presented and analysed as a single data-set. An orthomap was prepared to act as a base map for the integration of all data on the claim groups. The air photo analysis has provided better control for the interpretation of the several sets of data now available. The helicopter geophysical survey provides yet another dimension on at least a significant section of the main area of interest. Finally, this section will discuss in tentative terms, the integrated results of the work to date.

The geochemical data show two different associations that *could* represent two different kind of mineral deposits. The association of gold or silver with lead and antimony, with minor mercury, arsenic, could reflect a vein structure, either fissure or replacement. The copper-zinc anomalies with antimony may well indicate a massive sulfide deposit. This is of course, speculative, confirmable only by much further work.

One possibly significant suggestion from the geophysical work is that the sharp folding of the structure under Treaty 5 and 7 claims is underlain by a magnetic intrusive. The geophysicist has proposed that it lies within a few hundred meters of the present surface and could be the source of the mineralization that appears as the geochemical anomalies in that area. From the research done to date, it is not now possible to label any particular age or phase of intrusive as the likely source of this magnetism. However, assuming that the interpretation is correct, it does present an interesting dimension to those other data.

The collected data show a number of interesting possibilities for economic mineral deposits. The following is a discussion of the various zones that have been identified for further work on the basis of the results of the program to date.

6.1 Treaty Group

There are three portions of the Treaty Group that can be identified as possible targets from the work to date. All are supported by favourable geochemical and geophysical results and two lie in the contact zone between the Mount Dilworth and Salmon River Formations in that section showing the most extreme folding.

From a purely geological perspective, the Mount Dilworth Formation (MDF) can be seen to be much more contorted than shown on the current geological maps (Figure 3). Where the regional attitude shows a general northwesterly strike and a dip to the northeast, the marker beds of the MDF show a swing in strike of at least 70° to he north and then a sharp swing to the west of close to 90° to the west. While difficult to be certain on the photographs, the dips also change markedly in this same section, from 60° to nearly vertical. Further, the basal units of the overlying Salmon River show extreme amounts of shearing, folding and overturning where mapped just to the north of Treaty Creek (Figure 4) and just east of the sharp westerly bend in the attitude of the MDF.

Zone 1 lies just to the north of Treaty Creek about a kilometer east of the toe of the glaciers, and on the eastern edge of the very highly contorted, heavily sheared and, in part, overfolded section of the upper Betty Creek and lower Salmon River. A modest geophysical anomaly (TC1) is recorded immediately to the west and upstream from the lower end tributary TT6, with anomalous readings in gold, lead, antimony and arsenic from both sediments and rocks. While not a particularly strong indication in either set of data, it warrants examination.

Zone 2 combines a set of high geochemical readings on sediment samples and a large zone of anomalous electromagnetic readings, extending from middle of Treaty 7 south to the edge of the South Treaty Glacier on Treaty 5. This coincides with the most intriguing geological structures - a system of folding in the lower Salmon River, the Mount Dilworth and the upper Betty Creek Formations, and very heavy local shearing in the Salmon River. All of the sediment samples from the three streams that drain this area returned high level anomalous values in copper and zinc, and several in antimony. As the geophysical anomaly extends for about 2 kilometers and over a width of 3 to 400 meters, there is ample scope for a reasonably large mineral deposit. The anomaly more or less coincides with a dark, pyritic mudstone/siltstone unit at the bottom of the Salmon River Formation. This is reported to be the same geological environment as the deposits at Eskay Creek. The consistency and coincidence of the anomalies with the favourable geology makes this zone an attractive target for further exploration work.

The 3rd zone on the Treaty Group is on the upper part of the southern tributary on the Drysdale Glacier, DT1. The linear geophysical anomaly, TC4, is recorded to cross the upper parts of the valley above the fairly consistent series of sediment anomalies found along the lower part of the creek.

One other geophysical anomaly was noted in the upper part of Treaty Creek tributary TT7. It is interpreted as a linear zone that is thought to follow the bottom of the creek valley. The only geochemical sampling done on the creek was at the mouth, where the results were not anomalous; this could easily be due to the masking effect of the recent till.

6.2 Stan Group

The structural circumstances on the Stan Group closely resembles that on the Treaty Group with the added feature of the possible intrusive or volcanic complex. While a large number of geochemical samples were taken and assayed, no well delineated anomalies can be discerned. The only cluster of anomalous readings occur in the bottom part of UT2 along the extreme western boundary of the Stan 2 claim. This gold-leadzinc-antimony-arsenic-mercury-barium anomaly shows in both the rock and sediment samples, but all samples are not anomalous. The anomalous area straddles the Mount Dilworth Formation between the small tributary creeks of UT2.

Little of the contact zone of the intrusive (?) is visible, either with the upper Betty Creek or the Dilworth. The presence of the anomalous reading along the outcrops of these rocks to the west suggests that this environment might have some potential. This, and the possibility of a conductor related to the geochemical readings, make this the most interesting part of the Stan group. The depth of the till and talus deposits preclude either prospecting and geochemical sampling as exploration techniques, but favour geophysics.

- •

REFERENCES

Bayrock, L. A. and S. Pawluk 1967

Trace elements in the tills of Alberta. Pp 597 - 607 in Canadian Journal of Earth Sciences, v4.

Britton, J. M. and D. J. Alldrick 1987

Sulphurets Map Area (104A/05W, 12W; 104B/08E, 09E). Pp 199-209 in Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1. Victoria.

Britton, J. M., B. A. Fletcher & D. J. Alldrick 1990 "Snnipaker Map Area (104B, 106E, 107W, 110W & 111E). Pp 199-209 in Minster of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1990, Paper 1991-1. Victoria.

de Carle, Robert J. 1991

"Report on a Combined Helicopter Borne Magnetic, electromagnetic and VLF Survey ~ Treaty Creek Property, Iskut River Area, British Columbia". Report appended to this report.

Grove, E. W. 1986

"Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area". Bulletin 63, Ministry of Energy, Mines and Petroleum Resources, Victoria.

Horne, E. 1987

"Assessment Report on the Treaty 2 & Stan 1-4 Claims: Treaty Creek Area, NTS 104B/9: Skeena Mining Division". On file, Department of Energy, Mines and Petroleum Resources, Victoria.

Horne, E. 1987

"Assessment Report on the Treaty 3 to 7 Claims: Treaty Creek Area: NTS 104B/9: Skeena Mining Division". On file, Department of Energy, Mines and Petroleum Resources, Victoria.

Konkin, K. & E. R. Kruchkowski 1988

"Assessment Report on the Treaty and Stan Claim Groups: Stewart, British Columbia: Skeena Mining Division". On file, Department of Energy, Mines and Petroleum Resources, Victoria.

Kruchkowski, E. R. 1990

"Assessment Report on the Treaty and Stan Claim Groups: Stewart, British Columbia: Skeena Mining Division: NTS 104B/9". On file, Department of Energy, Mines and Petroleum Resources, Victoria.

Rose, A. W., H. E. Hawkes and J. S. Webb 1979

Geochemistry in Mineral Exploration. Second Edition. Academic Press, Suffolk.

CERTIFICATION

I, James F. V. Millar, of # 1 Dunn Lake Road, British Columbia, do hereby certify that:

1. I hold a B. A. Sc. in Mining Engineering from the University of British Columbia.

2. I have been engaged in the mineral industry since 1947.

3. I am a member in good standing of the Associations of Professional Engineers in the provinces of Alberta, British Columbia and Saskatchewan.

4. This report was prepared by me from materials and information provided by the series of reports referenced in the body of the report.

5. I hold a 60% interest in the property described in this report in trust for Millar Western Engineering Ltd., in which company I hold a 60% interest.

Signed -

James F. V. Millar B.A.Sc, PhD, P.Eng.

APPENDIX

.

IV	COPY OF AERODAT GEOHPYSICAL REPORT - "Report on a Combined Helicopter Borne Magnetic, Eelectromagnetic and VLF Survey - Treaty Creek Property"	Pocket
III	COPIES OF GEOCHEMICAL ASSAY CERTIFICATES	83
II	TABLE OF GEOCHEMICAL ANOMALIES	73
I	TABLE OF GEOCHEMICAL RESULTS	63

APPENDIX I

ANZ	ALYS:	IS O	F 19	87-	90 GE	OCHE	MICAL	SAMP	LING	PROGR	AM ON '	FREAT	Y CR	EEK G	RP
GUI NO YR MAT SPI	DE : C R	TO Al Samj Yeat Mato Samj	BBRE ple r of eria pler	VIA num sa 1 na	TIONS ber f mplin me	- rom : g	field								
CL		Cla:	im	_	. .			_							
TOP	20	Roug	gh_i	dea	oft	opogi	raphi	c loc	'n or	drai	nage				
GEC)	Unde	erly	ing	geol	odð									
		SR		Sa	Twon .	River	r								
		BC		Be	tty C	reek									
			`	MO	unt D	TTMOI		-1	Divo	~ C D	i luonti	•			
		SK/I		0	ntact	2016	e - Di	armon	KIVE.	έαυ		1			
NO	YR	МАТ	SPR	CL	торо	GEO	AU	AG	CU	PB	ZN	SB	AS	HG	BA
01	87	FL	?	S 2	UT2	SR	15	4.9	24	250	240	12.0	38	5.7	1600
Q2	87	FL	?	S2	UT2	SR	15	6.1	22	132	390	25.6	41	5.2	1200
03	87	FL	?	S2	UT2	SR	30	2.1	47.	40	142	18.7	426	4.3	5100
04	87	FL	?	S2	UT2	SR	35	16.3	41	880	590	62.1	52	17.0	2700
05	87	FL	?	S2	UT2	SR	25	0.9	176	45	240	4.0	25	1.9	1700
06	87	FL?	2	S2	UT2	SR	20	0.5	7	41	189	3.0	16	2.5	3700
07	87	RX	ź	S2	UT2	SR	20	0.7	12	49	340	1.8	5	4.0	500
08	87	RX		S2	UT2 1/02	SR	25	0.3	18	31	112	0.3	/	1.7	1000
01	07 07	KX DV	: 2	53		DK CD	20	1 0	24 47	20	400	0.5	40	2.5	2000
02	07	KA DV	\$	50 62	011	3K	-25	1.9	56	63	400	0.9	12	2.5	1100
03	97 97	<u>гл</u>	i C	33 01	MTN	т. Т.	-23 625	7 3	20	04 G2	400	1 8	5	54	500
01	87	FT.	2	S1	MTN	FT.	75	2.9	25	ΔΔ	174	1.4	51	3.6	1200
02	87	RX	?	T7	MTN	D.	10	0.7	4 9	41	320	0.5	105	2.6	1700
05	87	RX	?	т7	TLT6	SR	5	0.5	23	27	139	0.1	5	2.5	500
01	87	RX	?	T 7	TLT6	SR	15	1.2	50	89	710	1.1	277	4.1	1500
02	87	RX	?	T 7	TLT6	SR	5	0.8	35	50	450	1.5	8	3.6	1000
06	87	RX	?	T 7	TLT6	SR	5	0.7	38	32	128	1.7	29	5.0	1300
08	87	RX	?	Т7	TT4	SR/I)5	0.6	24	37	77	0.2	3	2.6	1300
09	87	RX	?	Т7	TT4	SR/E	00	0.5	20	33	76	0.4	2	2.0	600
10	87	RX	?	Т7	TC	SR/I	00	0.5	23	25	129	0.6	9	1.3	1000
11	87	RX	?	T 7	TC	SR	20	0,8	35	47	182	1.4	19	3.6	1300
01	87	RX	?	Т4			-0	0.4	8	17	95	0.2	6	1.3	300
04	87	RX	?	Т3	T 3	TL	SR	0.3	17	15	93	0.6	14	0.7	400
01	87	RX	?	T 37	7TL	SR	180	4.2	164	570	760	14.1	68	3.5	17500
01	87	RX	?	T2			·10	0.7	60	22	91	1.0	13	1.6	1000
01	87	RX	?	T6	TC	SR	15	0.7	63	25	169	0.8	10	2.0	1700
01	87	RX	-	T5	MIN		0	1.0	6	44	180	0.4	5	0.5	1800
02	8/	RX	5	T5	MIN		:U	0.6	43	20	100	2.5	10	1.0	300
03	0/ 07	RA DV	4 つ	15	MUM	DIPC	215 215	0,6	10	10	92 61	1.2	- <u>1</u> 0	1 1	200
04 05	0/ 27	AA VØ	: ?	10 TR	111111 111111	<i>שן ש</i> נ ח	/10 15	0.0	44 1Ω	26 10	201	20	0 2 F	 	200
02	87	AA DV	2	- TO 1	/ ፲ ፲ ፲ 7ጣጣ 1	ע כי ע	10	0.0	15	20	159	0.6	6	04	200
00	87	DA VV	2	107 105	/ ፲ ፲ ፲ 7ጥጥ 1	SP/P	0	0.8	21	28	390	2.0	17	1.1	800
08	87	RX RX	?	то. Трб	лт <u>с</u>	SR/L	40	0.6	ĞТ.	55	97	15.7	$\frac{1}{21}$	4.3	5000
01	87	ST	· ?	S 2	UT2	SR/D	35	2.0	64	185	370	29.3		3.6	2100
02	87	SI	?	S2	UT2	SR/D	0	1.0	64	36	180	11.1		5.7	5300
						, _	-		-	-					

								~ ~	20	17	190	3.5		3.5	3000
03 8	7	SI	?	S2 1	UT2	SR/I	00	0.6	30	10	200	1.9		1.8	1700
01 8	7	SI	?	S3 1	UR	SR	0	0.6	25	10	124	07		2.0	1600
02 8	7	SI	?	S3 `	UT1	SR	0	0.4	24	6	107	0.0		1.8	1700
03 8	7	SI	?	S3 `	UT1	SR	0	0.3	21	5	107	0.0		1.9	1000
04 8	7	SI	?	S3 [°]	UT 1.	SR	0	0.4	31	7	137	1 2		28	1300
05 8	7	ST	?	S3 [°]	UR	SR	0	0.5	27	7	146	1.4		1 3	700
06 8	27	SI	?	S3	UR	SR	0	0.5	19	4	176	0.5		1 7	800
02 8	17	SI	?	S4	UR	SR	0	0.5	37	5	169	1.1		1 1	900
03 8	37	SI	?	S4	UR	SR	5	0.6	49	6	206	1.1		1 6	900
04 8	87	SI	?	S4	UT3	SR	5	0.6	45	8	196			2.0	800
05 8	27	SI	?	S4	UR	SR	15	0.6	47	8	198	1.1		2.2	1300
01 8	17	SI	?	T2			-5	0.6	23	7	91	0.7		2.0	700
01 8	37	SI	?	Т3			-5	0.8	8	8	66	0.2		1 9	900
02 8	27	ST	?	Т3			-10	0.6	35	10	175	1.0		1 5	900
02 0	27	ST	?	тз			-5	0.5	20	6	112	0.5		1.2	1200
04 5	97 87	ST	?	Т3			-10	0.6	39	6	143	0.8		1.5	1200
07 5	87 87	ST	?	Т3		~	-40	0.5	36	7	120	1.1		1 1	1000
01 0	87	ST	?	Т4	DT3	SR	870	0.9	44	6	146	1.9		1.1 2 E	1600
02 1	97 97	ST	?	T4	DT4	SR	165	0.9	47	10	173	1.8		2.5	2000
02 0	97 97	ST	?	Т4	DC	SR	50	0.6	36	8	126	1.2		1.0	900
01 1	87 87	ST	?	т4	DT5	SR	25	0.7	23	7	80	0.9		1 2	1200
	07	ST	?	т4	DT6	SR	85	0.5	38	15	135	1.4		1.3	1500
05 4	07 07	ST	· ?	Т5	DT7	SR/	D25	0.9	85	10	1001	11.8		1.4	1200
01 0	07	CT	2	т5 Т5	?	D?	25	0.4	37	8	160	1.8		2.0	1400
02	01 07	SI	· ~	T5	?	D?	5	0.6	27	6	163	2.0		2.9	1000
0.3	0/	GT.	2	Ψ 5	?	D?	10	0.4	25	6	130	1.8		1.0	1700
04 -	01 07	CT.	·.	<u>т</u> 5	ጥጥ1	SR/	D10	1.1	97	7	1001	15.3		1.3	1200
05	01	SI CT	· ?	T5	TC	SR/	D70	0.7	58	22	165	6.9		1.0	1200
00	01	GT .	;	тĥ	ΤĊ	SR	5	0.4	34	6	128	0.2		0.7	2100
01	07	GT .	;	T 6	ΤĊ	SR	15	0.8	37	9	129	1.4		1.9	1200
02	01	SI	;	<u>т</u> 6	TT9	SR	5	0.3	33	8	120	0.8		1.2	1200
03	07	CT	· ·	ጥራ	פידיד	SR	5	0.3	33	8	122	0.9		1.1	1700
04	07	GT .	· ~	T 6	TC	SR	5	0.3	38	8	139	0.9		1.0	1000
05	07	CT	;	т6	TC	SR	0	0.2	35	9	130	1.0		1.8	1400
00	07	CT CT	;	T7	т 1 .6	SR	0	0.4	39	6	144	0.8		1.5	1400
03	07	GT GT	2	יי	TT4	SR	1001	3.8	39	11	130	_			1400
04	07	CT.	2	T 7	TT4	SR	65	0.3	35	35	128	3.5		1.6	1500
05	07	OI CT	· 2	- TT-7	6TT7	SR	30	0.5	41	9	112	1.3		1.4	1000
06	07	6 1	2	<u>S1</u>	MTN	SR	35	0.4	35	10	133	1.3		1.5	1000
05	07	СТ ОТ	2	S1	MTN	SR	0	0.6	48	8	240	0.8		2.1	900
06	87	ST CT	•	S1	MTN	SR	Ō	0.2	21	6	122	0.5		2.3	1000
07	87	DV	vv	ጥል	MTN	SR	5	0.1	9	10	95	0.4	28	0.2	1000
01	80	RA DV	VV VV	ጥል	MTN	SR	15	0	48	19	121	0.9	14	1.2	1200
02	88	RA DV	NN VV	ጣ ለ ጠ	MTN	SR	15	0	47	20	113	1.1	12	1.1	1200
03	88				MTN	SR	20	0	36	19	59	1.2	15	1.3	900
04	88	RA	NN VV	ጠ ብ	MTN	SR	15	0	7	11	40	0.1	4	0.2	900
05	88	RA	NN WW	14 M J	MUN	SD	5	Ō	6	16	49	0.2	17	0.2	700
06	88	RX	AA WW	4 4	MUDI	CD.	15	õ	42	20	73	1.4	20	1.7	1600
07	88	RX	KK	14	MUDAT	CD	10	õ	9	9	35	0.3	3	0.2	300
80	88	RX	KK	21	MUNY	CD	50	ñ	18	17	66	1.3	17	0.2	500
09	88	RX	KK	51	MULT	70	15	1	30	32	43	2.8	28	0.8	900
10	88	RX	KK	53	MONT	אכ פים	25	ō	2.4	20	49	1.4	9	0.4	800
11	88	RX	KK	52	MIN	OR OP	20	ň	14	12	44	0.1	4	0.2	2200
12	88	RX	KK	S2	MIN	DK CD	20 5	ñ	ġ,	26	22	0.2	3	0.0	0
13	88	RX	KK	S2	MTN	SR	5	v	-	2.4					

								-		~	12	25	0.3	2	0.0	200
. 4 4	8	8	RX	KK	S2	MTN	SR	15	0	5	12	20	0.1	3	0.0	100
15	58	8	RX	KK	S2	MTN	SR	20	0	3	·	24	0.2	3	0.1	300
Π.e	58	8	RX	KK	S2	MTN	SR	5	0	8	9	115	1 0	19	0.9	1000
17	78	8	RX	KK	S2	MTN	SR	20	0	4/	19	11.J	1.3	12	0.4	500
18	38	8	RX	KK	S2	MTN	SR	15	0	23	11	36	0.1	13	0.1	200
-19	98	8	RX	KK	S2	MTN	SR	10	0	8	11	30	0.1	2	0.1	200
2(5 8	8	RX	KK	S 2	MTN	SR	10	0	1	11 0	56	0.1	6	0.3	200
2	18	88	RX	KK	S4	MTN	SR	15	0	10	12	27	0.1	4	0.1	300
22	28	38	RX	KK	S2	MTN	SR	10	0	5	E T O	2, 2	0.2	4	0.3	100
$\overline{\Sigma}$	38	88	RX	KK	S1	MTN	SR	5	0	10	20	75	1.3	19	0.6	900
2	48	88	RX	KK	51	MTN	SR	20	0	44	20	1001	90.6	158	0.9	0
5	68	38	\mathbf{FL}	\mathbf{DL}	Т7	TC	D/B	C1001	8.9	185	1001	84	2.7	15	0.3	2700
- 5	68	38	\mathbf{FL}	DL	Т7	TC	D/B	C30	0	44	33 77	85	3.3	4	0.5	600
5	78	38	FL	\mathbf{DL}	т7	тс	D/B	C15	0	49	1001	1001	35.1	480	3.8	200
6	88	38	\mathbf{FL}	DL	Т7	тс	D/B	C1001	14	567	1001	146	4.3	147	0.7	3700
_7	$\frac{1}{2}$ 8	38	RX	\mathtt{DL}	Т7	TC	D/B	C570	1	100	52	110	2.3	14	0.3	3400
7	3 8	88	RX	\mathbf{DL}	Т7	тс	D/B	C1001	7	14	30	70	4.0	540	0.0	300
. 7	4 8	88	RX	DL	т7	TC	D/B	C1001	7	26	88		6 A	49	0.8	1800
1	12	88 .	RX	DL	T7	тС	D/B	C40	1	42	63	30	1 3	18	0.7	1000
1	171	88	RX	\mathbf{DL}	т7	TC	D/B	C20	0	82	19	167	1.J A 1	74	0.4	2100
יי	1 1	88 88	ST	AH	Т7	TT2	SR/	D140	0	40	38	167	4.1 0 /	37	0.3	1300
0	2	88	ST	AH	Т7	TT2	SR/	D65	0	23	22	80	4.4	54	0.3	1900
- 3	1	88	ST	AH	Т7	TT2	SR/	D70	0	30	48	120	4.2	50	0.3	2300
2		88	ST	AH	Т7	TT2	SR/	D50	0	28	28	109	3.J 3.5	20	0.4	1600
• 6	15. 15.	22	ST	AH	T 7	TT2	SR/	D35	0	24	23	96	2.9	18	0.3	1600
0 0	16	88	ST	AH	Т7	TT2	SR/	′D30	0	25	21	93	2.0	30	0.2	1500
	17	88	ST	AH	7	TT2	SR	/D30	0	24	22	81	2.0	31	0.2	1700
	18	88	ST	AH	Т7	TT2	SR	/D30	0	23	25	79	2.7	22	0.2	1900
	na -	88	SI	AH	T 7	TT2	SR	/D35	0	23	25	89	2.1	32	0.2	1700
- 1	í Ó	88	SI	AH	Т7	TT2	SR,	/D30	0	24	25	70	2.5	34	0.2	1800
1	11	88	SI	AH	T 7	TT2	SR,	/D35	0	20	22	02	2.0	37	0.3	1800
•	12	88	SI	AH	T 7	TT2	SR,	/D25	0	25	41	04	3 0	35	0.2	1700
	13	88	ŝī	ЪН	T 7	TT2	SR,	/D30	0	22	24	04 74	2.6	33	0.3	1400
	14	88	SI	AH	T 7	TT2	SR,	/D30	0	22	21	74	2.0	38	-	
	15	88	SI	AH	\mathbf{T}	7 TT2	SR	/D35	0	23	20	/ 1		58		
	16	88	SI	AH	T	7 TT2	SR	/D140	1	33	20	70	23	45	0.2	1900
-	17	88	SI	AH	\mathbf{T}_{i}	7 TT2	SR	/D55	1	26	101	70	3.6	59	0.2	2000
	18	88	SI	AH	T.	7 T T2	SR	/D60	0	30	26	122	3.6	39	0.2	2100
٠	19	88	SI	AH	\mathbf{T}	7 TT2	SR	/D40	0	29	24	111	2.0	42	0.2	2100
	20	88	SI	AH	T'	7 TT2	SR	/D55	0	21	24	01 TTT	2.7	36	0.2	2000
	21	88	SI	AH	T	7 TT2	SR	/D510	0	25	44	04 00	2.6	31	0.2	1900
۳	22	88	ŝī	AH	\mathbf{T}	7 TT2	SR	/D30	0	23	19	22	2.0	43	0.2	2600
	22	88	ST	AH	\mathbf{T}	7 TT2	SR	/D40	0	25	40	33	2.0	32	0.2	2200
1	24	88	ST	AH	Т	7 TT2	SR	/D70	1	22	20	80	2.0	19	3 1.9	3100
	25	88	ST	AH	т	7 TC	SR	/D100	11	77	62	272	9.7	12	3 1.0	3100
	25	88	ST	AH	Ť	7 TC	SR	(D1 00	11	55	61	200	2.1	17	9 0.2	1900
,	27	88	ST	AH	Т	7 TT6	SR	690	1	62	58	205	0.7	18	3 0.2	2900
	28	88	ST	AH	Ť	7 T T6	SF	435	1	74	83	720 720	0.0 7 7	10	7 0.4	2600
•	20	88	ST	AH	Т	7 TT6	SF	100	11	54	43	203	1.5	21	0.2	1500
	20	20	ST	АН	Ţ	7 TT6	SF	25	0	25	21	90	1 0	21	0.3	1700
	21	20	ST	АН	Ţ	7 T T6	SF	₹ 25	0	28	21	93	17	19	0.3	1600
•	20	88	ST	AH	T I	7 TT6	SF	<u> </u> ξ 50	0	31	22	07 100	1 1	25	0.2	1400
	22	88	ST	АН	Γ]	7 TT 6	SI	र 35	0	34	20	0/ 100	7 0	62	0.5	2200
•	34	20	ST	AH	ניז	6 TC	SI	₹ 120) 1	49	34	198	7.0			
	5-2	00			_											

.

. .

							240	1	73	55	240	9.8	119	0.4	3100
.15	88	SI	AH	T 6	TC	SR	240	1	15	30	173	4.9	47	0.6	1700
36	88	SI	AH	T6	TC	SR	120	1	40	51	169	9.1	97	0.4	2500
17	88	SI	AH	Т6	TC	SR	365	1	60	12	190	8.5	90	0.5	2600
18	88	SI	AH	Т6	TC	SR	240	1	50. Ex	4.J 20	193	8.7	86	0.5	2300
39	88	SI	AH	т6	TC	SR	550	1	54	29	206	7 8	102	0.5	2400
.40	88	SI	AH	Т6	TC	SR	315	12	61	40	200	1 8	26	0.3	1400
1	88	SI	AH	T 7	TL6	SR	50	0	32	22	102	1 6	17	0.3	1400
+42	88	\mathbf{SI}	AH	T7	TL6	SR	30	0	23	18	102	1.0	22	0.2	1400
43	88	SI	AH	T7	TL6	SR	25	0	26	18	108	1.0	22	0.5	
4	88	SI	AH	Т7	TL6	SR	310	0	25	18	105	n 2	27	04	1500
5ر_	88	SI	AH	Т7	TL6	SR	30	0	28	19	105	2.3	27	0.3	1300
46	88	SI	AH	T7	TL6	SR	25	0	24	18	110	1.0	24	0.5	1000
-17	88	SI	AH	Т7	TL6	SR	220	0	26	19	112	1 0	20	0.2	1100
-8	88	SI	AH	т7	TL6	SR	20	0	23	18	108	1.8	20	0.2	1100
`49	88	SI	AH	T 7	TL6	SR	140	0	26	19	108		20		
_50	88	SI	AH	Т7	TL6	SR	105	1		19	113	1 0	17	0 4	1400
[1]	88	SI	AH	T7	TL6	SR	20	0	35	20	138	1.0	16	0.7	1500
· J2	88	SI	AH	Т7	TL6	SR	20	0	32	18	137	1.0	17	0.3	1500
53	88	SI	AH	T 7	TL6	SR	10	0	29	18	112	1.8	15	0.5	1400
<u> </u>	88	SI	AH	T 7	TL6	SR	10	0	24	17	110	1.5	10	0.3	1600
.5	88	SI	AH	T7	TL6	SR	20	0	28	18	119	1.5	23	0.3	1500
56	88	SI	AH	Т7	TL6	SR	15	0	26	18	114	1.9	18	0.4	1400
.57	88	ST	AH	т7	TL6	SR	15	0	26	17	113	1.3	19	0.3	1400
g	88	ST	AH	Т7	TL6	SR	60	0	32	18	114	1.7	18	0.5	1000
-KQ	88	ST	AH	T7	TL6	SR	200	0	36	17	115	1.3	22	0.2	1000
60	88	ST	AH	53	UT2	SR/	D10	1	31	21	164	2.0	26	0.6	2500
<u>_</u>	99	ST	ΔH	S3	UT2	SR/	D10	0	30	19	170	2.1	27	0.8	2000
2	22	ST	АН	53	UT2	SR/	D30	0	32	26	186	3.1	29	0.5	3000
22	20	ST	ън	53	UT2	SR/	D15	0	33	24	161	2.7	35	0.8	3200
- 7 /	20	ST.	AH	53	UT2	SR/	D5	0	34	26	178	3.1	38	5.0	3300
44 5	00	CT	АН	53	UT2	SR/	D15	0	27	21	172	2.2	26	0.6	2100
- 6 6	00	GT	АН	53	11112	SR/	'D5	1	33	22	170	2.5	27	0.5	1800
27	00	CT.	ΔH	53	UT2	SR/	'D10	1	28	20	163	2.3	26	1.1	2100
,n, o	00	CT.	AII AH	51		SR	/D10	0	28	20	161	2.1	27	0.8	2000
	00	OT OT	<u>л</u> п ЛП	23		SR	/D10	0	32	20	168	2.1	29	0.5	1700
.08	00	51	אח	63	11112	SR	/D5	1	30	21	169	2.3	23	0.7	1700
70	88	SI	AD NU	62	11772	SR	/D5	1	36	23	168	2.8	28	1.1	4700
1	88	51	AD NU	- 00 100		SR	/010	ō	33	22	181	2.3	24	1.5	2300
	88	51	АП NU	- 00 - 00	11172	SR	/D10	ō	29	22	173	2.5	26	0.8	2100
13	88	51	AD	- 00 - 00		SB /	015	1	28	21	169	1.9	20	0.5	1700
- 4	88	51	АП	- 00 - 00		SR	/ 10	1	30	20	166	1.6	18	0.6	1300
5	88	51		23 23		CD.	/ 1 1 0	ō	33	21	166	2.3	36	0.7	1800
76	88	51	An	- 33 C 2	1100-2	CD.	/D20	õ	30	20	169	2.3	20	0.5	1500
77	88	SI	AH	53	1012	OD.	/020	ĩ	30	20	176	2.5	26	1.0	2000
8	88	SI	AH	53	UTZ	ואכ		Ā	32	19	162	1.8	22	0.6	3000
۰, 9	88	SI	AH	53	UTZ	SR/ CD	1000	ň	21	22	166	2.9	31	13.4	4000
80	88	SI	AH	53	UTZ	SK	(D110)	0	20	20	158	3.0	24	1.4	2600
1	88	SI	AH	S3	UT2	SR,	DI30	0	29	20	169	2.9	31	0.7	2500
. 2	88	SI	AH	S3	UT2	SR,	10290	U A	20- 7T	۵⊥ ۱۵	150	2.7	25	0.7	2500
83	88	SI	AH	S3	UT2	SR,	/D240	0	29	. 13	166	3.2	30	0.7	2500
٩.4	88	SI	AH	S3	UT2	SR	/D100	Ŭ Â	29	23	173	7 A	28	0.7	3000
5	88	SI	AH	S3	UT2	SR,	/D50	0	29	20	150	1 0	13	0.3	900
°86	88	SI	AH	S3	UT2	SR,	/D55	0	30	1/	200 T20	7.0	<i>30</i> T2	0.7	3400
87	88	SI	AH	S3	UT2	SR	/D85	0	33	21	209	0.0	12	0.2	900
8	88	SI	AH	S3	UT2	SR	/D55	0	24	18	T22	0.0	ديد	V.2	200

.

- -

										10	156	26	20	0.6	2400
	89 88	SI	AH	S 3	UT2	SR/D)140	0	25	19	100	2.0	27	0.6	2800
	90 88	SI	AH	S 3	UT2	SR/D)110	0	31	21	109	2.2	21	0.0	3000
	91 88	SI	AH	S3	UT2	SR/I)50	0	30	19	151	2.0	24	0.5	3800
	92 88	SI	AH	S 3	UT2	SR/I	90	0	32	21	173	2.0	20	0.0	4300
	93 88	ST	AH	52	UT2	SR/I)35	0	30	20	161	2.8	22	0.7	2200
	94 88	ST	AH	S 2	UT2	SR/I	010	0	33	22	157	3.1	33	0.0	2300
	95 88	ST	АН	S2	UT2	SR/I	065	0	33	21	171	4.1	28	0.0	2700
	96 88	ST	AH	S 2	UT2	SR/I	035	0	30	19	150	3.3	23	0.7	2600
	90 00	ST	AH	S 2	UT2	SR/I	0140	0	34	21	172	2.7	29	0.4	2500
	08 88	ST	AH	S2	UT2	SR/I	015	0	34	21	161	3.6	29	0.8	1000
	90 00	ST	AH	S2	UT2	SR/I	025	0	30	16	120	1.0	11	0.4	1000
	10088	ST	AH	S2	UT2	SR/I	0980	0	32	20	171	2.7	23	0.8	1100
	10188	ST	AH	52	UT2	SR/I	D15	0	37	18	162	1.1	11	0.3	1100
	10100	ST.	ДН	S2	UT2	SR/I	D20	0	44	19	177	1.1	17	0.3	2000
	10288	GT	ли	S2	UT2	SR/I	D30	0	30	21	154	2.5	44	0.5	2000
	10400	CT	AH AH	S1		SR	40	0	32	21	163	3.2	18	0.7	1900
	10400	ст ст	ли ХЧ	G1		SR	60	0	31	21	183	2.0	20	0.6	1/00
	10000	OT .	ករា សឋ	G1		SR	5	0	33.	21	171	2.6	25	0.6	2100
	10688	ST ST	711 711	Q1		SR	30	0	36	21	179	2.2	26	0.8	3000
	10/88	51	AD NU	C1		SR	15	Ō	37	23	179	2.8	27	1.3	3300
	10888	51	AU	m A	DTE	SB	180	0	33	17	135	1.0	12	0.3	1000
	10988	51	AD NU	114	DTJ DTS	SR	45	Ō	34	18	137	1.1	12	0.4	1100
	11088	51	An	T.4	015	SR	20	0	30	21	116	0.9	11	0.6	900
	11188	SI	AD NU	14 TA	DTS	SR	280	Ō	26	16	106	1.0	11	0.3	1100
	11288	21	AU VI	14 14	DT5 DT5	SR	25	Ō	26	17	105	1.0	12	0.6	1500
	11388	SI	AD NU	T.4	DTS	SP	250	1	27	17	101	1.1	11	0.1	1000
	11488	51		ΠΛ 14	DT5	SP	30	0	26	15	93	1.0	9	0.2	1100
	11588	21	AN NU	- T-1	DIS	SR	0	Ō	26	18	103	1.0	11	0.2	1100
	11688	51	АП NU	T4 TA		SR	õ	ō	28	18	102	1.0	11	0.2	1100
	11/88	51	ALL NU	тл Т	DT5	SR	Ō	0	30	15	102	1.1	10	0.2	1000
	11888	OT OT	지대	ጥል	DT5	SR	50	0	26	16	93	1.0	13	0.2	1100
	11988	OT OT	ALL NU	ጥፈ	DT5	SR	0	0	25	16	99	1.0	10	0.2	1000
	12088	OT OT	AII NU	тл Т	DT5	SR	ñ	0	34	20	124	1.3	11	0.2	1000
	12188	SI			DT5	SR	5	0	43	25	173	1.7	16	0.2	1300
	12288	51		- T-4		SP	20	Ō	46	26	191	1.9	15	0.2	1300
	12388	51		14 MA	DIJ	CD	0	1	45	24	208	1.7	15	0.3	1300
	12488	SI		114 ma		SD SD	in	1	48	24	184	2.0	15	0.3	1300
	12588	SI	АП	14		CD	5	1.	47	27	196	1.8	17	0.4	1300
	12688	SI		14		CD	10	1	48	28	199	1.8	15	0.3	1400
	12788	SI	AH	14		CD.	<u>^</u>	1	48	26	193	1.9	15	0.4	1500
	12888	SI	AH	14		20	ň	1	49	32	200	1.9	17	0.2	1400
	12988	SI	AH	24	2 210	2	v	ñ	50	27	206	1.8	15	0.3	1300
	13088	51	AH	ب ساط	í ma	- CD	0400	ĩ	69	55	204	10.1	. 197	0.5	2400
	40 88	SI		17		יאפ ניםס		1	77	45	241	9.5	115	6 0.6	2600
	41 88	SI 		T7		on/ CD		1	57	43	170	6.8	91	0.6	2600
	42 88	SI		T7	TC mma	OR/	Б0 Б0	1	35	21	124	2.1	35	0.3	1600
`	43 88	SI	DL	T7	TT3	5R CD	50	1	40	19	110	6.9	33	0.3	1600
	44 88	SI	DL	T7	113	5K CT	00	1	7 J J	17	112	1.7	26	0.2	1600
	45 88	SI	DL	T7	· TT3	SR	20	1	24	19	107	2.4	36	0.2	1400
	46 88	SI	$\mathbf{D}\mathbf{L}$	T7	TT3	SR	3U 1E	-	20	1.8	109	25.2	21	0.2	1500
	47 88	SI	DL	T7	· 1773	SR	50 TD	1	20	18	108	1.3	28	0.3	1600
	48 88	SI	DL	T 7	TT3	SR	20	∧ T	22	19	105	2.2	36	0.2	1500
	49 88	SI	DL	T7	TT3	SK	00	1	20	17	101	2.7	41	0.2	1700
	50 88	SI	DL	T7	/ TT3	SR	20 20	1	20	24	126	3.3	60	0.2	1600
	51 88	SI	DL	T 7	/ TT3	SR	240	Ŧ	12	67	~ ~ ~ ~	= • •			
								-	2.1	10	94	2.7	36	0.2	1600
---	-------	--------------	----------	---------------------------------	---------------	-------------	------	---	------	----	-----	-----------	-----------	-----	------
	52 88	SI	DL	T7 '	TT3	SR	30	1	20	20	112	3.4	45	0.2	1600
	53 88	SI	DL	т7 '	TT 3	SR	315	1	30	20	100	2.8	41	0.2	1700
	54 88	SI	DL	T 7	TT3	SR	100	0	29	20	100	0.1	60	0.4	1600
	57 88	SI	DL	T7	TT3	SR	15	1	44	23	101	1 7	43	0.2	1400
	58 88	SI	DL	т7	TT3	SR	10	1	33	20	101	2 0	59	0.3	1400
	59 88	SI	DL	т7	TT3	SR	10	1	34	27	120	2.2	56	0.5	1600
	60 88	ST	DL	т7	тт3	SR	15	1	36	21	117	3.0	50	0.5	1300
	61 88	ST		т7	TT3	SR	90	1	38	21	118	3.0	20	0.3	1500
	62 88	ST	DL	T 7	TT3	SR	45	1	33	20	111	2.4	55 A7	0.3	1800
	62 88	ST	DI.	Т7	TT3	SR	65	1	60	23	107	3.0	26	0.2	1200
	64 88	ST	DL	T 7	TT3	SR	25	1	31	34	11	1.0	<u>60</u>	0.5	1500
	65 88	ST	DL	T 7	ТТ3	SR	60	1	37	22	127	1 0	174	0.4	1500
	69 88	ST	DL	Т7	TT3	SR	110	1	41	23	131	2.2	61	0.4	1600
	70 88	ST	DL	T 7	TT3	SR	85	1	40	22	114	J.4 20	54	0.5	1500
	70 88	ST	DL	T7	TT3	SR	70	1	38	22	115	2.0	72	0.4	3900
	75 99	ST	DI.	т7	TL6	SR	100	0	38	23	105	2.1	72	0.1	1400
	75 88	ST	DI.	T 7	TL6	SR	60	0	35	21	107	3.4	12	0.5	1500
	70 00	CT	DI.	T7	TL6	SR	60	0	43	23	117	3.4	43	0.2	1500
	70 90	CT CT	DL.	<u>ተ</u> 7	TL6	SR	90	0	47	22	103	3.2	42	0.5	1800
	78 88	GT GT		T 7	TT.6	SR	600	0	38	25	109	2.0	42	0.5	1200
	/9 88	OT CT	DI.	т7 Т	TL6	SR	15	0	39	18	121	1.5	37	0.0	1400
	80 00	OT CT	DD DL	т7	TL6	SR	20	0	40	19	121	1.4	35	0.0	1200
	81 80	GT.		<u>π</u> 7	т <u>т</u> .6	SR	25	0	37	19	121	1.5	20	0.0	1400
	82 88	ET.	DI.	т7	тī.6	SR	25	0	36	18	112	0.7	34 25	0.7	1300
	83 88	ST ST		T7	TI.6	SR	20	0	41	19	125	1.6	30	0.2	1300
	84 88	ST ST	םם.		тī.6	SR	25	0	40	18	119	1.4	34	1 5	1100
	85 88	51		т7 Т7	TL6	SR	40	0	43	18	130	1.2	37	1.0	1500
	85 88	SI ST		- T - T - T - T - T	TT.6	SR	20	0	43	19	134	2.1	15	1.3	1700
	8/88	SI CT	DL	17 17	TL6	SR	15	0	48	21	141	1.7	41	1.4	1700
	88 88	51	םם זם	- 1 / - 17	TL6	SR	5	0	42	22	135	1.5	44	T*0	1461
	89 88	51		 	TL6	SR	15	0	45	21	142	1.9	43	0.0	1600
	90 88	51		- m'7	TL6	SR	20	0	42	20	135	1.9	39	0.9	0000
	91 88	51	זמ	- ጥለ	DT6	SR	20	0	30	14	116	1.0	/	0.2	1000
	92 88	51 51			DT6	SR	10	0	29	15	111	1.0	8	0.2	1000
	93 88	51		ጣ 4	DT6	SR	10	0	29	15	108	1.0	9	0.2	800
	94 88	ST ST		ጥ 4	DT6	SR	5	0	34	15	109	1.0	9	0.2	900
	95 88	6T 51	DI.	- ጥ 4	DT6	SR	10	0	29	15	117	1.2	10	0.3	900
	96 88	51 61	DL.	ጥል		SR	20	0	30	16	109	1.0	10	0.4	1000
	9/88	01 01	םם.	ጥል	DT6	SR	20	0	31	16	121	1.1	10	0.4	000
	98 88	51	םע	- ፲ ጥ <i>ለ</i>	DTG	SR	20	0	34	16	108	0.1	10	0.2	1300
	99 88	51	עע	ተ ግ		SR	20	1	43	21	157	2.2	12	0.4	1200
	10088	51		тч ти		SR	15	1	39	20	155	2.1	12	0.3	1300
	10188	SI	עע	- T 4		SR	10	0	39	21	163	1.8	11	0.2	1200
	10288	SI		14 T4		SR	20	Ó	41	21	162	2.1	14	0.2	1200
	10388	SI		19	1 010	SR	25	1	42	21	166	2.3	11	0.2	1200
	10488		DL	14 m/		SR	20	ō	42	20	171	2.1	12	0.2	1200
1	10588			15		CP	25	Ō	39	20	158	2.2	17	0.2	1200
	10688			14	4 DIV	SP	15	Ō	43	20	174	2.3	13	0.3	1200
	10788	\$ <u>51</u>		T4 	4 010	CD	25	õ	4 3·	21	180	2.2	13	0.2	1300
	10888		L	-T4	4 010	CD CD	15	ō	42	21	179	2.1	15	0.2	1200
	10988	s si		T'	4 D.L.Q	JK CD	. 15	ñ	47	22	185	2.2	17	0.3	T300
	11088	3 SI	DL	$- \frac{T^2}{-}$	4 DT0	210	18	ň	48	21	182	2.3	15	0.3	1300
	11188	3 SI	DL		4 DIO	אכ י תים	20	ň	49	19	176	1.4	17	0.3	1200
	11388	3 SI	DL		4 DT4	0 P	· 20	ň	51	29	184	1.8	17	0.3	1300
	11488	3 SI	[DL	, т	4 DT4	51	4.7	~							

.

-

L.

. .

•

.

-

-

.

.

•

•

• • •

•

.

.

	11500		n.	.		~	~ ~	~								
	11588	51	ու	T4	DT4	SR	20	U	47	19	178	1.5	13	0.3	1200	
	11688	SI	DL	T4	DT4	SR	30	0	40	19	135	1.5	13	0.3	1200	
	11888	SI	DL	T4	DT4	SR	50	0	47	20	165	1.6	12	0.3	1100	
	11988	SI	DL	T4	DT4	SR	25	0	38	20	128	1.3	18	0.3	1200	
	12088	SI	DL	Т4	DT4	SR	15	0	45	21	156	1.4	12	0.2	1200	
	12188	SI	DL	Т4	DT4	SR	40	0	56	18	148	1.4	13	0.2	1100	
	12288	ST	DI.	т4	DT4	SR	5	ō	51	19	180	1 5	17	0.2	1100	
	12388	ST	DI.	- T 4 - T 4		CD	15	ň	20	10	120	1 2	1 2	0.2	1200	
	12300	OT CT	דם		014	OR CD	20	0	10	19	139	1.2	13	0.5	1200	
	12400	OT OT		A			20	0	40	10	146	1.1	10	0.4	900	
	12000	31		T4	DTZ	SK	30	0	41	16	138	1.2	12	0.3	900	
	12688	51		- T4	DT2	SR	10	0	41	16	139	1.1	12	0.3	900	
	12/88	SI		T4	DT2	SR	45	0	42	17	147	1.1	13	0.2	900	
	12888	SI	DL	Τ4	DT2	SR	15	0	41	16	144	1.1	12	0.3	800	
	12988	SI	DL	Т4	DT2	SR	20	0	50	20	188	1.2	14	0.3	900	
	13088	SI	DL	T4	DT1	SR	15	1	86	30	360	2.2	13	0.4	1100	
	13188	SI	\mathtt{DL}	T4	DT1	SR	10	0 (88	32	352	2.1	21	0.4	1100	
	13288	SI	DL	T4	DT1	SR	20	0	94	33	421	2.7	22	0.4	1100	
	13388	SI	DL	Т4	DT1	SR	35	1	97	32	403	2.4	23	0.5	1200	
	13488	SI	DL	Т4	DT1	SR	15	ō	95	32	341	2.3	19	0.3	1100	
	13588	SI	DL.	T 7	TT4	SR/I	 D5	ō	37	21	184	1.1	21	0.2	1100	
	13688	ST	DL	- 	ጥጥ4	SR/I	010	ŏ	36	21	166	1 9	24	0.2	1100	
	13788	ST	<u>.</u>	.	ጥጥለ	SP/1		õ	37	21	177	2.2	24	0.3	1200	
	13888	ST.		TT7	TT4	CD /1		õ	20	24	171	2.5	20	0.5	1200	
	12022	CT CT		- 1 / m7		- 0771 - 67771		0	20	21		1.9	22	0.3	1200	
	14000	GT GT		1/ መግ			D40	0	30 25	22	100	2.0	24	0.3	1200	
	14000	01 CT		T7 07	114 mm4		D12	1	35	29	1/8	2.1	21	0.2	1100	
	14188	51		T7	TT4	SR/I	012	1	35	21	165	2.1	26	0.3	1200	
	14288	SI	ЪГ	T7	TT4	SR/I	520	0	38	21	153	1.9	22	0.2	1400	
	14388	SI		T7	114	SR/I	5	0	36	25	161	1.9	22	0.3	1300	
	14488	SI	DL	T 7	TT4	SR/I	015	0	37	20	154	1.7	20	0.3	1300	
	14588	SI	DL	Т7	TT4	SR/I	D15	0	36	19	152	2.1	19	1.0	1300	
	14688	SI	DL	Т7	TT4	SR/I	20	0	39	27	163	1.9	21	0.7	1100	
	14788	SI	\mathbf{DL}	Т7	TT4	SR/I	010	0	38	20	161	1.9	21	0.6	1200	
	14888	SI	\mathtt{DL}	Т7	TT4	SR/I	020	0	45	22	161	1.9	23	0.7	1100	
	14988	SI	\mathtt{DL}	T7	TT4	SR/I	015	0	39	21	147	1.9	22	0.6	1200	
	15088	SI	DL	T 7	TT4	SR/I	020	0	39	19	149	1.7	21	0.6	1200	
	15188	SI	DL	Т7	TT4	SR/I	025	0	38	21	152	1.8	22	0.4	1100	
	15288	SI	DL	T 7	TT4	SR/I	20	0	37	26	139	1.8	22	0.4	1200	
	15388	SI	DL	Т7	TT4	SR/I)55	0	39	23	152	1.9	26	0.4	1200	
	15488	SI	\mathbf{DL}	Т7	TT4	SR/I	00	Ō	39	22	147	2.0	28	0.4	1200	
	15588	ST		T 7	TT4	SR/I	010	õ	38	21	145	1.6	21	0.8	1300	
	15688	ST	DT.	יב. דיד	TT4	SR/C	010	ñ	40	23	143	1 8	18	0.6	1200	
	15788	ST	DI.	Ψ7	ጥጥል	SP/r)5	ñ	40	22	150	1 7	20	0.0	1200	
	15888	ST		т, т,	ጥጥለ	CD/T	116	ñ	40	20	140	17	20	0.0	1100	
	15099	CT	דת	- 1 / m7	114 114		10	0	40	20	140	1.0	22		1100	
	16099	OT OT	DL	1/	114	OR/L	10	0	42	20	120	1.0	23	0.5	1100	
~	16100	ST ST		17	114	OR/L	12	0	40	21	138	1.7	22	0.0	1100	
•	10100	51		T7	TT4	SK/L	10	0	39	23	143	1.5	22	0.4	1100	
	10799	9T	ᄓᄂ	1/	TT4	SR/D	10	U	40	23	151	1.5	26	0.4	1200	
	10388	SI	DL	17	TT4	SR/D	15	0	40	20	140	1.7	23	0.6	1300	
	16488	SI	DL	Т7 ——	TT4	SR/D	0	D	40	23	154	1.8	23	0.6	1200	
	16588	SI	\mathtt{DL}	Т7	TT4	SR/D	0	0	39	20	143	2.0	22	0.4	1100	
	16688	SI	DL	T7	TT4	SR/D	0	0	38	20	139	1.5	23	0.7	1100	
	16788	SI	DL	T7	TT4	SR/D	5	0	39	20	141	1.8	21	0.4	1100	
	16888	SI	DL	Т7	TT4	SR/D	5	0	38	20	142	1.9	23	0.4	1400	
	16988	SI	\mathbf{DL}	Т7	TT4	SR/D	0	0	41	20	142	1.3	26	0.4	1600	

e - 1

								•						
	17088	ST	DL	T7 TT4	SR/	'D0	0	39	22	127	1.6	22	0.4	1500
	17188	ST	DT.	ጥ ን ጥጥ 4	SR/	/D0	ō	42	23	136	1.5	17	0.4	1500
	17288	ST		<u> </u>	SR/	010	ĩ	44	27	143	1.4	17	1.0	1500
	A1 00	CT CT	<u>л</u> т	T / TT -	CD	10	ñ	55	20	192	1 4	15	0.4	1100
	01 88	ат ст	л. Т		CD CD	16	ŏ	51	20	197	1 1	14	0.4	1100
	02 88	51	AU	T4 DT3	SR	10	õ	51	21	240	1 2	17	0.4	1100
	03 88	51	AJ	T4 DT3	SK	10	0	59	21	240	1.2	15	0.0	1100
	04 88	S 1	AJ	T4 DT3	SR	15	0	58	21	204	1.4	15	0.4	1100
	05 88	SI	AJ	T4 DT3	SR	0	0	60	20	202	1.3	17	0.4	1000
	06 88	SI	AJ	T4 DT3	SR	20	1	53	20	190	1.5	14	0.4	1000
	07 88	SI	AJ	T4 DT3	SR	5	0	64	21	281	1.2	19	0.4	1000
	08 88	SI	AJ	T4 DT3	SR	0	0	83	23	293	1.8	25	0.6	1200
	09 88	SI	AJ	T4 DT3	SR	5	0	81	23	280	1.6	24	0.5	1100
	10 88	SI	AJ	T4 D T 3	SR	0	0	85	24	302	1.9	27	0.6	1100
	11 88	SI	ЪJ	T4 DT3	SR	30	0	77	24	270	1.8	22	0.8	1100
	12 88	ST	A.T	T4 DT3	SR	10	0	78	25	271	1.7	25	0.5	1100
	01 88	ST	D.T	S3 UT1	SR	10	1	30	19	116	0.5	20	0.9	1500
	07 88	GT	D.T	53 UT1	SP	5	ō	38	19	240	0.9	20	0.9	2900
	02 00	CT CT		82 UT1	CD	0	ŏ	44	10	240	ng	19	1.1	1700
	03 88	31 GT	D0			5	õ	44	10	174	0.0	17	1 2	2300
	04 88	SI	רת	S3 UT1	SK	2	0	38	19	1/4	1.9	10	1 1	2500
	05 88	SI	DJ	S3 UT1	SR	5	0	40	19	282	1.0	19	1.1	2500
	06 88	SI	DJ	SI UTI	SR	10	1	35	19	190	0.8	19	0.8	2600
	07 88	SI	\mathbf{DJ}	S1 UT1	SR	5	0	40	20	183	0.8	18	1.0	3000
	08 88	SI	\mathbf{DJ}	S1 UT1	SR	0	0	39	17	180	0.8	20	1.1	2700
	09 88	SI	\mathbf{DJ}	S1 UT1	SR	5	0	38	19	172	0.9	19	0.8	2000
	10 88	SI	\mathbf{DJ}	S1 UT1	SR	15	0	35	18	171	1.1	16	1.3	1700
	11 88	SI	\mathbf{DJ}	S1 UT1	SR	0	0	38	19	188	0.9	19	1.2	1200
	12 88	SI	DJ	S1 UT1	SR	0	0	47	19	242	0.7	16	1.4	17200
	13 88	ST	DJ	S1 UT1	SR	25	0	48	22	240	0.8	18	2.3	2400
	14 88	ST	DJ	S1 UT1	SR	20	Ō	39	19	205	1.0	19	1.1	3400
	15 88	ST	D.T	S1 UT1	SR	20	õ	41	19	186	0.9	16	1.7	2500
	16 88	ST.	D.T	SI UTI	SR	45	õ	37	19	184	1.2	18	0.8	4500
	17 00	CT.		81 UT1	CD.	10	õ	41	19	188	0.8	18	1.2	1900
	10 00	OT OT			CD OL	20	ŏ	36	10	185	1 1	20	0.9	4100
	10 00	51			20	20	0	50	20	242	2 4	ົ້າ	0.6	1300
	19 88	SI	00	SI UTI	SK	2	0	22	20	243	2.14	10	0.0	1500
	20 88	SI	DJ	SI UTI	SR	35	U	37	19	206	2.0	17	1 1	1000
	21 88	SI	DJ	S1 UT1	SR	645	1	37	18	189	1.3	1/	T•T	2000
	22 88	SI	DJ	S1 UT1	SR	5	0	36	19	187	1.4	17	0.8	2700
	01 88	SI	\mathbf{JP}	T7 TT5	SR	40	0	41	19	200	1.3	20	0.7	3400
	02 88	SI	JP	T7 TT5	SR	10	0	41	18	202	1.3	17	0.6	1400
	03 88	SĨ	\mathbf{JP}	T7 TT5	SR	5	0	35	18	241	2.0	16	0.5	1200
	04 88	SI	JP	T7 TT5	SR	15	0	41	20	243	2.1	14	0.7	1200
	05 88	SI	JP	T7 TT5	SR	20	1	36	24	262	2.3	14	0.7	1300
	06 88	SI	JP	T7 TT5	SR	20	0	41	22	208	2.3	18	0.9	1400
	07 88	ST	TP	ጥን ጥጥ5	SR	15	0	36	12	197	2.2	15	0.7	1400
	0, 00	GT.	TD	<u> </u>	SP	5	õ	35	20	201	2.5	16	0.4	1300
x		CT.	TD	<u>መን ጥጥ</u> ፍ	CD	5	ň	31	18	189	2.1	15	0.5	1500
	10 00	OT OT		17 113 m7 mm6	CD	5	õ	32	10	202	1 2	18	0.4	1700
	11 88	51	J.P TD	17 TTO ma mmc	OR	16	~	32 31	10	100	2 0	17	0 7	1600
	11 88	ST	75	T/ TT5	SK	7.D	1	31	10	105	2.0	11	0.7	1200
	12 88	SI	JP	T7 TT5	SR	35	1	34	18	792 192	2.5	14	1 1	1200
	13 88	SI	JP	T7 TT5	SR	40	1	34	19	208	2.5	1 D	1.1 . 7	T200
	14 88	SI	JP	T7 TT5	SR	5	0	35	17	206	2.5	17	0.7	1100
	15 88	SI	JP	T7 TT5	SR	5	0	33	18	192	2.2	17	1.1	1100
	16 88	SI	\mathbf{JP}	T7 TT5	SR	40	0	36	19	185	2.2	17	1.3	1200
	17 88	SI	\mathbf{JP}	T7 TT5	SR	10	0	36	18	230	2.4	22	1.1	1100

	1 2 3 4 5 6 7 8 9 10 11 12	90 90 90 90 90 90 90 90 90 90	SI SI SI SI SI SI SI SI SI	BN BN BN BN BN BN BN BN BN BN BN	T7 T7 T7 T7 T7 T7 T7 T7 T7 T7 T7	TT6C TT6C TT6C TT6C TT6C TT6C TT6C TT6C	SR SR SR SR SR SR SR SR SR SR SR SR	40 0 325 0 20 165 0 0 0 0 0 0		30 35 30 45 35 46 34 30 36 30 32 33 32	36 18 21 25 22 11 15 12 11 6 30 2 2	112 131 150 154 121 205 138 130 150 145 126 109			
	14	90	SI	BN	T7	TT6C	SR	40	õ	35	15	106			
	16	90 90	SI	BN	т7 Т7	TT6C	SR	50	0	39	20	141			
	30	90	SI	BN	S2	UT2	SR/	DO	0						
	31	90	SI	BN BN	52	UT2 IPT2	SR/	D0 D0	0						
	33	90	SI	BN	52 S2	UT2	SR/	D0	õ						
	1	90	SI	HC	S 1	UT1	SR	0	0	23	7	92			
	2	90	SI	HC	S1	UT1	SR	0	0	26	8	120			
	3	90	SI	HC	S1	UT1	SR	0	0	37	7	120			
	4 5	90	SI	нс	ግን ጥን	TTOD TT6B	SR	25 140	0	35 46	34	122			
	6	90	SI	HC	T 7	TT6B	SR	70	ŏ	61	25	184			
	7	90	SI	HC	T7	TT6B	SR	20	0	44	16	162			
	8	90	SI	HC	Т7	TT6B	SR	0	0	39	16	111		_	
	1	90	SI	EK	T7	TT1	SR/	D0	1	106	10	925		2	62
	2	90	81 87	EK VV	Τ7 Ͳ7	1"1"1 1000 1	SR/	D0 D0	1	101 54	10	938 680		у 2	30
	د ۷	90	ST	EK	17 T7	፲፲፲ ፲	SR/		õ	45	16	319		2	34
	5	90	SI	EK	T 7	TT1	SR/	D0	õ	51	8	413		4	34
	6	90	SI	EK	S2	UT2	SR/	D0	0	23	11	71		2	16
	7	90	SI	EK	S2	UT2	SR/	DÛ	0	26	11	82		3	20
	8	90	SI	EK	S2	UT2	SR/	DO	0	25	15	90		2	21
	1 2	90	KX DV	BN	51 C1	MTN	SK CD	0	0						
	3	90	RX	BN	S1	MTN	SR	õ	ŏ						
	5	90	RX	BN	S 1	MTN	SR	0	0						
	6	90	RX	BN	S1	MTN	SR	0	0						
	7	90	RX	BN	S1	MTN	SR	0	0						
	8	90	KX DV	BN	ST C1	MUN	SR CD	0	0						
	9 10	90	RX	BN	S2		SR/	ο	0				. •		
•	11	90	RX	BN	S2	UT2	SR/I	D0	õ						
	12	90	RX	BN	S2	UT2	SR/I	D0	0						
	13	90	RX	BN	S2	UT2	SR/I	DO	0						
	14	90	RX	BN	S2	UT2	SR/	D0	0						
	15 16	90 90	KX PY	BN RN	52	012 11172	SR/1		0						
	1	90	RX	CC	S1	UT1	SR	0	ŏ						
	2	90	RX	cc	51	UT1	SR	ō	ō						
	4	90	RX	сс	S 1	UT1	SR	0	0	-					

	5	90	RX	CC	S1	UT1	SR	0	0			
	6	90	RX	cc	S1	UT1	SR	0	0			
	7	90	RX	CC	S1	UT1	SR	0	0			
	8	90	RX	cc	S1	UT1	SR	0	0			
	9	90	RX	cc	S1	UT1	SR	0	0			
	10	90	RX	cc	S1	UT1	SR	0	0			
	11	90	RX	CC	S2	MTN	SR	0	0			
	12	90	RX	cc	S2	MTN	SR	0	0			
	13	90	RX	cc	S2	MTN	SR	0	0			
	14	90	RX	cc	S 2	MTN	SR	0	0			
	15	90	RX	cc	S2	MTN	SR	0	0			
	16	90	RX	CC	S 2	MTN	SR	0	0			
	17	90	RX	cc	S2	MTN	SR	0	0			
	18	90	RX	CC	S2	MTN	SR	0	0			
	19	90	RX	CC	S2	MTN	SR	15	0			
	20	90	RX	CC	S 2	MTN	SR	10	0			
	21	90	RX	CC	S2	MTN	SR	0	0			
	1	90	RK	EΚ	T4	5MTN	SR	0	0	18	26	55
	2	90	RX	EΚ	T4	5MTN	SR	0	0	9	8	32
	3	90	RX	EK	T4	5MTN	SR	0	0	19	10	57
	4	90	RX	EΚ	T4	5MTN	SR	0	0	12	9	36
	5	90	RX	EK	T4	5MTN	SR	0	0	9	6	24
	6	90	RX	EΚ	T4	5MTN	SR	0	0	10	19	51
	7	90	RX	EK	T4 !	5MTN	SR	0	0	10	19	51
	8	90	RX	EK	T4 !	5MTN	SR	0	0	27	38	70
	9	90	RX	EK	T4 !	5MTN	SR	0	0	21	15	61
	10	90	RX	EK	T4	5MTN	SR	0	0	10	8	44
	11	90	RX	EK	T4:	5MTN	SR	0	0	20	9	73
	12	90	RX	EK	T4:	5MTN	SR	0	0	28	8	75
	13	90	KX DV	EK	T7	MTN	SK/I		0	21	3 1 C	70
	14	90	KA DV	EK	T7 m7	MIDN	SR/I	20	0	ć	0	64 64
	10	90	RA DV	EN Trv	177 m7	PLEN	SR/1	20	0	20	0 12	110
	17	90	KA DV	er Tv	±/	MODI	OR/1		0	20	1	18
	10	90	TA DV	er Fr	17 177	MTN	SR/1	1001	31	49	295	40
	10	90 00	DV	EK FK	2	2	2	25	1	31	25	59
	20	90	DY DY	EK	;	· 2	· ·	25	2	22	35	28
	20	90	RX RX	EK	;	· >	• >	120	7	41	112	63
	22	90	RX	EK	?	?	?	60	3	49	27	63
	23	90	RX	EK	?	?	?	25	2	14	80	35
	24	90	RX	EK	?	?	?	0	1	43	20	238
	25	90	RX	EK	?	?	?	Ō	4	30	27	245
	26	90	RX	EK	?	?	?	30	0	8	8	158
	27	90	RX	EK	?	?	?	0	0	8	15	127
	28	90	RX	EK	?	?	?	50	0	6	17	39
3	29	90	RX	EK	?	?	?	0	1	78	21	878
	30	90	RX	EΚ	?	?	?	0	0	20	14	66
	31	90	RX	ΕK	?	?	?	0	0	16	5	96
	32	90	RX	EΚ	?	?	?	0	3	9	39	54
	33	90	RX	ΕK	?	?	?	0	0	28	6	38
	34	90	RX	EK	?	?	?	0	1	10	24	31
	35	90	RX	EK	?	?	?	0	3	10	136	302
	36	90	RX	EK	?	?	?	0	1	15	22	20
	37	90	RX	ΕK	?	?	?	0	2	10	32	42

38	90	RX	EK	?	?	?	0	0	7	9	33
39	90	RX	EK	?	?	?	10	0	20	13	43
40	90	RX	EK	?	?	?	5	0	8	19	17
1	90	RX	PA	S1	UT1	SR	0	0	•		
2	90	RX	PA	S1	UT1	SR	10	0			
3	90	RX	PA	S 1	UT1	SR	0	0			
4	90	RX	PA	S 1	UT1	SR	0	0			
5	90	RX	PA	S1	UTI	SR	0	0			
6	90	RX	PA	S1	UT1	SR	0	0			
7	90	FL	PA	S1	UT1	SR	0	0			
8	90	\mathbf{FL}	PA	S1	UT1	SR	0	0			
9	90	\mathbf{FL}	PA	S1	UT1	SR	0	0			
10	90	\mathbf{FL}	PA	S1	UT1	SR	0	0			
11	90	RX	PA	T7	TT6B	D/SF	20	0	13	1	30
12	90	RX	PA	Т7	TT6B	D/SF	10	0	6	7	27
13	90	RX	PA	T7	TT6B	D/SF	R1001	11	57	175	33
14	90	RX	PA	T 7	TT6B	D/SF	20	0	23	12	57
15	90	RX	PA	T 7	TT6B	D/SF	15	0	23	13	47
16	90	RX	PA	Т7	TT6B	D/SF	20	0	20	17	47
17	90	RX	PA	T 7	TT6B	D/SF	15	2	60	768	86
18	90	RX	PA	Т7	TT6B	D/SF	240	0	23	18	83
19	90	RX	PA	T7	MTN	D/SF	230	0	13	10	56
20	90	RX	PA	Т7	MTN	D/SF	10	0	7	4	29
21	90	RX	PA	T7	MTN	D/SF	20	0	8	13	44
22	90	RX	PA	Т7	MTN	D/SF	15	0	9	26	68
23	90	RX	PA	S2	MTN	D	0	0	•		
24	90	RX	PA	S2	MTN	D	0	0			
25	90	RX	PA	S 2	MTN	D	0	0			
26	90	RX	PA	S2	MTN	D	0	0			
27	90	RX	PA	S2	MTN	D	0	0			
28	90	RX	PA	S2	MTN	D	0	0			
29	90	RX	PA	S2	MTN	D	0	0			
30	90	RX	PA	S2	MTN	D/SR	10	0			
31	90	RX	PA	S2	MTN	D/SF	0	0			
32	90	RX	PA	S2	MTN	D/SF	0	0			
33	90	RX	PA	S2	UT2	SR/D	0	0			
34	90	RX	PA	S2	UT2	SR/D	0	0			
35	90	RX	PA	S2	UT2	SR/D	ю	9			
36	90	RX	PA	S2	UT2	SR/D	0	0			
37	90	RX	PA	?	?	?	0	0			
38	90	RX	PA	?	?	?	0	0			

• •

.

APPENDIX II

ANALYSIS OF 1987-90 GEOCHEMICAL SAMPLING PROGRAM ON TREATY CREEK GRP

e -

.

.

.

Note that the anomalies listed were defined as discussed in the text into 3 categories, A, B, & C which are different for each element.

NO	YR	MAT	SPR	CL	TOPO	GEO	AU	AG	CU	PB	ZN	SB	AS	HG	BA
01	87	\mathbf{FL}	?	S2	UT2	SR	с			A		с		С	
02	87	\mathbf{FL}	?	S2	UT2	SR		В		A	С	А		С	
03	87	FL	?	S2	UT2	SR						В	A		A
04	87	FL	?	\$2	UT2	SR		А		A	С	A		А	
05	87	FL	?	S2	UT2	SR			А						
06	87	FL?	?	S2	UT2	SR									С
07	87	RX?	?	S2	UT2	SR								С	
. 08	87	RX	?	S2	UT2	SR									
01	87	RX	?	S 3	UT2	SR					С				
02	87	RX	?	S3	UT1	SR				С	С				
03	87	RX	?	S3			-			С	С				
04	87	${\tt FL}$	G	S1	MTN	\mathbf{FL}	В	С	A	A	В			С	
01	87	FL	?	S1	MTN	${f FL}$		С						С	
02	87	RX	?	Т7	MTN	D							С		
05	87	RX	?	Т7	TLT6	SR									
01	87	RX	?	T 7	TLT6	SR				В	В		A	с	
02	87	RX	?	T 7	TLT6	SR					C			С	
06	87	RX	?	Т7	TLT6	SR								С	
08	87	RX	?	$\mathbf{T7}$	TT4	SR/D)								
09	87	RX	?	$\mathbf{T7}$	TT4	SR/D)								
10	87	RX	?	Τ7	TC	SR/C	}							_	
11	87	RX	?	Τ7	TC	SR								С	
1	87	RX	?	T4			•		-					_	_
04	87	RX	?	ТЗ	\mathbf{TL}	SR		С	A	A	В	С		С	A
1	87	RX	?	ΤЗ	TL	SR									
1	87	RX	?	T2											
01	87	RX	?	T6	TC	SR									
1	87	RX	?	T5	MTN	D							_		
2	87	RX	?	T5	MTN	D/BC	-						В		
3	87	RX	?	Т5	MTN	D/BC	-								
4	87	RX	?	T 5	MTN	D/BC	,								
5	87	RX	?	T 57	' TT1	D									
6	87	RX	?	T 57	' TT1	SR/D	•								
7	87	RX	?	T 57	TT1	SR/D	1			-	С			~	
8	87	RX	?	Т5	TC	SR/D	I	_		C	_	В		C	A
1	87	SI	2	S2	UT2	SR/D	1	C		A	C	A		- C	•
2	87	SI	?	S2	UT2	SR/D	t					C		- 0	A
3	87	SI	2	S2	UT2	SR/D								•	
01	87	SI	?	S3	UR	SR								-	
02	87	SI	?	S3	UT1	SR								•	
03	87	SI	?	S3	UT1	SR								•	
04	87	SI	?	S3	UT1	SR								•	
05	87	SI	3	S 3	UR	SR								-	

	06	87	SI	?	S 3	UR	SR
	02	87	SI	?	S 4	UR	SR
	03	87	SI	?	S4	UR	SR
	04	87	SI	?	S4	UT3	SR
	05	87	ST	?	S4	UR	SR
	01	97	ST	?	Т2 Т2		
	01	07	CT.	2	ሞን		
	01	07	CT.	÷	т.) Т.)		
	02	07	OT CT	· ·	ш. Д		
	03	87	DI CT	ว	T 2		
	04	87	SI	:	TJ mp		
	07	87	SI	:	T.3		съ
	01	87	SI	2	T4	DT3	SK CD
	02	87	SI	ź	T4	DT4	SK
	03	87	SI	÷	T4		SR
	04	87	SI	?	T4	DT5	SR
	05	87	SI	?	Т4	DT6	SR
	01	87	SI	?	T 5	ST3	SR/D
	02	87	SI	?	T5	?	D?
	.03	87	SI	?	T5	?	D?
	04	87	SI	?	T 5	?	D?
	05	87	SI	?	T5	TT1	SR/D
	06	87	SI	?	Т5	TC	SR/D
	01	87	SI	?	T6	TC	SR
	02	87	SI	?	T6	TC	SR
	03	87	ST	?	Т6	TT9	SR
	04	87	ST	?	т6	TT9	SR
	05	87	ST	?	Τ6	TC	SR
	05	87	ST	?	T 6	TC	SR
	00	07	CT	;	т 7 7 7	TT.6	SR
	0.3	07	CT.	·	т7 Т7	TT4	SR
	04	07	OT OT		т, т,	፲፲ ፻	SD
	05	07	DI DI		1/	114 . MM7	CD
	05	87	SI GT	· ·	- T70		OR CD
	05	87	SI	ŕ	51	MUIN	DR DD
	06	87	SI		SI	MIN	SR
	07	87	SI		S1	MTN	SR
	01	88	RX	KK	$\mathbf{T4}$	MTN	SR
	02	88	RX	KK	$\mathbf{T4}$	MTN	SR
	03	88	RX	KK	Т4	MTN	SR
	04	88	RX	KK	T4	MTN	SR
	05	88	RX	KK	T4	MTN	SR
	06	88	RX	KK	T4	MTN	SR
	07	88	RX	KK	T4	MTN	SR
	08	88	RX	KK	S1	MTN	SR
	09	88	RX	KK	S1	MTN	SR
	10	88	RX	KK	S 3	MTN	SR
`	11	88	RX	кк	S2	MTN	SR
	12	88	RX	КК	S2	MTN	SR
	12	88	RX	KK	<u>S2</u>	MTN	SR
	11	20 22	RY	KK	S2	MTN	SR
	16	go	PY	KK	52	MTN	SR
	14	00	DV	KK VIV	52	MTN	SR
	17	00	AA DV	NN VV	04 CJ	MUN	SP
	17	00	КЛ DV	AA VV	04	MUNT LTTN	CD
	18	88	KX	KK	52	PTTN	
	19	88	RX	KK	S2	MTN	SR

₽---►--

•

F

-

.

.

,

.

-

.

.

.

.

A

A

. A

•

.

С

Α

В

A

С

_ _

C -----

В

	20	00	DΥ	VV CO	MTIN	SP								
	20	00	RA DV	KK JZ	MUTIN	CD								
	21	88	RX	KK 54	MUN	DR CD								
	22	88	RX	KK SZ	MTN	SK								
	23	88	RX	KK SI	MTN	SR								
	24	88	RX	KK S1	MTN	SR		_	•	•		2	ъ	
	56	88	\mathbf{FL}	DL T7	\mathbf{TC}	D/BC	A	В	A	A	A	A	D	
	66	88	\mathbf{FL}	DL T7	TC	D/BC								
	67	88	\mathbf{FL}	DL T7	TC	D/BC			•	В				
	68	88	\mathbf{FL}	DL T7	TC	D/BC	Α	Α	Α	А	A	А	Α	
	72	88	FI.	DL T7	ТC	D/BC			Α	С			В	
	73	88	FL		ΤĊ	D/BC	A	В						С
	71	88	FT.		TC	D/BC	A	В		В			Α	
	112	00	FI.		ΨĊ	D/BC			с					
	112	00	F LI DV						B					
	11/	88	KA GT		- IC 				1					
	01	88	SI	AH T7	112	SR/D								
	02	88	SI	AH T7	TTZ	SR/D								
	03	88	SI	AH T7	TT2	SR/D								
	04	88	SI	АН Т7	TT2	SR/D								
	.05	88	SI	AH T7	TT2	SR/D								
	06	88	SI	AH T7	TT2	SR/D								
	07	88	SI	AH T7	TT2	SR/D								
	08	88	SI	АН Т7	TT2	SR/D								
	09	88	ST	AH T7	TT2	SR/D								
	10	88	ST	AH T7	TT2	SR/D								
	11	00	GT .	አዘ ጥ7	TT2	SR/D								
	10	00	CT CT	אם היו אים של		SR/D								
	12	80	31											
			CT	XU 11/1										
	13	88	SI	AH T7	TT2	SR/D								
	13 14	88 88	SI SI	AH T7 AH T7	TT2 TT2	SR/D SR/D								
	13 14 15	88 88 88	SI SI SI	AH T7 AH T7 AH T7	TT2 TT2 TT2	SR/D SR/D SR/D								
	13 14 15 16	88 88 88 88	SI SI SI SI	AH T7 AH T7 AH T7 AH T7	TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D								
	13 14 15 16 17	88 88 88 88 88	SI SI SI SI SI	AH T7 AH T7 AH T7 AH T7 AH T7 AH T7	TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D				A				
	13 14 15 16 17 18	88 88 88 88 88 88 88	SI SI SI SI SI SI	AH T7 AH T7 AH T7 AH T7 AH T7 AH T7 AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D				A				
	13 14 15 16 17 18 19	88 88 88 88 88 88 88 88	SI SI SI SI SI SI	AH T7 AH T7 AH T7 AH T7 AH T7 AH T7 AH T7 AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D			-	A				
	13 14 15 16 17 18 19 20	88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI	AH T7 AH T7 AH T7 AH T7 AH T7 AH T7 AH T7 AH T7 AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D				A				
	13 14 15 16 17 18 19 20 21	88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	с			A				
	13 14 15 16 17 18 19 20 21 22	88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	С			A				
	13 14 15 16 17 18 19 20 21 22 23	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	с			A				
	13 14 15 16 17 18 19 20 21 22 23 24	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	с			A				
	13 14 15 16 17 18 19 20 21 22 23 24 25	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	С		C	A		 	А	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C		C	A C C		 c	AB	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A A B		C	A C C C		 c c	A B A	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A A B C		c	A C C C B		 c c c	A B A A	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI	AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C		c	A C C B		 c c c c c c c	A B A C	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI	AH T7 AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A		C	A C C B		 c c c c	A B A C	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI	AH T7 AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A		C	A C C B		 c c c c	A B A C	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T7	TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2 TT2	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A		c	A C C B		 c c c c	A B A C	
	13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T7	$\begin{array}{c} TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2$	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A		c	A C C B		 C C C C C C	A B A C	
	13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T7	$\begin{array}{c} TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2$	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A		c	A C C B		 c c c c	A B A C	
•	13 14 15 16 17 18 20 22 23 24 25 27 29 30 12 33 34	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T7	$\begin{array}{c} TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2\\ TT2$	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A	·	c	A C C B		 c c c c	A B A C	
	13 14 15 16 17 18 20 22 23 25 27 29 30 12 33 23 33 35	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T7	$\begin{array}{c} \mathbf{TT2}\\ \mathbf{TT6}\\ \mathbf{TT6}\\$	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A		C	A C C B C		 c c c c	A B A C B	
	13 14 15 16 17 18 20 22 23 24 26 7 8 90 12 31 23 34 56 36	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T7	$\begin{array}{c} \mathbf{TT2}\\ \mathbf{TT6}\\ \mathbf{TT6}\\$	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A B C A		c	A C C B C		 c c c	A B A C B	
	13 14 15 16 17 18 20 22 23 24 26 7 28 20 12 33 34 56 37	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T6	TT2 TT22 TT22 TT22 TT22 TT22 TT22 TT22	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A A B C A C	· ·	C	A C C B C		 c c c	A B A A C B C	
	13 14 15 16 17 18 20 22 23 24 26 7 28 20 12 33 34 56 7 8	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH T7 AH T6 AH T6 AH T6 AH T6 AH T6	TT222222222222222222222222222222222222	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A A B C A C	· ·	c	A C C B C		 c c c c	A B A A C C	
	13 14 15 16 17 18 20 22 23 25 27 28 20 12 33 35 37 80 312 33 35 37 80	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH $T7$ AH $T6$ AH $T6$ AH $T6$	TT222222222222222222222222222222222222	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A A B C A C C	·	c	A C C B C		 c c c c c c c c c	ABAAC BCCC	
	13 14 15 16 17 18 20 22 23 25 27 28 20 31 23 34 35 67 89 20 33 34 56 78 90	88 88 88 88 88 88 88 88 88 88 88 88 88	SI SI SI SI SI SI SI SI SI SI SI SI SI S	AH $T7$ AH $T6$ AH $T6$ AH $T6$ AH $T6$	TT22222222222 TT22222222 TT2222222 TT222222	SR/D SR/D SR/D SR/D SR/D SR/D SR/D SR/D	C A A B C A C C	Å	c	A C C B C		 c c c c c c c c c c c c c c c c c	ABAAC BCCCC	

41	88	SI	AH T7	TL6	SR
42	88	SI	AH T7	TL6	SR
43	88	SI	AH T7	TL6	SR
44	88	SI	AH T7	TL6	SR
45	88	SI	AH T7	TL6	SR
46	88	SI	AH T7	TL6	SR
43	88	ST	AH T7	TL6	SR
48	88	ST	AH T7	TL6	SR
10	88	ST	АН Т7	TL6	SR
50	88	ST	AH T7	TL6	SR
50	88	ST	AH T7	TL6	SR
51	00	CT	እዘ ጥ7	TL6	SR
52	90	GT	እዘ ጥ7	TL6	SR
55	00	CT.	ΔΗ 117	TT.6	SR
24 EE	00	OT OT	አህ ጥ7	тт.6	SR
55	88	51 51		TIG	SP
56	88	51		100 100	CD
57	88	SI	AH 17	TLO	CD
58	88	51	AH T/	TLO	SK
.59	88	SI	AH T/	TLO	SR CD (D
60	88	SI	AH S3	012	SRID
61	88	SI	AH S3	012	SR/D
62	88	SI	AH S3	012	SR/D
63	88	SI	AH S3	UT2	SR/D
64	88	SI	AH S3	UT2	SR/D
65	88	SI	AH S3	UT2	SR/D
66	88	SI	AH 53	UT2	SR/D
67	88	SI	AH S3	UT2	SR/D
68	88	SI	AH S3	UT2	SR/D
69	88	SI	AH S3	UT2	SR/D
70	88	SI	AH S3	UT2	SR/D
71	88	SI	AH S3	UT2	SR/D
72	88	SI	AH S3	UT2	SR/D
73	88	SI	AH S3	UT2	SR/D
74	88	SI	AH S3	UT2	SR/D
75	88	SI	AH S3	UT2	SR/D
76	88	SI	AH S3	UT2	SR/D
77	88	SI	AH S3	UT2	SR/D
78	88	ST	AH S3	UT2	SR/D
79	88	ST	AH S3	UT2	SR/D
80	88	ST	AH S3	UT2	SR/D
91 91	88	ST	AH S3	UT2	SR/D
01	88	ST	AH S3	UT2	SR/D
02	00	ST.	AH 53	11172	SR/D
- 0-5	00	CT.	AH S3	UT2	SR/D
04	00	CT.		1172	SR/D
00	00	GT	AH 53	tim2	SR/D
00	00	OI CT	VH CJ	1172	SR/D
87	00	от 51	70 CJ	11172	SR/D
88	88	51	- AH DJ - NU CO	11112	SRID
89	88	51 CT	AN 53	ביתון ו	SP/D
90	88	21	AD DJ	כרחיד י	מןאט
91	88	51	AH 53		00/D
92	88	51	An SJ		יין אט
93	88	SI	AH 52		OK/U CD/D
94	88	SI	AH S2	; UT2	SK/D

С

С

A C

С

	95	88	SI	AH S2	UT2	SR/D	
	96	88	SI	AH S2	UT2	SR/D	
	97	88	SI	AH S2	UT2	SR/D	
	98	88	SI	AH S2	UT2	SR/D	
	99	88	ST	AH S2	UT2	SR/D	
	100	88	ST	AH S2	UT2	SR/D	Α
	101	88	ST	AH S2	UT2	SR/D	
	101	00	ST	AH S2	UT2	SR/D	
	102	00	CT.	AH S2	UT2	SR/D	
	103	00	CT CT	AH SI		SR	
	104	00	GT CT	AH SI		SR	
	105	00	SI CT	NU C1	1172	SR	
	106	88	51		11172	SR	
	107	88	21		1102	CD	
	108	88	SI	AH SI	DME	CD	
	109	88	SI	AH T4	DTO	SK CD	
	110	88	SI	AH T4	DID	SK GD	
	111	88	SI	AH T4	DT5	SR	
	112	88	SI	AH T4	DT5	SR	
	.113	88	SI	AH T4	DT5	SR	
	114	88	SI	AH T4	DT5	SR	
	115	88	SI	AH T4	DT5	SR	
	116	88	SI	AH T4	DT5	SR	
	117	88	SI	AH T4	DT5	SR	
	118	88	SI	AH T4	DT5	SR	
	119	88	SI	AH T4	DT5	SR	
	120	88	SI	АН Т4	DT5	SR	
	121	88	SI	AH T4	DT5	SR	
	122	88	ST	AH T4	DT5	SR	
	122	88	ST	АН Т4	DT5	SR	
	123	00	ST	ΔΗ Τ 4	DT5	SR	
	125	00	CT	λH T4	סידת	SR	
	120	00	GT GT	ан та ан та	DT5	SR	
	120	00	OT OT	אם הע אם הע	DT5	SR	
	127	88	51 67	AΠ 14 λυ Π4	DT5	SR	
	128	88	21			CD	
	129	88	51		210	2	
	130	88	SI	AH :	то	en (n	r
	40	88	SI	DL T7	TC	SR/D	
	41	88	SI	DL T/	TC	SRID	
	42	88	SI	DL T7	TC	SK/D	Ľ
	43	88	SI	DL 17	TT3	SR	
	44	88	SI	DL T7	TT3	SR	
	45	88	SI	DL T7	TT3	SR	
	46	88	\mathbf{SI}	DL T7	TT3	SR	
	47	88	SI	DL T7	TT3	SR	
	48	88	SI	DL T7	TT3	SŔ	
•	49	88	SI	DL T7	TT3	SR	
	50	88	SI	DL T7	TT3	SR	
	51	88	SI	DL T7	TT3	SR	
	52	88	SI	DL T7	тт3	SR	
	53	88	ST	DL T7	TT3	SR	
	54	88	ST	DL T7	TT3	SR	
	57	20	ST	די ד <u>ת</u>	TT3	SR	
	57	20	ST.		 TT3	SR	
	20	00	CT.		ጥጥን	SR	
	57	88	21	ידעט	TTJ	010	

с

C C B

С

-

C C

_ **A**

A B C

С

60	88	SI	DL T7	TT3	SR
61	88	SI	DL T7	TT3	SR
62	88	SI	DL T7	TT3	SR
63	88	SI	DL T7	TT3	SR
64	88	ST	DL T7	TT3	SR
65	22	ST	DI T7	TT3	SR
60	00	ST		TT3	SR
70	00	GT .		ጥጥን	SR
70	00	OT OT		ተተጋ ጥጥን	SR
75	00	OT OT		TT.6	SP
75	00	SI CT	DD 17	TL6	SR
76	88	51		TLG	SP
77	00	51		TLG	SD
78	88	51		אזיד	CD
79	88	51			SR CD
80	88	SI	DL T7	TLO	OK CD
81	88	SI	DL T7	TLO	SK
82	88	SI	DL T/	TLO	SK
83	88	SI	DL T7	TL6	SR
84	88	SI	DL T7	TL6	SR
85	88	SI	DL T7	TL6	SR
86	88	SI	DL T7	TL6	SR
87	88	SI	DL T7	TL6	SR
88	88	SI	DL T7	TL6	SR
89	88	SI	DL T7	TL6	SR
90	88	SI	DL T7	TL6	SR
91	88	SI	DL T7	TL6	SR
92	88	SI	DL T4	DT6	SR
93	88	SI	DL T4	DT6	SR
94	88	SI	DL T4	DT6	SR
95	88	SI	DL T4	DT6	SR
96	88	SI	DL T4	DT6	SR
97	88	SI	DL T4	DT6	SR
98	88	SI	DL T4	DT6	SR
99	88	SI	DL T4	DT6	SR
100	88	SI	DL T4	DT6	SR
101	88	ST	DL T4	DT6	SR
102	88	ST	DL T4	DT6	SR
102	88	ST		DT6	SR
104	88	ST	DI. T4	DT6	SR
105	88	ST	DI. T4	DT6	SR
105	22	ST	DL T4	DT6	SR
107	00	ST		DT6	SR
100	20	CT.		DT6	SR
100	00	CT CT		DT6	SR
1109	00	OT OT		DTG	SR
110	88	ST ST		DIG	SR
111	88	51 51			SR
511	88	51	14 LU M TO	5714 DUV	CD
114	88	51		DT4	CD.
115	88	21	DL T4	D14 DmA	D CD
116	88	51	DL T4	D14	AG CD
118	88	51	DL T4	DT4	AC CD
119	88	SI	DL T4		SK CD
120	88	SI		DT4	SK
121	88	SI	DL T4	DT4	SR

в

A

	122	88	SI	DL T4	DT4	SR
	123	88	SI	DL T4	DT4	SR
	124	88	SI	DL T4	DT2	SR
	125	88	SI	DL T4	DT2	SR
	126	88	ST	DL T4	DT2	SR
	127	88	ST	DL T4	DT2	SR
	129	88	ST	DL T4	DT2	SR
	120	88	ST	DI. T4	DT2	SR
	120	00	ST	DI. T4	DT1	SR
	121	88	ST		DT1	SR
	122	00	CT CT		ותמ	SR
	122	00	ST ST			SR
	124	00	CT.			SR
	134	00	GT .		ጥጥል	SR/D
	135	00	OT OT		ጥጥፈ	SR/D
	130	00	OI CT		ጥጥለ	SR/D
	137	88	51		114 114	CD /D
	138	88	51			CD/D
	139	88	SI	DL T7	TT4	ON / D
	140	88	SI	DL I/	114	OD (D
	141	88	SI	DL T7	TT4	SK/D
	142	88	SI	DL T7	TT4	SR/D
	143	88	SI	DL T7	TT4	SR/D
	144	88	SI	DL T7	TT4	SR/D
	145	88	SI	DL T7	TT4	SR/D
	146	88	SI	DL T7	TT4	SR/D
	147	88	SI	DL T7	TT4	SR/D
	148	88	SI	DL T7	TT4	SR/D
	149	88	SI	DL T7	TT4	SR/D
	150	88	SI	DL T7	TT4	SR/D
	151	88	SI	DL T7	TT4	SR/D
	152	88	SI	DL T7	TT4	SR/D
	153	88	SI	DL T7	TT4	SR/D
	154	88	SI	DL T7	TT4	SR/D
	155	88	SI	DL T7	TT4	SR/D
	156	88	SI	DL T7	TT4	SR/D
	157	88	SI	DL T7	TT4	SR/D
	158	88	SI	DL T7	TT4	SR/D
	159	88	SI	DL T7	TT4	SR/D
	160	88	SI	DL T7	TT4	SR/D
	161	88	SI	DL T7	TT4	SR/D
	162	88	SI	DL T7	TT4	SR/D
	163	88	ŝī	DL T7	TT4	SR/D
	164	88	SI	DL T7	TT4	SR/D
	165	88	SI	DL T7	TT4	SR/D
	166	88	ST	DL T7	TT4	SR/D
•	167	88	ST	DI. T7	TT4	SR/D
	169	88	ST	DL T7	TT4	SR/D
	160	00 20	CT.	די ד <u>ר</u> ד. דד	TT4	SR/D
	170 170	00	CT.	ד. ד 7	TT4	SR/D
	171	00 00	QT	ד <u>ה</u> דר	TT4	SR/D
	170	00	CT.	דיד. ד <u>ר</u>	ጥጥ4	SR/D
	1/2	00	CT	ል ተጠረ	DT3	SR
	00 01	00	CT.	<u>እ.</u> Τ ጥል	DT3	SR
	02	00	CT.	Δ.Τ TT4	DT3	SR
	11.5	00		110 LT		

B B A A A с сссс с-

	04	88	SI	AJ T4	DT3	SR
	05	88	SI	AJ T4	DT3	SR
	06	88	SI	AJ T4	DT3	SR
	07	88	SI	AJ T4	DT3	SR
	08	88	ST	AJ T4	DT3	SR
	00 09	88	ST	AJ T4	DT3	SR
	10	88	ST	AJ T4	DT3	SR
	11	00	ST	<u>ъ.</u> т т4	DT3	SR
	12	00	CT CT	<u>ло</u> 14 а.т. т4	DT3	SR
	14	00	CT	DT C3	1111	SR
	01	00	OT OT		11111	SR
	02	88	51 51	DJ 55		SP
	03	88	SI		ידיט	CD
	04	88	51			CD
	05	88	SI			SR CD
	06	88	SI	DJ SI	UTL	ON CD
	07	88	SI	DJ SI	UTI	JK dp
	08	88	SI	DJ SI	UTI	SR
	09	88	SI	DJ S1	UTI	SR
	10	88	SI	DJ S1	UT1	SR
	11	88	SI	DJ S1	UT1	SR
	12	88	SI	DJ S1	UT1	SR
	13	88	SI	DJ S1	UT1	SR
	14	88	SI	DJ S1	UT 1	SR
	15	88	SI	DJ S1	UT1	SR
	16	88	SI	DJ S1	UT1	SR
	17	88	SI	DJ S1	UT1	SR
	18	88	ST	DJ S1	UT1	SR
	19	88	ST	DJ S1	UT1	SR
	20	88	ST	DJ S1	UT1	SR
	20	88	ST	DJ S1	UT1	SR
	22	00	ST	DJ S1	UT1	SR
	22	00	CT CT	JU UL	ጥጥና	SR
	01	00	GT CT	ΤΡ Τ7	ጥጥፍ	SR
	02	00	OT OT		ጥጥፍ	SR
	03	88	51 51	JF 17 TD T7	ግሞና የሞፍ	SR
	04	88	SI CT		TTO ጥጥና	GD
	05	88	51		11J 0006	CD
	06	88	SI	JP 17	mme	CD
	07	88	51	JP T/	110	D D
	08	88	SI	JP T7	TTO	OR CD
	09	88	SI	JP T7	TTD	SK CD
	10	88	SI	JP T7	TT5	SK
	11	88	SI	JP T7	TT5	SR
	12	88	SI	JP T7	TT-5	SK
	13	88	SI	JP T7	TT5	SR
	14	88	SI	JP T7	TT5	SR
•	15	88	SI	JP T7	TT5	SR
	16	88	SI	JP T7	TT5	SR
	17	88	SI	JP T7	TT5	SR
	1	90	SI	BN T7	TT6C	SR
	2	90	SI	BN T7	TT6C	SR
	3	90	SI	BN T7	TT6C	SR
	ž	90	SI	BN T7	TT6C	SR
		90	ST	BN T7	TT6C	SR
	- -	90	ST	BN T7	TT6C	SR
	¥ .	~ ~				

.

.

,

.

•

•

•

,

•

٠

2

•

•

1

,

B B C C

А .

.

В

.

A

Α-

	7	90	SI	BN	Т7	TT6C	SR
	8	90	SI	BN	T 7	TT6C	SR
	, 9	90	sī	BN	т7	TT6C	SR
	10	90	ST	BN	?	TT6C	SR
	11	90	ST	BN	Т7	TT6C	SR
	12	90	ST	BN	т7	TT6C	SR
	12	00	ST	RN	т7	TT6C	SR
	14	90 90	GT .	BN	m 7	TT6C	SR
	15	20	CT CT	BN	m7	TTAC	SR
	10	90	BT BT	DN	ጥማ	ጥጥሐር	SR
	10	90	51	DN	C2		
	30	90	51		52		CD /D
	31	90	SI	BN	32		SR/D
	32	90	SI	BN	52	012	SR/D
	33	90	SI	BN	S2	UT2	SK/U
	1	90	SI	HC	S1	UT1	SR
	2	90	SI	HC	S1	UT1	SR
	3	90	SI	HC	S1	UT1	SR
	4	90	SI	HC	Т7	TT6B	SR
	5	90	SI	HC	Т7	TT6B	SR
	6	90	SI	HC	T7	TT6B	SR
	7	90	SI	HC	т7	TT6B	SR
	8	90	SI	HC	Т7	TT6B	SR
	ī	90	SI	ΕK	Т7	TT1	SR/D
	2	90	SI	ΕK	Т7	TT1	SR/D
	3	90	SI	ΕK	T7	TT1	SR/D
	Ă	90	SI	EK	т7	TT1	SR/D
	5	90	ST	EK	T7	TT1	SR/D
	r F	an	ST	EK	т7	TT1	SR/D
	7	00	GT	EK	T7	<u>ייייי</u>	SR/D
	, ,	90	CT.	FK	- • • •	ጥጥ 1	SR/D
	- 0	90	עמ	DN	C 1	MTN	SR
	L L	90	RA DV	DN	01 01	MUN	SD
	2	90	RA	DN	51 C1	MTN	CD
	3	90	KX DV	BN	51 01	MOM	CD
	5	90	RX	BN	51	MUN	20
	6	90	RX	BN	51	PTTN	D D
	7	90	RX	BN	SI	MITN	SK CD
	8	90	RX	BN	SI	MTN	SR
	9	90	RX	BN	S1	MTN	SR
	10	90	RX	BN	S2	UT2	SR/D
	11	90	RX	BN	S2	UT2	SR/D
	12	90	RX	BN	S2	UT2	SR/D
	13	90	RX	BN	S2	UT2	SR/D
	14	90	RX	BN	S2	UT2	SR/D
	15	90	RX	BN	S2	UT2	SR/D
	16	90	RX	BN	S2	UT2	SR/D
2	1	90	RX	cc	S1	UT1	SR
	2	90	RX	cc	S1	UT1	SR
	4	90	RX	cc	: 51	UT1	SR
	r R	20	RY	cc	51	UT1	SR
	2	an	PY	- čč	51	UT1	SR
	7	20	DV	- 60	. <u>C</u> 1	נודינו	SR
		3V 00	RA DV	- CC	· C1	ייייז. ניתיון	SR
	8	90	KA DV		, 91 191	. UII 1001	SP
	9	90	КЛ		, <u>a</u> i	ריתין. ניתין	CD
	10	90	КX	CC	: 51	UT 1	AC

	·			

	Δ	A	в	
	Δ	A	с	
		В		
		c		
		č		
		-		
				~
)				
)				
)				
)				
)				
)				
)				
	_~~~~~~~~~			
			~	*

						an
	11	90	RX	CC S2	MTN	SK
	12	90	RX	CC S2	MTN	SR
	13	90	RX	CC S2	M'I'N	SR
	14	90	RX	CC S2	MTN	SR
	15	90	RX	CC S2	MTN	SR
	16	90	RX	CC S2	MTN	SR
	17	90	RX	CC S2	MTN	SR
	18	90	RX	CC S2	MTN	SR
	19	90	RX	CC 52	MTN	SR
	20	90	RX	CC S2	MTN	SR
	21	90	RX	CC S2	MTN	SR
	1	90	RK	ЕК Т5	MTN	SR
	2	90	RX	ЕК Т5	MTN	SR
	3	90	RX	ЕК Т5	MTN	SR
	4	90	RX	ЕК Т5	MTN	SR
	5	90	RX	ЕК Т5	MTN	SR
	6	90	RX	EK T5	MTN	SR
	7	90	RX	EK T5	MTN	SR
	Ŷ	áň	RX	EK T5	MTN	SR
	. 0	an	PY	EK T5	MTN	SR
	10	90	DY	EX T5	MTN	SR
	10	90	NA DV	EK TA	MTN	SR
	11	90	RA DV	EN 14 EV TE	MUN	SR
	12	90	KA DV	EK IJ FV M7	MTN	SR/D
	13	90	RA DV	EK 17	MTN	SR/D
	14	90	RA		MTN	SR/D
	15	90	KX DV	EA 17	MON	
	16	90	RX	EK T/	MULTIN	CD/D
	17	90	RX	EK T7	MULIN	OR/D
	18	90	RX	EK T/	MIN	SR/D
	19	90	RX	EK S2	UT2	SK/D
	20	90	RX	EK S2	012	SK/D
	21	90	RX	EK S2	UT2	SR/D
	22	90	RX	EK 52	UT2	SR/D
	23	90	RX	EK S2	UT2	SR/D
	24	90	RX	EK S2	UT2	SR/D
	25	90	RX	EK S2	UT2	SR/D
	26	90	RX	EK S2	UT2	SR/D
	27	90	RX	EK S2	UT2	SR/D
	28	90	RX	EK S2	UT2	SR/D
	29	90	RX	EK S2	UT2	SR/D
	30	90	RX	EK S2	UT2	SR/D
	31	90	RX	EK S2	UT2	SR/D
	32	90	RX	EK S2	UT2	SR/D
	33	90	RX	EK S2	UT2	SR/D
	34	90	RX	EK S2	UT2	SR/D
N	35	90	RX	EK S2	UT2	SR/D
	25	90	RX	EK S2	UT2	SR/D
	27	<u>an</u>	RX	EK S2	UT2	SR/D
	20	<u>م</u>	PY	EK S2	UT2	SR'/D
	20	00	DY DY	EK S2	UT2	SR/D
	72 22	20	DV	EK C2	11172	SR/D
	40	20	лл DV	DN C1	ር ነው። የነም ነ	SR
	Ť	90	KA DV	DX C1		SR
	2	90	KX DV	PA DI	עבט רוחיון	QD
	3	90	RX	PA SI	Û.L.T	5R

Α

	#	
	~	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		~~~~~~~~~~~~~~~~~~~~~~~~
Α		
В		
С		
С		
С		
-		
	в	
	В	
С		
С		
-		~~~~~~~~~~~~~~~~~~~
C		
č		

4	90	RX	PA S1	UT1 SR	
5	90	RX	PA S1	UT1 SR	
6	90	RX	PA S1	UT1 SR	
7	90	\mathbf{FL}	PA S1	UT1 SR	
8	90	RX	PA S1	UT1 SR	
9	90	RX	PA S1	UT1 SR	
10	90	\mathbf{FL}	PA S1	UT1 SR	
11	90	RX	PA T7	TC D/SR	
12	90	RX	PA T7	TC D/SR	
13	90	\mathbf{FL}	PA T7	TC D/SR	
14	90	RX	PA T7	TC D/SR	
15	90	RX	PA T7	TC D/SR	
16	90	RX	PA T7	TC D/SR	
17	90	RX	PA T7	TC D/SR	
18	90	FL	PA T7	TC D/SR	
19	90	RX	PA S2	MTN D/SR	
20	90	RX	PA S2	MTN D/SR	
21	90	\mathbf{FL}	PA S2	MTN D/SR	
22	90	\mathbf{FL}	PA S2	MTN D	
23	90	RX	PA S2	MTN D	
24	90	RX	PA S2	MTN D	
25	90	RX	PA S2	MTN D	
26	90	RX	PA S2	MTN D	
27	90	RX	PA S2	MTN D	
28	90	RX	PA S2	MTN D	
29	90	RX	PA S2	MTN D	
30	90	RX	PA S2	MTN D/SR	
31	90	RX	PA S2	MTN D/SR	
32	90	RX	PA S2	MTN D/SR	
33	90	RX	PA S2	UT2 SR/D	
34	90	\mathbf{FL}	PA S2	UT2 SR/D	
35	90	\mathbf{FL}	PA S2	UT2 SR/D	
36	90	RX	PA S2	UT2 SR/D	
37	90	RX	PA ?	? ?	
38	90	RX	PA ?	??	

		*
Α		
		~~~~~~~
	В	
С		
		· · · · · · · · · · · · · · · · · · ·

A

С

### APPENDIX III

- -

-

•

.

.

•

.

٠

•

•

.

.

•

.

.

### COPIES OF GEOCHEMICAL ASSAY CERTIFICATES

. .

TO: MILLAR WESTERN ENGINEERING LIMITED,

P.O. Box 460,

· ···

Clparwater, B.C. VOE 1NO

ATTN: James F.V. Millar

_____



File No. <u>34442</u>	
Date <u>July 11, 1991</u>	
Samples <u>Pulp</u>	

### _____

# Certificate of Assay LORING LABORATORIES LTD.

SAMPLE NO.	PPM Cu	РР <b>М</b> РБ	PPM Zn
chemical Analysis			
BNSS- 1	30	36	112
2	35	18	131
3	30	21	150
4	45	25	154
5	35	22	121
6	46	11	205
7	34	15	138
8	30	12	130
9	36	11	150
10	30	6	145
11	32	30	126
12	33	2	109
13	37	2	104
14	30	10	100
10	20	20	1/1
	22	20	141 Q2
103- 1	20	Ŕ	120
2	20	7	120
3	33	22	164
++ 5	46	34	122
5	61	25	184
7	44	16	162
Å	39	16	111
DVAR-11	13	1	30
12	,5	7	27
13	57	175	33
14	23	12	57
15	23	13	47
16	20	17	47
T Hamabu	Anntifu		
I Hereby	Verbilly that the a	bove results are the	ose
assays ma	age by me upon the	nerein described sam	np188
		and	
ects retained one more	ionth. Ith	La L.	8-1
ess specific arrang	ements	and and	1
made in advance		(   Masayer	· U

To: MILLAR WESTERN ENGINEERING LIMITED,

. .

File No. <u>34442</u> Date <u>July 11, 1991</u> Samples <u>Pulp</u>

<u>Clearwater, B.C. VOE 1N0</u>

P.O. Box 460,

. ...

pr. 14



ATTN: James F.V. Millar

## Certificate of Assay LORING LABORATORIES LTD.

SAMPLE NO.	PPM	PPM	PPM	PPM	PPM
	Cu	PD	<u>Zn</u>	<u> </u>	50
PVAR-17	60	768	86	_	-
18	23	18	83		_
19	13	10	56	-	-
20	7	4	29	-	-
21	8	13	44	-	-
22	9	26	68		-
ERKS- 1	106	10	925	62	2
2	101	10	938	56	9
3	54	6	689	34	2
4	45	16	319	34	2
5	51	8	413	34	4
6	23	11	71	16	2
7	26	11	82	20	3
8	25	15	90	21	2
ERK – 1	18	26	55		_
2	9	8	32	-	-
3	19	10	57		-
4	12	9	36		
5	9	6	24	_	-
6 & 7	10	19	51	-	-
8	27	38	70	-	-
9	21	15	61	-	-
10	10	8	44		-
11	20	9	73		_
12	28	8	/5	-	-
13	21	3	10	-	
14	1	16	81	-	-
15	6	8	54	-	-
16	30	13	112	-	-
17	3	1	48	_	-
18	49	290	42	-	
19	31	20	29	-	_
I Here assays	by Certify the made by me u	at the abov pon the her	ve results a rein descril	are those bed samples	
			0.	1.	
jects retained on Ins retained one	e month. month		, Ken s	Kale	
iess spacific arr	angements		yng	$\times$	L
• wade in advance				Assayer -/	

TO: MILLAR WESTERN ENGINEERING LIMITED,

P.O. Box 460,

Clearwater, B.C. VOE 1NO



File	No. <u>34442</u>
Date	July 11, 1991
Sampl	les Pulp

ATTN: James F.V. Millar

# Certificate of Assay LORING LABORATORIES LTD.

Page # 3				
SAMPLE NO.	PPM Cu	PPM Pb	PPM Zn	
ERK -20	22	35	28	
21	41	112	63	
22	49	27	63	
23	14	80	35	
24	43	20	238	
25	30	27	245	
26	8	8	158	
27	8	15	127	
28	6	17	39	
29	78	21	878	
30	20	14	66	
31	16	5	96	
32	9	39	54	
33	28	6	38	
34	10	24	31	
35	10	136	302	
36	15	22	20	
37	10	32	42	
38	7	9	33	
39	20	13	43	
40	8	19	17	

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. Pulps retained one month unless spacific arrangements are made in advance.