ARIS SUMMARY SHEET

.09

District Geologist, Smithers	Off	Confidential: 92.09.
ASSESSMENT REPORT 21647	MINING DIVISION: Liard	
PROPERTY: Kutcho Creek LOCATION: LAT 58 12 00 UTM 09 6450941 NTS 104101W	537227	
CLAIM(S): Jeff 115, Jess 1, P OPERATOR(S): Homestake Min. AUTHOR(S): Holbek, P. REPORT YEAR: 1991, 47 Pages COMMODITIES	¥ 71	
SEARCHED FOR: Copper, Zinc, Silve:	r ormation,Schists,Tuffs	
DONE: Geochemical ROCK 3 sample(s) SOIL 142 sample(s) Map(s) - 2; Scale	;ME	
PFLATFD	,07577,07599,08273,0838	1,08395,09657

1991 SOIL GEOCHEMISTRY REPORT

on the

KUTCHO 91 - FAR EAST & - FAR WEST CLAIM GROUPS

KUTCHO CREEK AREA, NORTHWESTERN B.C.

SUB-RECORDER RECEIVED SEP M.R. # VANCOUVER, B.C.

Liard Mining Division NTS: 104I/1 Latitude: 58 12'N Longitude: 128 22'

Owned and Operated by :

Homestake Canada Ltd. 1000-700 West Pender Street Vancouver, B.C. V6C 1G8

> Report by: Peter Holbek September 5, 1991

> > Distribution:

Ministry - 2 copies File - 1 copy Field - 1 copy ARMC - 1 copy

3174.C.934

GEOLOGICAL BRANCH

ASSESSMENT REPORT

LOG NO:	SEP	27	<u>199</u>
ACTION:			

TABLE OF CONTENTS

FILE NO:

PAGE NO.

RD.

	SUM	IMARY	i
1	INTE	RODUCTION	
	1.1	Location and Access	1
	1.2	Climate and Physiography	. 1
	1.3	Property and History	1
	1.4	Current Work	4
2	GEO	DLOGY	
	2.1	Regional Geology	5
	2.2	Property Geology	7
·.	2.3	Surficial Geology	10
3	GEO	CHEMISTRY	
5	3.1	Methods	10
	3.2	Description of Results	11
	3.3	Discussion of Results	13
4	CON	CLUSIONS AND RECOMMENDATIONS	18
		References	19
		APPENDICES	
I	STAT	FEMENT OF COSTS	
II	STAT	EMENT OF QUALIFICATIONS	
111	CLAII	M DATA	
IV	GEO	CHEMICAL ANALYTICAL RESULTS	

LIST OF FIGURES

PAGE NO.

1.1	Location Map		2
1.2	Claim Map and Grid Locations		3
2.2	Regional Geology		6
2.1	Property Geology		8
2.3	Schematic Illustration of Interpreted Stratigraphy		9
3.1	Geochemical value plot - Jess Grid	V.	in pocket
3.2	Geochemical value plot - B Grid		in pocket
3.3	Histograms for Cu and Zn - B Grid		15
3.4	Correlation Matrix - B Grid		16-17

LIST OF TABLES

3.1 Elementary Statistics

SUMMARY

- i -

The Kutcho 91 Far West and Far East claim groups are part of the Kutcho Creek property which is located in the Liard Mining Division, approximately 100km east of Dease Lake. The property covers approximately 120 square kilometres of the Kutcho Formation and hosts the Kutcho Creek volcanogenic massive sulphide deposits. The Kutcho massive sulphide deposits consist of three sulphide lenses that lie along a gently plunging 3.5km trend. The easternmost lens is the largest of the three and contains open pit mineable reserves of 13.9 million tonnes grading 1.75% Cu, 2.47% Zn, 29g/t Ag and 0.34g/t Au.

Exploration has been conducted in the property area since the early 1970's. In recent years, exploration has moved away from the known deposits and begun to evaluate prospective stratigraphy in other areas. This report describes two soil geochemical orientation surveys conducted on the extreme northeast and southwest areas of the property.

Previous soil surveys have determined that standard soil sampling procedures are suitable on most parts of the property but that extreme variations in the type and depth of overburden greatly influence the nature of the geochemical response and, therefore, areas selected for geochemical surveys should be investigated prior to commencing a large survey.

Closely spaced soil samples on lines which crossed the strike extension of altered and weakly mineralized stratigraphy, in the northeastern area of the property, failed to produce a coherent geochemical response that would indicate suitability of geochemical surveys to define potential drill targets. The lack of a significant geochemical response in this area is attributed to the relatively low levels of base metal enrichment within the altered rocks and to a thin clay horizon that occurs at the base of the relatively shallow overburden. The potential for base and associated metals to be enriched along strike exists and widely spaced soil lines could effectively test that potential.

Anomalous geochemical responses on soil lines in the southwestern property area indicate the presence of mineralized stratigraphy in this area. Much of the overburden in this area is shallow and consists of normal soil profiles except for low lying areas, where organic-rich soils which overlie clay-rich glacial till of unknown depth have muted geochemical responses. This grid area should be extended to the east and west and followed by a detailed EM geophysical survey.

INTRODUCTION

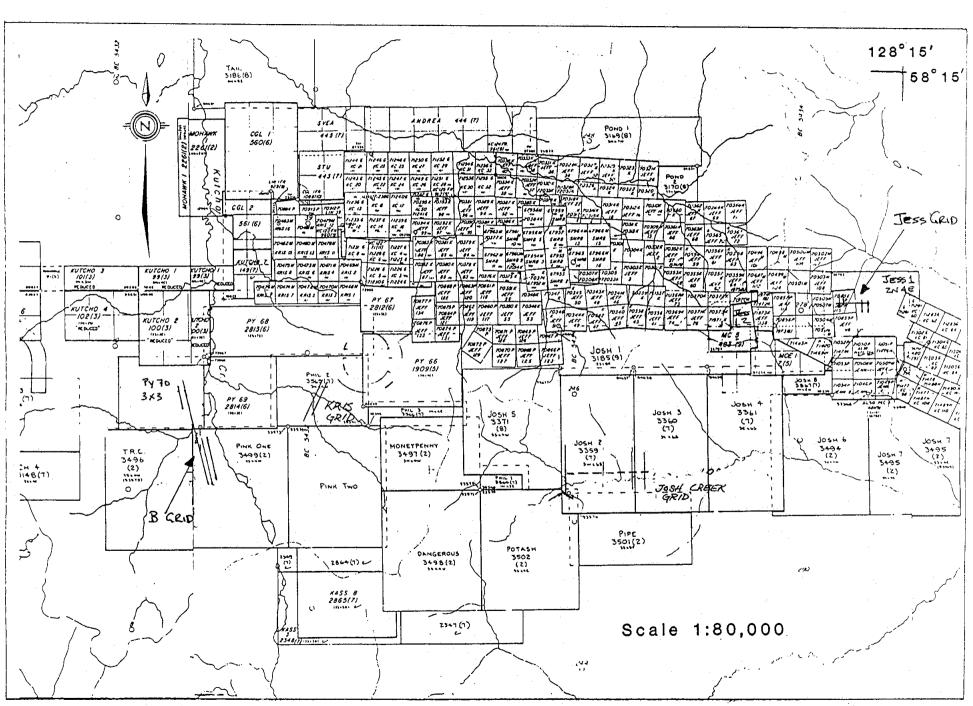
1.

1.1 Location and Access

The Kutcho Creek property is located within the Liard Mining Division, NTS 104I/1, approximately 100 km east of Dease Lake, in northwest British Columbia (Figure 1.1). Geodetic coordinates are 58° 12' N and 128° 22' W. Access to the property is by fixed-wing aircraft from Smithers, Dease Lake or Watson Lake to the 1100m gravel airstrip located beside Kutcho Creek. The property is connected to the airstrip by an 8km long road; however, the large size of the property requires a helicopter for efficient exploration.

1

1.2 Climate and Physiography


Located within the Cassiar Mountains, on the divide between Arctic and Pacific watersheds, the area is moderately rugged with elevations ranging from 1400m to 2200m. Most of the area is alpine, with treeline at approximately 1500m. Snow cover can persist for nine months of the year. Structural fabric and two periods of glaciation have produced an intersecting pattern of east-west and north-south ridges. Major valleys are often filled with a deep layer of till.

1.3 <u>Property and History</u>

The Kutcho property is comprised of 595 units in 205 claims and covers an area of about 120 square kilometres. Claims are partitioned into six claim groups and a few non-grouped claims. The property encloses claims held by Sumac Mines Ltd. and includes ground which contains the Kutcho Creek polymetallic volcanogenic massive sulphide deposits. Claim data are listed in Appendix III.

Various portions of the property have been held and worked by different companies in the past. The most significant exploration was carried out by Imperial Oil Ltd. (Esso Minerals Canada) and Sumac Mines Ltd. who, independently but co-operatively, explored the area and delineated three massive sulphide lenses between 1973 and 1981.

Regional scale exploration was re-initiated by Esso Minerals in 1984. Geological mapping suggested that altered felsic volcanics immediately to the south of the property were stratigraphically equivalent to rocks hosting the Kutcho deposits. A Questor airborne MKVII INPUT EM and Magnetic survey flown in November 1985 identified a number of conductors within areas of favourable geology south of the existing claims. Additional claims were staked and systematic evaluation of the airborne conductors, consisting of geological mapping, ground geophysics, and geochemical surveys, was undertaken.

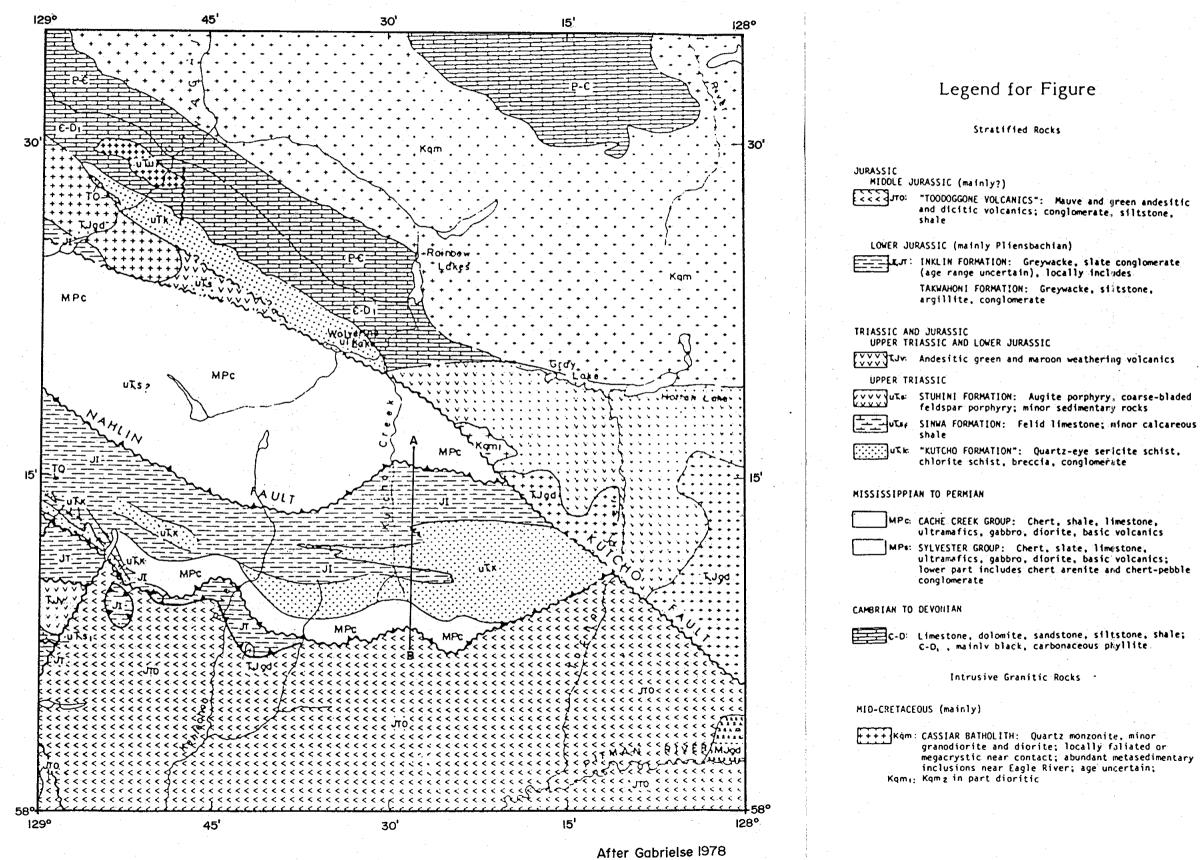
Esso Minerals Canada sold its Kutcho property to Homestake Mining (Canada) Limited in early 1989. Homestake subsequently sold a 60% interest in the property to American Reserve Mining Corp.

1.4 <u>Current Work</u>

Soil geochemical surveys have been used successfully in previous exploration of the Kutcho property, but past work has also demonstrated that dramatic changes in the nature of the overburden on various parts of the property have a profound influence on the quality and usefulness of geochemical data. Consequently, investigation of the overburden character and geochemical orientation surveys should be performed prior to conducting a soil sampling program within new or unsurveyed areas. The 1991 soil geochemical program was conducted in two areas on the northeastern and southwestern edges of the property. The surveys were designed to evaluate the overburden and test the effectiveness of standard soil sampling techniques in these areas. A total of three days were spent collecting samples in the two areas between July 3 and July 30, 1991.

On the Jess grid, on the northeastern edge of the property, 58 soil samples were collected on four lines at 15m spaced intervals over the strike extension of weakly altered "mine sequence" stratigraphy. Overburden in this area is relatively thin, seldom exceeding 1.5m in depth, but commonly contains a 10 to 20cm thick basal clay layer in the western grid area.

The B Grid, located near the southwest corner of the property, was extended northwards across the PY 71 claim. A total of eighty-four soil samples were collected at 25m stations along 2.1 line-kilometres of grid. Line spacing was 200m. Overburden/soil type was carefully investigated and shown to have a significant impact on the interpretation of soil geochemical anomalies. In general, the B Grid area is suitable for conventional soil surveys.


2.0 GEOLOGY

2.1 <u>Regional Geology</u>

The Kutcho property lies within the King Salmon Allochthon, a narrow belt of Triassic island arc volcanics and Jurassic sediments sandwiched between two northerly dipping thrust faults (Fig. 2.1). Penetrative foliation and axial planes of the major folds are parallel to these bounding faults. The belt of volcanic rocks is thickest in the area where it hosts volcanogenic massive sulphide deposits, due in part to primary deposition, but also to stratigraphic repetition by folding and thrusting. Major folds are delineated by the Sinwa Limestone and the contact between Kutcho Formation volcanic rocks and Inklin Formation argillite.

Volcanogenic mineralization of the Kutcho deposits occurs at the contact between footwall lapilli tuffs and hanging wall quartz and quartz-feldspar crystal tuffs. The main sulphide bearing horizon is marked by extensive hydrothermal alteration and the presence of thinly bedded ash tuffs, the latter indicating a temporary hiatus in volcanic activity. This sulphide horizon is geochemically, and often visually, recognizable over a strike length of 8 km.

The coarsest grained pyroclastic rocks of the Kutcho Formation occur in the vicinity of the known sulphide deposits and become noticeably finer grained towards the south and west. The major center of volcanism is postulated to be northeast of the Kutcho sulphide lens, although subordinate centers may exist elsewhere on the property.

ni	te.	្តារ៍	001	•
ý	fal	iat	ed	01
nt	ine	tas	ed i	mentary
	nce			

HOMESTAKE CANADA LTD.										
Re	egiona	I Geol	ogy							
			- r-							
DRAWN	DATE	NTS	Fig. 2.1							
Revised		1041	· · · · ·							

2.2 Property Geology

Stratigraphy of the property has been described by Bridge et. al. (1984) and Thorstad and Wheeler (1986) and will only be briefly reviewed here. The stratigraphy is best understood in the vicinity of the known sulphide deposits where relatively good bedrock exposure is supplemented by a large amount of drill core. In the southern part of the property, stratigraphy is largely inferred as outcrop exposure is insufficient to interpret fold geometry. A generalized plan of the property geology is shown in Figure 2.2 and a stratigraphic interpretation in Figure 2.3.

The lowest rocks exposed in the stratigraphic sequence are thinly interlayered (bedded?) basalt, basaltic tuffs and wackes, and rhyolitic ash tuff to lapilli tuff (units 4 and 5 on Fig. 2.2) Thickness of this sequence is unknown but is likely in the order of 1,000m. The above sequence is overlain by feldspar crystal tuffs (FXTF) which are thickest in the vicinity of the deposit area and pinch out both to the east and west. The feldspar crystal tuffs are overlain by the "mine sequence" which consists of footwall lapilli (LLTF) and lapilli-crystal tuffs (LSD), pyritic ash tuffs (PAT) and massive sulphides (MSSF), and hanging wall quartz crystal tuffs (QFXT). The quartz crystal tuffs appear to be truncated to the east by a mafic unit (MTGB, GABR) that appears to be a thin intrusive-extrusive complex. To the west of the known deposits the mine sequence is overlain by the tuff-argillite unit (TAU) which is composed of interbedded mafic tuffs, wackes and black sediments. The Kutcho Formation is capped by a conglomerate, consisting entirely of volcanic fragments, and the Sinwa Limestone.

Rocks in the southern property area appear to be finer grained equivalents of the "mine sequence" and adjacent units. Compilation of geology, geochemistry and geophysics demonstrates that most of the favourable target areas lie along four linear trends, including the most northerly one which hosts the known sulphide deposits. Structural interpretation suggests that the four trends are structural repetition of a single mineralized horizon.

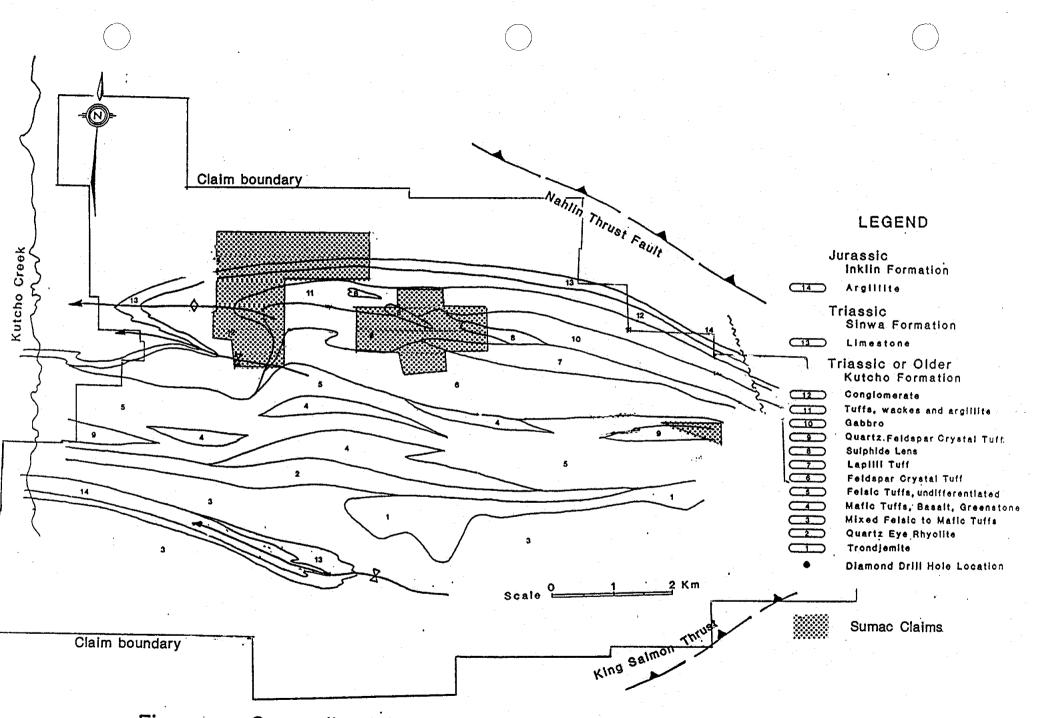
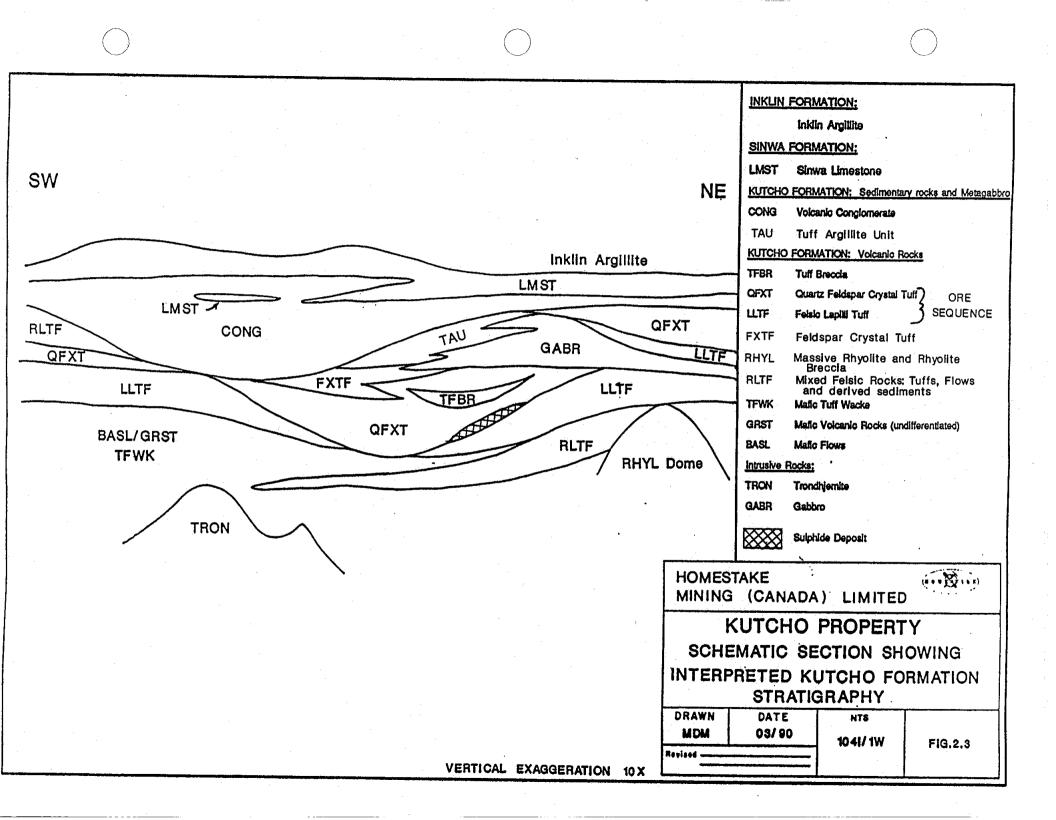



Figure 2.2 Generalized Geology of the Kutcho Creek Deposit Area.

2.3 Surficial Geology

Depth and type of overburden is extremely variable on the property. Thick till deposits, kame terraces and eskers are common in the valleys or at lower elevations. In the south-eastern half of the property bedrock exposure is restricted to stream beds and narrow ridges. Topography of the bedrock surface is difficult to predict. In general overburden depths varied between 2 and 20m; however, in a few drill holes the depth of overburden was in excess of 60m, and appeared to be related to overburden filled stream channels.

Soil development is generally poor, consisting of 10 to 40cm of organic-rich material overlying clay-rich boulder till. The water table is at or near surface in most areas.

3.0 GEOCHEMISTRY

3.1 Methods

Soil samples were collected on 15m stations on the Jess Grid and on 25m stations on the B grid. Sample lines were chained and flagged. Soil samples were taken from the B horizon, when present, at depths between 10 and 60cm using a soil mattock. At approximately every tenth sample site, a larger hole was dug (to bedrock if possible) to investigate the soil type and development. Sample depth, soil colour, character and moisture content was recorded at every station. Four samples were duplicates of previous sampling and give an idea of within site sample variance. All samples were placed in standard kraft bags and air dried before shipment.

Analyses were performed by Acme Analytical Labs and Bondar Clegg and Co. Ltd. by Induction Coupled Plasma methods. Samples were sieved to -80 mesh and a 0.5g subsample was digested in hot aqua regia (HNO3+HCl). The digestion is only partial for elements which reside in silicate, and some other minerals. Of the 31 elements analyzed, 14 are deemed insignificant due to a combination of high detection limits, low background values and partial digestion. Analytical results for the remaining elements which consist of: Mo, Cu, Pb, Zn, Ag, As, Co, Ni, Cr, Mn, Fe, Ca, Mg, Al, P, La, and Ba; were evaluated using elementary statistics and correlation coefficients. Sample locations and values for copper and zinc are plotted on Figures 3.1 and 3.2.

3.2 Description of Results

Basic statistics are given in Table 3.1 and are similar to past surveys (Holbek, 1990) except that median values for Cu, Zn, Ag, Mo, and Ca are slightly higher than previous surveys, while median values for Mg, Cr, Co and Ni are slightly lower. These differences reflect the relative proportions of the surveys within anomalous or "mineralized" areas and a change in bedrock composition. The current survey area (B Grid) is predominately underlain by felsic volcanic and sedimentary rocks whereas the previous survey areas are predominately underlain by interlayered mafic and felsic volcaniclastic rocks.

Distribution of copper and zinc values are shown on histograms in Figure 3.3 and display bimodal populations, presumably related to altered and unaltered rocks. Threshold values selected to discriminate between the two populations are 70 and 150ppm for copper and zinc, respectively. These values are slightly higher than the previous surveys for the reasons discussed above. On the basis of these threshold values, there are anomalous values but no coherent anomalous areas on the Jess Grid (Fig. 3.1). A one to two sample wide linear anomaly across all four lines was anticipated on the Jess Grid. Overall, the values of the Jess Grid are low relative to other areas of similar alteration and soil development.

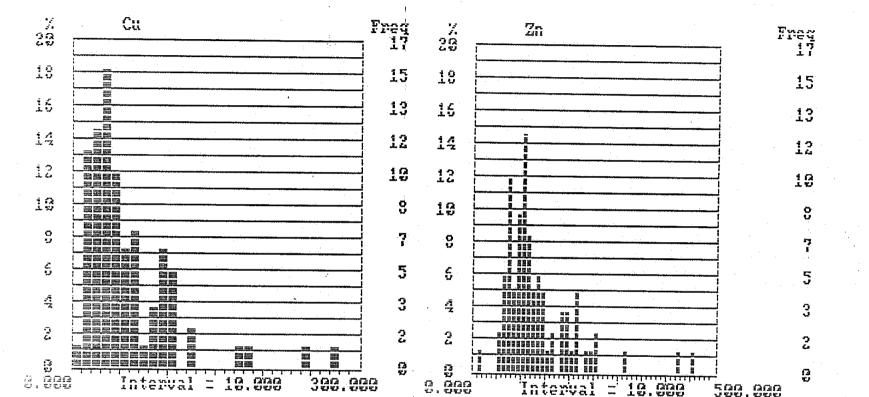
Results on the B Grid (Fig. 3.2) contain several areas of anomalous copper and zinc, which can be generally described as a 425m wide zone of anomalous Cu, Zn, Ag, and Pb with narrow intervening zones of sub-anomalous values. The below threshold values within the broader anomalous zone generally occur in

Variable:	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co pp
	· ······			<u> </u>	······		
Number of Samples Selected:	84	84	84	84	84	84	84
Minimum:	1.000	8.000	2.000	19.000		2.000	1.00
Maximum:	12.000	302.000	21.000	891.000		105.000	36.00
Range:	11.000	294.000	19.000	872.000		103.000	35.00
lean:	2.107	60.512	8.667	141.595		51.476	13.67
Median:	2.000	44.000	8.000	109.000		47.000	13.00
Variance:	3.167	2928.226	15.532	11970.860	0.064	607.559	38.21
Standard Deviation:	1.780	54.113	3.941	109.411	0.252	24.649	6.18
Standard Error:	0.194	5.904	0.430	11.938		2.689	0.67
Coefficient of Variation (%):	84.457	89.426	45.473	77.271	87.844	47.884	45.19
Coefficient of Skewness:	3.349	2.445	0.578	4.317	4.694	0.220	1.09
Coefficient of Kurtosis:	16.252	9.888	2.938	27.689		2.224	5.15
	101100	21000		27.005	521000		5.15
Variable:	Mn ppm	Fe %	Mg %	Ca %	Al %	As ppm	Ba pp
Number of Samples Selected:	84	84	84	84	84	84	84
linimum:	60.00	0.630	0.050	0.030	0.570	2.000	15.0
faximum:	3275.00	9.210	1.590	4.790	4.640	43,000	502.0
lange:	3215.00	8.580	1.540	4.760	4.070	41.000	487.0
lean:	834.45	4.363	0.761	0.999	2.298	8.726	148.4
ledian:	669.00	4.080	0.740	0.650	2.130	7.000	137.0
Variance:	326100.5	2.143	0.127	0.905	0.694	54.389	5480.0
Standard Deviation:	571.05	1.464	0.356	0.951	0.833	7.375	74.0
standard Error:	62.30	0.160	0.039	0.104	0.091	0.805	8.0
Coefficient of Variation (%):	68.43	33.554	46.801	95.258	36.258	84.515	49.8
Coefficient of Skewness:	1.81	0.320	0.121	1.391	0.687	2.716	1.8
coefficient of Kurtosis:	6.94	3.719	2.325	4.918	3.681	11.608	8.5
Variable:	Sr ppm	La ppm	P %	Cr ppm	V ppm	Cd ppm	
				x x			
umber of Samples Selected:	84	84	84	84	84	84	
linimum:	4.000	5.000	0.010	11.000	10.000	0.200	
laximum:	333.000	97.000	0.321	159.000	110.000	7.500	
lange:	329.000	92.000	0.311	148.000	100.000	7.300	
lean:	66.286	20.702	0.078	59.964	59.905	0.750	
ledian:	47.000	15.000	0.064	56.000	59.000	0.500	
ariance:	3780.871	302.209	0.002	732,296	479.539	0.846	
tandard Deviation:	61.489	17.384	0.050	27.061	21.898	0.920	
tandard Error:	6.709	1.897	0.005	2.953	2.389	0.100	
cefficient of Variation (%):	92.763	83.972	63.869	45.128	36.555	122.660	
coefficient of Skewness:	1.796	2.286	2.071	0.669	0.106	4.958	
Coefficient of Kurtosis:	6.696	8.601	9.372	4.023	2.764	35.213	
	0.000			21 440		~~~~~~~	

TABLE 3.1. Elementary Statistics of Soil (Geochemical Data.	Kutcho Creek,	. B Grid.
--	-------------------	---------------	-----------

gullies, swamps and areas of glacial-fluvial outwash, where sampled material is less likely to reflect bedrock composition. The northern boundary of the anomalous area coincides with the volcanic-sedimentary contact as reflected in the lithology of the coarse material within the soil pits.

Examination of element correlations and map symbol plots reveals that Cu and Zn are the best indicators of rocks with potential for hosting volcanogenic massive sulphide deposits. Other elements that are associated with VMS mineralization, and that show strong correlation to Cu and Zn within soils include Mn, Ba, Ag, Pb, Mo and As. However, these elements have different dispersion characteristics, low levels of enrichment or contrast, and are more strongly influenced by bedrock composition and soil type so that the relationship between anomalous soil response and mineralization is less direct.


Comparison of duplicate sample sites (Fig. 3.2) suggests that significant variation can be encountered within the same sample site. However, although variances in excess of 20% occur, it is suspected that this amount of variation would not significantly change the overall morphology of the anomalous zones.

3.3 Discussion of Results

The lack of a significant soil anomaly on the Jess grid is most likely due to the low level of base metal enrichment within the altered rocks which underlie the survey lines and not to excessive overburden cover and/or poor soil development. However, the thin basal clay layer observed on the western grid lines may contribute to the overall weak geochemical response. It is possible that the rocks are better mineralized along strike and soil surveys are likely to be the most effective means to locate these areas of stronger mineralization.

Both the size and contrast of the anomalous area on the northern extension of the B grid, relative to the previous survey, indicate that the rocks which underlie this area are more likely to be associated with economic volcanogenic mineralization than are those rocks underlying anomalous areas further to the south. The location of an anomalous

area immediately below (stratigraphically) the argillite and limestone of the Sinwa Formation suggests that this zone is a continuation of the Kris anomaly located 3.0km to the east (Holbek, 1990) and substantially upgrades this target area. The proximity of the geochemical anomaly to argillaceous rocks will require careful geophysical surveys to define drill targets.

Interval

- 19.000

500.000

Figure 3.3

10.000

_

Interval

Histogram for copper and zinc, Kutcho B grid.

	Ko	Cu	r b	Zn	A g	H1	Co	ňn
No	1.000 (84)	-0.008 (84)	0.395 (84)	(84)	-0.168 (86)	-0.196 (\$6)	-0.087 (84)	-0.065 (84)
Cu		1.000 (84)	0.090 (84)	0.312 (84)	0.627 (86)	0.372 (84)	0.313	0.537 (84)
85	1 - -		1.000	0.318 (84)	-0.052 (84)	(\$£) 0.030	0.217 (84)	0.110 -(\$4)
Zn	7	•		1.000 (84)	0.007	-0.001 (84)	0.237 (84)	0.235 (84)
49	·				1.000 (84)	0.280 (84)	0.113 (84)	0.443 (84)
k¹i						1.000 (84)	0.598 (81)	0.350 (81)
Co				·			1.000 (84)	0.578. (84)
ňa					•			1.000 (84)

Figure 3.4

)

Correlation Matrix for Kutcho B grid soil data

C r 1.1 5.4 f e Çđ Å's 30 ño 0.193 -0.104 -0.302 -0.011 0.134 -0.285 -0.213 0.019 0,050 -0.080 -0.148 (84) (84) (81) (84) (86) (84) (86) (84) (84) [84] (84) Cu 0.090 0.017 0.367 0.530 -0.338 0.532 0.650 0.764 -0.118 -0.062 0.348 (84) (86) (84) (84) (84) (84) (84) (84) (84) (84) (84) Pb 0.503 -0.038 0.225 -0,164 0.276 -0.273 -0.221 -0.033 0.189 -0.076 -0.266 (84) [84] [84] (84) (84) (84) (84) (84) (81) (84) (84) Zn 0.279 0.099 0.138 0.206 0.040 0.154 0.057 0.143 -0.017 0.090 0.028 [84] (84) (84) (84) (84) (84) (84) (84) (81) (86) (84) λġ -0.124 0.080 0.653 0.778 -0.399 0,612 0.551 0.551 -0.217 -0.152 0.271 (84) (81) (84) (86) (86) (84) (84) (84) -(84) (11)(86) Ri 0.325 0.367 0.284 0.091 0.019 0.245 0.319 0.267 0.695 0.524 0.290 (86) (84) (84) (84) (86) (84) (84) (84) (84) [84] [86] Ć٥ 0,480 0.524 (84) 0.286 0.194 0.233 0.528 (84) 0:184 0.083 0.130 0.230 0.080 (81) (84) (84) (84) (84) (84) (84) (84) (84) ñn 0 122 -0.063 0.401 0.568 -0,163 0.565 0.675 0.500 0.114 0.105 0.551 (86) [84] (81) (86) (84) (84) (84) (84) (86) (86) (81) fe :.000 0.229 -0.317 -8.231 0.555 -0.360 -0.114 -0.031 0.518 0.296 ~0.074 (84) (86) (84) (86) (84) (81) (84) (84) (84) -(84) (84) 0.210 (84) 1.000 -0.066 0.112 Å S 0.289 -0.019 -0.091 -0.037 0.079 -0.129 (84) (84) (84) (84) (84) (84) (84) (84) (86) Sr 1.000 0.692 -0.530 0.819 0.462 0.342 -0.211 -0.105 0.282 (84) (84) (84) (84) (84) (84) (84) (84) (84) Cđ 1,000 -0.366 0.683 0.502 0.459 -0.301 -0.240 0.283 (81) (84) (84) (84) (8L) (86) (84) (86) -0.593 (84) -0.424 (84) 1.000 0.556 -0.452 0.419 -0.220 (84) (84) (86) (84) (84) 1.000 (84) 0.762 0.535 (84) -0.257 (84) Ca -0.169 0.494 (81) (81) (81) 1.000 ۲., 0.716 -0.078 -0.091 0.582 (84) (84) (84) (84) [84] 1.000 Lŧ -0.215 -0.314 0.540 (81) (84) (84) (84) Figure 3.4 con't 1.000 0.696 -0.021 ¢r (84) (84) (84) ñg Correlation Matrix for 1.000 0.011 (86) (84) Kutcho B grid soil data 8÷ 1.000 (84)

4.0 CONCLUSIONS AND RECOMMENDATIONS

Two areas were tested for the suitability of soil geochemical surveys to locate areas of base metal enriched volcanic stratigraphy associated with volcanogenic massive sulphide deposits. Both areas are proximal to bedrock exposures and overburden depths are generally in the order of 30 to 120cm, suggesting suitability of conventional soil surveys. Local variations in type and depth of overburden do occur and can have a dramatic effect on the interpretation of geochemical results, particularly anomaly shape, and therefore the extra time and cost involved in recording soil characteristics and examining overburden profiles is cost-effective.

Close spaced soil sampling on the Jess grid was designed to determine if the altered "mine sequence" rocks in this area could be traced below cover. The lack of a significant soil response in this area is more likely due to the low level of base metal enrichment within the altered bedrock than to overburden depth or character. However, a thin clay layer was noted at depth in some soil pits which, if widespread, could obscure the soil geochemical response. Wide spaced grid lines are recommended to further evaluate this area.

A 425m wide zone of anomalous soils on the B grid suggests significant base metal enrichment in the underlying sericite schists and felsic volcanic rocks. The stratigraphic position of this anomaly correlates with a significant drill intersection 3km to the east and together with the presence of sulphide-rich outcrop in the grid area upgrades this target area. The grid should be extended to the east and west and followed by detailed EM geophysical surveys.

REFERENCES

Bridge, D.A., Marr, J.M., Hashimoto, K., Obara, M., Suzuki, R., 1983. <u>Geology of the</u> <u>Kutcho Creek Volcanogenic Massive Sulphide Deposits, Northern British Columbia.</u> C.I.M. Spec. Vol. 37, pp. 115-128.

Thorstad, L.E. and Gabrielse, H., 1986. <u>The Upper Triassic Kutcho Formation Cassiar</u> <u>Mountains, North-Central British Columbia.</u> Geol. Survey of Can. Paper 86-16.

Holbek, P.M., 1989. 1988 Geophysical and Geochemical Report on the Kutcho Claim Groups 89A and 89B. B.C.M.E.M.P.R Assessment Report.

Holbek, P.M., 1990. 1990 Geological and Geochemical Report on the Josh Claim Group, Kutcho Creek Area, Northwestern B.C. B.C.M.E.M.P.R. Assessment Report.

APPENDIX I

STATEMENT OF COSTS

LABOUR - July 2&3 and July 30, 1991		
P. Holbek - 3 days @ 270/day A. Ross - 3 days @ 180/day	\$ 810.00 <u>540.00</u>	
		\$ 1,350.00
FOOD AND ACCOMMODATION		
6 man days @ \$50/day		300.00
EQUIPMENT RENTAL		
Computer Hardware & Software		100.00
	-	
GEOCHEMICAL ANALYSIS		
58 soil samples @ 8.75 (Bondar Clegg)	\$ 507.50	
84 soil samples @ 6.15 (Acme Analytical) 3 Whole rock analyses @ 7.00	516.60 21.00	
Freight	75.00	
		1,120.10
TRANSPORTATION		.,
Canadian Airlines	\$ 450.00	
Watson Lake Flying Services	1,271.00	
Frontier Helicopters - Bell 206 1.5 hours @ 765 (incl. fuel)	1,150.00	
		2,871.00
Report Preparation		300.00
TOTAL		<u>\$ 6,041.00</u>

STATEMENT OF QUALIFICATIONS

I, Peter Holbek, DO HEREBY CERTIFY THAT:

- 1) I am a project geologist presently employed by Homestake Mineral Development Company located at 1000 - 700 West Pender Street, Vancouver, B.C. V6C 1G8.
- 2) I graduated from the University of British Columbia with a B.Sc. (Hons.) in geology in 1980 and an M.Sc. in geology in 1988.
- 3) I have actively practiced my profession in North America since 1975.
- 4) The work described herein was done by me or under my direct supervision.

DATED THIS 5 DAY OF September, 1991 AT VANCOUVER, B.C.

Peter Holbek

APPENDIX III

KUTCHO CLAIM DATA

KUTCHD

Sep 11,1991

(158 cls. = 5134.5 bec.)

CLAIM	REC No.	RECORD DATE	EXPIRY DATE	HECTR	UN	GROUP NUMBER	GROUP DATE	MINING DIV'N	NTS	WORK APP'D
TAIL		Aug 14,1984						LÍARD	104I1W	
JESS 1						Kcho91 FarEast		LIARD	104I/1E	\$2,400.00
JESS 2	225804	Oct 09,1990	Oct 09,1994	100.	4	Kcho91 FarEast	Sep 09,1991	LIARD	1041/1W	\$2,400.00 \$1,200.00
CGL 1		Jun 26,1978	Jun 26,1995	300.	12	Kutcho90 North	Oct 19,1990	LIARD	104I1W	\$4,800.00
ANDREA	221729	Jul 27,1977	Jul 27,1995	350.	i4	Kutcho90 North	Oct 19,1990	LIARD	104I1W	\$5,600.00
SVEA	221730	Jul 27, 1977	Jul 27,1995	150.	6	Kutcho90 North	Oct 19,1990	LIARD	104I1W	\$2,400.00
JEFF 064 FR.	222121	Aug 04,1981	Aug 04,1995	12.5	1	Kcho91 FarEast	Sep 09,1991	LIARD	104I1W	\$800.00
JEFF 113 FR.	222119	Aug 04,1981	Aug 04,1995	12.5	i	Kcho91 FarEast	Sep 09,1991	LIARD	104I1W	\$800.00
JEFF 114 FR.	222120	Aug 04,1981	Aug 04,1995	12:5	1.	Kcho91 FarEast	Sep 09,1991	LIARD	104I1W	\$800.00
POND 001	222379	Aug 14,1984	Aug 14, 1995	350.	14	Kutcho90 North	Dct 19,1990	LIARD	104I1W	\$5,600.00
POND 002	222380	Aug 14,1984	Aug 14,1995	100.	4	Kutcho90 North	Oct 19,1990	LIARD	104I1W	\$1,600.00
JEFF 137	228046	Aug 20,1974	Aug 20,1995	21.	1	Kcho91 FarEast	Sep 09,1991	LIARD	104IIW	\$800.00
JEFF 138	228047	Aug 20,1974	Aug 20,1995	21.	1	Kcho91 FarEast	Sep 09,1991	LIARD	104I1W	\$800.00
JEFF 002		Aug 27,1973			1	Kutcho90 North	Dct 19,1990	LIARD	1041W	\$400.00
JEFF 004		Aug 27,1973			1	Kutcho90 North	Oct 19,1990	LIARD	104IW	\$400.00
JEFF 005	227720	Aug 27,1973	Aug 27, 1995	21.	1	Kutcho90 North	Oct 19,1990	LIARD	104IW	\$400.00
JEFF 006		Aug 27,1973				Kutcho90 North			104IW	\$400.00
JEFF 007		Aug 27,1973			1	Kutcho90 North	Oct 19,1990	LIARD	104IW	\$400.00
JEFF 009		Aug 27,1973				Kutcho90 North			104IW	\$400.00
JEFF 01		Aug 27, 1973				Kutcho90 North			1041₩	\$800.00
JEFF 013		Aug 27,1973				Kutcho90 North			104IW	\$800.00
JEFF 014		Aug 27,1973				Kutcho90 North			104IW	\$800.00
JEFF 015		Aug 27,1973				Kutcho90 North			104IW	\$800.00
JEFF 016		Aug 27,1973				Kutcho90 North			1041	\$B00.00
JEFF 017		Aug 27,1973				Kutcho90 North			104IW	\$400.00
JEFF 018		Aug 27,1973				Kutcho90 North			104IW	\$400.00
JEFF 019		Aug 27,1973				Kutcho90 North			104IW	\$400.00
JEFF 020		Aug 27, 1973				Kutcho90 North			1041W	\$400.00
JEFF 021		Aug 27,1973				Kutcho90 North	-		1041W	\$400.00
JEFF 022		Aug 27,1973				Kutcho90 North			10410	\$400.00
JEFF 024		Aug 27,1973				Kutcho90 North			104IW	\$400.00
JEFF 025		Aug 27, 1973				Kutcho90 North			1041W	\$800.00
JEFF 026		Aug 27,1973				Kutcho90 North			1041W	\$800.00
JEFF 027		Aug 27,1973				Kutcho90 North			10418	\$800.00
JEFF 028		Aug 27, 1973				Kutcho90 North			1041W	\$800.00
JEFF 029		Aug 27,1973				Kutcho90 North			10411	\$800.00
JEFF 03		Aug 27,1973				Kutcho90 North	•		1041	\$800.00
JEFF 030		Aug 27, 1973				Kutcho90 North			1041W	\$800.00
JEFF 031		Aug 27,1973				Kutcho90 North			1041W	\$400.00
JEFF 032		Aug 27,1973				Kutcho90 North	•		1041	\$400.00
JEFF 033		Aug 27,1973				Kutcho90 North			1041W	\$400.00
JEFF 034		Aug 27,1973				Kutcho90 North			1041₩	\$400.00
JEFF 035		Aug 27,1973				Kutcho90 North	•		104IW	\$400.00
JEFF 036		Aug 27,1973				Kutcho90 North			1041W	\$400.00
JEFF 037		Aug 27,1973				Kutcho90 North			104IW	\$400.00
JEFF 038		Aug 27, 1973				Kutcho90 North			104IW	\$400.00
JEFF 039		Aug 27,1973				Kutcho90 North			1041W	\$400.00
JEFF 040		Aug 27,1973				Kutcho90 North			1041W	\$400.00
JEFF 053		Aug 27,1973				Kutcho90 West			104IW	\$400.00
									104IW	
JEFF 054		Aug 27, 1973				Kutcho90 West	-			\$400.00 \$400.00
JEFF 055						Kutcho90 West			104IW	
JEFF 056		Aug 27, 1973				Kutcho90 West			104IW	\$400.00
JEFF 057		Aug 27, 1973				Kutcho90 North			104IW	\$400.00
JEFF 058	227768	Aug 27,1973	Aug 27,1995	Z1.	1	Kutcho90 North	uct 19,1990	FIAKD	104I1W	\$600.00
JEFF 065	227775	ug 27,1973 .		~ 4	1	Kutcho90 North			104IW	\$800.00

Pagel

	CLAIM	REC No.	RECORD DATE	EXFIRY DATE	HECTR	UN	GROUP	NUMBER	GROUP DATE	MINING DI	V'N	NTS	WORK APP'D
JENN 003		227875	Ňov 13,1973	Nov 13,1995	21.	i	Kcho91	FarEast	Sep 09,1991	LIARD		104IW	\$800.00
JENN 004		227876	Nov 13,1973	Nov 13,1995	21.	1	Kcho91	FarEast	Sep 09,1991	LIARD		1041₩	\$800.00
JENN 005		227877	Nov 13,1973	Nov 13,1995	21.	1	Kcho91	FarEast	Sec 09,1991	LIARD		104I₩	\$800.00
JENN 006		227878	Nov 13, 1973	Nov 13,1995	21.	1	Kcho91	FarEast	Sep 09,1991	LIARD		104I¥	\$800.00
JENN 007		227879	Nov 13,1973	Nov 13,1995	21.	1	Kcho91	FarEast	Sep 09,1991	LIARD		1041W	\$800.00
JENN 008		227880	Nov 13,1973	Nov 13,1995	21.	1	Kcho91	FarEast	Sep 09,1991	LIARD		104IW	\$800.00
JENN 009		227881	Nov 13,1973	,		1	Kcho91	FarEast	Sep 09,1991	LIARD		104IW	\$800.00
JEFF 135		228044	Aug 20,1974						Sep 06,1990			104I1W	\$B00.00
JEFF 136		228045	Aug 20,1974						Sep 06,1990			104I1W	\$800.00
JEFF 041			Aug 27,1973						Sep 06,1990			104IW	\$1,000.00
JEFF 042			Aug 27,1973						Sep 06,1990			104IW	\$1,000.00
JEFF 043			Aug 27,1973	· · ·					Sep 06,1990			10418	\$1,000.00
JEFF 044		227754	Aug 27,1973	Aug 27,1996	21.				Sep 06,1990			104IW	\$1,000.00
JEFF 045			Aug 27,1973						Sep 06,1990			1041#	\$1,000.00
JEFF 046			Aug 27,1973						Sep 06,1990			1041¥	\$1,000.00
JEFF 047			Aug 27, 1973						Sep 06,1990			104IN	\$1,000.00
JEFF 048			Aug 27,1973		÷ .				Sep 06,1990			104I¥	\$1,000.00
JEFF 049			Aug 27,1973	-					Sep 06,1990			104IW	\$1,000.00
JEFF 050			Aug 27,1973						Sep 06,1990			104IW	\$600.00
JEFF 051			Aug 27,1973						Sep 06,1990			104IW	\$600.00
JEFF 052			Aug 27,1973						Sep 06,1990			104I¥	\$600.00
JEFF 059			Aug 27,1973						Sep 06,1990			1041#	\$1,000.00
JEFF 060			Aug 27, 1973						Sep 06,1990			1041₩	\$800.00
JEFF 061			Aug 27, 1973						Sep 06,1990			1041W	\$1,000.00
JEFF 062			Aug 27,1973						Sep 06,1990			1041W	\$800.00
JEFF 063			Aug 27, 1973						Sep 06,2990			104IW	\$1,000.00
JEFF 064			Aug 27,1973		1 A.				Sep 06,1990			104IW	\$1,000.00
JEFF 067			Aug 27, 1973						Sep 06, 1990			104IN	\$1,000.00
JEFF 068			Aug 27,1973						Sep 06,1990			104IW	\$1,000.00
JEFF 069			Aug 27, 1973						Sep 06,1990			104IW	\$1,000.00
JEFF 070			Aug 27, 1973						Sep 06,1990			104IW	\$1,000.00
JEFF 071		22//01	Aug 27, 1973	Aug 27,1920	21.				Sep 06,1990			10418	\$1,000.00
JEFF 072 JEFF 073			Aug 27, 1973						Sep 06,1990			104IW	\$1,000.00
JEFF 074			Aug 27,1973 Aug 27,1973						Sep 06,1990			104I¥ 104I1¥	\$800.00
JEFF 075			Aug 27,1973						Sep 06,1990 Sep 06,1990			10411W	\$800.00 \$800.00
JEFF 076			Aug 27,1973						Sep 06,1990			104I1W	\$800.00
JEFF 077			Aug 27,1973						Sep 06,1990			10411	\$B00.00
JEFF 078			Aug 27,1973						Sep 06,1990			10411	\$1,000.00
JEFF 123			Nov 13,1973						Sep 06,1990			104IW	\$1,000.00
JEFF 124			Nov 13,1973						Sep 06,1990			82K4	\$1,000.00
JEFF 125			Nov 13,1973						Sep 06,1990			104I¥	\$1,000.00
JEFF 126			Nov 13,1973						Sep 06,1990	1		104IW	\$1,000.00
JEFF 127			Nov 13,1973	•					Sep 06,1990			10418	\$1,000.00
JEFF 128			Nov 13,1973						Sep 06,1990			10418	\$1,000.00
JEFF 129			Nov 13,1973						Sep 06,1990			1041W	\$1,000.00
JEFF 130			Nov 13,1973						Sep 06,1990			104IW	\$1,000.00
					'								

Page 3

	CLAIK	REC Nó.	RECORD DATE	EXPIRY DATE	HECTR U	N GROUP NUMBER	GROUP DATE		NTS	WORK APP'
EFF 066		227776	Aug 27,1973	Aug 27,1995	21. 1	Kutcho90 North	Oct 19,1990		104IW	\$800.00
EFF 079						Kutcho90 West			104IW	\$800.00
EFF 080						Kutcho90 West			104IW	\$800.00
EFF 081						Kutcho90 West			104IW	\$800.00
EFF 082						Kutcho90 West			1041₩	\$800.00
EFF 083						Kutcho90 West			1041₩	\$800.00
EFF 084						Kutcho90 West			104IW	\$800.00
EFF 085			Aug 27, 1973			Kutcho90 West			104IW	\$800.00
EFF 086						Kutcho90 West			1041W	\$800.00
EFF 087			Aug 27,1973			Kutcho90 West			104IW	\$800.00
EFF 088			Aug 27,1973			Kutcho90 West			104IW	\$800.00
EFF 089			Aug 27,1973			Kutcho90 North	•		104IW	\$800.00
EFF 090			Aug 27,1973			Kutcho90 North			104IW	\$400.00
EFF 091			Aug 27, 1973			Kutcho90 North			104IW	\$800.00
EFF 092			Aug 27,1973			Kutcho90 North			104IW	\$800.00
EFF 093			Aug 27,1973			Kutcho90 West			104IW	\$800.00
EFF 094			Aug 27,1973			Kutcho90 North			1041W	\$400.00
EFF 095			Aug 27, 1973			Kutcho90 West			10418	\$800.00
EFF 096			Aug 27, 1973			Kutcho90 West			10418	\$400.00
EFF 097			Aug 27, 1973			Kutcho90 West			10418	\$800.00
EFF 098						Kutcho90 West			104IW	\$400.00
EFF 099						Kutcho90 Nest			104IW	\$800.00
									1041W	
EFF 100						Kutcho90 West				\$800.00
EX 1 FR.						Kutch090 North			10411W	\$400.00
EX 2 FR.						Kutcho90 West			10419	\$800.00
EX 3 FR.						Kutcho90 North			104I1W	\$400.00
EX 4 FR.	· .					Kutcho90 North			10411W	\$400.00
EFF 057 FA						Kutcho90 North			10411₩	\$400.00
FF 101			Sep 07,1973			Kcho91 FarEast			10411	\$800.00
EFF 102			Sep 07,1973			Kcho91 FarEast			10411	\$800.00
FF 103			Sep 07,1973			Kcho91 FarEast			104IN	\$800.00
EFF 104			Sep 07,1973			Kcho91 FarEast			1041#	\$800.00
EFF 105			Sep 07,1973			Kcho91 FarEast			104IW	\$800.00
EFF 106			Sep 07,1973			Kcho91 FarEast			104IW	\$800.00
EFF 107			Sep 07,1973			Kcho91 FarEast		and the second	104IW	\$800.00
EFF 108			Sep 07,1973			Kcho91 FarEast			104IW	\$800.00
FF 109			Sep 07,1973			Kcho91 FarEast			104IW	\$800.00
EFF 110			Sep 07,1973			Kcho91 FarEast				\$800.00
EFF 111			Sep 07,1973			Kcho91 FarEast			104IW	\$800.00
EFF 112			Sep 07,1973			Kcho91 FarEast			104IW	\$B00.00
ENN 001			Sep 07,1973			Kcho91 FarEast	Sep 09,1991	LIARD	104IW	\$800.00
ENN 002		227839	Sep 07,1973	Sep 07,1995	21. 1	Kcho91 FarEast	Sep 09,1991	LIARD	104IW	\$800.00
FF 113		227850	Nov 13,1973	Nov 13,1995	21. 1	Kcho91 FarEast	Sep 09,1991	LIARD	104IW	\$800.00
FF 114						Kcho91 FarEast	Sep 09,1991	LIARD	104IW	\$800.00
EF 115			Nov 13,1973	Nov 13,1995	21. 1	Kcho91 FarEast	Sep 09,1991	LIARD	104IW	\$800.00
FF 116		227853	Nov 13,1973	Nov 13,1995	21. 1	Kcho91 FarEast	Sep 09,1991	LIARD	104IW	\$800.00
FF 117		227854	Nov 13,1973	Nov 13,1995	21. 1	Kutcho90 West	Oct 19,1990	LIARD	104IW	\$800.00
FF 118		227855				Kutcho90 West	Oct 19,1990	LIARD	104I1W	\$600.00
FF 119		227856	Nov 13,1973	1 2 1		Kutcho90 West			104IW	\$800.00
FF 120		227857	Nov 13,1973						104IW	\$800.00
FF 121		227858	Nov 13,1973			Kutcho90 West	•		104IW	\$800.00
FF 122		227859	Nov 13,1973			Kutcho90 West	· ·		104IW	\$800.00
FF 131		227868	Nov 13, 1973						104IW	\$800.00
FF 132		227869	Nov 13,1973			Kutcho90 West			104IW	\$800.00
FF 133		227870	Nov 13,1973			Kutcho90 West			104IW	\$800.00
11 100		221010	NUV 10/13/0	NUV 10.1333	21. 1	KULLUU20 MESL	UL4 13.1330	LINNU	10418	¥ avu.uu

Page2

- 687	тсна	SOUTH	

Sep 11,1991

n.	01010 00	2.111			000		1	(47 (15)	- 0/001 HECH/		
CLAIM	REC No.	RECORD DATE	EXPIRY DATE	HECTR	UN	GROUP	NUMBER	GROUP DATE	MINING DIV'N	NTS	WORK APP'D
KRIS 001	227811	Sep 07,1973	Sen 07.1993	21	1	Kcho91	FarWest	Sep 09,1991	LIARD	10411W	
KRIS 002		Sep 07,1973						Sep 09,1991		104I1W	
KRIS 003		Sep 07,1973						Sep 09,1991		10411W	
KRIS 004		Sep 07,1973						Sep 09,1991		104I1W	
KRIS 005		Sep 07,1973						Sep 09,1991		104I1W	
KRIS 006		Sep 07,1973						Sep 09,1991		10411₩	
KRIS 007		Sep 07,1973						Sep 09,1991		104I1W	
KRIS 008	227818		Sep 07,1993					Sep 09,1991		104I1W	
KRIS 009	227819		Sep 07,1993					Sep 09,1991		10411W	
KRIS 005 KRIS 011		Sep 07,1973	• •					Sep 09,1991		104I1W	
KRIS 013		Sep 07,1973						Sep 09,1991		104I1W	
KRIS 015		Sep 07,1973						Sep 09,1991		104I1W	
KRIS 016		Sep 07,1973						Sep 09,1991	and the second	104I1W	
KRIS 012		Sep 07,1973						Sep 09,1991		104IW	\$600.00
KRIS 014		Sep 07,1973						Sep 09,1991		1041W	\$500.00
PY 71		Sep 14,1990						Sep 09,1991			\$2,700.00
ZIGGY		Feb 03,1990						Oct 30,1990		104I1W	\$5,400.00
DANGEROUS		Feb 07,1986						Oct 30,1990		104I1N	\$12,800.00
JDSH 6		Feb 07,1986						Sep 09,1991		104111	\$16,000.00
JOSH 7		Feb 07,1986						Sep 09,1991		104I1W	\$16,000.00
MONEY PENNY		Feb 07,1986	•					Oct 19,1990		104I1W	\$7,200.00
PINK ONE		Feb 07,1986						Sep 09,1991		I04I1W	\$16,000.00
PINK TWO		Feb 07,1986						Oct 19,1990	stant and	104I1W	\$16,000.00
POTASH		Feb 07,1986						Oct 30,1990		104I1W	\$12,800.00
T.R.C.		Feb 07,1986			15	Kcho91	FarWest	Sep 09,1991	LIARD	104I1N	\$12,000.00
MOE 1	221629	May 12, 1975	May 12,1995	150.	6	Kcho91	FarEast	Sep 09,1991	LIARD	104I1W	\$4,800.00
PY 66	222101	May 15,1981	May 15,1995	300.	12	Kutcho9	0 West	Oct 19,1990	LIARD	104IIN	
PY 67		Jun 21,1983			6	Kcho91	FarWest	Sep 09,1991	LIARD	104I1W	\$3,600.00
PY 68	222296	Jun 21,1983						Sep 09,1991		104I1W	\$B,400.00
PY 69	222297	Jun 21,1983	Jun 21,1995	225.	9	Kcho91	FarWest	Sep 09,1991	LIARD	104I1W	\$7,200.00
C6L 2	221759	Jun 26,1978	Jun 26,1995	200.	8				LIARD	10411₩	\$6,400.00
JOSH 8	3567	Jul 07,1986	Jul 07,1995	50.	2	Kcho91	FarEast	Sep 09,1991	LIARD	104IIW	\$800.00
PHIL 1	222474	Jul 07,1986	Jul 07,1995	50.	2	Kutcho9	0 South	Oct 30,1990	LIARD	104I1W	\$1,200.00
PHIL 2	222475	Jul 07,1986	Jul 07,1995	300.	12	Kutcho9	0 West	Oct 19,1990	LIARD	104I1W	\$9,600.00
PHIL 3	222476	Jul 07,1986	Jul 07,1995	100.	4	Kutcho9	0 West	Oct 19,1990	LIARD	10411₩	\$3,200.00
JOSH 2		Jul 17,1985	Jul 17,1995	450.	18	Kutcho9	0 South	Oct 30,1990		104I1W	\$14,400.00
STU		Jul 27,1977	-		6				LIARD	10411₩	\$4,800.00
JOSH 5		Aug 19,1985	Aug 19,1995	500.	20	Kutcho9	0 South	Oct 30,1990		104I1W	\$16,000.00
LIN 001 FR.		Aug 20,1979	Aug 20,1995	10.5	1				LIARD	104I1W	\$800.00
CGL No. 1 Fr.		Oct 20,1979	Oct 20,1995	12.5	i				LIARD	104I1W	\$1,000.00
LIN 011		Nov 13,1973	•		1				LIARD	10411₩	\$400.00
LIN 039		Nov 13,1973			1				LIARD	104IW	\$800.00
LIN 040		Nov 13,1973			1				LIARD	104IW	\$800.00
TBWBT		Feb 03,1990	Feb 03,1996	150.	6	Kutcho9	0 East	Sep 06,1990	LIARD	104I1₩	\$3,000.00
JOSH 3	222430							Sep 06,1990		10411₩	\$18,000.00
JOSH 4		Jul 17,1985								104∏1₩	\$18,000.00
JD5H 1	222385	Sep 07,1984	Sep 07,1996	400.	16	Kutcho9	0 East	Sep 06,1990	LIARD	10411₩	\$19,200.00

Page 1

ş

	Province of British Column Ministry of Energy, Mines and Petroleur MINERAL RESOURCES DIVISION – TITLES	m Resources DOCUMENT NO
ł	Mineral Tenure Act SECTION 28	
	NOTICE TO GROUP	
	INDICATE TYPE OF TITLE Mine (Mineral	or Placer)*
		RECORDING STAMP
	I, Karen A. McNair	
	(Name) 1000 – 700 West Pender Street (Address)	(Name) 1000 - 700 West Pender Street (Address)
	Vancouver, B.C.	Vancouver, B.C.
	684-2345 V6C 1G8 (Telephone) (Postal Code)	684-2345 V6C 1G8 (Telephone) (Postal Code)
	Valid subsisting FMC No. 117959	Valid subsisting FMC No. <u>112180</u>
	FMC Code	FMC Code HOMCAL

A copy of the mineral/placer titles reference map XX or a legal survey approved by the Surveyor General 🔲 is attached. (check appropriate box)

Name of Claim	No. of Units	Title Number	Name of Claim	No. of Units	Title Number	
Jess l	8	225803	Jeff 114	1	227851	
Jess 2	4	225804	Jeff 114 Fr.	1	222120	
Josh 6	20	222455	Jeff 115	1	227852	
Josh 7	20	222456	Jeff 116	1	227853	
Josh 8	2	(3567) *	Jeff 64 Fr.	1	222121	
Moe 1	6	221629	Jeff 137	1	228046	
Jeff 101	1	227826	Jeff 138	1	228047	
Jeff 102	1	227827	Jenn 1	1	227838	
Jeff 103	1	227828	Jenn 2	1	227839	
Jeff 104	1	227829	Jenn 3	1	227875	
Jeff 105	1	227830	Jenn 4	1	227876	
Jeff 106	1	227831	Jenn 5	1	227877	
Jeff 107	1	227832	Jenn 6	1	227878	
Jeff 108	. 1	227833	Jeini o	_	227070	
Jeff 109	1	227834	Jenn 7	1	227879	
Jeff 110	1	227835	Jeini /		221019	
Jeff 111	1	227836	Jenn 8		227880	
Jeff 112	1	227837		L	227880	
Jeff 113	1	227850	Jenn 9	1	227881	
Jeff 113 Fr.		222119	Ueiiii 9	L L	221001	

82

Notice to Group approved (Yes/No)

(Signature of Applicant)

Total number of units

(Signature of Gold Commissioner)

(Date)

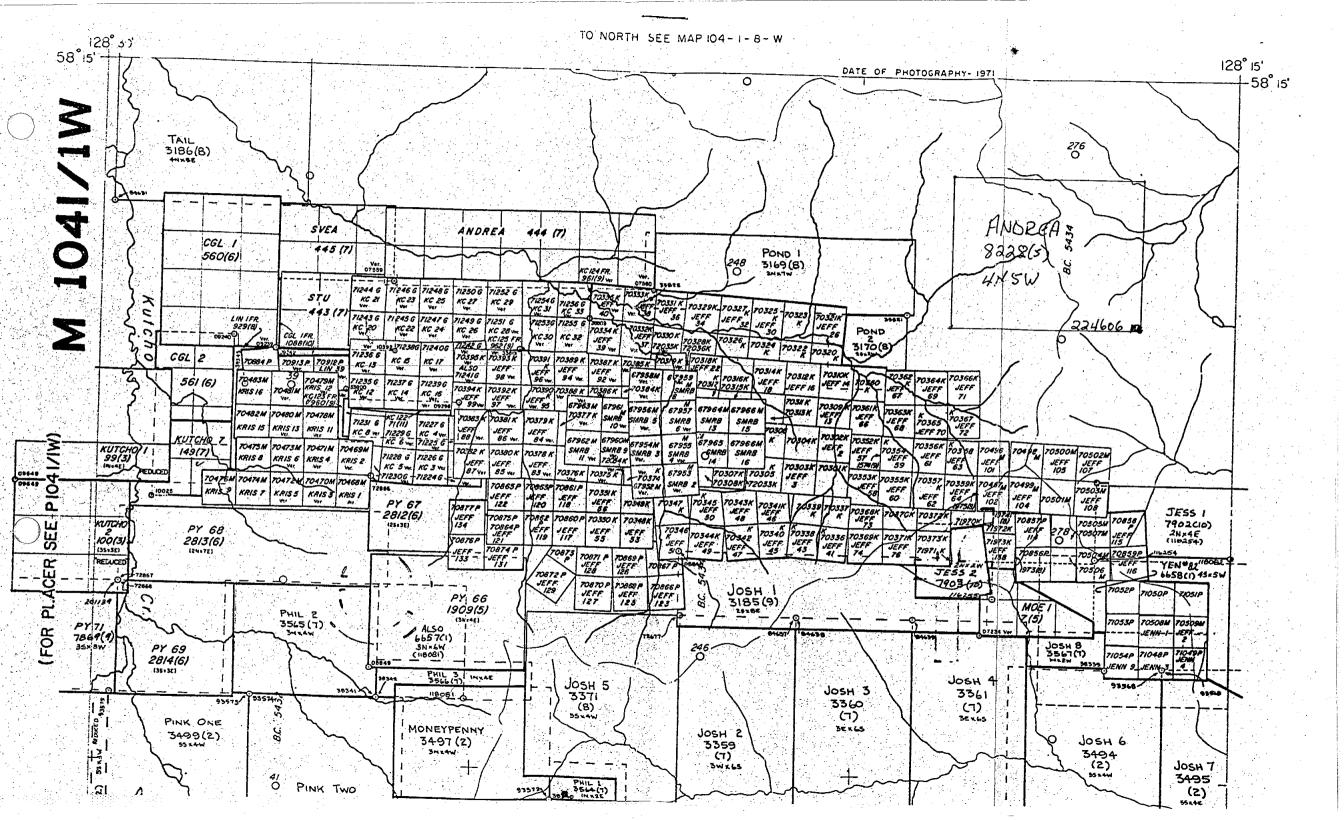
*NOTE: Mineral claim(s) and lease(s) cannot be grouped with placer claim(s) and lease(s)

Kutcho/Kutcho South

3	Province of British Columbia Ministry of Energy, Mines and Petroleum Resources MINERAL RESOURCES DIVISION — TITLES BRANCH					
	Mineral Tenure Act SECTION 28					
	NOTICE TO GROUP					
INDICATE TYPE OF	TITLE	1				
	(Mineral or	Placer)*	REC	CORDING STAMP		
I, Karen A. McN	lair (Name)	Agent for Homest	ake Canada Lt (Name)	d.		
1000 - 700 W	lest Pender Street (Address)	1000 -	700 West Pen (Address)	der Street		
Vancouver,	B.C.	Vancou	ver,	В.С.		
(Telephone)	V6.C. 1G8 (Postal Code)	(Telephone)	45	(Postal Code)		
Valid subsisting FMC	No. 117959	Valid subsisting FN	IC No. 112180			
FMC Code	MCNAKA	FMC Code	HOMCAL			
quest that the following r	nineral titles on map number(s)	1041/	01W, 1041/02E	ir		
- Tioud	Mining Division(s) be gro	uned under the group	nome Kutcho	91 Far West		

A copy of the mineral/placer titles reference map ﷺ or a legal survey approved by the Surveyor General □ is attached. (check appropriate box)

Name of Claim	No. of Units	Title Number	Name of Claim	No. of Units	Title Number
Py 68 Py 69	14 9	222296 222297	Kris 6	1	227816
Py 71	9	225770	Kris 7	1	227817
T.R.C.	15	222457	Kris 8	1	227818
Pink One	20	222460	Kris 9	1	227819
Ру 67	6	222295	Kris ll	1	227820
Kris l	1	227811	Kris 12	1	227821
Kris 2	1	227812	Kris 13	1	227822
Kris 3	1	227813	Kris 14	1	227823
Kris 4	1	227814	Kris 15	1	227824
Kris 5	1	227815	Kris 16	1	227825


Notice to Group approved (Yes/No)

(Signature of Gold Commissioner)

(Signature of Applicant)

*NOTE: Mineral claim(s) and lease(s) cannot be grouped with placer claim(s) and lease(s)

APPENDIX IV

GEOCHEMICAL DATA

A. Same Shire

ACLE ANALYTT	CAL	LABO	ORAT	ORTI	es l'	ED.		852	Е.	HAS!	FING	S 51	r. v										(604					253-1716
ΑΑ									GE	oche	MIC	AL	ANZ	л.	IS	CER	TIF	IC7	ATE	М	SIK	<u> </u>	ΛW	ter	Ю	1950	<i>.</i>	ΑΑ
T T				<u>Hor</u>	nest	ake	S2	inad		Limi				CT	<u>834</u> 7	4	Fl	le.	# 9	91-3	135		Pag	je 1	L	Le E	<i>ф</i> г,	
					<u></u>					1000 +	700 6	I. Pe	nder	St.,	Vanco	uver	BC VOL	. 168							<u></u>	HIX.		
SAMPLE#	Mo ppn	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	0000000000	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	BAL ppm %	Na %	K W % ppm
KB 600W 2300N	3	96	21	165	.6	46			6.74	8	5	NĎ	5	33	.7	2	4		.28		36	27	.22	123	.13	2 2.41	.01	
KB 600W 2275N KB 600W 2250N	1	302 36	6 8	87 140	2.1	93 74		2456	1.82	26	5 5	ND ND	1 1	333 87	7.5	2	2		4.79	.233 .051	79 22	16 53	.18 1.02	243 146	.01	3 2.11 2 2.61	.01 .02	.04 1 .05 1
KB 600W 2225N	1	47	7		.5	53			3.29	2 4	5	ND	1	157		2	2	44	1.78	.113	34		.72		.05	2 2.29	.01	.05 3
KB 600W 2200N	1 1	91	6	96	.8	42	18	2295	3.22	4	5	ND	1	202	3.1	2	2	36	2.54	.163	43	36	.58	212	.03	2 2.07	.01	.04 1
KB 600W 2175N KB 600W 2150N	1	33 37	5 10	· 70 190	.2 .2	47 42			3.34	5 36	5	ND ND	1 3	62 107	.3 1.1	2	2		.55 1.45	22222222222	11 18	56 36	1.13	116 125	.14	3 1.82 2 2.08	.02 .01	.08 1 .09 1
KB 600W 2125N	i	52	5	168	3	45			3.17	9	5	ND	1	157		2	2	46	2.11	.077	16	48	.96	130	.09	5 1.98	.02	.08 1
KB 600W 2100N	1	63 67	5	423 246	.4 .2	22 37			3.45	36	5	' ND ND	1	235 153	1.9	2 2	-2 2			.121 .118	21 20	25 38	.53 .60	146 173	.07	5 2.13 2 2.10	.02 .02	.05 1 .06 1
KB 600W 2075N	1									•			1															
KB 600W 2050N KB 600W 2025N	1	38 27	8 7	135 216	.3 .2	31 25	25 12	884 399	5.01	2	5 5	ND ND	1. 1	97 16	1.0	2	2	71 66		.100	20 8	42 49	.67	177 68	.08 .06	2 2.69	.01 .01	.05 1 .04 1
KB 600W 2000N	4	22	10	52		7	4	174	2.32		5	ND	1	7	.2	2	2	48	.05	.025	11	15	.41	47	.09	2 1.52	.01	.04 1
KB 600W 1950N KB 600W 1925N	2	106 106	8 16	1 <u>99</u> 891	-2	36 29			6.57	9 5	5 5	ND ND	1	17 19	1.9	2	2 2	98 94		.058	9 30	50 56	1.20	122	.14	2 2.99 2 2.53	.01 .02	.08 2 .09 1
																	-						2					
KB 600W 1900N KB 600W 1875N	7	80 14	12 11	192 116	.2 .2	15 18	7		5.59		5	ND ND	13 2	6 11	.2	2	2	14 95		.036	40 13	16 54	.15	51 42	.15 .30	2 4.64	.10	.10 1 .05 1
KB 600W 1850N	2	12	15	65	.2	13	6		3.53		5	ND	2	8	.2	2	-	110		.020	13	36	.38	44	.42	2 1.09		.05 1
KB 600W 1825N KB 600W 1800N	2	8 174	9 13	19 252	.1 .2	2 46	1 14		.75 6.55		5 5	ND ND	1	6 21	.3 .7	2 2	3	26 57	.03	.010 .067	15 45	11 50	.06 .44	30 70	.10 .36	2 .64 2 4.56	.01 .02	.02 1 .06 1
KB 600W 1750N	2	- 36	5	98	.1	6	3	138	2.19	12	5	ND	1	4	.2	2	2	40	.03	.011	8	11	.05	15	.08	2.57	.01	.03 1
KB 600W 1700N	1	26	9	140		67			7.24		5	ND	1	18	.8	2	2	107		.033	8	98	.61	103	.21	2 2.61	.01	.06 1
KB 400W 2625N KB 400W 2600N	1	31 101	6	79 149	.3 .4	77 98			3.32		5 5	ND ND	1	66 111	.6 1.0	2	2	54 54	.96	.050	12 32		1.13	158 157	.11	3 1.88 2 3.17	.01 .05	.07 1 .05 1
KB 400W 2575N	1	28	9	113	.1	55			5.00		5	ND	ĩ	66	.8	2	2	68		.061	15	75	.71	119	.16	2 2.25	.01	.06 1
KB 400W 2550N	1	23	6	93	.2	42			3.78		5	ND	1	40	.2	2	2	80		.035	8	73	.69	124	.17	2 1.56	.01	.05 1
KB 400W 2525N KB 400W 2500N	2	38 56	14 5	102 105	.3	31 46			3.19		5 5	. ND ND	.1	154 231	2.0	2	2			.048 .088	10 20	40 35	.31	138 125	.11	2 1.22 5 1.91	.01 .02	.05 1
KB 400W 2475N	i	93	7	133	.9	79	15	809	3.53	43	5	ND	1	211	1.2	2	2	35	2.50	.103	41	61	.74	141	.14	7 2.23	.02	.10 1
KB 400W 2450N	1	44	5	102	.2	70	14	495	3.93	10	5	ND	1	50	.3	2	2	59	.46	.044	8	76	1.28	149	.11	2 2.08	.01	.05 1
KB 400W 2425N	1	19	9	75		35	10		4.76		5	ND	1	18	.2	2	2	97		.040	9	75	.63	143	.20	2 1.83	.01	.05 1
KB 400W 2400N KB 400W 2375N	1	42 47	14 7	87 97		92 82	17		6.76		6 5	ND ND	1 ⁻ 1	18 48	.2	2 2	2 2	88 58		.056	6 10		1.11	118 131	.14	2 2.09	.01 .01	.06 1 .05 1
KB 400W 2350N	1	59	5	109	.3	86	13	652	3.69	11	5	ND	1	125	.4	2	3	53	1.45	.056	24	78	.99	104	.17	5 1.94	.02	.06 2
KB 400W 2325N	1	76	7	113	.3	51	12	507	3.96	18	5	ND	1	82	.6	2	2	43	.81	2074	27	44	.83	155	.04	2 1.88	.01	.05 1
KB 400W 2300N	3	64	12	128	.5	74			4.25		5	ND	1	105	.5	2	2	35		.059	18	47	.40	145	.03	2 1.65	.01	.08 1
KB 400W 2275N Standard C	2 18	- 34 58	9 37	111 135	.2 7.0	47 70			4.06	0000000000	5 17	ND 6	- 39	97 52	.4 18.6	2 16	2 19	37 55	.68 .48	.054 .091	. 11 	31 58	.34 .89	91 178	.12 .09		.01 .06	.04 1 .15 11
	L																											

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

itug 13/91.

- SAMPLE TYPE: P1 TO P3 SOIL P4 ROCK

DATE RECEIVED: AUG 2 1991 DATE REPORT MAILED:

Homestake Canada Limited PROJECT 3174 FILE # 91-3135

Page 2 AA

ACHE ANALYTICAL

ACHE ANALYTICAL																					· .				ACHE ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe As % ppn	X	••-	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P % X	La ppm	Cr ppm	Mg %	Ba Tî ppm %	BAL ppm %	Na %	K W % ppm
KB 400W 2250N KB 400W 2225N KB 400W 2200N KB 400W 2175N KB 400W 2150N	1 3 1 1 2	29 46 129 106 38	8 10 16 13 12	100 109 315 452 139	.1 .3 .4 .4 .2	105 33 83 85 56	10 19 14	779 420 1055 871 1029	2.71 15 4.77 39 4.18 17	5 5 5	ND ND ND ND ND	1 1 1 1	64 77 159 167 108	.2 1.2 .5 .9 .4	2 2 2 2 2 2	2 2 2 2 2	44	.65 .043 .90 .073 2.20 .089 2.49 .119 1.38 .066	10 8 26 24 15	55 68	1.35 .74 .94 1.10 .68	109 .15 116 .04 141 .18 142 .10 139 .27	4 1.76 2 1.57 6 2.46 8 2.19 2 2.28	.01	.07 1 .05 1 .06 1 .07 1 .06 1
KB 400W 2125N KB 400W 2120N KB 400W 2075N KB 400W 2050N KB 400W 2025N	2 3 3 3 3	53 64 66 32 17	11 14 11 17 11	129 187 182 89 72	.3 .2 .2 .2 .2 .2	96 71 72 101 40	22 19 36	1297 1534 1169 1931 607	5.61 11 5.39 7 7.19 20	5 5 5		1 1 1 1	87 87 73 29 15	.5 1.4 .8 .2 .2	2 2 2 2 2 2 2	2 2 2 2 2		1.07 .067 1.06 .097 .89 .098 .33 .067 .17 .060	21 21 17 10 9	90 112	1.12 .92 1.12 1.24 .71	141.20137.18141.11105.2265.30	4 2.55 2 2.28 4 2.37 4 1.88 2 2.17	.02	.08 1 .08 1 .09 1 .08 1 .06 1
KB 400W 2000N KB 400W 1975N KB 400W 1950N KB 400W 1925N KB 400W 1925N KB 400W 1900N	3 12 9 2 1	28 54 39 12 105	6 14 13 5 7	82 216 210 64 251	.1 .1 .2 .3 .4	80 30 49 21 21	9 12 7	504 576 675 411 928	3.59 5 5.18 8 2.55 3	5 5 5	ND	1 1 1 1	24 34 19 19 31	.2 1.3 .7 .8 1.2	2 2 2 2 2	2 2 2 2 2 2	70 66 83 66 70	.26 .026 .44 .033 .18 .031 .38 .069 .91 .050	9 20 16 5 12	65 84 46	1.40 .71 .89 .76 1.59	83.18128.24142.22114.12109.23	3 1.86 2 1.72 3 2.00 2 1.08 3 2.58	.02 .02 .01	.06 1 .09 1 .08 1 .08 1 .06 1
KB 400W 1875N KB 400W 1850N KB 400W 1825N KB 400W 1800N KB 400W 1775N	2 2 3 2 1	274 45 241 129 188	13 2 8 7 7	232 68 184 79 108	.4 .2 .6 .4	80 21 81 69 72	5 16 14	1032 145 1479 1088 1873	.63 3 4.84 6 4.34 4	5 5 5	ND ND	1 1 1 1	32 104 52 45 60	.2 1.1 .5 .6 1.4	2 2 2 2 2 2	2 2 2 2 2 2	49 41	.88 .094 2.80 .135 2.08 .216 1.52 .149 2.99 .321	23 6 97 62 74	67 13 61 68 55	.99 .28 .82 .42 .38	214.07146.0226403170.04210.03	3 4.37 6 .70 2 3.87 2 3.15 2 3.55	.01 .01 .01	.11 1 .04 1 .13 1 .06 1 .04 1
KB 400W 1750N KB 400W 1725N KB 400W 1700N KB 400W 1675N KB 400W 1650N	2 1 2 3 3	17 27 68 35 18	10 8 12 16 14	59 108 157 126 79	.1 .1 .2 .3 .2	23 19 45 77 29	8 16	268 530 1931 694 531	2.90 4 4.51 5 9.21 21	5 5 5	ND ND	1 1 2 1	16 24 39 19 31	.2 .3 .3 .2 .6	2 2 2 2 2	3 2 2 2 2		.27 .029 .91 .054 1.40 .159 .20 .061 .65 .036	12 16 25 13 10	54 23 63 103 60	.28 .25 .61 .83 .50	92 .28 131 .04 160 .06 137 .26 119 .33	2 1.09 2 1.13 2 2.22 4 3.36 2 1.77	.01 .02 .02	.05 1 .10 1 .07 1 .07 1 .07 1
KB 400W 1625N KB 400W 1600N KB 400W 1585N KB 400W 1575N KB 400W 1525N	2 1 2 1 3	91 42 13 15 20	15 4 12 8 6	218 72 67 77 98	.4 .2 .3 .2	50 54 28 37 38	19 7	330	3.60 7 3.21 4 3.44 5	5 5 5 5 5	ND ND	1 1 4 2 2	54 40 26 21 16	1.7 .2 .2 .2	2 2 2 2 2 2	2 2 2 2 2 2	66 41	1.49 .127 .44 .058 .11 .029 .17 .037 .13 .075	9 16 9			292.08132.22187.17149.18110.19	3 3.48 5 1.93 2 2.92 2 2.89 2 3.02	.02 .01 .01	.08 1 .06 1 .09 1 .07 1 .10 1
KB 400W 1500N KB 400W 1475N KB 400W 1450N KB 400W 1425N KB 400W 1420N	1 2 3 1 3	13 21 47 44 82	8 7 8 2 6	76 116 145 92 135	.3 .4 .6 .3 .4	31 46 48 50 92	13 15	390 510 642 777 906	5.16 6 6.99 6 3.67 4	5 5 5 5 5	ND ND	1 1 2 1	26 19 13 34 63	.2 .2 .2 .3 .2	2 2 2 2 2	2 2 2 2 2 2	69 74 75 63 73	.26 .064 .19 .123 .13 .089 .37 .081 .85 .113	9 19 9	63 57	1.04	109.23106.17136.33149.15312.16	3 2.25 3 2.83 2 4.30 4 2.23 5 3.31	.02 .02 .01	.07 1 .08 1 .09 1 .08 1 .09 1
KB 400W 1375N KB 400W 1350N Standard C	2 2 18	16 24 58	5 2 38	108 94 133	.2 .2 6.7	48 68 71		327 738 1042	3.93	5 5 17	ND ND 6	1 1 36	47 36 52	.2 .2 18.9	2 2 16	2 2 18	59 67 57		7 8 36	95	1.00 1.31 .89	126 .13 166 .17 176 .09	5 1.84 3 2.14 31 1.89	.02	.11 1 .08 1 .15 13

44	
ACME ANALYTICAL	

Homestake Canada Limited PROJECT 3174 FILE # 91-3135

ACHE ANALYTICAL		•		1).						ACHE ANALYTICAL	
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As	Ů	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	K W	
	ppm	ppm	ppm	ррп	ppm	ppm	ррп	ppm	% ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	%	ррп	ppm	%	ppm	*	ppm	%	%	% ppm	
KB 400W 1325N	2	38	6	108		80	15	565	3.58 0	5	ND	1	86	5	2	2	64	1.51	.099	9	83	1.51	177	4.1		1.93	.03	10 4	
KB 400W 1300N	2	56	4	126	2	41	13	839	200000000000000	. 9	ND	1	94	7	2	2		2.35		16	45	.89	264	.10		1.93	.03	.08 1	
KB 400W 1275N	1	35	5	105	.3	24	9	1133	2.58 4	5	ND	1	68	1.1	2	2		2.24		15	34	.37	268	.10		1.59	.02	.06 1	
KB 400W 1250N	2	62	2	206	3	62	12	1009	4.64 8	8	ND	1	65	1.3	2	2	54	1.98	.415	34	55	.43	291	.22	3 3	5.81	.05	.08 1	
KB 400W 1225N	2	89	7	110	.3	70	17	1035	4.24 9	8	ND	1	51	.9	2	2	63	1.21	.098	36	71	.88	244	.18	4 3	3.15	.03	.09 1	
KB 400W 1200N	2	27	3	109		43	12	471	5.00 4	10	ND	2	28	.6	2	2	61	.43	.071	22	41	.73	165	.39	2 3	5.48	.06	.07 1	ĺ
KB 400W 1175N	1	31	6	67		46	12	575	5.30 12	5	ND	1	24	.2	2	2	93	.23	.057	7	74	.92	100	15	2 2	2.06	.01	.05 1	
KB 400W 1150N	1	91	5	76		50	11	992	3.79 4	8	ND	1	63	.4	- 2	2	48	1.02	. 117	73	41	.31	502	. 19	23	5.00	.04	.06 1	
KB 400W 1125N	2	94	3	136	.3	51	13	2492	3.24 4	6	ND	1	80	1.4	2	2	40	2.80	.161	42	41	.33	366	.09	32	2.50	.02	.05	
KB 4400W 11400N	1	44	10	90		47	11	508	4.99 15	5	ND	1	21	.4	2	2	102	.21	.048	6	61	.76	109	.10	3 2	2.07	.01	.05 1	
STANDARD C	20	62	42	133	7.3	75	34	1064	4.07 42	22	7	40	53	17.2	16	22	60	.51	.094	41	55	.95	183	.08	31 1	1.99	.07	.15 11	

44

Page 3

Homestake Canada Limited PROJE 3174 FILE # 91-3135

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ńi	Co	Mn	Fe As	Ū	Áu	Th	Sr Cd	Sb	Bi	v	Ca PL	.a (Cr Mg	I B	a 🖾 Ti	B AL	Na	ĸW	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	% ppm	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	% 🕺 🗶 pp	m p	om 🤊	6 pp	m 🛛 🌋	ppm %	%	% ppm	
										-															
91PHKC-R37	8	94	7	177	888 E -	- 3	16	795	15.49 29	5 -	ND	1	15 2	2	6	218	.26 .063	2	4 .53	; 2	1 .07	2 2.04	.03	.01	
91PHKC-R38	3	19	5	27		9	9	303	5.56 3	5	ND	1	2 .2	2	2	55	.01 .008	2 3	28 2.19) 4	3 .01	2 1.92	.04	.01	
91PHKC-R39	9	5	2	20	1	2	5	174	3.53 2	5	ND	1	1 .2	2	2	6	.01 .002	2	4 1.05	i .	8 .01	2 1.06	.04	.01 1	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 1) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V91-00927.0 (COMPLETE)

REFERENCE INFO: SHIPMENT #1

CLIENT: HOMESTAKE MINERAL DEVELOPMENT COMPANY PROJECT: 3200 SUBMITTED BY: P. HORBEK DATE PRINTED: 29-JUL-91

	ORDER		ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD
	1	Ag	Silver	58	0.2 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	2	Cu	Copper	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	3	Pb	Lead	58	2 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	4	Zn	Zinc	58	1 PPM	HNO3-HC1 Hot Extr.	Ind. Coupled Plasma
	5	Mo	Molybdenum	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	б	Ni	Nickel	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	7	Co	Cobalt	58	1 PPM	HNO3-HC1 Hot Extr.	Ind. Coupled Plasma
	8	Cd	Cadmium	58	1.0 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	9	Bi	Bismuth	58	5 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	10	Ås	Arsenic	58	5 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	11	Sb	Antimony	58	5 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
\frown	12	Fe	Iron	58	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	13	Mn	Manganese	58	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	14	Te	Tellurium	58	10 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	15	8a	Barium	58	2 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	15	Cr	Chronium	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	10	V	Vanadium	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	18	Sn	Tin	58	20 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	19	W	Tungsten	58	20 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	20	La	Lanthanum	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	20	Al	Aluminum	58	0.01 PCT	HNO3-HC1 Hot Extr.	Ind. Coupled Plasma
	22	Mg	Magnesium	58	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
· · · · · · · · · · · · · · · · · · ·	23	Ca	Calcium	58	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	24	Na	Sodium	58	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	25	K	Potassium	58	0.01 PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	26	Sr	Strontium	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma
	27	Ϋ́	Yttrium	58	1 PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasma

Geochemical Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Lab Report V7P 2R5 AR-CI (94) 985-0681 Telex 04-352667 A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES REPORT: V91-00927.0 (COMPLETE) **REFERENCE INFO: SHIPMENT #1** CLIENT: HOMESTAKE MINERAL DEVELOPMENT COMPANY SUBMITTED BY: P. HORBEK PROJECT: 3200 DATE PRINTED: 29-JUL-91 SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER SAMPLE PREPARATIONS NUMBER -----------______ ~~~~~ ---------58 29 S SOILS 1 -80 DRY, SIEVE -80 29 -200 29 SIEVE -200 Q 29 **REPORT COPIES TO: MR. PETER HOLBEK** INVOICE TO: MR. PETER HOLBEK

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. MATP 2R5 985-0681 Telex 04-352667

Geochemical Lab Report

	·			A DIVISI	ON OF INCH	CAPE INSPE	CTION & TES		TE PRINT	ED: 29-JUL		-		
	REPORT: V91-00	927.0 (CON	IPLETE)					PR	OJECT: 3	200		PAGE 1A		
	SAMPLE NUMBER	ELEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPH	Sb PPM	
·	S1 JG350E 670N		<0.2	18	11	58	3	18	9	<1.0	<5	<5	<5	
	SQ JG350E 670N		<0.2	18	10	62	3	18	7	<1.0	<5	<5	<5	
	S1 J6350E 655N		<0.2	23	8	64	1	40	11	<1.0	<5 -5	<5	<5 /5	
	SQ JG350E 655N S1 JG350E 640N		<0.2 <0.2	26 43	8	69 110	2	43 42	11 14	<1.0 <1.0	<5 <5	9	<5 <5	
	51 00550L 040M	(00)	1012	45				42		×1.0		· · · · · · · · · · · · · · · · · · ·		
	SQ JG350E 640N		<0.2	43	11	115	3	43	14	<1.0	<5	11	<5	
	S1 JG350E 625N		<0.2	100	6	88	6	.46	36	<1.0	<5	30	<5 (5	
	SQ JG350E 625N S1 JG350E 610N		<0.2	110	5. 9	98 74	1	46	34	<1.0	<5 <5	34	<5 <5	
	SQ JG350E 610N	• •	<0.2 <0.2	29 27	9	74 70	2 1	36 35	11 9	<1.0 <1.0	<5 <5	10 <5	<5 <5	
	20 30330C 010M	(-200)	<u>\U.2</u>		0		L			×1.0	<u></u>			
	S1 JG350E 595N		<0.2	15	10	125	2	27	9	<1.0	<5	9	<5	
	SQ JG350E 595N		<0.2	14	10	93	2	23	8	<1.0	<5	11	<5	
	S1 JG350E 580N		<0.2	20	- 8	110	2	36	9	<1.0	<5 (5	(<5	
	SQ JG350E 580N S1 JG400E 670N		<0.2 <0.2	20 17	10 10	108 79	2	36 22	9 10	<1.0 <1.0	<5 <5	9 15	<5 <5	
\Box	<u></u>	(-00)	10:2	11	10	13		22		×1.0		10		······
	SQ JG400E 670N	(-200)	<0.2	15	14	75	2	20	9	<1.0	<5	17	<5	-
	S1 JG400E 655N		<0.2	25	6	61	2	39	11	<1.0	<5	11	<5	
	SQ JG400E 655N		<0.2	25	б	58	. 1	37	11	<1.0	<5	<5	<5	
	S1 JG400E 640N		<0.2	18	9	69	2	30	11	<1.0	<5	9	<5	
	SQ JG400E 640N	(~200)	<0.2	20	9	70	- 5	28	11	<1.0	<5	7	<5	
	S1 JG400E 625N	(-80)	<0.2	21	3	78	2	37	13	<1.0	<5	<5	<5	
	SQ JG400E 625N	(-200)	<0.2	20	4	74	2	34	13	<1.0	<5	8	<5	
	S1 JG400E 610N		<0.2	18	11	99	2	27	10	<1.0	<5	<5 -	<5	
	SQ JG400E 610N		<0.2	19	12	101	2	26	9	<1.0	<5	<5	<5	
	S1 JG400E 595N	(-80)	<0.2	20	7	77	2	33	12	<1.0	<5	11	<5	
[SQ JG400E 595N	(-200)	<0.2	20	7	67	1	29	11	<1.0	<5	10	<5	
	\$1 JG400E 580N		<0.2	38	9	78	2	41	14	<1.0	<5	10	<5	
	SQ JG400E 580N		<0.2	36	9	80	1	41	13	<1.0	<5	б	<5	
	S1 JG400E 565N		<0.2	40	9	86	2	36	13	<1.0	<5	10	<5	
	SQ JG400E 565N	(-200)	<0.2	45		98	6	44	13	<1.0	<5	16	<5	
	S1 JG1000E 490M		<0.2	46	7	84	3	34	13	<1.0	<5	12	<5	
	SQ JG1000E 490N		<0.2	48	7	94	2	38	13	<1.0	<5	12	<5	
	S1 JG1000E 475N	• •	<0.2	37	8	81	2	39	15	<1.0	<5	5	<5	
Į	SQ JG1000E 475N		<0.2	40	8	88	2	44	15	<1.0	<5	8	<5	
	S1 JG1000E 460N	(-80)	<0.2	42	7	102	1	49	23	<1.0	<5	12	<5	
$\square \bigcirc$	SQ JG1000E 460M	(-200)	<0.2	48	9	104	1	52	23	<1.0	<5	14	<5	
			<0.2	49	8	78	2	43	16	<1.0	<5	6	<5	
	S1 JG1000E 445M	(-00)	NU . Z	72	v	10	2	7.5	10	1110	NJ	U	N 3	
	S1 JG1000E 445M		<0.2	53	8	84	2	44	10	<1.0	<5	8	<5 <5	
		(-200) (-80)												

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

			A DIVIS	ON OF INCH	ICAPE INSPE	CTION & TE	STENG SERV DA	ICES ITE PRINTE	D: 29-JUL	-91		
	REPORT: V91-00927.0 (CO	MPLETE)]				OJECT: 32			PAGE 18	-
	SAMPLE ELEMENT	Fe	Mn	Te		Cr	. V	Sn	¥	La	A]	Mg
	NUMBER UNITS	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT
	S1 JG350E 670N (-80)	4.04	0.09	<10	161	35	64	<20	<20	16	1.99	0.35
	SQ JG350E 670N (-200)	4.11	0.06	<10	149	39	63	<20	<20	16	2.13	0.33
	S1 JG350E 655N (-80)	3.92	0.05	<10	222	. 42	57	<20	<20	17	3.01	0.70
	SQ JG350E 655N (-200)	4.21	0.05	<10	243	47	61	<20	<20	18	3.53	0.73
· ·	S1 JG350E 640N (-80)	3.51	0.10	<10	228	42	57	<20	<20	15	2.16	0.89
	SQ JG350E 640N (-200)	3.48	0.09	<10	245	44	56	<20	<20	15	2.30	0.88
	S1 JG350E 625N (-80)	6.34	0.15	<10	149	62	102	<20	<20	8	1.24	0.61
	SQ JG350E 625N (-200)	7.10	0.14	<10	169	70	120	<20	<20	10	1.44	0.72
	S1 JG350E 610N (~80) S0 JG350E 610N (~200)	3.22	0.05	<10	206	38	53	<20 <20	<20	12	2.11	0.74
	50 JE350E 010N (~200)	3.04	0.04	<10	192	36	50	<20	<20	12	1.97	0.72
	S1 JG350E 595N (-80)	3.90	0.06	<10	97	32	53	<20	<20	11	2.35	0.46
	SQ JG350E 595N (-200)	4.05	0.05	<10	101	35	51	<20	<20	12	2.70	0.36
	S1 JG350E 580N (-80)	4.11	0.06	<10	143	36	46	<20	<20	17	3.21	0.60
	SQ JG350E 580N (-200) S1 JG400E 670N (~80)	4.12 3.37	0.05	<10 <10	145 110	38 27	46 45	<20 <20	<20 <20	17	3.32 1.89	0.61 0.47
	SI J8400C 070H (-007	J+ J f	0.03	10	110	21	40	~20	120	11	1.09	0.47
	SQ JG400E 670N (-200)	3.44	0.08	<10	108	29	41	<20	<20	15	2.24	0.37
	S1 JG400E 655N (-80)	3.42	0.07	<10	139	32	43	<20	<20	34	2.78	0.61
	SQ JG400E 655N (-200)	3.46	0.07	<10	142	32	43	<20	<20	38	3.01	0.57
	S1 JG400E 640N (-80)	3.65	0.07	<10	110	33	48	<20	<20	22	2.52	0.52
	SQ JG400E 640N (-200)	3.91	0.06	<10	118	. 36	48	<20	<20	27	2.94	0.47
	S1 JG400E 625N (-80)	4.56	0.06	<10	98	34	55	<20	<20	30	4.02	0.73
	SQ JG400E 625N (-200)	4.68	0.05	<10	98	37	57	<20	<20	31	4.36	0.71
	S1 JG400E 610N (-80)	3.54	0.07	<10	100	31	46	<20	<20	8	1.79	0.58
	SQ JG400E 610N (-200)	3.75	0.07	<10	113	32	46	<20	<20	9	2.03	0.58
	S1 JG400E 595N (-80)	3.29	0.07	<10	94	31	40	<20	<20	11	2.67	0.57
	SQ JG400E 595N (-200)	3.37	0.07	<10	94	30	37	<20	<20	13	3.08	0.49
	S1 JG400E 580N (-80)	3.23	0.07	<10	193	43	53	<20	<20	11	2.05	0.84
	SQ JG400E 580N (-200)	3.28	0.07	<10	200	45	53	<20	<20	12	2.15	0.84
	S1 JG400E 565N (-80) SQ JG400E 565N (-200)	3.23 3.51	0.06	<10 <10	199 233	40 49	52 59	<20	<20	13	1.98	0.77
	50 J6400E 303N (~200)	3.01	0.06	×10	233	49	עכ	<20	<20	16	2.29	0.86
	S1 JG1000E 490N (-80)	3.48	0.06	<10	119	43	54	<20	<20	13	2.20	0.94
	SQ JG1000E 490N (-200)	3.68	0.07	<10	143	48	57	<20	<20	15	2.61	0.99
	S1 JG1000E 475N (-80)	3.36	0.08	<10	131	42	53	<20	<20	11	2.15	1.02
	SQ JG1000E 475N (-200)	3.54 4.21	0.08	<10	151	47 AC	57	<20 < 20	<20	12	2.43	1.07
	S1 JG1000E 460N (-80)	4.31	0.10	<10	86	46	57	<20	<20	7	2.84	1.83
\bigcirc	SQ JG1000E 460N (-200)	4.29	0.10	<10	112	51	61	<20	<20	8	3.04	1.68
\bigvee	S1 JG1000E 445N (-80)	3.57	0.08	<10	185	49	59	<20	<20	11	2.29	1.08
	SQ JG1000E 445N (-200)	3.68	0.07	<10	187	51	60	<20	<20	13	2.51	1.10
	S1 JG1000E 430N (-80)	3.39	0.08	<10	157	48 51	58	<20 <20	<20	10 10	2.07	1.11
	SQ JG1000E 430N (-200)	3.40	0.06	<10	156	51	59	<20	<20	10	2.13	1.16

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (1) 985-0681 Telex 04-352667

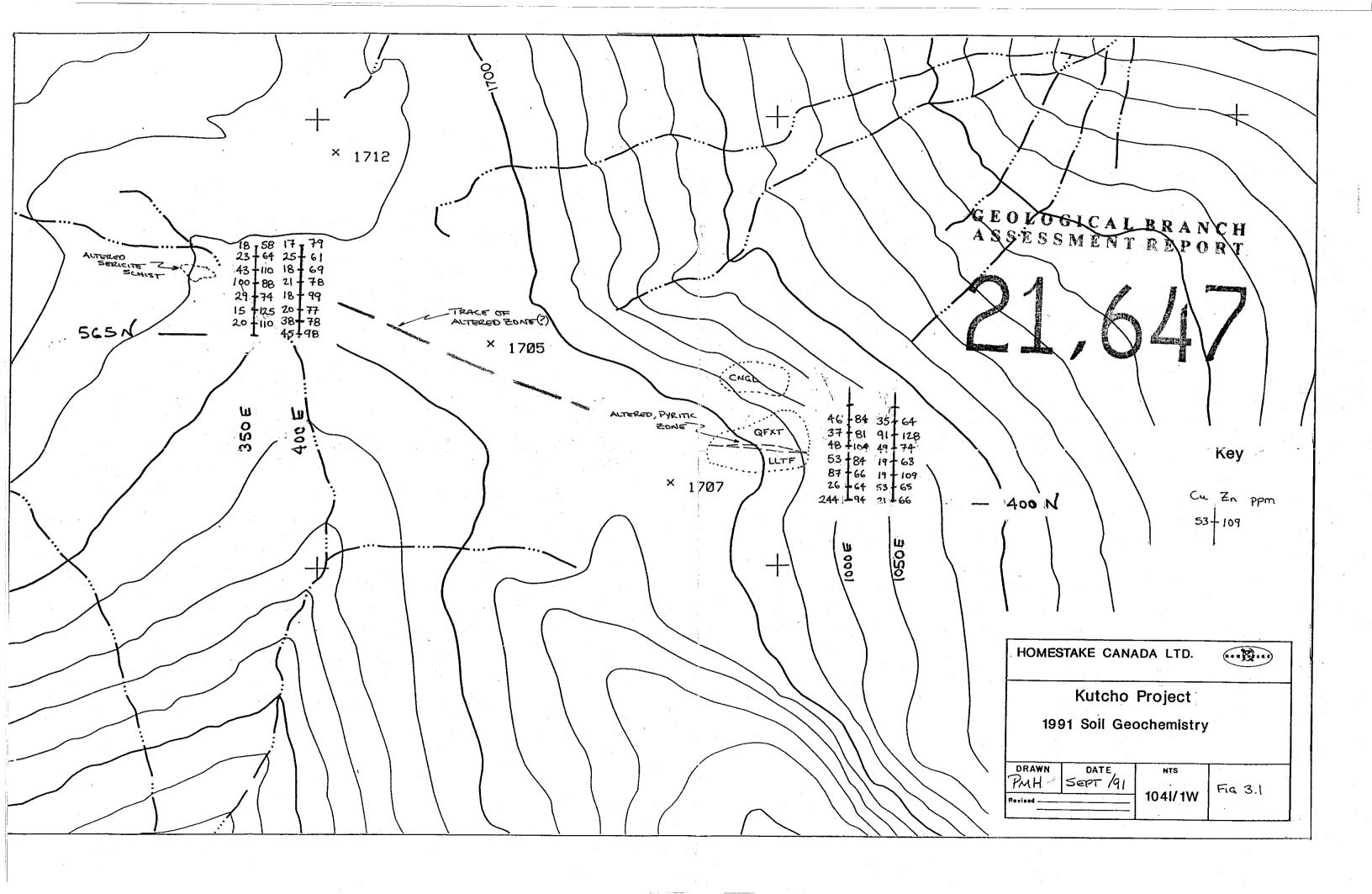
[

			A DIVIS	ION OF INCI	ICAPE INSP	FCHON& IE	STINGSERVICES DATE_PRINTED: 29-JUL-	01
REPORT: V91-C)0927.0 (COM	IPLETE)]			PROJECT: 3200	PAGE 1C
SAMPLE NUMBER	ELEMENT UNITS	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM		· · · · · · · · · · · · · · · · · · ·
S1 JG350E 670 SQ JG350E 670 S1 JG350E 655 SQ JG350E 655 S1 JG350E 640	DN (-200) 5N (-80) 5N (-200)	0.30 0.30 0.25 0.26 0.64	<0.01 <0.01 0.02 0.01 0.01	0.04 0.04 0.06 0.07 0.13	35 35 29 31 72	11 11 12 13 13		
SQ JG350E 640 S1 JG350E 625 SQ JG350E 625 S1 JG350E 610 SQ JG350E 610	5N (-80) 5N (-200) 3N (-80)	0.67 0.32 0.36 0.35 0.35	0.02 <0.01 <0.01 0.01 0.01	0.14 0.09 0.10 0.09 0.09	77 34 39 36 36	14 14 17 8 8		
S1 JG350E 595 SQ JG350E 595 S1 JG350E 580 SQ JG350E 580 S1 JG400E 670	5N (-200) IN (-80) IN (-200)	0.22 0.24 0.23 0.24 0.15	0.01 0.01 <0.01 <0.01 0.01	0.04 0.04 0.09 0.09 0.05	18 20 21 22 16	6 7 11 12 7		
SQ JG400E 670 S1 JG400E 655 SQ JG400E 655 S1 JG400E 640 SQ JG400E 640	N (-80) SN (-200) N (-80)	0.14 0.22 0.23 0.13 0.15	0.01 0.02 0.01 0.01 <0.01	0.04 0.04 0.04 0.04 0.04 0.04	14 17 17 13 13	9 27 31 17 22	· · ·	
S1 J6400E 625 SQ J6400E 625 S1 J6400E 610 SQ J6400E 610 S1 J6400E 595	5N (-200) IN (~80) IN (-200)	0.25 0.28 0.19 0.22 0.13	0.02 0.02 <0.01 0.01 <0.01	0.03 0.03 0.05 0.05 0.04	10 10 16 19 13	27 29 5 6 8		
SQ JG400E 595 S1 JG400E 580 SQ JG400E 580 S1 JG400E 565 SQ JG400E 565	N (-80) N (-200) N (-80)	0.13 0.37 0.38 0.41 0.47	<0.01 0.01 0.01 0.01 0.01 0.01	0.04 0.11 0.10 0.09 0.11	14 39 40 44 53	11 9 10 11 12		
S1 JG1000E 49 S0 JG1000E 49 S1 JG1000E 47 S0 JG1000E 47 S1 JG1000E 46	ON (-200) 5N (-80) 5N (-200)	0.32 0.33 0.32 0.35 0.23	<0.01 <0.01 <0.01 <0.01 <0.01	0.09 0.10 0.09 0.11 0.09	23 24 22 24 13	10 13 9 11 6		
SQ J61000E 46 S1 J61000E 44 SQ J61000E 44 S1 J61000E 43 SQ J61000E 43	5N (-80) 5N (-200) ON (-80)	0.28 0.42 0.40 0.46 0.46	<0.01 0.01 0.01 <0.01 0.01	0.10 0.09 0.09 0.08 0.08	16 30 30 52 52	8 12 13 12 12		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 ***94) 985-0681 Telex 04-352667

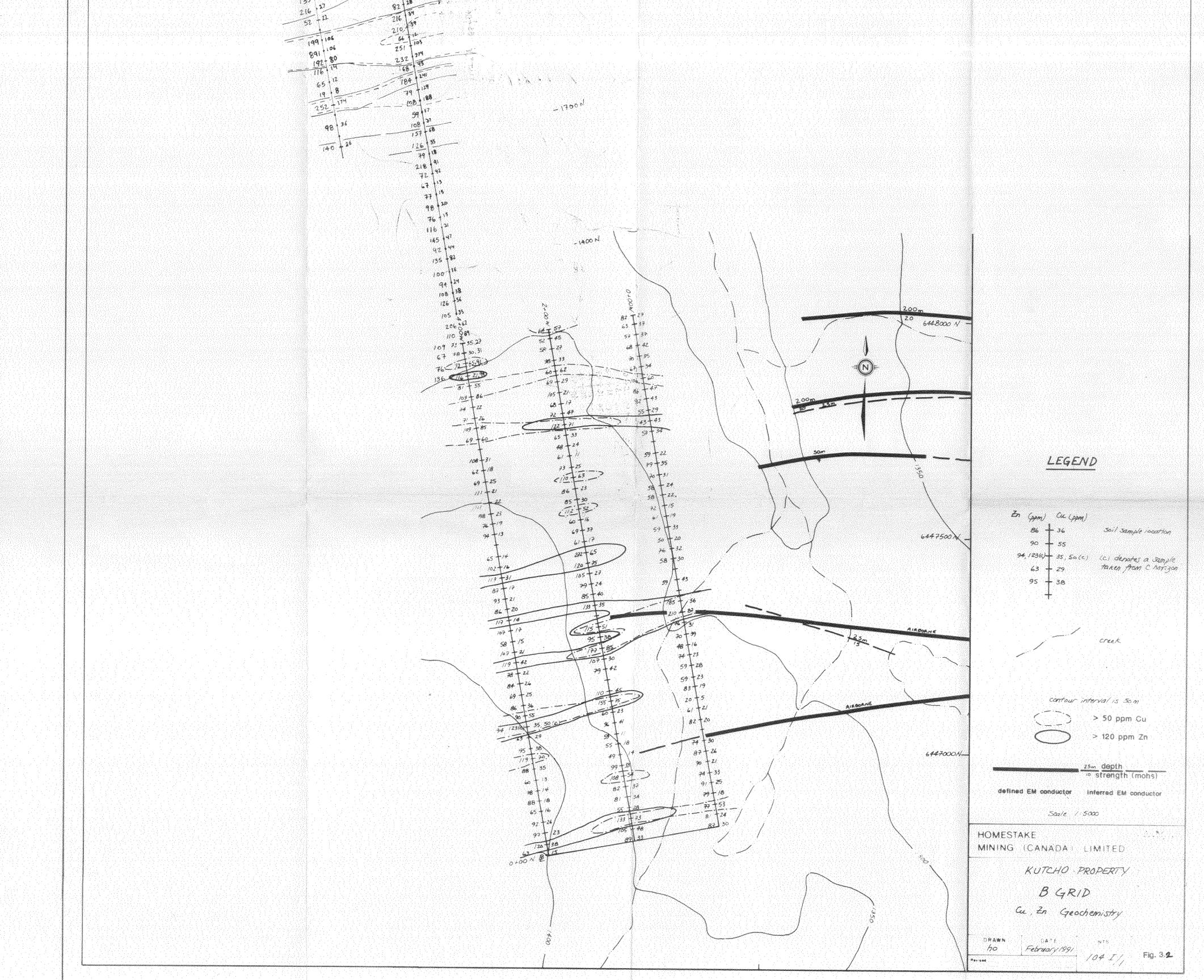
			A DIVISIC	N OF INCH	CAPI-INSPE	CTION & IF:	STING SERVI	CES TE DOTNTI	ED: 29-JUL	01		
REPORT: V91-009	27.0 (COM	IPLETE)					·	OJECT: 3			PAGE 2A	
SAMPLE NUMBER	ELEMENT UNITS	Ag PPM	Cu PPM	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	Cd PPM	Bi PPM	As PPM	Sb PPM
S1 JG1000E 415N SQ JG1000E 415N S1 JG1000E 400N SQ JG1000E 400N	(-200) (-80) (-200)	<0.2 <0.2 <0.2 <0.2 <0.2	26 28 244 209	7 8 20 24	64 66 94 90	1 2 2 2	35 37 21 22	12 12 23 22	<1.0 <1.0 <1.0 <1.0	<5 <5 <5 <5	6 6 <5 <5	<5 <5 <5 <5 <5
S1 JG1050E 490N SQ JG1050E 490N S1 JG1050E 475N SQ JG1050E 475N S1 JG1050E 460N	(-200) (-80) (-200) (-80)	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	35 38 91 93 49	5 6 6 7 6	64 69 128 141 74	1 2 1 1 1	37 40 33 40 43	13 14 16 17 14	<1.0 <1.0 <1.0 <1.0 <1.0	<5 <5 <5 <5 <5 <5	8 <5 <5 <5 5 6	<5 <5 <5 <5 <5 <5 <5
 SQ JG1050E 460N S1 JG1050E 445N SQ JG1050E 445N S1 JG1050E 430N SQ JG1050E 430N SQ JG1050E 430N S1 JG1050E 415N	(-80) (-200) (-80) (-200)	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	53 19 19 19 19 19 53	8 8 8 8 5 7	79 63 65 109 110 65	2 2 2 2 1 2	49 31 32 32 32 29	14 11 10 11 10 13	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<5 <5 <5 <5 <5 <5 <5 <5	12 <5 8 <5 <5 5 14	<5 <5 <5 <5 <5 <5 <5 <5
 SQ JG1050E 415N S1 JG1050E 400N SQ JG1050E 400N	(-200) (-80)	<0.2 <0.2 <0.2 <0.2	32 21 21	7	61 66 61	2 1 1	29 36 32	11 13 12	<1.0 <1.0 <1.0 <1.0	<5 <5 <5 <5	11 10 8	<5 <5 <5
······································	••••••											
 · · · · · · · · · · · · · · · · · · ·												

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5


REPORT: V91-009 SAMPLE NUMBER	ELEMENT	IFLEED.										
	ELEMENT						PX	OJECT: 32			PAGE 28	
NUMBER		Fe	Mn	Te	ва	Cr	٧	Sn	W	La	A1	Mg
	UNITS	PCT	PCT	PPM	PPM	PPH	PPM	PPM	PPM	PPM	PCT	PCT
S1 JG1000E 415	(-80)	3.04	0.06	<10	107	38	51	<20	<20	. 9	2.20	0.76
SQ JG1000E 415M		3.18	0.06	<10	118	41	.53	<20	<20	9	2.46	0.78
S1 JG1000E 400N		5.65	0.10	<10	118	34	88	<20	<20	12	3.42	1.77
		5.61	0.12	<10	140	39	95	<20	<20	13	3.54	1.64
S1 JG1050E 490N	(-80)	3.11	0.06	<10	93	40	52	<20	<20	- 9	2.25	0.83
SQ JG1050E 490N	(-200)	3.40	0.06	<10	102	45	57	<20	<20	10	2.53	0.90
		3.50	0.06	<10	67	55	59	<20	<20	6	2.15	1.30
SQ JG1050E 475N	(-200)	3.89	0.07	<10	82	65	66	<20	<20	8	2.51	1.46
S1 JG1050E 460N	(-80)	3.44	0.06	<10	160	46	55	<20	<20	11	2.25	1.10
SQ JG1050E 460N	(-200)	3.65	0.06	<10	184	52	60	<20	<20	13	2.48	1.15
S1 JG1050E 445N	(-80)	2,90	0.05	<10	94	35	46	<20	<20	8	1.79	0.65
SQ JG1050E 445N	(-200)	3.08	0.05	<10	102	37	47	<20	<20	9	1.97	0.67
S1 JG1050E 430N	(-80)	3.03	0.06	<10	81	40	47	<20	<20	7	1.71	0.74
SQ JG1050E 430N	(-200)	2,98	0.05	<10	80	40	46	<20	<20	7	1.79	0.77
S1 JG1050E 415N	(-80)	3.50	0.06	<10	173	33	53	<20	<20	-14	2.27	0.95
SQ JG1050E 415N	(-200)	3.23	0.05	<10	182	35	49	<20	<20	14	2.28	0.80
S1 JG1050E 400N	(-80)	2.81	0.06	<10	69	40	46	<20	<20	б	1.94	0.72
SQ JG1050E 400N	(-200)	2.85	0.06	<10	72	38	45	<20	<20	7	2.10	0.65
······································			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •								
·····			· · · · · · · · · · · · · · · · · · ·									
	S1 JG1050E 490N SQ JG1050E 490N S1 JG1050E 475N SQ JG1050E 475N SQ JG1050E 475N S1 JG1050E 460N SQ JG1050E 460N SQ JG1050E 445N SQ JG1050E 445N SQ JG1050E 430N SQ JG1050E 430N SQ JG1050E 415N SQ JG1050E 415N SQ JG1050E 415N	SQ JG1000E 400N (-200) S1 JG1050E 490N (-80) SQ JG1050E 490N (-80) SQ JG1050E 475N (-80) SQ JG1050E 475N (-200) S1 JG1050E 460N (-80) SQ JG1050E 460N (-200) S1 JG1050E 445N (-80) SQ JG1050E 445N (-80) SQ JG1050E 430N (-80) SQ JG1050E 415N (-80) SQ JG1050E 415N (-200) S1 JG1050E 400N (-80) SQ JG1050E 400N (-200)	S1 JG1050E 490N (-80) 3.11 SQ JG1050E 490N (-200) 3.40 S1 JG1050E 475N (-80) 3.50 SQ JG1050E 475N (-80) 3.50 SQ JG1050E 475N (-200) 3.89 S1 JG1050E 475N (-200) 3.89 S1 JG1050E 460N (-80) 3.44 SQ JG1050E 460N (-200) 3.65 S1 JG1050E 445N (-80) 2.90 SQ JG1050E 445N (-200) 3.08 S1 JG1050E 445N (-200) 3.08 S1 JG1050E 430N (-80) 3.03 SQ JG1050E 415N (-80) 3.50 S0 JG1050E 415N (-80) 3.50 S0 JG1050E 415N (-200) 3.23 S1 JG1050E 400N (-80) 2.81	S1 JG1050E 490N (-80) 3.11 0.06 SQ JG1050E 490N (-200) 3.40 0.06 S1 JG1050E 475N (-80) 3.50 0.06 SQ JG1050E 475N (-80) 3.50 0.06 SQ JG1050E 475N (-200) 3.89 0.07 S1 JG1050E 475N (-200) 3.89 0.07 S1 JG1050E 460N (-80) 3.44 0.06 SQ JG1050E 460N (-200) 3.65 0.06 S1 JG1050E 445N (-80) 2.90 0.05 SQ JG1050E 445N (-80) 3.03 0.06 SQ JG1050E 430N (-80) 3.03 0.06 SQ JG1050E 415N (-80) 3.50 0.06 SQ JG1050E 415N (-80) 3.50 0.06 SQ JG1050E 415N (-80) 3.23 0.05 S1 JG1050E 415N (-200) 3.23 0.05 S1 JG1050E 415N (-200) 3.23 0.05	S1 JG1050E 490N (-80) 3.11 0.06 <10	S1 JG1050E 490N (-80) 3.11 0.06 <10 93 40 52 <20 <20 9 S0 JG1050E 490N (-200) 3.40 0.06 <10	S1 JG1050E 490N (-80) 3.11 0.06 <10 93 40 52 <20 <20 9 2.25 S0 JG1050E 490N (-200) 3.40 0.06 <10					

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 1604) 985-0681 Telex 04-352667

Ť



\bigcirc				A DIVIS	ION OF INCH	CAPI-USSPI:	CHON& IESI	UNCOSERVICES	
	REPORT: V91-00	927.0 (COM	PLETE)					PROJECT: 3200	PAGE 2C
	SAMPLE	ELEMENT	Са	Na	K	Sr	·		
	NUMBER	UNITS	PCT	PCT	PCT	PPM	PPH		
	S1 JG1000E 415	N (-80)	0.14	<0.01	0.07	18	5		
	SQ JG1000E 415		0.14	<0.01	0.07	20	6		
	S1 JG1000E 400		0.87	<0.01	0.43	47	8		
	SQ JG1000E 400		0.92	<0.01	0.50	51	- 8		
	S1 JG1050E 490	N (-80)	0.17	<0.01	0.07	14	6		
·	SQ JG1050E 490	N (-200)	0.18	<0.01	0.08	15	8		
	S1 JG1050E 475		0.29	<0.01	0.08	20	5		
	SQ JG1050E 475		0.26	<0.01	0.09	18	6		
	S1 JG1050E 460	V (-80)	0.42	<0.01	0.07	28	10		·
	SQ JG1050E 460	N (-200)	0.46	<0.01	0.08	31	11		
·····	S1 JG1050E 445	V (-80)	0.22	<0.01	0.06	26	4		· · · · · · · · · · · · · · · · · · ·
	SQ JG1050E 445	• •	0.24	0.01	0.06	30	5		
	S1 JG1050E 430		0.24	<0.01	0.06	32	4		
	SQ JG1050E 430		0.23	<0.01	0.06	31	4		
	S1 JG1050E 415	V (-80)	0.50	0.01	0.06	61	8	· · ·	
()	SQ JG1050E 415	N (-200)	0.46	0.01	0.06	59	9		
	S1 JG1050E 400	(-80)	0.18	<0.01	0.06	16	4	•	
	SQ JG1050E 400	V (-200)	0.18	<0.01	0.05	17	4		
\frown						···· ·		· · · · · · · · · · · · · · · · · · ·	
\bigcirc									

100 al 109 ui 315 ui 452 ioi 139 al 129 al 139 al 139

82 128

21,647